
WEITEK ~

~

(C
. ,"

(~~
. ,

XL-8236
22-BIT RASTER
CODE SEQUENCER

PRELIMINARY DATA
October 1988

The WEITEK XL-8236 is a fully­
integrated CMOS 22-bit raster code
sequencer. It is used with the
WEITEK XL-8237 32-bit raster im­
age processor to make the
HyperScript-ProcessofTM, a high­
performance graphics CPU capable
of driving raster printers at up to 60
pages per minute. WEITEK's
single-precision floating point unit
may also be used to produce a
tightly-coupled raster image
printing system.

Contents

Features

Description

Block Diagram 2

Signal Description 3

Architecture 5

Stack 6

Registers 7

Neutralization 9

STALL- 10

Interrupts 10

RESET- 18

Instruction Set 19

Instruction Interaction 57

OP Output Bus Operation 61

Development Tools 63

Design Requirements 63

Ratings and DC Specifications 64

AC Specifications 65

Timing Description 66

I/O Characteristics 68

Pin Configuration 69

Physical Dimensions 70

Ordering information 71

Revision Summary 71

Index 72

Documentation Request Form 75

Sales Offices back cover

The masters for this document were printed on an
XL-8200 development system

XL-8236 Raster Code Sequencer Data Sheet
October, 1988

Copyright ©WEITEK Corporation 1988
All rights reserved

WEITEK Corporation
1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400

WEITEK is a trademark of WEITEK Corporation

PostScript is a registered trademark of Adobe Systems, Incorporated
BITSTREAM and FontWare are trademarks of BITSTREAM Corporation
UNIX is a trademark of AT&T Bell Laboratories
XENIX and MS-DOS are trademarks of Microsoft Corporation
NIMBUS is a registered trademark of URW Corporation

WEITEK reserves the right to make changes to these specifications
at any time

Printed in the United States of America
90 89 88 6 5 4 3 2 1

o

o

o

(

(

Features

22-BIT SINGLE-CHIP SEQUENCING UNIT

22-bit code address bus
32-bit data address bus
33 X 32-bit on-chip stack

HIGH PERFORMANCE

10 to 60 page per minute with WEITEK's
HyperScript interpreter
Low-power CMOS with TTL-compatible I/O

POWERFUL DEVELOPMENT TOOLS

PostScript-compatible interpreter
C compiler
Graphics development system

Description

The XL-8236 is a high-performance 22-bit raster code
sequencer (RCS). The XL-8236 combines with its
companion chip, the XL-8237 raster image processor
(RIP), to make the XL-8200 HyperScript-Processor, a
cost-effective graphics CPU for raster printing applica­
tions over a wide performance range. The most typical
use of a HyperScript-Processor is in a PostScript-lan­
guage laser printer.

HyperScript-Processors are graphics RISC processors
that combine Harvard architecture, single-cycle in­
struction execution, and speCialized math and bit ma-

Currently
Fetching
Address

Next
Sequential
Address

Code
Address Bus

Branch
Address

Interrupt
Address

Multiplexer

XL-8236

Figure 1. Simplified block diagrams

Registers

Status
Timer
Break

32 x 32
Stack

Data
Address Bus

1

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

BUILT-IN REGISTERS AND TIMERS

Breakpoint register
32-bit programmable timer
Status register

TRAP AND INTERRUPT HANDLING

Three external interrupt lines
Five internal exceptions
System reset

nipulation functions to make a high-speed grapics
processor, capable of interpreting the complex Post­
Script language on high-speed printers. The XL-8236
provides instruction sequencing and other control func­
tions. The XL-8237 provides data addressing, arithme­
tic, logical, and bit-manipulation fuctions.

The XL-8236 is a CMOS device offering high perform­
ance and low power consumption, with TTL-compat­
ible I/O. It is available in a standard 145-pin ceramic
or plastic PGA (Pin Grid Array) package.

Code Address Bus

32

XL-8237
Raster
Image

Processor

Code Bus

32

XL-3232
Floating

Point
Unit

Data Bus

s

HyperScript-Processor

© Copyright WEITEK 1988
All ria]"t", ro",orllo.-l

Block Diagram

COND
FPCN
RESET­
EXT1- I""""'
EXT2-
EXT4- T

CURRENTLY > FETCHING
ADDRESS
REGISTER

,I MUX

t
INTERRUPT

> Ab5~~~s
REGISTER

INCREMENTER

Next

~j..
Return
from
Int.

