
WEITEK ~

~
WTL 3167 FLOATING­
POINT COPROCESSOR

PRELIMINARY DATA
September 1988

The WEITEK WTL 3167, also known
as the WEITEK ABACUS, is a high
performance single-chip floating­
point coprocessor for Intel's 80386
microprocessor. It is hardware and
software compatible with the
WEITEK 1167 coprocessor daugh­
ter board. Fully supported by a wide
selection of application packages
and by high-level language com­
pilers, under DOS, UNIX System
Y.3, and XENIX System Y.3, the
WTL 3167 provides a superior
floating-point accelerator for high­
end PCs, workstations, industrial
robots, graphics, and numeric con­
trollers.

Contents

Features

Description

Block Diagram 2

Hardware Designer's Section 3

Software Tools Overview 20

Applications Programmer's
Section 21

Systems Programmer's Section 48

WTL 1167 and
WTL 3167 Compatibility 54

Ordering Information 55

Revision Summary 56

Documentation Request Form 59

Sales Offices back cover

WTL 3167 Floating-Point Coprocessor
September 1988

Copyright © WEITEK Corporation 1988
All rights reserved

WEITEK Corporation
1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400

WEITEK is a trademark of WEITEK Corporation

MS-DOS is a trademark of MicroSoft Corporation
OS 386 is a trademark of AI Architects
RUN386 is a trademark of Phar-Lap Software
UNIX is a trademark of Bell Laboratories
X-AM is a trademark of IOC

WEITEK reserves the right to make changes to these
specifications at any time

Printed in the United States of America
90 89 88 6 5 4 3 2 1

o

o

o

c
Features

SINGLE-CHIP FLOATING-POINT COPROCESSOR

Designed for use with the Intel 80386

Fits a standard 121-pin socket, which is a superset of
the Intel 80387 coprocessor socket

Pin-for-pin compatible with WEITEK 1167
coprocessor board

Upward object-code-compatible from WEITEK 1167

HIGH PERFORMANCE

5.6 single-precision megawhetstones and 1. 0
single-precision megaflops in hand-coded Linpack

HIGH-LEVEL LANGUAGES

Supported by C, FORTRAN, and Pascal compilers
under UNIX System V.3, XENIX System V.3, and
MS-DOS real and protected mode

(Description

The WTL 3167 is a high-performance single-chip
floating-point coprocessor board for Intel's 80386
32-bit microprocessor. It delivers two to three times the
performance of standard 32-bit numeric coprocessors.
(Benchmark results are given in figure 1.)

The interface signals between the WTL 3167 and
the 80386 are provided by a 121-pin socket, called the
extended math coprocessor (EMC) socket, which is a
superset of the 80387 socket. The WTL 3167 is pin­
for-pin compatible with the WTL 1167 coprocessor
daughter board.

C, FORTRAN, and Pascal compilers fully support the
WTL 3167, allowing programs to be written in high-

Benchmark

Unpack* (SP)
Unpack * (DP)

Whetstone (SP)

Whetstone (DP)

* Hand-coded

() Figure 1. Benchmark results at 25 MHz

1

IEEE FORMAT

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Conforms to the IEEE standard format for floating­
point arithmetic in both single- and double-precision
(ANSI/IEEE Standard 754-1985)

FULL FUNCTION

Add, subtract, multiply, divide, and square root

Integer-floating-point conversions

Absolute value

Compare

Transcendental functions supported by run-time
libraries

Low power CMOS

Dissipates 2.0 Watts max at 25 MHz

121-pin PGA package

level languages. The WTL 3167 is upward object-code­
compatible with the WTL 1167 coprocessor daughter
board.

This document consists of three sections: the Hardware
Designer's Section, the Applications Programmer's
Section, and the Systems Programmer's Section.

This data sheet is complemented by two additional
documents: The WTL 3167 Hardware Designer's
Guide and the WTL 1167 Software Designer's Guide.
Readers familiar with the WTL 1167 Data Sheet can
simply refer to the WTL 1167 and WTL 3167 Compati­
bility section.

Performance

1.36 MFLOPS

.60 MFLOPS

5.6 MWhetstones

3.7 MWhetstones

© Copyright WEITEK 1988
All Rights Reserved

Description, continued

M/IO- A3l .. 25 W/R- TCB- READY-

ClK2

C

RESET

D-..L-., ClK
64

ClK2

64

ADS-

Register File

16x64
3 ports

A

64

Figure 2. WTL 3167 simplified block diagram

© Copyright WEITEK 1988
All Rights Reserved 2

W/R- A15 .. 2 BE2 .. 0- 031 .. 0

ClK2

Instruction Queue (7 elements)

B

64

MUX

lAT

49

32

32

Immediate
Data

32

c

o
32

32

c

(

Hardware Designer's Section

This section provides the electrical and mechanical in­
formation necessary to design the WTL 3167 into an
80386 system. For more details refer to the WTL 3167
Hardware Designer's Guide.

The WTL 3167 coprocessor is a memory-mapped pe­
ripheral. From the system designers standpoint, inte­
grating the WTL 3167 into the system is as simple as
adding additional memory at an upper address. To
the 80386 and its application software the WTL 3167
appears to be a segment of memory. Instructions are
executed by performing memory moves to and from
the coprocessor.

The WTL 3167 interface to the 80386 requires signals
that are not available on the 80387 socket. WEITEK

3

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

has defined a superset of the 80387 socket called the
extended math coprocessor (EMC) sdcket, which is a
standard 121-pin pin grid array socket. With the EMC
socket, a system can make use of the 80387, the
WTL 3167, or both, if one uses a small daughter board
that plugs into the 121-pin socket and accommodates
both coprocessors. Figure 3 shows the EMC socket
pinout and size.

Figure 4 shows the WTL 3167 physical dimensions.

Figure 5 shows details of the WEITEK daughter board.
It can accommodate both the 80387 and the WTL
3167 coprocessor.

© Copyright WEITEK 1988
All Ril!hts Reserved

Hardware Designer's Section, continued

.1J..l.F .001J..l.F

2 3 4 5 6 7 8 9 10 11 12 13

80387
Footprint

A

~
0

E

~ F
J..l.F

G

H

J B J..l.F
K

L

M

N

GNO

A15

VOO

~C

"' NC

A24

A25

A26

A27

VDO

A28

A29

A30

A13 A12 All GNO Al0 NC A9 AS GNO A7 A6

A14 09 011 012 014 VOO 016 018 VOO 021 A4

08 GNO 010 VOO 013 015 GNO 017 019 020 022

07 06 NC 023 GNO

05 D4 024 025

VOO GNO 026 027

VOO GNO
Top

VOO GNO View

03 02 028 029

01 DO 030 031

GNO VOO GNO CKM

PE BUSY TIE WR- VOO A31 AOS- REA NC CLK2 387
REO HIGH OY- CLK2

INTR ER REA STEN GNO MI VOO CM TIE RE ~RES
ROR OYO- 10- 00- HIGH SET

AF32 VOO GNO ROY- TCB- MCS- GNO NC VOO NC NC

.1J..l.F .001J..l.F

Pin #1 2 3 4 5 6 7 8 910111213

A .000000000000

1 B 0000000000000
C 0000000000000
0 0000 000
E 000 000
F 000 Top 000 1.35±0.2
G 000 View 000 Typical
H 000 000

1
J 000 000
K 000 000
L 0000000000000
M 0000000000000
N 0000000000000

1. 200 ± .012 ---.;..--tl

Figure 3. EMC socket pinout and dimensions

© Copyright WEITEK 1988
A 11 ~; oht" "R .. " .. r",'t'I 4

AS

A3

A2

VOO

NC

NC

BE
0-

BE
1-

BE
2-

NC

VOO

NO

GNO

r:l
LJ
rJ
LJ

Recommended
socket:
Robinson Nugent
PIN PGA-121AM3-S-TG
Garry
PIN 701-121-13K-LCD
Augat
PIN PGM121-1A1312-L

o

o

o

C-,,·
./

(

()

