
WEITE~

(-

C'~

C:

XL 3232
32-BIT GRAPHICS
FLOATING POINT
COMPUTATION UNIT

PRELIMINARY DATA
August 1988

The WEITEK XL 3232 single-chip
graphics floating point unit offers a
full instruction set including multi­
ply, multiply/accumulate, add, sub­
tract, type conversion, and divide
look-up operations. Efficient de­
sign and architecture, combined
with CMOS technology, provide up
to 25 MFLOPS of performance at
very low power. Its on-chip register
file and MAC architecture make the
device useful for Bezier evalua­
tions, matrix transforms, and other
graphics operations.

Related products: XL-8236 32-bit
raster code sequencer, XL-8237 32-
bit raster image processor

Contents

Features

Description

Architecture 2

Signal Description 4

Block Diagram 5

XL-8232 Architecture 6

Register File 11

Multiplier/Accumulator 12

Thmporary Registers 17

Internal Data Routing 20

Input/Output 24

System Interfacing 25

Instruction Set 29

Initialization 34

Division 37

Data Format 38

mEE Considerations 40

DC Specifications 41

Timing Diagrams 42

AC Specifications 44

Pin Configuration 45

Packaging 46

Ordering Information 47

Documentation Request Form 51

Sales Offices back cover

XL-3232 Graphics Floating Point Computation Unit Data Sheet
August 1988

Copyright © WEITEK Corporation 1988
All rights reserved

WEITEK Corporation
1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400

WEITEK and HyperScript-Processor are trademarks of
WEITEK Corporation

PostScript is a registered trademark of Adobe Systems Corporation
Bitstream and FontWare are trademarks of Bitstream Corporation
URW and NIMBUS are trademarks of URW Corporation
UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corp.
Apple and LaserWriter Plus are trademarks of Apple Computer,
Inc.

WEITEK reserves the right to make changes to these specifications
at any time

Printed in the United States of America
90 89 88 7 6 5 4 3 2 1

o

C)

o

(
Features

32-BIT FLOATING-POINT PROCESSOR

Single-precision floating-point multiplier/ AL U

Four-port 32 X 32 register file for local variable and
matrix element storage

Low power, high integration CMOS

FULL FUNCTION

Add, subtract, multiply, multiply/accumulate

Divide look-up table

Type conversion to and from two's complement integer

Three-address (re := ra + rb) architecture

Description

The XL-3232 is a single-precision floating-point com­
putation unit. It includes a pipelined mUltiplier/accu­
mulator and a four-port register file with thirty-two
32-bit registers.

The XL-3232 is suited to a wide range of systems that
need high-performance image and graphics processing.

The XL-3232 has a single bi-directional 32-bit input/
output port.

The XL-3232 is used with the WEITEK XL-8236 ras­
ter code sequencer (RCS) and XL-8237 raster image
processor (RIP) to create a fast, general-purpose nu­
meric processor, the XL-8232. Full development sys­
tem support-including a C compiler and a PostScript­
compatible interpreter-is available for the XL-8200
Series of processors.

The XL-3232 is a low-power CMOS device which is
available in a standard 144-pin ceramic PGA (pin grid
array) package.

1

XL-3232
32-BIT GRAPHICS
FLOATING POINT
COMPUTATION UNIT

PRELIMINARY DATA
August 1988

HIGH PERFORMANCE

20 to 60 page per minute PostScript® print times

Up to 25 MFLOPS throughput (1 MAC/cycle)

Low latency (three-cycle register-to-register
operations)

X Port

o

32X32
Register

File

c

Figure 1. XL-3232 core functions

Architecture

MULTIPLIER/ACCUMULATOR

The core of the XL-3232 is the multiplier/accumulator
pipeline. Its first stage can multiply two operands to­
gether. The next stage can add or subtract another op­
erand. Finally, the result is rounded and returned to a
register and/or output port.

Multiply, add, subtract, and multiply/accumulate op­
erations are performed in the multiplier/accumulator.
They all operate on data that conforms to the IEEE
single-precision floating-point format.

Each operation takes three cycles, but a new operation
can be started on every cycle because the multiplier/ac­
cumulator is pipelined. Three independent operations
may be at different stages in their execution at any
time.

Rounding, conversion between floating-point and two's
complement integer formats, and other miscellaneous
functions are performed in the accumulator.

Code
Port

X Port

REGISTER FILE

Operands and results of the multiplier/accumulator
may be stored in the four-port register file. This file
contains thirty-two registers, each of which may store a
32-bit value.

The four ports allow the register file to supply two oper­
ands to the multiplier/accumulator, store its result back
to a register, and perform an input/output transfer-all
in the same cycle.

INPUT/OUTPUT PORT

The external I/O port is 32 bits wide. It can transfer a
data value on every cycle.

The XL-3232 has one bi-directional external port; the
X port. It can load and store data to and from the reg­
ister file, and it can transfer data directly to and from
the multiplier/accumulator.

XL-3232

Figure 2. XL-3232 I/O

2

o

o

(

Architecture, continued

TEMPORARY REGISTERS

Three 32-bit temporary registers are provided to store
intermediate results. They make it possible to perform
operations of the form

x = x ± (yxz)

in a single cycle.

DIVIDE LOOK-UP TABLE

Support for divide operations is provided by an on-chip
look-up table. It returns an approximation for the in­
verse of a value which is then refined by iterative multi­
ply/accumulate operations. Division is accomplished by
multiplying the dividend by the inverse of the divisor.
This complete divide operation takes eighteen cycles;
other operations may be interleaved without a perform­
ance penalty.

INSTRUCTIONS

An instruction is latched into the code port on every
cycle. An instruction specifies operand sources, a result
destination and all of the steps that will create this re­
sult during the next three cycles. Condition codes and
exceptions may be generated by each operation as the
result is written back to the register file.

Four five-bit fields provide addresses for the register
file. They each select a source or destination for one of
the register ports. The three-bit function field specifies
the type of multiplier/accumulator operation. The two­
bit I/O control field directs data transfer at the external
X port. Other fields select the route taken by the data
during the the operation.

XL-3232
32-BIT GRAPHICS
FLOATING POINT
COMPUTATION UNIT

PRELIMINARY DATA
August 1988

XL-8200 SERIES COMPATIBILITY

The XL-3232 is used with the WEITEK XL-8236 ras­
ter code s~ quencer (RCS) and XL-8237 raster image
processor (RIP) to create the XL-8232 processor.

The XL-3232 graphics floating-point unit (FPU)
shares a 64-bit instruction word with the RIP and RCS.
The RIP and FPU also share the 32-bit-wide data bus.

The XL-3232 responds to the NEUT- and STALL- sig­
nals used to control branching and "wait states" within
the XL-8232. It communicates its status to the RCS
with the floating-point condition (FPCN) and exception
(FPEX) lines.

Code Address Bus Code ...
Memory

,64 Code Bus
I

...2.<1:=81.32.. r-- ------ --
I

Processor

I
XL-8236 XL-8237 XL-3232 I

I
RCS RIP GFPU

I
L_ --- ---- --- ----- --
LF 32 Data Bus

I

32 Data Address Bus
I

Lr Data
Memory

,
I
I
I
I
I

.J

A mode register controls data routing options that Figure 3. XL-8232 block diagram
rarely change, and selects between a number of I/O
timing options.

3
© Copyright WEITEK 1988

All Rights Reserved

Signal Description

X PORT

The 32-bit X31 .. 0 port is a bi-directional data bus. Input
data is sampled on the rising edge of ClK (or, if dou­
ble-pump mode is enabled, both on the rising and fall­
ing edges of ClK). Data transfers are controlled by the
IOCh .. o field in the instruction word. The X port may
be set to a high impedance state by the OEX- signal.
Active high.

C PORT

The 34-bit C33 .. 0 port is used as a code input bus. In­
structions are latched the rising edge of ClK. Active
high.

OEX-

X port output enable input. OEX- asynchronously dis­
ables the X port when high. Active low.

FPEX-

Floating-point exception output. FPEX signals the oc­
currence of an enabled exception (overflow).

FPCN

Floating-point condition output. FPCN signals the oc­
currence of a condition as specified in the Encn1..o
field of an instruction. Active high.

ZERO

Zero condition output. Indicates that the result of an
operation is exactly equal to zero. Controlled by the
Encn1 .. 0 field of an instruction. Active high.

4

NEUT-

Neutralize input. Cancels the effect of the current in­
struction. Typically used during delayed branches and
interrupt response routines (see page 27). Latched on
the cycle following the instruction to be cancelled. Ac­
tive low.

STALL-

Stall input. Cancels the effect of the next instruction.
Typically used as a "not ready" line from the code
memory (see page 28). Latched on the same cycle as
the potentially invalid instruction. Active low.

CLK

Clock input. TTL compatible.

VDD

All VDD pins must be connected to S.OV.

GND

All GND pins must be connected to system ground.

Note: Signals denoted by "-" are active low.

