WTL 3132/WTL 3332/
WETEK 4 W

32-BIT FLOATING POINT
DATA PATH

C , PRELIMINARY DATA
October 1988

The WEITEK WTL-3132, WTL
3332, and XL-3132 single-chip
floating point data paths each offer a
full instruction set, including multi-
ply, multiply/accumulate, add, sub-
tract, type conversion, and divide
look-up operations. Efficient de-
sign and architecture, combined
with CMOS technology, provide up
to 20 MFLOPS of performance at

Z /17//} /0/28/ very low power.

Related Products: XL-8136 32-bit
Sequencer, XL-8137 32-bit Integer

Processor
Contents
Features 1
Description 1
Architecture 2
Signal Description 4
~ Block Diagram 5

[Register File 7
Multiplier/Accumulator 8
Temporary Registers 13
Internal Data Routing 16
Input/Output 20
System Interfacing 25
Instruction Set 30
Initialization 35
Division 38
Data Format 39
IEEE Considerations 41
DC Specifications 42
Timing Diagrams 43
AC Specifications 45
Pin Configuration 46
Physical Dimensions 48
Appendix A: The XL-3132
in the XL Environment 49
Appendix B:

Programming Examples 55

[Ordering Information 58

Revision Summary 59

Sales Offices back cover

»

7N
__/

o

¢

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Features

32-BIT FLOATING POINT PROCESSOR
Single-precision floating point multiplier/ALU
Four-port 32X 32 register file

IEEE floating point format

Low power, high integration CMOS

FULL FUNCTION

Add, subtract, multiply, multiply/accumulate

Divide look-up table

Type conversion to and from two’s complement integer
Three-address (rc := ra + rb) architecture

Flexible I/O options

HIGH PERFORMANCE

100 and 120 ns cycle times

Up to 20 MFLOPS throughput (1 MAC/cycle)
Low latency (3-cycle register-to-register operation)
High I/O bandwidth (up to 200 Mbytes/sec)

MULTI-PURPOSE

For maximum
WTL 3332

throughput, wuse the three-port

For maximum design flexibility, use the WTL 3132 or
WTL 3332 as microprogrammable building blocks

For high level language support, use the XL-3132 as
the XL-8032 floating point coprocessor

Description

The WTL 3132 and WTL 3332 are single-precision
floating point data paths. Each includes a pipelined
multiplier/accumulator and a four-port register file with
thirty-two 32-bit registers.

The WTL 3132/WTL 3332 are suited to a wide range
of systems that need high numeric processing perform-
ance. They may be adopted as the floating point unit
for a general-purpose processor, used as building
blocks for application-specific data paths or even con-
nected together to create vector or array processors.

The WTL 3132 has a single bi-directional 32-bit input/
output port. It is designed to be used as a floating point
coprocessor or accelerator. The WTL 3332 has three
32-bit ports; one bi-directional input/output port, one
input port and one output port. It should be used in
applications which require multiple high-bandwidth
buses.

The XL-3132 may also be used with the WEITEK
XL-8136 program sequencing unit (PSU) and
XL-8137 integer processing unit (IPU) to create a fast,
general-purpose numeric processor, the XL-8032. Full
development system support, including FORTRAN
and C compilers, is available for the XL-Series of
processors. The XL-3132 is functionally identical to
the WTL 3132.

Both devices are manufactured in low power CMOS
and are available in standard pin grid array (PGA)

packages. The WTL 3132 is supplied in a 144-pin PGA
and the WTL 3332 in a 168-pin PGA.

X Port

SEE

32x32
Register
File

A B
\ y

BUSES/MUXES/ETC.

1T

X +/ -
Multiply ALU

Figure 1. WTL 3132/WTL 3332 core functions

© Copyright WEITEK 1988
All Rights Reserved

Architecture

MULTIPLIER/ACCUMULATOR

The core of both the WTL 3132 and WTL 3332 is the
multiplier/accumulator pipeline. Its first stage can mul-
tiply two operands together. The next stage can add or
subtract another operand. Finally, the result is rounded
and returned to a register and/or output port.

Multiply, add, subtract, and multiply/accumulate
operations are performed in the multiplier/accumu-
lator. They all operate on data that conforms to the
IEEE single-precision floating point format.

Each operation takes three cycles, but, because the
multiplier/accumulator is pipelined, a new operation
can be started on every cycle. At any time, three inde-
pendent operations may be at different stages in their
execution.

Rounding, conversion between floating point, and
two’s complement integer formats, and other miscella-
neous functions are supported in the accumulator.

REGISTER FILE

contains thirty-two registers, each of which may store
a 32-bit value.

The four ports allow the register file to supply two
operands to the multiplier/accumulator, store its result
back to a register, and perform an input/output
transfer—all in the same cycle.

INPUT/OUTPUT PORTS

The external I/O ports are all 32 bits wide. They can
each transfer a data value on every cycle.

The WTL 3132 has one bi-directional external port;
the X port. It can load and store data to and from the
register file, and it can transfer data directly to and
from the multiplier/accumulator.

The WTL 3332 has three external ports; the X port,
the Y port, and the Z port. The X port is the same
as the WTL 3132’s X port. The Y port feeds input
operands directly to the multiplier/accumulator. The
Z port outputs results directly from the multiplier/
accumulator. These additional ports help to avoid the

- bottlenecks usually associated with I/O-intensive
Operands and results of the multiplier/accumulator algorithms
may be stored in the four-port register file. This file)
X Port X Port @ @ Y Port
;]
\
Code . Code
Port Port

REGS

y v

| BUsEs/MUXEs/ETC. |

WTL 3132
(COPROCESSOR)

REGS

(e

y v

[Buses/muxesetc. |

\>/ | \/

WTL 3332
(DATA PATH)

Figure 2. WTL 3132/WTL 3332 1/O options

© Copyright WEITEK 1988
All Rights Reserved

\\¢/

O

Architecture, continued

TEMPORARY REGISTERS

Three 32-bit temporary registers are provided to store
intermediate results. They make it possible to perform
operations of the form

x=x+ (yxz)

in a single cycle.

DIVIDE LOOK-UP TABLE

Support for divide operations is provided by an on-chip
look-up table. It returns an approximation for the
inverse of a value which may then be refined by
iterative multiply/accumulate operations. Division is
accomplished by multiplying the dividend by the
inverse of the divisor. This complete divide operation
takes eighteen cycles; other operations may be inter-
leaved without a performance penalty.

INSTRUCTIONS

An instruction is latched into the code port on every
cycle. It specifies operand sources, a result destination
and all of the steps that will create this result during the
next three cycles. Condition codes and exceptions may
be generated by each operation as the result is written
back to the register file.

Four five-bit fields provide addresses for the register
file. They each select a source or destination for one of
the register ports. The three-bit function field specifies
the type of multiplier/accumulator operation. The 2-bit
I/0 control field directs data transfer at the external
X port. Other fields select the route taken by the data
during the the operation.

A Mode Register controls data routing options that
rarely change, selecting between a number of I/O

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

timing options, and supporting upward-compatibility
with previous versions of the WTL 3132/WTL 3332.

XL-SERIES COMPATIBILITY

The XL-3132 may be used with the WEITEK XL-8136
program sequencing unit (PSU) and XL-8137 integer
processing unit (IPU) to create the XL-8032 processor.

The XL-3132 floating point unit (FPU) shares a 64-bit
instruction word with the IPU and PSU. The IPU and
FPU also share the 32-bit-wide data bus.

The XL-3132 responds to the NEUT-, STALL- and
ABORT- signals used to control branching and “wait
states” within the XL-8032. It communicates its status
to the PSU with the floating point condition (FPCN)
and exception (FPEX) lines. See Appendix A for more
about the XL-Series.

Code Address Bus Code
Memory
64, Code Bus
‘ A)
XL-8136 XL-8137 XL-3132
PSU IPU FPU
- I, - ‘ Data Bus >
- ,, Data Address Bus >
Data
Memory

Figure 3. XL-8032 block diagram

© Copyright WEITEK 1988
All Rights Reserved

Signal Description

X PORT

The 32-bit X31..0 port is a bi-directional data bus. Input
data is sampled on the rising edge of CLK (or, if
Double-Pump Mode is enabled, both on the rising and
falling edges of CLK). Data transfers are controlled by
the IOCti..0 field in the instruction word. The X port
may be set to a high impedance state by the OEX-
signal. Active high.

Y PORT

The 32-bit Y31..0 port is a data input bus. Input data is
sampled on the rising edge of CLK (or, if the Y port
Late Input Mode is enabled, on the falling edge of
CLK). The Y port is only available on the WTL 3332.
Active high.

Z PORT

The 32-bit Z31..0 port is a data output bus. The output
data is modified on every cycle. The Z port is only
available on the WTL 3332. It may be set to a high
impedance state by the OEZ- signal. Active high.

C PORT

The 35-bit Ca4..0 port is used as a code input bus.
Instructions are latched the rising edge of CLK. Active
high. Ca4 is only available on the WTL 3332 (see
figure 40).

OEX-

X port output. enable input. OEX- asynchronously
disables the X port when high. Active low.

OEZ-

Z port output enable input. OEZ- asynchronously
disables the Z port when high. Active low.

FPEX(-)

Floating point exception output. FPEX signals the
occurrence of an enabled exception (overflow). Polar-
ity is selectable by mode bit Ms.

© Copyright WEITEK 1988
All Rights Reserved

FPCN

Floating point condition output. FPCN signals the
occurrence of a condition as specified in the Encni..o
field of an instruction. Active high.

ZERO

Zero condition output. Indicates that the result of an
operation is exactly equal to zero. Controlled by the
Encni..0 field of an instruction. Active high.

NEUT-

Neutralize input. Cancels the effect of the current
instruction. Typically used during delayed branches
and interrupt response routines (see page 27). Latched
on the cycle following the instruction to be cancelled.
Active low.

STALL-

Stall input. Cancels the effect of the next instruction.
Typically used as a “not ready” line from the code
store (see page 28). Latched on the same cycle as the
potentially invalid instruction. Active low.

ABORT-

Abort input. Cancels the effect of both the current and
next instructions. Typically used as a “not ready” line
from the data store (see page 29). Latched on the
same cycle as the next instruction. Active low.

CLK
Clock input. TTL compatible.

VDD
All VDD pins must be connected to 5.0V.

GND
All GND pins must be connected to system ground.

NOTE: Signals denoted by “-” are active low.

"/

O

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

C

October 1988

Block Diagram

I NEUT- | IABORT—l I STALL—l C33..0

[
]

\

®

lOUTPUT BYPASS MUX I'M
7 Cadd

NOP NOP
| XCinR | I XDinR | DXDoutRJ DXCoutRl CURRENT NEXT

| ° C Bus (Result)
)
D c I
X
3X32 Adst

32x32 Register File Tregs Aadd
b]

- Cadd | gt

B I Cwen-
] %
fadd = FRUpass Mux | 22dd= M pypass Mux
; Cadd/ Cadd
(Dadd
.)

A Bus 9 $) %
B Bus '] T Py | ';2
C Bus .
(In) * 32
MUX - ® Mbin
y
MAIn MBin
MUL-1/2 STAGE I
|] y | |
3 PIPE | D | | P | 3 |
)
| MUL-1 STAGE] “0” “2”
! : S N I

I MUX ‘ l [‘ MUX

Deee | D | L1
DD ¥ ¥

IAA

T
o
le—@
>
2
3

LOOK

in ABin—l
ALU-1 STAGE ROM

3 PI;E |) J
——-—I ROUND-1/2 STAGE I

Encn
(:"‘ FPCN {32 %2
- y

ZERO/CONDITION/
ZERO e OVERFLOW LoGIC [*

Figure 4. WTL 3132 block diagram

5 © Copyright WEITEK 1988
All Rights Reserved

Block Diagram, continued

I za1..o] | OEZ- | I Y 31-0 | Lx:n..o LNEUT-] IABORT—I I STALL—l l ca4..0 |
i 1 ¥ B
R | kS
Dadd =
[OUTPUT BYPASS MUX I'?:T W
I> ZoutR I [YinR] [xcmvﬂ | XDinR I DXDoutRl XCoutR CUE(F%ENT f{l\l&PT
° C Bus (Result)
)
D c (1
|E Code I
] 3x32 Adst
32x32 Register File Tregs Aadd
15z
A B] Sadd oGt
Aadd =
——{’:Iilcadd, BVPASS MUX
Dadd
] 9 Mbs-
g gus $ $ ¥ > 22 ,
us T) ¢ > 32
C Bus y & e
(In) 32
MUX @ Mbin
MAIn MBin]
MUL-1/2 STAGE
i | [|
P PIPE | D | P l R | L1
]
| MUL-1 STAGE | “on w27
I i S N N |
L MuX] | MUX e I Abin
)) ¥
eee | D | R |
) »
AAin ABIn I ‘ oK
ALU-1 STAGE RoM
!
D PIPE | D |
'
—l ROUND-1/2 STAGE 1
ZERO/CONDITION
IZERO fe OVERFLOW LogIc [*
Figure 5. WTL 3332 block diagram
© Copyright WEITEK 1988 6

All Rights Reserved

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Register File

The WTL 3132 and WTL 3332 each have thirty-two
32-bit general-purpose registers. Each register can store
either a single-precision IEEE value or a two’'s comple-
ment integer value.

PORTS

The register file has four ports, A, B, C and D. The
A and B ports are read-only, the C port is write-only,
and the D port is bi-directional. Each port can transfer
a 32-bit data word on every clock cycle.

The A and B ports may be used to supply operands to
the multiplier/accumulator and the divide look-up
table. The C port receives the result of a previous
operation. The D port communicates data between the
register file and the external X port.

This organization allows I/O transfers to proceed
in parallel with calculation, maximizing system
performance.

REGISTER SELECTION

The registers that are to take part in each transfer are
selected by the instruction word. The instruction for-
mat allows a register address to be supplied for each
port. They are provided in the Aadd, Badd, Cadd and
Dadd fields of the instruction. These fields are five bits
in length, allowing each address to specify any of the
thirty-two registers.

An instruction supplies the Aadd, Badd, and Dadd
addresses to the register file during its first cycle and
the Cadd address during its fourth cycle. This way a
single instruction specifies all of the stages of an opera-
tion from initial source to ultimate destination.

It is possible for a register to be selected by more than
one field in the same cycle, in which case the following
rules apply:

1. If only read operations are to be performed on the
register in question, then its value is copied to all of
the necessary ports.

2. If two ports (C and D) attempt to write into the
same register on the same cycle, the contents of the
register will be left in an undefined state. Such con-
tention should be avoided.

3. If a register is to be both read and written on the
same cycle, its old value will be read before it is
updated to the new value, unless one of the Bypass
Modes is activated (see page 16).

L L

32 bits 32
Registers

T

Figure 6. The four-port register file

READ/WRITE CONTROL

Two other fields in the instruction word affect the
operation of the register file.