Hardware Designer's Section, continued

WTL 3167 121-Pin Pin Grid Array

Bottom View

Symbol

MAX

A1 0.135

A2 0.210

A3 0.080

D 1.400

E1

E2 0.055

E3 0.020

d 0.075

Pin
Kovar

Standoff
Kovar

Inches

MIN

0.080

0.175

0.035

1.280

1.200 TYP

0.035

0.016

0.035

e 0.100 TYP

Figure 4. WTL 3167 physical dimensions

5

Side View

MAX

3.43

5.33

2.03

35.56

1.40

0.51

1.91

WTL 3167 FLOATING-POINT
COPROCESSOR

MM

PRELIMINARY DATA
September 1988

D
•

Top View

MIN

2.03

4.46

0.89

32.51

30.48 TYP

0.89

0.41

0.89

2.54 TYP

© Copyright WEITEK 1988
A. 11 D~nht'-" D,,:::::u·,Ct"""-Q~

Hardware Designer's Section, continued

:U50 +.005 _1,250 *'rs

1
.075

f t
.229

t

WTL 3167 In the
121-pln socket
with long leads

t
.215

-L-

t
.177

t

f oCJo oCJo oCJo oCJo @
0000000000000

~ 0 0
0000000000000

0 0000000000000
000 000

::: 121-Pln ::: 'II WTL 3167
::: Socket :gg 0

~ 0 0 ggg~Pin 1 ggg 0 - 0000000000000
0000000000000

L
0000000000000

/ oCJo oCJo oCJo oCJol

/
'.''''.005 ~

3.800 *.005

Top View

Component Height Dimensions in Inches
(Not to Scale)

Figure 5. WTL 3167 coprocessor board physical dimensions

© Copyright WEITEK 1988
All Rights Reserved 6

t
~
-Ii

ttl
~

--1

f
~
'II
o
tq

c
t

.215
t t

.062 , ,
.304

t

o

c

o

Hardware Designer's Section, continued

CONNECTING THE EMC SOCKET

The following paragraphs describe the connection of
each EMC socket pin.

CLOCK (CLK2)

CLK2 is the clock input to the WTL 3167. All
WTL 3167 timing is relative to CLK2. This signal must
be the same as CLK2 of the 80386, but the WTL 3167
should have a dedicated trace. (For more details refer
to the "Clock Distribution" paragraph in the
WTL 3167 Hardware Designer's Guide).

VDD

Five volt (+5.0 V) power supply for the WTL 3167.
All VDD pins must be connected.

GROUND (GND)

Ground for the WTL 3167. All ground pins must be
connected.

BUSES

Address Bus (A31 .. 2) and (BE2 .. 0-).

Pins A31 .. 2 and BE2 .. 0- should be connected directly to
the 80386 address bus and byte enables respectively.

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

RESET, and W IR- respectively. Reset must be asserted
synchronously with the 80386 clock to guarantee
proper operation (see figure 18). In 'implementations
using the Chips and Technologies chip set, READY­
should be connected to READY- on the 82C301
and 82C302 devices, and to VCC through a 10k pull­
up resistor.

COPROCESSOR READY (RDY-)

The RDY- output signal must be "ORed" into the logic
generating READY- for the 80386, using only combina­
torial logic (see figure 6). In implementations using
Chips and Technologies chip set, ROY-should be con­
nected to READY -.

MATH COPROCESSOR SELECT (MCS-)

MCS- is an output signal that is asserted when the cur­
rent address is for the WTL 3167 coprocessor. It
changes when the 80386 address bus changes. MCS­
may be left unconnected or may be used in conjunc­
tion with W/R- to disable other 80386 data bus drivers
on WTL 3167 read cycles. When pipelined addressing
is used, special attention must be paid, as MCS- may
be de-asserted prior to the end of a WTL 3167 read
cycle, as shown in figure 17.

THREE CYCLE BUS (TCB-)

Data Bus (031 .. 0). TCB- is an input that should be grounded in systems
Pins 031 .. 0 should be connected to the 80386 data bus. using the Chips and Technologies AT/386 chip set.

80386 INTERFACE SIGNALS

The 80386 interface signals are: Address Status
(ADS-), Memory 110 Control Signal (MIIO-), Transfer
Acknowledge (READY-), Reset (RESET), and Write I
Read Line (W/R-).

ADS-, MIIO- READY-, RESET, and WR- should be
connected to the 80386 ADS-, M/IO-, READY-,

READY- from
other logic ~

OR
Logic

WTL 3167

!RDY-

Figure 6. READY-and ROY-connection

READY-

Otherwise TCB- should be left unconnected.

AF32-

AF32- is an output signal used only in implementations
based on Chips and Technologies' chip set. In imple­
mentations based on Chips and Technologies' AF32-
should be connected to VCC through a 10k resistor
and to AF32- on the 82C301 and 82C302 devices. It
should be left unconnected otherwise.

80386

READY

© Copyright WEITEK 1988

Hardware Designer's Section, continued

INTERRUPT (INTR)

The INTR output of the WTL 3167 must be connected
to the system interrupt controller. In the world of AT­
compatible systems, for example, the WTL 3167 INTR
should be "ORed" to the 80287/80387 interrupt logic
and the output should be connected to IRQ 13 as
shown in figure 7.

WTL 3167 PRESENT (PRES-)

PRES- signals the presence of a WTL 3167 coproces­
sor. This signal should be connected to VCC through a
resistor of at least 10KOhm to insure a high level when
the WEITEK coprocessor is not present.

The basic software method of detecting the presence of
a WTL 3167 in an 80386 system is to perform a func­
tional test of the device by attempting to load data into
the coprocessor register file and read it back (a coded
example is provided in figure 56 on page 51. The hard­
ware designer can use the PRES- output to make sure
that the system generates a READY-signal when the
WTL 3167 is addressed but is absent, (as determined
by PRES- being high), in order to avoid system hangs.

NO CONNECTION

NC pins on the outer rows and columns are reserved
for future expansion and should be left unconnected.

OTHER PINS

CKM, PEREQ, BUSY-, 387 CLK2, ERROR-, READYO-,
STEN, CMDO, and pins L4 and M10 are only used by
the 80387 coprocessor. Refer to the 80387 data sheet
for details. Such signals can be left unconnected if the
WTL 3167 is the only coprocessor that will ever be
used.

80386 802871
80387

ERROR- ERROR-

Error -- Detection
+Voo

Logic

DECOUPLING CAPACITORS

Decoupling capacitors should be placed on each side of
the EMC socket, as shown in figure 3.

SYSTEM-LEVEL CONSIDERATIONS

The WTL 3167 coprocessor is a memory-mapped pe­
ripheral that communicates with the 80386 over the
same address bus that connects the main memory to
the CPU. Instructions are defined by the 14 least-sig­
nificant address bits (A 15 .. 2) as well as three of the
four byte enables (BE2 .. 0-).

The seven most-significant bits of the 80386 address
bus (A31 .. 25), together with the Memory 1/0 control
Signal (M/IO-), select the WTL 3167 coprocessor.
Only the upper seven address bits are decoded to de­
termine when a coprocessor operation is being re­
quested.

c

The coprocessor will respond to memory addresses
COOOOOOO through C1 FFFFFF hex. Although by con­
vention only addresses COOOOOOO to COOOFFFF hex are c. '
used, it is important to be sure that other components .
in the system do not conflict with the address space
decoded by the coprocessor. Writing to this address
space will cause the WTL 3167 to execute instructions
and reading will cause the coprocessor to drive the data
bus.

TESTING THE DESIGN

A set of diagnostic routines that test the coprocessor
design for both UNIX and DOS, real and protected
mode environments, is available from WEITEK. No
WTL 3167 programming knowledge is required to run
the diagnostics software. Contact your WEITEK sales
engineer for a copy of the diagnostics. (Refer to fig­
ure 21 on page 20 for the product's part number.)

WTL 3167

INTR

IRQ13 Interrupt) Controller

Figure 7. Interrupt output connection in an AT-compatible system c
© Copyright WEITEK 1988

All Rights Reserved 8

c

c

Hardware Designer's Section, continued

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Supply voltage. -0.5 to 7.0 V
Input voltage -0.5 to VDD
Output voltage -0.5 to VDD

Storage Temperature Range -65°C to 1S0°C
Operating Temperature Range O°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Parameter Test Conditions

Voo Supply Voltage

Tcase Operating Temperature

Figure 8.

