
(:

(:'

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

The WEITEK XL-8237 is a fully­
integrated CMOS 32-bit raster image
processor. It is used with the
WEITEK XL-8236 22-bit raster code
sequencer to make the HyperScript­
Processor, a high-perfonnance graph­
ics CPU capable of driving raster
printers at up to 60 pages per minute.
WEITEK's single-precision fioating­
point unit may also be used to produce
a tightly-coupled raster image printing
system.

Contents

Features

Description

Architecture 2

Block Diagram 4

Signal Description 5

Memory Addressing 6

Registers 7

Instruction Set 9

Memory Operations 51

Instruction Neutralization 53

NOP 53

Overflow Detection 53

Development Tools 54

Design Requirements 55

Specifications 56

Recommended Operation
Conditions 56

DC Specifications 56

AC Timing Description 57

AC Specifications 58

Timing Diagrams 59

I/O Characteristics 61

Pin Configuration 62

Physical Dimensions 63

Ordering Information 64

Revision Summary 64

Documentation Request Form 65

Sales Offices back cover

The masters for this document were printed on an
XL-B200 development system

XL-8237 Raster Image Processor Data Sheet
October, 1988

Copyright @WEITEK Corporation 1988
All rights reserved

WEITEK Corporation
1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400

WEITEK is a trademark of WEITEK Corporation

PostScript is a registered trademark of Adobe Systems, Incorporated
BIT STREAM and FontWare are trademarks of BITSTREAM Corporation
UNIX is a trademark of AT&T Bell Laboratories
XENIX and MS-DOS are trademarks of Microsoft Corporation
NIMBUS is a registered trademark of URW Corporation

WEITEK reserves the right to make changes to these specifications
at any time

Printed in the United States of America
90 89 88 6 5 4 3 2 1

C~

Features

32-BIT, SINGLE-CHIP GRAPHICS PROCESSOR

32-bit integer ALU
Four-port 36 X 32 register file
Parallel mUltiply/divide unit for Bezier computation
32-bit shift/field merge unit for BitBlt
Single-cycle execution

HIGH PERFORMANCE

10 to 60 pages per minute running WEITEK's
HyperScript interpreter
Peak BitBlt rate of over 65 million pixels per second
Bezier computations at 750 thousand endpoints per
second

LOW SYSTEM COST

145-pin plastic PGA (pin grid array) package
Low power CMOS with TTL-compatible I/O

Description

The XL-8237 is a RISC-architecture 32-bit raster im­
age processor (RIP). It is used with the XL-8236 32-bit
raster code sequencer (RCS) to form the XL-8200
HyperScript-Processor, a high-performance graphics
processor that can run WEITEK's HyperScript inter­
preter and other page description languages. These
chips also interface directly with WEITEK's 32-bit
graphics floating point unit, the XL-3232.

36-element
Register -+-.

File

32

XL-8237

Code
Bus

Data
Address

Bus

Figure 1. Simplified block diagrams

NEUT-

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

POWERFUL INSTRUCTION SET

Add, subtract, multiply, and divide
Complete set of logical operations
Shifts up to 31 bits in one cycle
Priority encode
Field extract/deposit/merge instructions
Perfect exchange (including bit reverse)

POWERFUL DEVELOPMENT TOOLS

PostScript-compatible interpreter
C compiler
Graphics development system

INTERFACES WITH OTHER XL-8200 PRODUCTS

Interfaces with the XL-8236 raster control sequencer
Interfaces with XL-8232 graphics floating point unit

The XL-8237 was designed specifically as a laser beam
printer controller running a page description language.
WEITEK supplies the HyperScript interpreter, a Post­
Script-compatible interpreter for its HyperScript-Proc­
essors. The architecture supports speeds from 10 to 60
pages per minute; thus it is a powerful and cost effec­
tive solution for a wide range of speeds, resolutions,
colors, and page description languages.

Code Address Bus J Code
I Memory

Code Bus

321' 32 ... 1-' ~
XL-8236 XL-8237 XL-3232
Raster Raster Floating
Code Image Point Unit

Sequencer Processor (optional)

122 I 32 t Data Bus t I

, ,32 Data Address Bus

4 Data
Memory

WEITEK 32-bit Raster Image Processor Family

1
© Copyright WEITEK 1988

All rights reserved

Description, continued

SPEED

6000 sans serif 10-point characters per second font
placement rate

750 sans serif 10-point characters per second font-gen­
eration rate using URW's NIMBUS font-scaling from

Architecture

ALU

The heart of the XL-8237 RIP is the 32-bit ALU,
which contains the hardware for arithmetic and logical
functions. The ALU performs 32-bit addition and sub­
traction, sixteen different logical functions, and ad­
dress generation. All ALU operations are performed in
a single cycle.

BITBLT/SHIFTER/FIELD MERGE UNIT

The shift/merge unit provides a rich set of instructions
for key raster image processing applications such as bit
block transfer (BitBlt) and character placement.

The shifter unit provides 0-31 bits of shifting in either
direction in the deposit, extract, and merge opera­
tions. This allows the RIP to extract bit fields of any
length, operate on them, and replace them in the origi­
nal word. Bit fields can also be combined through the
bitwise merge instruction.

The perfect exchange function is used to rearrange
the bits within a single word in a variety of ways. It can

© Copyright WEITEK 1988
All rights reserved 2

Bezier outlines

75 sans-serif 10-point characters per second font-gen­
eration rate using BITSTREAM FontWare font-scaling
from Bezier outlines

be used to swap fields of 2, 4, 8, or 16 bits, reverse the
bit order within these fields, or both.

The priority encode function counts the number of
zero bits before the first one bit is encountered.

MUL TIPL Y /DIVIDE UNIT

The multiply/divide unit make the RIP very effective in
mathematically-intensive operations such as character
generation and scaling from Bezier outlines.

Hardware multiply and divide functions give a 64-bit
product of two 32-bit operands in 8 cycles, and a 32-bit
quotient and 32-bit remainder from a mixed 64/32 bit
division in 20 cycles. The multiply/divide unit operates
independently of the rest of the ALU, so other opera­
tions can be performed in parallel with multiplication
and division. The integer mUltiply/divide unit can emu­
late floating point operations in software at a 25-cycle
rate (0.3 MFLOP at 120 ns).

o

(
Architecture, continued

REGISTER FILE

The four-port register file contains 36 registers, each 32
bits wide. This large register file allows frequently-used
variables to be kept on-chip, reducing the number of
memory accesses and increasing performance.

Registers 28-31 are duplicated in a second bank to give
four temporary registers which can be used during in­
terrupt handling.

BUS STRUCTURE

There are three independent 32-bit buses: Code, Data,
and Data Address (C, D, and AD buses, respectively).

Independent code and data buses allow data-intensive
operations such as BitBlt and character placement to
run continuously, without being interrupted by code
fetches.

The Code Bus provides the RIP with its instruction
stream. When used with the XL-8236 raster code se­
quencer (RCS) , both chips share the same 32-bit in­
struction stream. Many instructions also use the code
word to provide immediate data fields.

The Data Bus provides bidirectional access to external
memory, at the rate of one load per cycle or one store
every two cycles. The Data Bus has individual write-se­
lect lines (WREN lines) for each byte in the word.

The Data Address bus is used to provide memory ad­
dresses and to transfer data to and from the RCS and
I/O devices. A word can be transferred over the AD
Bus every cycle.

3

MEMORY ACCESS

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Loading and storing from memory is done with the ad­
dress generation instructions and Load and Store Data
instructions. The RIP uses a delayed load/delayed store
scheme which overlaps memory access with other RIP
operations in a straightforward way.

Memory access includes load and store instructions
with features such as indexed addressing and pre- and
post-increment addressing. The basic memory word is
32 bits wide, but bytes and halfwords can be accessed
individually. Load and store operations take two in­
structions, but are pipelined to allow other operations
to occur in parallel with memory access.

INSTRUCTION FORMAT

The RIP's instruction set is based on register-to-register
operations specified in a 32-bit instruction word. The
basic instruction format has three 5-bit register select
fields, opcode and extended opcode fields, and a con­
dition code select field. Thus a three-address instruc­
tion of the form rc := ra + rb can be specified in a
single word.

In many instructions, one of the operands can be re­
placed by an immediate value, allowing operations on
constants to be specified in a single instruction without
first loading the constant into a register.

Most instructions reserve the most-significant eight bits
of the instruction word for an RCS opcode. When the
RIP is used with the RCS, the two chips share the same
32-bit instruction stream.

© Copyright WEITEK 1988
All rights reserved

Block Diagram

WREN-3 .. 0 OED- 0:31 .. 0 CLK NEUT-

WREN3 .. 0

Store
Instruction

c .flr.sar

WC WD

36x32
Register File
RA RB

ALU "A" Bus

M~~~ __ ~ ____________ ~ __________ ~
'------I U

X

XFER
Data

IN

Data
Address
or XFER

Data
OUT

Figure 2. XL-8237 block diagram

© Copyright WEITEK 1988
A /I riohH rp.~prvpd

DBUS (Internal Data Bus)

Address Generation or
Housekeeping Instructions

COND

4

(Other
latches and
registers are
also clocked
by CLK+ if
not otherwise
marked)

Immediate Field

MD CLK

STALL- C:31 .. 0

Code
Bus

Instruction
Decode

&
Control

WREN- 3 .. 0

Misc.
Control

1\
\J

(

Signal Description

C+

The C31 .. 0 Code Bus contains a 32-bit instruction
word. Because it contains a built-in pipeline register, it
is not necessary to use an external pipeline register be­
tween code memory and the XL-8237.

D+

The 031 .. 0 Data Bus is used as a bidirectional input/out­
put bus. Data flow is in the form of memory-to-register
and register-to-memory transfers. Tri-stating of the 0
Bus is controlled by the currently executing instruction
and the OED- signal.

AD+

The AD31 .. 0 Data Address Bus provides addresses for
data memory operations. It is driven with either the
contents of the address register (.adr) or the result of
an address computation instruction. Tri-stating of the
AD Bus is controlled by the currently executing instruc­
tion and the OEA- signal. It can also be used as a bidi­
rectional data bus for transfers from the RCS or other
hardware.

COND+

The COND output is a single-bit condition code signal
that indicates one of several possible one-bit status val­
ues derived from the result of the current instruction.
See Condition Code Generation section on page 13.

CLK

The clock input, ClK, is a single-phase TTL-level
clock signal. One instruction is executed per clock cy­
cle. The ClK signal selects whether the current clock
cycle is to be "phase one" (ClK high) or "phase two"
(ClK low). Many of the external signals are synchro­
nized to either the rising or falling edge of this signal.

MDCLK

The Multiply/Divide clock input, MDClK, is a single­
phase TTL-level clock signal. The internal multiply/di­
vide registers are synchronized to the positive-going
edge of this clock. This signal must be synchronized to
the rising and falling edges of the ClK signal, and runs
at twice the frequency of ClK.

5

NEUT-

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

The NEUT - input causes the currently executing in­
struction to be neutralized or canceled; that is, any in­
ternal effects that the instruction was to have (such as
modification of register contents or status bits) are can­
celed.

STALL-

The STAll- input cancels the next instruction.

WREN-

The WREN-3 .. 0 outputs indicate which bytes of the
data word are to be stored to the data memory. This
control information is driven when a Store Data in­
struction is executed by the RIP, otherwise these sig­
nals are high.

OEA-, OED-

OEA- and OED- are asynchronous output enable sig­
nals for the AD and 0 buses respectively. The buses
drive when their respective output enables are low, and
float when output enables are high.

If the OEA- signal is de-asserted, then the AD Bus is
tri-stated regardless of the OEA signal or the executing
instruction. If the OEA- signal is asserted, then the AD
Bus is driven under control of the OEA+ signal or the
currently executing instruction. Note that OEA- is not
simply the complement of OEA+.

The OED- signal functions similarly. If the OED- signal
is de-asserted, then the 0 Bus is tri-stated.

VCC,GND

The VCC and GND pins provide a supply voltage of
+5.0 volts, and system ground of 0 volts, respectively.
All VCC and GND pins must be connected.

TIE HIGH, TIE LOW

Signals marked "Tie High" should be tied to VCC. Sig­
nals marked "Tie Low" should be tied to GND. Future
versions of the XL-8237 may redefine these as signal
pins, so it's advisable to tie them through traces rather
than directly to power and ground planes.

© Copyright WEITEK 1988
All rights reserved

Memory Addressing

The XL-8237 provides address generation functions,
including addressing of bytes, halfwords, or words in a
word-wide memory. These functions determine byte
and halfword positioning within a word from the least
significant two bits of the memory address. This is illus­
trated in figure 3.

byte:

halfword:

word:

31

Figure 3. Memory addressing

© Copyright WEITEK 1988
All rights reserved

11 10

6

Halfword addresses ending with "11" and word ad­
dresses ending with "0 1 ," "10," or "11" are not de­
fined for Load and Store operations-that is, data to be
loaded cannot straddle a word boundary. Data that
straddles a word boundary can be obtained using two
loads and a merge.