CURRENTLY
",EXECUTING
" ADDRESS

REGISTER

1

INTERRUPT

~ AJltFflss
REGISTER

CODE
PIPELINE

REGISTER STACK

32X32

BREAK­
POINT

REGISTER

~-n
.... TOP OF
V STACK

.------'. j

INTERNAL
STATUS
SIGNALS

• MUX I
•

SEQUENCER I I
STATUS

REGISTER

r-
MUX POP PUSH

COPY

I COMPARE I

BREAt­
POINT --,....
MATCH

MUX

~-'lll ~fnt
MUX '~PT ~":;m ~ INC/DEC ~

~ ~65~Ws§ f POP
REGISTER HI---.L..---___I_-....;,..;;.;,

~~~~~ Int. Return 11-___ ~H------___I_..::IE=:..oA 
Address from I I 

Int. t t 

TIMER 

TIM 

SSR 

~~ _______________ T~LA~T ______________ ~ 
AD BUS 

TRANSFER 
MUX 

NEXT CODE 
ADDRESS MUX , 

D-~ ~ 
BRANCH AND _ BREAK-
INTERRUPT POINT 
CONTROL MATCH 

T 

"'P' 

-

ClK 

STAll-

lOGIC - TIMER 
NEG. 

STALL 
AND NEUTRALIZATION 

LOGIC 

666 
NEUT - VCC GND 

Figure 2. Block diagram 

IDECODEI 

~22 D 
OP4 .. 0 

2 

32 

AD 
TRANSFER 

-,J _. 

AD 31 .. 0 OEAD-

© Copyright WEITEK 1988 
All rights reserved 

o 



Signal Description 

C BUS 

The C31 .. 0 code input bus is driven by the code mem­
ory with the 32-bit instruction word. The code word is 
latched by the RCS at the rising edge of the clock. Be­
cause it contains a built-in pipeline register, it is not 
necessary to use an external pipeline register between 
code memory and the XL-8236. 

AC BUS 

The AC21 .. 0 code address output bus is driven by the 
program sequencing unit. It sends a 22-bit instruction 
address to the code memory. The code address is not 
latched by the RCS, so an external address latch is 
needed between the AC bus and code memory. * Un­
used high-order bits of the AC bus can be left floating. 

The AC bus is driven on every cycle (even when 
8T All-, or NEUT - are asserted) unless disabled with 
the OEAC- signal. 

The AC bus produces instruction addresses, not byte 
addresses. 

AD BUS 

The AD31 .. 0 data address bus provides addresses for 
data memory operations (the data is transferred over 
the D bus to the RIP). It is also used for intra-processor 
communication. It connects the integer processing unit 
to the sequencer. The AD bus can also be used as a 
bidirectional data bus for transfers to and from other 
hardware. 

All 32 bits of the AD bus need to be attached between 
the RCS and RIP to allow intra-processor data transfer. 
This traffic may take place during 8T All- or NEUT cy­
cles, and it is important that it not be interfered with. If 
any external device wishes to write to memory asynch­
ronously to the XL-Series devices, it must not write di­
rectly to the AD bus. 

Addresses on the AD bus are byte addresses. 

OP BUS 

The OP4 .. 0 output bus indicates the type of instruction 
that is executing, and can be used to control external 

* Note that a latch, not a register, should be used. Future 
versions of the XL-8236 may contain an on-chip address 
latch. 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

hardware. The memory system must decode the OP 
bus outputs to determine when to read, when to write, 
and when to latch the data address. In addition, fifteen 
of the 32 OP combinations are used to signal loads or 
stores to "external registers" 0-14, which can be any 
external hardware. These external register transfers 
take place over the AD bus. 

EXT1-, EXT2-, and EXT4-

Level-sensitive interrupt request inputs. The current in­
struction is allowed to complete and execution pro­
ceeds from one of the interrupt vectors. External inter­
rupts can be enabled and disabled in the sequencer 
status register. Interrupt signals are examined at the ris­
ing edge of the clock. 

EXT4- is used as a floating point exception interrupt in 
systems with the XL-3232 FPU. 

There is no EXT3-. 

Interrupt signals must be held until acknowledged. 

RESET-

A level-sensitive input that resets the sequencer and 
causes a branch to address·O. The sequencer status reg­
ister is initialized as described on page 18. The other 
registers in the chip are undefined. Registers that can 
cause exceptions (such as the timer and breakpoint 
registers) must be initialized before their exceptions are 
enabled. 

Reset is not useful as a non-maskable interrupt. 

CLK 

The Clock input, ClK, is a single-phase TTL-level 
clock signal. 

NEUT-

NEUT - (neutralize) is an output signal that goes from 
the RCS to the RIP and FPU. It is not normally used 
by hardware outside the processor chip set. NEUT - is 
asserted by the sequencer, and instructs all XL devices 
to cancel their current instructions. This is done on 
transfer-of-control instructions (including branches, 
calls, and interrupts) to prevent the instruction in the 
pipeline from being executed. All XL-Series chips must 
have their NEUT - lines tied together. 

© Copyright WEITEK 1988 



Signal Description, continued 

STALL-

ST ALL- is a "not-ready" input line that causes the cur­
rent code fetch to be retried on the next cycle. The 
instruction that was to be executed on the next cycle is 
canceled (but the current instruction is allowed to com­
plete). ST ALL- is typically used by the code memory 
subsystem when the requested code word cannot be 
read in the current cycle. 

The XL chips each cancel their currently fetching in­
struction. and fetch the instruction again on the next 
cycle. and on every cycle that ST ALL- is asserted. The 
fetched instruction will be executed when ST ALL- is 
de-asserted. 

All the XL-Series chips must have their STALL- lines 
tied together. 

COND 

Condition code input. Goes from the RIP to the RCS. 
Not normally used outside the processor chip set. 

FPCN 

Floating point condition code input. This signal goes 
from the floating point processor to the RCS. In sys-

4 

terns without a floating point processor FPCN is tied to 
ground. 

OEAD-

OEAD- is an asynchronous output enable signal for the 
AD bus. The bus is at a high-impedance state when 
disabled. 

VCC AND GND 

VCC is a +5.0 volt supply. GND is a system ground. All 
VCC and GND pins must be connected-floating pins 
are not allowed. 

NC 

No connection (must be left floating). Reserved for fu­
ture expansion. 

TIE HIGH 

This signal line is reserved for future expansion. It 
should be tied to VCC. 

TIE LOW 

This signal line is reserved for future expansion. It 
should be tied to GND. 

© Copyright WEITEK 1988 
All rif!ht.~ rl'.w:>rvl'd 

o 

o 



( 

Architecture 

BUSES 

The XL-8236 uses three buses: the C bus (32 bits), the 
AC bus (22 bits), and the AD bus (32 bits). The AC 
(code address) bus is used to address code memory. 
The AD (data address) bus can be used to transfer data 
between the RCS registers and the rest of the system, 
including the XL-8237 RIP, and to save and restore 
the stack externally. The XL-8237 RIP also uses this 
bus as a data address bus. The C (code) bus provides 
the instructions for both the RCS and the RIP. 

PIPELINING 

The XL-8236 instruction sequence is pipelined. In 
each clock cycle, the next instruction is fetched while 
the current instruction is being executed. This parallel 
fetch/execute architecture allows faster execution than 
the usual sequential fetch/execute architecture. 

INSTRUCTION SET 

The instruction set contains branch, conditional 
branch, subroutine call and return, software interrupt 
and interrupt return, loop control, and coprocessor 
control instructions. 

5 

INTERRUPT CONTROL 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

There are three external interrupt lines, plus reset. In­
terrupts can be masked individually and collectively, 
with the individual interrupt enable and master inter­
rupt enable bits in the sequencer status register. 

Interrupts are vectored to one of fifteen addresses. 

MEMORY CONTROL 

The RCS's memory interface is controlled by the 
STALL- input. 

STALL- is used to cancel instructions in the event of 
delayed code memory word. It is typically used with 
dynamic RAM and memory caches. External hardware 
detects memory faults and asserts ST ALL- until the 
data is available. 

In addition to these two input signals, the RCS has a 
five-bit OP output bus. The OP bus identifies the cur­
rent state of the memory interface. 

CONTROL FLOW 

Figure 3 shows the major states of the system: at 
power-up, at reset, and in applications programs. 

© Copyright WEITEK 1988 
A'J _!_'_.i. _ ________ J 



Architecture, continued 

At power-up, the state of the XL-8236 Is undefined. 

When RESET- Is asserted, .Ibr, .ssr, .cfa, and .cea are Initialized, and 
execution starts from code address 0 (which should contain a continue 
operation for the RCS, and a no-op for every other processing unit). All 
other registers are undefined. The Initialization of .ssr disables Interrupts. 

The reset handler should Initialize the RCS, the RIP (raster Image proces­
sor) and any other devices In the system. At this point Interrupts should 
stili be disabled. Once the system Is initialized, interrupts can be enabled 
by setting the master Interrupt enable bit in the sequencer status register. 

Application programs can be called with a branch to subroutine instruction. 

Figure 3. Major states of an XL-Series system 

Stack 

The RCS has a 33-word-deep by 32-bit-wide register 
file addressed as a stack. The stack may contain loop 
counts, branch addresses, and subroutine return ad­
dresses. The stack consists of a 32-bit top-of-stack reg­
ister (.tos), a 32-word by 32-bit register file, and a 
stack pointer, which is a 5-bit field within the sequen­
cer status register (.ssr). 

On reset, the stack pointer is initialized with all l's (a 
value of 31), indicating an empty stack. The stack 
pointer is a modulo-32 counter which increments be­
fore each push and decrements after each pop. 

6 

Stack underflow and overflow exceptions are provided. 
An underflow exception occurs when a pop operation 
nearly empties the stack. An overflow exception is gen­
erated when a push operation nearly fills the stack. 
(For more details, see sections Stack Overflow and 
Stack Underflow on page 15.) 

A pair of exception routines can implement a larger 
stack in system memory. When the ReS stack over-
flows, it is copied to the main memory stack; when it 0 
underflows, data in the memory stack is restored to the . i 

RCS stack. . .. 

© Copyright WEITEK 1988 
All riJ!hts reserved 



( 

Registers 

FETCH AND EXECUTION ADDRESS REGISTERS 

The sequencer fetches an instruction on every cycle, 
and executes it on the following cycle. The instruction 
cancellation mechanism allows the results of an instruc­
tion to be discarded after the instrution has completed, 
effectively turning the instruction into a no-op, but the 
chip is never idle. 

The currently executing address (.cea) register is a 
22-bit register containing the address of the instruction 
currently being executed. This is the instruction that 
was fetched on the previous cycle. 

The currently fetching address (.cfa) register is a 
22-bit register containing the address of the instruction 
being fetched. This instruction will be executed on the 
next cycle, and the address in the .cfa will be copied 
into the currently executing register (.cea). 

INTERRUPT ADDRESS REGISTERS 

The two interrupt address registers are the interrupt 
fetch address (.ifa) and the interrupt execute ad­
dress (.iea). The RCS stores interrupt return ad­
dresses in these registers. (For more details see Inter­
rupt Sequence on page 10.) 

SEQUENCER STATUS REGISTER 

The sequencer status register (.ssr) is a 32-bit register 
containing state information. The upper five bits con­
tain the stack pointer. The remaining bits include 
branch bits, nine sets of flag/enable bits which control 
and identify the state of interrupts and exceptions, and 
the master interrupt enable bit. If the master enable bit 
(men) is cleared,all interrupts are prevented from 
executing. 

Several instructions implicitly use or alter information 
in the . ssr. The . ssr is illustrated in Figures 4 and 5. 

The band bi bits are state bits. The b bit indicates that 
the previous instruction was a taken branch. The bi bit 

31 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

stores the current values of the b bit for interrupt proc­
essing. 

The nine sets of flag/enable bits selectively control the 
interrupt mechanism. If the enable bit is set, and if the 
indicated exception occurs, an interrupt occurs and the 
associated flag bit is set. Interrupt-handling software 
reads this word and examines the flag bits to determine 
which interrupts have occurred. If either the master or 
individual interrupt enable is false and an interrupt oc­
curs, no interrupt routine will be called, but the associ­
ated exception flag will still be set. 

The flag bits are "sticky" - they will remain set even if 
the signal that sets them goes away. The bits can only 
be cleared by overwriting the . ssr. If a flag bit is set 
when its interrupt is disabled, it will not cause an inter­
rupt when the interrupt is re-enabled. Thus, all pend­
ing interrupts must be handled before exiting the inter­
rupt handler. Furthermore, the interrupts that have 
been serviced must have their flag bits reset before in­
terrupts are re-enabled (or before the interrupt handler 
is exited) to assure proper operation of the sequencer. 

External interrupts (EXT1-, EXT2-, and EXT4-) must 
be latched externally until acknowledged. 

The five-bit top-of-stack Ctos) pointer is part of the 
.ssr. 

After a reset, the .ssr is initialized with all zeros ex­
cept for the s bit, which is set; and the .tos field, which 
is set to all ones to indicate an empty stack. 

MODIFYING THE SSR 

The .ssr can be read or written as a 32-bit register us­
ing the Intrasystem Data Transfer Instructions on 
pages 46-48. While the .ssr can be examined at any 
time, special care must be exercised when setting it to 
avoid losing interrupts. 

o 
I tos I ml ext 1 I ext 23 I ext4 I prv I trp I sun I SOY I tim I brk s b - I 

5 2 3 222 222 3 2 2 2 

Figure 4. Sequencer status register (.ssr) 

7 



Registers, continued 

In order to set or reset a portion of the .ssr, a read­
modify-write sequence must be performed, that is, the 
.ssr is read into the RIP, the desired bit manipulation 
is performed and the .ssr is written with the new value. 
In order to avoid losing crucial state information and 
any interrupts that occurred between reading and writ­
ing the .ssr, the following rules must be followed: 

1. Interrupts should be disabled (that is, the .ssr's 
men bit should be zero) with a trapi instruction. 
See pages 16-17. 

2. Interrupts from external devices should be held 
until explicitly acknowledged by the interrupt han­
dler software. 

3. No internal interrupt, except timer interrupts, 
should occur. 

TIMER REGISTER AND INTERRUPT 

The ReS includes a programmable timer based on a 
32-bit timer register. The timer register contains a 

Symbol Bit# Meaning 

- 0 -
1 -

b 2 b 
3 bl 

s 4 s 
5 sl 

brk 6 brkflg 
7 brkenc 
8 -

tim 9 tlmflg 
10 tlmen 

sov 11 sovflg 
12 soven 

sun 13 sunflg 
14 sunen 

trp 15 trpflg 
16 trpen 

prv 17 prvflg 
18 -

ext4 19 ext4flg 
20 ext4en 

ext23 21 ext23en 
22 ext2flg 
23 -

ext 1 24 ext1flg 
25 ext 1 en 

men 26 men 
.tos 31-27 .tos 

Figure S. Bit fields in the sequencer status register 

signed 32-bit number whose value represents the num­
ber of clock cycles remaining until a timer interrupt 
occurs. The timer register is decremented during every 
clock cycle. Whenever the value is negative, the timer 
flag is set, allowing a timer interrupt occur. 

The timer will continue to decrement even when nega­
tive. This allows accurate timing if the service routine is 
interrupted or delayed. 

BREAKPOINT REGISTER 

The XL-8236 also includes a 32-bit breakpoint register 
(. brk) , used to provide a code breakpoint for program 
development. A code address can be loaded into the 
. brk register. If the . ssr brkenc bit is set, any attempt 
to fetch the instruction located at the address loaded in 
the .brk register sets its breakpoint interrupt flag, gen­
erating a code-break interrupt if enabled. 

reserved: must be set to zero 
reserved: must be set to zero 
last instruction was a taken branch 
last Instruction of Interrupted process was a taken branch 
reserved: must be set to one 
reserved: must be set to one 
flag for breakpoint interrupt 
enable for code breakpoint interrupt 
reserved: must be set to zero 
flag for timer Interrupt 
enable for timer Interrupt 
flag for ReS stack overflow interrupt 
enable for ReS stack overflow Interrupt 
flag for ReS stack underflow Interrupt 
enable for ReS stack underflow Interrupt 
flag for trap Instruction Interrupt 
enable for trap Instruction Interrupt 
reserved: must be set to zero 
reserved: must be set to zero 
flag for external Interrupt 4 
enable for external Interrupt 4 
enable for external Interrupt 2 
flag for external interrupt 2 
reserved: must be set to zero 
flag for external Interrupt 1 
enable for external Interrupt 1 
master Interrupt enable 
five-bit top-of-stack pointer 

8 
© Copyright WEITEK 1988 

All rights reserved 

o 



( 

( 

Neutralization 

The XL-8236 RCS and its companion, the XL-B237 
RIP, achieve high speed by simultaneously fetching the 
next instruction while executing the current instruction. 
When a branch is executed, the RCS already has the 
instruction following the branch in its instruction pipe­
line. This, instruction is called the "shadow instruc­
tion." Fetching the instruction at the branch address 
takes an additional cycle, since it's not yet in the pipe­
line, so the destination instruction is executed after a 
one-cycle delay. This is called "delayed branching". 

