FES 5= PAC1000 Programmable
Peripheral GController

Design and Applications
Handbook

B \\\

LORI STEINTHAL

MANUFACTURERS REPRESENTATIVES &)

‘ 12

@‘3 INCORPORATED
4 %&

= /

3350 Scott Boulevard
Building 10
Santa Clara, CA 95054
Tel: (408) 988-3400
Fax: (408) 988-2079
Phone Mail: (408) 496-6868 x46

)y 4

PAC1000
Programmable Peripheral
Controller

Design and Applications Handbook

1992

Copyright © 1992 WaferScale Integration, Inc.
(All rights reserved.)

47280 Kato Road, Fremont, California 94538
Tel: 510-656-5400 Facsimile: 510-657-5916 Telex: 289255

Printed in U. S. A.

] iy
gy

y
ly

General Information

Section Index

General
Information

Table Of CONENTSc..eiuiiiieiei ettt er et s e enenee 1-1
Company Profile ... 1-3
ATECIE REPIIN ...ttt st eb e 1-7
Product Selector GUIEc..ciiiriiiciiierree ettt 1-13
Ordering INfOrmMationcccoooiiiiii e et s 1-17

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363.

o a ——
FES 5= Table of Contents
¥ AN A = =
—A—F &
General TabIE Of COMENLS ...ttt et 1-1
Information
Company Profile ... 1-3
AEICIE REPIINT .. st e 1-7
Product Selector GUITEcooueiiiii ettt 1-13
Ordering INfOMMALIONc.oouiiiiiiee ettt 1-17
PAC1000 PAC1000 Introduction Programmable Peripheral Controller............cocoiiiininnniinnes 2-1
PAC1000 Programmable Peripheral Controller..........c.ccccvivmininiinincnnens 2-3
PAC1000 PACSEL LaNQUAQEc.cuiviiiiiiii st 3-1
Instruction
Set
PAC1000 Application Note 005 PAC1000 as a High-Speed Four-Channel
Application DMA CONErONET ...ttt 4-1
Notes Application Brief 006 = PAC1000 as a 16 Bi-Directional Serial
Channel Controllerccoovveiireniiiee e 4-33
Application Brief 007 Hardware Interfacing the PAC1000 as a
Micro Channel Bus Controllercccoovrincniennecencceneee 4-37
Application Note 008 PAC1000 Programmable Peripheral Controller
with a Built-In Self Test Capabilitycccoovnernieiininecene 4-43
Application Note 009 In-Circuit Debugging for the PAC1000
Programmable Peripheral Controller............cccoociveciinnicinnacnns 4-51
Application Note 010 PAC1000 INtroductionccccociriimiiiiiccisiccceeea 4-67
Application Note 012 Testing 8 Dual-Port RAM Memories with the
PAC1000 Programmable Peripheral Controller...............ccccc...... 4-93
1-1

Table of Contents

Development Electronic Bulletin BOArd............ccccouiiiiiininicicicicicccicicece st 5-1
sy stems PAC1000 Gold/Silver Development SYStemcccooveviiiiriieeneeee s 5-3
WS6000 MagicPro™ Memory and
Programmable Peripheral Programmer ... 5-7
Package
INFOPMALION....................................cooooooiioioiioie s 6-1
Sales
Representatives
ANADISTBULOLScoooooooooooooo e 7-1
FEEES=
S5

1-2

Company Profile

Company
Description

WSI is a market leading producer of high-
performance programmable peripheral
integrated circuits. The company was
founded in 1983 to serve the needs of
system designers who need to achieve
higher system performance, reduce the
size and power consumption of their
systems, and shorten their product
development cycles in order to achieve
faster market entry.

WSI produces an innovative portfolio of
Programmable Peripherals as well as a
broad line of high-performance non-volatile
programmable PROM and EPROM
memory products, both based on its
patented self-aligned split-gate CMOS
EPROM technology. The new
Programmable Peripherals enable rapid
system design of high-performance

application specific controllers and related
products. These devices are the first to
integrate high-performance EPROM,
SRAM and user-configurable logic and
deliver a performance and integration
breakthrough to the programmable
peripherals market.

WSI's Programmable Peripherals and non-
volatile memory products enable electronic
designers to reduce their system size,
shorten product development cycles and
bring new system products to market in
less time. As a result, WSI has established
itself as a leading supplier of high-
performance programmable solutions to a
broad customer base that includes some of
the world’s largest and most technologically
advanced electronics companies.

Technology

WSI’'s patented self-aligned, split-gate
EPROM technology enables higher
performance and greater memory densities
per chip area than the traditional stacked-
gate method. By developing significantly
higher read current, the WSI EPROM cell
has enabled the development of several
memory devices that are the fastest of their
type on the market. This core NVM
technology is further leveraged by WSI's
architecture and design innovations such
as staggered virtual ground and

contactless memory arrays resulting in
dramatic die area savings. This high
density memory capability enables WSI to
provide cost-effective market leading
products such as the smallest 4-Mbit
EPROM on the market. WSI’s proprietary
NVM technology (licensed to Sharp
Corporation and National Semiconductor
Corporation) has enabled WS to be first in
the industry with numerous product
breakthroughs in speed, high density,
process innovations and packaging.

Markets and
Applications

WSI’'s Programmable Peripheral and high-
performance non-volatile memory products
are used by the world’s leading suppliers of
advanced electronic systems in
telecommunications, data processing,
military, automotive and industrial markets.

Applications for the Programmable
Peripherals include cellular telephones,
disk drive controllers, modems, bus
controllers, engine management
computers, telecom switchers, motor

controllers and others. High performance
memory applications include digital signal
processing, engineering workstations,
high-speed modems, video graphics
controllers, radar and others. By virtue of
their high speed and programming
capability, WSI products are ideally suited
for these applications where designers are
pushing the limits of system performance in
highly competitive markets.

Company Profile

Product Groups

Programmable Peripherals

WSI’s family of Programmable Peripherals
represents a new class of programmable
products. They enable system designers
to reduce the size of their products,
achieve lower operating power, optimize
system performance and shorten product
development cycles. They are the first
devices to integrate high-speed EPROM,
SRAM and programmable logic on a single
chip. The Programmable Peripherals
include the PSD3XX family, the MAP168
and the PAC1000.

PSD3XX Family: Microcontroller
Peripherals with Memory

Each member of the PSD3XX family is a
single-chip, field-programmable circuit that
integrates all the required peripheral
memory and logic elements for an
embedded-control design. Programmable
logic, page logic, programmable I/O ports,
busses, address mapping, port
address/data tracking, 256K to 1 Mb
EPROM, and 16K SRAM are all on board.
Advanced features such as memory
paging, microcontroller port reconstruction,
track mode, configuration security bit, and
cascading further enhance the utility and
value of the PSD3XX family. PSD3XX
family devices are ideal for applications
requiring high-performance, low power and
very small form factors such as fixed disk
control, cellular telephones, modems,
computer peripherals, and automotive and
military applications.

MAP168 User-Configurable Peripheral
with Memory

Similar to the PSD3XX family, the high
speed MAP168 integrates high-
performance EPROM, SRAM, a PAD and
user-configurable logic. Ideal for high-
speed applications requiring expanded
memory, system integration and increased
data security, the 45 ns MAP168 is used
with high speed digital signal processors,
microprocessors and microcontrollers.

PAC1000 Peripheral Controller

The high speed PAC1000 sets a new
standard for Programmable Peripheral
performance, integration and functionality.
The PAC1000 replaces up to 50 complex
devices in high-end embedded controllers
and microprocessor-based systems.
Combining a CPU, 1K x 64 EPROM and
extensive user-configurable logic, the
PAC1000 assists its host processor with
high rates of data manipulation and control,
freeing the processor for other system
functions. The 16 MHz PAC1000 has been
designed into numerous high-performance
applications such as work-station direct
memory access controllers, video imaging
digital signal processors, and VME bus
LAN controllers.

Programmable Peripheral
Development Tools

WSI's Programmable Peripheral products
are supported with complete easy-to-use
system development tools from both Data
1/0 and WSI. The Data I/O Unisite
programmer can be used for production
programming. The WSI tools include
program development, simulation, and
programming software, the IBM-PC hosted
MagicPro™ Memory and Peripheral
Programmer, a dial-in applications bulletin
board and WSI's team of factory service
and field application engineers. The menu-
driven software tools run on popular
customer owned computers and enable
designers to rapidly configure and program
the WSI part and try it in a prototype
system. Additional design iterations are
quickly accomodated. The system
development tools increase the efficiency
of the design process resulting in faster
market entry for WSI’s customers’
products.

Company Profile

High-
Performance
Memory
Products

WS offers a broad product line of high-
performance CMOS PROMs and EPROMs
featuring architectures ranging from 2K x 8
to 512K x 8, plus several x16 products, with
speeds ranging from 25 to 150 ns.
Commercial, industrial and military
products including MIL-STD-883C/SMD are
available. A wide variety of package
selections include plastic and hermetic,
through-hole and surface mount types.

CMOS PROMs

As WSI'’s fastest family of products,
Re-Programmable Read Only Memories
(RPROMs) provide high-speed bipolar
PROM pinout with matching speed and low
power operation. The product family
includes architectures ranging from 2K x 8
to 32K x 8 with speeds ranging from 25 to
90 ns. Commercial, industrial and military
MIL-STD-883C/SMD configurations are
available in a variety of hermetic and
plastic package types.

“F” Family EPROMs

The high-speed “F” series EPROM family
offers speeds ranging from 35 to 70 ns and
architectures from 8K x 8 to 32K x 8, plus
several x16 products. “F” family

EPROMs are ideal for use in high-end
engineering and scientific workstations,
data communications and similar high-
performance applications.

“L” Family Military EPROMs

WSI’s “L” family military EPROM memory
products feature high-density and high
speed in popular JEDEC pinouts. With
speeds ranging from 120 to 300 ns and
architectures from 64K x 8 to 512K x 8
including several x16 products, the “L”
family offers significant speed and high
density benefits for developers of military
avionics, communications, and control
systems. The “L” family delivers world class
densities from WSI’s conservative 1.2
micron lithography CMOS process
technology.

Manufacturing

WSI’'s manufacturing strategy includes
utilizing multiple world-class manufacturing
partners for each facet of the production
process.

WSI has licensed its CMOS EPROM and
logic process technology to Sharp
Corporation in Japan and National
Semiconductor Corporation in the USA.
The Sharp facility in Fukuyama, Japan
employs the most advanced sub-micron
VLSI integrated circuit manufacturing
equipment available including 1on
implantation, reactive ion etch, and wafer
stepper lithographic systems. The world-
class high volume National Semiconductor
operation delivers low cost production of
1.2 micron CMOS technology product on 6"
wafers. This low defect density
manufacturing resource is capable of
producing sub-micron technology product
in the near future.

High-volume, low cost integrated circuit
packaging and testing is performed for WSI
by ANAM Electronics in Seoul, Korea, Fine
Products in Hsinchu,Taiwan, National
Semiconductor in Santa Clara, CA and at
WSI in Fremont, CA. ANAM is the largest
independent manufacturer of I.C.
packaging and produces excellent product
quality. Test capabillity ranges from simple
logic devices to complex VLSI product.
ANAM routinely processes a wide variety of
high volume packages and enables WSI to
leverage its materiel needs through
ANAM’s combined high-volume, low cost
procurement activity. Commercial,
industrial, and military grade product
processing Is available from ANAM.

Additional quality assurance and reliability
testing are performed at WSI in Fremont,
A.

WSI’'s manufacturing strategy ensures the
supply of double-sourced high quality, high-
volume product with low variable cost and
fast delivery.

Company Profile

Sales Network WSI's international sales network includes Management and Previous
several regional sales managers who direct Affiliations:
the resources of the company to major Michael Callahan
market opportunities. Experienced President. CEO and
technical field application engineers located Chairm an’ of the Board
in each field office assist WSI's customers (Advanced Micro Devices, Monolithic
during their advanced product development Memories, Motorola) ’
and match customer needs with WSI's ’
product solutions. Over sixty Robert J. Barker
manufacturer's representatives and leading V- P- Finance, CFO and Secretary
national and regional component (Monolithic Memories, Lockheed)
distributors in the United States, Europe John Ekiss
and Asia round out the WSI sales network. V. P. Marketing
i (Intel, Motorola)
United States Thomas Branch
Direct sales and field application V. P. Worldwide Sales
f{ngineﬁ[mgpﬁfrccﬁ irr: Bogtol?r Cfr_icagO, (Monolithic Memories, Fairchild)
untsville, Philadelphia, Dallas, Los
Angeles and Fremont, CA; More than 25 \tjetgygl(:rrl;ﬁ ons
manufacturer's representatives for major (A dv.ange d Micro Devices. Monolithic
national accounts; national distributors Memories) ’
include Arrow/Schweber, Time Electronics
and Wyle Laboratories; and regional Boaz Eitan
distributors. V. P. New Product and
Technology Development
International (Intel)
Direct WS| Sales management offices in Bob Buschini
Paris, Munich and Hong Kong; sales Director of Human Resources
representatives and distributors in (General Electric, Raychem)
Germany, England, France, Italy, Sweden,
Finland, Denmark, Norway, Spain,
Belgium, Luxembourg, the Netherlands,
and Israel. Sales representatives and
distributors for the Asia/Pacific Rim region
in Japan, Korea, Taiwan, Hong Kong,
Singapore and Australia.
Financing WSl is a privately held California J. H. Whitney, Oak Investment Partners,

corporation founded in August, 1983. The
company has been financed by corporate
investors, institutional investors, venture
capital groups and private investors.
Corporate investors are Sharp Corporation,
National Semiconductor Corporation,
Intergraph Corporation, and Kyocera
Corporation. Venture capital investors
include Accel Partners, Adler and
Company, Bessemer Venture Partners,
Genevest Consulting Group S. A,,

MagicPro™ is a trademark of WaferScale Integration, Inc.
IBM and IBM-PC are registered trademarks of International Business Machines Corporation

1-6

Robertson Stephens and Co., Smith
Barney Venture Corporation, and Warburg
Pincus. The company has been audited
annually since its inception by Ernst &
Young (Arthur Young prior to 1989) and
regularly reports financial information to
Dunn & Bradstreet (Dunns number is
10-209-8167).

IP1-2 DISK CONTR Dk
COMPUTER KEY.

I.EI'.TRIINIE DESIGII

A VNU BUSINESS PUBLICATION OCTOBER 27,1988

W]

£1JOM WAFERSCALE
ZNTEGRATION, INC.
(4

- ANALOG eﬁ@ RS UP FOR NiXE0-MODE SIMULATION
- POWER-FACTOR CONTR ummﬁwn STEPPERS FROM ONE BOARD

1-7

Article Reprint

DAVE BURSKY

nyone who has ever de-
signed a high-perfor-
mance controller sub-
syst>m using high-
speed micropro-
grammed building
blocks, programmable
logic devices, gate ar-
rays, or discrete logic
realizes the difficulties in integrating
the complete solution. In such a system,
the chip count escalates, the operating
power rises, and the development
schedule lengthens.

By integrating all these functions
and resources onto one high-speed
CMOS chip—the PAC1000 microcon-
troller—WaferScale Integration Inc.
has drastically reduced the chip count
from the typically required 50 or so ICs
to just one. At the same time, the
PAC1000 slashes the power consump-
tion from tens of watts to less than 1.5
W and cuts development time.

The PAC1000 can solve many high-
end embedded control applications and
is the only available circuit that can
tackle system, data, and event control
tasks. A C-like language and PC-hosted
system-development tools simplify the
creation of the control software. Users
can configure the circuit as a micropro-
cessor peripheral or as a standalone
controller to meet the unique require-
ments of high-performance system,
data, or event controllers. Each of the
chip’s two bidirectional 16-bit buses, its
individual I/0 lines, and interrupt in-
puts can, if necessary, be redefined dur-
ing each 50-ns instruction cycle.

Reprinted with permission from ELECTRONIC DESIGN - October 27, 1988

COVER FEATURE

PACKING ALL THE MAJOR BLOCKS OF A
MICROPROGRAMMABLE SYSTEM, A CMOS IC EASES
EMBEDDED CONTROLLER DESIGNS

CONFIGURABLE CHIP EASES
CONTROL-SYSTEM DESIGN

bility lies an internal microprogramma-
ble architecture, including a 16-bit CPU,
a fast 10-bit microsequencer, a 32-word-
by-16-bit register file, and a 1kword-by-
64-bit high-speed EPROM. As product
planning manager Yoram Cedar ex-
plains, since the circuit executes any of
its instructions in one clock cycle, the
controller delivers a raw throughput of

Copynight 1988 VNU Business Publications, Inc

1-8

Article Reprint

A
COVER: USER-CONFIGURABLE

CONTROLLER

20 MIPS.

Every instruction of the PAC1000
can perform as many as three simul-
taneous operations: program con-
trol, CPU functions, and output con-
trol, with all possible combinations
allowed. Cedar claims the more pow-
erful instruction format, combined
with the higher clock speed, yields a
five- to tenfold performance im-
provement, compared with other

one-chip microcontrollers. The high
throughput suits many tasks well. It
has already found homes in radar,
communications, video-graphics,
1/0 subsystems, bus and DMA con-
trollers, and disk-drive-controllers.
Besides the CPU, register file, and
sequencer, the chip includes an auxil-
iary Q-register for double-word op-
erations, an 8input interrupt con-
troller, 16 output control lines, 8 bi-

- Host address
Clock Reset ChipSelect Read Wnie Hostdatabus anddatabus v
L cc
416 6 1
| Configuration registers I | Host interface]
T Register stack
Sequencer 16-bit CPU
M]
- 1-kword- X -64-bit EPROM R Extended-precision
| .. register for 64-bit
operations
o
15.1evel || Breakpomnt register
stack | [Program counter |
CASE logic <> Block counter
User Interrupt e Address counter
output Testlogee logic
| 1/0 and special Address/data
161 81 4 function port port
8t vy L
User-definable Condition- Interrupt 1/0 hines Address
output code inputs
lines sense
nputs

1. PACKING A 16-bit micropro-
grammable central processor with a 32-
word register file, a I-kword-by-64-bit
microcode UV EPROM, sequencer, and
other configurable resources, the
PAC1000 user-configurable
microcontroller from WaferScale
Integration delivers a raw instruction
throughput of 20 MIPS at 20 MHz (top).
Designers can add or alter various blocks

to customize versions for high-volume
users (left).

directional 1/0 lines, scan-test and
CASE program test logic, and a 22-
bit external address bus (Fig. 1, top).

Also, Cedar emphasizes, the cir-
cuit deals much more rapidly with in-
terrupts than most controllers do,
and that serves embedded control
applications well. The chip changes
program flow in either of two ways.
First, it has four user-definable in-
terrupt input lines plus four dedicat-
ed internal interrupts that require
just 100 ns, at most, to alter the pro-
gram flow. Second, another set of in-
put lines—22 condition-code inputs
(8 external and 14 internal)—let the
processor alter the program flow
with condition calls and program
jumps in just one 50-ns instruction
cycle.

And if on-chip resources don’t
quite match an application’s require-
ments, chip modifications can be
done for large-volume users. The cir-
cuit was designed with the compa-
ny’s standard-cell library, and many
of the chip’s sections are actually
cells in WaferScale’s library (Fig. 1,
left). Noticeable on the chip’s left
side are the large cells that include
the 64-kbit EPROM block on the bot-
tom and the 16-bit CPU on the upper
left. On the chip’s right side, random
logic performs the control and inter-
face functions; small standard cells
are used to create those circuits.

For every instruction, a dedicated
field specifies the bit pattern on the
output lines. Also, designers can in-
dividually program eightI/0 lines as
inputs or outputs or to perform spe-
cial functions under the control of
the chip’s mode and 1/0 registers.
The special functions turn the I/0
lines into control signals that allow
various features and flags to indi-
cate several status conditions. In ad-
dition to the eight I/0 lines, the cir-
cuit has two 16-bit bidirectional bus-
es that go on and off the chip: One
links with the host; the other is the
upper 16 bits of the address/data
bus. Another 16 lines are dedicated,
user-programmable latched output
lines. These can be changed on a cy-
cle-by-cycle basis.

Thanks to all its buses and control
signals, the PAC1000 microcon-
troller operates as either a memory-

Article Reprint

E—
COVER: USER-CONFIGURABLE

CONTROLLER

mapped peripheral to a microproces-
sor to offload the CPU (Fig. 2a) or as
a standalone controller running
from its own internally or externally
stored program (Fig. 2b). As a pe-
ripheral, the chip ties into the host
with a straightforward bus inter-
face—a 16-bitdata bus and a 6-bitad-
dress bus to access the internal re-
sources of the PAC1000—and the
standard Chip Select, Read, and
Write control lines. In the standalone
mode, the chip typically runs the ap-
plication program from its internal
memory and uses its 16-bit output
bus and 8-bit I/0 port to control the
application and communicate to a
host system.

To handle multiple operations in
parallel, the chip internally takes ad-
vantage of a long—64-bit—micro-
code word so that each word can con-
trol multiple sections of the circuit-
ry. The on-chip microcode storage
area consists of a fast, reprogram-
mable UV EPROM, organized as 1
kword by 64 bits. Since the EPROM
is read only by the on-chip logic, it
doesn’t need high-current output
buffers, which slow down the memo-
ry access. Thus, the EPROM con-
tents can be read very quickly—the
chip’s 20-MHz version accesses
memory in just 30 ns, well within the
CPU'’s 50-ns instruction cycle time.
The memory is also secure. Users
can program a security bit to prevent
an external system from extracting
the code from the memory array.

Besides its own program memory,
the chip also has a separate address/
data bus that can be programmed for
either 16 or 22 address lines (with 64-
kword or 4-Mword off-chip address-
ing ranges, respectively). The ad-
dress generator for the bus is sepa-
rate from the sequencer that ad-
dresses the program memory. The
PAC1000 can therefore execute a
program while it’s using the address
bus to move data from memory into
the on-chip register file or to an ex-
ternally controlled device.

The address bus, in fact, can serve
as a simple direct-memory-access
controller when used with the on-
chip 22-bit address counter and 16-bit
block counter. This DMA controller
can transfer data from external
memory to the on-chip register file or
to an external device.

An eight-word FIFO register lets
a host microprocessor asynchro-
nously load commands or data into
the controller. The 22-bit word
length in the FIFO register is em-
ployed, so that if data values are to
be loaded into the register file, the
lower 16 bits of the 22-bit word sent
over the host data bus represent the
data, and the next five bits—the low-
er five bits of the host-interface ad-
dress bus—represent the register lo-
cation into which the data will be
loaded (RO to R31). The sixth bit of
the host-interface address bus signi-
fies whether the word loaded into the
FIFO register is a command or data

word. If it’s a command, the lower 10
bits of the host-data bus areusedasa
branch address to one of the 1024
memory locations in the EPROM.

The 10-bit sequencer addresses
the 1,024 words of program memory
and has a 15-level stack that permits
multiple subroutine calls to occur
without forcing the program to go
back to a higher level before calling
the next subroutine. Besides having
more levels in the stack than Wa-
ferScale’s 5910 microsequencer, the
enhanced sequencer block has a 10-
bit loop counter that cuts overhead in
programs for loops and nested loops.
The application program can load the
counter with a constant or a value
calculated in the CPU.

Because programming fast, em-
bedded controllers can get compli-
cated, the company includes on-chip
programming and test features to
ease system development. For start-
ers, a 10-bit breakpoint register sim
plifies real-time debugging. It can be
loaded from either of two sources—a
value stored in a CPU register or a
constant value specified in the pro-
gram memory. When the program
memory address matches the regis-
ter contents, the register issues an
interrupt, which a service routine in
memory could then react to.

Test and CASE logic on the chip
also aids program and hardware
testing. The condition-code logic re-
sponds to 22 different program test
conditions that can be tested for true

Address Address
Microprocessor B w1 Memory
|
_ o | CPY Host and Data
r PACI00 ; | data
Control interface
| Host o | Data-path : : DTta-path
interf element, element,
| interface Control | Control highspesd I LE"_"!'___J____. highspesd
: : processor, | Status/interrupts | processor,
| Status/ | fastbus, etc. L | fast bus, etc.
(a) Peripheral mode interrupts T Standalone mode)

2. MULTIPLE BUSES, AN ON-CHIP ADDRESS GENERATOR, and sequencer blocks let the microcontroller operate as

a memory-mapped peripheral to offload the host microprocessor (a). Or it can be operated as a standalone controller (b).

1-10

Article Reprint

e
COVER: USER-CONFIGURABLE
CONTROLLER

SAMPLE PROGRAM FOR PAG1000 MICROCONTROLLER

/* control memory read/write based on CCO */
segment memcon,
enmem equ h'0002',
dismem equ h'0040°,
wr equ h'0000",
rd equ h'1000°,
start
IF CCO, OUT enmem,
FOR6,AOR = RO + R1,0UTwr,
AOR = AOR +4,0UTrd,
ENDFOR, OUT wr,
ELSE, OUT dismem ,
ENDIF,
end,

/* output control constants *
/* enable memory *
/* store begin addr in AOR and loop */
/* inc addr by 4 and do rd/wr */
/* end loop body i
/* disable mem if CCO 1s not true *

3. THE HIGH-LEVEL LANGUAGE developed by WaferScale employs C-

language-like structures to let designers easily develop complex configuration microcode.

or not-true results. Up to four condi-
tions can be tested simultaneously.
Tests can check for the state of vari-
ous flags or register contents.

The processor handles two types
of CASE operations: standard and
priority. A CASE group consists of a
combination of four test conditions
that can be tested in a single cycle. In
that same cycle, the PAC1000
branches to any one of 16 locations,
depending on the status of the four
inputs to the CASE group being test-
ed. The priority CASE instruction op-
erates on internal and external inter-
rupt conditions and treats interrupts
as prioritized test conditions. The pri-
ority encoder generates a branch to
the highest-priority condition.

Thanks to all its on-chip resources,
the PAC1000 is a powerful one-chip
controller, housed in a windowed, 88-
lead pin-grid-array package or an 84-
lead ceramic leaded chip carrier. An
84-lead plastic leaded chip carrier
package (the one-time-programma-
ble version) is also available. Be-
cause the chip employs an EPROM
to hold the program, revisions to the
code are no more difficult than repro-

gramming a standard EPROM. Pro-
totype systems and production prod-
ucts can benefit from the ability to
revise the code at the last minute.

To alleviate the complexity of mi-
crocode program development, Wa-
ferScale has assembled a series of
PC-hosted system-development
tools (PAC-SDT). These make the
PAC1000 as easy to program as any
one-chip microcontroller. A simple
example of a multiple-command ex-
pression in the C-like language lets
designers combine operations such
as FOR6,AOR=R0+R1,0UT WR
(loop for six cycles, add the contents
of registers R0 and R1 and store the
result in the AOR register, output
the value WR) in one word (Fig. 3).

The toolset has a system-entry lan-
guage, a functional simulator, and a
device programmer (MagicPro). The
system-entry, language software is
the most critical part. The high-level
language uses a structure similar to
C’s and practically eliminates writ-
ing routines in machine or assembly
code. But designers who are more
comfortable working on that level
can write machine-code routines.(J

1-12

Product Selector Guide

=i February 1992

PROGRAMMABLE PERIPHERALS

SINGLE-CHIP CMOS USER-CONFIGURABLE PERIPHERAL WITH MEMORY — COMMERCIAL & MILITARY

Speed (ns) Availability Package Selection
Part No. Description Comm’l Military Samples Prodn J L Q@ X
PSD301 Programmable Microcontroller 120 NOW Q1 ‘92 i . L
Peripherals with Memory, 150-200 NOW NOW i L . i
x8/x16, 256Kb — 1Mb EPROM; 200 NOW . .
PSD311 16K SRAM, PAD, System 120 NOW Q1'92 . . .
Features. 150-200 NOW Q192 L
200 Q1'92 . M
PSD302 120 NOW Q1'92 . .
150-200 NOW Q1'92 . .
PSD312 120 NOW Q1'92 . .
150-200 NOW Q1'92 . .
PSD303 120 Q1'92 Q1'92
150-200 Q1'92 Q1'92
PSD313 120 Q1'92 Q1'92
150-200 Q1'92 Q1'92
MAP168 DSP Peripheral with Memory Features. 45-55 NOw NOW o L . 4
128K Bits EPROM, 32K Bits SRAM 55 NOW . .
Programmable Address Decoder (PAD)
Configurable. x8 or x16

HIGH-PERFORMANCE CMOS USER-CONFIGURABLE EMBEDDED CONTROLLER -

COMMERCIAL & MILITARY
Speed (ns) Availability Package Selection
Part No. Description Comm’l Military Samples Prodn Q X V
PAC1000 Programmable Peripheral Controller 12MHz NOW NOW . i .
optimized for High-Performance Control 12MHz NOw NOW . .
Systems Key Features Include. 16MHz NOwW NOW o i

16-Bit CPU, 16-Bit Address Port, 16-Bit
Output Control, 8-Bit I/O Port and
Configuration Registers

HIGH-PERFORMANCE CMOS USER-CONFIGURABLE MICROSEQUENCER/STATE MACHINE -

COMMERCIAL & MILITARY
Speed (ns) Availability Package Selection
Part No. Description Comm’l Military Samples Prodn J L s T
SAM448 User-Programmable Microsequencer 20-25MHz NOwW NOwW * . * b
for Implementing High-Performance 20MHz NOw NOW . hd

State Machines. Includes EPROM
integrated with Branch Control Logic,
Pipeline Register, Stack and Loop
Counter and 768 Product Terms

*Jand S packages not available in 25MHz

1-13

Product Selector Guide

SOFTWARE DEVELOPMENT TOOLS t

Part No. Includes Availability
PSD - GOLD Contains PSD301/MAP168 Software, Users Manual, NOW
WS6000 MagicPro (PC Based Programmer), WS6014(J/L)
or WS6015(X) Adapter and 2 Sample Devices
PSD - SILVER Contains PSD301/MAP168 Software and Users Manual NOW
PAC1000 - GOLD Contains PAC1000 Software, Users Manual, NOW
WS6000 MagicPro (PC Based Programmer), WS6010 (X)
Adapter and 2 Sample Devices
PAC1000 - SILVER Contains PAC1000 Software and Users Manual NOW
SAM448 - GOLD Contains SAM448 Software, Users Manual, NOW
WS6000 MagicPro (PC Based Programmer), WS6008(T)
or 6009(C,J,L) Adapter and 2 Sample Devices
SAM448 - SILVER Contains SAM448 Software and Users Manual NOW
MEMORY - SILVERtt Contains WSI EPROM/RPROM Programming Software NOW

and Users Manual

1 1) All Development Systems include: 12 Month Software Update Service, access to WSI's 24 Hour Electronic Bulletin Board.
2) Package adaptor must be specified when ordering any “Gold” system

1t 1) Memory-Silver is included in all development systems.

NON-VOLATILE MEMORY
CMOS PROMs - COMMERCIAL

Package Selection

Part No. Architecture Description Speed (ns) J L P S
WS57C191B 2K x 8 16K CMOS PROM 35-55 . .
WS57C291B 2K x 8 16K CMOS PROM 35-55 .
WS57C45 2K x 8 16K CMOS Reg. PROM 25-35 .
WS57C43B 4K x 8 32K CMOS PROM 35-70 . .
WS57C49B 8K x 8 64K CMOS PROM 35-70 . .
WS57C49C 8K x 8 64K CMOS PROM 35-70 . .
WS57C51C 16K x 8 128K CMOS PROM 35-70 o e
WS57C71C 32K x 8 256K CMOS PROM 45-70 LI
CMOS PROMs — MILITARY

DESC Package Selection
Part No. Architecture Description Speed (ns) SMD D F H K T
WS57C191B 2K x 8 16K CMOS PROM 4555 . L
WS57C291B 2K x 8 16K CMOS PROM 45-55 . .
WS57C45 2K x 8 16K CMOS Reg PROM 35-45 . LI .
WS57C438 4Kx8 32K CMOS PROM 45-70
WS57C49B 8K x 8 64K CMOS PROM 45-70 . LI
WS57C49C 8K x8 64K CMOS PROM 45-70 . LI
WS57C51C 16K x 8 128K CMOS PROM 45-70 .
WS57C71C 32K x 8 256K CMOS PROM 55-70 .

1-14

Product Selector Guide

NON-VOLATILE MEMORY (Cont.)
HIGH-SPEED CMOS EPROMs — COMMERCIAL

Package Selection

Part No. Architecture Description Speed (ns) D J L T
WS57C64F 8Kx8 High-Speed 64K CMOS EPROM 55-70 LI
WS57C128F 16K x 8 High-Speed 128K CMOS EPROM 55-70 .
WS57C128FB 16K x 8 High-Speed 128K CMOS EPROM 35-45 L
WS57C256F 32K x 8 High-Speed 256K CMOS EPROM 45-70 L .
HIGH-SPEED CMOS EPROMs — MILITARY

DESC Package Selection
Part No. Architecture Description Speed (ns) SMD cC D T L
WS57C64F 8Kx8 High-Speed 64K CMOS EPROM 70 . o e
WS27C64F 8K x 8 Low-Power 64K CMOS EPROM 90 . L
WS57C128F 16K x 8 High-Speed 128K CMOS EPROM 70 . L
WS57C128FB 16K x 8 High-Speed 128K CMOS EPROM 45-55 LI
WS27C128F 16K x 8 Low-Power 128K CMOS EPROM 90 . L
WS57C256F 32K x 8 High-Speed 256K CMOS EPROM 55-70 . L)
WS27C256F 32K x 8 Low-Power 256K CMOS EPROM 90 . L .
CMOS EPROMs — COMMERCIAL

Package Selection

Part No. Architecture Description Speed (ns) D J L
WS27C010L 128K x 8 Low-Power 1 Meg CMOS EPROM 120-150 L
WS27C210L 64K x 16 Low-Power 1 Meg CMOS EPROM 100-200 . . .
CMOS EPROMs — MILITARY

DESC Package Selection
Part No. Architecture Description Speed (ns) SMD cC D L T
WS27C256L 32K x 8 Low-Power 256K CMOS EPROM 120-250 . ¢ e .
WS27C512L 64K x 8 Low-Power 512K CMOS EPROM 120-200 . D .
WS27C010L 128K x 8 Low-Power 1 Meg CMOS EPROM 150-200 . o e e
WS27C210L 64K x 16 Low-Power 1 Meg CMOS EPROM 150-200 L .

Product Selector Guide

CMOS BIT SLICE AND LOGIC
Speed Package Selection
Part No. Description Comm’l Military B G J K L P s Y
WS5901 4-Bit CMOS Bit Slice Processor 32,43 MHz 32,43MHz L .
WS59016 16-Bit CMOS Bit Slice Processor 15 MHz 12 5MHz 4 . 4
WS59032 32-Bit CMOS Bit Slice Processor 264,33MHz 23.6,29 MHz N
WS5910 CMOS Microprogram Controller 20,30 MHz 20,30 MHz b .
WS59510 16K x 16 CMOS Multiplier-Accum 30-50 ns L4 4 .
WS59520 CMOS Pipeline Register Tpd =22ns Tpd = 24ns . .
WS59521 CMOS Pipeline Register Tpd = 22ns Tpd = 24ns . i
WS59820 CMOS Bi-Directional Register Tpd =23ns Tpd = 25ns . .
WSI PACKAGE DESCRIPTIONS
Package Code Description Window Surface Mount Plastic/OTP
BR Ceramic Sidebrazed Dip N/Y N -
C Ceramic Leadess Chip Carrier (CLLCC) Y Y -
Ciz Ceramic Leadless Chip Carrier (CLLCC) Y/N Y -
Dy 0 600" Ceramic Dip Y/N N -
FH Ceramic Flatpack Y/N Y -
J Plastic Leaded Chip Carrier (PLDCC) N Y Y
LN Ceramic Leaded Chip Carrier (CLDCC) Y/N Y -
P Plastic Dip N N Y
Q Plastic Quad Flatpack (PQFP) N Y Y
S 0 300" Plastic Dip N N Y
TK 0 300” Ceramic Dip Y/N N -
\ Ceramic Quad Flatpack (CQFP) Y Y -
X/G Ceramic Pin Gnid Array (CPGA) Y/N N -
WSI REGIONAL HOTLINES
& 73 USA Northwest: Tel: 510-656-5400 Fax: 510-657-5916
- USA Southwest: Tel: 714-753-1180 Fax: 714-753-1179
[y _A— —
=—= =— =— USA Midwest: Tel: 708-882-1893 Fax: 708-882-1881
USA Southeast: Tel: 214-680-0077 Fax: 214-680-0280
47280 Kato Road USA Mid-Atlantic: Tel: 215-638-9617 Fax: 215-638-7326
Fremont, California 94538-7333 USA Northeast: Tel: 508-685-6101 Fax: 508-685-6105
Tel' 510-656-5400 Fax: 510-657-5916 Europe (France): Tel: 33 (1) 69-32-01-20 Fax: 33 (1) 69-32-02-19
800-TEAM-WSI (800-832-6974) Europe (Germany) Tel: (49) 89.23 11.38.49 Fax: (49) 89.23.11.38.11
In California 800-562-6363 Asia (Hong Kong) Tel: 852-575-0112 Fax: 852-893-0678

1-16 PrintedinU S A 2/92 * Revision 8 5

SEESE == i 1
FEE S5 Ordering Information
——F :
= High-Performance CMOS Products
PAC1000 12 D | B
— m—
Basic Part Number .
be Manufacturing Process:
(Blank) = WSI Standard Manufacturing Flow
B = MIL-STD-883C Manufacturing Flow
Operating Temperature Range:
(Blank) = Commercial: 0° to +70°C
Vee: 45V + 5%
| = Industrial: —40° to +85°C
Voo +5V + 10%
M = Military: —55° to +125°C
Vee: +5V + 10%
—— Package: Window
A = PPGA Plastic Pin Grid Array No
B = 0.900" Size Brazed Ceramic DIP No
C = CLLCC Ceramic Leadless Chip Carrier Yes*
D = 0.600” CERDIP Yes
F = Ceramic Flatpack Yes*
G = CPGA Ceramic Pin Grid Array No
H = Ceramic Flatpack No*
J = Plastic Leaded Chip Carrier No*
K = 0.300” Thin CERDIP No
L = CLDCC Ceramic Leaded Chip Carrier Yes*
N = CLDCC Ceramic Leaded Chip Carrier No*
P = 0600" Plastic DIP No
Q = Plastic Quad Flatpack No*
R = Ceramic Side Brazed Yes
S = 0.300” Thin Plastic DIP No
T = 0.300” Thin CERDIP Yes
V = CQFP Ceramic Quad Flatpack Yes
W = Waffle Packed Dice -
X = Ceramic Pin Grid Array Yes
Y = 0.600" CERDIP No
Z = CLLCC No
—— Speed:
-12 = 12 MHz
-16 = 16 MHz
Etc.
*Surface Mount
FESF=

1-18

PAC1000

Section Index

PAC1000

PAC1000 Introduction Programmable Peripheral Controller

PAC1000 Programmable Peripheral Controller

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363.

Programmabhle Peripheral
PAC1000 Introduction

Programmable Peripheral Controller

Overview

The PAC1000 Programmable Peripheral
Controller is the first of a generation of
products intended for applications in high-
end embedded control where high-speed
data processing, interface or control is
needed. The PAC1000 replaces a board
full of discrete components such as
standard logic, FIFO, EPROM for
microcode store, ALU, SEQUENCER,
register files and PAL/PLD/PGA. To
shorten the time-to-market for the system
designer, a high-level software
development language is used. This
contrasts with the myriad state-machine
entry, schematic entry, and place and route
tools that would be needed for a

discrete design using PAL, PLD, PGA or
gate arrays.

The PAC1000 architecture is flexible and
enables the system designer to customize
the PAC1000 to optimize application

performance. The PAC1000 is composed
of three basic sections: a CPU for data
processing, a programmable instruction
control unit that determines the next
address to the microcode store through
polling condition codes or responding to
interrupts, and a host interface to
asynchronously load data from the host.
Registered input/outputs are used to
synchronize with the system.

As a result of integrating logic and EPROM
memory into the PAC1000 and defining a
high-level language for programming both,
time-to-market and board space is reduced
and reliability increased. The PAC1000 is
currently used in applications such as
Intelligent DMA controller, FDDI buffer
controller, Frame buffer controller, LAN
communications controller, disk controller,
and /O controller. For further details on
the PAC1000 see Application Note 10.

PAC1000

Contents

FRALUIES ...ttt ettt v e st e st e et e b s s e s et e st e s e b e st e s et e s e ebeseeresaesbe e senben e e nenaenes 2-3
GENETAl DESCIIPHON ..cviuiiiiieiitcetee ettt b e bbbttt eb et et stesaesbe s st nne s 2-4
ATCHILECIUTAI OVEIVIEWoveviveiiiciieieiite ettt st e bt bbbttt enete e ss e eb e st et ebesae et stennanes 2-6
Operational Modes....... . 2-8
Host Interface........ .29

Data I/O Registers.
Program Counter...
Status Register..
Control Section2-13
Parallel Operations...
Program Memory ..
Security ...occoevrenee ..2-14
15-Level Stack ..
Program Counter...
Loop Counter
Debug Capabilities
Breakpoint Register .. .
Single Step2-15
Condition Codes..........ccccuuee
User-Specified Conditions...
CPU Flagscceevevivnenne ..2-16
FIFO Flags
Stack-Full Flag ..
Interrupt Flag........cocenvviiininicns
Data Register Read Flag. .
CoUNEET FlAG ..o
Case LogiC ...cccevvvvreeieiiiene
Case Instructions.............
Priority Case Instructions .
INEITUPE LOGIC ..t it e e e+ e e e
Interrupt Mask REGISLETcc.oviiiiieeieeieie et
Output Control
Countersc.cceuveeee
AQArESS COUNLETcuiniiiiceriet ettt s bbb
BIOCK COUNTETecveevieeeviace et ae st sesae s sae st s s sseses b s b s s e s s st essns s esrnans
Central Processing Unit
Arithmetic Operations .
LOGIC OPEIAtIONSc.cuimieiiiiiieie ettt ettt s er e s sas s
Shift OPErationscciiiiiiiiicee e
Shift Right
Shift Left
Rotate Operationsccccecevuenne
Multiple Precision Operations
I/O and Special Functions.............
Configuration Registers
Control Register
/0O Configuration Register
Mode Register
State Following Resetccc.c....
Electrical and Timing Specifications
Pin Assignments
Instruction Set Overview ...
System Development Tools ...
Hardware...........ccccceueee
Software . OO
Support...
Trainingccccoceevereeneinenens .
Ordering Information—PAC1000...........ccccoceeueene. .2-47
Ordering Information—System Development TOOIScccccooiiiniincicccc 2-48

2-2

Programmable Peripheral

PAC1000
Programmable Peripheral Controller

Preliminary
Features Q High-Performance Programmable QO Re-Programmable Program Store
Peripheral Controller ~ 1K x 64-Bit EPROM for CPGA
— 16 MHz Instruction Execution, Output Package
Port, and Address Bus — 1008 x 64-Bit EPROM for PQFP
1 Single-Cycle Control Architecture Package
= One Cycle Per Instruction 0 Re-Programmable Program Store
a 16-bit CPU — On-Board 1K x 64-Bit EPROM
— Arithmetic Operations, Logic Q Two Operating Modes 2
Operations, 33 General-Purpose — Host Processor Peripheral or Stand-
Registers Alone Controller
1 Address Generation O Security
— Up To 4 Mbytes Address Space — For EPROM Program Memory
3 High-Level Development Tools — 1 Package Availability
System Entry Language, Functional — 88-Pin Ceramic PGA and 100-Pin
Simulator, and Device Programmer PQFP
Figure 1.
P. 40 1000 Block CK RESET CSRDWR HD[150] HAD[50] Vee
Diagram) A
C%neﬂgg;{::;on l | Host Interface |
Control Section
SecutyBt | 1Kx64EPROM | cPu
Loop Counter
Program Counter
Case Logic le-»{ Block Counter
OLlj.lst:Lt Condlu_t? ;&CO“ Inlt_zr;::pt e Address Counter |
1/0 & Special Address/Data
Function Port Port
, I . =
OUTCNTL{150] CC[7 0] INT[3 0] 1o[7 0] ADD[150]
1738 01
FEs ==

PAC1000

General
Description

The PAC1000 Programmable Peripheral
Controller is based upon an architecture
that enables it to execute complex
instructions in a single clock cycle. Each
PAC1000 instruction can perform three
simultaneous operations: Program Control,
CPU functions, and Output Control, as
shown in Figure 2. The PAC1000 can also
perform address generation or event
counting simultaneously with instruction
execution. The PAC1000 is also capable of
performing a conditional test on up to

four separate conditions and multi-way
branching in a single cycle.

The PAC1000, with its System Development
Tools, matches the development cycle and
ease of use of any standard microcontroller.

The high performance and flexibility of the
PAC1000 were previously available only to
designers who could afford the long develop-
ment cycle, high cost, high power, and large
board space requirements of a building-block
solution (i.e., Sequencer, Microcode Memory,
ALU, Register File, PALs, etc.)

The unique capabilities of PAC1000 are
easily utilized with System development
tools, which include a PACSEL C-like System
Entry Language, a PACSIM Functional
Simulator, and a MagicPro™ Device Pro-
grammer. All System Development Tools are
PC-based and will operate on an IBM-XT,
AT, PS2 or compatible machine. For more in-
formation, contact your nearest WSl sales
office or representative.

Figure 2. Single-
Cycle Control
Architecture

cs RD WR HD[15 0] HAD[15 0]
Host Interface
4
A ”~
<
A A
Condition 8
Codes ~—»
4 Control Unit 28 |
Interrupts ———4p with > CPU
1K x 64 EPROM
Next Instruction 4 4
Definition
L Y \
Instruction Registe!
CLK —— — NP
Control | Output | CPU
CPU Operation
20 Definition
v v
0OC[15 0] 1/0[7 0] ADD[15 0]
Important Features:
« One cycle per instruction
+ 16 MHz instruction execution rate
« Every instruction executes 3 parellel operations (Control, Output, CPU) 1738 02

24

PAC1000

Table 1. Pin - —

Description Signal 10 Description

HD[15:0] /10 Host Data. PAC1000 Data /O Port via the Host Inter-
face. Can also be configured to generate 16-bit ad-
dress or status. Can serve as a general-purpose Data
1/O Port.

HAD[5:0] 110 Host Address. Can be configured to output the lower
six bits of the 22-bit Address Counter; can be used as a
Host Interface function address, or as a general-
purpose 16-bit port.

CcS | Chip Select (active low). Used with RD and WR to
access the device via the Host Interface.
RD I Read Enable (active low). Used with CS to output Pro-

gram Counter, Status Register, or Data Output Regis-
ter to HD[15:0] bus lines.

WR Write Enable (active low). Used with CS to write HD
Bus data via the Host Interface into the PAC1000
FIFO.

CK | Clock.

CC[7:0] | Condition Codes. Condition-code inputs for use with
Call, Jump, and Case instructions.

INT[3:0] | Interrupts. General-purpose, positive-edge-triggered
interrupt inputs.

RESET | Asynchronous Reset (active low). Resets Input/Output

registers and counters, tri-states all I/0, and sets the
Program Counter to 0.

OUTCNTL[15:0] ©O Output Control. User-defined Output Port. May be pro-
grammed to change value every cycle.
ADD[15:0] l{e} Address Port. Outputs data from Address Counter or

Address Output Register when configured as an
output. When configured as an input, reads data to
Address Input Register.

1/0[7:0] l{e} Input or Output Port. Individually configurable bidirec-
tional bus. As simple I/O, outputs come from the 1/0
Output Register, and inputs appear in the 1/O Input
Register. As special I/0 functions, provides status,
handshaking, and serial I/O. Alternatively, these signals
can be used to extend the OUTCNTL or ADD lines.

2-5

PAC1000

Architectural
Overview

The PAC1000 is a programmable
peripheral controller optimized for high-
performance control systems. The primary
architectural elements, shown in Figure 3,
are the Control Section, 16-bit CPU,

Host Interface, 16-bit Address Port, 16-bit
Output Control, 8-bit I/O Port, and
Configuration Registers.

The PAC1000 can be used as a stand-
alone embedded controller or as a
peripheral to a host. In the latter case, the
Host Data (HD) and Host Address (HAD)
buses, together with the CS, RD, and WR
pins allow for direct connection to a host
bus. User-defined commands to the
Control Section or data to the CPU can be
loaded through the Host Interface.

In the stand-alone mode, the Host Interface
ports can be used as additional address, data
or |/O ports using the Data Output Register
(DOR) and Data Input Register (DIR). The
ADD port can be used to generate addresses
through the Address Output Register (AOR)
or the Address Counter. A DMA channel can
be formed on the Host Interface using these
and the Block Counter (BC) register. In
addition, the ADD port can be used as a data
bus or an I/0 port, depending on how the
chip is configured. Each pin in the 1/O port
can be configured individually as input,
output, or special function. The special
functions allow the control of internal .
PAC1000 elements (counters, I/O buffers) by
other board elements.

The 16-bit CPU is highly parallel and can
operate on operands from the 32x16-bit

register file, miscellaneous register (AOR,
AIR, DOR, DIR, Q, etc.), or constants loaded
from the internal program-store EPROM.

The internal and external operations of the
PAC1000 are controlled by the Control
Section. The 16 Output Control (OC) lines
are general-purpose outputs. Each of them
can be changed independently every clock
cycle. They provide a very fast means to
control various processes outside the chip.

In every clock cycle, one instruction is
executed. Each instruction consists of up to
three operations in parallel:

3 Instruction Fetch—the next instruction is
fetched from the 1Kx64 EPROM by the
Program Control.

0 Execution—the CPU executes an instruc-
tion.

3 Output—placed on the Output Control
(OC) lines.

Program flow can be changed through the
condition-code inputs in one clock cycle or
through the interrupt inputs after two clock
cycles. Single-cycle 16-way branches can be
done using the Case instruction, which
samples four condition codes per cycle.
Nested loops and subroutines can be carried
out with the 15-level stack and the loop
counter. The chip configuration can be
changed in any cycle by loading the Configu-
ration Register using the Program Control
instruction portion.

PAC1000

Figure 3.
Detailed
Block Diagram

cs RD WR HD HAD
Host
Interface IHDOE IHADOE
Decoder —" —¥
Decoded 16
Signals 16 6
16 16
DIR DOR SR FIFO (8 x 22)
Data Data
wou orey | omu || e || ersSmmeed | oxglmee | o
Register [¢—— Register 9
l ann lFICD
16 DOR 16 Internal 16
Flags 5
Register
Select
Internal
Control Register
Case Program Counter Signals File +
s Q Regster
15-Level 16
cc Stack ALU
CC Loop CPU
Internal Test Counter
cc
1/0 Contiguration
Internal
INTR Intr Mode
4
—_— —
INTR Control
CLK | Control Unit Configuration Registers
16
Reset
Vee
v 16 16 16 16 6
GND Output Control
= 16
ocC ACH ACL
Swap
Address Address 6
| Register ACEN, Count Count
High Low
16
8 8 AOR
R 10R AR Address TACSZ’Z
| Output
110 110 Address Register
F‘Input Output Input
R J—
egister egister Register {ADOE
AIREN
t o
16
8 ADD
! 1738 03

2-7

PAC1000

Operational The two basic modes of operation for the In the peripheral mode, the host processor
Modes PAC1000 are either as a memory-mapped can asynchronously interface with the
peripheral (Figure 4) or as a stand-alone PAC1000.
controller (Figure 5).
Figure 4.
Peripheral Mode
Address -
Host Processor
' Data Memory
)
Tt [-I
s : vy y PAC1000 : Y
1 -)
' CPU ! Data Path
. Host . Element,
RD 1 Interface 1_Control High Speed
™ 1 Process,
' Control . Fast Bus, Etc.
—_ 1
L WR '
' 1 Status/Interrupts
e e e mmm e mmmm————a- :
1738 04
Figure 5.
Stand-alone Mode
Address . Memory
Vee
: PAC1000 !
| CS) . yy
: CcPU '
& ! Host and ' Data
»! Data [* >
: c | Interface :
— ontro ' Yy
WR : :
. 7y '
[[) Data Path
Element,
Control R High Speed
> Process,
Fast Bus, Etc.
Status/Interrupts
1738 05

PAC1000

Host Interface

The Host Interface section of the PAC1000,
shown in Figure 6, includes the Input Com-
mand/Data FIFO, Input/Output Data Regis-
ters, and the Status Register.

FIFO

When the PAC1000 serves as a peripheral to
a host, the FIFO is used to asynchronously
load commands or data into the PAC1000. In
order to write into the FIFO, TS and WR
must have low-to-high transitions. The
information written into the FIFO is specified
by the 16-bit Interface Data bus (HD) and the
6-bit Host Address bus (HAD). Since the
FIFO is used only to buffer data and com-
mands from a host, it is inoperative when the
PAC1000 is in stand-alone mode.

Bit five of the HAD bus specifies whether the
input to the FIFO is command (HAD5=1) or
data (HAD5=0). HADS5 is connected to the
FICD internal Condition Code that can be
sampled by the Control Section. If a com-
mand is written, then the lower 10 bits of the
HD bus are used as the branch address for
one of the 1024 locations in the Program
Memory EPROM. At that location a user
defined command or subroutine should exist
which executes the needed operation. If the
information is data, then the lower 5 bits of
the HAD bus specify which CPU register is to
be loaded from the HD bus.

This method of operation allows the host to
access the PAC1000 as a memory-mapped
peripheral.

Figure 6.

Host Interface

Architecture

cs RD WR HDI0 15]

Ll e

Host V
Interface f E
Decoder lﬂ'

NN 16

HADI[0 5]
6

N

ACL

Decoded Signals
v 16
6
16 16 16
DIR DOR SR FIFO
Data Data
Input Output r_‘Stalus 8x16 c(’DODmmemd 8 x FE; Register 8x1
Register Register egister and Data ointer
TTTT . T FIORL FIIRl lFICD
16 16 16 5
Internal Flags
4 y

Internal Bus

4
To Register File

1738 06

2-9

PAC1000

Host Interface An example of FIFO usage is shown in and 3 in four consecutive cycles from the
(Con’t) Figure 7. When command or data information next four FIFO locations. If one of the four
is available in the FIFO, the FIFO Output FIFO locations contains a command
Ready (FIOR) interrupt (interrupt 5) triggers. (FICD=1), interrupt level 7 occurs (highest
If the FIOR interrupt is masked, then the level). Loading a command into a CPU or
FIOR status may be polled under program other data register is not allowed. If this
control. If HAD5 equals 1, the branch ad- occurs, FIXP (FIFO exception) will be gener-
dress location specified by MOVE is the ated.
Program Memory Address which contains the £4iowing the execution of this routine, the
user specified instruction or sub-routine Control Section is ready for its next instruc-
which executes the command. A JUMP or tion.
CALL FIFO control instruction performs a . . .
jump or call to the location specified by The FIFO drives three mtern.al flags which
MOVE. If HAD5 equals 0, an RDFIFO can also be programmed to interrupt the
instruction can transfer the FIFO contents PACJEO' They are:
into the register specified by HAD[4:0]. 3 FIIR (FIFO full) and FIXP (FIFO excep-
For further explanation, refer to the diagram tion), which drive INT7.
below. Beginning at the location specifiedby 1 FIOR (FIFO output ready), which drives
MOVE, a user defined program exists which INTS.
is going to load data into CPU registers 0,1,2,
Table 2. ———
Host Interface CS RD WR HAD5 HADI4:0] HDI15:01 Function
Functions 0 1 0 0 Register Data Write data to FIFO
Address
0o 1 0 1 X Command Write command to FIFO
0 0 1 0 00100 X Reset FIFO
0o o0 1 0 00011 X Reset status register
0 O 1 0 00010 Data Read program counter
0 0 1 0 00001 Data Read status register
0 o0 1 0 00000 Data Read data output register
FEESE
S555

2-10

PAC1000

Host Interface Data I/0 Registers the Program Memory address bus. It can also
(Con’t) Input and Output Data Registers are used to be used to drive external memory devices for
communicate with the Host Data (HD) bus. expansion of the Control Port.
CPU Registers may be loaded directly from Status Register
the Data Input Register (DIR) without passing The Status Reai P
- gister (SR), shown in Figure 8,
through the FIFO.hSuSuarly, the P§C1_000 monitors all internal status. Status bits can be
'B%’F?e read via the Data Output Register set only by program execution. The SR can
(): be read or cleared as specified in the Host
Program Counter Interface Functions table.
The Program Counter may be read via the All SR flags are active high (1) and are
Host Data bus. This allows a host to monitor latched at the rising edge of the clock.
Figure 7.
Example of
FIFO Block Host Interface
Diagram and
Usage {}
HAD5 HAD[40] HD[15710)] HD[9 0]
X X X
X X X
Write Pointer A X X X
0 R3 Address | Data to CPU
0 R2 Address | Data to CPU
0 R1 Address| Datato CPU
0 RO Address | Data to CPU
/1_
Read Pointer
FICD to 1 X MOVE N —|
Condition Code
Multiplexer
Command to IHD[9 0] IHD[15 0] Data to CPU
Control Section | when FICD = "0"
when FICD = "1"
IHAD[4-0] > Register Address
to CPU Register
FICD = 1 Command (actually a branch) to the Control Section
FICD = 0 Data to CPU Register 1738 07

2-11

PAC1000

Host Interface STAT11—(DBB) Security Bit, set when STAT4—(S) Sign Bit, set when the most
(Con’t) security is active: significant bit of the result of the previous
1= Security active. CPU operation is negative:
0= No security. 1= Result is negative.
STAT10—WSI Reserved. 0= Resultis positive.
STATO9—(FIXP) FIFO Exception, setwhen ~ STAT3—(STKF) Stack Flag, set when the
the CPU receives a command or Control stack is full:
Section receives data: 1= Stack is full.
1= Command or data received. 0= Stack is not full.
0= No exception occurred. STAT2—(BRKPNT) Breakpoint Flag, set
STAT8—(FIIR) FIFO-Input Ready, set when when the address in the breakpoint
there is at least one vacant location in the register is equal to the EPROM address:
FIFO: 1= Breakpoint occurred.
1= FIFO ready for input. 0= No breakpoint occurred.
0= FIFO not ready for input. STAT1—(BCZ) Block Counter Zero, set
STAT7—(CY) Carry Flag, set when a carry when the counter decrements to all 0s:
(addition) or borrow (subtraction) occurs 1= Block Counter reached zero.
in CPU operations: 0= Block Counter is not zero.
1= Carry occurred. STATO—(ACO) Address Counter Ones, set
0= No carry occurred. when the counter increments to all 1s:
STAT6—(Z) Zero Flag, set when the result of 1= Address Counter reached all ones.
a CPU operation is zero: 0= Address Counter is not all ones.
1= Zero occurred.
0= No zero occurred.
STAT5—(O) Overflow Flag, set when an
overflow occurs during a two’s comple-
ment operation:
1= Overflow occurred.
0= No overflow occurred.
Figure 8.
Status Register MSB LSB
| | Il L Il 1 | | L L 1 1 1 1 1
0o — L— stato
0 Stat1
Reserved Stat2
Reserved Stat3
Stat11 Stat4
Reserved Stats
Stat9 Stat6
Stat8 Stat7

2-12

U
[
i
Iy

PAC1000

Control Section The control section, shown in Figure 9, QO Case Logic
consists of a number of blocks which are O Interrupt Logic
concerned with the sequencing of the control
programs in the PAC1000. These are: 0 Output Control

Each block is described in detail below.

d Program Memory
QO Security Parallel Operations .
O 15-Level Stack The PAC1QOO can perform thrge snmqltane-
ous operations within a single instruction
O Program Counter cycle, as shown in Figure 10. The ability to
3 Loop Counter fetch an instruction from the Program Mem-
Q Breakpoint Register ory, execute it, and output a result within 50
N nsec is due to a highly parallel structure.
1 Condition Codes
Figure 9.
Control Internal Bus
Architecture {
16
Counter
8 o Case
Stack
—>
I Co(;g;tlon Loop | »
(tt]rtenrrr\]al‘\LU) Logic > gg:‘?sl
E | 4 Breakpoint
'"t:'}?“rgg Interrupt —
Internal 4 Logic
Interrupts
Program
Memory
1K x 64 EPROM

Output
Control

!

6
y OC[0 15]

1738 09

=555 2-13

PAC1000

Control Section Program Memory Thereafter, the EPROM contents cannot be
(Con’t) The Program Memory is a 1Kx64 high-speed ~ read externally. When the EPROM is erased,
EPROM. This on-board-memory allows the the security bit is cleared.
PAC1000 to operate in embedded control 15-Level Stack
applications and eliminates the need for The 15-level Stack stores the return address
external memory components. Using an following subroutine calls, interrupt service
erasable memory allows program code tobe 1 tines and the contents of the Loop
modified for debug and/or field upgrades. Counter inside nested loops. When the stack
Th.e Program Memgry |sTﬁassly programmed is full, the STKF condition becomes true, and
using the WS MagicPro™ (Memory and an interrupt (INT7) will occur. The interrupt
PSD Programmer). service routine will overwrite the top of the
Only sixteen Program Memory locations are stack.
resgrved. The regt of_ the 1024 locations are Popping from an empty stack produces the
available for applications. previous top of stack value; pushing on a full
Program memory is segmented as follows: stack overwrites the top of the stack.
Address Function Program Counter
000H Reset pointer program The 10-bit Program Counter (PC) generates
to here sequential addressing to the 1K word Pro-
.] gram Memory. Upon reset the PC is loaded
000H-007H U§gr -Def-' ned : with a 000H. From this point the value of the
Initialization Routine . .
Program Counter is determined by program
008H-00FH Interrupt Vector execution or interrupts.
Locations . . .
] Any JUMP or Case instruction that is exe-
010H-3FFH User-Defined cuted loads the Program Counter with the
Application Programs destination address. CALL instructions or
Upon receiving a reset, the Program Counter interrupts cause PC + 1 to be pushed onto
is forced to address 000H. This location may the stack. The RETURN instruction loads the
contain a jump or call which branches to an Program Counter from the stack with the
initialization routine. Alternatively, the first value of the return address. This value may
eight locations of memory may be used as an have previously been placed on the stack by
initialization/configuration routine. a CALL or interrupt.
Security The PC can also be loaded from the Com-
User programs may be protected by settinga ~ mand/Data FIFO causing program execution
security bit during EPROM programming. Loogfmmence at an address provided by the
Figure 10.
Parallel . .
Operations ' '
: Part of Control Section :
Program
Program Memory
Counter 1K x 64K
EPROM
20 64
Instruction | Output CPU
Fetch Control Instruction
16
28
To th
00[5151 > U 1738 10
FEE ==

2-14

[
Uiy
Uiy
y

PAC1000

Control Section
(Con’t)

Loop Counter
The Loop Counter (LC) has two functions:

3 10-bit down counter that supports the
LOORP instruction.

1 Branch Register that can be loaded from
the CPU Register File or Program
Memory and used as an additional
source of branching to Program Memory.

The LC can be loaded with values up to
1023. Loop initialization code places a value
in LC. Loop termination code tests the
counter for a zero value and then decrements
LC. The loop count can be a constant, or it
can be computed at execution time and
loaded into LC from the CPU. The LC
register can also be used as a CALL or
JUMP execution vector. The content of the
LC is automatically saved on (or retrieved
from) the Stack when the program enters (or
leaves) a nested loop.

A loop count will be loaded into the LC when
a FOR instruction is encountered. This count
can be a fixed value or it can be calculated
and loaded from the CPU. The ENDFOR
instruction will test the Loop Counter for a
zero value. If this condition is not met, then
the LC will be decremented by one. The
program loop will continue until the count
value equals zero. In a nested loop, the FOR
instruction will load a new value to the LC
and push the previous value to the stack.

Debug Capabilities

The PAC1000 provides breakpoint and single
step capabilities for debugging application
programs.

Breakpoint Register

The Breakpoint Register (BR) is a 10-bit
register used for real time debug of the
PAC1000 application program.

The Breakpoint Register can be loaded from
one of two sources, either a constant value
specified in the Program Memory or a calcu-
lated value loaded from the CPU. When the
Program Memory address matches the con-
tents of the Breakpoint Register an interrupt
(INT 8) occurs. A service routine should exist
in Program Memory which then performs the
required procedure.

Single Step

Single step is a debugging mode in which the
currently-executing program is interrupted by
interrupt 6 after the execution of every
instruction. The interrupt 6 service routine
should reside in Program Memory.

Bit 8 in the Mask Register determines
whether the PAC1000 is in a breakpoint
mode (mask-bit 8 equals 0) or in a single step
mode (mask-bit 8 equals 1).

Both breakpoint and single step use interrupt
6. The interrupt 6 service routine will typically
dump the contents of the PAC1000 internal
registers into external SRAM devices for ex-
amination by the user.

Condition Codes

The Condition Code (CC) logic operates on
21 individual program test conditions. Each
condition can be tested for true or not true.
The PAC1000 can also test up to four
conditions simultaneously. For this feature
refer to the section titled Case Logic.

""m

2-15

PAC1000

Control Section
(Con’t)

User-Specified Conditions

User-Specified Conditions are treated in the
same manner as internally generated test
conditions. CCO—CC?7 should be connected
directly to the corresponding PAC1000 input
pins. These signals must satisfy the required
setup time to be serviced in the next cycle.

CPU Flags

CPU flags are internally generated. They
reflect the status of the previous CPU arith-
metic operation. These signals are internally
latched and are valid only for one instruction
(the instruction following their generation).
The flags for arithmetic operations are
defined as follows:

Zero (Z)—The result of the previous CPU
operation is zero (Z=1).
Carry (CY)—The result of the previous CPU

operation generated a carry (addition) or
borrow (subtraction) (CY=1).

Overflow (O)—The previous two’s comple-
ment CPU operation generated an
overflow (O=1).

Sign (S)—The most significant bit of the
result of the previous CPU operation is
negative (S=1).

FIFO Flags

FIFO flags allow the user to synchronize and
monitor the operations that are performed on
the FIFO by the host or by user’s program.

Upon reset the FIFO flags are cleared,
signifying an empty state. The meaning of the
flags are as follows:

FIFO Output Ready (FIOR)—There is at least
one word in the FIFO (FIOR=1).

FIFO Input Ready (FIIR)—FIFO is not full
(FIIR=1). This flag can also be connected
to the host through 1/07.

FIFO Command/Data (FICD)—This flag
indicates if the contents of the FIFO is a
command or a data. This flag is gener-
ated directly from HAD5 (FICD=1 com-
mand, FICD=0 data).

FIFO Exception (FIXP)—This flag indicates
that one of two events occurred: (a) FIFO
data has been read as a command, or
(b) a command has been read as data.

Stack-Full Flag

STACK FULL flag (STKF=1) indicates that
the stack is 15 levels full. This condition will
also generate an interrupt (INT7) if not
masked.

Interrupt Flag

INTERRUPT flag (INTR =1) indicates that
there is a masked interrupt pending. This flag
is cleared when the interrupt is cleared.

Data Register Read Flag

DATA REGISTER READ flag (DOR) is a
handshake flag between the host and the
PAC1000, accessible only to the PAC1000.
The flag is reset (DOR=0) when the
PAC1000 writes into the Data Output Regis-
ter. The flag is set (DOR=1) after the host
has performed a read on the Data Output
Register.