DC ELECTRICAL CHARACTERISTICS

Parameter Test Conditions

VIH High-level input voltage Voo = MAX

VIL Low-level input voltage Voo = MIN

VIHC CLK2 Input high voltage Voo = MINIMAX

VILC CLK2 Input low voltage Voo = MIN

VOH High-level output voltage Voo = MIN. IOH =-1.0mA

VOL Low-level output voltage Voo = MIN. IOL = 4.0 mA

IIHe
CLK2

Voo = MAX. VIN = Voo High-level input current

IILc
CLK2

Voo = MAX. VIN = OV Low-level input current

IIH High-level input current Voo = MAX. VIN = Voo

IlL Low-level input current Voo = MAX. VIN = OV

Icc Supply current CLK2 = MIN. Voo= MAX

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Commercial

Min Max

4.75 5.25

0 85

Commercial

Min Max

2.0

0.8

Voo-·8 Voo+·3

0.8

2.4

0.4

±10

±10

±10

±10

350

Unit

V

°C

Unit

V

V

V

V

V

V

J..l.A

J..l.A

J..l.A

J..l.A

rnA

WARNING! Remove power before insertion or removal.

Figure 9. DC electrical characteristics over recommended temperature range

Q
© Copyright WEITEK 1988

All n!_._ _ n _______ -'

Hardware Designer's Section, continued

AC SWITCHING CHARACTERISTICS

3167-016 3167-020 3167-025
Symbol Parameter Unit

Min Max Min Max Min Max

2Tcy Ciock Cycle Time 62 50 40 ns

Tcy CLK2 Period 31 25 20 ns

TCHa CLK2 High Time 9 8 7.5 ns

TCHb CLK2 High Time 8 7 6.5 ns

TCla CLK2 Low Time 9 8 7.5 ns

TClb CLK2 Low Time 7 7 6.5 ns

TR Clock Rise Time 8 8 7 ns

TF Clock Fall Time 8 8 7 ns

Tl ADS-, W/R- Setup Time 27 17 15 ns

T2 ADS- Hold Time 4 4 4 ns

T3 A15 .. 2, BE2 .. 0- Setup Time 22 18 15 ns

T4 A15 .. 2, BE2 .. 0- W/R- Hold Time 4 4 4 ns

T5 MIIO-, A31 .. 25 Setup Time 11 8 7 ns

Ts M/IO-, A31 .. 25 Hold Time 4 4 4 ns

T7 031 .. 0 Setup Time 20 20 20 ns

Te 031 .. 0 Hold Time 2 2 2 ns

Tg READY- Setup Time 20 12 9 ns

TlO READY- Hold Time 4 4 4 ns

Tll 031 .. 0 Output Delay 48 38 30 ns

T12 031 .. 0 Valid Output 6 6 5 ns

T13 031 .. 0 Float Delay 35 27 22 ns

T14 RESET Setup Time 12 12 10 ns

T15 RESET Hold Time 4 4 3 ns

Continued next page

Functional Operating Range: Voo = 5V i,5%; Tease = O°C to 85°C

1. All parameters are specified at 1. 5V unless otherwise noted
2. All output delays are specified at 1. 5V with 50 pf loading unless otherwise noted
3. Relative to CLK2 rising edge
4. Write bus cycle only
5. Referenced to end of cycle when ADS- Is de-asserted
6. Hold time reference to end of cycle when ADS is asserted
7. Delay Is measured with respect to MIIO-, A31 .. 25
8. One CLK2 period
9. Spec only applies when TCB- Is high

10. Spec only applies when TCB- is strapped low
11. 85 pf loading
12. 120 pf loading
13. Trl-State timing is guaranteed, but not tested

Figure 10. AC characteristics

© Copyright WEITEK 1988
All Rights Reserved 10

o

Ref
Figure Notes

12

12

12 At2V

12 At 2.5V

12 At2V

12 At 0.8V

12

12

13,14,15, Notes 1, 3, 5
16 17

13,14,15, Notes 1, 3 16,17
13,14,15, Notes 1, 3, 5 16,17
13,14,15, Notes 1, 3, 6

16 17
13,14,15, Notes 1, 3, 5

16 17 c
13,14,15, Notes 1, 3, 6

16 17

13,14,16 Notes 1,3,4,5

13,14,16 Notes 1,3,4,6

13,14,15, Notes 1, 3
16 17

13,14,15, Notes 1, 3
16 17

15,17 Notes 1, 3, 12

15,17 Notes 1, 3

15,17 Notes 3, 8, 13

18 Notes 1, 3

18 Notes 1, 3

o

c

()

Hardware Designer's Section, continued

3167-016 3167-020
Symbol Parameter

Min Max Min Max

T16 INTR Output Delay 72 62

T17 INTR Valid Output 6 6

T18 MCS- Output Delay 25 20

T19A RDY- Output Delay (high to low) 26 24

T19B RDY- Output Delay (low to high) 26 24

T20 RDY- Valid Output 4 4

T21 RDY- Trl-State Enable 25 25

T22 RDY- Tri-State Disable 5 25 5 25

T23 AF32- Tri-State Enable 31 25

T24 AF32- Trl-State Disable 31 25

T25 AF32- Output Delay 31 25

T26 AF32- Valid Output 3 3

Functional Operating Range: Voo = 5V ±5%; Tease = O°C to 85°C

1. All parameters are specified at 1. 5V unless otherwise noted

3167-025

Min Max

50

5

17

22

22

4

20

20

20

20

20

2

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Ref Unit Notes Figure

ns 19 Notes 1, 3

ns 19 Notes 1, 3

ns 13,17 Notes 1, 7

ns ~3, 14, 15, Notes 1,3,9,11
16,17

ns 14,16,15 Notes 1, 3, 9,11

ns 13,15, Notes 1, 3, 9, 11
16,17

ns 14,15, Notes 3,10,11,13
16,17

ns 14,15, Notes 3, 10, 11, 13
16,17

ns 14,15, Notes 3, 10, 13
16,17

ns 14,15, Notes 3, 10, 13
16,17

ns 14,15, Notes 3, 10
16,17

ns 15 Notes 3, 10

2. All output delays are specified at 1. 5V with 50 pf loading unless otherwise noted
3. Relative to CLK2 rising edge
4. Write bus cycle only
5. Referenced to end of cycle when ADS- Is de-asserted
6. Hold time reference to end of cycle when ADS Is asserted
7. Delay Is measured with respect to M/IO-, A31 .. 25
8. One CLK2 period
9. Spec only applies when TCB- Is high

10. Spec only applies when TCB- Is strapped low
11. 85 pf loading
12. 120 pf loading
13. Trl-State timing Is guaranteed, but not tested

Figure 10. AC characteristics, continued

.... © Copyright WEITEK 1988

Hardware Designer's Section, continued

TIMING

Figure 11. Test load for delay measurement

3.4V
2.5V

CLK2 2.0V

O.BV

.. TR"

/
/

Figure 12. CLK2 timing diagram

© Copyright WEITEK 1988
All Rights Reserved

/

TCHb

TCHa

CL = 120pf for 031..0

CL = 85pf for RDY-
CL = 50pf for all other other signals

Cl includes parasitic capacitance

\ .. TF"

\
\ /

TClb J

TCla

Tcy

12

o

o

c

C' /

o

Hardware Designer's Section, continued

NON-PIPELINED BUS CYCLES

Figure 13 shows two WTL 3167 write cycles with TCB­
high, or NC. Write cycles are performed every time the
80386 broadcasts instructions to the coprocessor. The
RDY- output of the WTL 3167 handles the handshak­
ing between the WTL 3167 and the 80386. To ac­
knowledge the current bus cycle, the WTL 3167
asserts RDY- and the 80386 terminates the bus
cycle. The first bus write operation does not have

ClK2

ClK

ADS-

I
I

Wi Wl W/R-
I

cizf: :T'~
I

A15 .. 2 : BE2 .. 0
I I

~T6~
I

$r~
I

MilO
A:31 .. 25

I
I

MCS ~
, ,

~rtk 031 .. 0.

I
T20

RDY-

READY-

:

,
I
I

:
I

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

the READY- input delayed while the second does. In
the delayed READY-write operation, even though the
bus does not advance and 031 .. 0 is held constant, it is
latched in the same cycle it would be if READY-were
not delayed. Thus, if the data changes in the time slots
indicated in figure 13 with crosshatching, the new data
is not used by the WTL 3167.

I
I
I
I

I
I I I

I
I

/ I
I
I

I I I I I

)t---t---t---!~
-+----1----+---
I I I I I
I I I I I
I I I
I I I

Figure 13. Non-pipelined bus write cycle with and without delayed ready, TCB- high, or NC

© Copyright WEITEK 1988

Hardware Designer's Section, continued

Figure 14 shows a new pipelined bus write cycle with
TCB- low. The bus cycle now takes a minimum of
three clock cycles.

