
PAC1000 Programmable
Peripheral Controller
Design and Applications
Handbook

LORI STEINTHAL

12 INCORPORATED

MA NUfACTURERS REPRESENTATIVES

3350 Scott Boulevard
Building 10
Santa Clara, CA 95054

Tel: (408) 988-3400
Fax: (408) 988-2079

Phone Mail: (408) 496-6868 x46

)

PAC1000
Programmable Peripheral

Controller

Design and Applications Handbook

1992

Copyright © 1992 WaferScale Integration, Inc.
(All rights reseroed.)

47280 Kato Road, Fremont, California 94538
Tel: 510-656-5400 Facsimile: 510-657-5916 Telex: 289255

Printed in U. S. A.

~~ ___ •• __ o. 0 _0 __ • _

___ ·Ar·~· ___ __
',NIl

General Information •

General
Information

Section Index

Table of Contents .. 1-1

Company Profile ... 1-3

Article Reprint ... 1-7

Product Selector Guide ... 1-13

Ordering Information ... 1-17

For additional information,
call800-TEAM-WSI (800-832-6974).

In California, Call 800-562-6363.

General
Information

PAC1000

PAC1000
Instruction
Set

PAC1000
Application
Notes

Table of Contents

Table of Contents .. 1-1

Company Profile ... 1-3

Product Selector Guide ... 1-13 • Article Reprint ... 1-7

Ordering Information ... 1-17

PAC 1000 Introduction Programmable Peripheral Controller ... 2-1

PAC 1 000 Programmable Peripheral Controller ... 2-3

PACSEL Language .. 3-1

Application Note 005 PAC 1 000 as a High-Speed Four-Channel
DMA Controller4-1

Application Brief 006 PAC 1000 as a 16 Bi-Directional Serial
Channel Controller4-33

Application Brief 007 Hardware Interfacing the PAC1 000 as a
Micro Channel Bus Controller .. .4-37

Application Note 008 PAC 1000 Programmable Peripheral Controller
with a Built-In Self Test Capability .. .4-43

Application Note 009 In-Circuit Debugging for the PAC 1 000
Programmable Peripheral Controller .. .4-51

Application Note 010 PAC 1 000 Introduction .. .4-67

Application Note 012 Testing 8 Dual-Port RAM Memories with the
PAC 1000 Programmable Peripheral Controller.4-93

1-1

Table of Contents

Development
Systems

Package

Electronic Bulletin Board .. 5-1

PAC1000 Gold/Silver Development System .. 5-3

WS6000 MagicPro ™ Memory and
Programmable Peripheral Programmer ... 5-7

Information 6-1

Sales
Representatives
and Distributors ... 7-1

-1-~-------------------------------~~aF~---------------------------------

Company
Description

Technology

Markets and
Applications

Company Profile

WSI is a market leading producer of high­
performance programmable peripheral
integrated circuits. The company was
founded in 1983 to serve the needs of
system designers who need to achieve
higher system performance, reduce the
size and power consumption of their
systems, and shorten their product
development cycles in order to achieve
faster market entry.

WSI produces an innovative portfolio of
Programmable Peripherals as well as a
broad line of high-performance non-volatile
programmable PROM and EPROM
memory products, both based on its
patented self-aligned split-gate CMOS
EPROM technology. The new
Programmable Peripherals enable rapid
system design of high-performance

WSl's patented self-aligned, split-gate
EPROM technology enables higher
performance and greater memory densities
per chip area than the traditional stacked­
gate method. By developing significantly
higher read current, the WSI EPROM cell
has enabled the development of several
memory devices that are the fastest of their
type on the market. This core NVM
technology is further leveraged by WSI's
architecture and design innovations such
as staggered virtual ground and

WSI's Programmable Peripheral and high­
performance non-volatile memory products
are used by the world's leading suppliers of
advanced electronic systems in
telecommunications, data processing,
military, automotive and industrial markets.

Applications for the Programmable
Peripherals include cellular telephones,
disk drive controllers, modems, bus
controllers, engine management
computers, telecom switchers, motor

application specific controllers and related
products. These devices are the first to
integrate high-performance EPROM,
SRAM and user-configurable logic and
deliver a performance and integration
breakthrough to the programmable
peripherals market.

WSI's Programmable Peripherals and non­
volatile memory products enable electronic
designers to reduce their system size,
shorten product development cycles and
bring new system products to market in
less time. As a result, WSI has established
itself as a leading supplier of high­
performance programmable solutions to a
broad customer base that includes some of
the world's largest and most technologically
advanced electronics companies.

contactless memory arrays resulting in
dramatic die area savings. This high
density memory capability enables WSI to
provide cost-effective market leading
products such as the smallest 4-Mbit
EPROM on the market. WSI's proprietary
NVM technology (licensed to Sharp
Corporation and National Semiconductor
Corporation) has enabled WSI to be first in
the industry with numerous product
breakthroughs in speed, high density,
process innovations and packaging.

controllers and others. High performance
memory applications include digital signal
processing, engineering workstations,
high-speed modems, video graphics
controllers, radar and others. By virtue of
their high speed and programming
capability, WSI products are ideally suited
for these applications where designers are
pushing the limits of system performance in
highly competitive markets.

1-3

•

Company Profile

Product Groups Programmable Peripherals
WSI's family of Programmable Peripherals
represents a new class of programmable
products. They enable system designers
to reduce the size of their products,
achieve lower operating power, optimize
system performance and shorten product
development cycles. They are the first
devices to integrate high-speed EPROM,
SRAM and programmable logic on a single
chip. The Programmable Peripherals
include the PSD3XX family, the MAP168
and the PAC1000.

PSD3XX Family: Microcontroller
Peripherals with Memory
Each member of the PSD3XX family is a
single-chip, field-programmable circuit that
integrates all the required peripheral
memory and logic elements for an
embedded-control design. Programmable
logic, page logic, programmable 1/0 ports,
busses, address mapping, port
addressldata tracking, 256K to 1 Mb
EPROM, and 16K SRAM are all on board.
Advanced features such as memory
paging, microcontroller port reconstruction,
track mode, configuration security bit, and
cascading further enhance the utility and
value of the PSD3XX family. PSD3XX
family devices are ideal for applications
requiring high-performance, low power and
very small form factors such as fixed disk
control, cellular telephones, modems,
computer peripherals, and automotive and
military applications.

MAP168 User-Configurable Peripheral
with Memory
Similar to the PSD3XX family, the high
speed MAP168 integrates high­
performance EPROM, SRAM, a PAD and
user-configurable logic. Ideal for high­
speed applications requiring expanded
memory, system integration and increased
data security, the 45 ns MAP168 is used
with high speed digital signal processors,
microprocessors and microcontrollers.

PAC1000 Peripheral Controller
The high speed PAC1000 sets a new
standard for Programmable Peripheral
performance, integration and functionality.
The PAC1000 replaces up to 50 complex
devices in high-end embedded controllers
and microprocessor-based systems.
Combining a CPU, 1 K x 64 EPROM and
extensive user-configurable logic, the
PAC1 000 assists its host processor with
high rates of data manipulation and control,
freeing the processor for other system
functions'. The 16 MHz PAC1 000 has been
designed into numerous high-performance
applications such as work-station direct
memory access controllers, video imaging
digital signal processors, and VME bus
LAN controllers.

Programmable Peripheral
Development Tools
WSI's Programmable Peripheral products
are supported with complete easy-to-use
system development tools from both Data
1/0 and WSI. The Data 1/0 Unisite
programmer can be used for production
programming. The WSI tools include
program development, simulation, and
programming software, the IBM-PC hosted
MagicPro™ Memory and Peripheral
Programmer, a dial-in applications bulletin
board and WSI's team of factory service
and field application engineers. The menu­
driven software tools run on popular
customer owned computers and enable
designers to rapidly configure and program
the WSI part and try it in a prototype
system. Additional design iterations are
quickly accomodated. The system
development tools increase the efficiency
of the design process resulting in faster
market entry for WSI's customers'
products.

------------------------------------f~~iF~------------------------------------­
1-4

FI11/!F'IE!!iF!!!!!!!'!!!!

High­
Performance
Memory
Products

Manufacturing

WSI offers a broad product line of high­
performance CMOS PROMs and EPROMs
featuring architectures ranging from 2K x 8
to 512K x 8, plus several x16 products, with
speeds ranging from 25 to 150 ns.
Commercial, industrial and military
products including MIL-STD-883C/SMD are
available. A wide variety of package
selections include plastic and hermetic,
through-hole and surface mount types.

CMOS PROMs
As WSl's fastest family of products,
Re-Programmable Read Only Memories
(RPROMs) provide high-speed bipolar
PROM pinout with matching speed and low
power operation. The product family
includes architectures ranging from 2K x 8
to 32K x 8 with speeds ranging from 25 to
90 ns. Commercial, industrial and military
MIL-STD-883C/SMD configurations are
available in a variety of hermetic and
plastic package types.

WSI's manufacturing strategy includes
utilizing multiple world-class manufacturing
partners for each facet of the production
process.

WSI has licensed its CMOS EPROM and
logic process technology to Sharp
Corporation in Japan and National
Semiconductor Corporation in the USA.
The Sharp faCility in Fukuyama, Japan
employs the most advanced sub-micron
VLSI integrated circuit manufactunng
equipment available including Ion
implantation, reactive ion etch, and wafer
stepper lithographic systems. The world­
class high volume National Semiconductor
operation delivers low cost production of
1.2 micron CMOS technology product on 6"
wafers. This low defect density
manufacturing resource is capable of
producing sub-micron technology product
in the near future.

Company Profile

"F" Family EPROMs
The high-speed "F" senes EPROM family
offers speeds ranging from 35 to 70 ns and
architectures from 8K x 8 to 32K x 8, plus
several x16 products. "F" family
EPROMs are ideal for use in high-end
engineering and scientific workstations,
data communications and similar high­
performance applications.

"L" Family Military EPROMs
WSI's "L" family military EPROM memory
products feature high-density and high
speed in popular JEDEC pinouts. With
speeds ranging from 120 to 300 ns and
architectures from 64K x 8 to 512K x 8
including several x16 products, the "L"
family offers significant speed and high
density benefits for developers of military
avionics, communications, and control
systems. The "L" family delivers world class
densities from WSl's conservative 1.2
micron lithography CMOS process
technology.

High-volume, low cost integrated circuit
packaging and testing is performed for WSI
by AN AM ElectrOniCs In Seoul, Korea, Fine
Products in Hsinchu,Taiwan, National
Semiconductor in Santa Clara, CA and at
WSI in Fremont, CA. ANAM is the largest
independent manufacturer of I.C.
packaging and produces excellent product
quality. Test capability ranges from Simple
logic devices to complex VLSI product.
ANAM routinely processes a wide variety of
high volume packages and enables WSI to
leverage its materiel needs through
ANAM's combined high-volume, low cost
procurement activity. Commercial,
industrial, and military grade product
processing IS available from ANAM.

Additional quality assurance and reliability
testing are performed at WSI in Fremont,
CA.

WSI's manufacturing strategy ensures the
supply of double-sourced high quality, high­
volume product with low variable cost and
fast delivery.

·_·IiFE -------------------------------------~~Jf------------------------------------
1-5

•

Company Profile

Sales Network

Financing

WSI's international sales network includes
several regional sales managers who direct
the resources of the company to major
market opportunities. Experienced
technical field application engineers located
in each field office assist WSI's customers
during their advanced product development
and match customer needs with WSI's
product solutions. Over sixty
manufacturer's representatives and leading
national and regional component
distributors in the United States, Europe
and Asia round out the WSI sales network.

United States
Direct sales and field application
engineering offices in Boston, Chicago,
Huntsville, Philadelphia, Dallas, Los
Angeles and Fremont, CA; More than 25
manufacturer's representatives for major
national accounts; national distributors
include Arrow/Schweber, Time Electronics
and Wyle Laboratories; and regional
distributors.

International
Direct WSI Sales management offices in
Paris, Munich and Hong Kong; sales
representatives and distributors in
Germany, England, France, Italy, Sweden,
Finland, Denmark, Norway, Spain,
Belgium, Luxembourg, the Netherlands,
and Israel. Sales representatives and
distributors for the Asia/Pacific Rim region
in Japan, Korea, Taiwan, Hong Kong,
Singapore and Australia.

WSI is a privately held California
corporation founded in August, 1983. The
company has been financed by corporate
investors, institutional investors, venture
capital groups and private Investors.
Corporate investors are Sharp Corporation,
National Semiconductor Corporation,
Intergraph Corporation, and Kyocera
Corporation. Venture capital investors
include Accel Partners, Adler and
Company, Bessemer Venture Partners,
Genevest Consulting Group S. A.,

MagicPro™ is a trademark of WaferScale Integration, Inc.

Management and Previous
Affiliations:
Michael Callahan
President, CEO and
Chairman of the Board
(Advanced Micro Devices, Monolithic
Memories, Motorola)

Robert J. Barker
V. P. Finance, CFO and Secretary
(Monolithic Memories, Lockheed)

John Eklss
V. P. Marketing
(Intel, Motorola)

Thomas Branch
V. P. Worldwide Sales
(Monolithic Memories, Fairchild)

George Kern
V. P. Operations
(Advanced Micro Devices, Monolithic
Memories)

BoazEltan
V. P. New Product and
Technology Development
(Intel)

Bob Buschlni
Director of Human Resources
(General Electric, Raychem)

J. H. Whitney, Oak Investment Partners,
Robertson Stephens and Co., Smith
Barney Venture Corporation, and Warburg
Pincus. The company has been audited
annually since ItS inception by Ernst &
Young (Arthur Young prior to 1989) and
regularly reports financial information to
Dunn & Bradstreet (Dunns number is
10-209-8167).

IBM and IBM-PC are registered trademarks of International Business Machines Corporation

1-6

____________________________________ r=.~E ___________________________________ __
""I;

•

1·7

Article Reprint

COVER FEATURE

PACKING ALL THE MAJOR BLOCKS OF A
MICROPROGRAMMABLE SYSTEM, A CMOS IC EASES

EMBEDDED CONTROLLER DESIGNS

CONFIGURABLE CHIP EASES
CONTROL-SYSTEM DESIGN

DAVE BURSKY

nyone who has ever de­
signed a high-perfor­
mance controller sub­
syst'm using high-
speed micropro-
grammed building
blocks, programmable
logic devices, gate ar­
rays, or discrete logic

realizes the difficulties in integrating
the complete solution. In such a system,
the chip count escalates, the operating
power rises, and the development
schedule lengthens.

By integrating all these functions
and resources onto one high-speed
CMOS chip-the PACIOOO microcon­
trolier-WaferScale Integration Inc.
has drastically reduced the chip count
from the typically required 50 or so ICs
to just one. At the same time, the
PACIOOO slashes the power consump­
tion from tens of watts to less than 1.5
Wand cuts development time.

The PACIOOO can solve many high­
end embedded control applications and
is the only available circuit that can
tackle system, data, and event control
tasks. A C-like language and PC-hosted
system-development tools simplify the
creation of the control software. Users
can configure the circuit as a micropro­
cessor peripheral or as a standalone
controller to meet the unique require­
ments of high-performance system,
data, or event controllers. Each of the
chip's two bidirectional16-bit buses, its
individual 110 lines, and interrupt in­
puts can, if necessary, be redefined dur­
ing each 5O-ns instruction cycle.

At the heart of the PACIOOO's flexi­
bility lies an internal microprogramma­
ble architecture, including a I6-bit CPU,
a fast IO-bit microsequencer, a 32-word­
by-l6-bit register file, and a Ikword-by-
64-bit high-speed EPROM. As product
planning manager Yoram Cedar ex­
plains, since the circuit executes any of
its instructions in one clock cycle, the
controller delivers a raw throughput of

Repnnted WIth perJnlSSlOll from ELECTRONIC DESIGN - Oct_, 27. 1988 Copynght 1988 VNU Business Publications, Inc

1-8

Article Reprint

COVER: USER·CONFIGURABLE
CONTROLLER

20 MIPS.
Every instruction of the PAC1000

can perform as many as three simul­
taneous operations: program con­
trol, CPU functions, and output con­
trol, with all possible combinations
allowed. Cedar claims the more pow­
erful instruction format, combined
with the higher clock speed, yields a
five- to tenfold performance im­
provement, compared with other

THE PAC 1 000

Clock Reiel

User
oulpul

16

loop counler

I Breakpolnl reg ISler I
Program counter

CASE logic

Teslloglc
Inlerrupl

logiC

User·deflnable Condillon· Inlerrupl
oulpul code Inpuls
lines sense

mputs

one-chip microcontrollers. The high
throughput suits many tasks well. It
has already found homes in radar,
communications, video-graphics,
I/O subsystems, bus and DMA con­
trollers, and disk-drive-controllers.

Besides the CPU, register file, and
sequencer, the chip includes an auxil­
iary Q-register for double-word op­
erations, an 8-input interrupt con­
troller, 16 output control lines, 8 bi-

Hosl address
Hosl dala bus and dala bus

1/0 hnes Address

Regisler slack

Exlended·preClSlon
reg ISler for 64·bil

operatIOns

1. P A eKING A I6-bit micropro-
grammable central processor with a 32-
word register file, a l'kword-by-64-bit

UV EPROM, sequencer, and

Integration delivers a raw instruction
or 20 MIPS at 20 MHz (top).

Designers caD add or alter various blocks
to customize versions ror high·volume
users (left).

directional I/O lines, scan-test an<!
CASE program test logic, and a 22-
bit external address bus (Fig. 1, top).

Also, Cedar emphasizes, the cir­
cuit deals much more rapidly with in­
terrupts than most controllers do,
and that serves embedded control
applications well. The chip changes
program flow in either of two ways.
First, it has four user-definable in­
terrupt input lines plus four dedicat­
ed internal interrupts that require
just 100 ns, at most, to alter the pro­
gram flow. Second, another set of in­
put lines-22 condition·code inputs
(8 external and 14 internal)-let the
processor alter the program flow
with condition calls and program
jumps in just one 50-ns instruction
cycle.

And if on-chip resources don't
quite match an application's require­
ments, chip modifications can be
done for large-volume users. The cir­
cuit was designed with the compa­
ny's standard-cell library, and many
of the chip's sections are actually
cells in WaferScale's library (Fig. 1,
left). Noticeable on the chip's left
side are the large cells that include
the 64·kbit EPROM block on the bot­
tom and the 16-bit CPU on the upper
left. On the chip's right side, random
logic performs the control and inter­
face functions; small standard cells
are used to create those circuits.

For every instruction, a dedicated
field specifies the bit pattern on the
output lines. Also, designers can in­
dividually program eight I/ 0 lines as
inputs or outputs or to perform spe­
cial functions under the control of
the chip's mode and I/O registers.
The special functions turn the I/O
lines into control signals that allow
various features and flags to indi­
cate several status conditions. In ad­
dition to the eight I/O lines, the cir­
cuit has two 16-bit bidirectional bus­
es that go on and off the chip: One
links with the host; the other is the
upper 16 bits of the address/data
bus. Another 16 lines are dedicated,
user-programmable latched output
lines. These can be changed on a cy­
cle-by-cycle basis.

Thanks to all its buses and control
signals, the PAC1000 microcon­
troller operates as either a memory-

1-9

•

Article Reprint

1-10

COVER: USER·CONFIGURABLE
CONTROLLER

mapped peripheral to a microproces­
sor to offload the CPU (Fig. 2a) or as
a standalone controller running
from its own internally or externally
stored program (Fig. 2b). As a pe­
ripheral, the chip ties into the host
with a straightforward bus inter­
face-a 16-bitdata bus and a 6-bit ad­
dress bus to access the internal re­
sources of the PACIOOO-and the
standard Chip Select, Read, and
Write control lines. In the standalone
mode, the chip typically runs the ap­
plication program from its internal
memory and uses its 16-bit output
bus and 8-bit I/O port to control the
application and communicate to a
host system.

To handle multiple operations in
parallel, the chip internally takes ad­
vantage of a long-64-bit-micro­
code word so that each word can con­
trol multiple sections of the circuit­
ry. The on-chip microcode storage
area consists of a fast, reprogram­
mabie UV EPROM, organized as 1
kword by 64 bits. Since the EPROM
is read only by the on-chip logic, it
doesn't need high-current output
buffers, which slow down the memo­
ry access. Thus, the EPROM con­
tents can be read very quickly-the
chip's 20-MHz version accesses
memory in just 30 ns, well within the
CPU's 50-ns instruction cycle time.
The memory is also secure. Users
can program a security bit to prevent
an external system from extracting
the code from the memory array.

Besides its own program memory,
the chip also has a separate address/
data bus that can be programmed for
either 16 or 22 address lines (with 64-
kword or 4-Mword off-chip address­
ing ranges, respectively). The ad­
dress generator for the bus is sepa­
rate from the sequencer that ad­
dresses the program memory. The
PAC1000 can therefore execute a
program while it's using the address
bus to move data from memory into
the on-chip register file or to an ex­
ternally controlled device.

The address bus, in fact, can serve
as a simple direct-memory-access
controller when used with the on­
chip 22-bit address counter and 16-bit
block counter. This DMA controller
can transfer data from external
memory to the on-chip register file or
to an external device.

An eight-word FIFO register lets
a host microprocessor asynchro­
nously load commands or data into
the controller. The 22-bit word
length in the FIFO register is em­
ployed, so that if data values are to
be loaded into the register file, the
lower 16 bits of the 22-bit word sent
over the host data bus represent the
data, and the next five bits-the low­
er five bits of the host-interface ad­
dress bus-represent the register lo­
cation into which the data will be
loaded (RO to R31). The sixth bit of
the host-interface address bus signi­
fies whether the word loaded into the
FIFO register is a command or data

word. If it's a command, the lower 10
bits of the host-data bus are used as a
branch address to one of the 1024
memory locations in the EPROM.

The 10-bit sequencer addresses
the 1,024 words of program memory
and has a 15-level stack that permits
multiple subroutine calls to occur
without forcing the program to go
back to a higher level before calling
the next subroutine. Besides having
more levels in the stack than Wa­
ferScale's 5910 microsequencer, the
enhanced sequencer block has a 10-
bit loop counter that cuts overhead in
programs for loops and nested loops.
The application program can load the
counter with a constant or a value
calculated in the CPU.

Because programming fast, em­
bedded controllers can get compli­
cated, the company includes on-chip
programming and test features to
ease system development. For start­
ers, a 10-bit breakpoint register sim
plifies real-time debugging. It can be
loaded from either of two sources-a
value stored in a CPU register or a
constant value specified in the pro­
gram memory. When the program
memory address matches the regis­
ter contents, the register issues an
interrupt, which a service routine in
memory could then react to.

Test and CASE logic on the chip
also aids program and hardware
testing. The condition-code logic re­
sponds to 22 different program test
conditions that can be tested for true

PERIPHERAL OR STANDALONE

Address Address

I MICroprocessor Data I Memory r- i - -PAC1000-l Memory

I
I I r-"! r- PACtOO-

..... I CPU Host and Data ~ t r--- data
I I .. I interlace I _9"

CPU r- I Control I Data'path I Host I Data·path

I Interlace -
I Control element, I I: I Control

I element,
I Control high·speed I high·speed

I I processor, I Status/interrupts I processor,

I .t...J Status/ fast bus, etc.
L ______ _ I fast bus, etc.

lal P;';phe;1 ~e - - - - Interrupts Standalone mode Ibl

1 2. MULTIPLE BUSES, AN ON-CHIP ADDRESS GENERATOR, and sequencer blocks let the microcontroller operate as
a memory-mapped peripheral to offload the host microprocessor (a). Or it can be operated as a standalone controller (b).

COVER: USER·CONFIGURABLE
CONTROLLER

SAMPLE PROGRAM FOR PAC1000 MICROCONTROlLER
1* control memory read/write based on ceo *1
segment memcon ,

enmem equ h'0002' ,
dlsmem equ h'OO4O' ,
wr equ h'OOOO' •
rd equ h'1000' •

start
IF ceo ,OUT enmem.

FOR6.AOR =RO+R1.0UTwr.
AOR =AOR+4.0UTrd.

END FOR • OUT wr •
ELSE. OUT dlsmem ,
ENDIF.

end I

/* output control constants

/* enable memory
1* store begin addr In ADR and loop
1* Inc addr by 4 and do rd/wr
/' end loop body
1* disable mem If ceo IS not true

'/

'/
'/
'/
'/
'/

1 3, THE HIGH-LEVEL LANGUAGE developed by WaferScale employs C­
language-like structures 10 let designers easily develop complex configuration microcode.

or not-true results. Up to four condi­
tions can be tested simultaneously.
Tests can check for the state of vari­
ous flags or register contents.

The processor handles two types
of CASE operations: standard and
priority_ A CASE group consists of a
combination of four test conditions
that can be tested in a single cycle. In
that same cycle, the PAC1000
branches to anyone of 16 locations,
depending on the status of the four
inputs to the CASE group being test­
ed. The priority CASE instruction op­
erates on internal and external inter­
rupt conditions and treats interrupts
as prioritized test conditions. The pri­
ority encoder generates a branch to
the highest-priority condition_

Thanks to all its on-chip resources,
the PAC1000 is a powerful one-chip
controller, housed in a windowed, 88-
lead pin-grid-array package or an 84-
lead ceramic leaded chip carrier. An
84-lead plastic leaded chip carrier
package (the one-time-programma­
ble version) is also available. Be­
cause the chip employs an EPROM
to hold the program, revisions to the
code are no more difficult than repro-

gramming a standard EPROM. Pro­
totype systems and production prod­
ucts can benefit from the ability to
revise the code at the last minute.

To alleviate the complexity of mi­
crocode program development, Wa­
ferScale has assembled a series of
PC-hosted system-development
tools (pAC-SDT). These make the
PAC1000 as easy to program as any
one-chip microcontroller. A simple
example of a multiple-eommand ex­
pression in the C-like language lets
designers combine operations such
as FOR6,AOR=RO+R1,OUT WR
(loop for six cycles, add the contents
of registers RO and R1 and store the
result in the AOR register, output
the value WR) in one word (Fig. 3).

The toolset has a system-entry lan­
guage, a functional simulator, and a
device programmer (MagicPro). The
system-entry. language software is
the most critical part. The high-level
language uses a structure similar to
C'g and practically eliminates writ­
ing routines in machine or assembly
code. But designers who are more
comfortable working on that level
can write machine-code routinesn

Article Reprint

1-11

~1.1~2-----------------------~Jr;-------------------------

FEE_E --- ~ --- --
!=' =1!-!ii=-.-= E Product Selector Guide
----~~ - February 1992

PROGRAMMABLE PERIPHERALS

SINGLE-CHIP CMOS USER-CONFIGURABLE PERIPHERAL WITH MEMORY - COMMERCIAL & MILITARY

Part No. Description

PSD301 Programmable Mlcrocontroller

Peripherals With Memory,

x8lx16, 256Kb-1Mb EPROM;

PSD311 16K SRAM, PAD, System
Features.

PSD302

PSD312

PSD303

PSD313

MAP168 DSP Peripheral With Memory Features.

128K Bits EPROM, 32K Bits SRAM

Programmable Address Decoder (PAD)

Conflgurable. x8 or x16

Speed (ns)
Comm'l Military

120

150-200

200

120

150-200

200

120

150-200

120

150-200

120

150-200

120

150-200

45-55

55

Availability
Samples Prodn

NOW 01 '92

NOW NOW

NOW

NOW 01 '92

NOW 01 '92

01 '92

NOW 01 '92

NOW 01 '92

NOW 01 '92

NOW 01 '92

01 '92 01 '92

01 '92 01 '92

01 '92 01 '92

01 '92 01 '92

NOW NOW

NOW

HIGH-PERFORMANCE CMOS USER-CONFIGURABLE EMBEDDED CONTROLLER­
COMMERCIAL & MILITARY

Part No. Description

PAC1000 Programmable Peripheral Controller

optimized for High-Performance Control

Systems Key Features Include.

16-Blt CPU, 16-Blt Address Port, 16-Blt

Output Control, 8-Blt I/O Port and

Conflgurallon Registers

Speed (ns)
Comm'l Military

12MHz

12MHz

16MHz

Availability
Samples Prodn

NOW

NOW

NOW

NOW

NOW

NOW

Package Selection
J L Q X

·

· · · · · ·

Package Selection
Q X V

HIGH-PERFORMANCE CMOS USER-CONFIGURABLE MICROSEQUENCERISTATE MACHINE­
COMMERCIAL & MILITARY

Part No. Description

SAM448 User-Programmable Mlcrosequencer

for Implementing High-Performance

State Machines. Includes EPROM

Integrated With Branch Control Logic,

Pipeline Register, Stack and Loop

Counter and 768 Product Terms

* J and S packages not available In 25M Hz

Speed (ns)
Comm'l Military

20-25MHz

20M Hz

Availability
Samples Prodn

NOW

NOW

NOW

NOW

Package Selection
J L S T

* *

1-13

•

Product Selector Guide

SOFnwAREDEVELOPMENT TOOLS t
Part No.

PSD-GOLD

PSD-SILVER

PAC1000 - GOLD

PAC1000 - SILVER

SAM448 - GOLD

SAM448 - SILVER

MEMORY - SILVERtt

Includes

Contains PSD301/MAP168 Software, Users Manual,

WS6000 MagicPro (PC Based Programmer), WS6014(J/L)

or WS6015(X) Adapter and 2 Sample Devices

Contains PSD301/MAP168 Software and Users Manual

Contains PAC1000 Software, Users Manual,

WS6000 MaglcPro (PC Based Programmer), WS6010 (X)

Adapter and 2 Sample Devices

Contains PAC1 000 Software and Users Manual

Contains SAM448 Software, Users Manual,

WS6000 MaglcPro (PC Based Programmer), WS6008(T)

or 6009(C,J,L) Adapter and 2 Sample Devices

Contains SAM448 Software and Users Manual

Contains WSI EPROM/RPROM Programming Software

and Users Manual

Availability

NOW

NOW

NOW

NOW

NOW

NOW

NOW

t 1) All Development Systems Include: 12 Month Software Update Service, access to WSI's 24 Hour Electronic Bulletin Board.
2) Package adaptor must be specified when ordenng any "Gold" system

tt 1) Memory-Silver IS included in all development systems.

NON· VOLATILE MEMORY
CMOS PROMs - COMMERCIAL

Part No. Architecture Description Speed (ns)

WS57C191B 2Kx8 16K CMOS PROM 35-55

WS57C291B 2Kx8 16K CMOS PROM 35-55

WS57C45 2Kx 8 16K CMOS Reg. PROM 25-35

WS57C43B 4Kx 8 32K CMOS PROM 35-70

WS57C49B 8K x8 64K CMOS PROM 35-70

WS57C49C 8Kx 8 64K CMOS PROM 35-70

WS57C51C 16Kx8 128K CMOS PROM 35-70

WS57C71C 32Kx8 256K CMOS PROM 45-70

CMOS PROMs - MILITARY

Part No. Architecture Description Speed (ns)

WS57C191B 2Kx8 16K CMOS PROM 45-55

WS57C291B 2Kx 8 16K CMOS PROM 45-55

WS57C45 2K x8 16K CMOS Reg PROM 35-45

WS57C43B 4Kx8 32K CMOS PROM 45-70

WS57C49B 8Kx8 64K CMOS PROM 45-70

WS57C49C 8Kx8 64K CMOS PROM 45-70

WS57C51C 16Kx 8 128K CMOS PROM 45-70

WS57C71C 32Kx 8 256K CMOS PROM 55-70

1-14 Wi;

DESC
SMD

Package Selection
D J L PST

Package Selection
CDFHKTZ

Product Selector Guide

NON-VOLATILE MEMORY (Cont.)
HIGH-SPEED CMOS EPROMs - COMMERCIAL

Package Selection
Part No. Architecture Description Speed (ns) 0 J L T

WS57C64F 8Kx 8 High-Speed 64K CMOS EPROM 55-70

WS57C128F 16K x 8 High-Speed 128K CMOS EPROM 55-70

WS57C128FB 16Kx 8 High-Speed 128K CMOS EPROM 35-45

WS57C256F 32Kx 8 High-Speed 256K CMOS EPROM 45-70 • HIGH-SPEED CMOS EPROMs - MILITARY
DESC Package Selection

Part No. Architecture Description Speed (ns) SMD C D T L

WS57C64F 8Kx 8 High-Speed 64K CMOS EPROM 70

WS27C64F 8K x 8 Low-Power 64K CMOS EPROM 90

WS57C128F 16K x 8 High-Speed 128K CMOS EPROM 70

WS57C128FB 16K x 8 High-Speed 128K CMOS EPROM 45-55

WS27C128F 16K x 8 Low-Power 128K CMOS EPROM 90

WS57C256F 32Kx 8 High-Speed 256K CMOS EPROM 55-70

WS27C256F 32K x 8 Low-Power 256K CMOS EPROM 90

CMOS EPROMs - COMMERCIAL
Package Selection

Part No. Architecture Description Speed (ns) 0 J L

WS27C010L 128K x 8 Low-Power 1 Meg CMOS EPROM 120-150

WS27C210L 64K x 16 Low-Power 1 Meg CMOS EPROM 100-200

CMOS EPROMs - MILITARY

DESC Package Selection
Part No. Architecture Description Speed (ns) SMD C D L T

WS27C256L 32Kx 8 Low-Power 256K CMOS EPROM 120-250

WS27C512L 64K x 8 Low-Power 512K CMOS EPROM 120-200

WS27C010L 128K x 8 Low-Power 1 Meg CMOS EPROM 150-200

WS27C210L 64K x 16 Low-Power 1 Meg CMOS EPROM 150-200

,--iEif'
-----------------------------------~~Af ---------------------------------------1--1-5

Product Selector Guide

CMOS BIT SLICE AND LOGIC
Speed Package Selection

Part No_ Description Comm'l Military 8 G J K L P S y

WS5901 4-Blt CMOS Bit Slice Processor 32,43 MHz 32,43MHz •
WS59016 16-Blt CMOS Bit Slice Processor 15MHz 125MHz

WS59032 32-Blt CMOS Bit Slice Processor 264,33 MHz 23.6,29 MHz

WS591 0 CMOS Microprogram Controller 20,30 MHz 20,30 MHz

WS59510 16K x 16 CMOS Multlplier-Accum 30-50 ns

WS59520 CMOS Pipeline Register Tpd = 22ns Tpd = 24ns

WS59521 CMOS Pipeline Register Tpd = 22ns Tpd = 24ns

WS59820 CMOS BI-DlrecliOnal Register Tpd = 23ns Tpd = 25ns

WSI PACKAGE DESCRIPTIONS
Package Code Description Window Surface Mount Plastic/OTP

BIR Ceramic Sidebrazed DIp

C Ceramic Leadess Chip Carner (CLLCC)

C/Z Ceramic Leadless Chip Carner (CLLCC)

DIY o 600" Ceramic Dip

F/H Ceramic Flatpack

J Plastic Leaded Chip Carner (PLDCC)

UN Ceramic Leaded Chip Carner (CLDCC)

P Plastic DIp
Q Plastic Quad Flatpack (PQFP)

S o 300" Plastic Dip

T/K 0300" Ceramic DIp

V Ceramic Quad Flatpack (CQFP)

XlG Ceramic Pin Grid Array (CPGA)

NIY

Y

YIN
YIN

YIN

N

YIN

N

N
N

YIN

Y

YIN

N

Y

Y

N

Y

Y

Y

N

Y
N

N

Y

N

Y

Y
Y
Y

WSI REGIONAL HOTLINES

47280 Kato Road
Fremont, California 94538-7333
Tel' 510-656-5400 Fax: 510-657-5916
800-TEAM-WSI (800-832-6974)
In California 800-562-6363

1-16

USA Northwest:
USA Southwest:
USA Midwest:
USA Southeast:
USA Mid-Atlantic:
USA Northeast:
Europe (France):
Europe (Germany)
Asia (Hong Kong)

Tel: 510-656-5400
Tel: 714-753-1180
Tel: 708-882-1893
Tel: 214-680-0077
Tel: 215-638-9617
Tel: 508-685-6101
Tel: 33 (1) 69-32-01-20
Tel: (49) 89.23 11.38.49
Tel: 852-575-0112

Fax: 510-657-5916
Fax: 714-753-1179
Fax: 708-882-1881
Fax: 214-680-0280
Fax: 215-638-7326
Fax: 508-685-6105
Fax: 33 (1) 69-32-02-19
Fax: (49) 89.23.11.38.11
Fax: 852-893-0678

Pnnted In USA 2192 • ReVISion 8 5

PAC1000 ---­Basic Part Number

-12 D

Ordering Information
High-Performance CMOS Products

B

L Manufacturing Process:

(Blank) = WSI Standard Manufacturing Flow

B = MIL-STD-883C Manufacturing Flow

Operating Temperature Range:

(Blank) = Commercial: 0° to +70°C
Vee: +5V ± 5%

M

Package:

= Industrial: -40° to +85°C
Vee: +5V ± 10%

= Military: -55° to + 125°C
Vee: +5V ± 10%

A = PPGA Plastic Pin Grid Array
B = 0.900" Size Brazed Ceramic DIP
C = CLLCC Ceramic Leadless Chip Carrier
D = 0.600" CERDIP
F = Ceramic Flatpack
G = CPGA Ceramic Pin Grid Array
H = Ceramic Flatpack
J = Plastic Leaded Chip Carrier
K = 0.300" Thin CERDIP
L = CLDCC Ceramic Leaded Chip Carrier
N = CLDCC Ceramic Leaded Chip Carrier
P = 0.600" Plastic DIP
Q = Plastic Quad Flatpaek
R = Ceramic Side Brazed
S = 0.300" Thin Plastic DIP
T = 0.300" Thin CERDIP
V = CQFP Ceramic Quad Flatpack
W = Waffle Packed Dice
X = Ceramic Pin Grid Array
Y = 0.600" CERDIP
Z = CLLCC

Window

No
No

Yes·
Yes
Yes·
No
No·
No·
No

Yes·
No·
No
No·

Yes
No

Yes
Yes

Yes
No
No

Speed:

-12 = 12MHz
-16=16MHz

Etc.

• Surface Mount

-----------------------------------~~~~----------------------------------
1-17

•

~1'~18~------------------------r~~=I----------------------------

PAC1000 •

PAC1000

Section Index

PAC 1 000 Introduction Programmable Peripheral Controller ... 2-1

PAC1000 Programmable Peripheral Controller ... 2-3

For additional information,
call800-TEAM-WSI (800-832-6974).

In California, Call 800-562-6363.

Overview

Programmable Peripheral
PAC1000 Introduction
Programmable Peripheral Controller

The PAC 1000 Programmable Peripheral
Controller is the first of a generation of
products intended for applications in high­
end embedded control where high-speed
data processing, interface or control is
needed. The PAC1000 replaces a board
full of discrete components such as
standard logic, FIFO, EPROM for
microcode store, ALU, SEQUENCER,
register files and PALIPLO/PGA. To
shorten the time-to-market for the system
designer, a high-level software
development language is used. This
contrasts with the myriad state-machine
entry, schematic entry, and place and route
tools that would be needed for a
discrete design using PAL, PLO, PGA or
gate arrays.

The PAC1000 architecture is flexible and
enables the system deSigner to customize
the PAC1000 to optimize application

performance. The PAC1000 is composed
of three basic sections: a CPU for data
processing, a programmable instruction
control unit that determines the next
address to the microcode store through
polling condilion codes or responding to
Interrupts, and a host Interface to
asynchronously load data from the host.
Registered input/outputs are used to
synchronize with the system.

As a result of integrating logic and EPROM
memory into the PAC1000 and defining a
high-level language for programming both,
tlme-to-market and board space is reduced
and reliability increased. The PAC1000 is
currently used In applications such as
Intelligent OMA controller, FOOl buffer
controller, Frame buffer controller, LAN
communications controller, disk controller,
and I/O controller. For further details on
the PAC1000 see Application Note 10.

---------------------------------------~Jf~~--------------------------------------
2-1

PAC1000

Contents Features ... 2-3
General Description ... 2-4
Architectural Overview ... 2-6
Operational Modes ... 2-8
Host Interface ... 2-9

FIFO .. 2-9
Data 1/0 Registers ... 2-11
Program Counter .. 2-11
Status Register .. 2-11

Control Section .. 2-13
Parallel Operations .. 2-13
Program Memory .. 2-14
Security ... 2-14
15-Level Stack .. 2-14
Program Counter ... 2-14
Loop Counter .. 2-15
Debug Capabilities .. 2-15

Breakpoint Register .. 2-15
Single Step ... 2-15

Condition Codes .. 2-15
User-Specified Conditions .. 2-16
CPU Flags .. 2-16
FIFO Flags ... 2-16
Stack-Full Flag ... 2-16

Interrupt Flag .. 2-16
Data Register Read Flag .. 2-16
Counter Flag ... 2-16

Case Logic .. 2-17
Case Instructions .. 2-17
Priority Case Instructions ... 2-17

Interrupt Logic 2-17
Interrupt Mask Register .. 2-18

Output Control ... 2-19
Counters .. 2-19

Address Counter ... 2-19
Block Counter : ... 2-20

Central Processing Unit .. 2-20
Arithmetic Operations ... 2-23
Logic Operations ... 2-23
Shift Operations .. 2-23

Shift Right ... 2-23
Shift Left ... 2-23

Rotate Operations ... 2-24
Multiple PrecIsion Operations ... 2-24

1/0 and Special Functions .. 2-24
Configuration Registers ... 2-26

Control Register .. 2-26
1/0 Configuration Register .. 2-28
Mode Register ... 2-29

State Following Reset .. 2-30
Electrical and Timing Specifications .. 2-32
Pin Assignments .. 2-37
Instruction Set Overview ... 2-41
System Development Tools ... 2-46

Hardware ... 2-46
Software ... 2-46
Support ... 2-46
Training ... 2-46

Ordering Information-PAC1 000 ... 2-47
Ordering Information-System Development Tools .. 2-48

2-2
___________________ fEE SEE

~~A7-------------------

Preliminary

Features

Figure 1.
PAC1000 Block
Diagram

0

0

0

0

0

Programmable Peripheral
PAC1000
Programmable Peripheral Controller

High-Performance Programmable 0 Re-Programmable Program Store
Peripheral Controller - 1 K x 64-Bit EPROM for CPGA
-16 MHz Instrucllon Execution, Output Package

Port, and Address Bus - 1 DOS x 64-Bit EPROM for PQFP
Single-Cycle Control Architecture Package
- One Cycle Per Instruction

0 Re-Programmable Program Store
16-bit CPU - On-Board 1 K x 64-Bit EPROM

- Arithmetic Operations, Logic 0 Two Operating Modes
Operations, 33 General-Purpose - Host Processor Peripheral or Stand-
Registers Alone Controller

Address Generation 0 Security
- Up To 4 Mbytes Address Space - For EPROM Program Memory

High-Level Development Tools - 0 Package Availability
System Entry Language, Functional - SS-Pin Ceramic PGA and 1 ~O-Pin
Simulator, and Device Programmer PQFP

CK RESET Cs RD WR HD[15 0] HAD]50]

l ~ I

I Configuration
Reglslers l Hosllnlerface J

r
i

+ +
Control Section

I Secunty Bit I lKx 64 EPROM I CPU

I Loop Counter I
l5-Level I Breakpoint Register I

Stack

I Program Counter I
I Case Logic I- Block Counter I

User I Condition-Code I Interrupt
Output Logic LogIC I- Address Counter I

~ L
1/0 & Special J I AddresstData J Function Port Port

.L ,.
J J -::!:--

OUTCNTL[15 0] CC[7 0] INT[30] 110[70] ADD[150]
1738 01

--------------------------~Jr;------------------------2~4

~----------- -----

•

PAC1000

General
Description

Figure 2. Single­
Cycle Control
Architecture

The PAC1000 Programmable Peripheral
Controller is based upon an architecture
that enables it to execute complex
instructions in a single clock cycle. Each
PAC 1000 instruction can perform three
simultaneous operations: Program Control,
CPU functions, and Output Control, as
shown in Figure 2. The PAC1 000 can also
perform address generation or event
counting simultaneously with instruction
execution. The PAC1 000 is also capable of
performing a conditional test on up to
four separate conditions and multi-way
branching in a single cycle.

The PAC1 000, with its System Development
Tools, matches the development cycle and
ease of use of any standard microcontroller.

cs

CO~~~~~ _~~~-----'L--I
Control Unit

Interrupts -~-+I with

Next Instruction
Definition

ClK

1K x 64 EPROM

Instruction Register

Control: output: CPU

The high performance and flexibility of the
PAC 1000 were previously available only to
designers who could afford the long develop­
ment cycle, high cost, high power, and large
board space requirements of a building-block
solution (i.e., Sequencer, Microcode Memory,
ALU, Register File, PALs, etc.)

The unique capabilities of PAC 1000 are
easily utilized with System development
tools, which include a PACSEL C-like System
Entry Language, a PACSIM Functional
Simulator, and a MagicPro™ Device Pro­
grammer. All System Development Tools are
PC-based and will operate on an IBM-XT,
AT, PS2 or compatible machine. For more in­
formation, contact your nearest WSI sales
office or representative.

WR HD[15 OJ HAD[15 OJ

28
CPU

20
CPU Operation

DefinitIOn

OC[15 OJ 110[7 OJ ADD[15 OJ

Important Features:

• One cycle per Instruction
·16 MHz Instruction execution rate
• Every Instruction executes 3 parellel operations (Control, Output, CPU)

1738 02

--~~~~---------------------------------------
2-4

PAC1000

Table 1. Pin
Description Signal I/O Description

HD[15:0] 1/0 Host Data. PAC1000 Data 1/0 Port via the Host Inter-
face. Can also be configured to generate 16-bit ad-
dress or status. Can serve as a general-purpose Data
1/0 Port.

HAD[5:0] 1/0 Host Address. Can be configured to output the lower
six bits of the 22-bit Address Counter; can be used as a
Host Interface function address, or as a general-
purpose 16-bit port.

CS Chip Select (active low). Used with RD and WR to
access the device via the Host Interface.

RD Read Enable (active low). Used with CS to output Pro-
gram Counter, Status Register, or Data Output Regis-
ter to HD[15:0] bus lines.

• WR Write Enable (active low). Used with CS to write HD
Bus data via the Host Interface into the PAC1 000
FIFO.

CK Clock.

CC[7:0] Condition Codes. Condition-code inputs for use with
Call, Jump, and Case instructions.

INT[3:0] Interrupts. General-purpose, positive-edge-triggered
interrupt inputs.

RESET Asynchronous Reset (active low). Resets Input/Output
registers and counters, tri-states all 1/0, and sets the
Program Counter to O.

OUTCNTL[15:0] 0 Output Control. User-defined Output Port. May be pro-
grammed to change value every cycle.

ADD[15:0] 1/0 Address Port. Outputs data from Address Counter or
Address Output Register when configured as an
output. When configured as an input, reads data to
Address Input Register.

1/0[7:0] 1/0 Input or Output Port. Individually configurable bidirec-
tional bus. As simple 110, outputs come from the 1/0
Output Register, and inputs appear in the 1/0 Input
Register. As special 110 functions, provides status,
handshaking, and serial 1/0. Alternatively, these signals
can be used to extend the OUTCNTL or ADD lines.

-------------------------------------~Jf~~------------------------------------
2·5

PAC1000

Architectural
Ollerlliew

The PAC1000 is a programmable
peripheral controller optimized for high­
performance control systems. The primary
architectural elements, shown in Figure 3,
are the Control Section, 16-bit CPU,
Host Interface, 16-bit Address Port, 16-bit
Output Control, a-bit 1/0 Port, and
Configuration Registers.

The PAC1 000 can be used as a stand­
alone embedded controller or as a
peripheral to a host. In the latter case, the
Host Data (HD) and Host Address (HAJ2.L
buses, together with the CS, RD, and WR
pins allow for direct connection to a host
bus. User-defined commands to the
Control Section or data to the CPU can be
loaded through the Host Interface.

In the stand-alone mode, the Host Interface
ports can be used as additional address, data
or 1/0 ports using the Data Output Register
(DOR) and Data Input Register (DIR). The
ADD port can be used to generate addresses
through the Address Output Register (AOR)
or the Address Counter. A DMA channel can
be formed on the Host Interface using these
and the Block Counter (BC) register. In
addition, the ADD port can be used as a data
bus or an 1/0 port, depending on how the
chip is configured. Each pin in the 1/0 port
can be configured individually as input,
output, or special function. The special
functions allow the control of internal
PAC1000 elements (counters, 1/0 buffers) by
other board elements.

The 16-bit CPU is highly parallel and can
operate on operands from the 32x16-bit

register file, miscellaneous register (AOR,
AIR, DOR, DIR, Q, etc.), or constants loaded
from the internal program-store EPROM.

The internal and external operations of the
PAC1000 are controlled by the Control
Section. The 16 Output Control (OC) lines
are general-purpose outputs. Each of them
can be changed independently every clock
cycle. They provide a very fast means to
control various processes outside the chip.

In every clock cycle, one instruction is
executed. Each instruction consists of up to
three operations in parallel:

D Instruction Fetch-the next instruction is
fetched from the 1 Kx64 EPROM by the
Program Control.

D Execution-the CPU executes an instruc­
tion.

D Output-placed on the Output Control
(OC) lines.

Program flow can be changed through the
condition-code inputs in one clock cycle or
through the interrupt inputs after two clock
cycles. Single-cycle 16-way branches can be
done using the Case instruction, which
samples four condition codes per cycle.
Nested loops and subroutines can be carried
out with the 15-level stack and the loop
counter. The chip configuration can be
changed in any cycle by loading the Configu­
ration Register using the Program Control
instruction portion.

-------------------------------------rjfAf~~------------------------------------!!!!FW..,.- ~ 2-6

Figure 3.
Detailed
Block Diagram

Internal
INTR

INTR

~

oc

HD

16 16

Register
File +

a Register

ALU

CPU

1/0 Configuration

Mode

Control

HAD

Configuration Registers

16 16

PAC1000

--rJrjf~~---
.,.~- 2-7

•

PACtOOO

Operational
Modes

Figure 4.
Peripheral Mode

FigureS.
Stand-alone Mode

The two basic modes of operation for the
PAC1000 are either as a memory-mapped
peripheral (Figure 4) or as a stand-alone
controller (Figure 5).

In the peripheral mode, the host processor
can asynchronously interface with the
PAC1000.

Address

Host Processor Memory
Data

-------- -- --------- --, , , PAC1000 ,
~:

,
I- , , CPU ,

Data Path ,
Host

,
Element, , ,

~: Interface , Control High Speed , Process, , Control ,
Fast Bus, Etc. , , , ,

~:
,

J ,
Status/Interrupts , , , ,

1 ______ ---------------_.1
1738 04

Address
Memory

.. ------------- ..
PAC1000

, , ,
CPU

,
Host and

,
Data ,

Data ,
Interface ,

Control , , , , ,
Data Path --- -- ----------- ...
Element,

Control High Speed
Process,
Fast Bus, Etc.

Status/Interrupts

1738 05

---~~~--
2-8

Host Interface

Figure 6.
Host Interface
Architecture

The Host Interface section of the PAC1000,
shown in Figure 6, includes the Input Com­
mand/Data FIFO, InpuVOutput Data Regis­
ters, and the Status Register.

FIFO
When the PAC1 000 serves as a peripheral to
a host, the FIFO is used to asynchronously
load commands or data into the PAC1000. In
order to write into the FIFO, CS and WR
must have low-to-high transitions. The
information wntten into the FIFO is specified
by the 16-bit Interface Data bus (HD) and the
6-bit Host Address bus (HAD). Since the
FIFO is used only to buffer data and com­
mands from a host, it is inoperative when the
PAC1000 is in stand-alone mode.

CS RO

Host
Interface
Decoder

WR

Decoded Signals

16

DIR

Data
Inpu1

Register

16

DOR

Data
Output

Register

16

HO[O 15]

16

Status
Register

Internal Bus

PACtOOO

Bit five of the HAD bus specifies whether the
input to the FIFO is command (HADS= 1) or
data (HADS=O). HADS is connected to the
FICD internal Condition Code that can be
sampled by the Control Section. If a com­
mand is written, then the lower 10 bits of the
HD bus are used as the branch address for
one of the 1024 locations in the Program
Memory EPROM. At that location a user
defined command or subroutine should exist
which executes the needed operation. If the
information is data, then the lower S bits of
the HAD bus specify which CPU register is to
be loaded from the HD bus.

This method of operation allows the host to
access the PAC1000 as a memory-mapped
peripheral.

HAD[05]

ACL

8 x 16 Command
and Data

8 x 5 Regls1er 8 x 1
POinter

FICO

To Register File
1738 06

----E
---------------------------------------~~~--------------------------------------

2-9

•

PACtOOO

Host Interface
(Con't)

Table 2.
Host Interface
Functions

An example of FIFO usage is shown in
Figure 7. When command or data information
is available in the FIFO, the FIFO Output
Ready (FIOR) interrupt (interrupt 5) triggers.
If the FIOR interrupt is masked, then the
FIOR status may be polled under program
control. If HAD5 equals 1, the branch ad­
dress location specified by MOVE is the
Program Memory Address which contains the
user specified instruction or sub-routine
which executes the command. A JUMP or
CALL FIFO control instruction performs a
jump or call to the location specified by
MOVE. If HAD5 equals 0, an RDFIFO
instruction can transfer the FIFO contents
into the register specified by HAD[4:0].

For further explanation, refer to the diagram
below. Beginning at the location specIfied by
MOVE, a user defined program exists which
is going to load data into CPU registers 0,1 ,2,

CS RD WR HAD5 HAD[4:0]

0 0 0 Register

Address

0 1 0 1 X

0 0 0 00100

0 0 0 00011

0 0 0 00010

0 0 0 00001

0 0 0 00000

and 3 in four consecutive cycles from the
next four FIFO locations. If one of the four
FIFO locations contains a command
(FICD=1), interrupt level 7 occurs (highest
level). Loading a command into a CPU or
other data register is not allowed. If this
occurs, FIXP (FIFO exception) will be gener­
ated.

Following the execution of this routine, the
Control Section is ready for its next instruc­
tion.

The FIFO drives three internal flags which
can also be programmed to interrupt the
PAC1 000. They are:

o FIIR (FIFO full) and FIXP (FIFO excep­
tion), which drive INT7.

o FIOR (FIFO output ready), which drives
INT5.

HD[t5:0] Function

Data Write data to FIFO

Command Write command to FIFO

X Reset FIFO

X Reset status register

Data Read program counter

Data Read status register

Data Read data output register

-------------------------------------f~~~~------------------------------------
2-10 'ElEWBiF E

Host Interface
(Con't)

Figure 7.
Example of
FIFO Block
Diagram and
Usage

Data I/O Registers
Input and Output Data Registers are used to
communicate with the Host Data (HD) bus.
CPU Registers may be loaded directly from
the Data Input Register (DIR) without passing
through the FIFO. Similarly, the PAC1 000
may be read via the Data Output Register
(DOR).

Program Counter
The Program Counter may be read via the
Host Data bus. This allows a host to monitor

PAC1000

the Program Memory address bus. It can also
be used to drive external memory devices for
expansion of the Control Port.

Status Register
The Status Register (SR), shown in Figure 8,
monitors all internal status. Status bits can be
set only by program execution. The SR can
be read or cleared as specified in the Host
Interface Functions table.

All SR flags are active high (1) and are
latched at the rising edge of the clock.

HAD5 HAD[40] HD[15'10] HD[90]

x

x

l Wrlle pOinter]=) x

0

0

0

0

FICD to 1
Condition Code
Multiplexer

Command to
Control Section
when FICD = '"I'"

x x x

x x x

X X X

R3 Address Data to CPU

R2 Address Data to CPU

Rl Address Data to CPU

RO Address Data to CPU

X X MOVE ~ Read POinter I

J 1 J I
IHD[90] IHD[150] Data to CPU

l I
when FICD =

IHAD[4'0] Register Address
to CPU Register

FICD = 1 Command (actually a branch) to the Control Section

FICD = 0 Data to CPU Register

'"0'"

1738 07

---------------------------------------r~~~~--------------------------------------
~6E. 2-11

•

PAC1000

Host Interface
(Con't)

Figure 8.
Status Register

STAT11-(DBB) Security Bit, set when
security is active:

1 = Security active.

0= No security.

STAT10-WSI Reserved.

STAT9-(FIXP) FIFO Exception, set when
the CPU receives a command or Control
Section receives data:

1 = Command or data received.

0= No exception occurred.

STAT8-(FIIR) FIFO-Input Ready, set when
there is at least one vacant location in the
FIFO:

1 = FIFO ready for input.

0= FIFO not ready for input.

STAT7-(CY) Carry Flag, set when a carry
(addition) or borrow (subtraction) occurs
in CPU operations:

1 = Carry occurred.

0= No carry occurred.

ST AT6-(Z) Zero Flag, set when the result of
a CPU operation is zero:

1= Zero occurred.

0= No zero occurred.

STAT5-(O) Overflow Flag, set when an
overflow occurs during a two's comple­
ment operation:

1 = Overflow occurred.

0= No overflow occurred.

o
o

Reserved

Reserved

SIal11

Reserved

Slat9

SlalS

MSB

I
~

I

STAT4-(S) Sign Bit, set when the most
significant bit of the result of the previous
CPU operation is negative:

1 = Result is negative.

0= Result is positive.

STAT3-(STKF) Stack Flag, set when the
stack is full:

1 = Stack is full.

0= Stack is not full.

STAT2-(BRKPNT) Breakpoint Flag, set
when the address in the breakpoint
register is equal to the EPROM address:

1 = Breakpoint occurred.

0= No breakpoint occurred.

STAT1-(BCZ) Block Counter Zero, set
when the counter decrements to all Os:

1 = Block Counter reached zero.

0= Block Counter is not zero.

ST ATO-(ACO) Address Counter Ones, set
when the counter increments to all 1 s:

1 = Address Counter reached all ones.

0= Address Counter is not all ones.

LSB

I

I
L= SlatO

SIal1

SIal2

SIal3

SIal4

SlalS

SIal6

SIal?
1738 08

-----------------------------------~~~~-----------------------------------
2-12

Control Section

Figure 9.
Control
Architecture

The control section, shown in Figure 9,
consists of a number of blocks which are
concerned with the sequencing of the control
programs in the PAC1 000. These are:

o Program Memory

0 Security

0 15-Level Stack

0 Program Counter

0 Loop Counter

0 Breakpoint Register

0 Condition Codes

CC[O 7] -----,L ~

In~:~~~t~1 ____ 4_-\-1

In~~~~~~~ -----,L-~

PAC1000

o Case Logic

o Interrupt Logic

o Output Control

Each block is described in detail below.

Parallel Operations
The PAC1 000 can perform three simultane­
ous operations within a single instruction
cycle, as shown in Figure 10. The ability to
fetch an instruction from the Program Mem­
ory, execute it, and output a result within 50
nsec is due to a highly parallel structure.

Internal Bus

16

lS·Level
Stack

Loop
Counter

)

Internal
Control
Signals

1738 09

---------------------------------rJrjf~~--------------------------------------
2-13

•

PAC1000

Control Section
(Can't)

Figure 10.
Parallel
Operations

Program Memory
The Program Memory is a 1 Kx64 high-speed
EPROM. This on-board-memory allows the
PAC1 000 to operate in embedded control
applications and eliminates the need for
external memory components. Using an
erasable memory allows program code to be
modified for debug and/or field upgrades.
The Program Memory is easily programmed
using the WSI MagicPro™ (Memory and
PSD Programmer).

Only sixteen Program Memory locations are
reserved. The rest of the 1024 locations are
available for applications.

Program memory is segmented as follows:

Address Function

OOOH Reset pointer program
to here

000H-007H

008H-00FH

010H-3FFH

User Defined
Initialization Routine

Interrupt Vector
Locations

User-Defined
Application Programs

Upon receiving a reset, the Program Counter
is forced to address OOOH. This location may
contain a jump or call which branches to an
initialization routine. Alternatively, the first
eight locations of memory may be used as an
initialization/configuration routine.

Security
User programs may be protected by setting a
security bit during EPROM programming.

Thereafter, the EPROM contents cannot be
read externally. When the EPROM is erased,
the security bit is cleared.

15·Level Stack
The 15-level Stack stores the return address
following subroutine calls, interrupt service
routines and the contents of the Loop
Counter inside nested loops. When the stack
is full, the STKF condition becomes true, and
an interrupt (INT7) will occur. The interrupt
service routine will overwrite the top of the
stack.

Popping from an empty stack produces the
previous top of stack value; pushing on a full
stack overwrites the top of the stack.

Program Counter
The 10-bit Program Counter (PC) generates
sequential addressing to the 1 K word Pro­
gram Memory. Upon reset the PC is loaded
with a OOOH. From this point the value of the
Program Counter is determined by program
execution or interrupts.

Any JUMP or Case instruction that is exe­
cuted loads the Program Counter with the
destination address. CALL instructions or
interrupts cause PC + 1 to be pushed onto
the stack. The RETURN instruction loads the
Program Counter from the stack with the
value of the return address. This value may
have previously been placed on the stack by
a CALL or interrupt.

The PC can also be loaded from the Com­
mand/Data FIFO causing program execution
to commence at an address provided by the
host.

Part of Control Section

, Program I J Program I Memory
Counter I I 1Kx64K

EPROM

20

'Instruchon ,
Fetch

64

Output , CPU ,
Control Instruction

16

28

OC[O 15]
To the
CPU 1738 10

---------------------------------------~~~--------------------------------------
2-14

Control Section
(Con't)

Loop Counter

The Loop Counter (LC) has two functions:

Q 1 a-bit down counter that supports the
LOOP instruction.

Q Branch Register that can be loaded from
the CPU Register File or Program
Memory and used as an additional
source of branching to Program Memory.

The LC can be loaded with values up to
1023. Loop initialization code places a value
in LC. Loop termination code tests the
counter for a zero value and then decrements
LC. The loop count can be a constant, or it
can be computed at execution time and
loaded into LC from the CPU. The LC
register can also be used as a CALL or
JUMP execution vector. The content of the
LC is automatically saved on (or retrieved
from) the Stack when the program enters (or
leaves) a nested loop.

A loop count will be loaded into the LC when
a FOR instruction is encountered. This count
can be a fixed value or it can be calculated
and loaded from the CPU. The ENDFOR
instruction will test the Loop Counter for a
zero value. If this condition is not met, then
the LC will be decremented by one. The
program loop will continue until the count
value equals zero. In a nested loop, the FOR
instruction will load a new value to the LC
and push the previous value to the stack.

Debug Capabilities
The PAC1000 provides breakpoint and single
step capabilities for debugging application
programs.

PAC1000

Breakpoint Register
The Breakpoint Register (BR) is a 1 a-bit
register used for real time debug of the
PAC1000 application program.

The Breakpoint Register can be loaded from
one of two sources, either a constant value
specified in the Program Memory or a calcu­
lated value loaded from the CPU. When the
Program Memory address matches the con­
tents of the Breakpoint Register an interrupt
(INT 6) occurs. A service routine should exist
in Program Memory which then performs the
required procedure.

Single Step
Single step is a debugging mode in which the
currently-executing program is interrupted by
interrupt 6 after the execution of every
instruction. The interrupt 6 service routine
should reside in Program Memory.

Bit 8 in the Mask Register determines
whether the PAC1 000 is in a breakpoint
mode (mask-bit 8 equals 0) or in a single step
mode (mask-bit 8 equals 1).

Both breakpoint and single step use interrupt
6. The interrupt 6 service routine will typically
dump the contents of the PAC1 000 internal
registers into external SRAM devices for ex­
amination by the user.

Condition Codes
The Condition Code (CC) logic operates on
21 individual program test conditions. Each
condition can be tested for true or not true.
The PAC1 000 can also test up to four
conditions simultaneously. For this feature
refer to the section titled Case Logic.

-------------------------------------rJrjr~:------------------------------------iFtiiTIE IE 2-15

•

PAC1000

Control Section
(Con't)

Table 3.
Condition-Code
Logic

2-16

User-Specified Conditions

User-Specified Conditions are treated in the
same manner as internally generated test
conditions. CCO-CC7 should be connected
directly to the corresponding PAC1000 input
pins. These signals must satisfy the required
setup time to be serviced in the next cycle.

CPU Flags

CPU flags are internally generated. They
reflect the status of the previous CPU arith­
metic operation. These signals are internally
latched and are valid only for one instruction
(the instruction following their generation).
The flags for arithmetic operations are
defined as follows:

Zero (Z)-The result of the previous CPU
operation is zero (Z=1).

Carry (CY)-The result of the previous CPU
operation generated a carry (addition) or
borrow (subtraction) (CY=1).

Overflow (0)-The previous two's comple­
ment CPU operation generated an
overflow (0=1).

Sign (S)-The most significant bit of the
result of the previous CPU operation is
negative (S=1).

FIFO Flags
FIFO flags allow the user to synchronize and
monitor the operations that are performed on
the FIFO by the host or by user's program.

Upon reset the FIFO flags are cleared,
signifying an empty state. The meaning of the
flags are as follows:

FIFO Output Ready (FIOR)-There is at least
one word in the FIFO (FIOR=1).

Test Group Source

User-Specified External

CPU Internal

FIFO Internal

Counters Internal

Stack Internal

Interrupt External/Internal

Data register read Internal

~;i

FIFO Input Ready (FIIR)-FIFO is not full
(FIIR=1). This flag can also be connected
to the host through 1/07.

FIFO Command/Data (FICD)-This flag
indicates if the contents of the FIFO is a
command or a data. This flag is gener­
ated directly from HAD5 (FICD=1 com­
mand, FICD=O data).

FIFO Exception (FIXP)-This flag indicates
that one of two events occurred: (a) FIFO
data has been read as a command, or
(b) a command has been read as data.

Stack-Full Flag

STACK FULL flag (STKF= 1) indicates that
the stack is 15 levels full. This condition will
also generate an interrupt (INT7) if not
masked.

Interrupt Flag

INTERRUPT flag (INTR =1) indicates that
there is a masked interrupt pending. This flag
is cleared when the interrupt is cleared.

Data Register Read Flag

DATA REGISTER READ flag (DOR) is a
handshake flag between the host and the
PAC1 000, accessible only to the PAC1 000.
The flag is reset (DOR=O) when the
PAC1 000 writes into the Data Output Regis­
ter. The flag is set (DOR= 1) after the host
has performed a read on the Data Output
Register.

Counter Flag

Counter flags reflect the status of their
respective counters. The PAC1000 utilizes
two counters; the Address (A) counter is a
16/22-bit auto-incrementing up counter; the

Conditions and Flags

CCO-CC7

Carry (CY), Zero (Z), Overflow (0),
Sign (S)

FIFO Command/Data (FICD), FIFO Output
Ready (FIOR), FIFO Input Ready (FIIR),
FIFO Exception (FIXP)

Address Counter Ones (ACO), Block
Counter Zero (BCZ)

Stack Full (STKF)

Interrupt (INTR) is pending

Data Output Register(DOR) has been read

Control Section
(Can't)

Table 4.
Interrupt
Assignments

Block (B) counter is an auto-decrementing
16-bit down counter. The counters' clock
input signal is the same as the PAC1000's
clock signal. Each counter can be individually
enabled or disabled. When disabled, the
output retains the last count. The counter
flags are defined as follows:

ACo-A Counter Ones, set when the A
counter has reached the value FFFFH, in
the 16-bit mode, or the value 3FFFFFH
in the 22-bit mode.

BCZ-8 Counter Zero, set when the B
counter has reached the value OOOOH.

Case Lagle
THE PAC1 000 hardware implements two
basic types of Case instructions: Case and
Priority Case.

Case Instructions
Case instructions operate on anyone of four
different Case groups. Each Case group
consists of a combination of four test condi­
tions which can be tested in a single cycle. In
that same cycle the PAC1 000 will branch to
one of the addresses contained in the sixteen
memory locations following the instruction,
depending on the status of the four inputs to
the Case group being tested.

There are four Case Groups (sets of Case
Conditions):

Case Group 0 (CGO): CCO-CC3.

Case Group 1 (CG1): CC4-CC?

Case Group 2 (CG2):
Z-Zero

o-Overflow
S-Sign

CY-Carry

Case Group 3 (CG3):

INTR-Interrupt

BCZ-B Counter Zero
FIOR-FIFO output Ready

FICO-FIFO Command/Data

PAC1000

(The FIXP, ACO, STKF, FIIR, and DOR
condition codes do not fall into any of the four
Case groups.)

Priority Case Instructions
Priority Case instructions operate on the four
intemal and the four external interrupt inputs.
In this mode of operation, interrupts are
treated as prioritized test conditions and the
priority encoder is used to generate a branch
to the highest priority condition. The branch
address is located in one of the nine memory
locations following the Priority Case instruc­
tion. Priorities in this mode of operation are
the same as in the Interrupt mode of opera­
tion. Once a Priority Case instruction is
executed, the occurrence of a higher priority
condition will not affect program execution
until another Priority Case instruction is
executed. For a Priority Case instruction to
be executed, MODEO of the Mask Register
must be equal to zero (MODEO=O).

Interrupt Logic
The Interrupt Logic accepts eight inputs, four
of them are generated externally and four are
dedicated for internal conditions. The four
external, user defined, inputs (INTO-INT3)
are connected to pins INTO, INT1 , INT2, and
INT3. These are positive, rising-edge­
triggered signals that have a maximum
latency of two cycles. Each interrupt has a
reserved area in memory that should contain
a branch to an interrupt service routine.

Interrupt Priority Effect Trigger Condition Reserved Address

INT? Highest Internal FIXP+ACO+STKF+FIIR OOFH

INT6 Internal BRKPT OOEH

INT5 Internal FIOR OODH

INT4 Internal Software Interrupt (SWI) OOCH

INT3 External INT3 OOBH

INT2 External INT2 OOAH

INT1 External INT1 009H

INTO Lowest External INTO 008H

-------------------------------------~Jf~~------------------------------------
2-17

•

PAC1000

Control Section
(Con'f)

TableS.
Interrupt
Definitions

Figure 11.
Interrupt Mask
Register

Clearing a serviced interrupt is performed
automatically. When the interrupt is serviced,
the internally generated vector is decoded to
clear the serviced interrupt. In addition, the
user can clear any pending interrupt by using
the Clear Interrupt Instruction (CLI).

Interrupt Mask Register
The Interrupt Mask Register, shown in Figure
11, allows individual interrupts to be masked.
Setting a Mask Register bit to a 1 masks the
associated interrupt. To unmask an interrupt,
the appropriate Mask Register bit must be
reset to O.

Interrupt Triggered By
INT?1 FIFO Exception (FIXP)

When the PAC1000 is reset,the Mask Regis­
ter will mask all interrupts and the Mode
Register will select the non-interrupt mode.
To select the interrupt mode the MODEO bit
(see Configuration Register section in this
document) should be set to 1 (MODEO=1).

Mask8 is used to select INTS to be either a
single-step interrupt (when Mask8=1) or a
breakpoint interrupt (when Mask8=O) .See
the section on Debug Capabilities for further
details.

Address Counter contains all Ones (ACO)

Stack Full (STKF)

FIFO Full (Not FIFO Input Ready, FilA)
INTS2 Breakpoint or Single Step occurrence

INT5 FIFO Output Ready (FIOR)

INT4 Always pending; triggers when unmasked by program execution

INT3 User-defined

INT2 User-defined

INT1 User-defined

INTO User-defined

Notes:
1. The INT? interrupt handler checks the source of the interrupt by testing the condition code.
2. See Interrupt Mask Register, Mask8.

