
WElTER ~

.(...

(

4167 FLOATING-POINT
COPROCESSOR

ADVANCED DATA
July 1989

The WEITEK 4167, the newest
member of the WEITEK Abacus
family, is a high-performance single­
chip floating-point coprocessor for
Intel's 80486 microprocessor. It Is
upwardly binary compatible with the
WEITEK 3167 coprocessor. Fully sup­
ported by a wide selection of
application packages and by high-level
language compilers, under DOS,
UNIX System V.3, and 'XENIX
Release 3.2, the 4167 provides a
superior floating-point accelerator' for
high-end PCs" workstations, graphics,
and numeric controllers.

Contents

Features

Description

Hardware Designer's Guide 3

Programmer's Interface
Overview 18

3167 and 4167
Compatibility 28

Ordering Information 28

Sales Offices back cover

4167 Floating-Point Coprocessor
July, 1989

Copyright© WEITEK Corporation 1989
WEITEK Corporation
1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400
All rights reserved

WEITEK is a trademark of WEITEK Corporation

MS-DOS and XENIX are registered trademarks of MicroSoft
Corporation.

UNIX is a trademark of Bell Laboratories

WEITEK reserves the right to make changes to these
specifications at any time.

Printed in the United States of America
9089 6 S 4 3 2 1

DOC 8943

c

(

(

Features

SINGLE-CHIP FLOATING-POINT COPROCESSOR

Designed for use with the Intel 80486

Fits a standard 142-pin PGA socket

Upward object-code-compatible from WEITEK 1167
and 3167 coprocessors for Intel 80386

HIGH PERFORMANCE

17.0 single-precision mega-whetstones and 3.8 single­
precision Linpack MFLOPS

HIGH-LEVEL LANGUAGES

Supported by C, FORTRAN, and Pascal compilers
under UNIX System V.3, XENIX Release 3.2, and
MS-DOS real and protected mode

IEEE FORMAT

Conforms to the IEEE Standard Format for Floating­
Point Arithmetic in both single- and double-precision
(ANSI/IEEE Standard 754-1985)

Description

The 4167 is a high-performance single-chip f1oating­
point coprocessor for Intel's 80486 32-bit microproces­
sor. It delivers 2 to 3 times the system performance of
the 80486's on-chip math coprocessor. (Benchmark
results are given in figure 1).

The interface signals between the 4167 and the 80486
are provided by a 142-pin socket.

Benchmark

Unpack (SP)
Unpack (OP)
Whetstone (SP)
Whetstone (OP)

Estimates

Figure 1. Benchmark results at 2S MHz

1

WTL 4167 FLOATING-POINT
COPROCESSOR

ADVANCE DATA
July 1989

FULL FUNCTION

Add, subtract, multiply, divide, and square root

Integer-floating-point conversions

Absolute value

Compare

Transcendental functions supported by run-time
libraries

Low power CMOS

Dissipates 2.5 Watts max at 2S MHz

142-pin PGA package

The 4167 is upward object-code-compatible with the
1167 coprocessor daughter board and 3167 coprocessor
chip. All of the applications ported to the 3167 will run
as is on the 4167. FORTRAN, C, and Pascal compilers
fully support the 4167, allOwing new applications to be
easily recompiled to take advantage of the WEITEK
coprocessor.

Performance

3.8 MFLOPS
2.4 MFLOPS

17.0 MWhetstones
10.5 MWhetstones

Description, continued

TCR- W/R- BOFF- RDVIN- ADS-

C

RESET

o
elK o

Figure 2. 4167 simplified block diagram

M/IO- A31 .. 25

Register FOe
16 x 64 (or 32 x 32)

4 ports

A

2

A15 .. 2 BE2 .. o- PCHK- 031 .. 0 DP3 .. o

Decode

Instruction Queue (4 elements)

B

MUX

LAT

48

Immediate
Data

32
D 32 ~ ___ ..

32

32

Description, continued

SUPPORTING THE 4167

Several key suppliers are involved in providing complete
end-user solutions that support the WEITEK
coprocessor (See figure 3).

Manufacturers developing systems based on the Intel
80486 must design the 142-pin 4167 coprocessor socket
into their motherboards. They will offer a coprocessor
detection mechanism by modifying their ROM BIOS.

Systems software developers, including operating
system, DOS extender and Extended Memory Manager
developers, need to enable the addressing of the
WEITEK coprocessor and, in the case of multitasking
environments, they also have to handle coprocessor
context switching.

Compiler manufacturers will support coprocessor pres­
ence detection, initialization, exception handling, and
code generation.

Finally, application vendors will recompile their applica­
tions to take advantage of the WEITEK coprocessor.

WTL 4167 FLOATING-POINT
COPROCESSOR

ADVANCE DATA
July 1989

The present document is addressed to hardware
manufacturers. It consists of two sections: The
Hardware Designer's Guide and the Programming
Interface Overview ..

The Hardware Designer's Guide provides all the infor­
mation necessary to· design the 4167 socket into a
80486-based motherboard. Also, it explains how to
modify the ROM BIOS to provide coprocessor presence
detection.

The Programming Inter(ace Overview offers a brief
overview of the coprocessor programming model and of
the software tools already supporting the 4167.

Operating systems, compiler" and application
programmers that intend to port new software tools or
applications to the 4167 should refer to the Abacus
Software Programmer's Guide.

Supplier Support Documentation

Application vendor Recompile application to generate 1167 Software
WEITEK coprocessor binaries Designer's Guide

Compiler manufacturer WEITEK code generation, 1167 Software
presence detection, initialization Designer's Guide
and exception handling

Operating system developer
(E.g. UNIX, DOS protected Coprocessor addressing 1167 Software
mode environment, extended and context-switch handling Designer's Guide
memory manager developer)

Hardware manufacturer 142-pin socket and ROM BIOS 4167 Data Sheet
support for presence detection

Figure 3. Layers of WEITEK coprocessor support

Hardware Designer's Guide

This section provides the electrical and mechanical
information necessary to design the 4167 socket into an
80486 system. It also explains how to modify the ROM
BIOS to support coprocessor presence detection.

The 4167 coprocessor is a memory-mapped peripheral.
From the system designers standpoint, integrating
the 4 167 into the system is as simple as adding

additional memory at an upper address. To the 80486
arid its application software the 4167 appears to be a
segment of memory. All the signals necessary to
interface the 4167 to the 80486 are provided by a
standard 142-pin grid array socket.

3

Figure 4 shows the 4167 socket pin-out and size.
Figure 5 shows the 4167 physical dimensions.

Hardware Designer's Guide, continued

Pin A1
Identifier

A [X
B 022

c DP3

o 024

E 027

F 030

G 031

H GNo

J RESET

K BOFF-

L INTR

ROY
OUT-M

N W/R-

P NC

A AOS-

2 3

X vee

023 021

GND vee

025 D26

028 029

GND vee

GND vee

GNo vee

PCHK- eLK

Ne vee

ROY GNO
IN-

GND vee

TeR- Mes-

MilD- A30

A31 A29

4 5 6 7 8 9

GND GNo vee GND GNo vee

019 GNo 017 DP2 GND 014

020 vee 018 018 vee 015

15x15 142-PIN PGA

TOP VIEW

A28 vee A26 "14 vee "11

A27 GND A25 "13 GND "10

Ne GND "15 "12 GNO A9

10

GND

012

013

AS

"7

AS

Note: NC = not connected; pins so marked must be left unconnected.
There Is no pin at A1 or A2. A1 and A2 are locator holes.