1. The Cwen- bit controls writing of results into the
C port. When it is active (low), the result data is
written on the fourth cycle of the operation. When
writes are disabled, the contents of the register
specified by Cadd remain unchanged.

Register writes may be disabled either to direct a
result to a Temporary Register or to allow arithmetic
comparisons to modify the Status and Condition
Registers without overwriting the contents of a
general-purpose register.

2. The IOCt1..0 bits control the direction of D port
transfers (see page 20 for details). If the C port and
the D port attempt to write to the same register file
location on the same cycle the register contents are
left undefined.

© Copyright WEITEK 1988
All Rights Reserved

Multiplier/Accumulator

The WTL 3132 and WTL 3332 each have a pipelined accumulator input and output ports can transfer 32-bit
multiplier/accumulator. These consist of a floating data values. Figures 7 and 8 show how operations are
point multiplier whose output is fed into a floating point pipelined through the multiplier/accumulator.

ALU (Arithmetic and Logic Unit). All multiplier/

X PORT C Bus
(4)
D C
32x32
Register
File
A B
A Bus °
B Bus —
(1) NS
(1) (1) (2) (2)
MAin MBin AAin ABin
X +/ -
(3)
I
Note: For clarity, many key features have been omitted from this diagram (see pages 5§ and 6 for more detail).

Figure 7. Simple example of multiplier/accumulator timing.

© Copyright WEITEK 1988
All Rights Reserved 8

C

Multiplier/Accumulator, continued

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

CLK

CODE PORT

@
-
=

REGISTER FILE
(2)

|

MULTIPLIER MULTIPLY
I { 1 (3)
ALU :{ ALU1 >

|
l |
| |
I !
REGISTER FILE t f
| I

Note: See Figure 7

S ISR (DO IS S

Figure 8. Timing of MAC operations
MULTIPLIER

The multiplier has two input ports, MAin and MBin. It
has one output which can only be connected to the
AAin port of the ALU. In the first cycle of an opera-
tion, operands are transferred from the register file and
fed into MAiIn and MBin. The multiplication is com-
pleted on the second cycle. The intermediate result
may be negated before it is passed to the ALU.

ALU

The ALU has two input ports, AAin and ABin. It has
one output which is normally connected to the C bus.
AAin may be connected to the multiplier’s output, so
that its result is fed into the ALU. Another operand is

fed into the ABin port simultaneously. The ALU com-
pletes the function specified by an instruction during its
third cycle. The final result is rounded and output to
the C bus to be returned to the register file on the
fourth cycle.

LATENCY

Because the multiplier/accumulator is pipelined, an
operation can be initiated every cycle. The result of an
operation is generated three cycles after it is initiated.
On the fourth cycle, the result can be returned to the
register file or fed straight back into the multiplier/
accumulator using the temporary registers or a bypass
mode (see pages 13 or 17).

© Copyright WEITEK 1988
All Rights Reserved

Multiplier/Accumulator, continued

FUNCTION SELECTION

The multiplier/accumulator function is specified by
the 3-bit field F2..0 in the instruction word as outlined

When the F2..0 field is (0, 0, 0), the operation to be
performed is specified by the Badd field according to

in the function select table (figure 9). A single instruc- figure 10.

tion specifies all of the actions associated with one op-

eration as it passes through the multiplier/accumulator.
Fz2 F1 Fo MNEMONIC OPERATION DESCRIPTION
000 - Miscellaneous See figure 10
001 fsubr Negate and add —-AAin + ABin
010 fsub Subtract AAin — ABin
011 fadd Add AAin + ABin
100 - Reserved
1 01 fmna Multiply, negate and add —(MAin X MBin) + ABin
110 fmns Multiply, negate and subtract —(MAin X MBin) - ABin
111 fmac Multiply and accumulate (MAin X MBin) + ABin

Figure 9. Function select field encoding

01000-11111

Reserved

Badda..o MNEMONIC OPERATION DESCRIPTION
00000 fclsr Clear Status Register
00001 fstsr* Read Status Register
00010 - Reserved
00011 fmode Load Mode Register
00100 fabs Absolute Value | AAin|
00101 float Fixed-to-Float integer — |IEEE
00110 fix Float-to-Fixed IEEE — integer
00111 flut Look-up Operation

* fstsr instructions must have their I0Ct1..0 field set to select a store

Figure 10. Miscellaneous function select encoding

© Copyright WEITEK 1988
All Rights Reserved

10

O

N

O

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Multiplier/Accumulator, continued

MULTIPLY/ACCUMULATE FUNCTIONS

The WTL 3132/WTL 3332 provide three multiply and
accumulate functions: fmac multiplies MAiIn and MBin
and then adds ABin; fmns multiplies MAin and MBin,
negates the result and then subtracts ABin; fmna
multiplies MAin and MBin, negates the result and then
adds ABin.

These functions are triadic (they have three input
operands). If an IEEE multiply operation is required,
the constant 0.0 should be selected as the ABin input.

ALU FUNCTIONS

The WTL 3132/WTL 3332 provide three diadic “ALU
only” functions: fadd adds AAin to ABin, fsub subtracts
ABin from AAin, fsubr subtracts AAin from ABin.

The Fz2..0 field determines whether the multiplier is
bypassed and the ALU’s input staged directly into the
ALU (see figure 11).

These functions operate in the same number of cycles
as the multiply and accumulate functions. This simpli-
fies the programmer’s model; every operation has the
same latency.

C Bus

D C
32x32
Register
File
A Bus A B
.
B Bus

MAin I >MBin

Note: For clarity, many key features have been omitted from this diagram (see pages 5 and 6 for more detail)

AAin ABin

+/ -

Figure 11. “ALU only” operations

11

© Copyright WEITEK 1988
All Rights Reserved

Multiplier/Accumulator, continued

MISCELLANEOUS FUNCTIONS

If the function field is equal to zero, then a miscellane-
ous ALU function will be selected according to the
contents of the instruction’s Badd field (see figure 10).

1. flut is monadic (that is, it has a single input oper-
and). It takes the value on the A bus as its operand
and it returns an approximation to the inverse of
this value onto the C bus on its fourth cycle. flut
does not attempt to modify the Status, Condition or
Zero Registers. It is recommended that the Abinz..o
field be set to select the constant 0.0. (See
page 38.)

2. fix is a monadic “ALU only” function. It takes a
single-precision IEEE format floating point value on
the A bus as its operand and returns a 24-bit, sign
extended, two’s complement integer onto the C bus
on its fourth cycle. fix does not attempt to mod-
ify the Status or Zero Registers. It is the only
instruction that produces an integer result. It is
recommended that the Abinz..o field be set to select
the constant 0.0. (See page 40.)

3. float is a monadic “ALU only” function. It takes
a 24-bit, sign extended, two’s complement value on
the A bus as its operand and returns a single-
precision IEEE format floating point number onto
the C bus on its fourth cycle. float does not attempt
to modify the Status or Zero Registers. It is the only
instruction that requires an integer operand. It is
recommended that the Abinz..o field be set to select
the constant 0.0. (See page 40.)

4. fabs is a monadic “ALU only” function. It takes
the value on the A bus as its operand and returns its
absolute value onto the C bus on its fourth cycle.
fabs does not attempt to modify the Status Register.
The Zero and Condition Registers are modified
according to the result unless Encni..o = (0,0). As
with the diadic “ALU only” functions, it will clamp
denormalized operands to zero and NaNs to infin-
ity. The Abinz..o field must be set to select the
constant 0.0.

© Copyright WEITEK 1988
All Rights Reserved

12

5. fmode loads the desired operating modes into the
Mode Register (see page 35). Because this opera-
tion changes the timing of many operations, the
results of the next three operations should be
discarded. '

fmode is not cancelled by the NEUT- or ABORT-
signals. It should not be executed in a branch
shadow.

6. fstsr copies the contents of the Status Register to
the X port. It has the same timing as the other
fstore operations. (See page 26.) It is recom-
mended that the Cwen- bit be set to prevent
register writes, the Encni..o field to disable updates
of the FPCN pin, the I0Cti..0 field to an fstore and
that the result sent to the register file on its fourth
cycle be discarded. fstsr ignores the register address
fields.

7. fclsr clears the contents of the Status Register to
zero. (See page 26.) It is recommended that the
Cwen- bit be set to prevent register writes, the
Encni..o field to disable updates of the FPCN pin,
the IOCt1..0 to an I/0 nop and that the result sent to
the register file on its fourth cycle be discarded.
fclsr ignores the register address fields.

MULTIPLIER/ACCUMULATOR NOP

The WTL 3132/WTL 3332 do not have a dedicated
nop instruction. WEITEK software tools use
fsub .f0, .f0, .fO with the Cwen- bit set to disable
register writes and the Encni..o field cleared to disable
FPCN updates. This choice of nop causes no state
changes.

A

Temporary Registers

The WTL 3132 and WTL 3332 each include
three 32-bit temporary registers (Tregs). They allow
values to be recirculated to the ALU without passing
through the general-purpose register file. The Tregs
are often used as accumulators during successive multi-
ply/accumulate operations. They make it possible to

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

perform a calculation of the form x = x &= (yXz) every
cycle.

Figures 12 and 13 show how the Tregs are used to
feedback operands to the multiplier/accumulator.

Figure 15 gives an example of a code sequence that
does this.

C Bus
D C
3x32
32x32 Tregs
Register
File
A B
A Bus
B Bus /
. 4
I MUX] Abinz..0
MAin AAIn ABin
+/ -
Note: For clarity, many key features have been omitted from this diagram (see pages 5 and 6 for more detail).

(« Figure 12. Use of temporary registers

13

© Copyright WEITEK 1988
All Rights Reserved

Temporary Registers, continued

ALU

e
ALU1

CLK _J 1 2 3 4
| | | | I | | | | | | I | I
LN |
CODE PORT _@ R 2
L\ | | | | L—\ | | | | | |
REGISTER FILE AREAD1)—T T T T KREADA—— I I I I I
| [| | | I I | | | | I |
MULTIPLIER _‘l‘——l'_@ : : K muLtipLyva > : : :
|
t

"
I

o)

—_——t — —

T REGISTER

REGISTER FILE

ALU4
I T |
! FEEDBACK RESULT
WR1 X RD1 | I ' I

|
|
|
|
|
I
|
[
|
t
|
]
|
I

b —d

T

Figure 13. Temporary register timing
WRITING TEMPORARY REGISTERS

The instruction word contains a two-bit field, Adst1..o,
that determines the destination of the ALU output (see
figure 14).

The output of the ALU is always sent to the C bus. If
no Treg is selected by the Adsti..o field, then the result
is returned only to the register selected by this instruc-
tion’s Cadd field on its fourth cycle.

If the Adst1..0 field selects a Treg in addition to the
C bus, it is loaded with the result on the fourth cycle of
an operation, just as the Cadd register write occurs. On
the next cycle, the contents of the Treg may be input
directly to the ABin port. This is illustrated by the
example shown in figure 15.

© Copyright WEITEK 1988
All Rights Reserved

T
VN L1 1
N T N
R

The Cwen- bit of the instruction that writes to the Treg
may be held high to prevent the write to the Cadd
register. This increases the number of available
general-purpose registers.

Adst1..0 RESULT DESTINATION
00 Tregs, C bus
01 Trege, C bus
10 Treg1, C bus
11 C bus

Figure 14. ALU destination select field encoding

14

Temporary Registers, continued

READING TEMPORARY REGISTERS

The instruction word contains a three-bit field,
Abinz..0, that determines the source of the MAC’s
ABin input.

Three encodings select one of the Tregs (see
figure 17). If a Treg is selected, it is copied to the ABin
port on the second cycle of the operation.

The Treg may be be read on the cycle after it was
written. In figure 15, for example, .t1 gets read during
the second cycle of op #4. This is the fifth cycle of
op #1.

15

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

op #1
op #2
op #3
op #4

fmac
fmac
fmac
fmac

.f0,
13,
.6,
.9,

f1, 0, .t1

f4, t1, .f5 —old .t1
f7, .11, .18 —lllegal
.f10, .t1, .f11 —new .t1

Notes: A Treg cannot be both written and read
in the same cycle. Op #3 must never attempt
to read the Treg written by op #1.

To make this code interruptable, op #2 and
op #3 should not specify .t1 as an operand.

Full details of this syntax are given on
page 32.

Figure 15. Use of temporary registers

© Copyright WEITEK 1988
All Rights Reserved

Internal Data Routing

INTERNAL BUSES

The three main internal buses, A, B and C, move data
between the major functional units of the WTL 3132
and WTL 3332. Each of these buses is 32 bits wide and
can carry one word per cycle.

The A bus usually carries operands from the register
file to the multiplier/accumulator or the divide look-up
table. It may also be fed with operands directly from
the X port if the Input Bypass Mode is enabled (see
page 21).

The B bus usually carries operands from the register
file to the multiplier/accumulator. It may also be fed
directly with operands from the Y port on the
WTL 3332 if selected by the Mbs- bit (see page 23).

The C bus usually carries multiplier/accumulator or flut
results back to the general-purpose register file. If the
Output Bypass Mode is enabled, then it may be used to
feed the results directly to the X port.

If the C bus is not needed to carry the results back to
the registers (that is, when they are output directly to
the Z port, discarded or fed to a Treg), then its usual
direction of transfer may be reversed. It is then used to
carry inputs from the X port directly to the multiplier/
accumulator. This is only possible by the use of the
floadrc operation or the Double-Pump Mode (see
page 21).

MULTIPLIER/ACCUMULATOR INPUT PORTS

The multiplier/accumulator has four input ports, MAin,
MBin, AAin and ABin. These ports can each receive
a 32-bit word per cycle. They all have multiplexers
which may be connected to various input sources. The
possible selections for each port are described below:

1. MAIn usually obtains input from the A bus. Results
may be fed from the C bus to the A bus using the
Internal Bypass Mode and then into MAin.

2. MBin wusually obtains its input from the B bus.
Results may be fed from the C bus to the B bus
using the Internal Bypass Mode and then into MBin.
Y port inputs may be enabled onto the B bus and
then into the MBin.

Alternatively, the C bus can be reversed so that it is
carrying inputs from the X port to the MBin port.
This prevents the C bus from being used to return
results to the register file and is done in conjunction
with the floadrc operation or Double-Pump Mode.
MBin must select the C bus (see figure 16).

© Copyright WEITEK 1988
All Rights Reserved

16

3. AAin usually obtains its input from the A bus.
Results may be fed from the C bus to the A bus
using the Internal Bypass Mode and then into AAin.

4. ABin usually obtains its input from the B bus.
Results may be fed from the C bus to the B bus
using the Internal Bypass Mode and then into ABin.
Y port inputs may be enabled onto the B bus and
then into the ABin.

The 3-bit Abinz..o field in the instruction word
selects between input from the B bus (as above),
input of the constants 0.0 or 2.0, input from one of
the Tregs, or input from the C bus (as below) ac-
cording to figure 17.

