
Preface

Thank you for your new or continued patronage of Toshiba semiconductor products. This is the 1998

edition of the user’s manual for the TX49 Family of 64-bit RISC microprocessors, entitled 64-Bit TX

System RISC TX49 Family Architecture.

This manual is written so as to be accessible to engineers who may be designing a Toshiba

microprocessor into their products for the first time. No prior knowledge of these devices is assumed.

The manual includes a review of the architecture of the processor family, a description of the TX49

instruction set, and sections dedicated to various other relevant topics, such as the Memory

Management System (MMU) and CPU exceptions.

Toshiba continually updates its technical information. Your comments and suggestions concerning

this and other Toshiba documents are sincerely appreciated and may be used in subsequent editions.

For updates to this document or for additional information about the product, please contact your

nearest Toshiba office or authorized Toshiba dealer.

September 1998

 TX49 Architecture

1-1

I�TX49 Processor Core Specification

1. Introduction

The TX49 Processor Core is a high performance and low-power 64-bit RISC
microprocessor core developed by Toshiba which is well-suited to embedded applications
such as networking, laser printer, STB (Set Top Box) and 3-D graphic.

 TX49 Architecture

1-2

 TX49 Architecture

2-1

2. Feature

• 64�bit operation

• 32 of 64 bit integer general purpose registers

• 32 of 32�bit floating point general purpose registers: Optional

• 64�GB physical address space

• Instruction Set

• Upward compatible with MIPS I, MIPS II, and MIPS III ISA

• MAC (Multiply and Accumulate) instructions %&

• PREF (Prefetch) instruction %

• Optimized 5 stage pipeline

• Instruction Cache

• 8�KB/�16�KB/�32KB : Selectable %

• Four-way set associative %

• Lock function support %

• Data cache

• 8�KB/�16�KB/�32�KB: Selectable %

• Four-way set associative %

• Lock function support %&

• Write Strategy

Write-back-Snoop

Write-through-No-Write-Allocate-Snoop %

Write-through-Write-Allocate-Snoop %

• MMU

• 48-double-entry (even/odd) Joint TLB

• 2-entry Instruction TLB

• 4-entry Data TLB

• IEEE754 compatible single and double precision FPU: Optional (’99 avairable)

• Single and double precision FPU in hardware %

• Debug support (EJTAG): Optional %&

• Debug instructions %&

• Real time debugging is supported by debug module logic %&

• Power management modes (halt, doze) %&

 TX49 Architecture

2-2

 TX49 Architecture

3-1

3. TX49 Block Diagram

Figure 3-1 shows the block diagram of TX49 Pure Core, MPU Core and MCU. TX49 Pure
Core includes an instruction cache and a data cache. These cache are selectable by user
system from among a variety of possible configurations.

TX49 Pure Core

TX49 MCU

TX49 MPU Core

Instruction Cache

8 KB/ 16 KB/ 32 KB

4-way set associative

Lockable

Data Cache

8 KB/ 16 KB/ 32 KB

4-way set associative

Lockable

WB/WT

Integer Unit

GPR

DataPath

MAC

Pipeline

Control

CP0

CP0 Register

MMU/TLB

Exception Unit

FPU(CP1)

(Option)

FP Register

Data Path

Debug

Support

Unit (Option)

Write Buffer GBUS I/F

Peripheral

Figure 3-1 Block Diagram of the TX49

 TX49 Architecture

3-2

TX49 Architecture

4-1

4. CPU Registers Overview

4.1 Introduction

The TX49 has the CPU registers for integer operation or address calculation and the
CP0 registers for memory system or exception handling.

4.2 CPU Registers

The TX49 has the 64-bit CPU registers.

• 32 general-purpose registers

• 64-bit program counters

• HI/LO register for storing the result of multiply and divide operations

Figure 4-1 shows the configuration of these registers.

General Purpose Registers (GPR) Multiply/Divide Registers

63 0 63 0

r0• =• 0 HI

r1 63 0

r2 LO

.

.

Program counter

r29 63 0

r30 PC

r31• =• Link Address

Figure 4-1 TX49 CPU registers

The r0 and r31 registers of GPR have special functions as follows.

• Register r0 always contains the value 0. It can be a target register of an
instruction whose operation result is not needed. Or, it can be a source register
of an instruction that requires a value of 0.

• Register r31 is the link register for the Jump and Link instruction. The address
of the instruction after the delay slot is placed in r31.

The TX49 has the following some special registers that are used or modified implicitly
by certain instructions.

• HI - Higher result for Multiply and Divide

• LO - Lower result for Multiply and Divide

These two registers are used to store that result of an integer multiplication or division.
In multiplication, the 64 high-order bits of a 128-bit result are stored in the HI, and the
64 low-order bits are stored in the LO. In division, the resulting quotient is stored in the
LO, and the remainder is stored in the HI.

• PC - Program Counters

The register contains the address of the currently executed instruction.

TX49 Architecture

4-2

4.3 CP0 Registers

The TX49 has the 32-bit or 64-bit System control coprocessor(CP0) registers. These
registers are used for memory system or exception handling. Table 4-1 lists the CP0
registers built into the TX49. The more detail information are described in Chapter 7.

Table 4-1 CP0 Registers

Register Name Reg. No. Register Name Reg. No.

Index Reg#0 Config Reg#16

Random Reg#1 LLAddr Reg#17

EntryLo0 Reg#2 (Reserved) Reg#18

EntryLo1 Reg#3 (Reserved) Reg#19

Context Reg#4 XContext Reg#20

PageMask Reg#5 (Reserved) Reg#21

Wired Reg#6 (Reserved) Reg#22

(Reserved) Reg#7 Debug %& Reg#23

BadVAddr Reg#8 DEPC %& Reg#24

Count Reg#9 (Reserved) Reg#25

EntryHi Reg#10 (Reserved) Reg#26

Compare Reg#11 (Reserved) Reg#27

SR Reg#12 TagLo Reg#28

Cause Reg#13 TagHi Reg#29

EPC Reg#14 ErrorEPC Reg#30

PRId Reg#15 DESAVE % Reg#31

 TX49 Architecture

5-1

5. CPU Instruction Set Summary

5.1 Introduction

Each instruction is 32�ELWV ORQJ� 7KHVH LQVWUXFWLRQV DUH XSZDUG FRPSDWLEOH ZLWK WKH

MIPS I, II and III instruction set architecture and the TX39’s instructions.

5.2 Instruction Format

There are three instruction formats: Immediate (I-type), Jump (J-type) and Register (R-
type), as shown in Figure 5-1. Having just three instruction formats simplifies
instruction decoding. If more complex functions or addressing modes are required, they
can be produced with the compiler using combinations of the instructions.

Immediate (I-type)

31 26 25 21 20 16 15 0

op rs rt immediate

Jump (J-type)

31 26 25 0

op target

Register (R-type)

31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd sa funct

op Operation code (6• bits)

rs Source register (5• bits)

rt Target (source or destination) register, or branch condition (5• bits)

rd Destination register (5• bits)

immediate Immediate, branch displacement, address displacement (16• bits)

target Branch target address (26• bits)

sa Shift amount (5• bits)

funct Function (6• bits)

Figure 5-1 Instruction formats and subfield mnemonics

TX49 Architecture

5-2

5.3 Instruction Set Overview

5.3.1 Load and Store Instructions (Table 5-1)

Load and Store instructions move data between memory and general purpose
registers, and are all I-type instructions. The only directly supported addressing
mode is “base register plus 16-bit signed immediate offset”.

Table 5-1 CPU Instruction Set: Load and Store Instructions

Instruction Description Note

LB Load Byte MIPS I

LBU Load Byte Unsigned MIPS I

LH Load Halfword MIPS I

LHU Load Halfword Unsigned MIPS I

LW Load Word MIPS I

LWL Load Word Left MIPS I

LWR Load Word Right MIPS I

SB Store Byte MIPS I

SH Store Halfword MIPS I

SW Store Word MIPS I

SWL Store Word Left MIPS I

SWR Store Word Right MIPS I

LD Load Doubleword MIPS III

LDL Load Doubleword Left MIPS III

LDR Load Doubleword Right MIPS III

LL Load Linked MIPS II

LLD Load Linked Doubleword MIPS III

LWU Load Word Unsigned MIPS III

SC Store Conditional MIPS II

SCD Store Conditional Doubleword MIPS III

SD Store Doubleword MIPS III

SDL Store Doubleword Left MIPS III

SDR Store Doubleword Right MIPS III

SYNC Sync MIPS II

 TX49 Architecture

5-3

5.3.2 Computational Instructions (Table 5-1)

Computational instructions perform arithmetic, logical or shift operations on
values in registers. This instruction format can be R-type or I-type. With R-type
instructions, the two/three operands and the result are register values. With I-type
instructions, one of the operands is 16-bit immediate data. Computational
instructions can be classified as follows.

• ALU immediate

• Three-operand register-type

• Shift

• Multiply/Divide

Table 5-1 CPU Instruction Set: Computational Instructions

Instruction Description Note

(ALU Immediate)

ADDI Add Immediate MIPS I

ADDIU Add Immediate Unsigned MIPS I

SLTI Set on Less Than Immediate MIPS I

SLTIU Set on Less Than Immediate Unsigned MIPS I

ANDI AND Immediate MIPS I

ORI OR Immediate MIPS I

XORI Exclusive OR Immediate MIPS I

LUI Load Upper Immediate MIPS I

DADDI Doubleword Add Immediate MIPS III

DADDIU Doubleword Add Immediate Unsigned MIPS III

(ALU 3-Operand, register type)

ADD Add MIPS I

ADDU Add Unsigned MIPS I

SUB Subtract MIPS I

SUBU Subtract Unsigned MIPS I

SLT Set on Less Than MIPS I

SLTU Set on Less Than Unsigned MIPS I

AND AND MIPS I

OR OR MIPS I

XOR Exclusive OR MIPS I

NOR NOR MIPS I

DADD Doubleword Add MIPS III

DADDU Doubleword Add Unsigned MIPS III

DSUB Doubleword Subtract MIPS III

DSUBU Doubleword Subtract Unsigned MIPS III

(Shift)

SLL Shift Left Logical MIPS I

SRL Shift Right Logical MIPS I

SRA Shift Right Arithmetic MIPS I

SLLV Shift Left Logical Variable MIPS I

SRLV Shift Right Logical Variable MIPS I

SRAV Shift Right Arithmetic Variable MIPS I

DSLL Doubleword Shift Left Logical MIPS III

DSRL Doubleword Shift Right Logical MIPS III

DSRA Doubleword Shift Right Arithmetic MIPS III

DSLLV Doubleword Shift Left Logical Variable MIPS III

DSRLV Doubleword Shift Right Logical Variable MIPS III

TX49 Architecture

5-4

Instruction Description Note

DSRAV Doubleword Shift Right Arithmetic Variable MIPS III

DSLL32 Doubleword Shift Left Logical +32 MIPS III

DSRL32 Doubleword Shift Right Logical +32 MIPS III

DSRA32 Doubleword Shift Right Arithmetic +32 MIPS III

(Multiply and Divide)

MULT Multiply MIPS I

MULTU Multiply Unsigned MIPS I

DIV Divide MIPS I

DIVU Divide Unsigned MIPS I

MFHI Move From HI MIPS I

MTHI Move To HI MIPS I

MFLO Move From LO MIPS I

MTLO Move To LO MIPS I

DMULT Doubleword Multiply MIPS III

DMULTU Doubleword Multiply Unsigned MIPS III

DDIV Doubleword Divide MIPS III

DDIVU Doubleword Divide Unsigned MIPS III

 TX49 Architecture

5-5

5.3.3 Jump and Branch Instructions (Table 5-1)

Jump/branch instructions change the program flow. A jump/branch instruction
will delay the pipeline by one instruction cycle, however, an instruction inserted into
the delay slot (immediately following a branch instruction) can be executed while the
instruction at the branch target address is being fetched.

Table 5-1 CPU Instruction Set: Jump and Branch Instructions

Instruction Description Note

J Jump MIPS I

JAL Jump And Link MIPS I

JR Jump Register MIPS I

JALR Jump And Link Register MIPS I

BEQ Branch on Equal MIPS I

BNE Branch on Not Equal MIPS I

BLEZ Branch on Less Than or Equal to Zero MIPS I

BGTZ Branch on Greater Than Zero MIPS I

BLTZ Branch on Less Than Zero MIPS I

BGEZ Branch on Greater than or Equal to Zero MIPS I

BLTZAL Branch on Less Than Zero And Link MIPS I

BGEZAL Branch on Greater than or Equal to Zero And Link MIPS I

BEQL Branch on Equal Likely MIPS II

BNEL Branch on Not Equal Likely MIPS II

BLEZL Branch on Less Than or Equal to Zero Likely MIPS II

BGTZL Branch on Greater Than Zero Likely MIPS II

BLTZL Branch on Less Than Zero Likely MIPS II

BGEZL Branch on Greater Than or Equal to Zero Likely MIPS II

BLTZALL Branch on Less Than Zero And Link Likely MIPS II

BGEZALL Branch on Greater Than or Equal to Zero And Link Likely MIPS II

5.3.4 Special Instructions (Table 5-1)

There are special instructions used for software trap. The instruction format is R-
type for all two.

Table 5-1 CPU Instruction Set: Special Instructions

Instruction Description Note

SYSCALL System Call MIPS I

BREAK Break MIPS I

TX49 Architecture

5-6

5.3.5 Exception Instructions (Table 5-1)

These instructions (R-type or I-type) cause a branch to the general exception
handling vector based upon the result of a comparison.

Table 5-1 CPU Instruction Set: Exception Instructions

Instruction Description Note

TGE Trap if Greater Than or Equal MIPS II

TGEU Trap if Greater Than or Equal Unsigned MIPS II

TLT Trap if Less Than MIPS II

TLTU Trap if Less Than Unsigned MIPS II

TEQ Trap if Equal MIPS II

TNE Trap if Not Equal MIPS II

TGEI Trap if Greater Than or Equal Immediate MIPS II

TGEIU Trap if Greater Than or Equal Immediate Unsigned MIPS II

TLTI Trap if Less Than Immediate MIPS II

TLTIU Trap if Less Than Immediate Unsigned MIPS II

TEQI Trap if Equal Immediate MIPS II

TNEI Trap if Not Equal Immediate MIPS II

5.3.6 Coprocessor Instructions (Table 5-1)

Coprocessor instructions invoke coprocessor operations. The format of these
instructions depends on which coprocessor is used.

Table 5-1 CPU Instruction Set: Coprocessor Instructions

Instruction Description Note

LWCz Load Word to Coprocessor z (z• =• 1,2) MIPS I

SWCz Store Word from Coprocessor z (z• =• 1,2) MIPS I

MTCz Move To Coprocessor z (z• =• 1,2) MIPS I

MFCz Move From Coprocessor z (z• =• 1,2) MIPS I

CTCz Move Control To Coprocessor z (z• =• 1,2) MIPS I

CFCz Move Control From Coprocessor z (z• =• 1,2) MIPS I

COPz Coprocessor Operation z (z• =• 1,2) MIPS I

BCzT Branch on Coprocessor z True (z• =• 0,1,2) MIPS I

BCzF Branch on Coprocessor z False (z• =• 0,1,2) MIPS I

BCzTL Branch on Coprocessor z True Likely (z• =• 0,1,2) MIPS II

BCzFL Branch on Coprocessor z False Likely (z• =• 0,1,2) MIPS II

LDCz Load Double Coprocessor z (z• =• 1,2) MIPS III

SDCz Store Double Coprocessor z (z• =• 1,2) MIPS III

DMTCz Doubleword Move To Coprocessor z (z• =• 1,2) MIPS III

DMFCz Doubleword Move From Coprocessor z (z• =• 1,2) MIPS III

 TX49 Architecture

5-7

5.3.7 CP0 Instructions (Table 5-1)

Coprocessor 0 instructions are used for operations involving the system control
coprocessor (CP0) registers, processor memory management and exception handling.

Table 5-1 Instruction Set: CP0 Instructions

Instruction Description Note

MTC0 Move To CP0 MIPS I

MFC0 Move From CP0 MIPS I

DMTC0 Doubleword Move To CP0 MIPS III

DMFC0 Doubleword Move From CP0 MIPS III

TLBR Read Indexed TLB Entry MIPS I

TLBWI Write Indexed TLB Entry MIPS I

TLBWR Write Random TLB Entry MIPS I

TLBP Probe TLB for Matching Entry MIPS I

CACHE Cache MIPS III

ERET Exception Return MIPS III

WAIT Enter power management mode

5.3.8 Multiply and Divide Instructions (Table 5-1) %&

Table 5-1 Extensions to the ISA: Multiply and Divide Instructions

Instruction Description Note

MULT Multiply (3-operand) % &

MULTU Multiply Unsigned (3-operand) % &

MADD Multiply and ADD (3-operand) % &

MADDU Multiply and ADD Unsigned (3-operand) % &

5.3.9 Debug Instructions (Table 5-1) %&

Table 5-1 Extensions to the ISA: Debug Instructions

Instruction Description Note

CTC0 Move Control To Coprocessor 0 %

CFC0 Move Control From Coprocessor 0 %

SDBBP Software Debug Breakpoint % &

DERET Debug Exception Return % &

5.3.10 Other Instructions (Table 5-1) %

Table 5-1 Other Instructions

Instruction Description Note

PREF Prefetch %

TX49 Architecture

5-8

5.4 Instruction Execution Cycles

Because the TX49 employs the high-speed Multiply and Add Calculator (MAC),
multiply instructions, such as MULT, MULTU, DMULT and DMULTU are executed faster.
And, TX49 is improved the execution of divide instructions, too.

Instruction Latency Repeat

MULT 2/3 operand 4/4 1/3

MADD 2/3 operand 4/4 1/3

DMULT 2/3 operand 7/7 6/6

DIV 37 36

DDIV 69 68

TX49 Architecture

6-1

6. CPU Pipeline

6.1 Introduction

This chapter describes the operation of the TX49 pipeline. It explains the basic
operation of the pipeline. And, it explains how the TX49 handled delay instructions;
these are instructions that follow a branch or load instruction in the pipeline. A later
section explains interruptions to the pipeline flow caused by interlocks and exceptions.

6.2 Basic Pipeline Operation

The TX49 executes instructions in an optimized 5 stage pipeline. Each pipeline stage
is executed in one clock cycle. When the pipeline is fully utilized, five instructions are
executed at the same time, resulting in an average instruction execution rate of one
instruction par cycle as illustrated in Figure 6-1.

One cycle

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 - Instruction Fetch, Phase one

F2 - Instruction Fetch, Phase two

D1 - Instruction Decode, Phase one

D2 - Instruction Decode, Phase two

E1 - Execution, Phase one

E2 - Execution, Phase two

M1 - Memory Access, Phase one

M2 - Memory Access, Phase two

W1 - Write Back, Phase one

W2 - Write Back, Phase two

Figure 6-1 Pipeline stages for executing TX49 instructions

F1,F2 : Instruction Fetch

During the F1 phase the ITLB begins the virtual to physical address
translation. And, during the F2 phase the instruction cache fetch and the
virtual to physical address translation are completed.

D1,D2 : Instruction Decode

The instruction is decoded. Contents of the general-purpose registers are
read. If the instruction involves a branch or jump, the target address is
generated. The coprocessor condition signal is latched.

TX49 Architecture

6-2

E1,E2 : Execution

Arithmetic, logical and shift operations are performed. The execution of
multiple/divide instructions is begun.

M1,M2 : Memory Access

The data cache is accessed in the case of load and store instructions.

W1,W2 : Write Back

The result is written to a general register.

TX49 Architecture

6-3

6.3 TX49 Pipeline Activities

Stage F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

Fetch ICD ICA RF

& Decode ITLBM ITLBR ITC IDEC

ALU ALU WB

Load/Store DVA DCAD DCAA DCLA

JTLB1 JTLB2

SA DTC WB

DCW

Jump/Branch BCMP

BAC IVA

ICD: Instruction cache address decode

ICA: Instruction cache array access

RF: Register fetch

ITLBM: Instruction address translation match

ITLBR: Instruction address translation read

ITC: Instruction tag match

IDEC: Instruction decode

ALU: ALU operation

WB: Write back to register file

DVA: Data virtual address calculation

DCAD: Data cache address decode

DCAA: Data cache array access

DCLA: Data cache load align

JTLB1: Address translation in JTLB stage1

JTLB2: Address translation in JTLB stage2

SA: Store align

DTC: Data cache tag check

DCW: Data cache write

BCMP: Branch compare

BAC: Branch address calculation

IVA: Generate instruction virtual address

TX49 Architecture

6-4

6.4 Branch and Load Delay

Some TX49 instructions are executed with a delay of one instruction cycle. The cycle
in which an instruction is delayed is called a delay slot. A delay occurs with load
instruction and branch/jump instructions.

6.4.1 Delayed load

With load instructions, a one-cycle delay occurs while waiting for the data being
loaded to become available for use by another instruction. The TX49 checks the
instruction in the delay slot (the instruction immediately following the load
instruction) to see if that instruction needs to use the load result; if so, it stalls the
pipeline (see Figure 6-1).

LW r5, 0 (r26) F D E M W

ADDU r8, r7, r5 F D ES E M W

↑ Pipeline stall

Figure 6-1 CPU Pipeline Load Delay

6.4.2 Delayed branching

Figure 6-1 shows the pipeline flow for jump/branch instructions. The branch
target address that must be generated for these type of instructions does not become
available unit the E stage - too late to be used by the instruction in the branch delay
slot. The branch target instruction is fetched immediately after the branch delay slot
cycle.

It is, however, possible to fetch a different instruction that would normally be
executed prior to the branch instruction.

BEQ r1, r4, L1 F D E M W

Target addr

subu r3, r5,r6 (delay slot) F D E M W

L1:addiu r7, r7, 1 (target) F D E M W

Figure 6-1 CPU Pipeline Branch Delay

You can make effective use of the branch delay slot as follows.

• Since the instruction immediately following a branch instruction will be
executed just prior to the branch, you can therefore place an instruction
(that logically should be executed just before the branch) into delay slot
following the branch instruction.

• The TX49 provides Branch Likely instructions in addition to the normal
Branch instructions that allow the instruction at the target branch address
to be placed in the delay slot. If the branch condition of the Branch Likely
instruction is met, the instruction in the delay slot is executed and the
branch is taken. If the branch is not taken, the instruction in the delay is
treated as a NOP.

• If no instruction is placed in the delay slot, a NOP is placed just after the
branch instruction.

TX49 Architecture

6-5

TX49 Architecture

6-6

6.5 Non-blocking Load Function

The non-blocking load function prevents the pipeline from stalling when a cache miss
occurs and a refill cycle is required to refill the data cache. Instructions after the load
instruction that do not use registers affected by the load will continue to be executed. An
example is shown in Figure 6-1. Here a cache miss occurs with the first load
instruction. The two instructions following are executed prior to the load. The fourth
instruction (ADD) must use a register that will be loaded by the load instruction,
therefore the pipeline is stalled until the cache data becomes valid.

LW r3, 0(r0) F D E M R R R R W

ADD r6, r4, r2 F D E M W r3

ADD r7, r5, r2 F D E M W

ADD r8,r9,r3 F D ES ES ES E M W

R: Refill cycle, ES: Stall in E stage

Figure 6-1 Non-blocking load function

6.6 Interlock and Exception Handling

6.6.1 Overview of Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or
when data dependencies are detected. Interruptions handled using hardware, such
as cache misses, are referred to as interlocks, while those that are handled using
software are called exceptions.

As shown in Figure 6-1, all interlock and exception conditions are collectively
referred to as faults.

Exceptions Interlocks

Stalls Slips

Software Hardware

Faults

Figure 6-1 Interlocks, Exceptions, and Faults

TX49 Architecture

6-7

These are two types of interlocks:

• stalls, which are resolved by halting the pipeline

• slips, which require one part of the pipeline to advance while another part of
the pipeline is held static

 At each cycle, exception and interlock condition corresponds to a particular
pipeline stage, a condition can be traced to the particular instruction in the
exception/interlock stage, as shown in Figure 6-2. For instance, an Illegal
Instruction (II) exception is raised in the exception (EX) stage.

Table 6-1 and Table 6-2 describe the pipeline interlocks and exceptions listed in
Figure 6-2.

Pipeline Stage
State

F D E M W

ITM ICM DCM
Stall

CPE

LDI

MDStSlip
(FCBsy)

ITLB IBE RI DBE

Cun NMI

BP Reset

SC OVF

DTLB Trap

DTMod

Exception

Intr

Figure 6-2 Correspondence of pipeline stage to interlock condition

Table 6-1 Pipeline Interlocks

Interlock Description

ITM Instruction TLB Miss

ICM Instruction Cache Miss

CPE Coprocessor Possible Exception

DCM Data Cache Miss

LDI Load Interlock

MDSt Multiply / Divide Start

FCBsy FP Coprocessor Busy

TX49 Architecture

6-8

Table 6-2 Pipeline Exceptions

Exception Description

ITLB Instruction Translation or Address Exception

Intr External Interrupt

IBE Instruction Bus Error

RI Reserved Instruction

BP Breakpoint

SC System Call

Cun Coprocessor Unusable

OVF Integer Overflow

FPE FP Interrupt

ExTrap EX Stage Traps

DTLB Data Translation or Address Exception

TLBMod TLB Modified

DBE Data Bus Error

NMI Nom-maskable Interrupt (or Soft Reset)

Reset Reset

6.6.2 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that
follow it in the pipeline are cancelled. Accordingly, any stall conditions and any later
exception conditions that may have referenced this instruction are inhibited; there is
no benefit in servicing stalls for a cancelled instruction.

After instruction cancellation, a new instruction stream begins, starting execution
at a predefined exception vector. System Control Coprocessor registers are loaded
with information that identifies the type of exception and auxiliary information such
as the virtual address at which translation exceptions occur.

6.6.3 Stall Conditions

Often, a stall condition is only detected after parts of the pipeline have advanced
using incorrect data; this is called a pipeline overrun. When a stall condition is
detected, all eight instructions-each different stage of the pipeline-are frozen at once.
In this stalled state, no pipeline stages can advance until the interlock condition is
resolved.

Once the interlock is removed, the restart sequence begins two cycles before the
pipeline resumes execution. The restart sequence reverses the pipeline overrun by
inserting the correct information into the pipeline.

TX49 Architecture

6-9

6.6.4 External Stalls

External stall is another class of interlocks. An external stall originates outside
the processor and is not referenced to a particular pipeline stage. This interlock is
not affected by exceptions.

6.6.5 Interlock and Exception Timing

To prevent interlock and exception handling from adversely affecting the processor
cycle time, the TX49 processor uses both logic and circuit pipeline techniques to
reduce critical timing paths. Interlock and exception handling have the following
effects on the pipeline:

• In some cases, the processor pipeline must be backed up (reversed and
started over again from a prior stage) to recover from interlocks.

• In some cases, interlocks are serviced for instructions that will be aborted,
due to an exception.

6.7 Multiply and Multiply/Add Instructions (MULT, MULTU, MADD, MADDU)

The TX49 can execute 32-bit multiply and multiply/add instructions of 2-operand
continuously, and can use the results in the HI/LO registers in immediately following
instructions, without pipeline stall as shown Figure 6-1. The TX49 requires three cycles
to use the results of a general-purpose register as shown Figure 6-2.

MULT/MADD r3, r4 F D E1 E2 E3 M W

MULT/MADD r6, r7, r8 F D E1 E2 E3 M W

Figure 6-1 MULT and MADD Instructions w/o data dependency

(32-bit and 2-operand)

MULT/MADD r3, r4, r5 F D E1 E2 E3 M W

MULT/MADD r6, r3, r8 F D ES ES ES E1 E2 E3 M W

Figure 6-2 MULT and MADD Instructions with data dependency

(32-bit and 3-operand)

6.8 Divide Instructions (DIV, DIVU)

Division starts from the pipeline E stage and takes 36 cycles.

Figure 6-1 shows an example of a divide instruction.

DIV/DIVU F D E M W

V1 V2 V3 V4 … V35 V36

Division stage1

Figure 6-1 DIV and DIVU Instructions

6.9 Streaming

During a cache refill operation, the TX49 can resume execution immediately after
arrival of necessary data or instruction in cache even though cache refill is not

TX49 Architecture

6-10

completed. This is referred to as “streaming”.

TX49 Architecture

7-1

7. System Control Coprocessor, CP0

7.1 Introduction

The TX49 has a System Control Co-Processor (CP0). CP0 translates virtual addresses
to physical addresses. CP0 manages exceptions and transitions between kernel,
supervisor, and user states. CP0 also controls the cache sub-system, as well as
providing diagnostic control and error recovery facilities.

TX49 Architecture

7-2

7.2 CP0 Registers

This section is described about the bit field of each register. The term “coldreset” of
tables shows the value of each bit when GCOLDRESET* signal is asserted. The reserved
bits in description must be written the same value in reset, and return the same value
when read.

7.2.1 Index register (Reg#0)

The Index register is a 32-bit read/write register containing six bits to index an
entry in the TLB. The P bit of the register shows the success/failure of a TLB Probe
(TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Figure 7-1 shows the format of the Index register and Table 7-1 describes the
Index register fields.

31 30 6 5 0

P 0 Index

Figure 7-1 Index Register Format

Table 7-1 Index Register Field Descriptions

Bit Field Description coldreset Read/Write

31 P Probe failure. Set to 1 when the previous

TLB Probe (TLBP) instruction was unsuccessful.

Undefined Read/Write

30~6 0 Reserved 0x0 Read

5~0 Index Index to the TLB entry affected by the TLB Read and TLB

Write Index instructions.

Undefined Read/Write

TX49 Architecture

7-3

7.2.2 Random register (Reg#1)

The Random register is a read only register containing six bits to index an entry in
the TLB. This register decrements as each instruction executes. The values are as
follows.

• A lower bound is set by the number of TLB entries reserved for exclusive use
by the operating system (the contents of the Wired register).

• An upper bound is set by the total number of TLB entries (47 maximum).

The Random register specifies the TLB entry affected by TLB Write Random
(TLBWR) instruction. However the register doesn’t need to be read for this purpose,
it is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound
upon system reset. This register is also set to the upper bound when the Wired
register is written.

Figure 7-1 shows the format of the Random register and Table 7-1 describes the
Random register fields.

31 6 5 0

0 Random

Figure 7-1 Random Register Format

Table 7-1 Random Register Field Descriptions

Bit Field Description coldreset Read/Write

31~6 0 Reserved. 0x0 Read

5~0 Random TLB random index. Upper bound

(47)

Read

TX49 Architecture

7-4

7.2.3 EntryLo0 register (Reg#2) and EntryLo1 register (Reg#3)

The EntryLo register consists of two registers have identical formats:

• EntryLo0 is used for even virtual pages

• EntryLo1 is used for odd virtual pages

The EntryLo0 and EntryLo1 register are read/write register. These registers hold
the physical page frame number (PFN) of the TLB entry for even and odd pages,
respectively, when performing TLB read and write operations.

Figure 7-1 shows the format of the EntryLo0/EntryLo1 register and Table 7-1
describes the EntryLo0/EntryLo1 register fields.

63 32 31 30 29 6 5 3 2 1 0

0 WinCE PFN C D V G

Figure 7-1 EntryLo0/EntryLo1 Register Format

Table 7-1 EntryLo0/EntryLo1 Register Field Descriptions

Bit Field Description coldreset Read/Write

63~32 0 Reserved 0x0 Read

31~30 WinCE Usable for Win-CE 0x0 Read/Write

29~6 PFN Page frame number. Undefined Read/Write

5~3 C Specifies the TLB page coherency attribute.

0: Cacheable, noncoherent, write-through, no-WA

1: Cacheable, noncoherent, write-through, WA

2: Uncached

3: Cacheable,noncoherent,write-back,WA

4∼7: Reserved

0x0 Read/Write

2 D Dirty 0 Read/Write

1 V Valid. 0 Read/Write

0 G Global 0 Read/Write

TX49 Architecture

7-5

7.2.4 Context register (Reg#4)

The Context register is a read/write register containing the pointer to an entry in
the page table entry (PTE) array. This array is an operating system data structure
that stores virtual to physical address translations. When there is a TLB miss, the
CPU loads the TLB with the missing translation from the PTE array. Normally, the
operating system uses the Context register to address the current page map which
resides in the kernel mapped segment,kseg3. However the contents of this register
duplicates some information of the BadVAddr register, it is arranged in a form that is
more useful for TLB exception handler by a software.

Figure 7-1 shows the formats of the Context register and Table 7-1 describes the
Context register fields.

31 23 22 4 3 0

PTEBase BadVPN2 0

(32-bit mode)

63 23 22 4 3 0

PTEBase BadVPN2 0

(64-bit mode)

Figure 7-1 Context Register Formats

Table 7-1 Context Register Field Descriptions

32-bit mode

Bit Field Description coldreset Read/Write

31∼23 PTEBase Page table entry base pointer Undefined Read/Write

22∼4 BadVPN2 Bad virtual address bits 31~13 Undefined Read

3∼0 0 Reserved 0x0 Read

64-bit mode

Bit Field Description coldreset Read/Write

63∼23 PTEBase Page table entry base pointer Undefined Read/Write

22∼4 BadVPN2 Bad virtual address bits 31~13 Undefined Read

3∼0 0 Reserved 0x0 Read

TX49 Architecture

7-6

7.2.5 PageMask register (Reg#5)

The PageMask register is a read/write register used for reading from/writing to the
TLB. This register holds a comparison mask that sets the variable page size for each
TLB entry.

TLB read and write operations use this register as either a source or a destination.
When virtual addresses are presented for translation into physical address, the
corresponding bits in the TLB identify which virtual address bits among bits 24~13
are used in the comparison. When the Mask field is not one of the values shown in
Table 7-1, the operation of the TLB is undefined.

Figure 7-1 shows the format of the PageMask register and Table 7-1 describes the
PageMask register fields.

31 25 24 13 12 0

0 MASK 0

Figure 7-1 PageMask Register Format

Table 7-1 PageMask Register Field Descriptions

Bit Field Description coldreset Read/Write

31∼25 0 Reserved 0x0 Read

24∼13 MASK Page comparison mask

000000000000: page size = 4• Kbytes

000000000011: page size = 16• Kbytes

000000001111: page size = 64• Kbytes

000000111111: page size = 256• Kbytes

000011111111: page size = 1• Mbytes

001111111111: page size = 4• Mbytes

111111111111: page size = 16• Mbytes

0x0 Read/Write

12∼0 0 Reserved 0x0 Read

TX49 Architecture

7-7

7.2.6 Wired register (Reg#6)

The Wired register is a read/write register specifies the boundary between the
wired and random entries of the TLB as follows. Wired entries are non-replaceable
entries, which can not be overwritten by a TLB write random operation. Random
entries can be overwritten.

TLB

47

0

Wired Register

Range of Random entries

Range of Wired entries

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound.

Figure 7-1 shows the format of the Wired register and Table 7-1 describes the
Wired register fields.

31 6 5 0

0 Wired

Figure 7-1 Wired Register

Table 7-1 Wired Register Filed Descriptions

Bit Field Description coldreset Read/Write

31∼6 0 Reserved

(Must be written as zeroes, and returns zeroes when read.)

0x0 Read

5∼0 Wired TLB Wired boundary. 0x0 Read/Write

TX49 Architecture

7-8

7.2.7 BadVAddr register (Reg#8)

The Bad Virtual Address (BadVAddr) register is a read only register that displays
the most recent virtual address that cause one of the following exceptions; Address
Error, TLB Invalid, TLB Modified and TLB Refill exceptions.

The processor does not write to this register when the EXL bit in the Status
register is set to a 1.

Figure 7-1 shows the formats of the BadVAddr register and Table 7-1 describes the
BadVAddr register fields.

31 0

Bad Virtual Address

(32-bit mode)

63 0

Bad Virtual Address

(64-bit mode)

Figure 7-1 BadVAddr Register Formats

Table 7-1 BadVAddr Register Field Descriptions

32-bit mode

Bit Field Description coldreset Read/Write

31∼0 BadVAddr Bad Virtual address Undefined Read

64-bit mode

Bit Field description coldreset Read/Write

63∼0 BadVAddr Bad Virtual address Undefined Read

TX49 Architecture

7-9

7.2.8 Count register (Reg#9)

The Count register is a read/write register. This register acts as a timer,
incrementing at a constant rate whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline.

This register can be also written for diagnostic purpose or system initialization.

Figure 7-1 shows the format of the Count register and Table 7-1 describes the
Count register field.

31 0

Count

Figure 7-1 Count Register Format

Table 7-1 Count Register Field Description

Bit Field Description coldreset Read/Write

31∼0 Count 32-bit timer, incrementing at half the maximum instruction

issue rate.

0x0 Read/Write

TX49 Architecture

7-10

7.2.9 EntryHi register (Reg#10)

The EntryHi is a read/write register, and holds the high-order bits of a TLB entry
for TLB read and write operations.

This register is accessed by the TLB Probe (TLBP), TLB Write Ransom (TLBWR),
TLB Write Indexed (TLBWI), and TLB Read Indexed (TLBR) instructions.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, this
register is loaded with the virtual page number (VPN2) and the ASID of the virtual
address that did not have a matching TLB entry.

Figure 7-1 shows the formats of the EntryHi register and Table 7-1 describes the
EntryHi register fields.

31 13 12 8 7 0

VPN2 0 ASID

(32-bit mode)

63 62 61 40 39 13 12 8 7 0

R FILL VPN2 0 ASID

(64-bit mode)

Figure 7-1 EntryHi Register Formats

Table 7-1 EntryHi Register Field Descriptions

32-bit mode

Bit Field Description coldreset Read/Write

31∼1 VPN2 Virtual page number divided by two Undefined Read/Write

12∼8 0 Reserved 0x0 Read

7∼0 ASID Address space ID field. Undefined Read/Write

64-bit mode

Bit Field Description coldreset Read/Write

63∼62 R Region. Undefined Read/Write

61∼40 Fill Reserved. 0 on read. Ignored on write. Undefined Read

39∼13 VPN2 Virtual page number divided by two Undefined Read/Write

12∼8 0 Reserved 0x0 Read

7∼0 ASID Address space ID field. Undefined Read/Write

TX49 Architecture

7-11

7.2.10 Compare register (Reg#11)

The Compare register acts as a timer. When value of the Count register equals the
value of the Compare register, interrupt bit IP (7) in the Cause register is set. This
causes an interrupt exception as soon as the interrupt is enabled.

Writing a value to this register, as a side effect, clears the timer interrupt.

For diagnostic purpose, this register is a read/write register. However, in normal
operation this register is write only.

Figure 7-1 shows the format of the Compare register and Table 7-1 describes the
Compare register field.

31 0

Compare

Figure 7-1 Compare Register Format

Table 7-1 Compare Register Field Description

Bit Field Description coldreset Read/Write

31∼0 Compare Acts as a timer; it maintains a stable value that does not

change on its own.

0x0 Read/Write

TX49 Architecture

7-12

7.2.11 Status register (Reg#12)

The Status register is a read/write register that contains the operating mode,
interrupt enabling, and diagnostic states of the processor. The more important
Status register fields are as following;

• The Interrupt Mask (IM) field of 8 bits controls the enabling of eight interrupt
conditions. Interrupt must be enabled before they can be asserted, and the
corresponding bits are set in both the IM field of this register and the
Interrupt Pending field of the Cause register.

• The Coprocessor Usability (CU) field of 4 bits controls the usability of four
possible coprocessors. Regardless of the CU0 bit setting, CP0 is always
usable in Kernel mode.

• The Diagnostic Status (DS) field of 9 bits is used for self-testing, and checks
the cache and virtual memory system.

• The Reverse Endian (RE) bit reverses the endianness. The processor can be
configured as either little/big-endian at reset; reverse-endian selection is
used in Kernel and Supervisor modes, and in the User mode when the RE bit
is 0. Setting the RE bit to 1 inverts the User mode endianness.

Figure 7-1 shows the format of the Status register and Table 7-1 describes the
Status register field.

31 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 0

CU 0 FR RE DS IM KX SX UX KSU ERL EXL IE

24 23 22 21 20 19 18 17 16

0 BEV 0 SR 0 CH 0 0

Figure 7-1 Status Register Format

Table 7-1 Status Register Field Descriptions

Bit Field Description coldreset Read/Write

31∼28 CU (3,2,1,0) Controls the usability of each of the four coprocessor unit

numbers.

0: unusable, 1: usable.

0000 Read/Write

27 0 Reserved 0 Read

26 FR Enables additional floating-point registers.

0: 16 registers, 1: 32 registers.

0 Read/Write

25 RE Reverse-Endian bit, valid in User mode. 0 Read/Write

24∼23 0 Reserved 0x0 Read

22 BEV Controls the location of TLB refill and general exception

vectors.

0: normal, 1: bootstrap

1 Read/Write

TX49 Architecture

7-13

Bit Field Description coldreset Read/Write

21 0 Reserved 0 Read

20 SR 1: Indicates a soft reset or NMI has occurred. 0 Read/Write

19 0 Reserved 0 Read

18 CH “Hit” or “miss” indication for last CACHE Hit Invalidate, Hit

Write Back Invalidate, Hit Write Back for a primary cache.

0: miss, 1: hit.

0 Read/Write

17∼16 0 Reserved 0x0 Read

15∼8 IM Interrupt Mask. 0: disabled, 1: enabled. 0x0 Read/Write

7 KX Enables 64-bit addressing in kernel mode.

0: 32-bit, 1: 64-bit.

0 Read/Write

6 SX Enables 64-bit addressing and operations in supervisor

mode.

0: 32-bit, 1: 64-bit.

0 Read/Write

5 UX Enables 64-bit addressing and operations in user mode.

0: 32-bit, 1: 64-bit.

0 Read/Write

4∼3 KSU Mode.

10: user, 01: supervisor, 00: kernel.

0x0 Read/Write

2 ERL Error Level.

0: normal, 1: error.

1 Read/Write

1 EXL Exception Level.

0: normal, 1: exception.

0 Read/Write

0 IE Interrupt Enable.

0: disable, 1: enable.

0 Read/Write

TX49 Architecture

7-14

7.2.12 Cause register (Reg#13)

The Cause register holds the cause of the most recent exception. This register is
read-only, except for the IP[1~0] bits.

Figure 7-1 shows the format of the Cause register and Table 7-1 describes the
Cause register field.

31 30 29 28 27 16 15 8 7 6 2 1 0

BD 0 CE 0 IP 0 ExcCode 0

Figure 7-1 Cause Register Format

Table 7-1 Cause Register Field Descriptions

Bit Field Description coldreset Read/Write

31 BD Indicates whether or not the last exception was taken while

executing in a branch delay slot.

0: normal, 1: delay slot.

0 Read

30 0 Reserved 0 Read

29~28 CE Indicates the coprocessor unit number referenced when a

coprocessor unusable exception is taken.

00: coprocessor 0, 01: coprocessor 1,

10: coprocessor 2, 11: coprocessor 3.

0x0 Read

27~16 0 Reserved 0x0 Read

15~10 IP [7~2] Indicates whether an interrupt is pending.

0: not pending, 1: pending.

INT[5:0] Read

9~8 IP [1~0] Software interrupts.

0: reset, 1: set.

0x0 Read/Write

7 0 Reserved 0 Read

6~2 ExcCode Exception Code field.

0: Int: Interrupt.

1: Mod: TLB modification exception.

2: TLBL: TLB exception (load or instruction fetch)

3: TLBS: TLB exception (Store)

4: AdEL: Address error exception (load or instruction fetch)

5: AdES: Address error exception (store)

6: IBE: Bus error exception (instruction fetch)

7: DBE: Bus error exception (data reference: load or Store)

8: Sys: Syscall exception

9: Bp: Breakpoint exception

10: RI: Reserved instruction exception

11: CpU: Coprocessor Unusable exception

12: Ov: Arithmetic Overflow exception

13: Tr: Trap exception

14: Reserved:

15: FPE: Floating-Point exception

16-31: Reserved :

0x0 Read

1~0 0 Reserved 0x0 Read

TX49 Architecture

7-15

7.2.13 EPC register (Reg#14)

The Exception Program Counter (EPC) register is a read/write register. This
register contents the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, this register contains either;

• the virtual address of the instruction that was the direct cause of the
exception.

• the virtual address of the immediately preceding branch or jump instruction
(when the instruction is in a branch delay slot, and the Branch Delay bit in
the Cause register is set).

The processor does not write to the EPC register when EXL bit in the Status
register is set to 1.

Figure 7-1 shows the formats of the EPC register and Table 7-1 describes the EPC
register field.

31 0

EPC

(32-bit mode)

63 0

EPC

(64-bit mode)

Figure 7-1 EPC Register Formats

Table 7-1 EPC Register Field Description

32-bit mode

Bit Field Description coldreset Read/Write

31~0 EPC Exception program counter Undefined Read/Write

64-bit mode

Bit Field Description coldreset Read/Write

63~0 EPC Exception program counter Undefined Read/Write

TX49 Architecture

7-16

7.2.14 PRId register (Reg#15)

The Processor Revision Identifier (PRId) register is a read-only register. This
register contents information identifying the implementation and revision level of the
CPU and CP0.

Figure 7-1 shows the format of the PRId register and Table 7-1 describes the PRId
register field.

31 16 15 8 7 0

0 Imp Rev

Figure 7-1 PRId Register Format

Table 7-1 PRId Register Field Descriptions

Bit Field Description coldreset Read/Write

31~16 0 Reserved 0x0 Read

15~8 Imp Implementation number 0x2d Read

7~0 Rev Revision number +. + Read

+ Value is shown in product sheet

TX49 Architecture

7-17

7.2.15 Config Register (Reg#16)

The Config register is a read-only register; except for HALT, ICE#, DCE# and K0
fields. This register specifies various configuration options selected on the TX49.

EC, BE, IC, DC, IB and DB fields are set by the hardware during reset and are
included in this register as read-only status bits for the software to access.

Figure 7-1 shows the format of the Config register and Table 7-1 describes the
Config register field.

31 30 28 27 24 23 19 18 17 16 15 14

13

12 11 9 8 6 5 4 3 2 0

0 EC 0 0 HALT ICE# DCE# BE 1 0 IC DC IB DB 0 K0

Figure 7-1 Config Register Format

Table 7-1 Config Register Field Descriptions

Bit Field Description coldreset Read/Write

31 0 Reserved 0 Read

30~28 EC GBUS clock rate:

0: processor clock frequency divided by 2

1: processor clock frequency divided by 3

2: processor clock frequency divided by 4

7: processor clock frequency divided by 1 %

3, 4, 5, 6 : reserved

pin Read

27~19 0 Reserved 0x0 Read

18 HALT %& Wait mode.

0: Halt

1: Doze

Indicates the power-down behavior of the TX49 when WAIT

instruction is executed. The TX49 stalls the pipeline both in

halt and doze mode. Cache snoops are possible during

Doze mode but not possible during Halt mode. Halt mode

reduces power consumption to a greater extent than Doze

mode.

0 Read/Write

17 ICE# %& Instruction Cache Enable

0: Instruction cache enable

1: Instruction cache disable

0 Read/Write

16 DCE# %& Data Cache Enable

0: Data cache enable

1: Data cache disable

0 Read/Write

15 BE Big Endian

0: Little Endian

1: Big Endian

pin Read

14~13 1 Reserved 11 Read

12 0 Reserved 0 Read

TX49 Architecture

7-18

Bit Field Description coldreset Read/Write

11~9 IC Instruction cache size. In the TX49, this is set to 8• KB

(001), 16• KB (010) or 32• KB (011).

001, 010 or

011

Read

8~6 DC Data cache size. In the TX49, this is set to 8• KB (001),

16• KB (010) or 32• KB (011).

001, 010 or

011

Read

5 IB Primary I-Cache line Size

1:32• bytes (8 words)

1 Read

4 DB Primary D-cache line Size

1:32• bytes (8 words)

1 Read

3 0 Reserved 0 Read

2~0 K0 kseg0 coherency algorithm

0: Cacheable, noncoherent, write-through, no-WA

1: Cacheable, noncoherent, write-through, WA

2: Uncached

3: Cacheable, noncoherent, write-back, WA

4-7: Reserved

0x0 Read/Write

TX49 Architecture

7-19

7.2.16 LLAddr register (Reg#17)

The Load Linked Address (LLAddr) register is a read/wirte register, and contains
the physical address read by the most recent Load Linked (LL/LLD) instruction.

This register is for diagnostic purposes only, and serves no function during normal
operation.

Figure 7-1 shows the format of the LLAddr register and Table 7-1 describes the
LLAddr register field.

31 0

pAddr (35~4)

Figure 7-1 LLAddr Register Format

Table 7-1 LLAddr Register Field Description

Bit Field Description coldreset Read/Write

31~0 pAddr Physical address bits 35~4 0x0 Read/Write

TX49 Architecture

7-20

7.2.17 XContext register (Reg#20)

The XContext register is a read/write register, and contains a pointer to an entry
in the page table entry (PTE) array, an operating system data structure that stores
virtual to physical address translations. When there is a TLB miss, the operating
system software loads the TLB with the missing translation from the PTE array.
However the contents of this register duplicates some information of the BadVAddr
register, it is arranged in a form that is more useful for TLB exception handler by a
software. This register is for use with the XTLB refill handler, which loads TLB
entries for references to a 64-bit address space, and is included solely for operating
system use. The operating system sets the PTE base field in the register, as needed.
Normally, the operating system uses this register to address the current page map
which resides in the Kernel mapped segment, kseg3.

The BadVPN2 field of 27 bits has bit [39~13] of the virtual address that caused the
TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd page
pair. For a 4�KByte page size, this format may be used directly to access the pair-
table of 8�Byte PTEs. For other page sizes and PTE sizes, shifting and masking this
value produces the appropriate address.

Figure 7-1 shows the format of the XContext register and Table 7-1 describes the
XContext register field.

63 33 32 31 30 4 3 0

PTEBase R BadVPN2 0

Figure 7-1 XContext Register Format

Table 7-1 XContext Register Field Description

Bit Field Description coldreset Read/Write

63~33 PTEBase Page table entry base pointer Undefined Read/Write

32~31 R 00: user, 01: supervisor, 11: kernel. Undefined Read/Write

30~4 BadVPN2 Bad virtual page number divided by two. Undefined Read

3~0 0 Reserved 0x0 Read

TX49 Architecture

7-21

7.2.18 Debug register (Reg#23)

The Debug register is a read-only; except for TLF, BsF, SSt and JtagRst fields.

This register holds the information for debug handler.

Figure 7-1 shows the format of the Debug register and Table 7-1 describes the
Debug register field.

31 30 29 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D
B

D

D
M 0 N
IS

T
R

S

O
E

S

T
LF

B
sF 0 S
S

t

Jt
ag

R
st

0

D
IN

T

D
IB

D
D

B
S

D
D

B
L

D
B

p

D
S

S

Figure 7-1 Debug Register Format

Table 7-1 Debug Register Field Descriptions

Bit Field Description coldreset Read/Write

31 DBD Debug Branch Delay; When a debug exception occurs while

an instruction in the branch delay slot is executing, this bit is

set to 1.

0 Read

30 DM Debug Mode; It indicates that a debug exception has taken

place. This bit is set when a debug exception is taken, and

is cleared upon return from the exception (DERET). While

this bit is set all interrupts, including NMI, TLB exception ,

BUS error exception, and debug exception are masked and

cache line locking function is disabled.

0: Debug handler not running.

1: Debug handler running.

0 Read

29~15 0 Reserved 0x0 Read

14 NIS Non-maskable Interrupt Status; When this bit is set

indicating that a non-maskable interrupt has occurred at the

same time as a debug exception. In this case the Status,

Cause, EPC, and BadVAddr registers assumes the usual

status after occurrence of a non-maskable interrupt, but the

address in DEPC is not the non-maskable exception vector

address (0xbfc0 0000). Instead, 0xbfc0 0000 is put in DEPC

by the debug handler software after which processing

returns directly from the debug exception to the non-

maskable interrupt handler.

0 Read

13 TRS TLB Miss Status; When this bit is set indicating the Debug

Exception and TLB/XTLB refill exception has occurred at the

same time. In this case the Status, Cause, EPC, and

BadVAddr registers assumes the usual status after

occurrence of TLB/XTLB refill. The address in the DEPC is

not the other exception vector address. Instead, 0xbfc0

0200 (if BEV• =• 1) in case of TLB refill exception and

0xbfc0 0280 (if BEV• =• 1) in case of XTLB refill exception

or 0x8000 0000 (if BEV• =• 0) in case of TLB refill exception

and 0x8000 0080 (if BEV• =• 0) in case of XTLB refill

exception is put in DEPC by the debug exception handler

software, after which processing returns directly from the

debug exception to the other exception handler.

0 Read

TX49 Architecture

7-22

Bit Field Description coldreset Read/Write

12 OES Other Exception Status; When this bit is set indicates

exception other than reset, NMI, or TLB/XTLB refill has

occurred at the same time as a debug exception. In this

case the Status, Cause, EPC, and BadVAddr registers

assume the usual status after occurrence of such an

exception, but the addressing the DEPC is not the other

exception Vector address. Instead, 0xbfc0 0380 (if

BEV• =• 1) or 0x8000 0180 (if BEV• =• 0) is put in DEPC by

the debug exception handler software, after which

processing returns directly from the other exception handler.

0 Read

11 TLF TLB Exception Flag; This bit is set to 1 when TLB related

exception occurs for immediately preceding load or store

instruction while a debug exception handler is running

(DM• =• 1). TLB exception will set this bit to 1 regardless of

writing zero. It is cleared by writing 0 and writing 1 is

ignored.

0 Read/Write

10 BsF Bus Error Exception Flag; This bit is set to 1 when a bus

error exception occurs for a load or store instruction while a

debug exception handler is running (DM• =• 1). Bus error

exception will set this bit to 1 regardless of writing zero. It is

cleared by writing 0 and writing 1 is ignored.

0 Read/Write

9 0 Reserved 0 Read

8 SSt Single Step; Set to 1 indicates the single step debug function

is enable or disabled (0). The function is disable when the

DM bit is set to 1 while the debug exception is running.

0 Read/Write

7 JtagRst JTAG Reset; When this bit is set to 1 the processor reset the

JTAG unit.

0 Read/Write

6 0 Reserved 0 Read

5 DINT Debug Interrupt Break Exception Status; set to 1 when

debug interrupts occurs.

0 Read

4 DIB Debug Instruction Break Exception Status; Set to 1 on

instruction address break.

0 Read

3 DDBS Debug Data Break Store Exception Status; Set to 1 on data

address break at store operation.

0 Read

2 DDBL Debug Data Break Load Exception Status; Set to 1 on data

address break at load operation.

0 Read

1 DBp Debug Breakpoint Exception Status; This bit is set when

executing SDBBP instruction.

0 Read

0 DSS Debug Single Step Exception Status; Set to 1 indicate Single

Step Exception.

0 Read

TX49 Architecture

7-23

7.2.19 DEPC register (Reg#24)

The DEPC register holds the address where processing resumes after the debug
exception routine has finished. The address that has been loaded in the DEPC
register is the virtual address of the instruction that caused the debug exception. If
the instruction is in the branch delay slot, the virtual address of the immediately
preceding branch or jump instruction is placed in this register. Execution of the
DERET instruction causes a jump to the address in the DEPC. If the DEPC is both
written from software (by MTC0) and by hardware (debug exception) then the DEPC
is loaded by the value generated by the hard ware.

Figure 7-1 shows the formats of the DEPC register and Table 7-1 describes the
DEPC register field.