MSB LSB

Mask8 MaskO
Mask? Mask1

Mask6 Mask2
Mask5 Mask3

Mask4

Status After Reset

0

1738 11

-----------------------------~Jr;----------------------------
2-18

Control Section
(Con't)

Counters

Figure 12.
Address and
Block Counter

Output Control
The Output Control bus (OUTCNTL) consists
of 16 latched Output Control signals. These
signals can be changed on a clock to clock
basis. For every Program Memory location
there is a dedicated field which specifies the
value of the Output Control bus. The

The PAC 1000 contains a 16 or 22-bit Ad­
dress Counter and a 16-bit Block Counter.
Each of these counters can change count on
a clock to clock basis or can be internally or
externally enabled or disabled on a clock to
clock basis. These counters are in addition to
the Loop and Program Counters of the
Control Section.

Address Counter
The Address Counter (AC), shown in Figure
12, is a 16- or 22-bit ascending counter that
can be loaded or read by the CPU and
enabled/disabled with the ACEN bit of the
Control Register. (This control is also avail­
able externally through the 1/01 pin; see I/O
and Special Functions). While enabled, the
counter will increment by one every rising
edge of the clock.

The ACO flag indicates that the value of the
counter is all ones. This flag stays latched

PAC1000

OUTCNTL Operation places this value on the
Output Control bus. The OUTCNTL Opera­
tion can be performed in parallel with any
other PAC1 000 instructions.

The OUTCNTL bus can be used to control
external events on a clock to clock basis.

until the counter is loaded with a new value.
The counter will continue to count until
disabled. ACO is a condition code and a
member of a Case Group; see the Control
Section description for more details. ACO can
also generate an internal interrupt 7, if
enabled.

In the 16-bit mode, the counter outputs (ACH)
are available through the ADD bus. The
count is gated to the ADD bus by setting the
ASEL bit (CTRL9) of the Control Register.

In the 22-bit mode, the higher 16 bits (ACH)
are available through the ADD bus and the
six low order bits (ACL) are available through
the Host Address (HAD) bus. These low
order bits are multiplexed with the host
address lines. The address lines from the
host which drives the HAD bus must be
placed in the high impedance state before the
lower 6-bits (ACL) of the Address Counter
can be read.

Internal Bus

16 16 16 16

ACL

IACEN Address Address ACS22
Count Count -High Low

AOR
AIR

Address
Output

Register
to HADln

Host Intertace -ASEL

ADDIO 15] 1738 12

-------------------------------------rJr.jf~~-----------------------------------­'r6iiIIr., ..
2-19

•

PAC1000

Counters
(Con't)

Central
Processing Unit

Selecting the 16- or 22-bit count mode is
performed by setting or resetting the ACS22
bit in the I/O Configuration Register.

The address Output Register is an alternate
source of address outputs; it is selected by
resetting the ASEL bit of the Control Regis­
ter. In this mode the CPU can be used to
provide address generation and the Address
Counter can be used as an event counter.

Block Countel
The Block Counter (BC) is a 16-bit down
counter. It is enabled by the BCEN bit of the
Control Register. It is useful as a counter for
DMA transfers. The BCEN signal is (option-

The CPU, shown in Figure 13, performs
16-bit operations in a single clock cycle. It
contains 33 general purpose registers
(RO ... R31, and Q). The Q register can be
used in conjunction with any of the RO ... R31
registers to perform double preCision shift

ally) available externally through the 1/00 bit
(see 1/0 and Special Functions). While
enabled, the counter will decrement by one
every riSing edge of the clock. The BCZ flag
indicates that the counter reached the zero
value. After the occurrence of an all Os
condition the Block Counter will continue
down counting until disabled. The flag is
latched and can be cleared by loading a new
value into the Block Counter. BCZ is a
condition code and a member of a Case
Group; see the Control Section description
for more details.

Both counters may be read without disabling
the count operation and loaded via the CPU.

operations. The main building blocks are the
register bank (RO ... R31), Q register, ALU,
V-bus devices, and D-bus devices. The
register bank supplies up to two 16-bit
registers, one of which is always the destina­
tion register.

,."E
-~-2-0-------------------------------~~1---------------------------------

Figure 13.
epUB/ock
Diagram

PAC1000

,---,

eLK

r--,I

IN (B)

Register
Bank

(R31/RO)

CPU

I-------r======~----------------~
I 1/0 I Part of I Host

,..........%--:-=,.-L..-, Bus I Control Section I Interface

Host
Interface

Host
Interface

I
I
L __

ADD
Bus

I/O
Bus

Constants ,------,
I I

I

Part of
I Control Section
L ______ -.l

1738 13

--rJrArjpF~---",..,.
2-21

•

--------~--~---~

PACtOOO

Central
Processing Unit
(Con't)

TableB.
CPU Operand
Mnemonics

The ALU operates on up to two external
operands that are selected by its input MUX.
In every instruction, 1 of the 10 D-bus de­
vices (AOR, SWAP, ACL, ACH, BC, FIFO,
DIR, AIR, IIR, and Program Store) or a
member of the register bank or the Q register
outputs, can be selected as an operand
source to the ALU. The possibilities are
shown in Figure 14. During ALU operations,
three options can be selected to provide the
carry-in (Cin) input: 0, 1, or the previous

latched carry-out (adequate for multiple
precision operations).

The ALU's output or a selected register can
be loaded into one of the seven V-bus
devices (lOR, AOR, LC, DOR, ACL, ACH, or
BC) every instruction cycle. This can happen
in parallel with the feedback path from the
ALU's output that is directed either to the Q
register or to the destination register of the
register bank.

Mnemonic
ACH or ACH/ACL

AIR

AOR

BC

<constant>

DIR

DOR

FIFO

IIR

lOR

LC

Q

RO-R31

SWPV

Destination Only

DOR

LC

lOR

1738 14

Description
16- or 22-bit Auto-incrementing Counter, or General Purpose
Registers

Address Input Register

Address Output Register

Block Counter (16-bit auto-decrementing), or General Purpose
Register

Constant values in Program Storage

Data Input Register

Data Output Register

Input Data from FIFO

110 Input Register

110 Output Register

Program Loop Counter

16-bit CPU Register

16-bit CPU Registers

Byte Swap version of AOR

-------------------------------------~~~.------------------------------------
~.,.

2-22

Central
Processing Unit
(Con't)

Figure 15.
Shift Operations

CPU operations can be performed on one,
two or three operands, Each operation is per­
formed in a single clock cycle, In two- or
three-operand instructions, one of the oper­
ands must be a CPU internal register
(RO",R31, or 0),

CPU operations are performed independently
of operations in the counters, Host Interface,
Output Control, and Program Control.

Arithmetic Operations
The CPU can perform the following arithme­
tic operations:

o Addition

o Subtraction

o Increment

o Decrement

o Compare

Logic Operations
The CPU can perform the following logic
operations:

o AND

o OR

o Invert

o Exclusive OR

o Exclusive NOR

Shift Operations
Single shift operations, shown in Figure 15,
can occur either to the left or to the right, with
or without the 0 register. Shift instructions
specify the sources that are shifted into the
corresponding registers,

All shift operations can be executed in the
same clock cycle as an arithmetic or logic op­
eration, The arithmetic or logic operation is
executed first; the result is shifted and then
stored in the register file, The shift can be

~ Rn ~
~ Q ~

PAC1000

either left or right

The CPU can perform the following shift
operations:

o Single-precision, left or right, within a
general-purpose register (RO",R31,
or 0),

o Double-precision, left or right, between
an RO",R31 register and the 0 register.

The LSB and MSB of the general-purpose
registers are each fed by an eight-to-one
multiplexer.

The sources and destinations for shift opera­
tion are given below:

Shift Right

Zero Flag (Z)

Carry Flag (CY)

Sign Flag (S)

Binary 0 (0)

Binary 1 (1)

Least-significant bit of this register (RLSB)

Least-significant bit of the 0 register (OLSB)

Serial I/O port (SDATM)

Shift Left
Zero Flag (Z)

Carry Flag (CY)

Sign Flag (S)

Binary 0 (0)

Binary 1 (1)

Most-significant bit of this register (RMSB)

Most-significant bit of the 0 register (OMSB)

Serial I/O port (SDATL)

Shiff Single PrecIsion Left/Right Shift Double PrecISion Left/Right Shift Double PrecIsion Left/Right

1738 15

---------------------------------------~~~--------------------------------------
2-23

I

•

PAC1000

Central
Processing Unit
(Con't)

Figure 16.
Rotate Operations

I/O and Special
Functions

Rotate Operations
The CPU can perform the following rotate op­
erations, as shown in Figure 16:

Cl Single-precision, left or right, within a
general-purpose register (RO ... R31,
ora).

Cl Double-precision, left or right, between
an RO ... R31 register and the a register.

~'----Rn ~
doh

Single PrecIsion Rotate RlghVLeft

The I/O bus, shown in Figure 17, consists of
eight lines which can be individually pro­
grammed as inputs or outputs. These lines
can also be programmed to perform Special
Functions. The functions of these pins are
defined by the Mode Register and I/O Con­
figuration Register (see Configuration Regis­
ter Section). The I/O and Special Functions
map according to the table. The I/O lines
must first be configured as inputs or outputs
via the I/O Configuration Register; the
Special Function option can then be enabled
via the Mode Register. Individual special

Multiple I'rsc/sion Operations
The carry-out in each instruction can be used
in the next instruction for multiple precision
operations (e.g., ADDC). This feature en­
ables the user to implement complex arith­
metic operations such as division or multipli­
cation in several clock cycles.

Double PrecIsion Rotate RlghVLeft
1738 16

function control is shown in the accompany­
ing table.

Once a Special Function has been enabled,
the corresponding internal control function is
automatically disabled. Conversely, when a
Special Function is disabled, control of the
corresponding internal control function is
returned to the Control Register (see Con­
figuration Register). Because the Inputs in
the I/O Register are clocked on each cycle,
the status of the special function can also be
read to the CPU.

-------------------------------------,jrJrjf~-----------------------------------­
2-24 ""!!!IF.

Figule17.
I/O and Special
Function Bus

MODES

~
IOCG6

1/05

'" ~-------------I-----t~
}
ill

10CGS '"

!!l
'"

CNTL4
(ADOE)

CNTL3
(HADOE)

CNTL2
(HDOE)

IIR

! 1---II--1~D CK

10CGO

CNTLO
(ACEN)

LOWER 8-BIT CPU
YBUS

PAC1000

FIIR

B MUX
IADOE

Q

MODE?

B MUX
IHADOE

Q

MODE 6

IHDOE

MODES

SDATM

QMSB

CLK

SDATL

QLSB

IACEN

MODE 3

IBCEN

MODE2

1738 17

, .. ~~------------------------~ --------------~-!I 2-25

•

PAC1000

Configuration
Registers

Table 7.
I/O Pins and
Special Functions

TableS.
Special-Function
Control

The Configuration Registers allow the user to
control and configure different operating
modes of the PAC1 000. The three 10-bit
Configuration Registers are the Control
Register, 1/0 Configuration Register, and
Mode Register. Each register has an associ­
ated instruction which allows individual
register bits to be modified.

Control Register
The Control Register, shown in Figure 18,
provides for internal control of key functions
within the PAC 1000 . Several of these
functions can alternatively be controlled
externally through the 1/0 bus (see 1/0 and
Special Functions). The Control Register is
modified on the falling edge of the clock.

Pin Special Function Direction Description

1/07 FIIR output FIFO Input Ready. FIFO not full.

1/06 ADOE input Address Output Enable

1/05 HADOE input Host Address Output Enable

1/04 HDOE input Host Data Output Enable

1/03 QMSB bidirectional Q Register MSB

1/02 QLSB bidirectional Q Register LSB

1/01 ACEN input Address Counter Enable

1/00 BCEN input Block Counter Enable

Special Function Pin Name I/O Configuration Mode

FIIR 1/07 IOCG7=1 (output) MODE8=1

ADOE 1/06 IOCG6=0 (input) MODE7=1

HADOE 1/05 IOCG5=0 (input) MODE6=1

HDOE 1/04 IOCG4=0 (input) MODE5=1

QMSB 1/03 IOCG3=1 (output)

IOCG3=0 (input) MODE4=1

QLSB 1/02 IOCG2=1 (output)

IOCG2=0 (input) MODE4=1

ACEN 1/01 IOCG1=0 (input) MODE3 =1

BCEN 1/00 10CGO=0 (input) MODE2 =1

------------------------------~Jr;-----------------------------
2-26

Configuration
Registers
(Con'f)

Figure 18.
Control Register

ASEL (CTRL9)-Address Select. Selects the
source that will write to the Address bus:

1 = Address Counter.

0= Address Output Register (AOR).

AIREN (CTRL8)-Address Input Register
Enable. Enables and disables writing to
the Address Input Register from the ADD
Port:

1 = Enable writing to Address Input
Register (AIR).

0= Disable writing to Address Input
Register (AIR).

DIREN (CTRL7)-Data Input Register
Enable. Enables and disables writing to
the Data Input Register (DIR) from the
HD Port:

1= Enable writing to Data Input Register
(DIR).

0= Disable writing to Data Input Register
(DIR).

HDSEL 1 (CTRL6) and HDSELO (CTRLS)­
Host Data Select. Select the source to be
connected to Host Data (HD) bus:
HDSEL 1 HDSELO Selection
(CTRL6) (CTRLS)

0 0

0

0

CTRL9 (ASEL)

CTRL8 (AIREN)

MSB

FIFO-
Peripheral
Mode

Data Output
Register

Status
Register

Program
Counter

CTRL7 (DIREN) -------'

CTRL6 (HDSEL 1) --------'

CTRL5 (HDSELO) --------'

PAC1000

ADOE (CTRL4)-Address Output Enable.
Selects direction of Address bus (ADD)
for next clock cycle:

1 = Output (see ASEL).

0= Input (see AIREN).

HADOE (CTRL3)-Host Address Output
Enable. Selects direction of Host Address
(HAD) bus for next clock cycle:

1 = Output (driven from ACL Register).

0= Input (into the FIFO).

HDOE (CTRL2)-Host Data Output Enable.
Selects Direction of Host Data (HD) bus
for next clock cycle:

1 = Output (See HDSELO and HDSEL 1) .

0= Input (See DIREN).

BCEN (CTRL 1)-Block Counter Enable.
Enables and disables Block Counter:

1 = Enable Counting on next rising clock
edge.

0= Disable Counting on next rising edge.

ACEN (CTRLO)-Address Counter Enable.
Enables and disables Address Counter:

1 = Enable Counting on next rising clock
edge.

0= Disable Counting on next rising clock
edge.

LSB

CTRLO (ACEN)

CTRL 1 (BCEN)
L-___ CTRL2 (HDOE)

'------ CTRL3 (HADOE)
L-______ CTRL4 (ADO E)

Note: After Reset, All Bits Are Cleared to Zero. 1738 18

------------------rJfjr~:-------------------_.
2-27

•

PAC1000

Configuration
Registers
(Con't)

Figure 19.
I/O Configuration
Register

lID Configuration Register
The 1/0 Configuration Register, shown in
Figure 19, controls the direction of the
individual lines of the 1/0 bus as well as con­
figuring the Address Counter. Each 1/0 pin
can be configured independently to be a
general purpose input or output, or each can
serve a special function (see 1/0 and Special
Function). The I/O Configuration Register is
also used to configure the Address Counter
as a 16-bit counter with a maximum count of
FFFFH or as a 22-bit counter with a maxi­
mum count of 3FFFFFH. The 1/0 Configura­
tion Register is modified on the falling edge
of the clock.

ACS22 (IOCG9)-Configures Address
Counter as a 22- or 16-bit counter:

1 = 22-bIt counter.

0= 16-bit counter.

1/07 (IOCG7)-Selects direction of 1/07 pin:

1= Output.

0= Input.

1/06 (IOCG6)-Selects direction of 1/06 pin:

1= Output.

0= Input.

IOCG9 (ACS22)

IOCG8 (Reserved)

MSB

IOCG7 (1/07) -----'

IOCG6 (1/06) -------'

IOCG5 (1/05) --------'

1/05 (IOCG5)-Selects direction of 1/05 pin:

1= Output.

0= Input.

1/04 (IOCG4)-Selects direction of 1/04 pin:

1= Output.

0= Input.

1/03 (IOCG3)-Selects direction of 1/03 pin:

1= Output.

0= Input.

1/02 (IOCG2)-Selects direction of 1/02 pin:

1= Output.

0= Input.

1/01 (IOCG1)-Selects direction of 1/01 pin:

1= Output.

0= Input.

1/00 (IOCGO)-Selects direction of 1/00 pin:

1= Output.

0= Input.

LSB

10CGO (1/00)

IOCG1 (1/01)
'----- IOCG2 (1/02)

'------ IOCG3 (1/03)

'------ IOCG4 (1/04)

Note: After Reset, All Bits Are Cleared to Zero.
1738 19

-----------------------------------,.Ar~:--------------------------------­'iiIfei.e
2-28

Configuration
Registers
(Con't)

Figure 20.
Mode Register

Mode Register
The Mode Register, shown in Figure 20,
allows the user to externally control and
monitor key elements within the PAC1 000
which would (alternatively) be controlled
internally through the Control Register.
Enabling a Special Function in the Mode
Register disables the corresponding function
in the Control Register. The Special Function
input pins are shared with the general
purpose 110 pins. The direction of the appro­
priate pin must be set in the 1/0 Configuration
Register prior to programming the Mode
Register.

The Mode Register can also be used to reset
the FIFO as well as program the interrupt
controller to generate either interrupts or
Priority Test Conditions. See the discussion
on "Priority Case" in the Condition Code
section, above.

After Reset, all Mode Register bits equal
zero. The Mode Register is modified on the
falling edge of the clock.

The use of the Mode Register and 1/0
Configuration register for Special Functions
is shown in the Special Function Settings
table.

FIRST (MODE9)-FIFO Reset. (If held high,
FIFO cannot receive Information):

1 = Initiate FIFO Reset (FIRST).

0= Complete FIFO Reset (FINRST).

FIIR (MODE8)-FIFO Input Ready:

1 = 1/07 becornes output for the FIFO
Input Ready (FIIR) flag.

0= 1/07 becomes general purpose 1/0
(107).

ADOE (MODE7)-Address Output Enable:

MODE9 (FIRST)

MODE8 (FIIR)

MSB

MODEl (ADO E) ----'

MODE6 (HADOE) -------'

MODE5 (HDOE) -------"

PAC1000

1 = 1/06 becomes input for the Address
Output Enable (AOE).

0= 1106 becomes general purpose 1/0
(106).

HADOE (MODE6)-Host Address Output
Enable:

1 = 1/05 becomes input for Host Address
Output Enable (HADOE).

0= 1/05 becomes general purpose 1/0
(106).

HDOE (MODE5)-Host Data Output Enable:

1 = 1/04 becomes input for Host Data
bus Output Enable HDOE).

0= 1/04 becomes general purpose 1/0
(104).

SIOEN (MODE4)-SeriaIIIO Enable:

1 = 1/03 and 1/02 become MSB and LSB
(respectively) of the CPU's Q register
(SIO).

0= 1/03 and 1/02 become general
purpose 1/0 ACEN(MODE3).

ACEN (MODE3)-Address Counter Enable:

1 = 1/01 becomes input for Address
Counter Enable (ACEN).

0= 1/01 becomes general purpose 1/0.

BCEN (MODE2)-Block Counter Enable:

1 = 1/00 becomes input for Block Counter
Enable (BCEN).

0= 1/00 becomes general purpose 1/0.

Reserved (MODE1)

INTR (MODEO)-lnterruptIPriority-Case
Mode:

1 = Select Interrupt mode (INTR).

0= Selects Priority Case mode (PCC).

LSB

MOD EO (INTR)

MODE1 (Reserved)
L--___ MODE2 (BCEN)

L-____ MODE3 (ACEN)

'---------- MODE4 (SIOEN)

Note' After Reset, All Bits Are Cleared to Zero
1738 20

-------------------~~~~-----------------
2-29

•

PAC1000

State Following
Reset

Table 9.
Special Function
Settings

Table 10.
Signal States
Following Reset

Whenever the PAC1 000 RESET input is
driven low for at least two processor clocks,
the chip goes through reset. The next two

Mode Bit

MODE8=1

MODE7=1

MODE6=1

MODE5=1

MODE4=1

MODE4=1

MODE4=1

MODE4=1

MODE3=1

MODE2=1

Signal

HAD[5:0]

HD[15:0]

10[7:0]

ADD[15:0]

OC[15:0]

I/O Configuration Bit

IOCG7=1

IOCG6=0

IOCG5=0

IOCG4=0

IOCG3=1

IOCG3=0

IOCG2=1

IOCG2=0

10CGhO

10CGO=0

Condition

Input

Input

Input

Input

OOOOH

JEsiFE

tables describe the PAC1000 signal and
internal register states following reset.

Function

FIIR flag output on 1/07

ADOE provided by 1/06

HADOE provided by 1/05

HDOE provided by 1/04

MSB of Q register output on 1/03

1/03 can be shifted into MSB of Q register
or destination register

LSB of Q register output on 1/02

1/02 can be shifted into LSB of Q register
or destination register

ACEN provided by 1/01

BCEN provided by 1/00

----------------------------------~sJ;---------------------------------

2-30

PAC1000

Table 11.
Internal States Component Contents
Following Reset ACH Register 0

ACL Register 0

AOR Register 0

AIR Register 0

DOR Register 0

DIR Register 0

lOR Register 0

IIR Register 0

STATUS Register 0

1/0 Configuration Register 0

CONTROL Register 0

Breakpoint Register 0

Mode Register 0 • PC Register (Program Counter) 0

MASK Register 011111111B

BC Register FFFFH

R31-RO Registers Unknown

Q Register Unknown

LC Register Unknown

FIFO Locations Unknown

FIFO Flags Empty

-----------------------------------',Ar~:-----------------------------------~.,= 2·31

PAC1000

Electrical and Timing
Specifications

Table 12.
Absolute
Maximum Ratings

Table 13.
Operating Range

Table 14.
DC
Characteristics
OVBI' O/l8l'lIting I'llnge

with V,..=Vcc

Storage Temperature

Voltage to any pin with respect to GND

Vpp with respect to GND

ESD Protection

Stresses above those listed here may cause
permanent damage to the device. This is a
stress rating only and functional operation of
the device at these or any other conditions
above those indicated in the operational

Range

Commercial

Industrial

Military

Parameter

Output Low Voltage

Output High Voltage

Vee Standby
Current CMOS

Vee Standby
Current TTL

Temperature

O'C to +70'C

-40°C to +85°C

-55'C to + 125'C

Symbol

VOL

VOH

IS81

IS82
Active Current (CMOS) lee1
-Commercial
-Military

Active Current (TTL) lee2
-Commercial
-Military

V pp Supply Current Ipp

Vpp Read Voltage Vpp

Input Load Current III

Output Leakage Current ILO

Notes:
1. CMOS inputs: GND ± 0.3V or Vee ± 0.3V.
2. TTL inputs: V'L S 0.8V, V'H~ 2.0V.

-65°C to + 150°C

-0.6V to +7V

-0.6 V to + 14.0V

>2000V

sections of this specification is not implied.
Exposure to absolute maximum rating
conditions for extended periods of time may
affect device reliability.

Vcc
+5V± 5%

+5V ± 10%

+5V ± 10%

Test Conditions

IOL=8 mA

10H=-4 mA

note 1

note 2

notes 1,3

notes 2,3

Vpp=Vee

notes 1,2

V'N=5.5V
orGND

VouT=5.5V
orGND

Min

2.4

Vee-O.4

-10

-10

Max Units

0.4 V

V

65 mA

65 mA

130 mA
150 mA

160 mA
180 mA

100 IlA

Vee V

10 IlA

10 IlA

3. Active current is an AC test and uses AC timing levels.

-------------------------------------r~~~~------------------------------------
2-32 '="'="==

Table 15.
AC Timing Levels

Table 16.
AC
Characteristics

Inputs:

Outputs:

o to 3V Reference 1.5V

0.4 to 2.4V

Parameter Symbol

CLOCK CYCLE

Clock Time tCK

Clock Pulse Width High tCKH

Clock Pulse Width Low tCKL

HOST READ CYCLE

Read Cycle Time tRC

Address to Data Valid tACC
-
CS to Data Valid tcs
-
CS to Tristate tcsz

HOST WRITE CYCLE

Pulse width to CS and
WRLOW t pWL

-
Pulse width to CS and
WR High t PWH

-
Data setup to WR tSD

-
Data hold to WR tHD

RESET CYCLE
--
RESET setup tSR
--
RESET to tristate of
ADD, HAD, HD, I/O tRZ
--
RESET clocked to
OUTCNTL low t ROL

ADORESS TIMING

Address/Data setup tSADD

Address/Data hold tHADD

Clocked Counter to
Address output tCADD

Clocked Address Register
to Address tRADD

ADOE enable to data valid t ADOE

HADOE enable to
data valid tHADOE

Address output disable tCKZ

PAC1000

12MHzl 16MHz2
Min Max Min Max

84 62.5

29 25

29 25

45 35

40 30

40 30

0 45 0 35

23 18

12 10

5 5

12 10

10 10

35 35

35 35

0 0

8 8

30 22

40 30

40 30

40 30

0 45 0 35

------------------~~~~-----------------
2-33

•

PAC1000

Table 16.
AC
Characteristics
(CDn't)

Parameter SymbDI 12MHz1
Min Max

DATA AND I/O TIMING

Clock to I/O Output Valid tCKIO 30

Clock to HD Output tCKHO 35

I/O data setup tSIO 5

I/O data hold tHIO 5

HD data setup tSHO 5

HD data hold tHHO 12

HDOE enable to data valid tHOOE 40

Bus Output Disable tCKZ 0 45

TEST AND INTERRUPT TIMING

Condition Code setup tscc 60

Condition code hold tHCC 0

Clock to OUTCNTL Valid tcov 0 25

Minimum Interrupt pulse
for acceptance tlPWA 15

SPECIAL FUNCTION TIMING (I/O Bus)

SQ15 Setup tSS015 15

S015 hold tHS015 5

sao setup tssoo 15

sao hold tHSOO 5

Clock to 00 output tCKOO 35

Clock to 015 output tCK015 35

Address counter
enable setup tSACEN 15

Address Counter
enable hold tHACEN 0

Block Counter enable setup tSBCEN 15

Block Counter enable hold tHBCEN 5

External output enable to
data valid tSFV 30

External output enable to
high impedance tSFZ 30

Notes:
1. Operating temperature range: Commercial, Industrial, Military
2. Operating temperature range: Commercial

16MHz2
Min Max

25

30

5

5

5

9

30

0 35

50

0

5 20

10

12

5

12

5

30

30

10

0

10

5

25

25

-------------------------~Jr;-------------------------2-34

Figure 21.
Clock Cycle
Timing

Figure 22.
Host Read Cycle
Timing

Figure 23.
Host Write FIFO
Cycle Timing

Figure 24.
Reset Cycle
Timing

leK

CK

~ =b __ A_dd_::_:s_v_al_'d __ ~l ___ _
lAce -----

\ /

~Ies~
_Iesz--

\ /

HD Data Valid

Note tcs IS referenced from RD=O and CS=O

HAD
HD

CLOCK

ADD
HAD

HD
1/0

OUTCNTL

!F_===ff#

"fr-

PAC1000

1738 22

1738 23

1738 24

--------------------------------~~;------------------------------------
2-35

•

PAC1000

Figure 25.
Data and I/O
Timing

Figure 26.
Address Timing

Figure 27.
Test and Interrupt
Timing

SWitch bus from
Input to Output
(Note 1)

New Data or
Counter Output
(Note 2)

Notes 1 A bus directional change (Input-ta-output or output-ta-mput)
takes place on the failing edge of the clock

Next Data
or Count Value

2 New data or count value IS latched on the rising edge of the clock

CLOCK

ADD

HAD
(Note 1)

SWitch bus from
Input to Output
(Note 2 & 3)

New Data or
Counter Output
(Note 4)

Next Data
or Count Value

Output to High
Impedance

Output to High
Impedance

Notes 1 The Host Address (HAD) bus IS used to output the lower SIX bits of the 22-blt counter
2 A bus directional change takes place on the failing edge of the clock (Input-ta-output or output-ta-Input)
3 Selection of the source to be output on a bus occurs on the failing edge

of the clock (I e , counter or address register)
4 New data or count value IS latched on the rising edge of the clock

CLOCK

CC[701

OUTCNTL

tNT h
-------------~ ~-tIP-WA-----

Note 1 Since conditIOn codes are not latched,
they should be stable tscc
pnor to being tested

1738 25

1738 26

1738 27

--~~~---
2-36

Figure 28.
Special Function
Timing

Figure 29.
100-Pin POFP
Pin Assignments

N/C

N/C

CC2

1/05 4

1/07

1/06

HD3

1/04

1/03

1/0210

1/01 11

CS 12

1/0013

CK 14

WR 15

R5 16

GND 17

GND 18

OC1519

OC14 20

OC1221

OC13 22

GND 23

GND 24

OC10 25

OC926

OC11 27

HDO 28

N/C 29

N/C 30

CLOCK

ACEN
BCEN

00
015

ADOE
HADOE
HDOE

ADD
HAD
HD

00 ~ 0 w ~ v ~I~ N ~ 0 ~ ~ ~ ~ ~ w 0 ~ v
gg~gg8g~ggg~~~~~8~88

100 99989796959493929190898887868584838281

0

31 32333435363738394041424344454647484950

.0",," coO)~ ~o~;!~8ooB
OOZODOOOOOO.ooooo<tz««
II(9IIIIIIIII>IIIIGII

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

PAC1000

1738 28

N/C

N/C

CC3

CC1

CCO

ADD15

ADD14

ADD13

ADD12

ADD11

ADD10

GND

GND

ADD9

ADD8

ADD7

ADD6

ADD5

ADD4

ADD3

ADD2

ADDO

VCC

VCC

HAD5

HAD4

ADD1

HAD3

N/C

N/C

-----------------------------------~~~~----------------------------------
2-37

•

PAC1000

Pin Assignments

FigureaO.
BB-Pin Ceramic
PGA Pin
Assignments

1 2

A 0 0
1105 OC.

B 0 0
1107 CC2

C 0 0
HD3 1/06

0 0 0
1/03 1104

E 0 0
1/01 1/02

F 0 0
1100 ICS

G 0 0
!WA CK

H 0 0
lAD OND

J 0 0
eClS OC14

K 0 0
ce12 CC13

L 0 0
OND OClO

M 0 0 OC, OCll

N 0 0
HDO HD'

1 2

13 12

A 0 0
CC3 CC4

B 0 0
CCO cc,

C 0 0
ADD14 ADD1S

0 0 0
ADD12 ADDl3

E 0 0
ADD10 ADDll

F 0 0
AD09 OND

G 0 0
ADDS ADD7

H 0 0
ADD6 ADD5

J 0 0
ADD4 ADoa

K 0 0
ADD2 ACDD

L 0 0
Vo< HADS

M 0 0
HA04 HAD3

N 0 0
ADDl HAD2

13 12

3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0
OND ocs OC3 OC2 DC' INT3 INTl CC? Vo<

0 0 0 0 0 0 0 0 0
OC? DC' OC4 fRESET oeD INT2 INTO CC, CCS

0
PAC1000

0 0 0 0 0 0 0 0 0
HD' HD4 HD' HD8 HOW V'" HD14 HADO HAD1

0 0 0 0 0 0 0 0 0
GND HDS HD? HD9 H01l HD12 HOl3 H01S OND

3 4 5 6 7 8 9 10 11

TOP (THROUGH PACKAGE) VIEW

11 10 9 8 7 6 5 4 3

0 0 0 0 0 0 0 0 0
Vo< CC? INTl INT3 DC' DC' OC3 DCS OND

0 0 0 0 0 0 0 0 0
CCS CC, INTO INT2 OGO IRESET OC4 DC' DC?

0 0 0 0 0 0 0 0 0
HAD1 HADQ HD14 Vo< H010 HD, HD' HD' HD'

0 0 0 0 0 0 0 0 0
OND HOtS HOt3 HD12 HOll HD' HD? HDS OND

11 10 9 8 7 6 5 4 3

BOTTOM VIEW

12 13

0 0 A
CC. CC3

0 0 B
CC, CCO

0 0 C
ADD1S ADD14

0 0 0
ADD13 AD012

0 0 E
ADOll ADD10

0 0 F
OND AD09

0 0 G
ADDl ADDS

0 0 H
ADDS ADD6

0 0 J
ADD3 ADD4

0 0 K
AOOO ADD2

0 0 L
HADS Vo<

0 0 M
HAD3 HA04

0 0 N
HAD2 ADDl

12 13

2 1

0 0 A
DC. 1105

0 0 B
CC2 1107

0 0 C
1/06 HD3

0 0 0
1104 1103

0 0 E
1{02 1101

0 0 F
ICS 1100

0 0 G
CK !WA

0 0 H
OND lAD

0 0 J
OC14 eC1S

0 0 K
OC13 De12

0 0 L
OCtO GND

0 0 M
OCll DC'

0 0 N
HD, HDO

2 1

1738 29

__ f~~~E __ __

2-38 fI#.'

PAC1000

Table 17.
PGA Pin Name Pin Name Pin Name Pin
Assignments CS F2 GND H2 1/00 F1

RD H1 GND L1 1/01 E1
RESET 86 GND A3 1/02 E2
WR G1 GND F12 1/03 01
AD DO K12 GND N3 1/04 02
ADD1 N13 GND N11 1/05 A1
ADD10 E13 HADO M10 1/06 C2
ADD11 E12 HAD1 M11 1/07 81
ADD12 013 HAD2 N12 INTO 89
ADD13 012 HAD3 M12 INT1 A9
ADD14 C13 HAD4 M13 INT2 88

• ADD15 C12 HAD5 L12 INT3 A8
ADD2 K13 HDO N1 OCO 8?
ADD3 J12 HD1 N2 OC1 A?
ADD4 J13 HD10 M? OC10 L2
ADD5 H12 HD11 N? OC11 M2
ADD6 H13 HD12 N8 OC12 K1
ADD? G12 HD13 N9 OC13 K2
ADD8 G13 HD14 M9 OC14 J2
ADD9 F13 HD15 N10 OC15 J1
CCO 813 HD2 M3 OC2 A6
CC1 812 HD3 C1 OC3 A5
CC2 82 HD4 M4 OC4 85
CC3 A13 HD5 N4 OC5 A4

CC4 A12 HD6 M5 OC6 84
CC5 811 HD? N5 OC? 83
CC6 810 HD8 M6 OC8 A2
CC? A10 HD9 N6 OC9 M1
CK G2 VCC A11

VCC L13
VCC M8

--------------------------------'II~;--------------------------------iflFiEEF S 2-39

PAC1000

Figure 31.
92-PinCQFP
Pin
Assignments

CC2

1/05
1/07

1/06
HD3
1/04

1/03
1/02
1/01
Cs 10

1/0011

CK 12

WR 13

RD 14

GND 15
GND 16

OC1517

OC1418
OC1219

OC1320

GND 21
GND 22

OC10 23

OC924

OC11 25

HDO 26

= = = = =

= = = = = = = =
= = = = = =

00 ~ 0 ~ ~ v Ml~ N ~ 0 ~ ~ ~ ~ ~ w 0 ~ ~
ggBgggg~ggg~~~~88~88

~~OO~Y~Y~M~~~OO~nnn~~n

27 28293031 3233343536373839 4041 4243444546

O..;ttr) cn~ ~()~~~800~
OOZClOOOOOOoooooo«z««
IIC!JIIIIIIIII>IIII(!)II

!i'iS=~=

72

71

70

69

68

67

66

65
64

63
62

61

60
59

58

57

56

55

54

53

52

51
50

49

48

47

CC3
CC1

CCO

ADD15

ADD14

ADD13

ADD12

ADD11
ADD10

GND

GND

ADD9

ADD8

ADD7

ADD6

ADD5

ADD4

ADD3

ADD2

ADDO

VCC

VCC
HAD5

HAD4

ADD1

HAD3

-2--4-0---~~Af---

Instruction Set
Overview

The PAC1000 architecture can perform three
operations simultaneously in each instruction
cycle. The operations are specified in the
System Entry Language (PACSEL) using a
single statement. PACSEL instructions can
perform three operations:

o Program Control (PROGCNTL)

o CPU

o Output Control (OUTCNTL)

Each instruction is executed in a single cycle;
the three operations are executed in parallel.

The syntax of a PACSEL statement has a
label and three components:

[label:] PROGCNTL, CPU,
OUTCNTL;

The PROGCNTL component determines
program flow and determines the next
statement to be executed; the CPU compo­
nent determines which operation is to be
performed by the CPU; the OUTCNTL
component determines the state of the
control outputs.

A comma (,) is used to separate the instruc­
tions and a semi-colon marks the end of a
statement. In general, each statement is
executed in a single cycle.

In PACSEL statements, the PROGCNTL,
CPU, OUTCNTL components can come in
any order or any combination of Macro or
Assembler operators. That is, you may mix
Assembler operators among Macro opera­
tors. Tables at the end of this section sum­
marize the Macro and Assembler operators.

PAC1000

In some cases, the same mnemonic is used
to specify identical operations in both Macro
and Assembler level.

You may:

o Specify all the components in the same
statement in order to perform the opera­
tions in parallel:

PROGCNTL, CPU, OUTCNTL;

o Specify components one at a time:

CPU;

PROGCNTL;

OUTCNTL;

o Use components in any combination:

PROGCNTL, CPU;

PROGCNTL, OUTCNTL;

CPU, OUTCNTL;

WSI recommends that the user adhere to a
specific ordering of these components and
specific groupings of assembler-level and
macro operators, e.g. in separate files. This
manual uses the PROGCNTL, CPU,
OUTCNTL ordering.

When PROGCNTL is omitted, the implied
instruction is CONTinue, that is, proceed to
the next control instruction. When CPU is
omitted, the Implied Instruction is NOP.
When OUTCNTL is omitted, the implied
instruction is MAINTain, that is, maintain
the most recent OUTCTL, in Assembler
order.

There is a class of supplemental CPU
(sCPU) instructions which can follow
certain primary CPU instructions with one
or more spaces as a delimiter:

PROGCNTL, CPU sCPu, OUTCNTL;

An sCPU instruction must follow a valid
CPU instruction and can not stand alone.

---------------------------------------~Jf~~--------------------------------------
2-41

•

PACtDflO

Table 18. Mnemonic Arguments Meaning
PACSEL

The PROGCNTL Operators Assembler
Language ACSIZE <16/22> Set A Counter Size

Summary AI Allow Interrupts
CALL <LABEL I LCPTR I FIFO> Uncond Branch Subrtn
CALLC <COND> <LABEL I FIFO> Cond Branch Subrtn
CALLNC <COND> <LABEL I FIFO> Inv Cond Bran Subrtn
CCASE <CG> <VALUE> Branch Subrtn Caseb1k
CLI <MASK> Clear Interrupt
CONT Continue
CPI <VALUE> Prioritized Subrtn
DI <MASK> Disable Interrupt
DSS Disable SSM
EI <MASK> Enable Interrupt
ESS Enable SSM
JCASE <CG> <VALUE> Uncond Branch Caseblk
JMP <LABEL I LCPTR I FIFO I TOS> Uncond Branch
JMPC <COND> <LABEL> Cond Branch
JMPNC <COND> <LABEL> Inv Cond Branch
JPI <VALUE> Prioritized Branch
LDBP <VALUE I LABEL> Load BP Reg
LDBPD Load BP Comp Value
LDLC <VALUE I LABEL> Load Counter
LDLCD Load Ctr Comp Value
LOOPNZ <LABEL> Repeat Branch CNTRNZ
PLDLC <VALUE I LABEL> Push VALUE & LDCTR
PLDLCD Push Comp Val & LDCTR
POP Pop Stack
POPLC Pop Stack to Cntr
PUSHLC Push Cntr
RESTART Branch to a
RET [<LABEL>] Return
RC <COND> [<LABEL>] Conditional Return
RNC <COND> [<LABEL>] Inv Cond Return
RSTCON <MASK> Reset Control Reg
RSTIO <MASK> Reset I/O Config Reg
RESTMODE <MASK> Reset Mode Reg
SETCON <MASK> Set Control Reg
SETIO <MASK> Set I/O Con fig Reg
SETMODE <MASK> Set Mode Reg
TWB <COND> <LABEL> Three-way Branching
TWBC <COND> <LABEL> Converse Three-way

Branching

-------------------------~Jr;-------------------------2-42

PACtOOD

Table 18.
Mnemonic Arguments Meaning PACSEL

Assembler The CPU Operators
Language ADC <ARG1> <ARG2> [<ARG3>] [sCPU] Add with Carry
Summary ADD <ARG1> <ARG2> [<ARG3>] [sCPU] Add
(Cont.) AND <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise AND

CLR <REG> Clear Register

CMP <ARG1> [<ARG2> Compare

DEC <ARG1> [<ARG2>] [sCPU] Decrement

INC <ARG1> [<ARG2>] [sCPU] Increment

INV <ARG1> [<ARG2>] [sCPU] Invert

MOV <DEST> <SRC> [sCPU] Move SRC to DEST

NOP No Operation

OR <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise or

RDFIFO Read FIFO Data to Reg • SBC <ARG1> <ARG2> [<ARG3>] [sCPU] Sub with Carry

SHLRQ <REG> <RARG> <QARG> Shift Left Reg & Q

SHLR <REG> <RARG> Shift Left Reg

SHRRQ <REG> <RARG> <QARG> Shift Right Reg & Q

SHRR <REG> <RARG> Shift Right Reg

SUB <ARG1> <ARG2> [<ARG3>] [sCPU] Subtract

XOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive OR

XNOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive NOR

The sCPU Operators

ARDREG <ARG1> <ARG2> Read Reg to 2nd Dest

ASHLR <SOURCE> Shift Reg Left

ASHLRQ <RSOURCE> <QSOURCE> Shift Q & Reg Left

ASHRR <SOURCE> Shift Reg Right

ASHRRQ <RSOURCE> <QSOURCE> Shift Q & Reg Right

AWREG <ARG1> Write to 2nd Dest

The MACRO Operators

DIV <ARG1> <ARG2> <ARG3> Divide

MUL <ARG1> <ARG2> <ARG3> 2'S Comp Multiply

The OUTCNTL Operators

MAINT Maintain Prev Value

OUT <VALUE I EXPRESSION OUTPUT

---r~ArJf~--__ s 2-43

PAC101J0

Table 19.
PACSEL
Macto
Language
Summaty

The PROGCNTL Operators

CALL <label I LCPTR I FIFO> [ON] [NOT] [<cond>]

CASE N, PROGCNTL, CPU, OUTCNTL;

CLEAR <int level> [... <int level>]

CONFIGURE <pml> [<pm2> ... <pmlO>]

CONT

DISABLE <int level> [<int level> ... <int level>]

ELSE

ENABLE <int level> [<int level> ... <int level>]

ENDFOR

ENDIF

ENDPSWITCH

ENDSWITCH

ENDWHILE

FOR <value>

GOTO <label I LCPTR IFIFO I TOS> [ON] [NOT] [<cond>]

IF [NOT] <cond>

INPUT <i/o pin> [<i/o pin> ... <i/o pin>]

LOADBP <value>

OUTPUT <i/o pin> [<i/o pin> ... <i/o pin>]

PRIORITY m, PROGCNTL, CPU, OUTCNTL;

PSWITCH

RESET <pI> [<p2> ... <plO>]

RETURN [ON] [NOT] [<cond>]

SET <pI> [<p2> ... <plO>]

SWITCH <case group>

WHILE [NOT] <cond>

The CPU-Operator Assignment
move

<dest> := <src>

arithmetic expression

<dest> := <argl> <+/-> <arg2> <+/-><arg3>

logical expression

<dest> := <argl> <logical operator> <arg2>

increment, decrement, invert, unary minus

<dest> := <opr> <src>

macro expression

<dest> := <argl> [* I /] <arg2>

shift RAM

<Rx> = Rx <shft opr> <shft arg>

shift RAM and q

<QRX> = Q <shft opr> <shft arg> <shft opr> <shft arg>

The OUTCNTL Operator

OUT <argl> [<arg2> ... <arg16>]

ru.riE -2--44-----------------------------------,---------------------------------

System
Development
Tools

Programming!
Erasing

PAC 1000 System Development Tools are a
complete set of PC-based development
tools. They provide an integrated easy-to-use
software and hardware environment to
support PAC1000 development and pro­
gramming.

The tools run on an IBM-XT, AT, PS2 or
compatible computer running MS-DOS
version 3.1 or later. The system must be
equipped with 640 Kbytes of RAM and a hard
disk.

Hardware
The PAC 1 000 System Programming Hard­
ware consists of:

Cl WS6000 MagicPro Memory and PSD
Programmer (XT, AT only)

Cl WS6010 Package Adaptor (88-Pin
Ceramic Pin Grid Array) for the
MagicPro Remote Socket Adaptor Unit

Cl WS6013 Package Adaptor (100-Pin
PQFP) for the MagicPro Remote
Socket Adaptor Unit

The MagicPro Programmer is the common
hardware platform for programming all WSI
programmable products. It consists of the
IBM-PC plug-in Programmer Board and the
Remote Socket Adaptor Unit

Software
The PAC1000 System Development Soft­
ware consists of the following:

Cl WISPER Software-PSD Software Inter­
face

Cl IMPACT Software-Interface Manager
for PAC1000

Cl PACSEL Software-System Entry
Language

Cl PACSIM Software-Functional Simulator

Cl PACPRO Software-Device Program­
ming Software

Refer to the PAC1000 Users Manual found
with the PAC 1 OOO-Goid and the PAC 1 000-
Silver.

PAC1000

WISPER and IMPACT software provide a
menu-driven user interface enabling other
tools to be easily invoked by the user.

The system design is entered into PACSEL
source program files using an editor chosen
by the user. PACSEL supports assembly­
level and high-level Macro programming.

The PACSEL Assembler produces object
code format in single or multiple modules,
which are then linked by the PACSEL Linker
into a single load file with a format suitable for
PACSIM and PACPRO.

The PACSIM functional simulator enables the
user to test and debug programs by examin­
ing the state of PAC1000 internal registers
before and during a complete functional
simulation of the device.

PACPRO software programs PAC1000
devices by using the MagicPro hardware and
the socket adapter.

The programmed PAC1000 is then ready to
be used.

Support

WSI provides a complete set of quality
support services to registered owners. These
support services include the following:

Cl 12-month Software Updates.

Cl Hotline to WSI Application Experts-For
direct design assistance.

Cl 24-Hour Electronic Bulletin Board-For
design assistance via dial-up modem.

Training

WSI provides in-depth, hands-on workshops
for the PAC 1000 and the System Develop­
ment Tools. Workshop participants will learn
how to develop and program their own high­
performance microcontrollers. Workshops are
held at the WSI facility in Fremont, California.

_____________________________________ fJf~~~ ________________________________ ~~
'#!If.1i 2-45

•

PACt.

Ordering
Part Number Speed Package Package Operating Manufacturing

InfDrmatiDn - (MHz) Type Drawing Temperature Procedure
PAC1000

PAC1000-12Q 12 100-Pin Q1 Commercial Standard
Plastic Quad
Flat Package

PAC1000-12V 12 92-Pin Ceramic V1 Commercial Standard
Quad Flatpack

PAC1000-12VI 12 92-Pin Ceramic V1 Industrial Standard
Quad Flatpack

PAC1000-12VM 12 92-Pin Ceramic V1 Military Standard
Quad Flatpack

PAC1000-12VMB 12 92-Pin Ceramic V1 Military MIL-STO-883C
Quad Flatpack

PAC1000-12X 12 88-Pin Ceramic X1 Commercial Standard
Pin-Grid Array

PAC 1 0OO-12XI 12 88-Pin Ceramic X1 Industrial Standard
Pin-Grid Array

PAC1000-12XM 12 88-Pin Ceramic X1 Military Standard
Pin-Grid Array

PAC1000-12XMB 12 88-Pin Ceramic X1 Military MIL-STD-883C
Pin-Grid Array

PAC 1 0OO-16X 16 88-Pin Ceramic X1 Commercial Standard
Pin-Grid Array

2-46

Ordering
Information -
System
Development
Tools

Part Number

PAC 1 O~~-GOLD

Contents

WISPER Software
IMPACT Software
PACSEL Software
PACSIM Software
PACPRO Software
User's Manual
WSI-Support
WS6000 MagicPro Programmer
One Socket Adaptor and Two PAC 1 000 Product Samples

PAC1000-SILVER WISPER Software
IMPACT Software
PACSEL Software
PACSIM Software
PAC PRO Software
User's Manual
WSI-Support

WS6000

WS6010

WS6013

WSI-Support

WSI-Training

MagicPro Programmer
IBM PC Plug-in Adaptor Card
Remote Socket Adaptor

88-Pin CPGA Adaptor
Used with the WS6000 MagicPro Programmer

100-Pin PQFP Adaptor
Used with the WS6000 MagicPro Programmer

Support Services, including:
a 12-month Software Update Service
a Hotline to WSI Application Experts
a 24-hour Access to WSI Electronic Bulletin Board

Workshops at WSI, Fremont, CA

PAC10D0

For details and scheduling, call PSD Marketing, (510) 656-5400

2-47

•

2~4"8~-----------------------~Jf;--------------------------

PAC1000 Instruction Set •

PACSEL
Language

Section Index

Overview 3-1

Operations .. 3-1

Summary of PACSEL Assembler Operators .. 3-2

Summary of PACSEL Macro Operators ... 3-4

Directives ... 3-5

Programming Guidelines .. 3-7

PACSEL Assembler Reference .. 3-9

PACSEL Macro Reference ... 3-69

For additional information,
call800-TEAM-WSI (800-832-6974).

In California, Call 800-562-6363.

Overview

Operations

Programmable Peripheral
PAC1000 Instruction Set
PACSEL Language

PACSEL, the PAC 1 000 System Entry
Language, is an assembly-level language
with macro constructs. While it is not a true
macro assembler (Le. you cannot write
your own macros), it does provide a very
convenient set of pre-constructed
high-level macros for many common
programming needs.

This section gives an overview of PACSEL
operations, directives, and development
rules. Consult the reference sections in this
chapter for specific information on how
PACSEL constructs control the PAC 1000
Programmable Peripheral Controller.

Each PACSEL instruction performs three operations:

o Program Control (PROGCNTL)

o CPU
o Output Control (OUTCNTL)

Each instruction is executed in a single cycle; the three operations are executed in parallel.
In conventional peripheral controllers, separate instructions are required to perform each of
these operations: Program Control operations (jumps, calls, and returns) to control the
program flow; CPU operations to do logical, arithmetic, and shift tasks; and various forms of
Output Control operations.

Each PACSEL statement has an optional label and three components:

[label:]PROGCNTL,CPU,OUTCNTL;

The PROGCNTL component determines which statement is to be executed next; the CPU
component determines which operation is to be performed by the CPU; and the OUTCNTL
component determines the state of the control outputs.

Commas (,) separate the components and a semicolon (;) marks the end of the
statement.

The PROGCNTL, CPU, and OUTCNTL components can come in any order. Assembler
operators and macro operators can be used together in the same statement. The available
operators are summarized at the end of this section. In some cases, the same mnemonic is
used to specify identical operations at both the assembler and the macro level.

You may:

o Specify all the components in the same statement in order to perform the operations in
parallel:

PROGCNTL, CPU, OUTCNTL;

o Specify components one at a time:

CPU;
PRGCNTL;
OUTCNTL;

o Use components in any combination:

PROGCNTL, CPU;
PROGCNTL, OUTCNTL;
CPU, OUTCNTL;

3-1

•

PAC1000 -Instruction Set

Operations
(Cont.)

Summary
ofPACSEL
Assembler
Operators

WSI recommends that the user adhere to a specific ordering of these components and
specific groupings of assembler-level and macro operators, e.g. in separate files. This
manual uses the PROGCNTL, CPU, OUTCNTL ordering.

When PROGCNTL is omitted, the implied instruction is CONTinue, that is, proceed to the
next control instruction. When CPU is omitted, the implied instruction is NOP. When
OUTCNTL is omitted, the implied instruction is MAINTain, that is, maintain the most recent
OUTCTL, in Assembler order.

There is a class of supplemental CPU (sCPU) instructions which can follow certain primary
CPU instructions with one or more spaces as a delimiter:

PROGCNTL, CPU sCPU, OUTCNTL;

An sCPU instruction must follow a valid CPU instruction and can not stand alone.

Mnemonic Arguments Meaning
The PROGCNTL Operators
ACSIZE <16/22> Set A Counter Size
AI Allow Interrupts
CALL <LABEL I LCPTR I FIFO> Uncond Branch Subrtn
CALLC <COND> <LABEL I FIFO> Cond Branch Subrtn
CALLNC <COND> <LABEL I FIFO> Inv Cond Bran Subrtn
CCASE <CG> <VALUE> Branch Subrtn Caseblk
CLI <MASK> Clear Interrupt
CONT Continue
CPI <VALUE> Prioritized Subrtn
DI <MASK> Disable Interrupt
DSS Disable SSM
EI <MASK> Enable Interrupt
ESS Enable SSM
JCASE <CG> <VALUE> Uncond Branch Caseblk
JMP <LABEL I LCPTR I FIFO I TOS> Uncond Branch
JMPC <COND> <LABEL> Cond Branch
JMPNC <COND> <LABEL> Inv Cond Branch
JPI <VALUE> Prioritized Branch
LDBP <VALUE I LABEL> Load BP Reg
LDBPD Load BP Comp Value
LDLC <VALUE I LABEL> Load Counter
LDLCD Load Ctr Comp Value
LOOPNZ <LABEL> Repeat Branch CNTRNZ
PLDLC <VALUE I LABEL> Push VALUE & LDCTR
PLDLCD Push Comp Val & LDCTR
POP Pop Stack
POPLC Pop Stack to Cntr
PUSHLC Push Cntr
RESTART Branch to 0
RET [<LABEL>] Return
RC <COND> [<LABEL>] Conditional Return
RNC <COND> [<LABEL>] Inv Cond Return
RSTCON <MASK> Reset Control Reg
RSTIO <MASK> Reset I/O Config Reg
RESTMODE <MASK> Reset Mode Reg
SETCON <MASK> Set Control Reg
SETIO <MASK> Set I/O Config Reg
SETMODE <MASK> Set Mode Reg
TWB <COND> <LABEL> Three-way Branching
TWBC <COND> <LABEL> Converse Three-way

Branching

---~~~--
3-2

PACtOOO -Instruction Set

Summary
Mnemonic Arguments Meaning ofPACSEL

Assembler The CPU Operators
0c.erators ADC <ARG1> <ARG2> [<ARG3>] [sCPU] Add with Carry
(i ont.)

ADD <ARG1> <ARG2> [<ARG3>] [sCPU] Add

AND <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise AND

CLR <REG> Clear Register

CMP <ARG1> [<ARG2> Compare

DEC <ARG1> [<ARG2>] [sCPU] Decrement

INC <ARG1> [<ARG2>] [sCPU] Increment

INV <ARG1> [<ARG2>] [sCPU] Invert

MOV <DEST> <SRC> [sCPU] Move SRC to DEST

NOP No Operation

OR <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise or

RDFIFO Read FIFO Data to Reg

SBC <ARG1> <ARG2> [<ARG3>] [sCPU] Sub with Carry

SHLRQ <REG> <RARG> <QARG> Shift Left Reg & Q

SHLR <REG> <RARG> Shift Left Reg

SHRRQ <REG> <RARG> <QARG> Shift Right Reg & Q

SHRR <REG> <RARG> Shift Right Reg • SUB <ARG1> <ARG2> [<ARG3>] [sCPU] Subtract

XOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive OR

XNOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive NOR

The sCPU Operators
ARDREG <ARG1> <ARG2> Read Reg to 2nd Dest

ASHLR <SOURCE> Shift Reg Left

ASHLRQ <RSOURCE> <QSOURCE> Shift Q & Reg Left

ASHRR <SOURCE> Shift Reg Right

ASHRRQ <RSOURCE> <QSOURCE> Shift Q & Reg Right

AWREG <ARG1> Write to 2nd Dest

The MACRO Operators

DIV <ARG1> <ARG2> <ARG3> Divide

MUL <ARG1> <ARG2> <ARG3> 2'S Comp Multiply

The OUTCNTL Operators

MAINT Maintain Prev Value

OUT <VALUE I EXPRESSION OUTPUT

---~~~~--
3-3

PAC1000 -Instruction Set

Summary
ofPACSEL
Macro
Operators

The PROGCNTL Operators
CALL <label I LCPTR I FIFO> [ON] [NOT] [<cond>]

CASE N, PROGCNTL, CPU, OUTCNTL;

CLEAR <int level> [... <int level>]

CONFIGURE <pml> [<pm2> ... <pmlO>]

CONT

DISABLE <int level> [<int level> ... <int level>]

ELSE

ENABLE <int level> [<int level> ... <int level>]

END FOR

ENDIF

ENDPSWITCH

ENDSWITCH

ENDWHILE

FOR <value>

GOTO <label I LCPTR I FIFO I TOS> [ON] [NOT] [<cond>]

IF [NOT] <cond>

INPUT <i/o pin> [<i/o pin> ... <i/o pin>]

LOADBP <value>

OUTPUT <i/o pin> [<i/o pin> ... <i/o pin>]

PRIORITY m, PROGCNTL, CPU, OUTCNTL;

PSWITCH

RESET <pI> [<p2> ... <plO>]

RETURN [ON] [NOT] [<cond>]

SET <pI> [<p2> ... <plO>]

SWITCH <case group>

WHILE [NOT] <cond>

The CPU-Operator Assignment
move

<dest> := <src>

arithmetic expression

<dest> := <argl> <+/-> <arg2> <+/-><arg3>

logical expression

<dest> := <argl> <logical operator> <arg2>

increment, decrement, invert, unary minus

<dest> := <apr> <src>

macro expression

<dest>

shift RAM

<argl> [* I /] <arg2>

<Rx> = Rx <shft apr> <shft arg>

shift RAM and q

<QRX> = Q <shft apr> <shft arg> <shft apr> <shft arg>

The OUTCNTL Operator
OUT <argl> [<arg2> ... <arg16>]

---~~~--
3·4

Directives

PAC1000 -Instruction Set

Directives give PACSEL the information it needs to correctly assemble each program
module. For instance, an assembler source file must have segment directives to declare a
name for each relocatable code segment in the file.

A segment is the smallest unit of code which can be relocated by the linker. Normally, each
assembler source module begins with a segment declaration. The directive gives the
segment a name; the absolute address of the segment can also be specified. The syntax
is:

segment < segment name> [, abs (<value>) I;

A source file can contain more than one segment. Each source file must be terminated with
the end directive:

end;

Labels from other segments which are referenced in the current segment must be declared
with the external directive:

external <labell> , <label2> , ... <labell>;

Labels from the current segment which are also referenced by other segments must be
declared with the entry directive:

entry <labell> , <label 2> , ... <labelln>;

Every label that is declared external in one segment must be declared as entry in some
other segment. Local labels (labels referenced only in the current segment) need not be
declared.

In summary, a source file looks like this:

segment test 1;
entry aI, a2;
external xl, x2;

al:
a2:

JMP xl;

CALL x2;

end;

One source file can be incorporated into another by means of the include directive:

include '<filename>';

Before assembly, this line will be replaced with the contents of the named source file.

The org and align directives are used to control the location of the instruction word which
follows them. The org directive sets the current program counter to the location indicated
by its argument, relative to the beginning of the current segment. For example, the directive

org h'lO';

will place the next word at location h'10' relative to the beginning of the segment.

iF66."E
---------------------------------------~aJJf------------------------------------3--5-

•

PAC1000 -Instruction Set

Directives
(Cont.)

The align directive sets the program counter to the next-higher multiple of its argument. For
example, if the program counter currently has the value h'155', the directive:

align 16;

will place the next word at location h'160', that is, at the next available location which is
divisible by 16. The linker will preserve the specified alignment.

Symbolic constants can be defined with the equ directive, as follows:

<symbol> equ <value>;

The "value" can be a number or a previously defined symbol.

The "alias" directive can be used to alias signal and register names, to user defined names.
Aliases are permitted for the following:

Q 1NTO .. INT?
AOR

ACH 100 .. 107

ACL CCO .. CC7
BC
DaR RO .. R31

lOR AIR
IIR

DIR

The aliases can also be placed in a file with extension ".ALS". This file has to be included
in every source file which uses aliased signal names. The statement syntax is:

alias <alias name> <signal name> ;

Remember that PACSEL is case-sensitive and hence "alias" keyword should be in lower
case.

Example:

alias SVADD R3 ;

Wherever R3 is used in .mal file, the aliased name SVADD can be
used. For example,

mov R3 5;

This can be written as

mov SVADD 5;

This directive can be put together in a ".ALS" file or can be used directly in ".mal" source
file. It puts together in a ".ALS" file, then the same file can also be used in the PACSIM
simulator.

---------------------------------------~jf~~--------------------------------------
3-6

Programming
Guidelines

PACtOOO -Instruction Set

These are the guidelines for writing PACSEL programs:

D Source File naming

The assembler source filename must have a .mal extension.

D Case Sensitivity

PACSEL is case-sensitive. Observe the conventions given in the manual. In general, all
the instructions and arguments are upper-case. All the directives are lower-case.

D Whitespace Requirements

PACSEL is whitespace-sensitive. In general, arguments and operators must be
surrounded by blanks. Whenever in doubt, use a blank (or a tab).

Use whitespace freely to emphasize program structure.

D Comments
Any text enclosed by "II" and "*1" is not processed by the PACSEL assembler. Such
comments may span lines or pages. Comments may not be nested. For example:

1* This is a legal

comment *1

However,

1*

1* This comment is nested; an error will result * I
*1

Comments may also be used in Link Command Files.

D Special Characters
PACSEL source files may contain the standard set of printable ASCII characters, plus
tabs, spaces, carriage returns, and linefeeds. No other characters are allowed.

In particular, some word processors, in document mode, set the hi-order bit of some
ASCII characters in a file for internal purposes. Although these characters will display
correctly within the word processor, they will not be accepted by PACSEL, and the
resulting error messages may not indicate the cause.

D Operation Arguments
In general, arguments are names of registers or immediate, constant values. The
allowed registers for a given argument are specified in the documentation for each
instruction. A constant is a number value in the range

o <= value <= h'FFFF'
o <= value <= 65535

For example,

1289
h'FA48'
0'4777'
b'Ol10111000000000'

(a decimal number)
(a hexadecimal number)
(an octal number)
(a binary number)

Symbolic constants, previously defined by an "equ statement, may be used in place of
numeric values, for example,

SUCCESS equ 1 ;
R1 := SUCCESS

Note: When any constant is used as an argument in a CPU instruction, the only allowed
PROGCNTL instruction is CONT.

---------------------------------------rJrjfjF~--------------------------------------
5!iE!!E = 3-7

•

PAC1000 -Instruction Set

Programming
Guidelines
(Cont.)

D Assembly-time expression evaluation

PACSEL supports the use of assembly-time variables and expressions to compute the
values of constants which can then be used as arguments to the PACSEL instructions.
This facility can be useful, for instance, in computing values to be loaded into the loop
counter or the OUTCNTL field.

The operators supported are:

Unary: 2's complement
1's complement

decrement

++ increment
Binary: multiply

divide

% remainder

+ add
subtract

« shift left
» shift right

& bitwise AND

I bitwise OR

Assignments are made using the 'set' and '=' operators.

These concepts are illustrated in the following example:

segment asmexp;

end;

integer A, B, C;
et A = 5;

set B = A + 2
set C = A & B;
Rl := Rl + $2, OUT C;

For this example, the assembler generates just one line of code, treating the computed
value of C as a constant:

000000: EOOO 0003 0422 0005

It is important to distinguish between run-time assignments (like "R1 := R1 + R2" in the
example) and assembly-time assignments (like "set C = A & B"); the latter do not
generate code.

D Restrictions on PROGCNTL, CPU, and OUTCNTL combinations
In a few cases, there are restrictions on what you can do in each of the sections of
combined PROGCNTL, CPU, and OUTCNTL instructions. These are:

When any constant is used in the CPU operation, you may only use CONT as the
PROGCNTL operation.

Configuration operations use the PROGCNTL bits, so you cannot do anything other than
CONT. The CPU and OUTCTL instructions are not limited.

-------------------------------------'jfJf~~------------------------------------3-8 E!!"!!!'_S

PACSEL
Assembler
Reference

PAC1ODO -Instruction Set

ADe
Instruction Type: CPU

Operation: dest = src1 + src2 + CY

Syntax: [label:] [PROGCNTL,] ADC dest/src src [, OUTCNTL] ;
or
[label:] [PROGCNTL,] ADC dest srcl src2 [, OUTCNTL] ;

Description:
In the first form, ADC adds the source register and the destination register, and the value of
the CY bit, then places the result in the dest register. In the second form, two source
registers and CY are added and stored in the destination register. One of the sources may
be the same as the destination register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected

dest DOR AF, DOR

lOR AF

src IIR,AIR AF

SWPV, <canst>, DIR AF

destlsrc RO ... R31, Q, AOR AF

ACH,ACL ACO, AF

BC BCZ, AF

Notes:
1. In the first form, either destlsrc or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF = Arithmetic Flags: Z, CY, S, O.

Example 1:

ADC Rl Rl; /* double rl and add CY */

Example 2:

MOV R31 h'FFFF'; /* load immediate value */
ADD R31 h'l'; /* add immediate */
ADC R31 h'O'; /* R31 now is one; see ADD */

Example 3:

ADC BC R23;

Example 4:

ADC BC R23 R24;

Example 5:

CONT ,

/* BC BC + R23 + CY */

/* BC R23 + R24 + CY */

ADD BC R23 R24, /* full instruction format */
OUT h'A5A5';

___________________________________ fJf.·~E ________________________________ ___
'rI!J411 3-9

•

PAC1000 -Instruction Set

PACSEL
~ssembler
Reference
(Coni.)

ADD
Instruction Type: CPU

Operation: dest = src1 + src2

Syntax: [label:] [PROGCNTL,] ADD dest/src src [, OUTCNTL] ;

or
[label:] [PROGCNTL,] ADD dest srcl src2 [, OUTCNTL] ;

Description:
In the first form, ADD adds the source and the destination registers and places the result in
the destination. In the second form, two source registers are added and the result is stored
in the destination register. One of the sources may be the same as the destination register.

The sources and destination can be chosen from the following table:

Src/Dest
dest

src

dest/src

See Also: ADC

Notes:

Arguments
DOR

lOR

IIR,AIR

SWPV, <const>, DIR

RO ... R31, Q, AOR

ACH, ACL

BC

Flags Affected
AF,DOR

AF

AF

AF

AF

ACO, AF

BCZ,AF

1. In the first form, either dest/src or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

ADD

Example 2:

MOV
ADD
ADD

Example 3:

ADD

Example 4:

ADD

Example 5:

CONT ,

Rl Rl;

R31 h'FFFF';
R31 h' l' ;
R31 h' 0' ;

BC R23;

BC R23 R24;

ADD BC R23 R24
OUT h'A5A5';

/* double Rl */

/* load immediate value */
/* add immediate */
/* R31 now is zero; see ADC */

/* add R23 to block counter */

/* R23 + R24 to block counter */

/* full instruction format */

---------------------------------------r~Jf~~-------------------------------------­
3-10 =-~E!F=

PACSEL
Assembler
Reference
(ConI.)

PAC1000 -Instruction Set

AI
Instruction Type: PROGCNTL

Operation: Allow interrupts

Syntax: [label:] AI [,CPU] [, OUTCNTL] ;

Description:
While an interrupt is being serviced, a hardware locking mechanism prevents any other
interrupt from getting serviced. This lock remains in effect until it is explicitly cleared by
means of the AI instruction. The AI instruction is normally placed in the interrupt service
routine.

Condition Codes affected: None

Example 1:

INT3 SERV: /* service routine for INT3 */

/* service the interrupt */

AI; /* re-activate the service mechanism */
RET; /* return to main program */

AND
Instruction Type: CPU

Operation: dest = src1 AND src2

Syntax: [label:] [PROGCNTL,] AND dest/src src [, OUTCNTL] ;

or
[label:] [PROGCNTL,] AND dest srcl src2 [, OUTCNTL] ;

Description:
In the first form, this operator ANDs the source and the destination and places the result in
the destination register. In the second form, two sources are ANDed and stored in the
destination register. One of the sources may be the same as the destination register.
The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF,DOR

lOR AF
src IIR, AIR AF

SWPV, <const>, DIR AF
dest/src RO ... R31, Q, AOR AF

ACH, ACL ACO, AF

BC BCZ, AF

Notes:
1. In the first form, either dest/src or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used
and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF = Arithmetic Flags: Z, CY, S, 0

---------------------------------------~~~--------------------------------------
3-11

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

AND (Cont.)

Example 1:

AND R1 R2;

Example 2:

AND R31 h'OFFFF';

Example 3:

MOV R23 h' 123' ;
MOV R24 h'FFFE' ;
ANDBC R23 R24;

Example 4:

CONT ,
AND IOR R23 ,
OUT h'A5A5';

ARDREG
Instruction Type: Supplementary CPU

/* R1 (R1 AND R2) */

/* AND immediate mask */

/*load register with constant */
/* load register with mask */
/* Mask and load Block Counter */

/* full instruction format */

Operation: Read, store register independent of primary CPU operation

Syntax: [label: 1 [PROGCNTL, 1 CPU ARDREG argl arg2 [, OUTCNTL 1 ;

Description:
This instruction reads the internal register (RO ... R31) specified by "arg2" and stores the
value in the external register specified by "arg1". Only internal registers may be transferred
to external registers by this operation, and the destination register of the primary CPU oper­
ation may be an internal register only if this supplementary instruction is used. Otherwise,
the primary CPU operation is unrestricted in type and arguments.

Condition Codes affected: (by primary CPU operation only)

Example 1:

ADD R3 BC ARDREG AOR R3; /* R3 <- R3+BC, parallely AOR <- R3 */

---------------------------------------~~Jr--------------------------------------
3-12

PACSEL
Assembler
Reference
(ConI.)

PAC1000 -Instruction Set

ASHLR
Instruction Type: Supplementary CPU

Operation: Shift Left Register after primary CPU operation

Syntax: [label:] [PROGCNTL,] CPU ASHLR src [, OUTCNTL] ;

Description:
This instruction shifts the result of the primary CPU operation left one bit before the primary
result is stored in the destination of the primary operation. The data shifted in depends on
the source operand:

Z - the Zero bit flag
CY - the Carry bit flag

S - the Sign bit flag
o - a binary '0'

- a binary '1'
RMSB - the Most Significant Bit of this register

OMSB - the Most Significant Bit of the 0 register
SDAT - Serial Data port in/out.

This instruction is valid only if the primary CPU operation uses internal registers
(RO ... R31, 0) as sources and destinations.

Condition Codes affected: (by the primary CPU operation only)

Example 1:

CMP RO Rl ;

ADD R4 Q R5 ASHLR Z /* R4 <-- (Q+R5) shifted left with Z
flag into LSB */

-------------------------------------~~~-------------------------------------=--- 3-13

•

PAC1DOO -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

ASHLRO
Instruction Type: Supplementary CPU

Operation: Shift left register and Q after primary CPU operation

Syntax: [label:] [PROGCNTL,] CPU ASHLRQ rsource qsource
[, OUTCNTL] ;

Description:
This instruction shifts the result of the primary CPU operation left one bit before storing the
primary result in the destination of the primary operation. In addition, the previous value of
Q is shifted left one bit.

The data shifted in depends on the rsource and qsource operands:

Z - the Zero bit flag

CY - the Carry bit flag

S - the Sign bit flag

o - a binary '0'
- a binary '1' 1

RMSB
QMSB

SDAT

- the Most Significant Bit of this register
- the Most Significant Bit of the Q register

- Serial Data port in/out.

This supplementary CPU operation is valid only if the primary CPU operation operates on
internal registers (RO ... R31, Q) only.

