WETEK 4

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

The WEITEK XL-8237 is a fully-
integrated CMOS 32-bit raster image
processor. It is used with the
WEITEK XL-8236 22-bit raster code
sequencer to make the HyperScript-
Processor, a high-performance graph-
ics CPU capable of driving raster
printers at up to 60 pages per minute.
WEITEK’s single-precision floating-
point unit may also be used to produce
atightly-coupled raster image printing
system.

Contents

Features 1
Description 1
Architecture 2
Block Diagram 4
Signal Description 5
Memory Addressing 6
Registers 7
Instruction Set 9
Memory Operations 51
Instruction Neutralization 53
NOP 53
Overflow Detection 53
Development Tools 54
Design Requirements 55
Specifications 56
Recommended Operation
Conditions 56
DC Specifications 56
AC Timing Description 57
AC Specifications 58
Timing Diagrams 59
1/0 Characteristics 61
Pin Configuration 62
Physical Dimensions 63
Ordering Information 64
Revision Summary 64

Documentation Request Form 65

Sales Offices back cover




The masters for this document were printed on an
XL-8200 development system

XL-8237 Raster Image Processor Data Sheet
October, 1988

Copyright ©WEITEK Corporation 1988
All rights reserved

WEITEK Corporation

1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400

WEITEK is a trademark of WEITEK Corporation

PostScript is a registered trademark of Adobe Systems, Incorporated
BITSTREAM and FontWare are trademarks of BITSTREAM Corporation

UNIX is a trademark of AT&T Bell Laboratories

XENIX and MS-DOS are trademarks of Microsoft Corporation
NIMBUS is a registered trademark of URW Corporation

WEITEK reserves the right to make changes to these specifications

at any time

Printed in the United States of America
90 89 88 654321




(

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Features

32-BIT, SINGLE-CHIP GRAPHICS PROCESSOR

32-bit integer ALU

Four-port 36 X 32 register file

Parallel multiply/divide unit for Bezier computation
32-bit shift/field merge unit for BitBlt

Single-cycle execution

HIGH PERFORMANCE

10 to 60 pages per minute running WEITEK’s
HyperScript interpreter

Peak BitBIt rate of over 65 million pixels per second
Bezier computations at 750 thousand endpoints per
second

LOW SYSTEM COST

145-pin plastic PGA (pin grid array) package
Low power CMOS with TTL-compatible 1/0

POWERFUL INSTRUCTION SET

Add, subtract, multiply, and divide
Complete set of logical operations
Shifts up to 31 bits in one cycle
Priority encode

Field extract/deposit/merge instructions
Perfect exchange (including bit reverse)

POWERFUL DEVELOPMENT TOOLS

PostScript-compatible interpreter
C compiler
Graphics development system

INTERFACES WITH OTHER XL-8200 PRODUCTS

Interfaces with the X1.-8236 raster control sequencer
Interfaces with XL-8232 graphics floating point unit

Description

The XL-8237 is a RISC-architecture 32-bit raster im-
age processor (RIP). It is used with the XL-8236 32-bit
raster code sequencer (RCS) to form the XL-8200
HyperScript-Processor, a high-performance graphics
processor that can run WEITEK’s HyperScript inter-
preter and other page description languages. These
chips also interface directly with WEITEK’s 32-bit
graphics floating point unit, the XL-3232.

The XL-8237 was designed specifically as a laser beam
printer controller running a page description language.
WEITEK supplies the HyperScript interpreter, a Post-
Script-compatible interpreter for its HyperScript-Proc-
essors. The architecture supports speeds from 10 to 60
pages per minute; thus it is a powerful and cost effec-
tive solution for a wide range of speeds, resolutions,
colors, and page description languages.

P Q%"J’:’

S%element Instruction
egister
o Decode and | NEUT-
Control
b stau-

2L

Data Data
Bus Address
Bus

XL-8237

Code Address Bus Code
*1 Memory
Code Bus
- >
24 32
XL-8236 XL-8237 XL-3232
Raster Raster Floating
Code Image Point Unit
Sequencer Processor (optional)
22
‘/_l‘ /32 Data Bus -

,,32 Data Address Bus
- -

Data
Memory

WEITEK 32-bit Raster image Processor Family

Figure 1. Simplified block diagrams

© Copyright WEITEK 1988
All rights reserved



Description, continued

SPEED

6000 sans serif 10-point characters per second font
placement rate

750 sans serif 10-point characters per second font-gen-
eration rate using URW’s NIMBUS font-scaling from

Bezier outlines

75 sans-serif 10-point characters per second font-gen-
eration rate using BITSTREAM FontWare font-scaling
from Bezier outlines

Architecture

ALU

The heart of the XL-8237 RIP is the 32-bit ALU,
which contains the hardware for arithmetic and logical
functions. The ALU performs 32-bit addition and sub-
traction, sixteen different logical functions, and ad-
dress generation. All ALU operations are performed in
a single cycle.

BITBLT/SHIFTER/FIELD MERGE UNIT

The shift/merge unit provides a rich set of instructions
for key raster image processing applications such as bit
block transfer (BitBIt) and character placement.

The shifter unit provides 0-31 bits of shifting in either
direction in the deposit, extract, and merge opera-
tions. This allows the RIP to extract bit fields of any
length, operate on them, and replace them in the origi-
nal word. Bit fields can also be combined through the
bitwise merge instruction.

The perfect exchange function is used to rearrange
the bits within a single word in a variety of ways. It can

© Copyright WEITEK 1988
All rights reserved

be used to swap fields of 2, 4, 8, or 16 bits, reverse the
bit order within these fields, or both.

The priority encode function counts the number of
zero bits before the first one bit is encountered.

MULTIPLY/DIVIDE UNIT

The multiply/divide unit make the RIP very effective in
mathematically-intensive operations such as character
generation and scaling from Bezier outlines.

Hardware multiply and divide functions give a 64-bit
product of two 32-bit operands in 8 cycles, and a 32-bit
quotient and 32-bit remainder from a mixed 64/32 bit
division in 20 cycles. The multiply/divide unit operates
independently of the rest of the ALU, so other opera-
tions can be performed in parallel with multiplication
and division. The integer multiply/divide unit can emu-
late floating point operations in software at a 25-cycle
rate (0.3 MFLOP at 120 ns).