0
01 00 I

+
00
I

00

0, " "-,,. -

1",
\
" !

~J

(

c

Registers

REGISTER FILE

The register file contains 36 registers, each 32 bits
wide, which are accessed through four independently
addressable ports.

The 36 registers are numbered 0-31 and 28'-31'. (See
figure 4.) Only registers 0-31 can be directly accessed
through the five-bit register numbers contained in an
instruction. A special instruction, swap (one of the
housekeeping instructions), exchanges the contents of
registers 28-31 and 28'-31' in a single cycle. Normally
the four extra registers are used only by interrupt rou­
tines for temporary working storage.

o 31 o

4

8

12

16

20

24

28
29
30
31

Figure 4. Data registers

ADDRESS HOLDING REGISTER

I
28'
29'
30'
31'

The XL-8237 retains the last address generated by any
of the address generation instructions in the .adr regis­
ter. The .adr register serves two purposes. It is used by
the interrupt mechanism to aid in saving and restoring
the state of the system. It is used by the byte alignment

7

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

instructions to indicate the beginning byte offset. The
format is given in figure 6.

31 o
.adr
32

Figure 5. Address register

PRODUCT REGISTERS

There are two 32-bit product registers: .am and .al.
They are used by the multiply and divide hardware and
the bitwise merge instruction. During the operation of
the multiply and divide hardware the contents of these
registers are undefined. This implies that the bitwise
merge instruction cannot be used during a multiply or
divide operation. Several instructions in the house­
keeping instruction set explicitly manipulate the con­
tents of these registers. The format is given in figure 6.

31

I

Figure 6.

0

am I
32

al
32

Product registers

© Copyright WEITEK 1988
A 11 riohl.~ rpsprvpd

Registers, continued

PROCESSOR STATUS REGISTER

The RIP retains some control information in the proc­
essor status register, .psr. The format is given in fig­
ures 7 and 8.

31

reserved

20

Figure 7. Processor status register

Symbol Meaning

sar shift amount register
fir field length register
c carry bit

fir sar

1 1 1 5 5

z register bank select (for registers 28-31 or 28' -31')
be reserved for future extension. Must be set to zero
reserved reserved for future extension. Must be set to zero.

Figure 8. Processor status register bit fields

© Copyright WEITEK 1988
All rights reserved 8

o

o

(

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Instruction Set

TERMS AND SYMBOLS

The instructions are listed on page 11, then described
in detail on the following pages. Each description in-

eludes a pseudo-code definition of the instruction. The
following symbols are used:

II
I
a dup b

reg (ra)

COND

{ }
<: ixs

tcovf

usovf

unadd

unsub

result

[31 .. 0]

a op b

Concatenate fields. abc II def gives abcdef.

Indicates that operations separated by this symbol occur in parallel.

Duplicate b a times. 3 dup a gives 000.

Register number ra

Condition Code

Begin and end comment

Shift left by ixs bits

Two's complement overflow

Unsigned overflow

Unsigned add

Unsigned subtract

The result of any internal operation that is available on the Internal DBUS (see Simplified
Block Diagram, figure 2). Typically, result will be driven out on the AD Bus but can also be
driven out on the D Bus.

Specifies the bit field from bits 31 to bit 0, inclusive. For example, reg (ra) [3 .. 0] gives
the lower four bits of register ra.

Perform an operation on operands a and b

Q
© Copyright WEITEK J 988

A 11 .. : ... £.~ A,I

Instruction Format

A 32-bit instruction word is used to control the opera­
tion of the XL-8237. This instruction word is designed
to be directly shared by the XL-8236 ReS. Therefore,
the two parts should be considered together.

24 bits, is normally used to control the internal opera­
tions of the RIP. However, this second field can be
used by certain, so-called "long" ReS operations and
by inter-chip transfer instructions.

Normally the instruction word is divided into two sec­
tions. The first, the most significant 8 bits, is used to
control I/O operation of the RIP as well as perform
many ReS operations. The second, the least significant

The following table gives the abbreviations used for bit
fields. The instruction formats are given in figure 10 on
the next page.

Field Meaning

RCS RCS control field
ra register select

rb register select
rc register select

rd register select
shf controls amount of shift in Extract/Deposit/Merge

len controls field length in Extract/Deposit/Merge
p controls Perfect Exchange

imm16 16-bit signed immediate data field
imm11 11-bit signed immediate data field

imm10 10-bit signed immediate data field

immS S-bit signed immediate data field

cn selects condition to be generated
e,ext,m operation code extensions
ixs shift specification

s specifies signed or unsigned
siz size of data item

processor operation any 24-bit RIP instruction

x Reserved for future definition *

* See section Compatibility With Future Enhancements

Figure 9. Instruction fields

© Copyright WEITEK 1988
All rights reserved 10

o

Instruction Format, continued

Address Generation Instructions

shf

shf

shf

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

1m! rb

111 ImmS

101 rb

19

20

21

1111extl rb 22

23 mmedlate16

1111 I 01 I

1111 110 I

rb

rb

24

2S

~?;~~~t06fs~~~~~:n~ith -[i:-,::::::""'=m'j:""":':::'-']''''''::P'''''':$''''':=m:,'''''rm''''''j::=::'''''Ij:'-'~ -1-1 0--..--r-a--r-----Im-m-e-d-'a-te-1-6 ----, 27

Load/Store Address with ~}ttj{:::j:){B¢§t:::l:({:):] 111
Index/Signed Displacement

ra rc 111 ext I Ixs I rblimmS I 28

load/Store and Alignment Instructions
Load Halfword Immediate -I::::"""mt""'~t::-:m::)""":'j$""'j~""':s:::"""))::""'.'j:::)-:::}.,.".)::::::,....:} -0-1-0 ""T1--r-a--r-----'m-m-e-d-'a-te-1-6----, 31

Load Data to RIP I 110 I rd r:):):))))::::):::::::):::I):I::::::)m::::):):):::f):):m:):):)::::::RIgmf,ij'i!i11:9:j:!.m:})::I::!:}j:::):t):)t):jl:j:}j:ttj:fm:j:j{:::1 32

Store Data from RIP I 00001001 I:Irmj:):I}):}):::::)=mI::Bjftp:ij~ri~!WVltii.W!fj!~)~!jf.~~fIjlmmI:I'{I:)t):I:1 33

Byte Align for Load Data 1::::::fj@j:::j:):I)R9$,:::,:jij):t:'::j(] 111 1 ra 1 x 1 01 s 1 slz 1 1111 1 00 1 rb 1 34

Byte Align and Store Data i:)::I)mIIIJ!~~::t::'I:::::::'::::] 111 I ra Ie 111 s I slz I 1111 I 00 I rb I 36

Miscellaneous
Multiply/Divide/Priority

Encode/Housekeeping ra ext 1111 111 1 rbllmmS 1 38

Coprocessor/Sequencer Operations
Coprocessor Operation ""I'm";':t~""iI""t:::""m~""J9""::~""'J:j:"".mm"":::r""'mm:T"] -1--1-1 '---x---r--x---rl-orl -x-TI-x-'-I--x-' 47

Store Data from Coprocessor 101 1 rd I::m::::'j:):j:jjj:':tf:::j:jjtj::j'j:::j:::j:::::j:':j::j'jjtt:i;.irt§p"tiw.r.'j:"IIjtm);'::::::j{:):t:jfj::;;::::r::r::rt'N 48

Load Data to Coprocessor 111 I rd III't:':)j:::):),:::j:):j:)::):j::::)::'::rI:::::"::':j,,):,tJf:i,!ft)9R!t!'9:~f::::::rm:::::'j't:::Imt:r:jr:j:t:::,:{jijj:jj):::::jj 49

Transfer to/from RIP 00000000 I ext I ra I x I x I so

Long RCS instruction 00000001 1{{:ttftj:fj:j:tjr::r't::::::::jR~I:j::mj:){l}t::::::::::::::::t:IImm:::)=m:m)::'}m:j:f::::'::rmfffj:::::t:::'fJ

Long RCS instruction 00000010 I{jij::t}iff:::rm::):):::t}::)::::::::ft~¥t{{::lr:):tff::::):I)m::I:m::IIIjrr::::::::::r:j:}rr:j:):::):::':::):j:)::m::::1

Long RCS instruction 00000011 1:):)'):)mIIj:::)I:Imm::):):):):):tm:::::)ftSl:)lllt:::::}It}Ij:::)@t::::::Itmm):::):)m:::tmIj:::t:,)m::':::):Ii')')I:):I

Long RCS instruction 0001 b:'IIf:::'):::)::'::If;::::f):::::::::'::r::::{'f}j:)::ftSl:::':It}I::t}}):::::::f::1:ft::::::::timm':{:tt:::::::II'):::):):):):f):::):)I:::!

Figure 10. XL-8237 Instruction formats

11

Condition Code Generation

All instructions that could produce a meaningful condi­
tion code, generate one automatically. These are sin­
gle-cycle instructions. Specific condition codes gener­
ated by each single-cycle instruction are summarized in
the table below. The condition code generated by an

instruction is available on the COND pin at the end of
the cycle during which the instruction is executed. In­
structions not listed in the table do not generate any
condition. See descriptions of individual instructions
for details.

Condition Format Function

cond ra := ra deposit rb [shf, len] deposit

cond ra : = ra extract rb [shf , len] extract

cond ra := ra deposit immS[shf,len] deposit immS

cond ra := imm16 load imm16

cond ra := ra deposit imm16 [16, 16] merge imm16

cond1 c,rc := rb/immS ± ra+c arithmetic

cond ra : = ra deposit rb [. sar, . fir] dynamic deposit

cond ra := extract rb[.sar,.flr] dynamic extract

cond2 ra := ra op rb logical

cond3 rc := ra+imm10 add imm10

cond4 .adr := ra+imm16 load/store address generation

cond3 rc := ra+(rb«ixs) add with index

cond4 ra, .adr := ra+(rblimmS«ixs) load/store indexed address generation

cond mem[.adr]:= rb align[signed siz] byte align for store

cond rc

cond ra

cond ra
cond ra

Conditions:

:= (ra and not al) or (rb and al) bitwise merge

:= p exchange rb perfect exchange

:= priority encode rb priority encode
:= amHb+al[31] retrieve multiply/divide result

non-zero result cond
cond1
cond2
cond3
cond4

>0, > 0, =0, overflow (unsigned or two's complement)
non-zero, or all bytes non-zero
two's complement overflow
unsigned overflow, or two's complement shift overflow

Figure 11. Generated condition codes

© Copyright WEITEK 1988
All rights reserved 12

o

,"'-\
\~

o

(

Arithmetic Instructions

XL-8237
32-81T RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

ra rc ext I cn I rb/imm51
8 3 5 5 4 2 5

FORMAT

instruction ext

c, rc := unsigned (ra + rb) 0000
c,rc := unsigned(rb - ra) 0001
c,rc := unsigned(ra + rb + c) 0010
c,rc := unsigned(rb - ra - 1 + c) 0011

rc := ra + imm5 0100
rc := imm5 - ra 0101
rc := ra + rb 0110
rc := rb - ra 0111

c,rc := ra + rb 1000
c,rc := rb - ra 1001
c, rc : = ra + rb + c 1010
c,rc := rb - ra - 1 + c 1011
c,rc := ra + imm5 1100
c,rc := imm5 - ra 1101

DESCRIPTION

Arithmetic instructions include signed and unsigned
add (with and without carry), and signed and unsigned
subtract (with and without borrow).

Depending on the value of the ext field, the contents
of register ra is either added or subtracted from either
the contents of register rb, or a sign-extended immedi­
ate value. Four forms of this instruction also add in the
e bit from the . psr, and ten forms update the e bit.
The result is placed in register re.

cn condition signal generated

meaning

unsigned add
unsigned subtract
unsigned add with carry
unsigned subtract with borrow
two's complement add immediate
two's complement subtract immediate
two's complement add
two's complement subtract
two's complement add
two's complement subtract
two's complement add with carry
two's complement subtract with borrow
two's complement add immediate
two's complement subtract immediate

CONDITION

The condition generated depends on the value of the
ext and en fields of the instruction. For most opera­
tions, the condition generated assumes that the result is
a two's complement value; however, for the unsigned
add and subtract operations, the condition generated
assumes that the result is an unsigned quantity. The
unsigned and two's complement equal-to conditions
and less-than conditions remain arithmetically valid for
all valid input values, even if unsigned or two's comple­
ment overflow occurs as a result of the addition or sub­
traction operation.