Condition Codes affected: (by the primary CPU operation only)

Example 1:

MOV Q h' 007A' ;
SUB Rl RS;
ADD R4 R5 ASHLRQ Z CY; /* R4<- (R4+R5) shifted left with Z flag

into LSB; simultaneously, shift Q left 1
bit with CY entering LSB */

_____________________________________ fEE~E __________________________________ __

iIrIll 3-14

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

ASHRR
Instruction Type: Supplementary CPU

Operation: Shift Right Register after primary CPU operation

Syntax: [label:] [PROGCNTL,] CPU ASHRR source [, OUTCNTL] ;

Description:
This instruction shifts the result of the primary CPU operation right one bit before the
primary result is stored in e destination of the primary operation. The data shifted in
depends on the source operand:

Z - the Zero bit flag

CY - the Carry bit flag
S - the Sign bit flag

o - a binary '0'
1 -a binary '1'

RLSB - the Lease Significant Bit of this register
OLSB - the Least Significant Bit of the 0 register

SDAT - Serial Data port in/out.

This instruction is valid only if the primary CPU operation uses internal registers (RO ... R31,
0) as sources and destinations.

Condition Codes affected: CY, Z, S, 0

Example 1:
CMP RO Rl;

ADD R4 Q R5 ASHRR CY;

-----------------------------------~~Ar-----------------------------------3-15

---- -- -- ---------------~~-~-

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

ASHRRQ
Instruction
Type: Supplementary CPU

Operation: Shift Right Register and Q after primary CPU operation

Syntax: [label: [[PROGCNTL,] CPU ASHRRQ rsource qsource [, OUTCNTL] ;

Description:
This instruction shifts the result of the primary CPU operation right one bit before storing the
primary result in the destination of the primary operation. In addition, the previous value of
Q is shifted right one bit.

The data shifted in depends on the rsource and qsource operands:

Z
CY
S
o
1
RLSB
QLSB
SDAT

- the Zero bit flag
- the Carry bit flag
- the Sign bit flag
- a binary '0'
- a binary '1'
- the Least Significant Bit of this register
- the Least Significant Bit of the Q register'
- Serial Data port in/out.

This supplementary CPU operation is valid only if the primary CPU operation operates on
internal registers (RO ... R31, Q) only.

Condition Codes affected: (by the primary CPU operation only)

Example 1:

MOV Q h' 007A' ;
SUB Rl R2;
ADD R4 R5 ASHRRQ Z CY; /* R4 <-- (R4+R5) shifted right with Z

flag into MSB; simultaneously, shift Q
right 1 bit with CY entering MSB */

AWREG
Instruction Type: Supplementary CPU

Operation: Write result of primary CPU operation to second destination

Syntax: [label:] [PROGCNTL,] CPU AWREG argl [, OUTCNTL] ;

Description:
This instruction stores the result of the primary CPU operation in the internal register
specified by "arg1". Only internal registers (RO ... R31, Q) are allowed destinations. If this
instruction is used, the primary operation should have an external register as the
destination operand. Otherwise, the primary CPU operation is unrestricted in type
and arguments.

Condition Codes affected: (by primary CPU operation only)

Example 1:
ADD BC R3 AWREG R2; /* BC<-- + R3, simultaneously R2 <-­

(BC+R3) */

-------------------------~Jr;-------------------------3-16

PACSEL
Assembler
Reference
(Con'.)

I'AC1000 -lnstructlDn Set

CALL
Instruction Type: PROGCNTL

Operation: Call to subroutinelthru pointerlvia FIFO

Syntax: [label:] CALL labe12 [,CPU] [, OUTCNTL] ;

or
[label:] CALL LCPTR [, CPU] [, OUTCNTL] ;
or
{label:] CALL FIFO [, CPU] [, OUTCNTL];

Description:
CALL is an unconditional call to the subroutine. In the first form, the target is a program
label.

The keyword LCPTR may be substituted for "labeI2", in which case the current value of LC
(Loop Counter) is used as an execution pointer. The 10-bit LC value is loaded into the
program counter. In this case, the LCPTR register must be explicitly loaded (see LDLC and
LDLCD) prior to this operation.

In the third form, the keyboard FIFO may be substituted for "labeI2," in which case the top
of the FIFO is used as the call target.

In all cases the next instruction address is pushed on the stack.

Condition Codes affected: FIFO flags (Form 3), STKF

Example 1:

CALL Elb,
NOP,
OUT h'46';

Elb:

Example 2:

LDLC 270;
CALL LCPTR;
E2b:

Example 3:

CALL FIFO;
JMP E3;

/* output ASCII F during CALL cycle*/

RET;

/* call through pointer */

RET;

/* main program for host-driven PACIOOO */

------------------------------~Jr~-----------------------------
3-17

~- --~--------~~~----------------~-

•

PAC10DD -lnstructiDn Set

PACSEL
Assembler
Reference
(Cont.)

CALLC
Instruction Type: PROGCNTL

Operation: Call if Condition TRUE

Syntax: [label:] CALLC cc label 2 [,CPU] [, OUTCNTL] ;

or
[label:] CALLC cc FIFO [,CPU] [,OUTCNTL]

Description:
The condition code specified by "cc" is evaluated. If it is TRUE, then control branches to the
code at the specified label. In the second form, the top of the FIFO is the call target and
only FIFO flags may be specified as the condition to test.

The next instruction address is pushed on the stack if the call is performed.

The condition Codes are:

INTR
Z
ACO
DOR

BCZ
o
FIXP
CC7-CCO

FIOR
S
FIIR

FICO
CY
STKF

Condition Codes affected: FIFO flags (Form 2), STKF

Example 1:

CALLC Z Elb,
NOP,
OUT h'45';

Elb: CALLC CY Elc;

/* CALL on condition code 'zero' */

/* output ASCII E during CALL cycle */

/* CALL on carry, default CPU and
OUTCNTL */

-------------------------------------~~~------------------------------------
3-18

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

CALLNC
Instruction Type: PROGCNTL

Operation: Call if condition not TRUE

Syntax: [label:] CALLNC cc labe12 [cCPU) [, OUTCNTL] ;

or
[label:) CALLNC cc FIFO [,CPU) [, OUTCNTL) ;

DescriptiDn:
The condition code specified by "cc" is evaluated. If it is FALSE, then control branches to
the code at the specified label. In the second form, the top of the FIFO is the call target and
only FIFO flags may be specified as the condition to test.

The next instruction address is pushed on the stack if the call is performed.

The condition Codes are:

INTR
Z
ACO

BCZ
o
FIXP

DOR CC7-CCO

FIOR

S
FIIR

FICO

CY
STKF

Condition Codes affected: FIFO flags (Form 2), STKF

Example 1:

CALLNC Z Elb,
NOP,
OUT h'45';

Elb: CALLNC CY Elc;

/* CALL on condition code ' not zero' */

* output ASCII E during CALL cycle */

/* CALL on not carry, */

•

f;I~~
-------------------------------------~~I-------------------------------------

3-19

--------.---~.
_. __ - ---------.----- --.~~~-

PAC10DD -lllSInIctiOR Set

PACSEL
Assembler
Re'efenCe
(Cont.)

3-20

CCASE
Instruction Type: PROGCNTL

Operation: Call to Case Block

Syntax: [label:] CCASE casegroup address [,CPU] [, OUTCNTL] ;

Descllption:
CCASE performs an unconditional CASE selection using the Case Block at the address
specified. Case selection is based on the 4 bits of the Case Group specified:

'CGO' specifies [CC3, CC2, CC1, CCO]

'CG1' specifies [CC7, CC6, CC5, CC4]

'CG2' specifies [INTR, BCZ, FIOR, FICD]

'CG3' specifies [Z, 0, s, CY]

One of 16 successive instructions starting at the Case Block address will be executed. If
the instruction does not include a jump operation, the next sequential instruction will be
executed. Ordinarily, then, the instructions in a Case Block will include jumps.

The Case Block must start at a location whose address contains zeros in the lower four
bits. The address specified must be a numerical value or a symbolic constant whose value
is previously defined in this module. The actual location of the Case Block must be resolved
at link time, by specification in a link directive.

Condition Codes affected: STKF

Example 1:
/* This example outputs the binary value of Case Group 1 (CG1) on

the F outputs for one cycle, bracketed by the value -1. */

E1c equ h'160' /* The case block should be located at h'160 by
means of a link directive */

CCASE CG1 E1C,
Nap ,
OUT h'FFFF' ; /* output -1 during call cycle*/

/* The case block in general, will be in another segment: */
segment CASE_EXAMPLE;

CB1: JMP ECEND, Nap, OUT 0;
JMP ECEND, Nap, OUT 1;
JMP ECEND, Nap, OUT 2;
JMP ECEND, NOP, OUT 3;
JMP ECEND, NOP, OUT 4;
JMP ECEND, NOP, OUT 5;
JMP ECEND, NOP, OUT 6;
JMP ECEND, NOP, OUT 7;
JMP ECEND, NOP, OUT 8;
JMP ECEND, NOP, OUT 9;
JMP ECEND, NOP, OUT 10;
JMP ECEND, NOP, OUT 11;
JMP ECEND, NOP, OUT 12;
JMP ECEND, NOP, OUT 13;
JMP ECEND, NOP, OUT 14;
JMP ECEND, NOP, OUT 15;

ECEND:
RET, NOP, OUT h'FFFF'; /* all cases end up here */

The appropriate link directive is: locate CASE EXAMPLE h'160';

WI;

PACSEL
Assembler
Reference
(Cont.)

PAC100D -Instruction Set

CLI
Instruction Type: PROGCNTL

Operation: Clear Interrupt Mask bits

Syntax: [label:] CLI mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to clear pending interrupts. Bits set to 1 in the mask clear the corresponding
interrupt. Zero bits have no effect.

This is the mask format:

I MASK? I MASK6 I MASKS I MASK4 MASK3 MASK2 MASK1 I MASKO I

The CLI function is automatically performed by the hardware when the interrupt is serviced.
However, if the interrupt is masked, or if interrupts are disabled, CLI must be used to clear
pending interrupts.

Condition Codes affected: none

See Also: 01, EI

Example 1:
/* This example illustrates the use of CLI at the end of
an interrupt service routine */

org h'8';
JMP INTO SERVICE;

org h' 100' ;
INTO service:

CLI b'OOOOOOOl';
RET;

/* external interrupt 0 vector */

/* arbitrary */

/* clear interrupt 0 request */
/* return-from-interrupt */

/* This example illustrates the use of eLI as part of system
initialization procedures */

Example 2:
org h'O';
JMP INIT;

org h'lO'
INIT: CLI h'FF';

CLR
Instruction Type: CPU

/* start-up location */

/* clear any pending interrupts */

Operation: Reset Register

Syntax: [label:] {PROGCNTL,] CLR reg [,OUTCNTL]

Description:
CLR resets the specified register to O. This instruction does not use the branch bits, and so
allows a JMP or CALL instruction in the PROGCNTL section in the same cycle. The
specified register can be any of the internal registers (RO .. R31 or Q) or any of the external
registers (AOR, ACH, ACL, BC, DOR, lOR).

Condition Codes affected: CY, Z

Example 1:
JMP labell, CLR R3l; /* branch to labell and reset R3l

at the same time */

---------------------------------------~~~--------------------------------------
3-21

•

I'AC10D0 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

CMP
Instruction Type: CPU

Operation: Compare src1 and src2

Syntax: [label:] [PROGCNTL,] CMP srcl src2 [,OUTCNTL];

Description:
CMP compares the two sources and sets the status flags accordingly. Neither register is
affected. The comparison is done by computing (src1 - src2) and discarding the numerical
result.

Status of Flags following CMP A B:

Relation Unsigned Numbers 2's-Complement Numbers
A=B

MB

~B

A<B

A>B
A::;B

Legend:

CY =
o
S =
Z

carry
overflow
sign
zero

Z=1 Z=1

z=o z=o

CY=1 S xnorO=1

Cy=o S xnor P=1

CYZ=1 (S xnor 0) and Z=1

CY or Z=1 (S xor 0) or Z=1

The sources can be: IIR, AIR, SWPV, DIR, RO ... R31, Q, AOR, ACH, ACL, BC, <const>

Condition Codes affected: CY, Z, S. 0

Example 1:

/* This example illustrates using CMP to convert a single upper
case hex dJ.gJ.t J.n KLU J.nto bJ.nary, rel.ULIl.lllY Lll~ LebU.LL.

MOV R21 1; /* default value to result */
CMP R20 h' 46' ; /* is the code <= ASCII F? */
RC CY; /* return with default if not */
CMP R20 h'30' ; /* is the code > ASCII SP? */
RC CY; /* return with default if not */
CMP R20 h' 39'; /* is it greater than '9' ? */
JNC CY HDTB1; /* jump if not */
SUB R20 h'31' ; /* map 'A' --> 10, 'B' -> 11, etc. */
CMP R20 9; /* is it between? */
RC CY; /* return with default if so */
MOV R21 R20; /* else transfer value for return */
RET;

-----------------------------~~~----------------------------3-22

PACSEL
Assembler
Reference
(Cont.)

PAC100D -Instruction Set

CDNT
Instruction Type: PROGCNTL

Operation: Continue

Syntax: [label:] CONT [,CPU] [, OUTCNTL] ;

DescriptiDn:
CO NT is the default PROGCNTL operation, that is, if no PROGCNTL operation is specified
in an instruction, specified CPU and OUTCNTL operations will be performed and control will
continue to the next sequential instruction. The use of CONT is optional.

Condition Codes affected: none

Example 1:

/* The following code will produce a 50% duty cycle on the FO
output at a frequency determined by the system clock */

CONT,
NOP,
OUT 1

CONT,
NOP,
OUT 0;

CONT,
NOP,
OUT 1;

JMP E1,

NOP,
OUT 0;

CPI
Instruction Type:

Operation:

Syntax:

DescriptiDn:

/* output '1' for one cycle */

/* output '0' for one cycle */

/* output '1' for one cycle */

/* output '0' during jump cycle */

PROGCNTL

Call on Prioritized Interrupt

[label:] cpr address [,CPU] [, OUTCNTL] ;

The current interrupt status is evaluated. If no interrupt source is active, control branches to
the first instruction of a 16-instruction Case block. If at least one interrupt is active, control
branches to one of the final eight successive instructions in the block. (The second through
eighth instruction in the block are not used.)

The Priority Case Block must start at a location whose address contains zeros in the lower
four bits. The address specified must be a numerical value or a symbolic constant whose
value is previously defined in this module. The actual location of the Case Block must be
resolved at link time, by specification in a link directive.

This instruction is effective only if the INTR bit of the MODE register is clear. Otherwise, the
interrupts will be processed by the normal interrupt vector mechanism. CPI is useful in
systems where interrupts are not used but in which prioritization of polled inputs is
important.

If the selected instruction does not include a jump operation, the next sequential instruction
will be executed. Usually, then, the instructions in a Priority Case Block will include jumps to
avoid falling through to following cases.

The return address is pushed on the stack.

Condition Codes affected: STKF

See Also: JPI
ii'~_~~

-------------------------------------~~Jr-------------------------------------
3-23

--------------- - ---

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

CPI (Cont.)
Example 1:

/* The following example shows how interrupt
conditions might be processed by a CPI within a
polling loop. Interrupts are not enabled anywhere
in this implementation.*/

E1CASES equ h'3FO';

CPI E1CASES,

/* The case block, in general, will be in another
segment: */ segment CASE_EXAMPLE;

RET
JMP ERROR ;

/* arrive here if nothing pending */
/* error if control comes here */

JMP ERROR;
JMP ERROR;
JMP ERROR ;
JMP ERROR;
JMP ERROR;
JMP ERROR
JMP PINTO /*
JMP PINTl /*
JMP PINT2 /*
JMP PINT3 /*
JMP PINT4 /*
JMP PINTS /*
JMP PINT6 /*
JMP PINT7 /*

PINTO:

CLI b'OOOOOOOl'
RET;

process intO */
process intl */
process int2 */
process int3 */
process int4 */
process intS */
process int6 */
process int7 */

/* framework for each routine

/* clear the interrupt */
/* since original entry via
CPI */

The appropriate link directive is:

locate CASE_EXAMPLE, h'3FO';

*/

___ fAfAf~E __ __

'rAIII 3-24

I'ACSEL
Assembler
Reference
(Con'.)

PAC1000 -lnstructiDn Set

DEC
Instruction Type: CPU

Operation: dest = desVsrc - 1

Syntax: [label:] [PROGCNTL,] DEC dest/src [, OUTCNTL] ;

or
[label:] [PROGCNTL,] DEC dest src [, OUTCNTL] ;

Description:
In the first form, the destination is decremented by one. In the second form, the source is
decremented by one and stored in the destination.

The sources and destination can be chosen from the following table:

SrC/Dest Arguments Flags Affected
dest DOR AF, DOR

lOR AF

src !lR,AIR AF

SWPV, <const>,DIR AF

desVsrc RO ... R31, Q, AOR AF

ACH,ACL ACO,AF

BC BCZ,AF

Notes:
1. In the first form, either destlsrc or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used
and
c. src1 and scr2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

See Also: INC

Example 1:

DEC Rl; /* decrement Rl */

Example 2:

DEC Rl R3; /* decrement R3, result to Rl */

---------------------------~Jr;---------------------------3-25

•

I'AC1ODD -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

0/
Instruction Type: PROGCNTL

Operation: Disable Interrupts in Mask Register

Syntax: [label:] DI mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to disable interrupts through the interrupt Mask Register. Bits set to 1 in the
mask disable the corresponding interrupt. Zero bits in the mask have no effect.

The Interrupt Mask Register:

I MASK? I MASK6 I MASKS I MASK4 MASK3 MASK2 MASK1 I MASKO I
Condition Codes affected: none

See Also: CLI, EI

Example 1:

/* Thls example lllustrates the use of DI at the beginning of the
Breakpoint interrupt service routine */

org h'E' ; /* external interrupt 6 vector */
JMP INT6 SERVICE;

org h' 10' ; /* arbitrary */
DI b'OlOOOOOO'; /* disable further breakpoint ints

INT6 SERVICE:

RET; /* return-from-interrupt */

Example 2:

/* This example illustrates the use of DI as part of system
initialization procedures */

org h'O'; /* start-up location */
JMP INIT;

INIT: org h'lO';
DI h'FF'; /* prevent (mask) all interrupts */

*/

______________________________ 'I'JrE ____________________________ _
3-26 ",_1

PACSEL
Assembler
Reference
(Cont.)

PACtOOO -Instruction Set

DIV
Instruction
Type: Macro

Operation: dest-reg = src-reg1 / src-reg2

Syntax: [label:] DIV dest-reg/MSW-dividend LSW-dividend divisor;

Description:
This Macro divides the 32-bit dividend supplied in the first two arguments by the divisor.
The quotient is left in the Q register. The remainder is left in the destination register.

During execution of this code, OUTCNTRL is implied "MAINT".

Condition Codes affected: CY, Z, S. 0

Example 1:

DIV R2 Rl R3; /* R2, Rl is divided by R3 */

DSS
Instruction Type: PROGCNTL

Operation: Disable Single Step mode

Syntax: [label:]

Description:
Disable Single Step mode.

Condition Codes affected: none

See Also: ESS

Example 1:

DSS [,CPU] [,OUT CNTL];

/* This example illustrates a default single-step handler */

org h'E' /* external interrupt a vector */
JMP SS SERVICE

org h' 100' ; /* arbitrary */
SS-SERVICE

DSS /* default single-step handler here

RET; /* return-from-interrupt */

/* Here is the single-step enable */
ESS;

ADD Rl R2; /* the first single step occurs two
cycles from instruction */

*/

---------------------------------------~jF~--------------------------------------
=-=SF= 3-27

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(ConI.)

EI
Instruction Type: PROGCNTL

Operation: Enable Interrupts

Syntax: [label:] EI mask [cCPU] [, OUTCNTL] ;

Description:
Use the mask to enable interrupts through the Interrupt Mask Register. Bits set to "1" in the
mask enable the corresponding interrupt. Zero bits in the mask have no effect.

The Interrupt Mask Register:

I MASK? I MASK6 I MASKS I MASK4 MASK3 MASK2 MASK1 I MASKO I
If Interrupt 4 is enabled, the device will immediately process an Interrupt 4, since this
interrupt is always active.

Condition Codes affected: none

See Also: CLI, 01

Example 1:

/* This example illustrates the use of EI at the end of an

external interrupt (INT 2) service routine */

org h'A'; /* external interrupt 2 vector
JMP INT2 SERVICE

org h' 10' ; /* just past interrupt vectors
INT2 SERVICE

DI b' 00000100'; /* disable int2 briefly */

EI b' 0000100'; /* re-enable int2 briefly */
RET; /* return-from-interrupt */

Example 2:

*/

*/

/* This example illustrates the use the EI as part of system
initialization procedures */

org h'O'; /* start-up location */
JMP INIT;

org h'10';
INIT: EI b'00000100'; /* allow (unmask) all int2 */

---------------------------~Jr;--------------------------3-28

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

ESS
Instruction Type: PROGCNTL

Operation: Enable Single Step mode

Syntax: [label:] ESS [,CPU] [,OUTCNTL] ;

Description:
Enable Single Step mode. Interrupt 6 will be generated after every subsequent instruction,
if it is unmasked.

Condition Codes affected: none

See Also: DSS

Example 1:

org h'E';
JMP SS SERVICE

org h'lOO';
SS SERVICE:

DSS

/* external interrupt 0 vector */

/* arbitrary */

/* default single-step handler here */

RET; /* return-from-interrupt */
/* Here is the single-step enable */

ESS;

ADD Rl R2; /* the first single step occurs two
cycles from instruction *./

.-._E
--------------------------------~.,,-----------------------------3----29

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

INC
Instruction Type: CPU

Operation: dest = dest/src + 1

Syntax: [label:] [PROGCNTL,] INC dest/src [, OUTCNTL] ;

or
[label:] [PROGCNTL,] INC dest src [, OUTCNTL] ;

Description:
In the first form, the destination is incremented by one. In the second form, the source is
incremented by one and stored in the destination.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF,DOR

lOR AF

src IIR,AIR AF

SWPV, <const>, DIR AF

dest/src RO ... R31, Q, AOR AF

ACH, ACL ACO, AF

BC BCZ, AF

Notes:
1. In the first form, either dest/src or src must be RO ... R31 or Q
2. In the second form,
a. at least one of the sources must be RO ... R31 or Q

b. no more than two distinct registers among RO ... R31 may be used
and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

See Also: DEC

Example 1:

INC Rl; /* increment Rl */

Example 2:

INC Rl R3; /* increment R3, result to Rl */

-------------------------------------~~Ar------------------------------------
3·30

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

INV
Instruction Type: CPU

Operation: dest = NOT destlsrc

Syntax [label:] [PROGCNTL,] INV dest/src [, OUTCNTL] ;

or

[label:] [PROGCNTL,] INV dest src [,OUTCONTL] ;

Description:
In the first form, the destination is bit-inverted. In the second form, the source is bit-inverted
and stored in the destination.

The sources and destination can be chosen from the following table:

Src!Dest Arguments
dest DOR

lOR

src IIR,AIR

SWPV, <const>, DIR

dest/src RO ... R31, Q. AOR

ACH, ACL

BC

Notes:
1. In the first form, either destlsrc or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 or Q
and

Flags Affected
AF,DOR

AF

AF

AF

AF

ACO, AF

BCZ, AF

c. src1 and src2 cannot reference the same member of RO ... R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

INV Rl; /* Rl <-- NOT (Rl) */

Example 2:

INV Rl R3; /* Rl <-- NOT (R3) */

-------------------------------------~jf~~----------------------------------3--3--,

•

I'AC10D0 -Instruction Set

PACSEL
Assembler
Reference
(ConI.)

JCASE
Instruction Type: PROGCNTL

Operation: Jump to Case Block

Syntax: [label:] JCASE casegroup address [,CPU] [, OUTCNTL] ;

oescrlptlDR
JCASE performs an unconditional CASE selection using the Case Block at the address
specified. Case selection is based on the 4 bits of the Case Group specified:

'CGO' specifies [CC3, CC2, CC1, CCO]
'CG1' specifies fCC?, CC6, CC5, CC4]
'CG2' specifies [INTR, BCZ, FIOR, FICO]
'CG3' specifies [Z, 0, S, CY]

One of the 16 successive instructions starting at the Case Block label will be executed.
If the instruction does not include a jump operation, the next sequential instruction will be
executed. Ordinarily, then, the instructions in a Case block will include jumps.

The Case Block must start at a location whose address contains zeros in the lower four
bits. The address specified must be a numerical value or a symbolic constant whose value
is previously defined in this module. The actual location of the Case Block must be resolved
at link time, by specification in a link directive.

Condition Codes affected: none

Example 1:
/* This example outputs the binary value of Case Group 1 (CG1) on
the F outputs for one cycle, bracketed by the value -1. */

E1C equ h'200';
JCASE CG1 E1C,

Nap,
OUT h'FFFF' ; /* output -1 during jump cycle */

/* The case block, in general, will be in another segment:
*/segment CASE_EXAMPLE;

E1C: JMP ECEND, Nap, OUT 0
JMP ECEND, Nap, OUT 1
JMP ECEND, Nap, OUT 2
JMP ECEND, Nap, OUT 3
JMP ECEND, Nap, OUT 5
JMP ECEND, Nap, OUT 6
JMP ECEND, Nap, OUT 7

JMP ECEND, Nap, OUT 8
JMP ECEND, Nap, OUT 9
JMP ECEND, Nap, OUT 10
JMP ECEND, Nap, OUT 11
JMP ECEND, Nap, OUT 12
JMP ECEND, Nap, OUT 13
JMP ECEND, Nap, OUT 14
JMP ECEND, Nap, OUT 15

ECEND:
CaNT, Nap, OUT h'FFFF'; /* all cases end up here */

The appropriate link directive is: locate CASE_EXAMPLE, h' 200';

-------------------------~Jri-------------------------
3-32

PACSEL
Assembler
Reference
(Cont.)

I'AC10D0 -Instruction Set

JMP
Instruction Type: PROGCNTL

Operation: Jump to target

Syntax: [label:] JMP labe12 [,CPU] [, OUTCNTL] ;
or
[label:] JMP LCPTR [, CPU] [, OUTCNTL] ;
or
[label:] JMP FIFO [,CPU] [, OUTCNTL] ;
or
[label:] JMP TOS [,CPU] [, OUTCNTL] ;

Description:
JMP is an unconditional branch to the target address. The target, in the first form, is a
program label.

The keyword LCPTR may be substituted, in which case the current value of LC (Loop
Counter) is used an as execution pointer. The ten-bit LC value is loaded into the program
counter. In this case, the LCPTR register must be explicitly loaded (see LDLC and LDLCD)
prior to this operation.

In the third form the keyword FIFO may be substituted, in which case the top of the FIFO is
used as the jump target.

In the fourth form the keyword TOS may be substituted, in which case the top of stack is
used as the jump target without popping the stack.

Condition Codes affected: FIFO flags (Form 3)

Example 1:

JMP Elb,
NOP,
OUT h'A5A5';

Elb:

Example 2:

LDLC 37;
MP LCPTR;
E2b:

Example 3:

JMP FIFO;
JMP E3;

/* output test pattern during JMP cycle */

/* jump through pointer */

/* main program for host-driven mode */

_____________________________________ f •• ~~ __________________________________ __

';/Nfl; 3-33

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

JMPC
Instruction Type: PROGCNTL

Operation: Jump if Condition Code TRUE

Assembler Syntax: [label:] JMPC cc labe12 [, CPU] [, OUT CNTL];

Description:
The condition code specified by "cc" is evaluated. If it is TRUE, then control branches to the
specified label.

The Condition Codes are:

INTR
l
ACO
DOR

BCl
o
FIXP
CC7-CCO

Condition Codes affected: none

Example 1:

FIOR
S
FIIR

FICO
CY
STKF

JMPC Z Elb,
NOP,

/* jump on condition code 'zero' */

OUT h' 45' ; /* output ASCII E during jump cycle */

Elb:

JMPNC

JMPC CY Elc; /* jump on carry, use default CPU
and OUTCNTL */

Instruction Type: PROGCNTL

Operation: Jump if Condition Code not TRUE

Syntax: [label:] JMPNC cc labe12 [,CPU] [, OUTCNTL] ;

Description:
The condition code specified by "cc" is evaluated. If it is FALSE, then the program branches
to the specified des!.

The Condition Codes are:

INTR BCl
l 0
ACO FIXP
DOR CC7-CCO

Condition Codes affected: none

Example 1:

JMPNC Z Elb,
NOP,
OUTh'45';

Elb: JMPNC CY Elc;

FIOR FICO

S CY

FIIR STKF

/* jump on condition code 'nonzero' */

/* output ASCII E during jump cycle */

/* jump on not carry, default CPU,
OUTCNTL */

-------------------------------------~~~~------------------------------------
3-34

PACSEL
Assembler
Reference
(ConI.)

PAC100D -Instruction Set

JPI
Instruction Type: PROGCNTL

Operation: Jump on Prioritized Interrupt

Syntax: [label:] JPI address [,CPU] [, OUTCNTL] ;

Description:
The current interrupt status is evaluated. If no interrupt source is active, then the program
branches to the first instruction of a 16-instruction Priority Case Block. If at least one
interrupt is active, the program branches to one of the final eight successive instructions in
the block. (The second through eighth instructions in the block are not used.)

The Pnonty Case block must start at a location whose address contams zeros in the lower
four bits. The address specified must be a numerical value or a symbolic constant whose
value is previously defined in this module. The actual location of the Case Block must be
resolved at link time, by specification in a link directive.

This instruction is effective only if the INTR bit of the MODE register is clear. Otherwise, the
interrupts will be processed by the normal vector mechanism. JPI is useful in systems

where interrupts are not used but in which prioritization of polled inputs is important.

If the selected instruction does not include a jump operation, the next sequential instruction
will be executed. Usually, then the instructions in a Priority Case Block will include jumps to
avoid falling through to following cases.

Condition Codes affected: none

Example 1:
/* The following example shows how interrupt conditions might be
processed by a JPI within a polling loop. Interrupts are not
enabled anywhere in this implementation. This approach may be
helpful in a system in which response time is relatively
unimportant but stack space is extremely tight. The stack is not
used at all in this code. */

E1CASES equ h'140';
JPI E1CASES,

/* The case block, in general, will be in another segment: */
segment CASE_EXAMPLE;

JMP E2 ; /* arrive here if nothing pending */
JMP ERROR /* error if control comes here */
JMP ERROR
JMP ERROR
JMP ERROR
JMP ERROR
JMP ERROR
JMP ERROR
JMP PINTO /* process intO */
JMP PINT1 /* process int1 */
JMP PINT2 /* process int2 */
JMP PINT3 /* process int3 */
JMP PINT4 /* process int4 */
JMP PINT5 /* process int5 */
JMP PINT6 /* process int6 */
JMP PINT7 /* process int7 */

PINTO: /* framework for each routine */

CLI b'OOOOOOOl' ; /* clear the interrupt */
JMP E2; /* since original entry via JPI */

The appropriate link directive is: locate CASE_EXAMPLE, h' 140' ;

---------------------------------------~~Ar--------------------------------------
3-35

----------~ ---- ----

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

LDBP
Instruction Type: PROGCNTL

Operation: Load Breakpoint Register

Syntax: [label:] LDBP constant/label [,CPU] [, OUTCNTL] ;

Description:
The specified constant/label becomes the new breakpoint register value. The maximum
allowed value is 1023 decimal.

Condition Codes affected: None

Example 1:

LDBP 300
SUB R2 Rl,

OUT h'FFFF';

Elb:

LDBPD
Instruction Type:

Operation:

Svntax:

Description:

/* set Breakpoint to label value */

PROGCNTL

Load Breakpoint Register from CPU result

rlah"'l : 1 UlRPD. r:Fn r . nwrr:WrT.l :

The required CPU operation supplies the numerical value to be loaded into the BreakPoint
~~ .

The maximum allowed value is 1023 decimal.

A CPU operation should be present. If the CPU operation is omitted, the breakpoint will be
set to zero.

Condition Codes affected: see CPU instruction used

Example 1:

LDBPD,
ADD Rl R2,

OUT h' FFFF' ;

E2b:

/* set Breakpoint to Rl+R2 */
/* source of value*/

-------------------------------------~jF~------------------------------------3-36 ___ •

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

LDLe
Instruction Type: PROGCNTL

Operation: Load Loop Counter

Syntax: [label:] LDLC constant/label [, CPU] [, OUTCNTL] ;

Description:
The constant or the address given by the label is placed into the LC (Loop Counter)
register. The maximum allowed value is 1023 decimal. This instruction supports loops and
the CALL LCPTR and JMP LCPTR instructions.

Condition Codes affected: none

Example 1:

/* This example shows how a constant loop count is used */
LDLC 35; /* want loop to execute 36 times */

Elb: /* loop body */

LOOPNZ Elb; /* conclude loop */

ii' __ ~=

-------------------------------------~~~-------------------------------------
3-37

•

PACt 000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

LDLeD
Instruction Type: PROGCNTL

Operation: Load Loop Counter with CPU result

Syntax: [label:] LDLCD, CPU [,OUTCNTL];

Description:
The value computed by the obligatory CPU operation is placed into the LC (Loop Counter)
register. The maximum allowed value is 1023. This instruction supports loops and the CALL
LCPTR and JMP LCPTR instructions.

Condition Codes affected: see CPU operation used.

Example 1:

/* This example shows an alternative way of using the same
constant. */

MOV R2 N; /* want loop to execute N+l times */
LDLCD, /* find (Rl-R2) and load in same instruction

SUB Rl R2;
E2b: /* loop body */

LOOPNZ E2b; /* conclude loop*/

Example 2:

*/

/* This example shows how to use a value computed at run time as
the loop count. The null case check is almost always advisable.

,,"'..-. +- ..., ~ ,..., C"' 1 -:. +- "r. +- Y'~" +-ho 1 ",,,-n t.T; 11 n-rr\T\o.rlu -_ •. _-_ •. - - -- -----..1.' -------.1. J.--J.--~-'-

execute exactly 1 time. */

/* Rl contains the loop count at entry */
/* check null case */
/* jump past if N=O */

CMP RIO;
JMPC Z E3c;
LDLCD, /* find (N-l) and load in same instruction

SUB Rl N;
E3b:

LOOPNZ E3b;
E3c:

/* loop body */

/* conclude loop */

*/

---r~~Ar~---------------------------------------­
3-38 ::",==,E!!F =

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

LOOPNZ
Instruction Type: PROGCNTL

Operation: Loop to label if Loop Counter nonzero

Syntax: [label:] LOOPNZ label [,CPU] [,OUTCNTL] ;

Description:
The LC (Loop Counter) register is examined, and if it is nonzero,
the program branches to 'label'. Otherwise, execution continues at the next sequential
instruction. After the test, LC is decreased by one.

The LOOPNZ instruction may be used to conclude the body of an unnested or nested loop.
In the case of a nested loop, the LC register value of the next outer loop should normally be
restored immediately by executing a POPLC instruction after LOOPNZ.

Note: The LOOPNZ instruction tests the loop count first, then decrements il. As a result,
loops will always be performed (Loop Count + 1) times.

Condition Codes affected: none

Example 1:

LDLC 44;
MOV R15 0;

E1b: ADD R15 1;

LOOPNZ E1b;

/* want loop to execute 45 times */
/* initial value for R15 */
/* loop body: increment R14 */
/* loop body ... */

/* conclude loop */
/* R15~45 */

--------------------------------------~~Ar--------------------------------------
3-39

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(ConI.)

MAINT
Instruction Type: OUTCNTL

Operation: Maintain previously defined output value

Syntax: [label: 1 [PROGCNTL, 1 [CPU, 1 MAINT;

Description:
MAINT is the default OUTCNTL operation, that is, if MAl NT is specified, the assembler
uses a default OUT value equal to that most previously specified. (If no OUT operations
occur in a module, the assembler uses 0). As a result the default is maintained in order of
assembly, not order of execution.

The use of MAINT is optional; the result is the same if no OUTCNTL operation is specified.

Condition Codes affected: none

See Also: OUT

Example 1:

CONT ,
NOP ,
MAINT;

Example 2:

CONT, Nap, MAINT;

Example 3:

MAINT;

Example 4:

OUT 1;
MAINT;
OUT 2;
MAINT;
MAINT;
OUT 3;
MAINT;
MAINT;
MAINT;

Example 5:

/* Full instruction form, do-nothing */

/* compact full form do-nothing */

/* simplified do-nothing */

/* output 1 for one cycle, and */

/* output 2 for two cycles, and */

/* output 3 for three cycles */

/* The following two examples produce different results on the
basis of an instruction that is never executed, because of the
way assembly order controls the OUTCNTL default value. */

JMP ESb; /* produce SO% duty cycle on FO line */
OUT 1; /* never executed, but sets default */

ESb: MAINT; /* F outputs set to 1 here */
JMP ESb , OUT 0; /* F outputs set to 0 here */

Example 6:

E6 : JMP E6b; /* produce constant low of FO line */
OUT 0; /* never executed, but sets default */

E6b: MAINT; /* F outputs set to 0 here */
JMP E6b , OUT 0; /* F outputs set to 0 here */

---~Ar~--3-40 -_ElF.

PACSEL
Assembler
Reference
(CBnt.)

PAC1000 -Instruction Set

MOV
Instruction Type: CPU

Operation: Move source to destination

Syntax: [label:] [PROGCNTL,] MOV dest src [,OUTCNTL];

Description:
MOV copies the source to the destination.

The sources and destination can be chosen from the following table:

Src/Oest Arguments Flags Affected
dest DOR AF, DOR

lOR AF

src IIR,AIR AF

SWPV, <canst>, DIR AF

dest/src RO ... R31, Q, AOR AF

ACH, ACL ACO, AF

BC BCZ, AF

Notes:
1. In the first form, either dest/src or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used

and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Condition Codes affected: see table

Example 1:

MOV

Example 2:

MOV

Example 3:

MOV

Example 4:

MOV BC Rl;

Example 5:

MOV
MOV

Rl 33;

Rl R2;

Rl BC;

Rl AIR
BC Rl;

/* immediate */

/* register to register */

------------------------------~JrJr---------------------------3--4-,

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

MUL
Instruction Type: Macro

Operation: dest-reg = src-reg1 * src-reg2

Syntax: [label:] MUL dest-reg src-regl src-reg2;

Description:
This Macro multiplies the values of source register 1 and source register 2 and places the
low-order result in source register 1 and in high-order the destination register.

The generated code will require 22 cycles and occupy 7 EPROM location. During execution
of this code, OUTCNTRL is implied "MAl NT".

Condition Codes affected: CY, Z, S, 0

Example 1:

MUL R2 Rl Rl; /* Rl squared to R2 and Q */

-------------------------------------~~~------------------------------------
3-42

PACSEL
Assembler
Reference
{Con'.}

PAC1DOO -lnstructiDn Set

NEG
Instruction Type: CPU

Operation: dest = 2's complement destlsrc

Syntax: [label:] [PROGCNTL,] NEG dest/SRC [, OUTCNTL] ;

or

[label:] [PROGCNTL,] NEG dest src [, OUTCNTL] ;

Description:
In the first form, the destination is replaced by its two's complement. In the second form, the
source is two's complemented and stored in the destination.

The sources and destination can be chosen from the following table:

SrcIDest Arguments Flags Affected
dest DOR AF,DOR

lOR AF

src IIR,AIR AF

SWPV, <const>, DIR AF

destlsrc RO ... R31, Q, AOR AF

ACH,ACL ACO,AF

BC BCZ,AF

Notes:
1. In the first form, either destlsrc or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used

and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

NEG Rl; /* Rl <- 2's comp (Rl) */

Example 2:

NEG Rl R3; /* Rl <- 2's comp (R3) */

-------------------------------~JrAr-------------------------------3-43

-------~- ----- - - ---------

•

PAC1DOO -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

NOP
Instruction Type: CPU

Operation: No operation

Syntax: [label:] [PROGCNTL,] NOP [, OUTCNTL] ;

Description:
NOP (No Operation) is the default CPU operation, that is, if no CPU operation is specified
in an instruction, PAC 1 000 Peripheral Controller performs the default CPU Operation:

AND 0 0;

which sets the Z flag and sets the carry flag. Using NOP is optional.

Condition Codes affected: Z, CY

Example 1:

CONT ,
NOP ,
MAINT;

Example 2:

CONT, NOP, MAINT;

Example 3:

NOP;

Example 4:

JMP E4,
NOP ,
OUT h'FFFF';

/* Full instruction form, do-nothing */

/* compact full form do-nothing */

/* simplified do-nothing */

/* CPU only do-notnlng '/

-----------------------------~JrAr----------------------------3-44

I'ACSEL
Assembler
Reference
(CDn'.)

PACt. -lnstructiDn Set

OR
Instruction Type: CPU

Operation: dest = src1 OR src2

Syntax: [label:] [PROGCNTL,] OR dest/src src [,OUTCNTL];

or

[label:] [PROGCNTL,] OR dest srcl src2 [, OUTCNTL] ;

Description:
In the first form, this instruction ORs the source and the destination and places the result in
the destination.

In the second form, two registers are ORed and the result stored in the destination. One of
the sources may be the same as the destination.

The sources and the destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest OOR AF,OOR

lOR AF

src !lR,AIR AF

SWPV, <const>, OIR AF

dest/src RO ... R31, Q, AOR AF

ACH, ACL ACO,AF

BC BCZ,AF

Notes:
1. In the first form, either dest/src or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used

and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

OR R2 Rl;

Example 2:

JMP E2B ,
OR R3 R31;

E2B:

Example 3:

JMP E2B ,
OR R3 R31 ,
OUT 3;

E3B:

Example 4:

OR BC Rl;

/* CPU operation alone */

/1 CPU operation combined with PROGCONTL op */

/* CPU operation combined with PROGCONTL op */
/* and OUTCNTL operation */.

/* to Block Counter register */

------------------------~Jri------------------------3-45

-~--~-~- - --------~--

PAC100D -InstructIon Set

PACSEL
Assembler
Reference
(Cont.)

OUT
Instruction
Type: OUTCNTL

Operation: Output control (F) value

Syntax: Label: [PROGCNTL,] [CPU,] OUT <constant I expression>;

Description:
OUT directs the device to place the specified constant value on the Control (F) outputs.

The value specified is placed on the 16 bit F (user) output lines during the instruction cycle
which includes this operation. The constant is usually specified directly as a hex value in
the range

o <= constant <= h'FFFF'

or the value may be evaluated as an expression. The value is determined at assembly time;
there is no way of computing an OUT value at run time.

The value may be formed from 2 up to 16 constants, or values that evaluate to constants. In
this case, all the values are bitwise OR'd to produce the output value. The OR operator in
this case is implied.

The value can also be an expression. The expression is evaluated and the evaluated result
is the output value. All the arithmetic and logic operators which can be used with the 'set'
directive can also be used with the OUT expression.

When an OUTCNTL operation is omitted from an instruction, the assembler will provide a
default OUT value equal to that most recently specified. (If no OUT operations occur in a
module, the assembler will use 0.) Thus OUT defaults are maintained in order of assembly,
nnt nrOAr nfAXAcution.

Condition Codes affected: none

See Also: MAINT

Example 1:

/* The following examples will both produce a 75% duty cycle on
the FO output at a frequency determined by the system clock */

CaNT, /* full version */
Nap,

OUT 1;
CaNT;
CaNT;
JMP El ,
Nap,
OUT 0;

Example 2:

xxx equ 45;
OUT xxx;

/* output '1' for one cycle */
/* output '1' for one cycle */
/* output '1' for one cycle */

/* output '0' during jump cycle */

/* define a constant */
/* minimal version */

JMP EXAMPLE2 , OUT 0

"f1~ll' -3-~-6-------------------------------~~1---------------------------------

PACSEL
Assembler
Reference
(Cont.)

PACtOOO -Instruction Set

OUT (Cont.)

Example 3:

ZZZ equ 45; /* define a constant */
YYY equ 3; /* define second constant */
OUT ZZZ YYY; /* minimal version */

JMP E2 , OUT 0;

Example 4:

ZZZ equ 45; /* define a constant */
xxx equ 10; /* define second constant */
OUT zzz XXX; /* OR of XXX and ZZZ */
OUT ZZZ & 6; /* and of XXX and ZZZ */
OUT 10;
OUT ZZZ;
OUT XXX ; ZZZ & 6; /* OR of XXX and ZZZ and with 6 */

PLDLC
Instruction Type: PROGCNTL

Operation: Push and Load Loop Counter

Syntax: [label:] PDLC constant/label [,CPU] [, OUTCNTL] ;

Description:
The current LC (Loop Counter) value is pushed on the stack, then the constant or address
value is placed into the LC register. The Loop Counter value saved by PLDLC must be
explicitly restored before resuming the enclosing loop.

This instruction may be used to initiate a nested loop. The end of the loop will be defined by
a LOOPNZ instruction; the label specified as the LOOPNZ operand is the beginning of the
loop. In other words, the PLDLC operation may precede the beginning of the nested loop
body. Use LDLC to initiate an unnested loop.

Note: The LOOPNZ instruction tests the loop count first, then decrements it. As a result,
loops will always be performed (Loop Count + 1) times.

Condition Codes affected: STKF

Example 1:

/* The following example shows how to nest loops. These loops
have constant Loop Count values. */

LDLC n;
E1b:

PLDLC m;
E1c: ADD R1 10;

LOOPNZ E1c;
POPLC;
LOOPNZ E1b;

/* load outer loop count */
/* 1st instruction of outer loop */

/* save LC and load inner loop count */
/* 1st instruction of inner loop */
/* end of inner loop */
/* restore outer loop count */
/* end of outer loop */
/* R1 = R1 + ((N+l) * (10* (M=l)) */

---------------------------------------~~Ar--------------------------------------
3-47

•

PAC1001J -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

PLDLeD
Instruction Type: PROGCNTL

Operation: Push and Load Loop Counter from CPU result

Syntax: [label:]PLDLCD, CPU [,OUTCNTL];

DescriptlDn:
The current LC (Loop Counter) value is pushed on the stack, then the value computed in
the CPU instruction is used. The Loop Counter value saved by PLDLC must be explicitly
restored before resuming the enclosing loop.

This instruction may be used to initiate a nested loop. The end of the loop will be defined by
a LOOPNZ instruction; the label specified as the LOOPNZ operand is the beginning of the
loop. In other words, the PLDLCD operation may precede the beginning of the nested loop
body. Use LDLC to initiate an unnested loop.

Note: The LOOPNZ instruction tests the loop count first, then decrements it. As a result,
loops will always be performed (Loop Count + 1) times.

A CPU operation must be present if the second form is used. If the CPU operation is
omitted, the loop count will be set to zero and the loop will execute once.

Condition Codes affected: STKF; also see CPU operation used

Example 1:

1* The following example shows how a nested loop can have a
computed loop count. The value in R2 is assumed to be nonzero.
Adding R1 to R2 is a simple way of providing a CPU-computed value
for this form of the instruction. *1

LDLC n; 1* load outer loop count *1
E1b: 1* 1st instruction of outer loop *1

PLDLCD, 1* save LC, and use R1+R2 as loopcount *1
ADD R2 R1; 1* all in same instruction *1

Elc: ADD R1 10; 1* 1st instruction of inner loop *1
LOOPNZ E1c; 1* end of inner loop *1
POPLC; 1* restore outer loop count *1
LOOPNZ E1b; 1* end of outer loop *1

1* R1 = R1+((N+1) * (10* (R2+R1+1)

-------------------------~Jr;-------------------------3-48

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

POP
Instruction Type: PROGCNTL

Operation: POP stack and discard

Syntax: [label:] POP [,CPU] [, OUTCNTL] ;

DescriptiDn:
The value on the top of the stack is popped and discarded.
This operation should be used with caution, since the stack generally contains subroutine
return addresses or loop counts which may be expected to be on the stack by a return or
loop conclusion instruction.

Condition Codes affected: STKF

Example 1:
/* This example shows how POP is used to discard the Loop Counter
value on the stack when a nested loop is aborted. */

LOLC n; /* load outer loop count */
E1b: /* 1st instruction of outer loop */

PLOLC m;
E1c:

JMPC STKF PANIC;
LOOPNZ E1c;
POPLC;
LOOPNZ E1b;

PANIC:
POP;

Example 2:

/* save LC and load inner loop count */
/* 1st instruction of inner loop */

/* jump if things are bad */
/* end of inner loop */
/* restore outer loop count */
/* end of outer loop */

/* restore stack by discarding count */

/* This example shows how POP can be used to discard return
addresses when an error condition is located inside nested
subroutines */

CALL E2b; /* outermost level */
pt a:

RET;
E2b: CALL E2C;
pt_b:

RET;
E2C: CALL E20;
pt_c:

RET
E20:

JMPNC STKF E2E;
POP
POP
RET

E2E:

/* next nested level */

/* next nested level */

/* deepest level */

/* skip if not stackfull, else climb out */
/* discard return to pt c */
/* discard return to pt_b */
/* return to pt a */

---------------------------~JF;--------------------------3-49

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

POPLC
Instruction Type: PROGCNTL

Operation: Pop Stack Loop Counter

Syntax: [label:] POPLC [,CPU] [, OUT CNTL];

Description:
The contents of the LC (Loop Counter) register are popped from the stack. This instruction
is used to conclude nested loops.

Condition Codes affected: STKF

Example 1:

/* This example shows how POPLC is used to restore the Loop
counter value following the conclusion of a nested loop. */

LDLC n;
E1b:

PDLC m;
E1c:

LOOPNZ
POPLC;
T r\r\T"lll.T'7

Example 2:

E1c:

:::l~;

/* load outer loop count */
/* 1st instruction of outer loop */

/* save LC and load inner loop count */
/* 1st instruction of inner loop */

/*
/*
1*

end of inner loop */
restore outer loop count */
o.nri (]f nllrpr lOOD */

/* The following example shows how POPLC may be used with PUSHLC
to save and restore the Loop Counter value where a CALL LCPTR is
used within the loop. */

LDLC n;
MOV R21 0;

E2b:

PUSHLC;
LDLCD ,

ADD R20 R21;
CALL LCPTR;
POPLC;
LOOPNZ E2b;

/* load loop count */
/* initialize register */
/* 1st instruction of loop */

/* save LC */
/* load call vector */
/* already assumed to be in R20 */
/* perform call */
/* restore loop count */
/* end of loop */

___ ~ArE~E--
3-50 iIIll

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

PUSHLC
Instruction Type: PROGCNTL

Operation: Push Loop Counter

Syntax: [label:] PUSHLC [,CPU] [, OUTCNTL] ;

Description:
The contents of the LC (Loop Counter) register are pushed on the stack. This instruction is
used at the beginning of a nested loop.

Condition Codes affected: STKF

Example 1:

/* This example show show PUSHLC is used to save the Loop Counter
value before the start of a nested loop. The PUSHLC+LDLC sequence
can more economically be replaced by PLDLC in many cases. */

LDLC n;
E1b:

PUSHLC;
LDLC m;

E1c:

LOOPNZ E1c;
POPLC;
LOOPNZ E1b;

Example 2:

/* load outer loop count */
/* 1st instruction of outer loop */

/* save LC */
/* load inner loop count */
/* 1st instruction of inner loop */

/* end of inner loop */
/* restore outer loop count */
/* end of outer loop */

/* The following example shows how PUSHLC may be used with POPLC
to save and restore the Loop Counter value where a CALL LCPTR is
used within the loop. */

LDLC n;
E2b:

PUSHLC;
LDLCD ,

MOV R20 R20;
CALL LCPTR;
POPLC;
LOOPNZ E2b;

/* load loop count */
/* 1st instruction of loop */

/* save LC */
/* load call vector */
/* already assumed to be in R20 */
/* perform call */
/* restore loop count */
/* end of loop */

---~~~---
3-51

•

I'AC1000 -lnstructlDR Set

PACSEL
Assembler
Reference
(Cont.)

Re
Instruction Type: PROGCNTL

Operation: Return Conditionally

Syntax: [label:] RC cc [,CPU] [OUTCNTL] ;

or

[label:] RC cc labe12 [,CPU] [, OUTCNTL] ;

Description:
The next instruction address is taken from the stack if the condition is TRUE. In the second
form, control branches to "labeI2" if the condition is true. The stack is popped in any case. If
the condition is false, this instruction has no effect.

The Condition Codes are:

INTR BCZ FIOR FICO
Z 0 S CY
ACO FIXP FIIR STKF
DOR CC7-CCO

Condition Codes affected: STKF

Example 1:

CALL Elb,
NOP,
OUT h'46'; /* output ASCII F during CALL cycle */

Elb: RC Z /* null subroutine for Zero condition */

Example 2:

/* The following example shows the framework of a int 7 service
routine that ignores the ACO (Address Counter Ones) condition. */

org h'F';
JMP INT7_SERVICE;
org h'lOO';

INT7 SERVICE:

RC ACO;

RET;

/* install service vector */
/* arbitrary address */

/* if int 7 caused by ACO, leave */

-------------------------~Jri-------------------------3-52

PACSEL
Assembler
Reference
(Cont.)

PAC10DO -Instruction Set

RDF/FD
Instruction Type: CPU

Operation: Read FIFO data to CPU destination

Syntax: [label:] [PROGCNTL,] RDFIFO [, OUTCNTL] ;

Description:
The 16-bit data on the FIFO is moved to the CPU register whose address is specified by the
address stored with the data.

If the FIFO is empty, the previous top value will be read. If the item is a command, then the
FIFO exception condition will occur.

Condition Codes affected: CY, Z, S, 0, FIIR, FIOR, FIXP, FICO

Example 1:

RDFIFO;
DEC R3;

RESTART
Instruction Type:

Operation:
Syntax:

Description:

/* data presumed to have R3 target */
/* decrement data value */

PROGCNTL

Restart by jump to location 0
[label:] RESTART [,CPU] [, OUTCNTL] ;

RESTART is an unconditional jump to the first program step, i.e., EPROM location zero. It is
logically equivalent to a jump to location zero. Only stack pointer initialization is performed
by this instruction.

Condition Codes affected: CY, Z, S, ACO, BCZ, FIIR, FIOR, FIXP, DOR

Example 1:

JMPC STKF Elb: /* no CPU, OUTCNTL specified */

Elb: RESTART /* use with caution */

Example 2:

JMPC STKF E2b;
E2b: RESTART, NOP, OUT h'FFFF' /* output reset marker */

J-.iP£ -------------------------------------~~Ar-------------------------------------
3-53

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

RET
Instruction Type: PROGCNTL

Operation: Return from subroutine

Syntax: [label:] RET [,CPU] [, OUTCNTL] ;

or

[label:] RET labe12 [,CPU] [, OUTCNTL] ;

Description:
RET is an unconditional subroutine return. In the first form, the next instruction address is
taken from the stack.

In the second form, control branches to the specified label and the stack is popped.

Condition Codes affected: STKF

Example 1:

CALL elb,
NOP,
OUT h'46';

Elb: RET;

Example 2:

/* output ASCII F during CALL cycle */
/* null subroutine */

/* This example illustrates the use of RET to conclude an
interrupt service routine */

org h' 8'
JMP INTO SERVICE;
ORG H'100'

INTO SERVICE:

RET;

Example 3:

RET Elb;

/* external interrupt 0 vector */

/* arbltrary */

/* return-from-interrupt */

/* go to address Elb and pop the stack */

---------------------------------------~~~--------------------------------------
3-54

PACSEL
Assembler
Reference
(Coni.)

PACtOOO -Instruction Set

RNC
Instruction Type: PROGCNTL

Operation: Return from subroutine if condition NOT TRUE

Syntax: [label:] RNC cc [,CPU] [, OUTCNTL J ;

or

[label: J RNC cc labe12 [,CPU] [, OUTCNTL] ;

Description:
RNC is a conditional subroutine return. In the first form, the next instruction address is
taken from the stack if the condition is FALSE.

In the second form, if the condition is FALSE, control branches to 'labeI2' and the stack is
popped.

The Condition Codes are:

INTR BCZ
Z 0
ACO FIXP

DOR CC7-CCO

Condition Codes affected: STKF

Example 1:

CALL Elb,
NOP,
OUT h'46';

Elb: RNC

Example 2:

Z;

FIOR FICO

S CY

FIIR STKF

/* output ASCII F during CALL cycle */

/* null subroutine */

/* The following example shows the framework of an int 7 service
routine that processes only the STKF (Stack Full) condition. */

org h'F';
JMP INNT7 SERVICE

org h'lOO;
INT7 SERVICE:

RNC STKF;
JMP REINITIALIZE

/* install service vector */

/* arbitrary address */

/* if int 7 not caused by STKF, leave */
/* else do appropriate fix */

---------------------------------------rjfJrAF~--------------------------------------'E!!!!!F9!!!.!!!FE 3-55

•

PAC10DD -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

RSTCON
Instruction Type: PROGCNTL

Operation: Reset bits in the control register

Syntax: [label:] RSTCON mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to reset bits in the Control Register. Bits set to 1 in the mask reset the
corresponding register bits. Zero bits have no effect.

The Control Register:

I ASEL I AIREN I DIREN I HDSEL1 I HDSELO I ADOE I HADOE I HDOE BCEN ACEN

Ordinarily, the mask will be most conveniently given in hexadecimal notation.

Condition Codes affected: none

See Also: SETCON

Example 1:

RSTCON h'3FF';

Example 2:

/* Clear ALL Control Register Bits */

RSTCON b'OOOOOOOOll'; /* clear only BCEN and ACEN */

RSTIO
Instruction Type: PROGCNTL

Operation: Reset bits in the I/O Configuration Register

Syntax: [label:] RSTIO mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to reset bits in the I/O Register. Bits set to 1 in the mask reset the
corresponding register bits. Zero bits have no effect.

The I/O Configuration Register:

I 107 I 106 I 105 104 103 102 101 100

Ordinarily, the mask will be most conveniently given in hexadecimal notation. The mask
value must be between 0 and FFh.

Condition Codes affected: none

See Also: SETIO

Example 1:

RSTIO h'FF'; /* Clear I/O Configuration Register */

--------------------------~Jr;--------------------------3-56

PACSEL
Assembler
Reference
(Cont.)

PACfOOO -Instruction Set

RSTMODE
Instruction Type: PROGCNTL

Operation: Reset bits in the Mode Register

Syntax: [label:] RSTMODE mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to reset bits in the Mode Register. Bits set to 1 in the mask reset the
corresponding register bits. Zero bits have no effect.

The Mode Register:

I FIRST I FIIR I ADOEI I HADOE I HDOE 510 ACEN BCEN N/A

Ordinarily, the mask will be most conveniently given in a hexadecimal notation.

Condition Codes affected: none

See Also: SETMODE

Example 1:

RSTMODE h' FF' ;

Example 2:

SETMODE b'lOOOOOOOOO';
RSTMODE b'lOOOOOOOOO';

/* Clear Mode Register */

/* reset FIFO, then ... */
/* immediately clear reset */

INTR

f-.6==
-------------------------------------~~~----------------------------------~-5--7

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

sse
I nstruction Type: CPU

Operation: dest = src1 - src2 - CY

Syntax: [label:] [PROGCNTL,] SBC dest/src src [, OUTCNTL] ;

or

[label:] [PROGCNTL,] SBC dest srcl src2 [, OUTCNTL] ;

Description:
In the first form, this instruction subtracts two values, The state of the carry bit, from
previous subtractions, is included in the computation, If CY is not set, the difference is
decreased by 1 during the subtract operation, In the second form, two registers are
subtracted and the result placed in the destination register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments
dest DOR

lOR

src IIR,AIR

SWPV, <const>, DIR

destlsrc RO",R31, a, AOR

ACH,ACL

BC

NOles:

1, In the first form, either destlsrc or src must be RO",R31 or Q
2, In the second form,

a, at least one of the sources must be RO",R31 or Q

Flags Affected
AF, DOR

AF

AF

AF

AF

ACO, AF

BCZ, AF

b, no more than two distinct registers among RO",R31 may be used
and
c, src1 and src2 cannot reference the same member of RO",R31,

3, AF=Arithmetic Flags: Z, CY, S, 0,

Example 1:

SBC Rl Rl;

Example 2:

MOV R3l h'O';
SUB R3l h'l';
SBC R3l h' 0';

Example 3:

SBC BC R23;

Example 4:

SBC BC R23 R24;

ExampleS:

CONT

/* zero Rl and add CY */

/* load immediate value */
/* subtract immediate */
/* R3l now is 0 */

/* BC BC - R23, accounting for CY */

/* BC R23 - R24, accounting for CY */

SBC BC R23 R24 , /* full instruction format */
OUT h' A5A5'

---------------------------------------~aF~--------------------------------------
3-58

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

SETCON
Instruction Type: PROGCNTL

Operation: Set bits in the Control Register

Syntax: [label:] SETCON mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to set bits in the Control Register. Bits set to 1 in the mask set the
corresponding register bits. Zero bits have no effect.

The Control Register:

I ASEL I AIREN I DIREN I HDSEL1 I HDSELO I ADOE I HADOE I HDOE BCEN ACEN

Ordinarily the mask will be most conveniently given in hexadecimal notation.

Condition Codes affected: none

See Also: RSTCON

Example 1:

SETCON h'3FF';

Example 2:

SETCON b'OOOOOOOOll';

SETIO

/* Set ALL Control Register bits */

/* set only BCEN and ACEN */

Instruction Type: PROGCNTL

Operation: Set bits in the I/O Configuration Register

Syntax: [label:] SETIO mask [,CPU] [, OUTCNTL] ;

Description:
Use the mask to set bits in the I/O Register. Bits set to 1 in the mask set the corresponding
register bits. Zero bits have no effect.

The 1/0 Configuration Register:

I 107 I 106 I 105 104 103 102 101 100

Ordinarily, the mask will be most conveniently given in the hexadecimal notation. The mask
value must be between 0 and FFh.

Condition Codes affected: none

See Also: RSTIO

Example 1:

SETIO h'FF'; /* Set all I/O Port lines to output */

-------------------------------------~~Jr-------------------------------------
3-59

•

PAC1000 -lnstlUctlDn Set

PACSEL
Assembler
Reference
(Cont.)

SET MODE
Instruction Type: PROGCNTL

Operation: Set bits in the Mode Register

Syntax: [label:] SETMODE mask [,CPU] [,OUTCNTL] ;

Description:
Use the mask to set bits in the Mode Register. Bits set to 1 in the mask set the
corresponding register bits. Zero bits have no effect.

The Mode Register:

I FIRST I FIIR I ADOEI I HADOE I HDOE 510 ACEN BCEN N/A INTR

Ordinarily, the mask will be most conveniently given in hexadecimal notation.

Condition Codes affected: none

See Also: RSTMODE

Example 1:
SETMODE h'l';

Example 2:
SETMODE b'lOOOOOOOOO';
RSTMODE b'lOOOOOOOOO';

SH!R
,,'"". I
VI V

/* Set Interrupt Mode */

/* reset FIFO, then ... */
/* immediately clear reset */

Operation: Shift Left Register
Syntax: [label: 1 [PROGCNTL,l SHLR reg src [, OUTCNTLl ;

Description:
This instruction shifts the selected register (RO thru R31) left one bit. The data shifted in
depends on the source operand:

Z - the Zero bit flag
CY - the Carry bit flag
S - the Sign bit flag
o - a binary '0'
1 -a binary '1'
RMSB - the Most Significant Bit of this register
QMSB - the Most Significant Bit of the Q register
SDAT - Serial Data port in/out

If RMSB is chosen as the source, the data shifted out is shifted into the LSB of the register;
the result is a "rotate."

Condition Codes affected: CY, Z, S, 0

Example 1:
SHLR Rl Z;

Example 2:
SHLR Rl 1;

Example 3:
SHLR Rl RMSB;

Example 4:
SHLR Rl QMSB;

/* shift the Zero flag into the LSB of Rl */

/* shift a '1' into the LSB of Rl */

/* rotate Rl left one bit */

/* shift the MSB of Q into the LSB of Rl */

-------------------------~Jr;-------------------------3-60

PACSEL
Assembler
Reference
(Cont.)

PAC10D0 -lnstructlDR Set

SNLRQ
Il'lstruction
Type: CPU

Operation: Shift left register and Q

Syntax: [label:] [PROGCNTL,] SHLRQ reg rsource qsource [,OUTCNTL];

Description:
This instruction shifts the selected register (RO thru R31) and Q left one bit. The data
shifted in depends on the rsource and qsource operands.

Z
CY

S
o
1
RMSB
QMSB
SDAT

- the Zero bit flag
- the Carry bit flag

- the Sign bit flag
- a binary '0'

- a binary '1'
- the Most Significant Bit of this register
- the Most Significant Bit of the Q register

- Serial Data port in/out

Condition Codes affected: CY, Z, S, 0

Example 1:

SHLRQ Rl

Example 2:

SHLRQ RQ

Example 3:

SHLRQ Rl

Example 4:

SHLRQ Rl

Z 1;

CY 1;

RMSB 1;

QMSB 0

1* shift the Zero flag into the LSB of Rl *1
1* also shift Q left one bit *1

1* shift a '1' into the LSB of Rl *1
1* also shift Q left one bit *1

1* rotate Rl and Q left one bit *1

1* rotate Rl and Q left one bit *1

-----------------------------~JrJr----------------------------3-61

•

PACt ODIJ -lnstruCtlDR Set

PACSEL
Assembler
Reference
(Cont.)

SHRR
Instruction Type: CPU

Operation: Shift Right Register

Syntax: [label:] [PROGCNTL,] SHRR reg source [, OUTCNTL] ;

Description:
This instruction shifts the selected register (RO thru R31) right one bit. The data shifted in
depends on the source operand:

Z
CY
S
o
1
RMSB
QMSB
SDAT

- the Zero bit flag
- the Carry bit flag
- the Sign bit flag
- a binary '0'

- a binary '1'
- the Most Significant Bit of this register
- the Most Significant Bit of the Q register
- Serial Data port in/out

Condition Codes affected: CY, Z, S, 0

Example 1:

SHRR Rl Z; /* shift the Zero flag into the MSB of Rl */

Example 2:

SHRR Rl 1; /* shift a '1' into the MSB of Rl */

Example 3:

SHRR Rl RLSB; /* rotate Rl right one bit */

Example 4:

SHRR Rl QLSB; /* shift the LSB of Q into the MSB of Rl */

------------------------------~~~-----------------------------
3-62

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

SHRRQ
Instruction
Type: CPU

Operation: Shift Right Register and Q

Syntax: [label:] [PROGCNTL,] SHRRQ reg rsource qsource [, OUTCNTL] ;

Description:
This instruction shifts the selected register (RO thru R31) and Q right one bit. The data
shifted in depends on the rsource and qsource operands

Z

CY

S
o
1

RMSB

QMSB

SDAT

- the Zero bit flag

- the Carry bit flag

- the Sign bit flag

- a binary '0'

- a binary '1'

- the Most Significant Bit of this register

- the Most Significant Bit of the Q register

- Serial Data port in/out

Condition Codes affected; CY, Z, S, 0

Example 1:

SHRRQ R1 Z 1 /* shift the Zero flag into the MSB of Rl */

Example 2:

SHRRQ R1 1 0; /* shift a '1' into the MSB of R1 */

Example 3:

SHRRQ R1 RMSB CY; /* rotate R1 and Q right one bit */

Example 4:

SHRRQ R1 QMSB Z; /* rotate R1 and Q right one bit */

-------------------------------------~sr~-------------------------------------
3-63

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Coni.)

SUB
Instruction Type: CPU

Operation: dest = src1 - src2

Syntax: [label: 1 [PROGCNTL, 1 SUB dest/src src [, OUTCNTL 1 ;

or

[label: 1 [PROGCNTL, 1 SUB dest srcl src2 [, OUTCNTLl ;

Description:
In the first form, this instruction subtracts the source from the destination and places the
result in the destination. In the second form, source 2 is subtracted from source 1 and the
result placed in the destination register. This is a 2's complement operation.

The sources and destination can be chosen from the following table:

SrcIDest Arguments Flags Affected

dest DOR AF,DOR

lOR AF

src IIR,AIR AF

SWPV, <const>, DIR AF

dest/src RO ... R31, Q, AOR AF

ACH, ACL ACO, AF

BC BCZ, AF

Notes:
-' • " ,.. It "'. __ ' __ .J~. _ ___ " ____ ... L.._~"" _n .. __ '"'"
I. III lilt::::! III~L IUIIII, e'IUIt'1 ut;:o;:,uO)n ... UI .,1 v IIIU~H UC; 11U .•• ' hJ I VI '-.0(

2. In the second form,
a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used
and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

SUB Rl Rl;

Example 2:

MOV R31 h'O';
SUB R31 h'l';

Example 3:

SUB BC R23;

Example 4:

SUB BC R23 R24;

Example 5:

CONT ,
SUB BC R23 R24
OUT h'ASAS';

/* zero Rl */

/* load immediate value */
/* subtract immediate */

/* subtract R23 from block counter */

/* (R23 - R24) to block counter */

/* full instruction format */

---------------------------------------~~~--------------------------------------
3·64

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

TWB
Instruction Type: PROGCNTL

Operation: Three-way branching

Syntax: [label:] TWB cc branch-label [,CPU] , [, OUTCNTL] ;

cc -> Condition code

branch-label -> a label to branch to

Description:
TWB is a three-way-branch instruction,

Here cc, the condition-code is evaluated, If it is TRUE then the Program counter value will
be the address of next instruction, In other words, the program will execute next instruction
and continues,

If cc evaluates to FALSE, then one of the following two cases is performed, based on the
Loop counter value,

1, If Loop counter value is zero, then the Program counter value will be the
branch-labels address, Le" the program branches to the label specified,

2, If the Loop counter value is not zero, then the Program counter will be
loaded with whatever value is on the top of the stack, Thus the program will branch to
the address given by the top of the stack,

Note, however, that in this case, the top of the stack is not popped-out.

The Condition Codes are:

INTR

Z
ACO

DOR

Note:

BCZ

o
FIXP

CC7-CCO

FIOR

S
FIIR

FICD

CY
STKF

1, It is the users' responsibility to have valid address on top of the stack prior to executing
this instruction,

2, Also, user may have to load the Loop counter prior to this instruction,

Example 1:

LDLC label
PUSHLC;

TWB Z LABEL

OUT2;
label 1

OUTS;
label 2

OUTI0;

1 ;

2 ;

/* load
/* push

/* If Z

If Z

i.
ii.

*/

loop counter */
it on stack */

is TRUE, PC = PC + 1
is FALSE, two cases :

if loopcounter = 0, PC
if loopcounter ! = 0,
PC = Top of stack (label

label 2

1)

---------------------------------------~~~--------------------------------------
3-65

•

PAC1000 -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

TWBNe
Instruction Type: PROGCNTL

Operation: Three-way branching

Syntax: [label:] TWBNC cc branch-label [,CPU] [, OUTCNTL 1 ;

cc -> Condition Code

branch-label -> a label to branch to

Description:
TWBNC is a three-way-branch instruction.

Here cc, the condition-code is evaluated. If it is TRUE then the Program counter value will
be the address of next instruction. In other words, the program will execute next instruction
and continues.

If cc evaluates to FALSE, then one of the following two cases is performed, based on the
Loop counter value.

1. If Loop counter value is zero, then the Program counter value will be the
branch-labels address, i.e., the program branches to the label specified.

2. If the Loop counter value is not zero, then the Program counter will be loaded with
whatever value is on the top of the stack. Thus the program will branch to the address
given by the top of the stack.

Note, however, that in this case, the top of stack is not popped-out.