The XL-8236 provides a neutralization output line, 
NEUT -. It can selectively cancel the effects of the 
shadow instruction, effectively replacing it with a no­
op. The XL-B236 instruction set normally sets NEUT­
active after branch, call and return instructions (in­
cluding interrupt calls and returns), thereby canceling 

Unconditional Branch 

Address 

N: branch N+P 

N+ 1: [processor command] 
(neutralized) 

N+2 

Figure 6. Neutralization 

= instruction is 
neutralized 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 19BB 

the shadow instruction. This allows the programmer to 
ignore the effects of delayed branching. 

Neutralized instructions actually run to completion, but 
their results are discarded at the end of the cycle. Reg­
isters, status flags, and so on are simply not updated, so 
internal effect is as if the instruction was never exe­
cuted. 

The XL-8236 instruction set also provides three addi­
tional instructions which allow the shadow instruction 
to be executed: override neutralization (ovneut), over­
ride and increment stack pointer (ovneuti), and re­
verse neutralization (revneut). Efficient code makes 
use of these instructions to selectively execute shadow 
instructions, saving up to one clock cycle per branch. 

Unconditional Branch 
with Override Neutralization 

Address 

N: branch N+P 

N+1: ovneut, [processor command] 
(executed) 

N+2 

© rnnlJriuhf WRTTRl(' 10RR 



STALL-

The XL-8236 has a control input, ST ALL-, which di-
rects the RCS and RIP to cancel the effects of the next 
instruction. This signal is asserted by external hardware 
when unable to complete a bus transfer in time, such as 
during a cache miss or refresh cycle. An active ST ALL­
signal cancels the next instruction. Instructions can­
celed through this mechanism are refetched and will be 
re-executed when the ST ALL- signal is de-asserted. 

Cancelled instructions actually run to completion, but 
their results are discarded at the end of the cycle. Reg­
isters, status flags, and so on are simply not updated, so 
internal effect is as if the instruction was never exe­
cuted. 

ST ALL- allows the current instruction to complete, but 
cancels the next instruction. The most common use of 
ST ALL- is to re-execute an instruction fetch on a wait 
state, cache miss, or refresh cycle. The invalid word 
loaded on the ST ALL-ed cycle is released, then the 

Time 

T-1 

T 

T+1 

T+2 

T+3 

Address 

N-1 

N ... STALL-
Asserted 

cancel ... STALL-
Asserted 

cancel 

N+1 

instruction is executed and normal execution contin- Figure 7. Effects of ST ALL-
ues. 

Interrupts 

The XL-8236 can receive interrupts from three exter­
nal sources: EXT1-, EXT2-, and EXT4- (there is no 
EXT3); and can generate five interrupts internally: 
BAK, TIM, SOY, SUN, and TAP. When an interrupt 
control line or internal condition becomes active, the 
RCS sets the corresponding .ssr interrupt flag. If the 
master interrupt enable (men) bit of the .ssr is set, 
and the corresponding .ssr interrupt enable is active, 
the interrupt will be honored, as described below. 

There are fifteen interrupt vector addresses. All exter­
nal interrupt lines are level-sensitive. They are sampled 
at the rising edge of the clock. 

INTERRUPT SEQUENCE 

When an interrupt is detected, the . efa is stored in the 
iea, and the next fetch address is placed in the .ifa. 
This sequence allows the system to return to the next 
instruction (.efa) on an interrupt return. See figure 8. 

The RCS then neutralizes the fetched instruction and 
branches to the interrupt vector address. The old value 
of the .ssr b bit is saved in the bi bit. 

The interrupt vectoring scheme is based on four classes 
of interrupts. When an interrupt request is approved, 
the RCS branches to the address formed by or-ing the 

10 

32-bit interrupt base address register (.ibr) with the 
four interrupt classes as shown in figure 12. This gives 
the capability of up to 15 different vector addresses 
(not 16 because at least one class bit must be non-zero 
for an interrupt to occur). 

Note that if multiple interrupts occur simultaneously, 
they are not prioritized. Rather, the vector address of 
the interrupt handler is selected to indicate which in­
terrupt classes are pending. 

Interrupts can be nested to any depth by saving the 
contents of the .iea, .ifa and .ssr registers externally. 

RETURNING FROM INTERRUPTS 

To return from an interrupt, two special interrupt re­
turn instructions must be executed, return-from-inter­
rupt-O (rfiO) and return-from-interrupt-l (rfi1). Exe­
cuting rfiO returns the .iea register to the .efa register 
places the contents of the . iea register onto the AC bus 
and enables the interrupt master enable bit (men). 
The upadating of the men bit may occur on the cycle 
in which the rfiO is executed, or one cycle after that. 
Executing rfi1 returns the .ifa to the .efa and places 
the .ifa register contents onto the AC bus, restoring the 0--. 
RCS state to what it was before the interrupt was re- -
quested. 

© C.~fy~i~~t WEITE~ 1988 



(: 

Interrupts, continued 

CYCLE I· .. I- 2 

ClK ~ J 

AC BUS ~ N > :( N + 1 > , , 
, , 

C BUS :( N ) :( N+ 1 , • , 

CURRENT N -1 N 
INSTRUCTION 

OP BUS -"'---1( FR~M N - 1 >--< FROM N 

INTERRUPT 
SOURCE" 

NEUT-

, 

Figure 8. Normal interrupt entry sequence 

Note that the enabling of the men bit during the rf10 
cycle allows an interrupt to be acknowledged before 
the rfi1 instruction executes, causing the state of the 
machine to be lost. RfiO also ignores the state of 
STALL-. Two steps must be taken to avoid this from 
causing trouble: 

4. Condition C13 by ANDing it with STALL-, as 
shown in figure 9. This will prevent the RCS from 
ever seeing an rfiO instruction during ST ALL- cy­
cles, and eliminates the problem (that it alters the 
code word is unimporant, since the STALL- signal 
will cause it to not be executed). If your design 
does not use ST ALL-, you do not need to imple­
ment this. 

5. Use the code in figure 10 at the start of your inter­
rupt routine to test for improper interrupt exit se-

.. I-

J 

:( 
, 

> 

3 

> 
:( , 

NONE 

.. I- 4 

J 

:( 1+1 > , 
, 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

.. I .-
, 

> :( 1+1 >-, 

iea = N + 1 ' 
if a = N + 2 ' 

On interrupt return, 
execution will resume 
with instruction N + 1 

)-(,"_I":,,,NT_A_C_K_~>-< .... --:F_R_O_M_I_~>-, , , 

quences and to restore the state correctly. This 
step must be implemented whether you use 
ST ALL- or not. 

C13 from 
code memory 

STALL-

C13 on 
XL-8236 

Figure 9. Hardware portion of the special handling 
for rfiO/rfi 1 



Interrupts, continued 

'* Beginning of Interrupt handler *' '* This routine works by testing the value of .Iea against the address of the Interrupt 
handler's rfl1 Instruction. This Implementation assumes that there Is only one exit routine; 
that Is, that there Is only one rfl1 Instruction In the whole system. 

The extra overhead consists only of a few Instructions, since the Interrupt calls are not 
spurious; they simply happened a cycle too soon. 

This example Is written In a pseudo-code that mixes C and XL assembly code. *' 
swap register banks 
If (.lea == rfl1_addr) { '* This Interrupt came between rflO and rf11. Restore the state of the previous call, with 

a few exceptions... *' 
saved_ssr.bl = .ssr.bl; 

} else { '* This Is a normal interrupt call. Save .lea, .Ifa, and .ssr specially *' 
savedJea = .Iea; 
saved_lfa = .lfa; 
saved_ssr = .ssr; 

} 

'* Main part of Interrupt handler *' 
'* End of Interrupt handler *' 
.Iea = saved_lea; 
.lfa = saved_lfa; 
.ssr = saved_ssr; 

rflO; 
rfI1_addr: 
rf11; asrtadr 

Figure 10. Software portion of the special handling of rfiO and rfi1 

INTERRUPTS AND STALL-

Interrupt processing takes precedence over stalls: if 
ST ALL- is asserted and an enabled interrupt is ap­
proved, the ReS will honor the interrupt and perform 
the interrupt entry sequence. (See figure 11). Because 
the AC bus address changes (the only situation when it 

12 

can change with STALL- asserted), designers using 
variable-latency code memory subsystems must handle 
this case. This is described in detail in the XL-Series 
Hardware Designer's Guide. 

© Copyright WEITEK 1988 
All riJ[hts reserved 

o 

o 



( 

( 

Interrupts, continued 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

CYCLE --.... 1.-- 2 --..... 1·-- 3 --· .... 1·-- 4 --· .... 1·-- 5 -.....at. I 

ClK 

AC BUS 

C BUS 

CURRENT 
INSTRUCTION 

OP BUS 

INTERRUPT 
SOURCE 

NEUT-

STAll-

J t 

Figure 11. Interrupt with ST ALL- asserted 

.ibr [31 .. 0] 

16151413121110 

OR 

--16151413121110 
Vector Address I 

Figure 12. Interrupt vector address 

INTERRUPT FLAG BITS 

Interrupt Classes 

CN 

C1 = EXT1 

C2 = EXT2 

C3 = TRAP 
C4 * = SRK, TIM, SOV 

SUN, EXT4 

~r 

* Collectively referred to as II others" 

The interrupt flag bits record the history of the associ­
ated interrupt. If the interrupt was asserted at any time 
in the past, then the flag bit will be set even if the en­
able is not set (except for the breakpoint register; 

breakpoint comparisons are only performed if the asso­
ciated enable bit is set). Once the flag bit is set it can 
only be cleared by writing an entire word into the .ssr. 

© Copyright WEITEK 1988 



Interrupts, continued 

EXTERNAL INTERRUPT SOURCES 

The external interrupt sources are: EXT1-, EXT2-, 
and EXT4-. Each has status and interrupt enable bits 
in the .ssr. 

The EXT 1- control line is a dedicated external inter­
rupt. Its interrupt mask bit in the .ssr is ext1en. Its 
status bit is ext 1flg. 

The EXT2- interrupt line has an enable bit, ext23en. 
Its status bit is ext2flg. 

EXT4- is typically used to signal exception conditions 
from floating point processors, but can be used as a 
general-purpose interrupt. Its enable bit is ext4en, and 
its status flag is ext4flg. 

INTERNAL INTERRUPT SOURCES 

The five internal interrupt sources (SOV, SUN, TRP, 
TIM, and BRK) each have a status and interrupt enable 
bit in the . ssr. 

SOY and SUN indicate stack near-overflow and near­
underflow. SOY occurs when data is pushed into the 
third-to-Iast available word on the stack (.tos = 29). 
SUN occurs when the stack is empty or nearly empty 
(.tos = 1 or .tos = 0, or .tos = 31). The enable and 
status bits for SOY and SUN are soven, sovflg, sunen, 
and sunflg, respectively. 

Note that the stack underflow exception can occur at 
more than one stack position. The stack pointer (the 

. tos field) must be used to determine the stack position 
in exception handling, rather than using constants 
showing the stack position at which you expect the ex­
ception to occur. 

TRP is set by invoking the trap instruction. Its enable 
and status bits are trpen and trpflg, respectively. 

The remaining two exceptions, TIM and BRK, are set on 
timer interrupts and breakpoints, respectively. Their 
enable and status bits are timen, timflg, brkenc, and 
brktlg. 

BREAKPOINT FACILITY 

The breakpoint (.brk) register provides a facility to in­
terrupt normal program execution when a specific in­
struction is executed (breakpoint). 

See figure 13 for the timing of a code breakpoint. The 
system stops before executing the instruction refer­
enced by the . brk register. Note that even instructions 
which are to be neutralized will cause a code break­
point. This allows simple single-stepping of the system 
by setting the breakpoint to the .ita register (the "next" 
instruction to be executed). 

Breakpoints are not reliable if they occur on addresses 
that are executed after shadow instructions, such as 
branch targets. 

CYCLE 2 --..... 1.-- 3 --1-
ClK 

,. 

AC BUS ---i N > :( 
, 
, , 

C BUS :( N ) 
, 

1 

CURRENT N-1 
INSTRUCTIOI\ 

OP BUS < FROM N - 1 >-< 
, , , 

NEUT ~ 
Figure 13. Code breakpoint timing 

> :( 1+1 > , , 
, , 

:( ) :( 1+1 (-
i 

N~NE 

INTACK >-< FROM I >-
, , 

~ 

14 

iea = N 
if a = N + 1 

The breakpoint 
register contains 
"N." On return 
from interrupt, 
execution will re­
sume trom in­
struction .. N. " 

© Copyright WEITEK 1988 
A J J _! _1_.L _______ • _ J 

o 

o 



Interrupts, continued 

STACK OVERFLOW 

The sovtlg bit of the .ssr is set when the .tos field 
contains a 29 and a stack push operation is performed. 
If the stack overflow interrupt is enabled (soven = 1 
and men = 1), then it will be detected during the cycle 
after the completion of the push operation. See figure 
14 for details. 

STACK UNDERFLOW 

The suntlg bit of the .ssr is set when the .tos field 
contains a 1, or 0, or 31 and a stack pop operation is 
performed. If the stack underflow interrupt is enabled 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

(sunen = 1 and men = 1), then it will be detected 
either one or two cycles after the completion of the pop 
operation. (The extra cycle of delay doesn't cause 
problems because the exception is triggered when the 
next-to-Iast word is popped off the stack. Even if an­
other pop occurs in the cycle between the first pop and 
the assertion of the exception, the data popped off will 
still be valid.) See figure 14 for details. 

The stack should be initialized after a reset by pushing 
two values onto the stack. This will move it past the 
point where the stack underflow interrupt occurs. 

CYCLE I- .. I--~ ... -- 2 -~ .. ~I ... --- 3 ---1 ...... _- 4 --...... 1---
ClK 

AC BUS 

C BUS 

CURRENT 
INSTRUCTION 

~ 

-« N 

l 

> >--_ ....... -1( N + 1 )>--";--1( N + 2 ) 
, 

N-1 N N+1 

, 
( ) ( 1+1 ) 

( N+2 ) ( ) 

N~NE 
, • • • • t • • • • ________ ~ ___ ~ ___ ~ ___ ~ ___ L ___ ~ ___ ~ __ ~ ____ ~ __ ~ ____ ~ __ . 

OP BUS 

.ssr sovflg 

NEUT-

I I • •• • 

--~( FROM N - 1 }--( FROM N >-< INTACK >--< FROM I >-<'-_F .... RO_M_' +_1--J}-
instruction N causes 
the stack to overflow 

~--------~------~I 

iea = N + 1 
ita = N + 2 

- - - - - - - - <-& - - - ... - - -"""r - - - -'- - - _ ... - - - .... - - - L- - - -.- - - - ..... - - -1- - - - ..... __ 

OP BUS 

.ssr sunflg 
or 

.ssr sovflg 

•• f' , 

--:-~( FROM N - 1 >--< FROM N >-< FROM N + 1 >--< INT ACK 

instruction N causes 
the stack to underflow , iea = N + 1 

ita = N + 2 
iea = N + 2 
if a = N + 3 

'>-(I...-,...FR_O_M_I ---1'>-, , 

r -;-- - -,--,r------'------I.---...... -
--:----~----I~--_:_---_r_.L/- _,_ - - _'J , , , 

, , , 

NEUT- ~ ~: , 

Figure 14. Stack overflow/underflow timing. Note that the underflow may be signaled on one of two cycles. 

® rnn1Jr;uht WPTTPJ(' lO.R.R 



Interrupts, continued 

TRAPS HANDLING INTERRUPTS 

Software interrupts on the XL-8236 are called traps. 
They are invoked with the trapi instruction. 

The software that handles interrupts should follow the 
procedure given in figure 15. The handler for nested 
interrupts is more complex. This is shown in figure 16 
(detail in steps common to both figures is skimpy in 
figure 16. so be sure to read both). 

Traps are used primarily for system calls. The program­
mer would specify a system call by using the immediate 
field of the trap instructions. as in "trapi 4 7 ." This 
would push the number 47 onto the stack and cause a 
trap interrupt. The trap handler would use the value on 
the stack as a parameter. 

Each flag bit in the . ssr must be reset after the inter­
rupt or exception is serviced. 

Return from 
Imerrupt 

When an interrupt or exception occurs, the RCS disables interrupts (by clearing the men 
bit In the .ssr) and branches to one of the fifteen interrupt vectors. For a simple inter­
rupt handler, all fifteen vectors can contain a branch to the same Interrupt handling 
code. 

Check to see If the handler was entered between an rfiO and rfil Instruction. Fix up the 
return address If so. 

All registers that could be modified by the interrupt handler must be saved. Latencies 
must be taken Into account; the multiply/divide unit on the RIP may be in the middle of a 
divide operation, which takes 16 cycles. The FPU, If present, may also take a number of 
cycles to complete an operation. If the RIP registers (. rO-. r31) are saved first, all other 
registers will be in a stable state by the time they are examined. 

The floating point condition on the XL-3232 is not part of the status register. You can 
test It by performing a floating point branch and testing whether the branch was taken 
or not. 

Internal exceptions are not • sticky;" that Is, they do not re-assert themselves If they 
aren't processed. If you return from an interrupt without processing an exception, the 
Interrupt handler will not be re-entered. If the unprocessed exception affects the appli­
cation program (for example, If It was a stack overflow and the application program 
does a push), bad things will happen. Thus, you should process all asserted exceptions 
during every call to the Interrupt handler. You should also test for floating point excep­
tions on every call to the interrupt handler, If the system has a floating point unit. 

You do not have to handle all external Interrupts on every call to the interrupt handler, 
since they are required to be latched externally, and thus will be re-asserted when Inter­
rupts are re-enabled. 

All registers are restored in a straightforward way except .ssr (and possibly .tim). For 
.ssr, the old value of the bi bit must be restored. The current value of .tos must be 
maintained. The interrupt and exception enables will usually be restored to their old 
state. 

The timer register, .tlm, can be restored If you are using It to measure ·user" time, or 
left as It Is If you are measuring elapsed time. 

On the XL-3232, the floating point condition can be set by performing a dummy floating 
point operation. 