Recommended socket: Augat PPS142-1A1S2S-L

Figure 4. 4167 socket pinout

4

11 12 13 14 15

GND vee GND OP1 07

GND 010 oa vee GND

vee 011 D9 06 05

vee GND GNO

04 03 ' vee

02 01 GNo

vee GND GND

00 OPO vee

Ne Ne GND

vee GND GND,

Ne Ne Ne

vee GND Ne

vee AS A2 BE1- PRES-

GNO A4 BE2- BEO~ NC

GND A3 Ne Ne GNo

(
Hardware Designer's Guide, continued

142-PIN GRID ARRAY

D
BOTTOM VIEW SIDE VIEW TOP VIEW

Figure 5. 4167 physical dimensions

5

Symbol

A1

A2

A3*

0

E1

E2

E3

d

e

WTL 4167 FLOATING-POINT
COPROCESSOR

ADVANCE DATA
July 1989

DIMENSIONS

INCHES MM

O.100:!: 0.010 2.54 :!: .20 -

0.180 typ.:!: 0.005 4.57 typ.:!: .13

0.050 typo '! 0-.005 -1.27 typ.:!: .13

1.575 sq.:!:'O.016 40.0 +0.41

1.400 sq.:!: 0.012 35.56 + 0.30

0.050 dla. typo 1.27 dla. typo

0.018 +0.002 .46 + 0.05

0.065 dla. typo 1.65 dla. typo

0.100 typo 2.54 typo

* A3 Is from edge of case to bottom of stand-off.

Hardware Designer's Guide, continued

CONNECTING THE COPROCESSOR SOCKET

The following paragraphs describe the connection of
each signal of the 4167.

CLK

ClK is the clock input to the 4167. All 4167 timing is
relative to ClK. This signal must be the same as ClK of
the 80486, but the 4167 should have a dedicated trace.

VDD

Five volt (+5.0 V) power supply for the 4167. All Voo
pins must be connected.

GND

Ground for the 4167. All ground pins must be
connected.

ADDRESS BUS (A31 .. Z5. Au .. z and BEz .. o-).

Pins A31 .. 25, A15 .. und BI:2 .. o- should be connected di­
rectly to the corresponding 80486 address bus and byte
enables respectively.

DATA BUS (D31 .. 0 and DP3 .. 0).

Pins 031..0 and 0P3 .. 0 should be connected to the 80486
data bus.

ADS-

Address status input signal connects to AOS# on the
80486.

M/IO-

Memory/IO status input signal connects to MIIO# on the
80486.

WIR-

Write/Read status input signal connects to W IR# on the
80486.

BOFF-

Backoff status input signal connects to BOFF# on the
80486.

PCHK-

The parity check output signal reports the results of
checking even parity after a write to the coprocessor.
The signal is driven during the cycle following the ac­
knowledgement of a write operation. It is driven high
(deasserted) during all other cycles. Other than causing

the PCHK- signal to be driven low. the parity error has
no effect on the 4167 operation.

RESET

System reset input signal connects to RESET on the
80486.

RDYIN-

Bus transfer complete input signal connects to ROY# on
the 80486.

RDYOUT-

.The ROYOUT - output signal must be "ORedlt into the
logic generating ROY# for the 80486, see figure 6.

INTR

Th~ INTR output of the 4167 must be connected to the
system interrupt controller. In the world of
AT-compatlble systems, for example, the 4167 INTR
should be connected to IRQ 13.

PRES-

PRES- signals the presence of a 4167 coprocessor. This
signal should be connected to Vee through a resistor of
at least 10KOhm to insure a high level when the 4167
coprocessor is not present.

The basic software method of detecting the presence of
a 4167 in an 80486 system is to perform a functional
test of the device by attempting to load data into the
coprocessor register file and read it back (a coded
example is provided in figure 20 on page 17).

The hardware designer can use the PRES- output to
make sure that the system acknowledges a bus transfer
to an absent 4167, in order to avoid system hangs. The
PRES- could also be connected to an 110 port to
simplify the presence detection program residing in ROM
BIOS (Refer to Modifying The Rom Bios paragraph on
page 16 for more details).

MCS-

The MCS- signal is asserted whenever a transfer to or
frQm the 4167 is pending on the bus. It can be used by
the board designer to turn aff pther bus drivers during

. read operations from the 4167. A 20KOhm pull-up
resistor can be used to keep MCS- deasserted when the
coprocessor is not present.

6

(/~~\.

,-j

./

(

Hardware Designer's Guide, continued

MCS- should also be combined into the KEN#
generation logic on the system motherboard to drive
KEN# deasserted (refer to the following TCR- paragraph
for details).

TCR-

When asserted, the TCR-, Three Cycle Read signal,
forces any read operation from the 4167 to require a
minimum of one-wait state. This signal is sampled in the '
same cycle in which ADS- is asserted.

The hardware designer can choose either of two
schemes to connect the TCR- signal. Assuming the data
being read is available, the first scheme (Alternative A)
will lead to'zero wait state reads from the 4167 on new,

PCD
W/R#

M/IO#

A31 .. 25

A15 .. 2

BE2 .. o-

ADS#

BOFF#

031 .. 0, DP3 .. o

KEN# lOGIC

INTEL
80486

RDY# lOGIC

INTERRUPT INTR CTlR

ClK

RESET

f
ClK RESET

Figure 6. System connection diagram (Alternative A)

7

. WTL 4167 FLOATING-POINT
COPROCESSOR

ADVANCE DATA
July 1989

optimized code, and to one wait state reads on existing
application code. The second scheme (Alternative B)
will always lead to zero wait state reads (assuming that
data being read is available) independent of the code
being executed. Alternative B will lead to a 5-10%
performance improvement when running existing
numerically intensive code.

Alternative A: The TCR- input signal of the 4167 is
connected to the 80486 PCD output signal. The 4167
MCS- output signal is combined into the KEN#
generation logic on the - system, . motherboard to
drive KEN# deasserted when a 4167 read is performed.
Alternative A implementation is shown in figure 6.

TCR-
W/R-

M/IO-

A31 .. 25

A15 .. 2

BI:2 .. o-

ADS-

BOFF-

031 .. 0, DP3 .. o
BOFF-

MCS-

KEN# from other logic WEITEK
4167

RDYOUT-
RDY# from other logic

RDYIN-

INTR

Other Interupt Sources

ClK

RESET

Hardware Designer's Guide, continued

Alternative B: The TCR- input signal of the 4167 is
connected through a 20KOhm pull-up resistor to the SV
power supply. Fast external logic must then be used to
decode the A31 .. 25, AOS-, MIIO-, and W/R- signals in
order to deassert KEN# on the first cycle of a 4167 bus
operation. MCS- is used to keep KEN# deasserted on
subsequent cycles. Figure 7 shows the implementation
of Alternative B.

