
ACORN RIse
MACHINE FAMILY

DATA MANUA L

T he

32-Bit RIse

Microprocessor

System

e VLSI TECHNOLOGY, INC.

Prentice Hall, Englewood Cliffs, New Jersey 07632

ACORN RISC
MACHINE t(ARM)
FAMILY
DATA MANUAL

Application Specific
Logic Products IDivision

The information contained in this document has been carefully checked and is believed to be reliable.
However, VLSI Technology, Inc., (VLSI) makes no guarantee or warranty concerning the accuracy of
said information and shall not be responsible for any loss or damage of whatever nature resulting from
the use of, or reliance upon, it. VLSI does not guarantee that the use of any information contained
herein will not infringe upon the patent or other rights of third parties, and no patent or other license
is implied hereby.

This document does not in any way extend VLSI's warranty on any product beyond that set forth in its
standard terms and conditions of sale. VLSI Technology, Inc., reserves the right to make changes in the
products or specifications, or both, presented in this publication at any time and without notice.

LIFE SUPPORT APPLICATIONS
VLSI Technology, Inc., products are not intended for use as critical components in life support
appliances, devices, or systems in which the failure of a VLSI Technology product to perform could
reasonably be expected to result in personal injury.

Copyright © 1990 by VLSI Technology, Inc.

111 Published by Prentice-Hall, Inc.
- A Division of Simon & Schuster
=- Englewood Cliffs, New Jersey 07632

This book can be made available to businesses
and organizations at a special discount when ordered
in large quantities. For more information, contact:

Prentice-Hall, Inc.
Special Sales and College Marketing
College Technical and Reference Division
Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 I

ISBN 0-13-781618-9

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
SIMON & SCHUSTER ASIA PTE. LTD., Singapore
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

e VLSI TECHNOLOGY, INC.

CONTENTS

ACORN RISC MACHINE (ARM) DATA MANUAL
PAGE
NUMBER

SECTION 1

SECTION 2

SECTION 3

INTRODUCTION: THE RISC SYSTEM SOLUTION ;FOR SMALL COMPUTERS 1·3

VL86C010 - 32-BIT RISC MiCROPROCESSOR ... 2-3
Description .. 2-3
Signal Description ... 2-5
Functional Description ... 2-6
Examples of the Instruction Set .. 2-12
Instruction Cycle Operations ... 2·13
Timing and AC Characteristics .. 2·21

RISC PROGRAMMER'S MODEL ... 2-25
Byte Significance .. " 2·25
Registers ... 2-25
Exceptions ... 2-26
Instruction Set ... 2-29
Branch, Branch-and-Link (B, BL) .. 2-29
ALU Instructions (AND, EOR, SUB, RSB, ADD, AOC, SBC,
RSC, TST, TEO, CMP, CMN, ORR, MOV, BIC, MVN) ... " 2-31
Multiply, Multiply-Accumulate (MUL, MLA) ... 2·36
Load/Store Value from Memory (LOR, STR) ... , 2-37
Load/Store Register List (LDM, STM) ... 2-40
Software Interrupt (SWI) .. , 2-44
Coprocessor Data Operations (CPO) .. 2-45
Coprocessor Load/Store Data (LDC, STC) ... 2·45
Coprocessor Register Transfer (MCR, MRC ... 2·48
Undefined (Reserved) Instructions .. , 2-49
Instruction Set Summary (and Examples) ... 2-49
Appendix A .. ' , ; .. 2-53

VL86C020 - 32-BIT MICROPROCESSOR WITH CACHE MEMORY ... 3-3
Description .. ' .. 3·3
Signal Description ... 3-8
RISC PROGRAMMER'S MODEL .. , 3-12
Byte Significance ... 3-12
Registers ... 3·12
Exceptions ... 3·13
instruction Set ... 3·16
Branch, Branch-and-Link (B, BL) .. 3-16
ALU Instructions (AND, EOR, SUB, RSB, ADD, ADC. SBC,
RSC, TST, TEO, CMP, CMN, ORR, MOV, BIC, MVN) ... 3-18
Multiply, Multiply-Accumulate (MUL, MLA) ... 3-23
load/Store Value from Memory (LOR, STR) ... 3-25
Load/Store Register List from Memory (LDM, STM) ... 3-28
Single Data Swap (SWP) .. 3-32
Software Interrupt (SWI) .. 3-34
Coprocessor Data Operations (COO) ... 3·35
Coprocessor Data Transfers (LDC, STC) ... 3-36
Coprocessor Register Transfers (MCR, MRC) .. 3-39
Undefined (Reserved) Instructions ... , 3-40
Iinstruction Set Summary (and Examples) ... 3-40
CACHE OPERATION .. , 3·44
ReadlWrite Operations ... " 3-44
Cache Validity .. 3-44
Non-cachable Areas of Memory ... " 3-44
Doubly Mapped Space .. 3-44
Control Registers .. , 3-45
VL86C020 Memory Timing .. " 3·47

iii

e VLSI TECHNOWGY, INC.

CONTENTS

ACORN RISC MACHINE (ARM) DATA MANUAL
PAGE
NUMBER

SECTION 4

Cycle Types ••••... 3-48
Data Transfer ..•.•.. '" ... 3-48
Byte Addressing _ ... 3-48
Locked Operations .. 3-49
Line Fetch Operations ... 3-50
Address Timing .••... 3-50
Virtual Memory Systems ... 3-50
Stretching Access Times ... 3-50
Coprocessor Interface ... 3-51
Data Transfer Cycles ... 3-52
Register Transfer Cycle .. 3-53
Privileged Instructions ..•... '" 3-53
Repeatability ...•••... 3-54
Undefined Instruction .. 3-54
VL86C020 Instruction Cycles .. 3-54
Instruction Tables .. 3-54
Software Interrupt and Exception Entry .. 3-59
Coprocessor Data Operation ... 3-60
Coprocessor Data Transfer ... 3-60
Coprocessor Data Transfer (From Coprocessor to Memory) .. 3-61
Coprocessor Data Transfer (Load from Coprocessor) .. 3-62
Coprocessor Data Transfer (Store to Coprocessor) ... 3-62
Undefined Instruction and Coprocessor Absent .. 3-62
Instruction Speeds ... 3-63
Cache Off ... 3-63
Cache On ... 3-64
Compatibility with Existing Arm Systems .. 3-66
Test Conditions .. 3-68
AC Characteristics ... 3-69
Absolute Maximum Ratings ... 3-73
DC Characteristics .. 3-73

VL86C110 - RISC MEMORY CONTROLLER ... 4-3
Description ... 4-3
Signal Description ... 4-5
Functional Description ... 4-8
Memory Pages .. 4-8
Master/Slave Configuration ... 4-8
Memory Map ... 4-8
Logically Mapped RAM ... 4-8
Physically Mapped RAM ... 4-9
I/O Controllers ... 4-9
ROM .. 4-9
DMA Address Generators ... 4-9
Logical-Physical Translator ... 4-9
Effect of Reset ... 4-9
Access Times .. 4-9
N-Cycles and S-Cycles ... 4-10
Processor Interface ... 4-10
DMA Address Generators ... 4-16
DMA and Memory Arbitration .. 4-18
Video Controller (VIDC) Interface .. 4-20
I/O Controller Interface .. 4-20
Timing and AC Characteristics .. 4-21

iv

_ VLSI TECHNOWGY, INC.

CONTENTS

ACORN RISC MACHINE (ARM) DATA MANUAL
PAGE
NUMBER

SECTIONS

SECTION 6

SECTION 7

SECTION 8

SECTION9

VL86C310 - RISC VIDEO CONTROLLER .. 5-3
Description ... 5-3
Signal Description ... 5-5
Functional Description ... 5-7
Using the VIDC .. 5-13
Display Formats ... 5-15
Sound System .. , 5-17
Timing and AC Characteristics ... ;' 5-19

VL86C410 -RISC 1/0 CONTROLLER .. 6-3
Description ... 6-3
Signal Description ... 6-5
Functional Description ... 6-8
Internal Registers .. 6-8
External Peripherals .. 6-12
Timing and AC Characteristics .. 6-15

RISC DEVELOPMENT TOOLS OVERVIEW ... 7-3

PACKAGING INFORMA nON .. 8-3
68-Pin Plastic Leaded Chip Carrier (PLCC) .. 8-3
84-Pin Plastic Leaded Chip Carrier (PLCC) ~ .. 8-4
144-Pin Ceramic Pin Grid Array .. 8-5
160-Pin Ceramic Pin Grid Array .. 8-6

SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS .. 9-3

v

e VLSI TECHNOLOGY, INC.

CONTENTS

vi

e VLSI TECHNOLOGY, INC.

CONTENTS

INTRODUCTION - ACORN RISC MACHINE I

VL86C010 - 32-BIT RISC MICROPROCESSOR I

VL86C020 - 32-BIT RISC MICROPROCESSOR WITH ClACHE MEMORY I

VL86C110 - RISC MEMORY CONTROLLER I

VL86C310 - RISC VIDEO CONTROLLER E

VL86C410 - RISC I/O CONTROLLER I

RISC DEVELOPMENT TOOLS OVERVIEW I

PACKAGING: INFORMATION E

SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS Il

vii

e VLSI TECHNOLOGY, INC.

e VLSI TECHNOLOGY, INC.
PREFACE

This book provides the reader with an in-depth and concise reference on the VLSI Technology, Inc. VL86C010 RISC system
product. The RISC microprocessor and three RISC peripherals described in this text are both world-class and international. They
were designed in the United Kingdom by Acorn Computer Ltd., using VLSI Technology, Inc. design tools, and are presently
manufactured in the United States by VLSI. In addition, under recently: signed alternate sourcing agreement, Sanyo, Ltd., will both
manufacture the VL86C010 RISC family in Japan and develop derivative product.

In addition to a detailed hardware description of each device, this text extensively examines the software aspect of RISC Archi­
tecture. The instruction set is thoroughly explained, with numerous examples shown of programming techniques. Most readers
who have some programming experience, whether familiar with existing "standard'" microprocessors or not, should quickly under­
stand programming in VLSI RISC system environment.

Except for the cover and VLSIIogo, this book was entirely produced using desktop publishing. To maximize the desktop publish­
ing program's usefulness, this text was produced using a preceding minus (-) sign rather than an overbar or asterisk to indicate a
complemented signal.

ix

e VLSI TECHNOLOGY, INC

e VLSI TECHNOLOGY, INC.

SECTION 1 I
INTRODUGTION -
ACORN RriSC
MACHINE

Application Specific
Logic Products Division

e VLSI TECHNOWGY, INC.

_ VLSI TECHNOLOGY, INC.
INTRODUCTION • ACORN RISC MACHINE

32-BIT RISC MICROPROCESSOR FAMILY

THE RISC SYSTEM SOLUTION FOR SMALL COMPUTERS
INTRODUCTION for more than a decade, and have their
Perhaps the most important topic in the foundation in technology that was
computer industry the past few years radically different from today. When
has been the emergence of the most existing machines b~gan, logic
Reduced Instruction Set Computer and memory were expensive. In
(RISC) touted as the next generation of ~d~ition, software devel~pmen.t.was
performance oriented architectures. limited by the programming ability of
Several different suppliers - both assembler language and 'lack of .
component and system - have an- efficient high-level language compilers.
nounced new computers based on the Early system designers were forced to
RISC design methodology. All claim heavily encode their limited instruction
that RISC offers much higher perform- sets to minimize memory, requirements
ance than more traditional Complex of the system. Many processors began,
Instruction Set Computers (CISC). The with what was then considered as large,
common denominator among these address spaces of 64K wordslbytes of
suppliers has been a systems approach memory. Of course 64K wo~ds of
to the CPU design problem, in other assembler language code did represent
words, the CPU is considered as a a very large programming effort at the
single unit. When multi-chip solutions time.
are involved (as most are), interfaces Higher integration in semiconductor
are defined around performance and technology brought down'the high cost
bandwidth requirements more than of logic and memory. Soon, computer
functional blocks, the partitioning found architects found they could build an
in most commercial micr~processors equivalent system ,cheaper, with lower
today. Component suppliers often. power requirements, and having more
partition their systems around functions, reliability. Also, integration allowed
like scalar processor, memory manage" them to add enhancements to the
ment unit, and floating point processor. instruction set to improve performance
This allows each circuit to be used of key customer applications for less
without the others, meaning that not all cost than before. Assembler language
components have to be available before programmers wanted more enriched
sales start. By partitioning aro~nd addressing modes that moved some of
functions, the component suppliers. the computing functions from software
usually sacrifice performance or require to hardware. In addition, it improved
other system elements, such as programmer productivity by reducing
memory, be faster than necessary at a the number of lines of assembler
given performance level. language necessary to code programs.
As RISC technology moves from the Less lines per function m~ant more
laboratory into the commercial environ- functions could be coded In the same
ment it is important for system design- time - i.e. higher productivity. High-
ers to understand these new consldera- level languages were available but
tions. When new applications arise that generally were too iinefficient to use
cannot be addressed cost-effectively by except in the most complex applications
CISC architectures, this new technol- level.
ogy may provide the only solution. By Hardware designers began adding new
examining the following system, the instructions and addressing modes to
designer will become familiar with this meet the programmer requests while
new, emerging computer technology remaining compatible with previous
and learn how systems can be parti- generations of software. Soon, system
tioned around parameters other than architects realized that they could
functional blocks. provide more performance if they could
Brief Evolution of CISC and RISC sacrifice backwards compatibility and
Architectures redefine their instruction sets to exploit
Most commercially available computers new technologies. Instruction complex-
today should be classified as CISC. ity had increased to the point where
Many of these machines have existed decoding multi-word, multi~format

instructions was the limiting factor in

1-3

processor speed. Unfortunately, I
customers had huge investments in
software and were reluctant to change
to hardware that could not execute their
installed base. New 2lrchitectures were
limited to new customers and applica-
tions.

High-level language efficiency and
hardware performance improved
dramatically and became useful for
most applications. This helped two
areas of concern in computer systems,
programmer productivity and program
transportability. High-level languages
helped programmers write code that
was hardware independent, at least in
theory, as compilers stood between the
programmer and the execution environ­
ment (physical hardware and operating
system). Compiler differences and
ambiguous language specifications
caused some portability problems, but
in general it was practical to port
programs between machines.

With more high-level language pro­
grams being written, hardware suppliers
felt pressured to add even more
complication to their instruction sets to
support compiled code. Many architec­
tures added hardware implementations
of high-level constructs like FOR,
WHILE, and PROC (procedure calls)
directly into the instruc:tion set. The
problem arose as to which language to
support because each'is different, e.g.
whether the conditiona,1 execution
expression is evaluated at the begin­
ning of the loop or the lend. As a result,
most architectures may support only
one language well or are so general
that the compiler cann()t exploit them
efficiently (Wulf, 1981).,

In the mid-seventies computer scien­
tists began to investigate new methods
to support all high-level languages more
efficiently. It was becoming apparent
that most problems were too complex to
be written in assemblelr language and
no one high-level language was
sufficient to support all !applications.
From these development efforts came
the RISC methodology, for CPU design.
What constitutes a RiSe computer is
yet another area of debate, but most
emerging machines do! have some
characteristics in common.

e VLSI TECHNOLOGY, INC

First, most RISC machines are based
on single-cycle instruction execution.
Unlike their Complex Instruction Set
Computers (CISC) counterparts that
may take up to 100 minor (clock) cycles
to complete complex instructions, the
RISC machines instruction set is limited
to primitive functions that can execute
in a single or extremely few machine
cycles. Compiler writers have sug­
gested that it is more efficient to provide
primitives to build solutions rather than
solutions in the instruction set. When
instructions have too much semantic
content, a clash occurs between the
language and the instruction set (Wulf,
1981) introducing inefficiency and
increasing compiler complexity. In
addition, single clock execution helps
lower interrupt latency, thus making the
system more responsive to the asyn­
chronous environment of today's time­
shared and/or networked systems.

Another common trait of RISC ma­
chines is a load/store architecture
providing larger CPU register files. In a
load/store architecture, the data
processing instructions (logical and
numeric functions) can only operate on
the CPU registers. A separate set of
instructions are used for memory
reference that usually support a limited
set of addressing modes. Streamlining
the addressing modes helps simplify
instruction decode, eliminate special­
purpose address ALUs, and speed
pipeline processing that can be slowed
by multi-word address operand fetches.
Recent improvements in the global
register allocation problem faced by
compilers have made efficient use of
large numbers of registers possible. In
response to compiler improvements,
most RISC systems have added larger
register files to improve performance.
Two factors bring about significant
performance increases from added
registers: (1) register operations
execute much faster, and (2) memory
references are reduced because
registers can hold temporary results.

In general, RISC machines are tightly
coupled to their memory. The simple
instruction set translates into a higher
effective instruction execution rate,
meaning the processors demand a high
bandwidth from their memory systems
to provide peak performance. In order
to provide this bandwidth most, but not

INTRODUCTION • ACORN RISC MACHINE

all, systems have implemented very
sophisticated caching techniques which
increase system cost and complexity
dramatically.

The VLSI Technology RISC
Computer System
VLSI Technology has a full system
solution to the design of a cost­
effective, small computer. This system
was designed by Acorn Computers Ltd.
of Cambridge, United Kingdom, using
the VLSI Technology, Inc. CAD system.
What makes this system different is its
unique method of partitioning the four
circuits. Instead of designing the
circuits around seH-contained functions,
this system is partitioned around basic
computer fundamentals such as
memory bandwidth, die size of all four
components, and low-cost packaging
available today. Careful attention to
these fundamentals has yielded a small
computer system that can bring
excellent performance to the user at
significantly lower cost than ever
before. An examination of the system
and its alternate form of partitioning will
highlight the advantages of a top down
design approach to the entire problem,
not just CPU optimization.

The computer shown in Figure 1 is
partitioned into four circuits: the

VL86C010 Acorn RISC Machine (ARM)
processor, VL86C11 0 Memory Control­
ler (MEMC), VL86C310 Video Control­
ler (VIDC), and VL86C410 I/O Control­
ler (IOC). These four circuits together
form a full 32-bit microcomputer system
with performance in the 5 to 6 million­
instructions-per-second (MIPS) range.
Somewhat surprising is the fact that the
four parts are available in one 84-pin
(processor) and three 68-pin packages
(JEDEC Type-B or Plastic-Leaded­
Chip-Carriers, PLCC) while implement­
ing full 32-bit functions. A more
surprising fact is that no part in the
system has a die size larger than 230
mils square in VLSI Technology's 2 11m
double-layer metal CMOS process
which means highly manufacturable
circuits are available.

Partitioning The System
Traditionally, component designers
viewed a computer system as "cen­
tered" around the CPU. The processor
was designed in a vacuum, without
concern for other elements in the
system. The CPU was optimized to be
high-performance and then the system
designers found that in order to exploit
the performance, they had to resort to
expensive memory systems or cache
SUb-systems, increasing the cost

FIGURE 1. RISC SYSTEM BLOCK DIAGRAM

1-4

.,0
DATA
BUS

"0
ADDRESS

BUS

e VLSI TECHNOLOGY, INC

INTRODUCTION • ACORN RISC MACHINE

dramatically. The CPU made such high
demands on the memory that 1/0
transactions were not sufficiently
served. This forced the systems
designer to implement ever more
complex I/O sub-systems, yet another

addition to cost, complexity, and
decreased reliability. Even today's
most popular personal computers use
plug in cards with on-board memory
sUb-systems for video and data com­
munications.

FIGURE 2. VL86C110 MEMORY CONTROLLER (MEMC) BLOCK DIAGRAM

SPMD

ABRT

LOGICAL
TO

PHYSICAL
ADDRESS

TRANSLATOR
(CAM)

RAg - RAO

RES

DMAAND
REFRESH
ADDRESS

GENERATOR

-RAS -CAS3· -CASO

-IORQ
RCLK
-IOGT
01
02
DBE
-RMCS
-VIDW

FLBK
-HSYC

-VDRQ
-VDAK

-SDRQ
-SDAK
-SIRQ

-BIW

FIGURE 3. VL86C110 MEMORY CONTROLLER (MEMC) PIN DIAGRAM

PROCESSOR
INTERFACE

I

CONT~~llER {
INTERFACE

MEMC {
CONTROL

POWER {

....

...
....
....

-....

~
A2S-AO /'

.....
-R/W ..
-BIW ..

-MREO ..
SE~

SPMD ..

01
02

DBE VL86C110
ABRT

-IORO
REF

-IOGT

ClK
RES

VDD(2)
VSS(2) ...

RA9-RA~
.....

-RAS

-CAS3 ..
-CAS2 ..
-CAS 1

-CASG

-RMCS .. }
-VIDW ...

.... FlBK

.... -HSYC

.... -VDRO
-VDAK ..

... -SDRO

-SOAK ..
-SIRO .. }

1-5

DRAM
CONTROL

ROM
CONTROL

VIOC
INTERFACE

INTERRUPT
CONTROL

The requirements for a small computer
today, are very much different than
even a few years ago. Now users I
expect a small computer to have
capabilities that were only available in
minicomputers. Full color displays at
resolutions up to 640 by 480, real
memory of 1 Mbyte, and networking
support are common features de-
manded by end-users.

The VLSI Technology, Inc. system is
"centered" around the memory, with
each element designed to use the
bandwidth efficiently without making
large demands that require premium
memory components. The video
display is integrated into the design to
utilize the main memory for display
area, eliminating the need for expensive
add-on video cards. The system
operates with a 24 MHz clock that
yields a basic processor cycle of 8 MHz
(125 ns). Even atthis:speed, the
memory system uses Inexpensive 120
ns access time page-mode DRAMs.

Memory Controller Functions
Since the system is designed around
the memory, it is logical that the
VL86C110 Memory Controller (MEMC)
should be discussed first. Understand­
ing how this part functions provides
insight into the other elements and how
they are coordinated te'>gether.

As the name would indicate, the MEMC
generates the timing a'nd control signals
required by DRAM. In; addition, MEMC
acts as the main interface between the
other three components by providing
the critical timing signals for all ele­
ments from a single cI<!>ck input. Figure
2 shows a block diagram and Figure 3
the functional pin out of the memory
controller. It should be noted that
MEMC does not have a data bus
connection allowing it to be placed in a
68-pin package. To p~ogram the
internal registers of MEMC, the data is
encoded on the address bus during a
processor write to the part. While at
first this may seem a large overhead,
using the simplelfast addressing modes
and barrel shifter in the processor, the
programmer will find that the address
encoding causes very little impact.

The part generates all the timing signals
required for interfacing, the elements
with the memory. High speed timing is
generated from a single clock, usually
24 MHz for an 8 MHz processor. All

e VLSI TECHNOLOGY, INC

INTRODUCTION • ACORN RISC MACHINE
FIGURE 4. CLOCK SKEW TIMING EXAMPLE

BUFFER FLOP

=:o....----~
DATA

CLOCK

Minlmlm Setup Time = Flop Setup lime + Data Buffer Maximum - Clock Buffer Minimum

Minimum Hold Time = Flop Hold Time + Clock Buffer Maximum - Data Buffer Minimum

system timing is generated on the
MEMC with minimal buffering on the
other devices. This scheme minimizes
clock skew in the system allowing
slower access time memory devices to
be used. Figure 4 shows an example of
how clock skew occurs in timing paths.
Having all buffers on a single chip
allows delays to track more closely than
the total process variation. As shown
by the example, fewer buffers in the
path lower the amount of time that data
must be valid on the bus, minimizing
setup and hold times. Removing the
clock buffer will eliminate the difference
between the clock buffer delay mini­
mum and maximum times.

The clock is divided by three and used
to generate the processor and main
system bus reference clocks. The
MEMC drives up to 32 memory parts
directly in several different configura­
tions. Various configurations provide
for up to 4 Mbytes of real memory in the
system. The bandwidth of the low-cost
DRAM memory is increased through
extensive use of page-mode transfers
because many memory references in
computer systems are sequential in
nature. MEMC also provides memory
map decoding for 1/0 and ROM in the
system. In order to optimize bandwidth,
MEMC will take the ROM chip select
active at the beginning of every non­
sequential access and remove it if the
cycle is not a ROM access making
slower ROM accesses more efficient
and once again allowing lower-cost
ROMs to used.

MEMC supports several key functions
in the system that usually have a
tendency to impact performance or
require faster components, so that this
is not the case in this system. If a small
computer is to support networking it
must provide for multi-tasking and

process isolation. MEMC provides full
virtual memory support with a Logical­
to-Physical Address Translator imple­
mented as a 128 entry content address­
able memory (CAM). Logical pages
can be 4K, 8K, 16K, or 32K bytes each.
RAM memory is always treated as 128
physical pages, meaning that MEMC
contains a CAM entry (descriptor) for
each physical page in memory. Having
a CAM location for every physical page
of memory eliminates descriptor
thrashing, thus improving system
performance. Thrashing occurs when
the MMU system has fewer descriptors
than physical pages of memory which
introduces another source of address
translation misses - the data is resident
in memory but a descriptor to translate
to that page is not available. A descrip­
tor must be taken from another page to
point to the requested page.

Many current memory management
units contain only a small sub-set of the
page tables and must retranslate the
logical address whenever a new logical
page is referenced (descriptor miss).
Translation can take up to several
microseconds depending on how many
memory cycles must be performed. In
this system the address translation is
not in the critical path and does not
require faster memory than a system
that uses physical addresses. No
translation takes place on the row
address values which are required early
in the memory cycle. The mapped
address bits are placed into the column
address field and are therefore not
needed until much later in the cycle.
This approach can be taken because
the memory is usually configured as a
single bank meaning all memories are
active when the RAS becomes active
regardless. Systems that have more
than one bank of DRAM and use this

1-6

approach would be required to select
(bring RAS active) all memory devices
on every cycle. Multi-bank memory
systems designed in this manner would
have much higher power consumption
and lose much of the advantage of
DRAM technology.

The simple CAM contained in MEMC
can support demand paging with some
software assistance and it provides a
full virtual memory implementation with
three levels of access protection
efficiently. The goal of virtual memory
support in this system was to let
programs be written independent of real
memory size rather than for multi-user
support. Today's most popular PC has
suffered recently due to the artificial real
memory limitation placed on it by the
machine designers.

MEMC contains all the address
generators to support DMA activity
related to video, cursor, and sound
generation. These were placed on this
circuit for two reasons. First, it elimi­
nates the need to have the full address
bus placed on the video interface
circuit. This allows the VIDC to have
the full 32-bit data bus and still be
packaged in a 68-pin package. Sec­
ond, this arrangement uses the memory
bandwidth more efficiently by reducing
synchronization and buffer delays on
the memory bus while improving DMA
latency. In most systems a DMA opera­
tion proceeds as follows: (1) the DMA
device requests a transfer, (2) the
memory controller synchronizes to the
system clock and recognizes the
request, (3) processor is signaled to
relinquish the bus, (4) processor
synchronizes and recognizes the
request, (5) processor issues grant to
memory controller, (6) memory control­
ler synchronizes and recognizes grant,
(7) memory controller issues DMA
grant, (8) DMA synchronizes and
recognizes grant, (9) DMA device
enables address bus drivers, (10)
memory controller receives address
and mUltiplexes address to memory
devices, (11) memory controller issues
data acknowledge, (12) DMA device
synchronizes and recognizes acknowl­
edge, and (13) DMA device removes
request to end cycle.

MEMC provides the memory arbitration
and all address sources in a single

e VLSI TECHNOLOGY, INC

INTRODUCTION • ACORN RISC MACHINE

device within the system. This elimi­
nates several levels of pulse synchro­
nizers and buffering delays. When the
VIDC signals a DMA request, MEMC
only has to recognize the request,
disable the processor when appropri­
ate, and enable the address from the
internal source. The DMA device has a
simple interface to latch the data when
the aclmowledgesignal goes inactive.
This interface provides a very efficient
DMA capability for read-only devices
like video and sound generators. In
order to optimize bandwidth usage,
MEMC performs four memory cycles

per DMA request, one full access taking
250 ns and three sequential page-mode
accesses of 125 ns each.: Four cycle
bursts were chosen for ali devices to
Increase bandwidth but keep bus
latency to a reasonable value. Long
latency introduces other costly prob­
lems that are usually solved with
expensive FIFO buffers or other
interface hardware that is duplicated in
every device that connects to the bus.

RISC Processor Functions
The VL86C010 RISC pro~essor
provides the computational element in
the system. The processor has a

TABLE 1. VL86C010 INSTRUCTIONS
FUNCTION MNENQMIC OPERATION
Data Processing
Add with Carry ADC Rd:-Rn + Shift(Rm) + C
Add ADD Rd:-Rn + Shift(Rm)
And AND Rd:-Rn • Shift(Rm)
Bit Clear BIC Rd:-Rn • Not Shift(Rm)
Compare Negative CMN Shift(Rm) + Rn
Compare CMP Rn - Shift(Rm)
Exclusive - OR EOR Rd:-Rn XOR Shift(Rm)
Multiply with Accumulate MLA Rn:-Rm * Rs + Rd
Move MOV Rn:-Shift(Rm)
Multiply MUL Rn:-Rm * Rs
Move Negative MVN Rd:-NOT Shift(Rm)
Inclusive - OR ORR Rd:-Rn OR Shift(Rm)
Reverse Subtract RSB Rd:-Shift(Rm) - Rn
Reverse Subtract with Carry RSC Rd:-Shift(Rm) - Rn - 1 + C
Subtract with Carry SBC Rd:-Rn - Shift(Rm) - 1 + C
Subtract SUB Rd:-Rn - Shift(Rm)
Test for Equality TEO Rn XOR Shift(Rm)
Test Masked TST Rn • Shift(Rm)

Data Transfer
Load F~egister LDR Rd:-Effective address
Store Register STR Effective address:- Rd

Multiple Data Transfer
Load Multiple LDM Rlist:-Effective Address
Store Multiple STM Effective Address:;.Rlist

Jump
Branch B PC:.PC+Offset
Branch and Link BL R14: .. PC, PC:- PC+Offset
Software Interrupt SWI R14:.PC, PC:- Vector #

radically reduced instruction set
containing a total of only 46 different
operations. Unlike mast others, all I
instructions occupy one 32-bit word of
memory. In keeping with the tradition of
RISC methodology, the processor is
implemented as with a single-cycle
execution unit and a IClad/store architec-
ture. The basic addressing mode
supported is indexed from a base
register, with several different methods
of index specification. The index can
be a 12-bit immediate !value contained
within the instruction, or another
register (optionally shifted in some

PBQCESSQB CYCLJES

1S
1S
1S
1S
1S
1S
1S
16S max
1S
16S max
1S
1S
1S
1S
1S
1S
1S
1S

2S + 1N
2N

(n**+1)S + 1N
(n**+1)S + 2N

2S+ 1N
2S+ 1N
2S+ 1N

·ShiftO denotes the output of the 32-bit barrel-shifter. One operand can be shifted in several manners on every data processing
instruction without reqUiring any additional cycles .
•• - n is the number of registers in the transfer list.
N denotes a non-sequential memory cycle and S a sequential cycle.

1-7

_ VLSI TECHNOLOGY, INC.
INTRODUCTION • ACORN RISC MACHINE

manner). The index can be used in a
pre or post-indexed fashion for any
method of specification.

Table 1 shows the instructions sup­
ported by the processor. These
instructions operate only on the CPU
internal registers. Only the multiply
instruction requires more than one cycle
to execute (32 x 32 multiply in 16 clocks
worst case) and it is not the limiting
factor in interrupt response time. All
instructions have conditional execution
implementing a type of skip architec­
ture. Unexecuted instructions require a
single processor cycle and keep the
three-stage pipeline intact. This
approach was taken as opposed to the
delayed branch approach to simplify the
virtual memory page fault recovery
process. When the branch and delayed
instruction are contained on separate
physical pages and a fault occurs on
the fetch after the taken branch, the
recovery process can be extremely
expensive in both software and
hardware complexity. Studies have
shown that compiled code generated on
the VAX averaged three instruction
executions between every taken branch
(Clark and Levy, 1982). While instruc­
tion set differences may cause the
number of instructions between
branches to vary, the conditional
execution helps the processor keep its
pipeline intact for forward reference
branches of short length.

The VL86C010 supports two types of
branch instructions, branch and branch­
with-link for subroutine calls. Again,
both branch types offer conditional
execution. For subroutine calls, the
current value of the machine state
contained in register 15, program
counter and status register, is copied
into register 14. Linking subroutine
calls through the registers instead of the
more traditional memory stack, reduces
the call/return overhead. For a single­
level linkage, the state is saved within
the machine in a single clock and can
be restored also in a single clock. For
multi-level call sequences, full machine
state is contained in a single word,
requiring only a single memory refer­
ence for stacking.

Two types of data transfer instructions
are supported for memory references.
A single register can be read or written
to memory in two clock cycles. In order

to exploit sequential memory access
modes, the processor also performs
load and store multiple operations. For
these instructions more than one
register is transferred, taking two clocks
for the first register and one clock for
each additional one. This instruction
greatly enhances the processor's ability
to move large blocks of memory and
context switches that save the entire
machine state. A block transfer
instruction of all 16 registers is the
longest instruction and therefore is the
limiting factor in interrupt response time.

Figure 5 shows a block diagram of the
processor. Several hardware features
are worthy of note. First, by streamlin­
ing the instruction set, more silicon area
can be dedicated to hardware functions
that enhance performance. The
VL86C010 contains a full 32-bit barrel
shifter that can be used to pre-shift one
operand on every processor cycle
without additional delay. The barrel
shifter increases the performance of
shift intensive applications like graphics
manipulations significantly. Second,
the addition of a memory interface
signal (SEQ) to alert the VL86C11 0 that
the next memory address is sequential
to the current address. This extra

status allows the processor and
memory controller to exploit the page­
mode capability of DRAMs and obtain
higher bandwidth without requiring
faster memory devices.

The third major hardware feature is the
partially overlapped register file
containing 27 locations, although only
16 are visible to the program at anyone
time. Unlike some other RISC proces­
sors, the registers in the VL86C01 0
overlap across processor modes
instead of procedure calls. The
processor supports four modes of
operation: User, System, Fast Interrupt
Request (FIRQ), and Normal Interrupt
Request (IRQ). In the User mode the
program has 16 (RO to R15) registers.
R15 contains the program counter and
status register and R14 is used for
subroutine linkage. The other 14
registers are general purpose as is R14
when it is not needed for linkage.

Whenever a mode change is per­
formed, new registers are mapped into
the visible space. Two new registers
(R13 and R14) are available to the
System and IRQ modes respectively.
Seven additional registers are available
in the FIRQ mode which lowers the
processor's interrupt latency. The FIRQ

FIGURE 5. VL86C010 RISC PROCESSOR BLOCK DIAGRAM

ADDRESS
BUS

1-8

INSTRUCTION
DECODE

AND
EXECUTION

PIPELINE

MEMORY
DATA

REGISTER
(READ)

MEMORY
DATA

REGISTER
(WRITE)

DATA
BUS

DATA
BUS

e VLSI TECHNOLOGY, INC

mode has a worst case interrupt latency
of 22.5 clocks and can be as little as 2.5
clocks. The extra registers can hold
DMA pointers and word counts allowing
the processor to implement high speed
DMA transfers without external control­
lers, further reducing system cost
without significant overhead.

Most other RISC processors overlap
the registers across procedure calls,
implementing a register stack that is
used for local variables and parameter
passing. This scheme works well with
the C language because C does not
allow nested scopes like other lan­
guages such as Modula2 and PASCAL.
These languages require the program
to access variables of all levels that are
active at the same time. In addition, the
processor must handle the case where
the register stack overflows (Hennessy.
1984). Both these problems complicate
the processor design and can slow
context switching across processor
modes. It was determined that the
overlap across modes was a more
efficient use of chip area for supporting
all high-level languages and making the
processor more responsive to the
asynchronous environment posed by
network support. Besides, the large
register bank is expensive and can
extend processor cycles with extra
levels of decode internally.

Video Support In the System
The video support is integrated into the
design of the processor system to
eliminate add-on video sub-systems
and dedicated display memory buffers.
The VL86C310 Video Controller (VIDC)
provides a highly flexible choice of
display formats in both color and high
resolution monochrome. Horizontal
timing is controlled in units of two pixel
times and vertical in units of raster
times. Besides performing video
operations, the VIDC also can generate
high quality stereo sound with up to
eight channels of separate stereo
position.

Figure 6 shows a block diagram of the
video controller. The part accepts video
data in a packed pixel format from the
memory, serializes the data into pixel
information, and presents the data to
the color-mapping RAM (video palette)
where it is converted to analog values
suitable for driving an RGB monitor.

INTRODUCTION • ACORN RISC MiACHINE

FIGURE 6. VL86C310 VIDEO CONTROLLER {VI DC) BLOCK DIAGRAM

-SORQ +-----.
-SOAK -----....

-VORQ

031·00

-VOAK

SINK

-VIOW _____ :r

CKIN -----------'

VIDC contains three chanl!'l9ls of DMA
for interfacing to the video'and sound
systems but does not generate the
addresses directly. For video refresh,
the part supports separate DMA
channels for video and cu~sor informa­
tion. The third DMA channel generates
the sound data fetches. Each DMA
channel has a dedicated FIFO of four
32-bit words for cursor and sound and
16 words for video. The FIFO depth
can be small because of the highly
efficient and responsive bus implemen­
tation of the system. Each channel
uses the four word burst transfers
discussed before to exploit the page­
mode access mode of DRAMs.

The output of the video FIFO is
connected to the video se~ializer. The
pixel rate is programmable at values of
8, 12, 16 or 24 MHz. In addition, the
video data format can be selected to be
1 , 2, 4, or 8 bits per pixel. Once the
video data is serialized, it is presented
to the color palette. The palette
provides 16 words of 13 bits each,

1-9

LCH
-LCH
RCH

-RCH

-VEOO·
-VEoo

ROUT

BOUT

'-----. -VICS
'-------.~ FLBK

'---------+-HSYC

'--------------~. ~I

allowing the part to support 256
simultaneous colors from 4096 possible
choices or an external video source.
The output of the palette is multiplexed
with the cursor information and pre­
sented to the video DACs for conver­
sion to analog RGB formats. The VIDC
can support displays of! up to 640 by
480 with 16 colors (high-resolution PC
type display) directly without any
addition logic. The only external
components required are a simple
circuit to convert the current sink DAC
outputs to an appropriate voltage. A
suitable circuit is shown in Figure 7.

The cursor is handled as a separate
sprite making its manipulation simple
and it is allowed pixellovel positioning
anywhere on the screen. The cursor is
defined as 32-bits wide; and any number
of rasters high. Cursor'information is
fetched during horizontal retrace on
rasters where the cursor will appear.
The cursor sprite can contain up to
three different colors from the 4096
palette, with a.fourth alternative color of

I

f) VLSI TECHNOLOGY, INC.
INTRODUCTION • ACORN RISC MACHINE

FIGURE 7. EXAMPLE VIDEO
OUTPUT DRIVER

VOO

Rr

RVOAC

ROUT--~--~~-;

TC1
GNO

~~g~ef6e~Component Values

R1 - 3300
R2- 680

Red Output
750
Line

01 should have similar characteristics
to the emitter-base junction of Q1

transparent. Each pixel that is transpar­
ent allows the video information to be
displayed instead of the cursor. The
background video color "shows
through" the cursor. The transparent
attribute allows cursors of various
shapes to be defined, allowing each
application the option of customizing
the display to enhance the man­
machine interface. Figure 8 shows an
example of how a non-rectangular

shaped cursor would be defined. Each
bit of the cursor sprite can be specified
with no limitations as to the number of
color changes or length of color fields
found in systems that use run-length
encoding for data reduction.

Most small computers support some
type of sound output as does this
system. The difference here is the
support for full-stereo sound. Up to
eight channels of stereo position are
supported yielding very high quality
sound. Due to the small die size and
large pin count, the addition of stereo
sound adds nothing to the cost of the
part (perhaps a small test cost in­
crease) if itis not needed. However,
the system designers can use this
interface to greatly differentiate their
machines. Applications programs could
be written to exploit the power of the
processor to run signal processing
algorithms and utilize compressed
speech or other sound information to
enhance man-machine interfaces or
provide other useful functions. This
sound capability in conjunction with the
VIDC's ability to synchronize to external

FIGURE 8. VL86C310 CURSOR SPRITE EXAMPLE

o 1 2 3 4 5 6 7 8 9 1011 121314151617181920 21 2223 242528 27 2829 30 31

4
5
6

10

11

12
13
14
15
16
17
18

19
20
21
22

23

24
25

26
27

28

29
30
31

1-10

displays, could provide a highly
effective system for the computer­
based training market.

Supporting 1/0 Transactions
Input/output control is very important in
computer systems. Most component
vendors concentrate all their design
effort and analysis on the CPU, striving
to achieve the highest performance.
I/O is left as an after-thought at best, or
the I/O SUb-system is designed as a
special-purpose CPU trying to maxi­
mize its performance without regard to
the other elements in the system.
Interfaces grow complex and establish
bottlenecks to system performance or
even worse, SUb-systems become
isolated and difficult to control. For
example, many graphics processors
proposed in the past few years did not
allow the host processor access to the
display memory. Software engineers
proclaimed this as an unmanageable
solution and as a result many compo­
nent designers reworked their inter­
faces to provide more control. Address­
ing I/O and CPU designs at the same
time is important because many of
today's high performance systems are
totally 110 bound, forcing the CPU into
idle states, and causing the users to
pay for performance they cannot obtain
in the execution environment.

The last element in the VLSI Technol­
ogy, Inc. small computer system is the
VL86C410 Input/Output Controller
(IOC). The circuit provides a unified
environment for I/O related activities
such as interrupts and peripheral
controllers. This environment simplifies
system software and allows the
processor to interface easily with
existing low-cost peripheral controllers
such as VL 16C450 Asynchronous
Communications Element and VL 1772
Floppy Disk Controller. Using these
low-cost, mature devices is a key to
providing a cost-effective small com­
puter in today's market.

A block diagram of 10C is shown in
Figure 9. The part provides the system
with several general 110 support
functions. The VL86C410 contains four
16-bit counterltimer circuits, two
configured as general-purpose timers
and two as baud rate generators. One
baud rate generator is dedicated to the
Keyboard Asynchronous Receiver/
Transmitter (KART) and the other

o VLSI TECHNOLOGY, INC.
INTRODUCTION • ACORN RISC MIACHINE

FIGURE 9. VL86C410 INPUT/OUTPUT CONTROLLER (IOC) BLOCK DIAGRAM

Cl.K4
Cl.K1

-WBE
-RBE

D7- DO [

BAUD~I~---r-----+----~

-87--81

-8 EXT

C6- CO

-IRQ -RST
-FIRQ

-IL7 - -ILO -IF IR -FH1 - -FHO -FL -POR

FIGURE 10. VL86C410 INTERRUPTIBLE CYCLE EXAMPLE

02

REF

-lORa

Start
I/O Cycle

\'--_____ --1

-IOGT
,----------------------------1/

controls the BAUD output pin of the
device. Timing of external events
becomes more important in systems
that must support networking and multi­
tasking. Most network protocols require
nodes to respond within a certain time
(three seconds is common) and the
initiator node must detect a timeout and
invoke error recovery procedures.
Multi-tasking operating systems usually
require some type of timing interrupt for
task control.

The KART section is a simple fixed­
format asynchronous bidirectional serial
communications link designed basically
for keyboard input. The format is fixed
with an eight bit character; one start bit,
and two stop bits. The clock rate is a
standard 16 times the data rate and the
transm~ and receive clocks are at the
same rate and controlled by Timer 3
within 10C. To imp.rove noise immunity,
false start bits of less than! one-half bit
duration are ignored. Thel KART is

1-11

ideal for interfacing to the low speed
character rate (up to 3" K charactersl
second) from a keyboard but it can be I
used for other purposes if the format is
suitable.

The major task of 10C is the implemen­
tation of an efficient interface between
the high speed system and the lower
speed 1/0 peripheral controller buses.
The system exploits the low-cost
peripheral controllers but should not be
severely impacted with performance/
latency penalties for using them. The
part contains six programmable bi­
directional 1/0 pins for implementing
special processor control. Interrupts
are supported with control for both
normal (IRQ) and fast (FIRQ) interrupts
through mask, requesti and status
registers. Sixteen interrupt sources are
supported, fourteen level and two edge­
triggered, meaning the! 10C should have
the total interrupt status for most
system configurations.

Centralizing the interrupts in this
manner reduces polling, improves
efficiency, and reduces latency within
the system. Fast response time allows
the processor to replaoe expensive
dedicated logic with solftware, lowering
the system cost accordingly. Many
component vendors deimand higher
prices for their DMA davice than for
their CPU. Unfortunately, the CPU is
usually idled during DMA transfers
because they share the address and
data buses to the memory. If the CPU
was more responsive, ~ could provide
the transfers without any degradation in
system performance and eliminate the
expensive DMA hardware.

The peripheral controller cycles are
supported with four different lengths for
access times. This allows peripheral
controllers from various vendors with
different bus clocking schemes to be
interfaced easily and cheaply without
extra logic. Each VL86C410 supports
seven peripheral select lines which are
independently selectable from the four
access cycle times. If more than seven
peripheral controllers are needed,
multiple 10Cs can be used in the sys­
tem or the select lines can be decoded
further externally beca~se the system
provides sufficient address set-up time,

In order to maintain low latency on the
high speed system bus, the 10C is

e VLSI TECHNOWGY, INC.
INTRODUCTION • ACORN RISC MACHINE

designed to allow an 1/0 cycle to be
interrupted by a DMA access on the
system bus. Figure 10 shows a timing
diagram of this operation. The lORa is
generated by MEMC whenever an 1/0
access address is detected. The 10C
will respond with an lOOT signal when
the access is complete. If the MEMC
detects a pending DMA request, it
removes lORa and performs the
transfer. 10C turns off the buffers that
isolate the two buses and continues
with the I/O cycle until the MEMC
returns the lORa. Then, the cycle is
completed when both the master and
slave device parameters have been
met. This interruptible 110 cycle elimi-

. nates the slower peripheral devices
from the system bus latency calcula­
tions, improves efficiency, and lowers
system cost.

Conclusions
Whenever a system is partitioned, the
designers should consider the entire
problem as a single coherent entity,
optimizing all parts together rather than
each separately. The VLSI Technology,
Inc. system demonstrates the advan­
tages of partitioning around system bus
parameters instead of the more
traditional functional, stand-alone
blocks. This system exploits low-cost
memory and peripheral components
while achieving excellent throughput
with superior cost/performance ratios.
With careful attention, the system
designer can eliminate large die sizes
and expensive high··pin count packages
without sacrificing throughput and
achieve superior cost-performance
ratios.

1-12

References
Clark, D. and H. Levy. "Measurement
and analysis of instruction use in the
VAX 11n80," in proceedings of the 9th
Annual Symoosjum on Computer
Architecture. ACMIIEEE, Austin, Texas,
April 1982.

Hennessy, John L. "VLSI Processor
Architecture." IEEE Transactions on
Computers, Volume C - 33, Number 12
(December 1984), pp. 1221-1246.

Wulf, William A. "Compilers and
Computer Architecture." Computer, July
1981, pp. 41-47.

e VLSI TECHNOLOGY, INC.

SECTION 2

VL86C010
32-BIT Rise I
MICROPRCOCESSOR

Application Spe~ific
Logic Products Division

e VLSI TECHNOLOGY, INC

e VLSI TECHNOLOGY, INC.

VL.86C010
32-BIT RISC MICROPROCESSOR

FEATURES
• 32-bit internal architecture

• 32-bit external data bus

• 64M··byte linear address space

• Bus timing optimized for standard
DRAM usage with page mode
operation

• 48M·byte/second bus bandwidth

• Simple/powerful instruction set
providing an excellent high level
language compiler target

• Hardware support for virtual memory
systems

• Low interrupt latency for real-time
application requirements

• Full CMOS implementation results in
low power consumption

• Single 5 V ± 5% operation

• 84-pin plastic leaded chip carrier
(PLCC)

DESCRIPTION
The VL86C010 Acorn RiSe Machine
(ARM) is a full 32-bit general-purpose
microprocessor designed using reduced
instruction set computer (RISC)
methodologies. The processor is
targeted for the microcomputer,
graphics, industrial and controller
markets for use in stand-alone or
embedded systems. Applications in
which the processor is useful include
laser printers, formatters, graphics
engines, Numerical Control machines,
or any other systems requiring fast real­
time response to external interrupt
sources and high processing through­
put.

The VL86C010 features a 32-bit data
bus, 27 registers of 32 bits: each, a
load-store architecture, a partially over­
lapping register set, 22.5 clocks worst­
case interrupt latency, conditional
instruction execution, a 26·bit linear
address space and an average instruc­
tion execution rate of from five-to-six
million instructions per second (MIPS).
Additionally, the processor: supports two
addressing modes: program counter
(PC) and base register relative modes.

The ability to do pre- arnd post-indexing
allows stacks and queues to be easily
implemented in softwa~e. All instruc­
tions are 32 bits long (aligned on word
boundaries), with register-to-register
operations executing in one cycle. The
two data types supported are 8-bit
bytes and 32-bit words ..

Using a load-store architecture simpli­
fies the execution unit of the processor,
because only a few instructions deal
directly with memory and the rest
operate register-to-register. Load and
store multiple register instructions
provide enhanced performance, making
context switches faster'and exploiting
sequential memory access modes.

The processor supports two types of
interrupts that differ in priority and
register usage. The lowest latency is
provided by the fast interrupt request
(FIRO) which is used primarily for I/O to
peripheral devices. The other interrupt
type (IRO) is used for interrupt routines
that do not demand low-latency service
or where the overhead of a full context
switch is small compared with the
interrupt process execution time.

PIN DIAGRAM ORDER INFORMATION
PLASTIC LEADED CHIP CARRIER (PLCC)

CPB
-M1
-MO

-TRAN -FIROABRT -opc 01 -BIW -CPI 030 028 CPA

VCC RES _IRO-MRE0-R/W 02 OBE 031 029 027 GNO

• 026
025
024
023
022

Part
Number

VL86C01 0-1 OOC

VL86C010-120C

Clock
Frequency Package

10 MHz
Pla:stic Leaded
Chip Carrier (PLCC)

12 MHz
Plastic Leaded
Chip Carrier (PLCC) SE~

ALE
A25
A24
A23
A22
A21
A20
A19

021 Note: Operating temperature range is O°C to +70°C.

VL86C010
TOP VIEW

020
019
018
017
016
015

M8 ~4

M7 ~3

M6 ~2

M5 ~1

M4 ~O

D9
M2 00

31 55 VCC

32333435363738394041 42434445464748495051 52 53
54

GNO

GNO A9 A7 A5 A3
A10 A8 A6 A4 A2 AO DO

2-3

E

_ VLSI TECHNOLOGY, INC.

BLOCK DIAGRAM

ADDRESS
BUS

32 - BIT
BARREL
SHIFTER

VL86C010

INCREMENTER BUS

INSTRUCTION
DECODE

AND
EXECUTION

PIPELINE
PIPELINE ____
DATAIN __

BUS

ADDRESS
INCRE­
MENT
LOGIC

REGISTER
FILE

PC BUS

READ PORT B BUS

BOOTH'S
MULTIPLIER

READ PORT A BUS

2-4

MEMORY
DATA

----" REGISTER
(READ)

MEMORY
DATA

REGISTER
(WRITE)

DATA
BUS

DATA
BUS

e VLSI TECHNOLOGY, INC.

SIGNAL DESCRIPTIONS
Signal
Name

01,02

-IRQ

-FIRQ

RES

ABRT

D31 - DO

DBE

-Bm

-M1, -MO

A25 - AO

ABE

ALE

Note:

Pin
Number

2,1

7

8

9

6

81-77,74-56
46-53

83

84

~3, 14

17 - 31,
34 - 44

45

16

Signal
Description

VL86C010

Processor Clock 01 and 02 Inputs - These two inputs provide the clock to the processor. In
order to minimize clock skew, these inputs are not buffered internally and therefore must
swing monotonically between GND and VCC without overshoot. The clocks must be non­
overlapping and should be driven directly by 74HCXX outputs. A typical circuit is shown on
the following page. The VLS6C11 0 (MEMC) will normally drive these inputs directly.

Interrupt Request Input - This is the normal interrupt request pin. It may be asserted asyn­
chronously to cause the processor to be interrupted. It is active low.

Fast Interrupt Request Input - This interrupt request line has a higher priority than IRQ, but
otherwise is the same. It too is active low.

Reset Input - This is the reset signal for the processor. While active, the processor executes
no-ops (with -MREQ and SEQ both held active) until the RES signal goes inactive, from
which point execution starts at the reset exception vector location. This signal is active high.

Abort Input - This signal can be used to abort the current bus cycle being executed by the
processor. Typically, it is connected to a memory management unit, such as the VL86C11 0,
to control accesses for protection purposes. The abort signal is active high and requires a
two clock minimum pulse toinsure the reset operation will occur.

Data31- DataO - This is the 32-bit bidirectional data bus used to transfer data to and from the
memory. These lines are three-state and active high.

Data Bus Enable Input - This is the! asynchronous three-state control signal for controlling
the drivers of the data bus. When asserted the data bus is enabled and when low the data
bus drivers are forced into the high·impedance state. During read operations the bus drivers
are in the high-impedance state as well. This signal is active high. Systems that do not
require the data bus for DMA or similar activities may tie this signal high.

Not Bytemord Output - This pipeline (note 1) signal indicates to the memory system that the
current memory cycle is a byte rather than a word operation. It is asserted during the last
portion of the cycle preceding the byte operation. When asserted (low) the memory system
should deal with bytes by decoding'the A1, AO address lines. It is active low.

Mode 1,0 Outputs - These two signals are used to indicate the current operating mode of
the processor. They can be used as address space modifiers to increase the address space,
or to assist a memory management unit in offering various protection modes. The lines are
active low and the inverse of bits 1,,0 of the processor status register.

::M1=.MQ.
o 0
o 1
1 0
1 1

MQDE
Supervisor
IRQ
FIRQ
USER

Address 25 - Address 0 Outputs - These are the 26 address lines. A 1 and AO are byte
addresses. During jumps and opcode fetches, the current mode value appears on these
signals. The address lines are three-state and active high. AO, A1 are valid hits for all
indexed transfers but are mode bits~

Address Bus Enable Input - This is the asynchronous three-state control signal for
controlling the drivers of the address bus. When asserted, the address bus is enabled. The
signal is active high.

Address Latch Enable Input - This signal is used to control internal transparent latches on
the address outputs. When ALE is high the address outputs change during 02 to the value
required for the next cycle. Direct interfacing to ROMs requires address lines to be stable
until the end of 02. Holding ALE low until the end of 02 will latch the address outputs for
ROM cyclas. Systems that do not directly interface to ROMs may tie ALE high.

1. Pipeline signals are asserted during the last portion of the cycle preceding the cycle for which they will be used.

2-5

I

8 VLSI TECHNOLOGY, INC.

VL86C010

SIGNAL DESCRIPTIONS (Cant.)

Signal Pin
Name Number

Signal
Description

-RNJ

-MREQ

-TRAN

-OPC

SEQ

-CPI

CPS

CPA

3

5

10

4

15

82

12

76

Not ReadlWrite Output - This is the read/write signal from the processor. When asserted (low), it
indicates that the processor is performing a read operation. When negated (high), the processor is
performing a write operation. This signal is a pipeline (note 1) signal and is active low.

Next Memory Cycle Start Output - This is an pipeline (note 1) indicator that is asserted before the
processor will start a memory cycle during the next clock phase. This signal is active low. During the
reset condition this signal is held active as the processor executes no-ops.

Translate Enable Output - This signal, when asserted by the processor tells a memory management
unit that translation should be done on the current address. When negated, it indicates that the
address should pass through untranslated. This signal is active low.

Instruction Fetch Output - This pipeline (note 1) signal when asserted indicates that the current bus
cycle is an instruction fetch. This signal is active low.

Next Address Sequential Output - This pipeline (note 1) signal is asserted when the processor will
generate a sequential address during the next memory cycle. It may be used to control fast memory
access modes. This signal is active high. During the reset condition this signal is held active as the
processor executes no-ops.

Coprocessor Instruction (CMOS level output) - When the VL86C010 executes a coprocessor instruc­
tion, this output is driven low and the processor will wait for a response from an attached coprocessor
device. The action taken is dependent upon the coprocessor response signalled on the CPA and CPS
inputs.

Coprocessor Susy (TTL level input)- An attached coprocessor that is capable of performing the
operation which the VL86C010 is requesting (by asserting the -CPI), but cannot begin immediately,
should indicate the busy condition by driving this signal high. When the coprocessor is ready to start it
should bring the CPS signal low. The VL86C010 samples this signal on the falling edge of the 01
clock while the -CPI is active (low).

Coprocessor Absent (TIL level input) - A coprocessor capable of executing the operation currently
requested by the VL86C010 (-CPI active) should bring the CPA low immediately. If the CPA is high
on the falling edge of the 01 clock, the processor will abort the coprocessor handshake and take the
undefined instruction trap. If the CPA is low and remains low during the -CPI active time, then the
VL86C010 will busy-wait until the CPS signal becomes low and complete the coprocessor instruction.

FUNCTIONAL PIN DIAGRAM TYPICAL CLOCK
GENERATOR

POWER {

CLOCK {
INPUTS

INTERRUP!f
CONTROL~

SYSTEM {
CONTROL

COPROCESSOR{
INTERFACE

....

VCC(3)

GND(3) ..

01 ..
02

-IRQ ..
-FIRQ VL86C010

RES

ABRT ...

CPA ..
CPB

-CPI

~

ADDRESS BUS
A25 -AO

DATA BUS
D31 - DO

-M1 ..
-MO . } PROCESSOR

MODE

.. DBE
ABE

.... ALE
-B/W .
-R/W

-MREQ ..

-TRAN ...
-OPC ...
SEQ ...

2-6

BUS
CONTROL

74AC02

CLOCK t::>-_--~

x>---t>02

74AC04 74AC02

e VLSI TECHNOLOGY, INC.

FUNCTIONAL DESCRIPTION
The philosophy of RISC processor
design is based on the idea that some
processing functions can be moved
from hardware to software with the
result that the simplified hardware can
actually execute functions in software
faster than with complicated hardware.
Analysis done several years ago at
major research centers has shown that
a processor and compiler combination
can replace the traditional processor­
alone architectures. A historical fact of
the 16-bit processor world is that after
chip designers spent many man-months
figuring out how to implement univer­
sally acceptable complicated instruc­
tions to do things, few compiler writers
actually took advantage of these
complex instructions. Most compilers
only use a fraction of the instructions
and addressing modes of traditional
computer architectures.

The customers pay for the unused
silicon required to implement these
instructions. They pay for the inefficient
utilization in both cost of the processor
and in lower performance. The silicon
spent for complex instruction decoding
and micro-sequencing could have been
used for additional pipelining, larger
register sets, or other special-purpose
hardware that can be used efficiently. If
the addition of a new instruction causes
all instructions to execute 10% slower
due to internal processor delays, then
the new instruction had better be used
more than 10% of the time, otherwise,
overall performance has been sacri­
ficed. This makes an argument for
simple performance oriented architec­
tures that are more dependent on
compiler technology to implement less
frequently used instructions.

COMPARISON OF PROCESSORS
Inherent in the concept of RISC proces­
sors is the notion that more instructions
are required to implement the same
functions that could be done by fewer
instructions with a complex instruction
set computer (CISC) processor. In
most cases even when more instruc­
tions are needed by RISC processors,
the function can still be performed
quicker on RISC processors than CISC
processors. This is causing the
industry to doubt the Million Instruction
Per Second (MIPS) ratings of RISC
processors, for good reason. MIPS are

often used exclusively as a means of
benchmarking performance. A better
measure of performance is'to time
actual execution of real-world problems,
independent of the number of instruc­
tions required to implement the func­
tion.

Benchmarks such as Dhrystone 1.1
attempt to approximate real conditions.
Measurement is based in Dhrystone
loops per second. The VL86C01 0
delivers about 740 loops per second
using DRAM, and about 1000 per
second using SRAM, per clock mega­
hertz.

An important parameter to keep
constant when benchmarking proces­
sors is the memory accessitimes, since
not aI/ processors will meet perform­
ance claims when working .with com­
modity memories.

Another traditional measure of perform­
ance in the microprocessor world is the
clock frequency of the processor.
Faster is better has been the rule of
thumb, but what is actually the most
important consideration is the average
number of bus cycles per instruction. A
processor with a low clock frequency
and a low number of bus cycles per
instruction can actually outperform a
processor with a high clock frequency
and a higher number of bus clock
cycles per instruction. Thei best choice

FIGURE 1. VL86C010 REGISTER MODEL

VL86C010

of processors is one that benchmarks
high while using a relatively low clock
frequency and a small number of clocks
per instruction executed. The
VL86C010 possesses these character­
istics, giving it the best future evolution
path to exploit advances in process
technology.

PROGRAMMING MODEL
The VL86C010 contains a large,
partially overlapping set of 27 32-bit
registers, although the programmer can
access only 16 registers in any mode of
operation. Fifteen of the registers are
general purpose; with the remaining 12
dedicated to functions such as User
Mode, FIRQ Mode, IRQ Mode, Supervi­
sor Mode and the Prognam Counter
(PC)/Processor Status Register (PSR).
Figure 1 shows the register model of
the VL86C010. Registers RO-to-R13
are accessible from thel user mode for
any purpose. The fifteenth register,
user-mode return-link register, is
specific to the user mode. Its contents
are mapped with those of other return­
link registers as the mode is changed.
The return-link register is used by the
Branch-and-Link instruction in a
procedure call sequence but may be
used as a general-purpose register at
other times. The least significant two
bits of the processor status word (PSW)
define the current mode! of operation.

31 8 7 0
I~ __ ~I ________ ,::::JRO

= I......------------------~ ~ ~jl
""--_________________ -I-__ -, __J (LINK)

~{EII---------------------,~--~ ~l
(LINK)

IRQ I ::=J R13
MODE ===:1 R14

(LINK)

I......-_________________ ~---::=J R13

~'tfoE ===:12 1 0 ~1~K)
31302928272625
INlzlclviliFI PROGRAM COUNTER J.M:ilMQI R15

PSR/PC

2-7

E

e VLSI TECHNOLOGY, INC.

Seven registers are dedicated to the
FIRQ mode and overlie user-mode
registers R8-to-R14 when the fast
interrupt request is serviced. The
registers R8 FIRQ-to-R13 FIRQ are
local to the fast interrupt service routine
and are used instead of the user-mode
registers R8-R13. Register R14 FIRQ
holds the address used to restart the
interrupted program instead of pushing
it onto a stack at the expense of another
memory cycle. Using a link-register
helps provide very fast servicing of VO
related interrupts without disturbing the
contents of the general-purpose register
set although the FIRQ routine can
access the RO-to-R7 user-mode
registers if desired. The FIRQ mode is
used typically for very short interrupt
service routines that might fetch and
store characters in a disk-or-tape­
controller application.

The next two registers are dedicated to
the IRQ mode and overlie user mode
registers R13 and R14 when the IRQ is
serviced. Once again, R14 IRQ is the
return link register that holds the restart
address and R13 IRQ is general­
purpose and dedicated to the IRQ
mode. This mode is used when the
interrupt service routine will be lengthy
and the overhead of saving and
reloading the register set will not be a
significant portion of the overall execu­
tiontime.

Two registers are dedicated to the
supervisor mode and overlie user mode
registers R13 and R14 when a supervi­
sor mode switch is made using a
software interrupt (SWI) instruction.
Operation of these two registers is the
same as previously discussed.

The last register (R15) contains the
processor status word and program
counter and is shared by all modes of
operation. The upper six bits are
processor status, the next 24 bits are
the program counter (word address),
and the last two indicate the mode.

PROCESSOR STATUS REGISTER
Like most 32-bit processors, the
VL86C010 makes a distinction between
user and supervisor modes: the user
executes at the lowest privilege level,
and the supervisor and interrupts
execute at higher levels of privilege.
Figure 2 shows the processor status
word containing the control line states
associated with each mode.

VL86C010
FIGURE 2. PROCESSOR STATUS REGISTER
31302928272625 2 1 0

IN I z I ru' Fl' ~L-p-c-_-24-B-IT-S-Y-IE-~-:-:-:-R:-:_CM:.;;.O-O;:';U_D::":~-~:~~R~~~~~~~~~A:D:..=ID:..:.;I:=!,:::;:::...~.:..:.IR'::'A::":N=SL:::'A':":'T.:;:IO:;,:.;N:...-.
ADDRESS SPACE 0 USER FORCED

FAST INTERRUPT MASK' 1 FAST IRO UNDER PROGRAM CONTROL
NORMAL INTERRUPT MASK' 2 NORMAL IRO UNDER PROGRAM CONTROL
OVERFLOW 3 SUPERVISOR UNDER PROGRAM CONTROL

CARRY, -BORROW, ROTATE EXTEND
L--___ ZERO

'----- NEGATIVE, SIGNED LESS THAN

Translate is a control signal provided by
the processor for control of an external
memory management unit. The
translate line is enabled in the user
mode and disabled in the supervisor,
fast interrupt and normal interrupt
modes, since all modes except for the
user mode are expected to be running
secure code. Translated fetches can be
made from the non-user modes by
setting an optional bit in the load/store
instructions.

The processor status register (PSR)
contains the program counter, mode
control bits, and condition codes as
shown in Figure 2. The bits marked
with an asterisk are alterable only from
non-user modes. If the user tries to
write to these bits, they remain un­
changed and the processor continues
operation in the user mode. In other
words, this is not a trap condition. The
flags in the processor status register are
the standard Negative, Zero, Carry, and
Overflow. The 16 allowable combina­
tions of the condition code bits are
shown in Table 1. These combinations
are used in all instruction executions
since a conditional branch is nothing
more than a jump instruction with
conditional execution.

EXCEPTIONS
The VL86C010 supports a partially
overlapping register set so that when
interrupts are taken, the contents of the
register array do not have to be saved
before new operations can begin.
Improved response time is accom­
plished, in the case of the fast interrupt,
by dedicating six general-purpose
registers, in addition to a return-link
register, that are only accessible in the
FIRQ mode. These dedicated registers
can contain all the pointers and byte­
counts for simple 1/0 service routines
thus incurring no overhead when

2-8

• -- ACCESS FROM NON-USER
MODES ONLY

context switching between processing
and servicing interrupts at high rates.
The other modes (IRQ and SUP) each
have one general-purpose and one
return address (link) register dedicated
to them. The general-purpose register
is ideally suited for implementing a local
stack for each mode. The need for '
dedicated registers in these modes is
not as great since the time spent in an
interrupt or supervisor routine is on the
average much greater than the time
spent in transition between the routines.
The working registers can be saved and
restored from stacks without significant
overhead.

The interrupt latency of the VL86C01 0
is very short because the instruction
execution time is typically two clocks,
with a maximum of 18 clocks (for a
load-multiple instruction, loading 16
registers). Once the processor recog­
nizes an interrupt is pending, the time to
begin processing is 4.5 making a total
worst-case interrupt latency of 22.5
clocks. Systems supporting virtual
memory should add three clocks as the
address exception and data abort
exceptions are higher priority and must
be entered first to prevent losing status.
In addition to interrupts, six other types
of exceptions are supported by the
processor. These are address excep­
tions, data-fetch cycle aborts, instruc­
tion-fetch cycle aborts, software
interrupts, undefined instruction traps
and reset.

The VL86C01 0 supports a 26-bit linear
address space allowing a total of 64
Mbytes of physical memory. Data refer­
ences outside the range O-to-
3FF,FFFFH cause an address excep­
tion trap which ca.n be used to detect a
run-away program. The program
counter will wrap around to OOOOH
without causing an address exception
condition.

e VLSI TECHNOLOGY, INC.

TABLE 1. INSTRUCTION CONDITION CODES

Encoded
Condition Value

AL. E

CC 3

CS 2

EQ 0

GE A

GT C

HI 8

LE 0

LS 9

LT B

MI 4

NE 1

NV F

PL 5

VC 7

VS 6

Operation

Always

Carry Clear/Unsigned Lower Than

Carry Set/Unsigned Higher Or Same

Equal (Z Set)

Greater Than Or Equal (N • V) + (-N • -Yo)

Greater (((N • V) + (- N • -V)) • -Z)

Higher Unsigned (C • -Z)

Less Than Or Equal ((N' -V) + (-N· V», + Z)

Lower Or Same Unsigned (-C + Z)

Less Than (N • -V) + (-N • V»

Negative (N)

Not Equal (-Z)

Never

Positive (-N)

Overflow Clear

Overflow Set

next address. Reset is treated similarly
to the other traps and will start the
processor from a known address.
When the reset condition is recognized
the currently executing instruction will
terminate abnormally, the processor will
enter the supervisor mode; disable both
the FIRQ and IRQ interrupts, and begin
execution at address OOOOH. While the
reset condition remains, the processor
will execute dummy instruction fetches

VL86C010
with -MREQ and SEQ'heid active.

The processor exception vector map is
illustrated in Table 2. lhe exceptions
are prioritized reset (highest), address
exception, data abort, FIRQ, IRQ,
prefetch abort, undefined instruction,
and software interrupt (lowest). These
vector addresses normally will contain a
branch instruction to the associated I
service routine except for the FIRQ
entry. In order to further reduce
latency, the FIRQ servIce routine may
begin at address 001 CH if the software
designer so chooses.

Whenever the processor enters the
supervisor mode, whether from an SWI,
address exception, undefined
instruction trap, prefetch or data abort,
the IRQ is disabled and the FIRQ
unchanged.

INSTRUCTION SET
The VL86C01 0 supports five basic
types of instructions, with several
options available to the! programmer.
These instruction types' are: data
processing, data transfer, block data
transfer, branch, and software interrupt.
All instructions contain a 4-bit condi­
tional execution field (shown in Table 1)
that can cause an instrUJction to be
skipped if the condition specified is not
true. The execution time for a skipped
instruction is one sequential cycle
(100 ns for a 10 MHz processor).

Data processing instructions operate
only on the internal regi'ster file, and
each has three operand references: a
destination and two source fields. The
destination (Rd) can be' any of the
registers including the processor status

If the abort signal is asserted by the
memory management unit during a data
fetch the processor will abort data
transfer instructions (LOR, STR) as if
they had never been executed. If the
instruction was a block data transfer
(LDM, STM) the processor will allow the
instruction to complete. If the write back
control bit in these instructions is set,
the base address will be updated even if
it would have been overwritten during
the instruction execution. An example
of this would be execution of a block
data transfer instruction with the base
register in the list of registers to be
overwritten.

TABLE 2. EXCEPTION VECTOR MAP

Software interrupt Instructions are used
to change from user mode to supervisor
mode. When an SWI is encountered
the processor will save the current
program counter (R15) into R14 SUP,
set the rnode bits to the supervisor
mode, and start execution at the
software interrupt vector address. An
undefined instruction will cause a trap
similar to the execution of a software
interrupt except that the Undefined
Instruction Vector will be used as the

Address (Hex)

000 0000

000 0004

000 0008

000 OOOC

000 0010

000 0014

000 0018

000 001C

Function Priority Level

Reset a

Undefined Instruction Trap 6

Software Interrupt 7

Abort (Prefetch) 5

Abort (Data) 2

Address Exception 1

Normal Interrupt (IRQ) 4

Fast Interrupt (FIRQ) 3

2-9

e VLSI TECHNOLOGY, INC.

TABLE 3. DATA PROCESSING INSTRUCTIONS

Flags
Instruction Function Operation Affected

ADC Add With Carry Rd:-Rn+Shift(S2)+C N,Z,C,V

ADD Add Rd:-Rn+Shift(S2) N,Z,C,V

AND And Rd:- Rn • Shift(S2) N,Z,C

BIC Bit Clear Rd:- Rn • -Shift(S2) N,Z,C

CMN Compare Negative Shift(S2)+Rn N,Z,C,V

CMP Compare Rn-Shift(S2) N,Z,C,V

EOR Exclusive OR Rd:-RnEe Shift(S2) N,Z,C

MLA Multiply with Accumulate Rd:-Rm • Rs + Rd N,Z,C,V

MOV Move Rd:-Shift(S2) N,Z,C

MUL Multiply Rd:-Rm· Rs N,Z,C,V

MVN Move Negative Rd:- -Shift(S2) N,Z,C

ORR Inclusive OR Rd :-Rn+Shift(S2) N,Z,C

RSB Reverse Subtract Rd :-Shift(S2)-Rn N,Z,C,V

Reverse Subtract
RSC With Carry Rd:-Shift(S2)-Rn-1 +C N,Z,C,V

SBC Subtract With Carry Rd:-Rn-Shift(S2)-1 +C N,Z,C,V

SUB Subtract Rd:-Rn-Shift(S2) N,Z,C,V

TEO Test For Equality Rn Ee Shift(S2) N,Z,C

TST Test Masked Rn • Shift(S2) N,Z,C

TABLE 4. MEMORY ADDRESSING MODES

Addressing Mode Operation Syntax

PC Relative EA· - PC +/- Offset (12 Bits) LABEL

Base Register Offset EA* - Rn
With Post-Increment Rn +/- Offset _____ Rn [Rn] ,Off

Base Register Offset EA- - Rn +/- Offset (12 Bits)
With Pre-Increment·· Rn +/- Offset _____ Rn (Rn,Off)

Base Register Index EA- - Rn
With Post-Increment Rn+/-Rm~ Rn [Rn),Rm

Base Register Index EA· - Rn +/- Rm
With Pre-Increment·· Rn+/-Rm~ Rn [Rn,Rm)

• Effective Address
•• Program control of index register update; i.e., Rn may be left unchanged.

2-10

VL86C010
register, although some bits in R15 can
only be changed in particular modes.
The source operands can have two
forms: both can be registers (Rm and
Rn) or a register (Rn) and an a-bit
immediate value. Both forms of
operand specification provide for the
optional shifting of one of the source
values using the on-board barrel shifter.
If both operands are registers, the Rm
can be shifted. For the other case, it is
the immediate value that can pass
through the shifter. Another field in
these instructions allows for the optional
updating of the condition codes as a
result of execution of the operation.
Table 3 shows the possible data proc­
essing operations and the status flags
affected.

Data transfer instructions are used to
move data between memory and the
register file (load), or vice-versa (store).
The effective address is calculated
using the contents of the source
register (Rn) plus an offset of either a
12-bit immediate value or the contents
of another register (Rm). When the
offset is a register it can optionally be
shifted before the address calculation is
made. Table 4 shows the addressing
modes supported and their correspond­
ing assembler syntax. The offset may
be added to, or subtracted from the
index register Rn. Indexing can be
either pre- or post- depending on the
desired addressing mode. In the post­
indexed mode the transfer is performed
using the contents of the index register
as the effective address and the index
register is modified by the offset and re­
written. In the pre-indexed mode the
effective address is the index register
modified in the appropriate manner by
the offset. The modified index register
can be written back to Rn if the write
back bit is set or left unchanged if
desired. When a register is used as the
offset, it can be pre-scaled by the barrel
shifter in a similar manner as with data
processing instructions.

Data transfer instructions can manipu­
late bytes or words in memory. When a
byte is read from the memory, it is
placed in the low-order eight bits of the
register and zero-extended to a full
word. For byte writes the lower eight
bits of the register are written to the
byte address referenced and the other
bytes within the word are unaffected.

e VLSI TECHNOLOGY, INC.

Words are written into the address
space as least-significant byte first.
That is, the byte at the lowest address
will be found right justified in a register.

The VL8SC010 supports both logical
and physical address spaces at a lower
level in hardware than other processors.
Data transfer instructions contain a
translate enable bit that allows non-user
mode programs to select the logical or
physical address space as desired.
The bit from the instruction is placed on
the - TRAN pin of the processor to
signal an external memory manage­
ment unit (MMU) whether to translate or
pass the address from the processor
bus to the memory. This allows
programs executing in the supervisor or
interrupt modes to have easy access to
user memory areas for page fault
correction or to have bounds checking
performed on dynamic data structures
in the system space by the MMU. In
the user mode, addresses are always
translated by the MMU if it is imple­
mented in the system.

The block data transfer instructions
allow multiple registers to be moved in a
single instruction. The instruction has a
field containing a bit for each of the
sixteen registers visible in the current

mode. Bit 0 corresponds to RO, and bit
15 corresponds to R15, the program
counter. A bit set in a particular position
means that the corresponding register
will be affected by the transfer. The
registers are always saved from lowest
to highest, and RO will always appear at
a lower address than R1. The ability to
pre- or post-increment or decrement
allows both stacks and queues to be
implemented efficiently with any
convention chosen by the programmer.

The branch instruction has, two forms,
branch and branch-with-link. The
branch instruction causes execution to
start at the current program counter
plus a 24-bit offset contained in the in­
struction. The offset is left"shifted by
two bits (forming a 26-bit address)
before it is added to the prcgram
counter. Since all instructions are word­
aligned, a branch can reach any
location in the address space. The
branch-with-link instruction: copies the
program counter and processor status
register into R14 prior to branching to
the new address. Returning from the
branch-with-link simply involves
reloading the program counter from R14
(MOV PC,R14). The PSRcan option­
ally be restored from R14 (MOVS
PC,R14).

TABLE 5. INSTRUCTION EXECUTION TIMES

Base Execution Adjustment for Adjustment for PC
Operation Time Source Shift Modification

RS·# RD 1S 1 S for Shift(RS) 1 S + 1 N if PC Modified

RS· RS+ RD 1S 1 S for Shift(RS) 1 S + 1 N if PC Modified

LDR 2S+ 1N 1 S + 1 N if PC Modified

STR 2N

LDM (n* + 1)S + 1N 1 S + 1 N if PC Modified

STM (n* - 1)S + 2N

BR 2S+ 1N

BR & LINK 2S + 1N

SWI 2S + 1N

MUL. MLA 16S**

* - The number of registers transfered in a Load/Store Multiple instruction. If the
condition field in an instruction is not true, the instruction is skipped and the execu­
tion time is 1 S cycle.
** - This is the worst case time. The actual time is a function of the valllle in the Rs
register.

2-11

VL86C010

The software interrupt instruction format
is used primarily for supervisor service
calls. When this instruction is executed,
the PC and PSR are saved in R14 SUP.
The PC is then set to the SWI vector
location and the processor placed in the
supervisor mode.

Instructions operate at speeds depend­
ent upon the options selected. Table 5
shows the instruction types, execution
rates and adjustments for operand
shifting or affecting thelprogram
counter. The table is e~pressed in
terms of Nand S cycles representing
Non-sequential and Sequential cycles
respectively. The processor is able to
take advantage of memories that have
faster access times when accessed
sequentially in the nibble or column
mode. These faster cycles are desig­
nated as S-cycles, while the N-cycles
typically take twice as long. If faster
static memory is used, the Nand S
cycles would be equal.

The VL86C01 0 is offered in an 84-pin
Plastic Leaded Chip Carrier (PLCC)
package for lower cost applications.
The PLCC package can be either
surface mounted directly onto the board
or socketed with currently available
standard sockets depending on
manufacturing requirements and/or ca­
pabilities.

S implies a sequential cycle.

N implies a non sequential cycle.

_ VLSI TECHNOLOGY, INC.

VL86C010
EXAMPLES OF THE INSTRUCTION SET
The following examples illustrate methods by which basic processor instructions can be combined to yield efficient code. None of
the methods saves a large amount of execution time, although they all save some, mostly they result in more compact code.

EXAMPLE 1 • USING THE CONDITIONAL EXECUT10N FOR THE LOGICAL·OR FUNCT10N

CMP
BEQ
CMP
BEQ

Rn, p
Label
Rm,q
Label

By using conditional execution, the routine compresses to:

CMP
CMPNE
BEQ

Rn, p
Rm,q
Label

EXAMPLE 2 • ABSOLUTE VALUE

TEQ Rn,O
RSBMI Rn, Rn, 0

EXAMPLE 3 • UNSIGNED 32·BIT MULTIPLY

MOV Rm,O
LOOP MOVS Ra, Ra LSR 1

ADDCS Rm,Rm,Rb
ADD Rb, Rb, Rb

; IF Rn - p OR Rm = q THEN
GOTO Label

; if Rn not equal p, try other test

; check sign
; and 2's complement if required

; Enter with numbers in Ra, Rb - product contained in Rm
; init result register
; stops when Ra becomes zero
; Rm - Ra· Rb

BNE LOOP ; (Ra ,. 0, Rb is altered)

EXAMPLE 4· MULTIPLICATION BY 4,5, OR 6 AT RUN TIME

MOV Rc, Ra LSL 2 ; multiply by 4
CMP Rb, 5 ; test multiplier value
ADDCS Rc, Rc, Ra ; complete multiply by 5
ADDHI Rc, Rc, Ra ; complete multiply by 6

EXAMPLE 5· MULTIPLICATION BY CONSTANT (2"N)+1 USING THE BARREL SHIFTER (3,5,9,17, ...)

ADD Ra, Ra LSL n

EXAMPLE 6 • MULTIPLICATION BY CONSTANT (2"N)· 1 (3, 7, 15, •..)

RSB Ra, Ra, Ra LSL n

EXAMPLE 7 • MULTIPLICATION BY 6

ADD Ra, Ra, Ra LSL 1 ; multiply by 3
MOV Ra, Ra LSL 1 ; and then by 2

EXAMPLE 8 • MULTIPLY BY 10 AND ADD EXTRA NUMBER (DECIMAL TO BINARY CONVERSION)

ADD Ra, Ra, Ra LSL 2
ADD Ra, Rc, Ra LSL 1

EXAMPLE 9 • DIVISION AND REMAINDER

; enter with numbers in Ra and Rb
MOV

DIV1 CMP
MOVCC
MOVCC
BCC
MOV

DIV2 CMP
SUBCS
ADDCS
MOVS
MOVNE
BNE

Rcnt, 1
Rb,Ra
Rb, Rb LSL 1
Rcnt, Rcnt LSL 1
DIV1
Rc,O
Ra,Rb
Ra,Ra,Rb
Rc, Rc, Rcnt
Rcnt, Rcnt LSR 1
Rb, Rb LSR 1
DIV2

; multiply by 5
; multiply by 2 and add in next digit

; bit to control the division
; move Rb until greater than Ra
; result in Rc
; remainder in Ra

; test for possible subtraction
; subtract if valid
; put relevant bits in result
; shift control bit
; halve unless finished

2-12

_ VLSI TECHNOLOGY. INC.

INSTRUCTION CYCLE OPERATIONS
In the following tables -MREQ and SEQ BRANCH AND BRANCH WITH LINK
(which are pipelined up to one cycle A branch instruction calculates the
ahead of the cycle to which they apply) branch destination in the first cycle,
are shown in the cycle in which they while performing a prefetch from the
appear, so they predict the address of current PC. This prefetch is done in all
the next cycle. The address bus value, cases, since by the time the decision to
-BNV, --R/W, and -OPC (which appear take the branch has been reached it is
up to half a cycle ahead) are shown in already too late to prevent the prefetch.

the cycle to which they apply. During the second cycle a fetch is

performed from the branch destination,

TABLE 6. BRANCH AND BRANCH WITH LINK
Cycle Address -BIW -RlW Data SEQ -MREQ -OPC

1 PC+8 1 0 (PC+8) 0 0 0

2 ALU 1 0 (ALU) 1 0 0

3 ALU+4 1 0 (ALU+4) 1 0 0

VL86C010

and the return address Is stored in
register 14 if the link bit is set.

The third cycle performs a fetch from
the destination + 4, refilling the instruc­
tion pipeline, and if the branch is with
link, R14 is modified (4 IS subtracted
from it) to simplify return from SUB PC,
R14, #4 to MOV PC,R14. This makes
the STM .. (R14) LDM .. (PC) type of
subroutine work correctly.

(PC is the address of the branch instruction, ALU is an address calculated by the processor, (ALU) is the contents of that
address, etc.)

DATA OPERATIONS
A data operation executes in a single
datapath cycle except where the shift is
determined by the contents of a
register. A register is read onto the A
Bus, and a second register or the
immediate field onto the B Bus. The
ALU combines the A Bus source and
the shifted B Bus source according to
the operation specified in the instruc­
tion, and the result (when required) is

TABLE 7. DATA OPERATIONS

written to the destination register.
(Compares and tests do n(l)t produce
results, only the ALU status flags are
changed.)

An instruction prefetch occurs at the
same time as the above operation, and
the program counter is incremented.

When the shift length is specified by a
register, an additional datapath cycle

Type Cycle Address -81W -R/W Data SEQ -MREQ -OPC

1 PC+8 1
Normal

PC+12

0 (PC+8) 1 0 0

1 PC+8 1 0 (PC+8) 0 0 0

Dest=PG 2 ALU 1 0 (ALU) 1 0 0

3 ALU+4 1 0 (ALU+4) 1 0 0

ALU+8

1 PC+8 1 0 (PC+8) 0 1 0

Shift (RS) 2 PC+12 1 0 - 1 0 1

PC+12

1 PC+8 1 0 (PC+8) 0 1 0

2 PC+12 1 0 - 0 0 1
Shift (RS),

3 ALU 1 0 (ALU) 1 0 0 Dest=PC
4 ALU+4 1 0 (ALU+4) 1 0 0

ALU+8

2-13

occurs before the above operation to
copy the bottom eight bits of that
register into a holding latch in the barrel
shifter. The instruction !prefetch will
occur during this first cycle, and the
operation cycle will be i:nternal (Le., will
not request memory), This internal
cycle is configured to merge with the
next cycle into a single memory N-cycle
when the VL86C11 0 is .used as the
memory interface.

The PC may be any (or· all) of the
register operands. When read onto the
A Bus it appears without the PSR bits,
on the B Bus it appears! with them.
Neither will affect external bus activity.
When it is the destination, however,
external bus activity may be affected. If
the result is written to the PC, the
contents of the instruction pipeline are
invalidated, and the address for the next
instruction prefetch is taken from the
ALU rather than the address incremen­
ter. The instruction pipeline is refilled
before any further execution takes
place, and during this time exceptions
are locked out.

e VLSI TECHNOLOGY, INC.

INSTRUCTION CYCLE OPERATIONS (Cont.)
MULTIPLY AND MULTIPLY ACCUMULATE
The multiply instructions make use of which either transmits it or produces
special hardware which implements a zero (according to whether the instruc-
two-bit Booth's algorithm with early ter- tion is MLA or MUL) to initialize the
mination. During the first cycle the ac- destination register. During the same
cumulate register is brought to the ALU,

TABLE 8. MULTIPLY AND MULTIPLY ACCUMULATE
Type Cycle Address -8fW -R/W Data SEQ -MREQ -OPC

1 PC+8 1 0 (PC+8) 0 1

(Rs) =0,1 2 PC+12 1 0 - 1 0

PC+12

1 PC+8 1 0 (PC+8) 0 1

2 PC+12 1 0 - 0 1

(Rs) > 1
PC+12 1 0 - 0 1

M PC+12 1 0 - 0 1

M+1 PC+12 1 0 - 1 0

PC+12

(M is the number cycles required by the Booth's algorithm; see the section on
instruction speeds.)

0

1

0

1

1

1

1

LOAD REGISTER TABLE 9. LOAD REGISTER
The first cycle of a load register
instruction performs the address
calculation. The data is fetched from
memory during the second cycle, and
the base register modification is
performed during this cycle (if required).
During the third cycle, the data is
transferred to the destination register
and external memory is unused. This
third cycle may normally be merged
with the following prefetch to form one
memory N-cycle.

Either the base or the destination (or
both) may be the PC, and the prefetch
sequence will be changed if the PC is
affected by the instruction.

The data fetch may abort, and in this
case, the base and destination modifi­
cations are prevented.

Type

Normal

Dest. PC

Base- PC,
Write back,
Dest#PC

Base=PC,
Write back
Dest-PC

Cycle

1

2

3

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Address -B/W -R/W

PC+8 1 0

ALU BIW 0

PC+12 1 0

PC+12

PC+8 1 0

ALU BIW 0

PC+12 1 0

(ALU) 1 0

(ALU)+4 1 0

(ALU)+8

PC+8 1 0

ALU 81W 0

PC' 1 0

PC' 1 0

PC'+4 1 0

PC'+8

PC+8 1 0

ALU BIW 0

PC' 1 0

(ALU) 1 0

(ALU)+4 1 0

(ALU)+8

VL86C010

cycle one of the operands is loaded into
the Booth's shifter via the A Bus.

The datapath then cycles, adding the
second operand to, subtracting it from,
or just transmitting, the result register.
The second operand is shifted in the
Nth cycle by 2N or 2N + 1 bit, under
control of the Booth's logic. The first
operand is shifted right two bits per
cycle, and when it is zero the instruction
terminates (possibly after an additional
cycle to clear a pending borrow). All
cycles except the first are internal.

If the destination is the PC, all writing to
it is prevented. The instruction will
proceed as normal except that the PC
will be unaffected. (If the S bit is set the
PSR flags will be meaningless).