31 0

DEPC

(32-bit mode)

63 0

DEPC

(64-bit mode)

Figure 7-1 DEPC Register Formats

Table 7-1 DEPC Register Field Description

32-bit mode

Bit Field Description coldreset Read/Write

31~0 DEPC Debug exception program counter. Undefined Read/Write

64-bit mode

Bit Field Description coldreset Read/Write

63~0 DEPC Debug exception program counter. Undefined Read/Write

TX49 Architecture

7-24

7.2.20 TagLo register (Reg#28) and TagHi register (Reg#29)

The TagLo and TagHi registers are a read/write registers. These registers hold the
primary cache tag for cache lock function or cache diagnostics. These registers are
written by the CACHE/MTC0 instruction.

Figure 7-1 shows the formats of the TagLo and TagHi registers and Table 7-1
describes the TagLo and TagHi registers field.

31 8 7 6 5 3 2 1 0

PTagLo PState RWNT Lock F0 0

(TagLo)

31 30 29 0

F1 PtagLo1 0

(TagHi)

Figure 7-1 TagLo and TagHi Register Formats

Table 7-1 TagLo and TagHi Register Field Descriptions

TagLo

Bit Field Description coldreset Read/Write

31~8 PTagLo Bits 35~12 of the physical address 0x0 Read/Write

7~6 PState Specifies the primary cache state

0: Invalid 1: Reserved

2: Reserved 3: Valid

0x0 Read/Write

5~3 RWNT Read/Write bits required for Windows NT 0x0 Read/Write

2 Lock Lock bit (0: not locked, 1: locked) 0 Read/Write

1 F0 FIFO Replace bit 0 (indicates the set to be replaced) 0 Read/Write

0 0 Reserved 0 Read

TagHi

Bit Field Description coldreset Read/Write

31 F1 FIFO Replace bit 1 (indicates the set to be replaced) 0 Read/Write

30 PTagLo1 Bit 11 of the physical address 0 Read/Write

29~0 0 Reserved 0x0 Read

F1 and F0 are concatenated and indicate the set to be replaced.

F1  F0

0 0 : way0

0 1 : way1

1 0 : way2

1 1 : way3

TX49 Architecture

7-25

7.2.21 ErrorEPC register (Reg#30)

The ErrorEPC is a read/write register, and is similar to the EPC register. This
register is used to store the program counter (PC) on ColdReset, SoftReset and NMI
exceptions.

This register contains the virtual address at which instruction processing can
resume after servicing an error. This address can be;

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump
instruction, when this address is in a branch delay slot.

There is no branch delay slot indication for this register.

Figure 7-1 shows the formats of the ErrorEPC register and Table 7-1 describes the
ErrorEPC register field.

31 0

ErrorEPC

(32-bit mode)

63 0

ErrorEPC

(64-bit mode)

Figure 7-1 ErrorEPC Register Formats

Table 7-1 ErrorEPC Register Field Descriptions

32-bit mode

Bit Field Description coldreset Read/Write

31~0 ErrorEPC Error Exception Program Counter. Undefined Read/Write

64-bit mode

Bit Field Description coldreset Read/Write

63~0 ErrorEPC Error Exception Program Counter. Undefined Read/Write

TX49 Architecture

7-26

7.2.22 DESAVE register (Reg#31)

This register is used by the debug exception handler to save one of the GPRs, that
is then used to save the rest of the context to a pre-determined memory are, e.g. in
the processor probe. This register allows the safe debugging of exception handlers
and other types of code where the existence of a valid stack for context saving cannot
be assumed.

Figure 7-1 shows the formats of the DESAVE register and Table 7-1 describes the
DESAVE register field.

Note: This register can use for ICE system only.

63 0

DESAVE

Figure 7-1 DESAVE Register Format

Table 7-1 DESAVE register Field Description

32-bit mode

Bit Field Description coldreset Read/Write

63~0 DESAVE Save one of the GPRs Undefined Read/Write

TX49 Architecture

7-27

7.2.23 The initialization of CP0 registers in SoftReset exception

Table 7-1 shows the values of the registers that be initialized by SoftReset
exception.

Table 7-1 The initial value by SoftReset Exception

Register Bit Field SoftRest Description

22 BEV 1 Same value as ColdReset

20 SR 1 ColdReset has priority over SoftResetStatus (Reg#12)

2 ERL 1 Same value as ColdReset

TX49 Architecture

7-28

TX49 Architecture

8-1

8. Memory Management System

8.1 Introduction

The TX49 provides a full-featured memory management unit (MMU) which uses an on-
chip translation look aside buffer (TLB) to translate virtual addresses into physical
addresses.

8.2 Address space overview

The TX49 physical address space is 64�Gbyte using a 36-bit address. The virtual
address is either 64 or 32�bits wide depending on whether the processor is
operating in 64- or 32-bit mode. In 32-bit mode, addresses are 32-bits wide and the
maximum user process size is 2�Gbyte (2** 31). In 64-bit mode, addresses are 64-
bit wide and the maximum user process is 1�Tbyte (2** 40). The virtual address is
extended with an Address Space Identifier (ASID) to reduce the frequency of TLB
flushing when switching context. The size of the ASID field is 8�bits. The ASID is
contained in the CP0 EntryHi register.

8.2.1 Virtual Address Space

The processor virtual address can be either 32 or 64�bits wide, depending on
whether the processor is operating in 32-bit or 64-bit mode.

• In 32-bit mode, addresses are 32�bits wide.

The maximum user process size is 2�gigabytes (231).

• In 64-bit mode, addresses are 64�bits wide.

The maximum user process size is 1 terabyte (240).

Figure 8-1 shows the translation of a virtual address into a physical address.

3. The Offset, which does not pass through the

TLB, is then concatenated to the PFN.

2. If there is a match, the page frame number

(PFN) representing the upper bits of the

physical address (PA) is output from the

TLB.

Physical address

Virtual address

1. Virtual address (VA) represented by the virtual

page number (VPN) is compared with tag in

the TLB.

VPNASIDG

VPNASIDG

PFN

TLB

OffsetPFN

TLB

Entry

Offset

Figure 8-1 Overview of a Virtual-to-Physical Address Translation

TX49 Architecture

8-2

TX49 Architecture

8-3

As shown in Figure 8-1 and Figure 8-1, the virtual address is extended with an 8-
bit address space identifier (ASID), which reduces the frequency of TLB flushing
when switching contexts. This 8-bit ASID is in the CP0 EntryHi register, described
later in this chapter. The Global bit (G) is in the EntryLo0 and EntryLo1 registers,
described later in this chapter.

8.2.2 Physical Address Space

Using a 36-bit address, the processor physical address space encompasses
64�Gbytes. The section following describes the translation of a virtual address to a
physical address.

8.2.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB; there is a match
when the virtual page number (VPN) of the address is the same as the VPN field of
the entry, and either:

• the Global (G) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the ASID field of the TLB
entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception
is taken by the processor and software is allowed to refill the TLB from a page table
of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from
the TLB and concatenated with the Offset, which represents an address within the
page frame space. The Offset does not pass through the TLB.

Virtual-to-physical translation is described in greater detail throughout the
remainder of this chapter; Figure 8-1 is a flow diagram of the process shown at the
end of this chapter. The next two sections describe the 32-bit and 64-bit address
translations.

TX49 Architecture

8-4

8.2.4 32-bit Mode Address Translation

Figure 8-1 shows the virtual-to-physical-address translation of a 32-bit mode
address. This figure illustrates two of the possible page sizes: a 4-Kbyte page
(12�bits) and a 16-Mbyte page (24�bits).

• The top portion of Figure 8-1 shows a virtual address with a 12-bit, or 4-
Kbyte, page size, labeled Offset. The remaining 20�bits of the address
represent the VPN, and Index the 1M-entry page table.

• The bottom portion of Figure 8-1 shows a virtual address with a 24-bit, or
16-Mbyte, page size, labeled Offset. The remaining 8�bits of the address
represent the VPN, and index the 256-entry page table.

Offset passed
unchanged to
physical
memory

Offset passed
unchanged to
physical
memory

Virtual-to-physical
translation in TLB

Bits 31, 30 and 29 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB

Virtual Address with 256 (28) 16-Mbyte pages

Virtual Address with 1M (220) 4-Kbyte pages

TLB

20 bits = 1 M pages

VPNASID

12208

01112282939 32 31

Offset

36-bit Physical Address

035

PFN Offset

8 bits = 256 pages

VPNASID

2488

02324282939 32 31

Offset

TLB

Figure 8-1 32-bit Mode Virtual Address Translation

TX49 Architecture

8-5

8.2.5 64-bit Mode Address Translation

Figure 8-1 shows the virtual-to-physical-address translation of a 64-bit mode
address. This figure illustrates two of the possible page sizes: a 4-Kbyte page
(12�bits) and a 16-Mbyte page (24�bits).

• The top portion of Figure 8-1 shows a virtual address with a 12-bit, or 4-
Kbyte, page size, labelled Offset. The remaining 28�bits of the address
represent the VPN, and index the 256M-entry page table.

• The bottom portion of Figure 8-1 shows a virtual address with a 24-bit, or
16-Mbyte, page size, labelled Offset. The remaining 16�bits of the address
represent the VPN, and index the 64K-entry page table.

Offset passed
unchanged to
physical
memory

Offset passed
unchanged to
physical
memory

Virtual-to-physical
translation in TLB

Bits 62 and 63 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB

Virtual Address with 64 K (216) 16-Mbyte pages

Virtual Address with 256 M (228) 4-Kbyte pages

28 bits = 256M pages

VPN0 or -1ASID

1228248

0111239406171 64 6263

Offset

36-bit Physical Address

035

PFN Offset

16 bits = 64 K pages

VPN0 or -1ASID

2416248

023243940616271 64 63

Offset

TLB

TLB

 Figure 8-1 64-bit Mode Virtual Address Translation

TX49 Architecture

8-6

8.3 Operating Modes

The TX49 has the three operating modes, User mode, Supervisor mode and Kernel
mode, for 32- and 64-bit operation. The KSU, EXL and ERL bit in the Status register
select User, Supervisor or Kernel mode. The UX, SX and KX bit in the Status register
select 32- or 64-bit addressing in user, supervisor and kernel mode respectively.

KSU EXL ERL UX SX KX Mode

10 0 0 0 - - 32-bit addressing in user mode

10 0 0 1 - - 64-bit addressing in user mode

01 0 0 - 0 - 32-bit addressing in supervisor mode

01 0 0 - 1 - 64-bit addressing in supervisor mode

00 - - - - 0 32-bit addressing in kernel mode

- 1 - - - 0 32-bit addressing in kernel mode

- - 1 - - 0 32-bit addressing in kernel mode

00 - - - - 1 64-bit addressing in kernel mode

- 1 - - - 1 64-bit addressing in kernel mode

- - 1 - - 1 64-bit addressing in kernel mode

8.3.1 User Mode Operations

In User mode, a single, uniform virtual address space-labelled User segment-is
available; its size is:

• 2�Gbytes (231�bytes) in 32-bit mode (useg)

• 1�Tbyte (240�bytes) in 64-bit mode (xuseg)

Figure 8-1 shows User mode virtual address space.

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

0x FFFF FFFF FFFF FFFF

xuseguseg

0x 0000 0000

0x 8000 0000

0x FFFF FFFF

64-bit32-bit*

2 GB

Mapped

Address

Error

1 TB

Mapped

Address

Error

Figure 8-1 User Mode Virtual Address Space

*NOTE: In 32-bit mode, bit31 is sign-extended through bits 63~32. Failure results in an
address error exception.

The User segment starts at address 0 and the current active user process resides
in either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps
all references to useg/xuseg from all modes, and controls cache accessibility.

The processor operates in User mode when the Status register contains the
following bit-values:

• KSU bits�=�102

• EXL = 0

• ERL = 0

TX49 Architecture

8-7

In conjunction with these bits, the UX bit in the Status register selects between 32-
or 64-bit User mode addressing as follows:

• when UX = 0, 32-bit useg space is selected and TLB misses are handled by
the 32-bit TLB refill exception handler

• when UX = 1, 64-bit xuseg space is selected and TLB misses are handled by
the 64-bit TLB refill exception handler

Table 8-1 lists the characteristics of the two user mode segments, useg and xuseg.

Table 8-1 32-bit and 64-bit User Mode Segments

Status Register
Bit ValuesAddress Bit

Values
KSU EXL ERL UX

Segment
Name

Address Range Segment Size

32-bit

A (31) = 0
102 0 0 0 useg

0x0000 0000

through

0x7FFF FFFF

2• Gbyte

(231• bytes)

64-bit

A (63~40) = 0
102 0 0 1 xuseg

0x0000 0000 0000 0000

through

0x0000 00FF FFFF FFFF

1• Tbyte

(240• bytes)

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing is
compatible with the 32-bit addressing model shown in Figure 8-1, and a 2-Gbyte
user address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to
0; any attempt to reference an address with the most-significant bit set while in
User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings
within the TLB entry for the page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX�= 1 in the Status register, User mode addressing is
extended to the 64-bit model shown in Figure 8-1 . In 64-bit User mode, the
processor provides a single, uniform address space of 240�bytes, labelled xuseg.

All valid User mode virtual addresses have bits 63~40 equal to 0; an attempt to
reference an address with bits 63~40 not equal to 0 causes an Address Error
exception.

TX49 Architecture

8-8

8.3.2 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel
runs in TX49 Kernel mode, and the rest of the operating system runs in Supervisor
mode.

The processor operates in Supervisor mode when the Status register contains the
following bit-values:

• KSU = 012

• EXL = 0

• ERL = 0

In conjunction with these bits, the SX bit in the Status register selects between 32-
or 64-bit Supervisor mode addressing:

• when SX = 0, 32-bit supervisor space is selected and TLB misses are
handled by the 32-bit TLB refill exception handler

• when SX = 1, 64-bit supervisor space is selected and TLB misses are
handled by the 64-bit XTLB refill exception handler

Figure 8-1 shows Supervisor mode address mapping. Table 8-1 lists the
characteristics of the supervisor mode segments; descriptions of the address spaces
follow.

0x FFFF FFFF E000 0000

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

0x 4000 0000 0000 0000

0x 4000 0100 0000 0000

0x FFFF FFFF C000 0000

0x FFFF FFFF FFFF FFFF

xsuseg

xsseg

csseg

suseg

sseg

0x 0000 0000

0x 8000 0000

0x A000 0000

0x C000 0000

0x E000 0000

0x FFFF FFFF

32-bit*

2 GB
Mapped

0.5 GB
Mapped

Address
error

Address
error

Address
error

64-bit

0.5 GB
Mapped

1 TB
Mapped

1 TB
Mapped

Address
error

Address
error

Address
error

Figure 8-1 Supervisor Mode Address Space

*NOTE: In 32-bit mode, bit31 is sign-extended through bits 63~32. Failure results in an
address error exception.

TX49 Architecture

8-9

Table 8-1 32-bit and 64-bit Supervisor Mode Segments

Status Register
Bit ValuesAddress Bit

Values
KSU EXL ERL SX

Segment
Name

Address Range Segment Size

32-bit

A (31) = 0
012 0 0 0 suseg

0x0000 0000

through

0x7FFF FFFF

2• Gbyte

(231• bytes)

32-bit

A (31~29) = 1102
012 0 0 0 ssseg

0xC000 0000

through

0xDFFF FFFF

512• Mbytes

(229• bytes)

64-bit

A (63~62) = 002
012 0 0 1 xsuseg

0x0000 0000 0000 0000

through

0x0000 00FF FFFF FFFF

1• Tbyte

(240• bytes)

64-bit

A (63~62) = 012
012 0 0 1 xsseg

0x4000 0000 0000 0000

through

0x4000 00FF FFFF FFFF

1• Tbyte

(240• bytes)

64-bit

A (63~62) = 112
012 0 0 1 csseg

0xFFFF FFFF C000 0000

through

0xFFFF FFFF DFFF FFFF

512• Mbytes

(229• bytes)

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-
significant bit of the 32-bit virtual address is set to 0, the suseg virtual address
space is selected; it covers the full 231�bytes (2�Gbytes) of the current user
address space. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address. This mapped space starts at virtual
address 0x0000 0000 and runs through 0x7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-

significant bits of the 32-bit virtual address are 1102, the sseg virtual address

space is selected; it covers 229�bytes (512�Mbytes) of the current supervisor
address space. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address. This mapped space begins at virtual
address 0xC000 0000 and runs through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the

virtual address are set to 002, the xsuseg virtual address space is selected; it

covers the full 240�bytes (1�Tbyte) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address. This mapped space starts at virtual address 0x0000
0000 0000 0000 and runs through 0x0000 00FF FFFF FFFF.

TX49 Architecture

8-10

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63~62 of the

virtual address are set to 012, the xsseg current supervisor virtual address space

is selected. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address. This mapped space begins at virtual
address 0x4000 0000 0000 0000 and runs through 0x4000 00FF FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63~62 of the

virtual address are set to 112, the csseg separate supervisor virtual address

space is selected. Addressing of the csseg is compatible with addressing sseg in
32-bit mode. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address. This mapped space begins at virtual
address 0xFFFF FFFF C000 0000 and runs through 0xFFFF FFFF DFFF FFFF.

TX49 Architecture

8-11

8.3.3 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains one or
more of the following values:

• KSU = 002

• EXL = 1

• ERL = 1

In conjunction with these bits, the KX bit in the Status register selects between 32-
or 64-bit Kernel mode addressing:

• when KX = 0, 32-bit kernel space is selected and all TLB misses are handled
by the 32-bit TLB refill exception handler

• when KX = 1, 64-bit kernel space is selected and all TLB misses are handled
by the 64-bit XTLB refill exception handler

The processor enters Kernel mode whenever an exception is detected and it
remains in Kernel mode until an Exception Return (ERET) instruction is executed
and results in ERL and/or EXL = 0. The ERET instruction restores the processor to
the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the
high-order bits of the virtual address, as shown in Figure 8-1. Table 8-1 lists the
characteristics of the 32-bit kernel mode segments, and Table 8-2 lists the
characteristics of the 64-bit kernel mode segments.

TX49 Architecture

8-12

kuseg

kseg0

kseg1

ksseg

kseg3

0x 0000 0000

0x 8000 0000

0x A000 0000

0x C000 0000

0x E000 0000

0x FFFF FFFF

32-bit*

2 GB
Mapped

0.5 GB
Mapped

0.5 GB
Mapped

0.5 GB
Unmapped
Cacheable

0.5 GB
Unmapped
Uncached

0x FFFF FFFF E000 0000

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

0x 4000 0000 0000 0000

0x 4000 0100 0000 0000

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x C000 00FF 8000 0000

0x FFFF FFFF 8000 0000

0x FFFF FFFF A000 0000

0x FFFF FFFF C000 0000

0x FFFF FFFF FFFF FFFF

xkuseg

xksseg

xkphys

xkseg

cksseg

ckseg0

ckseg1

ckseg3

64-bit

0.5 GB
Mapped

0.5 GB
Mapped

1 TB
Mapped

1 TB
Mapped

Mapped

Unmapped
(For details

see figure 8-7)

Address
error

Address
error

Address
error

0.5 GB
Unmapped
Uncached

0.5 GB
Unmapped
Cacheable

Figure 8-1 Kernel Mode Address Space

*NOTE: In 32-bit mode, bit31 is sign-extended through bits 63~32. Failure results in an address error
exception.

TX49 Architecture

8-13

0xBFFF FFFF FFFF FFFF

4* 64 GB

Unmapped

Reserved

64 GB

Unmapped

Cached

noncoherent

WB

64 GB

Unmapped

Uncached

64 GB

Unmapped

Cached

noncoherent

WT-WA

64 GB

Unmapped

Cached

noncoherent

WT-no-WA

0x9FFF FFFF FFFF FFFF
0xA000 0000 0000 0000

0x97FF FFFF FFFF FFFF
0x9800 0000 0000 0000

0x8FFF FFFF FFFF FFFF
0x9000 0000 0000 0000

0x87FF FFFF FFFF FFFF
0x8800 0000 0000 0000

0x8000 0000 0000 0000

Figure 8-2 xkphys Address Space

TX49 Architecture

8-14

Table 8-1 32-bit Kernel Mode Segments

Status Register
 Is One Of These Values

Address

Bit Values
KSU EXL ERL KX

Segment
Name

Address Range Segment Size

A (31) = 0 0 Kuseg

0x0000 0000

through

0x7FFF FFFF

2• Gbyte

(231• bytes)

A (31~29) = 1002 0 Kseg0

0x8000 0000

through

0x9FFF FFFF

512• Mbytes

(229• bytes)

A (31~29) = 1012 0 Kseg1

0xA000 0000

through

0xBFFF FFFF

512• Mbytes

(229• bytes)

A (31~29) = 1102 0 Ksseg

0xC000 0000

through

0xDFFF FFFF

512• Mbytes

(229• bytes)

A (31~29) = 1112 0 Kseg3

0xE000 0000

through

0xFFFF FFFF

512• Mbytes-4• Mbytes

(229• bytes)

KSU = 002

 or

EXL = 1

or

ERL = 1

0 (Reserved)
0xFF00 0000

through

0xFF3F FFFF
4• Mbytes

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX�=�0 in the Status register, and the most-significant
bit of the virtual address, A31, is cleared, the 32-bit kuseg virtual address space
is selected; it covers the full 231�bytes (2�Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address. When ERL = 1 in the Status register, the user
address region becomes a 231�bytes unmapped (that is, mapped directly to
physical addresses) uncached address space.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant

three bits of the virtual address are 1002, 32-bit kseg0 virtual address space is

selected; it is the 229�bytes (512�Mbyte) kernel physical space. References to
kseg0 are not mapped through the TLB; the physical address selected is defined
by subtracting 0x8000 0000 from the virtual address. The K0 field of the Config

register, described in this chapter, controls cacheability and coherency.

TX49 Architecture

8-15

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant

three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address

space is selected; it is the 229�bytes (512�Mbyte) kernel physical space.
References to kseg1 are not mapped through the TLB; the physical address
selected is defined by subtracting 0xA000 0000 from the virtual address. Caches
are disabled for accesses to these addresses, and physical memory (or memory-
mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant

three bits of the 32-bit virtual address are 1102, the ksseg virtual address space

is selected; it is the current 229�bytes (512�Mbyte) supervisor virtual space. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant

three bits of the 32-bit vital address are 1112, the kseg3 virtual address space is

selected; it is the current 229�bytes (512�Mbyte-4�Mbyte) kernel virtual space.
The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

Note: These is the 4• Mbytes Reserved area, begin at virtual address 0xFF00_0000 and
runs through 0xFF3F_FFFF.

TX49 Architecture

8-16

Table 8-2 64-bit Kernel Mode Segments

Status Register
Is One Of These ValuesAddress

Bit Values
KSU EXL ERL KX

Segment
Name

Address Range Segment Size

A (63~62) = 002 1 xkuseg

0x0000 0000 0000 0000

through

0x0000 00FF FFFF FFFF

1• Tbytes

(240• bytes)

A (63~62) = 012 1 xksseg

0x4000 0000 0000 0000

through

0x4000 00FF FFFF FFFF

1• Tbytes

(240• bytes)

A (63~62) = 102 1 xkphys

0x8000 0000 0000 0000

through

0xBFFF FFFF FFFF FFFF

8*232• bytes

A (63~62) = 112 1 xkseg

0xC000 0000 0000 0000

through

0xC000 00FF 7FFF FFFF

240 –231• bytes

A (63~62) = 112

A (61~31) = -1
1 ckseg0

0xFFFF FFFF 8000 0000

through

0xFFFF FFFF 9FFF FFFF

512• Mbytes

(229• bytes)

A (63~62) = 112

A (61~31) = -1
1 ckseg1

0xFFFF FFFF A000 0000

through

0xFFFF FFFF BFFF FFFF

512• Mbytes

(229• bytes)

A (63~62) = 112

A (61~31) = -1
1 cksseg

0xFFFF FFFF C000 0000

through

0xFFFF FFFF DFFF FFFF

512• Mbytes

(229• bytes)

A (63~62) = 112

A (61~31) = -1
1 ckseg3

0xFFFF FFFF E000 0000

through

0xFFFF FFFF FFFF FFFF

512• Mbytes

-4• Mbyte

KSU = 002

or

EXL = 1

or

ERL = 1

1 (Reserved)

0xFFFF FFFF FF00 0000

through

0xFFFF FFFF FF3F FFFF

4• Mbytes

TX49 Architecture

8-17

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-

bit virtual address are 002, the xkuseg virtual address space is selected; it covers

the current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a
231�bytes unmapped (that is, mapped directly to physical addresses) uncached
address space.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-

bit virtual address are 012, the xksseg virtual address space is selected; it is the

current supervisor virtual space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-

bit virtual address are 102, one of the two unmapped xkphys address spaces are

selected, either cached or uncached. Accesses with address bits 58~36 not equal
to 0 cause an address error.

References to this space are not mapped; the physical address selected is
taken from bits 35~0 of the virtual address. Bits 61~59 of the virtual address
specify the cacheability and coherency attributes, as shown in Table 8-3.

Table 8-3 Cacheability and Coherency Attributes

Value(61~59) Cacheability and Coherency Attributes Starting Address

0 Cacheable, non-coherent, write-through, no write

allocate

0x8000 0000 0000 0000

1 Cacheable, non-coherent, write-through, no write

allocate

0x8800 0000 0000 0000

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, non-coherent 0x9800 0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-

bit virtual address are 112, the address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual
address is extended with the contents of the 8-bit ASID field to form a
unique virtual address

• one of the four 32-bit kernel compatibility spaces, as described in the next
section.

TX49 Architecture

8-18

64-bit Kernel Mode, Compatibility Spaces (ckseg1~0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63~62 of the 64-bit

virtual address are 112, and bits 61~31 of the virtual address equal-1, the lower

two bytes of address, as shown in Figure 8-1, select one of the following
512�Mbytes compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region, compatible
with the 32-bit address model

• kseg0. The K0 field of the Config register, described in this chapter, controls
cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and uncached
region, compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor virtual
space, compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space, compatible
with the 32-bit address model kseg3.

TX49 Architecture

8-19

8.4 Translation Look aside Buffer

8.4.1 Joint TLB

The TX49 has a fully associative TLB which maps 48 pairs(odd/even entry) of
virtual pages to their corresponding physical addresses.

8.4.2 TLB Entry format

32-bit addressing

127 121 120 109 108 96

0 MASK 0

95 77 76 75 72 71 64

VPN2 G 0 ASID

63 62 61 38 37 35 34 33 32

0 PFN C D V 0

31 30 29 6 5 3 2 1 0

0 PFN C D V 0

64-bit addressing

255 217 216 205 204 96

0 MASK 0

191 190 189 168 167 141 140 139 136 135 128

R 0 VPN2 G 0 ASID

127 94 93 70 69 67 66 65 64

0 PFN C D V 0

63 30 29 6 5 3 2 1 0

0 PFN C D V 0

MASK : Page comparison mask

VPN2 : Virtual page number divided by two (maps to two pages)

ASID : Address space ID field.

R : Region. (00: user, 01: supervisor, 11: kernel) used to match Vaddr63~62.

PFN : Page frame number.

C : Specifies the cache algorithm to be used (see the “C” field of the EntryLo0, 1).

D : Dirty. If this bit is set, the page is marked as dirty and therefore, writable.

V : Valid. If this bit is set, it indicates that the TLB entry is valid.

G : Global. If this bit is set in both Lo0 and Lo1, then ignore the ASID during TLB
lookup.

0 : Reserved. Returns zeroes when read.

TX49 Architecture

8-20

8.4.3 Instruction-TLB

The TX49 has a 2-entry instruction TLB (ITLB). Each ITLB entry is a subset of any
single JTLB entry. The ITLB is completely invisible to software.

8.4.4 Data-TLB

The TX49 has a 4-entry data TLB (DTLB). Each DTLB entry is a subset of any
single JTLB entry. The DTLB is completely invisible to software.

TX49 Architecture

8-21

8.5 Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the 8-bit ASID (if the
Global bit, G, is not set) of the virtual address to the ASID of the TLB entry to see if there
is a match. One of the following comparisons are also made:

• In 32-bit mode, the highest 7 to 19�bits (depending upon the page size) of the
virtual address are compared to the contents of the TLB VPN2 (virtual page
number divided by two).

• In 64-bit mode, the highest 15 to 27�bits (depending upon the page size) of the
virtual address are compared to the contents of the TLB VPN2 (virtual page
number divided by two).

If a TLB entry matches, the physical address and access control bits (C, D, and V) are
retrieved from the matching TLB entry. While the V bit of the entry must be set for a
valid translation to take place, it is not involved in the determination of a matching TLB
entry.

Figure 8-1 illustrates the TLB address translation process.

Access
Cache

XTLB
Refill

TLB
Refill

TLB
Invalid

TLB
Mod

Uncached?

Write?

32-bit
address?

D
= 1?

V
= 1?

G
= 1?

ASID
Match?

VPN
Match?

Mapped
Address?

Legal
Address?

Sup
Mode?

User
Mode?

Legal
Address?

Legal
Address?

For valid
address space, see
the section describing
Operating Modes
in this chapter.

Virtual Address (Input)

ExceptionException

ExceptionException

Address
Error

No

Physical Address (Output)

No

No

No

No

No

NoNo

No

Dirty

Global

Yes

Yes

Yes

YesYes

Yes

Yes

Yes

Yes

Yes

Yes

No

No Yes

YesYes NoNoNo

Access
Main

Memory

Address
Error

Address
Error

VPN
and

ASID

Figure 8-1 TLB Address Translation

TX49 Architecture

8-22

TX49 Architecture

9-1

9. Cache Organization

9.1 Introduction

This chapter describes the cache memory of TX49. This processor has two on-chip
primary caches for instruction and data. Both caches are configured as either 8�K-byte,
16�K-byte or 32�K-byte in size.

9.2 Instruction Cache (I-Cache)

The TX49 primary I-cache has the following characteristics:

• Cache size: 8�KB/�16�KB/�32�KB (Selectable)

• Four-way set associative

• Indexed with a virtual address

• Checked with a physical tag

• Block (line) size: 8 words (32�bytes)

• Burst refill size: 8 words (32�bytes)

• Lockable on a per-line basis

• All valid bits, lock and FIFO bits are cleared by a Reset exception

9.2.1 Instruction cache address field

Figure 9-1 shows the instruction cache address field.

When 4-KB page size is used in 32�KB Instruction cache, the bit 12 of the
Physical Address and the Virtual Address must be same value.

35 11 10 5 4 3 2 0 (8• KB)

Physical Tag

(25• bits)

Cache Tag Index

(6• bits)

Word

(2• bit

s)

Byte

(3• bit

s)

35 12 11 5 4 3 2 0 (16• KB

)

Physical Tag

(24• bits)

Cache Tag Index

(7• bits)

Word

(2• bit

s)

Byte

(3• bit

s)

35 12 11 5 4 3 2 0 (32• KB)

Physical Tag

(24• bits)

Cache Tag Index

(8• bits)

Word

(2• bits)

Byte

(3• bits)

Figure 9-1 Instruction cache address field

TX49 Architecture

9-2

9.2.2 Instruction cache configuration

Each line in the 4 ways of the instruction cache share F1, F0 replacement bits.
Figure 9-1 shows the format of replacement bits. These bits are shared by way0,
way1, way2 and way3 for 8�KB/�16�KB/�32�KB cache, and indicate next set to
which replacement will be directed; when lock bit is set to 1, indicate this set is not
locked.

Each line of instruction cache data has an associated 27-bit/26-bit tag that
contains a 25-bit/24-bit physical address, a single Lock bit and a single valid bit,
except for the line in way0, which has an 26-bit/25-bit tag that excludes a lock bit.
Figure 9-2 shows the formats of tag and data pair.

1 0

F1 F0

F0: FIFO replace bit 0

F1: FIFO replace bit 1

Figure 9-1 Format of replacement bits

25 24 0 63 0 63 0 63 0 63 0

V PTag Data Data Data Data

Format for way0 (8• KB)

24 23 0 63 0 63 0 63 0 63 0

V PTag Data Data Data Data

Format for way0 (16• KB/32• KB)

25 24 23 0 63 0 63 0 63 0 63 0

L V PTag Data Data Data Data

Format for way1, 2 and 3 (16• KB/32• KB)

L: Lock bit (1: enable, 0: disable)

V: Valid bit (1: valid, 0: invalid)

PTag: Physical tag (bit 35∼12 of the physical address)

Data: Instruction cache data

Figure 9-2 Format of tag and data pair for I-cache

9.3 Data Cache

The TX49 primary D-cache has the following characteristics:

• Cache size: 8�KB/�16�KB/�32�KB (Selectable)

• Four-way set associative

• Indexed with a virtual address

• Checked with a physical tag

• Block (line) size: 8 words (32�bytes)

• Burst size: 8 words (32�bytes)

• Snoop function

• Store buffer

• Lockable on a per-line basis

• Write-back or write-through on a per-page basis

TX49 Architecture

9-3

• All write-back, CS, FIFO and lock bits are cleared by a Reset exception

TX49 Architecture

9-4

9.3.1 Data cache address field

Figure 9-1 shows the data cache address field.

When 4-KB page size is used in 32�KB Instruction cache, the bit 12 of the
Physical Address and the Virtual Address must be same value.

35 11 10 5 4 3 2 0 (8• KB)

Physical Tag

(25• bits)

Cache Tag Index

(6• bits)

Word

(2• bit

s)

Byte

(3• bit

s)

35 12 11 5 4 3 2 0 (16• KB

)

Physical Tag

(24• bits)

Cache Tag Index

(7• bits)

Word

(2• bit

s)

Byte

(3• bit

s)

35 12 11 5 4 3 2 0 (32• KB)

Physical Tag

(24• bits)

Cache Tag Index

(8• bits)

Word

(2• bits)

Byte

(3• bits

)

Figure 9-1 Data cache address field

9.3.2 Data cache configuration

Each line in the 4 ways of the data cache share F1, F0 replacement bits. Figure
9-1 shows the format of replacement bits. These bits are shared by way0, way1,
way2 and way3 for 8�KB/�16�KB/�32�KB cache, and indicate next set to which
replacement will be directed; when lock bit is set to 1, indicate this set is not locked.

Each line of data cache data has an associated 29-bit/28-bit tag that contains a
25-bit/24-bit physical address, a single Lock bit, a single write-back bit and a 2-bit
cache state, except for the line in way0, which has an 28-bit/27-bit tag that excludes
a Lock bit. Figure 9-2 shows the formats of tag and data pair.

1 0

F1 F0

F0: FIFO replace bit 0

F1: FIFO replace bit 1

Figure 9-1 Format of replacement bits

TX49 Architecture

9-5

27 26 2524 0 63 0 63 0 63 0 63 0

W CS PTag Data Data Data Data

Format for way0 (8• KB)

26 25 2423 0 63 0 63 0 63 0 63 0

W CS PTag Data Data Data Data

Format for way0 (16• KB/• 32• KB)

28 27 26 2524 0 63 0 63 0 63 0 63 0

L W CS PTag Data Data Data Data

Format for way1, 2 and 3 (8• KB)

27 26 25 2423 0 63 0 63 0 63 0 63 0

L W CS PTag Data Data Data Data

Format for way1, 2 and 3 (16• KB/• 32• KB)

L: Lock bit (1: enable, 0: disable)

W: Write-back bit (set if cache line has written)

CS: Primary cache state

(0: Invalid, 1: Reserved, 2: Reserved, 3: Valid)

PTag: Physical tag (bit 35~12 of the physical address)

Data: Data cache data

Figure 9-2 Format of tag and data pair for D-cache

In the TX49, the W (write-back) bit, not the cache state, indicates when the
primary cache contents modified data that must be written back to memory. The
states Invalid and Valid are used to describe the cache line. That is, there is no
hardware support for cache coherency.

9.4 Lock function

The lock function can be used to locate critical instruction/data in one
instruction/data cache set and they are not replaced when the lock bit is set.

9.4.1 Lock bit setting and clearing

Setting the Lock bit in each line cache enable the instruction/data cache lock
function. When the lock function is enabled, the instruction/data in the valid line is
locked and never be replaced. The set to be locked is pointed by FIFO bit. Refilled
instruction/data during the lock function is enabled is locked. When a store miss
occurs for the write-through data cache without write allocate, the store data is not
written to the cache and will therefore not be locked.

The lock function is disabled by clearing the Lock bit in each line.

In order to clear or set the Lock bit in the cache, Cache instructions (Index store I-
cache /D-cache Tag) can be used, and in order to load the instruction/data to cache
from memory, another Cache instructions (Fill I-cache/D-cache) can be used (refer to
Cache instruction).

Clear the lock bit as follows when data written to a locked line should be stored in
main memory.

TX49 Architecture

9-6

(1) Read the locked data from cache memory

(2) Clear the lock bit

(3) Store the data that was read

9.4.2 Operation during lock

After the lock bit is set for a line, the line can be replaced only when it’s line state
is invalid. The locked valid line can never be replaced. FIFO bit should point only to
the set of locked invalid line or unlocked line.

A write access to a locked valid line takes place only to the cache not to the
memory at Write Back mode. Both of the cache and the memory are replaced at
Write Through mode.

9.4.3 Example of Data cache locking

During the load operation to the locked line of the cache, any interrupt should be
disabled in order to avoid to lock the wrong data.

To lock data cache lines, the following sequence of codes could be used.

....................... /* Disable the interrupt */

mtc0 t0, TagLo /* Load data into TagLo reg */

cache 2 (D), offset (base) /* Invalidate and lock line in desired set using

Index_Store_Tag cache instruction */

cache 7 (D), offset (base) /* Fill the cache line from desired memory location */

....................... / Enable the interrupt */

9.4.4 Example of Instruction cache locking

To lock instruction cache lines, the following sequence of codes could be used:

....................... /* Disable the interrupt */

mtc0 t0, TagLo /* Load data into TagLo reg */

cache 2 (I), offset (base) /* Invalidate and lock line in desired set using

Index_Store_Tag cache instruction */

cache 5 (I), offset (base) /* Fill the cache line from desired memory location */

....................... /* Enable the interrupt */

TX49 Architecture

9-7

9.5 The primary cache accessing

Figure 9-1 shows the virtual address (VA) index to the primary cache. Each instruction
and data cache size is 8�KB, 16�KB or 32�KB. The virtual address bits be used to
index into the primary cache decided by the cache size.

Tags

Tag line Data line

Data

32KB:VA(12∼5)
16KB:VA(11∼5)
 8KB:VA(10∼5)

64

W State Tag

VA(12∼5)
 to
VA(10∼5)

Figure 9-1 Primary Cache Data and Tag Organization

9.6 Cache States

The section describes about the state of a cache line. The cache line in the TX49 is in
one of states described in Table 9-1.

The I-Cache line is in one of the following states:

• invalid

• valid

The D-Cache line is in one of the following states:

• invalid

• valid

Table 9-1 Cache States

Cache line State Description

Invalid A cache line that does not contain valid information must be marked

invalid, and cannot be used. A cache line in any other state than invalid

is assumed to contain valid information.

Valid A Valid cache line contains valid information. The cache line may or not

be consistent with memory and is owned by the processor (see Cache

Line Ownership in this chapter).

TX49 Architecture

9-8

9.7 Cache Line Ownership

The TX49 becomes the owner of a cache line after it writes to that cache line (that is,
by entering the Valid), and is responsible for providing the contents of that line on a read
request. There can only be one owner for each cache line.

9.8 Cache Multi-Hit Operation

The TX49 is not guaranteed the operation for the multi-hit of primary cache.

Thus, in case of locking the specified program/data in the primary cache, the
program/data must be used after locked in the cache by Fill instruction.

Such as the previous description the cache multi hit does not guarantee in the TX49.

9.9 Cache Snoop

The TX49 has a bus arbitration function that releases bus mastership to an external
bus master. Consistency between cache memory and main memory could deteriorate
when an external bus master has write access to main memory. The purpose of the
cache snoop function is to maintain this data consistency.

When TX49 releases the bus, the bus cycle is snooped by an external bus master. If
an address access by the external bus master matches an address stored in the on-chip
data cache (cache hit), the Cache State bit (CS) for that cache data is cleared to 0,
invalidating it.

Locked data cannot be invalidated in a snoop, the FIFO bits point to the invalidated
cache set. The lock bit is not changed as the result of a snoop.

Note: A snoop is possible even when the data cache is disabled.

The snooping of an external bus master is done by ST concurrency when the TX49 is
in the doze mode. For the bus that is released by the assertion of the GSGNT* signal or
the GHPSGNT* signal, snooping of the data cache can be performed by the GSNOOP*

signal and the GA[35∼0] signal. When an external bus master deasserts the GSREQ*

signal or the GHPSREQ* signal, the TX49 deasserts the GSGNT* signal or the
GHPSGNT* signal.

TX49 Architecture

9-9

9.10 Cache Test Function

9.10.1 Cache disabling

The config register bits ICE# (Instruction Cache Enable) and DCE# (Data Cache
Enable) are used to enable and disable the instruction and data cache, respectively.

When a cache is disabled, all cache accesses are misses and there is no refill (nor
is there any burst bus cycle; this is the same as accessing a non-cacheable area).
The valid bit (V) or Cache State bit (CS) for each entry cannot be modified.

9.10.2 Cache flushing

Both the instruction and data cache are flushed when a ColdReset/SoftReset
exception is raised (all valid bits are cleared to 0).

The instruction cache is flushed by the CACHE instruction Index_Invalidate
/Hit_Invalidate. The data cache is flushed by the CACHE instruction Hit_Invalidate.

TX49 Architecture

10-1

10. Write Buffer

The TX49 contains a write buffer to improve the performance of writes to the external
memory. Every write to external memory uses this on-chip write buffer. The write buffer
holds up to four 64-bit address and data pairs.

For a cache miss write-back, the entire buffer is used for the write-back data and allows
the processor to proceed in parallel with the memory update. For uncached and write-
through stores, the write buffer uncouples the CPU from the write to memory. If the write
buffer is full, additional stores will stall until there is room for them in the write buffer.

TX49 Architecture

10-2

TX49 Architecture

11-1

11. CPU Exception

11.1 Introduction

This chapter describes the explanation of CPU exception processing. The chapter
concludes with a description of each exception’s cause, together with the manner in
which the CPU processes and services these exceptions.

11.2 Exception Vector Locations

Exception vector addresses are stored in an area of kseg0 or kseg1 except for Debug
exception vector. The vector address of the ColdReset, SoftReset and NMI exception is
always in a non-cacheable area of kseg1. Vector addresses of the other exceptions
depend on the BEV bit of Status register. When BEV is 0, these exceptions are vectored
to a cacheable area of kseg0. When BEV is 1, all vector addresses are in a non-
cacheable area of kseg1.

Table 11-1 shows the list of the exception vector locations.

Table 11-1 Exception Vector Locations

Exception
TX49 Vector Address

(BEV• = 0) (BEV• = 1)

ColdReset,SoftReset,

NMI
0xffff_ffff_bfc0_0000 0xffff_ffff_bfc0_0000

TLB refill, EXL• =• 0 0xffff_ffff_8000_0000 0xffff_ffff_bfc0_0200

XTLB refill, EXL• =• 0

(X• =• 64• bit TLB)
0xffff_ffff_8000_0080 0xffff_ffff_bfc0_0280

Others 0xffff_ffff_8000_0180 0xffff_ffff_bfc0_0380

The cache error exception is not occurred because the TX49 does not have the parity
bit into the primary cache.

Debug exception needs the care, it has the special address. (See 14.9.5)

Table 11-2 shows the list of the debug exception vector locations.

Table 11-2 Debug Exception Vector Locations

Exception
TX49 Debug Exception Vector Address

(ProbEnb• = 0) (ProbEnb• = 1)

Debug 0xffff_ffff_bfc0_0400 0xffff_ffff_ff20_0200

TX49 Architecture

11-2

11.3 Priority of Exception

More than one exception may be raised for the same instruction, in which case only
the exception with the highest priority is reported. The TX49 Processor Core instruction
exception priority is shown in Table 11-1.

Table 11-1 Priority of Exception

Priority Exception Mnemonic

Cold Reset

Soft Reset

NMI

Address error Inst. Fetch AdEL

TLB refill Inst. Fetch TLBL

TLB invalid Inst. Fetch TLBL

Bus error Inst. Fetch IBE

Integer overflow, Trap, System Call, Breakpoint,

Reserved Instruction, Coprocessor Unusable, or

Floating-Point Exception

Ov, Tr, Sys,

Bp, RI, CpU,

FPE

Address error Data access AdEL/AdES

TLB refill Data access TLBL/TLBS

TLB invalid Data access TLBL/TLBS

TLB modified Data write Mod

Bus error Data access DBE

High

Low

Interrupt Int

TX49 Architecture

11-3

11.4 ColdReset Exception

11.4.1 Cause

This ColdReset exception occurs when the GCOLDRESET* signal is asserted and
then deasserted. This exception is not maskable.

11.4.2 Processing

A special interrupt vector that resides in an unmapped and uncached area is used.
It is therefore not necessary for hardware to initialize TLB and cache memory in
order to process this exception. The vector location of this exception is;

• In 32�bit mode, 0xbfc0 0000

• In 64�bit mode, 0xffff ffff bfc0 0000

The most register’s contents are set/cleared when this exception occurs. The
values of these bits are listed into the table of Section 7.

11.4.3 Servicing

The ColdReset exception is serviced by;

• initializing all registers, coprocessor registers, caches and the memory
system

• performing diagnostic tests

• bootstrapping the operating system

TX49 Architecture

11-4

11.5 SoftReset Exception

11.5.1 Cause

This SoftReset exception occurs when the GRESET* signal is asserted and then
deasserted. This exception is not maskable.

11.5.2 Processing

A special interrupt vector that resides in an unmapped and uncached area is used.
It is therefore not necessary for hardware to initialize TLB and cache memory in
order to process this exception. The vector location of this exception is;

• In 32�bit mode, 0xbfc0 0000

• In 64�bit mode, 0xffff ffff bfc0 0000

All register contents are retained except for the following.

• ErrorEPC register, which contains the restart PC

• ERL, SR and BEV bits of Status register, which are set to “1”

Because Soft-reset exception can abort cache and bus operations, cache and
memory state is undefined when this exception occurs.

11.5.3 Servicing

The SoftReset exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing for the ColdReset exception.

TX49 Architecture

11-5

11.6 NMI (Non-maskable Interrupt) Exception

11.6.1 Cause

The NMI (Non-maskable Interrupt) exception occurs at the falling edge of the
GNMI* signal.

This interrupt is not maskable, and occurs regardless of the EXL, ERL and IE bits
of the Status register.

11.6.2 Processing

The same special interrupt vector as for Cold-reset/Soft-reset exception
(0xbfc0_0000/ 0xffff_ffff_bfc0_0000). This vector is located within unmapped and
uncached area so that the cache and TLB need not be initialized to process this
exception. When this exception occurs, the SR bit of Status register is set.

Because NMI exception can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing NMI exception.

Unlike the Cold-reset/Soft-reset exception, but like other exceptions, this
exception occurs at an instruction boundary. The state of the primary cache and
memory system are preserved by this exception.

All register contents are retained except for the following.

• ErrorEPC register, which contains the restart PC

• ERL, SR and BEV bits of the Status register, which is set to 1.

11.6.3 Servicing

The NMI exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing the system for the ColdReset exception.

TX49 Architecture

11-6

11.7 Address Error Exception

11.7.1 Cause

The Address Error exception occurs when an attempt is made to execute one of the
following.

• load or store a doubleword that is not aligned on a doubleword boundary

• load, fetch or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

• reference Kernel mode address while in User or Supervisor mode

• reference Supervisor mode address while in User mode

This exception is not maskable.

11.7.2 Processing

The common exception vector is used. ExcCode AdEL or AdES in Cause register is
set depending on whether the memory access attempt was a load or store. When
this exception is raised, the misalign virtual address causing the exception, or the
protected virtual address that was illegally referenced, is placed in BadVAddr
register. The contents of the VPN field of Context and EntryHi registers are
undefined, as are the contents of EntryLo register.

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to “1”.

11.7.3 Servicing

The process executing at the time is handed a segmentation violation signal. This
error is usually fatal to the process incurring the exception.

TX49 Architecture

11-7

11.8 TLB Refill Exception

11.8.1 Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to
a mapped address. This exception is not maskable.

11.8.2 Processing

There are two special exception vectors for this exception; one for references to 32-
bit virtual address, and one for references to 64-bit virtual address. The KX, SX and
UX bits of Status register determine whether the User, Supervisor or Kernel address
referenced are 32-bit mode or 64-bit mode. When EXL bit of Status register is set to
“0”, all references use these vectors. When this exception occurs, TLBL or TLBS code
is set in the ExcCode field of Cause register. This code indicates whether the
instruction, as shown by EPC register and BD bit of Cause register, caused the miss
by an instruction reference, load operation, or store operation.

When this exception occurs;

• BadVAddr, Context, XContext and EntryHi registers hold the virtual address
failed address translation

• EntryHi register contains ASID from which the translation fault occurred, too

• A valid address in which to place the replacement TLB entry is contained
into Random register

• The contents of EntryLo register are undefined

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to “1”.

11.8.3 Servicing

To service this exception, the contents of the Context or XContext register are used
as a virtual address to fetch memory locations containing the physical page frame
and access control bits for a pair of TLB entries. The two entries are placed into the
EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are written into the
TLB.

It is possible that the virtual address used to obtain the physical address and
access control information is on a page that is not resident in the TLB. This
condition is processed by allowing a TLB refill exception in the TLB refill handler.
This second exception goes to the common exception vector because the EXL bit of
the Status register is set.

TX49 Architecture

11-8

11.9 TLB Invalid Exception

11.9.1 Cause

The TLB Invalid exception occurs when a virtual address reference matches a TLB
entry that is marked invalid (TLB valid bit cleared). This exception is not maskable.

11.9.2 Processing

The common exception vector is used for this exception. When this exception
occurs, TLBL or TLBS code is set in the ExcCode field of Cause register. This code
indicates whether the instruction, as shown by EPC register and BD bit of Cause
register, caused the miss by an instruction reference, load operation, or store
operation.

When this exception occurs;

• BadVAddr, Context, XContext and EntryHi registers hold the virtual address
failed address translation

• EntryHi register contains ASID from which the translation fault occurred, too

• A valid address in which to place the replacement TLB entry is contained
into Random register

• The contents of EntryLo register are undefined

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to “1”.

11.9.3 Servicing

A TLB entry is typically marked invalid when one of the following is true;

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain a
reference bit or during debug)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with
TLB Probe (TLBP) instruction, and replaced by an entry with that entry’s Valid bit
set.

TX49 Architecture

11-9

11.10 TLB Modified Exception

11.10.1 Cause

The TLB Modified exception occurs when a store operation virtual address
reference to memory matches a TLB entry that is marked valid but is not dirty and
therefore is not writable. This exception is not maskable.

11.10.2 Processing

The common exception vector is used for this exception, and Mod code in Cause
register is set.

When this exception occurs;

• BadVAddr, Context, XContext and EntryHi registers hold the virtual address
failed address translation

• EntryHi register contains ASID from which the translation fault occurred, too

• The contents of EntryLo register are undefined

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to 1.

11.10.3 Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not
permit write accesses; if writes are not permitted, a write protection violation occurs.

If write accessed are permitted, the page frame is marked dirty/writable by the
kernel in its own data structures. The TLB Probe (TLBP) instruction places the index
of the TLB entry that must be altered into the Index register. The EntryLo register is
loaded with a word containing the physical page frame and access control bits (with
the D bit set), and the EntryHi and EntryLo registers are written into the TLB.

TX49 Architecture

11-10

11.11 Bus Error Exception

11.11.1 Cause

The Bus Error exception occurs when GBUSERR* signal is asserted during a
memory read bus cycle. This exception is raised by board-level circuitry for events
such as bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This occurs during execution of the instruction causing
the bus error. The memory bus cycle ends upon notification of a bus error. When a
bus error is raised during a burst refill, the following refill is not performed. A bus
error request made by asserting GBUSERR* signal will be ignored if TX49 is
executing a cycle other than a bus cycle. It is therefore not possible to raise a Bus
Error exception in a write access using a write buffer. A general interrupt must be
used instead. This exception is not maskable.

11.11.2 Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE
code in the ExcCode field of the Cause register is set, signifying whether the
instruction (as indicated by the EPC register and BD bit in the Cause register)
caused the exception by an instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception,
unless it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is
set.

11.11.3 Servicing

The physical address at which the fault occurred can be computed from
information available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch
reference), the virtual address is contained in the EPC register.

• If the DBE code is set (indicating a load or store reference), the instruction
that caused the exception is located at the virtual address contained in the
EPC register (or 4+ the contents of the EPC register if the BD bit of the Cause
register is set).

The virtual address of the load and store reference can then be obtained by
interpreting the instruction. The physical address can be obtained by using the TLB
Probe (TLBP) instruction and reading the EntryLo register to compute the physical
page number.

The process executing at the time of this exception is handed a bus error signal,
which is usually fatal.

TX49 Architecture

11-11

11.12 Integer Overflow Exception

11.12.1 Cause

The Integer Overflow exception occurs when ADD, ADDI, SUB, DADD, DADDI or
DSUB instruction results in a 2’s complement overflow. This exception is not
maskable.

11.12.2 Processing

The common exception vector is used for this exception, and the Ov code in Cause
register is set.

 If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to 1.

11.12.3 Servicing

The process executing at the time of the exception is handed a floating-point
exception/integer overflow signal. This error is usually fatal to the current process.

TX49 Architecture

11-12

11.13 Trap Exception

11.13.1 Cause

The Trap exception occurs when TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU,
TLTI, TLTIU, TEQI or TNEI instruction results in a TRUE condition. This exception is
not maskable.

11.13.2 Processing

The common exception vector is used for this exception, and the Tr code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to 1.

11.13.3 Servicing

The process executing at the time of a Trap exception is handed a floating-point
exception/integer overflow signal. This error is usually fatal.

TX49 Architecture

11-13

11.14 System Call Exception

11.14.1 Cause

The System Call exception occurs during an attempt to execute the SYSCALL
instruction. This exception is not maskable.

11.14.2 Processing

The common exception vector is used for this exception, and the Sys code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the SYSCALL instruction. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register.

If the SYSCALL instruction is in a branch delay slot, BD bit of Status register is
set, otherwise this bit is cleared.

11.14.3 Servicing

When this exception occurs, control is transferred to the applicable system
routine.

To resume execution, the EPC register must be altered so that the SYSCALL
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register�+�4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm,
beyond the scope of this description, may be required.

TX49 Architecture

11-14

11.15 Breakpoint Exception

11.15.1 Cause

The Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

11.15.2 Processing

The common exception vector is used for this exception, and the Bp code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the BREAK instruction. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register.

If the BREAK instruction is in a branch delay slot, BD bit of Status register is set,
otherwise this bit is cleared.

11.15.3 Servicing

When the Breakpoint exception occurs, control is transferred to the applicable
system routine. Additional distinctions can be mode by analyzing the unused bits of
the BREAK instruction (bits 25~6), and loading the contents of the instruction whose
address the EPC register contains. A value of 4 must be added to the contents of the
EPC register (EPC register�+�4) to locate the instruction if it resides in a branch
delay slot.

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register�+�4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch
instruction is required to resume execution.

TX49 Architecture

11-15

11.16 Reserved Instruction Exception

11.16.1 Cause

The Reserved Instruction exception occurs when one of the following condition
occurs:

• an attempt is made to execute an instruction with an undefined major
opecode (bit 31~26)

• an attempt is made to execute a SPECIAL instruction with an undefined
minor opcode (bit 5~0)

• an attempt is made to execute a REGIMM instruction with an undefined
minor opcode (bit20~16)

• an attempt is made to execute 64-bit operations in 32-bit mode when in User
or Supervisor modes

• an attempt is made to execute a COPz rs instruction with an undefined
minor opcode (bit25~21)

• an attempt is made to execute a COPz rt instruction with an undefined
minor opcode (bit20~16)

• 64-bit operations are always valid in Kernel mode regardless of the value of
the KX bit in Status register. This exception is not maskable.