00 two's complement/unsigned not equal to zero

01

10

11

two's complement/unsigned greater than or equal to zero

two's complement/unsigned overflow

two's complement/unsigned greater than zero

13
© Copyright WEITEK 1988

All riflhts reserved

Arithmetic Instructions, continued

OPERATION

temp := 28 dup imm[4] " imm[3 .. 0];
case ext of

OOOOb: c II
00Q1b: c II
0010b: c II
0011b: c II
0100b:
0101 b:
0110b:
0111 b:
1000b: c II
1001b: c II
1010b: c II
1011b:cll
1100b: c II
1101 b: c II

result := reg(ra) + reg(rb);
result := (not reg(ra» + reg(rb) + 1;
result := reg(ra) + reg(rb) + c;
result := (not reg (ra» + reg (rb) + c;
result := reg(ra) + temp;
result := (not reg (ra» + temp + 1;
result := reg(ra) + reg(rb);
result := (not reg(ra» + reg(rb) + 1;
result := reg(ra) + reg(rb);
result := (not reg(ra» + reg(rb) + 1;
result := reg (ra) + reg (rb) + c;
result := (not reg (ra» + reg (rb) + c;
result := reg (ra) + temp;
result := (not reg(ra» + temp + 1;

endcase;
reg(rc) := result;
if ext [3 .. 2] :F OOb then

tcovf:= c32 xor c31
case c of

OOb: cond := (result :F 0) or tcovf; *
01 b: cond := result [31] xnor tcovf;
10b: cond := tcovf;
11 b: cond := (result :F 0 or tcovf) and (result[31] xnor tcovf);

endcase;
else

usovf := unsub xor c32;
case c of

OOb: cond := result :F 0 or usovf;
01 b: cond := unadd or c32;
10b: cond := usovf;
11 b: cond := (result :F 0 or usovf) and (unadd or c32);

endcase;
endif;
COND := cond;

• See Overflow Detection.

© Copyright WEITEK 1988
AI' _:_1...4. ro Arl 14

o

c·

Arithmetic Instructions, continued

ADD SIGNED IMMEDIATE

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

ra rc imm10

8 3 5 5

FORMAT

rc := ra + imm10

DESCRIPTION

The 10-bit signed immediate value is added to the con­
tents of register ra. The result is placed in register re.
This instruction does not affect the c bit of the . psr.

OPERATION

10

The condition generated is TRUE (1) if a signed 32-bit
overflow is encountered, otherwise the condition gen­
erated is FALSE (0).

result
reg (rc)
COND

:= reg(ra) + (23 dup imm10[9]) II imm10[8 .. 0];
:= result;

{sign-extend and add}

:= tcovf;

© Copyri8.ht WEITE~ J 988

Logical Instructions

LOGICAL INSTRUCTIONS

ra rc 101 ext Icl
8 3 5 5 1 4

FORMAT

instruction ext

rc := zeros 1111

rc := ra and rb 1110

rc := ra and (not rb) 1101

rc := ra 1100

rc := (not ra) and rb 1011

rc := rb 1010

rc := ra xor rb 1001

rc := ra or rb 1000

rc := (not ra) and (not rb) 0111

rc := ra xnor rb 0110

rc := not rb 0101

rc := ra or (not rb) 0100

rc := not ra 0011

rc := (not ra) or rb 0010

rc := (not ra) or (not rb) 0001

rc := ones 0000

DESCRIPTION

The contents of register ra and the contents of register
rb are combined in a logical or bitwise function. The
function performed depends on the value of the ext
field. The result is placed in register rc.

© Copyright WEITEK 1988
All rirzhts reserved 16

rb
5

meaning

clear all bits

logical and

logical and-not

pass

logical not-and

pass

logical xor

logical or

logical nor

logical xnor

logical not

logical or-not

logical not

logical not-or

logical nand

set all bits

CONDITION

The condition generated depends on the value of the
the c field. The condition "all bytes non-zero" permits
quick scanning through byte data, using word opera­
tions.

o

(

Logical Instructions, continued

condition c

~O 0

all bytes of rc ~ 0 1

OPERATION

case ext of
1111 b: result := 32 dup 0;
1110b: result := reg (ra) and reg (rb);
ll0lb: result:= reg(ra) and (not reg(rb));
1100b: result := reg (ra);
1011b: result:= (not reg(ra)) and reg(rb);
1010b: result := reg (rb) ;
1001b: result := reg(ra) xor reg(rb);
1000b: result := reg (ra) or reg (rb);

condition signal generated

not equal to zero

all bytes not equal to zero

0111b: result := (not reg(ra)) and (not reg(rb));
0110b: result := reg(ra) xnor reg (rb) ;
0101 b: result := not reg (rb) ;
0100b: result := reg(ra) or (not reg(rb));
0011 b: result := not reg (ra);
0010b: result := (not reg(ra)) or reg(rb);
0001 b: result := (not reg (ra)) or (not reg (rb));
OOOOb: result := 32 dup 1;

endcase;
case c of

Ob: cond := (result ~ 0);

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

lb: cond := not«result[3l .. 24]=0) or (result[23 .. 16]=0) or (result[15 .. 8]=0) or (result[7 .. 0]=0));
endcase;
reg (rc) := result;
COND := cond;

Field Manipulation Instructions

The Extract, Deposit, and Merge instructions are used
to perform computations on portions of a word. Typi­
cally, the desired bit field is converted into a full word,
using an Extract instruction, operated on and con­
verted back into a bit field by the Deposit or Merge
instructions. These instructions can also be used to per­
form simple left and right shifts as well as rotations.
Figure 12 shows the operation of these instructions.

The Extract/Deposit/Merge instructions have two
forms: static and dynamic. The static form specifies the
field length and shift amount in the instruction as con­
stants. The dynamic form uses the .flr and .sar fields
from the . psr.

·The Extract instruction converts a bit field within a reg­
ister into a 32-bit value which is stored into another
register. The extracted bit field is aligned to the least­
significant bit of the destination register. The high or-

Deposit Merge
31 o

RB

RA o

Merge Immediate

Imm~ __________ ~~~~~

Figure 12. Deposit, extract, and merge instructions

© Copyright WEITEK 1988
All rights reserved 18

der bits of the destination are filled With zeros or sign
extended, controlled by the field length and shift
amount. If the sum of the field length and shift amount
is greater than 32, sign extension is performed; other­
wise zero-fill is selected.

The Deposit and Merge instructions perform the in­
verse operation: a 32-bit register is inserted into a
specified field of a destination register. For Deposit in­
structions, all other bits of the destination are set to
zero. For Merge instructions, the other bits of the des­
tination are not modified.

There is a special form of the Merge instruction:
Merge Immediate, which uses a 5-bit signed constant
instead of a register as the value to be inserted. This
instruction allows convenient bit set and reset as well as
many other useful operations.

Extract
o 31 o

RB

RA

o

c

Field Manipulation Instructions, continued

DEPOSIT/DEPOSIT AND MERGE

ra len shf Iml rb
8 3 5 5 5 1 5

FORMAT

ra := deposit rb [shf, len]
ra := ra deposit rb [shf, len]

DESCRIPTION

XL-8237
32-81T RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

A right justified field of length specified by len is taken
from the contents of register rb. The field is left-shifted
by shf bits. If the sum of shf and len is greater than 32,

the field is truncated. If the m bit is zero, the result is
the field, otherwise the field is merged with the con­
tents of register ra. The result is placed in register ra.

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-zero and is FALSE (0) if the re­
sult is zero.

OPERATION

if len > 0 then
I := len;

else
I := 32;

endif;
f := I + shf;
if f > 32 then

f := 32;
I := 32 - shf;

endif;
if m = 0 then

result := (32-f dup 0) II reg(rb)[I-1 .. 0] II (shf dup 0);
else

result := reg(ra)[31..f] II reg(rb)[I-1 .. 0] II reg(ra)[shf-1 .. 0];

endif;
reg(ra) := result;
COND := (result :F 0); {condition is TRUE if result is non-zero}

{shift rb left by shf bits}

{overlay field from rb on
top of ra}

© Copyright WEITEK 1988

Field Manipulation Instructions, continued

MERGE IMMEDIATE

len shf 111 imm5
835 5 5 5

FORMAT

ra := ra deposit imm5 [shf, len]

DESCRIPTION

A right justified field of length specified by len is taken
from the sign extended value contained in the imm5
field. The field is left shifted by shf bits. If the sum of
shf and len is greater than 32, the field is truncated.
The field is merged with the contents of register ra.
The result is placed in register ra.

OPERATION

if len > 0 then
I := len;

else
1:= 32;

endif;
f := I + shf;
if f > 32 then

f := 32;
I := 32 - shf;

endif;
temp:= (28 dup imm5[4]) II imm5[3 .. 0];

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO and is FALSE (0) if the
result is ZERO.

result := reg(ra)[31 .. f] II temp[I-1 .. 0] II reg(ra)[shf-1 .. 0];
reg (ra) := result;

{sign-extend the immediate field to 32 bits}
{shift and merge on top of ra}

COND := (result =F 0);

~ Copyright WEITEK 1988
All rights reserved 20

c

c

(

Field Manipulation Instructions, continued

EXTRACT

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

len shf 101 rb

8 3 5 5 5

FORMAT

ra := extract rb [shf, len]

DESCRIPTION

The contents of register rb is right-shifted by the num­
ber of bits specified by shf, and a right-justified field of
length specified by len is extracted from it. If the sum
of shf and len is greater than 32, the extracted field is
sign-extended. The result is the extracted field, which
is placed in register ra.

OPERATION

if len > 0 then
I := len;

else
:= 32;

endif;
temp := (shf dup reg (rb)[31]) II reg (rb)[31 .. shf] ;
result := (32-1 dup 0) II temp[I-1. .0];

reg(ra) := result;
COND := (result~O);

21

5

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO and is FALSE (0) if the
result is ZERO.

{shift rb right by shf bits}
{zero all the bits outside the selected
field}

© Copyright WEITEK J 988
All rights reserved

Field Manipulation Instructions, continued

DYNAMIC EXTRACT/DEPOSIT/MERGE

ra len 111 ext

8 3 5 5 3 3

FORMAT

ext format

0 ra : = deposit rb [sar, len]

1 ra := deposit rb [sar, fir]

2 ra := ra deposit rb [sar, len]

3 ra := ra deposit rb [sar, fir]

4 ra := extract rb [sar, len]

5 ra := extract rb [sar, fir]

DESCRIPTION

These instructions perform Deposit, Deposit and
Merge, Extract, and Deposit Immediate and Merge
instructions with the shift amount determined by the
contents of the sar register and the field length con­
trolled either by the fir register of the psr or by the len
field in the instruction. See the Extract and Deposit

:1;; Copyright WEITEK J 988
All riRhts reserved

22

rb

5

meaning

dynamic deposit, fixed length

dynamic deposit

dynamic merge, fixed length

dynamic merge

dynamic extract, fixed length

dynamic extract

instructions for details on the function of these opera­
tions.

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO, otherwise the condition
generated is FALSE (0).

o

(

Field Manipulation Instructions, continued

MERGE HALFWORD HIGH

ra imm16

8 3 5 16

FORMAT

ra := ra deposit imm16 [16. 16]

DESCRIPTION

The 16-bit immediate value is merged into the most
significant 16 bits of register ra, and the result is placed
in register ra.

OPERATION

CONDITION

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

The condition generated is TRUE (1) if the result of
the operation is non-ZERO and is FALSE (0) if the
result is ZERO.

result
reg (ra)
COND

:= imm16[15 .. 0] II reg(ra)[15 .. 0];
:= result;

{merge onto ra after shifting by 16 bits}

:= (result ¥- 0);

23
© Copyright WEITEK 1988

All rights reserved

Field Manipulation Instructions, continued

BITWISE MERGE

ra rc 1111 I 01 I
8 3 5 5 4 2

FORMAT

rc := (ra and not al) or (rb and al)

DESCRIPTION

This instruction performs a so called Bitwise Merge be­
tween the bits of the contents of register rb and register
ra, controlled by the contents of register a/. The result
is placed in register rc.

Note that Multiply and Divide also use the al register.
Therefore, a Bitwise Merge should not be executed
while a Multiply or Divide operation is in progress.

OPERATION

result := (reg(ra) and not al) or (reg(rb) and al);
reg (rc) := result;
COND := (result :F 0);

© Copyright WEITEK 1988
A II rioht ... rpw>rvpd 24

rb

5

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO, otherwise the condition
generated is FALSE (0).

o

~,
\ }

'~

Field Manipulation Instructions, continued

PERFECT EXCHANGE

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

ra p 1111 1101 rb
8 3 5 5 4 2

FORMAT

ra := p exchange rb

DESCRIPTION

This flexible bit manipulation command is used to swap
fields or reverse the bit order on 2, 4, 8, 16, or 32-bit
fields. One use of bit reversal is to calculate addresses
in Fast Fourier Transforms. The Perfect Exchange op­
eration is controlled by the 5-bit p field in the instruc­
tion.

This instruction performs a perfect exchange among
the bits of the contents of register rb. The result is
placed in register ra. Each bit, p [if, of the p field con­
trols the exchange of pair-wise adjacent fields of size
2 i bits. For example, when prO] is set, each even-odd
pair of bits is exchanged, and when p[4] is set, the
upper halfword is exchanged with the lower halfword.

31 0

Original 1 first Iseccndl third 1 fourth 1

p=11000: Reverse Byte Order

Ifourth I third Iseccndl first

p=00111: Reverse bits within byte fields

I :Q1il Ibro~921 b1irlj I rlj1uoll

Figure 13. Examples of perfect exchange

25

5

This general capability provides several important spe­
cial cases. For example, setting p [4 .. 0] to 11111
causes all bits in a word to be placed in reverse order
(radix-2 bit reverse), and setting p[4 .. 0] to 11110
causes all pairs of bits to be reversed (radix-4 bit re­
verse). Setting p[4 .. 0] to 11000 will reverse the order
of bytes in a word.