ClK2

ClK

ADS-

W/R-

MilO
Aa1 .. 25

READY-

RDY-

AF32-

I ~T2tl I. ~T~l iLJ
~ I I
I I

Figure 14. Non-pipelined bus write cycle without delayed ready, TCB- low

© Copyright WEITEK 1988
All Rights Reserved 14

C" ' . ,

c

o

c

c

o

Hardware Designer's Section, continued

Read cycles are performed every time data must be
read from the WTL 3167 into the 80386. Figure 15
shows a typical WTL 3167 read cycle. At least one
wait state is always inserted during a read cycle to allow
the WTL 3167 time to respond. As shown in figure 15,
the minimum read cycle takes the same number of
clock cycles, independent of the value of TCB-.

1<::

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Wait states are fully transparent to the programmer. If
READY- is delayed, the data will continue to be driven
until READY- is asserted. When the WTL 3167 re­
ceives a bus read operation, it turns on its bus drivers
even before the data is ready. The dotted lines in
figure 15 shows the time slots during which the
WTL 3167 is driving the bus with invalid data. Valid
data is only present when RDY- is asserted.

© C~pyright WEITEK 1988

Hardware Designer's Section, continued

ClK2

ClK

I
I I I I I

AOS-

W/R-

MilO
A31 .. 25

031 .. 0

READY-

I
I I
I (Float) I
I I
I I
I I
I I

ROY- 1
I --------.---
I T21
I

I
I I I I I I

ROY _ TCB- low I

1 1 1 : 1 0 19B I 1 1 :
--------~---~---~---~---~---~---~---~---~---~------

I I I I I I I I I
I I I I I I I I

AF32-

Figure 15. Non-pipelined bus read cycle without delayed ready, with both TCB- high and TCB- low

© Copyright WEITEK 1988
All Rights Reserved 16

o

c

c

('"
./

o

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Hardware Designer's Section, continued

PIPELINED BUS CYCLES

The WTL 3167 is capable of operating with or without
address pipelining on a cycle-by-cycle basis. It uses
ADS- and READY- from the 80386 to determine when
a bus cycle begins. Figure 16 shows a typical pipelined

write cycle. The minimum write bus" cycle takes the
same number of clock cycles, independent of the value
of TCB-.

ClK2

ClK

ADS-

W/R-

MIlO
A31 .. 25

READY-

1
1 I~~~~~~~~~~~~~~~~

1 1
1 1 1 1 1 1 1

~ Wi
<zxf : : T, ~---r--: --.-: --L...IL...J~I ~I ~I I ~I
~M}5~ iT\~~1 ~~~
~ ~ ~ ~ 1 1

1 1 1 ~=jT8fh" 1 ~I 1 1 T7_-I_ 1 1 1)1---1---1
..It,..l''-lL..¥.-l~..¥.-l''-lL..x+:-----.---LJ.'~~-r---..L..-,-- -, - - --,

1 1 1 1 1 1
1 1 1 1 1 1

1 1
1 1 1

1 1 1 1 1 1 1
--------~---~---~---~---~---~---~---~---~---~------

1 1 T19A 1 I ! ! I ,..-_+1 __ -

RDY- 1 TCB- High 1 1
1

1 1 1 1 1 1 I 1 1 --------.---,---,---.---,---.---,---,---.---,------
I T19A' 1 1 1 1 T22
I T20 1 I I 1 1
1 I TCB- Low 1 hl __ -

RDY- 1 1 1 I
--------~---~---~---~---~---~---~---~---1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
AF32- 1

Figure 16. Pipelined bus write cycle without and with delayed ready, and with both TCB- high and TCB- low

© CODvril!ht WEITEK 1988

Hardware Designer's Section, continued

Figure 17 shows a typical pipelined read cycle.

ClK2

ClK

AOS-

W/R-

A15 .. 2
BE2 .. 0

MilO
A:31 .. 25

MCS-

I I

,... J ___ -I~ 1+,---1...""

-+----4-----~~(I 1 H--4-031 .. 0
'- -" - - - -t - t""-~...I

I I
I I

ROY-

AF32-

Figure 17. Pipelined bus read cycle without delayed ready, with both TCB- high and TCB- low

© Copyright WEITEK 1988
All Rights Reserved 18

o

c~

o

o

Hardware Designer's Section, continued

RESET AND INTERRUPT TIMING

RESET set-up and hold time and interrupt valid delays
are shown in figures 18 and 19. RESET must be syn­
chronous with the 80386's clock to guarantee proper
operation.

ClK2

ClK

Figure 18. RESET timing

ClK2

ClK

-I I

Figure 19. Interrupt timing

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

© Copyright WEITEK 1988

Software Tools Overview

The WTL 3167 coprocessor is supported by the UNIX
operating system (System V release 3.0). Operating
system support includes coprocessor addressing, pres­
ence detection at power-up, context-switch handling
and emulation. For UNIX operating systems informa­
tion contact your UNIX supplier. XENIX 386 support
is forthcoming.

The WTL 3167 is also supported by Phar Lap, IGC,
and AI architects MS-DOS protected mode environ­
ments. MS-DOS protected mode environment support
for the WTL 3167 includes coprocessor addressing and
presence detection.

The WEITEK coprocessor can be supported under real
mode MS-DOS as well. OEMs that intend to provide
MS-DOS real mode support for the WEITEK
coprocessor must refer to the Systems Programmer's
section.

C, FORTRAN and Pascal Compilers for the 80386
and WTL 3167 under UNIX V.3 and MS-DOS
protected mode are provided by Green Hills,
Metaware, Microway, and Silicon Valley Software.

Vendor

Lahey Computer Systems offers an MS-DOS real mode
FORTRAN compiler. Metaware also provides MS­
DOS real mode C and Pascal compilers. Contact ven­
dors for details.

The WEITEK Coprocessor is fully transparent to the
programmer using these compilers, as the floating-point
operations are specified with familiar high-level lan­
guage commands. The compilers include a run-time li­
brary for transcendental operations.

Compiler designers and programmers who intend to
write WTL 3167 assembly code should refer to the Ap­
plications Programmer's section. Systems programmers
who need to modify existing operating systems to sup­
port the WTL 3167 should refer to the Systems Pro­
grammer's section.

TRANSCENDENTAL ROUTINES LIBRARY

WEITEK provides a library of transcendental routines
to compiler developers. Routines are available through
a simple license agreement.

Product Phone

AI Architects OS 386 (MS-DOS protected mode environment) (617) 577-8052

Green Hills Software C, F, P Compilers (UNIX and MS-DOS protected mode) (818) 246-5555

IGC X-AM (MS-DOS protected mode environment) (408) 986-8373

Lahey Computer Systems F Compiler (MS-DOS real mode) (702) 831-2500

Metaware C, P Compilers (UNIX, MS-DOS real and protected mode) (408) 429-6382

Microway C, F, P Compilers (UNIX and MS-DOS protected mode) (617) 746-7341

Phar-Lap Software RUN386 (MS-DOS protected mode environment) (617) 661-1510

Silicon Valley Software C, F, P Compilers (UNIX and MS-DOS protected mode) (408) 725-8890

Note: F = Fortran, P = Pascal

Figure 20. Software tools information

Product

UNIX Diagnostics

DOS Diagnostics and Macros

DOS Demos

Figure 21. WEITEK-supplied support software

© Copyright WEITEK 1988
All Rights Reserved

Part Number

4800-1167-02

4800-1167-03

4800-1167-04

20

C' "

c

c

o

Applications Programmer's Section

This section provides the information necessary to pro­
gram the WTL 3167 coprocessor in 80386 assembly
language. It is complemented by the WTL 1167 Soft­
ware Designer's Guide. The WTL 3167 is a code-com­
patible upgrade of the WTL 1167 coprocessor daugh­
ter board.

The WTL 3167 internal registers and instruction set
are first described in detail. Programming the WEITEK
coprocessor can be greatly simplified by defining a set
of macro instructions. Macro examples and a simple
programming example are part of this section.

REGISTERS

The WTL 3167 provides a register set of 32 single-pre­
cision registers, named wsO through ws31. Pairs of
WTL 3167 registers can be used for double-precision
operations, allowing up to 16 double-precision regis­
ters, numbered wdO, wd2, wd4, ... , wd30. The MSW
is stored in the even register and the LSW is stored in
the next contiguous odd register (that is, MSW in wsN,
LSW in wsN+1). In addition, any 80386 doubleword
register can be used to move data, or as the source
operand to an arithmetic instruction. The use of regis­
ter wsO is restricted. (Refer to page 34 for more details
on register wsO.)