11.16.2 Processing

The common exception vector is used for this exception, and the RI code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register.

11.16.3 Servicing

No instruction in the MIPS ISA are currently interpreted. The process executing at
the time of this exception is handed an illegal instruction/reserved operand fault
signal. This error is usually fatal.

TX49 Architecture

11-16

11.17 Coprocessor Unusable Exception

11.17.1 Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either

• attempting to execute a coprocessor CPz instruction when its corresponding
CUz bit in Status register.

• in User or Supervisor mode attempting to execute a CP0 instruction when
CU0 bit is cleared to “0”. (In Kernel mode, an exception is not raised when a
CP0 instruction is issued , regardless of the CU0 bit setting)

• an attempt is made to execute a FPU instruction in TX49 without FPU

11.17.2 Processing

The common exception vector is used for this exception, and the CpU code in
Cause register is set.

The coprocessor number referred to at the time of the exception is stored in Cause
register CE (Coprocessor Error) field.

If EXL bit of Status register is only set to 0, the following operation is executed.
EPC register points to the address of the instruction causing the exception. If,
however, the affected instruction was in the branch delay slot (for execution during a
branch), the immediately preceding branch instruction address is retained in EPC
register and BD bit of Cause register is set to 1.

11.17.3 Servicing

The coprocessor unit to which an attempted reference was mode is identified by
the Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor does
not exist or has failed, interpretation of the coprocessor instruction is
possible.

• If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and execution
resumed with the EPC register advanced past the coprocessor instruction.

• If the process is not entitled access to the coprocessor, the process executing
at the time is handed an illegal instruction/privileged instruction fault
signal. This error is usually fatal.

TX49 Architecture

11-17

11.18 Floating-Point Exception

11.18.1 Cause

The Floating-Point exception is used by the floating-point coprocessor. This
exception is not maskable.

11.18.2 Processing

The common exception vector is used for this exception, and the FPE code in
Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause of
this exception.

11.18.3 Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

For an unimplemented instruction exception, the kernel should emulate the
instruction; for other exceptions, the kernel should pass the exception to the user
program that caused the exception.

TX49 Architecture

11-18

11.19 Interrupt Exception

11.19.1 Cause

The Interrupt exception is raised by any of eight interrupts (two software and six
hardware). A hardware interrupt is raised when GINT* signal goes active. A
software interrupt is raised by setting the IP[1]/IP[0] bit in Cause register. The
significance of these interrupts is dependent upon the specific system
implementation.

Each of the eight interrupts can be masked individually by clearing its
corresponding bit in the IM(Interrupt Mask) field of Status register, and all interrupts
can be masked at once by clearing IE bit of Status register to “0”.

11.19.2 Processing

The common exception vector is used as following;

• In 32 bit mode, 0x8000 0180 (BEV�=�0)

0xbfc0 0380 (BEV�=�1)

• In 64 bit mode, 0xffff ffff 8000 0180 (BEV�=�0)

0xffff ffff bfc0 0380 (BEV�=�1)

11.19.3 Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or
SW0), the interrupt condition is cleared by setting the corresponding Cause register
bit to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared by
correcting the condition causing the interrupt pin to be asserted.

If the timer interrupt is caused, the interrupt condition is cleared by changing the
value of the Compare register or setting the corresponding Cause register bit (IP[7])
to 0.

NOTE: due to the write buffer, a store to an external device will not necessary occur until after
other instructions in the pipeline finish. Thus, the user must ensure that the store will
occur before the return from exception instruction (ERET) is executed otherwise the
interrupt may be serviced again even though there should be no interrupt pending.

TX49 Architecture

11-19

11.20 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and
guidelines for their handlers:

• general exceptions and their exception handler

• TLB/XTLB miss exception and their exception handler

• Cold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are
then serviced by software (SW).

Exceptions other than Reset, Soft Reset, NMI or first-level miss

Note: Interrupts can be masked by IE or IMs

EXL ← 1

PC ← 0xFFFF FFFF BFC0 0200 + 180

(unmapped, uncached)

PC ← 0xFFFF FFFF 8000 0000 + 180

(unmapped, cached)

Cause 31 (BD) ← 0

EPC ← PC

Cause 31 (BD) ← 1

EPC ← (PC - 4)

= 0 (normal) = 1 (bootstrap)

Yes No

= 1

Processor forced to Kernel Mode
& interrupt disabled

= 0

Comments

To General Exception Servicing Guidelines

BEV

Instr. in
Br. Dly. Slot?

EXL
(SR1)

Check if exception within
another exception

FP Control/Status Register
is only set if the respective exception
occurs.
EnHi, X/Context are set only for
*TLB- Invalid, Modified,
& Refill exceptions
BadVA is set only for
TLB-invalid, Modified,
and Refill exceptions
Note: not set if it is a Bus Error

Set FP Control Status Resister
EnHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Register
(ExcCode, CE)
Set BadVA

Figure 11-1 General Exception Handler (HW)

TX49 Architecture

11-20

ERET

MTC0 -
EPC
STATUS

EXL = 1

Service Code

Check CAUSE REG. & Jump to

appropriate Service Code

MTC0 -
(Set Status Bits:)
KSU ← 00
EXL ← 0
& IE = 1

MFC0 -
X/Context
EPC
Status
Cause

Status
bit 21 (TS) (*)

= 0

= 1

Comments

Optional: Check only if 2nd-level TLB miss

(optional - only to enable Interrupts while keeping Kernel Mode)

¥After EXL = 0, all exceptions allowed.
(except interrupt if masked by IE or IM)

Reset the processor

* Save Register
Fil

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which
is in the ERET’s branch delay slot

* PC ← EPC; EXL ← 0

* LLbit ← 0

* Unmapped vector TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL = 1 so Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Cold Reset, Soft Reset, NMI exceptions
possible.

(*) Reserved for TX49.

Figure 11-2 General Exception Servicing Guidelines (SW)

TX49 Architecture

11-21

Vec. Off. = 0x180Vec. Off. = 0x000Vec. Off. = 0x080

EXL ← 1

EnHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Reg.

ExcCode, CE and
Set BadVA

EnHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Reg.

ExcCode, CE and
Set BadVA

To TLB/XTLB Exception Servicing Guidelines

Instr. in
Br. Dly. Slot?

EXL
(SR bit 1)

EXL
(SR bit 1)

XTLB
Exception?

EPC ← PC
Cause bit 31 (BD) ← 0

EPC ← (PC-4)
Cause bit 31 (BD) ← 1

BEV
(SR bit 22)

PC ← 0xFFFF FFFF 8000 0000 + Vec. Off.
(unmapped, cached)

PC ← 0xFFFF FFFF BF00 0200 + Vec. Off.
(unmapped, uncached)

= 0 (normal) = 1 (bootstrap)

Processor forced to Kernel Mode &
interrupt disabled

No

Yes

Points to General ExceptionPoints to Refill Exception

NoYes

= 0= 0

= 1= 1

Check if exception within
another exception

Figure 11-3 TLB/XTLB Miss Exception Handler (HW)

TX49 Architecture

11-22

ERET

Service Code

MFC0 -

CONTEXT

Comments

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

* PC ← EPC; EXL = 0

* LLbit ← 0

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* There could be a TLB miss again during the mapping
of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* Unmapped vector TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL = 1 so Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Cold Reset, Soft Reset, NMI exceptions
possible.

Figure 11-4 TLB/XTLB Exception Servicing Guidelines (SW)

TX49 Architecture

11-23

PC ← 0xFFFF FFFF BFC0 0000

ErrorEPC ← PC

ERET
Cold Reset Service CodeSoft Reset Service Code

NMI Service Code Status bit 20
(SR)

Yes

= 0

(Optional)

No

= 1

C
ol

d
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (
S

W
)

Cold Reset ExceptionSoft Reset or NMI Exception

C
ol

d
R

es
et

, S
of

t R
es

et
 &

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)

Note: There is no indication from the
proessor to differentiate between
NMI & Soft Reset;
there must be a system level indication.

NMI?

Status:

BEV ← 1
TS ← 0 (*)
SR ← 1
ERL ← 1

Random ← TLBENTRIES-1
Wired ← 0
Status:

BEV ← 1
TS ← 0 (*)
SR ← 0
ERL ← 1

(*) Reserved for TX49

Figure 11-5 Cold Reset, Soft Reset & NMI Exception Handling (HW) and

Servicing Guidelines (SW)

TX49 Architecture

11-24

TX49 Architecture

12-1

12. Floating-Point Unit, CP1 (Option)

This chapter describes the floating-point operations, including the programming model,
instruction set and formats.

The floating-point operations fully conform to the requirements of ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point Arithmetic.

12.1 Overview

All floating-point instructions, as defined in the MIPS ISA for the floating-point
coprocessor, CP1, are processed by the other hardware unit that executes integer
instructions. Logically, the FPU exists as an individual coprocessor; however, unlike
previous implementations, the TX49 FPU is physically integrated into the CPU.

The execution of floating-point instructions can be disabled by the coprocessor
usability CU bit defined in the CP0 Status register.

12.2 Floating Point Register

12.2.1 Floating-Point General Registers (FGRs)

CP1 has a set of Floating-Point General Purpose registers (FGRs) that can be
accessed in the following ways:

• As 32 general purpose registers (32 FGRs), each of which is 32 bits wide
when the FR bit in the CPU Status register equals 0; or as 32 general
purpose registers (32 FGRs), each of which is 64-bits wide when FR equals 1.
The CPU accesses these registers through move, load, and store instructions.

• As 16 floating-point registers (see the next section for a description of FPRs),
each of which is 64-bits wide, when the FR bit in the CPU Status register
equals 0. The FPRs hold values in either single- or double-precision floating-
point format. Each FPR corresponds to adjacently numbered FGRs as
shown in Figure 12-1.

• As 32 floating-point registers (see the next section for a description of FPRs),
each of which is 64-bits wide, when the FR bit in the CPU Status register
equals 1. The FPRs hold values in either single- or double-precision floating-
point format. Each FPR corresponds to an FGR as shown in Figure 12-1.

TX49 Architecture

12-2

Floating-point

Registers (FPR)

(FR = 0)

Floating-Point

General Purpose Registers

Floating-point

Registers (FPR)

(FR = 1)

Floating-Point

General Purpose Registers

31 (FGR) 0 63 (FGR) 0

(least) FGR0 FPR0 FGR0
FPR0

(most) FGR1 FPR1 FGR1

(least) FGR2 FPR2 FGR2
FPR2

(most) FGR3 FPR3 FGR3

• •
• •
• •

(least) FGR28 FPR28 FGR28
FPR28

(most) FGR29 FPR29 FGR29

(least) FGR30 FPR30 FGR30
FPR30

(most) FGR31 FPR31 FGR31

Floating-point

Control Registers

(FCR)

Control/Status Register Implementation/Revision Register

31 (FCR31) 0 31 (FCR0) 0

Figure 12-1 FP Registers

12.2.2 Floating-Point Control Registers

The MIPS RISC architecture defines 32 floating-point control registers (FCRs); the
TX49 processor implements two of these registers: FCR0 and FCR31. These FCRs

are described below:

• The Implementation/Revision register (FCR0) holds revision information.

• The Control/Status register (FCR31) controls and monitors exceptions, holds
the result of compare operations, and establishes rounding modes.

• FCR1 to FCR30 are reserved.

Table 12-1 lists the assignments of the FCRs.

Table 12-1 Floating-Point Control Register Assignments

FCR Number Use

FCR0 Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

Implementation and Revision Register, (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the
implementation and revision number of CP1. This information can determine the
coprocessor revision and performance level, and can also be used by diagnostic
software.

Figure 12-1 shows the layout of the register; Table 12-2 describes the
Implementation and Revision register (FCR0) fields.

Implementation/Revision Register (FCR0)
31 16 15 8 7 0

0 Imp Rev

16 8 8

Figure 12-1 Implementation/Revision Register

TX49 Architecture

12-3

Table 12-2 FCR0 Fields

Field Description

Imp Implementation number

Rev Revision number in the form of y. x

0 Reserved. Returns zeroes when read.

The revision number is a value of the form y. x, where:

• y is a major revision number held in bits 7:4.

• x is a minor revision number held in bits 3:0.

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status information that
can be accessed by instructions in either Kernel or User mode. FCR31 also controls
the arithmetic rounding mode and enables User mode traps, as well as identifying
any exceptions that may have occurred in the most recently executed floating-point
instruction, along with any exceptions that may have occurred without being
trapped.

Figure 12-2 shows the format of the Control/Status register, and Table 12-3
describes the Control/Status register fields. Figure 12-3 shows the Control/Status
register Cause, Flag, and Enable fields.

Control/Status Register (FCR31)
31 25 24 23 22 18 17 12 11 7 6 2 1 0

0 FS C 0
Cause

EVZOUI

Enables

VZOUI

Flags

VZOUI
RM

7 1 1 5 6 5 5 2

Figure 12-2 FP Control/Status Register Bit Assignments

Table 12-3 Control/Status Register Fields

Field Description

FS When set, denormalized results can be flushed instead of causing

an unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition

bit.

Cause Cause bits. See Figure 12-3 and the description of Control/Status

register Cause, Flag, and Enable bits.

Enables Enable bits. See Figure 12-3 and the description of Control/Status

register Cause, Flag, and Enable bits.

Flags Flag bits. See Figure 12-3 and the description of Control/Status

register Cause, Flag, and Enable bits.

RM Rounding mode bits. See Table 12-5 and the description of

Control/Status register Rounding Mode Control bits.

TX49 Architecture

12-4

Bit# 17 16 15 14 13 12

E V Z O U I

Bit# 11 10 9 8 7

V Z O U I

Bit# 6 5 4 3 2

V Z O U I

Inexact Operation

Underflow

Overflow

Division by Zero

Invalid Operation

Unimplemented Operation

Cause

Bits

Enable

Bits

Flag

Bits

Figure 12-3 Control/Status Register Cause, Flag, and Enable Fields

Control/Status Register FS Bit

The FS bit enables the flushing of denormalized values. When the FS bit is set and
the Underflow and Inexact Enable bits are not set, denormalized results are flushed
instead of causing an Unimplemented Operation exception. Results are flushed
either to 0 or the minimum normalized value, depending upon the rounding mode
(see Table 12-4 below), and the Underflow and Inexact Flag and Cause bits are set.

Table 12-4 Flush Values of Denormalized Results

Flushed Result Rounding ModeDenormalized

Result RN RZ RP RM

Positive +0 +0 +2Emin +0

Negative -0 -0 -0 -2Emin

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored at bit 23,
the Condition bit. The C bit is set to 1 if the condition is true; the bit is cleared to 0 if
the condition is false. Bit 23 is affected only by compare and CTC1 instructions.

TX49 Architecture

12-5

Control/Status Register Cause, Flag, and Enable Fields

Figure 12-3 illustrates the Cause, Flag, and Enable fields of the Control/Status
register. The Cause and Flag fields are updated by all conversion, computational
(except MOV. fmt), CTC1, reserved, and unimplemented instructions. All other
instructions have no affect on these fields.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in
Figure 12-3, which reflect the results of the most recently executed floating-
point instruction. The Cause bits are a logical extension of the CP0 Cause

register; they identify the exceptions raised by the last floating-point operation.
If the corresponding Enable bit is set at the time of the exception a floating-point
exception and interrupt is raised. If more than one exception occurs on a single
instruction, each appropriate bit is set.

The Cause bits are updated by most floating-point operations. The
Unimplemented Operation (E) bit is set to 1 if software emulation is required,
otherwise it remains 0. The other bits are set to 0 or 1 to indicate the
occurrence or non-occurrence (respectively) of an IEEE 754 exception. Within
the set of floating-point instructions that update the Cause bits, the Cause field
indicates the exceptions raised by the most-recently-executed instruction.

When a floating-point exception is taken, no results are stored, and the only
state affected is the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are set. A floating-point operation that sets an
enabled Cause bit forces an immediate floating-point exception, as does setting
both Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). An Unimplemented
exception always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the
enabled Cause bits with a CTC1 instruction to prevent a repeat of the interrupt.
Thus, User mode programs can never observe enabled Cause bits set; if this
information is required in a User mode handler, it must be passed somewhere
other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no floating-
point exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous floating-
point operation can be determined by reading the Cause field.

Flag Bits

The Flag bits are cumulative and indicate the exceptions that were raised by
the operations that were executed since the bits were explicitly reset. Flag bits
are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into the
Status register, using a CTC1 instruction.

When a floating-point exception is taken, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting these bits
before invoking a user handler.

TX49 Architecture

12-6

 Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 12-5, these bits specify the rounding mode that CP1 uses for all
floating-point operations.

Table 12-5 Rounding Mode Bit Decoding

Rounding
ModeRM

(1:0)
Mnemonic Description

0 RN Round result to nearest representable value;

round to value with least-significant bit 0

when the two nearest representable values

are equally near.

1 RZ Round toward 0: round to value closest to

and not greater in magnitude than the

infinitely precise result.

2 RP Round toward +∞: round to value closest to

and not less than the infinitely precise result.

3 RM Round toward −∞: round to value closest to

and not greater than the infinitely precise

result.

12.2.3 Accessing the FP Control and Implementation/Revision Registers

The Control/Status and the Implementation/Revision registers are read by a Move
Control From Coprocessor 1 (CFC1) instruction.

The bits in the Control/Status register can be set or cleared by writing to the
register using a Move Control To Coprocessor 1 (CTC1) instruction. The
Implementation/Revision register is a read-only register. There are no pipeline
hazards (between any instructions) associated with floating-point control registers.

TX49 Architecture

12-7

12.3 Floating-Point Formats

CP1 performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE
standard floating-point operations. The 32-bit single-precision format has a 24-bit
signed-magnitude fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 12-1.

31 30 23 22 0

s

Sign

e

Exponent

f

Fraction

1 8 23

Figure 12-1 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+s)

and an 11-bit exponent, as shown in Figure 12-2.

63 62 5251 0

s

Sign

e

Exponent

f

Fraction

1 11 52

Figure 12-2 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of three
fields:

• sign field, s

• biased exponent, e�=�E�+�bias

• fraction, f�=�b1b2....bp-1

The range of the unbiased exponent E includes every integer between the two values

Emin and Emax inclusive, together with two other reserved values:

• Emin�−�� �WR HQFRGH � DQG GHQRUPDOL]HG QXPEHUV�

• Emax�+�� �WR HQFRGH ∞ and NaNs [Not a Number])

For single-and double-precision formats, each representable nonzero numerical value
has just one encoding.

For single-and double-precision formats, the value of a number, v, is determined by
the equations shown in Table 12-1.

Table 12-1 Equations for Calculating Values in Single and Double-Precision Floating-Point Format

No. Equation

(1) if E• =• Emax+1 and f• ≠• 0, then v is NaN, regardless of s

(2) if E• =• Emax+1 and f• =• 0, then v• =• (−1)s∞

(3) if Emin ≤ E ≤ Emax, then v• =• (−1)s2E(1.f)

(4) if E• =• Emin−1 and f• ≠• 0, then v• =• (−1)s2Emin(0.f)

(5) if E• =• Emin−1 and f• =• 0, then v• =• (−1)s0

For all floating-point formats, if v is NaN, the most-significant bit of f determines
whether the value is a signaling or quiet NaN: v is a signaling NaN if the most-significant
bit of f is set, otherwise, v is a quiet NaN.

Table 12-2 defines the values for the format parameters; minimum and maximum
floating-point values are given in Table 12-3.

TX49 Architecture

12-8

Table 12-2 Floating-Point Format Parameter Values

Format
Parameter

Single Double

Emax +127 +1023

Emin 126 1022

Exponent bias 127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

Fraction width in bits 23† 52†

Format width in bits 32 64

� Excluding the sign bit.

Table 12-3 Minimum and Maximum Floating-Point Values

Type Value

Float Minimum 1.40129846e-45

Float Minimum Norm 1.17549435e-38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e-324

Double Minimum Norm 2.2250738585072014e-308

Double Maximum 1.7976931348623157e+308

12.4 Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned fixed-point
values are not directly provided by the floating-point instruction set. Figure 12-1
illustrates binary single fixed-point format and Figure 12-2 illustrates binary long fixed-
point format; Table 12-1 lists the binary fixed-point format fields.

31 30 0

Sign Integer

1 31

Figure 12-1 Binary Single Fixed-Point Format

63 62 0

Sign Integer

1 63

Figure 12-2 Binary Long Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 12-1 Binary Fixed-Point Format Fields

Field Description

sign sign bit

integer integer value (2’s complement)

TX49 Architecture

12-9

12.5 Floating-Point Instruction Set Summary

Each instruction is 32 bits long, and aligned on a word boundary. This section
describes the overview of instructions for floating-point unit. A detailed description of
each instruction is provided in Appendix B.

12.5.1 Load, Move and Store Instructions (Table 12-1)

Load and Store instructions move data between memory and FPU general purpose
registers, and Move instructions move data directly between CPU and FPU general
purpose registers. These instructions are not perform format conversions and
therefore never cause floating-point exceptions. The instruction immediately
following a load can use the contents of the loaded register. However, in such case
the hardware interlocks, requiring additional real cycles. Thus, the scheduling of
load delay slots is required to avoid the interlocking.

Table 12-1 FPU Instruction Set (Optional): Load, Move and Store Instruction

Instruction Description Note

LWC1 Load Word to FPU (coprocessor 1) MIPS I

SWC1 Store Word from FPU (coprocessor 1) MIPS I

MTC1 Move Word to FPU (coprocessor 1) MIPS I

CTC1 Move Control Word to FPU (coprocessor 1) MIPS I

MFC1 Move Word from FPU (coprocessor 1) MIPS I

CFC1 Move Control Word from FPU (coprocessor 1) MIPS I

TX49 Architecture

12-10

12.5.2 Conversion Instructions (Table 12-1)

Conversion instructions perform conversion operations between the various data
formats.

Table 12-1 FPU Instruction Set(Optional): Conversion Instruction

Instruction Description Note

CVT.S.fmt Floating-Point Convert to Single FP Format MIPS I

CVT.W.fmt Floating-Point Convert to Single Fixed-Point Format MIPS I

ROUND.W.fmt Floating-point Round MIPS II

TRUNC.W.fmt Floating-point Truncate MIPS II

CEIL.W.fmt Floating-point Ceiling MIPS II

FLOOR.W.fmt Floating-point Floor MIPS II

12.5.3 Computational Instructions (Table 12-1)

Computational instructions perform arithmetic operations on floating-point values
in the FPU registers. These are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point addition,
multiplication, division, and square root operations

• 2-Operand

Table 12-1 FPU Instruction Set(Optional): Computational Instruction

Instruction Description Note

ADD.fmt Floating-point Add MIPS I

SUB.fmt Floating-point Subtract MIPS I

MUL.fmt Floating-point Multiply MIPS I

DIV.fmt Floating-point Divide MIPS I

ABS.fmt Floating-point Absolute Value MIPS I

MOV.fmt Floating-point Move MIPS I

NEG.fmt Floating-point Negate MIPS I

SQRT.fmt Floating-point Square root MIPS II

TX49 Architecture

12-11

12.5.4 Compare and Branch Instructions (Table 12-1)

Compare instructions perform comparisons of the contents of registers and set a
conditional bit based on the results. Branch on FPU Condition instructions perform
a branch to the specified target if the specified coprocessor condition is met.

Table 12-1 FPU Instruction Set(Optional): Compare and Branch Instruction

Instruction Description Note

C.cond.fmt Floating-point Compare MIPS I

BC1T Branch on FPU True MIPS I

BC1F Branch on FPU False MIPS I

BC1TL Branch on FPU True Likely MIPS II

BC1FL Branch on FPU False Likely MIPS II

TX49 Architecture

12-12

TX49 Architecture

13-1

13. Floating-Point Exception(Option)

13.1 Introduction

This chapter describes floating-point exceptions, including FPU exception type,
exception trap processing, exception flags, saving and restoring state when handling an
exception, and trap handlers for IEEE Standard 754 exceptions.

13.2 Exception Types

The FP Control/Status register described in Chapter 12 contains an Enable bit for
each exception type; exception Enable bits determine whether an exception will cause
the FPU to initiate a trap or set a status flag.

• If a trap is taken, the FPU remains in the state found at the beginning of the
operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU destination
register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact (I)

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E). This exception
indicates the use of a software implementation. The Unimplemented Operation
exception has no Enable or Flag bit; whenever this exception occurs, an unimplemented
exception trap is taken.

TX49 Architecture

13-2

Figure 13-1 shows the Control/Status register bits that support exceptions.

Bit # 17 16 15 14 13 12

E V Z O U I Cause Bits

Bit #

|
11

|
10

|
9

|
8

|
7

V Z O U I Enable Bits

Bit #

|

6

|
5

|
4

|
3

|
2

V Z O U I Flag Bits

|

Unimplemented

|

Invalid

|
Division by

Zero

|
Overflow

|
Underflow

|
Inexact

Figure 13-1 Control/Status Register Exception/Flag/Trap/Enable Bits

13.3 Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates the floating-
point coprocessor is the cause of the exception trap.

The Floating-Point Exception (FPE) code is used, and the Cause bits of the floating-
point Control/Status register indicate the reason for the floating-point exception. These
bits are, in effect, an extension of the system coprocessor Cause register.

13.4 Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the
assertion of its corresponding exception, with no corresponding exception trap signaled.

TX49 Architecture

13-3

13.5 FPU Exceptions

The following sections describe the conditions that cause the FPU to generate each of
its exceptions, and details the FPU response to each exception-causing condition.

Inexact Exception (I)

The FPU generates the Inexact exception if one of the following occurs:

• the rounded result of an operation is not exact, or

• the rounded result of an operation overflows, or

• the rounded result of an operation underflows and both the Underflow and
Inexact Enable bits are not set and the FS bit is set.

Trap Enabled Results: If Inexact exception traps are enabled, the result register is not
modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the
destination register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands are invalid
for an implemented operation. When the exception occurs without a trap, the MIPS ISA
defines the result as a quiet Not a Number (qNaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as:
(�+�∞)�+�(−∞) or (−∞)�−�(−∞)

• Multiplication: 0 times ∞, with any signs

• Division: 0/0, or ∞/∞, with any signs

• Comparison of predicates involving ‘<’ or ‘>’ without ‘?’, when the operands are
unordered

• Any arithmetic operation, when one or both operands is a signaling NaN. A move
(MOV) operation is not considered to be an arithmetic operation, but absolute
value (ABS) and negate (NEG) are.

• Comparison or a Convert From Floating-point Operation on a signaling NaN.

• Square root: x , where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that are
invalid for the given source operands. Examples of these operations include IEEE
Standard 754-specified functions implemented in software, such as Remainder: x REM
y, where y is 0 or x is infinite; conversion of a floating-point number to a decimal format
whose value causes an overflow, is infinity, or is NaN; and transcendental functions,
such as ln (−5) or cos−1 (3). Refer to Appendix B for examples or for routines to handle
these cases.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: A quiet NaN is delivered to the destination register if
no other software trap occurs.

TX49 Architecture

13-4

Divide-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the
divisor is zero and the dividend is a finite nonzero number. Software can simulate this
exception for other operations that produce a signed infinity, such as In (0), sec (π/2),
csc (0), or 0-1

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed
infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number of
the destination format. (This exception also signals an Inexact exception.)

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the
rounding mode and the sign of the intermediate result (as
listed in Table

12-1).

Underflow Exception (U)

Two related events contribute to the Underflow exception:

• creation of a tiny nonzero result between ±2Emin which can cause some later
exception because it is so tiny

• extraordinary loss of accuracy during the approximation of such tiny numbers by
denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they
be detected the same way for all operations.

Tininess can be detected by one of the following methods:

• after rounding (when a nonzero result, computed as though the exponent range
were unbounded, would lie strictly between ±2Emin)

• before rounding (when a nonzero result, computed as though the exponent range
and the precision were unbounded, would lie strictly between ±2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

• denormalization loss (when the delivered result differs from what would have
been computed if the exponent range were unbounded)

• inexact result (when the delivered result differs from what would have been
computed if the exponent range and precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS bit is not
set, then an Unimplemented exception (E) is generated, and the
result register is not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the
FS bit is set, the result is determined by the rounding mode
and the sign of the intermediate result (as listed in Table 12-1).

TX49 Architecture

13-5

TX49 Architecture

13-6

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that has
been reserved for future definition sets the Unimplemented bit in the Cause field in the
FPU Control/Status register and traps. The operand and destination registers remain
undisturbed and the instruction is emulated in software. Any of the IEEE Standard
754 exceptions can arise from the emulated operation, and these exceptions in turn are
simulated.

The Unimplemented Instruction exception can also be signaled when unusual
operands or result conditions are detected that the implemented hardware cannot
handle properly. These include:

• Denormalized operand, except for Compare instruction

• Quiet Not a Number operand, except for Compare instruction

• Denormalized result or Underflow, when either Underflow or Inexact Enable bits
are set or the FS bit is not set.

• Reserved opcodes

• Unimplemented formats

• Operations which are invalid for their format (for instance, CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if the instruction is a convert or
computational operation. Moves do not trap if their operands are either denormalized or
NaNs.

The use of this exception for such conditions is optional; most of these conditions are
newly developed and are not expected to be widely used in early implementations.
Loopholes are provided in the architecture so that these conditions can be implemented
with assistance provided by software, maintaining full compatibility with the IEEE
Standard 754.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: This trap cannot be disabled.

TX49 Architecture

13-7

13.6 Saving and Restoring State

Sixteen doubleword† coprocessor load or store operations save or restore the
coprocessor floating-point register state in memory. The remainder of control and status
information can be saved or restored through CFC1/CTC1 instructions, and saving and
restoring the processor registers. Normally, the Control/Status register is saved first and
restored last.

When state is restored, state information in the Control/Status register indicates the
exceptions that are pending. Writing a zero value to the Cause field of Control/Status
register clears all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

13.7 Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to specify a trap
handler for any of the five standard exceptions that can compute; the trap handler can
either compute or specify a substitute result to be placed in the destination register of
the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC)
register, the trap handler determines:

• exceptions occurring during the operation

• the operation being performed

• the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact
exceptions, the trap handler gains access to the correctly rounded result by examining
source registers and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point conversions, and
on Invalid Operation and Divide-by-Zero exceptions,

the trap handler gains access to the operand values by examining the source registers
of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and underflow traps
take precedence over a separate inexact trap. This prioritization is accomplished in
software; hardware sets the bits for both the Inexact exception and the Overflow or
Underflow exception.

† 32 doublewords if the FR bit is set to 1.

TX49 Architecture

14-1

14. Debug Support Unit (Option)

14.1 Features

1. Utilizes JTAG interface compatible with IEEE Std. 1149.1.

2. Additional Status pins and debug clock in conjunction with JTAG pins provide Real-
Time Trace information.

3. Processor access to external processor probe to execute from the external trace
memory during debug exception and boot time. This is to eliminate system memory
for debugging purpose.

4. Supports DMA access through JTAG interface to internal processor bus to access
internal registers, host system peripherals and system memory.

5. Debug functions

• Instruction Address Break

• Data Bus break

• Processor Bus Break

• Hardware Debug Interrupt

• Reset, NMI, Interrupt Mask

6. Instructions for Debug

• SDBBP, DERET, CTC0, CFC0

7. CP0 Registers for Debug

• Debug, DEPC, DESAVE

14.2 EJTAG interface

This interface consists of two modes of operation a Run Time Mode and a Real Time
Mode. The Run Time mode provides functions such as processor Run, Stop, Single Step,
and access to internal registers and system memory. The Real Time mode provides
additional status pins used in conjunction with JTAG pins for Real Time Trace
information.

Pins In/Out Description

GTCK I Test Clock Input

GDCLK O Debug Clock (1/3 CPU Clock)

GTDI/GDINT I Test Data Input (GTDI) at Run Time mode

/Debug Interrupt Input (GDINT) at Real Time mode

GTDO/GTPC[0] O Test Data Output (GTDO)

/PC Output (GTPC)

GTMS I Test Mode Select Input

GTRST* I Reset

GPCST[8∼0] O PC Trace Status Information

GTPC[3∼1] O PC Output

TX49 Architecture

14-2

14.3 JTAG Interface

Standard JTAG interface is used for on chip debugging during Run Time mode. The
TX49 Debug Support Unit has following registers.

• Instruction Register

• Bypass Register

• Boundary-Scan Register

• Device Identification Register

• Implementation Register

• JTAG_Data_register

• JTAG_Address_Register

• JTAG_Control_Register

14.4 Processor Access Overview

The core processor can access external processor probe for reading and writing to
external monitor memory, registers and other external resources.

In addition the processor can execute from the external monitor memory located from
0xf_ff20 0000 to 0xf_ff2f ffff when the ProbEnb bit is set and the processor probe is
turned ON. Any access to the monitor location from 0xf_ff20 0000 to 0xf_ff3f ffff are only
allowed when the processor is in the debug mode (DM�=�1).

14.5 Instruction

The instruction is a 8 bit field. Instructions for the TX49 Debug Support Unit are
encoded between 0x80 and 0x9f and other codes are reserved for Toshiba Standard
JTAG instructions (Includes EXTEST, SAMPLE/PRELOAD, INTEST, IDCODE and HI-Z)
and so on. Instructions are decoded as follows.

Hex Value Instruction Description

0x83 EJTAG_ImpCode Select Implementation Register

0x88 JTAG_ADDRESS_IR Select JTAG_Address Register

0x89 JTAG_DATA_IR Select JTAG_Data Register

0x8A JTAG_CONTROL_IR Select JTAG_Control Register

0x8B JTAG_ALL_IR Select JTAG_All Register

0x90 PCTRACE PCTRACE Instruction

Any unused instruction between 0x80 and 0x9f defaulted to BYPASS instruction.

TX49 Architecture

14-3

14.6 Debug Unit

14.6.1 Extended Instructions

• SDBBP

• DERET

• CTC0

• CFC0

14.6.2 Extended Debug Registers in CP0

• Debug Register

• Debug Exception PC (DEPC)

• Debug SAVE

14.7 Register Map

Address Mnemonic Description

0xf ff30 0000 DCR Debug Control Register

0xf ff30 0008 IBS Instruction Break Status

0xf ff30 0010 DBS Data Break Status

0xf ff30 0018 PBS Processor Break Status

0xf ff30 0100 IBA0 Instruction Break Address 0

0xf ff30 0108 IBC0 Instruction Break Control 0

0xf ff30 0110 IBM0 Instruction Break Address Mask 0

0xf ff30 0300 DBA0 Data Break Address 0

0xf ff30 0308 DBC0 Data Break Control 0

0xf ff30 0310 DBM0 Data Break Address Mask 0

0xf ff30 0318 DB0 Data Break Value 0

0xf ff30 0600 PBA0 Processor Bus Break Address 0

0xf ff30 0608 PBD0 Processor Bus Break Data 0

0xf ff30 0610 PBM0 Processor Bus Break Mask 0

0xf ff30 0618 PBC0 Processor Bus Break Control 0

14.8 Processor Bus Break Function

This function is to monitor the interface to core and provide debug interruption or
trace trigger for a given physical address and data.

TX49 Architecture

14-4

14.9 Debug Exception

Three kinds of debug exception are supported.

• Debug Single Step (DSS bit)

• Debug Breakpoint Exception (SDBBP Instruction)

• JTAG Break Exception (Jtagbrk bit in JTAG_Control_Register)

Note: During real time debugging, first two functions are disabled.

14.9.1 Debug Single Step (DSS)

When the debug register DSS bit is set, this exception has been raised each time
one instruction is executed.

14.9.2 Debug Breakpoint exception (Dbp)

This exception is raised when SDBBP instruction is executed.

14.9.3 JTAG Break Exception

This exception is raised when JTAG unit set the Jtagbrk in JTAG_Control_Register.

14.9.4 Debug Exception Handling

Updates DEPC and Debug register.

Registers other than DEPC and Debug register retain their values.

14.9.5 Branching to debug handler

If the ProbEnb bit in JTAG_Control_Register[15] is set, the debug exception vector
is located at

PC: 0xffff ffff ff20 0200.

If the ProbEnb bit in JTAG_Conctrol_Register[15] is cleared, the debug exception
vector is located at

PC: 0xffff ffff bfc0 0400.

14.9.6 Exception handling when in Debug Mode (DM bit is set)

All interrupts including NMI are masked. When the NMI interrupt has occurred
during Debug mode, it is stored internally and the NMI interrupt is taken after debug
handler is finished (DM is clear).

TX49 Architecture

14-5

14.10 Real Time PC TRACE Output

In real time mode non-sequential Program Counter and trace information are
outputted on GTPC[3~0] and GPCST[8~0]. at 1/3 of the processor clock speed.

14.11 Example of the PC trace output

TX49 Architecture

14-6

TX49 Architecture

15-1

15. TX49 MPU Core Signal Description %&

The TX49 MPU core has a 64-bit BUS I/F upward compatible to the TX39 G-Bus I/F.

GCACHE

TX49
Core

GA[35∼0]

GDOUT[63∼0]

36

64
GDIN[63∼0]

GBE[7∼0]

64

GRD

GWR

GACK

GBUSERR

GBURST

GLAST

GID

GBSTART

GREQ

GGNT

GHPGREQ

GHPGGNT
GSREQ

GSGNT

GHPSREQ

GHPSGNT

GHAVEIT
GREL

GSNOOP

GCPRD

GCPWR
GCPRDACK

GCPWRACK

GCPCOND[3∼2]
2

GCOLDRESET

GRESET

GNMI

GINT[5∼0] 6

Memory

Intercace

DMA

Interface

Coprocessor

Interface

Interrupt

Interface

GCRATE[1∼0]

CPUCLK

GBUSCLK

GTINTDIS

GHALT

GDOZE

GENDIAN

GPCST[8∼0]

GTPC[3∼1]

GDCLK

GTCK

GTDI/GDINT

GTMS

GTRST

GTDO/GTPC[0]

GTEST[2∼0]

GBS64

GDIS

Clock/System

control

Interface

Debug/JTAG

Interface

Test

Interface

8

2

9

3

3

Figure 15-1 Interface signal of TX49 MPU Core

TX49 Architecture

15-2

15.1 Signal description

15.1.1 Memory interface

Table 15-1 lists a memory interface signals.

Table 15-1 Signal description of a memory interface

Name I/O Description

GA[35∼0] I/O Address Input/Output

A 36-bit address input/output signal. It can also be used as a 36-bit address input

signal to perform snooping of the data cache.

GDOUT[63∼0] O Data Output

A 64-bit data output signal.

GDIN[63∼0] I Data Input

A 64-bit data input signal

GBE[7∼0] * O Byte Enable

Indicates the byte that is being accessed in a bus operation.

The correspondence with the data bus is.

GBE[7]* GDOUT[63~56] and GDIN[63~56]

GBE[6]* GDOUT[55~48] and GDIN[55~48]

GBE[5]* GDOUT[47~40] and GDIN[47~40]

GBE[4]* GDOUT[39~32] and GDIN[39~32]

GBE[3]* GDOUT[31~24] and GDIN[31~24]

GBE[2]* GDOUT[23~16] and GDIN[23~16]

GBE[1]* GDOUT[15~8] and GDIN[15~8]

GBE[0]* GDOUT[7~0] and GDIN[7~0]

GRD* O Read

Indicates that a read operation is being executed.

GWR* O Write

Indicates that a write operation is being executed.

GACK* I Read/Write Acknowledge

Informs that TX49 that there are valid data the data bus. The TX49 ends the bus

operation in the next cycle after acknowledging the assertion of this signal.

TX49 Architecture

15-3

Name I/O Description

GBUSERR* I Bus Error

Indicates that an error has occurred in the TX49's bus operation. This bus error is

valid only in a read bus operation. The read bus operation ends in the cycle where

the assertion of the GBUSERR* signal is acknowledged. If a read bus operation is

ended by the GBUSERR* signal, the TX49 generates a bus error exception. If a

bus error occurred in a write bus operation, instead of the GBUSERR* signal being

asserted, the write bus operation should be terminated by asserting the GACK*

signal and an exception should be generated using the GINT[5∼0]* signal.

GBURST* O Burst

Indicates that a burst read operation is being executed.

GLAST* O Last

Indicates the final data transfer.

GCACHE* O Cacheable

Indicates that the bus operation being executed is either an operation to the cache

area or an operation to the non-cache.

H: Non-cache area

L: Cache area

GID O Instruction or Data

Indicates that the bus operation being executed is an operation performed on either

an instruction or on the data.

H: Instruction

L: Data

GBSTART* O Bus Start

A signal that is to be asserted for the first clock cycle when a bus operation starts.

This signal can acknowledge that a bus operation has started.

TX49 Architecture

15-4

15.1.2 DMA interface

Table 15-1 lists a DMA interface signals.

Table 15-1 Signal description of a DMA interface

Name I/O Description

GREQ* I Normal Bus Request

A signal with which the external bus master requests the TX49 for the G-Bus

ownership based on ET concurrency. (Low priority)

GGNT* O Normal Bus Grant

A signal which indicates that the TX49 granted the G-Bus ownership reques

(GREQ*) made by the external bus master.

GHPGREQ* I High Priority Normal Bus Request

A signal with which the external bus master requests the TX49 for the G-Bus

ownership based in ET concurrency. (High priority)

GHPGGNT* O High Priority Normal Bus Request

A signal which indicates that the TX49 granted the G-Bus ownership request

(GHPGREQ*) made by the external bus master.

GSREQ* I Snoop Bus Request

A signal with which the external bus master requests the TX49 for the X-Bus

ownership based on ST concurrency. (Low priority)

GSGNT* O Snoop Bus Grant

A signal which indicates that the TX49 granted the X-Bus ownership request

(GSREQ*) made by the external bus master. Snoop operation can be performed

while this signal is being asserted.

GHPSREQ* I High Priority Snoop Bus Request

A signal with which the external bus master requests the TX49 for the X-Bus

ownership based on ST concurrency. (High priority)

GHPSGNT* O High Priority Snoop Bus Grant

A signal which indicates that the TX49 granted the X-Bus ownership request

(GHPSREQ*) made by the external bus master. Snoop operation can be

performed while this signal is being asserted.

GHAVEIT* I Have IT

This is an input signal for confirming the bus ownership that is output from the

external bus master which has obtained ownership of the G-Bus or the X-Bus.

GREL* O Release Request

This is an output for the TX49 to request the external bus master to release the bus

ownership it currently retains.

GSNOOP* I Snoop

Indicates that the address on the GA[35∼0] signal is valid for the snoop operation.

The snoop operation is invalid while GGNT* or GHPGGNT* is being asserted.

TX49 Architecture

15-5

15.1.3 Coprocessor interface

Table 15-1 lists a coprocessor interface signals.

Table 15-1 Signal description of a coprocessor interface

Name I/O Description

GCPRD* O Coprocessor Read

A read signal to a coprocessor

GCPWR* O Coprocessor Write

A write signal to a coprocessor

GCPRDACK* I Coprocessor Read Acknowledge

A read acknowledge signal from a coprocessor

GCPWRACK* I Coprocessor Write Acknowledge

A write acknowledge signal from a coprocessor

GCPCOND[3∼2] I Coprocessor Condition

An input signal that is to be a branch condition of a coprocessor condition branch

instruction. The GCPCOND[3] signal, the GCPCOND[2] signal and the

GCPCOND[1] signal are each used in the coprocessor condition branch

instructions that support CP3, CP2 and CP1 respectively.

15.1.4 Interrupt interface

Table 15-1 lists a interrupt interface signals.

Table 15-1 Signal description of a interrupt interface

Name I/O Description

GCOLDRESET* I Coldreset

This signal must be asserted for a power on reset or a cold reset. The clocks begin

to cycle and are synchronized with the deasserted edge of GCOLDRESET* .

GRESET* I Reset

Resets the TX49 and generates a reset exception.

GNMI* I Non-maskable Interrupt

A signal for generating an non-maskable interrupt exception.

GINT[5∼0] * I Interrupt

A signal for generating an interrupt exception.

TX49 Architecture

15-6

15.1.5 Clock/system control interface

Table 15-1 lists a clock/system control interface signals.

Table 15-1 Signal description of a clock/system control interface

Name I/O Description

CPUCLK I CPU Clock Input

Establishes the processor operation frequency.

GCRATE [1∼0] I GBUS Clock Rate Input from External Pin

00 divided by 2

01 divided by 3

10 divided by 4

11 divided by 1

GBUSCLK I GBUS Clock Input

GTINTDIS I Timer interrupt disable Input from External Pin

H: disabled timer interrupt

L: enabled timer interrupt

GHALT O Halt

This signal output the status of the Halt bit of Config register. This signal indicates

that the TX49 is in the halt mode when this signal is “H”.

GDOZE O Doze

This signal output the status of the Halt bit of Config register. This signal indicates

that the TX49 is in the doze mode when this signal is “H”.

GENDIAN I Endianess Input from External Pin

Indicates the initial setting of the endian during a reset.

H: Big Endian

L: Little Endian

GBS64* I System bus size.

H: 32• bit G-bus mode

L: 64• bit G-bus mode

15.1.6 Debug interface

Table 15-1 lists a debug and JTAG interface signals.

Table 15-1 Signal description of Debug and JTAG interface

Name I/O Description

GDCLK O Debug Clock (1/3 CPU Clock)

A clock output for a real-time debug system. The timing of a serial monitor bus and

PC trace interface signals are all defined by this debug clock GDCLK. The

operation clock of the TX49 Processor Core is divided by 3 at the time of a serial

monitor bus operation.

GPCST[8∼0] O PC Trace Status

Outputs PC trace status information and the mode of the serial monitor bus.

TX49 Architecture

15-7

Name I/O Description

GTPC[3∼1] I/O Trace PC Output.

Outputs a non-sequential program counter at DCLK.

GTCK I Test Clock Input

Input clock used to shift data into or out of the EJTAG Instruction or Data register.

The GTCK maybe independent of the CPUCLK.

GTDI/GDINT I Test Data Input / Debug Interrupt

Run time mode: input serial data to data/instruction register of EJTAG

Real time mode: interrupt line to change the debug unit state from real time mode

to run time mode.

GTMS I Test Mode Select Input

A signal select EJTAG mode.

GTRST* I Test Reset Input

A reset input for a real-time debug system. When GTRST* is asserted, the debug

support unit (DSU) is initialized.

GTDO O Test Data Output

Run time mode: outputs serial data from data/instruction register of EJTAG

Real time mode: outputs non-sequential program

GTDOE O Test Data Output Enable

15.1.7 Test interface

Table 15-1 lists a test interface signals.

Table 15-1 Signal description of a test interface

Name I/O Description

GTEST[2∼0] I Test

Sets test modes in order to test the TX49. Under normal operating conditions, all of

these pins must be fixed to “L”. The circuit must be configured so that external

signals can be applied to these pins when testing the TX49.

GDIS I Disable output

A signal for changing the TX49 output to Hi-Z (High impedance). Output can be

changed to Hi-Z by setting this pin to “L”. Under normal operating conditions, fix

this pin to “H”.

TX49 Architecture

15-8

TX49 Architecture

16-1

16. Bus Operations

All bus operations of the TX49 Megacell synchronize with the rising of GBUSCLK. In this
section, consecutive serial numbers indicating timing are put on each rise of GBUSCLK in
order to simplify the explanations.

The memory operations of the TX49 Megacell are divided into single read operations, the
burst read operations, single write operations, and burst write operations.

16.1 Single read operations

Single read operations are bus operations for reading data of 8 bytes or less. These
operations occur in the following situations:

• Instruction fetch or data load from the non-cache area

• Instruction fetch during instruction cache Disable

• Data load in the case of data cache Disable

TX49 Architecture

16-2

In the single read operation, the GA [35~0] signal, the GDIN[63~0] signal, the
GBE[7~0]* signal, the GBSTART* signal, the GRD* signal, the GLAST* signal, the
GCACHE* signal, the GID signal, the GACK* signal, and the GBUSERR* signal are used.
Figure 16-1 shows the basic single read operation.

GBUSCLK

GA [35∼0]

GBE[7∼0]*

GRD*

GCACHE*

GID

GLAST*

GACK*

GDIN[63∼0]

GBUSERR*

GBSTART*

1 2 3

Figure 16-1 Basic Single Read Operation

1 The GBSTART* signal, the GRD* signal and the GLAST* signal are asserted, and a
single read operation starts. At the same time, valid values are output to the GA
[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

2 The GBSTART* signal is deasserted. After acknowledging that the GACK* signal is
“L,” the GLAST* signal is deasserted.

3 Data on the GDIN[63~0] signal are collected. Also, the GRD* signal is deasserted.
This completes the single read operation. Up to this point in time, valid values are
output to the GA[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the
GID signal.

If a read operation follows immediately after this single read operation, the GRD* signal
is not deasserted, and the read operation starts. A single read operation without a wait
cycle completes in two cycles as shown in Figure 16-1.

TX49 Architecture

16-3

A peripheral circuit can insert a wait cycle by not asserting the GACK* signal. Figure
16-2 shows a single read operation with one cycle wait inserted.

GBUSCLK

GA [35∼0]

GBE[7∼0]*

GRD*

GCACHE*

GID

GLAST*

GACK*

GDIN[63∼0]

GBUSERR*

GBSTART*

1 2 3 4

Figure 16-2 Single Read Operation with a Wait Cycle

1 The GBSTART* signal, the GRD* signal, and the GLAST* signal are asserted, and a
single read operation starts. At the same time, valid values are output to the GA
[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

2 The GBSTART* signal is deasserted. Since the GACK* signal is “H,” data cannot be
collected at the timing of Item 3.

3 After acknowledging that the GACK* signal is “L,” the GLAST* signal is deasserted.

4 The data on the GDIN[63~0] signal are collected. Also, the GRD* signal is
deasserted. This completes the single read operation. Up to this timing, valid values
are output to the GA[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and
the GID signal.

If the single read operation causes an error in the system, peripheral circuits can
inform the TX49 Megacell of the error through the GBUSERR* signal. The TX49
Megacell ends the single read operation by deasserting the GRD* signal at the rise of
GBUSCLK where the assertion of the GBUSERR* signal is acknowledged. The
GBUSERR* signal is sampled at all rise of GBUSCLK up to the timing when the TX49
Megacell collects data.

TX49 Architecture

16-4

Figure 16-3 shows the status where the assertion of the GBUSERR* signal is
acknowledged in the timing when the TX49 Megacell collects data. In this case, the data
on the GDIN[63~0] signal are not read.

GBUSCLK

GA [35∼0]

GBE[7∼0]*

GRD*

GCACHE*

GID

GLAST*

GACK*

GDIN[63∼0]

GBUSERR*

GBSTART*

1

not used

2 3 4

Figure 16-3 Single Read Operation That is Ended by GBUSERR* Signal Assertion

1 The GBSTART* signal, the GRD* signal, and the GLAST* signal are asserted, and a
single read operation starts. At the same time, valid values are output to the
GA[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

2 The GBSTART* signal is deasserted. Since the GACK* signal is “L,” data cannot be
collected at the timing of Item 3.

3 After acknowledging that the GACK* signal is “L,” the GLAST* signal is deasserted.

4 After acknowledging that the GBUSERR* signal is “L,” the GRD* signal is deasserted.
The data on the GDIN[63~0] signal is not read. This completes the single read
operation. Up to this timing, valid values are output to the GA[35~0] signal, the
GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

If a single read operation is ended by the assertion of the GBUSERR* signal, the TX49
Megacell generates a bus error exception.

The TX49 Megacell ends a single read operation when the GACK* signal or the
GBUSERR* signal is asserted.

TX49 Architecture

16-5

16.2 Burst read operations

The burst read operation is a bus operation used for quickly refilling multiple words to
the cache. This operation enables second and subsequent data reads to be completed in
one cycle. Therefore, the memory burst transfer mode can be used to read multiple
words.

The burst read operation occurs due to an instruction cache miss or a data cache
miss(Load data, Store data at write-through-write-allocate or write-back). The burst refill
size of the data cache and instruction cache are 32bytes.

In the burst read operation, the GBURST* signal is used in addition to the GA[35~0]
signal, the GDIN[63~0] signal, the GBE[7~0]* signal, the GRD* signal, the GLAST*

signal, the GCACHE* signal, the GID signal, the GACK* signal, the GBUSERR* signal.
“L” is always output to the GBE[7~0]* signal and the GCACHE* signal. Figure 16-1
shows a burst read operation with no wait cycle.

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GRD*

GCACHE*

GID

GBURST*

GLAST*

GACK*

GBUSERR*

GDIN[63∼0]

GBSTART*

1

4n 4n + 8 4n + 16 4n + 24

2 3 4 5 6

Figure 16-1 Burst Read Operation

TX49 Architecture

16-6

1 The GRD* signal and the GBURST* signal are asserted, and a burst read operation
starts. At the same time, valid values are output to the GA[35~0] signal, the
GBE[7~0]* signal, the GCACHE* signal, the GID signal.

2 Since it is acknowledged that the GACK* signal is “L,” data are collected at timing of
Item 3.

3 The first data are collected from the GDIN[63~0] signal. The address values that are
being output to the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 4.

4 The second data are collected from the GDIN[63~0] signal. The address values that
are being output to the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 5.
Also, the GLAST* signal is asserted.

5 The third data are collected from the GDIN[63~0] signal. The address values that are
being output to the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 6.
Also, the GLAST* signal is deasserted.

6 The final data are collected from the GDIN[63~0] signal. The GRD* signal and the
GBURST* signal are deasserted. This completes the burst read operation. Up to this
timing, valid values are output to the GA[35~0] signal, the GBE[7~0] signal, the
GCACHE* signal, and the GID signal.

TX49 Architecture

16-7

If a single read operation follows immediately after the burst read operation, the GRD*

signal is not deasserted, so the single read operation starts. Also, if another burst read
operation follows immediately after this burst read operation, neither the GBURST*

signal nor the GRD* signal is deasserted, so the next burst read operation starts.

Therefore, by checking the GACK* signal for the data to be collected next at the same
timing as when collecting data, the second and subsequent data can be read in one
cycle. The addresses on the GA[35~0] signal always indicate the address of the data that
are being read. Since the TX49 Megacell starts a cache refill from the word of the lowest-
order address in the refill boundary, the address in a burst read operation is simply
output in increments of eight. The timing to assert the GLAST* signal is when the
assertion of the GACK* signal for the data read second from the last is acknowledged.
The timing to deassert the GLAST* signal is when the assertion of the GACK* signal for
the last data read is acknowledged.

Similar to the single read operation, wait cycles can be inserted by deasserting the
GACK* signal. Figure 16-2 shows a burst read operation with wait cycles. This is an
example where wait cycles are inserted at the first and the third data read in a burst
read operation.

4n 4n + 8 4n + 16 4n + 24

1 2 3 4 5 6 7 8 9

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GRD*

GCACHE*

GID

GBURST*

GLAST*

GACK*

GBUSERR*

GDIN[63∼0]

GBSTART*

Figure 16-2 Burst Read Operation with Wait Cycles

TX49 Architecture

16-8

1 The GBSTART* signal, the GRD* signal, and the GBURST* signal are asserted, and a
burst read operation starts. At the same time, valid values are output to the
GA[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, the GID signal.

2 The GBSTART* signal is deasserted. Since the GACK* signal is “H,” data are not
collected at timing of Item 3.

3 Since the GACK* signal is “H,” data are not collected at the timing of Item 4.

4 Since it is acknowledged that the GACK* signal is “L,” data are collected at the timing
of Item 5.

5 The first data are collected from the GDIN[63~0] signal. The address values that are
output on the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 6.

6 The second data are collected from the GDIN[63~0] signal. The address values that
are output on the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “H,” data are collected at the timing of Item
7.