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Architecture, continued

REGISTER FILE

The four-port register file contains 36 registers, each 32
bits wide. This large register file allows frequently-used
variables to be kept on-chip, reducing the number of
memory accesses and increasing performance.

Registers 28-31 are duplicated in a second bank to give
four temporary registers which can be used during in-
terrupt handling.

BUS STRUCTURE

There are three independent 32-bit buses: Code, Data,
and Data Address (C, D, and AD buses, respectively).

Independent code and data buses allow data-intensive
operations such as BitBlt and character placement to
run continuously, without being interrupted by code
fetches.

The Code Bus provides the RIP with its instruction
stream. When used with the XL-8236 raster code se-
quencer (RCS), both chips share the same 32-bit in-
struction stream. Many instructions also use the code
word to provide immediate data fields.

The Data Bus provides bidirectional access to external
memory, at the rate of one load per cycle or one store
every two cycles. The Data Bus has individual write-se-
lect lines (WREN lines) for each byte in the word.

The Data Address bus is used to provide memory ad-
dresses and to transfer data to and from the RCS and
1/0 devices. A word can be transferred over the AD
Bus every cycle.

MEMORY ACCESS

Loading and storing from memory is done with the ad-
dress generation instructions and Load and Store Data
instructions. The RIP uses a delayed load/delayed store
scheme which overlaps memory access with other RIP
operations in a straightforward way.

Memory access includes load and store instructions
with features such as indexed addressing and pre- and
post-increment addressing. The basic memory word is
32 bits wide, but bytes and halfwords can be accessed
individually. Load and store operations take two in-
structions, but are pipelined to allow other operations
to occur in parallel with memory access.

INSTRUCTION FORMAT

The RIP’s instruction set is based on register-to-register
operations specified in a 32-bit instruction word. The
basic instruction format has three 5-bit register select
fields, opcode and extended opcode fields, and a con-
dition code select field. Thus a three-address instruc-
tion of the form rc := ra + rb can be specified in a
single word.

In many instructions, one of the operands can be re-
placed by an immediate value, allowing operations on
constants to be specified in a single instruction without
first loading the constant into a register.

Most instructions reserve the most-significant eight bits
of the instruction word for an RCS opcode. When the
RIP is used with the RCS, the two chips share the same
32-bit instruction stream.

© Copyright WEITEK 1988
All rights reserved



Block Diagram

WREN-5 o OED- Da1..0 CLK  NEUT-  STALL- Cs1 0
Data L Lrl
Bus
Store
Code
. Data Bus
WREN3,,0—>|
Store (Other
Instruction latches and
* registers are
Y also clocked
MUX " by CLK+ if
not otz?mise
) marke
wC wD Code
PSR {+4) ADR H{ o /.l§ Register
vy 36x32 Write
c .fir.sar Register File
RA RB
Instruction
Immediate Field Decode
&
|"__JML__L_|UX Control
ALU “A” Bus
i ALU “B” Bus ADRq, o
if Shift K 1
shift RIL tamra— B8 ¢——3 Y
0-3 0-31 Misc.
D°9°de Control
BitBIt/ Multiply
|\ ALU Shift Divide 1
Unit WREN-3 ¢
To To To
"y COND COND COND
% DBUS (Internal Data Bus)
[mux_ |
Data
)I(DFER Address
ata or XFER
IN Data
ouT Address Generation or
Housekeeping Instructions
Data
Address
Bus E]
ADs1. 0 OEA- COND MD CLK
Figure 2. XL-8237 block diagram
© Copyright WEITEK 1988 4

All riohts reserved

."; ) -//

& N



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Signal Description

C+

The Cs1..0 Code Bus contains a 32-bit instruction
word. Because it contains a built-in pipeline register, it
is not necessary to use an external pipeline register be-
tween code memory and the XI1-8237.

D+

The Ds1..0 Data Bus is used as a bidirectional input/out-
put bus. Data flow is in the form of memory-to-register
and register-to-memory transfers. Tri-stating of the D
Bus is controlled by the currently executing instruction
and the OED- signal.

AD+

The ADs1..0 Data Address Bus provides addresses for
data memory operations. It is driven with either the
contents of the address register (.adr) or the result of
an address computation instruction. Tri-stating of the
AD Bus is controlled by the currently executing instruc-
tion and the OEA- signal. It can also be used as a bidi-
rectional data bus for transfers from the RCS or other
hardware.

COND+

The COND output is a single-bit condition code signal
that indicates one of several possible one-bit status val-
ues derived from the result of the current instruction.
See Condition Code Generation section on page 13.

CLK

The clock input, CLK, is a single-phase TTL-level
clock signal. One instruction is executed per clock cy-
cle. The CLK signal selects whether the current clock
cycle is to be “phase one” (CLK high) or “phase two”
(CLK low). Many of the external signals are synchro-
nized to either the rising or falling edge of this signal.

MDCLK

The Multiply/Divide clock input, MDCLK, is a single-
phase TTL-level clock signal. The internal multiply/di-
vide registers are synchronized to the positive-going
edge of this clock. This signal must be synchronized to
the rising and falling edges of the CLK signal, and runs
at twice the frequency of CLK.

NEUT-

The NEUT- input causes the currently executing in-
struction to be neutralized or canceled; that is, any in-
ternal effects that the instruction was to have (such as
modification of register contents or status bits) are can-
celed.

STALL-

The STALL- input cancels the next instruction.

WREN-

The WREN-3..0 outputs indicate which bytes of the
data word are to be stored to the data memory. This
control information is driven when a Store Data in-
struction is executed by the RIP, otherwise these sig-
nals are high.

OEA-, OED-

OEA- and OED- are asynchronous output enable sig-
nals for the AD and D buses respectively. The buses
drive when their respective output enables are low, and
float when output enables are high.

If the OEA- signal is de-asserted, then the AD Bus is
tri-stated regardless of the OEA signal or the executing
instruction. If the OEA- signal is asserted, then the AD
Bus is driven under control of the OEA+ signal or the
currently executing instruction. Note that OEA- is not
simply the complement of OEA+.