Alternatively, the C bus can be reversed so that it is
carrying inputs from the X port to the ABin port.
This prevents the C bus from being used to return
results to the register file and is done in conjunction
with either the floadrc operation or Double-Pump
Mode. ABin must select the C bus. When this
pathway is used, the ABin data is not delayed: an
external register may be needed to synchronize the
X and Y inputs.

NOTE: While the C bus is normally used either for
returning the results to the register file or transferring
X port inputs directly to a multiplier/accumulator input
port, there is one circumstance when it can assume a
dual role. It is possible, on the WTL 3332 to feed a
value from the Y input port to the ABin port via the
B bus and to return a result to the register file and
MBin port in the C bus simultaneously.

Mbin- INPUT
0 B bus
1 C bus

Figure 16. Multiplier input port select field encoding

Abinz..0 INPUT
000 C bus
001 B bus
010 Tregz
011 Treg1
100 Tregs
101 Reserved
110 2.0
111 0.0

Figure 17. ALU input select field encoding

O

WTL 3132/WTL 3332/XL-3132

32-BIT FLOATING POINT
DATA PATH

October 1988

Internal Data Routing, continued

If the function code specifies an operation that uses the ports automatically. The WTL 3132/WTL 3332 are de-
multiplier, it directs data to the MAin or MBin ports. If signed to maintain a consistent latency regardless of the
the multiplier is not used, (that is, in “ALU only” type of operation.

operations), then the data is sent to the AAin or ABin
INTERNAL BYPASS MODE

C Bus
D C
32x32
Register
File
A B
Aadd = Cadd { MUX I I MUX =Badd = Cadd
AND Cwen- =0 AND Cwen- =
A Bus o -
B Bus . I
y
L | D l

MAIn I >M8in AAIn

X

PABIn
ABin

+/ -

Note: For clarity, many key features have been omitted from this diagram (see pages 5 and 6 for more detail).

Figure 18. Internal bypass routes

17

© Copyright WEITEK 1988
All Rights Reserved

Internal Data Routing, continued

A code sequence may often specify the result of one
operation to be the operand of a subsequent operation.
The WTL 3132/WTL 3332 provide several methods of
achieving this:

1.

Internal Bypass Mode disabled

The default mode (Mo = 0 and M11 = 0) of oper-
ation is to send the result back to one of the
general-purpose registers and then read the new
value of this register as the operand.

Figure 19 shows this code sequence: op #1
specifies .f3 as its destination and op #2-5 all spec-
ify .12 f3 as one of their operands. Because the
result of op #1 gets written back to .f3 on its fourth
cycle, op #5 is the first of the succeeding operations
to read the new contents of .f3 as desired. This rep-
resents a register-to-register latency of four cycles.

op #1

fadd .fo, .f1, .f2
op#2 fadd .f2, .f3, .f4 —old .f2
op#3 fadd .f2, .f5, .f6 —old .f2
op#4 fadd .f2, .f7, .f8 —old .f2
fadd .f2, .f9, .f10 —new.f2

op #5

Notes: To make this code interruptable, op
#2, op #3 and op #4 should not specify .f2 as
an operand.

Full details
page 32.

of this syntax are given on

Figure 19. No internal bypassing

2.

Internal Bypass Mode enabled

If the Internal Bypass Mode is enabled (Mo = 1 and
Mi1 = 1) then the register-to-register latency is
reduced to just three cycles. Figure 18 shows the
two internal bypass multiplexers that allow results
on the C bus to be copied over to the A or B buses
without first being returned to the register file.

Figure 20 shows a code sequence that uses the by-
pass mode: op #1 specifies .f2 as its destination and
op #2-4 all specify .f2 as one of their operands. In

© Copyright WEITEK 1988

All Rights Reserved

contrast to the previous example, op #4 is fed the
result of op #1 on the same cycle that the result is
written to the register file.

The multiplexers operate by comparing the Aadd
and Badd address fields to the Cadd address field
as they are presented to the register file on each
cycle. If Aadd = Cadd, then the value on the C bus
is copied to the A bus; and if Badd = Cadd, then
the value on the C bus is copied to the B bus.
Enough time remains for that value to be latched
into a multiplier/accumulator input port before the
end of the cycle. In the example, the Cadd field of
op #1 matches the Aadd field of op #4 as they are
compared on the fourth cycle of op #1, the bypass
from C to A buses is opened and op #4 can proceed
immediately with the new data. During the same
cycle, the result is copied into the Cadd register as
usual so that the register file remains consistent with
the data values in use.

Setting mode bit Mo = 1 enables the C-to-A bus
bypass and setting mode bit M11 = 1 enables the C-
to-B bus bypass. If the Cwen- bit of an instruction
is set to prevent register writes, then the Internal
Bypass Mode is temporarily suspended on the
fourth cycle of that operation; this insures that the
register file contents are kept in step with the oper-
ands used by each instruction. Similarly, the
NEUT-, STALL-, and ABORT- signals cause the
Internal Bypass Mode to be suspended as they
cancel the register write of an instruction.

op#1 fadd .f0, .f1, .f2

op#2 fadd .f2, .f3, .f4 —old .f2

op#3 fadd .f2, .f5, .f6 —old .f2
fadd .f2, .f7, .f8 —new .f2

op #4

Notes: To make this code interruptable, op #2
and op #3 should not specify .f2 as an oper-
and.

Full details of this syntax are given on page

Figure 20. Use of internal bypassing

O

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Internal Data Routing, continued

—

CLK _J 1 2 3 4 5 6 7

I I

CODE PORT @ | |
I

[

———1-
—_— -
—_—— -

REGISTER FILE —'@ il
|

-— r—-—-—l——-.—
— e] — . —

A i
: : MULTIPLY4

I
MULTIPLIER —'—‘—@E |
I BYPASS | ———\
]

ALU

B il e ek a
— e e b s] c— e —

g
:I?

—— e e e e e e

REGISTER FILE

————-lr-——
— e v w— s w——
—] . — s e —

Figure 21. The timing of Internal Bypass Mode (Mo = 1 and M1 = 1)

3. Temporary Registers

To complete the range of alternative routes avail-
able for feeding results back to the multiplier/

(i accumulator, the Treg code example first given in ;)p #1 fmac .f0. .f1 0. .1
’ figure 15 is repeated here. op#2 fmac .f2, .f3, .t1, .f4 —old .t1
The temporary register option has the same timing op#3 fmac .t5, .f6, .t1, .f7 —lllegal

as the Internal Bypass Mode, but only feeds back to op#4 fmac .f8, .f9, .t1, .f10 —new .t1
the ABin port. The Tregs bring an extra source of .

operands to the multiplier/accumulator, allowing
operations of the form x = x &= (yXz) to be exe-
cuted in a single cycle.

. , Notes: A Treg cannot be both written and read
Many of the code examples given read a register after in the same cycle. Op #3 must never attempt

the instruction that modifies it has been initiated. to read the Treg written by op #1.
While such code sequences are valid, they are uninter-
ruptable. More detailed coverage of interruptable code
may be found on page 33.

To make this code interruptable, op #2 and
op #3 should not specify .t1 as an operand.

Full details of this syntax are given on
page 32.

Figure 22. Use of temporary registers

© Copyright WEITEK 1988
19 A1l Riohte Racarved

Input/output

The WTL 3132 and WTL 3332 provide different input/
output facilities. The WTL 3332 has additional Y and Z
ports to increase the bandwidth between the multiplier/
accumulator and external components. Sections spe-
cific to the WTL 3332 will state this in their headings.

THE X PORT: NORMAL USAGE
(WTL 3132 AND WTL 3332)

All data I/O ports are 32 bits wide. They can all
transfer at least one word on each cycle. The memory-
to-memory latency can be as low as five cycles (two
more than the register-to-register latency). All output
buses may be disabled by de-asserting their asynchro-
nous output enable signals.

REGISTER FILE

OLK 1 2 3 4 5 6 7 8 L
, |
I T T SR T T A0
CODE PORT L1 Y 2 Y58 54)—t+——+t—— L5 Y t——t—tp
| [iy A B G B
D oo y—b—ur»>— D3 os y——~+——|
X PAD VTN — N
| | | |
t t
| |

_——t e — e — e —

Figure 23. Normal X port I/O timing

The X port normally transfers data to and from the
register file D port. The Dadd field selects the register
in question and the IOCt1..0 field in the instruction
word controls the transaction. These I/O transfers
always begin during the first cycle of an operation. See
figure 24 for the IOCt1..0 encoding scheme and
figure 23 for normal I/O timing.

1. The fload operation loads the value at the X port
pins into the register selected by Dadd. It is com-
pleted by the end of the first cycle. If the register is
read on the same cycle, its previous contents will be
output.

2. The fstore operation stores the contents of the reg-
ister selected by Dadd to the X port output register
(XDoutR) during the first cycle. This value is driven
onto the X port pins on the secoad cycle. The
fstore operation drives the X pads during most of its
second cycle and at the start of its third cycle. Input
data may not be applied to 'he pins until
partway through its third cycle. The OEX- pin can
asynchronously disable the output at any time.

3. The floadrc operation is described on page 22.

© Copyright WEITEK 1988
All Rights Reserved

4. The I/O nop operation simply disables the X port
and ignores any input. It does not prevent the
multiplier/accumulator from writing to registers or
modifying the state of the condition and exception
outputs.

NOTE: An fload should not follow a fstore imme-
diately. At least two I/O nop cycles must be inserted
between them if the Coprocessor Load Mode is
disabled, and at least one I/O nop if it is enabled (see
page 27).

I0Ct1..0 OPERATION
00 1/0 nop
01 floadrc
10 fstore
11 fload

Figure 24. X port I/O control field encoding

C

Input/output, continued

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Xa1..0 OEX-
{32
Y
192 Lg—__ STORE
? 3
I Output bypass MUX } Dadd = Cadd
Programmable Latches
Y XCinR V_D XDinR ||> XDoutR | l> XCoutR] From ALU/LUT
9 6 '}
_1 C Bus (result)
o —
D C r
floadrc Input Internal
or Bypass Bypass
Double- Path 32x32 Path
Pump Register
Path File
A B
(Aad%= Cadd & f
AND en- = -
w) | MUX | Badd = Cadd MUX |
OR (Ms = 1 AND Cwen- =
AND Aadd = Dadd)
A Bus
B Bus

C Bus (input)

To inputs selecting “C Bus”

Note: The C bus can be used either for X port inputs or for results, but not both.

|

Figure 25. Input/Output Bypass diagram (X port)

INPUT BYPASS MODE
(WTL 3132 AND WTL 3332)

During a normal fload operation the X port data must
be written to a register one cycle before it can be used
as the operand of a subsequent operation. If, however,
the Input Bypass Mode is enabled and Aadd = Dadd,
then the value at the X port is loaded into both the

register selected by Dadd and onto the A bus during
the first cycle.

The Input Bypass Mode is enabled when bit Ma of the
Mode Register is set to 1 (see page 35).

© Copyright WEITEK 1988
All Rights Reserved

Input/output, continued

InEnEE

CLK

[[[[[I T T B

cope PORT {11)~ 2)~ 2)—+~<s1)+~) (&)——F—+——

I N NN NN SN S N N B B

X PADS C)—e)<)+———+—+——+—+—+—1—

—L L {4 0 & & 1 @ @ 1 11

s Ko X o2 X »

MULTIPLIER —:—:—KMULTIPLY1XMULTIPLY2><MULTIPLY> : : : : : : :

eVl e WU N

S s I I

C BUS t t t i i i l,\ RESULT1 RESULTZX RESULT3> ,L i i
Lo —,

| ! | | ! | 1 | RESULT1 resuLT2 X RESULT3 >—|—-

il B e B B RS S CD

Figure 26. X Port I/0O timing (Input and Output Bypass Modes enabled; M3 = 1 and M4 = 1)

The MAIn port always receives the input data by the
end of the first cycle. If the function is “ALU only”,
the data is staged into the AAin port during the second
cycle.

The Input Bypass Mode should not be enabled when
the Coprocessor Load Mode is enabled.

FLOADRC OPERATION
(WTL 3132 AND WTL 3332)

During a normal fload operation the X port data is
copied to the D port, and, if the Input Bypass Mode is
activated, the A bus. If the floadrc operation is used
instead, the value at the X port is loaded both into the
register selected by Dadd and onto the C bus during
the first cycle, where it can be selected by one of the
multiplier/accumulator input ports, MBin or ABin.

floadrc prevents the multiplier/accumulator from
writing the result of a previous instruction to the Cadd
register, and the resulting contents of this register are
undefined. Results from the divide look-up table
preempt the floadrc operation and are written to the
Cadd register as usual; floadrc still copies the X port
value to the Dadd register. The Cwen- control can be
set to prevent unwanted writes to the register specified
by the Cadd field of an instruction.

If the MBin multiplexer selects the C bus it will receive
the X port data by the end of the first cycle. If the ABin
multiplexer selects the C bus it will receive the X port

© Copyright WEITEK 1988
All Rights Reserved

22

data by the end of the first cycle. Note that the two
ports are skewed by one cycle from the programmer’s
view because the ABin input is not delayed.

floadrc should not be used in an interruptable environ-
ment.

OUTPUT BYPASS MODE
(WTL 3132 AND WTL 3332)

During a normal fstore operation the multiplier/
accumulator result must be written to a register one
cycle before it can be output to the X port. If, however,
the Output Bypass Mode is enabled and Cadd = Dadd;
the multiplier/accumulator result is sent to both the
register selected by Cadd and the X port output register
(XCoutR) on the same cycle.

The Output Bypass Mode is enabled when bit M4 of the
Mode Register is set (see page 35).

The fstore instruction that specifies the Dadd must
start execution on the fourth cycle of the arithmetic
instruction that specified the Cadd. The output appears
at the X port pins during the second cycle of the fstore
instruction. (See figure 26.)

If the Cwen- bit of an instruction is set to prevent
register writes, then the Output Bypass Mode is tempo-
rarily suspended on the fourth cycle of that operation.
This insures that the register file contents are kept in
step with the output data.

C

Input/Output, continued

THE Y PORT: NORMAL USAGE
(WTL 3332 ONLY)

The Y port is an input-only port. The Mbs- bit in the
instruction word controls whether the B register file
port or the Y input port drives the B bus (see
figure 28). If the B port is selected, then the data input
at the Y port is discarded.

If the MBin port then selects the B bus as input, the
multiplier will receive the Y port data by the end of the
first cycle. If the ABin port selects the B bus as input,
the ALU will receive the Y port data at the end of the
next cycle.

Two external data streams may be fed into the
multiplier/accumulator through the X and Y ports with-
out being written to the register file. The Y port data
can be fed into the MBin or ABin inputs via the B bus.
Meanwhile, the X port data can be fed to the MAin or
AAin inputs via the A bus using the Input Bypass Mode.
Alternatively, the X port data may be fed into the
C bus with the floadrc operation.