CONDITION

The condition generated is TRUE (1) if the result of
the operation is non-ZERO, otherwise the condition
generated is FALSE (0).

p=11111: Reverse all bits in word

I rlnuoll b1irlj I bro~9~ :Q1il I
p=10000: Reverse halfword order

I third I fourth I first Iseccndl

p=01111: Reverse bits within halfwords

Ibro~921 :k1il I rlj1uoll b1irlj I

© Copyright WEITEK 1988
ALI rights reserved

Field Manipulation Instructions, continued

OPERATION

t := reg (rb);
if p [4] then

t:= t[15 .. 0] II t[31 .. 16];
endif;
if p[3] then

endif;

for i : = 0 to 16 by 16 do
t[i+15 .. i] := t[i+7 .. i] II t[i+15 .. i+8];

enddo;

if p[2] then

endif;

for i := 0 to 24 by 8 do
t[i+7 .. i] := t[i+3 .. i] II t[i+7 .. i+4];

enddo;

if p[l] then
. for i : = 0 to 28 by 4 do

endif;

t[i+3 .. i] := t[i+1 .. i] II t[i+3 .. i+2];
enddo;

if p[O] then

endif;

for i := 0 to 30 by 2 do
t[i+1 .. i] := t[i] II t[i+1];

enddo;

reg (ra) := t;
COND := (t :F 0);

© Copyright WEITEK 1988
All rights reserved

10'. "

26

(_ .

..

c

Address Generation Instructions

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

LOAD/STORE ADDRESS WITH SIGNED DISPLACEMENT

ra imm16

8 3 5 16

FORMAT

adr := ra + imm16

DESCRIPTION

The 16-bit immediate value is sign extended and added
to the unsigned base address in register ra. The result is
passed out the AD Bus and placed in the adr register.
This instruction does not affect the c bit of the psr.

OPERATION

CONDITION

The condition generated is TRUE (1) if an unsigned
32-bit overflow is encountered, otherwise the condition
generated is FALSE (0).

result := reg(ra) + (17 dup imm16[15]) II imm16[14 .. 0);
adr := result;

{add the sign-extended displacement}
{internal address register}

AD : = result;

if imm16(15) = 0 then
COND :=usovf;

else
COND := not (usovf);

endif;

27

{external address bus}

© Copyright WEITEK 1988
All rights reserved

Address Generation Instructions, continued

LOAD/STORE ADDRESS OR ADD WITH INDEX/SIGNED DISPLACEMENT

ra rc 11 1 ext 1 ixs 1 rb/imm5 I
8 3 5 5 132 5

FORMAT

instruction ext

adr := ra, rc := ra + (rb « ixs) 000
adr := ra, rc := ra + (imm5 «ixs) 001
adr := rc := ra + (rb « ixs) 010
adr := rc := ra + (imm5 «ixs) 011
adr := ra + (rb « ixs) 100
adr := ra + (imm5 «ixs) 101
rc := ra + (rb « ixs) 110

DESCRIPTION

Address generation instructions take a left-shifted (0-3
bits), signed value from an immediate field or register
and add it to a base register, optionally writing the re­
sult to another register. The address driven onto the
AD Bus may be the result of the addition or the con­
tents of the base register before the addition. This cor­
responds to pre-increment and post-increment index­
ing. Again, the shifting facility simplifies the generation
of halfword, word, and double word array addresses in
a byte-addressable environment.

{Post-modify: }
adr := ra, rc := ra + imm5
adr := ra, rc := ra + rb

{Pre-modify: }
adr := (rc := ra + imm5)
adr := (rc := ra + rb)

{No modify:}
adr := ra + imm5
adr := ra + rb

© Copyright WEITEK 1988
All rights reserved 28

meaning

load/store indexed, modify after
load/store signed displacement, modify after
load/store indexed, modify before
load/store signed displacement, modify before
load/store indexed, no modify
load/store signed displacement, no modify
add indexed

The contents of register rb (index) or a 5-bit signed
displacement is shifted left the number of bits specified
by ixs (a value of 0 causes no shift), and added to the
unsigned base address in register ra. If modification is
requested, the result is stored in register re. The calcu­
lated address is the result of the add operation unless
modify after is requested, in which case it is the con­
tents of register ra. The calculated address is placed in
the adr register and driven on the AD Bus. These in­
structions do not affect the e bit of the psr.

(-

Address Generation Instructions, continued

CONDITION

The condition generated is TRUE (1) if a two's com­
plement overflow is encountered when shifting or an
unsigned 32-bit overflow is encountered when adding;

OPERATION

if ext [0] = 0 then
temp := reg (rb) ;

else
temp:= (28 dup imm5[4]) II imm5[3 .. 0];

endif;
result := reg(ra) + (temp[31-ixs .. 0] II (ixs dup 0));
case ext[2 .. 1] of

OOb: adr := AD := reg (ra) ; reg(rc) := result;
01 b: adr := AD := reg(rc) := result;
10b: adr := AD := result;
11 b: reg (rc) := result;

endcase;
if ext [2 .. 0] = 110 then

COND := tcovf;
else

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

otherwise the condition generated is FALSE (0). For
the Add With Shift instruction (ext 6), the addition op­
eration tests for two's complement addition overflow.

{sign-extend the immediate field}

{shift the displacement by ixs bits and add}

{do the operation}

COND := (reg(rb)[31 .. 32-ixs] :F (ixs dup reg(rb)[31-ixs])) or usovf;
endif;

29
© Copyright WEITEK J 988

All rights reserved

Load/Store and Alignment Instructions

Data transfers to and from memory take two opera­
tions: address generation and data transfer.

To load data, the RIP first executes a Load/Store Ad­
dress instruction, which calculates an address and
drives it onto the AD Bus. The RIP executes a Load
Data instruction during a subsequent cycle, which takes
the contents of the D Bus and puts it into a register.

Another instruction can be performed at the same time
as the Load Data instruction, since Load Data uses
only the RCS field of the instruction word. For in­
stance, you can put an address generation instruction

© Copyright WEITEK 1988
All rights reserved 30

in the field, reducing the time for consecutive loads to
one cycle per word.

Storing data is similar. Addresses are again generated
with a Load/Store Address command, and data is
stored with the Store Data command. The Store Data
command takes up the RCS field, and the instruction
in the RIP field generates the data to be stored. For
instance, if the instruction was ro := ra+rb, the sum of
raHb would be stored in ro and stored into memory.

The Byte Align and Store command can be used to
store bytes, halfwords, and words. Because this is a
separate instruction, it requires an extra cycle.

/,(\

\J

(

(

c'

Load/Store and Alignment Instructions, continued

LOAD HALFWORD IMMEDIATE

imm16

835 16

FORMAT

ra := imm16

DESCRIPTION CONDITION

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

The 16-bit immediate value is sign-extended and The condition generated is TRUE (1) if the result of
placed into register fa. the operation is non-ZERO and is FALSE (0) if the

result is ZERO.

OPERATION

result := (17 dup imm16[15]) II imm16[14 .. 0];
reg (ra) := result;
COND := (result ¥: 0);

{sign-extend to 32 bits}

31
© Copyright WEITEK 1988

All rights reserved

Load/Store and Alignment Instructions, continued

LOAD DATA

11101 rd

3 5 24

FORMAT

rd := mem[adr]

DESCRIPTION

This instruction specifies that data is to be loaded from
the 0 Bus into register rd in the register file. Because
this instruction uses the RCS field of the instruction
\vord, it can be performed simultaneously with other
RIP operations. The loaded data is not available for
use until the next instruction. Care must be taken to
avoid writing of the data into the same register as speci­
fied by the operation in the remainder of the instruc­
tion word. If the other RIP instruction specifies that

OPERATION

reg(rd) := 0;

PROGRAMMING EXAMPLES

register rd is to be modified, then the contents of rd
becomes undefined at the end of this instruction.

CONDITION

This instruction does not generate any condition. How­
ever, a condition may be generated by any instruction
that is combined with this instruction; the condition so
generated will not be affected by this instruction.

adr := ra+imm; {any RIP address instruction}
rd := mem [adr] I rc := rd op rb;

adr := ra+imm;
rd := mem [adr] I <other instruction>;
rc := rd op rb;

adr := ra + imm;
rd := mem[adr] I rd := rc op rb;

© Copyright WEITEK 1988
All rights reserved

{here the old value of rd is used in the calculation}

{here the new, loaded value of rd is used in the calculation}

{value of rd becomes undefined, not allowed}

32

o

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Load/Store and Alignment Instructions, continued

STORE DATA

00001001

8 24

FORMAT

mem [adr] := result; {RIP operation}

DESCRIPTION

This instruction specifies that the result of an RIP op­
eration is to be stored to the previously addressed
memory location. The Store Data instruction is speci­
fied in the uppermost 8 bits of the instruction. The
lower 24 bits are used to specify any RIP operation that
produces a result.

The Store Data instruction places the result of the cur­
rent RIP operation onto the D Bus, and asserts all four
WREN- bits.

CONDITION

The Store Data does not generate any condition. How­
ever, a condition may be generated by the RIP opera­
tion that is combined with this instruction; the condi­
tion thus generated will not be affected by this
instruction.

(OPERATION

D := result;

PROGRAMMING EXAMPLES

adr := ra+imm;
mem[adr]:= rc := ra op rb;

(:

{any RIP address instruction}
{write result to rc and memory}

33
© Copyright WEITEK 1988

All rights reserved

Load/Store and Alignment Instructions, continued

BYTE ALIGN FOR LOAD DATA

ra I x I 0 I s I siz I 1111 I 00 I
8 3 5 11124 2

FORMAT

ra := rb align [unsigned siz]
ra := rb align [signed siz]

siz

00
01
10
11

Size of operand

byte
halfword
tri-byte
word

DESCRIPTION

This instruction extracts a byte, halfword, tri-byte, or a
word from a previously loaded word in the rb register.
The instruction uses the byte address in the adr register
together with the two-bit siz field from the instruction
to extract the correct byte(s). The extracted value is
zero-extended or sign-extended to a full 32-bit value.
Zero- or sign-extension is controlled by the s bit in the
instruction. The resulting 32-bit value is stored in the
destination register ra.

The typical sequence of instructions to load a byte re­
quires two instructions and three cycles. (The extra cy-

© Copyright WEITEK 1988
All rights reserved 34

rb
5

cle is used to load the word containing the desired
byte. This does not require the ALU and it could per­
form any other operation on this cycle.)

This instruction is defined to be register-to-register
only; condition and AD Bus outputs are undefined.

CONDITION

This instruction does not generate a condition output.

o

.'

c

.'

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Load/Store and Alignment Instructions, continued

OPERATION

a
I
size

:= adr[1 .. 0] ·8;
:= (siz + adr[1 .. 0]) • 8 + 7;
:= siz • 8 + 7;

:= (31-size dup 0) II reg (rb) [I .. a];
case s of

Ob: res
1b: res := (31-size dup reg (rb) [I)) " reg (rb)[l .. a] ;

endcase;
reg (ra) := res;
COND : = undefined;
result := undefined;

31 0

RA o

RA sign extend

31 o

Figure 14. Byte align for load data instruction

35

{NOTE: siz + adr[1 .. 0] < 3}

I unsigned I
signed

SIZ = 00 (byte)
ADR = 10

© Copyright WEITEK 1988
All rights reserved

Load/Store and Alignment Instructions, continued

BYTE ALIGN AND STORE DATA

ra lel11slsiz l1111 1001 rb

8 3 5 11124 2

FORMAT

instruction

mem[adr] := rb align [unsigned siz]
mem [adr] := rb align [signed siz]
mem [adr] := ra

siz

00
01
10
11

Size of operand

byte
halfword
tri-byte
word

DESCRIPTION

e s

a a
a 1
1 x

These operations transfer from the register file to the
external (D+) data bus, while aligning and truncating or
sign extending the value to allow byte, halfword, and
tri-byte addressing into word-wide memory. The cor­
rect alignment is specified by the adr register, the data
size by the siz field, and sign extension by the s field.
To implement this instruction properly the external
memory must be capable of writing individual bytes as
controlled by the WREN- bus.

The Byte Align and Store instruction is used to store
bytes, halfwords, tri-bytes, and words in a byte ad­
dressable environment. The instruction performs two
operations: data alignment and byte-write control.

The instruction takes as input a register number, the
adr register, the data size (a constant in the instruc­
tion), and other miscellaneous controls in the instruc­
tion. The register number designates the data to be
stored (the rightmost byte or halfword.) The adr regis-

© Copyright WEITEK 1988
All rights reserved 36

5

meaning

align for store unsigned
align for store signed
no alignment

ter indicates the particular byte alignment to use; this
register is automatically set by any address generation
instruction. The data size is used to indicate whether a
byte or halfword is being stored.