The OED- signal functions similarly. If the OED- signal
is de-asserted, then the D Bus is tri-stated.

VCC, GND

The VCC and GND pins provide a supply voltage of
+5.0 volts, and system ground of 0 volts, respectively.
All VCC and GND pins must be connected.

TIE HIGH, TIE LOW

Signals marked “Tie High” should be tied to VCC. Sig-
nals marked “Tie Low” should be tied to GND. Future
versions of the XL-8237 may redefine these as signal
pins, so it’s advisable to tie them through traces rather
than directly to power and ground planes.

© Copyright WEITEK 1988
All rights reserved



Memory Addressing

The XL-8237 provides address generation functions,
including addressing of bytes, halfwords, or words in a
word-wide memory. These functions determine byte
and halfword positioning within a word from the least
significant two bits of the memory address. This is illus-
trated in figure 3.

Halfword addresses ending with “11” and word ad-
dresses ending with “01,” “10,” or “11” are not de-
fined for Load and Store operations—that is, data to be
loaded cannot straddle a word boundary. Data that
straddles a word boundary can be obtained using two
loads and a merge.

. 31 0
byte: [ 11 [ 10 I 01 [ 00 ]
halfword: . =5 1

] 01 |
| ]
word: [ 55 1

Figure 3. Memory addressing

© Copyright WEITEK 1988
All rights reserved



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Registers

REGISTER FILE

The register file contains 36 registers, each 32 bits
wide, which are accessed through four independently
addressable ports.

The 36 registers are numbered 0-31 and 28'-31'. (See
figure 4.) Only registers 0-31 can be directly accessed
through the five-bit register numbers contained in an
instruction. A special instruction, swap (one of the
housekeeping instructions), exchanges the contents of
registers 28-31 and 28'-31’ in a single cycle. Normally
the four extra registers are used only by interrupt rou-
tines for temporary working storage.

31 0
0

28 28’
29 29/

31 31/

Figure 4. Data registers

ADDRESS HOLDING REGISTER

The XL-8237 retains the last address generated by any
of the address generation instructions in the .adr regis-
ter. The .adr register serves two purposes. It is used by
the interrupt mechanism to aid in saving and restoring
the state of the system. It is used by the byte alignment

instructions to indicate the beginning byte offset. The
format is given in figure 6.

31 0
1 .adr 1
32

Figure 5. Address register

PRODUCT REGISTERS

There are two 32-bit product registers: .am and .al.
They are used by the multiply and divide hardware and
the bitwise merge instruction. During the operation of
the multiply and divide hardware the contents of these
registers are undefined. This implies that the bitwise
merge instruction cannot be used during a multiply or
divide operation. Several instructions in the house-
keeping instruction set explicitly manipulate the con-
tents of these registers. The format is given in figure 6.

31 0
L am ]
32
1 al ]
32

Figure 6. Product registers

© Copyright WEITEK 1988

All riohts reserved



Registers, continued

PROCESSOR STATUS REGISTER

The RIP retains some control information in the proc-
essor status register, .psr. The format is given in fig-

ures 7 and 8.

31

reserved belzl|c fir sar

Figure 7. Processor status register

Symbol Meaning

sar shift amount register

fir field length register

c carry bit

z register bank select (for registers 28-31 or 28'-31’)
be reserved for future extension. Must be set to zero
reserved reserved for future extension. Must be set to zero.

Figure 8. Processor status register bit fields

© Copyright WEITEK 1988
All rights reserved

O

O



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

.|
Instruction Set

TERMS AND SYMBOLS

The instructions are listed on page 11, then described cludes a pseudo-code definition of the instruction. The
in detail on the following pages. Each description in-  following symbols are used:

I
adupb

reg(ra)
COND
{}

K ixs
tcovf

usovf

unadd
unsub
result

[31..0]

aopb

Concatenate fields. abc || def gives abcdef.
Indicates that operations separated by this symbol occur in parallel.
Duplicate b a times. 3 dup 0 gives 000.
Register number ra

Condition Code

Begin and end comment

Shift left by ixs bits

Two’s complement overflow

Unsigned overflow

Unsigned add

Unsigned subtract

The result of any internal operation that is available on the internal DBUS (see Simplified
Block Diagram, figure 2). Typically, result will be driven out on the AD Bus but can also be
driven out on the D Bus.

Specifies the bit field from bits 31 to bit 0, inclusive. For example, reg (ra) [3..0] gives
the lower four bits of register ra.

Perform an operation on operands a and b

© Copyright WEITEK 1988
A

Q ATl “winhto wocnrmin



Instruction Format

A 32-bit instruction word is used to control the opera-
tion of the XL-8237. This instruction word is designed
to be directly shared by the XL-8236 RCS. Therefore,
the two parts should be considered together.

Normally the instruction word is divided into two sec-
tions. The first, the most significant 8 bits, is used to
control I/O operation of the RIP as well as perform
many RCS operations. The second, the least significant

24 bits, is normally used to control the internal opera-
tions of the RIP. However, this second field can be
used by certain, so-called “long” RCS operations and
by inter-chip transfer instructions.

The following table gives the abbreviations used for bit
fields. The instruction formats are given in figure 10 on
the next page.

Field Meaning
RCS RCS control field
ra register select
rb register select
rc register select
rd register select
shf controls amount of shift in Extract/Deposit/Merge
len controls field length in Extract/Deposit/Merge
p controls Perfect Exchange
imm16 16-bit signed immediate data field
imm11 11-bit signed immediate data field
imm10 10-bit signed immediate data field
imm5 5-bit signed immediate data field
cn selects condition to be generated
e,ext,m operation code extensions
ixs shift specification
s specifies signed or unsigned
siz size of data item
processor operation any 24-bit RIP instruction
X Reserved for future definition™

* See section Compatibility With Future Enhancements

Figure 9. Instruction fields

© Copyright WEITEK 1988
All rights reserved

10

O

C



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Instruction Format, continued

Arithmetic and Logical Instructions postailed
8 5 5 5 Page f

Arithmetic instructions [ ra | re | ext [cfrb/imms| 13
Add Signed Immediate | ra | re |1] immediateto | 15
Logical instructions [ ra | rc fof ext || rm | 18