Data SEQ -MREQ ~PC -TRAN

(PC+8) 0 0 0

(ALU) 0 1 1 t

- 1 0 1

(PC+8) 0 0 0

(ALU) 0 1 1 t

- 0 0 1

((ALU)) 1 0 0

((ALU)+4) 1 0 0

(PC+8) 0 0 0

(ALU) 0 1 1 t

- 0 0 1

(PC') 1 0 0

(PC'+4) 1 0 0

(PC+8) 0 0 0

(ALU) 0 1 1 t

- 0 0 1

((ALU)) 1 0 0

((ALU)+4) 1 0 0

(PC' is the PC value modified by write back; t shows the cycle where the force
translation option in the instruction may be used.)

2-14

_ VLSI TECHNOLOGY, INC

INSTRUCTION CYCLE OPERATIONS (Cont.)

STORE REGISTER TABLE 10. STORE REGISTER
The first cycle of a store register is
similar to the first cycle of load register.
During the second cycle, the base
modification is performed and at the
same time, the data is written to mem­
ory. There is no third cycle.

The PC will only be modified if it is the
base and write back occurs. A data
abort prevents the base write back.

LOAD MULTIPLE REGISTERS
The first cycle of LDM is used to
calculate the address of the first word to
be transferred while performing a
prefetch from memory. The second
cycle fatches the first word and per­
forms the base modification. During the
third cycle, the first word is moved to
the appropriate destination register
while the second word is fetched from
memory, and the modified base is
moved to the ALU A Bus input latch for
holding in case it is needed to patch up
after an abort. The third cycle is re­
peated for subsequent fetches until the
last data word has been accessed, then
the final (internal) cycle moves the last
word to its destination register. The last
cycle may be merged with the next
instruction prefetch to form a single
memory N-cycle.

If an abort occurs, the instruction
continues to completion, but all register
writing after the abort is disabled. The
final cycle is altered to restore the
modified base register (which may have
been overwritten by the load activity
before the abort occurred). If the PC is
the base, write back is prevented.

When the PC is in the list of registers to
be loaded, and assuming that no abort
takes place, the current instruction
pipeline must be invalidated. Note that
the PC is always the last register to be
loaded, so an abort at any point will
prevent the PC from being overwritten.

Type Cycle Address -BIW -RIW Data SEQ

1 PC+8 1 0 (PC+8) 0
Normal 2 ALU BN! 1 RD 0

IPC+12

1 IPC+8 1 0 (PC+8) 0

Base-PC, 2 ALU BN! 1 RD 0
Write back,

3 IPC' 1 0 (PC') 1 Dest. PC
4 IPC'+4 1 0 (PC'+4) 1

IPC'+8

TABLE 11. LOAD; MULTIPLE REGISTERS
Type Cycle Address -BIW -RIW Data

1 PC+8 1 0 (PC+8)

One 2 ALU 1 0 ALU

Register 3 PC+12 1 0 -
PC+12

1 PC+8 1 0 (PC+8)

2 ALU 1 0 PC'
One
Register, 3 PC+12 1 0 -
Dest. PC 4 PC' 1 0 (PC')

5 PC'+4 1 0 (PC'+4)

PC'+8

1 PC+8 1 0 (PC+8)

2 ALU 1 0 (ALU)

N Registers, ALU+. 1 0 (ALU+.)
(N)1)

N ALU+. 1 0 (ALU+.)

N+1 ALU+. 1 0 (ALU+.)

N+2 PC+12 1 0 -
PC+12

1 PC+8 1 0 (PC+8)

2 ALU 1 0 (ALU) . ALU+. 1 0 (ALU+.)

N Registers, N ALU+. 1 0 (ALU+.)
(N)1,

N+1 ALU+. 1 0 PC' Incl. PC)
N+2 PC+12 1 0 -
N+3 PC' 1 0 (PC')

N+4 PC'+4 1 0 (PC'+4)

PC'+8

2-15

VL86C010

-MREQ -OPC -TRAN

0 0 ---"---
0 1 t

0 0

0 1 t

0 0
E

0 0

SEQ ·-MREQ -OPC

0 0 0

0 1 1

1 0 1

0 0 0

0 1 1

0 0 1

1 0 0

1 0 0

0 0 0

1 0 1

1 0 1

1 0 1

0 1 1

1 0 1

0 0 0

1 0 1

1 0 1

1 0 1

0 1 1

0 0 1

1 0 0

1 0 0

e VLSI TECHNOLOGY, INC.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Cont.)

STORE MULTIPLE REGISTERS TABLE 12. STORE MULTIPLE REGISTERS
Store multiple proceeds very much as
load multiple, but without the final cycle.
The restart problem is much more
straightforward here, as there is no
wholesale overwriting of registers with
which to contend.

SOFTWARE INTERRUPT AND
EXCEPTION ENTRY
Exceptions (and software interrupts)
force the PC to a particular value and
refill the instruction pipeline from there.
During the first cycle, the forced
address is constructed and a mode
change may take place. The return
address is moved to register 14.

During the second cycle, the return
address is modified to facilitate return.
This modification is less useful than in
the case of branch with link.

The third cycle is required only to
complete the refilling of the instruction
pipeline.

COPROCESSOR DATA OPERATION
A coprocessor data operation is a
request from VL86C010 for the
coprocessor to initiate some action.
The action need not be completed for
some time, but the coprocessor must
commit to doing it before pulling CPS
low.

If the coprocessor can never do the
requested task, it should leave CPA
and CPS to float high. If it can do the
task, but can't commit right now, it
should pull CPA low but leave CPS
high until it can commit. VL86C010 will
busy-wait until CPS goes low.

Type Cycle Address -B/W -R/W Data SEQ -MREQ -OPC

One register 1 PC+8 1 0 (PC+8) 0 0 0

2 ALU 1 1 RA 0 0 1

1 PC+8 1 0 (PC+8) 0 0 0

N Registers. 2 ALU 1 1 RA 1 0 1

(N)1) ALU+. 1 1 R. 1 0 1

N ALU+. 1 1 R. 1 0 1

N+1 ALU+. 1 1 R. 0 0 1

TABLE 13. SOFTWARE INTERRUPT & EXCEPTION ENTRY
Cycle Address -BIW -R/W

1 PC+ 8 1 0

2 Xn 1 0

3 Xn+4 1 0

(For software interrupt, PC is the
address of the SWI instruction; for
interrupts and reset, PC is the address
of the instruction following the last one
to be executed before entering the
exception; for prefetch abort, PC is the

Data SEQ -MREQ -OPC -TRAN

(PC+8) 0 0 0 1

(Xn)

(Xn+4)

1 0 0 1

1 0 0 1

address of the aborting instruction; for
data abort, PC is the address of the
instruction following the one which
attempted the aborted data transfer. Xn
is the appropriate trap address.)

TABLE 14. COPROCESSOR DATA OPERATION
Type Cycle Addre .. -BIW -RlW Data SEQ -MREQ -OPC -CPI CPA CPB

Ready 1 PC+8 1 0 (PC+8) 1 0 0 0 0 0

PC+12

1 PC+8 1 0 (PC+8) 0 1 0 0 0 1

Not Ready
2 PC+8 1 0 - 0 1 1 0 0 1

PC+8 1 0 - 0 1 1 0 0 1

N PC+8 1 0 - 0 0 1 0 0 0

2-16

e VLSI TECHNOLOGY, INC.

INSTRUCTION CYCLE OPERATIONS (Cont.)
CO· PROCESSOR DATA TRANSFER expect the coprocessor to take the data
(FROM MEMORY TO COPROCES· at sequential cycle rates. The
SOR) coprocessor is responsible'for deter-
Here the coprocessor should commit to mining the number of words to be trans-
the transfer only when it is ready to ferred, and indicates the last transfer
accept the data. When CPS goes low, cycle by allowing CPA and !CPS to float
the CPU will produce addresses and high.

VL86C010

The VL86C01 0 spends Ithe first cycle
(and any busy-wait cycles) generating
the transfer address, and performs the
write-back of the address during the
transfer cycles.

TABLE 15. COPROCESSOR DATA TRANSFEiR (FROM MEMORY TO COPROCESSOR)

Type Cycle Address -BIW -R/W Data SEQ -MREQ -OPC -CPI CF!A CPB

1 PC+8 1 0 (PC+8) 0 0 0 0 CI 0
One Register

2 ALU 1 0 (ALU) 0 0 1 1 1 1 Ready

PC+12

1 PC+8 1 0 (PC+8) 0 1 0 0 0 1 ---
2 PC+8 1 0 - 0 1 1 0 0 1 --

One Register · PC+8 1 0 - 0 1 1 0 0 1

Not Ready N PC+8 1 0 - 0 0 1 0 0 0 -
N +1 ALU 1 0 (ALJU) 0 0 1 1 t 1

PC+12
~-

1 PC+8 1 0 (PC+8) 0 0 0 0 0 0 -----
2 ALU 1 0 (AlJU) 1 0 1 1 0 0

N Registers · ALU+. 1 0 (ALIJI+.) 1 0 1 1 a 0
(N)1)

N ALU+. 1 (AU!+.) 1 Ready 0 0 1 1 0 0
--1-----

N +1 ALU+. 1 0 (ALIJJ+.) 0 0 1 1 1 1

PC+12

M Registers 1 PC+8 1 0 (PC+8) 0 1 0 0 a 1

(M>1)
2 PC+8 1 0 - 0 1 1 0 a 1

Not Ready --1-----

· PC+8 1 0 - 0 1 1 0 0 1

N PC+8 1 0 - 0 0 1 0 0 0

N+1 ALU 1 0 (ALJU) 1 0 1 1 0 0

Ready · ALU+. 1 0 (ALU+.) 1 0 1 1 0 0

N+M ALU+. 1 0 (ALU+.) 1 0 1 1 0 0

N+M+1 ALU+. 1 0 (ALU+.) 0 0 1 1 1 1

PC+12

2-17

e VLSI TECHNOLOGY, INC.

INSTRUCTION CYCLE OPERATIONS (Cont.)
COPROCESSOR DATA TRANSFER The VL86C010 controls these instruc-
(FROM CO·PROCESSOR TO MEM· tions exactly as for memory to
ORY) coprocessor transfers. with the one

VL86C010

exception that the -R/W line is inverted
during the transfer cycle.

TABLE 16. COPROCESSOR DATA TRANSFER (FROM COPROCESSOR TO MEMORY)

Type Cycle Address -BIW -R/W Data SEQ -MREQ -OPC -CPt CPA CPB

1 PC+8 1 0 (PC+8) 0 0 0 0 0 0
One Register

2 ALU 1 1 CPdata 0 0 1 1 1 1 Ready

PC+12

1 PC+8 1 0 (PC+8) 0 1 0 0 0 1

2 PC+8 1 0 - 0 1 1 0 0 1

One Register · PC+8 1 0 - 0 1 1 0 0 1
Not Ready N PC+8 1 0 - 0 0 1 0 0 0

N+1 ALU 1 1 CPdata 0 0 1 1 1 1

PC+12

1 PC+8 1 0 (PC+8) 0 0 0 0 0 0

2 ALU 1 1 CPdata 1 0 1 1 0 0

N Registers · ALU+. 1 1 CPdata 1 0 1 1 0 0
(N)1)

N ALU+. Ready 1 1 CPdata 1 0 1 1 0 0

N +1 ALU+. 1 1 CPdata 0 0 1 1 1 1

PC+12

M Registers 1 PC+8 1 0 (PC+8) 0 1 0 0 0 1
(M>1)

2 PC+8 1 0 - 0 1 1 0 0 1
Not Ready

· PC+8 1 0 - 0 1 1 0 0 1

N PC+8 1 0 - 0 0 1 0 0 0

N+1 ALU 1 1 CPdata 1 0 1 1 0 0

Ready · ALU+. 1 1 CPdata 1 0 1 1 0 0

N+M ALU+. 1 1 CPdata 1 0 1 1 0 0

N+M+1 ALU+. 1 1 CPdata 0 0 1 1 1 1

PC+12

2-18

eVLSI TECHNOLOGY, INC

INSTRUCTION CYCLE OPERATIONS (Cont.)
COPROCESSOR REGISTER TRANS- limited to one data word, amd the CPU
FER (LOAD FROM COPROCESSOR) puts the word into the destination
Here tho busy-wait cycles are much as register in the third cycle. The third
the previous cycles, but the transfer is cycle may be merged with the following

VL86C010

prefetch cycle into one memory N-cycie
as with all VL8SC01 0 register load in­
structions.

TABLE 17. COPROCESSOR REGISTER TRANSFER (LOAD FROM COPROCESSOR)

Type Cycle Address

1 PC+8

Ready 2 PC+12

3 PC+12

PC+12

1 PC+8

2 PC+8 .
PC+8

Not Ready
N PC+8

N+1 PC+12

N+2 PC+12

PC+12

COPROCESSOR REGISTER TRANS­
FER (STORE TO COPROCESSOR)
This is the same as for the load from
coprocessor, except that the last cycle
is omitted.

-S/W -R/W Data

1 0 (PC+8)

1 0 CPdata

1 0 -

1 0 (PC+8)

1 0 -
1 0 -
1 0 -
1 0 CPdata

1 0 -

SEQ -MREQ -OPC -CPI CPiA

1 1 0 0 0

0 1 1 1 1

1 0 1 1 -,

0 1 0 0 0

0 1 1 0 0

0 1 1 0 0

1 1 1 0 QI

0 1 1 1 1

1 0 1 1 _.

TABLE 18. COPROCESSOR REGISTER TRANSFER (STORE TO COPROCESSOR)

Type Cycle Address -S/W -R/W Data SEQ -MREQ -OPC -CPI CPA

1 PC+8 1 0 (PC+8) 1 1 0 0 0

Ready 2 PC+12 1 1 Rd 1 0 1 1 1

PC+12 -
1 PC+8 1 0 (PC+8) 0 1 0 0 0

2 PC+8 1 0 - 0 1 1 0 0 .
PC+8 1 0 - 0 1 1 0 0

Not Ready
N PC+8 1 0 - 1 1 1 0 0

N+1 PC+12 1 1 Rd 1 0 1 1 1

PC+12

2-19

CPS

0

1

-

1

1

1

0

1

-

CPS

0

1

1

1

1

0

1

_ VLSI TECHNOLOGY, INC.

VL86C010

INSTRUCTION CYCLE OPERATIONS (Cont.)

UNDEFINED INSTRUCTIONS AND TABLE 19 UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSENT •
When a coprocessor detects a COPROCESSOR ABSENT
coprocessor instruction which it cannot
perform, and this must include all
undefined instructions, it must not drive
CPA or CPB. These will float high,
causing the undefined instruction trap to
be taken.

Cycle

1

2

3

4

Address

PC+8

PC+8

Xn

Xn+4

Xn+8

-BIW -RIW Data

1 0 (PC+8)

1 0 -
1 0 (Xn)

1 0 (Xn+4)

SEQ -MREQ -0 PC -CPI CPA CPB

0 1 0 0 1 1

0 0 0 1 1 1

1 0 0 1 1 1

1 0 0 1 1 1

UNEXECUTED INSTRUCTIONS TABLE 20. UNEXECUTED INSTRUCTIONS
Cycle Address -BIW -RIW Data SEQ -MREQ -OPC

Any instruction whose condition code is
not met will fail to execute. It will add
one cycle to the execution time of the
code segment in which it is embedded.

1 PC+8 1 0 (PC+8) 1 0 0

INSTRUCTION SPEEDS
Due to the pipelined architecture of the
CPU, instructions overlap considerably.
In a typical cycle, one instruction may be
using the data path while the next is
being decoded and the one after that is

PC+8

being fetched. For this reason the
following table presents the incremental
number of cycles required by an in­
struction, rather than the total number of
cycles for which the instruction uses part
of the processor. Elapsed time (in

TABLE 21. INSTRUCTION SPEEDS

Instruction Instruction Timing
Type Equation

Data Processing 1 S

Data Processing With Register Controlled Shift 1 S + 1 S

Data Processing With PC Modified 2S + 1 N

Load Register 1 S + 1 N + 1 I

Load Register With PC Loaded 2S+2N+ 1 I

Store Register 2N

Load Multiple n S + 1 N + 1 I

Load Multiple With PC Loaded (n + 1) S + 2 N + 1 I

Store Multiple (n-1) S + 2 N

Branch and Branch With Link 2S + 1 N

Software Interrupt, Trap 2S + 1 N

Multiply and Multiple With Accumulate 1S+ml

Coprocessor Data Operation 1 S+ b I

Load or Store Coprocessor Data To Memory 1S+2N+bl

Move From VL86C01 0 To Coprocessor Register 1S+bl+1C

Move From Coprocessor To VL86C01 0 Register 1 S + (b + 1) I + 1 C

2-20

cycles) for the routine may be calculated
from these figures.

If the condition is met the instruction
execution time is shown in Table 16
below.

n is the number of words transferred.

m is the number of cycles required by
the multiply algorithm, which is deter­
mined by the contents of Rs. Multi­
plication by any number between
211(2m-3) and 211(2m-1)-1 inclusive
takes m cycles for m> 1. Multiplica­
tion by 0 or 1 takes 1 cycle. The
maximum value m can take is 16.

is an internal cycle. For systems
using the VL86C11 0 Memory
Controller, internal cycles are one
clock, the same as S cycles.

b is the number of cycles spent in the
coprocessor busy-wait loop.

If the condition is not met, all instructions
take one S cycle.

o VLSI TECHNOLOGY, INC.

VL86C010

TIMING CHA:RACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±S%

VL86C010 • 10 VL86C010 • 12

Symbol Parameter Min. Typ. Max. Min. Typ. Max. Units Conditions

tV Clock Non-overlap Time 0 - - 0 - - ns -.---
tCK Clock Period 100 - 10000 80 - 10000 ns

tCKL Clock Period Low 40 - 10000 38 - 10000 ns

tCKH Clock Period High 40 - 10000 38 - 10000 ns

tABE Address Bus Enable - - 30 - - 30 ns

tABZ Address Bus Disable - - 30 - - 30 ns

tALE Address Latch Fall-Through - - 25 - - 22 ns

tALEL ALE Low Time - - 10000 - - 10000 ns See Note 1

tADDRS 02 To Address Valid Delay - - 35 - - 35 ns See Note 2

tADDRN 01 To Address Valid Delay - - 95 - - 90 ns

tAH Address Bus Hold Time 5 - - 5 - - ns

tOBE Data Bus Enable Time - - 45 - - 40 ns

tOBZ Data Bus Disable Time - - 45 - - 40 ns

tOOUT Data Bus Output Delay - - 55 - - 50 ns

tOOH Data Bus Hold Time 10 - - 10 - - ns

tOlS Data In Setup Time 10 - - 10 - - ns

tDIH Data In Hold Time 5 - - 5 - - ns

tABTS ABRT Setup Time 25 - - 20 - - ns

tABTH ABRT Hold Time 5 - - 5 - - ns

tlRS Interrupt Setup Time 10 - - 10 - - ns See Note 3

tRWD 02 To -RJW Valid - - 40 - - 35 ns See Note 4

tRWH -RIW Hold Time 5 - - 5 - - ns

tMSD 01 To -MREQ And SEQ Delay - - 55 - - 45 ns

tMSH -MREQ And SEQ Hold Time 5 - - 5 - - ns

tBWD 02 To -BIW Valid - - 40 - - 35 ns

tBWH -BIW Hold Time 5 - - 5 - - ns

tMDD 01 To M1 - MO Valid - - 35 - - 35 ns

tMDH M1 - MO Hold Time 5 - - 5 - - ns

Notes:
1. ALE controls a dynamic storage latch; this parameter is specified to 'ensure that the stored charge cannot lea~(sufficiently to

generate intermediate logic levels in the associated logic.
2. The 01 to address delay only applies to non-sequential cycles, when the address is being calculated in the ALU. For sequential

cycles the address will be valid earlier, at the time given from 02. TADDRS applies to sequential and non-sequential cycles.
3. The interrupt and reset inputs may be asynchronous. This time will guarantee that the interrupt request is latched during this

cycle.
4. The worst case for -RJW occurs only when an address exception happens during a data store operation. ThEl address excep­

tion causes -RJW to switch to read to prevent erroneous writing of memory.

2-21

I

_ VLSI TECHNOWGY, INC.

VL86C010

TIMING CHARACTERISTICS: TA::I ooe to +7ooe, vee = 5 V ±S%

Symbol Parameter

tOPCD 02 To -OPC Valid

tOPCH -OPC Hold Time

tTRMD 01 To - TRAN Valid

tTRMH - TRAN Hold Time

tTRDD 02 To -TRAN Valid

tTRDH - TRAN Hold Time

tCPS CPA, -CPB Setup Time

tCPH CPA,-CPB Hold Time

tCPI 01 To -CPI Delay

tCPIH -CPI Hold Time

TIMING DIAGRAMS
PROCESSOR DATA BUS

VL86e010 • 10 VL86C010 - 12

Min. Typ. Max. Min. Typ. Max.

- - 40 - - 40

5 - - 5 - -
- - 35 - - 30

5 - - 5 - -
- - 45 - - 40

5 - - 5 - -
35 - - 30 - -

5 - - 5 - -
- - 35 - - 30

5 - - 5 - -

Units Conditions

ns

ns

ns

ns

ns See Note 1

ns

ns

ns

ns

ns

~--------------------tCK--------------~

~~~-------tCKL-------~/ 
01 tCKH 

tV .... ----- tCKH 
.... ~-------tCKL------~~,-------------~ 

02 

ABE 
---i--' 

A25 -
AO---+----<I 

1"'------' 

DBE 

031 - DO 
(Write) ------6' 

031 - DO 

tADDRN-------~ 

tADDRS----t~ 

(Read) ------------------------------<lI'-~-~ 

Notes: tDIS 

1. - TRAN will only change during 02 as the result of a forced translation single data transfer operation while in the user mode. 
Otherwise, it will change during 01 when the mode change tolfrom user mode occurs. 

2-22 



_ VLSI TECHNOLOGY, INC. 

VL86C010 

TIMING DIAGRAMS 

PROCESSOR CONTROL SIGNALS ---------------I~ 
-tCK .... 

.... 1 - tCKL - "If ~----------------------~~~~----------- /, -
If ~~ __________________ ~_:~:_ ~,f--.... __ ----- tCKH - ' ..... ~I--______ tCKH _ .. 

0t ----/ '.... tV ___ _ ___________________ --.... 

~ tV ------r-t-r'..., - ')"''-____ _ 1..,.---..------- tCKL - /~ 
-02 

tABTS __ tABTH 

ABRT ___ ~-------

-JiIIi tlRS ~I-

...... -------- tRWD - _ 
-FIRQ, --L---------~~~~"--J-r~~==---~~---_Ilt-----
-IRQ ~ _ ~ 1'4-- tRWH 

I<II~---------- tMSD - ~A-JC 
·--[~===------------t-~~r_~~~/fih ~/~~ 
- ~ ~ 

RIW _ tBWD _ • 

-
-.-

~ ---- r-- tMSH 

M ·-~--~~p~~~~~~~~~~ij/-~7/~~~~~~~~~~~~~~=c~-------------t----t----------.-~---~* ,~h _La.. l...oiii..- tBWH 
EO ~ I~ _ V 

-

'//. 7~r-
~~~k-__ ~ ______ _ --~-----------::---_r~~ - ~ -BIW .- ~ tOPCD _ 

~~--------tMDD-- ~----J-+I~~====~~~------t_---~~__========
-M1-"'-----t.=:~~I.~~~~~~~--~~~~~~-======I-~-------------_lr_----~.---------
-MO - ~ _~ ~ tOPCH

--~~1-~~~~t~M~DH~--------------t_I_=J~~~~~~~~~~I~=L_ __ ~-------~ 1 - ,n~/.w///. '" ,~ _

'---1--------~~---~~.~~~---- ~ -oPC ~ tTRDD _ •

- ----- tTRMD- ~C"----il[I""'"}~~~~~~~~~J£'k ~---r~~~~~~~~~-~.~~ ~ ~~_~ __ ~--.-------H/. ~------~-r--~ -TRA ;'~ ~- ____ I+- tTRDH _

~ ~tTRMH ___ ~.
---1-------..-..... ~ tCPS ___

CPA, - ~
CPB _--.

_----_____ {:_tC_PI ________________ ____
-CPI

-

tCPH tCPIH--'

2-23

E

" VLSI TECHNOLOGY, INC.

ABSOLUTE MAXIMUM RATINGS
Ambient Operating
Temperature

Storage Temperature -65°C to + 150°C

Supply Voltage to
Ground Potential -0.5 V to VCC +0.3 V

Applied Output
Voltage

Applied Input
Voltage

Power Dissipation

-0.5 V to VCC +0.3 V

-0.5 V to +7.0 V

2.0W

Stresses above those fisted may cause
permanent damage to the device.
These are stress ratings only. Func­
tional operation of this device at these
or any other conditions above those

DC CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ± 5%

Symbol Parameter Min Typ

VOHT Output High Voltage, TIL-DATABUS VCC-0.75 -
VOLT Output Low Voltage, TIL-DATABUS - -
VOHC Output High Voltage, CMOS VCC-0.75 -

VOLC Output Low Voltage, CMOS - -

VL86C010

indicated in this data sheet is not
implied. Exposure to absolute maxi­
mum rating conditions for extended
periods may affect device reliability.

Max Unit Conditions

VCC V 10H =-5.0 mA

0.8 V IOL=5.0 mA

VCC V 10H "" -2.5 mA

0.4 V 10L= 2.5 mA

VIH Input High Voltage 01,02 VCC-0.3 - VCC+0.3 V

All Others 2.4 - VCC+0.3 V

VIL Input Low Voltage 01,02

All Others

III Input Leakage Current

ILO Output Leakage Current

ICC Operating Supply Current

lOS Output Short Circuit Current

CAPACITANCE: TA = 25°C, f = 1.0 MHz

Symbol Parameter

CI
Clock Input Capacitance (01, 02)

Other Input Capacitance

CO Output Capacitance

FIGURE 3. TEST WAVEFORMS

Input

3.0 V

0.0 V

Notes:

-0.3 -

-0.3 -
- -

- -
- 20

- -

Min Max

- 15

- 5

- 8

V1 LOAD -= 2.4 V, DATABUS
V1 LOAD"" 2.3 V, OTHERS
R1 - 1600, DATABUS
R1 "" 7500, OTHER OUTPUTS
C1 "" 100 pF, DATABUS
C1 "" 50 pF, CPI, ADDR.BUS
C1 - 15 pF, OTHER OUTPUTS

1. Measured with outputs unloaded, at 10 MHz. Add 4 mA per MHz.
2. Periodically sampled, rather than 100% tested.

2-24

0.3 V

0.8 V

10 J.lA VIN = 0 V to VCC

10 J.lA VOUT "" 0 V to VCC

40 mA (Note 1)

40 mA

Unit Conditions

pF VIN "" 0 V (Note2)

pF VIN = 0 V (Note2)

pF VOUT = 0 V (Note 2)

FIGURE 4. TEST LOAD CIRCUIT

----V1LOAD r Device Under Test
R1

C1*

* Includes Scope
and Jig ~

Capacitance -L-

e VLSI TECHNOLOGY, INC.

PROGRAMMERS'MODEL
The VLB6C010 processor has a 32-bit
data bus and a 26-bit address bus. The
processor supports two data types,
eight-bit bytes and 32-bit words, where
words must be aligned on four byte
boundaries. Instructions are exactly
one word, and data operations (e.g.,
ADD) are only performed on word
quantities. Load and store operations
can transfer either bytes or words. The
VLB6C010 supports four modes of
operation, including protected supervi­
sor and interrupt handling modes.

BYTE SIGNIFICANCE
Some programming techniques may
write a 32-bit (word) quantity to mem­
ory, but will later retrieve the data as a
sequence of byte (B-bit) items. For
these purposes, the processor stores
word data in least-significant-first (LSB

first) order. This means that the least
significant bytes of a 32-bit word
occupies the lowest byte: address. (The
VLSI Technology, Inc. assemblers,
none the less, display compiled data in
MSBs-first order, but for the sake of
clarity only. The internal. machine rep­
resentation is preserved as LSBs-first.)

REGISTERS
The processor has 27 registers (32-bits
each), 16 of which are visible to the
programmer at any time. The visible
subset depends on the current proces­
sor mode; special registers are
switched in to support interrupt and
supervisor processing. The register
bank organization is shown in Table 17.

User mode is the normal: program
execution state; registers R15 - RO are
directly accessible.

TABLE 22. REGISTER ORGANIZATION

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R1()

R1'I

General

General

General

General

General

General

General

General

General

General

General

General

FIRQ

FIR0

FIRe!

FIRO

VL86C010

All registers are general purpose and
may be used to hold data or address
values, except that register R15
contains the Program Counter (PC) and
the Processor Status 'Register (PSR).
Special bits in some instructions allow
the PC and PSR to be treated together
or separately as required. Figure 5 I
shows the allocation of bits within R15.

R14 is used as the SUbroutine link
register and receives la copy of R15
when a Branch and Link instruction is
executed. It may be treated as a
general purpose register at all other
times. R14_svc, R14:Jrq and R14_firq
are used similarly to hold the return
values of R15 when imterrupts and
exceptions arise, or when Branch and
Link instructions are executed within
supervisor or interrupt routines.

Typical Use

General Usage

R'I2 (FP)

R13(SP)

R14 (lK)

R15(PC)

General

General
I
I

General

Supervisor I IRQ

Supervisor I IRQ

(Shared by all Modes)

FIRO

FIRe!

FIRQ

Data Frame (by convention)

Stack Pointer (by convention)

R15 Save Area for Bl or Interrupts

System Program Counter

TABLE 23. BYTE ADDRESSING

31

Byte Addr. 0003

Byte Addr. 0007

Byte Addr. 0002

Byte Addr. 0006

Byte Addr. 0001

Byte Add!'. 0005

2-25

o
Byte Addr. OOOO~
Byte Addr. 0000

Word
Address
Value

0000

0001

e VLSI TECHNOLOGY, INC.

FIRQ Processing - The FIRQ mode
(described in the Exceptions section)
has seven private registers mapped to
R14 - R8 (R14_fiq-R8_fiq). Many FIRQ
programs will not need to save any
registers.

IRQ Processing - The IRQ state has
two private registers mapped to R14
and R13 (R14_lrq and R13_lrq).

Supervisor Mode - The SVC mode
(entered on SWI instructions and other
traps) has two private registers mapped
to R14 and R13 (R14_svc and
R13_svc).

The two private registers allow the IRQ
and supervisor modes each to have a
private stack pointer and link register.
Supervisor and IRQ mode programs are
expected to save the user state on their
respective stacks and then use the user
registers, remembering to restore the
user state before returning.

User mode registers are accessible in
the other modes by using LDM or STM
and setting the S bit.

In user mode only the N, Z, C, and V
bits of the PSR may be changed. The I,
F, and Mode flags will change only
when an exception arises. In supervi­
sor and interrupt modes all flags may be
manipulated directly.

EXCEPTIONS
Exceptions arise whenever there is a
need for the normal flow of program
execution to be broken, so that (for
instance) the processor can be diverted

to handle an interrupt from a peripheral.
The processor state just prior to
handling the exception must be
preserved so that the original program
can be resumed when the exception
routine has completed. Many excep­
tions may arise at the same time.

The processor handles exceptions by
using the banked registers to save
state. The old PC and PSR are copied
into the appropriate R14, and the PC
and processor mode bits are forced to a
value which depends on the exception.
Interrupt disable flags are set where
required to prevent unmanageable
nestings of exceptions. In the case of a
re-entrant interrupt handler, R14 should
be saved onto a stack in main memory
before re-enabling the interrupt. When
multiple exceptions arise simultane­
ously, a fixed priority determines the
order in which they are handled.

FIRQ - The FIRQ (Fast Interrupt
Request) exception is externally
generated by taking the -FIRQ pin low.
This input can accept asynchronous
transitions and is delayed by one clock
cycle for synchronization before it can
affect the processor execution flow. It is
designed to support a data transfer or
channel process and has sufficient
private registers to remove the need for
register saving in such applications;
therefore, the overhead of context
switching is minimized. The FIRQ
exception may be disabled by setting
the F flag in the PSR (but note that this

FIGURE 5_ PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 26 25

FIRO Disable
0= Enable
1 = Disable

IRO Disable
0= Enable
1 = Disable

Overflow

16 15
iii

I
Program Counter
(Word Aligned)

Carry/Not Borrow/Rotate Extend
Zero
Negative/Signed Less Than

210

i I ~ I

Processor Mode

11
00 = User Mode
01 = FIRO Mode
10= IRQ Mode
11 = Supervisor Mode

2-26

VL86C010
is not possible from user mode). If the
F flag is clear the processor checks for
a low level on the output of the FIRQ
synchronizer at the end of each
instruction.

The impact upon execution of an FIRQ
interrupt is defined in Table 19. The
return-from-interrupt sequence is also
defined there. This will restore the
original processor state and cause exe­
cution to resume at the instruction
following the interrupted one.

IRQ - The IRQ (Interrupt Request)
exception is a normal interrupt caused
by a low level on the -IRQ pin. It has a
lower priority than FIRQ, and is masked
out when a FIRQ sequence is entered.
Its effect may be masked out at any
time by setting the I bit in the PC (but
note that this is not possible from user
mode). If the I flag is clear, the proces­
sor checks for a low level on the output
of the IRQ synchronizer at the end of
each instruction.

The impact upon execution of an IRQ
interrupt is defined in Table 19. The
return-from-interrupt sequence is also
defined there. This will restore the
original processor state and re-enable
the IRQ interrupt and will cause
execution to resume at the instruction
following the interrupted one.

Address Exception Trap - An address
exception arises whenever a data
transfer is attempted with a calculated
address above 3FFFFFFH. The
VL86C010 address bus is 26 bits wide,
and an address calculation will have a
32-bit result. If this result has a logic
one in any of the top six bits it is
assumed that the address is an error
and the address exception trap is taken.

Note that a branch cannot cause an
address exception and a block data
transfer instruction, which starts in the
legal area but increments into the illegal
area, will not trap. The check is per­
formed only on the address of the first
word to be transferred.

When an address exception is seen, the
processor will respond as defined in
Table 19. The return-from-interrupt
sequence is also defined there. This
will resume execution of the interrupted
code sequence and restore the original
processor state.

e VLSI TECHNOLOGY, INC.

Normally, an address exception is
caused by erroneous code and it is
inappropriate to resume execution. If a
return is required from this trap, use
SUBS IPC, R14 svc, 4, as defined in
Table 19. This will return to the instruc­
tion after the one causing the trap.

Abort .. The ABRT signal comes from
an external memory management
system, and indicates that the current
memory access cannot be completed.
For instance, in a virtual memory
system the data corresponding to the
current address may have been moved
out of memory onto a disk, and consid­
erable processor activity may be
required to recover the data before the
access can be performed successfully.
The processor checks for an abort at
the end of the first phase of each bus
cycle. When successfully aborted, the
VL86C010 will respond in one of three
ways:

(i) If the abort occurred during an
instruction prefetch (a prefetch
abort), the prefetched instruction is
marked as invalid; when it comes to
execution, it is reinterpreted as
below. (If the instruction is not
executed, for example as a result of
a branch being taken while it is in
the pipeline, the abort will have no
effect.)

(ii) If the abort occurred during a data
access (a data abort), the action
depends on the instruction type.
Data transfer instructions (LOR,
STR) are aborted as though they
had not executed. The LDM and
STM instructions complete, and if
write back is set, the base is up­
dated. If the instruction would
normally have overwritten the base
with data (i.e. tOM with the base in
the transfer list), this overwriting is
prevented. All register overwriting is
prevented after the abort is indi­
cated, which means in particular that
R15 (which is always last to be
transferred) is preserved in an
aborted LDM instruction.

(iii) If the abort occurred during an
internal cycle it is ignored.

Then, in cases (i) and (ii), the processor
will respond as defined in Table 19.

The return from Prefetch Abort defined
in Table 19 will attempt to execute the
aborting instruction (which will only be
effective if action has been taken to
remove the cause of the original abort).
A Data Abort requires any auto-indexing
to be reversed before returning to re­
execute the offending instruction. The
return is performed as de1ined in the
Table 19.

The abort mechanism allows a demand
paged virtual memory system to be
implemented when a suitable memory
management unit (such as the
VL86C110) is available. The processor
is allowed to generate arbitrary ad­
dresses, and when the data at an
address is unavailable, the memory

VL86C010
manager signals an abort. The proces­
sor traps into system s0ftware which
must work out the cause of the abort,
make the requested daita available, and
retry the aborted instru~tion. The
application program needs no knowl­
edge of the amount of memory avail­
able to it, nor is its stato in any way
affected by the abort.

Software Interrupt - The software
interrupt is used for getting into supervi­
sor mode, usually to request a particular
supervisor function. The processor
response to the SWI inStruction is
defined in Table 19, as: is the method of
returning. The indicated return method
will return to the instrudtion following the
SWI.

TABLE 24. EXCEPTION TRAP CONSIDERATIONS
Trap Type CPU Trap ,Activity Program Return Sequence

1. Save R15 in R14 (SVC).
Reset 2. Force M1, MO to SVC mode, (n/a)

and set, F & I status bits in PC.
3. Force PC to OxOOOOOO.

Undefined 1. Save R15 in R14 (SVC).

Instruction 2. Force M1, MO to SVC mode, MOVS PC,R14 ; SVC's R14.
and set: I status bit in the PC.

3. Force PC to OxOOOOO4.

Software 1. Save R15 in R14 (SVC).
MOVS PC, R14 ; SVC's R14.

Interrupt 2. Force M1, MO to SVC mode,
and set I status bit in the PC.

3. Force PC to OxOOOOO8.

Prefetch 1. Save R15 in R14 (SVC). Prefetch Abort:
and Data 2. Force M1 , MO to SVC mode,

SUBS PC, R14,4 ; SVC's R14. and set: I status bit in the PC. Aborts
3. Force PC to OxOOOO10-data. Data ,6;bort:

Force PC to OxOOOOC-Pre-. SUBS PC, R14,8 ; SVC's R14.

1 . Convert: Stores to Loads.
2. Complete the instruction (see

Address text for details).
SUBS PC, R14,4 ; SVC's R14. 3. Save R15 in R14 (SVC). Exception

4. Force M1 , MO to SVC mode,
and set 'I status bit in the PC. (Returns CPU to address following

5. Force PC to OxOOOO14. the one causing tlrle trap.)

1. Save R15 in R14 (IRQ).
IRQ 2. Force M1, MO to IRQ mode, SUBS PC, R14,4 ; IRQ's R14.

and set J status bit in the PC.
3. Force PC to OxOOOO18.

1. Save R15 in R14 (FIRQ).

FIRQ 2. Force M1, MO to FIRQ mode, SUBS PC, R14,4 ; FIRQ's R14.
and set the F and I status bits
in the PC.

3. Force PC to Ox00001 C.

2-27

I

e VLSI TECHNOLOGY, INC.

Undefined Instruction Trap - When
the VL86C01 0 executes a coprocessor
instruction or an undefined instruction, it
offers it to any coprocessors which may
be present. If a coprocessor can
perform this instruction but is busy at
that moment, the processor will wait
until the coprocessor is ready. If no
coprocessor can handle the instruction,
the VL86C01 0 will take the undefined
instruction trap.

The trap may be used for software
emulation of a coprocessor in a system
which does not have the coprocessor
hardware, or for general purpose
instruction set extension by software
emulation.

When the undefined instruction trap is
taken, the VL86C010 will respond as
defined in Table 19. The return from
this trap (after performing a suitable
emulation of the required function)
defined in Table 19 will return to the in­
struction following the undefined
instruction.

Reset - When RES goes high, the
processor will stop the currently
executing instruction and start execut­
ing no-ops. When Reset goes low
again, it will respond as defined in Table
19. There is no meaningful return from
this condition.

Vector Table
The conventional means of implement­
ing an interrupt dispatch function is to
provide a table of jumps to the appropri­
ate processing table as shown below:

~
0000000
0000004
0000008
OOOOOOC
0000010
0000014
0000018
000001C

.E.u.n.Q1iQn
Reset
Undefined instruction
Software interrupt
Abort (prefetch)
Abort (data)
Address exception
IRQ
FIRQ

These are byte addresses, and each
contains a branch instruction pointing to
the relevant routine. The FIRQ routine
might reside at 000001CH onwards,
and thereby avoid the need for (and
execution time of) a branch instruction.

Exception Priorities - When multiple
exceptions arise at the same time, a
fixed priority system determines the
order in which they will be handled:

1) Reset (highest priority)
2) Address exception and

Data aborts
3) FIRQ
4) IRQ
5) Prefetch abort
6) Undefined Instruction and

SWls (lowest priority)

Note that not all exceptions can occur at
once. Address exception and data
abort are mutually exclusive, since if an
address is illegal the processor ignores
the ABRT input. Undefined instruction
and software interrupt are also mutually
exclusive since they each correspond to
particular (non-overlapping) decodings
of the current instruction.

If an address exception or data abort
occurs at the same time as a FIRQ and
FIRQs are enabled (Le., the F flag in
the PSR is clear), the processor will
enter the address exception or data
abort handler and then immediately
proceed to the FIRQ vector. A normal
return from FIRQ will cause the address
exception or data abort handler to
resume execution. Placing address
exception and data abort at a higher
priority than FIRQ is necessary to
ensure that the transfer error does not
escape detection, but the time for this
exception entry should be reflected in
worst case FIRQ latency calculations.

2-28

VL86C010
Interrupt Latencies - The worst case
latency for FIRQ, assuming that it is
enabled, consists of the longest time
the request can take to pass through
the synchronizer (Tsyncmax), plus the
time for the longest instruction to
complete (Tldm, the longest instruction
is load multiple registers), plus the time
for address exception or data abort
entry (Texc), plus the time for FIRQ
entry (Tfiq). At the end of this time, the
processor will be executing the instruc­
tion at 1CH.

Tsyncmax is 2.5 processor cycles, Tldm
is 18 cycles, Texc is three cycles, and
Tfiq is two cycles. The total time is
25.5 processor cycles, which is just
over 2.5 microseconds in a system
using a continuous 10 MHz processor
clock. In a DRAM based system
running at 4 and 8 MHz (for example,
using the VL86C11 0) this time becomes
4.5 microseconds, and if bus bandwidth
is being used to support video or other
DMA activity, the time will increase
accordingly.

The maximum IRQ latency calculation
is similar, but must allow for the fact that
FIRQ has higher priority and can delay
entry into the IRQ handling routine for
an arbitrary length of time.

The minimum lag for interrupt recogni­
tion for FIRQ or IRQ consists of the
shortest time the request can take
through the synchronizer (Tsyncmin)
plus Tfiq. This is 3.5 processor cycles.
The FIRQ should be held until the mode
bits indicate FIRQ mode. It may be
safely held until cleared by an 1/0
instruction in the FIRQ service routine.

_ VLSI TECHNOLOGY, INC.

Vl86C010
INSTRUCTION SET FIGURE 6. CONDITIONiFIELD

31 24 23 16 15 8 7 o
All VL86C010 instructions are condi­
tionally executed which means that
their execution mayor may not take
place depending on the values of the
N, Z, C, and V flags in the PSR at the
end of the preceding instruction.

I I I I I I I
(Any Instruction)

I I I I I I I

If the ALways condition is specified,
the instruction will be executed
irrespective of the flags, and likewise
the Never condition will cause it not to
be executed (it will be a no-op, taking
one cycle and having no effect on the
processor state).

The other condition codes have
meanings, as detailed above. For
instance, code 0000 (EQual) causes
the instruction to be executed only if
the Z flag is set. This would corre­
spond to the case where a compare
(CMP) instruction had found the two
operands were different, the compare
instruction would have cleared the Z
flag, and the instruction will not be
executed.

BRANCH, BRANCH AND LINK
(B, BL.)
The Band BL instructions are only exe­
cuted if the condition code field is true.

l condi1tion Field

0000 = EO - Z set (equal)
0001 = NE - Z clear. (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clearor Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = L T - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less tllan or equal)
1110 = AL - Always
1111 = NV - Never

FIGURE 7. BRANCH, AND BRANCH WITH LINK (B, BL)

31 28 27 24 23

I I I I I I I I I I Condx 1 0 1 L

~condition L
Field

I I I

Link Bit
0= Branch
1 = Branch With Link (Subroutine call)

o

All branches support a 24-bit offset. The
offset is shifted left two bits and added
to the PC, with overflows being ignored.
The branch can, therefore, reach any
word aligned address within the
address space. The branch offset must
take account of the prefetch operation,
which causes the PC to be two words
ahead of the current instruction.

Link bit - Branch with Link writes the
old PC and PSR into R14 of the current
bank. The PC value written into the link

register (R14) is adjusted :to allow for
the prefetch, and contains the address
of the instruction following the branch
and link instruction.

Return from SubrouUne - When
returning to the caller, there is an option
to restore or to not restore the PSR.
The foliowing table iliustrates the
available combinations.

Syntax:

Restoring PSR:
Not Restoring PSR:

Link Register Valid
MOVS PC,R14
MOV PC,R14

B(L){cond} <expression>

Link Saved to a Stack
LDM Rnl, (PC)II
LDM Rn!, (PC)

where L is used to request the Branch-with-Link form of the instruction.
If absent, R14 will not be affected by the instruction.

cond is a two-character mnemonic as shown in Condition Code section (EQ, NE,
VS, etc.). If absent then AL (Always) will be used.

expression is the destination. The assembler calculates the relative (word) offset.

Items in { } are optional. Items in < > must be present.

2-29

I

e VLSI TECHNOLOGY, INC.

Examples:
Here BAl

B

CMP
BEQ

Bl

ADDS
BlCC

BlNV

Here

There

R1,0
Fred

ROM + Sub

R1,1
Sub

Sub

; Assembles to EAFFFFFE. (Note effect of PC offset)

; Always condition used as default

; Compare register one with zero, and branch to Fred if
; register one was zero. Else continue next instruction.

; Unconditionally call subroutine at computed address.

; Add one to register one, setting PSR flags on the result.
; Call Sub if the C flag is clear, which will be the case unless
; R1 contained FFFFFFFFH. Else continue next instruction.

; Never call subroutine (this is a NO-OP).

2-30

VL86C010

e VLSI TECHNOLOGY, INC.

Vl86C010
ALU INSTRUCTIONS
The AlU-type instruction is only
executed if the condition is true. The
various conditions are defined in the
Condition Code section.

The instruction produces a result by
performing a specified arithmetic or
logical operation on one or two oper­
ands. The first operand is always a

register (Rn). The second operand may
be a shifted register (Rm) or a rotated
8-bit immediate value (Imm) according
to the value of the I bit in the instruction.
The condition codes in the PSR may be
preserved or updated, as; a result of this
instruction, according to the value of the
S bit in the instruction. Certain opera-

tions (TST, TEO, CMP, CMN) do not
write the result to Rd. They are used
only to perform tests and to set the
condition codes on the result, and
therefore should always have the S bit
set. (The assembler treats TST, TEO,
CMP and CMN as TSTS, TEaS, CMPS
and CMNS by default).

FIGURE 8. ALU INSTRUCTION TYPES

31 28 25 20 16 1 5 12 11 o
rnd~ 10 '0 I I I dpc1d~ I S I I ~n I I I ~d I I I I I I dp~ra~d ~ I

LL GtinatiOt1 Register
1 st Operand Register

Set Condition Codes

~~ j
Immediate Value

0= Operand 2 is a register.
1 .. Operand 2 is an

immediate value.
Operation Code

0000 = AND - Rd = Op1 AND Op2
0001 = EOR - Rd .. Op1 EOR Op2
0010 ... SUB - Rd = Op1 - Op2
0011 = RSB - Rd = Op2 - Op1
0100 = ADD - Rd = Op1 + Op2
0101 = ADC - Rd = Op1 + Op2 + C
0110 = SBC - Rd = Op1 - Op2 + C
0111 = RSC - Rd = Op2 - Op1 + C

o = Do not alter condition codes
1 = Set condition codes (Ssuffix)

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEO - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 - ORR - Rd = Op1 OR Op2
1101 - MOV - Rd = Op2
1110=BIC -Rd=Op1 ANDnotOp2
1111 = MVN - Rd = not Op2

.------or

Bit 25 = 1 •• > Operand 2 is an immediate value.

11 8 7 0 I I I I I I I I I I I I I
Rotate Immediat~

y [unsigned 8-blt~mmedlate value L Right·rotate amount to be applied
to 8·bit Imm (2·bit shift units).

Bit 25 = 0 •• > Operand 21s in a register.
11 4 3 0 I I I I I I I I I I I I I

Shift Field Rm

11 5 4

I I 101

I
il T 2nd Operand Register

Shift applied to Rm (as shown
,.;.1..;.,1 r--I"--r---,--,......,...;5;,...-;,4 in below expansion figures). I I ~s 10 I I I d ~

I
Shift Amount

Shift amount is a 5·blt
unsigned integer.

Shift Amount
Shift amount Is specified
in bottom byte of Rs.

2-31

LShlftTYPe
00 = Logical Left
01 = Logical Right
10 = Arithmetic Right
11 = Rotate Right

(LSL)
(LSR)
(ASR)
(ROR)

I

" VLSI TECHNOLOGY, INC.

DATA PROCESSING OPERATIONS
Assembler
Mnemonic
AND
EOR
SUB
RSB
ADD
ADC
SBC
RSC
TST
TEO
CMP
CMN
ORR
MOV
BIC
MVN

~
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PSR Flags - The operations may be
classified as logical or arithmetic. The
logical operations (AND, EOR, TST,
TEO, ORR, MOV, BIC, MVN) perform
the logical action on all corresponding
bits of the operand or operands to
produce the result. If the S bit is set
(and Rd is not R15) the V flag in the
PSR will be unaffected, the C flag will
be set to the carry out from the barrel
shifter (or preserved when the shift
operation is LSL 0), the Z flag will be set
if and only if the result is all zeroes, and
the N flag will be set to the logical value
of bit 31 of the result.

The arithmetic operations (SUB, RSB,
ADD, ADC, SBC, RSC, CMP, CMN)
treat each operand as a 32-bit integer
(either unsigned or 2's complement
signed, the two are equivalent). If the S
bit is set (and Rd is not R15) the V flag
in the PSR will be set if an overflow
occurs into bit 31 of the result; this may
be ignored if the operands were
considered unsigned, but warns of a
possible error if the operands were 2's
complement signed. The C flag will be
set to the carry out of bit 31 of the ALU,
the Z flag will be set if and only if the
result was zero, and the N flag will be
set to the value of bit 31 of the result
(indicating a negative result if the
operands are considered to be 2's
complement signed).

Shifts - When the second operand is
specified to be a shifted register, the
operation of the barrel shifter is con­
trolled by the shift field in the instruction.

Asill2n
Bit-wise logical AND of operands
Bit-wise logical Exclusive Or of operands
Subtract operand 2 from operand 1
Subtract operand 1 from operand 2
Add operands

VL86C010

Add operands plus carry (PSR C flag)
Subtract operand 2 from operand 1 plus carry
Subtract operand 1 from operand 2 plus carry
as AND, but result is not written
as EOR, but result is not written
as SUB, but result is not written
as ADD, but result is not written
Bit-wise logical OR of operands
Move operand 2 (operand 1 is ignored)
Bit clear (bit-wise AND of operand 1 and NOT operand 2)
Move NOT operand 2 (operand 1 is ignored)

This field indicates the type of shift to be
performed (logical left or right, arithme­
tic right or rotate right). The amount by
which the register should be shifted
may be contained in an immediate field
in the instruction, or in the bottom byte
of another register as shown in
Figure 8.

When the shift amount is specified in
the instruction, it is contained in a 5-bit
field which may take any value from
zero to 31. A logical shift left (LSL)

FIGURE 9. LOGICAL SHIFT LEFT (LSL)

takes the contents of Rm and moves
each bit by the specified amount to a
more significant pOSition. The least
Significant bits of the result are filled
with zeroes, and the high bits of Rm
which do not map into the result are
discarded, except that the least
Significant discarded bit becomes the
shifter carry output which may be
latched into the C bit of the PSR when
the ALU operation is in the logical class
(see above). For example, the effect of
LSL 5 is:

31 2423 1615 87 0

1 Carry 1 ~I~_I_I __ I_I __ I _1_1 __ 1_1 __ 1_1_1 __ 1_1 __ 1_1_1 __ 1_1 __ 1_I_I __ I_I __ I_I_I __ I_I __ ~I ~o

Contents of Rm, which will appear (shifted) in Operand 2

Carry Flag 31 2423 1615 8 7 0
1 Bit 271 ~rl~I-r~I'I~I~I~IF+I;I~I~I-I~I'1~1~1~1~1'1-r1~1-r1 TI~I-rI~I-I~I'I~I~I~1

. Lower 27 bits of Rm . 0 0 0 0 o.

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL 0 is a special case where
the shifter carry out is the old value of
the PSR C flag. The contents of Rm
are used directly as the second
operand.

2-32

A Logical Shift Right (LSR) is similar,
but the contents of Rm are moved to
less significant positions in the result.
LSR 5 has the following effect:

e VLSI TECHNOLOGY, INC.

FIGURE 10. LOGICAL SHIFT RIGHT (LSR)

31 24 23 16 15 8 7
O·~IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Contents of Rm, which will appear (shifted) In Operand 2

o

31 24 23 16 15 8 7 0 Carry Flag

I
I I I I 1 I -to- r::-:-lB'lt 4

o 0 0 0 0 Upper 27 bits of Rm , LJ!!W
Example of shifted result In Operand 2 (shifted content of Rm)

The form of the shift field which might
be expected to correspond to LSR 0 is
used to encode LSR 32, which has the
zero result, with bit 31 of Rm as the
carry output. Logical shift right zero is
redundant, as it is the same as logical
shift left zero. Therefore, the assem­
bler converts LSR 0, ASR 0, and ROR

o into LSL 0, and allows 'LSR 32 to be
specified.

The Arithmetic Shift Right (ASR) is
similar to the logical shift right, except
that the high bits are filled with repli­
cates of the sign bit (bit 31) of the Rm
register, instead of zeros. This signed

FIGURE 11. ARITHMETIC SHIFT RIGHT (ASR)

31 2423 1615 8 7 0
c-----" I -to- I Carry I
slgn-lL...---------------------......