The input data to be stored is shifted the correct num­
ber of places to align it to the correct byte as specified
by the low order two bits of the adr register. The cor­
rect byte write controls are driven so that the external
memory subsystem will only write the correct bytes.
The condition pin is also driven to indicate if the
signed or unsigned data value would not fit into the
destination format (overflow).

CONDITION

The generated is TRUE (1) if the operation truncates
significant bits from the operand, otherwise the condi­
tion generated is FALSE (0).

\
i

j

c

(

Load/Store and Alignment Instructions, continued

OPERATION

a := adr[1 .. 0] • 8;
I := (siz + adr[1..0]) ·8 + 7;
size := siz • 8 + 7;
if e = 0 then

case s of
Ob: result:= (31-1 dup 0) II reg(rb)[size .. O] II (a dup 0);

o := result;
COND:= (reg.(rb)[31..size+1] = 0);

1b: result:= (31-ldupO) II reg (rb)[size .. O] II (a dup 0);
o := result;

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

COND := (reg(rb)[31..size+1] = (31-size dup reg (rb)[size]» ;
endcase;

else
result := reg (ra);
o := result;
COND := undefined;

endif;
for i : = 0 to 3 do

WREN-[i] := FALSE;
endfor;
for i : = 0 to siz do

WREN-[adr [1 .. 0] + i] := TRUE; {NOTE: siz + adr[1..0] < 3}
endfor;

31 o
RA o

'------~v~------
COND = non-zero

MEM[ADR]
~--~----~~~~----~

(SIZ+1)'8 ADR'8

31 0

RB sign extend

, ----~ ------~ - v-
COND = two's comp ovfl

MEM[ADR]
~--~----~~~~----~

(SIZ+1)'8 ADR'8

Figure 15. Byte align and store instruction

37

I unsigned I

WREN- = [1101]

signed

WREN- = [1101]

SIZ = 00
ADR = 10

© Copyright WEITEK 1988
All rights reserved

Multiply/Divide/Priority Encode/Housekeeping Instructions

MULTIPLY/DIVIDE/PRIORITY ENCODE/HOUSEKEEPING INSTRUCTIONS

ra ext 1111 111 1 rb/imm5 1
8 3 5 5 4 2 5

FORMAT

instruction ext meaning

am,al := ra- rb 00000 start 32-bit two's complement multiply
- 00001 -

al,am := am\\ra + rb 00010 start 64-bit/32-bit unsigned integer divide
am := rb, al := ra 00011 load/reload am and al
ra := al 00100 unload quotient/Is product
ra := am + rb 00101 unload remainder/ms product plus register
ra := am + imm5 + al[31] 00110 unload remainder/ms product plus immediate plus sign
ra := am + imm5 00111 unload remainder/ms product plus immediate

ra := priority encode rb 01000 priority encode
- 01001 -

fir := rb 01010 load field length register
sar := rb 01011 load shift amount register

- 01100 -
- 01101 -
- 01110 -
- 01111 -

ra := psr 10000 save processor status register
ra := adr 10001 save address register
ra := psr, psr := rb 10010 save and load processor status register

psr := rb, adr := ra 10011 restore processor status register, address register
- 10100 -
- 10101 -
- 10110 -
- 10111 -

AD := adr 11000 load/store using address register
- 11001 -
- 11010 -
- 11011 -

psr.z := not psr.z, ra := psr 11100 swap register banks and save psr
psr.z := not psr.z 11101 swap register banks

- 11110 -
- 11111 -

DESCRIPTION

The first group of operations controls the multiply and
divide hardware and allows access to the two 32-bit
product registers. Note that the contents of the product
registers are undefined if a multiply or divide operation
is currently in progress. A Multiply requires an addi­
tional 11 MDCLK+ cycles to complete; due to optimiza­
tion on the chip this only requires 5 CLK+ cycles. A
Divide requires an additional 32 MDCLK+ cycles to
complete, or 16 CLK+ cycles (see the section on MUlti­
ply and Divide operations for details).

The Multiply instruction (ext 0) loads the contents of
register ra into the multiplier register and the contents
of register rb into the multiplicand register and initiates
a multiplication operation. The multiplier (ra operand)
and the multiplicand (rb operand) are assumed to be
two's complement values. A correction term, which
may be computed while the multiplication operation is
going on, may be added to the resulting product to per­
form purely unsigned or mixed unsigned and two's
complement multiplication.

© Copyright WEITEK 1988
All rights reserved 38

----------- ----- ~---

c

(~

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

The Divide instruction loads the contents of register ra
into the least significant word dividend register, the
contents of register rb into the divisor register, and
then initiates an unsigned divide operation. The value
contained in the am register is used as the most signifi­
cant word of the dividend. For 64-bit division, over­
flow may be checked while the division is going on
(am>rb). For signed division, correction factors need
to be applied to the result.

The second group of operations includes the Priority
Encode instruction. The Priority Encode instruction
gives, as a result, the number of ZERO bits which pre­
cede the most significant ONE bit of register rb. If all
bits are ZERO, the value returned is 32, and the condi­
tion generated is FALSE (0), otherwise the condition
is TRUE (1).

39

The third and fourth group of operations perform vari­
ous housekeeping functions on the adr register, the
psr, and portions of the psr.

CONDITION

The COND+ output is driven HIGH if the result is non­
zero for one of the three instructions that unload am
(ext 5,6,7) and the Priority Encode instruction (ext
8). This allows testing for signed or unsigned overflow
from a multiplication. COND+ is not defined for the
other five MultiplylDivide instructions (ext 0, 1, 2, 3,
4). The COND+ output is not defined for any of the
Housekeeping instructions (ext = 1 xxxx) .

© Copyright WEITEK 1988
All rights reserved

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

OPERATION

case ext of
OOOOOb: result := undefined; {initiate 32-bit two's complement multiply (ra • rb)}
00010b: result := undefined; {start 64-bit/32-bit unsigned integer divide (am II ra+rb)}
00011 b: result := undefined; am := rb; al := ra; {load/reload am and al}
00100b: result := (ra := am + rb); {unload remainder/ms product plus register}
00101 b: result := (ra := am + rb); {unload remainder/ms product plus register}
00110b: result := (ra := am + imm5 + al [31]); {unload remainder/ms product plus sign}

{this condition detects two's complement multiply overflow}
00111 b: result := (ra := am + imm5); {unload remainder/ms product}

{this condition detects unsigned multiply overflow}
01000b: result := ra; ra := priority encode rb;
01010b: result := undefined; fir := reg (rb)[4 .. 0] ;
01011b: result:= undefined; sar:= reg(rb)[4 .. 0];
10000b: result := reg(ra) := psr;
10001 b: result := reg (ra) := adr;
10010b: result := reg (ra) := psr; psr := reg (rb) ;
10011b: result:= undefined; psr:= reg(rb); adr:= reg(ra);
11000b: AD := result := adr
11001 b: AD := result := adr
11100b: result := psr; psr.z := not psr .z; reg (ra) := result;
11101b: result:= undefined; psr.z:= not psr.z

endcase;
if ext [4 .. 0] = 00101, 00110, 00111, 01000 then

COND := (result =F 0);
else

COND := undefined;
endif;

© Copyright WEITEK 1988
All rights reserved 40

c

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

MULTIPLY AND DIVIDE OPERATIONS

A 32-bit signed Multiply is performed in eight cycles; a
64/32-bit mixed-precision division is done in 20 cycles.
Multiplication gives a 64-bit product; division gives a
32-bit quotient and 32-bit remainder.

The Multiply and Divide operations use dedicated hard­
ware so that other operations may be performed in the
RIP simultaneously. A Multiply or Divide operation is
initiated, and a fixed number of cycles later the result
is placed into the am and al (product) registers. The al
register is loaded on cycle 6, and the am register is
loaded on cycle 7. The contents of the al and am regis­
ters are undefined prior to cycles 6 and 7, respectively.
The result can be removed from the product registers
at any time after the operation has been completed. If
a Multiply or Divide operation is attempted while an­
other is currently in progress, it will be ignored.

Note that the Multiply and Divide operations are de­
pendent on the number of cycles, not instructions, that
are executed. Instructions that have been neutralized
still count for the purposes of determining when a mul­
tiply or divide operation is finished.

The MultiplylDivide operations themselves have no ef­
fect on the condition code. However, the templates for
a 32-bit unsigned or two's complement multiply use an
addition instruction to generate a condition on the last
cycle. This condition indicates if an overflow has oc­
curred on the Multiply operation.

32-Bit Two's Complement Multiply with 64-Bit Result

8 24

Cycle 1 ~::::::::::::::::::::::::::::fJgI::::::::::::::=:::::::=::::::[:::::t::::::::::::::::::::=::::::::::::::::::::::::::::::::)iIRr£9prg9~§~Mgpgr~~IB~i::1
8 24

Cycle 2 1::::::::::::::::::::::::::::591:::::::::::::::::::::::=::::1::::::::::::=:::::::::::::::':::::::::::'::::::::::=::::::::::::::B.!Rr£9Pr99~§~r:::gpgr~t!B9.:::::::=::;:::=:::=::::::):l
8 24

Cycle 3 1:::::::::::::==:=:::::::::=:591:::::=:::=::===::::::::::=:::j:::::::::::::::::::::::::::::::=::::::::::::::::=::==:::::::::::::::B.IRr£9pr99~§~f:::gpgr.?f.lB9.::::::::::=::jJ
8 24

Cycle 4 ~:::::::::::::::::::::::::::591=:::::::::::::::::::::::::::1:::B.I.Rrgppr99~§~r:::gpgr~~!B9.:::::::::::::::::::::::::=::1
8 24

Cycle 5 f::::::::::::::::::::::::::59§i::::::::::::::=:::::::::::]::=:::::::::::::::::::::::=::B.!Rr£9pr99~§~r:=::gpgr~~~g9.: ::1
8 24

Cycle 6 1::=:::::::::=:::::::::::::::mi~::::::::::::::::::::::::::::=1 mov . ai, rc
8 24

Cycle 7 1:::::::::::::::::::::=::::::591:::::::::::::::::::::::::::::1 mov .am, rd
8 24

41
© Copyright WEITEK 1988

All rights reserved

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

32-Bit Two's Complement Multiply with 32-Bit Result

8 24

r:~:i:~:ii:i:i:::~:~:i:~:~'iB.g~lii~i~':i~i:'::~::':fi:::l:i:'i'i:':'i:i:i:i:iii:I~:i~i:"~i,i:f':~:i}:i:i:i:i:i~i::R!e!9.9.p.r9g~~~9.r~:::9.p.~r~t@n:::::::::~:i:~i:::iii:':iiiii'::::i:i?ii:~iti:ti:i:::i:i:=:j
8 24

l:i'~~~i:itti:~iiiiii:iiRQ§i:::i~:i::i~::::::i~~i~iiiiili:i:i:i:::::i:i:i:i:irrf::ii~i~i:~i:iiii:ii~':ii~~:iii'i:iR!e!9.9.p.r9~~9.rii::gp'jr~t@n:::iiii~i::i::ii~i:i~i:ii~ii~~~~i:i:ii::~:i~::ti~iii~'~~~:::@il
8 24

l:iiii'r'!'!::!::!:::i~::i:RQ§':i:":'ii'ii:::f::~:fl'!:!i:::i:ii!!riir:::::'!:'it::::i:':::::if:~~':::i:::R!gt9.9.p.r9.gi$~9.r:i:@p.@rit@rt:::::::'::::::':::i:':::::::'::':::::i:ii:i:::::!:!t::t':::1
8 24

lii::i:i:iiiii::::i::::i:::i:B.9§~':::':'~~::::::::':'ii::::il::::tif::::::::::::::::::ii::ti:r~:::::::::::::::::::J'lgJ9.9p.r9.gj~~9.r::i@p.@ri.t@niii:it:::ii:iiii'ii::iiiii@i::iiiiiiii'i'ii":ti:::::::::=:j
8 24

1~'::i:::::iiii:iii'@:i:i:Bq~¥::i::i:::::i:i:ii:':':i:::I::ii'ii:::ii::i:::::i'i:ti:i:i::::::it:~i:::::i:::i:::iIJ'IRJ9.9.p.r9.g~~~9.r:::i9.p.~r~t@~f':':'r:i:::::::::::::i:::i::::::f:::::::::::::::::::::::::::1
8 24

8 24

addamis 0, rd

8 24

32-Bit Unsigned Multiply with 32-Bit or 64-Bit Result

8
br .gez, $+2

8
br $+2

8

8

I br .gez, $+2
8

8

8

8

© Copyright WEITEK 1988
All rights reserved

mpy ra, rb

24
addi 0, ra, ra

24
mav rb, re

24
elr re
24

addi 0, rb, rb
24

add re, ra, re
24

mav .al, rd

24
addam re, re

24

42

)

(,

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

UNSIGNED DIVIDE

The divide operation shown here is for 32-bit unsigned
numbers only. When the dividend and divisor are
both 32-bit unsigned numbers the . am register must be
loaded with zero. The 32-bit unsigned quotient and

remainder may be unloaded after the divide operation
is complete. When the dividend is a 64-bit unsigned
number and the divisor is a 32-bit unsigned number,
the results of the Divide operation are undefined.