Field Manipulation Instructions
Deposit/Deposit and Merge 000 | ra | den [ shf |m[ o | 19
Merge Immediate o0t ra | ten | st [1] imms | 20
Extract : 001 | ra | tlen [ shf Jo| o | o4
Dynamic Extract/Deposit/Merge [ 100 ra | ten [ 11]ext|] rm | 5
Merge Halfword High o] ra | immediate16 | 23
Bitwise Merge M| ra | re [ 11t jor] b | o,y
Perfect Exchange 1111 ] ra | p ] 1111 Jof ]| 5

Address Generation Instructions
Load/Store Address with [ ra ] immediate16 |

Signed Displacement

Load/Store Address with
Index/Signed Displacement

| ra | ro [1] ext [ixs| rb/imms | 28

Load/Store and Alignment Instructions

Load Halfword Immediate o0 ra | immediate16 1 s
Load Data to RIP | 32
Store Data from RIP [ 33
Byte Align for Load Data f [x[o]s]siz| 1111 Joo| o | 34
Byte Align and Store Data i 11| ra |e[t]s|[siz] 1111 Joo|[ b | 36
Miscellaneous

Multiply/Divide/Priorit i

e e /ﬁousekeeging 1] ra | ext [ 1111 [11] rb/imms | 38

Coprocessor/Sequencer Operations

Coprocessor Operation [ lo] x | 47
Store Data from Coprocessor I 101 | rd E 48
Load Data to Coprocessor [111] ra Fooo 0 RE 49
Transfer to/from RIP r 00000000 | ext | ra X ] X ] 50
Long RCS instruction [ ooooooor }

Long RCS instruction [ oooocoto |

Long RCS instruction | ooooco11 |

Long RCS instruction [ o001

Figure 10. XL-8237 Instruction formats

© Copyright WEITEK 1988

11



Condition Code Generation

All instructions that could produce a meaningful condi-
tion code, generate one automatically. These are sin-
gle-cycle instructions. Specific condition codes gener-
ated by each single-cycle instruction are summarized in
the table below. The condition code generated by an

instruction is available on the COND pin at the end of
the cycle during which the instruction is executed. In-
structions not listed in the table do not generate any
condition. See descriptions of individual instructions
for details.

Condition Format Function
cond ra := ra deposit rb[shf,len] deposit
cond ra := ra extract rb[shf,len] extract
cond ra = ra deposit imm5(shf,len] deposit imm5
cond ra = imm16 load imm16
cond ra := ra deposit imm16[16,16] merge imm16
cond1 c,rc = rb/imm5 + ra+c arithmetic
cond ra := ra deposit rb [.sar, .fir] dynamic deposit
cond ra := extract rb[.sar,.fir] dynamic extract
cond?2 ra :=ra oprb logical
cond3 rc = ra+imm10 add imm10
cond4 .adr = ra+imm16 load/store address generation
cond3 rc := ra+(rb<<ixs) add with index
cond4 ra,.adr 1= ra+(rb/immb5<<ixs) load/store indexed address generation
cond mem{|[.adr]:= rb align[signed siz] byte align for store
cond rc := (ra and not al) or (rb and al) bitwise merge
cond ra := p exchange rb perfect exchange
cond ra := priority encode rb priority encode
cond ra := am+rb+al[31] retrieve multiply/divide result
Conditions:
cond non-zero resuit
cond1 >0, >0, =0, overflow (unsigned or two’s complement)
cond2 non-zero, or all bytes non-zero
cond3 two’s complement overflow
cond4 unsigned overflow, or two's complement shift overflow

Figure 11. Generated condition codes

© Copyright WEITEK 1988
All rights reserved

12



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Arithmetic Instructions

1100 ra rc | ext [cn|rb/imms
8 3 5 5 4 2 5
FORMAT
instruction ext meaning
c,rc := unsigned(ra + rb) 0000 unsigned add
c,rc := unsigned(rb - ra) 0001 unsigned subtract
c,rc := unsigned(ra + rb + c) 0010 unsigned add with carry
c,rc := unsigned(rb - ra - 1 + ¢) 0011 unsigned subtract with borrow
rc :=ra + immb5 0100 two’'s complement add immediate
rc :=immb5 -ra 0101 two’s complement subtract immediate
rc:=ra+rb 0110 two’'s complement add
rc:=rb-ra 0111 two’s complement subtract
c,rc:=ra+rb 1000 two’s complement add
c,rc:=rb-ra 1001 two’s complement subtract
crc:=ra+rb+c 1010 two’s complement add with carry
crc:=rb-ra-1+c 1011 two’s complement subtract with borrow
c,rc :=ra + imm5 1100 two’s complement add immediate
c,rc = immb - ra 1101 two’s complement subtract immediate
DESCRIPTION CONDITION

Arithmetic instructions include signed and unsigned
add (with and without carry), and signed and unsigned
subtract (with and without borrow).

Depending on the value of the ext field, the contents
of register ra is either added or subtracted from either
the contents of register rb, or a sign-extended immedi-
ate value. Four forms of this instruction also add in the
¢ bit from the .psr, and ten forms update the ¢ bit.
The result is placed in register rc.

The condition generated depends on the value of the
ext and cn fields of the instruction. For most opera-
tions, the condition generated assumes that the result is
a two’s complement value; however, for the unsigned
add and subtract operations, the condition generated
assumes that the result is an unsigned quantity. The
unsigned and two’s complement equal-to conditions
and less-than conditions remain arithmetically valid for
ali valid input values, even if unsigned or two’s comple-
ment overflow occurs as a result of the addition or sub-
traction operation.

cn condition signal generated

00 two’s complement/unsigned not equal to zero

01 two’s complement/unsigned greater than or equal to zero
10 two’s complement/unsigned overflow