7 Since it is acknowledged that the GACK* signal is “L,” data are collected at the timing
of Item 8. Also, the GLAST* signal is asserted.

8 The third data are collected from the GDIN[63~0] signal. The address values that are
output on the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 9.
Also, the GLAST* signal is deasserted.

9 The final data are collected from the GDIN[63~0] signal. Also, the GRD* signal and
the GBURST* signal are deasserted. This completes the burst read operation. Up to
this timing, valid values are output to the GA[35~0] signal, GBE[7~0]* signal, the
GCACHE* signal, and the GID signal.

Similar to the single read operation, if the burst read operation causes an error in the
system, peripheral circuits can inform the TX49 Megacell of the error through the
GBUSERR* signal. The TX49 Megacell ends the burst read operation by deasserting the
GRD* signal and the GBURST* signal at the rise of the GBUSCLK where the assertion of
the GBUSERR* signal is acknowledged.

TX49 Architecture

16-9

Figure 16-3 shows the status where the GBUSERR* signal is asserted prior to or
simultaneously with the assertion of the GACK* signal for the fourth data read.

1 2 3 4 5 6

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GRD*

GCACHE*

GID

GBURST*

GLAST*

GACK*

GDIN[63∼0]

GBUSERR*

GBSTART*

4n 4n + 8 4n + 16

Figure 16-3 Burst Read Operation That is Ended by Assertion of GBUSERR* Signal

1 The GBSTART* signal, the GRD* signal, and the GBURST* signal are asserted, and a
burst read operation starts. At the same time, valid values are output to the
GA[35~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

2 The GBSTART* signal is deasserted. Since the GACK* signal is “H,” data are not
collected at the timing of Item 3.

3 Since it is acknowledged that the GACK* signal is “L,” data are collected at the timing
of Item 4 .

4 The first data are collected from the GDIN[63~0] signal. The address values that are
output on the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 5.

5 The second data are collected from the GDIN[63~0] signal. The address values that
are output on the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “L,” data are collected at the timing of Item 6.
Also, the GLAST* signal is asserted.

TX49 Architecture

16-10

6 After acknowledging that the GBUSERR* signal is “L,” the GRD* signal and the
GBURST* signal are deasserted. This completes the burst read operation. Up to this
timing, valid values are output to the GA[35~0] signal, the GBE[7~0]* signal, the
GCACHE* signal, and the GID signal.

If a burst read operation is ended due to a bus error, the cache line is invalidated. The
TX49 Megacell then generates a bus error exception.

TX49 Architecture

16-11

16.3 Single write operations

Single write operations are bus operations for writing data of 8 bytes or less. These
operations occur in the following situations:

• Data store to the non-cache area

• Data store in the case of the data cache uses write-through method (no relation
with lock bit)

• Data store in the case of the data cache disable

A write operation from the TX49 Processor Core can be completed in one cycle without
stalling the pipeline since the TX49 Megacell has an on-chip write buffer. However, if the
write buffer is full, a write operation from the TX49 Processor Core stalls until an entry
in the write buffer becomes empty. A write operation from the write buffer to the outside
is a bus operation which requires a minimum of two clock cycles.

The write operation uses the GA[35~0] signal, the GDOUT[63~0] signal, the GBE[7~0]*
signal, the GWR* signal, the GLAST* signal, the GCACHE* signal, the GID signal, and
the GACK* signal. Figure 16-1 shows the basic write operation.

1 2 3

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GWR*

GCACHE*

GID

GDOUT[63∼0]

GLAST*

GACK*

GBSTART*

Figure 16-1 Basic Single Write Operation

TX49 Architecture

16-12

1 The GBSTART* signal, the GWR* signal, and the GLAST* signal are asserted, and a
write operation starts. At the same time, valid values are output to the GA[35~0]
signal, the GDOUT[63~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the
GID signal. The GID signal is “L” since a write operation always handles data.

2 The GBSTART* signal is deasserted. After acknowledging that the GACK* signal is
“L,” the GLAST* signal is deasserted.

3 In the next clock cycle after the clock cycle in which the GACK* signal is
acknowledged, the GWR* signal is deasserted. This completes the write operation.
Up to this timing, valid values are output to the GA[35~0] signal, the GDOUT[63~0]
signal, the GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

If another write operation immediately follows this write operation, the GWR* signal is
not deasserted, and the write operation starts.

Similar to the read operations, the bus operation is completed in the timing of the
clock rise after the clock cycle in which the assertion of the GACK* signal is
acknowledged.

The peripheral circuits can insert wait cycles by not asserting the GACK* signal.
Figure 16-2 shows a write operation with two wait cycles.

1 2 3 4 5

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GWR*

GCACHE*

GID

GDOUT[63∼0]

GLAST*

GACK*

GBSTART*

Figure 16-2 Single Write Operation with Wait Cycles

TX49 Architecture

16-13

1 The GBSTART* signal, the GWR* signal, and the GLAST* signal are asserted, and a
write operation starts. At the same time, valid values are output to the GA[35~0]
signal, the GDOUT[63~0] signal, the GBE[7~0]* signal, the GCACHE* signal, and the
GID signal. The GID signal is “L” since a write operation always handles data.

2 The GBSTART* signal is deasserted. Since the GACK* signal is “H,” it becomes a
wait cycle.

3 Since the GACK* signal is “H,” it becomes a wait cycle.

4 After acknowledging that the GACK* signal is “L,” the GLAST* signal is deasserted.

5 The GWR* signal is deasserted. This completes the write operation. Up to this
timing, valid values are output to the GA[35~0] signal, the GDOUT[63~0] signal, the
GBE[7~0]* signal, the GCACHE* signal, and the GID signal.

TX49 Architecture

16-14

16.4 Burst write operations

The burst write operation is a bus operation used for quickly write-back multiple words
to the memory. This operation enables second and subsequent data writes to be
completed in one cycle. Therefore, the memory burst transfer mode can be used to write
multiple words.

The burst write operation occurs due to a data cache miss and the cache line is dirty.
The burst write size of the data cache is 32bytes.

In the burst write operation, the GBURST* signal is used in addition to the GA[35~0]
signal, the GDOUT[63~0] signal, the GBE[7~0]* signal, the GWR* signal, the GLAST*

signal, the GCACHE* signal, the GID signal and the GACK* signal. “L” is always output
to the GBE[7~0]* signal and the GCACHE* signal.

Figure 16-1 shows a burst write operation with no wait cycle.

1 2 3 4 5 6

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GWR*

GCACHE*

GID

GBURST*

GLAST*

GACK*

GDOUT[63∼0]

GBSTART*

4n 4n + 8 4n + 16 4n + 24

Figure 16-1 Burst write Operation (no wait)

TX49 Architecture

16-15

1 The GBSTART* signal, GWR* signal and the GBURST* signal are asserted, and a
burst write operation starts. At the same time, valid values are output to the
GA[35~0] signal, the GDOUT[63~0] signal, the GBE[7~0]* signal, the GID signal.

2 The GBSTART* signal is deasserted. Since it is acknowledged that the GACK* signal
is “L,” next data are output at the timing of Item 3.

3 The second valid values are output to the GDOUT[63~0] signal. The address values
that are being output to the GA[35~0] signal are output in increments of eight. Since
it is acknowledged that the GACK* signal is “L,” next data are output at the timing of
Item 4.

4 The third valid values are output to the GDOUT[63~0] signal. The address values
that are being output to the GA[35~0] signal are output in increments of eight. Since
it is acknowledged that the GACK* signal is “L,” next data are output at the timing of
Item 5. Also, the GLAST* signal is asserted.

5 The final valid values are output to the GDOUT[63~0] signal. The address values
that are being output to the GA[35~0] signal are output in increments of eight. Since
it is acknowledged that the GACK* signal is “L,” the GLAST* signal is deasserted.

6 The GWR* signal and the GBURST* signal are deasserted. This completes the burst
write operation. Up to this timing, valid values are output to the GA[35~0] signal,
the GBE[7~0]* signal, the GDOUT[63~0] signal, and the GID signal.

If a single write operation follows immediately after the burst write operation, the
GWR* signal is not deasserted, so the single write operation starts. Also, if another burst
write operation follows immediately after this burst write operation, neither the
GBURST* signal nor the GWR* signal is deasserted, so the next burst write operation
starts.

Therefore, by checking the GACK* signal for the data to be written next, the second
and subsequent data can be written in one cycle. The addresses on the GA[35~0] signal
always indicate the address of the data that are being write. Since the TX49 Megacell
starts a burst write from the word of the lowest-order address in the refill boundary, the
address in a burst write operation is simply output in increments of eight. The timing to
assert the GLAST* signal is when the assertion of the GACK* signal for the data write
second from the last is acknowledged. The timing to deassert the GLAST* signal is when
the assertion of the GACK* signal for the last data write is acknowledged.

Similar to the single write operation, wait cycles can be inserted by deasserting the
GACK* signal. Figure 16-2 shows a burst write operation with wait cycles. This is an
example where wait cycles are inserted at the first and the third data write in a burst
write operation.

TX49 Architecture

16-16

4n 4n + 16 4n + 244n + 8

1 2 3 4 5 6 7 8 9

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GWR*

GCACHE*

GID

GBURST*

GLAST*

GACK*

GDOUT[63∼0]

GBSTART*

Figure 16-2 Burst write Operation with Wait Cycles

TX49 Architecture

16-17

1 The GBSTART* signal, GWR* signal and the GBURST* signal are asserted, and a
burst write operation starts. At the same time, valid values are output to the
GA[35~0] signal, the GDOUT[63~0] signal, the GBE[7~0]* signal, the GCACHE*

signal, the GID signal.

2 The GBSTART* signal is deasserted. Since the GACK* signal is “H,” next data are
not output at the timing of Item 3.

3 Since the GACK* signal is “H,” data are not output at the timing of Item 4.

4 Since it is acknowledged that the GACK* signal is “L,” next data are output at the
timing of Item 5.

5 The second valid values are output to the GDOUT[63~0] signal. The address values
that are being output to the GA[35~0] signal are output in increments of eight. Since
it is acknowledged that the GACK* signal is “L,” next data are output at the timing of
Item 4.

6 The third valid values are output to the GDOUT[63~0] signal. The address values
that are output on the GA[35~0] signal are output in increments of eight. Since it is
acknowledged that the GACK* signal is “H,” data are not output at the timing of Item
7.

7 Since it is acknowledged that the GACK* signal is “L,” next data are output at the
timing of Item 8. Also, the GLAST* signal is asserted.

8 The final valid values are output to the GDOUT[63~0] signal. The address
values that are being output to the GA[35~0] signal are output in increments of
eight. Since it is acknowledged that the GACK* signal is “L,” the GLAST* signal is
deasserted.

9 The GWR* signal and the GBURST* signal are deasserted. This completes the
burst write operation. Up to this timing, valid values are output to the GA[35~0]
signal, the GBE[7~0]* signal, the GDOUT[63~0] signal, and the GID signal.

The TX49 Megacell has an on-chip write buffer so that errors cannot be notified by the
GBUSERR* signal.

When an error is caused in the system by the write operation of the TX49 Megacell, a
peripheral circuit asserts the GACK* signal to suspend the write operation. Then, use an
interrupt signal such as GINT[5~0]* to inform the TX49 Megacell of the error.

TX49 Architecture

16-18

16.5 Signal status while no bus operation is executed

When no bus operation is being performed, the TX49 Megacell sets the memory
interface output signals to the following states:

GA[35~0] Indefinite

GDOUT[63~0] Indefinite

GBE[7~0]* All H

GRD* H

GWR* H

GCACHE* H

GID H

GBURST* H

GBSTART* H

GLAST* H

The memory interface output signals during a reset are also in these states.

TX49 Architecture

17-1

17. Bus Arbitration and Snoop Operation

17.1 Signals to be used in bus arbitration

The bus ownership transferring protocol between the TX49 Megacell and the external
bus master is performed by ten signals: four bus request signals which are the GREQ*

signal, the GSREQ* signal, the GHPGREQ* signal and the GHPSREQ* signal; four bus
release signals that are the GGNT* signal, the GSGNT* signal, the GHPGGNT* signal and
the GHPSGNT* signal; the bus ownership signal that is the GHAVEIT* signal; and the
bus release request signal that is the GREL* signal. The external bus master can
request the bus ownership using the GREQ* signal or the GHPGREQ* signal when in ET
concurrency, and can request ownership using the GSREQ* signal or the GHPSREQ*

signal when in ST concurrency. (For ET concurrency and ST concurrency, please see
“Appendix E : Internal Bus Architecture”) In addition to the bus request signals, the
TX49 Megacell has a cycle steal signal inside to retrieve the bus ownership that is
surrendered to the external bus master.

The priority of each bus request signal is shown below in Table 17-1.

Table 17-1 Priority of Bus Request Signals

Bus Request Signal Priority Generation of Cycle Steal

GHPSREQ* ��High� No

GHPGREQ* � Yes

GSREQ* � No

GREQ* ��Low� Yes

The arbitration concerning the release and granting of the bus ownership is controlled
by the G-Bus arbiter inside the TX49 Megacell.

When the TX49 Megacell releases the bus ownership, a bus release signal (one from
among the GGNT* signal, the GSGNT* signal, the GHPGGNT* signal, or the GHPSGNT*

signal) is asserted, and the memory interface output signals (the GA[35~0] signal, the
GDOUT[63~0] signal, the GBE[7~0]* signal, the GRD* signal, the GWR* signal, the
GLAST* signal, the GBURST* signal, and the GBSTART* signal) are set to Hi-Z (high
impedance). After the priority is determined, the bus master with the highest priority
obtains the G-Bus ownership, and asserts the GHAVEIT* signal to start driving the
memory interface output signals. When the bus master completes the data transfer, it
deasserts the GHAVEIT* signal, informs the TX49 Megacell of the completion, and
changes its own memory interface output signal to Hi-Z (high impedance). The TX49
Megacell deasserts the bus release signal to resume its own bus operation. (See Figure
17-1)

The above is summarized as follows:

a. The TX49 Megacell deasserts a bus release signal to drive the memory interface
output signals. (Cycles 1, 7 and 8)

b. When the GHAVEIT* signal is asserted, the bus master can drive the memory
interface output signals. (Cycles 3, 4 and 5)

c. When the current bus ownership changes to another, at least one dead cycle is
inserted. The dead cycles are to prevent transient signal conflicts on the bus
between the bus drivers while transferring. (Cycles 2 and 6)

TX49 Architecture

17-2

TX49 MegacellTX49 Megacell External Bus Master

Dead Cycle Dead Cycle

GBUSCLK

GGNT* ,

GSGNT* ,

GHPGGNT* ,

GHPSGNT*

GHAVEIT*

GA,

GDOUT,

GBE* ,GRD* ,

GWR* ,

GLAST* ,,

GBSTART* ,

GBURST*

1 2 3 4 5 6 7 8

Figure 17-1 Hi-Z Timing of G-Bus

17.1.1 Bus request signals and bus release signals

The bus request signals are for the external bus master to request TX49 Megacell
for the release of the bus ownership. The bus release signals are for the TX49
Megacell to inform the external bus master of the release of the bus ownership.
There are four kinds of bus request signals and bus release signals with low/high
priority for ET concurrency and ST concurrency as shown below.

Bus Request Signal Bus Release Signal

GREQ* GGNT* (Low priority)

GHPGREQ* GHPGGNT* (High priority)

GSREQ* SGNT* (Low priority•

GHPSREQ* GHPSGNT* (High priority)

Figure 17-1 shows an example where the TX49 Megacell releases the bus ownership
using the GREQ* signal (ET Concurrency).

ET Concurrency

ST Concurrency

TX49 Architecture

17-3

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Invalid

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GRD*

GWR*

GCACHE*

GID

GBURST*

GLAST*

GBSTART*

GDOUT[63∼0]

GREQ*

GGNT*

GHAVEIT*

GREL*

GSNOOP*

1 2 3 4 5

Figure 17-1 Bus Ownership Release by GREQ*

1 The deassertion of the GREQ* signal is acknowledged.

2 The assertion of the GREQ* signal is acknowledged.

3 The GGNT* signal is asserted, and bus ownership is released. This cycle is a
dead cycle in which neither the TX49 Megacell nor the external bus master
drives the memory interface output signals.

4 The external bus master asserts the GHAVEIT* signal so that it can drive the
memory interface output signals. (In the above example, the external bus master
does not drive the memory interface signals and stays at Hi-Z.) Note that the
GSNOOP* signal is ignored if control of the bus is relinquished by GREQ*.

TX49 Architecture

17-4

However, in order for the TX49 Megacell to release the bus ownership, it is
necessary to make sure that a bus operation is not being executed in the timing
when the GREQ* signal is acknowledged, and that a bus request signal with higher
priority is not asserted.

If the TX49 Megacell is executing a bus operation, the assertion of the GREQ*

signal can be acknowledged from the cycle prior to the completion of the bus
operation. In this case, the TX49 Megacell asserts the GGNT* signal at the
GBUSCLK rise where the bus operation ends. The TX49 Megacell sets the output
signals to the following states after releasing the bus ownership.

Caution: The TX49 Megacell does not have the bus holder internally.

Table 17-1 States at Release of Bus Ownership

Name of Pin I/O At Bus Release

GA[35~0] I/O Hi-Z

GDOUT[63~0] O Hi-Z

GDIN[63~0] I �

GBE[7~0]* O Hi-Z

GRD* O Hi-Z

GWR* O Hi-Z

GACK* I �

GCACHE* O “H”

GID O “H”

GLAST* O Hi-Z

GBUSERR* I �

GBSTART* O Hi-Z

GBURST* O Hi-Z

TX49 Architecture

17-5

Figure 17-2 shows an example where the external bus master releases the bus
ownership and the TX49 Megacell regains it.

1 2 3 4 5

Hi-Z

Hi-Z

Invalid

Indefinite

Indefinite

Indefinite

GBUSCLK

GA[35∼0]

GBE[7∼0]*

GRD*

GWR*

GCACHE*

GID

GBURST*

GLAST*

GBSTART*

GDOUT[63∼0]

GREQ*

GGNT*

GHAVEIT*

GREL*

GSNOOP*

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Figure 17-2 Bus Ownership Obtained from GREQ*

1 The assertion of the GREQ* signal is acknowledged.

2 The assertion of the GREQ* signal is acknowledged.

3 The assertion of the GREQ* signal is acknowledged.

4 The deassertion of the GREQ* signal and the GHAVEIT* signal are
acknowledged. Having deasserted the GGNT* signal, the TX49 Megacell obtains
the bus ownership.

5 Bus operations by the TX49 Megacell become available.

TX49 Architecture

17-6

The TX49 Megacell in ET concurrency (GREQ* and GHPGREQ*) can write to the
write buffer even when the bus ownership is released since only the apparent bus
ownership of the G-Bus is released in ET concurrency. The internal pipeline also
keeps operating, but no snoop operation can be performed. When a bus operation
becomes necessary due to a reason such as a cache miss, the pipeline of the TX49
Processor Core is stalled, a cycle steal is generated, and the bus release request
GREL* signal is asserted. The TX49 waits to obtain the bus ownership again.

On the other hand, the TX49 Megacell in ST concurrency (GSREQ* and
GHPSREQ*) releases the bus ownership to enable a snoop function. It releases not
only the ownership on the G-Bus, but also the X-Bus, to the external bus master.

If there is a bus ownership request by GSREQ* or GHPSREQ*, the TX49 Megacell
writes all the data from the write buffer to external memory, and it asserts the
GSGNT* or GHPSGNT* to release the bus ownership.

If the GCOLDRESET* signal is asserted while the TX49 Megacell uses a bus
request signal to release the bus ownership, the TX49 Megacell forcibly deasserts a
bus release signal and performs a reset operation.

When the TX49 Megacell is in the doze mode, it replies to a bus ownership request
from the outside. In such a case, the TX49 Megacell asserts a bus release signal in
the timing after the assertion of the bus request signal is acknowledged. On the
other hand, when the TX49 Megacell is in the halt mode, it cannot reply to any bus
ownership requests. It does not release the bus ownership until it has left the halt
mode by the assertion of an external interrupt signal (the GNMI* signal or the
GINT[5~0]* signal).

17.1.2 Cycle stealing

If a situation occurs where the TX49 Megacell needs to execute a bus operation
(such as a read operation), during ET concurrency in which bus ownership was
gained by the external master on the G-Bus using the GREQ* signal or GHPGREQ*

signal, or if a situation occurs in which the write buffer is too full and must be
flushed, the G-Bus arbiter determines that the G-Bus is in the cycle steal state.
Then, a GREL* signal is asserted to get G-Bus ownership back from the external bus
master.

Having sensed the assertion of the GREL* signal, the external bus master
deasserts the GHAVEIT* signal and releases the G-Bus ownership.

It is possible to make an external bus master which does not permit cycle stealing
by ignoring the GREL* signal. In such a case, the external bus master can halt the
bus operation of the TX49 Megacell until releasing the G-Bus. After the G-Bus
arbiter gets the G-Bus ownership back, the TX49 Megacell executes its bus
operation.

TX49 Architecture

17-7

When the bus operation by the TX49 Megacell is completed, the G-Bus arbiter
starts receiving a new bus release request signal for the G-Bus. Then, the bus
ownership is released to the bus master which asserted the bus request signal with
the highest priority at that point.

A cycle steal does not occur in ST concurrency.

TX49 Architecture

17-8

17.1.3 GREL* signal

The bus release request GREL* signal is a signal which prompts the bus master
that currently owns the G-Bus to release the bus. This signal is asserted in the
following cases:

If a bus request signal with higher priority is asserted while the bus ownership is
released to the external bus master.

If a cycle steal request (Cycle Steal) occurs in the TX49 Megacell during an ET
concurrency (while the GGNT* signal or the GHPGGNT* signal is being asserted).

When the external bus master acknowledges the assertion of the GREL* signal, the
bus can be released to the TX49 Megacell or another bus master by deasserting the
GHAVEIT* signal and a bus request signal. When the bus master which used to own
the G-Bus ownership needs to retrieve it, the bus master can keep asserting a bus
request signal.

Table 17-1 summarizes the current owner of the bus ownership (indicated by the
bus release signals) and the corresponding bus request signals which causes the
assertion of the GREL* signal.

Table 17-1 Conditions of GREL* Signal Assertion

Signal Currently
Asserted

Signal to Cause GREL* Signal Assertion

GGNT* GSREQ*

GHPGREQ* GHPSREQ*

(Cycle Steal) GSGNT*

GHPGREQ* GHPSREQ*

GHPGGNT* GHPSREQ*

(Cycle Steal)

GHPSGNT* �

17.1.4 GHAVEIT* signal

The bus ownership GHAVEIT* signal indicates that the external bus master
possesses the bus ownership (drives G-bus). When the external bus master asserts
a bus request signal (xxREQ* signal), the TX49 Megacell asserts a bus releases
signal (xxGNT* signal), and release the bus ownership, the external bus master
asserts the GHAVEIT* signal so that it can drive the memory interface signals. The
external bus master then stops driving the memory interface signals after the bus
operation is complete, and can return the bus ownership to the TX49 Megacell by
deasserting the GHAVEIT* signal. Having acknowledged the deassertion of the
GHAVEIT* signal at a rise of the GBUSCLK signal, the TX49 Megacell deasserts the
bus release signal (xxGNT* signal).

TX49 Architecture

17-9

If the external bus master that possesses the current bus ownership acknowledges
the assertion of the bus release request signal (GREL* signal) by a cycle steal request
from another external bus master with higher priority or from the TX49 Megacell, it
can surrender the bus ownership to the bus master with higher priority by
deasserting the GHAVEIT* signal. In this case, if the external bus master with lower
priority needs to regain the bus ownership, it can continue asserting a bus request
signal (xxREQ* signal).

For a system that consists of multiple bus masters, the bus masters can know if
another bus master possesses the bus ownership by mutually observing the
GHAVEIT* signal. By doing so, it is possible to know, by an external bus master
(which has asserted a bus request signal) observing the assertion of the GHAVEIT*

signal, whether another external bus master took bus ownership. It is then possible
to realize functions such as a bus master withdrawing its own bus request or
asserting another bus request signal with higher priority.

Note on the GHAVEIT* signal

The GHAVEIT* signal indicates that an external bus master is driving the G-Bus.
Make sure it is asserted as long as the external bus master is driving the G-Bus.
Therefore, we recommend using an output enable signal of the external bus master
as the GHAVEIT* signal.

When deasserting the GREQ* signal, always be sure to deassert the GHAVEIT*

signal also.

G-BusGDIN*

GHAVEIT*

TX49

Megacell
External Bus Master

(Output Enable Signal)

Figure 17-1 GHAVEIT* Usage Example

TX49 Architecture

17-10

17.2 Operation timing of bus arbitration

17.2.1 Single bus master

REQUEST1*

GNT1*

HAVEIT1*

GREQ*

GGNT*

GHAVEIT*

Bus MasterTX49 Megacell

Figure 17-1 Single Bus Master Connection

Figure 17-1 is a connection example of the TX49 Megacell and one external bus
master.

This example shows a case where the external bus master is requesting G-Bus
ownership using the GREQ* signal. The REQUEST1* signal is the bus request
signal of the external bus master. Figure 17-2 is the timing diagram.

(1)

GBUSCLK

REQUEST1*

GREQ*

GGNT*

GHAVEIT*

Bus Driver TX49 MegacellExternal Bus MasterTX49 Megacell

(2) (3) (4) (5) (6) (7) (8)

Figure 17-2 Single Bus Master Timing

TX49 Architecture

17-11

Cycle 1: The external bus master asserts REQUEST1* to request G-Bus
ownership.

Cycle 2: Having acknowledged the assertion of the GREQ* signal at a rise of
GBUSCLK, the G-Bus arbiter of the TX49 Megacell implements bus
arbitration.

Cycle 3: The TX49 Megacell asserts the GGNT* signal to release G-Bus ownership.
(The GGNT* signal is asserted in the cycle immediately after it is
acknowledged that the GREQ* signal is “L.” However, assertion of the
GGNT* signal is delayed while a bus cycle is being executed by the TX49
Megacell.)

Cycle 4: The external bus master asserts the GHAVEIT* signal, and processing
starts. It is transfer cycle 1 of the external bus master.

Cycle 5: It is transfer cycle 2 of the external bus master.

Cycle 6: It is transfer cycle 3 of the external bus master.

Cycle 7: The external bus master deasserts the GHAVEIT* signal. The
REQUEST1* signal and the GREQ* signal are similarly deasserted in the
same cycle. During this period, neither the external bus master nor the
TX49 Megacell outputs any signal, so it becomes a dead cycle.

Cycle 8: The TX49 Megacell deasserts the GGNT* signal and it becomes the owner
of the G-Bus. (The GGNT* signal is deasserted in the cycle where it is
acknowledged that the GHAVEIT* signal or the GREQ* signal is “H.”)

17.2.2 Daisy chain

Bus Master 2Bus Master 1TX49 Megacell

GREQ*

GGNT*

GREL*

GHAVEIT*

GNTOUT*

GHAVEIT*

REQUEST1*

GNTIN*

RELIN* GHAVEIT*

REQUEST2*

GNTIN*

RELIN*

Figure 17-1 Daisy Chain Connection

Figure 17-1 is an example connection where a system is configured with two daisy-
chained external bus masters: --Bus Master 1 and Bus Master 2. The REQUEST1*

signal and the REQUEST2* signal are the bus request signals of the two bus
masters. Bus Master 1 is on the upstream side of the daisy-chain and Bus Master 2
is on its downstream side. Figure 17-2 shows the timing diagram.

TX49 Architecture

17-12

TX49
MegacellExternal Bus Master 1TX49 Megacell

(1)

GBUSCLK

REQUEST1*

REQUEST2*

GREQ*

GGNT*

GHAVEIT*

Bus Driver

(2) (3) (4) (5) (6) (7) (8) (9)

Figure 17-2 Daisy-Chain Timing

Cycle 1: Both bus masters simultaneously assert the REQUEST1* signal and the
REQUEST2* signal, and request G-Bus ownership.

Cycle 2: Assertion of GREQ* is acknowledged at a rise of GBUSCLK. The G-Bus
arbiter of the TX49 Megacell implements a bus arbitration.

Cycle 3: The TX49 Megacell asserts the GGNT* signal, and releases G-Bus
ownership. No signal is being output from the TX49 Megacell or Bus
Master 1 during this period, so this becomes a dead cycle.

Cycle 4: Bus Master 1 obtains G-Bus ownership, asserts the GHAVEIT* signal,
and starts processing. Bus Master 2 continues asserting the
REQUEST2* signal to obtain G-Bus ownership. This is transfer cycle 1 of
Bus Master 1.

Cycle 5: This is transfer cycle 2 of Bus Master 1.

Cycle 6: This is transfer cycle 3 of Bus Master 1.

Cycle 7: Bus Master 1 deasserts the GHAVEIT* signal and the REQUEST1* signal.
No signal is being output from Bus Master 1 or the TX49 Megacell during
this period, so it becomes a dead cycle. The GREQ* signal is the logical
sum of the REQUEST1* signal and the REQUEST2* signal. Therefore,
the GREQ* signal is being asserted even when the REQUEST1* signal
has been deasserted.

Cycle 8: The G-Bus arbiter acknowledges the GHAVEIT* signal as being “H” at a
rise of GBUSCLK and deasserts the GGNT* signal. In addition, the TX49
Megacell possesses G-Bus ownership for the time being.

Cycle 9: Since the GREQ* signal stays at “L” due to the REQUEST2* signal of the
bus master, the G-Bus arbiter of the TX49 Megacell implements an
arbitration, and asserts the GGNT* signals, releasing G-Bus ownership.
No signal is output from the TX49 Megacell or the bus masters during
this period, so it becomes a dead cycle.

TX49 Architecture

17-13

17.2.3 Bus ownership release by GREL* signal

Figure 17-1 shows a situation where the external bus master abandons G-Bus
ownership as a result of the TX49 Megacell asserting the GREL* signal in the system
of the daisy-chain connection in example Figure 17-1. The GREL* signal is a bus
release request signal of the TX49 Megacell.

(2)(1)

GBUSCLK

GREL*

REQUEST1

GREQ*

GHAVEIT*

GGNT*

Bus Driver* External Bus Master 1 TX49 Megacell

(4)(3) (6)(5)

Figure 17-1 GREL* Signal Timing

Cycle 1: The G-Bus ownership is surrendered to Bus Master 1 by the REQUEST1*

signal from Bus Master 1.

Cycle 2: The GREL* signal is asserted from the TX49 Megacell.

Cycle 3: Having acknowledged the GREL* signal, Bus Master 1 implements
completion operation of the data transfer.

Cycle 4: Bus Master 1 is continuing the completion operation of the data transfer.

Cycle 5: Bus Master 1 deasserts the GHAVEIT* signal. The REQUEST1* signal
(GREL* signal) is similarly deasserted in the same cycle. If Bus Master 1
needs to regain the G-Bus which was released by the GREL* signal, it
can keep asserting the REQUEST1* signal (GREQ* signal) instead of
deasserting it. (See the broken lines in the diagram.)

Cycle 6: The G-Bus arbiter deasserts the GGNT* signal and the GREL* signal.
Since G-Bus ownership was granted to the TX49 Megacell by to the
GREL* signal, a bus cycle of the TX49 Megacell starts.

TX49 Architecture

17-14

In this case, the GREL* signal is asserted in two situations: when the TX49
Megacell requests a bus cycle in an ET concurrency, or when a bus request signal is
asserted by another external bus master with higher priority.

In Figure 17-1, the GHAVEIT* signal is deasserted by the GREL* signal, and G-
Bus ownership returns to the TX49 Megacell. However, the G-Bus arbiter gives G-
Bus ownership to either the TX49 Megacell which was the source of the assertion of
the GREL* signal or to an external bus master with higher priority in the next
arbitration.

TX49 Architecture

17-15

17.2.4 Shift of bus ownership (Low priority to High priority)

Bus Master 2

Bus Master 1

TX49 Megacell

GREQ*

GHPGREQ*

GGNT*

GHPGGNT*

GREL*

GHAVEIT*

GHAVEIT*

REQUEST1*

GNTIN*

RELIN*

GHAVEIT*

REQUEST2*

GNTIN*

RELIN*

Figure 17-1 Multi-Bus-Master Connection

Figure 17-1 is a connection example of a system configured with two external bus
masters: Bus Master 1 and Bus Master 2. Bus Master 1 uses the GREQ* signal and
the GGNT* signal, and Bus Master 2 uses the GHPGREQ* signal and the GHPGGNT*

signal to perform transfers of G-Bus ownership.

When a bus request signal (GHPGREQ* signal) is asserted from Bus Master 2,
whose priority is higher while Bus Master 1 has G-Bus ownership, Bus Master 1
releases G-Bus ownership in response to the GREL* signal the Bus Master 2 then
obtains G-Bus ownership. This operation is shown in Figure 17-2. See Table 17-1
for the priorities.

Cycle 1: A bus request signal (GHPGREQ* signal) is asserted by Bus Master 2
during a bus arbitration by Bus Master 1.

Cycle 2: The “L” of the GHPGREQ* signal is acknowledged at a rise of GBUSCLK
and the GREL* signal is asserted.

Cycle 3: Bus Master 1 acknowledges the GREL* signal and releases the G-Bus
ownership by deasserting the GHAVEIT* signal and the GREQ* signal.

Cycle 4: “H” of the GHAVEIT* signal is acknowledged at a rise of GBUSCLK and
the GGNT* signal and the GREL* signal are deasserted. In this cycle, G-
Bus ownership is momentarily returned to the TX49 Megacell and the
TX49 Megacell drives the G-Bus.

TX49 Architecture

17-16

Cycle 5: “L” of the GHPGREQ* signal is acknowledged and the GHPGGNT* signal
is asserted. This cycle becomes a dead cycle.

Cycle 6: Bus Master 2 asserts the GHAVEIT* signal, and the processing starts
process. This is transfer cycle 1 of Bus Master 2.

Cycle 7: This is the transfer cycle 2 of Bus Master 2.

TX49 Architecture

17-17

(4)(3)(2)(1)

GBUSCLK

GREQ*

GGNT*

GHPGREQ*

GHPGGNT*

GREL*

GHAVEIT*

Bus Driver
TX49
Megacell Bus Master 2Bus Master 1

(6)(5) (7)

Figure 17-2�Bus Arbitration 4

In the example shown in Figure 17-2, it takes three cycles including a dead cycle
to shift from the status where the G-Bus ownership is released by the GREQ* signal
to the status where the G-Bus ownership is released by the GHPGREQ* signal with
higher priority. Table 17-1 summarizes the minimum number of cycles for the G-
Bus ownership to shift from a lower priority to a higher priority.

Table 17-1 Number of Cycles Necessary for Bus Ownership Shift

Shift of G-Bus Ownership Min. Number of Cycles

GREQ* → GSREQ* 3• Cycles

GREQ* → GHPGREQ* 3• Cycles

GREQ* → GHPSREQ* 3• Cycles

GSREQ* → GHPGREQ* 3• Cycles

GSREQ* → GHPSREQ* 3• Cycles

GHPGREQ* → GHPSREQ* 3• Cycles

TX49 Architecture

17-18

17.2.5 General rules

Following are general rules of bus arbitration.

1• An external bus master which needs to obtain ownership of the G-Bus or the X-
Bus must assert an appropriate bus request signal.

2. When multiple bus request signals are asserted while the G-Bus is not being
released to any of the external bus masters (the GHAVEIT* is being deasserted),
the G-Bus arbiter of the TX49 Megacell surrenders G-Bus ownership to the bus
master which is asserting the bus request signal with the highest priority.

3. The bus master which has the G-Bus ownership deasserts the GHAVEIT* signal
in the final processing cycle and deasserts the appropriate bus request signal as
well.

Note, however, that the GHAVEIT* signal must always be deasserted when the
GREQ* signal is deasserted. Conversely, the GREQ* signal does not always have
to be deasserted when the GHAVEIT* signal is deasserted.

4. In the cycle following the deassertion of the GHAVEIT* signal, the G-Bus arbiter
of the TX49 Megacell deasserts the bus release signal which is being asserted. If
there is no other request signal being asserted by another bus by the beginning
of that cycle, G-Bus ownership is returned to the TX49 Processor Core which has
the G-Bus arbiter. On the other hand, if bus request signals are asserted, the G-
Bus ownership is released to the bus master which is asserting the bus request
signal with the highest priority.

TX49 Architecture

17-19

17.2.6 State machine

Table 17-1 below indicates situations in which G-Bus ownership is transferred
from the current bus master to a new bus master by the assertion of a request
signal. Bus masters are represented by the bus release signals. Current bus
masters can be found in the “Current Bus Master” column. New bus masters are in
the “Bus Master after Shift.” column.

For example, the top row of “GGNT*” can be interpreted as follows: if the
GHPSREQ* signal is asserted by another bus master while the current bus master
owns the G-Bus ownership according to GGNT*, the GREL* signal is asserted to shift
ownership to the bus master with the GHPSREQ*.

Table 17-1 State Machine of Bus Arbitration

GHPSREQ* Cycle Steal GHPGREQ* GSREQ* GREQ* GREL*
Bus Master

After Shift

GGNT* 0 X X X 0 0 GHPSGNT*

GGNT* 1 0 X X 0 0 TX49 Megacell

GGNT* 1 1 0 X 0 0 GHPGGNT*

GGNT* 1 1 1 0 0 0 GSGNT*

GGNT* 1 1 1 1 0 1 GGNT*

GSGNT* 0 1 X 0 X 0 GHPSGNT*

GSGNT* 1 1 0 0 X 0 GHPGGNT*

GSGNT* 1 1 1 0 X 1 GSGNT*

GHPGGNT* 0 X 0 X X 0 GHPSGNT*

GHPGGNT* 1 0 0 X X 0 TX49 Megacell

GHPGGNT* 1 1 0 X X 1 GHPGGNT*

GHPSGNT* 0 1 X X X 1 GHPSGNT*

X : Don't care 0: Assert 1: Deassert

Bus Request

 Signal to be

 Asserted
Current

Bus Master

TX49 Architecture

17-20

17.3 Snoop operation

The TX49 Megacell has a snoop function. This function is used to maintain coherency
between the data cache and the memory in the TX49 Processor Core during ST
concurrency. This function uses the GSNOOP* signal and the GA[35~0] signal of the
TX49 Megacell. The TX49 Megacell detects the GSNOOP* signal on a rising edge of the
GBUSCLK signal. When either the TX49 Megacell has released both the G-Bus and the
X-Bus; namely, when the GSGNT* signal or the GHPSGNT* signal has been asserted, the
GSNOOP* signal and the GA[35~0] signal become valid. If the GSNOOP* signal is
asserted at this time, the TX49 Megacell executes a snoop operation. If GA[35~5] hits an
entry of the data cache, the entry becomes invalid.

In order to execute a snoop operation, all address output of the external bus master
should be connected to GA[35~0]. The GSNOOP* signal should be asserted when the
external bus master that has obtained the G-Bus ownership executes a write cycle. The
address(es) to be input to GA[35~0] alone determine the address for the snoop execution,
so it is necessary to supply correct write address(es) to the TX49 Megacell. Figure 17-1
shows the snoop operation.

GBUSCLK

GA[35∼0]

GSNOOP*

GSGNT*

GHPSGNT*

a) b) c) d)

Figure 17-1 Snoop Operation

a) Since the GSGNT* signal or the GHPSGNT* signal is deasserted, the GSNOOP* signal
and the GA[35~0] signal are invalid.

b) Since the GSNOOP* signal is deasserted, the snoop operation is not executed.

c) The GSNOOP* signal and the GA[35~5] signal become valid and the snoop operation
is executed. If the GA[35~0] signal hits the data cache, the entry becomes invalid.

d) Since the GSGNT* signal or the GHPSGNT* signal is deasserted, the GSNOOP* signal
and the GA[35~0] signal are invalid.

TX49 Architecture

18-1

18. Coprocessor Operations

In the MIPS architecture, four coprocessors can be installed: CP0, CP1, CP2, and CP3.
CP0 is reserved as the system control coprocessor which realizes the exception processing
function, the system configuration function, and the memory management function. The
TX49 Megacell has an on-chip CP0 coprocessor and CP1 is reserved for the internal
Floating-Point Unit. TX49 does not support CP3 except coprocessor condition branch
instruction operation.

The coprocessor operation uses the following memory interface signals in addition to the
coprocessor interface signals: the GA[35~0] signal, the GDOUT[63~0] signal and the
GDIN[63~0] signal. The output signals other than the above maintain the status from when
no bus operation was executed. The GACK* signal and the GBUSERR* signal are ignored.

18.1 Coprocessor read operation

The coprocessor read operation is generated by the execution of the MFCz instruction,
the CFCz instruction, and the COPz instruction. The timing of the coprocessor read
operation is the same as the single read operation for the memory. The coprocessor read
operation uses the GA[35~0] signal, the GDIN[63~0] signal, the GCPRD* signal, and the
GCPRDACK* signal. Figure 18-1 shows the coprocessor read operation.

GBUSCLK

GA[35∼0]

GCPRD*

GCPRDACK*

GDIN[63∼0]

1 2 3

Figure 18-1 Coprocessor Read Operation

1 The GCPRD* signal is asserted, starting a coprocessor read operation. At the same
time, coprocessor instruction codes are output to the GA[35~0] signal.

2 It is acknowledged that the GCPRDACK* signal is “L.”

3 The data on the GDIN[63~0] signal are collected. Also, the GCPRD* signal is
deasserted. This completes the coprocessor read operation. Up to this timing, valid
values are retained in the GA[35~0] signal.

TX49 Architecture

18-2

However, data transfer between the TX49 Megacell and the coprocessor do not occur
with the COPz instruction, so the TX49 Megacell does not collect the data from the
GDIN[63~0] signal.

If another coprocessor read operation immediately follows this coprocessor read
operation, the coprocessor read operation starts without deasserting the GCPRD* signal.

When the GCPRDACK* signal is asserted, the TX49 Megacell ends the coprocessor
read operation.

18.2 Coprocessor write operation

The coprocessor write operation is generated by the execution of the MTCz instruction
and the CTCz instruction. The timing of the coprocessor write operation is the same as
the write operation for the memory. The coprocessor write operation uses the GA[35~0]
signal, the GDOUT[63~0] signal, the GCPWR* signal, and the GCPWRACK* signal.
Figure 18-1 shows the coprocessor write operation.

GBUSCLK

GA[35∼0]

GCPRD*

GCPRDACK*

GDIN[63∼0]

Figure 18-1 Coprocessor Write Operation

1 The GCPWR* signal is asserted, and a coprocessor write operation starts. At the
same time, each coprocessor instruction code and the source register contents are
output to the GA[35~0] signal, and the GDOUT[63~0] signal.

2 Having acknowledged that the GCPWRACK* signal is “L,” the GCPWR* signal is
deasserted. This completes the coprocessor write operation. Up to this timing, valid
values are retained on the GA[35~0] signal, and the GDOUT[63~0] signal.

If another coprocessor write operation immediately follows this coprocessor write
operation, the coprocessor write operation starts without deasserting the GCPWR*

signal.

The TX49 Megacell continues the coprocessor write operation until the GCPWRACK*

signal is asserted.

TX49 Architecture

18-3

18.3 Coprocessor condition branch instruction operation

Figure 18-1 shows the timing for acquiring the GCPCOND[3~2] signal in a coprocessor
condition branch instruction. The GCPCOND[3~2] signal is acquired at the GBUSCLK
rise at the end of the instruction decoding stage of the TX49 Processor Core.

Instruction decoding

GGBUSCLK

GCPCOND[3∼2]

Figure 18-1 Coprocessor Condition Branch Instruction Operation

For pipeline operations, please Chapter 6 of this manual.

TX49 Architecture

18-4

TX49 Architecture

19-1

19. Interrupts

As for interrupt methods, the TX49 Megacell supports six hardware interrupts and two
software interrupts. In addition to them, it supports the non-maskable interrupts.
Interrupt exceptions can be generated by the GINT[5~0]* signal. Non-maskable interrupt
exceptions can be generated by the GNMI* signal. These interrupt signals are active-low
signals and are sampled at the positive-going transitions of GBUSCLK.

This section describes the timings of these external interrupt signals.

19.1 GNMI* Signal

As shown in Figure 19-1, the TX49 Megacell acquires the GNMI* signal at a rise of the
GBUSCLK signal.

GBUSCLK

GNMI*

1 2

Figure 19-1 Non-Maskable Interrupt

1 The “H” of the GNMI* signal is acknowledged.

2 The transition from “H” to “L” of the GNMI* signal is acknowledged, so a non-
maskable interrupt exception occurs.

A non-maskable interrupt exception occurs when the transition from “H” to “L” of the
GNMI* signal is acknowledged. The TX49 Megacell retains this transition internally. A
peripheral circuit can generate a non-maskable interrupt exception by asserting the
GNMI* signal for one cycle or more. To generate the next non-maskable interrupt
exception, it is necessary for the peripheral circuit to turn the GNMI* signal to “H” and
then to “L” since the GNMI* signal is valid when transiting from “H” to “L.”

If the TX49 Megacell acknowledges the transition of the GNMI* signal from “H” to “L”
during a bus operation, a non-maskable interrupt exception occurs when the bus
operation ends.

If the TX49 Megacell acknowledges the transition of the GNMI* signal from “H” to “L”
during release of the bus ownership, a non-maskable interrupt exception occurs
immediately after the TX49 Megacell obtains the G-Bus ownership.

TX49 Architecture

19-2

19.2 GINT[5:0]* Signal

An interrupt exception is generated by the GINT[5~0]* signal. Interrupts by the
GINT[5~0]* signal can be masked by the bit which the IntMask bit of the Status register
corresponds to and the IE bit. As shown in Figure 19-1, the TX49 Megacell acquires the
GINT[5~0]* signal at a rise of the GBUSCLK signal.

1

GBUSCLK

GINT[5∼0]*

2

Figure 19-1 Interrupt

1 The “H” of the GINT* signal is acknowledged.

2 An interrupt exception occurs since the “L” of the GINT* signal is acknowledged.

As shown in Figure 19-2, the TX49 Megacell acknowledges the GINT[5~0]* signal at a
rise of the GBUSCLK signal. To make sure that an interrupt request is acknowledged,
the GINT[5~0]* signal must be asserted until an interrupt exception occurs. If it is
deasserted before that, the occurrence of an interrupt exception is not guaranteed.

The IP bit of the Cause register reflects the GINT[5~0]* signal at the time when the
Cause register was read. To correctly evaluate the cause using the interrupt exception
handler, the GINT[5~0]* signal must be asserted until the handler reads the Cause
register. Then, the GINT[5~0]* signal should be deasserted by the interrupt exception
handler. When an interrupt becomes valid before deasserting the GINT[5~0]* signal,
another interrupt exception occurs.

TX49 Architecture

20-1

20. Reset and Endian Initial Setting

The TX49 Megacell initializes its internal status by acknowledging the assertion of the
GCOLDRESET* signal. Then, a reset exception is generated by acknowledging a
deassertion of the GCOLDRESET* signal. This section describes the reset of the TX49
Megacell and the endian initial setting during a reset.

20.1 Reset

Figure 20-1 shows the timing of the TX49 Megacell GCOLDRESET* signal.

GBUSCLK

GCOLDRESET*

GENDIAN

12 cycles or more

Figure 20-1 Reset

The TX49 Megacell acquires the GCOLDRESET* signal at a rise of the GBUSCLK
signal. Having acknowledged the assertion of the GCOLDRESET* signal for twelve rises
or more of the GBUSCLK signal, the TX49 Megacell will enter the reset status. The
external signals of the TX49 Megacell in the reset status will be as follows.

GA[35~0] Indefinite

GDOUT[63~0] Indefinite

GBE[7~0]* All H

GRD* H

GWR* H

GCACHE * H

GID H

GBURST* H

GBSTART* H

GLAST* H

GBUSGNT* H

GHALT L

GDOZE L

If an assertion of the GCOLDRESET* signal is acknowledged while the TX49 Megacell
is executing a bus operation, the bus operation is forcibly suspended. Also, if an
assertion of the GCOLDRESET* signal is acknowledged while the bus ownership is being
released, the GGNT* signal, the GSGNT* signal, the GHPGGNT* signal, or the
GHPSGNT* signal is forcibly deasserted.

TX49 Architecture

20-2

Having acknowledged an assertion of the GCOLDRESET* signal, the TX49 Megacell
performs an internal reset operation. The following are included in the reset operation of
the TX49 Megacell.

• Control registers are initialized

• Valid bits of the instruction and data caches, and the lock bit are cleared.

• The internal pipeline is initialized.

When a deassertion of the GCOLDRESET* signal is acknowledged, the TX49 Megacell
generates a reset exception. Figure 20-2 shows the power-on reset.

12 cycles or more

VCC

GBUSCLK

GCOLDRESET*

GENDIAN

GBUSCLK stable

Figure 20-2 Power-On Reset

When the GBUSCLK is stabilized after the power has reached the specified voltage, an
assertion of the GCOLDRESET* signal should be maintained for twelve cycles or more.

20.2 Endian Initial Setting

As shown in Figures 20-1 and 20-2, the endian in the kernel mode and the default
endian in the user mode are set by the value of the GENDIAN signal at the first rise of
the GBUSCLK signal after the GCOLDRESET* signal was deasserted. If the GENDIAN
signal is “H,” the TX49 Megacell is set as the big endian; and if it is “L,” it is set as the
little endian. The GENDIAN signal is valid only at the time of a reset.

20.3 Clocks

The TX49 Megacell operation clocks are generated by the GCPUCLK signal inside the
TX49 Megacell. The GBUSCLK is the timing reference for the TX49 Megacell interface
signals.

The GCPUCLK of the TX49 Megacell can be halted. This halts the TX49 Megacell
operations, lowering the power consumption in the system.

TX49 Architecture

21-1

21. Low Power Consumption Modes

The TX49 Megacell can reduce its power consumption compared to the normal mode by
controlling its internal clocks. The following two operation modes function as low power
consumption modes of the TX49 Megacell:

• Halt mode

• Doze mode

21.1 Halt mode

The halt mode reduces power consumption by halting TX49 Megacell operation. By
setting the Wait mode bit of the Config register to 0 by the software and executing WAIT
instruction, the TX49 Megacell mode shifts from the normal operation mode to the halt
mode.

Therefore, as for bus control requests in the halt mode, a bus release request is
responded to in cases of ET concurrency such as the GREQ* signal or the GHPGREQ*

signal. However, the request is not responded to in cases of ST concurrency such as the
GSREQ* signal or the GHPSREQ* signal. On the other hand, if WAIT instruction is
executed while the bus is being released, the halt mode starts in cases of ET
concurrency, but in cases of ST concurrency starts after bus ownership is granted and
the GHALT signal is asserted.

If WAIT instruction is executed during a bus operation, the GHALT signal is asserted
after the bus operation is completed.

If data remain in the write buffer, the write operation is executed even after shifting to
the halt mode.

The internal halt bit is cleared by the assertion of the GINT[5~0]* signal, the GNMI*
signal, the GRESET* signal or the GCOLDRESET* signal, and the TX49 Megacell return
from the halt mode. If this is caused by the assertion of the GINT[5:0]* signal, the TX49
Megacell is released from the halt mode irrespective of the value in the IntMask field of
the Status register. If the TX49 Megacell is brought back from the halt mode by the
GCOLDRESET* signal, the GRESET* signal, the GNMI* signal, or a non-masked
GINT[5~0]* signal, the initial instruction in the corresponding exception handler is
executed. At this time, the EPC register is pointing to the instruction following the WAIT
instruction. If it is recovered by a masked GINT[5~0]* signal, execution resumes from
the instruction following the instruction that was being executed when it shifted to the
halt mode.

As shown in Figure 21-1 the TX49 Megacell outputs the status of the internal halt bit
on the GHALT signal. The memory interface output signals in the halt mode are
maintained in the same status as when no bus operation was being executed.

Note: When the condition is brought back from the Power Consumption Modes are satisfied and WAIT
instruction is executed, the TX49 Megacell does not shift to the mode.

TX49 Architecture

21-2

GBUSCLK

GHALT

Internal CPUCLK

GRD* , GWR*

 M-stage W-stage of WAIT

 Wait bit set 0 before here

Figure 21-1 Halt Mode

21.2 Doze mode

The doze mode is also a mode which halts TX49 Megacell operation in order to lower
power-consumption. However, the difference from the halt mode is that bus control
requests (both ST concurrency and ET concurrency) from an external bus master can be
responded to. Snooping operation of the data cache can also performed in ST
concurrency. By setting the Wait mode bit of the Config register to 1 by the software and
executing WAIT instruction, the TX49 Megacell mode shifts from the normal operation
mode to the doze mode. Then, the TX49 Processor Core that is built into the TX49
Megacell halts operation while retaining the pipeline status.

As mentioned above, bus control requests are responded to while in the doze mode in
cases of ET concurrency such as the GREQ* signal and the GHPGREQ* signal, and in
cases of ST concurrency such as the GSREQ* signal and the GHPSREQ* signal. On the
other hand, if WAIT instruction is executed while the bus is being released, the doze
mode starts in cases of ET concurrency, but in cases of ST concurrency starts after bus
ownership is granted and the GDOZE signal is asserted. If WAIT instruction is executed
during a bus operation, the GDOZE signal is asserted after the bus operation is
completed. The snooping of an external bus master is done by ST concurrency when the
TX49 Megacell is in the doze mode. For the bus that is released by the assertion of the
SGNT* signal or the GHPSGNT* signal, snooping of the data cache can be performed by
the GSNOOP* signal and the GA[35~0] signal. When an external bus master deasserts
the GSREQ* signal or the GHPSREQ* signal, the TX49 Megacell deasserts the GSGNT*
signal or the GHPSGNT* signal.

By asserting the GINT[5~0]* signal, the GNMI* signal, the GRESET* signal or the
GCOLDRESET* signal, the internal doze bit is cleared and the TX49 Megacell returns
from the doze mode. If this is caused by the assertion of the GINT[5~0]* signal, the TX49
Megacell is released from the doze mode irrespective of the value in the IntMask field of
the Status register. If the TX49 Megacell is brought back from the doze mode by the
GCOLDRESET* signal, the GNMI* signal, or a non-masked GINT[5~0]* signal, the top
instruction in the corresponding exception handler is executed. At this time, the EPC is
pointing to the instruction following the WAIT instruction. If it is recovered by a masked
GINT[5~0]* signal, execution resumes from the instruction following the instruction that
was being executed when it shifted to the doze mode.

TX49 Architecture

21-3

As shown in Figure 21-1, the TX49 Megacell outputs the status of the internal doze bit
on the GDOZE signal. The memory interface output signals in the doze mode are
maintained in the same status as when no bus operation was executed.

Note: When the condition is brought back from the Power Consumption Modes are satisfied and WAIT
instruction is executed, the TX49 Megacell does not shift to the mode.

GBUSCLK

GDOZE

Internal
CPUCLK
(except snoop clock)

GRD* , GWR*

W-stage

before here

of WAITM-stage

Wait bit set 1

Figure 21-1 Doze Mode

21.3 Status Shifts

Figure 21-1 shows the status shifts in the operation mode of the TX49 Megacell.

Interrupt or Reset

Interrupt or

Reset

Interrupt or

Reset

Wait bit = 1 & WAIT instWait bit = 0 & WAIT inst.

Halt

Mode

Normal
Operation

Mode

Doze

Mode

Figure 21-1 Status Shift Among Normal Operation Mode and Low Power Consumption Modes

When operation status shifts from the normal operation mode to the halt mode, it is
returned to the normal operation mode by an interrupt or a reset. Similarly, when it
shifts from the normal operation mde to the doze mode, it is returned to the normal
operation mode by an interrupt or a reset. After a reset, the TX49 Megacell is initialized
to the normal operation mode.