SYSTEM-LEVEL CONSIDERATIONS

The 4167 coprocessor is a memory-mapped peripheral
that communicates with the 80486 over the same
address bus that connects the main memory to the CPU.
Instructions are defined by the 14 least-significant
address bits (A15 .. 2) as well as three of the four byte
enables (BE2 .. 0-).

W/R#

MIIO#
A31 .. 25
A15 .. 2

BE2 .. o-
AOS#

BOFF#

031 .. 0, OP3 .. 0

INTEL KEN# LOGIC

80486

ROY# LOGIC

INTERRUPT INTR CTLR

CLK
RESET

i
CLK RESET

Figure 7. System connection diagram (Alternative B)

8

The seven most significant bits of the 80486 address bus
(A31 .. 25). together with the Memory I/O control Signal
(MIIO-), select the 4167 coprocessor. Only the upper
seven address bits are decoded to determine when a co­
processor operation is being requested.

The coprocessor will respond to memory addresses
COOOOOOO through C 1 FFFFFFH. Although by conven­
tion only addresses COOOOOOO to COOOFFFFH are used,
it is important to be sure that other components in the
system do not conflict with the address space decoded
by the coprocessor. Writing to this. address space will
cause the 4167 to execute instructions and reading from
it will cause the coprocessor to drive the data bus.

+5V- TCR-
W/R-

M/IO-
A31 .. 25
A15 .. 2
BE2 .. o-
AOS-
BOFF-

0:31 .. 0, 0P3 .. 0

BOFF-

MCS-WEITEK
KEN# from other logic

4167
ROYOUT-

ROY# from other logic

ROYIN-

INTR
Other Interupt Sources

CLK
RESET

(

WTL4167 FLOATING-POINT
COPROCESSOR

Hardware Designer's Guide, continued

SPECIFICATIONS

ABSOLUTE MAXIMUM RA TINGS

Supply voltage '. -0.5 to 7.0 V
Input voltage , -0.5 to VOO
Output voltage -0.5 to VOO

Storage Temperature Range -65°C to 150°C
Operating Temperature Range OOC to 85°C

RECOMMENDED OPERATING CONDITIONS

Parameter Test Conditions

Voo Supply Voltage
Tcase Operating Temperature

Figure 8.

DC ELECTRICAL CHARACTERISTICS

Parameter Test Conditions

VIH High-level input voltage Voo = MAX

VIL Low-level input voltage Voo = MIN

VOH High-level output voltage Veo = MIN. IOH = -1.0 mA

VOL Low-level output voltage Voo = MIN. 101.. = 4.0 mA

IIH High-level input current Veo = MAX. VIN = Veo

Ill. Low-level input current Voo = MAX. VIN = OV

Icc Supply current Voo = MAX. f = 25 MHz

ADVANCE DATA
July 1989

Commercial

Min Max

4.75 5.25

0 85

Commercial

Min Max

2.0

0.8

2.4

0.4

±10

±10

500

CNC Clock input capacitance f = 1 MHz, Voo = MAX. Temp. = 25°C 30

~ Input capacitance f = 1 MHz, Voo = MAX, Temp. = 25°C 15

WARNING! Remove power before insertion or removal.

Figure 9. DC electrical characteristics over recommended temperature range

9

Unit

V
°C

Unit

V

V

V

V

ILA

ILA

mA

pf

pf

~~:

~~)

Hardware Designer's Guide, continued

AC SWITCHING CHARACTERISTICS

4167-025 4167-033 Ref Symbol Parameter Unit Notes
Min Max Min Max Figure

Tcy Clock Cycle Time 40 30 ns 12 3

TCH ClK High Time 14 11 ns 12 3

TCL ClK low Time 14 11 ns 12 3

TR Clock Rise Time 4 3 ns 12 3

TF Clock Fall Time 4 3 ns 12 3

Tl ADS- Setup Time 15 8 ns 15 16 17

T2 ADS- Hold Time 2 2 ns 15. 16. 17

T3 A1S .. 2. BE2 .. o- Setup Time 13 6 ns 15. 16. 17

T4 A,S .. 2. BE2 .. 0- Hold Time 2 2 ns 15. 16. 17

Ts M/IO-. A31 .. 25 Setup Time 13 6 ns 15. 16. 17

T6 M/IO-, A31 .. 25 HQld Time 2 2 ns 15. 16. 17

T7 0:31 .. 0 Setup Time 13 6 ns 15

T8 0:31..0 Hold Time 2 2 ns 15

Ts RDYIN- Setup Time 7 5 ns 15. 16. 17

T'0 RDYIN- Hold Time 2 2 ns 15. 16. 17

T" 031 .. 0. DP3 .. o Output Delay 30 20 ns 16

T12 031 .. 0, DP3 .. o Valid Output 4 4 ns 16

T'3 031 .. 0, DP3 .. o Float Delay 30 20 ns 16 1

T14 RESET Setup Time 10 8 ns 18 2

T,s RESET Hold Time 3 3 -ns 18 2

T'6 INTR Output Delay 31 23 ns 19

T17 INTR Valid Output 3 3 ns 19

T'8 MCS- Output Delay 21 15 ns 15. 16. 17

TIS MCS- Valid Output 3 3 ns 15. 16. 17

120 RDYOUT - Output Delay 21 15 ns 15. 16. 17

T21 RDYOUT - Valid Output 3 3 ns 15. 16. 17

T22 BOFF- Setup Time 9 7 ns 15. 16. 17

T23 BOFF- Hold Time 2 2 ns 15. 16. 17

T24 W/R- Setup Time 15 8 ns 15. 16, 17

T25 W IR- Hold Time 2 2 ns 15. 16. 17

T26 PCHK- Output Delay 25 20 ns 15

T27 PCHK- Valid Output 3 3 ns 15

T28 TCR- Setup Time 15 8 ns 16~ 17

T29 TCR- Hold Time 2 2 ns 16, 17

Functional Operating Range: Voo = 5V ±5%; Tease = ODC to 85DC
All parameters are sReclfled at 1.5V unless otherwise noted
All outputs are specl led with 50pf of capacitive loading
1. Trl-State timing Is guaranteed. but not tested
2. Setup and Hold times specified only to guarantee recognition within a specific clock cycle
3. Parameters are at the voltage specified In the referenced figure

Figure 10. AC Charactenstlcs

10

Hardware Designer's Guide, continued

Ou~put O~--..,
pin I

...L CL

WTl 4167 FLOATING-POINT
COPROCESSOR

ADVANCE DATA
July 1989

I CL = SOpf for all signals

CL includes parasitic capacitance

Figure 11. Test load for delay measurement

2.0 V -+-----jtt------~

elK
0.8 V---*~-~-------~-~~------~

.... --TcH ~-- TCL

1---------- Tey --------......t
(Figure 12. CLK Waveform diagram

Output Delay
Time (ns)

nom+6

/
./

V

V
,7

nom+4

nom+2

nom

V
nom-2

25 50 75 100 125 150
CL (Pf)

Note: This graph wm not be linear
outside of the range shown.