o

o

(

(

Block Diagram

X31 .. 0

D

OEX-

" ,.----,.'-------' ST 0 R E

r-------'-------, Dadd =
'----.------.<""'"--' Cadd

C

32 X 32 Register File

XL-3232
32-BIT GRAPHICS
FLOATING POINT
COMPUTATION UNIT

PRELIMINARY DATA
August 1988

NEUT - ST ALL- C33 .. o

NOP NOP
34

CURRENT NEXT

32 X 32 I+--t------f--,Adst
Treg Aadd

~~~==~==~~ ____ ~-+_~Badd 
Cadd Dadd 

L----r-------,-~~--~---t_---~j_iCwen-IOCt 

Aadd = 
Cadd/ 
Dadd 

Badd = 
Cadd 

32 
ABus ----~--------------~_,--------------~------~~~_+--~r_--~ 
BBus ____ +_------~~------~--------~--~~------~~~32~+_--~--~~ 

CLK o 
VDD 

o 
GND o 
FPEX 

"0" "2" 

c=:==~[Q8=:::==::=}---t_-+-_1~t_-_1 Abin 

LOOK 
UP 

ROM 

32 

Enen 

('- FPCN 

Figure 4. XL-3232 block diagram 

5 
© Copyright WEITEK 1988 

All Riphts Reserved 



XL-8232 Architecture 

WEITEK XL-8200 SERIES 

The WEITEK XL-8200 Series is a family of two VLSI 
processors: the XL-8200, a high-speed 32-bit integer 
processor; and the XL-8232, a single-precision float­
ing-point processor. 

These processors give the performance of RISC proces­
sors, and are supported by a full complement of devel­
opment tools. These include C and FORTRAN 77 
compilers and an assembler. A development system of­
fers both hardware and software simulators with debug­
ging facilities. The programmer remains free to, create 
custom assembly-language routines for peak perform­
ance. 

This data sheet is dedicated to the XL-8232 single-pre­
cision floating-point processor. Further information 
may be found in the XL-8200 Overview, the XL-8200 
Designer's Binder, the XL-8236 Data Sheet, and the 
XL-8237 Data Sheet. 

The XL-8232 processor consists of three intercon­
nected VLSI components: 

• XL-8236 raster code sequencer (RCS) 

• XL-8237 raster image processor (RIP) 

• XL-3232 graphics floating-point unit (FPU) 

Each of these components is manufactured in high­
density, low-power CMOS. They are delivered in 
144-pin PGA packages. 

The XL-8200 Series simplifies system design. Zero­
glue interfacing is provided by a small number of dedi­
cated signals that communicate state information be­
tween the components. These signals and the system 
buses need only be connected as shown in figure 8 in 
order to create the XL-8232. The purpose of each in­
terconnection is described in detail below. 

BUSES 

Four high-bandwidth system buses are provided by the 
XL-8232: 

1. Code bus. 

The 64-bit code bus feeds the code input ports of 
the RCS, RIP and FPU. The RCS and RIP share 32 
of the 64-bits; this half of the code word directs 
program control operations, address generation, 
loads and stores, and integer arithmetic. The re­
mainder of the code word directs fl0ating-point op­
eration. 

6 

2. Data bus. 

The 32-bit data bus is shared by the RIP and FPU. 
It allows bytes, 32-bit integers and 32-bit floating­
point numbers to be transferred between the proc­
essing units and data memory. 

3. Code Address bus. 

The 22-bit code address bus carries the address of 
the next instruction from the RCS to the code mem­
ory. A word address allows up to four megawords of 
64-bit wide code memory. (This bus does not con­
nect to the XL-3232 FPU.) 

4. Data Address bus. 

A 32-bit data address bus carries the address of the 
next data read or write. The address is generated by 
the RIP and the data may be transferred to or from 
the RIP or FPU as required. A byte address allows 
up to 4 Gbytes of 32-bit wide data memory. Support 
for accessing bytes, half-words, and words is pro­
vided by the RIP. (This bus does not connect to the 
XL-3232 FPU.) 

The XL-3232 hooks directly to the code and data 
buses alongside the other components of the XL-8232. 
The code word is sampled by all three components si­
multaneously. The data bus is driven or sampled at the 
same time in the cycle no matter which component is 
transferring information. 

The code and data memory systems can be imple­
mented with ROM, SRAM, DRAM, or static column 
DRAM. Both code and data caches can be used with 
the XL-8232 chip set. 

INSTRUCTION FORMAT 

The XL-8232 has a 64-bit instruction word. The bits 
that are directed to the XL-3232 are shown in figure 5. 

The lower 32 bits of the instruction word are shared by 
the RIP and the RCS. Bits 0-23 normally define the 
RIP operation. Bits 24-31 define the instruction flow 
control performed by the RCS. Five of these control 
bits, 24-28, are also used as the floating-point register 
address (Dadd) when floating-point load and store op­
erations are performed. This saves on code bits and 
insures that the FPU and RIP never compete for the 
data bus. 

o 



( 

XL-8232 Architecture, continued 

63 59 53 47 

C 

X F X Aadd X 8add W Cadd 
e 
n 

3 5 5 5 

1. Dashed lines indicate bits in the sequencer field. 
2. Bits marked with an "X" are reserved bits. 

41 38 

E I 
0 n Abin 

c C x 
n t 
1 

2 3 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

31 28 24 

A E I 

d I n 
s c (Seq) : Oadd 

t n I 

0 I 

2 3 5 

3. The meaning of each bit field is described in the body of this data sheet. 

Figure 5. XL-3232 signal assignments in the XL-8232 code word 

LOAD/STORE MODEL 

The XL-8200 Series has a consistent load/store model 
regardless of processor configuration. Each processing 
unit has its own register file. Register moves between 
the RIP and FPU must be made through the data 
memory. Each of these register files is multi-ported and 
each register may be the operand source or result desti­
nation of any instruction implemented by the unit. 
When an instruction takes more than one cycle to exe­
cute, the registers that supply its operands and receive 
its result must not be modified until it has been com­
pleted. 

Transactions between the register files and data mem­
ory are performed with coprocessor load/store instruc­
tions. The only restriction on loads and stores is that 
the operands of an operation be loaded before it is 
executed and that it shall have completed before its 
result is stored. These simple restraints allow the 
parallelizer considerable freedom to optimize register 
usage and I/O transactions. 

An example of the normal sequence of operation is 
given below. This example leaves several free cycles in 

7 

which other loads, stores, and calculations could be 
performed in parallel. 

addr .ra 

fload .fx 

fabs .fx, .fy 

nap 

addr .rb 

fstore .fy 

Figure 6. Code example 

© Copyright WEITEK 1988 
All Rights Reserved 



XL-8232 Architecture, continued 

The fload and fstore operations have the same timing 
as the RIP's load and store operations. For loads, the 
address is presented on the AD bus at the beginning of 
a cycle; the data is expected to be available on the D 
bus by the end of that cycle. For stores, the address is 
presented on the AD bus at the beginning of a cycle 
and the data is driven onto the D bus during the next 
cycle. 

Because the addr and fload instructions can be exe­
cuted in parallel, they may be pipelined to support con­
tiguous load operations (one per cycle). If the external 
data memory system provides a write buffer, then 
'Stores can be pipelined in similar fashion. 

If, however, loads and stores are to be interleaved, 
each store must be allowed two cycles; the latter cycle 
must contain an I/O nap (that is, it must not contain a 
load' or store instruction). This has minimal impact on 

MODE BIT LOGIC VALUE OPTIONAL? 

MO 1 NO 
M1 1 YES 
M2 0 NO 
M3 0 NO 
M4 1 NO 
M5 1 YES 
M6 1 NO 
M7 1 NO 
M8 0 NO 
M10 1 NO 
M11 1 NO 

Figure 7. Mode selection table 

overall performance because loads usually outnumber 
stores; and the parallelizer can organize I/O transfers 
efficiently. If the code constraints covered in the body 
of this data sheet are followed or if WEITEK software 
tools are used, then this load/store model will be 
obeyed. 

MODES 

The XL-3232 Mode Register must be initialized to the 
values given in figure 7 when used in the XL-8232 
processor. The resulting programming model is illus­
trated in figure 4. Optional selections are: 

1. The fix and float range test may be enabled or dis­
abled as required. 

2. Overflows may be enabled or disabled as required. 

DESCRIPTION 

Internal Bypass Mode (Aadd = Cadd) enabled 
fix and float range test enabled 
Reserved: must be cleared to 0 
Input Bypass Mode disabled 
Output Bypass Mode enabled 
Overflow exception enabled 
Coprocessor Load Mode enabled 
Reserved: must be set to 1 
FPEX active low and .. sticky" 
Reserved: must be set to 1 
Internal Bypass Mode (Aadd = Badd) enabled 

8 

o 

c 

o 



(~ 

XL-8232 Architecture, continued 

Address 

Code 
i-' Memory 

/ 22 System 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

Code Bus 
ST ALL- 1-------. 

" / 64 ., 
.................................................. ; ~~.; ............................................................................ ; ;~.; ......... . 

V 
/ 32 

. ....... ) 

" . '. " 
C STALL- - AC 

r- WREN- COND I---......... COND 
Raster 
Image 

Processor 

C STALL- C STALL-

FPCN 1+----1 FPCN 
XL-3232 

Graphics Floating 
Point Unit 

Raster 
Code 

Sequencer 
AD 1--... ---1 AD EXT4- 1+----1 FPEX-

\ ••• _.~. ___ w •• • : •••••• _~~~.~.~ •••••••• w..... .___~p ..... "-Ej:T~ ........ __ ... _.W ...... w ••••• WW .. WW .. WN:UT-_~X ~ .... w ••••••••••••••••••••••• J 

i-' V 
/ 32 I PAL I " 32 

I I 'f 
OE- CS- Data Bus 

WREN-

Data 
Memory 
System 

Address 

(-. Figure 8. XL-8232 block diagram 

9 
© Copyright WEITEK 1988 

A 11 Ril)ht~ Rf'~f'rvf'n 



XL-8232 Architecture, continued 

CONDITIONS AND EXCEPTIONS 

The XL-8232 provides several signals which transfer 
state information from the processing units (RIP, FPU) 
to the sequencer (RCS). These are either conditions, 
upon which the RCS may decide to branch; or excep­
tions, which require software intervention to recover 
gracefully. 

The FPCN output on the XL-3232 must be connected 
to the FPCN input on the XL-8236. The FPCN signal is 
enabled by the Encnt .. o field in the instruction word to 
indicate whether the result of an operation is equal to 
zero, less than zero, or less than or equal to zero. The 
RCS may then execute a "branch on condition" in­
struction to selectively transfer program control accord­
ing to the outcome of this comparison. 

The FPEX- output on the XL-3232 must be connected 
the·EXT4- interrupt input on the XL-8236 (even if you 