CLK 1

CODE PORT n

Y PAD b1

e

B BUS

Figure 27. Normal Y port 1/O timing

Mbs- B BUS INPUT SOURCE

0 Register file (B Port)
External input (Y Port)

Figure 28. Y port input select field encoding

23

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Y LATE INPUT MODE (WTL 3332 ONLY)

The Y port data may be sampled on the falling edge of
CLK instead of its rising edge. This mode is selected
by setting bit Mi2 of the Mode Register to 1 (see
page 35). It reduces the delay through the YinR
register so that the data still arrives at the multiplier/
accumulator ports before the end of the first cycle.

The Y port Late Input Mode can be used to demul-
tiplex a high-bandwidth input bus onto the X and
Y ports.

s [

CLK 1 2

Y PAD

B BUS

Figure 29. Y port Late Input Mode timing

THE Z PORT: NORMAL USAGE
(WTL 3332 ONLY)

The Z port is an output-only port. It outputs the result
of a multiply/accumulate operation directly (see
figure 30). The result of a flut operation cannot be
output to the Z port.

The Z port output register (ZoutR) is loaded on the
fourth cycle of an operation; just when the Cadd regis-
ter should be written. This transfer occurs without
regard to any other activity on the C bus.

The Z port output register then drives this value onto
the Z port pins. The output occurs during the fifth
cycle of the instruction. The Z port output register is
updated on every cycle, even if the multiplier/
accumulator result is meaningless. The OEZ- pin can
asynchronously float the output at any time.

© Copyright WEITEK 1988
All Rights Reserved

Input/Output, continued

LK _’1 2 3 4 5 6 7 8 |__
NN EEEE RN
L3
CODE PORT l | R
Y v Wl I I I N O I N
DATA1 DATA2 DATA3
REGISTER FILE =™\ 2H% A~ X sl
R O O e
MULTIPLIER —%———-:—-K MUL'TIPLY1‘><MUI:TIPLY? MMULTIPLY3)- : : : : : : :
N e e O S O I O
ALU . X e X s —————
IR N o e o e O B O Y
C BUS RESULT1 ResuLT2 X RESULT3
11 1 1 N AN X Y S
[O O T O A O A S A O I
Z PADS X X X X X RESULT1 X RESULTZX RESULT3 X
R R R I

Figure 30. Normal Z port output timing

DOUBLE-PUMP MODE
(WTL 3332 ONLY)

The WTL 3332 multiplier/accumulator has four ports.
It can be fed an operand through each of the MAin,
MBin and ABin inputs and returns a result via the ALU
output on every cycle. Only three external ports are
provided, X, Y and Z. Double-Pump Mode allows two
inputs to be made via the X port on each cycle; all four
multiplier/accumulator ports may then be serviced by
the external ports.

Double-Pump Mode is enabled by setting bit Me of the
Mode Register to 1 (see page 35). If Double-Pump
Mode is enabled, the I0Cti1..0 field in the instruction
word must constantly be set to fload.

The first input is latched into the X port on the rising
edge of CLK at the beginning of the cycle, as usual. It is
written into the Dadd register by the end of the cycle.
If the Input Bypass Mode (see above) is enabled and
Aadd = Dadd, then this value is also driven onto the
A bus and can be latched by the MAin port by the end
of the first cycle or the AAin port by the end of the
second cycle.

The second input is latched into the X port on the next
falling edge of CLK. It is driven onto the C bus and

© Copyright WEITEK 1988
All Rights Reserved

24

may be latched by the MBin port or the ABin port by
the end of the first cycle.

The MBin or ABin port may also receive input data
from the Y port via the B bus allowing all three
multiplier/accumulator inputs to be fed simultaneously.

The multiplier/accumulator result should be directed to
the Z port.

CLK 1 2

|
CODE PORT {3}—:—@

X PAD
| | | |
navs Ko
| | | |

Figure 31. Double-Pump mode timing

C

System Interfacing

Certain signals on the WTL 3132 and WTL 3332 are
provided to communicate control information to and
from the other parts of a system.

Two outputs, FPCN and ZERO, indicate the condition
of an operation. They can be sent to a sequencer to
control instruction branching.

One output, FPEX, signals the occurrence of arithmetic
overflow. It can be used to interrupt a host processor to
request corrective action.

Three inputs, NEUT-, STALL- and ABORT-, allow the
effects of instructions fed into the C port to be can-
celed. They can be used to make the WTL 3132/
WTL 3332 respond correctly to page faults, interrupts
or other system requests.

CONDITION AND ZERO

The WTL 3132/WTL 3332 have a Condition Register
and a Zero Register. The multiplier/accumulator
attempts to modify the contents of these registers on
every cycle.

The instruction word includes a two-bit condition select
field, Encni..0, which selectively allows the multiplier/

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

accumulator to succeed in updating the contents of
these registers. If both bits are cleared, then the previ-
ous state of the registers remains unchanged.

Most functions update the Condition Register accord-
ing to the sign and magnitude of their result.
Miscellaneous functions may set the register for other
reasons (see figure 32).

Encn1..0 determines the exact condition that will set the
Condition Register for each instruction. This allows
any of the common comparisons (>, =, =, <, <) to
be made in one operation. Figure 33 gives the bit
encoding.

If the result of an operation is exactly equal to zero and
the Encnai..o field is not (0,0); the Zero Register is set
to 1. If the result is not zero and Encn1..0 is not (0,0);
the Zero Register is cleared to 0. If Encni..0ois (0,0);
the contents of the Zero Register remain the same.

The contents of the Zero and Condition Registers are
copied to the ZERO and FPCN outputs respectively on
the fourth cycle of the operation, just as the general-
purpose register file write occurs. Bypassing does not
affect the timing of these signals. These outputs always
drive a logic 0 or 1.

FUNCTION SET CONDITION REGISTER SET ZERO REGISTER SET STATUS REGISTER
fmac N<O N<O, N=0 N=0 exp (N) = 255
fmns N<O0,N<O,N=0 N=0 exp (N) = 255
fmna N<O0,N<O,N=0 N=0 exp (N) = 255
fadd N<O, N<O,N=0 N=0 exp (N) = 255
fsub N<O, N<O,N=0 N=0 exp (N) > 255
fsubr N<O, N<O, N=0 N=0 exp (N) > 255
flut - - -

fabs (Note 1) N < 0 (only true when N = 0) - -

fix (Note 2) IMI>222 - -

float (Note 2) M< (-223) or M > (223 1) - -

fnop - - -

N is the result of an operation; M is the operand.
Notes: 1. fabs only tests for zero when M1 = 0

2. fix and float only test for operand range excess when M1 = 1

Figure 32. Effect of functions on Condition, Zero, and Status Register

25

© Copyright WEITEK 1988
All Rights Reserved

System Interfacing, continued

Encni Encno SET ZERO REGISTER SET CONDITION REGISTER
0 0 - -
0 1 N=0 N<O
1 0 N=0 . N<O
1 1 N=0 N=0
Note: Encn1 and Encn0 must be zero for fnop.
Condition Register is set by fix or float when Encn1..0 is (0,1) and the operand exceeds the permitted range.

Figure 33. Encni..0o encoding
STATUS AND EXCEPTIONS

The WTL 3132/WTL 3332 have a Status Register. If
an operation produces a result that is too large to be
represented in the IEEE single-precision floating point
format the multiplier/accumulator attempts to set the
Status Register to 1.

The Mode Register includes an exception control bit,
Ms (see page 35). If Ms is set to 1 and an overflow
occurs, the Status Register is set to 1. If Ms is cleared
to 0, the Status Register is cleared to 0. If Ms is subse-
quently set to re-enable overflows, the Status Register
will contain 0.

The contents of the Status Register are copied to the
FPEX output on the fourth cycle of the operation, just
as the register file write occurs.

One bit in the Mode Register, Ms, selects the polarity
of FPEX. If it is set to 1, then FPEX is active high. If it
is cleared to 0, then FPEX is active low. If Me is
cleared, the Status Register is “sticky”; once set it will
remain so until an fclsr operation is performed.

Two miscellaneous functions, fstsr and fclsr, allow the
Status Register to be read at the X port or for it to be

cleared. They take effect during their first cycle. If the
fstsr operation is performed, then the |IOCti..o field
must specify a ‘store’ and its timing is the same as a
normal store operation (see figure 34). Only the least-
significant bit of the Status Register is guaranteed; the
other 31 bits should be masked off when it is read. If
the fclsr operation is performed, it is complete by the
end of its first cycle.

CLK 1 2 3 |__
A R

CODE PORT ! i ; ; i ;

STATUS I_K:/\ I | I

REGISTER : | RDI 1 1
Lo

Figure 34. fstsr timing

4 5 6 7

|
1
T
|

CLK 1 2 3

I | I
CODE PORT ' | 3 '
FroniZERO L L 1
FPEX I I I | I I

OND/STAT 1><DOND/STAT><OND/STAT}

—A—T—

—] v — e —

L | | I I

Figure 34a. Condition/Status timing

© Copyright WEITEK 1988
All Rights Reserved

26

System Interfacing, continued

COPROCESSOR LOAD MODE

The Coprocessor Load Mode is provided to support
systems which generate a data address at the beginning
of a cycle and need to latch the data word into the
WTL 3132/WTL 3332 later in the same cycle.

If bit Ms of the Mode Register is set, then the data
applied to the X port is not sampled until late in the
first cycle. Time still remains to write the Dadd register
before the end of this cycle. As usual, the next instruc-
tion can use this data value as one of its operands.

If this mode is used, neither the Double-pump Mode
nor the X port Input Bypass Modes may be enabled.

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

The number of I/0 nops that must be inserted between
an fstore and a subsequent fload is reduced from two
to one.

The STALL- signal timing is modified internally if the
Coprocessor Load Mode is enabled so that it still can-
cels the fload and fstore operations.

This mode must be selected if the WTL 3132 is to be
used in the XL environment (see Appendix A).

| o |
REGISTER FILE ————W)—|
I |

CLK R 2 3 4 5 6 7 sl_
R I R I A A [A I A (N R I N B
ooot ponr <D=
woo KX
' U=winnil)dEE
! AR

g

R4

Figure 35. Coprocessor Load Mode timing
NEUT-, STALL- AND ABORT-

These three inputs allow a system to modify the effect
of certain instructions dynamically.

1. NEUT-

Neutralize is used to prevent the execution of
instructions in the shadow of a delayed branch
operation or during an interrupt service cycle.

In a system where the sequencer supports delayed
branching, it will present the next instruction to

the C port as it decides whether to take a branch. If
the branch is taken, this instruction must be can-
celled before it has any effect on the state of the
system. Similarly, if an interrupt occurs, the instruc-
tion due to be executed can be cancelled in order
to branch to an interrupt service routine. The can-
celled instruction is resubmitted for execution on
return from interrupt.

CLK

NEUT-

REGISTER FILE

1 2 3 4 5 6 7 8 |_
| | A S T T S T S S TR B
CODE PORT —’—é—-’—&—@ N SN S S S SN S SO S S
(D) | (2) i o 11T
N | ATt
AN A R L
R TR N R R TR R 7zswses NN NN RN /s N BN N
T O Vs my ey Al o e e
S A T T S T S D S T (N A N S S

Figure 36. NEUT- timing

27

© Copyright WEITEK 1988
All Rights Reserved

System Interfacing, continued

The neutralize signal cancels the effect of the
current instruction. It prevents the result of this
instruction from being written into the register file
or temporary registers. It has no effect on fload or
fstore operations. This signal is sampled on the
rising edge of CLK after the current instruction was
fed into the C port.

. STALL-

STALL- is used to hold off execution until a valid
code word is present when the code word is delayed
(as in a code memory refresh cycle) or absent (as in
a page fault). The next operation can be continually

stalled until the correct instruction word is pre-
sented to the C port.

The STALL- signal cancels the effect of the next
instruction. It prevents the result of this instruction
from being written into the register file or temporary
registers. It also cancels fload and fstore opera-
tions. This signal is sampled at the same time as the
next instruction is fed into the C port.

If Coprocessor Load Mode is enabled, the timing of
STALL- is modified internally to maintain its usual
effect. The fmode and fclsr instructions are also
properly stalled.

InEnEE

CLK

| |
CODE PORT —@—1—@—:—@

X PADS DATA3

s L
N S N NN N S SN S N N
-G EREEREREEE
X PADS t—t—t+—t—+—+—t+—t+—t—+—t
A S S TN N SR NN SN SN SN SN N S
-) 1)) L] v)) L) 1) L) T
STALL N/ T
BBy SR
REGISTER FILE T N T T
| | | l | | | | | | | | | | | l

Figure 37. STALL- timing (including fload)

LK BE 2 3 5 6 7 8 |
| | T T T O T T IR B
CODE PORT e+
| | R
s S S S SN S S SR S S S S
STALL- N /T
Lo I P e G e G
REGISTER FILE ———K rory—1—L— K aos) K resy—1— L res), —
' - T —
I R
| | | | |

—— e —

Figure 38. STALL- timing (including fstore)

© Copyright WEITEK 1988
All Rights Reserved 28

C

System Interfacing, continued

3. ABORT-

ABORT- is used to cancel the current and next
instructions when the data word is delayed (as in a
cache miss) or absent (as in a page fault). If the two
cancelled instructions are subsequently resubmitted
for execution the processor will behave as if no
interrupt occurred.

The ABORT- signal cancels the effect of both the
current and next instructions. It prevents the results
of these instructions from being written into the
register file or temporary registers. It also cancels
the I/O operation specified in the next instruction,
but not in the current instruction. This signal is

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

sampled at the same time as the next instruction is
fed into the C port.

All three of these signals are delayed internally when
necessary: for example, the Cadd register write is
only disabled on the instruction’s fourth cycle. They
prevent the cancelled instructions from modifying the
Condition or Status Registers, thus preventing the state
of the FPCN, FPEX and ZERO outputs from changing.

NOTE: Neither NEUT- nor ABORT- cancel the effect of
the fmode operations.

CLK 1 2

4 5 6 7 8 l_

CODE PORT 2

REGISTER FILE

_——— e —

|

|

|

| | |

ABORT- I I\ /1
| | |

| |

| |

| |

RES3

- B

Figure 39. ABORT- timing

29

© Copyright WEITEK 1988
All Rights Reserved

Instruction Set

C BIT FIELD OPERATION
0 Encno Condition Output Select
1 Encn1
2 Mbin- MBin Input Select
3 Adsto ALU Destination Select
4 Adst1
5 Abino ABin Input Select
6 Abin1
7 Abinz
8 Daddo D Port Register Address
9 Dadds
10 Daddz
11 Dadds
12 Dadds
13 10Cto 1/0 Control
14 10Ct1
15 Cwen- C Port Write Enable
16 Caddo C Port Register Address
17 Cadd1
18 Cadd2
19 Cadds
20 Cadd4
21 Baddo B Port Register Address
22 Badd1
23 Baddz
24 Badds
25 Badd4
26 Aaddo A Port Register Address
27 Aadd1
28 Aaddz
29 Aadds
30 Aadd4
31 Fo Function Code
32 F1
33 Fz
34 Mbs- Y Port Input Select*
*Only on WTL 3332

Figure 40. Instruction format

© Copyright WEITEK 1988
All Rights Reserved

30

O

o

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Instruction Set, continued

FORMAT

The WTL 3132 has a 34-bit instruction word. The
WTL 3332 has a 35-bit instruction word because it re-
quires the extra Mbs- bit to control the Y port input.
Refer to figure 40 for the location of each field in the
instruction word.