Contents of Rm, which will appear (shifted) In Operand 2
extend

Carry Flag

~~~~~_~~~~~~~~~~~~~ ___ ~ -to-~ 
Example of shifted result In Operand 2 (shifted content of Rm) 

The form of the shift field which might 
be expected to give ASR 0 is used to 
encode ASR 32. Bit 31 of Rm is again 
used as the carry output, and each bit 
of operand 2 is also equal to the sign 

bit (bit 31) of Rm. The result is, there­
fore, all ones or all zeros according to 
the value of bit 31 of Rm~ 

Rotate Right (ROR) operations reuse 
the bits which "overshoot" in a logical 

FIGURE 12. ROTATE RIGHT (ROR) 

31 24 23 16 15 8 70 
II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

[ .. Contents of Rm. whtoh will appear (shtfted) tn Operand 2 

31 24 23 16 15 8 7 0 

1
0 10 10 I 0 10 13 I I I I I I I I I I I I I I I I I I I I I I I I I t,o

s
l 

.4 3 2 1 0,1 Upper 27 bits of Rm value . 

Example of shifted result in Operand 2 (shifted content of Rm) 

2-33 

Carry Flag 

GllJ 

VL86C010 

shift preserves the correct representa­
tion of a (signed) negative integer to be 
divided by powers ofitwo via a right 
shift. For example, ASR 5 has the 
following effect: 

shift right operation by wrapping them 
around at the high end of the result. 
For example, the effect of a ROR 5 is: 

I 



e VLSI TECHNOLOGY, INC. 

The form of the shift field which might 
be expected to give ROR 0 is used to 
encode a special function of the barrel 

shifter, Rotate Right Extended (RRX). 
This is a rotate right by one bit position 

VL86C010 
of the 33-bit quantity formed by append­
ing the PSR C flag to the most signifi­
cant end of the contents of Rm: 

FIGURE 13. ROTATE RIGHT EXTENDED (RRX) 

31 24 23 16 15 8 7 0 
1IIIIIIIIIIIIIIIIIIIIIIIIilllllll--+~ 

Contents of Rm, which will appear (shifted) In Operand 2 I 

Register-Based ShIft Counts - Only 
the least significant byte of the contents 
of Rs is used to determine the shift 
amount. If this byte is zero, the 
unchanged contents of Rm will be used 

ShIft 
LSL by 32 
LSL by more than 32 
LSR by 32 
LSR by more than 32 
ASR by 32 or more 
ROR by 32 
ROR by more than 32 

as the second operand, and the old 
value of the PSR C flag will be passed 
on as the shifter carry output. 

If the byte has a value between one and 
31, the shifted result will exactly match 

ActIon 

that of an instruction specified shift with 
the same value and shift operation. 

Shifts of 32 or More - The result will be 
a logical extension of the shifting 
processes described above: 

Result zero, carry out equal to bit zero of Rm. 
Result zero, carry out zero. 
Result zero, carry out equal to bit 31 of Rm. 
Result zero, carry out zero. 
Result filled with, and carry out equal to, bit 31 of Rm. 
Result equal to Rm, and carry out equal to, bit 31 of Rm. 
Same result and carry out as ROR by n-32. Therefore, repeatedly 
subtract 32 from count until within the range one to 32. 

Note: The zero in bit seven of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruc­
tion to be a multiply or an undefined instruction. 

Immediate Operand Rotation - The 
immediate operand rotate field is a 4-bit 
unsigned integer which specifies a shift 
operation on the 8-bit immediate value. 
The immediate value is zero extended 
to 32 bits, and then subject to a rotate 
right by twice the value in the rotate 
field. This enables many command 
constants to be generated, for example 
all powers of two. Another example is 
that the 8-bit constant may be aligned 
with the PSR flags (bits zero, one, and 
26 to 31). All the flags can thereby be 
initialized in one TEOP instruction. 

WrItIng to R15 - When Rd is a register 
other than R1S, the condition code flags 
in the PSR may be updated from the 
ALU flags as described above. When 
Rd is R1S and the S flag in the instruc­
tion is set, the PSR is overwritten by the 

corresponding bits in the ALU result, so 
bit 31 of the result goes to the N flag, bit 
30 to the Z flag, bit 29 to the C flag and 
bit 28 to the V flag. In user mode the 
other flags (I, F, MI, MO) are protected 
from direct change, but in non-user 
modes these will also be affected, 
accepting copies of bits 27, 26, one and 
zero of the result respectively. 

When one of these instructions is used 
to change the processor mode (which is 
only possible in a non-user mode), the 
following instruction should not access 
a banked register (R14-R8) during its 
first cycle. A no-op should be inserted if 
the next instruction must access a 
banked register. Accesses to the 
unbanked registers (R7-RO and R1S) 
are safe. 

2-34 

If the S flag is clear when Rd is R1S, 
only the 24 PC bits of R1S will be 
written. Conversely, if the instruction is 
of a type which does not normally 
produce a result (CMP, CMN, TST, 
TEO) but Rd is R1S and the S bit is set, 
the result will be used in this case to 
update those PSR flags which are not 
protected by virtue of the processor 
mode. 

SettIng PSR BIts - It is suggested that 
TEOP be used to set PSR bits in SVC 
mode. Because these bits are not 
presented to the ALU input (even when 
R1'S is the operand), the TEOP's 
operands replace all current PSR bits. 

For example, to remain in SVC mode 
but set the interrupt-disable bits, use a 
'lEOP PC, 0xC000003' instruction. 



e VLSI TECHNOLOGY, INC 

VL86C010 
R15 as an Operand - If R15 is used as 
an operand in a data processing 
instruc.1ion it can present different 
values depending on which operand 
position it occupies. It will always 
contain the value of the PC. It mayor 
may not contain the values of the PSR 
flags as they were at the completion of 
the previous instruction. 

When R15 appears in the Rm position it 
will give the value of the PC together 
with the PSR flags to the barrel shifter. 

When R15 appears in eitner of the Rn 
or Rs positions, it will give the value of 
the PC alone with the PSR bits replaced 
by zeroes. 

The PC value will be the address of the 
instruction, plus eight ()r 12 bytes due to 
instruction prefetching; If the shift 
amount is specified in ithe instruction, 
the PC will be eight by~es ahead. If a 
register is used to specify the shift 
amount, the PC will be eight bytes 
ahead when used as FRs, and 12 bytes 
ahead when used as ffin or Rm. 

Syntax: 
MOV, MVN single operand instructions: 

<opcode>{condHS} Rd,<Op2> 

CMP, CMN, TEO, TST - instructions not producing a result: 
<opcode>{cond}{P} Rn,<Op2> 

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC: 
<opcode>(cond}{S} Rd, Rn, <Op2> 

whoreOp2 
cond 
S 
p 

Rd, Rnand Rm 
<shift> 

<shiftname>s 

Is Rm{<shift>J or, <expression> 
Two-character condition mnemonic, see Condition Code section. 
Set condition codes if S present (implied for CMP, CMN, TEO, TST). 
Make Rd .. R15 in instructions where Rd iSi not specified, otherwise Rd will 
default to RO. (Used for changing the PSB directly from the ALU result.) 
Are any valid register name, such as RO-R15, PC, SP, or LK. 
Is <shiftname> <register> or <shiftname> expression, or RRX (rotate right 
one bit with extend). 
Are any of: ASL, LSL, LSR, ASR, or ROR. 

Note: If <expression> is used, the assembler will attempt to generate: a shifted immediate eight-bit field to match the expression. 
If this is impossible, it will give an error. 

Examples: 
ADDEO 

TEaS 

SUB 

TEOP 

MOVNV RO, RO 

MOV 

MOVS 

R2,R4,R5 

R4,3 

R4, R5, R7 LSR R2 

R15,0; 

PC, LK 

PC, R14 

; Equivalent to: if (ZFLAG) R2 = R4+R5. 

; Test R4 for equality with 3 (The S is redundant, as the assembler 
; assumes it. Equivalent to: ZFLAG - R4==3. 

; Logical Right Shift R7 by the number in the bottom by tel of R2, subtract 
; the result from R5, and put the answer into R4. 
: Equivalent to: R4 - R5 - (R7»R2). 

; (Assume non-user mode here). Change to 
; user mode and clear the N,Z,C,V,I, and F 
; flags. Note that R15 is in the Rn position, so 
; it comes without the PSR flags. 
; Equivalent to:. R15 = FLAGS = o. 
; Is a no-op, avoiding mode-change hazard. 
; Equivalent to: RO - RO. 

; Equivalent to: PC - LK, or PC = R14. 
; Return from subroutine (R14 is an active one). 

; Equivalent to: PC, PSR - R14. 
; Return from subroutine, restoring the status. 

2-35 

I 



e VLSI TECHNOLOGY, INC 

FIGURE 14. MULTIPLY, AND MULTIPLY-ACCUMULATE (MUL, MLA) 

31 28 27 22 19 18 15 8 7 0 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Rlm l I Condx 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 . 

~aIEX~tlOn 12t~·~y y 
Control Field MUL: Rd = Rm· Rs (Rn is Ignored) 

MLA: Rd = Rm • Rs + Rn 

Set Condition Codes 
o = Do not alter Condition Codes 
1 = Set Condition Codes 

L-.__ Accumulate bit (MLA specifier) 

The Multiply and Multiply-Accumulate 
instructions use a 2-bit Booth's algo­
rithm to perform integer multiplication. 
They give the least significant 32 bits of 
the product of two 32-bit operands and 
may be used to synthesize higher 
precision multiplications. 

The Multiply form of the instruction 
gives Rd - Rm*Rs. Rn is ignored and 
should be set to zero for compatibility 
with possible future upgrades to the 
instruction set. 

The Multiply-Accumulate form gives 
Rd = Rm*Rs+Rn which can save an 
explicit ADD instruction in some circum­
stances. 

Both forms of the instruction work on 
operands which may be considered as 
signed (two's complement) or unsigned 
integers. 

Operand restrictions - Due to the way 
the Booth's algorithm has been imple­
mented, certain combinations of 
operand registers should be avoided. 

Syntax 

o = Multiply (MUL) 
1 = Multiply and Accumulate (MLA) 

(The assembler will issue a warning if 
these restrictions are violated.) 

The destination register (Rd) should not 
be the same as the Rm operand 
register, as Rd is used to hold interme­
diate values and Rm is used repeatedly 
during the mUltiply. A MUL will give a 
zero result if Rm - Rd, and a MLA will 
give a meaningless result. 

The destination register Rd should not 
be R15 since it is protected from modifi­
cation by these instructions. The 
instruction will have no effect, except 
that meaningless values will be placed 
in the PSR flags if the S bit is set. All 
other register combinations will give 
correct results, and Rd, Rn and Rs may 
use the same register when required. 

PSR Flags - Setting the PSR flags is 
optional, and is controlled by the S bit in 
the instruction. The Nand Z flags are 
set correctly on the result (N is equal to 
bit 31 of the result, Z is set if and only if 
the result is zero), the V flag is unaf-

MUL{cond}{S} 
MLA {cond}{S} 

Rd, Rm, Rs 

where cond 
5 

Rd, Rm, Rs, Rn 

Is a two-character condition code mnemonic 
Set condition codes if present. 

VL86C010 

fected by the instruction (as for logical 
data processing instructions), and the C 
flag is set to a meaningless value. 

Writing to R15 - As mentioned above, 
R15 must not be used as the destina­
tion register (Rd). If it is so used, the in­
struction will have no effect except 
possibly to scramble the PSR flags. 

R15 As An Operand - R15 may be 
used as one or more of the operands, 
though the result will rarely be useful. 
When used as Rs, the PC bits will be 
used without the PSR flags and the PC 
value will be eight bytes on from the 
address of the multiply instruction. 
When used as Rn, the PC bits will be 
used along with the PSR flags, and the 
PC will again be eight bytes on from the 
address of the instruction. When used 
as Rm, the PC bits will be used together 
with the PSR flags, but the PC will be 
the address of the instruction plus 12 
bytes in this case. 

Rd, Rm, Rs and Rn Are valid register mnemonics, such as RO-R15, SP, LK, or PC. 

Notes: 
Rd must not be R15 (PC), and must not be the same as Rm. 
Items in {} are optional. Those in <> must be present. 

2-36 



e VLSI TECHNOLOGY, INC. 

VL86C010 
Examples: 

MUL 
MLAEQS 

R1, R2, R3 
R1,R2,R3,R4 

; R1 - R2 * R3. (R1 ,R2,R3 • Rd,Rm,Rs) 
; Equivalent to: if (ZFLAG) R1 = R2*R3 + R4. 
; Condition codes are set, based on the result. 

; The multiply instruction may be used to synthesize higher precision multiplications. 
For instance, multiply two 32-bit integers and generate a 64-bit result:' 

MOV RO, R1 LSR 16 ; RO (temporary) '= top half of R1. 
MOV R4, R2 LSR 16 ; R4 = top half ofR2. 
BIC R1, R1, RO LSL 16 ; R1 ... bottom half of R1. 
BIC R2, R2, R4 LSL 16 ; R2 = bottom half of R2. 
MUL R3, RO, R2 ; Low section of result. 
MUL R2, RO, R2 ; Middle section of result. 
MUL R1, R4, R1 ; Middle section of result. 
MUL R4, RO, R4 ; High section of result. 
ADDS R1, R2, R1 ; Add middle sections. (MLA not used, as we need R3 correct). 
ADDCS R4, R4, Ox10000 ; Carry from above add. 
ADDS R3, R3, R1 LSL 16 ; R3 is now bottom 32 product bits. 
ADC R4, R4, R1 LSR 16 ; R4 is now top 32 bits. 

Notes: 
1. R1, R2 are resigters containing the 32-bit integers. R3, R4 are regIsters for the 64-bit result. 
2. RO is a temporary register. 
3. R1 and R2 are overwritten during the mUltiply. 

Load/Store Value from Memory 
(LDR,STR) 
The register load/store instructions are 
used to load or store single bytes or 
words of data. The LOR and STR 
instructions differ from MOV instructions 
in that they move data between registers 
and a specified memory address. In 
contrast, the MOV instructions move 
data between registers, or move a 
constant (contained in the instruction) 
into a register. 

The memory address used in LDRlSTR 
transfers is calculated by adding an 
offset to or subtracting an offset from a 
base register. Typically, a load of a 
labeled memory location involves the 
loading via a (signed) offset from the 
current PC. Regardless of the base 
register used, the result of the offset 
calculation may be written back into the 
base register if 'auto-indexing' is 
required. 

Offsets and Auto-Indexing - The offset 
from the base may be either a 12-bit 
binary immediate value in the instruction, 
or a second register (possibly shifted in 
some manner). The offset may be 

added to (U.1) or subtracted from 
(U=O) the base register Rn. The 
offset modification may be: performed 
either before (pre-indexed; P=1) or 
after (post-indexed, P.O) the base is 
used as the transfer address. 

The W bit gives optional auto incre­
ment and decrement addressing 
modes. The modified base value may 
be written back into the base (W=1), 
or the old base value may be kept 
(W"",O). In the case of post-indexed 
addressing, the write back; bit is 
redundant since the old base value 
can be retained by setting the offset to 
zero. Therefore, post-indexed data 
transfers always write back the 
modified base. 

Hardware Address Translation -
The only use of the W bit in a post­
indexed data transfer is in 'non-user 
mode code where setting the W bit 
forces the - TRAN pin low for the 
transfer, allowing the operating 
system to generate a user address in 
a system where the memory manage­
ment hardware makes suitable use of 
this pin, as when the MEMC chip is 
used. 

2-37 

Shifted Register Offset - The eight 
shift control bits are described in the 
data processing instrudtions, but the 
register specified shift amounts are not 
implemented in this insilruction class. 

Bytes and Words - This instruction 
class may be used to tfansfer a byte 
(B=1) or a word (B ... O) fuetween a 
processor register and ~memory. In the 
discussion, remember that the 
VL86C010 stores words into memory 
with the Least Significant Byte at the 
lowest address (Le., LSB first). 

A byte load (LDRB) expects the data on 
bits 07 to DO if the supplied address is 
on a word boundary, on bits 015 to 08 
if it is a word address plus one byte, 
and so on. The selected byte is placed 
in the bottom eight bits of the destina­
tion register, and the remaining bits of 
the register are filled with zeroes. 

A byte store (STRB) repeats the bottom 
eight bits of the source;register four 
times across the data bus. The external 
memory system should activate the 
appropriate byte subsystem to store the 
data. 

E 



_ VLSI TECHNOLOGY, INC. 

VL86C010 
FIGURE 15. LOAD/STORE VALUE FROM MEMORY (LDR,STR) 

31 28 25 20 16 15 12 11 a 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Condx a 1 I PUB W L Rn Rd Operand 2 I I 
T ~LL.----J L--i--I __ I Source/Destination Register 

Condition ~ Base Register 
Code Bit 25 .. a --> Operand 2 is an immediate value. 

Load/Store: 0- STR, 1 - LOR 
11 a 

Write Back Bit 
a .. No write back 
1 .. Write address back into base (I). 

Byte/Word Bit 
a .. Word transfer 
1 = Byte transfer (B) 

Up/Down Bit 
a - Offset is negative 
1 = Offset is positive 

Pre/Post Indexing 
a - Post: [base),index 
1 - Pre: [base,index] 

Immediate Value 
1 .. Operand 2 is a register. 
a .. Operand 2 is an 

immediate value. 

Shift Amount ~ 
Shift amount is a 5-bit 
shift count, to be applied 
to the Rm register. 

y L 2nd o~erand Register L Shift Type 
00 .. Logical Left (LSL) 
01 .. Logical Right (LSR) 
10 - Arithmetic Right (ASR) 
11 .. Rotate Right (ROR) 

Note: There is no Rs or shift for the LDRlSTR class. That is, the shift amount cannot be contained in a register. 

Non-Aligned Accesses - A word load 
(LOR) should generate a word aligned 
address. An address offset from a word 
boundary will cause the data to be 
rotated into the register so that the 
addressed byte occupies bits 07 to DO. 
External hardware could perform a 
double access to memory to allow non­
aligned word loads, but the VL86C11 0 
Memory Controller does not support this 
function. 

Use of R15 - These instructions will 
never cause the PSR to be modified, 
even when Rd or Rn is R15. 

If R15 is specified as the base register 
(Rn), the PC is used without the PSR 
flags. When using the PC as the base 
register one must remember that it 
contains an address eight bytes 
advanced from the address of the 
current instruction. 

If R15 is specified as the register offset 
(Rm), the value presented will be the 
PC together with the PSR. 

When R15 is the source register (Rd) of 
a register store (STR) instruction, the 
value stored will be the PC together 
with the PSR. The stored value of the 
PC will be 12 bytes advanced from the 
address of the instruction. A load 
register (LOR) with R15 as Rd will 
change only the PC, and the PSR will 
be unchanged. 

Address Exceptions - If the address 
used for the transfer (Le., the unmodi­
fied contents of the base register for 
post-indexed addressing, or the base 
modified by the offset for pre-indexed 
addressing) has a logic one in any of 
the bits 031 to 026, the transfer will not 
take place and the address exception 
trap will be taken. 

Note that only the address actually used 
for the transfer is checked. A base 
containing an address outside the legal 
range may be used in a pre-indexed 

2-38 

transfer if the offset brings the address 
within the legal range. Likewise, a 
base within the legal range may be 
modified by post-indexing to outside 
the legal range without causing an 
address exception. 

Data Aborts - A transfer to or from a 
legal address may still present special 
cases for a memory management 
system. For instance, in a system 
which uses virtual memory, the 
required data may be absent from main 
memory. The memory manager can 
signal a problem by taking the proces­
sor ABRT pin high, whereupon the 
data transfer instruction will be 
prevented from changing the processor 
state, and the data abort trap will be 
taken. It is up to the system software 
to resolve the cause of the problem. 
The instruction can then be restarted 
and the original program continued. 



_ VLSI TECHNOLOGY, INC. 

Syntax: 
LDRISTR{ cond}{8}{T} Rd,<Address> 

where LDR means Load from memory into a register. 
STR means store from a register into memory. 
cond is a two-character condition mnemonic (see Condition Code section). 
B If present implies byte transfer, else a word transfer. 
T If present, the W bit is set in a post-indexed :instruction, causing the 

- TRAN pin to go low for the transfer cycle. T is not allowed when a pre­
indexed addressing mode is specified or implied. 

Rd is a valid register: RO-R15, SP, LK, or PC. 
Address Can be any of the variations in the following table. 

Address Variants: 
Address expression: 

<expression> 
An expression evaluating to a relocatable address: 
The assembler will attempt to generate an instruction using the PC 
as a base, and a corrected offset to the location given by the 
expression. This is a PC-relative pre-indexed address. If out of range 
(at assembly or link time), an error message will be given. 

Pre-indexed address: Offset is added to base register before using as effective address, and 
offsets are placed within the [ ] pair. Rn may be viewed as a pointer: 

[Rn, <expression>HI} Signed offset of expression bytes is added to base pointer. 
[Rn, Rm]{l} Add Rm to Rn before using Rn as an address pointer. 
[Rn, Rm <shift> count H!} Signed offset of Rm (modified by shift) is added to base pointer. 

Post-indexed address: Offset is added to base reg, after using base reg for the effective address. 
Offsets are placed after the [ ] pair: 

[Rn],<expression> 
[Rn], Rm 

Expression is added to Rn, after Ril's usage as a pointer. 
Rm is added to Rn, after Rn's usage as an address pointer. 
Shift the offset in Rm by count bits, and add to Rn, after 
Rn's usage as an address pointer. 

[Rn], Rm <shift> count 

[Rn] 

where expression 
Rm,Rn 

shift 
count 

No offset is added to base address pointer. 

A signed 13-bit expression (including the sign). 
Valid register names: RO-R15, SP, LK, or PC. If RN = PC, the assembler 
will subtract 8 from the expression to allow for processor address read-ahead. 
Any of: LSL, LSR, ASR, ROR, or RRX. 
Amount to shift Rm by. It is a 5-bit constant', and may not be 
specified as an Rs register (as for some other instruction classes). 
If present, the I sets the W-bit in the instruction, forcing the 
effective offset to be added to the Rn register, after completion. 

Examples (Pre-Index and Optional Increment): 

VL86C010 

In each of these examples, the effective offset is added to the value in the Rn (base pointer) register prior to using that value as 
the effective address. Rn is then updated only if the I suffix is supplied; 

STR R1, [R2, R1]! ; *(R2+R1) = R1. Then R2 += R1. 
STR R3, [R2] ; *(R2) .. R3. 
LDR R1, [RO, 16] ; R1 = *(RO + 16). Don't update RO. 
LDR R9, [R5, RO LSL 2] ; R9 .. *(R5 + (R2<<2)). Don't update R5. 
LDREQ8 R2, [R5, 5] ; if (Zflag) R2 = *(R5 + 5), a zero-filled byte load. 

2-39 

E 



e VLSI TECHNOLOGY, INC. 

VL86C010 
Examples (Post-Index and Increment): 
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the 
effective address. That is, Rn is then updated unconditionally, regardless of any I suffix. 

STR 
STR 
LOR 
LOR 
LOREQB 

R1, [R2], R1 
R3, [R2], RS 
R1, [RO], 16 
R9, [RS], RO ASR 3 
R2, [RS], S 

; *R2 = R1. Then R2 += R1. 
; *(R2) = R3. Then R2 += RS. 
; R1 '"' *RO. Then RO += 16. 
; R9 = *RS. Then RS += (RO / a). 
; if (Zflag) R2 - *RS, a zero-filled byte load, and then RS += S. 

Examples (Expression): 
In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer­
ences are precompensated for the a-byte read-ahead done by the processor. PARMx is a register-relative label, typically created 
via a OTYPE directive, and assumed to be relative to the LK (R14) register. OATAx is similar, but is presumably defined relative 
to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to ±4096 bytes from the associated 
base register. 

LOR 
STR 
LOR 
STR 
B 

PLACE OW 
Across 

RO,OATA1 
R2, PLACE 
R1, PARMO 
R1, GENERAL 
Across 

o 

; SP-relative. Same as: LOR RO, [SP+OAT A 1]. 
; PC-relative. Same as: STR R2, [PC+ 16]. 
; LK-relative. Same as: LOR R1, [LK+OATA1]. 
; RO-relative. Same as: STR R1, [RO+GENERAL]. 
; Skip over the data temporary. 

; Temporary storage area. 
; Resume execution. 

FIGURE 16. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM) 

31 28 27 25 20 19 1615 o 

Condition 
Code 

I I I I I I I I I I I I I 
. Register List I I 

~~ Base Register 
Load/Store: 0 = STM, 1 = LDM 

Write back bit 
o = no write back 
1 = Write address back into base (!). 

'--___ PSR Or Force-User bit (II suffix) 
0= Do not load PSR or force user mode registers. 
1 = Load PSR or optionally force user mode regsiters(II). 

'----____ Up/Down Bit 
o = offset is negative 
1 = offset is positive 

'--_____ Pre/Post Indexing Form 
0= Post: after each register 

is transferred. 
1 = Pre: before each register 

is transferred. 

2-40 



e VLSI TECHNOLOGY, INC 

The multi-register transfer instructions 
are used to load (LDM) or store (STM) 
any subset of the currently visible 
registers. They support all possible 
stacking modes (push up/pop down, or 
push down/pop up). They are very 
efficient instructions for saving or 
restoring context, or for moving large 
blocks of data around main memory. 

The Register List - The instruction can 
cause the transfer of any registers in 
the current bank (and non-user mode 
programs can also transfer to and from 
the user bank). The register list is 
contained in a 16-bit field in the 
instruction, with each bit corresponding 
to a register. A logic one in bit zero of 
the register field will cause RO to be 
transferred, a logic zero will cause it not 
to be transferred; similarly bit one 
controls the transfer of R1, and so on. 

Addressing Modes - The transfer 
addresses are determined by the 
contents of the base register (Rn), the 
pre/post bit (P) and the up/down bit (U). 
The registers are transferred in the 
order lowest to highest, so R15 (if in the 
list) will always be transferred last. The 
lowest register also gets transferred to/ 
from the lowest memory address. This 
is illustrated in Figures 17 and 18. 

Transfer of R15 - Whenever R15 is 
stored to memory, the value transferred 
is the PC together with the PSR flags. 
The stored value of the PC will be 12 
bytes advanced from the address of the 
STM instruction. 

If R15 is in the transfer list of a load 
multiple (LDM) instruction, the PC is 
overwritten and the effect on the PSR is 
controlled by the S bit. If the S bit is 
zero the PSR is preserved unchanged, 
but if the S bit is set the PSR will be 
overwritten by the corresponding bits of 
the loaded value. In user mode, 
however, the I, F, M1, and MO bits are 
protected from change, whatever the 
value of the S bit. The mode at the start 
of the instruction determines whether 
these bits are protected, and the 
supervisor may return to the user 
program, reenabling interrupts and 
restoring user mode with one LDM 
instruction. 

Transfers to User Bank - For STM 
instructions the S bit is redundant as the 
PSR is always stored with the PC 
whenever R15 is in the trarnsfer list. In 
user mode the S bit is ignored, but in 
other modes it has a second interpreta­
tion. S - 1 is used to force transfers to 
take values from the user register bank 
instead of from the currentregister 
bank. This is useful for sawing the user 
state on process switches. Note that 
when it is so used, write back of the 
base will also be to the user bank, 
though the base will be fetChed from the 
current bank. Therefore dQn't use write 
back when forcing user bank. 

In LDM instructions the S bit is redun­
dant if R15 is not in.the transfer list, and 
again in user mode it is ignored. In 
non-user mode where R15 is not in the 
transfer list, S-1 is used to force loaded 
values into user registers instead of the 
current register bMk. When used in 
this manner, care must be ,taken not to 
read from a banked register during the 
following cycle; if in doubt, insert a NO­
OP. Again, don't use write back when 
forcing a user bank transfer. 

R15 as the Base - When tlile base is the 
PC, the PSR bits will be used to form 
the address as well, so unless all 
interrupts are enabled and all flags are 
zero an address exception will occur. 
Also, write back is never allowed when 
the base is the PC (setting the W bit will 
have no effect). 

Base Within the Register List - When 
write back is specified, the: base is 
written back at the end of the second 
cycle of the instruction. During an STM, 
the first register is written Qut at the start 
of the second cycle. A Sl1M which 
includes storing the base, with the base 
as the first register to be stored, will 
therefore store the unchanged value, 
whereas with the base second or later 
in the transfer order, will store the 
modified value. An LDM will always 
overwrite the updated base if the base 
is in the list. 

Address Exceptions - When the 
address of the first transfer falls outside 
the legal address space (Le., has a 
logic one somewhere in bits 31 to 26), 
an address exception trap!will be taken. 
The instruction will first complete in the 

2-41 

VL86C010 
usual number of cycles, though an STM 
will be prevented from writing to 
memory. The processor state will be 
the same as if a data abort had oc­
curred on the first transfer cycle. 

Only the address of the:first transfer is 
checked in this way; if subsequent 
addresses over or undeir-flow into illegal 
address space they wiWbe truncated to 
26 bits but will not cause an address 
exception trap. 

Data Aborts - Some legal addresses 
may be unacceptable to a memory 
management system, aJnd the memory 
manager can indicate a problem with an 
address by taking the ABRT pin high. 
This can happen on any transfer during 
a multiple register load:or store, and 
must be recoverable if the processor is 
to be used in a virtual memory system. 

Abort During an STM . - If the abort 
occurs during a store multiple instruc­
tion, the processor takes little action 
until the instruction completes, where­
upon it enters the data abort trap. The 
memory manager is responsible for 
preventing erroneous Writes to the 
memory. The only change to the 
internal state of the processor will be 
the modification of the base register if 
write back was specified, and this must 
be reversed by software (and the cause 
of the abort resolved) before the 
instruction may be retried. 

To illustrate the various load/store 
modes, consider the transfer of R1, R5 
and R7 in the case where Rn - 1 aaaH 
and write back of the modified base is 
required (W - 1). These figures show 
the sequence of register transfers, the 
addresses used, and the value of Rn 
after the instruction has completed. 

In all cases, had write Dack of the 
modified base not been required (W=O), 
Rn would have retained its initial value 
of 1000H unless it was !also in the 
transfer list of the load multiple register 
instruction. Then it wowld have been 
overwritten with the loaded value. 

Aborts During LDM - When the 
processor detects a data abort during a 
load multiple instruction, it modifies the 
operation of the instruction to ensure 
that recovery is possible. 



e VLSI TECHNOLOGY, INC. 

Mode Bits - During the execution of 
LDMs and STMs,the two LSBs of the 
instruction will contain the (noninverted) 
mode status bits. These may be used 
by external hardware to force memory 
accesses from an alternative bank. 

The following figures illustrate the 
impact of various addressing modes. 

R1, R5, and R7 are moved tolfrom 
memory, where Rn-Ox1 000, and a write 
back of the modified base is done 
(W-1). The figures show the sequence 
of incrementing "pushes", the ad­
dresses used, and the final value of Rn. 
Without write back, Rn would remain at 
Ox1000. 

VL86C010 
Figure 17 illustrates the use of incre­
menting stack "pushes". 

Figure 18 illustrates decrementing 
"pushes" to the stack based upon Rn. 

FIGURE 17. INCREMENTING INDEX FIGURE 18. DECREMENTING INDEX 

Post-Increment Addressing Post-Decrement Addressing 

R"_§:::::~ §:::: ~_§:::::: ~ 
§ 0~FF4 G 0,0FF4 § 0~~4 ~ 

Ox100C 

Ox1000 

OxOFF4 

(1) Before STM Instruction (2) After First Transfer (1) Before STM Instruction (2) After First Transfer 

(3) After Second Transfer (4) STM Instruction Complete (3) After Second Transfer (4) After STM instruction Complete 

Pre-Increment Addressing Pre-Decrement Addressing 

R"_~ 
Ox100C 

~ 
Ox100C 

~-~ 
Ox100C 

~ 
Ox100C 

Ox1000 Ox1000 Ox1000 Ox1000 

OxOFF4 OxOFF4 OxOFF4 OxOFF4 

(1) (2) (1) (2) 

~ 
Ox100C R"_~ Ox100C Ox100C Ox100C 

Ox1000 Ox1000 Ox1000 Ox1000 ~ ~ R5 
OxOFF4 OxOFF4 R1 OxOFF4 Rn --.. R1 OxOFF4 

(3) (4) (3) (4) 

2-42 



e VLSI TECHNOLOGY, INC 

VLi86C010 

Overwriting of registers stops when the 
abort happens. The aborting load will 
not take place, nor will the preceding 
one, but registers two or more positions 
ahead of the abort (if any) will be 
loaded. (This guarantees that the PC 
will be preserved, since it is always the 
last register to be overwritten.) 

The base register is restored to its 
(modified) value if write back was 
requested. This ensures recoverability 
in the case where the base register is 
also in the transfer list and may have 
been overwritten before the abort 
occurred. 

The data abort trap is taken when the 
load multiple has completed, and the 
system software must undo any base 
modification (and resolve the cause of 
the abort) before restarting the instruc­
tion. 

Syntax: 

LDMISTM{cond}<mode> Rn{I}, <Rlisb{lI} 

where cond 
mode 
Rn 
Rlist 

Is an optional2-letter condition code common to all instructions. 
Is any of: lA, IB, DA, or DB. 
Is a valid register name: RO-R15, SP, LK, or PC. 
Can be a single register (as described above for Rn), or may be a list of 
registers, enclosed in { } (eg {RO,R2,R7-R1 O,LK}). 
If present, requests write back (W=1). Otherwise W=O. 
If present, set S bit to load the PSR with the PC, or force transfer of user 
bank, when in non-user mode. 

Addressing Mode Names - There are different assembler mnemonics for each of the addressing modes, depending on whether 
the instruction is being used to support stacks, or for other purposes. The names and instruction bit values are: 

Function MD~m!;!Dlc L..mt fjlJ1 1l.J2.I1 QR~rmIQD 
Pre-increment load LDMIB 1 1 1 Pop upwards 
Post-increment load LDMIA 1 0 1 Pop upwards 
Pre-decrement load LDMDB 1 1 0 Pop downwards 
Post-decrement load LDMDA 1 0 0 Pop downwards 

Pre-increment store STMIB 0 1 1 Push upwards 
Post-increment store STMIA 0 0 1 Push upwards 
Pre-decrement store STMDB 0 1 0 Push downwards 
Post-decrement store STMDA 0 0 0 Push downwards 

lA, IB, DA, DB allow control of when the memory printer is changed and: simply mean Increment After, Increment Before, Decre­
ment After, Decrement Before. 

Examples 
LDMIA 

STMIA 

SPI, {RO, R1, R2} 

R2, {RO-R15} 

; unstack 3 registers 

; save all registers 

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling routine; 

STMDB SPI, {RO-R3, LK} ; Save RO to R3 for workspace,and R14 for returning. 
BL Subroutine ; This call will overwrite R14 

LDMIA SPI, {RO-R3, PC}II ; Restore workspace and return, restoring PSR flags. 

2-43 



_ VLSI TECHNOLOGY, INC. 

FIGURE 19. SOFTWARE INTERRUPT (SWI) 

y 
Condition 

Field 

VL86C010 

Note: The machine comments field in bits 23 - 0 are ignored by the hardware. They are made available for free interpretation by 
the software executive, and may be found in LSB-first byte order on the stack. 

The Software Interrupt (SWI) instruction 
is used to enter supervisor mode in a 
controlled manner. The instruction 
causes the software interrupt trap to be 
taken, which effects the mode change, 
with execution resuming at OxOS. If this 
address is suitably protected (by 
external memory management hard­
ware) from modification by the user, a 
fully protected operating system may be 
constructed. 

Syntax: 
SWI{cond} <expression> 

Return from the Supervisor - The PC 
and PSR are saved in R14_svc upon 
executing the software interrupt trap 
with the PC adjusted to point to the 
word after the SWI instruction. MOVS 
R15, R14_svc will return to the user 
program, restore the user PSR and 
return the processor to user mode. 

Note that the link mechanism is not re­
entrant, so if the supervisor code 
wishes to use software interrupts within 

where cond Is the two-character condition code common to all instructions. 

itself it must first save a copy of the 
return address. 

Machine Comments Field - The 
bottom 24 bits of the instruction are 
ignored by the processor and may be 
used to communicate with the supervi· 
sor code. For instance, the supervisor 
may extract this field and use it to index 
into an array of entry points for routines 
which perform various supervisor 
functions. 

expression Is a 24-bit field of any format. The processor itself ignores it, but the 
typical scenario is for the software executive to specify patterns in it, 
which will be interpreted in a particular way by the executive, as commands. 

Examples: 
acons Zero-O, ReadC=1, Write1=2 ; Assembler constants. 

SWI 
SWI 
SWINE 

ReadC 
Writel+"k" 
o 

; Get next character from read stream 
; Output a "k" to the Write stream 
; Conditionally call supervisor with 0 in comment field 

The above examples assume that suitable supervisor code exists. For instance: 
Assume that the R13_svc (the supervisor's R13) points to a suitable stack. 

acons Zero=O, ReadC-1, Write1 ... 2 ; Assembler constants. 
acons CC_Mask .. OxFC00003 ; Non-address area mask. 

OSh 8 Super 

Super STMOB SP!,{rO,r1, r2, Ri4) 
BIC ri, r14, CC_Mask 
LOR RO, [Ri, -4] 
BIC RO, RO, OxFFOOOOOO 
MOV Ri, SWLTable 
LOR PC, [R1, RO LSL 2] 

SWLTable dw 
dw 
dw 

Write i_Action 

Zero_Action 
ReadC _Action 
Writei_Action 

LOMIA R13!,{RO-R2, pC}1\ 

; SWI entry point 

; Save working registers. 
; Strip condx codes from SWI instruction address. 
; Get copy of SWI instruction. 
; Get lower 24 bits of SWI, only. 
; Get absolute address of PC-relative table. 
; Jump indirect on the table. 

; Address of service routines. 

; Typical service routine. 

; Restore workspace, and return to inst after SWI. 

2-44 



e VLSI TECHNOLOGY, INC. 

VL86C010 
FIGURE 20. COPROCESSOR DATA OPERATIONS (CDO) 

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0 
rT"T'":'1" I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
~ 1 1 1 0 CPOpc CRn CRd CP# AUX 0 CRm 

~J yy~~y Y 
I I L Coproc~ssor Cporand 

Condition 
Code 

Coprocessor 
Operation 

Code 

I 
Coprocessor 
Destination 

Register 

Registers 

Coprocesser Auxiliary 
Information 

Coprocessor Number 

The instruction is executed only if the 
condition code field is true. The field is 
described in the Condition Codes 
section. 

This is actually a class of instructions, 
rather than a single instruction, and is 
equivalent to the ALU class on the 
processor. All instructions in this class 
are used to direct the coprocessor to 
perform some internal operation. No 
result is sent back to the CPU, and the 
VL86C010 will not wait for the operation 

Syntax: 

to complete. The coprocessor could 
maintain a queue of such instructions 
awaiting execution. Their execution 
may then overlap other VL86C01 0 
activity, allowing the two processors to 
perform independent tasks in parallel. 

Coprocessor Fields - Only bit 4 and 
bits 31-24 are significant to'the 
VL86C010; the remaining bits are used 
by coprocessors. The above field 
names are used by convention, but 
particular coprocessors may redefine 

CDO{cond} cp#,<expression1>, CRd, CRn, CRm{,<expnession2>} 

where cond Is the conditional execution code, common to ali instructions. 
cp# Is the (unique) coprocessor number, assigned by hardware. 
CRd, CRn, CRm These are valid coprocessor registers: CRO~CR15. 
expression 1 Evaluates to a constant, and is placed in the CP Opcfield. 

the use of any or all fields as appropri­
ate, except for the CP#. For the sake of 
future family product introductions, it is 
encouraged that the above conventions 
be foilowed, unless absolutely neces­
sary. 

By convention, the coprocessor should 
perform an operation sp'ecified in the 
CP Opc field (and possibly in the CP 
field) on the contents of iCRn and CRm, 
placing the result into CRd. 

expression2 (Where present) evaluates to a constant, and is placed in the AUXfield. 

Examples: 
COO 1,10, CR1, CR7, CR2 

CDOEQ 2, 5, CR1, cr2, er3, 2 

; Request coproc #1 to do' operation 10 on CR7 and CR2, putting result into CR1. 

; If the Z flag is set, request coproc #2 to do 
; operation 5 (type 2) on CR2 and CR3, placing the result into CR1. 

FIGURE 21. COPROCESSOR LOAD/STORE DATA (LDC/STC) 

31 28 27 24 23 20 19 16 15 12 11 8 7 
rrli II I IIIIII I I I I I I I I I I I I I ICorrlx 1 1 0 PUN W L Rn CRd CP# 

I I I I I 
Offset 

~~n J Code 

Index Control 
0= Post-move 
1 = Pre-move 

Up/Down 
0= Subtract 
1 = Add Offset 

y y ~8_BitPOSltive 
VL86C010 Coprocessor Immediate 

Base Pointer Src/Dst Offset 
Register Register Coprocessor 

Write Back 
o = No Write Back 
1 = Write e.a. to Rn 

Transfer Length 

Number 
Load/Store Bit 

o = Store to Memory 
1 = Load to Coproc Reg 

2-45 

o 
I I 

• 



"VLSI TECHNOLOGY, INC. 

The LOC and STC instructions are used 
to load or store single bytes or words of 
data. They differ from MCR and MRC 
instructions in that they move data 
between coprocessor registers and a 
specified memory address. In contrast, 
the other instructions move data 
between registers, or move a constant 
(contained in the instruction) into a 
register. 

The memory address used in LOC/STC 
transfers is calculated by adding an 
offset to or subtracting an offset from a 
base pointer register, Rn. Typically, a 
load of a labeled memory location 
involves the loading via a (signed) offset 
from the current PC. Regardless of the 
base register used, the result of the 
offset calculation may be written back 
into the base register if 'auto-indexing' 
is required. 

Coprocessor Fields - The CP# field 
identifies which coprocessor shall 
supply or receive the data. A coproces­
sor will respond only if its number 
matches the contents of this field. 

The CRd field and N bit contain 
information which may be interpreted in 
different ways by different coproces­
sors. By convention, however, CRd is 
the register to be transferred (or the first 
register, where more than one is to be 
transferred). The N bit is used to 
choose one of two transfer length 
options. For instance, N.O could select 
the transfer of a single register, and 
N:z:1 could select the transfer of all 
registers for context switching. 

Offsets and Indexing - The VL86C01 0 
is responsible for providing the address 
used by the memory system for the 
transfer, and the modes available are 

Syntax: 
<LOC/STC>{ condHL}{T}{N} 

similar to those used for the processor's 
LORlSTR instructions. 

Only 8-bit offsets are permitted, and the 
VL86C010 automatically scales them by 
two bits to form a word offset to the 
pointer in the Rn register. Of itself, the 
offset is an 8-bit unsigned value, but a 
9-bit signed negative offset may be 
supplied. The assembler will comple­
ment it to an 8-bit (positive) value and 
will clear the instruction's U bit, forcing a 
compensating subtract. The result is a 
±256 word (1024 byte) offset from Rn. 
Again, the VL86C01 0 internally shifts 
the offset left two bits before addition to 
the Rn register. 

The offset modification may be per­
formed either before (pre-indexed, P=1) 
or after (post-indexed, P.O) the base is 
used as the transfer address. The 
modified base value may be written 
back into the base (W-1), or the old 
base value may be kept (W=O). In the 
case of post-indexed addressing, the 
write back bit is redundant, since the old 
base value can be retained by setting 
the offset to zero. Therefore, post­
indexed data transfers always write 
back the modified base. 

For an offset of + 1, the value of the Rn 
base pointer register (modified, in the 
pre-indexed case) is used for the first 
word transferred. Should the instruction 
be repeated, the second word will go 
fromlto an address one word (4 bytes) 
higher than pointed to by the original 
Rn, and so on. 

Use of R15 - If R15 is specified as the 
base register (Rn), the PC is used 
without the PSR flags. When using the 
PC as the base register note that it 
contains an address eight bytes 

cp#, CRd, <Address>{!} 

where LDC means Load from memory into a coprocessor register. 
means store a coprocessor register to memory. 

VL86C010 
advanced from the address of the 
current instruction. As with the LORI 
STR case, the assembler performs this 
compensation automatically. 

Hardware Address Translation - The 
W bit may be used in non-user mode 
programs (when post-indexed address­
ing is used) to force the -TRANS pin low 
for the transfer cycle. This allows the 
operating system to generate user 
addresses when a suitable memory 
management system is present. 

Address Exceptions - If the address 
used for the first transfer is illegal, the 
address exception mechanism will be 
invoked. Instructions which transfer 
multiple words will only trap if the first 
address is illegal; subsequent address 
will wrap around inside the 26-bit 
address space. 

Note that only the address actually used 
for the transfer is checked. A base 
containing an address outside the legal 
range may be used in a pre-indexed 
transfer if the offset brings the address 
within the legal range. Likewise, a 
base within the legal range may be 
modified by post-indexing to outside the 
legal range without causing an address 
exception. 

Data Aborts - If the address is legal but 
the memory manager generates an 
abort, the data abort trap will be taken. 
The write back of the modified base will 
take place, but all other processor state 
data will be preserved. The coproces­
sor is partly responsible for ensuring 
restartability. It must either detect the 
abort, or ensure that any actions 
consequent from this instruction can be 
repeated when the instruction is retried 
after the resolution of the abort. 

STC 
cond 
L 

is a two-character condition mnemonic (see Condition Code section). 
If present implies long transfer (N ... 1), else a short transfer (N=O). 

T 

cp# 
CRd 
Address 

If present, the W bit is set in a post-indexed instruction, causing the 
- TRAN pin to go low for the transfer cycle. T is not allowed when a pre­
indexed addressing mode is specified or implied. 
N sets the value of bit 22 of instruction. 
Valid coprocessor number, determined by hardware. 
Valid coprocessor register number: CRO-CR15. 
Can be any of the variations in the following table. 

2-46 



e VLSI TECHNOLOGY, INC. 

Address Variants: 
Address expression: 

<expression> 

Pre-indexed address: 

[RnH!} 

An expression evaluating to a relocatable address: 

The assembler will attempt to generate an instruction using the PC 
as a base, and a corrected offset to the location given by the 9-bit 
expression. This is a PC-relative pre-indexed address. If out of range 
(at assembly or link time), an error message will be given. 

Offset is added to base register before using as effective address, and 
offsets are placed within the [ ] pair. Rn may be viewed as a pointer: 

No offset is added to base address pointer. 
[Rn, <expression>] 
[Rn, <expression>]{I} 

Signed offset of expression (bytes) is added to base pointer. 
Signed offset of expression (bytes) is added to base pointer. Then 
this effective address is written back to Rn. 

Post-indexed address: Offset is added to base reg, after using base reg for the effective 
address. Offsets are placed after the [ ] pair: 

[Rn],<expression> Expression is added to Rn, after Rn's usage as a pointer. 

where expression A signed 9-bit expression (including the sign). 
Rn Valid register names: RO-R1S, SP, LK, or PC. If Rn = PC, the 

assembler will subtract 8 from the expression to allow for processor 
address read ahead. 

Examples (Pre-Index): 

Vl86C010 

In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the 
effective address. Rn is then updated only if the I suffix is supplied. Coprocessor #1 is used in all cases, for sirmplicity. 

STC 1,CR3, [R2] ; *(R2) - CR3. 
LOC 1 ,CR1, [RO. 16] ; CR1 ... *(RO + 16). Don't update RO. 
LOCEQ 1,CR2, [RS, 12]1 ; if (Zflag) CR2 .. *(RS + 12). Then, RS += 12. 

Examples (Post-Index): 
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the 
effective address. Rn is then updated unconditionally. Coprocessor #3 is used in all cases, for simplicity. 

STC 3, CR1, [R2], 8 ; *R2 - CR1. Then R2 + .. 8. 
LOC 3, CR1, [RO], 16 ; CR1 - *RO. Then RO += 16. 
LOCEQL 3, CR2, [RS], 4 ; if (Zflag) CR2 - *RS, and then (implicitly), RS +-= 4. 

; Use the long option (probably to store multiple words). 

Examples (Expression): 
In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-'relative refer­
ences are precompensated for the 8-byte read-ahead done by the processor. It may be located up to ±1 024 bytes from the 
associated base register, and must be a multiple of 4 bytes in offset. 

STC 3, CRS, PLACE ; PC-relative. Same as: STC 3, CRS, [PC+8]. 
B Across ; Skip over the data temporary. 

PLACE OW 
Across 

o ; Temporary storage area. 
; Resume execution. 

2-47 

I 



_ VLSI TECHNOLOGY, INC 

VL86C010 
FIGURE 22. COPROCESSOR REGISTER TRANSFER (MCR,MRC) 

31 28 27 24 23 21 19 16 15 12 11 8 7 5 4 3 0 

I I I I I I I I I I I I I I 
Condx 1 1 1 0 CP Opc L 

~--.J coprOC.SS"'~ 
Condition Operation 

Code Code 

I 
VL86C010 

Src/Dst 
Register 

I L Coprocessor Auxiliary 
~ Information 

Load/Store Bit 
Coprocessor Number 

o = Store to coproc 
1 = Load from coproc 

The instruction is executed only if the 
~ondition code field is true. The field is 
described in the Condition Codes 
section. 

This is actually a class of instructions, 
rather than a single instruction, and is 
equivalent to the ALU class on the 
processor. Instructions in this class are 
used to direct the coprocessor to 
perform some operation between a 
processor register and a coprocessor 
register. It differs from the CPO 
instruction in that the CPO performs 
operations on the coprocessor's internal 
registers only. 

An example of an MCR usage would be 
a FIX of a floating point value held in 
the coprocessor, where the number is 
converted to a 32-bit integer within the 
coprocessor, and the result then 
transferred back to an ARM register. 
An example of an MRC usage would be 

Syntax: 

Coprocessor Operand 
Registers 

the converse: A FLOAT of a 32-bit 
value in a VL86C01 0 register into a 
floating point value within a coprocessor 
register. 

An intended use of this instruction is to 
communicate control information 
directly between the coprocessor and 
the processor PSR flags. As an 
example, the result of a comparison of 
two floating point values within the 
coprocessor can be moved to the PSR 
to control subsequent execution flow. 

Coprocessor Fields - The CP# field is 
used by all coprocessor instructions to 
specify which coprocessor is being 
invoked. 

The CP Ope, CRn, CP, and CRm fields 
are used only by the coprocessor, and 
the interpretation of these fields is set 
only by convention; other incompatible 
interpretations are allowed. The 

MCRlMRC{cond} CP#,<expressionb, Rd, CRn, CRm{.<expression2>} 

where cond 
CP# 
Rd 

Is the conditional execution code, common to all instructions. 
Is the (unique) coprocessor number, assigned by hardware. 
Is the ARM source or destination register. 
These are valid coprocessor registers: CRO-CR15. 
Evaluates to a constant, and is placed in the CP Opc field. 

conventional interpretation is that the 
CP Opc and CP fields specify the 
operation for the coprocessor to 
perform, CRn is the coprocessor 
register used as source or destination of 
the transferred information, and CRm is 
the second coprocessor register which 
may be involved in some way depend­
ent upon the operation code. 

Transfers To/From R15: When a 
coprocessor register transfer to 
VL86C010 has R15 as the destination, 
bits 31-28 of the transferred word are 
copied into the N, Z, C, and V flags, 
respectively. The other bits of the 
transferred word are ignored; the PC 
and other PSR flags are unaffected by 
the transfer. 

A coprocessor register transfer from 
VL86C010 with R15 as the source 
register will save the PC together with 
the PSR flags. 

CRn, CRm 
expression 1 
expression2 (Where present) evaluates to a constant, and is placed in the AUX field. 

Examples: 
MCR 1,6, Ri, CR7, CR2 ; Request co-proc #1 to do operation 6 on 

; CR7 and CR2, putting result into ARM's R1. 

MRCEQ 2, 5, R1, cr2, Cr3, 2 ; If the Z flag is set, transfer the ARM's R1 reg to the co-proc register (defined 
; by hardware), and request co-proc #2 to do oper 5 (type 2) on CR2 and CR3. 

2-48 



e VLSI TECHNOLOGY, INC 

FIGURE 23. UNDEFINED (RESERVED) INSTRUCTlONS 

31 28 27 24 23 8 7 4 3 0 
~iliiiliiiliiiliiiliiiliiiliiil condXo 0 0 1XXXXXXXXXXXXXXXX1 XX1XXXX 

31 28 27 24 23 8 7 5 4 3 0 
~iliilliiiliiiliilllllllllllill 

Condx0 1 1XXXXXXXXXXXXXXXXXXXX1XXXX 

VL86C010 

Note: The above instructions will be presented for execution only if thei condition field is true. 

If the condition is true, the Undefined 
Instruction trap wiii be taken. 

Note that the undefined instruction 
mechanism involves offering these 
instructions to any coprocessors which 
may be present, and all coprocessors 
must refuse to accept them by taking 
CPA high. 

Using Conditional Instructions -

Assembler Syntax - At pr.esent the 
assembler has no mnemonics for 
generating these instructions. If they 
are adopted in the future for some 
specified use, suitable mnemonics wiii 
be added to the assembler. Untii such 
time, these instructions should not be 
used. 

(1) Using conditionals for logical OR, this sequence: 
CMP R1, P ; If R1 =p or R2-q then goto Label 
SEQ Label 
CMP R2, q 
SEQ Label 

can be replaced by 
CMP R1, P 

INSTRUCTION SET EXAMPLES 
The foiiowing examples show ways in 
which the basic processor instructions 
can combine to give efficient code. 
None of these methods saves a great 
deal of execution time (although they 
may save some), mostly they just save 
code. 

CMPNE Rm, q 
SEQ 

; If condition not satisfied try other test 

(2) Absolute value 
TEQ 
RSSMI 

Label 

R1,O 
R1, R1, 0 

(3) Multiplication by 4, 5 or 6 (run time) 
MOV R2, RO LSL 2 
CMP R1,5 
ADDCS R2, R2, RO 
ADDHI R2,R2,RO 

(4) Combining discrete and range tests 
TEQ R2,127 
CMPNE R2, ''''-1 
MOVLS R2, "," 

; Test sign 
; and 2's complement if necessary 

; Multiply by 4 
; Test value 
; Complete multiply by 5 
; Complete multiply by 6 

If (R2<> 127) 
Range test and if (R2<' ') 
Then, R2 ="." 

2-49 

E 



e VLSI TECHNOLOGY, INC. 

Division and Remainder 
; Enter with numbers in RO and R1 

MOV R4,1 
Div1 CMP R1, Ox80000000 

CMPCC R1, RO 
MOVCC R1, R1 LSL 1 
BCC Div1 
MOV R2,O 

Div2 CMP RO, R1 
SUBCS RO,RO,R1 
ADDCS R2,R2,R4 
MOVS R2, R4 LSR 1 
MOVNE R1, R1 LSR 1 
BNE Div2 

Division result is in R2. 
Remainder is in RO. 

; Bit to control the division 
; Move R1 until greater than RO 

; Test for possible subtraction 
; Subtract if ok 
; Put relevant bit into result 
; Shift control bit 
; Halve unless finished 

FIGURE 24. INSTRUCTION SET SUMMARY 

31 2827 24 23 20 19 16 15 12 11 8 7 4 3 o 
, c6ndx 0' 0 II 6~od~ S ' R'n ' , ~d ' ,""I', 1 O~er~nd 21 ' , , 

'c6ndx o'o'o'olo'oIA S 'R'd ' I ~n ' , ~s ' 1 '0' 0 '1 'R~ , 

'C6ndx 0
1
0'0'1 X'X'X X X'X'XIX X'X'X'X XIX'X'X 1 'X' X'1 X'XIX'X 

, C~ndx 0'1 II PUIBlwL ' Rn ' , Rd' , , Offset (v~rla~ts ' , , 
'C6ndx 0'1 '1 X X'x'x'xlx'x'x'xlx'x'x'xlx'x'x'X'X'X'x 1 x'x'xIX 

'c6ndx l' 0 10 p1u
l 
S'W

I 
L ' Rnl R15 ~ I , , ~e~ls~er 'Lis~ , , ~RO 

'C6ndx 1 '0 '1 L 
' , , , , , 

, Wo:d ~dd're~s ~ffs~t' , , I ' , , 
'C6ndx 1 '1 '0 p UINlw L I Rn ' IC~d' 'CP#' I , 'offse~ , I 

'C6ndx 1 '1 '1 0 cp'o~ 'CRnl 'CRd' 'CP#' cpt 0 'c~m' 
'C6ndx 1 ' 1 '1 '0 CPOPCIL 'CRn' , Rd ' 'cp#' cpt 1 'CRm' 

'C6ndx 1 ' 1 11 ' 1 
I , I 

, , Bi~ spac~l~n6red ~~p~oc~ssor' I 
I , I 

2-50 

Data Processing 

Multiply 

Undefined 

Load, Store 

VL86C010 

Undefined 

Multi-Register Transfer 

Branch, Call 

Coproc Data Transfer 

Coproc Data Opr 

Coproc Register Transfer 

Software Interrupt 



e VLSI TECHNOLOGY, INC 

Pseudo Random Binary Sequence 
Generator - It is often necessary to 
generate (pseudo-) random numbers 
and the most efficient algorithms are 
based on shift register-based genera­
tors with exclusive or feedback rather 

like a cyclic redundancy check genera­
tor. Unfortunately, the sequence of a 
32-bit generator needs more than one 
feedback tap to be maximal length (i.e. 
21132-1 cycles before repetition). The 
basic algorithm is Newbit .. biC33 xor 

Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb) 
Uses R2 

TST R1, R1 LSR 1 
MOVS R2, RO RRX 
ADC R1, R1, R1 
EOR R2, R2, RO LSL 12 
EOR RO, R2, R2 LSR 20 

New seed in RO, R1 as before 

Multiplication by Constant: 
(1) Multiplication by 211n (1,2,4,8,16,32 .. ) 

MOV RO, RO LSL n 

(2) Multiplication by 211n+ 1 (3,5,9,17 .. ) 
ADD RO, RO, RO LSL n 

(3) Multiplication by 211n-1 (3,7,15 .. ) 
RSB RO, RO, RO LSL n 

(4) Multiplication by 6 
ADD RO, RO, RO LSL 1 
ADD RO, RO LSL 1 

(5) Multiply by 10 and add in extra number 
ADD RO, RO, RO LSL 2 
MOV RO, R2, RO LSL 1 

; Top bit into carry 
; 33 bit rotate right 
; Carry into Isb of! R1 
; (Involved!) 
; (Whewl) 

; Multiply by 3 
; and then by 2 

; Multiply by 5 
; Multiply by 2 and add in next digit 

(6) General recursive method for R1 =RO*C,C a constant: 

(a) If C even, say C - 211n*D, Dodd: 

D=1: MOV R1, RO LSL n 
D<> 1: (R 1 .ROOD) 

MOV R1, R1 LSL n 

(b) If C MOD 4 - 1, say C - 211noD+1, Dodd, N>1: 

D-1: ADD R1, RO, RO LSL n 
D<>1: (R1 = RO*D) 

ADD R1, RO, R1 LSL n 

(c) If C MOD 4 = 3, say C - 2I1n*D-1, Dodd, n> 1 : 

D=1: RSB R1. RO, RO LSL n 
D<> 1: (R 1 =ROOD) 

RSB R1, RO, R1 LSL n 

V~86C010 

bit 20, shift left the 33-bit number and 
putin Newbit at the bottom. Then do 
this for all the Newbits needed i.e. 32 of 
them. Luckily, this can all be done in 
5S cycles: 

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by: 

RSB R1, RO, RO LSL 2 ; Multiply by 3 
RSB R1, RO, R1 LSL 2 ; Multiply by 4*3-1 = 11 
ADD R1, RO, R1 LSL 2 ; Multiply by $°11 + 1 .. 45 

rather than by: 

ADD 
ADD 

R1, RO, RO LSL3 
R1, R1, R1 LSL 2 

; Multiply by 9 
; Multiply by 5*9 .. 45 

2-51 

E 



8 VLSI TECHNOLOGY, INC. 

Loading a Word with Unknown Alignment: 
Enter with address in RO (32 bits) 
Uses R1, R2; result in R2. 
Note R2 must be less than R3, e.g. 2, 3 

BIC R1, RO, 3 
LDMIA R1, {R2,R3} 
AND R1, RO, 3 
MOVS R1, R1 LSL 3 
MOVNE R2, R2, LSR R1 
RSBNE R1, R1, 32 
ORRNE R2, R2, R3 LSL R1 

Sign Extension of Partial Word 
MOV RO, RO LSL 16 
MOV RO, RO, LSR 16 

Return, Setting Condition Codes 
BICS PC, R14,CFLAG 
ORRCCS PC, R14, CFLAG 

; Get word aligned address. 
; Get 64 bits containing answer. 
; Correction factor in bytes, not in bits. 
; Test if aligned. 
; Product bottom of result word (if not aligned). 
; Get other shift amount. 
; Combine two halves to get result. 

; Move to top 
; ... and back to bottom 
; (Use ASR to get sign extended version). 

; Returns, clearing C flag ROM link register. 
; Conditionally returns, setting C flag. 

Above code should not be used except in User mode, since it will reset the interrupt enable flags to 
their value when R14 was set up. This generally applies to non-user mode programming. 
e.g., MOVS PC,R14 MOV PC,R14 is saferl 

2-52 

VL86C010 



" VLSI TECHNOLOGY, INC. 

MACHINE CODE INSTRUCTIONS 
This chapter describes machine code 
instructions that are unique to the 
VL86C010 processor. Each symbolic 
instruction line is translated into exactly 
one 32-bit memory word, each aligned 
on a machine-word boundary. 

Appendix A.1 Condition Codes 
All instructions executed by the 
VL86C010 contain a 4-bit field that per­
mits them to be executed only if certain 
conditions are true. If the specified con­
ditions are not true, the ililstruction is 
skipped over. Even an iIIegally­
formatted instruction will be properly 
skipped over if its condition code field is 
properly set. 

Bit 31 N is set if bit 31 is set in the result, indicating 'a negative result. 

Program Status Register (PSR) - In­
structions that use the processor's arith­
metic/logic unit set orte or more of four 
status bits. (These are not the same as 
the 4-bit condition code field of an in­
struction.) The "program status 
register" is not really a. register of itself, 
but is a series of bits within the R15 
(PC) register. The bits are set to indi- I 
cate Carry, Zero, oVerflow, or Negative, 
as follows: 

Bit 30 Z is set if the result of the operation is zero, all bits reset. Certain instructions (as CMP and TST) do not 
actually store the result to a destination register, but do alter the status. 

Bit 29 C 

Bit 28 V 

Bit 27 I 

Bit 26 F 

is set if there was a carry out of bit31. Logic~only instructions do not use (and cannot generate) this carry. 
Usually, these set C to zero, or do not alter it. 

is set if the signs of both operands were identical, but the sign of the result differs from Ithem. It indicates 
that the 32-bit result register was too short ;to hold the result. 

set to 1 to disable the IRO interrupts. 

set to 1 to disable the FIRO interrupts. 

Other status bits exist in the PSR, indi­
cating the current interrupt-enable state 
(bits 27 and 26) and the current 
processor execution state (bits 1 and O. 
The latter may include user, interrupt 
service, or supervisor modes. These 
modes are encoded into bits 0 and 1 of 
the PC, and are discussed page 2-26. 

Instruction Condition Code Field -
The instruction condition code field bits 
specify how certain combinations of 
PSR bits are to be interpreted. Rather 
than require the programmer to specify 
the needed combination of status bits, 
the most useful combinaliions are 
encoded into the condition code field. 
This allows most-often used tests to be 

performed in one instruction rather than 
two. 

Bits 31 to 28 are encoded according to 
the table below. Each encoding is rep­
resented by a 2-letter 'suffix that is ap­
pended to the base instruction mne­
monic. If no such sufflix is given, the 
always encoding is assumed. 

.Emld. ~ 
0000 EO 

0001 NE 

0010 CS 

0011 CC 

0100 MI 

0101 PL 

0110 VS 

0111 VC 

1000 HI 

1001 LS 

1010 GE 

1011 LT 

1100 GT 

1101 LE 

1110 AL 

1111 NV 

fJ.u:wm 
Z set (operands are equal) 

Z clear (operands are unequal) 

C set (1st operand higher or same as 2nd,unsigned compare) 

C clear (1 st operand lower than 2nd, unsigned compare) 

N set (result is negative) 

N clear (result is positive or zero) 

V set (overflow occurred) 

V clear (no overflow occurred) 

C set and Z clear (1st operand higher than!2nd, unsigned compare) 

C clear or Z set (1 st operand lower or same as 2nd, unsigned compare) 

N set and V set, or N clear and V set (1st operand greater or equal to 2nd, signed) 

N set and V clear, or N clear and V set (1st operand less than 2nd, signed) 

Z clear, and either N set and V set, or N clear and V set (1 st operand greater than 2Nd, signed) 

Z set, or N set and V clear, or N clear and V set (1 st operand less than or equal to 2md one, signed). 

Always (unconditional execute the instruction) 

Never (never execute the instruction) 

2-53 



e VLSI TECHNOLOGY, INC. 

Appendix A.2 Miscellaneous 
Machine-specific information not in­
cluded elsewhere in this manual is 
noted in this section. 

Word Alignment - All machine-code 
instructions for the VL86C01 0 are word­
aligned. That is, they must be encoded 
into memory beginning on a 4-byte 
boundary. CASM permits most 
directives to align data which they might 
create on arbitrary (byte) boundaries. 
When a machine instruction (opcode 
mnemonic) is found, CASM forces it to 
begin on the next higher word bound­
ary. The CLINK linker is also directed 
to keep it on such a boundary. 

Default Condition Code - If no condi­
tional-execution suffix code is ap­
pended to an opcode mnemonic, the AL 
(Always) case is assumed. Illegal 
(reserved) instruction patterns may be 
safely encountered by the program 
counter if their condition code is set to 
NV (Never); they will never reach the 
instruction decoder. 

Large Immediate Operands - Certain 
classes of instructions permit the use of 
immediate constants, that is, constants 
that are to be loaded and that are speci­
fied as a part of the 32-bit machine in­
struction. For some, an 8-bit constant 
field is provided, but they permit se­
lected values that are greater than 255. 
In these cases, any constant may be 
used that contains a pattern of 1 s that 
span more than 8 contiguous bits. 

Regardless where the bits may lie in the 
32-bit word to be loaded, they may be 
shifted or rotated by CASM to store 
them in the 8-bit constant field of the 
instruction. CASM then computes the 
type and number of shifts required to 
recreate the desired constant. The 
condition where some bits are located 
at each end is permitted, as the value 
can be rotated to place all 1-bits in the 
least significant part of the instruction. 

This type of constant is noted in the in­
structions that permit them. 

2-54 

VL86C010 

Appendix A.3 Reserved (Undefined) 
Instructions 
Several instructions are undefined. 
They are not currently implemented in 
the hardware and are reserved for 
future versions of the processor. The 
two instructions are: 

Bits 27-24 == 0001, and bits 7 
and 4 are 1. All other bits are 
don't-care conditions. 

Bits 27-25 == 011, and bit 4 is 1. 
All other bits are don't-care 
conditions. 

In both cases, the condition field is 
validly decoded; if bits 31-28 are set to 
1111, the instruction will be ignored by 
the instruction fetch logic. 

Appendix A.4 Shifts 
For arithmetic-logic instructions where 
shifts of an operand are permitted, the 
shift forms in this section are permitted. 
The source of the shift count may be a 
5-bit constant, or may be given in a 
register, as specified for the individual 
instruction types. 



o VLSI TECHNOLOGY, INC 

ADC 
Appendix A.5 ADC - Arithmetic Add 
with Carry 
ADC adds two 32-bit 2's complement 
operands, placing the result into a 
register. A value of + 1 is added to the 
sum if the carry bit was set prior to the 
instruction; nothing is added to the sum 
if the carry was previously clear. 

The normal use for Add-with-Carry is to 
compute sums of numbers that are 

greater than 32 bits in length. The 
multi-precision add sequence is to ADD 
the lowest words together (without carry 
compensation), possibly generating a 
carry in the process. Thei next most 
significant word pair is then added to­
gether with ADC, with thel carry from the 
first pair added to the sum. If even 
more precision is used than two words 
per operand, they are successively 

Vl86C010 

ADC'd together until title most signifi­
cant word pair has been added. (The 
same process is used1for multi­
precision subtracts, but using SUB and 
SBC.) 

An a-bit constant may'be supplied as 
the second operand. The constant may 
consist of any a-bit pattern in a 32-bit 
field, so long as it may be rotated to 
produce an 8-bit constant. 

Intended Usage: Add the upper portions of a multi-word! operand pair together. 

Operational Function: Rd = Rn + Op2 + Carry 

Flags Effected: N, Z, C, V 

Syntax: ADC{ condition}{S} Rd,Rn,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

Variations: 

S 

Rd,Rn 

Op2 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any!of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

Add two 64-bit operands. RO, R1 contain one operand and is to contain the result. R2, R3 contains the other 
operand. 

ADD 
ADC 

Rl, R3 

RO, R2 
: Add LSBs together. 
: Add RO = RO + R2 + Carry (if any). 

If a negative constant is specified as the 2nd operand, the 1 's complement of it is used, and a SBC is substituted 
for the ADO. This effectively extends the range to 9 bits (including sign), and provides for sign extension to 
a full 32 bits. 

2-55 

I 



e VLSI TECHNOLOGY, INC. 

ADD VL86C010 

Appendix A.6 ADD - Arithmetic Add 
Perform a 32-bit addition of two 2's 
complement signed numbers. The 
state of the Carry bit before the addition 
is ignored, and the result is placed into 
a designated register. A carry-out from 

bit 31 will set the Carry flag. If the sum 
of two numbers of like signs should 
result in a change of sign in the result, 
the Overflow (V) bit is set; a carry may 
or may not occur simultaneously. 

An 8-bit constant may be supplied as 
the second operand. The constant may 
consist of any 8-bit pattern in a 32-bit 
field, so long as it may be rotated with 
2-bit shifts to produce an 8-bit constant. 

Intended Usage: Add two operands together, or add together the lower words of a multi-word operand pair. 

Operational Function: Rd - Rn + Op2 

Flags Effected: N, Z, C, V 

Syntax: ADD{ condition}{S} Rd,Rn,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

Variations: 

S 

Rd,Rn 

Op2 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

ADD 
ADD 

RO, RO, R2 ASR 2 

R5, R4, Ox 8000 

; RO = RO + <R2/4) 

; R5 = R4 + 32768 

If a negative constant is specified as the 2nd operand, the 2's complement of it is used, and a SUB is substituted 
for the ADD. This effectively extends the range to 9 bits (including sign), and provides for sign extension to 
a full 32 bits. 

2-56 



• VLSI TECHNOLOGY, INC. AND 
Appendix A.7 AND - Logical AND 
The logical AND operation is performed 
on two operand words, and the 32-bit 
result is written to the destination 
register. For each bit position in the two 
operands, a test is made to determine 
that they are both set (1). If so, the 
same bit position in the destination 

register is turned on. It is ,otherwise 
turned off. The same operation is 
performed for each of the '32-bit posi­
tions. 

An a-bit constant may be supplied as 
the second operand. The constant may 
consist of any a-bit pattern in a 32-bit 

VL86C010 

field, so long as it may' be rotated with 
2-bit shifts to produce an a-bit constant. 

As with all logical opeJ1ations, no carries 
are involved between bits in the same 
register, whether the source or the des­
tination. However, the Carry status flag 
is set if bit 31 is set in both of the 
source operand registers. 

Intended Usage: Mask selected portions of an operand valUe to preserve only those bits specified by the second 
operand. Also, perform the logical AND operation on two words. (To clear only those bits specified by 
the second operand, use the BIC instruction.) 

Operational Function: Rd .. Rn AND Op2 

Flags Effected: N, Z, C 

Syntax: 

where 

S 

Rd,Rn 

Op2 

Rm 

Rs 

shift 

AND{ condition}{S} Rd,Rn,Op2 

condition is an optional2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

are any valid register names, such as RO-R15,PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

is any valid register names, as per Rd or Rn above, the operand value. 

is a register. per Rd above, containing a shift count in range of 1 .. 32. 

is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any Signed expression shiftable into an a-bit value. 

Examples: 

Variations: 

AND R9, R9, OxFFFFFFOO ; Same as B Ie R9, R9, Ox FF. 
AND R2, R 1 LSL 2 ; Mask via another register. 

If a negative constant is specified as the 2nd operand, the 1's complement of it is used, and a BIC is substituted 
for the AND. This effectively extends the range to 9 bits (including sign), and provides for sign extension to 
a full 32 bits. 

2-57 

I 



_ VLSI TECHNOLOGY, INC. 

Bee 
Appendix A.a B - Branch 
Force the program to branch to a new 
(word-aligned) address. The Program 
Counter (PC) is kept in the R15 
register. The B instruction forces the 
value in R15 to be the sum of its current 
value and the instruction's operand 
field. That addition makes this a PC­
relative branch, not an absolute branch. 
The 24-bit operand field permits a 
branch to any word address within the 
processor's address space. 

The idea of a "relative" branch is that 
the processor can jump to any desired 
offset from its current position, the 

implication being that code containing 
the instruction may be moved around 
at will. This way, there is no need to 
compensate the operand field of the 
instruction for the address change if 
the code is moved around. 

Most code using the branch instruction 
contains other material that may 
prevent it from being truly position 
independent, however. For example, 
an LDC instruction also uses a 
position-relative addressing scheme, 
but it may load a constant from 
memory to be used as an instruction 
or data pointer. That constant will be 

VL86C010 

the original address of the target 
instruction or data, and will remain 
uncompensated for any repositioning of 
the program. The moral is that position­
independent code can be created, with 
care. 

Note that at all times, the program 
counter (R15) will be 8 bytes ahead, a 
result of prefetching to fill the 
processor's 2-word instruction pipeline. 
CASM automatically compensates for 
this when computing the offset to the 
target label. CLINK will do that com­
pensation if the target is in another 
location counter or is an external label. 

Intended Usage: Continue execution from a new address given by a label or an expression. 

Operational Function: Jump to PC-relative address. 

Flags Effected: (none) 

Syntax: B address_ expression 

where address_expression may be an expression involving relocatable or external labels, or may be a fully defined 
(absolute) numeric value. If absolute, the processor will jump to that specific numeric 
address. 

Examples: 

Variations: 

SEQ 
S 

Cmtin_S 
Ox 3800000 

; Relative branch to CONTIN_S label. 
; Jump into RCM space. 

A branch to a fixed address in memory is possible, e.g., a jump to Ox1 000 or some other fixed address, regard­
less of any ORG statements used with the CLINK linker. This may be done in either of two ways: 

1. Simply ensure that the target expression is an absolute address, without any relocatable labels in 

it. 

2. Compute and load the target address into any register. Then MOV the result from that register into 
the PC (R15). 

CASM recognizes the condition in method #1, and instructs the linker to process the address accordingly. 

2-58 



e VLSI TECHNOLOGY, INC. 

BIC VL86C010 

Appendix A.9 BIC • Bit Clear 
Clear those bits in one operand indi­
cated by the bits in the same position in 
the other operand. The result is placed 
into the specified destination register. 

An 8-bit constant may be supplied as 
the second operand. The constant may 
consist of any 8-bit pattern:in a 32-bit 
field, so long as it may be ~otated to 
produce an 8-bit constant. 

As with all logical operations, no carries 
are involved between bits in the same 
register, whether the source or the des­
tination. However, the Carry status flag 
is set if bit 31 is set in both of the 
source operand registers. 

Note: BIC and ORR cannot be used (even in supervisor mode) to set or clear PSR bits. Use TEQP for that purpose. 

Intended Usage: Mask out selected bits from the source register (Rn). 

Operational Function: Rd = Rn AND 1's-complement-of (Op2) 

Flags Effected: N, Z, C 

Syntax: BIC{condition}{S} Rd, Rn, Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

Variations: 

S 

Rd,Rn 

Op2 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

BIC 
BIC 

Rl, Rl, 5 

RO, RO, 1 
; Same as AND R 1 ,R 1 ,OX FFFFFFF2 
; Clear LSB of RO. 

If a negative constant is specified as the 2nd operand, the 1 's complement of it is used, and a AND is substituted 
for the BIC. This effectively extends the range to!9 bits (including sign), and provides for si9n extension to a 
full 32 bits. 

2-59 

E 



_ VLSI TECHNOLOGY, INC. 

BL VL86C010 

Appendix A.1 0 BL - Branch with Link 
Save the address of the next instruc­
tion, and then branch to the address 
indicated in the instruction. The target 
address is computed by adding the 
relative (word) offset given in the 

operand area of the instruction to the 
current value in the program counter 
(R15, or 'PC'). 

Branch-with-Link (BL) differs from the 
simple Branch (B) instruction in that it 

preserves the address of the next in­
struction in sequence in R14. This 
permits the routine at the target address 
to return to that next instruction when it 
completes its activity. 

Intended Usage: Jump to a subroutine, saving address of next instruction for the return. To 

return from the subroutine, the following are two simple ways to get back: 

1. 

2. 

MOVS PC, R1Ll 
MOV PC, R1Ll 

; Restore original status. 
; Leave current status unchanged. 

Many other variations to force a return are possible and are permitted. 

Operational Function: Save PC in R14, and jump to PC-relative address. 

Flags Effected: (none) 

Syntax: BL address_expression 

where address_expression may be an expression involving relocatable or external labels, 

or may be a fully defined (absolute) numeric value. If absolute, 

the processor will jump to that specific numeric address. 

Examples: 

Variations: 

BLGT READ ; Call the READ routine. 
AeONS ROM=Ox3800000 
BL ROM + IO_WRITE ; Call subrOJtine in ROM space. 

A subroutine call to a fixed address in memory is possible, e.g., a jump to Ox1 000 

or some other fixed address, regardless of any ORG statements used with the 

CLINK linker. This may be done in either of two ways: 

1. Simply ensure that the target expression is an absolute address, without 

any relocatable labels in it. 

2. Compute and load the target address into any register. Then MOV the result 

from that register into the PC (R15). 

CASM recognizes the condition in method #1, and instructs the linker to process the 

address accordingly. 

2-60 



e VLSI TECHNOLOGY, INC. 

COO 
Appendix A.11 COO· Coprocessor 
Data Operations 
Initiate some data processing action in 
an attached coprocessor. Actual 

function of the instruction is implemen­
tation dependent. No information (other 
than for register number and control 
information) is passed between the 

• Three coprocessor register-number fields. 

• A coprocessor number, specifying which of several coprocessors to activate. 

• A 4-bit coprocessor opcode field, indicating the action to be performed. 

VIL86C010 

CPU and coprocessor. The instruction 
forces the following items to appear at 
the coprocessor interface: 

• An additional unallocated 3-bit field to supply additional information to the coprocessor. 

In actual fact, only coprocessor number 
and the CPU instruction's opcode bits 
are required by the hardware; all other 
fields are assigned within CASM by 

convention only. The assembler will 
accept information and assign values to 
the various fields as defined below. 

Intended Usage: Force execution of an internal coprocessor 'opcode operation. 

As with all coprocess0r instructions, 
depending upon hardware design, they 
may hang the CPU up if they are exe­
cuted without there being a hardware 
coprocessor that can respond to it. 

Operational Function: If the condition field evaluates true, instruct the coprocessor to perform 

the instruction assigned to the indicated coprocessor opcode. 

Flags Effected: (none) 

Syntax: CDO{condition} cp#, coproc_opc, CRd, CRn, CRm {, expression} 

where condition is any of the condition codes shown in the Condition Codes section. 

Examples: 

cp# is an expression giving the coprocessor number, ranging 0 .. 15. 

coproc_opc is the coprocessor opcode, an expression in the range of 0 .. 15. 

Rn is a valid CPU destination register, RO .. R15, SP, LK, or PC. 

CRn, CRm, CRM are any valid coprocessor registers, CRO .. CR15. 

expression is an optional expression in the range of 0 .. 7, of auxiliary information. 

COONE I, 6,CR9,CRI,CRO, 7 
COO 0,13,CRI2,CR3,CR3 

2-61 

I 



_ VLSI TECHNOLOGY, INC. 

CMN VL86C010 

Appendix A.12 CMN • Set Negative 
Compare 
The CMN instruction is to compare an 
operand against a 2's complement 
negative value. It is the negative­
number counterpart of the CMP 
instruction. See the Variations section 
below for the method of processing 
negative constants. (When comparing 
against a constant, it is suggested for 
maintainability and ease of understand-

ing that CMP be used for all compares, 
letting CASM choose between CMP or 
CMN based upon the sign of the 
constant.) Of course, the second 
operand need not be a constant and 
may be a register. 

Because the only purpose for this in­
struction is to perform a test, setting 
the condition codes on the result, the 
'S' suffix (save status) is redundant, 
and is automatically implied by CASM. 

This is a "logical" instruction, so no 
inter-bit carry is permitted ill the 
hardware, and an overflow condition is 
not possible. The V status bit is, 
therefore, not altered by the instruction. 

An 8-bit constant may be supplied as 
the second operand. The constant 
may consist of any 8-bit pattern in a 
32-bit field, so long as it may be 
rotated to produce an 8-bit constant. 

Intended Usage: Comparison against a negative constant. 

Operational Function: Rn + Op2 (result not stored) 

Flags Effected: N,Z, C, V 

Syntax: CMN{condition}{p} Rn,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets PSR bits based upon bits 28-31 of the ALU result. 

Examples: 

Variations: 

P 

Rn is any valid register names, such as RO-R15, PC, SP,or LK. 

Op2 is second operand, and may have any of the following forms: 

Rm 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

CMN 
CMN 

RO, -23 

R10, R2 
; Same as CMP RO, 22 

; Equiv to CMP R 10, (NOT R2) 

If a negative constant is specified as the 2nd operand, the 2's complement of it is 

used, and a CMP is substituted for the CMN. This effectively extends the range to 

9 bits (including sign), and provides for sign extension to a full 32 bits. 

An S suffix is optional, and is always implied. 

When a P suffix is used, the those bits of the 32-bit ALU result which map over the 

PSR bits in R15 are loaded directly into the PSR. This bypasses the usual status 

store to the PSR. 

2-62 



e VLSI TECHNOLOGY, INC. 

CMP VL86C010 
-------------------------------------------------------------------------------

Appendix A.13 CMP· Arithmetic 
Comparison 

or negative, but consult the 'below Vari­
ations subsection for processing of 
negative values. 

suffix (save status) is redundant, and is 
automatically assumed by CASM. 

Compare a register against the value in 
another register or a constant. No reg­
ister is set with the result, but the flag 
bits in the PSR are updated accord­
ingly. Constant values may be positive 

Because the only purpose for this in­
struction is to perform a test, setting the 
condition codes on the result, the'S' 

An a-bit constant may be supplied as 
the second operand. The constant may 
consist of any a-bit pattern in a 32-bit 
field, so long as it may be rotated to 
produce an 8-bit constant. 

Intended Usage: Compare two operands for their relative size ,to each other. 

Operational Function: Rn - Op2 (result is not saved) 

Flags Effected: N, Z, C, V 

Syntax: CMP{condition}{P} Rn, Op2 

where condition is an optional2-character condition code. See the Condition Code section. 

(if present) sets PSR bits based upon bits 28-31 of the ALU result. 

Example: 

Variations: 

p 

Rn is any valid register names, such as RO-R1S, PC, SP, or LK. 

Op2 is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rdor Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

A routine to do character range checks and ASCII-hex conversion is given here. R1 holds 

hex string (upper case), and result goes into RO. Stop at first non-hex character found. 

Hex 
Hex 10 

MCN 
LORB 
cmp 
movcc 
cmp 
subls 
bls 
cmp 
movcc 

RO,O 
R2,[R 1J. 1 
r2, "0" 

PC.LK 
R2,"9" 
r2,r2.'O' 
Hex20 
r2, "A" 

PC.LK 
cmp r2, "F" 

; Clear result. 
; Get ASCII character. 
; Check O-g. 

: Return to caller. 

; Convert decimal to binary. 

: Check A-F. 
; Return to caller. 

movgt PC.LK ; Return to caller. 
sub r2,r2.'A'-10 : Convert hex to binary. 

Hex20 add rO,r2,rOLSL4 ; Merge in digit. 

b Hex 10 ; Do next digit. 
If a negative constant is specified as the 2nd operand, the 2's complement of it is used, and a CMN is 

substituted for the CMP. This effectively extends the range to 9 bits (including sign), and p>rovides for 

sign extension to a full 32 bits. An S suffix is optional, and is always implied. If a P suffix is used, the 

PSRbits are loaded directly from their equivalent! positions in the 32-bit ALU result.. 

2-63 

E 



e VLSI TECHNOLOGY, INC. 

EOR VL86C010 

Appendix A.14 EOR - Logical Exclu­
sive OR 

set, and one must be set. H so, the 
same bit position in the destination 
register is turned on; it is otherwise 
cleared. The operation is performed for 
each of the 32-bit positions. 

produce an a-bit constant. 

The logical Exclusive OR operation is 
performed on two operand words, and 
the 32-bit result is written to the desti­
nation register. For each bit position in 
the two operands, a test is made to de­
termine that they differ from each other, 
i.e., only one bit in each pair may be 

An a-bit constant may be supplied as 
the second operand. The constant may 
consist of any a-bit pattern in a 32-bit 
field, so long as it may be rotated to 

As with all logical operations, no carries 
are involved between bits in the same 
register, whether it is the source or the 
destination. The Exclusive OR opera­
tion may be viewed as an add operation 
without inter-bit carries. 

Intended Usage: Compute the Exclusive-Or logical function of two operands, saving the 

results into a destination register. 

Operational Function: Rd - (Rn AND NOT Op2) OR (Op2 AND NOT Rn) 

Flags Effected: N, Z, C 

Syntax: EOR{ condition}{S} Rd,Rn,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

S 

Rd,Rn 

Op2 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an a-bit value. 

EOR R5, R5,32 ; Complement bit 5. 

EOR R 1 0, R 1 0, r 1 3 

2-64 



_ VLSI TECHNOLOGY, INC. 

LDe ---------------------------------------------------------------------
VL86C010 

Appendix A.1S LDC - Load Coproces­
sor from Memory 
LOC loads a coprocessor register from 
memory. Both a coprocessor and the 

desired register within it must be speci­
fied. This instruction is the coprocessor 
equivalent to the LOR instruction. As 
with the LOR, pre-and post-indexing of 

the Rn CPU register is provided for, and 
the target address may be a register­
relative address. 

Intended Usage: Load a coprocessor register from the indicated memory location. 

Operational Function: Load the specified CRn register in the indicated coprocessor from 

memory. Indexing of a CPU register gives the effective memory address. 

Flags Effected: (none) 

Syntax: LOC{ condition}{ L}{ T} cp#, CRd, address{ ~ 

where condition is one of the optional condition test codes described in Condition Codes. 

Implies a hardware-dependent function specified by the N bit. By con­

vention, N=1 implies long transfer. If N is missing, a short transfer is 

indicated. 

Examples: 

N 

T 

cp# 

CRd 

I 

address 

Set the Wbit, indicating that address translation is to take place. The 

TRAN pin is pulled low for the transfer cycle. 

is a coprocessor number in the range of 0 .. 15. 

is a coprocessor register number, CRO .. CR15. 

forces the effective address to be written back to Rn, if Rn is present. 

can be any of the variations given below: 

expression 

[Rn] 

[Rn, expression] 

[[Rn], expression 

(T suffix is not allowed) 

(T suffix is not allowed) 

expression is an expression in the range of -1023 to + 1023 (bytes) relative to the 

current program counter. It is scaled right 2 bits by CASM, and the 

complement of the sign is placed in the U-bit. The a-bit absolute value 

if the expression is used in the instruction. 

Rn is any valid (CPU) processor register, RO .. R15. If R15 is used, the status 

bits are stripped before usage. 

LOC 
LOCEO 

1,CR2'[LK,-4] 

2,CRO'[RS14 
LOC 2,crO,800 

; Set CR2 from word after last call. 

2-65 

I 



e VLSI TECHNOLOGY, INC. 

LDM VL86C010 

Appendix A.16 LDM . Load Multiple 
Registers 

field indicate which registers are to be 
loaded. Up to 16 registers may be 
loaded in one instruction. 

register is to be incremented/decre­
mented before or after each register 
gets loaded. The lowest numbered 
register is always obtained from the 
lowest address in memory. 

From one to 16 registers may be loaded 
from memory by a single LDM instruc­
tion. Any specific register may be 
included in the register set list; registers 
in the set need not be contiguous. 
Sixteen bits in the instruction's operand 

Variations in the mnemonic indicate 
whether the registers are to be loaded 
in ascending or descending addresses, 
and whether the base pointer (stack) 

As with all instructions, the LDM is only 
executed if the status specified by the 
optional conditional code is met. 

Intended Usage: Restore multiple registers at one time from a stack. 

Operational Function: Perform repeated "pops" via a register designated as a stack base 

register to the registers supplied in a list. While the value in the stack base register is 

effectively updated during the transfer, the final value is not written back unless 

so indicated by the 'I' suffix on the register list. 

Flags Effected: None, unless the S-bit in the instruction has been set via the '''' caret marker. 

Syntax: LDM{condition}mode Rn{l},{reg_list}{A} 

where 

Modes: 

condition is an optional condition, as given in the Condition Codes section. 

mode is a required mode indicator, taken from the following table. 

Rn is any valid register in the range of RO .. R15. 

II 

indicates that the updated base address is to be saved back into 

the Rn register. 

User mode: II is ignored. 

Non-User mode: If R15 is in list, PSR is loaded, and any other registers in the list reference 

the register bank of the current mode. Else, any registers in the list reference 

the user mode register bank. 

(braces are required) is a list of registers to be loaded. They may be 

any of the valid registers RO .. R15 separated by commas. A range of 

registers may also be included by separating them by a dash. 

The above mode field must be selected from one of the following codes: 

~ ~ ~ BJrW.iQQ 

IB Increment Before Pop upwards Pre-increment load 

IA Increment After Pop upwards Post-increment load 

DB Decrement Before Pop downwards Pre-decrement load 

DA Decrement After Pop downwards Post-decrement load 

Other alternative forms for the above codes are supported, for completeness. 

They are not documented here, and their use is discouraged. 

Examples: STMOA SPI,{RO-R5,LK} ; S3ve regs & status. 

LOMIS SP!,(rO-r5,PCY ; Restore status and return. 

LOMIS R2,{R3-LK} ; Restore a bunch. 
Variations: R15 may be used in the transfer list. If loaded using an LDM, the PC's value will be 

reduced 12 bytes (3 words) from the value stored in memory, to compensate for the value 

stored by an STM. If the II marker is used, the PSR will be reset to the PSR value which was 

stored by the STM. 

2-66 



e VLSI TECHNOLOGY, INC. 

LOR 
Appendix A.17 LOR - Load Register 
from Memory 
Load a register with the 8-bit or 32-bit 
value obtained from the designated 
memory address. The operand 
address may be specified as relative to 
any register (including the PC), and 
either a word or a byte value may be 
loaded. If a word value is loaded, it 
must be word aligned, not straddling a 
word boundary. The ability to specify a 
base register and an increment or 
decrement amount is of significant 

value when accessing arrays of data, or 
when working with data pointers. 

The base register may be offset by a 
13-bit (including sign) constant either 
before or after the transfer. The 
constant is stored in the instruction in its 
positive form, and the complement of 
the original sign is stored :in the U-bit 
field. 

Alternatively, the base register may be 
modified (before or after the transfer) by 
the value contained in a second 
register. This modification register's 

VL86C010 

value may optionally be first shifted or 
rotated rotated from 1 to 31 bits. 

LDR differs from MOV OR LEA in that 
the latter loads values from another 
register. When operating in supervisor 
mode, the T suffix ma)! be appended 
(with post-incrementing only) to force 
the normally untranslated memory 
address space to be t~anslated. This 
uses the logical-to-physical address 
translation tables inside the MEMC 
memory controller, via; the TRAN pin of 
the processor. 

Intended Usage: Load an 8-bit or 32-bit quantity from memory into a register. The memory address 

may be PC-relative or register relative. (An ordinary program label would be 

PC-relative). A MOV should be used to load a constant value to the register. 

OlPerational Function: load register Rd from the effective address. 

Flags Effected: (none) 

Syntax: LDR{condition}{8}{T} Rd, address {I} 

where condition 

B 

T 

Rd 

I 

address 

Rn 

Rm 

expression 

shift 

count 

is a code given in the section on Condition Codes. 

is given to force the loading of an 8-bit byte, rather than a 32-bit word. 

is given (in post-increment mode only) to force an address translation. 

is any valid CPU register, RO .. R15. 

forces the Rn register to be updated by the value of the offset afterwards. 

is any of the following variations.: 

~ {;.tf.~gi'i~ t1QQ!~~~ ~ 

[Rn] Rn N/A 

[Rn, expression] Rn + expression Pre-indexed. * 

[Rn, Rm] Rn+ Rm Pre-indexed. * 

[Rn, Rm shift count] Rn + (Rm shifted by count). Pre-indexed. * 

[Rn], expression Rn Post-incremont. 

[Rn], Rm Rn Post-increment. 

[RnJ, Rm shift count] Rn Post-increment. 

is any valid CPU register, RO .. R15, and holds the transfer base address. 

is any valid CPU register, RO .. R15, and: holds a (signed) address increment. 

is an expression in the range of -4095 to +4095. 

is any shift type indicator: LSL, LSR, ASR, ROR, or RRX 

is any constant in the range of 1 .. 31, and is the shift count. 

*If I follows the' ] " then Rn is also incremented, i.e. post increment mode. 

2-67 

I 



o VLSI TECHNOLOGY, INC 

LOR VL86C010 

Appendix A.17 LOR (Cont.) 

Remarks: The "address modifier" is the amount to add to the base transfer address (in Rn). It is 

Examples: 

added to Rn before the transfer if pre-indexed, or after the transfer if post-indexed. Pre- or 

post-indexing is determined by where the modifier is found. If it is given inside the [ ] brackets, 

it is a pre-indexed case, and the modifier becomes included in the effective address. If given 

outside of the [ ] brackets, it is a post-indexed case; the modifier comes into play only after 

the transfer has taken place. 

LOR 
LOREQ 
LOR 
LOR 

Rl, [R1SJ 

R3, [SP+OX 1 oJ! 
RS, [R3, R2 SHL 2J 
LK, [LKJ 

; SP = SP+ 16. 

Variations: R15 usage has a number of special cases associated with it: 

1. PSR is never modified, even when Rd or Rn is the PC. 

2. If Rn is R15, the PC is used without any of the PSR flags. Note: it will 

be advanced by 8 bytes from the current instruction. 

3. If PC is used as the offset (Rm) register, the value used includes the flags, and thus will be 

an invalid address unless they are all zero. 

2-68 



_ VLSI TECHNOLOGY, INC. 

LEA VLB6C010 

Appendix A.18 LEA - Load Effective 
Address 

or an address that is outside of the 
range of an a-bit offset (or is unknown). 
Note that the effective address, not the 

value stored at that address, is loaded 
to the designated register. 

This pseudo-instruction may be used to 
load any register with a large constant 

Intended Usage: Load the effective address of distant locations (or large constants) to a register. 

Operational Function: Generate a variant machine instruction to load the desired constant. 

If necessary, create a forward-reference entry in a literal constant table that is 

within reach of this instruction. Created instruction may be any of ADD, SUB, 

MOV, MVN, or LOR. 

Flags Effected: None, if address is a forward reference, is in a different location counter, is 

external, or is outside of 256-byte range. Otherwise, N, Z, C, V. 

Syntax: LEA Rd, expression 

where Rd is the (destination) register to be loaded with a value or address, RO .. R15. 

Example: 

expression is an expression of any size, absolute, relocatable, or external, that is 

legal within the assembler. 

LEA 
LEA 
LEA 
LEA 

R 1 O,Table+20 
R 1 , Savearea 
RO,Ox12345678 
R9, Forvvar~Ref 

: Reverse reference expression. 
: Reverse ref erence. 
: A large constant. 
: Forvvard ref erence. 

Remarks: If the effective address (or value) is within a 256-byte range of the program counter or is relative to some register, a 
simple MOV, MVN, ADD, or SUB instruction is generated to perform the load of the effective address. If this is not possible, the 
effective address is computed and is stored as a 32-bit memory word in a "long rea9h" table. An LOR is generated to load the 
value to the designated register. 

Constants which will be inserted into the long-reach table are accumulated by the assembler, leaving the corresponding LEA 
unresolved. When the program has been processed to a point where the distance from the farthest unresolved LEA reaches 
4096 bytes, a long-reach table is inserted into the assembler source. (Actually, the offset may not reach precisely 4096 bytes, as 
the size of the table itself is accounted for in the distance.) 

The current release of CASM generates a new table entry whenever a forward reference is involved. That is, the entry is made if 
the target label (or expression) has not yet been defined. 

There is one table accumulated for each location counter. If any have not been inserted into the program source by the end of 
the source file, they are inserted at that time. Whenever a table is inserted into the program source by the assembler, due to the 
distance from the farthest unresolved LEA, a branch instruction is prefixed to it, so that the processor will avoid the table during 
execution. 

In addition, the programmer may specify where a long-reach table is to be insertped, by using the REACH pseudo·>instruction. 
The directive itself is effectively replaced by the generated table. In this case, since the programmer has specified where the 
table is to be placed, CASM will not first create the bypassing branch instruction. The long-reach table for the currently active LC 
is inserted. Other tables may be inserted (if they are known to exist) by using NEWLC to switch to a new location counter, and 
following it with a REACH directive. 

Whenever a long-reach table is inserted, a new one is started for the subsequent source code. There may be multiple tables for 
a single location counter if the program is long enough to warrant them. 

2-69 



e VLSI TECHNOLOGY, INC. 

MeR VL86C010 

Append Ix A.19 MCR - Move Coproces­
sor to CPU 

ally performing some action within the 
coprocessor. The instruction forces the 

following items to appear at the 
coprocessor interface: 

Transfer a register from an attached 
coprocessor to a CPU register, option-

• Two coprocessor register-number fields. 

• A coprocessor number, specifying which of several coprocessors must respond. 

• A 3-bit coprocessor opcode field, indicating the action to be performed. 

• An additional unallocated 3-bit field to supply additional information in. 

Only coprocessor number and the 
CPU instruction's opcode bits are 
actually required by the hardware; all 

other fields are assigned within CASM 
by convention only. The assembler 
will accept information and assign 
values to the various fields as defined 

below. Other than to load Rd from the 
data bus, the operation of the instruc­
tion is entirely implementation depend­
ent. 

Intended Usage: Transfer a 32-bit data register from the coprocessor to a CPU register. 

Operational Function: If the condition field evaluates true, read the indicated register from 

the data bus, passing along the other information to the coprocessor. 

Flags Effected: (none) 

Syntax: MCR{condition} cp#, coproc_opc, Rd, CRn, CRm {, expression} 

where condition is any of the condition codes shown in the Condition Codes section. 

cp# is an expression giving the coprocessor number, ranging 0 .. 15. 

coproc_opc is the coprocessor opcode, an expression in the range of 0 .. 7. 

Rn is a valid CPU destination register, RO .. R15, SP, LK, or PC. 

CRn, CRm are any valid coprocessor registers, CRO .. CR15. 

expression is an optional expression in the range of 0 .. 7, of auxiliary information. 

Examples: 

MCR 1 ,6, R9, CR 1, CRO, ° 
MCRL T 0, 0, R 12, CR3, CR3, Code-'A' ; Code is 'A' thru 'G', 

2-70 



G VLSI TECHNOLOGY, INC. 

MLA 
Appendix A.20 MLA - Multiply and 
Accumulate 
Perform a 32-bit by 32-bit multiply to 
yield a 32-bit result. A single 32-bit 
value is then added to the result. All 
operands and the result are contained 
in registers. A modified Booth algorithm 
is used, and the results are obtained in 
16 clock times worst case. If the upper 
bits of the operands are clear, a 
truncated cycle is used to return the 
results faster. 

MLA differs from MUL in that it is 
intended for multiple-precision oper­
ands. The typical usage is for accumu­
lating the inner products of the multi­
word operands. 

Either (or neither) operand may be a 
signed value, and the resulting sign is 
correctly processed. When the multipli­
cation of byte values is involved, they 
are treated as full 32-bit olDerands, and 
the result appears in the lowest bits of 
the Rd register as expected. 

VL86C010 

Overflow is not possible, as the sign bit 
from one operand will be redundant in 
the result. The freed bit is sufficient to 
hold the data that might otherwise 
overflow. 

The Rd and Rm registers may not be 
one and the same register, and R15 
(PC) may not be used for Rd. The 
result is not meaningful if Rm ... Rd. 

The status bits may be set based upon 
the result, if the S suffi)( is used. 

Intended Usage: Multiply two 32-bit values to produce a 32-bit result, adding in a (partial product) 

result, typically from a previous multiply. 

Operational Function: Rd = Rm ~ Rs + Rn 

Flags Effected: N, Z(C is scrambled, and Vis not effected.} 

Syntax: MLA Rd, Rm, Rs, Rn 

where Rd is the destination register, and is RO-R14, SP, or LK. 

Examples: 

Rm,Rs 

Rn 

are operand registers, and are RO-R15, SP, LK, or PC. 

is a partial-products intermediate addend register, as per Rm. 

MLAS R 1 ,R2,R3,R4 
MLA Rl ,R2,Rl ,R4 

Variations: The following exception conditions exist: 

1. The Rd must not be the same as the Rm register. 

2. The Rd may not be R15 (PC). 

3. If R15 is used as an operand, it will be displaced!on beyond the instruction. 

4. When the PC is used as the Rm the PSRflags are included, and the PC is offset + 12. 

5. When the PC is used as the Rs the PSR flags are ignored, and the PC is offset +8. 

6. When the PC is used as the Rn the PSR flags are included, and the PC is offset +8. 

7. A 64-bit result can be synthesized using 4 multiplies, using 16-bit partial factors. Each 

partial factor is the upper or lower portion of a 32~bit operand, and each has the 16 upper 

bits cleared, permitting an early exit from the multiply after a maximum of 8 clocks each. 

2-71 

I 



e VLSI TECHNOLOGY, INC. 

MOV VL86C010 

Appendix A.21 MOV - Move Register or 
Constant 
Move a 32-bit item from one register to 
another, or move an a-bit constant into 
a register. When an a-bit constant is 
supplied as the second operand, the 
constant may consist of any a-bit wide 
pattern in a 32-bit field. It will be rotated 

to produce an a-bit constant in the least 
significant bits of the instruction, but will 
be re-expanded at execution time to its 
proper position within the destination 
register. 

MOV can only load positive constants 
into a register. If a negative value is 

given, CASM automatically substitutes 
a MVN opcode into the instruction, and 
compensates the operand for the 1's 
complement format used by MVN. 
(Similarly, CASM will convert a MVN in­
struction with a negative operand into 
the equivalent MOV instruction.) 

Intended Usage: Move the contents of one register to another, or load a constant into a register. 

Operational Function: Rd .. Op2 

Flags Effected: N, Z, C 

Syntax: MOV{ condition}{S} Rd, Op2 

where condition is an optional2-character condition code. See the Condition Code section. 

Examples: 

Variations: 

S (if present) sets condition codes based on the value of the operand. 

Rd is any valid register name, such as RO-R1S, PC, SP, or LK. 

Op2 is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

express;on2 

Rm is any valid register name, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression that can be rotated into an a-bit value in the least significant bits. 

MOvS PC, LK ; S3me as: (pC, PSR) = R 1 4. 

MCN PC, R14 ; Sub return, previous status. 
MCN R 1 , OxCOOOOO3F ; Load big constant. 
MCN R13, -254 ; Load ne~tive constant. 
MCN R1, -1 ; SpeCIal case is handled. 
MCN R8, R6 LSR R3 ; R3 has shift count. 

If a negative constant is specified as the 2nd operand, the 1 's complement of it is 

used, and a MVMs substituted for the MOV. This effectively extends the range to 

9 bits (including sign), and provides for sign extension to a full 32 bits. 

2-72 



e VLSI TECHNOLOGY, INC. 

MRC VL86C010 

Appendix A.22 MRC - Move CPU Reg­
ister to Coprocessor 

ing some action within the coprocessor. 
The instruction forces the following 

items to appear at the coprocessor 
interface: 

Transfer a processor register to an at­
tached coprocessor, optionally perform-

• Two coprocessor register-number fields. 

• Data from a designated CPU register. 

• A coprocessor number, specifying which of several coprocessors to activate. 

• A 3-bit coprocessor opcode field, indicating the action to be performed. 

• An additional unallocated 3-bit field to supply additional information in. 

In actual fact, only coprocessor number 
and the CPU instruction's opcode bits 
are required by the hardware; all other 

fields are assigned within CASM by 
convention only. The assembler will 
accept information and assign values 
to the various fields as defined below. 

Other than to make Rd available for 
writing, the operation of the instruction 
is entirely implementation dependent. 

Intended Usage: Transfer a 32-bit data register from the CPU to the coprocessor. 

Operational Function: If the condition field evaluates true, place the indicated register on 

the data bus along with the other control! information. 

Flags Effected: (none) 

Syntax: MRC{condition} cp#, coproc_opc, Rd, CRn, CRm {, expression} 

where condition is any of the condition codes shown in the Condition Codes section. 

Examples: 

cp# is an expression giving the coprocessor number, ranging 0 .. 15. 

coproc_opc is the coprocessor opcode, an expression in the range of 0 .. 7. 

Rn is a valid CPU source register, RO .. R15"SP, LK, or PC. 

CRn, CRm are any valid coprocessor registers, CRO .. CR15. 

expression is an optional expression in the range 01:0 .. 7, of auxiliary information. 

MRCNE 1,6, R9,CR15,CRO, 5 
MRC 0, 0, R 1 , CR3, CR3 

2-73 

E 



_ VLSI TECHNOLOGY, INC 

MUL 
Appendix A.23 MUL - Multiply 
Perform a 32-bit by 32-bit multiply to 
yield a 32-bit result. All operands and 
the result are contained in registers. A 
modified Booth algorithm is used, and 
the results are obtained in 16 clock 
times worst case. If the upper bits of 
the operands are clear, a truncated 
cycle is used to return the results 
faster. 

Either (or neither) operand may be a 
signed value, and the resulting sign is 
correctly processed. When the multipli­
cation of byte values is involved, they 
are treated as full 32-bit operands, and 
the result appears in the lowest bits of 
the Rd register as expected. 

Intended Usage: Multiply two 32-bit values to produce a 32-bit result. 

Operational Function: Rd = Rm" Rs 

Flags Effected: N, Z(C is scrambled, and Vis not effected.) 

Syntax: MUL Rd, Rm, Rs 

VL86C010 

The Rd and Rm registers may not be 
one and the same register, and R15 
(PC) may not be used for Rd. The 
result is meaningless if Rm = Rd. The 
Rn register field is forced to zero for 
compatibility with future processor 
family derivatives. 

The status bits may be set based upon 
the result, if the S suffix is used. 

where Rd 

Rm,Rs 

is the destination register, and is RO-R14, SP, or LK. 

are operand registers, and are RO-R15, SP, LK, or PC. 

Examples: 

MULS R 1 ,R2,R3 
MUL Rl,R2,Rl ; Source & Destination are the same. 

Variations: The following exception conditions exist: 

1. The Rd must not be the same as the Rm register. 

2. The Rd may not be R15 (PC). 

3. When the PC is used as the Rm the PSR flags are included, and the PC is offset + 12. 

4. When the PC is used as the Rs the PSR flags are ignored, and the PC is offset +8. 

5. A 64-bit result from multiplying two 32-bit operands may be synthesized by using 4 multiplies, 

yielding partial products. The four 16·bit factors used in the cross multiply are made up of the 

upper and lower portions of the original 32·bit operands. By clearing the upper 16 bits of each 

partial factor, an early exit may be taken by the hardware for each multiply, using only 8 clock 

cycles each. 

2-74 



e VLSI TECHNOLOGY, INC. 

MVN VLi86C010 

Appendix A.24 MVN - Move 
Complement of Register 

This instruction loads the 1 's comple­
ment of a constant (or of another 
register) into the destination. The 
instruction moves a 32-bit item. When 
an 8-bit constant is supplied as the 
second operand, the constant may 

consist of any a-bit wide pattern in a 
32-bit field. It will be rotated to produce 
an a-bit constant in the least significant 
bits of the instruction, but will be rotated 
at execution time to its proper position 
within the destination register. 

The hardware instruction MVN can only 
load (the complement of) positive 

constants into a register" If a negative 
value is given, CASM will automatically 
substitute a MOV instruction, using the 
1 's complement of the operand. (Simi­
larly, CASM will convert a MOV 
instruction with a negative operand into 
the equivalent MVN instruction.) 

Intended Usage: Load destination register with (1 's) complement of a constant or a register. 

Operational Function: Rd = OxFFFFFFFF XOR Op2 

Flags Effected: N, Z, C 

Syntax: MVN{ condition}{S} Rd,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

S 

Rd is any valid register names, such as RO-R15, PC, SP, or LK. 

Op2 is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a!shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression that can be rotated into an a-bit value in the least significant bits. 

MVN R12,RS 
MVNNV RO, RO ; A no-operation case. 
MVN R3, R2 ASR 5 
MVN R4, R4 RRX ; Shift complement thru carry. 

Variations: If a negative constant is supplied, the value is complemented and a MOV is substituted 

for the MVN. This effectively permits a 9-bit constant {including sign) that is sign 

extended to 32 bits in the destination. 

2-75 

E 



e VLSI TECHNOLOGY, INC. 

ORR VL86C010 

Appendix A.2S ORR - Logical OR 
The logical OR operation is performed 
on two operand words, and the 32-bit 
result is written to the destination 
register. For each bit position in the two 
operands, a test is made to determine if 
either is set (1). If so, the same bit 

position in the destination register is 
turned on. It is otherwise turned off. 
The same operation is performed for 
each of the 32-bit positions. 

field, so long as it may be rotated to 
produce an a-bit constant. 

An 8-bit constant may be supplied as 
the second operand. The constant may 
consist of any 8-bit pattern in a 32-bit 

As with all logical operations, no carries 
are involved between bits in the same 
register, whether the source or the des­
tination. 

Note: BIC and ORR cannot be used (even in supervisor mode) to set or clear PSR bits. Use TEap for that purpose. 

Intended Usage: Perform a logical OR between equivalent bit positions in the two source registers. 

Operational Function: Rd .. Rn OR Op2 

Flags Effected: N, Z, C 

Syntax: ORR{ condition}{S} Rd,Rn,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

S 

Rd,Rn 

Op2 

are any valid register names, such as RO-R1S, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression that can be rotated into an 8-bit value in the least significant bits. 

ORR Rl ,Rl ,RO ; R 1 = R 1 OR RO. 
ORRS RO, RO, 32 ; Force ASCII to lower case. 
ORR RO,R 1 ,R3 LSR 4 

2-76 



_ VLSI TECHNOLOGY, INC. 

RSB VL86C010 

Appendix A.26 RSB - Reverse­
Operand Subtract 
This instruction is identical in operation 
to the SUB instruction, except that the 
operand order is reversed. In SUB, the 

first operand must be in a register and 
considerable flexibility is given in 
addressing the second one .. RSB 
permits the addressing flexibility to 
effectively be applied to the first 
operand. 

An a-bit constant may be'supplied as 
the second operand. The constant 
may consist of any a-bit pattern in a 32-
bit field, so long as it may be rotated to 
produce an a-bit constant 

Intended Usage: Perform a subtraction of two 32-bit operands, ,or perform the subtraction of 

the lower words in a multi-precision operand pair. The minuend is obtained 

from an indexed address. I.e., Rn is subtracted from oper<lnd 1. 

Operational Function: Rd '" Op1 - Rn 

Flags Effected: N, Z, C, V 

Syntax: RSB{ condition}{S} Rd, Rn, Op1 

where condition is an optional2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. S 

Rd,Rn 

Op1 

are any valid register names, such as RO-R1S, PC, SP, or LK. 

is second operand, and may have any of'the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or' Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in thel range of 1 .. 31. 

expresslon2 is any signed expression that can be rotated into an a-bit value in the least significant bits. 

Examples: Subtract RS from a very large constant. 

RSB R5, R5, OxEAOOOOOO 

2-77 

II 



e VLSI TECHNOLOGY, INC. 

RSC 
operation. 

VL86C010 

Appendix A.27 RSC - Rev-Operand 
Subtract, Carry 
The RSC instruction is identical to the 
SSC instruction, except that the order 
of the two operands is reversed. In 
the SSC, the first operand must be 

contained in a register while consider­
able flexibility is given in the addressing 
of the second. The RSC may be used 
when the more flexible addressing is 
needed for the first operand. The 
"carry" operation is actually a borrow 

An 8-bit constant may be supplied as 
the second operand. The constant may 
consist of any a-bit pattern in a 32-bit 
field, so long as it may be rotated to 
produce an 8-bit constant. 

Intended Usage: Perform subtract of upper words in a multi-precision operand pair, where the 

minuend is obtained from an indexed address. I.e., Rn is subtracted from 

operand 1. Carry is also added in (a "borrow" is performed). 

Operational Function: Rd - Op1 - Rn - 1 + Carry 

Flags Effected: N, Z, C, V 

Syntax: RSC{ condition}{S} Rd, Rn, Op1 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. S 

Rd,Rn 

Op1 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rdor Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression that can be rotated into an 8-bit value in the least significant bits. 

Example: Subtract a 64-bit number in RO,R1 from the 64-bit number Ox3FCOOOOO,OOOOOOOO 

RSB 
RSC 

RO,RO,O 

RO,RO,Ox 3FCOOOOO 

; Handle LSBs. 
; Handle MSBs (with '"borrow'"), 

2-78 



e VLSI TECHNOLOGY, INC. 

sec 
Appendix A.28 SBC - Subtract, with 
Carry 
SBC subtracts two 32-bit operands, 
placing the difference into a register. A 
value of + 1 is subtracted from the 
difference if the carry bit was clear prior 
to the instruction; nothing is subtracted 
from the difference if the carry was 
previously set. 

The normal use for Subtract-with-Carry 
is to compute difference of numbers 

that are greater than 32 bits in length. 
The multi-precision subtraction se­
quence is to SUB the lowest words 
together (without carry compensation), 
possibly generating a carry in the 
process. The next most significant 
word pair is then subtracted using SBC, 
with the carry from the first pair 
correcting the difference. 

If even more precision is used than two 
words per operand, they are succes-

Intended Usage: Multi-precision subtraction. 

Operational Function: Rd - Rn - Op2 - 1 + Carry 

Flags Effected: N, Z, C, V 

Syntax: SBC{ conditionHS} Rd,Rn,Op2 

VL86C010 

sively SBC'd together until the most 
significant word pair has been sub­
tracted. (The same pr0cess is used for 
multi-precision addition, but using ADD 
and ADC.) 

An a-bit constant may be supplied as 
the second operand. The constant 
may consist of any a-bit pattern in a 32-
bit field, so long as it may be rotated to 
produce an a-bit constant. 

where condition 

S 

is an optional 2-character condition cod~. See the Condition Code section. 

(if present) sets condition codes Ibased on the result. 

Rd,Rn 

Op2 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression that can be rotated into an a-bit value in the least significant bits. 

Example: Assume that RO,R1 holds a 64-bit integer, as does the R2,R3 pair. Subtract the 

second pair from the first. 

SUB 
SBe 

RO, R2,R2 

Rl ,Rl ,R3 

; Handle the LSBs. 
; Handle the MSBs (wIth borrow). 

Variations: If a negative constant is specified as the second operand, the 1 's complement of it is used, and an ADD is substituted 
for the SUB. This effectively extends the range to 9 bits (including sign), and provides for sign extension to a ful 

32 bits. 

2-79 

E 



e VLSI TECHNOLOGY, INC. 

STC VL86C010 

Appendix A.29 STC - Store Coproces­
sor to Memory 
STC stores the contents of a coproces· 
sor register to memory. Both a 

coprocessor and the desired register 
within it must be specified. This 
instruction is the coprocessor equiva­
lent to the STR instruction. As with the 

STR, pre- and post-indexing of the Rn 
CPU register is provided for, and the 
target address may be a register 
relative address. 

Intended Usage: Store coprocessor register to indicated memory location. 

Operational Function: Store contents of specified CRn coprocessor register of the indicated coprocessor 

to memory. Indexing of a CPU register gives the effective memory address. 

Flags Effected: (none) 

Syntax: STC{ condition}{ L}{ 7} cp#, CRd, address{ ~ 

where condition is one of the optional condition test codes described in Condition Codes. 

Examples: 

N 

T 

cp# 

CRd 

I 

address 

Implies a hardware-dependent function specified by the Nbit. By con­

vention, N-1 implies long transfer. If N is missing, a short transfer is 

indicated. 

Set the Wbit, indicating that address translation is to take place. The 

TRAN pin is pulled low for the transfer cycle. 

is a coprocessor number in the range of 0 .. 15. 

is a coprocessor register number, CRO .. CR15. 

forces the effective address to be written back to Rn, if Rn is present. 

can be any of the variations given below: 

expression 

[Rn] 

[Rn, expression] 

[[Rn], expression 

(T suffix is not allowed) 

(T suffix is not allowed) 

expression is an expression in the range of -1023 to + 1023 (bytes) relative to the 

current program counter. It is scaled right 2 bits by CASM, and the 

complement of the sign is placed in the U-bit. The 8-bit absolute value 

if the expression is used in the instruction. 

Rn is any valid (CPU) processor register, RO .. R15. If R15 is used, the status 

bits are stripped before usage. If Rn is missing, expression is assumed to 

be relative to R15. 

STC 
STC 
STC 

1 ,CRS,[R1] 
1,CRS,[R2J,4 
2,CR7,Label 

; Load lndi rect on R 1. 
; As above. Then R 1 =R 1 +4, 
; Label same as PC +Label. 

2-80 



e VLSI TECHNOLOGY, INC. 

STM 
---------------------------------------------------------------------

VL86C010 

Appendix A.30 STM - Store Multiple 
Registers 
From one to 16 registers may be stored 
to memory by a single STM instruction. 
Any specific register may be included 
in the register set list, and registers in 
the set need not be contiguous. 

field indicate which registers are to be 
loaded. 

Variations in the mnemonic indicate 
whether the registers are to be stored in 
ascending or descending addresses, 
and whether the base pointer (stack) 
register is to be incremented/decre­
mented before or after each register 

gets stored. The lowest numbered 
register is always stored to the lowest 
address in memory. 

As with all instructions, the STM is only 
executed if the status specified by the 
optional conditional code is met. 

Sixteen bits in the instruction's operand 

Intonded Usage: Save multiple registers at one time onto the system or user stack. 

Operational Function: Perform repeated "pushes" via a register designated as a stack base register 

from the registers supplied in a list. While the stack base register is effectively updated 

during the transfer, the final value is not written back unless so indicated by the 'I' 

suffix on the base register. 

Flags Effected: None, unless the S-bit in the instruction has been set via the 'A' caret marker. 

Syntax: STM(condition}mode Rn(/}, {reg_'ist}("} 

where 

Modes: 

Example: 

condition 

mode 

Rn 

A 

is an optional condition, as given in the Condition Codes section. 

is a required mode indicator, taken from the following table. 

is any valid register in the range of RO .. R15. 

indicates that the updated base address is to be saved back into 

the Rn register. 

User mode: II is ignored. 

Non-User mode: Forces reference:of user mode register bank. 

Note: PSR is always stored if R15 is in the list. 

(braces are required) Is a list of registers to be stored. They may be 

any of the valid registers RO .. R15 separated by commas. A range of 

registers may also be included by separating them by a dash. 

The above modefield must be selected from onelof the following codes: 

~ ~ ~ fJJJ:WiQa 
IB Increment Before Push upwards Pre-increment store 

IA Increment After Push upwards Post-increment store 

DB Decrement Before Push downwards Pre-decrement store 

DA Decrement After Push downwards Post-decrement store 

Other alternative forms for the above codes are supported, for completeness. 

These earlier forms are not documented here, and their use is discouraged. 

Simulate a conventional push-down stack, wher9ithe stack pointer gets updated 

after each transfer, and pushes downward: 

STMDA SPI,{R4,RS,R9-R 11 ,PC} 
Variations: R15 may be used in the transfer list. If stored using the STM, the PC's value will be 

advanced 12 bytes (3 words) forward of the STM., and the status will be stored with it. 

A later LDM may use the A marker to load the PSR with the value which was stored by the STM. 

2-81 

E 



e VLSI TECHNOLOGY, INC. 

STR 
Appendix A.31 STR - Store Register to 
Memory 
Store a 32-bit register value to the des­
ignated memory address. The operand 
address may be specified as relative to 
any register (including the PC), and 
either a word or a byte value may be 
stored. 

If a word value is stored, it must be 
word aligned, not straddling a word 

boundary. The ability to specify a base 
register and an increment or decrement 
amount is of significant value when 
accessing arrays of data, or when 
working with data pointers. 

The base register may be offset by a 
13-bit (including sign) constant either 
before or after the transfer. The 
constant is stored in the instruction in 
its positive form, and the complement 

Intended Usage: Store a register to specified (PC-Relative) memory address. 

VL86C010 

of the original sign is stored in the U-bit 
field. 

Alternatively, the base register may be 
modified (before or after the transfer) by 
the value contained in a second 
register. This modification register's 
value may optionally be first shifted or 
rotated rotated from 1 to 31 bits. 

STR differs from a MOV in that the 
MOV stores a value to another register. 

Operational Function: Store a single register at any address within the range of ± 4095 bytes from 

the current PC (R15), or relative to any other register (such as a data-frame or stack-frame register. 

Flags Effected: (none) 

Syntax: STR{ condition}{ B}{T} Rd, address {I} 

where condition is a code given in the section on Condition Codes. 

B is given to force the storing of an 8-bit byte, rather than a 32-bit word. 

T is given (in post-indexed mode only) to force an address translation. 

Rd is any valid CPU register, RO .. R15. 

address 

Rn 

Rm 

expression 

shift 

count 

forces the Rn register to be updated by the value of the offset afterwards. 

is any of the following variations: 

~ Eft.f}.r;J,i~ ~QQ[f}.~~ Ms2d.!i. 
[Rn] Rn N/A. 

[Rn. expression] Rn + expression Pre-indexed. * 

[Rn. Rm] Rn+Rm Pre-indexed. * 

[Rn. Rm shift count] Rn + (Rm shifted by coun~. Pre-indexed. * 

[Rn]. expression Rn Post-increment. 

[Rn]. Rm Rn Post-increment. 

[Rn]. Rm shift count] Rn Post-increment. 

is any valid CPU register, RO .. R15, and holds the transfer base address. 

is any valid CPU register, RO .. R15, and holds a (signed) address increment. 

is an expression in the range of -4095 to +4095. 

is any shift type indicator: LSL, LSR, ASR, ROR, or RRX 

is any constant in the range of 1 .. 31, and is the shift count. 

*If ! follows the'] " then Rn is also incremented, i.e., post increment mode. 

2-82 



_ VLSI TECHNOLOGY, INC. 

STR VLl86C010 
-------------------------------------------------------------------------------

Appendix A.31 STR (Cant.) 

Remarks: The "address modifier" is the amount to add to the base transfer address (in Rn). It is 

Examples: 

added to Rn before the transfer if pre-indexed, or afte~ the transfer if post-incremented. Pre-indexing or 

post-incrementing is determined by where the modifier is found. If it is given inside the [ ] brackets, 

it is a pre-indexed case, and the modifier becomes included in the effective address. If given 

outside of the [ ] brackets, it is a post-increment case; the modifier comes into play only after 

the transfer has taken place. 

STR 
STREQ 
STR 
STR 

R 1, [R 15] 

R3, [SP+Ox 10]1 

R5, [R3, R2 SHL 2] 
LK. [LK] 

: SP = SP+ 16. 

Variations: R15 usage has a number of special cases associated with it: 

1. PSR is never modified, even when Rd or Rn is the PC. 

2. If Rn is R15, the PC is used without any of the PSR flags. Remember that it will 

be advanced by 8 bytes from the current instruction. 

S. H PC is used as the offset (Rm) register, the value used includes the flags. 

2-83 



_ VLSI TECHNOLOGY, INC. 

SUB VL86C010 

Appendix A.32 SUB· Subtract 
Subtract one 32-bit operand from an­
other, putting the result back into a reg­
ister. The first operand must be a 

register, but the second is permitted a 
much more general addressing 
scheme. An 8-bit constant may be 
supplied as the second operand. The 

constant may consist of any 8-bit 
pattern in a 32-bit field, so long as it 
may be rotated to produce an 8-bit 
constant. 

Intended Usage: Compute the arithmetic difference of two operands. 

Operational Function: Rd - Rn - Op2 

Flags Effected: N,Z,C,V 

Syntax: SU8{ condition}{S} Rd,Rn,Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

(if present) sets condition codes based on the result. 

Examples: 

S 

Rd,Rn 

Op2 

are any valid register names, such as RO-R15, PC, SP, or LK. 

is second operand, and may have any of the following forms: 

Rm 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

SUB 
Sub 

Rl,Rl,R2 
RO,RO, "A" 

; Set R 1 = R 1 - R2 
; Subtract a constant from RO. 

2-84 



e VLSI TECHNOLOGY, INC 

SWI 
Appendix A.33 SWI· Software 
Interrupt 
Perform a "software interrupt" (system 
call), changing the processor into 
supervisor mode. This is equivalent to 
a subroutine call to the routine whose 
entry point is branched to by the branch 

instruction in location 0 x:a in physical 
memory. By convention,the action 
taken by that routine is defined entirely 
by the system SVC-mode (SWI) 
handler. The inst~uction's lower 24-bit 
field is interpreted by that handler. 

The instruction is conventionally used to 

VIL86C010 

pass requests to the operating system 
for 1/0 transfers and other system­
specific operations. When operating in 
"user" mode, the program will not have 
access to the 1/0 spacee in memory 
mapped systems; thEI only recourse is 
to offload system input/output to the 
executive. 

Intended Usage: Request operating-system or 1/0 function of the system executive. 

Operational Function: Pass a 24-bit field to the system supervisor for interpretation. 

Flags Effected: (determined by the supervisor) 

Syntax: SWI{ condition} operand 

where condition 

operand 

is an optional4-bit code defined in the Condition Codes section. 

is a 24-bit expression that is right-justified in the SWI instruction. 

I:xamples: Predefine certain 1/0 operations to be done by the operating system. Assume 

READB reads a byte into bits 0-7 of R, and WRITEB writes the byte constant found in 

bits 0-7 RO to some 1/0 device. 

acms READB = Ox 1 0 
acms 
SWI 
MOV 
SWI 

WRITEB = Ox20 
READB 
RO,' J' 
WRITEB 

: Read byte to RO. 

; Write' J' to device. 

2-85 

I 



e VLSI TECHNOLOGY, INC. 

TEQ 
Appendix A.34 TEQ - Set Condition 
Codes via XOR 
Test that the two operands are equal, 
but without saving any results except 
for the status bits. This differs from a 
CMP or CMN in that no overflow or 
carry is possible. (Carry will be 
cleared). This is a "logical" instruction, 

so no inter-bit carry is permitted in the 
hardware, and overflow is not possible. 
The V status bit is therefore not altered, 
however, C is reset by the instruction. 

Because the only purpose for this in­
struction is to perform a test, setting the 
condition codes on the reSUlt, the'S' 

Intended Usage: Test for bit-wise equality, without regard to relative magnitude. 

Operational Function: Rn XOR Op2 (result is not stored) 

Flags Effected: N, Z, C 

Syntax: TEQ{ conditionHP} Rn,Op2 

VL86C010 

suffix (save status) is redundant, and is 
automatically implied by CASM. 

An 8-bit constant may be supplied as 
the second operand. The constant may 
consist of any 8-bit pattern in a 32-bit 
field, so long as it may be rotated to 
produce an 8-bit constant. 

where condition 

P 

is an optional 2-character condition code. See the Condition Code section. 

Force PSR loading, directly from 32-bit ALU result. 

Examples: 

Rn is any valid register names, such as RO-R15, PC, SP, or LK. 

Op2 is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

expression2 is any signed expression shiftable into an 8-bit value. 

TEOR4,S 
BEOOJt 

: See If R4 contains the value 5. 
; Jump If It dC€s. 

TEOP R 1 S,OxCOOOOOOO ; Set N,Z. Clear c.v. 

Variations: An S suffix is optional, and is always implied. If a P suffix is used, the bits 28-31 and 0-1 of the 

32-bit ALU results are stored directly into the PSR bits, rather than the PSR being loaded 

from the ALU status itself. 

2-86 



_ VLSI TECHNOLOGY, INC. 

TST VLi86C010 

Appendix A.3S TST· Set Condition 
Codes via AND 

overflow condition is not possible. The 
V status bit is therefore not altered by 
the instruction. 

suffix (save status) is redundant and is 
automatically implied by CASM. 

Test that any of the bits specified by 
the second operand are set in the 
source register. This is a "logical" 
instruction, so no inter-bit carry is 
permitted in the hardware, and an 

Because the only purpose for this in­
struction is to perform a test, setting the 
condition codes on the result, the'S' 

An S-bit constant may be supplied as 
the second operand. The constant 
may consist of any 8-bit 'Pattern in a 32-
bit field, so long as it may be rotated to 
produce an S-bit constant. 

Intended Usage: Test for nonzero in selected bit field(s). It is a substitute for AND where no result other 

than the status needs to be retained. 

Operational Function: Rn AND Op2 (result is not stored) 

Flags Effected: N, Z, C 

Syntax: TST{condition}{P} Rn, Op2 

where condition is an optional 2-character condition code. See the Condition Code section. 

Force PSR loading, directly from 32-bit ALU result. P 

Rn is any valid register names, such as RO-:R15, PC, SP, or LK. 

Op2 is second operand, and may have any of the following forms: 

Rm shift Rs 

Rm shift expression 1 

Rm RRX 

expression2 

Rm is any valid register names, as per Rd or Rn above, the operand value. 

Rs is a register, per Rd above, containing a shift count in range of 1 .. 32. 

shift is any of: ASL, LSL, LSR, ASR, or ROR 

expression 1 is any positive absolute shift count in the range of 1 .. 31. 

9xpression2 is any signed expression shiftable into an 8-bit value. 

Examples: Test RO to see if bits 1 and 7 are both zero, regardless of the setting of any other bits. 

TST RO,OX82 
BEOBoth-Zero 
BNEE j ther _Set 

Variations: An S suffix is optional, and Is always implied. If a P suffix is used, the bits 28-31 of the 

32-bit ALU results are stored directly into the PSR bits, rather than the PSR being loaded from 

the ALU status itself. 

2-87 

E 



e VLSI TECHNOLOGY, INC. 

Notes: 



e VLSI TECHNOWGY, INC. 

SECTION 3 

VL86C020 
32-BIT RISC 
MICROPROCESSOR 
WITH CACHE 
MEMORY 

Application Specific 
Logic Products Division 

I 



e VLSI TECHNOLOGY, INC. 



e VLSI TECHNOLOGY, INC. ~ [R1 ~ [L 0 [}¥t] 0: [N] ~ [R1 W 
Vl86C020 

32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY 

FEATURES 
• On-chip 4 Kbyte (1 K x 32 bits) cache 

memory 

- Iinstructions and data in a single 
memory 

- 64-way set associative with 
random replacement 

- line size of 16 bytes (4 words) 

• Compatible with existing support 
devices 

• Upwardly software compatible with 
VL86C010 

• Semaphore instruction added for 
multiprocessor support 

• Full-speed operation up to 20 MHz 
using typical DRAM devices 

• Low interrupt latency for real-time 
application requirements 

• CMOS implementation - low power 
consumption 

• 160-pin plastic quad flatpack package 
(PQFP) 

BLOCK DIAGRAM 

DESCRIPTION 
The VL86C020 Acorn RISC Machine 
(ARM) is a second generation 32-bit 
general purpose microprocessor 
system. The device contains both a 
general purpose CPU and a full cache 
memory subsystem in the same pack­
age. Several benefits are attained by 
having the CPU and cache within the 
same device. First, the processor clock 
is effectively decoupled from the 
memory system. This lowers the 
processor bandwidth demands on the 
memory and allows most memory 
cycles to remain on-chip where buffer 
delays are minimized. Second, a high 
level of integration is maintained as 
external componernts are not required to 
implement the cache subsystem. 

Third, package sizes are reduced as 
bus widths can remain at reasonable 
widths. Fourth, memory system design 
is greatly simplified because most 
critical timings are handled internally to 
the device. 

The processor is targeted for use in 
microcomputer and embedded control-
ler applications that require high per­
formance and high integration solutions. 
Applications where th13 processor is 
best applied are: laser printers, 
graphics engines, network protocol 
adapters, and any other system that 
requires quick response to external 
events and high processing throughput. 

Since the VL86C020 typically utilizes 
only about 14% of the; available bus 
bandwidth, it is particularly well suited I 
to applications where the memory is 
shared with another high bandwidth 
device, e.g. a graphics system where 
the screen refresh occurs from the 
same memory devices. In addition, 
systems with more than one processor 
attached to a single memory system 
become feasible and are supported with 
the new semaphore instruction. The 
instruction performs a:n indivisible read­
modify-write cycle to the memory to 
allow for management of globally 
allocated resources reliably. 

ORDER INFORMATION 
Part Clock 

ABE A25-AO ALE -WAIT MCLK FCLK -TEST -RESET Number Frequency Package 

CACHE 
4 KBYTE 

MIXED 
DATA AND 

INSTRUCTION 

031-00 

CPU 

CONTROL 
LOGIC 

CO­
PROCESSOR 
INTERFACE 

MSE 

-MREQ 

SEQ 
ABORT 

-IRQ 
-FIQ 

-TRANS 
-M1,-MO 

-R/W 
-BfW 

LOCK 
LINE 

CBE 

3-3 

VL86C020-20FC 20 MHz Pla.stic Quad 
FI¥tpack (PQFP) 

VL86C020-20GC 20 MHz Pla.stic Pin 
G~id Array (PGA) 

Note: Operating temperature range isO°C to +70°C. 



_ VLSI TECHNOLOGY, INC. 

PIN DIAGRAM - PLASTIC QUAD FLATPACK 

VL86C020 

G V 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 V G V 
N 0 2 2 2 2 2 N 2 2 1 N 1 N 1 1 1 1 1 0 N 0 
0 0 6 5 4 3 2 C 1 0 9 0 8 C 7 8 6 4 3 0 0 0 

D27 

D28 

D29 

D30 
D31 

-B/W 

-ANI 
NC 

-TRANS 

LINE 

LOCK 

-MO 

VDD 

NC 
GND 

-M1 

-FIQ 
-IRQ TOP VIEW 
MSE 

SEQ 
-MREQ 

FCLK 
MCLK 

GND 
VDD 

CBE 

NC 

ABE 

ALE 

DBE 
ABORT 

-RESET 

NC 

-WAIT 
-TEST 

AD 
A1 

A2 
GND 

A3 
4 
7 

V A A A A A A N A A A A G N V A A A A A A A 
D 4 5 6 7 8 9 C 1 1 1 1 N C D 1 1 1 1 1 1 2 
0 0 1 2 3 0 D 4 6 6 7 8 9 0 

3-4 

0 0 0 
1 1 1 0 N 0 
2 1 0 9 C 8 

6 
4 

A A A A N A 
2 2 2 2 C 2 
1 2 3 4 5 

~ ~ ~ [L~ Lt¥tJ ~ [N]L%~W 
VL86C020 

C 
G V P 

0 o 0 N N 0 0 0 0 0 o 0 
7 6 5 D C 4 3 2 1 0 o 0 

CPD1 

119 CPD2 

118 CPD3 

117 CPD4 

118 GND 

116 CPD5 

114 CPD6 

113 NC 

112 CPD7 

111 CPD8 

110 CPD9 
CPD10 

CPD11 

NC 

CPD12 

CPD13 

CPD14 

GND 

VOD 

CPD15 

CPD16 

CPD17 
CPD18 
CPD19 

CP020 

CPD21 

NC 

CPD22 
CPD23 

CPD24 

GND 

CPD25 
NC 

VDD 
86 GND 
85 CPD26 

CPD27 
83 CPD28 

82 CPD29 

7 7 7 7 7 7 7 7 7 8 81 CPD30 

0 1 2 3 4 5 6 7 8 0 

G C C-CN-Oc C C V C G 
N P P PCP P P P D P N 
D C SIC E A B 0 D D 

L P 3 
K V 1 



_ VLSI TECHNOLOGY, INC. 

PIN DIAGRAM - PLASTIC PIN GRID ARRAY 

2 3 4 5 6 7 

GND D24 D20 D19 D18 D14 D13 

8 9 

VOD D11 

10 

[?) ~ [g [L~ U¥1Jn [M~~W 
VL86C020 

11 12 13 14 15 

D10 D7 GND D3 DO CPD1 

A @)144 @)140 @)136 @)135 @)133 @)129 @)t28 @):125 @)123 @)122 @)119 @)116 @)114 @)111 @)108 

D29 VDD D23 D21 GND D16 D15 D~12 D8 D6 D4 D1 VDD CPD2 GND 

B @3 @143 @139 @137 @134 @131 @13O @;124 @120 @118 @115 @112 @110 @107 @104 

-BIW D28 D26 D25 D22 D17 VDD GND D9 D5 D2 CPDO CPD3 CPD5 CPD8 

C @6 @2 @142 @141 @138 @132 @127 @126 @121 @117 @113 @109 @106 @103 @100 

-TRANS D30 D27 CPD4 CPD7 CPD9 

D @8 @4 @1 @ @105 0101 @99 

-MO -R/W D31 \ CPD6 CPD10 CPD11 

E @11 @7 @5 INDEX PIN @102 @98 @97 
(INACTIVE) 

-M1 LOCK LINE CPD1:! CPD13 GND 

F @14 @10 @9 @96. 095 093 

-FlO VDD GND CPD15 CPD14 VDD 

G @15 012 @13 @91 @94 @92 

MSE -IRO SEO CPD16 CPD18 CPD17 

H @17 @16 @18 TOP VIEW @90 @88 @89 

FCLK GND -MREO CPD2'I CPD22 CPD19 

J @20 @22 @19 @85 084 @87 

MCLK VDD CBE GND CPD24 CPD20 

K @21 @23 @24 @81 @82 @86 

ABE ALE -WAIT CPD26 VDD CPD23 

L @25 @26 @30 @77 @79 @83 

DBE -RESET A1 CPD30 CPD27 CPD25 

M @27 @29 @33 @73 @76 @80 

ABORT -TEST A2 VDO A7 A11 VDD A18 A19 A24 -OPC CPB VDD CPD29 GND 

N @28 @31 @34 @)37 @)41 @)45 @)49 @)54 @)55 @)60 @)66 @)69 @70 @74 @78 

AO GND A4 AS A9 A12 GND A16 A22 A23 GND -CPI CPE CPD31 CPD28 

P @32 035 @38 @40 @43 046 @48 052 @58 @59 @62 @65 @67 071 @75 

A3 A5 A8 A10 A13 A14 A15 A17 A20 A21 A25 CPCLK CPSPV CPA GND 
Q @36 @39 @42 @44 @47 @5O @51 @53 @56 @57 @61 063 @64 @68 @72 

3-5 

I 



e VLSI TECHNOLOGY, INC. 

CPU BLOCK DIAGRAM 

ADDRESS 

DATA 

3-6 