64-Bit Dividend, 32-Bit Divisor. 32-Bit Quotient, Remainder

8 24

8 24

1:::::::::::::::::::::::::::::69$.:::::::::::::::::::::::::::J::8itMp9prggi§~9m:Qpir~~l.Qn::::::::::::::::::::::::::::::::::::j:::::::::::::::::::::I::1
8 24

1::::::::;:::::::::::::::::::89$:::::::::::::::::;::::::::::I::::::::::::::::::I:::::::::::::t:::::::::::::::::::::::::::::6i.e't9.9prqqj.$,§qr::iJ.piri1@n:::1
8 24

1:::::::::::::::::::::::::::::69$.::::::::::::::::::::::::::::1:::8nt.!P9prg~~9m:9piri.ti.Qn::]
8 24

1:::::::::::::::::::::::::::::89$::::::::::::::::::::::::::::t:::::::::::::::::I::6i.gt9.Qprq¢.~$§QrIQpiri1@n::::::::::::::iii:::]
8 24

[:::::::::::::::::::::::::69$.::::::::::::::::::::::::::::1::iii:::I::::::8if.!P9prg~~9m:Qpirit.i.Qm:I::1
8 M

1:::::::::::::::::::::::::::::89$:::::::::::::::::::::::::::it::6i.gt9.Qprqp~$,§Qr::::Qpiri#9N:::I::::::::::::]
8 M

1:::::::::::::::::::::::::::::69$.@:::::::::::::::::::::::::1::iii:::8if.!P9pr99i§~9r::@pirit.l.Qn::]
8 24

1:::::::::::::::::::::::::::::89$::::::::::::::::::::::::::d::6i.gt9.QprQ¢.~$§Qb:Qpiri1@n:::::::::::@:::]
8 M

[::::::::::::::::::::::::::69$.:::::::::::::::::::::::::::::t::::::::::::::::::::::::::::::::'::::::::::::::::::::::::::::::::8if.!P9prg~~9M:Qpir~:~l.Qn:::,:::::::::]
8 24

1:::::::::::::::::::::::::189$1::::::::::::::::::::::::1::::::::::::::::::::::::::::::1:::::':::::::::::::::::::::::::::6I.gt9.QprQq~$§Qb:Qpiri1@n::::III::::::::::::::::::I::::::::::::::::::::::::::::]
8 24

t:::::::::::I:::::::::::69$.:::::::::::::::::::::::::::':t::'::::::::::8Ie!pgprg~~9M:Qpir~~l.Qn::1
8 24

1:::::::::::::::::::::::::::::89$::::::::::::::::::::::::::::t:::::}:::::::::::::m:::{::::::{:::::::::::::::::::::::Ri.gtiQpr9.¢'i~§Qr::@piri1!9N::::::::::::::::I::II:::::::::::::::::::::::::::::::::::1
8 24

1"\::::::::::::::::::::::::::69$.:::::::::::::::::::::::::::::1::::::::::::::::::::I:J:::::::::::::::I::::::::::::::::::::8if.!P9prg9i§~9r::::Qpir~~l.Qn::':::':::::::::1
8 24

m::::::::::I::::::::::::89$:::::::::::::::::::::::::::::1:::::::::::::::"::6I.gt9.Qpr9.q~$§Qr::::9.pijr~"9N::1
8 24

1:::::::::::::::::::::::::::::69$.::::::::::::::::::::::::::::[:::::::::::::::::::It:::::::::::::::::II:::::::::::::::81f.!P9prg~~9M:Qpir~:!l.Qn:::':::::::::::1
8 24

1:::::::::::::::::::::::::::::89$:::::::::::::::'::::::::::::1:::::':::::::::::::::::::::1::::::::::::::':::::::::::::::::::::6i.gt9.Qprq¢m$§Qr::@pir~~@N:::::::::::::::::::::::::::::I:::::::,::::::::::::::::::::::::I
8 M

8 24

8 24

43
© Copyright WEITEK 1988

All rights reserved

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

32-BIT SIGNED DIVIDE

If a single length two's complement divide is desired
then additional instructions need to be added to con­
vert the input operands to unsigned numbers, calculate
the resulting sign and convert the results to the correct
sign. Depending on the desired definition of the modu­
lo operation extra code to convert the remainder may
also be required. The code example in figure 16 shows
how this may be achieved when the dividend and divi­
sor are both 32-bit two's complement numbers.

64-BIT SIGNED DIVIDE

If a double length two's complement divide is desired

© Copyright WEITEK 1988
All rights reserved 44

then additional instructions need to be added to con­
vert the input operands to unsigned numbers, calculate
the resulting sign and convert the results to the correct
sign. Depending on the desired definition of the modu­
lo operation extra code to convert the remainder may
also be required. The code example NO TAG shows
how this may be achieved when the dividend is a 64-bit
two's complement number and the divisor is a 32-bit
two's complement number. This is the only case when
the the . am register can be loaded with a non-zero
value and correct results be obtained.

o

C• .. /

(~:

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

. native

. text

_s_32_by_32_dlv:
H
H
H
H
H
H
H
H
H
H
H
H
H

This routine performs a signed integer divide with a 32-bit
dividend and a 32-bit divisor. It produces a 32-bit quotient,
and a 32-bit remainder.

Input:

Output:

.rO

. r1

.r2

.r3

. reg .r2, q

dividend
divisor

quotient
remainder

. reg .r3, rem
· reg . r4, trash
· reg . r5, dividend
. reg .r6, divisor
· reg . r7, offset
· reg . r8, sign
· reg . r9, zero
. reg .rtO, maxneg

H Initialize zero
movl 0, zero

H check negative dividend
addl 0, . rO, dividend; br . gez check_divisor

H negate dividend
subl 0, dividend, dividend

check_divisor:
addi 0, .r1, divisor; br .gez do_divide

H negate divisor
subl 0, divisor, divisor

do divide:
- Idamal

div
zero, trash
dividend, divisor

H check for max negative number In divisor or dividend
movl Ox80000000, maxneg
movlh Ox80000000 » 16, maxneg
sub maxneg, .r1, trash; br .nez $+2
br max_neg_dlvisor
sub maxneg, .rO, trash; br .nez not_max_neg
br overflow

H check for divide by zero
not_max_neg:

addi
br

0, divisor, trash; br .nez $+2
dlvlde_by-zero

H calculate sign of quotient
xor . rO, . r1, sign
movl 1, offset
addl 0, . rO, trash; br . gez $+2
addl 3, offset, offset H negative remainder
addl 0, sign, trash; br .gez $+2
addi 6, offset, offset H negative quotient
pushs offset
brstkp

q_posJJX>s:
mov .al, q
rts; mov .am, rem

H positive quotient
H positive remainder

nop

Figure 16. 32-bit/32-bit signed divide

45

q_pos_r_neg:
mov
rts; mov
subi

q_negJJX>s:
mov
rts; subi
subl

q_negJ_neg:
mov
subl
rts; mov
subi

max_neg_divisor:

.al, q

.am, rem
0, rem, rem; ovneut

.al, q
0, q, q
0, .am, rem; ovneut

.al, q
0, q, q
.am, rem
0, rem, rem; ovneut

H positive quotient

H negative remainder

H negative quotient
H positive remainder

H negative quotient

H negative remainder

H divisor is max neg - I.e. -2'32 - so the quotient Is °
H (max/max -> t), and the remainder is neg (dividend)

sub maxneg, .rO, trash; br .nez not max dividend
nop H kill cycles from div
nop
nop
nop
nop
nop
nop
nop
nop
rts; movi t, q
movi 0, rem; ovneut

not_max_dlvldend:
nop
nop
nap
nop
nop
nop
nop
nop
nop
rts: neg dividend, rem
movl 0, q; ovneut

overflow:
H
H

H kill cycles from div

H overflow exception handler goes here
H NOTE: 9 cycles (from div) must be used before returning
H
H

nop
nop
nop
nop
nop
nop
nop
nop
rts

divide_by_zero:
H
H
H division by zero exception handler goes here
H NOTE: 7 cycles (from dlv) must be used before returning
H
H

nop
nop
nop
nop
nop
nop
rts

© Copyright WEITEK 1988
All rights reserved

Multiply/Divide/Priority Encode/Housekeeping Instructions, continued

. native

. text

_s_64_by_32_dlv:
It
It
It
It
It
It
It
It
It
It
It
It
It

This routine performs a signed Integer divide with a 64-blt
dividend and a 32-bit divisor. It produces a 32-blt quotient,
and a 32-blt remainder.

Input:

Output:

. reg

. reg

. reg

. reg

. reg

. reg

. reg

. reg

. reg

. reg

.rO

. rl

.r2

.r3

.r4

.r3,

.r4,

.r5,

.r6,

.r7,

q

dividend - msw
dividend - Isw
dlvisorlt

quotient
remainder

rem
trash
dlvl
dlv2

. r8, divisor

.rg, offset

.rl0, sign

.rll, zero

.r12, maxneg

It check for negative dividend/divisor
addl 0, . rO, dlvl; br .Itz neg_dividend
mov . rl, div2; shbr check_divisor

neg_dividend
movi
usub
usubc

check divisor:
-addi
subl

do divide:
- Idamal

div

0, zero
zero, • r1, div2
zero, divl, div1

0, .r2, divisor; br .gez do_divide
0, divisor, divisor It negate divisor

divl, trash
div2, divisor

It check for max negative number in divisor or dividend
movi Ox80000000, maxneg
movlh Ox80000000» 16, maxneg
sub maxneg, .r2, trash; br .nez $+2
br max_neg_divlsor
sub maxneg, . rO, trash; br . nez not_max_neg
addi .r1, 0, trash; br . nez, not_max_neg
br overflow

not_max_neg:
It check for divide by zero, overflow

addl 0, divisor, trash; br . nez $+2
br dlvlde_by-zero

usub
br

xor
movl
addl
addi
addi
addl
pushs
brstkp

divl, divisor, trash; br .Itz $+2
overflow

. rO, . r2, sign
1, offset
0, .rO, trash; br .gez $+2
4, offset, offset It negative remainder
0, sign, trash; br . gez $+2
B, offset, offset It negat ive quot lent
offset

Figure 17. 64-bit/32-bit signed divide

© Copyright WEITEK 1988
All rights reserved 46

CLPOsJ JlOs:
mov
ext
rts; mov
nop

qJlOsJ_neg:
mov
ext
rts; mov
subl

CLneg_r _pos:
mov
ext
rts; subl
subi

q_neg_r _neg:
mov
ext
subl
rts; mov
subl

overflow:
It
It

· ai, q It positive quotient
q, 31, 1, trash; br . nez overflow
· am, rem It positive remainder

· aI', q It positive quotient
q, 31, 1, trash; br . nez overflow
.am, rem
0, rem, rem; ovneut It negative remainder

.al, q
q ,. 31, 1, trash; br . nez overflow
0, q, q It negative quotient
0, .am, rem; ovneut It positive remainder

.al, q
q, 31, 1, trash; br . nez overflow
0, q, q It negative quotient
.am, rern
0, rem, rem; ovneut It negative remainder

It overflow exception handler goes here
It NOTE: 8 cycles (from div) must be used before returning
It
It

nop
nop
nop
nop
nop
nop
nop
rts

max_neg_divisor:
It divisor Is max neg - i. e. -2"32 - so the quotient is neg
It (dividend msw) , and the remainder Is 0

sub maxneg, .rO, trash; br .nez not_max
addi 0, . rl, trash; br . nez not max
br overflow Hdividend is max neg

not_max:
It negate the dividend and use the msw

nop
nop
nop
nop
nop
nop
nop
nop
usub
rts; usubc
clr

dlvide_by_zero:
It
It

zero, . rl, trash
zero, .rO, q
rem; ovneut

It kill cycles from div

It division by zero exception handler goes here
It NOTE: 6 cycles (from dlv) must be used before returning
It
It

nop
nop
nop
nop
nop
rts

)

C:

Coprocessor/RCS Operations

COPROCESSOR OPERATIONS

x x 101 x x

DESCRIPTION

This instruction is a no-op. It is designed to allow a
coprocessor to execute an instruction without changing
the state of the RIP.

CONDITION

This instruction does not generate a condition.

x

47

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

© Copyright WEITEK 1988
All rights reserved

Coprocessor/RCS Operations, continued

STORE DATA FROM COPROCESSOR

1 01 rd li;:~;;;;;;iI;i;fi;iiI::::::::::::::I;:t::;::;~:~:~;::;:::::::::::t~'R::::9.p.~rii,l~ni::~:;:;:;:;:;i::iii::~:~:~:;:;~;:;:;:ii;:Iiit~;;;;;;;~:~~i;:;i;:;;;:;:J
3 5 ~

FORMAT

mem [adrJ := coprocessor register (rd); {RIP operation}

DESCRIPTION CONDITION

This instruction specifies that coprocessor register rd is
to be stored to the previously addressed memory loca­
tion. The Store Data From Coprocessor instruction is
specified in the uppermost 8 bits of the instruction.
The lower 24 bits may be used to specify any RIP op­
eration. The coprocessor should place the result on the
D bus, and the XL-8237 will assert all four WREN­
bits.