Figure 13. Typical increase in output delay time versus load capacitance in worst-case conditions

7

6

5
Output Rise 4

Time (ns)
3 0.8-2.0 V
2

25

l/
V

~
V

./
V

50 75 100 125 150
CL (Pf)

Note: This .graph will not be Hnear
9Utfllde of the range shown.

Figure 14. Typical increase in rise time versus load capacitance in worst-case conditions

11

Hardware Designer's Guide, continued

BUS CYCLES

Figure 15 shows two 4167 write cycles. Write cycles are
performed every time the 80486 broadcasts instructions
to the coprocessor. The RDYOUT- output of the 4167
handles the handshaking between the 4167 and the
80486. To acknowledge the current bus cycle, the 4167
asserts RDYOUT - and the 80486 terminates the bus
cycle. The first bus write operation does not have

the RDYIN- input delayed while the second does. In the
delayed RDYIN- write operation, even though the bus
does not advance and 031 .. 0 is held constant, it is
latched in the same ~ycle it would be if RDYIN- were not
delayed. Thus, if the data changes in the time slots
indicated in figure 15 with crosshatching, the new data is
not used by the 4167.

ClK

ADS-

W/R-

M/IO­
A:31 .• 25

MCS-

RDYOUT-

RDYIN-

BOFF-

PCHK-

I I
I I

I I ~T8~ I UT!_ ~ I I I I I

~~~'-¥....x..,.x.~---r----Li-f->LrX->--~--'-) 4 = = = + = = = + = = = i ~ 
T20~: t j T21f I I I I I I -f II \ I I I / I I I I , , , 

I I'" I tJ1T9 T10 : : ::: 
--r-----,r- -"""':..-----.---"-T:---.-----.\: I 
I' I , I 
~T.,T23LI I I I 

~:Wiwiw wiw wiw w w 

Figure 15. Bus write cycle with and without delayed ready 

12 



( 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

Hardware Designer's Guide, continued 

Read cycles are performed every time data must be read 
from the 4167 into the 80486. Figure 16 shows a zero 
wait state. 

If RDYIN- is delayed, the data will continue to be driven 
until RDYIN- is asserted. Valid data and data parity 
check (PCHK-) are only present when RDYOUT - is as­
serted. 

ClK 

ADS-

W/R-

A15 .. 2 
BE2 .. 0 

MIIO-
A.31 .. 25 

MCS-

cixrlT'~ 
I ~ j I I I I I 
I T" t T" f I I I I I I· I I I , , 
I I I , I I 
I I I I I I I 

031 .. 0, DP3 .. o 

I ~ T13 I , , ., I 
, T11 "I I , 
, Float '(Float) , I I I 
, I 
I , 
, f 

RDYIN-

RDYOUT-

BOFF-

TCR-

Figure 16. Zero wait state bus read cyCle without delayed ready 

13 



Hardware Designer's Guide, continued 

Figure 17 shows a three wait state read cycle. When 
TCR:;" is asserted at least one wait state is always inserted 
during a read cycle to allow KEN# to be deasserted. If 
the data being read is not available. the 4167 inserts 
additional wait states. Wait states are fully transparent to 
the programmer. The maximum number of wait states is 
162. Such an event only occurs when the 80486 

requests a store after broadcasting five double-precision 
square-root or divide instructions in a row to the 
coprocessor. When the 4167 receives a bus read 
operation. it turns on its bus drivers even before the data 
is ready. The dotted lines in figure 17 shows the time 
slots during which· the 4167 is driving the bus with 
invalid data. 

ClK 

AOS-

W/R-

M/IO­
A3, .. 2S 

MCS-

03, .. 0. OP3 .. o 

RDYIN-

RDYOUT-

BOFF-

TCR-

I~T'~ Qo<lT'= 
I I I I I I I I I I 

I T"j t I I I r"f I I II I I I I I I. I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I T~ I I I I 
I (Float) I r -I- - - -+ - ..2'-1- I Float) I I I 
I I ( I I I I I I 
I I '--1---+---1- I I 
I I I I I I I 
I I I I I I I 

I 
I I I I I I I I I 

I ..j 1 

~Tf~ 
Figure 17. Three wait state bus read cycle without delayed ready 

14 

) 



( 

Hardware Designer's Guide, continued 

RESET AND INTERRUPT TIMING 

RESET set-up and hold time and interrupt valid delays 
are shown in figures 18 and 19. RESET need not be 
synchronous with the 80486's clock to guarantee proper 
operation, setup and hold times are shown only to 
guarantee recognition within a specific clock cycle. 

ABORTED BUS TRANSFERS (BOFF-) 

The 80486 supports the ability to abort a local bus trans­
fer by asserting the BOFF- signal. For a complete discus­
sion of the BOFF- signal and its effects on the system 
refer to the 80486 documentation. 

The 4167 samples BOFF- on each clock cycle. If no 
4167 bus operation is in progress then this signal is 
ignored. If a 4167 bus operation is in progress then the 
operation is aborted and MCS- is deasserted in the 
following cycle. 

CACHE INVALIDATION CYCLES 

80486 Cache invalidation cycles have no effect on the 
4167. When ADS- is asserted the 4167 latches the 
address internally and thereafter uses the internal copy. 
Therefore the 4167 only samples the address bus on the 
cycles when ADS- is asserted. It is assumed that the 
assertion of AHOlD in the 80486 will suppress an ADS­
in the following cycle. 

80486 CACHE CONTROL 

Data transferred to or from the 4167 may not be placed 
into the 80486 internal cache (or an external cache 

ClK 

RESET 

Figure 18. RESET timing 

ClK 

INTR 

Figure 19. Interrupt timing 

15 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

either). In order to prevent the caching of the data 
associated with the 4167 the KEN# signal must be 
deasserted during 4167 read operations to prevent a 
cache fill operation .from occurring. This signal must be 
deasserted in the cycle prior to the assertion of RDY#. 

Alternative A: When the 80486 asserts PCD, the data 
being read into the microprocessor will not be cached, 
independent of the status of the KEN# input signal. 

As PCD is asserted, TCR- ii deasserted, and if the data 
being requested from the. 4167 is available, a zero wait 
state read is performed. 

When the 80486 deasserts PCD, TCR-· will be asserted 
and any read operation from the 4167 will require a 
minimum of one wait state. The MCS- signal will then be 
effective in deasserting KEN#. 

PCD is controlled via software, by setting the PCD bit of 
the'page table entries that map the 4167. As the default 
value for PCD is zero, existing application code will 
always see a minimum of one wait state when reading 
from 4167. New optimized code will see zero wait state 
reads leading to performance improvement. .. 

Alternative B: As TCR- is always asserted, if the data 
being read is available, the 80486 will perform a zero 
wait state read from the 4167, independent of the code 
being executed. As the timing of MCS- is too slow, by 
one entire cycle (See figure 16), fast external logic is 
needed to deassert KEN# in the first cycle of the 
transfer. 



Hardware Designer's Guide, continued 

ROM BIOS SUPPORT 

Designing the 4167 coprocessor socket on the system 
motherboard is necessary, but not sufficient to offer 