Counter Flag

Counter flags reflect the status of their
respective counters. The PAC1000 utilizes
two counters; the Address (A) counter is a
16/22-bit auto-incrementing up counter; the

Table 3.
Condition-Code
Logic

Test Group Source
User-Specified External

CPU Internal

FIFO Internal
Counters Internal

Stack Internal

Interrupt External/Internal
Data register read Internal

Conditions and Flags
CCo-CC7

Carry (CY), Zero (Z), Overflow (O),
Sign (S)

FIFO Command/Data (FICD), FIFO Output
Ready (FIOR), FIFO Input Ready (FIIR),
FIFO Exception (FIXP)

Address Counter Ones (ACO), Block
Counter Zero (BCZ)

Stack Full (STKF)
Interrupt (INTR) is pending
Data Output Register(DOR) has been read

2-16

PAC1000

Control Section Block (B) counter is an auto-decrementing Case Group 3 (CG3):
(Con’t) 16-bit down counter. The counters’ clock INTR—Interrupt
. Each counter can be individually -
enabled or disabled. When disabled, the FIOR—FIFO output Ready
output retains the last count. The counter FICD—FIFO Command/Data
flags are defined as follows: (The FIXP, ACO, STKF, FIIR, and DOR
ACO—A Counter Ones, set when the A condition codes do not fall into any of the four
counter has reached the value FFFFH, in ~ Case groups.)
the 16-bit mode, or the value 3FFFFFH Priority Case Instructions
in the 22-bit mode. Priority Case instructions operate on the four
BCZ—B Counter Zero, set when the B internal and the four external interrupt inputs.
counter has reached the value 0000H. In this mode of operation, interrupts are
Case Logic trgatfed as priorit_ized test conditions and the
) priority encoder is used to generate a branch
THE PAC1000 hardware implements two to the highest priority condition. The branch
basic types of Case instructions: Case and address is located in one of the nine memory
Priority Case. locations following the Priority Case instruc-
Case Instructions tion. Priorities in this mode of operation are
Case instructions operate on any one of four ~ the same as in the Interrupt mode of opera-
different Case groups. Each Case group tion. Once a Priority Case instruction is
consists of a combination of four test condi- executed, the occurrence of a higher priority
tions which can be tested in a single cycle. In ~ condition will not affect program execution
that same cycle the PAC1000 will branch to until another Priority Case instruction is
one of the addresses contained in the sixteen ~ €xecuted. For a Priority Case instruction to
memory locations following the instruction, be executed, MODEO of the Mask Register
depending on the status of the four inputs to ~ Must be equal to zero (MODEO=0).
the Case group being tested. Interrupt Logic
There are four Case Groups (sets of Case The Interrupt Logic accepts eight inputs, four
Conditions): of them are generated externally and four are
Case Group 0 (CGO0): CCO-CC3. dedicated for internal conditions. The four
) external, user defined, inputs (INTO-INT3)
Case Group 1 (CG1): CC4-CC7. are connected to pins INTO, INT1, INT2, and
Case Group 2 (CG2): INT3. These are positive, rising-edge-
Z—Zero triggered signals that have a maximum
O—Overflow latency of two cycles. Each interrupt has a
S—Sian reserved area in memory that should contain
9 a branch to an interrupt service routine.
CY—Carry
Table 4.
Interrupt Interrupt Priority Effect Trigger Condition Reserved Address
Assignments INT7 Highest Internal FIXP+ACO+STKF+FIIR 00FH
INT6 Internal BRKPT 00EH
INT5 Internal FIOR 00DH
INT4 Internal Software Interrupt (SWI) 00CH
INT3 External INT3 00BH
INT2 External INT2 00AH
INT1 External INT1 009H
INTO Lowest External INTO 008H

2-17

PAC1000

Control Section Clearing a serviced interrupt is performed When the PAC1000 is reset,the Mask Regis-
(Con’t) automatically. When the interrupt is serviced, ter will mask all interrupts and the Mode
the internally generated vector is decoded to Register will select the non-interrupt mode.
clear the serviced interrupt. In addition, the To select the interrupt mode the MODEO bit
user can clear any pending interrupt by using (see Configuration Register section in this
the Clear Interrupt Instruction (CLI). document) should be set to 1 (MODEO=1).
Interrupt Mask Register Mask8 is used to select INT6 to be either a
The Interrupt Mask Register, shown in Figure ~ Single-step interrupt (when Mask8=1) or a
11, allows individual interrupts to be masked. ~ breakpoint interrupt (when Mask8=0) .See
Setting a Mask Register bit to a 1 masksthe the section on Debug Capabilities for further
associated interrupt. To unmask an interrupt, ~ details.
the appropriate Mask Register bit must be
reset to 0.
Table 5.
Interrupt Interrupt Triggered By
Definitions INT7 FIFO Exception (FIXP)
Address Counter contains all Ones (ACO)
Stack Full (STKF)
FIFO Full (Not FIFO Input Ready, FIIR)
INT6? Breakpoint or Single Step occurrence
INT5 FIFO Output Ready (FIOR)
INT4 Always pending; triggers when unmasked by program execution
INT3 User-defined
INT2 User-defined
INT1 User-defined
INTO User-defined
Notes:
1. The INT7 interrupt handler checks the source of the interrupt by testing the condition code.
2. See Interrupt Mask Register, Mask8.
Figure 11.
Interrupt Mask MSB LSB
Register
1 | | | l 1 Il 1
Masks — L — Masko
Mask7 Mask1
Mask6 Mask2
Mask5 Mask3
Mask4
Status After Reset
L 1 1 1 | 1 1 | |
0o— L
1 1
1 1
1 1
1 1738 11

2-18

PAC1000

Control Section Output Control OUTCNTL Operation places this value on the
(Con’t) The Output Control bus (OUTCNTL) consists ~ Output Control bus. The OUTCNTL Opera-
of 16 latched Output Control signals. These ~ tion can be performed in parallel with any
signals can be changed on a clock to clock other PAC1000 instructions.
basis. For every Program Memory location The OUTCNTL bus can be used to control
there is a dedicated field which specifies the external events on a clock to clock basis.
value of the Output Control bus. The
Counters The PAC1000 contains a 16 or 22-bit Ad- until the counter is loaded with a new value.
dress Counter and a 16-bit Block Counter. The counter will continue to count until
Each of these counters can change counton disabled. ACO is a condition code and a
a clock to clock basis or can be internally or member of a Case Group; see the Control
externally enabled or disabled on a clock to Section description for more details. ACO can
clock basis. These counters are in additionto also generate an internal interrupt 7, if
the Loop and Program Counters of the enabled.
Control Section. In the 16-bit mode, the counter outputs (ACH)
Address Counter are available through the ADD bus. The
The Address Counter (AC), shown in Figure ~ count s gated to the ADD bus by setting the
12, is a 16- or 22-bit ascending counter that ~ ASEL bit (CTRL9) of the Control Register.
can be loaded or read by the CPU and In the 22-bit mode, the higher 16 bits (ACH)
enabled/disabled with the ACEN bit of the are available through the ADD bus and the
Control Register. (This control is also avail- six low order bits (ACL) are available through
able externally through the 1/01 pin; see 1/0 the Host Address (HAD) bus. These low
and Special Functions). While enabled, the order bits are multiplexed with the host
counter will increment by one every rising address lines. The address lines from the
edge of the clock. host which drives the HAD bus must be
The ACO flag indicates that the value of the ~ Placed in the high impedance state before the
counter is all ones. This flag stays latched lower 6-bits (ACL) of the Address Counter
can be read.
Fiy ure 12. Internal Bus
Address and :
Block Counter
16 16 16 16 16 6
BC ACH ACL
T, Coumer Swap IACEN | Address | Address | aGgon
— Count Count |e——
High Low
16 AOR
AIR
Agdtr:jts } 6
4 u
Ar‘j:prstss Register
Register to HAD in
¢ Host Interface
AIREN
MUX -~
ASEL
V A IADOE
¢ JADCE
16
ADDI0 15] 1738 12
1£55%

2-19

PAC1000

Counters
(Con’t)

Selecting the 16- or 22-bit count mode is
performed by setting or resetting the ACS22
bit in the I/0O Configuration Register.

The address Output Register is an alternate
source of address outputs; it is selected by
resetting the ASEL bit of the Control Regis-
ter. In this mode the CPU can be used to
provide address generation and the Address
Counter can be used as an event counter.

Block Counter

The Block Counter (BC) is a 16-bit down

counter. It is enabled by the BCEN bit of the
Control Register. It is useful as a counter for
DMA transfers. The BCEN signal is (option-

ally) available externally through the 1/00 bit
(see I/O and Special Functions). While
enabled, the counter will decrement by one
every rising edge of the clock. The BCZ flag
indicates that the counter reached the zero
value. After the occurrence of an all Os
condition the Block Counter will continue
down counting until disabled. The flag is
latched and can be cleared by loading a new
value into the Block Counter. BCZ is a
condition code and a member of a Case
Group; see the Control Section description
for more details.

Both counters may be read without disabling
the count operation and loaded via the CPU.

Central
Processing Unit

The CPU, shown in Figure 13, performs
16-bit operations in a single clock cycle. It
contains 33 general purpose registers
(R0...R31, and Q). The Q register can be
used in conjunction with any of the R0...R31
registers to perform double precision shift

wy
iy
iy
!l

2-20

operations. The main building blocks are the
register bank (R0...R31), Q register, ALU,
Y-bus devices, and D-bus devices. The
register bank supplies up to two 16-bit
registers, one of which is always the destina-
tion register.

PAC1000

Figure 13.
CPU Block e a
2 | |
Diagram | |
1 I
| o |
I - — E o (o s g lo |
X Z Flag Z Flag =21(8] |. s t k] |
| CYFlag CY Flag » |C|z|F | |6 |0 |N |
I |
| Sign Flag | Sign Flag L MUX J |
I____0" M| RusB RLSB [M|e 0" L !
| wgn L)é R Shifter l).: P |
| russ RAMSB ~aMsBy |
| |
| __QLsB < OMSB |
: SDATM | SDATL 5 :
o E=S
I = s |« 1
5 %}
| k7 le] |
1 A P Qle |
o«
|| IN (B) 5 :
| a F LaLsB |
egister
I CLK—* Bank I
| (R31/R0) |
| r |
| A B |
| | L MUX 1 |
| 2 |
I ‘ 1 LR 2lo|a c|®lo I
! [MUX | S22l |Llsk = !
I a5l lols 5 In i
| 0 |
| je—— |
M P
| 1 |
| Status u |
| Register, X Cout CPU |
Condition
: Codes :
| I
| 1
____________ e e —— 2
/0 art of Host
| A l | r_’ Bus : Control Section : Interface
1 | MUX I |
N R —— F IOR] II b LC —i—:bControl DOR
r—— I | E— _f R 4
—-»>
I on | YBus ‘ ‘)
ACL I ACH (1 |; BC |
ADD SWAP [>
Bus
A
et —> 5
A D Bus A A A
4 f t 4 # Constants
|t Sy |
r FIFO | t> DIR | I> AR ' I> IR I Il Program !
| Memory |
| |
f f 1 =
Host Host ADD /0 | Control Section |
Interface Interface Bus Bus Lo __ | 1738 13

2-21

PAC1000

Central . The ALU operates on up to two external latched carry-out (adequate for multiple
Processing Unit operands that are selected by its input MUX. precision operations).
(Con’t) In every instruction, 1 of the 10 D-bus de- The ALU’s output or a selected register can
vices (AOR, SWAP, ACL, ACH, BC, FIFO, be loaded into one of the seven Y-bus
DIR, AIR, ||R, and 'Program Store) ora . devices (|OR, AOR, LC, DOR, ACL, ACH, or
member of the register bank or the Q register gc) eyery instruction cycle. This can happen
outputs, can be selected as an operand in parallel with the feedback path from the
source to the ALU. The possibilities are ALU's output that is directed either to the Q
shown in Figure 14. During ALU operations, register or to the destination register of the
three options can be selected to provide the register bank.
carry-in (Cin) input: 0, 1, or the previous
Figure 14.
CPU Sources and Source Only Source or Destination Destination Only
Destinations o 1 DOR
RO thru R31
DIR LC
Q
AR
BC
SWPV
AOR IOR
<constant>
ACH
IR
ACL
1738 14
Table 6.
CPU Operand Mnemonic Description
Mnemonics ACH or ACH/ACL 16- or 22-bit Auto-incrementing Counter, or General Purpose
Registers
AIR Address Input Register
AOR Address Output Register
BC Block Counter (16-bit auto-decrementing), or General Purpose
Register
<constant> Constant values in Program Storage
DIR Data Input Register
DOR Data Output Register
FIFO Input Data from FIFO
IIR 1/0 Input Register
IOR 1/0 Output Register
LC Program Loop Counter
Q 16-bit CPU Register
R0-R31 16-bit CPU Registers
SWPV Byte Swap version of AOR

2-22

PAC1000

Central . CPU operations can be performed on one, either left or right.
Processing Unit two or tljree qperands. Each operation is per- The GPU can perform the following shift
(Con’t) formed in a single clock cycle. In two- or operations:
three-operand instructions, one of the oper- . . . "
ands must be a CPU internal register 1 Single-precision, left or right, within a
(RO...R31, or Q) general-purpose register (RO...R31,
' ’ Q).
CPU operations are performed independently or Q) . .
of operations in the counters, Host Interface, =~ - Double-precision, left or right, between
Output Control, and Program Control. an RO...R31 register and the Q register.
Arithmetic Operations Thg LSB and MSthOfd tge gene_zril-rt)urpose
The CPU can perform the following arithme- ;?S:tsit?;i:rre each fed by an eight-to-one
tic operations: P ’]
O Addition The sources and destinations for shift opera-
itio . tion are given below:
O Subtraction Shift Right
Q Increment Zero Flag (2)
Q Decrement Carry Flag (CY)
D Compare Sign Flag (S)
Logic Operations Binary 0 (0)
The CPU can perform the following logic Binary 1 (1)
operations:
O AND Least-significant bit of this register (RLSB)
O OR Least-significant bit of the Q register (QLSB)
a Invert Serial I/0 port (SDATM)
1 Exclusive OR ;mﬂ L:(t @
ero Fla
0 Exclusive NOR c Fi g oy
r
Shift Operations sa ryFl agé)
Single shift operations, shown in Figure 15, fgn ag (S)
can occur either to the left or to the right, with ~ Binary 0 (0)
or without the Q register. Shift instructions Binary 1 (1)
zgﬁzgéémzic;u:gg;ttgg are shifted into the Most-significant bit of this register (RMSB)
All shift operations can be executed in the Most-significant bit of the Q register (AMSB)
same clock cycle as an arithmetic or logic op- Serial VO port (SDATL)
eration. The arithmetic or logic operation is
executed first; the result is shifted and then
stored in the register file. The shift can be
Figure 15.
Shift Operations 8

Shift Single Precision Left/Right

Shift Double Precision Left/Right

Shift Double Precision Left/Right
1738 15

2-23

PAC1000

Central Rotate Operations Multiple Precision Operations
Processing Unit The CPU can perform the following rotate op- The carry-out in each instruction can be used
(Con’t) erations, as shown in Figure 16: in the next instruction for multiple precision
Q Single-precision, left or right, within a operations (e.g., ADDC). This feature en-
general-purpose register (RO...R31, ables the user to implement complex arith-
or Q). metic operations such as division or multipli-
ion in I clock cycles.
3 Double-precision, left or right, between cation in several clock cyc
an RO...R31 register and the Q register.
Figure 16.
Rotate Operations | |
Single Precision Rotate Right/Left Double Precision Rotate Right/Left
1738 16
o am_l Special The I/O bus, shown in Figure 17, consists of function control is shown in the accompany-
Functions eight lines which can be individually pro- ing table.

grammed as inputs or outputs. These lines
can also be programmed to perform Special
Functions. The functions of these pins are
defined by the Mode Register and 1/0 Con-
figuration Register (see Configuration Regis-
ter Section). The I/O and Special Functions
map according to the table. The I/O lines
must first be configured as inputs or outputs
via the I/0O Configuration Register; the
Special Function option can then be enabled
via the Mode Register. Individual special

2-24

i

hy

[
L

Once a Special Function has been enabled,
the corresponding internal control function is
automatically disabled. Conversely, when a
Special Function is disabled, control of the
corresponding internal control function is
returned to the Control Register (see Con-
figuration Register). Because the Inputs in
the I/O Register are clocked on each cycle,
the status of the special function can also be
read to the CPU.

PAC1000

Figure 17.
1/0 and Special
Function Bus

MODE 8
1107
S
A
Q
N FIR
MUX
10CG7
MUX
1106 B ADOE
< L
CNTL4 A
(ADOE) s
MODE 7
10CG6 l——<
MUX
vos B ol TFAADGE
CNTL3 A >
4 (HADOE) S
(9]
i
=3
3 MODE 6
&
10CGS5 I—J &
MUX
1104 B ol _THDGE
CNTL2 A T
(HDOE) s
2
E IR g
3 ——D MODE 5
5 cK
10CG4 &
3
SDATM _
QMSB
CLK
10CG3
MODE 4
1102 o
' 1 SDATL _
o
B -
a aLss
A
MUX
10CG2
1 B MUX
o ol _IACEN
CNTLO
(ACEN) A s
MODE 3
10CG1
MUX
1/00 B
L‘ CNTL1 o —2CE
CK | @ceny™A s
Q D ,L
IOR
MODE 2

10CGO

LOWER 8-BIT CPU
Y BUS

1738 17

2-25

PAC1000

Configuration The Configuration Registers allow the user to Control Register
Registers control and configure different operating The Control Register, shown in Figure 18,
modes of the PAC1000. The three 10-bit provides for internal control of key functions
Configuration Registers are the Control within the PAC1000 . Several of these
Register, I/0 Configuration Register, and functions can alternatively be controlled
Mode Register. Each register has an associ- externally through the I/O bus (see I/O and
ated instruction which allows individual Special Functions). The Control Register is
register bits to be modified. modified on the falling edge of the clock.
Table 7.
1/0 Pins and Pin Special Function Direction Description
Special Functions 1107 FIR output FIFO Input Ready. FIFO not full.
/06 ADOE input Address Output Enable
1/05 HADOE input Host Address Output Enable
1104 HDOE input Host Data Output Enable
1/03 QMSB bidirectional Q Register MSB
1102 QLSB bidirectional Q Register LSB
/01 ACEN input Address Counter Enable
1100 BCEN input Block Counter Enable
Table 8.
Special-Function Special Function ~ Pin Name 1/0 Configuration Mode
Control FIIR 1107 IOCG7=1 (output) MODE8=1
ADOE 1106 10CG6=0 (input) MODE7=1
HADOE 1/05 10CG5=0 (input) MODE6=1
HDOE 1104 I0CG4=0 (input) MODES5=1
QMSB 1/03 I0CG3=1 (output)
I0CG3=0 (input) MODE4=1
QLsB 1102 I0CG2=1 (output)
I0CG2=0 (input) MODE4=1
ACEN 1101 I0CG1=0 (input) MODE3 =1
BCEN 1/00 I0CGO0=0 (input) MODE2 =1

2-26

PAC1000

Configuration ASEL (CTRL9)—Address Select. Selects the ~ ADOE (CTRL4)—Address Output Enable.
Registers source that will write to the Address bus: Selects direction of Address bus (ADD)
(Con’t) 1= Address Counter. for next clock cycle:
0= Address Output Register (AOR). 1= Output (see ASEL).
AIREN (CTRL8)—Address Input Register 0= Input (see AIREN).
Enable. Enables and disables writing to HADOE (CTRL3)—Host Address Output
the Address Input Register from the ADD Enable. Selects direction of Host Address
Port: (HAD) bus for next clock cycle:
1= Enable writing to Address Input 1= Output (driven from ACL Register).
Register (AIR). 0= Input (into the FIFO).
0= Disable writing to Address Input HDOE (CTRL2)—Host Data Output Enable.
Register (AIR). Selects Direction of Host Data (HD) bus
DIREN (CTRL7)—Data Input Register for next clock cycle:
Enable. Enables and disables writing to 1= Output (See HDSELO and HDSEL1).
the Data Input Register (DIR) from the
HD Port: 0= Input (See DIREN).
1= Enable writing to Data Input Register ~ BCEN (CTRL1)—Block Counter Enable.
(DIR). Enables and disables Block Counter:
0= Disable writing to Data Input Register 1= Enable Counting on next rising clock
(DIR). edge.
HDSEL1 (CTRLS6) and HDSELO (CTRL5)— 0= Disable Counting on next rising edge.
Host Data Select. Select the source to be ACEN (CTRLO)—Address Counter Enable.
connected to Host Data (HD) bus: Enables and disables Address Counter:
HDSEL1 HDSELO Selection 1= Enable Counting on next rising clock
(CTRL6) (CTRLS) edge.
0 0 FIFO— 0= Disable Counting on next rising clock
Peripheral edge.
Mode
0 1 Data Output
Register
1 0 Status
Register
1 1 Program
Counter
Figure 18.
Control Register MSB LSB
1 - | I 1 |

I 1 1
CTRLO (ASEL) —
CTRL8 (AIREN)
CTRL7 (DIREN)
CTRL6 (HDSEL1)

L CTRLO (ACEN)
CTRL1 (BCEN)
CTRL2 (HDOE)
CTRL3 (HADOE)

CTRL5 (HDSELO)

Note: After Reset, All Bits Are Cleared to Zero.

CTRL4 (ADOE)

1738 18

171 41

2-27

PAC1000

L‘on{iguratian 1/0 Configuration Register I/05 (I0CG5)—Selects direction of 1/05 pin:
39953‘9’3 The I/0 Configuration Register, shown in 1= Output.
(Con’t) Figure 19, controls the direction of the 0= Inout
individual lines of the I/O bus as well as con- = ‘nput. o)
figuring the Address Counter. Each I/O pin I/04 (I0CG4)—Selects direction of 1/04 pin:
can be configured independently to be a 1= Output.
general purpose input or output, or each can 0= Inout
serve a special function (see I/0 and Special = Input. o]
Function). The I/O Configuration Register is 1103 (I0CG3)—Selects direction of I/03 pin:
also used to configure the Address Counter 1= Output.
as a 16-bit counter with a maximum count of 0= Inout
FFFFH or as a 22-bit counter with a maxi- = ‘nput. o)
mum count of 3FFFFFH. The I/0O Configura- 1/02 (I0CG2)—Selects direction of 1/02 pin:
tion Register is modified on the falling edge 1= Output.
of the clock.
s ca 0= Input.
ACS22 (I0CG9)—Configures Address . S -
Counter as a 22- or 16-bit counter: 1101 (I0CG1)—Selects direction of /01 pin:
1= 22-bit counter. 1= Output.
0= 16-bit counter. 0= Input. o _
107 (I0CGT7)—Selects direction of 1107 pin: /OO I0CGO)—Selects direction of I/00 pin:
1= Output. 1= Output.
0= Input. 0= Input.
1/06 (I0CG6)—Selects direction of /06 pin:
1= Output.
0= Input.
Figure 19.
1/0 Configuration MSB LSB
Register [
Il 1 1

! Il 1 Il Il

I0CGe (ACS22) —
I0CG8 (Reserved)
IocG7 (I07)
locGe (106)
I0CG5 (1/05)

L— 1occo (100)
I0CG1 (101)
I0CG2 (I102)
I0CG3 (1/03)

I0CG4 (1/04)

Note: After Reset, All Bits Are Cleared to Zero.

1738 19

2-28

S ox

PAC1000

Configuration
Registers
(Con’t)

Mode Register

The Mode Register, shown in Figure 20,
aliows the user to externally control and
monitor key elements within the PAC1000
which would (alternatively) be controlled
internally through the Control Register.
Enabling a Special Function in the Mode
Register disables the corresponding function
in the Control Register. The Special Function
input pins are shared with the general
purpose I/O pins. The direction of the appro-
priate pin must be set in the /O Configuration
Register prior to programming the Mode
Register.

The Mode Register can also be used to reset
the FIFO as well as program the interrupt
controller to generate either interrupts or
Priority Test Conditions. See the discussion
on “Priority Case” in the Condition Code
section, above.

After Reset, all Mode Register bits equal
zero. The Mode Register is modified on the
falling edge of the clock.

The use of the Mode Register and 1/0
Configuration register for Special Functions
is shown in the Special Function Settings
table.

FIRST (MODE9)—FIFO Reset. (If held high,
FIFO cannot receive information):

1= Initiate FIFO Reset (FIRST).
0= Complete FIFO Reset (FINRST).
FIIR (MODES8)—FIFO Input Ready:

1= 1/0O7 becomes output for the FIFO
Input Ready (FIIR) flag.

0= 1/O7 becomes general purpose I/O
(107).

ADOE (MODE7)—Address Output Enable:

1= 1/06 becomes input for the Address
Output Enable (AOE).

0= 1/06 becomes general purpose 1/O
(108).

HADOE (MODE6)—Host Address Output
Enable:

1= 1/O5 becomes input for Host Address
Output Enable (HADOE).

0= 1/O5 becomes general purpose I/0
(106).

HDOE (MODES)—Host Data Output Enable:

1= 1/04 becomes input for Host Data
bus Output Enable HDOE).

0= 1/0O4 becomes general purpose /O
(104).

SIOEN (MODE4)—Serial I/O Enable:

1= 1/083 and /02 become MSB and LSB
(respectively) of the CPU’s Q register
(SIO).

0= 1/03 and 1/02 become general
purpose /O ACEN(MODES3).

ACEN (MODE3)—Address Counter Enable:

1= 1/0O1 becomes input for Address
Counter Enable (ACEN).

= 1/01 becomes general purpose I/O.
BCEN (MODE2)—Block Counter Enable:

1= 1/00 becomes input for Block Counter
Enable (BCEN).

0= /00 becomes general purpose 1/O.
Reserved (MODE1)

INTR (MODEO)—Interrupt/Priority-Case
Mode:

1= Select Interrupt mode (INTR).
0= Selects Priority Case mode (PCC).

Figure 20.
Mode Register

LSB

MSB
[1 1
MODE9 (FIRST) —
MODE8 (FIIR)
MODE7 (ADOE)
MODES (HADOE)
MODES5 (HDOE)

1

L MODEO (INTR)
MODE1 (Reserved)
MODE2 (BCEN)
MODE3 (ACEN)

Note" After Reset, All Bits Are Cleared to Zero

MODE4 (SIOEN)

1738 20

y
|
|

|
Ll

iE

|

2-29

PAC1000

State Following Whenever the PAC1000 RESET input is tables describe the PAC1000 signal and
Reset driven low for at least two processor clocks, internal register states following reset.
the chip goes through reset. The next two
Table 9.
Special Function Mode Bit 1/0 Configuration Bit Function
Settings MODEB8=1 IOCG7=1 FIIR flag output on /07
MODE7=1 10CG6=0 ADOE provided by /06
MODE®6=1 10CG5=0 HADOE provided by 1/05
MODE5=1 10CG4=0 HDOE provided by 1/04
MODE4=1 10CG3=1 MSB of Q register output on 1/03
MODE4=1 10CG3=0 1/03 can be shifted into MSB of Q register
or destination register
MODE4=1 I0CG2=1 LSB of Q register output on 1/02
MODE4=1 10CG2=0 1/02 can be shifted into LSB of Q register
or destination register
MODE3=1 I0CG1=0 ACEN provided by 1/01
MODE2=1 I0CG0=0 BCEN provided by 1/00
Table 10.
Signal States Signal Condition
Following Reset HAD[5:0] Input
HD[15:0] Input
10[7:0] Input
ADD[15:0] Input
OC[15:0] 0000H
FESES=
==

2-30

PAC1000

Table 11.
Internal States
Following Reset

Component

ACH Register

ACL Register

AOR Register

AIR Register

DOR Register

DIR Register

IOR Register

IR Register
STATUS Register
1/0 Configuration Register
CONTROL Register
Breakpoint Register
Mode Register

PC Register (Program Counter)
MASK Register

BC Register
R31-R0 Registers
Q Register

LC Register

FIFO Locations
FIFO Flags

Contents

O O O 0O 0O O O O O o o o O o

011111111B
FFFFH
Unknown
Unknown
Unknown
Unknown
Empty

2-31

PAC1000

Electrical and Timing

Specifications

Table 12.

Absolute Storage Temperature —-65°C to +150°C

Maximum Ratings Voltage to any pin with respect to GND -0.6Vto +7V
V., With respect to GND -0.6 Vto +14.0V
ESD Protection >2000V

Stresses above those listed here may cause
permanent damage to the device. This is a
stress rating only and functional operation of
the device at these or any other conditions
above those indicated in the operational

sections of this specification is not implied.
Exposure to absolute maximum rating
conditions for extended periods of time may
affect device reliability.

Table 13.
Operating Range Range Temperature v,
Commercial 0°Cto+70°C +5V +£5%
Industrial —40°C to +85°C +5V £ 10%
Military -55°C to +125°C +5V £ 10%
Table 14.
bDC Parameter Symbol Test Conditions Min Max Units
Characteristics Output Low Voltage v, l,,=8 MA 04 V
mferaperaﬂnyranye Output High Voltage Vv, lo=—4 MA 24 \
with V=V, OH OH
V. Standby
Current CMOS [note 1 65 mA
V. Standby
Current TTL lsgo note 2 65 mA
Active Current (CMOS) loes notes 1, 3
—Commercial 130 mA
—Military 150 mA
Active Current (TTL) loca notes 2, 3
—Commercial 160 mA
—Military 180 mA
V. Supply Current lop Vee=Vee 100 pA
V., Read Voltage Vep notes 1, 2 Ve —0.4 Voo V
Input Load Current I, V,=5.5V
or GND -10 10 pA
Output Leakage Current lo Vour=5.5V
or GND -10 10 pA

Notes:

1. CMOS inputs: GND £ 0.3V or V

cC —

2. TTL inputs: V, 0.8V, V> 2.0V.

L=

H=

+0.3V.

3. Active current is an AC test and uses AC timing levels.

2-32

PAC1000

Table 15.
AC Timing Levels Inputs: 0 to 3V Reference 1.5V
Outputs: 0.4to 2.4V
Table 16.
AC Parameter Symbol 12MHz? 16MHz2
Characteristics Min Max Min — Max
CLOCK CYCLE
Clock Time tek 84 62.5
Clock Pulse Width High tekH 29 25
Clock Pulse Width Low L 29 25
HOST READ CYCLE
Read Cycle Time tre 45 35
Address to Data Valid tacc 40 30
CS to Data Valid tos 40 30
CS to Tristate tesz 0 45 0 35
HOST WRITE CYCLE
Pulse width to CS and
WR LOW towL 23 18
Pulse width to CS and
WR High town 12 10
Data setup to WR tsp 5 5
Data hold to WR tuo 12 10
RESET CYCLE
RESET setup tsp 10 10
RESET to tristate of
ADD, HAD, HD, I/O tas 35 35
RESET clocked to
OUTCNTL low troL 35 35
ADDRESS TIMING
Address/Data setup tsaop 0
Address/Data hold thaoD 8 8
Clocked Counter to
Address output tcaon 30 22
Clocked Address Register
to Address tFlADD 40 30
ADOE enable to data valid tapoe 40 30
HADOE enable to
data valid tHADOE 40 30
Address output disable tekz 0 45 0 35

U

[

2-33

PAC1000

Table 16.
AC Parameter Symbol 12MHz' 16MHz2
Characteristics Min Max Min Max
(Con’t)
DATA AND I/0 TIMING
Clock to I/O Output Valid tckio 30 25
Clock to HD Output tekrp 35 30
1/0 data setup tsio 5
I/O data hold thio 5
HD data setup tsHp 5
HD data hold thp 12 9
HDOE enable to data valid thooe 40 30
Bus Output Disable tekz 0 45 0 35
TEST AND INTERRUPT TIMING
Condition Code setup tsce 60 50
Condition code hold thce
Clock to OUTCNTL Valid tcov 0 25 5 20
Minimum Interrupt pulse
for acceptance tipwa 15 10
SPECIAL FUNCTION TIMING (1/0 Bus)
SQ15 Setup tssais 15 12
SQ15 hold tusats 5 5
SQO setup tssao 15 12
SQO hold thsao 5 5
Clock to QO output tekao 35 30
Clock to Q15 output tckais 35 30
Address counter
enable setup tsacen 15 10
Address Counter
enable hold thaceN 0 0
Block Counter enable setup tsecen 15 10
Block Counter enable hold thecen 5 5
External output enable to
data valid tsey 30 25
External output enable to
high impedance tsrz 30 25
Notes:

1. Operating temperature range: Commercial, Industrial, Military
2. Operating temperature range: Commercial

Uiri

2-34

PAC1000

Figure 21.
Clock Cycle e——tok —»i
Timing oK | | I | | [
Fe-toH St tokL
1738 21
Figure 22.
Host Read Cycle - the >
Timi"g HAD Address Valid X
tacc
cs Y
[tcs
le—1tcsz —»
RD
A\
HD < Data Valid 9—
Note tgg 1s referenced from RD=0 and CS=0
1738 22
Figure 23.
”0st w’ite FIFO tsp — tHD
Cycle Timing HAD * %
cs /
[+ tPwH
twi
WR /
1738 23
Figure 24.
Reset Cycle cLOCK |—| l—] |‘—| "—l |_|
Timing
tsr [+ ty
RESET : ‘l /
) T
ADD - \4— thz
HAD ‘
B X X[—
—» [tg
OUTCNTL X X /
1738 24

== 2-35

PAC1000

Figure 25.
Data and 1/0
Timing

Switch bus from New Data or Next Data Output to High
Input to Output Counter Output or Count Value Impedance
(Note 1) (Note 2)
CLOCK [| | | I |
[&- thio
tsio te— —* [+— tckio tekz
110 Input 1/0 Output X 1/0 Output X 1/0 Output
tsHp — —»! [¢— tckHp le—texz
HD Inout Host Data Host Data Host Data
npul Output Output Output
e tHHD

thooE

Notes 1 A bus directional change (input-to-output or output-to-input)
takes place on the falling edge of the clock
2 New data or count value Is latched on the rising edge of the clock

1738 25

Figure 26.
Address Timing

Switch bus from
Input to Output
(Note 2 & 3)

New Data or
Counter Output
(Note 4)

Next Data
or Count Value

Output to High
Impedance

CLOCK

[I

LI

tsapp tcaop: tRADD

tADOE ¥

le—tekz

Register or

Register or
Counter Output

ADD Input Counter Output

Register or
Counter Output

—» tHADD | le—

Counter
Output

Counter X
HAD
(Note 1) Output

Counter
Output

>_

tHADOE —#|

Notes 1 The Host Address (HAD) bus Is used to output the lower six bits of the 22-bit counter
2 A bus directional change takes place on the falling edge of the clock (input-to-output or output-to-input)

3 Selection of the source to be output on a bus occurs on the falling edge
of the clock (1 e , counter or address register)
4 New data or count value Is latched on the rising edge of the clock

1738 26

Figure 27.
Test and Interrupt
Timing

'sec! e

cer7 o) ><

OUTCNTL

INT

tipwa

Note 1 Since condition codes are not latched,
they should be stable tscc
prior to being tested

1738 27

2-36

PAC1000

Figure 28.
Special Function cLock I_] | | |_‘ I | ‘
rlm”'y tHACEN
eae R e
ACEN t
BCEN "‘gKKg?s
hsao
tusais
Qo
Q15 Valid Q0,Q15
:ssoo le—
ADOE S$SQ15
HADOE
HDOE
ADD
HAD
HD Valid Data
1738 28
Figure 29. —
- (1}
100-Pin PQFP Bh28833285828C258883
F 2 o O O O OO0 o O £ £ £ <
Pin Assignments ° =000 ce>e0

NC 1
NGC 2
CcC2 3
/105 4
107 5
1106 6
HD3 7
/04 8
/03 9
/02 10
/01 11
CS 12
1/00 13
CK 14
WR 15
RD 16
GND 17
GND 18
0oC15 19
0OC14 20
ocC12 21
0oC13 22
GND 23
GND 24
0C10 25
0C9 26
oc11 27
HDO 28
N/C 29
N/C 30

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

HEAAHAARAARAARAARRARRAAREAREAR

HHHHHHHHHHHHHHHHHHHH\

iEEEEEEEEEEEEEEEEEEEEEEEEELL

80
79
78
77
76
75
74
73
72
7
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

N/C
N/C
CC3
CC1
Ccco
ADD15
ADD14
ADD13
ADD12
ADD11
ADD10
GND
GND
ADD39
ADD8
ADD7
ADD6
ADD5
ADD4
ADD3
ADD2
ADDO
\Yele}
vCC
HADS
HAD4
ADD1
HAD3
N/C
N/C

2-37

PAC1000

Pin Assignments

Figure 30.

gs Pi” ce’am’c 1 2 3 4 5 6 7 8 9 10 11 12 13
PaA Pin IR R R
“ y”me"w 5 3 2 1 INT3 INTY e 4
O O O O O O O O O O O O O B
107 ©C2 OC7 OCé OC4 /RESET OCO INT2 INTO CC6 CC5 CCi CCO
o O o O
¢ HD3 106 ADDISADDi‘c
O O o O
o 103 104 ADD13 ADD12 °
o O o O
E o1 vo2 ADD11 ADD‘OE
F O O O O F
Voo /CS GND ADD9
o O o O
G MR CK ADD7 ADD8 G
O o O
H /RD GND ADD5 ADD6 H
o O o O
J 0C15 0OC14 PAC1000 ADD3 ADD4 J
K O O o O
0C12 0C13 ADDO ADD2
L O O O O L
GND OC10 HADS Vce
MmO O O O O O O O O O O O O M
0OC9 OCi1 HD2 HD4 HD6 HD8 HD10 Vecc HD14 HADO HAD1 HAD3 HAD4
NO O O O O O O O O O O O O
HDO HD1 GND HDS HD7 HD9 HD11 HD12 HD13 HD15 GND HAD2 ADD1
1 2 3 4 5 6 7 8 9 10 1 122 13

TOP (THROUGH PACKAGE) VIEW

13 12 1 10 9 8 7 6 5 4 3 2 1
AO O O O O O O O O O O O O A
CC3 CC4 Vec CC7 INT1 INT3 OCt OC2 OC3 OC5 GND OC8 105

O O O O O O O O O O O O O B
CCO CC1 CC5 CC6 INTO INT2 OCO /RESET OC4 OC6 OC7 CC2 VO7
[ee] o O

¢ ADD14 ADD15 s W ©
o O O O

o ADD12 ADD13 s ws P

e O O O O E
ADD10 ADD11 102 101

F O O O O F
ADD9 GND €S 100
o O o O

¢ ADD8 ADD7 oK ma @

H O O O O y
ADDS ADD5 GND /RD

J O O O O
ADD4 ADD3 0C14 0C15
o O o O

K ADD2 ADDO ot ocrz K

L O 0] o] O L
Vec HADS 0C10 GND

MmO O O O O O O O O O O O On
HAD4 HAD3 HAD1 HADO HD14 Vcc HD10 HD8 HD6 HD4 HD2 OC11 OC9

N O O O O O O O O O O O O ON
ADD1 HAD2 GND HD15 HD13 HD12 HD11 HD9 HD7 HD5 GND HD1 HDO
13 12 11 10 9 8 7 6 5 4 3 2 1

BOTTOM VIEW 1738 26

¥ =
— usr;

PAC1000

Table 17.

PGA Pin Name Pin Name Pin Name Pin

Assignments cs F2 GND H2 1100 F1
RD H1 GND L1 1101 E1
RESET B6 GND A3 1102 E2
WR G1 GND F12 /03 D1
ADDO K12 GND N3 /04 D2
ADD1 N13 GND N11 1/0O5 A1
ADD10 E13 HADO M10 /06 c2
ADD11 E12 HAD1 M11 1107 B1
ADD12 D13 HAD2 N12 INTO B9
ADD13 D12 HAD3 M12 INT1 A9
ADD14 C13 HAD4 M13 INT2 B8
ADD15 Cci12 HAD5 L12 INT3 A8
ADD2 K13 HDO N1 0Co B7
ADD3 J12 HD1 N2 0OCH1 A7
ADD4 J13 HD10 M7 oC10 L2
ADD5 H12 HD11 N7 OC11 M2
ADD6 H13 HD12 N8 0C12 K1
ADD7 G12 HD13 N9 0OC13 K2
ADDS8 G13 HD14 M9 OC14 J2
ADD9 F13 HD15 N10 0OC15 J1
CCo B13 HD2 M3 (0]0%] A6
CC1 B12 HD3 C1 0C3 A5
cC2 B2 HD4 M4 0OC4 B5
CC3 A13 HD5 N4 0OC5 A4
CC4a A12 HD6 M5 0OCé6 B4
CC5 B11 HD7 N5 oC7 B3
CC6 B10 HD8 M6 0]01:] A2
CcC7 A10 HD9 N6 0C9 M1
CK G2 VCC Al1

vCC L13
VCC M8

sSEEss 2-39

PAC1000

Figure 31.
92-Pin CQFP
Pin
Assignments

cc2
1105
1107
1106
HD3
1104
1103
1102
1101
cs
1/00 11
CK 12
WR 13
RD 14
GND 15
GND 16
oCc15 17
oC14 18
oc12 19
0C13 20
GND 21
GND 22
0C10 23
0C9 24
oCi1 25
HDO 26

N OAs N =

o ©

TR AT AT AT AT

NT-OMAN~ONOOW
EEEE
888z22288888

92 91 90 89 88 87 86 85 84 83 828180 79 787776 7574 73

ONMINATANTANTAnTanT

)

JUuIuuuururuuuuonunroot e

CC3
Ccc1
Ccco
ADD15
ADD14
ADD13
ADD12
ADD11
ADD10
GND
GND
ADD9
ADDS8
ADD7
ADD6
ADDS

56 ADD4

ADD3
ADD2
ADDO
vcC

vce

HAD5
HAD4
ADD1
HAD3

- J

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46

ra0rtvoroo2rNo2¥R28c2058

oo0Zo0o0o0o0000000000gZ2g<<g

IITOCIIIIIIIIISIIIIOCII
FEs ==

2-40

PAC1000

Instruction Set
Overview

The PAC1000 architecture can perform three
operations simultaneously in each instruction
cycle. The operations are specified in the
System Entry Language (PACSEL) using a
single statement. PACSEL instructions can
perform three operations:

@ Program Control (PROGCNTL)
a CPU
1 Output Control (OUTCNTL)

Each instruction is executed in a single cycle;
the three operations are executed in parallel.

The syntax of a PACSEL statement has a
label and three components:

[label:] PROGCNTL, CPU,
OUTCNTL;

The PROGCNTL component determines
program flow and determines the next
statement to be executed; the CPU compo-
nent determines which operation is to be
performed by the CPU; the OUTCNTL
component determines the state of the
control outputs.

A comma (,) is used to separate the instruc-
tions and a semi-colon marks the end of a
statement. In general, each statement is
executed in a single cycle.

In PACSEL statements, the PROGCNTL,
CPU, OUTCNTL components can come in
any order or any combination of Macro or
Assembler operators. That is, you may mix
Assembler operators among Macro opera-
tors. Tables at the end of this section sum-
marize the Macro and Assembler operators.

In some cases, the same mnemonic is used
to specify identical operations in both Macro
and Assembler level.

You may:

3 Specify all the components in the same
statement in order to perform the opera-
tions in parallel:

PROGCNTL, CPU, OUTCNTL;

1 Specify components one at a time:
CPU;

PROGCNTL;
OUTCNTL;

1 Use components in any combination:
PROGCNTL, CPU;

PROGCNTL, OUTCNTL;
CPU, OUTCNTL;

WSI recommends that the user adhere to a

specific ordering of these components and

specific groupings of assembler-level and
macro operators, e.g. in separate files. This

manual uses the PROGCNTL, CPU,
OUTCNTL ordering.

When PROGCNTL is omitted, the implied
instruction is CONTinue, that is, proceed to
the next control instruction. When CPU is
omitted, the implied instruction is NOP.
When OUTCNTL is omitted, the implied
instruction is MAINTain, that is, maintain
the most recent OUTCTL, in Assembler
order.

There is a class of supplemental CPU
(sCPU) instructions which can follow
certain primary CPU instructions with one

or more spaces as a delimiter:
PROGCNTL, CPU sCPU, OUTCNTL;

An sCPU instruction must follow a valid
CPU instruction and can not stand alone.

2-41

PAC1000

Table 18.
PACSEL
Assembler
Language
Summary

Mnemonic Arguments Meaning

The PROGCNTL Operators

ACSIZE <16/22> Set A Counter Size
AI Allow Interrupts
CALL <LABEL | LCPTR | FIFO> Uncond Branch Subrtn
CALLC <COND> <LABEL | FIFO> Cond Branch Subrtn
CALLNC <COND> <LABEL | FIFO> Inv Cond Bran Subrtn
CCASE <CG> <VALUE> Branch Subrtn Caseblk
CLI <MASK> Clear Interrupt

CONT Continue

CPI <VALUE> Prioritized Subrtn
DI <MASK> Disable Interrupt
DSS Disable SSM

EI <MASK> Enable Interrupt

ESS Enable SSM

JCASE <CG> <VALUE> Uncond Branch Caseblk
JMP <LABEL | LCPTR | FIFO | Uncond Branch

JMPC <COND> <LABEL> Cond Branch

JMPNC <COND> <LABEL> Inv Cond Branch

JPI <VALUE> Prioritized Branch
LDBP <VALUE | LABEL> Load BP Reg

LDBPD Load BP Comp Value
LDLC <VALUE | LABEL> Load Counter

LDLCD Load Ctr Comp Value
LOOPNZ <LABEL> Repeat Branch CNTRNZ
PLDLC <VALUE | LABEL> Push VALUE & LDCTR
PLDLCD Push Comp Val & LDCTR
POP Pop Stack

POPLC Pop Stack to Cntr
PUSHLC Push Cntr

RESTART Branch to 0

RET [<LABEL>] Return

RC <COND> [<LABEL>] Conditional Return
RNC <COND> [<LABEL>] Inv Cond Return
RSTCON <MASK> Reset Control Reg
RSTIO <MASK> Reset I/O Config Reg
RESTMODE <MASK> Reset Mode Reg
SETCON <MASK> Set Control Reg
SETIO <MASK> Set I/O Config Reg
SETMODE <MASK> Set Mode Reg

TWB <COND> <LABEL> Three-way Branching
TWBC <COND> <LABEL> Converse Three-way

Branching

2-42

PAC1000

Table 18.
PACSEL
Assembler
Language
Summary
(Cont.)

Mnemonic Arguments Meaning

The CPU Operators

ADC <ARG1> <ARG2> [<ARG3>] [sCPU] Add with Carry

ADD <ARG1> <ARG2> [<ARG3>] [sCPU] Add

AND <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise AND

CLR <REG> Clear Register

CMP <ARG1> [<ARG2> Compare

DEC <ARG1> [<ARG2>] [sCPU] Decrement

INC <ARG1> [<ARG2>] [sCPU] Increment

INV <ARG1> [<ARG2>] [sCPU] Invert

MOV <DEST> <SRC> [sCPU] Move SRC to DEST
NOP No Operation

OR <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise or

RDFIFO Read FIFO Data to Reg
SBC <ARG1> <ARG2> [<ARG3>] [sCPU] Sub with Carry
SHLRQ <REG> <RARG> <QARG> Shift Left Reg '& Q
SHLR <REG> <RARG> Shift Left Reg
SHRRQ <REG> <RARG> <QARG> Shift Right Reg & Q
SHRR <REG> <RARG> Shift Right Reg

SUB <ARG1> <ARG2> [<ARG3>] [sCPU] Subtract

XOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive OR

XNOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive NOR

The sCPU Operators

ARDREG <ARG1> <ARG2> Read Reg to 2nd Dest
ASHLR <SOURCE> Shift Reg Left
ASHLRQ <RSOURCE> <QSOURCE> Sshift Q & Reg Left
ASHRR <SOURCE> Shift Reg Right
ASHRRQ <RSOURCE> <QSOURCE> Shift Q & Reg Right
AWREG <ARG1> Write to 2nd Dest
The MACRO Operators

DIV <ARG1> <ARG2> <ARG3> Divide

MUL <ARG1> <ARG2> <ARG3> 2’S Comp Multiply
The OUTCNTL Operators

MAINT Maintain Prev Value
ouT <VALUE | EXPRESSION OUTPUT

sz

PAC1000

Table 19.
PACSEL
Macro
Language
Summary

The PROGCNTL Operators

CALL <label | LCPTR | FIFO> [ON] [NOT] [<cond>]
CASE N, PROGCNTL, CPU, OUTCNTL;

CLEAR <int level> [...<int level>]
CONFIGURE <pml> [<pm2>...<pml0>]
CONT

DISABLE <int level> [<int level>...<int level>]
ELSE

ENABLE <int level> [<int level>...<int level>]
ENDFOR

ENDIF

ENDPSWITCH

ENDSWITCH

ENDWHILE

FOR <value>

GOTO <label | LCPTR |FIFO | TOS> [ON] [NOT] [<cond>]
IF [NOT] <cond>

INPUT <i/o pin> [<i/o pin>...<i/o pin>]

LOADBP <value>

OUTPUT <i/o pin> [<i/o pin>...<i/o pin>]
PRIORITY m, PROGCNTL, CPU, OUTCNTL;

PSWITCH

RESET <pl> [<p2>...<pl0>]

RETURN [ON] [NOT] [<cond>]

SET <pl> [<p2>...<pl0>]

SWITCH <case group>

WHILE [NOT] <cond>

The CPU-Operator Assignment

move
<dest> := <src>

arithmetic expression

<dest> := <argl> <+/-> <arg2> <+/-><arg3>
logical expression
<dest> := <argl> <logical operator> <arg2>
increment, decrement, invert, unary minus
<dest> := <opr> <src>
macro expression
<dest> := <argl> [* | /] <arg2>
shift RAM

<Rx> = Rx <shft opr> <shft arg>
shift RAM and g
<QRX> = Q <shft opr> <shft arg> <shft opr> <shft arg>

The OUTCNTL Operator

OUT <argl> [<arg2>...<argl6>]

2-44

PAC1000

System
Development
Tools

PAC1000 System Development Tools are a
complete set of PC-based development
tools. They provide an integrated easy-to-use
software and hardware environment to
support PAC1000 development and pro-
gramming.

The tools run on an IBM-XT, AT, PS2 or
compatible computer running MS-DOS
version 3.1 or later. The system must be
equipped with 640 Kbytes of RAM and a hard
disk.

Hardware

The PAC1000 System Programming Hard-

ware consists of:

1 WS6000 MagicPro Memory and PSD
Programmer (XT, AT only)

3 WS6010 Package Adaptor (88-Pin
Ceramic Pin Grid Array) for the
MagicPro Remote Socket Adaptor Unit

1 WS6013 Package Adaptor (100-Pin
PQFP) for the MagicPro Remote
Socket Adaptor Unit

The MagicPro Programmer is the common

hardware platform for programming all WSI

programmable products. It consists of the

IBM-PC plug-in Programmer Board and the

Remote Socket Adaptor Unit

Software

The PAC1000 System Development Soft-

ware consists of the following:

1 WISPER Software—PSD Software Inter-
face

O IMPACT Software—Interface Manager
for PAC1000

1 PACSEL Software—System Entry
Language
1 PACSIM Software—Functional Simulator

1 PACPRO Software—Device Program-
ming Software

WISPER and IMPACT software provide a
menu-driven user interface enabling other
tools to be easily invoked by the user.

The system design is entered into PACSEL
source program files using an editor chosen
by the user. PACSEL supports assembly-
level and high-level Macro programming.

The PACSEL Assembler produces object
code format in single or multiple modules,
which are then linked by the PACSEL Linker
into a single load file with a format suitable for
PACSIM and PACPRO.

The PACSIM functional simulator enables the
user to test and debug programs by examin-
ing the state of PAC1000 internal registers
before and during a complete functional
simulation of the device.

PACPRO software programs PAC1000
devices by using the MagicPro hardware and
the socket adapter.

The programmed PAC1000 is then ready to
be used.

Support

WSI provides a complete set of quality
support services to registered owners. These
support services include the following:

3 12-month Software Updates.

1 Hotline to WSI Application Experts—For
direct design assistance.

[24-Hour Electronic Bulletin Board—For
design assistance via dial-up modem.

Training

WSI provides in-depth, hands-on workshops
for the PAC1000 and the System Develop-
ment Tools. Workshop participants will learn
how to develop and program their own high-
performance microcontrollers. Workshops are
held at the WSl facility in Fremont, California.

Programming/
Erasing

Refer to the PAC1000 Users Manual found
with the PAC1000-Gold and the PAC1000-
Silver.

2-45

PAC1000

Ordering
Information —
PAC1000

Speed Package Package Operating Manufacturing
Part Number (MHz) Type Drawing Temperature Procedure
PAC1000-12Q 12 100-Pin Q1 Commercial Standard
Plastic Quad

Flat Package

PAC1000-12V 12 92-Pin Ceramic "2l Commercial Standard
Quad Flatpack

PAC1000-12VI 12 92-Pin Ceramic V1 Industrial Standard
Quad Flatpack

PAC1000-12VM 12 92-Pin Ceramic V1 Military Standard
Quad Flatpack

PAC1000-12VMB 12 92-Pin Ceramic \al Military MIL-STD-883C
Quad Flatpack

PAC1000-12X 12 88-Pin Ceramic X1 Commercial Standard
Pin-Grid Array

PAC1000-12XI 12 88-Pin Ceramic X1 Industrial Standard
Pin-Grid Array

PAC1000-12XM 12 88-Pin Ceramic X1 Military Standard
Pin-Grid Array

PAC1000-12XMB 12 88-Pin Ceramic X1 Military MIL-STD-883C
Pin-Grid Array

PAC1000-16X 16 88-Pin Ceramic X1 Commercial Standard

Pin-Grid Array

2-46

PAC1000

Ordering
Information -
System
Development
Tools

Part Number

Contents

PAC1000-GOLD

PAC1000-SILVER

WS6000

WS6010

WS6013

WSI-Support

WSI-Training

WISPER Software

IMPACT Software

PACSEL Software

PACSIM Software

PACPRO Software

User's Manual

WSI-Support

WS6000 MagicPro Programmer

One Socket Adaptor and Two PAC1000 Product Samples

WISPER Software
IMPACT Software
PACSEL Software
PACSIM Software
PACPRO Software
User's Manual
WSI-Support

MagicPro Programmer
IBM PC Plug-in Adaptor Card
Remote Socket Adaptor

88-Pin CPGA Adaptor
Used with the WS6000 MagicPro Programmer

100-Pin PQFP Adaptor
Used with the WS6000 MagicPro Programmer

Support Services, including:

0 12-month Software Update Service

3 Hotline to WSI Application Experts

1 24-hour Access to WSI Electronic Bulletin Board

Workshops at WSI, Fremont, CA
For details and scheduling, call PSD Marketing, (510) 656-5400

2-47

2-48

PAC1000 Instruction Set

Section Index
PACSEL OVBIVIBW ... ee oo 3-1
language (0] o =T - Ui (o] o - O OO PPTROPRPOOE 3-1
Summary of PACSEL Assembler Operators.........ccc.coveeriiinenriiienrnieienessessesseneessssssenns 3-2
Summary of PACSEL Macro Operators..........cccvcceviimiiiecriieinsinissessessssseeisssssessssisens 3-4
DIFECLIVES ...ttt e 3-5
Programming GUIdEliNes............cccoouvuiiiiiiiiiic s 3-7
PACSEL Assembler REference.............cccvcuccciiiieiniiiniiiincsssce s 3-9
PACSEL Macro ReferencCe...........ccccouvriiriiiiceiiiiiicicrciiciceees e seneseis 3-69

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363.

Programmable Peripheral

PAC1000 Instruction Set
PACSEL Language

Overview PACSEL, the PAC1000 System Entry This section gives an overview of PACSEL
Language, is an assembly-level language operations, directives, and development
with macro constructs. While it is not a true rules. Consult the reference sections in this
macro assembler (i.e. you cannot write chapter for specific information on how
your own macros), it does provide a very PACSEL constructs control the PAC1000
convenient set of pre-constructed Programmable Peripheral Controlier.
high-level macros for many common
programming needs.

0perations Each PACSEL instruction performs three operations:

(J Program Control (PROGCNTL)

3 CPU

[Output Control (OUTCNTL)

Each instruction is executed in a single cycle; the three operations are executed in paraliel.
In conventional peripheral controllers, separate instructions are required to perform each of
these operations: Program Control operations (jumps, calls, and returns) to control the
program flow; CPU operations to do logical, arithmetic, and shift tasks; and various forms of
Output Control operations.

Each PACSEL statement has an optional label and three components:
[label:]PROGCNTL, CPU, OUTCNTL;

The PROGCNTL component determines which statement is to be executed next; the CPU
component determines which operation is to be performed by the CPU; and the OUTCNTL
component determines the state of the control outputs.

Commas (,) separate the components and a semicolon (;) marks the end of the
statement.

The PROGCNTL, CPU, and OUTCNTL components can come in any order. Assembler
operators and macro operators can be used together in the same statement. The available
operators are summarized at the end of this section. In some cases, the same mnemonic is
used to specify identical operations at both the assembler and the macro level.

You may:

(3 Specify all the components in the same statement in order to perform the operations in
parallel:
PROGCNTL, CPU, OUTCNTL;

[J Specify components one at a time:

CPU;
PRGCNTL;
OUTCNTL;

[J Use components in any combination:

PROGCNTL, CPU;
PROGCNTL, OUTCNTL;
CPU, OUTCNTL;

3-1

PAC1000 - Instruction Set

ﬂperatians WSI recommends that the user adhere to a specific ordering of these components and
(cant.) specific groupings of assembler-level and macro operators, e.g. in separate files. This
manual uses the PROGCNTL, CPU, OUTCNTL ordering.
When PROGCNTL is omitted, the implied instruction is CONTinue, that is, proceed to the
next control instruction. When CPU is omitted, the implied instruction is NOP. When
OUTCNTL is omitted, the implied instruction is MAINTain, that is, maintain the most recent
OUTCTL, in Assembler order.
There is a class of supplemental CPU (sCPU) instructions which can follow certain primary
CPU instructions with one or more spaces as a delimiter:
PROGCNTL, CPU sCPU, OUTCNTL;
An sCPU instruction must follow a valid CPU instruction and can not stand alone.
5;”;’2?6{';" Mnemonic Arguments Meaning
Assomblar The PROGCNTL Operators
Operators ACSIZE <16/22> Set A Counter Size
AI Allow Interrupts
CALL <LABEL | LCPTR | FIFO> Uncond Branch Subrtn
CALLC <COND> <LABEL | FIFO> Cond Branch Subrtn
CALLNC <COND> <LABEL | FIFO> Inv Cond Bran Subrtn
CCASE <CG> <VALUE> Branch Subrtn Caseblk
CLI <MASK> Clear Interrupt
CONT Continue
CPI <VALUE> Prioritized Subrtn
DI <MASK> Disable Interrupt
DSS Disable SSM
EI <MASK> Enable Interrupt
ESS Enable SSM
JCASE <CG> <VALUE> Uncond Branch Caseblk
JMP <LABEL | LCPTR | FIFO | TOS> Uncond Branch
JMPC <COND> <LABEL> Cond Branch
JMPNC <COND> <LABEL> Inv Cond Branch
JPI <VALUE> Prioritized Branch
LDBP <VALUE | LABEL> Load BP Reg
LDBPD Load BP Comp Value
LDLC <VALUE | LABEL> Load Counter
LDLCD Load Ctr Comp Value
LOOPNZ <LABEL> Repeat Branch CNTRNZ
PLDLC <VALUE | LABEL> Push VALUE & LDCTR
PLDLCD Push Comp Val & LDCTR
POP Pop Stack
POPLC Pop Stack to Cntr
PUSHLC Push Cntr
RESTART Branch to 0
RET [<LABEL>] Return
RC <COND> [<LABEL>] Conditional Return
RNC <COND> [<LABEL>] Inv Cond Return
RSTCON <MASK> Reset Control Reg
RSTIO <MASK> Reset I/O Config Reg
RESTMODE <MASK> Reset Mode Reg
SETCON <MASK> Set Control Reg
SETIO <MASK> Set I/0 Config Reg
SETMODE <MASK> Set Mode Reg
TWB <COND> <LABEL> Three-way Branching
TWBC <COND> <LABEL> Converse Three-way

Branching

PACG1000 - Instruction Set

Summary

of PACSEL
Assembler
Operators
(Gont.)

Mnemonic Arguments Meaning

The CPU Operators

ADC <ARG1> <ARG2> [<ARG3>] [sCPU] Add with Carry

ADD <ARG1> <ARG2> [<ARG3>] [sCPU] Add

AND <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise AND

CLR <REG> Clear Register

CMP <ARG1> [<ARG2> Compare

DEC <ARG1> [<ARG2>] [sCPU] Decrement

INC <ARG1> [<ARG2>] [sCPU] Increment

INV <ARG1> [<ARG2>] [sCPU] Invert

MOV <DEST> <SRC> [sCPU] Move SRC to DEST
NOP No Operation

OR <ARG1> <ARG2> [<ARG3>] [sCPU] Bitwise or

RDFIFO Read FIFO Data to Reg
SBC <ARG1> <ARG2> [<ARG3>] [sCPU] Sub with Carry
SHLRQ <REG> <RARG> <QARG> Shift Left Reg & Q
SHLR <REG> <RARG> Sshift Left Reg
SHRRQ <REG> <RARG> <QARG> Shift Right Reg & Q
SHRR <REG> <RARG> Shift Right Reg

SUB <ARG1> <ARG2> [<ARG3>] [sCPU] Subtract

XOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive OR

XNOR <ARG1> <ARG2> [<ARG3>] [sCPU] Exclusive NOR

The sCPU Operators

ARDREG <ARG1> <ARG2> Read Reg to 2nd Dest
ASHLR <SOURCE> Shift Reg Left
ASHLRQ <RSOURCE> <QSOURCE> Shift Q & Reg Left
ASHRR <SOURCE> Shift Reg Right
ASHRRQ <RSOURCE> <QSOURCE> Shift Q & Reg Right
AWREG <ARG1> Write to 2nd Dest
The MACRO Operators

DIV <ARG1> <ARG2> <ARG3> Divide

MUL <ARG1> <ARG2> <ARG3> 273 Comp Multiply
The OUTCNTL Operators

MAINT Maintain Prev Value
ouT <VALUE | EXPRESSION OUTPUT

PAC1000 - Instruction Set

Summary

The PROGCNTL Operators

of PACSEL
Macro
Operators

CALL <label | LCPTR | FIFO> [ON] [NOT] [<cond>]
CASE N, PROGCNTL, CPU, OUTCNTL;

CLEAR <int level> [...<int level>]
CONFIGURE <pml> [<pm2>...<pml0>]
CONT

DISABLE <int level> [<int level>...<int level>]
ELSE

ENABLE <int level> [<int level>...<int level>]
ENDFOR

ENDIF

ENDPSWITCH

ENDSWITCH

ENDWHILE

FOR <value>

GOTO <label | LCPTR |FIFO | TOS> [ON] [NOT] [<cond>]
IF [NOT] <cond>

INPUT <i/o pin> [<i/o pin>...<i/o pin>]

LOADBP <value>

OUTPUT <i/o pin> [<i/o pin>...<i/o pin>]
PRIORITY m, PROGCNTL, CPU, OUTCNTL;

PSWITCH

RESET <pl> [<p2>...<pl0>]

RETURN [ON] [NOT] [<cond>]

SET <pl> [<p2>...<pl0>]

SWITCH <case group>

WHILE [NOT] <cond>

The CPU-Operator Assignment

move
<dest> := <src>

arithmetic expression

<dest> := <argl> <+/-> <arg2> <+/-><arg3>
logical expression
<dest> := <argl> <logical operator> <arg2>
increment, decrement, invert, unary minus
<dest> := <opr> <src>
macro expression
<dest> := <argl> [* | /] <arg2>
shift RAM

<Rx> = Rx <shft opr> <shft arg>
shift RAM and g
<QRX> = Q <shft opr> <shft arg> <shft opr> <shft arg>

The OUTCNTL Operator

OUT <argl> [<arg2>...<arglé6>]

PAC1000 - Instruction Set

Directives

Directives give PACSEL the information it needs to correctly assemble each program
module. For instance, an assembler source file must have segment directives to declare a
name for each relocatable code segment in the file.

A segment is the smallest unit of code which can be relocated by the linker. Normally, each
assembler source module begins with a segment declaration. The directive gives the
segment a name; the absolute address of the segment can also be specified. The syntax
is:

segment < segment name > [, abs (<value>) 1];

A source file can contain more than one segment. Each source file must be terminated with
the end directive:

end;

Labels from other segments which are referenced in the current segment must be declared
with the external directive:

external <labell> , <label2> , ... <labell>;

Labels from the current segment which are also referenced by other segments must be
declared with the entry directive:

entry <labell> , <label 2> , ... <labelln>;

Every label that is declared external in one segment must be declared as entry in some
other segment. Local labels (labels referenced only in the current segment) need not be
declared.

In summary, a source file looks like this:

segment test 1;
entry al, a2;
external x1, x2;
al:
az:

JMP x1;

CALL x2;

end;
One source file can be incorporated into another by means of the include directive:
include ‘<filename>‘;
Before assembly, this line will be replaced with the contents of the named source file.

The org and align directives are used to control the location of the instruction word which
follows them. The org directive sets the current program counter to the location indicated
by its argument, relative to the beginning of the current segment. For example, the directive

org h’10’;
will place the next word at location h’10’ relative to the beginning of the segment.

y
Iy
hy
)

:i
D
iy

3-5

PAC1000 - Instruction Set

Directives
(Cont.)

The align directive sets the program counter to the next-higher muiltiple of its argument. For
example, if the program counter currently has the value h’155’, the directive:

align 16;

will place the next word at location h’160’, that is, at the next available location which is
divisible by 16. The linker will preserve the specified alignment.

Symbolic constants can be defined with the equ directive, as follows:
<symbol> equ <value>;
The “value” can be a number or a previously defined symbol.

The “alias” directive can be used to alias signal and register names, to user defined names.
Aliases are permitted for the following:

Q INTO .. INT7
AOR

ACH 100 .. 107
ACL CCo..CcC7

BC

DOR RO .. R31
IOR AIR

IIR

DIR

The aliases can also be placed in a file with extension “.ALS”. This file has to be included
in every source file which uses aliased signal names. The statement syntax is:

alias <alias name> <signal name> ;
Remember that PACSEL is case-sensitive and hence “alias” keyword should be in lower
case.
Example:

alias SVADD R3 ;

Wherever R3 is used in .mal file, the aliased name SVADD can be
used. For example,

mov R3 5;
This can be written as
mov SVADD 5;
This directive can be put together in a “.ALS” file or can be used directly in “.mal” source

file. It puts together in a “.ALS” file, then the same file can also be used in the PACSIM
simulator.

3-6

PAC1000 - Instruction Set

Programming These are the guidelines for writing PACSEL programs:
Guidelines [Source File naming
The assembler source filename must have a .mal extension.

[Case Sensitivity
PACSEL is case-sensitive. Observe the conventions given in the manual. In general, all
the instructions and arguments are upper-case. All the directives are lower-case.

[J Whitespace Requirements
PACSEL is whitespace-sensitive. In general, arguments and operators must be
surrounded by blanks. Whenever in doubt, use a blank (or a tab).
Use whitespace freely to emphasize program structure.

[Comments
Any text enclosed by “/1” and “*/” is not processed by the PACSEL assembler. Such
comments may span lines or pages. Comments may not be nested. For example:
/* This is a legal
comment */

However,
/*
/* This comment is nested; an error will result */
*/
Comments may also be used in Link Command Files.

[Special Characters
PACSEL source files may contain the standard set of printable ASCII characters, plus
tabs, spaces, carriage returns, and linefeeds. No other characters are allowed.

In particular, some word processors, in document mode, set the hi-order bit of some
ASCII characters in a file for internal purposes. Although these characters will display
correctly within the word processor, they will not be accepted by PACSEL, and the
resulting error messages may not indicate the cause.

(J Operation Arguments
In general, arguments are names of registers or immediate, constant values. The
allowed registers for a given argument are specified in the documentation for each
instruction. A constant is a number value in the range
0 <= value <= h'FFFF’
0 <= value <= 65535

For example,

1289 (a decimal number)
h’FA487 (a hexadecimal number)
0’4777’ (an octal number)

b’0110111000000000" (a binary number)

Symbolic constants, previously defined by an “equ statement, may be used in place of
numeric values, for example,

SUCCESS equ 1 ;
Rl := SUCCESS

Note: When any constant is used as an argument in a CPU instruction, the only allowed
PROGCNTL instruction is CONT.

i
l
I“*
®
N

PAC1000 - Instruction Set

Programming [J Assembly-time expression evaluation
Guidelines PACSEL supports the use of assembly-time variables and expressions to compute the
(Clmt.) values of constants which can then be used as arguments to the PACSEL instructions.

This facility can be useful, for instance, in computing values to be loaded into the loop
counter or the OUTCNTL field.

The operators supported are:

Unary: - 2’s complement
~ 1’s complement
-- decrement
++ increment
Binary: * multiply

/ divide

% remainder
+ add

- subtract

<< shift left

>> shift right

& bitwise AND
| bitwise OR

Assignments are made using the ‘set’ and ‘=* operators.
These concepts are illustrated in the following example:
segment asmexp;

integer A, B, C;
et A =5

set B = A + 2
set C = A & B;
Rl := R1 + $2, OUT C;

end;

For this example, the assembler generates just one line of code, treating the computed
value of C as a constant:

000000: E000 0003 0422 0005
It is important to distinguish between run-time assignments (like “R1 := R1 + R2” in the

example) and assembly-time assignments (like “set C = A & B”); the latter do not
generate code.

[Restrictions on PROGCNTL, CPU, and OUTCNTL combinations
In a few cases, there are restrictions on what you can do in each of the sections of
combined PROGCNTL, CPU, and OUTCNTL instructions. These are:

When any constant is used in the CPU operation, you may only use CONT as the
PROGCNTL operation.

Configuration operations use the PROGCNTL bits, so you cannot do anything other than
CONT. The CPU and OUTCTL instructions are not limited.

@
(-9
3
ly
Iy
Uiy

PAC1000 - Instruction Set

PACSEL ADC
’A's?em“er Instruction Type: CPU
ererence Operation: dest = src1 + src2 + CY
Syntax: [label:] [PROGCNTL,] ADC dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] ADC dest srcl src2 [,OUTCNTL];
Description:

In the first form, ADC adds the source register and the destination register, and the value of
the CY bit, then places the result in the dest register. In the second form, two source
registers and CY are added and stored in the destination register. One of the sources may
be the same as the destination register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IIR, AIR AF
SWPV, <const>, DIR AF
dest/src R0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q

2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used and
c. src1 and src2 cannot reference the same member of R0...R31.

3. AF = Arithmetic Flags: Z, CY, S, O.

Example 1:

ADC R1 R1; /* double rl and add CY */
Example 2:

MOV R31 h/FFFF’; /* load immediate value */

ADD R31 h'1l’; /* add immediate */

ADC R31 h'0’; /* R31 now is one; see ADD */
Example 3:

ADC BC R23; /* BC = BC + R23 + CY */
Example 4:

ADC BC R23 R24; /* BC = R23 + R24 + CY */
Example 5:

CONT ,

ADD BC R23 R24 , /* full instruction format */
OUT h’AS5A5';

i 39

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

ADD
Instruction Type: CPU
Operation: dest = src1 + src2
Syntax: [label:] [PROGCNTL,] ADD dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] ADD dest srcl src2 [,QUTCNTL];
Description:

In the first form, ADD adds the source and the destination registers and places the result in
the destination. In the second form, two source registers are added and the result is stored
in the destination register. One of the sources may be the same as the destination register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src 1IR, AIR AF
SWPV, <const>, DIR AF
dest/src RO0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
See Also: ADC
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q

2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used and
c. src1 and src2 cannot reference the same member of R0...R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

ADD Rl R1; /* double R1 */
Example 2:

MOV R31 h'FFFF’; /* load immediate value */

ADD R31 h’1’; /* add immediate */

ADD R31 h’'0'; /* R31 now is zero; see ADC */
Example 3:

ADD BC R23; /* add R23 to block counter */
Example 4:

ADD BC R23 R24; /* R23 + R24 to block counter */
Example 5:

CONT ,

ADD BC R23 R24 , /* full instruction format */

OUT h’AS5A5’;

3-10

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

Al

Instruction Type: PROGCNTL

Operation: Allow interrupts

Syntax: [label:] AI [,CPU] [,OUTCNTL];
Description;:

While an interrupt is being serviced, a hardware locking mechanism prevents any other
interrupt from getting serviced. This lock remains in effect until it is explicitly cleared by
means of the Al instruction. The Al instruction is normally placed in the interrupt service
routine.

Condition Codes affected: None

Example 1:
INT3_ SERV: /* service routine for INT3 */
/* service the interrupt */
AI; /* re-—activate the service mechanism */
RET; /* return to main program */
AND
Instruction Type: CPU
Operation: dest = src1 AND src2
Syntax‘. [label:] [PROGCNTL,] AND dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] AND dest srcl src2 [,OUTCNTL];
Description:

In the first form, this operator ANDs the source and the destination and places the result in
the destination register. In the second form, two sources are ANDed and stored in the
destination register. One of the sources may be the same as the destination register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IR, AIR AF
SWPV, <const>, DIR AF
dest/src R0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of R0...R31.
3. AF = Arithmetic Flags: Z, CY, S, O

Ss==5 3-11

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

AND (Cont.)
Example 1:
AND R1 R2; /* Rl = (Rl AND R2) */
Example 2:
AND R31 h'’OQFFFF’; /* AND immediate mask */
Example 3:
MOV R23 h'123"; /*load register with constant */
MOV R24 h'FFFE’; /* load register with mask */
ANDBC R23 R24; /* Mask and load Block Counter */
Example 4:
CONT ,
AND IOR R23 , /* full instruction format */

OUT h’A5A5’;

ARDREG

Instruction Type: Supplementary CPU

Operation: Read, store register independent of primary CPU operation

Syntax: [label:] [PROGCNTL,] CPU ARDREG argl arg2 [,OUTCNTL];
Description:

This instruction reads the internal register (R0...R31) specified by “arg2” and stores the
value in the external register specified by “arg1”. Only internal registers may be transferred
to external registers by this operation, and the destination register of the primary CPU oper-
ation may be an internal register only if this supplementary instruction is used. Otherwise,
the primary CPU operation is unrestricted in type and arguments.