~~~[L~U¥U~~£~W 
VL86C020

INSTRUCTION
DECODER

AND
CONTROL

LOGIC

_ VLSI TECHNOLOGY, INC.

FUNCTIONAL DIAGRAM

CLOCKS

INTERRUPTS

VL86C020
CONTROLS

BUS
CONTROLS

(
(

(

POWER (

FCLK ..
MCLK

-WAIT ..

-IRQ

-FIQ

-TEST ..
-RESET

ALE

ABE ..
DBE ..
CBE

MSE

CPE ..

VDD(11) ..

GND(14) _ ..

VL86C020

3-7

~~~[L~[M]~~~~W 
VL86C020 

A2S-AO 

(:}3l-DO 

-RIW .. 
-BIW .. 
LOCK 

LINE 

-TRANS .. 

-M1,-MO 

-MREQ 

SEQ .. 
_ ABORT 

CPCLK .. 
CPSPV .. 
-0 PC 

-CPI .. 
_ CPA 

CPB 

~D3l-CPDO 

) 
) 

J 

ADDRESS 
BUS 

DATA 
BUS 

CONTROL 
BUS 

MEMORY 
MANAGEMENT 

INTERFACE 

COPROCESSOR 
INTERFACE 

I 



_ VLSI TECHNOLOGY, INC. ~ [R1 ~ [LD [}MUD [N]~[R1W 
VL86C020 

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK 

Signal Pin 
Name Number 

AO-A25 42-47, 49-52, 
56-66, 68, 36, 
38-40 

ABE 28 

ABORT 31 

ALE 29 

-BNJ 6 

CBE 26 

CPA 76 

CPB 77 

CPCLK 70 

Signal 
Type 

OCZ 

ITP 

IT 

ITP 

OCZ 

ITP 

ITP 

ITP 

OCZ 

Signal 
Description 

Processor Address Bus - If ALE (address latch enable) is high, the 
addresses change while MCLK is high, and remain valid while 
MCLK is low; their stable period can be modified by using ALE. 

Address Bus Enable - When this input is low, the address bus drivers (AO­
A25) are put into a high impedance state (Note 1). ABE may be left 
unconnected when there is no system requirement to turn off the address 
drivers (ABE is pulled high internally - see Note 2). 

Memory Abort - This input allows the memory system to signal the proces­
sor that a requested access is not allowed. This input is only monitored 
when the VL86C020 is accessing external memory. 

Address Latch Enable - This input is used to control transparent latches on 
the address outputs. Normally the addresses change while MCLK is high. 
However, when interfacing directly to ROMs, the address must remain 
stable throughout the whole cycle; taking ALE low until MCLK goes low will 
ensure that this happens. If the system does not require address lines to 
be held in this way, ALE may be left unconnected (it is pulled high internally 
- see Note 2). The ALE latch is dynamic, and ALE should not be held low 
indefinitely. 

NOT ByteM'ord - This is an output signal used by the processor to indicate 
to the external memory system when a data transfer of a byte length is 
required. -BM' is high for word transfers and low for byte transfers, and is 
valid for both read and write operations. The signal changes while MCLK is 
high, and is valid by the start of the active cycle to which it refers. 

Control Bus Enable - When this input is low, the following control bus 
drivers are put into a high impedance state (Note 1): 

-BM', LINE, LOCK, -M1, -MO, -R/W, -TRANS 

CBE may be left unconnected when there is no system requirement to turn 
off the control bus drivers (CBE is pulled high internally - see Note 2). 

Coprocessor Absent - A coprocessor which is capable of performing the 
operation which the VL86C020 is requesting (by asserting -CPI) should 
take CPA low immediately. The VL86C020 samples CPA when CPCLK 
and -CPI are both low, the VL86C020 will busy-wait until CPB is low and 
then complete the coprocessor instruction. If no coprocessors are fitted, 
CPA may be left unconnected (it is pulled high internally - see Note 2). 

Coprocessor Busy - A coprocessor which is capable of performing the 
operation which the VL86C020 is requesting (by asserting -CPI), but 
cannot commit to starting it immediately, should indicate this by taking CPB 
high. When the coprocessor is ready to start it should take CPB low. The 
VL86C020 samples CPB when CPCLK and -CPI are both low. If no 
coprocessors are fitted, CPB may be left unconnected (it is pulled high 
internally - see Note 2). 

Coprocessor Clock - This pin provides the clock by which all VL86C020 
coprocessor interactions are timed. CPCLK is derived from MCLK or FCLK 
depending on whether the processor is accessing external memory or the 
cache; the coprocessors must, therefore, be able to operate at FCLK 
speeds. 

3-8 



e VLSI TECHNOLOGY, INC. ~[R1~[L~[M]~~~[R1W 
VL86C020 

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.) 

SIgnal PIn Signal 
Name Number Type 

CPDO-CPD31 121-117,115, ITOTZ 
114, 112-1 08, 
106-104,101-
95, 93-91, 89, 
85-81, 79 

CPE 75 ITP 

-CPI 72 ecz 

CPSPV 71 OCZ 

00-031 123-127,130- ITOTZ 
133,135-138, 
142-146, 148, 
150-152,154-
158,1-5 

DBE 30 ITP 

FCLK 22 IC 

SIgnal 
DescrIptIon 

Coprocessor Data Bus - These are bidirectional signal paths which are 
used for data transfers between the processor and external coprocessors, 
as follows: 

• For processor instruction fetches (when -OPC - 0), the opcode is sent 
to the coprocessors by driving CPDO-CPD31 while CPCLK is high. 
Coprocessor instructions are broadcast unaltered, but non coprocessor 
instructions are replaced by &FFFFFFFF. 

• During data transfers from VL86C020 to a coprocessor, the data is 
driven onto CPDO-CPD31 while CPCLK is high. 

• During register and data transfers from the coprocessor to VL86C020, 
CPDO-CPD3:1 are inputs, and the data must be setup to the falling edge 
of CPCLK. 

Coprocessor Bus Enable - When this input is low, the following coproces-
sor bus drivers;are put Into a high impedance state (see Note 1): 

CPCLK, CPDO-CPD31, -CPI, CPSPV, -OPC 

CPE is provided to allow the coprocessor outputs to be disabled while 
testing the VL86C020 in-circuit, and CPE should be left unconnected for 
normal operation (it is pulled high internally - see Note 2):. If no coproces-
sor is to be connected to the VL86C020, CPE may be tied low, but CPCLK, 
CPDO-CPD31, -CPI, CPSPV and -OPC must not be left'floating. 

NOT Coprocessor Instruction - When VL86C020 executes a coprocessor 
instruction, it will take this output low and wait for a response from the 
appropriate coprocessor. The action taken will depend o'n this response, 
which the coprocessor signals on the CPA and CPB inputs. -CPI changes 
while CPCLK is low. 

Coprocessor Supervisor Mode - As instructions are broadcast to the 
coprocessors on CPDO-CPD31, this output reflects the mode in which 
each instruction was fetched by the processor (CPSPV - 1 for supervisor/ 
IRaIFIa mode fetches, CPSPV - 0 for user mode fetches). The coproces-
sors may use tlilis information to prevent user-mode programs executing 
protected coprocessor instructions. CPSPV changes while CPCLK is high. 

Data Bus - These are bidirectional signal paths which arEl used for data 
transfers between the processor and external memory, as follows: 

• For read operations (when -RIW - 0), the input data must be valid 
before the falling edge of MCLK. 

• For write operations (when -R/W - 1), the output data 'will become valid 
while MCLK is low. 

Data Bus Enable - When this input is low, the data bus drivers (00-031) 
are put Into a high impedance state (Note 1). The drivers will always be 
high impedance except during write operations, and DBE may be left 
unconnected in systems which do not require the data bus for DMA or 
similar activities (DBE is pulled high internally - see Note 12). 

Fast Clock Input - When the VL86C020 CPU is accessing the cache, per­
forming an internal cycle, or communicating directly with !the coprocessor, it 
is clocked with the fast clock, FCLK. This is a free-running clock which is 
independent of:MCLK; the maximum FCLK frequency is determined by the 
speed of the processor/coprocessor combination. 

3-9 

I 



f) VLSI TECHNOLOGY, INC. ~[R1~ [L~ [t¥1]~ [N]~[R1W 
VL86C020 

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.) 

SIgnal 
Name 

-FlO 

-IRO 

LINE 

LOCK 

-MO,-M1 

MCLK 

-MREO 

MSE 

-OPC 

-RESET 

Pin 
Number 

17 

18 

10 

11 

12, 16 

23 

21 

19 

74 

32 

SIgnal 
Type 

IT 

IT 

OCl 

OCl 

OCl 

IC 

OCl 

ITP 

OCl 

IT 

SIgnal 
DescriptIon 

NOT Fast Interrupt Request - H FIOs are enabled, the processor will 
respond to a low level on this input by taking the FlO interrupt exception. 
This is an asynchronous, level-sensitive input, and must be held low until a 
suitable response is received from the processor. 

Not Interrupt Request - As -FlO, but with lower priority. May be taken low 
asynchronously to interrupt the processor when the -IRO enable is active. 

Line Fetch Operation - This signal is driven high to signal that the CPU is 
fetching a line of information for the cache. Line fetch operations always 
read four words of data (aligned on a quad-word boundary), so the LINE 
signal may be used to start a fast quad-word read from memory. The 
signal changes while MCLK is high, and remains high throughout the line 
fetch operation. 

Locked Operation - When LOCK is high, the processor is performing a 
"locked" memory access, and the memory manager should wait until LOCK 
goes low before allowing another device to access the memory. LOCK 
changes while MCLK is high, and remains high for the duration of the 
locked memory accesses (data swap operation). 

NOT Processor Mode - These output signals are the inverses of the 
internal status bits indicating the processor operation mode (-MO, -M1): 
11 - User Mode, 10 - FlO Mode, 01 - IRO Mode, 00 - Supervisor Mode). 
-MO, -M1 change while MCLK is high. 

Memory Clock Input - This clock times all VL86C020 memory accesses. 
The low period of MCLK may be stretched when accessing slow peripher­
als; alternatively, the -WAIT input may be used with a free-running MCLK 
to achieve the same effect. 

NOT Memory Request - This is a pipelined signal that changes while 
MCLK is low to indicate whether the following cycle will be active (proces­
sor accessing external memory) or latent (processor not accessing 
external memory). An active cycle is flagged when -MREO - o. 
Memory Request/Sequential Enable - When this input is low, the -MREO 
and SEO cycle control outputs are put into a high impedance state (Note 
1). MSE is provided to allow the memory request/sequential outputs to be 
disabled while testing the VL86C020 in-circuit, and it should be left uncon­
nected for normal operation (MSE is pulled high internally - see Note 2). 

Opcode Fetch - -OPC is driven low to indicate to the coprocessors that an 
instruction will be broadcast on CPDO-CPD31 when CPCLK goes high. 
-OPC is held valid when CPCLK is low, and changes when CPCLK is 
high. 

NOT Reset - This is a level sensitive input signal which is used to start the 
processor from a known address. A low level will cause the instruction 
being executed to terminate abnormally, and the cache to be flushed and 
disabled. When -RESET becomes high, the processor will re-start from 
address o. -RESET must remain low for at least two FCLK clock cycles, 
and eight MCLK clock cycles. During the low period the processor will 
perform dummy instruction fetches from external memory with the address 
incrementing from the point where -RESET was activated. The address 
value will wrap around to zero if -RESET is held beyond the maximum 
address limit. 

3-10 



_ VLSI TECHNOLOGY, INC. ~~~[L~[Ml~[NJ~~W 
VL86C020 

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (Cont.) 

Signal 
Name 

-R/W 

SEQ 

-TEST 

-TRANS 

-WAIT 

VDD 

GND 

NC 

Pin 
Number 

7 

20 

35 

9 

34 

13,25,41,55, 
78, 87, 102, 122, 
139,141,159 

15, 24, 39, 53, 
69, 80, 86, 90, 
103,116,129, 
140,149,160 

8, 14,27,33, 
48, 54, 67, 73, 
88,94,107,113, 

Signal 
Type 

OCZ 

OCZ 

ITP 

oez 

ITP 

Signal 
Description 

NOT ReadlWrite - When high this signal indicates a processor write 
operation; when low, a read operation. The signal changes while MCLK is 
high, and is valid by the start of the active cycle to which'it refers. 

Sequential Address - This signal is the inverse of -MREQ, and is provided 
for compatibility with existing ARM memory systems (VLS6C020 has a 
subset of VL86C01 0 bus operations; see Memory Interface section). 

NOT Test - When this input is low, the VL86C020 entersla special test 
mode which is only used for off-board testing. -TEST must not be driven 
low while the VL86C020 is in-circuit, but may be left unconnected as it is 
pulled high internally (see Note 2). 

NOT Memory Translate - When this signal is low it indicates that the 
processor is in user mode, or that the supervisor is using a single transfer 
instruction withithe force translate bit active. It may be used to tell memory 
management hardware when translation of the addresses should be turned 
on, or as an indicator or non-'user mode activity. 

NOT Wait - When accessing slow peripherals, the VL86G020 can be made 
to wait for an integer number of MCLK cycles by driving -WAIT low. Inter-
nally, -WAIT is:ANDed with the MCLK clock, and must only change when 
MCLK is low. If -WAIT is not used in a system, it may be left unconnected 
(it is pulled high internally - see Note 2). 

Power supply: +5 V 

Ground 

No connect 

128,134,147,153 

Key to Signal Types: 

Notes: 

IC 
IT 
ITP 
OCZ 
ITOTZ 

CMOS-level input 
TTL-level input 
TTL-level input with pull-up resistor (Note 2) 
3-state CMOS-level output 
Bidirectional: 3-state TTL-level output; TTL-level input 

1. When output pads are placed in the high impedance state for longl periods, care must be taken to ensure that they do not 
float to an undefined logic level, as this can dissipate a lot of power, especially in the pads, 

2. The "ITP" class of pads incorporate a pull-up resistor which allows: signals with normally high inputs to be left unconnected. 
The value of the pull-up resistor will fall within the range 1 0 kn - 100 kil. 

3-11 

I 



e VLSI TECHNOLOGY, INC. 

PROGRAMMERS' MODEL 
The VL86C020 processor has a 32-bit 
data bus and a 26-bit address bus. The 
processor supports two data types, 
eight-bit byte and 32-bit words, where 
words must be aligned on four byte 
boundaries. Instructions are exactly 
one word, and data operations (e.g. 
ADD) are only performed on word 
quantities. Load and store operations 
can transfer either bytes or words. The 
VL86C020 supports four modes of 
operation, including protected supervi­
sor and interrupt handling modes. 

BYTE SIGNIFICANCE 
Some programming techniques may 
write a 32-bit (word) quantity to mem­
ory, but will later retrieve the data as a 
sequence of byte (8-bit) items. For 
these purposes, the processor stores 
word data in least-significant-first (LSB 

first) order. This means that the least 
significant bytes of a 32-bit word 
occupies the lowest byte address. (The 
VLSI Technology, Inc. assemblers, 
none the less, display compiled data in 
MSBs-first order, but for the sake of 
clarity only. The internal machine 
representation is preserved as LSBs­
first.) 

REGISTERS 
The processor has 27 registers (32-bits 
each), 16 of which are visible to the pro­
grammer at any time. The visible 
subset depends on the current proces­
sor mode; special registers are 
switched in to support interrupt and 
supervisor processing. The register 
bank organization is shown in Table 1. 

User mode is the normal program 
execution state; registers R15-RO are 
directly accessible. 

TABLE 1. REGISTER ORGANIZATION 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

RS 

R9 

RiO 

R11 

General 

General 

General 

General 

General 

General 

General 

General 

General 

General 

General 

General 

FlO 

FlO 

FlO 

FlO 

~ [R1 ~ [L~ [M1]~ [M&[R1W 
VL86C020 

All registers are general purpose and 
may be used to hold data or address 
values, except that register R15 
contains the Program Counter (PC) and 
the Processor Status Register (PSR). 
Special bits in some instructions allow 
the PC and PSR to be treated together 
or separately as required. Figure 1 
shows the allocation of bits within R15. 

R14 is used as the subroutine link 
register, and receives a copy of R15 
when a Branch and Link instruction is 
executed. It may be treated as a 
general purpose register at all other 
times. R14_svc, R14_irq and R14_fiq 
are used similarly to hold the return 
values of R 15 when interrupts and 
exceptions arise, or when Branch and 
Link instructions are executed within 
supervisor or interrupt routines. 

Typical Use 

General Usage 

R12 (FP) 

R13 (SP) 

R14 (LK) 

R15 (PC) 

General 

General 
I 
I 

General 

Supervisor I IRO 

Supervisor I IRO 

(Shared by all Modes) 

FlO 

FlO 

FlO 

Data Frame (by convention) 

Stack Pointer (by convention) 

R15 Save Area for BL or Interrupts 

System Program Counter 

TABLE 2. BYTE ADDRESSING 

31 

Byte Addr. 0003 Byte Addr. 0002 

Byte Addr. 0007 Byte Addr. 0006 

Byte Addr. 0001 Byte Addr. 0000 

Byte Addr. 0005 Byte Addr. 0004 

3-12 

o 

Word 
Address 

Value 

0000 

0001 



e VLSI TECHNOWGY, INC ~ (g1 ~ [LO [M] O~&(g1W 
VL86C020 

FIQ Processing - The FlO mode 
(described in the Exceptions section) 
has seven private registers mapped to 
R14-R8 (R14_fiq-R8_fiq). Many FlO 
programs will not need to save any 
registers. 

IRQ Processing - The IRO state has 
two private registers mapped to R14 
and R13 (R14_irq and R13_irq). 

Supervisor Mode - The SVC mode 
(entered on SWI instructions and other 
traps) has two private registers mapped 
to R14 and R13 (R14_svc and 
R13_svc). 

The two private registers allow the IRO 
and Supervisor modes each to have a 
private stack pointer and line register. 
Supervisor and IRO mode programs 
are expected to save the user state on 
their respective stacks and then use the 
user registers, remembering to restore 
the user state before returning. 

In user mode only the N, Z, C and V 
bits of the PSR may be changed. The I, 
F and Mode flags will change only when 
an exception arises. In supervisor and 
interrupt modes, all flags may be ma­
nipulated directly. 

EXCEPTIONS 
Exceptions arise whenever there is a 
need for the normal flow of program 
execution to be broken, so that (for 
instance) the processor can be diverted 
to handle an interrupt from a peripheral. 

The processor state just pnior to 
handling the exception must be 
preserved so that the original program 
can be resumed when the .exception 
routine has completed. Many excep­
tions may arise at the same time. 

The processor handles exceptions by 
using the banked registers!to save 
state. The old PC and PSR are copied 
into the appropriate R14, and the PC 
and processor mode bits are forced to a 
value which depends on the exception. 
Interrupt disable flags are set where 
required to prevent unmanageable 
nestings of exceptions. In the case of a 
re-entrant interrupt handle~, R14 should 
be saved onto a stack in main memory 
before re-enabling the interrupt. When 
multiple exceptions arise simultane­
ously, a fixed priority determines the 
order in which they are handled. 

FIQ - The FlO (Fast Interrupt Request) 
exception is externally generated by 
taking the -FlO pin low. This input can 
accept asynchronous transitions, and is 
delayed by one clock cycle. for synchro­
nization before it can affect the proces­
sor execution flow. It is designed to 
support a data transfer or channel 
process, and has sufficient! private 
registers to remove the need for 
register saving in such applications, so 
that the overhead of context switching 
is minimized. The FlO exception may 
be disabled by setting the F flag in the 

FIGURE 1. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER 

FlO Disable 
0= Enable 
1 = Disable 

IRO Disable 
0= Enable 
1 = Disable 

Overflow 

16 15 
I I I 

I 
Program Counter 
(Word Aligned) 

Carry/Not Borrow/Rotate Extend 
Zero 
Negative/Signed Less Than 

210 

I I ~ I 
'L,J 

Processor'Mode J 
00 = User Mode 
01 = FlO Mode 
10 = IRO Mode 
11 = Supervisor Mode 

3-13 

PSR (but note that this is not possible 
from user mode). If the F flag is clear, 
the processor checks for a low level on 
the output of the FlO synchronizer at 
the end of each instruction. 

The impact upon execlltion of an FlO 
interrupt is defined in Tiable 3. The 
return-from-interrupt sequence is also 
defined there. This will resume 
execution of the interrupted code 
sequence, and restore the original 
processor state. 

IRQ - The IRO (Interrupt Request) 
exception is a normal interrupt caused 
by a low level on the -IRO pin. It has a I 
lower priority than FlO, and is masked 
out when a FlO sequence is entered. 
Its effect may be masked out at any 
time by setting the I bit in the PC (but 
note that this is not possible from user 
mode). If the I flag is clear, the proces-
sor checks for a low level on the output 
of the IRO synchronizelr at the end of 
each instruction. 

The impact upon execution of an IRO 
interrupt is defined in Table 3. The 
return-from-interrupt sequence is also 
defined there. This will cause execution 
to resume at the instruction following 
the interrupted one, restore the original 
processor state, and re'·enable the IRO 
interrupt. 

Address Exception Trap - An address 
exception arises whenever a data 
transfer is attempted wi!th a calculated 
address above 3FFFFPFH. The 
VL86C020 address bus is 26-bits wide. 
and an address calculation will have a 
32-bit result. If this result has a logic 
one in any of the top six: bits, it is as­
sumed that the address is an error and 
the address exception trap is taken. 

Note that a branch cannot cause an 
address exception, and 'a block data 
transfer instruction which starts in the 
legal area but increments into the illegal 
area will not trap. The check is 
performed only on the address of the 
first word to be transferred. 

When an address exception is seen, 
the processor will respond as defined in 
Table 3. The return-from-interrupt 
sequence is also defined there. This 
will resume execution of the interrupted 
code sequence. and restore the original 
processor state. 



e VLSI TECHNOLOGY, INC. ~ [ffi ~ [L ~ ffi!A] ~ [N] ~ [ffi W 
VL86C020 

Normally, an address exception is 
caused by erroneous code, and it is 
inappropriate to resume execution. If a 
return is required from this trap, use 
SUBS PC, R14_svc, 4, as defined in 
Table 3. This will returnto the instruc­
tion after the one causing the trap. 

Abort - The ABORT signal comes from 
an external memory management 
system, and indicates that the current 
memory access cannot be completed. 
For instance, in a virtual memory 
system the data corresponding to the 
current address may have been moved 
out of memory onto a disc, and consid­
erable processor activity may be 
required to recover the data before the 
access can be performed successfully. 
The processor checks for an abort at 
the end of the first phase of each bus 
cycle. When successfully aborted, the 
VL86C020 will respond in one of three 
ways: 

1. If the abort occurred during an 
instruction prefetch (a prefetch 
abort), the prefetched instruction is 
marked as invalid; when it comes 
to execution, it Is reinterpreted as 
below. (If the instruction is not 
executed, for example as a result 
of a branch being taken while it is 
in the pipeline, the abort will have 
no effect.) 

2. If the abort occurred during a data 
access (a data abort), the action 
depends on the instruction type. 
Data transfer instructions (LOR, 
STR, SWP) are aborted as though 
the instruction had not executed. 
The LOM and STM instructions 
complete, and if write back is set, 
the base is updated. If the 
instruction would normally have 
overwritten the base with data (i.e. 
LOM with the base in the transfer 
list), this overwriting is prevented. 
All register overwriting is prevented 
after the abort is indicated, which 
means in particular that R15 (which 
is always last to be transferred) is 
preserved in an aborted LOM 
instruction. 

3. If the abort occurred during an 
internal cycle it is ignored. 

Then, in cases (1) and (2), the proces­
sor will respond as defined in Table 3. 

The return from Prefetch Abort defined 
in Table 3 will attempt to execute the 
aborting instruction (which will only be 
effective if action has been taken to 
remove the cause of the original abort). 
A Data Abort requires any auto­
indexing to be reversed before returning 
to re-execute the offending instruction. 
The return is performed as defined in 
Table 3. 

The abort mechanism allows a demand 
paged virtual memory system to be 
implemented when a suitable memory 
management unit (such as the 
VL86C110) is available. The processor 

is allowed to generate arbitrary ad­
dresses, and when the data at an 
address is unavailable the memory 
manager signals an abort. The 
processor traps into system software 
which must work oU the cause of the 
abort, make the requested data 
available, and retry the aborted 
instruction. The application program 
needs no knowledge of the amount of 
memory available to it, nor is its state in 
any way affected by the abort. 

Software Interrupt - The software 
interrupt is used for getting into supervi­
sor mode, usually to request a particu­
lar supervisor function. The processor 

TABLE 3. EXCEPTION TRAP CONSIDERATIONS 

Trap Type CPU Trap Activity Program Return Sequence 

1. Save R15 in R14 (SVC). 
Reset 2. Force M1, MO to SVC mode, (nla) 

and set F & I status bits in PC. 
3. Force PC to OxOOOOOO. 

Undefined 1. Save R15 in R14 (SVC). 

Instruction 2. Force M1, MO to SVC mode, MOVS PC,R14 ; SVC's R14. 
and set I status bit in the PC. 

3. Force PC to OxOOOOO4. 

Software 1. Save R15 in R14 (SVC). 
MOVS PC, R14 ; SVC's R14. 

Interrupt 2. Force M1, MO to SVC mode, 
and set I status bit in the PC. 

3. Force PC to OxOOOOO8. 

Prefetch 1. Save R15 in R14 (SVC). Prefetch Abort: 
and Data 2. Force M1, MO to SVC mode, 

SUBS PC, R14,4 ; SVC's R14. and set I status bit in the PC. Aborts 
3. Force PC to Ox00001 O-data. Data Abort: 

Force PC to OxOOOOC-Pre-. SUBS PC, R14,8 ; SVC's R14. 

1 . Convert Stores to Loads. 
2. Complete the instruction (see 

Address text for details). 
SUBS PC, R14,4 ; SVC's R14. 3. Save R15 in R14 (SVC). Exception 

4. Force M1, MO to SVC mode, 
and set I status bit in the PC. (Returns CPU to address following 

5. Force PC to OxOOOO14. the one causing the trap.) 

1. Save R15 in R14 (IRO). 
IRO 2. Force M1, MO to IRO mode, SUBS PC, R14,4 ; IRO's R14. 

and set I status bit in the PC. 
3. Force PC to OxOOOO18. 

1. Save R15 in R14 (FlO). 

FIQ 2. Force M1, MO to FlO mode, SUBS PC, R14,4 ; FlO's R14. 
and set the F and I status bits 
in the PC. 

3. Force PC to Ox00001 C. 

3-14 



e VLSI TECHNOLOGY, INC 

response to the (SWI) instruction is 
defined in Table 3, as is the method of 
returning. The indicated return method 
will return to the instruction following the 
SWI. 

Undefined Instruction Trap - When 
VL86C020 executes a coprocessor 
instruction or the undefined instruction, 
it offers it to any coprocessors which 
may be present. If a coprocessor can 
perform this instruction but is busy at 
that moment, the processor will wait 
until the coprocessor is ready. If no 
coprocessor can handle the instruction 
the VL86C020 will take the undefined 
instruction trap. 

The trap may be used for software 
emulation of a coprocessor in a system 
which does not have the coprocessor 
hardware, or for general purpose 
instruction set extension by software 
emulation. 

When the undefined instruction trap is 
taken the VL86C020 will respond as 
defined in Table 3. The return from this 
trap (after performing a suitable 
emulation of the required function), 
defined in Table 3 will return to the 
instruction following the undefined 
instruction. 

Reset - When -RESET goes high, the 
processor will stop the currently 
executing instruction and start execut­
ing no-ops. When -RESET goes low 
again it will respond as defined in Table 
3. There is no meaningful return from 
this condition. 

Vector Table - The conventional 
means of implementing an interrupt 
dispatch function Is to provide a table of 
jumps to the appropriate processing 
table, as follows: 

~ 
0000000 
0000004 
0000008 
OOOOOOC 
0000010 
0000014 
0000018 
000001C 

~ 
Reset 
Undetined Instruction 
Software Interrupt 
Abort (Prefetch) 
Abort (Data) 
Address Exception 
IRO 
FlO 

These are byte addresses, and each 
contains a branch instruction pointing to 
the relevant routine. The FlO routine 
might reside at 000001 C onwards, and 
thereby avoid the need for (and 
execution time of) a branch instruction. 

Exception Priorities - When multiple 
exceptions arise at the same time, a 
fixed priority system determines the 
order in which they will be handled: 

1; Reset (highest priority) 
2. Address Exception, Data Abort 
3. FlO 
4. IRO 
5. Prefetch Abort 
6. Undefined Instruction, Software 

Interrupt (lowest priority) 

Note that not all exceptions can occur 
at once. Address exception and data 
abort are mutually exclusive, since if an 
address is illegal. the processor ignores 
the ABORT input. Undefined instruc­
tion and software interrupt are also 
mutually exclusive since they each 
correspond to particular (non-overlap­
ping) decodings of the current instruc­
tion. 

If an address exception or data abort 
occurs at the same time as a FlO, and 
FIOs are enabled i.e. the:F flag in the 
PSR is clear, the processor will enter 
the address exoeption or data abort 
handler and then immediately proceed 
to the FlO vector. A normal return from 
FlO will cause the addres:s exception or 
data abort handler to resume execution. 
Placing address exception and data 

3-15 

~ [R1 ~ [L~ ~n [N]~[R1W 
VL86C020 

abort at a higher priority than FlO is 
necessary to ensure :that the transfer 
error does not escape detection, but the 
time for this exception entry should be 
reflected in worst cas'e FlO latency cal­
culations. 

Interrupt latencies .. The worst case 
latency for FlO, assuming that it is 
enabled, consists of the longest time 
the request can take to pass through 
the synchronizer (Tsyncmax), plus the 
time for the longest instruction to 
complete (Tldm, the Ibngest instruction 
is load multiple registlers), plus the time 
for address exception or data abort 
entry (Texc), plus theitime for FlO entry I 
(Tfiq). At the end of this time the 
processor will be executing the instruc-
tion at 1C. 

Tsyncmax is 2.5 processor cycles, Tldm 
is 18 cycles, Texc is three cycles, and 
Tfiq is two cycles. The total time is, 
therefore, 25.5 processor cycles, which 
is just over 2.5 microseconds in a 
system using a continuous 10 MHz 
processor clock. In a I DRAM based 
system running at 4 ahd 8 MHz, for 
example using the VL'86C11 0, this time 
becomes 4.5 microseconds, and if bus 
bandwidth is being used to support 
video or other DMA attivity, the time will 
increase accordingly. 

The maximum IRO latency calculation 
is similar, but must allow for the fact 
that FlO has higher pr,iority and could 
delay entry into the IRQ handling 
routine for an arbitrary length of time. 

The minimum lag for ir'lterrupt recogni­
tion for FlO or IRO consists of the 
shortest time the request can take 
through the synchronizer (Tsyncmin) 
plus Tfiq. This is 3.5 processor cycles. 
The FlO should be heltl until the mode 
bits indicate FlO mode. It may be 
safely held until cleared by an 1/0 
instruction in the FlO service routine. 



8 VLSI TECHNOLOGY, INC. [p~~[L~[M1J~[M~~W 
VL86C020 

INSTRUCTION SET 
All VL86C020 instructions are condi­
tionally executed, which means that 
their execution mayor may not take 
place depending on the values of the N, 
Z, C and V flags in the PSR at the end 
of the preceding instruction. 

If the ALways condition is specified, the 
instruction will be executed irrespective 
of the flags, and likewise the Never 
condition will cause it not to be exe­
cuted (it will be a no-op, i.e. taking one 
cycle and having no effect on the proc­
essor state). 

FIGURE 2. CONDITION FIELD 

31 24 23 16 15 

I eol nldxl I I I I I I I I I I I I I I I I 
.. (Any Instruction) 

L COndlltiOn Field 
0000 = EQ - Z set (equal) 
0001 = NE - Z clear (not equal) 
0010 = CS - C set (unsigned higher or same) 
0011 = CC - C clear (unsigned lower) 
0100 = MI - N set (negative) 
0101 = PL - N clear (positive or zero) 
0110 = VS - V set (overflow) 
0111 = VC - V clear (no overflow) 
1000 = HI - C set and Z clear (unsigned higher) 
1001 = LS - C clear or Z set (unsigned lower or same) 

8 7 
I I I 

1010 = GE - N set and V set, or N clear and V clear (greater or equal) 
1011 = L T - N set and V clear, or N clear and V set (less than) 

a 

The other condition codes have 
meanings as detailed above, for 
instance, code 0000 (EQual) causes 
the instruction to be executed only if the 
Z flag is set. This would correspond to 
the case where a compare (CMP) 
instruction had found the two operands 
were different, the compare instruction 
would have cleared the Z flag, and the 
instruction would not be executed. 

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than) 
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal) 
1110 = AL - Always 

Branch and Branch with Link (B, BL) 
The B, BL instructions are only exe­
cuted if the condition field is true. 

1111 = NV - Never 

FIGURE 3. BRANCH AND BRANCH WITH LINK (B, BL) 

31 28 27 24 23 

I ii I I j I I I I 
90ndx10 1L 

LCCOnditiOn L 
Field 

I I Iii I iii I I I I 
PC-Relative Offset 

Link Bit 
0= Branch 
1 = Branch With Link (Subroutine call) 

a 

All branches take a 24-bit offset. The 
offset is shifted left two bits and added 
to the PC, with overflows being ignored. 
The branch can therefore reach any 
word aligned address within the 
address space. The branch offset must 
take account of the prefetch operation, 
which causes the PC to be two words 
ahead of the current instruction. 

Link Bit - Branch with Link writes the 
old PC and PSR into R14 of the current 
bank. The PC value written into the link 

register (R14) is adjusted to allow for 
the prefetch, and contains the address 
of the instruction following the branch 
and link instruction. 

Return from Subroutine - When 
returning to the caller, there is an option 
to restore or to not restore the PSR. 
The following table illustrates the 
available combinations. 

Link Register Valid 
Restoring PSR: 
Not Restoring PSR: 

MOVS PC,R14 
MOV PC,R14 

LInk Saved to a Stack 
LDM Rn!, (PC)" 
LDM Rnl, (PC) 

Assembler Syntax: 

8(L){cond} <expression> 

where L 

cond 

expression 

is used to request the Branch-with-Link form of the instruction. 
If absent, R14 will not be affected by the instruction. 
is a two-character mnemonic as shown in Condition Code section (EQ, NE, 
VS, etc.). If absent then AL (Always) will be used. 
is the destination. The assembler calculates the relative (word) offset. 

Items in { } are optional. Items in < > must be present. 

3-16 



e VLSI TECHNOLOGY, INC. [¥) [R1 ~ [L ~ U¥1J ~ ~ ffi\ [R1 17 
VL8SC020 

Examplos: 
Here BAL 

B 

CMP 
BEQ 

BL 

ADDS 
BLCC 

BLNV 

Here 

There 

R1,O 
Fred 

ROM+Sub 

R1,1 
Sub 

Sub 

; Assembles to EAFFFFFE. (Note effect of PC offset) 

; Always condition used as default 

; Compare register one with zero, and branch to Fred if 
; register one was zero. Else continue next instruction. 

; Unconditionally call subroutine at computed address. 

; Add one to register one, setting PSR flags on the result. 
; Call Sub if the C flag is clear, which will be the case unless 
; R1 contained FFFFFFFFH. Else continue next instruction. 

; Never call subroutine (this is a NO-OP). 

3-17 

E 



e VLSI TECHNOLOGY, INC. 

FIGURE 4. ALU INSTRUCTION TYPES 

31 28 25 20 16 15 12 11 

L~HnatiOn Regi,'" 
1 st Operand Register 

Set Condition Codes 
~J 

Immediate Value 
o = Operand 2 is a register. 
1 = Operand 2 is an 

immediate value. 
Operation Code 

0000 = AND - Rd = Op1 AND Op2 
0001 = EOR - Rd = Op1 EOR Op2 
0010 = SUB - Rd = Op1 - Op2 
0011 = RSB - Rd = Op2 - Op1 
0100 = ADD - Rd = Op1 + Op2 
0101 = ADC - Rd = Op1 + Op2 + C 
0110 = SBC - Rd = Op1 - Op2 + C 
0111 = RSC - Rd = Op2 - Op1 + C 

o = Do not alter condition codes 
1 = Set condition codes (S suffix) 

1000 = TST - set condition codes on Op1 AND Op2 
1001 = TEO - set condition codes on Op1 EOR Op2 
1010 = CMP - set condition codes on Op1 - Op2 
1011 = CMN - set condition codes on Op1 + Op2 
1100=ORR-Rd=Op10ROp2 

o 

~~~[LO~O[N]&[ffiW 
VL86C020

Imm = 1 --> Operand 2 is an immediate value.

11 8 7 0 I I I I I I I I I I I I I
Rotate Immediate

LJ= I
Unsigned 8-blt Immediate value

Right-rotate amount to be applied
to 8-bit Imm (2-bit shift units).

Imm = 0 --> Operand 2 is in a register.
11 4 3 0

I I I I i I I I I I I I I
Shift Field Rm

1101 = MOV - Rd = Op2
1110 = BIC - Rd = Op1 AND not Op2
1111 = MVN - Rd = not Op2 or-~ l T 2nd Opemnd Regl,'"

11 5 4 Shift applied to Rm (as shown
11 5 4 i i in below expansion figures).

ALU Instructions - The AlU-type
instruction is only executed if the
condition is true. The various condi­
tions are defined in Condition Field
Section.

The instruction produces a result by
performing a specified arithmetic or
logical operation on one or two oper­
ands. The first operand is always a

1 I 10 I I Rs 101 I Id
I

Shift Amount
Shift amount is a 5-bit
unsigned integer.

t Shift Type

Shift Amount
Shift amount is specified
in bottom byte of Rs.

register (Rn). The second operand may
be a shifted register (Rm) or a rotated
8-bit immediate value (Imm) according
to the value of the I bit in the instruction.
The condition codes in the PSR may be
preserved or updated as a result of this
instruction, according to the value of the
S bit in the instruction. Certain opera­
tions (TST, TEO, CMP, CMN) do not

3-18

00 = Logical Left
01 = Logical Right
10 = Arithmetic Right
11 = Rotate Right

(LSL)
(LSR)
(ASR)
(ROR)

write the result to Rd. They are used
only to perform tests and to set the
condition codes on the result, and
therefore, should always have the S bit
set. (The assembler treats TST, TEO,
CMP and CMN as TSTS, TEaS, CMPS
and CMNS by default.)

e VLSI TECHNOLOGY, INC ~~~[L~U¥tJ~[N]£~W
VU86C020

DATA PROCESSING OPERATIONS

Assembler
Mnemonic
AND
EOR
SUB
RSB
ADD
ADC
SBC
RSC
TST
TEO
CMP
CMN
ORR
MOV
BIC
MVN

~
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PSR Flags - The operations may be
classified as logical or arithmetic. The
logical operations (AND, EOR, TST,
TEO, ORR, MOV, BIC, MVN) perform
the logical action on all corresponding
bits of the operand or operands to
produce the result. If the S bit is set
(and Rd is not R15), the V flag in the
PSR will be unaffected, the C flag will
be set to the carry out from the barrel
shifter (or preserved when the shift
operation is LSL 0), the Z flag will be
set if and only if the result is all zeros,
and the N flag will be set to the logical
value of bit 31 of the result.

The arithmetic operations (SUB, RSB,
ADD,ADC,SBC, RSC,CMP,CMN)
treat each operand as a 32-bit integer
(either unsigned or 2's complement
signed, the two are equivalent). If the S
bit is set (and Rd is not R15) the V flag
in the PSR will be set if an overflow
occurs into bit 31 of the result; this may
be ignored if the operands were
considered unsigned, but warns of a
possible error if the operands were 2's
complement signed. The C flag will be
set to the carry out of bit 31 of the ALU,
the Z flag will be set if and only if the
result was zero, and the N flag will be
set to the value of bit 31 of the result
(indicating a negative result if the
operands are considered to be 2's
complement signed).

Shifts - When the second operand is
specified to be a shifted register, the

Asill!m
Bit-wise logical AND of operands
Bit-wise logical Exclusive Or of operands
Subtract operand 2 from operand 1
Subtract operand 1 from operand 2
Add operands
Add operands plus carry (PSR C flag)
Subtract operand 2 from operand 1 plus carry
Subtract operand 1 from operand 2 plus carry
as AND, but result is not written
as EOR, but result is not written
as SUB, but result is not written
as ADD, but result is not written
Bit-wise logical OR of operands
Move operand 2 (operand 1 is ignored)
Bit clear (bit-wise AND of Ci)perand 1 and NOT operand 2)
Move NOT operand 2 (operand 1 is ignored)

operation of the barrel shifter is
controlled by the shift field!in the in­
struction. This field indicates the type
of shift to be performed (logical left or
right, arithmetic right or rot'ate right).
The amount by which the ~egister
should be shifted may be contained in
an immediate field in the instruction, or
in the bottom byte of another register as
shown in Figure 4.

When the shift amount is specified in
the instruction, it is contained in a 5-bit
field which may take any value from 0

FIGURE 5. LOGICAL SHI'FT LEFT (LSL)

to 31. A logical shift left (LSL) takes the
contents of Rm and moves each bit by
the specified amount to' a more signifi­
cant position. The least significant bits
of the result are filled with zeros, and
the high bits of Rm whi¢h do not map
into the result are discarded, except
that the least significant discarded bit
becomes the shifter carry output which
may be latched into the C bit of the
PSR when the ALU operation is in the
logical class. (See Data Processing
Operations above.) For example, the
effect of LSL 5 is:

31 24 23 16 15 8 7 o
rI 11111111111111111"""11" 1..2!!:!Y.I ----1..-______________ _

Contents of Rm, which will appear (shifted) in Operand 2

Carry Flag 31 2423 1615 8 7 0

1 B'lt 271 ----I I I I I I I I 1 I I I I I I I I I I I I I I I IIJCIJDJ
. Lower 27 bits of Rm---12..~

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL 0 is a special case,
where the shifter carry outis the old
value of the PSR C flag. The contents
of Rm are used dirE/ctly as: the second
operand.

3-19

A Logical Shift Right (LSR) is similar,
but the contents of Rm lare moved to
less significant positions in the result.
LSR 5 has the effect shown in Figure 6.

E

e VLSI TECHNOLOGY, INC.

FIGURE 6. LOGICAL SHIFT RIGHT (LSR)

31 2423 1615 8 7

o~I"""'I"""'I' I I I
Contents of Rm, which will appear (shifted) in Operand 2

o

[p~~[L~~~~~~W
VL86C020

31 2423 1615 8 7 0 Carry Flag

1
I 1 ~ r::-,B'lt 4

o 0 0 0 0 Upper 27 bits of Rm . ~

Example of shifted result in Operand 2 (shifted content of Rm)

The form of the shift field which might
be expected to correspond to LSR 0 is
used to encode LSR 32, which has a
zero result with bit 31 of Rm as the
carry output. Logical shift right zero is
redundant as it is the same as logical
shift left zero. Therefore, the assembler

converts LSR 0, and ASR 0, and ROR
o into LSL 0, and allows LSR 32 to be
specified.

The Arithmetic Shift Right (ASR) is
similar to logical shift right, except that
the high bits are filled with replicates of

FIGURE 7. ARITHMETIC SHIFT RIGHT (ASR)

31 2423 1615 8 7 0

the sign bit (bit 31) of the Rm register,
instead of zeros. This signed shift
preserves the correct representation of
a (signed) negative integer to be
divided by powers of two via a right
shift. For example, ASR 5 has the
following effect:

~Lliiiilllilliiiilil III 'I~~
~-----------------------.....

Contents of Rm, which will appear (shifted) in Operand 2
extend

Carry Flag

~~--~~-~~~-~~~~~~~~-------~ ~~
Example of shifted result in Operand 2 (shifted content of Rm)

The form of the shift field which might
be expected to give ASR 0 is used to
encode ASR 32. Bit 31 of Rm is again
used as the carry output, and each bit of

FIGURE 8. ROTATE RIGHT (ROR)

operand 2 is also equal to the sign bit
(bit 31) of Rm. The result is, therefore,
all ones or all zeros according to the
value of bit 31 of Rm.

31 24 23 16 15 8 7 0
1IIIIIIIIIIIlililliiillillillii I

Contents of Rm, which will appear (shifted) in Operand 2

31 24 23 16 15 8 7 0

1
0 10 10 10 10 131 I I 1 I 1 I I I 1 I 1 1 I I I I 1 I 1 I I I I I 10

5
1

.4 3 2 1 0.1 Upper 27 bits of Rm value .

Example of shifted result in Operand 2 (shifted content of Rm)

3-20

Rotate Right (ROR) operations reuse
the bits which "overshoot" in a logical
shift right operation by wrapping them
around at the high end of the result.
For example, the effect of a ROR 5 is:

Carry Flag

GlW

e VLSI TECHNOLOGY, INC. [?) [R1 ~ [L ~ ffi!A] ~ WJ ~ [R1 W
Vli86C020

The form of the shift field which might
be expected to give ROR 0 is used to
encode a special function of the barrel

shifter, rotate right extended (RRX).
This is a rotate right by one"bit position

of the 33-bit quantity formed by append­
ing the PSR C flag to the most signifi­
cant end of the contents of Rm:

FIGURE 9. ROTATE RIGHT EXTENDED (RRX)

3'1 2423 '16 15 8 7 0

[~_I __ I -1-1--1_1--1_1--1 _1_1 __ 1_1 __ 1_1 __ 1_1 __ 1 _______ I_I_I _________ I~I~
Contents of Rm, which will appear (shifted) in Operand 2

Register-Based Shift Counts - Only
the least significant byte of the contents
of Rs is used to determine the shift
amount. If this byte is zero, the un­
changed contents of Rm will be used as

the second operand, and the old value
of the PSR C flag will be passed on as
the shifter carry output.

If the byte has a value between 1 and
31, the shifted result will exactly match

that of an instruction specified shift with
the same value and shift operation.

Shifts of 32 or More - The result will
be a logical extension of!the shifting
processes described above:

Shift Action
LSL by 32
LSL by more than 32
LSR by 32
LSR by more than 32
ASR by 32 or more
ROR by 32
ROR by more than 32

Result zero, carry out equal to bit zero of Rm.
Result zero, carry out zero.
Result zero, carry out equal to bit 31 of Rm.
Result zero, carry out zero.
Result filled with, and carry out equal to, bit 31 of Rm.
Result equal to Rm, and carry out equal to, bit 31 of Rm.
Same result and carry out as ROR by n-32. Therefore, repeatedly
subtract 32 from count until within the range one to 32.

Note: The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruction
to be a multiply or an undefined instruction.

Immediate Operand Rotation· The
immediate operand rotate field is a 4-bit
unsigned integer which specifies a shift
operation on the 8-bit immediate value.
The immediate value is zero extended
to 32 bits, and then subject to a rotate
right by twice the value in the rotate
field. This enables many common
constants to be generated, for example
all powers of 2. Another example is
that the a-bit constant may be aligned
with the PSR flags (bits 0, 1, and 26 to
31). All the flags can thereby be
initialized in one TEOP instruction.

Writing to R15 - When Rd is a register
other than R15, the condition code flags
in the PSR may be updated from the
ALU flags as described above. When
Rd is R15 and the S flag in the instruc­
tion is set, the PSR is overwritten by the

corresponding bits in the ALU result, so
bit 31 of the result goes to the N flag, bit
30 to the Z flag, and 29 to the C flag
and bit 28 to the V flag. In user mode
the other flags (I, F, M1, MO:) are
protected from direct change, but in
non-user modes these will also be
affected, accepting copies of bits 27,
26, 1 and 0 of the result respectively.

When one of these instructions is used
to change the processor mode (which is
only possible in a non-user mode), the
following instruction should not access
a banked register (R8-R14)!during its
first cycle. A no-op should be inserted if
the next instruction must access a
banked register. Accesses to the
unbanked registers (AO-R7 and R15)
are safe. This restriction is required for
the VL86C010 processor and does not

3-21

apply to VL86C020, but should be
adhered to for compatibility.

If the S flag is clear when Rd is R15,
only the 24 PC bits of R15 will be
written. Conversely, if the instruction is
of a type which does not normally
produce a result (CMP, GMN, TST,
TEO) but Rd is R15 andlthe 5 bit is set,
the result will be used to' update those
PSR flags which are notlprotected by
virtue of the processor mode.

Setting PSR Bits - It is isuggested that
TEOP be used to set PSR bits in SVC
mode. Because these bits are not
presented to the ALU input (even when
R151s the operand), theTEOP's
operands replace all current PSR bits.
For example, to remain in SVC mode
but set the interrupt-disable bits, use a
"TEOP PC, Ox C000003" instruction.

"VLSI TECHNOLOGY. INC. [?J ~ ~ [b~ [M] ~ [N]ffi\~W
VL86C020

R15 as an Operand· If R15 is used as
an operand in a data processing
instruction it can present different
values depending on which operand
position it occupies. It will always
contain the value of the PC. It mayor
may not contain the values of the PSR
flags as they were at the completion of
the previous instruction.

Assembler Syntax:

MOV, MVN single operand instructions:
<opcod9>{condHS} Rd,<Op2>

When R15 appears in the Rm position it
will give the value of the PC together
with the PSR flags to the barrel shifter.

When R15 appears in either of the Rn
or Rs positions it will give the value of
the PC alone, with the PSR bits
replaced by zeros.

The PC value will be the address of the
instruction, plus 8 or 12 bytes due to
instruction prefetching. If the shift
amount is specified in the instruction,
the PC will be 8 bytes ahead. If a
register is used to specify the shift
amount, the PC will be 8 bytes ahead
when used as Rs, and 12 bytes ahead
when used a Rn or Rm.

CMP, CMN, TEO, TST - instructions not producing a result:
<opcode>{condHP} Rn,<Op2>

AN~EOR,SU~RS~AD~ADC,SBC,RSC,ORRBIC:
<opcode>{condHS} Rd, Rn, <Op2>

whereOp2
cond
S
p

Rd, Rnand Rm
<shift>

<shiftname>s

Is Rm{<shift>} or, <expression>
Two-character condition mnemonic, see Condition Code section.
Set condition codes if S present (implied for CMP, CMN, TEO, TST).
Make Rd - R15 in Instructions where Rd Is not specified, otherwise Rd will
default to RO. (Used for changing the PSR directly from the ALU result.)
Are any valid register name, such as RO-R15, PC, SP, or LK.
Is <shiftname> <register> or <shiftname> expression, or RRX (rotate right
one bit with extend).
Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: If <expression> is used, the assembler will attempt to generate a shifted immediate eight-bit field to match the expression.
If this Is impossible, it will give an error.

Examples:
ADDEO

TEOS

SUB

TEOP

MOVNV RO, RO

MOV

MOVS

R2,R4,R5

R4,3

R4. R5, R7 LSR R2

R15,O;

PC, LK

PC, R14

; Equivalent to: if (ZFLAG) R2 = R4+R5.

; Test R4 for equality with 3 (The S is redundant, as the assembler
; assumes it). Equivalent to: ZFLAG .. R4 ... 3.

; Logical Right Shift R7 by the number in the bottom byte of R2, subtract
; the result from R5, and put the answer into R4.
: Equivalent to: R4 - R5 - (R7»R2).

; (Assume non-user mode here). Change to
; user mode and clear the N,Z,C,V,I, and F
; flags. Note that R15 is in the Rn position, so
; it comes without the PSR flags.
; Equivalent to: R15 - FLAGS = O.

; Is a no-op, avoiding mode-change hazard.
; Equivalent to: RO - RO.

; Equivalent to: PC - LK, or PC - R14.
; Return from subroutine (R14 is an active one).

; Equivalent to: PC, PSR - R14.
; Return from subroutine, restoring the status.

3-22

" VLSI TECHNOLOGY, INC

FIGURE 10. MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

~[R1~[LD~D[M~[R1W
VL.86C020

31 28 27 22 19 16 15 8 7 a
rnd~ I a 1 a 1 a 1 a 1 a 1 a I A I S I 1 ~d 1 I 1 ~n 1 I 1 ~s 1 11 1 a 1 a 11 I 1 ~m 1 I

~al Execution ¢era2jre~Y Y
Control Field MUL: Rd = Rm * Rs (Rn Is Ignored)

MLA: Rd = Rm • Rs + Hn

Set Condition Codes
a = Do not alter Condition Codes
1 = Set Condition Codes

1--___ Accumulate bit (MLA specifIer)

The multiply and multiply-accumulate
instructions use a 2-bit Booth's algo­
rithm to perform integer multiplication.
They give the least significant 32 bits of
the product of two 32-bit operands, and
may be used to synthesize higher
precision multiplications.

The multiply form of the instruction
gives Rd - Rm*Rs. Rn is ignored, and
should be set to zero for compatibility
with possible future upgrades to the
instruction set.

The multiply-accumulate form gives
Rd ... Rm*Rs+Rn, which can save an
explicit ADD instruction in some
circumstances.

Both forms of the instruction work on
operands which may be considered as
signed (2's complement) or unsigned
integers.

Operand Restrictions - Due to the way
the Booth's algorithm has been
implemented, certain combinations of
operand registers should be avoided.
(The assembler will issue a warning if
these restrictions are violated.)

a = Multiply (MUL)
1 = Multiply and Accumulate (MLA)

The destination register (Rd) should not
be the same as the Rm operand
register, as Rd is used to hold interme­
diate values and Rm is used repeatedly
during the mUltiply. A MUL will give a
zero result if Rm-Rd, and a MLA will
give a meaningless result..

The destination register Rd should also
not be R15, as it is protected from
modification by these instructions. The
instruction will have no effect, except
that meaningless values will be placed
in the PSR flags if the S bit is set. All
other register combinations will give
correct results, and Rd, Rli and Rs may
use the same register when required.

PSR Flags - Setting the PSR flags is
optional, and is controlled by the S bit in
the instruction. The Nand Z flags are
set correctly on the result (N is equal to
bit 31 of the result, Z is set if and only if
the result is zero), the V flag is unaf­
fected by the instruction (as for logical
data processing instructions), and the C
flag is set to a meaningless value.

3-23

Writing to R15 - As mentioned previ­
ously, R15 must not be used as the
destination register (Rd). If it is so
used, the instruction will have no effect
except possibly to scramble the PSR
flags.

R15 As an Operand - R15 may be
used as one or more of the operands,
though the result will rarely be useful.
When used as Rs the PC bits will be
used without the PSR flags, and the PC
value will be 8 bytes advanced from the
address of the multiply· instruction.
When used as Rn, the PC bits will be
used along with the PSR flags, and the
PC will again be 8 bytes advanced from
the address of the instruction. When
used as Rm, the PC bits will be used
together with the PSR illags, but the PC
will be the address of the instruction
plus 12 bytes in this case.

I

e VLSI TECHNOLOGY, INC.

Assembler Syntax:

MUL{cond}{S}
MLA {cond}{S}

where cond
S

Rd, Rm, Rs
Rd, Rm, Rs, Rn

Is a two-character condition code mnemonic
Set condition codes if present.

~~~[L~~~~&~W 
VL86C020 

Rd, Rm, Rs and Rn Are valid register mnemonics, such as RO-R15, SP, LK, or PC. 

Notes: 
Rd must not be R15 (PC), and must not be the same as Rm. 
Items in {} are optional. Those in <> must be present. 

Examples: 
MUL 
MLAEQS 

R1, R2, R3 
R1, R2, R3, R4 

; R1 - R2 * R3. (R1,R2,R3 = Rd,Rm,Rs) 
; Equivalent to: if (ZFLAG) R1 = R2*R3 + R4. 
; Condition codes are set, based on the result. 

; The multiply instruction may be used to synthesize higher precision multiplications. 
For instance, multiply two 32-bit integers and generate a 64-bit result: 

MOV RO, R1 LSR 16 ; RO (temporary) = top half of R1. 
MOV R4, R2 LSR 16 ; R4 - top half of R2. 
BIC R1, R1, RO LSL 16 ; R1 - bottom half of R1. 
BIC R2, R2, R4 LSL 16 ; R2 - bottom half of R2. 
MUL R3, RO, R2 ; Low section of result. 
MUL R2, RO, R2 ; Middle section of result. 
MUL R1, R4, R1 ; Middle section of result. 
MUL R4, RO, R4 ; High section of result. 
ADDS R1, R2, R1 ; Add middle sections. (MLA not used, as we need R3 correct). 
ADDCS R4, R4, Ox10000 ; Carry from above add. 
ADDS R3, R3, R1 LSL 16 ; R3 is now bottom 32 product bits. 
ADC R4, R4, R1 LSR 16 ; R4 is now top 32 bits. 

Notes: 
1. R1, R2 are registers containing the 32-bit integers. R3, R4 are registers for the 64-bit result. 
2. RO is a temporary register. 
3. R1 and R2 are overwritten during the mUltiply. 

3-24 



_ VLSI TECHNOLOGY, INC. 

Load/Store Value from Memory 
(LDR,STR) - The register load/store 
instructions are used to load or store 
single bytes or words of data. The LOR 
and STR instructions differ from MOV 
instructions in that they move data 
between registers and a specified 
memory address. In contrast, the MOV 
instructions move data between 
registers, or move a constant (con­
tained in the instruction) into a register. 

The memory address used in LDR/STR 
transfers is calculated by adding an 
offset to or subtracting an offset from a 
base register. Typically, a load of a 
labeled memory location involves the 
loading via a (signed) offset from the 
current PC. Regardless of the base 
register used, the result of the offset 
calculation may be written back into the 
base register if "auto-indexing" is 
required. 

Offsets and Auto-Indexing - The 
offset from the base may be either a 12-
bit binary immediate valuedn the 
instruction, or a second remister 
(possibly shifted in some manner). The 
offset may be added to (U=1) or 
subtracted from (U.O) the base register 
Rn. The offset modification may be 
performed either before (pre-indexed, 
P=1) or after (post-indexed, P=O) the 
base is used as the transfer address. 

The W bit gives optional atlto increment 
and decrement addressing modes. The 
modified base value may be written 
back into the base (W=1), or the old 
base value may be kept (W=O). In the 
case of post-indexed addressing, the 
write back bit is redundant, since the 
old base value can be retained by 
setting the offset to zero. Therefore, 
post-indexed data transfers always 
write back the modified base. 

FIGURE 11. SINGLE DATA TRANSFER (LOR, STR) 

31 28 25 20 16 15 12 11 
I I I ~ I I I 

Oerand 2 

~~~[LO[MJOIN]&~W 
VL86C020

Hardware Address Translation - The
only use of the W bit in' a post-indexed
data transfer is in non-user mode code,
where setting the W bit forces the
-TRANS pin to go low for the transfer,
allowing the operating system to
generate a user address in a system
where the memory mal'1lagement
hardware makes suitable use of this
pin, as when the MEMC chip is used.

Shifted Register Offset - The eight
shift control bits are described in the
data processing instrudtions, but the
register specified shift amounts are not
available in this instrucNon class.

Bytes and Words - This instruction
class may be used to t~ansfer a byte
(B=1) or a word (B-O) between a
VL86C020 register and memory. In the
discussion, remember that the
VL86C020 stores words into memory
with the Least Significant Byte at the
lowest address (I.e., LSB first).

o
I I

Condition
Code ~L

L.-J L_.....J'L.-_______ Source/Destination Register

~ Base Register

Imm = 0 --> Operand 2 is an immediate value.
Load/Store: 0 - STR, 1 - LOR

11 0
Write Back Bit

o = No write back
1 = Write address back into base (!).

BytelWord Bit
o = Word transfer
1 = Byte transfer (B)

Up/Down Bit
o = Offset is negative
1 == Offset is positive

Pre/Post Indexing
0== Post: [base],lndex
1 - Pre: [base,lndex]

Immediate Value
1 = Operand 2 is a register.
o = Operand 2 is an

immediate value.

Shift Amount ~
Shift amount is a 5-bit
shift count, to be applied
to the Rm register.

3-25

y L 2nd o~erand Register L Shift Type

00 == logical:left (lSl)
01 ... logical Hight (lSR)
10 = Arithmetic Right (ASR)
11 ., Rotate Right (RCR)

E

e VLSI TECHNOLOGY, INC. [F)~~[L~~~[N]~~W
VL86C020

Non.Allgned Addresses· A byte load
(LORB) expects the data on bits 07 to
DO if the supplied address is on a word
boundary, on bits 015 to 08 if it is a
word address plus one byte, and so on.
The selected byte is placed in the
bottom eight bits of the destination
register, and the remaining bits of the
register are filled with zeros.

A byte store (STRB) repeats the bottom
eight bits of the source register four
times across the data bus. The external
memory system should activate the
appropriate byte subsystem to store the
data.

Non·Allgned Accesses· A word load
(LOR) should generate a word aligned
&ddress. An address offset from a word
boundary will cause the data to be
rotated into the register so that the
addressed byte occupies bits 07 to DO.
See the below example.

External hardware could perform a
double access to memory to allow non­
aligned word loads, but the VL86C11 0
Memory Controller does not support this
function.

Use of R15 - These instructions will
never cause the PSR to be modified,
even when Rd or Rn is R15.

If R15 is specified as the base register
(Rn), the PC is used without the PSR
flags. When using the PC as the base
register one must remember that it

contains an address 8 bytes advanced
from the address of the current instruc­
tion.

If R15 is specified as the register offset
(Rm), the value presented will be the
PC together with the PSR.

When R15 is the source register (Rd) of
a register store (STR) instruction, the
value stored will be the PC together
with the PSR. The stored value of the
PC will be 12 bytes advanced from the
address of the instruction. A load
register (LOR) with R15 as Rd will
change only the PC, and the PSR will
be unchanged.

Address Exceptions - If the address
used for the transfer (I.e. the unmodified
contents of the base register for post­
indexed addressing, or the base
modified by the offset for pre-indexed
addressing) has a logic one in any of
the bits 031 to 026, the transfer will not
take place and the address exception
trap will be taken.

Note that only the address actually
used for the transfer is checked. A
base containing an address outside the
legal range may be used in a pre­
indexed transfer if the offset brings the
address within the legal range. like­
wise, a base within the legal range may
be modified by post-indexing to outside
the legal range without causing an
address exception.

Example: Read two 16-bit values from an 1/0 port, merging into a 32-bit word.

MASK: OW OxFFFF
10_16 OW Ox31 00000 ; I/O port address
WORD OW 0 ; 32-bit result

LOR R3,10_16 ; Get word-aligned source address.
LEA R4, BUF ; Get word-aligned destination address.
LOR RO, MASK
LOR R1, [R3}, 2 Fetch even half-word from 16-bit port
AND R1, R1, RO Keep lower 16 bits.
LOR R2, [R3], 2 Fetch 'add' half-word, rotated.
BIC R2,R2,RO Keep upper 16 bits.
ORR R1,R1,R2 Merge evenlodd halves.
STR R1, [R4], 4 Store 32-bit composit.

3-26

Data Aborts - A transfer to or from a
legal address may still present special
cases for a memory management
system. For instance, in a system
which uses virtual memory, the required
data may be absent from main memory.
The memory manager can signal a
problem by taking the processor
ABORT pin high, whereupon the data
transfer instruction will be prevented
from changing the processor state and
the data abort trap will be taken. It is up
to the system software to resolve the
cause of the problem. The instruction
can be restarted and the original
program continued.

Cache Interaction - When the cache is
turned on, a data load operation (LDR,
LORB) will read data from the cache if it
is present. If the cache is turned off, or
does not contain the required data, the
external memory is accessed.

A data store operation (STR, STRB) will
always cause an immediate external
write to allow the external memory
manager to abort the access if it is
illegal. If the write operation is not
aborted, and the cache contains a copy
of data from the address being written
to, the cache will be automatically
updated with the new byte or word of
data. This updating occurs even when
the cache is turned off (to maintain
cache consistency), but can be disabled
by programming the updateable control
register appropriately. (See Cache
Operation.)