1. Mbs~- bit. (WTL 3332 only)

B bus input control bit. May be register file port B
or external input port Y.

2. F field.

Function control (F2..0) field. Selects function to be
performed on this instruction’s operands.

3. Aadd field.

A register address (Aadda..o) field. Selects location
in general-purpose register file to be read out via
the A port.

4. Badd field.

B register address (Badds..o) field. Selects location
in general-purpose register file to be read out via
the B port. Also encodes miscellaneous functions
that require only one operand.

5. Cadd field.

C register address (Cadds..0) field. Selects location
in general-purpose register file to be written into via
the C port.

6. Cwen- bit.

C port write enable bit. Active low.

31

7. 10Ct field.

I/O control (IOCti..0) field. Selects type of I/O
transfer performed via D port.

8. Dadd field.

D register address (Daddas..o) field. Selects location
in general-purpose register file to be read out or
written into via the D port.

9. Abin field.

ALU input multiplexer input control
field. Selects the input source for ALU.

10. Adst field.

ALU output destination control (Adsti..o0) field.
Selects output destination for ALU. May be the
C bus or the C bus and a Temporary Register.

11. Mbin- bit.

(Abinz..0)

MBin port input control bit. Selects multiplier input
source. May be the B bus or C bus.

12. Encn field.

Condition select (Encni..0) field. Enables a selec-
table combination of the condition and zero flags
onto the FPCN output.

All of the actions specified by these fields are defined
in the same instruction word. In this way, all of the
stages of an operation, from supplying its operands to
storing its results back into a register, are specified
together.

© Copyright WEITEK 1988
All Rights Reserved

Instruction Set, continued

MNEMONICS
The mnemonics shown in figures 41 through 43 are
those used to control the XL-3132 in the XL-Series 1/0 SELECTION OPERAND
programming environment. They are given here to S _ .
simplify understanding of the programming model and ource Destination
to provide a syntax in which to present the program- fload X port £0-31
ming examples.

' _ fstore .f0-31 X port
These mnemonics represent a subset of the functions

available on the WTL 3132/WTL 3332. In particular, .

. . Note: If no I/O operation is specified, an |/0O nop will be
the Input Bypass Mode is disabled and the Output selected In the 10Ct1. .0 Instruction field.
Bypass, Internal Bypass, and Coprocessor Load Modes
are enabled unless otherwise noted. The user is free to Figure 41. Recommended mnemonics
enhance or disregard this suggested programming
model according to system requirements.

OPERAND NOTATION DESCRIPTION
.f0-31 Thirty-two, 32-bit general purpose registers
0 Constant “0.0”
2 Constant “2.0"
.11-3 Three temporary registers

Figure 42. Recommended mnemonics

OPERAND SELECTIONS
FUNCTION
SOURCE (Aadd) SOURCE (Badd) SOURCE (Tregs) DESTINATION (Cadd)

fmac .f0-31 .f0-31 0, 2, or .t1-3 .f0-31 and/or .t1-3
fmns .f0-31 .f0-31 0, 2, or .t1-3 .f0-31 and/or .t1-3
fmna .f0-31 .f0-31 0, 2, or .t1-3 .f0-31 and/or .t1-3
fadd .f0-31 .f0-31, 0, 2, or .t1-3 .f0-31 and/or .t1-3
fsub .f0-31 .f0-31, 0, 2, or .t1-3 .f0-31 and/or .t1-3
fsubr .f0-31 .f0-31, 0, 2, or .t1-3 .f0-31 and/or .t1-3
flut .f0-31 .f0-31

fabs .f0-31 .f0-31 and/or .t1-3
fix .f0-31 .f0-31 and/or .t1-3
float .f0-31 .f0-31 and/or .t1-3
fnop -

Figure 43. Recommended mnemonics

© Copyright WEITEK 1988
All Rights Reserved 32

WTL 3132/WTL 3332/XL-3132

32-BIT FLOATING POINT
DATA PATH

October 1988

Instruction Set, continued

CODE CONSTRAINTS

The following set of rules prevents

illegal code

sequences:

1.

All instructions must avoid writing to the Cadd
register and Dadd register simultaneously. Thus no
fload operation with Dadd = .fx may start on the
fourth cycle of an operation with Cadd = .fx.

op#1 fadd .f?, .f?, .fx
op#2 fadd .f?, .f?, .f?; fload.fx
op#3 fadd .f?, .f?2, .f?; fload.fx
op#4 fadd .f?, .f?, .f?; fload.fx —lllegal
op#5 fadd .f?, .f?, .f?; fload.fx
Figure 44.

2. Because the X port output is driven on the cycle

after an fstore operation is specified, an fload
cannot follow an fstore immediately. At least one
I/0 nop must intervene if the Coprocessor Load
Mode is enabled (Ms = 1), or two I/O nops if it is
disabled (Ms = 0) (see page 27).

op #1

fadd .f?, .f?, .f?; .fstore.f?
op#2 fadd .f?, .f?, .f?; .fload.f? —lllegal
fadd .f?, .f?, .f?; .fload.f?

op #3

Figure 45. Coprocessor Load Mode enabled, Ms = 1

33

op #1

fadd .f?, .f?, .f?; fstore.f?
op#2 fadd .f?, .f?, .f?; fload.f? —lllegal
op#3 fadd .f?, .f?, .f?; fload.f? —lllegal
fadd .f?, .f?, .f?; fload.f?

op #4

Figure 46. Coprocessor Load Mode disabled, Ms = 0

3.

No temporary register can be written and read on
the same cycle. Thus no operation that selects .tx as
an operand register may start on the third cycle of
an operation with Cadd = .tx.

op#1 fmac .f?, 72, 0, .tx
op#2 fmac .f?, f?, .tx, .f?
op#3 fmac .f?, .f?, .tx, .f? —lllegal
op#4 fmac .f?, .f?, .tx, .f?
Figure 47.

© Copyright WEITEK 1988
All Rights Reserved

Instruction Set, continued

If code is to be interruptable and respond correctly to
the NEUT-, STALL- and ABORT- signals, then these
additional rules must also be followed. They all prevent
delayed register writes from modifying operand values
in a time-dependent fashion.

4. No operation with Aadd or Badd = .fx may start
after the first cycle and before the fourth cycle of
an operation with Cadd = .fx. (If the Internal
Bypass Mode is disabled (Mo = 0 and M11 = 0), this
becomes the fifth cycle).

op#1 fadd .f?, .f?, .fx
op#2 fadd .fx, .f?, .f?
op#3 fadd .fx, .f?, .f?
op#4 fadd .fx, .f?, .f?

—lllegal
—lliegal

Figure 48. Internal Bypass Mode enabled,
Mo =1 and M1 = 1

op#1 fadd .f?, .f?, .fx

op#2 fadd .fx, .f?, .f? —lllegal
op#3 fadd .fx, .f?, .f? —lllegal
op#4 fadd .fx, .f?, .f? —lllegal

op#5 fadd .fx, .f?, .f?

Figure 49. Internal Bypass Mode disabled,
Mo = 0 and M1 = 0

© Copyright WEITEK 1988

All Rights Reserved 34

5. No operation that selects .tx as an operand register
may start after the first cycle and before the fourth
cycle of an operation with Cadd = .tx.

op#1 fmac .f?, .f?2, 0, .tx
op#2 fmac .f?, .f?, .tx, .f? —lllegal
op#3 fmac .f?, .f?, .tx, .f? —lllegal
op#4 fmac .f?, .f?, .tx, .f?

Figure 50.

6. No operation with Aadd or Badd = .fx may start on
the same cycle as an fload where Dadd = .fx.

op#1 fadd .fx, .f?, .f?; fload.fx —lllegal
op#2 fadd .f?, .f?, .f?

Figure 51.

7. The NEUT- line does not cancel fload and fstore,
so when it is used to cancel the effect of an instruc-
tion in the shadow of a delayed branch operation
(as in the XL-Series), this instruction should not
perform I/O transfers. (This is not necessary when
NEUT- is asserted during an interrupt response
cycle because the cancelled instruction is resub-
mitted for execution.)

In the examples, the notation .f? is used to indicate
any register except .fx.

//V \\
"’

®

Initialization

MODE REGISTER

The Mode Register controls which of the special modes
are enabled. Normally, it is initialized to the desired
state and is not subsequently altered. Some mode bits
are provided to maintain backward compatibility with

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

previous versions of the WTL 3132/WTL 3332. Other
bits are reserved and should be set to the value speci-
fied in figure 52.

MODE BIT LOGIC VALUE

DESCRIPTION

Mo

0
1
M1 0
1

< < <
() » N
o o = o = o I

<
©
- O

2
©
- O

M1z 0

Internal Bypass Mode (Aadd = Cadd) disabled
Internal Bypass Mode (Aadd = Cadd) enabled
fix rounds to negative infinity

fix rounds to nearest (enable fix/float range test)
Reserved: should be cleared to 0

Input Bypass Mode disabled

Input Bypass Mode enabled

Output Bypass Mode disabled

Output Bypass Mode enabled

FPEX Output disabled

FPEX Output enabled

Co-processor Load Mode disabled
Co-processor Load Mode enabled

Reserved: should be set to 1

FPEX active low and “sticky”

FPEX active high

Double-pump Mode disabled

Double-pump Mode enabled

Reserved: should be set to 1

Internal Bypass Mode (Badd = Cadd) disabled
Internal Bypass Mode (Badd = Cadd) enabled
Y Late Input Mode disabled

Y Late Input Mode enabled

Figure 52. Mode selection table

© Copyright WEITEK 1988
35 All Rights Reserved

NS

 __]
Initialization, continued

The Mode Register is loaded by the fmode operation. as shown by figure 53. fmode completes by the end of
This causes the Aadd, Cadd and ABinz..o fields in the its first cycle.
instruction word to be loaded into the Mode Register

C BIT NORMAL USE MODE BIT COMMENT

0 Encno 0 FPCN is disabled during fmode

1 Encni

2 Mbin- 0

3 Adsto 1 ALU destination is C bus only
4 Adst1 1

5 Abino M1o

6 Abin1 M11

7 Abin2 M1z

8 Daddo 0

9 Dadd1 0

10 Dadd2 0

11 Dadds 0

12 Dadds 0 TN
13 I0Cto 0 /O nop specified _/
14 10Ct1 0

15 Cwen- 1 C port register writes disabled
16 Caddo Ms

17 Cadds Me

18 Caddz My

19 Cadds Ms

20 Cadd4 Me

21 Baddo 1 fmode function code

22 Badd1 1

23 Baddz 0

24 Badds 0

25 Badd4 0

26 Aaddo Mo

27 Aadds M1

28 Aaddz Mz

29 Aadds Ms

30 Aadd4 M4

31 Fo 0 Miscellaneous function selector
32 F1 0

33 Fz2 0

34 Mbs-* 0

*Only on WTL 3332

Figure 53. Load Mode Register instruction format

© Copyright WEITEK 1988
All Rights Reserved 36

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Initialization, continued

Changing the contents of any bits in the Mode Register
will have undefined effects on any currently executing
instructions including I/O operations. The state of all
registers should be initialized after execution of the
fmode instruction.

Some combinations of modes are not allowed.

These are detailed in figure 54.

MODE # M @ @ @& 6 6 @ (@©)

Internal Bypass Mode (Mo = 1 and/or M11 = 1) (1) - v | v Vv X Vv X 14
Input Bypass Mode (M3 = 1) (2) v - 1% v | v X v Vv
Output Bypass Mode (M4 = 1) (3) v | v - Vv X Vv Vv Vv
Y Late Input Mode (Mi2 = 1) (4) v | v |V - v Vv Vv Vv
Double-Pump Mode (Ms = 1) (5) X vV X %4 - X vV X
Coprocessor Load Mode (Ms = 1) (6) I x | v~ v X - X v
Use of floadrc Operation (7) X v |V v v X - X
Use of NEUT-, STALL~, or ABORT- Inputs (8) vy | v Vv X v X -
x = Should not be enabled together, = Can be enabled together
Note: Although (7) and (8) are not selected by mode bits, the user is able to avoid the use of such functions or

control lines

Double-Pump Mode (5) requires roadrc (7) to be used every cycle

Figure 54. Mode exclusion table
RESET SEQUENCE

Before initializing the contents of the Mode Register,
the WTL 3132/WTL 3332 must be set to a stable state
after power up.

Repeating nop and I/O nop instructions for at least
four cycles will flush the multiplier/accumulator pipe-
line and allow the internal states to become well-
defined. Until this sequence terminates, the rest of the

system should ignore the contents of the data buses
and the state of the ZERO, FPCN and FPEX pins.

The registers should then all be initialized to known
values (including the Mode, Condition, Status and
Tregs) while nops continue to be input. The
WTL 3132/WTL 3332 is then able to begin normal
operation.

© Copyright WEITEK 1988

37 All Rights Reserved

Division
DIVIDE LOGIC UNIT

The WTL 3132/WTL 3332 have a divide logic unit.
This unit consists of a look-up table ROM and three
delay stages. The first cycle of the flut operation
transfers the Aadd operand (a) to the divide logic unit.
During the next two cycles this operand selects a seed
value for the reciprocal of the operand (1/a) from the
look-up table. This result is written to the Cadd register
on the fourth cycle.

If the Internal Bypass Mode is enabled, the result can
be copied to a multiplier/accumulator input port at the
same time that the Cadd register is being written.

The look-up result is an IEEE single-precision number
whose fraction is accurate to seven bits of precision. If
the input is positive or negative infinity (greater
than #7F800000 or less than #FF800000), the result is
zero. If the input is zero, the result is #7FFFFFFF

refinement). flut does not update the Zero, Condition,
or Status Registers.

NOTATION:

a = divisor (.f1)

Ro = seed for 1/a (.f31)
R
R2 = second approximation (.f30)
b = dividend (.f0)

bla = result (.f0)

first approximation (.f31)

ALGORITHM:

R1 = RoX (2 - aXRo)

(which gets clamped to #7F800000 during
R2 = RiX (2 - aXRi1)
Cycle # | Opcode 1’0 Comment
1 flut 1, .f31 Ro (=<1/a)
2 fnop
3 fnop
4 fmna 1, f31, 2, .f30 2-aXxRo
5 fnop
6 fnop
7 fmac .31, .f30, o, .31 Ri=Ro X (2 - a X Ro)
8 fnop
9 fnop
10 fmna 1, f31, 2, .f30 2-a X Ri
11 fnop
12 fnop
13 fmac 31, .f30, 0, .f30 R2=R1 X (2 -a X R1)
14 fnop
15 fnop
16 fmac .fo, .f30, 0, fo B x 1/a
17 fnop
18 fnop
19 fnop ; fstore .fO store b/a
20 fnop b/a on X port
Notes: Internal bypass enabled (Mo = 1 and M11 = 1)
X port output bypass enabled (M4 = 1)

Figure 55. Recommended division sequence

© Copyright WEITEK 1988

All Rights Reserved 38

7N

~

L

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Division, continued

DIVIDE CODE SUPPORT

The initial approximation to 1/a has to be refined by
successive approximation. This accurate value of 1/a
must then be multiplied by b in order to complete the
divide operation (b/a).