© Copyright WEITEK 1988
All rights reserved 48

This instruction does not generate a condition. How­
ever, a condition may be generated by the RIP opera­
tion that is combined with this instruction; the condi­
tion thus generated will not be affected by this
instruction.

OPERATION
D := coprocessor register (rd);

\
)

c:

Coprocessor/RCS Operations, continued

LOAD DATA TO COPROCESSOR

111 rd i::::::::::::::::::;I:::':::':'::':::::::::::::::::'::::::::::':::::::::::'::l1!p.ip.p.~rl~\9m:::::::::::::::::::::::::::::::::'::;"::::::1
3 5 24

FORMAT

coprocessor register (rd) := mem[adr]; {RIP operation}

DESCRIPTION

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

This instruction specifies that the contents of the previ- to specify any RIP operation.
ously addressed memory location are to be loaded into
the coprocessor register rd. The Load Data To Co- CONDITION
processor instruction is specified in the uppermost 8
bits of the instruction. The lower 24 bits may be used This instruction does not generate a condition.

OPERATION

coprocessor register (rd) := mem [adr] ;

49
© Copyright WEITEK 1988

All rights reserved

Coprocessor/RCS Operations, continued

TRANSFER TO/FROM RIP

00000000

8

FORMAT

AD := ra
ra := AD

DESCRIPTION

I ext I ra

3 5

x
5

This instruction allows single cycle transfers to be made
between an XL-8237 register and an external register
(including one in the XL-8236 RCS). The transfer is
made via the AD+ bus. This provides a path between
the RIP and other system blocks, such as a RCS or
floating point coprocessor, without having to use "mail­
boxes" in system memory.

CONDITION

This instruction does not generate a condition.

OPERATION

case ext[2 .. 01 of
OOOb:
001b:
010b:
011b:
100b:
101b:
110b:
111 b:

endcase;

AD := reg (ra);
AD := reg (ra) ;
reg(ra) := AD;
reg (ra) := AD;
nop;
nop;
nop;
nop;

© Copyright WEITEK 1988
All rights reserved

x

11

50

c

Memory Operations

This section deals with operations needed to move data
to and from memory. Loading and storing data re­
quires two steps: address generation and data transfer.
Loading and storing can be performed on aligned
32-bit words, or on any contiguous set of bytes within a
word. Addresses are generated using one of the RIP's
address generation instructions. The address calculated
by these instructions is latched into the adr register and
driven onto the AD Bus.

A word load operation can be performed in conjunc­
tion with any other RIP operation. The Load Data in­
struction is specified in the instruction field normally
reserved for ReS control. The data is written into the
register file at the end of this instruction, and is avail­
able for use in the next instruction. If the other RIP
operation specifies the same register as a source in the
word load operation (rd) , the old value of rd is used
(see programming examples for the Load Data instruc­
tion). Note that it is legitimate for this instruction to
initiate another Read operation by executing an RIP
address operation. This gives a maximum pipelined
rate of one load per cycle with a 2-cycle latency for
each individual word.

A byte-aligned load operation starts in the same man­
ner as a word load. When the word is in the register
file, an extra instruction, Byte Align For Load, is exe­
cuted, using the current value of the adr register and
the value of the siz field to extract the appropriate
byte, half-word, or tri-byte from the loaded word. In
order for this to execute properly the adr register must

Sl

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

not have been modified, since the subsequent Byte
Align For Load instruction would then use the new, in­
correct, value. This gives a maximum rate of one byte­
aligned load per two cycles with a three cycle latency
for each load.

A word-aligned store operation is performed by storing
the result of a simultaneous register-to-register opera­
tion in the RIP. The four WREN- write enables are as­
serted with the result on the D Bus.

A data store operation can also be initiated by a Byte
Align For Store instruction. This instruction takes a
register, extracts the selected data (byte, halfword, tri­
byte, or word), and drives the result data onto the D
bus. The RIP uses the siz field of the store instruction
and the contents of the adr register to determine the
value of the WREN- bus.

It has been assumed here that read accesses to memory
have a single cycle of latency. If slower memory is used
then the STALL- input signal may be used to stall the
XL-8237 to provide the necessary delay; extra instruc­
tions can be inserted between the RIP address opera­
tion and the subsequent data transfer operation; or
CLK can be stopped until the data is ready. MDCLK can
be kept running while CLK is stopped, so long as the
skew specifications are otherwise maintained.

Generally, STALL- is used on code memory misses,
and the clock is stopped on data memory misses.

© Copyright WEITEK 1988
All rights reserved

Memory Operations, continued

Load and Store Operations

Load template (word-aligned)
!J~~~ffff}iaQlitm}}~~iJJJ1! RIP address operation

8 24
load rd 1::::::::::::::::::::::::::::,::::::::::::ttMt::::'::mB.!.e(9.Qpt9.9.~i.i9f:::9~f.~~J-PW:::::::J::::::m:::::::m:J:::'::1:m:}1::11::::::1m!

8 24

Load template (byte-aligned)
i:1t1:::mmmf:1JiQ$j'Jmfffffl RIP address operation

8 24
load rd

8 24
align rb, ra, size

8 24

Store template (word-aligned)
itttI:'1:1fmOOi:::tmf:tmmml RIP address generation

8 24
store RIP operation

8 24

Store template (byte-aligned)
M:::::f:t:=::::::11=:OOi::::::::f::m::::tH RIP address generation

© Copyright WEITEK 1988
All rights reserved

8 24

8 24

52

'\
,)

c

c

Instruction Neutralization

Normally the XL-8237 executes one instruction per
clock cycle. Under certain circumstances this flow
needs to be modified; perhaps because external data or
code is unavailable or a coprocessor requests a stall
condition. The RIP has two input signals, NEUT - and
STALL-, that are used to cancel the current, the next,
or both the current and next instructions, respectively.

NEUT-

The NEUT - signal suppresses the results of the current

NOP

The XL-8237 does not have an explicit Nap instruc­
tion. Many instructions can be used to achieve the ef­
fect of a NOP, for example, adding 0 to a register. Care
should be taken that a Load to that register is not also

Overflow Detection

The XL-8237 checks for overflow in certain instruc­
tions. If an overflow is detected, then the COND signal
is modified to indicate that this has occurred. Refer to
the specific instructions to determine which instructions
generate overflow and how that overflow affects the
COND signal.

The RIP recognizes two types of overflow: two's com-

53

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

instruction. If this signal is asserted, the current in­
struction is cancelled without modifying any state in the
RIP. This signal is meant to be used in conjunction
with the XL-8236 RCS to make optimal use of the ef­
fects of delayed branching.

STALL-

The STALL- input signal cancels the next instruction.
This signal is intended to be used with a code cache or
dynamic RAM to signal the delay or absence of code.

being performed on the same cycle. Any long RCS in­
struction (in the XL-8236 RCS) is treated by the RIP
as a Nap.

plement (tcovf) and unsigned (usovf). The definition
of a two's complement overflow is when the carry-in to
the most significant bit is different from the carry-out
from the most significant bit. The definition of an un­
signed overflow is when the result is larger than 232 - 1
or less than O.

© Copyright WEITEK 1988
All rights reserved

Development Tools

The HyperScript-Processors are part of WEITEK's
XL-Series of processors. They are largely compatible
with the XL-8l00 series of processors, and use the
same development tools.

WEITEK provides a family of software tools to aid ap­
plications development and debugging, using the
XL-8236 and its companion processors, the XL-8237
32-bit Raster Image Processor and the XL-3232 32-bit
Graphics Floating Point Data Path Unit.

HYPERSCRIPT INTERPRETERS

WEITEK supplies a PostScript-compatible interpreter
that offers form, fit, function, and image compatibility
with that offered by Adobe Systems Corporation. Both
a C version of the software, and a assembly-coded
graphics library are available.

Third-party PostScript-compatible interpreters will also
be available for the XL-8200.

The interpreter supports both Bitstream FontWare and
URW's NIMBUS font-scaling software. Fonts are fully
compatible with Adobe Font Metrics and are repre­
sented in Bezier outline form.

HIGH-LEVEL LANGUAGE COMPILERS

The XL-Series supports an industry-standard C com­
piler. Industry-standard implementations allow existing
programs to be ported to the XL-Series without modifi­
cation. These compilers all share an optimizing code
generator which employs optimization techniques
found on mainframe compilers.

© Copyright WEITEK 1988
All rights reserved

The compiler-generated code is refined through the
XL-Series' unique parallelizer. The XL-Series para 1-
lelizer takes the sequential code and compacts integer
and floating point operations into every instruction.
The parallelizer provides the code-packing efficiency
that otherwise could be achieved only through hand­
written assembly code.

54

COMPLETE DEVELOPMENT SYSTEM SUPPORT

The design of an XL-based product is simplified by the
XL software and hardware development tools. The ap­
plication programmer is able to develop and debug
software on a VAX, SUN 3, or Compaq Deskpro 386
system with the XL-Series Software Development Envi­
ronment, which includes a software simulator. A devel­
opment board set, which includes a software monitor
and I/O drivers, allows low-level debugging and final
tuning of software on an XL-Series processor. For the
hardware designer, XL-Series functional simulators
and complete engineering documentation, including an
example PC-board layout, are available.

The design of raster image processors is also facilitated
by a graphics development system which is composed
of a RIP board with the XL-8200, 3 Mbytes of page
buffer and font memory, 256 kwords of code memory
for the interpreter, PC/AT-bus system interface, and
Canon LBP-SX video interface card. This graphics de­
velopment system provides a stable hardware environ­
ment on which PDLs can be debugged independently
of the final target hardware.

\
)

("

, -,'

Design Requirements

The XL-8237 is designed to be upgrade able to en­
hanced parts while retaining instruction set compatibil­
ity. In order to assure compatibility with future
WEITEK processor devices, the following restrictions,
which do not degrade performance in any way, should
be observed:

Set all fields marked "x" to zero in instructions
which contain them. This assures that operations
which are added in future designs will not modify
the function of current instructions.

Set all processor status register bits which are
marked as zero to a zero value. This assures that
additional psr bits which may be added will not
impact compatibility with the RIP.

55

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Do not attempt to read the a/ and am registers
before a Multiply or Divide operation has com­
pleted, as the values returned or functions per­
formed in these cases may be implementation-de­
pendent.

Pins marked "NC" (not connected) on the pin
configuration diagram may be defined as signal
pins in future enhancements to the RIP. There­
fore, to preserve future upward compatibility,
these pins should indeed be left unconnected.

© Copyright WEITEK 1988
All rights reserved

Specifications

ABSOLUTE MAXIMUM RATINGS

Supply voltage -0.5 to 7.0 V Storage temperature range -65°C to 150°C
Input voltage -0.5 to Vcc Lead temperature (10 seconds) 300°C
Output voltage -0.5 to V cc Junction temperature 175°C
Operating temperature range TeAsE. -55°C to 125°C

Recommended Operating Conditions

PARAMETER
COMMERCIAL

MIN NOM MAX

Vee Supply voltage 4.75 5.0 5.25
IOH High-level output current -1.0
IOL low-level output current 4.0
TeAsE Operating case temperature 0 85

DC Specfications

COMMERCIAL
PARAMETER TEST CONDITIONS MIN MAX

VIH High-level input voltage Vee = MIN 2.0
VIHe High-level input voltage Vee = MIN 2.4

for ClK and MDClK only
VIL low-level input voltage Vee = MIN 0.8
VILe low-level input voltage

for ClK and MDClK only
Vee = MIN 0.8

VOH High-level output voltage Vee = MIN, IOH = -1.0 mA 2.8
VOL low-level output voltage Vee = MIN, IOL = 5.0 mA 0.4

III Input leakage current Vee = MAX, \tiN = 0 - Vee ±10
I Lo Output leakage current Vee = MAX, VOUT = 0 - Vee ±10

(outout disabled)

lee Standby current Vee = MAX, DC conditions, TTL inputs 250
lee Switching current

CIN Input capacitance "
CeLK Clock capacitance "
COUT Output capacitance "

" Capacitance not tested.

© Copyright WEITEK 1988
All rights reserved

Vee = MAX, Tey = MIN, TTL inputs 300

TA = 25° C 8
f = 1 MHz 20
Vee = 5.0 V 10

56

UNIT

V
mA
mA
°c

UNIT

V
V

JJA

mA

pF

/

(".
\ ./

AC Timing Description

An instruction cycle is one ClK cycle, broken into two
parts named phase one and phase two. The ClK signal
controls the selection of the two phases, as shown in
figure 19.

The MDClK signal is used only for controlling the mul­
tiply/divide unit. It is driven at twice the frequency of
the ClK cycle and is synchronized to it. It does not
control any other logic on the chip.

The timing of all XL-8237 signals during the execution
of a single instruction (cycle 1) is shown in figure 21.
The instruction received just prior to cycle 1 is de­
coded and executed during the cycle. If STAll- is as­
serted at the beginning of the cycle, then the instruc­
tion is interpreted as a Nap. If NEUT - is asserted
(during or at the end of the cycle, respectively), then
the instruction is executed but the results are dis­
carded.