To return from Interrupt, execute this code: 

rflO 
rfil; asrtadr 

The asrtadr instruction is a RIP instruction that forces the . adr register onto the AD 
bus, which restarts any interrupted address-generation instructions. 

The rfiO/rfil instruction sequence re-enables Interrupts by setting the men bit to Its pre­
vious state. 

Figure 15. Description of interrupt handling 

16 
© Copyright WEITEK 1988 

All rights reserved 

o 

o 



Interrupts, continued 

1 

1. 

2 

2. 

3 

3. 

( 4. 

11 
4 5. 

6. 

12 7. 

S 
8. 

9. 

Return from 
13 10. 

Interrupt 
6 

11. 

12. 

13. 

7 

c 
8 

Figure 16. Nested interrupts 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

The only way to turn Interrupts off reliably Is with a trap Instruction, 
since masking the master enable bit with a "mov ra, .ssr" Instruc-
tion Is Itself Interruptable. You need to disable Interrupts before you 
restore state. Thus, you should assign a value of the Immediate 
field of a trap Instruction to mean "this Is a request to restore 
state. " 

"Minimum state" consists of those registers that may be changed 
when we test for the restore-state request. To test the Immediate 
value on the stack you must copy It to the RIP and compare It to a 
constant, forcing you to overwrite at least two RIP registers and 
the processor status register. These registers, and any other reg-
isters modified by these tests, must be saved first. 

Very high priority Interrupts can also be processed here, but ex-
treme care must be taken to avoid stack overflow and the overwrit-
ing of registers that aren't saved with the minimum state. 

Save the rest of the state of the machine, as In the previous exam-
pie. State must be saved on a stack for nested Interrupts, to allow 
the state to be restored correctly as the Interrupts un-nest. 

In addition to traps and exceptions, the high-priority external inter-
rupts should be processed first before Interrupts are turned back 
on. Stack overflow should be processed first to allow some level of 
subroutine nesting. 

Interrupts can be re-enabled by writing the .ssr to the RIP, masking 
the master enable bit on, then copying It back to the .ssr. 

Low-priority Interrupts are processed next. If another interrupt oc-
curs during processing, execution will proceed from step 1 . 

This consists of a trapl instruction. For example, if 42 has been 
chosen as the code for "restore state," this step consists of a 
"trapl 42" Instruction. 

The Interrupt handler Is re-entered after the trapi Instruction. 

Minimum state Is saved, and, If there Is a trap pending, the Imme-
dlate value on the stack is examined for the "restore state" code. 

Since the request was "restore state," the minimum state Is re-
stored ... 

Then the rest of the state Is restored ... 

Then the Interrupt handler Is exited with the usual 
rflO 
rf11; asrtadr 

sequence. 



RESET 

Activating the RESET - line at the end of the clock cy­
cle initializes the .ssr according to Figure 17, sets the 
.eta register to zeros and sends the value zero out on 

. tos 

the AC bus, forcing a branch to address zero. Figure 
18 shows detailed reset timing. The user should place a 
no-op instruction in location zero . 

s 

a a a a a a a a a a a a a a a a a a a a a a a a a a I 
31 27 26 5 4 3 o 

Figure 17. Sequencer status register, initialized 

CYCLE I-- .. I· 2 .. I· 3 .. I· 4 .. I· 5 .. I· 6--1 
CLK J l t J j J ! 
AC BUS N 0 0 0 2 

C BUS N 0 0 0 2 

OP BUS 

CURRENT N-1 N (NEUTRALIZED) NONE NONE ,0 
INSTRUCTION 

RESET- \ ;/ 
, 

NEUT- \ / , 

Figure 18. Reset timing 

1 Q © C.o'py~il{ht WEITE~ 1988 

o 

,/-~ 
\ 

'0 

o 



Instruction Set 

TERMS AND SYMBOLS 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

The instructions are listed on pages 20 and 21, then 
described in detail on the following pages. Each de-

scription includes a pseudo-code definition of the in­
struction. The following symbols are used: 

II 

a dup b 

stack(t) 

Concatenate fields. abc II def 
gives abcdef. 

Indicates that operations sepa­
rated by this symbol occur in 
parallel. 

Duplicate b a times. 3 dup a 
gives 000. 

Location t in the sequencer 
stack 

Figure 19. Terms and symbols 

INSTRUCTION FORMAT 

COND 

{ } 

% ixs 

[31 .. 0] 

Condition Code 

Begin and end comment 

Shift left by ixs bits 

Specifies the bit field from bit 
31 to bit 0, inclusive. For ex­
ample, reg (ra) [3 .. 0] gives 
the lower four bits of register 
ra. 

The XL-8236 uses two instruction formats: short and 
long. Short instructions use the upper 8 bits of a 32-bit 
instruction; the remaining bits are used as the instruc­
tion field for the XL-8237 RIP or a coprocessor. Short 
instructions include neutralization control, short 
branches with a 5-bit displacement and branching from 
a 32-bit displacement on the stack. 

tions are used to provide bus transfer and housekeep­
ing control operations, in addition to 24-bit and 28-bit 
subroutine and branch immediates. 

Coprocessor instructions are reserved for future expan­
sion, with the exception of the coprocessor load/store 
instructions, which are used in the XL-8232 to load 
and store the graphics floating point unit. 

Long instructions are 32 bits long, with a format recog­
nized by the RIP as a RCS operation. These instruc-

Field 

ra 
imm 11, imm24, imm28 
c 
immS 
ext 1 , ext2 
rd 
extn 

Figure 20. Instruction fields 

31 24 23 

I. 8 .1. 
RCS instructions, 
short format 

or 
Load and Store 
instructions 

Figure 21. Instruction formats 

Meaning 

selects ra register (of processor) 
11, 24, or 28 bit immediate 
condition polarity select 
S-bit signed or unsigned immediate 
operation code extensions 
selects rd register (of processor or coprocessor) 
external register number n 

24 

RCS instructions, long format 
or 

Interchip data transfer instructions 
or 

Internal RIP instructions 

o 

.1 

© Copyright WEITEK 1988 



Instruction Format, continued 

Continue 

Cont 

Branch 

Branch 

Short branch 

Branch to stack and pop 

Short forward branch on 
condition 

Loop Control 

Loop enter 

Absolute branch to stack or 
or pop on condition 

Decrement stack and branch 
or pop if zero 

000 1 00010 

000 1 

01 Icl 
01110 

imm5 

imm24 24 

I.·:·:·::.·:·:·: .................. : ......................................... . .• •••• r.r::::B!!¥§QPtQ¢~~§Qf·:::::·1 26 

I .• :HI::.:::::: •• ···.R!Rtqgp~99~§§9rHI 27 

000 01 Icl 00 li::RiR!99prqq~§~qr.::HI 30 

000 00001 I::::· .\::.:: ...... : .. ·:::::::tmmg4}::\)1 31 

~~c~~~~~tp~~~r z~~g backward r;::'00:::1:-r-;-im-m-::-5--r1:~·:: ."":::::.:~}"".:::: ..• ~:"": •....• ~:~:.:.:.:~:~@~)P~!~§O~p~:·r~§~§e""·.··~~ ••• ~""q"""r""'i""'·.:::::""'.:·""'):""'·t""'m""'.:.:·:.-:···:::""'m-j 32 

Branch and pop (loop exit) 

Subroutine Control 

Subroutine call 

Subroutine return 

Interrupt Control 

Return from interrupt 0 

Return from interrupt 1 

Trap 

Trap immediate 

Neutralization 

Override neutralization 

Override neutralization of 
subroutine call shadow 

Reverse neutralization 

000 00011 imm24 33 

0001 imm28 1 35 

1000 1 01101 .::.:.Rfg19qprq9~§~qr:Hl 36 

00000000 x 00101 x 38 

00000000 11 x 00010 immll 40 

I 000 I 01 011 1::: •. ::Ri!lU99pr99~~~qr\HI 43 

I 000 I 0 1111 1::B.!g(#?hMg9~~§gril 44 

I 000 I 001 01 II:.:::·RlRt9qprgq~§§grH)U::1 45 

20 
© Copyright WEITEK 1988 

All riJ!hts reserved 

o 



( 

( 

(-

Instruction Format, continued 

Intrasystem Data Transfer Instructions 
Transfer word from RIP to 1000 I 00000 I 001 I RCS internal register 

3 5 3 
Transfer word from 
Coprocessor to RCS internal I 000 I 00000 111 II 
register 3 5 2 

Transfer word from RCS 1000 I 00000 I 011 I internal register to RIP 
3 5 3 

Transfer word from RCS 
1000 I 00000 111 II internal register to 

Coprocessor 3 5 2 

Pop stack to RIP register 1 000 I 00000 I 010 I 
3 5 3 

Pop stack to Coprocessor 1000 I 00000 1 101 I 
3 5 3 

Copy stack to RIP register 1000 I 00000 I 010 I 
3 5 3 

Copy stack to Coprocessor 1000 I 00000 1 101 I 
3 5 3 

Push RIP register onto stack I 000 I 00000 1 000 I 
3 5 3 

Push Coprocessor register 1000 I 00000 1100 I onto stack 
3 5 3 

Transfer word from RIP 
1 000 I 00000 I 001 I register to external register 

3 5 3 

Transfer Coprocessor 1000 I 00000 111 II register to external register 
3 5 2 

Transfer word from 
1 000 I 00000 I 011 I external register to RIP 

3 5 3 
Transfer external register 

1 000 I 00000 111 II to Coprocessor register 
3 5 2 

Store Coprocessor 101 

Load RIP 110 

Load Coprocessor 111 

ra ext 2 
5 5 

x ext 2 
6 5 

ra ext 2 
5 5 

x ext 2 
6 5 

ra 00000 
5 5 

x 00000 
5 5 

ra 00001 
5 5 

x 00001 
5 5 

ra 00000 
5 5 

x 00000 
5 5 

ra 11 I extn 
5 4 

x 11 I extn 
6 4 

ra 11 I extn 
5 4 

x 11 I extn 
6 4 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Detailed 
Description 

PageN 

x 

} 11 46 
x 

11 

0 

} 11 48 
x 

11 

x 

} 11 50 
x 

11 

x 

} 11 51 

x 
11 

x 

} 11 52 
x 

11 

x I} 11 
53 

x I 
11 

x I} 11 

I 
54 

x 
11 

55 

Store RIP 000 01 001 I!ii::!::::iiii::i:::!i!i!:!::!:ii!:::!!i:i:!:::::!!::::::!ii:::::I!:::R!e.(_9.9.~~~~!::::!::i:m!::i::::::!i!i:::::!:ii::::::::::::::!::!::i::!i:::::::i!:1 
3 5 ~ 



Continue Instruction 

CONTINUE 

I 000 I 00 11 a (!!:EI:!:!:!!!!!!!:!:!:!:!:::!:!:!:!IIIII:!:!!!:!!!:!:::::I.!R!?I§.I~~.m::::!:::::::::::::::::::::::::::::::::!:?::::::::::::::?!::I:!!!:] 
3 5 24 

FORMAT 

eont 

DESCRIPTION 

This instruction causes instruction fetching to proceed in normal, sequential fashion. The lower 24 bits are used 
for either an XL-8237 instruction or a coprocessor instruction. Short instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b field of the .ssr contains a one. 

OPERATION 

it b = 1 then 

else 

endif; 

NEUT := true; 
b := 0; 

NEUT := false; 

eta := efa + 1; 
AC := eta; 

22 
© Copyright WEITEK 1988 

All rights reserved 

o 

o 



Branch Instructions Summary 

The following instructions are used for branching: 

Branch 
br Imm24 

Short branch 
shbr immS 

, 000 , 00010 
3 5 

3 5 

imm24 
24 

24 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Branch to stack and pop 
brstkp I 000' 0111 0 l:::,::::i'i:::i:::::::::i:::::::::::ii:::i::::i::::i:i::iii::::::::::::::::::::RI.Btggpi.@g~i§.gr::::::::::::::::::::::::::::::::::::::i::::::::i:::t:::i::i::::i::::::::::] 

3 5 24 
Short forward branch on condition 

brc ImmS .-, 0-1 ..... '-c.-1 -i-m-m-S---r,"":::::::=':i::i::=:::':::=::::::i''''':}::''''::::ii::=:':::::""'::::::"=::::i::"":::::::i""'i:::a""]p=,:,i""l#,b-:::::i¥g-:::':::""::::::p""'::J~-:::i=~=::::f=:::::i:=::I::"":::::::=:::::::i""':::::::""::::r"":::::::=:'::I""',:ri:""ii:::::"":::J 
2 1 5 ~ 

Figure 22. Format of branch instructions 

Unconditional Branch with 
Neutralized Shadow (default) 

Address 
N: br N+P 

N+ 1: [RIP command] 
(neutralized) 

N+2 

Unconditional Branch with 
Override Neutralization 

Address 
N: br N+P 

N+1: ovneut, [RIP command] 
(executed) 

N+2 

Figure 23. Unconditional branch timing. Valid for br imm24, shbr immS, and brstkp. 

Conditional Branch, 
Branch Taken 

Address 
N: rc:=raHb, brc N+P if 

negative 

N+ 1: [RIP command] 
(neutralized) 

N+2 I N+P 

N+P+1 

Figure 24. Conditional branch timing-brc immS instruction. 

Conditional Branch, 
Branch not Taken 

Address 
N: rc:=raHb, brc N+P if 

negative 

N+ 1: [RIP command] 
(executed) 

N+2 

© CODvri2ht WEITEK 1988 



Branch Instructions, continued 

BRANCH 

I 000 I 00010 
3 

FORMAT 

br imm24 

5 

DESCRIPTION 

imm24 
24 

Causes the RCS to branch to the address specified by adding the sign-extended 24-bit immediate imm24 to the 
address of the currently executing instruction. Long instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

None 

OPERATION 

if b = 1 then 

else 

NEUT := true; 
efa := eta + 1; 
b := 0; 

NEUT := false; 
efa := eea + (9 dup imm24[23]) II imm24[22 .. 0]; 
b := 1; 

endif; 
AC := efa; 

24 
© Copyright WEITEK 1988 

All rights reserved 

o 

o 



( 

Branch Instructions, continued 

SHORT BRANCH 

I 1 00 lim m S F:::~:::::~:~:::::::::::::~:::::::~:: :::::~:::~:::::::::~::::::::::~:::::8.!gril:prPg~§~r~~:::::::::::::::::::::::::::::::~:::~::::::::::::~:~:~~::::::::: :::::1 

3 5 24 

FORMAT 

shbr immS 

DESCRIPTION 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Causes a branch to the address specified by adding the sign-extended 5-bit offset to the currently executing 
instruction. Short instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

None 

OPERATION 

if b = 1 then 

else 

endif; 

NEUT := true; 
efa := efa + 1; 
b := 0; 

NEUT := false; 
efa := eea + (28 dup imm[4]) II immS[3 .. 0]; 
b := 1; 

AC := efa; 

25 
© Copyright WEITEK 1988 

All rif!hts reserved 



Branch Instructions, continued 

BRANCH TO STACK AND POP 

I 000 I 0111 0 1::;:::::::::::::::::::::::::::::::::::~:::::fI~~::::II~:~~~:::~~~~~~:~]l!gtmpmg"ii§b:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~::::::::::::l 
3 5 24 

FORMAT 

brstkp 

DESCRIPTION 

This instruction takes a branch to the address specified by adding the value on the top of stack to the address of 
the currently executing instruction. The top of stack value is popped off. Short instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. The b bit of the .ssr is set to one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 

endif; 

NEUT := true; 
efa := efa + 1; 
b := 0; 

NEUT := false; 
efa := eea + staek(tos); 
tos : = tos - 1; 
b := 1; 

AC := efa; 

26 
© Copyright WEITEK 1988 

All riRhts reserved 

,. 0"·, 

o 



( 

( 

Branch Instructions, continued 

SHORT FORWARD BRANCH ON CONDITION 

imm5 
2 1 

FORMAT 

brc imm5 

5 

DESCRIPTION 

24 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

If the selected condition is active, causes a branch to the address specified by adding the zero-extended 5-bit 
offset to the address of the currently executing instruction. If the 24-bit processor/coprocessor field contains a 
coprocessor instruction, then FPCN is tested; otherwise, COND is tested. See the XL-8237 Data Sheet for details of 
the processor/coprocessor instruction field. Short instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

None 

OPERATION 

if b = 1 then 

else 

endif; 

NEUT := true; 
cfa := cfa + 1; 
b := 0; 

NEUT := false; 
if {processor operation is coprocessor} then 

cond := FPCN; 
else 

cond := COND; 
endif; 
if c • cond then 

else 

endif; 

cfa := cfa + 1; 

cfa := cea + (27 dup 0) II imm5[4 .. 0]; 
b := 1; 

AC := cfa; 

27 
© Copyright WEITEK 1988 

All riRhts reserved 





( 

c 

Loop Control Instructions, continued 

LOOP ENTER (PUSH FOLLOWING ADDRESS) 

I 000 I 00 111 I:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::R!gf9§pr§9~§~r::::::::::::::::::::::::::::::::'::::::::::::::::::::::::::::::::::::::::::::::1 
3 5 24 

FORMAT 

loop 

DESCRIPTION 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY ·DATA 
October 1988 

This instruction pushes the address of the currently fetching instruction on the stack. Used to start loopa. Short 
instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the . ssr contains a one. 

EXCEPTIONS 

Stack overflow 

OPERATION 

if b = 1 then 

else 

endif; 

NEUT := true; 
b := 0; 

NEUT := false; 
tos := tos + 1; 
staek(tos) := efa; 

efa := efa + 1; 
AC := efa; 

1Q 
© Copyright WEITEK 1988 

A. rf _!_1_",,- ______ •• _J 



Loop Control Instructions, continued 

ABSOLUTE BRANCH TO STACK OR POP ON CONDITION (LOOP AGAIN OR EXIT) 

I 000 I 01 I e I 00 1:::::::::::iiim::i::::::::::~:~:::::::~:::::t~::I::::~::::::HruRt99R.E~!mR~t:~:~:~:::::~::::~:::::::::~:::'::'::~:::::::::~:::'::I:::::::~:::::"~:l 
3 2 1 2 24 

FORMAT 

end loop 

DESCRIPTION 

If the selected condition is asserted, causes a branch to the contents of the top of stack; otherwise, pops the stack 
and continues normal sequential execution. If the 24-bit processor/coprocessor field contains a coprocessor in­
struction, then FPCN is tested, otherwise COND is tested. See the XL-8237 Data Sheet for details of the processor/ 
coprocessor instruction field. Used to conditionally end a loopa. (See the bre instruction on page 27 for details of 
condition code selection.) Short instruction format. 

NEUTRALIZATION 

This.instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 

NEUT := true; 
cfa := cfa + 1; 
b := 0; 

NEUT := false; 
if {processor operation is coprocessor} then 

cond := FPCN; 
else 

cond := COND; 
endif; 
if e . eond then 

else 

cfa := cfa + 1; 
tos : = tos - 1; 
b := 0; 

efa := stack (tos) ; 
b := 1; 

endif; 
endif; 
AC := cfa; 

30 
© Copyright WEITEK 1988 

All rights reserved 

() 



Loop Control Instructions, continued 

DECREMENT STACK AND BRANCH OR POP IF ZERO (FOR LOOPI END) 

I 000 I 00001 
3 5 

FORMAT 

sob imm24 

DESCRIPTION 

imm24 
24 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

The acronym sob stands for subtract-one-and-branch. This instruction subtracts one from the top of stack, replac­
ing result back on the top-of-stack. If the result is non-zero, a branch is caused to the address specified by adding 
the sign-extended 24-bit immediate imm24 to the address of the currently executing instruction. If the result is 
zero, the value on the top-of-stack is popped off and discarded, and the normal sequential execution resumes. 
Useful at bottoms of loops designed to continue a set number of iterations (Ioopi). Long instruction format. 

Note that the initial count must be non-negative, (that is, the high bit must be zero) for the instruction to work 
properly. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 

NEUT := true; 
efa := efa + 1; 
b := 0; 

NEUT := false; 
staek(tos) := staek(tos) - 1; 
if staek(tos) = a then 