Condition Codes affected: (by primary CPU operation only)
Example 1:
ADD R3 BC ARDREG AOR R3; /* R3 <- R3+BC, parallely AOR <- R3 */

3-12

/73

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

ASHLR

Instruction Type: Supplementary CPU

Operation: Shift Left Register after primary CPU operation

Syntax: [label:] [PROGCNTL,] CPU ASHLR src [,OUTCNTL];
Description:

This instruction shifts the result of the primary CPU operation left one bit before the primary
result is stored in the destination of the primary operation. The data shifted in depends on
the source operand:

4 — the Zero bit flag
cY —the Carry bit flag
S — the Sign bit flag
0 —abinary ‘0’

1 —abinary ‘1’

RMSB - the Most Significant Bit of this register
QMSB - the Most Significant Bit of the Q register
SDAT - Serial Data port in/out.

This instruction is valid only if the primary CPU operation uses internal registers
(RO...R31, Q) as sources and destinations.

Condition Codes affected: (by the primary CPU operation only)
Example 1:

CMP RO R1 ;
ADD R4 Q R5 ASHLR Z ; /* R4 <-- (Q+R5) shifted left with 2
flag into LSB */

FEE S5
itz 313

PAC1000 - Instruction Set

PACSEL ASHLRQ
Assembler Instruction Type: ~ Supplementary CPU
Reference — . . . :
(co"t) Operation: Shift left register and Q after primary CPU operation
B Symax: [label:] [PROGCNTL,] CPU ASHLRQ rsource gsource
[, OUTCNTL] ;
Description:

This instruction shifts the result of the primary CPU operation left one bit before storing the
primary result in the destination of the primary operation. In addition, the previous value of
Q is shifted left one bit.

The data shifted in depends on the rsource and gsource operands:

z — the Zero bit flag
cYy — the Carry bit flag
S —the Sign bit flag
0 ~— abinary ‘0’

1 —abinary ‘1’

RMSB - the Most Significant Bit of this register
QMSB - the Most Significant Bit of the Q register
SDAT - Serial Data port in/out.

This supplementary CPU operation is valid only if the primary CPU operation operates on
internal registers (R0...R31, Q) only.

Condition Codes affected: (by the primary CPU operation only)

Example 1:

MOV Q h’007A’;

SUB R1 RS;

ADD R4 R5 ASHLRQ Z CY; /* R4<— (R4+R5) shifted left with Z flag
into LSB; simultaneously, shift Q left 1
bit with CY entering LSB */

3-14 =S5

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

ASHRR

Instruction Type: Supplementary CPU

Operation: Shift Right Register after primary CPU operation

Syntax: [label:] [PROGCNTL,] CPU ASHRR source [,OUTCNTL];
Description:

This instruction shifts the result of the primary CPU operation right one bit before the
primary result is stored in e destination of the primary operation. The data shifted in
depends on the source operand:

4 — the Zero bit flag
CcY — the Carry bit flag
S — the Sign bit flag
0 —abinary ‘0’

1 —abinary ‘1

RLSB - the Lease Significant Bit of this register
QLSB - the Least Significant Bit of the Q register
SDAT - Serial Data port in/out.

This instruction is valid only if the primary CPU operation uses internal registers (RO0...R31,
Q) as sources and destinations.

Condition Codes affected: CY, Z, S, O

Example 1:
CMP RO R1;
ADD R4 Q R5 ASHRR CY;

== 3-15

PAC1000 - Instruction Set

PACSEL ASHRRQ
Assembler Instruction
Reference Type: Supplementary CPU
(co”t') Operation: Shift Right Register and Q after primary CPU operation
Syntax: [label: [[PROGCNTL,] CPU ASHRRQ rsource gsource [,OUTCNTL];
Description:

This instruction shifts the result of the primary CPU operation right one bit before storing the
primary result in the destination of the primary operation. In addition, the previous value of
Q is shifted right one bit.

The data shifted in depends on the rsource and gsource operands:

V4 — the Zero bit flag
cY —the Carry bit flag
S — the Sign bit flag
0 —abinary ‘0’

1 —abinary ‘1’

RLSB - the Least Significant Bit of this register]
QLSB - the Least Significant Bit of the Q register
SDAT — Serial Data port in/out.

This supplementary CPU operation is valid only if the primary CPU operation operates on
internal registers (R0...R31, Q) only.

Condition Codes affected: (by the primary CPU operation only)

Example 1:

MOV Q h’007A’;

SUB Rl R2;

ADD R4 R5 ASHRRQ Z CY; /* R4 <-- (R4+R5) shifted right with 2
flag into MSB; simultaneously, shift Q
right 1 bit with CY entering MSB */

AWREG

Instruction Type: Supplementary CPU

Operation: Write result of primary CPU operation to second destination

Syntax: [label:] [PROGCNTL,] CPU AWREG argl [,OUTCNTL];

Description:

This instruction stores the result of the primary CPU operation in the internal register
specified by “arg1”. Only internal registers (R0...R31, Q) are allowed destinations. If this
instruction is used, the primary operation should have an external register as the
destination operand. Otherwise, the primary CPU operation is unrestricted in type

and arguments.

Condition Codes affected: (by primary CPU operation only)

Example 1:

ADD BC R3 AWREG R2; /* BC<-- + R3, simultaneously R2 <--
(BC+R3) */

i
N

3-16 =

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

CALL

Instruction Type:

PROGCNTL

Operation: Call to subroutine/thru pointer/via FIFO
Syntax: [label:] CALL label2 [,CPU] [,OUTCNTL];
or
[label:] CALL LCPTR [,CPU] [,OUTCNTL];
or
{label:] CALL FIFO [,CPU] [,OUTCNTL];
Description:

CALL is an unconditional call to the subroutine. In the first form, the target is a program

label.

The keyword LCPTR may be substituted for “label2”, in which case the current value of LC
(Loop Counter) is used as an execution pointer. The 10-bit LC value is loaded into the
program counter. In this case, the LCPTR register must be explicitly loaded (see LDLC and
LDLCD) prior to this operation.

In the third form, the keyboard FIFO may be substituted for “label2,” in which case the top
of the FIFO is used as the call target.

In all cases the next instruction address is pushed on the stack.
Condition Codes affected: FIFO flags (Form 3), STKF

Example 1:

CALL Elb,
NOP,
OUT h'46’;

Elb:

Example 2:
LDLC 270;
CALL LCPTR;
E2b:

Example 3:

CALL FIFO;
JMP E3;

/* output ASCII F during CALL cycle*/

RET;

/* call through pointer */

RET;

/* main program for host-driven PAC1000 */

Wiy

3-17

PAC1000 - Instruction Set

PACSEL CALLC
"}3?‘-""”’9’ Instruction Type: PROGCNTL
(c"; :;(;nce Operation: Call if Condition TRUE
" Syntax: [label:] CALLC cc label 2 [,CPU] [,OUTCNTL];
or
[label:] CALLC cc FIFO [,CPU] [,OUTCNTL]
Description:

The condition code specified by “cc” is evaluated. If it is TRUE, then control branches to the
code at the specified label. In the second form, the top of the FIFO is the call target and
only FIFO flags may be specified as the condition to test.

The next instruction address is pushed on the stack if the call is performed.

The condition Codes are:

INTR BCz FIOR FICD
V4 (0] S cY
ACO FIXP FIIR STKF
DOR CC7-CCO
Condition Codes affected: FIFO flags (Form 2), STKF
Example 1:
CALLC Z Elb, /* CALL on condition code ‘zero’ */
NOP,
OUT h’45’; /* output ASCII E during CALL cycle */

Elb: CALLC CY Elc; /* CALL on carry, default CPU and
OUTCNTL */

b
Ui
ml

3-18

PAC1000 ~ Instruction Set

PACSEL CALLNG
gﬁ:ﬂf,’:g Instruction Type: ~ PROGCNTL
ion: li —
(Cont.) Operation Call if condition not TRUE

Syntax: [label:] CALLNC cc label2 [cCPU] [,OUTCNTL];
or

[label:] CALLNC cc FIFO [,CPU] [,OUTCNTL];

Description:

The condition code specified by “cc” is evaluated. If it is FALSE, then control branches to
the code at the specified label. In the second form, the top of the FIFQO is the call target and
only FIFO flags may be specified as the condition to test.

The next instruction address is pushed on the stack if the call is performed.
The condition Codes are:

INTR BCz FIOR FICD
4 0O S CcYy
ACO FIXP FIIR STKF
DOR CC7-CCo
Condition Codes affected: FIFO flags (Form 2), STKF
Example 1:
CALLNC Z Elb, /* CALL on condition code ' not zero’ */
NOP,
OUT h’45’; * output ASCII E during CALL cycle */
Elb: CALLNC CY Elc; /* CALL on not carry, */

=== 3-19

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

CCASE

Instruction Type: PROGCNTL

Operation: Call to Case Block

Syntax: [label:] CCASE casegroup address [,CPU] [,OUTCNTL];
Description:

CCASE performs an unconditional CASE selection using the Case Block at the address
specified. Case selection is based on the 4 bits of the Case Group specified:

‘CGO’ specifies [CC3, CC2, CCl, CCO]
‘CGl’ specifies [CC7, CC6, CC5, CC4]
‘CG2’ specifies [INTR, BCZ, FIOR, FICD]
‘CG3’ specifies [Z, O, S, CY]

One of 16 successive instructions starting at the Case Block address will be executed. If
the instruction does not include a jump operation, the next sequential instruction will be
executed. Ordinarily, then, the instructions in a Case Block will include jumps.

The Case Block must start at a location whose address contains zeros in the lower four
bits. The address specified must be a numerical value or a symbolic constant whose value
is previously defined in this module. The actual location of the Case Block must be resolved
at link time, by specification in a link directive.

Condition Codes affected: STKF

Example 1:
/* This example outputs the binary value of Case Group 1 (CGl) on
the F outputs for one cycle, bracketed by the value -1. */
Elc equ h’160’ /* The case block should be located at h’160 by
means of a link directive */
CCASE CG1 E1C,
NOP ,
OUT h'FFFF’; /* output -1 during call cyclex*/
/* The case block in general, will be in another segment: */
segment CASE_EXAMPLE;
CBl: JMP ECEND, NOP, OUT O;
JMP ECEND, NOP, OUT 1;
JMP ECEND, NOP, OUT 2;
JMP ECEND, NOP, OUT 3;
JMP ECEND, NOP, OUT 4;
JMP ECEND, NOP, OUT 5;
JMP ECEND, NOP, OUT 6;
JMP ECEND, NOP, OUT 7;
JMP ECEND, NOP, OUT 8;
JMP ECEND, NOP, OUT 9;
JMP ECEND, NOP, OUT 10;
JMP ECEND, NOP, OUT 11;
JMP ECEND, NOP, OUT 12;
JMP ECEND, NOP, OUT 13;
JMP ECEND, NOP, OUT 14;
JMP ECEND, NOP, OUT 15;
ECEND:
RET, NOP, OUT h’FFFF’; /* all cases end up here */

The appropriate link directive is: locate CASE EXAMPLE h’160’;

3-20

Wiz

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

CLI

Instruction Type: PROGCNTL

Operation: Clear Interrupt Mask bits

Syntax: [label:] CLI mask [,CPU] [,OUTCNTL];
Description:

Use the mask to clear pending interrupts. Bits set to 1 in the mask clear the corresponding
interrupt. Zero bits have no effect.

This is the mask format:

LMASK7 rMASKG | MASKSj MASK4 | MASK3 | MASK2 | MASK1 | MASKO |

The CLI function is automatically performed by the hardware when the interrupt is serviced.
However, if the interrupt is masked, or if interrupts are disabled, CLI must be used to clear
pending interrupts.

Condition Codes affected: none
See Also: DI, El
Example 1:

/* This example illustrates the use of CLI at the end of
an interrupt service routine */

org h’8’; /* external interrupt 0 vector */

JMP INTO_SERVICE;

org h7100’;
INTC_service:

/* arbitrary */

CLI
RET;

/* This example illustrates the use of CLI as part of system
initialization procedures */
Example 2:
org h’0’;
JMP INIT;
org h’10’ ;
INIT: CLI

b’ 00000001’ ; /* clear interrupt 0 request */

/* return-from-interrupt */

/* start-up location */

h’FF’; /* clear any pending interrupts */

CLR

Instruction Type:
Operation:
Syntax:

CPU
Reset Register
[label:] {PROGCNTL,]

CLR reg [,OUTCNTL]

Description:

CLR resets the specified register to 0. This instruction does not use the branch bits, and so
allows a JMP or CALL instruction in the PROGCNTL section in the same cycle. The
specified register can be any of the internal registers (R0..R31 or Q) or any of the external
registers (AOR, ACH, ACL, BC, DOR, IOR).

Condition Codes affected: CY, Z

Example 1:
JMP labell, CLR R31; /* branch to labell and reset R31

at the same time */

=5 3-21

PAC1000 - Instruction Set

PACSEL CMP
gs?embler Instruction Type: CPU
(ceo::e)"ce Operation: Compare src1 and src2
. Syntax: [label:] [PROGCNTL,] CMP srcl src2 [, OUTCNTL];
Description:

CMP compares the two sources and sets the status flags accordingly. Neither register is
affected. The comparison is done by computing (src1 - src2) and discarding the numerical
result.

Status of Flags following CMP A B:

Relation Unsigned Numbers 2’s-Complement Numbers

A=B Z=1 Z=1

AzB Z=0 Z=0

A>B CY=1 S xnor O=1

A<B CY=0 S xnor P=1

A>B CY Z=1 (S xnor O) and Z=1

A<B CY or Z=1 (S xor O) or Z=1
Legend:

CY = cary

O = overflow

S = sign

Z = zero

The sources can be: lIR, AIR, SWPV, DIR, RO...R31, Q, AOR, ACH, ACL, BC, <const>
Condition Codes affected: CY, Z, S. O
Example 1:

/* This example illustrates using CMP to convert a single upper
case hex digit in RZU 1nto plnary, relullllily L€ LeSUuLl Lill nedl

MOV R21 1; /* default value to result */
CMP R20 h'46’; /* is the code <= ASCII F? */
RC CY; /* return with default if not */
CMP R20 h’30'; /* is the code > ASCII SpP? */
RC CcY; /* return with default if not */
CMP R20 h’39’; /* is it greater than ‘9’ ? */
JNC CY HDTB1; /* Jump if not */
SUB R20 h’31’; /* map ‘A’ --> 10, ‘B’ —> 11, etc. */
CMP R20 9; /* 1s it between? */
RC CY; /* return with default if so */
MOV R21 R20; /* else transfer value for return */
RET;
s55 s
=7 g

3-22

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

CONT

Instruction Type: PROGCNTL

Operation: Continue

Syntax: [label:] CONT [,CPU] [,OUTCNTL];
Description:

CONT is the default PROGCNTL operation, that is, if no PROGCNTL operation is specified
in an instruction, specified CPU and OUTCNTL operations will be performed and control will
continue to the next sequential instruction. The use of CONT is optional.

Condition Codes affected: none
Example 1:

/* The following code will produce a 50% duty cycle on the FO
output at a frequency determined by the system clock */

CONT,

NOP,

ouT 1 ; /* output ‘1’ for one cycle */
CONT,

NOP,

OouT 0; /* output ‘0’ for one cycle */
CONT,

NOP,

ouT 1; /* output ‘1’ for one cycle */
JMP E1,

NOP,

ouT 0; /* output ‘0’ during jump cycle */
CPI
Instruction Type: PROGCNTL
Operation: Call on Prioritized Interrupt
Syntax: [label:] CPI address [,CPU] [,OUTCNTL];

Description:

The current interrupt status is evaluated. If no interrupt source is active, control branches to
the first instruction of a 16-instruction Case block. If at least one interrupt is active, control
branches to one of the final eight successive instructions in the block. (The second through
eighth instruction in the block are not used.)

The Priority Case Block must start at a location whose address contains zeros in the lower
four bits. The address specified must be a numerical value or a symbolic constant whose
value is previously defined in this module. The actual location of the Case Block must be
resolved at link time, by specification in a link directive.

This instruction is effective only if the INTR bit of the MODE register is clear. Otherwise, the
interrupts will be processed by the normal interrupt vector mechanism. CPI is useful in
systems where interrupts are not used but in which prioritization of polled inputs is
important.

If the selected instruction does not include a jump operation, the next sequential instruction
will be executed. Usually, then, the instructions in a Priority Case Block will include jumps to
avoid falling through to following cases.

The return address is pushed on the stack.
Condition Codes affected: STKF
See Also: JPI

3-23

PAC1000 - Instruction Set

PACSEL CPI (Cont.)
Assembler Example 1:
Reference

/* The following example shows how interrupt
ﬂ:ﬂﬂt) conditions might be processed by a CPI within a
polling loop. Interrupts are not enabled anywhere
in this implementation.*/

EI1CASES equ h’3F0’;

CPI E1CASES,

/* The case block, in general, will be in another
segment: */ segment CASE EXAMPLE;

RET ; /* arrive here if nothing pending */
JMP ERROR ; /* error if control comes here */
JMP ERROR;

JMP ERROR;

JMP ERROR ;

JMP ERROR;

JMP ERROR;

JMP ERROR ;

JMP PINTO ; /* process intQ */

JMP PINT1 ; /* process intl */

JMP PINT2 ; /* process int2 */

JMP PINT3 ; /* process int3 */

JMP PINT4 ; /* process int4d */

JMP PINTS ; /* process int5 */

JMP PINT6 ; /* process int6 */

JMP PINT7 ; /* process int7 */

PINTO: /* framework for each routine */
CLI b’00000001" ; /* clear the interrupt */
RET; /* since original entry via

CPI */

The appropriate link directive is:
locate CASE _EXAMPLE, h’3F0’;

FEES SE
324 Lt

PAC1000 - Instruction Set

PACSEL DEC
Assembler Instruction Type: CPU
’::efe; ence Operation: dest = dest/src - 1
(Cont.) Syntax: [label:] [PROGCNTL,] DEC dest/src [,OUTCNTL];
or
[label:] [PROGCNTL,] DEC dest src [,OUTCNTL];
Description:

In the first form, the destination is decremented by one. In the second form, the source is
decremented by one and stored in the destination.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src lIR, AIR AF
SWPV, <const>,DIR AF
dest/src R0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and scr2 cannot reference the same member of R0...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

See Also: INC
Example 1:
DEC R1; /* decrement Rl */
Example 2:
DEC R1 R3; /* decrement R3, result to R1 */

FESE &=
Wiz 325

PAC1000 - Instruction Set

PACSEL DI
Assembler Instruction Type: PROGCNTL
Reference Operation: Disable Interrupts in Mask Register
(Cont.)
Syntax: [label:] DI mask [,CPU] [,OQOUTCNTL];
Description:

Use the mask to disable interrupts through the interrupt Mask Register. Bits set to 1 in the
mask disable the corresponding interrupt. Zero bits in the mask have no effect.

The Interrupt Mask Register:

IMASK7 | MASKS | MASKS5 | MASK4 | MASK3 | MASK2 | MASKA1 | MASKOI

Condition Codes affected: none
See Also: CLI, El

Example 1:

/* This example 1llustrates the use of DI at the beginning of the
Breakpoint interrupt service routine */

org h'E’; /* external interrupt 6 vector */
JMP INT6_SERVICE;

org h’10’; /* arbitrary */
DI b’01000000"; /* disable further breakpoint ints */
INT6_SERVICE:

RET; /* return-from-interrupt */

Example 2:

/* This example illustrates the use of DI as part of system
initialization procedures */

org h’0’; /* start-up location */
JMP INIT;
INIT: org h’10’;
DI h'FF’; /* prevent (mask) all interrupts */

3-26 add

PAC1000 - Instruction Set

PACSEL biv
Assembler Instruction
Reference Type: Macro
(Cont.) Operation: ~ dest-reg = src-reg1 / src-reg2
Syntax: [label:] DIV dest-reg/MSW-dividend LSW-dividend divisor;
Description:

This Macro divides the 32-bit dividend supplied in the first two arguments by the divisor.
The quotient is left in the Q register. The remainder is left in the destination register.

During execution of this code, OUTCNTRL is implied “MAINT”.
Condition Codes affected: CY, Z, S. 0

Example 1:
DIV R2 R1 R3; /* R2, Rl is divided by R3 */

DSs

Instruction Type: PROGCNTL

Operation: Disable Single Step mode

Syntax: [label:] DSS [,CPU] [,OUT CNTL];
Description:

Disable Single Step mode.
Condition Codes affected: none
See Also: ESS
Example 1:
/* This example illustrates a default single-step handler */

org h’E’ /* external interrupt 0 vector */
JMP SS_SERVICE

org h’100’; /* arbitrary */

SS-SERVICE
DSS ; /* default single-step handler here */
RET; /* return-from-interrupt */

/* Here is the single-step enable */
ESS;

ADD R1 R2; /* the first single step occurs two
cycles from instruction */

3-27

PAC1000 ~ Instruction Set

PACSEL El

Assembler Instruction Type: PROGCNTL

Bceie:ence Operation: Enable Interrupts

(Cont.) Syntax: [label:] EI mask [cCPU] [,OUTCNTL];
Description:

Use the mask to enable interrupts through the Interrupt Mask Register. Bits set to “1” in the
mask enable the corresponding interrupt. Zero bits in the mask have no effect.

The Interrupt Mask Register:

|MASK7] MASK6 | MASK5 | MASK4 | MASKST MASK2 | MASKA1 | MASKOI

If Interrupt 4 is enabled, the device will immediately process an Interrupt 4, since this
interrupt is always active.

Condition Codes affected: none
See Also: CLI, DI
Example 1:

/* This example illustrates the use of EI at the end of an
external interrupt (INT 2) service routine */

org h’'A’; /* external interrupt 2 vector */

JMP INT2_ SERVICE

org h’10’; /* just past interrupt vectors */

INT2_SERVICE

DI b’00000100"; /* disable int2 briefly */

EI b’ 0000100 ; /* re-enable int2 briefly */

RET; /* return-from-interrupt */
Example 2:

/* This example illustrates the use the EI as part of system
initialization procedures */

org h'0’; /* start-up location */
JMP INIT;
org h’"10’;
INIT: EI b’00000100"; /* allow (unmask) all int2 */

¥ =
3-28 iégzli'

PAC1000 - Instruction Set

PACSEL ESS
Assembler Instruction Type: PROGCNTL
Reference — .
Operation: Enable Single Step mode
(Cont.)
Symax: [label:] ESS [,CPU] [,OUTCNTL];
Description:

Enable Single Step mode. Interrupt 6 will be generated after every subsequent instruction,
if it is unmasked.

Condition Codes affected: none
See Also: DSS
Example 1:

org h'E’; /* external interrupt 0 vector */
JMP SS_SERVICE

org h’100"; /* arbitrary */
SS_SERVICE:
DSS ; /* default single-step handler here */
RET; /* return-from-interrupt */
/* Here is the single-step enable */
ESS;
ADD R1 R2; /* the first single step occurs two

cycles from instruction *./

i EE =£

PAC1000 - Instruction Set

PACSEL INC
gs?e’"hler Instruction Type: CPU
ererence Operation: dest = dest/src +1
(Cont.)
Symax [label:] [PROGCNTL,] INC dest/src [,OUTCNTL];
or
[label:] [PROGCNTL,] INC dest src [,OUTCNTL];
Description:

In the first form, the destination is incremented by one. In the second form, the source is
incremented by one and stored in the destination.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IIR, AIR AF
SWPV, <const>, DIR AF
dest/src R0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q

2. In the second form,

a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of R0...R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

See Also: DEC
Example 1:
INC R1; /* increment R1 */
Example 2:
INC R1 R3; /* increment R3, result to R1 */

It
|
I
|
J

I

i
U

Uy

3-30

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

INV
Instruction Type: CPU
Operation: dest = NOT dest/src
Syntax [label:] [PROGCNTL,] INV dest/src [,OUTCNTL];
or
[label:] [PROGCNTL,] INV dest src [,OUTCONTL];
Description:

In the first form, the destination is bit-inverted. In the second form, the source is bit-inverted

and stored in the destination.
The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF,DOR
IOR AF
src IIR, AIR AF
SWPYV, <const>, DIR AF
dest/src RO0...R31, Q. AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,

a. at least one of the sources must be R0...R31 or Q

b. no more than two distinct registers among R0...R31 or Q

and

c. src1 and src2 cannot reference the same member of R0...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

INV R1; /* Rl <-- NOT (R1l) *x/
Example 2:

INV R1 R3; /* Rl <-- NOT (R3) */

3-31

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

JCASE

Instruction Type: PROGCNTL

Operation: Jump to Case Block

Syntax: [label:] JCASE casegroup address [,CPU] [,OUTCNTL];
Description

JCASE performs an unconditional CASE selection using the Case Block at the address
specified. Case selection is based on the 4 bits of the Case Group specified:

‘CGO’ specifies [CC3, CC2, CC1, CCO]
‘CG1’ specifies [CC7, CC6, CC5, CC4]
‘CG2’ specifies [INTR, BCZ, FIOR, FICD]
‘CG3 specifies [Z, O, S, CY]

One of the 16 successive instructions starting at the Case Block label will be executed.
If the instruction does not include a jump operation, the next sequential instruction will be
executed. Ordinarily, then, the instructions in a Case block will include jumps.

The Case Block must start at a location whose address contains zeros in the lower four
bits. The address specified must be a numerical value or a symbolic constant whose value
is previously defined in this module. The actual location of the Case Block must be resolved
at link time, by specification in a link directive.

Condition Codes affected: none

Example 1:

/* This example outputs the binary value of Case Group 1 (CGl) on
the F outputs for one cycle, bracketed by the value -1. */

EIC equ h’200';
JCASE CGl EIC,
NOP ,
OUT h'’FFFF’; /* output -1 during jump cycle */

/* The case block, in general, will be in another segment:
*/segment CASE_EXAMPLE;

ElC: JMP ECEND, NOP, OUT 0 ;
JMP ECEND, NOP, OUT 1 ;
JMP ECEND, NOP, OUT
JMP ECEND, NOP, OUT
JMP ECEND, NOP, OUT
JMP ECEND, NOP, OUT
JMP ECEND, NOP, OUT
JMP ECEND, NOP, OUT
JMP ECEND, NOP, OUT 9 ;
JMP ECEND, NOP, OUT 10 ;
JMP ECEND, NOP, OUT 11 ;
JMP ECEND, NOP, OUT 12 ;
JMP ECEND, NOP, OUT 13 ;
JMP ECEND, NOP, OUT 14 ;
JMP ECEND, NOP, OUT 15 ;

ECEND:
CONT, NOP, OUT h’FFFF’; /* all cases end up here */

W J oW
~

The appropriate link directive is: locate CASE EXAMPLE, h’200';

3-32

L1273

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

JMP
Instruction Type: PROGCNTL
Operation: Jump to target
Syntax: [label:] JMP label2 [,CPU] [,OUTCNTL];
or
[label:] JMP LCPTR [,CPU] [,QUTCNTL];
or
[label:] JMP FIFO [,CPU] [,OUTCNTL];
or
[label:] JMP TOS [,CPU] [,OQUTCNTL];
Description:

JMP is an unconditional branch to the target address. The target, in the first form, is a
program label.

The keyword LCPTR may be substituted, in which case the current value of LC (Loop
Counter) is used an as execution pointer. The ten-bit LC value is loaded into the program
counter. In this case, the LCPTR register must be explicitly loaded (see LDLC and LDLCD)
prior to this operation.

In the third form the keyword FIFO may be substituted, in which case the top of the FIFO is
used as the jump target.

In the fourth form the keyword TOS may be substituted, in which case the top of stack is
used as the jump target without popping the stack.

Condition Codes affected: FIFO flags (Form 3)

Example 1:

JMP Elb,

NOP,

OUT h’A5A5'; /* output test pattern during JMP cycle */
Elb:

Example 2:

LDLC 37; /* jump through pointer */
MP LCPTR;
E2b:

Example 3:

JMP FIFO; /* main program for host-driven mode */
JMP E3;

ﬂﬁ 3-33

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

JMPC
Instruction Type: PROGCNTL
Operation: Jump if Condition Code TRUE

Assembler Syntax: [label:] JMPC cc label2 [,CPU] [,OUT CNTL];

Description:

The condition code specified by “cc” is evaluated. If it is TRUE, then control branches to the
specified label.

The Condition Codes are:

INTR BCz FIOR FICD
z o S cYy
ACO FIXP FIIR STKF
DOR CC7-CCo
Condition Codes affected: none
Example 1:
JMPC Z Elb, /* jump on condition code ‘zero’ */
NOP,
OUT h’45'; /* output ASCII E during jump cycle */
Elb: JMPC CY Elc; /* jump on carry, use default CPU
and OUTCNTL */
JMPNC
Instruction Type: PROGCNTL
Operation: Jump if Condition Code not TRUE
Syntax: [label:] JMPNC cc label2 [,CPU] [,OQUTCNTL];
Description:

The condition code specified by “cc” is evaluated. If it is FALSE, then the program branches
to the specified dest.

The Condition Codes are:

INTR BCzZ FIOR FICD
4 (0] S CcY
ACO FIXP FIIR STKF
DOR CC7-CCO0
Condition Codes affected: none
Example 1:
JMPNC Z Elb, /* Jjump on condition code ‘nonzero’ */
NOP,
OUT h'45’"; /* output ASCII E during jump cycle */
Elb: JMPNC CY Elc; /* Jjump on not carry, default CPU,
OUTCNTL */
FEEF=E
7 ¥ 4

3-34

PAC1000 - Instruction Set

PACSEL JPI

Assembler Instruction Type: PROGCNTL

l?ference Operation: Jump on Prioritized Interrupt

(Uﬂt) Syntax: [label:] JPI address [,CPU] [,OUTCNTL];
Description:

The current interrupt status is evaluated. If no interrupt source is active, then the program
branches to the first instruction of a 16-instruction Priority Case Block. If at least one
interrupt is active, the program branches to one of the final eight successive instructions in
the block. (The second through eighth instructions in the block are not used.)

The Priority Case block must start at a location whose address contains zeros in the lower
four bits. The address specified must be a numerical value or a symbolic constant whose
value is previously defined in this module. The actual location of the Case Block must be
resolved at link time, by specification in a link directive.

This instruction is effective only if the INTR bit of the MODE register is clear. Otherwise, the
interrupts will be processed by the normal vector mechanism. JPI is useful in systems
where interrupts are not used but in which prioritization of polled inputs is important.

If the selected instruction does not include a jump operation, the next sequential instruction
will be executed. Usually, then the instructions in a Priority Case Block will include jumps to
avoid falling through to following cases.

Condition Codes affected: none

Example 1:
/* The following example shows how interrupt conditions might be
processed by a JPI within a polling loop. Interrupts are not
enabled anywhere in this implementation. This approach may be
helpful in a system in which response time is relatively
unimportant but stack space is extremely tight. The stack is not
used at all in this code. */

E1CASES equ h’140';
JPI E1CASES,

/* The case block, in general, will be in another segment: */
segment CASE_EXAMPLE;

JMP E2 ; /* arrive here if nothing pending */

JMP ERROR ; /* error if control comes here */

JMP ERROR ;

JMP ERROR ;

JMP ERROR ;

JMP ERROR ;

JMP ERROR ;

JMP ERROR ;

JMP PINTO ; /* process int0 */
JMP PINT1 ; /* process intl */
JMP PINT2 ; /* process int2 */
JMP PINT3 ; /* process int3 */
JMP PINT4 ; /* process int4 */
JMP PINTS5 ; /* process int5 */
JMP PINT6 ; /* process int6 */
JMP PINT7 ; /* process int7 */
PINTO: /* framework for each routine */

CLI b’00000001"; /* clear the interrupt */
JMP E2; /* since original entry via JPI */

The appropriate link directive is: locate CASE EXAMPLE, h’140";

y
ly

S =5
r4

= 3-35

o

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

LDBP

Instruction Type: PROGCNTL

Operation: Load Breakpoint Register

Symax: [label:] LDBP constant/label [,CPU] [,OUTCNTL];
Description:

The specified constant/label becomes the new breakpoint register value. The maximum
allowed value is 1023 decimal.

Condition Codes affected: None

Example 1:

LDBP 300 /* set Breakpoint to label value */
SUB R2 R1,
OUT h’FFFF’;

Elb:

LDBPD

Instruction Type: PROGCNTL

Operation: Load Breakpoint Register from CPU result
! Svntax: flabel:1 TDRPD. CPU [.OUTCNTTI:
Description:

The required CPU operation supplies the numerical value to be loaded into the BreakPoint
register.

The maximum allowed value is 1023 decimal.

A CPU operation should be present. If the CPU operation is omitted, the breakpoint will be
set to zero.

Condition Codes affected: see CPU instruction used

Example 1:
LDBPD, /* set Breakpoint to R1+R2 */
ADD R1 R2, /* source of value*/

OUT h’FFFF’;

E2b:

3-36

wy
.h
i

PAC1000 - Instruction Set

PACSEL 10LC
Assembler Instruction Type: PROGCNTL
Reference Oneraion: "
(Cont.) peration: oad Loop Counter
Syntax: [label:] LDLC constant/label [,CPU] [,OUTCNTL];
Description:

The constant or the address given by the label is placed into the LC (Loop Counter)
register. The maximum allowed value is 1023 decimal. This instruction supports loops and
the CALL LCPTR and JMP LCPTR instructions.

Condition Codes affected: none

Example 1:
/* This example shows how a constant loop count is used */
LDLC 35; /* want loop to execute 36 times */
Elb: /* loop body */
LOOPNZ Elb; /* conclude loop */
s ==
Wisz

3-37

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

LDLCD

Instruction Type: PROGCNTL

Operation: Load Loop Counter with CPU result

Syntax: [label:] LDLCD, CPU [,OUTCNTL];
Description:

The value computed by the obligatory CPU operation is placed into the LC (Loop Counter)
register. The maximum allowed value is 1023. This instruction supports loops and the CALL
LCPTR and JMP LCPTR instructions.

Condition Codes affected: see CPU operation used.

Example 1:

/* This example shows an alternative way of using the same
constant. */

MOV R2 N; /* want loop to execute N+1 times */
LDLCD, /* find (R1-R2) and load in same instruction */
SUB R1 R2;
E2b: /* loop body */
LOOPNZ E2b; /* conclude loop*/
Example 2:

/* This example shows how to use a value computed at run time as
the loop count. The null case check is almost always advisable.

NAa+tn +hat 1F D1 ~antaine 1 a2+ ant vy tho lonn will nranarly
NCTC Tt 1T 22 Y. e 2000 = ropersy

execute exactly 1 time. */

/* Rl contains the loop count at entry */

3-38

CMP R1 0; /* check null case */
JMPC Z E3c; /* jump past if N=0 */
LDLCD, /* find (N-1) and load in same instruction */
SUB R1 N;
E3b: /* loop body */
LOOPNZ E3b; /* conclude loop */
E3c:
7714
SE=5

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

LOOPNZ

Instruction Type: PROGCNTL

Operation: Loop to label if Loop Counter nonzero

Syntax: [label:] LOOPNZ label [,CPU] [,OUTCNTL];
Description:

The LC (Loop Counter) register is examined, and if it is nonzero,
the program branches to ‘label’. Otherwise, execution continues at the next sequential
instruction. After the test, LC is decreased by one.

The LOOPNZ instruction may be used to conclude the body of an unnested or nested loop.
In the case of a nested loop, the LC register value of the next outer loop should normally be
restored immediately by executing a POPLC instruction after LOOPNZ.

Note: The LOOPNZ instruction tests the loop count first, then decrements it. As a result,
loops will always be performed (Loop Count + 1) times.

Condition Codes affected: none

Example 1:
LDLC 44; /* want loop to execute 45 times */
MOV R15 0; /* initial value for R15 */
Elb: ADD R15 1; /* loop body: increment R14 */
/* loop body ... */
LOOPNZ Elb; /* conclude loop */

/* R15=45 */

= 3-39

PAC1000 - Instruction Set

PACSEL MAINT

Assembler Instruction Type: OUTCNTL

’?f e:e"ce Operation: Maintain previously defined output value

(Cont.) Syntax: [label:] [PROGCNTL,] [CPU,] MAINT;
Description:

MAINT is the default OUTCNTL operation, that is, if MAINT is specified, the assembler
uses a default OUT value equal to that most previously specified. (If no OUT operations
occur in a module, the assembler uses 0). As a result the default is maintained in order of
assembly, not order of execution.

The use of MAINT is optional; the result is the same if no OUTCNTL operation is specified.
Condition Codes affected: none
See Also: OUT

Example 1:

CONT , /* Full instruction form, do-nothing */
NOP ,
MAINT;

Example 2:
CONT, NOP, MAINT; /* compact full form do-nothing */

Example 3:
MAINT; /* simplified do-nothing */
Example 4:

OuT 1; /* output 1 for one cycle, and */
MAINT;

ouT 2; /* output 2 for two cycles, and */
MAINT;

MAINT;

ouT 3; /* output 3 for three cycles */
MAINT;

MAINT;

MAINT;

Example 5:

/* The following two examples produce different results on the
basis of an instruction that is never executed, because of the
way assembly order controls the OUTCNTL default value. */

JMP E5b; /* produce 50% duty cycle on FO line */
ouT 1; /* never executed, but sets default */
ESb: MAINT; /* F outputs set to 1 here */
JMP E5b , OUT 0; /* F outputs set to 0 here */
Example 6:
E6: JMP E6b; /* produce constant low of FO line */
ouT 0; /* never executed, but sets default */
E6b: MAINT; /* F outputs set to 0 here */
JMP E6b , OUT 0; /* F outputs set to 0 here */
iFEfs
== ¥

3-40

PAC1000 - Instruction Set

PACSEL Mov

Assembler Instruction Type: CPU

Reference Operation: Move source to destination

(Cent.)
Syntax: [label:] [PROGCNTL,] MOV dest src [,OUTCNTL];
Description:

MOV copies the source to the destination.
The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IIR, AIR AF
SWPV, <const>, DIR AF
dest/src RO0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of RO...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

Condition Codes affected: see table

Example 1:

MOV R1 33; /* immediate */
Example 2:

MOV R1 R2; /* register to register */
Example 3:

MOV Rl BC;
Example 4:

MOV BC R1;
Example 5:

MOV Rl AIR

MOV BC R1;

s T

PAC1000 - Instruction Set

PAGSEL
Assembler
Reference
(Cont.)

MUL

Instruction Type: Macro

Operation: dest-reg = src-reg1 * src-reg2

Syntax: [label:] MUL dest-reg src-regl src-reg2;
Description:

This Macro multiplies the values of source register 1 and source register 2 and places the
low-order result in source register 1 and in high-order the destination register.

The generated code will require 22 cycles and occupy 7 EPROM location. During execution
of this code, OUTCNTRL is implied “MAINT”.

Condition Codes affected: CY, Z, S, O

Example 1:
MUL R2 R1 RI1; /* R1 squared to R2 and Q */

3-42

l

)
'"'lm!

PAC1000 - Instruction Set

PAGSEL
Assembler
Reference
(Cont.)

NEG
Instruction Type: CPU
Operation: dest = 2’s complement dest/src
Syntax: [label:] [PROGCNTL,] NEG dest/SRC [,OUTCNTL];
or
[label:] [PROGCNTL,] NEG dest src [,OUTCNTL];
Description:

In the first form, the destination is replaced by its two’s complement. In the second form, the
source is two’s complemented and stored in the destination.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IIR, AIR AF
SWPV, <const>, DIR AF
dest/src RO...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of RO...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

NEG R1; /* Rl <= 2's comp (R1l) */
Example 2:

NEG R1 R3; /* Rl <= 2’'s comp (R3) */

ndaded 343

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

NOP

Instruction Type: CPU

Operation: No operation

Syntax: [label:] [PROGCNTL,] NOP [,OUTCNTL];
Description:

NOP (No Operation) is the default CPU operation, that is, if no CPU operation is specified
in an instruction, PAC1000 Peripheral Controller performs the default CPU Operation:

AND 0 0;
which sets the Z flag and sets the carry flag. Using NOP is optional.
Condition Codes affected: Z, CY

Example 1:

CONT , /* Full instruction form, do-nothing */
NOP ,
MAINT;

Example 2:
CONT, NOP, MAINT; /* compact full form do-nothing */

Example 3:
NOP; /* simplified do-nothing */
Example 4:
JMP E4, /* CPU only do-nothing */
NOP ,

OUT h'’FFFF’;

3-44

Wis

PAC1000 - Instruction Set

PACSEL OR
Assembler Instruction Type: CPU
7; nf::.e)’we Operation: dest = src1 OR src2
Syntax: [label:] [PROGCNTL,] OR dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] OR dest srcl src2 [,OUTCNTL];
Description:
In the first form, this instruction ORs the source and the destination and places the result in
the destination.

In the second form, two registers are ORed and the result stored in the destination. One of
the sources may be the same as the destination.

The sources and the destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IIR, AIR AF
SWPV, <const>, DIR AF
dest/src RO0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of RO...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.
Example 1:

OR R2 R1; /* CPU operation alone */

Example 2:

JMP E2B ,
OR R3 R31; /I CPU operation combined with PROGCONTL op */

E2B:
Example 3:

JMP E2B ,
OR R3 R31 , /* CPU operation combined with PROGCONTL op */
ouT 3; /* and OUTCNTL operation */.

E3B:

Example 4:
OR BC R1; /* to Block Counter register */

Wiz 3-45

PAC1000 - Instruction Set

PAGSEL
Assembler
Reference
(Cont.)

outT

Instruction

Type: OUTCNTL

Operation: Output control (F) value

Swnax: Label: [PROGCNTL,] [CPU,] OUT <constant | expression>;
Description:

OUT directs the device to place the specified constant value on the Control (F) outputs.

The value specified is placed on the 16 bit F (user) output lines during the instruction cycle
which includes this operation. The constant is usually specified directly as a hex value in
the range

0 <= constant <= h'FFFF’

or the value may be evaluated as an expression. The value is determined at assembly time;
there is no way of computing an OUT value at run time.

The value may be formed from 2 up to 16 constants, or values that evaluate to constants. In
this case, all the values are bitwise OR’d to produce the output value. The OR operator in
this case is implied.

The value can also be an expression. The expression is evaluated and the evaluated result
is the output value. All the arithmetic and logic operators which can be used with the ‘set’
directive can also be used with the OUT expression.

When an OUTCNTL operation is omitted from an instruction, the assembler will provide a
default OUT value equal to that most recently specified. (If no OUT operations occur in a
module, the assembler will use 0.) Thus OUT defaults are maintained in order of assembly,
nnt arder of execution.

Condition Codes affected: none
See Also: MAINT

Example 1:

/* The following examples will both produce a 75% duty cycle on
the FO output at a frequency determined by the system clock */

CONT, /* full version */

NOP,
ouT 1; /* output ‘1’ for one cycle */
CONT; /* output ‘1’ for one cycle */
CONT; /* output ‘1’ for one cycle */
JMP E1 ,
NOP,
ouT 0; /* output ‘0’ during jump cycle */

Example 2:

XXX equ 45; /* define a constant */
OUT XXX; /* minimal version */

7

;

JMP EXAMPLEZ2 , OUT O ;

3-46

PAC1000 - Instruction Set

PACSEL OUT (Cont.)
Assembler Example 3:
Reference . . .
(cﬂﬂt} ZZZ equ 45; /* define a constant */
- YYY equ 3; /* define second constant */
OUT ZZZ YYY; /* minimal version */

’

JMP E2 , OUT O;

Example 4:

ZZZ equ 45; /* define a constant */

XXX equ 10; /* define second constant */

OUT 2727 : XXX; /* OR of XXX and ZZzZ */

OUT ZZZ & 6; /* and of XXX and Zzz */

OUT 10;

OUT ZZ2Z;

OUT XXX ; ZZZ & 6; /* OR of XXX and ZZZ and with 6 */

PLDLC

Instruction Type: PROGCNTL

Operation: Push and Load Loop Counter

Syntax: [label:] PDLC constant/label [,CPU] [,OUTCNTL];
Description:

The current LC (Loop Counter) value is pushed on the stack, then the constant or address
value is placed into the LC register. The Loop Counter value saved by PLDLC must be
explicitly restored before resuming the enclosing loop.

This instruction may be used to initiate a nested loop. The end of the loop will be defined by
a LOOPNZ instruction; the label specified as the LOOPNZ operand is the beginning of the
loop. In other words, the PLDLC operation may precede the beginning of the nested loop
body. Use LDLC to initiate an unnested loop.

Note: The LOOPNZ instruction tests the loop count first, then decrements it. As a result,
loops will always be performed (Loop Count + 1) times.

Condition Codes affected: STKF

Example 1:

/* The following example shows how to nest loops. These loops
have constant Loop Count values. */

LDLC n; /* load outer loop count */
Elb: /* 1lst instruction of outer loop */
PLDLC m; /* save LC and load inner loop count */
Elc: ADD R1 10; /* 1lst instruction of inner loop */
LOOPNZ Elc; /* end of inner loop */
POPLC; /* restore outer loop count */
LOOPNZ Elb; /* end of outer loop */
/* Rl = Rl + ((N+1) * (10*(M=1)) */
[55 5=
i =

== 3-47

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

PLDLCD

Instruction Type: PROGCNTL

Operation: Push and Load Loop Counter from CPU result

Syntax: [label:]PLDLCD , CPU [,OQUTCNTL];
Description:

The current LC (Loop Counter) value is pushed on the stack, then the value computed in
the CPU instruction is used. The Loop Counter value saved by PLDLC must be explicitly
restored before resuming the enclosing loop.

This instruction may be used to initiate a nested loop. The end of the loop will be defined by
a LOOPNZ instruction; the label specified as the LOOPNZ operand is the beginning of the
loop. In other words, the PLDLCD operation may precede the beginning of the nested loop
body. Use LDLC to initiate an unnested loop.

Note: The LOOPNZ instruction tests the loop count first, then decrements it. As a result,
loops will always be performed (Loop Count + 1) times.

A CPU operation must be present if the second form is used. If the CPU operation is
omitted, the loop count will be set to zero and the loop will execute once.

Condition Codes affected: STKF; also see CPU operation used

Example 1:

/* The following example shows how a nested loop can have a
computed loop count. The value in R2 is assumed to be nonzero.
Adding R1 to R2 is a simple way of providing a CPU-computed value
for this form of the instruction. */

LDLC n; /* load outer loop count */

Elb: /* 1lst instruction of outer loop */
PLDLCD, /* save LC, and use R1+R2 as loopcount */

ADD R2 R1; /* ... all in same instruction */

Elc: ADD R1 10; /* 1lst instruction of inner loop */
LOOPNZ Elc; /* end of inner loop */
POPLC; /* restore outer loop count */
LOOPNZ Elb; /* end of outer loop */

/* Rl = R1+((N+1) * (10* (R2+R1+1))

3-48

/11

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

POP

Instruction Type: PROGCNTL

Operation: POP stack and discard

Syntax: [label:] POP [,CPU] [,OUTCNTL];
Description:

The value on the top of the stack is popped and discarded.

This operation should be used with caution, since the stack generally contains subroutine
return addresses or loop counts which may be expected to be on the stack by a return or

loop conclusion instruction.
Condition Codes affected: STKF
Example 1:

/* This example shows how POP is used to

value on the stack when a nested loop is aborted. */

LDLC n; /*
Elb: /*

PLDLC m; /*
Elc: /*
JMPC STKF PANIC; /*
LOOPNZ Elc; /*
POPLC; /*
LOOPNZ Elb; /*
PANIC:
POP; /*
Example 2:

load outer loop count */
lst instruction of outer loop */

save LC and load inner loop count */
1st instruction of inner loop */

jump if things are bad */
end of inner loop */
restore outer loop count */
end of outer loop */

restore stack by discarding count */

/* This example shows how POP can be used to discard return
addresses when an error condition is located inside nested

subroutines */
CALL E2b; /*
pt_a:

RET;
E2b: CALL E2C; /*
pt_b:
RET;
E2C: CALL E2D; /*
pt_c:
RET
E2D: /*
JMPNC STKF E2E; /*
POP ; /*
POP ; /*
RET ; /*
E2E:

iy

outermost level */

next nested level */

next nested level */

deepest level */

discard the Loop Counter

skip if not stackfull, else climb out */

discard return to pt_c */
discard return to pt_b */
return to pt_a */

3-49

PAC1000 - Instruction Set

PACSEL POPLC
gsiembler Instruction Type: PROGCNTL
(ceo ::e)"ce Operation: Pop Stack Loop Counter
- Syntax: [label:] POPLC [,CPU] [,OUT CNTL];
Description:

The contents of the LC (Loop Counter) register are popped from the stack. This instruction
is used to conclude nested loops.

Condition Codes affected: STKF

Example 1:

/* This example shows how POPLC is used to restore the Loop
counter value following the conclusion of a nested loop. */

LDLC n;
Elb:

PDLC m;
Elc:

LOOPNZ Elc:
POPLC;

TANADNTZ T1lae.

Example 2:

/*
/*

/*
/*

/*
/*

/%

load outer loop count */
1st instruction of outer loop */

save LC and load inner loop count */
1st instruction of inner loop */

end of inner loop */
restore outer loop count */
and nf onter loop */

/* The following example shows how POPLC may be used with PUSHLC
to save and restore the Loop Counter value where a CALL LCPTR is
used within the loop. */

ILDLC n;
MOV R21 0;
E2b:

PUSHLC;
LDLCD ,

ADD R20 R21;
CALL LCPTR;
POPLC;

LOOPNZ E2b;

3-50

/*
/*
/*

/*
/*
/*
/*
/*
/*

f

load loop count */
initialize register */
1st instruction of loop */

save LC */

load call vector */

already assumed to be in R20 */
perform call */

restore loop count */

end of loop */

PAC1000 - Instruction Set

PAGSEL PUSHLC
"4,3?9’""’9’ Instruction Type: PROGCNTL
ererence Operation: Push Loop Counter
(Cont.)
SyMax: [label:] PUSHLC [,CPU] [,OQOUTCNTL];
Description:

The contents of the LC (Loop Counter) register are pushed on the stack. This instruction is
used at the beginning of a nested loop.

Condition Codes affected: STKF

Example 1:
/* This example show show PUSHLC is used to save the Loop Counter
value before the start of a nested loop. The PUSHLC+LDLC sequence
can more economically be replaced by PLDLC in many cases. */

LDLC n; /* load outer loop count */

Elb: /* 1st instruction of outer loop */
PUSHLC; /* save LC */
LDLC m; /* load inner loop count */

Elc: /* 1lst instruction of inner loop */
LOOPNZ Elc; /* end of inner loop */
POPLC; /* restore outer loop count */
LOOPNZ Elb; /* end of outer loop */

Example 2:

/* The following example shows how PUSHLC may be used with POPLC
to save and restore the Loop Counter value where a CALL LCPTR is
used within the loop. */

LDLC n; /* load loop count */
E2b: /* 1lst instruction of loop */
PUSHLC; /* save LC */
LDLCD , /* load call vector */
MOV R20 R20; /* already assumed to be in R20 */
CALL LCPTR; /* perform call */
POPLC; /* restore loop count */
LOOPNZ E2b; /* end of loop */
FE= =

=

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

RC
Instruction Type: PROGCNTL
Operation: Return Conditionally
Syntax: [label:] RC cc [,CPU] [OUTCNTL];
or
[label:] RC cc label2 [,CPU] [,OUTCNTL];
Description:

The next instruction address is taken from the stack if the condition is TRUE. In the second
form, control branches to “label2” if the condition is true. The stack is popped in any case. If
the condition is false, this instruction has no effect.

The Condition Codes are:

INTR BCZ FIOR FICD
z o) S 02 4
ACO FIXP FIIR STKF
DOR CC7-CCo

Condition Codes affected: STKF

Example 1:
CALL Elb,
NOP,
OUT h’46’; /* output ASCII F during CALL cycle */
Elb: RC 2 ; /* null subroutine for Zero condition */
Example 2:

/* The following example shows the framework of a int 7 service
routine that ignores the ACO (Address Counter Ones) condition. */

org h'F’;
JMP INT7_SERVICE; /* install service vector */
org h’100’; /* arbitrary address */

INT7_ SERVICE:

RC ACO; /* if int 7 caused by ACO, leave */

RET;

3-52

sy

PAC1000 - Instruction Set

PACSEL RDFIFO
f,s;emuer Instruction Type: CPU
(pea:;e)’me Operation: Read FIFO data to CPU destination
| Syntax: [label:] [PROGCNTL,] RDFIFO [, OUTCNTL];
Description:

The 16-bit data on the FIFO is moved to the CPU register whose address is specified by the
address stored with the data.

If the FIFO is empty, the previous top value will be read. If the item is a command, then the
FIFO exception condition will occur.

Condition Codes affected: CY, Z, S, O, FIIR, FIOR, FIXP, FICD

Example 1:
RDFIFO; /* data presumed to have R3 target */
DEC R3; /* decrement data value */
RESTART
Instruction Type: PROGCNTL
Operation: Restart by jump to location 0
Syntax: [label:] RESTART [,CPU] [,OUTCNTL];
Description:

RESTART is an unconditional jump to the first program step, i.e., EPROM location zero. It is
logically equivalent to a jump to location zero. Only stack pointer initialization is performed
by this instruction.

Condition Codes affected: CY, Z, S, ACO, BCZ, FIIR, FIOR, FIXP, DOR

Example 1:
JMPC STKF Elb: /* no CPU, OUTCNTL specified */
Elb: RESTART /* use with caution */
Example 2:
JMPC STKF E2b;
E2b: RESTART, NOP, OUT h’FFFF’ ; /* output reset marker */

155 5=

PAC1000 - Instruction Set

PACSEL RET
Assembler Instruction Type: PROGCNTL
708;::3”08 Operation: Return from subroutine
Syntax: [label:] RET [,CPU] [,OUTCNTL];
or
[label:] RET label2 [,CPU] [,OUTCNTL];
Description:

RET is an unconditional subroutine return. In the first form, the next instruction address is
taken from the stack.

In the second form, control branches to the specified label and the stack is popped.

Condition Codes affected: STKF

Example 1:
CALL elb,
NOP,
OUT h'46’; /* output ASCII F during CALL cycle */
Elb: RET; /* null subroutine */
Example 2:

/* This example illustrates the use of RET to conclude an
interrupt service routine */

org h’8’ /* external interrupt 0 vector */
JMP INTO_SERVICE;
ORG H’100’ /* arbitrary */
INTO SERVICE:
RET; /* return-from-interrupt */
Example 3:
RET Elb; /* go to address Elb and pop the stack */

354 Esss

PAC1000 - Instruction Set

PACSEL

Assembler
Reference

(Cont.)

RNC
Instruction Type: PROGCNTL
Operation: Return from subroutine if condition NOT TRUE
Syntax: [label:] RNC cc [,CPU] [,OUTCNTL];
or
[label:] RNC cc label2 [,CPU] [,OUTCNTL];
Description:

RNC is a conditional subroutine return. In the first form, the next instruction address is
taken from the stack if the condition is FALSE.

In the second form, if the condition is FALSE, control branches to ‘label2’ and the stack is
popped.

The Condition Codes are:

INTR BCz FIOR FICD
V4 (0] S CcY
ACO FIXP FIIR STKF
DOR CC7-CCO0
Condition Codes affected: STKF 3
Example 1:
CALL Elb,
NOP,
OUT h’46’; /* output ASCII F during CALL cycle */
Elb: RNC Z; /* null subroutine */
Example 2:

/* The following example shows the framework of an int 7 service
routine that processes only the STKF (Stack Full) condition. */

org h'F’;
JMP INNT7_SERVICE /* install service vector */
org h’100; /* arbitrary address */

INT7_SERVICE:

RNC STKF; /* if int 7 not caused by STKF, leave */
JMP REINITIALIZE /* else do appropriate fix */
/17

3-55

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

RSTCON

Instruction Type: PROGCNTL

Operation: Reset bits in the control register

Syntax: [label:] RSTCON mask [,CPU] [,OUTCNTL];
Description:

Use the mask to reset bits in the Control Register. Bits set to 1 in the mask reset the
corresponding register bits. Zero bits have no effect.

The Control Register:

[aseL | amen | DIREN | HDSEL1 | HDSEL | ADOE | HADOE [HDOE | BCEN | AceN |

Ordinarily, the mask will be most conveniently given in hexadecimal notation.
Condition Codes affected: none
See Also: SETCON

Example 1:
RSTCON h’3FF’; /* Clear ALL Control Register Bits */

Example 2:
RSTCON b’0000000011"; /* clear only BCEN and ACEN */

RSTIO

Instruction Type: PROGCNTL

Operation: Reset bits in the I/O Configuration Register

Syntax: [label:] RSTIO mask [,CPU] [,OUTCNTL];
Description:

Use the mask to reset bits in the I/O Register. Bits set to 1 in the mask reset the
corresponding register bits. Zero bits have no effect.

The I/0 Configuration Register:

[107 | 106 | 105 | 10a | 108 | 102 [101 | 100 |

Ordinarily, the mask will be most conveniently given in hexadecimal notation. The mask
value must be between 0 and FFh.

Condition Codes affected: none
See Also: SETIO

Example 1:
RSTIO h'FF’; /* Clear I/O Configuration Register */

3-56

PAC1000 - Instruction Set

PACSEL RSTMODE
ﬁs;embler Instruction Type: PROGCNTL
(08‘,::8)008 Operation: Reset bits in the Mode Register
- Symax: [label:] RSTMODE mask [,CPU] [,OUTCNTL];
Description:

Use the mask to reset bits in the Mode Register. Bits set to 1 in the mask reset the
corresponding register bits. Zero bits have no effect.

The Mode Register:

[FrsT | Fim | Apoer | HaDoE | HpoE | sio | acen [Bcen | na | R |

Ordinarily, the mask will be most conveniently given in a hexadecimal notation.
Condition Codes affected: none

See Also: SETMODE

Example 1:
RSTMODE h’FF’; /* Clear Mode Register */

Example 2:]
SETMODE b’1000000000"; /* reset FIFO, then... */
RSTMODE b’1000000000" ; /* immediately clear reset */

~
Iy
Iy
Y

SE5£55 3-57

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

SBC
Instruction Type: CPU
Operation: dest = srci1 - src2 - CY
Syntax: [label:] [PROGCNTL,] SBC dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] SBC dest srcl src2 [,OUTCNTL];
Description:

In the first form, this instruction subtracts two values. The state of the carry bit, from
previous subtractions, is included in the computation. If CY is not set, the difference is
decreased by 1 during the subtract operation. In the second form, two registers are
subtracted and the result placed in the destination register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IR, AIR AF
SWPV, <const>, DIR AF
dest/src RO...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q

2. In the second form,

a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used

and

c. src1 and src2 cannot reference the same member of RO...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:
SBC R1 R1;

Example 2:

MOV R31 h’0’;
SUB R31 h'l’;

SBC R31 h’0’;
Example 3:

SBC BC R23;
Example 4:

SBC BC R23 R24;
Example 5:

CONT ,

SBC BC R23 R24 ,

OUT h’A5A5" ;

/*

/*
/*
/*

/*

/*

3-58

zero R1 and add CY */

load immediate value */
subtract immediate */
R31 now is 0 */

BC = BC - R23, accounting for CY */

BC = R23 - R24, accounting for CY */

full instruction format */

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

SETCON

Instruction Type: PROGCNTL

Operation: Set bits in the Control Register

Syntax: [label:] SETCON mask [,CPU] [,OUTCNTL];
Description:

Use the mask to set bits in the Control Register. Bits set to 1 in the mask set the
corresponding register bits. Zero bits have no effect.

The Control Register:

[aseL | amen | oiren [HpseLt [Hosero | apoe [Hapoe | Hboe | Ben | acen |

Ordinarily the mask will be most conveniently given in hexadecimal notation.
Condition Codes affected: none
See Also: RSTCON

Example 1:

SETCON h'3FF’; /* Set ALL Control Register bits */

Example 2:

SETCON b’0000000011"; /* set only BCEN and ACEN */

SETIO

Instruction Type: PROGCNTL

Operation: Set bits in the /0 Configuration Register

Syntax: [label:] SETIO mask [,CPU] [,OUTCNTL];
Description:

Use the mask to set bits in the I/O Register. Bits set to 1 in the mask set the corresponding
register bits. Zero bits have no effect.

The I/0 Configuration Register:
[107 | 106 | 105 | 104 | 108 | 102 [101 [100 |

Ordinarily, the mask will be most conveniently given in the hexadecimal notation. The mask
value must be between 0 and FFh.

Condition Codes affected: none
See Also: RSTIO

Example 1:

SETIO h'FF’; /* Set all I/0 Port lines to output */

|
|
J

i
N

3-59

PAC1000 - Instruction Set

PACSEL SETMODE

Assembler Instruction Type: PROGCNTL

Rgf::t;nce Operation: Set bits in the Mode Register

(Cont. Syntax: [label:] SETMODE mask [,CPU] [,OUTCNTL];
Description:

Use the mask to set bits in the Mode Register. Bits set to 1 in the mask set the
corresponding register bits. Zero bits have no effect.

The Mode Register:

[FrsT | Fim | apoer | HapoE | HDoE | sio | acen | Been | wa | wtm |

Ordinarily, the mask will be most conveniently given in hexadecimal notation.
Condition Codes affected: none
See Also: RSTMODE

Example 1:
SETMODE h’'1’; /* Set Interrupt Mode */

Example 2:

SETMODE b’1000000000" ; /* reset FIFO, then... */
RSTMODE b’10000000007 ; /* immediately clear reset */

| SHLR
[insituciion Typs. CTU

Operation: Shift Left Register

Syntax: [label:] [PROGCNTL,] SHLR reg src [,OUTCNTL];
Description:

This instruction shifts the selected register (RO thru R31) left one bit. The data shifted in
depends on the source operand:

4 — the Zero bit flag
cY —the Carry bit flag
S —the Sign bit flag
0 —a binary ‘0’

1 —a binary ‘1’

RMSB - the Most Significant Bit of this register
QMSB - the Most Significant Bit of the Q register
SDAT — Serial Data port in/out

If RMSB is chosen as the source, the data shifted out is shifted into the LSB of the register;
the result is a “rotate.”

Condition Codes affected: CY, Z, S, O

Example 1:
SHLR R1 Z; /* shift the Zero flag into the LSB of R1 */
Example 2:
SHLR R1 1; /* shift a ‘1’ into the LSB of R1 */
Example 3:
SHLR R1 RMSB; /* rotate Rl left one bit */
Example 4:
SHLR R1 QMSB; /* shift the MSB of Q into the LSB of R1 */

TEE &=

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

SHLRQ

Instruction

Type: CPU

Operation: Shift left register and Q

Syntax: [label:] [PROGCNTL,] SHLRQ reg rsource gsource [,OUTCNTL];
Description:

This instruction shifts the selected register (R0 thru R31) and Q left one bit. The data

shifted in depends on the rsource and gsource operands.

4 — the Zero bit flag
cY —the Carry bit flag
S — the Sign bit flag
0 —abinary ‘0’

1 —abinary ‘1’

RMSB - the Most Significant Bit of this register
QMSB - the Most Significant Bit of the Q register
SDAT — Serial Data port in/out

Condition Codes affected: CY, Z, S, O

Example 1:

SHLRQ R1 Zz 1; /* shift the Zero flag into the LSB of Rl */ .

/* also shift Q left one bit */

Example 2:
SHLRQ RQ CY 1; /* shift a ‘1’ into the LSB of R1 */
/* also shift Q left one bit */
Example 3:

SHLRQ R1 RMSB 1; /* rotate Rl and Q left one bit */

Example 4:
SHLRQ R1 QMSB 0 ; /* rotate Rl and Q left one bit */

3-61

PAC1000 - Instruction Set

PACSEL SHRR
gsiembler Instruction Type: CPU
ererence Operation: Shift Right Register
(Cont.)
Syntax: [label:] [PROGCNTL,] SHRR reg source [,OUTCNTL];
Description:

This instruction shifts the selected register (RO thru R31) right one bit. The data shifted in
depends on the source operand:

z —the Zero bit flag
CcY — the Carry bit flag
S — the Sign bit flag
0 —a binary ‘0’

1 —abinary ‘1’

RMSB - the Most Significant Bit of this register
QMSB — the Most Significant Bit of the Q register
SDAT — Serial Data port in/out

Condition Codes affected: CY, Z, S, O

Example 1:

SHRR R1 Z; /* shift the Zero flag into the MSB of R1 */
Example 2:

SHRR R1 1; /* shift a ‘1’ into the MSB of Rl */
Example 3:

SHRR R1 RLSB; /* rotate R1 right one bit */

Example 4:
SHRR Rl QLSB; /* shift the LSB of Q into the MSB of Rl */

3-62 =5

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

SHRRQ

Instruction

Type: CPU

Operation: Shift Right Register and Q

Syntax: [label:] [PROGCNTL,] SHRRQ reg rsource gsource [,OUTCNTL];
Description:

This instruction shifts the selected register (R0 thru R31) and Q right one bit. The data
shifted in depends on the rsource and gsource operands

z — the Zero bit flag

CcY —the Carry bit flag

S — the Sign bit flag

0 —abinary ‘0’

1 —abinary ‘1’

RMSB — the Most Significant Bit of this register

QMSB

SDAT — Serial Data port in/out

Condition Codes affected; CY, Z, S, O

— the Most Significant Bit of the Q register

Example 1:

SHRRQ R1 Z 1 ; /* shift the Zero flag into the MSB of Rl */
Example 2:

SHRRQ R1 1 0; /* shift a ‘1’ into the MSB of Rl */
Example 3:

SHRRQ R1 RMSB CY; /* rotate Rl and Q right one bit */
Example 4:

SHRRQ R1 QMSB Z; /* rotate Rl and Q right one bit */

3-63

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

SuB

Instruction Type: CPU

Operation: dest = src1 - src2
Symax: [label:] [PROGCNTL,] SUB dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] SUB dest srcl src2 [,OUTCNTL];
Description:

In the first form, this instruction subtracts the source from the destination and places the
result in the destination. In the second form, source 2 is subtracted from source 1 and the
result placed in the destination register. This is a 2's complement operation.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IR, AIR AF
SWPYV, <const>, DIR AF
dest/src RO...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:
1. 11 HIC HIDL VLT, SIS USDUDILU Ul DIV THUDL WG 1TV...1 10 1 VI

2. In the second form,

a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used

and

c. src1 and src2 cannot reference the same member of R0...R31.

3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:
SUB R1 R1;

Example 2:
MOV R31 h’0’;
SUB R31 h'l’;
Example 3:
SUB BC R23;

Example 4:
SUB BC R23 R24;

Example 5:

CONT ,
SUB BC R23 R24 ,
OUT h’ABA5’;

/*

/*
/*

/*

/*

/*

zero R1 */

load immediate value */
subtract immediate */

subtract R23 from block counter */

(R23 - R24) to block counter */

full instruction format */

3-64

77

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

TWB
Instruction Type: PROGCNTL
Operation: Three-way branching
Syntax: [label:] TWB cc branch-label [,CPU], [,OUTCNTL];
cc -> Condition code
branch-label -> a label to branch to
Description:

TWB is a three-way-branch instruction.

Here cc, the condition-code is evaluated. If it is TRUE then the Program counter value will
be the address of next instruction. In other words, the program will execute next instruction
and continues.

If cc evaluates to FALSE, then one of the following two cases is performed, based on the
Loop counter value.

1. If Loop counter value is zero, then the Program counter value will be the
branch-labels address, i.e., the program branches to the label specified.

2. If the Loop counter value is not zero, then the Program counter will be
loaded with whatever value is on the top of the stack. Thus the program will branch to
the address given by the top of the stack.

Note, however, that in this case, the top of the stack is not popped-out.

The Condition Codes are:

INTR BCz FIOR FICD
Z o S cYy
ACO FIXP FIIR STKF
DOR CC7-CCo

Note:

1. ltis the users’ responsibility to have valid address on top of the stack prior to executing
this instruction.

2. Also, user may have to load the Loop counter prior to this instruction.

Example 1:
LDLC label 1; /* load loop counter */
PUSHLC; /* push it on stack */
TWB Z LABEL 2; /* If Z is TRUE, PC = PC + 1
If Z is FALSE, two cases :
i. if loopcounter = 0, PC = label 2
ii. if loopcounter ! = 0,
PC = Top of stack(label 1)
*/
ouT2;
label 1 :
OUT5;
label 2 :
OUT10;

3-65

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

TWBNC
Instruction Type: PROGCNTL
Operation: Three-way branching
Syntax: [label:] TWBNC cc branch-label [,CPU] [,OUTCNTL];
cc -> Condition Code
branch-label -> a label to branch to
Description:

TWBNC is a three-way-branch instruction.

Here cc, the condition-code is evaluated. If it is TRUE then the Program counter value will
be the address of next instruction. In other words, the program will execute next instruction
and continues.

If cc evaluates to FALSE, then one of the following two cases is performed, based on the
Loop counter value.

1. If Loop counter value is zero, then the Program counter value will be the
branch-labels address, i.e., the program branches to the label specified.

2. If the Loop counter value is not zero, then the Program counter will be loaded with
whatever value is on the top of the stack. Thus the program will branch to the address
given by the top of the stack.

Note, however, that in this case, the top of stack is not popped-out.
The Condition Codes are:

INTR BCz FIOR FICD
pd s} S cv
ACO FIXP FIIR STKF
DOR CC7-CCo

Note:

1. ltis users’ responsibility to have valid address on top of the stack prior to executing this
instruction.
2. Also, user may have to load the Loop counter prior to this instruction.

Example 1:
LDLC label 1; /* load loop counter */
PUSHLC; /* push it on stack */
MOV RO 10;
MOV R1 10;
SUB RO R1;
TWBNC Z label 2; /* If Z is TRUE, PC = PC + 1
If Z is FALSE, two cases :
i. if loopcounter = 0,
PC = label 2 ;
ii. if loopcounter ! = 0,
PC = Top of stack (label 1)
*/
ouUT2;
label 1 :
OUT5;
label 2 :
OUT10;

3-66

PAC1000 - Instruction Set

PACSEL
Assembler
Reference
(Cont.)

XNOR
Instruction Type: CPU
Operation: dest = src1 XNORs src2
Syntax: [label:] [PROGCNTL,] XNOR dest/src src [,OQOUTCNTL];
or
[label:] [PROGCNTL,] XNOR dest srcl src2 [,OUTCNTL];
Description:

In the first form, this instruction XNORSs the source and destination and places the result in
destination.

In the second form, two sources are XNORed and the result stored in the destination
register.

The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IR, AIR AF
SWPV, <const>, DIR AF
dest/src R0...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Notes:

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of RO...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.