do not plan to use floating-point exceptions). If the 
overflow enable bit in the mode register is set, then any 
arithmetic operation that generates an invalid result 

can flag this exception to the RCS. The system software 
is expected to react appropriately to this interrupt. 

NEUT - AND STALL-

The XL-8232 components all use the NEUT - and 
STALL-. These pins should be connected directly be­
tween the three chips in the XL-8232 processor (see 
figure 8). 

NEUT - cancels the effect of the current instruction. 
The signal is generated by the RCS. It is normally used 
in the shadow of a delayed branch to prevent the in­
struction in the pipeline from having any effect on the 
state of the RIP and FPU. 

STALL- cancels the effect of the next instruction. It 
should be generated by the code memory subsystem to 
indicate the delay or absence of the correct code word. 
This prevents any invalid operation that may be present 
on the code input at this time from affecting the state 
of the processor. It allows wait states to be inserted in 
code fetches, perhaps to allow for DRAM refresh or a 
code cache miss. 

10 

0, 
" " 

o 



(' 

Register File 

The XL-3232 has thirty-two 32-bit general-purpose 
registers. Each register can store either a single-preci­
sion IEEE value or a two's complement integer value. 

PORTS 

The register file has four ports, A, B, C and D. The A 
and B ports are read-only, the C port is write-only, and 
the D port is bi-directional. Each port can transfer a 
32-bit data word on every clock cycle. 

The A and B ports may be used to supply operands to 
the multiplier/accumulator and the divide look-up ta­
ble. The C port receives the result of a previous opera­
tion. The D port communicates data between the regis­
ter file and the external X port. 

This organization allows I/O transfers to proceed in 
parallel with calculation, maximizing system perform­
ance. 

REGISTER SELECTION 

The registers that are to take part in each transfer are 
selected by the instruction word. The instruction for­
mat allows a register address to be supplied for each 
port. They are provided in the Aadd, Badd, Cadd and 
Dadd fields of the instruction. These fields are five bits 
in length, allowing each address to specify any of the 
thirty-two registers. 

An instruction supplies the Aadd, Badd, and Dadd ad­
dresses to the register file during its first cycle and the 
Cadd address during its fourth cycle. T nis way a single 
instruction specifies all of the stages of an operation 
from initial source to ultimate destination. 

It is possible for a register to be selected by more than 
one field in the same cycle, in which case the following 
rules apply: 

1. If only read operations are to be performed on the 
register in question, then its value is copied to all of 
the necessary ports. 

2. If two ports (C and D) attempt to write into the 
same register on the same cycle, the contents of the 
register will be left in an undefined state. Such con­
tention must be avoided. 

3. If a register is to be both read and written on the 
same cycle, the new value will be read after it is 
written to the register file. 

11 

D 

A 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

C 

32 bits 

B 

32 
Registers 

Figure 9. The four-port register file 

READ/WRITE CONTROL 

Two other fields in the instruction word affect the op­
eration of the register file. 

1. The Cwen- bit controls writing of results into the C 
port. When it is active (low), the result data is writ­
ten on the fourth cycle of the operation. When 
writes are disabled, the contents of the register 
specified by Cadd remain unchanged. 

Register writes may be disabled either to direct a 
result to a Temporary Register or to allow arithmetic 
comparisons to modify the Status and Condition 
Registers without overwriting the contents of a 
general-purpose register. 

2. The IOCt1 .. 0 bits control the direction of D port 
transfers (see page 24 for details). If the C port and 
the D port attempt to write to the same register file 
location on the same cycle the register contents are 
left undefined. 

© Copyright WEITEK 1988 
All Rights Reserved 



Multiplierl Accumulator 

The XL-3232 has a pipelined multiplier/accumulator. 
These consist of a floating-point multiplier whose out­
put is fed into a floating-point ALU (Arithmetic and 
Logic Unit). All multiplier/accumulator input and out-

put ports can transfer 32-bit data values. Figures 10 
and 11 show how operations are pipelined through the 
multiplier/accumulator. 

A Bus 

B Bus 

(1 ) 

X PORT 

o 

A 

(1 ) 

32X32 
Register 

File 

(4) 

C 

B 

C Bus 

Note: For clarity, many key features have been omitted from this diagram (see page 5 for more detail). 

Figure 10. Simple example of multiplier/accumulator timing. 

12 

o 



( 

(-

Multiplierl Accumulator, continued 

ClK 

CODE PORT 

REGISTER FilE 

MULTIPLIER 
I I 
I I 

AlU I I 
I I 

REGISTER FilE I I 
I I 

Note: See Figure 10. 

Figure 11. Timing of MAC operations 

MULTIPLIER 

The multiplier has two input ports, MAin and MBin. It 
has one output which can only be connected to the 
AAin port of the ALU. In the first cycle of an opera­
tion, operands are transferred from the register file and 
fed into MAin and MBin. The multiplication is com­
pleted on the second cycle. The intermediate result 
may be negated before it is passed to the ALU. 

ALU 

The ALU has two input ports, AAin and ABin. It has 
one output which is normally connected to the C bus. 
AAin may be connected to the multiplier's output, so 

13 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

that its result is fed into the AL U. Another operand is 
fed into the ABin port simultaneously. The ALU com­
pletes the function specified by an instruction during its 
third cycle. The final result is rounded and output to 
the C bus to be returned to the register file on the 
fourth cycle. 

LATENCY 

Because the multiplier/accumulator is pipelined, an op­
eration can be initiated every cycle. The result of an 
operation is generated three cycles after it is initiated. 
On the fourth cycle, the result can be returned to the 
register file or fed straight back into the multiplier/ac­
cumulator. 

© Copyright WEITEK 1988 
All Rights Reserved 



Multiplier/Accumulator, continued 

FUNCTION SELECTION 

The multiplier/accumulator function is specified by the 
3-bit field F2 .. 0 in the instruction word as outlined in 
the function select table (figure 12). A single instruc­
tion specifies all of the actions associat<;d with one op­
eration as it passes through the multiplier/accumulator. 

When the F2 .. 0 field is (0, 0, 0) the operation to be 
performed is specified by the Badd field according to 
figure 13. 

F2 F1 FO MNEMONIC OPERATION DESCRIPTION 

0 0 0 - Miscellaneous See figure 13 

0 0 1 fsubr Negate and add -AAin + ABin 

0 1 0 fsub Subtract AAin - ABin 

0 1 1 fadd Add AAin + ABin 

1 0 0 - Reserved 

1 0 1 fmna Multiply, negate and add - (MAin X MBin) + ABin 

1 1 0 fmns Multiply, negate and subtract -(MAin X MBin) - ABin 

1 1 1 fmac Multiply and accumulate (MAin X MBin) + ABin 

Figure 12. Function select field encoding 

Badd4-0 MNEMONIC OPERATION DESCRIPTION 

00000 fclsr Clear Status Register 

00001 fstsr* Read Status Register 

00010 - Reserved 

00011 fmode Load Mode Register 

00100 fabs Absolute Value IAAinl 

00101 float Fixed-to-Float integer -+ IEEE 

00110 fix Float-to-Fixed IEEE -+ integer 

00111 flut Look-up Operation 

01000-11111 - Reserved 

* fstsr instructions must have their IOCtl .. 0 field set to 10 to select a store. 

Figure 13. Miscellaneous function select encoding. 

14 

o 

o 



( 

( 

Multiplier/Accumulator, continued 

MULTIPLY/ACCUMULATE FUNCTIONS 

The XL-3232 provides three multiply and accumulate 
functions. fmac multiplies MAin and MBin and then 
adds ABin. fmns multiplies MAin and MBin, negates the 
result and then subtracts ABin. fmna multiplies MAin 
and MBin, negates the result and then adds ABin. 

These functions are triadic (they have three input op­
erands). If an IEEE mUltiply operation is required, the 
constant 0.0 should be selected as the ABin input. 

D 

A Bus A 

B Bus 

ALU FUNCTIONS 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

The XL-3232 provides three dyadic .. ALU only" func­
tions. fadd adds AAin to ABin. fsub subtracts ABin 
from AAin. fsubr subtracts AAin from ABin. 

The F2 .. o field determines whether the multiplier is by­
passed and the ALU's input staged directly into the 
ALU (see figure 14). 

These functions operate in the same number of cycles 
as the mUltiply and accumulate functions. This simpli­
fies the programmer's model; every operation has the 
same latency. 

32X32 
Register 

File 

C 

B 

C Bus 

Note: For clarity, many key features have been omitted from this diagram (see page 5 for more detail). 

Figure 14. "ALU only" operations 

15 
© Copyright WEITEK 1988 

A. 11 "01 nhtc l)Q,c.:aruD.r1 



Multiplier/Accumulator, continued 

MISCELLANEOUS FUNCTIONS 

If the function field is equal to zero, then a miscellane­
ous AL U function will be selected according to the 
contents of the instruction's Badd field (see figure 13). 

1. Flut is monadic (that is, it has a single input oper­
and). It takes the value on the A bus as its operand 
and it returns an approximation to the inverse of 
this value onto the C bus on its fourth cycle. flut 
does not attempt to modify the Status, Condition, 
or Zero Registers. The Abin2 .. 0 field must be set to 
select the constant 0.0. (See page 37.) 

2. Fix is a monadic "ALU only" function. It takes a 
single-precision IEEE format floating-point value on 
the A bus as its operand and returns a 24-bit, sign 
extended, two's complement integer onto the C bus 
on its fourth cycle. fix does not attempt to modify 
the Status or Zero Registers. It is the only instruc­
tion that produces an integer result. The Abin2 .. 0 

field must be set to select the constant 0.0. (See 
page 39.) 

3. Float is a monadic" ALU only" function. It takes a 
24-bit, sign extended, two's complement value on 
the A bus as its operand and returns a single-preci­
sion IEEE format floating-point number onto the C 
bus on its fourth cycle. float does not attempt to 
modify the Status or Zero Registers. It is the only 
instruction that requires an integer operand. The 