else 

efa := cfa + 1; 
tos : = tos - 1; 

efa := eea + (9 dup imm24[23]) II imm24[22 .. 0]; 
b := 1; 

endif; 
endif; 
AC := efa; 

31 
© Copyright WEITEK 1988 

All rights reserved 



Loop Control Instructions, continued 

DECREMENT STACK AND BACKWARD BRANCH OR POP IF ZERO (FOR LOOPI END) 

I 00 1 lim m 5 I~~~~~~~~~:~:::::~~~:~:~~~~:::~:~~:~:~:~:::~:~:~:~:~:~~~~~:~~~~:~::::::::~~~~~~~:B.!Bt%i;ptgg~~i9r:::::~:~:~:~:~:~:~:~:~~~:~:::~:~:~:~~~::~:~:~:~:~:~:~:~~~:~:~:::::I::~:~:~:I 
3 5 24 

FORMAT 

shsob immS 

DESCRIPTION 

Same instruction as sob, but performs the branch based on the one-extended field immS instead of the 24-bit 
immediate that sob uses. Used to end a loopi. Short instruction format. 

Note that the initial count must be non-negative for the instruction to work properly. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 

NEUT :;::: true; 
cfa := efa + 1; 
b := 0; 

NEUT := false; 
staek(tos) := staek(tos) - 1; 
if staek(tos) ;::: 0 then 

else 

efa :;::: efa + 1; 
tos :;::: tos - 1; 
b :;::: 0; 

efa:;::: eea + (27 dup 1) II immS[4 .. 0]; 
b :;::: 1; 

endif; 
endif; 
AC :;::: efa; 

32 
© Copyright WEITEK 1988 

All rights reserved 

o 

o 



Loop Control Instructions, continued 

BRANCH AND POP (LOOPIILOOP A EXIT) 

I 000 I 00011 
3 

FORMAT 

brp imm24 

5 

DESCRIPTION 

imm24 
24 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Branches to the address specified by adding the sign-extended 24-bit immediate imm24 to the address of the 
currently executing instruction. The value on the top of stack is popped off and discarded. Used to uncondition­
ally or prematurely exit a loopa or loopi. Long instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. If the branch is taken, the b bit of the .ssr is 
set to one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 

endif; 

NEUT := true; 
efa : = efa + 1; 
b := 0; 

NEUT := false; 
efa : = eea + (9 dup imm24 [23]) II imm24 [22 .. 0] ; 
tos : = tos - 1; 
b := 1; 

AC := efa; 



Subroutine Control Instructions Summary 

The following instructions are used for subroutine control: 

Subroutine call 
bsr imm28 

0001 
4 

imm28 
26 

Subroutine return 
rts 

I 000 I 011 01 f:!:!:!:::!!!:::::@:!!:::!:!:::!!!:!:!:::!:::::!!::::::::::!::::::::!::I:8I.B~gqpr.9g~§i~t:!:!!!:!!t!!!!:!!!!:!!!!!!!!!:!!::!!:!f!:!!::=:!!i!:!!!::::::::::::::::::1 
3 5 24 

Figure 27. Subroutine control instruction format 

Subroutine Call and Return 

Normal With Ovneuti and Ovneut 

N+P+5: Ovneut 

Figure 28. Subroutine call and return 

34 

N: bsr N+P 

N+ 1: Ovneuti 

N+2 

N+3 

N+4 

N+5: 

N+6 

© Copyright WEITEK 1988 
All rights reserved 

o 



( 

Subroutine Control Instructions, continued 

SUBROUTINE CALL 

0001 
4 

FORMAT 

bsr imm28 

DESCRIPTION 

imm28 
28 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Pushes the address of the currently fetching instruction on the stack and branches to the address specified by the 
sum of the sign-extended 28-bit immediate imm28 and .eea. Long instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. The b bit of the .ssr is set to one. 

EXCEPTIONS 

Stack overflow 

OPERATION 

if b = 1 then 

else 

NEUT := true; 
efa := efa + 1; 
b := 0; 

NEUT := false; 
tos : = tos + 1; 
staek(tos) := efa; 
efa := eea + (5 dup imm28 [27]) II imm28 [26 .. 0]; 
b := 1; 

endif; 
AC := efa; 

35 
© Copyright WEITEK 1988 

All rights reserved 



Subroutine Control Instructions, continued 

SUBROUTINE RETURN 

3 

FORMAT 

rts 

5 

DESCRIPTION 

24 

The value on the top of the stack is used as an absolute branch address and discarded. Short instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr contains a one. The b bit of the .ssr is set to one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 

endif; 

NEUT := true; 
efa := efa + 1; 
b := 0; 

NEUT := false; 
efa := staek(tos); 
tos : = tos - 1; 
b := 1; 

AC := efa; 

36 
© Copyright WEITEK 1988 

All rights reserved 

o 

o 



( 

Interrupt Control Instructions Summary 

The following instructions are used to return from interrupt: 

Return from interrupt 
rfiO 

00000000 
8 

x 
8 

00101 
5 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

x 
11 

Return from interrupt 
rfi1 

I 000 I 00100 r:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::'::':::::':::B!RN!i9pr9lmi~9N::::::,::,:::,:::::,::::t::::::::::::::::::::::::::::::::::::::::::j 
3 5 24 

Figure 29. Interrupt control instructions 

The following instructions are used to cause software interrupts (traps): 

Trap immediate 
trapi 

Figure 30. Trap instruction 

00000000 
8 

11 
2 

37 

x 00010 
6 5 

imm11 
11 

© Copyright WEITEK 1988 
All rights reserved 



Interrupt Control Instructions, continued 

RETURN FROM INTERRUPT (rfiO) 

00000000 
8 

FORMAT 

rfiO 

DESCRIPTION 

x 

8 

00101 

5 

x 
11 

First of a two-step instruction sequence to restore the RCS state after an interrupt. Restores .efa from .iea, and 
enables interrupts by setting the men bit. The rfiO instruction must be followed by the rfi1 instruction. Long 
instruction format. 

The effect of setting men bit may not take place until one cycle after the rfiO instruction. 

All internal exceptions should be processed before the interrupt handler is exited. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the .ssr is a one. 

EXCEPTIONS 

None 

OPERATION 

if b = 1 then 

else 

efa := efa + 1; 
NEUT := TRUE; 

NEUT := FALSE; 
if ssr.s = 1 then 

efa := iea; 
OP := 00100; 
ssr.men := 1 

else 
ssr.prvflg := true; 

endif; 
endif; 
b := 0; 
AC := efa; 

38 
© Copyright WEITEK 1988 

All rights reserved 



c 

c 

Interrupt Control Instructions, continued 

RETURN FROM INTERRUPT (rfil) 

000 
3 

FORMAT 

rfi1 

5 

DESCRIPTION 

24 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Second of a two-step instruction sequence to restore the RCS state after an interrupt. Short instruction format. 
Rfi1 stores the contents of the .ifa to the .eta and places the contents of the .ifa onto the AC bus. The .ssr bi bit is 
stored into .ssr b to indicate if the last instruction of the interrupted process was a branch. The rfi1 instruction 
must always be preceded by the rfiO instruction. Short instruction format. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the . ssr contains a one. 

EXCEPTIONS 

None 

OPERATION 

if b = 1 then 

else 

endif; 

efa := efa + 1; 
b := 0; 
NEUT := FALSE; 

NEUT := FALSE; 
if ssr.s = 1 then 

else 

efa := ifa; 
ssr.b := ssr.bi; 
ssr.S := ssr.si; 
OP := 00111; 

ssr.prvflg := TRUE; 
endif; 

AC := eta; 

39 
© Copyright WEITEK 1988 

All rights reserved 



Trap Instructions 

TRAP IMMEDIATE 

00000000 
8 

FORMAT 

trapi imm11 

DESCRIPTION 

11 

2 

x 00010 imm11 
6 5 11 

This instruction sets the trpflg bit of the .ssr. If enabled, the RCS causes an interrupt and pushes an l1-bit 
zero-extended immediate value onto the stack. The trap flag (trpflg) in .ssr is set when a trap occurs. 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the ssr contains a one. 

EXCEPTIONS 

Stack overflow and trap 

OPERATION 

if b = 0 then 
ssr.trpflg := 1; 
if (ssr. men = 1) and (ssr. trpen = 1) then 

stack(tos) := 21 dup 0 II imm11 [10 .. 0]; 
tos : = tos + 1; 

endif; 
endif; 
b := 0; 
cfa : = cfa + 1; 

40 
© Copyright WEITEK 1988 

All rights reserved 

o 

~ 

1i, UI ... \ 



c 
Neutralization Instructions Summary 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

The RCS has three short-format instructions that change the neutralization of shadow instructions after branching, 
subroutine calls and returns. 

Override neutralization (branch shadow) 
ovneut lr-oo~0-r1-0-1~0-1-1~W~:::::::~:::;:~:::::::~::::~:t:~:&~~i~@~m~::=t~S~.iB~:lb~/:p~.:p~::~~:::p~.:.~~~~$~:·:p~;r~n~Dl~:]::~::i~@~m~;ii~U:m::i=E~m 

3 5 24 

Override neutralization and increment stack (subroutine call shadow) 
ovneuti I 000 I 01111 

3 5 

Reverse Neutralization 
revneut 

(branch shadow) 

I 000 I 00101 
3 5 

Figure 31. Neutralization instruction format 

Address 
N: rc:=raHb, brc N+P if 

negative 

N+1: [RIP op], 
revneut 
(executed) 

Conditional branch, reverse neutralization, 
branch taken 

Address 
N: rc:=raHb, brc N+P if 

negative 

N+1: [RIP op], 
ovneut 
(executed) 

Conditional branch, override neutralization, 
branch taken 

I 

I 

N+P 

N+P+1 

24 

24 

Address 
N: rc:=raHb, brc N+P if 

negative 

N+1: [RIP op], 

N+2 

revneut 
(neutralized) 

Conditional branch, reverse neutralization, 
branch not taken 

N+P 

N+P+1 

Address 
N: rc:=raHb, brc N+P if 

negative 

N+1: [RIP op], 
ovneut 

N+2 
(executed) 

Conditional branch, override neutralization, 
branch not taken 

Figure 32. Conditional branch timing with override and reverse neutralization 

41 
© Copyright WEITEK 1988 

All rights reserved 



Neutralization Instructions, continued 

Conditional Branch, 
Override Neutralization, 

Branch taken 
Address 
N: rc:=ra+rb, brc N+P if 

negative 

N+ 1: [RIP op], 
ovneut 
(executed) 

I N+P 

N+P+1 

Figure 33. Conditional branch timing with override neutralization 

42 

Conditional Branch, 
Override Neutralization, 

Branch not taken 
Address 
N: rc:=raHb, brc N+P if 

negative 

N+1: [RIP op] , 

N+2 

ovneut 
(executed) 

© Copyright WEITEK 1988 
All rights reserved 

(\ 
! I 

~ 

o 



c 

c 

Neutralization Instructions, continued 

OVERRIDE NEUTRALIZATION OF BRANCH SHADOW 

3 5 24 

FORMAT 

ovneut 

DESCRIPTION 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Causes the neutralization effect-which normally cancels the execution of an instruction immediately following a 
branch (or other transfer-of-control operation)-to be overridden. The instruction is unconditionally executed 
(unless neutralized due to an interrupt). This instruction has a short format and is placed with the shadow instruc­
tion to be executed, immediately following the branch. 

NEUTRALIZATION 

This instruction is executed regardless of the value of the b field of the .ssr. 

EXCEPTIONS 

None 

OPERATION 

NEUT := false; 
efa := efa + 1; 
b := 0; 
AC := efa; 

43 
© Copyright WEITEK 1988 

All rights reserved 



Neutralization Instructions, continued 

OVERRIDE NEUTRALIZATION OF SUBROUTINE CALL SHADOW 

I 000 I a 1111 ~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::B!R{AAgRr§.$!:~i~t:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::iii:::::::] 
3 5 24 

FORMAT 

ovneuti 

DESCRIPTION 

This instruction is the same as ovneut, but after executing the shadow instruction, the stack is incremented. Thus 
a subroutine return is made not to the shadow instruction but to the one following it. This instruction has a short 
format and is placed with the shadow processor operation to be executed, immediately following the subroutine 
call. 

NEUTRALIZATION 

This instruction is executed regardless of the b bit of the .ssr. 

EXCEPTIONS 

None 

OPERATION 

NEUT := false; 
staek(tos) := staek(tos) + 1; 
efa : = eta + 1; 
b := 0; 
AC := efa; 

44 
© Copyright WEITEK 1988 

All rights reserved 

) 



( \ 

./ 

c 

Neutralization Instructions, continued 

REVERSE NEUTRALIZATION OF BRANCH SHADOW 

I 000 I 00 10 1 1::::::::::::::::::::::::::::::1::::::::::::::::::::::::::::::::::::::::::::::::R(e(%9~rg$.ffl~~9r::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1 

3 5 24 

FORMAT 

revneut 

DESCRIPTION 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

Reverses the neutralization effect that would normally have been applied to an instruction. If it would normally 
have been neutralized, it is not; if it would normally not have been neutralized, it is. Short instruction format. 

This instruction is typically used to allow the shadow instruction to be executed as part of a loop, rather than being 
neutralized. This saves one cycle per iteration. 

EXCEPTIONS 

None 

NEUTRALIZATION 

This instruction is neutralized if the b bit of the . ssr contains a zero. 

OPERATION 

if b = 1 then 
NEUT := false; 

else 
NEUT := true; 

endif; 
efa := efa + 1; 
b := 0; 
AC := efa; 

45 
© Copyright WEITEK 1988 

All rights reserved 



Intrasystem Data Transfer Instructions 

TRANSFER WORD TO RCS INTERNAL REGISTER 

1 000 I 00000 I 001 I ra ext2 x from RIP 
3 5 3 5 5 11 

1 000 I 00000 11 x ext 2 x from coprocessor 
3 5 2 6 5 11 

FORMAT 

From RIP 

mov ra, .tim {ext2 = 00110b} 
mov ra, .ssr {ext2 = 01000b} 
mov ra, .iea {ext2 = 01010b} 
mov ra, .ifa {ext2 = 011 OOb} 
mov ra, .brk {ext2 = 01110b} 
mov ra, .ibr {ext2 = 01111b} 

From Coprocessor 

mov .adbus, .tim {ext2 = 0011 Ob} 
mov .adbus, .ssr {ext2 = 01000b} 
mov .adbus, .iea {ext2 = 0101 Ob} 
mov .adbus, .ifa {ext2 = 01100b} 
mov .adbus, .brk {ext2 = 0111 Ob} 
mov .adbus, .ibr {ext2 = 01111 b} 

DESCRIPTION 

These instructions cause the RCS to write the contents of the AD bus into the selected internal register. The two 
instruction formats differ in their effect on the other components in the system. The first set is recognized by the 
RIP and causes it to drive the AD bus with one register from its register file. The second set allows a coprocessor to 
drive the AD bus. Long instruction format. 

NEUTRALIZATION 

These instructions are not neutralized reliably, and therefore must not be put into branch shadows. Furthermore, 
since interrupts cause an instruction to be neutralized, these instructions must only be used when interrupts are 
disabled. 

46 © Copyright WEITEK 1988 
All rights reserved 

\ 
) 



Intrasystem Data Transfer Instructions, continued 

OPERATION 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

if b = 1 then { Note: the cancellation of the instruction by NEUT - does not always work. } 

else 
NEUT := TRUE; 

NEUT := FALSE; 
if ssr.s = 0 then 

ssr.prvflg := TRUE; 
else 

case ext2 {AD bus is driven by the RIP or a coprocessor} of 

else 

00110b: tim := AD; 
01000b: ssr := AD; 
01110b: ibr := AD; 
01010b : { no action} 
01100b : { no action} 
01110b : { no action} 

endcase; 
endif; 

case ext2 of 
00110b: tim 
01000b: ssr 
01110b: ibr 
01010b: iea 
01100b: if a 
01110b: brk 

endcase; 

:= AD; 
:= AD; 
:= AD; 
:= AD; 
:= AD; 
:= AD; 

endif; 
b := 0; 
cfa := cfa + 1; 
AC := eta; 

47 © Copyright WEITEK 1988 
it 11 riOhlC' ro{'orunrl 



Intrasystem Data Transfer Instructions, continued 

TRANSFER WORD FROM RCS INTERNAL REGISTER 

.... 1 0-:0:-0 ..... 1_o0-:0:-0_0 ~I 0-:1:-1 ..... 1_-:ra:--~_ex-=-t2_..L...-__ -:o~ __ ---'1 to RIP 
3 5 3 5 5 11 

.... 1 -:00:-0_1L-0_o-=-00_0---L1_1-=-1 ..... 1_~x_--'-_e-.:xt:-2_L-__ --:-:x __ --....1 to coprocessor 
3 5 2 6 5 11 

FORMAT 

To RIP 

mov .tim, ra 
mov .ssr, ra 
mov .iea, ra 
mov .ita, ra 

DESCRIPTION 

{ext2 = 00111 b} 
{ext2 = 01001 b} 
{ext2 = 01011 b} 
{ext2 = 01101 b} 

To Coprocessor 

mov .tim, .adbus {ext2 = 00111 b} 
mov .ssr, .adbus {ext2 = 01001 b} 
mov .iea, .adbus {ext2 = 01011b} 
mov .ita, .adbus {ext2 = 01101 b} 

The RCS drives the AD bus with the contents of the designated register. The different formats allow either the RIP 
or the coprocessor to receive the data. Long instruction format. 

NEUTRALIZATION 

These instructions are neutralized if the b bit of the .ssr is a one. 

EXCEPTIONS 

None 

48 
© Copyright WEITEK 1988 

All rights reserved 

'\ 
) 



C'" 
. ./ 

c 

Intrasystem Data Transfer Instructions, continued 

OPERATION 

if b = 1 then 
NEUT := TRUE; 

else 
NEUT := FALSE; 
if ssr.s = 0 then 

ssr.prvflg := TRUE; 
endif; 
case ext2 of 

00111 b: AD 
01001b: AD 
01011b: AD 
01101 b: AD 

endease; 
endif; 
b := 0; 
efa := efa + 1; 

:= tim; 
:= ssr; 
:= iea; 
:= ita; 

4Q 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 



Intrasystem Data Transfer Instructions, continued 

POP STACK TO RIP REGISTER OR COPROCESSOR 

L..I _00_0....J1L-0_00."...0_0--L1_0_1 0--L.I_ .... ra-....L..-o-oO-O-0---L.----x __ ---II Pop to RIP 
3 5 3 5 5 11 

I 000 I 00000 
3 5 

FORMAT 

pops ra 
or 
pops .adbus 

DESCRIPTION 

101 x 00000 x Pop to coprocessor 
3 5 5 11 

{pop to RIP} 

{pop to coprocessor} 

The contents of the top of the stack are driven onto the AD bus. The stack is popped. The RIP recognizes the first 
format and latches the data from the AD bus. Long instruction format. 

NEUTRALIZATION 

These instructions are neutralized if the b bit of the .ssr is a one. 

EXCEPTIONS 

Stack underflow 

OPERATION 

if b = 1 then 

else 
NEUT := TRUE; 

NEUT := FALSE; 
AD := stack (tos); 
tos := tos - 1; 

endif; 
b := 0; 
cfa := cfa + 1; 
AC := eta; 

{AD Bus is written to RIP register ra or to coprocessor} 

50 
© Copyright WEITEK 1988 

All rights reserved 



Intrasystem Data Transfer Instructions, continued 

COPY STACK TO RIP REGISTER OR COPROCESSOR 

XL-8236 
22-BIT RASTER CODE 
SEQUENCER 

PRELIMINARY DATA 
October 1988 

1000 I 00000 I 010 I ra 00001 x 
3 5 3 5 5 11 

'--~""""'_~---''--~'''&''''-_-::------'L....---=_---,-___ ----:-: ___ ---,I Copy stack to RIP register 

1000 I 00000 101 x 00001 x Copy stack to Coprocessor 
3 5 3 5 5 11 

FORMAT 

mov .tos, ra {copy to RIP} 
mov .tos, .adbus {copy to coprocessor} 

DESCRIPTION 

The contents of the top of the stack are driven onto the AD bus. The stack is not popped. The RIP recognizes the 
first format and latches the data from the AD bus. Long instruction format. 

NEUTRALIZATION 

These instructions are neutralized if the b bit of the .ssr is a one. 

(~~. EXCEPTIONS 

None 

OPERATION 

if b = 1 then 
NEUT : = TRUE; 

else 
NEUT := FALSE; 
AD := stack (tos); 

endif; 
b := 0; 
cfa := cfa + 1; 
AC := eta; 

"1 



Intrasystem Data Transfer Instructions, continued 

PUSH RIP REGISTER OR COPROCESSOR ONTO STACK 

1000 1 00000 1000 1 ra 00000 x 1 Push RIP register 
~--~--~~~--~--~~--~--~-------1-1------~ 

3 5 3 5 5 

1000 1 00000 1100 1 x 00000 
3 5 3 5 5 