11 two’s complement/unsigned greater than zero

13

© Copyright WEITEK 1988
All rights reserved



Arithmetic Instructions, continued

OPERATION

temp := 28 dup imm([4] || imm([3..0];

case ext of
0000b: c || result := reg(ra) + reg(rb);
0001b: c || result := (not reg(ra)) + reg(rb) + 1;
0010b: c || result := reg(ra) + reg(rb) + c;
0011b: ¢ || result := (not reg(ra)) + reg(rb) + c;
0100b: result := reg(ra) + temp;
0101b: result := (not reg(ra)) + temp + 1;
0110b: result := reg(ra) + reg(rb);
O111b: result := (not reg(ra)) + reg(rb) + 1;
1000b: c || result := reg(ra) + reg(rb);
1001b: c || result := (not reg(ra)) + reg(rb) + 1;
1010b: c || result := reg(ra) + reg(rb) + c;
1011b: c || result := (not reg(ra)) + reg(rb) + c;
1100b: ¢ || result := reg(ra) + temp;
1101b: c || result := (not reg(ra)) + temp + 1;

endcase;

reg(rc) := result;

if ext [3..2] % 00b then
tcovf:= c32 xor c31

case c of
00b: cond := (result £ Q) or tcovf; *
01b: cond := result[31] xnor tcovf;

10b: cond := tcovf;
11b: cond := (result # 0 or tcovf) and (result[31] xnor tcovf);

endcase;
else
usovf := unsub xor c32;
case c of
00b: cond := result % 0 or usovf;
01b: cond := unadd or c32;
10b: cond := usovf;
11b: cond := (result % 0 or usovf) and (unadd or c32);
endcase;
endif;
COND := cond;

* See Overflow Detection.

© j K 198
© Copyright WEITEK 1983 14



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Arithmetic Instructions, continued

ADD SIGNED IMMEDIATE

101 | ra e |1] imm10
8 3 5 5 1 10

FORMAT

rc :=ra + immi0

DESCRIPTION

The 10-bit signed immediate value is added to the con-  The condition generated is TRUE (1) if a signed 32-bit
tents of register ra. The result is placed in register rc.  overflow is encountered, otherwise the condition gen-

This instruction does not affect the ¢ bit of the .psr. erated is FALSE (0).
OPERATION
result = reg(ra) + (23 dup imm10[9]) || imm10[8..0]; {sign-extend and add}

reg(rc) result;
COND  := tcovf;

© Copyright WEITEK 1988



AN
l .

7
L ]
Logical Instructions
LOGICAL INSTRUCTIONS
{101 | ra rc  [0] ext [c] b
8 3 5 5 1 4 1 5
FORMAT
instruction ext meaning
rc := zeros 1111 clear all bits
rc :=raandrb 1110 logical and
rc :=ra and (not rb) 1101 logical and-not
rc :=ra 1100 pass
rc := (not ra) and rb 1011 logical not-and
rc :=rb 1010 pass
rc :=ra xor rb 1001 logical xor
rc:=raorrb 1000 logical or
rc := (not ra) and (not rb) 0111 logical nor P
rc :=ra xnor rb 0110 logical xnor J
rc := not rb 0101 logical not ‘
rc :=ra or (not rb) 0100 logical or-not
rc := not ra 0011 logical not
rc := (not ra) or rb 0010 logical not-or
rc := (not ra) or (not rb) 0001 logical nand
rc := ones 0000 set all bits
DESCRIPTION CONDITION
The contents of register ra and the contents of register ~ The condition generated depends on the value of the
rb are combined in a logical or bitwise function. The the c field. The condition “all bytes non-zero” permits
function performed depends on the value of the ext quick scanning through byte data, using word opera-
field. The result is placed in register rc. tions.
{\

© Copyright WEITEK 1988

All rights reserved 16



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Logical Instructions, continued

condition c condition signal generated
# 0 0 not equal to zero
all bytes of rc # 0 1 all bytes not equal to zero
OPERATION
case ext of

1111b: result :
1110b: result :

1101b: result
1100b: result

1011b: result :

1010b: result
1001b: result

1000b: result :
0111b: result :
0110b: result :
0101b: result :
0100b: result :

0011b: result

0010b: result :
0001b: result :

32 dup 0;

reg(ra) and reg(rb);

reg(ra) and (not reg(rb));
reg(ra);

(not reg(ra)) and reg(rb);
reg(rb);

reg(ra) xor reg(rb);

reg(ra) or reg(rb);

(not reg(ra)) and (not reg(rb));
reg(ra) xnor reg(rb);

not reg(rb);

reg(ra) or (not reg(rb));

not reg(ra);

(not reg(ra)) or reg(rb);

(not reg(ra)) or (not reg(rb));

0000b: result := 32 dup 1;

endcase;
case c of

Ob: cond := (result £ 0);
not((result[31..24]=0) or (result[23..16]=0) or (result[15..8]=0) or (result[7..0]=0));

ib: cond :=
endcase;
reg(rc) := result;
COND := cond;

1"

© Copyright WEITEK 1988



Field Manipulation Instructions

The Extract, Deposit, and Merge instructions are used
to perform computations on portions of a word. Typi-
cally, the desired bit field is converted into a full word,
using an Extract instruction, operated on and con-
verted back into a bit field by the Deposit or Merge
instructions. These instructions can also be used to per-
form simple left and right shifts as well as rotations.
Figure 12 shows the operation of these instructions.

The Extract/Deposit/Merge instructions have two
forms: static and dynamic. The static form specifies the
field length and shift amount in the instruction as con-
stants. The dynamic form uses the .flr and .sar fields
from the .psr.

-The Extract instruction converts a bit field within a reg-
ister into a 32-bit value which is stored into another
register. The extracted bit field is aligned to the least-
significant bit of the destination register. The high or-

der bits of the destination are filled with zeros or sign
extended, controlled by the field length and shift
amount. If the sum of the field length and shift amount
is greater than 32, sign extension is performed; other-
wise zero-fill is selected.

The Deposit and Merge instructions perform the in-
verse operation: a 32-bit register is inserted into a
specified field of a destination register. For Deposit in-
structions, all other bits of the destination are set to
zero. For Merge instructions, the other bits of the des-
tination are not modified.

There is a special form of the Merge instruction:
Merge Immediate, which uses a 5-bit signed constant
instead of a register as the value to be inserted. This
instruction allows convenient bit set and reset as well as
many other useful operations.