Abin2 .. 0 field must be set to select the constant 0.0. 
(See page 39.) 

4. Fabs is a monadic "ALU only" function. It takes 
the value on the A bus as its operand and returns its 
absolute value onto the C bus on its fourth cycle. 
fabs does not attempt to modify the Status, Condi­
tion, or Zero Registers. The Abin2 .. 0 field must be 
set to select the constant 0.0. As with the dyadic 
"ALU only" functions, it will replace denormalized 
operands with zero and NaNs with infinity. 

5. Fmode loads the desired operating modes into the 
Mode Register (see page 34). Because this opera­
tion changes the timing of many operations, the re­
sults of the next three operations should be dis­
carded. 

Fmode is not canceled by the NEUT - signal. It 
should not be executed in a branch shadow. 

6. Fstsr copies the contents of the Status Register to 
the X port. It has the same timing as the other 
fstore operations. (See page 26.) The Cwen- bit 
must be set to prevent register writes, the Encn1 .. 0 

field to disable updates of the FPCN pin, the 
IOCt1 .. 0 field to an fstore and that the result sent to 
the register file on its fourth cycle be discarded. 
fstsr ignores the register address fields. 

7. Fclsr clears the contents of the Status Register to 
zero. (See page 26.) The Cwen- bit must be set to 
prevent register writes, the Encn1 .. 0 field to disable 
updates of the FPCN pin, the IOCt1 .. 0 to an I/O nop 
and that the result sent to the register file on its 
fourth cycle be discarded. fclsr ignores the register 
address fields. 

MUL TIPLIERI ACCUMULATOR NOP 

The XL-3232 does not have a dedicated nop instruc­
tion. Use fsub .fO, .to, .to with the Cwen- bit set to 
disable register writes and the Encnt .. o field cleared to 
disable FPCN updates. This choice of nop causes no 
state changes. 

16 

o 



(-

(C 

Temporary Registers 

The XL-3232 includes three 32-bit temporary registers 
(Tregs). They allow values to be recirculated to the 
ALU without passing through the general-purpose reg­
ister file. The Tregs are often used as accumulators 
during successive multiply/accumulate operations. 
They make it possible to perform a calculation of the 
form "x = x ± (yxz)" every cycle. 

0 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

Figures 15 and 16 show how the Tregs are used to 
feedback operands to the multiplier/accumulator: fig­
ure 18 gives an example of a code sequence that does 
this. 

C Bus 

C 

3X32 
32X32 Tregs 
Register 

File 

A B 

A Bus 

B Bus 

r-----.....I.--, Abim .. o 

Note: For clarity, many key features have been omitted from this diagram (see page 5 for more detail). 

Figure 15. Use of temporary registers 

17 
© Copyright WEITEK 1988 

All Rights Reserved 



Temporary Registers, continued 

ClK 

I I 

CODE PORT ~~:--~--~--~--~~~~~--~--~--~--~--~~~~--~--

REGISTER FilE ----9 I 9>--t---r-----1r-----;----;----;r-----;----r-
I I I I I I I 

MULTIPLIER -....J:'---:'------IK MUL TIPL Y1 )>----1-__ :L...-----J:L...----t: '----.-__ ~ >-_.1...-_.l..-_....L.-_....L.-_....L.-_ 
I I I I I~~~ I 

AlU 

T REGISTER I 
I I 

I 
FEEDBACK RESULT 

I I I I 
I I I I I 

REGISTER FilE -~--~--~--'-----'---'----'---~8 : : : B>----''---

Figure 16. Temporary register timing 

WRITING TO TEMPORARY REGISTERS 

The instruction word contains a two-bit field, Adst1 .. 0, 

that determines the destination of the ALU output (see 
figure 17). 

The output of the ALU is always sent to the C bus. If 
no Trag is selected by the Adst1 .. 0 field, then the result 
is returned only to the register selected by this instruc­
tion's Cadd field on its fourth cycle. 

Adst1-0 RESULT DESTINATION 

00 Trag3, C bus 

01 Trag2, C bus 

10 Trag1, C bus 

11 C bus 

Figure 17. ALU destination select field encodmg 

18 

I I I I I I I 

If the Adst1 .. 0 field selects a Trag in addition to the C 
bus, it is loaded with the result on the fourth cycle of 
an operation, just as the Cadd register write occurs. On 
the next cycle, the contents of the Trag may be input 
directly to the ABin port. This is illustrated by the ex­
ample shown in figure 18. 

The Cwan- bit of the instruction that writes to the Trag 
may be set to 1 to prevent the write to the Cadd regis­
ter. This increases the number of available general­
purpose registers. 

o 



( 

( 

Temporary Registers, continued 

READING TEMPORARY REGISTERS 

The instruction word contains a three-bit field, 
Abin2 .. o, that determines the source of the MAC's 
ABin input. 

Three encodings select one of the Tregs (see fig­
ure 20). If a Treg is selected, it is copied to the ABin 
port on the second cycle of the operation. 

The Treg may be be read on the cycle after it was writ­
ten. In figure 18, for example, .t1 gets read during the 
second cycle of op #4. This is the fifth cycle of op #1. 

19 

op #1 fmac 

op #2 fmac 

op #3 fmac 

op #4 fmac 

Notes: 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

.fO, . f1 , .fO, . t1 

.f3, .f4, · t1 , .fS -old ,t1 

.fS, ,f7, · t1 , ,fa -Illegal 

.f9, ,f10, · t1 , , f11 -new ,t1 

A Treg cannot be both written and read in the same cycle. 
Op #3 must never attempt to read the Treg written by op 
#1. 

To make this code interruptable, op #2 and op #3 should 
not specify .t1 as an operand. 

Full details of this syntax are given on page 32. 

Figure 18. Use of temporary registers 

© Copyright WEITEK 1988 
All Rights Reserved 



Internal Data Routing 

INTERNAL BUSES 

The three main internal buses, A, Band C, move data 
between the major functional units of the XL-3232. 
Each of these buses is 32 bits wide and can carry one 
word per cycle. 

The A bus usually carries operands from the register 
file to the multiplier/accumulator or the divide look-up 
table. 

The B bus usually carries operands from the register 
file to the multiplier/accumulator. 

The C bus usually carries multiplier/accumulator or flut 
results back to the general-purpose register file. It may 
also be used to feed the results directly to the X port. 

Mbin- INPUT 

0 B bus 

1 C bus 

Figure 19. Multiplier input port select field encoding 

Abin2-0 INPUT 

000 C bus 

001 B bus 

010 Treg2 

011 Treg1 

100 Treg3 

101 Reserved 

110 2.0 

111 0.0 

Figure 20. ALU input select field encoding 

MULTIPLIER/ACCUMULATOR INPUT PORTS 

The multiplier/accumulator has four input ports, MAin, 
MBin, AAin and ABin. These ports can each receive a 
32-bit word per cycle. They all have multiplexers which 
may be connected to various input sources. The possi­
ble selections for each port are described below: 

1. MAin usually obtains input from the A bus. Results 
may be fed from the C bus to the A bus and then 
into MAin. 

2. MBin usually obtains its input from the B bus. Results 
may be fed from the C bus to the B bus and then 
into MBin. 

Alternatively, the C bus can be reversed so that it is 
carrying inputs from the X port to the MBin port. 
This prevents the C bus from being used to return 
results to the register file and is done in conjunction 
with the floadrc operation. MBin must select the C 
bus (see figure 19). 

20 

3. AAin usually obtains its input from the A bus. Results 
may be fed from the C bus to the A bus and then 
into AAin. 

4. ABin usually obtains its input from the B bus. Results 
may be fed from the C bus to the B bus and then 
into ABin. Y port inputs may be enabled onto the B 
bus and then into the ABin. 

The three-bit Abin2 .. 0 field in the instruction word 
selects between input from the B bus (as above), 
input of the constants 0.0 or 2.0, input from one of 
the Tregs, or input from the C bus (as below) ac­
cording to figure 20. 

Alternatively, the C bus can be reversed so that it is 
carrying inputs from the X port to the MBin port. 
This prevents the C bus from being used to return 
results to the register file and is done in conjunction 
with the floadrc operation. ABin must select the C 
bus. When this pathway is used, the ABin data is 
not delayed. 

o 



Internal Data Routing, continued 

If the function code specifies an operation that uses the 
multiplier, it directs data to the MAin or MBin ports. If 
the multiplier is not used, (that is, in "ALU only" op­
erations), then the data is sent to the AAin or ABin 

D 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

ports automatically. The XL-3232 is designed to main­
tain a consistent latency regardless of the type of op­
eration. 

C Bus 

C 

32x32 
Register 

File 

A 

Aadd = Cadd 
AND Cwen- = 0 '---,...---.... 

A Bus 

B Bus 

B 

r-----....., Badd = Cadd 
'----r--.... AND Cwen- = 0 

Note: For clarity, many key features have been omitted from this diagram (see page 5 for more detail). 

Figure 21. Internal bypass routes 

21 
© Copyright WEITEK 1988 

All Rights Reserved 



Internal Data Routing, continued 

INTERNAL BYPASS MODE 

A code sequence often specifies the result of one op­
eration to be the operand of a subsequent operation. 
The XL-3232 contains internal data paths called by­
pass paths that allow the result of one operation to be 
used as the input to another without the delay of writ­
ing it to the register file and reading it out again. This 
operation is invisible to the programmer; it simply guar­
antees that three cycles after the start of an operation, 
the result is available wherever you need it. This is 
done through bypass muxes. 

These multiplexers operate by comparing the Aadd and 
8add address fields to the Cadd address field as they 

CLK 

are presented to the register file on each cycle. If 
Aadd = Cadd, then the value on the C bus is copied to 
the A bus; and if 8add = Cadd, then the value on the 
C bus is copied to the 8 bus. Enough time remains for 
that value to be latched into a multiplier/accumulator 
input port before the end of the cycle. In the example, 
the Cadd field of op #1 matches the Aadd field of op 
#4 as they are compared on the fourth cycle of op #1, 
the bypass from C to A buses is opened and op #4 can 
proceed immediately with the new data. During the 
same cycle, the result is copied into the Cadd register 
as usual so that the register file remains consistent with 
the data values in use. 

CODE PORT ~--~I--~--~--~--~~~~-+I---+---+--~--~--~--~--~--~-
REGISTER FILE -G B~--.l----.l----'----'----'----'----'----'--

I I I I 
MULTIPLIER 

I I 

ALU -..L---.l----.l....----JL---{'---..-_-(}--.... 1--181PAS~___K ALU4 I: 