TX49 Architecture

21-4

TX49 Architecture

22-1

22. TX49 MCU Concept

ALU

PCU

IF

/Branch

LD/ST

I-Cache

D-Cache

MMU

WBMAC

FPU GBUS I/F DSU

Pure Core

MPU Core (ASIC Core)

MCU (ASIC)

EBUS I/F

Ext. BUS

IMBUS I/F

GBUS

IMBUS

(GBUSCLK

 x 1/2)

(CPUCLK x 1,1/2,1/3,1/4)

PLL (x16)

9.375 MHz

(GBUSCLK

x 1,1/2,1/3,1/4)

SIO TMR DMACIRC MPEG PCI User Logic(S) DRAMCROMC

CG

CPUCLK

GBUSCLK

IMBUSCLK

SYSCLK

(150 MHz)

JTAG

JTAG

 Figure 22-1 MCU concept

TX49 Architecture

22-2

1 Using Toshib a Semicon duc tors Safety

1

I. Using Toshiba Semiconductors Safely
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless,
semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and
vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to
observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA
product could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating
ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions
and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

1 Using Toshib a Semicon duc tors Safety

2

2 Safety Precau tions

1

I. Safety Precautions
This section lists important precautions which users of semiconductor devices (and anyone else) should
observe in order to avoid injury and damage to property, and to ensure safe and correct use of devices.
Please be sure that you understand the meanings of the labels and the graphic symbol described below
before you move on to the detailed descriptions of the precautions.

[Explanation of labels]

Indicates an imminently hazardous situation which will most likely result in

death or serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which could result in death or

serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which, if not remedied, may result

in minor injury or worse.

[Explanation of graphic symbol]

Graphic symbol Meaning

Indicates that caution is required (laser beam is dangerous to eyes).

2 Safety Precau tions

2

A. General Precautions Regarding Semiconductor Devices

Do not use devices under conditions exceeding their absolute maximum ratings (e.g. current, voltage,

power dissipation or temperature).

This may cause the device to break down, may degrade its performance, or cause it to catch fire or

explode, resulting in injury.

Do not insert devices in the wrong orientation.

Make sure that the positive and negative terminals of power supplies are connected correctly.

Otherwise, the rated maximum current or power dissipation may be exceeded and the device may break

down or undergo performance degradation, causing it to catch fire or explode and resulting in injury.

When power to a device is on, do not touch the device’s heat sink.

Heat sinks become hot, so you may burn your hand.

Do not touch the tips of device leads.

Because some types of device have leads with pointed tips, you may prick your finger.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing

equipment’s electrodes or probes to the pins of the device under test before powering it on.

Otherwise, you may receive an electric shock, causing injury.

Before grounding an item of measuring equipment or a soldering iron, check that there is no electrical

leakage from it.

Electrical leakage may cause the device which you are testing or soldering to break down, or could give

you an electric shock.

Always wear protective glasses when cutting the leads of a device with clippers or a similar tool.

If you do not, small bits of metal flying off the cut ends may damage your eyes.

2 Safety Precau tions

3

A. Precautions Specific to Each Product Group

1. Optical Semiconductor Devices

When a visible semiconductor laser is operating, do not look directly into the laser beam or look

through the optical system.

This is highly likely to impair vision, and in the worst case, may cause blindness.

If it is necessary to examine the laser apparatus, for example, to inspect its optical characteristics,

always wear the appropriate type of laser protective glasses according to JIS standard JISC6802.

Ensure that the current flowing in an LED device does not exceed the device’s maximum rated current.

This is particularly important for resin-packaged LED devices, as excessive current may cause the

package resin to blow up, scattering resin fragments and causing injury.

When testing the dielectric strength of a photocoupler, use testing equipment which can shut off the

supply voltage to the photocoupler. If you detect a leakage current of more than 100 µA, use the

testing equipment to shut off the photocoupler’s supply voltage; otherwise a large short-circuit current

will flow continuously, and the device may break down or burst into flames, resulting in fire or injury.

When incorporating a visible semiconductor laser into a design, use the device’s internal photodetector

or a separate photodetector to stabilize the laser’s radiant power so as to ensure that laser beams

exceeding the laser’s rated radiant power cannot be emitted.

If this stabilizing mechanism does not work and the rated radiant power is exceeded, the device may

break down or the excessively powerful laser beams may cause injury.

1. Power Devices (IGBTs)

Never touch a power device while it is powered on. Also, after turning off a power device, do not touch it

until it has thoroughly discharged all remaining electrical charge.

Touching a power device while it is powered on or still charged could cause a severe electric shock,

resulting in death or serious injury.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing

equipment’s electrodes or probes to the device under test before powering it on.

When you have finished, discharge any electrical charge remaining in the device.

Connecting the electrodes or probes of testing equipment to a device while it is powered on may result

in electric shock, causing injury.

2 Safety Precau tions

4

Do not use devices under conditions which exceed their absolute maximum ratings (current, voltage,

power dissipation, temperature etc.).

This may cause the device to break down, causing a large short-circuit current to flow, which may in turn

cause it to catch fire or explode, resulting in fire or injury.

Use a unit which can detect short-circuit currents and which will shut off the power supply if a short-

circuit occurs.

If the power supply is not shut off, a large short-circuit current will flow continuously, which may in turn

cause the device to catch fire or explode, resulting in fire or injury.

When designing a case for enclosing your system, consider how best to prevent the user from shrapnel

in the event of the device catching fire or exploding.

Flying shrapnel can cause injury.

When conducting any kind of evaluation, inspection or testing, always use protective safety tools such

as a cover for the device. Otherwise you may sustain injury caused by the device catching fire or

exploding.

Make sure that all metal casings in your design are grounded to earth.

Even in modules where a device’s electrodes and metal casing are insulated, capacitance in the module

may cause the electrostatic potential in the casing to rise.

Dielectric breakdown may cause a high voltage to be applied to the casing, causing electric shock and

injury to anyone touching it.

When designing the heat radiation and safety features of a system incorporating high-speed rectifiers,

remember to take the device’s forward and reverse losses into account.

The leakage current in these devices is greater than that in ordinary rectifiers; as a result, if a high-

speed rectifier is used in an extreme environment (e.g. at high temperature or high voltage), its reverse

loss may increase, causing thermal runaway to occur. This may in turn cause the device to explode and

scatter shrapnel, resulting in injury to the user.

When conducting any kind of evaluation, inspection or testing, either wear protective gloves or wait until

the device has cooled properly before handling it.

Devices become hot when they are operated. Even after the power has been turned off, the device will

retain residual heat which may cause a burn to anyone touching it.

2 Safety Precau tions

5

1. Bipolar ICs (for automotive use)

If your design includes an inductive load such as a motor coil, incorporate diodes or similar devices into

your design to prevent negative current from flowing in.

The load current generated by powering the device on and off may cause it to function erratically or to

break down, which could in turn cause injury.

Ensure that the power supply to any device which incorporates protective functions is stable.

If the power supply is unstable, the device may operate erratically, preventing the protective functions

from working correctly. If protective functions fail, the device may break down, causing injury to the

user.

2 Safety Precau tions

6

3 General Safety Precautions and Usage Considerations

7

I. General Safety Precautions and Usage
Considerations
This section is designed to help you gain a better understanding of semiconductor devices, so
as to ensure the safety, quality and reliability of the devices which you incorporate into your
designs.

A. From Incoming to Shipping

1. Electrostatic Discharge (ESD)

When handling individual devices (which are not yet mounted
on a printed circuit board), be sure that the environment is
protected against electrostatic electricity. Operators should wear
anti-static clothing, and containers and other objects that come
into direct contact with devices should be made of anti-static
materials and should be grounded to earth via an 0.5- to 1.0-M
Ω protective resistor.
Please follow the precautions described below; this is
particularly important for devices which are marked “Be careful of static.”.

a) Work Environment

(1) When humidity in the working environment decreases, the human body
and other insulators can easily become charged with static electricity due
to friction. Maintain the recommended humidity of 40% to 60% in the
work environment, while also taking into account the fact that moisture-
proof-packed products may absorb moisture after unpacking.

(2) Be sure that all equipment, jigs and tools in the working area are grounded
to earth.

(3) Place a conductive mat over the floor of the work area, or take other
appropriate measures, so that the floor surface is protected against static
electricity and is grounded to earth. The surface resistivity should be 104 to
108_Ω/sq and the resistance between surface and ground, 7.5_×_105 to
108_Ω.

(4) Cover the workbench surface also with a conductive mat (with a surface
resistivity of 104 to 108_Ω/sq, for a resistance between surface and ground
of 7.5_×_105 to 108_Ω). The purpose of this is to disperse static electricity
on the surface (through resistive components) and ground it to earth.
Workbench surfaces must not be constructed of low-resistance metallic
materials that allow rapid static discharge when a charged device touches
them directly.

(5) Pay attention to the following points when using automatic equipment in
your workplace:

(a) When picking up ICs with a vacuum unit, use a conductive rubber fitting
at the end of the pick-up wand to protect against electrostatic charge.

(b) Minimize friction on IC package surfaces. If some rubbing is unavoidable
due to the device’s mechanical structure, minimize the friction plane or

3 General Safety Precautions and Usage Considerations

8

use material with a small friction coefficient and low electrical resistance.
Also consider the use of an ionizer.

(c) In sections that come into contact with device lead terminals, use a
material that dissipates static electricity.

(d) Ensure that no statically charged bodies (such as work clothes or the
human body) touch the devices.

(e) Make sure that sections of the tape carrier which come into contact with
installation devices or other electrical machinery are made of a low-
resistance material.

(f) Make sure that jigs and tools used in the assembly process do not touch
devices.

(g) In processes in which packages may retain an electrostatic charge, use an
ionizer to neutralize the ions.

(6) Make sure that CRT displays in the working area are protected against
static charge, for example by a VDT filter. As much as possible, avoid
turning displays on and off. Doing so can cause electrostatic induction in
devices.

(7) Keep track of charged potential in the working area by taking periodic
measurements.

(8) Ensure that work chairs are protected by an anti-static textile cover and are
grounded to the floor surface by a grounding chain. (Suggested resistance
between the seat surface and grounding chain is 7.5×105 to 1012Ω/sq.)

(9) Install anti-static mats on storage shelf surfaces. (Suggested surface
resistivity is 104 to 108Ω/sq; suggested resistance between surface and
ground is 7.5×105 to 108Ω/sq.)

(10) For transport and temporary storage of devices, use containers (boxes,
jigs, bags) that are made of anti-static materials or of materials that
dissipate electrostatic charge.

(11) Make sure that cart surfaces which come into contact with device
packaging are made of materials that will conduct static electricity, and
verify that they are grounded to the floor surface with a grounding chain.
(The suggested resistance between the cart surface and grounding chain is
7.5×105 to 1010Ω/sq.)

(12) In any location where the level of static electricity is to be closely
controlled, the ground resistance level should be Class 3 or above. Use
different ground wires for all items of equipment which may come into
physical contact with devices.

a) Operating Environment

(1) Operators must wear anti-static clothing
and conductive shoes (or a leg or heel
strap).

(2) Operators must wear a wrist strap
grounded to earth via a resistor of about
1MΩ.

(3) Soldering irons must be grounded from iron tip to earth, and must be used
only at low voltages (6V to 24V).

3 General Safety Precautions and Usage Considerations

9

(4) If the tweezers you use are likely to touch the device terminals, use anti-
static tweezers and in particular avoid metallic tweezers. If a charged
device touches a low-resistance tool, rapid discharge can occur. When
using vacuum tweezers, attach a conductive chucking pat to the tip, and
connect it to a dedicated ground used especially for anti-static purposes
(suggested resistance value: 104 to 108Ω).

(5) Do not place devices or their containers near sources of strong electrical
fields (such as above a CRT).

(6) When storing printed circuit boards which have devices mounted on them,
use a board container or bag that is protected against static charge. To
avoid the occurrence of static charge or discharge due to friction, keep the
boards separate from one other and do not stack them directly on top of
one another.

(7) Ensure, if possible, that any articles (such as clipboards) which are
brought to any location where the level of static electricity must be closely
controlled are constructed of anti-static materials.

(8) In cases where the human body comes into direct contact with a device, be
sure to wear anti-static finger covers or gloves (suggested resistance value:
108Ω or less).

(9) Equipment safety covers installed near devices should have resistance
ratings of 109Ω or less.

(10) If a wrist strap cannot be used for some reason, and there is a possibility of
imparting friction to devices, use an ionizer.

3 General Safety Precautions and Usage Considerations

10

(11) The transport film used in TCP products is manufactured from materials in
which static charges tend to build up. When using these products, install
an ionizer to prevent the film from being charged with static electricity.
Also, ensure that no static electricity will be applied to the product’s
copper foils by taking measures to prevent static occuring in the peripheral
equipment.

1. Vibration, Impact and Stress

Handle devices and packaging materials with care. To avoid damage to
devices, do not toss or drop packages. Ensure that devices are not
subjected to mechanical vibration or shock during transportation. Ceramic
package devices, and devices in canister-type packages which have empty space
inside them, are subject to damage from vibration and shock because bonding
wires are secured only at their ends. Plastic molded devices, on the other hand,
have a relatively high level of resistance to vibration and mechanical shock
because their bonding wires are enveloped and fixed in resin. However, when
any device or package type is installed in target equipment, it is to some extent
susceptible to wiring disconnections and other damage from vibration, shock
and stressed solder junctions. Therefore when incorporating devices into the
design of vibration-prone equipment, the structural design of the equipment
must be thought out carefully.
If a device is subjected to especially strong vibration, mechanical shock or
stress, the package or the chip itself may crack. In products such as CCDs
which incorporate window glass, this could cause surface flaws in the glass or
cause the glass connection to separate.
Furthermore, it is generally known that stress applied to a semiconductor device
through the package changes the resistance characteristics of the chip because
of piezoelectric effects. In analog circuit design, attention must be paid to the
problem of package stress as well as to the dangers of vibration and shock as
described above.

A. Storage

1. General Storage

(1) Avoid storage locations where devices will be exposed to moisture or direct
sunlight. (Be especially careful during periods of rain or snow.)

(2) Do not place device cartons upside down. Stack cartons on top of one
another in an upright position only; do not place cartons on their sides.

(3) The storage area temperature should be kept within a temperature
range of 5°C to 35°C, and relative humidity should be maintained at between
45% and 75%.

(4) Do not store devices in the presence of harmful (especially corrosive) gases, or
in dusty conditions.

(5) Use storage areas where there is minimal temperature fluctuation. Rapid
temperature changes can cause moisture to form on stored devices, resulting in
lead oxidation or corrosion. As a result, the solderability of the leads will be
degraded.

3 General Safety Precautions and Usage Considerations

11

(6) When repacking devices, use anti-static containers.

(7) Do not allow external forces or loads to be applied to devices while they are in
storage.

(8) If devices have been stored for more than two years, their electrical
characteristics should be tested and their leads should be tested for ease of
soldering before they are used.

1. Moisture-Proof Packing

(1) Do not drop or toss device packing. The laminated
aluminum material in it can be rendered ineffective by
rough handling.

(2) Ensure that packing materials are stored in a 30°C, 90%
RH environment. Use devices within 12 months.

(3) If the 30% humidity indicator shown in Figure 1.1 is pink
when the packing is opened, depending on the device and packing types, it may
be advisable to bake the devices at high temperature to remove any moisture.
See Section 3.2.2(4) below. It may also be advisable to bake the devices if the
effective usage period for the indicator has expired. After the pack is opened,
use the devices in a 30°C, 60% RH environment, and within the effective usage
period listed on the moisture-proof package.

(4) The following describes high-temperature treatments for the various packing
types. Contact Toshiba or a Toshiba distributor for more information.

(a) Tray: If the tray is heat-proof, bake at 125°C for 20 hours (heat-proof trays
bear a “Heat-Proof” marking). Bake non-heat-proof trays at 70°C for
168 hours.

(b) Tube: Tubes are not heat-proof. Transfer devices to heat-proof trays or
aluminum tubes before baking at 125°C for 20 hours.

(c) Tape: Packing that includes adhesive or embossed tape cannot be baked.
Devices packed on tape must be used within the permitted time limit
after unpacking, as specified on the packing.

For types (a) and (b), be careful not to bend device leads when baking.

Figure 1.1 Humidity Indicator

3 General Safety Precautions and Usage Considerations

12

A. Design

Care must be exercised in the design of electronic equipment to achieve the desired
reliability. It is important not only to adhere to specifications concerning absolute
maximum ratings and recommended operating conditions, it is also important to
consider the overall environment in which equipment will be used, including factors
such as the ambient temperature, transient noise, voltage and current surges, as well as
mounting conditions that affect device reliability. This section describes some general
precautions that you should observe when designing circuits and when mounting
devices on printed circuit boards.
For more detailed information about each product family, refer to the relevant
individual databooks, available from Toshiba.

1. Absolute Maximum Ratings

Do not use devices under conditions in which their absolute maximum ratings
(e.g. current, voltage or power dissipation) will be exceeded. A device may
break down or its performance may be degraded, causing it to catch fire or
explode resulting in injury to the user.

The absolute maximum ratings are rated values which must not be exceeded
during operation, even for an instant. Although absolute maximum ratings differ
from product to product, they essentially concern the voltage and current at each
pin, the allowable power dissipation, and the junction and storage temperatures.
If the voltage or current on any pin exceeds the absolute maximum rating, the
device’s internal circuitry can become degraded. In the worst case, heat
generated in internal circuitry can fuse wiring or cause the semiconductor chip
to break down.
If storage or operating temperatures exceed rated values, the package seal can
deteriorate or the wires can become disconnected due to the differences between
the thermal expansion coefficients of the materials from which the device is
constructed.

1. Recommended Operating Conditions

The recommended operating conditions for each device are those necessary to
guarantee that the device will operate as specified in the datasheet.
If greater reliability is required, derate the device’s absolute maximum ratings
for voltage, current, power and temperature before using it.

1. Derating

When incorporating a device into your design, reduce its rated maximum
voltage, current, power dissipation and operating temperature in order to ensure
high reliability.

3 General Safety Precautions and Usage Considerations

13

Since derating differs from application to application, refer to the technical
datasheets available for the various devices used in your design.

1. Unused Pins

Some devices can exhibit input instability problems if unused pins are left open.
Similarly, care must be taken not to connect the output pins of a device to the
power supply (Vcc or Vdd) pin or to other output pins. For details concerning
the handling of unused pins, follow the procedures described in the relevant
technical datasheet or databook for the device being used. CMOS logic IC
inputs, for example, have extremely high impedance. If an input pin is left open,
it can easily pick up extraneous noise and become unstable. In this case, if the
input voltage level reaches an intermediate level, both the P-channel and N-
channel

3 General Safety Precautions and Usage Considerations

14

transistors may be turned on, allowing unwanted supply current to flow.
Therefore, ensure that the unused input pins of a device are connected to the
power supply (Vcc) pin or ground (GND) pin of the same device. For details of
what to do with the pins of heat sinks, refer to the relevant technical datasheet
or databook.

1. Latch-up

Latch-up is an abnormal condition inherent in CMOS devices, in which Vcc
gets shorted to ground. This happens when a parasitic PN-PN junction (thyristor
structure) internal to the CMOS chip is turned on, causing a large current of the
order of several hundred mA or more to flow between Vcc and GND,
eventually causing the device to break down.
Latch-up occurs when the input/output voltage exceeds the rated value, causing
a large current to flow in the internal chip, or when the voltage on the Vcc
(Vdd) pin exceeds its rated value, forcing the internal chip into a breakdown
condition. Once the chip falls into the latch-up state, even though the excess
voltage may have been applied only for an instant, the large current continues to
flow between Vcc (Vdd) and GND (Vss). This causes the device to heat up and,
in extreme cases, to emit gas fumes as well. To avoid this problem, observe the
following precautions:

(1) Do not allow voltage levels on the input/output pins either to rise
above Vcc (Vdd) or to fall below GND (Vss). Also, follow any
prescribed power-on sequence, so that power is applied gradually or
in steps rather than abruptly.

(2) Allow no abnormal noise signals to be applied to the device.

(3) Set the voltage levels of unused input pins to Vcc (Vdd) or (GND)
Vss.

(4) Do not connect outputs to one another.

1. Input/Output Protection

Wired-AND configurations, in which outputs are connected together, cannot be
used, since this short-circuits the outputs. Outputs should, of course, never be
connected to Vcc (Vdd) or GND (Vss).
Furthermore, ICs with tri-state outputs can undergo performance degradation if
a shorted output current is allowed to flow for an extended period of time.
Therefore, when designing circuits, make sure that tri-state outputs will not be
enabled simultaneously.

1. Load Capacitance

Some devices display increased delay times if the load capacitance is large.
Also, large charging and discharging currents will flow in the device, causing
noise. Furthermore, since outputs are shorted for a relatively long time, wiring
can become fused.
Consult the technical information for the device being used to determine the
recommended load capacitance.

1. Thermal Design

The failure rate of semiconductor devices is greatly increased as operating

3 General Safety Precautions and Usage Considerations

15

temperatures increase. As shown in Figure 1.1, the internal thermal stress on a
device is the sum of the ambient temperature and the temperature rise due to
power dissipation in the device. Therefore, to achieve optimum reliability,
observe the following precautions concerning thermal design:

(1) Keep the ambient temperature (Ta) as low as possible.

(2) If the device’s dynamic power dissipation is relatively large, select the
most appropriate circuit board material, and consider the use of heat sinks
or of forced air cooling. Such measures will help lower the thermal
resistance of the package.

3 General Safety Precautions and Usage Considerations

16

(3) Derate the device’s absolute maximum ratings to minimize thermal stress
from power dissipation.
θja=θjc+θca
θja=(Tj–Ta)/W
θjc=(Tj–Tc)/W
θca=(Tc–Ta)/W
in which θja = thermal resistance between junction and surrounding air
(°C/W)
θjc = thermal resistance between junction and package surface, or

internal thermal resistance (°C/W)
θca = thermal resistance between package surface and surrounding
air,

or external thermal resistance (°C/W)
Tj = junction temperature or chip temperature (°C)
Tc = package surface temperature or case temperature (°C)
Ta = ambient temperature (°C)
W = power dissipation (W)

Figure 1.1 Thermal Resistance of Package

1. Interfacing

When connecting inputs and outputs between devices, make sure input voltage
(VIL/VIH) and output voltage (VOL/VOH) levels are matched. Otherwise, the
devices may malfunction. When connecting devices operating at different
supply voltages, such as in a dual-power-supply system, be aware that
erroneous power-on and power-off sequences can result in device breakdown.
For details of how to interface particular devices, consult the relevant technical
datasheets and databooks. If you have any questions or doubts about
interfacing, contact your nearest Toshiba office or distributor.

1. Decoupling

Spike currents generated during switching can cause Vcc (Vdd) and GND (Vss)
voltage levels to fluctuate, causing ringing in the output waveform or a delay in
response speed. (The power supply and GND wiring impedance is normally 50
Ω to 100Ω.) For this reason, the impedance of power supply lines with respect
to high frequencies must be kept low. This can be accomplished by using thick
and short wiring for the Vcc (Vdd) and GND (Vss) lines and by installing
decoupling capacitors (of approximately 0.01 to 1µF capacitance) as high-
frequency filters between Vcc (Vdd) and GND (Vss) at strategic locations on
the printed circuit board.
For low-frequency filtering, it is a good idea to install a 10- to 100-µF capacitor
on the printed circuit board (one capacitor will suffice). If the capacitance is
excessively large, however, (e.g. several thousand µF) latch-up can be a
problem. Be sure to choose an appropriate capacitance value.
An important point about wiring is that, in the case of high-speed logic ICs,
noise is caused

3 General Safety Precautions and Usage Considerations

17

mainly by reflection and crosstalk, or by the power supply impedance.
Reflections cause increased signal delay, ringing, overshoot and undershoot,
thereby reducing the device’s safety margins with respect to noise. To prevent
reflections, reduce the wiring length by increasing the device mounting density
so as to lower the inductance (L) and capacitance (C) in the wiring. Extreme
care must be taken, however, when taking this corrective measure, since it tends
to cause crosstalk between the wires. In practice, there must be a trade-off
between these two factors.

1. External Noise

Printed circuit boards with long I/O or signal pattern lines are
vulnerable to induced noise or surges from outside sources.
Consequently, malfunctions or breakdowns can result from overcurrent or
overvoltage, depending on the types of device used. To protect against noise,
lower the impedance of the pattern line or insert a noise-canceling circuit.
Protective measures must also be taken against surges.
For details of the appropriate protective measures for a particular device,
consult the relevant databook.

1. Electromagnetic Interference

Widespread use of electrical and electronic equipment in recent years has
brought with it radio and TV reception problems due to electromagnetic
interference. To use the radio spectrum effectively and to maintain radio
communications quality, each country has formulated regulations limiting the
amount of electromagnetic interference which can be generated by individual
products.
Electromagnetic interference includes conduction noise propagated through
power supply and telephone lines, and noise from direct electromagnetic waves
radiated by equipment. Different measurement methods and corrective
measures are used to assess and counteract each specific type of noise.
Difficulties in controlling electromagnetic interference derive from the fact that
there is no method available which allows designers to calculate, at the design
stage, the strength of the electromagnetic waves which will emanate from each
component in a piece of equipment. For this reason, it is only after the prototype
equipment has been completed that the designer can take measurements using a
dedicated instrument to determine the strength of electromagnetic interference
waves.
Yet it is possible during system design to incorporate some measures for the
prevention of electromagnetic interference, which can facilitate taking
corrective measures once the design has been completed. These include
installing shields and noise filters, and increasing the thickness of the power
supply wiring patterns on the printed circuit board. One effective method, for
example, is to devise several shielding options during design, and then select
the most suitable shielding method based on the results of measurements taken
after the prototype has been completed.

1. Peripheral Circuits

In most cases semiconductor devices are used with peripheral circuits and
components. The input/output signal voltages and currents of these circuits
must be chosen to match the semiconductor device’s specifications. The

3 General Safety Precautions and Usage Considerations

18

following factors must be taken into account.

(1) Inappropriate voltages or currents applied to a device’s input pins may
cause it to operate erratically. Some devices contain pull-up/pull-down
resistors. When designing your system, remember to take the effect of this
on the required voltage and current levels into account.

(2) The output pins on a device have a predetermined external circuit drive
capability. If this drive capability is greater than that required, either
incorporate a compensating circuit into your design or carefully select
suitable components for use in external circuits.

1. Safety Standards

Each country has safety standards which must be observed. For example, for
devices that handle high voltages, it is often required that an appropriate
insulation distance be maintained between the device proper and the conductor
pattern on the printed circuit board. Such requirements must be fully taken into
account to ensure that your design conforms to the applicable safety standards.

1. Other Precautions

(1) When designing a system, be sure to incorporate fail-safe and other appropriate
measures according to the intended purpose of your system. Also, be sure to
debug your system under actual board-mounted conditions.

(2) If a plastic-package device is placed in a strong electric field, surface leakage
may occur due to the charge-up phenomenon, resulting in device malfunction.
In such cases, take appropriate measures to prevent this problem, for example
by protecting the package surface with a conductive shield.

(3) With some microcomputers and MOS memory devices, caution is required
when powering on or resetting the device. To ensure that your design does not
violate device specifications, consult the relevant databook for each constituent
device.

(4) Ensure that no conductive material or object (such as a metal pin) can drop onto
and short the leads of a device mounted on a printed circuit board.

A. Inspection, Testing and Evaluation

1. Grounding
Ground all measuring instruments, jigs, tools and soldering irons to earth.
Electrical leakage may cause a device to break down or may result in electric
shock.

3 General Safety Precautions and Usage Considerations

19

1. Inspection Sequence
symbol 129 \f "Wingdings" \s 11cS Do not insert devices in the wrong

orientation. Make sure that the positive and negative electrodes of the power
supply are correctly connected. Otherwise, the rated maximum current or
maximum power dissipation may be exceeded and the device may break
down or undergo performance degradation, causing it to catch fire or explode,
resulting in injury to the user.

symbol 130 \f "Wingdings" \s 11dS When conducting any kind of evaluation,
inspection or testing using AC power with a peak voltage of approximately 45
V or DC power exceeding
60 V, be sure to connect the electrodes or probes of the testing equipment to
the device under test before powering it on. Connecting the electrodes or
probes of testing equipment to a device while it is powered on may result in
electric shock, causing injury.

(1) Before beginning device inspection, make a final check to ensure that all
associated equipment is properly grounded to earth and that there is no
electrical leakage as described above. Apply voltage to the test jig only after
inserting the device securely into it. (Do not power the test jig up or down
abruptly; always apply or remove power gradually or in steps.)

3 General Safety Precautions and Usage Considerations

20

(2) Make sure that the voltage applied to the device is off before removing the
device from the test jig. Otherwise, the device may undergo performance
degradation or be destroyed.

(3) Make sure that no surge voltages from the measuring equipment are applied to
the device.

(4) The chips housed in tape carrier packages (TCPs) are bare chips and are
therefore exposed. During inspection take care not to crack the chip or cause
any flaws in it.
Electrical contact may also cause a chip to become faulty. Therefore make sure
that nothing comes into electrical contact with the chip.

A. Mounting

There are essentially two main types of semiconductor device package: lead insertion
and surface mount. During mounting on printed circuit boards, devices can become
contaminated by flux or damaged by thermal stress from the soldering process.
Particularly with surface mount devices, the most significant problem is thermal stress
from solder reflow, when the entire package is subjected to heat. This section describes
a recommended temperature profile for each mounting method, as well as general
precautions which you should take when mounting devices on printed circuit boards.
Note, however, that even for devices with the same package type, the appropriate
mounting method varies according to the size of the chip and the size and shape of the
lead frame. Therefore, please consult the appropriate technical datasheet or databook.

1. Lead Forming

symbol 129 \f "Wingdings" \s 11cS Always wear protective glasses
when cutting the leads of a device with clippers or a similar tool. If you do
not, small bits of metal flying off the cut ends may damage your eyes.

symbol 130 \f "Wingdings" \s 11dS Because some types of device have
leads with pointed tips, you may prick your finger.

Semiconductor devices must undergo a process in which the leads are cut and
formed before the devices can be mounted on a printed circuit board. If undue
stress is applied to the interior of a device during this process, mechanical
breakdown or performance degradation can result. This is attributable primarily
to differences between the stress on the device’s external leads and the stress on
the internal leads. If the relative difference is great enough, the device’s internal
leads, adhesive properties or sealant can be damaged. Observe these precautions
during the lead forming process (this does not apply to surface mount devices):

(1) Lead insertion hole intervals on the printed circuit board should match the lead
pitch of the device precisely.

(2) If lead insertion hole intervals on the printed circuit board do not precisely
match the lead pitch of the device, do not attempt to forcibly insert devices by
pressing on them or by pulling on their leads.

(3) For the minimum clearance specification between a device and a
printed circuit board, refer to the relevant device’s datasheet or
databook. If necessary, achieve the required clearance by forming the
device’s leads appropriately. Do not use the spacers which are used to raise

3 General Safety Precautions and Usage Considerations

21

devices above the surface of the printed circuit board during soldering to
achieve clearance. These spacers normally continue to expand due to heat, even
after the solder has begun to solidify; this applies severe stress to the device.

(4) Do not repeatedly bend or stretch device leads.

(5) Observe the following precautions when forming the leads of a device prior to
mounting.

(a) Use a tool or jig to secure the lead at its base (where the lead meets the
device package) while bending.

(b) Maintain a certain distance between the device package and the tool or jig.

(c) When forming a lead by bending it over a jig surface, be careful not to
damage the lead on the edge of the jig surface.

(d) Follow any other precautions described in the individual datasheets and
databooks for each device and package type.

1. Socket Mounting

(1) When socket mounting devices on a printed circuit board, use sockets which
match the inserted device’s package.

(2) Use sockets whose contacts have the appropriate contact pressure. If the contact
pressure is insufficient, the socket may not make a perfect contact when the
device is repeatedly inserted and removed; if the pressure is excessively high,
the device leads may be bent or damaged when they are inserted into or
removed from the socket.

(3) When soldering sockets to the printed circuit board, use sockets whose
construction prevents flux from penetrating into the contacts or which allows
flux to be completely cleaned off.

(4) Make sure the coating agent applied to the printed circuit board for moisture-
proofing purposes does not stick to the socket contacts.

(5) If the device leads are severely bent by a socket as it is inserted or removed and
you wish to repair the leads so as to continue using the device, make sure that
this lead correction is only performed once. Do not use devices whose leads
have been corrected more than once.

(6) If the printed circuit board with the devices mounted on it will be subjected to
vibration from external sources, use sockets which have a strong contact
pressure so as to prevent the sockets and devices from vibrating relative to one
another.

1. Soldering Temperature Profile

The soldering temperature and heating time vary from device to device.
Therefore, when specifying the mounting conditions, refer to the individual
datasheets and databooks for the devices used.

a) Using a Soldering Iron

Complete soldering within ten seconds for lead temperatures of up to
260°C, or within three seconds for lead temperatures up to 350°C.

3 General Safety Precautions and Usage Considerations

22

a) Using Medium Infrared Ray Reflow

(a) Heating top and bottom with long or medium infrared rays is
recommended
(see ref _Ref420308942 * Mergeformat Figure 3.5.3.1).

Figure styleref 3 \n 3.5.3.seq Figure * Arabic \r 1 1 Heating Top and Bottom with Long or

Medium Infrared Rays

3 General Safety Precautions and Usage Considerations

23

(b) Complete the infrared ray reflow process within 30 seconds at a
package surface temperature of between 210°C and 240°C.

(c) Refer to ref _Ref420309387 * Mergeformat Figure 3.5.3.2 for an
example of a good temperature profile for infrared or hot air reflow.

Figure styleref 3 \n 3.5.3.seq Figure * Arabic 2 Sample Temperature Profile for Infrared or

Hot Air Reflow

a) Using Hot Air Reflow

(a) Complete hot air reflow within 30 seconds at a package surface
temperature of between 210°C and 240°C.

(b) For an example of a recommended temperature profile, refer to
Figure 3.5.3.2 above.

a) Using Vapor Phase Reflow Soldering (VPS)

(a) The recommended solvent is Fluorinate FC-70 or equivalent.

(b) Complete hot air reflow within 30 seconds at an ambient atmospheric
temperature of 215°C, or within 60 seconds at an ambient
atmospheric temperature of 200°C.

(c) Refer to ref _Ref420309564 * Mergeformat Figure 3.5.3.3 for an
example of a good temperature profile for vapor phase reflow
soldering.

Figure styleref 3 \n 3.5.3.seq Figure * Arabic 3 Example Temperature Profile for Vapor

Phase Reflow

a) Using Solder Flow

(1) Apply preheating for 60 to 120 seconds at a temperature of 150oC.

(2) For insertion-type packages, complete solder flow within 10 seconds with
the temperature at the stopper, or at a location more than 1.5 mm from the
body if there is no stopper, which does not exceed 260oC.

(3) For surface mount packages, complete soldering within 5 seconds at a
temperature of 250oC or less in order to prevent thermal stress in the
device.

(4) Figure 3.5.3.4 shows an example of a recommended temperature profile
for surface mount packages using solder flow.

Figure styleref 3 \n 3.5.3.seq Figure * Arabic 4 Sample Temperature Profile for Solder Flow

3 General Safety Precautions and Usage Considerations

24

1. Flux Cleaning and Ultrasonic Cleaning

(1) When cleaning circuit boards to remove flux, make sure that no residual
reactive ions such as Na or Cl remain. Note that organic solvents react with
water to generate hydrogen chloride and other corrosive gases that can degrade
device performance.

(2) Washing devices with water will not cause any problems. However, make sure
that no reactive ions such as sodium and chlorine are left as residues. Also, be
sure to dry devices sufficiently after washing.

(3) Do not rub device markings with a brush or with your hand during cleaning or
while the devices are still wet from the cleaning agent. Doing so can rub off the
markings.

(4) The dip cleaning, shower cleaning and steam cleaning processes all involve the
chemical action of a solvent. Use only recommended solvents for these cleaning
methods. When immersing devices in a solvent or steam bath, make sure that
the temperature of the liquid is 50°C or below, and that the circuit board is
removed from the bath within one minute.

(5) Ultrasonic cleaning can clean circuit boards efficiently in a short period of time.
However, it should not be used with hermetically-sealed ceramic packages such
as a leadless chip carrier (LCC), charge-coupled device (CCD) or pin grid array
(PGA), because the bonding wires can become disconnected due to resonance
during the cleaning process. Plastic packages do not have this problem.
However, limit the duration of ultrasonic cleaning to as short a time as possible,
since long hours of ultrasonic cleaning degrade the adhesion between the mold
resin and the frame material. The following ultrasonic cleaning conditions are
recommended:

Frequency: 27 to 29_kHz

Ultrasonic output power: 300_W or less (0.25_W/cm2 or less)

Cleaning time: 30 seconds or less

Suspend the circuit board in the solvent bath during ultrasonic cleaning in such
a way that the ultrasonic vibrator does not come into direct contact with the
circuit board or the device.

Conventional cleaning solvents that contain freon are not recommended due to
the danger that they pose to the earth’s ozone layer. Alternative products listed
below are available on the market. Some alternative cleaning agents that do not
contain freon include:

• FRW-1, 17; FRV-100 from Toshiba Corporation

• AK-225AES from Asahi Glass Co., Ltd.

• 750H from Kao Co., Ltd.

• ST-100 from Arakawa Chemical Co., Ltd.

Contact Toshiba or a Toshiba distributor regarding cleaning conditions and
other relevant information for each product type.

1. No Cleaning

If analog devices or high-speed devices are used without being cleaned, flux

3 General Safety Precautions and Usage Considerations

25

residues may cause minute amounts of leakage between pins. Similarly, dew
condensation, which occurs in environments containing residual chlorine when
power to the device is on, may cause between-lead leakage or migration.
Therefore, Toshiba recommends that these devices be cleaned.

However, if the flux used contains only a small amount of halogen (0.05% or
less), the devices may be used without cleaning without any problems.

For details of individual devices’ cleaning conditions, please contact Toshiba or
a Toshiba distributor.

1. Mounting Tape Carrier Packages (TCPs)

(1) When tape carrier packages (TCPs) are mounted, measures must be taken to
prevent electrostatic breakdown of the devices.

(2) If devices are being picked up from tape, or outer lead bonding (OLB)
mounting is being carried out, consult the manufacturer of the insertion machine
which is being used, in order to establish the optimum mounting conditions in
advance and to avoid any possible hazards.

(3) The base film, which is made of polyimide, is hard and thin. Be careful not to
cut or scratch your hands or any objects while handling the tape.

(4) When punching tape, try not to scatter broken pieces of tape too much.

(5) Treat the extra film, reels and spacers left after punching as industrial waste,
taking care not to destroy or pollute the environment.

(6) Chips housed in tape carrier packages (TCPs) are bare chips and therefore have
their reverse side exposed. To ensure that the chip will not be cracked during
mounting, ensure that no mechanical shock is applied to the reverse side of the
chip. Electrical contact may also cause a chip to fail. Therefore, when mounting
devices, make sure that nothing comes into electrical contact with the reverse
side of the chip.
If your design requires connecting the reverse side of the chip to the circuit
board, please consult Toshiba or a Toshiba distributor beforehand.

1. Mounting Chips

Devices delivered in chip form tend to degrade or break under external forces
much more easily than plastic-packaged devices. Therefore, caution is required
when handling this type of device.

(1) Mount devices in a well-prepared environment so that chip surfaces will not be
exposed to polluted ambient air or other polluted substances.

(2) When handling chips, be careful not to expose them to static electricity.
In particular, measures must be taken to prevent static damage during the
mounting of chips. With this in mind, Toshiba recommends mounting all
peripheral parts first and then mounting chips last (after all other components
have been mounted).

(3) Make sure that circuit boards (e.g. PCBs) on which chips are being mounted do
not have any chemical residues on them (such as the chemicals which were
used for etching the boards).

(4) When mounting chips on a board, use the method of assembly that is most

3 General Safety Precautions and Usage Considerations

26

suitable for maintaining the appropriate electrical, thermal and mechanical
properties of semiconductor devices.

* For details of devices in chip form, refer to the relevant devices’ individual
datasheets.

1. Circuit Board Coating

When devices are to be used in equipment requiring a high degree of reliability
or in extreme environments (where moisture, corrosive gas or dust is present),
circuit boards may be coated for protection. However, before doing so, you
must carefully consider the possible stress and contamination effects that may
result and choose the coating resin which applies the minimum level of stress to
the device.

1. Heat Sinks

(1) When attaching a heat sink to a device, be careful not to apply excessive force
to the device in the process.

(2) When attaching a device to a heat sink by fixing it at two or more locations,
evenly tighten all the screws in stages (i.e. do not fully tighten one screw while
the rest are still only loosely tightened). Finally, fully tighten all the screws up
to the specified torque.

(3) Drill holes for screws in the heat sink exactly as specified.
Smooth the surface by removing burrs and protrusions or
indentations which might interfere with the installation of any
part of the device.

(4) A coating of silicone compound can be applied between the heat sink and the
device to improve heat conductivity. Be sure to apply the coating thinly and
evenly; do not use too much. Also, be sure to use a nonvolatile compound, as
volatile compounds can crack after a time, causing the heat radiation properties
to deteriorate.

(5) If the device is housed in a plastic package, use caution when selecting the type
of silicone compound to be applied between the heat sink and the device. With
some types, the base oil separates and penetrates the plastic package,
significantly reducing the useful life of the device.

Two recommended silicone compounds in which base oil separation is not a
problem are YG6260 from Toshiba Silicone and G746 from Shinetsu Chemical
Industries.

(6) Heat-sink-equipped devices can become very hot during operation. Do not
touch them, or you may sustain a burn.

1. Tightening Torque

(1) Make sure the screws are tightened with fastening torques not exceeding the
torque values stipulated in individual datasheets and databooks for the devices
used.

(2) Do not allow a power screwdriver (electrical or air-driven) to touch devices.

3 General Safety Precautions and Usage Considerations

27

A. Protecting Devices in the Field

1. Temperature
Semiconductor devices are generally more sensitive to temperature than are
other electronic components. The various electrical characteristics of a
semiconductor device are dependent on the ambient temperature at which the
device is used. It is therefore necessary to understand the temperature
characteristics of a device and to incorporate device derating into circuit design.
Note also that if a device is used above its maximum temperature rating, device
deterioration is more rapid and it will reach the end of its usable life sooner than
expected.

1. Humidity
(1) Resin-molded devices are sometimes improperly sealed. When these devices

are used for an extended period of time in a high-humidity environment,
moisture can penetrate into the device and cause chip degradation or
malfunction. Furthermore, when devices are mounted on a regular printed
circuit board, the impedance between wiring components can decrease under
high-humidity conditions. In systems that require a high signal-source
impedance, circuit board leakage or leakage between device lead pins can cause
malfunctions. The application of a moisture-proof treatment to the device
surface should be considered in this case. On the other hand, operation under
low-humidity conditions can damage a device due to the occurrence of
electrostatic discharge. Unless damp-proofing measures have been specifically
carried out, use devices only in environments with appropriate ambient
moisture levels (i.e. within a relative humidity range of 40% to 60%).

(2) When semiconductor devices are to be used in equipment requiring a high
degree of reliability or in extreme environments (where humidity is high, or
where corrosive gas or dust is present), devices may be coated in order to
moisture-proof them. In such cases, choose the coating resin which applies the
minimum level of stress to the device.

1. Corrosive Gases
Corrosive gases can cause chemical reactions in devices, degrading device
characteristics.
For example, sulphur-bearing corrosive gases emanating from rubber placed
near a device (accompanied by condensation under high-humidity conditions)
can corrode a device’s leads. The resulting chemical reaction between leads
forms foreign particles which can cause electrical leakage.

1. Radioactive and Cosmic Rays
Most industrial and consumer semiconductor devices are not designed with
protection against radioactive and cosmic rays. Devices used in aerospace
equipment or in radioactive environments must therefore be shielded.

1. Strong Electrical and Magnetic Fields
Devices exposed to strong magnetic fields can undergo a polarization
phenomenon in

3 General Safety Precautions and Usage Considerations

28

plastic material, or within the chip, which gives rise to abnormal symptoms
such as impedance changes or increased leakage current. Failures have been
reported in LSIs mounted near malfunctioning deflection yokes in TV sets. In
such cases, the device’s installation location must be changed or the device
must be shielded against the electrical or magnetic field. Shielding against
magnetism is especially necessary for devices used in an alternating magnetic
field, because of the electromotive forces generated in this type of environment.

3 General Safety Precautions and Usage Considerations

29

1. Interference from Light (ultraviolet rays, sunlight,
fluorescent lamps and incandescent lamps)

Light striking a semiconductor device generates electromotive force due to
photoelectric effects. In some cases the device can malfunction. This is
especially true for devices in which the internal chip is exposed. When
designing circuits, make sure devices are protected against incident light from
external sources. This problem is not limited to optical semiconductors and
EPROMs. All types of device can be affected by light.

1. Dust and Oil

Just like corrosive gases, dust and oil can cause chemical reactions in devices,
which will adversely affect a device’s electrical characteristics. To avoid this
problem, do not use devices in dusty or oily environments. This is especially
important for optical devices because dust and oil can affect a device’s optical
characteristics as well as its physical integrity and the electrical performance
factors mentioned above.

1. Fire

Semiconductor devices may be combustible; they can emit smoke and catch fire
if heated sufficiently. When this happens, some devices may generate poisonous
gases. Devices should therefore never be used in close proximity to an open
flame or a heat-generating body, or near flammable or combustible materials.

A. Disposal of Devices and Packing Materials

When discarding unused devices and packing materials, follow all procedures specified
by local regulations in order to protect the environment against contamination.

3 General Safety Precautions and Usage Considerations

30

4 Produc t-Spec ifi c Precau tions an d Usage Cons iderations

1

I. Product-Specific Precautions and Usage
Considerations
This section describes matters specific to each product group that need to be taken into consideration
when using devices. If the same item is described in Sections 3 and 4, the description in Section 4 takes
precedence.

A. Microcontrollers

1. Design

a) Using Resonators not Listed Under “Recommended Types”

Resonators recommended for use with Toshiba products in microcontroller oscillator
applications are listed in Toshiba databooks along with information about oscillation
conditions. If you use a resonator not included in this list, please consult Toshiba or the
resonator manufacturer concerning the suitability of the device for your application.

a) Undefined Functions

In some microcontrollers certain instruction code values do not constitute valid
processor instructions. Also, it is possible that the values of bits in registers will
become undefined. Take care in your applications not to use invalid instructions or to
let register bit values become undefined.

 TX49 Architecture

A-1

Appendix A: CPU Instruction Set Details

This appendix provides a detailed description of the operation of each TX49 instruction in
both 32- and 64-bit modes. The instructions are listed in alphabetical order.

The exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. The description of the immediate causes and manner of
handling exceptions is omitted from the instruction descriptions in this chapter.

Figures at the end of this appendix list the bit encoding for the constant fields of each
instruction, and the bit encoding for each individual instruction is included with that
instruction.

Instruction Classes

The TX49 has some classes of CPU instructions, as follows.

• Load and Store

• Computational

• Jump and Branch

• Coprocessor

• Special

• Exception

• Multiply and Divide

• Debug

• Others

 TX49 Architecture

A-2

Instruction Formats

Every instruction consists of a single word (32�ELWs) aligned on a word boundary. The
main instruction formats are shown in Figure A-1.

J-Type (Jump)

I-Type (Immediate)

immediateop rs rt

15162021252631 0

op target

252631 0

R-Type (Register)

functshamtrdop rs rt

56101115162021252631 0

where:

op is a 6-bit operation code

rs is a 5-bit source register specifier

rt is a 5-bit target (source/destination) register or branch condition

immediate is a 16-bit immediate, branch displacement or address

displacement

target is a 26-bit jump target address

rd is a 5-bit destination register specifier

shamt is a 5-bit shift amount

funct is a 6-bit function field

Figure A-1. CPU Instruction Formats

Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as rs, rt
immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats
of specific instructions. For example, we use rs = base in the format for load and store
instructions. Such an alias is always lower case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of
this Appendix, and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the
operation performed by each instruction using a high-level language notation. The TX49
can operate as either a 32- or 64-bit microprocessor. The operation for both modes is
included with the instruction description. Special symbols used in the notation are
described in Table A-1.

 TX49 Architecture

A-3

Table A-1 CPU Instruction Operation Notations

Symbol Meaning

← Assignment.

  Bit string concatenation.

xy Replication of bit value x into a y-bit string. Note: x is always a single-bit value.

xy...z Selection of bits y through z of bit string x. Little-endian bit notation is always used.

If y isess than z, this expression is an empty (zero length) bit string.

+ Two’s complement or floating-point addition.

− Two’s complement or floating-point subtraction.

* Two’s complement or floating-point multiplication.

Div Two’s complement integer division.

Mod Two’s complement modulo.

/ Floating-point division.

< Two’s complement less than comparison.

And Bitwise logic AND.

Or Bitwise logic OR.

Xor Bitwise logic XOR.

Nor Bitwise logic NOR.

GPR[x] General-Register x. The content of GPR[0] is always zero. Attempts to alter the content of

GPR[0] have no effect.

CPR[z,x] Coprocessor unit z, general register x.

CCR[z,x] Coprocessor unit z, control register x.

COC[z] Coprocessor unit z condition signal.

BigEndianMem Big-endian mode as configured at reset (0 → Little, 1 → Big). Specifies the endianess of

the memory interface (see LoadMemory and StoreMemory), and the endianess of Kernel

and Supervisor mode execution.

ReverseEndian Signal to reverse the endianess of load and store instructions. This feature is available in

User mode only, and is effected by setting the RE bit of the Status register. Thus,

ReverseEndian may be computed as (SR25 and User mode)

BigEndianCPU The endianess for load and store instructions (0 → Little, 1 →Big). In User mode, this

endianess may be reversed by setting SR25 Thus, BigEndianCPU may be computed as

BigEndianMem XOR ReverseEndian.

Llbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET and

Invalidate and read by SC.

T• +• i: Indicates the time steps between operations. Each of the statements within a time step are

defined to be executed in sequential order (as modified by conditional and loop constructs).

Operations which are marked T• +• i: are executed at instruction cycle i relative to the start

of execution of the instruction. Thus, an instruction which starts at time j executes

operations marked T• +• i: at time i• +• j. The interpretation of the order of excution

between two instructions or two operations which execute at the same time should be

pessimistic; the order is not defined.

 TX49 Architecture

A-4

Sign Extension and Zero Extension

With some instructions the bit length may be extended; for example, a 16-bit offset
may be extended to 32�bits. This extension can take the from of either a sign extension
or zero extension.

• Sign extension

The extended part is filled with the value of the most significant bit.

(example)

1001100101011100 16 bit

11111111111111111001100101011100 32 bit

• Zero extension

The extended part is filled with zeros.

(example)

1001100101011100 16 bit

00000000000000001001100101011100 32 bit

 TX49 Architecture

A-5

Instruction Notation Examples

The Following examples illustrate the application of some of the instruction notation
conventions:

Example #1:

GPR[rt] ← immediate   016

Sixteen zero bits are concatenated with an immediate value (typically 16• bits), and

the 32-bit string (with the lower 16• bits set to zero) is assigned to General-Purpose

Register rt.

Example #2:

(immediate15)
16

 || immediate15∼0

Bit 15 (the sign• bit) of an immediate value is extended for 16• bit positions, and the

result is concatenated with bits 15 through 0 of the immediate value to form a 32-bit

sign extended value.

 TX49 Architecture

A-6

Load and Store Instructions

In the TX49 implementation, the instruction immediately following a load may use the
contents of the register loaded. In such cases, the hardware interlocks, requiring
additional real cycles, so scheduling load delay slots is still desirable, although not
required for functional code.

Two special instructions are provided in the TX49 implementation of the MIPS ISA,
Load Linked and Store Conditional. These instructions are used in carefully coded
sequences to provide one of several synchronization primitives, including test-and-set,
bit-level locks, semaphores, and sequencers / event counts.

In the load and store operation descriptions, the functions listed in Table A-2 are used
to summarize the handling of virtual addresses and physical memory.

Table A-2 Load and Store Common Functions

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtual address. The function fails

and an exception is taken if the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of the word containing the

specified physical address. The low-order two bits of the address and the access type

field indicates which of each of the four bytes within the data word need to be returned.

If the cache is enabled for this access, the entire word is returned and loaded into the

cache.

StoreMemory Uses the cache, write buffer, and main memory to store the word or part of word

specified as data in the word containing the specified physical address. The low-order

two bits of the address and the access type field indicates which of each of the four

bytes within the data word should be stored.

The access type field indicates the size of the data item to be loaded or stored as shown
in Table A-3. Regardless of access type or byte-numbering order (endianness), the
address specifies the byte which has the smallest byte address of the bytes in the
addressed field. For a Big-endian machine, this is the leftmost byte and contains the
sign for a 2’s-complement number; for a Little-endian machine, this is the rightmost byte
and contains the lowest precision byte.

 TX49 Architecture

A-7

Table A-3 Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning

DOUBLEWORD 7 doubleword (64• bits)

SEPTIBYTE 6 seven bytes (56• bits)

SEXTIBYTE 5 six bytes (48• bits)

QUINTIBYTE 4 five bytes (40• bits)

WORD 3 word (32• bits)

TRIPLEBYTE 2 triple-byte (24• bits)

HALFWORD 1 halfword (16• bits)

BYTE 0 byte (8• bits)

The bytes within the addressed doubleword which are used can be determined directly
from the access type and the three low-order bits of the address, as shown in Chapter 2.

Jump and Branch Instructions

All jump and branch instructions have an architectural delay of exactly one
instruction. That is, the instruction immediately following a jump or branch (i.e.,
occupying the delay slot) is always executed while the target instruction is being fetched
from storage. It is not valid for a delay slot to be occupied itself by a jump or branch
instruction; however, this error is not detected, and the results of such an operation are
undefined.

If an exception or interrupt prevents the completion of a legal instruction during a
delay slot, the hardware sets the EPC register to point at the jump or branch instruction
which precedes it. When the code is restarted, both the jump or branch instructions and
the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts,
they must be restartable. Therefore, when a jump or branch instruction stores a return
link value, register 31 (the register in which the link is stored) may not be used as a
source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register
instruction must use a register whose two low-order bits are zero. If these low-order bits
are not zero, an address exception will occur when the jump target instruction is
subsequently fetched.

 TX49 Architecture

A-8

Coprocessor Instructions

The MIPS architecture provides four coprocessor units, or classes. Coprocessors are
alternate execution units, which have separate register files from the CPU. R-Series
coprocessors have 2 register spaces, each with thirty-two 32-bit registers. The first
space, coprocessor general registers, may be directly loaded from memory and stored into
memory, and their contents may be transferred between the coprocessor and processor.
The second, coprocessor control registers, may only have their contents transferred
directly between the coprocessor and processor. Coprocessor instructions may alter
registers in either space. Normally, by convention, Coprocessor Control Register 0 is
interpreted as a Coprocessor Implementation And Revision register. However, the system
control coprocessor (CP0) uses Coprocessor General Register 15 for the processor /
coprocessor revision register. The register’s low-order byte (bits 7∼0) is interpreted as a
coprocessor unit revision number. The second byte (bits 15∼8) is interpreted as a
coprocessor unit implementation descriptor. The revision number is a value of the form
y.x where y is a major revision number in bits 7∼4 and x is a minor revision number in
bits 3∼0.

The contents of the high-order halfword of the register are not defined (currently read
as 0 and should be 0 when written).