PROCESS CONTEXT REGISTER

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

rounding modes and exception handling. The context
register can also be read to save control settings and
read various status flags. The format of this register is
defined in figure 23.

MODE SELECTION FIELD

The uppermost byte of the process context register in­
cludes the mode selection field and the mode field.

The mode selection field (MOSEL) is used during sys­
tem initialization to set the mode register in the float­
ing-point chips. If MOSEL is set to 1100 when loading
the Context Register, only the EM, ee, and AE fields
are updated. If MOSEL is set to 0000 the EM, ee, AE
fields, and the rounding mode field (MO) are updated.
(See figure 24.)

wdO -+

wd2 -+

wd4 -+

wd30 -+

wsO (Restricted)

ws2

ws4

ws30

ws1

ws3

ws5

ws31

The WTL 3167 also provides a 32-bit process context Figure 22. WTL 3167 register file
register (PCR) , which can be written to control

31 28 27 24 23 16 15 8 7 o

MOSEL MO EM cc AE

Figure 23. Process context register

Applications Programmer's Section, continued

MODE FIELD

The mode field (MO) is used to specify rounding op­
tions. Two bits specify one of four rounding modes as
defined by the IEEE standard (RN. RZ. RP. RM). A
third bit determines the rounding mode used in float­
ing-point-to-integer conversion instructions. It selects
either the current rounding mode or the round-to-zero
mode. The least-significant bit of the mode field speci­
fies fast mode. (see IEEE Considerations. page 42)
and must always be set to 1.

ACCUMULATED EXCEPTION FIELD

The accumulated exception field (AE) contains the five
exception flags required by the IEEE standard and
other WTL 3167-specific exceptions. The AE field is
cleared by writing zeros into the corresponding bits of
byte zero of the PCR. The accumulated exception flags
are formed by the logic "OR" of the AE field and the
current instruction's exception status. The flags accu­
mulate all exceptions which have occurred since the
user last cleared the AE field. Exceptions are accumu­
lated regardless of the value of the corresponding ex­
ception mask field.

The AE field is shown in figure 25.

EXCEPTION MASK FIELD

The next lower PCR byte is the exception mask field
(EM). Seven bits are used to enable exception traps. At
the conclusion of an instruction. the accumulated ex­
ception field is updated and. if an exception occurred
and the corresponding bit in the EM field is set low. the
WTL 3167 generates an 80386 interrupt by driving the
interrupt request output high. The exception mask byte
is shown in figure 26.

Most of the exceptions have the same name as a corre­
sponding 80387 exception and work the same way.
The WTL 3167 has an undefined opcode excep­
tion, flagged whenever the instruction broadcast by
the 80386 is not recognized as a WEITEK instruction.
The invalid operation exception is flagged when an in­
valid operation occurs. The data chain exception is
never flagged by the WTL 3167. It has been docu­
mented for consistency with the WTL 1167 product.
(For a detailed description of the WTL 3167 exception
handling refer to IEEE Considerations. page 42.)

© Copyright WEITEK 1988
All Rights Reserved 22

31 30 29 28 27 26 25

0 0 0 0 RNO IIRNOI

RNO: 00 = Round toward Nearest Value (RN)
o 1 = Round toward Zero (RZ)
1 0 = Round toward Positive Infinity (RP)
1 1 = Round toward Negative Infinity (RM)

IRNO: 0 = Integer Rounding based on RND
1 = Integer Rounding always toward Zero

Figure 24. Mode field

765 432

DE IUOEI PE UE OE ZE

DE: Data Chain Exception
UOE: Undefined Opcode Exception

PE: Precision Exception
UE: Underflow Exception
OE: Overflow Exception
ZE: Zero Divide Exception

EE

24

o
IE

EE: Enabled Exception (contains the value of INTR)
IE: Invalid Operation Exception

Figure 25. Accumulated exception field

23 22 21 20 19 18 17

DM I UOM I PM UM OM ZM

OM: Data Chain exception Mask
UOM: Undefined Opcode exception Mask

PM: Precision exception Mask
UM: Underflow exception Mask
OM: Overflow exception Mask
ZM: Zero Divide exception Mask
1M: Invalid Operation exception Mask

Figure 26. Exception mask field

16

1M

c

c

c

c

o

WTL 3167 FLOATING-POINT
COPROCESSOR

Applications Programmer's Section, continued

PRELIMINARY DATA
September 1988

CONDITION CODE FIELD

The Condition Code Field (CC) is updated only when
test or compare instructions are executed. The CC field
is updated to reflect the status of the compare opera­
tion. At the end of the compare operation the copro­
cessor status output is encoded and stored in PCR15 .. 8.

The encoding is shown in figure 27.

register (for register-to-register operations), an immedi­
ate constant or the content of a 80386 register (for
memory-to-register operations).

DATA MOVEMENT INSTRUCTIONS

Data movement instructions move data between
the 80386 and a WTL 3167 register, or between two
WTL 3167 registers.

INSTRUCTION SET

WTL 3167 instructions can be divided into:

1. Data movement instructions

2. Format conversion instructions

3. Arithmetic instructions

4. Compare and test instructions

5. Sign manipulation instructions

Most WTL 3167 instructions operate on either two
WTL 3167 registers or on one WTL 3167 register and
the contents of the 80386 data bus. WEITEK
coprocessor macro instructions have the format:

OPCODE Source2/Destination, Source1

Z

1

a
a
1

15 14

X z

C2 CO

a a
a 1

a a
1 1

13 12

a X

Source1 and Source2/Destination specify the operand X: not defined

Meaning

Equal

Less than

Greater than

Unordered

11 10 9

X C2 X

addresses. The operation result is always stored in the 0: bit 13 must be set to zero
same location as Source2. While Source2/Destination
always specifies one of the thirty-two WTL 3167 inter- Figure 27. Condition code field
nal registers, Source1 can either specify an internal

WFLD
WFLD
WFLD
WFLD
WFLDCTX
WFPOP
WFLDSD
WFLDSD
WFST
WFSTCTX
WFPUSH
WFSTSD
WFSTSD
WFSTRL

ws1, ws2
ws21, EAX
ws4, PI
wd4, wd12
EAX
ws1
ws1, ARRAY, 31
ws10, ESI, ECX
EDX, ws21
EAX
ws1
wsO, ARRAY, 32
ws1Q, EDI, ECX
EAX

; load ws 1 from ws2
; load ws21 from EAX
; load ws4 with constant PI (declared elsewhere)
; load ws4 from ws12, then load ws5 from ws13
; load Context Register from EAX
; pop a number from 386 stack to ws 1
; load 31 numbers from ARRAY to registers ws1 through ws31
; load ECX numbers from ESI to registers starting with ws10
; store ws21 to EDX
; store Context register to EAX
; push ws1 onto the 386 stack
; store aU 32 registers to ARRAY
; store ECX registers from ws10 to EDI
; store revision level to EAX

Figure 28. Examples of data movement instructions

8

co

© Copyright WEITEK 1988 ,.,,1 T't.!_L.L_ ,..., _______ 1

Applications Programmer's Section, continued

FORMAT CONVERSION INSTRUCTIONS

The WTL 3167 provides instructions for converting
from any data type supported (single-precision,
double-precision, 32-bit integer) to any other type. See
figure 29.

WFLOAT
WFLOAT
WFLOAT
WFLOAT
WFLOAT
WFIX
WFIX
WFIX
WFCVT
WFCVT
WFCVT
WFCVT

ws1. ws10
wd4. ws13
ws3. EAX
wd6. EBX
wd10. 123456
ws1. ws4
ws3. wd10
ws5. EBX
ws1. wd14
ws8. EBX
wd10. ws9
wd26. EAX

; convert integer ws10 to single-precision ws1
; convert integer ws13 to double-precision wd4
; convert integer EAX to single-precision ws3
; convert integer EBX to double-precision wd6
; load wd 10 with the constant 123456.0
; convert Single-precision ws4 to integer ws1
; convert double-precision wd10 to integer ws3
; convert single-precision EBX to integer ws5
; convert double-precision wd14 to single-precision ws1
; convert double-precision (EBX. ws1) to single-precision ws8
; convert single-precision ws9 to double-precision wd10
; convert single-precision EAX to double-precision wd26

Figure 29. Examples of format conversion instructions

© Copyright WEITEK 1988
All Rights Reserved 24

c

c

c

c'

o

,

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Applications Programmer's Section, continued

ARITHMETIC INSTRUCTIONS

The WTL 3167 provides the four basic arithmetic
functions as well as square root. In the subtraction
instruction, the Source2/Destination operand is
subtracted from the Source1 operand. The reverse
subtraction reverses the operands from the standard
subtract instruction. The division instruction divides
the Source1 operand by the Source2/Destination. The
single-precision multiply/accumulate operation multi­
plies the operands specified by Source 1 and Source2

and adds the result to the contents of register ws2. The
double-precision multiply/accumulate operation with
single-precision inputs multiplies the single-precision
operands specified by Source1 and Source2 and adds
the result to the contents of register wd2. The double­
precision multiply/accumulate operation with double­
precision inputs multiplies the double-precision oper­
ands specified by Source1 and Source2 and adds the
result to the contents of register wd2.