REGISTER FILE -;---;---;----;----r---r----f,~>----t-l----t-l----t-l---t-----r--~~)--r--

Figure 22. The timing of Internal Bypass Mode 

22 

0, ~;' - -

o 



( 

Internal Data Routing, continued 

TEMPORARY REGISTERS 

To complete the range of alternative routes available 
for feeding results back to the multiplier/accumulator, 
the Treg code example first given in figure 18 is re­
peated here. 

The temporary register option has the same timing as 
other data paths, but only feeds back to the ABin port. 
The Tregs bring an extra source of operands to the 
multiplier/accumulator, allowing operations of the form 
"x = x ± (y XZ)" to be executed in a single cycle. 

Many of the code examples given read a register after 
the instruction that modifies it has been initiated. 
While such code sequences are valid, they are uninter­
ruptable. More detailed coverage of interruptable code 
may be found on page 32. 

The data I/O port (X port) is 32 bits wide. It can all 
transfer one word per cycle. The memory-to-memory 
latency can be as low as five cycles (two more than the 
register-to-register latency). The output bus may be 
disabled by de-asserting its asynchronous output enable 
signals. 

23 

op #1 fmac 

op #2 fmac 

op #3 fmac 

op #4 fmac 

Notes: 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

.fO, . f1 , .to, . t1 

.f3, .f4, .t2, .f5 

.f6, .f7, .t3, .f8 

.f9, .f10, . t1 , . f11 -new .t1 

A Treg cannot be both written and read in the same cy­
cle. Op #3 must never attempt to read the Treg written 
by op #1. 

Full details of this syntax are given on page 32. 

Figure 23. Use of temporary registers 

© Copyright WEITEK 1988 
All Rights Reserved 



Input/output 

THE X PORT: NORMAL USAGE 

The X port normally transfers data to and from the 
register file D port. The Dadd field selects the register 
in question and the IOCt1 .. 0 field in the instruction 
word controls the transaction. These I/O transfers al­
ways begin during the first cycle of an operation. See 
figure 24 for the IOCt1 .. 0 encoding scheme and fig­
ure 25 for normal I/O timing. 

The fload operation loads the value at the X port pins 
into the register selected by Dadd. It is completed by 
the end of the first cycle. If the register is read on the 
same cycle, its previous contents will be output. 

. The fstore operation stores the contents of the register 
selected by Dadd to the X port output register 
(XDoutR) during the first cycle. This value is driven 
onto the X port pins on the second cycle. The fstore 
operation drives the X pads during most of its second 
cycle and at the start of its third cycle. Input data may 
not be applied to the pins until partway through its 
third cycle. The OEX- pin can asynchronously disable 

The floadrc operation is described on page NO TAG. 

The I/O nop operation simply disables the X port and 
ignores any input. It does not prevent the multiplier/ac­
cumulator from writing to registers or modifying the 
state of the condition and exception outputs. 

Note: An fload should not follow a fstore immediately. 
At least one I/O nop cycle must be inserted between 
them. 

IOCt1-0 OPERATION 

00 I/O nop 

01 floadrc 

10 fstore 

11 fload 

the output at any time. Figure 24. X port I/O control field encoding 

ClK 

CODE PORT 

X PAD 

REGISTER FilE 

Figure 25. Normal X port I/O timing 

OUTPUT BYPASSING 

During a normal fstore operation the multiplier/accu­
mulator result must be written to a register one cycle 
before it can be output to the X port. If, however, 
Cadd = Dadd; the multiplier/accumulator result is sent 
to both the register selected by Cadd and the X port 
output register (XCoutR) on the same cycle. 

24 

The fstore instruction that specifies the Dadd must 
start execution on the fourth cycle of the arithmetic 
instruction that specified the Caddo The output appears 
at the X port pins during the second cycle of the fstore 
instruction. 

o 

o 



(~ 
System Interfacing 

Certain signals on the XL-3232 are provided to com­
municate control information to and from the other 
parts of a system. 

Two outputs, FPCN and ZERO, indicate the condition 
of an operation. They can be sent to a sequencer to 
control instruction branching. 

One output, FPEX, signals the occurrence of arithmetic 
overflow. It can be used to interrupt a host processor to 
request corrective action. 

Two inputs, NEUT - and STALL, allow the effects of in­
structions fed into the C port to be canceled. They can 
be used to make the XL-3232 respond correctly to 
page faults, interrupts or other system requests. 

CONDITION AND ZERO 

The XL-3232 has a Condition Register and a Zero 
Register. The multiplier/accumulator attempts to mod­
ify the contents of these registers on every cycle. 

The instruction word includes a two-bit condition select 
field, Encnl..o, which selectively allows the multiplier/ 
accumulator to succeed in updating the contents of 

FUNCTION SET CONDITION REGISTER 

fmac N < 0, N < 0, N = 0 

fmns N < 0, N < 0, N=O 

fmna N < 0, N < 0, N=O 

fadd N < 0, N < 0, N = 0 

fsub N < 0, N < 0, N = 0 

fsubr N < 0, N < 0, N = 0 

flut -
fabs· N < 0 (only true when N=O) 

fix· I M I >222 

float· M < (-2 23) or M > (2 23 -1) 

fnop -

N is the result of an operation; M Is the operand. 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

these registers. If both bits are cleared, then the previ­
ous state of the registers remains unchanged. 

Most functions update the Gondition Register accord­
ing to the sign and magnitude of their resul~. Miscella­
neous functions may set the register for other reasons 
(see figure 26). 

Encnl .. o determines the exact condition that will set the 
Condition Register for each instruction. This allows any 
of the common comparisons to be made in one opera­
tion. Figure 27 gives the bit encoding. 

If the result of an operation is exactly equal to zero and 
the Enclll .. o field is not (0,0); the Zero Register is set 
to 1. If the result is not zero and EnClll .. O is not (0,0); 
the Zero Register is cleared to O. If Enclll .. o is (0,0); 
the contents of the Zero Register remain the same. 

The contents of the Zero and Condition Registers are 
copied to the ZERO and FPCN outputs respectively on 
the fourth cycle of the operation, just as the general­
purpose register file write occurs. Bypassing does not 
affect the timing of these signals. These outputs always 
drive a logic 0 or 1. 

SET ZERO REGISTER SET STATUS REGISTER 

N=O exp (N) > = 255 

N=O exp (N) > = 255 

N=O exp (N) > = 255 

N = 0 exp (N) > = 255 

N=O exp (N) > = 255 

N=O exp (N) > = 255 

- -
- -

- -
- -
- -

• Fix and float only test for range overflow when M1 = 1. Fabs only tests for zero when M1 = O. 

Figure 26. Effect of functions on Condition, Zero, and Status Register 

25 
© Copyright WEITEK 1988 

All Rights Reserved 



System Interfacing, continued 

Encn1 EncnO SET ZERO REGISTER SET CONDITION REGISTER 

0 0 - -

0 1 N=O N<O 

1 0 N=O N<O 

1 1 N=O N=O 

Note: Encn1 and EncnO must be zero for fnop. 
Condition Register Is set by fix or float when Encn1 .. 0 Is (0,1) and the operand exceeds the permitted range. 

Figure 27. Encn1 .. o encoding 

STATUS AND EXCEPTIONS 

The XL-3232 has a Status Register. If an operation 
produces a result that is too large to be represented in 
the' IEEE single-precision floating-point format the 
multiplier/accumulator attempts to set the Status Regis­
ter to 1. 

The Mode Register includes an exception control bit, 
M5 (see page 34). If M5 is set to 1 and an overflow 
occurs, the Status Register is set to 1. If M5 is cleared 
to 0, the Status Register is cleared to O. If M5 is subse­
quently set to re-enable overflows, the Status Register 
will contain O. . 

The contents of the Status Register are copied to the 
FPEX output on the fourth cycle of the operation, just 
as the register file write occurs. 

The Status Register is "sticky"; once set it will remain 
so until an fclsr operation is performed. 

Two miscellaneous functions, fstsr and fclsr, allow the 

fstsr operation is performed, then the IOCt1 .. o field 
must specify a 'store' and its timing is the same as a 
normal store operation (see figure 28). If the fclsr op­
eration is performed. it is complete by the end of its 
first cycle. Only the least-significant bit of the Status 
Register is guaranteed; the other 31 bits are undefined. 

ClK 

CODE PORT ~--t:--+--t--+-: --t--YI I I 
STATUS I v-::-\ I 
REGISTER --i-I--i(~>---ir----;'I---;"-

X PAD -+-: --I:f----I(~ ~TATU~ ~ 
Status Register to be read at the X port or for it to be Figure 28. fstsr timing 
cleared. They take effect during their first cycle. If the 

26 

o 

o 



C: 

( 

c 

System Interfacing, continued 

LOADING DATA 

The data applied to the X port is not sampled until late 
in the first cycle. Time still remains to write the Dadd 
register before the end of this cycle. As usual, the next 
instruction can use this data value as one of its oper­
ands. 

NEUT- AND STALL-

These inputs allow a system to modify the effect of cer­
tain instructions dynamically. 

NEUT-

Neutralize is used to prevent the execution of instruc­
tions in the shadow of a delayed branch operation or 
during an interrupt service cycle. 

ClK 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

In a system where the sequencer supports delayed 
branching, it will present the next instruction to the C 
port as it decides whether to take a branch. If the 
branch is taken, this instruction must be cancelled be­
fore it has any effect on the state of the system. Simi­
larly, if an interrupt occurs, the instruction due to be 
executed can be cancelled in order to branch to an 
interrupt service routine. The cancelled instruction is 
resubmitted for execution on return from interrupt. 

The neutralize signal cancels the effect of the current 
instruction. It prevents the result of this instruction 
from being written into the register file or temporary 
registers. It has no effect on fload or fstore operations. 
This signal is sampled on the rising edge of the cycle 
after the current instruction was fed into the C port. 

I I 

CODE PORT I }-7---:--1 _-!-_-!-_-!--
I I 

X PAD ---r--~-~~:r-~ ~~_+--_+--~-Y-I-Y I '---.---f Y 
REGISTER FilE ----.--....---<E? ~--r----r----r----r--<E?~--.,..---r---r---

Figure 29. Coprocessor Load Mode timing 

ClK 

--0---+--0+01 1 1 1 