~~~ __ ~~~~~ __ ~~ __ ~ __ ~ ______ ~x ______ ~ Push Coprocessor 
11

FORMAT

pushs ra {push RIP register}
pushs .adbus {push coprocessor}

DESCRIPTION

The contents of the AD Bus are pushed onto the RCS stack. The RIP recognizes the first format and drives the AD
bus with the selected register. Long instruction format.

NEUTRALIZATION

These instructions are neutralized if the b bit of the .ssr is a one.

EXCEPTIONS

Stack overflow

OPERATION

if b = 1 then

else
NEUT := TRUE;

NEUT := FALSE;
tos := tos + 1;
stack (tos) := AD;

endif;
b := 0;
cfa : = cfa + 1;
AC := cfa;

52
© Copyright WEITEK 1988

All rights reserved

)

Intrasystem Data Transfer Instructions, continued

TRANSFER WORD TO EXTERNAL REGISTER

I 000 I 00000 I 001 I ral11 extn x
353 5 4 11

I 000 I 00000 11 x x
3 5 2 6 1 4 11

FORMAT

mov ra, extn
mov .adbus, extn

DESCRIPTION

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

RIP to external register

Coprocessor to external register

For all formats the OP bus is driven by the external register number (must be in the range OOOOb-ll10b). Long
instruction format. Other than driving the OP bus, the RCS treats the RIP and coprocessor forms of this instruction
as a no-op.

Note: the transfer to and transfer from coprocessor to/from external register instructions have the same format.
The actual direction of the transfer is a convention between the coprocessor and the external register and is not
specified here.

NEUTRALIZATION

These instructions are neutralized if the b bit of the . ssr is a one.

EXCEPTIONS

Stack underflow

OPERATION

if b = 1 then
NEUT := TRUE;

else
NEUT := FALSE;
OP := 1b II extn;

endif;
b := 0;
efa : = efa + 1;
AC := cfa;

© C:~fy~iq~t WEITEIf 1988

Intrasystem Data Transfer Instructions, continued

TRANSFER WORD FROM EXTERNAL REGISTER

1000 I 00000 I 011 I ra
3 5 3 5

L--..,.--'-_~_-'-~---I_--,~--L~-..L._e_x~t_n_ __ ~x~ __ --, External register to RIP
4 11

1000 I 00000 111 I x extn x External register to Coprocessor
3 5 2 6 4 11

FORMAT

mov extn, ra
mov extn, .adbus

DESCRIPTION

Takes a word from the AD bus and copies it to a register in the RIP or coprocessor.

For all formats the OP bus is driven by the external register number (must be in the range OOOOb-ll10b). Other
than driving the OP bus, the RCS treats the RIP and coprocessor forms of this instruction as a no-op. Long
instruction format.

\

j

Note: the transfer to and transfer from coprocessor to/from external register instructions have the same format. (\
The actual direction of the transfer is a convention between the coprocessor and the external register and is not 0
specified here.

NEUTRALIZATION

These instructions are neutralized if the b bit of the .ssr is a one.

EXCEPTIONS

Stack overflow

OPERATION

if b = 1 then
NEUT := TRUE;

else
NEUT := FALSE;
OP := 1 b II extn;

endif;
b := 0;
cfa := cfa + 1;
AC := eta;

54
© Copyright WEITEK 1988

All rights reserved

c

c

Intrasystem Data Transfer Instructions, continued

RIP/COPROCESSOR LOAD/STORE

I 000 I 01 001 I:::::::::::f::::::::::f!f::::::::::::::::::::::::::::::::~:f::::]i~iRi=im~tia.~$i.6t:~:::] Store RI P
35M

FORMAT

store
load rd
fstore frd (or dstore dfrd, dstorem dfrd, dstorel dfrd)
fload frd (or dload dfrd, dloadm dfrd, dloadl dfrd)

DESCRIPTION

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

The RIP or coprocessor performs a load or store over the 0 bus (which is not connected to the RCS). The RCS
merely drives the OP bus to indicate RIP load, coprocessor load, RIP store, or coprocessor store. Otherwise, it
treats load and store cycles as no-ops. Note that no register is specified for the RIP Store operation; the result of
the accompanying RIP operation is simultaneously stored in an ,RIP register and in the previously addressed word
of memory.

NEUTRALIZATION

This instruction is neutralized if the b bit of the .ssr contains a one.

EXCEPTIONS

None

Intrasystem Data Transfer Instructions, continued

OPERATION

if b = 1 then

else

NEUT := true;
b := 0;

NEUT := false;
if {Store RIP} then

OP := 01000b or 01001b;*
endif;
if {Store Coprocessor} then

OP := 011 OOb or 01101 b; *
endif;
if {Load RIP} then

OP := 01010b or 01011b;*
endif;
if {Load Coprocessor} then

OP := 0111 Ob or 01111 b; *
endif;

endif;
cfa := cfa + 1;
AC := eta;

* The selection between even or odd OP Bus value is based on the 24-bit RIP operation. If the operation
specifies data address generation then the odd value is used, otherwise the even value is used.
See XL-B237 Data Sheet for address generation instructions.

56
© Copyright WEITEK 1988

All rights reserved

o

o

c

(~

c'

Instruction Interaction

taken
branch

not
taken
branch

cfa cea

N + 1 N

N+P N + 1
N+P+1 N+P

N + 1 N

N+P N + 1
N+P+1 N+P

N + 1 N

N+P N + 1

N+P+1 N+P

N + 1 N

N+2 N + 1

N+3 N+2

N + 1 N

N+2 N + 1

N+3 N+2

N + 1 N

N+2 N + 1
N+3 N+2

Branch instructions

br imm24
brp
shbr immS
brc immS
rts
ovneut
revneut

EXECUTING INSTAUCTION

br N + P

<)
<)

br N + P

revneut

<)
br N + P

ovneut

<)
br N + P

<)
<)

br N + P

revneut

<)

br N + P

ovneut

<)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

< AlP/coprocessor)

<
<
<

<
<
<

AlP/coprocessor)

AlP/coprocessor)

AlP/coprocessor)

AlP/coprocessor)

AlP/coprocessor)

AlP/coprocessor)

Comment

unconditional .cea relative
unconditional absolute
unconditional .cea relative
conditional .cea relative
unconditional absolute
branch shadow override
branch shadow reverse

Figure 34. Effects of branching on code execution

57

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

COMMENT

branch taken

neutralized

branch taken

executed

branch taken

executed

branch not taken

executed

branch not taken

neutralized

branch not taken

executed

© Copyright WEITEK 1988
All _!_l_ _________ ..1

Instruction Interaction, continued

cfa cea EXECUTING INSTRUCTION COMMENT STACK

T
call

call with
override

N + 1 N bsr N + F

N+P N + 1 ()
N+P+1 N+P ()

N+Q+1 N+Q rts

N + 1 N+Q+1 ()
N+2 N + 1 ()
N+3 N+2 ()

N + 1 N bsr N + F

N+P N + 1 ovneuti

N+P+1 N+P ()

N+Q+1 N+Q rts

N+2 N+Q+1 ovneut

N+3 N+2 ()
N + 4 N+3 ()

Subroutine call instructions

bsr imm28
ovneuti

(RIP/coprocessor) call -
(RIP/coprocessor) neutralized N + 1
(RIP/coprocessor) top of subroutine N + 1

(RIP/coprocessor) return - bottom N + 1
() neutralized -
(RIP/coprocessor)

(RIP/coprocessor)

(RIP/coprocessor) call -
(RIP/coprocessor) executed - top of N + 1
(RIP/coprocessor) subroutine N+2

(RIP/coprocessor) return N+2

(RIP/coprocessor) executed - bottom of -
(RIP/coprocessor) subroutine -
(RIP/coprocessor) -

Comment

unconditional cea relative
override neutralization and increment stack

Figure 35. Effects of subroutine calls and returns, with and without call shadow neutralization

58
© Copyright WEITEK 1988

All rights reserved

c

Instruction Interaction, continued

loopa

loopi

cfa cea

N + 1 N

N+2 N + 1

N+3 N+2

N+Q+1 N+Q

N + 1 N+Q+1
N+2 N + 1

N+3 N+2

N+Q+1 N+Q
N+Q+2 N+Q+1

N+Q+3 N+Q+2

N-P N-P-1

N-P+1 N-P

N-P+2 N-P+1

N N - 1

N + 1 N

N-P N + 1

N-P+1 N-P

N-P+2 N-P+1

N N - 1
N + 1 N

N+2 N + 1

N+3 N+2
N+4 N+3

Loop instructions

loop
endloop
shsob
sob
brp

EXECUTING INSTRUCTION

loop

()
()

endloop

()
()
()

endloop

()
()

pushs ra

()
()

()
sob

()
()
()

()
sob

()
()
()

(
(
(

(

(
(
(

(
(
(

(
(

(

(
(
(

(

(
(
(

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/col'rocessor)
RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)
RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

RIP/coprocessor)

Comment

loopa top
loopa bottom
loopi bottom
loopi bottom
loopa/loopi exit

COMMENT

-
top of loopa

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

STACK

-
N + 1

N + 1

bottom of loopa (not N + 1
end)
neutralized N + 1
top of loopa N + 1

- N + 1

bottom of loopa (end) N + 1
execute -

- -
load stack with count -
top of loop; 2

- 2

- 2

bottom of loopi 2

neutralize 1

- 1

- 1

- 1

bottom of loopi - end 1

execute a
- a
-

Figure 36. Effects of looping instructions. Loopa uses the stack for the loop address and
loopi uses the stack for the loop count.