WFADD
WFADD
WFADD
WFADD
WFADD
WFSUBR
WFSUBR
WFSUBR
WFSUB
WFSUB
WFMUL
WFMULN
WFAMUL
WFMUL
WFMAC
WFMAC
WFMACD
WFMACD
WFMACD
WFDIVR
WFDIVR
WFDIVR
WFDIVR
WFSQRT
WFSQRT

ws6, ws13
wd14, wd20
ws3, EAX
wd2, EBX
ws1, 9.0
ws5, ws30
wd12, wd14
ws3, EDX
ws5, ws30;
ws8, EDX
ws1, ws2
wd4, wd6
ws5, EAX
ws23, 2.0
ws1Q, ws11
ws9, EAX
ws13, ws29
ws1, EBP
wd12, wd28
ws3, ws5
wd16, wd18
ws2, EAX
ws7, PI
ws3, ws5
wd10, wd12

; add ws13 into ws6
; add wd20 into wd14
; add EAX into ws3
; add (EBX, ws1) into wd2
; add the constant 9.0 into ws1
; set ws5 to ws30 - ws5
; set wd12 to wd14 - wd12
; set ws3 to EDX - ws3
; set ws5 to ws5 - ws30
; set ws8 to ws8 - EDX
; multiply ws2 into ws1
; set wd4 to (- wd4 X wd6)
; set ws5 to the absolute value of ws5 X EAX
; multiply the constant 2.0 into ws23
; add ws10 X ws11 into ws2
; add ws9 X EAX into ws2
; add ws 13 X ws29 into wd2
; add ws1 X EBP into wd2
; add wd12 X wd28 into wd2
; set ws3 to ws5 -:- ws3
; set wd16 to wd18 -:- wd16
; set ws2 to EAX -:- ws2
; set ws2 to PI -:- ws7
; set ws3 to SQRT(ws5)
; set wd10 to SQRT(wd12)

Figure 30. Examples of arithmetic instructions

© Copyright WEITEK 1988

Applications Programmer's Section, continued

COMPARE AND TEST INSTRUCTIONS

Compare and test instructions either compare two
floating-point values or compare a single floating-point
value to zero. The compare instructions compare
Source1 to Source2. Besides comparing the operand to
zero. as does the test operation (wftst). test with trap
(wftstt) generates an invalid operation exception if the
operand is not a valid number (Not a Number. NaN).
Test instructions always operate on Source1. Compare

and test instructions affect the condition code field of
the process context register as shown in figure 27 on
page 23.

SIGN MANIPULATION INSTRUCTIONS

The WTL 3167 has two functions that manipulate the
sign of a floating-point number: negate and absolute
value.

WFCMPR ws3. ws4
WFCMPRT wd8. wd10

: perform reversed comparison

WFTST wd4
WFTSTT ws1

: perform reversed comparison and generate
: invalid exception if one (or both) of the operands is not a
: valid number
: perform the test of wd4
: perform the test of ws1 and generate
: invalid exception if the operand is not a valid number

Figure 31. Examples of compare and test instructions

WFNEG
WFNEG
WFNEG
WFNEG
WFABS
WFABS

ws1. ws1
ws1. ws2
wd4. wd6
ws3. EAX
ws3. ws4
wd10. wd10

: negate ws1
: set ws 1 to -ws2
: set wd4 to -wd6
: set ws3 to -EAX
: set ws3 to the absolute value of ws4
: coerce wd10 to its absolute value

Figure 32. Examples of sign manipulation instructions

© Copyright WEITEK 1988
All Rights Reserved 26

c

c

c

Applications Programmer's Section, continued

PROGRAMMING EXAMPLE

The following example shows the code for a 4 X 4
matrix transformation written using the macros pro­
vided by WEITEK.

The matrix coefficients all, ... , a44 are assumed to be
already stored in the WTL 3167 registers ws 16-ws31.

-
811 812 813

[x y z ~ a21 a22 a23

831 a32 a33

841 a42 a43
-

Figure 33. Matrix multiplication

27

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

The variables x, y, z, and ware in memory locations X,
Y, Z, and W. The variables x', y', z', and w' are stored
back in memory location X, Y, Z, and W.

-
814

a24 [x' y' z' w] =
a34

a44
-

© Copyright WEITEK 1988
A 11 T"\!_LL_ T'\ _________ 1

Applications Programmer's Section, continued

MOY
WFLD
MOY
WFLD
MOY
WFLD
MOY
WFLD
WFLD
WFMUL
WFMAC
WFMAC
WFMAC
WFST
MOY
WFLD
WFMUL
WFMAC
WFMAC
WFMAC
WFST
MOY
WFLD
WFMUL
WFMAC
WFMAC
WFMAC
WFST
MOY
WFLD
WFMUL
WFMAC
WFMAC
WFMAC
WFST
MOY

EAX, X
ws4, EAX
EAX, Y
ws5, EAX
EAX, Z
ws6, EAX
EAX, W
ws7, EAX
ws2, ws16
ws2, ws4
ws17, ws5
ws18, ws6
ws19, ws7
EAX, ws2
X, EAX
ws2, ws20
ws2, ws4
ws21 , ws5
ws22, ws6
ws23, ws7
EAX, ws2
Y, EAX
ws2, ws24
ws2, ws4
ws25, ws5
ws26, ws6
ws27, ws7
EAX, ws2
Z, EAX
ws2, ws28
ws2, ws4
ws29, ws5
ws30, ws6
ws31 , ws7
EAX, ws2
W, EAX

; load x into 386 EAX register
; load x into ws4
; load y into 386 EAX register
; load y into ws5
; load z into 386 EAX register
; load z into ws6
; load w into 386 EAX register
; load w into ws7
; move 811 into ws2
; ws2 = 811 X X

; ws2 = (811 X x) + (821 X y)
; ws2 = (811 X x) + (821 X y) + (831 X z)
; ws2 = (811 X x) + (821 X y) + (831 X z) + (841 X w)
; store x'
; store x' into memory location X
; move 812 into R2
; ws2 = 812 X X

; ws2 = (812 X x) + (822 X y)
; ws2 = (812 X x) + (822 X y) + (832 X z)
; ws2 = (812 X x) + (822 X y) + (832 X z) + (842 X w)
; store y'
; store y' into memory location Y
; move 813 into ws2
; ws2 = 813 X X

; ws2 = (813 X x) + (823 X y)
; ws2 = (813 X x) + (823 X y) + (833 X z)
; ws2 = (813 X x) + (823 X y) + (833 X z) + (843 X w)
; store z'
; store z' into memory location Z
; move 814 into ws2
; ws2 = 814 X X

; ws2 = (814 X x) + (824 X y)
; ws2 = (814 X x) + (824 X y) + (834 X z)
; ws2 = (814 X x) + (824 X y) + (834 X z) + (844 X w)
; store w'
; store w' into memory location W

Figure 34. Matrix transformation in assembly language

© Copyright WEITEK 1988
All Rights Reserved 28

c

o

o

c'

o

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Applications Programmer's Section, continued

INSTRUCTION SUMMARY

Figure 35 summarizes the WTL 3167 instruction set
macros. All WTL 3167 register names begin with "w".
We follow the "w" with either "s" for single. "d" for
double, or "x" meaning either "s" or "d". The register
name ends with the letter "t" or "f". "t" stands for
"to" and "f" stands for "from". For most instructions,
wxt is the destination register and wxf is the source
register.