Example 1:

XNOR R1 R2; /* Rl = (Rl XNOR R2) */
Example 2:

XNOR R31 h’OFFF’; /* XNOR immediate mask */
Example 3:

/* The following two examples accomplish the same result and
illustrate the use of a three operand XNOR */

MOV R23 h’'123’; /* load register with constant */

MOV BC R23; /* load Block Counter from register */
XNOR BC h’FFFE’; /* mask and load Block Counter */

Example 4:

MOV R23 h’123"; /* load register with constant */

MOV R24 h'FFFE’; /* load register with mask */

XNOR BC R23 R24; /* mask and load Block Counter */

FEEs ==

== 3-67

PAC1000 - Instruction Set

PACSEL XOR
Assembler Instruction Type: CPU
Rcefe:en ce Operation: dest = src1 XOR src2
{ ﬂﬂ.) Symax: [label:] [PROGCNTL,] XOR dest/src src [,OUTCNTL];
or
[label:] [PROGCNTL,] XOR dest srcl src2 [,OUTCNTL];
Description:
In the first form, this instruction XORs the source and destination and places the result in
destination.

In the second form, two sources are XORed and the result stored in the destination register.
The sources and destination can be chosen from the following table:

Src/Dest Arguments Flags Affected
dest DOR AF, DOR
IOR AF
src IIR, AIR AF
SWPV, <const>, DIR AF
dest/src RO...R31, Q, AOR AF
ACH, ACL ACO, AF
BC BCZ, AF
Natac:-

1. In the first form, either dest/src or src must be R0...R31 or Q
2. In the second form,
a. at least one of the sources must be R0...R31 or Q
b. no more than two distinct registers among R0...R31 may be used
and
c. src1 and src2 cannot reference the same member of R0...R31.
3. AF=Arithmetic Flags: Z, CY, S, O.
Example 1:
XOR R1 R2; /* Rl = (Rl XOR R2) */
Example 2:
XOR R31 h’QFFF’; /* XOR immediate mask */

Example 3:

/* The following two examples
illustrate the use of a three

MOV R23 h’123’; /* load

MOV BC R23 /* load
Example 4:

MOV R23 h’123’; /* load

MOV R24 H'FFFE’; /* load

XOR BC R23 R24; /* mask

iy
iy
)

accomplish the same result and
operand XOR */

register with constant */
Block Counter from register */

register with constant */
register with mask */
and load Block Counter */

3-68

PAC1000 - Instruction Set

PACSEL
Macro
Reference

Instruction
Type CPU
Operation: Assign value
Syntax: [label:] [PROGCNTL,] dest := src [,OUTCNTL];
or
[label:] destl := dest2 := src [,PROGCNTL] [,OUTCNTL];
Description:
| Form:

The := operator assigns the value of the source to the destination. The destination is one of
the following:

R0..R31 ACH ACL BC AOR IOR DOR Q
Il Form:
In this form, the destination can be any one of the following:
AOR, ACH, ACL, BC, IOR, DOR
and dest2 can only be,
RO0..R31 Q
The source may be one of the following for both forms.
R0..R31 ACH ACL BC AOR IOR DOR Q <const> SWPV
Or the source may be an expression of one of the following forms:
[J arg1 <arithmetic op> arg2 [<arithmetic op> arg3]
3 arg1 <logical op> arg2
[<unary op> arg
3 shift-arg1 <shift op> shift-src1 [shift-arg2 <shift op> shift-src2]

Where:

<arithmetic op> is +(add) -(sub) *(mul) /(div)

<logical op> is & (and) I(or) A(xor) 1A(xnor)

<unary op> is -(neg) ++(inc) --(dec) ~(inv)

<shift op> is << (shift left) >> (shift right)

shift-arg1 is R0..R31 Q

shift-arg2 is RO...R31

shift-src is cY 4 S 1 0

QLsB QMSB RMSB RLSB SDAT

Notes:

1. In expressions, one of the arguments must be R0...R31 or Q

2. Arg3, if present, must be “CP” (carry from previous operation)

3. MULTIPLY (*) and divide (/) are macro operations. In these cases, PROGCNTL and
OUTCNTL operations should not be specified.

4. The shift operations fall into one of the following formats:

Rn = RN >> shift-src

Rn = Rn << shift-src

QRn = Q >> shift-src Rn >> shift-src

QRn = Q << shift-src Rn << shift-src
11 y3

=7 3-69

PAC1000 - Instruction Set

PACSEL := (Cont.)

Macro The PROGCNTL and OUTCNTL operations, if present, are unconditionally executed in the
Reference same cycle.

(Cont.)

Example 1:

R5 := BC;
Example 2:

R3 := BC + 1;
Example 3:

R27 := BC + Q;
Example 4:

Rss := ++ R3;
Example 5:

BC := Rl - R2 - CP;
Example 6:

AOR := RO := RO - RIl;

ACSIZE

Instruction Type: PROGCNTL

Operation: Set Address Counter size

Syntax: [label:] ACSIZE size |[,CPUJ] [,OULCNTL]; J

Description:
Set the Address Counter size. The allowed values for “size” are 16 or 22.

The CPP and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

Example 1:
ACSIZE 22;

Example 2:
ACSIZE 16;

r-g .E
3-70 it

PAC1000 - Instruction Set

PACSEL CALL
Macro Instruction Type: PROGCNTL
Reference Oooration: i eubrout
(COIIL) peration: Call subroutine
Syntax: [label:] CALL label 2 [ON] [NOT] [condition-code]
[,CpPU] [,OUTCNTL];
Description:

The current program counter is pushed on the stack, and control branches to label 2. If the
ON phrase is specified, the condition code is evaluated, optionally inverted by NOT, and the
call occurs only if the result is TRUE.

The CPU and OUTCNTL operations, If present, are unconditionally executed in the same
cycle.

The Condition Codes are:

INT BCz FIOR FICD
z (o] S cY
ACO FIXP FIIR STKF
DOR CC7-CCo
Example 1:
CALL XXX;
Example 2:

CALL XXX ON CY;

Example 3:

CALL XXX ON NOT CY;
Example 4:

/* CY from before R1+R3 is used:*/

CALL XXX ON NOT CY , Rl := R2 + R3;

CLEAR

Instruction Type: PROGCNTL

Operation: Clear interrupt(s)

Syntax: [label:] CLEAR [int#] ... [int#] [,CPU] [,OUTCNTL];
Description:

Clear the listed interrupts. The values
INTO INT1 INT2 INT3 INT4 INT5 INT6 INT7
may be listed in any order.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

Example 1:
CLEAR INT1 INT3 INT4 INTO; /* clear INT4 has no effect */

Bess 371

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

CONFIGURE

Instruction Type: PROGCNTL

Operation: Set bits in the mode register

Syntax: [label:] CONFIGURE [pl] ... [pl0] [,CPU] [,OUTCNTL];
Description:

Set specified bits in the Mode Register. The arguments p1 ... p10 must all come from Set 1,
or all from Set 2:

Set 1 Set 2
ACEN FINRST
ADOE 100
BCEN 101

FIIR 1023
FIRST 104
HADOE 105
HDOE 106
INTR IP7

SIO PCC

CONFIGURE should generally be used only once, during initialization.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the
same cycle.

Example 1:

CONFIGURE INTR ADOE : /* interrupt mode, ADOE controlled

externally */

DISABLE

Instruction Type: PROGCNTL

Operation: Disable specified interrupts

Syntax: [label:] DISABLE [int#] ... [int#] [,CPU] [,OUTCNTL];
Description:

Disable the listed interrupts. The values
INTO INT1 INT2 INT3 INT4 INT5 INT6 INT7
may be listed in any order. This instruction sets mask bits in the Interrupt Mask Register.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: ENABLE

Example 1:

/* shut off software interrupt: INT4 always active */
DISABLE INT4;

Example 2:

/* disable selected interrupts; note lack of order */
DISABLE INT7 INT3 INT4 INT5 INTO;

3-72

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

ENABLE

Instruction Type: PROGCNTL

Operation: Enable specified interrupts

Syntax: [label:] ENABLE [int#] ... [int#] [,CPU] [,OQUTCNTL];
Description:

Enable the listed interrupts. The values
INTO INT1 INT2 INT3 INT4 INT5 INT6 INT7

may be listed in any order. This instruction clears mask bits in the Interrupt Mask Register.

If Interrupt 4 is enabled, PAC1000 Peripheral Controller will immediately process an
Interrupt 4, since this interrupt is always active.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: DISABLE

Example 1:
/* execute a software interrupt: INT4 always active */
ENABLE INT4;
Example 2:

/* enable all interrupts; note lack of order */
ENABLE INT7 INT6 INT3 INT4 INTS5 INT2 INT2 INTO;

FF —7 =3
717 3-73

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

FOR...ENDFOR
Instruction Type: PROGCNTL structure
Operation: Loop <count> times
Syntax: [label:] FOR count [,CPU] [,OUTCNTL]
[executed <count+1> times ;]
ENDFOR [,CPU] [,OUTCNTL];
Description:

At the head of the loop, the count is stored (in one cycle) and the loop is executed. (The
loop is always executed once, even if the count is zero.) At the conclusion of the loop body,
the count is evaluated and then decremented. If the result is greater than zero, control is
transferred to beginning of the loop body.

The maximum value for “count” is 1023 decimal.

Alternative usage: If “count” is omitted, the value computed from the CPU operation
following “FOR” is used. If this alternative is chosen, the CPU operation is mandatory.

The CPU and OUTCNTL operations following the loop count, if present, are unconditionally
executed in the same cycle. The CPU and OUTCNTL operations following ENDFOR are
not included in the loop body.

Stack effects: an implicit PUSH is performed at the FOR and a match implicit POP is done
at the ENDFOR. These extra operations support nested loops. If you branch out of the loop,
you must manage the stack explicitly by performing a POP operation.

Timing: FOR executes in one machine cycle; ENDFOR generates two lines or coae—a
branch back to the beginning of the loop and a pop of the stack into the loop counter.

Example 1:
/* inefficient method of adding 47 to $1 */
FOR 47;
Rl := ++ R1;
ENDFOR;
Example 2:
/* similar, with CPU and OUTCNTL */
R2 := 3;
FOR 47, R1 := R2 , OUT 2;
Rl := ++ R1;
ENDFOR, OUT 0;
Example 3:
/* similar, but count = CPU result = 3 */
R2 := 3;
FOR , Rl := R2 , OUT 2;
Rl := ++ R1;

ENDFOR, OUT 0;

3-74

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

GOTO
Instruction Type: PROGCNTL
Operation: Unconditional jump
Syntax: [label:] GOTO label2 [ON] [NOT] [condition-code]
[,CPU] [,OUTCNTL];
Description:

Control branches to the label 2. If the ON phrase is specified, the condition code is
evaluated, optionally inverted by NOT, and the operation occurs only if the result is TRUE.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same

cycle.
The Condition Codes are:

INT BCz FIOR FICD
Z (0] S CcY
ACO FIXP FIIR STKF
DOR CC7-CCO0
Example 1:
GOTO XXX;
Example 2:
GOTO XXX ON CY;
Example 3:
GOTO XXX ON NOT CY;
Example 4:
/* CY from before R1+R3 is used: */
GOTO XXX ON NOT CY , Rl := R2 + R3;

3-75

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

IF...ELSE...ENDIF

Instruction Type: PROGCNTL structure
Operation: Conditional Branch
Syntax:

[label:] IF [NOT] condition-code [,CPU] [,OUTCNTL];
[executed if condition true ;]

[ELSE] [,CPU] [,OUTCNTL];
4 [executed if condition false ;]
ENDIF [,CPU] [,OUTCNTL];

or
[label:] IF argl <relational op> arg2 [,CPU] [,OUTCNTL];
[executed if condition true ;]
[ELSE] [,CPU] [,OUTCNTL];
[executed if condition false ;]
ENDIF [,CPU] [,OUTCNTL];
Description:

The condition-code is evaluated, and optionally inverted by the NOT keyword. If the result is
TRUE, the IF portion is executed. Otherwise the ELSE portion is executed, if it is present. If
It 1S NOt present, CONtrol pPasses 10 e ENDIF.

The CPU and OUTCNTL operations following the condition code, if present, are
unconditionally executed in the same cycle.

The CPU and OUTCNTL operations following the ELSE are executed only if the ELSE
phrase is selected. These are performed in an extra cycle inserted for the purpose. The
CPU and OUTCNTL operations following the ENDIF, if present, are always executed.

This structure may be nested to a maximum depth of 15. Each IF must be terminated with a
matching ENDIF.

The Condition Codes are:

INT BCZ FIOR FICD
z o S (24
ACO FIXP FIIR STKF
DOR CC7-CcCo

In the second form of this instruction, one of the relational operators

or
I=

is specified to test equality or inequality of two arguments. In this form, arg1 and arg2 may
be any of the following:

R0...R31 ACH ACL BC AIR IR DIR AOR SWPV a constant

If this form is used, 2 machine cycles are required for execution of the IF instruction.

Iy
Iy
"

3-76

]
:‘:‘

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

IF...ELSE...ENDIF (Cont.)

Example 1:
IF ACO; /* if Address Counter all ones */
ACO := R25; /* relaod with contents of R25 */
ENDIF;
Example 2:
/* similar, with ... */
IF CY , R25 := R23, OUT h’0’; /* CPU and OUTCNTL */
BC := R25;
ENDIF;
Example 3:
/* similar, with ELSE phrase */
IF Z;
ACO := R25;
ELSE;
AOR := ++ R25;
ENDIF;
Example 4:
/* similar, with... */
IF Z , R25 := R23, OUT h’0Q’; /* CPU and OUTCNTL */
R20 :+ R25;
ELSE;
R26 := ++ R25;
ENDIF;
Example 5:

/* logically same as exampled */
IF NOT ACO , R25 := R25, OUT h'0’;
R26 := ++ R25;
ELSE;
R20 = R25;
ENDIF;

"y
ly
Wy
]

3-77

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

INPUT

Instruction Type: PROGCNTL

Operation: Set I/0 port pin mode to input

Syntax: [label:] INPUT [PIN#] ... [pin#] [,CPU] [,QUTCNTL];
Description:

Set the listed I/O port pins to inputs. The pins
100 101 102 103 104 105 106 107

may be listed in any order.
This instruction resets bits in the 1/0 Configuration Register.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: OUTPUT

Example 1:
INPUT 103 IOQ7 IO4; /* set these pins to inputs */
out
Instruction Type: OUTCNTL
Operation: Output control (F) value
Symax: [label:] [PROGCNTL,] [CPU,] OUT constant;
Description:

OUT directs the device to place the specified constant value on the Control outputs.

The value specified is placed on the 16 bit (user) output lines during the instruction cycle
which includes this operation. The constant is usually specified directly as a hex value in
the range

0 <= constant <= h’FFFF’

or the value may be evaluated as an expression. The value is determined at assembly time;
there is no way of computing an OUT value at run time.

The value may be formed from 2 up to 16 constants, or values that evaluate to constants. In
this case, all the values are bitwise OR’d to produce the output value. The OR operator in
this case is implied.

When an OUTCNTL operation is omitted from an instruction, the assembler will provide a
default OUT value equal to that most previously specified. (If no OUT operations occur in a
module, the assembler will use 0.) Thus OUT defaults are maintained in order of assembly,
not order of execution.

Example 1:

OuT 59;

Example 2:

XXX equ 45 ;
GOTO E2 , OUT XXX;

3-78

PAC1000 - Instruction Set

PACSEL LOADBP

Macro Instruction Type: PROGCNTL

Reference — Broakoo

(co”t.) Operation: Load Breakpoint
Syntax: [label:] LOADBP constant/label <,CPU> <,OUTCNTL>;
Description:

Load the Breakpoint Register with the specified constant or address value. The value may
be a number or a symbol. The maximum value is 1023 decimal.

Alternative usage: If “constant” is omitted, the value computed from the CPU operation
following “LOADBP” is used. If this alternative is chosen, the CPU operation is mandatory.

The CPU and OUTCNTL operations, if present, are executed in the same cycle.
Example 1:
LOADBP h’200';

Example 2:
LOADBP , R3 := Rl + ACH; /* BP = Rl + ACH */

ouTPutT
Instruction Type: PROGCNTL

Operation: Set I/0O port pin mode to output
Syntax: [label:] OUTPUT [pin#] ... [pin#] [,CPU] [,OUTCNTL];
Description:

Set the listed I/O port pins to outputs. The pins
100 101 102 103 104 105 106 107

may be listed in any order.

This instruction sets bits in the /O Configuration Register.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the
same cycle.

See also: INPUT

Example 1:

OUTPUT IO3 IO2 I04; /* set these pins to outputs */

-.,
iy
:Il
N

. 7 73 3-79

PAC1000 - Instruction Set

PACSEL PSWITCH...PRIORITY
Macro Instruction
Reference Type: PROGCNTL structure
(cﬂﬂf.) Operation: Prioritized eightway branch
Syntax: [label:] PSWITCH [,CPU] [,OUTCNTL];
PRIORITY n, [PROGCNTL] [,CPU] [,OUTCNTL];
PRIORITY m, [PROGCNTL] [,CPU] [,OQUTCNTL];

[up to 8 branches total]
ENDPSWITCH [,CPU] [,OUTCNTL];

Description:

The current interrupt status is evaluated. If no interrupt source is active, then the program
branches to the ENDPSWITCH location.

If one interrupt is active, the program branches to the corresponding case. If more than
one is active, the program branches to highest priority case.

If a case does not include a jump operation, the next sequential case will be executed.
Ordinarily, then, each case will contain a jump.

This operation is effective only if the INTR bit of the MODE register is clear. Otherwise, the
interrupts will be processed by the normal interrupt vector mechanism. This structure is
useful in systems where interrupts are not used but in which prioritization of polled inputs is
important.

The CPU and OUTCNTL operations following the PSWITCH, if present, are unconditionally
executed in the same cycle. The CPU and OUTCNTL operations following the
ENDPSWITCH, if present, are unconditionally executed if control reaches the

FAINPOAIT AL
LN OVVETVIE L,

Example 1:

PSWITCH
PRIORITY 0, GOTO PINTO; /* process into 0 */
PRIORITY 1, GOTO PINT1; /* process into 1 */
PRIORITY 2, GOTO PINT2; /* process into 2 */
PRIORITY 3, GOTO PINT3; /* process into 3 */
PRIORITY 4, GOTO PINT4; /* process into 4 */
PRIORITY 5, GOTO PINTS; /* process into 5 */
PRIORITY 6, GOTO PINT6; /* process into 6 */
PRIORITY 7, GOTO PINT7; /* process into 7 */

ENDPSWITCH;

PINTO: /* framework for each routine */
JMP NEXT; /* original entry via PSWITCH */

3-80

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

RESET
Instruction Type: PROGCNTL
Operation: Reset bits in the Control Register
Syntax: [label:] RESET [PL] [P10] [,CPU] [,OUTCNTL];
Description:
Reset specified bits in the Control Register. The parameters
ACEN BCEN HDOE HADOE ADOE
HDSELL HDSELO DIREN AIREN ASEL

may be listed in any order.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: SET
Example 1:
RESET HDSELO DIREN ASEL;

RETURN
Instruction
Type: PROGCNTL
Operation: Return from subroutine
Syntax: [label:] RETURN [ON] [NOT] ([condition-code] [,CPU]
[, OUTCNTL] ;
Description:

Control is returned to the code following the most recent CALL. If the ON phrase is
specified, the condition code is evaluated, optionally inverted by NOT, and the return
occurs only if the result is TRUE.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

The Condition Codes are:

INT BCz FIOR FICD
z (0] S cYy
ACO FIXP FIIR STKF
DOR CC7-CCO
Example 1:
CALL XXX;
XXX: IF BCZ;
RETURN;
ELSE;
Rl := ++ R1;
RETURN;
ENDIF:
CALL XXX;
Example 2:
CALL YYY;
YYY: RETURN ON BCZ /* logically the same as Example 1 */
Rl := ++ R1;
RETURN;
FEEFE
=

3-81

PAC1000 - Instruction Set

PACSEL
Macro
Reference
(Cont.)

SET
Instruction Type: PROGCNTL
Operation: Set bits in the Control Register
Syntax: [label:] SET [pl] ... [pl0] [,CPU] [,OUTCNTL];
Description:
Set specified bits in the Control Register. The parameters
ACEN BCEN HDOE HADOE ADOE
HDSEL1 HDSELO DIREN AIREN ASEL

may be listed in any order.

The CPU and OUTCNTL operations, if present, are unconditionally executed in the same
cycle.

See also: RESET

Example 1:
SET HDSELO DIREN ASEL;

3-82

PAC1000 - Instruction Set

PAGSEL SWITCH...CASE

Macro Instruction

Reference Type: PROGCNTL structure

(Cont.) Operation: Multiway branch

Syntax: [label:] SWITCH casegroup [,CPU] [,OUTCNTL];
case n, [,PROGCNTL] [,CPU] [,OUTCNTL];
case m, [PROGCNTL] [,CPU] [,OQOUTCNTL];
[up to 16 cases total]
ENDSWITCH [,CPU] [,OQUTCNTL];
Description:

The value of the specified Case Group (CG0, CG1, CG2, or CG3) is used to branch control
to one of up to 16 specified cases. The value of case enumerators (n, m, ...) are numbers or
constants between 0 and 15, in any order. '

If a case does not include a jump operation, the next sequential case will be executed.
Ordinarily, then, each case will contain a jump.
The Case Groups are:

‘CGO’ = [CC3, CC2, CC1, CCO]

‘CG1’ = [CC7, CCs6, CC5, CC4]

‘CG2' = [INTR, BCZ, FIOR, FICD]

‘CG3 =[Z,0, S, CY]

The CPU and OUTCNTL operations following the case group, if present, are
unconditionally executed in the same cycle. The CPU and OUTCNTL operations following
the ENDSWITCH, if present, are unconditionally executed if control reaches the

- ENDSWITCH.
Example 1:
SWITCH CG2 , OUT h'’FFFF’; /* output marker */
CASE 00, GOTO NEXT, OUT 0 ; /* output CG value... */

CASE 01, GOTO NEXT, OUT 1;
CASE 02, GOTO NEXT, OUT 2
CASE 03, GOTO NEXT, OUT 3
CASE 04, GOTO NEXT, OUT 4
CASE 05, GOTO NEXT, OUT 5;
CASE 06, GOTO NEXT, OUT 6
CASE 07, GOTO NEXT, OUT 7
CASE 08, GOTO NEXT, OUT 8
CASE 09, GOTO NEXT, OUT 9;
CASE 10, GOTO NEXT, OUT 10;
CASE 11, GOTO NEXT, OUT 11;
CASE 12, GOTO NEXT, OUT 12;
CASE 13, GOTO NEXT, OUT 13;
CASE 14, GOTO NEXT, OUT 14;
CASE 15, GOTO NEXT, OUT 15;

NEXT: ENDSWITCH, OUT 16; /*output end marker*/

3-83

PAC1000 - Instruction Set

PACSEL WHILE...ENDWHILE
Macro Instruction
Reference Type: PROGCNTL structure
(Cont.) Operation: Conditional Loop
Syntax: [label:] WHILE [NOT] condition-code [,CPU] [,OUTCNTL];
[executed while condition true ;]
ENDWHILE [,CPU] [,OUTCNTL];
Description:

The condition-code is evaluated, and optionally inverted by the NOT keyword. The
statements inside the structure are executed only if the result is TRUE. Otherwise control
passes immediately to the code following ENDWHILE. The loop body will not be executed at
all if the condition is initially FALSE.

The CPU and OUTCNTL operations following the condition code, if present, are
unconditionally executed in the same cycle. The CPU and OUTCNTL operations following
ENDWHILE are logically included in the loop body. These will not be executed when the
condition is or becomes false.

The Condition Codes are:

INT BCz FIOR FICD
Y4 o S cY
ACO FIXP FIIR STKF
nAD lolawdelals)

s (VAVY R VIV

This structure may be nested to a maximum depth of 15. Each WHILE must be terminated
with a matching ENDWHILE.

Example 1:
OUT h'’FFFF’; /* output all ones */
WHILE NOT BCZ ,
ouT 0; /* output 0 until Block Counter = zero, */
ENDWHILE;
OUT h'’FFFF’; /* then output all ones */
Example 2:
OUT h'FFFF’; /* output all ones */
WHILE NOT BCZ , OUT h’ABA5’; /* insert 1 cycle of ABA5 */
OuT 0; /* output 0 until Block Counter =
zero, */
ENDWHILE;
OUT h'FFFF’; /* then output all ones */

3
Yy Wisr

.
PAC1000 Application Notes n

Section Index

PAC1000
Application

Notes

Application Note 005

Application Brief 006

Application Brief 007

Application Note 008

Application Note 009

Application Note 010

Application Note 012

PAC1000 as a High-Speed Four-Channel
DMA Controller........coeveveiiicineceneceeieen

PAC1000 as a 16 Bi-Directional Serial
Channel Controllercccceveenenieenieeieeenes

Hardware Interfacing the PAC1000 as a
Micro Channel Bus Controllercccoeuce.e.

PAC1000 Programmable Peripheral Controller
with a Built-In Self Test Capability

In-Circuit Debugging for the PAC1000
Programmable Peripheral Controller................

PAC1000 Introductionccccceveevreeereeeveennen.

Testing 8 Dual-Port RAM Memories with the
PAC1000 Programmable Peripheral Controller

For additional information,
Call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363

Programmable Peripheral

Application Note 005

PAC1000 as a High-Speed
Four-Channel DMA Controller By arye Zikiik and Kiran Buch

Abstract The objective of this Application Note is to This Application Note covers the
demonstrate the use of the PAC1000 terminology of DMA operations as well as
Programmable Peripheral Controller in a an implementation description. The readers
typical high performance application. The will be able to use this article as a get-
text describes an implementation of a started tutorial that shows how to configure
generic four-channel DMA controller the PAC1000 for any specific task.
that supports transfer rates of up to
16 Mbyte/sec (8 Mword/sec) in 16-bit data-
bus environments.

Introduction A DMA (Direct Memory Access) controller Unlike most other available DMA

coordinates fast data transfers between
peripheral devices and the system memory.
All possible transfer combinations might
occur: device to device, device to memory
or memory to memory. By taking care of
these high-speed transfers, the host
computer (typically a Microprocessor) is
off-loaded from these time-consuming
tasks and can execute other operations
concurrently, on its local bus.

We refer to peripherals such as FIFOs,
video, communication, graphics or serial
channel controllers, latches, ports, etc., as
devices in this text. The distinction between
memory and device is that a memory needs
an explicit address in order to specify a
byte or a word, whereas a device requires
only strobes (such as: RD, WR, CS)
combined sometimes with additional hand-
shaking signals for data accessing.

The PAC1000 is a perfect match for most
DMA applications. lts unique structure,
shown in Figure 1 and Figure 2, allows the
user to execute three independent
instructions in one cycle. The ability of the
PAC1000 to perform three different tasks
concurrently (Control, Output and CPU) is
fully exploited here, thereby speeding-up
DMA transfers.

For example, during DMA operations, the
control section checks for the block-count
termination, the output control section
generates RD and WR strobes, and the
CPU calculates and produces the next
address. All these activities occur
simultaneously during the same clock
cycle(!).

controllers, the PAC1000 is a
programmable peripheral controller. It may
be easily modified by reprogramming to
support various DMA schemes.

Figure 3 illustrates a typical system
configuration using the PAC1000 as a DMA
controller. The host controls the system bus
as well as its local bus (not shown here). It
can also access the memories, the devices
as well as the PAC1000 via the system bus.
It does so by driving the Address, Control
and Data buses.

Initially the PAC1000 is in the slave mode,
waiting for host messages. Once the host
begins a channel initialization phase by
writing into the PAC1000’s FIFO, a DMA
operation will start. In that phase, the host
instructs the PAC1000 of the required DMA
transfer. The PAC1000 then decodes the
transfer type and optimizes it internally to
perform at the fastest rate the surrounding
hardware allows. At this point the PAC1000
requests the system bus from the bus
arbiter. When the bus is granted to the
PAC1000, it becomes the Bus Master,
driving the address, data and control buses.

If the DMA operation is fully completed, or
a higher priority transfer is pending, or the
host or active devices abort the transfer, a
DMA transfer can be successfully
terminated or suspended, respectively.

In all of these cases, system control is
returned to the host and the PAC1000
re-enters to Slave Mode.

4-1

PAC1000 — Application Note 005

Figure 1.

PAC1000

Programmable L o
Peripheral CLK RESET CS FDWR HD HAD
cong'oller { { (15:0) (50
Block Diagram L |

CONFIGURATION REGISTERS I HOST INTERFACE I
CONTROL [1/0 CONFIGURATION | MODE 1}

| oaampur | [paraouteur | |commanoipara FiFol

T i
r

.| BREAKPOINT REG 32x 16
REGISTER
FILE
SEQUENCER Q REGISTER
1K x 64
LOOP CNTR o PROGRAM cPU
PROGRAM CNTR MEMORY
15-LEVEL -+ ALV
STACK
s Joutput

T |<+——>-| ADDRESS COUNTER

fAQE L ARIN

| |
1 1 n
lTEST LoGIC | lNTERRUPT1 BLOCK COUNTER

1/0 SPECIAL
FUNCTION ADDF;EOSRS_I{DATA
PORT
CC(7:0) INT(3:0) OUTCNTL(15:0) 1/0(7:0) ADD(15:0)

lli=||

42

PAC1000 — Application Note 005

Fl.gure 2. HD(15:0)
Single Cycle CS RDWR | HAD(:0)
Control l l l
Architecture ,
HOST INTERFACE
CONDITION
CODES t
(8 LINES) -
INTERRUPTS ! ;
(4 LINES) CONTROL UNIT
-|—> WITH 1K x 64 26 LINES) CPU
NEXT EPROM (
INSTRUCTION)
DEFINITION ’—-I ' L—’ I 1
INSTRUCTION REGISTER 1/0(7 0) ADD(15°0)
CLK e e
CONTHOLI OUTPUT :
20 LINES CPU OPERATION
¢) 0C(15:0) DEFINITION
Important Features:
* One cycle per instruction.
¢ 16 MHz instruction execution rate.
e Every instruction executes 3 parallel operations (Control, Output, CPU).
Transfer Modes There are two transfer modes: Fly-by and I Memory to/from device that is not

Dual cycle.

Fly-by is the fastest transfer mode (refer to
Figure 4). Transfers can be carried out at a
rate of up to 8 Mword/sec provided that the
PAC1000 uses a 16-MHz clock. In this
application note, Fly-by can only be used
between memory and device if they share
the same data-bus path (either 8 or 16 bits).
The fly-by operation is initiated by a
DMARQ from the device. The PAC1000
explicitly addresses the memory, while
sending the RD strobe to the source side
and the WR strobe to the destination side.
It also acknowledges the device with the
DMACK signal that serves as the device's
CS signal. Data is then directly transferred
from the source to the destination in one
bus cycle.

Double-cycle is a transfer mode comprised
of two bus cycles. It takes place whenever
one of the following DMA combinations is
specified (refer to Figure 5):

connected to the same part of the
data-bus.

1 Memory to Memory transfers (require the
generation of two different explicit
addresses).

[Device to Device transfers (with simple
additional hardware it might be easily
upgraded to support the Fly-by mode,
too).

Once the transfer has started, the PAC1000
reads an operand from the source on the
first bus-cycle, processes it, and then writes
that operand on the second bus cycle into
the destination.

The READY signal enables the PAC1000 to
synchronize its operations with slow
memories or devices (whenever they are
explicitly addressed). READY is an active-
high signal, derived from the address
decoder. It is driven low as long as the
addressed memory or device is not ready to
finish the current bus-cycle.

4-3

PAC1000 — Application Note 005

Figure 3. -
System Block —»| ADDRESS ADDRESS BUS
Di LATCH
lagram
oAC0 ADDRESS
BUS ARBITER 1000
AND DMA DECODE MEMORIES
HANDSHAKE CONTROLLER
X
<_3‘ DMACS [CSMEM
CONTROL i CSDEV
BUFFERS CONTROL BUS
Z
=
2 DEVICES
n
>
a DMARQ
AND
DMACK]
DATA t
| TRANSCEIVER DATA BUS
Figure 4. | - |
Fly-by DMA 1 .
Transfer ADDRESS
[] omara [| reaDy | 1
PAC1000
DEVICE BWACK DMA MEMORY
l DMACK | coNTROLLER
RD WR
WR RD
Figure 5. DATA
Double Cycle
DMA Transfer — ADDRESS
Memory to Device
READY
PAC1000
FI DEVICE DMA MEMORY
RST TRANSFER CYCLE conTMA em
I
DMARQ
PAC1000 MEMORY
DEVICE DMA
DMACK | cONTROLLER
SECOND TRANSFER CYCLE
ﬁ W
|
DATA
FEE ==

PAC1000 — Application Note 005

Figure 5. (Cont.)

Double C}’CIG DATA
DMA Transfer —
Memory to ADDRESS
Memory
READY
MEMORY PAC1000
OR DMA MEMORY
DEVICE CONTROLLER
| w®
FIRST TRANSFER CYCLE
MEMORY READY PAC1000
DMA MEMORY
DEVICE CONTROLLER
WR
ADDRESS
DATA
SECOND TRANSFER CYCLE
Figure 5. (Cont.)
Double Cycle DATA
DMA Transfer —
Device to Device
DMARQ
PAC1000
DEVICE DMA DMACK DEVICE
CONTROLLER
| ®
FIRST TRANSFER CYCLE
DMARQ
PAC1000
DEVICE DMACK CON1?F'lVIC?LLER DEVICE
WR
DATA

SECOND TRANSFER CYCLE

4-5

PAC1000 — Application Note 005

Request Modes Requests may be externally generated by a transfers are used by slow devices. They

device or internally created by the auto- toggle on and off the DMARQ. Each
request mechanism of the PAC1000, individual transfer is indicated by an active
whenever a memory to memory transfer is high DMARQ level. When the transfer is
performed. Auto-requests are always completed, DMARQ is held low until the
pending so that the PAC1000 can work at device is ready for the next transfer cycle,
its maximum speed, provided that the and so on.
memories are always ready. Otherwise, the . o
PAC1000 adapts itself to the READY signal. Some important observations:
External requests may be of either the 1 Memory to device (or device to memory)
block-type or of the single-operand transfer transfers will begin only after an external
mode. Block-type transfers are provided for DMARQ is asserted by the device.
high-speed devices that are capable of as ok : :

; ynchronization with the memory is
meeting the speed rate of the PAC1000. hi ia the R !
DMARQ is asserted at the beginning of the always achieved via the Ready signal.
block transfer and remains so as long as Table 1 briefly summarizes the transfer and
the transfer is in process. Single-operand request options:

Table 1.

g_”’””;af}’ ”{l Transfer Type DMA Mode Transfer Mode

ransier an

Memory to Memor Two Bus-cycles Block
Request Modes 4 Y Y

Memory to Device or Fly-by or Block or

Device to Memory Two Bus-Cycles Single Operand

. . Block or

Device to Device Two Bus-Cycles Single Operand
Functional General: Host-PAC1000 Communication:
Descriptian Figure 6 contains the circuit diagram. Refer DMA specifications are programmed into

also to Appendix 1 for the Pin Description
Table. The PAC1000 is configured in this
application as a four-channel DMA controller.
This means that it can handle up to four
DMA transfers concurrently, on a prioritized
basis. Each of the channels can be any one
of the above-mentioned DMA transfer types.
The maximum transfer rate is accomplished
during Fly-by transfers with rates approaching
8 Mword/sec for word transfers or 8
Mbyte/sec for byte transfers. Double-cycle
transfer modes achieve a rate of up to 4
Mword/sec (in word transfers) or 4

Mbyte/sec (in byte transfers). The only
exception to this is the Memory to Memory
transfer mode which is a little bit slower due
to the internal creation of two different 24-

bit addresses.

The PAC1000 drives 24 address lines and
handles a 16-bit data bus, so it is well tuned
for most common high-performance buses
or Microprocessors. The maximum operand
block-size is 64K (in accordance with
VMEDbus specs, for example).

4-6

the PAC1000 by the host, according to the
message format of Appendix 2. The host
writes eight words into the PAC1000’s FIFO.
The command message fully specifies one
of the four possible channels that can be
active at the same time. Word 1 defines the
transfer characteristics of the DMA
operation: transfer type, data bus width,
device numbers (redundant in Memory to
Memory operations), channel-priority and
transfer mode. Bit 12 in that word serves as
a software abort-command bit. When set, it
instructs the DMA controller to cease the
transfers of the channel specified in that
command buffer.

The low-order byte of word 7 is a DMA-
transfer identification number. It assigns a
serial number to a DMA process. Whenever
the PAC1000 sends a status message to the
host, that number is also included in order
to unambiguously identify the process that
has either normally terminated or abnormally
aborted (by an external device or due to a
PAC1000 exception).

PAC1000 — Application Note 005

Functional
Description
(Cont.)

Figure 6.
PAC1000 DMARQ3
Configured as puARG2
a Generic 1 #0|— > DMARQO
High-Speed vosr . DEVICE —
DMA Controller INTERFACE s "D WR DATA BUS (15:0)
tsh 1
&sm— ADD BUS MEMORY

WR CS

N CE
cs#o
RD y))——]
ADD BUS
“'_
A(23:0), BHE

WR — D—)
CSWEM 1 |
[l SPARE ADDRESS

DATA BUS D(15:0 o||lg||g||g alm
(15:0) EEEE &|@ & CONTROL LINES
8131818 g| g\ HE
HINIRIEEE
5550869 93 s500 5 9
BUSMSTR oc2®®=5Q Q 8 3 28 3 2 Hops0)
2 a
.] A@23:22))
CSPAC <——{ CS 10(5:4) et |
A(21:6)
PAC1000 ADD(15:0) o g
BR 5:
BR <—] oC1 HAD(5:0) | 2
]
m| >
HOSTINTR <—— 0CO] 2 99898998 o N
m 5 2888R28 9 n |8
1K i
0.01pF 1 | =
Vee |—_1_ BHE %F.I
RSPAC :ﬁg* = »-E HC374 (LATCH) OE P
@
CLK T T 1l |8 2
BG ==y} E 5’
o3
L 86 Sm=2 22 9 3
>2>> > > o
ot 3333
4<pD0oD
w N - o

PAC1000 — Application Note 005

Functional
Description
(Cont.)

Several fields in the command buffer are
optional. For instance, in transfers where
devices are involved, one can still specify
the explicit addresses of the source and the
destination even though it has already been
defined by the command word’s device-
number field (Appendix 2 — command word
format). This feature allows the programmer
to define the device interface with either
explicit or implicit address.

Whenever the PAC1000 has to inform the
host of an important event, it prepares a
status word in its DOR (Data Output
Register), enters the slave mode and
interrupts the host by raising the HOSTINTR
line. The possible messages are:

1 Reject the Command buffer with the
specified identification number because
of internal discrepancies or illegal
combinations.

1 Propagate a Hardware DMA abort,
generated by the source or the
destination of the current transfer.

[Signal a PAC1000 exception. The host is
capable of reading the PAC1000’s SR
register in order to find out the cause.

[An end-of-count message. This transfer
has been normally terminated.

Initial State and Slave Mode:

After a reset (either a power-on reset or a
reset through the RSPAC line driven from
the host side), the PAC1000 enters its initial
state, which is the Slave Mode. Table 2
describes the signal states during the Slave
Mode. The PAC1000 monitors its internal
FIIR flag (FIFO Input Ready) and when it is
not set, the FIFO is full with a new command
buffer written by the host. The PAC1000
decodes the message and acts accordingly.
If it is @ memory to memory transfer, then it
immediately requests the bus. When one or
two devices participate in a transfer
operation, the PAC1000 monitors the
corresponding DMARQ lines to determine
when to issue a bus request to the arbiter.
The PAC1000 requests the bus by lowering
BR. Then it waits for BG to go low in order
to switch to the Master Mode.

Master Mode:

Upon gaining mastership, the PAC1000
drives the HOSTINTR signal low and
BUSMSTR high. BUSMSTR remains high
(active) as long as the PAC1000 remains

master of the system bus, thereby enabling
RDM and WRM to RD and WR, respectively.
BR is set high (= not active). According to
the required DMA operation, the PAC1000
drives the appropriate address and data
lines, and the RDM, WRM and DMACK
signals.

DMA transfers may be successfully ended
(when the terminal-count expires) or aborted.
Abortion can emanate either from an
external DMABT signal that is driven by one
of the DMA participants, or from an internal
exception recognized by the PAC1000.
Whenever one of the above events occur,
the PAC1000 changes its mode to the Slave
mode, writes a status word into the DOR
register (discussed previously) and raises
the HOSTINTR line to cause the host to
read that information through its own
Interrupt routine.

Releasing and resuming bus control:

The host is allocated a higher priority than
the PAC1000 by the bus arbiter. This is
done In order to enable the host to suspend
DMA transfers whenever it needs the bus.
Each time the host accesses an address
that resides within the system bus domain
(incluaing tne UGSPAC address), the bus will
be granted. If the PAC1000 is the current
master (as reflected by BUSMSTR), the bus
arbiter will negate BG (high level). The
PAC1000 monitors this line while it is a bus
Master and consequently will relinquish the
bus and return to the slave mode. The host
might use the bus for programming the
PAC1000 with a new DMA channel. Upon
completion of the host activities over the
system bus (BG becomes high), the PAC1000
checks whether DMA transfers are still
pending. If this is the case, it will request
the bus. When the bus is granted, it will
determine whether to continue the
suspended transfer or to start a higher
priority pending-DMA request. If it starts a
higher priority transfer, then the suspended
operation will be resumed after the
completion of the higher priority transfer.

DMAWORD is set low during word transfers
and high during byte transfers. It is used to
derive the BHE strobe, as displayed in
Figure 6. The most efficient transfer method
is the word transfer mode. In order to use it,
the specified addresses must be even,
otherwise the PAC1000 will perform only in
the byte transfer mode regardless of the
command word content.

PAC1000 — Application Note 005

Functional
Description
(Cont.)
Table 2.
Signal States PAC1000 Signal Names Function Signal States
During the ADD(15:0) A(21:6) Float
Slave Mode HAD(5:0) A(5:0) Input
10(5:4) A(23:22) Float
0OCs, OC5 FBRW2, FBRW1 0, 0 — Normal Operation
0C4, OC3 RDM, WRM Don’t Care
10(3:0) DMACK (3:0) 1,1,1,1 — Normal Operation
0ocC2 BUSMSTR 0 — Non-active
ocCt BR 1 — Non-active
0oCo HOSTINTR 0 — Non-active
oc7 DMAWORD Don’t Care
HD(15:0) D(15:0) Input
Hardware Figure 6 is the detailed schematic diagram. The four OR-Gates comprise together one
Considerations The host side is beyond the scope of this HC32 chip. They are used during Fly-by

paper since it is application dependent. In
addition to the PAC1000, there are a few
standard glue-logic chips used to interface
with the memory and the four devices.

Throughout the following description 1t is
assumed that the glue-logic components
belong to the HC family. However, since the
PAC1000 is a fully TTL compatible device
implemented in CMOS technology, the
reader can use other glue-logic families like:
LSTTL, HCT, etc.

The HC374 latch is gated into the condition
code inputs by the PAC1000’s clock, thus
ensuring that the CC7-CCO lines will meet
the set-up time requirements.

The three-state buffers controlled by
BUSMSTR, are part of a HC126 chip. They
are used to float the PAC1000’s BHE, RDM,
WRM control lines during slave operations,
because at that time these signals are
driven by the host.

The four AND-Gates amount to one HC08
chip. They enable either the host side
(during Slave operations) or the PAC1000 (in
the Master Mode) to drive the appropriate
device CS signals.

operations to avoid CE, RD, WR from
reaching the selected devices and memories
concurrently (for functional explanation,
refer to the Pin Description Table, Appendix 1).

Prior to the setting of BG in the active
position (low), the arbiter floats the data bus
D(15:0), address bus A(23:0) and BHE, RD
and WR from the host side. As long as
BUSMSTR remains high, these lines are
driven by the PAC1000.

The six chip select lines from the host side
(CS#3 — CS#0, CSMEM and CSPAC) are
derived from the system address decode
block, as illustrated in Figure 6. During the
time that the PAC1000 is the bus master,
the address decode block (shown in Figure 3)
is driven by the PAC1000’s address lines.
Therefore, the PAC1000 can access
memories and devices In the same manner
the host does.

The DMACK3-DMACKO signals provide the
PAC1000 with an alternative chip select
generation method to the devices. It is
considerably faster than the host’s method,
since there is no need to generate explicit
device addresses inside the PAC1000.

PAC1000 — Application Note 005

Hardware
Considerations
(Cont.)

In this application note, it is assumed that
the READY signal is produced by the
address decoder. However, if a device or
memory can generate the READY signal
independent of the decoder, the system
designer can connect it with a Three-state
buffer so that it will drive the READY input
whenever it is chip-selected.

The host programmer is free to choose
whether to synchronize the PAC1000 with
slow devices via single operand transfers or
through the READY mechanism. READY is

always considered when the PAC1000
generates an explicit address. The selection
between single operand transfer and
READY is done in the command word

(see Appendix 2).

As seen in Figure 6 there are several spare
pins, such as output controls, I/Os, interrupts
and condition codes. These pins can be
used to perform other operations in parallel
(unrelated to the DMA controller function),
without any performance degradation of the
DMA task.

PAC1000 Internal
Resources Usage

Using PAC1000 as a 4-channel DMA
controller utilizes most of the resources
available on the chip, shown in Figure 1.

The Host microprocessor uses the FIFO to
program the DMA request in to PAC1000.
Internal condition codes are used to monitor
FIFO status, CPU operation flags and external
condition code inputs are used to monitor
situations like bus-grant, DMA requests by
the devices, etc. The CPU registers are
used to store source and destination
addresses, device numbers and other
relevant information about the DMA
transfers in proaress.

To achieve the fastest transfer rate possible
with PAC1000, address generation and
block size counting are achieved by
different methods depending on the type of

transfer. For example, for the Device-Memory
fly-by transfers, a nested loop is set up
using the loop counter and the stack for
maintaining block count and ACH and ACL
are used as independent registers for
address generation. On the other hand, for
the memory to memory transfers, Block
counter is used for counting and address
generation is done by using ACH and ACL
as 22-bit counter.

The IOR is used to output chip selects to
the devices. The OUTCTL lines are used to
generate Read and Write signals and also
ueed for gonarating hand-chale cignalc i
the host.

The data bus and associated CPU registers
are used to read data in and out of PAC1000
for non-fly-by transfers.

Software
Considerations

All the algorithms described so far are
internally realized by Software. Flowcharts
and partial code implementation (of all the
important transfer procedures referred to in
the flowcharts) can be found in Appendix 3
and Appendix 4, respectively. Both flowcharts

and code listings contain sufficient
explanations that let the reader understand
the subjects they describe. The attached
code listings cover all the important DMA
transfer procedures (see Appendix 4).

Conclusion

PAC1000 is perfectly suitable for any DMA
transfers which require an intelligent processor
that can adapt its data handling according
to the changing requirements of its interface.
The PAC1000 does so by properly exploiting
its unique structure of a very high speed
sequencer combined with a programmable

i
ly
"

ALU and user configurable ports. The
PAC1000’s programmability enables it to
handle complex tasks concurrently in a very
efficient manner, unlike all other existing
DMA controllers that are restricted to perform
in a predefined environment.

4-10

PAC1000 — Application Note 005

Appendix 1:

The PAC1000 is configured in this application following table defines the individual

note as a generic DMA controller. It has a PAC1000 pins. These brief descriptions are
separate 24-bit address (that can be easily provided for reference only. Each signal is
expanded) and a 16-bit data bus. It also has further detailed within the sections that

a set of control signals to enable operation describe the associated DMA function. For

as a bus master or a bus slave. The

pin identifications refer to Figure 6.

Pin Descriptions

Symbol

Type

Name and Function

A(23:22)

]

Address Lines A(23:22): Output the two most significant address
lines during Master operations. Tied to 10(5:4) on the PAC1000.
Float in Slave Mode.

A(21:6)

Address Lines A(21:6): Output the mentioned address lines only
in Master Mode. Connected to ADD(15:0) on the PAC1000. Float in
Slave operations.

A(5:0)

110

Address Lines A(5:0): Bidirectional address lines. Input during
Slave operations, output in Master mode. Tied to HAD(5:0) on the
PAC1000.

FBRW2
FBRWA1

[eXe}

Fly-by Read/Write (2:1): Enable fly-by DMA operations. In fly-by

mode, operands are transferred directly from the source to the

destination bypassing the DMA controller. FBRW2 and FBRW1 are

tied to OC6 and OC5, respectively.

FBRW2 | FBRW1
0 0 — Normal operation.

0 1 — Enabile fly-by from memory to device.

1 0 — Enable fly-by from device to memory.

1 1 — lllegal.

5

Write: Active as an input, only in Slave Mode. When low,
HD(15:0) is written into the PAC1000.

)%\

Read: Active as an input, only in Slave Mode. When low,
HD(15:0) 1s driven by the PAC1000.

=
T
=<

Write-Out: Active as an output, only in Master Mode. Enabled
by BUSMSTR signal. Tied to OC4 on the PAC1000.

|

us)
o
<

Read-Out: Active as an output, only in Master Mode. Enabled
by BUSMSTR signal. Tied to OC3 on the PAC1000.

DMACK(3:0)

DMA Acknowledge (3:0): 4 active low signals High in Slave
Mode. Correspond to the 4 devices shown in Figure 6
respectively. Chip select the active devices during DMA
operations. In the PAC1000 they are tied to 10(3:0) lines.

BUSMSTR

Bus-Master: An active high signal. Asserted whenever the
PAC1000 is the current Bus Master. Informs arbiters or hosts not
to access the bus before the PAC1000 relinquishes it. Enables
0OC4 and OC3 into WR and RD, respectively. Connected to OC2
on the PAC1000.

CSPAC

PAC1000 Chip Select: This pin is driven low whenever the
PAC1000 is addressed in a slave bus read or write cycle.

Bus Request: The PAC1000 drives this pin low whenever it

requests the bus due to pending DMA requests.

4-11

PAC1000 — Application Note 005

Appendix 1 (Cont.)

Pin Descriptions
(Cont.) Symbol Type

Name and Function

HOSTINTR o

Host Interrupt: The PAC1000 interrupts the host in order to
inform him of one of the following events: PAC1000 exception,
Terminal-Count or DMA aborted by a device. The OCO line is
assigned to this signal.

CLK |

Clock: 20 MHz clock input to the PAC1000. It also latches the
condition codes to ensure the proper Set-up time.

cC7 |

DMA Abort: An active-high input driven by the memories and/or
devices currently participating in the DMA process. Whenever it is
sensed high, the PAC1000 will generate a HOSTINTR signal towards
the host after writing into the DOR register the appropriate status
word.

CC6 |

Bus Grant: An active-low signal monitored by the PAC1000 to
determine when it is in the Master mode or when to relinquish the
buses and enter the Slave Mode.

CC4 l

Ready: An active-high signal (RDY) that enables the PAC1000 to
synchronize its DMA cycles with slow memories or devices in the
Master Mode.

CC(3:0) [

DMA Requests (3:0): External DMA requests monitored by the
FACTO00. Active-iiyin siygndis, driven py tne Tour aevices.

DMAWORD o

DMA Word or Byte Transfers: Determines whether the next
DMA cycle will be of word (low) or byte (high) length. Used to
derive the BHE (Bus High Enable) signal that enables data lines
D15:D8 in the Master Mode. BLE is directly driven by the A0
address line.

RSPAC | Reset PAC1000: This asynchronous input initializes the state of.
PAC1000. RESET must be held low for at least two clock cycles.
D(15:0) Ie} Data-Bus (15:0): This is the 16-bit data bus. During Master

cycles, it is controlled and sometimes also driven by the PAC1000.
In Slave mode the host drives it. Tied to HD(15:0) on the PAC1000.

4-12

PAC1000 — Application Note 005

Appendix 2:
Host-DMA

Message Formats

1) Host to
PAC1000
Commands
(via the FIF0)

HAD(5:0) CONTENT

HD(15:0) CONTENT HADS5 | HAD4 | HAD3 | HAD2 | HAD1 | HADO
Word 1: Command word (see paragraph 3). 0 0 0 0 0 0
Word 2: 16 low-order source address lines. 0 0 0 0 0 1
Word 3: 8 high-order source address lines. 0 0 0 0 1 0
Word 4: 16 low-order destination address lines. 0 0 0 0 1 1
Word 5: 8 high-order destination address lines. 0 0 0 1 0 0
Word 6: 16 bit block-count. 0 0 0 1 0 1
Word 7: 8 bit DMA-transfer identification byte. 0 0 0 1 1 0
Word 8: Spare. 0 0 0 1 1 1

2) PAC1000 to
Host Status
Word (via DOR
register)

[15 | b14 | 13 | b12 { b11 | b10 | b09 | bO8 | 607 | 606 | bO5 | bO4 | bO3 | bO2 | bOT | bOO |

b15,b14,b13,b12,b11,b10,b9,b8: DMA-transfer identification byte.

b7,b6,b5,b4: spare.

1 — reject.
0 — accept.

b3: Reject or accept the DMA transfer identified by b15 + b8.

b2: 1 — PAC1000 aborted.
0 — Normal operation

b1: 1 — DMA terminal-count completed
0 — Normal operation

b0: 1 — PAC1000 exception occurred
0 — Normal operation

4-13

PAC1000 — Application Note 005
Appendix 2 (Cont.)

3) Command
Word Format | b15 | b14 [b13 | b12 | b11 | b0 | b09 | bos | bo7 | b0 | b05 | b04 | bo3 | b02 | bo1 | boo |

b15,b14: spare.

b13: block transfer or single transfer mode.
1 — DMA block operation.
0 — DMA single operand transfer mode.
b12: DMA abort bit. Quits DMA-transfer specified in word 7.
1 — abort.
0 — nop.
b10,09: Priority level of this DMA-transfer.
00 — level O (lowest priority level).
01 — level 1 .
02 — level 2 .
03 — level 3 (highest priority level).

b9,b8: Source Device number for DMA transfer or Abort.

00 — Device #0
01 — Device #1
02 — Device #2
03 — Device #3

b7,b6: Dest. Device number for DMA transfer or Abort.
00 — Device #0

01 — Device #1
02 — Device #2
03 — Device #3

b5,b4: Destination data bus definition.
00 — Data bus is D7-DO0 (bit bits).
01 — Data bus is D15-D8 (8 bits).
02 — Data bus is D15-D0 (16 bits).
03 — lllegal.

b3,b2: Source data bus definition.
00 — Data bus is D7-DO0 (8 bits).
01 — Data bus is D15-D8 (8 bits).
02 — Data bus is D15-D0 (16 bits).
03 — lllegal.

b1,b0: DMA transfer mode.
00 — Memory to memory.
01 — Memory to device.
02 — Device to device.
03 — Device to memory.

414 ==

PAC1000 — Application Note 005

Appendix 3 General Note:

Code implementation of labels marked with an asterisk (*) can be found in Appendix 4.

Initialization INITIALIZE :

SET SLAVE . ,
MODE OUTPUTS OC = ‘001A'H
AND CONFIGURE IOR = ‘OF'H
PAC1000 PORTS

Y
SET ADDRESS

COUNTER TO 22
BIT MODE

!

GO TO MAIN

Main Loop

MAIN :
NO

SLOT
AVAILABLE?

GO TO
REJECT_R

YES
TRANSFER
COM. WORD
ToLC. TRANSFER
TO EMPTY
SLOT
CHECK__PEND
DECODE
BY LCPTR
BRANCHING GO TO
PREV SETUP_DMA
DMA
ACTIVE?
CHECK
ABORT
BIT
Go TO
IS NEW SETUP_DMA

PRIORITY
HIGHER
2

GO TO

ABORT_DMA NO

GO TO
RESUME__PREV

legend: 1. Slot: The PAC1000 can handle up to 4 DMA channels concurrently. Slot means empty
register space inside the PAC1000 that 1s allocated for a pending channel.
2. LCPTR branching: A goto instruction of the command section, enabling muiti-way
branching of the program according to a value loaded into the LC register by the ALU
(executed in two cycles).

HEY

[

wy
y

4-15

PAC1000 — Application Note 005

Appendix 3 (Cont.)

Setting Up
the Transfer

RESUME__PREV

TRANS. TO
WORKING
REGISTERS

SETUP_DMA -

SET BITS
IN STATUS
REGISTER

BLOCK TRANSFER

BLOCK OR
SINGLE?

SINGLE

OPERAND
TRANSFER
SETUP SETUP
MULTIWAY MULTIWAY
BRANCH RRANOCU
GO TO GO TO
SDD SDM SMD BDD BDM BMD BMM
Legend: 1. SDD — single operand transfer, device to device.
2. SDM — single operand transfer, device to memory.
3. SMD — single operand transfer, memory to device.
4. BDD — block transfer, device to device.
5. BDM — block transfer, device to memory.
6. BMD — block transfer, memory to device.
7. BMM — block transfer, memory to memory.
General In a single operand transfer, at least one of the involved devices requests a DMA transfer for
Remarks: each operand. This method is used with slow devices.

Block transfers are used to move data blocks between fast memories and/or devices. A DMA
request is set for every block transfer.

4"16 =, =

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Device to
Memory BMD BOM .
Block Transfer (MEMORY-DEVICE) (DEVICE-MEMORY)
EXTRACT EXTRACT
SOURCE DEST.
DEVICE NO DEVICE NO.
LOAD SET BUSMSTR
BC, ACH RESET
ACL HOSTINTR
PUT
DEVICE NO.
IN IOR
SETUP
MULTIWAY
BRANCH
REQUEST
BUS
GRANTED? B__DM__SBYTE(*)
B__DM__WORD(»)
B_DM_BYTE(+)
legeml: 1. B_dm__byte: block device to/from memory transfer of bytes.

2. B_dm__word: block device to/from memory transfer of words.
3. B__dm__sbyte: block device to/from memory transfer of swapped bytes. Occurs whenever
the transfer is between even and odd addresses.

4-17

" PAC1000 — Application Note 005

Appendix 3 (Cont.)
Device to Device
Block Transfer
BDD .
EXTRACT
SOURCE
DEVICE NO.
BUS
GRANTED?
EXTRACT
DEST.
DEVICE NO.
SET BUSWSTR
) HOSTINTR
DMA
REQUEST
FROM SRC &
SETUP
MULTIWAY
BRANCH
|
B__DD__SBYTE(x)
B_DD__WORD(x)
B__DD__BYTE(x)
leEIId.' 1. B__dd__byte: block device to device transfer of bytes.

2. B_dd_word: block device to device transfer of words.
3. B__dd__sbyte: block device to device transfer of swapped bytes. Happens whenever the
transfer is between even and odd addresses.

4-18

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Memory to
Memory
Block Transfer BMM :
LOAD
BC l
ACH, ACL
SEND
BUS
REQUEST
BYTE
NO
us
GRANTED?
& DES
EVEN ADDR?
YES SET BUSMSTR
NO SRC RESET
& DEST HOSTINTR
BOTH ODD
ADDR?
1
YES
BC = BC*2 SETUP
MULTIWAY
BRANCH
GO TO B__MM__SBYTE(*)
B_MM_BYTE(+) | B__MM_SBYTE(+)
B_MM__WORD(+)
l.egend: 1. B_mm__byte: block memory to memory transfer of bytes.

2. B_mm__word: block memory to memory transfer of words.
3. B__mm__sbyte: block memory to memory transfer of swapped bytes. Occurs whenever the
transfer is between even and odd addresses.

y
ly
N
"

4-19

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Abort DMA
Transfer
ABORT__DMA :
MATCH ID
WITH
OCCUPIED
SLOT

CHECK
NEW
sLoT
MARK THE
MATCHED
SLOT AS
AVAILABLE i
INTERRUPT
UPDATE
INTERNAL 6010
STATUS CHECK_PEND
REJECT_R : LOAD DMA
STATUS
WORD IN
DOR

4-20

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Bus Release End of Transfer
SAVE RELEASE__BUS : DONE :
WORKING MARK THE
IN THEW SLOT AVARLABLE
BUSWSTR TRANGFER ID
IN THE DOR
808
REQUEST INTERRUPT

BUS
GRANTED ?

NO

GO TO MAIN

GO TO
RESUME__PREV

MORE
TRANSFERS

PENDING
?

NO

RESET
BUSMSTR

l

GO TO MAIN

GO TO
RESUME__PREV

4-21

PAC1000 — Application Note 005

Appendix 4
/*******************************
/*

/* of the memory is loaded in R3
/* in Q . Assume that the initial
/* PAC has control of the bus.

/* block size is a multiple of 64

/*******************************

segment b dm byte ;
/* define equates */
bgn equ CC7
ready equ CC4
b_dm byte_norm equ h’00de’
b dm | __byte_read equ h’00d6’
b dm . __byte write equ h’00c6’
init b dm byte

"ACH = R3

SET ASEL ADOE HADOE ,
ACL := R4

IOR := ~ Q ,

OUT b_dm byte norm

Q =1

LDLCD , MOV R5 R5

/*******************************

/* start of outer transfer loop
/*******************************

x1l: PLDLC H'’3F’

/*******************************

/* start inner transfer loop
/*******************************
yl JMPNC ready yl ,

OUT b_dm byte read

LOOPNZ y1 ,

ACL := ACL + Q ,

OUT b_dm byte write

/*******************************

/* end inner loop
/*******************************
POPLC ’
ACH := ++ ACH ,
OUT b_dm byte read

JMPC bgn release_bus

LOOPNZ x1

/*******************************

/* end outer loop

/*****************k*************
done :

D I I P I)

***/

device to memory byte transfer in the fly-by mode. The start address */

and R4 and the device number is loaded*/
protocol has been gone through and */
For simplicity it is assumed that the*/
and R5*64 = block size. */

***/

; /* bus grant (active low) */

; /* ready input */

; /* dma active w/o read/write */

; /* read (active low) */

; /* write (active low) x/

; /* upper 16 bits address */

; /* select counter to output ,
enable ADD and HAD output, and
load lower address in ACL */

; /* select device # *x/

; /* address increment for byte */
/* R5 * 64 -> block count *x/

* “e

**/
*/

***/

/* push cnt to stack and load 64

in cnt */

***/

*/

***/

’

; /* wait till ready signal high */

r

/* strobe the write signal and
set up the next address *x/
***/
x/

***/

/* pop stack to cnt , increment

upper address bits x/

/* check if bus grant has been

taken away */

/* loop back if counter not zero*/
***/
x/

***/

’

.
’

4-22

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* device to memory word transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q . For simplicity it is assumed that the block size is a multlple*/
/* of 64 and R5*64 = block size. */
/**/
segment b_dm word ;

/* define equates */

bgn equ CC7 ; /* bus grant (active low) */

ready equ CC4 ; /* ready input */

b dm word norm equ h’00de’ ; /* dma active w/o read/write */

b_dm word read equ h’00d6’ ; /* read (active low) */

b dm word write equ h’00c6’; /* write (active low) */

init b dm word :

"ACH := R3 ; /* upper 16 bits address */

SET ASEL ADOE HADOE ,

ACL := R4 ; /* select counter to output ,
enable ADD and HAD output, and
load lower address in ACL */

IOR := ~ Q ,

OUT b_dm word norm ; /* select device # */

Q :=2 ; /* address increment for word */
LDLCD , MOV R5 R5 ; /* R5 * 64 -> block size (words)*/
/**/
/* start of outer transfer loop */
/***********************************k************************************/

x1l: PLDLC H'1F’ ; /* push cnt to stack and load 32

in cnt */
/**/
/* start inner transfer loop */

/**/

yl : JMPNC ready yl ,

OUT b_dm word read H /* wait till ready signal high */

LOOPNZ y1 i

ACL := ACL + Q ,

OUT b_dm word write ; /* strobe the write signal and

set up the next address */

/***k/
/* end inner loop */
/**/

POPLC ’

ACH := ++ ACH ,

OUT b_dm word read /* pop stack to cnt , increment

~.

upper address bits x/
JMPC bgn release bus ; /* check if bus grant has been
taken away */
LOOPNZ x1 ; /* loop back if counter not zero*/
/**/
/* end outer loop */

/*******************************k**/
done :

e e e s e s e e s e e s

release bus :

D I I I

/****************************k***/

E

==
=
-

4-23

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**k*******************/

/* device to memory byte transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q . For simplicity it is assumed that the block size is a multiple*/
/* of 64. This code illustrates individual transfer mode (non-block mode) */
/******k***/
segment s_dm byte ;

/* define equates */

bgn equ CC7 ; /* bus grant (active low) */

ready equ CC4 ; /* ready input *x/

s_dm _byte norm equ h’00de’ ; /* dma active w/o read/write */

s_dm_byte read equ h’00d6’ ; /* read (active low) *x/

s_dm_byte write equ h’00c6’; /* write (active low) *x/

init_s_dm byte :
“ACH := R3 ; /* upper 16 bits address */

SET ASEL ADOE HADOE ,

ACL := R4 ; /* select counter to output ,
enable ADD and HAD output, and
load lower address in ACL */

BC := R5 ; /* load block size in to BC */

IOR := ~ Q ,

OUT s_dm _byte_norm ; /* select device # */

CMP Q H’0001 ; /* find out if device #0 */

JMPC Z dev0 ;

CMP Q H’0002’ ; /* if device # 1 */

JMPC Z devl ;

CMP Q H’0004’ ; /* if device # 2 *x/

JMPC Z dev2

/* else it is device # 3
%k Kk %k Kk ok ok %k %k ok sk Kk Kk k k sk %k Kk %k %k Kk ok Kk %k ok sk %k ok ok ok sk ok ok sk %k ok sk sk ok ok %k ok sk sk ok sk ok ok sk sk ok ok ko ok ok ok ok %k ok ok ok ke k ke k ok ok ok ok ok ok
/ /

/* start transfer loop for dev#3 *x/
/**/

dev3 :

JMPC bgn release_bus ; /* monitor bus grant *x/

JMPNC CC3 dev3 ’

OUT s_dm byte_ read ; /* branch to check for dma request
from device3 */

SET ACEN BCEN ,

OUT s_dm byte write ; /* start counter */

RESET ACEN BCEN ,

OUT s_dm _byte norm : /* stop counter *x/

JMPNC BCZ dev3 ; /* loop back if not done ’ *x/

JMP done A

/**/

/* start transfer loop for dev#2 x/
/*****************k**/
dev2 :
JMPC bgn release bus ; /* monitor bus grant */
JMPNC CC2 dev?2 ,
OUT s _dm byte read /* branch to check for dma request
- - from device2

~.

SET ACEN BCEN ,
OUT s_dm byte write ; /* start counter */

4-24 sEs

PAC1000 — Application Note 005

Appendix 4 (Cont.)
RESET ACEN BCEN ,
OUT s_dm byte norm ; /* stop counter */
JMPNC BCZ dev2 ; /* loop back if not done */
JMP done ;
/**/
/* start transfer loop for dev#l */

/**/

devl :

JMPC bgn release_bus ; /* monitor bus grant */

JMPNC CC1l devl ,

OUT s_dm byte read ; /* branch to check for dma request
- from devicel * /

SET ACEN BCEN ,
OUT s_dm byte write ; /* start counter */
RESET ACEN BCEN ,

OUT s_dm byte norm ; /* stop counter */

JMPNC BCZ devl ; /* loop back if not done *x/

JMP done
/**/
/* start transfer loop for dev#0 */

/**/

dev0 :
JMPC bgn release_ bus ; /* monitor bus grant */
JMPNC CC3 dev0 '
OUT s_dm byte_ read /* branch to check for dma request

from device3

.

SET ACEN BCEN ,

OUT s_dm byte write ; /* start counter *x/
RESET ACEN BCEN ,

OUT s_dm byte norm /* stop counter */
JMPNC BCZ dev0 ; /* loop back if not done */

~e

/**/
done :

release bus :

e e o e e e e o s e s e s e s s e

/**/

== 4-25

PAC1000 — Application Note 005

Appendix 4 (Cont.)
/**/
/* code to illustrate device to memory transfer in non fly by mode . *x/
/* This is used when data bus is connected d7-d0 to d15-d8 or the *x/

/* other way around. Use counter to output addresses.Q contains device */
/* number and R3 R4 contain destination address.R5 contains block size. */
/**/
segment b_dm_sbyte ;
/* define equates */
b _dm sbyte norm equ h’009%’
b_ _dm_sbyte “read equ h’0096’
b dm_ sbyte write equ h’008e’;

~e e

rdy equ CC4 ;

bgn equ CC7 ;
init b dm_sbyte :

"BC := RS ’

OUT b_dm_sbyte norm ; /* load block size in bent x/

SET DIREN ASEL HADOE ADOE ;/* select counter to output ,

enable had output */

ACH := R3 ;

ACL := R4 ;
/**k*****************/
/* start of transfer loop */

/**/

b dm sbyte :

JMPC bgn release bus ;
SET DIREN - ; /* enable DIR */
srdy :

JMPNC rdy srdy ,

OUT b_dm sbyte read ; /* wait till source ready */

SET HDOE HDSELO ,

AOR := DIR ; /* when src is ready read the data
in , enable HD output , select
DOR to output */

DOR := SWPV ,

OUT b_dm_sbyte write H /* put swapped data in DOR */

SET ACEN BCEN ,

OUT b_dm sbyte norm ; /* start counter , output swapped
data */

RESET ACEN BCEN HDOE ;

JMPNC BCZ b_dm_ sbyte

/**/

/* end of transfer loop */
/**/

done :

......... e e e s e s e e e

/**/

4-26 ===

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* code to illustrate memory to memory transfer.Use counter to output */
/* both addresses.R1,R2 contain source address and R3 R4 contain dest */
/* address . R5 contains block size. */
/***********k**/
segment b mm byte ;

/* define equates */

b mm byte norm equ h’009%’ ;

b mm byte “read equ h’0096’ ;

b mm _byte write equ h’008e’;

rdy equ CC4 ;
bgn equ CC7 ;
init_b mm byte :
“BC := RS ,
OUT b _mm byte norm ; /* load block size in becnt */
SET ASEL HADOE ADOE ; /* select counter to output ,
enable had output */
/**/
/* start of transfer loop */
/**/
b _mm byte :
JMPC bgn release bus ,
ACH := R1 Y /* monitor bus grant , source
address in R1 */
SET DIREN , ACL := R2 ; /* enable dir, r2 <- low 6 bits */
srdy :
JMPNC rdy srdy ,
OUT b_mm byte read ; /* wait till source ready *x/
SET ACEN HDOE HDSELO ,
DOR := DIR ; /* when src is ready read the data
in , enable HD output , select
DOR to output */
RESET ACEN DIREN ,R1 := ACH,
OUT b_mm byte norm ; /* stop counter , store it back in
to registers */
ADD R2 ACL Q ARDREG ACH R3 ; /* mov ACL back to rl and at the
same time load r3 to ach */
ACL := R4 ; /* ach,acl have dest address */
drdy :
JMPNC rdy drdy ; /* wait for destination ready */
SET ACEN BCEN ,
OUT b_mm byte write ; /* when dest is ready , write the
data, increment counter , also
enable block counter */
RESET ACEN BCEN HDOE ,
R3 := ACH ,
OUT b_mm byte norm ; /* stop counters , set HD to input
save dest address (upper 16) */
JMPNC BCZ b_mm_byte ,
R4 := ACL ; /* loop back if block counter not
zero , also save lower 6 bits
of dest address */
/**/
/* end of transfer loop */

/***k**********/
done :

D S ST AR TR o e e s e e s e e

release bus :

D R Y ..