_ VLSI TECHNOLOGY, INC

Assembler Syntax:

LDRlSTR{ condHBHn Rd,<Address>

where LDR means Load from memory into a register.
STR means store from a register into memory.

~~~[L~U¥U~[N]~~W 
VLI86C020 

cond is a two-character condition mnemonic (see Condition Code section). 
B H present implies byte transfer, else a word transfer. 
T H present, the W bit is set in a post-indexed instruction, causing the 

-TRANS pin to go low for the transfer cycle. : T is not allowed when a pre­
indexed addressing mode is specified or implied. 

Rd is a valid register: RO-R1S, SP, LK, or PC. 
Address Can be any of the variations in the following table. 

Address Variants: 
Address expression: 

<expression> 

Pre-indexed address: 

An expression evaluating to a relocatable address: 
The assembler will attempt to generate an instruction using the PC 
as a base, and a corrected offset to the location given by the 
expression. This is a PC-relative pre-indexed address. If out of range 
(at assembly or link time), an error message:will be given. 

Offset is added to base register before using; as effective address, and 
offsets are placed within the [ ] pair. Rn may be viewed as a pointer: 

[Rn] No offset is added to base addressipointer. 
[Rn, <expression>{I}] Signed offset of expression bytes is added to base pointer. 
[Rn, Rm]{l} Add Rm to Rn before using Rn as an address pointer. 
[Rn, Rm <shift> count]{l} Signed offset of Rm (modified by shift) is added to base pointer. 

Post-indexed address: Offset is added to base reg, after using base reg for the effective address. 
Offsets are placed after the [ ] pair: 

[Rn],<expression> Expression is added to Rn, after Rn's usage as a pointer. 
[Rn], Rm Rm is added to Rn, after Rn's usage as an address pointer. 
[Rn], Rm <shift> count Shift the offset in Rm by count bits, and add to Rn, after 

Rn's usage as an address pointer. 

where expression A signed 13-bit expression (including the sign). 
Rm, Rn Valid register names: RO-R1S, SP, LK, or PC. If RN - PC, the assembler 

will subtract 8 from the expression to allow for processor address read-ahead. 
shift Any of: LSL, LSR, ASR, ROR, or RRX. 
count Amount to shift Rm by. It is a S-bit constant, and may not be 

specified as an Rs register (as for SOrine other instruction classes). 
H present, the I sets the W-bit in the instruction, forcing the 
effective offset to be added to the Rn register, after completion. 

Examp~e8 (Pre-Index and Optional Increment): 
In each of these examples, the effective offset is added to the Rn (base:pointer) register prior to using the Rn register as the 
effective address. Rn is then updated only if the I suffix is supplied. 

STR R1, [R2, R1]1 ; *(R2+R1) - R1. Then R2 +- R1. 
STR R3, [R2] ; *(R2) - R3. 
LDR R1, [RO, 16] ; R1 - *(RO + 16)~ Don't update RO. 
LDR R9, [RS, RO LSL 2] ; R9 - *(RS + (R2<<2». Don't update R5. 
LDREQB R2, [R5, 5] ; if (Zflag) R2 - *(R5 + 5), a zero-filled byte load. 

3-27 

I 



_ VLSI TECHNOLOGY, INC. [p [R1 ~ [L~ U¥tJ ~ [N]&[R1W 
VL86C020 

Examples (Post-Index and Increment): 
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the 
effective address. Rn is then updated unconditionally, regardless of any "I" suffix. 

STR 
STR 
LDR 
LDR 
LDREQB 

Examples (Expression): 

R1, [R2], R1 
R3, [R2], R5 
R1, [RO], 16 
R9, [R5], RO ASR 3 
R2, [R5], 5 

; *R2 = R1. Then R2 += R1. 
; *(R2) .. R3. Then R2 += R5. 
; R1 - *RO. Then RO +- 16. 
; R9 - *R5. Then R5 +- (RO / 8). 
; if (Zflag) R2 - *R5, a zero-filled byte load, and then R5 += 5. 

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer­
ences are precompensated for the 8-byte read-ahead done by the processor. PARMx is a register-relative label, typically created 
via a DTYPE directive, and assumed to be relative to the LK (R14) register. DATAx is similar, but is presumably defined relative 
to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to ±4096 bytes from the associated 
base register. 

LDR 
STR 
LDR 
STR 
B 

PLACE DW 
Across 

RO, DATA1 
R2, PLACE 
R1, PARMO 
R1, GENERAL 
Across 

o 

; SP-relative. Same as: LDR RO, [SP+DATA1]. 
; PC-relative. Same as: STR R2, [PC+ 16]. 
; LK-relative. Same as: LDR R1, [LK+DATA1]. 
; RO-relative. Same as: STR R1, [RO+GENERAL]. 
; Skip over the data temporarily. 

; Temporary storage area. 
; Resume execution. 

FIGURE 12. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM) 

31 28 27 25 20 19 16 15 o 
I I I I I I I I I I I I I I I I I I I I I I I I I I I Condx 1 0 0 PUS W L Rn Register List I I 

T ~~ Base Register 
Condition Load/Store: 0 - STM, 1 == LDM 

Code Write back bit 
o - No write back 
1 - Write address back into base (!). 

'--___ PSR Or Force-User bit (" suffix) 
o - Do not load PSR or force user mode registers. 
1 - Load PSR or optionally force user mode regsiters("). 

Up/Down Bit 
o == Offset is negative 
1 .. Offset is positive 

'--_____ Pre/Post Indexing Form 
o == Post: after each register 

is transferred. 
1 - Pre: before each register 

is transferred. 

3-28 



_ VLSI TECHNOLOGY, INC. [p [R1 ~ [LO ~ 0 [N]&[R1W 
VL86C020 

Multi-Register Transfer (LDM, STM) 
The instruction is only executed if the 
condition is true. The various condi­
tions are defined in Control Field 
Section. 

Multi-register transfer instructions are 
used to load (LDM) or store (STM) any 
subset of the currently visible registers. 
They support all possible stacking 
modes (push up/pop down, or push 
down/pop up). They are very efficient 
instructions for saving or restoring 
context, or for moving large blocks of 
data around main memory. 

The Register List - The instruction can 
cause the transfer of any registers in 
the current bank (and non-user mode 
programs can also transfer to and from 
the user bank). The register list is 
contained in a 16-bit field in the 
instruction, with each bit corresponding 
to a register. A logic one in bit zero of 
the register field will cause RO to be 
transferred, a logic zero will cause it not 
to be transferred; similarly bit 1 controls 
the transfer of R1, and so on. 

Addressing Modes - The transfer 
addresses are determined by the 
contents of the base register (Rn), the 
pre/post bit (P) and the up/down bit (U). 
The registers are transferred in the 
order lowest to highest, so R15 (if in the 
list) will always be transferred last. The 
lowest register also gets transferred to/ 
from the lowest memory address. This 
is illustrated in Figures 13 and 14. 

Transfer of R15 - Whenever R15 is 
stored to memory, the value transferred 
is the PC together with the PSR flags. 
The stored value of the PC will be 12 
bytes advanced from the address of the 
STM instruction. 

If R15 is in the transfer list of a load 
multiple (LDM) instruction the PC is 
overwritten, and the effect on the PSR 
is controlled by the S bit. If the S bit is 
zero the PSR is preserved unchanged, 
but if the S bit is set the PSR will be 
overwritten by the corresponding bits of 
the loaded value. In user mode, 
however, the I, F, M1 and MO bits are 
protected from change, whatever the 
value of the S bit. The mode at the 
start of the instruction determines 
whether these bits are protected, and 
the supervisor may return to the user 

program, re-enabling interrupts and 
restoring user mode with one LDM 
instruction. 

Transfers to Use.r Bank - For STM 
instructions the S bit is redundant as 
the PSR is always stored with the PC 
whenever R15 is in the transfer list. In 
user mode the S bit is igmored, but in 
other modes it has a second interpreta­
tion. S=1 is used to force transfers to 
take values from the user register bank 
instead of from the current register 
bank. This is useful for saving the user 
state on process switches. Note that 
when it is so used., write back of the 
base will also be to the user bank, 
though the base will be fetched from the 
current bank. Therefore, do not use 
write back when forcing user bank. 

In LDM instructions the S bit is redun­
dant if R15 is not in the transfer list, and 
again in user mode it is ignored. In 
non-user mode where R15 is not in the 
transfer list, S ... 1 is used to force loaded 
values in to the user registers instead of 
the current registe,r bank. When used 
in this manner, care must be taken not 
to read from a banked register during 
the following cycle; if in doubt, insert a 
no-op. Again, do not use write back 
when forcing a user bank, transfer. 

R15 As the Base - When :the base is 
the PC, the PSR bits will be used to 
form the address as well,:so unless all 
interrupts are enabled and all flags are 
zero an address exception will occur. 
Also, write back is never allowed when 
the base is the PC (setting the W bit will 
have no effect). 

Base within the Register List - When 
write back is specified, the base is 
written back at the end ofithe second 
cycle of the instruction. During a STM, 
the first register is written :out at the 
start of the second cycle. A STM which 
includes storing the basei with the base 
as the first register to be stored, will 
therefore store the unchanged value, 
whereas with the base second or later 
in the transfer order, will store the 
modified value. An LDM will always 
overwrite the updated base if the base 
is in the list. 

Address Exceptions - When the 
address of the first transfer falls outside 
the legal address space (Le. has a logic 
one somewhere in bits 31 to 26), an 

3-29 

address exception trap will be taken. 
The instruction will first complete in the 
usual number of cycles, though an STM 
will be prevented from writing to 
memory. The processor state will be 
the same as if a data labort had 
occurred on the first t~ansfer cycle. 

Only the address of the first transfer is 
checked in this way; if subsequent 
addresses over or under-flow into illegal 
address space they will be truncated to 
26 bits but will not cause an address 
exception trap. 

Data Aborts - Some I'egal addresses 
may be unacceptable Ito a memory I 
management system, and the memory 
manager can indicate a problem with an 
address by taking the ABORT pin high. 
This can happen on any transfer during 
a multiple register loacl or store, and 
must be recoverable if VL86C020 is to 
be used in a virtual memory system. 

Abort during STM - 11' the abort occurs 
during a store multiple instruction, 
VL86C020 takes little action until the 
instruction completes, whereupon it 
enters the data abort trap. The memory 
manager is responsible for preventing 
erroneous writes to the memory. The 
only change to the internal state of the 
processor will be the modification of the 
base register if write back was speci-
fied, and this must be reversed by 
software (and the cause of the abort 
resolved) before the instruction may be 
retried. 

To illustrate the various load/store 
modes, consider the transfer of R1, R5 
and R7 in the case where Rn .. 1000H 
and write back of the modified base is 
required (W=1). These figures show 
the sequence of register transfers, the 
addresses used, and the value of Rn 
after the instruction has completed. 

In all cases, had write back of the 
modified base not been required (W=O), 
Rn would have retained its initial value 
of 1000H unless it was, also in the 
transfer list of the load1multiple register 
instruction. Then it wo.uld have been 
overwritten with the loaded value. 

Aborts during LDM - When 
VL86C020 detects a data abort during a 
load multiple instruction, it modifies the 
operation of the instruction to ensure 
that recovery is possible. 



"VLSI TECHNOLOGY, INC. ~ ~ [g [LO U¥UO [N]b\~W 
VL86C020 

The following figures illustrate the 
impact of various addressing modes. 
R1, R5, and R7 are moved tolfrom 
memory, where Rn-Ox1000, and a write 
back of the modified base is done 
(W-1). The figures show the sequence 
of incrementing "pushes", the ad­
dresses used, and the final value of Rn. 

Without write back, Rn would remain at 
Ox1000. 

Mode Bits - During LDM and STM 
execution, the two LSBs of the instruc­
tion will contain the (noninverted) mode 
status bits. These may be used by 
external hardware to force memory 
accesses from an alternative bank. 

Figure 13 illustrates the use of incre­
menting stack "pushes". 

Figure 14 illustrates decrementing 
"pushes" to the stack based upon Rn. 

FIGURE 13. INCREMENTING INDEX 

Post·lncrement Addressing 

RnJ§ :::: ~ ::::: 
B O.oFF4 § O.oFF4 

(1) Before STM Instruction (2) After First Transfer 

~::::: 
§ OxOFF4 

(3) After Second Transfer 

Rn~:::: 
§o.oFF4 

(4) STM Instruction Complete 

Pre·lncrement Addressing 

~ 
Ox100C ~ Ox100C 

Rn Ox1000 R 
1 

Ox1000 

OxOFF4 OxOFF4 

(1) (2) 

~
OX100C 

R5 
R1 

Ox1000 

OxOFF4 

(3) 

Rnm7 Ox100C R5 
R1 

Ox1000 

OxOFF4 

(4) 

FIGURE 14. DECREMENTING INDEX 

Post-decrement Addressing 

RnJ§ ::::: ~ ::::: 
-§ O.oFF. ~ OxOFF4 

(1) Before SRM Instruction (2) After First Transfer 

~ :::::: R5 
R1 

OxOFF4 

(3) After Second Transfer 

j 7 ::::: 
R5 
R1 

Rn OxOFF4 

(4) After STM Instruction Complete 

Pre·decrement Addressing 

~ 
Ox100C ~ Ox100C 

Rn Ox1000 Ox1000 

3-30 

OxOFF4 R1 OxOFF4 

(1) (2) 

§
OX100C 

Ox1000 

R5 
R1 OxOFF4 

(3) 

m
OX100C 

Ox1000 
R7 
R5 

Rn R1 OxOFF4 

(4) 



e VLSI TECHNOLOGY, INC. 

Overwriting of registers stops when the 
abort happens. The aborting load will 
not taka place, nor will the preceding 
one, but registers two or more positions 
ahead of the abort (if any) will be 
loaded. (This guarantees that the PC 
will be preserved, since it is always the 
last register to be overwritten.) 

The base register is restored to its 
modified value if write back was 
requested. This ensures recoverability 

Assembler Syntax: 

in the case where the base register is 
also in the transfer list, and may have 
been overwritten before the abort 
occurred. 

The data abort trap is taken when the 
load multiple has completed, and the 
system software must undo any base 
modification (and resolve the cause of 
the abort) before restarting the instruc­
tion. 

LDMISTM{cond}<mode> Rn{I}, <Rlist>{"} 

where cond Is an optional 2-letter condition code common to all instructions. 
Is any of: FD, ED, FA, EA, lA, IB, DA, or DB. 
Is a valid register name: RO-R1S, SP, LK, or PC. 

[F) ~ ~ [L 0 ffia] 0 IN] b\ [~r~t7 
VL86C020 

With the cache turned on, a block load 
operation (LDM) will read data from the 
cache where it is present. When the 
cache does not contain the required 
data. the external memory is accessed. 

A block store operation (STM) always 
generates Immediate e~ternal writes to 
allow the external memory manager to 
abort the accesses if they are illegal. 
The cache is automatioally updated as 
the data is written to memory (provided 
the area being written to is updateable, 
see Cache Operation Section). 

mode 
Rn 
Rlist Can be a single register (as described above for Rn),. or may be a list of 

registers, enclosed in { } (eg {RO,R2,R7-R1 O,UK}). 
If present, requests write back (W .. 1). Otherwise W .. O. 
If present, set S bit to load the PSR with the PC, or force transfer of user 
bank, when in non-user mode. 

Addressing Mode Names 

Function MlJimQIJI~ L..B.l1 f..B.I1 U bit Ql2iUIlIQIJ 
Pre-increment load LDMIB 1 1 1 Pop upwards 
Post-increment load LDMIA 1 0 1 Pop upwards 
Pre-decrement load LDMDB 1 1 0 Pop downwards 
Post-decrement load LDMDA 1 0 0 Pop downwards 

Pre-increment store STMIB 0 1 1 Push upwards 
Post-increment store STMIA 0 0 1 Push upwards 
Pre-decrement store STMDB 0 1 0 Push downwards 
Post-decrement store STMDA 0 0 0 Push downwards 

lA, IB, DA, DB allow control when LDM/STM are not being used for sta€ks and simply mean Increment After, Increment Before, 
Decrement After, Decrement Before. 

Examples 
LDMFD 

STMJA 

SPI, {RO, R1, R2} 

R2, {RO, R1S} 

; unstack 3 registers 

; save all registers 

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling routine; 

STMED SPI, {RO-R3, LK} ; Save RO to R3 for workspace, and R14 for returning. 
BL Subroutine ; This call will overwrite R14. 

LDMED SPI, {RO-R3, PC} ; Restore workspace and return, restoring PSR flags. 

3-31 

I 



_ VLSI TECHNOLOGY, INC. ~ [R1 ~ [L~[R{A] ~ ~~[R1W 
VL86C020 

FIGURE 15. SINGLE DATA SWAP (SWP) 

31 2827 2322212019 1615 1211 8 7 43 0 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
Condx 0 0 0 1 0 8 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm 

~ Bt=d~Worn T ~n ~ 
Code 1 .. Swap 8yte I Register Register 

Base 
Register 

Single Data Swap (SWP) - The instruc­
tion is only executed if the condition is 
true. The various conditions are 
defined in Condition Field Section. 

The data swap instruction is used to 
swap a byte or word quantity between a 
register and external memory. This 
instruction is implemented as a memory 
read followed by a memory write which 
are locked together (the processor 
cannot be interrupted until both 
operations have completed, and the 
memory manager is warned to treat 
them as inseparable). This class of 
instruction is particularly useful for 
implementing software semaphores. 

The swap address is determined by the 
contents of the base register (Rn). The 

1 \

processor first reads the contents of the 
swap address (the external memory is 
always accessed, even if the cache 
contains a copy of the data). The 
processor then writes the contents of 
the source register (Rm) to the swap 
address, and stores the old memory 
contents in the destination register (Rd). 
The same register may be specified as 
both the source and destination. 

The LOCK pin goes high for the 
duration of the read and write opera­
tions to signal to the external memory 
manager that they are locked together, 
and should be allowed to complete 
without interruption. This is important in 
multi-processor systems where the 
swap instruction is the only indivisible 
instruction which may be used to 

implement semaphores; control of the 
memory must not be removed from a 
processor while it is performing a 
locked operation. 

Bytes and Words - This instruction 
class may be used to swap a byte (8-1) 
or a word (B-O) between a VL86C020 
register and memory. 

A byte swap (SWPB) expects the read 
data on bits 0 to 7, if the supplied 
address is on a word boundary, on bits 
8 to 15 if it is a word address plus one 
byte, and so on. The selected byte is 
placed in the bottom eight bits of the 
destination register, and the remaining 
bits of the register are filled with zeros. 
The byte to be written is repeated four 
times across the data bus. The 
external memory system should 
activate the appropriate byte subsystem 
to store the data (see Memory Interface 
Section). 

A word swap (SWP) should generate a 
word aligned address. An address 
offset from a word boundary will cause 
the data read from memory to be 
rotated into the register so that the 
addressed byte occupies bits 0 to 7. 
The data written to memory are always 
presented exactly as they appear in the 
register (I.e. bit 31 of the register 
appears on 031). 

Use of R15 - If R15 is selected as the 
base, the PC is used together with the 
PSR. If any of the flags are set, or 
interrupts are disabled, the data swap 

3-32 

will cause an address exception. If all 
flags are clear, and interrupts are 
enabled (so the top six bits of the PSR 
are ciear), the data will be swapped 
with an address 8 bytes advanced from 
the swap instruction, although the 
address will not be word aligned unless 
the processor is in user mode. (M1 and 
MO bits determine the byte address). 

When R15 is the source register (Rm), 
the value stored will be the PC together 
with the PSR. The stored value of the 
PC will be 12 bytes advanced from the 
address of the instruction. 

When R15 is the destination register 
(Rd), the PSR will be unaffected, and 
only the PC will change. 

Address Exceptions - If the base 
address used for the swap has a logic 
one in any of the bits 26 to 31, the 
transfer will not take place and the 
address exception trap will be taken. 

Data Aborts - If the address used for 
the swap is unacceptable to a memory 
management system, the memory 
manager can flag the problem by 
driving ABORT high. This can happen 
on either the read or the write cycie (or 
both). In either case, the data swap 
instruction will be prevented from 
changing the processor state, and the 
Data Abort trap will be taken. It is up to 
the system software to resolve the 
cause of the problem. Then the instruc­
tion can be restarted and the original 
program continued. 



_ VLSI TECHNOLOGY, INC. ~[R1~[LO~D~&~W 
VL86C020 

Cache Interaction - The swap instruc­
tion always reads data from external 
memory, even if a copy is present in the 
cache. In multi-processor systems, 
semaphores may be used to control 
access to system resources; as the 
semaphores are accessed by more 
than one processor, the cache copy of 

Assembler Syntax: 

a semaphore may be out of date (the 
cache is only updated if the host CPU 
writes new data to the external mem­
ory). It is, therefore, important always 
to read the semaphore from the shared 
external memory, and n0t the private 
cache. 

The write operation of the swap 
instruction will still update the cache if a 
copy of the address is present, and 
updating is enabled ('See Cache 
Operation Section). 

SWP{cond}{8} Rd,Rm,[Rn] 

where cond 
8 
Rd,Rm,Rn 

Examples: 

SWP 
SWPB 
SWPEQ 

Two-character condition mnemonic, see section Condition Field 
If B is present then byte transfer,:otherwise word transfer. 
Are expressions evaluating to valid register numbers. Rn is required. 

RO, R1, [BASE] 
R2, R3, [BASE] 
RO, RO, [BASE] 

Load RO with the contents of BASE, and store R1 at B'ASE. 
Load R2 with the byte at BASE, and store bits 0 to 7 0'1 R3 at BASE. 
Conditionally swap the contents of BASE with RO. 

3-33 

I 



_ VLSI TECHNOLOGY, INC. [p~~[L~[MJ~[M~~W 
VL86C020 

FIGURE 16. SOFTWARE INTERRUPT (SWI) 

y 
Condition 

Field 

Note: The machine comments field in bits 23-0 are ignored by the hardware. They are made available for free interpretation by 
the software executive, and may be found in LSB-first byte order on the stack. 

The Software Interrupt (SWI) instruction 
is used to enter supervisor mode in a 
controlled manner. The instruction 
causes the software interrupt trap to be 
taken, which effects the mode change, 
with execution resuming at Ox OS. If 
this address is suitably protected (by 
external memory management hard­
ware) from modification by the user, a 
fully protected operating system may be 
constructed. 

Assembler Syntax: 

<expression> 

Return from the Supervisor - The PC 
and PSR are saved in R14_svc upon 
entering the software interrupt trap, with 
the PC adjusted to point to the word 
after the SWI instruction. MOVS R15, 
R14_svc will return to the user program, 
restore the user PSR and return the 
processor to user mode. 

Note that the link mechanism is not re­
entrant, so if the supervisor code 
wishes to use software interrupts within 

itself it must first save a copy of the 
return address. 

Machine Comments Field - The 
bottom 24 bits of the instruction are 
ignored by the processor, and may be 
used to communicate with the 
supervisor code. For instance, the 
supervisor may extract this field and 
use it to index into an array of entry 
points for routines which perform 
various supervisor functions. 

SWI{cond} 

where cond 
expression 

Is the two-character condition code common to all instructions. 

Examples: 
acons 

SWI 
SWI 
SWINE 

Is a 24-bit field of any format. The processor itself ignores it, but the 
typical scenario is for the software executive to specify patterns in it, 
which will be interpreted in a particular way by the executive, as commands. 

Zero.O, ReadC .. 1, Write1-2 

ReadC 
Writel+"k" 
o 

; Assembler constants. 

; Get next character from read stream 
; Output a "k" to the Write stream 
; Conditionally call supervisor with 0 in comment field 

The above examples assume that suitable supervisor code exists. For instance: 
; Assume that the R13_svc (the supervisor's R13) points to a suitable stack. 

OSh 

Super 

acons Zero==O, ReadC=1, Write1-2 ; Assembler constants. 
acons CC_Mask .. OxFC00003 ; Non-address area mask. 

B 

STMFO 
BIC 
LOR 
BIC 
MOV 
LOR 

Super 

SPI,{rO,r1, r2,r14} 
r1, r14, CC_Mask 
RO, [R1, -4] 
RO,RO,OxFFOOOOOO 
R1, SWLTable 
PC, [R1, RO LSL 2] 

; SWI entry point 

; Save working registers. 
; Strip condx codes from SWI instruction address. 
; Get copy of SWI instruction. 
; Get lower 24 bits of SWI, only. 
; Get absolute address of PC-relative table. 
; Jump indirect on the table. 

SWL Table dw Zero_Action ; Address of service routines. 
dw ReadC_Action 
dw Write1_Action 

Write1 _Action ; Typical service routine. 

LOM R13,{RO-R2, PC}" ; Restore workspace, and return to inst after SWI. 

3-34 



_ VLSI TECHNOLOGY, INC. ~ [ffi [g [L ~ U¥1J ~ [N] ~ [ffi W 
VL86C020 

FIGURE 17. COPROCESSOR DATA OPERATIONS (COO) 

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0 
~IIIIIIII~IIIIIIIIIIIIIIIIIIIII LQ.o.!!2X 1 1 1 0 CP 0 CRn CRd CP#Aux 0 CRm 

~~ yy~~yy 
Coprocessor I I I L Coprocessor Operand 

Condition 
Code Operation CoprC?Ce~sor Registers 

Code Destination 

The instruction is only executed if the 
condition code field is true. The field is 
described in the Condition Codes 
Section. 

This is actually a class of instructions, 
rather than a single instruction, and is 
equivalent to the ALU class on the 
CPU. All instructions in this class are 
used to direct the coprocessor to 
perform some internal operation. No 
result is sent back to the CPU, and the 
CPU will not wait for the operation to 
complete. The coprocessor could 
maintain a queue of such instructions 

Assembler Syntax: 

Register Coprocesser Auxiliary 
Information 

Coprocessor Number 

awaiting execution. Their execution 
may then overlap other CPU activity, 
allowing the two processofis to perform 
independent tasks in parailiel. 

Coprocessor Fields - Only bit 4 and 
bits 31-24 are significant to the CPU; 
the remaining bits are used by 
coprocessors. The above:field names 
are used by convention, and particular 
coprocessors may redefine the use of 
any or all fields as appropriate except 
for the CPl. 

For the sake of future family product 
introductions, it is encouraged that the 
above conventions be followed, unless 
absolutely necessary. 

By convention, the coprocessor should 
perform an operation specified in the 
CP Opc field (and possibly in the CP 
field) on the contents of CRn and CRm, 
placing the result into CRd. 

VL86C010 COO Instruction - The im­
plementation of the COO instruction on 
the VL86C010 processor causes a 
Software Interrupt (SWI) to take the 
undefined instruction trap if the SWI 
was the next instruction after the COO. 
This is no longer the case on the 
VL86C020, but the sequence 

COO 
SWI 

should be avoided for program compati­
bility. 

CDO{cond} CP#,<expression1>, CRd, CRn, CRm{.<expression2>} 

where cond Is the conditional execution code, common to all instructions. 
CP# Is the (unique) coprocessor number, assigned by hardware. 
CRd, CRn, CRm These are valid coprocessor registers: CRO-CR15. 
expression 1 Evaluates to a constant, and is placed in the CP Opcfield. 
expression2 (Where present) evaluates to a constant, and is placed in the CPfield. 

Examples: 
COO 1,10, CR1, CR7, CR2 

CDOEQ 2, 5, CR1, cr2, Cr3, 2 

; Request coproc #1 to do operation 10 on CR7 and CR2, putting result into CR1. 

; If the Z flag is set, request coproc #2 to do 
; operation 5 (type 2) on CR2 and CR3, placing the result into CR1. 

3-35 

E 



_ VLSI TECHNOLOGY, INC. ~ [R1 ~ fLO ~ 0 [N]£[R1W 
VL86C020 

FIGURE 18. COPROCESSOR DATA TRANSFERS (LOC, STC) 

31 28 27 24 23 20 19 16 15 12 11 8 7 

I I I I I I I I I I I I I I I I I I I I I I I I I I Condx 1 1 0 PUN W L Rn CRd CP# 
I I I I I 

Offset 

~n J A~. 
Code Pointer 

Index Control Register 

y ~ 8-Bit Positive 
Coprocessor Immediate 

Src/Dst Offset 
Register Coprocessor 

o = Post-move 
1 = Pre-move 

Number 

Load/Store Bit 
o = Store to Memory 

Up/Down 
0= Subtract 

1 = Load to Coproc Reg Write Back 

1 = Add Offset 
o = No Write Back 
1 = Write e.a. to Rn. 

Transfer Length 

The LDC and STC instructions are used 
to load or store single bytes or words of 
data. They differ from MCR and MRC 
instructions in that they move data 
between coprocessor registers and a 
specified memory address. In contrast, 
the other instructions move data 
between registers, or move a constant 
(contained in the instruction) into a 
register. 

The memory address used in LDC/STC 
transfers is calculated by adding an 
offset to or subtracting an offset from a 
base pointer register, Rn. Typically, a 
load of a labeled memory location 
involves the loading via a (signed) 
offset from the current PC. Regardless 
of the base register used, the result of 
the offset calculation may be written 
back into the base register if "auto­
indexing" is required. 

Coprocessor Fields - The CP# field 
identifies which coprocessor shall 
supply or receive the data. A coproces­
sor will respond only if its number 
matches the contents of this field. 

The CRd field and the N bit contain 
information which may be interpreted in 
different ways by different coproces­
sors. By convention, however, CRd is 
the register to be transferred (or the first 
register, where more than one is to be 
transferred). The N bit is used to 
choose one of two transfer length 
options. For instance, N=O could select 
the transfer of a single register, and 

N",1 could select the transfer of all the 
registers for context switching. 

Offsets and Indexing - The VL86C020 
is responsible for providing the address 
used by the memory system for the 
transfer, and the addressing modes 
available are similar to those used for 
the VL86C020's LDRlSTR instructions. 

Only 8-bit offsets are permitted, and the 
VL86C020 automatically scales them 
by two bits to form a word offset to the 
pointer in the Rn register. Of itself, the 
offset is an 8-bit unsigned value, but a 
9-bit signed negative offset may be 
supplied. The assembler will comple­
ment it to an 8-bit (positive) value and 
will clear the instruction's U bit, forcing a 
compensating subtract. The result is a 
±256 word (1024 byte) offset from Rn. 
Again, the VL86C020 internally shifts 
the offset left 2 bits before addition to 
the Rn register. 

The offset modification may be per­
formed either before (pre-indexed, P= 1 ) 
or after (post-indexed, P=O) the base is 
used as the transfer address. The 
modified base value may be written 
back into the base (W-1), or the old 
base value may be kept (W-O). In the 
case of post-indexed addressing, the 
write back bit is redundant, since the 
old base value can be retained by 
setting the offset to zero. Therefore, 
post-indexed data transfers always 
write back the modified base. 

For an offset of + 1, the value of the Rn 
base pointer register (modified, in the 

3-36 

o 
I I 

pre-indexed case) is used for the first 
word transferred. Should the instruction 
be repeated, the second word will go 
fromlto an address one word (4 bytes) 
higher than pointed to by the original 
Rn, and so on. 

Use of R15 - If R15 is specified as the 
base register (Rn), the PC is used 
without the PSR flags. When using the 
PC as the base register note that it 
contains an address 8 bytes advanced 
from the address of the current instruc­
tion. As with the LDRlSTR case, the 
assembler performs this compensation 
automatically. 

Hardware Address Translation - The 
W bit may be used in non-user mode 
programs (when post-indexed address­
ing is used) to force the -TRANS pin 
low for the transfer cycle. This allows 
the operating system to generate user 
addresses when a suitable memory 
management system is present. 

Address Exceptions - If the address 
used for the first transfer is illegal, the 
address exception mechanism will be 
invoked. Instructions which transfer 
multiple words will only trap if the first 
address is illegal; subsequent ad­
dresses will wrap around inside the 26-
bit address space. 

Note that only the address actually 
used for the transfer is checked. A 
base containing an address outside the 
legal range may be used in a pre­
indexed transfer if the offset brings the 



e VLSI TECHNOLOGY, INC. 

address within the legal range. like­
wise, a base within the legal range may 
be modified by post-indexing to outside 
the legal range without causing an 
address exception. 

Data Aborts - If the address is legal but 
the memory manager generates an 
abort, the data abort trap will be taken. 
The write back of the modified base will 
take place, but all other processor state 

Assembler Syntax: 

data will be preserved. The coproces­
sor is partly responsible for ensuring 
restartability. It must either detect the 
abort, or ensure that any actions 
consequent from this instruction can be 
repeated when the instruction is retried 
after the resolution of the !abort. 

Cache Interaction - When the cache is 
on, LOC instructions will attempt to read 
data from the cache. STC instructions 

<LOC/STC>{cond}{L}{T}{N} cp#, CRd, <Address>{I} 

where LDC means load from memory into a cop.rocessor register. 
means store a coprocessor register to memory. 

~ [R1 ~ [L~ U¥U ~ [N]~[R1W 
Vl86C020 

update the cache data if the address 
being written to matches a cache entry 
(see Cache Operation Section). 

When an STC instruction is executed 
with the cache turnedioff, the 
VL86C020 will drive data onto 031-00 
(provided OBE is high) in the latent 
cycle preceding the finst write operation 
(Iatent+active cycle); therefore, no other 
device should be drivi!ng the bus during 
this cycle. 

STC 
cond 
L 

is a two-character condition mnemonic (see Condition Code section). 
If present implies long transfer (N=1), else a short transfer (N=O). 

T 

N 
cp# 
CRd 
Address 

If present, the W bit is set in a post-indexed instruction, causing the 
-TRANS pin to go low for the transfer cycle. T is not allowed when a pre­
indexed addressing mode is specified or implied. 
Sets the value of bit 22 of instruction. 
Valid coprocessor number, determined by hardware. 
Valid coprocessor register number: CRO-CR15. 
Can be any of the variations in the following table. 

3-37 

I 



" VLSI TECHNOLOGY. INC. ~~~[L~~~[NJ~~W 
VL86C020 

Address Variants: 
Address expression: 

<expression> 

An expression evaluating to a relocatable address: 

The assembler will attempt to generate an instruction using the PC 
as a base, and a corrected offset to the location given by the 9-bit 
expression. This is a PC-relative pre-indexed address. If out of range 
(at assembly or link time), an error message will be given. 

Pre-indexed address: Offset is added to base register before using as effective address, and 
offsets are placed within the [ ] pair. Rn may be viewed as a pointer: 

[Rn]{l} No offset is added to base address pointer. 
[Rn, <expression>] Signed offset of expression in bytes is added to base pointer. 
[Rn, <expression>]{I} Signed offset of expression in bytes is added to base pointer. Then 

this effective address is written back to Rn. 

Post-indexed address: Offset is added to base reg after using base reg for the effective 
address. Offsets are placed after the [ ] pair: 

[Rn],<expression> Expression is added to Rn, after Rn's usage as a pointer. 

where expression A signed 9-bit expression (including the sign). 
Rn Valid register names: RO-R15, SP, LK, or PC. If Rn - PC, the 

assembler will subtract 8 from the expression to allow for processor 
address read ahead. 

Examples (Pre-Index): 
In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the 
effective address. Rn is then updated only if the I suffix is supplied. Coprocessor #1 is used in all cases, for simplicity. 

STC 1,CR3, [R2] ; *(R2) - CR3. 
LDC 1 ,CR1, [RO, 16] ; CR1 - *(RO + 16). Don't update RO. 
LDCEQ 1,CR2, [RS, 12]1 ; if (Zflag) CR2 - *(RS + 12). Then, RS += 12. 

Examples (Post-Index): 
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the 
effective address. Rn is then updated unconditionally, regardless of any I suffix. Coprocessor #3 is used in all cases, for simplic­
ity. 

STC 
LDC 
LDCEQL 

Examples (Expression): 

3, CR1, [R2], 81 
3, CR1, [RO], 16 
3, CR2, [RS], 4 

; *R2 - CR1. Then R2 +- 8. 
; CR1 - *RO. Then RO +- 16. 
; if (Zflag) CR2 - *RS, and then (implicitly), RS += 4. 
; Use the long option (probably to store multiple words). 

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer­
ences are precompensated for the 8-byte read-ahead done by the processor. It may be located up to ±1 024 bytes from the 
associated base register, and must be a multiple of 4 bytes in offset. 

STC 3, CRS, PLACE ; PC-relative. Same as: STC 3, CRS, [PC+8]. 
B Across ; Skip over the data temporary. 

PLACE OW 
Across 

o ; Temporary storage area. 
; Resume execution. 

3-38 



e VLSI TECHNOLOGY, INC. ~ [R1 ~ [L~ [}¥1] ~[NJ&[R1W 
VL86C020 

FIGURE 19. COPROCESSOR REGISTER TRANSFERS (MRC, MCR) 

31 28 27 24 23 21 19 

I I I I I I I I I I I I I I 
Condx 1 1 1 0 CP Opc L 

16 15 12 11 8 7 5 4 3 

I I I I I i I I I I I I I 
Rd CP# AUX 1 

o 

~~ coproc.ssor~ 
Condition Operation 

Code Code 
A~M I LCoprocessor Auxiliary 

Src/Dst ~ Information 

Load/Store Bit 
Register Coprocessor Number 

o = Store to cop roc 
1 = Load from coproc 

This instruction is executed only if the 
condition code field is true. The field is 
described in the Condition Codes 
Section. 

This is actually a class of instructions, 
rather than a single instruction, and is 
equivalent to the ALU class on the 
VL86C020 processor. Instructions in 
this class are used to direct the 
coprocessor to perform some operation 
between a VL86C020 register and a 
coprocessor register. It differs from the 
CPD instruction in that the CPO 
performs operations on the coproces­
sor's internal registers only. 

An example of an MCR usage would be 
a FIX of a floating point value held in 
the coprocessor, where the number is 
converted to a 32-bit integer within the 
coprocessor, and the result then 
transferred back to a VL86C020 
register. An example of an MRC usage 

Assembler Syntax: 

Coprocessor Operand 
Registers 

would be the converse: A FLOAT of a 
32-bit value in a VL86C020 register into 
a floating point value within a coproces­
sor register. 

An intended use of this instruction is to 
communicate control information 
directly between the coprocessor and 
the VL86C020 PSR flags. As an 
example, the result of a comparison of 
two floating point values within the 
coprocessor can be moved to the PSR 
to control subsequent execution flow. 

Coprocessor Fields - The CP# field is 
used, by all coprocessor instructions to 
specify which coprocessor is being 
invoked. 

The CP Ope, CRn, CP and CRm fields 
are used only by the coprocessor, and 
the interpretation of these fields is set 
only by convention; other:incompatible 
interpretations are allowed. The 
conventional interpretation is that the 

MCRlMRC{cond} CP#,<expressionb, Rd, CRn, CRm{,<expression2>} 

where cond 
CP# 
Rd 

Is the conditional execution code, common to all instructions. 
Is the (unique) coprocessor number, assigned by hardware. 
Is the ARM source or destination reg:ister. 
These are valid coprocessor registers: CRO-CR15. 
Evaluates to a constant, and is placed in the CP Opc field. 

CP Opc and CP fields specify the 
operation for the coprocessor to 
perform, CRn is the coprocessor 
register used as source or destination 
of the transferrred information, and 
CRm is the second coprocessor 
register which may be ,involved in some 
way dependent upon the operation 
code. 

Transfers to/from R15 - When a 
coprocessor register transfer to 
VL86C020 has R15 as the destination, 
bits 31-28 of the transferred word are 
copied into the N, Z, C and V flags 
respectively. The other bits of the 
transferred word are ig:nored, and the 
PC and other PSR flags are unaffected 
by the transfer. 

A coprocessor register transfer from 
VL86C020 with R15 as the source 
register will save the PC together with 
the PSR flags. 

CRn, CRm 
expression 1 
expression2 (Where present) evaluates to a constant, and is placed in the AUX field. 

Examples: 
MCR 1, 6, R1, CR7, CR2 

MRCEQ 2, 5, R1, cr2, Cr3, 2 

; Request coproc #1 to do operation 6 on 
; CR7 and CR2, putting result into VL86C020's R1. 

; If the Z flag is set, transfer the VL86C020's R1 reg to the coproc register (defined 
by hardware), and request coproc #2 to do oper 5 (type 2) on CR2 and CR3. 

3-39 

I 



_ VLSI TECHNOLOGY, INC. 

FIGURE 20. UNDEFINED (RESERVED) INSTRUCTION 

[?) [R1 ~[L~ ~~ ~ffi\[R1W 
VL86C020 

31 28 27 24 23 8 7 4 3 0 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
Condx 0 0 0 1 X X X X X X X X X X X X X X X X 1 X X 1 X X X X 

31 28 27 24 23 8 7 5 4 3 0 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

CondxO 1 1X X X X X X X X X X X X X X X X X X X X 1X X X X 

Note: The above instructions will be presented for execution only if the condition field is true. 

If the condition is true, the undefined 
instruction trap will be taken. 

Note that the undefined instruction 
mechanism involves offering these 
instructions to any coprocessors which 
may be present, and all coprocessors 
must refuse to accept it by taking CPA 
high. 

Using Conditional Instructions -

Assembler Syntax - At present the 
assembler has no mnemonics for 
generating these instructions. If they 
are adopted in the future for some 
specified use, suitable mnemonics will 
be added to the assembler. Until such 
time, these instructions should not be 
used. 

(1) Using conditionals for logical OR, this sequence: 
CMP R1, P ; If R1=p or R2=q then goto Label 
SEQ Label 
CMP R2, q 
SEQ Label 

can be replaced by 
CMP 

Instruction Set Examples 
The following examples show ways in 
which the basic VL86C020 instructions 
can combine to give efficient code. 
None of these methods save a great 
deal of execution time (although they 
may save some), mostly they just save 
code. 

CMPNE 
R1, p 
Rm,q 
Label 

; H condition not satisfied try other test 
SEQ 

(2) Absolute value 
TEQ 
RSSMI 

R1,0 
R1, R1, 0 

(3) Multiplication by 4, 5 or 6 (run time) 
MOV R2, RO LSL 2 
CMP R1,5 
ADDCS R2,R2,RO 
ADDHI R2,R2,RO 

(4) Combining discrete and range tests 
TEQ R2,127 
CMPNE R2, " "-1 
MOVLS R2, "," 

; Test sign 
; and 2's complement if necessary 

Multiply by 4 
Test value 
Complete multiply by 5 
Complete multiply by 6 

If (R2<> 127) 
Range test and if (R2<' ') 
Then, R2 ="." 

3-40 



_ VLSI TECHNOLOGY, INC ~~[g[LO[MJ~[M&~W 
VIL86C020 

Division and Remainder 
; Enter with numbers in RO and R1 

MOV R4,1 
Div1 CMP R1, Ox80000000 

CMPCC R1, RO 
MOVCC R1, R1 lSL 1 
BCC Div1 
MOV R2,O 

Div2 CMP RO, R1 
SUBCS RO,RO,R1 
ADDCS R2,R2,R4 
MOVS R2, R4 lSR 1 
MOVNE R1, R1 lSR 1 
BNE Div2 

Division result is in R2. 
Remainder is in RO. 

FIGURE 21. INSTRUCTION SET SUMMARY 

; Bit to control the division 
; Move R1 until! greater than RO 

; Test for possible subtraction 
; Subtract if ok 
; Put relevant bit into result 
; Shift control bit 
; Halve unless finished 

31 2827 24 23 20 19 16 15 12 11 8 7 4 3 

IC~ndlx 0
1011 dpC'od~ S I R~ I I ~d I I I I I I I, I 

Operand 2 

IC~ndlx 01010101010 A S I R~ I I ~n I I ~s I 1 10 10
1
1 

IC~ndlx 0
1
0

1
0

1
1

1
0 BOO I Rln I I Rid I 0

1
0

1
0

1
0 1 10 10

1
1 

I C~nJx 0
1
1 II P U BWl I Rln I I ~d I I I 1. (, I, I 

Offset van ants 

o 
I I I 

IR:n I 

IR:n I 

I I I 

IC~nd~ 0
1
1 11 xix X XiX XIXIXIX XIXIXIX XIXIXIXIXIXIX 1 XIXIXIX 

IC~ndlx 1 10 10 plU IS IWIL I ~n I R~ 5 ~ I I I Re~ist~r Lis~ I I ~RIO 

IC~ndlx 1 10
1
1 l 

I I I I I I I I I Jv Id I ddl I I ff I t I I I I I I I 
or a . ress 0 se 

Ici dl 
on x 1 11 10 PUNWl I Rln I IC~dl IC~#I I I ~f/se~ I I 

IC~ndlx 1 11 11 0 dpb~ IC~n I IC~dl IC~#I bpi 0 b~ml 
IC~ndlx 1 11 11 10 C~ bpcll IC~n I I R~ I IC~#I bpi 1 IC~ml 

IC~ndlx 1 11 11 11 I I I I I ,I 1,1 I I I I I I I I I 
Bit space iQnored by processor 

3-41 

Data Processing 

Multiply 

Single Data Swap 

load, Store 

Undefined 

Multi-Register Transfer 

Branch, Call 

Coproc Data Transfer 

Coproc Data Opr 

Coproc ReSlister Transfer 

Software Interrupt 

I 



_ VLSI TECHNOLOGY, INC. 

Pseudo Random Binary Sequence 
Generator - It is often necessary to 
generate (pseudo-) random numbers 
and the most efficient algorithms are 
based on shift register-based genera­
tors with exclusive or feedback rather 

like a cyclic redundancy check genera­
tor. Unfortunately the sequence of a 
32-bit generator needs more than one 
feedback tap to be maximal length (i.e. 
2"32-1 cycles before repetition). The 
basic algorithim is Newbit = bit_33 xor 

Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb) 
Uses R2 

TST R1,R1LSR1 
MOVS R2, RO RRX 
ADC R1, R1, R1 
EOR R2, R2, RO LSL 12 
EOR RO,R2,R2 LSR 20 

New seed in RO, R1 as before 

Multiplication by Constant: 
(1) Multiplication by 2"n (1,2,4,8,16,32 .. ) 

MOV RO, RO LSL n 

(2) Multiplication by 2"n+ 1 (3,5,9,17 .. ) 
ADD RO, RO, RO LSL n 

(3) Multiplication by 2"n-1 (3,7,15 .. ) 
RSB RO, RO, RO LSL n 

(4) Multiplication by 6 
ADD RO, RO, RO LSL 1 
ADD RO, RO LSL 1 

(5) Multiply by 10 and add in extra number 
ADD RO, RO, RO LSL 2 

; Top bit into carry 
; 33 bit rotate right 
; Carry into Isb of R1 
; (Involved I) 
; (Whewl) 

; Multiply by 3 
; and then by 2 

; Multiply by 5 

[F) [ffi ~ [L 0 [MJ 0 [N] ~ [ffi W 
VL86C020 

bit_20, shift left the 33-bit number and 
put in Newbit at the bottom. Then do 
this for all the Newbits needed, i.e. 32 
of them. Luckily, this can be done in 5S 
cycles: 

MOV RO, R2, RO LSL 1 ; Multiply by 2 and add in next digit 

(6) General recursive method for R1 =RO*C,C a constant: 

(a) If C even, say C - 2"n*D, Dodd: 

D .. 1: MOV R1,ROLSLn 
D<>1: (R1 .RO*D) 

MOV R1, R1 LSL n 

(b) If C MOD 4 - 1, say C - 2"n*D+1, Dodd, N>1: 

D=1: ADD R1, RO, RO LSL n 
D<> 1: (R1 - RO*D) 

ADD R1, RO, R1 LSL n 

(c) If C MOD 4 - 3, say C - 2"n*D-1, Dodd, n>1: 

D-1: RSB R1, RO, RO LSL n 
D<>1: (R1 -RO*D) 

RSB R1, RO, R1 LSL n 

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by: 

RSB R1, RO, RO LSL 2 ; Multiply by 3 
RSB R1, RO, R1 LSL 2 ; Multiply by 4*3-1 = 11 
ADD R1, RO, R1 LSL 2 ; Multiply by 4*11 + 1 = 45 

rather than by: 

ADD 
ADD 

R1, RO, RO LSL 3 
R1, R1, R1 LSL 2 

; Multiply by 9 
; Multiply by 5*9 = 45 

3-42 



_ VLSI TECHNOLOGY, INC ~~~[LDD¥UD~~~W 
VL86C020 

Loading a Word with Unknown Alignment: 
Enter with address in RO (32 bits) 
Uses R1, R2; result in R2. 
Note R2 must be less than R3, e.g. 2, 3 

BIC R1, RO, 3 
LDMIA R1, {R2,R3} 
AND R1, RO, 3 
MOVS R1, R1 LSL3 
MOVNE R2, R2, LSR R1 
RSBNE R1, R1, 32 
ORRNE R2, R2, R3 LSL R1 

Sign Extension of Partial Word 
MOV RO, RO LSL 16 
MOV RO, RO, LSR 16 

Return, Setting Condition Codes 
BICS PC, R14,CFLAG 
ORRCCS PC, R14, CFLAG 

; Get word aligned address. 
; Get 64 bits containing answer. 
; Correction factor in bytes, not in bits. 
; Test if aligned .. 
; Product bottom of result word (if not aligned). 
; Get other shift ,amount. 
; Combine two halves to get result. 

; Move to top 
; '" and back to!bottom 
; (Use ASR to get sign extended version). 

; Returns, clearing C flag ROM link register. 
; Conditionally returns, setting C flag. 

Above code should not be used except in user mode, since it will reset the interrupt enable flags to 
their value when R14 was set up. This generally applies to non-user mode programming. 
e.g., MOVS PC,R14 MOV PC,R14 is saferl 

3-43 

I 



_ VLSI TECHNOLOGY, INC. 

CACHE OPERATION 
The VL86C020 contains a 4 Kbyte 
mixed instruction and data cache; the 
cache has 256 lines of 16 bytes (4 
words), organized as four blocks of 64 
lines (making it 64-way set associative), 
and uses the virtual addresses gener­
ated by the CPU core. 

Read Operations - When the CPU 
performs a read operation (instruction 
fetch or data read), the cache is 
searched for the relevant data; if found 
in the cache, the data is fed to the CPU 
using a fast clock cycle (from FCLK). If 
the data is not found in the cache, the 
CPU resynchronizes to the external 
memory clock, MCLK, reads the 
appropriate line of data (4 words) from 
external memory and stores it in a 
pseudo-randomly chosen entry in the 
cache (a line fetch operation). 

Write Operations - The cache uses a 
write-through strategy, Le. all CPU write 
operations cause an immediate external 
memory write. This ensures that when 
the CPU attempts to write to a protected 
memory location, the memory manager 
can abort the operation. 

If the cache holds a copy of the data 
from the address being written to, the 
cache data is normally automatically 
updated. In certain cases, automatic 
updating is not required; for instance, 
when using the MEMC memory 
manager, a read operation in the 
address space between 3400000H-
3FFFFFFH accesses the ROMs, but a 
write operation in the same address 
space will change a MEMC register, 
and should not affect the data stored in 
the cache. 

Control Register 4 must be programmed 
with the addresses of all updateable 
areas of the processor's memory map 
(see section Register 4: Updateable 
Areas Register - ReadlWrite). 

Cache Validity - The cache works with 
virtual addresses, and is unaware of the 
mapping of virtual addresses to 
physical addresses performed by the 
external memory manager. If the virtual 
to physical mapping in the memory 
manager is altered, the cache still 
maintains the data from the old map­
ping which is now invalid. The cache 
must, therefore, be flushed of its old 
data whenever the memory manager 
mapping is changed. 

Note that just removing or introducing a 
new virtual to physical mapping (e.g. 
page swapping) does not invalidate the 
cache, but that a total re-ordering of the 
mapping (e.g. process swap) does. 

Two methods of cache flushing are 
supported: 

1. Automatic cache flushing. Control 
Register 5 may be programmed to 
recognize write operations to 
certain areas of memory as re­
programming the memory manager 
address mapping. (e.g. write 
operations to addresses between 
3800000H-3FFFFFFH re-program 
the page mapping in MEMC). 
When the CPU sees a write opera­
tion to one of these disruptive 
memory locations, the cache is 
automatically flushed. 

2. Software cache flushing. Writing to 
Control Register 1 will flush the 
cache immediately. 

Automatic cache flushing invalidates 
the cache unnecessarily on page 
swaps, but allows all existing ARM 
programs to be run without modifica­
tion. 

3-44 

~~~[L~ [M]~[N]L%~W 
VL86C020

Non-cacheable Areas of Memory
Certain areas of the processor's
memory map may be uncacheable. For
instance, when using MEMC, the area
between 3000000H-3400000H corre­
sponds to 1/0 space, and must be
marked as uncacheable to stop the
data being stored in the cache. When
the processor is polling a hardware flag
in 1/0 space, it is important that the
processor is forced to read data from
the external peripheral, and not a copy
of some data held in the cache.

Control Register 3 must be pro­
grammed with the addresses of all
cacheable areas of the processor's
memory map (see section Register 3:
Cacheable Area Register - ReadlWrite).

Doubly Mapped Space - Since the
cache works with virtual addresses, it
assumes every virtual address maps to
a different physical address. If the
same physical location is accessed by
more than one virtual address, the
cache cannot maintain consistency, as
each virtual address will have a
separate entry in the cache, and only
one entry will be updated on a proces­
sor write operation. To avoid any cache
inconsistencies, both doubly-mapped
virtual addresses should be marked as
uncacheable.

If, when using MEMC, the Physically
Mapped RAM between 2000000H-
2FFFFFFH is used to alter the contents
of a cacheable virtual address, the
cache must be flushed immediately
afterwards. This may be performed
automatically by marking the Physically
Mapped RAM area as disruptive (see
Register 5: Disruptive Areas Register).

e VLSI TECHNOLOGY, INC

FIGURE 22. VL86C020 CONTROL REGISTERS

31

o

The VL86C020 contains six control
registers as shown in Figure 22. These
registers are implemented as coproces­
sor 15, and are accessed using
coprocessor register transfer opera­
tions, where MRC is a control register
read, and MCR is a control register
write:

<MCRlMRC>{cond} 15,O,Rd,A3Cn,O

o

2

[p [R1 ~ [LD [MJ 0 ~~[R1W
VL86C020

o

Cache
On

cond

Rd

A3Cn

two character condition mnemonic, see section Condition Field.

is an expression evaluating to a valid ARM register number.

is an expression evaluating to one of the control register numbers.

These registers can only be accessed
while the processor is in a non-user
mode, and only by using coprocessor
register transfer operations. The
VL86C020 will take the undefined in­
struction trap if an illegal access is

made to coprocessor 15 (illegal
accesses include coprocessor data
operations, data transfers and user
mode register transfers).

Register 0: Identity Register· Read
Only· This is a read-only register that

3-45

returns a 32-bit VLSI-specified number
which decodes to give the chip's
designer, manufacturer, part type and
revision number:

e VLSI TECHNOLOGY, INC.

10 Example: (VL86C020 rev. 0)

~~~[LO[Mt]O~~~W 
VL86C020 

Bit 31-Bit 24 
Bit 23-Bit 16 
Bit 15-Bit 8 
Bit 7-Bit 0 

Designer code 
Manufacturer code 
Part type 

( ... 41 H - Acorn Computer Ltd.) 
( ... 56H - VLSI Technology Inc.) 
(-03H - VL86C020) 

Revision number (-OOH - Revision 0) 

Register 1: Cache Flush (Write Only) 
Writing any value to this register 
immediately flushes the cache. 

Register 2: Cache Control (Readl 
Write) - This is a three-bit register that 
controls some special features of the 
VL86C020: 

1. Register Bit(O) - Cache On/Off -
If Bit(O) is low, the cache is turned 
off and all processor read opera­
tions will go directly to the external 
memory. The automatic cache 
flush and cache update mecha­
nisms operate even when the 
cache is turned off. This allows the 
cache to be turned off for a time 
and then turned on again with no 
loss of cache consistency. 

If Bit(O) is high, the cache is turned 
on. Care must be taken that the 
cacheable, updateable and 
disruptive registers are correctly 
programmed before turning the 
cache on. 

2. Register Bit(1) - Separate/Shared 
User-Supervisor Address Space -
the CPU can work with two 
different memory-mapping 
schemes: 
a. Shared Supervisor/User 

Address Space - The memory 
manager uses the same 

Cacheable Areas Register: 

translation tables for User and 
Supervisor modes, so the 
same physical memory 
location is accessed regard­
less of processor mode 
(although the user may only 
have restricted access). If the 
memory manager uses this 
translation system (as MEMC 
does), Bit(1) must be set high. 

b. Separate Supervisor/User 
Address Space - The memory 
manager uses different 
translation tables for user and 
supervisor modes, and the 
processor will access com­
pletely different physical 
locations depending on its 
mode. H the memory manager 
uses this translation system, 
Bit(1) must be set low. 

3. Register Bit(2) - Monitor Mode -
In normal operation, when the CPU 
is executing from cache, the 
external address lines are held 
static to conserve power, and only 
coprocessor instructions and data 
are broadcast on the coprocessor 
data bus. 

In the software selectable monitor 
mode, the internal addresses are 
always driven onto the external 

Bit 31-1 Data from addresses 3EOOOOOH - 3FFFFFFH is cacheable 

address bus, and all CPU instruc­
tion and data fetches (whether from 
cache or external memory) are 
broadcast on the coprocessor data 
bus; this allows full program tracing 
with a logic analyzer. To conserve 
power, monitor mode forces the 
VL86C020 to synchronize perma­
nently to MCLK (even for cache ac­
cesses). 

Monitor mode is selected by setting 
Bit(2) high. Normal operation is 
achieved by setting Bit(2) low (the 
default on reset). 

4. Register Bits 31-3 - Reserved -
These bits are reserved for future 
expansion. When writing to 
register 2, bit 31-bit 3 should be set 
low to guarantee code compatibility 
with future versions of VL86C020. 
Reading from register 2 always 
returns zeros in bits 31-3. 

When the VL86C020 is reset, all three 
control bits are set low (cache off, 
separate user/supervisor space, 
monitor mode off). 

Register 3: Cacheable Area (Read/ 
Write) - This is a 32-bit register that 
allows any of the 32, 2 Mbyte areas of 
the 64 Mbyte processor virtual address 
space to be marked as cacheable: 

Bit 31 =0 Data from addresses 3EOOOOOH - 3FFFFFFH is NOT cacheable 

Bit 0 .. 1 
Bit 0 .. 0 

Data from addresses OOOOOOOH - 01 FFFFFH is cacheable 
Data from addresses OOOOOOOH - 01 FFFFFFH is NOT cacheable 

3-46 



_ VLSI TECHNOLOGY, INC. 

On a cache-miss, if the address is 
marked as cacheable, a line of data will 
be 'fetched from external memory and 
stored In the cache (when the cache is 
turned on). If the area is marked as 
non-cacheable, or the cache is turned 

Updateable Areas Register: 

off, only the requested byte/word of 
data will be read from external memory, 
and it will not be stored in the cache. 
This register is undefined at power-up, 
and must be correctly programmed 
before the cache is turned on. 

~~~[LD[}¥{]D~&~W 
Vl86C020

Register 4: Updateable Areas (Read!
Write) - This is a 32-bit register that
allows any of the 32, 2 Mbyte areas of
the 64 Mbyte processor virtual address
space to be marked as updateable:

Bit 31=1 Data from addresses 3EOOOOOH - 3FFFFFFH is updateable
Bit 31 =0 Data from addresses 3EOOOOOH - 3FFFFFFH is NOT updateable

Data from addresses OOOOOOOH - 01 FFFFFH is updateable Bit 0.1
Bit 0.0 Data from addresses OOOOOOOH - 01 FFFFFH is NOT updateable

Data stored in the cache from areas
marked as updateable will be updated
when the processor writes new data to
that address. This register is undefined
at power-up, and must be correctly
programmed before the cache is turned
on.

Disruptive Areas Register:

Register 5: Disruptive Areas (Read!
Write) - This is a 32-bit register that
allows any of the thirty-two, 2 Mbyte
areas of the 64 Mbyte processor virtual
address space to be marked as
disruptive:

Bit 31-1 Data from addresses 3EOOOOOH - 3FFFFFFH is disruptive

If the processor performs a write
operation to an area marked as
disruptive, the cache will automatically
be flushed. This register is undefined at
power-up, and must be correctly
programmed before the cache is turned
on.

Bit 31-1 Data from addresses 3EOOOOOH - 3FFFFFFH is NOT disruptive

Bit 0",,1
Bit 0=0

Data from addresses OOOOOOOH - 01 FFFFFH is disruptive
Data from addresses OOOOOOOH - 01 FFFFFH is NOT disruptive

FIGURE 23. VL86C020 MEMORY TIMING

MCLK

-MREQ

SEQ

-RAS

-CAS

ADDRESS

CONTROL

DATA (READ)

DATA (WRITE)

ABORT

L-CYCLE

r--
I

I

I

/

A-CYCLE A-CYCLE L-CYCLE

I r--L-J
I I

I I

L
I

3-47

I--

f--

I

_ VLSI TECHNOLOGY, INC.

MEMORY INTERFACE
The VL86C020 reads instructions and
data from, and writes data to, its main
memory via a 32-bit data bus. A
separate 26-bit address bus specifies
the memory location to be used for the
transfer, and a 7-bit control bus gives
information about the type of transfer
(including direction, byte or word
quantity and processor mode).

CYCLE TYPES
The memory interface timing is con­
trolled by the memory clock input,
MCLK. Each memory cycle (defined as
the period between consecutive falling
edges of MCLK) may be either active or
latent.

Active cycles (A-cycles) involve the
transfer of data between CPU and
memory. The address, control and
(for write operations) data buses
are valid, and the CPU monitors
the ABORT input to check that the
current operation is valid.

Where more than one word of data
is to be transferred, consecutive
active cycles are used; in this case,
each successive transfer will be tal
from an address one word after the
previous one. At the end of a
multiple transfer, when the CPU
wishes to access an address which
is unrelated to the one used in the
preceding cycle, it will request a
latent cycle.

Latent cycles (L-cycles) are flagged
when the CPU does not have to
transfer any data tolfrom memory.
Typically, this will be because the
CPU is fetching data from the
internal cache; the CPU must still
be clocked with MCLK during latent
cycles, since MCLK is used in the
resynchronization process.

The address, control and (for write
operations) data buses are all valid
during the latent cycle preceding
an active cycle; this allows the
memory system to start the data
transfer during the latent cycle as
soon as the following active cycle
is flagged (by -MREQ going low).

Active and latent cycles are flagged to
the memory system using the -MREQ
output. The SEQ output is the inverse
of -MREQ, and is provided to allow the

VL86C020 to work with the current
versions of MEMC. The states en­
coded by -MREQ and SEQ correspond
to the internal and sequential cycles
used by the VL86C01 0 processor, and
are shown in the following table.

-MREQ SEQ Cycle Type

0 0 (Unused)

0 1 Active

1 0 Latent

1 1 (Unused)

The memory interface has been
designed to facilitate the use of DRAM
page-mode to allow rapid access to
sequential data. Figure 23 shows how
the DRAM timing might be arranged to
allow the CPU to access two consecu­
tive words of memory.

The address and control signals change
when MCLK is high, and apply to the
following cycle. Both the address and
control buses are valid during the L­
cycle preceding the first A-cycle, so the
memory system can start the DRAM
access by driving -RAS low once the A­
cycle has been flagged (by -MREQ
being Iowan the rising edge of MCLK).
Since -MREQ remains low during the
first A-cycle, the memory system knows
that the next cycle will be an access to
the consecutive word of memory, and
so may leave -RAS low and fetch the
next word from the same page of
DRAM. Note that the memory system
must check that the consecutive access
will be in the same page of DRAM
before commiting to a page-mode
access; if it is not, the memory system
must stop the CPU while the new row
address is strobed into the DRAM.

The end of the consecutive accesses is
denoted when an L-cycle is flagged (by
-MREQ being high on the rising edge
of MCLK).

When interfacing the VL86C020 to
static RAM, L-cycles may be ignored,
and RAM accessed only when A-cycles
are flagged. The address bus timing
may have to be modified (see section
on Address timing).

DATA TRANSFER
The direction of data transfer is
determined by the state of -RIW.

3-48

~ [R1 ~ [L~ [Mt] ~ [N]~[R1W
VL86C020

When -R/W is low, the CPU is reading
data from memory, and the appropriate
data must be setup on the data bus
before the falling edge of MCLK in the
active cycle.

When -R/W is high, the CPU is writing
data to memory. The data bus be­
comes valid during the first half of the L­
cycle preceding the A-cycle, and
remains valid until the A-cycle has
completed. In consecutive write
operations, the data bus changes
during the first half of each A-cycle.

In systems where the VL86C020 is not
the only device using the data bus, DBE
must be driven low when the CPU is not
the bus master. This will prevent the
CPU from driving data onto the bus un­
expectedly during L-cycles.

BYTE ADDRESSING
The processor address bus provides
byte addresses, but instructions are
always words (where a word is four
bytes) and data quantities are usually
words. Single data transfers
(LDR,STR,SWP) can, however, specifiy
that a byte quantity is required. The
-BIW control line is used to request a
byte from the memory system; normally
it is high, signifying a request for a word
quantity, but it goes low when the
addresses change to request a byte
transfer.

When a byte is requested in a read
transfer, the memory system can safely
ignore the fact that the request is for a
byte quantity and present the whole
word. The CPU will perform the byte
extraction internally. Alternatively, the
memory system may activate only the
addressed byte of the memory. (This
may be desirable in order to save
power, or to enable the use of a
common decoding system for both read
and write cycles.)

If a byte write is requested, the CPU will
broadcast the byte value across the
data bus, presenting it at each byte
location within the word. The memory
system must decode address bits A1-
AO to determine which byte is to be
written.

One way of implementing the byte
decode in a DRAM system is to
separate the 32-bit wide block of DRAM
into four byte wide banks, and generate

_ VLSI TECHNOLOGY. INC.

FIGURE 24. BYTE ADDRESSING

~~~~~[M]~~~~W 
VL86C020 

the column address stmbes independ­
ently. (See Figure 24.) 

AO A1 -8/W MCLK CAS -CASO drives the DRAM bank which is 
connected to 07-00, -«)AS1 drives the 
bank connected to 015-08, and so on. 
This has the added advantage of 
reducing the load on each column 
strobe driver, which im~roves the 
precision of this time critical signal. 

G 

D Q 

FIGURE 25. DATA SWAP OPERATION 

MCLK 

-MREQ 

SEQ 

ADDRESS 

-BIW 

-RIW 

LOCK 

DATA (READ) 

DATA (WRITE) 

ABORT 

READ MEMORY DATA 
L-CYCLE A-CYCLE 

LOCKED OPERATIONS 
The VL86C020 includes a data swap 
(SWP) instruction that allows the 
contents of a memory location to be 
swapped with the contents of a proces-
sor register. This instruction is imple- I 
mented as an uninterruptable pair of 
accesses as shown in Figure 25; the 
first access reads the contents of the 
memory, and the second writes the 
register data to the memory. These 
accesses must be treat1ed as a contigu-
ous operation by the memory manager 
to prevent another device from chang-
ing the affected memory location before 
the swap is completed. The CPU 
drives the LOCK signal high for the 
duration of the swap operation to warn 
the memory manager not to give the 
memory to another device. 

WRITE REGISTER DATA 
L-CYCLE A-CYCLE 

3-49 



e VLSI TECHNOLOGY, INC. 

FIGURE 26. LINE FETCH OPERATION 

MCLK 

-MREQ 

SEQ 

ADDRESS 

-8m 

-Rm 
I 

I 

I 

L-CYCLE 

I 

I 
I 

xx .. xOH 

A-CYCLE 

I 

-y 

A-CYCLE 

I 

xx .. x4H 

[p [R1 ~ [L~ [M1] ~ ~~[R1W 
VL86C020 

A-CYCLE A-CYCLE 

I I 
I--

J 
I 

X I--
xX .. xSH xX .. xCH 

I--

L I--

I I--

L I--
LINE 

DATA (READ) 

DATA (WRITE) 

A.iORD 

I <\VorD~ ~rD7 ~arD} 

ABORT 

I 

LINE FETCH OPERATIONS 
A line fetch operation involves reading 
exactly four words of data from the 
memory system into the on-chip cache. 
The access always starts on a quad­
word aligned address (Le. xx .. xOH, 
xx .. x4H or xx .. xCH), and consists of 
one L-cycle followed by four consecu­
tive A-cycles as shown in Figure 26. 
Line fetch operations may only be 
aborted during the first access (to 
address xx .. xOH); it is assumed that if 
the first word of a line is readable, the 
whole line is readable. The VL86C020 
signals a line fetch by driving LINE high 
for the duration of the five cycle 
operation. 

ADDRESS TIMING 
Normally the processor address 
changes when MCLK is high to the 
value which the memory system should 
use during the following cycle. This 
gives maximum time for driving the 
address to large memory arrays, and 
for address translation where required. 
Dynamic memories usually latch the 
address on chip, and if the latch is 
timed correctly, they will work even 
though the address changes before the 
access has completed. Static RAMs 
and ROMs will not work under such 
circumstances, as they require the 
address transition must be delayed until 

I I 

MCLK goes low. An on chip address 
latch, controlled by ALE, allows the 
address timing to be modified in this 
way. 

In a system with a mixture of dynamic 
and static memories (which for these 
purposes means a mixture of devices 
with and without address latches), the 
use of ALE may change dynamically 
from one cycle to the next, at the 
discretion of the memory system. 

VIRTUAL MEMORY SYSTEMS 
The CPU is capable of running a virtual 
memory system, and the address bus 
may be processed by an address 
translation unit before being presented 
to the memory. The ABORT input to 
the processor is used by the memory 
manager to inform the processor of ad­
dressing faults. 

The minimum page size allowed by the 
VL86C020 is four words (the length of a 
cache line). Various page protection 
levels can be suported using the 
VL86C020 control signals: 

-Am can be used by the memory 
manager to protect pages from 
being written to. 

-TRANS indicates whether the 
processor is in a user or non-user 
mode, and may be used to protect 

3-50 

I I I 

system pages from the user, or to 
support completely separate 
mappings for the system and the 
user. In the latter case, the T bit in 
LDR and STR instructions can be 
used to offer the supervisor the 
user's view of the memory. 

-M1-MO can present the memory 
manager with full information on 
the processor mode. 

The cache control register must be 
programmed to implement the appropri­
ate cache consistency mechanism 
depending on whether the memory 
manager uses a shared or separate 
user/non-user translation system (see 
Cache Operation Section). 

STRETCHING ACCESS TIMES 
All memory timing is defined by MCLK, 
and long access times can be accom­
modated by stretching this clock. It is 
usual to stretch the low period of MCLK, 
as this allows the memory manager to 
abort the operation if the access is 
eventually unsuccessful (ABORT must 
be setup to the rising edge of MCLK in 
A-cycles). 

Either MCLK can be stretched before it 
is applied to the CPU, or the -WAIT 
input can be used together with a free­
running MCLK. Taking -WAIT low has 



e VLSI TECHNOLOGY, INC. ~~~[L~[}¥1]~~~~W 
VL86C020 

the same effect as stretching the low 
period of MCLK, and -WAIT must only 
change when MCLK is low. 

The VL86C020 contains dynamic logic, 
and relies upon regular clocking to 
maintain its internal state. For this 
reason, a limit is set upon the maximum 
period for which MCLK may be 
stretched, or -WAIT held low (see AC 
parameters). 

COPROCESSOR INTERFACE 
The 'functionality of the CPU instruction 
set may be extended by the addition of 
up to 15 external coprocessors. When 
a particular coprocessor is not present, 
instructions intended for it will trap, and 
suitable software may be installed to 
emulate its functions. Adding the 
relevant coprocessor hardware will then 
increase the system performance in a 
software compatible way. 

Interface Signals - The coprocessor 
interface timing is specified by CPCLK, 
a clock generated by the VL86C020. 
CPCLK is derived from either MCLK or 
FCLK depending on whether the CPU 
is accessing external memory or the 
cache; the coprocessors must, there­
fore, be able to operate at FCLK 
speeds. A coprocessor cycle is defined 
to be the period between consecutive 
falling edges of CPCLK. Three 

dedicated signals control the coproces­
sor interface, coprocessor instruction 
(-CPI), coprocessor absent (CPA) and 
coprocessor busy (CPB). 

Coprocessor Present/Absent - The 
CPU takes -CPllow whenever it starts 
to execute a coprocessor (or undefined) 
instruction (this will not happen if the 
instruction fails to be executed because 
of the condition codes). Each 
coprocessor will have a copy of the 
instruction, and can inspect the CP# 
field to see which coprocessor it is for. 
Every coprocessor in a system must 
have a unique number, and if that 
number matches the contents of the 
CP# field, the coprocessor should pull 
the CPA (coprocessor absent) line low. 
If no coprocessor has a number which 
matches the CP# field, CPA will float 
high, and the CPU will take the unde­
fined instruction trap. Otherwise, the 
VL86C020 observes the CPA line going 
low, and waits until the coprocessor 
flags that it is not busy (using CPB). 

Busy-Waiting - If CPA goes low, the 
CPU will watch the CPB (coprocessor 
busy) line. Only the coprocessor which 
is pulling CPA low is allowed to drive 
CPB low, and it should do so when it is 
ready to complete the instruction. The 
VL86C020 will busy-wait while CPB is 
high, unless an enabled interrupt 

occurs, in which case it will break off 
from the coprocessor handshake to 
process the interrupt. Normally the 
CPU will return from processing the 
interrupt to retry the coprocessor 
instruction. 

When CPB goes low, the instruction 
continues to completion; in the case of 
register transfer or data! transfer instruc­
tions, this will involve data transfers 
taking place along the coprocessor data 
bus (CPD31-CPDO) between the 
coprocessor and CPU. Data operations 
do not transfer any data, and complete 
as soon as the coprocessor ceases to 
be busy. 

All three interface signals are sampled 
by both CPU and the coprocessor(s) on 
the rising edge of CPCLK. If all three 
are low, the instruction is committed to 
execution, and where transfers are 
involved they will start in the next 
CPCLK cycle. If -CPI has gone high 
after being low, and before the instruc­
tion is committed, the VL86C020 has 
broken off from the busy-wait state to 
service an interrupt. The instruction 
may be restarted later, but other 
coprocessor instructions may come 
sooner, and the instruct'ion should be 
discarded. An external pull-up resistor 
is normally required on both CPA and 
CPB. 

FIGURE 27. COPROCESSOR DATA OPERATION 

CPCLK 

-OPC I 

CDP 
BROADCAST 

I 

CDP 
DECODED 

CDP 
EXECUTED 

COPROCESSOR COPROCESSOR 
BUSY READY 

I-----Lr- I I 

I 

I I 

1 

C~~~o ~:/m~--~~I>-----~ /"fiC-;4 
~ <§: '>------<:ZiIlli::I'>-:~~-----<<JE!':"':'----~~ ~ 

CPSPV '-+_' ___ ..JX:= 
-CPI I I I 
CPA I I I 

CPB I I I 

3-51 

I 



e VLSI TECHNOLOGY, INC. ~[R1~[L~~~[M~[R1W 
VL86C020 

Pipeline Following - In order to 
respond correctly when a coprocessor 
instruction arises, each coprocessor 
must have a copy of the instruction. 
This is achieved by having each 
coprocessor maintain a copy of the 
processor's instruction pipeline. If 
-OPC is low when CPCLK is low, then 
the CPU will broadcast a processor in­
struction that cycle. The coprocessors 
should latch the instruction off CPD31-
CPDO at the end of the cycle (as 
CPCLK falls) and clock it into their 
instruction pipelines. 

To reduce the number of transitions on 
CPD31-CPDO, the VL86C020 inspects 
the instruction stream and replaces all 
non coprocessor instructions with 
&FFFFFFFF (which still decodes as a 
non coprocessor instruction); all 
coprocessor instructions are broadcast 
unaltered. 

This scheme is disabled when monitor 
mode is selected, and all CPU instruc­
tions and data fetches are broadcast 
unaltered (see Cache OperationSec­
tion). 

DATA TRANSFER CYCLES - Once 
the coprocessor has gone no-busy in a 
data transfer instruction, it must supply 
or accept data at the VL86C020 bus 
rate (defined by CPCLK). The direction 
of transfer is defined by the L bit in the 
instruction being executed. The 
coprocessor is responsible for deter­
mining the number of words to be 
transferred; VL86C020 will continue to 
increment the address by one word per 
transfer until the coprocessor tells it to 
stop. The termination condition is 

FIGURE 28. COPROCESSOR DATA TRANSFER (FROM MEMORY TO COPROCESSOR) 

CPCLK 

-OPC 

CPD31-
CPDO OUT 

CPD31-
CPDO IN 

-CPI 

CPA 

CPS 

COPROCESSOR 
READY 

FIRST 
DATA 

TRANSFER 

PENULTIMATE 
DATA 

TRANSFER 

FINAL 
DATA 

TRANSFER 

FIGURE 29. COPROCESSOR DATA TRANSFER (FROM COPROCESSOR TO MEMORY) 

CPCLK 

-OPC 

CPD31-
CPDO OUT 

CPD31-
CPDO IN 

-CPI 

CPA 

CPS 

COPROCESSOR 
READY 

FIRST 
DATA 

TRANSFER 

PENULTIMATE 
DATA 

TRANSFER 

3-52 

FINAL 
DATA 

TRANSFER 

EXTRA 
DATA 

(IGNORED) 



e VLSI TECHNOLOGY, INC. ~ [R1 ~ [L ~ ~ ~l [NJ ~ [~r~ 
VL86C020 

indicated by the coprocessor releasing 
CPA and CPS to float high. 

The data being transferred tolfrom 
memory is pipelined by one cycle within 
the CPU. In the case of a coprocessor 
load from memory, this means that the 
CPU is one word ahead of the 
coprocessor, and always fetches one 
extra word of data. This extra fetch will 
not adversely affect the CPU or the 
coprocessor, but may cause unex­
pected faults in the memory system 
(e.g. if the extra fetch accesses a read­
sensitive peripheral). 

There is no limit in principle to the 
number of words which one coproces­
sor data transfer can move, but by 
convention no coprocessor should allow 
more than 16 words in one instruction. 
More than this would worsen the worst 
case CPU interrupt latency, since the 
instruction is not interruptable once the 
transfers have commenced. At 16 
words, this instruction is comparable 
with a block transfer of 16 registers, and 
therefore does not affect the worst case 
latency. 

REGISTER TRANSFE:R CYCLE 
Register transfer operations involve the 
transfer of a single word between the 
CPU and the appropriate coprocessor 
along CPD31-CPDa. ihe transfer 
takes place in the cycle after the one in 
which the CPU and the coprocessor 
committed to the instruction. 

PRIVILEGED INSTRUCTIONS 
The coprocessor may restrict certain 
instructions for use in a privileged (non­
user) mode only. To db this, the 
coprocessor may use the CPSPV 

FIGURE 30. COPROCESSOR REGISTER TRANSFER (LOAD FROM COPROCESSOR) 

TRANSFER 
COPROCESSOR COPROCESSOR 

READY DATA 

CPCLK 

-oPC 

CPD31-
CPDa OUT 

CPD31- DATA 
CPDa IN 

--CPI 

CPA 

CPB 

FIGURE 31. COPROCESSOR REGISTER TRANSFER (STORIE TO COPROCESSOR) 

TRANSFER 

CPCLK 

-OPC 

CPD31-
CPDa OUT 

CPD31-
CPDa IN 

-CPI 

CPA 

CPB 

COPROCESSOR REGISTER 
READY DATA 

3-53 

I 



e VLSI TECHNOLOGY, INC. ~ [ffi ~ [LO [MJ 0 [N]~[ffiW 
VL86C020 

output of the VL86C020; this signal is 
valid while CPCLK is low, and applies 
to the instruction being broadcast 
during that cycle. When CPSPV is 
high, the broadcast instruction is 
privileged. 

As an example of the use of this facility, 
consider the case of a floating point 
coprocessor (FPU) in a multi-tasking 
system. The operating system could 
save all the floating point registers on 
every task switch, but this is inefficient 
in a typical system where only one or 
two tasks will use floating point opera­
tions. Instead, there could be a 
privileged instruction which turns the 
FPU on or off. When a task switch 
happens, the operating system can turn 
the FPU off without saving its registers. 
If the new task attempts an FPU 
operation, the FPU will appear to be 
absent, causing an undefined instruc­
tion trap. The operating system will 
then realize that the new task requires 
the FPU, so it will re-enable it and save 
FPU registers. The task can then use 
the FPU as normal. If, however, the 
new task never attempts an FPU 
operation (as will be the case for most 
tasks), the state saving overhead will 
have been avoided. 

REPEATABILITY 
A consequence of the implementation 
of the coprocessor interface, with the 
interruptable busy-wait state, is that all 
instructions may be interrupted at any 
point up to the time when the coproces­
sor goes not-busy. If so interrupted, the 
instruction will normally be restarted 
from the beginning after the interrupt 
has been processed. It is, therefore, 
essential that any action taken by the 
coprocessor before it goes not-busy 
must be repeatable, i.e. must be repeat­
able with identical results. 

For example. consider a FIX operation 
in a floating point coprocessor which 
returns the integer result to a CPU 
register. The coprocessor must stay 
busy while it performs the floating point 
to fixed point conversion, as the CPU 
will expect to receive the integer value 
on the cycle immediately following that 
where it goes not-busy. The coproces­
sor must, therefore. preserve the 
original floating point value and not 
corrupt it during the conversion be­
cause it will be required again if an 
interrupt occurred during the busy 
period. 

EXPLANATION OF INSTRUCTION TABLES 
Example: 

The coprocessor data operation class 
of instruction is not generally subject to 
repeatablity considerations, as the proc­
essing activity can take place after the 
coprocessor goes not-busy. There is 
no need for the CPU to be held up until 
the result is generated, because the 
result is confined to stay within the 
coprocessor. 

UNDEFINED INSTRUCTION 
The undefined instruction is treated by 
the CPU as a coprocessor instruction. 
All coprocessors must be absent (Le. let 
CPA float high) when the undefined 
instruction is presented. The CPU will 
then take the undefined instruction trap. 
Note that the coprocessor need only 
look at bit 27 of the instruction to 
differentiate the undefined instruction 
(which has 0 in bit 27) from coprocessor 
instructions (which all have 1 in bit 27). 

VL86C020 INSTRUCTION CYCLES 
This section shows the cycles per­
formed by the VL86C020's CPU and 
coprocessor for all possible instructions. 
Each class of instruction is taken in 
turn, and its operation is broken down 
into constituent cycles. 

Cycle OPRTN Type Address Data -OPC CP031-CPOO -CPI CPA CPB 
1 Read 
2 Intnl 
3 Intnl 
4 Write 

Read 

Each row in the table represents a 
single CPU or coprocessor cycle. The 
cycles which constitute the instruction 
are numbered from 1 to n. 

The OPRTN column shows the CPU 
operation being performed in each 
cycle. There are four types of CPU 
operation as follows: 

N 
N 

1. Read: A CPU read operation; the 
data will be read from the cache if it 
is present, otherwise an external 
read or line fetch operation will be 
necessary. 

PC+8 (PC+8) 
PC+8 0 (PC+8) 
< - not clocked -> 1 01 (1) 
ALU 01(1) <- not clocked 
PC+12 

2. Write: A CPU write operation; 
VL86C020 always writes data im­
mediately to the main memory. 

3. Intnl: An internal operation where 
the CPU is not transferring data. 

4. Trnsf: A coprocessor register 
transfer where data passes 
between the CPU and a coproces­
sor. 

The type column gives extra information 
about the type of operation being 
performed: 

3-54 

1 x x 
0 0 0 
1 1 1 

=> 
1 \) 

1. Read and write operations may be 
one of two types, Sequential (liS") 
or Non-sequential (liN"). A 
sequential access involves the 
CPU transferring data with an 
address that is one word after the 
preceding access. A non­
sequential access is flagged when 
the current CPU address is 
unrelated to the one used in the 
preceding access. 

2. Read and write operations 
normally work on word quantities, 
but the single data load, store and 



e VLSI TECHNOLOGY, INC. ~~~[L~~~~&[RiW 
VL86C020 

swap instructions allow byte 
quantities to be specified; this is 
indicated by the symbol "(BIW)" in 
the type column. 

3. The coprocessor register transfer 
instruction may either transfer data 
into ("I") or out from ("0") the CPU. 

The address and data columns show 
the contents of VL86C020's internal 
address and data busses. Note that in 
normal mode, the internal data bus 
cannot be observed directly, and the 
address bus is only observable when 
the CPU is synchronized to MCLK. 

The -OPC, CPD31-CPDO, -CPI, CPA 
and CPS columns (where shown) 
indicate the state of the external 
coprocessor interface. Note that in 
normal mode CPD31-CPDO only 

Cycle OPRTN Type 

Read 

2 Read N 

3 Read S 

Read S 

broadcasts coprocessor instructions 
and data (see section Pipeline Follow­
ing). By selecting monitor mode, the 
internal address bus can be viewed on 
A25-AO, and all data will be broadcast 
on CPD31-CPDO. 

The final, un-numbered operation in an 
instruction shows what will ,happen in 
the first cycle of the next instruction. 
Note that the first cycle of an instruction 
is always an instruction fetch (word 
read operation), but may be either an 
N-type or S-type read depending on the 
previous instruction. 

INSTRUCTION TABLES 
Branch and Branch with Link - A branch 
instruction calculates the branch 
destination in the first cycle, while 
performing a prefetch from the current 
PC. This prefetch is done lin all cases, 

since by the time the decision to take 
the branch has been reached it is 
already too late to prevent the prefetch. 

During the second cycle a fetch is 
performed from the branch destination, 
and the return address IS stored in 
register 14 if the link bit is set. The first 
cycle's prefetch data is broadcast on 
the external coprocessor data bus 
(there is a one cycle delay between the 
coprocessor and CPU). 

The third cycle performs a fetch from 
the destination +4, refilllng the instruc­
tion pipeline, and if the branch is with 
link, R14 is modified (4 is subtracted 
from it) to simplify return from SUB 
PC<R14,#4 to MOV PC,R14. This 
makes the STM .. {R14}iLDM .. {PC} 
type of subroutine work,correctly. 

Address Data -OPC CPD31-CPDO 

PC+8 (PC+8) 

ALU (ALU) 0 (PC+8) 

ALU+4 (ALU+4) 0 (ALU) 

ALU+8 0 (ALU+4) 

(PC is the address of the branch instruction, ALU is an address calculated by the CPU, (ALU) is the contents of the address, 
etc), 

Data Operations - A data operation 
executes in a single datapath cycle 
except where the shift is determined by 
the contents of a register. A register is 
read onto the A bus, and a second 
register or the immediate field onto the 
B bus. The ALU combines the A bus 
source and the shifted B bus source 
according to the operation specified in 
the instruction, and the result (when 
required) is written to the destination 
register. (Compares and tests do not 
produce results, only the ALU status 
flags are affected.) 

An instruction prefetch occurs at the 
same time as the above operation, and 
the program counter is incremented. 

When the shift length is specified by a 
register, an additional datapath cycle 
occurs before the above operation to 
copy the bottom 8 bits of that register 
into a holding latch in the barrel shifter. 
The instruction prefetch will occur 
during this first cycle, and the operation 
cycle will be internal (Le. will not 
perform a data transfer). 

3-55 

The PC may be any (or all!) of the 
register operands. WhM read onto the 
A bus it appears without the PSR bits, 
on the B bus it appears I with them. 
Neither will affect exterrnal bus activitiy. 
When it is the destinaticm, however, the 
contents of the instruction pipeline are 
invalidated, and the address for the 
next instruction prefetch is taken from 
the ALU rather than the address 
incrementer. The instruction pipeline is 
refilled before any further execution 
takes place, and during'this time 
exceptions are locked out. 

E 



e VLSI TECHNOLOGY, INC. ~~~[L~~~~t%~W 

Cycle OPRTN Type 
Normal 1 Read 

Read 

DEST=PC 1 Read 
2 Read 
3 Read 

Read 

Shift (RS) 1 Read 
2 Intnl 

Read 

Shift (RS), 1 Read 
DEST=PC 2 Intnl 

3 Read 
4 Read 

Read 

Multiply and Multiply Accumulate­
The multiply instructions make use of 
special hardware which implements a 
2-bit Booth's algorithm with early termi­
nation. During the first cycle the accu­
mulate register is brought to the ALU, 
which either transmits it or produces 
zero (according to whether the instruc­
tion is MLA or MUL) to initialize the 
destination register. During the same 

S 

N 
S 
S 

N 

N 
S 
S 

Cycle OPRTN Type 

(RS) = 0,1 1 Read 
2 Intnl 

Read 

(RS) >1 1 Read 
2 Intnl 

Intnl 
m+1 Intnl 

Read 

(m is the number of cycles required by 
the Booth's algorithm, which is deter­
mined by the contents of Rs. Multiplica­
tion by and number between 2"(2m-3) 
and 2"(2m-1 }-1 inclusive takes m cycles 
for m> 1. Multiplication by zero or one 
takes one cycle. The maximum value 
m can take is 16.} 

Load Register - The first cycle of a 
load register instruction performs the 

N 

N 

VL86C020 
Address Data -OPC CPD31-CPDO 
PC+8 (PC+8) 
PC+12 0 

PC+8 (PC+8) 
ALU (ALU) 0 
ALU+4 (ALU+4) 0 
ALU+8 0 

PC+8 (PC+8) 
PC+12 0 
PC+12 1 

PC+8 (PC+8) 
0 

ALU (ALU) 1 
ALU+4 (ALU+4) 0 
ALU+8 0 

cycl, one of the operands is loaded into 
the Booth's shifter via the A bus. 

The datapath then cycles, adding the 
second operand to, subtracting it from, 
or just transmitting, the result register. 
The second operand is shifted in the 
Nth cycle by 2n or 2n+ 1 bits,under 
control of the Booth's algorithm logic. 
The first operand is shifted right 2 bits 
per cycle, and when it is zero the 

(PC+8) 

(PC+8) 
(ALU+4) 
(ALU+4) 

(PC+8) 

(PC+8) 

(ALU) 
(ALU+4) 

instruction terminates (possibly after an 
additional cycle to clear a pending 
borrow). 

All cycles except the first are internal. 

If the destination is the PC, all writing to 
it is prevented. The instruction will 
proceed as normal except that the PC 
will be unaffected. (If the S bit is set 
PSR flags will be meaningless.) 

Address Data -OPC CPD31-CPDO 

PC+8 (PC+8) 
PC+12 0 (PC+8) 
PC+12 1 

PC+8 (PC+8) 
PC+12 0 (PC+8) 
PC+12 1 
PC+12 1 
PC+12 1 

address calculation. The data is 
fetched during the second cycle, and 
the base register modification is 
performed during this cycle (if required). 
During the third cycle the data is 
transferred to the destination register, 
and the CPU performs an internal cycle. 

The data read may be a byte or word 
quantity (B/w), and the processor mode 
may be forced into user mode while the 

3-56 

read takes place (depending on the 
state of the T bit in the instruction). 

Either the base or the destination (or 
both) may be the PC, and the prefetch 
sequence will be changed if the PC is 
affected by the instruction. 

The data fetch may abort, and in this 
case the base and destination modifica­
tions are prevented. 



e VLSI TECHNOLOGY, INC. [p~~[LO~O~&~W 
Vl86C020 

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPDO 

Normal 1 Read PC+8 (PC+8) 
2 Read N (BIW) T ALU (ALU) 0 (PC+8) 
3 Intnl PC+12 1 (ALU) 

Read N PC+12 1 

DEST=PC 1 Read PC+8 (PC+8) 
2 Read N(BIW) T ALU (ALU) 0 (PC+8) 
3 Intnl PC+12 1 (ALU) 
4 Read N (ALU) ((ALU)) 1 
5 Read S (ALU)+4 ((ALU)+4) 0 ((ALU)) 

Read S (ALU)+8 0 ((ALU)+4) 

BASE ... PC 1 Read PC+8 (PC+8) 
Write Back 2 Read N(BIW) T ALU (ALU) 0 (PC+8) I DEST::PC 3 Intnl PC' 1 (ALU) 

4 Read N PC' (PC') 1 
5 Read S PC'+4 (PC'+4) 0 (PC') 

Read S PC'+8 0 (PC'+4) 

BASE •• PC 1 Read PC+8 (PC+8) 
Writ -Back 2 Read N(BIW) T ALU (ALU) 0 (PC+8) 
DEST .. PC 3 Intnl PC' 1 (ALU) 

4 Read N (ALU) ((ALU)) 1 
5 Read S (ALU)+4 ((ALU)+4) 0 ((ALU)) 

Read S (ALU)+8 0 ((ALU)+4) 

(PC' is the PC value modified by write back; T shows the cycle where the force translation option in the instruction may be used.) 

Store Register - The first cycle of a The data written may be a byte or word The PC will only be modified if it is the 
store rElgister is similar to the first cycle quantity (BIW). and the processor mode base and write back occurs. 
of load register. During the second may be forced into user mode while the A data abort prevents the base write 
cycle the base modification is per- write takes place (depending on the back. 
formed, and at the same time the data state of the T bit in the instruction). 
is written to external memory. There is 
no third cycle. 

Cycle OPRTN Type Mode Address Data -OPC CPD31-CPDO 

Normal 1 Read PC+8 (PC+8) 
2 Write N(BIW) T ALU RD 0 (PC+8) 

Read N PC+12 1 RD 

BASE=PC 1 Read PC+8 (PC+8) 
Write Back 2 Write N(BIW) T ALU RD 0 (PC+8) 

3 Read N PC' (PC') 1 RD 
4 Read S PC'+4 (PC'+4) 0 (PC') 

Read S PC'+8 0 (PC'+4) 

3-57 



e VLSI TECHNOLOGY, INC. ~~~[LO~O~~~W 
VL86C020 

Store Multiple Registers - Store final cycle. The restart problem is much no wholesale overwriting of registers to 
multiple proceeds very much as load more straightforward here, as there is contend with. 
multiple (see next section), without the 

Cycle OPRTN Type Address Data -OPC CPD31-CPDO 

1 Register 1 Read PC+8 (PC+8) 
2 Write N ALU R(A} 0 (PC+8) 

Read N PC+12 1 R(A} 

n Registers 1 Read PC+8 (PC+8) 
(n>1) 2 Write N ALU R(A} 0 (PC+8) 

3 Write S ALU+4 R(A+1} 1 R(A} 

n+1 Write S ALU+. R(A+n} R(A+n-1} 
Read N PC+12 R(A+n} 

Load Multiple Registers - The first after abort. The third cycle is repeated If the PC is the base, write back is 
cycle of LDM is used to calculate the for subsequent fetches until the last prevented. 
address of the first word to be trans- data word has been accessed, then the 

When the PC is in the list of registers to 
ferred, while performing a prefetch. final (internal) cycle moves the last 
The second cycle fetches the first word, word to its destination register. be loaded, and assuming that no abort 

takes place, the current instruction 
and performs the base modifications. If an abort occurs, the instruction pipeline must be invalidated. 
During the third cycle, the first word is continues to completion, but all register 
moved to the appropriate destination writing after the abort is prevented. The Note that the PC is always the last 
register while the second word is final cycle is altered to restore the register to be loaded, so an abort at any 
fetched, and the modification base is modified base register (which may have point will prevent the PC from being 
moved to the ALU A bus input latch for been overwritten by the load activity 

overwritten. 
holding in case it is needed to patch up before the abort occurred). 

Cycle OPRTN Type Address Data -OPC CPD31-CPDO 

1 Register 1 Read PC+8 (PC+8) 
2 Read N ALU (ALU) 0 (PC+8) 
3 Intnl PC+12 1 (ALU) 

Read N PC+12 1 

1 Register 1 Read N PC+8 (PC+8) 
DEST=PC 2 Read N ALU PC' 0 (PC+8) 

3 Intnl PC+12 1 PC' 
4 Read N PC' (PC') 1 
5 Read S PC'+4 (PC'+4) 0 (PC') 

Read S PC'+8 (PC'+8) 0 (PC'+8) 

n Registers 1 Read PC+8 (PC+8) 
(n>1) 2 Read N ALU (ALU) 0 (PC+8) 

Read S ALU+. (ALU+.) 1 (ALU) 
n+1 Read S ALU+. (ALU+.) 1 (ALU+.) 
n+2 Intnl PC+12 1 (ALU+.) 

Read N PC+12 1 

n Registers 1 Read PC+8 (PC+8) 
(n>1) 2 Read N ALU (ALU) 0 (PC+8) 

incl. PC Read S ALU+. (ALU+.) 1 (ALU) 
n+1 Read S ALU+. PC' 1 (ALU+.) 
n+2 Intnl PC+12 1 PC' 
n+3 Read N PC' (PC') 1 
n+4 Read S PC'+4 (PC'+4) 0 (PC') 

Read S PC'+8 (PC'+8) 0 (PC'+8) 

3-58 



e VLSI TECHNOLOGY, INC. 

Data Swap - This is similar to the load 
and store register instructions, but the 
actual swap takes place in cycles two 
and three. In the second cycle, the 
data is fetched from external memory (it 
is always read from the external 
memory, even if the data is available in 
the cache). In the third cycle, the 
contents of the source register are 
written out to the external memory. The 
data read in cycle two is written into the 
destination register during the fourth 
cycle. 

The LOCK output of the VL86C020 is 
driven high for the duration of the swap 

operation (cycles two and three) to 
indicate that both cycles should be 
allowed to complete without interrup­
tion. 

The data swapped may be a byte or 
word quantity (81W). 

The prefetch sequence will be changed 
if the PC is specified as the destination 
register. 

When R15 is selected as,the base, the 
PC is used together with the PSR. If 
any of the flags are set, or interrupts are 
disabled, the data swap will cause an 

[?) ~ ~ [LO [MJ ~ [N]&~W 
VIL86C020 

address exception. Ifi all flags are clear, 
and interrupts are enabled (so the top 
six bits of the PSR are clear), the data 
will be swapped with an address eight 
bytes advanced from the swap instruc­
tion (PC+8), although ithe address will 
not be word aligned unless the proces­
sor is in user mode (a~ the M1 and MO 
bits determine the byte address). 

The swap operation may be aborted in 
either the read or write cycle, and in 
both cases the destination register will 
not be affected. 

Cycle OPRTN Type Lock Address Data -OPC CPD31-CPDO 

Normal 1 Read 0 PC+8 (PC+8) 
2 Read N (81W) 1 RN (RN) 0 
3 Write N (81W) 1 RN RM 1 
4 Intnl 0 PC+12 1 

Read N 0 PC+12 1 

DEST=PC 1 Read 0 PC+8 (PC+8) 
2 Read N (81W) 1 RN PC' 0 
3 Write N (81W) 1 RN RM 1 
4 Intnl 0 PC+12 1 
5 Read N 0 PC' (PC') 1 
6 Read S 0 PC'+4 WC'+4) 0 

Read S 0 PC'+8 0 

Software Interrupt and Exception 
Entry - Exceptions (and software 
interrupts) force the PC to a particular 
value and refill the instruction pipeline 
from there. During the first cycle the 
forced address is constructed, and the 

processor enters supervisor mode. The 
return address is moved to register 14. 

Cycle OPRTN Type 

1 Read 
2 Read 
3 Read 

Read 

N 
S 
S 

(For software interrupt PC is the 
address of the SWI instruction, for 
interrupts and reset PC is the address 
of the instruction following the last one 
to be executed before entering the 

During the second cycle the return 
address is modified to facilitate return, 
though this modification is: less useful 

Mode 

SPV 
SPV 
SPV 

Address Data 

(PC+8) 
(XN) 
(XN+4) 

-OPC 

o 
o 
o 

exception, for prefetch abort PC is the 
address of the aborting instruction, for 
data abort PC is the address of the 
instruction following the one which 

3-59 

(PC+8) 
(RN) 
RM 

(PC+8) 
PC' 
RM 

(PC') 
(PC'+4) 

than in the case of branch with link. 

The third cycle is requited only to 
complete the refilling of the instruction 
pipeline. 

CPD31-CPDO 

(PC+8) 
(XN) 
(XN+4) 

attempted the aborted data transfer. Xn 
is the appropriate trap address.) 

I 



o VLSI TECHNOLOGY, INC. ~~~[L~[M]~[M~~W 
VL86C020 

Coprocessor Data Operation - A 
coprocessor data operation is a request 
from the CPU for the coprocessor to 
initiate some action. The action need 
not be completed for some time, but the 
coprocessor must commit to doing it 
before pulling CPS low. 

Cycle OPRTN Type 

Ready 1 Read 
2 Intnl 

Read N 

Not Ready 1 Read 
2 Intnl 

Intnl 
n Intnl 

Read N 

Coprocessor Data Transfer - Here, 
the coprocessor should commit to the 
transfer only when it is ready to accept 
the data. When CPS goes low, the 
CPU will read the appropriate data and 
broadcast it to the coprocessor (if the 
data is read from the cache, it will be 
broadcast at FCLK rates). Note that the 
coprocessor is not clocked while the 

1 Register 
Ready 

1 Register 
Not Ready 

m Registers 
(m>1) 
Ready 

Cycle 

1 
2 
3 

1 
2 

n 
n+1 

1 
2 
3 
4 

m+3 

OPRTN Type 

Read 
Intnl 
Read N 
Read N 

Read 
Intnl 
Intnl 
Intnl 
Read N 

Read 
Intnl 
Read N 
Read S 

Read S 
Read N 

If the coprocessor can never do the 
request task, it should leave CPA and 
CPS to float high. If it can do the task, 
but can't commit right now, it should pull 
CPA low but leave CPS high until it can 
commit. The CPU will busy-wait until 
CPS goes low. 

The coprocessor interface normally 
operates one cycle behind the CPU to 
allow time for the instructions to be 
broadcast. When the CPU starts 
executing a coprocessor instruction, it 
busy-waits for one cycle (Cycle 2) while 
the coprocessor catches up. 

Address Data -OPC CPD31-CPDO -CPI CPA CPS 

PC+8 (PC+8) 
PC+8 0 (PC+8) 
PC+12 1 

PC+8 (PC+8) 
PC+8 0 (PC+8) 
PC+8 1 
PC+8 1 
PC+12 1 

CPU fetches the first word of data; the 
data is broadcast to the coprocessor in 
the next cycle. 

During the data transfer, the VL86C020 
operates one cycle ahead of the 
coprocessor, and so always fetches 
one word more than the coprocessor 
wants. This extra data is simply 
discarded. 

1 x x 
0 0 0 
1 

1 x x 
0 0 1 
0 0 1 
0 0 0 
1 

The coprocessor is responsible for 
determining the number of words to be 
transferred, and indicates the last 
transfer cycle by allowing CPA and 
CPS to float high. 

The CPU spends the first cycle (and 
any busy-wait cycles) generating the 
transfer address, and performs the write 
back of the address base during the 
transfer cycles. 

Address Data -OPC CPD31-CPDO -CPI CPA CPS 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 0 
ALU DO(1) <- not clocked ... > 1 1 
PC+12 DO(1) 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 1 
PC+8 1 0 0 1 
PC+8 1 0 0 0 
ALU DO(1) <= not clocked => 1 1 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 0 
ALU DO(1) < ... not colcked = > 0 0 
ALU+4 DO(2) DO(1) 0 0 

ALU+. DO(m+1) DO(m) 
PC+12 DO(m+1) 

3-60 



_ VLSI TECHNOLOGY, INC. [p ~ ~ [LO D¥1J 0 [N]~~W 
VL86C020 

m Registers 1 Read PC+8 (PC+8) 1 x x 
(m>1) 2 Intnl PC+8 0 (PC+8) 0 0 0 
Not Ready Intnl PC+8 1 0 0 1 

n Intnl PC+8 1 0 0 0 
n+1 Read N ALU 01(1) < = not clocked => 0 0 
n+2 Read S ALU+4 01(2) 1 01(1) 0 0 

n+m+2 Read S ALU+. 01(m+1) Ol(m) 
Read N PC+12 01(m+1) 

Coprocessor Data Transfer (from cycle behind the coprocessor during the the transfer while the coprocessor 
Coprocessor to Memory) • This in- data transfer to give time for data to get outputs the first word ()f data, and at the 
struction is similar to the memory to through the coprocessor interlace. The end of the transfer, the coprocessor is 
coprocessor data transfer. In this case, CPU is halted for a cycle at the start of halted for one cycle while the CPU 
however, the VL86C020 operates one writes the last word of data to memory. 

Cycle OPRTN Type Address Oata -OPC CPO 31-CPOO -CPI CPA CPB 

1 Register 1 Read PC+8 (PC+8) 1 x x 
Ready 2 Intnl PC+8 0 (PC+8) 0 0 0 

3 Intnl < - not clocked => 1 01(1) 1 1 1 
4 Write N ALU 01(1) <= not clocked => 1 1 

Read N PC+12 

1 Register 1 Read PC+8 (PC+8) 1 x x 
Not Ready 2 Intnl PC+8 0 (PC+8) 0 0 1 

Intnl PC+8 1 0 0 1 
n Intnl PC+8 1 0 0 0 
n+1 Intnl <- not clocked -> 1 01(1) 1 1 1 
n+2 Write N ALU 01(1) <= not clocked => 1 1 

Read N PC+12 1 

m Registers 1 Read PC+8 (PC+8) 1 x x 
(m>1) 2 Intnl PC+8 0 (PC+8) 0 0 0 
Ready 3 Intnl < - not clocked => 1 01(1) 1 0 0 

4 Write N ALU 01(1) 'I 01(2) 1 0 0 

m+2 Write S ALU+. 01(m-1) Ol(m) 
m+3 Write S ALU+. Ol(m) <= not clocked => 

Read N PC+12 

m Registers 1 Read PC+8 (PC+8) 1 x x 
(m>1) 2 Intnl PC+8 0 (PC+8) 0 0 1 
Not Ready Intnl PC+8 1 0 0 1 

n Intnl PC+8 1 0 0 0 
n+1 Intnl < - not clocked => 1 01(1) 1 0 0 
n+2 Write N ALU 01(1) 1 01(2) 1 0 0 

m+n Write S ALU+. 01(m-1) Ol(m) 
m+n+1 Write S ALU+. Ol(m) <= not clocked => 

Read N PC+12 1 

3-61 

I 



_ VLSI TECHNOLOGY, INC. ~ [R3 ~ [L ~ ffi!AJ ~ [N] ~ [R3 W 

Coprocessor Register Transfer (Load 
from Coprocessor) - Here the busy-
wait cycles are similar to the previous 

Cycle OPRTN Type 

Ready 1 Read 
2 Intnl 
3 Intnl 
4 Trnsf 
5 Intnl 

Read N 

Not Ready 1 Read 
2 Intnl 

Intnl 
n Intnl 
n+1 Intnl 
n+2 Trnsf 
n+3 Intnl 

Read N 

Coprocessor Register Transfer 
(Store to Coprocessor) - This instruc-
tion is similar to a single word coproces-
sor data transfer. 

Cycle OPRTN Type 

Ready 1 Read 
2 Intnl 
3 Trnsf 0 

Read N 

Not Ready 1 Read 
2 Intnl 

Intnl 
n Intnl 
n+1 Trnsf 0 

Read N 

Undefined Instruction and Coproces­
sor Absent - When a coprocessor 
detects a coprocessor instruction which 

Cycle OPRTN Type 

Ready 1 Read 
2 Intnl 
3 Read N 
4 Read S 

Read S 

VL86C020 

transfer cycle, but the transfer is limited 
to one data word, and VL86C020 puts 
the word into the destination register in 
the third cycle. 

Address Oata -OPC CP031-CPOO -CPI CPA CPS 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 0 
< - not clocked -> 1 01 1 1 1 
PC+12 01 <- not clocked =~> 1 1 
PC+12 1 1 
PC+12 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 1 
PC+8 1 0 0 1 
PC+8 1 0 0 0 
< - not clocked -> 1 01 1 1 1 
PC+12 01 <== not clocked => 1 
PC+12 1 
PC+12 

Address Oata -OPC CP031-CPOO -CPI CPA CPS 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 0 
PC+12 00 <= not clocked => 1 1 
PC+12 00 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 0 1 
PC+8 1 0 0 1 
PC+8 1 0 0 0 
PC+12 00 <= not clocked => 1 1 
PC+12 00 

it cannot perform, and this must include 
all undefined instructions, it must not 
drive CPA or CPS. These will float 

high, causing the undefined instruction 
trap to be taken. 

Mode Address Oata -OPC CP031-CPOO -CPI CPA CPS 

PC+8 (PC+8) 1 x x 
PC+8 0 (PC+8) 0 1 1 

SPV Xn (Xn) 0 (PC+8) 1 1 1 
SPV Xn+4 (Xn+4) 0 (Xn) 1 1 1 
SPV Xn+8 0 (Xn+4) 

3-62 



e VLSI TECHNOLOGY, INC. [F) ~ ~ [LO UMUO[N]&~W 
VL86C020 

Unexecuted Instructions· Any in­
struction whose condition code is not 
met will fail to execute. It will add one 

cycle to the execution time of the code 
segment in which it is embedded. 

Cycle OPRTN Type Address Data ...;,QPC CPD31-CPDO 

Read 
Read S 

Instruction Speeds· In order to deter­
mine the time taken to execute any 
given instruction, it is necessary to 
relate the CPU read, write, internal and 
transfer operations to F-cycles (FCLK 
cycles), L-cycles (Latent MCLK cycles) 
and A-cycles (Active MCLK cycles). 

The relationship between the CPU 
operations and external clock cycles 
depends primarily upon whether the 
cache is turned off or on. 

Cache Off • When the cache is turned 
off, CPU read and write cycles always 
access external memory. To avoid 
unnecessary synchronization delay 
VL86C020 remains synchronized to the 
external memory when the cache is 
turned off, so all operations are timed 

B,BL 1L+3A 
Data Processing 1A +2L 

PC+8 (PC+8) 
PC+12 o 

by MCLK. The time taken for each type 
of CPU operation is as follows: 

Operation Time 

N-type Read L+A 
S-type Read A 

N-type Write L+A 
S-type Write A 

Transfer In L 
Transfer Out L 

Internal L 

Key: 
L - Latent memory CY<i:le period 
A - Active memory cycle period 

for SHIFT(Rs) 
+1L+2A if R15 written 

MUL,MLA (m+1) L + 1 A 
LOR 3L+2A +2A 
STR 2L+2A +2A 
LDM 3 L + (n+1)A +2A 
STM 2 L + (n+1)A 
SWP 4L+3A +2A 
SWI, trap 1L+3A 
COO (b+2) L + 1 A 
LDC (b+3) L+ (n+1)A +1A 
STC (b+4) L+ (n+1)A 
MRC (b+4) L + 1 A 
MCR (b+3) L + 1 A 

n is the number of words transferred. 

m is the number of cycles required by 
the multiply algorithm, which is deter­
mined by the contents of Rs. Multiplica­
tion by any number between 211(2m-3) 
and 211(2m-1 )-1 inclusive takes m cycles 
for m> 1. Multiplication by zero or one 

if R15 loaded/written back 
if R15 written-back 
if R15 loaded 

if R1510aded 

if (n>1) 

takes one cycle. The ma>oimum value 
m can take is 16. 

b is the number of cycles spent in the 
coprocessor busy-wait loop. 

If the condition is not met all instructions 
take one A-cycle. 

3-63 

(PC+8) 

Due to the pipelined architecture of the 
CPU, instructions overlap considerably. 
In a typical cycle one instruction may be 
using the datapath while the next is 
being decoded and the one after that is 
being fetched. For this reason the 
following table presents the incremental 
number of cycles required by an 
instruction, rather than the total number 
of cycles for which the'instruction uses 
part of the processor. Elapsed time (in 
cycles) for a routine may be calculated 
from these figures. 

Note: This table only applies when the 
cache is turned off. 

If the condition is met ~he instructions 
take: 

E 



o VLSI TECHNOLOGY, INC. ~ [ffi [g [L ~ GM1J ~ [N] & [ffi W 
VL86C020 

Cache On - When the cache is turned 
on, the CPU will synchronize to FCLK, 
and attempt to fetch instructions and 
data from the cache (using FCLK F­
cycles). When the read data is not 
available, or the CPU performs a write 
operation, the VL86C020 resynchron­
izes to MCLK and accesses the 
external memory (using L & A-cycles). 
The CPU operations are dealt with as 
follows: 

1. Read operations. The CPU will 
normally be able to read the 
relevant data from the cache, in 
which case the read will complete 
in a single F-cycle. 

If the data is not present in the 
cache, but is cacheable, the CPU 
will synchronize to MCLK and 
perform a line fetch to read the 
appropriate line (four words) of 
data into the cache. The CPU will 
be clocked when the appropriate 
word is fetched, and subsequently 
during the line fetch if it is request­
ing S-type reads or internal 
operations. 

If the data is not cacheable, the 
CPU will synchronize to MCLK and 
perform an external read. If the 
CPU requests S-type reads, the 
CPU will remain synchronized to 
MCLK and use A-cycles to read the 
appropriate data. The CPU only 
resynchronizes back to FCLK when 
the CPU stops requesting S-type 
reads. 

Note that the swap instruction 
bypasses the cache, and always 
performs an external read to fetch 
the data from external memory. 

2. Write operations. The VL86C020 
synchronizes to MCLK and 
performs external writes. When 
the CPU stops requesting S-type 
writes, VL86C020 resynchronizes 
to FCLK. 

3. Internal operation. These complete 
in a single F-cycle (although some 
are absorbed during line fetches). 

4. Transfer operation. These 
complete in a single F-cycle. 

It is not possible to give a table of 
instruction speeds, as the time taken to 
execute a program depends on its 

FIGURE 33. WORST-CASE VL86C020 TIMING FLOWCHART 

Line Fetch Operation 

This path can only be taken If the CPU was 
not clocked during Line fetch Word 3 

The CPU is clocked as soon as the requested word of data is available. 
The CPU will also be clocked if it subsequently requests S-type Read or 
Internal operations during the remainder of the line fetch. 

interaction with the cache (which 
includes factors such as code position, 
previous cache state, etc.). In general, 
programs will execute much faster with 
the cache turned on than with it turned 
off. 

To calculate the worst-case delay for a 
particular piece of code, the routine 
should be written out in terms of CPU 
cycles. Figure 33 can then be used to 
calculate the worst-case VL86C020 op­
eration for each CPU cycle. 

3-64 

When using this technique, the follow­
ing conditions must be assumed: 

1. No instructions or data are present 
in the cache when VL86C020 
starts executing the code. 

2. A line fetch operation will overwrite 
any data already present in the 
cache (Le., the cache only has one 
line). 

3. All synchronization cycles take the 
maximum time. 



_ VLSI TECHNOLOGY, INC. [P~~[LD~DIN]&\~W 
VL86C020 

EXAMPLE: 

Consider the following piece of code: 

Asssume code runs in a cacheable area of memory, and that 
Code, Area1 and Area2 are all quad-word aligned addresses. 

Code 

End 

MOV 
MOV 
LDR 
LDMIA 

RO,Area1 
R1,Area2 
R7,R0,4 
R1, {RS-R9} 

Converting the code into CPU cycles gives: 

RO points to data in a cacheable area of memory 
R1 points to data in an uncacheable area of memory 
Read data from cacheable area into R7 
Read data from uncacheable area into RS and R9 

Cycle OPRTNType Address Data 

1.0 Read PC+8 (PC+S) (see Note) 
Branch to Code 1.1 Read N Code (Code) 

1.2 Read S Code +4 (Code+4) 

MOV RO,Area1 2.1 Read S Code+S (Code+8) 

MOV R1,Area2 3.1 Read S Code+12 (Code+12) 

LDR R7,[RO,4] 4.1 Read S Code+16 (Code+16) 
4.2 Read N Area1+4 (Area1+4) 
4.3 Intnl Code+20 

LDMIA RI, {RS-R9} 5.1 Read N Code+20 (Code+20) 
5.2 Read N Area2 (Area2) 
5.3 Read S Area2+4 (Area2+4) 
5.4 Intnl Code+24 

Note: Cycle 1.0 is the last cycle before the routine is entered, and is not counted as part of the code. 

Using the worst-case VLS6C020 timing flowchart, the required CPU operations can be converted into CPU operations, and as­
signed an execution time. 

CPU Operation VLS6C020 Operation Time 

<wait> Synchronize to MCLK (F+2L) 
1.1 : Read N (Code) Line Fetch: (Code) (L+A) 
1.2: Read S (Code+4) (Code+4) (A) 
2.1 : Read S (Code+S) (Code+S) (A) 
3.1: Read S (Code+ 12) (Code+12) (A) 

<wait> Synchronize to MCLK (F+2L) 
4.1 : Read S (Code+ 16) Line Fetch: (Code+16) (L+A) 

<wait> (Code+20) (A) 
<wait> (Code+24) (A) 
<wait> (Code+2S) (A) 

3-65 

E 



_ VLSI TECHNOLOGY, INC 

<wait> Line Fetch: (Area1) 
4.2: Read N (Area1+4) (Area1+4) 
4.3: Intnl (Area1+8) 

<wait> (Area1+12) 

<wait> (Code+16) 
5.1 : Read N (Code+20) Line Fetch: (Code+20) 

<wait> (Code+24) 
<wait> (Code+28) 

5.2: Read N (Area2) Extnl Aces (Area2) 
5.3: Read N (Area2+4) Extnl Aces (Area2+4) 

<wait> Synchronize to FCLK 
5.4: Intnl Internal Operation 

~ [R1 [g [L~ ~ ~ [N]b\[R1W 
VL86C020 

(L+A) 
(A) 
(A) 
(A) 

(L+A) 
(A) 
(A) 
(A) 

(L+A) 
(A) 

(F) 
(F) 

Adding together the execution times taken for each of the VL86C020 operations gives a worst-case elapsed time for the code: 

Maximum execution time = 4 F-cycles + 9 L-cycles + 18 A-cycles 

Assuming that MCLK and FCLK both run at 8 MHz: 

Maximum execution time = 31*125 ns '" 3.875Ils. 

COMPATIBILITY WITH EXISTING 4. The internal timing associated with clock output of MEMC should be 
ARMSVSTEMS mode changes has been improved connected to the MCLK input of 
Compatibility with VL86C010 - on VL86C020, and a banked VL86C020; the PH1 clock output of 
The VL86C020 has been designed to register may now be accessed MEMC is not used. 
be code compatible with the VL86C01 0 immediately after a mode change 

3. VL86C020 requires a free-running 
processor. The external memory and (see Data ProcessinglWriting to 

CMOS-level clock input (FCLK) to 
coprocessor interfaces are also R15). However, for compatibility 

time cache accesses and internal 
designed to be usable with existing with VL86C01 0, it is recommended 

operations. FCLK is entirely 
memory systems and coprocessors. that the earlier restrictions are ob-

independent of MCLK. 
The detailed changes are: served. 

Software changes 5. The implementation of the COO 
4. VL86C020 includes two new 

control signals, LINE and LOCK. 
1. VL86C020 now contains a single instruction on VL86C01 0 causes a 

These warn of cache line fetch 
data swap (SWP) instruction. This software interrupt (SWI) to take the 

operations and locked swap (SWP) 
takes the place of one of the undefined instruction trap if the 
undefined instructions in SWI was the next instruction after 

operations respectively.' 

VL86C010. the COO. This is no longer the 5. The -TRANS and -M1, -MO 

2. VL86C020 has a 4 Kbyte mixed in-
case on VL86C020 but the se- outputs on VL86C010 could 

struction and data cache on-chip. quence change in either (PH2) clock 
phase. In VL86C020, these 

This cache should be transparent COO 
outputs only ever change when 

to most eXisting programs, al- SWI 
MCLK is high. 

though some system software 
should be avoided for program 

(particularly that dealing with 
compatibility. 

6. The coprocessor interface remains 
memory management) could be the same, but now operates 
modified slightly to make more Hardware changes independently of the external 
efficient use of the cache (see 1. VL86C020 is packaged in a 160- memory using a dedicated bus 
Cache Operation Section). pin quad flatpack; VL86C01 0 uses (CPD31-CPDO). Coprocessors 

3. VL86C020 contains a set of control 
an 84-pin plastic leaded chip must be able to operate at cache 

registers that govern operation of 
carrier (PlCC) package. speeds (determined by FCLK). 

the on-chip cache (see Cache 2. Vl86C020 does not require non- 7. The -OPC output of Vl86C020 
Operation Section). These overlapping clocks for timing now applies exclusively to the 
registers must be programmed memory accesses. When using coprocessor interface, and should 
after Vl86C020 is reset in order to VL86C020 with MEMC, the PH2 not be used in the memory 
enable the cache. interface. 

3-66 



_ VLSI TECHNOLOGY, INC. 

8. VL86C020 includes pull-up 
resistors on various control inputs 
(see Coprocessor Interface 
Section). 

9. To facilitate board level testing, all 
outputs on VL86C020 can be put 
into a high impedance state by 
using the appropriate enable 
controls (see Coprocessor Inter­
face Section). 

FIGURE 33. CONNECTING VL86C020 TO VL86C110 (MEMC) 

FCLK -IRQ -FIQ -RESET A2S-AO 

-WAIT NC 

MCLK 

-R/W 

-BIW 

NC ALE 
LOCK NC 

NC ABE 
LINE VL86C020 NC 

NC CBE 
-TRANS 

NC MSE 
-M1,-MO NC 

NC CPE 
-MREQ 

SEQ 

ABORT 

NC -TEST 
DBE 

CPCLK CPSPV ~PC -CPI CPA CPB 

COPROCESSOR 

3-67 