Data Movement
WFLD wst, wsf
WFLD wst, data
WFLD wdt, wdf
WFLDCTX ereg
WFPOP wst
WFPOP wdt
WFLDSD wst, addr, count

; load: wst = wsf
; load: wst = 386 data
; load: wdt = wdf
; load: CTX = 386 E-register
; pop wst from the 386 stack
; pop two doublewords from the 386 stack to wdt
; block move: wst array = 386 memory

WFST
WFST
WFSTCTX
WFSTCTX
WFPUSH
WFPUSH
WFSTSD
WFSTRL

ereg, wst ; store: 386 E-register = wst
ereg, wst, opcode ; store: 386 ereg = ereg <opcode> wst
ereg ; store: 386 E-register = CTX
ereg, opcode ; store: 386 ereg = ereg <opcode> CTX
wst ; push wst onto the 386 stack
wdt ; push wdt (two doublewords) onto the 386 stack
wst, addr, count ; block move: 386 memory = wst array
EAX ; store revision level to EAX

Format Conversion
WFLOAT wxt, wsf
WFLOAT wxt, data
WFIX wst, wxf
WFIX wst, data

; convert integer wsf to floating wxt
; convert integer 386 data to floating wxt
; convert floating wxf to integer wst
; convert floating (386 data) to integer wst

; convert wdf to wst WFCVT
WFCVT
WFCVT
WFCVT

wst, wdf
wst, data
wdt, wsf
wdt, data

; convert double-precision (386 data and ws1) to wst
; convert wsf to wdt
; convert single-precision 386 data to wdt

(continued next page)

Figure 35. The WTL 3167 instruction set macros

29
© Copyright WEITEK 1988

All n! t... n __ rl

Applications Programmer's Section, continued

Four-Function Arithmetic
WFADD wxt, wxf
WFADD wxt, data

WFSUBR
WFSUBR
WFSUB
WFSUB

WFMUL
WFMUL
WFMULN
WFMULN
WFAMUL
WFAMUL

WFMAC
WFMAC
WFMACD
WFMACD
WFMACD

WFDIVR
WFDIVR
WFSQRT
WFSQRT

wxt, wxf
wxt, data
wxt, wxf
wxt, data

wxt, wxf
wxt, data
wxt, wxf
wxt, data
wxt, wxf
wxt, data

wst, wsf
wst, data
wst, wsf
wst, data
wdt, wdf

wxt, wxf
wxt, data
wxt, wxf
wxt, data

Compare and Test
WFCMPR wxt, wxf;
WFCMPR wxt, data
WFCMPRT wxt, wxf
WFCMPRT wxt, data

WFTST wxf
WFTST data
WFTST ata, ws1
WFTSTT wxf
WFTSn data
WFTSn data, ws1

Sign Manipulation
WFNEG wxt, wxf
WFNEG wxt, data
WFABS wxt, wxf
WFABS wxt, data

Paging Directives
WFSPAGE
WFDPAGE

; add: wxt = wxt + wxf
; add: wxt = wxt + (386 data)

; reversed subtract: wxt = wxf - wxt
; reversed subtract: wxt = (386 data) - wxt
; subtract: wxt = wxt- wxf (1)
; subtract: wxt = wxt - (386 data) (1)

; multiply: wxt = wxt X wxf
; multiply: wxt = wxt X (386 data)
; negative multiply: wxt = -wxt X wxf
; negative multiply: wxt = -wxt X (386 data)
; absolute multiply: wxt = Iwxt X wxfl
; absolute multiply: wxt = Iwxt X (386 data) I

; multiply and accumulate: ws2 = ws2 + wst X wsf
; multiply and accumulate: ws2 = ws2 + wst X (386 data)
; multiply and accumulate: wd2 = wd2 + wst X wsf (1)
; multiply and accumulate: wd2 = wd2 + wst X (386 data) (1)
; multiply and accumulate: wd2 = wd2 X wdf (1)

; reversed divide: wxt = wxf + wxt
; reversed divide: wxt = (386 data)/wxt
; square root: wxt = sqrt(wxf) (1)
; square root: wxt = sqrt(data) (1)

; reversed compare: set CTX flags for (wxf - wxt)
; reversed compare: set CTX for (386 data) - wxt
; reversed compare with trap: set CTX flags for (wxf - wxt)
; reversed compare with trap: set CTX for (386 data) - wxt

; test: set CTX flags for (wxf - 0)
; test: set CTX flags for (386 data) - 0
; test: set CTX flags for double-precision (386 data, ws1) - 0
; test with trap: set CTX flags for (wxf - 0)
; test with trap: set CTX flags for (386 data) - 0
; test with trap: set CTX flags for (386 data, ws1) - 0

; negate: wxt = -wxf
; negate: wxt = -(386 data)
; absolute value: wxt = Iwxfl
; absolute value: wxt = 1386 datal

; force next wfld/wfst to single-precision page
; force next wfld/wfst to double-precision page

(1) These instructions are not available on the WTL 1167

Figure 35. The WTL 3167 instruction set macros, continued

© Copyright WEITEK 1988
All Rights Reserved 30

c

c

o

o

Applications Programmer's Section, continued

INSTRUCTION SET-MACHINE'S POINT OF
VIEW

The WTL 3167 is a memory-mapped device. The
coprocessor is mapped in the physical memory area
ranging from COOOOOOO hex to COOOFFFF hex. A given
address in this memory area selects the coprocessor,
indicates the instruction which the WTL 3167 has to
perform, and specifies the location of Source1
and Source2/0estination. Figure 36 shows how the
WTL 3167 views a 32-bit address word.

COPROCESSOR SELECT

The most-significant 16 bits of the physical address
identify a coprocessor instruction. If the upper bits do
not fall in the COOO-C1 FF range, the address does not
specify a WEITEK command and is then ignored by
the WTL 3167. To ensure compatibility with future
devices, we recommend that you set the coprocessor
select field to COOO when specifying a WTL 3167
instruction.

OPCODE FIELD

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

The next six bits specify the coprocessor instruction to
be executed. Figure 37 provides the binary and hexa­
decimal offset, the hexadecimal number obtained by
placing the six opcode bits into the opcode field of the
address, for the WTL 3167 instructions.

OPERAND FIELDS

The five bits of the Source1 and Source2/0estination
fields identify the registers that will provide sources and
destination for the instruction. If Source1 is set to
zero, the Source1 data is moved over the system data
bus. In order to take advantage of the 80386 block­
move instruction (refer to Arrangement oj Fields to Ac­
commodate Block Moves on page 34) the Source1
field is split into a three-bit and a two-bit field. The
two-bit field occupies the two least-significant bits of
the address.

31 16 15 10 9 7 6 2 1 0

I Coprocessor Select Field Opcode

Figure 36. WTL 3167 view of 80386 address word

31

Source 1 Source2!
MSBs Destination

source1)
LSBs

© Copyright WEITEK 1988
All RiQhts Reserved

Applications Programmer's Section, continued

INSTRUCTION ENCODING

Figures 37 and 38 show the mnemonic and the
encoding for both opcode and operands (Source1 and
Source2/destination) .

Opcode
Mnemonic

Binary
Value Hex Offset

ADD.S 000000 0000
LOAD.S 000001 0400
MUL.S 000010 0800
STOR.S 000011 OCOO

SUBR.S 000100 1000
DIV.S 000101 1400
MULN.S 000110 1800
FLOAT.S 000111 1 COO

CMPT.S 001000 2000
TSTT.S 001001 2400
NEG.S 001010 2800
ABS.S 001011 2COO

CMP.S 001100 3000
TST.S 001101 3400
AMUL.S 001110 3800
FIX.S 001111 3COO

CVTS.D 010000 4000
CVTD.S 010001 4400
MAC.S 010010 4800

SORT.S 010011 4COO
MACD.D 010100 5000
SUB.S 010101 5400

Opcode
Mnemonic

Binary
Value Hex Offset

ADD.D 100000 8000
LOAD.D 100001 8400
MUL.D 100010 8800
STOR.D 100011 8COO

SUBR.D 100100 9000
DIV.D 100101 9400
MULN.D 100110 9800
FLOAT.D 100111 9COO

CMPT.D 101000 AOOO
TSTT.D 101001 A400
NEG.D 101010 A800
ABS.D 101011 ACOO

CMP.D 101100 BOOO
TST.D 101101 B400
AMUL.D 101110 B800
FIX.D 101111 BCOO

LDCTX 110000 COOO
STCTX 110001 C400
MACD.S 110010 C800

SORT. 0 110011 CCOO
LOADD.D 110100 0000
STORD.D 110100 0000
SUB.D 110101 0400

Note: .S in the opcode field stands for single-precision while .0 stands for double-precision.