[Kk kK ok ok ok ok ok ok k sk K ok sk ok ok ok ok ok k kK Kk ok ok ok ok ok ok ok ok ok ok ok Khkhkkhkhkhkkhkhkkhkhkkhkkhkhkkhkhkhkkkhkhkkrkkhkkkhkkk /

i|||
L
ly
I

W

l:
Iy
by

4-27

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* code to illustrate memory to memory transfer (word mode) .Use counter */
/* to output both addresses.R1,R2 contain source address and R3 R4 */
/* contain destination address . R5 contains block size in words. */
/*******************************t**/
segment b _mm_word ;

/* define equates */

b mm_word norm equ h’00%’ ;

b mm word read equ h’0096’ ;

b mm_ . word write equ h’008e’;

rdy equ CC4 ;

bgn equ CC7 ;
init b _mm __word :

“BC := R5 ’

OUT b_mm_word norm ; /* load block size in bcnt */

SET ASEL HADOE ADOE H /* select counter to output ,

enable had output */

/**/
/* start of transfer loop */

/**/
b_mm word :
JMPC bgn release_bus ,

ACH := Rl ; /* monitor bus grant , source
address in R1 */

SET DIREN , ACL := R2 ; /* enable dir,ACL <- low 6 bits */

srdy : JMPNC rdy srdy ,

OUT b_mm word read ; /* wait till source ready */

SET ACEN HDOE HDSELO ,

DOR := DIR ; /* when src is ready read the data
in , enable HD output , select
DOR to output */

OUT b mm word norm ;

RESET ACEN DIREN ,

ADD R1 ACH Q ARDREG ACH R3 ; /* stop counter , store ACH in to
Rl and also load ACH with R3 */

ADD R2 ACL Q ARDREG ACL R4 ; /* store ACL in R2 and at the same

time put R4 in to ACL */
drdy : JMPNC rdy drdy ; /* wait for destination ready */
SET ACEN BCEN ,
OUT b_mm word write ; /* when dest is ready , write the
data, increment counter , also
enable block counter */

RESET BCEN HDOE ,
OUT b_mm_word norm

~e

/* stop block counter, set HD to
input */

RESET ACEN , R3 := ACH ; /* stop add counter ,
save dest address (upper 16) */
JMPNC BCZ b _mm word ,

R4 := ACL ; /* loop back if block counter not
zero , also save lower 6 bits
of dest address */
/**/
/* end of transfer loop */

/**k***/
done :

e s e ettt
release bus :

D R R N

/**/

Lii44

4-28

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/*********************k**/

/* code to illustrate memory to memory transfer from D7-D0 to D15-D8 */
/* or vice-versa. Use counter to output both addresses .Rl1 , R2 contain */

/* source address and R3 R4 contain destination address.R5 contains x/
/* block size. Data is read in to AOR and byte-swpped before outputting */
/* through DOR. *x/

/***ﬂ/

segment b mm sbyte ;
/* define equates */
b mm sbyte norm equ h’009%e’
b mm sbyte read equ h’0096’ ;
b_mm_sbyte write equ h’008e’;

~e

rdy equ CC4 H

bgn equ CC7 ;
init b mm sbyte :

"BC := R5,0UT b_mm_sbyte norm; /* load block size in bcnt */

SET ASEL HADOE ADOE ; /* select counter to output ,

enable had output *x/

/**/
/* start of transfer loop *x/

/**/

b_mm_sbyte :
JMPC bgn release_bus ,

ACH := R1 ; /* monitor bus grant , source
address in R1 */
SET DIREN , ACL := R2 H /* enable dir, r2 <- low 6 bits */
srdy : JMPNC rdy srdy ,
OUT b_mm_sbyte read ; /* wait till source ready x/
SET ACEN HDOE HDSELO ,
AOR := DIR ; /* when src is ready read the data

in , enable HD output , select
DOR to output */

RESET ACEN DIREN,R1 := ACH ,

OUT b_mm_sbyte norm /* stop counter , store it back in

~e

to registers *x/
ADD R2 ACL Q ARDREG ACH R3 ; /* mov ACL back to rl and at the
same time load r3 to ach */
ACL := R4 /* ach,acl have dest address */
drdy : JMPNC rdy drdy,DOR := SWPV ; /* wait for destination ready
and write swapped value */

SET ACEN BCEN |,
OUT b _mm_sbyte write /* when dest is ready , write the
data, increment counter , also

enable block counter */

~.

RESET ACEN BCEN HDOE ,

R3 := ACH ,

OUT b _mm_sbyte norm ; /* stop counters , set HD to input
save dest address (upper 16) */

JMPNC BCZ b mm_sbyte ,

R4 := ACL ; /* loop back if block counter not
zero , also save lower 6 bits
of dest address */
/**/
/* end of transfer loop */

/**/

done :

4-29

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* code to illustrate device to device transfers in the byte as well as */
/* word mode. source device is in rl and dest device is in r3. block */
/* size is in r5. */
/**/
segment b_dd bw ;

/* define equates */

b_dd bw norm equ h'00%' ;

b_dd bw _read equ h'0096"'

b _dd bw _write equ h'008e' ;

rdy equ CC4 ;
bgn equ CC7 ;
init_b_dd_bw :
SET DIREN , IOR := ~ Rl ,
OUT b_dd bw _norm ; /* enable DIR and output source
device chip select */
/**/
/* start of transfer loop */
/**/
b_dd_byte
b_dd_word
b_dd bw :
JMPC bgn release_bus ,
IOR := ~ R3 ,
OUT b_dd bw_read ; /* read source device and output
dest device chip select , also
monitor bus grant */
SET HDCE HDEELC ,
DOR := DIR ,
OUT b_dd_bw_norm ; /* enable HD output , select DOR
to output */
RESET HDOE ,
DEC RS ,
OUT b_dd_bw write ; /* HD to input , decrement count ,
output write strobe */
JMPNC Z b_dd bw ,
IOR := ~ R1 ,
OUT b_dd_bw_norm ; /* loop back if R5 not zero , also
output src device cs */
/**/
/* end of transfer loop */

/**/
done

/**/

FEEES=
iﬁéi?i’

4-30

PAC1000 — Application Note 005

Appendix 4 (Cont.)
/**/
/* code to illustrate device to device transfer in non fly by mode . */
/* This is used when data bus is connected d7-d0 to d15-d8 or the */

/* other way around. Source device # is in Rl and dest device # in R3 */
/**/
segment b_dd_sbyte :
/* define equates */
b_dd_sbyte norm equ h’009e’
b dd sbyte read equ h’0096’
b_dd _sbyte write equ h’008e’
rdy equ CC4 ;
bgn equ CC7 ;
init b dd sbyte :
“SET DIREN , IOR := ~ Rl ,

~e Ne

~e

OUT b_dd sbyte_norm ; /* enable DIR and output source
device chip select */
/**/
/* start of transfer loop */

/**/
b_dd_sbyte :

JMPC bgn release bus ,

IOR := ~ R3 ,

OUT b_dd_sbyte_read ; /* read source device and output
dest device chip select , also
monitor bus grant */

AOR := DIR ; /* read in the data */

SET HDOE HDSELO ,
DOR := SWPV ,

OUT b_dd sbyte write ; /* enable HD output , select DOR
to output , put swapped data in
DOR */
RESET HDOE ,
DEC RS ,
OUT b_dd sbyte norm ; /* HD to input , decrement count ,
output write strobe *x/
JMPNC Z b _dd_sbyte ,
IOR := ~ R1 ; /* loop back if R5 not zero , also
output src device cs */
/**/
/* end of transfer loop */

/**/

done :

e e s s e e 0 e s e o e e e e 0 e

/******************************k***/

4-31

4-32

Programmable Peripheral
Application Brief 006

PAC1000 as a 16 Bi-Directional
Serial Channel Gontroller

By Arye Ziklik

Introduction

This Application Brief describes a
Communications Controller that utilizes the
PAC1000 as the board level control element
in a 16 bi-directional serial channel board.
The aggregate board throughput is around
1 Mbyte/sec.

Serialization and de-serialization of the
data is handled by eight Serial
Communication Controllers (SCC). Every

SCC has two bi-directional serial channels
with individual baud rate generator and
digital phase loop mechanism. The SCC
can handle all the customary synchronous
and asynchronous protocols as well as the
popular serial data encoding/decoding
schemes. With a 16-MHz clock, the
maximum bit rate in every individual
channel can be up to 2 Mbps.

PAC1000 —
Host Interface

The PAC1000 performs the low level
function of moving the data to and from
the serial devices and buffer RAM memory.
The host interface is a generic 32-bit
system. The host processor communicates
with the PAC1000 through two interrupt
lines, two status signals and a mail-box
area that resides in the buffer memory.
Prior to accessing the board, the host
drives the “system board access” signal.
The PAC1000 is interrupted (INT3) and
relinquishes control of the board’s data
and address buses as long as that signal
is active (as reflected by CCO0). The host

reads and/or writes into the buffer memory.
After completion of this activity, it updates
the mail-box region and then lowers the
“system board access” signal. The PAC1000
continuously monitors that signal. After
CCO is negated, the PAC1000 can raise its
“PAC1000-board master” signal and start
controlling the data/address buses and
control signals. Whenever it needs a fast
response from the host, the PAC1000
updates the mail-box portion of the shared
buffer memory, lowers the “PAC1000-board
master” signal and activates the system
interrupt.

Buffer Memory
Structure

The high speed buffer memory is composed
of 64K bytes of static RAM that can be
accessed in three ways: by bytes (during
SCC transfer operations), by words (when
accessed by the PAC1000), or by double
words (from the host side). Memory access
configuration is determined by the PAC1000
output control signals (OC port).

The buffer memory is divided into three
regions:

1) SCC control image register space that
includes copies of the SCC registers.

2) Buffer message space where the 32
buffers of the corresponding serial
channels are stored.

3) Mail-box area in which the PAC1000
exchanges command and status
information with the host. This region
also contains the pointers to the 32
channel buffers.

Whenever instructed to do so, the PAC1000
writes the image register content of a
channel into the corresponding SCC,
thereby initializing that channel for a
particular transfer mode. Buffer message
sizes are allocated by the host according
to the speed of each individual channel.
The pointers of the buffers are stored in
the mail-box area.

Every transfer takes place between the
buffer memory and the selected SCC. The
PAC1000 is acting in this design as a
32-channel DMA controller, capable also of
communicating with the host processor
through their mail-box region. Once the
board is properly configured, the only
interface of the host system is the reading
of data from the receive and mail-box
buffers and the placing of new data into
the transmit and mail-box buffers. The
PAC1000 off-loads the host processor from
maintaining the low level control of each
channel.

4-33

PAC1000 — Application Brief 006

PAC1000 —
SCC Devices
Interface

The high speed data transfers are achieved
due to the very fast response of the
PAC1000 to the channel service requests.
The SCCs are programmed to request
DMA transfers whenever they are either
ready to transmit or containing new
received characters.

The 16 received character DMA requests
are priority encoded and latched. The
encoder output is connected to the
PAC1000’s CC3 pin. The 16 transmit DMA
requests are priority encoded and latched,
too. Their encoder drives the CC2 input
pin. The condition code multiplexer presents
to the CC7-CC4 the highest priority
encoded-channel-number of the pending
receiver request, or the transmitter request,
or the highest priority SCC number that is
currently requesting an interrupt service
via the CC1 pin. The receiver requests
have higher priority over the transmitter
requests. The lowest service priority is
assigned to the SCC interrupts. This
configuration ensures a very fast response

time of the PAC1000 to DMA requests and
SCC interrupts. Condition code latency is
125 ns and muilti-way branching according
to the CC7-CC4 lines requires additional
125 ns. Therefore, 250 ns after a high
priority DMA request, the service routine
will be initiated. The condition code lines
CC3, CC2 and CC1 are continuously
monitored by the PAC1000 during the time
that it is the board master. Therefore it
responds immediately when either a DMA
request or an SCC interrupt is pending.

The regular SCC interrupt lines are also
prioritized and latched by an 8 interrupt
encoder. These interrupts are requested by
erroneous SCC channels or whenever block
transfers are completed. The interrupt
priority encoder is also connected to the
condition code multiplexer. The three
encoded lines that denote the number of
the serviced SCC route the INTA signal
issued by the PAC1000 (via the I/O6 pin)
to the corresponding SCC.

Miscellaneous

In addition to functioning as an sc¢c
controller, the PAC1000 can also generate
all the necessary signals for modem control
and modem interface through the SCC
control signal latch.

The PAC1000 output control (OC) port
generates various control strobes such as
data path width definition, read/write,
multiplexer and decoder select, etc.

4-34

PAC1000 — Application Brief 006

PAC1000 as a
16 Bi-Directional
Serial Channel SYSTEM SYSTEM LOW OR| SYs
DER TEM SYSTEM
Controller 32-BIT DATA BUS 16 ADDRESS LINES INTERRUPT
WR RD HIGH-ORDER
ADD. LINES
SYSTEM DATA BUFFER |CS| MEMORY SYSTEM ADDR. ‘
TRANSCEIVER MEMORY DECODER [™] LATCH __ .
64K x 8 BRD <—
(CONFIG. - BWR <«——| SYSTEM BOARD
HIGH ORDER | ALSO BY 16-BIT DECODER
DATA BUS | 16 ORBY | ADDRESS BUS BRD
32 BITS)
LOW ORDER g\c')iLEDM
DATA BUS ACCESS SYSTEM SCC
BWR DECODE/CONTROL
- LINES
16-BIT DATA BUS
PAC1000 i
BOARD .
JDoARD, ADD(15-0) OC1 OCO 1/07 INT3 CCO HIGH
/06 SPEED
CONTROL
cct STROBES
PAC1000 0C(15-0) f&’.ﬁ,‘,‘
cc2
WIDTH,
cC7-CC4 SCC READ,
SCC WRITE,
—] CC3 1/0(5-0) HAD1 HAD(5-2) HADO HD(15-0) ETC...)
|
+A/E
CONDITION CODE SCC CONTROL
MULTIPLEXER SIGNALS DECODER sce
DECODER
| cid
SCC CONTROL DATA
SIGNALS LATCH TRANSCEIVER
ll CS¥i CS2 CS¥7 7 |
8-BIT DATA BUS
FORCED DTRS INTR
SYNCS ENABLE [
AND I
CLR I
il
[
i
4 ENCODED I
LINES
RECEIVER 16 DMA REQ. —»] CS#1 c/D
PRIORITY ENCODER -
AND LATCH DB(7-0) AB
4 ENCODED e t—— RDY1A
LINES .
RDYiB
: 1 scc #1
TRANSMIT 16 DMA REQ. |<— DTRIA
PRIORITY ENCODER o
AND LATCH - DTRIB
|
i
- INTR#1 H
3 ENCODED SCCs N N P—
LINES 8 INTR : INTA#1 -]
ENCODER TDIA RDIA TDIB RD1B [,
.
SEL ; . . .o .o .o
.
INTA INTR. | o
ACK
MUx | °
.
16 TRANSMIT / 16 RECEIVE SERIAL CHANNELS
]

T 4-35

4-36

Programmabhle Peripheral

Application Brief 007

Hardware Interfacing the PAC1000 as a
Micro Channel Bus Controller

By Arye Ziklik

Abstract This application brief describes how to use board, or from the PS/2 mother-board (the
the PAC1000 Programmable Peripheral system) to a slave. This application brief
Controller as a Micro Channel (MCA) bus describes the use of the PAC1000 on a
controller. master board and on a slave board.
The MCA bus uses asynchronous and In both applications the PAC1000 is
synchronous procedures to control and handling the synchronous functions, the
transfer data on the bus. The data is asynchronous functions are implemented
transferred from a master board to a slave by external PALs.

MCA Signal The bus signals described in this chapter M0

Descriptions are the most important and essential Memory/iO, driven by the bus master and

signals to understand the application brief.
The buffers needed per each signal are
summarized in Table 2. The timing relations
between the signals is drawn in Figure 1.

A0-A23

Address bits generated by the bus master
to address memory and IO slaves attached
to the bus. The address bits are unlatched
and must be latched by the slaves using
either the trailing edge of ADL or the
leading edge of CMD signals.

DO-D15

Data bits, valid during the period CMD
signal is low. The data is driven by
bidirectional three-state drivers.

ADL

Address Decode Latch, driven by the bus
master. The signal is used by the slaves
to latch valid address and status bits.

CD__DS16

Card Data Size 16, driven by 16 bit slaves
to provide an indication to the master
about their data bus width. Eight-bit slaves
do not drive this line.

DS__16__RTN

Data Size 16 Return. A signal generated
by the PS/2 system by AND-ing all the
CD__DS16 signals received from all the
slave connected to the bus. The signal is
provided by the PS/2 system to the bus
masters.

indicates a memory or 10 cycle. M/IO is
latched by the slave at the leading edge
of CMD signal.

§0, s1

Status bits, driven by the bus master and
indicate the start of read or write cycle.

The status bits are latched by the slaves
using the leading edge of CMD.

CMD

Command signal is driven by the bus
master and defines the period data is valid
on the data bus. The leading edge of
CMD is used to latch the unlatched
signals: A0-23, M/IO, S0, and S1. The
trailing edge of CMD indicates the end of
the bus cycle.

CD__SFDBK

Card Select Feedback. When a bus master
addresses a memory or an 10 slave, the
addressed slave drives CD__SFDBK active
as a positive acknowledgement of its
presence at the specified address.

CD__CHRDY

Channel Ready. This line is pulled inactive
(not ready) by a slave to allow additional
time to complete a bus cycle.

CHRDYRTN

Channel Ready Return. Generated on the
PS/2 system board by AND-ing the
CD__CHRDY signals driven by all the
slaves. The signal is provided by the
system to the mastr driving the bus.

4-37

PAC1000 — Application Brief 007

MCA Signal ARBO-ARB3
Descrlptmns Arbitration Bus priority signals. These four
{Cant,) signals represent the priority levels for

masters seeking control on the bus. The
four signals represent 16 priority levels,
level 15 represents the lowest priority,
level O represents the highest priority and
belongs to the PS/2 system.

ARB/GNT
Arbitrate/Grant. When high, this signal

indicates an arbitration cycle is in process.

When low, indicates that a master has
been granted. ARB/GNT is driven by the

PREEMPT
Used by the arbitration bus masters to
request the bus.

BURST
Indicates that the master requests the bus
for transferring a block of data.

1RG
Interrupt Request is used to signal the
system that a device requires attention.

CHRESET

Channel Reset, active high reset signal

system. generated by the system and sent to all
the boards on the bus.
Figure 1. Micro
Channel Basic o “ 8 ‘ 10 | 200nsee
Transfer Cycle aooress [5 |:| II]IIII |:‘3
|
| |
sTatus | Iz | 8 :
| |
ADL | | 3 |7 :
| !
b CHRDY ————————— —
-: l ° I 1 :
CD DS16 T—__—_l A lw—i
I
SFDBK I
) ——|: l—_——‘° :
|

e]]]]]]]]]]J]ls |

CMD

L7 “fl
e]]]]]]]]]J]]]J]]]]]]]]D

Table 1. The

Mo S0 §1
States Generated
M/10, S0 and S1 0 0 1 110 write.
’ 0 1 0 I/0 read.

1 0 1 Memory write.

1 1 0 Memory read.
MCA Timing The PAC1000 as a bus master transfers Q ADL is valid 45 nsec minimum after (1).
Parameters data on the MCA bus with a control 2 In response to the unlatched address

sequence based on the following events:

O The addres bus and M/IO signal
become valid.

[The status signals SO and S1 are valid
10 nsec minimum after (1).

...,
iy
Iy
i
"

decode, the selected slave responses
with CD__SFDBK (and CD__DS16 if it
is a 16 bit slave). The maximum
allowable response time of the slave is
55 nsec maximum from (1).

4-38

PAC1000 — Application Brief 007

MCA Timing
Parameters
(Cont.)

3 In response to (1), the slave responds
with CD_CHRDY. The maximum
allowable response time is 60 nsec
maximum from (1).

[Write data appears on the bus for the
write cycle. The data has to be valid
before the leading edge of CMD.

0 CMD becomes active and ADL inactive
typically 85 nsec minimum after (1).
The unlatched signals on the bus are
latched.

[The status signals become inactive
after they were latched.

3 The address bus becomes inactive
after the address was latched.

I In response to the address change, the
slave’s unlatched responses
(CD_CFDBK AND CD__DS16) are
invalid.

O System stays in this state until
CD__CHRDY is ready.

[The slave places data on the bus in
response to a read.

Q The address and M/IO are valid for the
next cycle.

[CMD goes inactive, ending the cycle.

Operation Modes

The PAC1000 working as a MCA
controller can handle the following
functions:

1 Bus signal generator.
3 Card setup.

The bus arbitration logic and signal
decoding are pure asynchronous functions
and implemented by two PALs.

Bus Slave Board
On a bus slave board the PAC1000 may
be used to implement the POS registers.

The Programmable Option Select (POS)
registers main objectives are:

O Eliminate switches from the board.

[Positively identify any card connected
to the system.

The POS registers on a PS/2 board replace
the switches by using software writeable
registers. There are eight POS registers,
each one is 8-bit wide. The POS registers
are addressed by CD__SETUP signal and
by address bits A0-2. The POS registers
are located at 1/0O addresses 100H to
107H. The eight POS registers are located
in the PAC1000 and control the board’s
functions.

The POS registers’ interface to the MCA

is a decoder which decodes the sytem’s

access to the registers and generates the
RD and WR signals to the PAC1000.

The address decoder and slave logic are
most of the circuitry needed for the slave
functions. The decoder has to decode the
address on the bus and to respond with
CD__SFDBK, CD__CHRDY and CD__DS16
signals. The address decoder might be for
memory, 1/O or for both. The decoder’s

size depends on the number of address
bits it is decoding. The decoder’s CS
outputs are latched by the leading edge of
CMD and are stable until the end of the
bus cycle. The decoder generates the
feedbacks to the bus, CD__SFDBK,
CD__DS16 and CD__CHRDY. These
signals are not latched and are very time
critical. The decoder responds with these
outputs at 55 nsec maximum after the
address is stable.

Bus Master Board

A master board is a board with a CPU
which requests the MCA bus. When
granted by the PS/2 system, the master
board is driving the bus signals.

On a master board the PAC1000 can
handle the following functions:

[POS registers (similar to the bus slave
board).

[Generation of the bus signals

The other functions of a bus controller are
implemented by PALs because the
functions are pure asynchronous.

The bus signals are generated by the
PAC1000 after the CPU is granted to be a
bus master. The process of getting the
bus is done in the following sequence:

1 The CPU is requesting the bus through
one of the interface lines with the
PAC1000.

J The PAC1000 is setting the bus
request line which is buffered by
drivers and sent to the MCA system.

[The system gets the request, and sets
a bus arbitration cycle which is handled
by the bus arbiter circuit (a PAL).

4-39

PAC1000 — Application Brief 007

Operation Modes Q The bus arbiter sends the PAC1000 the O After the CPU is done, it releases the
(Cﬂllt.} signal MASTER which tells the board bus request. .The PAC1000 translates it
that the bus was granted and the board to the right signal sequence on the
may drive the bus. MCA bus and releases the bus buffers.
1 The PAC1000 signals the CPU that itis On the bus master board the PAC1000
the bus master. may implement a lot of control functions
O The PAC1000 is enabling the address ~ and save glue logic.
and data drivers, and the CPU drives For example:
the address and data to the bus. The PAC1000 can handle several DMA
QO The PAC1000 generates all the bus operations on the board, or l_)e used as a
signals in the right sequence and the high speed controller for various
right timing requirements as defined by ~ aPplications.
the MCA bus standard.
PAC1000 in a
Micro Channel \ PAC1000
Slave Board MICRO : PAC1000 REGPIg'?ERS
CHANNEL : SLAVE BOARD (REGISTER BANK)
I et o,
DATAO-7 107-0 [l %Grmés
DATAQ-7 <] — -1 D7-0 BOARD
ADDRO-3 s~ — | HAD5-0
nsgg'srsn _RB_POS RD
5. seTUP — INTERFACE WRZ—:OS - 0C15-0 |
s s —‘I | s ADD15-0 |-l
HAD15-0 |~ aimmm—]-
INT3-0 | —
CCT7-0 |~
Tal’le. 2. Driver Signal Name Driver Type
Requirement for
PS/2 Siy”a[s A(0-23) TS 24 mA (TS = Three-State)
D(0-15) TS 24 mA
ADL TS 24 mA
CD_DsS16 TP 6 mA (TP = Totem Pole)
DS__16RTN BD 24 mA (BD = Bus Driver)
M/I0 TS 24 mA
SO, S1 TS 24 mA
CMD TS 24 mA
CD__SFDBK TP 6 mA
CD__CHRDY TP 6 mA
CHRDYRTN BD 24 mA
ARB(0-3) OC 24 mA (OC = Open Collector)
PREEMPT 0OC 24 mA
BURST OC 24 mA
ARB/GNT BD 24 mA

4-40

PAC1000 — Application Brief 007

PAC1000 as a
Micro Channel
Master
|
|
MICRO | PAC1000
CHANNEL : BOARD
|
_ D0-D15
D0-D15 DATA DIR_BUF
BUFFERS
EN__BUFF
A0-A23 A0-A23
ADDRESS DIR_BUF
LATCHES
EN_BUFF
v \}
— N PAC1000
cmD CWD CPU
- oce
ADL ADL
-~ ocs
S0]
-— oc?
S1 s1
] oce
Mo M/10
DECODER
SBHE N SBHE oes
SIGNAL
| DRIVERS oc4 -
CHRESET (PAL AND CHRESET INT3-0 |<&
———>| DRIVERS) cc3
ADD15-0 | >
CHRDYRTN CHRDYRTN
_— cc2
DS16 RTN DS16 RTN cer BUS
e > o MASTER
-— oc1
0C15-10 >
ARB0-3 BUS REQUEST
oco LATCHED
< PREEMPT | BUS CONTROL
BURST ARBITER 107-0 [SIONALS.
(ONE PAL) (
— N REGISTER
ARB/GNT MASTER/SLAVE cco OUTPUTS)
|
DATA0-7
B o < | HD7-0
ADDRO-3 ADDRO0-3
— - HAD5-0
POS RD_POS _
REGISTER RD
CD_SETUP INTERFACE WR_POS _
—e | WR
80, S1 cs _
— | cS

441

= ==
!s'i

4-42

I
Programmable Peripheral

Application Note 008

PAC1000 Programmable Peripheral Controller
with a Built-In Self Test Capability sy bavid Fong

Abstract The objective of this Application Note is to Performance Programmable Peripheral
demonstrate the Built-In Self Test (BIST) Controller. This article describes the basic
capability of the PAC1000 High- instructions needed to implement BIST.

Introduction With increasing device densities on one only test the ALU and its status flags, the
chip, more devices are needed for BIST to address and block counter, and the
check the functionality of the internal logic. sequencer. Future versions in the WS-PAC
Current serial scan techniques for board Family will have even larger sizes of
level verification would take too much time EPROM and may test the control EPROM.
and resources. The current PAC1000 will

llsage and The program is accessible by calling the This BIST is not a panacea for system

Limitations BIST program. The program occupies designers. A ‘PASS’ condition is indicated

forty-five lines of EPROM code. The
program can be reduced in size by
specifying extra CPU registers to hold the
constants h'FFFF’, h'0000’, hAAAA, h‘5555’
and h'FFF4.

Certain conditions must be met prior to
programming the code to ensure that this
program will work correctly. The stack
should be empty because the program
exercises the stack. In addition, location
h'3FF’ must be reserved because the BIST
uses this location to verify the contents of
the stack as a 1’ The outputs should be
placed in a mode where the existing
system is not affected. The ‘MAINT’
instruction will ensure that the OC is the
same throughout the program. However,
this example was not implemented in that
manner. Instead, it uses set values to
assist in debugging the program. Users
can do a global substitution of “OUT
h'xxxx’ ” with “MAINT” in their word
processor to fully implement this BIST
program.

by a return to the main calling program.
The output control will be h‘0000’. A ‘FAIL
condition will result in some endless loop
or jump to some portion of the program. In
the event that it does fail after about 170
clock cycles, the system must disable the
PAC1000 from the rest of the system in
some manner. Future versions of the
PAC1000 may include a watchdog timer to
interrupt and timeout the BIST.

The variables that can be altered by the
user are listed at the beginning of the
BIST.mal file. The current values used will
only exercise the counters in a simple
manner. The user can modify these
variables to increase the confidence level
of the program at the expense of a longer
test cycle.

4-43

PAC1000 — Application Note 008

Usage and A summary of the instructions used and

Limitations the functional blocks follow below:

(Cont.)
/***/
/* registers destroyed : RO,R1,R2,R3 and R4 */
/* AOR,ACH,ACL,BC,LC and stack */
/% */
/* stack should be empty before calling this program */
/* */
/* the block counter, address counter, ALU with register file and */
/* flags,and the sequencer with stack and counter are tested */
/* */
/* flags checked: BCZ,ACO,CY,Z,0,S,and STKF */
/* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR,SHRL,SUB */
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC, LDLCD, */
/* LOOPNZ, PLDLC, POP,RET,RNC,RSTCON and SETCON */
/* */
/* DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010, %/
/* 03FF, 0019 */
/***/

Confidence The program executes some of the possible with a carryout is considered a critical

Level internal critical paths of the PAC1000. path. The counters have a critical path in

From tester and simulation measurements,
the test of condition codes and branching
were consistently the longest. Similarly for
the ALU, flag generation such as adding

propagating the carry. Overall, the
confidence level of this test is considered
to be high.

Analysis of the

The currently executing nroaram calle the

ng. Tho ALY
ara cat and rocat h Im: imstrintinns Tha F AR

ngram BIST program by using the ‘CALL result of each cycle updates each flag on
instruction. The instruction following ‘CALL the next rising edge of the clock. For
which is the return address is pushed to example, to check the zero flag (Z), some
the stack and is not destroyed by the BIST ALU instruction forces the Z flag to zero.
program. See Figure 1 for the BIST See the instructions below:
functional blocks in the following order: I* force zero flag Z=0 */
1. Block Counter and flag BCZ. zero: JMPNC Z zero, AND AOR R1 ,
2. Address Counter and flag ACO. OUT h'0139";
3. ALU with shifter and flags CcY, z,0 Next, loading the loop counter from the
and S. ALU needs special treatment. The data
. must be present at the ALU output before
4. Sequencer with stack and loop counter, ¢ instruction to load the loop counter
and flag STKF. executes. See the instructions below:
Some subtleties of programming the ‘ MOV R4 short, OUT h014B’ :
PAC1QOO are presented. In the ALU section, /* force ALU output to the
ceftam flags must be fgrced to zero before value of short = h‘0010° */
bglng tested upon, unlike the r'!ormal LDLCD , MOV R4 R4, OUT h'014C’ ;
microprocessors where the individual flags /* load 0010 to LC */
AIMI]SI'S of the Looking at the block counter outputs Because of the latched flag BCZ, there is
Simulation BC(15:0) from cycle 7 through 18, the a minimum of two cycles before the next
ﬂutput counter counts continuously until disabled. instruction is executed after the loop.

The block counter contents wraps around
from h'0000’ to h'ffff’ and down. Note that
the BCZ flag remains latched until new
data is loaded to the block counter.

4-44

Figure 2 shows the loop with the minimum
number of latency cycles before executing
the next line of program code.

PAC1000 — Application Note 008

Figure 1.
Built-In-Self-Test
Flowchart
CALL BIST o
TEST cY PUSH TO
LOAD BCNT FLAG STACK
DECREMENT
BCNT NO NO
s YES YES
BCNT ZERO
? TEST Z FLAG POP STACK
YES ;
LOAD ACNT NO s
i BCNTZERO=1
)
INCREMENT YES YES
ACNT
TEST O FLAG LOAD LC
NO YES L
DECREMENT
NO o
YES T
SET ACNT YES
TO 22-BIT NO
L TEST S FLAG
LOAD ACNT YES
POP STACK
l No ‘ AND RETURN
TO MAIN
INCREMENT PROGRAM
ACNT
YES
s °
ACNT ALL 1's
?
sEs ==
H .;5

4-45

PAC1000 — Application Note 008

Figure 2.
BCZ Flag:
Example
Cycle-hy-Cycle
Simulation cveLE mﬂ_mr—brl_
BC 0001 0000 FFFF FFFE FFFE FFFE
BCZ
CONTROL
INSTRUCTION l 2 1 2 8 4 s
1. loop1: MOV R2 h‘5555°, OUT h‘0128’ ;
2. JMPNC BCZ loopt, OUT h‘0129’ ;
3. RESET BCEN, OUT h‘012a’ ;
4. ACSIZE 22, OUT h'012b’ ;
5. MOV ACL long, OUT h'012¢’ ;

/**/

/* Main calling program 02/03/89 */
/* David Fong Rev. 1.0 */
/* main.mal *

/**/
segment main ;

external bist ;

mainl:

/* initialize */
/* not needed */

/* call bist program */

CALL bist , OUT h’0123’ ; /* call the BIST program */
/* return to main program */
FORE: JMP FORE , OUT h’0000’ ; /* loop forever */

end ;

P T L LT T L LTy
/* Program to jump back to main bist program */
/* David A. Fong 02/03/89 Rev. 1.0 */
/* Jjmpf.mal */
/***/

segment jmp ;
external jmpf ;

JMP jmpf , OUT h’FFFF’ ; /* jmpf is an external address */
/* this tests branching with all 1’s */
end ;

£EF=

4-46

PAC1000 — Application Note 008

/***/

/* Built-In-Self-Test Program 02/03/89 */
/* David A. Fong Rev. 1.0 */
/* bist.mal *

Y T L T T Ly
/* registers destroyed : RO,R1,R2,R3 and R4 */
/* AOR,ACH,ACL,BC,LC and stack */
/* */
/* stack should be empty before calling this program */
/* */
/* the block counter, address counter, ALU with register file and*/
/* flags,and the sequencer with stack and counter are tested */
/* */
/* flags checked: BCZ,ACO,CY,Z,0,S,and STKF */
/* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR, SHRL, SUB */
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC, LDLCD, */
/* LOOPNZ, PLDLC, POP,RET,RNC,RSTCON and SETCON */
/* */
/*DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010%/
/* O3FF, 0019 */

P T T T T T T T T T T ST
segment c_bist ;
entry bist,jmpf ; /* entry points into this program */

/* define equates for user to substitute */
shorter equ h’0008’ ;

short equ h’0010’ ;
medium equ h’03ff’ ;
long equ h’fff4’ ;

popper equ h’0019’

JRxkkkkkhkhkkhkkhhhkhhkhhkkkk/
/* test the counters and */
/* initialize the registers */
/****************************/

bist: MOV R1 h’0000’, OUT h’0124’; /*the outputs should be placed*/
/* in a non-functional mode */
MOV RO h/FFFF’ , OUT h’0125’ ; /* in this program it is not*/
MOV BC shorter , OUT h’0126’ ;/*because it was needed to*/
SETCON h’002’ , OUT h’0127’ ; /*debug enable block counter */
loopl: MOV R2 h’5555’ , OUT h’0128’ ;
JMPNC BCZ loopl , OUT h’0129’ ;
RSTCON h’002’ , OUT h’012A’ ; /* disable block counter */

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 */
/* test the 22-bit address counter */
ACSIZE 22 , MOV ACH RO , OUT h’012B’ ;

MOV ACL long , OUT h’012C’ ;
SETCON h’001’ , OUT h’012D’ ; /* enable address counter */

Ll

4-47

PAC1000 — Application Note 008

loop2: MOV R3 h’AAAA’ , OUT h’012E’ ;
JMPNC ACO loop2 , OUT h’012F’ ;
RSTCON h’001’ , OUT h’0130’ ; /* disable address counter */

/* RO = FFFF ; Rl = 0000 ; R2 = 5555 ; R3 = AAAA */
/* test the 16-bit address counter */

ACSIZE 16 , OUT h’0131’ ;
MOV ACH long , OUT h’0132’ ;
SETCON h’001’ , OUT h’0133’ ; /* enable address counter */
loop3: MOV R4 h’0000’ , OUT h’0134’ ;
JMPNC ACO loop3 , OUT h’0135’ ;
RSTCON h’001’ , MOV R3 R3 , OUT h’0136’ ;
/* disable address counter */
/* and do a dummy ALU instruction so that Z=0 and CY=0 */
/* note: a NOP instruction will force Z=1 and CY=1 on the */
/* following cycle*/

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 ; R3 = AAAA ; R4 = 0000 */
/* R4 is the working register #*/

/****************/

/* test the ALU */
JRERkR KKK KKK KKK)/

carry: JMPNC CY carry , ADC AOR RO , OUT h’0137’ ;/*test carryout */
MOV R2 R2 , OUT h’0138’ ; /* force zero flag = 0 */
zero: JMPNC Z zero , AND AOR R1 , OUT h’0139’ ;/*test all the alu*/
/* outputs are zero */
over: SUB AOR R3 R2 , OUT h’013A’ ; /* test for overflow */
JMPNC O over , OUT h’013B’ ; /* test for overflow */
£f15: JMPNC S £15 , ADD AOR R1 RO , OUT h’013C’ ;/*test sign bit*/

/* test the alu shifting */

shftl: SHIR R2 Z2 , OUT h’013D’ ;
AND AOR R3 R2 , OUT h’013E’ ; /*should not loop*/
/*but fall-thru */
JMPC Z shftl , OUT h’013F’ ;

shftr: SHRR R2 Z , OUT h’0140’ ;
AND AOR R3 R2 , OUT h’0141’ ;
/* should not loop,but fall-thru */
JMPNC Z shftr , OUT h’0142’ ;

/**********************/

/* test the sequencer */
/**********************/

MOV BC short , OUT h’0143’ ;

~]

Illn
Il
Ul

MM

4-48

PAC1000 — Application Note 008

SETCON h’002’ , OUT h’0144’ ; /* enable block counter */
stack: PLDLC medium , OUT h’0145’ ;
JMPNC STKF stack , OUT h’0146’;
/*exit loop when stack is full #*/
/* the return address will not be */
/* overwritten , only the top of stack*/
MOV BC popper , OUT h’0147’ ;
jmpf: RNC BCZ , OUT h’0148’ ;
/*should come out of loop when empty+1l%*/
/* which is the return address */
POP , NOP , OUT h’0149’ ;
/* pop one more time but don’t pop */
/* the last return address */
RSTCON h’002’ , OUT h’014A’ ; /* disable block counter */

/* test the loop counter */
MOV R4 short , OUT h’014B’ ;
LDLCD , MOV R4 R4 , OUT h’014C’ ;/* load 16 into the LC*/
1p: ADC AOR R4 , OUT h’014D’ ; /* aor = aor + r4 */
LOOPNZ 1lp , OUT h’014E’;/*check that loop count is not zero*/
RET , OUT h’014F’ ; /* return to calling program */

end ;

/**********************************/

/* bist linker file 02/03/89 */

/* David Fong Rev. 1.0 */

/* exbist.ml */
/**********************************/

place main , c_bist , jmp ; /* place the segments */

load main , bist , jmpf ; /* load the .mal files */

locate main , h’000’ ; /* locate main and init file */

locate c_bist , h’011’ ; /* locate bist file after interrupt */
locate jmp , h’3ff’ ; /* locate jmp at 3ff to test /1’ from stack */
end ;

.T

RCCCCCCCCITIIIIITITIIICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA
ECCCCCCCCOOO0000ONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD

E 3210 543210 5432101111119876543210
T 543210
B
TIME
1 00000000000000000000011100000000000000000000000000000000000000
2 10000000000000000000011100000000000000000000000000000000000000

4-49

PAC1000 — Application Note 008

Fhkhkkhkkhkhkhhdhhhdhrhhhhdhdhdhhhhhdrdhhkhhkhkdxhhhkhhhxhrhkhrdxhhhhkrxx

OUTPUT TABLE

PACSIM Ver. 1.09 Mon Feb 13 15:12:09 198
E o P Y P P R T TR

PPP 0000 LLL AAAA BBBB AAAA AA BASCOSZ RRRR RRRR RRRR RRRR
CCC CCCC CCC 0000 cccC cccee cC cCcTy 3333 2222 1111 0000
173 1173 173 RRRR 1173 HHHH LL ZOK
1:: 51:: 1:: 1173 51:: 1173 53 F 1173 1173 1173 1173
$40 ::40 :40 51:: ::40 51:: :: 51:: 51:: 51l:: 51::
8 18 8 $:40 18 ::40 40 2:40 ::40 ::40 ::40
2 18 2 18 18 18 18 18
2 2 2 2 2 2

H
H
=
=

000 0000 000 0000 0000 0000 OO 0010000 0000 0000 0000 0000
000 0000 000 0000 0000 0000 00 1010000 0000 0000 0000 0O0O0O
011 0123 000 0000 0000 0000 0O 1000001 0000 0000 0000 0000
012 0124 000 0000 0000 0000 0O 1001001 0000 0000 0000 0000
013 0125 000 0000 0000 0000 OO 1000001 0000 0000 0000 0000
014 0126 000 0000 0000 0000 00 1000010 0000 0000 0000 ffff
015 0127 000 0000 0008 0000 00 0000000 0000 0000 0000 ffff
016 0128 000 0000 0007 0000 00 0001001 0000 0000 0000 ffff
015 0129 000 0000 0006 0000 00 0000000 0000 5555 0000 ffff
016 0128 000 0000 0005 0000 00 0001001 0000 5555 0000 ffff
11 015 0129 000 0000 0004 0000 00 0000000 0000 5555 0000 ffff
12 C1¢ C123 TT0 0000 0003 000U U0 0U010UL UOUU 5555 UUUU IIIIL
13 015 0129 000 0000 0002 0000 00 0000000 0000 5555 0000 ffff
14 016 0128 000 0000 0001 0000 00 0001001 0000 5555 0000 ffff
15 015 0129 000 0000 0000 0000 00 0000000 0000 5555 0000 ffff
16 016 0128 000 0000 ffff 0000 00 1001001 0000 5555 0000 ffff
17 017 0129 000 0000 fffe 0000 00 1000000 0000 5555 0000 ffff
18 018 0l12a 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff
19 019 012b 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff
20 0Ola 0l2c 000 0000 fffd ffff 00 1000010 0000 5555 0000 ffff
21 01b 0l12d 000 0000 fffd ffff 34 1000010 0000 5555 0000 ffff
22 0lc 0l2e 000 0000 fffd ffff 35 1001001 0000 5555 0000 ffff
23 0l1b 012f 000 0000 fffd ffff 36 1000010 aaaa 5555 0000 ffff
24 0lc 012e 000 0000 fffd ffff 37 1001001 aaaa 5555 0000 ffff
25 01b 012f 000 0000 fffd ffff 38 1000010 aaaa 5555 0000 ffff
26 0lc 0l12e 000 0000 fffd ffff 39 1001001 aaaa 5555 0000 ffff
27 01b 012f 000 0000 fffd ffff 3a 1000010 aaaa 5555 0000 ffff
28 0lc 012e 000 0000 fffd ffff 3b 1001001 aaaa 5555 0000 ffff
29 01b 012f 000 0000 fffd ffff 3c 1000010 aaaa 5555 0000 ffff
30 Olc 0l2e 000 0000 fffd ffff 3d 1001001 aaaa 5555 0000 ffff
31 01b 012f 000 0000 fffd ffff 3e 1000010 aaaa 5555 0000 ffff
32 0lc 0l2e 000 0000 fffd ffff 3f 1001001 aaaa 5555 0000 ffff
33 01d 012f 000 0000 fffd 0000 00 1100010 aaaa 5555 0000 ffff
34 O0le 0130 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
35 01f 0131 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
36 020 0132 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
37 021 0133 000 0000 fffd fff4 01 1000010 aaaa 5555 0000 ffff

’-—I
CVWHONOOLLPdWNE

4-50

2 & I —: -

FEE F= Programmable Peripheral

7 AN RN S

L ¥y v] - -

— Application Note 009

In-Circuit Debugging for the PAC1000
Programmable Peripheral Controller sy bavid Fong

Abstract This Application Note is used to illustrate PAC1000 programmable peripheral
the in-circuit debugging capabilities of the controller.

Introduction With the increasing densities and the user to use in his monitor program. SS
complexities of integrated circuits, the is useful for checking that every cycle is
usage of tools such as in-circuit debuggers executing correctly.
and emulators is greatly desired by the On the other hand. BP is the method of
heroic hardware deS|gqer. 4The. PAC1000 interrupting the program at a specific
supports the usage of in-circuit debuggers. 1o5ram [ocation. This allows the program
A review of BP (breakpoint) and SS (single in the PAC1000 to run in real-time system
step) I1s discussed. SS is the method of conditions. This breakpoint is passed to
stepping through the program code one the PAC1000 through the FIFO instead of
instruction at a time through manual means. having a fixed address through the program.
In the case of the PAC1000, there is no BP is useful for intermittently checking the
manual means with a single-step switch. execution of the program.

Instead, an interrupt which is set internally There is no preference on which method is
through the program Is set. This interrupt P ;
can tﬁen callpup%n an ISR (interrupt ser\‘/)ice the best. Generally, it is determined by’ the
. Thi broutine then d t situation. If the system designer doesn't
routine). This subroutine then dumps ou trust their own system in the beginning of
the contents of all the possible registers debug, then they will use SS. After the
that can be read out. These registers must system’ becomes more debug.ged
then be written into the system memory by breakpoint is needed occasionally.
Usage and Either SS or BP interrupts can occur. . HD bus. Whereas, SS reads out the CPU
Limitations Because both use the same initial ISR, the registers as well as the input and output

ISR will differentiate between the two by
testing for a specific data pattern that
accompanies the breakpoint/single-step
data through the FIFO. One way was to
test for a specific external condition code
but that was determined to be inflexible
since a specific condition code needed to
be dedicated for this task. Instead, two
words are written into the CPU registers.
These two registers must be reserved for
breakpoint/single-step operation. In this
example, RO and R1 are reserved.
Register R1 is the mask that is ‘AND’d
with RO which is written from the FIFO to
produce the Z (zero) flag that is tested.
See Figure 1 for the data format that is
written into the FIFO and CPU register RO.

The BP state continues with its program
by reading out the contents of some
registers to the host interface bus. Note
the usage of the FIFO to read out the
contents of the register to the ADD bus.
BP reads out only the input and output
registers that can be read as source to the

registers to ADD.

Not all the registers can be read out or if
at all with difficulty. CPU registers as was
illustrated by this program was read out
using the FIFO. However, the user could
have individually read out each register.
Unfortunately, there would have been a lot
of overhead program space taken. The
stack cannot be read out because the
contents of the stack would affect the
program flow. The interrupt mask register
and interrupt pending register cannot be
read out or to the CPU. Future PAC1000
versions may support extra functions to
allow the user to more easily access the
internal registers.

In summary, the single-step program dumps
out the following registers to the ADD bus:
CPU registers R31-R0, DIR, AIR, ACH,
ACL, lIR, and BC. Whereas, the breakpoint
program dumps out the following registers
to the HD bus: DIR, AIR, AOR, ACH, ACL,
lIR, and BC.

4-51

PAC1000 — Application Note 009

Analysis of
Program

This single program incorporates essentially
two programs. One for breakpoint and one
for single-step. To differentiate between the
two programs since they use the same
interrupt INT6, the data in register RO is
tested upon and the corresponding action
is taken. If Z is true, then breakpoint will
occur, else single-step will occur. See
BREAKPOINT/SINGLE-STEP algorithm
Figure 2.

Note that the Interrupt Jump Table is
located at h'008’ through h‘00f. The
PAC1000 interrupt vector from the internal
interrupt jumps to these individual
locations. In addition, note that neither
conditional nor unconditional jumps were

allowed to be executed when either the
breakpoint or the single-step interrupts
occurred. This also applies to other
interrupts. The delay interval from the time
of interrupt to executing the interrupt is
two cycles. See Figure 3 for the timing
relationship of interrupt to the beginning
of execution of the interrupt service
routine (ISR).

The single-step subroutine utilizes the
FIFO to externally address the CPU dual-
port registers. The usage of the FIFO in
conjunction with loops reduces the size of
the control store. However, the contents of
the FIFO must be empty before using it.

Figure 1. Host
to PAC1000
Commands
(Via the FIFO)

‘ HD[15:0] {
'0|0!0|0|0|0|U‘UIU|X’U|UMI?I?II/\MMH\T‘I\MMI
L1 1 1 1) 3o)1] 1] JUJulujujuUjuUjujUjUlU]|

LEGEND:
U: User-Defined
X: Test Bit

A/U: Breakpoint Address or User-Defined

HD[15:13] = User-defined.

HD[11:10] = User-defined.

HAD5 = FICD: The flag to indicate that the contents are
data FICD=0 or a command FICD=1.

HADI[4:0] =The B address to the CPU register file which in this case is register RO.

HD[12] =Test bit to differentiate between breakpoint and single-step.
HD12=0 for breakpoint and HD12=1 for single-step.

HD[9:0] = Breakpoint Address or for single-step user-defined.

4-52

PAC1000 — Application Note 009

Figure 2.
Breakpoint/
Single-Step
Flowchart

START MAIN
PROGRAM

ENABLE INT6
BP/SS INTERRUPT

{

INITIALIZE
REGISTERS

NO
SELECT SINGLE-
STEP

YES j

ADD REGISTERS.
INT6 WILL COME

- CALL/RETURN
ISR

ENABLE INT6 AND
CALL{g:TURN PERFORM OPERATION

ADD REGISTERS.
INT6 WILL COME

LOAD BP WITH Ro0.

!

ADD REGISTERS.
INT6 WILL COME

LooP ‘
FOREVER
CALL/RETURN
ISR
LoopP
FOREVER

FESEs=
o 4-53

PAC1000 — Application Note 009

Figure 2.
Breakpoint/
Single-Step
Flowchart
(Cont.)
CALL SINGLE
SET ADD
No | TO OUTPUT
YES SET LC=3
% SET HD
= TO OUTPUT
-
5 ‘ IS
POP STACK AND
w READ OUT f
z REGISTERS TO HD
NO
POP STACK AND YES
G RETURN TO 5
MAIN PROGRAM =
i
@ NO
w
]
=
w
YES
NO
SET LC=7
READ ALU
REG. TO ADD
HEE
A

4-54

PAC1000 — Application Note 009

Figure 3.
Sequence of

Events for °"_J L L LI I J—

Interrupt Timing

BREAKPOINT INTERRUPT

CPC X h'079’ X ho7a’ X h*07b’ X h‘00e’ k

Perform INT6 occurs. | INT6 is INT6 vector
addition Perform latched and occurs to
R2:= R2 + R1. | addition pending. change CPC.
R3:= R3 + R1. | Perform Push return
BP register addition address of
was previously R4:= R4 + R1. | h'07c’ to stack.
loaded with
h‘07a’

SINGLE-STEP INTERRUPT

cpPC X h'078’ X H‘079’ N h'07e’ X h'00e’ x

Select single- | INT6 occurs INT6 is INT6 vector

step interrupt | and CPC will | latched and occurs to

for INT6. jump to h‘07e’ | pending. change CPC.
Perform Push return

addition of address of
R5:= R5 + R1. | h‘'07f’ to stack.

Note: CPC is the name from the simulator PACSIM for currently executing
program counter.

/***/

/* BP and SS linker file 04/03/89 */
/* David Fong Rev. 1.0 */
/* bpss.ml */

/***/

place main, int, intserv, init, single ; /* place the §egments */
load main, int, intserv, init, single ; /* load the .mal files */

locate init , h’000’ ; /* locate the init file */

locate intserv , h’008’ ; /* locate the interrupt vectors */
locate main , h’050’ ; /* locate the main file */

locate int , h’100’ ; /* locate the ISR */

locate single , h’200’ ; /* locate the single files */
end ;

/*********************************/

/* INITIALIZATION 04/03/89 */
/* David Fong Rev. 1.0 */
/* init.mal *

YA T T LY

segment init ;

external mainl ;

SETMODE h’001’ , OUT h’0002’ ; /* switch to interrupt mode */
ENABLE INT6 , OUT h’0001’ ;

JMP mainl , OUT h’0000’ ; /* jump to main program */

end ;

4-55

PAC1000 — Application Note 009

/**********************************/

/* Main program 04/03/89 */
/* David Fong Rev. 1.0 */
/* main.mal */

/**********************************/

segment main ;

entry mainl ;

mainl :
/**/

/* BEGIN MAIN PROGRAM */
JhREkdekkdkhkkkkkkkdkhkhkhkkkhhkhhhhkkhhkkhkkhrkkkkkkkrkkk/

/* initialize registers */

Rl := h’1000’ , OUT h’0050’ ;/* the twelveth bit R1.12 tests for BP/SS*/
/* IF Z=1 (which means R1.12 = 0) THEN run breakpoint program */

/* ELSE run single-step program */

R2 := h’0002’ OUT h’0051‘

7 l
R3 := h’0003’ , OUT h’0052’ ;
R4 := h’0004’ , OUT h’0053’ ;
R5 := h’0005’ , OUT h’0054’ ;
R6 := h’0006’ , OUT h’0055’ ;
R7 := h’0007’ , OUT h’0056’ ;
R8 := h’0008’ , OUT h’0057’ ;
R9 := h’0009’ , OUT h’0058’ ;
R10 := h’000a’ , OUT h’0059’ ;
R11 := h’000b’ , OUT h’005a’ ;
R12 := h’000c’ , OUT h’005b’ ;
R13 := h’000d’ , OUT h’005c’ ;
R14 := h’000e’ , OUT h’0054’ ;
R15 := h’000f’ , OUT h’005e’ ;
R16 := h’0010’ , OUT h’005f’ ;
R17 := h’0011’ , OUT h’0060’ ;
R18 := h’0012’ , OUT h’0061’ ;
R19 := h’0013’ , OUT h’0062’ ;
R20 := h’0014’ , OUT h’0063’ ;
R21 := h’0015’ , OUT h’0064’ ;
R22 := h’0016’ , OUT h’0065’ ;
R23 := h’0017’ , OUT h’0066’ ;
R24 := h’0018’ , OUT h’0067’ ;
R25 := h’0019’ , OUT h’0068’ ;
R26 := h’001a’ , OUT h’0069’ ;
R27 := h’001b’ , OUT h’006a’ ;
R28 := h’001c’ , OUT h’006b’ ;
R29 := h’001d’ , OUT h’006c’ ;
R30 := h’00le’ , OUT h’0064’ ;
R31 := h’001f’ , OUT h’006e’ ;
ACH := R31 , OUT h’006f’ ;
ACL := RO , OUT h’0070’ ;
AOR := R1 , OUT h’0071’ ;
DOR := R15 , OUT h’0072’ ;
BC := R7 , OUT h’0073’ ;

4-56

PAC1000 — Application Note 009

/* all input registers are initialized to zero from RESET */

/* to integrate two different programs 1. BREAKPOINT 2. SINGLE-STEP%*/
/* The result of masking RO with Rl is used to differentiate */

/* between BP and SS. */

/* IF Z = 1 Breakpoint; ELSE Z = 0 Single-Step */

/***************** READ IN FIFO AND TEST FOR BP/SS ********************/
g0: JMPC FICD g0 , OUT h’0074’ ; /*check that the fifo contents is data
LDBPD , RDFIFO , OUT h’0075’; /* FIFO was loaded with h’0 00 007a’ */
/* first 0 is FICD ; 00 is B address ; 0 is the test bit ; */

/* 07a is the EPROM breakpoint address. */

/* Load loop counter with same data read from FIFO : LDLCD; */

/* the data written into the CPU is the same as the CPU output bus */

AND R1 RO , OUT h’0076’ ; /* the Z flag is tested in the next cycle */
JMPC Z bO , OUT h’0077’ ;

/* select single-step interrupt */

ESS , OUT h’0078’ ;

JMP cO0 , OUT h’0079’ ; /* skip breakpoint routine */

/**************** BREAKPOINT ***************************************/
/* perform alu operations till interrupt comes */

bO: R2 := R2 + Rl , OUT h’007a’ ; /* breakpoint on this address h’07a’
R3 := R3 + R1 , OUT h’007b’ ;

R4 := R4 + R1 , OUT h’007c’ ; /* breakpoint interrupt comes here */

/* return from ISR to here */

e0 : JMP e0 , OUT h’007d4’ ; /* loop forever ; end of breakpoint */

/*************** SINGLE-STEP **************************************/

cO0: R5 := R5 + R1 , OUT h’007e’ ; /* execute till interrupt comes */
R6 := R6 + R1 , OUT h’007f’ ; /* interrupt should after here */

/* return from single-step ISR to here */

/* enable single-step interrupt and perform an operation */

ENABLE INT6 , R7 := R7 + R1 , OUT h’0080’ ; /* the output for R2 */
/* should be h’1002’ */

R8 := R8 + Rl , OUT h’0081’ ; /* interrupt should come here */

/* return from single-step ISR to here */

fo : JMP f0 , OUT h’0082’ ; /* loop forever */
end ;

/*********************************/
/*SINGLE-STEP SUBROUTINE 04/03/89%/
/* David Fong Rev. 1.0 */
/* single.mal */
/*********************************/

segment single ;
entry singlel ;

singlel :
/* read out the registers from the ALU */
/* use the addressing scheme from the FIFO */

5555

4-57

PAC1000 — Application Note 009

SETCON h’010’ , OUT h’2000’ ; /* set ADD bus to output */
/* to read out AOR to ADD */

/* loop four times to address the 32 registers #*/
FOR 3 , OUT h’2001’ ;
/* FIFO should already be full */
f0 : JMPC FIIR fO0 , OUT h’2002’ ; /* loop till FIFO is full*/

/* check that the first value in the FIFO is a data */
f1 : JMPC FICD f1 , OUT h’2003’ ;

/* loop eight times to empty the FIFO */
FOR 7 , OUT h’2004’ ;

/* use the FIFO as an address pointer */

/* the data is not needed; write the data back to CPU */

/* and output the CPU output to AOR */

/* the default CPU instruction is add which adds zero and */
/* the address pointed by the FIFO which is the B address */

RDFIFO , alu_src = zb , ybus_sel = y_aoreg ,
OUT h’2005’ ;
ENDFOR , OUT h’2006’ ;

ENDFOR , OUT h’2007’ ;

/* read out the source registers to ADD */
MOV AOR DIR OUT h’2008’ /%* 0000 should come out next cyle */

14 ’
MOV AOR AIR , OUT h’2009’ ; /* 0000 */
MOV AOR ACH , OUT h’200a’ ; /* 001lf */
MOV AOR ACL , OUT h’200b’ ; /* 0000 */
MOV AOR IIR , OUT h’200c’ ; /* 0000 */
MOV AOR BC , OUT h’200d’ ; /* 0007 */

RET , OUT h’200e’ ; /* return to ISR 6 */

end ;

JEEk Rk Rk kR kR Rk Rk ko k ko kR k Rk kk)
/* INTERRUPT JUMP TABLE 04/03/89%/
/* David Fong Rev. 1.0 */

/* intserv.mal */
/*********************************/

segment intserv ;
entry int_serv ;
external intO,intl,int2,int3,int4,int5,inté6,int7 ;

int_serv :
JMP into OUT h’0008’

’ i
JMP intl , OUT h’0009’ ;
JMP int2 , OUT h’o000a’ ;
JMP int3 , OUT h’000b’ ;

7174
4-58 w.i’

PAC1000 — Application Note 009

JMP int4 , OUT h’000c’ ;

JMP int5 , OUT h’o0o004d’ ;

JMP inté , OUT h’000e’ ;

JMP int7 , OUT h’000f’ ;
end ;

/**/

/* Interrupt Service Routines 04/03/89 */
/* David Fong Rev. 1.0 */
/* int.mal */

/**/

segment int ;
entry int0 , intl , int2 , int3 , int4 , int5 , inteé , int7 ;
external singlel ;

into :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0100’ ;
RET , OUT h’0101’ ;

int1 :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0102’ ;
RET , OUT h’0103’ ;

int2 :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0104’ ;
RET , OUT h’0105’ ;

int3 :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0106’ ;
RET , OUT h’0107’ ;

int4 :
/* mask that interrupt */
DISABLE INT4 , OUT h’0108’
RET , OUT h’0109’ ;

~e

int5 :
/* mask that interrupt */
DISABLE INT5 , OUT h’0Ol0a’
RET , OUT h’010b’ ;

~e

int6 : /* Breakpoint and Single-step ISR */
/* mask that interrupt */
DISABLE INT6 , OUT h’010c’ ; /* mask interrupt 6 INT6 */
CLI h’0ff’ , OUT h’010d4’ ; /* clear all interrupts */

/************** TEST for Breakpoint/single—step **************/
AND R1 RO , OUT h’010e’ ;
JMPC Z a0 , OUT h’010f’ ; /* if Z=1 then breakpoint,Z=0 SS */
£5E

=
=

%

4-59

PAC1000 — Application Note 009

CALL singlel , OUT h’0110’ ;/* call single step program */
JMP b0 , OUT h’0111’ ; /*finish SS ISR , return to main progr */

a0: SET HDOE HDSELO , OUT h’0112’ ; /* set HD to output */

/* select DOR to HD output bus*/

/* move out the source registers to HD */

DOR DIR , OUT h’0113’ ; /* 0000 should come out next cycle#*/
DOR AIR , OUT h’0114’ ; /* 0000 */

DOR AOR , OUT h’0115’ ; /* 0001 */

DOR ACH , OUT h’0116’ ; /* 001f */

DOR ACL , OUT h’0117’ ; /* 0000 */

DOR IIR , OUT h’0118’ ; /* 0000 */

DOR BC , OUT h’0119’ ; /* 0007 */

, OUT h’0Ol1la’ ;

/* mask that interrupt */
DISABLE INT7 , OUT h’0Olla’ ;

MOV
MOV
MOV
MoV
MOV
MOV
MOV
bo:
RET
int7 :
RET
end ;
.T
TIME
1
2

, OUT h’011b’ ;

RCCCCCCCCIIIIIITITITITIICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA
ECCCCCCCCOOOO00OONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S57654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD

E 3210 543210 5432101111119876543210
T 543210
B

00000000000000000000011100000000000000000000000000000000000000
10000000000000000000011100000000000000000000000000000000000000

bps0.stl file for single-stepping
write the single-step mode bit hdl2=1

20
21

10000000000000000000000100010000000000000000000000000000000000
10000000000000000000011100010000000000000000000000000000000000

write into FIFO for single-step

1000000000000000000001110000000000000000000000Z22Z2ZZ2ZZ222ZZ22222
100000000000000000000001000000000000000000000022ZZZ2Z2Z222222Z2222
1000000000000000000001110000000000000000000000Z222Z222222Z22Z22222
100000000000000000000001000000000000000000000122Z22ZZZ2222222227
10000000000000000000011100000000000000000000012222Z222222222227
100000000000000000000001000000000000000000001022Z2ZZ2222222222272
1000000000000000000001110000000000000000000010Z222222Z2Z22Z2222222
100000000000000000000001000000000000000000001122Z22222222222227
100000000000000000000111000000000000000000001122Z2222Z2Z2222Z22222
1000000000000000000000010000000000000000000100Z22Z2Z22222222Z2Z2227
1000000000000000000001110000000000000000000100Z22Z2Z2Z22Z2222222222
1000000000000000000000010000000000000000000101Z22Z22Z2222Z2Z22222272
100000000000000000000111000000000000000000010122Z2222Z2Z2222Z22227
1000000000000000000000010000000000000000000110Z2ZZ2ZZZ2Z2222222222
100000000000000000000111000000000000000000011022Z2Z2Z2Z2222Z2222222
10000000000000000000000100000000000000000001112Z2ZZ22ZZ222Z222Z2227
10000000000000000000011100000000000000000001112222Z22Z2222222222

4-60

Ui

PAC1000 — Application Note 009

103
104
105
106
107
108
109
110
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

1000000000000000000000010000000000000000001000Z222Z2Z222222222222
1000000000000000000001110000000000000000001000Z22Z2Z22Z22222222222
1000000000000000000000010000000000000000001001222Z2222222222222
10000000000000000000011100000000000000000010012Z2Z2ZZ2Z222222222%
1000000000000000000000010000000000000000001010ZZ222Z22Z2222222222
10000000000000000000011100000000000000000010102ZZ2ZZZ2Z2222222222
10000000000000000000000100000000000000000010112Z2Z222222222722
1000000000000000000001.1.100000000000000000010112222222222222222
1000000000000000000000010000000000000000001100Z2Z2Z22Z2Z22222222222
1000000000000000000001110000000000000000001100Z2222Z222222222222
1000000000000006000000010000000000000000001101222ZZ222222222222
1000000000000000000001110000000000000000001101Z2Z222Z222Z2Z22Z222227
1000000000000000000000010000000000000000001110Z2Z2Z2ZZ22ZZ2222222222
1000000000000000000001110000000000000000001110Z2Z2Z2Z2Z2ZZ2222222222
10000000000000000000000100000000000000000011112222Z2Z2Z222Z22Z22222
10000000000000000000011100000000000000000011112Z222Z222222Z22222
1000000000000000000000010000000000000000010000Z222Z2Z22222222227Z
1000000000000000000001110000000000000000010000Z2ZZ22Z2Z222222272222
10000000000000000000000100000000000000000100012Z2Z222Z22222222222
1000000000000000000001110000000000000000010001Z2ZZ2ZZ2Z22222222222
1000000000000000000000010000000000000000010010222222222222222Z
1000000000000000000001110000000000000000010010Z2Z22Z2Z22222222222
10000000000000000000000100000000000000000100112ZZ2ZZ2Z22Z2Z2222227
10000000000000000000011100000000000000000100112ZZ22ZZ2Z2ZZ2Z2222222
1000000000000000000000010000000000000000010100Z2Z2Z2Z2Z2Z2Z2Z2ZZ2Z222222
10000000000000000000011100000000000000000101002Z22Z2Z2Z2ZZZ2Z222222
10000000000000000000000100000000000000000101012ZZ2Z2ZZZZ22Z2222222
1000000000000000000001110000000000000000010101Z22222Z222ZZZ2Z2Z222Z
1000000000000000000000010000000000000000010110Z2ZZZZZ2Z2Z2Z2Z2Z2Z22Z22
1000000000000000000001110000000000000000010110Z2Z2Z22ZZ2Z2Z22Z22222722
1000000000000000000000010000000000000000010111222Z2ZZ2ZZ22Z2Z2Z22222
10000000000000000000011100000000000000000101112Z2Z22Z2Z22222222222
10000000000000000000000100000000000000000110002Z2Z2ZZZZZZ2222222
10000000000000000000011100000000000000000110002ZZ2ZZZZ2Z2ZZ2Z2Z2227%
10000000000000000000000100000000000000000110012ZZ2Z2ZZ2Z22ZZ2ZZZZ222
10000000000000000000011100000000000000000110012Z22Z2Z2Z2Z222222222
10000000000000000000000100000000000000000110102222Z2Z2Z2Z2Z2Z22Z2Z2Z
100000000000000000000111000000000000000001101022222Z2Z2Z222Z222227
100000000000000000000001000000000000000001101122Z2ZZZ2Z2ZZ2222Z2222
10000000000000000000011100000000000000000110112222Z2Z22Z2Z222Z2227
10000000000000000000000100000000000000000111002ZZ2ZZ2Z222ZZ222222
1000000000000000000001110000000000000000011100Z22222Z222Z2Z2Z2222Z
1000000000000000000000010000000000000000011101Z2Z22Z22Z22Z2ZZ22Z2Z2Z
1000000000000000000001110000000000000000011101Z2Z2Z2ZZZ2Z2Z2Z2Z2Z222222
1000000000000000000000010000000000000000011110Z2222Z22Z22222Z22222
1000000000000000000001110000000000000000011110Z2Z2Z22Z222Z2222Z22222%
10000000000000000000000100000000000000000111112Z2Z22Z2Z2222222722722
10000000000000000000011100000000000000000111112Z222Z2ZZ2222Z22227Z

write into FIFO second time around for single-step

240
241
242
243
244
245
246
247

1000000000000000000001110000000000000000000000Z2222222222222222
1000000000000000000000010000000000000000000000Z2Z2Z22Z2ZZ2Z222222222
1000000000000000000001110000000000000000000000Z2222ZZ2Z2Z2Z2Z2Z2Z27
10000000000000000000000100000000000000000000012222Z2Z2Z2222222222
1000000000000000000001110000000000000000000001Z22Z2Z22Z2Z2Z222222222
100000000000000000000001000000000000000000001022Z2Z2ZZ2Z2Z222222222%
1000000000000000000001110000000000000000000010Z2Z2Z2ZZZ2Z2Z2222222722
10000000000000000000000100000000000000000000112222Z2Z2Z2222222227

4-61

PAC1000 — Application Note 009

248
249
250
255
256
257
258
259
260
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

10000000000000000000011100000000000000000000112Z2ZZ2Z222222222227Z
1000000000000000000000010000000000000000000100Z2ZZZ2Z2Z22Z222222222
10000000000000000000011100000000000000000001002Z2Z2Z2ZZ2222Z2222222%
10000000000000000000000100000000000000000001012Z2ZZ2Z2Z2Z22Z222Z2222%
10000000000000000000011100000000000000000001012ZZZ2Z2Z22222Z222222
10000000000000000000000100000000000000000001102Z2Z2ZZ2Z22222Z222222%
10000000000000000000011100000000000000000001102ZZZZZ272222222222
100000000000000000000001000000000000000000011172Z2Z2Z222222222222
10000000000000000000011100000000000000000001112ZZ2Z2Z222222222227
1000000000000000000000010000000000000000001000Z2ZZ22222222222222
10000000000000000000011100000000000000000010002Z2Z2ZZ2Z22222222222
10000000000000000000000100000000000000000010012ZZ2Z2222222222222
10000000000000000000011100000000000000000010012Z2Z2Z2Z2Z2Z2222Z22222
10000000000000000000000100000000000000000010102Z2ZZ2Z2Z22222222222
1000000000000000000001110000000000000000001010Z22Z2222Z222Z2222227%
10000000000000000000000100000000000000000010112Z22Z222222Z27222
10000000000000000000011100000000000000000010112ZZ22ZZ22Z2222222272
10000000000000000000000100000000000000000011002Z2Z2Z2Z2Z22Z222222227
10000000000000000000011100000000000000000011002Z2Z2Z2Z2Z22Z222222222
1000000000000000000000010000000000000000001101222Z2Z2Z2Z222Z2Z
1000000000000000000001110000000000000000001101Z222ZZ2Z22Z22222Z27Z
10000000000000000000000100000000000000000011102222222222222222
1000000000000000000001110000000000000000001110Z2Z222222222222222
100000000000000000000001000000000000000000111122Z2Z2Z22Z2Z2222222272
10000000000000000000011100000000000000000011112ZZ2Z2222222222222
1000000000000000000000010000000000000000010000Z2Z222222222222222
10000000000000000000011100000000000000000100002Z2Z22Z2ZZ2Z22Z2222227
100000000000000000000001000000000000000001000122Z2ZZ2Z22Z22Z222222
1000000000000000000001110000000000000000010001222ZZ2Z2Z2Z2Z2Z2Z
1000000000000000000000010000000000000000010010222ZZ2ZZ2Z22222Z2Z
1000000000000000000001110000000000000000010010Z2222Z222222222227
1000000000000000000000010000000000000000010011Z2Z2Z2ZZZ2Z22222227Z
10000000000000000000011100000000000000000100112Z2Z2ZZZZ2Z222222Z22
10000000000000000000000100000000000000000101002Z22ZZ2Z2Z2Z2Z22Z22
1000000000000000000001110000000000000000010100222Z222222222222%
1000000000000000000000010000000000000000010101Z2Z2Z2Z2Z222Z222222222
1000000000000000000001110000000000000000010101Z222Z2222222222222
1000000000000000000000010000000000000000010110Z2222222222222222
1000000000000000000001110000000000000000010110Z2Z2Z2Z2222Z222222222
1000000000000000000000010000000000000000010111Z2222222222222222
1000000000000000000001110000000000000000010111ZZ22Z22Z22222222222
10000000000000000000000100000000000000000110002Z22Z2Z2Z22222222Z2Z
10000000000000000000011100000000000000000110002Z2Z2ZZ2ZZ2Z2222Z2227Z
1000000000000000000000010000000000000000011001Z2Z222222222222222
1000000000000000000001110000000000000000011001Z2222222222222222
1000000000000000000000010000000000000000011010Z2Z222222222222222
1000000000000000000001110000000000000000011010Z2222222222222222
1000000000000000000000010000000000000000011011222Z222222222Z227Z
10000000000000000000011100000000000000000110112ZZZZZZ2Z2Z22222227
1000000000000000000000010000000000000000011100Z2ZZZZZZZ22Z2222227
10000000000000000000011100000000000000000111002Z22222222Z2222227
1000000000000000000000010000000000000000011101Z2222Z222Z222222222
1000000000000000000001110000000000000000011101222ZZZ2222222222
10000000000000000000000100000000000000000111102Z2ZZZZZZ222222222%
1000000000000000000001110000000000000000011110Z2ZZZ2Z2Z222Z222227Z
10000000000000000000000100000000000000000111112ZZ22Z2Z2222222227Z
10000000000000000000011100000000000000000111112222Z222Z22222222

|

55 5=

4-62

“

PAC1000 — Application Note 009

RCCCCCCCCIIIIITIIIIITIICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA
ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD
5432101111119876543210

E
T
B

3210

543210

543210

00000000000000000000011100000000000000000000000000000000000000
10000000000000000000011100000000000000000000000000000000000000
10000000000000000000000100000000011110100000000000000000000000
10000000000000000000011100000000011110100000000000000000000000
100000000000000000000111Z2Z2ZZZ22Z2Z2ZZZ2Z2ZZZZ0000000000000000000000
bpsl.stl uses Z=1 for breakpoint ISR; HD12=0;

*kkkkx***The bpsO.out file **kkkkkkkx

dhkkkkhkkhkhhkhkhhhkhhkhhhkhkhhhdhhhhhkhhkhhkhhhkhhkhhhhhkhhhkhhhkhhkkrkhddhdxhrdrxk

PACSIM

H
H
=
=

WVWAONOUdWN

ccc
PPP
Cccc
173
1::
:40
8

000
000
000
001
002
050
051
052
053
054
055
056
057
058
059
05a
05b
05c
05d
05e
05f
060
061

0000
Cccc
1173
51::
$:40
18

2

0000
0000
0002
0001
0000
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005a
005b
005c
0054
005e
005f
0060
0061

A
D
o
E

[eNeleNoNoNoNoNoNoNoNoNoNoNoNoNoNeNoNoNoNeNoNo

Ver.