The Condition Codes are:

INTR

ACO
DOR

Note:

BCZ

FIXP
CC7-CCO

FIOR FICO
('v

FIIR STKF

1. It is users' responsibility to have valid address on top of the stack prior to executing this
instruction.

2. Also, user may have to load the Loop counter prior to this instruction.

Example 1:

LDLC label 1;
PUSHLC;

MOV RO 10;
MOV R1 10;
SUB RO R1;

TWBNC Z label 2;

OUT2;
label 1

OUTS;
label 2

OUT10;

/* load loop counter */
/* push it on stack */

/* If Z is TRUE, PC ~ PC + 1
If Z is FALSE, two cases :

*/

i. if loopcounter 0,
PC ~ label 2 ;
ii. if loopcounter ~ 0,
PC ~ Top of stack (label 1)

&'EE 4EE
-3--6-6------------------------------------~~§--------------------------------------

PACSEL
Assembler
Reference
(Cont.)

PAC1000 -Instruction Set

XNOR
Instruction Type: CPU

Operation: dest = src1 XNORs src2

Syntax: [label:] [PROGCNTL,] XNOR dest/src src [, OUTCNTL] ;

or

[label:] [PROGCNTL,] XNOR dest src1 src2 [, OUTCNTL] ;

Description:
In the first form, this instruction XNORs the source and destination and places the result in
destination.

In the second form, two sources are XNORed and the result stored in the destination
register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected

dest DOR AF, DOR

lOR AF

src IIR,AIR AF

SWPV, <const>, DIR AF

destlsrc RO ... R31, Q, AOR AF

ACH, ACL ACO,AF

BC BCZ,AF

Notes:
1. In the first form, either destlsrc or src must be RO ... R31 or Q

2. In the second form,
a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used
and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

XNOR R1 R2;

Example 2:

XNOR R31 h'OFFF';

Example 3:

/* R1 (Rl XNOR R2) */

/* XNOR immediate mask */

/* The following two examples accomplish the same result and
illustrate the use of a three operand XNOR */

MOV R23 h'123'; /* load register with constant */
MOV BC R23; /* load Block Counter from register
XNOR BC h'FFFE' ; /* mask and load Block Counter */

Example 4:

MOV R23 h' 123' ; /* load register with constant */
MOV R24 h'FFFE' ; /* load register with mask */
XNOR BC R23 R24; /* mask and load Block Counter */

*/

_______________________________________ r~~a.§ ____________________________________ __
3·67

•

PAC100D -Instruction Set

PACSEL
Assembler
Reference
(Cont.)

XOR
Instruction Type: CPU

Operation: dest = src1 XOR src2

Syntax: [label:] [PROGCNTL,] XOR dest/src src [, OUTCNTL] ;

or

[label: 1 [PROGCNTL,] XOR dest srcl src2 [, OUTCNTL 1 ;

Oescription:
In the first form, this instruction XORs the source and destination and places the result in
destination.

In the second form, two sources are XORed and the result stored in the destination register.

The sources and destination can be chosen from the following table:

Src!Oest Arguments Flags Affected
dest DOR AF,DOR

lOR AF

src IIR,AIR AF

SWPV, <cons!>, DIR AF

dest/src RO ... R31, Q, AOR AF

ACH, ACL ACO,AF

BC BCZ, AF

~~!~~:
1. In the first form, either dest/src or src must be RO ... R31 or Q
2. In the second form,

a. at least one of the sources must be RO ... R31 or Q
b. no more than two distinct registers among RO ... R31 may be used
and
c. src1 and src2 cannot reference the same member of RO ... R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

XOR R1 R2;

Example 2:

XOR R31 h'OFFF';

Example 3:

/* R1 (R1 XOR R2) */

/* XOR immediate mask */

/* The following two examples accomplish the same result and
illustrate the use of a three operand XOR */

MOV R23 h' 123' ; /* load register with constant */
MOV BC R23 /* load Block Counter from register */

Example 4:

MOV R23 h'123' ; /* load register with constant */
MOV R24 H'FFFE' ; /* load register with mask */
XOR BC R23 R24; /* mask and load Block Counter */

---------------------------------------rJr~~sr--------------------------------------
3-68 -==

PACSEL
Macro
Reference

PAC1000 -Instruction Set

:=
Instruction
Type CPU

Operation: Assign value

Syntax: [label:] [PROGCNTL,] dest := src [, OUTCNTL] ;

or

[label:] destl := dest2 := src [, PROGCNTL] [, OUTCNTL] ;

Description:
I Form:

The := operator assigns the value of the source to the destination. The destination is one of
the following:

RO ... R31 ACH ACL BC AOR lOR DOR Q

II Form:

In this form, the destination can be anyone of the following:

AOR, ACH, ACL, BC, lOR, DOR

and dest2 can only be,

RO ... R31 Q

The source may be one of the following for both forms.

RO ... R31 ACH ACL BC AOR lOR DOR Q <const> SWPV

Or the source may be an expression of one of the following forms:

o arg1 <arithmetic op> arg2 [<arithmetic op> arg3]

o arg1 <logical op> arg2

o <unary op> arg

o shift-arg1 <shift op> shift-src1 [shift-arg2 <shift op> shift-src2]

Where:

<arithmetic op> is +(add) -(sub) *(mul) /(div)

<logical op> is & (and) I(or) A(xor) !A(xnor)

<unary op> is -(neg) ++(inc) --(dec) -(inv)

<shift op> is « (shift left) » (shift right)

shift-arg1 is RO ... R31 Q
shift-arg2 is RO ... R31
shift-src is CY Z S 1

QLSB QMSB RMSB RLSB

Notes:
1. In expressions, one of the arguments must be RO ... R31 or Q
2. Arg3, if present, must be "CP" (carry from previous operation)

0
SDAT

3. MULTIPLY (*) and divide (I) are macro operations. In these cases, PROGCNTL and

OUTCNTL operations should not be specified.
4. The shift operations fall into one of the following formats:

Rn RN» shift-src
Rn Rn « shift-src
QRn Q » shift-src Rn » shift-src
QRn .- Q « shift-src Rn « shift-src

FEEEF~
~I; 3-69

•

PAC1000 -Instruction Set

PACSEL
Macro
Reference
(Cont.)

:= (Cont.)

The PROGCNTL and OUTCNTL operations, if present, are unconditionally executed in the
same cycle.

Example 1:

R5 :~ BC;

Example 2:

R3 :~ BC + 1;

Example 3:

R27 :~ BC + Q;

Example 4:

Rss :~ ++ R3;

ExampleS:

BC :~ R1 - R2 - CP;

ExampleS:

AOR :~ RO RO - R1;

ACSIZE
Instruction Type: PROGCNTL

Operation: Set Address Counter size
, I Syntax. [label:] ACSIZE Slze l,CPUJ l,UU"l'CN"l'LJ;

Description:
Set the Address Counter size. The allowed values for "size" are 16 or 22.

The CPP and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

Example 1:

ACSIZE 22;

Example 2:

ACSIZE 16;

-------------------------------------~~jf------------------------------------
3-70

PACSEL
Macro
Reference
(Cont.)

PAC1000 -Instruction Set

CALL
Instruction Type: PROGCNTL

Operation: Call subroutine

Syntax: [label:] CALL label 2 [ON] [NOT] [condition-code]
[,CPU] [, OUTCNTL] ;

Description:
The current program counter is pushed on the stack, and control branches to label 2. If the
ON phrase is specified, the condition code is evaluated, optionally inverted by NOT, and the
call occurs only if the result is TRUE.

The CPU and OUTCNTL operations, If present, are unconditionally executed in the same
cycle.

The Condition Codes are:

INT

Z
ACO
DOR

Example 1:

CALL XXX;

Example 2:

BCZ

0
FIXP

CC7-CCO

CALL XXX ON CY;

Example 3:

CALL XXX ON NOT CY;

Example 4:

FIOR FICO

S CY
FIIR STKF

/* CY from before RI+R3 is used:*/
CALL XXX ON NOT CY , RI := R2 + R3;

CLEAR
Instruction Type: PROGCNTL

Operation: Clear interrupt(s)

Syntax: [label:] CLEAR [int#] ...

Description:
Clear the listed interrupts. The values

[int#] [,CPU]

INTO INTI INT2 INT3 INT4 INT5 INT6 INT7

may be listed in any order.

[, OUTCNTL J ;

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

Example 1:

CLEAR INTI INT3 INT4 INTO; /* clear INT4 has no effect */

-------------------------------------rjfArJF~------------------------------------
~~= 3-71

•

PAC1000 -Instruction Set

PACSEL
Macro
Reference
(Cont.)

CONFIGURE
Instruction Type: PROGCNTL

Operation: Set bits in the mode register

Syntax: [label:] CONFIGURE [pI] ... [plO] [,CPU] [, OUTCNTL] ;

Description:
Set specified bits in the Mode Register. The arguments p1 ... p10 must all come from Set 1,
or all from Set 2:

Set 1 Set 2

ACEN FINRST
ADOE 100
BCEN 101

FIIR 1023

FIRST 104
HADOE 105
HDOE 106

INTR IP7

SIO PCC

CONFIGURE should generally be used only once, during initialization.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the
same cycle.

Example 1:

C:ONFIGURE INTR ADOE 1* interrupt mode, ADOE controlled
externally *1

DISABLE
Instruction Type: PROGCNTL

Operation: Disable specified interrupts

Syntax: [label:] DISABLE [int#] ... [int#] [,CPU] [, OUTCNTL] ;

Description:
Disable the listed interrupts. The values

INTO INTI INT2 INT3 INT4 INTS INT6 INT7

may be listed in any order. This instruction sets mask bits in the Interrupt Mask Register.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: ENABLE

Example 1:

1* shut off software interrupt: INT4 always active *1
DISABLE INT4;

Example 2:

1* disable selected interrupts; note lack of order *1
DISABLE INT7 INT3 INT4 INTS INTO;

-------------------------------------~~~------------------------------------
3-72

I'ACSEL
Macro
Reference
(Con'.)

PACt_ -lnstructiDn Set

ENABLE
Instruction Type: PROGCNTL

Operation: Enable specified interrupts

Syntax: [label:] ENABLE [intll] ... [intll] [,CPU] [, OUTCNTL] ;

DescrlptiDn:
Enable the listed interrupts. The values

INTO INTl INT2 INT3 INT4 INT5 INT6 INT7

may be listed in any order. This instruction clears mask bits in the Interrupt Mask Register.

If Interrupt 4 is enabled, PAC1000 Peripheral Controller will immediately process an
Interrupt 4, since this interrupt is always active.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: DISABLE

Example 1:

/* execute a software interrupt: INT4 always active */
ENABLE INT4;

Example 2:

/* enable all interrupts; note lack of order */
ENABLE INT7 INT6 INT3 INT4 INT5 INT2 INT2 INTO;

--------------------------~Jri--------------------------3-73

•

PAC10DD -Instruction Set

fACSEL
Macro
Reference
(Cont.)

FOR ••• ENOFOR
Instruction Type: PROGCNTL structure

Operation: Loop <count> times

Syntax: [label:] FOR count [,CPU] [, OUTCNTL]
[executed <count+1> times ;]

END FOR [,CPU] [, OUTCNTL] ;

Description:
At the head of the loop, the count is stored (in one cycle) and the loop is executed. (The
loop is always executed once, even if the count is zero.) At the conclusion of the loop body,
the count is evaluated and then decremented. If the result is greater than zero, control is
transferred to beginning of the loop body.

The maximum value for "count" is 1023 decimal.

Alternative usage: If "count" is omitted, the value computed from the CPU operation
following "FOR" is used. If this alternative is chosen, the CPU operation is mandatory.

The CPU and OUTCNTL operations following the loop count, if present, are unconditionally
executed in the same cycle. The CPU and OUTCNTL operations following ENDFOR are
not included in the loop body.

Stack effects: an implicit PUSH is performed at the FOR and a match implicit POP is done
at the ENDFOR. These extra operations support nested loops. If you branch out of the loop,
you must manage the stack explicitly by performing a POP operation.

Timing: FOR executes in one machine cycle; I::NLJt-UH generates two lines or coae-a
branch back to the beginning of the loop and a pop of the stack into the loop counter.

Example 1:

/* inefficient method of adding 47 to $1 */
FOR 47;

R1 ++ R1;
ENDFOR;

Example 2:

/* similar, with CPU and OUTCNTL */
R2 := 3;
FOR 47, R1 := R2 , OUT 2;

R1 := ++ R1;
ENDFOR, OUT 0;

Example 3:

/* similar, but count = CPU result 3 */
R2 := 3;
FOR, R1 := R2 , OUT 2;

R1 := ++ R1;
ENDFOR, OUT 0;

----------------------------~Jf;---------------------------
3-74

PACSEL
Macro
Reference
(Cont.)

PAC10D0 -Instruction Set

soro
Instruction Type: PROGCNTL

Operation: Unconditional jump

Syntax: [label:) GOTO labe12 [ON) [NOT) [condition-code)

[,CPU] [, OUTCNTL) ;

Description:
Control branches to the label 2. If the ON phrase is specified, the condition code is
evaluated, optionally inverted by NOT, and the operation occurs only if the result is TRUE.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

The Condition Codes are:

INT
Z
ACO
DOR

Example 1:

GOTO xxx;

Example 2:

BCZ
0
FIXP
CC7-CCO

GOTO xxx ON CY;

Example 3:

GOTO xxx ON NOT CY;

Example 4:

FIOR FICO
S CY
FIIR STKF

1* CY from before Rl+R3 is used: *1
GOTO xxx ON NOT CY ,Rl R2 + R3;

-------------------------------------~~Jr-------------------------------------
3-75

.~ .. ------~

•

PAC100D -lnstructlDn Sst

I'ACSEL
Macro
Reference
(Cont.)

IF. .• ELSE .•• ENDIF
Instruction Type: PROGCNTL structure

Operation: Conditional Branch

Syntax:

[label:] IF [NOT] condition-code [,CPU] [, OUTCNTL] ;

[executed if condition true ;]

[ELSE] [,CPU] [,OUTCNTL]; , [executed if condition false ;]

ENDIF [,CPU] [, OUTCNTL] ;

or

[label:] IF argl <relational op> arg2 [,CPU] [, OUTCNTL] ;

[executed if condition true ;]

[ELSE] [,CPU] [,OUTCNTL];

[executed if condition false ;]

ENDIF [,CPU] [, OUTCNTL] ;

DesCllptiDn:
The condition-code is evaluated, and optionally inverted by the NOT keyword. If the result is
TRUE, the IF portion is executed. Otherwise the ELSE portion is executed, if it is present. If
It IS not present, control passes to me ENUii=.

The CPU and OUTCNTL operations following the condition code, if present, are
unconditionally executed in the same cycle.

The CPU and OUTCNTL operations following the ELSE are executed only if the ELSE
phrase is selected. These are performed in an extra cycle inserted for the purpose. The
CPU and OUTCNTL operations following the ENDIF, if present, are always executed.

This structure may be nested to a maximum depth of 15. Each IF must be terminated with a
matching ENDIF.

The Condition Codes are:

INT
Z
ACO
DOR

BCZ
o
FIXP
CC7-CCO

FIOR
S
FIIR

FICO
CY
STKF

In the second form of this instruction, one of the relational operators

or
!=

is specified to test equality or inequality of two arguments. In this form, arg1 and arg2 may
be any of the following:

RO ... R31 ACH ACL BC AIR IIR DIR AOR SWPV a constant

If this form is used, 2 machine cycles are required for execution of the IF instruction.

------------------------------~JrAr-----------------------------
3-76

PACSEL
Macro
Reference
(Cont.)

PAC1000 -Instruction Set

IF. .. ELSE ... ENDIF (Cont.)

Example 1:

IF ACO;
ACO R25;

/* if Address Counter all ones */
/* relaod with contents of R25 */

ENDIF;

Example 2:

/* similar, with ... */
IF CY , R25 :~ R23, OUT h'O';

BC :~ R25;
ENDIF;

Example 3:

/* similar, with ELSE phrase */
IF Z;

ACO
ELSE;

AOR
ENDIF;

Example 4:

R25;

++ R25;

/* similar, with ... */
IF Z , R25 :~ R23, OUT h'O';
R20 : + R25;
ELSE;

R26 ++ R25;
ENDIF;

Example 5:

/* logically same as example4 */

/* CPU and OUTCNTL */

/* CPU and OUTCNTL */

IF NOT ACO ,R25 R25, OUT h'O';
R26 : ~ ++ R25;

ELSE;
R20 R25;

ENDIF;

---,JrAf~~---
~.E'!!F 3-77

PAC1000 -Instruction Set

PACSEL
Macro
Reference
(Cont.)

INPUT
I nstruction Type: PROGCNTL

Operation: Set I/O port pin mode to input

Syntax: [label:] INPUT [PIN#] ... [pin#] [,CPU] [,OUTCNTL] ;

Description:
Set the listed I/O port pins to inputs. The pins

100 101 102 103 104 105 106 107

may be listed in any order.

This instruction resets bits in the I/O Configuration Register.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: OUTPUT

Example 1:

INPUT 103 107 104; /* set these pins to inputs */

OUT
Instruction Type: OUTCNTL

Operation: Output control (F) value

Syntax: [label:] [PROGCNTL,] [CPU,] OUT constant;

Description:
OUT directs the device to place the specified constant value on the Control outputs.

The value specified is placed on the 16 bit (user) output lines during the instruction cycle
which includes this operation. The constant is usually specified directly as a hex value in
the range

a <= constant <= h'FFFF'

or the value may be evaluated as an expression. The value is determined at assembly time;
there is no way of computing an OUT value at run time.

The value may be formed from 2 up to 16 constants, or values that evaluate to constants. In
this case, all the values are bitwise OR'd to produce the output value. The OR operator in
this case is implied.

When an OUTCNTL operation is omitted from an instruction, the assembler will provide a
default OUT value equal to that most previously specified. (If no OUT operations occur in a
module, the assembler will use 0.) Thus OUT defaults are maintained in order of assembly,
not order of execution.

Example 1:

OUT 59;

Example 2:

xxx equ 45
GOTO E2 , OUT xxx;

-------------------------------------~~~------------------------------------
3-78

PACSEL
Macro
Reference
(ConI.)

PAC1000 -Instruction Set

LDADSP
Instruction Type: PROGCNTL

Operation: Load Breakpoint

Syntax: [label:] LOADBP constant/label <,CPU> <,OUTCNTL>;

Description:
Load the Breakpoint Register with the specified constant or address value. The value may
be a number or a symbol. The maximum value is 1023 decimal.

Alternative usage: If "constant" is omitted, the value computed from the CPU operation
following "LOADBP" is used. If this alternative is chosen, the CPU operation is mandatory.

The CPU and OUTCNTL operations, if present, are executed in the same cycle.

Example 1:

LOADBP h'200';

Example 2:

LOADBP , R3 .- Rl + ACH; /* BP Rl + ACH */

OUTPUT
Instruction Type: PROGCNTL

Operation: Set I/O port pin mode to output

Syntax: [label:] OUTPUT [pin#] ... [pin#] [,CPU] [, OUTCNTL] ;

Description:
Set the listed I/O port pins to outputs. The pins

100 101 102 103 104 105 106 107

may be listed in any order.

ThiS Instruction sets bits In the I/O ConfiguratIOn Register.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the
same cycle.

See also: INPUT

Example 1:

OUTPUT 103 102 104; /* set these pins to outputs */

-------------------------------------~~~-------------------------------------
3-79

•

PAC1000 -Instruction Set

PACSEL
Macro
Reference
(Cont.)

PSWITCH ... PRIORITY
Instruction
Type: PROGCNTL structure

Operation: Prioritized eightway branch

Syntax: [label:] PSWITCH [,CPU] [, OUTCNTL] ;
PRIORITY n, [PROGCNTL] [,CPU] [, OUTCNTL] ;
PRIORITY m, [PROGCNTL] [,CPU] [, OUTCNTL] ;
... [up to 8 branches total]

ENDPSWITCH [,CPU] [, OUTCNTL] ;

Description:
The current interrupt status is evaluated. If no interrupt source is active, then the program
branches to the ENDPSWITCH location.

If one interrupt is active, the program branches to the corresponding case. If more than
one is active, the program branches to highest priority case.

If a case does not include a jump operation, the next sequential case will be executed.
Ordinarily, then, each case will contain a jump.

This operation is effective only if the INTR bit of the MODE register is clear. Otherwise, the
interrupts will be processed by the normal interrupt vector mechanism. This structure is
useful in systems where interrupts are not used but in which prioritization of polled inputs is
important.

The CPU and OUTCNTL operations following the PSWITCH, if present, are unconditionally
executed in the same cycle. The CPU and OUTCNTL operations following the
ENDPSWITCH, if present, are unconditionally executed if control reaches the
r-1o.1 r"'\t"'HAfI"T"_. I
L-I"IIUI vVVII\J11.

Example 1:

PSWITCH
PRIORITY 0, GOTO PINTO; /* process into 0 */
PRIORITY 1, GOTO PINT1; /* process into */
PRIORITY 2, GOTO PINT2; /* process into 2 */
PRIORITY 3, GOTO PINT3; /* process into 3 */
PRIORITY 4, GOTO PINT4; /* process into 4 */
PRIORITY 5, GOTO PINT5; /* process into 5 */
PRIORITY 6, GOTO PINT6; /* process into 6 */
PRIORITY 7, GOTO PINT7; /* process into 7 */

ENDPSWITCH;
PINTO: /* framework for each routine */

JMP NEXT; /* original entry via PSWITCH */

---------------------------------------~~Ar--------------------------------------
3-80

PACSEL
MaCrD
Reference
(CDnt.)

RESET
Instruction Type: PROGCNTL

Operation: Reset bits in the Control Register

Syntax: [label:] RESET [PL] ... [PIO]

Description:
Reset specified bits in the Control Register. The parameters

ACEN
HDSELI

BCEN
HDSELO

may be listed in any order.

HDOE
DIREN

HADOE
AIREN

PAC1_ -lnstructiDn Set

[,CPU]

ADOE
ASEL

[, OUTCNTL] ;

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: SET

Example 1:

RESET HDSELO DIREN ASEL;

RETURN
Instruction
Type: PROGCNTL

Operation: Return from subroutine

Syntax: [label:] RETURN [ON]
[, OUTCNTL] ;

Description:

[NOT] [condition-code] [,CPU]

Control is returned to the code following the most recent CALL. If the ON phrase is
specified, the condition code is evaluated, optionally inverted by NOT, and the return
occurs only if the result is TRUE.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

The Condition Codes are:
INT BCZ
Z 0
ACO FIXP
DOR CC7-CCO

Example 1:

CALL XXX;
XXX: IF BCZ;

RETURN;
ELSE;

ENDIF:
CALL XXX;

Example 2:

Rl := ++ Rl;
RETURN;

CALL YYY;

YYY: RETURN ON BCZ
Rl := ++ Rl;
RETURN;

FIOR
S
FIIR

FICO
CY
STKF

1* logically the same as Example 1 *1

--------------------------~Jr;--------------------------3-81

•

PAC1DDO -lnstructiDn Set

PACSE!
Macro
Reference
(Cont.)

SET
Instruction Type: PROGCNTL

Operation: Set bits in the Control Register

Syntax: [label:] SET [pl] ... [plO]

Description:
Set specified bits in the Control Register. The parameters

ACEN
HDSELl

BCEN
HDSELO

may be listed in any order.

HDOE
DIREN

HADOE
AIREN

[,CPU]

ADOE
ASEL

[, OUTCNTL] ;

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: RESET

Example 1:
SET HDSELO DIREN ASEL;

-------------------------------------~~~------------------------------------
3-82

PACSEL
Macro
Reference
(Con'.)

PAC1000 -lnstructiDn Set

SWITCH •.• CASE
Instruction
Type: PROGCNTL structure

Operation: Multiway branch

Syntax: [label:] SWITCH casegroup [,CPU] [, OUTCNTL] ;
case n, [, PROGCNTL] [,CPU] [, OUTCNTL] ;
case ro, [PROGCNTL] [,CPU] [, OUTCNTL] ;

... [up to 16 cases total]
ENDSWITCH [,CPU] [, OUTCNTL] ;

Description:
The value of the specified Case Group (CGO, CG1, CG2, or CG3) is used to branch control
to one of up to 16 specified cases. The value of case ~erators (n;m, ...) are numbers or
constants between 0 and 15, in any order. .

If a case does not include a jump operation, the next sequential case will be executed.
Ordinarily, then, each case will contain a jump.

The Case Groups are:

'CGO' = [CC3, CC2, CC1 , CCO)
'CG1' = [CC7, CC6, CC5, CC4)
'CG2' = [INTR, BCZ, FIOR, FICO)
'CG3' = [Z, 0, S, CY)

The CPU and OUTCNTL operations following the case group, if present, are
unconditionally executed in the same cycle. The CPU and OUTCNTL operations following
the ENDSWITCH, if present, are unconditionally executed if control reaches the

. ENDSWITCH.

Example 1:

SWITCH CG2 , OUT h'FFFF'; /* output marker */

CASE 00, GOTO NEXT, OUT 0 ; /* output CG value ... */

CASE 01, GOTO NEXT, OUT 1;

CASE 02, GOTO NEXT, OUT 2;

CASE 03, GOTO NEXT, OUT 3;

CASE 04, GOTO NEXT, OUT 4;

CASE 05, GOTO NEXT, OUT 5;

CASE 06, GOTO NEXT, OUT 6;

CASE 07, GOTO NEXT, OUT 7;

CASE 08, GOTO NEXT, OUT 8;

CASE 09, GOTO NEXT, OUT 9;

CASE 10, GOTO NEXT, OUT 10;

CASE 11, GOTO NEXT, OUT 11;

CASE 12, GOTO NEXT, OUT 12;

CASE 13, GOTO NEXT, OUT 13;

CASE 14, GOTO NEXT, OUT 14;

CASE 15, GOTO NEXT, OUT 15;

NEXT: ENDSWITCH, OUT 16; /*output end marker*/

-------------------------------------~~Jr-------------------------------------
3-83

•

PAC1000 -lnstructloR Set

PACSEL
Macro
Reference
(Cont.)

WHILE .•. ENDWHILE
Instruction
Type: PROGCNTL structure

Operation: Conditional Loop

Syntax: [label:] WHILE [NOT] condition-code [,CPU] [, OUTCNTL] ;
[executed while condition true ;]

ENDWHILE [,CPU] [, OUTCNTL] ;

Description:
The condition-code is evaluated, and optionally inverted by the NOT keyword. The
statements inside the structure are executed only if the result is TRUE. Otherwise control
passes immediately to the code following ENDWHILE. The loop body will not be executed at
a" if the condition is initially FALSE.

The CPU and OUTCNTL operations following the condition code, if present, are
unconditionally executed in the same cycle. The CPU and OUTCNTL operations following
ENDWHILE are logica"y included in the loop body. These will not be executed when the
condition is or becomes false.

The Condition Codes are:

INT BCZ FIOR FICD
Z 0 S CY
ACO FIXP F"R STKF
DOR ,...,...~ ro,r-n __ I __ v

This structure may be nested to a maximum depth of 15. Each WHILE must be terminated
with a matching ENDWHILE.

Example 1:

OUT h'FFFF';
WHILE NOT BCZ ,

OUT 0;
ENDWHILE;
OUT h'FFFF' ;

Example 2:

OUT h'FFFF' ;

1* output all ones *1

1* output 0 until Block Counter zero, *1

1* then output all ones *1

1* output all ones *1
WHILE NOT BCZ , OUT h'A5A5';
OUT 0;

1* insert 1 cycle of A5A5 *1
1* output 0 until Block Counter
zero, *1

ENDWHILE;
OUT h'FFFF'; 1* then output all ones *1

-------------------------~Jr;-------------------------3-84

===::E --- ~ --- --I' ~~------------~~ -

PAC1000 Application Notes •

-~ -"~ ---- "--~~"~---- ---" ~---"-~~

PAC1000
Application
Notes

Section Index

Application Note 005 PAC1000 as a High-Speed Four-Channel
DMA Controller4-1

Application Brief 006 PAC 1 000 as a 16 Bi-Directional Serial
Channel Controller4-33

Application Brief 007 Hardware Interfacing the PAC 1 000 as a
Micro Channel Bus Controller .. .4-37

Application Note 008 PAC1000 Programmable Peripheral Controller
with a Built-In Self Test Capability .. .4-43

Application Note 009 In-Circuit Debugging for the PAC1000
Programmable Peripheral Controller .. .4-51

Application Note 010 PAC 1 000 Introduction .. .4-67

Application Note 012 Testing 8 Dual-Port RAM Memories with the
PAC1000 Programmable Peripheral Controller.4-93

For additional information,
Call 800-TEAM-WSI (800-832-6974).

In California, Call 800-562-6363

Abstract

Introduction

Programmable Peripheral
Application Note 005
PAC1000 as a High-Speed
Four-Channel OMA Controller By Arye Ziklik and Kiran Buch

The objective of this Application Note is to
demonstrate the use of the PAC 1000
Programmable Peripheral Controller in a
typical high performance application. The
text describes an implementation of a
generic four-channel DMA controller
that supports transfer rates of up to
16 Mbyte/sec (8 Mword/sec) in 16-bit data­
bus environments.

A DMA (Direct Memory Access) controller
coordinates fast data transfers between
peripheral devices and the system memory.
All possible transfer combinations might
occur: device to device, device to memory
or memory to memory. By taking care of
these high-speed transfers, the host
computer (typically a Microprocessor) is
off-loaded from these time-consuming
tasks and can execute other operations
concurrently, on its local bus.

We refer to peripherals such as FIFOs,
video, communication, graphics or serial
channel controllers, latches, ports, etc., as
devices in this text. The distinction between
memory and device is that a memory needs
an explicit address in order to specify a
byte or a word, whereas a device requires
only strobes (such as: RD, WR, CS)
combined sometimes with additional hand­
shaking signals for data accessing.

The PAC1000 is a perfect match for most
DMA applications. Its unique structure,
shown in Figure 1 and Figure 2, allows the
user to execute three independent
instructions in one cycle. The ability of the
PAC1000 to perform three different tasks
concurrently (Control, Output and CPU) is
fully exploited here, thereby speeding-up
DMA transfers.

For example, during DMA operations, the
control section checks for the block-count
termination, the output control section
generates RD and WR strobes, and the
CPU calculates and produces the next
address. All these activities occur
simultaneously during the same clock
cycle(!).

This Application Note covers the
terminology of DMA operations as well as
an implementation description. The readers
will be able to use this article as a get­
started tutorial that shows how to configure
the PAC 1000 for any specific task.

Unlike most other available DMA
controllers, the PAC 1 000 is a
programmable peripheral controller. It may
be easily modified by reprogramming to
support various DMA schemes.

Figure 3 illustrates a typical system
configuration using the PAC1000 as a DMA
controller. The host controls the system bus
as well as its local bus (not shown here). It
can also access the memories, the devices
as well as the PAC1000 via the system bus.
It does so by driving the Address, Control
and Data buses.

Initially the PAC1000 is in the slave mode,
waiting for host messages. Once the host
begins a channel initialization phase by
writing into the PAC1000's FIFO, a DMA
operation will start. In that phase, the host
instructs the PAC1000 of the required DMA
transfer. The PAC1000 then decodes the
transfer type and optimizes it internally to
perform at the fastest rate the surrounding
hardware allows. At this point the PAC1000
requests the system bus from the bus
arbiter. When the bus is granted to the
PAC 1 000, it becomes the Bus Master,
driving the address, data and control buses.

If the DMA operation is fully completed, or
a higher priority transfer is pending, or the
host or active devices abort the transfer, a
DMA transfer can be successfully
terminated or suspended, respectively.
In all of these cases, system control is
returned to the host and the PAC1000
re-enters to Slave Mode.

4-1

•

PAC1000 - Application Note 005

Figure 1.
PAC1000
Programmable
Peripheral
Controller
Block Diagram

I

ClK

~ ~

CONFIGURATION REGISTERS I
I CONTROL 11/0 CONFIGURATION I MODE I 1

~
DATA INPUT 1

~
l

BREAKPOINT REG I--

SEQUENCER

I LOOP CNTR I 1K x 64
1-- PROGRAM

I PROGRAM CNTR I MEMORY

I 1S-LEVEL I
STACK

S!OUTPUT

t I ~~~~ ~0':!~ I

TEST LOGIC! INTERRUPT

CC(7:0) INT(3:0) OUTCNTL(15:0)

cs lID WR HD HAD
(15:0) (5:0)

HOST INTERFACE 1

• t
* DATA OUTPUT 1 1 COMMAND/DATA FIFO 1

32 x 16
REGISTER

FilE

Q REGISTER

"~ -I ALU

1-1 ADDRESS COUNTER I----

I
H BLOCK COUNTER 1

• • I/O SPECIAL I r ADDRESS/DATA FUNCTION
PORT

PORT

+ +
+ T

1/0(7:0) ADD(15:0)

---~~~~--
4-2

Figure 2.
Single Cycle
Control
Architecture

Transfer Modes

PAC1000 - Application Note 005

HOST INTERFACE

CONDITION
CODES

(8 LINES)

INTERRUPTS
(4 LINES)

NEXT r----L~~~ ... J INSTRUCTION

DEFINITION

ClK ----,---,----
CONTROL I OUTPUT I CPU

I I

(20 LINES)
OC(1S:0)

Important Features:
• One cycle per instruction .

CPU OPERATION
DEFINITION

• 16 MHz instruction execution rate.

(28 LINES)
cPU

t
1/0(70) ADD(1S'0)

• Every instruction executes 3 parallel operations (Control, Output, CPU) .

There are two transfer modes: Fly-by and
Dual cycle.

Fly-by is the fastest transfer mode (refer to
Figure 4). Transfers can be carried out at a
rate of up to 8 Mword/sec provided that the
PAC1000 uses a 16-MHz clock. In this
application note, Fly-by can only be used
between memory and device if they share
the same data-bus path (either 8 or 16 bits).

The fly-by operation is initiated by a
DMARQ from the device. The PAC1000
explicitly addresses the memory, while
sending the RD strobe to the source side
and the WR strobe to the destination side.
It also acknowledges the deVice with the
DMACK signal that serves as the device's
CS signal. Data is then directly transferred
from the source to the destination in one
bus cycle.

Double-cycle is a transfer mode comprised
of two bus cycles. It takes place whenever
one of the following DMA combinations is
specified (refer to Figure 5):

Cl Memory to/from device that is not
connected to the same part of the
data-bus.

Cl Memory to Memory transfers (require the
generation of two different explicit
addresses).

Cl Device to Device transfers (with simple
additional hardware it might be easily
upgraded to support the Fly-by mode,
too).

Once the transfer has started, the PAC1000
reads an operand from the source on the
first bus-cycle, processes it, and then writes
that operand on the second bus cycle into
the destination.

The READY signal enables the PAC1000 to
synchronize its operations with slow
memories or devices (whenever they are
explicitly addressed). READY is an active­
high signal, derived from the address
decoder. It is driven low as long as the
addressed memory or device is not ready to
finish the current bus-cycle.

---------------------------------------~~~~--------------------------------------
4-3

•

PAC1000 - Application Note 005

Figure 3.
System Block
Diagram

Figure 4.
Fly·by DMA
Transfer

Figure 5.
Double Cycle
DMA Transfer:­
Memory to Device

FIRST TRANSFER CYCLE

SECOND TRANSFER CYCLE

4-4

OMARa
AND

DMACK

DEVICES

DATA BUS

~~;;

I ADDRESS ij li
I I READY II

PAC1000
DMA

CONTROLLER

Figure 5. (Cont.)
Double Cycle
DMA Transfer­
Memory to
Memory

Figure 5. (Cont.)
Double Cycle
DMA Transfer­
Device to Device

MEMORY
OR

DEVICE

MEMORY
OR

DEVICE

iT

DEVICE

T 1

PAC1000 - Application Note 005

DATA

IJ
ADDRESS

~J
PAC1DDD

1 :EADY

DMA MEMORY
CONTROLLER

I AD i
FIRST TRANSFER CYCLE

~ PAC1DDD
DMA

CONTROLLER

WR
I I

ADDRESS

DATA

SECOND TRANSFER CYCLE

DATA

OMARa

PAC1DDD I"
DMA DMACK DEVICE

CONTROLLER f---------

AD i
FIRST TRANSFER CYCLE

~ PAC1DDD

I~
DMA

CONTROLLER

- j WR

DATA

SECOND TRANSFER CYCLE

-----------------------------------~~~~-----------------------------------
4-5

•

PAC1000 - Application Note 005

Request Modes

Table 1.
Summary of
Transfer and
Request Modes

Functional
Description

Requests may be externally generated by a
device or internally created by the auto­
request mechanism of the PAC 1 000,
whenever a memory to memory transfer is
performed. Auto-requests are always
pending so that the PAC1000 can work at
its maximum speed, provided that the
memories are always ready. Otherwise, the
PAC1000 adapts itself to the READY signal.

External requests may be of either the
block-type or of the single-operand transfer
mode. Block-type transfers are provided for
high-speed devices that are capable of
meeting the speed rate of the PAC 1 000.
DMARQ is asserted at the beginning of the
block transfer and remains so as long as
the transfer is in process. Single-operand

Transfer Type

transfers are used by slow devices. They
toggle on and off the DMARQ. Each
individual transfer is indicated by an active
high DMARQ level. When the transfer is
completed, DMARQ is held low until the
device is ready for the next transfer cycle,
and so on.

Some important observations:

Q Memory to device (or device to memory)
transfers will begin only after an external
DMARQ is asserted by the device.

Q Synchronization with the memory is
always achieved via the Ready signal.

Table 1 briefly summarizes the transfer and
request options:

OMA Mode Transfer Mode

Memory to Memory Two Bus-cycles Block

Memory to Device or Fly-by or Block or
Device to Memory Two Bus-Cycles Single Operand

Device to Device Two Bus-Cycles
Block or
Single Operand

General:
Figure 6 contains the circuit diagram. Refer
also to Appendix 1 for the Pin Description
Table. The PAC1000 is configured in this
application as a four-channel DMA controller.
This means that it can handle up to four
DMA transfers concurrently, on a prioritized
basis. Each of the channels can be anyone
of the above-mentioned DMA transfer types.
The maximum transfer rate is accomplished
during Fly-by transfers with rates approaching
8 Mword/sec for word transfers or 8
Mbyte/sec for byte transfers. Double-cycle
transfer modes achieve a rate of up to 4
Mword/sec (in word transfers) or 4
Mbyte/sec (in byte transfers). The only
exception to this is the Memory to Memory
transfer mode which is a little bit slower due
to the internal creation of two different 24-
bit addresses.

The PAC1000 drives 24 address lines and
handles a 16-bit data bus, so it is well tuned
for most common high-performance buses
or Microprocessors. The maximum operand
block-size is 64K (in accordance with
VMEbus specs, for example).

Host·PAC1000 Communication:
DMA specifications are programmed into
the PAC1000 by the host, according to the
message format of Appendix 2. The host
writes eight words into the PAC1000's FIFO.
The command message fully specifies one
of the four possible channels that can be
active at the same time. Word 1 defines the
transfer characteristics of the DMA
operation: transfer type, data bus width,
device numbers (redundant in Memory to
Memory operations), channel-priority and
transfer mode. Bit 12 in that word serves as
a software abort-command bit. When set, it
instructs the DMA controller to cease the
transfers of the channel specified in that
command buffer.

The low-order byte of word 7 is a DMA­
transfer identification number. It assigns a
serial number to a DMA process. Whenever
the PAC1000 sends a status message to the
host, that number is also included in order
to unambiguously identify the process that
has either normally terminated or abnormally
aborted (by an external device or due to a
PAC1000 exception).

---------------------------------------~~~~--------------------------------------
4-6

Functional
Description
(Cont.)

Figure 6.
PAC1000
Configured as
a Generic
High-Speed
DMA Controller

PAC1000 - Application Note 005

#3 DMARQ3
#2 DMARQ2

#1 DMARQl
#0 DMARQO

DEVICE
HOST
INTERFACE

DATA BUS D(15:0)

CS#3------'

CS#2 -----1"'

CS#I------~~

cs#o ------1-t4-

ADD BUS
MEMORY

Rll----t+t1--r---*-i"i==t=l::>
ADD BUS -A(23:0), BHE

WR--~~~=t=;~~-r~~~~~---­
CSMEM------+-+~~4-~~~_t-t~f-~~~~~~--~

DATA BUS D(15:0)

•

BUSMSTR
000

OC2 W 110) ..01. HD(15:0)

A(23:22)
CSPAC 10(5:4)

PAC1000 ADD(15:0)
A(21:6)

BR A(5:0)
HAD(5:0) OCI

HOSTINTR 000 000 0
000 000 Q AO "' '" _0

lK
Vee

RSPAC

ClK

BG Mf II I
c '"

» c c
til
c:
en
»
'N ..
§§

~1

rJr.~E, ___________________ ~
--------------------fHll 4-7

---------- .. __ .

•

PAC1000 - Application Note 005

Functional
Description
(Cont.)

Several fields in the command buffer are
optional. For instance, in transfers where
devices are involved, one can still specify
the explicit addresses of the source and the
destination even though it has already been
defined by the command word's device­
number field (Appendix 2 - command word
format). This feature allows the programmer
to define the device interface with either
explicit or implicit address.

Whenever the PAC1000 has to inform the
host of an important event, it prepares a
status word in its DOR (Data Output
Register), enters the slave mode and
interrupts the host by raising the HOSTINTR
line. The possible messages are:

r:J Reject the Command buffer with the
specified identification number because
of internal discrepancies or illegal
combinations.

r:J Propagate a Hardware DMA abort,
generated by the source or the
destination of the current transfer.

r:J Signal a PAC1000 exception. The host is
capable of reading the PAC1000's SR
register in order to find out the cause.

r:J An end-of-count message. This transfer
has been normally terminated.

Initial State and Slave Mode:
After a reset (either a power-on reset or a
reset through the RSPAC line driven from
the host side), the PAC1000 enters its initial
state, which is the Slave Mode. Table 2
describes the signal states during the Slave
Mode. The PAC1000 monitors its internal
FIIR flag (FIFO Input Ready) and when it is
not set, the FIFO is full with a new command
buffer written by the host. The PAC1000
decodes the message and acts accordingly.
If it is a memory to memory transfer, then it
immediately requests the bus. When one or
two devices participate in a transfer
operation, the PAC1000 monitors the
corresponding DMARO lines to determine
when to issue a bus request to the arbiter.
The PAC1000 requests the bus by lowering
BA. Then it waits for BG to go low in order
to switch to the Master Mode.

Master Mode:
Upon gaining mastership, the PAC1000
drives the HOSTINTR signal low and
BUSMSTR high. BUSMSTR remains high
(active) as long as the PAC1000 remains

master of the system bus, thereby enabling
ROM and WRM to RD and WR, respectively.
BR is set high (= not active). According to
the required DMA operation, the PAC1000
drives the appropriate address and data
lines, and the ROM, WRM and DMACK
signals.

DMA transfers may be successfully ended
(when the terminal-count expires) or aborted.
Abortion can emanate either from an
external DMABT Signal that is driven by one
of the DMA participants, or from an internal
exception recognized by the PAC 1 000.
Whenever one of the above events occur,
the PAC1000 changes its mode to the Slave
mode, writes a status word into the DOR
register (discussed previously) and raises
the HOSTINTR line to cause the host to
read that information through its own
Interrupt routine.

Releasing and resuming bus control:
The host is allocated a higher priority than
the PAC1000 by the bus arbiter. This is
done In order to enable the host to suspend
DMA transfers whenever it needs the bus.
Each time the host accesses an address
that resides within the system bus domain
(inClUDing me \j:::,t"'A\j addreSS), me bus Will
be granted. If the PAC1000 is the current
master (as reflected by BUSMSTR), the bus
arbiter will negate BG (high level). The
PAC1000 monitors this line while it is a bus
Master and consequently will relinquish the
bus and return to the slave mode. The host
might use the bus for programming the
PAC1000 With a new DMA channel. Upon
completion of the host activities over the
system bus (BG becomes high), the PAC1000
checks whether DMA transfers are still
pending. If this is the case, it will request
the bus. When the bus is granted, it will
determine whether to continue the
suspended transfer or to start a higher
priority pending-DMA request. If it starts a
higher priority transfer, then the suspended
operation will be resumed after the
completion of the higher priority transfer.

DMAWORD is set low during word transfers
and high during byte transfers. It is used to
derive the BHE strobe, as displayed in
Figure 6. The most efficient transfer method
is the word transfer mode. In order to use it,
the specified addresses must be even,
otherwise the PAC1000 will perform only in
the byte transfer mode regardless of the
command word content.

___________________________________ r~~a.~ ________________________________ __
4-8 =""'="~~

Functional
Description
(Cont.)

Table 2.
Signal States
During the
Slave Mode

Hardware
Considerations

PACtOOO - Application Note 005

PAC1000 Signal Names Function Signal States
ADD(15:0) A(21:6) Float

HAD(5:0) A(5:0) Input

10(5:4) A(23:22) Float

OC6,OC5 FBRW2, FBRW1 0, 0 - Normal Operation

OC4,OC3 ROM, WRM Don't Care

10(3:0) DMACK (3:0) 1,1,1,1 - Normal Operation

OC2 BUSMSTR o - Non-active

OC1 BR 1 - Non-active

OCO HOSTINTR o - Non-active

OC7 DMAWORD Don't Care

HD(15:0) 0(15:0)

Figure 6 is the detailed schematic diagram.
The host side is beyond the scope of this
paper since it is application dependent. In
addition to the PAC1000, there are a few
standard glue-logic chips used to interface
with the memory and the four devices.

Throughout the following description It is
assumed that the glue-logic components
belong to the HC family. However, since the
PAC1000 is a fully TTL compatible device
implemented in CMOS technology, the
reader can use other glue-logic families like:
LSTTL, HCT, etc.

The HC374 latch is gated into the condition
code inputs by the PAC1000's clock, thus
ensuring that the CC7-CCO lines will meet
the set-up time requirements.

The three-state buffers controlled by
BUSMSTR, are part of a HC126 chip. They
are used to float the PAC1000's BHE, ROM,
WRM control lines during slave operations,
because at that time these signals are
driven by the host.

The four AND-Gates amount to one HC08
chip. They enable either the host side
(during Slave operations) or the PAC1000 (in
the Master Mode) to drive the appropriate
device CS signals.

Input

The four OR-Gates comprise together one
HC32 Chip. They are used during Fly-by
operations to avoid CE, RD, WR from
reaching the selected devices and memories
concurrently (for functional explanation,
refer to the Pin Description Table, Appendix 1).

Prior to the setting of BG in the active
position (low), the arbiter floats the data bus
0(15:0), address bus A(23:0) and BHE, RD
and WR from the host side. As long as
BUSMSTR remains high, these lines are
driven by the PAC 1 000.

The six chip select lines from the host side
(CS#3 - CS#O, CSMEM and CSPAC) are
derived from the system address decode
block, as illustrated in Figure 6. During the
time that the PAC1000 is the bus master,
the address decode block (shown in Figure 3)
is driven by the PAC1000's address lines.
Therefore, the PAC1000 can access
memories and devices In the same manner
the host does.

The DMACK3-DMACKO signals provide the
PAC1000 with an alternative chip select
generation method to the devices. It is
considerably faster than the host's method,
since there is no need to generate explicit
device addresses inside the PAC1000.

ir •• "E
-------------------------------------~.,Jf----------------------------------4---9

•

PAC1000 - Application Note 005

Hardware
Considerations
(Cont.)

PAC1000 Internal
Resources Usage

Software
Considerations

Conclusion

In this application note, it is assumed that
the READY signal is produced by the
address decoder. However, if a device or
memory can generate the READY signal
independent of the decoder, the system
designer can connect it with a Three-state
buffer so that it will drive the READY input
whenever it is chip-selected.

The host programmer is free to choose
whether to synchronize the PAC1000 with
slow devices via single operand transfers or
through the READY mechanism. READY is

Using PAC1000 as a 4-channel DMA
controller utilizes most of the resources
available on the chip, shown in Figure 1.

The Host microprocessor uses the FIFO to
program the DMA request in to PAC1000.
Internal condition codes are used to monitor
FIFO status, CPU operation flags and external
condition code inputs are used to monitor
situations like bus-grant, DMA requests by
the devices, etc. The CPU registers are
used to store source and destination
addresses, device numbers and other
relevant information about the DMA
transfers in orogress.

To achieve the fastest transfer rate possible
with PAC 1 000, address generation and
block size counting are achieved by
different methods depending on the type of

All the algorithms described so far are
internally realized by Software. Flowcharts
and partial code implementation (of all the
important transfer procedures referred to in
the flowcharts) can be found in Appendix 3
and Appendix 4, respectively. Both flowcharts

PAC1000 is perfectly suitable for any DMA
transfers which require an intelligent processor
that can adapt its data handling according
to the changing requirements of its interface.
The PAC1000 does so by properly exploiting
its unique structure of a very high speed
sequencer combined with a programmable

always considered when the PAC1000
generates an explicit address. The selection
between single operand transfer and
READY is done in the command word
(see Appendix 2).

As seen in Figure 6 there are several spare
pins, such as output controls, I10s, interrupts
and condition codes. These pins can be
used to perform other operations in parallel
(unrelated to the DMA controller function),
without any performance degradation of the
DMA task.

transfer. For example, for the Device-Memory
fly-by transfers, a nested loop is set up
using the loop counter and the stack for
maintaining block count and ACH and ACL
are used as independent registers for
address generation. On the other hand, for
the memory to memory transfers, Block
counter is used for counting and address
generation is done by using ACH and ACL
as 22-bit counter.

The lOR is used to output chip selects to
the devices. The OUTCTL lines are used to
generate Read and Write signals and also
I J~~rI fnr nc.nor!lotinn h~nrf_c-h~v" (">;,... 1 +
, - - - - ;;,1- -- -- --;0 ._ •• - ,,'"" ~", ~ ...

the host.

The data bus and associated CPU registers
are used to read data in and out of PAC1000
for non-fly-by transfers.

and code listings contain sufficient
explanations that let the reader understand
the subjects they describe. The attached
code listings cover all the important DMA
transfer procedures (see Appendix 4).

ALU and user configurable ports. The
PAC1000's programmability enables it to
handle complex tasks concurrently in a very
efficient manner, unlike all other existing
DMA controllers that are restricted to perform
in a predefined environment.

------------------_____________________ rs= .. ~-------------------------------------­
4-10 ="''='~ ==

Appendix 1:

Pin Descriptions

PAC1000 - Application Note 005

The PAC1000 is configured in this application
note as a generic DMA controller. It has a
separate 24-bit address (that can be easily
expanded) and a 16-bit data bus. It also has
a set of control signals to enable operation
as a bus master or a bus slave. The

following table defines the individual
PAC1000 pins. These brief descriptions are
provided for reference only. Each signal is
further detailed within the sections that
describe the associated DMA funclion. For
pin identifications refer to Figure 6.

Symbol Type Name and Function
A(23:22) 0 Address Lines A(23:22): Output the two most significant address

lines during Master operations. Tied to 10(5:4) on the PAC1000.
Float in Slave Mode.

A(21:6) 0 Address Lines A(21:6): Output the mentioned address lines only
in Master Mode. Connected to ADD(15:0) on the PAC1000. Float in
Slave operations.

A(5:0) 1/0 Address Lines A(S:O): Bidirectional address hnes. Input during
Slave operations, output In Master mode. Tied to HAD(5:0) on the
PAC1000.

FBRW2 0 Fly-by Read/Write (2:1): Enable fly-by DMA operations. In fly-by
FBRW1 0 mode, operands are transferred directly from the source to the

destination bypaSSing the DMA controller. FBRW2 and FBRW1 are
tied to OC6 and OC5, respectively.

FBRW2 FBRW1

0 0 - Normal operation.

0 1 - Enable fly-by from memory to device.

1 0 - Enable fly-by from device to memory.

1 1 -Illegal.

WR I Write: Active as an input, only In Slave Mode. When low,
HD(15:0) IS written into the PAC 1 000.

RD I Read: Active as an input, only in Slave Mode. When low,
HD(15:0) IS driven by the PAC 1 000.

WRM 0 Write-Out: Active as an output, only in Master Mode. Enabled
by BUSMSTR signal. Tied to OC4 on the PAC1000.

RDM 0 Read-Out: Active as an output, only In Master Mode. Enabled
by BUSMSTR signal. Tied to OC3 on the PAC1000.

DMACK(3:0) 0 DMA Acknowledge (3:0): 4 active low signals High In Slave
Mode. Correspond to the 4 devices shown in Figure 6
respectively. Chip select the active devices during DMA
operations. In the PAC1000 they are tied to 10(3:0) lines.

BUSMSTR 0 Bus-Master: An active high signal. Asserted whenever the
PAC1000 is the current Bus Master. Informs arbiters or hosts not
to access the bus before the PAC1000 relinquishes it. Enables
OC4 and OC3 into WR and RD, respectively. Connected to OC2
on the PAC1000.

CSPAC I PAC1000 Chip Select: ThiS pin is driven low whenever the
PAC1000 is addressed in a slave bus read or write cycle.

BR a Bus Request: The PAC1000 drives thiS pin low whenever it
requests the bus due to pending DMA requests .

• __ 4E=

-------------------------------------~.,,------------------------------------
4-11

--- -~-- -- -----------~ --------= ~_-- ---- 0--_ ~-- ------- -- - ------___ - ______ __

•

PAC1000 - Application Note 005

Appendix 1 (Cont.,

Pin Descriptions
(Cont., Symbol

HOSTINTR

ClK

CC?

CC6

CC4

CC(3:0)

DMAWORD

RSPAC

0(15:0)

Type
0

I

I

I

I

I

0

I

1/0

Name and Function
Host Interrupt: The PAC1000 interrupts the host in order to
inform him of one of the following events: PAC1000 exception,
Terminal-Count or DMA aborted by a device. The OCO line is
assigned to this signal.

Clock: 20 MHz clock input to the PAC1000. It also latches the
condition codes to ensure the proper Set-up time.

DMA Abort: An active-high input driven by the memories andlor
devices currently participating in the DMA process. Whenever it is
sensed high, the PAC1000 will generate a HOSTINTR signal towards
the host after writing Into the DOR register the appropriate status
word.

Bus Grant: An active-low signal monitored by the PAC1000 to
determine when it is in the Master mode or when to relinquish the
buses and enter the Slave Mode.

Ready: An active-high signal (ROY) that enables the PAC1000 to
synchronize its DMA cycles with slow memories or devices in the
Master Mode.

DMA Requests (3:0): External DMA requests monitored by the
P';C"'iUUU. M"'livt::-Iliyh ~iYlldi::), uriven oy Ine Tour aevlces.

DMA Word or Byte Transfers: Determines whether the next
DMA cycle will be of word (low) or byte (high) length. Used to
derive the BHE (Bus High Enable) signal that enables data lines
015:08 in the Master Mode. BlE is directly driven by the AO
address line.

Reset PAC1000: This asynchronous input initializes the state of.
PAC1000. RESET must be held low for at least two clock cycles.

Data-Bus (15:0): This is the 16-bit data bus. During Master
cycles, it is controlled and sometimes also driven by the PAC1000.
In Slave mode the host drives it. Tied to HD(15:0) on the PAC1000.

fl-.· -------------------------------------~.,jf------------------------------------
4-12

Appendix 2:
Host·OMA
Message Formats

1) Host to
PAC1000
Commands
(via the FIFO)

2) PAC1000 to
Host Status
Word (via OOR
register)

PAC1000 - Application Note 005

HAD(5:0) CONTENT

HD(15:0) CONTENT HAD5 HAD4 HAD3 HAD2 HAD1 HADO

Word 1: Command word (see paragraph 3). 0 0 0 0 0 0

Word 2: 16 low-order source address lines. 0 0 0 0 0 1

Word 3: 8 high-order source address lines. 0 0 0 0 1 0

Word 4: 16 low-order destination address lines. 0 0 0 0 1 1

Word 5: 8 high-order destination address lines. 0 0 0 1 0 0

Word 6: 16 bit block-count. 0 0 0 1 0 1

Word 7: 8 bit DMA-transfer identification byte. 0 0 0 1 1 0

Word 8: Spare. 0 0 0 1 1 1

I b15 I b14 I b13 I b12 I b11 I b10 I b09 I b081 b07 I b061 b051 b041 b031 b021 b01 I bOO I

b15, b14, b13, b12, b11 , b1 0, b9, b8: DMA-transfer identification byte.

b7,b6,b5,b4: spare.

b3: Reject or accept the DMA transfer identified by b15 .;- b8.
1 - reject.
0- accept.

b2: 1 - PAC1000 aborted.
o - Normal operation

b1: 1 - DMA terminal-count completed
o - Normal operation

bO: 1 - PAC1000 exception occurred
o - Normal operation

-----------------------------------~~~----------------------------------
4-13

II

PAC1000 - Application Note 005

Appendix 2 (Cont.)

3) Command
Word Format

!---

b15,b14: spare.

b13: block transfer or single transfer mode.
1 - DMA block operation.
o - DMA single operand transfer mode.

b12: DMA abort bit. Quits DMA-transfer specified in word 7.
1 - abort.
0- nop.

b10,b9: Priority level of this DMA-transfer.
00 - level 0 (lowest priority level).
01 - level 1 .
02 - level 2 .
03 - level 3 (highest priority level).

b9,b8: Source Device number for DMA transfer or Abort.
00 - Device #0
01 - Device #1
02 - Device #2
03 - Device #3

b7,b6: Dest. Device number for DMA transfer or Abort.
00 - Device #0
01 - Device #1
02 - Device #2
03 - Device #3

b5,b4: Destination data bus definition.
00 - Data bus is D7-DO (bit bits).
01 - Data bus is D15-D8 (8 bits).
02 - Data bus is D15-DO (16 bits).
03 - Illegal.

b3,b2: Source data bus definition.
00 - Data bus is D7-DO (8 bits).
01 - Data bus is D15-D8 (8 bits).
02 - Data bus is D15-DO (16 bits).
03 - Illegal.

b1,bO: DMA transfer mode.
00 - Memory to memory.
01 - Memory to device.
02 - Device to device.
03 - Device to memory.

-------------------------------------~~~------------------------------------
4-14

Appendix 3

Initialization

Main Loop

Legend:

PAC1000 - Application Note 005

General Note:
Code implementation of labels marked with an astensk (*) can be found in Appendix 4,

MAIN:

INITIALIZE:

SET SLAVE
MODE OUTPUTS
AND CONFIGURE
PAC1000 PORTS

1
SET ADDRESS

COUNTER TO 22
BIT MODE

1
GO TO MAIN

GO TO
ABORT_DMA

YES

oc = '001A'H
lOR = 'OF'H

TRANSFER
TO EMPTY

SLOT

GO TO
SETUP_DMA

NO

GO TO
SETUP_DMA

YES

1, Slot: The PAC1000 can handle up to 4 DMA channels concurrently, Slot means empty
register space inside the PAC1000 that IS allocated for a pending channel.

2, LCPTR branching: A goto instruction of the command section, enabling multi-way
branching of the program according to a value loaded into the LC register by the ALU
(executed in two cycles),

---~~~--
4-15

•

PAC1000 - Application Note 005

Appendix 3 (Cont.,

Setting Up
the Tl'ansier

Legend:

General
Remarks:

BLOCK TRANSFER

SOD SOM SMO BOD BOM BMO BMM

1. SOD - single operand transfer, device to device.
2. SOM - single operand transfer, device to memory.
3. SMO - single operand transfer, memory to device.
4. BOD - block transfer, device to device.
5. BOM - block transfer, device to memory.
6. BMO - block transfer, memory to device.
7. BMM - block transfer, memory to memory.

In a single operand transfer, at least one of the involved devices requests a OMA transfer for
each operand. This method is used with slow devices.

Block transfers are used to move data blocks between fast memories and/or devices. A OMA
req uest is set for every block transfer.

ii'.-~~ ---------------------------------------~~Ar--------------------------------------
4-16

Appendix 3 (Cont.)

Oevice to
Memory
Block Transfer

Legend:

BMD

(MEMORY-DEVICE)

BOM _

(DEVICE-MEMORY)

PACtOOO - Application Note 005

PUT
DEVICE NO.

IN lOR

1. B_dm_byte: block device to/from memory transfer of bytes.
2. B_dm_word: block device to/from memory transfer of words.
3. B_dm_sbyte: block device to/from memory transfer of swapped bytes. Occurs whenever

the transfer is between even and odd addresses.

---------------------------------------~~Jr--------------------------------------
4-t7

--------------------- -~~~-~ --- ----- --- ---

•

PACtOOO - Application Note 005

Appendix 3 (Cont.)

Device to Device
Block Transfer

Legend:

BOD.

j 1 B_DDiSBYTE(.)

B_DD_WORD(.)

B_DD_BYTE(.)

1. B_dd_byte: block device to device transfer of bytes.
2. B_dd_word: block device to device transfer of words.
3. B_dd_sbyte: block device to device transfer of swapped bytes. Happens whenever the

transfer is between even and odd addresses.

'11"'= ---------------------------------------~aJjr--------------------------------------

4-18

Appendix 3 (Cont.)

Memory to
Memory
Block Transfer

Legend:

BMM:

BC = BC*2

LOAD
BC

ACH,ACL

1. B_mm_byte: block memory to memory transfer of bytes.
2. B_mm_word: block memory to memory transfer of words.

PAC1000 - Application Note 005

SET BUSMSTR
RESET

HOSTINTR

NO

3. B_mm_sbyte: block memory to memory transfer of swapped bytes. Occurs whenever the
transfer is between even and odd addresses.

-------------------------~Jr;-------------------------
4-19

---~-~~-~-~~ -- -~~---~--- ~- ~~--~~----.----~--- ~~-----

•

PAC1000 Appli~ation Note 005

Appendix 3 (Cont.)

Abort DMA
Transfer

GO TO
CHECK-PEND

----------------------~Jr;'----------------------
4-20

Appendix 3 (Cont.)

Bus Re/ease

SAVE
WORKING

REGISTERS
IN THEIR SLOT

SET
BUS

REQUEST

GO TO MAIN

RELEASLBUS :

PAC1000 - Application Note 005

End of Transfer

DONE:

SET HOST
INTERRUPT

GO TO MAIN

___ rJf-~~ _______________________________________ _
w.l11

4-21

•

PAC1000 - AppllcatlDn NDte 005

Appendix 4
/**/
/* device to memory byte transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q • Assume that the initial protocol has been gone through and */
/* PAC has control of the bus. For simplicity it is assumed that the*/
/* block size is a multiple of 64 and RS*64 = block size. */
/**/
segment b dm byte ;

/* define equates */
bgn equ CC7
ready equ CC4
b dm byte norm equ h'OOde'
b-dm-byte-read equ h'OOd6'
b-dm-byte-write equ h'OOc6';

init b-dm-byte-:
-ACH := R3

SET ASEL ADOE HADOE
ACL := R4

IOR := - Q ,
OUT b dm byte norm
Q := 1 - -

/*
/*
/*
/*
/*

bus grant (active low)
ready input
dma active w/o read/write
read (active low)
write (active low)

/* upper 16 bits address

/* select counter to output ,
enable ADD and HAD output, and

*/
*/
*/
*/
*/

*/

load lower address in ACL */

/* select device # */

LDLCD , MOV RS RS
/* address increment for byte
/* RS * 64 -> block count

*/
*/ ,

/**/
/* start of outer transfer loop */
/**/
xl: PLDLC H'3F' /* push cnt to stack and load 64

in cnt */
/**/
/* start inner transfer loop */
/**/
yl : JMPNC ready yl ,

OUT b dm byte read
LOOPNZ yl -;
ACL := ACL + Q ,
OUT b_dm_byte_write

/* wait till ready signal high */

/* strobe the write signal and
set up the next address */

/**/
/* end inner loop */
/**/

POPLC
ACH := ++ ACH ,
OUT b_dm_byte_read

JMPC bgn release_bus

/* pop stack to cnt , increment
upper address bits */
/* check if bus grant has been
taken away */

LOOPNZ xl ; /* loop back if counter not zero*/
/**/
/* end outer loop */
/**/
done

release bus :

/**/

---~~~--
4-22

PAClooo - Application Note 005

Appendix 4 (Cont.)

1*** *******************/
/* device to memory word transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q . For simplicity it is assumed that the block size is a multiple*/
/* of 64 and R5*64 = block size. */
1*** *******************/
segment b dm word ;

/* define equates */
bgn equ CC7 /* bus grant (active low) */
ready equ CC4 /* ready input */
b dm word norm equ h'OOde' /* dma active w/o read/write
b-dm-word-read equ h'OOd6' /* read (active low)
b-dm-word-write equ h'OOc6'; /* write (active low)

init b-dm-word-:
-ACH := R3

SET ASEL ADOE HADOE
ACL := R4

/* upper 16 bits address

/* select counter to output ,
enable ADD and HAD output, and

*/
*/
*/

*/

load lower address in ACL */
IOR := - Q ,
OUT b dm word norm /* select device # */
Q := 2 /* address increment for word */
LDLCD , MOV R5 R5 ; /* R5 * 64 -> block size (words)*/

/**/
/* start of outer transfer loop */
/**/
xl: PLDLC H'lF' /* push cnt to stack and load 32

in cnt */
/**/
/* start inner transfer loop */
/**/
yl JMPNC ready yl ,

OUT b dm word read
LOOPNZ yT ,
ACL := ACL + Q ,
OUT b dm word write

/* wait till ready signal high */

/* strobe the write signal and
set up the next address */

/**/
/* end inner loop */
/**/

POPLC
ACH := ++ ACH ,
OUT b dm word read

JMPC bgn release_bus

/* pop stack to cnt , increment
upper address bits */
/* check if bus grant has been
taken away */

LOOPNZ xl ; /* loop back if counter not zero*/
/**/
/* end outer loop */
/**/
done

release bus

/**/

FEE#~
--~~5JJf---

4-23

•

PAC1000 - Application Note 005

Appendix 4 (Cont.)

/**/
/* device to memory byte transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q . For simplicity it is assumed that the block size is a multiple*/
/* of 64. This code illustrates individual transfer mode (non-block mode)*/
/**/
segment s dm byte ;

/* define equates */
bgn equ CC7 ; /* bus grant (active low) */
ready equ CC4 ; /* ready input */
s dm byte norm equ h'OOde' /* dma active w/o read/write
s-dm-byte-read equ h'00d6' /* read (active low)
s-dm-byte-write equ h'00c6'; /* write (active low)

*/
*/
*/

init s-dm-byte-:
-ACH := R3 /* upper 16 bits address */

SET ASEL ADOE HADOE
ACL := R4

BC := RS
lOR .= - Q ,
OUT s dm byte
CMP Q-H'OOOl'
JMPC Z devO
CMP Q H' 0002'
JMPC Z dev1
CMP Q H' 0004'
JMPC Z dev2

norm

/* select counter to output ,
enable ADD and HAD output, and
load lower address in ACL */
/* load block size in to BC */

/* select device # */
/* find out if device #0

/* if device # 1 */

/* if device # 2 */

/* else it is device # 3

*/

/**/
/* start transfer loop for dev#3 */
/**/
dev3

JMPC bgn release bus
JMPNC CC3 dev3 -
OUT S_dm_byte_read

SET ACEN BCEN ,
OUT s dm byte write
RESET-ACEN BCEN ,
OUT s dm byte norm
JMPNC-BCZ dev3
JMP done

/* monitor bus grant */

/* branch to check for dma request
from device3 */

/* start counter */

/* stop counter */
/* loop back if not done */

1*** *******************/
/* start transfer loop for dev#2 */
1*** *******************/
dev2

JMPC bgn release bus
JMPNC CC2 dev2 -
OUT S_dm_byte_read

SET ACEN BCEN ,
OUT s_dm_byte_write

/* monitor bus grant */

/* branch to check for dma request
from device2 */

/* start counter */

---~~~--
4-24

Appendix 4 (Cont.)

RESET ACEN BCEN ,
OUT s dm byte norm
JMPNC-BCZ dev2

PAC1000 - Application Note 005

/* stop counter */
/* loop back if not done */

JMP done ,
/**/
/* start transfer loop for dev#l */
/**/
devl

JMPC bgn release bus
JMPNC CCI devl -
OUT s_dm_byte read

SET ACEN BCEN ,
OUT s dm byte write
RESET-ACEN BCEN ,
OUT s dm byte norm
JMPNC-BCZ devl

/*

/*

/*

/*
/*

monitor bus grant */

branch to check for dma request
from devicel */

start counter */

stop counter */
loop back if not done */

JMP done ,
/**/
/* start transfer loop for dev#O */
/**/
devO

JMPC bgn release bus
JMPNC CC3 devO -
OUT s_dm_byte_read

SET ACEN BCEN ,
OUT s dm byte write
RESET-ACEN BCEN ,
OUT s dm byte norm
JMPNC-BCZ devO

/*

/*
/*

/* monitor bus grant

/* branch to check for
from device3

start counter */

stop counter
loop back if not done

*/

dma request
*/

*/
*/

/**/
done

release bus

/**/

---~~~---
4-25

•

PAC1000 - Application Note 005

Appendix 4 (Cont.)
/**/
/* code to illustrate device to memory transfer in non fly by mode. */
/* This is used when data bus is connected d7-dO to dlS-d8 or the */
/* other way around. Use counter to output addresses.Q contains device */
/* number and R3 R4 contain destination address.R5 contains block size. */
/**/
segment b dm sbyte ;

/* define equates */
b dm sbyte norm equ h'00ge'
b-dm-sbyte-read equ h'0096'
b-dm-sbyte-write equ h'008e';
rdy equ CC4
bgn equ CC7

init b dm sbyte :
-BC :-;; R5 ,

OUT b dm sbyte norm /* load block size in bcnt */
SET OrREN ASEL-HAOOE AOOE ;/* select counter to output,

enable had output */
ACH := R3
ACL := R4 ,

/**/
/* start of transfer loop */
/**/
b dm sbyte :

- -JMPC bgn release bus

srdy
SET OIREN -

JMPNC rdy srdy,
OUT b dm sbyte read
SET HDOE-HOSELO ,
AOR := OIR

OOR := SWPV ,
OUT b dm sbyte write
SET ACEN-BCEN --;
OUT b_dm_sbyte_norm

RESET ACEN BCEN HOOE
JMPNC BCZ b dm sbyte ;

/* enable OIR */

/* wait till source ready */

/* when src is ready read the data
in , enable HO output , select
OOR to output */

/* put swapped data in OOR */

/* start counter , output swapped
data */

/**/
/* end of transfer loop */
/**/
done :

release bus :

/**/

___ r~~~· __ __
WAIl.

4-26

PAC1000 - Application Note 005

Appendix 4 (Cont.)
/**/
/* code to illustrate memory to memory transfer. Use counter to output */
/* both addresses.R1,R2 contain source address and R3 R4 contain dest */
/* address . R5 contains block size. */
/**/
segment b mm byte ;

/* define equates */
b mm byte norm equ h'00ge'
b-mm-byte-read equ h'0096'
b-mm-byte-write equ h'008e';
rdy equ CC4
bgn equ CC7

in it b mm byte :
-BC :;; R5 ,

OUT b mm byte norm
SET ASEL-HADOE ADOE

/* load block size in bcnt */
/* select counter to output ,

enable had output */
/**/
/* start of transfer loop */
/**/
b mm byte :

- -JMPC bgn release bus ,

srdy

drdy

ACH := R1 -

SET DIREN , ACL := R2

JMPNC rdy srdy,
OUT b mm byte read
SET ACEN-HDOE-HDSELO ,
DOR := DIR

RESET ACEN DlREN ,R1 := ACH,
OUT b_mm_byte_norm

ADD R2 ACL Q ARDREG ACH R3

ACL := R4

JMPNC rdy drdy
SET ACEN BCEN ,
OUT b_mm_byte_write

RESET ACEN BCEN HDOE ,
R3 := ACH ,
OUT b_mm_byte_norm

JMPNC BCZ b_mm_byte ,
R4 := ACL

/* monitor bus grant , source
address in R1 */
/* enable dir, r2 <- low 6 bits */

/* wait till source ready */

/* when src is ready read the data
in , enable HD output , select
DOR to output */

/* stop counter , store it back in
to registers */
/* mov ACL back to r1 and at the
same time load r3 to ach */
/* ach,acl have dest address */

/* wait for destination ready */

/* when dest is ready , write the
data, increment counter , also
enable block counter */

/* stop counters ,
save dest address

set HD to input
(upper 16) */

/* loop back if block counter not
zero , also save lower 6 bits
of dest address */

/**/
/* end of transfer loop */
/**/
done :

release bus :

/*** *****~*************/
--- -IE

---~aIF~--
4-27

•

PAC1000 - Application Note 005

Appendix 4 (Cont.)