System Control Coprocessor (CP0) Instructions

There are some special limitations imposed on operations involving CP0 that is
incorporated within the CPU. Although load and store instructions to transfer data to
and from coprocessors and move control to/from coprocessor instructions are generally
permitted by the MIPS architecture, CP0 is given a somewhat protected status since it
has responsibility for exception handling and memory management. Therefore, the move
to/from coprocessor instructions are the only valid mechanism for reading from and
writing to the CP0 registers.

Several coprocessor operation instructions are defined for CP0 to directly read, write,
and probe TLB entries and to modify the operating modes in preparation for returning to
User mode or interrupt-enabled states.

 TX49 Architecture

A-9

ADD Add ADD

rd
ADD

100000
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ADD rd,rs,rt

Description:

The contents of general register rs and the contents of general register rt are added to
form the result. The result is placed into general register rd. In 64-bit mode, the
operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2’s-
complement overflow). The destination register rd is not modified when an integer
overflow exception occurs.

Operation:

32 T: GPR[rd] ← GPR[rs]• +• GPR[rt]

64 T: temp ← GPR[rs]• +• GPR[rt]

GPR[rd] ← (temp31)32   temp31∼0

Exceptions:

Integer overflow exception

 TX49 Architecture

A-10

ADDI Add Immediate ADDI

ADDI
001000

rs immediatert

1516202125

6

2631 0

5 5 16

Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs
to form the result. The result is placed into general register rt. In 64-bit mode, the
operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s-complement
overflow). The destination register rt is not modified when an integer overflow exception
occurs.

Operation:

32 T: GPR[rt] ← GPR[rs]• +• (immediate15)16   immediate15∼0

64 T: temp ← GPR[rs]• +• (immediate15)48   immediate15∼0

GPR[rt] ← (temp31)32   temp31∼0

Exceptions:

Integer overflow exception

 TX49 Architecture

A-11

ADDIU Add Immediate Unsigned ADDIU

ADDIU
001001

rs immediatert

1516202125

6

2631 0

5 5 16

Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs
to form the result. The result is placed into general register rt. No integer overflow
exception occurs under any circumstances. In 64-bit mode, the operand must be valid
sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU
never causes an overflow exception.

Operation :

32 T: GPR[rt] ← GPR[rs]• +• (immediate15)16   immediate15∼0

64 T: temp ← GPR[rs]• +• (immediate15)48   immediate15∼0

GPR[rt] ← (temp31)32   temp31∼0

Exceptions:

None

 TX49 Architecture

A-12

ADDU Add Unsigned ADDU

rd
ADDU
100001

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to
form the result. The result is placed into general register rd. No overflow exception
occurs under any circumstances. In 64-bit mode, the operands must be valid sign-
extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU
never causes an overflow exception.

Operation:

32 T: GPR[rd] ← GPR[rs]• +• GPR[rt]

64 T: temp ← GPR[rs]• +• GPR[rt]

GPR[rd] ← (temp31)32   temp31∼0

Exceptions:

None

 TX49 Architecture

A-13

AND And AND

rd
AND

100100
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register
rt in a bit-wise logical AND operation. The result is placed into general register rd.

Operation:

32 T: GPR[rd] ← GPR[rs]• +• GPR[rt]

64 T: GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

 TX49 Architecture

A-14

ANDI And Immediate ANDI

ANDI
001100

rs immediatert

1516202125

6

2631 0

5 5 16

Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general
register rs in a bit-wise logical AND operation. The result is placed into general register
rt.

Operation:

32 T: GPR[rt] ← 016   (immediate and GPR[rs]15∼0)

64 T: GPR[rt] ← 048   (immediate and GPR[rs]15∼0)

Exceptions:

None

 TX49 Architecture

A-15

BCzF Branch On Coprocessor z False BCzF

offset
BCF

00000
BC

01000
COPz

0100xx*

1516202125

6

2631 0

5 5 16

Format:

BCzF offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If
coprocessor z’s condition signal (CpCond), as sampled during the previous instruction,
is false, then the program branches to the target address with a delay of one
instruction.

Because the condition line is sampled during the previous instruction, there must be
at least one instruction between this instruction and a coprocessor instruction that
changes the condition line.

Operation:

32 T-1: condition ← not COC[z]

T: target ← (offset15)14   offset   02

T• +• 1: if condition then

PC ← PC• +• target

endif

64 T-1 condition ← not COC[z]

T: target ← (offset15)46   offset   02

T• +• 1: if condition then

PC ← PC• +• target

endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-16

BCzF Branch On Coprocessor z False
(continued) BCzF

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding

Branch conditionBC sub-opcode

BCzF

Coprocessor Unit Number

BC0F

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 0000

0161718192021222324252627282930

0010

31

1010 0000 0000

0161718192021222324252627282930

0010

31

1011 0000 0000

BC1F

Bit #

BC3F

Bit #

0161718192021222324252627282930

0010

31

1001 0000 0000BC2F

Bit #

Note:

CpCond0�=�:ULWH %XIIHU (PSW\

(Empty → true (1), Not empty → false (0))

CpCond1�=�FPU (See the Appendix B)

CpCond2�=�External Pin condition (GCPCOND2)

CpCond3�=�External Pin condition (GCPCOND3)

 TX49 Architecture

A-17

BCzFL
Branch On Coprocessor

z
False likely BCzFL

offset
BC

01000
BCFL
00010

COPz
0100xx*

1516202125

6

2631 0

5 5 16

Format:

BCzFL offset

Description :

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
contents of coprocessor z’s condition line, as sampled during the previous instruction,
is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Because the condition line is sampled during the previous instruction, there must be
at least one instruction between this instruction and a coprocessor instruction that
changes the condition line.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-18

BCzFL
Branch On Coprocessor
z
False Likely (continued) BCzFL

Operation:

32 T-1: condition ← not COC[z]

T: target ← (offset15)14   offset   02

T• +• 1: if condition then

PC ← PC• +• target

else

NullityCurrentInstruction

endif

64 T-1 condition ← not COC[z]

T: target ← (offset15)46   offset   02

T• +• 1: if condition then

PC ← PC• +• target

else

NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

Branch conditionBC sub-opcode

BCzFL

Coprocessor Unit Number

BC0FL

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 0100

0161718192021222324252627282930

0010

31

1010 0000 0100

0161718192021222324252627282930

0010

31

1011 0000 0100

BC1FL

Bit #

BC3FL

Bit #

0161718192021222324252627282930

0010

31

1001 0000 0100BC2FL

Bit #

Note:

CpCond0�=�:ULWH %XIIHU (PSW\

(Empty → true (1), Not empty → false (0))

CpCond1�=�FPU (See the Appendix B)

CpCond2�=�External Pin condition (GCPCOND2)

 TX49 Architecture

A-19

CpCond3�=�External Pin condition (GCPCOND3)

 TX49 Architecture

A-20

BCzT Branch On Coprocessor z True BCzT

offset
BCT

00001
BC

01000
COPz

0100XX*

1516202125

6

2631 0

5 5 16

Format:

BCzT offset

Description :

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
coprocessor z’s condition signal (CpCond) is true, then the program branches to the
target address, with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be
at least one instruction between this instruction and a coprocessor instruction that
changes the condition line.

Operation :

32 T-1: condition ← COC[z]

T: target ← (offset15)14   offset   02

T• +• 1: if condition then

PC ← PC• +• target

endif

64 T-1 condition ← COC[z]

T: target ← (offset15)46   offset   02

T• +• 1: if condition then

PC ← PC• +• target

Endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-21

BCzT Branch On Coprocessor z True
(continued) BCzT

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

Branch conditionBC sub-opcode

BCzT

Coprocessor Unit Number

BC0T

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 1000

0161718192021222324252627282930

0010

31

1010 0000 1000

0161718192021222324252627282930

0010

31

1011 0000 1000

BC1T

Bit #

BC3T

Bit #

0161718192021222324252627282930

0010

31

1001 0000 1000BC2T

Bit #

Note:

CpCond0�=�:ULWH %XIIHU (PSW\

(Empty → true (1), Not empty → false (0))

CpCond1�=�FPU (See the Appendix B)

CpCond2�=�External Pin condition (GCPCOND2)

CpCond3�=�External Pin condition (GCPCOND3)

 TX49 Architecture

A-22

BCzTL
Branch On Coprocessor

z
True Likely BCzTL

offset
BCTL
00011

BC
01000

COPz
0100XX*

1516202125

6

2631 0

5 5 16

Format:

BCzTL offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
contents of coprocessor z’s condition line, as sampled during the previous instruction,
is true, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Because the condition line is sampled during the previous instruction, there must be
at least one instruction between this instruction and a coprocessor instruction that
changes the condition line.

Operation:

32 T-1: condition ← COC[z]

T: target ← (offset15)14  offset   02

T• +• 1: if condition then

PC ← PC• +• target

else

NullifyCurrentInstruction

endif

64 T-1 condition ← COC[z]

T: target ← (offset15)46   offset   02

T• +• 1: if condition then

PC ← PC• +• target

else

NullifyCurrentInstruction

endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-23

BCzTL
Branch On Coprocessor
z
True Likely (continued) BCzTL

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

Branch conditionBC sub-opcode

BCzTL

Coprocessor Unit Number

BC0T

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 1000

0161718192021222324252627282930

0010

31

1010 0000 1000

0161718192021222324252627282930

0010

31

1011 0000 1100

BC1T

Bit #

BC3T

Bit #

0161718192021222324252627282930

0010

31

1001 0000 1000BC2T

Bit #

Note:

CpCond0�=�:ULWH %XIIHU (PSW\

(Empty → true (1), Not empty → false (0))

CpCond1�=�FPU (See the Appendix B)

CpCond2�=�External Pin condition (GCPCOND2)

CpCond3�=�External Pin condition (GCPCOND3)

 TX49 Architecture

A-23

BEQ Branch On Equal BEQ

rs offset
BEQ

000100

1516202125

6

2631 0

5 5 16

rt

Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs and the con-tents of general register rt are compared. If
the two registers are equal, then the program branches to the target address, with a
delay of one instruction.

Operation:

32 T: condition ← (offset15)14   offset   02

condition ← (GPR[rs] = GPR[rt])

T• + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs] = GPR[rt])

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-24

BEQL Branch On Equal Likely BEQL

rs offset
BEQL

000100

1516202125

6

2631 0

5 5 16

rt

Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs and the contents of general register rt are compared. If
the two registers are equal, the target address is branched to, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs] = GPR[rt])

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]• =• GPR[rt])

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

 TX49 Architecture

A-25

BGEZ Branch On Greater Than
Or Equal To Zero BGEZ

rs offset
BGEZ
00001

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZ rs, offset

Description :

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
contents of general register rs have the sign bit cleared, then the program branches to
the target address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 0)

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 0)

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-26

BGEZAL
Branch On Greater

Than Or Equal To Zero
And Link BGEZAL

rs offset
BGEZAL

10001
REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended.
Unconditionally, the address of the instruction after the delay slot is placed in the link
register, r31 . If the contents of general register rs have the sign bit cleared, then the
program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not tapped, however.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-27

BGEZALL
Branch On Greater
Than Or Equal To

Zero And Link Likely BGEZALL

rs offset
BGEZALL

10011
REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZALL rs, offset

Descriptions:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended.
Unconditionally, the address of the instruction after the delay slot is placed in the link
register, r31 . If the contents of general register rs have the sign bit cleared, then the
program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not rapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

Else

NullifyCurrentInstruction

Endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 0)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

Else

NullifyCurrentInstruction

Endif

Exceptions:

None

 TX49 Architecture

A-28

BGEZL Branch On Greater Than
 Or Equal To Zero Likely BGEZL

rs offset
BGEZL
00011

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
contents of general register rs have the sign bit cleared, then the program branches to
the target address, with a delay of one instruction. If the conditional branch is not

taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 0)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 0)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

 TX49 Architecture

A-29

BGTZ Branch On Greater Than Zero BGTZ

rs offset
0

00000
BGTZ

000111

1516202125

6

2631 0

5 5 16

Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs are compared to zero. If the contents of general register
rs have the sign bit cleared and are not equal to zero, then the program branches to the
target address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 0) and (GPR[rs] � 032)

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 0) and (GPR[rs] � 064)

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-30

BGTZL Branch On Greater
Than Zero Likely BGTZL

rs offset
0

00000
BGTZL
010111

1516202125

6

2631 0

5 5 16

Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs are compared to zero. If the contents of general register
rs have the sign bit cleared and are not equal to zero, then the program branches to the
target address, with a delay of one instruction. If the conditional branch is not taken,
the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 0) and (GPR[rs] �032)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 0) and (GPR[rs] �064)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

 TX49 Architecture

A-31

BLEZ Branch on Less Than Or
Equal To Zero BLEZ

rs offset
0

00000
BLEZ

000110

1516202125

6

2631 0

5 5 16

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs are compared to zero. If the contents of general register
rs have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-32

BLEZL Branch on Less Than
Or Equal To Zero Likely BLEZL

rs offset
0

00000
BLEZL
010110

1516202125

6

2631 0

5 5 16

Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs is compared to zero. If the contents of general register rs
have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

Endif

Exceptions:

None

 TX49 Architecture

A-33

BLTZ Branch On Less Than Zero BLTZ

rs offset
BLTZ
00000

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
contents of general register rs have the sign bit set, then the program branches to the
target address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 1)

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 1)

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-34

BLTZAL Branch On Less
Than Zero And Link BLTZAL

rs offset
BLTZAL
10000

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended.
Unconditionally, the address of the instruction after the delay slot is placed in the link
register, r31 . If the contents of general register rs have the sign bit set, then the
program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction with register 31 specified as rs is not

trapped, however.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-35

BLTZALL Branch On Less Than
Zero And Link Likely BLTZALL

rs offset
BLTZALL

10010
REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended.
Unconditionally, the address of the instruction after the delay slot is placed in the link
register, r31 . If the contents of general register rs have the sign bit set, then the
program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction with register 31 specified as rs is not
trapped, however. If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 1)

GPR[31] ← PC + 8

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

 TX49 Architecture

A-36

BLTZL Branch On Less Than Zero
Likely BLTZL

rs offset
BLTZL
00010

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
contents of general register rs have the sign bit set, then the program branches to the
target address, with a delay of one instruction. If the conditional branch is not taken,
the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs]31 = 1)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs]63 = 1)

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

 TX49 Architecture

A-37

BNE Branch On Not Equal BNE

rtrs offset
BNE

000101

1516202125

6

2631 0

5 5 16

Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs and the contents of general register rt are compared. If
the two registers are not equal, then the program branches to the target address, with a
delay of one instruction.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs] � GPR[rt])

T + 1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs] �GPR[rt])

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

None

 TX49 Architecture

A-38

BNEL Branch On Not Equal Likely BNEL

rtrs offset
BNEL

010101

1516202125

6

2631 0

5 5 16

Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. The
contents of general register rs and the contents of general register rt are compared. If
the two registers are not equal, then the program branches to the target address, with a
delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

32 T: target ← (offset15)14   offset   02

condition ← (GPR[rs] � GPR[rt])

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)46   offset   02

condition ← (GPR[rs] �GPR[rt])

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

 TX49 Architecture

A-39

BREAK Breakpoint BREAK

code BREAK
001101

SPECIAL
000000

5625

6

2631 0

20 6

Format:

BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the
exception handler.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: BreakpointException

Exceptions:

Breakpoint exception

 TX49 Architecture

A-40

CACHE Cache CACHE

base op offset
CACHE
101111

1516202125

6

2631 0

5 5 16

Format:

CACHE op, offset(base)

Description:

Generates a virtual address by sign-extending the 16-bit offset and adding the result
to the contents of register base. The virtual address is translated to a physical address
using the TLB, and the 5-bit sub-opecode designates the cache operation to be
performed at that address.

If CP0 is unusable (in User or Supervisor mode), the CP0 enable bit in the Status
register is cleared, and a Coprocessor Unusable Exception is raised. The behavior of
this instruction for operation and cache combinations other than those listed in the
table below, and when used with an uncached address, is undefined.

Cache index operations designate a cache block using part of the virtual address.

The memory address that specifies in cache instruction must be cacheable area. If
uncachable area is specified, the operation is not guaranteed for TX49. If the
instruction is issued for the line which this instruction itself exists, the following
operation is not guaranteed.

The Index operation uses part of the virtual address to specify a cache block. The Hit
operation accesses the specified cache as normal data references, and performs the
specified operation if the cache block contains valid data with the specified physical
address (a hit). If the cache block is invalid or contains a different address (a miss), no
operation is performed. Write back from a cache goes to memory. The address to be
written is specified by the cache tag and not the translated physical address. TLB Refill
and TLB Invalid exceptions can occur on any operation. For Index operations (where
the physical address is used to index the cache but need not match the cache tag)
unmapped addresses may be used to avoid TLB exceptions. This operation never
causes TLB Modified or Virtual Coherency exceptions. Bits 17∼16 of the instruction
specify the cache as follows:

Code Name Cache

0 I Primary instruction

1 D Primary data

2 - reserved

3 - reserved

 TX49 Architecture

A-41

CACHE Cache
(continued) CACHE

Bits 20∼18 of the instruction specify the operation as follows:

Code Caches Name Operation

0 I Index Invalidate Set the cache state of the indexed block to invalid.

0 D Index WriteBack

Invalidate

Examine the cache state and W bit of the primary data cache block at the

invalidate index specified by the virtual address. If the state is not invalid and

the W bit is set, then write back the block to memory. The address to write is

taken from the primary cache tag. Set cache state of primary cache block to

invalid. LSB of VA select the way.

1 I / D Index Load Tag Read the tag for the cache block at the specified index and place it into the

TagLo and TagHi CP0 registers. LSB of VA select the way.

2 I / D Index Store Tag Write the tag for the cache block at the specified index from the TagLo and

TagHi CP0 registers. LSB of VA select the way.

3 I Undefined Undefined

3 D Create Dirty

Exclusive

This operation is used to avoid loading data needlessly from memory when

writing new contents into an entire cache block. If the cacheblock does not

contain the specified address, and the block is dirty, write it back to the

memory. In all cases, set the cache block tag to the specified physical

address, set the cache state to Dirty Exclusive.

4 I / D Hit Invalidate If the cache block contains the specified address, mark the cache block

invalid. In case of multi-hit, lock bits of the specified line become ineffective

and all way are invalidated.

5 I Fill Fill the primary instruction cache block from memory. LSB of VA select the

way.

5 D Hit WriteBack

Invalidate

If the cache block contains the specified address, write back the data if it is

dirty, and mark the cache block invalid.

6 I Undefined Undefined

6 D Hit WriteBack If the cache block contains the specified address, and the W bit is set, write

back the data to memory, and clear the W bit.

7 I Undefined Undefined

7 D Fill Fill the primary data cache block from memory. LSB of VA select the way.

 TX49 Architecture

A-42

CACHE Cache
(continued) CACHE

Operation:

32, 64 T: vAddr ← ((offset15)48   offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp(op, cAddr, pAddr)

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-43

CFC0 Move Control From Coprocessor 0 CFC0

rd
0

000 0000 0000
CF

00010
COP0

010000
rt

10111516202125

6

2631 0

5 5 5 11

Format :

CFC0 rt, rd

Description :

For ICE system only.

Loads the contents of Monitor memory into the general-purpose register rt.

Operation:

32 T: data ← CCR[0,rd]

T + 1: GPR[rt] ← data

64 T: data ← (CCR[0,rd]31)32 CCR[0, rd]

T + 1: GPR[rt] ← data

Exceptions :

Coprocessor Unusable exception

 TX49 Architecture

A-44

CFCz Move Control From Coprocessor CFCz

rd
0

000 0000 0000
CF

00010
COPz

0100xx*
rt

10111516202125

6

2631 0

5 5 5 11

Format:

CFCz rt, rd

Description:

The contents of coprocessor control register rd of coprocessor unit z are loaded into
general register rt.

Operation:

32 T: data ← CCR[z,rd]

T + 1: GPR[rt] ← data

64 T: data ← (CCR[z,rd]31)32 CCR[z, rd]

T + 1: GPR[rt] ← data

Exceptions:

Coprocessor unusable exception

Reserved Instruction exception (CFC3)

∗Opcode Bit Encoding:

Coprocessor Suboperation

CFCz

Coprocessor Unit Number

CFC1

Bit #

Opcode

021222324252627282930

0010

31

0010 010

021222324252627282930

0010

31

0001 010CFC2

Bit #

Note:

CFC1 for FPU (See the Appendix B)

CFC2 for Coprocessor 2 (user define)

 TX49 Architecture

A-45

COPz Coprocessor Operation COPz

cofun
CO
1

COPz
0100xx*

6

2631 0

5 25

2425

Format:

COPz cofun.

Description:

A coprocessor operation is performed. The operation may specify and reference
internal coprocessor registers, and may change the state of the coprocessor condition
line, but does not modify state within the processor or the cache / memory system.
Details of coprocessor 1 operations are contained in Appendix B.

Operation:

32, 64 T: CoprocessorOperation(z, cofun)

Exceptions:

Coprocessor unusable exception

Coprocessor interrupt or Floating-Point Exception (TX49 CP1 only)

Reserved Instruction exception (COP3)

∗Opcode Bit Encoding:

CO sub-opcode (see end of Appendix A)

COPz

Coprocessor Unit Number

COP0

Bit #

Opcode

0252627282930

0010

31

100

0252627282930

0010

31

110

0252627282930

0010

31

111

COP1

Bit #

COP3

Bit #

0252627282930

0010

31

101COP2

Bit #

Note:
COP0 for ICE system

COP1 for FPU (See the Appendix B)

COP2 for Coprocessor 2 (user define)

 TX49 Architecture

A-46

CTC0 Move Control To Coprocessor 0 CTC0

rd
0

000 0000 0000
CT

00110
COP0

010000
rt

10111516202125

6

2631 0

5 5 5 11

Format :

CTC0 rt, rd

Description :

For ICE system only.

Loads the contents of general-purpose register rt into the Monitor memory.

Operation:

32, 64 T: data ← GPR[rt]

T + 1: CCR[0,rd] ← data

Exceptions :

Coprocessor Unusable exception

 TX49 Architecture

A-47

CTCz Move Control to
Coprocessor CTCz

rd
0

000 0000 0000
CT

00110
COPz

0100xx*
rt

10111516202125

6

2631 0

5 5 5 11

Format:

CTCz rt, rd

Description:

The contents of general register rt are loaded into control register rd of coprocessor
unit z.

Operation:

32, 64 T: data ← GPR[rt]

T + 1: CCR[z,rd] ← data

Exceptions:

Coprocessor unusable

Reserved Instruction exception (CTC3)

Note:

CTC1 for FPU (See the Appendix B)

CTC2 for Coprocessor 2 (user define)

∗See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

 TX49 Architecture

A-48

DADD Doubleword Add DADD

rd DADD
101100

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to
form the result. The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ(2’s-complement
overflow). The destination register rd is not modified when an integer overflow exception
occurs.

Operation:

64 T: GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions:

Integer overflow exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-49

DADDI Doubleword Add
Immediate DADDI

rs rt immediateDADDI
011000

1516202125

6

2631 0

5 5 16

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs
to form the result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s-complement
overflow). The destination register rt is not modified when an integer overflow exception
occurs.

Operation:

64 T: GPR [rt] ← GPR[rs] + (immediate15)48   immediate15∼0

Exceptions:

Integer overflow exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-50

DADDIU Doubleword Add
 Immediate Unsigned DADDIU

rs rt immediateDADDIU
011001

1516202125

6

2631 0

5 5 16

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs
to form the result. The result is placed into general register rt. No integer overflow
exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is that
DADDIU never causes an overflow exception.

Operation:

64 T: GPR[rt] ← GPR[rs] + (immediate15)48   immediate15∼0

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-51

DADDU Doubleword Add Unsigned DADDU

rd DADDU
101101

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to
form the result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is that
DADDU never causes an overflow exception.

Operation:

64 T: GPR [rd] ← GPR[rs] + GPR[rt]

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-52

DDIV Doubleword Divide DDIV

DDIV
011110

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as 2’s-complement values. No overflow exception occurs under
any circumstances, and the result of this operation is undefined when the divisor is
zero.

This instruction is typically followed by additional instructions to check for a zero
divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into
special register LO, and the remainder word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by two or more instructions.

Operation:

64 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: LO ← GPR[rs] div GPR[rt]

Hl ← GPR[rs] mod GPR[rt]

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-53

DDIVU Doubleword Divide
Unsigned DDIVU

DDIVU
011111

0
000000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as unsigned values. No integer overflow exception occurs under
any circumstances, and the result of this operation is undefined when the divisor is
zero.

This instruction is typically followed by additional instructions to check for a zero
divisor.

When the operation completes, the quotient word of the double result is loaded into
special register LO, and the remainder word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by two or more instructions.

Operation:

64 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: LO ← (0 GPR[rs]) div (0 GPR[rt])

Hl ← (0 GPR[rs]) mod (0 GPR[rt])

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-54

DERET Debug Exception Return DERET
DERET
011111

0
000 0000 0000 0000 0000

CO
1

COP0
010000

56

6

2631 0

1 19 6

2425

Format:

DERET

Description:

Execute a return a self-debug interrupt or exception. This instruction requires a
branch delay slot like that of the branch or jump instructions, and executes with a
delay of one instruction cycle. The DERET instruction itself cannot be put in the delay
slot.

The return address stored in the DEPC register is copied to the PC, and processing
returns to the original program.

Note: If a MTC0 instruction was used to set the return address in the DEPC register,
a minimum of two instructions must be executed before executing DERET.

Operation:

32, 64 T: temp ← DEPC

T-1: PC← temp

Debug30 ← 0

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-55

DIV Divide DIV
DIV

011010
0

00 0000 0000
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as 2’s-complement values. No overflow exception occurs under
any circumstances, and the result of this operation is undefined when the divisor is
zero. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero
divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into
special register LO, and the remainder word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by two or more instructions.

Operation:

32 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: LO ← GPR[rs] div GPR[rt]

Hl ← GPR[rs] mod GPR[rt]

64 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: q ← GPR[rs]31∼0 div GPR[rt]31∼0

r ← GPR[rs]31∼0 mod GPR[rt]31∼0

LO ← (q31)32   q31∼0

HI ← (r31)32   r31∼0

Exceptions:

None

 TX49 Architecture

A-56

DIVU Divide Unsigned DIVU
DIVU

011011
0

00 0000 0000
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as unsigned values. No integer overflow exception occurs under
any circumstances, and the result of this operation is undefined when the divisor is
zero. In 64-bit mode, the operands must be valid sign-extended, 32-bit values. In 64-
bitmode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero
divisor.

When the operation completes, the quotient word of the double result is loaded into
special register LO, and the remainder word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO
from writes by two or more instructions.

Operation:

32 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: LO ← (0 GPR[rs]) div (0 GPR[rt])

Hl ← (0 GPR[rs]) mod (0 GPR[rt])

64 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: q ← (0 GPR[rs]31∼0) div (0 GPR[rt]31∼0)

r ← (0 GPR[rs]31∼0) mod (0 GPR[rt]31∼0)

LO ← (q31)32   q31∼0

HI ← (r31)32   r31∼0

Exceptions:

None

 TX49 Architecture

A-57

DMFC0 Doubleword Move From
System Control Coprocessor DMFC0

rd
0

000 0000 0000
DMF

00001
COP0

010000
rt

10111516202125

6

2631 0

5 5 5 5

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined in kernel mode regardless of the setting of the Status. KX
bit. Execution of this instruction with in supervisor mode with Status. SX = 0 or in
user mode with UX = 0, causes a reserved instruction exception. All 64-bits of the
general register destination are written from the coprocessor register source. The
operation of DMFC0 on a 32-bit coprocessor 0 register is undefined.

Operation:

64 T: data ← CPR[0,rd]

T + 1: GPR[rt] ← data

Exceptions:

Coprocessor unusable exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-58

DMTC0 Doubleword Move TO
System Control Coprocessor DMTC0

rd 0
000 0000 0000

DMT
00101

COP0
010000

rt

10111516202125

6

2631 0

5 5 5 11

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined for the R4000 operating in 64-bit mode or in 32-bit kernal
mode. Execution of this instruction in 32-bit user or supervisor mode causes a
reserved instruction exception. All 64-bits of he coprocessor 0 register are written from
the general register source. The operation of DMTC0 on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load, store instructions and TLB operations immediately
prior to and after this instruction are undefined.

Operation:

64 T: data ← GPR[rt]

T + 1: CPR[0,rd] ← data

Exceptions:

Coprocessor unusable exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-59

DMULT Doubleword Multiply DMULT
DMULT
011100

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DMULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, heating both operands as
2’s-complement values. No integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by a minimum of two other instructions.

Operation:

64 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: t ← GPR[rs]∗ GPR[rt]

LO ← t63∼0

HI ← t127∼64

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-60

DMULTU Doubleword Multiply
Unsigned DMULTU

DMULTU
011101

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are
multiplied, treating both operands as unsigned values. No over-flow exception occurs
under any circumstances.

When the operation completes, the low-order word of the double re-suit is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the re-suits of these
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by a minimum of two instructions.

Operation:

64 T-2: LO ← undefined

Hl ← undefined

T-1: LO ← undefined

Hl ← undefined

T: t ← (0 GPR[rs])∗ (0 GPR[rt])

LO ← t63∼0

HI ← t127∼64

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-61

DSLL Doubleword Shift
Left Logical DSLL

sard
DSLL

111000
0

00000
SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the
low-order bits. The result is placed in register rd.

Operation:

64 T: s ← 0 sa

GPR[rd] ← GPR[rt](63-sa) ∼0  0s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-62

DSLLV Doubleword Shift Left
Logical Variable DSLLV

rd DSLLV
010100

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by
the low-order six bits contained as contents of general register rs, inserting zeros into
the low-order bits. The result is placed in register rd.

Operation :

64 T: s ← GPR[rs]5∼0

GPR[rd] ← GPR[rt](63-s) ∼0  0s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-63

DSLL32 Doubleword Shift Left
Logical + 32 DSLL32

sard DSLL32
111100

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32 + sa bits, inserting zeros into
the low-order bits. The result is placed in register rd.

Operation:

64 T: s ← 1 sa

GPR[rd] ← GPR[rt](63-s) ∼0  0s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-64

DSRA Doubleword Shift Right
Arithmetic DSRA

sard DSRA
111011

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-ex-tending the
high-order bits. The result is placed in register rd.

Operation:

64 T: s ← 0 sa

GPR[rd] ← (GPR[rt]63)s GPR[rt]63∼s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-65

DSRAV Doubleword Shift Right
Arithmetic Variable DSRAV

rd DSRAV
010111

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by
the low-order six bits of general register rs, sign-ex-tending the high-order bits. The
result is placed in register rd.

Operation:

64 T: s ← GPR[rs]5∼0

GPR[rd] ← (GPR[rt]63)s GPR[rt]63∼s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-66

DSRA32 Doubleword Shift Right
Arithmetic + 32 DSRA32

sard DSRA32
111111

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRA32 rd, rt,sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending
the high-order bits. The result us placed in register rd.

Operation:

64 T: s ← 1 sa

GPR[rd] ← (GPR[rt]63)s GPR[rt]63∼s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-67

DSRL Doubleword Shift Right
Logical DSRL

sard DSRL
111010

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the
high-order bits. The result is placed in register rd.

Operation:

64 T: s ← 0 sa

GPR[rd] ← 0s GPR[rt] 63∼s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-68

DSRLV Doubleword Shift Right
Logical Variable DSRLV

rd DSRLV
010110

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by
the low-order six bits of general register rs, inserting zeros unto the high-order bits.
The result us placed in register rd.

Operation:

64 T: s ← GPR[rs]5∼0

GPR[rd] ← 0s GPR[rt]63∼s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-69

DSRL32 Doubleword Shift Right
logical + 32 DSRL32

sard DSRL32
111110

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRL32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, inserting zeros
into the high-order bits. The result is placed in register rd.

Operation:

64 T: s ← 1 sa

GPR[rd] ← 0s GPR[rt]63∼s

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-70

DSUB Doubleword Subtract DSUB

rd DSUB
101110

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register
rs to form a result. The result is placed into general register rd.

The only difference between this instruction and the DSUBU instruction is that
DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62and 63 differ (2’s-
complement overflow). The destination register rd is not modified when an integer
overflow exception occurs.

Operation :

64 T: GPR[rd] ← GPR[rs]• −• GPR[rt]

Exceptions:

Integer overflow exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-71

DSUBU Doubleword Subtract
Unsigned DSUBU

rd DSUBU
101111

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register
rs to form a result. The result is placed into general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU
never taps on overflow. No integer overflow exception occurs under any circumstances.

Operation:

64 T: GPR[rd] ← GPR[rs]• −• GPR[rt]

Exceptions:

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW VXSHUYLVLRU PRGH)

 TX49 Architecture

A-72

ERET Exception Return ERET
ERET

011000
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

1 19 6

2425

Format:

ERET

Description:

ERET is the TX49 instruction for returning from an interrupt, exception, or error trap.
Unlike a branch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2�=�1), then load the PC from the

ErrorEPC and clear the ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load

the PC from the EPC, and clear the EXL bit of the Status register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

In case of this instruction is placed in the boundary of memory, it is necessary to
keep the branch delay slot into same memory area.

Operation:

32, 64 T: if SR2 = 1 then

PC ← ErrorEPC

SR ← SR31∼3 0 SR1∼0

else

PC ← EPC

SR ← SR31∼2 0 SR0

endif

LLbit ← 0

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-73

J Jump J
J

000010
target

25

6

2631 0

26

Format:

J target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order
bits of the address of the delay slot. The program unconditionally jumps to this
calculated address with a delay of one instruction.

Operation:

32 T: temp ← target

T + 1: PC ← PC31∼28 temp 02

64 T: temp ← target

T + 1: PC ← PC63∼28 temp 02

Exceptions:

None

 TX49 Architecture

A-74

JAL Jump And Link JAL
JAL

000011
target

25

6

2631 0

26

Format:

JAL target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order
bits of the address of the delay slot. The program unconditionally jumps to this
calculated address with a delay of one instruction. The address of the instruction after
the delay slot is placed in the link register, r31.

Operation:

32 T: temp ← target

GPR[31] ← PC• +• 8

T + 1: PC ← PC31∼28 temp 02

64 T: temp ← target

GPR[31] ← PC + 8

T + 1: PC ← PC63∼28 temp 02

Exceptions:

None

 TX49 Architecture

A-75

JALR Jump And Link Register JALR

rd JALR
001001

0
00000

0
00000

SPECIAL
000000

rs

5610111516202125

6

2631 0

5 5 5 5 6

Format:

JALR rs

JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs,
with a delay of one instruction. The address of the instruction after the delay slot is
placed in general register rd. The default value of rd, if omitted in the assembly
language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not
have the same effect when reexecuted. However, an attempt to execute this instruction
is not trapped, and the result of executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must
specify a target register (rs) whose two low-order bits are zero. If these. low-order bits
are not zero, an address exception will occur when the jump target instruction is
subsequently fetched.

Operation:

32, 64 T: temp ← GPR[rs]

GPR[rd] ← PC + 8

T + 1: PC ← temp

Exceptions:

None

 TX49 Architecture

A-76

JR Jump Register JR
JR

001000
0

000 0000 0000 0000
SPECIAL
000000

rs

56202125

6

2631 0

5 15 6

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general register rs,
with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a
target register (rs) whose two low-order bits are zero. If these low-order bits are not
zero, an address exception will occur when the jump target instruction is subsequently
fetched.

Operation:

32, 64 T: temp ← GPR[rs]

T + 1: PC ← temp

Exceptions:
None

 TX49 Architecture

A-77

LB Load Byte LB
offsetLB

100000
base rt

1516202125

6

2631 0

5 5 16

Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added tp the contents of general register base

to form a virtual address. The contents of the byte at the memory location specified by
the effective address are sign-extended and loaded unto general register rt.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor BigEndianCPU3

GPR[rt] ← (mem7• + 8*byte)24 mem7• + 8*byte∼8*byte

64 T: vAddr ← ((offset15)48 offset15∼0)• + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor BigEndianCPU3

GPR[rt] ← (mem7• + 8*byte)56 mem7• + 8*byte∼8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

A-78

LBU Load Byte Unsigned LBU
offsetLBU

100100
base rt

1516202125

6

2631 0

5 5 16

Format:

LBU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the byte at the memory location specified by
the effective address are zero-extended and loaded into general register rt.

Operation :

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor BigEndianCPU3

GPR[rt] ← 024||mem7• + 8*byte∼8*byte

64 T: vAddr ← ((offset15)48 offset15∼0)• + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor BigEndianCPU3

GPR[rt] ← 056||mem7• + 8*byte∼8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

A-79

LD Load Doubleword LD
offsetLD

110111
base rt

1516202125

6

2631 0

5 5 16

Format:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. The contents of the 64-bit doubleword at the memory
location specified by the effective address are loaded into general register rt.

If any of the three least-significant bits of the effective address are non-zero, an
address error exception occurs.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-80

LDCz Load Doubleword To
Coprocessor LDCz

offsetLDCz
1101xx*

base rt

1516202125

6

2631 0

5 5 16

Format:

LDCz rt, offset (base)

Description :

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The processor reads a double-word from the addressed
memory location and makes the data available to coprocessor unit z. The manner in
which each coprocessor uses he data is defined by the individual coprocessor
specifications.

If any of the three least-significant bits of the effective address are non-zero, an
address error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the rt-field is non-zero.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-81

LDCz
Load Doubleword To

Coprocessor
(continued) LDCz

Operation:

32 T: vAddr ← ((offset15)
16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD(rt, mem)

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

LDCz

Coprocessor Unit Number

LDC1

Bit #

Opcode

02627282930

1011

31

10

02627282930

1011

31

01LDC2

Bit #

 TX49 Architecture

A-82

LDL Load Doubleword Left LDL
offsetLDL

011010
base rt

1516202125

6

2631 0

5 5 16

Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a
register with eight consecutive bytes from memory, when the bytes cross a boundary
between two doublewords. LDL loads the left portion of the register from the
appropriate part of the high-order doubleword; LDR loads the right portion of the
register from the appropriate part of the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which can specify an arbitrary byte. It reads
bytes only from the doubleword in memory which contains the specified starting byte.
From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the
high-order (left-most) byte of the register; then it proceeds toward the low-order byte of
the doubleword in memory and the low-order byte of the register, loading bytes from
memory into the register until it reaches the low-order byte of the doubleword in
memory. The least-significant (right-most) byte(s) of the register will not be changed.

LDL $24,3($0)

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

$24after 6543 HGF7

 TX49 Architecture

A-83

LDL Load Doubleword Left
(continued) LDL

The contents of general register rt are internally bypassed within the processor so that
no NOP is needed between an immediately preceding load instruction which specifies
register rt and a following LDL (or LDR) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEncian3)

if BigEndianMem• = 0 then

pAddr ← pAddrPSIZE-1∼3 03

endif

byte ← vAddr2∼0 xor BigEndianCPU3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR[rt] ← mem7• + 8*byte∼0 GPR[rt]55• − 8*byte∼0

 TX49 Architecture

A-84

LDL Load Doubleword Left
(continued) LDL

Given a doubleword in a register and a doubleword in memory, the operation of LDL
us as follows:

LDL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0
Destination type

LEM BEM
Destination type

LEM BEM

0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0

1 O P C D E F G H 2 0 5 K L M N O P G H 5 0 2

3 M N O P E F G H 3 0 4 L M N O P F G H 4 0 3

4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4

5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5

6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6

7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type AccessType sent to memory

Offset Addr2∼0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-85

LDR Load Doubleword Right LDR

offset
LDR

011011
base rt

1516202125

6

2631 0

5 5 16

Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a
register with eight consecutive bytes from memory, when the bytes cross a boundary
between two doublewords. LDR loads the right portion of the register from the
appropriate part of the low-order doubleword; LDL loads the left portion of the register
from the appropriate part of the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the con-tents of general
register base to form a virtual address which can specify an arbitrary byte. It reads
bytes only from the doubleword in memory which contains the specified starting byte.
From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the
low-order (right-most) byte of the register; then it proceeds toward the high-order byte of
the doubleword in memory and the high-order byte of the register, loading bytes from
memory into the register until it reaches the high-order byte of the doubleword in
memory. The most significant (left-most) byte (s) of the register will not be changed.

LDR $24,4 ($0)

register

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

$24after 0CBA 4321

 TX49 Architecture

A-86

LDR Load Doubleword Right
(continued) LDR

The contents of general register rt are internally bypassed within the processor so that
no NOP is needed between an immediately preceding load instruction which specifies
register rt and a following LDR (or LDL) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEncian3)

if BigEndianMem• =• 1 then

pAddr ← pAddr31∼3 03

endif

byte ← vAddr2∼0 xor BigEndianCPU3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR[rt] ← GPR[rt]63∼64• − 8*byte mem63∼8*byte

 TX49 Architecture

A-87

LDR Load Doubleword Right
(continued) LDR

Given a doubleword in a register and a doubleword in memory, the operation of LDR
is as follows:

LDR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0 Destination type
LEM BEM

Destination type
LEM BEM

0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0

1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0

2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0

3 A B I I J K L M 4 3 0 A B C D E I J K 3 4 0

4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0

5 A L C D E I J K 2 5 0 A B I J K L M K 5 2 0

6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0

7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type AccessType sent to memory

Offset Addr2∼0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-88

LH Load Halfword LH

offset
LH

100001
base rt

1516202125

6

2631 0

5 5 16

Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the halfword at the memory location specified
by the effective address are sign-extended and loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU2 0)

GPR[rt] ← (mem15• + 8*byte)16 mem15• + 8*byte∼8*byte

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU2 0)

GPR[rt] ← (mem15• + 8*byte)16 mem15• + 8*byte∼8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

A-89

LHU Load Halfword Unsigned LHU

offset
LHU

100101
base rt

1516202125

6

2631 0

5 5 16

Format:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the halfword at the memory location specified
by the effective address are zero-extended and loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian2 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr,vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU2 0)

GPR[rt] ← 016 mem15• + 8*byte∼8*byte

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian2 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU2 0)

GPR[rt] ← 048 mem15• + 8*byte∼8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus Error exception

Address error exception

 TX49 Architecture

A-90

LL Load Linked LL

offset
LL

110000
base rt

1516202125

6

2631 0

5 5 16

Format:

LL rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the word at the memory location specified by
the effective address are loaded into general register rt. In 64-bit mode, the loaded word
is sign-extended.

 TX49 Architecture

A-91

LLD Load Linke Doubleword LLD

offset
LLD

110100
base rt

1516202125

6

2631 0

5 5 16

Format:

LLD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the doubleword at the memory location
specified by the effective address are loaded into general register rt.

The processor begins checking the accessed doubleword for modification by other
processors and devices.

Load Linked Doubleword and Store Conditional Doubleword can be used to atomically
update memory locations:

L1:

LLD T1, (T0)

ADD T2, T1, 1

SCD T2, (T0)

BEQ T2, 0, L1

NOP

This atomically increments the word addressed by T0. Changing the ADD to an OR
changes this to an atomic bit set.

 TX49 Architecture

A-92

LLD Load LinkedDoubleword
(continued) LLD

The operation of LLD is undefined if the addressed location is uncached and, for
synchronization between multiple processors, the operation of LLD is undefined if the
addressed location is noncoherent.

A cache miss that occurs between LLD and SCD may cause SCD to fail, so no load or
store instruction should occur between LLD and SCD. Exceptions also cause SCD to
fail, so persistent exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for CP0 to be
enabled.

If any of the three least-significant bits of the effective address are non-zero, an
address error exception takes place.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem←LoadMemory (uncached,DOUBLE WORD,pAddr,vAddr,DATA)

GPR[rt] ← mem

LLbit ← 1

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-93

LUI Load Upper Immediate LUI

immediate
0

00000
LUI

001111
rt

1516202125

6

2631 0

5 5 16

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16�bits and concatenated to 16�bits of zeros.
The result is placed into general register rt. In 64-bit mode, the loaded word is sign-
extended.

Operation:

32 T: GPR[rt] ← immediate 016

64 T: GPR[rs] ← (immediate15)32 immediate 016

Exceptions:

None

 TX49 Architecture

A-94

LW Load Word LW

offset
LW

100011
base rt

1516202125

6

2631 0

5 5 16

Format:

LW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the word at the memory location specified by
the effective address are loaded into general register rt. In 64-bit mode, the loaded word
is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

GPR[rt] ← mem31• + 8*byte∼8*byte

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

GPR[rt] ← (mem31• + 8*byte)32 mem31• + 8*byte∼8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

A-95

LWCz Load Word To Coprocessor LWCz

offset
LWXz

1100xx*
base rt

1516202125

6

2631 0

5 5 16

Format:

LWCz rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The processor reads a word from the addressed memory
location, and makes the data available to coprocessor unit z. The manner in which
each coprocessor uses the data is defined by the individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non-zero, an
address error exception occurs.

This instruction is not valid for use with CP0.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-96

LWCz Load Word To Coprocessor
(continued) LWCz

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

COPzLW (byte, rt, mem)

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

COPzLW(byte, rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

LWCz

LWC1

Bit #

Opcode Coprocessor Unit Number

02627282930

0011

31

10

02627282930

0011

31

01LWC2

Bit #

 TX49 Architecture

A-97

LWL Load Word Left LWL

offset
LWL

100010
base rt

1516202125

6

2631 0

5 5 16

Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a
register with four consecutive bytes from memory, when the bytes cross a boundary
between two words. LWL loads the left portion of the register from the appropriate part
of the high-order word; LWR loads the right portion of the register from the appropriate
part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which can specify an arbitrary byte. It reads
bytes only from the word in memory which contains the specified starting byte. From
one to four bytes will be loaded, depending on the starting byte specified. In 64-bit
mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the
high-order (left-most) byte of the register; then it proceeds toward the low-order byte of
the word in memory and the low-order byte of the register, loading bytes from memory
into the register until it reaches the low-order byte of the word in memory. The least-
significant (right-most) byte(s) of the register will not be changed.

LWL $24,1 ($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

$24after D321

 TX49 Architecture

A-98

LWL Load Word Left
(continued) LWL

The contents of general register rt are internally bypassed within the processor so that
no NOP is needed between an immediately preceding load instruction which specifies
register rt and a following LWL (or LWR) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEncian3)

if BigEndianMem• =• 0 then

pAddr ← pAddrPSIZE-1∼2 02

endif

byte ← vAddr1∼0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)

temp ← mem32*word• + 8*byte• + 7∼32*word  GPR[rt]23• − 8*byte∼0

GPR[rt] ← temp

64 T: vAddr ← ((offset15)48 offset15∼0) +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEncian3)

if BigEndianMem• =• 0 then

pAddr ← pAddrPSIZE-1∼2 02

endif

byte ← vAddr1∼0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)

temp ← mem32*word• + 8*byte• + 7∼32*word  GPR[rt]23• − 8*byte∼0

GPR[rt] ← (temp31)32 temp

 TX49 Architecture

A-99

LWL Load Word Left
(continued) LWL

Given a doubleword in a register and a doubleword in memory, the operation of LWL
is as follows:

LWL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0 Destination type
LEM BEM

Destination type
LEM BEM

0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0

1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1

2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2

3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3

4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4

5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5

6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6

7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼0 sent to memory

S sign-extend of destination31

Exception:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

A-100

LWR Load Word Right LWR

offset
LWR

100110
base rt

1516202125

6

2631 0

5 5 16

Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a
register with four consecutive bytes from memory, when the bytes cross a boundary
between two words. LWR loads the right portion of the register from the appropriate
part of the low-order word; LWL loads the left portion of the register from the
appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which can specify an arbitrary byte. It reads
bytes only from the word in memory which contains the specified starting byte. From
one to four bytes will be loaded, depending on the starting byte specified. In 64-bit
mode, if bit 31 of the destination register is loaded, then the loaded word is sign-
extended.

Conceptually, it starts at the specified byte in memory and loads. that byte into the
low-order (right-most) byte of the register; then it proceeds toward the high-order byte of
the word in memory and the high-order byte of the register, loading bytes from memory
into the register until it reaches the high-order byte of the word in memory.

The most significant (left-most) byte(s) of the register will not be changed.

LWR $24,4 ($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

$24after 4CBA

 TX49 Architecture

A-101

LWR Load Word Right
(continued) LWR

The contents of general register rt are internally bypassed within the processor so that
no NOP is needed between an immediately preceding load instruction which specifies
register rt and a following LWR (or LWL) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• =• 1 then

pAddr ← pAddrPSIZE-31∼3 03

endif

byte ← vAddr1∼0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)

temp ← GPR[rt]31∼32• − 8*byte mem31• + 32*word∼32*word• + 8*byte

GPR[rt] ← temp

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• =• 1 then

pAddr ← pAddrPSIZE-31∼3 03

endif

byte ← vAddr1∼0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)

temp ← GPR[rt]31∼32• − 8*byte mem31• + 32*word∼32*word• + 8*byte

GPR[rt] ← (temp31)32 temp

 TX49 Architecture

A-102

LWR Load Word Right
(continued) LWR

Given a word in a register and a word in memory, the operation of LWR is as follows:

LWR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0
destination type

LEM BEM
Destination type

LEM BEM

0 S S S S M N O P 0 0 4 X X X X E F G I 0 7 0

1 X X X X E M N O 1 1 4 X X X X E F I J 1 6 0

2 X X X X E F M N 2 2 4 X X X X E I J K 2 5 0

3 X X X X E F G M 3 3 4 S S S S I J K L 3 4 0

4 S S S S I J K L 0 4 0 X X X X E F G M 4 3 4

5 X X X X E I J K 1 5 0 X X X X E F M N 5 2 4

6 X X X X E F I J 2 6 0 X X X X E M N O 6 1 4

7 X X X X E F G I 3 7 0 S S S S M N O P 7 0 4

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼0 sent to memory

S sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

A-103

LWU Load Word Unsigned LWU

offset
LWU

101111
base rt

1516202125

6

2631 0

5 5 16

Format:

LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. The contents of the word at the memory location specified by
the effective address are loaded into general register rt. The loaded word is zero-
extended.

If either of the two least-significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian 02)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

GPR[rt] ← 032 mem31• + 8*byte∼8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-104

MADD Multiply/Add MADD

rd
MADD
000000

MAC
011100 rt

10111516202125

6

2631 0

5 5 5 11

rs
0

00000

6 5

Format:

• MADD rs, rt

• MADD rd, rs, rt

Description:

Multiplies the contents of general registers rs and rt, treating both values as two’s
complement, and puts the double-word result in special registers HI and LO. An
overview exception is never raised. The low-order word of the multiplication result is
put in general register rd and in special register LO, whereas the high-order word of the
reuslt is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value. To guarantee
correct operation even if an interrupt occurs, neithe of the two instructions following
MADD should be DIV or DIVU instructions which modify the HI and LO register
contents.

Operation:

32, 64 T: t ← (HI LO)• +• GPR[rs]*GPR[rt]

LO ← t31∼0

HI ← t63∼32

GPR[rd] ←t31∼0

Exception:

None

 TX49 Architecture

A-105

MADDU Multiply/Add Unsigned MADDU

rd MADDU
000001

MAC
011100

rt

10111516202125

6

2631 0

5 5 5 11

rs
0

00000

6 5

Format:

MADDU rs, rt

MADDU rd, rs, rt

Description:

Multiplies the contents of general registers rs and rt, treating both values as
unsigned, and puts the double-word result in special registers HI and LO. An overview
exception is never raised. The low-order word of the multiplication result is put in
general register rd and in special register LO, whereas the high-order word of the reuslt
is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value. To guarantee
correct operation even if an interrupt occurs, neithe of the two instructions following
MADDU should be DIV or DIVU instructions which modify the HI and LO register
contents.

Operation:

32, 64 T: t ← (HI LO) + (0 || GPR[rs])• +• (0 || GPR[rt])

LO ← t31∼0

HI ← t63∼32

GPR[rd] ← t31∼0

Exception:

None

 TX49 Architecture

A-106

MFC0 Move From System
Control Coprocessor MFC0

rd 0
000 0000 0000

MF
00000

COP0
010000

rt

10111516202125

6

2631 0

5 5 5 11

Format:

MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

May be used on both 32-bit and 64-bit CP0 registers.

Operation:

32 T: data ← CPR[0,rd]

T• + 1: GPR[rt] ← data

64 T: data ← CPR[0,rd]

T + 1: GPR[rt] ← (data31)32 data31∼0

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-107

MFCz Move From Coprocessor MFCz
rd 0

000 0000 0000
MF

00000
COPz

0100xx*
rt

10111516202125

6

2631 0

5 5 5 11

Format:

MFCz rt, rd

Description:

The contents of coprocessor register rd of coprocessor z are loaded into general
register rt.

Execution of the instruction referencing coprocessor 3 causes a reserved instruction
exception, not a coprocessor unusable exception.

Operation:

32 T: data ← CPR[z,rd]

T + 1: GPR[rt] ← data

64 T: if rd0• =• 0

data ← CPR[z,rd4∼1 0]31∼0

else

data ← CPR[z,rd4∼1 0]63∼32

endif

T + 1: GPR[rt] ← (data31)32||data

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (coprocessor 3)

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-108

MFCz Move From Coprocessor
(continued) MFCz

Opcode Bit Encoding:

Coprocessor Suboperation

MFCz

Coprocessor Unit Number

MFC1

Bit #

Opcode

021222324252627282930

0010

31

0010 000

021222324252627282930

0010

31

0001 000MFC2

Bit #

MFC0

Bit # 021222324252627282930

0010

31

0000 000

 TX49 Architecture

A-109

MFHI Move From HI MFHI
rd MFHI

010000

0
00000

0
00 0000 0000

SPECIAL
000000

561011151625

6

2631 0

10 5 5 6

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

 To ensure proper operation in the event of interruptions, the two instructions which
follow a MFHI instruction may not be any of the instructions which modify the HI
register: MULT, MULTU, DIV, DIVU, MTHI, DMULT, DMULTU, DDIV, DDIVU.

Operation:

32, 64 T: GPR[rd] ← HI

Exceptions:

None

 TX49 Architecture

A-110

MFLO Move From Lo MFLO
rd MFLO

010010
0

00000
0

00 0000 0000
SPECIAL
000000

561011151625

6

2631 0

10 5 5 6

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

 To ensure proper operation in the event of interruptions, the two instructions which
follow a MFLO instruction may not be any of the instructions which modify the LO
register: MULT, MULTU, DIV, DIVU, MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

32, 64 T: GPR[rd] ← LO

Exceptions:

None

 TX49 Architecture

A-111

MTC0 Move To System Control
Coprocessor MTC0

rd
0

000 0000 0000
MT

00100
COP0

010000
rt

10111516202125

6

2631 0

5 5 5 11

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load, store instructions and TLB operations immediately
prior to and after this instruction are undefined.

Operation:

32, 64 T: data ← GPR[rt]

T + 1: CPR[0,rd] ← data

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-112

MTCz Move To Coprocessor MTCz
rd

0
000 0000 0000

MT
00100

COPz
0100xx*

rt

10111516202125

6

2631 0

5 5 5 11

Format:

MTCz rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of
coprocessor z. Execution of the instruction referencing coprocessor 3 causes a reserved
instruction exception, not a coprocessor unusable exception.

Operation:

32 T: data ← GPR[rt]

T + 1: CPR[z,rd] ← data

64 T: data ← GPR[rt]31∼0

T + 1: if rd0• =• 0

CPR[z,rd4∼1 0] ← CPR[z,rd4∼1 0]63∼32 data

else

CPR[z,rd4∼1 0] ← data||CPR[z, rd 4∼1 0]31∼0

endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (coprocessor 3)

*Opcode Bit Encoding:

MTCz

MTC0

Bit # 021222324252627282930

0010

31

0000 001

021222324252627282930

0010

31

0010 001MTC1

Bit #

Coprocessor Suboperation

Coprocessor Unit Number

Opcode

021222324252627282930

0010

31

0001 001MTC2

Bit #

 TX49 Architecture

A-113

MTHI Move To HI MTHI
MTHI

010001
0

000 0000 0000 0000
SPECIAL
000000

rs

5620212526

6

31 0

5 15 6

Format:

MTHI rs

Description:

The contents of general register rs are loaded into special register HI

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruction,
but before any MFLO, MFHI, MTLO, or MTHI instructions, the contents of special
register LO are undefined.