complete support for the WEITEK processor. 

PC manufacturers must also provide a presence 
detection program, residing in the system ROM BIOS. 
The program will detect the presence of the WEITEK 
coprocessor and modify the interrupt 11H service 
routine so that bit 24 of the value returned in register 
EAX by the interrupt 11 H routine is set if the 4167 
coprocessor is present. Existing MS-DOS applications 
use such mechanism to determine whether the WEITEK 
coprocessor is present in the system. 

MODIFYING THE ROM BIOS 

ROM BIOS programmers can use several detection 
routines. If the hardware designer has connected the 

16 

PRES- signal to an 110 port, presence detection can be 
accomplished by simply "reading from such 110 port. 
Otherwise the ROM BIOS programmer can use a 
software sequence that loads a WEITEK coprocessor 
register with a specific data pattern and then reads it 
back. To access the WEITEK coprocessor the ROM 
BIOS programmer must first go into protected mode and 
set up page tables to address the 4167. 

A code fragment that implements the detection routine 
is presented in figure 20. It assumes that the system is in 
protected mode and page tables have been set up to 
address the WEITEK coprocessor. 

Figure 20 also shows a code fragment that modifies the 
interrupt 11H routine so that bit 24 of the value returned 
in register EAX by the interrupt 11H service routine is 
set if the coprocessor is present. 



( 

Hardware Designer's Guide, continued 

; see if WEITEK coprocessor is present 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

; (this code assumes that the ba!:le logical address of the ABACUS is loaded into the FS register) 
; first save contents of memory which may change if WEITEK coprocessor is not present 
WFST ECX, ws1 
WFST EDX, ws2 
; read register ws1 into EAX 
WFST EAX. ws1 
; write the data now in EAX into WEITEK coprocessor register ws2 
WFLD ws2. EAX 
; complement data in EAX. save it in EBX. and write it back into register ws1 
NOT EAX 
MOV. EBX. EAX 
WFLD ws1. EAX 
: read the two WErrEK coprocessor registers ws1 and ws2. and compare them to EBX 
WFST EAX. ws1 
CMP EAX. EBX 
WFST EAX. ws2 
; restore memory which may have changed 
WFLD ws1. ECX 
WFLD ws2. EDX 
; restore Interrupts 
STI 
; branch if either register does not compare 
JNZ short iOinit 
NOT EAX 
CMP EAX. EBX 
JNZ short iOinit 
: if the WEITEK coprocessor is present the system must modify the interrupt 11 H routine so that 
bits; 24 of the value returned by interrupt 11 H in EAX is set (See Note). Application software will 
then ; use this mechanism to determine whether the WEITEK coprocessor is present. 
MOV di, offset Handlerjump 
MOV dwork ptr [di-4]. 11 shl 24 
iOinit: ; WEITEK coprocessor is not present 

Note: the code that modifies interrupt 11H assumes that the interrupt handler has been previously 
loaded as follows: 

Handler: 
MOV EAX.O 
Handlerjump: 
JMP far ptr original ; Jump to original interrupt 11 H handler. routint3 

Figure 20. Test for presence of WEITEK coprocessor (4~67 or 1167) 

17 



Hardware Designer's Guide, continued 

DEBUGGING THE SYSTEM 

Once the coprocessor has been designed into the 
motherboard and the ROM BIOS have been modified 
the system is ready to be debugged. 

WEITEK supplies diagnostics and demo software both 
in the UNIX and DOS environments. 

Product 

UNIX Diagnostics 

DOS Diagnostics and Macros 

DOS Demos 

Figure 21. WEITEK-supplied support software 

; see if WEITEK coprocessor is present 
XOR EAX. EAX 
INT 11H 
AND 
JNZ 
K4167: 
J4167: 

EAX. 11 shl 24 
short J4167 
; WEITEK coprocessor not present 
: WEITEK coprocessor is present 

Figure 22. Test for presence of 4167 

The diagnostics software tests for coprocessor presence 
by calling interrupt I1H. then initializes and exercises 
the coprocessor. Code fragments describing the 
presence detection ,and the initialization routines used 
by the diagnostics software are provided in figures 22. 
23, and 24. 

Part Number 

4800-1167-02 

4800-1167-03 

4800-1167-04 

WFLDCTX 
WFSTRL 

B8000000h 
EAX 

; load B8000000h int PCR 
: store revision level 

CMP 
JNE 
k1init: 
WFLDCTX 

JMP 
j1 init: 
WFLDCTX 
WFLDCTX 
i1 init: 

ah, OOh 
short j Hnit 

016000000h 

short i 1 init 

056000000h 
098000000h 

; initialize Multiplier and ALU units flowthrough timers in 
: 1167 

; initialize Multiplier flowthrough timer in 1167 type A 
; initialize ALU flowthrough timer in '1167 type A 

; regardless of the coprocessor type load the following remaining power-up sequence 
WFLDCTX 064000000h 
WFLDCTX OAOOOOOOOh 
WFLDCTX 030000000h 

Figure 23. Initializing the WEITEK coprocessor 

18 



( 

Hardware Designer's Guide, continued 

The rounding mode. the exception mask field and the 
accumulated exception field of the coprocessor Process 
Context Register are initialized as well. The instruction 

; initialize exception masks and rounding mode 
WFLDCTX 003FFOOOOh 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

in figure 24 will set round to nearest rounding mode and 
will mask and clear all exceptions. 

Figure 24. Exception mask and rounding mode initialization 

19 



Programmer's Interface Overview 

This section provides an overview of the software tools 
currently available for the WEITEK coprocessors as well 
as a brief description of the 4167 registers, instruction 
set, data types, and exception handling. 

Operating system developers, compiler manufacturers 
and application programmers that intend to provide new 
tools or port new applications to the 4167 should referto 
the 1167 Software Designer's Guide. 

SOFTWARE TOOLS OVERVIEW 

Once the 4167 has been designed into the motherboard 
and the ROM BIOS has been modified, the new system 
can take advantage of the wide selection of software 
tools and applications supporting the WEITEK 
coprocessors. 

The WEITEK coprocessor is supported by the UNIX 
operating system (System V release 3.0). Operating sys­
tem support includes coprocessor addressing, presence 
detection at power-up, and context-switch handling. 
For UNIX operating systems information contact your 
UNIX supplier. XENIX 386 support is also available. 

The 4167 is also supported by Phar Lap, IGe, and AI 
Architects MS-DOS protected mode environments. 
MS-DOS protected mode environment support for the 
4167 involves coprocessor addressing. 

Vendor 

The WEITEK coprocessor can be supported under real 
mode MS-DOS as well. OEMs that intend to provide 
MS-DOS real mode support for the WEITEK coproces­
sor must offer an Extended Memory Manager that sup­
ports WEITEK coprocessor addressing. (Refer to 1167 