~~~[L~U¥tl~[N]~~W 
VIL86C020

Compatibility with MEMC (VL86C110)
The memory interface on VL86C020 is
compatible with that used for VL86C01 0
and the existing MEMC memory
controller is suitable. Figure 33 shows
how VL86C020 may be connected to
MEMC.

NC- PH1 A2S-AO

PH2

-R/W

-BIW

VL86C110

SPVMD

-MREQ

SEQ

ABORT

DBE

I

0) VLSI TECHNOLOGY, INC.

TEST CONDITIONS
The AC timing diagrams presented
in this section assume that the
outputs of VL86C020 have been
loaded with the capacitive loads
shown in the "Test Load" column of

TABLE 4: AC TEST LOADS

Output Signal Test Load (pF)

-MREQ 50

SEQ 50

-81W 50

LINE 50

LOCK 50

-MO,-M1 50

-RIW 50

-TRANS 50

AO-A25 50

00-031 100

CPCLK 30

CPSPV 30

-CPI 30

-OPC 30

CPOO-CP031 30

General note on AC parameters:
• Output times are to CMOS levels

except for the memory and coproces­
sor data buses (031-00 and CP031-
CPO-O), which are to TTL levels.

Table 4; these loads have been chosen
as typical of the system in which the
CPU might be employed.

The output pads of the VL86C020 are
CMOS drivers which exhibit a propaga­
tion delay that increases linearly with

Output Derating
(pF/ns)

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

3-68

~ [ffi ~ [L ~ ffi£11 ~ ~ Ik [ffi W
VL86C020

the increase in load capacitance. An
"output derating" figure is given for each
output pad, showing the approximate
increase in load capacitance necessary
to increase the total output time by one
nanosecond.

e VLSI TECHNOLOGY, INC.

AC CHARACTERISTICS: TA = O°C to +70°C, VDD = 5 V ±5%

Symbol Parameter Min

tWS -WAIT Setup to MCLK High 15

tWH -WAIT Hold from MCLK High 5

tWAIT1 -WAIT Low Time

tABE Address Bus Enable

tABZ Address Bus Disable

tALE Address Latch Open

tALEL ALE Low Time

tADDR MCLK High to Address Valid

tAH Address Hold Time 5

tDBE Data Bus Enable

tDBZ Data Bus Disable

tDOUT Data Out Delay

tDOH Data Out Hold 5

tDE MCLK Low to Data Enable

tDZ MCLK Low to Data Disable

tDlS Data in Setup 8

tDlH Data in Hold 8

tABTS ABORT Setup Time 40

tABTH ABORT Hold Time 5

tMSE -MREQ and SEQ Enable

tMSZ -MREQ and SEQ Disable

tMSD MCLK Low to -MREQ and SEQ

tMSH -MREQ and SEQ Hold Time 5

tCBE Control Bus Enable

tCBZ Control Bus Disable

tRWD MCLK High to -RNI Valid

tRWH -RNJ Hold Time 5

tBLD MCLK High to -BNI and LOCK

tBLH -BNI and LOCK Hold 5

tLND MCLK High to LINE Valid

tLNH LINE Hold Time 5

tMDD MCLK High to - TRANS/-M1, -MO

tMDH -TRANS/-M1, -MO Hold 5

Max

10000

30

25

12

10000

55

35

25

30

45

40

20

15

55

20

15

30

30

50

30

~~~[L~[M]~[N]~~W 
ViL86C020 

Unit CondltJOflS 

ns 

ns 

ns 

ns 

ns 

ns 

ns Note 

ns 

ns 

ns (TTL Level} 

ns 

ns (TIL Levl~l) 

ns 

ns (TIL Levell 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns ----
ns 

ns 

ns 

ns 

ns 

Note: To avoid A25-AO changing when MCLK is high, ALE must be driven low within 5 ns of the rising edge of MCLK. 

3-69 

I 



_ VLSI TECHNOLOGY, INC. 

AC CHARACTERISTICS FOR COPROCESSOR INTERFACE: 

Symbol Parameter Min Max 

tCPCKL Clock Low Time 10000 

tCPCKH Clock High Time 10000 

tOPCD CPCLK High to -OPC Valid 15 

tOPCH -OPC Hold Time 5 

tSPD CPCLK High to CPSPV Valid 15 

tSPH CPSPV Hold Time 5 

tCPI CPCLK High to -CPI Valid 15 

tCPIH -CPI Hold Time 5 

tCPS CPA/CPB Setup 45 

tCPH CPA/CPB Hold 5 

tCPDE Data Out Enable 10 

tCPDOH Data Out Hold 10 

tCPDBZ Data Out Disable 5 

tCPDS Data In Setup 10 

tCPDH Data In Hold 5 

tCPE Coprocessor Bus Enable 30 

tCPZ Coprocessor Bus Disable 30 

Notes: 1. CPCLK timings measured between clock edges at 50% of VDD. 
2. CPD31-CPDO outputs are specified to TTL levels. 

~ rR1 [g [bO ~ 0 [N]b\rR1W 
VL86C020 

Unit Conditions 

ns Note 1 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns Note 2, 3 

ns 

ns 

ns 

ns 

ns 

ns 

3. The data from VL86C020 is always valid when enabled onto CPD31-CPDO. 
4. These timings allow for a skew of 30 pF between capacitive loadings on the coprocessor bus outputs (CPCLK, 

-OPC, CPSPV, -CPI, CPD31-CPDO). 

AC CHARACTERISTICS FOR CLOCKS: 

Symbol Parameter Min Max Unit Conditions 

tMCLK Memory Clock Period 80 ns Note 

tMCLKL Memory Clock Low Time 25 ns 

tMCLKH Memory Clock High Time 25 ns 

tFCLK Processor Clock Period 50 ns 

tFCLKL Processor Clock Low Time 23 ns 

tFCLKH Processor Clock High Time 23 ns 

Note: MCLK timing measured between clock edges at 50% of VDD. 

3-70 



e VLSI TECHNOLOGY, INC. 

FIGURE 34. MEMORY INTERFACE TIMING 

~~~[b~~~[~]~~W 
VL86C020

~-------------- tMCLK--~--------------~~

MCLK

-WAIT

ALE

ABE

A25-AO

DBE

DATA
OUT

DATA
IN

ABORT

MSE

-MREQ,
SEQ

CBE
tCBE

-R/W

tRWH

-B/w,
LOCK

tBLH

LINE

tLNH

-TRANS,
-M1, -MO

tMDH

3-71

I

e VLSI TECHNOLOGY, INC.

FIGURE 35. COPROCESSOR INTERFACE TIMING

~ [R1 ~ [L~ U¥1J ~ [N]~[R1W
VL86C020

CPCLK --"'" 1----tCPCKL----IIIot.,-----------......1

-OPC

CPSPV

-CPI

CPA,
CPS

CPD31-
CPDOOUT

CPD31-
CPDO IN

~--tSPD----i~

tCPDE

CPE

CPCLK, CPSPV,
OPC, CPI
CPD31-CPDO tJ------tCPZ -GlePE

FIGURE 36. FCLK INTERFACE TIMING

-i
~-----------tFCLK-~--------~-~

t"I~----- tFCLKL ------i~

FCLK ----' tFCLKH _

3-72

e VLSI TECHNOLOGY, INC. ~ [Ri ~ [6~ [M] ~.[N]~[RiW
VL86C020

ABSOLUTE MAXIMUM RATINGS
Ambient Operating
Temperature

Storage Temperature -65°C to + 150°C

Supply Voltage to
Ground Potential -0.5 V to VDD +0.3 V

Stresses above those listed may cause
permanent damage to the; device.
These are stress ratings only. Func­
tional operation of this device at these
or any other conditions above those

Applied Output
Voltage

Applied Input
Voltage

Power Dissipation

-0.5 V to VDD +0.3 V

-0.5 V to +7.0 V

2.0W

DC CHARACTERISTICS: TA = O°C to +70°C, VDD = 5 V ±S%

Symbol Parameter Min

VDD Supply Voltage 4.75

VIHC IC Input High Voltage 3.5

VILC IC Input Low Voltage 0.0

VIHT ITIITP Input High Voltage 2.4

VILT ITIIPT Input Low Voltage 0.0

IDD Supply Current

ISC Output Short Circuit Current

ILU D.C. Latch-up Current

liN IT Input Leakage Current

IINP ITP Input Leakage Current

IOH Output High Current (VOUT =VDD -0.4 V)

IOL Output Low Current (VOUT .. GND +0.4 V)

VIHTK IC Input High Voltage Threshold

VILTT IC Input Low Voltage Threshold

VIHTT IT/ITP Input High Voltage Threshold

VILTT IT/ITP Input Low Voltage Threshold

CIN Input Capacitance

Notes: 1. Voltages measured with respect to GND.
2. IC - CMOS-level inputs.
3. IT - TTL-level inputs (includes IT and ITOTZ pin types).
4. ITP - TTL-level inputs with pull-ups.

Typ

5.0

200

160

>200

10

-500

7

-11

2.8

1.9

2.1

1.4

5

indicated in this data sheet is not
implied. Exposure to absolute maxi­
mum rating conditions ,for extended
periods may affect devke reliability.

Max Units Conditions

5.25 V

VDD V Notes 1,2

1.5 V Notes 1, 2

VDD V Notes 1, 3, 4

0.8 V Notes 1, 3, 4

mA

mA Note 5

mA Note 6

IlA Notes 7,11

IlA Notes 8,12

mA Note 9

mA Note 9

V Note 10

V Note 10

V Notes 11,12

V Notes 11,12

pF

5. Not more than one output should be shorted to either rail at any time, and for as short a time as possible.
6. This value represents the DC current that the input/output pins can tolerate before the chip latches up.
7. Input leakage current for the IT, and ITOTZ pins.
8. Input leakage current for an ITP pin connected to GND. These pins incorporate a pull-up resistor in the range of

1 0 kn - 1 00 kn.
9. Output current characteristics apply to all output pads (OCZ and ITOTZ).
10. ICk - CMOS-level inputs.
11. IT - TTL-level inputs (includes IT and ITOTZ pin types).
12. TIP - TTL-level inputs with pull-ups.

3-73

"-

'"

"-

I

e VLSI TECHNOLOGY, INC.

Notes:

e VLSI TECHNOLOGY, INC.

SECTION 4:

VL86C110
RISC MEMORY
CONTROLLER
(MEMC)

Application Specific
Logic Products Division

I

e VLSI TECHNOLOGY, INC.

e VLSI TECHNOLOGY, INC.

VL86C110

FEATURES

RISC MEMORY CONTROLLER (MEMC)
DESCRIPTION

• Drives up to 32 standard dynamic
RAMs giving 4 Mbytes of real
memory with 1-Mbit devices

• Logical-to-physical address
translation (32-Mbyte logical address
space) supporting three protection
levels:

- Supervisor Mode
- Operating System Mode
- User Mode

• Uses fast page-mode DRAM
accesses to maximize bandwidth
from commodity memories

• Internal DMA address generators for
video, cursor and sound data buffers

• Various ROM speeds supported
(access times of 450 ns, 325 ns,
200 ns)

• Provides all critical system timing
including processor clocks, -RAS,
-CAS, and DMA data transfer strobes

• Arbitrates memory between the
processor and DMA systems

The memory controller (MEMC) acts as
the interface between the VL86C01 0
processor and other functions in the
system. The four circuits in the RISC
family: MEMC, VL86C010, VIDC-video
controller, and 10C-I/0 comtroller, can
be used to implement a small computer
system. MEMC uses a single clock
input to derive timing information for the
other components.

In addition to providing interface signals
to the other controllers, MEMC gener­
ates all the control signalsifor several
access times of read-only memory
(ROM) plus high-resolution timing and
refresh control for dynamic RAM
(DRAM). The cont~oller outputs can
drive up to 32 memory devices directly
in a wide variety of configurations using
various architectures of standard
DRAMs. A logical-to-phys'ical address
translator maps the 4-Mbyte physical
memory into the 32-Mbyte;logical
address space with three levels of
protection.

Address translation is performed by a
simple 128 entry content-addressable

memory (CAM). MEMC provides a
descriptor entry for every page of
physical memory which eliminates
descriptor thrashing (address transla­
tion misses) from degr;ading system
performance.

The simple structure allows memory
address translation to be performed
without increasing required memory
access time or decreasing the system
clock. MEMC allows virtual memory
and multi-tasking operations to be im­
plemented without the,usual perform­
ance degradation associated with each
function. Fast page-mode DRAM
accesses are used to maximize
memory bandwidth from inexpensive
commodity memory devices.

MEMC supports direct memory access
(DMA) read operations with three I
programmable address generators.
Video refresh is performed using a
circular buffer to enhaRce scrolling
capability plus a separate linear buffer
for a cursor sprite. Sound data uses a
double buffering system.

PIN DIAGRAM
PLASTIC LEADED CHIP
CARRIER (PLCC)

ORDER INFORMATION

Part Bus Clock

A17 A19 A21 A23 A25 01 RClK-RIW
Number Frequency PaCkage

VDD I A18 I A20 I A22 I A24 I ClK I 02 I-BlWI VSS Plastic Leaded
VL86G11 0-1 OOC 10 MHz ChIp Carrier (PLCC)

Plastic Leaded
VL86C110-120C 12MHz Chip Carrier (PLCC)

A16 -AMCS
A15 59 -IORO
A14 58 -IOGT
A13 57 -SIRO Note: Operating temperature range is O"'G to +700 G.

A12 56 DBE
A11 55 -MREO

A10 54 SE~

A9 53 ABRT

AS Vl86C110 52 SPMD TOP VIEW
A7 51 -VIDW
AS 50 -VDAK

A5 49 -SDAK

A4 48 -VDRO
A3 47 -SDRO
A2 46 -HSYC

A1 45 FlBK
AO 26 44 RES

272829 30 31 3233343536 37 38 39 40 41 4243

VSS I RA1 I RA31 RA51 RA71 RA91 I kAsJ VDD
RAO RA2 RA4 RA6 RA8 fASO I I

-RAS -CAS1-CAS3

4-3

" VLSI TECHNOLOGY, INC.

BLOCK DIAGRAM

-RIW ABRT A2S-AO -MREQ SEQ RES

SPMD ADDRESS
DECODER

lOGICAL
TO

PHYSICAL
ADDRESS

TRANSLATOR
(CAM)

DRAM ADDRESS
MULTIPLEXER

RA9-RAO

SYSTEM
MANAGER

MEMC
CONTROL
REGISTER

DMAAND
REFRESH
ADDRESS

GENERATOR

4-4

VL86C110

ClK

SYSTEM
TIMING

GENERATOR

DRAM TIMING
GENERATOR

-RAS -CAS3- -CASO

-IORQ
RClK

-IOGT

01
02
DBE
-RMCS
-VIDW

FlBK

-HSYC

-VDRQ

-VDAK

-SDRQ
-SDAK

-SIRQ

-81W

_ VLSI TECHNOLOGY, INC.

VL86C110
SIGNAL DESCRIPTIONS
Signal
Name

A25-AO

-RIW

-8IW

-MREQ

SEQ

SPMD

01,02

DBE

ABRT

Pin
Number

68,1-8,
10-26

62

63

55

54

52

66, 65

56

53

Signal
Description

Address 25 - Address 0 (CMOS level inputs) - These are the 26 processor address lines that contain
the address of the memory reference. When 02 is low these signals should contain the address of the
current memory reference. When 02 goes' high, these address pins should be chan~ed to the value
for the next cycle. A1 and AO are byte addresses and are ignored during word trans~er cycles. A3 and
A2 are decoded to determine sequential access boundaries.

Not-ReadlWrite (CMOS level input) - Determines the direction of data flow during the current memory
access. When asserted (low) the memory cycle will be a read operation, and if negated (high) a
memory write will be performed.

Not-BytelWord (CMOS level input) - Determines the size of the data transfer of the memory access
(Note 2). When asserted (low) the transfer is byte-wide (8 bits) or negated (high) word-wide (32 bits).
When transferring bytes the A1 and AO address inputs are decoded to determine which 8-bit field is to
be referenced. Word transfers are always aligned on word boundaries (A1 - AO = 0) because A1 and
AO are ignored during word operations.

Processor Memory Request (CMOS level input) - Determines whether a memory cycle will be
performed during the next access time. When asserted (low) this line indicates that the processor will
require either a memory (Note 1) or I/O access during the next cycle time (Note 2). Ifi negated (high),
no cycle is required because the the CPU will perform an internal cycle. This input must be valid well I
before the falling edge of the 02 clock signal. Under special circumstances, this sign:al may affect ~
operation of the current memory cycle. When both -MREQ and SEQ are asserted dl'Jring a processor
internal cycle, MEMC begins a DRAM non-sequential cycle immediately which effectively overlaps the
internal cycle with the first half of the non-sequential access time.

Processor Sequential Access (CMOS level input) - Determines whether the next memory cycle will be
a two clock non-sequential (N-cycle) or a one clock sequential (S-cycle) access (Notel 2). The
Vl86C010 processor asserts this signal whenever the address for the next cycle is sequential (current
address + 4) to the address presently on the bus. When asserted (high), MEMC perfbrms as-cycle
(page-mode) by removing -CAS while retaining -RAS active. This keeps the row address latched in

the DRAMs and loads in the new column address. In general, the page-mode access time of most
DRAM devices is one-half the random access time. When negated (low), the next mamory cycle will
be a two clock N-cycle. MEMC removes both -RAS and -CAS at the end of the currant cycle, allows
the memory to properly precharge, and performs a random-access cycle. This signal must be setup
well before the falling edge of the 02 clock signal for the same reasons as the -MREQ.

Supervisor Mode Select (CMOS level input) - When low, the processor is restricted frbm access to
certain areas of the memory map and will be aborted if illegal access attempts are made. SPMD is
generally connected to the - TRAN output of the Vl86C01 0 processor. If connected to - TRAN,
address remapping is inhibited for all non-user mode transfers.

Processor Clocks (CMOS level outputs) - These signals drive the two phase, non-oveirlapping clock
inputs of the Vl86C01 0 processor. The fre~uency of these clocks is the master clock (ClK input) fre­
quency divided by three. The 02 clock is in phase with the reference clock (RClK output).

Processor Data Bus Enable (CMOS level output) - Determines when the data bus drivers inside the
processor are enabled. When asserted (high) the processor is driving the data bus during a write
cycle. This signal should be inverted externally to provide an active low write enable for the Dynamic
RAMs to prevent three-state driver contention on the data bus.

Processor Abort (CMOS level output) - Determines whether the current memory cycle will terminate
abnormally. When asserted (high) MEMC has detected either an attempted access te) a higher
privileged area or a non-existent logical page. Both these conditions will cause an abiort of the current
memory cycle and exception processing to be invoked by the processor to determine error recovery
procedures. When negated the current cycle will terminate normally and processing fjow continue
under program control.

Notes: 1. The word memory in this context refers to any device mapped into the processor's address space.
2. Some of the processor signals are asserted in the processor cycle preceding that in which they are used.

4-5

o VLSI TECHNOLOGY, INC.

VL86C110
SIGNAL DESCRIPTIONS (Con't.)
Signal Pin Signal
Name Number Description

-IORO 59

-IOGT 58

ClK 67

RClK 64

RES 44

RA9-RAO 37-28

-RAS 38

-CAS3- 42-39
-CASO

-RMCS 60

-VIDW 51

FlBK 45

-HSYC 46

-VDRO 48

-VDAK 50

Input/Output Cycle Request (CMOS level output) - Determines whether the current cycle is a memory
or an 110 reference. When asserted (low), MEMC has detected an I/O address and the proper I/O
controller should respond. When negated (high), the current cycle is a memory reference.

Input/Output Cycle Grant (CMOS level input) - Determines when the current I/O access cycle will
terminate. When asserted (low), the selected I/O controller is signaling that the current I/O cycle will
end on the next falling edge of the RClK clock if the -IORO is still low.

Clock (CMOS level input) - Master input clock used to derive all system timing functions. The input
signal should be approximately a 50% duty cycle with full CMOS levels. This clock is divided down
internally to obtain the two-phase processor clocks, system reference clock, and the DRAM refresh
clock.

Reference Clock (CMOS level output) - Provides the main reference clock for bus transactions
between different devices. RClK clock is in phase with the 02 clock of the processor.

Reset (CMOS level input) - Places the MEMC in a known initial state. When asserted (high), MEMC is
forced into the following modes: ROM is continually selected with an access time of 450 ns, DRAM
page size is 4 Kbytes, operating system mode disabled, sound DMA operations disabled, -SIRO set
low, video/cursor operations unaffected, and -IORO is held high to prevent I/O controllers from
responding to spurious addresses generated during the reset state.

RAM Address Bus (TTL level outputs) - Provide the multiplexed row and column address lines to the
DRAM array. Each output is capable of driving up to 32 DRAMs without external buffering. The bit
order and logic level of these pins varies according to the page size selected, and are shown in detail
in Appendix A.

Row Address Strobe (TTL level output) - Provides the -RAS timing/control signal to the DRAM array.
The falling edge of -RAS strobes the row address on RA9-RAO pins into the DRAMs. This signal is
capable of driving up to 32 DRAMs without external buffering.

Column Address Strobes (TTL level outputs) - Provide the -CAS timing/control signals to the DRAM
array. Each output controls one 8-bit byte of the four byte memory word to support byte writes. The
falling edge of a -CAS strobes the column address on RA9-RAO into the DRAMs. Each signal will
drive up to eight DRAMs without external buffering.

ROM Chip Select (CMOS level output) - Provides the chip select control signal to the ROM devices.
When asserted (low), MEMC has detected a ROM address for the current cycle.

Video Controller Write Strobe (CMOS level output) - Provides the register select signal to the video
controller (VI DC) device. When asserted (low), MEMC has detected a write request to the video
controller. The data should be latched on the rising edge of this signal.

Video Vertical Flyback (CMOS level input) - Provides vertical timing information from the video section.
FlBK is used to time the initalization of the video/cursor DMA address pointers and for refresh control
in certain modes. This signal should be taken high while the video retrace is in progress.

Video Horizontal Synchronization (CMOS level input) - Provides horizontal timing information from the
video section. When asserted (low), the video is in horizontal retrace. Video data requests made
while this signal is asserted will obtain data from the cursor data buffer. A video data request made
when -HSYC is negated obtains data from the video data buffer.

Video Data Request (CMOS level input) - Provides the synchronization between MEMC and VIDC for
video data interface. When asserted (low), the VIDC is requesting either a video or cursor DMA
operation for video refresh. Video and cursor requests are distinguished by the level of the -HSYC
signal. Requests made during horizontal retrace (-HSYC low) are cursor and all others video.

Video Data Acknowledge (CMOS level output) - Provides the synchronization between MEMC and
VIDC for video data interface. When asserted (low), MEMC is indicating that the requested video/
cursor data is being fetched from RAM. The data should be latched on the rising edge of -VDAK.

4-6

_ VLSI TECHNOLOGY, INC.

VL86C110

SIGNAL DESCRIPTIONS (Con't.)
Signal Pin Signal
Name Number Description

----------------~--

-SDRO

-SDAK

-SIRQ

VSS

VDD

47

49

57

61,27

43,9

Sound Data Request (CMOS level input) - Provides the synchronization between MEMC and VI DC for
sound data interface. When asserted (low). VIDC is requesting a sound DMA operation.

Sound Data Acknowledge (CMOS level output) - Provides the synchronization between MEMC and
VIDC for sound data interface. When asserted (low), MEMC is indicating that the requested sound
data is being fetched from RAM. The data should be latched on the rising edge of -SDAK.

Sound Interrupt Request (CMOS level output) - Provides the synchronization between MEMC and
the processor for sound data interface. When asserted (low), MEMC is requesting a !sound service
operation by the processor. The sound DMA address generators interact with interrupt driver software
to implement the sound system. -SIRQ is set low on reset.

Digital ground. The digital ground power supply.

Digital power. The digital +5.0 volt power supply.

FUNCTIONAL PIN DIAGRAM

PROCESSOR
INTERFACE

I

CONT~~llER {
INTERFACE

MEMC {
CONTROL

POWER {

....
...
..oIL

.... -

.... ..

A2S-At)
v

-R/W ..
-BIW ..

-MREQ ..
SEQ ..

SPMD ..
01

02
DBE

ABRT

·-IORQ
RClK

-IOGT ..

ClK ..
RES ..

VDD(2) ..
VSS(2) ..

RA9- RAO

-RAS

-CAS3
-CAS2
-CAS 1

-CASO

-RMCS

VL86C110

-VIDW

.... FlBK

.... -HSYC
..: -VDRQ

-VDAK

.... -SDRQ

-SDAK

-SIRQ

4-7

--..
--.. }
..

..

..

.. }

DRAM
CONTROL

ROM
CONTROL

VIDC
INTERFACE

INTERRUPT
CONTROL

I

e VLSI TECHNOLOGY, INC.

FUNCTIONAL DESCRIPTION
MEMC supports three levels of memory
protection:

- Supervisor Mode - Supervisor mode is
selected while the SPMD input is held
high. This is the most privileged
mode, allowing the entire memory
map to be freely accessed.

- Operating System Mode (OS) - OS
mode is selected by setting a control
bit in the MEMC Control Register
(which may only be done from
supervisor mode). OS mode is more
privileged than user mode when
accessing logically mapped RAM, but
acts as user mode in all other cases.

- User Mode - User mode is the least
privileged of the protection modes.
Access is allowed only to unprotected
pages in the logically mapped RAM
and read cycles to the ROM space.
No other accesses are allowed.

All attempts to access protected
addresses from an insufficiently
privileged mode (user mode or OS
mode) will activate the A8RT line
without performing the access.

Memory Pages
MEMC treats the DRAM as a set of 128
sequential physical pages. The page is
the fundamental unit of memory used by
MEMC, and the page size may be
selected as 4, 8, 16, or 32 Kbytes by
programming the MEMC control
register. Please note the MEMC page
unit should not be confused with the
page-mode access capability of RAMs.

The page size selection affects the
DRAM address multiplexers, so it is
essential to choose the correct page
size for the amount of memory being
controlled. Table 1 shows the page size
selection for most DRAM configurations.

VL86C110
FIGURE 1. PROCESSOR MEMORY MAP DECODED BY MEMC

READ

ROM (High)

ROM (Low)

Logically
Mapped

RAM

WRITE
3,FFF,FFFh

3,800,OOOh

3,600,OOOh

3,400,OOOh

3,OOO,OOOh

2,OOO,OOOh

'--______________________ ---' O,OOO,OOOh

Master/Slave Configuration
A single MEMC will control up to 4
Mbytes of DRAM. A second MEMC
can be built into a system to extend the
maximum addressable DRAM to 8
Mbytes. The two MEMCs are config­
ured as a Master and a Slave, where
the Slave acts purely as a DRAM driver
(all DMA operations, I/O Controller
interactions, etc. are handled by the
Master).

The -8N1 input is sampled as RES
goes low, and its state determines
whether the MEMC will operate in
Master (-8N1 - 1) or Slave (-8N1 - 0)
mode. In a single MEMC system,

VL86C010 holds -8N1 high during
reset, so the MEMC is always config­
ured as a Master.

Memory Map
MEMC accepts 26 address lines from
the processor, A25 - AO, which are
decoded as shown by the memory map
in Figure 1. Shaded portions of the
memory map are accessible only while
MEMC is in the supervisor mode.

Logically Mapped RAM (ReadIWrlte:
OOOOOOOh - 1 FFFFFFh)

TABLE 1. RECOMMENDED PAGE SIZE SETTINGS

The bottom 32 Mbytes of the memory
map consists of logically mapped RAM.
MEMC treats this area of the map as a
set of contiguous logical pages (there
may be 8192, 4096, 2048, or 1024
logical pages depending upon the page
size selected). Total Amount

Of RAM Page Size

0.25 Mbytes 4 Kbytes

0.50 Mbytes 4 Kbytes

1.00 Mbytes 8 Kbytes

2.00 Mbytes 16 Kbytes

4.00 Mbytes 32 Kbytes

Number Of
Physical Pages

64

128

128

128

128

Number Of
Logical Pages

8192

8192

4096

2048

1024

4-8

When a logical page is accessed, the
logical-to-physical address translator
attempts to convert the logical page
number to a physical page number.
Provided the mapping exists, and the
request is being made in a sufficiently
privileged mode, the appropriate
physical page will be accessed. If the
mapping does not exist, or the access is

_ VLSI TECHNOLOGY, INC.

made with insufficient privilege, MEMC
will signal the processor by setting the
abort line high, and the DRAM will not
be activated.

The logical-to-physical mapping and
protection status of each logical page is
undefined at power on, but may be pro­
grammed at any time by writing to the
logical-ta-physical address translator.

Physically Mapped RAM (ReadlWrlte:
2000000h - 2FFFFFFh)
The physically mapped RAM occupies
16 Mbytes of the memory map, and may
only be accessed when supervisor
mode is selected. The 128 physical
pages appear sequentially in this area of
the map. with the RAM image being
repeated after every 128th page (so
that, with a page size of 8 Kbytes, the
entire 1 Mbyte of RAM would occur 16
times throughout this area).

Input/Output Controllers (ReadlWrlte:
3000000h - 33FFFFFh)
This area of the map is reserved for 1/0
Controllers (including 10C). When a
Supervisor mode access is made in this
memory range, MEMO asserts -IORO
(1/0 cycle request), and stops the
processor clocks. The 110 cycle ter­
minates when both -IORO and -IOGT
are low on the rising edge of RCLK.

Please note that care must be taken not
to access a non-existant 1/0 Controller,
or MEMC will wait indefinitely for an
active -IOGT signal that never appears,
and the system will stop until RES is
asserted.

ROM (Read: 3400000h - 3FFFFFFh)
Read Only Memory may be read freely
from any protection mode. The ROM
space is divided into two areas:

- Low ROM (4 Mbytes from 3400000h
to 37FFFFFh)

- High ROM (8 Mbytes from 3800000h
to 3FFFFFFh)

The two ROM areas are distinguished
only by the fact that each may be pro­
grammed to operate at its own speed.
This would allow the high ROM area to
contain fast system ROMs, with slower
applications ROMs in the low area.

The ROM' speeds default to the slowest
setting when RES is asserted, and may
be altered by reprogramming the MEMC
control register.

Video Controller (Write: 3400000h-
35FFFFFh)
A write operation made anywhere in the
video controller space (while MEMC is
in Supervisor mode) activates the
-VIDW output from MEMC.

DMA Address Generators and
Control Register (Write: 3600000-
37FFFFFh)
This address space decodes to some of
MEMC's internal registers. The DMA
address generators supply the physical
RAM address used to obtain data
during video, cursor, and sound direct
memory access operations. The
MEMC Control Register governs a
number of the functions of MEMC.

The processor data bus is not con­
nected to MEMC; instead, the internal
registers are programmed by encoding
the data on the address bus, and
performing a write operation with
MEMC in supervisor mode. Since most
writes to the MEMC registens occur at a
fairly low frequency, it was felt that the
small amount of overhead imcurred
encoding register data on the address
bus did not justify adding the 32 pins
necessary for the data bus interface.

Loglcal-to-Physlcal Address Transla­
tor (Write: 3800000h - 3FFFFFFh)
The mapping of logical pages to
physical pages, and protection mode
associated with each mapping, may be
controlled by programming the logical­
to-physical address translator. The
translator is programmed by encoding
data in the address lines, and perform­
ing write operations in supewisor mode
to this area of the memory map.

Effect of Reset
When the RES line is taken high,
MEMC initializes to the following state:

- Memory Map - The VL86C01 0
processor starts executing code from
location OOOOOOH after RES goes
inactive. To ensure that the proces­
sor always finds valid code at this
location (which is normally logically
mapped RAM), MEMC corntinually
enables ROM.

To restore the normal memory map, the
processor must first perform a memory
access with the address lines A25 and
A24 both low and then perfonm a mem­
ory access with address line A25 high.

4-9

VL86C110
These conditions are satisfied when the
processor starts executing instructions
from location OOOOOOOh, and later
jumps to the normal ROM space.

- ROM access times - The ROM
access times for both high and low
ROM are reset to 450 ns.

- Page sizes - The DRAM page size
defaults to 4 Kbytes on reset.

- Operating System mode - The
Operating system mode is disabled
on reset.

- Direct Memory Access (DMA) opera­
tions - Sound DMA operations are
disabled by reset, and may be
enabled by programming the MEMC
Control Register. Video and cursor
operations are unaffected by reset.

- Sound Interrupts - The sound
interrupt pin, -SIRO is set low on
reset. The interrupt may be removed ..
by initializing the sound DMA buffers IIiI
in the DMA Address Generators.

- The processor may geherate spurious
addresses while RES is active high.
To avoid accidentally triggering an II
o controller, the -lORa signal is held
high during reset.

- The Test mode (used in functional
testing) is disabled by RES. Test
mode may be set by programming
the MEMC control register, but will
crash the system; control is regained
by resetting MEMC.

Access Times
A number of devices appear in the
processor memory map:

- Dynamic Random Access Memory
(DRAM)

- Read Only Memory (ROM)

- Input/Output Controllers

- Video Controller

- MEMC internal registers
Control Register
DMA address generators
Logical to physical address translator

These devices have very,different
access times, ranging from 500 ns for a
slow ROM to 125 ns for DRAMs in
page-mode. MEMC provides the
processor clocks, 01 and! 02, which are
stretched to synchronize the processor
with the device it is accessing.

_ VLSI TECHNOLOGY, INC.

The processor is the default user of the
memory and data bus. However, DMA
(Direct Memory Access) and refresh
operations require control of the DRAM
and data bus, so MEMC disables the
processor temporarily by placing the
processor data bus in the high-imped­
ance state (using DBE), and stretching
the processor clocks.

N-cycles and S-cycles
MEMC uses the page-mode access
capability of DRAMs, where, once a row
address has been strobed into the
DRAM, any column in that row may be
accessed merely by strobing in the new
column address.

This facility is used whenever a number
of sequential addresses in the DRAM
are to be accessed (either by the
processor or during a DMA operation).
The first memory cycle in the sequence
is a non-sequential (N-cycle) memory
cycle (where both the row and column
addresses are strobed to the DRAMs).
The subsequent memory accesses are
sequential (S-cycle) memory cycles
(where the previous row address is
held, and only the column address is
strobed to the DRAMs).

Processor (VL86C010) Interface
Processor cycles - There are two basic
types of processor operations:

- Memory access cycles - Where the
processor accesses a device in its
address space.

- Internal cycles - Where the processor
performs an internal operation without
access to any external device.

Processor Signals
- Address Bus (A25-AO) - The proces­

sor address bus is decoded by
MEMC to give the processor access

to the various devices.

Much of the processor memory map is
only accessible while MEMC is in
supervisor mode (SPMD line high).

- Memory Request (-MREQ) - This
signal determines whether the next
processor cycle will be a memory
access or internal cycle.

- Not-ReadlWrite (-RlW) - Determines
the direction of data flow during
processor memory access cycles.
This signal is ignored during proces­
sor internal cycles.

- Not-BytelWord (-BIW) - Selects a
byte (8-bit) or word (32-bit) data
transfer during processor memory
access cycles. A byte access to
physically and logically mapped RAM
only enables the appropriate 8-bit
block of DRAMs. ROM accesses
return a word quantity, regardless of
the state of -BIW. This signal is
ignored for processor internal cycles.

- Sequential Access (SEQ) - An active
high on this line indicates that the
processor will generate a sequential
address during its next cycle. MEMC
uses SEQ to determine whether a
fast S-cycle may be used during the
next DRAM.

- Supervisor Mode (SPMD) - An active
high on this line puts MEMC into
supervisor mode, allowing the proc­
essor to access restricted areas of
the memory map.

Processor Controls
- Processor Clocks (01, 02) - MEMC

provides the processor with two non­
overlapping clocks, 01 and 02.

Memory access cycles are nominally
250 ns long, (with 01 high for about

TABLE 2. DRAM ADDRESS BUS CONFIGURATIONS
Row/Column

Total Amount Page Size Typical Address
Of RAM Setting Configuration Connection

0.25 Mbytes 4 Kbytes
S pcs. 64K x 4 DRAM

RA7-RAO 32 pes. 64K x 1 DRAM

0.5 Mbytes 4 Kbytes 16 pes. 64K x 4 DRAM RA7-RAO

1 Mbytes S Kbytes
S pcs. 256K x 4 DRAM

RAS-RAO 32 pes. 256K x 1 DRAM

2 Mbytes 16 Kbytes 16 pes. 256K x 4 DRAM RAS-RAO

4 Mbytes 32 Kbytes
8 pes. 1M x 4 DRAM

RA9-RAO 32 pes. 1M x 1 DRAM

4-10

VL86C110
175 ns, and 02 high for around 55 ns),
but the following exceptions apply:

- Sequential DRAM accesses - DRAM
S-cycles are active (01 high - 55 ns).

- ROM accesses - ROM access tim es
vary from 450 ns to 200 ns. 01 is
held high long enough to meet the
ROM access time requirement.

- 110 Cycles - 1/0 cycles take a variable
length of time to complete. During
the longer 1/0 cycles, the processor is
suspended until the 1/0 controller is
ready to complete the cycle by
holding 02 high. Suspending the
processor during its 02 phase allows
the 1/0 cycle to be completed much
faster when the 1/0 controller signals
the end of the cycle.

- DMA and Refresh operations - DMA
and refresh operations have priority
over non-sequential processor
memory access cycles. A processor
non-sequential access is delayed
during DMA and refresh operations
by disabling the processor data bus
drivers (using DBE), and holding the
01 clock high until the operation has
finished. The processor then
continues with its delayed memory
access (unless another DMAlrefresh
operation is pending).

DMA and refresh operations may also
occur during long 1/0 cycles. In this
case, the 1/0 cycle is delayed until the
DMAlrefresh operation completes.

Internal cycles are always 125 ns long.
with both 01 and 02 high for approxi­
mately 55 ns.

- Data Bus Enable (DBE) - Enables the
processor data bus during processor
write cycles. This signal may also be

Bank Select

None

RAS

None

RAg

None

e VLSI TECHNOLOGY, INC.

inverted externally, and used as a
DRAM Write Enable signal.

- Memory Access Abort (ABRT)-Warns
the processor that the requested
access is illegal (either because an
attempt was made to access a
protected address while MEMC was in
an insufficiently privileged mode, or an
access to a non-existent logical page
was attempted).

- Dynamic RAM Memory (DRAM)
Interface
MEMC interfaces directly to most
standard Dynamic RAMs, providing a
10-bit multiplexed RAM address bus,
RA9-RAO, a row address strobe,
-RAS, and a set of four column
address strobes, -CAS3- -CASO.

DRAM Configurations - The page size
setting (in the MEMC Control Register)
controls how the DRAM address is
presented on the RAM address bus,
RA9-RAO, as shown in Table 2.

There are three basic dynamic RAM
configurations supported by MEMC.

- Thirty-two 64Kx1, 256Kx1, or 1 Mx1
DRAMs as shown in Figure 2.

This configuration splits the thirty two 1-
bit DRAMs into four blocks of eight bits.
Each 8-bit block is controlled by one of
the -CAS3 - -CASO lines, allowing
independent access to any of the byte­
wide blocks. The DRAM Write-Enable
line is derived by inverting the DBE
signal from MEMC. The RAM Address
bus, RA9-RAO, and -RAS strobe are
routed to all the DRAMs.

- Eight 64Kx4, 256Kx4, or 1 Mx4
DRAMs as shown in Figure 3.

Vi+86C110
FIGURE 3. DRAM CONFIGURATION WITH 8 FOUR-BIT DEVICES

RAX- RAO 031-00

-CASO

This configuration is essentially the
same as used for the 1-bit wide
DRAMs. In this case, only eight chips
are required for the full 32-bit data bus.

- Sixteen 64Kx4, or 256Kx4 DRAMs as
shown in Figure 4.

The sixteen chips are configured as two
parallel banks of eight 4-bit wide
DRAMs. One RAM address bit is used
as a bank select line (valid at the same
time as the column addresses).

Note that a two-of-four decoder is used
to derive an Output-Enable and Write­
Enable signal for each bank. This
insures that only the one bank is
activated during any DRAM 'access.

When only 0.25 Mbyte is used (eight
64Kx4 or 32 64Kx1 DRAMs), the bank
select address bit, RA8 is ignored by
the DRAMs, so physical pages 64-127
map onto physical Pages 0-63.

Byte And Word Accesses
The DRAM is divided into four 8-bit
blocks each with a -CAS signal.

The processor byte/word select line,
-BIW, selects whether a word (32 bits)
or a single byte (8 bits) is to be read
from or written to DRAM. During word
operations, all four blocks are activated,
allowing the full 32 bits to be accessed. II
During a byte access, the two least
significant address bits, A 1-AO, select
one eight-bit block to be :activated, so
that only the appropriate' 8 bits are read
from or written to the DRAMs.

DRAM Cycles
There are three main types of DRAM
accesses as follows:

- Processor access (fetdhing instruc­
tions and readinglwriting data)

- DMA operation (fetching video, cursor
or sound data)

- Refresh operation

MEMC uses the page-mode capability of
DRAMs, performing sequential accesses
(S-cycles) where possible.