/**/
/* code to illustrate memory to memory transfer (word mode) .Use counter */
/* to output both addresses.R1,R2 contain source address and R3 R4 */
/* contain destination address. R5 contains block size in words. */
/**/
segment b mm word ;

/* define equates */
b mm word norm equ h'00ge'
b-mm-word-read equ h'0096' ;
b-mm-word-write equ h'008e';
rdy equ CC4
bgn equ CC7

init b mm word :
-BC :-;- R5 ,

OUT b mm word norm
SET ASEL-HADOE ADOE

/* load block size in bcnt */
/* select counter to output ,

enable had output */
/**/
/* start of transfer loop */
/**/
b mm word :

srdy

-JMPC bgn release bus ,
ACH := R1 -

SET

OUT
SET
DaR

DrREN , ACL := R2
JMPNC rdy srdy

b mm word read
ACEN-HDOE-HDSELO
.= DrR

OUT b mm word norm
RESET-ACEN DrREN ,
ADD R1 ACH Q ARDREG ACH R3

ADD R2 ACL Q ARDREG ACL R4

drdy JMPNC rdy drdy
SET ACEN BCEN ,
OUT b mm word write

RESET BCEN HDOE ,
OUT b mm word norm

RESET ACEN R3 := ACH

JMPNC BCZ b mm word ,
R4 := ACL

/* monitor bus grant , source
address in R1 */
/* enable dir,ACL <- low 6 bits */

/* wait till source ready */

/* when src is ready read the data
in , enable HD output , select
DaR to output */

/* stop counter , store ACH in to
R1 and also load ACH with R3 */
/* store ACL in R2 and at the same
time put R4 in to ACL */
/* wait for destination ready */

/* when dest is ready , write the
data, increment counter , also
enable block counter */

/* stop block counter, set HD to
input * /

/* stop add counter ,
save dest address (upper 16) */

/* loop back if block counter not
zero , also save lower 6 bits
of dest address */

/**/
/* end of transfer loop */
/**/
done :

release bus :

/**/
---,Jr~AF~----------------________________________ __
4-28 ====

PAC1000 - Application Note 005

Appendix 4 (Cont.)
/**/
/* code to illustrate memory to memory transfer from 07-00 to 015-08 */
/* or vice-versa. Use counter to output both addresses .R1 , R2 contain */
/* source address and R3 R4 contain destination address.R5 contains */
/* block size. Data is read in to AOR and byte-swpped before outputting */
/* through DOR. */
/**/
segment b mm sbyte ;

/* define equates */
b mm sbyte norm equ h'00ge'
b-mm-sbyte-read equ h'0096'
b-mm-sbyte-write equ h'008e';
rdy equ CC4
bgn equ CC7

in it b mm sbyte :
-BC :~ R5,OUT b mm sbyte norm;

SET ASEL HADOE-AOOE
/* load block size in bcnt */
/* select counter to output ,

enable had output */
/**/
/* start of transfer loop */
/**/
b mm sbyte :

- -JMPC bgn release bus ,

srdy

ACH := R1 -

SET

OUT
SET
AOR

DIREN , ACL := R2
JMPNC rdy srdy

b mm sbyte read
ACEN-HDOE HOSELO ,
:= OIR

RESET ACEN OIREN,R1 := ACH

/* monitor bus grant , source
address in R1 */
/* enable dir, r2 <- low 6 bits */

/* wait till source ready */

/* when src is ready read the data
in enable HO output , select

OOR to output */

OUT b_mm_sbyte_norm /* stop counter store it back in
to registers */

ADD R2 ACL Q AROREG ACH R3 /* mov ACL back to r1 and at the
same time load r3 to ach */

ACL := R4 /* ach, acl have dest address */
drdy JMPNC rdy drdy,DOR .- SWPV ; /* wait for destination ready

SET ACEN BCEN ,
OUT b_mm_sbyte_write

RESET ACEN BCEN HOOE ,
R3 := ACH ,
OUT b_mm_sbyte_norm

JMPNC BCZ b_mm_sbyte ,
R4 := ACL

and write swapped value */

/* when dest is ready , write the
data, increment counter , also
enable block counter */

/* stop counters , set HO to input
save dest address (upper 16) */

/* loop back if block counter not
zero , also save lower 6 bits
of dest address */

/**/
/* end of transfer loop */
/**/
done :

release bus :

/**/

---~~~--
4-29

•

PAC1000 - ApplicatlDn NDte 005

Appendix 4 (Cont.)

/**/
1* code to illustrate device to device transfers in the byte as well as *1
1* word mode. source device is in rl and dest device is in r3. block *1
1* size is in r5. *1
1**1
segment b dd bw ;

1* define equates *1
b dd bw norm equ h'00ge'
b-dd-bw-read equ h'0096'
b-dd-bw-write equ h'008e'
rdy equ-CC4
bgn equ CC7

in it b dd bw :
-SET DlREN , lOR := - Rl

OUT b dd bw norm 1* enable DlR and output source
device chip select *1

1**1
1* start of transfer loop *1
1**1
b dd byte
b-dd-word
b-dd-bw :

-JMPC bgn release bus ,
lOR := - R3, -
OUT b dd bw read

unA'!:" '[]'T"\C"PTf"I, "'" ,
DaR := DlR ,
OUT b dd bw norm - - -

RESET RDOE ,
DEC R5 ,
OUT b dd bw write

JMPNC Z b_dd_bw ,
lOR := - Rl ,

1* read source device and output
dest device chip select , also
monitor bus grant *1

1* enable RD output , select DaR
to output *1

1* RD to input , decrement count
output write strobe *1

OUT b dd bw norm 1* loop back if R5 not zero , also
output src device cs *1

1**1
1* end of transfer loop *1
1**1
done

release bus :

1**1

-------------------------~Jr;-------------------------4-30

PAC1000 - Application Note 005

Appendix 4 (Cont.)

/*** *******************1
/* code to illustrate device to device transfer in non fly by mode */
/* This is used when data bus is connected d7-dO to d15-d8 or the */
/* other way around. Source device # is in RI and dest device # in R3 */
/**/
segment b dd sbyte :

/* define equates */
b dd sbyte norm equ h'00ge'
b-dd-sbyte-read equ h'0096'
b-dd-sbyte-write equ h'008e';
rdy equ CC4
bgn equ CC7

in it b dd sbyte :
-SET DlREN , lOR := - RI ,

OUT b_dd_sbyte_norm /* enable DlR and output source
device chip select */

/**/
/* start of transfer loop */
/**/
b dd sbyte :

- -JMPC bgn release bus ,
lOR := - R3 ,
OUT b dd_sbyte_read

AOR := DlR
SET HDOE HDSELO
DaR := SWPV ,
OUT b_dd_sbyte_write

RESET HDOE ,
DEC R5 ,
OUT b_dd_sbyte_norm

JMPNC Z b dd sbyte ,

/* read source device and output
dest device chip select , also
monitor bus grant */

/* read in the data */

/* enable HD output , select DaR
to output , put swapped data in
DaR */

/* HD to input , decrement count
output write strobe */

lOR := - RI - /* loop back if R5 not zero also
output src device cs */

/**/
/* end of transfer loop */
/**/
done

release bus

/**/

__ rjfar~~--___
4·31

•

4~-~3=2:--~~~--

-- - ---====: ~= --- ~

r..=..E.E =
~~==' ==

Introduction

PAC1000 -
Host Interface

Buffer Memory
Structure

Programmable Peripheral
Application Brief 006
PAC1000 as a 16 Bi-Directional
Serial Channel Controller
By Arye Ziklik

This Application Brief describes a
Communications Controller that utilizes the
PAC1000 as the board level control element
in a 16 bi-directional serial channel board.
The aggregate board throughput is around
1 Mbyte/sec.

Serialization and de-serialization of the
data is handled by eight Serial
Communication Controllers (SCC). Every

The PAC1000 performs the low level
function of moving the data to and from
the serial devices and buffer RAM memory.
The host interface is a generic 32-bit
system. The host processor communicates
with the PAC1000 through two interrupt
lines, two status signals and a mail-box
area that resides in the buffer memory.
Prior to accessing the board, the host
drives the "system board access" signal.
The PAC1000 is interrupted (INT3) and
relinquishes control of the board's data
and address buses as long as that signal
is active (as reflected by CCO). The host

The high speed buffer memory is composed
of 64K bytes of static RAM that can be
accessed in three ways: by bytes (during
SCC transfer operations), by words (when
accessed by the PAC1000), or by double
words (from the host side). Memory access
configuration is determined by the PAC1000
output control signals (OC port).

The buffer memory is divided into three
regions:

1) SCC control image register space that
includes copies of the SCC registers.

2) Buffer message space where the 32
buffers of the corresponding serial
channels are stored.

3) Mail-box area in which the PAC1000
exchanges command and status
information with the host. This region
also contains the pOinters to the 32
channel buffers.

SCC has two bi-directional serial channels
with individual baud rate generator and
digital phase loop mechanism. The SCC
can handle all the customary synchronous
and asynchronous protocols as well as the
popular serial data encoding/decoding
schemes. With a 16-MHz clock, the
maximum bit rate In every individual
channel can be up to 2 Mbps.

reads and/or writes into the buffer memory.
After completion of this activity, it updates
the mail-box region and then lowers the
"system board access" signal. The PAC1000
continuously monitors that signal. After
CCO is negated, the PAC1000 can raise its
"PAC1000-board master" signal and start
controlling the data/address buses and
control signals. Whenever it needs a fast
response from the host, the PAC1000
updates the mail-box portion of the shared
buffer memory, lowers the "PAC1000-board
master" signal and activates the system
interrupt.

Whenever instructed to do so, the PAC1000
writes the image register content of a
channel into the corresponding SCC,
thereby initializing that channel for a
particular transfer mode. Buffer message
sizes are allocated by the host according
to the speed of each individual channel.
The pointers of the buffers are stored In

the mail-box area.

Every transfer takes place between the
buffer memory and the selected SCC. The
PAC1000 is acting in this design as a
32-channel DMA controller, capable also of
communicating with the host processor
through their mail-box region. Once the
board is properly configured, the only
interface of the host system is the reading
of data from the receive and mail-box
buffers and the placing of new data into
the transmit and mail-box buffers. The
PAC1000 off-loads the host processor from
maintaining the low level control of each
channel.

4-33

•

PAC1000 - Application Brief 006

PACtOOO -
SCC Devices
Interface

Miscellaneous

The high speed data transfers are achieved
due to the very fast response of the
PAC1000 to the channel service requests.
The SCCs are programmed to request
DMA transfers whenever they are either
ready to transmit or containing new
received characters.

The 16 received character DMA requests
are priority encoded and latched. The
encoder output is connected to the
PAC1000's CC3 pin. The 16 transmit DMA
requests are priority encoded and latched,
too. Their encoder drives the CC2 input
pin. The condition code multiplexer presents
to the CC7-CC4 the highest priority
encoded-channel-number of the pending
receiver request, or the transmitter request,
or the highest priority SCC number that is
currently requesting an interrupt service
via the CC1 pin. The receiver requests
have higher priority over the transmitter
requests. The lowest service priority is
assigned to the SCC interrupts. This
configuration ensures a very fast response

In addition to functioning as an sec
controller, the I-'A(;1000 can also generate
all the necessary signals for modem control
and modem interface through the SCC
control signal latch.

The PAC1000 output control (OC) port
generates various control strobes such as
data path width definition, readlwrite,
multiplexer and decoder select, etc.

time of the PAC1000 to DMA requests and
SCC interrupts. Condition code latency is
125 ns and multi-way branching according
to the CC7-CC4 lines requires additional
125 ns. Therefore, 250 ns after a high
priority DMA request. the service routine
will be initiated. The condition code lines
CC3, CC2 and CC1 are continuously
monitored by the PAC1000 during the time
that it is the board master. Therefore it
responds immediately when either a DMA
request or an SCC interrupt is pending.

The regular SCC interrupt lines are also
prioritized and latched by an 8 interrupt
encoder. These interrupts are requested by
erroneous SCC channels or whenever block
transfers are completed. The interrupt
priority encoder is also connected to the
condition code multiplexer. The three
encoded lines that denote the number of
the serviced SCC route the INTA signal
issued by the PAC1000 (via the 1/06 pin)
to the corresponding SCC.

-4--3-4-------------------------------~~~---------------------------------

PAC1000 as a
16 Bi·Directional
Serial Channel
Controller SYSTEM

32-BIT DATA BUS , SYSTEM LOW ORDER SYSTEM
16 ADDRESS LINES INTERRUPT ,

PAC1000 - Application Brief 006

SYSTEM

HIGH-ORDE R

TT l SYSTEM DATA I BUFFER ~ MEMORY:~ I SYSTEM ADDR.

ADD'rNES

TRANSCEIVER MEMORY DECODER LATCH
BRD-64Kx 8

Cl000 PA
B
MA

OARD
STER

(CONFIG. ~ BwFi __
HIGH ORDER ALSO BY 16-BIT

~
DATA BUS 16 OR BY ADDRESS BUS

32 BITS)
LOW ORDER SYSTEM

DATA BUS BOARD

BWR

~
ACCESS

II 16-BIT DATA BUS

I t
ADD(lS-0) OCl OCO 1/07 INT3 CCO

1/06

CCl
PAC1000 OC(lS-0)

CC2

CC7-CC4 - CC3 1/0(5-0) HADl HAD(S-2) HADO HD(lS-0)

! I

'AlB l CONDITION CODE J SCC CONTROL II t
MULTIPLEXER SIGNALS DECODER

SCC I
!

DECODER

L-, cio
SCC CONTROL I

SIGNALS LATCH 1 1", ++

I' , 'I' "I CS#l CS#2 CS#7 CS#8

8-BIT DATA BUS
FORCED DTRS INTR
SYNCS ENABLE

AND
CLR

-

4ENCOD~
LINES

----1 RECEIVER 16 DMA REO. I - CS#l

PRI0:~1\~~~DER '-- DB(7-0)

4 ENCODED ' , , t RDY1A
LINES ,

, RDY1B
SCC#l I TRANSMIT 16 DMA REO. I ,

DTR1A ,
PRIORITY ENCODER ,

AND LATCH DTR1B ,

INTR#l

3 ENCODED SCCs
,
, -- INTA#l

LINES 81NTR ,
ENCODER , TD1A RD1A TD1B

SYSTEM BOARD
DECODER

SYSTEM SCC
DECODE/CONTR OL
LINES

DATA

HIGH
SPEED
CONTR OL

ES STROB
(DATA
PATH
WIDTH,
SCC RE AD,

RITE,
.)

SCCW
ETC ...

TRANSCEIVER

C/O -
AlB -

RD1B ,

S~
,

!! :' II:' JI:" jlll:O ,
INTA INTR.

,
,

ACK
MUX ,

'---
,

16 TRANSMIT I 16 RECEIVE SERIAL CHANNELS

---;ArArAr~--..,~.

4-35

~~"~-~- --0 ~- ----____ ---
_______ ~ - "0------

•

-4_-~----------------------------~Jf~;------------------------------

_ ~~
=r == == === IF: ~-~ ~ -----...-- ---~~

Abstract

MeA Signal
Descriptions

Programmable Peripheral
Application Brief 007
Hardware Interfacing the PAC1000 as a
Micro Channel Bus Controller
By Arye Ziklik

This application brief describes how to use
the PAC 1 000 Programmable Peripheral
Controller as a Micro Channel (MCA) bus
controller.

The MCA bus uses asynchronous and
synchronous procedures to control and
transfer data on the bus. The data is
transferred from a master board to a slave

The bus signals described in this chapter
are the most important and essential
signals to understand the application brief.
The buffers needed per each signal are
summarized in Table 2. The timing relations
between the signals is drawn in Figure 1.

AO-A23
Address bits generated by the bus master
to address memory and 10 slaves attached
to the bus. The address bits are unlatched
and must be latched by the slaves using
either the trailing edge of ADL or the
leading edge of CMD signals.

00-015
Data bits, valid during the period CMD
signal is low. The data is driven by
bidirectional three-state drivers.

AOL
Address Decode Latch, driven by the bus
master. The signal is used by the slaves
to latch valid address and status bits.

CO_OS16
Card Data Size 16, driven by 16 bit slaves
to provide an indication to the master
about their data bus width. Eight-bit slaves
do not drive this line.

OS_16_RTN
Data Size 16 Return. A signal generated
by the PS/2 system by AND-ing all the
CD_DS16 signals received from all the
slave connected to the bus. The signal is
provided by the PS/2 system to the bus
masters.

board, or from the PS/2 mother-board (the
system) to a slave. This application brief
describes the use of the PAC1000 on a
master board and on a slave board.

In both applications the PAC1000 is
handling the synchronous functions, the
asynchronous functions are implemented
by external PALs.

Mim
MemoryllO, driven by the bus master and
indicates a memory or 10 cycle. M/IO is
latched by the slave at the leading edge
of CMD signal.

SO, S1
Status bits, driven by the bus master and
indicate the start of read or write cycle.
The status bits are latched by the slaves
using the leading edge of CMD.

CMO
Command signal is driven by the bus
master and defines the period data is valid
on the data bus. The leading edge of
CMD is used to latch the unlatched
signals: AO-23, MilO, SO, and S1. The
trailing edge of CMD indicates the end of
the bus cycle.

CO_SFOBK
Card Select Feedback. When a bus master
addresses a memory or an 10 slave, the
addressed slave drives CD_SFDBK active
as a positive acknowledgement of its
presence at the specified address.

CO_CHROY
Channel Ready. This line IS pulled inactive
(not ready) by a slave to allow additional
time to complete a bus cycle.

CHROYRTN
Channel Ready Return. Generated on the
PS/2 system board by AND-ing the
CD_CHRDY Signals driven by all the
slaves. The signal is provided by the
system to the mastr driving the bus.

4-37

•

PAC1000 - Application Brief 007

MCA Signal
Descriptions
(Cont.)

Figure 1. Micro
Channel Basic
Transfer Cycle

Table 1. The
States Generated
MIlD, "trJ and n

MCA Timing
Parameters

ARBO-ARB3
Arbitration Bus priority signals. These four
signals represent the priority levels for
masters seeking control on the bus. The
four signals represent 16 priority levels,
level 15 represents the lowest priority,
level 0 represents the highest priority and
belongs to the PS/2 system.

ARB/GNT
Arbitrate/Grant. When high, this signal
indicates an arbitration cycle is in process.
When low, indicates that a master has
been granted. ARB/GNT is driven by the
system.

PREEMPT
Used by the arbitration bus masters to
request the bus.

BURST
Indicates that the master requests the bus
for transferring a block of data.

IRQ
Interrupt Request is used to signal the
system that a device requires attention.

CHRESET
Channel Reset, active high reset signal
generated by the system and sent to all
the boards on the bus.

I 0 40 80 120 160 I 200 nsec
I I

~~.gRESS ,--11 ____ ---19 1]]]]]]]] E
I
I

STATUS n 2 18
I ~----------------~

~13 ____ ~lr7-------------
CD CHRDY I

I 0

i
111

CD DS16 ~------~14 ____________ ~ll0
CD SFDBK

I
I
I

r-ll-0 -----

WR DATA
J]]]J]]]]]]]~16 ____________ ~

RD DATA

M/IO SO
0 0
0 1
1 0
1 1

The PAC1000 as a bus master transfers
data on the MCA bus with a control
sequence based on the following events:

CJ The add res bus and MilO signal
become valid.

CJ The status signals SO and S1 are valid
10 nsec minimum after (1).

17 14 r

51
1 I/O write.
0 I/O read.
1 Memory write.
0 Memory read.

CJ ADL is valid 45 nsec minimum after (1).

CJ In response to the unlatched address
decode, the selected slave responses
with CD_SFDBK (and CD_DS16 if it
is a 16 bit slave). The maximum
allowable response time of the slave is
55 nsec maximum from (1).

-------------------------------------r~~~~------------------------------------
4·38

-_ ...

MCA Timing
Parameters
(Cont.)

Operation Modes

CJ In response to (1), the slave responds
with CD_CHRDY. The maximum
allowable response time is 60 nsec
maximum from (1).

CJ Write data appears on the bus for the
write cycle. The data has to be valid
before the leading edge of CMD.

CJ CMD becomes active and ADL inactive
typically 85 nsec minimum after (1).
The unlatched signals on the bus are
latched.

CJ The status signals become inactive
after they were latched.

The PAC1000 working as a MCA
controller can handle the following
functions:

CJ Bus signal generator.

CJ Card setup.

The bus arbitration logic and signal
decoding are pure asynchronous functions
and implemented by two PALs.

Bus Slave Board
On a bus slave board the PAC1000 may
be used to implement the pas registers.

The Programmable Option Select (PaS)
registers main objectives are:

CJ Eliminate switches from the board.

CJ Positively identify any card connected
to the system.

The pas registers on a PS/2 board replace
the switches by using software writeable
registers. There are eight pas registers,
each one is 8-bit wide. The pas registers
are addressed by CD_SETUP signal and
by address bits AO-2. The pas registers
are located at 1/0 addresses 100H to
107H. The eight pas registers are located
in the PAC1000 and control the board's
functions.

The pas registers' interface to the MCA
is a decoder which decodes the sytem's
access to the registers and generates the
RD and WR signals to the PAC1000.

The address decoder and slave logic are
most of the circuitry needed for the slave
functions. The decoder has to decode the
address on the bus and to respond with
CD_SFDBK, CD_CHRDY and CD_DS16
signals. The address decoder might be for
memory, 1/0 or for both. The decoder's

PAC1000 - Application Brief 007

CJ The address bus becomes inactive
after the address was latched.

CJ In response to the address change, the
slave's unlatched responses
(CD_CFDBK AND CD_DS16) are
invalid.

CJ System stays in this state until
CD_CHRDY is ready.

CJ The slave places data on the bus in
response to a read.

CJ The address and MilO are valid for the
next cycle.

CJ CMD goes inactive, ending the cycle.

size depends on the number of address
bits it is decoding. The decoder's CS
outputs are latched by the leading edge of
CMD and are stable until the end of the
bus cycle. The decoder generates the
feedbacks to the bus, CD_SFDBK,
CD_DS16 and CD_CHRDY. These
Signals are not latched and are very time
critical. The decoder responds with these
outputs at 55 nsec maximum after the
address is stable.

Bus Master Board
A master board is a board with a CPU
which requests the MCA bus. When
granted by the PS/2 system, the master
board is driving the bus signals.

On a master board the PAC1000 can
handle the following functions:

CJ pas registers (similar to the bus slave
board).

CJ Generation of the bus signals

The other functions of a bus controller are
implemented by PALs because the
functions are pure asynchronous.

The bus signals are generated by the
PAC1000 after the CPU is granted to be a
bus master. The process of getting the
bus is done in the following sequence:

CJ The CPU is requesting the bus through
one of the interface lines with the
PAC 1 000.

CJ The PAC1000 is setting the bus
request line which is buffered by
drivers and sent to the MCA system.

CJ The system gets the request, and sets
a bus arbitration cycle which is handled
by the bus arbiter circuit (a PAL).

-----------------------------~Jr;----------------------------
4-39

•

PAC1000 - Application Brief 007

Operation Modes
(Cont.)

PAC1000 in a
Micro Channel
Slave Board

Table 2. Driver
Requirement for
PS/2 Signals

r:J The bus arbiter sends the PAC1000 the
signal MASTER which tells the board
that the bus was granted and the board
may drive the bus.

r:J The PAC1000 signals the CPU that it is
the bus master.

r:J The PAC1000 is enabling the address
and data drivers, and the CPU drives
the address and data to the bus.

r:J The PAC1000 generates all the bus
signals in the right sequence and the
right timing requirements as defined by
the MCA bus standard.

DATAO-7

ADDRO-3

ICRO M
C HANNEL

.........

Signal Name

A(0-23)
D(0-15)
ADL
CD_DS16
--
DS_16RTN
MilO
SO, S1
CMD
--
CD_SFDBK
CD_CHRDY
CHRDYRTN
ARB(0-3)
PREEMPT
BURST
ARB/GNT

I
I
I PAC1000
I SLAVE BOARD
I
I

DATAO-7

ADDRO-3

POS RD - POS
REGISTER

INTERFACE WR_POS

CS

I I

r:J After the CPU is done, it releases the
bus request. The PAC1000 translates it
to the right signal sequence on the
MCA bus and releases the bus buffers.

On the bus master board the PAC1000
may implement a lot of control functions
and save glue logic.

For example:
The PAC1000 can handle several DMA
operations on the board, or be used as a
high speed controller for various
applications.

PAC1000

pos
REGISTERS

(REGISTER BANK)

107-0

07-0

HADS-O

lID

WR OC1S-0

~
ADD1S-0

HAD1S-0

INT3-0

CC7-0

Driver Type

TS 24 mA (TS = Three-State)
TS 24 mA
TS 24 mA
TP 6 mA (TP = Totem Pole)
BD 24 mA (BD = Bus Driver)
TS 24 mA
TS 24 mA
TS 24 mA
TP 6 mA
TP 6 mA
BD 24 mA

LATCHED
CONTROL
SIGNALS
TO THE
BOARD

OC 24 mA (OC = Open Collector)
OC 24 mA
OC 24 mA
BD 24 mA

_____________________________________ f~E~E------------------------------------
4-40

=""="~~

PACtOOO as a
Micro Channel
Master

I
I

MICRO I PAC1000
CHANNEL I BOARD

I
I

00-015
DATA • • BUFFERS

AO-A23

ADDRESS
LATCHES

CMD

ADL

So

SI

MliO DECODER
AND

SBHE SIGNAL
DRIVERS

CHRESET (PAL AND
DRIVERS)

CHRDYRTN

DS16 RTN

IRQ

ARBO-3

PREEMPT
BUS

BURST ARBITER
(ONE PAL)

ARBIGNT

DATAO-7

ADDRO-3

POS
REGISTER

CD_SETUP INTERFACE

So,51
•

PAC1000 - Application Brief 007

00-015

DIR_BUF

EN_BUFF

AO-A23

DIR-BUF

EN_BUFF

PAC1000
CMD CPU

OC9
ADL

OCB

So
OC7

51
OC6

MliO
OC5

SBHE
OC4

CHRESET INT3-0
CC3

ADDI5-0
CHRDYRTN

CC2
DS16 RTN

BUS CCI
MASTER

IRQ
OCI

OC15-10

BUS REQUEST
OCO

LATCHED
CONTROL

107-0 ~~g~~~~E
REGISTER

MASTER/SLAVE OUTPUTS)
CCO

HD7-0
ADDRO-3

HADS-O
RD_POS

RD
WR-POS

WR
cs cs

___ 'AfJrAr~'---­
",_. 4-41

•

~4~~~----------------------~Jr;------------------------

Abstract

Introduction

Usage and
Limitations

Programmable Peripheral
Application Note 008
PAC1000 Programmable Peripheral Controller
with a Built-In Self Test Capability By David Fong

The objective of this Application Note is to
demonstrate the Built-In Self Test (BIST)
capability of the PAC 1000 High-

With increasing device densities on one
chip, more devices are needed for BIST to
check the functionality of the internal logic.
Current serial scan techniques for board
level verification would take too much time
and resources. The current PAC1000 will

The program is accessible by calling the
BIST program. The program occupies
forty-five lines of EPROM code. The
program can be reduced in size by
specifying extra CPU registers to hold the
constants h'FFFF', h'OOOO', h'AAAf\, h'5555'
and h'FFF4'.

Certai n cond itions must be met prior to
programming the code to ensure that this
program will work correctly. The stack
should be empty because the program
exercises the stack. In addition, location
h'3FF' must be reserved because the BIST
uses this location to verify the contents of
the stack as a '1.' The outputs should be
placed in a mode where the existing
system is not affected. The 'MAl NT'
instruction will ensure that the OC is the
same throughout the program. However,
this example was not implemented in that
manner. Instead, it uses set values to
assist in debugging the program. Users
can do a global substitution of "OUT
h'xxxx' " with "MAl NT" in their word
processor to fully implement this BIST
program.

Performance Programmable Peripheral
Controller. This article describes the basic
instructions needed to implement BIST.

only test the ALU and its status flags, the
address and block counter, and the
sequencer. Future versions in the WS-PAC
Family will have even larger sizes of
EPROM and may test the control EPROM.

This BIST is not a panacea for system
designers. A 'PASS' condition is indicated
by a return to the main calling program.
The output control will be h'OOOO'. A 'FAIt.:
condition will result in some endless loop
or jump to some portion of the program. In
the event that it does fail after about 170
clock cycles, the system must disable the
PAC1000 from the rest of the system in
some manner. Future versions of the
PAC1000 may include a watchdog timer to
interrupt and timeout the BIST.

The variables that can be altered by the
user are listed at the beginning of the
BIST.mal file. The current values used will
only exercise the counters in a simple
manner. The user can modify these
variables to increase the confidence level
of the program at the expense of a longer
test cycle.

-------------------------------------~~~Ar------------------------------------
4-43

•

PAC1000 - Application Note 008

Usage and
Limitations
(Cont.)

Confidence
Level

Analvsis of the
Program

Analysis of the
Simulation
Output

A summary of the instructions used and
the functional blocks follow below:

1***/
1* registers destroyed: RO,R1,R2,R3 and R4 *1
1* AOR,ACH,ACL,BC,LC and stack *1
1* *1
1* stack should be empty before calling this program *1
1* *1
1* the block counter, address counter, ALU with register file and *1
1* flags, and the sequencer with stack and counter are tested *1
1* *1
1* flags checked: BCZ,ACO,CY,Z,O,S,and STKF *1
1* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR,SHRL,SUB *1
1* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC,LDLCD, *1
1* LOOPNZ,PLDLC,POP,RET,RNC,RSTCON and SETCON *1
1* *1
1* DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010, *1
1* 03FF, 0019 *1
1***/

The program executes some of the possible
internal critical paths of the PAC1000.
From tester and simulation measurements,
the test of condition codes and branching
were consistently the longest. Similarly for
the ALU, flag generation such as adding

The cllmmtly AlCAclltin!:! !"rn!:!rRm 0::-.. 11" th~

BIST program by using the 'CALL:
instruction. The instruction following 'CALL:
which is the return address is pushed to
the stack and is not destroyed by the BIST
program. See Figure 1 for the BIST
flowchart. The BIST tests the PAC1000
functional blocks in the following order:

1. Block Counter and flag BCZ.

2. Address Counter and flag ACO.

3. ALU with shifter and flags CY, Z, 0
and S.

4. Sequencer with stack and loop counter,
and flag STKF.

Some subtleties of programming the
PAC1000 are presented. In the ALU section,
certain flags must be forced to zero before
being tested upon, unlike the normal
microprocessors where the individual flags

Looking at the block counter outputs
BC(15:0) from cycle 7 through 18, the
counter counts continuously until disabled.
The block counter contents wraps around
from h'OOOO' to h'ffff' and down. Note that
the BCZ flag remains latched until new
data is loaded to the block counter.

with a carryout is considered a critical
path. The counters have a critical path in
propagating the carry. Overall, the
confidence level of this test is considered
to be high.

ar.o c:ot 0""" I".oo-ot h" il"'t.C"t +i,.. .. ·..... T A I I I _.-- -_. _ .. - ._-_ .. -1 ..• _ I ",

result of each cycle updates each flag on
the next rising edge of the clock. For
example, to check the zero flag (Z), some
ALU instruction forces the Z flag to zero.
See the instructions below:

MOV R2 R2 , OUT h'0138' ;
/* force zero flag Z=O * /

zero: JMPNC Z zero, AND AOR R1 ,
OUT h'0139' ;

Next, loading the loop counter from the
ALU needs special treatment. The data
must be present at the ALU output before
the instruction to load the loop counter
executes. See the instructions below:

MOV R4 short, OUT h'014B' ;
/* force ALU output to the
value of short = h'0010' * I

LDLCD , MOV R4 R4, OUT h'014C' ;
/* load 0010 to LC * /

Because of the latched flag BCZ, there is
a minimum of two cycles before the next
instruction is executed after the loop.
Figure 2 shows the loop with the minimum
number of latency cycles before executing
the next line of program code.

------------------------------~JF;-----------------------------
4-44

Figure 1.
Built·ln·$elf·Test
Flowchart

NO

NO

NO

NO

NO

NO

NO

PAC1000 - Application Note 008

POP STACK
AND RETURN

TO MAIN
PROGRAM

NO

NO

----------------------------~Jr;---------------------------
4-45

•

PACtOOO - Application Note 008

Figure 2.
SCZ Flag:
Example
Cycle·by-Cycle
Simulation CYCLE

BC

BCZ

CONTROL
INSTRUCTION

2

1. loopl: MOV R2 h'5555', OUT h'0128' ;
2. JMPNC BCZ loopl, OUT h'0129' ;
3. RESET BCEN, OUT h'012a' ;
4. ACSIZE 22, OUT h'012b' ;
5. MOV ACL long, OUT h'012c' ;

/**/
/* Main calling program 02/03/89 */
/* David Fong Rev. 1.0 */
/* main. mal */
/**/

segment main ;

external bist ;

main1:

/* initialize */
/* not needed */

/* call bist program */

4 5

CALL bist , OUT h'0123'; /* call the BrST program */
/* return to main program */

FORE: JMP FORE , OUT h'OOOO' ; /* loop forever */

end ;

/***/
/* Program to jump back to main bist program */
/* David A. Fong 02/03/89 Rev. 1.0 */
/* jmpf.mal */
/***/

segment jmp ;
external jmpf ;

JMP jmpf , OUT h'FFFF' ; /* jmpf is an external address */
/* this tests branching with alII's */
end ;

, •• ,IIE
-------------------------------------~.v~------------------------------------

4·46

PACtOOO - Application Note 008

/***/
/* Built-In-Self-Test Program 02/03/89 */
/* David A. Fong Rev. 1. 0 */
/* bist.mal */
/***/
/* registers destroyed RO,R1,R2,R3 and R4 */
/* AOR,ACH,ACL,BC,LC and stack */
/* */
/* stack should be empty before calling this program */
/* */
/* the block counter, address counter, ALU with register file and*/
/* flags,and the sequencer with stack and counter are tested */
/* */
/* flags checked: BCZ,ACO,CY,Z,O,S,and STKF */
/* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR,SHRL,SUB */
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC,LDLCD, */
/* LOOPNZ,PLDLC,POP,RET,RNC,RSTCON and SETCON */
/* */
/*DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010*/
/* 03FF, 0019 */
/***/

segment c bist ;
entry bist,jmpf ; /* entry points into this program */

/* define equates for user to sUbstitute */
shorter equ h'0008' ;
short equ h'0010'
medium equ h'03ff'
long equ h'fff4'
popper equ h'0019'

/****************************/
/* test the counters and */
/* initialize the registers */
/****************************/

bist: MOV R1 h'OOOO', OUT h'0124'; /*the outputs should be placed*/
/* in a non-functional mode */

MOV RO h'FFFF' , OUT h'0125' ; /* in this program it is not*/
MOV BC shorter , OUT h'0126' ;/*because it was needed to*/
SETCON h'002' , OUT h'0127' ; /*debug enable block counter */

loop1: MOV R2 h'5555' , OUT h'0128' ;
JMPNC BCZ loop1 , OUT h'0129' ;

RSTCON h'002' , OUT h'012A' ; /* disable block counter */

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 */

/* test the 22-bit address counter */

ACSIZE 22 , MOV ACH RO , OUT h'012B' ;
MOV ACL long , OUT h'012C' ;
SETCON h'OOl' , OUT h'012D' ; /* enable address counter */

"IIIJf '-E -------------------------------------~.,Ar------------------------------------
4-47

•

PAC1000 - Application Note 008

100p2: MOV R3 h'AAAA' , OUT h'012E' ;
JMPNC ACO 100p2 , OUT h'012F' ;
RSTCON h'OOl' , OUT h'0130' ; /* disable address counter */

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 ; R3 = AAAA */

/* test the 16-bit address counter */

ACSIZE 16 , OUT h'0131' ;
MOV ACH long, OUT h'0132' ;
SETCON h'OOI' , OUT h'0133' ; /* enable address counter */

loop3: MOV R4 h'OOOO' , OUT h'0134' ;
JMPNC ACO 100p3 , OUT h'0135' ;
RSTCON h'OOl' , MOV R3 R3 , OUT h'0136'
/* disable address counter */

/* and do a dummy ALU instruction so that z=o and Cy=o */
/* note: a NOP instruction will force Z=l and CY=l on the */
/* following cycle*/

/* RO = FFFF ; R1 = 0000 ; R2 = 5555
/* R4 is the working register */

/****************/
/* test the ALU */
/****************/

R3 AAAA R4 0000 */

carry: JMPNC CY carry, ADC AOR RO , OUT h'0137' ;/*test carryout */

zero:

over:

f15:

MOV R2 R2 , OUT h'0138'; /* force zero flag = 0 */
JMPNC Z zero , AND AOR R1 , OUT h'0139' ;/*test all the alu*/

/* outputs are zero */

SUB AOR R3 R2 , OUT h'013A' ; /* test for overflow */
JMPNC 0 over, OUT h'013B' ; /* test for overflow */

JMPNC S fI5 , ADD AOR RI RO , OUT h'013C' ;/*test sign bit*/

/* test the alu shifting */

shftl:

shftr:

SHLR R2 Z , OUT h'013D'
AND AOR R3 R2 , OUT h'013E'

JMPC Z shftl , OUT h'013F' ;

SHRR R2 Z , OUT h'0140' ;
AND AOR R3 R2 , OUT h'0141'

/*should not loop*/
/*but fall-thru */

/* should not loop,but fall-thru */
JMPNC Z shftr , OUT h'0142'

/**********************/
/* test the sequencer */
/**********************/

MOV BC short, OUT h'0143'

-----------------------------------~aIF~----------------------------------
4-48

PAC1000 - Application Note 008

stack:
SETCON h'002' , OUT h'0144' ; /* enable block counter */
PLDLC medium, OUT h'0145' ;

jmpf:

JMPNC STKF stack, OUT h'0146';
/*exit loop when stack is full */

/* the return address will not be */
/* overwritten , only the top of stack*/

MOV BC popper, OUT h'0147' ;
RNC BCZ , OUT h'0148' ;

/*should come out of loop when emptY+1*/
/* which is the return address */

POP, NOP , OUT h'0149' ;
/* pop one more time but don't pop */
/* the last return address */
RSTCON h'002' , OUT h'014A' ; /* disable block counter */

/* test the loop counter */
MOV R4 short , OUT h'014B'
LDLCD , MOV R4 R4 , OUT h'014C' ;/* load 16 into the LC*/

lp: ADC AOR R4 , OUT h'014D'; /* aor = aor + r4 */
LOOPNZ lp , OUT h'014E';/*check that loop count is not zero*/

RET , OUT h'014F' ; /* return to calling program */

end

/**********************************/
/* bist linker file 02/03/89 */
/* David Fong Rev. 1.0 */
/* ~bi~.~ ~
/**********************************/

place main , c_bist , jmp ;
load main , bist , jmpf

/* place the segments */
/* load the .mal files */

/* locate main and init file */
/* locate bist file after interrupt */

locate main , h'OOO' ;
locate c bist , h'Oll'
locate jmp , h'3ff' ; /* locate jmp at 3ff to test '1' from stack */

end ;

.T

TIME
1
2

RCCCCCCCCIIIIIIIIIIIICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAA
ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBBlll1119876543210DDDDDDDDDDDDDDDDDDDDDD
E 3210 543210 5432101111119876543210
T 543210
B

00000000000000000000011100000000000000000000000000000000000000
10000000000000000000011100000000000000000000000000000000000000

-----------------------------------~~ar----------------------------------
4-49

________ - --__ -- _c~---____ -- --- - -------- --_- - ________ _

•

PACtOOO - ApplicatiDn NDte 008

OUT PUT TAB L E

PAC S I M Ver. 1. 09 Mon Feb 13 15:12:09 198
**

PPP 0000 LLL AAAA BBBB AAAA AA BASeOSZ RRRR RRRR RRRR RRRR
cec ecce cce 0000 ecce ecce ce eeTY 3333 2222 1111 0000
173 1173 173 RRRR 1173 HHHH LL ZOK
1· • 51: : 1· • 1173 51: : 1173 53 F 1173 1173 1173 1173
:40 ::40 :40 51: : ::40 51:: .. 51:: 51: : 51: : 51: :
8 18 8 : :40 18 ::40 40 : :40 : : 40 : : 40 : : 40

2 18 2 18 18 18 18 18
2 2 2 2 2 2

TIME
1 000 0000 000 0000 0000 0000 00 0010000 0000 0000 0000 0000
2 000 0000 000 0000 0000 0000 00 1010000 0000 0000 0000 0000
3 011 0123 000 0000 0000 0000 00 1000001 0000 0000 0000 0000
4 012 0124 000 0000 0000 0000 00 1001001 0000 0000 0000 0000
5 013 0125 000 0000 0000 0000 00 1000001 0000 0000 0000 0000
6 014 0126 000 0000 0000 0000 00 1000010 0000 0000 0000 ffff
7 015 0127 000 0000 0008 0000 00 0000000 0000 0000 0000 ffff
8 016 0128 000 0000 0007 0000 00 0001001 0000 0000 0000 ffff
9 015 0129 000 0000 0006 0000 00 0000000 0000 5555 0000 ffff

10 016 0128 000 0000 0005 0000 00 0001001 0000 5555 0000 ffff
11 015 0129 000 0000 0004 0000 00 0000000 0000 5555 0000 ffff
!2 ,." ,.. ""'''''' vvv GGuv vUV..J liuuu 00 000l00l 0000 !:>!:>!:>!:> uuuu iiii v~v V..L~U

13 015 0129 000 0000 0002 0000 00 0000000 0000 5555 0000 ffff
14 016 0128 000 0000 0001 0000 00 0001001 0000 5555 0000 ffff
15 015 0129 000 0000 0000 0000 00 0000000 0000 5555 0000 ffff
16 016 0128 000 0000 ffff 0000 00 1001001 0000 5555 0000 ffff
17 017 0129 000 0000 fffe 0000 00 1000000 0000 5555 0000 ffff
18 018 012a 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff
19 019 012b 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff
20 ala 012e 000 0000 fffd ffff 00 1000010 0000 5555 0000 ffff
21 01b 012d 000 0000 fffd ffff 34 1000010 0000 5555 0000 ffff
22 Ole 012e 000 0000 fffd ffff 35 1001001 0000 5555 0000 ffff
23 alb 012f 000 0000 fffd ffff 36 1000010 aaaa 5555 0000 ffff
24 Ole 012e 000 0000 fffd ffff 37 1001001 aaaa 5555 0000 ffff
25 01b 012f 000 0000 fffd ffff 38 1000010 aaaa 5555 0000 ffff
26 Ole 012e 000 0000 fffd ffff 39 1001001 aaaa 5555 0000 ffff
27 01b 012f 000 0000 fffd ffff 3a 1000010 aaaa 5555 0000 ffff
28 Ole 012e 000 0000 fffd ffff 3b 1001001 aaaa 5555 0000 ffff
29 01b 012f 000 0000 fffd ffff 3e 1000010 aaaa 5555 0000 ffff
30 Ole 012e 000 0000 fffd ffff 3d 1001001 aaaa 5555 0000 ffff
31 01b 012f 000 0000 fffd ffff 3e 1000010 aaaa 5555 0000 ffff
32 Ole 012e 000 0000 fffd ffff 3f 1001001 aaaa 5555 0000 ffff
33 Old 012f 000 0000 fffd 0000 00 1100010 aaaa 5555 0000 ffff
34 Ole 0130 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
35 Olf 0131 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
36 020 0132 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
37 021 0133 000 0000 fffd fff4 01 1000010 aaaa 5555 0000 ffff

----------------------------------,JrJrJF:---------------------------------
4-50

..,.,.

Abstract

Introduction

Usage and
Limitations

Programmable Peripheral
Application Note 009
In-Circuit Debugging for the PAC1000
Programmable Peripheral Controller By David Fong

This Application Note is used to illustrate
the in-circuit debugging capabilities of the

With the increasing densities and
complexities of integrated circuits, the
usage of tools such as in-circuit debuggers
and emulators is greatly desired by the
heroic hardware designer. The PAC1000
supports the usage of in-circuit debuggers.

A review of BP (breakpoint) and SS (single
step) IS discussed. SS IS the method of
stepping through the program code one
instruction at a time through manual means.
In the case of the PAC1000, there is no
manual means with a single-step switch.
Instead, an interrupt which is set internally
through the program IS set. This interrupt
can then call upon an ISR (interrupt service
routine). This subroutine then dumps out
the contents of all the possible registers
that can be read out. These registers must
then be written into the system memory by

Either SS or BP interrupts can occur.
Because both use the same initial ISR, the
ISR will differentiate between the two by
testing for a specific data pattern that
accompanies the breakpoint/single-step
data through the FIFO. One way was to
test for a specific external condition code
but that was determined to be inflexible
since a specific condition code needed to
be dedicated for this task. Instead, two
words are written into the CPU registers.
These two registers must be reserved for
breakpoint/single-step operation. In this
example, RO and R1 are reserved.
Register R1 is the mask that is 'AND'd
with RO which is written from the FIFO to
produce the Z (zero) flag that is tested.
See Figure 1 for the data format that is
written into the FIFO and CPU register RO.

The BP state continues with its program
by reading out the contents of some
registers to the host interface bus. Note
the usage of the FIFO to read out the
contents of the register to the ADD bus.
BP reads out only the input and output
registers that can be read as source to the

PAC 1000 programmable peripheral
controller.

the user to use in his monitor program. SS
is useful for checking that every cycle is
executi ng correctly.

On the other hand, BP is the method of
interrupting the program at a specific
program location. This allows the program
in the PAC1000 to run in real-time system
condillons. This breakpoint is passed to
the PAC1000 through the FIFO instead of
having a fixed address through the program.
BP is useful for intermittently checking the
execution of the program.

There is no preference on which method is
the best. Generally, it is determined by the
situation. If the system designer doesn't
trust their own system in the beginning of
debug, then they will use SS. After the
system becomes more debugged,
breakpoint is needed occasionally.

HD bus. Whereas, SS reads out the CPU
, registers as well as the input and output
registers to ADD.

Not all the registers can be read out or if
at all with difficulty. CPU registers as was
illustrated by this program was read out
using the FIFO. However, the user could
have individually read out each register.
Unfortunately, there would have been a lot
of overhead program space taken. The
stack cannot be read out because the
contents of the stack would affect the
program flow. The interrupt mask register
and interrupt pending register cannot be
read out or to the CPU. Future PAC1000
versions may support extra functions to
allow the user to more easily access the
internal registers.

In summary, the single-step program dumps
out the following registers to the ADD bus:
CPU registers R31-RO, DIR, AIR, ACH,
ACL, IIR, and BC. Whereas, the breakpoint
program dumps out the following registers
to the HD bus: DIR, AIR, AOR, ACH, ACL,
IIR, and BC.

4-51

•

PAC1000 - Application Note 009

Analysis of
Program

Figure 1. Host
to PAC1000
Commands
(Via the FIFO)

This single program incorporates essentially
two programs. One for breakpoint and one
for single-step. To differentiate between the
two programs since they use the same
interrupt INT6, the data in register RO is
tested upon and the corresponding action
is taken. If Z is true, then breakpoint will
occur, else single-step will occur. See
BR EAKPO I NTISI NG LE-STE P algorith m
Figure 2.

Note that the Interrupt Jump Table is
located at h'008' through h'OOf'. The
PAC1000 interrupt vector from the internal
interrupt jumps to these individual
locations. In addition, note that neither
conditional nor unconditional jumps were

allowed to be executed when either the
breakpoint or the single-step interrupts
occurred. This also applies to other
interrupts. The delay interval from the time
of interrupt to executing the interrupt is
two cycles. See Figure 3 for the timing
relationship of interrupt to the beginning
of execution of the interrupt service
routine (ISR).

The single-step subroutine utilizes the
FIFO to externally address the CPU dual­
port registers. The usage of the FIFO in
conjunction with loops reduces the size of
the control store. However, the contents of
the FIFO must be empty before using it.

HADS-i i HADI4:01-i.. HD[lS:01 ·1
lololololololulululxlulul~1~I~I~I~I~I~I~I~I~I
I I I I I I I I I I I I IUIUIUIUIUIUIUIUIUIUI

LEGEND:

U: User-Defined
X: Test Bit
A/U: Breakpoint Address or User-Defined

HAD5 = FICO: The flag to indicate that the contents are
data FICD=O or a command FICD=1.

HAD[4:0) = The B address to the CPU register file which in this case is register RO.

HD[15:13) = User-defined.

HD[12) = Test bit to differentiate between breakpoint and single-step.
HD12=O for breakpoint and HD12=1 for single-step.

HD[11 :10) = User-defined.

HD[9:0) = Breakpoint Address or for single-step user-defined.

___________________________________ f==SfE ________________________________ ___
4-52

Figure 2.
Breakpoint!
Single·Step
Flowchart

PACtOOO - Application Note 009

-------------------------~Jr;-------------------------
4-53

•

------------------ ---

PAC1000 - Application Note 009

Figure 2.
Breakpoint/
Single·Step
Flowchart
(Cont.)

---~~~~--
4-54

PAC1000 - Application Note 009

Figure 3.
Sequence of
Events for
Interrupt Timing

CK

CPC

CPC

Perform INT6 occurs.
addition Perform
R2:= R2 + RI. addition

BP register
was previously
loaded with
h'07a'

Select single~
step interrupt
for INT6.

R3:= R3 + RI.

INT6 occurs
and CPC will
jump 10 h'07e'

INT6 is
latched and
pending.
Perform
addition
R4:= R4 + RI.

INT6 is
latched and
pending.
Perform
addition of
R5:= R5 + RI.

INT6 vector
occurs to
change CPC.
Push return
address of
h'07c' to stack.

INT6 vector
occurs to
change CPC.
Push return
address of
h'07f'lo slack.

Note: CPC is the name from the simulator PACSIM for currently executing
program counter.

/***/
/* BP and SS linker file 04/03/89 */
/* David Fong Rev. 1.0 */
/* bpss.ml */
/***/

place main, int, intserv, init, single; /* place the segments */
load main, int, intserv, init, single; /* load the .mal files */

locate in it , h'OOO' ; /* locate the in it file */
locate intserv , h'008' /* locate the interrupt vectors */
locate main , h'050' /* locate the main file */
locate int , h'100' ; /* locate the ISR */
locate single , h'200' /* locate the single files */

end ;

/*********************************/
/* INITIALIZATION 04/03/89 */
/* David Fong Rev. 1.0 */
/* init.mal */
/*********************************/

segment init ;

external main1

SETMODE h'OOl' , OUT h'0002' /* switch to interrupt mode */
ENABLE INT6 , OUT h'OOOl'
JMP main1 , OUT h'OOOO' ; /* jump to main program */

end

---~~~--
4-55

•

PAC1000 - Application Note 009

/**********************************/
/* Main program 04/03/89 */
/* David Fong Rev. 1.0 */
/* main. mal */
/**********************************/

segment main ;

entry mainl

main1

/**/
/* BEGIN MAIN PROGRAM */
/**/

/* initialize registers */

R1 := h'1000' , OUT h'0050' ;/*
/* IF Z=l (which means R1.12 =
/* ELSE run single-step program
R2 .- h'0002' OUT h'0051'
R3 := h'0003' OUT h'0052'
R4 .- h'0004' OUT h'0053'
R5 := h'0005' OUT h'0054'
R6 .- h'0006' OUT h'0055'
R7 .- h'0007' OUT h'0056'
R8 .- h'0008' OUT h'0057'
R9 .- h'0009' OUT h'0058'
RIO .- h'OOOa' OUT h'0059'
Rll .- h'OOOb' OUT h'005a'
R12 .- h'OOOc' OUT h'005b'
R13 := h'OOOd' OUT h'005c'
R14 .- h'OOOe' OUT h'005d'
R15 .- h'OOOf' OUT h'005e'
R16 .- h'0010' OUT h'005f'
R17 := h'OOll' OUT h'0060'
R18 .- h'0012' OUT h'0061'
R19 .- h'0013' OUT h'0062'
R20 .- h'0014' OUT h'0063'
R21 := h'0015' OUT h'0064'
R22 .- h'0016' OUT h'0065'
R23 .- h'0017' OUT h'0066'
R24 .- h'0018' OUT h'0067'
R25 .- h'0019' OUT h'0068'
R26 0- h'OOla' OUT h'0069'
R27 := h'OOlb' OUT h'006a'
R28 .- h'OOlc' OUT h'006b'
R29 := h'OOld' OUT h'006c'
R30 .- h'OOle' OUT h'006d'
R31 .- h'OOlf' OUT h'006e'

ACH .- R31 , OUT h'006f' ;
ACL .- RO , OUT h'0070' ;
AOR .- R1 , OUT h'0071' ;
DaR .- R15 , OUT h'0072' ;
BC .- R7 , OUT h'0073' ;

the twelveth bit R1.12
0) THEN run breakpoint
*/

tests for BP/SS*/
program */

---------------------------------------~Jf~~--------------------------------------
4·56

PAC1000 - Application Note 009

/* all input registers are initialized to zero from RESET */

/* to integrate two different programs 1. BREAKPOINT 2. SINGLE-STEP*/
/* The result of masking RO with R1 is used to differentiate */
/* between BP and SSe */
/* IF Z = 1 Breakpoint; ELSE Z = 0 Single-Step */

/***************** READ IN FIFO AND TEST FOR BP/SS ********************/
gO: JMPC FICD gO , OUT h'0074' ; /*check that the fifo contents is data
LDBPD , RDFIFO , OUT h'0075'; /* FIFO was loaded with h'O 00 007a' */
/* first 0 is FICD ; 00 is B address ; 0 is the test bit ; */
/* 07a is the EPROM breakpoint address. */
/* Load loop counter with same data read from FIFO : LDLCD; */
/* the data written into the CPU is the same as the CPU output bus */

AND R1 RO , OUT h'0076' ; /* the Z flag is tested in the next cycle */
JMPC Z bO , OUT h'0077' ;
/* select single-step interrupt */
ESS , OUT h'0078' ;
JMP cO , OUT h'0079' ; /* skip breakpoint routine */

/**************** BREAKPOINT ***************************************/
/* perform alu operations till interrupt comes */
bO: R2:= R2 + R1 , OUT h'007a' ; /* breakpoint on this address h'07a'
R3 := R3 + R1 , OUT h'007b' ;
R4 := R4 + R1 , OUT h'007c' ; /* breakpoint interrupt comes here */
/* return from ISR to here */
eO : JMP eO , OUT h'007d'; /* loop forever ; end of breakpoint */

/*************** SINGLE-STEP **************************************/
cO: R5:= R5 + R1 , OUT h'007e' ; /* execute till interrupt comes */
R6 := R6 + R1 , OUT h'007f' ; /* interrupt should after here */

/* return from single-step ISR to here */
/* enable single-step interrupt and perform an operation */
ENABLE INT6 , R7 := R7 + R1 , OUT h'0080' ; /* the output for R2 */

/* should be h'l002' */
R8 := R8 + Rl , OUT h'0081' ; /* interrupt should come here */
/* return from single-step ISR to here */

fO : JMP fO , OUT h'0082' ;
end ;

/* loop forever */

/*********************************/
/*SINGLE-STEP SUBROUTINE 04/03/89*/
/* David Fong Rev. 1.0 */
/* single.mal */
/*********************************/

segment single ;
entry single1

single1
/* read out the registers from the ALU */
/* use the addressing scheme from the FIFO */

iiFB~~. -------------------------------------,.AFAr_------------------------------------
~.,.

4-57

•

PACtOOO - AppllcatlDn NDte 009

SETCON h'OlO' , OUT h'2000' : /* set ADD bus to output */
/* to read out AOR to ADD */

/* loop four times to address the 32 registers */

FOR 3 , OUT h'2001' :

/* FIFO should already be full */

fO JMPC FIIR fO , OUT h'2002' : /* loop till FIFO is full*/

/* check that the first value in the FIFO is a data */
fl JMPC FICD fl , OUT h'2003' :

/* loop eight times to empty the FIFO */
FOR 7 , OUT h'2004' :

/* use the FIFO as an address pointer */
/* the data is not needed: write the data back to CPU */
/* and output the CPU output to AOR */
/* the default CPU instruction is add which adds zero and */
/* the address pointed by the FIFO which is the B address */

RDFIFO , alu_src = zb , ybus_sel = y_aoreg ,
OUT h'2005' :
ENDFOR , OUT h'2006'

ENDFOR , OUT h'2007' :

/* read out
MOV AOR DIR
MOV AOR AIR
MOV AOR ACH
MOV AOR ACL
MOV AOR IIR
MOV AOR BC

the source registers to
OUT h'2008' /* 0000
OUT h'2009' /* 0000
OUT h'200a' /* OOlf
OUT h'200b' /* 0000
OUT h'200c' /* 0000
OUT h'200d' /* 0007

ADD */
should
*/
*/
*/
*/
*/

RET , OUT h'200e' : /* return to ISR 6 */

end

/*********************************/
/* INTERRUPT JUMP TABLE 04/03/89*/
/* David Fong Rev. 1.0 */
/* intserv.mal */
/*********************************/

segment intserv :
entry int_serv :

come out next cyle */

external into,intl,int2,int3,int4,int5,int6,int7

int_serv
JMP into
JMP intl
JMP int2
JMP int3

OUT h'0008'
OUT h'0009'
OUT h'OOOa'
OUT h'OOOb'

-------------------------~Jri-------------------------
4-58

I'AC10OD - Application Note 009

JMP int4 OUT h'OOOc'
JMP int5 OUT h'OOOd'
JMP int6 OUT h'OOOe'
JMP int7 OUT h'OOOf'

end

/**/
/* Interrupt Service Routines 04/03/89 */
/* David Fong Rev. 1.0 */
/* int.mal */
/**/

segment int i
entry into I intI int2 I int3 I int4 I int5 I int6 I int7
external singlel i

into
/* clear all the external interrupts */
CLI h'OOf' I OUT h'OIOO'
RET I OUT h'OIOl' i

intI
/* clear all the external interrupts */
CLI h'OOf' I OUT h'Ol02'
RET I OUT h'Ol03' i

int2
/* clear all the external interrupts */
CLI h'OOf' I OUT h'0104 '
RET I OUT h'Ol05' i

int3
/* clear all the external interrupts */
CLI h/OOf' I OUT h'Ol06'
RET I OUT h'Ol07' i

int4
/* mask that interrupt */
DISABLE INT4 I OUT h'Ol08'
RET I OUT h'Ol09' i

int5
/* mask that interrupt */
DISABLE INT5 I OUT h'OIOa'
RET I OUT h'OIOb' i

int6 /* Breakpoint and Single-step ISR */
/* mask that interrupt */
DISABLE INT6 ,OUT h'OIOc' /* mask interrupt 6 INT6 */
CLI h/Off' ,OUT h'OIOd'; /* clear all interrupts */

/************** TEST for Breakpoint/Single-Step **************/
AND RI RO ,OUT h'OIOe' ;
JMPC Z aO ,OUT h'OIOf' ; /* if Z=l then breakpoint/Z=O SS */

_______________________________ ',I~~_-----------------------------._,
4-59

•

PAC1000 - Application Note 009

CALL singlel , OUT h'0110' ;/* call single step program */
JMP bO , OUT h'Olll' ; /*finish SS ISR , return to main progr */

aO: SET HDOE HDSELO , OUT h'Ol12' ; /* set HD to output */
/* select DaR to HD output bus*/

/* move out the source registers to HD */

MOV DaR DIR OUT h'Ol13' /* 0000 should corne out next cycle*/
MOV DaR AIR OUT h'Ol14' /* 0000 */
MOV DaR AOR OUT h'Ol15' /* 0001 */
MOV DaR ACH OUT h'Ol16' /* OOlf */
MOV DaR ACL OUT h'Ol17' /* 0000 */
MOV DaR IIR OUT h'Ol18' /* 0000 */
MOV DaR BC OUT h'Ol19' /* 0007 */

bO:
RET , OUT h'Olla'

int7
/* mask that interrupt */
DISABLE INT7 , OUT h'Olla'
RET , OUT h'Ollb' ;

end

.T
RCCCCCCCCIIIIIIIIIIIICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAA
ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBBlllll19876543210DDDDDDDDDDDDDDDDDDDDDD
E 3210 543210 5432101111119876543210
T 543210
B

TIME
1 00000000000000000000011100000000000000000000000000000000000000
2 10000000000000000000011100000000000000000000000000000000000000

bpsO.stl file for single-stepping
write the single-step mode bit hd12=1

20 10000000000000000000000100010000000000000000000000000000000000
21 10000000000000000000011100010000000000000000000000000000000000

write into FIFO for single-step
55 1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ
56 1000000000000000000000010000000000000000000000ZZZZZZZZZZZZZZZZ
57 1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ
58 1000000000000000000000010000000000000000000001ZZZZZZZZZZZZZZZZ
59 1000000000000000000001110000000000000000000001ZZZZZZZZZZZZZZZZ
60 1000000000000000000000010000000000000000000010ZZZZZZZZZZZZZZZZ
61 1000000000000000000001110000000000000000000010ZZZZZZZZZZZZZZZZ
62 1000000000000000000000010000000000000000000011ZZZZZZZZZZZZZZZZ
63 1000000000000000000001110000000000000000000011ZZZZZZZZZZZZZZZZ
64 1000000000000000000000010000000000000000000100ZZZZZZZZZZZZZZZZ
65 1000000000000000000001110000000000000000000100ZZZZZZZZZZZZZZZZ
66 1000000000000000000000010000000000000000000101ZZZZZZZZZZZZZZZZ
67 1000000000000000000001110000000000000000000101ZZZZZZZZZZZZZZZZ
68 1000000000000000000000010000000000000000000110ZZZZZZZZZZZZZZZZ
69 1000000000000000000001110000000000000000000110ZZZZZZZZZZZZZZZZ
70 1000000000000000000000010000000000000000000111ZZZZZZZZZZZZZZZZ
71 1000000000000000000001110000000000000000000111ZZZZZZZZZZZZZZZZ

----------------------------------~jF:---------------------------------
~~ __ ~E

95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

write
240
241
242
243
244
245
246
247

PAC1000 - Application Note 009

1000000000000000000000010000000000000000001000ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001000ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001001ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001001ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001010ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001010ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001011ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001011ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001100ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001100ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001101ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001101ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001110ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001110ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000001111ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000001111ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010000ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010000ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010001ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010001ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010010ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010010ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010011ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010011ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010100ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010100ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010101ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010101ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010110ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010110ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000010111ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000010111ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011000ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011000ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011001ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011001ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011010ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011010ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011011ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011011ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011100ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011100ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011101ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011101ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011110ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011110ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000011111ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000011111ZZZZZZZZZZZZZZZZ

into FIFO second time around for single-step
1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000000ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000001ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000001ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000010ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000010ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000011ZZZZZZZZZZZZZZZZ

--------------------------------r==:~-------------------------------
4-61

•

PAC1000 - Application Note 009

248
249
250
255
256
257
258
259
260
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

1000000000000000000001110000000000000000000011ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000100ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000100ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000101ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000101ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000110ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000110ZZZZZZZZZZZZZZZZ
1000000000000000000000010000000000000000000111ZZZZZZZZZZZZZZZZ
1000000000000000000001110000000000000000000111ZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOOlOOOZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOlOOOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOlOOlZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOlOOlZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOOlOlOZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOlOlOZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOOlOllZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOlOllZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOllOOZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOllOOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOllOlZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOllOlZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOOlllOZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOlllOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOllllZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOOllllZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOlOOOOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOOOOZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlOOOlZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOOOlZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlOOlOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOOlOZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlOOllZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOlOOllZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlOlOOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOlOOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOlOlOlZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOlOlOlZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlOllOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOllOZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlOlllZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOlllZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOllOOOZZZZZZZZZZZZZZZZ
100000000000000000000lllOOOOOOOOOOOOOOOOOllOOOZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOllOOlZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOl110000000000000000011001ZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOllOlOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOllOlOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOllOllZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOllOllZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlllOOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlllOOZZZZZZZZZZZZZZZZ
10000000000000000000000lOOOOOOOOOOOOOOOOOlllOlZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlllOlZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOllllOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOllllOZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOlllllZZZZZZZZZZZZZZZZ
lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlllllZZZZZZZZZZZZZZZZ

--------------------------------~Jr~--------------------------------
4·62

PAC1000 - Application Note 009

.T
RCCCCCCCCIIIIIIIIIIIICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAA
ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBBlllll19876543210DDDDDDDDDDDDDDDDDDDDDD
E 3210 543210 5432101111119876543210
T 543210
B

TIME
1 00000000000000000000011100000000000000000000000000000000000000
2 10000000000000000000011100000000000000000000000000000000000000

20 10000000000000000000000100000000011110100000000000000000000000
21 10000000000000000000011100000000011110100000000000000000000000
53 100000000000000000000111ZZZZZZZZZZZZZZZZ0000000000000000000000
bps1.stl uses Z=l for breakpoint ISR; HD12=0;

*********The bpsO.out file **********

o U T PUT TAB L E

PAC S I M Ver. 1. 09 Tue Apr 04 15:43:42 1989

CCC 0000 A AAAA AAAA FFFIB PPP LLL BBBB
PPP CCCC D DDDD 0000 IIINR CCC CCC CCCC
CCC 1173 0 DDDD RRRR CIOTP 173 173 1173

• 173 51: : E 1173 1173 DRRRT 1· • 1· • 51: :
1· • : :40 51: : 51: : E :40 :40 : :40
:40 18 :: 40 : : 40 Q 8 8 18
8 2 18 18 U 2

2 2 L
TIME

1 000 0000 0 0000 0000 00001 000 000 0000
2 000 0000 0 0000 0000 00001 000 000 0000
3 000 0002 0 0000 0000 01000 001 000 0000
4 001 0001 0 0000 0000 01000 002 000 0000
5 002 0000 0 0000 0000 01000 050 000 0000
6 050 0050 0 0000 0000 01000 051 000 0000
7 051 0051 0 0000 0000 01000 052 000 0000
8 052 0052 0 0000 0000 01000 053 000 0000
9 053 0053 0 0000 0000 01000 054 000 0000

10 054 0054 0 0000 0000 01000 055 000 0000
11 055 0055 0 0000 0000 01000 056 000 0000
12 056 0056 0 0000 0000 01000 057 000 0000
l3 057 0057 0 0000 0000 01000 058 000 0000
14 058 0058 0 0000 0000 01000 059 000 0000
15 059 0059 0 0000 0000 01000 05a 000 0000
16 05a 005a 0 0000 0000 01000 05b 000 0000
17 05b 005b 0 0000 0000 01000 05c 000 0000
18 05c 005c 0 0000 0000 01000 05d 000 0000
19 05d 005d 0 0000 0000 01000 05e 000 0000
20 05e 005e 0 0000 0000 01000 05f 000 0000
21 05f 005f 0 0000 0000 01000 060 000 0000
22 060 0060 0 0000 0000 01100 061 000 0000
23 061 0061 0 0000 0000 01100 062 000 0000

~~;;
4-63

PAC1000 - Application Note 009

24 062 0062 a 0000 0000 01100 063 000 0000
25 063 0063 a 0000 0000 01100 064 000 0000
26 064 0064 a 0000 0000 01100 065 000 0000
27 065 0065 a 0000 0000 01100 066 000 0000
28 066 0066 a 0000 0000 01100 067 000 0000
29 067 0067 a 0000 0000 01100 068 000 0000
30 068 0068 a 0000 0000 01100 069 000 0000
31 069 0069 a 0000 0000 01100 06a 000 0000
32 06a 006a a 0000 0000 01100 06b 000 0000
33 06b 006b a 0000 0000 01100 06e 000 0000

***Due to the length of the file, the rest of the output is not shown ***

***********The bps1.out file *************

0 U T PUT TAB L E

PAC S I M Ver. 1. 09 Man Apr 03 13:08:15 1989

CCc 0000 M CC DI BBB B HHHH LLL BBBB
PPP ecce D CC ON RRR R DDDD CCC ecce
eee 1173 0 73 RT EEE P 1173 173 1173
173 51: : E .. R AAA T 51:: 1· • 51: :
1 ! ! ! !4n 4n ¥:¥:¥: E ~ ~ 40 ~40 ~ ~ 40
:40 18 RRR Q 18 8 18
8 2 EEE U 2 2

GGG L
973
...
840

TIME
1 000 0000 a 00 00 000 1 0000 000 0000
2 000 0000 a 00 00 000 1 0000 000 0000
3 000 0002 a 00 00 000 a 0000 000 0000
4 001 0001 a 00 00 000 a 0000 000 0000
5 002 0000 a 00 00 000 a 0000 000 0000
6 050 0050 a 00 00 000 a 0000 000 0000
7 051 0051 a 00 00 000 a 0000 000 0000
8 052 0052 a 00 00 000 a 0000 000 0000
9 053 0053 a 00 00 000 a 0000 000 0000

10 054 0054 a 00 00 000 a 0000 000 0000
11 055 0055 a 00 00 000 a 0000 000 0000
12 056 0056 a 00 00 000 a 0000 000 0000
13 057 0057 a 00 00 000 a 0000 000 0000
14 058 0058 a 00 00 000 a 0000 000 0000
15 059 0059 a 00 00 000 a 0000 000 0000
16 05a 005a a 00 00 000 a 0000 000 0000
17 05b 005b a 00 00 000 a 0000 000 0000
18 05e 005e a 00 00 000 a 0000 000 0000
19 05d 005d a 00 00 000 a 0000 000 0000
20 05e 005e a 00 00 000 a 007a 000 0000
21 05f 005f a 00 00 000 a 007a 000 0000
22 060 0060 a 00 00 000 a 007a 000 0000
23 061 0061 a 00 00 000 a 007a 000 0000

'.1 Jll'E

4·64
~II

PAC1000 - Application Note 009

24 062 0062 a 00 00 000 a 007a 000 0000
25 063 0063 a 00 00 000 a 007a 000 0000
26 064 0064 a 00 00 000 a 007a 000 0000
27 065 0065 a 00 00 000 a 007a 000 0000
28 066 0066 a 00 00 000 a 007a 000 0000
29 067 0067 a 00 00 000 a 007a 000 0000
30 068 0068 a 00 00 000 a 007a 000 0000
31 069 0069 a 00 00 000 a 007a 000 0000
32 06a 006a a 00 00 000 a 007a 000 0000
33 06b 006b a 00 00 000 a 007a 000 0000
34 06e 006e a 00 00 000 a 007a 000 0000
35 06d 006d a 00 00 000 a 007a 000 0000
36 06e 006e a 00 00 000 a 007a 000 0000
37 06f 006f a 00 00 000 a 007a 000 0000
38 070 0070 a 00 00 000 a 007a 000 0000
39 071 0071 a 00 00 000 a 007a 000 0000
40 072 0072 a 00 00 000 a 007a 000 0000
41 073 0073 a 00 00 000 a 007a 000 0000
42 074 0074 a 00 00 000 a 007a 000 0007
43 075 0075 a 00 00 07a a 007a 000 0007
44 076 0076 a 00 00 07a a 007a 000 0007
45 077 0077 a 00 00 07a 1 007a 000 0007
46 07a 007a a 00 00 07a a 007a 000 0007
47 07b 007b a 00 01 07a a 007a 000 0007
48 OOe OOOe a 00 01 07a a 007a 000 0007
49 10e alae a 00 00 07a a 007a 000 0007
50 lad 010d a 00 00 07a a 007a 000 0007
51 10e alae a 00 00 07a a 007a 000 0007 • 52 10f olaf a 00 00 07a a 007a 000 0007
53 112 0112 1 00 00 07a a OOOf 000 0007
54 113 0113 1 00 00 07a a OOOf 000 0007
55 114 0114 1 00 00 07a a 0000 000 0007
56 115 0115 1 00 00 07a a 0000 000 0007
57 116 0116 1 00 00 07a a 1000 000 0007
58 117 0117 1 00 00 07a a 001f 000 0007
59 118 0118 1 00 00 07a a 0000 000 0007
60 119 0119 1 00 00 07a a 0000 000 0007
61 lla 011a 1 00 00 07a a 0007 000 0007
62 07e 007e 1 00 00 07a a 0007 000 0007
63 07d 007d 1 00 00 07a a 0007 000 0007
64 07d 007d 1 00 00 07a a 0007 000 0007
65 07d 007d 1 00 00 07a a 0007 000 0007
66 07d 007d 1 00 00 07a a 0007 000 0007
67 07d 007d 1 00 00 07a a 0007 000 0007
68 07d 007d 1 00 00 07a a 0007 000 0007
69 07d 007d 1 00 00 07a a 0007 000 0007
70 07d 007d 1 00 00 07a a 0007 000 0007

-----------------------------------~~~~----------------------------------
4-65

~~ __ FjfjfSF~
4-66 ~#;------------------

Abstract

Introduction

Programmable Peripheral
Application Note 010
PAC1000 Introduction
By Chris Jay and David Fong

The PAC 1 000 programmable peripheral
controller is the first of a generation of
devices intended for applications in high
end embedded control. Understanding the
device architecture and using its support
tools require some practical experience
before a full system design is attempted.