Deposit Merge

31 0 31
RB | ; RB |
RA I 0 RA

Merge Immediate
31

Extract
31 4]

Imml

RB |

RA |

Figure 12. Deposit, extract, and merge instructions

© Copyright WEITEK 1988
All rights reserved

18

,{p\



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Field Manipulation Instructions, continued

DEPOSIT/DEPOSIT AND MERGE

000 ra | len | shf |m b |
8 3 5 5 5 1 5

FORMAT

ra := deposit rb [shf, len]
ra := ra deposit rb [shf, len]

DESCRIPTION

A right justified field of length specified by /en is taken  the field is truncated. If the m bit is zero, the result is
from the contents of register rb. The field is left-shifted  the field, otherwise the field is merged with the con-
by shf bits. If the sum of shf and len is greater than 32,  tents of register ra. The result is placed in register ra.

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-zero and is FALSE (0) if the re-
sult is zero.

OPERATION

if len > 0 then
| := len;
else
| := 32;
endif;
f :=1+ shf;
if f> 32 then
f = 32;
| := 32 - shf;
endif;
if m =0 then
result := (32-f dup 0) || reg(rb)[i-1..0] || (shf dup 0); {shift rb left by shf bits}
else
result := reg(ra)[31..f] || reg(rb)[I-1..0] || reg(ra) [shf-1..0]; {overlay field from rb on
top of ra}
endif;
reg(ra) := result; ;
COND := (result 3% 0); {condition is TRUE if result is non-zero}

. © Copyright WEITEK 1988



L |
Field Manipulation Instructions, continued
MERGE IMMEDIATE
{001 ra | ten | shf [1] imm5
8 3 5 5 5 1 5

FORMAT
ra := ra deposit imm5 [shf, len]
DESCRIPTION CONDITION
A right justified field of length specified by /en is taken = The condition generated is TRUE (1) if the result of
from the sign extended value contained in the imm5  the operation is non-ZERO and is FALSE (0) if the
field. The field is left shifted by shf bits. If the sum of result is ZERO.
shf and /en is greater than 32, the field is truncated.
The field is merged with the contents of register ra.
The result is placed in register ra.
OPERATION
if len > O then

| :=len;
else AN

I :=32; L
endif;
f := 1 + shf;
if f > 32 then

= 32;

| := 32 - shf;
endif;
temp := (28 dup imm5[4]) || imm5[3..0]; {sign-extend the immediate field to 32 bits}

result := reg(ra)[31..f] || temp[l-1..0] || reg(ra)[shf-1..0]; {shift and merge on top of ra}
reg(ra) := result;
COND := (result $ 0);

O

© Copyright WEITEK 1988

All rights reserved 20




XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Field Manipulation Instructions, continued

EXTRACT
01| ra | Jlen | shf [0o] b |
8 3 5 5 5 1 5
FORMAT

ra := extract rb [shf, len]

DESCRIPTION CONDITION

The contents of register rb is right-shifted by the num- The condition generated is TRUE (1) if the result of
ber of bits specified by shf, and a right-justified field of the operation is non-ZERO and is FALSE (0) if the
length specified by /en is extracted from it. If the sum  result is ZERO.

of shf and /en is greater than 32, the extracted field is

sign-extended. The result is the extracted field, which

is placed in register ra.

OPERATION

if len > 0 then

I :=len;
else
| = 32;
endif;
temp := (shf dup reg(rb)[31]) || reg(rb)[31..shf];  {shift rb right by shf bits}
result := (32-1 dup 0) || temp[i-1..0]; {zero all the bits outside the selected
field}
reg(ra) := result;
COND := (result5#0);

© Copyright WEITEK 1988
21 All rights reserved



Field Manipulation Instructions, continued

DYNAMIC EXTRACT/DEPOSIT/MERGE

100 ra | len [111[ext | rb
3 5 5 3 3 5
FORMAT
ext format meaning
0 ra := deposit rb [sar, len] dynamic deposit, fixed length
1 ra := deposit rb [sar, fir] dynamic deposit
2 ra := ra deposit rb [sar, len] dynamic merge, fixed length
3 ra := ra deposit rb [sar, fir] dynamic merge
4 ra := extract rb [sar, len] dynamic extract, fixed length
5 ra := extract rb [sar, fir] dynamic extract
DESCRIPTION instructions for details on the function of these opera-

These instructions perform Deposit, Deposit and
Merge, Extract, and Deposit Immediate and Merge
instructions with the shift amount determined by the
contents of the sar register and the field length con-
trolled either by the fIr register of the psr or by the /en
field in the instruction. See the Extract and Deposit

© Copyright WEITEK 1988

All rights reserved

22

tions.

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO, otherwise the condition
generated is FALSE (0).

O



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Field Manipulation Instructions, continued

MERGE HALFWORD HIGH

{o11| ra | imm16
8 3 5 16
FORMAT
ra := ra deposit imm16 [16, 16]
DESCRIPTION CONDITION

The 16-bit immediate value is merged into the most
significant 16 bits of register ra, and the result is placed
in register ra.

The condition generated is TRUE (1) if the result of
the operation is non-ZERO and is FALSE (0) if the
result is ZERO.

OPERATION

result = imm16[15..0] || reg(ra)[15..0]; {merge onto ra after shifting by 16 bits}
reg(ra) := result;

COND = (result = 0);

23

© Copyright WEITEK 1988
All rights reserved



Field Manipulation Instructions, continued

BITWISE MERGE

FORMAT

rc := (ra and not al) or (rb and al)

DESCRIPTION

This instruction performs a so called Bitwise Merge be-
tween the bits of the contents of register rb and register
ra, controlled by the contents of register a/. The result
is placed in register rc.

Note that Multiply and Divide also use the al register.
Therefore, a Bitwise Merge should not be executed
while a Multiply or Divide operation is in progress.

ra [ rc [ 1111 |01 b |
4 2

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO, otherwise the condition
generated is FALSE (0).

OPERATION

result := (reg(ra) and not al) or (reg(rb) and al);
reg(rc) := result;

COND := (result £ 0);

© Copyright WEITEK 1988

All riohte reserved

24

A
W/



Field Manipulation Instructions, continued

PERFECT EXCHANGE

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

ra | p

| 1111 [10]

rb

| 11 |
3

8 5 4 2

FORMAT

ra := p exchange rb

DESCRIPTION

This flexible bit manipulation command is used to swap
fields or reverse the bit order on 2, 4, 8, 16, or 32-bit
fields. One use of bit reversal is to calculate addresses
in Fast Fourier Transforms. The Perfect Exchange op-
eration is controlled by the 5-bit p field in the instruc-
tion.