Software Designer's Guide for details). 

C, FORTRAN and Pascal Compilers for the 80486 
and 4167 under UNIX V.3 and MS-DOS protected 
mode are provided by Green Hills, Metaware, 
Microway, and Silicon Va.ley Software. Lahey 
Computer Systems offer~ an· MS-DOS real mode 
FORTRAN compiler. Metaware also provides MS-DOS 
real mode C and Pascal compilers. Contact vendors (or 
details. 

The WEITEK Coprocessor is fully transparent to the 
programmer using these compilers, as the floating-point 
operations are specified with familiar high-level 
language commands. The compilers include a run-time 
library for transcendental operations. 

TRANSCENDENTAL ROUTINES LIBRARY 

WEITEK provides a library of transcendental routines 
to compiler developers. Routines are available through a 
simple license agreement. 

Product Phone 

AI Architects OS 386 (MS-DOS protected mode environment) (617) 577-8052 

Green Hills Software C, F, P Compilers (UNIX and MS-DOS protected mode) (818) 246-5555 

IGC X-AM (MS-DOS protected mode environment) (408) 986-8373 

Lahey Computer Systems F Compiler (MS-DOS real mode) (702) 831-2500 

Metaware C, P Compilers (UNIX, MS-DOS real and protected mode) (408) 429-6382 

Microway C, F, P Compilers (UNIX and MS-DOS protected mode) (617) 746-7341 

Phar-Lap Software RUN386 (MS-DOS protected mode environment) (617) 661-1510 

Silicon Valley Software C. F. P Compilers (UNIX and MS-DOS pr,otected mode) (408) 725-8890 

SAIC C. F. P Compilers (UNIX and MS-DOS protected mode) (415) 960-5931 

Note: F = Fortran. P = Pascal 

Figure 25. Software tools information 

20 

if""'", 

I~ .... / . ./ 



( 

( "" 

--'-

Programmer's Interface Overview, continued 

REGISTERS OVERVIEW 

The 4167 provides a register set of 32 single-precision 
registers. named wsO through ws31. Pairs of 4167 
registers can be used for double-precision operations. 
allowing up to 16 double-precision registers. numbered 
wdO. wd2. wd4 •.•.• wd30. The MSW is stored in the 
even register and the LSW is stored in the next 
contiguous odd register (that is, MSW in wsN. LSW in 
wsN+1). In addition. any 80486 doubleword register' 
can be used to move data. or as the source operand to 
an arithmetic instruction. 

The 4167 also provides a 32-bit process context register 
(PCR). which can be written to control rounding modes 
and exception handling. The context register can also be 
read to save control settings and read various status 
flags. 

wdO _ 

wd2 _ 

wd4 _ 

wd30 _ 

MSW 

wsO (Restricted) 

ws2 

ws4 

ws30 

Figure 26. 4167 register file 

LSW 

ws1 

ws3 

ws5 

ws31 

21 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

INSTRUCTION SET OVERVIEW 

4167 instructions can be divided into: 

1. Data movement instructions 

2. Format conversion instructions 

3. Arithmetic instructions 

4. Compare and test instructions 

S. Sign manipulation instructions 

Most 4167 instructions operate on either two 4167 
registers or on one 4167 register and the contents of the 
80486 data bus. WEITEK coprocessor macro 
instructions have the format: 

OPCODE Source2/Destination. Source 1 

Source1 and Source2/Destination specify the operand 
addresses. The operation result is always stored in the 
same location as Source2. While Source2/Destination 
always specifies one of the thirty-two 4167 internal regis­
ters. Source1 can either specify an internal register (for 
register-to-register operations). an immediate constant 
or the content of a 80486 register (for memory-to-regis­
ler operations). 



Programmer's Interface Overview, continued 

INSTRUCTION SUMMARY 

Figure 27 summarizes the 4167 instruction set macros. 
Macros are available from WEITEK (PIN 
4800-1167-03). All 4167 register names begin with 
"w". We follow the "w" with either "s" for single, "d" 
for double, or "x" meaning either Us" or "d". 

The register name ends with the letter lOt" or "f". "t" 
stands for "to" and "(" stands for "from". For moSt 
instructions, wxt is the destination register and wxf is the 
source register. 

Data Movement 
WFLD wst, wsf 
WFLD wst, data 
WFLD wdt, wdf 
WFLDCTX ereg 
WFPOP wst 
WFPOP wdt 
WFLDSD wst, addr, count 

; load: wst = wsf 
; load: wst = 486 data 
; load: wdt = wdf 
; load: CTX = 486 E-register 
; pop wst from the 486 stack 
; pop two doublewords from the 486 stack to wdt 
; block move: wst array = 486 memory 

WFST 
WFST 
WFSTCTX 
WFSTCTX 
WFPUSH 
WFPUSH 
WFSTSD 
WFSTRL 

ereg, wst ; store: 486 E-register = wst 
ereg, wst, opcode ; store: 486 ereg = ereg <opcode> wst 
ereg ; store: 486 E-register = 'CTX 
ereg, opcode ; store: 486 ereg = ereg <opcode> CTX 
wst ; push wst onto the 486 stack 
wdt ; push wdt (two doublewords) onto ·the 486 stack 
wst, addr, count ; block move: 486 memory = wst array 
EAX ; store revision level to EAX 

Format Conversion 
WFLOAT wxt, wsf 
WFLOAT wxt, data 
WFIX wst, wxf 
WFIX wst. data 

WFCVT 
WFCVT 
WFCVT 
WFCVT 

wst, wdf 
wst, data 
wdt. wsf 
wdt, data 

; convert integer wsf to floating wxt 
; convert integer 486 data to floating wxt 
; convert floating wxf to integer wst 
; convert floating (486 data) to integer wst 

; convert wdf to wst 
; convert double-precision (486 data and ws1) to wst 
; convert wsf to wdt 
; convert single-precision 486 data to wdt 

(continued next page) 

Figure 27. The 4167 instruction set macros 

22 

~~. 

(: ' 

\'_o...J'" 



( 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

Programmer's Interrace Overview, continued 

Four-Function Arithmetic 
WFADD wxt. wxf 
WFADD wxt. data 

WFSUBR wxt. wxf 
WFSUBR wxt. data 
WFSUB wxt. wxf 
WFSUB wxt. data 

WFMUL wxt. wxf 
WFMUL wxt. data 
WFMULN wxt. wxf 
WFMUL.:N wxt. data 
WFAMUL wxt. wxf 
WFAMUL wxt. data 

WFMAC wst. wsf 
WFMAC wst. data 
WFMACD wst. wsf 
WFMACD wst. data 
WFMACD wdt. wdf 

WFDIVR wxt. wxf 
WFDIVR wxt. data 
WFSQRT wxt. wxf 
WFSQRT wxt. data 

Compare and Test 
WFCMPR wxt. wxf; 
WFCMPR wxt. data 
WFCMPRT wxt. wxf 
WFCMPRT wxt. data 

WFTST wxf 
WFTST data 
WFTST ata. ws1 
WFTSn wxf 
WFTSn data 
WFTSn data. ws1 

Sign Manipulation 
WFNEG wxt. wxf 
WFNEG wxt. data 
WFABS wxt. wxf 
WFABS wxt. data 

Paging Directives 
WFSPAGE 
WFDPAGE 

; add: wxt = wxt + wxf 
; add: wxt = wxt + (486 data) 

; reversed subtract: wxt = wxf - wxt 
; reversed subtract: wxt = (486 data) - wxt 
; subtract: wxt = wxt - wxf (1) 
; subtract: wxt = wxt - (486 data) (1) 

; multiply: wxt = wxt X wxf 
; multiply: wxt = wxt X (486 data) 
; negative multiply: wxt = -wxt X wxf 
; negative multiply: wxt = -wxt X (486 data) 
; absolute multiply: wxt = Iwxt X wxfl 
; absolute multiply: wxt = Iwxt X (486 data) I 

; multiply and accumulate: ws2 = ws2 + wst X wsf 