The PAC1000 has many applications in
digital systems where high speed processing,
interface or control is required. The two
roles of the device are in a standalone
mode where the PAC1000 is programmed
to control data flow to or from other systems,
or as a high speed peripheral working with
a host microprocessor. Frequently, many
systems designers cannot find the ideal
solution to their requirements in a standard
chip. The designer may look at creating
the required function from discrete logic, a
combination of a number of PALlEPLD
devices, Programmable Gate Array (PGA)
products or standard gate array. In each
alternative, the designer is trying to reduce
the chip count of the system solution and
hence increase its reliability and reduce
assembly costs.

The discrete TTL or CMOS logic solution
to a systems design is considered by some
to be an old fashioned approach but still
popular with many digital design engineers.
However, designs using this technology
can qUickly escalate In chip count as the
development progresses and once a
system is designed it is very difficult to
modify because the finished printed circuit
board contains devices that cannot be
re-programmed or altered in any way. Also,
a revision or system upgrade Will require a
new printed circuit board design.

The PAL/EPLD solution reduces the chip
count over a solution that uses discrete
logic but still many devices are used
because the PALlEPLD products are not
very register intensive. Small subsystems
such as FIFO or a STACK require a number
of PAL/EPLD devices and additionally

This application note is intended to
introduce the device and its architecture
along with the support software tools to the
systems designer. Finally, some simple
applications are leveled at common
problems found in system design.

require some additional chips. An alternative
solution would be to use additional
dedicated chips like FIFO, ALU and SRAM,
leaving the PLD/EPLD devices to handle
the glue, interface and small state machine
functions. The Programmable Gate Array
brings the system down to a possible
acceptable level but system logic still has
to be defined and routed in the logic cells
and a number of PGA devices have to be
designed such that they all work together .
Nevertheless, in the case of the
programmable solution, subsystems such
as STACK, ALU, REGISTER FILES etc.,
might still need to be configured in the
gates and registers of these devices. This
can cause an escalation in the quantity of
these chips used in the final system,
because PLDs and PGAs are not good
vehicles for integration at the subsystem to
system level. In a gate array design the
turn-around time is longer than the
programmable solution, and because the
device is not re-programmable there is a
high level of risk in going to a gate array
solution. Also, the high 'up front' Non
Recurring Engineering charges NRE can
rule out the use of gate array.

The Programmable Standalone Controller
offers the most likely solution to the
problem facing the systems designer. Very
often both the PAC1000 is used with
programmable logic devices to effect an
overall solution. For example in some
modes of operation PLDs are used for
address decoders to select and gate the
host interface control lines such as CSB,
RDB, and WRB. By bringing the package
count of the system down to its lowest

---------------------------------------~Jf~~--------------------------------------
4-67

•

PAC1000 - Application Note 010

Introduction
(Cont.)

PAC1000 Device
Architecture

The Control Unit

level the design cycle time reduces, so
minimizing the overall time to market of
the final product. The reason for this is
that the PAC1000 already contains the
subsystems necessary for a fully functional
system design, and being programmable, it
can be adapted to perform most functions
required from systems devices.

The PAC1000 comprises elements such
as FIFO, ALU, register files, STACK,
microcode store, loop and breakpoint
counters, special registers and interface
logic all interconnected by a general
purpose internal bus structure. The
instructions that control data flow are
contained in the EPROM section of the
microcontrol store. These instructions are
entered into the system by the designer as
assembly or high level language code.
There also exists a microcode entry level
for those designers who are used to

The PAC1000 device architecture can be
divided into three subsystems, see Figure
1a; a CPU section that is similar to those
found in microprocessors, a host interface,
__ ...J __ ~ _______ L...I_ •• __ _.1.: ____ _ i __ 1

C.UIU a t-'IV~lallllllalJlv II l.:;JlI U UVII vVIIllVI

unit. The instruction register can be clearly
identified with its three output sections of
control, output and CPU Operation
Definition. Figure 1b illustrates a more
detailed diagram of the system than

The control unit is constructed around a
1K deep 64-bit wide EPROM, see Figure
1b. The 64-bit wide instructions are
programmed in the EPROM section and
are accessed and executed on each clock
cycle. The input RESET causes the
PAC1000 to access and execute the first
instruction at location OOOH of EPROM.
On each execution cycle, the Instruction
Register shown in Figure 1a will contain
three control operatives, a next address
instruction to the control section, an output
instruction and CPU instruction. The other
inputs to the control unit include interrupts
and condition codes. There are four external
and four internal interrupts that can be
enabled under programmed control. These
can generate a branch to an interrupt
service routine that results from a rising
edge applied to the external interrupt
input. For interrupts INTO, INT1, INT2, and
INT3 there are four locations OOSH, 009H

microprogrammable designs. Designing
with the PAC's software support tools is very
similar to writing code for microprocessors.
The end result is an assembled listing which
can be simulated prior to programming
into the PAC1000 device's on chip EPROM.
The difference between microprocessors,
conventional microcontrollers and the
PAC1000 device is found its ability to
execute instructions in parallel, and to
offer the designer a flexible architecture.
Microcontrollers and microprocessors
function on single operations of execution,
but the PAC1000 executes three instructions
in parallel during the current clock cycle.
In this way the PAC1000 device needs
fewer EPROM locations to store the code
which performs a given function. In addition
high functional speeds can be obtained
because the device can execute those
instructions at the clock rate of the system.

Figure 1a, clearly identifying the sub
structures of the three subsystems. The
different sections of the PAC1000 are
interconnected to each other by internal
uu~t:::) dilU l"Ullvt:y Udld dlU.i ill~lIULlium:i LU

and from each other. Communication to
and from the outside world is achieved
through various input and output registers,
and a Command/Data FIFO.

OOAH and OOSH respectively. These are
the vectored addresses at which processing
will continue in the presence of one of
these active interrupts. At the interrupt
location a jump to an interrupt service
routine should be inserted. For example,
the occurrence of INTO will divert
processing to location OOSH, that location
may contain a JMP 100H, where 100H is
the address where the service routine for
INTO should reside. The internally
generated interrupts are INT4, INT5, INT6
and INT? which divert processing to
locations OCH, ODH, OEH and OFH
respectively. Details of their allocated
function is given in the PAC1000 data
sheet. In addition there are eight condition
code inputs CC[?:O], shown alongside the
INT[3:0] inputs in Figure 1b. These inputs
can be tested individually under program
control. The combination of Next Instruction
Definition, Interrupt and Condition Code

-----------------------------------f==~~---------------------------------­==",=,,=E
4-68

The Control Unit
(Cont.,

Figure 1a.
PAC1000
Programmable
Peripheral
Controller
Single Cycle
Control
Architecture

Figure 1b.
PAC1000
Programmable
Peripheral
Controller
Block Diagram

input direct the flow of the program and
hence the execution of instructions
contained in the EPROM section. The
CASE logic is used in the controller
section to enable CASE statements to be
executed on condition code groups. The
eight condition code inputs may be divided
into two four bit groups. Case group zero
CGO comprises CCO, CC1, CC2 and CC3.
Case group 1 CG1 comprises CC4, CC5,
CC6 and CC7. A further two case groups
CG2 and CG3 test flag registers (see

CONDITION CODES
8

CONTROL

INTERRUPTS UNIT
4 1024 x 64

NEXT INSTRUCTION EPROM
DEFINITION

CLK

OC[15:0]

CLK RESET

~ +
CONFIGURATION REGISTERS !

CONTROL 110 CONFIGURATION I MODE I , I

PACtOOO - Application Note OtO

Table 1). These condition code inputs may
be tested individually or tested in a group.
When tested in a four bit group, a one-of­
sixteen branch will occur, as specified by
the CASE instruction.

The current status of the PAC1000 IS kept
in the sixteen bit status register. STATO­
STAT11 give twelve status bits with four
extra bit locations for future development.
Table 2 shows the assignment of each
register.

CS RD WR HD[15:0) HAD[5:0)

CPU

28

110[7:0) ADD[15:0)

CS RD WR HD[15:0) HAD[5:0)

I I I + i
+ + t + t

HOST INTERFACE

J
t ,

I DATA INPUT I ! DATA OUTPUT J I COMMAND/DATA FIFO ! , t J
1

CONTROL SECTION ~ BREAKPOINT REG J CPU II 32 x 16 J
REGISTER FILE

SEQUENCER I Q REGISTER J
I I LOOP CNTR I

1Kx 64 1 I I PROGRAM CNTRj PROGRAM
I J II

MEMORY
AW 15 LEVEL I STACK Is1 I OUTPUT

t ADDRESS COUNTER

CASE LOGIC BLOCK COUNTER J
TEST LOGIC !INTERRUPT 1 t

110 SPECIAL I
FUNCTION PORT

I ADDRESS/DATA I
PORT

~ t
t +

CC[7:0) INT[3:0) OUTCNTL[15:0) 110[7:0) ADD[15:0)

---------------------------------------,JrJr~~'--------------------------------------
'l!!l!"fl!!1!I!F1IT 4-69

- _ -- ~_-_- _--__ --__ c ____ --__ - - __ --_~- ~

•

PAC1000 - Application Note 010

Table 1.
CASE Group
Assignments

Table 2. Status
Register

The Control Unit
(Cont.)

Host Interface

Condition Code CASE
cco, CC1, CC2, CC3 CASE Group 0

CC4, CC5, CC6, CC7 CASE Group 1

S, O,Z, CY. CASE Group 2

INTR, BCZ, FIOR, FICO. CASE Group 3

FIXp, ACO, STKF, FIIR, DOR, INTR N/A

S6 S5 S4 S3 S2 S1

S11 - Security Bit, High IS Active Security On, Low is No Security.
S10 - Scan Mode, High is Active On, Low is No Scan Mode.
S9 - FIXP FIFO Exception Occurs When a Command is Written, a Low Means No

Exception.
S8 - FIIR FIFO Input Ready When There is at Least One Location Vacant.
S7 - CY Set High When the Result of a CPU Operation Generated a Carry.
S6 - Z Set High When the Result of a CPU Operation is Zero.
S5 - 0 Set When an Overflow Has Occurred During a Two's Complement Operation.
S4 - S Sign Bit Set to One When the Result is a Negative Number.
S3 - Stack Full Flag. Set When the Stack is Full.
S2 - Breakpoint Flag is Set When the Address in the Breakpoint Register is Equal

to the Address in the Proqram Counter.
S1 - BCZ IS Set When the Block Counter Reaches Zero.
SO - ACO Address Counter All Ones Flag is Set When the Address Counter Reaches

the Maximum Count.

A single internal counter is provided for
loop control, this is part of the control
section, and is shown in Figure 1b. If a
FORLOOP is executed the loop counter is
loaded and the instructions within that
loop are executed until the counter has
decremented to zero. The loading of this
counter is transparent to the designer in
the respect that the FORLOOP instruction
automatically performs loading and counting.

A fifteen level stack is incorporated to hold
the return address of the main program
when a subroutine call or interrupt service
routine is being executed. The address of
the next sequential instruction to be
executed is pushed onto the stack. The
stack is also used for LOOP NESTING.
There is only one loop counter in the
PAC1000 but nested FORLOOP instructions

The host interface section has been
designed to easily integrate into a CPU
based system. When the PAC1000 is used
in the peripheral mode, the flow of data or

are possible because the current contents
of the loop counter is saved in the stack
when the next subsequent loop in the next
is entered. When leaving the loop the
stack IS popped to return the old count
back into the loop counter thus preserving
its original contents. When the stack
becomes full a status flag STKF is set in
the sixteen bit status register and an
interrupt level 7 is generated.

To enable a debugging facility a register
called the breakpoint register is included
in the microcode section. When the
contents of the program counter is equal
to that of the breakpoint register an
interrupt level six is generated. For
debugging purposes a level six interrupt
service routine should be written to
perform diagnostic tests within the system.

commands to its internal registers may be
achieved through an internal FIFO, Standard
microprocessor signals of chip select CSB,
read ROB and write WRB (active LOW CS,

_____________________________________ rSS=E __________________________________ __

4·70

Host Interface
(Cont.)

Table 3. Host
Interface
Function Table

RD and WR) are accompanied by a
sixteen bit Host Data and a six bit Host
Address bus. Table 3 gives the conditions
governing the mode setting for both
standalone and peripheral mode. The logic
condition of HDSELO and HDSEL1 in the
control register will determine the mode of
the PAC1000 operation. Bit positions in
this register can be set or reset under
program control.

A detailed block diagram of the PAC1000
is given in Figure 2 which illustrates the
internal structure of the control section,
processor section and interface. Data flow
from the host processor data inputs
HDO-HD15 to the internal 16-bit bus can
be achieved through the FIFO section. The
FIFO is eight locations deep and twenty­
two bits wide. To transfer data words to the
registers in the CPU section the host
processor uses the chip select, write and
HAD inputs. The address of the register is
set up on the five HAD lines (this selects
one of 32 registers) then the write and
chip select lines are driven LOW. The data
on the HD lines plus the register address
is loaded into the FIFO. An additional bit
called the FICD bit is loaded through
HAD5 at the same time as address
HAD[0-4] and the host data lines HD[0-15].
This is the FIFO Command/Data bit and
must be LOW to signify that the sixteen bit
word on HD[0-15] is data. If it is set HIGH,
the least significant ten bits of that data
will be used as an address pointer to the
microcoded EPROM. In this way the host
system can direct PAC1000 processing to
a defined microcoded address. This is a

PACtOOO - Application Note OtO

powerful feature that enables dynamic
context switching of PAC1000 under
supervision of the host processor. The
FIFO exception flag FIXP will be set if the
information residing in the FIFO was
misdirected (if it were treated as a control
word when the FICD flag labeled it as
data or if the opposite condition prevailed).

Using the FIFO is the only method in
which the host can communicate with the
PAC1000 using the active LOW chip select
CSB and the write input WRB. The DOR
and DIR are Data Output and Data Input
registers and are available to convey data
to and from the internal sixteen bit bus but
do not respond to CSB and WRB. The
DIR would be used in a synchronous
system because, when it is enabled by
setting the DIREN flag (see Table 4), data
is latched on the rising edge of each clock
signal. The data contents of the DOR
register may be directed to the host data
outputs if all inputs CSB, WRB and RDB
are inactive and HDSELO and HDSEL1 are
1 and 0 respectively, see Table 3. The use
of the DIR and DOR register is intended
more for synchronous communication
whereas the FIFO is intended primarily for
asynchronous systems or synchronous
peripheral interface. The flags FIIR and
FIOR are the FIFO Input Ready and FIFO
Output Ready respectively, these flags can
be tested so no overwriting of data will
occur. Figure 3 shows the 110 Port and
Special Functions. The FIIR register can
be directed to the output 1107 through a
multiplexer so it can be tested externally
by the host system.

HOSELO HOSEL1 CS RO WR HA05 HAO[O-4J HO[15-0J OPERATION

0 0 0 1 0 0
Register

Data Write Data to FIFO
Address

0 0 0 1 0 1 X Command
Write Command
to FIFO

0 0 0 0 1 0 00100 X Reset FIFO

0 0 0 0 1 0 00011 X Reset Status Register

0 0 0 0 1 0 00010 X
Read Program
Counter

0 0 0 0 1 0 00001 X Read Status Register

0 0 0 0 1 0 00000 X
Read Data Output
Register

1 0 1 1 1 X X X Data Output Register

0 1 1 1 1 X X X Status Register

1 1 1 1 1 X X X Program Counter

-------------------------------------~~~Ar------------------------------------
4-71

•

PAC1000 -- Application Note 010

Figure 2.
PAC1000
Detailed
Block Diagram

DIR

T

DATA
INPUT DIREN

REGISTER -
16

B r-
8

CC

L----§ INTERNAL

CC

T ·r
HOST

INTERFACE
DECODER

DEC~DED
SIGNALS

DOR t16

DATA
OUTPUT

REGISTER

~ 16
DOR

I PROGRAM
COUNTER

I 15·LEVEL
STACK

I
LOOP

COUNTER

HD HAD

i 16 i 6

IHDOE - VD IHADOE- V~
16

16 6

16 1 SR FIFO (8 x 22)

8 x 16 COMMAND 8x5
STATUS AND REGISTER 8 xl

REGISTER DATA FIFO POINTER

INTEtNAL
!FIIR

16
~ FICO

FLAGS 5

REGISTER
SELECT

INTERNAL
CONTROL REGISTER
SIGNALS FILE AND

Q REGISTER

~ ALU

I CPU

I, BLOCK1j+

I BREAKPOINT COUNTER 1/0
INTERNAL CONFIGURATION

B REGISTER
BC t INTR I S I I

MODE
4 1K x 64 BCEN

EPROM CONTROL INTR

CLK CONTROL
UNITt CONFIGURATION REGISTERS - 16

RESET -Vee V L- 16 16 16 16 6

GND OUTPUT CONTROL

r
J6 OC ACH ACL

I SWAP ACEN ADDRESS ADDRESS REGISTER ~ - COUNT COUNT
HIGH LOW

8 Va 16 AOR

IIR lOR AIR ! t ACS22 ADDRESS t 1/0 1/0 ADDRESS
OUTPUT

REGISTER
INPUT OUTPUT INPUT

REGISTER REGISTER REGISTER VD IADOE - ~

~ t 1
AIREN

16 t16

t8
ADD

1/0

--~~~~---
4·72

Figure 3. I/O
Port and Special
Functions

PAC1000 - Application Note 010

>-----.--I----t---t----I B MUX IACEN
01---.

8-BIT 8-BIT
INPUT OUTPUT
BUS BUS

fe=_-= __________________________ _
----------------------;",.=S!!E

4-73

PAC1000 - Application Note 010

Table 4.
Control Register

Central
Processing Unit

CTRL9 CTRL8 CTRL7 CTRL6 CTRL5 CTRL4 CTRL3 CTRL2 CTRL1 CTRLO

ASEL AIREN DIREN HDSEL1 HDSELO ADOE HADOE HDOE BCEN ACEN

ASEL Selects Which Source Will Write to the Address Bus
1 = Address Counter. 0 = Address Output Register.

AIREN Enables/Disables Writing to the Address Input Register by the Address Bus.
1 = Enabled. 0 = Disabled.

DIREN EnableslDisables Writing to the Data Input Register.
1 = Enabled. 0 = Disabled.

HDSEL1
HDSELO - Decoded to Select Which Source Will be Connected to the Host Data Bus

(See Table 3.).

ADOE Selects Direction of the Address Bus
1 = Output. 0 = Input.

HADOE Selects Direction of Host Address Bus (HAD).
1 = Output. 0 = Input.

HDOE Selects Direction of Host Data Bus for Next Clock Cycle.
1 = Output. 0 = Input.

BCEN Enables/Disables Block Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.

ACEN Enables/Disables Address Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.

The section that deals with data processing
is the central processing unit. This
comprises a sixtee(l bit wide ALU with a
32 x 16 bit register file. One other special
purpose register Q and an R shifter circuit
make up this section. The Q register is
sixteen bits wide and can be used for data
shifting. Figure 4 shows the ALU and
register structure of the CPU section. The
ALU is in the path of the register outputs
such that arithmetic and logic functions
may be executed on the contents of any
one of the 32 general registers. The output
of the ALU passes data back to the
selected register through the R shifter. In
this logic circuit, data may be shified
either left or right, one position, before
being written back into the register file.
The output of the ALU can also drive data
to registers such as the DOR register. A
multiplexer can select either the ALU or
the RO-R31 register output. The loop
counter LC can be loaded from this
multiplexer enabling the contents of a
register to determine how many program
loops are to be executed. This loop
counter can be loaded from the EPROM to

give a fixed number of loops or from a
register at program 'run time.' In this
event, the number of times a loop is
executed can be made programmable.
Other registers on this bus are AOR,
Address Output Register, the lOR, Input
Output Register, the ACL and ACH low
and high address counters and the BC
Block Counter. The ACL counter has a six
bit resolution and the ACH counter has
sixteen. When enabled by ACEN, the ACH
counter will increment on the rising edge
of each clock cycle. The default value is
for a sixteen bit count. To enable a twenty­
two bit count where the ACL takes on the
six least significant of the twenty-two bits.
The ACS22 flag must be set, to enable the
clocking of these counters. This is
transparent to the software because once
enabled the counters will clock at the
system clock rate. However, they can be
turned on and off from the microcoded
instruction of enable SET ACEN, or
disable RESET ACEN, also counting can
be influenced by register loading.

_____________________________________ FE=== __________________________________ __

~'=='~E
4-74

Figure 4.
PAC1000 ALU
and Registers
Structure

PAC1000 - Application Note 010

,---,
I

ClK

HOST
INTERFACE

IN (B)

REGISTER
BANK

(R311RO)

HOST
INTERFACE

ADD
BUS

OMSB

II:
W

II:
W

t:
:;:

~ a 01-----1 '" o
w
II:

F O

1/0
BUS

OlSB

CPU

CONSTANTS ,------,
I I
I I
1'--___
I I
I PART OF I
~~~~l ~E9.'?~ 

--------------------------------------r~~~~------------------------------------
4-75 

• 



PAC1000 - Application Note 010 

Support 
Software 

Figure 5. 
Program Flow 
From Assembly 
Input to 
Simulated 
Output 

The PAC1000 device is supported with 
development software that can run in an 
IBM PC/XT or AT computer. The main 
tools that the designer will use are the 
assembler, the linker and the simulator. 
These support programs are run from a 
WSI menu called WISPER that has been 
designed to make software development a 
simple process. The designer can select 
the assembler from the menu and assemble 
his source program. After assembly the 
program must be linked. The linker program 
is designed for those system designers 
who build their software up from a number 
of modules. Figure 5 illustrates the flow 
from original source code entry through 
the linker to a simulated output. The linker 
will take these modules and combine them 

into one object program. On completion of 
assembly and linking the program may be 
checked by the simulator. The use of the 
simulator removes the need for EPROM 
programming and in-circuit testing during 
the design cycle and gives the designer a 
fairly high level of confidence that the 
program will function as intended. The 
simulator will take the bit pattern format 
that was generated during assembly and 
apply a command and stimulus file to the 
program. The result will be a series of 
waveforms that appear on the screen of 
the PC and is similar to that of a logic 
analyzer display. A table of vectors is also 
generated for those signals that are traced 
from the command file. These vectors can 
be printed out for analysis and verification. 

<filename>.MAL 

<fllename>.ML 

<filename>.STL 

<filename>.CMD 

<filenarne>.OUT 

1 
ASSEMBLER 

<filenarne>.LIS 

<filename>.OB 

<filename>.LlS 

<fllename>.ABS 
L-_______ <filename>.OBJ 

PROGRAMMED 
DEVICE 

---------------------------------------~~~~--------------------------------------
4-76 



Microcoded 
EPROM Section 

A further aid to the design entry is the 
ability to mix high level, assembler and 
microcode mneumonics so designers can 
use the entry level that they feel the most 
comfortable with. Most of the applications 
example given below are written in a high 
level 'C' like language but some assembler 
instructions are also incorporated. 

In systems applications such as Direct 
Memory Access (DMA), it IS required to 
output the contents of a counter to 
address memory and then increment it. 
This is implemented in the PAC1000 high 
level language syntax as: 

AOR : = RO ; I*CONTENTS OF RO 
GOES INTO THE AOR*I 

RO:= ++RO ; I*REGISTER RO IS 
INCREMENTED BY ONE*I 

For efficiency these two instructions may 
be combined Into one line of code, which 
is executed in one clock cycle: 

AOR : = RO : = + + RO ; 
I*COMBINING THE TWO OPERATIONS*I 

The contents of RO will be passed to the 
Address Output Register and Will be 
incremented by the ALU. 

Where AOR is the address output register 
and RO IS one of the thirty-two, 16-bit 
general purpose registers. The '1*' symbol 
delimits the comment field boundary. 

With a PALlEPLD/PGA approach the 
deSigner would be required to spend much 
valuable time configuring a loadable binary 
counter, with a 3-State output capability. 

I n applications such as digitizer/plotter 
systems, x,y coordinates have to be quickly 
summed or subtracted many times to 
register cursor movements and position. 
This requires repetitive arithmetic 
operations. In this application vector 
addition on two or more sixteen bit words 
can be defined as two instructions: 

RO := RO + R1 ; 
AOR := RO; 

Combining these Instructions together: 

AOR : = RO : = RO + R1 ; 

PAC1000 - Application Note 010 

With conventional programmable logic an 
ALU function would have to be designed 
or a dedicated custom chip used with the 
programmable logic part used as the data 
1/0 controller. The key point of this issue is 
that complex logic functions are simply 
written as a few single lines of statements. 
Moreover, a combination of functions may 
be grouped in a single line. These include 
a microcontrol directive such as a branch, 
call to subroutine or JUMP on condition, 
an ALU function such as increment or 
add, and an output control command. 
There are sixteen output control lines 
which can be driven active on each clock 
cycle. The composite of the three 
commands are: 

LABEL: JMPNC CC7 LABEL, 
RO := RO + 1 , OUT 'HOLD' ; 

The function of this line of code would be 
to wait until the condition code input of 
CC7 went active before the next instruction 
is executed. At the same time the contents 
of RO would be incremented and the 
output control lines would be driven with a 
sixteen bit code called HOLD. An equates 
option 'equ' is used to define uniquely a 
sixteen bit pattern called HOLD. The 
assembler encodes an equate statement to 
allow meaningful words to be used in 
output control statements. Some examples 
of this are: 

HOLD equ H'FFFF' ; 
1* HOLD IS SET AS HEX FFFF *1 

ENBL equ H'EFFF' ; 
1* ENBL IS SET AS HEX EFFF *1 

The equates directive should be declared 
at the start of the program before any 
actual code is written. 

_______________________________________ r~·=E ____________________________________ __ 
4-77 

• 



PAC1000 - Application Note 010 

Applications 
Programs 

The depth of the microcontrol store is 1K 
of 64-bit wide words. One 64-bit instruction 
is executed on each clock cycle. The 
instruction word is subdivided into three 
commands: an output control command, a 
command to the processor section and a 
next address command to the microcoded 
memory. Figure 1a shows the Instruction 
Register with its contents of control, output 
and CPU commands. The control unit will 
also respond to condition code inputs and 
interrupts. An example of output control 
and response to condition codes is in a 
handshake loop. The output stimulus can 
be to set one of the control outputs 

OC[15:0j and wait for a response to a 
condition code input CC[7:0j. Under 
program control a conditional JUMP to a 
location could result if the bit tested were 
set. Otherwise linear programming could 
continue. 

The first applications program below 
demonstrates the use of condition code 
zero CCO to test for a start condition. 
When the input is LOW, the program loops 
continually testing ceo. When the host 
raises ceo, the program performs a 
double precision addition. The sum is 
available at the data output register DOR. 

segment pacdesOl : 

1* PROGRAM TO PERFORM DOUBLE PRECISION ADDITION ON THE REGISTER*I 
1* CONTENTS OF Rl,RO: R3,R2 THE CARRY OF THE LEAST SIGNIFICANT *1 
1* WORD ADDITION IS CONTAINED IN THE CP REGISTER AND IS USED IN*I 
1* THE SECOND HALF OF THE 32 BIT ADDITION. *1 
1* 

HOLD: JMPNC 

RO := 
Rl := 
R2 := 
R'"' .j := 

PIN FUNCTIONAL DESIGNATIONS. 
INPUTS. 

CCO - ACTIVE HIGH - START 32-BIT ADDITION 
ICS ACTIVE LOW - PAC1000 CHIP SELECT 

HAD[5:0] - INPUTS TO SELECT DOR REGISTER FROM *1 
HOST INTERFACE *1 

*1 

CCO HOLD : I*WAIT FOR START CONDITION *1 

H'F830' I*LOAD REGISTERS WITH DATA 'llel 
W982F' I*RO AND R2 CONTAIN THE *1 
H'A309' l*LEAST SIGNIFICANT WORD OF *1 
H'4500' /-lHHE 32 BIT LONG WORD AND ,*1 

I*Rl AND R' 'j CONTAIN THE MOST*I 
I*SIGNIFICANT WORD 

R5 : = Rl ; 
R4 := RO : 
DOR := RO := RO + R2 
Rl := RI + R3 + CP 

I*LOAD DOR REGISTER*I 

*1 

LOOPI: JMPNC DOR LOOP1 : 1* WAIT FOR HOST TO READ DOR *1 

DOR := RI 1* LOAD MOST SIG WORD INTO DOR *1 

LOOP2: JMPNC DOR LOOP2 1* WAIT FOR HOST TO READ DATA *1 

FIN: JMP HOLD ; I*END OF THE CYCLE*/ 

end : 

-------------------------------------~::r~~------------------------------------
4-78 



Applications 
Programs 
(CDnt.) 

The program adds the contents of RO and 
R2, then R1 and R3 and the CARRY bit. 
In the next design example, double 
precision subtraction is performed and this 
time the CY flag will hold the borrow bit. 
This design example is more practical than 
the example above because instead of 
performing arithmetic on fixed values the 
register file may be loaded from a source. 
The configuration of the PAC1000 is in the 
peripheral mode and data is loaded into 
the FIFO. CCO is monitored and, when 
active, is a signal to the PAC1000 that data 
has been loaded. The FIFO is unloaded 

PAC1000 - Application Note 010 

into the registers by the series of 
instructions: 

FOR 3 ; I*EXECUTE THE LOOP 
FOUR TIMES"' 

RDFIFO ; I*UNPACK DATA FROM 
THE FIFO"' 

ENDFOR ; I*END THE FORLOOP "' 

This section of the program performs a 
read operation on the FIFO four times. In 
any FORLOOP N, where N is an integer 
value, the number of times the loop is 
executed is N + 1 times. 

segment pacdes02 ; 

I*PROGRAM TO PERFORM DOUBLE PRECISION SUBTRACTION ON REGISTER *1 
I*CONTENTS R1, RO ; R3. R2 THE BORROW FLAG IS CONTAINED IN THE *1 
I*CP REGISTER DURING THE SECOND HALF OF A 32-BIT SUBTRACTION *1 

PIN FUNCTIONAL DESIGNATIONS 
INPUTS 

CCO - ACTIVE HIGH 
ICS - ACTIVE LOW 
IWR - ACTIVE LOW 
IRD - ACTIVE LOW 
HAD[5:0] - INPUTS 

START PROGRAM 
- PACI000 CHIP SELECT *1 
- FIFO WRITE *1 
- READ A REGISTER FROM HOST INTERFACE*I 
TO SELECT A REGISTER FROM THE HOST *1 

INTERFACE *1 
HD(15: 0] - DATA INPUTS TO FIFO THROUGH HOST INTERFACE *1 

HOLD: JMPNC 
FOR 3 
RDFIFO 
ENDFOR 

CCO HOLD ; 

R5 : = Rl : 
R4 : = RO ; 

I*WAIT FOR START CONDITION EMPTY -+1 
I*THE FOUR LOCATIONS OF THE FIFO *1 
I*LOADED THROUGH THE HOST INTERFACE *1 
I*SECTION OF THE PACI000 *1 

I*SAVE Rl CONTENTS IN R5*1 
I*SAVE RO CONTENTS IN R4*1 

DOR := RO := RO 
R1 := Rl - R3 -

- R2 
CP ; 

I*SUBTRACT LSW PROPAGATE*I 
I*THE BORROW INTO THE CP*I 

DOR := RO 

LOOP1: JMPNC DOR LOOPl ; 

DOR := R1 

LOOP2: JMPNC DOR LOOP2 

JMP HOLD : 
end; 

I*LOAD DOR WITH MSW *1 

I*LOAD DOR WITH MSW 

I*END OF PROGRAM 

------------------------~Jr;-----------------------
4-79 

• 



PAC1000 - Application Note 010 

Applications 
Programs 
(Cont.) 

The next program shows a multiply routine. 
Although there is no dedicated multiplier 
in the PAC 1 000, multiplication can be 
achieved by shifting and adding. The MUL 
instruction is a MACRO command that is 
expanded when assembled into a loop of 
shift and add instructions. The RDFIFO 

segment odcdes03 : 

instruction is used to pass the data from 
the host to the PAC, which is configured 
as a peripheral. In the example the contents 
of RO and R1 are multiplied and the product 
is available in registers R1 and R2, where 
R2 contains the most significant word and 
R1 the least significant. 

HOLD: JMPNC CCO HOLD 
FOR 1 
RDFIFO 
ENDFOR 

I*~.JAIT FOR START CONDITION E!"IPTY*1 
I*THE TWO LOCATIONS OF THE FIFO *1 
I*LOADED THROUGH THE HOST INTER-*I 
I*-FACE SECTION OF THE PAC1000 *1 

MUL R2 Rl RO ~ 

DOR := R2 
LOOP1: Jt1PNC DOR LOOPl : 

I*REGISTER. THE PRODUCT IN THE *1 
I*DATA OUTPUT REGISTER *1 

SELF: 
end: 

DOR := Rl 
JMP HOLD : 

In the following example, the contents of 
registers R2 and R1 is divided by the 
contents of register RO. The most significant 
word of the 32-bit long word is held in 

segment pacdes04 ; 

l* 
I*END OF PROGRAM 

register R2 and the least significant 16 bits 
are stored in R1. The result of the divide 
operation leaves the quotient in the Q 
register and any remainder in register R2. 

HOLD: JMPNC CCO HOLD 
FOR 1 
RDFIFO 
ENDFOR 

I*WAIT FOR START CONDITION Ef1PTY*l 
I*THE Tt.JO LOCATIONS OF THE FIFO *l 
l*LOADED THROUGH THE HCSr INTER-*I 
I*-FACE SECTION OF THE PAClC:OO *l 

DIV R2 Rl RO : 
DOR := Q 

LOOP1: Jt1PNC DOR LOOPl ; 
DOR := R2 

SELF: JMP SELF ; 
end; 

The files generated so far can be entered 
into the assembler and two files 
<filename>.LlS and <filename>.OB may 
be generated as shown in Figure 5. The 
latter object file must be linked before the 
final object file is available for programming 
into the PAC1000's EPROM. The link 
program <filename>.ML performs this 
function and is shown below. 

load pacdes04 ; 
place pacdes04 ; 
end; 

This design example only used one 
program but many sub-modules may be 

linked together to form a single executable 
program. It is possible to simulate the 
design after linking. The necessary inputs 

I*OUTPUT THE RENAINDER*I 

I*OUTPUT THE QUOTIENT. */ 
l*END OF PROGRAM *1 

to the simulator are the <filename>.oBJ, 
<filename>.STL and <filename>.CMD. The 
latter two files are the input stimulus file 
and the input command file (see Figure 5). 
The stimulus file is used to drive inputs 
such as address, data and condition codes. 
The command file lists which signals 
should be traced for observation. Examples 
of the stimulus file and command file are 
given below. 

The command file shown below will instruct 
the simulator to set an output trace on the 
Current value of the Program Counter, 
CPC. The Condition Code zero input, the 
write, and the chip select lines are also 
traced. The simulator also enables a trace 
to be invoked on registers as well as input 

---------------------------------------f~=~.:-------------------------------------­
=-~=:: == 

4-80 



Applications 
Programs 
(Cont.) 

PAC1000 - Application Note 010 

or output pins. The Q register is traced 
along with host data, loop counter, and 
registers RO, R1, and R2. The final trace is 
set on the host data output register. At the 
end of the stimulus file, the run instruction 

informs the simulator to run the driving 
signals for 140 cycles. The final instruction 
invokes a View Trace Waveform instruction, 
so the waveforms may be observed on the 
PC screen. 

OPEN STIMULUS PACDES04 
SET TRACE 
SET TRACE 
SET TRACE 
SEf TRACE 
SET TRACE 
SET TRACE 
SET TRACE 
SET TRACE 
SET TRACE 
SET TRACE 
SET TRACE 
SET TRACE 
OPEN TRACE 
F:UN 140 
V T W 

The stimulus file is used to apply active 
signals to inputs of the design. At specific 
time points conditions are established. For 
example the statement: 

.s ceo 0@1 1 @40 

means that the input condition code zero 

. S RESETB 0 @ 1 1 @ 2 ; 

.S CCO 0@1 1@40 : 

CPC 
CCO 
WRB 
CSB 
RDB 
Q 

HD 
LC 
FW 
Rl 
R2 
HDOR 

PACDES04 

ceo should become a logic state LOW at 
time point one and a logic HIGH condition 
40 cycles later. A three-state condition can 
be applied by typing the letter Z in place 
of logic '1' or '0.' The stimulus file is 
completed to drive all inputs and applied 
to the simulator during run time . 

.S WRB 1@1 0@2 1@8 0@12 1 @19 : 

.S CSB 1@1 O@2 1@9 O@11 1@18 0@120 1@129 0@131 1@139 

.S RDB 1@1 0@121 1@129 0@131 1@139 

.S HADO 0@1 1@10 0@24 : 

.S HADI O@l 

.S HAD2 0@1 

.S HAD3 0@1 

.S HAD4 0@1 

.S HAD5 0@1 
# WRITE A 7 INTO RO AND 31 INTO Rl 
.S HDO 0@1 1@10 Z@70 
.S HDI 1@1 Z@70 
.8 HD2 O@l 1@10 Z@70 
.S HD3 O@l 1@10 Z@70 
.S HD4 0@1 1@10 Z@70 
.. 8 HD5 0@1 Z@70 
.S HD6 0@1 Z@7(J 
.S HD7 0@1 ZIFO 
.S HD8 0@1 Z@70 
.. 5 HD9 (J@1 Z@70 
.S HDIO (J@1 Z@70 
.. S HDll 0@1 Z@70 
.S HD12 O@l Z@70 
.S HD13 O@l Z@70 
.S HD14 O@l Z@70 
.S HD15 0@1 Z@70 The comment field is denoted by a '#' sign. 

WJI 
4-81 

• 



PAC1000 - Application Note 010 

Case Statement 
Logic 

The ability of the PAC1000 to perform case 
statement logic has already been discussed 
but the following program excerpt illustrates 
how to encode the case statement. The 
program will execute when condition code 
7 is active high, then case group CGO is 
tested for one of sixteen possible states. 

segment pacdes05 ; 

CGO comprises CCO, CC1, CC2 and CC3. 
Sixteen registers are initialized and the 
output code is driven with zero. When CC7 
goes HIGH the CGO input is tested and 
the register contents that are equal to the 
state of the CGO input is transferred to the 
ADR outputs. 

1* illustrate the use of multiwav branching *1 

R(I := (I 
Rl :== 1 
F.:2 := 2 
F.:3 := 3 
R4 := 4 
R5 := 5 
R6 := 6 
R7 := 7 
R8 := 8 
R9 := 9 
RiO := 10 
Rl1 := 11 
R12 := 12 
R13 := 13 
F.:14 := 14 
R15 := 15 
~.;! ;!:....:. ,...,...~ 

~~, 

St>J ITCH CGO • 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 

ENDSWITCH : 
NEXT : OUT 0 
ENDWHILE : 

(JUT h·FFFF' 
LOOPX 

0 • GoTD NEXT 
1 GOTo NEXT 
2 · GOTD NEXT 
3 · GOTo NEXT 
4 GOTO NEXT 
5 GOTI) NEXT 
6 GoTO NEXT 
7 GOTD NEXT 
8 GOTO NEXT 
9 GOTO NEXT 
iO GOlD NEXT 
11 GOTD NEXT 
12 GOTD NEXT 
13 GOTD NEXT 
14 GOTD NEXT 
15 GOTD NEXT 

GOTD LOOPX 
end ; 

ADR := RO 
AOR := Rl 
AoR := R2 
AoR := R3 
AoR := R4 
AoR := R5 
ADR := R6 
AOR := R7 
AOR := R8 
AOR := R9 

AOR := RiO 
i=lDR := Rll 
AOR := R12 
AOR := R13 
ADR := R14 
AOR := R15 

-------------------------------------~~jf------------------------------------
4-82 



Simple DMA 
Controller for 
Memory to 
Memory Transfer 

The software designs discussed so far 
have been based on arithmetic functions 
but an important feature of how to use the 
FIFO in the host interface section of the 
PAC1000 for the communication of data 
will enable the reader to develop ideas 
into more complex programs. The FIFO 
Output Ready flag is used in a loop to 
read the data into the registers. The output 
codes are used to create signals to control 
read, write, latch, output enable and bus 
acknowledge signals. A summary of these 
signals is given in Table 5 each time an 
instruction is executed. These signals are 
generated to accompany the memory 
addresses which control the DMA cycle. 

Figure 6a shows a generic system solution 
where the PAC1000 sits on the address 
and data bus of a microprocessor and 
memory interface. The PAC1000 is mapped 
into the system with a PLD decoder and 
an external latch is used to catch data on 
read and write cycles. It is possible to use 
the internal DIR and DOR for this purpose 
but a faster solution would use an external 

segment pacdes06; 

PAC1000 - Application Note 010 

component. Also, If the bus were greater 
than sixteen bits, an external latch would 
be required. This mode where data does 
not enter the PAC1000 device is called the 
'fly by' mode. 

Figure 6b shows the timing waveform 
derived from the program simulation. 
Active LOW WRB and CSB inputs to ADD1, 
ADD2 and ADD3 will write to the registers. 
The Source Address Register RO, the 
Destination Address Register R1 and the 
transfer counter R2 are all loaded through 
the FIFO. At time point 1, the registers 
become loaded. At time 2, CC7 is set 
HIGH to indicate transfer can commence. 
The response from the PAC1000 is an 
active LOW output from output control 
OC14 to inform the microprocessor that 
DMA activity is taking place. This occurs 
at time point 3. OC14 stays LOW during 
DMA activity but goes HIGH after the 
transfer is complete (at time point 4). 
Three transfers have taken place and the 
microprocessor is free to regain control of 
the bus. 

I*THE PROGRAM ILLUSTRATES A SIMPLE DMA DESIGN WHICH *1 
I*READS THE DATA FROM SUCCESSIVE MEMORY LOCATIONS *1 
I*ADDRESSED BY THE CURRENT CONTENTS OF RO THEN WRITES*I 
I*THAT DATA TO LOCATIONS ADDRESSED BY THE CONTENTS *1 
I*OF R1. BOTH REGISTERS ARE INCREMENTED AFTER THE *1 
I*READ/WRITE CYCLE. R2 IS A TRANSFER COUNTER THAT IS *1 
I*DECREMENTED AFTER EACH TRANSFER. WHEN R2 IS ZERO ~I 

I*ALL TRANSFER ACTIVITY CEASES AND A NEW DEVICE WAITS*I 
I*FOR A NEW DMA CYCLE. *1 

1* PIN FUNCTIONAL DESIGNATIONS. *1 
1* OUTPUTS. *1 

1* OC15 - LATCH ENABLE ••.•••••••• ACTIVE LOW. *1 
1* OC14 - BUS TAKEN •••••.•••••••• ACTIVE LOW. *1 
1* OC13 WRITE ENABLE ••••••••••• ACTIVE LOW. *1 
1* OC12 READ ENABLE •••.•..••••• ACTIVE LOW. *1 
1* OCll LATCH OUTPUT ENABLE •••• ACTIVE LOW. *1 
1* AOR - 16 BIT ADDRESS OUTPUT .• ACTIVE TRUE. *1 

1* INPUTS. *1 

1* CC7 ACTIVE HIGH - INITIATE DMA ACTIVITY. *1 
1* HD ACTIVE TRUE 16 DATA INPUTS. *1 
1* HAD ACTIVE TRUE - REGISTER ADDRESS INPUTS *1 
1* ICS ACTIVE LOW - PACI000 SELECT *1 
1* IWR ACTIVE LOW - WRITE TO PACI000 FIFO *1 
1* IRD - ACTIVE LOW READ NOT USED *1 

1* LIST OF EQUATES. *1 

READ equ H'AFFF' ; I *ACTI VE LOW READ. TRANSFER *1 
I*ENABLE.AND BUS BUSY */ ,,, ... 

~II 
4·83 

• 



PAC1000 - Application Note 010 

Figure 6a. 
PAC1000 as a 
Simple DMA 
Controller MICROPROCESSOR 

WR 

RD 

ADDRESS 

DATA 

I DECODER r-
.I, .I, 

SYSTEM MEMORY 

--L)- WE 

;:D- RO 

ADDRESS BUS 
ADDRESS 

DATA BUS 

It 
DATA 

I LATCH I t LE OE t 
cs WR CC6 AOR HAD HD OC15 OCll OC13 OC12 rD~ 

Figure 6b. 
System 
Waveforms 

CC7 

BUSACK p- OC14 

BUSGRANT r- PAC1000 
CC7 

CLOCK 

I 

----------------~--------~ 

Ii SYSTEM I 
CLOCK 

---------------------------------------~~~~--------------------------------------
4-84 



PAC1000 - Application Note 010 

Table 5. Output 
Condition 
Assignment 
Codes for the 
OMA Controller 
Application 

DC15 DC14 DC13 DC12 DCll DC10-DCO 
INIT 1 1 1 1 1 All High 

READ 1 0 1 0 1 All High 

OENBL 1 0 1 1 0 All High 

WRITE 1 0 1 0 0 All High 

ENBLE 1 0 1 1 1 All High 

LATCH 0 0 1 0 1 All High 

OC15 = Active Low Latch Command OC12 = Active Low Read Signal 
OC14 = Active Low DMA in Progress OC11 = Active Low Output Enable 
OC13 = Active Low Write Signal 

LATCH equ H'2FFF' : I*ACTIVE LOW READ. TRANSFER *1 
I*ENABLE,LATCH ENABLE,AND *1 
1* BUS BUSY *1 

oENBL equ H 'B7FF'. I*ACTIVE LOW TRANSFER ENABLE *1 
l*oUTPUT ENABLE.AND BUS *1 
1* BUSY *1 

WRITE equ W97FF' ; I*ACTIVE LOW WRITE, TRANSFER *i 
l*oUTPUT ENABLE.AND BUS *1 
1* BUSY *1 

INIT equ H'FFFF' • I*INITALIZE ALL OUTPUTS HIGH *1 
ENBLE equ H 'BFFF': I *ACTI VE LOW ENABLE TRANSFER *1 

I*SIGNAL,AND BUS BUSY *1 

PROGRAM START *1 

START: OUT INIT. 
LooP1: RESET ADoE 

I*INITALIZE OUTPUT CODES TO CCO-15*1 
i*SET THE ADDRESS BUFFERS INPUTS *1 

FOR 2 = I*SET READ FIFO LOOP TO 3 *1 
HoLDO: JMPNC FIOR HOLDO 

RDFIFo 
I*WAIT FOR ACTIVE FIoR FLAG *1 

ENDFoR : 
i*READ FIFO INTO THE REGISTER FILE*I 
i*ALL THREE WORDS READ END LOOP *1 

HOLD1: JMPNC CC7 HOLD1 
SET ADoE : 

I*ACTIVE CC7 BUSACK SIGNAL INPUT 
I*SET ADDRESS BUFFER AS OUTPUT 
I*FoR DMA CYCLES 

HALT: 
end: 

FOR, R2 := R2 • OUT ENBLE 
AOR := RO : 
RO := ++ RO • OUT READ; 
OUT LATCH : 
OUT READ : 
AoR : = R1; 
Rl := ++ Ri • OUT oENBL 
OUT WRITE 
OUT oENBL 
OUT ENBLE 
ENDFoR : 

GOTo LoOPl • OUT INIT 

:i*START DATA TRANSFERS 
l*oUTPUT SOURCE ADDRESS 
l*oUTPUT ACTIVE READ 

I*AND LATCH DATA ON READ 
I*HoLD READ LINE ACTIVE 
I*OUTPUT DESTINATION ADDRESS 
I*ENABLE LATCH OUTPUT 
I*PERFoRM WRITE CYCLE 
I*DISABLE WRITE BEFORE DE 
I*END OF SINGLE TRANSFER 
I*END OF TRANSFER CYCLE 

i*RETURN TO PROGRAM START 

!FEa -==63 

*1 
*1 
*1 

*1 
*1 
*1 
*i 
*1 
*1 
*1 
*i 
*1 
*i 
*1 

*1 

-----------------------------------~~I----------------------------------
4-85 

• 



PAC1000 - Application Note 010 

FIFO DRAM 
Controller 

The next PAC1000 design example 
illustrates how to use the device as a FIFO 
DRAM Controller. See Figure 7a for device 
implementation. 

If the DRAMs are 64K devices, only the 
least significant byte of the AOR register 
need be used (that is ADDO-ADD7). The 
system could easily be upgraded to handle 
256K or 1M bit DRAMs by wiring in address 
bits AS and A9 but additional PAC1000 
software would need to be written to 
accommodate the FIFO status counter. 
About 45 lines of code are used to enable 
the PAC1000 to handle REFRESH, READ 
and WRITE activity. The design uses the 
output control lines to provide RAS, CAS 
and WRITE signals to the DRAM and 
additional signals to give busy status 
during read, write and refresh activity. The 
whole system responds to input condition 
codes CCO and CC1 as RQWRITE request 
to write and RQREAD request to read 
respectively. During active read, write and 
refresh cycles, three signals BUSYWR, 
BUSYRD and BUSYRFSH which go active 
LOW an additional composite signal which 

segment pacdes08 = 

I*LIST OF EQUATES.*I 
I*CONDITTION CODE OUTPUTS*I 

RASW equ W55FF' 
RASR equ W79FF' 
RFSH equ H'7CFF' 
CASW equ H'15FF' 
CASR equ H'39FF' 
ENDWR equ H'35FF' 
INIT equ WFFFF' 

ZERO equ H'OOOO' 
FULL eou H'FD' 
EMPTY equ H'FE' 
ACTVE equ H'FF' 
MAX equ H'FFFF' 

RQWRITE equ CCO 
RQREAD equ CCl 

goes LOW when the FIFO is in any of 
these conditions. The system design also 
incorporates an UP/DOWN status counter 
which increments on write activity and 
decrements on read activity. This counter 
is tested to provide information to the 
outside world that the FIFO is full, empty 
or neither full or empty. The FULL, 
EMPTY and ACTIVE flags can be read 
from the 100 and 101 and give information 
to the outside world about the status of 
the FIFO. 

The waveforms associated with read, write 
and refresh activity are shown in Figures 
7b, 7c and 7d respectively. These waveforms 
were created from the PACDESOS.oUT 
vector tables generated from the simulator. 
Table 6 illustrates the assignment of the 
output conditions which drive the various 
functions RAS, CAS, RFSH WR etc., 
It is recommended that high current buffer 
circuits be used to interface the outputs of 
the PAC1000 to the inputs of the memory 
chips used in both the DMA and FIFO 
applications. 

I*WRITE RAS OUTPUT *1 
I*READ RAS OUTPUT *1 
I*REFRESH OUTPUT *1 
I*WRITE CAS OUTPUT *1 
I*READ CAS OUTPUT,*/ 
I*END OF WRITE OUPUT*I 

I*ZERO COUNT*I 
I*FULL FLAG *1 
I*EMPTY FLAG*I 
I*ACTIVE *1 
I*MAX COUNT *1 

I*REQUEST TO WRITE*I 
I*REQUEST TO READ *1 

I*PROGRAM START*I 

START: 

RO := 
Rl := 
R2 := 
R3 :== 

OUT INIT 

H'OOOO' 
H'OOOO' 
H'OOOO' 
H'OOOO' 

I*INITALIZE OUTPUT CODES*I 
I*INITALIZE REGISTERS *1 
I*ROW ADDRESS WRITE *1 
I*COLUMN ADDRESS WRITE *1 
I*ROW ADDRESS READ *1 
I*COLUMN ADDRESS READ *1 

-------------------------------------~~5F~------------------------------------
4-86 



FIFO DRAM 
Controller 
(Cont.) 

LOOP: 

TEST: 

end; 

R4 := WFFFF' 
R5 := H'OOOO' 

OUTPUT 100 101 
SET ADOE , OUT INIT 
lOR := EMPTY 
60TO TEST 

AoR := R4 
OUT RFSH 
R4 := ++ R4 , OUT INIT 

IF RQWRITE. 
AOR := RO , OUT INIT 
R5 := ++ R5 
OUT RASW • 
AoR : = R1 ; 
Rl : = ++ Rl 
OUT CASW ; 
OUT ENDWR • 
OUT INIT : 

ENDIF • 

PAC1000 - Application Note 010 

I*REFRESH COUNTER 'III 
I*STATUS COUNTER 'III 

I*SER 100 AND 101 TO *1 
I*OUTPUT. ADoE INPUT *1 
I*FIFO IS EMPTY *1 
1* TEST REQUEST TO *1 
I*READ/WRITE *1 

l*oUTPUT REFRESH CTR *1 
I*PERFORM REFRESH *1 
I*INCREMENT RFSH CTR *1 
I*CLEAR OUTPUT *1 

I*IF REQUEST TO WRITE *1 
l*oUTPUT WRITE ADDR *1 
I*INCREMENT STATUS *1 
l*oUTPUT RAS WRITE *1 
I*OUTPUT CAS ADDR *1 
I*INCREMENT CAS ADDR *1 
I*OUTPUT CAS ADDR *1 
I*END WRITE CYCLE *1 
I*FINISH WRITE CYCLE *1 

IF Rl == 256 I*TEST FOR 256 COLUMNS*I 
RO := ++ RO I*INCREMENT ROW *1 

ENDIF ; 

IF RQREAD: 
AoR := R2 • OUT INIT 
R5 := -- R5 
OUT RASR ; 
AOR := R3 : 
R3 := ++ R3 • OUT CASR 
OUT CASR 
OUT INIT 

ENDIF 

IF R3 256 
R2 := ++ R2 

ENDIF 

R6 := R5 
R6 := MAX - R5 
IF Z : 
lOR := FULL 
GoTo LOOP 
ENDIF 

R6 := R5 
R6 := ZERO - R6 
IF Z : 
lOR := EMPTY 
GoTO START. 
ENDIF ; 

lOR := ACTVE 
GoTO LOOP ; 

flfl'E 

I*IF REQUEST TO READ 'III 
I*OUT ROW READ ADDRESS'll I 
I*DECREMENT STATUS 'III 
l*oUTPUT RAS READ 'III 
l*oUTPUT CAS ADDRESS *1 

;I*INCREMENT CAS ADD *1 
I*STRETCH CAS *1 
I*FINISH READ CYCLE *1 

I*TEST FOR 256 COLUMNS'll I 
I*INCREMENT ROW 'III 
I*IF EQUAL TO 256 *1 

I*SAVE STATUS COUNTER *1 
I*TEST FOR MAX COUNT 'III 
I*IF MAXIMUM 'III 
I*SET OUTPUT FULL FLAG'll I 
1*8oTo REFRESH LOOP 'III 
I*END TEST 'III 

I*SAVE STATUS COUNTER *1 
I*TEST FOR ZERO COUNT 'III 
I*IF ZERO *1 
I*SET EMPRY FLAG *1 
I*RESTART PROGRAM *1 
I*ELSE 

I*THE SYSTEM IS NOT 
I*FULL OR EMPTY 

-----------------------------------~~I----------------------------------

4-87 

• 



PAC1000 - Application Note 010 

Table 6. Output 
Condition 
Assi~nment 
Codes for the 
PAC FIFO DRAM 
Controller Design 

Figure 7a. Using 
a PAC as a FIFO 
DRAM Controller 

OC15 OC14 OC13 
INIT 1 1 1 

RASW 0 1 0 

CASW 0 0 0 

ENDW 0 0 1 

RASR 0 1 1 

CASR 0 0 1 

RFSR 0 1 1 

OC15 = Active Low RAS 
OC14 = Active Low CAS 
OC13 = Active Low Write 
OC11 = Active Low BUSYWR 
OC10 = Active Low BUSYRD 
OCg = Active Low Busy 
oca = Active Low BUSYRFSH 

DATA 

~ BUFFER 

ADDRESS 

OCll 

1 

1 

0 

0 

1 

1 

1 

RQWRITE 
AOR 

CCO 
RQREAD 

CCI 
BUSYWR 

BUSYRD 
OCll 

OC10 
BUSY 

OCg 
BUSYRF 

OCB 

OC10 OC9 OCB OC12, OC7-0CO 
1 1 1 All High 

0 1 0 All High 

1 0 1 All High 

1 0 1 All High 

0 0 1 All High 

0 0 1 All High 

1 0 0 All High 

DRAM ARRAY 

RAS CAS WR 

OCIS OC14 OC13 

EMPTY 
10. 

PAC1000 
FULL 

10, 

----------------------------------~~~~---------------------------------
4-88 



Figure lb. 

Figure lc. 

Figure ld. 

PAC1000 - Application Note 010 

RAS \ I 
CAS \ I 
WE \ I 

ADDRESS ROW X COL 

BUSY \ I 
In response to a request to read one early write cycle will take place. RAS will latch in 
the row address and the WE line goes low. The column address is set up followed by 
the falling edge of CAS. The WE input is taken inactive followed by RAS and CAS. 
During the whole cycle the busy signal is active. 

RAS ~ I 
CAS \ I 
WE 

ADDRESS ROW X COL 

BUSY ~ I 
In response to a request to read one read cycle will take place. The RAS and CAS 
signals latch in the row and column addresses respectively but the WE input is inactive 
throughout the cycle. The BUSY signal is active throughout the whole cycle. 

RAS ~ I 
ADDRESS 'f1lIj., ___ R_FS_H _______ _ 

BUSY ~ I 

To refresh the memory the PAC will output a refresh count to be strobed into the DRAMs 
by an active low RAS transition. 

---------------------------------------,~JrjF~--------------------------------------:;::1"' __ • 

4-89 

• 



PAC1000 - Application Note 010 

Programmable 
UART 

The PAC1000 contains no UART for serial 
data but parallel to serial conversion is 
possible through the Q register and I/O 
Port 2 and 3. The following program 
illustrates the designer how to create a 
UART function in the PAC1000 with about 
40 lines of instructions. The PAC1000 
device will receive data in parallel from the 
host system. The FIFO is used to interface 
to the host and transfer data into the 

registers. The program will take the seven 
bits of ASCII code and calculate the parity, 
then add a parity bit. The result is serialized 
and framing bits are applied. The data, 
one parity bit, one start bit and two stop 
bits are serially clocked out of the Q 
register into Port 3. The handshake signals 
of Data Terminal Ready and Data Set 
Ready are built into the program. 

segment pacdes09 ~ 

I*THIS PROGRAM ILLUSTRATES THE PARALLEL TO SERIAL *1 
I*CHANNEL CONVERSION OF THE PAClOOO TO THE PERIPHERAL *1 
I*BUS OF THE SYSTEM *1 

INIT 
RHD 
DTR 
DONE 
ABORT 

1* R21 

*1 
PIN FUNCTIONAL DESIGNATIONS. *1 

OUTPUTS. *1 

oC12 - DTR - DATA TERMINAL READY •.•• ACTIVE LOW. *1 
OC13 - RHD - RECEIVED HOST DATA .•.•• ACTIVE LOW. *1 
OC14 - DONE .•..•.•....•.•..••.•.•••• ACTIVE LOW. *1 
oCl5 - ABoRT •••••••..••.•••.•••••••. ACTIVE LOW. *1 
ID3 - TxD _. TRANSMITTED DATA •.•••••• ACTIVE LOW. *1 

*1 ...... ,.... .............. 
.L1'''Iru I w. ..., 

CCO - DSR - DATA SET READY .•••..•.• ACTIVE HIGH. *1 
CCI - START TRANSMITTING •••••••.•.. ACTIVE HIGH. *1 
HD - ACTIVE TRUE - 16 DATA INPUTS. *1 
HAD - ACTIVE TRUE - REGISTER ADDRESS INPUTS *1 
ICS - ACTIVE LOW - PAC1000 SELECT *1 
IWR - ACTIVE LOW - WRITE TO PACIOOO FIFO *1 

*1 

equ H 'FFFF'; I*INITALIZE ALL OUTPUTS HIGH *1 
equ H'DFFF' ; I*ACKNoWLEDGE RECEIVING HOST DATA *1 
equ H'EFFF' ~ I*DATA TERMINAL READY *1 
equ H'BFFF' ; 
equ H'BFFF' ; I*TELL HOST THAT DATA WAS CoRRUPTED*1 

- H'OO60' - MASK REGISTER FOR EVEN PARITY *1 
1* R20 - H'OOEO' - MASK REGISTER FOR ODD PARITY *1 
1* R19 - H'OOO2' - CONSTANT TO DIVIDE THE 32-BIT VALUE *1 
1* IN RX Rl6 *1 
1* RIB - H'OOOO' - COUNTER OF THE NUMBER OF ONES IN THE *1 
1* DATA *1 
1* R17 - H'FFFF' - A CONSTANT TO MASK WITH DATA *1 
1* R16 - H'OOOO' - A CONSTANT TO MASK WITH DATA *1 
1* RB WORKING REGISTER FROM RO *1 
1* RO ORIGINAL DATA FROM HOST SYSTEM *1 
1* Q REGISTER TO SHIFT OUT DATA TO THE *1 
1* SERIAL PORT *J 

___________________________________ f6jr~~----------------------------------
~1EE1 

4-90 



Programmable 
UART (Cont.) begn: R21 := 

PAC1000 - Application Note 010 

H "0060' . OUT INIT I*SET OC[15:0] HIGH*I 
R20 := H'OOEO' 
R19 := H'OOO2' 
RIB := H'OOOO' 
R17 := H'FFFF' 
R16 := R1B 
Q := R1B ; 1* INITIALIZE Q TO ZERO'S *1 

WAIT FOR HOST TELLS PAC1000 
TO START TRANSMITTING DATA 

stndbv: JMPNC CCI stndbv 
JMPC FICD abort ; 
RDFIFO , OUT RHD ; 1* READ FIFO DATA INTO RO *1 

I*TELL HOST THAT DATA WAS *1 
I*READ CORRECTLY *1 

1********************************************************1 
1* FORMAT OF DATA RECEIVED *1 
1* FIFODA[15:0] *1 
1* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 *1 
1* 0 0 0 0 0 0 0 0 0 Dl D2 D3 D4 D5 D6 D7 *1 
1********************************************************1 

1* 

SWAP THE HIGHER AND LOWER BYTES *1 

1* SET OC TO NON- *1 
AOR := RO , OUT INIT 1* FUNCTIONING MODE *1 
R8 := Sl>JPV 1* MODE SWAP TO SHIFT ·wel 
RO := SWPV 1* LATER SWAP NOW *1 

SHIFT DATA *1 

FOR 7 ; 
R8:= R8 « 0 ; 
IF S ; 

RIB := ++ R18 
ENDIF ; 

I*INCREMENT COUNTER*I 

ENDFOR ; 

CHECK FOR EVEN/ODD PARITY 

DIV RI6 R18 R19 ; 
OR Q 0 

1* DIVIDE RlB RI6 BY 2 
1* CHECK IF REMAINDER IS ZERO 

IF Z ; 

DR RO R21 
ELSE ; 
OR RO R20 
ENDIF ; 

Q := RO 

1* IF Z=l THEN JUMP TO PARITY *1 
1* (EVEN PARITY) *1 
1* IF Z = 0 THEN (ODD PARITY) *1 

1* MERGE MASI< BITS FOR EVEN PARITY *1 

MERGE MASK BITS FOR ODD PARITY *1 
1* RO IS NOW FORMATTED CORRECTLY FOR*I 
1* SERIAL SHIFTING *1 
1* LOAD RO TO Q TO SHIFT OUT TO 103 *1 

CHECK THAT RECEIVING END IS READY 

_____________________________________ r==&O~ __________________________________ __ 
4-91 

• 



PAC1000 - Application Note 010 

Programmable 
UART (Cont.) 

Summary 

wait: IF cco; I*IF RECEIVER READY SET 103 TO OUTPUT *1 
CONFIGURE SIO ; I*AND SET MODE TO SHIFT Q TO 103 *1 
OUTPUT 103 • OUT DTR ; I*DRIVE DTR TO ZERO THIS *1 

I*TELLS THE RECEIVER THAT *1 
I*THE TRANSMITTER IS READY*I 

1* SHIFT OUT THE 1 START BIT.7-BITS OF DATA,1 PARITY AND *1 
1* 2 STOP BITS. THEREFORE SHIFT 11 TIMES *1 

LDLC 10 ; I*LOAD 10 INTO LOOP COUNTER FOR *1 
I*A SHIFT OF 11 THEN FILL WITH *1 
I*ZEROS *1 

Ip: LOOPNZ Ip • QRB := Q « 0 RB « 0 ; 
ELSE; 
JMP wait 
ENDIF ; 
OUT DONE 
JMP begn 

I*IF RECEIVER IS NOT READY THEN WAIT*I 

I*TELL HOST THAT PAC1000 IS DONE *1 
1* START AGAIN FOR NEXT DATA *1 

ABORT DATA READ AND TELL HOST ABOUT IT *1 

abort: JMP begn • OUT ABORT 

end; 

The PAC1000 programmable peripheral 
controller incorporates many features that 
enable a high speed design to be quickly 
realized. Its reprogrammability has enabled 
many designers to go to printed circuit 
board layout early in the design cycle. 
Moreover, because the system logic is 
programmable into the on-chip EPROM, 
modifications can be made at a later time 
without having to change printed circuit 
board artwork. In fact over discrete and 
PAUEPLO type solutions the printed circuit 
board artwork is considerably less complex 
because a greater degree of circuit 
complexity containing much interconnect 
has migrated into the instructions encoded 
in the EPROM section of the chip. 

To learn how to use the PAC1000 is a 
relatively quick process for most systems 
designers have designed with 
microprocessors and microcontrollers. 

This is because they understand the 
writing of assembly or high level code. 
With the support of WSI's user friendly 
software tools, an engineer can be 
designing with the PAC1000 in less than a 
week. This contrasts with the many and 
diverse schematic capture, net translation, 
placing and routing, annotation and back­
annotation packages that support EPLO 
and PGA devices. These products subject 
the designer to a multiplicity of software 
tools that he must become familiar with. 
This results in generating a long learning 
curve that can easily be avoided with the 
PAC1000 and WSI's software support. 

The result of using the PAC1000 device 
and software tools virtually guarantees the 
fastest route possible from initial 
conception to the final design of a 
complex high performance system. 

-------------------------------',I~:------------------------------
4-92 

__ . 



Abstract 

Introduction 

Programmable Peripheral 
Application Note 012 
Testing 8 Dual-Port RAM Memories with the 
PAC1000 Programmable Peripheral Controller 
By Karen Spesard 

The PAC 1 000 16-Bit Programmable 
Peripheral Controller is a member of WSI's 
Programmable Peripheral family. It can be 
used in a variety of different applications 
requiring high-performance as well as high 
Integration because of it's control architec­
ture, user-configurability, and flexibility. 
This application note describes the use of 
the PAC1000 In the stand-alone mode as a 
Memory Tester for eight dual-port static 
RAMs with interrupts. 

Dual-port static RAMs are typically used to 
simplify communication between processors 
in computer systems. They have become 
popular in recent years due to the fact that 
they allow simultaneous read and write 
accesses to the same memory providing the 
capability for two devices to communicate 
with each other without the need for any 
special data communication hardware 
between the devices. These devices could, 
for instance, be an I/O controller and a CPU 
or two CPUs working on separate but related 
tasks. This contrasts with the DMA (dual 
memory access) approach where a single 
memory is shared between CPUs andlor 
one or more 1/0 devices and where hardware 
arbitration logic is always necessary. 

Testing multiple dual-port static RAM 
memories efficiently, however, has often 
proved difficult because two sets of devices 
can control each memory independently and 
access any word in memory simultaneously. 
This includes the case where both devices 
are accessing the same memory location at 
the same time. Arbitration is required to 
insure against this case which is usually 
handled in the memory hardware. For 
example, most dual-port RAMs have 
address detection logic and a cross-coupled 
arbitration latch to provide a busy signal for 
the address that arrived last, so writing to 
the busy port is deterred. As a result, testing 
multiple memories for these cases requires 

Each of the eight dual-port RAMs, with 2K 
x 8 bits shared memory, is accessed from 
both ports and tested by the PAC 1000 for 
all possible functional failures. The 
PAC 1000 simple interface to the dual-port 
memory is discussed, as well as the dual­
port memory test conditions and timing 
considerations. Finally, examples of 
program code are given to illustrate how 
easy the PAC 1 00 is to use. 

processors or controllers capable of 
providing the necessary control signals, 
memory addresses, and data in real time. 

The PAC 1000 Programmable Peripheral 
Controller is well suited for this type of appli­
cation. It provides a single-chip user-config­
urable test interface for up to 8 dual-port 
memories at one time, eliminating the need 
for discrete implementations of PLDs, ALUs, 
SRAMs, and Register files. It has 64K 
EPROM program store on-chip (1 K x 64 
bits) as well as a microsequencer, a 16-bit 
ALU and register set, and programmable 1/0 
ports. The PAC 1 000 also has the capability 
of controlling very fast systems, generating 
addresses to memory, feeding the system 
data, and responding to interrupts, all at one 
time. In fact, its architecture allows it to be 
able to execute three parallel operations 
(Control, Output, and CPU) every clock 
cycle, making timing predictable and 
increasing throughput significantly. See 
Figure 1 for the PAC1000 single cycle 
control architecture and Figure 2 for a 
simplified block diagram of the PAC1 000. 

A typical instruction containing three parallel 
operations illustrates the efficiency of the 
PAC 1 000 in this application. For example, 
during a dual-port RAM access, the sequencer 
section of the PAC 1 000 can check for the 
BUSY signal or the end of a loop, the output 
control section can generate the CS signals 
for each of the RAMs, and the CPU can 

4-93 

• 



PAC1000 - Application Note 012 

Introduction 
(Cont.) 

Figure 1. 
PAC1000 Single 
Cycle Control 
Architecture 

PAC1000to 
Dual-Port SRAM 
Interface 

generate the RD, WR, and OE strobes or 
calculate and produce the next address all 
during the same instruction cycle 
simultaneously. 

In addition, of course, the PAC 1 000 can 
also be used to control other system 
functions while testing the dual port 

Important Features: 
• One cycle per instruction 

• 16MHz instruction 
execution rate 

• Every instruction executes 
3 parallel operations 
(Control, Output, CPU) 

Condition 
Codes 

Interrupts 

Next Instruction 
Defrnition 

memories. In most cases, the PAC1000 can 
perform intelligent DMA control and I/O 
control protocols at the same time. And, 
when switched to the peripheral mode, it 
can off-load other tasks, as well, from a host 
processor. 

HD(15:0) HAD(15:0) 

28 
CPU 

---,--,--
Control I Output I CPU 

20 

OC(15:0) 

The circuit diagram of a typical system con­
figuration using the PAC 1 000 as a memory 
tester is shown in Figure 3 for eight 2K x 8 
dual-port static RAMs for a total memory 
depth of 16K x 8 bits. Each dual-port RAM 
has two complete and independent sets of 
address, data, and read/write control signals 
and shares the same set of memory cells. 
The PAC 1 000 memory tester interfaces 
directly with each dual-port static RAM 
without the need for any external glue logic. 

Specifically, the 16-bit PAC1000 interfaces 
to the dual-port static RAMs as two I/O or 
CPU devices would interface, with one 
exception: the PAC 1 000 has two 16-bit and 
one 6-bit user-configurable address/data 
buses, whereas two CPU or I/O devices 

CPU Operation 
Definition 

110(7:0) ADD(15:0) 

would have two distinct address buses and 
two distinct data buses. Therefore, the 
PAC 1 000 buses need to be split. This is 
handled by combining the 16-bit address bus 
and 6-bit host address bus of the PAC 1 000 
and configuring them as a 22-bit address 
bus. This 22-bit bus, in turn, is split into two 
11-bit buses for accessing both left and right 
ports of 2K x 8 memory simultaneously. For 
each memory, ADD(1S:S) corresponds to 
A(1 O:O)L' and ADD(4:0)/HAD(S:O) 
corresponds to A(10:0)R' (See Figure 4.) 
Likewise, the 16-bit data bus is split between 
both ports of memory. Thus, HD(1S:8) 
corresponds to 1/0(7:0)L and HD(7:0) 
corresponds to 1I0(7:0)R' 

---------------------------------------~~~--------------------------------------
4-94 



PAC100D 
Dual-Port SRAM 
Interface 
(Cont.) 

Figure 2. 
PAC1DOO Block 
Diagram 

To select one of the dual-port memory ports, 
16 output control lines, OC(1S:0), are 
individually connected to the chip enables of 
the dual-port RAMs - one OC line per port. 
The left ports of memory share OC(1S:8) 
lines and the right ports of memory share 
OC(7:0) lines. The eight read/write and 
output enable control pins of the dual-port 
memories also interface directly to the 
PAC 1 000 through it's input/output port, 
1/0(7:0). Here, the 1/07 and 1/06 pins are 
tied to each of the eight R/WL signals and 
R/WR signals, respectively. Also, the I/OS 
and 1/04 pins are tied to each of the eight 
dual-port memory OEL and OER signals, 
respectively. 

PAC10D0· Application Note 012 

The remaining pins to be discussed are the 
right and left BUSY and INTR signals of the 
dual-port memories. Each group of four 
memories have their right or left BUSY or 
INTR pins tied together and connected to 
the PAC1000 condition code inputs. CC7 
and CC6 correspond to the BUSY left and 
right signals of dual port RAMs #1-4, and 
CCS and CC4 correspond to the BUSY left 
and right signals of dual port RAMs #S-8. 
Likewise, CC3 and CC2 interface to the 
INT left and right signals of dual port RAMs 
#1-4 and CC1 and CCO to the INT left and 
right signals of dual port RAMs #S-8. 

CK RESET CS AD WR HD(15:0) HAD(5:0) 

t t I 
Configuration 

I Host Interface I Registers 

i + , , 
Control Section 

I Security Bit I 1K x 64 EPROM I CPU 

I Loop Counter I 
15-Level I BreakpOint Register I Stack 

I Program Counter I 
Case Logic - Block Counter I 

User Condition-Code Interrupt - Address Counter I Output Logic LogiC , 
1/0 Special 1\ Address/Data I 

Function Port Port 

• • 
• + -b 

OUTCNTL(15:0) CC(7:0) INT(3:0) 1/0(7:0) ADD(15:0) 

-----------------------------------f~~~~----------------------------------
4-95 

• 



PAC1D1JO • Application IIote 012 

Figure 3. 
PAC100D 
Configured as a 
Dual-Port RAM 
Memory Tester 

~ 

'-

SRAMERR 

RSPAC 1/0(3_0) 

ClK 1/04 

~ 1/05 1/06 ~ 
~ 1/07 HD(7:0) r--
r- HD(15:8) PAC1000 ADD(4:0) 
r- ADD(15:5) 

HAD(5:0) r-

s ~ ~ 
~ 
on ;.; 

5- ... .... CD .. '" t5 C> 5-0" 0 0 0 0 0 0 0 0" 
0 0 0 0 0 0 0 0 0 0 0 0 

I I I I I I I 
oJ.. HC373 HC373 J r 

L....!:::- ~ 

+-

I 
DUAL PORT RAM #1 DUAL POfiT RAM #5 

- A(10:0k A(10:0)R - A(10:0k A(10:0)R -
- 1/0j!:Olc 1/0(7:0)R - 1/0(7:0lc 1/0(7:0)R -
- R/Wl RtWR - R/Wl RtWR --
- CEl CER - CEl CER --

OEl OER DEL OER 
BUSYl BUSYR BUSYl tlU"YR I 
INTl INTR INTl INTR 

DUAL PORT RAM #2 DUAL PORT RAM #6 

- A(10:0k A(10:0)R I- A(10:0k A(10:0)R r-
- 1I0(7:0)l 1/0(7:0)R l- I- 1/0(7:0)l 1/0(7:0)R r-
- R/Wl RtWRI- R/Wl R/WR t-
r- CEl CERI- t- CEl CER r- I-

OEl OER OEl OER 
BUSYl BUSYR BUSYl BUSYR 
INTl INTR INTl INTR 

DUAL PORT RAM #3 DUAL PORT RAM #7 

,.... A(10:0k A(10:0)R I- A(10:0k A(10:0)R l-
t- 1/0(7:0)l 1/0(7-0)R I- 1/0(7:0k 1/0(7:0)R l-
t- R/Wl R/WRI- R/Wl R/WR t-

CEl CER L..- CEl CER 
OEl OER OEl DER 
BUSYl BUSYR BUSYl BUSYR 
INTl INTR INTl INTR 

DUAL PORT RAM #4 DUAL PORT RAM #8 

.... A(10:0lc A(10:0)R I- L.. A(10:0k A(10:0)R r-- 1/0(7:0lc 1/0(7:0)R I- ..... 1/0(7:0)l 1/0(7-0)R r--
'--- R/Wl R/WR I-- '-- R/Wl RtWR r--

CEl CER CEl CER 
OEl OER OEl OER 
BUSYl BUSYR BUSYl BUSYR 
INTl INTR INTl INTR 

1 ~i 
!!FIE_,E 

-------------------------------------------~~Af------------------------------------------
4-96 



Figure 4. 
Address 
Splitting for 
Dual-Port RAM 
Memory Testing 

Functional 
Description 

PAC1000· Application Note 012 

PAC1000 
ADD15 ADD14 ADD13 ADD12 ADD11 ADD10 ADD9 ADD8 ADD? ADD6 ADD5 Address/Data Bus 

Address 
ACH15 ACH14 ACH13 ACH12 ACH11 ACH10 ACH9 ACH8 ACH? ACH6 ACH5 Counter High 

Left Port of 
A10L A9L A8L Ah A6L A5L A4L A3L A2L A1L AOL Dual Port RAM 

PAC1000 
Address/Data Bus ADD4 ADD3 ADD2 ADD1 ADDO HAD5 HAD4 HAD3 HAD2 HAD1 HADO 
Host Address Bus 

Address Counter 
ACH4 ACH3 ACH2 ACH1 ACHO ACL5 ACL4 ACL3 ACL2 ACL1 ACLO High/Low 

Right Port of 
A1DR A9R A8R A?R A6R A5R A4R A3R A2R A1R ADR Dual Port RAM 

NOTES: Address buses can be written from a 16-bit or 22-blt Address Counter (16-blt ACH or 22-blt ACH/ACLj or 
from a 16-blt Address Output Register In this application, the address bus IS driven by the 22-blt Address 
Counter 

The two basic operational modes for 
the PAC1 000 are either as a stand-alone 
controller or as a memory-mapped 
peripheral to a host processor. The PAC1000, 
as a dual-port static RAM memory tester, is 
configured in the standalone mode. In this 
mode, the PAC1000 has complete control 
over the bus at all times; moving data from 
the 16-bit data bus back and forth to/from 
the left and right sides of the memory, 
generating addresses from the 22-bit 
address counter through the 16-bit address/ 
data and 6-bit host address buses to the 2K 
x 8 memory, generating the control signals 
to the memory, and monitoring/responding 
to the memory's status and control signals. 

The PAC 1 000 dual-port memory tester 
performs basically like two separate I/O or 
CPU devices, writing and reading from each 
port of the dual-port static RAM through the 
same memory. In this application, the 
PAC 1 000 tests dual-port memory for all 
possible fault conditions. For example, one 
of the tests the PAC 1 000 performs is for the 
case when both ports of the dual-port 
memory attempt to access the same 
memory cell location (writing or reading) at 
basically the same time. If this happens, 
one of the ports of memory, through 
hardware arbitration, is inhibited from being 
accessed and is supposed to receive a 
BUSYLIR signal. To test for this condition, 
the signal needs to reach the device and 
the device needs to respond in real time. 

The PAC 1 000 can respond to the BUSY 
lines generated by either the left or right 
sides of dual-port memory, in one cycle 
through its condition code inputs. These 

condition code inputs, CC7-CC4, are used 
because each condition can be tested for 
true or not true simultaneously by the 
PAC 1 000. And since the condition code 
logic is part of the sequencer, a decision 
can be made within the next cycle on 
how to respond. 

The INTR signals generated by the dual­
port memory provide another case for 
testing. When the left side port writes into 
the top odd address (7FF) or the right side 
port writes into the top even address (7FE) 
of the memory chip, the interrupt latch is set 
and the interrupt line to the opposite side 
port is supposed to be activated. These top 
two addresses serve as flag bits or interrupt 
generators and the activated interrupt signal 
gives permission for the interrupting CPU 
to use the memory. An interrupt latch is 
cleared when the opposite side port reads 
from the same address (e.g. to clear the 
right port after the left port writes into 7FF, 
the right side port reads from address 7FF). 
The interrupts are designed to save system 
designers from having to design in extra 
logic, and to allow one CPU to interrupt 
the other. 

To test for the functionality of the INTR 
signals generated by the dual-port memory, 
these signals, like the BUSY signals, are 
also tied to the PAC1000's condition code 
inputs. Again, the PAC1 OOO's condition 
code inputs allow it to respond to the dual­
port memory interrupts in real time. 

-----------------------------------~~~~--------------------------------4-.9--7 

• 



PAC1000 - Application Note 012 

Pin Descriptions 
SymbDI Type Pin Name and FunctiDn 
1/0(7:0)L I/O HD(1S:8) -This is part of the 16-bit data bus which is 

used to transfer data to/ from the left ports of the dual-port 
memory. 

1/0(7:0)R I/O HD(7:0) -This is the other part of the 16-bit data bus which 
is used to transfer data to/from the right ports of the dual-
port memory. 

A(10:0)L 0 ADD(1S:S)-This is part of the address/data bus that will 
address each 2K memory through the ACH from the left 
side of dual-port memory. 

A(10:6)R 0 ADD(4:0) -This part of the address/data bus will address 
a portion of each 2K memory through the ACH from the 
right side of dual-port memory. 

A(S:O)R I/O HAD(S:O) -This is the bidirectional host address bus that 
in the stand-alone mode is configured as an output. 
As part of the 22-bit address counter, (ADD(1S:0) and 
HAD(S:O)) it is used here to output the lower 6 address 
lines through the ACl which address the right side of 
dual-port memory. 

RIWLand I/O These ReadIWrite signals are tied to 1/0(7:6) in the 

RIWR PAC1000 and are used as outputs. They control the 
read/write function of each side of dual-port memory in 
conjunction with the other control signals. 

AE --..I 1/1"\ T ............... n .............. 1:: ........... , ........ : ........... 1 ................ : ... ..J .. -. 11I~,\/r:.A\ : ............. 
- ..... L 'WI I"'" ,,~ I 11\ ... 0,1"" _\oI~t'I.oI" ..... 11"'...,' ..... ..;l1~11""lo,1 "', .... """''''' .. "" I,_,,,-,.""T/ III U lu 

OER PAC 1 000 and are used as outputs. They control the read 
function of each side of dual-port memory in conjunction 
with the other control signals. 

CE(1S:8)L 0 These dual-port memory Chip Selects select one of the 
eight left memory ports. They are tied to OC(1S:8) in the 
PAC 1 000. 

CE(7:0)R 0 These dual-port memory Chip Selects select one of the 
eight right memory ports. They are tied to OC(7:0) in the 
PAC1000. 

BUSYLand I These active low Busy signals are driven by the dual-port 

BUSYR memories and are monitored by the PAC 1000 condition 
code inputs CC(7:6). If one becomes active, the PAC 1 000 
will hold off accessing the other port until it becomes 
inactive. 

INTRLand I These active low Interrupt signals are driven by the dual-

INTRR port memories and are monitored by the PAC 1000 
condition code inputs CC(S:4). If one becomes active, 
then one "CPU" has interrupted the other giving it 
permission to use the memory. 

ClK I The Clock input to the PAC 1000. It also latches the 
condition codes to ensure the proper set-up time. 

--- I RSPAC. Reset is an asynchronous input signal that 
initializes the state of the PAC 1 000. It must be held low 
for at least two clock cycles. 

, •• JlllIE 
-------------------------------------~.,Jr------------------------------------

4-98 



Timing 
Considerations 

FigureS. 
Timing 
Waveforms 

The timing waveforms associated with read, 
write, and bus arbitration cycles are shown 
in Figure 5. These waveforms were created 
from the simulation results which were 
generated from the PACSIM simulator. The 
timing is relatively straightforward. Each 
dual port RAM is accessed similarly to a 
standard SRAM, except that the BUSY flag 
needs to be monitored in case of address 

PAC1000 - Application Note 012 

contention. If the left and right port 
addresses match during a memory access, 
then the dual port memory arbitrates 
between the two ports and decides which 
port will be chosen. The port not chosen 
activates its BUSY signal and must wait 
until the busy goes away before completing 
the read or write cycle. 

Read Cycle Write Cycle 

Addr (L) ____ ..J,'--____ N_o_M_at_c_h ___ ......J' '-______ L_e_ft_an_d_R....;i9_ht_P_o_rt_A_dd_re_s_se_s_M_at_ch _______ _ 

CE(L) 

OE(L) 

Riw (L) -----------------+-~ 

Data (L) --------( Read Data Write Data 
'-------~ 

BUSY(L)----------------------~~-----------------

Write Cycle Bus Arbitration Read Cycle 

Addr (R) ____ J '\. ____ N_o_M_at_ch ____ ....I '\. _______ --\-__ L_e_ft_an_d_R....;i9;..h_t P_o_rt_A_dd_r_es_se_s_M_a_tc_h ___ _ 

CE(R) \'--------/ ~ _____ ---,r 
OE(R) 

R/W(R) 

Wnte Data 
, 

Read Data 
'\ , Data(R) 

- r- --1 --
BUSY (R) 

t 

_______________________________________ rEAfjF~-------------------------------------­
=-==- 4-99 

• 



PAC1DOO - Application Note 012 

Dual-Port Static 
HAM Test 
Conditions 

There are many ways to test dual-port static 
RAMs. The following cases illustrate the tests 
that were devised which should thoroughly 
cover all of the fault conditions possible for 
dual-port static RAMs with Interrupts. 

Test Case #1: 
Data Integrity Test for Right Ports 
Write alternating bit pattern data (aa/55) to 
all locations of the eight memories at once 
through the right port. Then, read all 
locations, one memory at a time, through 
the right port, verifying the data is correct. 

Test Case #2: 
Data Integrity Test for Left Ports 
Write alternating bit pattern data (66/99) to 
all locations of the eight memories at once 
through the left port. Then, read all 
locations, one memory at a time, through 
the left port, verifying the data is correct. 

Test Case #3: 
, Data Integrity Test for Right/Left Ports 

Write alternating bit pattem data (cc/33) for one 
location in SRAM #1 through the right port 
and immediately read that same location in 
memory mrougn me leTt POrt, venrylng me 
data is correct. Then test SRAM #2, etc. 

Test Case #4: 
Data Integrity Test for Both Left/Right 
Ports 
Write alternating bit pattern data (aa/55) for 
one address location in SRAM #1 through 
the left port and immediately read that same 
location in memory through the right port, 
verifying the data is correct. Then test 
SRAM #2, etc. 

Test Case #5: 
Address Connections Test for Both Ports 
Write address at current addresses (which 
differ by 1) in both left and right ports at the 

same time (e.g., write left address 00 at 
address 000 and write right address 01 at 
address 001 in one cycle, etc.) Then read 
these locations and check for correct 
address and continue. When finished with 
SRAM#1, test SRAM#2. 

Test Case #6: 
Data Connections Test for Both Ports 
Write "running 1 's" in both the left and right 
ports (at addresses that differ by 1) at the 
same time (e.g., write left data 01 at 
address 000 and write right data 01 at 
address 001, etc.) Then read these 
locations and check for correct data. Next 
shift data left one bit and write to next 
sequential addresses (e.g., write left data 02 
at address 002 and write right data 02 at 
address 003, etc.) and continue until SRAM 
#1 tested, then test for SRAM #2, etc. 

Test Case #7: 
Dual·Port Address Arbitration Test/Busy 
Signal Test for Both Ports 
Write to same location of SRAM #1 and #5 
at the same time. Monitor busy signal. If 
Busy, then wait until not busy and continue, _ ....... __ .. : ____ ... _ .... _ .. '1_- ,.... __ ... :_ .. _ ,_ .. 
VLI11i:I1 .... I.;JQ .;JQL "'IIVI IIUl;:I' _VI ILII lye; IVI 

SRAMs #2 and #6, etc. 

Test Case #8: 
Dual·Port Interrupt Activity Test 
Write to right port memory location h'7FE' 
and check for INT L latch set. Then read 
from left port and check for INT L clear. Do 
the same for INT R at memory location 
h'7FF'. After testing SRAMs #1 and #5, go 
on and test SRAMs #2 and #6, etc. 

All the algorithms described above are 
internally realized by software. Code 
implementation for each of these cases can 
be found in Appendix 1. The code listings 
contain sufficient explanations that let the 
reader understand the subjects they describe. 

4-100 

__________________ J-- .,~ 

~~I--------------------



Simulation 

PAC1000 
Resources 
Usage 

Summary 

The preceeding algorithms have been 
assembled with no errors. After assembly, 
and before simulation and programming, the 
files must be linked. An example of the 
linker program which links separate sub­
programs and places them at a predefined 
location is shown in Appendix 2. 

After the above files have been linked, the 
program can be simulated and parts can be 
programmed. An additional input file is 
needed before simulation can begin. That is 
the stimulus file. The command file is 
another input file that can be useful. 

Using the PAC1000 as a dual-port memory 
tester in this application, utilizes many of 
the resources available on the chip. 
However, it does not take advantage of the 
part being used in the peripheral mode or 
slave configuration, where the host 
processor can request a command or 
download data to be used at a later time. 

The PAC1000 architecture is unique in that 
it enables the part to be configured in a wide 
range of applications. As exemplified in the 
circuit diagram where virtually no interface 
glue logic was required and, in the program 
code where tasks were handled in very few 
one-cycle instructions, the PAC 1 000 
enables easy system interfacing as well as 
efficient task handling. So, whether the 
PAC 1 000 performs as an intelligent 1/0 
Controller or as a simple Dual-Port Memory 
Tester, its flexibility provides the high-level 
of control that today's circuit designers need 
in many high-performance systems. 

PAC1000 - Application Note 012 

The stimulus file is used to drive inputs such 
as address, data, condition codes and 
control signals, an example of which is 
shown in Appendix 3. The command file is 
an optional batch file that contains a series 
of valid PACSIM commands, also shown in 
Appendix 3. 

The PAC 1 000 functional simulator, PACSIM, 
records the state of specified signals at 
each cycle. Simulation results of some of 
the above algorithms are shown in 
Appendix 4. 

In addition, as seen in Figure 4, there are 
several pins on the PAC 1 000, such as lias, 
and interrupts which are not used. These 
pins can be taken advantage of by 
performing other operations in parallel, 
without any performance degradation during 
dual-port memory testing. 

!i'==~E 
-------------------------------------~~I------------------------------------

4-101 

--~~ ~-- ~---

• 



PAC1000· Application Note 012 

Notes 

________________________________ r~E~:--------------------------------
4·102 ="=~= 



Appendix 1. 
PAC10D0 
Program 
FlolII Charts 

Initialization: 

Test Case #1 : 

Go to Test 
Case #1 

PAC11JD1J • Applicllfltm IIDtI1 012 

Write alternatIng bit pattern data to all locations of 
each Dual Port RAM through its right port. 

Yes 

Yes >_N_O __ -I~ Go to Test Case #1 
(Read) 

-------------------------~Jr;-------------------------
4-103 

._-- ------ --------------------

• 



PAC1000 • AppllcatiDn iIDtB 012 

Appendix 1. 
PAC1DDO 
Program 
FlowCharts 
(Cont.) 

Test Case #1 : continued 
(Read SRAM #1, 
then SRAM #2, etc.) 

Repeat Test Case #1. >---....... Read for Remaining SRAMs, 
then Go to Test Case #2. 

-------------------------,~~~------------------------
4.104 fiiNi\': • 



Appendix 1. 
PAC1000 
Program 
FlowCharts 
(Cont.) 

Test Case #2: 

Test Case #2: 
(Read SRAM #1, 
then SRAM #2, etc,) 

PACtODD· Application Note Ot2 

Write alternating bit pattern data to all locations of 
each Dual Port RAM through its left port. 

Ves No 

Continue Test Case #2 

___________________________________________ fsrsr~~-----------------------------------------­
="'''=':::::::~ 4-105 

• 



PAC1t111D • Application Note 012 

Appendix 1. 
PAC1000 
Program 
FlowCharts 
(Cont.) 

Test Case #2: (Cont.) 

Repeat Test Case #2. 
Read for Remaining SRAMs, 

then Go to Test Case #3. 

-------------------------------------------------rAfJr~~------------------------------------------------
~~ ~ . 



Appendix 1. 
PAC1000 
Program 
FlowCharts 
(Cont.) 

Test Case #3: Write data through right port address of SRAM #1 
and read out of left port address for verification, 

then repeat for SRAM #2, etc. 

PAC101J0 • ApplicatiDn NDte 012 

------------------------------------------------~~Ar-------------------------------------------------
4·107 

• 



I'AC1IJ1l1l· ApplicatitJn IIDte 012 

Appendix 1. 
PAC10D0 
Program 
FlowCharts 
(Cont.) 

Test Case #4: Write data through left port address of SRAM #1, 
and read out of right port address for verificatIon, 

then repeat for SRAM #2, etc. 

"'iiillii ------------------------------------------------~~Jr-----------------------------------------------

4-108 



Appendix 1. 
PAC1000 
Program 
FlowCharts 
(Cont.) 

Test Case #5: 

I'AC10D0· Application Note 012 

Write sequential address data at current address In 

both left and right ports at the same time to check 
for address lines not connected. Then repeat for 

SRAM #2. etc. 

Write Current Sequential 
Addresses mto Both Ports 

of SRAM 

Repeat for SRAM #2, etc. 
Then Go to Test Case #6. 

----------------------------------~~~~------------------------------4--1--09 

• 



PAC1000· Application Note 012 

Appendix 1. 
PAC1000 
Program 
FlowCharts 
(Cont.) 

Test Case #6: Write "running 1 's" data at each incremental address 
in both left and right ports at the same time to check 

for all data lines connected. Then repeat for 
SRAM #2, etc. 

Repeat for SRAM #2, etc. 
Then Go to Test Case #7. 

------------------------------------------------~~~~------------------------------------------------
4-110 



Appendixt. 
PACt. 
Program 
FlowCharts 
(Cont.) 

Test Case #7: Try to write data at same address of each port for 
SRAMs #1 and #5. Test for ActIve Busy Signal. 

Continue for all addresses. Then repeal for SRAMs 
#2 and #6, #3 and #7, and #4 and #8. 

Ves 

PAC1_ • ApplicatltJn illite 012 

Repeal for SRAMs #2 and #6, etc. 
Then Go to Test Case #8. 

_________________________________________________ fjfjfjF~-----------------------------------------------
iI/IVf#~ 

4-111 

-- -- ------- ----------------------------------

• 



PAC1tJ1JO • Application IItItII 012 

Appendix 1. 
PAC1000 
Program 
FlowCharts 
(Conf.) 

Tesl Case #8: Tesl Righi and Lefllnlerrupl flag funcllons of each 
Dual Port SRAM for SRAMs #1 and #5. Then repeal 

for SRAMs #2 and #6, #3 and #7, and #4 and #8. 

Wrile h' AA' dala Inlo rlghl 
port of SRAMs #1 and #5 

al locallon 7FE 

After testing for left Interrupt. 
Repeal above for "ghllnlerrupl wi 

address location 7FF Then test 
SRAMs #2 and #6, #3 and #7, and 

#4 and #8. 

r.JI'~ 
------------------------------------------------~.r~------------------------------------------------

4-112 



PAC1000· Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 

segment dual port memory test, abs(O); 
entry BeginnIng, start; -

org h'OOOO'; 

include 'dpmtst.equ'; 

include'dpmtst.als'; 

/************************************************************************/ 
/*lnitialization */ 
/************************************************************************/ 

Beginning: 

JMP Start, OUT SRAMNO; 

org h'0010'; 

start: SET ASEL ADOE HADOE HDSELO, OUT SRAMNO; /*Select 
address counter as source that will write to address bus, 
select address bus direction as output, select host address 
bus direction as output, and select the data output 
register to be connected to the host data bus.*/ 

ACSlZE 22; 
MOV lOR h'ff'; /*Select address counter to be 22-bits wide*/ 
SETlO h'ff'; 

DATAA := h'OOaa' ; 
DAT55 := h'OO55'; 
DAT66 := h'6600' ; 
DAT99 := h'9900' ; 
DATCC := h'OOcc' ; 
DAT33 := h'OO33'; 
DATAA2 := h' aaOO'; 
DATAA3 := h'aaaa' ; 
DAT552 := h'5500'; 
DATCC2 := h'ccOO'; 
DAT332 := h'3300'; 

SRMDlS := h'ff'; 
SRMERR := h'fO' ; 
GPR := h'OOOO' ; 

lNTLS := h'lF3E'; 
lNTRC := h'lF3F'; 
lNTRS := h'FFFF'; 
lNTLC := h'FFDF' ; 

SRLRPWR := h'OO3f'; 
SRLRPRD := h'OOf3'; 
SRRPWR := h'OObf'; 
SRLPWR := h'OO7f'; 
SRRPRD := h'OOef'; 

/*(RO) Alternate bit pattern test data*/ 
/*(R1) for writing to dual-port*/ 
/*(R2) static RAMs*/ 
/*(R3)*/ 
/*(R4)*/ 
/*(R5)*/ 
/*(R6)*/ 
/*(R7)*/ 
/*(R8)*/ 
/*(R9)*/ 
/*(R10)*/ 

/*(R11) SRAM port disable OE, R/W*/ 
/*(R12) SRAM error*/ 
/*(R13) general read register*/ 

/*(R14) left interrupt set address (7FE)*/ 
/*(R15) right interrupt clear address (7FF)*/ 
/*(R16) right interrupt set address (7FF)*/ 
/*(R17) left interrupt clear address (7FE)*/ 

/*(R18) left/write port enable write*/ 
/*(R19) left/write port enable read*/ 
/*(R20) right port enable write*/ 
/*(R21) left port enable write*/ 
/*(R22) right port enable read*/ 

-----------------------------------------~~~~----------------------------------------
4-113 

• 



PAC11J1J1J -Application illite 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

SRLPRD := h'OOdf'; 

RUNIS := h'OlOl'; 
INC02 := h'0002'; 
INC40 := h'0040'; 

M70 
M1S8 

:= h'OOff'; 
:= h'ffOO'; 

INC20 := 
SETl 

h'0020'; 
:= h'OOOl'; 

/*(R23) left port enable read*/ 

/*(R24) initialization for "running l's" test*/ 
/*(R2S) increment address counter*/ 
/*(R26) increment address counter*/ 

/*(R27) mask for D(7:0)*/ 
/*(R28) mask for D(lS:8)*/ 

/*(R29) increment address counter*/ 
/*(R3l) initialization for address counters*/ 

/*TEST CASE #1*/ 
/************************************************************************/ 
/*This section writes alternating bit pattern data to all locations */ 
/*of each dual port SRAM through its right port. */ 
/************************************************************************/ 

SET HDOE, CLR ACH, OUT SRAMNO; 
LDLC h'lF'; /*ACH ctr is output on ADD(4:0) MSB*/ 
RESET DlREN, CLR ACL; 

LooP2: PLDLC h'3F'; /*ACL ctr is output on HAD(S:O) LSB*/ 
LooP1: SWITCH CG1. AND 0 ACL SET1. OUT SRAMl 8R: 

/*Check if right-port of SRAMs not busy (CG6 and CG4), 
Select right SRAM port and generate WR strobe, check 
for odd or even address.*/ 

CASE 00, GOTO LooPl;/*CG7=0, CG6=0, CGS=O, CG4=0*/ 
CASE 01, GOTO LooPl;/*CG7=0, CG6=0, CGS=O, CG4=1*/ 
CASE 02, GOTO LooPl;/*CG7=0, CG6=0, CGS=l, CG4=0*/ 
CASE 03, GOTO LooPl;/*CG7=0, CG6=0, CGS=l, CG4=1*/ 
CASE 04, GOTO LooPl;/*CG7=0, CG6=1, CGS=O, CG4=0*/ 
CASE OS, GOTO NEXT1;/*CG7=0, CG6=1, CGS=O, CG4=1*/ 
CASE 06, GOTO LOOP1;/*CG7=0, CG6=1, CGS=l, CG4=0*/ 
CASE 07, GOTO NEXT1;/*CG7=0, CG6=1, CGS=l, CG4=1*/ 
CASE 08, GOTO LooPl;/*CG7=1, CG6=0, CGS=O, CG4=0*/ 
CASE 09, GOTO LooPl;/*CG7=1, CG6=0, CGS=O, CG4=1*/ 
CASE 10, GOTO LooPl;/*CG7=1, CG6=0, CGS=l, CG4=0*/ 
CASE 11, GOTO LooPl;/*CG7=1, CG6=0, CGS=l, CG4=1*/ 
CASE 12, GOTO LooPl;/*CG7=1, CG6=1, CGS=O, CG4=0*/ 
CASE 13, GOTO NEXT1;/*CG7=1, CG6=1, CGS=O, CG4=1*/ 
CASE 14, GOTO LooPl;/*CG7=1, CG6=1, CGS=l, CG4=0*/ 
CASE 15, GOTO NEXT1;/*CG7=1, CG6=1, CGS=l, CG4=1*/ 

NEXT1: ENDSWITCH; 

IF Z, MOV lOR SRRPWR; 
MOV DaR DATAA; /*write h'aa' data into SRAM right port*/ 

ELSE; 
MOV DOR DATSS; 

ENDIF; 
/*write h'SS' data into SRAM right port*/ 

MOV lOR SRMDIS; /*end write cycle*/ 
LooPNZ LooPl, ACL:= ++ ACL, OUT SRAMNO; 

POPLC, ACH := ++ ACH; 

/*Increment HAD(S:O)-ACL address counter, 
deselect WR and CS*/ 

-----------------------------------------rAfAfjf~----------------------------------------
4-114 

.,,,. 



PAC1000· ApplicatiDn NDte 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

/*Increment ADD(4:0)-ACH address counter*/ 
LOOPNZ LOOP2; /*end of outer loop*/ 

/************************************************************************/ 
/*This section reads and checks data from dual port SRAM #1 */ 
/*through its right port. After checking SRAM #1, then check SRAM#2 etc*/ 
/************************************************************************/ 

LOOP4: 
LOOP3: 

RESET HDOE, CLR ACL; 
SET DlREN, CLR ACH; 

LDLC h'lF'; 
PLDLC h'3F'; 
IF NOT CC6, MOV lOR 

JMP LOOP3; 
ENDIF; 

/* Clear ACL, Enable writing to Data Input Register*/ 
/* Clear ACH, Select Host data to be used as an 
input*/ 
/*ACH ADD(4:0) MSB*/ 
/*ACL HAD(5:0) LSB*/ 

SRRPRD, OUT SRAM1R; 
/*Enable OE for read, Enable CS to select SRAM*/ 
/*Right SRAM Busy*/ 

AND GPR M70 DIR; /*Read dual port RAM data and write it into GPR*/ 
AND Q ACL SET1; /*Check for odd or even address*/ 
IF Z, MOV lOR SRMDIS, OUT SRAMNO; 

/*End read cycle, release fOE and /CE*/ 
CMP GPR DATAA; /*Check for data integrity*/ 

ELSE; 
CMP GPR DAT55; 

ENDIF; 

JMPC Z ERROR; 

/*read data into PAC*/ 

LOOPNZ LOOP3, ACL := ++ ACL; 
/*increment address for next read*/ 

POPLC, ACH := ++ ACH; 
LOOPNZ LOOP4; /*end of outer loop*/ 

/*TEST CASE #2*/ 
/**.** •• **_.* •• * ••••• * •• ** •• *.*.**** •••••• * •• *.**.* •• ***** •••• *****.* •• **/ 
/*This section writes alternating bit pattern data to all locations */ 
/*of each dual port SRAM through its left port. */ 
I*K** •• ***.* •••• ** ••• *.* ••••••••• *.**.** •• * •• * •••••••• *******************/ 

CLR ACH, SET HDOE, OUT SRAMNO; 
/*clear ACH counter*/ 

LDLC h'7FF'1 /*ACH ADD(15:5) MSB*/ 
RESET DlREN, CLR ACL;/*clear ACL counter*/ 

LOOP19: SWITCH CG1, AND Q ACH INC20, OUT SRAMl aL; 
/*Check for left port of SRAMs not busy (CG7 and CGS), Sele 
left SRAM port and generate WR strobe, check for odd 
or even address.*/ 

CASE 00, GOTO LOOP19;/*CG7=0, CG6=0, CG5=0, CG4=0*/ 
CASE 01, GOTO LOOP19;/*CG7=0, CG6=0, CG5=0, CG4=1*/ 
CASE 02, GOTO LOOP19;/*CG7=0, CG6=0, CG5=1, CG4=0*/ 
CASE 03, GOTO LOOP19;/*CG7=0, CG6=0, CGS=l, CG4=1*/ 
CASE 04, GOTO LOOP19;/*CG7=0, CG6=1, CG5=0, CG4=0*/ 
CASE 05, GOTO LOOP19;/*CG7=0, CG6=1, CGS=O, CG4=1*/ 
CASE 06, GOTO LOOP19;/*CG7=0, CG6=1, CG5=1, CG4=0*/ 
CASE 07, GOTO LOOP19;/*CG7=0, CG6=1, CGS=l, CG4=1*/ 

!f'_E~§§ 

-------------------------------------------~arAr------------------------------------------
4·115 

• 



PAC1000 - Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

CASE 08, GOTO LOOP19;/*CG7=1, CG6=0, CGS=O, CG4=0*/ 
CASE 09, GOTO LOOP19;/*CG7=1, CG6=0, CGS=O, CG4=1*/ 
CASE 10, GOTO NEXT2; /*CG7=1, CG6=0, CGS=l, CG4=0*/ 
CASE 11, GOTO NEXT2; /*CG7=1, CG6=0, CGS=l, CG4=1*/ 
CASE 12, GOTO LOOP19;/*CG7=1, CG6=1, CGS=O, CG4=0*/ 
CASE 13, GOTO LOOP19;/*CG7=1, CG6=1, CGS=O, CG4=1*/ 
CASE 14, GOTO NEXT2; /*CG7=1, CG6=1, CGS=l, CG4=0*/ 
CASE 15, GOTO NEXT2; /*CG7=1, CG6=1, CGS=l, CG4=1*/ 

NEXT2: ENDSWITCH; 

IF Z, MOV lOR SRLPWR; 
MOV DOR DAT66; /*write h'66' data into SRAM*/ 

ELSE; 
MOV DOR DAT99; /*write h'99' data into SRAM*/ 

ENDIF; 

MOV lOR SRMDIS; /*end write cycle*/ 
LOOPNZ LOOP19, ADD ACH INC20, OUT SRAMNO; 

/*add h'0020' to ACH - inc left port address*/ 

1***·************************************************* ***********.*******/ 
/*This section reads and checks data from dual port SRAM #1 */ 
/*~~~~'2~~ !.t~ 10 f'i-' !"'nr.... * I 
1***************************************************** *******************/ 

RESET HDOE, CLR ACL; /*Clear ACL, Enable writing to Data Input Register*/ 
SET DIREN, CLR ACH; /*Clear ACH, Select Host data to be used as an 

input*/ 
LDLC h'7FF'; /*ACH ADD(lS:S) MSB*/ 

LOOP20: IF NOT CC7, MOV lOR SRLPRD, OUT SRAM1L; 
/*Enable OE for read, Enable CS to select SRAM*/ 

JMP LOOP20; /*Left SRAM Busy*/ 
ENDIF; 

AND GPR M1S8 DIR; 
AND Q ACH INC20; 
IF Z RDEVEN9, MOV 

CMP GPR DAT66; 
ELSE; 

CMP GPR DAT99; 
ENDIF; 

JMPC Z ERROR; 

/*Read dual port RAM data and write it into GPR*/ 
/*Check for odd or even address*/ 

lOR SRMDIS, OUT SRAMNO; 
/*End read cycle, Release OE and CS*/ 

LOOPNZ LOOP20, ADD ACH INC20; 
/*increment address*/ 

/*TEST CASE #3*/ 
1***************************************************** ********************/ 
/* This section alternately writes data through a right port address and */ 
/* reads out of the left port address for verification, then increments */ 
/* each address of dual port SRAM/1. Repeat for other SRAMs. */ 
1*************************************************************************/ 
/*writing*/ 

CLR ACH, OUT SRAMNO; 

-------------------------------------------~~~~------------------------------------------
4-116 



PACtOOO • Application Note Ot2 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

LOOP29: 
LOOP30: 

CLR ACL; 
LDLC h'lF'; 
PLDLC h'3F'; 
SET HDOE; 
RESET DlREN; 
IF NOT CC7, AND Q 

JMP LOOP30; 
ENDIF; 

/*ACH ADD(4:O) MSB - LOAD Stack w/2K */ 
/*ACL HAD(5:0) LSB - address*/ 

ACL SET1, OUT SRAM1R; 
/*Select right or left SRAM port and generate 
strobe, check for odd or even address.*/ 
/*Left SRAM Busy*/ 

IF Z, MOV lOR SRRPWR; 
MOV DOR DATCC; /*write h'cc' data into SRAM*/ 

ELSE; 
MOV DOR DAT33; 

ENDIF; 

MOV lOR SRMDIS; 

/*reading*/ 

/*write h'33' data into SRAM*/ 

/*Release R/W*/ 

RESET HDOE, OUT SRAMNO; 
/*Selects Host data to be used as an input*/ 

SET DlREN; /*Enables writing to Data Input Register*/ 
MOV lOR SRLPRD, OUT SRAM1L; 

WR 

/*Enable OE for read, Enable CS to select SRAM*/ 
AND GPR M158 DIR; /*Read dual port RAM data and write it into GPR*/ 
AND Q ACH INC20; /*Check for odd or even address*/ 
IF Z, MOV lOR SRMDIS, OUT SRAMNO; 

CMP GPR DATCC2; 
ELSE; 

CMP GPR DAT332; 
END IF; 

/*End read cycle, Release OE*/ 

JMPC Z ERROR, ADD ACH INC20; 
/*Increment ADD(15:5) by h'0020' (ACH address 
ctr)- for read*/ 

LOOPNZ LOOP30, ACL := ++ ACL; 
/*Increment HAD(5:0)-ACL address counter for write, 
deselect WR and CS*/ 

POPLC, ACH := ++ ACH;/*Increment ADD(4:O)-ACH address counter for write*/ 
LOOPNZ LOOP29; /*end of outer loop*/ 

/*TEST CASE #4*/ 
/*************************************************************************/ 
/* This section alternately writes data through a left port address and */ 
/* reads out of the right port address for verification, then increments */ 
/* each address of dual port SRAM#l. */ 
/****.****.*.*****.**********.*******.**.*********** •• ****w***.******** •• */ 
/*writing*/ 

CLR ACH, OUT SRAMNO; 
/*clear ACH counter*/ 

CLR ACL; 
/*clear ACL counter*/ 

F~" -& 
------------------------------------~~~----------------------------------------

4·117 

• 



PAC1DOD· Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

LOOP45: 
LOOP46: 

LDLC h'lF'; 
PLDLC h'3F'; 
SET HDOE; 
RESET DlREN; 

/*ACH ADD(4:0) MSB*/ 
/*ACL HAD(5:0) LSB*/ 

IF NOT CC7, AND Q ACH INC20, OUT SRAM1L; 

JMP LOOP46; 
ENDIF; 

IF Z, MOV lOR SRLPWR; 
MOV DOR DATAA2; 

ELSE; 
MOV DOR DAT552; 

ENDIF; 

MOV lOR SRMDIS; 

/*Check for Left SRAM Busy, Select left SRAM port 
and generate WR strobe. check for odd or even address.*/ 
/*Left SRAM Busy*/ 

/*write h'66' data into SRAM*/ 

/*write h'99' data into SRAM*/ 

/*end write cycle*/ 

/*reading*/ 
RESET HDOE, OUT SRAMNO; 

/*Enable writing to Data Input Register*/ 
SET DlREN; /*Select Host data to be used as an input*/ 
MOV lOR SRRPRD, OUT SRAM1R; 

AND GPR M70 DIR; 
AND Q ACL SET1; 

/*Enable OE for read, Enable CS to select SRAM*I 
/*Read dual port RAM data and write it into SRMDIS*/ 
/*Check for odd or even address*/ 

IF Z RDEVEN25, MOV lOR SRMDIS, OUT SRAMNO; 

CMF GPR DATAA; 
ELSE; 

CMP GPR DAT55; 
ENDIF; 

/*End read cycle, Release OE and Cs*/ 

JMPC Z ERROR, ADD ACH INC20; 
/*Increment ADD(15:5) h'0020 for ACH address ctr 
for write*/ 

LOOPNZ LOOP46, ACL := ++ ACL; 
/*Increment HAD(5:0)-ACL address counter for read*/ 

POPLC, ACH := ++ ACH;/*Increment ADD(4:0)-ACH address counter for read*/ 
LOOPNZ LOOP45; /*end of outer loop*/ 

/*TEST CASE #S*/ 
/*************************************************************************/ 
/* Testing for address lines not connected to SRAM#l by writing */ 
/* sequential addresses at current address in both left and right */ 
/* ports at the same time and reading for accuracy. */ 
/*************************************************************************/ 
/*writing*/ 

CLR ACH, OUT SRAMNO; 

MOV ACL SET1; 

LDLC h'OF'; 
LOOP6l: PLDLC h'lF'; 

/*clear ACH counter*/ 

/*set ACL counter to 1*/ 
/*ACH ADD(4:0) MSB*/ 
/*ACL HAD(5:0) LSB*/ 

________________________________ r=:=E ______________________________ ___ 
4·118 



PAC100D • Application Nots 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

LOOP62: 

NEXT3: 

SET HOOE; 
RESET OIREN; 
SWITCH CG1, MOV lOR SRLRPWR, OUT SRAM1LR; 

/*Check for ports not busy (CG7 or CG6), Select right AND 
left SRAM port and generate WR strobe*/ 

CASE 00, GOTO LOOP62;/*CG7=0, CG6=0, CG5=0, CG4=0*/ 
CASE 01, GOTO LOOP62;/*CG7=0, CG6=0, CG5=0, CG4=1*/ 
CASE 02, GOTO LOOP62;/*CG7=0, CG6=0, CG5=1, CG4=0*/ 
CASE 03, GOTO LOOP62;/*CG7=0, CG6=0, CG5=1, CG4=1*/ 

/*Left and Right ports of SRAM#l 
Busy*/ 

CASE 04, GOTO LOOP62;/*CG7=O, CG6=1, CG5=0, CG4=0*/ 
CASE 05, GOTO LOOP62;/*CG7=0, CG6=1, CG5=0, CG4=l*/ 
CASE 06, GOTO LOOP62;/*CG7=0, CG6=1, CG5=1, CG4=0*/ 
CASE 07, GOTO LOOP62;/*CG7=0, CG6=1, CG5=1, CG4=1*/ 

/*Left port of SRAM#l Busy, wait 
CASE 08, GOTO LOOP62;/*CG7=1, CG6=0, CG5=0, CG4=0*/ 
CASE 09, GOTO LOOP62;/*CG7=1, CG6=0, CG5=0, CG4=1*/ 
CASE 10, GOTO LOOP62;/*CG7=1, CG6=0, CG5=1, CG4=0*/ 
CASE 11, GOTO LOOP62;/*CG7=1, CG6=0, CG5=1, CG4=1*/ 

/*Right port of SRAM#l Busy, wait 
CASE 12, GOTO NEXT3;/*CG7=1, CG6=1, CG5=0, CG4=0*/ 
CASE 13, GOTO NEXT3;/*CG7=1, CG6=1, CG5=0, CG4=1*/ 
CASE 14, GOTO NEXT3;/*CG7=1, CG6=1, CG5=1, CG4=0*/ 
CASE 15, GOTO NEXT3;/*CG7=1, CG6=1, CG5=1, CG4=1*/ 

ENOSWITCH; 

MOV OOR SET1; 
MOV lOR SRMDIS; 

/*write address into SRAM*/ 

Busy, wait until not 

until not Busy*/ 

until not Busy*/ 

/*reading*/ 
RESET HOOE, OUT SRAMNO; 

/*Enable writing to Data Input Register*/ 
SET OIREN; /*Se1ect Host data to be used as an input*/ 
MOV lOR SRLRPRD, OUT SRAM1LR; 

/*Enab1e OE for read, Enable CS to select both ports 
of SRAM*/ 

MOV GPR OIR; /*Read dual port RAM data and write it into SRMDlS*/ 
MOV lOR SRMDIS, OUT SRAMNO; 

/*End read cycle, Release OE and CS*/ 
CMP GPR SET1; 

JMPC Z ERROR, ADD ACH INC40; 
/*lncrement ADO(15:5) h'0040' for ACH address ctr 
for write*/ 

ADD SET1 h'0202'; /*lncrement data to correspond to address*/ 
LOOPNZ LOOP62, ADD ACL INC02; 

POPLC, ACH := ++ 
LOOPNZ LOOP61; 
SET1 := h'OOOl'; 

/*TEST CASE #6*/ 

/*lncrement by 2 HAD(5:0)-ACL address counter 
for read*/ 

ACH;/*lncrement ADO(4:0)-ACH address counter for read*/ 
/*end of outer loop*/ 

/*************************************************************************/ 
/* Testing for data lines not connected for SRAM#l by writing "running */ 

-----------------------------------------~~~----------------------------------------
4-119 

• 



PAC1000 • Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

/* l's at each incremental address in both left and right ports at the */ 
/* same time. */ 
/*************************************************************************/ 
/*writing*/ 

LOOP64: 
LOOP6S: 

CLR ACH, OUT SRAMNO; 

MOV ACL SET1; 

LDLC h'OF'; 
PLDLC h 'IF'; 
SET HDOE; 

/*clear ACH counter*/ 

/*set ACL counter to 1*/ 
/*ACH ADD(4:0) MSB*/ 
/*ACL HAD(S:O) LSB*/ 

RESET DlREN; 
SWITCH CG1, MOV lOR SRLRPWR, OUT SRAM1LR; 

CASE 00, 
CASE 01, 
CASE 02, 
CASE 03, 

CASE 04, 
~~ 

"""'~.&:I V~, 

CASE 06, 
CASE 07, 

CASE 08, 
CASE 09, 
CASE 10, 
CASE 11, 

GOTO 
GOTO 
GOTO 
GOTO 

GOTO 

GOTO 
GOTO 

GOTO 
GOTO 
GOTO 
GOTO 

/*Check for ports not busy (CG7 and CG6), Select right AND 
SRAM port and generate WR strobe*/ 

LOOP6S;/*CG7=0, CG6=0, CGS=O, CG4=0*/ 
LOOP6S;/*CG7=0, CG6=0, CGS=O, CG4=1*/ 
LOOP6S;/*CG7=0, CG6=0, CGS=l, CG4=0*/ 
LOOP6S;/*CG7=0, CG6=0, CGS=l, CG4=1*/ 

/*Left and Right ports of SRAM#l Busy, wait until not 
Busy*/ 

LOOP6S;/*CG7=0, CG6=1, CGS=O, CG4=0*/ 
.~~~,~_ I~~~~_n ~~~_1 ~~~_n ~~A_1.1 

~'\J_&,""""'I ...... '-"",-v, ............... -., .............. - ... , -_-.-'"- I 

LOOP6S;/*CG7=0, CG6=1, CGS=l, CG4=0*/ 
LOOP6S;/*CG7=0, CG6=1, CGS=l, CG4=1*/ 

/*Left port of SRAM#l Busy, wait until not Busy*/ 
LOOP6S;/*CG7=1, CG6=0, CGS=O, CG4=0*/ 
LOOP6S;/*CG7=1, CG6=0, CGS=O, CG4=1*/ 
LOOP6S;/*CG7=1, CG6=0, CGS=l, CG4=0*/ 
LOOP6S;/*CG7=1, CG6=0, CGS=l, CG4=1*/ 

/*Right port of SRAM#l Busy, wait until not Busy*/ 
CASE 12, GOTO NEXT4;/*CG7=1, CG6=1, CGS=O, CG4=0*/ 
CASE 13, GOTO NEXT4;/*CG7=1, CG6=1, CGS=O, CG4=1*/ 
CASE 14, GOTO NEXT4;/*CG7=1, CG6=1, CGS=l, CG4=0*/ 
CASE 15, GOTO NEXT4;/*CG7=1, CG6=1, CGS=l, CG4=1*/ 

NEXT4: ENDSWITCH; 

MOV DOR RUN1S; 
MOV lOR SRMDIS; 

/*write running l's into SRAM*/ 
/*end write cycle*/ 

/*reading*/ 
RESET HDOE, OUT SRAMNO; 

/*Enable writing to Data Input Register*/ 
SET DlREN; /*select Host data to be used as an input*/ 
MOV lOR SRLRPRD, OUT SRAM1LR; 

/*Enable OE for read, Enable CS to select both ports 
of SRAM*/ 

MOV GPR DIR; /*Read dual port RAM data and write it into GPR*/ 
MOV lOR SRMDIS, OUT SRAMNO; 

/*End read cycle, Release OE and Cs*/ 
CMP GPR SET1; 

JMPC Z ERROR, ADD ACH INC40; 
/*Increment ADD(lS:S) h'0040' for ACH address ctr 
for write*/ 

_________________________________________ 'ar~~~----------------------------------------
4-120 

:=<"~EE= 



PAC101J0 -Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

SHLR RUN1S RMSBj /*Shift and rotate R31 left one bit*/ 

LOOPNZ LOOP6S, ADD ACL INC02j 
/*Increment by 2 HAD(S:O)-ACL address counter 
for read*/ 

POPLC, ACH := ++ ACHj/*Increment ADD(4:0)-ACH(4:0)-ACH address counter 
for read*/ 

LOOPNZ LOOP64j /*end of outer loop*/ 

/*TEST CASE #7*/ 
/************************************************************************/ 
/* Dual-Port Address Arbitration Test/Busy Signal Test for Both Ports. */ 
/* Test for writing to the same location of SRAM #1 and #5 at the same */ 
/* time (Expect Busy signal) */ 
/************************************************************************/ 

SET HDOE, CLR ACH, OUT SRAMNOj 
/*clear ACH counter*/ 

RESET DlREN, CLR ACLj/*clear ACL countera*/ 
LDLC h'lF' j 

LOOP96: PLDLC h'3F'j 
LOOP97: MOV lOR SRLRPWR, OUT SRAM1sLRj 

/*Select right AND left SRAM port and generate WR 
strobe to try and write in same address location 
of both ports*/ 

SWITCH CG1j /*Check for busy signal from left or right port 
(CG7 or CG6) AND (CGS or CG4) of each RAM*/ 

CASE 00, GOTO ERRORj /*CG7=0, CG6=0, CGS=O, CG4=0*/ 
CASE 01, GOTO ERRORj /*CG7=0, CG6=0, CGs=O, CG4=1*/ 
CASE 02, GOTO ERRORj /*CG7=0, CG6=0, CGs=l, CG4=0*/ 
CASE 03, GOTO ERRORj /*CG7=0, CG6=0, CGs=l, CG4=1*/ 
CASE 04, GOTO ERRORj /*CG7=0, CG6=1, CGs=O, CG4=0*/ 
CASE OS, GOTO NEXTSj /*CG7=0, CG6=1, CGs=O, CG4=1*/ 
CASE 06, GOTO NEXTsj /*CG7=0, CG6=1, CGs=l, CG4=0*/ 
CASE 07, GOTO ERROR; /*CG7=0, CG6=1, CGs=l, CG4=1*/ 
CASE 08, GOTO ERRORj /*CG7=1, CG6=0, CGs=O, CG4=0*/ 
CASE 09, GOTO NEXTs; /*CG7=1, CG6=0, CGs=O, CG4=1*/ 
CASE 10, GOTO NEXTS; /*CG7=1, CG6=0, CGs=l, CG4=O*/ 
CASE 11, GOTO ERROR; /*CG7=1, CG6=0, CGs=l, CG4=1*/ 
CASE 12, GOTO ERROR; /*CG7=1, CG6=1, CGs=O, CG4=O*/ 
CASE 13, GOTO ERROR; /*CG7=1, CG6=1, CGs=O, CG4=1*/ 
CASE 14, GOTO ERROR; /*CG7=1, CG6=1, CGS=l, CG4=O*/ 
CASE 15, GOTO ERROR; /*CG7=1, CG6=1, CGs=l, CG4=1*/ 

NEXTS: ENDSWITCH; 

MOV DOR DATAA3; /*Write data in active port*/ 
MOV lOR SRMDIS, OUT SRAMNOj 

/*End write cycle*/ 

ADD ACH INC20j /*Increment both address ports to test for 
busy at every location*/ 

LOOPNZ LOOP96, ACL := ++ ACLj 
POPLC, ACH := ++ ACH; 
LOOPNZ LOOP97j 

-----------------------------------------~~~~----------------------------------------
4-121 

• 



PAC1000· Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

/*TEST CASE #8*/ 
/************************************************************************/ 
/* Test for dual port SRAM interrupt flag function by writing to right */ 
/* port memory location 7FE and checking for INTL set and then reading */ 
/* from left port to clear INTL. Then do same to check for INTR at */ 
/* memory location 7FF for 2 dual-port SRAMs at a time (Example for */ 
/* SRAMs 1 and 5.) Continue w/SRAMs 2 and 6. */ 
/************************************************************************/ 

/*set left interrupt by writing into right port address 7FE*/ 
SINTL: SET HOOE, MOV ACH INTLC, OUT SRAMNO; 

/*set left port address to 7FE*/ 
RESET DIREN, MOV ACL INTLS; 

/*set left port address to 7FE*/ 
MOV lOR SRRPWR, OUT SRAM15R; 

/*Select right SRAM port and generate WR strobe*/ 
MOV DOR DATAA; /*write h'aa' into SRAM*/ 
MOV lOR SRMDIS, OUT SRAMNO; 

SWITCH CGO; 

CASE 
CASE 
CASE 
CASE 
CASE 
CASE 

00, GOTO 
01, GOTO 
02, GOTO 
03, GOTO 
04, GOTO 
OS, GOTO 

/*end write cycle*/ 
/*check for left interrupt set (CC3 and CC1)*/ 
/*for both dual port RAMs #1 and #5*/ 

ERROR;/*CG3=O, CG2=O, CG1=O, CGO=O*/ 
ERROR;/*CG3=O, CG2=O, CG1=O, CGO=l*/ 
ERROR;/*CG3=O, CG2=O, CG1=l, CGO=O*/ 
ERROR;/*CG3=O, CG2=O, CGl=l, CGO=l*/ 
ERROR;/*CG3=O, CG2=l, CG1=O, CGO=O*/ 
CINTL1;/*CG3=O, CG2=l, CG1=O, CGO=l*/ 

/*Left interrupt set, so continue*/ 
CASE 06, GOTO ERROR;/*CG3=O, CG2=l, CG1=l, CGO=O*/ 
CASE 07, GOTO ERROR;/*CG3=O, CG2=l, CG1=l, CGO=l*/ 
CASE 08, GOTO ERROR;/*CG3=l, CG2=O, CG1=O, CGO=O*/ 
CASE 09, GOTO ERROR;/*CG3=l, CG2=O, CG1=O, CGO=l*/ 
CASE 10, GOTO ERROR;/*CG3=l, CG2=O, CG1=l, CGO=O*/ 
CASE 11, GOTO ERROR;/*CG3=l, CG2=O, CG1=l, CGO=l*/ 
CASE 12, GOTO ERROR;/*CG3=l, CG2=l, CG1=O, CGO=O*/ 
CASE 13, GOTO ERROR;/*CG3=l, CG2=l, CG1=O, CGO=l*/ 
CASE 14, GOTO ERROR;/*CG3=l, CG2=l, CG1=l, CGO=O*/ 
CASE 15, GOTO ERROR;/*CG3=l, CG2=l, CG1=l, CGO=l*/ 

ENDSWITCH; 

/*Clear left interrupt of SRAM #1 and #5 by reading from left port */ 
i*addreBB 7FE:./ 

CINTL1: RESET HDOE; 
SET DlREN; 
MOV lOR SRLPRD, OUT 

MOV GPR DIR; 
MOV lOR SRMDIS, OUT 

JMPC CC3 CINTL5; 
JMP ERROR; 

/*Enables writing to Data Input Register*/ 
/*Selects host data to be used an input*/ 

SRAM1L; 
/*Enable OE for read, Enable CS to select SRAM*/ 
/*Read dual port RAM data*/ 

SRAMNO; 
/*End read cycle for dual port SRAM#l, Release OE*/ 
/*check for clear interrupt, if clear continue*/ 

CINTL5: MOV lOR SRLPRD, OUT SRAMSL; 

!FEESE= 
-----------------------------------------~~ar----------------------------------------

4·122 



PAC101HJ - Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

MOV GPR OlRi 
MOV lOR SRMDlS, OUT 

/*Enable OE for read, Enable CS to select SRAM*/ 
/*Read dual port RAM data*/ 

SRAMNOi 

JMPC CC1 SlNTRi 
JMP ERRORi 

/*End read cycle for dual port SRAM#s, Release OE*/ 
/*check for left clear interrupt, if clear, continue*/ 

/*Set right interrupt by writing into left port address 7FF*/ 

SlNTR: SET HOOE, MOV ACH lNTRS, OUT SRAMNOi 
/*set right port address to 7FF*/ 

RESET OlREN, MOV ACL lNTRCi 
/*set left port address to 7FF*/ 

MOV lOR SRLPWR, OUT SRAM1sLi 
/*Select left SRAM port and generate WR strobe*/ 

MOV OOR OATAA2i /*write h'aa' into SRAM*/ 
MOV lOR SRMDlS, OUT SRAMNOi 

/*end write cycle*/ 
SWITCH CGOi /*Check for right interrupt set (CC2,CCO)*/ 

/*for both dual port RAMs #1 and #5*/ 
CASE 00, GOTO ERRORi/*CG3=0, CG2=0, CG1=0, CGO=O*/ 
CASE 01, GOTO ERRORi/*CG3=0, CG2=0, CG1=0, CGO=l*/ 
CASE 02, GOTO ERRORi/*CG3=0, CG2=0, CG1=1, CGO=O*/ 
CASE 03, GOTO ERRORi/*CG3=0, CG2=0, CG1=1, CGO=l*/ 
CASE 04, GOTO ERRORi/*CG3=0, CG2=1, CG1=0, CGO=O*/ 
CASE 05, GOTO ERRORi/*CG3=O, CG2=l, CG1=O, CGO=l*/ 
CASE 06, GOTO ERRORi/*CG3=O, CG2=l, CG1=l, CGO=O*/ 
CASE 07, GOTO ERRORi/*CG3=O, CG2=l, CG1=l, CGO=l*/ 
CASE 08, GOTO ERRORi/*CG3=l, CG2=O, CG1=O, CGO=O*/ 
CASE 09, GOTO ERRORi/*CG3=l, CG2=O, CG1=O, CGO=l*/ 
CASE 10, GOTO CINTR1i/*CG3=l, CG2=O, CG1=l, CGO=O*/ 

/*Right interrupt set, so continue*/ 
CASE II, GOTO ERRORi/*CG3=l, CG2=O, CG1=l, CGO=l*/ 
CASE 12, GOTO ERRORi/*CG3=l, CG2=l, CG1=O, CGO=O*/ 
CASE 13, GOTO ERRORi/*CG3=l, CG2=l, CG1=O, CGO=l*/ 
CASE 14, GOTO ERRORi/*CG3=l, CG2=l, CG1=l, CGO=O*/ 
CASE 15, GOTO ERRORi/*CG3=l, CG2=l, CG1=l, CGO=l*/ 

ENOSWITCHi 

/*C1ear right interrupt of SRAM #1 and #5 by reading from right port */ 
/*address 7FF:*/ 

CINTR1: RESET HOOEi 
SET OIRENi 
MOV lOR SRRPRD, OUT 

MOV GPR OIRi 
MOV lOR SRMDIS, OUT 

JMPC CC2 CINTRsi 
JMP ERRORi 

/*Enab1e writing to Data Input Register*/ 
/*Se1ect host data to be used an input*/ 

SRAM1Ri 
/*Enable OE for read, Enable CS to select SRAM*/ 
/*Read dual port RAM data*/ 

SRAMNOi 
/*End read cycle for dual port SRAM#l, Release OE*/ 
/*check for clear interrupt, if clear continue*/ 

CINTRs: MOV lOR SRRPRD, OUT SRAMsRi 
/*Enable OE for read, Enable CS to select SRAM*/ 

MOV GPR OIRi /*Read dual port RAM data*/ 

-----------------------------------------~~~~----------------------------------------
4-123 

• 



PAC1D1JO • Application Note 012 

Appendix 1. 
PAC1000 
Program 
Illustrations 
(Assembly Code) 
(Cont.) 

MOV lOR SRMDlS, OUT SRAMMO; 
/*End read cycle for dual port SRAM#S, Release OE*/ 

JMPC CCO DONE; /*check for left clear interrupt, if clear, continue*/ 
JMP ERROR; 

DONE: JMP DONE; 

ERROR: MOV lOR SRMERR, JMP ERROR; 

end; 

'f,1I iJI~ 
--------------------------------~JFI--------------------------------

4-124 



PAC101J0 -Application Note 012 

Appendix 1. 
PAC1000 (Alias File) 
Program 

(Equate File) 

Illustrations 
(Assembly Code) /*This is an alias file*/ /*This is an equate file*/ 

(Cont.) alias DATAA RO; SRAMNO equ h'ffff' ; 
alias DAT55 Rl; SRAM1L equ h'fffe' ; 
alias DAT66 R2; SRAM2L equ h'fffd' ; 
alias DAT99 R3; SRAM3L equ h'fffb' ; 
alias DATCC R4; SRAM4L equ h'fff7'; 
alias DAT33 R5; SRAM5L equ h'ffef' ; 
alias DATAA2 R6; SRAM6L equ h'ffdf'; 
alias DATAA3 R7; SRAM7L equ h'ffbf'; 
alias DAT552 RS; SRAMSL equ h'ff7f' ; 
alias DATCC2 R9; SRAM1R equ h'feff'; 
alias DAT332 R10; SRAM2R equ h'fdff' ; 
alias SRMDIS Rll; SRAM3R equ h'fbff' ; 
alias SRMERR R12; SRAM4R equ h'f7ff'; 
alias GPR R13; SRAM5R equ h'efff' ; 
alias INTLS R14; SRAM6R equ h'dfff'; 
alias INTRC R15; SRAM7R equ h'bfff' ; 
alias INTRS R16; SRAMSR equ h'7fff'; 
alias INTLC R17; 
alias SRLRPWR R1S; SRAM1LR equ h'fefe' ; 
alias SRLRPRD R19; SRAM2LR equ h'fdfd' ; 
alias SRRPWR R20; SRAM3LR equ h'fbfb' ; 
alias SRLPWR R21; SRAM4LR equ h'f7f7'; 
alias SRRPRD R22; SRAM5LR equ h'efef' ; 
alias SRLPRD R23; SRAM6LR equ h'dfdf'; 
alias RUN1S R24; 
alias INC02 R25; 
alias INC40 R26; 
alias M70 R27; 
alias M15S R2S; 

SRAM7LR equ h'bfbf' ; 
SRAMSLR equ h'7f7f' ; 

SRAMl SL equ h'ffOO' ; 
SRAM()R equ h'OOff' ; • alias INC20 R29; 

alias REG30 R30; SRAM15LR equ h'eeee' 
alias SETl R31; SRAM26LR equ h'dddd' 

SRAM37LR equ h'bbbb' 
SRAM4SLR equ h'7777' 

SRAM15R equ h'OOee' ; 
SRAM15L equ h'eeOO'; 
SRAM26R equ h'OOdd' ; 
SRAM26L equ h'ddOO' ; 
SRAM37R equ h 'OObb' ; 
SRAM37L equ h'bbOO'; 
SRAM4SR equ h '0077' ; 
SRAM4SL equ h'7700' ; 

---------------------------------------~~~--------------------------------------
4-125 

--- - - - .. - . ---------



PAC1DOO - Application Note 012 

Appendix 2. 
Linker File 
Example 

j.This is a linker file.; 

place dual-port_memory_test; 
load dpmtst; 
end; 

----------------------------------r~JrjF:---------------------------------
4·126 

'E!!!!!'efFES 



Appendix 3. 
Stimulus File 
Example 

/*This is a stimulus file*/ 

.s RESETB O@l l@2; 
S RDB 0@1 l@97 ; 

.S eSB 0@1 1@97 ; 

.S HD1S Z@l 0@9S 1@102 0@109 

.s HD14 Z@l 1@9S 0@102 1@109 

.s HD13 Z@1 0@95 1@102 0@109 

.s HD12 Z@1 1@95 0@102 1@109 

.S HDll Z@1 0@9S 1@102 0@109 

.s HD10 Z@l 1@95 0@102 1@109 

.s H09 Z@l 0@95 1@102 0@109 

.s HDS Z@l 1@9S 0@102 1@109 

.S HD7 Z@l 1@9S 0@102 1@109 

.s HD6 Z@l 0@9S 1@102 0@109 

.S HDS Z@l 1@9S 0@102 1@109 

.s HD4 Z@l 0@95 1@102 O@109 

.S HD3 Z@l 1@9S 0@102 1@109 

.S HD2 Z@1 0@9S 1@102 0@109 

.s HD1 Z@1 1@9S O@102 1@109 

.S HOO Z@l 0@9S 1@102 0@109 

.S ADD1S Z@l 

.S ADD14 Z@1 

.s ADD13 Z@1 

.s ADD12 Z@l 

.S ADDll Z@l 

.s ADD10 Z@l 

.s ADD9 Z@l 

.S ADDS Z@l 

.S ADD7 Z@1 

.S ADD6 Z@1 1 

.S ADDS Z@1 

.S ADD4 Z@1 

.S ADD3 Z@l 

.S ADD2 Z@1 

.S ADD1 Z@l 

.S ADDO Z@1 

.S HAD 5 Z@1 

.S HAD4 Z@l 1 

.S HAD 3 Z@l 

.S HAD2 Z@l 

.S HAD 1 Z@l 

.s HADO Z@l 

.s 107 Z@l 

.s 106 Z@l 

.s 105 Z@l 

.s 104 Z@1 

.S 103 Z@l 

.S 102 Z@l 

.s 101 Z@l 

.S 100 Z@l 

I'AC10D0· Application Note 012 

1@1l9 0@l26 1@133 Z@140 0@193 1@200 0@207 1@2l4 
0@1l9 1@126 0@133 Z@140 1@193 0@200 1@207 0@214 
1@1l9 0@126 1@133 Z@140 1@193 0@200 1@207 0@214 
0@1l9 1@126 0@133 Z@140 0@193 1@200 0@207 1@214 
1@1l9 0@126 1@133 Z@140 0@193 1@200 0@207 1@214 
0@1l9 1@126 0@133 Z@140 1@193 0@200 1@207 0@214 
1@1l9 0@126 1@133 Z@140 1@193 0@200 1@207 0@214 
0@1l9 1@126 0@133 Z@140 0@193 1@200 0@207 1@214 
0@1l9 1@126 0@133 Z@140 1@193 0@200 1@207 0@214 
1@1l9 0@126 1@133 Z@140 0@193 1@200 0@207 1@214 
0@1l9 1@126 0@133 Z@140 0@193 1@200 0@207 1@214 
1@1l9 0@126 1@133 Z@140 1@193 0@200 1@207 0@214 
0@1l9 1@126 0@133 Z@140 1@193 0@200 1@207 0@214 
1@1l9 0@126 1@133 Z@140 0@193 1@200 0@207 1@214 
0@1l9 1@126 0@133 Z@140 0@193 1@200 0@207 1@214 
1@1l9 0@126 1@133 Z@140 1@193 0@200 1@207 0@214 

-----------------------------------ru.-~-----------------------------------1"" ... 
.,.-~. 

4·127 

• 



PAC11J1O • ApplicatiDn IIDts 012 

Appendix 3. 
Command File 
Example 

/*This is a command file used for batch simulation*/ 

open journal dpmtst 
open stimulus dpmtst 
set trace PC 
set trace CPC 
set trace LC 
set trace Z 
set trace lOR 
set trace IO 
set trace OC 
set trace HDIR 
set trace HDOR 
set trace HD 
set trace ACH 
set trace ADD 
set trace ACL 
set trace HAD 
set trace RlO 

open trace dpmtst 

---------------------------------------fJrjf~~-------------------------------------­
itir.IIf __ 

4-128 



PAC101JD· Application Note 012 

Appendix 4. 
Simulation 
Results 

******************************************************************************** 

OUT PUT TAB L E 

PAC S I M Ver. 3.00b Wed Sep 05 10:52:57 1990 
**********************************************************.********************* 

PPP eec LLL Z II II 0000 HHHH HHHH HHHH AAAA AAAA AA HH RRRR 
eec PPP ece 00 00 ecce DODD DODD DODD ecce DODD cc AA 1111 
173 cec 173 RR 73 1173 IIII 0000 1173 HHHH DODD LL DD 0000 
1: : 173 1: : 73 : : 51:: RRRR RRRR 51: : 1173 1173 53 53 
:40 1:: :40 .. 40 : :40 1173 1173 : :40 51:: 51: : : : : : 1173 
8 :40 8 40 18 51:: 51: : 18 : :40 ::40 40 40 51:: 

8 2 : : 40 :: 40 2 18 18 : : 40 
18 18 2 2 18 
2 2 2 

TIME 
1 000 000 000 0 00 zz 0000 0000 0000 0000 0000 zzzz 00 zz 0000 
2 000 000 000 0 00 zz 0000 0000 0000 0000 0000 zzzz 00 zz 0000 
3 010 000 000 1 00 ZZ ffff 0000 0000 0000 0000 zzzz 00 zz 0000 
4 011 010 000 1 00 ZZ ffff 0000 0000 0000 0000 0000 00 00 0000 
5 012 011 000 1 00 ZZ ifff 0000 0000 0000 0000 0000 00 00 0000 
6 013 012 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
7 014 013 000 1 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
8 015 014 000 0 ff if ffff 0000 0000 0000 0000 0000 00 00 0000 • 9 016 015 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 

10 017 016 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
11 018 017 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
12 019 018 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
13 01a 019 000 0 ff ff ifff 0000 0000 0000 0000 0000 00 00 0000 
14 01b 01a 000 0 ff ff ifff 0000 0000 0000 0000 0000 00 00 0000 
15 Ole 01b 000 0 ff ff ffif 0000 0000 0000 0000 0000 00 00 0000 
16 Old Ole 000 0 ff ff ifff 0000 0000 0000 0000 0000 00 00 0000 
17 Ole Old 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
18 Olf Ole 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
19 020 Olf 000 0 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
20 021 020 000 0 ff ff ifff 0000 0000 0000 0000 0000 00 00 0000 
21 022 021 000 1 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
22 023 022 000 0 ff if ffff 0000 0000 0000 0000 0000 00 00 0000 
23 024 023 000 1 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
24 025 024 001 1 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
25 026 025 001 1 ff ff ffff 0000 0000 0000 0000 0000 00 00 0000 
26 027 026 005 1 ff ff OOff 0000 0000 0000 0000 0000 00 00 0000 
27 060 027 005 1 ff ff OOff 0000 0000 0000 0000 0000 00 00 0000 
28 029 060 005 o bf bf OOff 0000 0000 0000 0000 0000 00 00 0000 
29 02a 029 005 o bf bf OOff 0000 aa55 aa55 0000 0000 00 00 0000 
30 026 02a 005 o ff ff ffff 0000 aa55 aa55 0000 0000 00 00 0000 
31 027 026 004 o ff ff OOff 0000 aa55 aa55 0000 0000 01 01 0000 
32 028 027 004 o ff ff OOff 0000 aa55 aa55 0000 0000 01 01 0000 
33 029 028 004 o bf bf OOff 0000 aa55 aa55 0000 0000 01 01 0000 
34 02a 029 004 o bf bf OOff 0000 55aa 55aa 0000 0000 01 01 0000 
35 026 02a 004 o ff ff ffff 0000 55aa 55aa 0000 0000 01 01 0000 
36 027 026 003 o ff ff OOff 0000 55aa 55aa 0000 0000 02 02 0000 
37 060 027 003 1 ff ff OOff 0000 55aa 55aa 0000 0000 02 02 0000 

rule; 
4·129 

~~~~~~~~~~-~-~~-~-~~~-. ~--~ 


PAC1/J1JO· Application Note 012

Appendix 4.
Simulation
Results
(Cont.)