This instruction performs a perfect exchange among
the bits of the contents of register rb. The result is
placed in register ra. Each bit, p(i], of the p field con-
trols the exchange of pair-wise adjacent fields of size
2¢ bits. For example, when p[0] is set, each even-odd
pair of bits is exchanged, and when p[4] is set, the
upper halfword is exchanged with the lower halfword.

5

This general capability provides several important spe-
cial cases. For example, setting p[4..0] to 11111
causes all bits in a word to be placed in reverse order
(radix-2 bit reverse), and setting p[4..0] to 11110
causes all pairs of bits to be reversed (radix-4 bit re-
verse). Setting p[4..0] to 11000 will reverse the order
of bytes in a word.

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO, otherwise the condition
generated is FALSE (0).

31 0
Original | first [second| third | fourth|

p=11000: Reverse Byte Order
|fourth | third [second first |

p=00111: Reverse bits within byte fields
[ 3211t broosz| biids | ds1uot]

p=11111: Reverse all bits in word

|A31u0t | biidt [broosz fenit |

p=10000: Reverse halfword order
| third |fourthr first |second|

p=01111: Reverse bits within halfwords

lbroosz| $2ait | d3ruot| biids ]

Figure 13. Examples of perfect exchange

25

© Copyright WEITEK 1988
All rights reserved



Field Manipulation Instructions, continued

OPERATION

t := reg(rb);
if p[4] then
t :=t[15..0] || t[31..16];
endif;
if p[3] then
fori:=0to 16 by 16 do
t[i+15..i} := t[i+7..1] || t[i+15..i+8];
enddo;
endif;
if p[2] then
fori := 0 to 24 by 8 do
tli+7..1) := t[i+3..i] || t[i+7..i+4];
enddo;
endif;
if p[1] then
" fori:=0to 28 by 4 do
t[i+3..i] := tli+1..i] || t[i+3..i+2];
enddo;
endif;
if p[0] then
fori:=0to 30 by 2 do
tli+1..i] = t[i] || tli+1];

enddo;
endif;
reg(ra) :=1t;
COND = (t # 0);

© Copyright WEITEK 1988
All rights reserved

26



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Address Generation Instructions

LOAD/STORE ADDRESS WITH SIGNED DISPLACEMENT

10| ra | imm16

8 3 5 16

FORMAT

adr :=ra + imm16

DESCRIPTION

The 16-bit immediate value is sign extended and added
to the unsigned base address in register ra. The result is
passed out the AD Bus and placed in the adr register.
This instruction does not affect the ¢ bit of the psr.

OPERATION

CONDITION

The condition generated is TRUE (1) if an unsigned
32-bit overflow is encountered, otherwise the condition
generated is FALSE (0).

result := reg(ra) + (17 dup imm16[15]) || imm16[14..0];

adr := result;
AD := result;

if imm16[15] = 0 then
COND :=usowf;
else
COND := not (usovf);
endif;

{add the sign-extended displacement}
{internal address register}
{external address bus}

27

© Copyright WEITEK 1988
All rights reserved



Address Generation Instructions, continued

LOAD/STORE ADDRESS OR ADD WITH INDEX/SIGNED DISPLACEMENT

ra | rc  [1] ext]ixs|rb/imms
5 5 1 3 2 5
FORMAT
instruction ext meaning
adr :=ra, rc :=ra + (rb << ixs) 000 load/store indexed, modify after
adr :=ra, rc :=ra + (immb5 <<ixs) 001 load/store signed displacement, modify after
adr :=rc :=ra + (rb << ixs) 010 load/store indexed, modify before
adr :=rc :=ra + (immb <<ixs) 011 load/store signed displacement, modify before
adr :=ra + (rb << ixs) 100 load/store indexed, no modify
adr := ra + (imm5 <<ixs) 101 load/store signed displacement, no modify
rc :=ra+ (rb << ixs) 110 add indexed
DESCRIPTION

Address generation instructions take a left-shifted (0-3
bits), signed value from an immediate field or register
and add it to a base register, optionally writing the re-
sult to another register. The address driven onto the
AD Bus may be the result of the addition or the con-
tents of the base register before the addition. This cor-
responds to pre-increment and post-increment index-
ing. Again, the shifting facility simplifies the generation
of halfword, word, and doubleword array addresses in
a byte-addressable environment.

{Post-modify:}

adr :=ra, rc :=ra + immb
adr:=ra, rc:=ra+rb
{Pre-modify:}

adr := (rc := ra + immb5)
adr := (rc :=ra + rb)

{No modify:}

adr :=ra + immb
adr :=ra+rb

© Copyright WEITEK 1988
All rights reserved

28

The contents of register rb (index) or a 5-bit signed
displacement is shifted left the number of bits specified
by ixs (a value of 0 causes no shift), and added to the
unsigned base address in register ra. If modification is
requested, the result is stored in register rc. The calcu-
lated address is the result of the add operation unless
modify after is requested, in which case it is the con-
tents of register ra. The calculated address is placed in
the adr register and driven on the AD Bus. These in-
structions do not affect the ¢ bit of the psr.

O

N



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Address Generation Instructions, continued

CONDITION

The condition generated is TRUE (1) if a two’s com-
plement overflow is encountered when shifting or an
unsigned 32-bit overflow is encountered when adding;

OPERATION

otherwise the condition generated is FALSE (0). For
the Add With Shift instruction (ext 6), the addition op-
eration tests for two’s complement addition overflow.

if ext[0] = O then

temp := reg(rb);
else

temp := (28 dup imm5[4]) || imm5([3..0];
endif;
result := reg(ra) + (temp[31-ixs..0] || (ixs dup 0));
case ext[2..1] of

{sign-extend the immediate field}

{shift the displacement by ixs bits and add}

{do the operation}

00b: adr := AD := reg(ra); reg(rc) := result;
01b: adr := AD := reg(rc) := result;
10b: adr := AD := result;
11b: reg(rc) := result;
endcase;
if ext [2..0] = 110 then
COND := tcovf;
else
COND := (reg(rb)[31..32-ixs] 5% (ixs dup reg(rb) [31-ixs])) or usovf;
endif;

29

© Copyright WEITEK 1988
All rights reserved



Load/Store and Alignment Instructions

Data transfers to and from memory take two opera-
tions: address generation and data transfer.