11 12 13 -+-1 ---+---+---+I---+----+-----lf-----,II----+---+---+_ 

1 1 1 1 1 
CODE PORT 

I I I I I ---r---r---r---nll\ 1 /nll--~,---r---rl---r---r---T---TI--~,---r---r-

\........L..../ I 1 I 1 
NEUT-

1 1 1 v::::=\ v=:::\ REGISTER FilE ---+----+---+---+I---+I---+I--~-----i:~>---+----+-----{~>----:-----!----!--

Figure 30. NEUT - timing 

I I I I I I I 

27 
© Copyright WEITEK 1988 

All Rights Reserved 



System Interfacing, continued 

STALL-

STALL- is used to hold off execution until a valid code 
word is present when the code word is delayed (as in a 
code memory refresh cycle) or absent (as in a page 
fault). The next operation can be continually stalled 
until the correct instruction word is presented to the 
C port. 

CLK 

The ST ALL- signal cancels the effect of the next in­
struction. It prevents the result of this instruction from 
being written into the register file or temporary regis­
ters. It also cancels fload and fstore operations. This 
signal is sampled at the same time as the next instruc­
tion is fed into the C port. 

CODE PORT L1 ~ ~ ~+---+---+---+---r---r---r---r---r---r---r-~I 

X PADS 

STALL-

I I 

~ 1 ~ 1 ~~7---7---~--~--~--~--~--~--~--~--~ 
~ 

1 1 1 1 1 1 1\ I /r.I---+I---+---7--~--~--~--7---~--~--~~---+--

II\........+..... 1 1 
1 1 1 1 

REGISTER FILE -t----{ 

Figure 31. STALL-timing (including fload) 

CLK 

~I 
CODE PORT 81 82 83 >---+----+---+---+---+---+---+---+---+---+---+-

1 1 
1 I\! /~I--+I--~-r--~~~~-r~--~~--~-;--

STALL- 1 1 '--.LJ 1 1 
1 1 1 1 

REGISTER FILE --+----l{ 

X PADS ---'L...----'L...----(K DATA 1 )>--:---~ ,--_DA_T_A3--J >--+----+----+----+----+----+----+--

Figure 32. STALL- timing (including fstore) 

28 

o 

t· 

• 



Instruction Set 

C BIT FIELD 

0 EncnO 
1 Encn1 
2 Mbin-
3 AdstO 
4 Adst1 

5 AbinO 
6 Abin1 
7 Abin2 

8 DaddO 
9 Dadd1 

10 Dadd2 
1"1 Dadd3 
12 Dadd4 
13 10CtO 
14 IOCt1 
15 Cwen-
16 CaddO 
17 Cadd1 
18 Cadd2 
19 Cadd3 
20 Cadd4 
21 BaddO 
22 Badd1 
23 Badd2 
24 Badd3 
25 Badd4 
26 AaddO 
27 Aadd1 

28 Aadd2 
29 Aadd3 
30 Aadd4 

31 FO 
32 F1 

33 F2 

Figure 33. Instruction format 

c 

29 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

OPERATION 

Condition Output Select 

MBin Input Select 
ALU Destination Select 

ABin Input Select 

D Port Register Address 

I/O Control 

C Port Write Enable 
C Port Register Address 

B Port Register Address 

A Port Register Address 

Function Code 

© Copyright WEITEK 1988 
All Rights Reserved 



Instruction Set, continued 

FORMAT 

The XL-3232 has a 34-bit instruction word. Refer to 
figure 33 for the location of each field in the instruction 
word. 

F FIELD 

Function control (F2 .. 0) field. Selects function to be 
performed on this instruction's operands. 

AADD FIELD 

A register address (Aadd4 .. 0) field. Selects location in 
general-purpose register file to be read out via the A 
port. 

BADD FIELD 

B register address (Badd4 .. 0) field. Selects location in 
general-purpose register file to be read out via the B 
port. Also encodes miscellaneous functions that require 
only one operand. 

CADD FIELD 

C register address (Cadd4 .. 0) field. Selects location in 
general-purpose register file to be written into via the C 
port. 

CWEN- BIT 

C port write enable bit. Active low. 

IOCT FIELD 

I/O control (IOCt1 .. 0) field. Selects type of I/O transfer 
performed via 0 port. 

DADO FIELD 

o register address (Dadd4 .. 0) field. Selects location in 
general-purpose register file to be read out or written 
into via the 0 port. 

ABIN FIELD 

ALU input multiplexer input control (Abin2 .. o) field. 
Selects the input source for ALU. 

ADST FIELD 

30 

ALU output destination control (Adst1 .. 0) field. Selects 
output destination for ALU. May be the C bus or the C 
bus and a Temporary Register. 

MBIN- BIT 

Must be tied to GND. 

ENCN FIELD 

Condition select (Encn1 .. o) field. Enables a selectable 
combination of the condition and zero flags onto the 
FPCN output. 

All of the actions specified by these fields are defined 
in the same instruction word. In this way, all of the 
stages of an operation, from supplying its operands to 
storing its results back into a register, are specified to­
gether. 

C) 



Instruction Set, continued 

MNEMONICS 

The mnemonics shown in figures 34 through 36 are 
those used to control the XL-3232 in the XL-8200 pro­
gramming environment. They are given here to simplify 
understanding of the programming model and to pro­
vide a syntax in which to present the programming ex­
amples. 

OPERAND NOTATION DESCRIPTION 

I/O SELECTION 

fload 
fstore 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

OPERAND 

Source Destination 

X port .fO-31 

.fO-31 X port 

Note: If no liD operation is specified, an liD nop will be 
selected in the IOCt1 .. 0 instruction field. 

Figure 34. Recommended mnemonics 

.fO-31 Thirty-two, 32-bit general purpose registers 
0 Constant "0.0" 
2 Constant "2.0" 

.t1-3 Three temporary registers 

(~ Figure 35. Recommended mnemonics 

OPERAND SELECTIONS 
FUNCTION 

SOURCE (Aadd) SOURCE (8add) SOURCE (Tregs) 

fmac .fO-31 .fO-31 0, 2, or .t1-3 

fmns .fO-31 .fO-31 0, 2, or .t1-3 

fmna .fO-31 .fO-31 0, 2, or .t1-3 

fadd .fO-31 .fO-31 , 0, 2, or .t1-3 

fsub . fO-31 .fO-31 , 0, 2, or .t1-3 

fsubr .fO-31 .fO-31 , 0, 2, or .t1-3 

flut . fO-31 

fabs .fO-31 
fix .fO-31 

float .fO-31 

fnop -

Figure 36. Recommended mnemonics 

c 

31 

DESTINATION (Cad d) 

· fO-31 and/or .t1-3 

.fO-31 and/or .t1-3 

.fO-31 and/or . t1-3 

· fO-31 and/or .t1-3 

.fO-31 and/or .t1-3 

· fO-31 and/or .t1-3 

· fO-31 
.fO-31 and/or .t1-3 

.fO-31 and/or . t1-3 

.fO-31 and/or .t1-3 

© Copyright WEITEK 1988 
All Rights Reserved 



Instruction Set, continued 

CODE CONSTRAINTS 

The following set of rules prevents illegal code sequen­
ces: 

1. All instructions must avoid writing to the Cadd regis­
ter and Dadd register simultaneously. Thus no fload 
operation with Dadd = . fx may start on the fourth 
cycle of an operation with Cadd = . fx. 

op #1 fadd .f?, .f?, .fx 

op #2 fadd .f?, .f?, .f?; fload.fx 

op #3 fadd .f?, .f?, .f?; fload.fx 

op #4 fadd .f? , .f?, .f?; fload.fx -Illegal 

op #5 fadd .f? , . f?, .f?; fload.fx 

Figure 37. 

2. Because the X port output is driven on the cycle 
after an fstore operation is specified, an fload can­
not follow an fstore immediately. At least one I/O 
nop must intervene. 

op #1 fadd .f? , .f?, .f?; .fstore. f? 

op #2 fadd .f? , .f?, .f?; .fload.f? -Illegal 

op #3 fadd .f? , .f? , .f?; Jload.f? 

Figure 38. Coprocessor Load Mode enabled, M6=1 

32 

3. No temporary register can be written and read on 
the same cycle. Thus no operation that selects . tx as 
an operand register may start on the third cycle of 
an operation with Cadd = . tx. 

op #1 fmac .f?, .f?, .to, .tx 

op #2 fmac .f?, .f?, .to, .f? 

op #3 fmac . f7, . f7, . tx, . f? -Illegal 

Figure 39 . 

\ 

l\ ) 

o 



c 

(~' 

c 

Instruction Set, continued 

4. No operation with Aadd or 8add = . fx may start on 
or after the first cycle and before the fourth cycle of 
an operation with Cadd = . fx. Thus no instruction 
may use the same register for both source and desti­
nation. 

5. No operation with Aadd or 8add = .tx may start on 
or after the first cycle and before the fourth cycle of 
an operation with Cadd = . tx. Thus no instruction 
may use the same Treg for both source and destina­
tion. 

op #1 fadd .f?, .f? , .fx 

op #2 fadd .fx, .f?, .f? -Illegal 

op #3 fadd .fx, . f? , .f? -Illegal 

op #4 fadd .fx, .f?, .f? -Illegal 

op #5 fadd .fx, .f? , .f? 

Figure 40. 

op #1 fmac .f?, .f?, .fO, .tx 

op #2 fmac .f?, .f? , .tx, .f? -Illegal 

op #3 fmac .f? , .f? , .tx, . f? -Illegal 

op #4 fmac . f?, . f?, .tx, .f? 

Figure 41. 

33 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

6. No operation with Aadd or 8add = .fx may start on 
the same cycle as an fload where Oadd = . fx. 

op #1 fadd . fx, . f?, . f?; fload. fx -Illegal 

op #2 fadd .f?, .f?, .f? 

Figure 42. 

7. The NEUT - line does not cancel floads and fstore, 
so when it is used to cancel the effect of an instruc­
tion in the shadow of a delayed branch operation, 
this instruction should not perform I/O transfers . 
(This is not necessary when NEUT - is asserted dur­
ing an interrupt response cycle because the can­
celled instruction is resubmitted for execution.) 

In the examples, the notation . f? is used to indicate 
any register except. fx. 

© Copyright WEITEK 1988 
All Rights Reserved 



o 
Initialization 

MODE REGISTER 

The Mode Register controls which of the special modes served and must be set to the value specified in fig-
are enabled. Normally, it is initialized to the desired ure 43. 
state and is not subsequently altered. Most bits are re-

MODE BIT LOGIC VALUE OPTIONAL? DESCRIPTION 

MO 1 NO Internal Bypass Mode (Aadd = Cadd) enabled 
M1 1 YES fix and float range test enabled 
M2 0 NO Reserved: must be cleared to 0 

M3 0 NO Input Bypass Mode disabled 
M4 1 NO Output Bypass Mode enabled 

M5 1 YES Overflow exception enabled 
M6 1 NO Coprocessor Load Mode enabled 

M7 1 NO Reserved: must be set to 1 
M8 0 NO FPEX active low and .. sticky" 
M10 1 NO Reserved: must be set to 1 

M11 1 NO Internal Bypass Mode (Aadd = Badd) enabled 

Figure 43. Mode selection table /~-'\ 

34 

, j 

"'--_/ 

(: .'\) 
./ 



Initialization, continued 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

The Mode Register is loaded by the fmode operation. 
This causes the Aadd, Cadd and ABin2 .. o fields in the 
instruction word to be loaded into the Mode Register 

as shown by figure 44. The new mode takes effect at 
the end of the cycle in which fmode was executed. 

C BIT NORMAL USE MODE BIT 

a EncnO a 

1 Encn1 0 
2 Mbin- a 
3 AdstO 1 

4 Adst1 1 

5 AbinO M10 

6 Abin1 M11 
7 Abin2 M12 
8 DaddO a 

9 Dadd1 a 
10 Dadd2 a 

11 Dadd3 a 
12 Dadd4 a 
13 10CtO 0 

14 IOCt1 0 
15 Cwen- 1 

16 CaddO M5 
17 Cadd1 M6 
18 Cadd2 M7 

19 Cadd3 M8 
20 Cadd4 M9 
21 BaddO 1 

22 Badd1 1 

23 Badd2 a 
24 Badd3 a 
25 Badd4 a 

26 AaddO MO 

27 Aadd1 M1 

28 Aadd2 M2 

29 Aadd3 M3 

30 Aadd4 M4 

31 Fa a 

32 F1 a 

33 F2 a 

Figure 44. Load Mode Register instruction format 

35 

COMMENT 

FPCN is disabled during fmode 

Mbin- is tied to GND 
ALU destination is C bus only 

I/O nap specified 

C port register writes disabled 

fmode function code 

Miscellaneous function selector 