AAAA
DDDD
DDDD
1173
51::
$:40

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

OUTPUT

1.09

AAAA

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

FFFIB
IIINR
CIOTP
DRRRT
E
Q
U
L

00001
00001
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01100
01100

PPP
CcccC
173
1::

40
8

000

TABLE

LLL
CccC
173

oo
..

:40
8

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

BBBB
Ccccc
1173
51::
$:40
18

2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Tue Apr 04 15:43:42 1989
L T

4-63

PAC1000 — Application Note 009

24 062 0062
25 063 0063
26 064 0064
27 065 0065
28 066 0066
29 067 0067
30 068 0068
31 069 0069

0000 0000 01100 063 000 0000
0000 0000 01100 064 000 0000
0000 0000 01100 065 000 0000
0000 0000 01100 066 000 0000
0000 0000 01100 067 000 0000
0000 0000 01100 068 000 0000
0000 0000 01100 069 000 0000
0000 0000 01100 06a 000 0000
32 06a 006a 0000 0000 01100 06b 000 0000
33 06b 006b 0000 0000 01100 06c 000 0000
*%**Due to the length of the file,the rest of the output is not shown #*#*%*

[eNeoNoNoNeoNoNoNoNoNo]

kkkkkkkkk%x%xThe bpsl.out file **kkkkkkkkk**
Thkhkhkhkkhk Ak kR kAR I AR Ik h ko hhhhhkhhkhhkhhhhhhhkhhhhhhkhhhhhhhhhhhkkhkh®
OuUTPUT TABLE

PACSIM Ver. 1.09 Mon Apr 03 13:08:15 1989
Fhkkkkkkhkkhhkhhhhkhkhhkdhdhkhhkhkhhkhhhhhhkhhdhkhhhhkhhhkhkhkhkdrhhhhdhxhrhhhrxkxdxx

CCC 0000 M CC DI BBB B HHHH LLL BBBB
PPP CCCC D CC ON RRR R DDDD CCC ccccC
CCC 1173 O 73 RT EEE P 1173 173 1173
173 51:: E :: R AAA T 51:: t: 51::
Tee 2240 an KKK F ++40 <40 +°+40
$40 18 RRR Q 18 8 18
8 2 EEE U 2 2
GGG L
973
840
TIME
1 000 0000 O 00 00 000 1 0000 000 0000
2 000 0000 O OO0 OO 000 1 0000 000 0OOO
3 000 0002 O 00 00 000 O 0000 000 0OOOO
4 001 0001 O 00 00 000 O 0000 000 00O0O
5 002 0000 O 00 00 000 O 0000 000 0000
6 050 0050 0 00 00 000 O 0000 000 0OOOO
7 051 0051 0 00 00 000 O 0000 000 00OO
8 052 0052 0 00 00 000 O 0000 000 0000
9 053 0053 0 00 00 000 O 0000 000 0O0OO
10 054 0054 0 00 00 000 O 0000 000 0OOO
11 055 0055 0 00 00 000 O 0000 000 0000
12 056 0056 0 00 00 000 O 0000 000 0000
13 057 0057 0 00 00 000 O 0000 000 0000
14 058 0058 0 00 00 000 O 0000 000 0O0OO
15 059 0059 0 00 00 000 O 0000 000 0000
16 05a 005a 0 00 00 000 O 0000 000 0000
17 05b 005b 0 00 00 000 O 0000 000 0000
18 05c 005¢c 0 00 00 000 O 0000 000 0000
19 054 0054 0 00 00 000 O 0000 000 0000
20 05e 005e 0 00 00 000 0O 007a 000 0000
21 O05f 005f 0 00 00 000 O 007a 000 0000
22 060 0060 O 00 00 000 O 0O07a 000 0000
23 061 0061 0 00 00 000 O 007a 000 0000

PAC1000 — Application Note 009

24 062 0062 0 00 00 000 O 007a
25 063 0063 0 00 00 000 O OO7a
26 064 0064 0 00 00 000 O 007a
27 065 0065 0 00 00 000 O 007a
28 066 0066 0 00 00 000 O 0OO7a
29 067 0067 O 00 00 000 O 0OO7a
30 068 0068 0 00 00 000 O 007a
31 069 0069 0 00 00 000 O OO7a
32 06a 006a 0 00 00 000 O OO7a
33 06b 006b 0 00 00 000 O 007a
34 06¢c 006c O 00 00 000 O 007a
35 06d 006d 0 00 00 000 O 0O07a
36 06e 006e 0 00 00 000 O 0O07a
37 06f 006f 0O 00 00 000 O 0OO07a
38 070 0070 O 00 OC 000 O 0O07a
39 071 0071 O 00 00 000 O 0O07a
40 072 0072 0 00 00 000 O 007a
41 073 0073 0 00 00 000 O 0O07a
42 074 0074 0 00 00 000 O 0OO07a
43 075 0075 0 00 00 07a 0 007a
44 076 0076 0 00 00 07a 0 007a
45 077 0077 O 00 00 0O7a 1 007a
46 07a 007a 0 00 00 07a O 007a
47 07b 007b 0 00 01 07a 0 007a
48 00e 000e O 00 01 07a O 007a
49 10c 010c O 00 00 07a 0 007a
50 104 010d O 00 00 07a 0 007a
51 10e 010e 0 00 00 07a 0 007a
52 10f 010f O 00 00 07a 0 007a
53 112 0112 1 00 00 07a 0O 00O0Of
54 113 0113 1 00 00 07a 0 000f
55 114 0114 1 00 00 07a 0 0000
56 115 0115 1 00 00 07a 0 0000
57 116 0116 1 00 00 07a 0 1000
58 117 0117 1 00 00 07a 0 001f
59 118 0118 1 00 00 07a 0 0000
60 119 0119 1 00 00 07a 0 0000
61 1la 0lla 1 00 00 07a 0 0007
62 07c 007c 1 00 00 O07a 0 0007
63 07d 007d 1 00 00 07a 0 0007
64 07d 007d 1 00 00 07a 0 0007
65 07d 007d 1 00 00 07a 0 0007
66 07d 007d 1 00 00 07a 0 0007
67 07d 007d 1 00 00 07a 0 0007
68 07d 007d 1 00 00 07a 0 0007
69 07d 007d 1 00 00 07a O 0007
70 07d 007d 1 00 00 07a 0 0007

000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007

4-65

4-66

..,,,
:“Ilm:
| yy,
iy,
gy

Programmable Peripheral

Application Note 010

PAC1000 Introduction
By Chris Jay and David Fong

Abstract The PAC1000 programmable peripheral This application note is intended to
controller is the first of a generation of introduce the device and its architecture
devices intended for applications in high along with the support software tools to the
end embedded control. Understanding the systems designer. Finally, some simple
device architecture and using its support applications are leveled at common
tools require some practical experience problems found in system design.
before a full system design is attempted.

Introduction The PAC1000 has many applications in require some additional chips. An alternative

digital systems where high speed processing,
interface or control is required. The two
roles of the device are in a standalone
mode where the PAC1000 is programmed
to control data flow to or from other systems,
or as a high speed peripheral working with
a host microprocessor. Frequently, many
systems designers cannot find the ideal
solution to their requirements in a standard
chip. The designer may look at creating
the required function from discrete logic, a
combination of a number of PAL/EPLD
devices, Programmable Gate Array (PGA)
products or standard gate array. In each
alternative, the designer is trying to reduce
the chip count of the system solution and
hence increase its reliability and reduce
assembly costs.

The discrete TTL or CMOS logic solution
to a systems design is considered by some
to be an old fashioned approach but still
popular with many digital design engineers.
However, designs using this technology
can quickly escalate in chip count as the
development progresses and once a
system is designed it is very difficult to
modify because the finished printed circuit
board contains devices that cannot be
re-programmed or altered in any way. Also,
a revision or system upgrade will require a
new printed circuit board design.

The PAL/EPLD solution reduces the chip
count over a solution that uses discrete
logic but still many devices are used
because the PAL/EPLD products are not
very register intensive. Small subsystems
such as FIFO or a STACK require a number
of PAL/EPLD devices and additionally

solution would be to use additional
dedicated chips like FIFO, ALU and SRAM,
leaving the PLD/EPLD devices to handle
the glue, interface and small state machine
functions. The Programmable Gate Array
brings the system down to a possible
acceptable level but system logic still has
to be defined and routed in the logic cells
and a number of PGA devices have to be
designed such that they all work together.
Nevertheless, in the case of the
programmable solution, subsystems such
as STACK, ALU, REGISTER FILES etc.,
might still need to be configured in the
gates and registers of these devices. This
can cause an escalation in the quantity of
these chips used in the final system,
because PLDs and PGAs are not good
vehicles for integration at the subsystem to
system level. In a gate array design the
turn-around time is longer than the
programmable solution, and because the
device is not re-programmable there is a
high level of risk in going to a gate array
solution. Also, the high ‘up front’ Non
Recurring Engineering charges NRE can
rule out the use of gate array.

The Programmable Standalone Controller
offers the most likely solution to the
problem facing the systems designer. Very
often both the PAC1000 is used with
programmable logic devices to effect an
overall solution. For example in some
modes of operation PLDs are used for
address decoders to select and gate the
host interface control lines such as CSB,
RDB, and WRB. By bringing the package
count of the system down to its lowest

4-67

PAC1000 — Application Note 010

Introduction
(Cont.)

level the design cycle time reduces, so
minimizing the overall time to market of
the final product. The reason for this is
that the PAC1000 already contains the
subsystems necessary for a fully functional
system design, and being programmable, it
can be adapted to perform most functions
required from systems devices.

The PAC1000 comprises elements such
as FIFO, ALU, register files, STACK,
microcode store, loop and breakpoint
counters, special registers and interface
logic all interconnected by a general
purpose internal bus structure. The
instructions that control data flow are
contained in the EPROM section of the
microcontrol store. These instructions are
entered into the system by the designer as
assembly or high level language code.
There also exists a microcode entry level
for those designers who are used to

microprogrammable designs. Designing
with the PAC’s software support tools is very
similar to writing code for microprocessors.
The end result is an assembled listing which
can be simulated prior to programming
into the PAC1000 device’s on chip EPROM.
The difference between microprocessors,
conventional microcontrollers and the
PAC1000 device is found its ability to
execute instructions in parallel, and to
offer the designer a flexible architecture.
Microcontrollers and microprocessors
function on single operations of execution,
but the PAC1000 executes three instructions
in parallel during the current clock cycle.

In this way the PAC1000 device needs
fewer EPROM locations to store the code
which performs a given function. In addition
high functional speeds can be obtained
because the device can execute those
instructions at the clock rate of the system.

PAC1000 Device
Architecture

The PAC1000 device architecture can be
divided into three subsystems, see Figure
1a; a CPU section that is similar to those
found in microprocessors, a host interface,
GNd & PIogiaminaois st uclion Conuon
unit. The instruction register can be clearly
identified with its three output sections of
control, output and CPU Operation
Definition. Figure 1b illustrates a more
detailed diagram of the system than

Figure 1a, clearly identifying the sub
structures of the three subsystems. The
different sections of the PAC1000 are
interconnected to each other by internal
LUSES alld Lulivey ddid dild st uctivns
and from each other. Communication to
and from the outside world is achieved
through various input and output registers,
and a Command/Data FIFO.

The Control Unit

The control unit is constructed around a
1K deep 64-bit wide EPROM, see Figure
1b. The 64-bit wide instructions are
programmed in the EPROM section and
are accessed and executed on each clock
cycle. The input RESET causes the
PAC1000 to access and execute the first
instruction at location 000H of EPROM.
On each execution cycle, the Instruction
Register shown in Figure 1a will contain
three control operatives, a next address
instruction to the control section, an output
instruction and CPU instruction. The other
inputs to the control unit include interrupts
and condition codes. There are four external
and four internal interrupts that can be
enabled under programmed control. These
can generate a branch to an interrupt
service routine that results from a rising
edge applied to the external interrupt
input. For interrupts INTO, INT1, INT2, and
INT3 there are four locations 008H, 009H

00AH and 00BH respectively. These are
the vectored addresses at which processing
will continue in the presence of one of
these active interrupts. At the interrupt
location a jump to an interrupt service
routine should be inserted. For example,
the occurrence of INTO will divert
processing to location 008H, that location
may contain a JMP 100H, where 100H is
the address where the service routine for
INTO should reside. The internally
generated interrupts are INT4, INT5, INT6
and INT7 which divert processing to
locations OCH, ODH, OEH and OFH
respectively. Details of their allocated
function is given in the PAC1000 data
sheet. In addition there are eight condition
code inputs CC[7:0], shown alongside the
INT[3:0] inputs in Figure 1b. These inputs
can be tested individually under program
control. The combination of Next Instruction
Definition, Interrupt and Condition Code

4-68

PAC1000 — Application Note 010

The Control Unit
(Cont.)

input direct the flow of the program and
hence the execution of instructions
contained in the EPROM section. The
CASE logic is used in the controller
section to enable CASE statements to be
executed on condition code groups. The
eight condition code inputs may be divided
into two four bit groups. Case group zero
CGO comprises CC0, CC1, CC2 and CC3.
Case group 1 CG1 comprises CC4, CC5,
CC6 and CC7. A further two case groups
CG2 and CG3 test flag registers (see

Table 1). These condition code inputs may
be tested individually or tested in a group.
When tested in a four bit group, a one-of-
sixteen branch will occur, as specified by

the CASE instruction.

The current status of the PAC1000 Is kept
in the sixteen bit status register. STATO-
STAT11 give twelve status bits with four
extra bit locations for future development.
Table 2 shows the assignment of each
register.

Fiyure 1a. cs R—{D T HD[15:0] HADI[5:0]
PAC1000
Prayrammab[e | HOST INTERFACE §l
Peripheral
Controller i t 1
s”'yle cy c’e CONDITION CODES —+—>8 CONTROL
cﬂﬂtI.’OI INTERRUPTS - UNIT cPU
Architecture NEXT INSTRUCTION | '
DEFINITION
zo P
ok —| | WsTRucTion peaisTeR | %
CONTROL {OUTPUT| cPU
| 1 | 1/0[7:0] ADDI[15:0]
CPU OPERATION
OC[15:0] DEFINITION

Figurg 1h. CLK RESET CS RD WR HD[15:0] HADI5:0]
PAC1000 { ————
:raqrzm'nlab le CONFIGURATION REGISTERS | HOST INTERFACE
G‘e]g# 07;:’_ CONTROLII/O CONFIGURATION I MODE
Block Diagram | oata neut | | DaTA OUTPUT| | commaND/DATA FiFO |

}

!

[l BREAKPOINT REG I

CONTROL SECTION

SEQUENCER
LOOP CNTR
64
PROGRAM CNTR P A
MEMORY
15 LEVEL
STACK
[s] [oureur
CASE LOGIC

TEST LOGIC l INTERRUPT

cPu 32 x 16
REGISTER FILE

Q REGISTER

!

ALU

Il ADDRESS COUNTER II

!]

1/0 SPECIAL ADDRESS/DATA
FUNCTION PORT PORT

cC[7:0] INT[3:0] OUTCNTL{15:0]

1/0[7:0] ADD[15:0]

4-69

PAC1000 — Application Note 010

Table 1.
CASE Group
Assignments

Condition Code

CASE

CCo, CC1, CC2, CC3

CASE Group 0

CC4, CCs5, CCs, CC7

CASE Group 1

S, O, Z, CY.

CASE Group 2

INTR, BCZ, FIOR, FICD.

CASE Group 3

FIXP, ACO, STKF, FIIR, DOR, INTR

N/A

Table 2. Status

. WSI
Beglsler 0 0 Reserved S11|S10| S9 | S8 | S7 [S6 | S5 | S4 | S3 | S2 | S1 | SO
S11 — Security Bit, High is Active Security On, Low is No Security.
S10 — Scan Mode, High is Active On, Low is No Scan Mode.
S9 — FIXP FIFO Exception Occurs When a Command is Written, a Low Means No
Exception.
S8 — FIIR FIFO Input Ready When There is at Least One Location Vacant.
S7 — CY Set High When the Result of a CPU Operation Generated a Carry.
S6 — Z Set High When the Result of a CPU Operation is Zero.
S5 — O Set When an Overflow Has Occurred During a Two’s Complement Operation.
S4 — S Sign Bit Set to One When the Result is a Negative Number.
S3 — Stack Full Flag. Set When the Stack is Full.
S2 — Breakpoint Flag is Set When the Address in the Breakpoint Register is Equal
to the Address in the Proaram Counter.
S1 — BCZ 1s Set When the Block Counter Reaches Zero.
S0 — ACO Address Counter All Ones Flag is Set When the Address Counter Reaches
the Maximum Count.
The Control Unit A single internal counter is provided for are possible because the current contents
(Cg”t,} loop control, this is part of the control of the loop counter is saved in the stack
section, and is shown in Figure 1b. If a when the next subsequent loop in the next
FORLOOP is executed the loop counter is is entered. When leaving the loop the
loaded and the instructions within that stack 1s popped to return the old count
loop are executed until the counter has back into the loop counter thus preserving
decremented to zero. The loading of this its original contents. When the stack
counter is transparent to the designer in becomes full a status flag STKF is set in
the respect that the FORLOOP instruction the sixteen bit status register and an
automatically performs loading and counting. interrupt level 7 is generated.
A fifteen level stack is incorporated to hold To enable a debugging facility a register
the return address of the main program called the breakpoint register is included
when a subroutine call or interrupt service in the microcode section. When the
routine is being executed. The address of contents of the program counter is equal
the next sequential instruction to be to that of the breakpoint register an
executed is pushed onto the stack. The interrupt level six is generated. For
stack is also used for LOOP NESTING. debugging purposes a level six interrupt
There is only one loop counter in the service routine should be written to
PAC1000 but nested FORLOOP instructions perform diagnostic tests within the system.
Host Interface The host interface section has been commands to its internal registers may be

designed to easily integrate into a CPU
based system. When the PAC1000 is used
in the peripheral mode, the flow of data or

4-70

achieved through an internal FIFO. Standard
microprocessor signals of chip select CSB,
read RDB and write WRB (active LOW CS,

PAC1000 — Application Note 010

Host Interface RD and WR) are accompanied by a powerful feature that enables dynamic
(00’”) sixteen bit Host Data and a six bit Host context switching of PAC1000 under
K Address bus. Table 3 gives the conditions supervision of the host processor. The
governing the mode setting for both FIFO exception flag FIXP will be set if the
standalone and peripheral mode. The logic information residing in the FIFO was
condition of HDSELO and HDSEL1 in the misdirected (if it were treated as a control
control register will determine the mode of word when the FICD flag labeled it as
the PAC1000 operation. Bit positions in data or if the opposite condition prevailed).
this register can be set or reset under Using the FIFO is the only method in
program control. which the host can communicate with the
A detailed block diagram of the PAC1000 PAC1000 using the active LOW chip select
is given in Figure 2 which illustrates the CSB and the write input WRB. The DOR
internal structure of the control section, and DIR are Data Output and Data Input
processor section and interface. Data flow registers and are available to convey data
from the host processor data inputs to and from the internal sixteen bit bus but
HDO0-HD15 to the internal 16-bit bus can do not respond to CSB and WRB. The
be achieved through the FIFO section. The DIR would be used in a synchronous
FIFO is eight locations deep and twenty- system because, when it is enabled by
two bits wide. To transfer data words to the setting the DIREN flag (see Table 4), data
registers in the CPU section the host is latched on the rising edge of each clock
processor uses the chip select, write and signal. The data contents of the DOR
HAD inputs. The address of the register is register may be directed to the host data
set up on the five HAD lines (this selects outputs if all inputs CSB, WRB and RDB
one of 32 registers) then the write and are inactive and HDSELO and HDSEL1 are
chip select lines are driven LOW. The data 1 and 0 respectively, see Table 3. The use
on the HD lines plus the register address of the DIR and DOR register is intended
is loaded into the FIFO. An additional bit more for synchronous communication
called the FICD bit is loaded through whereas the FIFO is intended primarily for
HADS5 at the same time as address asynchronous systems or synchronous
HAD[0-4] and the host data lines HD[0-15]. peripheral interface. The flags FIIR and
This is the FIFO Command/Data bit and FIOR are the FIFO Input Ready and FIFO
must be LOW to signify that the sixteen bit Output Ready respectively, these flags can
word on HD[0-15] is data. If it is set HIGH, be tested so no overwriting of data will
the least significant ten bits of that data occur. Figure 3 shows the I/O Port and
will be used as an address pointer to the Special Functions. The FIIR register can
microcoded EPROM. In this way the host be directed to the output 1/0; through a
system can direct PAC1000 processing to multiplexer so it can be tested externally
a defined microcoded address. This is a by the host system.
{:ﬂffa‘%e”‘m HDSELO |HDSEL1|CS |RD |WR | HAD5 | HAD[0-4] | HD[15-0] OPERATION
; Register .
Function Table 0 0 01 0] 0 | sidess Data |Write Data to FIFO
Write Command
0 0 of1]0 1 X Command to FIFO
0 0 0]0 1 0 00100 X Reset FIFO
0 0 0101 0 00011 X Reset Status Register
Read Program
0 0 00 |1 0 00010 X Counter
0 0 o0 |1 0 00001 X Read Status Register
Read Data Output
0 0 o001 0 00000 X Register
1 0 111 1 X X X Data Output Register
0 1 101]1 X X X Status Register
1 1 1011 X X X Program Counter
FEE ==
EEsE

4-71

PAC1000 — Application Note 010

Figure 2.
Detailed I HD HAD
. cs RD WR
Block Diagram l l %,6 6
HOST
INTERFACE
DECODER THDOE —> THADOE —
DECODED 16
SIGNALS 16 6
16 16
DIR DOR SR FIFO (8 x 22)
DATA DATA 8 x 16 COMMAND 8x5
INPUT DIREN OUTPUT STATUS AND REGISTER | 8x1
REGISTER [*<—— | REGISTER REGISTER DATA FIFO POINTER
i [} lFIIR l FICD
16 16 INTERNAL 16
DOR FLAGS 5
REGISTER
SELECT
INTERNAL
PROGRAM CONTROL REGISTER
CASE COUNTER SIGNALS FILE AND
o »> Q REGISTER
15-LEVEL 16
cc STACK ALY
G LOOP cPU
.G
INTERNAL TeST I I CouNreR I ©
cc BLOCK S
BREAKPOINT COUNTER
INTERNAL REGISTER CONFIGURATION
INTR NTR BC 1 MODE
4 s| 1Kxe4 BCEN
NTR EPROM CONTROL
oS CONTROL UNIT 1e CONFIGURATION REGISTERS
RESET
—_—
Vee
16 16 16 16 6
GND OUTPUT CONTROL
= 16
oc ACH ACL
SWAP
ACEN | ADDRESS | ADDRESS | &
REGISTER COUNT COUNT
HIGH Low
8 8 16 AOR
IR I0R AR T
|| Acoress Acs22
10 110 ADDRESS 1
INPUT OUTPUT INPUT
REGISTER REGISTER REGISTER
IADOE
|——— | ——
i AIREN

R

/0

16

16

ADD

4-72

PAC1000 — Application Note 010

Figure 3. 1/0
Port and Special
Functions

110, l:‘ 5
10CcG7

1106

1105

4%

110, E 5
10CG4

110, U ;
10CG2

110, |j r;l
10CG1

110,

4

2 MODE 8
S A
a FIIR
mux B
o MUX
T B8 1ADOE
Q p——m—>
oNTLa_],
(ADOE) S
10CG6 MODE 7
I IV —
—&- THADOE
Qp—>
CNTL3(HADOE) A g
10CG5 MODE 6
B {HDOE
Qp—>
CNTL2(HDOE)—>|A g
IR L
1D
cK
MODE 5
SDATM
amsB
CLK
MODE 4_
1 SDATL
S
B
aLss
mMux A
o MUX
[B IACEN
l—:A s
-4
8
s i
(=]
£ MODE 3
=
o
. g MUX
IBCEN
cK A s
Q
I0R l
8-BIT 8BIT
locGo INPUT OUTPUT CNTLY MODE 2
BUS BUS (BCEN)

4-73

PAC1000 — Application Note 010

Table 4.

Control Reyister CTRL9| CTRL8 |CTRL7 | CTRL6 | CTRL5 | CTRL4 | CTRL3 | CTRL2| CTRL1 | CTRLO
ASEL | AIREN [DIREN [HDSEL1| HDSELO| ADOE | HADOE| HDOE | BCEN | ACEN
ASEL — Selects Which Source Will Write to the Address Bus

1 = Address Counter. 0 = Address Output Register.
AIREN — Enables/Disables Writing to the Address Input Register by the Address Bus.
1 = Enabled. 0 = Disabled.
DIREN — Enables/Disables Writing to the Data Input Register.
1 = Enabled. 0 = Disabled.
HDSEL1
HDSELO — Decoded to Select Which Source Will be Connected to the Host Data Bus
(See Table 3.).
ADOE — Selects Direction of the Address Bus
1 = Output. 0 = Input.
HADOE — Selects Direction of Host Address Bus (HAD).
1 = Output. 0 = Input.
HDOE — Selects Direction of Host Data Bus for Next Clock Cycle.
1 = Output. 0 = Input.
BCEN — Enables/Disables Block Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.
ACEN — Enables/Disables Address Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.
Central The section that deals with data processing give a fixed number of loops or from a
Processing Unit is the central processing unit. This register at program ‘run time! In this
comprises a sixteen bit wide ALU with a event, the number of times a loop is
32 x 16 bit register file. One other special executed can be made programmable.
purpose register Q and an R shifter circuit Other registers on this bus are AOR,
make up this section. The Q register is Address Output Register, the IOR, Input
sixteen bits wide and can be used for data Output Register, the ACL and ACH low
shifting. Figure 4 shows the ALU and and high address counters and the BC
register structure of the CPU section. The Block Counter. The ACL counter has a six
ALU is in the path of the register outputs bit resolution and the ACH counter has
such that arithmetic and logic functions sixteen. When enabled by ACEN, the ACH
may be executed on the contents of any counter will increment on the rising edge
one of the 32 general registers. The output of each clock cycle. The default value is
of the ALU passes data back to the for a sixteen bit count. To enable a twenty-
selected register through the R shifter. In two bit count where the ACL takes on the
this logic circuit, data may be shifted six ieast significant of the twenty-two bits.
either left or right, one position, before The ACS22 flag must be set, to enable the
being written back into the register file. clocking of these counters. This is
The output of the ALU can also drive data transparent to the software because once
to registers such as the DOR register. A enabled the counters will clock at the
multiplexer can select either the ALU or system clock rate. However, they can be
the RO-R31 register output. The loop turned on and off from the microcoded
counter LC can be loaded from this instruction of enable SET ACEN, or
multiplexer enabling the contents of a disable RESET ACEN, also counting can
register to determine how many program be influenced by register loading.

loops are to be executed. This loop
counter can be loaded from the EPROM to

4-74

PAC1000 — Application Note 010

Figure 4.
and Registers
Structure
T T T T T T T T T T T T T T T T T e e e e e — = bl
| |
| |
| [|
| s z % g |
'zrae]] zFLAG gielal. |, [z|2]|3 I
| ald|a o|8|x|® |
|CV FLAG CY FLAG »n |0 | N N O|N |
| i [———
SIGN FLAG SIGN FLAG I
MUX
l ——] e |
10 | < | AmsB RLSB [, fe 0" [
[2 R SHIFTER 31 o |
[— e QmsB |
| RLSB RMSB B .] |
. lase amss !
| |— |
| SDATM SDATL o
| | = :
.
! i I I
| 5 @ |
| 3a ° I
w
1 IN (B) [!
! F° aLsB |
1 REGISTER |
| CLK ——] BANK |
X (R31/R0) |
1 |
| A B |
| I MUX | |
| |
| 2e !
-
' I MUX] 2a o =k !
| 5 2lal. . g'clg |
| “o 238 Er? » 0 N |
| c [— |
| » e |
| STATUS MUX =<2 |
| REGISTER, ouT cPU |
CONDITION
! CODES |
| C |
| ouT I
| i
| r—— T T -z T TT—-————- 4
' ! O | _ PARTOF HOST
I { BUS | CONTROL SECTION| INTERFACE
| | MUX |
|
Lo =—==3 ____JP 10R I {l} Lc |—|' DOR
| CONTROL
i—‘ I [J
E AOR I Y BUS
o] b T e § p o]
w— e
D BUS
T T CONSTANTS
.
I FIFO I [) DIR 1 E AIR | h IR | 'l proGrAm | !
| MEMORY |
T e
| |
HOST HOST ADD 1/0 | PART OF |
INTERFACE INTERFACE BUS BUS |CONTROL SECTION,

4-75

PAC1000 — Application Note 010

Support
Software

The PAC1000 device is supported with
development software that can run in an
IBM PC/XT or AT computer. The main
tools that the designer will use are the
assembler, the linker and the simulator.
These support programs are run from a
WSI menu called WISPER that has been
designed to make software development a
simple process. The designer can select
the assembler from the menu and assemble
his source program. After assembly the
program must be linked. The linker program
is designed for those system designers
who build their software up from a number
of modules. Figure 5 illustrates the flow
from original source code entry through
the linker to a simulated output. The linker
will take these modules and combine them

into one object program. On completion of
assembly and linking the program may be
checked by the simulator. The use of the
simulator removes the need for EPROM
programming and in-circuit testing during
the design cycle and gives the designer a
fairly high level of confidence that the
program will function as intended. The
simulator will take the bit pattern format
that was generated during assembly and
apply a command and stimulus file to the
program. The result will be a series of
waveforms that appear on the screen of
the PC and is similar to that of a logic
analyzer display. A table of vectors is also
generated for those signals that are traced
from the command file. These vectors can
be printed out for analysis and verification.

Figure 5.
Program Flow
From Assembly
Input to
Simulated
Output

<filename>.MAL

ASSEMBLER

<filename>.ML

be——0—— <filename>.LIS

——————> <filename>.0B

LINKER

<filename>.STL

<filename>.LIS
L <filename>.ABS

<filename>.CMD

<filename>.0BJ

SIMULATOR

PACPRO
PROGRAMMER
INTERFACE

TRACE FILE

MAGICPRO
PROGRAMMER

!

<filename>.0UT

PROGRAMMED
DEVICE

4-76

PAC1000 — Application Note 010

Microcoded
EPROM Section

A further aid to the design entry is the
ability to mix high level, assembler and
microcode mneumonics so designers can
use the entry level that they feel the most
comfortable with. Most of the applications
example given below are written in a high
level ‘C’ like language but some assembler
instructions are also incorporated.

In systems applications such as Direct
Memory Access (DMA), it is required to
output the contents of a counter to
address memory and then increment it.
This is implemented in the PAC1000 high
level language syntax as:
AOR := RO ; /*CONTENTS OF RO
GOES INTO THE AOR*/

RO := ++R0 ; /*REGISTER RO IS
INCREMENTED BY ONE*/

For efficiency these two instructions may
be combined into one line of code, which
is executed in one clock cycle:

AOR := RO := ++ RO;
/*COMBINING THE TWO OPERATIONS*/

The contents of RO will be passed to the
Address Output Register and will be
incremented by the ALU.

Where AOR is the address output register
and RO 1s one of the thirty-two, 16-bit
general purpose registers. The 7*’ symbol
delimits the comment field boundary.

With a PAL/EPLD/PGA approach the
designer would be required to spend much
valuable time configuring a loadable binary
counter, with a 3-State output capability.

In applications such as digitizer/plotter
systems, x,y coordinates have to be quickly
summed or subtracted many times to
register cursor movements and position.
This requires repetitive arithmetic
operations. In this application vector
addition on two or more sixteen bit words
can be defined as two instructions:

RO := RO + R1;
AOR := RO ;

Combining these instructions together:
AOR := RO := RO + R1;

|
il

wy

Iy
Iy
|
1

With conventional programmable logic an
ALU function would have to be designed
or a dedicated custom chip used with the
programmable logic part used as the data
1/0 controller. The key point of this issue is
that complex logic functions are simply
written as a few single lines of statements.
Moreover, a combination of functions may
be grouped in a single line. These include
a microcontrol directive such as a branch,
call to subroutine or JUMP on condition,
an ALU function such as increment or
add, and an output control command.
There are sixteen output control lines
which can be driven active on each clock
cycle. The composite of the three
commands are:

LABEL: JMPNC CC7 LABEL ,

RO := RO + 1, OUT ‘HOLD’ ;

The function of this line of code would be
to wait until the condition code input of
CC7 went active before the next instruction
is executed. At the same time the contents
of RO would be incremented and the
output control lines would be driven with a
sixteen bit code called HOLD. An equates
option ‘equ’ is used to define uniquely a
sixteen bit pattern called HOLD. The
assembler encodes an equate statement to
allow meaningful words to be used in
output control statements. Some examples
of this are:

HOLD equ H'FFFF’ ;
/* HOLD IS SET AS HEX FFFF */

ENBL equ HEFFF’ ;
/* ENBL IS SET AS HEX EFFF */

The equates directive should be declared
at the start of the program before any
actual code is written.

s
h
|IIt|l|
iy

4-77

PAC1000 — Application Note 010

Applications
Programs

The depth of the microcontrol store is 1K
of 64-bit wide words. One 64-bit instruction
is executed on each clock cycle. The
instruction word is subdivided into three
commands: an output control command, a
command to the processor section and a
next address command to the microcoded
memory. Figure 1a shows the Instruction
Register with its contents of control, output
and CPU commands. The control unit will
also respond to condition code inputs and
interrupts. An example of output control
and response to condition codes is in a
handshake loop. The output stimulus can
be to set one of the control outputs

segment pacdesfl :

OC[15:0] and wait for a response to a
condition code input CC[7:0]. Under
program control a conditional JUMP to a
location could result if the bit tested were
set. Otherwise linear programming could
continue.

The first applications program below
demonstrates the use of condition code
zero CCO to test for a start condition.
When the input is LOW, the program loops
continually testing CC0. When the host
raises CCO, the program performs a
double precision addition. The sum is
available at the data output register DOR.

/% FPROGRAM TO FPERFOCRM DOUBLE FRECISION ADDITION ON THE REGISTER®/

/% CONTENTS OF R1,RO:

RZ,RZ THE CARRY OF THE LEAST SIGNIFICANT =/

/% WORD ADDITION IS CONTAINED IN THE CP REGISTER AND IS USED IN#/

/#* THE SECOND HALF OF THE 32 BIT ADDITION. */
[* #*/
/*E FIM FUNCTIONAL DESIGNATIONS. */
;® INPUTS. */
/% */
i CCO — ACTIVE HIGH — START 3I2-BIT ADDITION */
S /CS — ACTIVE LOW — PACL1GOO CHIF SELECT */
P AL — ALCTAIVE LOW — ROAD A ACOLID1EnR ©Rgn nos1 ®/
/*® HADLS: 03 ~ INFUTS TO SELECT DOR REGISTER FROM #/
% HOST INTERFACE */
¥ */
HOLD: JMPNC CCO HOLD /#HAIT FOR START CONMDITION =/
RO := H'FB30Q" 3 /#LDAD REBISTERS WITH DATA x/
R1 == H'9BZF" 3 F¥#R0C AND RZ CONTAIN THE ®/
RZ2 1= H'AZ07" 3 /#LEAST SIGNIFICANT WDORD OF =/
R3 = H 4500° 3 /A#THE Z2 BIT LONG WORD AND %/
/#R1 AND R3I COMTAIN THE MOST®/
F*SIGNIFICANT WORD */
RS == R1 ;3
R4 := RO 3
POR := RC := RO + RZ2 /#1 0AD DOR REGISTER#*/
R1 z= Rl + R3 + CF 3
LOOF1: JMFMNC DOR LOGF1 s /% WAIT FOR HOST TO READ DOR #/
DOR := R1 ; /% LDAD MOST SIG WORD INTO ROR =/
LOOFZ: JMPNC DOR LODFZ s /# WAIT FOR HOST TO READ DATA =/
FIh: JMF HOLD 3 /#END OF THE CYCLE®/S
end 3

4-78

PAC1000 — Application Note 010

Applications
Programs
(Cont.)

The program adds the contents of RO and
R2, then R1 and R3 and the CARRY bit.
In the next design example, double
precision subtraction is performed and this
time the CY flag will hold the borrow bit.
This design example is more practical than
the example above because instead of
performing arithmetic on fixed values the
register file may be loaded from a source.
The configuration of the PAC1000 is in the
peripheral mode and data is loaded into
the FIFO. CCO is monitored and, when
active, is a signal to the PAC1000 that data
has been loaded. The FIFO is unloaded

segment pacdesOZ

into the registers by the series of
instructions:

FOR 3 ; /"EXECUTE THE LOOP
FOUR TIMES*/

; "UNPACK DATA FROM
THE FIFO*/

ENDFOR ; /*END THE FORLOOP */

RDFIFO

This section of the program performs a
read operation on the FIFO four times. In
any FORLOOP N, where N is an integer
value, the number of times the loop is
executed is N + 1 times.

/*PROGRAM TO PERFORM DOURLE PRECISION SUBTRACTION OM REGISTER =/
/#CONTENTS R1, RO ; RZ, R2 THE BORRCW FLAG IS CONTAINED IN THE */
/#CF REGISTER LDURING THE SECOND HALF OF 4 Z2-BIT SUBTRACTION */
/*® */
/* FIN FUNCTIONAL DESIGMATIONS */
/* INPUTS */
/* CCO — ACTIVE HIGH - START PROGRAM */
i /CS - ACTIVE LOW - PAC1000 CHIF SELECT */
/% AWR — ACTIVE LOW - FIFO WRITE #*/
/* /RD — ACTIVE LOW — READ A REGISTER FROM HOST INTERFACEX/
/*® HADILS: 01 — INPUTS TO SELECT A REGISTER FROM THE HOST */
F* INTERFACE */
% HDL15:01 — DATA INFUTS TO FIFO THROUGH HOST INTERFACE =/
/¥ */
HOLD: JMPNC CCO HOLD ; /7#WAIT FOR START CONDITION EMFTY +/
FOR X 3 /*#THE FOUR LOCATIONS OF THE FIFO */
RDFIFO & A#LOADED THRDOUGH THE HOST INTERFACE =/
ENDFOR /#SECTION OF THE PAC1000 */
RS = R1 3 /*SAVE R1 CONTENTE IN RS*/
R4 := RO ; F#SAVE RO CONTENTS IN R4%/
DOR := RO := RO — R2 3 /#SUBTRACT LSW FPROPAGATE®/
Ri = R1 — RE — CP 3 /+*THE BORROW INTO THE CF=/
DOR := RO 3 F#L0AD DOR WITH MSW */
Loor1i: JMPNC DOR LOOF1
DOR := R1 : /#L 0OAD DOR WITH MSW */
LOOFZ2: JMPNC DOR LCOPZ
JFP HOLD : /*END OF PROGRAM %/
ends;
5=
=555

4-79

PAC1000 — Application Note 010

Applicatinns The next program shows a multiply routine.
ngramg Although there is no dedicated multiplier
(Cﬂllt.} in the PAC1000, multiplication can be

achieved by shifting and adding. The MUL
instruction is a MACRO command that is
expanded when assembled into a loop of
shift and add instructions. The RDFIFO

sagment pacdes0I :

instruction is used to pass the data from
the host to the PAC, which is configured
as a peripheral. In the example the contents
of RO and R1 are multiplied and the product
is available in registers R1 and R2, where
R2 contains the most significant word and
R1 the least significant.

HOL Dz JMPNC CCG HOLD s F#WAIT FOR START CONDITION EMPTY®/
FOR 1 s /#THE TWO LOCATIONS OF THE FIFO =/
ROFIFO 2 /#L0DADED THROUGH THE HOST INTER-#/
ENDFOR 3 /#—FACE SECTION OF THE FAC1000 */
MUL R2 R1 RC s
DOR == R2 3 /#REGISTER. THE FRODUCT IN THE #/
LOoFl: JMPNC DOR LDOF1 /#DATA OUTPUT REGISTER */
DOR = R1 3 FE L7
SELF: JMP HOLD 3 /#END OF FROGRAM */

=nd:z

In the following example, the contents of
registers R2 and R1 is divided by the
contents of register R0. The most significant
word of the 32-bit long word is held in

segment pacdestd

register R2 and the least significant 16 bits
are stored in R1. The result of the divide
operation leaves the quotient in the Q
register and any remainder in register R2.

HOLD: JMPNC CCC HOLD = /#WAIT FOR START CONDITION SHPTY®/

FOR 1

RDFIFO ¢
ENDFOR 3 f#—FACE 5
DIV RZ2 R1 RO 3
DOR 2= & 3
LOOFP1: JHMPNC DOR LOGP1D 3
DOR == RZ2 3
SELF: JMFP SELF 3

ends
The files generated so far can be entered
into the assembler and two files
<filename>.LIS and <filename>.0B may
be generated as shown in Figure 5. The
latter object file must be linked before the
final object file is available for programming
into the PAC1000’s EPROM. The link
program <filename>.ML performs this
function and is shown below.

load pacdes04 ;

place pacdes04 ;

end ;
This design example only used one
program but many sub-modules may be
linked together to form a single executable
program. It is possible to simulate the
design after linking. The necessary inputs

/#THE TWO LOCATIONS OF THE FIFOQ %=/
/#L0OADED THROUGH THE HCST INTER-#/

ECTION OF THE PACICOG =/
FEQUTRUT THE REMAINDER#®/

A#OUTRUT THE GQUOTIENT. =/
/F®END OF FROGRAM */

to the simulator are the <filename>.0BJ,
<filename>.STL and <filename>.CMD. The
latter two files are the input stimulus file
and the input command file (see Figure 5).
The stimulus file is used to drive inputs
such as address, data and condition codes.
The command file lists which signals
should be traced for observation. Examples
of the stimulus file and command file are
given below.

The command file shown below will instruct
the simulator to set an output trace on the
Current value of the Program Counter,
CPC. The Condition Code zero input, the
write, and the chip select lines are also
traced. The simulator also enables a trace
to be invoked on registers as well as input

4-80

PAC1000 — Application Note 010

Applicatians or output pins. The Q register is traced informs the simulator to run the driving
Pmyrams along with host data, loop counter, and signals for 140 cycles. The final instruction
(coml) registers RO, R1, and R2. The final trace is invokes a View Trace Waveform instruction,

set on the host data output register. At the so the waveforms may be observed on the
end of the stimulus file, the run instruction PC screen.

OFEN STIMULUS FPACDES04
SET TRACE CPC
SET TRACE CCO
SET TRACE WRE
SET TRACE CSBE
SET TRACE RDE
SET TRACE @
SET TRACE HD
SET TRACE LC
SET TRACE RO
SET TRACE Ri
SET TRACE RZ
SET TRACE HDOR
OFEN TRACE FACDESO4
BUN 140
VTW
The stimulus file is used to apply active CCO should become a logic state LOW at

signals to inputs of the design. At specific time point one and a logic HIGH condition
time points conditions are established. For 40 cycles later. A three-state condition can

example the statement: be applied by typing the letter Z in place
S CCO0@1 1 @40 of logic ‘1" or ‘0. The stimulus file is
hat the inout diti d completed to drive all inputs and applied
means that the input condition code zero to the simulator during run time.
.ERESETBE O @ 1 1 &€ 2 ;

.5 CCO 081 1840

.5 WRE 1@1 @2 1eB8 12 1 ai?

.5 CSE 1@ c@z 187 0@l 1818 0el12¢ 181729 cal3i 1&l39 ;
.5 REB 121 0@121 1129 0@131 1@137

.5 HADC 081 1@i¢ 0eZ4

.5 HAD1 o0ail
-5 HADZ ¢@ti

an a4 an #e ax

.S HADZE c@l

-8 HADR4 G@E1

.S HADS 0@l

WRITE & 7 INTO RO AND 31 INTC R1
.S HDO 0@1 1@10 Z&70

.5 HD1 181 Z&70 ;

.5 HDZ 0@1 1810 Z&7¢ ;

.5 HDZE ¢@l i@ic Z@70 3

.5 HD4 0@1 1@10 Z&70 :

HDS el Z&70
HD& C@l Z@70
HD7 G@l Z&70
HDE o0@1 Z&70
HDT 0@l Z&70
HD1a o8l Z@70
HD11 0@l ZIa870
HD1iZ2 o@1 Ze70
HD1Z Ccal Z@70
HEi4 Q@1 ZI&70
HD1S Q@i Z@70

])
A an an s an
PN

0o oo L0 O 0w oW owm

4% an can Ay

The comment field is denoted by a ‘#’ sign.

4-81

PAC1000 — Application Note 010

Case Statement
Logic

The ability of the PAC1000 to perform case
statement logic has already been discussed
but the following program excerpt illustrates
how to encode the case statement. The
program will execute when condition code
7 is active high, then case group CGO is
tested for one of sixteen possible states.

segment pacdesOS s

LHITE ey
TerreL i veres

PE

RG 2= 0O 3
R1 ¢2= 1 3
RZ2 = 2 3
RE := = 3
R4 == 4 3
RS z= 5 3
RS 1= & 3
7 2= 7 3
R8 := 8B 3
R7 2= 9 3
Ri0 = 10 3
Ril == 11 3
R1Z2 == 12 3
RiZ = 13
Ri4 = 14 3
RIS := 15 3

SWITCH CGO g

CASE © GOTO NEXT . ADR = RC i
CASE 1 GOTO NEXT , AOR := R1 ;
CASE 2 G070 NEXT , AOR = R2 3
CASE 3 GOTO NEXT . ADR := R3 3
CASE 4 GOTO NEXT , AOR == R4 3
CASE 3 GOTO NEAT . AOR == RS ;
CASE & 5OTC NEXT , AOR 1= R& 3
CASE 7 GOTO NEXT , AOR = R7 3
CASE B GOTO NEXT , AOR := RB 3
CASE 9 GOTO NEXT . AOR := R%? ;
CASE 10 GOTO NEXT AOR := R1G 3
CASE 11 GOTO NEXT AOR := R11 :
CASE 12 GOTO NEXT AOR == R12Z 3
CASE 13 GOTO NEXT ADR = RI3 3
CASE 14 S0TO NEXT ACR := R14 3
CASE 13 GO0TO NEXT AOR = RIS 3

ENDSWITCH 3

NEAT : OUT © ;3

ENDWHILE ;

GUT h FFFF’ 3

LOOFX =
GE0TO LOCPX s

end j

L

CGO comprises CCO, CC1, CC2 and CC3.
Sixteen registers are initialized and the
output code is driven with zero. When CC7
goes HIGH the CGO input is tested and
the register contents that are equal to the
state of the CGO input is transferred to the
AOR outputs.

iillustrate the use of multiway branching %/

4-82

PAC1000 — Application Note 010

Simple DMA
Controller for
Memory to
Memory Transfer

The software designs discussed so far
have been based on arithmetic functions
but an important feature of how to use the
FIFO in the host interface section of the
PAC1000 for the communication of data
will enable the reader to develop ideas
into more complex programs. The FIFO
Output Ready flag is used in a loop to
read the data into the registers. The output
codes are used to create signals to control
read, write, latch, output enable and bus
acknowledge signals. A summary of these
signals is given in Table 5 each time an
instruction is executed. These signals are
generated to accompany the memory
addresses which control the DMA cycle.

Figure 6a shows a generic system solution
where the PAC1000 sits on the address
and data bus of a microprocessor and
memory interface. The PAC1000 is mapped
into the system with a PLD decoder and
an external latch is used to catch data on
read and write cycles. It is possible to use
the internal DIR and DOR for this purpose
but a faster solution would use an external

seament pacdesé;

component. Also, If the bus were greater
than sixteen bits, an external latch would
be required. This mode where data does
not enter the PAC1000 device is called the
‘fly by’ mode.

Figure 6b shows the timing waveform
derived from the program simulation.
Active LOW WRB and CSB inputs to ADD1,
ADD2 and ADDS will write to the registers.
The Source Address Register RO, the
Destination Address Register R1 and the
transfer counter R2 are all loaded through
the FIFO. At time point 1, the registers
become loaded. At time 2, CC7 is set
HIGH to indicate transfer can commence.
The response from the PAC1000 is an
active LOW output from output control
OC14 to inform the microprocessor that
DMA activity is taking place. This occurs
at time point 3. OC14 stays LOW during
DMA activity but goes HIGH after the
transfer is complete (at time point 4).
Three transfers have taken place and the
microprocessor is free to regain control of
the bus.

/#THE PROGRAM ILLUSTRATES A SIMPLE DMA DESIGN WHICH =/
/#READS THE DATA FROM SUCCESSIVE MEMORY LOCATIDNS */
/#ADDRESSED BY THE CURRENT CONTENTS OF RO THEN WRITES=®/
/#THAT DATA TO LOCATIONS ADDRESSED BY THE CONTENTS *7/
/#0F Ri. BOTH REGISTERS ARE INCREMENTED AFTER THE *®/
/EREAD/WRITE CYCLE. RZ IS A TRANSFER COUNTER THAT IS =/
/*DECREMENTED AFTER EACH TRANSFER. WHEN RZ IS ZERO ¥/
S¥ALL TRANSFER ACTIVITY CEASES AMD & NEW DEVICE WAITS®/

/#FOR A MEW DMA CYCLE. .
/% PIN FUNCTIONAL DESIGNATIONS. */
7* OUTPUTS. *7
/% OC15 — LATCH ENABLE...........ACTIVE LOW. ®/
IS OC14 — BUS TAEEN..............ACTIVE LOW. ®/
i OC13 — WRITE ENABLE...........ACTIVE LOW. y
/% OC12 — READ ENABLE......u.....ACTIVE LOW. *7
/% OC11 — LATCH OUTPUT ENABLE....ACTIVE LOW. */
I ADR - 1& BIT ADDRESS OUTFUT..ACTIVE TRUE. %/
/% INFUTS. Y
/% CC7 - ACTIVE HIGH — INITIATE DMA ACTIVITY. =/
™ HD - ACTIVE TRUE — 146 DATA INFUTS. y
/% HAD — ACTIVE TRUE — REGISTER ADDRESS INFUTS #*/
/% /CS — ACTIVE LOW - PAC10D0 SELECT */
7% /WR — ACTIVE LOW - WRITE TO FACI0O00 FIFOD */
/% /RD — ACTIVE LOW - READ NOT USED ®/
/% LIST OF EQUATES. .
READ equ H AFFF°; /#*ACTIVE LOW READ.TRANSFER %/

/#ENABLE .AND EBUS BUSY */

4-83

PAC1000 — Application Note 010

Figure 6a.
PAC1000 as a
Simple DMA
Controller MICROPROCESSOR SYSTEM MEMORY
WR jo— j 3 WE
RD Jo— ®_ B
ADDRESS BUS
ADDRESS ADDRESS
DATA BUS
DATA I DATA
DECODER [I LATCH l
6 é LE OE
CS WR CC6 AOR HAD HD OC15 OC11 OC13 OC12 |"|["‘|
BUSACK jo<«— OC14 SYSTEM
BUSGRANT | cc7 PAC1000 cLock
CLOCK
Figure 6b.
System
Waveforms
WR | I I | I |
s LI T |
ccr]
oc14] B
L L LT
octs5 U 1)) 1r
ocn L LI 1]
1
ADDRESS JADD1 [ADD2 | ADD3 SAR)DAR |'SAR | DAR | SAR | DAR

1 1 2 2 3 3

4-84

PAC1000 — Application Note 010

Table 5. Output
Condition
Assignment
Codes for the
DMA Controller
Application

LATCH
OENBL
WRITE

INIT
ENEBLE

Vg 3

START:
LOOF1:

HOLDO:

HOLD1:

HALT:
end;

oc15 0c14 0c13 oc12 oc11 0C10-0C0
INIT 1 1 1 1 1 All High
READ 1 0 1 0 1 All High
OENBL 1 0 1 1 0 All High
WRITE 1 0 1 0 0 All High
ENBLE 1 0 1 1 1 All High
LATCH 0 0 1 0 1 All High
OC15 = Active Low Latch Command OC12 = Active Low Read Signal
OC14 = Active Low DMA in Progress OC11 = Active Low Output Enable
OC13 = Active Low Write Signal
2qu H 2FFF "3 /#ACTIVE LOW READ. TRANSFER */
/#EMABLE ,LATCH ENABLE ,AND #/
/¥ BUS BUSY */
equ H B7FF "3 /F#ACTIVE LOW TRANSFER ENABLE */
/*0UTPUT ENABLE,.AND BUS */
/% BUSY */
2gu H 97FF "3 /#ACTIVE LOW WRITE, TRANSFER ®/
/#0OUTPUT ENABLE.AND BUS #/
/% BUSY */
2qu H FFFF "3 F#INITALIZE ALL OUTPUTS HIGH */
agu H BFFF "3 f*ACTIVE LOW ENABLE TRANSFER */
/*SIGNAL ,AND BUS BUSY %/
FROGRAM START */
OuT INIT: #INITALIZE OQUTPUT CODES TO CCO-15%/
RESET ADOE 3 /*SET THE ADDRESS BUFFERS INFPUTS */
FOR 2 3 /#SET READ FIFD LOOP TO 3 */
JMPNC FIOR HOLDO 3 /#WAIT FOR ACTIVE FIOR FLAG */
RDFIFO 3 /#READ FIFO INTO THE REGISTER FILE®/
ENDFOR 3 /#ALL THREE WORDS READ END LOOP */
JMPNC CC7 HOLD1 g /#ACTIVE CC7 BUSACK SIGNAL INFUT =/
SET ADDE s /*3ET ADDRESS BUFFER AS OUTFUT */
/*FOR DMA CYCLES */
FOR , R2 := RZ , OUT ENBLE ;/#5TART DATA TRANSFERS *7
AR := RO 3 /#0UTFUT SOURCE ADDRESS */
RO z= ++ RO . OUT READ 3 /#OUTFUT ACTIVE READ */
OuT LATCH 3 /#AND LATCH DATA ON READ */
OuUT READ g /#HOLD READ LINE ACTIVE */
ADR := Rijg /#0UTPUT DESTINATION ADDRESE =/
R1 := ++ Ri , OUT OENBL ; /#ENABLE LATCH DUTPUT */
OUT WRITE 3 /#PERFORM WRITE CYCLE ®/
OuUT OENBL ;5 /#*DISABLE WRITE BEFORE OE */
OUT ENBLE 3 /+END OF SINGLE TRANSFER */
ENDFOR 3 /#END OF TRAMNSFER CYCLE */
5070 LOOP1 ., OUT INIT 3 /F#RETURN TO PROGRAM START */

4-85

PAC1000 — Application Note 010

FIFO DRAM
Controller

The next PAC1000 design example
illustrates how to use the device as a FIFO
DRAM Controller. See Figure 7a for device
implementation.

If the DRAMSs are 64K devices, only the
least significant byte of the AOR register
need be used (that is ADDO-ADD?). The
system could easily be upgraded to handle
256K or 1M bit DRAMs by wiring in address
bits A8 and A9 but additional PAC1000
software would need to be written to
accommodate the FIFO status counter.
About 45 lines of code are used to enable
the PAC1000 to handle REFRESH, READ
and WRITE activity. The design uses the
output control lines to provide RAS, CAS
and WRITE signals to the DRAM and
additional signals to give busy status
during read, write and refresh activity. The
whole system responds to input condition
codes CCO and CC1 as RQWRITE request
to write and RQREAD request to read
respectively. During active read, write and
refresh cycles, three signals BUSYWR,
BUSYRD and BUSYRFSH which go active
LOW an additional composite signal which

segment pacdestb s

/#LIST OF EQUATES. */
A#CONDITTION CODE OUTPUTS®/

goes LOW when the FIFO is in any of
these conditions. The system design also
incorporates an UP/DOWN status counter
which increments on write activity and
decrements on read activity. This counter
is tested to provide information to the
outside world that the FIFO is full, empty
or neither full or empty. The FULL,
EMPTY and ACTIVE flags can be read
from the 100 and 101 and give information
to the outside world about the status of
the FIFO.

The waveforms associated with read, write
and refresh activity are shown in Figures
7b, 7c and 7d respectively. These waveforms
were created from the PACDES08.0UT
vector tables generated from the simulator.
Table 6 illustrates the assignment of the
output conditions which drive the various
functions RAS, CAS, RFSH WR etc.,

It is recommended that high current buffer
circuits be used to interface the outputs of
the PAC1000 to the inputs of the memory
chips used in both the DMA and FIFO
applications.

F#WRITE RAS OUTPUT =/
/#READ RAS OUTFUT */
FRREFRESH OUTPUT */
/HWRITE CAS OUTPUT =/
/#READ CAS OUTRUT */
/#END OF WRITE OUFUT=/

F#ZERDO COUNT=/
FEFULL FLAG =/
FHEMPTY FLAG*®/
FEACTIVE *®/
S¥MAX COUNT =/

FE¥REQUEST TD WRITE=/
/*REQUEST TO READ =/

/#FROGRAM SETART*/

RASKH equ H S55FF " 3
RASR 2gu H'79FF " 3
RFSH equ H'7CFF " 3
CASH 2qu H 15FF " 3
CASR 2qu H ZPFF " 3
ENDWR 2qu H Z5FF " 3
INIT equ H'FFFF "~ 3
ZERO equ H Qooe"
FULL egu H'FD” H
EMPTY equ HFE~ H
ACTVE equ H FF- H
MAaX eqgu H FFFF " 3
REWRITE e=qu CCO 3
REREAD equ 0 I
START: 0OUT INIT ;5 .

RO 1= H GOCGO” H
R1 = H 000G :
RZ 1= H 0000~ :
3 = HO00O :

FRINITALIZE OUTPUT CODEGS=/
F#INITALIZE REGISTERS L4

/#ROW ADDRESS WRITE /7
/#C0OLUMN ADDRESS WRITE #/
/#R0OW ADDRESS READ */

/#C0OLUMN ADDRESS READ */

4-86

PAC1000 — Application Note 010

an

/#REFRESH COUNTER
/#STATUS COUNTER

/#SER I00 AND IO1 TO
/#0UTPUT . ADROE INPUT
/#FIF0 IS EMPTY
/#TEST RERUEST TO
/¥READ/WRITE

/*0UTFUT REFRESH CTR
/*PERFORM REFRESH
/¥*INCREMENT RFSH CTR
/*CLEAR OUTPUT

/#%1F REQUEST TO WRITE
/*0UTPUT WRITE ADDR
/#INCREMENT STATUS
/*0UTPUT RAS WRITE
/*0DUTPUT CAS ADDR
/#INCREMENT CAS ADDR
/*DUTFUT CAS ADDR
/#END WRITE CYCLE
/#FINISH WRITE CYCLE

*/
*/

*/
*/
*/
*/
*/

*/
®/
*/
*/

*/
*/
*/
*/
*/
* 7
*®/
*/
*/

F*TEST FOR 256 COLUMNS®*/

/*INCREMENT ROW
/®IF 25&6

/#IF REQUEST TO READ

*/
*/

*/

/#0UT ROW READ ADDRESS®/

/%#DECREMENT STATUS
/#0OUTPUT RAS READ
/F*DUTFPUT CAS ADDRESS
/#INCREMENT CAS ADD
/*STRETCH CAS
/#FINISH READ CYCLE

*/
*/
*/
*/
*/
*/

/*TEST FOR 256 COLUMNS*/

/F*INCREMENT ROW
/#IF EQUAL TO 256

/*SAVE STATUS COUNTER
/*TEST FOR MAX COUNT
/#IF MAXIMUM

*/
*/

*/
*/
*/

/®SET OUTPUT FULL FLAG*/

/#G0OTO REFRESH LOOF
/*END TEST

/*5AVE STATUS COUNTER
/*TEST FOR ZERO COUNT
/#IF ZERO

/*SET EMFRY FLAG
/#RESTART PROGRAM
F#ELSE

/*THE SYSTEM IS NOT
/#FULL OR EMPTY

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

FIFO DRAM R4 := H'FFFF- :
Controller RS := H'0000" :
(Cont,) QUTPUT 100 101 ;
SET ADDE , OUT INIT g
IOR := EMPTY 3
G07TO TEST :
LOOP: AOR := R4
OUT RFSH :
R4 := ++ R4 , OUT INIT
TEST: IF REWRITE:
ADR := RO , OUT INIT 3
RS = ++ RS 3
OUT RASW 3
AOR = R1 3
R1 z= ++ Rl 3
DUT CASKW ;
OUT ENDWR 3
OuT INIT 3
EMDIF 3
IF R1I == 25&8 3
RO := ++ RO 3
ENDIF 3
IF REREAD;
AOR = R2 ., OUT INIT
RS 2= — R3 3
OUT RASR 3
ADR := R3 ;
RE = ++ R3 . 0OUT CASR
OUT CASR 3
ouT INIT
EMNDIF 3
IF R3S == Z3& 3
RZ 1= ++ R2 ;
ENDIF s
R& = RS 3
R&6 == MAX — RS 3
IF Z 3
IOR := FULL 3
GOTO LOOFP
ENDIF 3
R& == R3 3
R& := ZERO — R& 3
IF Z 3
IOR := EMPTY 3
GOTO START:
ENDIF ;
IOR := ACTVE 3
GOTO LOOP g
end;
s

4-87

PAC1000 — Application Note 010

Table 6. Output 0C15 | 0C14 | 0C13 | 0C11 | OC10 | 0C9 | OC8 | 0C12, 0C7-0C0
Condition ,
Assirnment INIT 1 1 1 1 1 1 1 All High
Codes for the RASW 0 1 0 1 0 1 0 All High
PAC FIFO DRAM CASW 0 0 0 0 1 0 1 All High
Controller Design | ENDW 0 0 1 0 1 0 1 All High
RASR 0 1 1 1 0 0 1 All High
CASR 0 0 1 1 0 0 1 All High
RFSR 0 1 1 1 1 0 0 All High
OC15 = Active Low RAS
OC14 = Active Low CAS
OC13 = Active Low Write
OC11 = Active Low BUSYWR
0OC10 = Active Low BUSYRD
OC9 = Active Low Busy
0OC8 = Active Low BUSYRFSH
Figure 7a. Using
a PAC as a FIFO
DRAM Controller
DATA | |
BUFFER r DRAM ARRAY
ADDRESS
RAS CAS | WR
RQWRITE AOR OC15 0C14 0C13
—_»{CCo
RQREAD cet EMPTY
BUSYWR 10,
BUSYRD gg; PAC1000 "
BUSY [0
ocC9 1
BUSYRF ocs

4-88

PAC1000 — Application Note 010

Figure 7h.

RAS \ ’
ADDRESS ROW x coL

BUSY \ ’

In response to a request to read one early write cycle will take place. RAS will latch in
the row address and the WE line goes low. The column address is set up followed by
the falling edge of CAS. The WE input is taken inactive followed by RAS and CAS.
During the whole cycle the busy signal is active.

Figure 7c.

e e

ADDRESS ROW X coL

w T\ [

In response to a request to read one read cycle will take place. The RAS and CAS
signals latch in the row and column addresses respectively but the WE input is inactive
throughout the cycle. The BUSY signal is active throughout the whole cycle.

Figure 7d.

m_._\——___/__—_.

ADDRESS M RFSH
w T\ [

To refresh the memory the PAC will output a refresh count to be strobed into the DRAMs
by an active low RAS transition.

T 4-89

PAC1000 — Application Note 010

Programmable
UART

The PAC1000 contains no UART for serial
data but parallel to serial conversion is
possible through the Q register and 1/0
Port 2 and 3. The following program
illustrates the designer how to create a
UART function in the PAC1000 with about
40 lines of instructions. The PAC1000
device will receive data in parallel from the
host system. The FIFO is used to interface
to the host and transfer data into the

segment pacdes0? ;

registers. The program will take the seven
bits of ASCII code and calculate the parity,
then add a parity bit. The result is serialized
and framing bits are applied. The data,
one parity bit, one start bit and two stop
bits are serially clocked out of the Q
register into Port 3. The handshake signals
of Data Terminal Ready and Data Set
Ready are built into the program.