To load data, the RIP first executes a Load/Store Ad-
dress instruction, which calculates an address and
drives it onto the AD Bus. The RIP executes a Load
Data instruction during a subsequent cycle, which takes
the contents of the D Bus and puts it into a register.

Another instruction can be performed at the same time
as the Load Data instruction, since Load Data uses
only the RCS field of the instruction word. For in-
stance, you can put an address generation instruction

© Copyright WEITEK 1988
All rights reserved

30

in the field, reducing the time for consecutive loads to
one cycle per word.

Storing data is similar. Addresses are again generated
with a Load/Store Address command, and data is
stored with the Store Data command. The Store Data
command takes up the RCS field, and the instruction
in the RIP field generates the data to be stored. For
instance, if the instruction was rc := ra+rb, the sum of
ra+rb would be stored in rc and stored into memory.

The Byte Align and Store command can be used to
store bytes, halfwords, and words. Because this is a
separate instruction, it requires an extra cycle.

AR

L



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Load/Store and Alignment Instructions, continued

LOAD HALFWORD IMMEDIATE

{010 ra | imm16 |
8 3 5 16

FORMAT
ra := imm1i6
DESCRIPTION CONDITION

The 16-bit immediate value is sign-extended and The condition generated is TRUE (1) if the result of
placed into register ra. the operation is non-ZERO and is FALSE (0) if the
result is ZERO.

OPERATION

result := (17 dup imm16[15]) || imm16[14..0]; {sign-extend to 32 bits}
reg(ra) := result;

COND := (result 7 0);

© Copyright WEITEK 1988
31 All rights reserved



Load/Store and Alignment Instructions, continued

LOAD DATA

[110] rd

3 5

FORMAT

rd := memf{adr]

DESCRIPTION

This instruction specifies that data is to be loaded from
the D Bus into register rd in the register file. Because
this instruction uses the RCS field of the instruction
word, it can be performed simultaneously with other
RIP operations. The loaded data is not available for
use until the next instruction. Care must be taken to
avoid writing of the data into the same register as speci-
fied by the operation in the remainder of the instruc-
tion word. If the other RIP instruction specifies that

OPERATION
reg(rd) := D;

PROGRAMMING EXAMPLES

register rd is to be modified, then the contents of rd
becomes undefined at the end of this instruction.

CONDITION

This instruction does not generate any condition. How-
ever, a condition may be generated by any instruction
that is combined with this instruction; the condition so
generated will not be affected by this instruction.

adr := ra+imm; :

rd := memladr] | rc :=rd op rb;

adr := ra+imm;

rd := memladr] | <other instruction>;
rc :=rd op rb;

adr :=ra + imm;

rd := memladr] | rd := rc op rb;

{any RIP address instruction}
{here the old value of rd is used in the calculation}

{here the new, loaded value of rd is used in the calculation}

{value of rd becomes undefined, not allowed}

© Copyright WEITEK 1988
All rights reserved

32

A

k/’

p
)

(



XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Load/Store and Alignment Instructions, continued

STORE DATA

| 00001001

8

FORMAT

mem/[adr] := result;

{RIP operation}

DESCRIPTION

This instruction specifies that the result of an RIP op-
eration is to be stored to the previously addressed
memory location. The Store Data instruction is speci-
fied in the uppermost 8 bits of the instruction. The
lower 24 bits are used to specify any RIP operation that
produces a result.

The Store Data instruction places the result of the cur-
rent RIP operation onto the D Bus, and asserts all four
WREN- bits.

OPERATION
D := result;

PROGRAMMING EXAMPLES

CONDITION

The Store Data does not generate any condition. How-
ever, a condition may be generated by the RIP opera-
tion that is combined with this instruction; the condi-
tion thus generated will not be affected by this
instruction.

ra+imm;
rc :=ra op rb;

adr :
mem/[adr]:

{any RIP address instruction}
{write result to rc and memory}

33

© Copyright WEITEK 1988
All rights reserved



Load/Store and Alignment Instructions, continued

BYTE ALIGN FOR LOAD DATA

{111 ] ra [x[0]s]siz[ 1111 Joo[ o |
8 3 5 111 2 4 2 5
FORMAT
ra := rb align [unsigned siz]
ra := rb align [signed siz]
siz Size of operand
00 byte
01 halfword
10 tri-byte
11 word
DESCRIPTION

This instruction extracts a byte, halfword, tri-byte, or a
word from a previously loaded word in the rb register.
The instruction uses the byte address in the adr register
together with the two-bit siz field from the instruction
to extract the correct byte(s). The extracted value is
zero-extended or sign-extended to a full 32-bit value.
Zero- or sign-extension is controlled by the s bit in the
instruction. The resulting 32-bit value is stored in the
destination register ra.

The typical sequence of instructions to load a byte re-
quires two instructions and three cycles. (The extra cy-

© Copyright WEITEK 1988
All rights reserved

34

cle is used to load the word containing the desired
byte. This does not require the ALU and it could per-
form any other operation on this cycle.)

This instruction is defined to be register-to-register
only; condition and AD Bus outputs are undefined.

CONDITION

This instruction does not generate a condition output.

AN

\/

N

. )
~ 7



C

Load/Store and Alignment Instructions, continued

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

OPERATION
a = adr[1..0] « 8;
| = (siz + adr[1..0]) « 8 + 7;
size =siz«8+7;
case s of
Ob: res  := (31-size dup 0) || reg(rb)[l..a];
1b: res  := (31-size dup reg(rb)[i]} || reg(rb)[l..a];
endcase;
reg(ra) = res;
COND := undefined; {NOTE: siz + adr[1..0] < 3}
result := undefined;
31 SIZ = 00 (byte)
RB I | ADR = 10
| 0
RA | sign extend | signed |
31 0

Figure 14. Byte align for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>