© Copyright WEITEK 1988 
All Rights Reserved 



Initialization, continued 

RESET SEQUENCE 

Before initializing the contents of the Mode Register, 
the XL-3232 must be set to a stable state after power 
up. 

Repeating nop and I/O nap instructions for at least four 
cycles will flush the multiplier/accumulator pipeline 
and allow the internal states to become well-defined. 
Until this sequence terminates, the rest of the system 

should ignore the contents of the data buses and the 
state of the ZERO, FPCN and FPEX pins. 

The registers should then all be initialized to known 
values (including the Mode, Condition, Status and 
Tregs) while naps continue to be input. The XL-3232 
is then able to begin normal operation. 

36 

o 



c 
Division 

DIVIDE LOGIC UNIT 

The XL-3232 has a divide logic unit. This unit consists 
of a look-up table ROM and three delay stages. The 
first cycle of the flut operation transfers the Aadd oper­
and (a) to the divide logic unit. During the next two 
cycles this operand selects a seed value for the recipro­
cal of the operand (1/a) from the look-up table. This 
result is written to the Cadd register on the fourth cy­
cle. 

The result can be copied to a multiplier/accumulator 
input port at the same time that the Cadd register is 
being written. 

The look-up result is an IEEE single-precision number 
whose fraction is accurate to seven bits of precision. If 
the input is positive or negative infinity (greater than 
#7F820000 or less than #FF820000), the result is 
zero. If the input is zero, the result is #7FFFFFFF 
(which gets clamped to #7F820000 during refine-

Cycle # Opcode 

1 flut . f 1 , . f31 

2 fnop 

3 fnop 
4 fmna . f1 , . f31 , 2, .f30 

5 fnop 

6 fnop 

7 fmac .f31, .f30, 0, .f31 

8 fnop 

9 fnop 

10 fmna .f1 , . f31 , 2, .f30 

11 fnop 

12 fnop 

13 fmac .f31, .f30, 0, .f30 

14 fnop 

15 fnop 

16 fmac .to, .f30, 0, .to 
17 fnop 

18 fnop 

19 fnop 

20 fnop 

(: Figure 45. Recommended division sequence 

37 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

ment). flut does not update the Zero, Condition, or 
Status Registers. 

NOTATION: 

a = divisor (.f1) 

Ro = seed for 1/a (.f31) 

Rl = first approximation (. f31 ) 

Rz = second approximation (. f30) 

b = dividend (. fO) 

b/a = result (.to) 

ALGORITHM: 

Rl = RoX (2 - aXRo) 

Rz = RIX (2 - aXRl) 

I/O 

; fstore .to 

Comment 

Ro (~1 fa) 

2-axRo 

R1 = Ro X (2 - a X Ro) 

2 - a X R1 

R2 = R1 X (2 - a X R1) 

B X 1/a 

store b/a 

b/a on X port 

© Copyright WEITEK 1988 
All Rights Reserved 



Division, continued 

DIVIDE CODE SUPPORT 

The initial approximation to l/a has to be refined by 
successive approximation. This accurate value of l/a 
must then be multiplied by b in order to complete the 
divide operation (b/a). 

The programmer or compiler has to supply code to 
support the following sequence of operations: 

1. Execute flut to obtain seed value. 

2. Iterate from this value to obtain an accurate divisor 
inverse using the Newton-Raphson algorithm. 

Data Format 

32-BIT FLOATING-POINT (IEEE STANDARD) 

The IEEE standard 32-bit floating-point word divides 
into three fields: a sign bit, an 8-bit exponent and a 
23-bit fraction field (shown in figure 46). 

The value contained in the 8-bit exponent field ranges 
from -127 to 128 (#00 to #FF) (shown in figure 47). 
The fraction is multiplied by two raised to this power to 
produce a floating-point value. 

The significand field contains the 23-bit fraction and 
the hidden bit. Inserted during arithmetic processing, 

SIGN 
BIT 

EXPONENT FIELD (E) 
(8 bits) IMPLICIT BINARY POINT 

3. Multiply the dividend by the inverse of the divisor 
just generated. . 

For division, the Newton-Raphson algorithm converges 
quadratically. Theoretically, the number of bits of pre­
cision doubles with each iteration. Thus, two iterations 
should provide the full 23 bits of precision repres­
entable by the IEEE 32-bit format. Quantization errors 
introduced by rounding, however, can prevent the 19b 
from being accurate. The code example provides b/a 
to 22 bits of precision. 

the hidden bit has a value of one for all normalized 
numbers and zero for zero. The fraction is the 23 bits 
to the right of the hidden bit. Bit F22 has a value of 
2 -1 ; bit Fo has a value of 2 -22; the hidden bit has a 
value of 20 • 

All constants are in this IEEE format. 

FRACTION (F) 
(23 bits) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Figure 46. 32-bit floating-point (IEEE standard) 

The value of an IEEE floating-point number is 
determined by the following: 

E F VALUE 

1-254 Any (-1) s (1.F) 

0 Any (-1) s 0.0 

Figure 47. 32-bit floating-point value 

DESCRIPTION 

2 E-127 Normalized number (NRN) 

Zero 

38 

u 

o 

() 



c 

( 

C: 
/ 

Data Format, continued 

SIGN EXTENSION 
(8 bits) 

INTEGER FIELD 
(24 bits) 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

IMPLICIT BINARY POINT 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Figure 48. 24-bit fixed point (two's complement) 

24-BIT TWO'S COMPLEMENT INTFGERS 

The value of the 24-bit integer field shown in figure 48 
can range from (_2 23 ) to (2 23 -1) and must be sign­
extended to 32-bits to be compatible with the XL-3232 
format. The eight-bit sign extension field is a repeat of 
bit 23, the sign bit of the two's complement number. 

The user must ensure that integer operands conform to 
this format: integer results are automatically sign-ex­
tended to match. 

FIX 

The fix function converts a number from floating-point 
format to sign-extended 24-bit two's complement inte­
ger format. 

If the magnitude of its operand is grf'ater than 2 22 , 

Encn1 is set to 1, and M1 = 1, it will s('[ the Condition 
Register to 1. This limit was chosen to allow software to 
test for the case n = 2 23 , which cannot be represented 
by a 24-bit two's complement number. If the operand 

39 

is too large to be represented in the integer format, the 
result is clamped to either #007FFFFF or #FF820000, 
according to its sign. 

fix does not attempt to set the Zero or Status Registers. 
It executes in the same number of cycles as every other 
multiplier/accumulator instruction. 

FLOAT 

The float function converts a number from sign-ex­
tended two's complement integer format to floating­
point format. 

If its operand does not have consistent sign extension 
(bits 24-31 all equal), Encn1 is set to 1 and M1 = 1, it 
will set the Condition Register to 1. The result of a float 
operation on such an operand is not defined. 

float does not attempt to set the Zero or Status Regis­
ters. It executes in the same number of cycles as any 
other multiplier/accumulator instruction. 

© Copyright WEITEK 1988 
All Rights Reserved 



IEEE Considerations 

The XL-3232 complies with the IEEE Standard for Bi­
nary Floating-point Arithmetic (P7 5 4) in most re­
spects. The differences described below apply to all of 
the arithmetic functions (fsubr, fsub, fadd, fmna, 
fmns, fmac, fabs). 

DENORMALIZED NUMBERS 

Denormalized numbers have a magnitude less than 
2 -126 but greater than zero. The IEEE standard in­
cludes denormalized numbers to allow gradual under­
flow for operations that produce results that are too 
small to be expressed as normalized numbers. The 
XL-3232 do not support denormalized numbers. If the 
result of an operation is smaller than 2 -126, it is re­
placed by zero and the Zero Register is set to 1. De­
normalized operands are detected and flushed to zero 
(with the same sign) before the operation is performed; 
no indication of this is provided. 

NOT A NUMBER (NAN) HANDLINJ 

The IEEE standard represents NaNs with numbers that 
have the maximum exponent value and a non-zero 
fraction. The XL-3232 does not detect attempts to per­
form calculations on NaNs. Only the flut operation may 
produce a NaN (when given zero as an operand). This 
is clamped to the appropriate infinity when refined by 
the divide code example given on page 37. Other op­
erations may have undefined effects when given a NaN 
as an operand, so their use should, in general, be 
avoided. No arithmetic operation generates NaNs; all 
results with the maximum exponent have their fractions 
held to zero. 

INFINITY AND OVERFLOW 

The IEEE standard represents infinitit 5 with numbers 
that have the maximum exponent value and zero as the 

fraction. The XL-3232 does not detect attempts to per­
form calculations on infinite operands. Some opera­
tions may have undefined effects when given an infinite 
operand, so their propagation should, in general, be 
avoided. However, if an operation creates a result that 
is too large to be represented in the floating-point for­
mat, its result is clamped to an infinite value as re­
quired by the specification. The Status Register is set 
by the creation of an infinite value during an operation. 

UNDERFLOW 

When the result of an operation has a magnitude in the 
range 0 < n < 2 -126, the XL-3232 rounds it to zero and 
set the Zero Register to 1. There is no way to distin­
guish underflow from a result that is exactly zero. 

ROUNDING 

The XL-3232 supports only the round-to-nearest 
mode: the infinitely precise result of an operation is 
rounded to the closest representation that fits in the 
destination format. If the result is exactly halfway be­
tween two representations, it is rounded to the nearest 
even fraction. 

The IEEE standard requires rounding to occur after 
each arithmetic operation. The XL-3232 does not 
round between the multiply and add components of 
the fmac, fmns and fmna functions. The error in the 
result is always less than two least-significant bits. 

40 

If the ABin port of the ALU is set to the constant 0.0, 
then the fmac function performs a multiply that con­
forms to the IEEE standard. The fix operation only can 
be set to round to negative infinity by clearing M1 to 
zero. 

/ 



c' 
DC Specifications 

ABSOLUTE MAXIMUM RATINGS 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 to 7.0 V 
Input voltage .................................................................... -0.5 V to Voo 
Output voltage .................................................................. -0.5 V to Voo 
Operating temperature range (TCASE) .............................................. -55 DC to 125 DC 
Storage temperature range ....................................................... -6s DC to ls0 DC 