/*THIS PROGRAM ILLUSTRATES THE PARALLEL TO SERIAL */
/#CHANNEL CONVERSION OF THE FAC1000 TO THE PERIFHERAL */
/*BUS OF THE SYSTEM */
/* */
/% PIN FUNCTIONAL DESIGNATIONS. */
/® OUTPUTS. */
/* */
/% 0OC12 - DTR - DATA TERMINAL READY....ACTIVE LOW. #*/
/¥ 0CiZ — RHD — RECEIVED HOST DATA.....ACTIVE LOW. */
/* OC14 — DONE...csececaana sassmnnmans .- ACTIVE LOW. */
/% OC1S — ABORT.cuveevrannanenns see==:ACTIVE LOW. */
/* I03 - TxD — TRANSMITTED DATA........ACTIVE LOW. */
/* */
P INFuTo. =7
/% */
/* CCO — DSR — DATA SET READY. cve . ACTIVE HIGH. »/
/* CC1 — START TRANSMITTING. ...c.c... ACTIVE HIGH. */
/¥ HD - ACTIVE TRUE - 14 DATA INFUTS. */
/*® HAD — ACTIVE TRUE - REGISTER ADDRESS INFUTS */
/% /CS - ACTIVE LOW - PAC1000 SELECT */
/* FWR — ACTIVE LOW - WRITE TO PAC1000Q FIFO */
/*® */
INIT equ HFFFF’'; /#INITALIZE ALL OUTPUTS HIGH */
RHD equ H'DFFF’; /+ACKNOWLEDGE RECEIVING HOST DATA */
DTR equ H'EFFF’'; /#*DATA TERMINAL READY */
DONE equ H'BFFF’;:

ABORT equ H'8FFF 3 /#*TELL HOST THAT DATA WAS CORRUFPTED*/
/% R21 — H'00&40° - MASK REGISTER FOR EVEN PARITY */
/% R20 - H'OOED® — MASK REGISTER FOR ODD FARITY */
/¥ R1T — H'O00Z" — CONSTANT TO DIVIDE THE 32-BIT VALUE =/
/% IN RX R1& */
/* R18 — H Q000" — COUNTER OF THE NUMBER OF ONES IN THE #/
/* DATA */
/% R17 — H'FFFF' — A CONSTANT TO MASK WITH DATA */
/% R16 — H 0000 " — A CONSTANT TO MASK WITH DATA */
/* RE - WORKING REGISTER FROM RO */
/% RO - ORIGINAL DATA FROM HOST SYSTEM */
/% @ - REGISTER TO SHIFT OUT DATA TO THE */
/¥ SERIAL PORT */

i

3
=
=

4-90

PAC1000 — Application Note 010

Programmable
UART (Cont.) bean: R21 := H'00&40° , OUT INIT : /*SET OCL15:01 HIGH®/
R20 := H'OOEO" ;
R19 1= H 0002 ;
RiB == H 0000 1
R17 := H'FFFF’ 3
Ri& := RI8 :
@ := RI8 ; /% INITIALIZE @ TO ZERO'S */
/% WAIT FOR HOST TELLS PACL0GO */
/¥ TO START TRANSMITTING DATA */

stndby: JIMFMC CC1 stndbv ;
JMFC FICD abort j;

RDFIFO , OUT RHD : /# READ FIFO DATA INTO RO */
/#*TELL HOST THAT DATA WAS */
/#*READ CORRECTLY */
JEEFREEERRRERR R AR AR ERRERR R R R AR ER R AR AR AR AR R R AR RERRNR]
S FORMAT OF DATA RECEIVED */
/% FIFODAL15:01 */
/% 15 14 13 12 11 1609 B8 7 & S 4 =T 2 1 0O =/
FE 0 ¢ O O ¢ O O © (Dl DZ DI D4 DS D6 D7 =/
JEERREREEEEAERFE R LR A AR LR R AR R REERER AR R AR AR AR R AR R R LR AR AR S
/# SWAF THE HIGHER AND LOWER BYTES */
/% SET OC TO NON- */
AOR = RO , OUT INIT ; /% FUNCTIONING MODE */
RE = SWFV 3 /% MODE SWAF TO SHIFT */
RO 1= SWFY 3 /% LATER SUWAF NOW #/
/% SHIFT DATA */
FOR 7 3
RE:= RE << O 3

IF § 3
Ri8 = ++ R18 /¥ INCREMENT COUNTER=2/

ERNDIF 3

ENDFOR :
F® CHECK FOR EVEN/ODD FPARITY */
DIV R1& R18 R19? 3 /» DIVIDE Ri18 R1é& BY 2 */
OR & ¢ 3 /% CHECK IF REMAINDER IS ZERO =/
IF Z 3 /% IF Z=1 THEN JUMF TO PARITY #/
/% (EVEN PARITY) */

/% IF Z = O THEN (ODD PARITY) */
OrR RC R21 ;¢ /% MERGE MASK BITS FOR EVEN FARITY =/

iS8E 3
OR RC R20 ; 7% MERGE MASE BITS FCR 0ODD PARITY =/
ENDIF ;3 /¥ RO IS NOW FORMATTED CORRECTLY FOR»/

/% SERIAL SHIFTING */
& = RO 3 /% LOAD RO TO @ TO SHIFT OUT TO IOZ =/

FE CHECK THAT RECEIVING END IS5 READY */

4-91

PAC1000 — Application Note 010

Programmable
UART (c‘mt" wait: IF CCO 3 /#IF RECEIVER READY SET IOZ TO OUTFUT =/
CONFIGURE SI0O 3 /+AND SET MODE TO SHIFT @ TO I03 =/
QUTPUT 103 , OUT DTR ; /#DRIVE DTR TO ZERO THIS =/
/#TELLS THE RECEIVER THAT %/
/R*THE TRANSMITTER IS READY*/
/# SHIFT OUT THE 1 START BIT.7-BITS OF DATA,1 FARITY AND */
/% 2 STOF BITS . THEREFORE SHIFT 11 TIMES #/
LDLC 10 ; /#L0OAD 10 INTO LOOF COUNTER FOR */
/¥A SHIFT OF 11 THEN FILL WITH =/
/#ZEROS */
lp: LOOFNZ Ip ,» BREB := @ << O RB <4 O 3
ELSE;
JHMP wait ;. /7#IF RECEIVER IS5 NOT READY THEN WAIT#*/
ENDIF 3
OUT DONE ;3 /#TELL HOST THAT PAC1000 IS DONE */
JMF begn 3 /% START AGAIN FOR NEXT DATA */
/¥ ABORT DATA READ AND TELL HOST ABOUT IT */
abort: JMP begn , OUT ABORT ;
end;
$ummary The PAC1000 programmable peripheral This is because they understand the

controller incorporates many features that
enable a high speed design to be quickly
realized. Its reprogrammability has enabled
many designers to go to printed circuit
board layout early in the design cycle.
Moreover, because the system logic is
programmabile into the on-chip EPROM,
modifications can be made at a later time
without having to change printed circuit
board artwork. In fact over discrete and
PAL/EPLD type solutions the printed circuit
board artwork is considerably less complex
because a greater degree of circuit
complexity containing much interconnect
has migrated into the instructions encoded
in the EPROM section of the chip.

To learn how to use the PAC1000 is a
relatively quick process for most systems
designers have designed with
microprocessors and microcontrollers.

4-92

writing of assembly or high level code.
With the support of WSI’s user friendly
software tools, an engineer can be
designing with the PAC1000 in less than a
week. This contrasts with the many and
diverse schematic capture, net translation,
placing and routing, annotation and back-
annotation packages that support EPLD
and PGA devices. These products subject
the designer to a multiplicity of software
tools that he must become familiar with.
This results in generating a long learning
curve that can easily be avoided with the
PAC1000 and WSI’s software support.

The result of using the PAC1000 device
and software tools virtually guarantees the
fastest route possible from initial
conception to the final design of a
complex high performance system.

;ll
¢
iy

Programmable Peripheral

Application Note 012

Testing 8 Dual-Port RAM Memories with the
PAC1000 Programmable Peripheral Controller

By Karen Spesard

Abstract

The PAC1000 16-Bit Programmable
Peripheral Controller is a member of WSI's
Programmable Peripheral family. It can be
used in a variety of different applications
requiring high-performance as well as high
integration because of it's control architec-
ture, user-configurability, and flexibility.
This application note describes the use of
the PAC1000 in the stand-alone mode as a
Memory Tester for eight dual-port static
RAMs with interrupts.

Each of the eight dual-port RAMSs, with 2K
x 8 bits shared memory, is accessed from
both ports and tested by the PAC1000 for
all possible functional failures. The
PAC1000 simple interface to the dual-port
memory is discussed, as well as the dual-
port memory test conditions and timing
considerations. Finally, examples of
program code are given to illustrate how
easy the PAC100 is to use.

Introduction

Dual-port static RAMs are typically used to
simplify communication between processors
in computer systems. They have become
popular in recent years due to the fact that
they allow simultaneous read and write
accesses to the same memory providing the
capability for two devices to communicate
with each other without the need for any
special data communication hardware
between the devices. These devices could,
for instance, be an I/O controller and a CPU
or two CPUs working on separate but related
tasks. This contrasts with the DMA (dual
memory access) approach where a single
memory is shared between CPUs and/or
one or more /O devices and where hardware
arbitration logic is always necessary.

Testing multiple dual-port static RAM
memories efficiently, however, has often
proved difficult because two sets of devices
can control each memory independently and
access any word in memory simultaneously.
This includes the case where both devices
are accessing the same memory location at
the same time. Arbitration is required to
insure against this case which is usually
handled in the memory hardware. For
example, most dual-port RAMs have
address detection logic and a cross-coupled
arbitration latch to provide a busy signal for
the address that arrived last, so writing to
the busy port is deterred. As a result, testing
multiple memories for these cases requires

processors or controllers capable of
providing the necessary control signals,
memory addresses, and data in real time.

The PAC1000 Programmable Peripheral
Controller is well suited for this type of appli-
cation. It provides a single-chip user-config-
urable test interface for up to 8 dual-port
memories at one time, eliminating the need
for discrete implementations of PLDs, ALUs,
SRAMs, and Register files. It has 64K
EPROM program store on-chip (1K x 64
bits) as well as a microsequencer, a 16-bit
ALU and register set, and programmable /O
ports. The PAC1000 also has the capability
of controlling very fast systems, generating
addresses to memory, feeding the system
data, and responding to interrupts, all at one
time. In fact, its architecture allows it to be
able to execute three parallel operations
(Control, Output, and CPU) every clock
cycle, making timing predictable and
increasing throughput significantly. See
Figure 1 for the PAC1000 single cycle
control architecture and Figure 2 for a
simplified block diagram of the PAC1000.

A typical instruction containing three parallel
operations illustrates the efficiency of the
PAC1000 in this application. For example,
during a dual-port RAM access, the sequencer
section of the PAC1000 can check for the
BUSY signal or the end of a loop, the output
control section can generate the CS signals
for each of the RAMs, and the CPU can

4-93

PAC1000 - Application Note 012

Introduction generate the RD, WR, and OE strobes or memories. In most cases, the PAC1000 can
(Cont.) calculate and produce the next address all perform intelligent DMA control and I/O
during the same instruction cycle control protocols at the same time. And,
simultaneously. when switched to the peripheral mode, it
In addition. of course. the PAC1000 can can off-load other tasks, as well, from a host
also be used to control other system processor.
functions while testing the dual port
Figure 1.
PAC1000 Single
L‘ycle L‘ontml . N . HD(15:0) HAD(15:0)
Architecture Important Features: < W
e One cycle per instruction ‘ l l
e 16MHz instruction Host Interface
execution rate
e Every instruction executes A
3 parallel operations
(Control, Output, CPU) >l
Condi s Y y
Codes +>
4 Control Unit 28
Interrupts —\—p| With —> CPU
1K x 64 EPROM
Next Instruction >
Definition l l l * *
Y Y Y
Instruction Register
CLK—p[— — — T
Control IOu(put} CcPU
CPU Operation
\ 20 Definition
A}
0c(15:0) 1/0(7:0) ADD(15:0)
PAG1000 to The circuit diagram of a typical system con- would have two distinct address buses and
Dual-Port SRAM figuration using the PAC1000 as a memory two distinct data buses. Therefore, the
Interface tester is shown in Figure 3 for eight 2K x 8 PAC1000 buses need to be split. This is

dual-port static RAMs for a total memory
depth of 16K x 8 bits. Each dual-port RAM
has two compiete and independent sets of
address, data, and read/write control signals
and shares the same set of memory cells.
The PAC1000 memory tester interfaces
directly with each dual-port static RAM
without the need for any external glue logic.

Specifically, the 16-bit PAC1000 interfaces
to the dual-port static RAMs as two 1/O or
CPU devices would interface, with one
exception: the PAC1000 has two 16-bit and
one 6-bit user-configurable address/data
buses, whereas two CPU or I/O devices

gy
Iy
iy
||«

4-94

handled by combining the 16-bit address bus
and 6-bit host address bus of the PAC1000
and configuring them as a 22-bit address
bus. This 22-bit bus, in turn, is split into two
11-bit buses for accessing both left and right
ports of 2K x 8 memory simultaneously. For
each memory, ADD(15:5) corresponds to
A(10:0),, and ADD(4:0)/HAD(5:0)
corresponds to A(10:0)g. (See Figure 4.)
Likewise, the 16-bit data bus is split between
both ports of memory. Thus, HD(15:8)
corresponds to I/0(7:0), and HD(7:0)
corresponds to I/0(7:0)g.

PAC1000 - Application Note 012

PAC1000 To select one of the dual-port memory ports, The remaining pins to be discussed are the

Dual-Port SRAM 16 output control lines, OC(15:0), are right and left BUSY and INTR signals of the

Interface individually connected to the chip enables of dual-port memories. Each group of four

(l:ant) the dual-port RAMs — one OC line per port. memories have their right or left BUSY or

“ The left ports of memory share OC(15:8) INTR pins tied together and connected to

lines and the right ports of memory share the PAC1000 condition code inputs. CC7
OC(7:0) lines. The eight read/write and and CC6 correspond to the BUSY left and
output enable control pins of the dual-port right signals of dual port RAMs #1-4, and
memories also interface directly to the CC5 and CC4 correspond to the BUSY left
PAC1000 through it’s input/output port, and right signals of dual port RAMs #5-8.
1/0(7:0). Here, the 1/07 and 1/06 pins are Likewise, CC3 and CC2 interface to the
tied to each of the eight R/W|_signals and INT left and right signals of dual port RAMs
R/Wp, signals, respectively. Also, the /05 #1-4 and CC1 and CCO to the INT left and
and 1/04 pins are tied to each of the eight right signals of dual port RAMs #5-8.
dual-port memory OE, and OEg signals,
respectively.

Figure 2.

PAC1000 Block

Diagram

CK RESET S RD WR HD(15:0) HAD(5:0) Vo
b A
Y Y
Configuration
Registers l Host Interface

!

v

Control Section
[secumy Bﬂ 1K x 64 EPROM

l Loop Counter
153‘:';:?' Breakpoint Register
I Program Counter I

CPU

Case Logic Block Counter |
User Condition-Code Interrupt | Address Counter
Output Logic Logic
A A
) i Y
/0 Special Address/Data
Function Port Port
1]
' Y \j J__-
OUTCNTL(15:0) CC(7:0) INT(3:0) 1/0(7:0) ADD(15:0)

4-95

PAC1000 - Application Note 012

Figure 3.
Configured as a SRAMERR
Dual-Port RAM RSPAC 10(3.0) f————»
Memory Tester CLK 104 |——
——{ 105 1/06 [~
r‘» o7 HD(7:0) f—
HD(15:8) PAC1000 ADD(4:0)
— ADD(15:5) I
o .
g I : s
= = (3 N~ © o - 0 o (=3 = pol
(8] [
g8 8 8§38 838 83888 8 §
=§ HC373 l—»k HC373]
I B — 1 [t
DUAL PORT RAM #1 DUAL PORT RAM #5
- A(10:0), A(10:0) | — A(10:0), A(10:0)5
-r— |/OL7:0)|_ I/o(7:EZR 1 r— VQ_(Z:O)L 10(7:0)5 1
H— RIWL RWg M R/W, RiWg
&, o, e, o,
OE, OE, OF, OE,
{BUSY. BUSY.f BUSY, BusTap
{7 INT, | {7 INT, |
DUAL PORT RAM #2 DUAL PORT RAM #6
i S — A(10:0), A(10:0)5 E
lim VOT:0), VO(T0)g H »-LJ VO:0). VO(7:0)p P—
R AV, [T R R,
CE_ CEg CE_ CEp
OF, OE, OF, O,
BUSY, BUSY, BUSY, BUSY,
INT, INT, INT, INT,
DUAL PORT RAM #3 DUAL PORT RAM #7
— A(10:0), A(10:0)3 | — A(10:0), A(10:0),
H—{ Vo0, 100 —H o0, VO(7:0)n -
H— R/W, RWg HT{ RW, AW,
CE, CEpq CE, g_:n
OF, OEj, OE, R
BUSY, BUSY, BUSY, BUSY,
INT, iNTR INT,_ INTy
DUAL PORT RAM #4 L DUAL PORT RAM #8
1 A(10:0), A(10:0)s |~ A(10:0), A(10:0) f—
o), 10(7:0) f— ~—0(7:0), 10(7:0)g —
— R AW, AW, RV,
CE, CEq CE, CEg
OE,_ OEg OE, OE,
BUSY, BUSYR BUSY, BUSY,
INT, INT, INT_ INT
5V

Vi ewm—

4-96

PAC1000 - Application Note 012

Figure 4. PAC1000 ADD15 ADD14 ADD
Address Address/Data Bus ADD13 12 ADD11 ADD10 ADD9 ADD8 ADD7 ADD6 ADD5
Splitting for é‘;ﬂféf,_hgh ACH15 ACH14 ACH13 ACH12 ACH11 ACH10 ACH9 ACH8 ACH7 ACH6 ACHS
Dual-Port RAM .
Memary resting Dual Port RAM A1 OL A9L A8L A7L AGL A5L A4L A3L A2L A1 L AOL
PAC1000
Address/DataBus | ADD4 ADD3 ADD2 ADD1 ADDO HAD5 HAD4 HAD3 HAD2 HAD1 HADO
Host Address Bus
ﬁf’gdr:,el_scfwcwme’ ACH4 ACH3 ACH2 ACHI ACHO ACL5S ACL4 ACL3 ACL2 ACL1 ACLO
g:?;',f::g;m A0R A%y A8y A7q A6y A5y Adg A3z A2z Alg Alg
NOTES: Address buses can be written from a 16-bit or 22-bit Address Counter (16-bit ACH or 22-bit ACH/ACL) or
from a 16-bit Address Output Register In this application, the address bus is driven by the 22-bit Address
Counter
Functional The two basic operational modes for condition code inputs, CC7—CC4, are used
Descriptian the PAC1000 are either as a stand-alone because each condition can be tested for

controller or as a memory-mapped
peripheral to a host processor. The PAC1000,
as a dual-port static RAM memory tester, is
configured in the standalone mode. In this
mode, the PAC1000 has complete control
over the bus at all times; moving data from
the 16-bit data bus back and forth to/from
the left and right sides of the memory,
generating addresses from the 22-bit
address counter through the 16-bit address/
data and 6-bit host address buses to the 2K
x 8 memory, generating the control signals
to the memory, and monitoring/responding
to the memory’s status and control signals.

The PAC1000 dual-port memory tester
performs basically like two separate I/O or
CPU devices, writing and reading from each
port of the dual-port static RAM through the
same memory. In this application, the
PAC1000 tests dual-port memory for all
possible fault conditions. For example, one
of the tests the PAC1000 performs is for the
case when both ports of the dual-port
memory attempt to access the same
memory cell location (writing or reading) at
basically the same time. If this happens,
one of the ports of memory, through
hardware arbitration, is inhibited from being
accessed and is supposed to receive a
BUSY| g signal. To test for this condition,
the signal needs to reach the device and
the device needs to respond in real time.

The PAC1000 can respond to the BUSY
lines generated by either the left or right
sides of dual-port memory, in one cycle

through its condition code inputs. These

iy

true or not true simultaneously by the
PAC1000. And since the condition code
logic is part of the sequencer, a decision
can be made within the next cycle on
how to respond.

The INTR signals generated by the dual-
port memory provide another case for
testing. When the left side port writes into
the top odd address (7FF) or the right side
port writes into the top even address (7FE)
of the memory chip, the interrupt latch is set
and the interrupt line to the opposite side
port is supposed to be activated. These top
two addresses serve as flag bits or interrupt
generators and the activated interrupt signal
gives permission for the interrupting CPU

to use the memory. An interrupt latch is
cleared when the opposite side port reads
from the same address (e.g. to clear the
right port after the left port writes into 7FF,
the right side port reads from address 7FF).
The interrupts are designed to save system
designers from having to design in extra
logic, and to allow one CPU to interrupt

the other.

To test for the functionality of the INTR
signals generated by the dual-port memory,
these signals, like the BUSY signals, are
also tied to the PAC1000’s condition code
inputs. Again, the PAC1000’s condition
code inputs allow it to respond to the dual-
port memory interrupts in real time.

4-97

PAC1000 - Application Note 012

Pin Descriptions
Symbol

Type

Pin Name and Function

110(7:0),

/O

HD(15:8)—This is part of the 16-bit data bus which is
used to transfer data to/ from the left ports of the dual-port
memory.

VO(7:0)q

110

HD(7:0)—This is the other part of the 16-bit data bus which
is used to transfer data to/from the right ports of the dual-
port memory.

A(10:0),

ADD(15:5)—This is part of the address/data bus that will
address each 2K memory through the ACH from the left
side of dual-port memory.

A(10:6)g

ADD(4:0)-This part of the address/data bus will address
a portion of each 2K memory through the ACH from the
right side of dual-port memory.

A(5:0)g

l[e]

HAD(5:0)—This is the bidirectional host address bus that
in the stand-alone mode is configured as an output.

As part of the 22-bit address counter, (ADD(15:0) and
HAD(5:0)) it is used here to output the lower 6 address
lines through the ACL which address the right side of
dual-port memory.

R/W, and
R/Wg

110

These Read/Write signals are tied to 1/0(7:6) in the
PAC1000 and are used as outputs. They control the
read/write function of each side of dual-port memory in
conjunction with the other control signals.

NC A~nAd
o @i

o,

Thoana Mkt Cimakla alcmala ava $iad da OEAN fn dlaa
THIUOU W ULMUL 1 TANIU DIyl A GV LU LY 1A \(VT) T Ui

PAC1000 and are used as outputs. They control the read
function of each side of dual-port memory in conjunction
with the other control signals.

CE(15:8),

These dual-port memory Chip Selects select one of the
eight left memory ports. They are tied to OC(15:8) in the
PAC1000.

These dual-port memory Chip Selects select one of the
eight right memory ports. They are tied to OC(7:0) in the
PAC1000.

These active low Busy signals are driven by the dual-port
memories and are monitored by the PAC1000 condition
code inputs CC(7:6). If one becomes active, the PAC1000
will hold off accessing the other port until it becomes
inactive.

These active low Interrupt signals are driven by the dual-
port memories and are monitored by the PAC1000
condition code inputs CC(5:4). If one becomes active,
then one “CPU” has interrupted the other giving it
permission to use the memory.

The Clock input to the PAC1000. It also latches the
condition codes to ensure the proper set-up time.

RSPAC. Reset is an asynchronous input signal that
initializes the state of the PAC1000. It must be held low
for at least two clock cycles.

4-98

~

ly
"
liy M’l

PAC1000 - Application Note 012

Timing The timing waveforms associated with read, contention. If the left and right port

Considerations write, and bus arbitration cycles are shown addresses match during a memory access,
in Figure 5. These waveforms were created then the dual port memory arbitrates
from the simulation results which were between the two ports and decides which
generated from the PACSIM simulator. The port will be chosen. The port not chosen
timing is relatively straightforward. Each activates its BUSY signal and must wait
dual port RAM is accessed similarly to a until the busy goes away before completing
standard SRAM, except that the BUSY flag the read or write cycle.
needs to be monitored in case of address

Figure 5.

Timing

Waveforms

Read Cycle

Write Cycle

Addr (L) X No Match X

Left and Right Port Addresses Match

CE(L) \ /

ﬁr___/

o\ / (

R/W (L) -\ ’
Data (L) ~< Read Data Write Data
BUSY (L)

Write Cycle

Bus Arbitration Read Cycle

Addr (R) X No Match X

\ Left and Right Port Addresses Match

CE(R) \ /
OE (R) \

N

RW (R) \ /

Read Data

Write Data

N

Data (R) ———————(

BUSY (R)

-—

4-99

PAC1000 - Application Note 012

Dual-Port Static
RAM Test
Conditions

There are many ways to test dual-port static
RAMs. The following cases illustrate the tests
that were devised which should thoroughly
cover all of the fault conditions possible for
dual-port static RAMs with Interrupts.

Test Case #1:
Data Integrity Test for Right Ports

Write alternating bit pattern data (aa/55) to
all locations of the eight memories at once
through the right port. Then, read all
locations, one memory at a time, through
the right port, verifying the data is correct.

Test Case #2:
Data Integrity Test for Left Ports

Write alternating bit pattern data (66/99) to
all locations of the eight memories at once
through the left port. Then, read all
locations, one memory at a time, through
the left port, verifying the data is correct.

Test Case #3:
Data Integrity Test for Right/Left Ports

Write alternating bit pattern data (cc/33) for one
location in SRAM #1 through the right port
and immediately read that same location in
memory tnrougn tne IeT port, veritying the
data is correct. Then test SRAM #2, etc.

Test Case #4:
’D’ata Integrity Test for Both Left/Right
orts

Write alternating bit pattern data (aa/55) for
one address location in SRAM #1 through
the left port and immediately read that same
location in memory through the right port,
verifying the data is correct. Then test
SRAM #2, etc.

Test Case #5:
Address Connections Test for Both Ports

Write address at current addresses (which
differ by 1) in both left and right ports at the

Wy
0
:II
I
m!

same time (e.g., write left address 00 at
address 000 and write right address 01 at
address 001 in one cycle, etc.) Then read
these locations and check for correct
address and continue. When finished with
SRAM##1, test SRAM#2.

Test Case #6:
Data Connections Test for Both Ports

Write “running 1's” in both the left and right
ports (at addresses that differ by 1) at the
same time (e.g., write left data 01 at
address 000 and write right data 01 at
address 001, etc.) Then read these
locations and check for correct data. Next
shift data left one bit and write to next
sequential addresses (e.g., write left data 02
at address 002 and write right data 02 at
address 003, etc.) and continue until SRAM
#1 tested, then test for SRAM #2, etc.

Test Case #7:
Dual-Port Address Arbitration Test/Busy
Signal Test for Both Ports

Write to same location of SRAM #1 and #5
at the same time. Monitor busy signal. If
Busy, then wait until not busy and continue,

atlhamaian aa PR Llam Nacticen fau
VUITIWIOT OGL GV Ay, WuiuniuG ui

SRAMs #2 and #6, etc.

Test Case #8:
Dual-Port Interrupt Activity Test

Write to right port memory location h'7FE'
and check for INT|_latch set. Then read
from left port and check for INT, clear. Do
the same for INTR at memory location
h’7FF’. After testing SRAMs #1 and #5, go
on and test SRAMSs #2 and #6, etc.

All the algorithms described above are
internally realized by software. Code
implementation for each of these cases can
be found in Appendix 1. The code listings
contain sufficient explanations that let the
reader understand the subjects they describe.

4-100

I
uﬂ
y

PAC1000 - Application Note 012

Simulation

The preceeding algorithms have been
assembled with no errors. After assembly,
and before simulation and programming, the
files must be linked. An example of the
linker program which links separate sub-
programs and places them at a predefined
location is shown in Appendix 2.

After the above files have been linked, the
program can be simulated and parts can be
programmed. An additional input file is
needed before simulation can begin. That is
the stimulus file. The command file is
another input file that can be useful.

The stimulus file is used to drive inputs such
as address, data, condition codes and
control signals, an example of which is
shown in Appendix 3. The command file is
an optional batch file that contains a series
of valid PACSIM commands, also shown in
Appendix 3.

The PAC1000 functional simulator, PACSIM,
records the state of specified signals at
each cycle. Simulation results of some of
the above algorithms are shown in
Appendix 4.

PAC1000
Resources
Usage

Using the PAC1000 as a dual-port memory
tester in this application, utilizes many of
the resources available on the chip.
However, it does not take advantage of the
part being used in the peripheral mode or
slave configuration, where the host
processor can request a command or
download data to be used at a later time.

In addition, as seen in Figure 4, there are
several pins on the PAC1000, such as I/Os,
and interrupts which are not used. These
pins can be taken advantage of by
performing other operations in parallel,
without any performance degradation during
dual-port memory testing.

Summary

The PAC1000 architecture is unique in that
it enables the part to be configured in a wide
range of applications. As exemplified in the
circuit diagram where virtually no interface
glue logic was required and, in the program
code where tasks were handled in very few
one-cycle instructions, the PAC1000
enables easy system interfacing as well as
efficient task handling. So, whether the
PAC1000 performs as an intelligent I/O
Controller or as a simple Dual-Port Memory
Tester, its flexibility provides the high-level
of control that today’s circuit designers need
in many high-performance systems.

|
l

™
[
ol

4

4-101

PAC1000 - Application Note 012

Notes

4-102

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts

Initiali

Test Case #1:

Configure PAC1000
Ports and Outputs

'

Set Address Counter to
22-bits wide

'

Initialize
Registers

v

Go to Test
Case #1

Write alternating bit pattern data to all locations of
each Dual Port RAM through its right port.

Configure HD Bus as
Output, Clear Counters,
Deselect all RAMs

v

Load Stack w/2K
Address Value

Y

A Port of

SRAMs Busy?

Right Address
Even?

Yes

Write h‘AA’ into all Write h‘55" into all
8 SRAMs through 8 SRAMs through
Right Port Right Port

N

~

Increment
Address Counter

Yes

4

Less than 2K?

Go to Test Case #1
(Read)

Wiss

4-103

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #1:
(Read SRAM #1,
then SRAM #2, etc.)

Configure HD Bus as
Imput. Clear Counters.
Deselect all RAMs

¥

Load Stack w/2K
Address Value

|

g APM(of

Yes

SRAM Busy?

Read SRAM Data into
General Purpose Register

Right Address

Compare Read Data Compare Read Data

w/h'AA w/h'55
No Output Error
Data correct? Flag
Increment Address
Counter
Yes Repeat Test Case #1.
Less than 2K? Read for Remaining SRAMs,

then Go to Test Case #2.

4-104

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #2: Write alternating bit pattern data to all locations of
each Dual Port RAM through its left port.

Configure HD Bus as
Output, Clear Counters,
Deselect all RAMs

¥

Load Stack w/2K
Address Value

A’on of

e SRAMs Busy?

Yes

Left Address
Even?

Write h'66” into all Write h*99’ into all
8 SRAMSs through 8 SRAMs through
Left Port Left Port
Increment

Address Counter

Yes

Less than 2K?

Test Case #2: X
(Read SRAM #1, Configure HD Bus as
then SRAM #2, etc.) Input. Clear Counters,

Deselect all RAMs

v

Load Stack w/2K
Address Value

!

Continue Test Case #2

4-105

PAC1000 - Application Note 012

Appendix 1.
PAG1000
Program
Flow Charts
(Cont.)

Test Case #2: (Cont.)

Right Port of

SRAM Busy?

Read SRAM Data into
General Purpose Register

Left Address
Even?

Compare Read Data

w/h'66’ wrh'99’

Compare Read Data I

4-106

Data Correct? Output Error
Flag
Increment Address
Counter
Yes
Less than 2K?
Repeat Test Case #2.
Read for Remaining SRAMs,
then Go to Test Case #3.
FEE F£5
== E ¥ 4

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #3:

Write data through right port address of SRAM #1
and read out of left port address for verification,
then repeat for SRAM #2, etc.

Clear Counters
Deselect all RAMs

v

Load Stack w/2K
Address Value

Y

- Confi HD Bus as Output

g

Yes

Right Port of
SRAMs Busy?

Right Address
Even?

Write h‘33’ through

Write h‘CC’ through
Right Port Right Port

~,

Configure HD Bus as
Input to DIR

Y

Read SRAM Data into
General Purpose Register from
Left Port

Ny

Address Even?

Compare Read Data Compare Read Data
w/h‘CC’ w/h'33’

N

Output Error

2
Data Correct? FLAG
Increment Address Counter
Repeat for SRAM #2, etc.

Yes
Then Go to Test Case #4.

Less than 2K?

4-107

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #4:

Write data through left port address of SRAM #1,
and read out of right port address for verification,
then repeat for SRAM #2, etc.

Clear Counters
Deselect all RAMs

Y

Load Stack w/2K
Address Value

v

gure HD Bus as Output

Left Port of Yes

SRAMs Busy?

Left Address
Even?

Write h‘AA’ through

Write h'55° through

Left Port Left Port
Configure HD Bus as
Input to DIR

Read SRAM Data into
General Purpose Register from
Right Port

Address Even?

Compare Read Data

w/h'AA’ w/h'55

Compare Read Data

Data Correct?

Increment Address Counter

1

Yes

Less than 2K?

Output Error
Flag

Repeat for SRAM #2, etc.
Then Go to Test Case #5.

4-108

PAC1000 - Application Note 012

Appendix 1.
PAC1000

Program
Test Case #5: Write sequential address data at current address in
Flow c"arts both left and right ports at the same time to check
(cant.) for add lines not d. Then repeat for
SRAM #2, etc.

Clear left port address.
Set right port address to 1.
Deselect all RAMs

'

Load Stack w/1K
Address Value

!

— Configure HD Bus as Output

Either Port of
SRAM Busy?

Write Current Sequential
Addresses into Both Ports
of SRAM

!

Configure HD Bus as
Input to DIR

!

Read 16-bit SRAM Data into
General Purpose Register

'

Compare Read data w/
Current Address

!

Output Error
Flag

Data Correct?

Increment Address Counter

1

Less than 1K?

Yes

Repeat for SRAM #2, etc.
Then Go to Test Case #6.

4-109

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #6:

Write “running 1’s” data at each incremental address
in both left and right ports at the same time to check
for all data hnes connected. Then repeat for
SRAM #2, etc.

Clear left port address.
Set right port address to 1.
Deselect all RAMs

!

Load Stack w/1K Address
Value for each port

!

figure HD Bus as Output

Either Port of
SRAM Busy?

Write “Running 1’s” into
Both Ports of SRAM

!

T
vonigure nu bus as
l Input to DIR

!

Read 16-bit SRAM Data into
General Purpose Register

!

Compare Read data w/
“Running 1’s” Data

Output Error

Data Correct? Flag

Shift “Running 1’s” Data Left

!

Increment Address Counter

'

Yes Repeat for SRAM #2, etc.

vd
Less than 1K? Then Go to Test Case #7.

4-110

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #7:

Try to write data at same address of each port for
SRAMs #1 and #5. Test for Active Busy Signal.
Continue for all addresses. Then repeat for SRAMs
#2 and #6, #3 and #7, and #4 and #8.

Clear address counters
Configure HD Bus as Output
Deselect all RAMs

!

Load Stack w/2K Address
Value for each port

'

Begin Write Cycle.

Select same left and right
Port SRAM location

Right
or Left Port of
SRAM Busy?

Output Error
Flag

Write data in Active
Dual Port SRAM Port

!

I Each Port Addi

1

Yes

Less than 2K?

Repeat for SRAMs #2 and #6, etc.
Then Go to Test Case #8.

4-111

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Flow Charts
(Cont.)

Test Case #8:

Test Right and Left interrupt flag functions of each
Dual Port SRAM for SRAMs #1 and #5. Then repeat
for SRAMs #2 and #6, #3 and #7, and #4 and #8.

Configure HD Bus as Output.
Set left port address to 7FE.
Deselect all RAMs

'

Write h‘AA’ data into right
port of SRAMs #1 and #5
at location 7FE

!

Left Interrupt
Set?

Output Error

Flag

Configure HD Bus as Input
to DIR for SRAM #1

'

r Read Dual Port SRAM #1 1
I Data at Address location 7FE J

Interrupt
Cleared?

Output Error

Flag

Read Dual Port SRAM #5
Data at address location 7FE

'

Interrupt
Cleared?

Output Error
Flag

After testing for left interrupt.
Repeat above for right interrupt w/
address location 7FF Then test
SRAMs #2 and #6, #3 and #7, and
#4 and #8.

4-112

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)

segment dual port_memory_ test, abs(0);
entry Beginning, Start;

org h’0000’;

include ‘dpmtst.equ’;

include ‘dpmtst.als’;
/***********t****t******t*t*******t*****************tt**tt***************/

/*Initialization */
/i********i******t***it********/

Beginning:
JMP Start, OUT SRAMNO;
org h’0010’;

Start: SET ASEL ADOE HADOE HDSELO, OUT SRAMNO; /*Select
address counter as source that will write to address bus,
select address bus direction as output, select host address
bus direction as output, and select the data output
register to be connected to the host data bus.*/

ACSIZE 22;
MOV IOR h’'ff’; /*Select address counter to be 22-bits wide*/
SETIO h’'ff’;

DATAA := h’OOaa‘; /*(RO) Alternate bit pattern test data*/
DATS55 := h’0055‘; /*(R1l) for writing to dual-port*/

DAT66 := h’6600‘; /*(R2) static RAMs*/

DAT99 := h’9900‘; /*(R3)*/

DATCC := h’0O0Occ’; /*(R4)*/

DAT33 := h‘0033’; /*(R5)*/

DATAA2 := h’aa00’; /*(R6)*/

DATAA3 := h’aaaa’; [/*(R7)*/

DATS552 := h’5500‘; /*(R8)*/

DATCC2 := h’cc00’; /*(R9)*/

DAT332 := h’3300‘; /*(R10)*/

SRMDIS := h'ff’; /*(R11) SRAM port disable OE, R/Wx/

SRMERR := h’'f0’; /*(R12) SRAM error*/

GPR := h’0000°’; /*(R13) general read register*/

INTLS := h'1lF3E’; /*(R14) left interrupt set address (7FE)*/
INTRC := h’1F3F‘; /*(R15) right interrupt clear address (7FF)*/
INTRS := h’FFFF’; /*(R16) right interrupt set address (7FF)*/
INTLC := h’FFDF’; /*(R17) left interrupt clear address (7FE)*/

SRLRPWR := h‘003f‘; /*(R18) left/write port enable write*/

SRLRPRD := h‘00f3‘; /*(R19) left/write port enable read*/
SRRPWR := h’00bf’; /*(R20) right port enable write*/
SRLPWR := h’007f‘; /*(R21) left port enable writex*/
SRRPRD := h’0O0ef’; /*(R22) right port enable read*/

4-113

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lliustrations
(Assembly Code)
(Cont.)
SRLP: t= h’00df’; /*(R23) left port enable read*/
RUN1S := h’0101’; /*(R24) initialization for "running 1’s" test*/
INCO2 := h’0002°; /*(R25) increment address counter*/
INC40 := h’'0040'; /*(R26) increment address counter*/
M70 := h’00ff’; /*(R27) mask for D(7:0)*/
M158 := h’'ff00’; /*(R28) mask for D(15:8)*/
INC20 := h’0020°; /*(R29) increment address counter*/
SET1 := h‘'0001‘; /*(R31) initialization for address counters*/

/*TEST CASE #1*/
/**/
/*This section writes alternating bit pattern data to all locations */

/*of each dual port SRAM through its right port. *x/
/****************************t***/

SET HDOE, CLR ACH, OUT SRAMNO;

LDLC h’'1F’; /*ACH ctr is output on ADD(4:0) MSB*/
RESET DIREN, CLR ACL;
LOOP2: PLDLC h’3F’; /*ACL ctr is output on HAD(5:0) LSB*/

LOOP1: SWITCH CGl. AND O ACL SET1l. OUT SRAM1_8R:

/*Check if right port of SRAMs not busy (CG6 and CG4),

Select right SRAM port and generate WR strobe, check

for odd or even address.*/
CASE 00, GOTO LOOP1;/*CG7=0, CG6=0, CG5=0, CG4=0*/
CASE 01, GOTO LOOP1l;/*CG7=0, CG6=0, CG5=0, CG4=1*/
CASE 02, GOTO LOOP1l;/*CG7=0, CG6=0, CG5=1, CG4=0%*/
CASE 03, GOTO LOOP1l;/*CG7=0, CG6=0, CG5=1, CG4=1%*/
CASE 04, GOTO LOOP1l;/*CG7=0, CG6=1, CG5=0, CG4=0*/
CASE 05, GOTO NEXT1;/*CG7=0, CG6=1, CG5=0, CG4=1%*/
CASE 06, GOTO LOOP1;/*CG7=0, CG6=1, CG5=1, CG4=0%*/
CASE 07, GOTO NEXT1l;/*CG7=0, CG6=1, CG5=1, CG4=1%*/
CASE 08, GOTO LOOPl;/*CG7=1, CG6=0, CG5=0, CG4=0*/
CASE 09, GOTO LOOP1l;/*CG7=1, CG6=0, CG5=0, CG4=1*/
CASE 10, GOTO LOOP1l;/*CG7=1, CG6=0, CGS5=1, CG4=0%*/
CASE 11, GOTO LOOP1l;/*CG7=1, CG6=0, CG5=1, CG4=1%*/
CASE 12, GOTO LOOP1l;/*CG7=1, CG6=1, CG5=0, CG4=0*/
CASE 13, GOTO NEXT1;/*CG7=1, CG6=1, CG5=0, CG4=1*/
CASE 14, GOTO LOOP1l;/*CG7=1, CG6=1, CG5=1, CG4=0*/
CASE 15, GOTO NEXT1l;/*CG7=1, CG6=1, CG5=1, CG4=1%*/

NEXT1: ENDSWITCH;

IF Z, MOV IOR SRRPWR;

MOV DOR DATAA; /*write h’aa’ data into SRAM right port*/
ELSE;

MOV DOR DATS55; /*write h’55’ data into SRAM right port*/
ENDIF;
MOV IOR SRMDIS; /*end write cycle*/

LOOPNZ LOOP1l, ACL := ++ ACL, OUT SRAMNO;
/*Increment HAD(5:0)-ACL address counter,
deselect WR and CS*/

POPLC, ACH := ++ ACH;

4114 ==

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

/*Increment ADD(4:0)-ACH address counter*/
LOOPNZ LOOP2; /*end of outer loop*/

/********t*********************ﬁ**t*******ttﬁ**t******t*ttﬁ***i*ﬁt*****i'/
/*This section reads and checks data from dual port SRAM #1 */

/*through its right port. After checking SRAM #1, then check SRAM#2 etc*/
/***************t*t*i*****t****t**tt**tt**t**tt*tﬁ**********ttt*ttt******/

RESET HDOE, CLR ACL; /* Clear ACL, Enable writing to Data Input Register*/
SET DIREN, CLR ACH; /* Clear ACH, Select Host data to be used as an

input+/
LDLC h’1F’; /*ACH ADD(4:0) MSB*/
LOOP4: PLDLC h’3F’; /*ACL HAD(5:0) LSB*/

LOOP3: IF NOT CC6, MOV IOR SRRPRD, OUT SRAMI1R;
/*Enable OE for read, Enable CS to select SRAM*/

JMP LOOP3; /*Right SRAM Busy*/
ENDIF;
AND GPR M70 DIR; /*Read dual port RAM data and write it into GPR*/
AND Q ACL SET1; /*Check for odd or even address*/

IF Z, MOV IOR SRMDIS, OUT SRAMNO;
/*End read cycle, release /OE and /CE*/

CMP GPR DATAA; /*Check for data integrity*/
ELSE;

CMP GPR DATSS; /*read data into PAC*/
ENDIF;

JMPC Z ERROR;
LOOPNZ LOOP3, ACL := ++ ACL;
/*increment address for next read*/
POPLC, ACH := ++ ACH;
LOOPNZ LOOP4; /*end of outer loop*/

/*TEST CASE #2*/

/****t*****t**t**********t*t*******/
/*This section writes alternating bit pattern data to all locations */
/*of each dual port SRAM through its left port. */
/**********************************tt*****t*t****************************,

CLR ACH, SET HDOE, OUT SRAMNO;
/*clear ACH counter*/
LDLC h'7FF’; /*ACH ADD(15:5) MSB*/
RESET DIREN, CLR ACL;/*clear ACL counter*/
LOOP19: SWITCH CGl, AND Q ACH INC20, OUT SRAHI_SL;
/*Check for left port of SRAMs not busy (CG7 and CG5), Sele
left SRAM port and generate WR strobe, check for odd
or even address.*/
CASE 00, GOTO LOOP19;/*CG7=0, CG6=0, CG5=0, CG4=0*/
CASE 01, GOTO LOOP19;/*CG7=0, CG6=0, CG5=0, CG4=1%*/
CASE 02, GOTO LOOP19;/*CG7=0, CG6=0, CGS5=1, CG4=0%*/
CASE 03, GOTO LOOP19;/*CG7=0, CG6=0, CG5=1, CG4=1%*/
CASE 04, GOTO LOOP19;/*CG7=0, CG6=1, CG5=0, CG4=0%*/
CASE 05, GOTO LOOP19;/*CG7=0, CG6=1, CG5=0, CG4=1*/
CASE 06, GOTO LOOP19;/*CG7=0, CG6=1, CG5=1, CG4=0*/
CASE 07, GOTO LOOP19;/*CG7=0, CG6=1, CG5=1, CG4=1%*/

4-115

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Illustrations

(Assembly Code)
(Cont.)

NEXT2:

CASE 08, GOTO LOOP19;/*CG7=1, CG6=0, CG5=0, CG4=0*/
CASE 09, GOTO LOOP19;/*CG7=1, CG6=0, CG5=0, CG4=1*/
CASE 10, GOTO NEXT2; /*CG7=1, CG6=0, CG5=1, CG4=0*/
CASE 11, GOTO NEXT2; /*CG7=1, CG6=0, CG5=1, CG4=1*/
CASE 12, GOTO LOOP19;/*CG7=1, CG6=1, CG5=0, CG4=0*/
CASE 13, GOTO LOOP19;/*CG7=1, CG6=1, CG5=0, CG4=1%*/
CASE 14, GOTO NEXT2; /*CG7=1, CG6=1, CG5=1, CG4=0*/
CASE 15, GOTO NEXT2; /*CG7=1, CG6=1, CGS5=1, CG4=1*/
ENDSWITCH;

IF Z, MOV IOR SRLPWR;

MOV DOR DAT66; /*write h’66’ data into SRAM*/
ELSE;

MOV DOR DAT99; /*write h’99‘’ data into SRAM*/
ENDIF;

MOV IOR SRMDIS; /*end write cycle*/
LOOPNZ LOOP19, ADD ACH INC20, OUT SRAMNO;
/*add h’0020’ to ACH - inc left port address*/

/*************************t*************t*k******************************/
/*This section reads and checks data from dual port SRAM #1 *x/
*x/

/k+hrnnah i+ta 1oft nnrt
R -

/*************************t**/

LOOP20:

RESET HDOE, CLR ACL; /*Clear ACL, Enable writing to Data Input Register*/
SET DIREN, CLR ACH; /*Clear ACH, Select Host data to be used as an
input*/
LDLC h’7FF’; /*ACH ADD(15:5) MSB*/
IF NOT CC7, MOV IOR SRLPRD, OUT SRAMI1L;
/*Enable OE for read, Enable CS to select SRAM*/
JMP LOOP20; /*Left SRAM Busy*/
ENDIF;

AND GPR M158 DIR; /*Read dual port RAM data and write it into GPR*/
AND Q ACH INC20; /*Check for odd or even address*/
IF Z RDEVEN9, MOV IOR SRMDIS, OUT SRAMNO;
/*End read cycle, Release OE and CS*/

CMP GPR DAT66;
ELSE;

CMP GPR DAT99;
ENDIF;

JMPC Z ERROR;
LOOPNZ LOOP20, ADD ACH INC20;
/*increment address*/

/*TEST CASE #3*/

/*************************************t***********************************/
/* This section alternately writes data through a right port address and */
/* reads out of the left port address for verification, then increments */

/* each address of dual port SRAM#1l. Repeat for other SRAMs. */
/***/
/*writing*/

CLR ACH, OUT SRAMNO;

4-116

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

CLR ACL;
LDLC h’1F‘; /*ACH ADD(4:0) MSB - LOAD Stack w/2K */
LOOP29: PLDLC h’3F’; /*ACL HAD(5:0) LSB - address*/
LOOP30: SET HDOE;
RESET DIREN;
IF NOT CC7, AND Q ACL SET1, OUT SRAMIR;
/*Select right or left SRAM port and generate WR
strobe, check for odd or even address.*/

JMP LOOP30; /*Left SRAM Busy*/

ENDIF;

IF Z, MOV IOR SRRPWR;

MOV DOR DATCC; /*write h’cc’ data into SRAM*/
ELSE;

MOV DOR DAT33; /*write h’33’ data into SRAM*/
ENDIF;
MOV IOR SRMDIS; /*Release R/W*/

/*reading*/

RESET HDOE, OUT SRAMNO;

/*Selects Host data to be used as an input*/
SET DIREN; /*Enables writing to Data Input Register*/
MOV IOR SRLPRD, OUT SRAMI1L;

/*Enable OE for read, Enable CS to select SRAM*/
AND GPR M158 DIR; /*Read dual port RAM data and write it into GPR*/
AND Q ACH INC20; /*Check for odd or even address*/
IF Z, MOV IOR SRMDIS, OUT SRAMNO;

/*End read cycle, Release OE*/

CMP GPR DATCC2;
ELSE;

CMP GPR DAT332;
ENDIF;

JMPC Z ERROR, ADD ACH INC20;
/*Increment ADD(15:5) by h‘0020’ (ACH address
ctr)- for read*/

LOOPNZ LOOP30, ACL := ++ ACL;
/*Increment HAD(5:0)~-ACL address counter for write,
deselect WR and CS*/
POPLC, ACH := ++ ACH;/*Increment ADD(4:0)-ACH address counter for write*/
LOOPNZ LOOP29; /*end of outer loop*/

/*TEST CASE #4*/

/*********t**t/
/* This section alternately writes data through a left port address and */
/* reads out of the right port address for verification, then increments */

/* each address of dual port SRAM#1. */
/***********************i*****************tt******************************/
/*writing*/

CLR ACH, OUT SRAMNO;
/*clear ACH counter*/
CLR ACL;

/*clear ACL counter*/

FE=s ==
FE
iﬁéf £

4-117

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

LDLC h’1F’; /*ACH ADD(4:0) MSB*/
LOOP45: PLDLC h’'3F’'; /*ACL HAD(5:0) LSB*/
LOOP46: SET HDOE;
RESET DIREN;
IF NOT CC7, AND Q ACH INC20, OUT SRAM1L;
/*Check for Left SRAM Busy, Select left SRAM port
and generate WR strobe. check for odd or even address.*/

JMP LOOP46; /*Left SRAM Busy*/

ENDIF; -

IF Z, MOV IOR SRLPWR;

MOV DOR DATAA2; /*write h’66’ data into SRAM*/
ELSE;

MOV DOR DAT552; /*write h’99’ data into SRAM*/
ENDIF;
MOV IOR SRMDIS; /*end write cycle*/

/*reading*/

RESET HDOE, OUT SRAMNO;
/*Enable writing to Data Input Register*/
SET DIREN; /*Select Host data to be used as an input*/
MOV IOR SRRPRD, OUT SRAMIR;
/*Enable OE for read, Enable CS to select SRAM*/
AND GPR M70 DIR; /*Read dual port RAM data and write it into SRMDIS*/
AND Q ACL SET1; /*Check for odd or even address*/
IF 2 RDEVEN25, MOV IOR SRMDIS, OUT SRAMNO;
/*End read cycle, Release OE and CS*/
CMP GPR DATAA;
ELSE;
CMP GPR DATS55;
ENDIF;

JMPC Z ERROR, ADD ACH INC20;
/*Increment ADD(15:5) h‘0020 for ACH address ctr
for writex/

LOOPNZ LOOP46, ACL := ++ ACL;

/*Increment HAD(5:0)-ACL address counter for read*/
POPLC, ACH := ++ ACH;/*Increment ADD(4:0)-ACH address counter for read*/
LOOPNZ LOOP45; /*end of outer loop*/

/*TEST CASE #5*/
JREHII R IR IR AR KA IR IR R KR KA R AR IR IR IR IRIRIRRIR IR KAR IR AR KAR IR IR IR A KK [

/* Testing for address lines not connected to SRAM#1 by writing */
/* sequential addresses at current address in both left and right */
/* ports at the same time and reading for accuracy. *x/
/***/
/*writing*/

CLR ACH, OUT SRAMNO;
/*clear ACH counter*/
MOV ACL SET1;
/*set ACL counter to 1*/
LDLC h’OF’; /*ACH ADD(4:0) MSB*/
LOOP61: PLDLC h’1lF’; /*ACL HAD(5:0) LSB*/

4-118

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Hllustrations
(Assembly Code)
(Cont.)

LOOP62: SET HDOE;
RESET DIREN;
SWITCH CG1, MOV IOR SRLRPWR, OUT SRAMI1LR;

/*Check for ports not busy (CG7 or CG6), Select right AND

left SRAM port and generate WR strobe*/
CASE 00, GOTO LOOP62;/*CG7=0, CG6=0, CG5=0, CG4=0*/
CASE 01, GOTO LOOP62;/*CG7=0, CG6=0, CG5=0, CG4=1*/
CASE 02, GOTO LOOP62;/*CG7=0, CG6=0, CG5=1, CG4=0*/
CASE 03, GOTO LOOP62;/*CG7=0, CG6=0, CG5=1, CG4=1*/

/*Left and Right ports of SRAM#1 Busy, wait until not

Busy*/
CASE 04, GOTO LOOP62;/*CG7=0, CG6=1, CG5=0, CG4=0*/
CASE 05, GOTO LOOP62;/*CG7=0, CG6=1, CG5=0, CG4=1*/
CASE 06, GOTO LOOP62;/*CG7=0, CG6=1, CG5=1, CG4=0%*/
CASE 07, GOTO LOOP62;/*CG7=0, CG6=1, CG5=1, CG4=1*/
/*Left port of SRAM#1 Busy, wait until not Busy*/
CASE 08, GOTO LOOP62;/*CG7=1, CG6=0, CG5=0, CG4=0%*/
CASE 09, GOTO LOOP62;/*CG7=1, CG6=0, CGS5=0, CG4=1*/
CASE 10, GOTO LOOP62;/*CG7=1, CG6=0, CG5=1, CG4=0*/
CASE 11, GOTO LOOP62;/*CG7=1, CG6=0, CG5=1, CG4=1%*/
/*Right port of SRAM#1 Busy, wait until not Busy*/
CASE 12, GOTO NEXT3;/*CG7=1, CG6=1, CG5=0, CG4=0*/
CASE 13, GOTO NEXT3;/*CG7=1, CG6=1, CG5=0, CG4=1*/
CASE 14, GOTO NEXT3;/*CG7=1, CG6=1, CG5=1, CG4=0*/
CASE 15, GOTO NEXT3;/*CG7=1, CG6=1, CGS5=1, CG4=1*/
NEXT3: ENDSWITCH;

MOV DOR SET1; /*write address into SRAM*/
MOV IOR SRMDIS;

/*reading*/
RESET HDOE, OUT SRAMNO;
/*Enable writing to Data Input Register*/
SET DIREN; /*Select Host data to be used as an input*/
MOV IOR SRLRPRD, OUT SRAMI1LR;

/*Enable OE for read, Enable CS to select both ports

of SRAM*/

MOV GPR DIR; /*Read dual port RAM data and write it into SRMDIS*/

MOV IOR SRMDIS, OUT SRAMNO;
/*End read cycle, Release OE and CS*/
CMP GPR SET1;
JMPC Z ERROR, ADD ACH INC40;
/*Increment ADD(15:5) h’0040’ for ACH address ctr
for write*/
ADD SET1 h’0202°; /*Increment data to correspond to address*/
LOOPNZ LOOP62, ADD ACL INCO2;
/*Increment by 2 HAD(5:0)-ACL address counter
for read*/
POPLC, ACH := ++ ACH;/*Increment ADD(4:0)-ACH address counter for read*/
LOOPNZ LOOP61; /*end of outer loop*/
SET1 := h’0001’;

/*TEST CASE #6*/

/**t************************/
/* Testing for data lines not connected for SRAM#1 by writing "running */

4-119

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

/* 1's at each incremental address in both left and right ports at the */
/* same time. */
/************t*********'k*****************t‘*************tt*****************/
[*writing*/
CLR ACH, OUT SRAMNO;
/*clear ACH counter*/
MOV ACL SET1;
/*set ACL counter to 1*/
LDLC h'OF‘; /*ACH ADD(4:0) MSB*/
LOOP64: PLDLC h'lF’; /*ACL HAD(5:0) LSB*/
LOOP65: SET HDOE;
RESET DIREN;
SWITCH CG1l, MOV IOR SRLRPWR, OUT SRAMILR;
/*Check for ports not busy (CG7 and CG6), Select right AND
SRAM port and generate WR strobe*/
CASE 00, GOTO LOOP65;/*CG7=0, CG6=0, CG5=0, CG4=0*/
CASE 01, GOTO LOOP65;/*CG7=0, CG6=0, CG5=0, CG4=1*/
CASE 02, GOTO LOOP65;/*CG7=0, CG6=0, CG5=1, CG4=0*/
CASE 03, GOTO LOOP65;/*CG7=0, CG6=0, CGS5=1, CG4=1*/
/*Left and Right ports of SRAM#1 Busy, wait until not
Busy*/
CASE 04, GOTO LOOP65;/*CG7=0, CG6=1, CG5=0, CG4=0*/

~n o A mAMA Y AANAE . la~AaT_A AnE_a ~AAE_A AnA_t et
VOV Vo VVAW MUVEVY [WS ITuy wevT Ay weoTuy e a

CASE 06, GOTO LOOP65;/*CG7=0, CG6=1, CG5=1, CG4=0*/
CASE 07, GOTO LOOP65;/*CG7=0, CG6=1, CG5=1, CG4=1*/
/*Left port of SRAM#1 Busy, wait until not Busy*/
CASE 08, GOTO LOOP65;/*CG7=1, CG6=0, CGS5=0, CG4=0*/
CASE 09, GOTO LOOP65;/*CG7=1, CG6=0, CG5=0, CG4=1*/
CASE 10, GOTO LOOP65;/*CG7=1, CG6=0, CGS5=1, CG4=0%/
CASE 11, GOTO LOOP65;/*CG7=1, CG6=0, CG5=1, CG4=1*/
/*Right port of SRAM#1 Busy, wait until not Busy*/
CASE 12, GOTO NEXT4;/*CG7=1, CG6=1, CG5=0, CG4=0*/
CASE 13, GOTO NEXT4;/*CG7=1, CG6=1, CG5=0, CG4=1*/
CASE 14, GOTO NEXT4;/*CG7=1, CG6=1, CG5=1, CG4=0*/
CASE 15, GOTO NEXT4;/*CG7=1, CG6=1, CGS5=1, CG4=1*/
NEXT4: ENDSWITCH;

MOV DOR RUN1S; /*write running 1‘s into SRAM*/
MOV IOR SRMDIS; /*end write cyclex*/
/*reading*/

RESET HDOE, OUT SRAMNO;
/*Enable writing to Data Input Register*/

SET DIREN; /*Select Host data to be used as an input*/

MOV IOR SRLRPRD, OUT SRAMI1LR;
/*Enable OE for read, Enable CS to select both ports
of SRAM*/

MOV GPR DIR; /*Read dual port RAM data and write it into GPR*/

MOV IOR SRMDIS, OUT SRAMNO;
/*End read cycle, Release OE and CS*/

CMP GPR SET1;

JMPC Z ERROR, ADD ACH INC40;
/*Increment ADD(15:5) h’0040’ for ACH address ctr
for write*/

4-120

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

SHLR RUN1S RMSB; /*shift and rotate R31 left one bit*/

LOOPNZ LOOP65, ADD ACL INCO2;
/*Increment by 2 HAD(5:0)-ACL address counter
for read*/

POPLC, ACH := ++ ACH;/*Increment ADD(4:0)-ACH(4:0)-ACH address counter

for read*/
LOOPNZ LOOP64; /*end of outer loop*/

/*TEST CASE #7*/
/*******************t*************ﬁt*************t***t********t**********/
* Dual-Port Address Arbitration Test/Busy Signal Test for Both Ports. *

Y g
/* Test for writing to the same location of SRAM #1 and #5 at the same */
/* time (Expect Busy signal) */
/*****'k****************************t**t***k**********i**ﬁ******t*********/

SET HDOE, CLR ACH, OUT SRAMNO;
/*clear ACH counter*/
RESET DIREN, CLR ACL;/*clear ACL countera*/
LDLC h’1F‘;
LOOP96: PLDLC h’3F’;
LOOP97: MOV IOR SRLRPWR, OUT SRAM1SLR;

/*Select right AND left SRAM port and generate WR
strobe to try and write in same address location

of both ports*/
SWITCH CG1l; /*Check for busy signal from left or right port
(CG7 or CG6) AND (CG5 or CG4) of each RAM*/
CASE 00, GOTO ERROR; /*CG7=0, CG6=0, CG5=0, CG4=0*/
CASE 01, GOTO ERROR; /*CG7=0, CG6=0, CG5=0, CG4=1*/
CASE 02, GOTO ERROR; /*CG7=0, CG6=0, CG5=1, CG4=0%*/
CASE 03, GOTO ERROR; /*CG7=0, CG6=0, CGS5=1, CG4=1*/
CASE 04, GOTO ERROR; /*CG7=0, CG6=1, CG5=0, CG4=0%*/
CASE 05, GOTO NEXTS5; /*CG7=0, CG6=1, CG5=0, CG4=1*/
CASE 06, GOTO NEXT5; /*CG7=0, CG6=1, CG5=1, CG4=0*/
CASE 07, GOTO ERROR; /*CG7=0, CG6=1, CG5=1, CG4=1*/
CASE 08, GOTO ERROR; /*CG7=1, CG6=0, CG5=0, CG4=0*/
CASE 09, GOTO NEXTS5; /*CG7=1, CG6=0, CG5=0, CG4=1*/
CASE 10, GOTO NEXTS5; /*CG7=1, CG6=0, CG5=1, CG4=0%*/
CASE 11, GOTO ERROR; /*CG7=1, CG6=0, CG5=1, CG4=1*/
CASE 12, GOTO ERROR; /*CG7=1, CG6=1, CG5=0, CG4=0%*/
CASE 13, GOTO ERROR; /*CG7=1, CG6=1, CG5=0, CG4=1*/
CASE 14, GOTO ERROR; /*CG7=1, CG6=1, CG5=1, CG4=0*/
CASE 15, GOTO ERROR; /*CG7=1, CG6=1, CG5=1, CG4=1*/
NEXT5: ENDSWITCH;

MOV DOR DATAA3; /*Write data in active port*/
MOV IOR SRMDIS, OUT SRAMNO;
/*End write cyclex*/

ADD ACH INC20; /*Increment both address ports to test for
busy at every location*/

LOOPNZ LOOP96, ACL := ++ ACL;

POPLC, ACH := ++ ACH;

LOOPNZ LOOPS97;

4-121

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Gode)
(Cont.)

/*TEST CASE #8%/

/**********t************************t***t******ﬁ**t*t******t*t***tk******/
/* Test for dual port SRAM interrupt flag function by writing to right */
/* port memory location 7FE and checking for INTL set and then reading */

/* from left port to clear INTL. Then do same to check for INTR at */
/* memory location 7FF for 2 dual-port SRAMs at a time (Example for */
/* SRAMs 1 and 5.) Continue w/SRAMs 2 and 6. */

/********t**t*****************t*****t*************t*****i***ﬁ************/

/*set left interrupt by writing into right port address 7FE*/
SINTL: SET HDOE, MOV ACH INTLC, OUT SRAMNO;
/*set left port address to 7FE*/
RESET DIREN, MOV ACL INTLS;
/*set left port address to 7FE*/
MOV IOR SRRPWR, OUT SRAM1SR;
/*Select right SRAM port and generate WR strobe*/
MOV DOR DATAA; /*write h’aa’ into SRAM*/
MOV IOR SRMDIS, OUT SRAMNO;
/*end write cycle*/
SWITCH CGO; /*check for left interrupt set (CC3 and CCl)*/
/*for both dual port RAMs #1 and #5%/
CASE 00, GOTO ERROR;/*CG3=0, CG2=0, CG1=0, CGO=0*/
CASE 01, GOTO ERROR;/*CG3=0, CG2=0, CG1=0, CGO=1*/
CASE 02, GOTO ERROR;/*CG3=0, €G2=0, CGl=1, CGO=0*/
CASE 03, GOTO ERROR;/*CG3=0, CG2=0, CGl=1l, CGO=1*/
CASE 04, GOTO ERROR;/*CG3=0, CG2=1, CG1l=0, CGO=0*/
CASE 05, GOTO CINTL1l;/*CG3=0, CG2=1, CG1l=0, CGO=1*/
/*Left interrupt set, so continue*/
CASE 06, GOTO ERROR;/*CG3=0, CG2=1, CGl=1, CGO=0*/
CASE 07, GOTO ERROR;/*CG3=0, CG2=1, CGl=1l, CGO=1*/
CASE 08, GOTO ERROR;/*CG3=1, CG2=0, CG1=0, CGO=0*/
CASE 09, GOTO ERROR;/*CG3=1, CG2=0, CG1l=0, CGO=1*/
CASE 10, GOTO ERROR;/*CG3=1, CG2=0, CGl=1, CGO=0*/
CASE 11, GOTO ERROR;/*CG3=1, CG2=0, CGl=1, CGO=1*/
CASE 12, GOTO ERROR;/*CG3=1, CG2=1, CG1l=0, CGO=0*/
CASE 13, GOTO ERROR;/*CG3=1, CG2=1, CG1l=0, CGO=1*/
CASE 14, GOTO ERROR;/*CG3=1, CG2=1, CGl=1, CGO=0*/
CASE 15, GOTO ERROR;/*CG3=1, CG2=1, CGl=1, CGO=1*/
ENDSWITCH;

/*Clear left interrupt of SRAM #1 and #5 by reading from left port */
/*address TFE: %/

CINTL1l: RESET HDOE; /*Enables writing to Data Input Register*/

SET DIREN; /*Selects host data to be used an input*/
MOV IOR SRLPRD, OUT SRAM1L;

/*Enable OE for read, Enable CS to select SRAM*/
MOV GPR DIR; /*Read dual port RAM data*/
MOV IOR SRMDIS, OUT SRAMNO;

/*End read cycle for dual port SRAM#1, Release OE*/
JMPC CC3 CINTLS5; /*check for clear interrupt, if clear continue*/
JMP ERROR;

CINTL5: MOV IOR SRLPRD, OUT SRAMSL;

"y

i

Iy
Iy
Y

:

4-122

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

/*Enable OE for read, Enable CS to select SRAM*/
MOV GPR DIR; /*Read dual port RAM data*/
MOV IOR SRMDIS, OUT SRAMNO;

/*End read cycle for dual port SRAM#5, Release OE*/
JMPC CC1 SINTR; /*check for left clear interrupt, if clear, continue*/
JMP ERROR;

/*Set right interrupt by writing into left port address 7FF*/

SINTR: SET HDOE, MOV ACH INTRS, OUT SRAMNO;
/*set right port address to 7FF*/
RESET DIREN, MOV ACL INTRC;
/*set left port address to 7FF*/
MOV IOR SRLPWR, OUT SRAM15L;
/*Select left SRAM port and generate WR strobe*/
MOV DOR DATAA2; /*write h‘aa’ into SRAM*/
MOV IOR SRMDIS, OUT SRAMNO;
/*end write cycle*/
SWITCH CGO; /*Check for right interrupt set (CC2,CCO)*/
/*for both dual port RAMs #1 and #5*/
CASE 00, GOTO ERROR; /*CG3=0, CG2=0, CG1l=0, CGO=0*/
CASE 01, GOTO ERROR;/*CG3=0, CG2=0, CG1=0, CGO=1*/
CASE 02, GOTO ERROR; /*CG3=0, CG2=0, CGl=1, CGO=0*/
CASE 03, GOTO ERROR; /*CG3=0, CG2=0, CGl=1, CGO=1*/
CASE 04, GOTO ERROR;/*CG3=0, CG2=1, CG1l=0, CGO=0*/
CASE 05, GOTO ERROR;/*CG3=0, CG2=1, CG1l=0, CGO=1*/
CASE 06, GOTO ERROR;/*CG3=0, CG2=1, CGl=1l, CGO=0*/
CASE 07, GOTO ERROR;/*CG3=0, CG2=1, CGl=1, CGO=1*/
CASE 08, GOTO ERROR;/*CG3=1, CG2=0, CG1=0, CGO=0*/
CASE 09, GOTO ERROR;/*CG3=1, CG2=0, CG1=0, CGO=1*/
CASE 10, GOTO CINTR1;/*CG3=1, CG2=0, CGl=1, CGO=0%*/
/*Right interrupt set, so continue*/
CASE 11, GOTO ERROR; /*CG3=1, CG2=0, CGl=1, CGO=1*/
CASE 12, GOTO ERROR; /*CG3=1, CG2=1, CG1l=0, CGO=0*/
CASE 13, GOTO ERROR; /*CG3=1, CG2=1, CG1l=0, CGO=1*/
CASE 14, GOTO ERROR; /*CG3=1, CG2=1, CGl=1, CGO=0*/
CASE 15, GOTO ERROR;/*CG3=1, CG2=1, CGl=1, CGO=1*/
ENDSWITCH;

/*Clear right interrupt of SRAM #1 and #5 by reading from right port */
/*address 7FF:*/

CINTR1: RESET HDOE; /*Enable writing to Data Input Register*/

SET DIREN; /*Select host data to be used an input*/
MOV IOR SRRPRD, OUT SRAMIR;

/*Enable OE for read, Enable CS to select SRAM*/
MOV GPR DIR; /*Read dual port RAM data*/
MOV IOR SRMDIS, OUT SRAMNO;

/*End read cycle for dual port SRAM#1, Release OE*/
JMPC CC2 CINTRS; /*check for clear interrupt, if clear continue*/
JMP ERROR;

CINTR5: MOV IOR SRRPRD, OUT SRAMSR;
/*Enable OE for read, Enable CS to select SRAM*/
MOV GPR DIR; /*Read dual port RAM datax*/

4-123

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
Hlustrations
(Assembly Code)
(Cont.)

MOV IOR SRMDIS, OUT SRAMNO;

/*End read cycle for dual port SRAM#S5, Release OE*/
JMPC CCO DONE; /*check for left clear interrupt, if clear, continue*/
JMP ERROR;

DONE: JMP DONE;

ERROR: MOV IOR SRMERR, JMP ERROR;

end;

4-124

PAC1000 - Application Note 012

Appendix 1.
PAC1000
Program
lllustrations
(Assembly Code)
(Cont.)