38 029 060 003 o bf bf OOff 0000 55aa 55aa 0000 0000 02 02 0000
39 02a 029 003 o bf bf OOff 0000 aa55 aa55 0000 0000 02 02 0000
40 026 02a 003 o ff ff ffff 0000 aa55 aa55 0000 0000 02 02 0000
41 027 026 002 o ff ff OOff 0000 aa55 aa55 0000 0000 03 03 0000
42 028 027 002 o ff ff OOff 0000 aa55 aa55 0000 0000 03 03 0000
43 029 028 002 o bf bf OOff 0000 aa55 aa55 0000 0000 03 03 0000
44 02a 029 002 o bf bf OOff 0000 55aa 55aa 0000 0000 03 03 0000
45 026 02a 002 o ff ff ffff 0000 55aa 55aa 0000 0000 03 03 0000
46 027 026 001 o ff ff OOff 0000 55aa 55aa 0000 0000 04 04 0000
47 060 027 001 1 ff ff OOff 0000 55aa 55aa 0000 0000 04 04 0000
48 029 060 001 o bf bf OOff 0000 55aa 55aa 0000 0000 04 04 0000
49 02a 029 001 o bf bf OOff 0000 aa55 aa55 0000 0000 04 04 0000
50 026 02a 001 0 ff ff ffff 0000 aa55 aa55 0000 0000 04 04 0000
51 027 026 000 0 ff ff OOff 0000 aa55 aa55 0000 0000 05 05 0000
52 028 027 000 0 ff ff OOff 0000 aa55 aa55 0000 0000 05 05 0000
53 029 028 000 0 bf bf OOff 0000 aa55 aa55 0000 0000 05 05 0000
54 02a 029 000 0 bf bf OOff 0000 55aa 55aa 0000 0000 05 05 0000
55 02b 02a 000 0 ff ff ffff 0000 55aa 55aa 0000 0000 05 05 0000
56 02c 02b 000 0 ff ff ffff 0000 55aa 55aa 0000 0000 06 06 0000
57 025 02c 001 0 ff ff ffff 0000 55aa 55aa 0001 0001 06 06 0000
58 026 025 000 1 ff ff ffff 0000 55aa 55aa 0001 0001 06 06 0000
59 027 026 005 1 ff ff OOff 0000 55aa 55aa 0001 0001 06 06 0000
60 060 027 005 1 ff ff OOff 0000 55aa 55aa 0001 0001 06 06 0000
61 029 060 005 0 bf bf OOff 0000 55aa 55aa 0001 0001 06 06 0000
62 02a 029 005 0 bf bf OOff 0000 aa55 aa55 0001 0001 06 06 0000
63 026 02a 005 0 ff ff ffff 0000 aa55 aa55 0001 0001 06 06 0000
64 027 026 004 0 ff ff OOff 0000 aa55 aa55 0001 0001 07 07 0000
65 028 027 004 0 ff ff OOff 0000 aa55 aa55 0001 0001 07 07 0000
66 029 028 004 0 bf bf OOff 0000 aa55 aa55 0001 0001 07 07 0000
67 02a 029 004 0 bf bf OOff 0000 55aa 55aa 0001 0001 07 07 0000
68 026 02a 004 0 ff ff ffff 0000 55aa 55aa 0001 0001 07 07 0000
69 027 026 003 0 ff ff OOff 0000 55aa 55aa 0001 0001 08 08 0000
70 060 027 003 1 ff ff OOff 0000 55aa 55aa 0001 0001 08 08 0000
71 029 060 003 0 bf bf OOff 0000 55aa 55aa 0001 0001 08 08 0000
72 02a 029 003 0 bf bf OOff 0000 aa55 aa55 0001 0001 08 08 0000
73 026 02a 003 0 ff ff ffff 0000 aa55 aa55 0001 0001 08 08 0000
74 027 026 002 0 ff ff OOff 0000 aa55 aa55 0001 0001 09 09 0000
75 028 027 002 0 ff ff OOff 0000 aa55 aa55 0001 0001 09 09 0000
76 029 028 002 0 bf bf OOff 0000 aa55 aa55 0001 0001 09 09 0000
77 02a 029 002 0 bf bf OOff 0000 55aa 55aa 0001 0001 09 09 0000
78 026 02a 002 0 ff ff ffff 0000 55aa 55aa 0001 0001 09 09 0000
79 027 026 001 0 ff ff OOff 0000 55aa 55aa 0001 0001 Oa Oa 0000
80 060 027 001 1 ff ff OOff 0000 55aa 55aa 0001 0001 Oa Oa 0000
81 029 060 001 0 bf bf OOff 0000 55aa 55aa 0001 0001 Oa Oa 0000
82 02a 029 001 0 bf bf OOff 0000 aa55 aa55 0001 0001 Oa Oa 0000
83 026 02a 001 0 ff ff ffff 0000 aa55 aa55 0001 0001 Oa Oa 0000
84 027 026 000 0 ff ff OOff 0000 aa55 aa55 0001 0001 Ob Ob 0000
85 028 027 000 0 ff ff OOff 0000 aa55 aa55 0001 0001 Ob Ob 0000
86 029 028 000 0 bf bf OOff 0000 aa55 aa55 0001 0001 Ob Ob 0000
87 02a 029 000 0 bf bf OOff 0000 55aa 55aa 0001 0001 Ob Ob 0000
88 02b 02a 000 0 ff ff ffff 0000 55aa 55aa 0001 0001 Ob Ob 0000
89 02c 02b 000 0 ff ff ffff 0000 55aa 55aa 0001 0001 Oc Oc 0000
90 02d 02c 000 0 ff ff ffff 0000 55aa 55aa 0002 0002 Oc Oc 0000
91 02e 02d 000 1 ff ff ffff 0000 55aa 55aa 0002 0002 Oc Oc 0000
92 02f 02e 000 1 ff ff ffff 0000 55aa 55aa 0002 0002 00 00 0000

4·130
rIll:
~!!E=

PAC1000· Application Note 012

Appendix 4.
Simulation
Results
(Cont.)

93 030 02f 000 1 ff ff ffff 55aa 55aa 55aa 0000 0000 00 00 0000
94 031 030 001 1 ff ff ffff 55aa 55aa 55aa 0000 0000 00 00 0000
95 032 031 002 1 ff ff feff 55aa 55aa 55aa 0000 0000 00 00 0000
96 033 032 002 0 ef ef feff 55aa 55aa 55aa 0000 0000 00 00 0000
97 034 033 002 0 ef ef feff 55aa 55aa 55aa 0000 0000 00 00 55aa
98 063 034 002 1 ef ef ffff 55aa 55aa 55aa 0000 0000 00 00 55aa
99 036 063 002 o ff ff ffff 55aa 55aa 55aa 0000 0000 00 00 55aa

100 037 036 002 o ff ff ffff 55aa 55aa 55aa 0000 0000 00 00 55aa
101 031 037 002 1 ff ff ffff 55aa 55aa 55aa 0000 0000 00 00 55aa
102 032 031 001 o ff ff feff 55aa 55aa aa55 0000 0000 01 01 55aa
103 033 032 001 0 ef ef feff aa55 55aa aa55 0000 0000 01 01 55aa
104 034 033 001 0 ef ef feff aa55 55aa aa55 0000 0000 01 01 aa55
105 035 034 001 0 ef ef ffff aa55 55aa aa55 0000 0000 01 01 aa55
106 036 035 001 0 ff ff ffff aa55 55aa aa55 0000 0000 01 01 aa55
107 037 036 001 0 ff ff ffff aa55 55aa aa55 0000 0000 01 01 aa55
108 031 037 001 1 ff ff ffff aa55 55aa aa55 0000 0000 01 01 aa55
109 032 031 000 0 ff ff feff aa55 55aa 55aa 0000 0000 02 02 aa55
110 033 032 000 0 ef ef feff 55aa 55aa 55aa 0000 0000 02 02 aa55
111 034 033 000 0 ef ef feff 55aa 55aa 55aa 0000 0000 02 02 55aa
112 063 034 000 1 ef ef ffff 55aa 55aa 55aa 0000 0000 02 02 55aa
113 036 063 000 o ff ff ffff 55aa 55aa 55aa 0000 0000 02 02 55aa
114 037 036 000 o ff ff ffff 55aa 55aa 55aa 0000 0000 02 02 55aa
115 038 037 000 1 ff ff ffff 55aa 55aa 55aa 0000 0000 02 02 55aa
116 039 038 000 o ff ff ffff 55aa 55aa 55aa 0000 0000 03 03 55aa
117 030 039 001 o ff ff ffff 55aa 55aa 55aa 0001 0001 03 03 55aa • 118 031 030 000 1 ff ff ffff 55aa 55aa 55aa 0001 0001 03 03 55aa
119 032 031 002 1 ff ff feff 55aa 55aa aa55 0001 0001 03 03 55aa
120 033 032 002 0 ef ef feff aa55 55aa aa55 0001 0001 03 03 55aa
121 034 033 002 0 ef ef feff aa55 5Saa aa55 0001 0001 03 03 aa55
122 035 034 002 o ef ef ffff aa55 55aa aa55 0001 0001 03 03 aa55
123 036 035 002 o ff ff ffff aa55 55aa aa55 0001 0001 03 03 aa55
124 037 036 002 o ff ff ffff aa55 55aa aa55 0001 0001 03 03 aa55
125 031 037 002 1 ff ff ffff aa55 55aa aa55 0001 0001 03 03 aa55
126 032 031 001 0 ff ff feff aa55 55aa 55aa 0001 0001 04 04 aa55
127 033 032 001 0 ef ef feff 55aa 55aa 55aa 0001 0001 04 04 aa55
128 034 033 001 0 ef ef feff 55aa 55aa 55aa 0001 0001 04 04 55aa
129 063 034 001 1 ef ef ffff 55aa 55aa 55aa 0001 0001 04 04 55aa
130 036 063 001 0 ff ff ffff 55aa 5Saa 55aa 0001 0001 04 04 55aa
131 037 036 001 0 ff ff ffff 55aa 55aa 55aa 0001 0001 04 04 55aa
132 031 037 001 1 ff ff ffff 55aa 55aa 55aa 0001 0001 04 04 55aa
133 032 031 000 0 ff ff feff 55aa 55aa aa55 0001 0001 05 05 55aa
134 033 032 000 0 ef ef feff aa55 55aa aa55 0001 0001 05 05 55aa
135 034 033 000 0 ef ef feff aa55 55aa aa55 0001 0001 05 05 aa55
136 035 034 000 0 ef ef ffff aa55 55aa aa55 0001 0001 05 05 aa55
137 036 035 000 0 ff ff ffff aa55 55aa aa55 0001 0001 05 05 aa55
138 037 036 000 0 ff ff ffff aa55 55aa aa55 0001 0001 05 05 aa55
139 038 037 000 1 ff ff ffff aa55 55aa aa55 0001 0001 05 05 aa55
140 039 038 000 0 ff ff ffff aa55 55aa ZZZZ 0001 0001 06 06 aa55
141 03a 039 000 0 ff ff ffff aa55 55aa ZZZZ 0002 0002 06 06 aa55
142 03b 03a 000 1 ff ff ffff aa55 55aa 55aa 0002 0002 06 06 aa55
143 030 03b 000 1 ff ff ffff 55aa 55aa 55aa 0000 0000 06 06 aa55
144 03d 030 008 1 ff ff ffff 55aa 55aa 55aa 0000 0000 06 06 aa55
145 03e 03d 008 1 ff ff ffOO 55aa 55aa 55aa 0000 0000 00 00 aa55
146 061 03e 008 1 ff ff ffOO 55aa, 55aa 55aa 0000 0000 00 00 aa55
147 040 061 008 0 7f 7f ffOO 55aa 55aa 55aa 0000 0000 00 00 aa55

rE===~
4-131

PAC1_ - Application /lore 012

Appendix 4.
Simulation
Results
(Cont.)

148 041 040 008 0 7f 7f ffOO 55aa 9966 9966 0000 0000 00 00 aa55
149 03d 041 008 0 ff ff ffff 55aa 9966 9966 0000 0000 00 00 aa55
150 03e 03d 007 0 ff ff ffOO 55aa 9966 9966 0020 0020 00 00 aa55
151 03f 03e 007 0 ff ff ffOO 55aa 9966 9966 0020 0020 00 00 aa55
152 040 03f 007 0 7f 7f ffOO 55aa 9966 9966 0020 0020 00 00 aa55
153 041 040 007 0 7f 7f ffOO 55aa 6699 6699 0020 0020 00 00 aa55
154 03d 041 007 0 ff ff ffff 55aa 6699 6699 0020 0020 00 00 aa55
155 03e 03d 006 0 ff ff ffOO 55aa 6699 6699 0040 0040 00 00 aa55
156 061 03e 006 1 ff ff ffOO 55aa 6699 6699 0040 0040 00 00 aa55
157 040 061 006 0 7f 7f ffOO 55aa 6699 6699 0040 0040 00 00 aa55
158 041 040 006 0 7f 7f ffOO 55aa 9966 9966 0040 0040 00 00 aa55
159 03d 041 006 0 ff ff ffff 55aa 9966 9966 0040 0040 00 00 aa55
160 03e 03d 005 0 ff ff ffOO 55aa 9966 9966 0060 0060 00 00 aa55
161 03f 03e 005 0 ff ff ffOO 55aa 9966 9966 0060 0060 00 00 aa55
162 040 03f 005 0 7f 7f ffOO 55aa 9966 9966 0060 0060 00 00 aa55
163 041 040 005 0 7f 7f ffOO 55aa 6699 6699 0060 0060 00 00 aa55
164 03d 041 005 0 ff ff ffff 55aa 6699 6699 0060 0060 00 00 aa55
165 03e 03d 004 0 ff ff ffOO 55aa 6699 6699 0080 0080 00 00 aa55
166 061 03e 004 1 ff ff ffOO 55aa 6699 6699 0080 0080 00 00 aa55
167 040 061 004 0 7f 7f ffOO 55aa 6699 6699 0080 0080 00 00 aa55
168 041 040 004 0 7f 7f ffOO 55aa 9966 9966 0080 0080 00 00 aa55
169 03d 041 004 0 ff ff ffff 55aa 9966 9966 0080 0080 00 00 aa55
170 03e 03d 003 0 ff ff ffOO 55aa 9966 9966 OOaO OOaO 00 00 aa55
171 03f 03e 003 0 ff ff ffOO 55aa 9966 9966 OOaO OOaO 00 00 aa55
172 040 03f 003 0 7f 7f ffOO 55aa 9966 9966 OOaO OOaO 00 00 aa55
173 041 040 003 0 7f 7f ffOO 55aa 6699 6699 OOaO OOaO 00 00 aa55
174 03d 041 003 0 ff ff ffff 55aa 6699 6699 OOaO OOaO 00 00 aa55
175 03e 03d 002 0 ff ff ffOO 55aa 6699 6699 OOcO OOcO 00 00 aa55
176 061 03e 002 1 ff ff ffOO 55aa 6699 6699 OOcO OOcO 00 00 aa55
177 040 061 002 0 7f 7f ffOO 55aa 6699 6699 OOcO OOcO 00 00 aa55
178 041 040 002 0 7f 7f ffOO 55aa 9966 9966 OOcO OOcO 00 00 aa55
179 03d 041 002 o ff ff ffff 55aa 9966 9966 OOcO OOcO 00 00 aa55
180 03e 03d 001 o ff ff ffOO 55aa 9966 9966 OOeO OOeO 00 00 aa55
181 03f 03e 001 0 ff ff ffOO 55aa 9966 9966 OOeO OOeO 00 00 aa55
182 040 03f 001 0 7f 7f ffOO 55aa 9966 9966 OOeO OOeO 00 00 aa55
183 041 040 001 0 7f 7f ffOO 55aa 6699 6699 OOeO OOeO 00 00 aa55
184 03d 041 001 0 ff ff ffff 55aa 6699 6699 OOeO OOeO 00 00 aa55
185 03e 03d 000 0 ff ff ffOO 55aa 6699 6699 0100 0100 00 00 aa55
186 061 03e 000 1 ff ff ffOO 55aa 6699 6699 0100 0100 00 00 aa55
187 040 061 000 0 7f 7f ffOO 55aa 6699 6699 0100 0100 00 00 aa55
188 041 040 000 0 7f 7f ffOO 55aa 9966 9966 0100 0100 00 00 aa55
189 042 041 000 0 ff ff ffff 55aa 9966 9966 0100 0100 00 00 aa55
190 043 042 000 0 ff ff ffff 55aa 9966 ZZZZ 0120 0120 00 00 aa55
191 044 043 000 1 ff ff ffff 55aa 9966 ZZZZ 0120 0120 00 00 aa55
192 045 044 000 1 ff ff ffff 9966 9966 ZZZZ 0000 0000 00 00 aa55
193 046 045 003 1 ff ff fffe 9966 9966 6699 0000 0000 00 00 aa55
194 047 046 003 0 df df fffe 6699 9966 6699 0000 0000 00 00 aa55
195 048 047 003 0 df df fffe 6699 9966 6699 0000 0000 00 00 6699
196 064 048 003 1 df df ffff 6699 9966 6699 0000 0000 00 00 6699
197 04a 064 003 0 ff ff ffff 6699 9966 6699 0000 0000 00 00 6699
198 04b 04a 003 0 ff ff ffff 6699 9966 6699 0000 0000 00 00 6699
199 045 04b 003 1 ff ff ffff 6699 9966 6699 0000 0000 00 00 6699
200 046 045 002 0 ff ff fffe 6699 9966 9966 0020 0020 00 00 6699
201 047 046 002 0 df df fffe 9966 9966 9966 0020 0020 00 00 6699
202 048 047 002 0 df df fffe 9966 9966 9966 0020 0020 00 00 9966

' •• ii'=
4-132 """I

PAC11JOO • Application Note 012

Appendix 4.
Simulation
Results
(Cont.)

203 049 048 002 o df df ffff 9966 9966 9966 0020 0020 00 00 9966
204 04& 049 002 o ff ff ffff 9966 9966 9966 0020 0020 00 00 9966
205 04b 04& 002 o ff ff ffff 9966 9966 9966 0020 0020 00 00 9966
206 045 04b 002 1 ff ff ffff 9966 9966 9966 0020 0020 00 00 9966
207 046 045 001 o ff ff fffe 9966 9966 6699 0040 0040 00 00 9966
208 047 046 001 o df df fffe 6699 9966 6699 0040 0040 00 00 9966
209 048 047 001 o df df fffe 6699 9966 6699 0040 0040 00 00 6699
210 064 048 001 1 df df ffff 6699 9966 6699 0040 0040 00 00 6699
211 04& 064 001 o ff ff ffff 6699 9966 6699 0040 0040 00 00 6699
212 04b 04& 001 o ff ff ffff 6699 9966 6699 0040 0040 00 00 6699
213 045 04b 001 1 ff ff ffff 6699 9966 6699 0040 0040 00 00 6699
214 046 045 000 0 ff ff fffe 6699 9966 9966 0060 0060 00 00 6699
215 047 046 000 0 df df fffe 9966 9966 9966 0060 0060 00 00 6699
216 048 047 000 0 df df fffe 9966 9966 9966 0060 0060 00 00 9966
217 049 048 000 0 df df ffff 9966 9966 9966 0060 0060 00 00 9966
218 04& 049 000 0 ff ff ffff 9966 9966 9966 0060 0060 00 00 9966
219 04b 04a 000 0 ff ff ffff 9966 9966 9966 0060 0060 00 00 9966
220 04e 04b 000 1 ff ff ffff 9966 9966 9966 0060 0060 00 00 9966
221 04d 04e 000 0 ff ff ffff 9966 9966 9966 0080 0080 00 00 9966
222 04e 04d 000 1 ff ff ffff 9966 9966 9966 0000 0000 00 00 9966
223 04f 04e 000 1 ff ff ffff 9966 9966 9966 0000 0000 00 00 9966
224 050 04f 001 1 ff ff ffff 9966 9966 9966 0000 0000 00 00 9966
225 051 050 002 1 ff ff feff 9966 9966 UUUU 0000 0000 00 00 9966
226 062 051 002 1 ff ff feff 9966 9966 9966 0000 0000 00 00 9966
227 053 062 002 0 bf bf feff 9966 9966 9966 0000 0000 00 00 9966 • 228 054 053 002 0 bf bf feff 9966 ee33 ee33 0000 0000 00 00 9966
229 055 054 002 0 ff ff ffff 9966 ee33 zzzz 0000 0000 00 00 9966
230 056 055 002 1 ff ff ffff 9966 ee33 ZZZZ 0000 0000 00 00 9966
231 057 056 002 1 ff ff fffe ee33 ee33 33ee 0000 0000 00 00 9966
232 058 057 002 0 df df fffe 33ee ee33 33ee 0000 0000 00 00 9966
233 059 058 002 0 df df fffe 33ee ee33 33ee 0000 0000 00 00 33ee
234 065 059 002 1 df df ffff 33ee ee33 33ee 0000 0000 00 00 33ee
235 05b 065 002 0 ff ff ffff 33ee ee33 33ee 0000 0000 00 00 33ee
236 05e 05b 002 0 ff ff ffff 33ee ee33 33ee 0000 0000 00 00 33ee
237 050 05e 002 0 ff ff ffff 33ee ee33 33ee 0020 0020 00 00 33ee
238 051 050 001 0 ff ff feff 33ee ee33 33ee 0020 0020 01 01 33ee
239 052 051 001 0 ff ff feff 33ee ee33 ZZZZ 0020 0020 01 01 33ee
240 053 052 001 0 bf bf feff 33ee ee33 ZZZZ 0020 0020 01 01 33ee
241 054 053 001 0 bf bf feff 33ee 33ee ZZZZ 0020 0020 01 01 33ee
242 055 054 001 0 ff ff ffff 33ee 33ee ZZZZ 0020 0020 01 01 33ee
243 056 055 001 1 ff ff ffff 33ee 33ee ZZZZ 0020 0020 01 01 33ee
244 057 056 001 1 ff ff fffe 33ee 33ee ee33 0020 0020 01 01 33ee
245 058 057 001 0 df df fffe ee33 33ee ee33 0020 0020 01 01 33ee
246 059 058 001 0 df df fffe ee33 33ee ee33 0020 0020 01 01 ee33
247 05a 059 001 0 df df ffff ee33 33ee ee33 0020 0020 01 01 ee33
248 05b 05a 001 0 ff ff ffff ee33 33ee ee33 0020 0020 01 01 ee33
249 05e 05b 001 0 ff ff ffff ee33 33ee ee33 0020 0020 01 01 ee33
250 050 05e 001 0 ff ff ffff ee33 33ee ee33 0040 0040 01 01 ee33
251 051 050 000 0 ff ff feff ee33 33ee ee33 0040 0040 02 02 ee33
252 062 051 000 1 ff ff feff ee33 33ee ZZZZ 0040 0040 02 02 ee33
253 053 062 000 0 bf bf feff ee33 33ee ZZZZ 0040 0040 02 02 ee33
254 054 053 000 0 bf bf feff ee33 ee33 ZZZZ 0040 0040 02 02 ee33
255 055 054 000 0 ff ff ffff ee33 ee33 ZZZZ 0040 0040 02 02 ee33
256 056 055 000 1 ff ff ffff ee33 ee33 ZZZZ 0040 0040 02 02 ee33
257 057 056 000 1 ff ff fffe ee33 ee33 33ee 0040 0040 02 02 ee33

!FEESE

~II
4·133

-------- ---

PAC11lDO - Application IItJfe 012

Appendix 4.
Simulation
Results
(Cont.)

258 058 057 000 0 df df fffa 33ee ee33 33ee 0040 0040 02 02 ee33
259 059 058 000 0 df df fffa 33ee ee33 33ee 0040 0040 02 02 33ee
260 065 059 000 1 df df ffff 33ee ee33 33ee 0040 0040 02 02 33ee
261 05b 065 000 0 ff ff ffff 33ee ee33 33ee 0040 0040 02 02 33ee
262 05e 05b 000 0 ff ff ffff 33ee ee33 33ee 0040 0040 02 02 33ee
263 05d 05e 000 0 ff ff ffff 33ee ee33 33ee 0060 0060 02 02 33ee
264 05a 05d 000 0 ff ff ffff 33ee ee33 33ee 0060 0060 03 03 33ee
265 04f 05a 001 0 ff ff ffff 33ee ee33 33ee 0061 0061 03 03 33ee
266 050 04f 000 1 ff ff ffff 33ee ee33 33ee 0061 0061 03 03 33ee
267 051 050 002 1 ff ff faff 33ee ee33 33ee 0061 0061 03 03 33ee
268 052 051 002 0 ff ff feff 33ee ee33 ZZZZ 0061 0061 03 03 33ee
269 053 052 002 0 bf bf faff 33ee ee33 ZZZZ 0061 0061 03 03 33ee
270 054 053 002 0 bf bf feff 33ee 33ee ZZZZ 0061 0061 03 03 33ee
271 055 054 002 0 ff ff ffff 33ee 33ee ZZZZ 0061 0061 03 03 33ee
272 056 055 002 1 ff ff ffff 33ee 33ee ZZZZ 0061 0061 03 03 33ee
273 057 056 002 1 ff ff fffa 33ee 33ee ee33 0061 0061 03 03 33ee
274 058 057 002 0 df df fffa ee33 33ee ee33 0061 0061 03 03 33ee
275 059 058 002 0 df df fffa ee33 33ee ee33 0061 0061 03 03 ee33
276 05a 059 002 0 df df ffff ee33 33ee ee33 0061 0061 03 03 ee33
277 05b 05a 002 0 ff ff ffff ee33 33ee ee33 0061 0061 03 03 ee33
278 05e 05b 002 0 ff ff ffff ee33 33ee ee33 0061 0061 03 03 ee33

)
279 050 05e 002 0 ff ff ffff ee33 33ee ee33 0081 0081 03 03 ee33
280 051 050 001 0 ff ff feff ee33 33ee ee33 0081 0081 04 04 ee33
281 062 051 001 1 ff ff feff ee33 33ee ZZZZ 0081 0081 04 04 ee33
282 053 062 001 0 bf bf feff ee33 33ee ZZZZ 0081 0081 04 04 ee33
283 054 053 001 0 bf bf faff ee33 ee33 ZZZZ 0081 0081 04 04 ee33
284 055 054 001 0 ff ff ffff ee33 ee33 ZZZZ 0081 0081 04 04 ee33
285 056 055 001 1 ff ff ffff ee33 ee33 ZZZZ 0081 0081 04 04 ee33
286 057 056 001 1 ff ff fffe ee33 ee33 33ed 0081 0081 04 04 ee33
287 058 057 001 0 df df fffe 33ed ee33 33ed 0081 0081 04 04 ee33
288 059 058 001 0 df df fffa 33ed ee33 33ed 0081 0081 04 04 33ed
289 065 059 001 1 df df ffff 33ed ee33 33ed 0081 0081 04 04 33ed
290 05b 065 001 0 ff ff ffff 33ed ee33 33ed 0081 0081 04 04 33ed
291 05e 05b 001 0 ff ff ffff 33ed ee33 33ed 0081 0081 04 04 33ed
292 050 05e 001 0 ff ff ffff 33ed ee33 33ed 00a1 00a1 04 04 33ed
293 051 050 000 0 ff ff feff 33ed ee33 33ed 00a1 00a1 05 05 33ed
294 052 051 000 0 ff ff faff 33ed ee33 ZZZZ 00a1 OOal 05 05 33ed
295 053 052 000 0 bf bf faff 33ed ee33 ZZZZ OOal OOal 05 05 33ed
296 054 053 000 0 bf bf faff 33ed 33ee ZZZZ OOal 00a1 05 05 33ed
297 055 054 000 0 ff ff ffff 33ed 33ee ZZZZ 00a1 00a1 05 05 33ed
298 056 055 000 1 ff ff ffff 33ed 33ee ZZZZ OOal 00a1 05 05 33ed
299 057 056 000 1 ff ff fffe 33ed 33ee ee33 00a1 00a1 05 05 33ed
300 058 057 000 0 df df fffa ee33 33ee ee33 00a1 OOal 05 05 33ed
301 059 058 000 0 df df fffa ee33 33ee ee33 00a1 OOal 05 05 ee33
302 05a 059 000 0 df df ffff ee33 33ee ee33 00a1 OOal 05 05 ee33
303 05b 05a 000 0 ff ff ffff ee33 33ee ee33 00a1 00a1 05 05 ee33
304 05e 05b 000 0 ff ff ffff ee33 33ee ee33 OOal OOal 05 05 ee33
305 05d 05e 000 0 ff ff ffff ee33 33ee ee33 00e1 00e1 05 05 ee33
306 05e 05d 000 0 ff ff ffff ee33 33ee ee33 OOel OOel 06 06 ee33
307 05f 05a 000 0 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
308 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
309 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
310 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
311 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
312 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33

rn.,;
4-134 --~~ ..

-----~.

PACt_ • Appllt:atlml """, 012

Appendix 4.
Simulation
RllSlllts
(Cont.)

313 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
314 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
31S OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
316 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
317 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
318 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
319 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
320 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
321 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
322 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
323 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
324 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
32S OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
326 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
327 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
328 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
329 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
330 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
331 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
332 OSf 05f 000 1 ft ft ffft ee33 33ee ee33 00e2 00e2 06 06 ee33
333 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
334 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
33S OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
336 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
337 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33 • 338 OSf 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
339 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
340 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
341 OSf 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
342 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
343 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
344 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
345 05f Ost 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
346 OSf 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
347 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
348 OSf 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
349 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
350 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3S1 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
352 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
353 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3S4 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3SS OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3S6 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3S7 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3S8 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
3S9 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
360 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
361 05f OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
362 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
363 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
364 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
365 05f 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
366 OSf 05f 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33
367 OSf OSf 000 1 ff ff ffff ee33 33ee ee33 00e2 00e2 06 06 ee33

WI;
4-135

--------------- ---- ----------

PAC1DOD • ApplicatiDn NDte 012

Appendix 4.
Simulation
Results
(Cont.)

368 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
369 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
370 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
371 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
372 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
373 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
374 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
37S OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
376 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
377 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
378 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
379 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
380 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
381 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
382 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 oc33
383 OSf OSf 000 1 ff ff ffff c033 33cc cc33 00c2 00c2 06 06 cc33
384 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 0002 00c2 06 06 cc33
38S OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
386 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 0002 00c2 06 06 cc33
387 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 0002 00c2 06 06 cc33
388 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
389 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 0002 00c2 06 06 cc33
390 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 oc33
391 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
392 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
393 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 oc33
394 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
39S OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
396 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 0002 06 06 oc33
397 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
398 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 0002 00c2 06 06 oc33
399 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
400 OSf OSf 000 1 ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 oc33

-------------------------------------~~~------------------------------------
4-136

Development Systems •

Development
Systems

Section Index

Electronic Bulletin Board ""5-1

PAC1000 Gold/Silver Development System ""5-3

WS6000 MagicPro™ Memory and Programmable Peripheral Programmer""""""""""""""""""""""""5-7

For additional information,
call BOO-TEAM-WSI (BOO-B32-6974J.

In California, Call Boo-562-6363.

=:=~ ~~ =-w--= =:--.. ---r ~~_ ------

Bulletin
Board

Access Line

Main Commands

Programmable Peripheral
Electronic Bulletin Board

WSI provides a 24-hour electronic bulletin
board system that provides the user with
the latest informallon on software updates,
enhancements, and applications relating to
WSI products. In addition, users
developing applications software for WSI
products can send porllons of their code
to WSI for application's consultation if desired.

To access the bulletin board, dial

(510} 498·1002

and wait for the modem tone. When your
modem establishes a connection, enter
<return> <return> to signal the bulletin
board software. The board should respond:

WSI Customer Engineering Support
Electronic Bulletin Board Service

M)sg·Section
Choose this option to leave messages.

F)ile-Section
Choose this option to download or upload
data files and/or utility programs

B)ulletins
Choose thiS option to see the latest
Important news such as software versions
and programming tips for WSI Memory
and PSD products.

S)tatistics
This option describes the current bulletin
board statistics

C)hange
Choose this option to change operational
settings that the bulletin board maintains
for your user name.

P)age-Operator
Choose this to page the operator for
assistance. It IS not likely that the operator
will be available during West Coast U.S.
non-business hours.

The follOWing hardware is required to use
the WSI bulletin board:

Q Computer Terminal

Q 300, 1200, 2400 Baud Modem

Q 8 Data Bits

Q No Parity

Q 1 Stop Bit

followed by some other messages, after
which you will be asked for your name,
and a password. Upon initial use, follow
the on-screen prompts for establishing
your password.

Now that you have entered the bulletin
board service, you will be given a choice
of "MAIN" commands:

L)ist·Callers
Choose this option to see who else is
uSing the board at thiS moment.

A)ns-Questionnaire
Choose this option to answer a user
profile questionnaire.

V)ersion
DesCribes the board software version.

G)oodbye
Choose this to leave the bulletin board.

See the individual software manuals for
more detailed explanation and usage of
the bulletin board.

---------------------------------------f===~--------------------------------------
==",=,~E 5-1

•

:~--------------------------------.-~~§ 5-2 WI'--------------

Description

PACSEL

PACSIM

PACPRO

IMPACT

Programmable Peripheral
PAC1DDD-Gold/Silver
Development System

PAC1000-GOLD/PAC1000-SILVER is a
complete set of IBM-PC-based development
tools. They provide the integrated easy-to­
use environment to support the PAC1000
program development and device
programming.

PACSEL IS the PAC1000 system entry
language. It has the following features:

r:J Enables specification of up to three
parallel operations:

Program control operation
- CPU operation
- Out Control operation

General Syntax:
Label: Program Control, CPU, Out Control;

PACSIM is a functional simulator and
software debugger. It has the following
features:

r:J Clock driven functional simulator.

r:J Provides trace capabilities on internal
states (Registers, Flags, Pins and
more).

PAC PRO is the interface software that
enables the user to program a PAC1000
microcontroller on the WS6000 MagicPro™
programmer. The PACPRO enables the
user to load the program into the
programmer and to execute the following
operations:

r:J Help

r:J Upload RAM from PAC

r:J Load RAM from disk

IMPACT is the interface manager to the
PAC1000 tools. IMPACT enables the user
to access PACSEL, PACSIM, PAC PRO,
DOS and an editor with a menu driven
interface. File specification can be done

---~ -~--- ---~

The tools run on an IBM-PC XT, AT or
compatible computer running MS-DOS
version 3.1 or later.

r:J Enables mixing of three source
language types In one instruction:

High Level Language
- Assembler
- Microcode

r:J Specific instructions support unique
PAC1000 architecture features available
in all three source language types.

r:J Links unlimited amounts of modules.

r:J Provides breakpoint capabilities on any
internal state of the PAC 1 000.

r:J Supports batch mode simulation.

r:J Provides waveform analysis.

r:J On-line HELP available at any level.

r:J Write RAM to FILE

r:J Display PAC data

r:J Blank test PAC

r:J Verify PAC

r:J Program PAC

r:J Configuration

r:J Quit

without extension enabling the user to use
the same name throughout the design. A
HELP window is available on-line giving
information on all the needed steps at
each level.

5-3

•

PAC1000

WS6000
MagicPro™
Programmer

WS6010
Socket Adaptor

WS6013
Socket Adaptor

WSI·Support

Ordering
Information

MagicPro is an engineering development
tool designed to program all WSI
programmable products (EPROMs,
RPROMs, PAC1000, MAP168, PSD3XX
Family and SAM448). It is used within the
IBM-PC and compatible environment. The
MagicPro consists of a short plug-in board

The WS6010 is a socket adaptor that
mounts on the MagicPro RSA and adapts

The WS6013 is a socket adaptor that
mounts on the MagicPro RSA and adapts

WSI provides on-going support for users of
PAC1000-GOLD/PAC1000-SILVER. For the
first year, software and programmer updates
are included at no charge. After that, the

Product

and a Remote Socket Adaptor (RSA). It
occupies a short expansion slot in the PC.
The RSA has two ZIF-DIP sockets
that will support WSI's 24, 28, 32 and 40
pin standard 600 mil or slim 300 mil DIP
packages without adaptors. Other
packages are supported using adaptors.

the PAC1000 in an 88-pin CPGA package
to the programmer.

the PAC1000 in a mO-pin QFP package to
the programmer.

user may purchase the WSI-Support
agreement to continue to receive the latest
software releases.

Description

PAC1000-GOLD Contains PAC1000-Silver, WS6000 MagicPro Programmer,
Two Product Samples and Matching Package Adaptor
Socket, WSI-Support

PAC 1 OOO-SILVER Contains PAC 1 000 Software (PACSEL, PACSIM,
PACPRO, and IMPACT), Software User's Manual,
WSI-Support.

WSI-Support 12-Month Software Update Service, Access to WSI's
24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

-----------------------------------~~~-----------------------------------
5-4

PAC100fJ.
GOLD

Contents \J PACSEL
System design entry language and
program linker.

\J PACSIM
Functional simulator and software
debugger.

\J PACPRO
Interface software to PAC1000 device
programmer (MagicPro™).

PACtOOO

a IMPACT
Interface manager for PAC 1 000
embedded controller development tools.

\J Software user's manual.

\J WSI-SUPPORT agreement.

\J WS6000 MagicPro Programmer.

a Two product samples and matching
package adaptor socket.

-------------------------~Jr;-------------------------
5-5

-- - ---- ----------

•

PAC1000

PAC1000·
SILVER

Contents r:J PACSEL
System design entry language and
program linker.

r:J PACSIM
Functional simulator and software
debugger.

r:J PACPRO
Interface software to PAC1000 device
programmer (MagicPro™).

o IMPACT
Interface manager for PAC 1 000
embedded controller development tools.

r:J Software user's manual.

r:J WSI-SUPPORT agreement.

-------------------------------------~~~------------------------------------
5-6

Key Features

General
DescriptiDn

WS6DDD
MagicPro"' Memory and Programmable
Peripheral Programmer

o Programs All WSI CMOS Memory and
and Programmable Peripheral Products
and All Future Programmable Products

o Programs 24, 28, 32 and 40 Pin
Standard 600 Mil or Slim 300 Mil Dip
Packages without Adaptors

MagicPro is an engineering
development tool designed to program
existing WSI EPROMs, RPROMs,
Programmable Peripherals, and future WSI
programmable products. It is used within
the IBM-PC® and compatible computers.
The MagicPro is meant to bridge the gap
betweeen the introduction of a new WSI
programmable product and the availability
of programming support from programmer
manufacturers (e.g., Data 1/0, etc.). The
MagicPro programmer and accompanying
software enable quick programming of
newly released WSI programmable
products, thus accelerating the system
design process.

The MagicPro plug-in board is integrated
easily into the IBM-PC. It occupies a short
expansion slot and its software requires

o Programs LCC, PGA and QFP
Packaged Product by Using Adaptors

o Easy-to-Use Menu-Driven Software

o Compatible with IBM PC/XT/AT
Family of Computers (and True
Plug-Compatible

only 256K bytes of computer memory. The
two external ZIF-Dip sockets in the Remote
Socket Adaptor (RSA) support 24, 28, 32
and 40 pin standard 600 mil or slim 300
mil Dip packages without adaptors. LCC,
PGA and QFP packages are supported
using adaptors.

Many features of the MagicPro
Programmer show its capabilities in
supporting WSI's future products. Some of
these are:

o 24 to 40 pin JEDEC Dip Pinouts

o 1 Meg Address Space
(20 address lines)

o 16 Data 1/0 Lines

5-7

•

WS6IJIJIJ

General
Description
(Cont.)

MagicPro
Commands

Technical
Information

Ordering
Information

The MagicPro menu driven software
makes using different features of the
MagicPro an easy task. Software updates
are done via floppy disk which eliminates
the need for adding a new memory device
for system upgrading.

Q Help

Q Upload RAM from Device

Q Load RAM from Disk

Q Write RAM to Disk

Q Display RAM Data

Q EditRAM

Q Move/Copy RAM

Q Size:
IBM-PC Short Length Card

Q Port Address Location:
100H to 1 FFH - default 140H (if a
conflict exists with this address space,
the address location can be changed
in software and with the switches on
the plug-in board.)

Q System Memory Requirements:
256K Bytes of RAM

Q Power:
+ 5 Volts, 0.03 Amp; + 12 Volts,
0.04 Amp

Please call800-TEAM-WSI for information
regarding programming WSI products not
listed herein. The MagicPro reads Intel
Hex format for use with assemblers and
compilers.

Q Fill RAM

Q Blank Test Device

Q Verify Device

Q Program Device

Q Select Device

Q Configuration

Q Quit MagicPro

Q Remote Socket Adaptor (RSA):
The RSA contains two ZIF-Dip sockets
that are used to program and read WSI
programmable products. The 32 pin
ZIF-Dip socket supports 24, 28 and 32
pin standard 600 mil or slim 300 mil
Dip packaged product. The 40 pin
ZIF-Dip socket supports all 40 pin Dip
packages. Adaptor sockets are
available for LCC, PGA and QFP
packages.

The WS6000 MagicPro Systems Contains:
Q MagicPro IBM-PC Plug-in Programmer Board
Q MagicPro Remote Socket Adaptor and Cable

Q MagicPro Operating System Floppy Disk and Operating Manual

The WS6000 MagicPro Adaptors Include:
Q WS6001 28-Pin CLLCC Package

Adaptor for Memory.

Q WS6008 28-Pin 0.3" Wide Dip Adaptor

for SAM448

Q WS6009 28-Pin PLDCC/CLDCC/
CLLCC Package Adaptor for SAM448

Q WS6010 88-Pin PGA Package Adaptor

for PAC1000

Q WS6012 32-Pin CLDCC Package

Adaptor for Memory

Q WS6013 100-Pin QFP Package

Adaptor for PAC 1 000

Q WS6014 44-Pin CLDCC/PLDCC

Package Adaptor for MAP168

Q WS6015 44-Pin PGA Package Adaptor
for MAP168 and PSD3XX

Q WS6016 44-Pin CLDCC/PLDCC
Package Adaptor for Memory

Q WS6020 52-Pin PQFP Package

Adaptor for PSD3XX

Q WS6021 44-Pin CLDCC/PLDCC
Package Adaptor for PSD3XX

MagicPro™ is a trademark of WaferScale Integration, Inc.
IBM-PC® IS a registered trademark of IBM Corporation.

---------------------------',,~~----------~--------------H ~I

, i

<" «'
, '

Packllge Information •

Section Index

Package
Information .. 6-1

For additional information,
call800-TEAM-WSI (800-832-6974).

In California, Call 800-562-6363.

Drawing 01
100 Pin Plastic
Ouad Flatpack,
Gull Wing,
Fine Pitch (POFP)

Symbol
a
A
A1
A2
B
C
0
01
03
E
E1
E3
e1
L
N

Min
00

0.00
2.57
0.22
0.13

16.95
13.90

22.95
19.90

0.60

Programmable Peripherals
Package Information

-------I' I I
,!,-----,,------;---.-

Rev. 0

Family: Plastic Quad Flatpack
Millimeters Inches

Max Notes Min Max Notes
80 00 80

3.40 - 0.134
0.25 0.010 -
2.87 0.101 0.113
0.38 0.009 0.015
0.23 0.005 0.009

17.45 0.667 0.687
14.10 0.547 0.555

12.35 Reference 0.486 Reference
23.45 0.904 0.923
20.10 0.783 0.791

18.85 Reference 0.472 Reference
0.65 Reference 0.026 Reference

0.95 0.024 0.037
100 100 F_._= _____________________________ __

-------------------------------~~I
6-1

•

Package Information

Drawing V1 92 Pin Ceramic Quad Flatpack (CQFP)

2 .005"
Ref

4 PL

0.015" Max
92 PL

~

r~ 01

Pin No 1
Index

0 V 11-

(5 LJ
0.175"
Min
92 PL

L oj

.

Ceramic Cap

11--0.050" Typ, 4 PL

10
Illllm(

r- UVLens

[l
-,~

0.0256" Typ
Internal Pitch
88 PL

[0

1.800" Ref, 4 PL

1.930" Ref, 4 PL

0

to

0 -

(5

Q,
'--

.
~

0.105
±0.013"

0.025" Typ
External Pitch
84 PL

~

1

0.035,,:J
Non-Conductive
Ceramic Tie-Bar

-I
0.787

±0.010"

_1

-----------------------------------~aIF~-----------------------------------
6-2

Drawing Xl 88 Pin Ceramic PGA

INDEX
MARK

A2-11-
,.+----------.. -- r- A1 t

t
B1

L ~
:1. =--=--=------O-=--=-~--------:-+1.1 _ =tAI--~1

Package InfDrmatiDn

131211109 8 7 6 5 4 3 2 1

O@@@@@@@@@@@
@@@@@@@@@@@@@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@@@@@@@@@@@@@

@@@@@@@@@@

1-------02------1

A­
B
C
o
E
F
G E2
H
J
K
L
M
N-

Standoff
Pins,

4 Places

X1b Rev 2

Family: Ceramic Pin Grid Array Package
Millimeters Inches

Symbol Min I Max Notes Min I Max Notes
A 3.30 I 4.83 0.130 I 0.190
A1 1.02 Typical 0.040 Typical
A2 2.41 1 3.43 0.095 I 0.135
8 0.41 I 0.51 Diameter 0.016 I 0.020 Diameter
81 1.02 Typical Dia. 0.040 Typical Dia.
D 32.51 I 33.91 1.280 I 1.335
D2 30.48 Reference 1.200 Reference
E 32.51 I 33.91 1.280 I 1.335
E2 30.48 Reference 1.200 Reference
e1 2.54 Reference 0.100 Reference

L 3.30 I 4.32 0.130 I 0.170

N 88 88

X1b

---------------------------~Jr;--------------------------6-~3

•

~6~.4~-------------------------------------~~~---

Sales Representatives
and Distributors

'- ~~-. ~ .. - ----------_._--- _._--- .-------.---~.-----

,'.:

Sales
Representatives

Section Index

and Distributors ... 7-1

For additional information,
CaIlBOO-TEAM-WSI (BOO-832-6914).

In Califomla, Call800-562-6363

!FEE '::E
=~F=,=,&EII ___ S_a_le_s_R_e.:....'P/i_e_S_en_t_a_ti_ve_s_a_n_d_D_is_t_'i_l1u_t_D_fS

Domestic ALABAMA GEORGIA MISSOURI Glestlng & Associates

Representatives Rep Inc Rep Inc John G Macke Company Columbus

Huntsville Tucker St LouIs Tel (614) 459-4800

Tel (205) 881-9270 Tel (404) 938-4358 Tel (314) 432-2830 Fax (614) 459-4801

Fax (205) 882-6692 Tax (404) 938-0194 Fax (314) 432-1456 OKLAHOMA

ARIZONA ILLINOIS NEW JERSEY West Associates

Summit Sales Victory Sales Metro Logic Corp Tulsa

Scottsdale Hoffman Estates (AT&T only) Tel (918) 665-3465

Tel (602) 998-4850 Tel (708) 490-0300 Fairfield Fax (918) 663-1762

Fax (602) 998-5274 Telex 206248 Tel (201) 575-5585 OREGON

CALIFORNIA
Fax (708) 490-1499 Fax (201) 575-8023

Thorson Company

Bager Electrontcs, Inc INDIANA Strategic Sales, Inc Northwest
Teaneck Portland Fountain Valley Glestlng & Associates Tel (201) 833-0099 Tel (503) 293-9001 Tel (714) 957-3367 Carmel

Fax (714) 546-2654 Tel (317) 844-5222
Fax (201) 833-0061 Fax (503) 293-9007

Bager Electronics, Inc Fax (317) 844-5861 S J Associates, Inc PENNSYLVANIA
Mt Laurel, NJ 08084

Woodland Hills IOWA Tel (609) 866-1234 Glestlng & Associates
Tel (818) 712-0011

Gassner & Clark Co Fax (609) 866-8627 Pittsburgh
Fax (818) 712-0160

Cedar Rapids Tel (412) 828-3553
Earle Assoc , Inc Tel (319) 393-5763

NEW MEXICO Fax (412) 828-6160
San Diego Twx 62950087 S & S Technologies Metro Logic Corp
Tel' (619) 278-5441 Fax (319) 393-5799 Albuquerque (AT&T only)
Fax (619) 278-5443 Tel (505) 298-7177 Fairfield, NJ
I Squared, Inc

KANSAS/NEBRASKA Fax (505) 298-2004 Tel (201) 575-5585
Santa Clara C Logsdon & Assoc NEW YORK Fax (201) 575-8023
Tel (408) 988-3400 Prairie Village

Strategic Sales. Inc S J Associates, Inc
Fax (408) 988-2079 Tel (913) 381-3833 Mt Laurel, NJ 08084

Fax' (913) 381-9774 New York City
Tel (609) 866-1234 CANADA Tel (201) 833-0099

KENTUCKY Fax (201) 833-0061 Fax (609) 866-8627
Intelatech, Inc
Mlsslssauga Glestlng & Associates TrI-Tech Electronics. Inc PUERTO RICO
Tel. (416) 629-0082 Versailles East Rochester OX, of Florida, Inc
Fax. (416) 629-1795 Tel (606) 873-2330 Tel (716) 385-6500 Fort Lauderdale

COLORADO
Fax (606) 873-6233 Twx 62934993 Tel (305) 978-0120
MARYLANDIVIRGINIA Fax (716) 385-7655 Fax (305) 972-1408

Waugaman Associates, Inc
New Era Sales, Inc Tn-Tech Electronics. Inc TENNESSEE Wheat Ridge Fayetteville

Tel (303) 423-1020 Severna Park
Tel (315) 446-2881 Rep Inc

Fax (303) 467-3095 Tel (410) 544-4100
Twx 7105410604 Jefferson City

CONNECTICUT
Fax (410) 544-6092

Fax (315) 446-3047 Tel (615) 475-9012

Advanced Tech Sales
MASSACHUSETTS Tn-Tech Electronics, Inc

Fax (615) 475-6340

Wallingford Advanced Tech Sales. Inc Fishkill TEXAS

Tel (203) 284-0838 North Reading Tel (914) 897-5611 West Associates
Fax (203) 284-8232 Tel (508) 664-0888 Twx 62906505 Austin

Fax (508) 664-5503 Fax (914) 897-5611 Tel (512) 343-1199 FLORIDA
MICHIGAN NORTH CAROLINA Fax (512) 343-1922

OX, of Florida, Inc
Glestlng & Associates Rep, Inc Fort Lauderdale West Associates

Tel (305) 978-0120 Comstock Park MOrrisville • Tel (616) 784-9437 Tel (919) 469-9997 Houston
Fax. (305) 972-1408

Fax (616) 784-9438 Fax (919) 481-3879 Tel (713) 621-5983
OX, of Flonda, Inc

Glestlng & Associates OHIO
Fax (713) 621-5895

Orlando West Associates
Tel. (407) 872-2321 L,vonia Glestlng & Associates Richardson
Fax (407) 321-2098 Tel (313) 478-8106 Cincinnati Tel (214) 680-2800
OX, of Flonda, Inc

Fax (313) 477-6908 Tel: (513) 385-1105 Fax (214) 699-0330
St Petersburg MINNESOTA Fax (513) 385-5069

Tel. (813) 894-4556 OHMS Technology. Inc Glestlng & Associates
Fax' (813) 894-3989 Edina Cleveland

Tel (612) 932-2920 Tel. (216) 261-9705
Fax (612) 932-2918 Fax (216) 261-5624

7-1

-- ---~-----

Sales Representati"es and Distributors

Domestic UTAH WASHINGTON WISCONSIN

Representatives Utah Component Thorson Company Victory Sales

(Cont.) Sales Inc_ Northwest Milwaukee
Midvale Bellevue Tel- (414) 789-5770
Tel- (801) 561-5099 Tel: (206) 455-9180 Fax: (414) 789-5760
Fax_ (801) 561-6016 Twx_ 9104432300

Fax: (206) 455-9185 OHMS Technology, Inc_
Edina, MN
Tel: (612) 932-2920
Fax: (612) 932-2918

Domestic ALABAMA Insight COLORADO Arrow/Schweber

Distributors Arrow/Schweber Irvine Arrow/Schweber AT&T DOES Center

Huntsville Tel: (714) 727-3291 Englewood Tel: (908) 949-7621

Tel: (205) 837-6955 Insight Tel (303) 799-0258 Fax- (201) 984-8908

Fax: (205) 721-1581 Sunnyvale Fax: (303) 799-0730 Marsh Electronics

Time Electronics Tel. (408) 720-9222 Insight Schaumburg

HuntSVille Time Electronics Aurora Tel: (708) 240-9290

Tel- (205) 721-1133 Anaheim Tel: (303) 693-4256 Time Electronics

ARIZONA
Tel: (714) 669-0100 Time Electronics Schaumburg

Time Electronics Englewood Tel: (708) 303-3000
Arrow/Schweber Chatsworth Tel- (303) 799-8851 INDIANA Tempe Tel: (818) 998-7200 Wyle LaboratOries Tel: (602) 431-0030 Arrow/Schweber
Fax: (602) 431-9555 Time Electronics Thornton Indianapolis
Insight San Diego Tel: (303) 457-9953 Tel: (317) 299-2071

Tempe Tel- (619) 578-2500
CONNECTICUT Fax: (317) 299-2379

Tel: (602) 829-1800 Time Electronics
Arrow/Schweber Time ElectrOniCs

InSight Sunnyvale
Wallingford Tel: (800) 331-5114

Tucson Tel: (408) 734-9888
Tel: (203) 265-7741 IOWA

Tel: (602) 792-1800 Time Electronics Fax: (203) 265-7988
Torrance Arrow/Schweber

Time Electronics Tel: (213) 320-0880 Time Electronics Cedar Rapids
Tempe Tel: (203) 271-3200 Tel: (319) 395-7230
Tel: (602) 967-2000 Wyle Laboratones

FLORIDA Fax: (319) 395-0185
Santa Clara Wyle Laboratories Tel: (408) 727-2500 Arrow/Schweber Time Electronics

Phoenix Tel. (800) 325-9085
Tel: (602) 437-2088 Wyle Laboratories Deerfield Beach

Rancho Cordova Tel: (305) 429-8200 KANSAS
CALIFORNIA Tel: (916) 638-5282 Fax: (305) 428-3991

Arrow/Schweber
Arrow/Schweber Wyle Laboratories Arrow/Schweber Lenexa
Calabasas Irvine Lake Mary Tel- (913) 541-9542
Tel. (818) 880-9686 Tel- (714) 863-9953 Tel- (407) 333-9300 Fax: (913) 541-0328
Arrow/Schweber Wyle laboratOries Time ElectrOniCS Time Electronics
San Diego Irvine (Military Div_) Tel: (305) 484-7778 Tel- (800) 325-9085
Tel: (619) 565-4800 Tel: (714) 851-9953 Time Electronics
Arrow/Schweber Wyle Laboratories Orlando KENTUCKY

San Jose Calabasas Tel: (407) 841-6565 Time Electronics
Tel. (408) 441-9700 Tel: (818) 880-9000 Vantage Components Tel- (800) 331-5114

Arrow/Schweber Wyle Laboratories Altamonte Springs MARYLAND
San Jose San Diego Tel: (407) 682-1199

Arrow/Schweber Tel: (408) 432-7171 Tel: (619) 565-9171 Vantage Components Columbia
Arrow/Schweber

CANADA Deerfield Beach Tel: (301) 596-7800
Tustin Tel: (305) 429-1001 Fax: (301) 596-7821
Tel: (714) 838-5422 Arrow/Schweber

Burnaby, B_ C_ GEORGIA Time Electronics
FIX Electronics Tel: (604) 421-2333 Baltimore
Calabasas Arrow/Schweber Tel: (301) 964-3090
Tel: (818) 591-9220 Arrow/Schweber Duluth

InSight Dorval, Quebec Tel: (404) 497-1300 Vantage Components
Tel (514) 421-7411 Time Electronics Columbia

San Diego Tel: (301) 720-5100
Tel- (619) 587-1100 Arrow/Schweber Tel: (404) 448-4448 or_ (301) 621-8555
Insight Mississauga, Ontario

ILLINOIS Tel: (416) 670-7769 Westlake Village
Arrow/Schweber Tel: (818) 707-2101 Arrow/Schweber
Itasca Nepean, Ontario
Tel: (708) 250-0500 Tel: (613) 226-6903

7-2

\
Sales Representatives and Distributors

Domestic MASSACHUSETTS Time Electronics OREGON Time Electronics

Distributors Arrow/Schweber N. New Jersey Almac/Arrow Electronics Houston

Wilmington Tel: (201) 882-4611 Beaverton Tel (713) 530-0800
(Cont.) Tel' (508) 658-0900 Vantage Components Tel (503) 629-8090 Time Electronics

Port Electronics Clifton Fax: (503) 645-0611 Richardson

Tyngsboro Tel: (201) 777-4100 Insight Tel (214) 241-7441

Tel (508) 649-4880 NEW MEXICO Portland Wyle Laboratories

Time Electronics Tel (503) 644-3300 Austin
Insight Tel' (512) 345-8853 Peabody Tel (505) 823-1800 Time Electronics

Tel: (508) 532-9900 Portland Wyle Laboratories

Wyle Laboratories
NEW YORK Tel (503) 684-3780 Houston

Burlington Arrow/Schweber Wyle Laboratories Tel' (713) 879-9953

Tel (617) 272-7300 Melville (Headquarters) Beaverton Wyle Laboratories
Tel (516) 391-1300 Tel (503) 643-7900 Richardson

MICHIGAN Tel' (214) 235-9953 Arrow/Schweber PENNSYLVANIA
Arrow/Schweber Hauppauge UTAH livonia Arrow/Schweber
Tel (313) 462-2290

Tel' (516) 231-1000
Pittsburgh (Sales Office) Arrow/Schweber

Fax. (313) 462-2686
Fax (516) 231-1072

Tel (412) 963-6807 Salt Lake City
Arrow/Schweber Fax (412) 963-1573 Tel: (801) 973-6913 Time Electronics Rochester Fax' (801) 972-0200 Tel (800) 331-5114 Tel' (716) 427-0300 Time Electronics

Philadelphia Time Electronics
MINNESOTA Fax (716) 427-0735

Tel: (215) 337-0900 West Valley
Arrow/Schweber Time Electronics

Time Electronics Tel (801) 973-8181
Eden Prairie Hauppauge (NYC)

Pittsburgh Wyle Laboratories
Tel. (612) 941-5280 Tel (516) 273-0100

Tel. (800) 331-5114 West Valley
Fax (612) 941-9405 Time Electronics

Time Electronics Tel (801) 974-9953
Arrow/Schweber East Syracuse

Marlton, NJ
Eden Prairie Tel (315) 432-0355

Tel' (609) 596-6700
WASHINGTON

Tel: (612) 941-1506 Time Electronics Almac/Arrow Electronics
Fax: (612) 943-2086 Rochester SOUTH DAKOTA Bellevue

MISSOURI
Tel (716) 383-8853 Time Electronics Tel. (206) 643-9992

Vantage Components Tel: (800) 331-5114 Fax' (206) 643-9709
Arrow/Schweber Smithtown Almac/Arrow Electronics
St LoUIs Tel (516) 543-2000

TEXAS
Spokane

Tel (314) 567-6888 Arrow/Schweber Tel. (509) 924-9500
Fax (314) 567-1164 NORTH CAROLINA Austin Fax' (509) 928-6096
Time Electronics Arrow/Schweber Tel' (512) 835-4180

InSight
Manchester Raleigh Fax: (512) 832-9875

Kirkland
Tel: (314) 391-6444 Tel (919) 876-3132 Arrow/Schweber Tel' (206) 820-8100

NEBRASKA
Fax. (919) 878-9517 Carrollton

Time Electronics
Time Electronics Tel (214) 380-6464

Redmond Time Electronics Tel (800) 833-8235 Fax (214) 248-7208
Tel. (206) 882-1600 Tel' (800) 325-9085

NORTH DAKOTA Arrow/Schweber
Wyle LaboratOries NEW JERSEY Houston
Redmond

Arrow/Schweber
Time Electronics Tel (713) 530-4700

Tel (206) 881-1150
AT&T DOES Center

Tel (800) 331-5114 Fax (713) 568-8518

Tel (908) 949-7627 OHIO InSight WISCONSIN
Fax (201) 984-8708

Arrow/Schweber
Austin Arrow/Schweber

Arrow/Schweber Solon
Tel (512) 467-0800 Brookfield

Holmdel Tel (216) 248-3990 InSight Tel: (414) 792-0150

Tel' (908) 949-4700 Fax. (216) 248-1106 Ft. Worth Fax (414) 792-0156

Fax (908) 949-4035
Arrow/Schweber

Tel (817) 338-0800 Marsh Electronics

Arrow/Schweber Centerville InSight Milwaukee

Marlton Tel: (513) 435-5563 Houston Tel: (414) 475-6000

Tel (609) 596-8000 Fax' (513) 435-2049 Tel (713) 448-0800 Time Electronics
Fax (609) 596-9632

Time Electronics Insight Tel: (800) 331-5114

Arrow/Schweber Columbus Richardson
Pine Brook Tel. (614) 761-1100 Tel. (214) 783-0800
Tel (201) 227-7880

OKLAHOMA Time Electronics
Fax (201) 227-2064 Austin
Time Electronics Arrow/Schweber Tel: (512) 339-3051
Marlton Tulsa
Tel (609) 596-6700 Tel' (918) 252-7537

Fax. (918) 254-0917

7·3

Sales Representatives and Distributors

International AUSTRALIA GERMANY ITALY PORTUGAL

Distributors GEC/George Brown Jermyn GmbH Comprel s.p.a. ATD Electronica, Lda
Rydalmare, N.S.w. 6250 Limburg 20092 Clnisello B. Rua Faria de
Tel: 61-2-638-1888 Tel: (06) 431-5080 Milano Vasconcelos, 3-A
Fax: 61-2-638-1798 Fax: (06) 431-508289 Tel: (02) 6120641/5 1900 Lisboa

AUSTRIA
Tlx. 332484 COMPRL Tel: 3511-847-2200

Scantec GmbH Fax: (02) 6128158 Fax: 3511-847-2197
Eljapex 0-33 Planegg
Eltnergasse 6 Tel: (089) 859-8021 Silverstar SINGAPORE
A-1232Wein Tlx: 5213219 20126 Milano Westech Electronics
Tel: (43) 222-86-15-31 Fax: (089) 857-6574 Tel: 39 2661251 Singapore 1334
Fax: (43) 222-86-15-31-200 Fax: 39 266101922 Tel. 65-743-6355

BELGIUM, LUX Tapas Electronic GmbH Tlx: RS 55070
3000 Hannover 1 JAPAN WESTEC

0&0 Electronics bvba
Tel: (0511) 13-12-17 Internlx, Inc. Fax: 65-746-1396

Antwerp Shinjuku Hamada
Tel: 32-38277934 Tlx: 9218176 SPAIN
Fax: 32-38287254 Fax. (0511) 13-12-16 Bldg. 7-4-7

Sagltron Nishi-Shlnjuku, Shinjuku-Ku

DENMARK HOLLAND Tokyo 160 Corazon de Maria 80

C-88 AlS Arcobel bv Tel: 813-3-369-1105 28002 Madrid
Griekenweg 25 Fax: 813-3-363-8486 Tel: 416-92-61

101 Kokkadal Industripark
5342 PxOSS Tlx: 43819

DK-2980 Kokkedal Fax: 415-86-52
Tel: 45-42-24-48-88 Tel: 31-4120-42322 Kyocera Corporation
Fax: 45-42-24-48-89 Fax. 31-4120-30635 Setagaya-ku, Tokyo SWEDEN

HONG KONG
Tel: 813-3-708-3111 Nortec Electronics AlB

UNITED KINGDOM Tlx' 7812466091 Box 1830
Micro Call, Ltd. CET, Ltd. Fax 813-3-708-3864 S-171 27 Solna
Thame, Oxon OX9 3XD Tel: 852-520-0922

Tel: 8-7051800
Tel: 44-84-426-1939 Fax: 852-865-0639 Nippon Imax Corporation Fax: 8-836918
Fax' 44-84-426-1678 INDIA Setagaya-ku, Tokyo

Pamir Electronics Corp. Tel: 813-3-321-8000 SWITZERLAND
FINLAND Tlx: 78123444 Eljapex
Nortec Electronics OY 400 West Lancaster

Devon, PA 19333 USA Fax: 813-3-325-0021 Hardstr.72
SF-00210 Helsinki CH - 5430 Wettingen
Tel' 358-067-02-77 Tel' 215-688-5299 KOREA
Tlx: 857125876 Fax: 215-688-5382 Eastern Electronics, Inc.

Tel: (41) 56-27-57-77

Fax' 358-06922326 Tlx: 210656 Pamir UR Kangnam-Gu, Seoul
Fax: (41) 56-26-14-86

FRANCE ISRAEL Tel: 82-2-553-2997 Laser & Electronic
Vectronics Tlx: 78727381 Equipment

A2M
60 Medinat Hayehudim SI. Fax: 82-2-553-2998 8053 Zurich

B.P.89 Tel: 41 (1) 55-33-30
78152 LE CHESNAY PO Box2024 NORWAY
CEDEX Herzlla B 46120, Israel Nortec Electronics AlS

Fax: 41 (1) 55-34-58

Tel: 33 (1) 39-54-91-13 Tel: 972-52-556070 Postboks 123 TAIWAN
Tlx: 698376F Tlx: 922342579 N-1364 Hvalstad Ally, Inc.
Fax. 33 (1) 39-54-30-61 Fax: 972-52-556508 Tel. 2-84-62-10 Taipei

Microel
Fax: 2-84-65-45 Tel: 886-2-788-6270

BP3
Fax: 886-2-786-3550

91941 Les Ulis
CEDEX
Tel: 33 (1) 69-07-08-24
Tlx. 692493F
Fax: 33 (1) 69-07-17-23

WSI Direct REGIONAL SALES Mid-Atlantic EUROPE SALES ASIA SALES

Sales Offices Northeast Trevose, PA WSI-France WSI - ASia, Ltd.
Stow, MA Tel. (215) 638-9617 2 voie LA CARDON 1006 C.C. Wu Bldg.
Tel. (508) 685-6101 Fax: (215) 638-7326 91126 PALAISEAU 302-308 Hennessy Road
Fax: (508) 685-6105 Southeast CEDEX, France Wan Chal, Hong Kong

Midwest Dallas, TX Tel: 33 (1) 69-32-01-20 Tel: 852-575-0112

Hoffman Estates, IL Tel: (214) 680-0077 Fax: 33 (1) 69-32-02-19 Fax. 852-893-0678

Tel: (708) 882-1893 Fax: (214) 680-0280 WSI - Germany
Fax: (708) 882-1881 Northwest c/o B&RS

Southwest Fremont,CA Rosanstrasse 7

Irvina, CA Tel: (510) 656-5400 8000 Munich 2, Germany

Tel: (714) 753-1180 Telex: 289255 Tel: (49) 89.2311 38.49

Fax: (714) 753-1179 Fax: (510) 657-5916 Fax: (49) 89.23.11.38.11

---~E 47280 Kato Road
rEIII .. Fremont, CA 94538
"611611 611_ Tel: (510) 656-5400
.,,~== III Fax: (510) 657-5916

Corporate
Headquarters
7-4 2114/92 Rev. 1.53

LIFE SUPPORT POLICY:
WaferScale Integration, Inc. (WSI) products are not authorized for use as critical components In life suppon systems or devices without the express
written approval of the President of WSI As used herein:

A) Life support devices or systems are devices or systems which 1) are Intended for surgical Implant Into the body, or 2) support or sustain life
and whose failure to perform when properly used in accordance with instructions for use provided In the labeling can be reasonably expected
to result in a significant Injury or death to the user,

B) A critical component IS any component In a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life suppon device or system or to affect ItS safety or effectiveness.

Information furnished herein by WaferScale Integration, Inc (WSI) IS believed to be accurate and reliable. However, no responsibility IS assumed
for ItS use WSI makes no representation that the use of ItS products or the Interconnection of ItS CirCUitS, as described herem, Will not Infringe
on eXisting patent rights No patent liability shall be Incurred by WSI for use of the CirCUitS or devices described herem WSI does not assume
any responsibility for use of any circUitry described, no CirCUit patent rights or licenses are granted or Implied, and WSI reserves the right Without
commitment, at any time Without notice, to change said circUitry or specifications. The performance characteristics listed m this book result from
specific tests, correlated testing, guard banding, design and other practices common to the Industry. Information contained herein supersedes
previously published specifications Contact your WSI sales representative for specific testing details or latest information

Products In this book may be covered by one or more of the follOWing patents Additional patents are pending

U.S.A. 4,328,565; 4,361,847, 4,409,723, 4,639,893, 4,649,520, 4,795,719; 4,763,184, 4,758,869,
5,006,974,5,016,216; 5,014,097, 5,021,847,5,034,786

West Germany' 3,103,160
Japan: 1,279,100
England 2,073,484, 2,073,487

MaglcPro™ is a trademark of WaferScaie Integration, Inc
IBM and IBM Personal Computer are registered trademarks of International Business Machines Corporation

Copyright © 1991 WaferScale Integration, Inc. All Rights Reserved.

Patents Pending

Rev. 1 4

--,JrJrAF'~---­.. ~. 7-5

•

47280 Kato Road

Fremont, California 94538-7333

Phone: 510/656-5400

Fax: 510/657-5916

TELEX: 289255
800/ TEAM-WSI (800/832-6974)

In California 800/562-6363

Printed in U. S.A. 2/92