The programmer or compiler has to supply code to
support the following sequence of operations:

1. Execute flut to obtain seed value.

2. Iterate from this value to obtain an accurate divisor
inverse using the Newton-Raphson algorithm.

3. Multiply the dividend by the inverse of the divisor
just generated.

For division, the Newton-Raphson algorithm converges
quadratically. Theoretically, the number of bits of
precision doubles with each iteration. Thus, two
iterations should provide the full 23 bits of precision
representable by the IEEE 32-bit format. Quantization
errors introduced by rounding, however, can prevent
the Isb from being accurate. The code example
provides b/a to around 22 bits of precision.

Data Format

32-BIT FLOATING POINT (IEEE STANDARD)

The IEEE standard 32-bit floating point word divides
into three fields: a sign bit, an 8-bit exponent and
a 23-bit fraction field (shown in figure 56).

The value contained in the 8-bit exponent field ranges
from -127 to 128 (#00 to #FF) (shown in figure 57).
The fraction is multiplied by two raised to this power to
produce a floating point value.

The significand field contains the 23-bit fraction and
the hidden bit. Inserted during arithmetic processing,

the hidden bit has a value of one for all normalized
numbers and zero for zero. The fraction is the 23 bits
to the right of the hidden bit. Bit F22 has a value
of 271 bit Fo has a value of 27%2; the hidden bit has a
value of 2°.

All constants are in this IEEE format.

SIGN

EXPONENT FIELD (E)
BIT (8 bits)

IMPLICIT BINARY POINT

FRACTION (F)
(23 bits)
A

| s‘ |’E7 |Es [Es [E4 [E3 JE2 [E1 JEO

F22|F21 |F20|F19|F18|F17|F16|F15|F14]F13|F12|F11]F1o| F9 |F8 |F7 |F6 |F5] F4]Fa le 1F1 lFO‘I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

Figure 56. 32-bit floating point (IEEE standard)

The value of an IEEE floating point number is deter-
mined by the following:

E F VALUE DESCRIPTION
1-254 Any (-1)s (1.F) 28127 Normalized number (NRN)
0 Any (-1)8 0.0 Zero

Figure 57. 32-bit floating point value

39

© Copyright WEITEK 1988
All Rights Reserved

Data Format, continued

SIGN EXTENSION
(8 bits)
A

INTEGER FIELD

(24 bits) IMPLICIT BINARY POINT
A

lrs | sl sl s | s [s| s| ;|I2f3l|22|I21 ||2o ll19|l18||17|I16II15|I14II13||12|I11 lno||9 ||a ||7 ll6 ||5 ||4 ||3 ||2 ||1 ||o

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

i0 9 8 7 6 &5 4 3 2 1 0

Figure 58. 24-bit fixed point (two’s complement)

24-BIT TWO’S COMPLEMENT INTEGERS

The value of the 24-bit integer field shown in figure 58
can range from (-22®) to (22 -1) and must be sign-
extended to 32-bits to be compatible with the
WTL 3132/WTL 3332 format. The eight-bit sign ex-
tension field is a repeat of bit 23, the sign bit of the
two’s complement number.

The user must ensure that integer operands conform to
this format: integer results are automatically sign-
extended to match.

FIX

The fix function converts a number from floating point
format to sign-extended 24-bit two’s complement
integer format.

If the magnitude of its operand is greater than 222,
Encni..o is set to (0, 1), and M1 = 1, it will set the
Condition Register to 1. This limit was chosen to allow
software to test for the case n = 2%, which cannot be

© Copyright WEITEK 1988
All Rights Reserved

represented by a 24-bit two’s complement number. If
the operand is too large to be represented in the inte-
ger format, the result is clamped to either #007FFFFF
or #FF800000, according to its sign.

fix does not attempt to set the Zero or Status Registers.
It executes in the same number of cycles as every other
multiplier/accumulator instruction.

FLOAT

The float function converts a number from sign-
extended two’s complement integer format to floating
point format.

If its operand does not have consistent sign exten-
sion (bits 24-31 all equal), Encn1..0 is set to (0, 1) and
M1 =1, it will set the Condition Register to 1. The result
of a float operation on such an operand is not defined.

float does not attempt to set the Zero or Status Regis-
ters. It executes in the same number of cycles as any
other multiplier/accumulator instruction.

N

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

IEEE Considerations

The WTL 3132 and WTL 3332 comply with the IEEE
Standard for Binary Floating Point Arithmetic (P754)
in most respects. The differences described below
apply to all of the arithmetic functions (fsubr, fsub,
fadd, fmna, fmns, fmac, fabs).

DENORMALIZED NUMBERS

Denormalized numbers have a magnitude of less
than 272 but greater than zero. The IEEE standard
includes denormalized numbers to allow gradual
underflow for operations that produce results that are
too small to be expressed as normalized numbers. The
WTL 3132/WTL 3332 do not support denormalized
numbers. If the result of an operation is smaller
than 27'2%, it is replaced by zero and the Zero Register
is set to 1. Denormalized operands are detected and
flushed to zero (with the same sign) before the oper-
ation is performed; no indication of this is provided.

NOT A NUMBER (NAN) HANDLING

The IEEE standard represents NaNs with numbers that
have the maximum exponent value and a non-zero
fraction. The WTL 3132/WTL 3332 do not detect
attempts to perform calculations on NaNs. Only the flut
operation may produce a NaN (when given zero as an
operand). This is clamped to the appropriate infinity
when refined by the divide code example given on
page 38. Other operations may have undefined effects
when given a NaN as an operand, so their use should,
in general, be avoided. No arithmetic operation gener-
ates NaNs; all results with the maximum exponent have
their fractions held to zero.

INFINITY AND OVERFLOW

The IEEE standard represents infinities with numbers
that have the maximum exponent value and zero as the
fraction. The WTL 3132/WTL 3332 do not detect

41

attempts to perform calculations on infinite operands.
Some operations may have undefined effects when
given an infinite operand, so their propagation should,
in general, be avoided. However, if an operation
creates a result that is too large to be represented in the
floating point format, its result is clamped to an infinite
value as required by the specification. The Status
Register is set by the creation of an infinite value during
an operation.

UNDERFLOW

When the result of an operation has a magnitude in the
range 0 <n < 27126 the WTL 3132/WTL 3332 round it
to zero and set the Zero Register to 1. There is no way
to distinguish underflow from a result that is exactly
zero.

ROUNDING

The WTL 3132/WTL 3332 support only the round-to-
nearest mode: the infinitely precise result of an opera-
tion is rounded to the closest representation that fits in
the destination format. If the result is exactly halfway
between two representations, it is rounded to the
nearest even fraction.

The IEEE standard requires rounding to occur after
each arithmetic operation. The WTL 3132/WTL 3332
do not round between the multiply and add com-
ponents of the fmac, fmns and fmna functions.
The error in the result is always less than three least-
significant bits.

If the ABin port of the ALU is set to the constant 0.0,
then the fmac function performs a multiply that con-
forms to the IEEE standard. The fix operation only can
be set to round to negative infinity by clearing M1 to
Zero.

© Copyright WEITEK 1988
All Rights Reserved

DC Specifications

ABSOLUTE MAXIMUM RATINGS

'K'/;

Supply voltage

Output voltage
Operating temperature range (Tcase)

Input voltage oo i i e e e i e e e,

Storage tempPerature ranNgeovvvven e e e tn e enreeeneeeenenns

-0.5to 7.0V
~0.5V to Voo
-0.5V to Voo
-55° Cto 125° C
-65° C to 150° C

Lead temperature (10 SECONAS)ttt ittt ittt e iienn e 300° C
Junction temperature e e 175° C
RECOMMENDED OPERATING CONDITIONS
COMMERCIAL

PARAMETER MIN MAX UNIT
Voo Supply voltage 4.75 5.25 \
Tcase Operating temperature 0 85 °c

DC ELECTRICAL CHARACTERISTICS
COMMERCIAL (Note 1)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Viue High level clock input voltage Vop = MAX 2.4 \Y,
Vic Low level clock input voltage Vpp = MIN 0.8 \"
Viy High level input voltage Vpp = MAX 2.0 \Y
V. Low level input voltage Vop = MIN 0.8 \
Von High level output voltage Vpp = MIN, oy = -1.0 mA 2.4 \
VoL Low level output voitage Vop = MIN, 1o =4.0 mA 0.4 \"
Iy High level input current Vop = MAX, Viy = Vpp 10 RA
Iy Low level input current Vpp = MAX, V)y = OV 10 nA
lozL Tri-state leakage current low Vpp = MAX, Viy = OV 10 LA
lozy Tri-state leakage current hlgh VDD = MAX, V\ = VDD 10 }LA
loo Supply current Vpop = MAX, Tey = MIN

TTL inputs (Note 2) 200 mA

Cin Input capacitance (Note 3) Vop = 5.0V 10 10 pF
Ceowk Clock capacitance (Note 3) Tameent = 25°C 25 30 pF
Cour /0, Output capacitance (Note 3) f=1MHz 15 20 pF
Coe OEX-, OEZ- capacitance (Note 3) 20 25 pF

Notes: 1. Worst case over power and temperature range
2. Input levels are 0.4V and 3.4V
3. Not tested

© Copyright WEITEK 1988
All Rights Reserved 42

\

N

WTL 3132/WTL 3332/XL-3132

32

-BIT FLOATING POINT

DATA PATH

October 1988

Timing Diagrams

Test Switching Circuit
2.0V

400 Q

Output
pin

I 40 pF

Figure 59. Test load for delay measurement (TD, TENA, and TDIS)

- Tey >

€— ToH —mra— ToL —3»

W VTR T
v/

Figure 60. Clock timing

Tois TENA
[[
\ 2.4v_}/
N HIGH /)
VALID v wPepANGE N VAP
/) 0.8V N

Figure 61. Tri-state timing

43

© Copyright WEITEK 1988
All Rights Reserved

NS

Timing Diagrams, continued

CLK ——J 1

L } .
| | (|
| | i
TH
| | | |
BUS 1' { N :
INPUTS l _|/ |
. TSA l l ' l
‘-:_kr, THA : l :
X BUS — I[< > }
COPROCESSOR i \—(I
LOAD MODE Ts | Tss | (|
| |
X BUS
DOUBLE-PUMP
MODE | | | |
| Tss | | |
| THB | |
[[N
Y BUS : : N
LATE INPUT
MODE | | | |
| T | | Tv |
Dl | - |
BUS \ 777A : : :
OUTPUTS 1| RANNNN\N . M
| L 1]
. TsN | | | (
THN | | |
! N\ l
NEUT-,
STALL-, { : \——lf :
ABORT- I | | I
=<-—TP—F——> : —>{ TvF i
(| | ‘
! | !
1 1 |
t L] [}

FPCN, 1
ZERO t AN
)

Figure 62. Signal timing diagram

© Copyright WEITEK 1988
All Rights Reserved 44

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

AC Specifications

AC SWITCHING CHARACTERISTICS

AC TEST CONDITIONS (Notes 1, 2, 3)

B ViH = 3.4V VoH =2.8V, loH =-1.0mA B ° _
Voo = MiN Vi = 0.4V VoL =0.4V, oL =4.0mA Toase = 857°C | CLoap = 40 pF
WTL 3132-120 WTL 3132-100
WTL 3332-120 WTL 3332-100
DESCRIPTION XL-3132-120 XL-3132-100 UNIT
COMMERCIAL COMMERCIAL
MIN MAX MIN MAX
Tey Clock cycle time 120 100 ns
Ton Clock high time 50 45 ns
ToL Clock low time 50 45 ns
Tr Clock rise time (Note 5) 5 5 ns
Te Clock fall time (Note 5) 5 5 ns

Bus inputs (C, X, Y):

Ts Input setup time 20 15 ns

Ty Input hold time 2 2 ns

Tsa Input setup time 20 16 ns

BN THa Input hold time 2 2 ns
(: (X bus, coprocessor load mode)

Tsg Input setup time 20 15 ns

The Input hold time 2 2 ns

(X bus, double-pump or Y bus,
late input mode)

Bus outputs (X, Z):

35 30

Tp Output delay time ne
Ty Output valid time 3 3 ns
Tena Tri-state enable time (Note 4) 35 30 ns
Tpis Tri-state disable time (Note 5) 35 30 ns
NEUT-, STALL-, ABORT-:

Tsn Input setup time 20 15 ns
Tun Input hold time 2 2 ns
FPCN, FPEX, ZERO:

Tor Output delay time 35 30 ns
Tvg Output valid time 3 3 ns
Top Pipelined operation time 120 100 ns

per stage
TLa Total latency 360 300 ns

register-to-register

Notes: 1. Worst case over time and temperature range.
2. Input levels are 0.4 and 3.4V.
N 3. Timing transitions are measured at 1.5V unless otherwise noted.
4. Device must be powered for at least 20 ms before testing.
5

. Not tested but guaranteed by design.

Figure 63. AC test conditions

© Copyright WEITEK 1988
45 _ All Rights Reserved

Pin Configuration

Pin #1
Identifier
A

B

Notes:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GND | NC Ne | xi8 | Ne Ne | N | xea | vobo | Ne | ne | xer | Ne | Ne | one

NC | Ne GND | x16 | NC NC | x20 | xe2 | xea | xe5 | x26 | Nc | xee | x31 | anD

TIE

NC | Ne x15 | GND | x17 | x19 | xet Ne | vobo | Ne | xes | Ne | xs0 | ow | F2

Ne | xi2 | x4 aND | Fo | Adstt

x10 | x11 | x13 F1 | Adsto | Abino

xs | nc NG Abin2 | Abin1 |ABORT-

Ne | xo VDD STALL] NEUT-| cwen-

WTL 3132

Ne | x7 VDD TOP VIEW Cadd2 | Cadd4 | Cadd3

x6 | xs NC cadd1| Aadda | caddo

ne | ne NG Aadd1 | Aadd2 | Aadd4

Baddo | Badd4 | Aaddo

x4 | xe NC

X3 X1 GND Dadd2 | Badd1 Badd3
FPCN TE 1 TE Dadd1 | Dadd4 | Badd2

NG | Nc | oEx- | vDD aND | ow | Low | e | eno | anp | voD

TIE ~ iy
X0 Encni | FPEX | Encno E 1ok | ano| ano | ano | anp | anp | vop | P2dd0 | Dadds
LOW LOW
ZeRO |anp | 1octo | 1octt [Mbin-| TE | TE | oo | o | ano | ano | ano | anp | anp | anp
Low | Low

Pins marked “Tie Low” must be connected to ground.
unconnected (floating).