; multiply and accumulate: ws2 = ws2 + wst X (486 data) 
; multiply and accumulate: wd2 = wd2 + wst X wsf (1) 
; multiply and accumulate: wd2 = wd2 + wst X (486 data) (1) 
; multiply and accumulate: wd2 = wd2 X wdf (1) 

; reversed divide: wxt = wxf + wxt 
; reversed divide: wxt = (486 data) /wxt 
: square root: wxt = sqrt(wxf) (1) 
:·square root: wxt = sqrt(data) (1) 

; reversed compare: set CTX flags for (wxf - wxt) 
: reversed compare: set CTX for (486 data) - wxt 
: reversed compare with trap: set CTX flags for (wxf - wxt) 
: reversed compare with trap: set CTX for (486 data) - wxt 

: test: set CTX flags for (wxf - 0) 
; test: set CTX flags for (486 data) - 0 
: test: set CTX flags for double-precision (486 data. ws1) - 0 
: test with trap: set CTX flags for (wxf - 0) 
: test with trap: set CTX flags for (486 data) - 0 
; test with trap: set CTX flags for (486 data. ws1) - 0 

; negate: wxt = -wxf 
: negate: wxt = -(486 data) 
: absolute value: wxt = Iwxfl 
; absolute value: wxt = 1486 datal 

; force next wfld/wfst to single-precision page 
; force next wfld/wfst' to double-precision page 

(1) These instructions are available on the 4167 and 3167. but not on the 1167 

Figure 27. The 4167 instruction set macros. continued 

23 



Programmer's Interface Overview, continued 

EXECUTION TIMES FOR INDIVIDUAL 
INSTRUCTIONS 

To estimate 4167 performance. the table in figure 28 
may be used. 

INSTRUCTION SET-MACHINE'S POINT OF 
VIEW 

The 4167 is a memory-mapped device. The coprocessor 
is mapped in the physical memory area ranging from 
COOOOOOO H to COOOFFFF H. A given address in this 
memory area selects the coprocessor. indicates the 
instruction which the 4167 has to perform, and specifies 
the location of Source 1 and Source2/Destination. 
Figure 29 shows how the 4167 views a 32-bit address 
word. 

COPROCESSOR SELECT 

The most-significant 16 bits of the physical address 
identify a coprocessor instruction. If the upper bits do 
not fall in the COOO-C1 FF range, the address does not 
specify a WEITEK command and is then ignored by the 
4167. To ensure compatibility with future devices. we 

recommend that you set the coprocessor select field to 
COOO when specifying a 4167 instruction. 

OPCODE FIELD 

The next six bits specify the coprocessor instruction to 
be executed. Figure 29 provides the binary and 
Hexadecimal offset, the hexadecimal number obtained 
by placing the six opcode bits into the opcode ~eld of 
the address. for the 4167 instructions. 

OPERAND FIELDS 

The five bits of the Source1 and Source2/Destination 
fields identify the registers that will provide sources and 
destination for the instruction. If Source1 is set to zero. 
the Source1 data is moved over the system data bus. In 
order to take advantage of the 80486 block-move 
instruction the Source1 field is split into a three-bit and 
a two-bit field. The two-bit field occupies the two 
least-significant bits of the address. For details on 
Opcode and Operands (Source1 and Source2/Destina­
tion) encoding the reader should refer to the 1167 
Software Designer's Guide. 

Instruction Type Single-Precision Double-Precision 
Register-to-Register . Register-to-Register 

LOAD, Compare. ABS 2 cycles 2 cycles 
ADD, SUB, NEG, Conversion 2 cycles 2 cycles 
MUL 2 cycles 3 cycles 
AMUL 2 cycles 3 cycles 
MULN 2 cycles 3 cycles 
DIV 17 cycles 31 cycles 

SORT 17 cycles 31 cycles 
MAC 4 cycles 5 cycles 
MACD.S 4 cycles 
STORE" 2 cycles 

"Store operations require a variable number of cycles because they cannot be performed if 
the data is not available. 

Figure 28. Latency 

24 

<~\' 

<'---'/ 

C", 
'-l_/ 



( 

Programmer's Interface Overview, continued 

GENERATING 4167 INSTRUCTIONS WITH 
80486 MEMORY MOVES 

Suppose that two single-precision numbers, stored 
in the 4167 registers WS1 and WS2, need 
to be added and the result stored in WS2. Since the 
coprocessor is mapped in the memory range 
COOOOOOO-COOOEFFF H, the instruction will be 
specified by the following coprocessor select, opcode, 
and operand address fields: 

31 

Coprocessor Select Field 

Figure 29. 4167 view of 80486 address word 

25 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

COPROCESSOR SELECT = 
OPCODE = ADD.S = 
Source1 = WS1 = 
Source2/Destination = WS2 = 
C0000009 H 

COOO 0000 H 
0000 H 
01 H 
08 HA.31 •• Ao = 

An 80486 move instruction which generates a physical 
address of C0000009 H causes the 4167 to execute the 
floating-point addition. 

Opcode Source21 
Destination 

2 1 0 

Source 1 
LSBs 



Programmer's Interface Overview, continued 

DATA TYPES 

The 4167 floating-point coprocessor provides 
compatibility with the formats specified in IEEE 
Standard 754, Version 10.0. Several number types are 
required to implement the standard. The types 
supported by the 4167 are described below. 

NORMALIZED NUMBERS (NRM) 

Most calculations are performed on normalized 
numbers. Single-precision normalized numbers have an 
exponent that ranges from binary 00000001 to 
binary 11111110 (1 to 254) and a normalized 
fraction field (the leftmost or hidden bit is a one). 
In decimal notation, this allows one to represent a 
range of both positive and negative numbers from 
roughly 10+38 to 10-38 with accuracy to seven decimal 

places. Double-precision numbers have an exponent 
ranging from one to 2,046 and a normalized fraction 
field. 

INFINITY (INF) 

Infinity has an exponent of all ones and a fraction field 
equal to zero. Both positive and negative infinity are 
allowed. 

ZERO 

ZERO has an exponent of zero, a hidden bit equal'to 
zero, and a value of zero in the fraction field. Both +0 
and -0 are supported. 

31 30 

Single-Precision 
23 22 o 

lsi e I f 

8 23 

e f Value Name 

255 not 0 none NaN (Not A Number) 

255 0 (-1) S X infinity Infinity 
1 .. 254 any (-1) S X 2--127 X (l.f) Normalized number 

0 0 (-1) S X 0 Zero 

Double-Precision 
6362 52 51 o 

lsi e f 

11 52 

e f Value Name 

2047 not 0 none NaN (Not A Number) 

2047 0 (-1) S X infinity Infinity 

1 .. 2046 any (-l)sx 2 __ 1023 X (1 . f) Normalized number 

0 0 (-1)sxO Zero 

Figure 30. IEEE data types 

26 



Programmer's Interface Overview, continued 

NOT A NUMBER (NaN) 

NaN is a special data format usually used as a flag for 
data flow control. for uninitialized variables. or to signify 
an invalid operation such as 0 times infinity. The format 
for a NaN is an exponent of all ones and a non-zero 
fraction. 

DENORMALIZED NUMBERS (DNRM) 

Denormalized numbers have a zero exponent and a 
denormalized (hidden bit equal to zero) 
non-zero fraction field. They represent numbers 