Lead temperature (10 seconds) .......................................................... 300 DC 
Junction temperature ................................................................... 175 DC 

RECOMMENDED OPERATING CONDITIONS 

PARAMETER 
COMMERCIAL 

UNIT 
MIN 

VOD Supply voltage 4.75 
TCASE Operating temperature 0 

DC ELECTRICAL CHARACTERISTICS 

PARAMETER TEST CONDITIONS 

VIHC High level clock input voltage V OD = MAX 
VllC Low level clock input voltage V DO = MIN 
VIH High level input voltage V DD = MAX 
Vil Low level input voltage V 00 = MIN 
VOH High level output voltage V DD = MIN, IOH = -1.0 rnA 
VOL Low level output voltage V DD = MIN, IOl = 4.0 rnA 

IIH High level input current V DD = MAX, VIN = V DD 

III Low level input current V DD = MAX, VIN = OV 
I OZl Tri-state leakage current low V DD = MAX, VIN = OV 
I OZH Tri-state leakage current high V DD = MAX, VIN = V DD 

I DD Supply current VDD = MAX,Tcy = MIN 
TTL inputs 2 

CIN Input capacitance 3 V DD = 5.0V 
CClK Clock capacitance3 T AMBIENT = 25DC 
COUT 110, Output capacitance 3 f = 1 MHz 
COE OEX-, OEZ- capacitance 3 

NOTES: 1 Worst case over power and temperature range. 
2 Input levels are O.4V and 3.4V 
3 Capacitances are not tested 

41 

MAX 

5.25 V 
85 DC 

COMMERCIAL 1 

MIN TYP MAX UNIT 

2.4 V 
0.8 V 

2.0 V 
0.8 V 

2.4 V 
0.4 V 

10 J.lA 
10 J.lA 
10 J.lA 
10 J.lA 

200 mA 

10 10 pF 
25 30 pF 
15 20 pF 
20 25 pF 

© Copyright WEITEK 1988 
All Rights Reserved 



Timing Diagrams 

Figure 49. Clock timing 

OEX- Input 

D Outputs 

3.4V 

1.5V 

O.4V 

TR'-STATE ~ CONTROL 

TD1S 

TRI-STATE 
OUTPUT 

Tcy 

2.4V 

\ __ ~.2V HIGH 2.4V 

IMPEDANCE 0 BV 
____ --'4---r-'0.2V . 

Notes: 1. TTL inputs of O.4V and 3.5V 
2. Timing transitions are measured at 1.5V unless otherwise specified 
3. T oz is not measured but is guaranteed by design 

Figure 50. Tri-state timing 

Output 
pin 

Figure 51. Test load for delay measurement 

2.0 V 

> 400 n 
> 

-'-- 40 pF 

I 

42 

\ 
) 

o 



c 

( 

c 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

Timing Diagrams, continued 

CLK 

BUS 
INPUTS 

BUS 
OUTPUTS 

NEUT-. 
STALL-

FPCN. 
FPEX. 
ZERO 

--~+ + 2 

I I 

t::jr--_T_H ________ ~--------~ : 
~ <=(~-------+----

I I 
I I 

I TD~ I~ 'I"a;j ~ Tv 

I "''--''-''--~-~!_______+i =«<==== I I 
I I 

t::ir--_T_HN ________ -T ________ ~ i ---Lr Q>------i---
I I 
I I 
I I 

::-:~ =L ~,r-~~' 
-----I':XZ~ i~=«(==== 

Figure 52. Signal timing diagram 

43 
© Copyright WEITEK 1988 

All Rights Reserved 



AC Specifications 

AC TEST CONDITIONS 

Vcc = MIN J VIH =3.4V VOH = 2.8V, IOH = -1.0 mA I TCASE 85°C I C LOAO 40 pF VIL =O.4V VOL = 0.4V, IOL = 4.0 mA = = 

DESCRIPTION 
XL-3232-20 XL-3232-40 XL-3232-60 

UNIT 
MIN MAX MIN MAX MIN MAX 

TCY Clock cycle time 200 120 80 ns 

TCH Clock high time 90 50 ns 

TCL Clock low time 90 50 ns 

TR Clock rise time 5 ns 

TF Clock fall time 5 ns 

Bus inputs (C, X): 

Ts Input setup time 30 20 ns 

TH Input hold time 2 2 ns 

Bus outputs (X, Z): 

Too Output delay time 3 60 3 35 ns 

TENA Tri-state enable time 40 35 ns 

Tols Trl-state disable time 1 40 35 ns o 
Top Pipellned operation time 200 120 80 ns 

per stage 

TLA Total latency 600 360 240 ns 
register-to-register 

NOTES: Values shown are at worst-case over the power and temperature range. TTL input levels are 0.4 and 
3.4 V. Timing transitions are measured at 1.5 V unless otherwise noted. 

The XL-3232 must have power applied for at least 20 ms before Initialization and use. 

1. TOls Is not tested but Is guaranteed by design. 

Figure 53. Guaranteed switching charactenstics over commercIal temperature range and operatmg conditIOns 

44 



c' 

(' 

c 

Pin Configuration 

Pin #1 2 3 4 5 6 
Identifier 

A GND NC NC X18 NC NC 

B NC NC GND X16 NC NC 

C NC NC X15 GND X17 X19 

D NC X12 X14 

E X10 X11 X13 

F X8 NC NC 

G NC X9 VDD 

H NC X7 VDD 

J X6 X5 NC 

K NC NC NC 

L X4 X2 NC 

M X3 X1 GND 

N NC NC OEX- VDD FPCN GND 

P 
TIE TIE 

XO Encn1 FPEX EncnO 
LOW LOW 

R 
Mbin- TIE ZERO GND IOCtO IOCt1 glE 
L W) LOW 

7 8 9 10 

NC X23 VDD NC 

X20 X22 X24 X25 

X21 NC VDD NC 

XL-3232 

TOP VIEW 

TIE TIE 

LOW LOW 
GND GND 

CLK GND GND GND 

TIE GND GND GND 
LOW 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

11 12 13 14 15 

NC X27 NC NC NC 

X26 NC X29 X31 GND 

TIE 
X28 NC X30 LOW F2 

GND FO Adst1 

F1 AdstO AbinO 

Abin2 Abin1 GND 

STALL NEUT- Cwen-

Cadd2 Cadd4 Cadd3 

Cadd1 Aadd3 CaddO 

Aadd1 Aadd2 Aadd4 

BaddO Badd4 AaddO 

Dadd2 Badd1 Badd3 

GND VDD Dadd1 Dadd4 Badd2 

GND GND VDD DaddO Dadd3 

GND GND GND GND GND 

Notes: Pins marked "Tie Low" must be connected to ground. Pins marked "NC" should be left 
unconnected (floating). 

Figure 54. XL-3232 pin configuration 

45 
© Copyright WEITEK 1988 

All Rights Reserved 



Packaging 

Symbol 

I' 0 1 "tJli= A1 
~ @J0000000000000@J . ~ 

000000000000000 == 
000000000000000 E3L == A2 

***C[*** ,:: A3 000 C 000 ~ 000 000 PIN == 
E, 000 000 KOVAR == 

000 000 == 0 000 000 == 
000 000 == 
000 000 STAND == 

E1 000000000000000 OFF == 
000000000000000 KOVAR~ 

L- ~0..000000000000~ . 
\d -J.L ld E2 

BOTTOM VIEW SIDE VIEW TOP VIEW E3 

d 

e 

Figure 55. 144-pin PGA packaging for the XL-3232 

46 

DIMENSIONS 

INCHES MM 

0.080+ 0.008 2.03 + 0.20 

0.180 typo 4.57 typo 

0.050 1.27 

1.575 sq.+ 0.016 40.0 sq. ± 0.41 

1.400 sq.± 0.012 35.56 sq. ± 0.30 

0.050 dia. typo 1.27 dia. typo 

0.018 +0.002 .46 + 0.05 -
0.070 dia. typo 1.78 dia. typo 

0.100typ. 2.54 typo 
~~, 

I \ 
I ' 
~' 

(r\, 

"- . ./ 



c' 

C', 
./ 

Ordering Information 

XL-8200 Series customers should order the following 
chip sets: 

SPEED PACKAGE TYPE DEVICES 

-20 2 14S-pin plastic PGAs 3 1 144-pin ceramic PGA 

-20 2 145-pin ceramic PGAs 3 1 144-pin ceramic PGA 

-40 2 14S-pin plastic PGAs 3 1 144-pin ceramic PGA 

-40 2 145-pin ceramic PGAs 3 1 144-pin ceramic PGA 

-60* 2 145-pin plastic PGAs 
3 1 144-pin ceramic PGA 

-60* 
2 145-pin ceramic PGAs 

3 1 144-pin ceramic PGA 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 

TEMPERATURE RANGE ORDER NUMBER 

Te = 0-85 °c XL-8232-020-GPU 

Te = 0-85 °c XL-8232-020-GCU 

Te = 0-85°C XL-8232-040-GPU 

Te = 0-85°C XL-8232-040-GCU 

Te = 0-85°C XL-8232-060-GPU 

Te = 0-85°C XL-8232-060-GCU 

Figure 56. Ordering information for the XL-8232 (* indicates devices that are not currently available) 

Individual XL-3232s can be ordered as follows: 

SPEED PACKAGE TYPE TEMPERATURE RANGE ORDER NUMBER 

-20 144-pin ceramic PGA Te = 0 to +85 ° C XL-3232-020-GCD 

-40 144-pin ceramic PGA Te = 0 to +85 ° C XL-3232-040-GCD 

-60* 144-oin ceramic PGA Te = 0 to +85 0 C XL-3232-060-GCD 
Figure 57. Ordering information for the XL-3232 (* indicated devices that are not currently available) 

47 
© Copyright WEITEK 1988 

All Rights Reserved 



- .--~-~------.--------------~--- -~---- ---



c 

c 

XL-3232 
32-BIT GRAPHICS 
FLOATING POINT 
COMPUTATION UNIT 

PRELIMINARY DATA 
August 1988 



,,/ 

(",\ 
. ) 



c 

c/ 

For additional information on WEITEK products, please tiU out the form below and mail. 

Name Title 

Company Phone 

Address 

Comments 
I am currently involved in a design with the following Weitek products _____________ and wish to be added to your 
design data base to insure that I receive status updates. 

APPLICATION: 

o ENGINEERING WORKSTATIONS o SCIENTIFIC COMPUTERS 

o GRAPHICS o OTHER ______ _ 

o PERSONAL COMPUTERS 

Check the products on which you wish to receive data sheets: o Have a sales person call 

ATfACHED PROCESSORS COPROCESSORS BUILDING BWCKS 

o XL-SERIES OVERVIEW o 1167 o 2264/2265 o 1066 o 2516 

o XL-8200 OVERVIEW o 116411165 o 3132/3332 02010 o 2517 

o 3164/3364 o 1232/1233 02245 

o 3167 

WEITEKuse: Rec'd Out TPT Source: OS 

Status 

WEITEK XL-3232 
Please Comment On The Quality Of This Data Sheet. 
Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have 
missed something that may be important to you. If you believe this is the case, please describe what the 
missing information is, and we will consider including it in the next printing of the data sheet. 



Fold, Staple and Mail to Weitek Corp. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1374 SUNNYVALE. CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

WEITEK Corporation 
1060 E. Arques Ave. 
Sunnyvale, CA 94086-BRM-9759 

ATTN: Ed Masuda 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

o 

( .... '" I ) . / 





WEIT~ 

Headquarters 
Weitek Corporation 
1060 E. Arques Avenue 
Sunnyvale, CA 94086 
TWX 910-339-9545 

WEITEKSVL 
FAX (408) 738-1185 
TEL (408) 738-8400 

WEITEK'S CUSTOMER COMMITMENT: 

Weitek's mission is simple: to provide you with VLSI solutions 
to solve your compute-intensive problems. We translate that 
mission into the following corporate objectives: 

I. To be first to market with performance breakthroughs, allow­
ing you to develop and market systems at the edge of your art. 

2. To understand your product, technology, and market needs, so 
that we can develop Weitek products and corporate plans that 
will help you succeed. 

3. To price our products based on the fair value they represent to 
you, our customers. 

4. To invest far in excess of the industry average in Research and 
Development, giving you the latest products through techno­
logical innovation. 

5. To invest far in excess of the industry average in Selling, Mar­
keting, and Technical Applications Support, in order to pro­
vide you with service and support unmatched in the industry. 

6. To serve as a reliable. resourceful, and quality business part­
ner to our customers. 

These are our objectives. We're committed to making them 
happen. If you have comments or suggestions on how we can 
do more for you, please don't hesitate to contact us. 

Domestic Sales Offices 
Weitek Corporation 
1060 E. Arques Avenue 
Sunnyvale, CA 94086 
TWX 910-339-9545 

WEITEKSVL 
FAX (408) 738-1185 
TEL (408) 738-8400 

Corporate Place IV 
ill South Bedford St. 
Suite 200 
Burlington, MA 01803 
FAX (617) 2294902 
TEL (617) 229-8080 

European Sales Headquarters 
Greyhound House, 23/24 George St. 
Richmond, Surrey, TW9 IJY 
England 
TELEX 928940 RICHBI G 
FAX 011-441 940 6208 
TEL0l14415490164 

o 

c 

Japanese Representative 0 
C. Itoh Techno/Sciences . \ 
Company Ltd. 
C. Itoh Building 
2-5-1 Kita-Aoyama 
Minato-Ku, Tokyo 107 
TELEX 7812423240 
FAX (81) 3-497-4879 
TEL (81) 3-497-4975 