Pins marked “NC” should be left

Figure 64. WTL 3132 and XL-3132 pin configuration

© Copyright WEITEK 1988
All Rights Reserved

46

N

TN

N

N
N

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Pin Configuration, continued

Pn#1 ¢ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Identifier

TIE
A | oex-| Low | 20 z2 | x3 | z4 Ne | x5 z7 | xo z9 | x11| z12| x13] x15 | z15 | GND
B | oEz-|zero| xo zt | x2 | Nc | Nc | z5 | voD| vDD | x8 | z10| z11 | Z13| X14 | GND | GND
C | GND |Enent{GND | X1 | z3 | x4 x6 | NC z6 | zs x7 | x10| x12| z14| z16 | x17 | z17
D | iocto| FPEX |FPCN x16 | z18 | x18
E | Encno | Mbin-|10ctt z20 | x19 | z21

TIE

F | Mbs-| cik Low z19 | x21 | x20

TE | TE
G | Low | Low | Y28 voD | voD | vDD

TIE
H ¥31 | Low | Y30 x23 | x22 | z22

-~ WTL 3332
J | Low | Y29 | yae TOP VIEW z23 | x4 | z2a
~

(/y,, K v22 | v24 | y25 z25 | x25 | z26
L v23 | va21 | v27 vDD | VDD | VDD
M v18 | vi9 | v20 x27 | xo8 | z27
N vi6 | Yis | yvi7 X29 | z28 | X286
P Y14 | vi13 | vi2 z31 | z30 | z29
R Y10 | Y11 | Yo |Dadd3| Yé |Badd2|Aadd4|Aaddi|Caddo|Cadd1i| Y2 | Yo BTALL{Adst1| F1 | X31 | X30
TIE
T | voD | VDD |Dadd2| Y7 |Badd1|Badd3|Aadd0]Aadd2|Aadd3 [Cadd2 |Cadd4 | Cwen- Abin0 | Abin2 | Adsto] Fo | | o\
] v8 |DaddO| Dadd1|Dadd4 | BaddO| vys |[Badd4| va Y3 Yy1 |[Cadd3 PBORT-NEUT- Abin1 F2 GND | GND

Notes: Pins marked “Tie Low” must be connected to ground. Pins marked “NC" should be left
unconnected (floating).

Figure 65. WTL 3332 pin configuration

C

4 © Copyright WEITEK 1988
7 All Rights Reserved

Physical Dimensions

WTL 3132 144-PIN PIN GRID ARRAY

Symbol DIMENSIONS
INCHES MM
”’\‘“”‘“ Al 0.080+ 0.008 2.03 * 0.20
— s
EZJ A2 | 0.180 typ. 4.57 typ.
005000500000508| T =
olololetolotototeleletololotol IEI A3 0.050 1.27
OO OO f—
P D 1.575 sq.+ 0.016 | 40.0 sq. + 0.41
PIN — —
E1 KOVAR
E1 1.400 sq.+ 0.012 35.56 sq. + 0.30
o E2 0.050 dia. t i
KOVAR . . typ. 1.27 dia. typ.
Lﬂ E3 0.018 +0.002 .46 + 0.05
BOTTOM VIEW SIDE VIEW TOP VIEW d 0.070 dia. typ 1.78 dia. typ
. e 0.100 typ. 2.54 typ.
WTL 3332 168-PIN PIN GRID ARRAY
Symbol DIMENSIONS
e INCHES MM
° ~”~LA3 Al 0.095 *0.009 2.41 + 0.23
By _
fotoloto! T = A2 0.180 typ. 4.57 typ.
E3L
O A3 0.050 1.27
g
& KbVAR D 1.750 sq.+ 0.018 44.5 sq.+ 0.46
STAND E1 1.600 sq. 40.6 sq.
® QOFF
Jololclofolololololofolofololo) MAial
NOO0O0EE000] LJ E2 0.050 dia. typ. 1.27 dia. typ.
d JI PN P A2
BOTTOM VIEW SIDE VIEW TOP VIEW E3 [0.018 +0.002 .46 + 0.05
d 0.070 dia. typ. 1.78 dia. typ.
e 0.100 typ. 2.54 typ.

© Copyright WEITEK 1988
All Rights Reserved

48

NS

YN
RN

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Appendix A: The XL-3132 in the XL Environment

WEITEK XL-SERIES

The WEITEK XL-Series is a family of three VLSI
processors: the XL-8000, a high-speed 32-bit integer
processor; the XL-8032, a single-precision floating
point processor; and the XL-8064, a double-precision
floating point processor.

These processors give the performance of bit-slice
components, and are supported by a full complement
of development tools. These include C and
FORTRAN 77 compilers, and an assembler which
produces code that may be optimized by an instruction
parallelizer. The development system offers both hard-
ware and software simulators with debugging facilities.
The programmer remains free to create custom
microcode routines for peak performance.

This appendix is dedicated to the XL-8032 single-
precision floating point processor. Further information
may be found in the XL-Series Overview, the XL-Series
Hardware Designer’s Guide, the XL-Series Program-
mer’s Reference Manual, the XL-8136 Data Sheet and
the XL-8137 Data Sheet.

The XL-8032 processor consists of three intercon-
nected VLSI components:

e XL-8136 Program Sequencing Unit (PSU)
e XL-8137 Integer Processing Unit (IPU)
e XL-3132 Floating Point Unit (FPU)

Each of these components is manufactured in high-
density, low-power CMOS and delivered in a 144-pin
grid array package. Unlike a traditional microproces-
sor, the XL-8032 is not constrained by the limits of
circuit density or bus bandwidth imposed by a single
chip in a small package. Consequently, bit-slice
performance levels can be obtained both for integer
and floating point operations.

The XL-Series simplifies system design. Zero glue
interfacing is provided by a small number of dedicated
signals that communicate state information between the
components. These signals and the system buses need
only be connected as shown in figure 69 in order to
create the XL-8032. The purpose of each interconnec-
tion is described in more detail below.

BUSES

Four high-bandwidth system buses are provided by the
XL-8032:

1. Code bus.

The 64-bit code bus feeds the code input ports of
the PSU, IPU and FPU. The PSU and IPU
share 32 of the 64-bits; this half of the code word
directs program control operations, address genera-
tion, loads and stores, and integer arithmetic.
The remainder of the code word directs floating
point operation. The designer may choose to
lengthen the code word to add custom extensions to
the processor architecture.

2. Data bus.

The 32-bit data bus is shared by the IPU and FPU.
It allows bytes, 32-bit integers and 32-bit floating
point numbers to be transferred between the proc-
essing units and data memory.

3. Code Address bus.

The 32-bit code address bus carries the address of
the next instruction from the PSU to the code
memory. A word address allows up to 32 Gbytes
of 64-bit wide code memory.

4. Data Address bus.

A 32-bit data address bus carries the address of the
next data read or write. The address is generated by
the IPU and the data may be transferred to or from
the IPU or FPU as required. A byte address allows
up to 4 Gbytes of 32-bit wide data memory. Support
for accessing bytes, half-words, and words is
provided by the IPU.

The XL-3132 is designed to hook directly to the code
and data buses alongside the other components of the
XL-8032. When driven by the same system clock, the
code word is sampled by all three components simulta-
neously, and the data bus is driven or sampled at the
same time in the cycle no matter which component is
transferring information.

The code and data memory systems may be
implemented with SRAM, static column DRAM, or
interleaved DRAM. Both code and data caches are
supported by the XL-8032 chip set. More details are
provided in the XL-Series Hardware Designer’s Guide.

© Copyright WEITEK 1988
All Rights Reserved

Appendix A: The XL-3132 in the XL Environment, continued

2. Bits marked with an “X” are reserved bits.

63 59 53 47 a4 38 31 28 24
c el 1 AlE ! '
1]
¥l Folx w nl O Abin | d |n X .
Aadd |X| Badd ¥| Cadd cl ¢ | s |c|(Seq)! Dadd
ny t t n !

" 1 0 ' :

1 3 1 5 1 5 1 5 1 2 1 3 2 1 3 5

1. Dashed lines indicate bits in the sequencer field.

3. The meaning of each bit field is described in the body of this data sheet.

Figure 66. XL-3132 signal assignments in the XL-8032 code word

INSTRUCTION FORMAT

The XL-8032 has a 64-bit instruction word. The bits
that are directed to the XL-3132 are shown in
figure 66.

The lower 32-bits of the instruction word are shared by
the IPU and the PSU. Bits 0-23 normally define the
IPU operation. Bits 24-31 define the instruction flow
control performed by the PSU. Five of these control
bits, 24-28, are also used as the floating point register
address (Dadd) when floating point load and store
operations are performed. This saves on code bits and
insures that the FPU and IPU never compete for the
data bus.

The XL-3132 has 34 C port inputs. When used in the
X1-8032 configuration, the Dadd field is tied to the
appropriate bits of the PSU code input. The Mbin- bit
is tied to GND, reducing the number of bits used in the
XL-8032 instruction word to 60; the remaining four
are marked with an X in figure 66 and should be set
to 0 in any code to maintain compatibility with future
versions of the processor.

LOAD/STORE MODEL

The XL-Series has a consistent load/store model re-
gardless of processor configuration. Each processing
unit has its own register file: register moves between the
IPU and FPU must be made through the data memory.
Each of these register files is multi-ported and each
register may be the operand source or result destina-
tion of any instruction implemented by the unit. When
an instruction takes more than one cycle to execute,

© Copyright WEITEK 1988
All Rights Reserved

the registers that supply its operands and receive its
result cannot be modified until it has been completed.
This allows any instruction to be resubmitted for
execution after an interrupt with its original state.

Transactions between the register files and data
memory are performed with dedicated load/store
instructions. The only restriction on loads and stores is
that the operands of an operation be loaded before it is
executed and that it shall have completed before its
result is stored. This allows the parallelizer
considerable freedom to optimize register usage and
I/O transactions.

An example of the normal sequence of operation is
given below. This example leaves several free cycles in
which other loads, stores, and calculations could be
performed in parallel.

addr .ra
fload .fx
fabs .fx, .fy
nop

addr .rb
fstore .fy

Figure 67. * rb = |*ra|

“

5
‘\\\ J

O

C

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Appendix A: The XL-3132 in the XL Environment, continued

Using the Coprocessor Load Mode gives the fload and
fstore operations the same timing as the IPU’s load
and store operations. For loads, the address is pre-
sented on the AD bus at the beginning of a cycle and
the data is expected to be available on the D bus by the
end of that cycle. For stores, the address is presented
on the AD bus at the beginning of a cycle and the data
is driven onto the D bus during the next cycle.

Because the addr and fload instructions can be
executed in parallel, they may be pipelined to support
contiguous load operations (one per cycle).

If, however, loads and stores are to be interleaved,
each store must be allowed two cycles; the latter cycle
is then always available for the I/O nop required when
following an fstore by an fload. This has minimal
impact on overall performance because loads usually
outnumber stores; and the parallelizer can organize
I/O transfers efficiently. If the code constraints
covered in the body of this data sheet are followed or if
WEITEK software tools are used, then this load/store
model will be obeyed.

MODES

The XL-3132 Mode Register must be initialized to
the values given in figure 68 when coupled into

the XL-8032 processor. The resulting programming
model is illustrated in figure 70. Each selection is
explained here:

1. Internal Bypass Mode is enabled to maximize
performance.

2. The fix and float range test may be enabled or
disabled as required.

3. Input Bypass (and Double-Pump) Modes are
disabled, because they cannot operate when the
Coprocessor Load Mode is enabled. The MBin and
ABin ports on the multiplier/accumulator cannot,
therefore, receive operands from the C bus.

4. Output Bypass Mode is enabled to maximize
performance.

5. Overflows may be enabled or disabled as required.

6. Coprocessor Load Mode is enabled so that the
XL-3132 matches the XL-Series load/store model.

7. The Y port Late Input Mode is disabled; it only
operates with the WTL 3332.

MODE BIT LOGIC VALUE DESCRIPTION
Mo 1 Internal Bypass Mode (Aadd = Cadd) enabled
M1 1 fix and float range test enabled (may be disabled)
M2 0 Reserved: must be cleared to 0
Ms 0 Input Bypass Mode disabled
Ma 1 Output Bypass Mode enabled
Ms 1 Overflow exception enabled (may be disabled)
Me 1 Coprocessor Load Mode enabled
Mz 1 Reserved: must be set to 1
Ms 0 FPEX active low and “sticky”*
Ms 0 Double-pump Mode disabled
Mio 1 Reserved: must be set to 1
Mi1 1 Internal Bypass Mode (Aadd = Badd) enabled
Mi12 0 Y Late Input Mode disabled

Reference Manual for details.

*These features are not available on all versions of the XL-3132; check the Programmer’s

Figure 68. Mode selection table

© Copyright WEITEK 1988
51 All Rights Reserved

Appendix A: The XL-3132 in the XL Environment, continued

Y

1

Address
Code
y Memory
32 System
STALL-
Code Bus
64
/ / 2
/1 32 /1 32 A 32
C STALL- AC C STALL- C STALL-
— WREN- COND COND FPCN FPCN
Integer Program XL-3132
Processing Sequencing Floating Point
Unit Unit Unit
AD AD EXT4- FPEX-
ABORT- D NEUT- OP NEUT- ABORT- NEUT- X ABORT-
$
“ %
32 PAL 4 32
OE- CsS- Data Bus
Data
Memory
System
WREN- ABORT-
Address

Figure 69. XL-8032 schematic

© Copyright WEITEK 1988

All Rights Reserved

52

s

C

WTL 3132/WTL 3332/XL-3132

32-BIT FLOATING POINT
DATA PATH

October 1988

Appendix A: The XL-3132 in the XL Environment, continued

Ll

D

FPEX

FPCN

9] <
2 o]
o] o] 7a)

[OEX- l I NEUT- | IABORT-I ISTALL—l l €33..0 |
Y Y Y B
STORE b | A a4
| OUTPUT BYPASS MUX I——Dadd =
f ' Cadd
‘ NOP NOP
rxDinFLl I>><DoutR| DXCoutRI CURRENT NEXT
[}
° C Bus (Result)
| B (o] ‘
IE Code |
. . %X32 Adst
32x 32 Register File regs Aadd
® 5add
Dadd
A B | Tcadd loCt
Cwen-
Aadd = BYPASS MUX | 22dd= " gypass MUX
Cadd/ Cadd
Dadd
v
- T s ®
> 4
32
MAin MBin
MUL-1/2 STAGE
A J]
D P';E 1 D 1 D | D | D |
| MUL-1 STAGE “«r «2r
R ' | !
l MUX | l MUX Jl: —I Abin
| Y
Dere | D I | D |
[AAin ABin | L?JSK
ALU-1 STAGE ROM
D PIPE | D |
——-I ROUND-1/2 STAGE l
(32 a2 Enen
ZERO/CONDITION/
OVERFLOW LOGIC [

Figure 70. XL-3132 in XL mode

53

© Copyright WEITEK 1988
All Rights Reserved

Appendix A: The XL-3132 in the XL Environment, continued

CONDITIONS AND EXCEPTIONS

The XL-8032 provides several signals which transfer
state information from the processing units (IPU, FPU)
to the sequencer (PSU). These are either conditions,
upon which the PSU may decide to branch; or excep-
tions, which require software intervention to recover
gracefully.