© COlJyril!.ht WEITEK 1988

Instruction Interaction, continued

MASTER
cfa cea EXECUTING INSTRUCTION COMMENT IFA lEA INTERRU£'l

ENABLE

N - 1 N-2 (seq). (RIP/coprocessor) application - - 1

N N - 1 (seq). (RIP/coprocessor) - - 1

N + 1 N (seq). (RIP/coprocessor) Interrupt - - 1

I N + 1 (seq). (RIP/coprocessor) neutralized N + 2 N + 1 0

I + 1 I (seq). (RIP/coprocessor) Interrupt routine N+2 N + 1 0

interrupt I+.2 I + 1 (seq). (RIP/coprocessor) N + 2 N + 1 0

J J - 1 rflO N.t2 N -\- 1 0

N + 1 J rfl1 • asrtadr restart load/store N+2 N + 1 o or 1

N+2 N + 1 (seq). (RIP/coprocessor) application - - 1

N+3 N+2 (seq). (RIP/coprocessor) application - - 1

Figure 37. Interrupt sequence, showing the transition from the application program to the inter­
rupt handler and back.

60
--------~

© Copyright WEITEK 1988
All rights reserved

\
)

OP Output Bus Operation

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

The OP bus is provided to indicate to external logic the
current operation of the system. Its primary use is to
indicate the status of the D and AD buses. On each
cycle, the RCS examines the state of the system and
the current instruction (the entire 32-bit instruction is
examined even if the current RCS instruction has short
format) and selects the appropriate OP bus code. Fig­
ure 38 lists OP bus codes.

LOAD RIP DATA

The RIP is executing a load data instruction. The D bus
should be driven by the memory subsystem with the
correct data. This code can also occur if the RIP exe­
cutes an align (byte align for load data) instruction,
even though this instruction loads no data. Memory­
mapped peripherals can be fooled by this false indica­
tion. For this reason we recommend that external reg­
ister 110 be used instead of memory-mapped 110.

DEFAULT

The default code indicates that nothing interesting is
happening during this cycle. This code is asserted
whenever none of the others is asserted. This code is
also asserted during any cycle where STALL- was as­
serted at the end of the previous cycle

LOAD COPROCESSOR DATA

The coprocessor is executing a load data instruction.
The D bus should be driven by the memory subsystem
with the correct data. Most systems treat these codes
the same as the load processor data codes.

DATA ADDRESS

These codes indicate that the RIP is currently execut­
ing an address generation instruction, that is, any cycle
in which the AD bus will be driven with a data address.

OP+ DESCRIPTION OF CURRENT INSTRUCTION

00000 default
00001 data address 1<

00010 interrupt acknowledge, or reset
00011 reserved

00100 return from interrupt 0
00101 reserved
00110 reserved
00111 return from interrupt 1 1<

01000 store RIP data
01001 store RIP data and data address 1<

01010 load RIP datat
01011 load RIP data and data address 1< t

01100 store coprocessor
01101 store coprocessor and data address 1<

01110 load coprocessor
01111 load coprocessor and data address 1<

10000 select external register #0

11101 select external register #13
11110 select external register #14
11111 reserved

• The external data address register should be clocked on these combinations only. .
t These codes can also be generated by the byte align for load instruction (align) in the. RIP, even though this instruction

loads no data. For this reason, memory-mapped peripherals should be used With caution or not at all.

Figure 38. OP bus decoding

© Copyright WEITEK 1988
.. :r:r • .,. I

OP Output Bus Operation, continued

STORE RIP DATA

The RIP is executing a store data instruction. For de­
tails of the timing of the D bus and WREN- bus outputs
relative to the store data instruction, refer to the
XL-8237 Data Sheet.

STORE COPROCESSOR DATA

The coprocessor is executing a store coprocessor data
instruction. For timing details refer to the XL-8237
and XL-3132 Data Sheets.

INTERRUPT ACKNOWLEDGE

The RCS is currently honoring an interrupt request.
This code appears during the cycle in which the AC bus
address reflects the first instruction of the interrupt
routine. The instruction that would normally have been
executed during this cycle is always neutralized.

RETURN FROM INTERRUPT 0

The current instruction is rfiO.

62

RETURN FROM INTERRUPT 1

The current instruction is rfi1. If the RIP is executing
an address generation instruction, then this instruction
will also drive out the internal .adr register onto the AD
Bus to allow the external address register to be updated
to reflect its contents before the interrupt is serviced.
Thus, this code is also used to clock the external . adr
register. To accomplish this, the first eight most signifi­
cant bits of the instruction specify the RCS rfi1 instruc­
tion, and the other 24 bits specify an RIP asrtadr in­
struction. See the XL-8237 Data Sheet for more
details.

SELECT EXTERNAL REGISTER

The current instruction is a move to/from external reg­
ister instruction. The AD bus in this cycle will be used
for this intra-processor transfer.

© Copyright WEITEK 1988
All rights reserved

\
)

o

o

c

Development Tools

WEITEK provides a family of software tools to aid ap­
plications development and debugging, using the
XL-8236 and its companion processors, the XL-8231
32-bit raster image processor and the XL-3232 32-bit
graphics floating point data path unit.

The XL-8236 is part of WEITEK's XL-Series of proc­
essor, and is largely compatible with them. All devices
in WEITEK's XL-Series use the same development
tools.

HIGH-LEVEL LANGUAGE COMPILERS

The XL-Series supports industry-standard implementa­
tions of C and FORTRAN 11 compilers. Industry-stan­
dard implementations allow existing programs to be
ported to the XL-Series without modification. These
compilers all share an optimizing code generator which
employs optimization techniques found on mainframe
compilers, as well as a parallelizing instruction sched­
uler that allows the XL's execution units to run in par­
allel.

For some algorithms (such as key graphics operations)
code efficiency can be increased by returning to assem­
bly code. These hand-coded routines can be linked
with software modules written in a high-level language.

POSTSCRIPT-COMPATIBLE INTERPRETER

WEITEK supplies its HyperScript interpreter, a Post­
Script-compatible interpreter that offers form, fit, func-

Design Requirements

Several special steps must be taken to guarantee that
your XL-8236 design will function correctly with pre­
sent and future silicon. These steps must be taken if
your design is to work correctly:

A latch, not a register, should be used to latch the
code address (Ae bus). Future XL-Series silicon
may include an on-chip latch.

Coprocessor instructions are reserved for future
expansion.

Memory-mapping should not be used: external
register I/O should be used instead.

The special treatment of rfiO and rfi1 must be im­
plemented (see page 11).

The transfer data to RCS internal register instruc­
tions must be kept out of branch shadows and used
only when interrupts are disabled.

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

tion, and image compatibility with that offered by
Adobe Systems, Inc. Users of the XL-8200 chip family
gain a royalty-free right to object code.

WEITEK also supports third-party page description
languages through development tools and optimized
floating-point and graphics libraries.

The interpreter supports both Bitstream FontWare and
URW's NIMBUS font-scaling software. Fonts are fully
compatible with Adobe Font Metrics and are repre­
sented in Bezier outline form.

COMPLETE DEVELOPMENT SYSTEM SUPPORT

The design of an XL-Series-based product is simplified
by the XL software and hardware development tools.
The application programmer is able to develop and de­
bug software on a VAX or PCI A T system with the XL­
Series Software Development Environment, which in­
cludes a software simulator. For the hardware designer,
complete engineering documentation is available.

The design of raster image processors is also facilitated
by a graphics development system which is composed
of a RIP board with the XL-8200, 3 Mbytes of page
buffer and font memory, 256 kwords of code memory
for the interpreter, PCI AT system interface, and
Canon LBP-SX video interface card. This graphics de­
velopment system provides a stable hardware environ­
ment on which PDLs can be debugged independently
of the final target hardware.

Set all fields marked "x" to zero in instructions
which contain them. This assures that operations
which are added in future designs will not modify
the function of current instructions.

Pins marked "NC" (not connected) on the pin
configuration diagram may be defined as signal
pins in future enhancements to the RIP. There­
fore, to preserve future upward compatibility, these
pins should indeed be left unconnected.

Pins marked "TIE HIGH" or "TIE LOW" should
be tied to VCC or GND. These pins may be rede­
fined in the future as signal pins, in which case you
may no longer want them tied high or low. Thus we
recommend that they be tied through traces rather
than directly to VCC or ground planes.

© Copyri",ht WEITEK 1988

Absolute Maximum Ratings

Supply voltage ... -0.5 to 7.0 V
Input voltage ...•..................... -0.5 to Vee
Output voltage .. -0.5 to 5.5 Vee
Operating temperature range (TeASE) ••.................................. -55 ° C to 125 ° C
Storage temperature range . • -65 ° C to 150° C
lead temperature (10 seconds) .. 300° C
Junction temperature 175 ° C

Figure 39. Absolute maximum ratings

Recommended Operating Conditions

PARAMETER

Vee Supply voltage
IOH High-level output current
IOL low-level output current
TeAsE Operating case temperature

Figure 40. Recommended operating conditions

DC Specifications

PARAMETER TEST CONDITIONS

VIH High-level input voltage Vee = MIN
VIHe High-level input voltage for

ClK only
Vee = MIN

VIL low-level input voltage Vee = MAX
VILe low-level input voltage for Vee = MAX

VOH
ClK only

Vee = MIN, IOH = -1.0 mA High-level output voltage
VOL low-level output voltage Vee = MIN, IOL = 4.0 rnA

III Input leakage current Vee = MAX, V IN = 0 - Vee
ILO Output leakage current Vee = MAX, V OUT = 0 - Vee

(output disabled)

lee Standby current Vee = MAX, DC Conditions
TTL inputs

lee Switching current Vee = MAX, Tey = MIN
TTL inputs

CIN Input capacitancet TA = 25°C
CeLK Clock capacitancet f = 1 MHz
COUT Output capacitancet Vee = 5.0 V

t Capacitance not tested

Figure 41. DC specifications

64

COMMERCIAL
UNIT

MIN NOM MAX

4.75 5.0 5.25 V
-1.0 rnA
4.0 rnA

0 85 °C

COMMERCIAL

MIN MAX
UNIT

2.0
2.4

0.8
0.8

2.8 V
0.4

±10
±10 J.lA

150 rnA

250 rnA

8
20 pF
10

© Copyright WEITEK 1988
All rights reserved

'\
)

o

c

AC Specifications

AC TEST CONDITIONS:

VIH = 3.5V VOH
Vcc = MIN

Vil = O.4V VOL

Xl-8236-40
DESCRIPTION

MIN MAX

TCY ClK cycle time 120

TCH ClK HIGH time 55

TCl ClK lOW time 55

TR ClK rise time 5

TF ClK fall time 5

TS1 Set-up time for control 13
inputs
COND+, ST All-,
EXT1-, EXT2-,
EXT4-, RESET-,
FPCN+

TS2 Set-uR time for code bus
and AD[31 .. 3)

25

TS3 Set-up time for AD[2 .. 0)
during RIP address gen-
eration only

35

TH1 Input hold time 3

TH2 Input hold time 5

T1 COND input to AC valid 40

T2 STAll- Input to AC valid 40

T4 EXT1-, EXT2-, 45
EXT4-, RESET-, FPCN+
input to AC valid

T5 ClK failing edge to AC 65
Bus output

Ts ClK to AD+ turn-on 15

T7 AD+ bus turn-off time 55

Ts ClK to AD+ bus valid 95

T9 ClK to OP+ valid 35

T9A ClK to OP+ valid 55

Tn ClK to NEUT - valid 40

Tvo Output valid time 5

Tzo Output enable time 30

Toz Output disable time 30

All units In nanoseconds

= 2.8V, IOH = -1.0 mA

= O.4V, IOl = 4.0 rnA

Xl-8236-20 Xl-8236-10

MIN MAX MIN MAX

200 350

90 165

90 165

5 5

5 5

20 35

30 35

40 45

3 3
5 5

60 80

60 80

65 85

100 150

15 15

60 65

160 300

55 70

65 85

60 80

5 5

40 50

40 50

TCASE =

SEE
FIGURE

44,48

44,48

44,48

48

48

43

43

43

43
43

43

43

43

43

43

43

43

43

43

43

43

45

45

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

85°C CLOAD = 40 pF

COMMENTS

For all inputs except C bus
C bus inputs only

COND and STAll- are ex-
amined during Tel and are
thus not specified with re-
spect to the rising edge of
ClK

If certain instruction combi-
nations are avoided.

General case. See p. 67

Figure 42. AC specifications: guaranteed switching characteristics over commercial temperature range and
operating conditions. Contact your WEITEK sales representative for XL-8236-60 specifications

© Copyright WEITEK 1988

TIming Description

CLK+

C+ Bus
Input

CONO+
Input

AC+ BUS
Output

STALL-
lriput

Interrupt or
Control Input

AD+ Bus Transfer
from RCS
(Output)

AD+ Bus Transfer
to RCS
(Input)

OP+
Outputs

NEUT-
Output

Figure 43. Timing diagram

I" CYCLE 1 ~I'-- CYCLE 2---i

I I I I I l
R~'!1 I I I I I

I
(INS~ 2)

I
(INS~ 3)

I
I I I INS~ 1
I I I

I I TS1 i TH1 I I I
I I " I I I

If IN 1
1''' .I[

I I I I
T1 L I

I I I I I
I I -OUT 1 '" OUT 2 I I I I ~'ho 1 Ts

I

~S~:~~H~ I
I
I
I
I

I I

r:~H~
I
I
I
I
I
1

I I I
Ts

T~!
I

~
I

I I
I I
I I I T7 I

I I I I I
I I I I I I
I I kT~:,IH~ I I I
I I I I I
I I I I I
I I I I I
I I I I I I
i T9,T9A ! ! I I I
I - I I !