The AD Bus output is controlled by the executing in­
struction. Three different parameters are specified (T1,
T2, T3, and T4) which characterize the output delay for
three different classes of instructions (corresponding to
three different major paths through the device). The T1

57

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

parameter applies to the instructions that drive ra di­
rectly out onto the AD Bus-intra-processor transfer
and post-increment forms of address generation. The
T2 and T3 parameters are for those instructions that
compute results in the AlU-arithmetic, logical, and
address generation. The T4 parameter applies to all
other instructions with meaningful results: Deposit,
Merge, Extract, Byte Align, Perfect Exchange, Priority
Encode, etc .. Note that the AD Bus output is not af­
fected by the assertion of NEUT - in the current cycle.

If a store instruction is executed in the current cycle,
the D Bus is driven with the results during the next
(delayed) cycle, with an output delay of T11. In this
mode, if NEUT - is asserted in the current cycle, then
the D Bus is tri-stated during the delayed cycle. If
STAll- is asserted at the end of the previous cycle, the
D Bus is also tri-stated during the delayed cycle.

The WREN- Bus tracks the D Bus. When the D Bus is
tri-stated, the WREN- Bus is forced HIGH. When the
D Bus is driven, one or more of the WREN- Bus signals
will be asserted to indicate the valid bytes on the D Bus
(and thus the bytes to be written).

© Copyright WEITEK 1988
All rights reserved

AC Specifications

AC TEST CONDITIONS:

Vcc = MIN I VIH = 3.5V VOH = 2.8V, 10H = -1.0 mA I TCASE 85°C I C LOAD VIL = 0.4V VOL = 0.4V, 10L = 4.0 mA = = 40 pF

Xl-8237-40 Xl-8237-20 Xl-8237-10
DESCRIPTION NOTES COMMENTS

MIN MAX MIN MAX MIN MAX

TCY Clock cycle time 120 200 350
TCH Clock high time 55 90 165
TCL Clock low time 55 90 165

T MCY MDClK cycle time 60 100 175
T MCH MDClK high time 25 45 80
T MCL MDClK low time 25 45 80
TMC MDClK rising edge to 0 10 0 10 0 10 ClK transition
T Ro TF ClK rise and fall times 5 5 5

T1 ClK rising edge to AD 95 150 250 Driving a register out on the AD Bus
valid (Intrasystem Transfer)

T2 ClK rising edge to 95
AD[31 .. 3] valid

150 250 Driving the AlU result on the AD Bus.
Also applies to address generation

T3 ClK rising edae to 85 150 250 As above
AD[2 .. 0] vali

T4 ClK rising edge to AD 110 165 265 Driving the result from the Field
valid Merge Unit on the AD Bus. Applies

to Priority Encode, Shift, Merge,
Extract, Byte Align And Store.

T11 ClK rising edge to D 50 60 70
and to WREN- outputs

T12 D Bus turn-on time 5 5 5

T13 D Bus turn-off time 50 60 70

T14 ClK rising edge to 105 165 315
COND output

T15 AD Bus turn-on time 15 15 15

T16 AD Bus turn-off time 55 65 75

TS1 Input setup time for 25 30 35
data on the AD and D
D buses and misc.

TS2 Input setup time for
C Bus

25 30 35

TS3 Set-up time for NEUT-
input

15 25 40

TH1 Hold time 3 3 3 Hold time for all Inputs except C bus

TH2 Hold time 5 5 5 Hold time for the C bus only

T vo Output valid time 5 5 5
T zo Output enable time 30 40 50

T oz Output disable time 30 40 50

All units In nanoseconds

Figure 18. Clock and tri-state timing. Contact your WEITEK sales representative for XL-8237-60 AC Speci­
fications.

© Copyright WEITEK 1988
All rights reserved 58

)
j

c

Timing Diagrams

Clock Timing

I TMCY I
::TMCH ~14TMCL::

MDCLK+ I I I
MUL TIPL Y DIVIDE CLOCK -t I-- TMC

CLK+ Phase 1 Phase 2

TCH TCL

Tcy

Tri-state Timing Control

I I

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

I

~

TOZ~ ~ ~ ~Tzo
OEA- INPUT

OED- INPUT

,
n.2V 2.4V~ AD OUTPUTS ~ • Valid

J~O.2V High ~
Valid

D OUTPUTS
Impedance O.BV

4

Notes: 1. Toz Is a slowest of two values: THZ and TLZ. which are the times from high
voltage to tri-state and low-voltage to tri-state. respectively. Similarly. Tzo is
the slowest of TZH and TzL. Toz is not measured but is guaranteed by design.

2. TTL inputs are O.4V and 3.5 V

3. Timing transitions are measured at 1. 5V unless otherwise specified

Figure 19. Clock and tri-state timing

3.4V

1.5V

O.4V

~~------ Tcy--------~~

Figure 20. Clock timing. showing rise and fall times

59

2.4V

TR and TF are not tested
but are guaranteed by de­
sign

© Copyright WEITEK 1988
All rights reserved

Timing Diagrams, continued

CYCLE 0 2

CLK --, 2 4 2 4 2

, TS2 t;;rr C BUS (INST2)

AD BUS

D, WREN- outputs
OUT 1

COND output

D, AD, data input ______ _____:~-T-S-l'""""11i~. ~ __ T-H-___ _

STALL- control Input ' ~

NEUT- input

Figure 21. Timing diagram

© Copyright WEITEK 1988
All rights reserved 60

3

+ 2 r

C-
~/

c

c~

110 Characteristics

Test Circuit for Switching Delay

Output
pin

CL = total load on device
pin. including stray ca­
pacitance.

2.4 V

500 n
>

-'- 40 pF

I
Figure 18. Test Load For Delay Measurement

Input Equivalent Circuit

Input
pin

10 pF

voo

Figure 22. Input and output equivalent circuits

61

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

Test Circuit for Tri-State Enable/Disable

Output
pin

vee or GND

< 500 n
~

-'- 40 pF

I

CL = total load on
device pin. including
stray capacitance.

Vx = Vee to test TZL
and TLZ.

Vx = GND to test
THZ and TZH ..

Output Equivalent Circuit

voo

Output
pin

10 pF

© Copyright WEITEK 1988
All rights reserved

Pin Configuration

15 VOO D26 AD24 024 NO D23 AD22 AD21 D21 AD20 AD19 AD18 D18 D17

14 VOO GND AD25 D25 D24 AD23 023 021 D20 019 018 017 AD16 VOO

13 AD27 GNO AD26 026 025 OOND 022 D22 020 D19 AD17 016 GND VOO

12 D28 D27 GND OEA- VOO

AD28 NO 027 TIE GND HIGH 11

10 029 NO 028 015 D15

9 NO NO D29 NO AD14

8 D30 AD29 NO
Top View

(cavity up)
D13 AD13

7 AD30 D31 C30 NO 012

6 NO NO C31 D11 NO

5 A031 NO WREN NO AD11
1-

GND WREN NO KEY VOO STAll-
2- PIN

4

WREN WREN MDOlK GND ADO D2 03 D5 05 D7 09 D10 010 NEUT-
3- 0-

3

2 VOO OlK GND 00 01 02 D3 04 06 AD6 AD7 AD8 09 AD10

VOO DO D1 AD1 AD2 AD3 D4 AD4 AD5 D6 07 D8 08 AD9

A 8 c o E F G H J K L M N p

Figure 23. Pin configuration (pinouts are identical for ceramic and plastic pin-grid array packages)

© Copyright WEITEK 1988
All rights reserved 62

)

D16

OED-

GND

TIE
lOW

A015

014

D14

013

NO

D12

AD12

011

NO

TIE
HIGH

GND

R

c
Physical Dimensions

XL-8237 145-PIN PIN GRID ARRAY

1+---- D ----I~

•
PIN

STANDOFF----:::E:"::-1

e
Pin 1 A Locator

BOTTOM VIEW SIDE VIEW

Symbol INCHES

MAX MIN

A1 0.135 0.080

A2 0.210 0.175

A3 0.080 0.040

D 1.657 1.555

E1 0.140 TYP

E2 0.050 TYP

E3 0.020 0.016

d 0.075 0.035

e 0.100 TYP

Figure 24. XL-8237 physical dimensions

63

MAX

3.43

5.33

2.03

42.1

0.51

1.91

•

MM

3.56 TYP

1.27 TYP

2.54

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

[]
TOP VIEW

MIN

2.03

4.46

1.14

39.4

0.41

0.89

© Copyright WEITEK 1988
All rights reserved

Ordering Information

PACKAGE TYPE SPEED TEMP. RANGE (CASE)

145-pin plastic PGA -10 T = 0 0 C to 85 0 C

145-pin plastic PGA -20 T = 0 0 C to 85 0 C

145-pin plastic PGA -40 T = 0 0 C to 85 0 C

145-pin plastic PGA -60 T = 0 0 C to 85 0 C

PACKAGE TYPE SPEED TEMP. RANGE (CASE)

145-pin ceramic PGA -10 T = 0 0 C to 85 0 C

145-pin ceramic PGA -20 T = 0 0 C to 85 0 C

145-pin ceramic PGA -40 T = 0 0 C to 85 0 C

145-pin ceramic PGA -60 T = 0 0 C to 85 0 C

Revision Summary

T16 was corrected in the AC timing diagram

TR and TF were added to the AC Specifications table

TH was split into TH1 and TH2

ORDER NUMBER

XL-8237-010-GPU

XL-8237-020-GPU

XL -8237 -040-GPU

XL-8237 -060-GPU

ORDER NUMBER

XL-8237-010-GCU

XL-8237-020-GCU

XL-8237-040-GCU

XL-8237-060-GCU

The -60 part grade was added to the Order ing Information section

New examples of the divide instruction were added

Typographical errors were corrected

© Copyright WEITEK 1988
All rights reserved 64

\

)

c

c

XL-8237
32-BIT RASTER
IMAGE PROCESSOR

PRELIMINARY DATA
October 1988

\
)

c

For additional information on WElTEK products, please fill out the form below and mail.

Name Title

Company Phone

Address

Comments
I am currently involved in a design with the following Weitek products _____________ and wish to be added to your
design data base to insure that I receive status updates.

APPLICATION:

D ENGINEERING WORKSTATIONS

D GRAPHICS

D PERSONAL COMPUTERS

Check the products on which you wish to receive data sheets:

ATTACHED PROCESSORS

D XL-SERIES OVERVIEW

D XL-8200 OVERVIEW

WEITEKuse: Rec'd

Status

COPROCESSORS

D 1167

D 116411165

D 3164/3364

D 3167

Out

D SCIENTIFIC COMPUTERS
D OTHER ______ _

BUILDING BLOCKS

D 2264/2265 D 1066

D 313213332

D 1232/1233

D 2010

D 2245

TPT

WEITEK XL-8237 32-BIT RASTER IMAGE PROCESSOR
Please Comment On The Quality Of This Data Sheet.

o Have a sales person call

D 2516

D 2517

Source: DS

Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have
missed something that may be important to you. If you believe this is the case, please describe what the
missing information is, and we will consider including it in the next printing of the data sheet.

Fold, Staple and Mail to Weitek Corp.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1374 SUNNYVALE. CA

POSTAGE WILL BE PAID BY ADDRESSEE

WEITEK Corporation
1060 E. Arques Ave.
Sunnyvale, CA 94086-BRM-9759

ATTN: Ed Masuda

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

WBT~

Headquarters
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

WEITEK'S CUSTOMER COMMITMENT:

Weitek's mission is simple: to provide you with VLSI solutions
to solve your compute-intensive problems. We translate that
mission into the following corporate objectives:

I. To be first to market with performance breakthroughs, allow­
ing you to develop and market systems at the edge of your art.

2. To understand your product, technology, and market needs, so
that we can develop Weitek products and corporate plans that
will help you succeed.

3. To price our products based on the fair value they represent to
you, our customers.

4. To invest far in excess of the industry average in Research and
Development, giving you the latest products through techno­
logical innovation.

S. To invest far in excess of the industry average in Selling, Mar­
keting, and Technical Applications Support, in order to pro­
vide you with service and support unmatched in the industry.

6. To serve as a reliable, resourceful, and quality business part­
ner to our customers.

These are our objectives. We're committed to making them
happen. If you have comments or suggestions on how we can
do more for you, please don't hesitate to contact us.

Domestic Sales Offices
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

Corporate Place IV
111 South Bedford St.
Suite 200
Burlington, MA 01803
FAX (617) 229-4902
TEL (617) 229-8080

European Sales Headquarters
Greyhound House, 23/24 George St.
Richmond, Surrey, TW9 UY
England
TELEX 928940 RICHBI G
FAX 011-441 940 6208
TEL0l1-4415490164

Japanese Representative
4-8-i Tsuchihashi
Miyamae-Ku
Kawasaki, Kanagawa-Pre
213 Japan
FAX 044-877-4268
TEL 044-852-1135

0', "
;''1 ,

c

o