Operation:

32, 64 T• −• 2:HI ← undefined

T• −• 1:HI ← undefined

T: HI ← GPR[rs]

Exceptions:

None

 TX49 Architecture

A-114

MTLO Move To LO MTLO
MTLO
010011

0
000 0000 0000 0000

SPECIAL
000000

rs

5620212526

6

31 0

5 15 6

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO If a MTLO
operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before
any MFLO, MFHI, MTLO, or MTHI instructions, the contents of special register HI are
undefined.

Operation:

32, 64 T• −• 2:LO ← undefined

T• −• 1:LO ← undefined

T: LO ← GPR[rs]

Exceptions:

None

 TX49 Architecture

A-115

MULT Multiply MULT
MULT

011000

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

MULT rs, rt

MULT rd, rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as
32-bit 2’s-complement values. No integer overflow exception occurs under any
circumstances. In 64-bit mode, the operands must be valid 32-bit, sign-extended
values.

 When the operation completes, the low-order word of the double result is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results is of these
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by a minimum of two other instructions.

Operation:

32 T• −• 2: LO ← undefined

HI ← undefined

T• −• 1: LO ← undefined

HI ← undefined

T: t ← GPR[rs]* GPR[rt]

LO ← t31∼0

HI ← t63∼32

64 T• −• 2: LO ← undefined

HI ← undefined

T• −• 1: LO ← undefined

HI ← undefined

T: t ← GPR[rs]31∼0* GPR[rt]31∼0

LO ← (t31)32 t31∼0

HI ← (t63)32 t63∼32

Exceptions:

None

 TX49 Architecture

A-116

MULTU Multiply Unsigned MULTU
MULTU
011001

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

MULTU rs, rt

MULTU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are
multiplied, treating both operands as unsigned values. No overflow exception occurs
under any circumstances. In 64-bit mode, the operands must be valid 32-bit, sign-
extended values.

When the operation completes, the low-order word of the double result is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. Correct operation requires separating reads of HI or LO

from writes by a minimum of two instructions.

Operation:

32 T• −• 2: LO ← undefined

HI ← undefined

T• −• 1: LO ← undefined

HI ← undefined

T: t ← (0 GPR[rs])* (0 GPR[rt])

LO ← t31∼0

HI ← t63∼32

64 T• −• 2: LO ← undefined

HI ← undefined

T• −• 1: LO ← undefined

HI ← undefined

T: t ← (0 GPR[rs]31∼0)* (0 GPR[rt]31∼0)

LO ← (t31)32 t31∼0

HI ← (t63)32 t63∼32

Exceptions:

None

 TX49 Architecture

A-117

NOR Nor NOR
rd NOR

100111
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register
rt in a bit-wise logical NOR operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

 TX49 Architecture

A-118

OR Or OR

rd
OR

100101
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

OR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register
rt in a bit-wise logical OR operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

 TX49 Architecture

A-119

ORI Or Immediate ORI
immediateORI

001101
rs rt

1516202125

6

2631 0

5 5 16

Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general
register rs in a bit-wise logical OR operation. The result is placed into general register
rt.

Operation:

32 T: GPR[rt] ← GPR[rs]31∼16 (immediate or GPR[rs]15∼0)

64 T: GPR[rt] ← GPR[rs]63∼16 (immediate or GPR[rs]15∼0)

Exceptions:

None

 TX49 Architecture

A-120

PREF Prefetch PREF

offset
PREF

110011
base hint

1516202125

6

2631 0

5 5 16

Format :

PREF hint, offset (base)

Description :

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective
byte address. It advises that data at the effective address may be used in the near
future.

If the hint field is 000002, this instruction prefetches a block of data from main
memory into cache.

PREF is an advisory instruction. It may change the performance of the program. For
all hint values and all effective addresses, it neither changes architecturally-visible state
nor alters the meaning of the program.

PREF does not cause addressing-related exceptions. If it raises an exception
condition, the exception conditions ignored. If an addressing-related exception is raised
and ignored, no data will be prefetched, even if no data is prefetched in such a case,
some action that is not architecturally-visible, such as writeback of a dirty cache line,
might take place.

PREF will never generate a memory operation for a location with an uncached
memory access type.

The defined hint values are shown in the table below. The TX49 only supports
hint�=�0. The hint table may be extended in future implementations.

hint field: Value

Value Name Data use and desired prefetch action

0 Load Data is expected to be loaded (not modified).

Fetch data as if for a load.

1-31 Reserved Reserved

 TX49 Architecture

A-121

PREF Prefetch
(continued) PREF

Programming Notes:

Prefetch can not prefetch data from a mapped location unless the translation for that
location is present in the TLB. Locations in memory pages that have not been accessed
recently may not have translations in the TLB, so prefetch may not be effective for such
locations.

Prefetch does not cause addressing exceptions. It will not cause an exception to
prefetch using an address pointer value before the validity of a pointer determined.

Operation :

32, 64 T: vAddr ← GPR[base]• =• sign_extend (offset)

(pAddr, uncached) ← Address Translation (vAddr, DATA, LOAD)

Prefetch (uncached, pAddr, vAddr, DATA, hint)

Exception :

None

 TX49 Architecture

A-122

SB Store Byte SB
offsetSB

101000
base rt

1516202125

6

2631 0

5 5 16

Format:

SB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. The least-significant byte of register rt is stored at the
effective address.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

byte ← vAddr2∼0 xor BigEndianCPU3

data ← GPR[rt]63−8*byte∼0 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

byte ← vAddr2∼0 xor BigEndianCPU3

data ← GPR[rt]63−8*byte∼0 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

A-123

SC Store Conditional SC
offsetSC

111000
base rt

1516202125

6

2631 0

5 5 16

Format:

SC rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. The contents of general register rt are conditionally stored at
the memory location specified by the effective address.

If an ERET instruction occurs between the Load Linked instruction and this store
instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated by the
contents of general register rt after execution of the instruction. A successful store sets
the contents of general register rt to1 ; an unsuccessful store sets it to 0.

The operation of Store Conditional is undefined when the address is different from the
address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CP0 to be enabled.

If either of the two least-significant bits of the effective address is non-zero, an
address error exception takes place.

 TX49 Architecture

A-124

SC Store Conditional
(continued) SC

If this instruction should both fail and take an exception, the exception takes
precedence.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian 02)

data ← GPR[rt]63−8*byte∼0 08*byte

if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif

GPR[rt] ← 031 LLbit

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian 02)

data ← GPR[rt]63−8*byte∼0 08*byte

if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif

GPR[rt] ← 063 Llbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

A-125

SCD Store Conditional
Doubleword SCD

offsetSCD
111100

base rt

1516202125

6

2631 0

5 5 16

Format:

SCD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. The contents of general register rt are conditionally stored at
the memory location specified by the effective address.

If an ERET instruction occurs between the Load Linked Doubleword instruction and
this store instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated by the
contents of general register rt after execution of the instruction. A successful store sets
the contents of general register rt to1; an unsuccessful store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the address is
different from the address used in the last Load Linked Doubleword.

This instruction is available in User mode; it is not necessary for CP0 to be enabled.

If either of the three least-significant bits of the effective address is non-zero, an
address error exception takes place.

If this instruction should both fail and take an exception, the exception takes
precedence.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]

If LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif

GPR[rt] ← 063 Llbit

 TX49 Architecture

A-126

SCD
Store Conditional

Doubleword
(continued)

SCD

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-127

SD Store Doubleword SD

offsetSD
111111

base rt

1516202125

6

2631 0

5 5 16

Format:

SD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. The contents of general register rt are stored at the memory
location specified by the effective address.

If either of the three least-significant bits of the effective address are non-zero, an
address error exception occurs.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-128

SDBBP Store Debug Breakpoint SDBBP
SDBBP
001110

SPECIAL
000000

5625

6

2631 0

20 6

Code

Format:

SDBBP code

Description:

Raises a Debug Breakpoint exception, passing control to an exception handler. The
code field can used for passing information to the exception handler, but the only way
to have the code field retrived by the exception handler is to load the contents of the
memory word containing this instruction using the DEPC register.

Operation:

32, 64 T: Software Debug Breakpoint Exception

Exception:

Debug Breakpoint exception

 TX49 Architecture

A-129

SDCz Store Doubleword From
Coprocessor SDCz

offsetSDCz
1111xx*

base rt

1516202125

6

2631 0

5 5 16

Format:

SDCz rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. Coprocessor unit z sources a doubleword, which the
processor writes to the addressed memory location. The data to be stored is defined by
individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-zero, an
address error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the rt-field is non-zero.

*See the table, “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-130

SDCz Store Doubleword From
Coprocessor (continued) SDCz

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

data ← COPzSD (rt),

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

data ← COPzSD (rt),

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

SDCz

Coprocessor Unit NumberSD opcode

02627282930

1111

31

10

02627282930

1111

31

01

SDC1

Bit #

SDC2

Bit #

 TX49 Architecture

A-131

SDL Store Doubleword Left SDL
offsetSDL

101100
base rt

1516202125

6

2631 0

5 5 16

Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a
register into eight consecutive bytes of memory, when the bytes cross a boundary
between two doublewords. SDL stores the left portion of the register into the
appropriate part of the high-order doubleword of memory; SDR stores the right portion
of the register into the appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which may specify an arbitrary byte. It alters
only the word in memory which contains that byte. From one to four bytes will be
stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the
specified byte in memory; then it proceeds toward the low-order byte of the register and
the low-order byte of the word in memory, copying bytes from register to memory until it
reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWL $24,1 ($0)

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

afteraddress 0

address 8 111098 15141312

DCB0 HGFE

 TX49 Architecture

A-132

SDL Store Doubleword Left
(continued) SDL

This operation is only defined for the TX4300 operating in 64-bit mode nad 32-bit
kernal mode.

Execution of this instruction in 32-bit user or supervisor mode causes a reserved
instruction exception.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

If BigEndianMem• =• 0 then

pAddr ← pAddr31∼3 03

endif

byte ← vAddr2∼0 xor BigEndianCPU3

data ← 056−8*byte GPR[rt]63∼56−8*byte

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

 TX49 Architecture

A-133

SDL Store Doubleword Left
(continued) SDL

Given a doubleword in a register and a doubleword in memory, the operation of SWL
is as follows:

LWL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0 destination type
LEM BEM

destination type
LEM BEM

0 I J K L M N O A � 0 � A � � � � � � H 7 0 0

1 I J K L M N � � � � � � � � � � � � � 6 0 1

2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2

3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3

4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4

5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5

6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6

7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type Access Type (see Figure 2-2) sent to memory

Offset pAddr2∼0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-134

SDR Store Doubleword Right SDR
offsetSDR

101101
base rt

1516202125

6

2631 0

5 5 16

Format:

SDR rt, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a
register into eight consecutive bytes of memory, when the bytes cross a boundary
between two doublewords. SDR stores the right portion of the register into the
appropriate part of the low-order doubleword; SDL stores the left portion of the register
into the appropriate part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which may specify an arbitrary byte. It alters
only the word in memory which contains that byte. From one to eight bytes will be
stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and
copies it to the specified byte in memory; then it proceeds toward the high-order byte of
the register and the high-order byte of the word in memory, copying bytes from register
to memory until it reaches the high-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWR $24,4 ($0)

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

afteraddress 0

address 8 111098 15141312

HGFE 7654

memory
(big-endian)

 TX49 Architecture

A-135

SDR Store Doubleword Right
(continued) SDR

This operation is only defined for the TX4300 operating in 64-bit mode and 32-bit
kernal mode.

Execution of this instruction in 32-bit user or supervisor mode causes a reserved
instruction exception

Operation:

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• = 0 then

pAddr ← pAddrPSIZE-31∼3 03

endif

byte ← vAddr1∼0 xor BigEndianCPU3

data ← GPR[rt]63−8*byte∼0 08*byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr,

 TX49 Architecture

A-136

SDR Store Doubleword Right
(continued) SDR

Given a doubleword in a register and a doubleword in memory, the operation of SDR
is as follows:

SDR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0
destination type

LEM BEM
destination type

LEM BEM

0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0

1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0

2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0

3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0

4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0

5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0

6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0

7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type Access Type (see Figure 2-2) sent to memory

Offset pAddr2∼0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32�ELW XVHU RU ���ELW supervisior mode)

 TX49 Architecture

A-137

SH Store Halfword SH
offsetSH

101001
base rt

1516202125

6

231 0

5 5 16

Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form an unsigned effective address. The least-significant halfword of register rt is
stored at the effective address. If the least-significant bit of the effective address is non-
zero, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian2 0))

byte ← vAddr2∼0 xor (BigEndianCPU2 0)

data ← GPR[rt]63-8*byte∼0 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian2 0))

byte ← vAddr2∼0 xor (BigEndianCPU2 0)

data ← GPR[rt]63-8*byte∼0 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

A-138

SLL Shift Left Logical SLL
sard SLL

000000
0

00000
SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the
low-order bits. The result is placed in register rd. In 64-bit mode, the 32-bit result is
sign extended when placed in the destination register. It is sign-extended for all shift
amounts, including zero; SLL with a zero shift amount truncates a 64-bit value to 32-
bits and sign extends this 32-bit value. SLL, unlike nearly all other word operations,
does not repuire and operand to be a properly sign-extended word value to produce a
valid sign-extended word result.

Note: SLL with a shift amount of zero may be treated as a NOP by some assemblers at
some optimization levels. If using SLL with zero shift to truncate 64-bit values, check
the assembler being used.

Operation:

32 T: GPR[rd] ← GPR[rt]31-sa∼0 0sa

64 T: s ← 0 sa

temp ← GPR[rt]31-s∼0 0s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49 Architecture

A-139

SLLV Shift Left Logical
Variable SLLV

rd
SLLV

000100
0

00000
0
rs

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by
the low-order five bits contained as contents of general register rs, inserting zeros into
the low-order bits. The result is placed in register rd. In 64-bit mode, the 32-bit result
is sign extended when placed in the destination register. It is sign-extended for all shift
amounts, including zero; SLLV with a zero shift amount truncates a 64-bit value to 32-
bits and sign extends this 32-bit value. SLLV, unlike nearly all other word operations,
does not require the operand to be a properly sign-extended word value to produce a
valid sign-extended word result.

Note: SLLV with a shift amount of zero may be treated as a NOP by some assemblers
at some optimization levels. If using SLLV with zero shift to truncate 64-bit values,
check the assembler being used.

Operation :

32 T: s ← GP[rs]4∼0

GPR[rd] ← GPR[rt](31-s) ∼0 0s

64 T: s ← 0 GP[rs]4∼0

temp ← GPR[rt](31-s) ∼0 0s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49 Architecture

A-140

SLT Set On Less Than SLT
rd SLT

101010
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLT rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register
rs. Considering both quantities as signed integers, if the contents of general register rs
are less than the contents of general register rt, the result is set to one, otherwise the
result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is
valid even if the subtraction used during the comparison overflows.

Operation:

32 T: if GPR[rs]• <• GPR[rt] then

GPR[rd] ← 031 1
else

GPR[rd] ← 032

endif

64 T: if GPR[rs]• <• GPR[rt] then

GPR[rd] ← 063 1
else

GPR[rd] ← 064

endif

Exceptions:

None

 TX49 Architecture

A-141

SLTI Set On Less Than
Immediate SLTI

immediateSLTI
001010

rs rt

1516202125

6

2631 0

5 5 16

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general
register rs. Considering both quantities as signed integers, if rs is less than the sign-
extended immediate, the result is set to one, otherwise the result is set to zero. The
result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is
valid even if the subtraction used during the comparison overflows.

Operation:

32 T: if GPR[rs]• <• (immediate15)16 immediate15∼0 then

GPR[rt] ← 031 1
else

GPR[rt] ← 032

endif

64 T: if GPR[rs]• <• (immediate15)48 immediate15∼0 then

GPR[rt] ← 063 1
else

GPR[rt] ← 064

endif

Exceptions:

None

 TX49 Architecture

A-142

SLTIU Set On Less Than
Immediate Unsigned SLTIU

immediateSLTIU
001011

rs rt

1516202125

6

2631 0

5 5 16

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general
register rs. Considering both quantities as unsigned integers, if rs is less than the sign-
extended immediate, the result is set to one, otherwise the result is set to zero. The
result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is
valid even if the subtraction used during the comparison overflows.

Operation:

32 T: if (0 GPR[rs])• <• (immediate15)16 immediate15∼0 then

GPR[rt] ← 031 1
else

GPR[rt] ← 032

endif

64 T: if (0 GPR[rs])• <• (immediate15)48 immediate15∼0 then

GPR[rt] ← 063 1
else

GPR[rt] ← 064

endif

Exceptions:

None

 TX49 Architecture

A-143

SLTU Set On Less Than Unsigned SLTU
rd SLTU

101011
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLIU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register
rs. Considering both quantities as unsigned integers, if the contents of general register
rs are less than the contents of general register rt, the result is set to one, otherwise the
result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is
valid even if the subtraction used during the comparison overflows.

Operation:

32 T: if (0 GPR[rs])• <• 0 GPR[rt] then

GPR[rd] ← 031 1
else

GPR[rd] ← 032

endif

64 T: if (0 GPR[rs])• <• 0 GPR[rt] then

GPR[rd] ← 063 1
else

GPR[rd] ← 064

endif

Exceptions:

None

 TX49 Architecture

A-144

SRA Shift Right Arithmetic SRA

sard SRA

000011

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the
high-order bits. The result is placed in register rd. In 64-bit mode, the operand must
be a valid sign-extended, 32-bit value.

Operation :

32 T: GPR[rd] ← (GPR[rt]31)sa GPR[rt]31∼sa

64 T: s ← 0 sa

temp ← (GPR[rt]31)s GPR[rt]31∼s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49 Architecture

A-145

SRAV Shift Right Arithmetic
Variable SRAV

rd SRAV
000111

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by
the low-order five bits of general register rs, sign-extending the high-order bits. The
result is placed in register rd. In64-bit mode, the operand must be a valid sign-
extended, 32-bit value.

Operation:

32 T: s ← GPR[rs]4∼0

GPR[rd] ← (GPR[rt]31)s GPR[rt]31∼sa

64 T: s ← GPR[rs]4∼0

temp ← (GPR[rt]31)s GPR[rt]31∼s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49 Architecture

A-146

SRL Shift Right Logical SRL
rd SRL

000010
0

00000
SPECIAL
000000

sart

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the
high-order bits. The result is placed in register rd. In64-bit mode, the operand must be
a valid sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] ← 0sa GPR[rt]31∼sa

64 T: s ← 0 sa

temp ← 0s GPR[rt]31∼s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49 Architecture

A-147

SRLV Shift Right Logical Variable SRLV
rd SRLV

000110
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by
the low-order five bits of general register rs, inserting zeros into the high-order bits. The
result is placed in register rd. In 64-bit mode, the operand must be a valid sign-
extended, 32-bit value.

Operation:

32 T: s ← GPR[rs]4∼0

GPR[rd] ← 0s GPR[rt]31∼s

64 T: s ← GPR[rs]4∼0

temp ← 0s GPR[rt]31∼s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49 Architecture

A-148

SUB Subtract SUB
rd SUB

100010
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register
rs to form a result. The result is placed into general register rd. In 64-bit mode, the
operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction is that SUBU
never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ
(2’s-complement overflow). The destination register rd is not modified when an integer
overflow exception occurs.

Operation:

32 T: GPR[rd] ← GPR[rs]• −• GPR[rt]

64 T: temp ← GPR[rs]• −• GPR[rt]

GPR[rd] ← (temp31)32 temp31∼0

Exceptions:

Integer overflow exception

 TX49 Architecture

A-149

SUBU Subtract Unsigned SUBU
rd SUBU

100011
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register
rs to form a result. The result is placed into general register rd. In 64-bit mode, the
operands must be valid sign-extended,32-bit values.

The only difference between this instruction and the SUB instruction is that SUBU
never traps on overflow. No integer overflow exception occurs under any
circumstances.

Operation:

32 T: GPR[rd] ← GPR[rs]• −• GPR[rt]

64 T: temp ← GPR[rs]• −• GPR[rt]

GPR[rd] ← (temp31)32 temp31∼0

Exceptions:

None

 TX49 Architecture

A-150

SW Store Word SW
offsetSW

101011
base rt

1516202125

6

2631 0

5 5 16

Format:

SW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a virtual address. The contents of general register rt are stored at the memory
location specified by the effective address.

If either of the two least-significant bits of the effective address are non-zero, an
address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

data ← GPR[rt]63-8*byte 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

data ← GPR[rt]63-8*byte 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TUB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

A-151

SWCz Store Word From
Copprocessor SWCz

offsetSWCz
1110xx*

base rt

1516202125

6

2631 0

5 5 16

Format:

SWCz rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form a virtual address. Coprocessor unit z sources a word, which the processor
writes to the addressed memory location.

The data to be stored is defined by individual coprocessor specifications. This
instruction is not valid for use with CP0. If either of the two least-significant bits of the
effective address is non-zero, an address error exception occurs.

Execution of the instruction referencing coprocessor 3 causes a reserved instruction
exception, not a coprocessor unusable exception.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

data ← COPzSW (byte, rt)

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0) +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor (ReverseEndian 02)

byte ← vAddr2∼0 xor (BigEndianCPU 02)

data ← COPzSW (byte, rt)

StoreMemory (uncache, WORD, data, pAddr, vAddr, DATA)

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49 Architecture

A-152

SWCz Store Word From
Coprocessor (Continued) SWCz

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

SWCz

Coprocessor Unit Number

SWC1

Bit #

SW Opcode

02627282930

0111

31

10

02627282930

0111

31

01SWC2

Bit #

 TX49 Architecture

A-153

SWL Store Word Left SWL
offsetSWL

101010
base rt

1516202125

6

2631 0

5 5 16

Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a
register into four consecutive bytes of memory, when the bytes cross a boundary
between two words. SWL stores the left portion of the register into the appropriate part
of the high-order word of memory; SWR stores the right portion of the register into the
appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which may specify an arbitrary byte. It alters
only the word in memory which contains that byte. From one to four bytes will be
stored, depending on the staring byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the
specified byte in memory; then it proceeds toward the low-order byte of the register and
the low-order byte of the word in memory, copying bytes from register to memory until it
reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWL $24,1($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

afteraddress 0

address 4 7654

CBA0

 TX49 Architecture

A-154

SWL Store Word Left
(Continued) SWL

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• =• 0 then

pAddr ← pAddr31∼2 02

endif

byte ← vAddr1∼0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU)• =• 0 then

data ← 032 024-8*byte GPR[rt]31∼24-8*byte

else

data ← 024-8*byte GPR[rt]31∼24-8*byte 032

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0) +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• =• 0 then

pAddr ← pAddr31∼2 02

endif

byte ← vAddr1∼0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU)• =• 0 then

data ← 032 024-8*byte GPR[rt]31∼24-8*byte

else

data ← 024-8*byte GPR[rt]31∼24-8*byte 032

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

 TX49 Architecture

A-155

SWL Store Word Left
(Continued) SWL

Given a doubleword in a register and a doubleword in memory, the operation of SWL
is as follows:

SWL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0
Destination type

LEM BEM
Destination type

LEM BEM

0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0

1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1

2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2

3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3

4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4

5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5

6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6

7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

A-156

SWR Store Word Right SWR

offset
SWR

101110
base rt

1516202125

6

2631 0

5 5 16

Format:

SWR rt, offset (base)

Description:

This instruction can be used with the SWL instruction to store the contents of a
register into four consecutive bytes of memory, when the bytes cross a boundary
between two words. SWR stores the right portion of the register into the appropriate
part of the low-order word; SWL stores the left portion of the register into the
appropriate part of the low-order word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a virtual address which may specify an arbitrary byte. It alters
only the word in memory which contains that byte. From one to four bytes will be
stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and
copies it to the specified byte in memory; then it proceeds toward the high-order byte of
the register and the high-order byte of the word in memory, copying bytes from register
to memory until it reaches the high-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWR $24,4($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

afteraddress 0

address 4 765D

3210

 TX49 Architecture

A-157

SWR Store Word Right
(Continued) SWR

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• =• 0 then

pAddr ← pAddr31∼2 02

endif

byte ← vAddr1∼0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU)• =• 0 then

data ← 032 GPR[rt]31-8*byte∼0 08*byte

else

data ← GPR[rt]31-8*byte∼0 08*byte 032

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0)• +• GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0 xor ReverseEndian3)

if BigEndianMem• =• 0 then

pAddr ← pAddr31∼2 02

endif

byte ← vAddr1∼0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU)• =• 0 then

data ← 032 GPR[rt]31-8*byte∼0 08*byte

else

data ← GPR[rt]31-8*byte∼0 08*byte 032

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

 TX49 Architecture

A-158

SWR Store Word Right
(Continued) SWR

Given a doubleword in a register and a doubleword in memory, the operation of SWR
is as follows:

SWR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU• =• 0 BigEndianCPU• =• 1

offset offsetvAddr2∼0
Destination type

LEM BEM
Destination type

LEM BEM

0 I J K L E F G H 3 0 4 E J K L M N O P 0 7 0

1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0

2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0

3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0

4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4

5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4

6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4

7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

LEM BigEndianMem�=�0

BEM BigEndianMem�=�1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

BUS error exception

Address error exception

 TX49 Architecture

A-159

SYNC Synchronize SYNC
SYNC
001111

0
0000 0000 0000 0000 0000

SPECIAL
000000

5625

6

2631 0

20 6

Format:

SYNC

Description:

The SYNC instruction ensures that any loads and stores fetched prior to the present
instruction are completed before any loads or stores after this instruction are allowed to
start. Use of the SYNC instruction to serialize certain memory references may be
required in multiprocessor environment for proper synchronization.

For example:

Processor A Processor B

SW

LI

SYNC

SW

R1, DATA

R2, 1

R2, FLAG

1: LW

BEQ

NOP

SYNC

LW

R2, FLAG

R2, R0, 1B

R1, DATA

The SYNC in processor A prevents DATA being written after FLAG, which could cause
processor B to read stale data. The SYNC in processor B prevents DATA from being
read before FLAG, which could likewise result in reading stale data. For processors
which only execute loads and stores in order, with respect to shared memory, this
instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.

This instruction is allowed in User mode.

Operation:

32, 64 T: SyncOperation()

Exceptions:

None

 TX49 Architecture

A-160

SYSCALL System Call SYSCALL
SYSCALL

001100
SPECIAL
000000

5625

6

2631 0

20 6

Code

Format:

SYSCALL

Description:

A system call exception occurs, immediately and unconditionally transferring control
to the exception handler.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: SystemCallException

Exceptions:

System Call exception

 TX49 Architecture

A-161

TEQ Trap If Equal TEQ
code TEQ

110100

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs.

If the contents of general register rs are equal to the contents of general register rt, a
trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: if GPR[rs]• =• GPR[rt] then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-162

TEQI Trap If Equal Immediate TEQI
immediateTEQI

01100

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general
register rs. If the contents of general register rs are equal to the sign-extended
immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] ← (immediate15)16 immediate15∼0 then

TrapException

endif

64 T: if GPR[rs] ← (immediate15)48 immediate15∼0 then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-163

TGE Trap If Greater Than Or
Equal TGE

code TGE
110000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TGE rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are
greater than or equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: if GPR[rs]• ≥• GPR[rt] then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-164

TGEI Trap If Greater Than Or
Equal Immediate TGEI

immediateTGEI
01000

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents of general
register rs are greater than or equal to the sign-extended immediate, a trap exception
occurs.

Operation:

32 T: if GPR[rs]• ≥• (immediate15)16 immediate15∼0 then

TrapException

endif

64 T: if GPR[rs]• ≥• (immediate15)48 immediate15∼0 then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-165

TGEIU
Trap If Greater Than Or

Equal Immediate
Unsigned TGEIU

immediateTGEIU
01001

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general
register rs. Considering both quantities as unsigned integers, if the contents of general
register rs are greater than or equal to the sign-extended immediate, a trap exception
occurs.

Operation:

32 T: if (0 GPR[rs])• ≥• (0 (immediate15)16 immediate15∼0) then

TrapException

endif

64 T: if (0 GPR[rs])• ≥• (0 (immediate15)48 immediate15∼0) then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-166

TGEU Trap If Greater Than Or
Equal Unsigned TGEU

code TGEU
110001

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs.
Considering both quantities as unsigned integers, if the contents of general register rs
are greater than or equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: if (0 GPR[rs])• ≥• (0 GPR[rt]) then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-167

TLBP Probe TLB For Matching Entry TLBP
TLBP

001000
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match
the contents of the EntryHi register. If no TLB entry matches, the high-order bit of the
Index register is set.

The architecture does not specify the operation of memory references associated with
the instruction immediately after a TLBP instruction, nor is the operation specified if
more than one TLB entry matches.

Operation:

32 T: Index ← 1 025 Undeficed6

for i in 0∼TLBEntries-1

if (TLB[i]95∼77• =• EntryHi31∼12) and (TLB[i]76 or

(TLB[i]71∼64• =• EntryHi7∼0)) then

Index ← 026 i5∼0

endif

endfor

64 T: Index ← 1 025 Undeficed6

for i in 0∼TLBEntries-1

if (TLB[i]167∼141 and not (015 TLB[i]216∼205))

=• (EntryHi39∼13 and not (015 TLB[i]216∼205)) and

(TLB[i]140 or (TLB[i]135∼128• =• EntryHi7∼0)) then

Index ← 026 i5∼0

endif

endfor

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-168

TLBR Read Indexed TLB Entry TLBR
TLBR

000001
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBR

Description:

The G bit (controls ASID matching) read from the TLB is written into both EntryLo0
and EntryLo1.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
pointed at by the contents of the TLB Index register. The operation is invalid (and the
results are unspecified) if the contents of the TLB Index register are greater than the
number of TLB entries in the processor.

Operation:

32 T: PageMask ← TLB[Index5∼0]127∼96

EntryHi ← TLB[Index5∼0]95∼64 and not TLB[Index5∼0]127∼96

EntryLo1 ← TLB[Index5∼0]63∼32

EntryLo0 ← TLB[Index5∼0]31∼0

64 T: PageMask ← TLB[Index5∼0]255∼192

EntryHi ← TLB[Index5∼0]191∼128 and not TLB[Index5∼0]255∼192

EntryLo1 ← TLB[Index5∼0]127∼65 TLB[Index5∼0]140

EntryLo0 ← TLB[Index5∼0]63∼1 TLB[Index5∼0]140

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-169

TLBWI Write Indexed TLB Entry TLBWI
TLBWI
000010

0
000 0000 0000 0000 0000

CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBWI

Description:

The G bit of the TLB is written with the logical AND of the G bits in EntryLo0 and
EntryLo1.

The TLB entry pointed at by the contents of the TLB Index register is loaded with the
contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB
Index register are greater than the number of TLB entries in the processor.

Operation:

32, 64 T: TLB[Index5∼0] ←
PageMask (EntryHi and not PageMask) EntryLo1 EntryLo0

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-170

TLBWR Write Random TLB Entry TLBWR
TLBWR
000110

0
000 0000 0000 0000 0000

CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBWR

Description:

The G bit of the TLB is written with the logical AND of the G bits in EntryLo0 and
EntryLo1.

The TLB entry pointed at by the contents of the TLB Random register is loaded with
the contents of the EntryHi and EntryLo registers.

Operation:

32, 64 T: TLB[Random5∼0] ←
PageMask (EntryHi and not PageMask) EntryLo1 EntryLo0

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

A-171

TLT Trap If Less Than TLT

code TLT

110010

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TLT rs, rt

Description:

The contents of general register rt are compared to general register rs.

Considering both quantities as signed integers, if the contents of general register rs
are less than the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: if GPR[rs]• <• GPR[rt] then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-172

TLTI Trap If Less Than Immediate TLTI
code TLT

110010
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents of general
register rs are less than the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs]• <• (immediate15)16 immediate15∼0 then

TrapException

endif

64 T: if GPR[rs]• <• (immediate15)48 immediate15∼0) then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-173

TLTIU Trap If Less Than
Immediate Unsigned TLTIU

immediateTLTIU
01011

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents of general
register rs are less than the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if (0 GPR[rs])• <• (0 (immediate15)16 immediate15∼0) then

TrapException

endif

64 T: if (0 GPR[rs])• <• (0 (immediate15)48 immediate15∼0) then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-174

TLTU Trap If Less than
Unsigned TLTU

code
TLTU

110011
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TLTU rs, rt

Description:

The contents of general register rt are compared to general register rs. Considering
both quantities as unsigned integers, if the contents of general register rs are less than
the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: if (0 GPR [rs])• <• (0 GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-175

TNE Trap If Not Equal TNE
code TNE

110110
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TNE rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents
of general register rs are not equal to the contents of general register rt, a tap exception
occurs.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

32, 64 T: if GPR [rs]• ≠• GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-176

TNEI Trap If Not Equal Immediate TNEI
immediateTNEI

01110
REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general
register rs. If the contents of general register rs are not equal to the sign-extended
immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs]• ≠• (immediate15)16 immediate15∼0 then

TrapException

endif

64 T: if GPR[rs]�(immediate15)48 immediate15∼0 then

TrapException

endif

Exceptions:

Trap exception

 TX49 Architecture

A-177

WAIT Wait WAIT
WAIT

100000
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format :

WAIT

Description :

The WAIT instruction is used to halt the internal pipeline and thus reduce the power
consumption of the CPU. See Chapter 21.

Operation :

32, 64 T: if G-bus is idle then

StopPipeline

Endif

Exceptions :

Coprocessor unusable exception

 TX49 Architecture

A-178

XOR Exclusive Or XOR
rd 0

00000
XOR

100110
SPECIAL
000000

rtrs

5610111516202125

6

2631 0

5 5 5 5 6

Format:

XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register
rt in a bit-wise logical exclusive OR operation. The result is placed into general register
rd.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] xor GPR [rt]

Exceptions:

None

 TX49 Architecture

A-179

XORI Exclusive OR Immediate XORI

immediate
XORI

001110
rtrs

1516202125

6

2631 0

5 5 16

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general
register rs in a bit-wise logical exclusive OR operation. The result is placed into general
register rt.

Operation:

32 T: GPR [rt] ← GPR [rs] xor (016 immediate)

64 T: GPR [rt] ← GPR [rs] xor (048 immediate)

Exceptions:

None

 TX49 Architecture

A-180

Bit Encoding of CPU Instruction OPcodes

The Table A-2 shows the bit codes for all TX49 CPU instructions(ISA and extended ISA)

Table A-2 CPU Operation Code Bit Encoding

OPcode
31 26 0

OPcode

31∼29

28∼26

0 1 2 3 4 5 6 7

0 SPECIA λ REGIM λ J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 α COP1 α COP2 α COP3 α θ BEQL BNEL BLEZL BGTZL

3 DADDI ε DADDIU ε LDL ε LDR ε MAC λ * * *

4 LB LH LWL LW LBU LHU LWR LWU ε
5 SB SH SWL SW SDL ε SDR ε SWR CACHE

6 LL LWC1 α LWC2 α PREF LLD ε LDC1 α LDC2 α LD ε
7 SC SWC1 α SWC2 α * SCD ε SDC1 α SDC2 α SD ε

SPECIAL Function
31 26 5 0

OPcode•

=
SPECIAL

SPECIAL

Function

5∼3

2∼0

0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV

1 JR JALR * * SYSCALL BREAK SDBBP SYNC

2 MFHI MTHI MFLO MTLO DSLLV ε * DSRLV ε DSRAV ε
3 MULT MULTU DIV DIVU DMULT ε DMULTε DDIV ε DDIVU ε
4 ADD ADDU SUB SUBU AND OR XOR NOR

5 * * SLT SLTU DADD ε DADDU ε DSUB ε DSUBU ε
6 TGE TGEU TLT TLTU TEQ * TNE *

7 DSLL ε * DSRL ε DSRA ε DSLL32 ε * DSRL32 ε DSRA ε

 TX49 Architecture

A-181

REGIMM rt
31 26 20 16 0

OPcode•

=
REGIMM

REGIMM

rt

20∼19

18∼16

0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL * * * *

1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 * * * * * * * *

COPz rs
31 26 25 21 0

OPcode•

=
COPz

COPz

rs

25∼24

23∼21

0 1 2 3 4 5 6 7

0 MF DMF ε CF γ MT DMT ε CT γ
1 BC γ γ γ γ γ γ γ
2

3
CO

COPz rt
31 26 20 16 0

OPcode•

=
COPz

COPz

rt

20∼19

18∼16

0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ

COP0 Function
31 26 5 0

OPcode•

=
COP0

COP0

Function

5∼3

2∼0

0 1 2 3 4 5 6 7

0 φ TLBR TLBWI φ φ φ TLBWR φ
1 TLBP φ φ φ φ φ φ φ
2 φ φ φ φ φ φ φ φ
3 ERET φ φ φ φ φ φ DERET

4 WAIT φ φ φ φ φ φ φ
5 φ φ φ φ φ φ φ φ
6 φ φ φ φ φ φ φ φ
7 φ φ φ φ φ φ φ φ

 TX49 Architecture

A-182

 TX49 Architecture

A-183

MAC Function
31 26 5 0

OPcode•

=
MAC

MAC

Function

5∼3

2∼0

0 1 2 3 4 5 6 7

0 MADD MADDU γ γ γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ
4 γ γ γ γ γ γ γ γ
5 γ γ γ γ γ γ γ γ
6 γ γ γ γ γ γ γ γ
7 γ γ γ γ γ γ γ γ

Key :

* : This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

γ: This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

λ: This opecode indicates an instruction class. The instruction word must be further decoded
by examining additional tables that show the values for another instruction field.

α: This opcode is a coprocessor operation, not a CPU operation. If the processor state does
not allow access to the specified coprocessor, the instruction causes a Coprocessor
Unusable exception. It is included in the table because it uses a primary opecode in the
instruction encodeing map.

φ: This opcode is reserved for future use, but does not cause a Reserved Instruction exception
in TX49 implementations. It is treated as “NOP”.

θ: This opcode is valid when BC is only selected in COPz rs; In other case, it causes a
Reserved Instruction exception .

ε: This opcode is valid when the processor is operating either in the Kernel mode or in the 64-
bit non-Kernel (User or Supervisor) mode; In other case, it causes a Reserved Instruction
exception .

 TX49 Architecture

B-1

Appendix B: FPU Instruction Set Details

This appendix provides a detailed description of the operation of each Floating-Point (FPU)
instruction. The instructions are listed alphabetically. The exceptions that may occur due
to the execution of each instruction are listed after the description of each instruction. The
description of the immediate causes and the. manner of handling exceptions us omitted
horn the instruction descriptions in this chapter. Refer to Chapter 6 for detailed
descriptions of floating-point exceptions and handling.

Figure B-5 lists the entire bit encoding for the constant fields of the Floating-Point
instruction set; the bit encoding for each instruction is included with that individual
instruction.

Instruction Formats

There are three basic instruction format types:

I-Type, or Immediate instructions, which include load and store operations,

M-Type, or Move instructions, and

R-Type, or Register instructions, which include the two-and three-register

Floating-Point operations.

The instruction description subsections that follow show how the three basic
instruction formats are used by:

Load and store instructions,

Move instructions, and

Floating-Point Computational instructions.

A fourth instruction description subsection describes the special instruction format
used by floating-point branch instructions.

 TX49 Architecture

B-2

Floating-point instructions are mapped onto the MIPS coprocessor instructions,
defining coprocessor unit number one (CP1) as the floating-point unit.

Each operation is valid only for certain formats. Implementations may support some of
these formats and operations only through emulation, but only need support
combinations that are valid, which are marked with a V in Table B-1 below. Those
combinations marked with a “R” are not currently specified by this architecture, causing
an unimplemented instruction trap, to maintain compatibility with future architecture
extensions.

Table B-1 Valid FPU Instruction Formats

Source Format
Operation

Single Double Word Longword

ADD V V R R

SUB V V R R

MUL V V R R

DIV V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

LOOR.L V V

TRUNC.W V V

ROUND.W V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V

CVT.L V V

C V V R R

 TX49 Architecture

B-3

The coprocessor branch on condition true/false instructions can be used to logically
negate any predicate. Thus, the 32 possible conditions require only 16 distinct
comparisons, as shown in Table B-2 below.

Table B-2 Logical Negation of Predicates by Condition True/False

Condition Relations

Mnemonic

True False
Code

Greater

Than

Less

Than
Equal Unordered

Invalid Operation
exception if
unordered

F T 0 F F F F No

UN OR 1 F F F T No

EQ NEQ 2 F F T F No

UEQ OGL 3 F F T T No

OLT UGE 4 F T F F No

ULT OGE 5 F T F T No

OLE UGT 6 F T T F No

ULE OGT 7 F T T T No

SF ST 8 F F F F Yes

NGLE GLE 9 F F F T Yes

SEQ SNE 10 F F T F Yes

NGL GL 11 F F T T Yes

LT NLT 12 F T F F Yes

NGE GE 13 F T F T Yes

LE NLE 14 F T T F Yes

NGT GT 15 F T T T Yes

 TX49 Architecture

B-4

Floating-Point Loads, Stores, and Moves

All movement of data between the floating-point coprocessor and memory is
accomplished by coprocessor load and store operations, which reference the floating-
point coprocessor’s General-Purpose Registers. These operations are unformated; no
format conversions are performed and, therefore, no floating-point exceptions occur due
to these operations.

Data may also be directly moved between the floating-point coprocessor and the
processor by move to coprocessor and move from coprocessor instructions. Like the
floating-point load and store operations, move to/from operations perform no format
conversions and never cause floating-point exceptions.

An additional pair of coprocessor registers are available, called Floating-Point Control
registers for which the only data movement opera-lions supported are moves to and from
processor General-Purpose Registers.

Floating-Point Operations

The floating-point unit’s operation set includes floating-point add, subtract, multiply,
divide, square root, convert between fixed-point and floating-point format, convert
between floating-point formats, and floating-point compare. These operations satisfy
IEEE Standard 754’s requirements for accuracy. Specifically, these operations obtain a
result which is identical to performing the result with infinite precision and then
rounding to the specified format, using the current rounding mode.

Instructions must specify the format of their operands. Except for con-version
functions, mixed-format operations are not provided.

 TX49 Architecture

B-5

Instruction Notational Conventions

In this appendix, all variable sub fields in an instruction format (such as fs, ft,
immediate, and so on) are shown with lower-case names. The instruction name (such as
ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, an alias is sometimes substituted for a variable subfield in the
formats of specific instructions. For example, we use rs = base in the format for load
and store instructions. Such an alias is always lower case, since it refers to a variable
subfield.

In some instructions, however, the two instruction subfields op and function have
constant 6-bit values. When reference is made to these instructions, upper-case
mnemonics are used. In the floating-point instruction, for example, we use op = COP1
and function = FADD. In some cases, a single field has both fixed and variable
subfields, so the name contains both upper and lower case characters. Actual bit
encoding for mnemonics is shown in Figure B-5 at the end of this appendix, and are also
included with each individual instruction.

In the instruction description examples that follow, the Operation section describes the
operation performed by each instruction using a high-level language notation.

Instruction Notation Examples

Example #1:

GPR[ft] ← immediate 016

Sixteen zero bits are concatenated with an immediate value (typically 16�bits),.
and the 32-bit string (with the lower 16�bits set to zero) is assigned to GPR register
ft.

Example #2:

(immediate15)16 immediate15∼0

Bit 15 (the sign bit) of an immediate value is extended for 16�bit positions, and the
result is concatenated with bits 15 through 0 of the immediate value to form a 32-bit
sign-extended value.

 TX49 Architecture

B-6

Load and Store Instructions

In the MIPS ISA, all load operations have a delay of at least one instruction. That is,
the instruction immediately following a load cannot use the contents of the register that
will be loaded with the data being fetched from storage.

In the TX49, the instruction immediately following a load may use the contents of the
register loaded. In such cases, the hardware will interlock, requiring additional real
cycles, so scheduling load delay slots is still desirable, although not absolutely required
for functional code.

When the FR bit in the Status register equals zero, the Floating-Point General Registers
(FGR) are 32-bits wide. When the FR bit in the Status register equals one, the Floating-
Point General Registers (FGR) are 64-bits wide. The behavior of the load store
insturctions in dependent on the width of the FGRs.

In the load/store operation descriptions, the functions listed in Table B-3 are used to
summarize the handling of virtual addresses and physical memory.

Table B-3 Load/Store Common Functions

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtualaddress. The function fails and an

exception is taken if therequired translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of theword containing the specified physical

address. The low-ordertwo bits of the address and the access type field indicates whichof each of

the four bytes within the data word need to bereturned. If the cache is enabled for this access, the

entire wordis returned and loaded into the cache.

StoreMemory Uses the cache, write buffer and main memory to store the wordor part of word specified as data in

the word containing thespecified physical address. The low-order two bits of theaddress and the

access type field indicates which of each of thefour bytes within the data word should be stored.

 TX49 Architecture

B-7

Figure B-1 shows the I-Type instruction format used by load and store operations.

I-Type (Immediate)

baseop offsetft

6

2631

5 5 16

21 16 025 20 15

where:

op is a 6-bit operation code

base is the 5-bit base register specifier

ft is a 5-bit. source (for stores) or destination (for loads)

FPA register specifier

offset is the 16-bit signed immediate offset

Figure B-1Load and Store Instruction Format

All coprocessor loads and stores reference aligned word data items. Thus, for word
loads and stores, the access type field is always WORD, and the low-order two bits of the
address must always be zero.

For double word loads and stores, the access type field is always DOUBLEWORD, and
the low-order three bits of the address must always be zero.

Regardless of byte-numbering order (endianness), the address specifies that byte which
has the smallest byte-address of all of the bytes in the addressed field. For a Big-endian
machine, this is the leftmost byte; for a Little-endian machine, this is the rightmost byte.

 TX49 Architecture

B-8

Computational Instructions

Computational instructions include all of the arithmetic floating-point operations
performed by the FPU.

Figure B-2 shows the R-Type instruction format used for computational operations.

R-Type (Register)

fdfs functionCOP1 fmt ft

5610111516202125

6

2631 0

5 5 5 5 6

where:

COP1 is a 6-bit major operation code

fmt is a 5-bit format specifier

fs is a 5-bit source1 register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-bit function field

Figure B-2 Computational Instruction Format

Each floating-point instruction can be applied to a number of operand formats. The
operand format for an instruction is specified by the 4-bit Format field; decoding for this
field is shown in Table B-4.

Table B-4 Format Field Decoding

Code Mnemonic Size Format

16 S single Binary floating-point

17 D double Binary floating-point

18 Reserved

19 Reserved

20 W single Binary fixed-point

21 L longword 64-bit binary fixed-point

22∼31 - - Reserved

The function indicates which floating-point operation is to be performed. Table B-5
lists all floating-point instructions.

 TX49 Architecture

B-9

Table B-5 Floating-Point Instructions and Operations

Code (5∼0) Mnemonic Operation

0 ADD Add

1 SUB Subtract

2 MUL multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Move

7 NEG Negate

8 ROUND.L Convert to single fixed-point, rounded to nearest/even

9 TRUNC.L Convert to single fixed-point, rounded toward zero

10 CEIL.L Convert to single fixed-point, rounded to +∞
11 FLOOR.L Convert to single fixed-point, rounded to −∞
12 ROUND.W Convert to single fixed-point, rounded to nearest/even

13 TRUNC.W Convert to single fixed-point, rounded toward zero

14 CEIL.W Convert to single fixed-point, rounded to +∞
15 FLOOR.W Convert to single fixed-point, rounded to −∞
16∼31 - Reserved

32 CVT.S Convert to single floating-point

33 CVT.D Convert to double floating-point

34 - Reserved

35 - Reserved

36 CVT.W Convert to binary fixed-point

37 CVT.L Convert to 64-bit binary fixed-point

38∼47 - Reserved

48∼63 C Floating-point compare

 TX49 Architecture

B-10

In the following pages, the notation FGR refers to the FPU’s 32 General-Purpose
Registers FGRO through FGR31, and FPR refers to the FPU’s Floating-Point Registers.

When the FR bit in the Status register (SR26) equals zero, only the even Floating-Point

Registers are valid and the FPU’s 32 General-Purpose Registers are 32-bits wide. When

the FR bit in the Status register (SR26) equals one, both odd and even Floating-Point

Registers may be used and the FPU’s 32 General-Purpose Registers are 64-bits wide.

The following routines are used in the description of the floating-point operations to get
the value of an FPR or to change the value of an FGR:

32• Bit Mode

value < - - ValueFPR (fpr, fmt)

/* undefined for odd fpr * /

case fmt of

S, W:

value < - - FGR[fpr + 0]

D:

/* undefined for fpr not even * /

value < - - FGR[fpr + 1] FGR[fpr + 0]

end

StoreFPR (fpr, fmt, value):

/* undefined for odd fpr * /

case fmt of

S, W:

FGR[fpr + 1] < - - undefined

FGR[fpr + 0] < - - value

D:

FGR[fpr + 1] < - - value63∼32

FGR[fpr + 0] < - - value31∼0

end

64• Bit Mode

value < - - ValueFPR (fpr, fmt)

case fmt of

S:

value < - - FGR[fpr]31∼0

D, L:

value < - - FGR[fpr]

W:

value < - - FGR[fpr]

end

StoreFPR (fpr, fmt, value):

case fmt of

S, W:

FGR[fpr] < - - undefined32 value

D, L:

FGR[fpr] < - - value

end

 TX49 Architecture

B-11

ABS.fmt Floating-Point Absolute
Value ABS.fmt

fdfs
ABS

000101
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ABS.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in thespecified format
and the arithmetic absolute value is taken. The result is placed in the floating-point
register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals in-valid operation.

This instruction is valid only for single- and double-precision floating-point formats.
The operation is not defined if bit 0 of any register specification is set and the FR bit in
the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Coprocessor exception tap

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

 TX49 Architecture

B-12

ADD.fmt Floating-Point Add ADD.fmt

fdfs
ADD

000000
COP1

010001
ftfmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ADD.fmt fd, fs, ft

Description

The contents of the FPU registers specified by fs and ft are interpreted in the specified
format and arithmetically added. The result is round-ed as if calculated to infinite
precision and then rounded to the specified format (fmt), according to the current
rounding mode. The result is placed in the floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating-point formats.
The operation is not defined if bit 0 of any register specification is set and the FR bit in
the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)• +• ValueFPR (fl, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-13

BC1F Branch On FPU False
(coprocessor 1) BC1F

offsetBCF
00000

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1F offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
result of the last floating-point compare is false(zero), the program branches to the
target address, with a delay of one instruction. There must be at least one instruction
between C.cond. fmt and BC1F.

Operation:

32 T• −• 1: condition ← not COC[1]

T: target ← (offset15)14  offset   02

T• +• 1: if condition then

PC ← PC• +• target

endif

64 T• −• 1 condition ← not COC[1]

T: target ← (offset15)46   offset   02

T• +• 1: if condition then

PC ← PC• +• target

endif

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-14

BC1FL
Branch On FPU False

Likely
(coprocessor 1) BC1FL

offsetBCFL
00010

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1FL offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended.

If the result of the last floating-point compare is false(zero), the program branches to
the target address, with a delay of one instruction. If the conditional branch is not

taken, the instruction in the branch delay slot is nullified. There must be at least on
instruction between C.cond. fmt and BC1FL.

Operation:

32 T• −• 1: condition ← not COC[1]

T: target ← (offset15)14  offset   02

T + 1: if condition then

PC ← PC + target

Else

NullifyCurrentInstruction

Endif

64 T• −• 1: condition ← not COC[1]

T: target ← (offset15)46   offset   02

T + 1: if condition then

PC ← PC + target

Else

NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-15

BC1T Branch On FPU True
(coprocessor 1) BC1T

offsetBCT
00001

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1T offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the
result of the last floating-point compare is true(one), the program branches to the target
address, with a delay of one instruction. There must be at least one instruction
between C.cond. fmt and BC1T.

Operation:

32 T• −• 1: condition ← COC[1]

T: target ← (offset15)14  offset   02

T + 1: if condition then

PC ← PC + target

endif

64 T• −• 1: condition ← COC[1]

T: target ← (offset15)46   offset   02

T + 1: if condition then

PC ← PC + target

endif

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-16

BC1TL Branch On FPU True Likely
(coprocessor 1) BC1TL

offsetBCTL
00011

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1TL offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended.

If the result of the last floating-point compare is true(one), the program branches to
the target address, with a delay of one instruction. If the conditional branch is not

taken, the instruction in the branch delay slot is nullified. There must be at least one
instruction between C.cond.fmt and BC1TL.

Operation:

32 T• −• 1: condition ← COC[1]

T: target ← (offset15)14  offset   02

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T• −• 1: condition ← COC[1]

T: target ← (offset15)46   offset   02

T + 1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-17

C.cond.fmt Floating-Point
Compare C.cond.fmt

FC* cond*ft fs
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 42

34

Format:

C.cond.fmt fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and arithmetically compared.

A result is determined based on the comparison and the conditions specified in the
instruction. If one of the values is a Not a Number (NaN), and the high-order bit of the
condition field is set, an invalid operation exception is taken. After a one-instruction
delay, the condition is available for testing with branch on floating-point coprocessor
condition instructions. There must be at least one instruction between the conpare and
branch.

Comparisons are exact and can neither overflow nor underflow. Four mutually
exclusive relations are possible results: less than, equal, greater than, and unordered.
The last case arises when one or both of the operands are NaN; every NaN compares
unordered with every-thing, including itself. Comparisons ignore the sign of zero,
so�+�0 = −0.

This instruction is valid only for single- and double-precision floating-point formats.
The operation is not defined if bit 0 of any register specification is set and the FR bit in
the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

** See “FPU Instruction Opcode Bit Encoding” at the end of Appendix B.

 TX49 Architecture

B-18

C.cond.fmt
Floating-Point

Compare
(continued) C.cond.fmt

Operation:

32, 64 T: if NaN (ValueFPR(is, fmt)) or NaN (ValueFPR(it, fmt)) then

less ← false

equal ← false

unordered ← true

if cond3 then

signal lnvalidOperationException

endif

else

less ← VaIueFPR (fs, fmt) < ValueFPR (It, fmt)

equal ← ValueFPR (fs, fmt) = ValueFPR (it, fmt)

unordered ← false

endif

condition ← (cond2 and less) or (cond1 and equal) or

(cond0 and unordered)

FCR[31]23 ← condition

COC[1] ← condition

Exceptions:

Coprocessor unusable

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

 TX49 Architecture

B-19

CEIL.L.fmt
Floating-Point

Ceiling to Long
Fixed-Point Format CEIL.L.fmt

fdfs
CEIL.L
001010

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CEIL.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in. the
specified source format, fmt, and arithmetically converted to the long fixed-point format.
The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round to + ∞ (2).

This instruction is valid only for conversion from single-, double-, extended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the
register number specifies an aligned coprocessor general register. When the FR bit in
the Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded integer result
us outside of -263 to 263 -1, the Invalid operation exception us raised. If the Invalid
operation is not enabled then no exception us taken and 263 -1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and Will cause
an unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-20

CEIL.W.fmt
Floating-Point

Ceiling to Single
Fixed-Point Format CEIL.W.fmt

fdfs
CEIL.W
001110

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CEIL.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the single fixed-point
format. The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round to + ∞ (2).