FIGURE 2. DRAM CONFIGURATION WITH 32 ONE-BIT DEVICES
RAX- RAO 031- 00

//////// //////// //////// ~ ///~~// l'.. /
~

/ /
~ ~ ~RRRRRRAR ~RRRRR R R R ~RRRRRRRR ~ R: R R R R R R R

~~~~~~ A A A ~AAAAAAAA ~~: ~ ~ ~ ~ ~ ~ ~ ~AAAAAAAA 

~ # # # # # 
M M M ~MMMMMMMM ~ #~ # # # # # # # 

~MMMMMMMM 
DBE # # # -wi- ~ ~ ~ ~ ~ ~ ~ ~ ~######## 

-WE 3 3 2 2 2 222 -WE 1 1 1 1 1 1 9 8 ~"54'210 
IFr10987654 rFf'210 •• 7. rFf 5' 4 , 2 1 0 

IT -CAr-
-CA.§.. -CA~ 

-RAS I I I 
-CAS3 _----1 
-CAS2 
-CAS1 
-CASO 

4-11 



_ VLSI TECHNOLOGY, INC. 

VL86C110 
FIGURE 4. DRAM CONFIGURATION WITH 16 FOUR·BIT DEVICES 

RAX - RAO 

l'-. ~ ~ ~ ~ ~ ~ ~ R R ~ R R ~ R R ~ R R 

-O~ A A A A ~ A A -O~ A A 
M M -O~ M M ~ M M M M 

I -WE # # 
~ 

# # # # 
~ 

# # ,---- 3 -WE -WE -WE 
7 6 5 4 3 2 1 0 

20F4 2 ~ ~ ~ ~ 
BANK 

SELECT 
DBE 

B DE- 1 
A CODERre-
.-:..:..'----

-RAS -RAS 

r """" """" -I """" """" 
-RAS -RAS 

-r "''''''' "" 0- r-~~ 031 - DO 

"""" "" "" " " "" ","" "'~.~ 
//// //// //// //// ///L//LL ~#//## ~//////// ~LLL/ //. '/ t'-.. //// //// 

~ ~ ~ ~ 
-RAS ~ R R ~ 

R R ~ R R ~ R R 
~ A A A A ~ A A ~ A A 
~ M M -O~ M M -O~ ~ ~ ~ M M 

-OE # # # # -OE # # 
-WE 1 

-CAS 5 
-CAS3 

-RA~ -CAS2 
-CAS1 -
-CASO -

Processor Accesses 
MEMC monitors a processor signal, 
SEQ, that indicates that the next 
processor access will be sequential. 
Please note that MEMC uses the SEQ 
to detect sequential access, and does 
not perform its own check. If the SEQ 
signal is asserted incorrectly, the wrong 
memory page may be accessed. 

If the SEQ signal is low in the processor 
cycle preceding a DRAM access (SEQ 
is a pipe lined signal), an N-cycle DRAM 
access will be used. Subsequent 
DRAM accesses will use S-cycles as 
indicated by the SEQ signal. 

DMA operations may not interrupt the 
processor if it is about to perform an S­
cycle memory access, so the maximum 
number of consecutive S-cycles is 
restricted to three. This reduces the 
worst case DMA latency to an accept­
able figure, while retaining the improve­
ment that S-cycles bring. 

An N-cycle is forced under either of the 
following conditions: 

- The processor SEQ signal was low in 
the preceding cycle, indicating that 
this access would not be to a se­
quential address. 

- The processor address lines A3 and 

1 
4 

I -WE 1 1 

:~~ ,-CAS 3 2 

-RA~ -RAe 

A2 will both be low for the access. 
This restricts the maximum number of 
consecutive S-cycles to three. 

MEMC optimizes non-sequential DRAM 
accesses following internal processor 
cycles as shown in Figure 5. During 
internal cycles, the processor outputs 
an address and sets SEQ high, 
indicating that the address will be valid 
in the next cycle. In an internal cycle 
preceding a processor memory access, 

1 
1 

1 I -WE 9 8 
0 I-CAS 

-RAS 

the -MREQ line will be set low. When 
MEMC sees SEQ high, -MREQ low, 
and A25-AO addressing DRAM during 
an internal cycle, it starts a DRAM 
N-cycle immediately. As the row 
address has already been strobed into 
the DRAMs, the processor DRAM 
access can then complete with a DRAM 
S-cycle. This special operation does not 
occur if the DRAM address has both A3 
and A2 set high (this is a consequence 
of the multiple S-cycle limiting logic). 

FIGURE 5. DRAM ACCESSES FOLLOWING INTERNAL CYCLES 

Processor 
Internal Cycle ---I~~-

02 

-MREQ \ / 
SEQ / \ 
A25- =><= 
AO X 
-RAS \ / 
-CAS \ / \ (READ) 

-CAS \ / ~ (WRITE) 

4-12 



e VLSI TECHNOLOGY, INC 

DMA Operations 
DMA operations always fetch four 
words (16 bytes) of data sequentially 
from the DRAMs. Thus, DMA opera­
tions are composed of an N-cycle read 
followed by three S-cycle reads. 

Refresh Operations 
A refresh operation is effectively a 
single N-cycle DRAM read operation, 
with the exception that the -CASx lines 
are not strobed low. 

DRAM Timing 
The -CAS3 - -CASO strobes are 
generated early in read operations, and 
late in write operations to improve setup 
and hold times on the data bus. If an 
ABRT is generated during an N-cycle, 
the -RAS strobe will be activated as 
usual, but the -CAS3 - -CASO signals 
are suppressed, effectively disabling 
the DRAM cycle. 

MEMC does not supply a DRAM Write 
Enable signal directly. A suitable signal 
may be derived by inverting the DBE 
output from MEMC. 

Read Only Memory (ROM) Interface 
In order to minimize the ROM access 
time, the ROM chip select signal from 
MEMC, -RMCS, is enabled at the start 
of every processor burst, and only 
disabled when the processor address 
lines have been decoded as addressing 
another part of the memory map. 

External Address Latches 
The ROM low order address lines must 
be latched externally on the rising edge 
of 02 to hold the address stable to the 
end of each processor cycle. The 02 
signal must not be loaded too heavily, 
otherwise 01 and 02 may overlap, so 
02 should be buffered with an external 
inverter to provide a suitable address 
latching signal. 

ROM Speeds 
The ROM area of the processor 
memory map is divided into two 
sections, high ROM and low ROM. The 
ROM access time in each area may be 
independently programmed through the 
MEMC Control Register. Three ROM 
access times are available: 450 ns, 325 
ns, and 200 ns. When a ROM cycle is 
perlormad, the processor clocks are 
stretched to provide the necessary 
ROM access time. 

MEMC Control Register 
The MEMC Control Register is a 

programmable location that controls the 
functions of MEMC. The part does not 
monitor the processor data bus, so the 
parameters are encoded into the 
address lines, as shown in Figure 6. 
The Control Register is programmed by 
perlorming a write operation while 
MEMC is in supervisor mode. 

Logical And Physical Page Size 
The logical and physical page size must 
be set to correspond to the type of 
DRAM connected to MEMC. Page sizes 
of 4 Kbytes, 8 Kbytes, 16 Kbytes, or 32 
Kbytes may be selected. A default page 
size of 4 Kbytes is selected when RES is 
asserted. 

ROM Access Times 
ROM access times of 450ns, 325 ns, or 
200 ns may be selected for each of the 
two ROM areas (high ROM and low 
ROM). The ROM access time for both 
high and low ROM areas is forced to 
450 ns when RES is assel1l:ed. 

Refresh Operations 
Video DMA operations address DRAM 
locations sequentially at regular inter­
vals, effectively refreshing DRAM, but 
video DMA operations are normally 
suspended during flyback. 

For high resolution displays, the flyback 
time is shorter than the DRAM hold time, 
and no data is lost during fryback. 
Broadcast standard displays have longer 
flyback times, and extra DRAM refresh 
must be provided during fly back to retain 
DRAM integrity. 

When no video DMA cycles are re­
quested, all refresh operations must be 

Vl86C110 
generated by MEMC. 'To cover all 
memory requirements, three refresh 
modes are available. 

Contlnous Refresh 
A refresh operation is perlormed every 
4 Ils. The refresh operation uses the 
DMA video pointer as the refresh 
address source, incrementing the 
pointer after use. As tI~is effectively 
scrambles the video DMA pointer, this 
mode should never be ;selected when 
any video display is being generated. 

Refresh Only During Video Flyback 
A refresh operation is perlormed every 
4 Ils while FLBK is active. This mode is 
selected when a broadcast standard 
video display is being generated. 

No Refresh 
This mode of operation disables refresh 
entirely, relying on vid~ DMA opera­
tions to refresh the DRAM. The flyback 
time of the display (whElm no video DMA 
operations are requested) should not 
exceed the worst case DRAM storage 
time. 

Refresh operations take a single N­
cycle. Processor clocks are halted 
during the operation and the refresh 
address is strobed into Ithe DRAMs 
using the -RAS line. 

The refresh address is provided using 
the DMA address generator's video 
pointer, which is increm:ented after 
every refresh operation. Refresh 
operations have a lower priority than 
DMA operations and will be delayed if a 
DMA cycle is in progres~ when the 
refresh is attempted. 

FIGURE 6. MEMC CONTROL REGISTER DEFINITION 
25 20 19 1716 1413121110 9 8 7 6 5 4 3 2 1 0 
111011Xl1111xxxl01111 I I IlxJ(l 

Test Mode ~ 
0- Disabled 
1 - Not Meaningful For Operation 

Operating System Mode 
O-OS Mode Off 
1-0S Mode On 

Sound DMA Control 
0- Disable 
1 - Enable 

VldeolCursor DMA Control -------I 
0- Disable 
1 - Enable 

4-13 

[

pageSize 
00 - 4 Kbytes 
01 - 8 Kbytes 
10 - 16 Kby'tes 
11 - 32 Kbytes 
Low ROM Access Time 
00 - 450 ns'(Default) 
01 -325 ns 
10 -200 ns 
11 - Not Meaningful 

L-l-____ High ROM Access Time 
00 - 450 ns i(Defau/t) 
01 -325 ns 
10 -200 ns 
11 - Not Meaningful 

\...-1. _____ DRAM Refresh Control 
00 - None 
01 - During Video Flyback Only 
10 - None 
11 - Continuous 

I 



e VLSI TECHNOLOGY, INC. 

There is no default setting for refresh 
operations, so the system software 
must turn on some form of refresh 
before using the DRAM. The reset 
condition causes the page size to 
default to 4 Kbytes. This will alter the 
RA9-RAO configuration and break up 
the display unless 4K pages were being 
used already. Neither the video enable 
nor the refresh mode is affected by a 
system reset. 

Direct Memory Access (DMA) Control 
The video/cursor and sound DMA 
operations may be enabled or disabled 
as required. Assertion of the RES 
signal disables the sound DMA but 
does not affect video/cursor operations. 

Operating System Mode 
When Operating System mode is 
enabled, the processor may access 
certain protected logical pages in the 
logically mapped RAM space. As with 
all MEMC Control Register parameters, 
Operating System mode may only be 
changed while MEMC is in supervisor 
mode. Operating System mode is 
disabled when RES is asserted. 

Test Mode 
Test mode reconfigures MEMC to a 
known state for functional testing. Test 
mode must never be selected during 
normal operation, as it removes all 
sources of DRAM refresh, and halts the 
processor. Test mode is disabled when 
RES is asserted. 

Loglcal-To-Physical Address 
Translator 
The physical RAM is divided into 128 
physical pages, which the processor 
may either access directly through the 
physically mapped RAM area of the 
memory map, or indirectly through the 
logically mapped RAM area (composed 
of logical pages). The logical-to­
physical address translator controls the 
mapping of logical pages to physical 
pages, and allows a level of protection 
to be attached to each logical page. 

Page Protection Levels 
The logical page protection levels 
available are shown in Table 3. The 
protection level is specified by two bits, 
but two of the four patterns are identi­
cal, so only three protection levels are 
available. 

- The lowest protection level (PPL 1 = 0, 
PPLO - 0) allows the logical page to 

be freely accessed when MEMC is in 
any protection mode. 

- The medium protection level (PPL 1 = 
0, PPLO - 1) allows the logical page 
to be freely accessed from the Super­
visor or OS mode, but prevents write 
operations from user mode. 

- The highest protection level (PP1 = 1, 
PPLO - X) allows the logical page to 
be accessed when MEMC is in 
supervisor mode, prevents write 
operations from OS mode, and 
disallows any user mode accesses. 

If the protection mode of MEMC is 
insufficently privileged to access a 
protected page, or the logical page 
being accessed has no physical page 
mapping, the ABRT line will be taken 
high to inform the processor that the 
memory operation was aborted, and the 
-CAS3 - -CASO lines will be held high 
to ensure the DRAM is not activated. 

Address Translator Mapping 
The address translator consists of a 128 
entry lookup table. Each entry corre­
sponds to a physical page number. A 
logical-to-physical mapping is made by 
storing a logical page number in the 
appropriate entry. Each entry also con­
tains the two-bit page protection level. 

When the processor accesses logically 
mapped RAM, the logical page number 
is applied to all 128 table entries simul­
taneously. If one of the entries contains 
the required logical page number, and 
the current operating mode of MEMC is 
sufficiently privileged to overcome the 
page protection level, the appropriate 
physical page (the number of the entry 
that matched) is output to the DRAMs. 

If none of the entries matches the 
requested logical page or a match is 
found, but the page protection level is 
too high, the ABRT line is set high, and 
DRAM access does not complete. 

VL86C110 
Note that it is possible to store the same 
logical page number in more than one 
entry. However, when that logical page 
is accessed, many entries will claim to 
match, and an invalid physical page 
number will result. 

Dual MEMC Systems 
In a dual MEMC system, the physical 
RAM is effectively doubled to 256 
physical pages, and the Logical to 
Physical Address Translators in both 
the Master and Slave MEMCs must be 
programmed. When programming the 
Address Translators, A(7) specifies 
whether the Master or Slave Address 
translator is being accessed. 

Programming The Address 
Translator 
The address translator is programmed 
by specifying the physical and logical 
page numbers that are to be associated 
and the required protection level. As 
MEMC does not monitor the processor 
data bus, the information is encoded 
into the address lines, and conveyed to 
the address translator by performing a 
write operation to the calculated ad­
dress (with MEMC in Supervisor mode). 
Note that the page size not only affects 
the number of logical pages available, 
but also changes the bit order in which 
the logical and physical page numbers 
are specified. Diagrams showing how 
information is encoded into an address 
for each of the four possible page sizes 
are shown in Figure 7. 

The following points should be noted: 
- The address translator is undefined 

on power up. 

- The address translator mappings are 
not affected by reset, but are effec­
tively scrambled if the page size is 
changed. 

- Only one physical page should be 
mapped to any given logical page. 

TABLE 3. LOGICAL PAGE PROTECTION LEVELS 
Page Protection Level (PPL 1,PPLO) 

MEMC Protection 
Mode 00 01 10 11 

Supervisor ReadlWrite ReadlWrite ReadlWrite ReadlWrite 

Operating System ReadlWrite ReadlWrite Read Read 

User ReadlWrite Read No Access No Access 

4-14 



_ VLSI TECHNOLOGY, INC. 

FIGURE 7. PROGRAMMING THE LOGICAL-TO-PHVSICAL ADDRESS 
TRANSLATOR 

4-KByte Page - 8192 Logical Pages 

2524 23 22 21 20 19 18 17 1S 15 14 13 12 11 10 9 8 7 S 5 4 3 2 1 0 

o=I 1 1 I I Ixl I 

VL86C110 

I 
III11 

I I Physical Page Number (PPNS - PPNO) 
PPNS - PPNO ---... AS lAO 

L..-.-I--_ Page Protection Level (PPL 1 - PPLO) 
PPL 1 - PPLO ~ A9 JA8 

'-----------"'--"'--"'------------ Logical Page Number (LPN12 - LPNO) 
LPN 12 - LPN 11 ---... A'I1-A 10 

8 7 S 5 4 3 2 1 0 

Ix I I 
I I 

8 7 S 5 4 321 0 

Ix I I 

LPN10 - LPNO ~ A~~2-A12 

Physical Page Number (PPNS - PPNO) 
PPNS • AO 
PPN5 - PPNO ~ AS-A 1 

Page Protection Level (PPL 1 - PPLO) 
PPL 1 - PPLO ~ A9-A8 

Logical Page Number (LP'N12 - LPNO) 
LPN11 - LPN10 ~ A1'1-A10 
LPN9 - LPNO ~ A22-A13 

I L..--_____ 1-1 Physical Page Number (PPNS - PPNO) 
PPNS - PPN5 ~ A1-AO 
PPN4 - PPNO ~ AS-A2 

Page Protection Level (PPL 1 - PPLO) 
PPL 1 - PPLO ~ A9-A'8 

'--_______ "'--__ "'--.L..-. __________ Logical Page Number (LPN12 - LPNO) 

LPN10 - LPN9 ~ A11·A10 

54321 0 

I 
I 

4-15 

LPN8 - LPNO .-. A22·A14 

Physical Page Number (PPNS - PPNO) 
PPNS • A1 
PPN5 • A2 
PPN4 • AO 
PPN3 - PPNO ~ AS-A3, 

Page Protection Level (PPL 1 - PPLO) 
PPL 1 - PPLO ~ A9-A8 

Logical Page Number (LPN12 - LPNO) 
LPN9 - LPNS ____ A 11-M 0 

LPN7 - LPNO ---- A22-A15 '-----

I 



_ VLSI TECHNOLOGY. INC. 

FIGURE 8. ADDRESS GENERATOR REGISTER FORMATS 
2524232221 20 19 18 1716 151413 1211 10 9 8 7 6 543 2 1 0 

Vinit 0 xlo 0 01 New Register Value Ix xl 

Vstart 0 xlo 0 1 I New Register Value Ix xl 

Vend 0 xlo 01 New Register Value Ix xl 

Cinit 0 xlo 1 I New Register Value Ix xl 

Sstart 0 xl1 0 01 New Register Value Ix xl 

SendN 0 xl1 0 1 I New Register Value Ix xl 

Sptr 0 xl1 olx x x x x x x x x x x x x X X X xl 

DMA Address Generators 
The DMA address generators automati­
cally provide addresses during DMA 
service. These DMA addresses are 
used to obtain 16 bytes of data from the 
DRAM (all DMA data must be quad­
word aligned). The data is obtained 
using four DRAM accesses; each 
access supplies one word (4 bytes) of 
data which may be latched from the 
data bus when the appropriate DMA ac­
knowledge line is strobed. 

The DMA address generators imple­
ment three buffers: video, cursor, and 
sound. These buffers are defined by 
registers in the DMA address genera­
tors that are programmed by encoding 
data on the address bus and performing 
a write operation to the MEMC while in 
the Supervisor mode. Figure 8 shows 
how the address is calculated for 
storage into the DMA address registers. 

Notes on programming the DMA 
address registers: 
- The register value is calculated by di­

viding the physical address by 16. 

- The following side effects occur when 

the sound buffer address generators 
are programmed: (1) programming 
the Sstart register sets the next buffer 
valid flag, and (2) when the Sptr 
register is programmed the value of 
the 'Sstart register is copied into the 
Sptr register, and the Next Buffer 
Valid flag is reset. 

Video Buffer 
This is a circular buffer, as shown in 
Figure 9. The buffer is a section of 
memory delimited by Vstart and Vend 
that contains the video data for a frame. 
When a video DMA is requested, the 
address held in Vptr (the video pOinter) 
is used to obtain four consecutive 32-bit 
words of data (16 bytes) from the 
DRAM. The -VDAK line is pulsed low 
as each word of memory data is read. 

The Vptr is then incremented ready to 
point ot the next four words of video 
data, unless it has reached the end of 
the buffer (as delimited by Vend), in 
which case Vptr is reset to the start of 
the buffer (as defined by Vstart). 

The Vinit register contains the address 
to which Vptr will be initialized just 

VL86C110 

FIGURE 9. CIRCULAR VIDEO 
BUFFER 

Vend--.-

Vinit--.-

Vstart--.-

+- Vptr 

+- 16 Byte 
Block Of 
Video Data 

before the new display frame begins 
(denoted by a high-to-Iow transition on 
FLBK), and is thus the address of the 
first byte of video data for the new 
frame. Hardware scrolling is effected 
by reprogramming Vinit. 

The processor may program the Vstart, 
Vinit, and Vend registers when MEMC 
is in supervisor mode. The Vptr register 
cannot be altered directly by the 
processor, but is always reset to the 
value contained in Vinit before a new 
video frame is displayed. 

The video pointer register, Vptr, doubles 
as a refresh counter. When a refresh is 
performed the Vptr address is output 
and Vptr is incremented (no check is 
made that Vptr has reached the end of 
the buffer). Refresh operations alter the 
contents of Vptr, continous refresh must 
never be enabled during video DMA 
operation. The special refresh mode 
uses Vptr only during flyback, when 
video DMAs do not occur. 

Cursor Buffer 
This is a linear buffer, and is shown in 
Figure 10. The cursor data is contained 

FIGURE 10. LINEAR CURSOR 
BUFFER 

FIGURE 11. DOUBLE BUFFERED SOUND SUPPORT 

Cinit --.-

+- Cptr 

+- 16 Byte 
Block Of 
Cursor Data 

SendC ~ 

4-16 

Next 
Buffer - Yes 
Valid 

Sound 
Interrupt - No 
Active 

.... 16Byte 
Block Of 
Sound Data 



e VLSI TECHNOLOGY, INC. 

Vl86C110 
in a section of memory whose initial 
(low) address is stored in the Cinit 
register. While FLBK is high denoting 
video flyback, Cptr (the cursor pointer) 
is initialized to address held in Cinit. 
When a cursor DMA is serviced, the 
address held in Cptr is sent to the 
DRAM, and used to obtain four 32-bit 
words of data (16 bytes). The Cptr is 
then incremented ready to point to the 
next four words of cursor data. 

FIGURE 14. SOUND BUFFER STATE AFTER NEW START VALiUE 

Sende ___ 

Sound Buffer 

in response to a sound DMA request 
is held in the sound pointer register, 
Sptr, and the end of the current 
sound buffer is delimited: by the 
current sound end register, SendC. 

Sound data is divided into areas of 
memory called sound buffers. The 
sound system can support any number 
of sound buffers using a combination of 
the DMA address generators and 
interrupt driven software. Sound data is 
extracted from one buffer at a time, and 
when each buffer is exhausted, a new 
sound buffer is used. - Next Sound Buffer 

The DMA address generators contain 
information on two sound buffers as 
follows and is shown in Figure 11. 

- Current Sound Buffer 
This is the buffer from which sound 
data is extracted when a sound DMA 
is requested. The address of the next 
16 bytes of sound data to be supplied 

This is the buffer of sound data to 
which the sound pointer,:Sptr, will 
jump when it reaches the end of the 
current sound buffer. The act of Sptr 
swapping to the next sound buffer 
triggers a processor interrupt request 
(-SIRO), which should prompt the 
processor to define the area of 
memory for the next sournd buffer. 

FIGURE 12. SOUND BUFFER AFTER SWAP OPERATION 

SendN ___ 

Old 
Sound 
Buffer 

Sende ___ 

Sstart ___ 

FIGURE 13. SOUND BUFFER STATE AFTER NEXT END VALID 

Sende ,,.. 

Next 
Buffer- No 
Valid 

Sound 
Interrupl- Yes 
Active 

+- Sptr 

4-17 

Next 
Buffer - No 
Valid 

Sound 
Interrupt - Yes 
Active 

Next 
Buffer- Yes 
Valid 

Sound 
Interrupt - No 
Active 

The next sound buffer is defined by 
programming the Sstart and SendN 
registers. (Note that th/3 processor can 
only program the start and end address 
of the next sound buffer). A hardware 
flag, Next Buffer Valid, is set when the 
next sound buffer registers have been 
programmed. 

Sound Buffer Operation 
- Sound Buffer Swap 

When the sound pointer reaches the 
end of the current buffer, it swaps to 
the start of the next buffer (provided 
the next buffer valid flag is set, 
indicating the next buffer parameters 
have been set up). This operation 
resets the next buffer 'valid flag, and 
generates a processor interrupt by 
taking the -SIRO (sound interrupt) 
line low. The SendC and SendN 
registers swap over, so that the value 
previously set up in SendN defines 
the end of the new current buffer. 
The state after this phase is shown in 
Figure 12. 

- Next Sound Buffer Setup 
The processor should I react to the 
sound interrupt by defining the next 
sound buffer that the sound system 
should use. The first part of this 
process is to define the end address 

FIGURE 15. INITIAL STATE OF 
SOUND BUFFERS 

Next 
Buffer - No 
Valid 

Sound 
Interrupt - Yes 
Active 

Sende _ Uninitialized 
SendN'} 

Sptr 
Sstart 

I 



8 VLSI TECHNOLOGY. INC. 

FIGURE 16. SOUND BUFFER STATE 
AFTER SEND AND SSTART VALID 

.... SendN 
Next 

Buffer - Yes 
Valid 

Sound 
Interrupt - No 
Active 

SendC } _ Uninitialized 
Sptr 

.... Sstart 

of the next buffer by reprogramming 
SendN. The state after this action is 
shown in Figure 13. The processor 
may now define the start address of 
the next buffer by reprogramming 
Sstart. This fully defines the next 
buffer, setting the next buffer valid 
flag and clearing the -SIRO sound 
interrupt line. This action brings the 
buffer control to the state shown in 
Figure 14. The sequence now 
repeats from the buffer swap event. 

If the processor fails to setup a new 
Sstart value before the sound pointer 
reaches the end of the current buffer, 
the sound pointer will swap back to the 
start of the current buffer (as defined by 
the old value of Sstart). 

Initializing the Sound Buffers 
The following procedure is recom­
mended to initialize the sound buffer 
system (on power up, for example): 

- Initial State 
After power reset, the sound buffer 
registers are not defined, and sound 
DMA operations are disabled as 
shown in Figure 15. To start the 
sound system, the processor must 
first fill the first sound buffer with data. 
Note that the sound interrupt line is 
pulled low when RES is asserted. 

- Defining the First Buffer 
The SendN and Sstart registers are 
then programmed with the end and 
start addresses of the first sound 
buffer. This sets -SIRO high 
(inactive) with the state shown in 
Figure 16. 

- InitialiZing the Sound Pointer 
The sound pointer is now defined by 
performing a write operation (with 
MEMC in supervisor mode) to the 
Sptr register. Rather than defining an 
immediate value to be stored in Sptr, 
this operation forces a buffer swap 

FIGURE 17. SOUND BUFFER STATE 
WRITE TO SPTR REGISTER 

.... SendC 
Next 

Buffer - No 
Valid 

Sound 
Interrupt - Yes 
Active 

sendN} - Uninitialized 

.... Sptr,Sstart 

operation. copying the contents of 
Start to Sptr, swapping over SendN 
and SendC, and setting the -SIRO 
low as shown in Figure 17. 

The processor may now enable sound 
DMA operations by reprogramming the 
MEMC Control Register, and handle the 
sound interrupt in the usual way to set 
up the next buffer. 

Proc&ssor/DMA Memory Arbitration 
DMA operations read four words from 
the DRAM. The memory accesses are 
organized as an N-cycle followed by 
three S-cycles. As the DMA operation 
uses the system data bus, the proces­
sor must be prevented from performing 
accesses until the DMA has finished. 
The processor will not be stopped if it is 
about to perform a sequential memory 
access; instead, the DMA operation is 
postponed until the processor requests 
an internal cycle or a non-sequential 
memory access. Excessive DMA hold 
times are avoided by limiting the 
maximum number of consecutive 
processor S-cycles to three. 

Processor internal cycles may occur 
concurrently with DMA operations, but 
the processor clocks will be halted (01 
held high) if it attempts a memory 
access cycle during DMA. The proces­
sor data bus is always disabled during 
DMA operations by taking DBE low. 

The DMA request may arrive while the 
processor is suspended awaiting the 
completion of an I/O cycle. In this case, 
the -IORO signal is removed, and the 
processor bus disabled when RCLK 
next goes low. Once the DMA has 
completed, the I/O cycle is resumed by 
setting -IORO low, and enabling the 
processor data bus drivers. 

DMA Handshaking 
Video and cursor DMA operations are 

4-18 

VL86C110 
assumed to be mutually exclusive and 
are both requested by taking the 
-VDRO line low. The -HYSC line 
determines whether a video or cursor 
operation is to be performed. If -HSYC 
is low when -VDRO is sent low, a 
cursor DMA is performed, otherwise a 
video DMA is executed. A sound DMA 
operation is requested by taking the 
-SDRO line low. 

When the DMA operation is performed, 
the DRAM is read, and an acknowledge 
line, (either -VDAK for video/cursor 
DMA, or -SDAK for sound DMA) is 
strobed low as each word of data is 
available on the data bus. The rising 
edge of -VDAK or -SDAK may be used 
to latch the DMA data from the bus. 
Some DRAMs disable their data bus 
drivers before the DMA acknowledge 
line goes high. In this case, the 
dynamic storage time of the data bus is 
sufficient to hold the data valid until it is 
latched. 

The appropriate DMA request (-VDRQ 
or -SDRO) should be taken high when 
the first DMA acknowledge is given 
unless a consecutive DMA is desired. 

The FLBK signal prompts MEMC to 
initialize the video and cursor buffer 
pointers. The cursor pointer is initial­
ized during flyback. The video pointer 
is initialized just after FLBK goes low 
(inactive) because it (Vptr) is sometimes 
used as refresh pointer during fly back. 

The -VDRO, -SDRO, -HSYC, and 
-SDROsignals may be asynchronous, 
so they are all passed through two 
synchronization latches in MEMC to 
avoid synchronization errors. 

DMA Latencies 
Video/cursor DMA requests are higher 
priority than sound requests, and will be 
serviced first. All latency calculations 
shown assume a 24 MHz clock input. 
The maximum DMA latency from the 
time a -VDRO or -SDRO line is taken 
low to the first 32 bits of DMA data 
being read from DRAM is as follows: 

- Video/cursor DMA latency 
-VDRO passes through two synchro-
nization latches. The delay through 
these latches varies from 10 ns to 
125 ns, depending on the relative 
phase of -VDRO and the internal 
synchronizing clock. It then requires 
187 ns to process the video request, 



_ VLSI TECHNOLOGY, INC. 

and prepare to execute a DMA cycle. 
A further delay of SOO ns is incurred if 
the processor has just started a worst 
case uninterruptable DRAM access 
(N-cyc/e + three S-cycles without 
internal cycles) in the preceding 8 
MHz clock cycle. Finally, it takes 2S0 
ns for the DRAM N-cycle read 
operation to supply the first word of 
video/cursor data. Thus, the mini­
mum and maximum delay from 
-VDRQ going low to the first word of 
data available from the DRAMs is: 

Minimum video/cursor DMA latency 
= 10 + 187 + 250 "" 450 ns 

Maximum video/cursor DMA latency 
= 125 + 187 + 500 + 250 "" 1070 ns 

- Sound DMA Latency. The sound 
DMA latency is similar to the video/ 
cursor DMA latency. However, sound 
DMA operations have a lower priority 
than video/cursor DMA operations, 
and are delayed for 625 ns for every 
consecutive video/cursor DMA 
operation that is requested at the 
same time as, or after -SDRQ goes 
active low. Thus, the minimum and 
maximum delays from -SDRQ going 
low to the first word of data being 
available from the DRAMs is: 

Minimum sound DMA latency -
10 + 187 + 250 "" 450 ns 

Maximum sound DMA latency = 
125+187+S00+250+(62S*DMA VIC) 
",,1070 ns+(625*DMA VIC) 

where DMA VIC is the maximum 
number of consecutive video/cursor 
DMA operations that may occur while 
the sound DMA is pending. 

Selecting Video or Cursor DMA 
Operations 
The -HSYC signal determines whether 
a video or cursor DMA is to be per­
formed, and is latched on the high-to­
low transition of -VDRQ. The hold time 
on -HSYC must be sufficient to allow 
the synchronization latches in MEMC to 
capture its state. When two or more 
video/cursor DMA operations occur 
consecutively, -HSYC is sampled on 
the falling edge of the penultimate 
-VDAK acknowledge strobe, and its 
state determines whether the next DMA 
operation will fetch video or cursor data. 

Flyback Requirements 
The video and cursor buffer pointers 

must be reset between each video 
frame. The cursor pointer is initialized 
during flyback (sig'nalled by FLBK high). 
The initialization takes 250 ns and takes 
place automatically provided that the 
following conditions are met: 

- FLBK is high (indicating flyback is in 
operation). It takes up to 250 ns for 
MEMC to synchronize and process 
the low-to-high transition of FLBK. 

- No DMA or refresh operation is being 
serviced. 

- The processor is performing a non­
sequential memory access, but is not 
writing to the DMA add~ess generator 
or the MEMC Control Register. 

Note that these conditions may be 
satisfied many times during flyback, and 
the cursor pointer will be initialized on 
each occasion. The FLBK signal must 
remain high long enough to initialize the 
cursor pointer at least once. 

The video pointer is not reset until after 
FLBK makes a transition from high-to­
low (the end of the flyback period). This 
allows the video pointer to be used as a 
refresh address register during flyback. 
The initialization takes 2S0 ns and 
occurs automatically provided that the 
following conditions are satisfied: 

- FLBK has made a transition from 
high-to-Iow (signaling the end of 
flyback), and the video pointer has 
not already been initialized. It takes 
up to 250 ns for MEMC to synchro­
nize and process the high-to-Iow 
transition of the FLBK signal. 

- No DMA or refresh operation is being 
serviced. 

- The processor is performing a non­
sequential memory access, but is not 
writing to the DMA Address Genera­
tor or the MEMC Control Register. 

VL86C110 
The delay between FtBK going low and 
the first video DMA being processed 
must be long enough 'to allow the video 
pointer to be reset. 

Programming the DrinA Address 
Generators 
The DMA address generators are 
limited to addressing the bottom 0.5 
Mbyte of physical memory. However, 
the processor can use the logical-to­
physical address translator to make this 
0.5-Mbyte block appear anywhere in the 
32-Mbyte logical address space. 

MEMC does not monitor the processor 
data bus, so the DMA 'address gener­
ators are programmed by encoding the 
data in the address and performing a 
write operation with MEMC in Supervi­
sor mode. Figure 8 on page 4-16 
shows how an address is calculated to 
store data in the addrsss generator 
registers. The following points should 
be noted: 

- The address generator has a resolu­
tion of 16 bytes (the number of bytes 
read during a DMA transfer). All 
DMA buffers must be aligned on 16 
byte boundaries. The value stored in 
the address generator is the appropri­
ate address divided by 16. 

- When the sound pointer register, 
Sptr, is programmed, no immediate 
value is specified. Instead, a sound 
buffer swap is forced, copying the 
value from Sstart to Sptr, and 
resetting the next buffer valid flag. 

- The processor may write to the DMA 
registers at any time, but multiple, 
consecutive DMA register write 
operations (e.g., usin'g the VL86C01 a 
Store Multiple instruotion) should 
never be used, as this may inhibit the 
initialization of the video pointer 
register, Vptr .. 

02 

FIGURE 18. 110 CYCLE 

~~------------~~~----~// 

RCLK 

~~--------------~/rl------71 
-IORQ 

_IOGT-------------------------Jlrl-------\~ 

4-19 

I 



e VLSI TECHNOLOGY, INC 

Video Controller (VI DC) Interface 
To program the VIDC video contrcller, 
the processor performs a write oper­
ation anywhere in the video controller 
address space while MEMC is in super­
visor mode. The video controller regis­
ter number and data are encoded 
entirely in a 32-bit word which is avail­
able on the processor data bus during 
the write operation (see the VL86C31 0 
data sheet for more detail). MEMC 
provides a video controller write signal, 
-VIDW, that latches the information off 
the data bus. 

I/O Controller Interface 
The 10C I/O controller provides a 
unified view of interrupts and peripher­
als within the VL86C01 0 based system 
(see the VL86C410 data sheet for more 
details). The processor can access a 
number of I/O controllers through its 
memory map, and MEMC provides a 
handshaking control system for 
processor to VO controller interactions. 

When the processor accesses the 
InpuVOutput controller address space 
(with MEMC in supervisor mode), 
MEMC starts the I/O cycle by taking 
-IORO low, and holding the processor 
clocks (stretching the processor cycle 
with 02 high). If the -IORO and -IOGT 
signals are both low on the rising edge 
of RCLK, the I/O cycle will end on the 
next falling edge of RCLK. MEMC then 
releases the processor clocks, and sets 
the I/O request line, -IORO, high; the 
VO controller will set the I/O grant line, 
-IOGT, high and read or write data 
fromlto the processor data bus. An I/O 
cycle is shown in Figure 18. The cycle 
starts with -IORO being taken low. 
Then follows a number of 8 MHz cycles 
until the I/O controller is in a position to 
complete the cycle. The -IOGT line is 
taken low, and both MEMC and the I/O 
controller see -IORO and -IOGT low on 
the rising edge of RCLK, so the VO 
cycles terminates on the next rising 
edge of RCLK. 

FIGURE 19. I/O CYCLE INTERRUPTED BY DMA OR REFRESH 

Start 
14-----1/0 Cycle----~~ 

02 

RCLK 

-IORO 

-IOGT 
I 

7 

FIGURE 20. FAST I/O CYCLE 

02 

RCLK 

-IORO \ ____ ---.J/ 

-IOGT 

4-20 

VL86C110 
DMA and refresh operations are 
allowed during I/O cycles. To prevent 
clashes on the data bus, MEMC 
ensures that the I/O cycle does not end 
during these operations by taking 
-IORO high until they have finished, as 
shown in Figure 19. 

Some I/O cycles may only take a single 
non-sequential cycle (250 ns). To give 
the InpuVOutput controller adequate 
time to recognize such operations, 
MEMC produces the first -IORO early 
in the I/O cycle (see Figure 20). 

The extension of -IORO only happens 
at the start of an I/O cycle; if the -IORO 
signal is removed during a DMA or 
refresh operation, it will be reasserted 
as RCLK goes low. 

Care must be taken not to address a 
non-existent InpuVOutput Controller, as 
MEMC will hold the processor clocks 
indefinitely until a low is seen on the 
-IOGT line, or RES is set high. 



_ VLSI TECHNOLOGY. INC. 

Vl86C110 
TIMING CHARACTERISTICS: TA = O°C to +70°C, VDD = 5 V ±5% 

10MHz 12MHz 

Symbol Parameter Min Typ. Max Min Typ. Max Unit Condition 

tCK Clock Period 100 80 ns Note 1 

tV Clock Non-overlap 0 10 0 10 ns @1.0V 

tCKL Clock Low Time 45 38 ns @0.3V 

tCKH Clock High Time 34 24 ns @4.7V 

t0RF 01, 02 Rise/Fall 8 7 ns Note 1,2 

t01L 01 Low to RCLK 7 7 ns Note 1, 2 

t01H RCLK to 01 High 8 8 ns Note 1,2 

t02L 02 Low to RCLK -2 0 ns Note 1,2 

t02H RCLK to 02 High 12 12 ns Note 1,2 

tAS A25-AO Setup (N-Cycle) 130 105 ns Note 2, 3 

tAS A25-AO Setup (S-Cycle) 30 25 ns Note 2, 4 

tAH A25-AO Hold to RCLK 15 15 ns Note 2 

tRWH -R/W Hold to RCLK 5 5 ns Note 2 

tDBED DBE Delay from RCLK 16 15 ns Note 2 

tDBERD DBE Delay from -R/W 40 40 ns 

tABTD ABRTDelay 95 50 ns Note 5 

tABTRD ABRT Delay from -R/W 100 50 ns Note 5 

tABTH ABRT Hold Time 10 10 ns Note 2 

tMSS -MREQ & SEQ Setup 15 15 ns Note 2 

tMSH -MREQ & SEQ Hold Time 15 15 ns Note 2 

tBWS -BIW Setup to RCLK 50 40 ns Note 2,6 

tBWH -BIW Hold Time 5 5 ns Note 2 

tRASS -RAS Setup to RCLK (N-Cyc) 7 5 ns Note 2 

tRASS -RAS Setup to RCLK (X-Cyc) 15 13 ns Note 2 

tRAS -RAS Pulse Width 100 80 ns Note 7 

Notes: 1. 10 MHz operation assumes load on 01, 02 is reduced to 25 pF. 
2. All timings are referenced to RCLK 50% point, with nominal load on all signals. Signals other than RCLK are 

referenced to high and low levels defined in DC operating cOlilditions section (for inputs) and DC characteristics 
section (for outputs). 

3. This constraint applies to non-sequential cycles (N-cycles) only. 
4. This constraint applies to internal cycles (I-cycles) only. 
5. This constraint applies only to N-cycles and merged 1- and S-cycles. 
6. This constraint applies only to cycles where -CASO- -CAS3 is active. 
7. -RAS may be extended by up to 3Trcf for sequential DRAM cycles. 
8. These figures apply to read cycles (early -CAS). -CAS will only go low when -RAS is low. 
9. These figures apply to write cycles (late -CAS). -CAS will only go low when -RAS is low. 

4-21 

I 



_ VLSI TECHNOWGY, INC. 

VL86C110 

TIMING CHARACTERISTICS (Cont.): TA = O°C to +70°C, VDD = 5 V ±5% 

10 MHz 12 MHz 

Symbol Parameter Min Typ. Max Min Typ. Max Unit Condition 

tCASS -CAS Setup Read (N-Cyc) 8 2 ns Note 2,8 

tCASS -CAS Setup Read (X-Cyc) 20 18 ns Note 2, 9 

tCASS -CAS Setup Write (N-Cyc) -5 -5 

tCASS -CAS Setup Write (X-Cyc) 5 5 

tCAS -CAS Pulse Width 40 30 ns 

tRARAD Row RA9-RAO from A25-AO 65 50 ns 

tRARS RA9-RAO Setup to -RAS 20 10 ns Note 2,10 

tRARH RA9-RAO Hold to -RAS 15 10 ns 

tRACD Column RA9-RAO from -RAS 35 30 ns 

tRACH RA9-RAO Hold to -CAS 20 20 ns 

tlORAD -IORO Delay from A25-AO 80 55 ns Note 2,11 

tlORDF -IORO Delay (First) 5 25 5 21 ns Note 2,11 

tlORD -IORO Delay -2 10 -2 10 ns Note 2,12 

tlORH -IORO Hold Time -12 0 -12 0 ns Note 2 

tlOGS -IOGT Setup to RCLK 20 15 ns Note 2,13 

tlOGH -IOGT Hold Time 13 13 ns Note 2,13 

tROMD -RMCS Delay 0 20 0 15 ns Note 2 

tROMCS -RMCS Pulse Width 180 395 140 315 ns Note 14 

tVIDWD -VIDWDelay -2 13 -1 10 ns Note 2 

tVIDW -VIDW Pulse Width 50 68 40 58 ns 

tVDKD -VDAK, SOAK Delay 0 13 0 13 ns Note 2 

tVDAK -VDAK, SOAK Width 40 55 30 45 ns 

Notes: 10. These figures apply to DMA cycles. 
11. These figures apply to the first 10RO of an 1/0 transaction. 
12. These figures apply to the second and subsequent 10ROs of an 1/0 transaction. 
13. Only significant when -IORO is low. 
14. These figures apply to a single ROM access. Nibble mode accesses may be one clock period longer than the 

maximum figure, and RMCS may remain low for multiple consecutive ROM accesses. 
15. These times are not measured. The maximum delays are derived from SPICE models of the relevant logic functions, 

with VLSI slow-slow transistor models, VDD=4.7 volts, VSS .. 0.1 volts, temperature 100 degrees Centigrade. The 
minimum hold times are calculated from the same models of the relevant paths, with the time in the table being the 
slow path time divided by four. All numbers have been rounded to the nearest 5 ns. All numbers are subject to 
change after device characterization. 

16. Output times are to CMOS levels except for the DRAM interface signals (-RAS, -CASO- -CAS3, RAO-RA9) which 
are to TTL levels. 

The timing diagrams included in this section represent typical AC waveforms in a MEMC system. 

4-22 



o VLSI TECHNOLOGY, INC. Vl86C110 

TIMING DIAGRAMS tCK-- _____ _ 

01 

02 

-IORQ 

A25-AO, 
SPMD 

ABRT 

-R/W 

DBE 

t0RF ~ _________ tCKL _________ -rl 

~-------tCKH-------~1 
~-+-____ tCKL _______ -' __ 1 

------ -

tCKH ----~."""'---

~S----~~-_-_~ ________ ~ ________ -r __ 

RA9-RAO~r====-______________ -t __________ __ 
-RAS 

tCASS 
-CAS 

-RMCS ~-----r__- tROMCS--------------------jr-

-VIDW ------------- " 1-4---------1 --- tVlDW --------..,...-1 

-VDAK, 
-SDAK 

HIa------- tVDAK ------T-" 

-MREQ,S~E~Q~ _______________ ~~ 

, __ ----- tBWS----~~---~ 

-B/W 

4-23 

I 



_ VLSI TECHNOLOGY, INC. 

TIMING DIAGRAMS 
DRAM PROCESSOR READ CYCLE 

02 

-WE 
(See 
Note) 

SEQ 

-RAS 

RAg -
RAO 

-CAS 

RAM 
DATA 
OUT 

-RMCS __ -+ __ ~ ______ -J 

Non -
Sequential 

Access 

VL86C110 

Note: -WE is obtained by passing the DBE signal from the VL86C11 0 through an external inverter. 

A.C. TEST WAVEFORMS A.C. LOAD CIRCUIT 

5.0V 

Output I 
Input t t 
3.5V~ 

~ O.OV 

f Device Under Test 

ACTest t t 
Points _ ....... __ ---1 

4-24 



e VLSI TECHNOLOGY, INC. 

TIMING DIAGRAMS 
DRAM PROCESSOR WRITE CYCLE 

02 

-WE 
(See 
Note) 

SEQ 

-RAS 

RA9-
RAO 

-CAS 

RAM 
DATA 
IN 

-RMCS 

.... -
~ 

~ 

- Cx~ - '-'r 

/ 

N on -
Sequential 

Access 

... .... Sequential p 

Access 

'" 
~ 

Note: -WE is obtained by passing the DBE signal from the VL86C11'O through an external inverter. 

4-25 

VL86C110 

-.. 
"'-

/~ 

'lA 

V//M 

I 

~ 



_ VLSI TECHNOLOGY, INC. 

TIMING DIAGRAMS 
PROCESSOR ROM ACCESS 

02 

VL86C110 

-RMCS-==~====~~ __________________ +-______________________ ~ __ _ 
-

PROCES SOR MEMC REGISTER ACCESS 

02 

-RNJ 

A25 -
AD 

-RMC S 

-SIRQ 

'" 
J 

-

- J 

PR OCESSOR VIDC REGISTER ACCESS 

02 

-RNJ 

A 
A 

25 -
D 

RMCS 

VIDW 

-

'" 
7 

-

- / 
-

I 

'" ..// -

" 

" 
-

"'--I 

-

-
- -

-

I I 

4-26 



e VLSI TECHNOLOGY, INC. 

TIMING DIAGRAMS 
DMA OPERATIONS 

Non -
Sequential --. ... -

Cycle 

-VDRa, 
-SDRa 

-VDAK, 
-SDAK 

RAM Data 

-slRa 

DMA OPERATIONS - DRAM READ CYCLES 

02 

-WE 
(See 
Note) 

SEQ 

-RAS 

RA9-
RAO 

-CAS 

RAM 
DATA 
OUT 

-RMCS 

"" 
V 

-
-

N on -.... Sequential ..... 
Access 

[X 

"" 

/ 

Sequential 
Cycle 

........ ..... ... 

"-

"-

Sequential _-. ... _ 
Cycle 

Sequential 
Access 

/ 

Note: -WE is obtained by passing the DBE signal from the VL86C11'O through an external inverter. 

4-27 

VL86C110 

Sequential 
Cycle 

... ... 

'" 

~ 

I 



_ VLSI TECHNOLOGY, INC 

TIMING DIAGRAMS 
CURSOR/VIDEO DMA REQUEST 

VL86C110 

-VDRQ r---------"/ 
-HSYC-~------~-----

CONSECUTIVE CURSORIVIDEO DMA REQUESTS 

Non -
-.....- Sequential ... ..... Sequential ... ..... Sequential - ... Sequential ~ ... ..... .. ..... ... ... 

Cycle Cycle Cycle Cycle 

-VDRQ 

~ 

-VDAK / / / / 

-HSYC 

1/0 CONTROLLER HANDSHAKING 

RCLK / 

"'- / First Attempt) -lORa ( 

-lORa ( Retries) / 

-IOGT 

4-28 



o VLSI TECHNOLOGY, INC. 

ABSOLUTE MAXIMUM RATINGS 
Ambient Operating 
Temperature 

Storage Temperature -65°C to +150°C 

Supply Voltage to 
Ground Potential -0.5 V to VDD +0.3 V 

Applied Output 
Vortag 

Applied Input 
Voltage 

Power Dissipation 

-0.5 V to VDD +0.3 V 

-0.5 V to +7.0 V 

2.0W 

Stresses above those listed may cause 
permanent damage to the device. 
These are stress ratings only. Func­
tional operation of this device at these 
or any other conditions above those 

DC CHARACTERISTICS: TA = O°C to +70°C, VDD = 5 V ±5% 

Symbol Parameter Min Typ 

VOH Output High Ref CIN VDD-1.2S -
Voltage 

TTL 2.4 -
01,02 VDD-0.5 -
CMOS VDD-1.0 -
Ref CIN 

VOL Output Low TTL 
Voltage 01,02 

CMOS 

VIHC CMOS Input High Voltage 3.5 -
VIHT TTL Input High Voltage 2.4 -
VIL Input Low Voltage CMOS and TTL - -
III Input Leakage Current - -
ICC Operating Supply Current - -
lOS Output Short Circuit Current - -

VL86C110 

indicated in this data sheet is not 
implied. Exposure to !absolute maximum 
rating conditions for extended periods 
may affect device reliability. 

Max Units Conditions 

VDD V 10H - -10.0 mA 

VDD V 10H - -10.0 mA 

V 10L.--S.0 mA 

V 10L.--S.0 mA 

0.4 V 10H -10.0 mA 

0.8 V 10H -10.0 mA 

0.3 V 10L.-S.0 mA 

0.8 V 10L..S.0 mA 

- V 

- V 

0.8 V 

10 IlA VN- 0 Vto VDD 

70 mA 

25 mA See Note. 

Note: No more than one output should be shorted to either rail at a time and for no longer than one second dUration. 

4-29 

I 



_ VLSI TECHNOLOGY, INC. 

Appendix A - RAM Address Bus 
The RAM address bus (RA9-RAO), as 
output from the multiplexer, is derived 
from three sources: processor address 
bus, logical-to-physical address 
translator,andDMA address genera­
tors. When the processor accesses 
physically mapped RAM, the higher 
order address bits (A25-A2) define the 
physical page and the low order bits the 
word offset within the page. Similarly, 
when the processor requests access to 
logically mapped RAM, the logical-to­
physical address translator supplies the 

physical page number (PPN6-PPNO) if 
the current privilege level is sufficient. 
The row and column addresses 
supplied to the DRAM on the RAM ad­
dresss bus during processor cycles are 
a combination of the physical page 
number (PPN6-PPNO) and the word 
offset (A 14-A2). 

During DMA operations the DMA 
address generators supply a 17-bit 
word address value within the DRAM 
address space. The DMA operations 
can only address 512 Kbytes and the 

FIGURE A-1. RAM ADDRESS BUS VALUES FOR DIFFERENT PAGE SIZES 

4-KByte Page Size 

Processor 
Access 

Row 
Address 

Column 
Address 

RA9 

X 

X 

RAM Address Bus 

RA8 RA7 RAS RA5 RA4 RA3 RA2 

X -A11 -A10 I -A9 I -AS I -A7 -AS 

I -PPN6 I -PPN5 I -PPN4 I-PPN3 I -PPN2 I-PPN1 I-PPNO I 

VL86C110 
upper address bits are forced to zeros 
which forces the access into the bottom 
area of the memory map. 

Refresh operations use the Video 
Pointer register as the address value, 
while the values on the address bus are 
a function of the page size selected. 
They are shown in Figure A-1 for each 
of the four page sizes. 

Please note that the RAM address 
multiplexer has inverting output drivers 
and the address values observed are 
complemented from the input value. 

RA1 RAO 

-A5 -A4 

-A3 -A2 

DMAAnd 
Refresh 
Operations 

Row 
Address x X I-OMA11 I-OMA101-0MA9 I-OMA8 I-OMA7 I-OMASI-OMA5 I-OMMI 

Column 
Address 

8-KByte Page Size 

Row 
Processor Address 
Access Column 

Address 

Row 
DMAAnd Address 
Refresh Column 
Operations Address 

16-KByte Page Size 

Row 
Processor Address 
Access Column 

Address 

Row 
DMAAnd Address 
Refresh Column 
Operations Address 

32-KByte Page Size 

Row 
Processor Address 
Access Column 

Address 

Row 
DMAAnd Address 
Refresh Column 
Operations Address 

x I-OMA181-0MA17I-OMA1SI-DMA151-DMA14I-DMA13I -DMA121-DMA3 I-DMA21 

RA9 RA8 RA7 RAS RA5 RA4 RA3 RA2 RA1 RAO 

X -A12 -A11 -A10 -A9 -A8 -A7 -AS -A5 -A4 

X I-PPN5 I -PPN4 I-PPN3 I-PPN2 I-PPN1 I-PPNO I-PPN6 I -A3 -A2 

X ~DMA121-DMA11 I-DMA101-DMA91-DMA81-DMA71-DMASI-DMA51-DMMI 

X I-DMA18 I-DMA17 I-DMA1SI-DMA151-DMA14 I-DMA13 I I-DMA3 I-DMA2 I 

RA9 RA8 RA7 RAS RA5 RA4 RA3 RA2 RA1 RAO 

X -A12 -A11 -A10 -A9 -A8 -A7 -AS -A5 -A4 

I -PPN6 I -PPN4 I-PPN3 I-PPN2 I-PPN1 I-PPNO I -A13 I-PPN51 -A3 -A2] 

X I-DMA121-DMA111-DMA101-DMA91-DMA81-DMA71-DMASI-DMA51-DMMI 

I-DMA18I-OMA17I-DMA1SI-DMA15I-DMA14I-DMA13I I-DMA3 I-DMA2 I 

RA9 RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO 

-A13 -A12 -A11 -A10 -A9 -A8 -A7 -AS -A5 -M 

I-PPN5 I-PPN3 I-PPN2 I-PPN1 I-PPNO I -A14 I-PPN6 I -PPN41 -A3 -A2 

I-DMA131-DMA121-DMA11 I-DMA101-DMA91-DMA81-DMA71-DMASI-DMA51-DMMI 

I-DMA181-DMA17 I-DMA1SI-DMA151-DMA14 I I-DMA31-DMA21 

4-30 



e VLSI TECHNOLOGY, INC. 

SECTION 5 

VL86C310 
RISC VIDEO 
CONTROLLER 
(VIDC) 

Application Specific 
Logic Products Division 

I 



6) VLSI TECHNOLOGY, INC. 



e VLSI TECHNOLOGY, INC. 

VL86C310 
RISC VIDEO CONTROLLiER (VI DC) 

FEATURES 
• Pixel rate selectable as 8, 12, 16, or 

24 MHz 

• Serializes data to 1-, 2-, 4-, or 8- bits 
per pixel· 

• 16 x 13-bit words - 4096 color lookup 
palette 

• Three 4-bit DACs (one for each CRT 
gun) 

• Fully programmable screen parame­
ters 

• Screen border in any of the 4096 
possible colors 

• Flexible cursor sprite 

• Support for interlaced display format 

• External synchronization capability 

• Very high resolution monochrome 
mode support 

• High quality stereo sound generation 

DESCRIPTION 
The Video Controller (VIDC) accepts 
video data from DRAM under DMA 
control, serializes and passes it through 
a color look-up palette, and converts it 
to analog signals for driving the CRT 
guns. The chip also controls all the 
display timing parameters! plus the 
position and pattern of the cursor sprite. 
In addition, the VIDC includes an 
exponential DAC and stereo image 
table for the generation of high quality 
sound from data in the DRAM. 

The VIDC requests data from the RAM 
when required, and buffers it in one of 
three first-in, first-out memories 
(FIFOs). Note that the addressing of 
the data in RAM is controlled elsewhere 
in the system (usually in tlile VL86C11 0 
Memory Controller, MEMC). Data is 
requested in blocks of four 32-bit words, 
allowing efficient use of page-mode 
DRAM without locldng up the system 
data bus for long periods. 

The VIDC is a highly programmable de­
vice, offering a very wide choice of dis­
play formats. The pixel rate can be se-

lected in a range between 8 and 24 
MHz and the data can~be serialized to 
either 8-, 4-, 2-, or 1-blt per pixel. The 
horizontal timing parameters can be 
controlled to units of 21pixels, and the 
vertical timing parameters can be 
controlled in units of a 'raster. The color 
lookup palette which drives the three 
on-chip DACs is 13-bits wide, offering a 
choice from 4096 colors or an external 
video source. 

Extensive use is made of pipelining 
throughout the device. 

The cursor sprite is 32: pixels wide, and 
any number of rasters high. Three 
simultaneous colors (from the 4096 
possible) are supported, and any pixel 
can be defined as transparent, making 
possible cursors of many shapes. The 
cursor can be positioned anywhere on 
the screen. 

The sound system implemented on the 
device can support up :to eight chan­
nels, each with a separate stereo 
position. 

PIN DIAGRAM ORDER INFORMATION 
PLASTIC LEADED CHIP CARRIER 

VOOS 

REFS 

LCH 

RCH 

-LCH 

-RCH 

-UR 

CKIN 

SINK 

-HI 

FLBK 

-VORQ 

-VICS 

-VOAK 030 028 028 024 022 020 018 
-SOAK I 031 I 029 I 027 I 025 I 023 I 021 I 019 I 017 

VL88C310 
TOP VIEW 

59 

58 

57 

56 

55 

54 

53 

52 

51 

50 

49 

48 

47 

018 

015 

014 

013 

012 

011 

010 

09 

08 

07 

08 

05 

04 

03 

48 02 

45 01 

44 00 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

-VIOWI-VE031-VEOll NSEL I-SE02l-SEOOI ROUT I BOUT I REFV 
-SUP -VE02 -VEOO -SE03 -SEOl VOOO GOUT VSSV 

Part 
Number 

VL86C310-12QC 

Clock 
Frequency 

12MHz 

Package 
Plastic Leaded 
Chip Carrier (PLCC) 

Note: Operating temperature is O°C to +70°C. 

E 



e VLSI TECHNOLOGY, INC. 

BLOCK DIAGRAM 

-SDRQ 
-SOAK 

-VDRQ-- I 

031 - DO 

SINK --- I 

CURSOR 
FIFO 

CURSOR 
SHIFT 

REGISTER 

-VIDW = __________ ~_ 
CKIN 

VIDEO 
PALETTE 

CURSOR 
PALETTE J----

5-4 

VL86C310 

LCH 
-LCH 
RCH 

-RCH 

L--_--l-___ ~ -UR 

-VED3-
-VEDO 

ROUT 

GOUT 

BOUT 

-V/CS 
FLBK 

-------------------:-HSYC 
-HI 



" VLSI TECHNOLOGY, INC. 

VL86C310 
SIGNAL DESCRIPTIONS 
SIgnal Pin SIgnal 
Name ______ ~N~u~m~b~e~r __ ~De~~~lp~tl~on~ __________________________________________ , 

CKIN 

-VIDW 

D31-DO 

-VDRQ 

-VDAK 

-SDRQ 

-SDAK 

FLBK 

SINK 

-HI 

-SD3--SDO 

NSEL 

-UR 

REFV 

19 

27 

7-1, 
68-44 

23 

a 

24 

9 

22 

20 

21 

34-37 

33 

17 

43 

Clock In (TTL level input); Master 24 MHz system clock input - Usually this is the same signal as the 
VL86C110 Memory Controller (MEMC) uses to generate system timing. Since VIDG resynchronizes 
all its inputs to this clock reference, these;two clocks are not required to be the same frequency, 
allowing the display frequency to be independent of the processor. 

Register Write Strobe (TTL level input) - An active Iowan this line writes data into one of the VIDC 
registers. The address of the register is supplied on the upper bits, and the data to be written on the 
lower bits of the data bus. Normally, this signal is generated by MEMC as it is the device that 
decodes the memory address map in the system. 

Data Bus (TTL level inputs) - This ~2-bit bus carries data for register writes, video DMA, cursor 
DMA. and sound DMA, according to which type of data strobe is present. 

Video Data Request (CMOS level output) - This signal is driven active (low) when the VIDC 
requires another block of 16 bytes of video data (when -HSYC is high) or cursor data (when -HSYC 
is low). It is driven high again by the first valid video data acknowledge, -VDAK. 

Video Data Acknowledge (TTL level input) - An active Iowan this signal strobes a data word into the 
video or cursor FIFO depending on the state of HSYNC when the request was made. Note that a 
low on -VDRO signifies a request for four words of data, and so -VDAK must go low four times to 
service each request. 

Sound Data Request (CMOS level output) - This signal is driven low when the VIDe requires 
another block of 16 bytes of sound data. It is driven high again by the first valid -SDAK. 

Sound Data Acknowledge (TTL level input) - An active Iowan this signal strobes a clata word into 
the sound FIFO. Note that a Iowan -SDRO signifies a request for four words of data, and so 
-SDAK must go low four times to service each request. 

Vertical Flyback (CMOS level output) - This signal is driven high when the display is in vertical 
flyback (retrace). Specifically, it is set high at the start of the first raster which is not display data, 
although this may be border, (at the bottom of the screen), and is cleared down at the start of the 
first raster which is display data (at the top of the screen). 

External Synchronization pulse (TTL level; input) - A high on this signal resets the vertical timing 
counter, and if interlaced display farmat is: being used, the odd field is selected. The horizontal 
timing counter, and all other registers are unaffected by this signal. 

Horizontal Interlace Marker (Test pin - CMOS level output) - When an interlaced display format is 
selected this signal is driven low half way along the raster and stays low until the end of each 
raster. If non-interlaced displays are used, this pin may be used as a programmable timer on each 
raster. 

Multiplexed Sound Data (Test pins - CMOS level outputs) - These pins are used for testing the 
digital data paths through the chip. Normally, depending on the state of NSEL, they output the 
inverse of one of the two nibbles of the data byte being fed to the sound DAC, but in test mode 
three, they output the inverse of the data being fed to the green or blue DACs, again depending on 
the state of NSEL. For more information on test mode three, refer to the control register section. 

Sound Data Ouput Selector (Test pin - TTL level input) - When this signal is low, the sound data 
bus port outputs the low nibble of the sound data, or the green DAC data. When N$EL is high, the 
sound data bus port outputs the high nibble of the sound data, or the blue DAC data. 

LeftlRight (Test pin - TTL level output) - Tlilis signal is driven low when the sound output is steered 
to the left output port, and is high when the sound output is steered to the right output port. In test 
mode three, the pin changes its function, and outputs the sound sampling clock instead. 

Video DAC Reference Current (Analog input) - A current must be fed into this pin to set the output 
current of the video DACs. The full scale output current is 15 times this current. In most applica­
tions a resistor from VDD to this pin is sufficient to set the current. 

5-5 

I 



o VLSI TECHNOLOGY, INC. 

VL86C310 
SIGNAL DESCRIPTIONS (Cont.) 
Signal Pin Signal 
Name Number Description 

ROUT 

GOUT 

BOUT 

-SUP 

-HSYC 

-V/CS 

-VEDO 

-VED3-

REFS 

LCH 

-LCH 

RCH 

-RCH 

VSSD 

VSSS 

VSSV 

VDDD 

VDDS 

39 

40 

41 

28 

25 

26 

39-32 

12 

13 

14 

15 

16 

18 

10 

42 

38 

11 

Red Analog output (Analog output) - The output to the CRT guns is in the form of a current sink. 
Maximum brightness is defined as 15 times the reference current, and "black" is defined as zero 
current. Level shifting and buffering is normally required to drive the CRT inputs. 

Green Analog output (Analog output) - Same description as for ROUT. 

Blue Analog output (Analog output) - Same description as for ROUT. 

Supremacy output signal (CMOS level output) - This signal is used to control a multiplexer 
between the output of VIDC and an external source when video mixing is required. If bit 12 of the 
video or cursor palette for any logical color is set, -SUP is driven low when that logical color is 
displayed. In this way any logical color can be defined as being supreme or not, on a pixel-by­
pixel basis. 

Horizontal Synchronization pulse (CMOS level output) - This signal is required by some monitors. 
It is also used by the MEMC to discriminate between cursor and video data requests. The pulse 
is active low, and the pulse width is programmable in units of two pixels, though there are certain 
system-related restrictions. See section Restrictions On Parameters. . 

Vertical/Composite Synchronization pulse (CMOS level output) - Depending on bit seven in the 
control register, this pin can be either the vertical sync pulse, or a form of composite sync pulse. 
The vertical sync pulse width is programmable in units of a raster and, if selected, is active low. 
The composite sync pulse is the XNOR of -HSYC and -VSYC. 

Video External Data output (CMOS level output) - The inverse of the four bits of data which are 
fed to the red DAC are output on these pins. With an external serializer, this data can be used to 
produce very high resolution monochrome displays. 

Sound DAC Reference Current (Analog input) - A current must be fed into this pin to set the 
output current of the sound DAC. The full scale output current is approximately 32 times this 
current. In most applications, a resistor from VDD to this pin is sufficient to set the current. 

Left Channel Positive Sound output (Analog output) - The sound output is the form of a current 
sink which is switched to one of four pins (pins 13-16). The left channel signal is produced by 
externally integrating and subtracting the two signals, LCH and -LCH. Similarly, the right channel 
signal is produced by externally integrating and subtracting the two signals RCH and -RCH. 

Left Channel Negative Sound output (Analog output) - See description of LCH. 

Right Channel Positive Sound output (Analog output) - See description of LCH. 

Right Channel Negative Sound output (Analog output) - See description of LCH. 

Power (Digital ground) - This pin is the ground supply to the digital circuits in the device. 

Power (Sound ground) - This pin is the ground supply to the sound DAC in the device. It must be 
connected to the pin VSSD outside the chip. 

Power (Video ground) - This pin is the ground supply to the video DACs in the device. It must be 
connected to the pin VSSD outside the chip. 

Power (Digital +5 V ±5% supply) - This pin is the positive supply to the digital circuits in the 
device. 

Power (Sound +5 V ±5% supply) - This pin is the positive supply to the sound DAC in the device. 
It must be at the same potential as VDDD, and should be decoupled to VSSS. Note that the 
sound reference current input and the sound analog output currents are all referenced to this 
signal. 

5-6 



_ VLSI TECHNOLOGY, INC. 

FUNCTIONAL PIN DIAGRAM 

POWER { 
SUPPLY 

MEMC { 
INTERFACE 

VDD(2) ... REFV 

VSS(3) .... ROUT ... 
GOUT ... 

CKIN .... 
BOUT --. 

-VIDW ... 
-SUP ... ... FLBK 
-HSYC ... 

DATABUS~ 
-V/CS _ .... 

I D31- DO / 
V -VED3 - -VEDO 

DMA 
INTERFACE 

TEST { 
SUPPORT 

... 

FUNCTIONAL DESCRIPTION 
Apart from the three 32-bit wide FIFOs 
(video, cursor, and sound), the vloe 
contains 46 write-only registers of up to 
13-bits each. In all cases the address of 
the register is contained in the top 6-bits 
(31-26) of the data field. Bits 25 and 24 
are not used. The actual data bits are 
distributed among the remaining 24-bits 
of the data field according to the register 
in question. The encoding format is 
shown in Figure 1. 

Treating bit 24 as the least significant 
address bit, the register map is shown in 
Table '1 on the following page. Note that 
there are 18 undefined locations. These 

Vl86C310 
-VDRO 

-VDAK ... 
~ REFS 

LCH 
-SDRO 

-LCH 
-SDAK ... 

RCH 

-RCH 

-SD3 --SDO 

NSEL ..... .... SINK 

-UR -HI 

locations should never ba written to as 
they may actually contain: other regis­
ters. (Some registers are, dual-mapped 
within the device.) 

In order to define the display format, 
eleven registers must be programmed. 
Screen parameter definitions are shown 
in Figure 2 on the following page. 

Video Palette Logical Colors O-FH: 
Addresses 00-3CH 
In 1-, 2-, and 4-bits per pixel mode, data 
bits 012-00 define the physical color 
corresponding to that logical color. The 
data bus encoding is shown in Figure 3. 
Figure 4 shows the physical color field 
specification. 

FIGURE 1. DATA BUS ENCODING FORMAT 
3130292827262524232221201918171615141312111098765 4 3 2 0 

c= 10101 I 

L 1
11--------------------11- VIDC Data 

VIDC Address 

FIGURE 3. VIDEO PALETTE LOGICAL COLOR FORMAT 

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 
~ lololxlxlxlxlxlxlxlxlxlxlxl I 

l I 
I I Physical 
'-------------'- Color 

---'-------------------------Logical 

FIGURE 4. VIDEO PHYSICAL COLOR FORMAT 
Color 

12 11 10 9 8 7 6 5 4 3 2 o 

~
UP _____ B_L_U_E ______ -+ _______ G_R_EE_N ______ -r _______ R_E_D ______ __ 

D12 D11 010 D9 D8 07 D6 05 D4 D3 D2 D1 DO _________________ L-_______________ ~ ______________ ___ 

5-7 

... 

... 

... 

... 

... 

} 

VIDEO 
INTERFACE 

SOUND 
INTERFACE 

VL86C310 

} 

EXTERNAL 
SYNCHRONIZATION 

03-00 define the red amplitude 
(00 least significant) 

07-04 define the green amplitude 
(04 least significant) 

011-08 define blue] amplitude 
(08 least significant) I 

012 defines the: supremacy bit 
for that color 

In 8-bits per pixel mode, only 9-bits are 
defined as shown in Figure 5. The 
palette outputs define Ilhe least signifi­
cant bits of each color" The most 
significant bits for each color now come 
directly from the upper 4-bits of the 
logical color field, giving the physical 
data field as shown in 'Figure 6. 

In four and 8-bits per pixel mode, all 16 
locations should be programmed. In 2-
bits per pixel mode only colors zero, 
one, two, and three need to be defined. 
In 1-bit per pixel mode" only colors zero 
and one need to be pr~grammed. 

Border Color Register: Address 40H 
In all modes, this register defines the 
border physical color. The data bus 
encoding is shown in Fiigure 7. 

03-00 define the red amplitude 
(00 least significant) 

07-04 define the green amplitude 
(04 least significant) 

011-08 define the blue amplitude 
(08 least significant) 

012 defines the 'supremacy bit 
for the border 



e VLSI TECHNOLOGY, INC. 

FIGURE 2. VL86C310 DISPLAY PARAMETERS 

VCSR 

VCER 

J 

Horizontal 
Back 
Porch 

Horizontal 
Front 
Porch 

VL86C310 

HCR ---------\---14------*1 

~-------;-------- HBER 

~-------:- HDER "I 

HCSR "I ______________________ ~r--l~ ______________________ __ 

TABLE 1. REGISTER ADDRESS ASSIGNMENTS 

Address Address Address 
(Hex) RegIster FunctIon (Hex) RegIster FunctIon (Hex) RegIster Function 

00 Video Palette Logical Color 0 44 Cursor Palette Logical Color 1 94 Horizontal Border End Register 

04 Video Palette Logical Color 1 48 Cursor Palette Logical Color 2 98 Horizontal Cursor Start Register 

08 Video Palette Logical Color 2 4C Cursor Palette Logical Color 3 9C Horizontal Interlace Register 

OC Video Palette Logical Color 3 50-5C Reserved AO Vertical Cycle Register 

10 Video Palette Logical Color 4 60 Stereo Image Register 7 A4 Vertical Sync Width Register 

14 Video Palette Logical Color 5 64 Stereo Image Register 0 AS Vertical Border Start Register 

18 Video Palette Logical Color 6 68 Stereo Image Register 1 AC Vertical Display Start Register 

1C Video Palette Logical Color 7 6C Stereo Image Register 2 BO Vertical Display End Register 

20 Video Palette Logical Color 8 70 Stereo Image Register 3 B4 Vertical Border End Register 

24 Video Palette Logical Color 9 74 Stereo Image Register 4 B8 Vertical Cursor Start Register 

28 Video Palette Logical Color A 78 Stereo Image Register 5 BC Vertical Cursor End Register 

2C Video Palette Logical Color B 7C Stereo Image Register 6 CO Sound Frequency Register 

30 Video Palette Logical Color C 80 Horizontal Cycle Register C4- DC Reserved 

34 Video Palette Logical Color D 84 Horizontal Sync Width Register EO Control Register 

38 Video Palette Logical Color E 88 Horizontal Border Start Register E4 - FC Reserved 

3C Video Palette Logical Color F 8C Horizontal Display Start Register 

40 Border Color Register 90 Horizontal Display End Register 

5-8 



_ VLSI TECHNOLOGY, INC. 

FIGURE 5. VIDEO PALETTE DATA ENCODING FOR 8 BITS PER PIXEL MODE 
3130292827262524232221201918171615141312111098765432 

12 11 10 9 8 7 6 S 4 3 2 o 
~r-______ B_LU_E ______ ~r-_____ G_R_E_E_N ______ +-_______ R_EO ______ -1 

~ L7"" 010* 09" 08" L6"" LS"" OS" 04" L4" 02* 01" DO" 

• Dn: These bits are from the palette field. 
*. Ln: These bits are from the logical field. 

Cursor Palette Logical Colors 1-3: 
Address 44-4CH 
In all modes, these registers define the 
physical cursor colors corresponding to 
the logical colors. Note that cursor 
logical color 00 is transparent (Le., no 
cursor display), and this location is used 
for the Border Color Register. Figure 8 
illustrates the data bus encoding for this 
register. 

03-00 define the red amplitude 
(DO least significant) 

07-04 define the green amplitude 
(04 least significant) 

011-08 define the blue amplitude 
(08 least significant) 

012 defines the supremacy bit 
for that cursor color 

Stereo Image Registers; Channels 0-
7: Addresses 60H-7CH 
These eight registers define the stereo 
image position for each of the eight 
possible channels as shown in Table 1. 

When only four channels are used, 
registers 4,5,6,7 should'be program­
med to the same values as registers 0, 
1, 2, 3 respectively. If only two chan­
nels are used, registers 0, 2, 4, and 6 
pertain to one channel, and so should 
be programmed to the sarne value, and 
registers 1, 3, 5, and 7 pertain to the 

FIGURE 7. BORDER COLOR REGISTER DATA BUS ENCODING 
3130292827262S242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0 
~Iolololololxlxlxlxlxlxlxlxlxlxlxl I 

I I 

FIGURE 8. CURSOR PALETTE DATA BUS ENCODING 
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2' 1 0 

~Iol lololxlxlxlxlxlxlxlxlxlxlxl 1 

II I I 

FIGURE 9. STEREO IMAGE REGISTER DATA BUS ENCODING 

3130292827262524232221201918171615141312111098765432 10 
~I lololxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxl 1 

Border 
Physical 
Color 

Cursor 
Physical 
Color 

Cursor 
Logical 
Color 

LL L.lValue 

Channel 
---------------------------------Address 

FIGURE 10. HORIZONTAL CYCLE REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 

11101010101010101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 
1 1 

5-9 

Data 

Vl86C310 
TABLE 2. STEREO IMAGE 
REGISTER VALUES 
Value Stereo Image Position 

0 Undefined 

1 100% Left' Channel 

2 83% Left Ghannel 

3 67% Left Ghannel 

4 Center 

5 67% Right Channel 

6 83% Right Channel 

7 100% Right Channel 

other channel. When only one channel 
is used, all eight registers should be 
programmed with the same value. The 
3-bit value is defined in Table 2 and 
data bus encoding is shown in Figure 9. 

Horizontal Cycle Register (HCR): 
Address 80H 
This register defines the period, in units 
of two pixels, of the hOirizontal scan 
(Le., display time + horizontal retrace 
time). If N pixels are required in the 
horizontal scan period, then a value of 
(N-2)/2 should be programmed into the 
HCR (N must be even). If interlace 
display is selected, N/2 must also be 
even. This is a 10-bit register, with bit 
14 the least significant Data bus 
encoding is shown in Figure 10. 

Horizontal Sync Wld1h Register 
(HSWR): Address 841H 
This register defines the width, in units 
of two pixel periods, of; the horizontal 
sync pulse. Encoding of the data bus is 
shown in Figure 11. IfN pixels are re­
quired in the horizontal sync pulse, then 
value (N-2)/2 should be programmed 
into the HSWR. (N must be even.) The 
minimum value programmed may be 0, 
but system constraints impose a larger 
minimum value. See section Restriction 
On Parameters. This i,s a 10-bit 
register, with bit 14 the least significant. 

Horizontal Border Start Register 
(HBSR): Address 881+1 
This register defines the time, in units of 
two pixel periods, from the start of 
-HSYC pulse to the start of the border 
display. If M pixels are required in this 
time, then value (M-1 )/2 should be 
programmed into the HBSR. (M must 
be odd.) Note that this register must 

I 



_ VLSI TECHNOLOGY, INC. 

FIGURE 11. HORIZONTAL SYNC WIDTH REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 

11101010101110101 IxlxlxlxlxlxlxliUiULxlxlxlxlxl 
I I Data 

FIGURE 12. HORIZONTAL BORDER START REGISTER DATA BUS ENCODING 
3130292827262524232221201918171615141312111098765432 10 

1110101011 1010101 Ixlxlxlxlxlxlxlxlxl~lxlxlxlxl 

1 I Data 

FIGURE 13. HORIZONTAL DISPLAY START REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 

11101010111110101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 

L- I Data 

FIGURE 14. HORIZONTAL DISPLAY END REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109876543210 

11101011101010101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 
1 I Data 

FIGURE 15. HORIZONTAL BORDER END REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109876543210 

11101011101110101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 
1 I Data 

FIGURE 16. HORIZONTAL CURSOR START REGISTER DATA BUS ENCODING 
31302928272625242322212019181716151413121110987 654 3 2 1 0 

11101011111010101 lololxlxlxlxlxlxlxlxlxlxlxl 

I I L-1-- Except For High-Resolution Mode 
1-. -------~. -----------Data 

always be programmed, even when a 
border is not required. H a border is not 
required, then the value in the HBSR 
must be such as to start the border in 
the same place as the display start (Le, 
M[HBSR] == M[HDSR]). This is a 10-bit 
register with bit 14 the least significant. 
Data bus encoding is shown in Figure 
12. 

Horizontal Display Start Register 
(HDSR): Address 8CH 
This register defines the time, in units of 
two pixel periods, from the start of the 
-HSYC pulse to the beginning of the 
video display. The value programmed 
here depends on the screen mode in 
use. If M pixels are required in this 
time, then: in 8-bits per pixel mode, the 
value (M-5)12 should be program-med 
into the HDSR; in 4-bits per pixel mode, 
value (M-7)12 should be programmed 
into the HDSR; in 2-bits per pixel mode, 
value (M-11 )/2 should be programmed 
into the HDSR; in 1-bit per pixel mode, 
value (M-19)/2 should be programmed 
into the HDSR. M must be odd in all 

cases. This is a 10-bit register, with bit 
14 the least significant. Data bus 
encoding for this register is shown in 
Figure 13. 

Horizontal Display End Register 
(HDER): Address 90H 
This register defines the time, in units of 
two-pixel periods, from the start of the 
horizontal sync pulse to the end of the 
video display (Le., the first pixel which is 
not displayed). The value programmed 
here depends on the screen mode 
used. H M pixels are required in this 
time, then: in 8-bits per pixel mode, 
value (M-5)12 should be programmed 
into the HDSR; in 4-bits per pixel mode, 
value (M-7)12 should be programmed 
into the HDSR; in 2-bits per pixel mode, 
value (M-11 )/2 should be programmed 
into the HDSR; in 1-bit per pixel mode, 
value (M-19)/2 should be programmed 
into the HDSR. M must be odd in all 
cases. This is a 10-bit register, with bit 
14 the least significant. Figure 14 
shows data bus encoding of register 
values. 

5-10 

VL86C310 
Horizontal Border End Register 
(HBER): Address 94H 
This register defines the time, in units of 
two-pixel periods, from the start of 
-HSYC pulse to the end of the border 
display (Le., the first pixel which is not 
border). If M pixels are required in this 
time, then value (M-1)/2 should be 
programmed into the HBER. [M must 
be odd.] Again, if no border is required, 
this register must still be programmed 
such that M[HBER] = M[HDER]. This is 
a 10-bit register, with bit 14 the least 
significant. Data bus encoding for this 
register is shown in Figure 15. 

Horizontal Cursor Start Register 
(HCSR): Address 98H 
This register defines the time, in units of 
single pixel periods, from the start of the 
-HSYC pulse to the start of the cursor 
display. If M pixels are required in this 
time, then value (M-6) should be 
programmed into the HCSR. This is 
normally an 11-bit register, with bit 13 
the least significant. Bits 11 and 12 
must be zero except in the High 
Resolution mode. 

In this mode, where each 24 MHz pixel 
is further divided into four pixels, the 
cursor sub-position can be defined by 
programming bits 11 and 12 of the 
HCSR, which will move the cursor 
position within the 24 MHz pixel. Refer 
to the High Resolution Mode section. 

Note that only the cursor start positon 
needs to be defined, as the cursor is 
automatically disabled after 32 pixels. If 
a cursor smaller than this is required, 
then the remaining bits in the cursor 
pattern should be programmed to 
logical color 00 (transparent). Figure 16 
shows the data bus encoding scheme. 

Horizontal Interlace Register (HIR): 
Address9CH 
This register must be programmed if an 
interlaced sync display is required. 
Otherwise, it may be ignored. If value L 
is written into the HCR, the value 
(L+ 1 )/2 should be written into the HIR. 
[L is odd.] This is a 10-bit register with 
bit 14 the least significant. Data bus 
encoding is shown in Figure 17. 

Vertical Cycle Register (VCR): 
Address AOH 
This register defines the period, in units 
of a raster, of the vertical scan, i.e., 
display time + fly back time. If N rasters 



e VLSI TECHNOLOGY, INC. 

FIGURE 17. HORIZONTAL INTERLACE REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 

liIQIQD 11 11 10 10 I - I X I X I X I X I X I X I X I X I X I X I XII X I X I X I 

LI ______ .LI __________ Data 

FIGURE 18. VERTICAL CYCLE REGISTER DATA BUS ENCODING 
3130292827262524232221201918171615141312111098765432 10 

LiIQJiIo 10 1010 101 I xl xl Xl xl xlxl Xl xl xlxl X:I xl xl xl 

LI ______ ..1..1 __________ Data 

FIGURE 19. VERTICAL SYNC WIDTH REGISTER DATA BUS ENCODING 

3130292827262524232221201918171615141312111098765432 10 

11 I 0 11 I 0 10 11 I 0 I 0 I - I X I X I X I X I X I X I X I X I X I X I xl X I X I X I 

LI ______ .LI __________ Data 

FIGURE 20. VERTICAL BORDER START REGISTER DATA BUS ENCODING 
3130292827262524232221201918171615141312111098765432 10 

11101110111010101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 

,-I ______ --"-1 ___________ Data 

FIGURE 21. VERTICAL DISPLAY START REGISTER DATA BUS ENCODING 

31302928272625242322212019181716151413121110987654 3,2 10 

[[G[IfTOI1 11 10101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 

1,-______ --"-1 ___________ Data 

FIGURE 22. VERTICAL DISPLAY END REGISTER DATA BUS ENCODING 
313029282726252423222120191817161514131211109 8 7 65 4 3 2 1 0 

11101111101010101 IxlxlxlxlxlxlxlxlxlxlxlXlxlxl 

1-1 ______ ..1..1 __________ Data 

FIGURE 23. VERTICAL BORDER END REGISTER DATA BUS ENCODING 
31 30292827262524232221 20 191817161514 13121110 9 8 7 65 4 3 2 1 0 

CillJID 1011 10101 IxlxlxlxlxlxlxlXlxlxlxlxlxlxl 

IL-______ -L.I __________ Data 

are required in a complete frame, then 
value (N~1) should be programmed into 
the VCR. If interlaced display is used, 
(N-3)/2 must be programmed into the 
VCR. [N is odd.] Here N is still the 
number of rasters in a complete frame, 
not a field. This is a 1 a-bit register, with 
bit 14 the least significant. Figure 18 
shows the data bus encoding scheme. 

Vertical Sync Width Register 
(VSWR): Address A4H 
This register defines the width, in units 
of a raster, of the -V/CS pulse. If N 
rasters are required in the vertical sync 
pulse, then value (N-1) should be 
programmed into the VSWR. The 
minimum value allowed for N is 1. This 
is a 1 a-bit register, with bit 14 the least 
significant. Data bus encoding is shown 
in Figure 19. 

Vertical Border Start Register 
(VBSR): Address ASH 
This register defines the time, in units of 
a raster, from the start of the, vertical 
sync pulse to the start of the !border 
display. If N rasters are required in this 
time, then value (N-1) should be 
programmed into the VBSR. If no 
border is required, then this register 
must still be programmed, in;this case 
to the same value as the VDSR. This is 
a 1 O-bit register, with bit 14 the least 
significant. Figure 20 showsithe data 
bus encoding. 

Vertical Display Start Register 
(VDSR): Address ACH 
This register defines the time, in units of 
a raster, from the start of theivertical 
sync pulse to the start of the ,video dis­
play. If N rasters are required in this 

5-11 

VL86C310 
time, then value (N-1) st:lould be pro­
grammed in the VDSR. This is a 1 a-bit 
register, with bit 14 the lieast significant. 
The data bus encoding i's shown in 
Figure 21. 

Vertical Display End Register 
(VDER): Address BOH 
This register defines the'time, in units of 
a raster, from the start 0'1 the vertical 
sync pulse to the end of!the video 
display (Le., the first raster on which the 
display is not present). If N rasters are 
required in this time, then the value (N-
1) should be programmed into the 
VDER. This is a 1 a-bit register, with bit 
14 the least significant. Figure 22 
illustrates the data bus encoding. 

Vertical Border End Register (VBER): 
Address B4H 
This register defines the time, in units of 
a raster, from the start of the vertical 
sync pulse to the end of the border 
display (Le., the first raster on which the 
border is not present). If N rasters are 
required in this time, then the value 
(N-1) should be programmed into the 
VBER. If no border is required, then 
this register must be programmed to the -.!I 
same value as the VDER. This is a 10- KII 
bit register, with bit 14 the least signifi-
cant. Data bus encoding for this regis-
ter is shown in Figure 23. 

Vertical Cursor Start Register 
(VCSR): Address B8H 
This register defines the 'time, in units of 
a raster, from the start of the vertical 
sync pulse to the start of the cursor 
display. If N rasters are required in this 
time, then value (N-1) should be pro­
grammed into the VCSR. This is a 10-
bit register, with bit 14 being the least 
significant. Figure 24 shows the data 
bus encoding for this register. 

Vertical Cursor End Register (VCER): 
Address BCH 
This register defines the ,time, in units of 
a raster, from the start of, the vertical 
sync pulse to the end of the cursor dis­
play (Le., the first raster 0n which the 
cursor is not present). If IN rasters are 
required in this time, then value (N-1) 
should be programmed into the VCER. 
This is a 1 a-bit register, with bit 14 the 
least significant. Data bus encoding is 
shown in Figure 25. 



_ VLSI TECHNOLOGY, INC. 

FIGURE 24. VERTICAL CURSOR START REGISTER DATA BUS ENCODING 

3130292827262524232221201918171615141312111098765432 1 0 

11101111111010101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlx] 

L-I ------..L..I---------- Data 

FIGURE 25. VERTICAL CURSOR END REGISTER DATA BUS ENCODING 

31 30 29 28 27 26 25 2423 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11101111111110101 Ixlxlxlxlxlxlxlxlxlxlxlxlxlxl 

1'---------'1----------Data 
FIGURE 26. SOUND FREQUENCY REGISTER DATA BUS ENCODING 

31 30 29 2827 26 25 24 23 2221 20 1918 1716 1514 13 12 111 0 9 8 7 6 5 4 3 2 1 0 

1111 101010101010lxlxlxlXlxlXlxlXlxlXlxlxlxlxlXl1 1 1 

Sound Frequency Register (SFR): 
Address COH 
This register defines the byte sample 
rate of the sound data. It is defined in 
units of 1 Ils. If a sample period of N IlS 
is required, then (N-1) should be pro­
grammed into the SFR. N may take 
any value between three and 256. This 
is a 9-bit register with bit 0 the least sig­
nificant. Bit 8 in the SFR is used as a 
test bit, and should always be set to 
one. When this bit is set to zero, all the 
internal timing signals are cleared. 
Figure 26 shows the data bus encoding. 

Control Register (CR): Address EOH 
This register contains the operating 

1 1 Data 

mode controls: a total of 11 bits are 
defined, and three of these are for test 
purposes only. Note that bit 8 in the 
SFR must also be set before the device 
can operate correctly. 

The two bit-pairs for the pixel rate and 
the bits per pixel selects are defined in 
Figure 27. The bit-pair to define the 
point at which the OMA request flag is 
set is further explained in the Restriction 
On Parameters section. 

To select interlaced sync displays, 0[6] 
in this register must be set as well as 
setting the correct values in the vertical 
and horizontal timing registers. 

FIGURE 27. CONTROL REGISTER DATA BUS ENCODING 

VL86C310 
The -V/CS pin on the device can be 
program med to output either the vertical 
sync pulse or the composite sync pulse 
which is the XNOR of vertical and hori­
zontal sync. Selection is made by 0[7]. 

The remaining 3-bits are for testing the 
device and are of little interest to the 
user, but their action is as follows. 

In test mode zero (0[14] high, 0[15] 
low), the upper 5-bits of the horizontal 
counter are clocked by a derivative of 
the pixel clock. 

In test mode one (0[14] low, 0[15] high) 
the lower 5-bits of the vertical counter 
are clocked by a derivative of the pixel 
clock. 

In test mode two (0[14] high, 0[15] 
high), the upper 5-bits of the vertical 
counter are clocked by a derivative of 
the pixel clock. 

In test mode three (0[8] set), the pin 
-UR outputs a signal which is eight 
times the frequency of the sound byte 
sampling clock, and the pins S03-S00 
output the inverse of the data which is 
fed to the green OAC [NSEL low] or the 
blue OAC [NSEL high]. 

Note that the device cannot function 
properly in test modes zero, one, and 
two, but test mode three has no effect 
on the normal operation. 

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0 

1111111010101010lxlxlxlxlxlxlxlxl Ixlxlxlxlxl I I I I I =oJ 

TestMode ___ I I_I lL 00 - Normal Operation 
01 - Test Mode 0 
10 - Test Mode 1 
11 -Test Mode 2 

Test Mode 
o - Normal Operation 
1 - Test Mode 3 

CompOSite Sync 
0- Vertical 
1 - CompOSite 

Interlace Sync 
o - Interlace Off 
1 - I nterlace On 

5-12 

Pixel Rate 
00 -8 MHz 
01 -12 Mhz 
10 - 16 MHz 
11 - 24 MHz 
Bits Per Pixel 
00 - 1 Bit Per Pixel 
01 - 2 Bits Per Pixel 
10 -4 Bits Per Pixel 
11 - 8 Bits Per Pixel 

DMA Request 
00 - End of Word 0,4 
01 - End of Word 1,5 
10 - End of Word 2,6 
11 - End of Word 3,7 



e VLSI TECHNOLOGY, INC. 

USING THE VIDC 
The DMA Interface 
The VIDC has three FIFOs Into which 
DMA data is written. The sound FIFO is 
four 32-bit words deep, and works inde­
pendently from the the other two FIFOs. 
The video FIFO is eight 32-bit words 
deep, and the cursor FIFO Is again four 
32-bit words deep. 

Sound FIFO 
Each word of data is strobed into the 
FIFO on the rising edge of -SOAK. 
Data is read out of the FIFO into a byte 
wide latch which then drives the DAC. 
When the last byte in the FIFO is read 
into the latch, the signal -SDRQ is 
driven low, requesting another 16 bytes 
of data. The signal-SDRQ is driven 
high when the first -SDAK is received. 

The time available to service this data 
request is dependent on the sound data 
rate. The minimum value of the SFR is 
three, which defines a byte-rate of 3 J.ls. 
Therefore, the first word must be loaded 
into the FIFO less than 3 J.ls after the 
-SDRQ signal is generated. 

Cursor FIFO 
The cursor FIFO contains 16 bytes of 
data, which is enough for two rasters of 
cursor display. When the VIDC is pro­
grammed to display a cursor, -VDRQ is 
driven low at the same time as -HSYC 
goes low on the first raster on which the 
cursor is to appear. Data is loaded Into 
the FIFO on the rising edge of -VDAK. 
The load cycle must be complete before 
the -HSYC pulse has ended. 

-VDRQ is driven high again when the 
first -VDAK is received. The cursor 
may be any number of rasters high, and 
the cursor FIFO requests data during 
the -HSYC of every alternate raster on 
which it is displayed. 

Video FIFO 
The video FIFO is eight 32-bit words 
deep, and it Is arranged as a circluar 
buffer. Data must always be loaded 
into it in blocks of four words, and this 
FIFO shares the same -VDRQ and 
-VDAK signals as the cursor FIFO. 

To accommodate the vastly different 
rates at which video data is required in 
the different modes, and to accommo­
date different DRAM speeds, the point 
at which more data is requested can be 
varied. This is done by bits 4 and 5 in 
the Control Register. 

During the vertical sync pulse, the FIFO 
is cleared, and the signal -VDRQ is 
high. After the -HSYC pulse of the first 
displayed raster, -VDRQ is driven low. 
Eight words must now be written into 
the FIFO by driving -VDAK low eight 
times. This fills the FIFO. -VDRQ is 
set high again when the fifth -VDAK is 
received. 

Thereafter, the -VDRQ signal is set low 
whenever the FIFO empties to the point 
predetermined by bits 4 and 5 in the 
Control Register. The -VDRQ signal is 
normally set high wlilen theifirst -VDAK 
signal is received. However, if the data 
request is not serviced quickly, and the 
FIFO has emptied to the point where 
another four words have been read out 
when the first new data word arrives, 
then the -VDRQ signal will'stay low, 
requesting another four words of data. 

The Video DMA Interface 
As noted above, the cursor and video 
FIFOs share the same DMA interface 
signals. Normally, a -VDRQ low during 
the -HSYC pulse isa request for cursor 
data, and -VDRQ low at any other 
times is a request for video, data. Fig­
ure 28 shows the relationships graphi­
cally. 

However, often a video request 
happens just before the end of a raster 

requesting data for the next raster. The 
load cycle for this video request is 
allowed to overlap the -HSYC pulse, 
even if a cursor request happens during 
the -HSYC pulse. Note that in this 
case the -VDRQ signal may not be 
driven high between these two cycles. 
The first cycle must be video data and 
the second cycle must l:i>e cursor data. 
The cursor load cycle must still be 
complete before the end of the -HSYC 
pulse. This is shown iniFigure 29. 

Figure 30 shows the situation where a 
cursor is displayed on the first raster of 
the frame. Note the double video load 
cycle. The cursor load cycle must not 
overlap the end of the --HSYC pulse 
(otherwise data will be loaded into the 
wrong FIFO), and the first word of video 
data must be present inthe FIFO before 
the display starts. 

Restrictions On Psrameters 
It is clear from the above that certain 
restrictions must be applied to the 
screen parameters, most of which are 
system dependent. The following 
paragraphs assume the VI DC is being 
used in a system with the processor 
and MEMC and tw%ne clock page­
mode DRAM memory. In this system 
DRAM cycles consist of; an N-cycle (two 
RCLK clocks) followed by up to three 
sequential S-cycles (one RCLK clock). 

FIGURE 28. VIDEO AND CURSOR DMA OPERATION 

f*:§!WJY] P':l"7::~~'7:77'77"T.:q>'77>@·i~i~'777TT7:'T7777774 
-HSYC 

-VDRO L-J L-..r-
-VDAK LJ1SULJ LS1J~ 

_D_31_-_DO _____ ~x=x=x=x=:x _____ _'c::x::=x=x=x= 
1 . Cursor . 1 r--- Load -e>j 

FIGURE 29. VIDEO DMA OVERLAPPING -HSVC PULSE 

-HSYC 

-VDRO 

L-.-1 

I. Video 1 r----- Load ---tot 

1'77F00:0:077TTn7<n,~'7T.,,:;:;>'7I7.:;)i~ 

~ .. ~)~e~XWhX0l 

LS-

1SL~ 

~D~31~-~D~O/~-J'~J~_~'L--1'~-J'~J~~'L--11~J~_-JL-~~~.~ 

5-13 

1 . Cursor .1 re--- Load -e>j 
1 V'deo .1 re--- L~ad ---tot 



_ VLSI TECHNOLOGY, INC. 

VL86C310 
FIGURE 30. CURSOR DMA AT THE BEGINNING OF A FRAME 