(Alias File)

/*This is an alias file*/

alias DATAA RO;
alias DATS5 R1l;
alias DAT66 R2;
alias DAT99 R3;
alias DATCC R4;
alias DAT33 RS;
alias DATAR2 R6;
alias DATAA3 R7;
alias DATS552 RS8;
alias DATCC2 R9;
alias DAT332 R10;
alias SRMDIS R1l1;
alias SRMERR R12;
alias GPR R13;
alias INTLS R1l4;
alias INTRC R15;
alias INTRS R16;
alias INTLC R17;
alias SRLRPWR R18
alias SRLRPRD R19
alias SRRPWR R20;
alias SRLPWR R21;
alias SRRPRD R22;
alias SRLPRD R23;
alias RUN1S R24;
alias INCO2 R25;
alias INC40 R26;
alias M70 R27;
alias M158 R28;
alias INC20 R29;
alias REG30 R30;
alias SET1 R31;

~ =

/*This

SRAMNO
SRAM1L
SRAM2L
SRAM3L
SRAM4L
SRAMSL
SRAM6L
SRAM7L
SRAMSL
SRAM1R
SRAM2R
SRAM3R
SRAM4R
SRAMSR
SRAM6R
SRAM7R
SRAM8SR

SRAMI1LR equ h’fefe’;
SRAM2LR equ h’fdfd’
SRAM3LR equ h’fbfb’
SRAM4LR equ h'f7£7°
SRAMSLR equ h’‘efef’
SRAM6LR equ h‘dfdf’
SRAM7LR equ h’bfbf’
SRAMSLR equ h’'7f7f’;

SRAM1_8L equ h’ff00°
SRAM1_8R equ h’O00ff’

SRAM1S5LR equ h’eeee’
SRAM26LR equ h’dddd’
SRAM37LR equ h’bbbb’
SRAM48LR equ h’7777‘

SRAM15R equ h‘0OOee’
SRAM15L equ h‘eel00’
SRAM26R equ h’00dd’
SRAM26L
SRAM37R equ h‘00bb”
SRAM37L equ h’bb00‘;
SRAM48R equ h’0077’;
SRAM48L equ h’7700';

(Equate File)

is an equate file*/

equ h'ffff’;
equ h'fffe’
equ h'fffd’
equ h'fffb’
equ h'fff7’
equ h’'ffef’
equ h’'ffdf’
equ h’'ffbf’
equ h'ff7f"’
equ h'feff’
equ h’/fdff’
equ h’fbff’
equ h'f7ff"’
equ h’'efff’
equ h’'dfff’
equ h'bfff’
equ h'7fff’;

Ne Ne Ne N6 Ne Ve Ne We Ne Ne Ne Ve We N W N

e Ne e Ne e Ne N

~. w

~e Ne Ne we

equ h’ddoo0’

Ne Ne Ne Ne we

My

4-125

PAC1000 - Application Note 012

Appendix 2.
Linker File
Example

/*This is a linker file*/

place dual port_memory_test;
load dpmtst;
end;

L—

4-126

PAC1000 - Application Note 012

Appendix 3.
Stimulus File
Example

/*This is a stimulus filex/

.S RESETB 0@€1 1@2;

S RDB 0@1 1@97 ;

.S CSB 0@1 1@97 ;

.S HD15 Z@1 0@95 1@102 O0@1l09 1@119 0@126 1@133 z@140 0@193 1@200 0207 1€214
.S HD14 Z@1 1@95 0@102 1@109 0119 1e126 0@133 z@140 1@193 0@200 1@207 0€214
.S HD13 Z@1 0@95 1@102 0@109 1@119 0€126 1@133 2z@140 1@193 0@200 1@207 0@214
.S HD12 Z@1l 1@95 0@102 1@109 0@119 1@126 0@133 Zz@140 0@193 1@200 0@207 1€214
.S HD11 2Z@1 0@95 1@102 0@109 1@119 0@126 1@133 2z@140 0@193 1@200 0€207 1€214
.S HD10 2@1 1@95 0@f102 1@109 0@119 1@126 0@133 2140 1@193 0200 1@207 0@214
.S HDS Z@1 0@95 1102 0@109 1@€119 0€126 1@133 2@140 1@193 0€200 1@207 0@214
.S HD8 Z@1 1@95 0@102 1@109 0119 1@126 0@133 2z@140 0@193 1@200 0@207 1e214
.S HD7 Z@1 1@95 0@102 1@109 0@119 1@126 0133 2@140 1@193 O0@200 1@207 0@214
.S HD6 Z@1 0@95 1@102 0@109 1@119 0€126 1@133 2@140 0@193 1@200 0@207 1@214
.S HDS Z@1 1€95 0@102 1@109 0@119 1@126 0@133 2@140 0@193 1@200 0207 1@214
.S HD4 Z@1 0@95 1102 0@109 1@119 0@126 1@133 2@140 1@193 0@200 1@207 0@214
.S HD3 Z@1 1@95 0@102 1@109 O0@119 1@€126 0@133 2140 1@193 0@200 1@207 o0@214
.S HD2 Z@1 0@95 1@102 0@109 1€119 0@126 1@133 2140 0@193 1@200 0207 1214
.S HD1 Z@1 1@95 0@102 1@109 O0@119 1@126 0@133 2140 0193 1@200 0@207 1@214
.S HDO Z@1 0@95 1@102 0@109 1@119 0@126 1@133 z€140 1@193 0@200 1@207 0214
.S ADD15 2@l
.S ADD14 2@1
.S ADD13 2@1
.S ADD12 z@l
.S ADD11 Z@l
.S ADD10 z@l
.S ADD9 2z@1
.S ADD8 2@1
.S ADD7 2@1
.S ADD6 z@l
.S ADDS Zz@l
.S ADD4 2@l
.S ADD3 z@l1
.S ADD2 1z@l
.S ADD1 z@1
.S ADDO zZ@l
.S HADS 2@l
.S HAD4 2z@l1
.S HAD3 zel
.S HAD2 2@l
.S HAD1 2@l
.S HADO 2z@1
.8 107 ze1
.S I06 zel1
.S IO0S ze1
.S I04 ze1
.S I03 zel
.S 102 zel
.S 101 ze1
.S I00 zel

~

Ne Ne Ne N Ne Ne Ne e Ne Ne Ne W Ne We Ne We We We Ne we e We We We We We we W “e

4-127

PAC1000 - Application Note 012

Appendix 3.
Gommand File
Example

/*This is a command file used for batch simulation*/

open journal dpmtst
open stimulus dpmtst
set trace PC

set trace CPC

set trace LC

set trace 2

set trace IOR

set trace IO

set trace OC

set trace HDIR

set trace HDOR

set trace HD

set trace ACH

set trace ADD

set trace ACL

set trace HAD

set trace R10

open trace dpmtst

4128 ===

PAC1000 - Application Note 012

Appendix 4.
Simulation
Results

L2222 R 2222222222222 2222222222222 222222 R RSS2 20

OUTPUT TABLE

PACSIM Ver. 3.00b Wed Sep 05 10:52:57 1990
E2 22 2222222222222 2222222 222222222222 22222 222 222222222222 222222222

PPP CCC LLL Z II II OOOO HHHH HHHH HHHH AAAA AAAA AA HH RRRR

CCC PPP CCC 00 OO0 cccc DDDD DDDD DDDD CCCC DDDD CC AA 1111

173 ccc 173 RR 73 1173 IIII OOOO 1173 HHHH DDDD LL DD 0000
s 173 1:: 73 :: 51:: RRRR RRRR 51:: 1173 1173 53 53

:40 1:: :40 $: 40 ::40 1173 1173 ::40 51:: 51:: :: :: 1173

8 :40 8 40 18 51:: 51:: 18 2240 ::40 40 40 51::
8 2 2240 ::40 2 18 18 ::40
18 18 2 2 18
2 2 2

00 zz 0000 0000 0000 0000 0000 zzzZZ OO0 zZ 0000
00 zZ 0000 0000 0000 0000 0000 zzzZ OO0 zz 0000
00 zz ffff 0000 0000 0000 0000 zzZZ 00 ZZ 0000
00 zz ffff 0000 0000 0000 0000 0000 00 00 0000
00 2z f£fff 0000 0000 0000 0000 0000 OO 00 0000
ff £f f£££ 0000 0000 0000 0000 0000 OO 00 0000
£ff £ff f£££f 0000 0000 0000 0000 0000 00 00 0000
ff £f £f£f£f 0000 0000 0000 0000 0000 00 00 0000
£ff f£ff ££ff 0000 0000 0000 0000 0000 OO0 00 0000
ff £f £ff££f 0000 0000 0000 0000 0000 OO 00 0000
£ff £f f£££ 0000 0000 0000 0000 0000 OO 00 0000
£ff £f £f£f£ff 0000 0000 0000 0000 0000 00 00 0000
ff £ff f£££f 0000 0000 0000 0000 0000 00 00 0000
ff ff £f£££ 0000 0000 0000 0000 0000 00 00 0000
£ff £f £££f 0000 0000 0000 0000 0000 00 0O 0000
£ff £f ff£f 0000 0000 0000 0000 0000 00 0O 0000
£ff ££f ££££ 0000 0000 0000 0000 0000 OO 00 0000
ff ££f f£££ 0000 0000 0000 0000 0000 00 00 0000
0000 0000 0000 00 00 0000
ff £ff £f££f 0000 0000 0000 0000 0000 00 00 0000
ff £f f£££ 0000 0000 0000 0000 0000 00 00 0000
£ff ££f f£££f 0000 0000 0000 0000 0000 OO OO 0000
ff £ff £f£f£f 0000 0000 0000 0000 0000 00 0O 0000
ff £f £££f 0000 0000 0000 0000 0000 OO0 00 0000
ff £f£f f£££ 0000 0000 0000 0000 0000 OO 00 0000
f£f £f 00f£f 0000 0000 0000 0000 0000 00 00 0000
£f ff 00ff 0000 0000 0000 0000 0000 00 00 0000
bf bf 00£f 0000 0000 0000 0000 0000 OO0 00 0000
bf bf 00ff 0000 aa55 aa55 0000 0000 00 00 0000
ff £ff ffff 0000 aa55 aa55 0000 0000 00 00 0000
£ff £f£f 00ff 0000 aa55 aa55 0000 0000 01 01 0000
ff £ff 00ff 0000 aa55 aa55 0000 0000 01 01 0000
bf bf 00ff 0000 aa55 aa55 0000 0000 01 01 0000
bf bf 00ff 0000 55aa 55aa 0000 0000 01 01 0000
ff £f ffff 0000 55aa 55aa 0000 0000 01 01 0000
£ff ff O0ff 0000 55aa 55aa 0000 0000 02 02 0000
£ff ff 00ff 0000 55aa 55aa 0000 0000 02 02 0000

WO ULdWN é
o
-
(=]
o
[=]
o
o
o
o

[
[ve]
o
N
o
o
-
Hh
o
o
o

HOOOOOOOOOKHKHFKHEMHMOFFOOOO0O00O000OOOOOOHOKKHKHOO
H
h
[sd
(2
Hh
h
h
)
o
o
o
o
o
o
o
o

4-129

PAC1000 - Application Note 012

Appendix 4.
Simulation
Results
(Gont.)

bf bf 00ff 0000 55aa S5aa 0000 0000
bf bf 00ff 0000 aa55 aa55 0000 0000
ff ff f£££f 0000 aa55 aa55 0000 0000
ff ff O0ff 0000 aa55 aa55 0000 0000
ff £f£f O0Off 0000 aa55 aa55 0000 0000
bf bf 00ff 0000 aa55 aa55 0000 0000
bf bf 00ff 0000 55aa 55aa 0000 0000
ff ff f££ff 0000 S5aa 55aa 0000 0000
ff £ff OOff 0000 S55aa 55aa 0000 0000
ff £f£f O0Off 0000 55aa 55aa 0000 0000
bf bf 00ff 0000 55aa 55aa 0000 0000
bf bf 00ff 0000 aa55 aa55 0000 0000
ff £ff f££f 0000 aa55 aa55 0000 0000
ff ££f OOff 0000 aa55 aaS5 0000 0000
ff £ff OOff 0000 aa55 aaS55 0000 0000
bf bf 00ff 0000 aa55 aa55 0000 0000
bf bf 00ff 0000 55aa 55aa 0000 0000
ff £ff £f££f 0000 55aa 55aa 0000 0000
ff £ff f££ff 0000 S55aa 55aa 0000 0000
ff £ff £££f 0000 55aa 55aa 0001 0001
ff £ff f£ff 0000 55aa 55aa 0001 0001
ff £ff OOff 0000 55aa 55aa 0001 0001
ff £ff OOff 0000 S55aa 55aa 0001 0001
bf bf 00ff 0000 55aa 55aa 0001 0001
bf bf 0O0ff 0000 aa55 aaS5 0001 0001
ff £ff f£ff 0000 aa55 aa55 0001 0001
ff ££f 0O0ff 0000 aa55 aaS5 0001 0001
aa55 aa55 0001 0001
bf bf 00ff 0000 aa55 aa55 0001 0001
bf bf 00ff 0000 55aa 55aa 0001 0001
ff £ff f£f£f 0000 55aa 55aa 0001 0001
ff £f OOff 0000 55aa 55aa 0001 0001
ff £ff OOff 0000 55aa 55aa 0001 0001
bf bf 00ff 0000 55aa 55aa 0001 0001
bf bf 00ff 0000 aa55 aa55 0001 0001
ff £ff f£f£f 0000 aa55 aa55 0001 0001
ff £ff OOff 0000 aa55 aaS55 0001 0001
ff £ff OOff 0000 aa55 aa55 0001 0001
bf bf 00ff 0000 aa55 aa55 0001 0001
bf bf O0ff 0000 55aa 55aa 0001 0001
ff £ff £f££ff 0000 55aa 55aa 0001 0001
ff £ff OOff 0000 55aa S55aa 0001 0001
ff £ff OOff 0000 S55aa 55aa 0001 0001
bf bf OOff 0000 S55aa 55aa 0001 0001
bf bf 00ff 0000 aa55 aa55 0001 0001
ff ff ££ff 0000 aa55 aa55 0001 0001
ff ff OOff 0000 aa55 aa55 0001 0001
ff ££f OOff 0000 aa55 aa55 0001 0001
bf bf 00ff 0000 aa55 aa55 0001 0001
bf bf 00ff 0000 55aa 55aa 0001 0001
ff £ff f££f 0000 55aa 55aa 0001 0001
ff £ff f£f£f 0000 55aa 55aa 0001 0001
ff £ff £f£££f 0000 55aa 55aa 0002 0002
ff £ff f£fff 0000 55aa 55aa 0002 0002
ff £ff ff£f 0000 55aa 55aa 0002 0002

62 02a 029 005
63 026 02a 005
64 027 026 004
65 028 027 004
66 029 028 004
67 02a 029 004
68 026 02a 004
69 027 026 003
70 060 027 003
71 029 060 003
72 02a 029 003
73 026 02a 003
74 027 026 002
75 028 027 002
76 029 028 002
77 02a 029 002

79 027 026 001
80 060 027 001
81 029 060 001
82 02a 029 001
83 026 02a 001
84 027 026 000
85 028 027 000

87 02a 029 000
88 02b 02a 000
89 02c 02b 000
90 024 02c 000
91 02e 02d 000
92 02f 02e 000

HHOOO0OO0OOOO0OOOOKFFOOODOO0ODOOOOFFOOODOOOOOOKHKEHKKOOO0O000O0OO0OO0OOHOOOOOOOOO
(2]
(2]
(2.}
[}
o
[«]
"
(2
o
o
o
o

4-130 ===

PAC1000 - Application Note 012

Appendix 4.

Simulation
Results
(Cont.)

037
038
039
03a
03b
03c

03e
061
040

OMHHHHOOHMOOOOOOHOOHOOOHROOOOOKRHOOKMOOHROOOHOOOOOOKFOOKOOKKHK

55aa
55aa
55aa
55aa
S55aa
55aa
55aa
S5aa
55aa
55aa
55aa
55aa
55aa
S55aa
55aa
55aa
S55aa
S5aa
55aa
55aa
55aa
55aa
55aa
55aa
S55aa
55aa
55aa
55aa
S5aa
55aa
55aa
S5aa
S5aa
S55aa
S5aa
S5aa
55aa
S55aa
55aa
55aa
55aa
S55aa
55aa
55aa
55aa
S55aa
S55aa
S55aa
55aa
55aa
55aa
S5aa
S5aa

. 55aa

S55aa

55aa
55aa
S55aa
S55aa
S5aa
55aa
55aa
55aa
55aa
aas5s
aas5s
aa55
aas55
aa55
aa55s
aas$s
55aa
55aa
S55aa
55aa
55aa
55aa
S55aa
55aa
55aa
55aa
aas5s
aas5s
aas5s
aas5s
aas5s
aab5$s
aas$s
55aa
55aa
55aa
S5aa
55aa
S5aa
S55aa
aas5s
aas5
aas55
aas$s
aas5
aas5s
aas5$5
2222
2222
55aa
S55aa
S55aa
S55aa
S55aa
S5aa

0000
0000
0000
0000
S55aa
S55aa
S5aa
S5aa
S55aa
55aa
55aa
aa55
aas55s
aa55
aa55
aas5
aa55
aas5s
S55aa
55aa
S55aa
S5aa
55aa
55aa
55aa
55aa
S5aa
S55aa
aa55
aaS5$s
aa55
aaS55
aas5
aas55
aa55
55aa
55aa
55aa
S55aa
S55aa
55aa
S55aa
aaS5
aab$s
aaS5s
aa55
aaS5
aass
aas5s
aa55
aa55
aab5
aas55
aaS55
aa55

4-131

PAC1000 - Application Note 012

Appendix 4.
Simulation
Results
(Cont.)

03d
03e
03f
040

03d
03e
061
040
041
042
043
044
045

047
048
064
O4a
04b
045
046
047
048

040

034
O03e
03f
040
041
03d
O3e
061
040
041
03d
03e

040
041
034
03e

040
041
034
03e
03f
040
041
03d
03e
061
040
041
03d
03e
03f

041
03d
O3e
061
040
041
042
043
044
045
046
047
048
064
O4a
04b
045
046
047

001
001
001
001

000
000
000
000
000
000
000
000
003
003

003
003
003
003
002
002
002

OO0OOKFHOOKHOOKHKFEKFOOOOHOO0O0O00O0O0OOOHOOODO0OO0OO0OO0OOOKHOOOO0O0OOOO0OOHOOOO0OOOO

£f£f00 55aa
ffff 55aa
££00 55aa
££00 55aa
££f00 55aa
££00 55aa
ffff 55aa
f£f00 55aa
££00 S55aa
f£f00 55aa
f£f00 55aa
ffff S55aa
£f£f00 55aa
££00 55aa
££f00 55aa
£f£00 55aa
ffff S55aa
£f£f00 SS5aa
f£f00 55aa
££00 S5aa
£f£f00 S55aa
ffff S55aa
££f00 55aa
f£00 55aa
£f£f00 55aa
£f£f00 55aa
ffff S5Saa
£f£f00 55aa
£f£f00 S55aa
££f00 55aa
££00 55aa
ffff S55aa
££f00 55aa
££00 55aa
££00 55aa
££00 S55aa
ffff 55aa
££00 55aa
££00 55aa
££f00 S55aa
££f00 55aa
ffff 55aa
ffff 55aa
ffff 55aa
ffff 9966
fffe 9966
fffe 6699
fffe 6699
ffff 6699
ffff 6699
ffff 6699
ffff 6699
fffe 6699
fffe 9966
fffe 9966

Iy
!

_.
Iy

9966
9966
9966
9966
9966
6699
6699
6699
6699
6699
9966
9966
9966
9966
9966
6699
6699
6699
6699
6699
9966
9966
9966
9966
9966
6699
6699
6699
6699
6699
9966
9966
9966
9966
9966
6699
6699
6699
6699
6699
9966
9966
9966
9966
9966
9966
9966
9966
9966
9966
9966
9966
9966
9966
9966

0000
0000
0020
0020
0020
0020
0020
0040
0040
0040
0040
0040
0060
0060
0060
0060
0060
0080
0080
0080
0080
0080
00a0
00a0
00a0
00a0
00a0
00cO
00c0
00c0
00cO
00c0
00e0
00e0
00e0
00e0
00e0
0100
0100
0100
0100
0100
0120
0120
0000
0000
0000
0000
0000
0000
0000
0000
0020
0020
0020

aa55
aaS5$5
aas55
aa5$5
aaS55
aab5$s
aas55
aaS55
aab5s
aasb5
aab55
aab5
aa55
aaS$s
aab5
aab55
aas$s
aa55
aa55
aa55
aas5s
aaS5
aab5
aab55
aas$s
aa55
aaS5s
aa55
aab55
aab5
aaS55
aab55s
aab55
aab5
aas55
aab5
aaS$s
aas5
aas$s
aaS5
aaS$s
aa55
aabs5
aaS55
aab55
aaS5
aab55
6699
6699
6699
6699
6699
6699
6699
9966

4-132

0
I
h
iy

PAC1000 - Application Note 012

Appendix 4.
Simulation
Results
(Cont.)

df df ffff 9966 9966 9966 0020 0020 00 00 9966
ff ff ffff 9966 9966 9966 0020 0020 00 00 9966
ff ff ffff 9966 9966 9966 0020 0020 00 00 9966
ff £ff £fff 9966 9966 9966 0020 0020 00 00 9966
ff ff fffe 9966 9966 6699 0040 0040 00 00 9966
df df fffe 6699 9966 6699 0040 0040 00 00 9966
df df fffe 6699 9966 6699 0040 0040 00 00 6699
df df ffff 6699 9966 6699 0040 0040 00 00 6699
ff ff ffff 6699 9966 6699 0040 0040 00 00 6699
ff ff f£f£ff 6699 9966 6699 0040 0040 00 00 6699
ff £ff f££ff 6699 9966 6699 0040 0040 00 00 6699
ff ff fffe 6699 9966 9966 0060 0060 00 00 6699
df df fffe 9966 9966 9966 0060 0060 00 00 6699
df df fffe 9966 9966 9966 0060 0060 00 00 9966
df df ffff 9966 9966 9966 0060 0060 00 00 9966
ff ff f££ff 9966 9966 9966 0060 0060 00 00 9966
ff £ff f£f£ff 9966 9966 9966 0060 0060 00 00 9966
ff ff ffff 9966 9966 9966 0060 0060 00 00 9966
ff £ff £fff 9966 9966 9966 0080 0080 00 00 9966
ff £ff ffff 9966 9966 9966 0000 0000 00 00 9966
ff ff £f£ff 9966 9966 9966 0000 0000 00 00 9966
ff ff ffff 9966 9966 9966 0000 0000 00 00 9966
ff £ff feff 9966 9966 UUUU 0000 0000 OO 00 9966
ff £ff feff 9966 9966 9966 0000 0000 OO0 00 9966
bf bf feff 9966 9966 9966 0000 0000 00 00 9966
bf bf feff 9966 cc33 cc33 0000 0000 00 00 9966
ff £ff f£f£ff 9966 cc33 2zZZ 0000 0000 00 00 9966
cc33 222z 0000 0000 00 00 9966
ff ff fffe cc33 cc33 33cc 0000 0000 00 00 9966
df df fffe 33cc cc33 33cc 0000 0000 00 00 9966
df df fffe 33cc cc33 33cc 0000 0000 00 00 33cc
df df ffff 33cc cc33 33cc 0000 0000 00 00 33cc
ff ff ffff 33cc cc33 33cc 0000 0000 00 00 33cc
ff ff f£f£ff 33cc cc33 33cc 0000 0000 00 00 33cc
ff ff £££ff 33cc cc33 33cc 0020 0020 00 00 33cc
ff ff feff 33cc cc33 33cc 0020 0020 01 01 33cc
ff £ff feff 33cc cc33 22ZZ 0020 0020 01 01 33cc
bf bf feff 33cc cc33 22ZZ 0020 0020 01 01 33cc
bf bf feff 33cc 33cc 2zzZ 0020 0020 01 01 33cc
ff ff ffff 33cc 33cc 2zzZ 0020 0020 01 01 33cc
ff ff f£fff 33cc 33cc 22ZZ 0020 0020 01 01 33cc
ff ff fffe 33cc 33cc cc33 0020 0020 01 01 33cc
df df fffe cc33 33cc cc33 0020 0020 01 01 33cc
df df fffe cc33 33cc cc33 0020 0020 01 01 cc33
df df ffff cc33 33cc cc33 0020 0020 01 01 cc33
ff ff ffff cc33 33cc cc33 0020 0020 01 01 cc33
ff ff f£fff cc33 33cc cc33 0020 0020 01 01 cc33
ff ff ffff cc33 33cc cc33 0040 0040 01 01 cc33
ff ff feff cc33 33cc cc33 0040 0040 02 02 cc33
ff ff feff cc33 33cc 22ZZ 0040 0040 02 02 cc33
bf bf feff cc33 33cc 22zZ 0040 0040 02 02 cc33
bf bf feff cc33 cc33 22ZZ 0040 0040 02 02 cc33
ff ff ffff cc33 cc33 2222 0040 0040 02 02 cc33
ff ff ffff cc33 cc33 22ZZ 0040 0040 02 02 cc33
ff ff fffe cc33 cc33 33cc 0040 0040 02 02 cc33

242 055 054 001
243 056 055 001
244 057 056 001
245 058 057 001
246 059 058 001
247 05a 059 001
248 O05b 05a 001
249 05c¢ 05b 001
250 050 05c¢c 001
251 051 050 000
252 062 051 000
253 053 062 000
254 054 053 000
255 055 054 000
256 056 055 000
257 057 056 000

N
w
o
o
w
o
o
w
wm
o
[<]
N

HHOOOKHKOOOOOOOKRKOOOOOOOOHOOFRKHKOOOHKHKHKHKEROFROOOOOOHOOKHOOOKHOOO
[ad
2}
(o]
Lo}
H
s
H
[}
0
[V
o
o

4-133

PAC1000 - Application Note 012

Appendix 4.

Simulation ‘
Results

(Cont.)

258 058 057 000
259 059 058 000
260 065 059 000
261 0Sb 065 000
262 05c 05b 000
263 05d 05c 000
264 05e 05d 000

df df fffe 33cc cc33 33cc 0040 0040 02 02 cc33
df df fffe 33cc cc33 33cc 0040 0040 02 02 33cc
df df ffff 33cc cc33 33cc 0040 0040 02 02 33cc
ff ff f£fff 33cc cc33 33cc 0040 0040 02 02 33cc
ff £f f££ff 33cc cc33 33cc 0040 0040 02 02 33cc
ff ff ffff 33cc cc33 33cc 0060 0060 02 02 33cc
ff £ff ffff 33cc cc33 33cc 0060 0060 03 03 33cc
ff £ff ffff 33cc cc33 33cc 0061 0061 03 03 33cc
ff ff ffff 33cc cc33 33cc 0061 0061 03 03 33cc
ff ff feff 33cc cc33 33cc 0061 0061 03 03 33cc
ff ff feff 33cc cc33 2z2ZZ 0061 0061 03 03 33cc
bf bf feff 33cc cc33 Zz2Z 0061 0061 03 03 33cc
bf bf feff 33cc 33cc 7ZZZZ 0061 0061 03 03 33cc
ff ff ffff 33cc 33cc Z2ZZ 0061 0061 03 03 33cc
ff ff ff£ff 33cc 33cc ZZ2ZZ 0061 0061 03 03 33cc
ff ff fffe 33cc 33cc cc33 0061 0061 03 03 33cc
df df fffe cc33 33cc cc33 0061 0061 03 03 33cc
df df fffe cc33 33cc cc33 0061 0061 03 03 cc33
df df ffff cc33 33cc cc33 0061 0061 03 03 cc33
ff ff £fff cc33 33cc cc33 0061 0061 03 03 cc33
ff ff ffff cc33 33cc cc33 0061 0061 03 03 cc33
ff ff f£fff cc33 33cc cc33 0081 0081 03 03 cc33
ff ff feff cc33 33cc cc33 0081 0081 04 04 cc33
ff ff feff cc33 33cc 2zZZ 0081 0081 04 04 cc33
bf bf feff cc33 33cc 22ZZ 0081 0081 04 04 cc33
bf bf feff cc33 cc33 2222 0081 0081 04 04 cc33
ff ff ffff cc33 cc33 22ZZ 0081 0081 04 04 cc33
cc33 z2zZ 0081 0081 04 04 cc33
ff ff fffe cc33 cc33 33cd 0081 0081 04 04 cc33
df df fffe 33cd cc33 33cd 0081 0081 04 04 cc33
df df fffe 33cd cc33 33cd 0081 0081 04 04 33cd
df df ffff 33cd cc33 33cd 0081 0081 04 04 33cd
ff ff f£f£ff 33cd cc33 33cd 0081 0081 04 04 33cd
ff ff f££ff 33cd cc33 33cd 0081 0081 04 04 33cd
ff ff f£f£ff 33cd cc33 33cd 00al 00al 04 04 33cd
ff ff feff 33cd cc33 33cd 00al 00al 05 05 33cd
ff ff feff 33cd cc33 222z 00al 00al 05 05 33cd
bf bf feff 33cd cc33 2z2Z 00al 00al 05 05 33cd
bf bf feff 33cd 33cc 2zZzZZ 00al 00al 05 05 33cd
ff £ff ffff 33cd 33cc 2Z2ZZ 00al 00al 05 05 33cd
ff ff f£f£f 33cd 33cc Z22ZZ 00al 00al 05 05 33cd
ff £ff fffe 33cd 33cc cc33 00al 00al 05 05 33cd
df df fffe cc33 33cc cc33 00al 00al 05 05 33cd
df df fffe cc33 33cc cc33 00al 00al 05 05 cc33
df df ffff cc33 33cc cc33 00al 00al 05 05 cc33
ff £f ffff cc33 33cc cc33 00al 00al 05 05 cc33
ff £f ffff cc33 33cc cc33 00al 00al 05 05 cc33
ff £f £fff cc33 33cc cc33 00cl 00cl 05 05 cc33
ff £f £fff cc33 33cc cc33 00cl 00cl 06 06 cc33
ff £ff £f£fff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff f£fff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff £fff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff £££f cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ££fff cc33 33cc cc33 00c2 00c2 06 06 cc33

306 05e 054 000
307 O05f 05e 000
308 05f 05f 000
309 05f 05f 000
310 O0Sf 05f 000
311 05f 05f 000
312 05f 05f 000

N
o
w
o
(%)
o
o
wm
(&)
o
o
-

HFHPHEPHROOOOOOOOKHRHOOOOOOOOKHOOHKHOOOFROOOOOOOKKHOOOOHFHFLOOOOOOO
Hh
Hh
H
Hh
[
(ad
[a}
"
Q
]
w
w

4-134

PAC1000 - Application Note 012

Appendix 4.
Simulation
Results
(Cont.)

313 0sf 05f 000
314 05f 05f 000
315 05f 05f 000
316 05f 05f 000
317 0Sf 05f 000
318 05f 0S5f 000
319 05f 05f 000
320 O05f 05f 000
321 05f 05f 000
322 05f 05f 000
323 0S5f 05f 000
324 05f 05f 000
325 05f 05f 000

ff ff f££ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff f£f£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff f£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £f ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £f ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £f ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff f££ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff f££ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £f ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff f£f£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff f£f£ff cc33 33cc cc33 00c2 00c2 06 06 cec33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
£ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cec33
ff ff ff£ff cc33 33cc cc33 00c2 00c2 06 06 ce33
ff £ff f£f£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 ce33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff f£ff£ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff f£f ff£ff cc33 33cc cc33 00c2 00c2 06 06 cec33
ff £ff f£f£ff cc33 33cc cc33 00c2 00c2 06 06 cec33
ff ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff f££ff cc33 33cc cc33 00c2 00c2 06 06 cc33
ff £ff ffff cc33 33cc cc33 00c2 00c2 06 06 cc33

327 0S5f 05f 000
328 05f 05f 000
329 05f 05f 000
330 05f 05f 000
331 O0S5f 05f 000
332 0S5f 05f 000
333 05f 05f 000
334 0sf 05f 000
335 O0Sf 05f 000

337 O05f 05f 000
338 05f 0Sf 000
339 05f 05f 000
340 05f 05f 000
341 05f 05f 000
342 05f 05f 000
343 05f 05f 000
344 05f 05f 000
345 05f 05f 000
346 05f 05f 000
347 0S5f 05f 000
348 O05f 0Sf 000
349 05f 0Sf 000
350 05f 05f 000
351 05f 0Sf 000
352 0Sf 05f 000

354 05f 05f 000
355 05f 05f 000
356 05f 05f 000
357 05f 05f 000
358 05f 05f 000
359 0Sf 05f 000
360 05f 05f 000
361 0S5f 05f 000
362 05f 05f 000
363 O0Sf 0S5f 000
364 05f 05f 000
365 05f 0S5f 000
366 05f 05f 000
367 05f 05f 000

T N N o S O O O S S e O S T Y el L N N N N S e S e O S S e N S)
h
"
"
(=

wss

4-135

PAC1000 - Application Note 012

Appendix 4.

Simulation

Results

(Cont.)
368 O5f 0O5f 000 1 ff ff ffff
369 OS5f 05f 000 1 ff ff ffff
370 OSf OS5f 000 1 ff ff ffff
371 OS5f O5f 000 1 ff ff ffff
372 OSf O5f 000 1 ff ff ffff
373 O05f O5f 000 1 ff £ff ffff
374 O05f O5f 000 1 ff ff ffff
375 O5f 05f 000 1 ff ff ffff
376 OSf O5f 000 1 ff ff ffff
377 O0S5f O5f 000 1 ff ff ffff
378 O05f O5f 000 1 ff ff ffff
379 O05f O5f 000 1 ff ff ffff
380 OSf OS5f 000 1 ff ff ffff
381 OSf O5f 000 1 ff ff ffff
382 O05f O5f 000 1 ff £ff ffff
383 O0S5f O5f 000 1 ff ff ffff
384 O5f 05f 000 1 ff ff ffff
385 OS5f O5f 000 1 ff ff ffff
386 O0S5f O5f 000 1 ff ff ffff
387 OSf O5f 000 1 ff ff ffff
388 O5f O5f 000 1 ff ff ffff
389 O05f O5f 000 1 ff ff ffff
390 O5f O5f 000 1 ff ff ffff
391 OS5f OSf 000 1 ff ff ffff
392 O05f O5f 000 1 ff ff ffff
393 O5f O5f 000 1 ff ff ffff
394 O0Sf 05f 000 1 ff ff ffff
395 O0O5f OS5f 000 1 ff ff ffff
396 O0O5f O5f 000 1 ff ff ffff
397 O0OS5f O5f 000 1 ff ff ffff
398 O05f O5f 000 1 ff ff ffff
399 O05f OS5f 000 1 ff ff ffff
400 OSf O5f 000 1 ff ff ffff

4-136

cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cec33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cec33
cc33
cec33
cc33
cc33
cec33

33ce
33cc
33cc
33cc
33cec
33cc
33cc
33cc
33ce
33ce
33cc
33cc
33cc
33cc
33ce
33cc
33cc
33cc
33cce
33cc
33cc
33cc
33cc
33cc
33cc
33cc
33cc
33ce
33cc
33cc
33cc
33cc
33cc

cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
ce33
cc33
cec33
cc33
cc33
cc33
cel33
cc33
cc33
cc33
cec33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cec33
cc33
cc33

00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2
00c2 00c2

cec33
cc33
cc33
ce33
cc33
cc33
cec33
cc33
cc33
cec33
cc33
cc33
cc33
ce33
cc33
cec33
cc33
cc33
cc33
cec33
cc33
cec33
cec33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33
cc33

Development Systems

Section Index

Development
Systems

Electronic BUlletin BOAIc..coiiiiiiiieiee ettt ve e st stesae e saasae e -

PAC1000 Gold/Silver Development SYStem ..o -

WS6000 MagicPro™ Memory and Programmable Peripheral Programmer............c.c.cc..... -

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363.

FES ==
I ES S =
r—w—4

Programmable Peripheral
Electronic Bulletin Board

Bulletin
Board

WSI provides a 24-hour electronic bulletin
board system that provides the user with
the latest information on software updates,
enhancements, and applications relating to
WSI products. In addition, users
developing applications software for WSI
products can send portions of their code

to WSI for application’s consultation if desired.

The following hardware is required to use
the WSI bulletin board:

1 Computer Terminal

& 300, 1200, 2400 Baud Modem
3 8 Data Bits

1 No Parity

J 1 Stop Bit

Access Line

To access the bulletin board, dial

(510) 498-1002

and wait for the modem tone. When your
modem establishes a connection, enter
<return> <return> to signal the bulletin
board software. The board should respond:

WSI Customer Engineering Support
Electronic Bulletin Board Service

followed by some other messages, after
which you will be asked for your name,
and a password. Upon initial use, follow
the on-screen prompts for establishing
your password.

Now that you have entered the bulletin
board service, you will be given a choice
of “MAIN” commands:

Main Commands

M)sg-Section

Choose this option to leave messages.
File-Section

Choose this option to download or upload
data files and/or utility programs

Bjulletins

Choose this option to see the latest
important news such as software versions
and programming tips for WSI Memory
and PSD products.

S)tatistics

This option describes the current bulletin
board statistics

C)hange

Choose this option to change operational
settings that the bulletin board maintains
for your user name.

P)age-Operator

Choose this to page the operator for
assistance. It 1s not likely that the operator
will be available during West Coast U.S.
non-business hours.

"

L)ist-Callers

Choose this option to see who else is
using the board at this moment.
A)ns-Questionnaire

Choose this option to answer a user
profile questionnaire.

V)ersion

Describes the board software version.
G)oodhye

Choose this to leave the bulletin board.

See the individual software manuals for
more detailed explanation and usage of
the bulletin board.

iy

5-2

Programmable Peripheral

PAC1000-Gold/Silver
Development System

Description PAC1000-GOLD/PAC1000-SILVER is a The tools run on an IBM-PC XT, AT or
complete set of IBM-PC-based development compatible computer running MS-DOS
tools. They provide the integrated easy-to- version 3.1 or later.
use environment to support the PAC1000
program development and device
programming.

PACSEL PACSEL s the PAC1000 system entry [Enables mixing of three source
language. It has the following features: language types In one instruction:
QO Enables specification of up to three — High Level Language

parallel operations: — Assembler

— Program control operation — Microcode

— CPU operation [Specific instructions support unique

— Out Control operation PAC1000 architecture features available
General Syntax: in all three source language types.
Label: Program Control, CPU, Out Control; [Links unlimited amounts of modules.

PACSIM PACSIM is a functional simulator and [Provides breakpoint capabilities on any
software debugger. It has the following internal state of the PAC1000.
features: ' Supports batch mode simulation.

A Clock driven functional simulator. Q Provides waveform analysis.

Q Provides trace capabllmes‘ on internal Q On-line HELP available at any level.
states (Registers, Flags, Pins and
more).

PACPRO PACPRO is the interface software that d Write RAM to FILE
eqables the user to program a PAC1.000 - O Display PAC data
microcontroller on the WS6000 MagicPro
programmer. The PACPRO enables the J Blank test PAC
user to load the program into the Q Verify PAC
programmer and to execute the following Q Program PAC
operations:) .

2 Configuration
< Help 0 Quit
u
[Upload RAM from PAC
1 Load RAM from disk
IMPACT IMPACT is the interface manager to the without extension enabling the user to use

PAC1000 tools. IMPACT enables the user
to access PACSEL, PACSIM, PACPRO,
DOS and an editor with a menu driven
interface. File specification can be done

the same name throughout the design. A
HELP window is available on-line giving
information on all the needed steps at
each level.

PAC1000

Ws6000 MagicPro is an engineering development and a Remote Socket Adaptor (RSA). It

MagicPro'” tool designed to program all WSI occupies a short expansion slot in the PC.

Programmer programmable products (EPROMs, The RSA has two ZIF-DIP sockets

[/ RPROMSs, PAC1000, MAP168, PSD3XX that will support WSI's 24, 28, 32 and 40

Family and SAM448). It is used within the pin standard 600 mil or slim 300 mil DIP
IBM-PC and compatible environment. The packages without adaptors. Other
MagicPro consists of a short plug-in board packages are supported using adaptors.

ws6010 The WS6010 is a socket adaptor that the PAC1000 in an 88-pin CPGA package

Socket Adaptyr mounts on the MagicPro RSA and adapts to the programmer.

ws6013 The WS6013 is a socket adaptor that the PAC1000 in a 100-pin QFP package to

Socket Adaptar mounts on the MagicPro RSA and adapts the programmer.

WSI-Support WSI provides on-going support for users of user may purchase the WSI-Support
PAC1000-GOLD/PAC1000-SILVER. For the agreement to continue to receive the latest
first year, software and programmer updates software releases.
are included at no charge. After that, the

z”;"%"zi on Product Description

PAC1000-GOLD

Contains PAC1000-Silver, WS6000 MagicPro Programmer,
Two Product Samples and Matching Package Adaptor
Socket, WSI-Support

PAC1000-SILVER

WSI-Support.

Contains PAC1000 Software (PACSEL, PACSIM,
PACPRO, and IMPACT), Software User's Manual,

WSI-Support

12-Month Software Update Service, Access to WSlI's
24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

PAC1000

PAC1000-
GoLD

Contents O PACSEL

System design entry language and
program linker.

O PACSIM
Functional simulator and software
debugger.

& PACPRO
Interface software to PAC1000 device
programmer (MagicPro™).

O IMPACT
Interface manager for PAC1000
embedded controller development tools.

[Software user’s manual.
1 WSI-SUPPORT agreement.
J WS6000 MagicPro Programmer.

[Two product samples and matching
package adaptor socket.

2257

PAC1000

PAC1000-
SILVER
Contents O PACSEL Q IMPACT
System design entry language and Interface manager for PAC1000
program linker. embedded controller development tools.
1 PACSIM . A Software user’s manual.
Functional simulator and software O WSI-SUPPORT agreement.
debugger.
I PACPRO

Interface software to PAC1000 device
programmer (MagicPro™).

5-6

Ws6000

e a = MagicPro™ Memory and Programmable
Peripheral Programmer
Key Features O Programs All WSI CMOS Memory and [Programs LCC, PGA and QFP

and Programmable Peripheral Products
and All Future Programmable Products

[Programs 24, 28, 32 and 40 Pin
Standard 600 Mil or Slim 300 Mil Dip
Packages without Adaptors

Packaged Product by Using Adaptors
1 Easy-to-Use Menu-Driven Software

[Compatible with IBM PC/XT/AT
Family of Computers (and True
Plug-Compatible

General
Description

MagicPro is an engineering

development tool designed to program
existing WSI EPROMs, RPROMs,
Programmable Peripherals, and future WSI
programmable products. It is used within
the IBM-PC® and compatible computers.
The MagicPro is meant to bridge the gap
betweeen the introduction of a new WSI
programmable product and the availability
of programming support from programmer
manufacturers (e.g., Data I/O, etc.). The
MagicPro programmer and accompanying
software enable quick programming of
newly released WSI programmable
products, thus accelerating the system
design process.

The MagicPro plug-in board is integrated
easily into the IBM-PC. It occupies a short
expansion slot and its software requires

only 256K bytes of computer memory. The
two external ZIF-Dip sockets in the Remote
Socket Adaptor (RSA) support 24, 28, 32
and 40 pin standard 600 mil or slim 300

mil Dip packages without adaptors. LCC,
PGA and QFP packages are supported
using adaptors.

Many features of the MagicPro
Programmer show its capabilities in
supporting WSI's future products. Some of
these are:

[24 to 40 pin JEDEC Dip Pinouts

(4 1 Meg Address Space
(20 address lines)

[16 Data I/O Lines

ws6000

General The MagicPro menu driven software Please call 800-TEAM-WSI for information
nescription makgs using different features of the r.egarding programming WSI products not
(GOM. } MagicPro a.\n easy ta§k. Soﬁwarg updates listed herein. The MagncPro reads Intel
are done via floppy disk which eliminates Hex format for use with assemblers and
the need for adding a new memory device compilers.
for system upgrading.
MagicPro QO Help Q Fill RAM
Commands O Upload RAM from Device [Blank Test Device
[Load RAM from Disk [Verify Device
[Write RAM to Disk d Program Device
O Display RAM Data [Select Device
[Edit RAM [Configuration
(4 Move/Copy RAM [Quit MagicPro
Technical Q Size: [Remote Socket Adaptor (RSA):
Information IBM-PC Short Length Card The RSA contains two ZIF-Dip sockets
3 Port Address Location: that are used to program and read WSI
100H to 1FFH — default 140H (if a programmable products. The 32 pin
conflict exists with this address space, ZIF-Dip socket supports 24, 28 and 32
the address location can be changed pin standard 600 mil or slim 300 mil
in software and with the switches on Dip packaged product. The 40 pin
the plug-in board.) ZIF-Dip socket supports all 40 pin Dip
: . ackages. Adaptor sockets are
2 System Memory Requirements: gvailagle for LCpC, PGA and QFP
256K Bytes of RAM
packages.
Q Power:
+ 5 Volts, 0.03 Amp; +12 Volts,
0.04 Amp
Ordering The WS6000 MagicPro Systems Contains:
Infermation [MagicPro IBM-PC Plug-in Programmer Board

d MagicPro Remote Socket Adaptor and Cable
[MagicPro Operating System Floppy Disk and Operating Manual

The WS6000 MagicPro Adaptors Include:

WS6001 28-Pin CLLCC Package
Adaptor for Memory.

WS6008 28-Pin 0.3" Wide Dip Adaptor
for SAM448

WS6009 28-Pin PLDCC/CLDCC/
CLLCC Package Adaptor for SAM448
WS6010 88-Pin PGA Package Adaptor
for PAC1000

WS6012 32-Pin CLDCC Package
Adaptor for Memory

(d WS6013 100-Pin QFP Package
Adaptor for PAC1000

0 o o o o

J WS6014 44-Pin CLDCC/PLDCC
Package Adaptor for MAP168

WS6015 44-Pin PGA Package Adaptor
for MAP168 and PSD3XX

WS6016 44-Pin CLDCC/PLDCC
Package Adaptor for Memory

WS6020 52-Pin PQFP Package
Adaptor for PSD3XX

WS6021 44-Pin CLDCC/PLDCC
Package Adaptor for PSD3XX

o o o o

MagicPro™ is a trademark of WaferScale Integration, Inc.
IBM-PC® s a registered trademark of IBM Corporation.

sz ,

Wl
M
N
m

“'

PR
e L8
P
iy

EEIN

R P
s

s

Section Index

Package
Information

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363.

FEE == :
FES 55 Programmable Peripherals
—3 7 4 4 .
Package Information
Drawing Q1 | D |
100 Pin Plastic D1 - ~
Quad Flatpack, ool D3 ' ' c——“«” o
Gull Wing T
Fine Pitch (PQFP) AHARHARRRRARARAD T | S
ég [¢) . — L
39 index 5 =
=5 ark - -~
o] Fo E.
o3 - —
== = H—15
[=i= e 1
== o i
= Fo H—1
% = :%.
=5 E E3El E i
== & ==
o b i
o = —
oo o -
o = —
o =] L
=t = L
[=r= =) i
o] == H—L
=t= == "
[=i= b —
== =i —
[=r= =) —
(== Frs— 1t —
N\ |
LR EEEEEEEEEEEEELLD] .
T 1
1 R
J L B el Rev. 0
Family: Plastic Quad Flatpack
Millimeters Inches
Symbol Min Max Notes Min Max Notes
a Qo 80 00 80
A - 3.40 - 0.134
Al 0.00 0.25 0.010 -
A2 2.57 2.87 0.101 0.113
B 0.22 0.38 0.009 0.015
C 0.13 0.23 0.005 0.009
D 16.95 17.45 0.667 0.687
D1 13.90 14.10 0.547 0.555
D3 12.35 Reference 0.486 Reference
E 22.95 23.45 0.904 0.923
E1 19.90 20.10 0.783 0.791
E3 18.85 Reference 0.472 Reference
el 0.65 Reference 0.026 Reference
L 060 [095 0.024 | 0.037
N 100 100
L1

6-2

Package Information

Drawing V1 92 Pin Ceramic Quad Flatpack (CQFP)

0.015" Max
92 PL
—{|+=—0.050" Typ, 4 PL 0.105 —»
+0.013"
O @)
0.025" Typ
External Pitch
Q 84 PL
UV Lens _{
_ 7
2.005"
Ref
4 PL
N
— 4—\
0.0256" Typ
Internal Pitch
88 PL

1.800" Ref, 4 PL

1.930" Ref, 4 PL

. 0.006
Ceramic Caj 0.060+0.006" "
P~ 1 r +.002/-0.001" |
 S— _ T N —T
Ceramic Gold
Package

«—0 5510 008" } Plated 0.035" Typ]

Pin, 92 PL Non-Conductive
Ceramic Tie-Bar

0.787
+0.010"

N

Package Information

Drawing X1 88 Pin Ceramic PGA

INDEX
MARK
l A2 131211109 8 7 6 5 4 3 2 1
I At i
(‘O Lu=——£ @@@@@@@@@@@@ﬂ-A——
— | 000000000000 | B
—— Bl |©0© @@ | C
F—— ©© @0 | E
—_ ! (o6 50| ¢ e
E ———— 00
= ©0 ©© | H
— B |©@0O ©0 | J
1 ©0 00 | K
L ! |coo0o00000000006|M
| = el @@@@@@@@@@@@%FN—-
' D ' LA el—s |e— Standoff
D2 Pins,
4 Places
X1b Rev 2
Family: Ceramic Pin Grid Array Package
Millimeters Inches
Symbol Min Max Notes Min Max Notes
A 3.30 4.83 0.130 0.190
Al 1.02 Typical 0.040 Typical
A2 2.41 3.43 0.095 0.135
B 0.41 0.51 Diameter 0.016 0.020 Diameter
B1 1.02 Typical Dia. 0.040 Typical Dia.
D 32.51 | 33.91 1280 | 1.335
D2 30.48 Reference 1.200 Reference
E 3251 | 33.91 1280 | 1.335
E2 30.48 Reference 1.200 Reference
el 2.54 Reference 0.100 Reference
L 330 | 4.32 0130 | 0.170
N 88 88
X1b
=
Yiss

6-3

64

.
Sales Representatives
and Distributors

Section Index

Sales

Representatives

and Distributors

For additional information,
Call 800-TEAM-WSI (800-832-6974).
In California, Call 800-562-6363

Sales Representatives and Distributors

Domestic
Representatives

ALABAMA

Rep Inc
Huntsville
Tel (205) 881-9270
Fax (205) 882-6692

ARIZONA

Summit Sales
Scottsdale

Tel (602) 998-4850
Fax (602) 998-5274

CALIFORNIA

Bager Electronics, Inc
Fountain Valley

Tel (714) 957-3367
Fax (714) 546-2654

Bager Electronics, Inc
Woodland Hills

Tel (818) 712-0011
Fax (818) 712-0160

Earle Assoc , Inc
San Diego

Tel (619) 278-5441
Fax (619) 278-5443

| Squared, Inc
Santa Clara

Tel (408) 988-3400
Fax (408) 988-2079

CANADA

Intelatech, Inc
Mississauga

Tel. (416) 629-0082
Fax. (416) 629-1795

COLORADO

Waugaman Assoclates, Inc
Wheat Ridge

Tel (303) 423-1020

Fax (303) 467-3095

CONNECTICUT

Advanced Tech Sales
Wallingford

Tel (203) 284-0838

Fax (203) 284-8232

FLORIDA

QXi of Florida, Inc
Fort Lauderdale

Tel (305) 978-0120
Fax. (305) 972-1408

QXi of Florida, Inc
Orlando

Tel. (407) 872-2321
Fax (407) 321-2098

QX of Florida, Inc
St Petersburg

Tel. (813) 894-4556
Fax- (813) 894-3989

GEORGIA

Rep Inc

Tucker

Tel (404) 938-4358
Tax (404) 938-0194

ILLINOIS

Victory Sales
Hoffman Estates

Tel (708) 490-0300
Telex 206248

Fax (708) 490-1499

INDIANA

Giesting & Associates
Carmel

Tel (317) 844-5222
Fax (317) 844-5861

IOWA

Gassner & Clark Co
Cedar Rapids

Tel (319) 393-5763
Twx 62950087

Fax (319) 393-5799

KANSAS/NEBRASKA

C Logsdon & Assoc
Prairie Village

Tel (913) 381-3833

Fax (913) 381-9774

KENTUCKY

Giesting & Associates
Versailles

Tel (606) 873-2330
Fax (606) 873-6233

MARYLAND/VIRGINIA

New Era Sales, Inc

Severna Park

Tel (410) 544-4100

Fax (410) 544-6092

MASSACHUSETTS

Advanced Tech Sales, Inc
North Reading

Tel (508) 664-0888

Fax (508) 664-5503

MICHIGAN

Giesting & Associates
Comstock Park

Tel (616) 784-9437
Fax (616) 784-9438

Giesting & Associates
Livonia

Tel (313) 478-8106
Fax (313) 477-6908
MINNESOTA

OHMS Technology, Inc
Edina

Tel (612) 932-2920
Fax (612) 932-2918

MISSOURI

John G Macke Company
St Louis

Tel (314) 432-2830

Fax (314) 432-1456

NEW JERSEY

Metro Logic Corp
(AT&T only)
Fairfield

Tel (201) 575-5585
Fax (201) 575-8023

Strategic Sales, Inc
Teaneck

Tel (201) 833-0099
Fax (201) 833-0061

S J Associates, Inc
Mt Laurel, NJ 08084
Tel (609) 866-1234
Fax (609) 866-8627

NEW MEXICO

S & S Technologies
Albuquerque

Tel (505) 298-7177
Fax (505) 298-2004

NEW YORK

Strategic Sales, Inc
New York City

Tel (201) 833-0099
Fax (201) 833-0061

Tri-Tech Electronics, Inc
East Rochester

Tel (716) 385-6500
Twx 62934993

Fax (716) 385-7655

Tri-Tech Electronics, Inc
Fayetteville

Tel (315) 446-2881
Twx 7105410604

Fax (315) 446-3047

Tri-Tech Electronics, Inc
Fishkill

Tel (914) 897-5611
Twx 62906505

Fax (914) 897-5611

NORTH CAROLINA

Rep, Inc

Mornsville

Tel (919) 469-9997
Fax (919) 481-3879

OHIO

Giesting & Associates
Cincinnatt

Tel: (513) 385-1105
Fax (513) 385-5069

Giesting & Associates
Cleveland

Tel. (216) 261-9705
Fax (216) 261-5624

Giesting & Associates
Columbus

Tel (614) 459-4800
Fax (614) 459-4801

OKLAHOMA

West Associates
Tulsa

Tel (918) 665-3465
Fax (918) 663-1762

OREGON

Thorson Company
Northwest

Portland

Tel (503) 293-9001

Fax (503) 293-9007

PENNSYLVANIA

Giesting & Associates
Pittsburgh

Tel (412) 828-3553
Fax (412) 828-6160

Metro Logic Corp
(AT&T only)
Fairfield, NJ

Tel (201) 575-5585
Fax (201) 575-8023

S J Associates, Inc
Mt Laurel, NJ 08084
Tel (609) 866-1234
Fax (609) 866-8627

PUERTO RICO

QXi of Florda, Inc
Fort Lauderdale

Tel (305) 978-0120
Fax (305) 972-1408

TENNESSEE

Rep Inc

Jefferson City

Tel (615) 475-9012
Fax (615) 475-6340

TEXAS

West Associates
Austin

Tel (512) 343-1199
Fax (512) 343-1922

West Assoclates
Houston

Tel (713) 621-5983
Fax (713) 621-5895

West Assoclates
Richardson

Tel (214) 680-2800
Fax (214) 699-0330

Sales Representatives and Distributors

Domestic UTAH WASHINGTON WISCONSIN
ng’esgntaﬁves Utah Component Thorson Company Victory Sales
Sales Inc. Northwest Milwaukee
(Cont.) Midvale Bellevue Tel- (414) 789-5770
Tel (801) 561-5099 Tel: (206) 455-9180 Fax: (414) 789-5760
Fax. (801) 561-6016 Twx. 9104432300
Fax: (206) 455-9185 OHMS Technology, Inc.
Edina, MN
Tel: (612) 932-2920
Fax: (612) 932-2918
i ALABAMA Insight COLORADO Arrow/Schweber
gqme.:t'c Arrow/Schweber Irvine Arrow/Schweber AT&T DOES Center
istributors o Tel: (714) 727-3201 Englewood ;el:.(9§g1) 949‘;7623
Tel: (205) 837-6955 Insight Tel (303) 799-0258 ax (201) 984-8908
Fax: (205) 721-1581 Sunnyvale Fax: (303) 799-0730 Marsh Electronics

Time Electronics
Huntsville
Tel* (205) 721-1133

ARIZONA

Arrow/Schweber
Tempe

Tel: (602) 431-0030
Fax: (602) 431-9555

Insight
Tempe
Tel: (602) 829-1800

Insight
Tucson
Tel: (602) 792-1800

Time Electronics
Tempe
Tel: (602) 967-2000

Wyle Laboratories
Phoenix
Tel: (602) 437-2088

CALIFORNIA

Arrow/Schweber
Calabasas
Tel. (818) 880-9686

Arrow/Schweber
San Diego
Tel: (619) 565-4800

Arrow/Schweber
San Jose
Tel. (408) 441-9700

Arrow/Schweber
San Jose
Tel: (408) 432-7171

Arrow/Schweber
Tustin
Tel: (714) 838-5422

F/X Electronics
Calabasas
Tel: (818) 591-9220

Insight

San Diego

Tel* (619) 587-1100
Insight

Westlake Village
Tel: (818) 707-2101

Tel. (408) 720-9222

Time Electronics
Anaheim
Tel: (714) 669-0100

Time Electronics
Chatsworth
Tel: (818) 998-7200

Time Electronics
San Diego
Tel (619) 578-2500

Time Electronics
Sunnyvale
Tel: (408) 734-9888

Time Electronics
Torrance
Tel: (213) 320-0880

Wyle Laboratories
Santa Clara
Tel: (408) 727-2500

Wyle Laboratories
Rancho Cordova
Tel: (916) 638-5282

Wyle Laboratories
Irvine
Tel (714) 863-9953

Wyle Laboratories
Irvine (Military Div.)
Tel: (714) 851-9953

Wyle Laboratories
Calabasas
Tel: (818) 880-9000

Wyle Laboratories
San Diego
Tel: (619) 565-9171

CANADA

Arrow/Schweber
Burnaby, B. C.
Tel: (604) 421-2333

Arrow/Schweber
Dorval, Quebec
Tel (514) 421-7411

Arrow/Schweber
Mississauga, Ontario
Tel: (416) 670-7769

Arrow/Schweber
Nepean, Ontario
Tel: (613) 226-6903

Insight
Aurora
Tel: (303) 693-4256

Time Electronics
Englewood
Tel* (303) 799-8851

Wyle Laboratories
Thornton
Tel: (303) 457-9953

CONNECTICUT

Arrow/Schweber
Wallingford

Tel: (203) 265-7741
Fax: (203) 265-7988

Time Electronics
Tel: (203) 271-3200

FLORIDA

Arrow/Schweber
Deerfield Beach
Tel: (305) 429-8200
Fax: (305) 428-3991

Arrow/Schweber
Lake Mary
Tel* (407) 333-9300

Time Electronics
Tel: (305) 484-7778

Time Electronics
Orlando
Tel: (407) 841-6565

Vantage Components
Altamonte Springs
Tel: (407) 682-1199

Vantage Components
Deerfield Beach
Tel: (305) 429-1001

GEORGIA

Arrow/Schweber
Duluth
Tel: (404) 497-1300

Time Electronics
Tel: (404) 448-4448
ILLINOIS

Arrow/Schweber
Itasca
Tel: (708) 250-0500

Schaumburg
Tel: (708) 240-9290

Time Electronics
Schaumburg
Tel: (708) 303-3000

INDIANA

Arrow/Schweber
Indianapolis

Tel: (317) 299-2071
Fax: (317) 299-2379

Time Electronics
Tel: (800) 331-5114

IOWA

Arrow/Schweber
Cedar Rapids

Tel: (319) 395-7230
Fax: (319) 395-0185

Time Electronics
Tel. (800) 325-9085

KANSAS

Arrow/Schweber
Lenexa

Tel* (913) 541-9542
Fax: (913) 541-0328

Time Electronics
Tel (800) 325-9085

KENTUCKY

Time Electronics
Tel- (800) 331-5114

MARYLAND

Arrow/Schweber
Columbia

Tel: (301) 596-7800
Fax: (301) 596-7821

Time Electronics
Baltimore
Tel: (301) 964-3090

Vantage Components

Columbia

Tel: (301) 720-5100
or. (301) 621-8555

72

Sales Representatives and Distributors

Domestic
Distributors
(Cont.)

MASSACHUSETTS

Arrow/Schweber
Wilmington
Tel" (508) 658-0900

Port Electronics
Tyngsboro
Tel (508) 649-4880

Time Electronics
Peabody
Tel: (508) 532-9900

Wyle Laboratories
Burlington
Tel (617) 272-7300

MICHIGAN

Arrow/Schweber
Livonia

Tel (313) 462-2290
Fax. (313) 462-2686

Time Electronics
Tel (800) 331-5114

MINNESOTA

Arrow/Schweber
Eden Prarrie

Tel. (612) 941-5280
Fax (612) 941-9405

Arrow/Schweber
Eden Praine

Tel: (612) 941-1506
Fax: (612) 943-2086

MISSOURI

Arrow/Schweber

St Louis

Tel (314) 567-6888
Fax (314) 567-1164

Time Electronics
Manchester
Tel: (314) 391-6444

NEBRASKA

Time Electronics
Tel* (800) 325-9085

NEW JERSEY

Arrow/Schweber

AT&T DOES Center
Tel (908) 949-7627
Fax (201) 984-8708

Arrow/Schweber
Holmdel

Tel* (908) 949-4700
Fax (908) 949-4035

Arrow/Schweber
Marlton

Tel (609) 596-8000
Fax (609) 596-9632

Arrow/Schweber
Pine Brook

Tel (201) 227-7880
Fax (201) 227-2064

Time Electronics
Marlton
Tel (609) 596-6700

Time Electronics
N. New Jersey
Tel: (201) 882-4611

Vantage Components
Clifton
Tel: (201) 777-4100

NEW MEXICO

Insight
Tel (505) 823-1800

NEW YORK

Arrow/Schweber
Melville (Headquarters)
Tel (516) 391-1300

Arrow/Schweber
Hauppauge

Tel* (516) 231-1000
Fax (516) 231-1072

Arrow/Schweber
Rochester

Tel" (716) 427-0300
Fax (716) 427-0735

Time Electronics
Hauppauge (NYC)
Tel (516) 273-0100

Time Electronics
East Syracuse
Tel (315) 432-0355

Time Electronics
Rochester
Tel (716) 383-8853

Vantage Components
Smithtown
Tel (516) 543-2000

NORTH CAROLINA

Arrow/Schweber
Raleigh

Tel (919) 876-3132
Fax. (919) 878-9517

Time Electronics
Tel (800) 833-8235

NORTH DAKOTA

Time Electronics
Tel (800) 331-5114

OHIO

Arrow/Schweber
Solon

Tel (216) 248-3990
Fax. (216) 248-1106

Arrow/Schweber
Centerville

Tel: (513) 435-5563
Fax: (513) 435-2049

Time Electronics
Columbus
Tel. (614) 761-1100

OKLAHOMA

Arrow/Schweber
Tulsa

Tel* (918) 252-7537
Fax. (918) 254-0917

OREGON

Almac/Arrow Electronics
Beaverton

Tel (503) 629-8090
Fax: (503) 645-0611

Insight
Portland
Tel (503) 644-3300

Time Electronics
Portland
Tel (503) 684-3780

Wyle Laboratories
Beaverton
Tel (503) 643-7900

PENNSYLVANIA

Arrow/Schweber
Pittsburgh (Sales Office)
Tel (412) 963-6807
Fax (412) 963-1573

Time Electronics
Philadelphia
Tel: (215) 337-0900

Time Electronics
Pittsburgh
Tel. (800) 331-5114

Time Electronics
Marlton, NJ
Tel (609) 596-6700

SOUTH DAKOTA

Time Electronics
Tel: (800) 331-5114

TEXAS

Arrow/Schweber
Austin

Tel (512) 835-4180
Fax: (512) 832-9875

Arrow/Schweber
Carrollton

Tel (214) 380-6464
Fax (214) 248-7208

Arrow/Schweber
Houston

Tel (713) 530-4700
Fax (713) 568-8518

Insight
Austin
Tel (512) 467-0800

Insight
Ft. Worth
Tel (817) 338-0800

Insight
Houston
Tel (713) 448-0800

Insight
Richardson
Tel. (214) 783-0800

Time Electronics
Austin
Tel: (512) 339-3051

Time Electronics
Houston
Tel (713) 530-0800

Time Electronics
Richardson
Tel (214) 241-7441

Wyle Laboratories
Austin
Tel" (512) 345-8853

Wyle Laboratories
Houston
Tel" (713) 879-9953

Wyle Laboratories
Richardson
Tel" (214) 235-9953

UTAH

Arrow/Schweber
Salt Lake City
Tel: (801) 973-6913

Fax (801) 972-0200

Time Electronics
West Valley
Tel (801) 973-8181

Wyle Laboratories
West Valley
Tel (801) 974-9953

WASHINGTON

Almac/Arrow Electronics

Bellevue
Tel. (206) 643-9992

Fax- (206) 643-9709

Almac/Arrow Electronics

Spokane
Tel. (509) 924-9500

Fax' (509) 928-6096

Insight
Kirkland
Tel* (206) 820-8100

Time Electronics
Redmond
Tel. (206) 882-1600

Wyle Laboratories
Redmond
Tel (206) 881-1150

WISCONSIN

Arrow/Schweber
Brookfield
Tel: (414) 792-0150

Fax (414) 792-0156

Marsh Electronics
Milwaukee
Tel: (414) 475-6000

Time Electronics
Tel: (800) 331-5114

7-3

Sales Representatives and Distributors

i AUSTRALIA GERMANY ITALY PORTUGAL
’ﬂ.teﬂ!atlﬂ”al GEC/George Brown Jermyn GmbH Comprel s.p.a. ATD Electronica, Lda
Distributors Rydalmare, N.S.W. 6250 Limburg 20092 Cinisello B. Rua Faria de

Tel: 61-2-638-1888 Tel: (06) 431-5080 Milano Vasconcelos, 3-A
Fax: 61-2-638-1798 Fax: (06) 431-508289 Tel: (02) 6120641/5 1900 Lisboa
Tix. 332484 COMPRL Tel: 3511-847-2200
AUSTRIA Scantec GmbH Fax: (02) 6128158 Fax: 3511-847-2197
Eljapex D-33 Planegg !
Eitnergasse 6 Tel: (089) 859-8021 Silverstar SINGAPORE
A-1232 Wein Tix: 5213219 20126 Milano Westech Electronics
Tel: (43) 222-86-15-31 Fax: (089) 857-6574 Tel: 39 2661251 Singapore 1334
Fax: (43) 222-86-15-31-200 Fax: 39 266101922 Tel. 65-743-6355
BELGIUM, LUX Topas Electronic GmbH Tix: RS 55070
D&D Electronics bvba 3000 Hannover 1 JAPAN WESTEC
Antwer Tel: (0511) 13-12 -17 Internix, Inc. Fax: 65-746-1396
Tel: 8238277034 Tix: 9218176 S onada SPAIN
Fax: 32-38287254 Fax. (0511) 13-12-16 Nishi-Shinjuku, Shinjuku-Ku ggg:z'gfr‘] do Maria 80
HOLLAND Tokyo 160 !
Qe Arcobel bv Tel: 813-3-369-1105 2800 Maard
101 Kokkedal Industripark Griekenweg 25 Fax: 813-3-363-8486 T? S43819
DK-2980 Kokkedal 5342 Px 0SS Fox: 415.86.52
Tel: 45-42-24-48-88 Tel: 31-4120-42322 Kyocera Corporation ax: 419-80-
Fax: 45-42-24-48-89 Fax. 31-4120-30635 Setagaya—ku, TOkyO SWEDEN
) Tel: 813-3-708-3111 :
UNITED KINGDOM HONG KONG Tix 7812466091 B Eoetronics A/B
) , Ltd. Fax 813-3-708-3864
Y Fax: 852-865-0639 Nippon Imex Corporati Tel: 8-7051800
Tel: 44-84-426-1939 ippon Imex Corporation Fax: 8-836918
Fax' 44-84-426-1678 INDIA Setagaya-ku, Tokyo
FINLAND Pamir Electronics Corp, Tel: 813-3-321-8000 SWITZERLAND
Nortec Electronics OY 400 West Lancaster TIx4.781 23444 Eljapex
Norteo Electronios Devon, PA 19333 USA Fax: 813-3-325-0021 gardsst;;a %2wemngen
Tel” 358-067-02-77 E;lng féﬁggggggz KOREA . Tol: (41) 56-27-57-77
Tix: 857125876 Tix: 210656 Pamir UR Eastern Electronics, Inc. Fax: (41) 56-26-14-86
Fax' 358-06922326 . Kangnam-Gu, Seoul
Tel: 82-2-553-2997 Laser & Electronic
FRANCE (lsegtfﬂ:cs Tix: 78727381 Equipment
M 60 Medinat Hayehudim St. Fax: 82-2-653-2098 8053 Zurich
78152 LE CHESNAY PO Box 2024 NORWAY el a1 (1) 83330
CEDEX Herzlia B 46120, Israel Nortec Electronics A/S Fax: 41 (1) 55-34-58
Tel: 33 (1) 39-54-91-13 Tel: 972-52-556070 Postboks 123 TAIWAN
Tix: 698376F Tix: 922342579 N-1364 Hvalstad Ally, Inc.
Fax. 33 (1) 39-54-30-61 Fax: 972-52-556508 Tel. 2-84-62-10 Taipei
! Fax: 2-84-65-45 Tel: 886-2-788-6270
’E‘;‘"fsme' Fax: 886-2-786-3550
91941 Les Ulis
CEDEX
Tel: 33 (1) 69-07-08-24
Tix. 692493F
Fax: 33 (1) 69-07-17-23
WS! Direct REGIONAL SALES Mid-Atlantic EUROPE SALES ASIA SALES
- Northeast Trevose, PA WSI - France WSI - Asia, Ltd.
Sales Offices Stow, MA Tel. (215) 638-9617 2 voie LA CARDON 1006 C.C. Wu Bidg.
Tel. (508) 685-6101 Fax: (215) 638-7326 91126 PALAISEAU 302-308 Hennessy Road

Fax: (508) 685-6105

Midwest

Hoffman Estates, IL
Tel: (708) 882-1893
Fax: (708) 882-1881

Southwest

Irvine, CA

Tel: (714) 753-1180
Fax: (714) 753-1179

Southeast

Dallas, TX

Tel: (214) 680-0077
Fax: (214) 680-0280

Northwest
Fremont, CA

Tel: (510) 656-5400
Telex: 289255

Fax: (510) 657-5916

CEDEX, France
Tel: 33 (1) 69-32-01-20
Fax: 33 (1) 69-32-02-19

WSI — Germany

c/o B&RS

Rosenstrasse 7

8000 Munich 2, Germany
Tel: (49) 89.23 11 38.49
Fax: (49) 89.23.11.38.11

Wan Chai, Hong Kong
Tel: 852-575-0112
Fax. 852-893-0678

Corporate
Headquarters

47280 Kato Road
Fremont, CA 94538
Tel: (510) 656-5400
Fax: (510) 657-5916

7-4

2/14/92 Rev. 1.53

LIFE SUPPORT POLICY:
WaferScale Integration, Inc. (WSI) products are not authorized for use as critical components in life support systems or devices without the express
written approval of the President of WSI As used herein:

A) Life support devices or systems are devices or systems which 1) are intended for surgical implant into the body, or 2) support or sustain life
and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected
to result in a significant injury or death to the user,

B) A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
fallure of the life support device or system or to affect its safety or effectiveness.

Information furnished herein by WaferScale Integration, Inc (WSI) 1s believed to be accurate and reliable. However, no responsibility I1s assumed
for its use WSI makes no representation that the use of its products or the interconnection of its circuits, as described herein, will not infringe
on existing patent rights No patent hability shall be incurred by WSI for use of the circuits or devices described herein WSI does not assume
any responsibility for use of any circuitry described, no circuit patent rights or licenses are granted or impled, and WSI reserves the right without
commitment, at any time without notice, to change said circuitry or specifications. The performance characteristics listed in this book result from
specific tests, correlated testing, guard banding, design and other practices common to the industry. Information contained herein supersedes
previously published specifications Contact your WSI sales representative for specific testing details or latest information

Products in this book may be covered by one or more of the following patents Additional patents are pending

U.S.A. 4,328,565; 4,361,847, 4,409,723, 4,639,893, 4,649,520, 4,795,719; 4,763,184, 4,758,869,
5,006,974, 5,016,216; 5,014,097, 5,021,847, 5,034,786

West Germany" 3,103,160

Japan: 1,279,100

England 2,073,484, 2,073,487

MagicPro™ is a trademark of WaferScale Integration, Inc
IBM and IBM Personal Computer are registered trademarks of International Business Machines Corporation

Copyright © 1991 WaferScale Integration, Inc. All Rights Reserved.

Patents Pending

Rev.14

SE=ss 7-5

— m— a—
—— S A—
— —
e

— o
| — p—

~...

47280 Kato Road

Fremont, California 94538-7333
Phone: 510/656-5400

Fax: 510/657-5916

TELEX: 289255

800/ TEAM-WSI (800/832-6974)
In California 800/562-6363

Printed in U.S.A. 2/92