This instruction is valid only for conversion from a single- or double-precision
floating-point formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When the FR bit in
the Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result
is outside of −231 to 231-1, the Invalid operation exception is raised. If the Invalid
operation is not enabled then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-21

CFC1
Move Control Word From

FPU
(coprocessor 1) CFC1

rt fs
0

000 0000 0000
CF

00010
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

CFC1 rt, fs

Description:

The contents of the FPU’s control register fs are loaded into general register rt.

This operation is only defined when fs equals 0 or 31.

The contents of general register rt are undefined for the instruction immediately
following CFC1.

Operation:

32 T: temp ← FCR[fs]

T• +• 1: GPR[rt] ← temp

64 T: temp ← FCR[fs]

T• +• 1: GPR[rt] ← (temp31)32 temp

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-22

CTC1 Move Control Word To FPU
(coprocessor 1) CTC1

rt fs
0

000 0000 0000
CT

00110
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

CTC1 rt, fs

Description:

The contents of general register rt are loaded into the FPU’s control register fs. This
operation is only defined when fs equals 0 or 31. Writing to Control Register 31, the
floating-point Control/Status register, causes an interrupt or exception if any cause bit
and its corresponding enable bit are both set. The register will be written before the
exception occurs. The contents of floating-point control register fs are undefined for the
instruction immediately following CTC1.

Operation:

32 T: temp ← GPR[rt]

T• +• 1: FCR[fs] ← temp

COC[1] ← FCR[31]23

64 T: temp ← GPR[rt]31~0

T• +• 1: FCR[fs] ← temp

COC[1] ← FCR[31]23

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Division by zero exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-23

CVT.D.fmt
Floating-Point

Convert to Double
Fixed-Point Format

CVT.D.fmt

fdfs
CVT.D
100001

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.D.fmt fd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in the specified
source format, fmt, and arithmetically converted to the double. binary floating-point
format. The result is placed in the floating-point register specified by fd.

This instruction is valid only for conversions from single floating-pount format, 32-bit
or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the operation is
exact. The operation is not defined if bit 0 of any register specification is set and the FR
bit in the Status register equals zero, since the register numbers specify an even-odd
pair of adjacent coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, D, ConvertFmt (VaIueFPR (fs, fmt), fmt, D))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-24

CVT.L.fmt
Floating-Point

Convert to Long
Fixed-Point Format

CVT.L.fmt

fdfs
CVT.L
100101

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in the specified
source format, fmt, and arithmetically converted to the long fixed-point format. The
result is placed in the floating-point register specified by fd.

This instruction is valid only for conversions from single-, double-, extended- or
quard-precision floating-point formats. If extended- or quad-precision format is
specified, the operation is not defined if bit 0 of the source register specification is set,
since the register number specifies an aligned coprocessor general register.

When the source operand is an Infinity, NaN, or the correctly rounded integer result
is outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid
operation is not enabled then no exception is taken and 263-1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and will cause
an unimplemented operation exception to occur.

The operation is not defined if bit 0 of any register specification is set and the FR bit
in the status register epuals zero.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-25

CVT.S.fmt
Floating-Point

Convert to Single
Fixed-Point Format

CVT.S.fmt

fdfs
CVT.S
100000

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.S.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the single binary floating-
point format. The result is placed in the floating-point register specified by fd.
Rounding occurs according to the currently specified rounding mode.

This instruction is valid only for conversions from double floating-point format, or
from 32-bit or 64-bit fixed-point format. The operation is not defined if bit 0 of any
register specification is set and the FR bit in the Status register equals zero, since the
register numbers specify an even-odd pair of adjacent coprocessor general registers.
When the FR bit in the Status register equals one, both even and odd register numbers
are valid.

Operation:

32, 64 T: StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt), fmt, S))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-26

CVT.W.fmt
Floating-Point

Convert to
Fixed-Point Format

CVT.W.fmt

fdfs
CVT.W
100100

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the single fixed-point
format. The result is placed in the floating-point register specified by fd.

This instruction is valid only for conversion from a single- or double-precision
floating-point formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When the FR bit in
the Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result
us outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation
is not enabled, then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-27

DIV.fmt Floating-Point
Divide DIV.fmt

fdfs
DIV

000011
COP1

010001
ftfmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DIV.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and the value in fs is divided by the value in ft. The result is rounded
as if calculated to infinite precision and then rounded to the specified format, according
to the current rounding mode. The result is placed in the floating-point register
specified by fd.

This instruction is valid for only single or double precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit
in the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Division-by-zero exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-28

DMFC1 Doubleword Move From
Floating-Point Coprocessor DMFC1

rt fs
0

000 0000 0000
DMF

00001
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

DMFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor is stored into processor
register rt.

The contents of general register rt are undefined for the instruction immediately
following DMFC1.

The FR bit in the Status register specifies whether all 32 register of the TX49 are
addressable. When FR is clear, this instruction is not defined when the least significant
bit of fs is non-zero. When FR is set, fs may specify either odd or even registers.

Operation:

64 T: if SR26 = 1 then /*64-bit wide FGRs* /

data ← FGR[fs]

elseif fs0 = 0 then /*valid specifier, 32-bit wide FGRs* /

data ← FGR[fs+1] FGR[fs]

else /*undefined for odd 32-bit reg #s * /

data ← undefined64

endif

T+1: GPR[rt] ← data

Exceptions:

Coprocessor unusable exception

Coprocessor Exceptions:

Unimplemented operation exception

 TX49 Architecture

B-29

DMTC1 Doubleword Move To
Floating-Point Coprocessor DMTC1

rt fs
0

000 0000 0000
DMT

00101
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

DMTC1 rt, fs

Description:

The contents of general register rt are loaded into coprocessor register fs of the CP1.

The contents of floating-point register fs are undefined for the instruction immediately
following DMTC1.

The FR bit in the Status register specifies whether all 32 register of the TX49 are
addressable. When FR equals zero, this instruction is not defined when the least
significant bit of fs is non-zero. When FR equals one, fs may specify either odd or even
registers.

Operation:

64 T: data ← GPR[rt]

T• +• 1: if SR26 = 1 then /*64-bit wide FGRs* /

FGR[fs] ← data

elseif fs0 = 0 then /*valid specifier, 32-bit wide valid FGRs* /

FGR[fs• +• 1] ← data63∼32

FGR[fs] ← data31∼0

else /*undefined result for odd 32-bit reg #s * /

undefined_result

endif

Exceptions:

Coprocessor unusable exception

Coprocessor Exceptions:

Unimplemented operation exception

 TX49 Architecture

B-30

FLOOR.L.fmt
Floating-Point
Floor to Long

Fixed-Point Format
FLOOR.L.fmt

fdfs
FLOOR.L
001011

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

FLO0R.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the long fixed-point format.
The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conver-sion is rounded as
if the current rounding mode is round to −∞ (3).

This instruction is valid only for conversion from single-, double-, extended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the
register number specifies an aligned coprocessor general register.

When the source operand is an Infinity, NaN, or the correctly rounded integer result
is outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid
operation is not enabled then no exception is taken and 263-1 is returned. This
instruction is not implemented on MIPS I or MIPS II processors, and will cause an
unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-31

FLOOR.W.fmt
Floating-Point
Floor to Single

Fixed-Point Format
FLOOR.W.fmt

fdfs
FLOOR.W

001111
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

FLOOR.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the single fixed-point
format. The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round to −∞ (RM�=�3).

This instruction is valid only for conversion from a single- or double-precision
floating-point formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When the FR bit in
the Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result
is outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation
is not enabled, then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-32

LDC1 Load Doubleword to FPU
(coprocessor 1) LDC1

ft
LDC1

110101
offsetbase

1516202125

6

2631 0

5 5 16

Format:

LDC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form an unsigned effective address. In 32-bit mode, the contents of the doubleword
at the memory location specified by the effective address is loaded into registers ft and
ft + 1 of the floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit of ft is non-zero. In 64-bit mode, the contents of the
doubleword at the memory location specified by the effective ad-dress are loaded into
the 64-bit register ft of the floating point coprocessor. The FR bit of the Status register

(SR26) specifies whether all 32 registers of the TX49 are addressable. When FR = 0,
this instruction is not defined when the least significant bit of ft is non-zero. When
FR = 1, ft may specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-zero, an
address error exception takes place.

 TX49 Architecture

B-33

LDC1
Load Doubleword to FPU

(coprocessor 1)
(continued) LDC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) + GPR[base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, DLUBLEWORD, pAddr, vAddr, DATA)

if SR26 = 1 then /*64-bit wide GFRs * /

FGR[ft] ← data

elseif ft0 = 0 then /*valid specifier, 32-bit wide FGRs * /

FGR[ft + 1] ← data63∼32

FGR[ft] ← data31∼0

else /*undefined result if odd * /

undefined_result

endif

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, DLUBLEWORD, pAddr, vAddr, DATA)

if SR26 = 1 then /*64-bit wide GFRs * /

FGR[ft] ← data

elseif ft0 = 0 then /*valid specifier, 32-bit wide FGRs * /

FGR[ft + 1] ← data63∼32

FGR[ft] ← data31∼0

else /*undefined result if odd * /

undefined_result

endif

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

B-34

LWC1 Load Word to FPU
(coprocessor 1) LWC1

ft
LWC1
110001

offsetbase

1516202125

6

2631 0

5 5 16

Format:

LWC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form an unsigned effective address. The contents of theword at the memory location
specified by the effective address is loaded into register ft of the floating-point
coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-Point Registers
are addressable. If FR equals zero, LWC1 loads eitherthe high or low half of the 16 even
Floating-Point Registers. If FR equals one, LWC1 loads the low 32-bits of both even and
odd Floating-Point Registers.

If either of the two least-significant bits of the effective address is non-zero, an
address error exception occurs.

 TX49 Architecture

B-35

LWC1
Load Word to FPU

(coprocessor 1)
(continued) LWC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1∼3 (pAddr2∼0xor(ReverseEndian 02))

mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0xor(BigEndianCPU 02)

/* “mem” is aligned 64-bits from memory. Pick out correct bytes. * /

if SR26• =• 1 then * /64-bit wide FRGs * /

FGR[ft] ← undefined32 mem31• +• 8*byte∼8*byte

else /*32-bit wide FGRs * /

FGR[rf] ← mem31 + 8*byte∼8*byte

endif

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1∼3 (pAddr2∼0xor(ReverseEndian 02))

mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2∼0xor(BigEndianCPU 02)

/* “mem” is aligned 64-bits from memory. Pick out correct bytes. * /

if SR26 = 1 then * /64-bit wide FRGs * /

FGR[ft] ← undefined32 mem31 + 8*byte∼8*byte

else /*32-bit wide FGRs * /

FGR[rf] ← mem31 + 8*byte∼8*byte

endif

Exceptions:

Coprocessor unusable

TLB-refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49 Architecture

B-36

MFC1 Move From FPU
(Coprocessor 1) MFC1

rt fs
0

000 0000 0000
MF

00000
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

MFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor are stored into
processor register rt.

The contents of register rt are undefined for time T of the instruction immediately
following this load instruction.

The FR bit of the Status register specifies whether all 32 registers of the TX49 are
addressable. If FR equals zero, MFC1 stores either the high or low half of the 16 even
Floating-Point Registers. If FR equals one, MFC1 stores the low 32-bits of both even and
odd Floating-Point Registers.

Operation:

32 T: data ← FGR[fs]31∼0

T• +• 1: GPR[rt] ← data

64 T: data ← FGR[fs]31∼0

T + 1: GPR[rt] ← (data31)32 data

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-37

MOV.fmt Floating-Point Move MOV.fmt

fdfs
MOV

000110
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

MOV.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the specified format
and are copied into the FPU register specified by fd. The move operation is non-
arithmetic; no IEEE 754 exceptions occur as a result of the instruction.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit
in the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, VaIueFPR (fs, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

 TX49 Architecture

B-38

MTC1 Move To FPU
(Coprocessor 1) MTC1

rt fs
0

000 0000 0000
MT

00100
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

MTC1 rt, fs

Description:

The contents of register rt are loaded into the FPU’s general register at location fs.

The contents of floating-point register fs is undefined for the instruction immediately
following MTC1.

The FR bit of the Status register specifies whether all 32 registers of the TX49 are
addressable. If FR equals zero, MTC1 loads either the high or low half of the 16 even
Floating-Point Registers. If FR equals one, MTC1 loads the low 32-bits of both even and
odd Floating-Point Registers.

Operation:

32, 64 T: data ← GPR[rt]31∼0

T + 1: if SR26 = 1 then /* 64-bit wide FGRs * /

FGR[fs] ← undefined32 data

else /* 32-bit wide FGRs * /

endif

Exceptions:

Coprocessor unusable exception

 TX49 Architecture

B-39

MUL.fmt Floating-Point Multiply MUL.fmt

ft fdfs
MUL

000010
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

MUL.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and arithmetically multiplied. The result is rounded as if calculated to
infinite precision and then rounded to the specified format, according to the current
rounding mode. The result is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit
in the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt)* ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-40

NEG.fmt Floating-Point Negate NEG.fmt

fdfs
NEG

000111
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

NEG.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the specified format

and the arithmetic negation is taken (the polarity of the sign-bit is changed). The result
is placed in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid operation.

This instruction is valid only for single- or double-precision floating-point formats.
The operation is not defined if bit 0 of any register specification is set and the FR bit in
the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

 TX49 Architecture

B-41

ROUND
L.fmt

Floating-Point
Round to Long

Fixed-Point Format

ROUND
L.fmt

fdfs
ROUND.L

001000
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ROUND.L.fmt fd, fs

Description :

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the long fixed-point format.
The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single-, double-, extended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the
register number specifies an aligned coprocessor general register.

When the source operand is an Infinity , NaN, or the correctly rounded integer result
is outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid
operation is not enabled then no exception is taken and 263-1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and will cause
an unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-42

ROUND W.fmt
Floating-Point

Round to Single
Fixed-Point Format ROUND W.fmt

fdfs
ROUND.W

001100
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ROUND.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the single fixed-point
format. The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round to nearest/even (RM = 0).

This instruction is valid only for conversion from a single- or double-precision
floating-point formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When the FR bit in
the Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result
is outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation
is not enabled, then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-43

SDC1 Store Doubleword from FPU
(coprocessor 1) SDC1

ft
SDC1

111101
offsetbase

1516202125

6

2631 0

5 5 16

Format:

SDC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base

to form an unsigned effective address.

In 32-bit mode, the contents of registers ft and ft + 1 from the floating-point
coprocessor are stored at the memory location specified by the effective address. This
instruction is not valid, and is undefined, when the least significant bit of ft is non-zero.

In 64-bit mode, the 64-bit register ft is stored to the contents of the doubleword at the
memory location specified by the effective address. The FR bit of the Status register

(SR26) specifies whether all 32 registers of the TX49 are addressable. When FR�=�0,
this instruction is not defined if the least significant bit of ft is non-zero. If FR�=�1, ft
may specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-zero, an
address error exception takes place.

 TX49 Architecture

B-44

SDC1
Store Doubleword from FPU

(coprocessor 1)
(continued) SDC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

if SR26 = 1 /*64-bit wide FGRs * /

data ← FGR[ft]

elseif ft0 = then /* valid specifier, 32-bit wide FGRs * /

data ← FGR[ft + 1] FGR[ft]

else /*undefined for odd 32-bit reg #s * /

data ← undefined64

endif

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

if SR26 = 1 /*64-bit wide FGRs * /

data ← FGR[ft]

elseif ft0 = then /* valid specifier, 32-bit wide FGRs * /

data ← FGR[ft + 1] FGR[ft]

else /*undefined for odd 32-bit reg #s * /

data ← undefined64

endif

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

B-45

SQRT.fmt Floating-Point
Square Root SQRT.fmt

fdfs
SQRT
000100

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SQRT.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the
specified format and the positive arithmetic square root is taken. The result is rounded
as if calculated to infinite precision and then rounded to the specified format, according
to the current rounding mode. If the value of fs corresponds to −0, the result will be −0.
The result is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit
in the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, SquareRoot (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

 TX49 Architecture

B-46

SUB.fmt Floating-Point Subtract SUB.fmt

ft fdfs
SUB

000001
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SUB.fmt fd,fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and the value in ft is subtracted from the value in fs. The result is
rounded as if calculated to infinite precision and then rounded to the specified format,
according to the current rounding mode. The result is placed in the floating-point
register specified by fd.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit
in the Status register equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt)• −• ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49 Architecture

B-47

SWC1 Store Word from FPU
(coprocessor 1) SWC1

ft
SWC1
111001

offsetbase

1516202125

6

2631 0

5 5 16

Format:

SWC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form an unsigned effective address. The contents of register ft from the floating-point
coprocessor are stored at the memory location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit Floating-Point Registers
are addressable. If FR equals zero, SWC1 stores either the high or low half of the 16
even Floating-Point Registers. If FR equals one, SWC1 stores the low 32-bits of both
even and odd Floating-Point Registers.

If either of the two least-significant bits of the effective address are non-zero, an
address error exception occurs.

 TX49 Architecture

B-48

SWC1
Store Word from FPU

(coprocessor 1)
(continued) SWC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0xor (RecerseEndian 02))

byte ← vAddr2∼0xor (BigEndianCPU 02)

/* tne bytes of the word are put in the correct byte lanes in

 * “data” for a 64-bit path to memory * /

if SR26 = 1 then /*64-bit wide FGRs * /

data ← FGR[ft]63-8*byte∼0 08*byte

else /* 32-bit wide FGRs /*

data ← 032-8*byte FGR[ft] 08*byte

endif

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE-1∼3 (pAddr2∼0xor (RecerseEndian 02))

byte ← vAddr2∼0xor (BigEndianCPU 02)

/* tne bytes of the word are put in the correct byte lanes in

 * “data” for a 64-bit path to memory * /

if SR26 = 1 then /*64-bit wide FGRs * /

data ← FGR[ft]63-8*byte∼0 08*byte

else /* 32-bit wide FGRs /*

data ← 032-8*byte FGR[ft] 08*byte

endif

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49 Architecture

B-49

TRUNC.L.fmt
Floating-Point

Truncate to Long
Fixed-Point Format TRUNC.L.fmt

fdfs
TRUNC.L
001001

0
00000

COP1
010001

fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

TRUNC.L.fmt fd, fs

Description :

The contents of the floating-point register specified by fs are interpreted in the
specified source format, fmt, and arithmetically converted to the single fixed-point
format. The result is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single-, double-, ex-tended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the
register number specifies an aligned coprocessor general register.

When the source operand is an Infinity, NaN, or the correctly rounded integer result
is outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid
operation is not enabled then no exception is taken and 263-1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and will cause
an unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-50

TRUNC.W.fmt
Floating-Point

Truncate to Single
Fixed-Point Format TRUNC.W.fmt

fdfs
TRUNC.W

001101
0

00000
COP1

010001
fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

TRUNC.W.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the specified source
format fmt and arithmetically converted to the single fixed-point format. The result us
placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as
if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double-precision
floating-point formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When the FR bit in
the Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result
is outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation
is not enabled, then no exception is taken and -231 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (VaIueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49 Architecture

B-51

Bit Encoding of FPU Instruction OPcodes

The Table B-5 shows the bit codes for all TX49 FPU instructions (ISA and extended
ISA)

Table B-5 FPU Operation Code Bit Encoding

Opcode
31 26 0

OPcode

28∼26

31∼29 0 1 2 3 4 5 6 7

0

1

2 COP1

3

4

5

6 LWC1 LDC1 θ
7 SWC1 SDC1 θ

Sub
31 26 25 21 0

OPcode Sub

23∼21

25∼24 0 1 2 3 4 5 6 7

0 MF DMF η θ CF £ MT DMT η θ CT δ
1 BC δ δ δ δ δ δ δ
2 S D θ δ δ W L η θ δ δ
3 δ δ δ δ δ δ δ δ

 TX49 Architecture

B-52

Br
31 26 20 16 0

OPcode Br

18∼16

20∼19 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ

CP1 Function
31 26 5 0

OPcode
CP1

Function

2∼0

5∼3 0 1 2 3 4 5 6 7

0 ADD SUB MUL DIV SQRT ABS MOV NEG

1 ROUND.L η θ TRUNC.L η θ CEIL.L η θ FLOOR.L η θ ROUND.W TRUNC.W CEIL.W FLOORW

2 δ δ δ δ δ δ δ δ
3 δ δ δ δ δ δ δ δ
4 CVT.S CVT.D θ δ δ CVT.W CVT.L η θ δ δ
5 δ δ δ δ δ δ δ δ
6 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

7 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Key :

γ: This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

δ: Thie opcode is reserved for future use. An attempt to execute it causes a Unimplemented
operation exceptions in all current implementations.

η: This opcode is valid only when MIPS III instructions are enabled. An attempt to execute
these without MIPS III instruction enabled will cause an Unimplemented operation exception.

θ: This opcode is valid only when the TX49 has a double precision FPU in hardware. An
attempt to execute these without it will cause an Unimplemented operation exception.

Note :

�FPU Instructions are valid only when TX49 has with FPU(CP1). An attempt to execute these
insturctions causes a Coprocessor Unusable exception, independent of C0_SR(bit 29)’s value.

 TX49 Architecture

C-1

Appendix C: Coprocessor 0 Hazards

Pipeline Interlock and Hazard in TX49

Interlock in Load Delay Slot

Pipeline control logic will interlock the pipeline when detecting a hazard condition
and pipeline won’t resume until the hazard is resolved.

An example is shown in Figure C-1. In this case, instruction in the load delay slot
tries to read the destination register of the load instruction resulting in pipeline stall
until the data is read from the cache.

lw $5, 0 ($26) F D E M W

addu $8, $7, $5 F D ES E M W

Cache Read Finish

Figure C-1 Interlock in Load Delay Slot

Pipeline also interlocks when the cache miss occurs or when the data is loaded
from uncached area (Figure C-2).

lw $5, 0 ($26) F D E M – – FX W

RD RD

addu $8, $7, $5 F D ES ES ES ES E M W

Read Bus Cycle by lw.

Cache Read Finish

Figure C-2 Interlock in Cache Miss or in the Data Load from Non-cached Area

In this example where there is a register hazard between two consecutive
instructions, ADDU will stall at E stage until the destination register of LW is written
back.

However, if there is no data dependancy between LW and ADDU, execution of
ADDU will complete without stall before the destination register of LW is written
back. Pipeline interlock occurs at the first instruction that has the data dependency
with the preceding load instruction (Figure C-3).

lw $5, 0 ($26) F D E M – – – FX W

RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D ES ES ES E M W

Figure C-3 Pipeline Interlock by Cache Miss

 TX49 Architecture

C-2

Pipeline also interlocks on write-after-write hazard which is illustrated in Figure C-
4. Write-after-write hazard is detected when one of the instructions following a load
has the destination register which is same as that of the load instruction. In this
example, the ADDU instruction stalls at its E stage until the destination register ($1)
of the load is written back.

lw $1, 0 ($26) F D E M – – – FX W

RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $1, $8, $5 F D ES ES ES E M W

Figure C-4 Write-after-write Hazard by Load Instruction

A SYNC instruction may be placed right after a load instruction. This will cause
pipeline stall until the bus cycle issued by the previous load instruction completes
(Figure C-5). If the data is read from the cache, there is no bus cycle pending before
the SYNC which results in no pipeline stall.

lw $5, 0 ($26) F D E M – – FX W

RD RD

sync F D E MS MS MS M W

Read Bus Cycle by lw.

Memory Read Finish

Figure C-5 SYNC Instruction After Load Instruction

Branch Delay Slot

Branch and jump instructions have a branch delay slot (Figure C-6). Also, DERET
instruction has a branch delay slot. Note that the result is undefined when the
branch/jump instruction is placed in the branch delay slot1.

beq $1, $4, L1 F D E M W

subu $3, $5, $6 (delay slot) F D E M W

L1: addiu $7, $7, 1 (target) F D E M W

Figure C-6 Branch Delay Slot

1 Instructions which cause exception, such as, SYSCALL, BREAK, and SDBBP may be placed in
the branch delay slot.

 TX49 Architecture

C-3

Multiply, Multiply/Add and Division Instructions

This subsection explains the pipeline hazard/interlock caused by the combinations
of multiply, multiply/add, division, and MTHI/MTLO/MFHI/MFLO instructions
(Figure C-7). Basically, the pipeline hazard/interlock by these instructions can be
summarized in this way:

• Pipeline interlocks when the data dependency exists.

• Pipeline interlocks when preceding 32-bit multiply or 32-bit multiply/add
instruction has <rd> field.

• Pipeline interlocks when 32-bit instruction and 64-bit instruction are
executed in sequence.

• HI/LO registers are in undefined state within two instructions before the
division instruction, such as, DIV/DIVU/DDIV/DDIVU instruction2.

SUCCEEDING INSTRUCTION
MULT/

MULTU

(2-operand)

MULT/

MULTU

(3-operand)

MADD/

MADDU

(2-operand)

MADD/

MADDU

(3-operand)

MTHI/

MTLO

MFHI/

MFLO

DIV/

DIVU

DMULT/

DMULTU

(2-operand)

DMULT/

DMULTU

(3-operand)

DDIV/

DDIVU

MULT/MULTU

(2-operand)
NO STALL NO STALL NO STALL NO STALL INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MULT/MULTU

(3-operand)
INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MADD/MADDU

(2-operand)
NO STALL NO STALL NO STALL NO STALL INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MADD/MADDU

(3-operand)
INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MTHI/MTLO NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL

MFHI/MFLO NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL * NO STALL NO STALL *

DIV/DIVU INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

DMULT/DMULTU

(2-operand)
INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

DMULT/DMULTU

(3-operand)
INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

P
R

E
C

E
E

D
IN

G
 IN

S
T

R
U

C
T

IO
N

DDIV/DDIVU INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

*: HI/LO registers are in undefined state within two instructions before division instruction

Figure C-7 MAC pipeline hazard/interlock

In the following sections, the pipeline hazards/interlocks caused by the possible
combinations of the instructions related multiply, multiply/add, division and both
32-bit and 64-bit operations are illustrated in detail. The Figures in the following
sections classifies the cases in such a way that:

A The preceding instruction is immediately followed by 32-bit multiply or
multiply/add instruction

B The preceding instruction is immediately followed by MFHI or MFLO intstruction

C The preceding instruction is immediately followed by MTHI or MTLO intstruction

D The preceding instruction is immediately followed by 32-bit division instruction

E The preceding instruction is immediately followed by 64-bit multiply instruction

F The preceding instruction is immediately followed by 64-bit division instruction

2 In the original R3000, this can be applied to MULT, MULTU, MTHI, and MTLO instructions.

 TX49 Architecture

C-4

Case 1: Preceding Instruction Is 32-bit Multiply or 32-bit Mutiply/Add Instruction

A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks when data dependency or write

back date into <rd> exists.

2-operand Instruction is preceeding

MULT/MADD $3, $4 F D E1 E2 E3 M W

MULT/MADD $6, $7, $8 F D E1 E2 E3 M W

Multiply Stage 1 Multiply Stage 4

With data dependency

MULT/MADD $3, $4, $5 F D E1 E2 E3 M W

MULT/MADD $6, $3, $8 F D ES ES ES E1 E2 E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks until result of MULT/MADD

instructions stored into <rd> and HI/LO register.

MULT/MADD $3, $4, $5 F D E1 E2 E3 M W

MFHI/MFLO F D ES ES E M W

HI/LO read

C. MTHI/MTLO Instructions

Pipeline interlocks until result of MULT/MADD

instruction is stored into <rd> and HI/LO register.

MULT/MADD $3, $4, $5 F D E1 E2 E3 M W

MTHI/MTLO F D ES ES E M W

Update HI/LO

Update HI/LO

D. 32-bit Division Instruction

The result of 3-operand multiply instruction is stored

in <rd>, and HI/LO registers are eventually updated

by division instruction.

MULT $3, $4, $5

F D E1 E2 E3 M W

DIV $6, $7 F D ES ES E M W

V1 V2 V3 V4 … V36

Division stage 1

E. 64-bit Multiply Instructions

Pipeline interlocks when data dependency or write

back data into <rd> exists.

2-operand Instruction is preceeding

MULT $6, $3 F D E1 E2 E3 M W

DMULT $4, $7 F D ES ES E1 E2 … E6 M W

With data dependency

MULT $3, $4, $5

F D E1 E1 E3 M W

DMULT $6, $3, $8 F D ES … ES E1 E2 … E6 M W

F. 64-bit Division Instruction

The result of 3-operand multiply instruction is stored

in <rd>, and HI/LO registers are eventually updated

by division instruction.

MULT $3, $4, $5

F D E1 E2 E3 M W

DDIV $6, $7 F D ES ES E M W

V1 V2 V3 V4 … V68

Division stage 1

Figure C-8 Pipeline Hazard/Interlock by 32-bit Multiply or 32-bit Multiply/Add Instruction

Note that in the category A of the Figure C-8, pipeline interlocks for any
instruction immediately after the multiply or multiply/add instruction when it
has the data dependency regarding the general purpose registers. Thus, in the
category D, the DIV instruction stalls at the E stage for three cycles when the
division instruction has the data dependency with the preceding multiply
instruction.

Also note that in the category D of the Figure C-8, Because the division
instruction overwrites the HI/LO registers, the HI/LO registers as the result of
the 2-operand multiply instruction is undefined. The result of the multiply
instruction, as in this figure, is correctly stored in the <rd> register. If the
preceding multiply or multiply/add instruction had a <rd> field, pipeline

 TX49 Architecture

C-5

interlocks due to the resource conflict.

 TX49 Architecture

C-6

Case 2: Preceding Instruction Is MFHI/MFLO Instruction

A. 32-bit Multiply and Multiply/Add Instructions

MULT/MADD updates the HI/LO registers at M

stage and the prior MFHI/MFLO can read the HI/LO

registers before the update.

MFHI/MFLO F D E M W

MULT/MADD $6, $7, $8 F D E1 E2 E3 M W

Update HI/LO

Read HI/LO

B. MFHI/MFLO Instructions

No hazard.

MFHI/MFLO F D E M W

MFHI/MFLO F D E M W

C. MTHI/MTLO Instructions

No hazard because MTHI/MTLO updates HI/LO

resisters at M stage.

MFHI/MFLO F D E M W

MTHI/MTLO F D E M W

Update HI/LO

Read HI/LO

D. 32-bit Division Instruction

It is necessary to insert at least two instructions

between MFHI/MFLO and DIV.

MFHI/MFLO F D E M W

nop F D E M W

nop F D E M W

DIV F D E M W

V1 V2 V3 … V36Update HI/LO

E. 64-bit Multiply Instructions

DMULT updates the HI/LO registers at M stage and

the prior MFHI/MFLO can read the HI/LO registers

before the update.

MFHI/MFLO F D E M W

DMULT $6, $7, $8 F D E1 E2 … E6 M W

Update HI/LO

Read HI/LO

F. 64-bit Division Instruction

It is necessary to insert at least two instructions

between MFHI/MFLO and DDIV.

MFHI/MFLO F D E M W

nop F D E M W

nop F D E M W

DDIV F D E M W

V1 V2 V3 … V68Update HI/LO

Figure C-9 Pipeline Hazard/Interlock by MFHI/MFLO Instructions

 TX49 Architecture

C-7

Case3: Preceding Instruction Is MTHI/MTLO Instruction

A. 32-bit Multiply and Multiply/Add Instructions

MULT/MADD updates the HI/LO registers at M

stage and MADD can use HI/LO registers updated

by the prior MTHI/MTLO.

MTHI/MTLO F D E M W

MULT/MADD $6, $7, $8 F D E1 E2 E3 M W

Update HI/LO

Update HI/LO

B. MFHI/MFLO Instructions

No hazard because MTHI/MTLO updates the HI/LO

registers before MFHI/MFLO reads them.

MTHI/MTLO F D E M W

MFHI/MFLO F D E M W

Read HI/LO

Update HI/LO

C. MTHI/MTLO Instructions

No hazard.

MTHI/MTLO F D E M W

MTHI/MTLO F D E M W

Update HI/LO

Update HI/LO

D. 32-bit Division Instruction

The division instruction starts to update HI/LO

registers at E stage, and the prior MTHI/MTLO has

no meaning.

MTHI/MTLO F D E M W

DIV F D E M W

V1 V2 V3 … V36

Update HI/LO

E. 64-bit Multiply Instructions

DMULT updates the HI/LO registers at M stage.

MTHI/MTLO F D E M W

DMULT $6, $7, $8 F D E1 E2 E3 E4 E5 E6 M W

Update HI/LO

Update HI/LO

F. 64-bit Division Instruction

The division instruction starts to update HI/LO

registers at E stage, and the prior MTHI/MTLO has

no meaning.

MTHI/MTLO F D E M W

DDIV F D E M W

V1 V2 V3 … V68

Update HI/LO

Figure C-10 Pipeline Hazard/Interlock by MTHI/MTLO Instructions

 TX49 Architecture

C-8

Case 4: Preceding Instruction Is 32-bit Division Instruction

A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks till the division instruction is

completed.

DIV F D E M W

V1 V2 V3 … V36

MULT/MADD $6, $7, $8

F D ES ES ES … E1 … E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks because of data dependency.

DIV F D E M W

V1 V2 V3 … V36

MFHI/MFLO F D ES ES ES … E M W

C. MTHI/MTLO Instructions

Pipeline interlocks till the division instruction is

completed.

DIV F D E M W

V1 V2 V3 … V36

MTHI/MTLO F D ES ES ES … E M W

D. 32-bit Division Instruction

Pipeline interlocks till the division instruction is

completed.

DIV F D E M W

V1 V2 V3 … V36

DIV F D ES ES ES … E M W

V1 V2 V3 … V36

E. 64-bit Multiply Instructions

Pipeline interlocks till the division instruction is

completed.

DIV F D E M W

V1 V2 V3 … V36

DMULT $6, $7, $8

F D ES ES ES … E1 … E6 M W

F. 64-bit Division Instruction

Pipeline interlocks till the division instruction is

completed.

DIV F D E M W

V1 V2 V3 … V36

DDIV F D ES ES ES … E M W

V1 V2 V3 … V68

Figure C-11 Pipeline Hazard/Interlock by Division Instructions

 TX49 Architecture

C-9

Case 5: Preceding Instruction Is 64-bit Multiply Instruction

A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks till the multiply instruction is

completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

MULT/MADD $6, $7, $8

F D ES ES ES … ES E1 E2 E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks because of data dependency.

DMULT F D E1 E2 E3 E4 E5 E6 M W

MFHI/MFLO F D ES ES ES … E M W

C. MTHI/MTLO Instructions

Pipeline interlocks till the multiply instruction is

completed.

DMULT F D E1 E2 E3 E4 E5 E6 M W

MTHI/MTLO F D ES ES ES … ES E M W

D. 32-bit Division Instruction

Pipeline interlocks till the multiply instruction is

completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

DIV $6, $7

F D ES ES ES … ES E M W

V1 V2 V3 … V36

E. 64-bit Multiply Instructions

Pipeline interlocks till the multiply instruction is

completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

DMULT $6, $7, $8

F D ES ES ES … ES E1 … E6 M W

F. 64-bit Division Instruction

Pipeline interlocks till the multiply instruction is

completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

DDIV $6, $7

F D ES ES ES … ES E M W

V1 V2 V3 … V68

Figure C-12 Pipeline Hazard/Interlock by Division Instructions

 TX49 Architecture

C-10

Case 6: Preceding Instruction Is 64-bit Division Instruction

A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks till the division instruction is

completed.

DDIV F D E M W

V1 V2 V3 … V68

MULT/MADD $6, $7, $8

F D ES ES ES … E1 … E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks because of data dependency.

DDIV F D E M W

V1 V2 V3 … V68

MFHI/MFLO F D ES ES ES … E M W

C. MTHI/MTLO Instructions

Pipeline interlocks till the division instruction is

completed.

DDIV F D E M W

V1 V2 V3 … V68

MTHI/MTLO F D ES ES ES … E M W

D. 32-bit Division Instruction

Pipeline interlocks till the division instruction is

completed.

DDIV F D E M W

V1 V2 V3 … V68

DIV F D ES ES ES … E M W

V1 V2 V3 … V36

E. 64-bit Multiply Instructions

Pipeline interlocks till the division instruction is

completed.

DDIV F D E M W

V1 V2 V3 … V68

DMULT $6, $7, $8

F D ES ES ES … E1 … E6 M W

F. 64-bit Division Instruction

Pipeline interlocks till the division instruction is

completed.

DDIV F D E M W

V1 V2 V3 … V68

DDIV F D ES ES ES … E M W

V1 V2 V3 … V68

Figure C-13 Pipeline Hazard/Interlock by Division Instructions

 TX49 Architecture

C-11

Instructions regarding System Control Co-processor (CP0)

MFC0 and MTC0 Instructions

Pipeline interlocks when the MFC0 instruction is followed by the instruction
that reads the destination register of MFC0 instruction (Figure C-14).

mfc0 $5, EPC F D E M W

addu $8, $7, $5 F D ES E M W

EPC Read

Stall

Figure C-14 Pipeline Interlock by MFC0 Instruction

No pipeline hazards occur when the MTC0 instruction is followed by MFC0
instruction because MTC0 writes the destination register in the M stage and
MFC0 reads it also in the M stage (Figure C-15).

mtc0 $5, DEPC F D E M W

mfc0 $8, DEPC F D E M W

DEPC Write

DEPC Read

Figure C-15 MTC0 Instruction Followed by MFC0 Instruction

ERET Instruction

Unlike a branch or jump instruction, ERET does not execute the next
instruction. The changed EPC becomes effective at the second instruction after
the MTC0 instruction (Figure C-16).

mtc0 $5, EPC F D E M W

nop F D E M W

eret F D E M W

nop F D E M W

EPC Update

Figure C-16 MTC0 Instruction Followed by ERET Instruction

 TX49 Architecture

C-12

DERET Instruction

The DERET instruction has a branch delay slot, and the debug exception
mode is effective till the delay slot instruction3. The instruction in the delay slot
of DERET must be NOP instruction. Single step exception is disabled till the
instruction to which DERET returns the control.

mtc0 $5, DEPC F D E M W

nop F D E M W

deret F D E M W

nop F D E M W

DEPC Update

Figure C-17 MTC0 Instruction Followed by DERET Instruction

3 i.e. DM bit stays one (1) and interrupts and exceptions stay disabled.

 TX49 Architecture

C-13

Control Bits Change in CP0 Registers by MTC0 Instruction

The following sections describe the timings when the control bits change by the
MTC0 instruction become effective.

Status Register

CU Bits: Because the co-processor instructions refer the CU bit in the D stage,
if either of the two following instructions of the MTC0 instruction is
the co-processor instruction, then its result is undefined because the
CU bit is undefined (Figure C-18).

mtc0 $5, STATUS F D E M W

nop F D E M W

nop F D E M W

copz F D E M W

CU Bit Update

CU Bit Read

Figure C-18 Hazard regarding the CU Bits

Note that even if the CU bit is changed by the MTC0 instruction during the co-
processor bus cycles of the preceding co-processor instruction, this gives no
effect on the co-processor instruction currently being executed.

RE Bit: Because the load/store instructions refer the RE bit in the E stage,
the change becomes effective at the second instruction after the MTC0
instruction. The result of the load/store instructions immediately
after the MTC0 instruction is undefined (Figure C-19).

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw F D E M W

RE Bit Update

RE Bit Read

Figure C-19 Hazard regarding the RE Bits

Note that even if the RE bit is changed by the MTC0 instruction during the
bus cycles of the preceding load/store instruction, this gives no effect on the
load/store instruction currently being executed.

 TX49 Architecture

C-14

BEV Bit: For the exceptions that occur in the E stage, such as, the address
error
(AdEL) or the TLB miss (TLBL) exceptions which occurs in the
instruction fetch stage, the exception vector base address designated
by the changed BEV becomes effective at the second instruction after
the MTC0 instruction. If these exceptions occur in the instruction
immediately after the MTC0 instruction, the referred value of the BEV
bit is undefined4 (Figure C-20).

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw F D E XXXX

BEV Bit Update

E Stage Exception Occurs

Figure C-20 Hazard regarding the BEV Bits (1)

For the exceptions that occur in the M stage, such as, IBE, DBE, NmI, CpU,
Ov, Sys, Bp, RI, AdEL (data), TLBL (data), and TLBS, Mod, and Int, the exception
vector base address designated by the changed BEV becomes effective at the
instruction immediately after the MTC0 instruction (Figure C-21).

mtc0 $5, STATUS F D E M W

Iw F D E M XXXX

BEV Bit Update

M Stage Exception Occurs

Figure C-21 Hazard regarding the BEV Bits (2)

Note that because the interrupts and the Bus Error exception occurs
asynchronously with the instruction execution, the BEV bit value for them is the
value which is hold in the BEV bit when they occurs.

IntMask Bits and IE Bit:
When the MTC0 instruction enables the interrupts by changing these
bit, then the corresponding interrupts become enabled at the second
instruction after the MTC0 instruction5 (Figure C-22).

On the other hand, when the MTC0 instruction disables the interrupts, the
corresponding interrupts become disabled at the instruction immediately after
the MTC0 instruction (Figure C-23).

FR Bit: Because the FR bit is changed in the M stage of the MTC0
instruction, new FR bit becomes effective at the third instruction after

4 The new exception vector base address may be effective because of pipeline stall.
5 They may become enable at the instruction immediately after the MTC0 instruction because of
pipeline stall.

 TX49 Architecture

C-15

the MTC0 instruction (Figure C-24).

 TX49 Architecture

C-16

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw (Interrupt Enabled) F D E M W

IntMask/IE Update

(Interrupt Enable)

Interrupt Occurs

Figure C-22 Hazard regarding the IntMask Bits and IE Bit (1)

mtc0 $5, STATUS F D E M W

Iw (Interrupt Disabled) F D E M W

IntMask/IE Update

(Interrupt Disable)

Figure C-23 Hazard regarding the IntMask Bits and IE Bit (2)

mtc0 $5, STATUS F D E M W

nop F D E M W

nop F D E M W

dmtc1 F D E M W

FR Bit Update

Reference FR Read

Figure C-24 Hazard regarding the FR Bit

 TX49 Architecture

C-17

EXL, ERL, KX, SX, UX, KSU Bit:
The modification of these bits become effective at the forth instruction
after the MTC0 instruction. On the other hand, new addressing mode
for a load/store instruction which is accessing the address in
Kernel/Supervisor space or accessing in 64-bit addressing is effective
at the second instruction after the MTC0 instruction. If either of the
two instructions after the MTC0 instruction is co-processor
instruction, result of the instruction is undefined (Figure C-25).

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw F D E M W

cpz F D E M W

sd F D E M W

Update

MIPS-III instruction

64-bit addressing

Kernel or

Supervisor mode

Figure C-25 EXL, ERL, KX, SX, UX, KSU Bit

Config Register

ICE# Bit: The MTC0 instruction may change the ICE# bit during the instruction
cache streaming. In this case, the old ICE# bit are effective for the
instructions during the streaming (Figure C-26).

mtc0 $5, Config ; update ICE# bit

nop

beq $0, $0, L1 ; stop instruction streaming

nop

L1: Iw $2, 0 ($0) ; new ICE# bit is effective

Figure C-26 ICE# Bit update

DCE# Bit: The changed DCE# becomes effective at the second instruction after
the MTC0 instruction. The DCE# bit is undefined at the instruction
immediately after the MTC0 instruction. Note that the MTC0
instruction may change the DCE# bit during the data cache refill. In
this case, the hardware interlock waits updating the DCE# bit till the
data cache refill finishes.

K0 Bit: The modification of these bits becomes effective at the forth
instruction after the MTC0 instruction, the result of the instruction in
Kseg0 address space is undefined if they executed as first, second or
third instruction after the MTC0 instruction. On the other hand, the
modification of these bits are effective at the third instruction after
MTC0 instruction. New addressing mode for a load/store instruction
accessing the Kseg0 address space is undefined if the instruction
executed as first or second instruction after MTC0 instruction.

 TX49 Architecture

C-18

Pipeline Behavior on Cache Miss

This section describes the pipeline behavior on cache miss.

Instruction Cache Miss

Instruction cache miss is detected in F stage and it is immediately followed by a
cache refill cycle (Figure C-27).

GRD

GDIN[31:0]

addu $5, $26, $7 F D E M W

addu $8, $7, $6 F D E M W

Iw $2, 0 ($1) F D E M W

addu $9, $8, $5 F DS DS DS DS DS D E M W

subu $5, $3, $7 F D E M W

addu subu

Inst. Cache Miss

Instruction Cache Refill

Figure C-27 Streaming on Instruction Cache Refill Cycle in 32-bit GBus mode

On cache miss, the fetched instructions are immediately decoded and executed
before completion of refill cycle so that the pipeline resumes the execution of
instruction stream as shown in Figure C-27. This is so called streaming6 and its
refill cycle is called stream cycle.

When the branch or jump instruction is executed during the stream cycle,
streaming will be terminated which means refill cycle will completed but the fetched
instructions after the branch delay slot won't be executed. The pipeline will stall
until the instruction at the branch or jump target is fetched. (Figure C-28).

6 No streaming in 64-bit GBus mode with 1:1 of GBus clock rate. TX49 executes one instruction
per clock cycle even if two instructions are fetched in one cycle. In this case, fetched instruction
won't be executed until the refill cycle completes.

 TX49 Architecture

C-19

GRD

GDIN[31:0]

addu $5, $26, $7 F DS DS DS DS DS D E M W

subu $9, $8, $5 F D E M W

jr $25 F D E M W

lw $2, 0 ($1) F D E M W

lw $3, 0 ($5) (target Instruction) F D E M W

addu subu

Instruction Cache Refill

Inst. Cache Miss

jr Iw

Jump

Figure C-28 Branch/Jump Instruction during Stream Cycle in GBus 32-bit Mode

Data Cache Miss

The data cache miss is detected in the M stage of load instruction and it is
immediately followed by a cache refill cycle. Non-blocking load mechanism
implemented in TX49 data cache allows the following instruction stream to be
executed without waiting for the completion of data cache refill if there is no data
dependancy between the load and the following instructions.

The pipeline will stall at E-stage of the instruction which use the refilled data as its
source until the data is loaded. (Figure C-29).

Iw $5, 0 ($26) F D E M – – – FX W

RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D ES ES ES E M W

Figure C-29 Pipeline Interlock by Cache Miss

The pipeline also interlocks when a load/store instruction is issued during the
data cache refill cycle because of the resource (i.e. data cache) conflict (Figure C-30).

 TX49 Architecture

C-20

Iw $5, 0 ($26) F D E M – – – FX W

RD RD RD

Iw $7, 0 ($25) F D E MS MS MS MS M W

ori $9, $0, 0x1f F D ES ES ES ES E M W

addu $9, $8, $5 F DS DS DS DS D E M W

resource conflict

Figure C-30 Load Instruction during the Data Cache Refill Cycle

It is possible that the conflict at W-stage occurs between load instruction and one
of the following instructions if the load instruction causes cache refill cycle. This
situation is shown in Figure C-31.

In this case, W-stage of load instruction takes precedence resulting in one cycle
stall at M-stage of the addu instruction.

Iw $5, 0 ($26) F D E M – – – FX W

RD RD RD

addu $4, $3, $7 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $7 F D E M W

addu $7, $6, $8 F D E MS M W

W stage Resource Conflict

Data Cache Miss

Figure C-31 W stage Pipeline Register Conflict

If the instruction fetch cycle is requested during the data cache refill cycle, the
data cache refill completes first followed by the instruction fetch cycle (Figure C-32).

 TX49 Architecture

C-21

Iw $5, 0 ($26) F D E M – – – M W

RD RD RD

addu $7, $6, $8 F D E M W

addu $4, $3, $7 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F DS DS DS DS DS DS DS D E M W

addu $7, $6, $5 F D E M WInst. Cache Miss

Data Cache Miss

Figure C-32 Instruction Cache Miss during the Data Cache Refill Cycle

 TX49 Architecture

C-22

Pipeline Behavior in Uncached Area

The pipeline behavior regarding the memory access to an uncached area is similar to
that of refill cycle sequence caused by the cache miss.

Data Read from Uncached Area

F D E M – – – – FX W
Iw $5, 0 ($26)

RD RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D ES ES ES ES E M W

Figure C-33 Data Read from Uncached Area

Instruction Fetch from Uncached Area

addu $5, $3, $3 F DS DS DS DS DS D E M W

Iw $2, 0 ($1) F DS D E M W

ori $9, $0, 0x1f F DS D E M W

addu $8, $9, $8 F DS D E M W

Figure C-34 Instruction Fetch from Uncached Area

Data Write to Uncached Area

F D E M W
sw $5, 0 ($26)

WR

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D E M W

Write to Write Buffer

Figure C-35 Data Write to Uncached Area

 TX49 Architecture

C-23

Timings on the Exception Handling

This section describes the detail pipeline behavior on exception. When an exception
takes place, the instruction on which the exception occurs is aborted. All instructions
immediately after that instruction are also aborted and the processor passes the control
to the exception handler.

The exceptions normally occur in the M stage, but some of the exceptions occur in the
E stage. The exceptions which occur in the E stage are:

• Debug Single Step (DSS)

• Debug Instruction Break (DIB)

• Address Error on Instruction Fetch (AdEL)

• TLB Refill/Invalid on Instruction Fetch (TLBL)

Note that the Reset/Soft Reset Exceptions occur in any stage.

Basic Pipeline Behavior When Exceptions Occur

The following Figure illustrates the pipeline behavior when an exception occurs.

Iw $5, 0 ($26) F D E M W

addu $7, $6, $8 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0 × 1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

(a) Exception Detected in the M Stage

Iw $5, 0 ($26) F D E M W

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

(b) Exception Detected in the E Stage

Figure C-36 Pipeline Behavior in Case of Exception

 TX49 Architecture

C-24

Exceptions during the Execution of Multi-cycle Instructions

As described in the section entitle Multiply, Multiply/Add and Division
Instructions, multi-cycle instructions which do not have a destination register file,
such as DIV, and the following instructions will be executed in parallel if they do not
have data dependency.

If an exception takes place at the instruction being executed in parallel with this
type of multi-cycle instructions, the preceding multi-cycle instruction is completed
while the instructions after the exception are aborted and the control is passed to the
exception handler.

F D E M W

div $8, $9 V1 V 2 V 3 V 4 V 5 V 6 v7 ….. V35 V36

addu $7, $6, $5 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

Figure C-37 Exception during the Execution of Division Instruction

Exceptions during the Data Cache Refill Cycle

When one of the exceptions occurs at the instruction which is being executed in
parallel with data cache refill, the data cache refill cycle is completed while the
instructions after the exception are aborted and the control is passed to the
exception handler.

F D E M – – – FX W

Iw $3, 0 ($1) RD RD RD

addu $7, $6, $5 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

Figure C-38 Exceptions during the Data Cache Refill Cycle (1)

 TX49 Architecture

C-25

However, when one of the fatal exceptions, such as Bus Error or Reset occurs, the
refill cycle is also aborted and the control is passed to the exception handler.

F D E M – Aborted

Iw $3, 0 ($1) RD Aborted

addu $7, $6, $5 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Fatal Exception Detected

Exception Handler

Figure C-39 Exception during Data Cache Refill Cycle (2)

 TX49 Architecture

C-26

 TX49 Architecture

D-1

Appendix D: Differences From TX3901,TX4300 and TX4600

Item TX4901 TX3901 TX4300 TX4600

Datapath 64 32 64 64

ISA MIPS I, II, III MIPS I, II MIPS I, II,III MIPS I, II, III

+MADD, +Debug +MADD, +Debug

+PREF

Pipeline 5 5 5 5

MMU TLB No TLB TLB

JointTLB 48• double 32• double 48• double

I-TLB 2• entry 2• entry 2• entry

D-TLB 4• entry No 4• entry

Page Size 4• K-16• MB 4• K-16• MB 4• K-16• MB

Shutdown No-TS Yes No-TS

V.A. Size 40 40 40

P.A. Size 36 32 36

I-cache

Size 16• KB 4• KB 16• KB 16• KB

Associate. 4-way Dir.-map Dir.-map 2-way

Lock Yes No No No

Snoop No No No No

Index V P V V

Tag P P P P

Line 32• B 16• B 32• B 32• B

Parity No No No Yes

D-cache

Size 16• KB 1• KB 8• KB 16• KB

Associate. 4-way 2-way Dir.-map 2-way

Lock Yes Yes No No

Write Policy W.-back/-through W.-through W.-back W.-back/-through

Snoop Yes Yes No No

Index V P V V

Tag P P P P

Line 32• B 4• B 16• B 32• B

Parity No No No Yes

 TX49 Architecture

D-2

Item TX4901 TX3901 TX4300 TX4600

WriteBuffer 4A/D pairs 4A/D pairs 4A/D pairs 4A/D pairs

FPU No No Shared w/ IU FPU Hard

(CP1) Shared w/

I-mul/div

Single Single

Double Double

Debug Support Unit Yes Yes No No

MPU G-Bus I/F 32-bit/32-bit SysAD SysAD

Bus I/F 36-bit/64-bit A/D separated 32-bit 64-bit

A/D separated A/D multiplexed A/D multiplexed

Sys.Clock Ratio:

1:1 Yes Yes No No

1.5:1 No No Yes No

2:1 Yes Yes Yes Yes

3:1 Yes No Yes Yes

4:1 Yes Yes No Yes

5:1 No No No Yes

6:1 No No No Yes

7:1 No No No Yes

8:1 No Yes No Yes

JTAG No No Yes(No func.) No

Power Sup. 3.3• V 3.3• V 3.3• V 3.3• V

Power down -WAIT Inst. -Config. Reg. -Status. Reg. -WAIT Inst.

Mode (Halt/Doze) (Halt/Doze) (1/4 PClock) (Stand-by)

Package PQFP-208 PQFP-160 PQFP-120 PGA-179

HSQFP-208

 TX49 Architecture

E-1

Appendix E: TX49 USER'S MANUAL Revision History

(1) Rev1.1 Feb.14, 1997

(2) Rev1.2 Feb.24, 1997

(3) Rev1.3 Mar.31, 1997

(4) Rev1.4 Apr.7, 1997

(5) Rev1.5 Jun.15, 1997

(6) Rev1.6 Jun.30, 1997

(7) Rev1.7 Mar.2, 1998

(8) Rev.2.0 Oct.1, 1998

 TX49 Architecture

E-2

	Preface
	Chapter 1: Introduction
	Chapter 2: Feature
	Chapter 3: Chapter 1:TX49 Block Diagram
	Chapter 4: CPU Register Overview
	Chapter 5: CPU Ubstryctuib Set Summary
	Chapter 6: CPU Pipeline
	Chapter 7: System Control CCCoprocessor, CPO
	Chapter 8: Memory Management System
	Chapter 9: Cache Organization
	Chapter 10: Write Buffer

	Chapter 11: CPU Exception

	Chapter 12: Floating Point Unit, CP1
	Chapter 13: Floating-Point Exception
	Chapter 14: Debug Support Unit
	Chapter 15: TX49 MPU Core Signal Description
	Chapter 16: Bus Operations
	Chapter 17: Bus Arbitration and Snoop Operation
	Chapter 18: Coprocessor Operations
	Chapter 19: Interrupts
	Chapter 20: Reset and Endian Initial Setting
	Chapter 21: Low Power Consumption Modes
	Chapter 22: TX49 MCU Concept
	Handling Precautions
	Appendix A: CPU Introduction Set Details
	Appendix B: FPU Introduction Set Details
	Appendix C: Coprocessor 0 Hazards
	Appendix D: Differences From TX3901, TX4300 and TX4600
	Appendix E: TX49 User's Manual Revision History