smaller than 2 -127 (single-precision) or 2 -1023 (double­
precision) .. 

ROUNDING OPTIONS 

The 4167 supports all four rounding modes of the IEEE 
standard: round to nearest, round toward zero, round 
toward plus infinity. and round toward minus infinity. 
Rounding may be biased or unbiased. Biased rounding 
introduces a small offset in the direction of the bias. 
Positive bias, negative bias, or a bias toward zero are 
specified in the IEEE format. Unbiased rounding 
rounds the result to the nearest representable number. 
In the case of a number exactly halfway between two 
representable numbers, the number ~ rounded toward 
the closest even number. resulting in half of the numbers 
rounding up and half rounding down, on average. 

ROUND TO NEAREST (RN) 

Rounds the result to the nearest representable value. If 
two numbers are equally near the result, the even 
number is chosen. 

ROUND TOWARD ZERO (RZ) 

Rounds the result to the value closest to but not greater 
than the magnitude of the result. 

ROUND TOWARD PLUS INFINITY (RP) 

Rounds the result to the value closest to but not less than 
the result. 

ROUND TOWARD MINUS INFINITY (RM) 

Rounds the result to the value closest to but not greater 
than the result. 

IEEE CONSIDERATIONS 

While the IEEE floating-point formats are supported by 
the 4167, some features of the IEEE standard are not 
provided due to the design focus on high speed. 

27 

WTL 4167 FLOATING-POINT 
COPROCESSOR 

ADVANCE DATA 
July 1989 

EXCEPTION HANDLING 

The occurrence of an enabled exception causes an in­
terrupt. Due to extensive instruction overlapping, the 
exact location of an exception is not maintained. In the 
debugging stage of a program it is possible to identify the 
instruction which caUsed the exception by performing a 
store context after every floating-point instruction and 
then testing the enabled exception bit. 

The following exceptions are flagged by the 4167: 

Undefined Opcode Exception (UO£) 

Whenever an illegal opcode is detected, the undefined 
opcode exception is set. On a read bus operation. for 
example. only store-type opcodes are allowed. If a read 
bus operation specifies any other instruction, such as 
multiply, then the undefined opcode exception bit is set. 

Precision Exception (PE) 

Th~ precision exception (PE) flag of the accumulated 
exception field is set whenever there is a loss of accu­
racy. The coprocessor data paths compute results to 
higher precision than the number of mantissa bits that 
appear in the result. If any of the fraction bits less than 
the LSB was equal to one prior to rounding, then the PE 
bit will be set high. The precision exception will also be 
signaled if there is a partial or complete loss of signifi­
cance in a float-to-fixed operation. 

Overflow Exception (OE) 

An overflow exception (OE) is generated when the 
result of a floating-point operation overflows the largest 
representable number. The result produced at the 
output is either infinity or the largest representable 
positive or negative number. depending upon the 
rounding mode as follows: 

Largest positive 
normalized number 

Largest negative 
normalized number 

+Infinity 

-Infinity 

if «RM or RZ) 
and the result is positive) 

if «RP or RZ) 
and the resu!t is negative) 

if «RN or R~) and the result 
is positive) 

if «RN or RM) and the result 
is negative) 



Programmer's Interface Overview, continued 

Overflow is also generated when converting floating­
point-to-fixed point and the result overflows the 32-bit 
format. 

Underflow Exception (UE) 

When the result of an operation after rounding is less 
than the minimum normalized number in the 
destination format. UE is asserted and the result is 
flushed to zero. A result of exactly zero does not 
underflow. 

Zero Divide Exception (ZE) 

The 4167 will assert a ZE exception when performing 
division on a normalized dividend and a zero divisor. 
The result is a properly signed infinity. 

Invalid Operation Exception (IE) 

IE is asserted if a NaN input or if an invalid operation 
occurs. The invalid 4167 operations are ooXO. 0/0. 

3167 and 4167 Compatibility 

This section describes the hardware and software 
differences between the 4167 and the 3167. 

HARDWARE COMPATIBILITY 

The 4167 is designed to efficiently interface with the 
Intel 80486 microprocessor. It fits into a 142-pin socket. 
The 3167 is a coprocessor for the 80386 that fits into a 
121-pin socket. 

APPLICATION SOFTWARE COMPATIBILITY 

The 4167 is upward object-code-compatible from the 
3167. The application programs and all of the software 
tools available for the 3167 will also run on the 4167. 

Ordering Infonnation 

00/00. subtraction of like infinities (00 - 00) and addition 
of opposite infinities 00+(-00). The result of any invalid 
operation is a NaN with the fraction and exponent of all 
ones. The sign bit is zero. 

FAST MODE 

The 4167 always operates in Fast Mode: de normalized 
inputs to either the multiplier or AL U are flushed to 
zero as well as unnormalized outputs. The minimum 
normalized number has an exponent of one and a 
fraction field of zero. Zero has an exponent of zero and 
a fraction field of all zeros. This allows to represent 
numbers between the smallest normalized number and 
zero. These numbers are known as de normals (ONRM). 
Since denormals are very close to zero, most 
applications can substitute zero for a de normal without a 
significant loss of accuracy. 

SYSTEM SOFTWARE COMPATIBILITY 

Addressing, initialization, presence detection, 
exception handling, context switching, and coprocessor 
emulation for the 4167 are the same as they are for the 
3167. Therefore, the 4167 works in all of the operating 
system environments that support the 3167. 

Part Description Temperature Range Order Number 

25 MHz 4167 Coprocessor TeASE = 0 to 85° C 4167-025-GCU 

Figure 31. 4167 Coprocessor ordering information 

28 

c 





WEIT~ 

Headquarters 
WEITEK Corporation 
1060 East Arques 
Sunnyvale, CA 94086 
TEL (408) 738-8400 
TWX 910-339-9545 

WEITEK SVL 
FAX (408) 738-1185 

WEITEK U.S.A. 
WEITEK Corporation 
1060 East Arques 
Sunnyvale, CA 94086 
TEL (408) 738-8400 
TWX 910-339-9545 

WEITEK SVL 
FAX (408) 738-1185 

Corporate Place IV 
111 South Bedford SI. 
Suite 200 
BUrlin~ton. MA 01803 
TEL 617) 229-8080 
FAX 617) 229-4902 

WEITEK Europe 
Greyhound House 
23/24 George St. 
Richmond. Surrey 
England TW9 1JY 
TEL (011) 441-948-8608 
TELEX 928940 RICHBI G 
FAX (011) 441-940-6208 

WEITEK Japan 
4-8-1 Tsuchihashi 
Miyamae-Ku 
Kawasaki. Kanagawa-Pre 
213 Japan 
TEL 044-852-1135 
FAX 044-877-4268 

• 

/ 

If--"" 

L 