FLBK 

Depending on the video mode in use; 
data can be read from the FIFO at 1.5, 
2, 3, 4, 6, a, 12, or 16 Mbytes/second. 

~~--------------------------------------~--

~ -HSVC 11----_------' 
-VDRQ 

L-J 

-VDAK 

Figure 31 shows the case for the 16 
Mbytes/second mode. The request 
must be set at the end of words one 
and five. 

Figure 32 shows the case for the 12 
Mbytes/second mode. The request 
must be set at the end of words two and 
six. 

1 Cursor .1 
t'4-- Load ---111 

I. Video .1 
j'4--- Load ---111 

1 Video .1 
j'4--- Load ---111 

Figure 33 shows 8 Mbytes per second 
mode. Again, the request must be set 
at the end of words two and six. 

In all other modes, the request should 
be set at the end of words three and 
seven. 

Hence, a VIDC FIFO load cycle 
consists of 1 N + 3S requiring five RCLK 
clocks (417 ns at 12 MHz). 

FIFO Request Pointer Values (Con­
trol Register Bits [4:5» 
The video FIFO is a circular buffer, 
although the core is asynchronous, with 
a ripple-through time of 150 ns from the 
top to the bottom. Data is loaded in 
blocks of four words, and is read out in 
bytes, starting with byte 0 of word zero 
and so on. -VDRQ can be set low half 
way through reading the last byte of any 
of word 0-3 (and correspondingly 7-4) 
according to bits 5-4 in the Control Reg­
ister. In the high resolution video 
modes where the bytes are being 
consumed quickly, the request signal 
must be set at an earlier point than in 
the low resolution modes. Selections 
are defined in Table 3. 

The request signal -VDRQ should be 
brought low as soon as the FIFO can 
accept the four words of data when they 
arrive. The minimum time between 
setting the request and receiving the 
last word of data is 187 ns + 625 ns -
812 ns (at 8 MHz). [The 187 ns figure 

TABLE 3. FIFO POINTER 
SETTINGS 
Control Register 

-VDRQSet At 
Bit 5 Bit 4 End Of Words 

0 0 0,4 

0 1 1,5 

1 0 2,6 

1 1 3,7 

is the minimum time in which MEMC 
can start a DMA cycle.] If the FIFO is 
full at the start, then it will have four 
words spare 150 ns after the start of 
word 4. [150 ns is the ripple-through 
time of the FIFO.] Hence, the request 
should be made at the first opportunity 
after (812 ns - 150 ns - 652 ns) before 
the start of word four. The request can 
be made halfway through the last byte 
of any of words 0-3 by programming the 
Control Register. 

Horizontal Sync Pulse Width 
The -HSYC pulse width must be long 
enough to allow a complete load of the 
cursor FIFO. This is made up as 
follows: 

2*[N+3S] (current + cursor cycles) + 
syncmax + 2*Tprop. 

Le. 2*625 + 312+ 100 .. 1662 ns. 

FIGURE 31. FIFO OPERATING AT 16 MBVTES PER SECOND 

/+-- 652 ns ---1 ---1250ns~ 

L Set DMA Request Here L Sat DMA Request He~ 
FIGURE 32. FIFO OPERATING AT 12 MBVTES PER SECOND 

~ 652 ns ---1 ---1 333 ns ~ 

t SetDMA 
Request Here 

t SetDMA 
Request Here 

FIGURE 33. FIFO OPERATING AT 8 MBVTES PER SECOND 

---1 652ns ~ ---1500ns~ 

\ Word 0\ Word 1\ Word 2\ Word 3\ Word 4\ Word 51 Word 61 Word 7\ Word 0\ 

t SetDMA 
Request Here 

t SatDMA 
Request Here 

5-14 



o VLSI TECHNOLOGY, INC. 

Syncmax is the maximum time MEMC 
can take to recognize the DMA request. 
Tprop is the time taken for the -VDRQ 
signal to reach MEMC, or the time 
taken for -VDAK to reach VIDC. 

The pulse must also be long enough to 
allow the processor to write to the DMA 
address generator (DAG) in the MEMC 
to reset the screen pointer. This may 
be as follows: 

3*[N+3S] (current + cursor + sound 
cycles) + DAG write. 

i.e. 3*625 + 250 = 2125 ns. Since both 
these parameters must be met, this 
larger value must therefore be used. 

Horizontal Front Porch Width 
The front porch may be zero length. 
The total time from the end of display to 
the end of the -HSYC pulse must be 
more than 1912 ns. As the -HSYC 
pulse width has to be at least 2125 ns, 
this does not impose a restriction on the 
value of the back porch. 

Horizontal Front Porch Width 
The back porch must be long enough to 
allow the load of at least one word into 
the video FIFO before the data is read 
out again. This is important at the start 
of the frame because data is required in 
the bottom of the FIFO at least four 
pixel-times before the start of display, 
due to the pipeline delays. Hence the 
back porch must be greater than: 

N+3S+N (current cycle + video N cycle) 
+ syncmax + 2*Tprop + FIFO-ripple + 4 
pixels. 

Le. 250 ... 375 + 250 + 312 + 100 + 150 
+ 4*83 - 1769 ns for 12 MHz displays. 

or 250 + 375 + 250 + 312 + 100 + 150 + 
4*125 = 1937 ns for 8 MHz displays. 

Vertical Sync Pulse and Porch Width 
There are no restricitons on the values 
of the vertical front porch, back porch, 
or sync width. The Vertical Sync Width 
Register (VSWR) may be programmed 
to a value of 0 which gives a vertical 
sync width of one raster. 

Horizontal Display Width 
The number of bits in the pixels of each 
raster must be a multiple of 128. 

Border 
The border cannot be disabled. If no 
border is required, then it should be 
programmed to start and finish in 
exactly the same place as the display 

Vli86C310 
TABLE 4. SCREEN MODE SUPPORT 
Pixel Rate Bits/Pixel FIFO Data Rate 

8 Not Supported 

4 
24 MHz 

12 Mbytes / Second 

2 6 Mbytes / Second 

1 3 Mbytes / Second 

8 16 Mbytes / Second 

4 8 Mbytes / Second 
16MHz 

2 4 M y,tes / Second 

1 2 Mbytes / Second 

(both vertically and horizontally). 

Cursor Position 
The cursor should not be programmed to 
be outside the display area vertically, but 
it may be programmed to start or end 
outside the display a,rea honizontally. 
Note that the cursor will not: be displayed 
outside the border area either vertically 
or horizontally. 

DISPLA Y FORMATS 
Screen Modes 
Fourteen of the possible 16 1display 
modes are supported (See Table 4). 

Data Display 
Pixels are displayed starting at the top 
left hand corner of the screen, with the 
least significant end of the first word 
loaded into the FIFO. In 8-bits per pixel 
mode, bits 0-7 of wo~d zero are the first 
displayed pixel. In 4-bits per pixel mode, 
bits 0-3 of word zero are the first 
displayed pixel. In 2-bits per pixel mode, 
bits 0-1 of word zero are the first 
displayed pixel. In 1 ~bit per pixel mode, 
bit zero of word zero is the first displayed 
pixel. 

Logical Data Fields 
In 1-bit per pixel mode, the data field 
selects the palette at location zero or 
one. The other 14 locations' need not be 
programmed. In 2-bits per pixel mode, 
the data field addresses the palette at 
locations zero through three, The other 

Pixel Rate Bits/Pixel FIFO Data Rate 

8 12 M bz:tes / Second 

4 6 Mbytes / Second 
12MHz 

2 3 Mbytes / Second 

1 1.5 Mbz:tes / Second 

8 8 Mbz:tes / Second 

4 4 Mbz:tes / Second 
8MHz 

2 2 Mbz:tes / Second 

1 Not Su~~orted 

12 locations need not be programmed. 
In 4-bits/pixel mode, the data field ad­
dresses the palette at all 16 locations. 
In 8-bits per pixel mode~ the least 
significant 4-bits drive the palete as in 
4-bits per pixel mode, and the most 
significant four bits drive the most 
significant bits of the RGB DACs 
directly. 

Physical Data Fields 
In 1-, 2-, and 4- bits per, pixel mode, the 
physical data field is shown in Figure 
34. In 8-bits per pixel mode, the 
physical data field is shown in Figure 
35. The On bits come from the palette 
field and the Ln bits come from the 
logical field. 

Cursor Format 
The cursor, in all video modes, is 
defined to be 32 pixels wide and any 
number of rasters high. Any pixel may 
be defined as being transparent, 
enabling cursors of any shape to be 
constructed within the 32 pixel horizon­
tal limit. It is always 2-bits per pixel, 
with bits zero, one in the first word to be 
loaded into the cursor FIFO represent­
ing the first pixel, etc. The logical 
cursor pixel bit-pairs are' defined in 
Table 5. 

The cursor physical field is exactly as 
the video physical field in 1-, 2-, or 4-
bits per pixel modes. 

FIGURE 34. PHYSICAL COLOR FIELD DEFINITIONS 
2 o 

RED 
D:~ D1 DO 

FIGURE 35. PHYSICAL COLOR FIELD DEFINITIONS FOR 8 BITSI PER PIXEL 

12 11 10 9 8 7 6 5 4 3 2 o 
BLUE GREEN RED 

~ __ ~L_7 ___ D_1_0 ___ D_9 ___ D_8-L_L_6 ____ L5 __ ~0~5 __ ~D~4~~L4 02 D1 DO 

5-15 



"VLSI TECHNOLOGY, INC. 

TABLE 5. CURSOR 
LOGICAL COLORS 

Cursor Bit 

MSB LSB Color 

0 0 Transparent 

0 1 Logical Color 1 

1 0 Logical Color 2 

1 1 Logical Color 3 

Border Field 
The border physical field is exactly as 
the video physical field in 1-, 2-, and 4-
bits per pixel modes. 

Controlling the Screen On / Off 
The simplest method of turning the 
screen off is to program the Vertical 
Display End Register (VDER) to be less 
than the VDSR. This will not generate 
any video requests, but will display the 
border color over the whole screen. 
The border can be turned off either by 
programming it to physical color black, 
or by programming the VBSR to be 
greater than the VBER. Doing the latter 
will also disable the cursor, though 
cursor data requests will still be 
generated. Turning the screen back on 
should only be done during vertical 
flyback. 

Cursor On / Off 
The cursor should be turned off by 
setting the VCER to be less than VCSR. 
[Value 0 is suggested.] This will also 
disable cursor data requests. Turning 
the cursor on, and moving it around 
should only be done during vertical 
flyback to prevent flash. 

FIGURE 36. EXAMPLE VIDEO 
OUTPUT CIRCUIT 

VDD 

ROUT Q1 

REFvmr ~: RZ 

T 
C1 Red Output 

_ GND 750 
Une 

Suggested Component Values 
Rr - 10 kO 
R1 - 3300 
R2- 680 
01 should have similar characteristics 
to the emitter-base junction of 01 

Writing to the Palettes and Other 
Registers 
The palettes may be programmed 
reliably at any time, but are best 
programmed during vertical flyback. 
Changing the values of other registers 
should only be done during vertical 
flyback. The signal FLBK is set high 
from the start of the first raster after the 
end of display (though it may still be 
border), until the start of the first raster 
which is display. 

Video DAC Outputs 
The video DAC outputs are in the form 
of current sinks. Each DAC has a 
resolution of 4-bits, giving a linear 
transfer characteristic with 16 values. 

A digital input value of four zeros gives 
zero current sink, and a digital input 
value of four ones gives the maximum 
current sink. The magnitude of the 
output is a function of the video 
reference input current, with the 
maximum current sink being 15 times 
the reference input current. 

High Resolution Modes 
The four bits of digital data which 
normally drive the red DAC are avail­
able to the user on pins -VED3 through 
-VEDO. This pixel rate bit-stream can 
be externally serialized to a single bit­
stream of four times the VI DC pixel rate. 
With the VIDC operating at 24 MHz, 
four bits per pixel mode, 96 MHz bit 
rates are generated giving very high 
resolution monochrome displays. Alter­
natively, with an external DAC, 48 MHz 
grey-level displays are possible. 

Refering to the block diagram, it will be 
noted that the data passes through the 
High Res. Shifter block before reaching 
the pins -VED3 - -VEDO. This block 
enables the cursor to be positioned to 
any (96 MHz) pixel. Note that this block 
also inverts the data from the red DAC. 

When used in this mode, the VIDC must 
be programmed to a different set of 
values. But note that the "normal" 
analog modes of VIDC are still available 
simply by reprogramming: the addition 
of the shifter hardware will not affect the 
other modes, and the sound system is 
totally independent from this. 

(1) Four-bits per pixel should always be 
selected. 

(2) The programmed VIDC pixel rate is 
one quarter of the external pixel 

5-16 

VL86C310 
rate. The vertical timing parameters 
are unaffected by this as they are 
defined in units of a raster, but the 
horizontal timing parameters which 
are defined in units of two (24 MHz) 
pixels can only be programmed in 
units of eight (96 MHz) pixels. 
There are now four times as many 
pixels on a line as are actually 
programmed. For example, if a 
display of 1024 • 1024 is required, 
the VIDC should be programmed to 
generate a display of 256 (horizon­
tal) by 1024 (vertical). 

(3) All 16 locations of the video palette 
should be programmed to a 1:1 
logical to physical mapping. Only 
D[0:3] (red DAC values) need to be 
programmed, as D[4:11] are 
ignored. The supremacy bit (D[12]) 
may be used if required. 

(4) D[4,5] in the Border Color Register 
must be set to zero. D[0:3] and 
D[12] may also be programmed if a 
border is required. 

(5) The cursor palette should be 
programmed to the following values: 

cursor color 1 : 10H 
cursor color 2 : 20H 
cursor color 3 : 30H 
Supremacy may also be used. 

Then the 2-bits which define each 
cursor pixel are defined in Table 6. 

Note that the cursor can only be defined 
horizontally in units of four (96 MHz) 
pixels, though it can be positioned 
anywhere on the screen to within one 
(96 MHz) pixel. See the section on 
Horizontal Cursor Start Register for 
more detail. The hardware should be 
arranged so that -VEDO is the first bit to 
be serialized. 

TABLE a CURSOR COLOR 
IN HIGH-RESOLUTION 
MODE 
Cursor Bits 

MSB LSB Deflntlon 

0 0 Transparent 

0 1 Cursor Black 

1 0 Do Not Use 

1 1 Cursor White 



_ VLSI TECHNOLOGY, INC. 

FIGURE 37. HIGH RESOLUTION PIXEL GENERATOR 

....... ... 

....... .. .. -.. -
r 

... 

4 To 1 
Muxl 

Serializer 

.. ... 
Monochrome 

Digital 
Output 

I VEDa I VED1 I VED2 VED3 I VEDa I VED1 I VED21 VE[))31 

~ __ VIDC Pixel ----t ... ~1 ----..J 
1"""'- Time ----"-1 

I.......- Monochrome 
1"""'- Pixel Time 

External Synchronization and Mixing 
The VIDC has two signals assoicated 
with external synchronization appli­
cations: SUP and SINK. SUP is an 
output which can be used to control an 
external multiplexer for mixing the VIDC 
output with that from an external 
source. All video and cursor logical 
colors from the palettes and the border 
color can control SUP. When D[12] in 
any of the above registers is set and 
that color is being displayed, SUP is 
driven low. The output is pipelined and 
is synchronous with the DAC outputs 
and the -VED3 - -VEDa signals. 

The signal SINK is an input which when 
driven high resets the vertical counters 
to the first raster. If an interlaced sync 
display is being generated, then SINK 
will reset the counters to the first raster 
of the odd field. The pulse applied to 
this pin must be shorter than a raster 
time. The horizontal counters are not 
affected by this signal. The horizontal 
synchronization must be done by 

phase-locking (or in simple applications, 
by interrupting) the Input clock CKIN. 
Remember that the sound system is 
also driven from a derivative of CKIN. 

Composite Sync 
According to the setting of D[7] in the 
Control Register, the -V/CS can output 
a composite sync pulse. This is syn­
thesized from the XNOR of vertical and 
horizontal syncs as shown in Figure 38. 

Interlaced Displays 
The VIDC can generate an, interlaced 
sync display. An example of interlace 
timing is shown in Figure 39. Normally 
the video data in each field, is the same. 
The VIDC Vertical Cycle Register is set 
to a value (N-3)/2, where N, is the total 
number of rasters in a frame. There are 
N/2 raster in the even and odd fields. 
On raster (N+ 1 )/2, the vertical sync 
pulse is output and the cycle repeats, 
but this is now the odd field, so the 
vertical sync pulse is delayed by half a 
raster time as defined by the value in 

FIGURE 38. COMPOSITE SYNC GENERATION 

-VSYC 

-HSYC 

-V/CS_~ 

FIGURE 39. INTERLACE DISPLAY TIMING GENERATION 

HIIL~~~ 

1 2 3 n ~ n N; 1 n n n n N n n 
HSYNC~,.u '------J '------J ~ L...-....,.I,.u '------J L---I L---I L 

--I R:t~r I+-
VSYNC S L-,.,,. I l..,t,. I 

~ ~~ + ~~ ~ 

5-17 

VL86C310 
FIGURE 40. SOUND OUTPUT CIR­
CUIT 

VDDS 

LCH --I----~4 

-LCH-....... ---~ 

Left 
Channel 
Output 

the HIR. On the first raster in the odd 
field which is not vertical sync, a dummy 
raster is inserted. Thisimakes the odd 
field N/2 rasters long as well. 

Sound System 
The sound system consists of a four 
word FIFO and byte wide latch which 
drive a 7-bit exponentiaJ DAC. The 
eighth bit steers the DAiC output to one 
of two pairs of output pi:ns, one pair 
designated "+", and the other pair 
designated "-". The sound signal is 
generated externally by' integrating and 
then subtracting these two pairs of 
signals. An example circuit is shown in 
Figure 40. The integration is performed 
by the capacitor C. 

Stereo image is synthesized by time­
division mUltiplexing the output between 
the "left" and "right" pair of output 
signals as shown in Figure 41. The first 
quarter of each sample iis muted to 
allow for DAC settling and deglitching. 
The stereo image is specified for each 
channel by programming the corre­
sponding Stereo Image !Register. 

The system can operate in 1, 2, 4, or 8 
channel modes. In 8 channel mode, the 
channels are sampled sequentially, 
starting with the first byte of data, which 
is channel 0; the second byte of data is 
channel 1 and so on. The external 
integrating time constant must be long 
enough to integrate over a complete 
sample cycle. In 4 channel mode, the 
fifth byte to be sampled is again 
channel a, so Stereo Image Register 4 
must be programmed toithe same value 
as Stereo Image Register a, and so on. 
In 2 channel mode, Stereo Image 
Registers a, 2, 4, and 6 !Correspond to 
channel a and Stereo Image Registers 
1, 3, 5, and 7 correspond to channel 1. 
In single channel mode,all eight Stereo 
Image Registers should 'contain the 
same value. 



8 VLSI TECHNOLOGY, INC. 

FIGURE 41. STEREO IMAGE SYNTHESIS 

I Channel 0 I I Channel 1 I I Channel 2 I I Channel 3 I Channel 4 I ChannelS I Channel 6 

Center Left Right 83% Left 67% Left Center 67% Right 

The sample rate is selectable by the 
SFR in units of 1 Jls, with a minimum 
value of 3 Jls. Clearly, in eight channel 
mode the bytes for each channel are 
sampled with one-eighth of the fre­
quency of single channel mode for a 
given value in the SFR. 

FIGURE 42. SOUND DATA FIELD FORMAT 

The OAC transfer characteristic 
consists of eight linear segments 
(chords). Each chord consists of 16 
steps, and the step size in one chord is 
twice the step in the preceding chord. 
This gives an approximation to the 
"11255 law." The sound data field 
format is shown in Figure 42. 

The outputs are in the form of current 
sinks. The magnitude of the output is a 
function of the sound reference input 
current. The reference current is equal 
to the step size in the highest chord, 
which is 8i in Figure 43. 

07 I 06 I 05 04 I 03 I 02 I 
Chord Select Point On Chord 

FIGURE 43. SOUND DAC OUTPUT 

o 3i 
I 

VL86C310 

I Channel 7 I Channel 0 

83% Right Center 

01 00 

Sign 

I Chord olChord 1 I Chord 21Chord 31Chord 41chord 51Chord slChord 71 

5-18 



_ VLSI TECHNOLOGY. INC. 

TIMING CHARACTERISTICS: TA = O°C to +70°C, VDD = +5 V ±5% 

Symbol Parameter 

t1 CKIN High 

t2 CKIN Low 

t3 CKIN Frequency 

t4 Data Setup Time to -VDAK, -SOAK 

t5 Data Hold Time to -VDAK, -SOAK 

t6 -VDAK, -SOAK Pulse Width 

t7 Data Setup Time to -VIDW 

t8 Data Hold Time to -VIDW 

t9 -VIDW Pulse Width 

t10 CKIN to -SD3 - -SDO Delay 

t11 CKIN to -VED3 - -VEDO, -SUP Delay 

t12 CKIN to -HSYC, -V/CS, FLBK 

t13 CKIN to -HI Delay 

t14 CKIN to ROUT, GOUT, BOUT 

t15 Analog Output Rise/Fa" Time 

t16 NIBSEL to -SD3 - -SDO 

Acknowledge To -SOAK to -SDRQ 
t17 Request Delay -VDAK to -VDRQ 

A.C. TEST WAVEFORMS 

Inputs 
~3.5V 

0.8 V 

Output ~ 15V 
Test Points __ ----'7": ~ 

Min Typ 

10 -
13 -

- -
9 -
9 -

15 -
10 -
20 -

20 -

- 70 

- 70 

- 75 

- 75 

- 30 

- 10 

- 50 

- 50 

- 50 

Max 

-

-
33 

-
-
-
-

-

-

-

-

-
-
-
-

-

-

-

VL86C310 

Units Conditions 

ns 

ns 

MHz 

ns 

ns 

ns 

ns See Note 1 

ns 

ns 

ns See Notes 2" 3 

ns See Note 2 

ns 

ns 

ns See Note 2 

ns See Note 4 

ns 

ns See Note 5 

ns See Note 5 

A.C. TEST LOAD CIRCUIT 

Device Under 

~ Test 

V--~PF 

_I 

Notes: 1. The data must be setup before -VIDW goes active (low) because the data also contains the register address. 
2. For pixel rates of 12 and 24 MHz, the outputs are referenced to the rising edge of CKIN. For pixel r~ltes of 8 and 

16MHz, the outputs are alternately referenced to either edge of CKIN. 
3. The -SD3 - -SDO signals are output one pixel time before ithe corresponding -VED3 - -VEDa due to pipeline 

differences. 
4. Assumes a 5 pF external load. 
5. -VDRQ or -SDRQ are cleared by the first -VDAK or -SOAK respectively, as long as no request is pending. 

5-19 

I 



_ VLSI TECHNOLOGY, INC. 

TIMING DIAGRAMS 
INPUT CLOCK 

VL86C310 

CKIN -{ "''----/ 

DMA WRITE CYCLES 

031 -DO -------~-_-_~1_ ..... _===_t4 __ ~. t5:f< 
-VDAK,-SDRQ ~ ;f 

~~.~--t6---~~1 

DMA WRITE CYCLES 

031-00 _>L fts:f< 
·~~79~_:. -

-VIOW t9 __ --, .......... 1 • 

5-20 



e VLSI TECHNOLOGY, INC. 

TIMING DIAGRAMS 
CLOCK OUTPUTS 

CKIN 

-S03 .. -800 

-VE03 - -VEOO, -SUP 

-HSYC, -V/CS, FLBK 

-HI 

------

t14", 

----------------~~_IM_A_X_/2 ________ ~ 
ROUT, GOUT, BOUT ., /.......- t15 

NIBSEL TIMING 

NIBSEL 

-S03 - -SOO HI NIBBLE LOW NIBBLE 

DMA ACKNOWLEDGE CYCLE 

VL86C310 

/ 

--,"----

HI NIBBLE 

--~X---------~X~ ________ X 031 - 00 ____ _ ------ x, ____ , _ 
-SOAK, -VOAK " / " / 
-SORQ, -VORQ 

I 



e VLSI TECHNOLOGY, INC. 

ABSOLUTE MAXIMUM RATINGS 
Ambient Operating 
Temperature 

Storage Temperature -65°C to + 150°C 

Supply Voltage to 
Ground Potential -0.5 V to VDD +0.3 V 

Applied Output 
Voltage 

Applied Input 
Voltage 

Power Dissipation 

-0.5 V to VDD +0.3 V 

-0.5 V to +7.0 V 

2.0W 

Stresses above those listed may cause 
permanent damage to the device. 
These are stress ratings only. Func­
tional operation of this device at these 
or any other conditions above those 

D.C. CHARACTERISTICS: TA = O°C to +70°C, VDD = +5 V ±50/0 

Symbol Parameter Min Typ 

VOH Output High Voltage VDD - 0.75 -

VOL Output Low Voltage - -

VIH Input High Voltage 2.4 -

VIHV Input High, VIDW 3.5 -

VIL Input Low Voltage 0.0 -

III Input Leakage Current - -

ILO Output Leakage Current - -

ICC Operating Supply Current - -

lOS Output Short Circuit Current - 25 

IVOUT Output Current Video DACs - -
ISOUT Output Current Sound DAC - -

ADVOL RVDAC, RSDAC Voltage - VDD -1.3 

ILATCH InpuVOutput Latchup Current 200 -

Voltage 
Video DACs - VDD -1.7 

VCOMP 
Compliance Sound DAC - VDD -1.5 

Current 
Video DACs - 4.5 

CCOMP 
Compliance Sound DAC - 3 

VL86C310 

indicated in this data sheet is not 
implied. Exposure to absolute maximum 
rating conditions for extended periods 
may affect device reliability. 

Max Units Conditions 

VDD V 10H = 10.0 mA 

0.4 V 10L = - 3.0 mA 

- V 

- V 

0.8 V 

10 J.LA VIN .. 0 V - VDD 

10 J.LA VOUT .. 0 V - VDD 

20 mA See Note 1 

- mA See Note 2 

-2.0 mA 

-2.0 mA 

- V See Note 3 

- mA See Note 4 

- V IVOUT = - 2.0 mA 

- V ISOUT = - 2.0 mA 

- mA VOUT .. VDD - 0.7 

- mA VOUT = VDD - 0.7 

Notes: 1. Measured at 24 MHz pixel rate. This value does not include any current output by the video DACs. 
2. Not more than one output should be shorted to either rail and for no longer than one second. 
3. This assumes 10 kn resistors to VDD. 
4. This value is the current that inputs or outputs can tolerate before the chip latches up. This condition should be 

avoided to prevent device damage. 

5-22 



_ VLSI TECHNOLOGY, INC. 

SECTION :6 

VL86C410 
RISC I/O 
CONTROLLER 
(IOC) 

Application SpE~cific 
Logic Products Division 

I 



e VLSI TECHNOLOGY, INC. 



_ VLSI TECHNOLOGY, INC. 

VL86C410 
RISC 1/0 CONTROLLER (IOC) 

FEATURES 
• Power on reset control 

• Four independent 16-bit program­
mable counters 
-Two timers 
-Two baud rate generators 

• Bidirectional serial keyboard interface 

• Six programmable bidirectional 
control pins 

• Interrupt mask, request and status 
registers for -IRQ and -FIRQ 

• 14 level triggered interrupt inputs 

• Two edge triggered interrupt inputs 

• Four programmable peripheral cycles 
-Slow 
- Medium 
- Fast 
- 2 MHz synchronous 

• Seven external peripheral selects 

• ARMIIO bus interface control 

• Expansion bus buffer control 

DESCRIPTION 
The VL86C41 0 Input/Output Controller 
(IOC) is designed to interlace to the 
VL86C01 ONL86C11 ONL86C31 0 chip 
set to provide a unified view of inter­
rupts and peripherals within an Acorn 
RISC Machine (ARM) based computer. 
It controls an 8- to 32-bit liD data bus to 
which on-board peripherals and any liD 
expansions are connected. It provides 
a set of internal functions, which are 
accessed without wait states, and 
programmable speed access to external 
peripherals. 

The VL86C410 provides system level 
liD with six programmable control pins 
and a full-duplex, bidirectional serial 
keyboard interface. To support system 
timing requirements, the VL86C410 
contains four independent program­
mable counters. Two of these counters 
are used as baud rate generators. One 
is dedicated to the keyboard and the 
other controls the BAUD output pin to 

generate a free-runnirng clock. The 
other two counters can be used to 
generate system timing events. 

The 10C serves as the interface 
between the very high speed RISC 
system bus and the slower liD or 
expansion bus. The part provides all 
the buffer control required between the 
two buses. The VL86'C410 supports an 
interruptable 110 cycle: that allows the 
system to use slower,' low-cost periph­
eral controllers such as the VL 16C450 
Asynchronous Communications 
Element and VL 1772 Floppy Disk 
Controller without severe latency on the 
system bus. 

Peripheral controllers :are supported 
with 16 interrupt inputs (14 level 
sensitive and two edge-triggered), 
seven peripheral select outputs, and 
four programmable 1/0 cycle times. 

PIN DIAGRAM 
PLASTIC LEADED CHIP 
CARRIER (PLCC) 

ORDER INFORMATION 

VL86C410 

-RE CLKt4 T1 92 eo -52 
TO I cs I 91 I -51 I -53 

-RIW 

-RBE 59 

-WBE 58 

A2 57 

A3 58 

A4 55 

A5 54 

A6 53 

00 TOP VIEW 62 

01 51 

02 50 

03 

04 

05 

06 

126 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

BAUO I -RST I FH1 I -ILO I -IL2 I -IL4 I -IL6 I -IF I GNO 
-POR FHO -FL -1L1 -IL3 -IL5 -IL7 IR 

VCC 

-54 

-55 

-5a 

-57 

-5EXT 

CLKt1 

KOUT 

KIN 

-IRO 

-FIRO 

C5 

C4 

C3 

C2 

C1 

CO 

6-3 

Part 
Number 

VL86C41 o-oaoc 

Clock 
Frequency 

a MHz 

Package 

Plastic Leaded 
C~llp Carrier (PLCC) 

Note: Operating temperature is O°C to'+70°C. I 



_ VLSI TECHNOLOGY, INC. 

BLOCK DIAGRAM 

CLK4 
CLK1 

-WBE 
-RBE 

A6-A2 

6 

07-00 

RCLK 

CLOCK 
GENER-

ATOR 

TIMER 
1 

-RIW 
CS 

REGISTER 
DECODER 

TIMER 
2 

BAUD ~----+------4------~ 

-IRQ 
-FIRQ 

-IL7- -ILO -IF IR 

SO 

1/0 CYCLE 
STATE MACHINE 

6 

TIMER 
3 

INTER­
RUPT 

CONTROL 

B2-BO 

CS 

KART 
CONTROL 

2 

KART 

FH1-FHO -FL -POR 

6-4 

VL86C410 

-S7--S1 

-SEXT 

KIN 

KOUT 

2 

C5-CO 

-RST 



e VLSI TECHNOLOGY, INC. 

SIGNAL DESCRIPTIONS 
Signal 
Name 

RCLK 

CLKl1 

CLKl4 

-BL 

07-00 

-IORO 

-IOGT 

T1-TO 

-R/W 

-5 EXT 

-S7- -51 

B2-BO 

CS 

A6-A2 

-RBE 

-WBE 

-RE 

Pin 
Number 

8 

54 

2 

5 

25-18 

7 

6 

68, 1 

10 

55 

56-59,61-63 

66-64 

67 

17-13 

11 

12 

4 

Signal 
Description 

VL86C410 

Reference Clock (CMOS Level input) - The main reference clock for bus transactions 
between different devices. RCLK is in phase with the 02 processor clock. 

Buffered System Clock (CMOS level output) - Provides timing for external peripherals. 
This is RCLK buffered and inv,erted. 

Peripheral Timing Clock (CMOS level output) - Is the RCLK input divided by four. This 
signal is used to generate timing for external peripheral controllers. 

External Data Bus Latdh Control (CMOS level output, open-drain) - This signal remains 
high, making the external data latches transparent, for internal register accesses and 
when CS is low. It is taken low during a write to latch the processor data, and during a 
read to latqh the peripheral data. 

Processor data bus (CMOS level inputloutput) - This is the 8-bit bidirectional three-state 
data bus used to transfer data'to/from the attached processor. Normally, these lines 
would be connected to one byte of the 32-bit VL86C01 0 data bus through a transparent 
latch. 

InpuVOutput Cycle Request (CMOS level input) - Determines whether the current cycle is 
a memory or an I/O reference and is usually connected to the corresponding signal of the 
VL86C110 Memory Controller. When asserted (low), the MEMC has detected an I/O 
address and the proper 10C should respond. When negated (high), the current cycle is a 
memory reference or internal processor cycle that does not require the attention of the 110 
controllers. 

InpuVOutput Cycle Grant (CMOS level output, open-drain) - Determines' when the current 
110 cycle will terminate. When' asserted (low), the VL86C410 is signalling that the current 
I/O cycle will complete on the next falling edge of the RCLK. An 1/0 cycle completion is 
determined when -IOGT and -lORa are both low on a rising edge of RCLK. 

Cycle Type 1, 0 (CMOS level inputs) - These signals indicate the type of I/O cycle to be 
performed; 0 - slow, 1 = medil!lm, 2 - fast, 3 - synchronous. 

Not ReadIWrite (CMOS level input) - This signal normally is generated by the VL86C01 0 I 
and determines cycle direction. The signal is low for read or high for write. 

External Peripheral Select (CMOS level output) - This signal is used to enable an external 
data buffer. It is active for any' 10C external peripheral access. This allows the IOC and 
any other -IORO/-IOOT devices to be isolated from the external peripherals. 

Peripheral Selects (CMOS level outputs) -Indicate address and write data are valid on the 
bus. The B2-BO lines are decoded to determine the active select output.. 

Bank Select Lines (CMOS level inputs) - Are decoded to determine the IVO access device. 
A zero value on these lines indicates an access to VL86C410 internal registers. Any 
other value will decode to one of the external peripheral select outputs. 

Chip Select (CMOS level input) - When high the 10C wil/perform either an internal 
register or external peripheral access cycle. Even when low, the VL86C410 controls the 
-RBE and -WBE outputs. 

Register Select Lines (CMOS level inputs) - These signals are decoded to determine 
which internal register to select. Normally, these signals are a latched vorsion of the 
address outputs from the VL86C01 0 processor. 

Read Buffer Enable (CMOS level output) - Is taken low during a read of any -IOROI 
-IOGT device including the 10C. 

Write Buffer Enable (CMOS level output) - Is taken low during a write of any -IOROI 
-IOGT device including the 10C. 

Read Enable (CMOS level output) - Provides the external peripheral timing strobe. This 
signal is used to time peripheral read access cycles. 

6-5 



e VLSI TECHNOLOGY, INC. 

VL86C410 
SIGNAL DESCRIPTIONS (Cont.) 

Signal 
Name 

-WE 

-RST 

-POR 

-IL7- -ILO 

-IF 

IR 

FH1-FHO 

-FL 

C5-CO 

-IRQ 

-FIRQ 

BAUD 

KIN 

KOUT 

VCC 

GND 

Pin 
Number 

3 

29 

28 

40-33 

41 

42 

31-30 

32 

49-44 

51 

50 

27 

52 

53 

26,60 

9,43 

Signal 
Description 

Write Enable (CMOS level output) - Provides the external peripheral timing strobe. This 
signal is used to time the peripheral write access cycles. 

Reset (CMOS level open-cirain input/output) - Is driven (active) low whenever the -POR 
input is low to provide the system with a power on reset pulse during cold restart. Once 
the -POR is inactive, the VL86C410 will monitor the -RST as an input to detect a warm 
system restart condition. 

Power On Reset (Schmitt trigger, active low input) - Is used to generate a reset pulse 
during power on conditions and to differentiate cold restart from subsequent causes of the 
reset condition. This signal is usually connected to an RC network. 

Interrupt (TTL level inputs) - These signals are the -IRQ interrupt active low inputs. 
These signals are level sensitive. 

Interrupt (TTL level input) - This signal provides an edge-sensitive -IRQ interrupt source. 
An interrupt condition is generated on a falling edge of this input. 

Interrupt (TTL level input) - This signal provides an edge-sensitive -IRQ interrupt source. 
An interrupt condition is generated when a rising edge is detected on this input. 

Fast interrupt (TTL level inputs) - These lines provide -FIRQ interrupt sources. An 
interrupt condition is generated whenever the input is high. 

Fast interrupt (TTL level input) - Provides a source of FIRQ interrupt. An interrupt condi­
tion is generated whenever this input is low. 

Control (Bidirectional open-drain) - These signals provide six lines of general purpose 
programmable I/O. The direction of these signals is determined by bits in the Control 
Register. The outputs can be forced low by programming the Control Register. Other­
wise the pins can be treated as inputs. 

Interrupt Request (CMOS level open-drain) - Provides the interrupt signal to the system 
processor. When used with the VL86C01 0, this signal is tied directly to the -IRQ input of 
the processor. 

Fast Interrupt Request (CMOS level open-drain) - Signals the system processor with the 
fast interrupt condition within the system. When used with the VL86C01 0, this signal is 
tied directly to the -FIRQ input of the processor. 

Baud Clock (CMOS level output) - This signal is generated by Timer 2. The output level is 
toggled by the reload event on the counter. The frequency of the BAUD clock is deter­
mined by the equation: 

f(baud) - 1/(latch + 1) MHz (if the RCLK frequency is 8 MHz) 

f(baud) max is obtained when the latch value equals one providing a maximum value of 
500 KHz. 

Keyboard serial data Input signal (TTL level input) - Is connected to the keyboard input 
controller. A clock of 16 times the data rate is used by the receiver to clock keyboard data 
into the KART section from this line. The data should be input as LSB first on this pin. 

Keyboard serial data Output (CMOS level output) - This output provides serial data trans­
mission to the keyboard. The data is transmitted with a fixed format of eight bits per 
character with one start bit and two stop bits. The data appears on this pin with LSB first. 

Power Supply - 5 V ±5% 

Ground 

6-6 



e VLSI TECHNOLOGY, INC 

FUNCTIONAL PIN DIAGRAM 

VL86C010 
INTERFACE 

-IRQ 

-FIRQ VL86C410 

-BL 
DATA BUS 

-WBE BUFFER 
CONTROL -RBE 

-lOOT 
VL86C110 
(MEMC) 

INTERFACE 

SYSTEM 
RESET 

CONTROL 

POWER 
SUPPLY 

6-7 

VIL86C410 

CLKl4 } PERIPHERAL 
CLKl1 TIMING 

-----,.... CONTR0L 
BAUD 

1-----..... 

-97--91 

-geXT 

-RE 

-WE 

} 
PERIPHERAL 

SELECTS 

PERIPHERAL 
INTERRUPT 
CONTROL 

} PERIPHERAL 
DATA 

CONTROL 

GENERAL } PURPOSE 
VO 

} KEYBOARD 
INTERFME 

I 



o VLSI TECHNOLOGY, INC. 

FUNCTIONAL DESCRIPTION 
If the Bank (B2-BO), Type (T1-TO), Chip 
Select (CS) and addresses lines (A6-
A2) of 10C are joined to the CPU 
address lines, then the 10C and periph­
erals are viewed as memory mapped 
devices. This allows the programmer 
to specify in a single memory instruc­
tion the peripherals to be accessed and 
the type of timing cycle it requires. The 
following description of the 10C 
assumes the use of a Vl86C11 0 
(Memory Controller - MEMC) within the 
system. For further details of the 
operation of the memory controller and 
system bus, examine the Vl86C11 0 
data sheet. In a typical system, as 
shown in Figure 1, the Vl86C410 
space is divided into two halves. The 
upper half is occupied by the 10C and 
the lower half is left for additional 1/0 
controllers. 

The 10C space is decoded into eight 
banks, zero through seven, by the B2-
BO lines. The zero bank maps into the 
internal registers of the Vl86C410. 
The remaining seven banks map onto 
the seven peripheral select lines, -S7 
through -51 respectively. Each of the 
seven peripheral banks are further 
decoded into four types of access by 
the T1-TO signals as shown in Figure 2. 
The type of peripheral access deter­
mines the timing of the data transfer 
cycle. 

A particular peripheral device may be 
accessed by choosing an address 
where CS is high, B2-BO decode to the 
appropriate select, and T1-TO indicate 
a timing cycle that suits the accessed 
device. The remaining low-order 
address bits may be used to select the 
register within the device. 

Access Speed 
While the peripherals appear as 
memory mapped devices it is not 
possible for all accesses to be com­
pleted with the same access time as 
main memory. The extra time taken to 
complete an 110 cycle is expressed as 
a number of extra RClK cycles. 

Addresses 
The pipelined Vl86C010 addresses are 
latched by external buffers to provide 
valid signals throughout both 1/0 
accesses and ROM reads. The latches 
are controlled by a Vl86C010 clock line 
which is stretched during slow cycles. 

VL86C410 
FIGURE 1. RECOMMENDED VL86C410 INTERCONNECTION 

01 ------. 

VL86C010 
AOORESS 

BUS 
(A21-A2) 

-RfW--~ 

031-024 

023·018 

015-08 

VL86C010 
OATA 
BUS 

(031-00) 

-WBE 

-RBE 

-57--S1 

-RE 
VL88C410 

-WE 

-5EXT 

07-00 

VOAOORESS 
BUS 

PERIPHERAL 
SELECTS 

-IOREAO 

-lOW RITE 

FIGURE 2. TYPICAL DECODING STRUCTURE 

VL86C410 1/ 
EXPANSION 

~ 
Data 
The processor data bus is connected to 
the 110 data bus by a set of latches. 
These provide two functions. First, they 
isolate the 1/0 bus load from the main 
data bus and second, they allow for the 
mis-match in speed. These buffers are 
entirely controlled by the -Bl, -RBE, 
and -WBE lines from 10C. 

Internal Registers 
All internal registers are accessed with 

6-8 

T1-TO / ..... __ S~Y,;.;,N.;;.,C_~ 
-S7 ~ FAST 

-S6 _'\. ..... _M_E ... D ... I_UM __ 
ooo4 

-S5 - \ SLOW 

BANK 7 

BANK 6 

BANKS 
-S4 

BANK 4 
-S3 

BANK3 
-S2 

BANK 2 

-S1 /~--------0004 
-SO 

BANK 1 

BANKO 

A6.A~~-----~ 
no wait states and accesses take two 
RClK cycles to complete. The internal 
registers are decoded as bank zero so 
to access them, the B2-BO lines must all 
be low and the 10C must be selected by 
taking CS high. The individual registers 
are then addressed using the A6-A2 
lines. The registers are decoded on 
word boundaries. The state of T1-TO 
lines is ignored. The address values for 
each internal register are shown in 
Table 1. 



e VLSI TECHNOLOGY, INC. 

VL86C410 
TABLE 1. VL86C410 INTERNAL REGISTER ASSIGNMENTS 
Address Address 
(Hex) Read Write (Mex) Read Write 

00 Control Register Control Register 40 TO Count Low TO Latch Low 

04 Serial Rx Data Serial Tx Data 44 TO Count High TO Latch High 

08 - - 48 - TO Go Command 

OC - - 4C - TO Latch Command 

10 IRQ Status A - 50 T1 Count Low T1 Latch Low 

14 IRQ Request A IRQ Clear 54 T1 Count High T1 Latch High 

18 IRQ Mask A IRQ Mask A 58 - T1 Go Command 

1C - - 5C - T1 Latch Command 

20 IRQ Status B - 60 T2 Count Low T2 Latch Low 

24 IRQ Request B - 64 T2 Count High T2 Latch High 

28 IRQ Mask B IRQ Mask B 68 - T2 Go Command 

2C - - 6C - T2 Latch Command 

30 FIRQ Status - 70 T3 Count Low T3 Latch Low 

34 FIRQ Request - 74 T3 Count High T3 Latch High 

38 FIRQ Mask 

3C -

Control Register 
The control registers allow the external 
control pins C5-CO to be readlwritten 
and the status of the IR and -IF inputs, 
prior to level conversion, to be in­
spected. The C5-CO bits manipulate 
the C5-CO 1/0 pins of the device. When 
the control register is read, they reflect 
the current state of the device pins. 
When the register value is written with a 
logic low value, the corresponding 
output pin is driven low. These outputs 
are open-drain, and if programmed high 
the pin is undriven and may be treated 

FIRQ Mask 78 -

- 7C -

as an input. On reset all control register 
bits are set to logic high; thus C5-CO will 
be inputs after reset. 

Keyboard Asynchronous Recelverl 
Transmitter (KART) 
The KART provides an asynchronous 
serial link, usually to the keyboard. The 
frame format is fixed with; 8-bits per 
character, one start bit, and two stop 
bits. It divides into two halves, the 
receiver and the transmitter. The 
receive and transmit speeds are the 
same and programmed using Timer 3. 

FIGURE 3. CONTROL REGISTER READ (ADDRESS = OOH) 

7 6 5 4 321 0 

IR I -IF I C5 I C4 I C3 I C2 I C1 I CO I 

I I I L curmn.t Level of CO Pin ~ Current Level of C1 Pin 
Current Level of C2 Pin 
Current Level of C3 Pin 1...-_________ Current Level of C4 Pin 

L--____________ Current Level of C5 Pin 

1...--------------- Current Level of -IF Pin 
1--. ________________ Current Level of IR Pin 

6-9 

T3 Go Command 

T3 Latch Command 

The VL86C01 0 accesses the receiver 
via the Serial Rx Data register. A clock 
of 16 times the data rate is used by the 
KART to clock in the serial data from 
the KIN pin. When a character has 
been received, the SRx bit is asserted 
in the IRQ B Status Register to indicate 
that a data byte is available for reading. 
False start bits of less'than a half bit 
duration are ignored. 

The VL86C010 accesses the transmit­
ter via the Serial Tx Data register. The 
byte written to the Serial Tx Data 
register is transmitted 'serially from the 
KOUT pin and the ST)( bit is asserted in 
the IRQ B Status Register to indicate 
that the transmission is finished and the 
Serial Tx Data registel' may be re­
loaded. 

Serial Tx Data 
Writing to this registeriloads the serial 
output shift register, clears any out­
standing interrupt and!starts the 
transmission. An intetrupt is raised 
when the register is ready to be 
reloaded. The data format for this 
register is shown in Figure 5. 

I 



8 VLSI TECHNOLOGY, INC. 

FIGURE 4. CONTROL REGISTER WRITE (ADDRESS = OOH) 

7 6 5 432 1 0 

I 1* I 1* I cst C4t C3 t c21 C1 I col 
* Should Always 
Be Logic One 

I I I 0 - CO Pin Driven Low 
1 - CO Pin Undriven 

o -C1 Pin Driven Low 
1 - C1 Pin Undriven 

o -C2 Pin Driven Low 
1 - C2 Pin Undriven 

'--________ 0 - C3 Pin Driven Low 
1 - C3 Pin Undriven 

L-__________ 0 - C4 Pin Driven Low 

1 - C4 Pin Undriven 
L-_____________ 0 - C5 Pin Driven Low 

1 - C5 Pin Undriven 

FIGURE 5. SERIAL Tx DATA REGISTER WRITE (ADDRESS = 04H) 

7 6 543 2 0 

I 07 I 061 05 I 041 03 1 02 1 01 1 DO 

I KART Data KD7-KDO 
L. _______________ ~_ (LSB Transmitted First) 

FIGURE 6. SERIAL Rx DATA REGISTER READ (ADDRESS = 04H) 

7 6 543 2 0 

I 07 1 06 1 05 1 04 1 03 I 02 1 01 DO 

I KART Data KD7-KDO 
1-_______________ -1--_ (LSB Received First) 

FIGURE 7. IRQ STATUS REGISTER A READ (ADDRESS = 10H) 

7 6 5 4 3 2 o 

I TM11 TMO I PORI IR IF I IL7 I IL6 I 
I I L 1 -H-IL6 Pin Low o - If -IL6 Pin High 

1 - If -IL7 Pin Low 
o - If -IL7 Pin High 
1 - If High-to-Low Edge 
Of -IL Detected * 
1 - If Low-to-High Edge 

L-_______ Of IR Detected * 

L..-__________ 1- If Power On Reset 

(POR) Detected * 
1 - When Timer 0 Reload L..-____________ Detected * 

1--______________ 1 - When Timer 1 Reload 

Detected * 
* Cleared By An IRQ Clear Register 

6-10 

VL86C410 
Serial Rx Data 
Reading from this register clears any 
outstanding interrupt and returns the 
currently received byte as shown in 
Figure 6. Data is only valid while the 
SRx Bit is set in the IRQ B status 
register. 

In Itla Jlzatlon 
After power on, the KART is in an 
undefined state. The KART is initialized 
by programming the serial line speed 
using Timer 3 and performing a read 
from the Serial Rx Data register, 
discarding the data byte. This will clear 
any outstanding receive interrupt and 
enable the KART for the next reception. 
Finally the Tx Data register should be 
written. This will abort any transmission 
in progress and cause a new one to be 
started and clear any transmit interrupt. 

Receive Interrupt 
The receive interrupt is set halfway 
through the reception of the last data 
bit. Care should be taken to ensure that 
the last bit has been received before the 
Serial Rx data register is read, to 
prevent this bit being interpreted as the 
start bit of the next packet. 

Interrupt Registers 
The VL86C410 generates two inde­
pendent interrupt requests, -IRQ and 
-FIRQ. Interrupt requests can be 
caused by events internal to the device 
as well as external events on the 
interrupt or control port pins. The 
internal sources of interrupt are: timer 
(TM1-TMO), power on reset, keyboard 
Rx data available (SRx), keyboard Tx 
data register empty (STx), and force 
interrupts. The sources of external 
interrupts are: IRQ active low inputs 
(-IL7- -ILO), IRQ falling edge input 
(-IF), IRQ rising edge input (IR), FIRQ 
active high inputs (FH1-FHO), FIRQ 
active low input (-FL), and control port 
pins C5-C3. 

The 10C interrupts are controlled by 
four types of registers, status, mask, 
request, and clear. The status registers 
reflect the current state of the various 
interrupt sources. The mask registers 
determine whether the sources may 
generate an interrupt. The request 
registers are the logical AND of the 
status and mask registers, and indicate 
which sources are actually generating 
interrupt requests. The clear register 
allows clearing of interrupt requests 



e VLSI TECHNOLOGY, INC 

FIGURE 8. IRQ STATUS REGISTER B READ (ADDRESS = 20H) 
7654321 0 

I SRx I STx IlLS I IL4 I IL3 I IL2 I IL 1 I ILO I 
1 - If -ILO Pin Low 
o - If -ILO Pin High 

1 - If -IL 1 Pin Low 
o - If -IL 1 Pin High 

1 - If -IL2 Pin Low 
o - If -IL2 Pin High 

1 - If -IL3 Pin Low 
o - If -IL3 Pin High 

1 - If -IL4 Pin Low 
o - If -IL4 Pin High 

1 - If -IL5 Pin Low 
o - If -IL5 Pin High 

1 - When KART Tx Data 
, Register Is Empty * 

1 - When KART Rx Data 
Register Is Full .. 

* Cleared By A Write To The KART Tx Data Register 
** Cleared By A Read From The KART Rx Data Register 

FIGURE 9. FIRQ STATUS REGISTER READ (ADDRESS = 30H) 

7 6 543 2 1 a 

I ILO I C5 I C4 I C3 I FL I FHd FHO I 

I I L ~:~~~~::~.~; 
a - If FH1 Pin Low 
1- If FH1 Pin High 
1 - If FL Pin Low 
a - If FL Pin High 
1 - If C3 Pin Low 
a - If C3 Pin High 
1 - If C4 Pin Low 

'----------- a - If C4 Pin High 
1 - If C5 Pin Low 

'------------- a - If C5 Pin High 

1 - If -ILO Pin Low 
L.-_____________ a -If -ILa Pin High 

where appropriate. The IRQ events are 
split into two sets of resisters A and B. 
The mask registers are undefined after 
power up. There is no priority encoding 
of the sources. 

InterrUipt Sense 
The -IF, IR, -POR, and TM1-TMO are 
edge triggered and therefore are 
latched by the VL86C41 o. That is, once 
one of these sources has caused an 
interrupt it must be explicitly cleared. 
An event on one of these sources may 
be cleared by writing a logic one to the 

appropriate bit in the clear register. 
One or many may be cleared in a single 
operation. 

The other interrupt sources are level­
sensitive. When one of these sources 
has caused an interrupt condition, it is 
cleared by removing the source. 

Timers 
Four identical 16-bit counters are 
provided. Two are used as general 
purpose timers, the third for the 
keyboard baud rate and the fourth as a 

VIL86C410 
general purpose output baud. They 
have fully programmable start/reload 
values. 

Each counter consists of a 16-bit down 
counter, a 16-bit input latch (latch low 
and latch high) and a '16-bit output latch 
(count low and count high) which 
contains the value of the counter when 
the latch command is :given. The 
counter decrements cbntinuously, 
clocked at RCLK/4. When it under­
flows, that is decreme'nts to zero, it is 
reloaded from the inpl~t latch and 
recommences decrementing. The 
unqerflow is used to tnigger different 
events depending on the use of the 
timer. If a counter is loaded with zero it 
continuously reloads and does not 
count. If the GO regis'ter is written at 
the same time as the eounter under­
flows an extra clock tick is taken to 
reload. After power on the state of the 
counters is unknown. 

Latch = latch low + 256 * latch high 

Timer 0: General purpose interval timer 
Timer 1: ,General purpose interval timer 
Timer 2: External BAUD Pin 
Timer 3: KART BAUD rate 

Register Actions 
-Latch Low - Writing to this updates the 

low order byte of the input latch. 

-Latch High - Writing to this updates the 
high order byte of the input latch. 

-GO - Writing to this causes the counter 
to be reloaded with the latch value. 

-Count Low - This causes the low order 
byte of the output latch to be read. 

-Count High - This callses the high 
order byte of the output latch to be 
read. 

-Latch - This causes the current value 
of the counter to be p~aced in the 
output latch. 

Timers 0 and 1 
Two general purpose timers are 
provided. The underflow event sets a 
timer interrupt, TM1-nAa in the IRQ 
Status A register. The interrupt is 
cleared via the IRQ Clear register. In 
order to generate an interrupt after time, 
Tinterval, the 16-bit value, (latch), to be 
used is calculated from the following 
equation: 

Tinterval = latch/2 IlS 

(if the RCLK frequency' is 8 MHz) --------------------------------------------------------------------------, 6-11 

I 



_ VLSI TECHNOLOGY, INC. 

FIGURE 10. IRQ CLEAR REGISTER WRITE (ADDRESS = 14H) 
7654321 0 

I 0 I TM11 TMO I PORI IR IF 0 0 

0- No Action 
'------ 1 - Clear 

0- No Action 
'--------- 1 - Clear 

0- No Action 
'------------ 1 - Clear 

0- No Action 
'-------------- 1 - Clear 

0- No Action 
"--------------- 1 - Clear 

FIGURE 11. INTERRUPT REQUEST REGISTERS READ (ADDRESS = 14,24, 34H) 

7 6 5 4 3 2 o 

o -Mask Disabled Or 
No Interrupt Request 

1 - Mask Enabled And 
Interrupt Request 

FIGURE 12. INTERRUPT MASK REGISTERS READIWRITE 
(ADDRESS = 18, 28, 38H) 

7 6 5 4 3 2 o 

o - Interrupt Disabled 
'-----------------"--- 1 - Interrupt Enabled 

FIGURE 13. TIMER SCHEMATIC 

CONTROL 
LOGIC 

CLKl4 

UNDERFLOW 

LATCH 

r--------------------------~ 

16-BIT 
COUNTER 

DATA BUS 07-00 

6-12 

VL86C410 
Timer 2 (BAUD) 
The timer 2 output is used to drive the 
BAUD pin. Maximum BAUD rate of 500 
KHz is obtained with latch=1. 

BAUD rate:=1/{LATCH+1) MHz 

Timer 3 (KART) 
The speed of the keyboard serial link is 
programmed via the KBaud registers. 
The maximum baud rate of 31,250 Hz is 
obtained for latch=1. 

BAUD rate:=1/{{latch + 1)*16) MHz 

External Peripherals 
The 10C provides control for external 
peripherals which cannot be accessed 
in a single cycle. A number of differ­
ently timed cycles, selected by the T1-
TO lines, are provided. Decoding of the 
T inputs and length of the various 
cycles is shown in Table 2. The periph­
eral cycles are controlled by a small 
state machine shown in Figure 14. 
Internal accesses complete in two 
RCLK cycles and the state machine 
remains idle. The cycles are timed to 
two clocks CLKl4 and CLKl1. Two 
timed data strobes, write enable (-WE) 
and read enable{ -RE) manipulate data. 

The number of RCLK cycles an I/O 
access takes to complete depends on 
three things: the minimum time for the 
cycle; the synchronization time; any 
DMA activity on the VL86C01 0 bus. 
The times are expressed as additional 
cycles over a normal memory access. 
The first three cycles share common 
timing and are fixed duration. The last 
is a square wave synchronized to the 
CLKl4 output. Examples of the periph­
eral access timing are shown in 
Appendix A. 

Peripheral Address and Data 
The peripheral address and data are 
not provided by the VL86C41 0, so their 
timing is system dependent. The 
following explanation assumes that the 
configuration is as shown in Figure 1. 
Additionally, buffer delays through the 
VL86C410 can be up to half a RCLK 
pulse, so there can be a considerable 
skew between signals generated by the 
10C and other sources in the system. 

Peripheral select lines (-S7- -S1) are 
timed at the start of a cycle from -IORO 
and disabled at the end of the cycle by 
the internal state machine. 



_ VLSI TECHNOLOGY, INC. 

TABLE 2. 1/0 CYCLE TIMING SELECTIONS 

Cycle State Minimum 
Cycle Length Synchronization 

T1 TO Cycle Name (Clocks) Time (Clocks) 

0 0 Slow 7 0 

0 1 Medium 6 0 

1 0 Fast 5 0 

1 1 Synchronous 5 0,1,2,3 

FIGURE 14. I/O CYCLE STATE MACHINE DEFINITION 

Loop If Idle 

Reset 
(Note 2) 

r rpeo Cy~e 

Type 1 Cycle 

Type 2 Cycle 

Type 3 Cycle (Note 1) 

Type 3 Cycle (Note 1) 

Loop Until 
1..--__ ..... VL86C010 Is Ready 

ViL86C410 
External Writes 
Since the MEMC may periorm DMA 
transfers on the main data bus while an 
I/O cycle is completed, the write data 
must be latched to provide valid data 
throughout the I/O cycle. This is done 
by taking -BL low at the start of the 
cycle. It is taken high again at the end 
of the cycle. 

External Reads 
To provide fixed duration cycles for the 
peripherals, the read data is latched by 
taking -BL low as the '-RE strobe is 
taken high. This allows the peripheral 
cycle to complete and'the data is held in 
the data latches until the I/O cycle 
finishes. 

Multiple -IORQ/-IOG,T Peripherals 
The 10C has been designed to allow 
multiple -IORO/-IOGT devices to be 
connected to MEMC. 'For this reason 
the -IOGT and -BL lines are open-drain 
outputs. Even when it is not selected, 
10C continues to control the external 
buffer enables -RBE and -WBE, so 
additional I/O devices need not gener­
ate these signals. 

-IOGT Signal 
In order for an internal, register access 
to complete in two RCLK cycles the 
-IOGT signal cannot be logically 
dependent on -lORa, which indicates 
the start of an I/O cycle, because 
-lORa becomes validltoo late. There- I 
fore, -IOGT is generated from B2-BO 
and CS only, and will sometimes be 
driven low during non-~/O cycles. 
During peripheral accesses the -IOGT 
signal is controlled by the state ma-
chine. 

Reset 
The 10C may be reset :in two ways: by 
driving the bidirectional -RST line or the 
-POR line low. The -POR pin is 
designed to be connected to an external 
RC network to ensure that when power 
is first applied to the 10C, a minimum 
width reset signal is generated on 
-RST. A typical circuit is shown in 
Figure 15. -POR causes an internal 
latched interrupt to be set to allow 
system software to differentiate 
between power on and1soft resets, and 
ensures that peripherali devices have 

Notes: 1. Type 3 cycles will go into the wait state unless the cycle starts at the optimal point on the CLK/4 cyclEJ. 
2. Reset is a forcing signal to return to IDLE from any state. 

6-13 



e VLSI TECHNOLOGY, INC. 

had a stable clock for a suitable length 
of time before being released from 
reset. The control register is initialized 
on reset allowing the C5-CO pins to be 
set to a known state, high, before the 
processor commences execution. The 
power-on reset timing is shown in 
Figure 16. 

FIGURE 15. TYPICAL CIRCUIT FOR 
-POR CIRCUIT 

-POR .. 

i 100 4 1N414' 

10J,1F 

I 

FIGURE 16. POWER-ON RESET TIMING 

5 Volts 

Schmitt 
Thresholds 

Ground 

-RST 

RCLK 

6-14 

VL86C410 



_ VLSI TECHNOLOGY, INC. 

TIMING CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±5% 

Symbol Parameter Min. Typical 

t1 -lORa to RCLK Setup Time 35 -
t2 -lORa to RCLK Hold Time 5 0 

t3 -lORa to Data Valid 60 120 

t4 Data Hold Time 5 0 

t5 82-80, -RIW, CS, A6-A2 Setup 0 50 
Time to -lORa 

t6 82-80, -RIW, CS, A6-A2 Hold 5 10 
Time from RCLK 

A.C. TEST WAVEFORMS 

Outputs I 
Inputs --. , 

3.0V~ 

~ 0.0 V 

A.C. Test 
Points 

t 

TIMING DIAGRAMS 

t 

INTERNAL REGISTER READ CYCLES 

RCLK 

-lORa 

D7-DO 

-RNV,----~ 

82-80 

A.C. LOAD CIRCUIT 
OPEN-DRAIN OUTPUTS 

+5.0V 

.r- Device Under 1.6 k n 
T Test 

35pF 

l 

VL86C410 

Max. Units Co'ndltlons 

- ns 

- ns 

- ns 

- ns 

- ns 

- ns 

A.C. LOAD CIRCUIT 
OTHER OUTPUTS 

V1 

.- Device un~. er r>--=-r R1 

V1 = 1.40 V, Data Bus I 35 pF 
V1 = 2.33 V, Other OutPl~tS --L-
R1 = 100 0, Data Bus 
R1 = 640 0, Other Outputs 

-----~~---r_--------------r_~~------~----------

CS 

A6-A2 

6-15 

I 



e VLSI TECHNOLOGY, INC. 

VL86C410 
TIMING CHARACTERISTICS: TA = O°C to +70°C, vec = 5 V ±5% 

Symbol Parameter Min. Typical Max. Units Conditions 

t11 -IORO to RCLK Setup Time 35 - - ns 

t12 -IORO to RCLK Hold Time 5 0 - ns 

t13 Data Setup Time 30 20 - ns 

t14 Data Hold Time 5 10 - ns 

t15 82-80, -R/W, CS, AS-A2 Setup 0 50 - ns 
Time to -IORO 

t16 82-80, -R/W, CS, A6-A2 Hold 5 10 - ns 
Time from RCLK 

TIMING DIAGRAMS 
INTERNAL REGISTER WRITE CYCLES 

RCLK 

-IORO 

07-00 

82-80 

-R/W, 
CS ____ ~ 

A6-A2 

6-16 



o VLSI TECHNOLOGY, INC 

TIMING CHARACTERISTICS: TA=O°Cto+70°C, VCC=5V±5% 

Symbol Parameter 

-S7--81 
Peripheral Cycle Type 0 

t21 Pulse Width Peripheral Cycle Type 1 

Peripheral Cycle Type 2 

-S7--80 Peripheral Cycle Type 0 
t22 to -REI-WE 

Peripheral Cycle Type 1,2 

t23 -REI-WE to -S7- - SO Delay 

-REI-WE Peripheral Cycle Type 0,1 
t24 Pulse Width 

Peripheral Cycle Type 2 

t25 Read Data Setup Time to -RE 

t26 Read Data Hold Time to -RE 

TIMING DIAGRAMS 
CYCLE TYPES 0, 1, AND 2 

Min. Typical 

625 625 

500 500 

375 375 

170 187 

50 62 

50 62 

350 375 

230 250 

- 20 

- 20 

VL86C410 

Max. Units Con~ltlons 

- ns 

- ns 

- ns 

- ns 

- ns 

- ns 

- ns 

- ns 

- ns See Note 1 

- ns See Note 1 

-S7- -S1 

~ r---~-----------------t21 ---------------~~~ ~ 

"t=-t22 -'23=i 
~------t24 ------~ 

-WE/-RE 

D7-DO--------------------------------------~ 
(READ) ____________________________________ J 

t26 

Note: 1. Assumes data is latched by the -BL signal. 

6-17 

I 



e VLSI TECHNOLOGY, INC 

TIMING CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±S% 

Symbol Parameter 

t31 -S7- -51 Setup Time to CLK12 

t32 -S7- -51 Hold Time to CLK12 

t33 -REI-WE to CLK12 Skew 

t34 Read Data Setup Time 

t35 Read Data Hold 

TIMING DIAGRAMS 
CYCLE TYPE 3 

CLKl2 

-S7- -S1 

-WE/-RE 

Min. Typical 

40 30 

20 10 

- 0 

- 20 

- 20 

t31 

t33 

D7-DO--------------------------------------~ 
(READ) ______________________________________ --J 

6-18 

VL86C410 

Max. Units Conditions 

- ns 

- ns 

10 ns 

- ns 

- ns 

t32 

t35 



6) VLSI TECHNOLOGY, INC. 

ViL86C410 
TIMING CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±5% 

Symbol Parameter Min. Typical Max. Units Conditions 

t41 -BL (Write Cycle) Delay - 15 20 ns 

t42 -S7- -51 Setup Time to CLKl1 20 10 - ns 

t43 -REI-WE Delay - 30 10 ns 

TIMING DIAGRAMS 
CYCLE START (TYPES 0, 1, AND 2) 

I/OCYCLE ~ 
RETRIES 

CLK/1 ~ 

-BL 
(WRITE) 7//--

-BL 7//--
(READ) 

t42 

-S7- -S1 
7//--

t43 

-REI-WE 
7//--

7~/-- I A6-A2 7//--

07-00 7~/--
(WRITE) X 7~/--

6-19 



e VLSI TECHNOLOGY, INC. 

TIMING CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±s% 

Symbol Parameter Min. Typical 

t51 -REI-WE Delay from CLK/1 

t52 -S7 - -S1 Disable Delay 

t53 -BL Delay 

TIMING DIAGRAMS 
CYCLE END (TYPE 0,1, AND 2) 

CLK/1 

-BL 
(WRITE) 

-BL 
(READ) 

t51 

-REI-WE 

-S7--S1 

A6-A2 

-

-

30 

------------------------------~--

D7-DO --------------------------~~ 
(WRITE) _____________________ ~--

6-20 

30 

30 

30 

VL86C410 

Max. Units Conditions 

10 ns 

10 ns 

- ns 

t53 

t53 



_ VLSI TECHNOLOGY, INC. 

VLI86C410 
TIMING CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±5% 

Symbol Parameter Min. Typical Max. Units Conditions 

t61 -RBE Delay from -IORO or -Am - 50 30 ns 

t62 -WBE Delay from -R/W - 50 30 ns 

TIMING DIAGRAMS 
READ AND WRITE BUFFER ENABLES 

-R/W 

-IORO 

-RBE 

-WBE 

6~21 



_ VLSI TECHNOLOGY, INC. 

ABSOLUTE MAXIMUM RATINGS 
Ambient Operating 
Temperature 

Storage Temperature -65°C to + 150°C 

Supply Voltage to 
Ground Potential -0.5 V to VCC +0.3 V 

Stresses above those listed may cause 
permanent damage to the device. 
These are stress ratings only. Func­
tional operation of this device at these 
or any other conditions above those 

Applied Output 
Voltage 

Applied Input 
Voltage 

Power Dissipation 

-0.5 V to VCC +0.3 V 

-0.5 V to +7.0 V 

2.0W 

DC CHARACTERISTICS: TA = O°C to +70°C, VCC = 5 V ±5% 

Symbol Parameter Min. 

CMOS Inputs 3.5 

TIL Inputs 2.4 
VIH Input High Voltage 

D7-DO 2.4 

C5-CO,-RST 2.4 

CMOS Inputs 0.0 

TIL Inputs 0.0 
VIL Input Low Voltage 

D7-DO 0.0 

C5-CO, -RST 0.0 

Output High CMOS Outputs VCC-O.75 
VOH Voltage 

D7-DO 2.4 

CMOS Outputs -
Output Low 

D7-DO VOL Voltage -

C5-CO, -RST -
VCC '" 4.75 Volts 2.7 

Schmitt Trigger 
VCC = 5.0 Volts VIHST Input Rising Edge -

Threshold VCC =- 5.25 Volts -

VCC = 4.75 Volts 1.2 

VIHST 
Schmitt Trigger 
Input Falling Edge VCC = 5.0 Volts -
Threshold VCC '" 5.25 Volts -

IOSC Output Short Circuit Current -
liN Input Leakage Current -
IDD Supply Current -

Notes: 1. All voltages measured with respect to GND pin. 

Typical 

-

-

-
-
-

-

-

-

4.2 

3.0 

0.3 

0.6 

0.3 

-

2.8 

3.0 

1.5 

1.7 

1.9 

25 

-

-

VL86C410 

indicated in this data sheet is not 
implied. Exposure to absolute maximum 
rating conditions for extended periods 
may affect device reliability. 

Max. Units Conditions 

VCC V See Note 1 

VCC V See Note 1 

VCC V See Note 1 

VCC V See Note 1 

0.8 V See Note 1 

0.8 V See Note 1 

0.8 V See Note 1 

0.8 V See Note 1 

- V IIH - 2.5 mA 

- V IIH -10 mA 

0.4 V IIL--2.5 mA 

0.8 V IIL=-10 mA 

0.4 V ilL =-2.5 mA 

3.3 V 

- V 

- V 

1.8 V 

- V 

- V 

40 mA See Note 2 

10 mA 

15 mA At 8 MHz 

2. Not more than one output should be shorted to either rail at any time, and for no longer than one second. 

6-22 



e VLSI TECHNOLOGY, INC. 

APPENDIX A - 1. 
CYCLE TYPE 0 READ 

RCLK. 

VL86C410 

-'ORQ~-L-==--------------L ____ rJ 
-IOGT 

-S7·-51 

-RE 
-L-----I 

-RBE -L--=---------,L-__ -.-~ 
-BL 

D7·DO 

A6-A2, 
B2-BO, cs 

-RIW_±~ ___ -------jj--

6·23 



e VLSI TECHNOLOGY, INC. 

APPENDIX A - 2. 
CYCLE TYPE 0 WRITE 

RCLK 

VL86C410 

-IORQ~-L--==---------------L __ ----1r--IOGT 
-S7--S_1_-l _________ · ___ 

l 
____ _ 

-WE 

-WBE 

-BL 

07-00 

A6-A2,: c~~t~:=========------------r"=== B2-BO~S 

-RNl __ .---

6-24 



e VLSI TECHNOLOGY. INC. 

APPENDIX A - 3. 
CYCLE TYPE 1 READ 

RCLK 

-IORQ~_L _______________ IL-------,r-
-IOGT 

Vl86C410 

--+----------
-S7- -S1 

-RE 

-RBE ____ L ___________________ ~L___ ____ r_- _ 

-BL 

07-00 

A6··A2, 
B2-BO, CS 

6-25 

I 



_ VLSI TECHNOLOGY, INC. 

APPENDIX A - 4. 
CYCLE TYPE 1 WRITE 

RCLK 

VL86C410 

-IORQ~_L-______________ L ___ .---
-IOGT 

-+------
-S7--S1 

-WE 

-WBE 

-BL 

07-00 

A6-A2, C~----=t~~=========-------t,,~===== B2-BO,~S 

-RIW __ , 

6-26 



e VLSI TECHNOLOGY, INC 

APPENDIX A • 5. 
CYCLE TYPE 2 READ 

RCLK 

-IORO 

---1-----1 
-IOGT 

-S7--S1 

-RE 

-RBE 

-BL 
--l-----i 

07-00 

A6-A2, 
B2-BO, CS 

VL86C410 

-RIW.±~ __ ---}----L---

6-27 

I 



e VLSI TECHNOWGY, INC 

APPENDIX A - 6. 
CYCLE TYPE 2 WRITE 

RCLK 

-lORa 

---L----~ 
-IOGT 

-S7- -S1 

--WE 

-WBE 

-BL 

07-00 

VL86C410 

A6-A2':C~~t~:========= ____ t-_~=======_ B2-BO~S 

-RIW __ .-

6-28 



8 VLSI TECHNOLOGY, INC 

APPENDIX A -7. 
CYCLE TYPE 3 READ 

RCLK 

-IORO 
(See 
Note 1) 

-IOGT 

CLKl2 

-+------------------------------------------------------~ 

-57--51 

-RE 

-BL 

07-00 

A6-A2, 
B2-BO, 
CS 

-AMI 
(See 
Note 1) 

Vl86C410 

Note: 1. This illustrates the four different sychronization delays represented by the possible -lORa timings. 

6-29 

I 



e VLSI TECHNOLOGY, INC. 

APPENDIX A - 8. 
CYCLE TYPE 3 WRITE 

RCLK 

-lORa 
(See 
Note 1) 

-IOGT 

CLKl2 

-S7 - -S1 

-WE 

-BL 

07-00 

AS-A2, 
B2-BO, 
CS 

-FW/ 
(See 
Note 1) 

VL86C410 

Note: 1. This illustrates the four different sychronization delays represented by the possible -lORa timings. 

6-30 



e VLSI TECHNOLOGY, INC 

SECTION 7 

RISC 
DEVELOPMENT 
TOOLS OVERVIEW 

Application Specific 
Logic Products Division 

.. 



_ VLSI TECHNOLOGY, INC 



e VLSI TECHNOLOGY, INC. 

FEATURES 
• Hardware and software prototyping 

vehicle 

• 1 MByte or 4 MByte memory 

• IBM PC/AT drop-in card 

• PC bus-master code 

• RISC can access PC memory or PC 
I/O space 

• RS-232C serial port 

• Single bootstrap EPROM 

• On-board memory manager (MEMC 
chip) 

• Spare socket for 53C90-type SCSI 
adapter 

• Fully supports OC disk and 1/0 opera­
tions 

• Includes full source code for RISC 
monitor programs 

DESCRIPTION 
The Blue Streak is a PC/AT~ add-in 
card that contains a VL86C01 0, 
VL86C110, and VL86C410 all operat­
ing at 8 MHz. The board is intended as 
a hardware/software development 
platform for the processor. The 
hardware architecture is such that the 
board is a bus master on the PC expan­
sion bus and therefore the RISC has 
direct access to the PC memory and I/O 
space. For PC-to-board communication 

ORDER INFORMATION 

Part 
Number 

VL86C010-SB (No memory version) 
VL86C010-SB3 ( 1 meg version) 
VL86C01 0-SB4 (4 meg version) 

VL86C010 - DB1 

VL86C010-SW1-CASMPC 
VL86C010-SW1-CASMRS 

VL86C010-SW1-SUPCPC 
VL86C010-SW1-SUPCRS 

VL86C010-VBUG 

Rise DEVELOIPMENT TOOLS OVERVIEW 
BLUE STREAK DEVELOPMENT BOARD 

a simple mail box register'is used. The 
VL86C010 accesses the PC bus under 
programmed 110 to simulate a DMA 
channel. An expansion bl!JS is available 
on a 96-pin DIN connector to allow 
custom hardware to be attached for 
prototype development. The VL86C410 
provides a full-duplex RS-232 port for 
downloading code Into other target 
systems. Also on the board (but not 
supported in beta site versions) is a 
SCSI interface directly into the RISC 
system. Full schematics of the board 
are available to assist customers in 
interface issues with slower buses. The 
board is available 1 Mbyte and 4 Mbyte 
configurations or without memory for 
customers who can supply their own 
memory devices. 

DEVELOPMENTSUPPOAT 
Included with the Blue Streak are all 
programs necessary for interface to the 
PC and several software development 
tools such as: debuggers, assemblers, 
and linkers. Programs are downloaded 
into the Blue Streak from the PC via the 
parallel bus. Monitor programs 
operating in both systems coordinate all 
I/O activity between the two systems. 

Programs can be written in assembler 
language using the Compiling Assem­
bler™ (CASMTM) or the Super-C ANSI 
C Compiler. CASM is incll!Jded with the 
Blue Streak system utilities; Super-C is 
an additional-cost item. 

Description 

Blue Streak Board 

Arm-3 Daughter Card 

Compiling Assembler (CASM)TI4 

Super-C ANSI C Compiler 

VBUG Machine Level Debugger 

7-3 

CASM - CASM supports high-level 
features like run-time expression evalu­
ation in addition to the traditional macro 
capability. Structured constructs are 
also provided. 

Super-C - Super-C is a full ANSI stan­
dard implementation 01 the C language 
for the VL86C010. The VLSI Technol­
ogy, Inc. developed compiler generates 
code that is easily placed into ROMs. 

LlBR - The object files 'created by the 
compiler or assembler 'may be merged 
into one or more librariies by the L1BR 
(librarian) utility program. L1BR is in­
cluded with CASM. 

CLINK - The CLINK linker is compatible 
with output files from either language. It 
links modules from both languages 
together into an executable format, and 
is included with the CASM assembler. 

For beta site releases, CASM, 
Super-C, L1BR, and CLINK all execute 
on the PC. Full produotion releases will 
support execution on either the PC or 
Blue Streak. 

VBUG - Programs running on the Blue 
Streak can be debugged using the 
VBUG Machine Debugger. The VBUG 
program allows for totaHy non-intrusive 
debugging in all processor modes. 
VBUG supports debug 'functions such 
as break pointing, single step, instruc­
tion tracing, register manipulation, and 
memory manipulation. 

PC/A~ is a registered 1trademark of 
IBM Corporation. 

CASMTM and Compiling' Assembler™ 
are trademarks of NIKO's Corporation 
of Phoenix, Arizona. 



-...j 

j.. 

CENTRAL 
PROCESSOR 

MEMORY 

I VL86C011 CONTROL!VL86C11 'lC~;. ~\:I 
CPU SIGNALS MEMC 

ADDRI AO:25 
DATA 00:31 

I ,~ .... ~11 Mx32 bit 
DRAMs 
(DIPs or 
SIMMs) 

CLK36 ~I 

ADDRESS HOLD 
LATCHES 

DATA 

DO:15 

BYTE ISOLATION 
LATCHES 

'HC573 

~ SBHE· 
rvnuv ~! PC-IOW* 'HC244 to PCAT 

PFR_WR* Dt" ,I"\D* I. _____ I 

LED 
DISPLAY 

AT-STROBES· 

STROBES 
to PCAT 

SDO:15 1....1!--------------...... -r. TO/FROM t::::t: pf"_WtLnl:* PCAT 

I 

IN-LATCW = B-LATCH .OR . ....-(MASTER) 
(lOW .AND. PC-PORT-O) ..--(SLAVE) 

SAO:19 
(TOPCAn 

,...------- PC-DACK 
PC-DRO 

1-----•• PC-MASTER· 
AT-ACTIVE· __ WE HAVE 
AT-STROBES· ............. THE PCAT BUS 

-""""""TIME PCAT 
MEM& I/O 
STROBES 

m -r-
C 
m 
~ < :a ~ m 
l> (f) 

" 
1--4 

tJ) ~ -< 
tJ) n -4 m ::c 
i: Z 
c ~ l> 
G) :DO 
:a (j)~ l> 
i: O~ Z 

C (1 
m 
< m 
r 
0 
-a s: 
m 
z 
-I 
-I 
0 
0 
r 
en 
0 
< m 
:D 
=:s 
m 
:?E 



_ VLSI TECHNOLOGY, INC. 

DESCRIPTION 
This is a daughter card that connects to 
the Blue Streak board. It contains a 
VL86C020 processor with 4 Kbytes of 
instruction and data cache on-chip. 

DESCRIPTION 
The CASM Assembler provides the 
ability to program at the machine level 
effectively and efficiently. Since the 
processor has fully interlocked pipelines 
and very simple parallelism, program­
ming in assembler for the VL86C01 0 is 
very similar to the more traditional CISC 
architectures. Performance from the 
processor does not depend on highly 
optimized compilers, so the assembly 
programmer is not required to manage 
pipeline flows and optimal scheduling 
strategy as in other RISC processors. 

CASM can be used as an ordinary 
macro assembler or in a compiling 
mode that generates machine code 
similar to high-level language state­
ments. Support for listing indentation 
and structured flow control statements 
improve programmer productivity. 

Rise DEVELOPMENT TOOLS OVERVIEW 

This card contains a PLCC adapter that 
lets it replace the processor chip on the 
Blue Streak. The new processor runs 
at 20 MHz, but uses the same 8 MHz 
memory subsystem of the unmodified 

ARM-3 DAUGHITER CARD 

Blue Streak. Most programs then run 
2.5 - 3.0 times faster than the original 
processor, when the cache is enabled. 
The new board is fully ·software 
compatible with the original processor. 

COMPILING ASSEMBLER (CASM) 

CASM creates relocatable object 
modules. 

Included with CASM is the CLINK 
linker. It allows modules to be as­
sembled or compiled independently, 
and combined into one module for 
execution. CLINK supports 16 location 
counters and allows programs to be 
partitioned for different classes of 
memory (ROM, RAM, stack, common 
memory, etc.). 

Also included is the L1BR program li­
brarian. This utility merges commonly­
used program modules together into a 
single file. The linker can then auto­
matically search that (library) file for 
any modules that it needs ,to complete 
the construction of a program. This 
eliminates the requirement to tell the 
linker the detailed names for common 

7-5 

utility modules often used by programs. 

DEVELOPMENT ENVr.RONMENT 
Two versions are available. One that 
executes on the IBM PC and the other 
directly on the Blue Streak board. The 
Blue Streak includes b0th CASM and 
CLINK in the basic system. Users who 
wish to develop code on the IBM PC 
and download into their target hardware I 
may purchase a cross assembler copy 
that executes on the PC and produces 
VL86C010 code. 

Modules created on the Blue Streak 
board may be freely mixed with those 
created on the PC environment, and 
vice versa, during the program linking 
process. 



_ VLSI TECHNOLOGY, INC. 

DESCRIPTION 
The SUPER-C ANSI C Compiler imple­
ments the full ANSI specification of the 
C language for the VL86C010 family 
processors. The instruction set 
architecture of the VL86C010 lends 
itself to efficient compiler implementa­
tions and optimization. The compiler 
uses the conditional execution and 
condition code control provided by the 
instruction set to produce optimized 
code. In addition, efficient register 
allocation minimizes the number of 
load/store instructions. 

DESCRIPTION 
LlBR is a librarian utility that merges 
software object modules into a single 
file. The resulting library file is used by 
the CLINK linker. Placing commonly 
used functions and modules into a 
library file minimizes the effort needed 
to link programs. It also allows pro-

Rise DEVELOPMENT TOOLS OVERVIEW 

SUPER-C ANSI C COMPILER 

The object code modules produced by 
SUPER-C are compatible with the 
CASM and CLINK programs to allow 
modules written in the high-level 
language and assembler to be com­
bined. 

The runtime libraries follow the ANSI 
definitions, and support the Blue Streak 
hardware environment. Source code 
may be purchased for the libraries so 
that they may be ported to alternative 
hardware configurations. 

DEVELOPMENT ENVIRONMENT 
Two versions are available. One that 
executes on the IBM PC and the other 
directly on the Blue Streak board. 
Users who wish to develop code on the 
IBM PC and download into their target 
hardware may purchase a cross 
compiler copy that executes on the PC 
and generates VL86C010 code. 

Modules created on the Blue Streak 
board may be freely mixed with those 
created on the PC environment, and 
vice versa, during the program linking 
process. 

LIBR LIBRARIAN UTILITY (INCLUDED WITH CASM) 

grams to be grouped conveniently, such 
as a different library for different 
hardware configurations. 

DEVELOPMENT ENVIRONMENT 
Two versions are available. One that 
executes on the IBM PC and the other 

directly on the Blue Streak board. Mod­
ules created on the Blue Streak board 
may be freely mixed with those created 
on the PC environment, and vice versa, 
during the library merging process. 

ODUMP OBJECT DUMP UTILITY (INCLUDED WITH CASM) 

DESCRIPTION 
ODUMP is a utility program that ex­
tracts and dumps information on an ob­
ject module to the screen. It may be 
used to inspect data such as the object 
file header containing dates, times, 

source environment, and the like. It is 
also used to inspect relocation records, 
displaying them in an easy-to-read 
manner. 

7-6 

DEVELOPMENT ENVIRONMENT 
Only one version is provided, it exe­
cutes on the PC. It may dump data 
from modules created on either the PC 
or on the Blue Streak environments. 



_ VLSI TECHNOLOGY, INC. 

DESCRIPTION 
The VBUG program is a machine-level 
debugger for the VL86C010. It sup­
ports software development at the 
object code level. VBUG allows 
programs to be loaded into the Blue 
Streak and controlled via the keyboard. 
Functions supported include trace, 
single-step, register examination, and 
register/memory modification. 

Both Step and Step-Over modes are 
supported for the Single-Step and the 
Trace commands. Step-Over mode 
does not perform tracing inside a 
subroutine that may be called. 
During both Single Step and Tracing, 

DESCRIPTION 
The Blue Streak support firmware is 
comprised of four sections: Bootstrap 
ROM code, Blue Streak initializer, the 
RISC-resident monitor, and the PC/AT 
resident I/O support shell. 

The ROM code contains a short pro­
gram to set up the initial state of the 
Blue Streak card and to load a (monitor) 
program from the PC/AT. The initializer 
program operating in the PC/AT loads 
the RISC's monitor program from a disk 
file. 

Rise DEVELOPMENT TOOLS OVERVIEW 

VBUG MACHINE LEVEL DEBUGGER 

options may be selected! such that each 
instruction, all 16 registers are dis­
played. Alternatively, only the registers 
referenced by the instruction, or only 
the registers changed by: the instruction, 
may be automatically displayed. 

It is possible to trace or single-step in 
any of the four processor modes, and 
through transitions from one such mode 
to another. It is possiblej therefore, to 
trace from User mode into an SWI call 
(if not using Step-Over tracing). 

At all times that VBUG is in control of 
the keyboard, the user's memory is as it 

was left. That is, no €ode is left in the 
memory after a traceior a Step has 
been completed. This means that 
program crashes will not cause 
debugger code to be 'left in the user 
memory areas. 

Separate copies are kept of the register 
environments for each of the possible 
processor machine states. 

ROM areas cannot be traced. 

DEVELOPMENT ENVIRONMENT 
VBUG is provided with the Blue Streak 
development board. It is currently only 
available on Blue Streak as a disk 
based debugger. 

BLUE STRiEAK FIRMWARE AND PC/AT SHELL 
(INCLUDED WITH BLUE STREAK BOARD) 

The monitor is a single-tasking program 
that maintains an operating environ­
ment for the user code. It supports both 
character and disk I/O through DOS, via 
the PC/AT shell program: Because of 
the DMA-like bus interface on the Blue 
Streak card, transfers between the 
monitor and the shell are;very fast. 

An interface shell program runs on the 
PC, and provides I/O services to the 
RISC's monitor. Both keyboard and 

7-7 

disk I/Os are handled,. using standard 
DOS indirection facilities. 

The monitor does not iSUpport the SCSI I 
adaptor device on thel Blue Streak card. 
Source code is available for all of these 
programs. 

DEVELOPMENT ENVIRONMENT 
The bootstrap and the monitor pro­
grams execute on the, Blue Streak 
board itself, while theinitializer and 
shell operate on the PC/AT. 



e VLSI TECHNOWGY, INC 

Notes: 



e VLSI TECHNOLOGY, INC. 

SECTION i8 

PACKAGING 
INFORMATION 

Application Specific 
Logic Products Division 

I 



8 VLSI TECHNOLOGY, INC. 



_ VLSI TECHNOLOGY, INC. 

PACKAGE OU!!"~~:~HIP CARRIER (PLCC) 68-PIN PLAST1C L 

.965 (24.511) 

.940 (23.876) 

.800 (20.320) 

.965 (24.511) 

.940 (23.876) 

PACiKAGING 

-iii =ffi !;;~: 
I _ ".,'NG 'CAN' 

- ELECTRICAL.L Y 
ACTIVE PLANE 
ON THIS SIDle 

I 

.095 (2.413) -=- --- .075 (1.905) 
LEAD 1 ONLY 

.040 (1.016) x 45· 
CHAMFER INDEX CORNER 

8-3 

E 



e VLSI TECHNOLOGY, INC. 

PACKAGE OUTLINES (Cont.) 
84-PIN PLASTIC LEADED CHIP CARRIER (PLCC) 

1.000 (25.40) REF 

PIN 1 INDEX 
MAY VARY IN 

SIZEAND"'-

LOCATION "" 

00 

t 
.130 (3.30) 
.090 (2.29) 

~:~::l::~~----------------' I 
.032 (0.813) 
.028 (0.880) 

1---------- ~:: l~~:~~l--------.I 

NOTES: UNLESS OTHERWISE SPECIFIED. 
1. TOLERANCE TO BE +1· .005 (0.127). 
2. LEADFRAME MATERIAL: COPPER. 
3. LEAD FINISH: MATTE TIN PLATE OR SOLDER DIP. 

1.158(29.41) 
1.150 (29.21) 

.200 (5.08) 

.165(4.19) 

SEE DETAIL A 

4. SPACING TO BE MAINTAINED BETWEEN FORMED LEAD AND MOLDED PLASTIC ALONG FULL LENGTH OF LEAD. 

DETAIL A 

I.'" I'· ... ' MAl< 

t.020 (0.508) MIN 

5. MOLDED PLASTIC DIMENSION DOES NOT INCLUDE SIDE FLASH BURR, WHICH IS .010 (0.254) MAX ON FOUR SIDES. 
8. CONTROLLING DIMENSIONS ARE METRIC. ALL METRIC DIMENSIONS ARE IN PARENTHESES. 

8-4 

PACKAGING 

.010 (0.254) 

.008 (0.203) 

.044(1.117) 

.008 (0.203) RAD 

.035 (0.889) RAD 

25-60004 4/88 



_ VLSI TECHNOLOGY, INC 

PACKAGE OUTLINES (Cont.) 
144-PIN CERAMIC PIN GRID ARRAY 

(@)®®®®® ® ~~ ® ® ® ® ® ® r@jH-----r--
® ® 
® ® 
® ® 
® ® 
® ® 
® ® 
~ /"::\ 
\.::.,I \.::.,I El 

® ® 
® ® 
® ® 
® ® 
® ® 
® ® 
~® ® ® ® ® ® ~~ ® ®@®@) ® ~l-I------'--

~-------------Dl------------~~ 

~------------D----------...J 

PAOKAGING 

IiI iii i 1 i_i i i~i! w~ ; I "ATIOO'CAN' 

TI.~O~~~S .100 (2.540) TVP .018 (0.457) 

A o (E) 
Pin CavHy 

Count Matrix PosHlon Min Max Min Max 

144 15 x 15 Up 
.0780 .1020 1.559 1.591 

(1.981 ) (2.591) (39.60) (40.41) 

Notes: 1. All dimensions are in inches (mm). 
2. Material: AI203 
3. Lead Material: Kovar 

01 (E1) 

Min Max 

1.388 1.412 
(35.26) (35.86) 

Q 

Ref 

0.050 
(1.270) 

L 

0 
(3 

Ref 

.130 

.302) 

4. Lead Finish: Gold plating 60 micro-inches min. thickness over 100 micro-inches nominal thickness of nickel 

8-5 

I 



_ VLSI TECHNOLOGY, INC 

PACKAGE OUTLINES (Cont.) 
160-PIN CERAMIC PIN GRID ARRAY 

1.266 (32.15) rl -- ------ - 1.213 (30.80) 

1.106 (28.10) ______ _ r- --- 1.098 (27.90) 
PIN 160 

PIN 1 
I 

~INDEX 

_----------"1 DETAIL - A-
-' , 

,.// '\ 

PACKAGING 

.A1lllilluUUUUUUUUU~)L SEATING PLANE ~t'j 
004 (.

10ill .084 (2.125) 
o. - .053 (1.35) 

r .008 (.203) 

NOTES: 

1. CONTROLLING DIMENSION IS MM. 

8-6 

f 
141 (3.57) 

:125 (3.17) 

t t 

. 014 (!3~5 

.002 (.05) 

.026 (.55) 
TYP 

1.0~4 (.10) 

lJ l 
------- jT-;r;o . 

.037 (.95) 
1.015 (.40) 

.016 (.40) 

.008 (.20) 

1$1.005 (.15)_ Typ@1 

DETAIL -A-



e VLSI TECHNOLOGY, INC. 

SECTION 9 

SALES OFFICES, 
DESIGN CENTERS, 
AND 
DISTRIBUrORS 

Application Specific 
Logic Products Division 

I 



_ VLSI TECHNOLOGY, INC. 



_ VLSI TECHNOLOGY, INC. 

SALES OFFICES, DESIGN CENTERS, AND DISTRIBUTORS 
VLSI CORPORATE OFFICES 
CORPORATE HEADQUARTERS· ASIC AND MEMORY PRODUCTS. VLSI Tephnology~ Inc .• 1109 McKay Drive· San Jose. CA 95131 ·408-434-3100 
APPLICATION SPECIFIC LOGIC AND GOVERNMENT PRODUCTS. VLSI Teclilnology. Inc.· 8375 South River Parkway· Tempe. AZ 85284 n 602-752-8574 

VLSI SALES OFFICES GERMANY VLSI AUTHORIZED VLSI DISTRIBUTORS AUSTRALIA 

AND TECH CENTERS Rosenkavalierplatz 10 DESIGN CENTERS United States represented by 
ENERGY CONTROL 

D-8000 Muenchen 8t Brisbann, 6t -7-376-2955 
ARIZONA West Germany COLORADO SCHWEBER ELECTRONICS except 

AUSTRIA 
8375 South River Parkway 89-9269050 SIS MICROELECtRONICS, INC. where noted 

TRANSISTOR GmbH 
Tempe, AZ 85284 TELEX 521 4279 vlsid Longmont,303-776-t667 ALABAMA Vienna, 222-8294010 
602-752-6450 FAX 89-92690545 MAINE Huntsville, 205-895-0480 
FAX 602-752-6001 HONG KONG QUADIC SYSTEMS, INC. ARIZONA 

BELGIUM AND LUXEMBURG 

CALIFORNIA Shui On Centre 28/12 South Portland, 207-871-8244 Tempe, 602-431-0030 
MCAtronix 
Angleur, 41-674208 

2235 Qume Dr 8 Harbor Road PENNSYLVANIA CALIFORNIA 
San Jose, CA 95131 Hong Kong INTEGRATED CIRCUIT SYSTEMS, INC. Calabasas, 818-880-9686 

DENMARK 
408-922-5200 852-5-865-3755 King of Prussia, 215-265-8690 Irvine, 714-863-0200 

INTEREL".KO 
FAX 408-943-9792 FAX 852-5-865-3159 EIRE AND U.K. Sacramento, 916-364-0222 

Karlslunoe, 3-140700 
TELEX 278807 JAPAN PA TECHNOLOGY San Diego, 619-495-0015 EIRE AND U.K. 
MAIL Shuwa-Klolcho TBR Bldg., Room 101 Herts, 76-3-61222 San Jose, 408-432-7171 HAWKE COMPONENTS 
1109 McKay Drive Sunbury-on-Thames. 1-9797799 5-7 KOjimachi, Chiyoda-Ku COLORADO San Jose, CA 95131 FRANCE Tokyo, Japan 102 

CETIA Englewood,303-799-0258 QUARNDON ELECTRONICS 
6345 Balboa Blvd., Ste. 100 81-3-239-5211 

Toulon Cedex, 9-42-12005 CONNECTICUT 
Derby, 332-32651 

Encino, CA 91316 FAX 81-3-239-5215 
Oxford, 203-264-4700 FINLA~ID 

818-609-9981 UNITED KINGDOM SOREP 
OY COMOAX FAX 818-609-0535 486-488 Midsummer Blvd. Chateau bourg, 99-623955 FLORIDA Helsinki, 0-670277 

30 Corporate Park, Stes. 100-102 Saxon Gate West, Central Milton NORWAY Altamonte Springs, 407-331-7555 
FRANCE Pompano Beach, 305-977-7511 Irvine, CA 92714 Keyes, MK9 2EQ NORKRETS AS 
ASAP s.~. 714-250-4900 United Kingdom Oslo, 47-2360677/8 Tampa, 813-541-5100 
Montignll-Ie-Bretonneux. 1-3043.82.33 FAX 714-250-9041 09 08/66 75 95 SWEDEN GEORGIA 

FLORIDA TELEX vlsiuk 825 135 NORDISK ARRAYTEKNIK AB Norcross, 404-449-9170 GERMANY 

2200 Park Central N., Ste. 600 FAX 09 08/67 00 27 Solna, 8-734 99 35 ILLINOIS 
DATA M(i)OUL GmbH 
Munich,89-4180070 

Pompano Beach, FL 33064 Elk Grove Village. 312-569-3650 
305-971-0404 VLSI SALES OFFICES VLSISALES IOWA 

SPEZIAL-ELECTRONIC KG 
FAX 305-971-2086 ALABAMA REPRESENTATIVES Cedar Rapids, 319-373-1417 

Bueckeburg.5722-2030 

GEORGIA 2614 Artie St., Ste. 36 CALIFORNIA KANSAS 
HONG ItONG 

2400 Pleasant Hill Rd., Ste 200 Huntsville, AL 35805 CENTAUR CORP. Overland Park, 913-492-2921 
LESTINA INTERNATIONAL. LTO 

Duluth. GA 30136 205-539-5513 Irvine. 714-261-2123 
TSlmshatsul,852-3-7351736 

404-476-8574 FAX 205-536-8622 MARYLAND ITALY 
FAX 404-476-3790 CONNECTICUT CENTAUR CORP. Gaithersburg, 301-596-7800 INTER-REP S.P.A. 
ILLINOIS 60 Church St., Ste. 16 Calabasas, 818-704-1655 MASSACHUSETTS Torino, 1 1-2165901 
3100 Higgins Rd., Ste. 155 Yalesville, CT 06492 CENTAUR CORP. Bedford,617-275-5100 JAPAN 
Hoffman Estates, IL 60195 203-265-6698 San Diego, 619-278-4950 MICHIGAN ASAHI GLASS CO. LTD 
708-884-0500 FAX 203-265-3653 EMERGING TECHNOLOGY Livonia, 313-525-8100 Tokyo, 81-3-218-5854 
FAX 708-884-9394 FLORIDA San Jose, 408-263-9366 MINNESOTA TEKSEL COMPANY, LTD 
MARYLAND 5955 T. G. Lee Blvd., Ste. 170 EMERGING TECHNOLOGY Eden Praire, 612-941-5280 Tokyo, 81-3-461-5311 
124 Maryland Rte 3 N. Orlando, FL 32822 Orangevale, 916·988-4387 MISSOURI TOKYO EI.ECTRON, LTD Millersville, MD 21108 407-240-9603 

COLORADO Earth City, 314-739-0526 Tokyo. 81-423-33-8009 301-987-8777 FAX 407-240-9605 
FAX 301-987-8779 LUSCOMBE ENGINEERING NEW HAMPSHIRE KOREA MINNESOTA Longmont, 303-772-3342 Manchester, 603-625-2250 ANAM VLSI DESIGN CENTER MASSACHUSETTS 5871 Cedar Lake Rd .. Ste. 9 

IOWA Seoul, 82-2-553-2106 261 Ballardvale St. SI. Louis Park, MN 55416 NEW JERSEY 
Wilmington, MA 01887 612-545-1490 SEL TEC SALES Fairfield,201-227-7880 EASTERN: ELECTRONICS 
508-658-9501 FAX 612-545-3489 Cedar Rapids, 319-364-7660 

NEW YORK Seoul, 82 .. 2-464-0399 
FAX 508-658-0423 NORTH CAROLINA MARYLAND Rochester, 716-424-2222 NETHERLANDS 
NEW JERSEY 1000 Park Forty Plaza, Ste. 300 DELTA III Westbury, 516-334-7474 DIODE 

Columbia, 301-730-4700 311 C Enterprise Dr. Durham, NC 27713 NORTH CAROLINA Houten, 3403-91234 
Plainsboro, NJ 08536 919-544-1891/92 NEW YORK Ralelgh,919-876-0000 SWEDEN AND NORWAY 
609-799-5700 FAX 919-544-6667 bbd ELECTRONICS OHIO TRACOAEl 
FAX 609-799-5720 OHIO Rochester, 716-425-4101 

Beachwood,216-464-2970 Farsta, 8-930000 
TEXAS 4 Commerce Park Sq. OREGON Dayton, 513-439-1800 SOUTH AMERICA - BRAZIL 
850 E. Arapaho Rd., Ste. 270 23200 Chagrin Blvd., Ste.600 MICRO SALES OKLAHOMA INTERNATIONAL TRADE 
Richardson, TX 75081 Cleveland, OH 44122 Beaverton, 503-645-2841 

Tulsa, 918-622-8003 DEVELOPMENT 
214-231-6716 216-292-8235 UTAH Palo Alto, 415-856-6686 
FAX 214-669-1413 FAX 216-464-7609 LUSCOMBE ENGINEERING OREGON 

Salt Lake City, 801-565-9885 ALMAC ELECTRONICS CORP. SPAIN A·ND PORTUGAL 
WASHINGTON OREGON SEMICON!JUCTORES s.a. 
405 114th Ave. SE, Ste. 300 10300 SW. Greenburg Rd., Ste. 365 WASHINGTON 

Beaverton, 503-629-8090 

PENNSYLVANIA 
Barcelona. 3-217-23 40 

Bellevue, WA 98004 Portland, OR 97223 MICRO SALES 
Horsham, 215-441-0600 SWITZERLAND 206-453-5414 503-244-9882 Bellevue, 206-451-0568 FABRIMEXAG FAX 206-453--5229 FAX 503-245-0375 

ISRAEL 
Plttsburgh,412-963-6804 

Zurich, 1-2512929 
FRANCE TEXAS RDT ELECTRONICS TEXAS 
2, Allee des Garays 9600 Great Hills Trail, Ste. 150W Tel Aviv, 3-483211-9 Austin, 512-339-0088 TAIWAN 

Dallas, 214-247-6300 PRINCETON TECH CORP. F-91124 Palaiseau Cedex Austin, TX 78759 
France 512-343-8191 
1-6447.04.79 FAX 512-343-2759 
TELEX vlsifr 600 759 F 
FAX 1-6447.04.80 

The Information contained In this document has been care­
fully checked and Is believed to be reliable. However. VLSI 
Technology, Inc •• (VLSI) makes no guarantee or warranty 
concerning the accuracy of said Information and shall not be 
responsible for any loss or damage of whatever nature 
resunlng from the use of, or reliance upon. It. VLSI does not 
guarantee that the use of any Information contained herein 
will not Infringe upon the patent or other rights of third 

SINGAPORE Houston, 713-784-3600 Taipei,886-2-717-1439 
DYNAMIC SYSTEMS PTE, L TO WASHINGTON Singapore, 011-65-742-1986 

ALMAC ELECTRONICS CORP. 
Bellevue, 206-643-9992 
Spokane, 509-924-9500 

WISCONSIN 
New Berlin, 414-784-9020 

11/89 

LIFE SUPPORT APPLICATIONS panles. and no patent or other license Is 'l1lllled hereby. 

This document does not In any way extend VLSl's warranty 
on any product beyond that set forth In RSi standard terms 
and condHlons 01 sale. VLSI T$Chnology, Inc •• reserves the 
right to make changes In the products or apecHlcations, or 
both, presented In this publication at any time and without 
notice. 

VLSI Technology. Inc .. products are1not Intended for U89 as 
crnlcal corJ'1)Onents In IKe support appliances. devices. or 
systems In which the failure at a VLSI Technology product 
to perform could reasonably be 9XpeOcted to result In per­
sonallnjury. Please contact VLSI for the latest Information 
concerning this product. 8300-495390-003 
e 1990 VLSI Technology, Inc. Prlntelf In U.S.A. 

9-3 



e VLSI TECHNOLOGY, INC. 

Notes: 





The VLSI Technology, Inc. family of Reduced Instruction Set Computer (RISC) 
components can perform (and in some cases, outperform) the functions of 
comparable, conventional microprocessor systems with fewer and smaller 
components-at a much lower cost. This VLSI RISC-based system also permits a 
high degree of flexibility, allowing programs originally wrltten for different 
conventional microprocessors to run without software modification. 

This manual contains the hardware and software information necessary to 
understand and design a highly competitive RISC-based system, using the VLSI 
Technology, Inc., VL86C010 RISC microprocessor, the VL86C020 RISC with 
Cache, and their peripheral devices. Hardware and software examples are used 
extensively throughout the book. 

Section 1 illustrates the RISC system solution for desktop computers. Sections 2 
and 3 focus on both the hardware and software aspects of the RISC 
microprocessors. Instruction sets are thoroughly explained, using real-world 
examples. Section 4 investigates the RISC Memory Controller (MEMC) and its 
functions in detail. Similar treatment is given to the RISC Video Controller (VIDC) 
and RISC Input/Output Controller (IOC) in Sections 5 and 6. Section 7 defines the 
development tools currently available for the system. Section 8 contains the 
mechanical packaging information. 

PRENTICE HALL, Englewood Cliffs, N.J. 07632 

ISBN 0-13-7a1618-9 