OUT 1
I~

I I ...r I--Tvo r. I I
I I

~ tTVO OUT 1

I I
I I
I I I
I I I
I I I

I I
I

I Current Instruction I Next Instruction

f.. Instruction 1 .1. Instruction 2
I --I

66 © Copyright WEITEK 1988
All rights reserved

\
)

c

o

c

c

TIming Description, continued

Signal timing is shown in figure 43. At the beginning of
clock cycle 1, an instruction is received from the edge­
triggered code register connected to the C bus and exe­
cuted. If the instruction is a transfer from the RCS, the
AD bus is driven by an internal register at time T 8 after
the start of the cycle. If the instruction is a transfer to
the RCS, the data is received by an edge-triggered reg­
ister on the AD bus at the end of the cycle. The AD
output drivers have an turn-on time from the ClK edge
of Te.

If the previous instruction is a taken branch, the b bit
of the .ssr will be set. This can activate the NEUT­
output line on the current instruction cycle at time T 11,

after the beginning of the cycle.

The OP outputs are driven at T9 or T9A. The timing for
T 9 assumes that certain instruction combinations will
not be used in the code; specifically, that load, store,
rfiO, input, and output instructions will never be placed
either in the shadow of a flow-of-control instruction or
at the target of a flow-of-control instruction. The T9A

ClK+

Figure 44. Clock timing

OEAD­
Input

AD+ bus
Outputs

Figure 45. Tri-state timing

I
~

TCH .. I ..
Tcv

Toz

Valid

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

specification assumes that no such care is taken. Trans­
fer-of-control instructions include br, shbr, brstkp,
endloop, sob, shsob, brp, bsr, and rts; any instruc­
tion that causes the program counter to do anything
besides increment is a transfer-of-control instruction.
The clocking of the external AD bus register on the RIP
must work with the general (slower) case.

The XL-Series compilers never generate code that vio­
lates this rule. A program to check for violations of this
rule in user-written assembly-code routines is included
with the XL-8200 development system.

The code address which appears on the AC bus de­
pends upon a number of control inputs and settles at
times T1• T2 • T4 • or T5 after the corresponding control
input is changed. These control inputs are received by
level-sensitive latches that are transparent during the
second part of the cycle. These control inputs include
EXT1-, EXT2-, EXT4-, RESET -, STAll-, COND+,
and FPCN+.

2

TCl

High
Impedance

I
:1

Tzo

Valid

L

Toz Is a slowest of
two values: THZ and
TLZ, which are the
times from high volt­
age to tri-state and
low-voltage to tri­
state. respectively.
Similarly, Tzo Is the
slowest of TZH and
TzL. Toz Is not meas­
ured but Is guaranteed
by design.

© Copyright WEITEK 1988

I/O Characteristics

Test Circuit for Switching Delay

Output
pin

CL = total load on device
pin, including stray ca­
pacitance.

204 V

<.> 500 .n

_L- CL I 40pF

Figure 46. Test Load for Delay Measurement

Input Equivalent Circuit

Input
pin

10 pI!

Figure 47. Input and Output Equivalent Circuits

Test Circuit for Tri-State Enable/Disable

Vx

CL = total load on
device pin, including
stray capacitance.

Vx = Vee to test TZL
and TLZ.

Vx = GND to test
THZ and TZH. See
also figure 45.

Output
pin

~ 500 .n

_L- CL

I40 PF

Output Equivalent Circuit

Output
pin

10 pF

~---- Tey ----~

1.5V

OAV

Figure 48. Clock timing

68

2AV

TR and TF are not meas­
ured but are guaranteed
by design.

© Copyright WEITEK 1988
All rights reserved

'\
i

./

c
Pin Configuration

15 031 C2:l C23 C22 C20 C16

14 VCC C30 C26 C24 C21 C18

13 AD30 GND C29 C28 C25 C19

12 AD29 AD31 NC

11 NC NC NC

10 AD26 AD28 NC

9 NC AD27 NC

C 8 VCC GND AD25

7 AD24 AD23 NC

6 NC NC AD22

5 NC AD21 AD19

4 AC21 AC20 GND
KEY
PIN

3 AD20 AC19 VCC NC AC17 AC15

2 GND GND AD18 AD17 AC16 GND

NC AC18 AD16 AD15 OPO OP3

A B C o E F

NC = Not Connected
Note: Pins marked NC must be left unconnected

Figure 49. Pin configuration

C15 C12 C10 C9 CB

C17 C11 C7 C5 C2

C14 C13 C8 C4 co

XL-8236

Top View
(cavity up)

OP2 NC STALL- TIE VCC
HIGH

OP1 NC COND NC RESET

OP4 NEUT- EXT1- FPCN TIE
HIGH

G H J K L

69

03

GND

GND

OEAD-

GND

EXT2-

M

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

C1 VCC NC

GND VCC AD1

ADO AC1 AD3

ACO AC2 AC3

AD2 AD4 AC4

AD5 AC5 ACB

NC AD6 GND

vcc AC7 AD7

AD9 AC9 AD8

AD11 AC10 AC8

AD13 AD12 AD10

GND AC13 AC11

TIE AC14 AC12 lOW

VCC VCC AD14

EXT4- ClK NC

N P R

© Copyright WEITEK 1988
All _: 1...4-" _ ... 10 _"1

Physical Dimensions

XL-8236 145-PIN PIN GRID ARRAY

e

.... --- 0 ----'I.,.

e0000000000000e E
000000000000000 3
000000000000000 t
000 000 =::-===
000 000 f
000 000
CiICiICiI 000
000 000
~~~ Locator Pin ~~~ Pin 

~~~ ~0~~~ 
000000000000000
000000000000000 Standoff
e-000000000000"

~ Pin 1A

BOTTOM VIEW SIDE VIEW

Symbol INCHES

MAX MIN
Al 0.135 O.OSO

A2 0.210 0.175

A3 O.OSO 0.040

0 1.657 1.555
El 0.140 TYP

E2 0.050 TYP

E3 0.020 0.016

d 0.075 0.035
e 0.100 TYP

Figure 50. XL-8236 physical dimensions

70

•

MM

MAX
3.43

5.33

2.03

42.1
3.56 TYP

1.27 TYP

0.51

1.91
2.54

[]
TOP VIEW

MIN

2.03

4.46

1.14

39.4

0.41

0.S9

© Copyright WEITEK 1988
All rights reserved

\,
)

c

c

Ordering Information

PACKAGE TYPE SPEED GRADE

14S-pin plastic PGA -10

14S-pin plastic PGA -20

14S-pin plastic PGA -40

14S-pin plastic PGA -60

PACKAGE TYPE SPEED GRADE

14S-pin ceramic PGA -10

14S-pin ceramic PGA -20

14S-pin ceramic PGA -40

14S-pin ceramic PGA -60

Figure 51. Ordering information

Revision Summary

T7 was corrected in figure 43

Input hold times increased from 3 ns to 5 ns

The -60 part grade is now available

The package designator for plastic parts in
the order number changed from If PGCU" to
IfGPU"

Figure 52. Revision summary

TEMP. RANGE (CASE)

T=Oto+8SoC

T = 0 to +8SoC

T = 0 to +8SoC

T = 0 to +8SoC

TEMP. RANGE (CASE)

T = 0 to +8SoC

T = 0 to +8SoC

T=Oto+8SoC

T=Oto+8SoC

71

XL-8236
22-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

ORDER NUMBER

XL-8236-010-GPU

XL-8236-020-GPU

XL-8236-040-GPU

XL-8236-060-GPU

ORDER NUMBER

XL-8236-010-GCU

XL-8236-020-GCU

XL-8236-040-GCU

XL-8236-060-GCU

Index

Symbols

· brk register. See breakpoint register

· cea register. See registers, address

· cfa register. See registers, address

.if a register. See registers, address

· ssr. See sequencer status register

· tim asrtadr, 16

A

AC bus, 3

AC specifications, 65

AD bus, 3

architecture, 5-6

B

b (bit in .ssr). See sequencer status reg­
ister (. ssr)

bi (bit in .ssr). See sequencer status reg-
ister (. ssr)

block diagram, 1, 2

branch shadow, 9

breakpoints, 8

buses, 5

c
C bus, 3

CLK, 3

COND,4

Condition, floating point, 16

clocks, CLK, 3

control flow, 5, 6

D

DC specifications, 64

delayed branching, 9

dimensions, 70

@1988 by WEITEK Corporation
All rights reserved

E

EXTl- through EXT4-. See interrupts

exceptions, 6, 14
See also interrupts
breakpoint, 14
overflow, 6, 14, 15
timer. See interrupts, timer
traps, 14, 16
underflow, 6, 14, 15
w atchp oint , 14

F

FPCN, 4, 16

FPU, 16

G

GND,4

I

110 characteristics, 68

Interrupts, Nested, 17

infinite loop. See loop, infinite

instruction interaction, 57-60
branching, 57
calls and returns, 58
interrupts, 60
looping instructions, 59

instruction set, 5

instructions, 19
br,24
branch, 23~27
brc, 27
brp, 33
brstkp, 26
bsr, 35
continue, 22
data transfer, 46-55
endloop, 30
format,. 19
interrupt control, 37-38
loop, 28-33
mov, 46, 47, 48, 49, 51, 53, 54, 55,

56
neutralization, 41-45
ovneut, 43
ovneuti, 44

72

pops, 50
pushs, 52
revneut, 45
rfiO, 38
rfil, 39
rts, 36
shbr, 25
shsob, 32
sob, 31
subroutine, 34-36
terms and symbols, 19
trap, 40

See also exceptions, traps
trapi, 40

interrupts,S, 10-17, 62
See also exceptions
enable bits (in .ssr), 7
external, 3, 14
flag bits (in .ssr), 7, 13
handling, 16, 17
internal. See exceptions
sequence, 10
timer, 8, 14

L

Latency, 16

loop, infinite. See infinite loop

M

memory control, 61, 62

N

NC,4

NEUT-, 3, 9

Nested interrupts, 17

neutralization, 9
See also NEUT-

o
OEAC-,4

OEAD-,4

OP bus, 3, 61-62

ordering information, 71

overflow. See exceptions, overflow (1\
,-j

C'"
./

Index, continued

p

PSU. See program sequencing unit

packaging, 1-3

physical dimensions, 70

pin configuration, 69

pipelining, 5

power-up, 5, 6

program sequencing unit (PSU) , 1

R

RESET-, 3

recommended operating conditions, 64

registers, 7-8
address (.cea, .cfa, and .ila), 7
breakpoint (.brk), 8
interrupt address, 10
interrupt base (.ibr) , 10
timer (.tim), 8

reset,S, 6, 7, 18

rflO, Bug, 16

s
STALL-, 4, 5, 10, 12

Stack overflow, 17

s (bit in .ssr). See sequencer status reg­
ister (. ssr)

sequencer status register (. ssr), 6, 7, 8,
13, 18

modifying, 7

signal description, 3-4

signals, bus enable/disable, 4

specifications
AC,65
absolute maximum ratings, 64
DC, 64
physical dimensions, 70
pin configuration, 69
recommended operating conditions, 64

stack, 6, 15

73

XL-8236
32-BIT RASTER CODE
SEQUENCER

PRELIMINARY DATA
October 1988

T

Timer, 16

Timing, 66-67

top-of-stack register (.tos), 6, 7

traps. See exceptions, traps

u
underflow. See exceptions, underflow

v
VCC, 4

x
XL-3232, 16

© 1988 by WEITEK Corporation
A 71 _!_1_ _______ ._J

c:'

For additional information on WElTEK products, please till out the form below and mail.

Name Title

Company Phone

Address

Comments
I am currently involved in a design with the following Weitek products _____________ and wish to be added to your
design data base to insure that I receive status updates.

APPLICATION:

o ENGINEERING WORKSTATIONS

o GRAPHICS

o PERSONAL COMPUTERS

Check the products on which you wish to receive data sheets:

ATTACHED PROCESSORS

o XL-SERIES OVERVIEW

o XL-8200 OVERVIEW

WEITEKuse: Rec'd

Status

COPROCESSORS

o 1167

D 1164/1165

D 3164/3364

o 3167

Out

o SCIENTIFIC COMPUTERS
o afHER ______ _

BUILDING BWCKS

D 2264/2265 0 1066

D 313213332

o 1232/1233

D 2010

D 2245

TPT

WEITEK XL-8236 22-BIT RASTER CODE SEQUENCER
Please Comment On The Quality Of This Data Sheet.

o Have a sales person call

o 2516

o 2517

Source: OS

Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have
missed something that may be important to you. If you believe this is the case, please describe what the
missing information is, and we will consider including it in the next printing of the data sheet.

Fold, Staple and Mail to Weitek Corp.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. \374 SUNNYVALE. CA

POSTAGE WILL BE PAID BY ADDRESSEE

WEITEK Corporation
1060 E. Arques Ave.
Sunnyvale, CA 94086-BRM-9759

ATTN: Ed Masuda

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

c

WEIT~

Headquarters
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

WElTEK'S CUSTOMER COMMITMENT:

Weitek's mission is simple: to provide you with VLSI solutions
to solve your compute-intensive problems. We translate that
mission into the following corporate objectives:

1. To be first to market with performance breakthroughs, allow­
ing you to develop and market systems at the edge of your art.

2. To understand your product, technology, and market needs, so
that we can develop Weitek products and corporate plans that
will help you succeed.

3. To price our products based on the fair value they represent to
you, our customers.

4. To invest far in excess of the industry average in Research and
Development, giving you the latest products through techno­
logical innovation.

S. To invest far in excess of the industry average in Selling, Mar­
keting, and Technical Applications Support, in order to pro­
vide you with service and support unmatched in the industry.

6. To serve as a reliable, resourceful, and quality business part­
ner to our customers.

These are our objectives. We're committed to making them
happen. If you have comments or suggestions on how we can
do more for you, please don't hesitate to contact us.

Domestic Sales Offices
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

Corporate Place IV
111 South Bedford St.
Suite 200
Burlington, MA 01803
FAX (617)229-4902
TEL (617) 229-8080

European Sales Headquarters
Greyhound House, 23/24 George St.
Richmond, Surrey, TW9 UY
England
TELEX 928940 RICHBI G
FAX011-4419406208
TEL 011-441549 0164

Japanese Representative ~
4-8-1 Tsuchihashi • "',

Miyamae-Ku '='"
Kawasaki, Kanagawa-Pre
213 Japan
FAX 044-877-4268
TEL 044-852-1135