The FPCN output on the XL-3132 should be connected
to the FPCN input on the XL-8136. The FPCN signal is
enabled by the Encni..o field in the instruction word to
indicate whether the result of an operation is = 0, < 0,
or <= 0. The PSU may then execute a “branch on
condition” instruction to selectively transfer program
control according to the outcome of this comparison.

The FPEX- output on the XL-3132 should be
connected the EXT4- interrupt input on the XL-8136.
If the overflow enable bit in the mode register is
set, then any arithmetic operation that generates an in-
valid result can flag this exception to the PSU. The
system software is expected to react appropriately to
this interrupt.

© Copyright WEITEK 1988
All Rights Reserved

54

NEUT-, STALL- AND ABORT-

The XL-8032 components all use the NEUT-, STALL-
and ABORT- signals. These pins should be connected
directly between the three chips in the XL-8032
processor (see figure 69).

NEUT- cancels the effect of the current instruction.
The signal is generated by the PSU. It is normally used
in the shadow of a delayed branch to prevent the
instruction in the pipeline from having any effect on
the state of the IPU and FPU.

STALL- cancels the effect of the next instruction. It
should be generated by the code memory subsystem to
indicate the delay or absence of the correct code word.
This prevents any invalid operation that may be present
on the code input at this time from affecting the state
of the processor. It allows wait states to be inserted in
code fetches, perhaps to allow for DRAM refresh or a
code cache miss.

ABORT- cancels the effect of both the current and the
next instructions. It should be generated by the data
memory subsystem to indicate the inability of the
system to instantly access the required data word. This
allows the canceled instructions to be repeated when
the address becomes valid and for this retry to have the
correct effect. It allows the data memory to be “not
ready” if, for example, a page fault occurs.

N

\\‘

o

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Appendix B: Programming Examples

In the following examples, square root has Coprocessor
Load Mode enabled and Input Bypass Mode disabled.
It may be used in the XL-Series environment. The

SQUARE ROOT

other examples have Coprocessor Load Mode disabled
and Input Bypass Mode enabled. They must be modi-
fied to be run on the XL-Series machines.

NOTATION: ALGORITHM:
a = operand (.f4)
_ R _ Rn—l)
Ro = seed (.f0) == (3-ar2)
Ry = first approximation (.f1) Ny R,
R2 = second approximation (.f2)
0.5 = constant (.f5) R, = _120_ 3 _ aROZ)
3.0 = constant (.f6, .t1)
Ry 5
s = result (.13) =— (3-ar})
Cycle # Opcode 1/0 Comment
1 fnop ; fload .f6
2 fadd .f6 o, 1 ; fload .fO move 3.0 to .t1
3 fmac .fo, .fo, o, .f6; fload .f5 Rox Ro
4 fmac .fo, .15, 0, £3; fload .f4 0.5%Ro
5 fnop ;
6 fmna f4, .f6, A1, 17 5
7 fnop 3.0 -(axR§)
8 fnop
9 fmac 13, 7, 0, f1 R1
10 fnop
11 fnop
12 fmac 11, .f1, 0, f6 R1XR1
13 fmac f1, .f5, o, 3 0.5% R
14 fnop
15 fmna .4, .6, 41, £7 3.0 -(axR?)
16 fnop
17 fnop
18 fmac 13, 17, 0, f2 R2
19 fnop
20 fnop
21 fmac f2, .f4, 0, f3 s =axRe
22 fnop
23 fnop
24 fnop ; fstore .f3 store s
o5 fnop s on X port
Figure 71.
55 © Copyright WEITEK 1988

All Rights Reserved

Appendix B: Programming Examples, continued

The square root code given fetches a seed for the first 4X4 MATRIX TRANSFORM

approximation to the result and then proceeds to refine

its value using the Newton-Raphson algorithm. It differs NOTATION:

from the example for division given in the body of the

data sheet in that no on-chip look-up table is provided ~ Transform matrix A (a1 to a4s) (.f16 to .f31)
for the seed value.

Operand vector X (x1 to x4) (.fO to .f3)
The external table assumed here has the same

Result t Y . .
accuracy as the internal divide look-up table (all of the esuit vector G110 y4) (F4 10 .87)
exponent and the seven most-significant bits of the Partial results p1 to p4 (Tregs)
fraction). The following formulae may be used to
calculate the entries of this table. ALGORITHM:

Table entry exponent (G) and fraction (H) in terms of Yy = AX
the operand values (E) and (F). Care should be taken

to insure that zeroes, negative numbers, infinities and — — — — — -
NaNs are handled correctly. Y1 a1 812 @13 A1 X1
‘. [380 — E] Y2) Gp1 @y azz ap4 X2
2 Y3 831 @83z QAzz Qg4 X3
13
ifEQ®)=1;, H = [T\/7—+1: -256] | V4| | 841 842 843 Qaq | | Xa_| o
i)
FE®) =0; H= | e 56 |
[] = truncate to lower integer.
Cycle # Opcode 110 Comment
1 fmac fo, .f16, 0, 1 fload .f0O p1 = at1 X x1
2 fmac .fo, f17, 0, 12 p2 = a21X X1
3 fmac f0, .f18, 0, .13 p3 = as1Xxi
4 fmac fo, .f19, 0, A1 p4 = a41 X X1
5 fmac 11, .f20, A1, 12; fload .f1 p1 = a2Xx2 + p1
6 fmac 1, f21, 2, .13 p2 = az2X X2 + p2
7 fmac f1, f22, .3, .t1 p3 = as2X X2 + p3
8 fmac 1, .f23, A1, 12 p4 = a42X X2 + p4
9 fmac f2, .f24, 12, .t3; fload .f2 p1 = ai3axXx3+ p1
10 fmac .f2, f25, .13, .t p2 = @23 X X3 + p2
11 fmac f2, .26, A1, .12 p3 = a33X X3 + p3
12 fmac f2, f27, 12, .13 P4 = @43 X X3 + p4
13 fmac 13, .f28, .3, f4; fload .f3 y1 = a14X X3 + p1
14 fmac 13, .f29, A1, f5 y2 = @24 X X3 + p2
15 fmac 13, .30, 12, .fé y3 = as4 X X3 + p3
16 fmac 3, 31, 13, 17 Y4 = a4a X X3 + p4 N
This example is not interruptable. Results can be read from the Z port of the WTL 3332 S

Figure 72.

© Copyright WEITEK 1988 56
All Rights Reserved

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Appendix B: Programming Examples, continued

RADIX-2 FFT

In-place for algorithm for radix-2 butterflies.
Two butterflies are evaluated per iteration.

NOTATION: ALGORITHM:

Source Operands Results Ar'= Ar + (BrXWr — BixXWi)

Ar, Ar#t (T4, .f20) Ar| Ar#t! Ai'= Ai + (BrXWi+ BiXWr)

Ai, Ai# (f5, .f21) Ai', Ai#t’ Br'=Ar — (BrXWr ~ BixXWi)

B:, Bi# (.f3, .f19) B:', Br#' Bi'= Ai — (BrXWi+ BixXWr)

Bi, Bi# (.f0, .f16) Bi’, B#'

Wr, Wi# (.f2, .f18)

wi, Wi# (.f1, .f17)

Cycle # Opcode 1/10 Comment
fnop ; fload .f0
™ fnop ; fload .f16
(,,/ 1 fmns 1, .fo, 0, .t ; fload .f1 -Bix Wi
2 fmac f2, .fo, 0, .t2 ; fload .f2 +Bix Wr
3 fmns f17, .f16, O, t3 ; fload .f17 -Bi# X Wi #
4 fmac .f18, .f16, O, 1 ; fload .f18 +Bi# X Wit
5. fmac 3, f2, 1, .f8 ; fload .13 BrX Wr — Bix Wi
6 fmac 13, f1, 2, .9 BrxX Wi+ BixWr
7 fmac f19, .f18, .13, .f24 ; fload .f19 Br# X Wii#t — Bitt X Wi#t
8 fmac .f19, .f17, .t1, .f25 Br# X Wit + Bitt X Wit
9 fadd f4, .18, .f10 ; fload .f4 Ar’
10 fsub f4, 8, .11 B’
11 fadd .f5, f9, f12 ; fload .f5 A’
12 fsub .f5, .f9, .13 B’
13 fadd .f20, .f24, .f26 ; fload .f20 Ar#t’
14 fsub f20, .f24, {27 ; fload .f21 B#
15 fadd f21, .f25, .f28 ; fload .f0 AR
16 fsub f21, .f25, .f29 ; fload .f16 Bi#
This example is not interruptable. Results can be read from the Z port of the WTL 3332

Figure 73.

C

© Copyright WEITEK 1988
57 All Rights Reserved

Ordering Information

PACKAGE TYPE

TEMPERATURE RANGE

ORDER NUMBER

144-Pin PGA Tc =0to+85°C WTL 3132-GCD-100, -120
168-Pin PGA Tc =0to +85° C WTL 3332-GCD-100, -120
144-Pin PGA Tc =-5510 +125° C WTL 3132-GMD-100, -120
168-Pin PGA Tc =-551t0+125°C WTL 3332-GMD-100, -120

XL-Series customers should order the following:

PACKAGE TYPE

TEMPERATURE RANGE

ORDER NUMBER

144-Pin PGA

Tc =0to+85° C

XL-3132-GCD-100, -120

144-Pin PGA

Tc =-55t0 +125°C

XL-3132-GMD-100, -120

© Copyright WEITEK 1988
All Rights Reserved

58

O

WTL 3132/WTL 3332/XL-3132
32-BIT FLOATING POINT
DATA PATH

October 1988

Revision Summary
CONTENTS

This table lists major changes since the October 1987 printing of this data sheet.

Change Description
1. NEUT- or ABORT- and fmode Revised, para 5 on page 12; page 29
2. Reverse C bus operation Revised, new note, page 16
3. Register write WRI Corrected, figure 21, page 19
4. D3 A bus transfer Corrected, figure 31, page 24
5. fabs condition on N = 0 when M1 =0 Revised, figure 32, page 25
6. Figure caption Corrected, figure 47, page 33
7. Clarification of range bit Revised, figure 52, page 35
8. Mode bit Corrected, figure 54, page 37
9. Divide result precision Revised, page 39
10. Encn settings for range text Revised, page 40
11. Absolute maximum ratings Revised, page 42

(COMPONENTS

This table lists the component revision to which successive versions of this data sheet have referred.

Data Date Component Suffix
WTL 3132/WTL 3332 Preliminary Data July 1986 A
XL-Series Product Status Report March 1987 A
XL-Series Product Status Report July 1987 C
WTL 3132/WTL 3332 Errata Sheet October 1987 C
WTL 3132/WTL 3332 Data Sheet October 1987 F
WTL 3132/WTL 3332 Data Sheet October 1988 F

© Copyright WEITEK 1988
59 All Rights Reserved

7

N
/

\ ‘//

WTL 3132/WTL 3332/XL-3132

32-BIT FLOATING POINT
DATA PATH

October 1988

/

NS

4

For additional information on WEITEK products, please fill out the form below and mail.

Name Title

Company Phone

Address

Comments

I am currently involved in a design with the following Weitek products and wish to be added to your
design data base to insure that I receive status updates.

APPLICATION:
[0 ENGINEERING WORKSTATIONS J SCIENTIFIC COMPUTERS
O GRAPHICS 0 OTHER
[J PERSONAL COMPUTERS
Check the products on which you wish to receive data sheets: [Have a sales person call
ATTACHED PROCESSORS COPROCESSORS BUILDING BLOCKS
0 XL-SERIES OVERVIEW 0O ue7 O 2264/65 0J 2010
U] 1164/65 [0 3132/3332 [0 2245

[J 1232/33 O 2516

J 1066 O 2517
WEITEK use: Rec’d Out TPT Source: DS
Status

WEITEK WTL 3132/WTL 3332/XL-3132
Please Comment On The Quality Of This Data Sheet.
Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have

missed something that may be important to you. If you believe this is the case, please describe what the
missing information is, and we will consider including it in the next printing of the data sheet.

Fold, Staple and Mail to Weitek Corp.

| I | | | | NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES
.}
L]
L]
BUSINESS REPLY MAIL ——
FIRST CLASS PERMIT NO. 1374 SUNNYVALE. CA ————
L]
POSTAGE WILL BE PAID BY ADDRESSEE ———
L]
WEITEK Corporation I ——
1060 E. Arques Ave. L]
L]

Sunnyvale, CA 94086-BRM-9759
ATTN: Ed Masuda

WHTEK 4

WEITEK’S CUSTOMER COMMITMENT:

Weitek’s mission is simple: to provide you with VLSI solutions
to solve your compute-intensive problems. We translate that
mission into the following corporate objectives:

1. To be first to market with performance breakthroughs, allow-
ing you to develop and market systems at the edge of your art.

2. To understand your product, technology, and market needs, so
that we can develop Weitek products and corporate plans that
will help you succeed.

3. To price our products based on the fair value they represent to
you, our customers.

4.To invest far in excess of the industry average in Research and
Development, giving you the latest products through techno-
logical innovation.

5. To invest far in excess of the industry average in Selling, Mar-
keting, and Technical Applications Support, in order to pro-
vide you with service and support unmatched in the industry.

6. To serve as a reliable, resourceful, and quality business part-
ner to our customers.

These are our objectives. We’re committed to making them
happen. If you have comments or suggestions on how we can
do more for you, please don’t hesitate to contact us.

———~—

Art Collmeyer

President

Y
R 4

TN

*\ . J

Headquarters

Weitek Corporation

1060 E. Arques Avenue

Sunnyvale, CA 94086

TWX 910-339-9545
WEITEK SVL

FAX (408) 738-1185

TEL (408) 738-8400

Domestic Sales Offices
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545
WEITEK SVL
FAX (408) 738-1185
TEL (408) 738-8400

Corporate Place IV

111 South Bedford St.
Suite 200

Burlington, MA 01803
FAX (617) 229-4902
TEL (617) 229-8080

European Sales Headquarters
Greyhound House, 23/24 George St.
Richmond, Surrey, TW9 1JY

England

TELEX 928940 RICHBI G

FAX 011-441 940 6208
TEL 011-441 549 0164

Japanese Representative

4-8-1 Tsuchihashi
Miyamae-Ku

Kawasaki, Kanagawa-Pre
213 Japan

FAX 044-877-4268

TEL 044-852-1135

s
L