Figure 37. Opcode encoding

© Copyright WEITEK 1988
All Rights Reserved 32

c

c

c

o

Applications Programmer's Section, continued

GENERATING WTL 3167 INSTRUCTIONS WITH
80386 MEMORY MOVES

Suppose that two single-precision numbers, stored
in the WTL 3167 registers F1 and T2, need
to be added and the result stored in T2. Since the co­
processor is mapped in the memory range
COOOOOOO-COOOEFFF hex, the instruction will be
specified by the following coprocessor select, opcode,
and operand address fields:

COPROCESSOR SELECT =
OPCODE = ADD. S =
Source1 = F1 =
Source2/Destination = T2 =

COOO 0000 hex
0000 hex
01 hex
08 hex

The 80386 address specifying the floating-point
instruction is then given by:

A31. .Ao = C0000009 hex

Source21 Decimal Destination Value Hex Offset
Mnemonic

TO 0 00
T1 1 04
T2 2 08
T3 3 OC
T4 4 10
T5 5 14
T6 6 18
T7 7 1C
T8 8 20
T9 9 24
T10 10 28
T11 11 2C
T12 12 30
T13 13 34
T14 14 38
T15 15 3C
T16 16 40
T17 17 44
T18 18 48
T19 19 4C
T20 20 50
T21 21 54
T22 22 58
T23 23 5C
T24 24 60
T25 25 64
T26 26 68
T27 27 6C
T28 28 70
T29 29 74
T30 30 78
T31 31 7C

Figure 38. Operands encoding

33

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

An 80386 move instruction which generates a physical
address of C0000009 hex causes the WTL 3167 to
execute the floating-point addition.

A LOW-LEVEL REPRESENTATION OF THE
WTL 3167 INSTRUCTION SET

We can see from the previous example that the single­
precision WFADD instruction appears in the 80386's
memory space as an array of 1024 consecutive ad­
dresses, one for each combination of 32 X 32 oper­
ands. Thus, there is a natural low-level representation
of WTL 3167 instructions as arrays of memory ad­
dresses. The array starting location is determined by
the specific opcode shown in figure 37. The elements
of the array can be represented by the operand offset
values provided in figure 38.

Source1
Mnemonic

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31

Decimal
Value Hex Offset

0 00
1 01
2 02
3 03
4 80
5 81
6 82
7 83
8 100
9 101

10 102
11 103
12 180
13 181
14 182
15 183
16 200
17 201
18 202
19 203
20 280
21 281
22 282
23 283
24 300
25 301
26 302
27 303
28 380
29 381
30 382
31 383

© Copyright WEITEK 1988
All Rights Reserved

Applications Programmer's Section, continued

Returning to our example, the single-precision WFADD
instruction has the low-level mnemonic ADD.S in
figure 37. If we declare ADD.S as a memory array
starting at location oeOOOOOOO, and we declare the op­
erand offsets F1 as 01h and T2 as 08h, our coding of
the ADD.S ws2, ws1 instruction becomes:

MOV ADD.S[T5 + F1J, AL

It is important to notice that when Source 1 is set to
zero (FO), it actually specifies an operand not resisting
is the register file and being provided by the data bus.
When Source2/Destination is set to zero (TO), it looks
like any other register in the register file.

AVOIDING OVERLAPPED DOUBLEWORD
REFERENCES

There is a pitfall to avoid while using the low-level
mnemonics to code WTL 3167 instructions: you will
obtain incorrect results if you indiscriminately choose
to access WTL 3167 memory with a doubleword trans­
fer when a byte-sized transfer would have sufficed. The
pitfall applies to instructions involving only WTL 3167
registers, and not any data on the 80386 bus, as in the
previous example.

For example, suppose we want to provide a low­
level encoding for WFAMUL ws8,ws14. In this
instruction, the 80386 data bus is ignored by the
WTL 3167. So any memory access to the address
AMUL. S [T8 + F 14] will cause the multiplication to
be performed. The instruction with the shortest encod­
ing is:

MOV AMUL.S[T8 + F14J, AL

To understand the pitfall, let us see what happens if we
instead code an unnecessary doubleword memory
access:

MOV AMUL.S[T8 + F14], EAX

I
Low

to AO 1

e00039AO A2

By adding the offsets of AMUL.S, T8, and F14 to the
WTL 3167 base address oeoOOOOOOh, we find that we
have encoded a doubleword write to memory loca­
tion Oe00039A2h. The memory address is not a multi­
ple of four, so the doubleword being written is not
aligned on a doubleword boundary. When
doublewords are not aligned, the 80386 splits the
memory write into two operations, as shown in
figure 39. First it will write the bottom half of EAX to
the top half of Oe00039AO; then it will write the top
half of EAX to the bottom half of Oe00039A4. The
WTL 3167 will misinterpret this as two consecutive
floating-point instructions, instead of the single
AMUL.S that was intended.

ARRANGEMENT OF FIELDS TO ACCOMMODATE
BLOCK MOVES

The 80386 has an instruction, REP MOVSD, that moves
a block of doublewords from one memory location to
another. Three 80386 registers must be initialized be­
fore the REP MOVSD is executed: EeX holds the num­
ber of doublewords to be moved, ESI points to the
source of the move, and EDI points to the destination.
(The instruction can also be executed with 8086-style
addressing, using the registers ex, SI, and DI.)

The operand fields of a WTL 3167 address have been
specifically designed so that a WTL 3167 address can
be given as either the source or the destination to a
REP MOVSD instruction. Due to the positioning of the
destination operand slot two bits from the bottom of
the address, T -offSets increase by four for successive
WTL 3167 registers. The registers appear as successive
doubleword addresses in the 80386 memory space, al­
lowing the REP MOVSD instruction to work correctly.

EAX

A4

High
to A4

AS

I

Figure 39. Erroneous overlapped doubleword transfer to the WTL 1167 space

© Copyright WEITEK 1988
All Rights Reserved 34

o

o

o

o

c:

o

Applications Programmer's Section, continued

SPECIAL INSTRUCTION FORMS NOT PROVIDED
BY THE MACRO SET

The low-level interface presented in this chapter
allows for some interesting possibilities not offered
by the macro set. Be forewarned, however, that most
WTL 3167 software emulation packages will not dupli­
cate the functionality of the low-level interface. Thus,
if there is the possibility that your program will run in a
system that emulates the WTL 3167 in software, you
should restrict yourself to the standard forms of the
macro set.

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Single-precision vector arithmetic is accomplished by
applying the 80386 block move instruction REP
MOVSD to a WTL 3167 address involving arithmetic
instead of loading or storing. For example, the follow­
ing instruction sequence multiplies each element of the
doubleword array VECTOR in 80386 memory, into the
corresponding element of the WTL 3167 register array
ws11 through ws20:

MOV ECX, 10
MOV ESI, OFFSET VECTOR

; load the number of elements of the vector array
; point to the memory vector

MOV EDI, OFFSET MUL.S[T10] ; point to the WFMUL address for ws10
REP MOVSD ; multiply each VECTOR element into a WTL 3167 register

Figure 40.

Similarly, the REP STOSD instruction could be used to
fill an array of WTL 3167 registers with the same
value, or to perform arithmetic of the same value ap­
plied to consecutive WTL 3167 registers. For example,
the following sequence clears the entire WTL 3167
register set to zero:

SUB EAX, EAX
MOV ECX, 32
MOV EDI, OFFSET LOAD.S[TO]

; integer 0 is also floating-point 0
; there are 32 registers to fill
; first STOSD will load EAX=O to wsO

REP STOSD ; load each WTL 1167 register with a zero value

Figure 41.

The following sequence multiplies each of the registers
ws 11 through ws 18 by two:

MOV EAX, 40000000h
MOV ECX, 8
MOV EDI, OFFSET MUL.S[T11]
REP STOSD

Figure 42.

; load single-precision" 2.0" into EAX
; there are 8 registers to multiply
; first STOSD will multiply EAX into ws11
; multiply each of 8 registers by EAX

35
© Copyright WEITEK 1988

All Rights Reserved

Applications Programmer's Section, continued

PHYSICAL VERSUS LOGICAL ADDRESSES

The 80386 has three distinct address spaces: logical,
linear, and physical. A logical address consists of a se­
lector and an offset. The segmentation unit translates
the logical address space into a 32-bit linear address
space. If the paging unit is not enabled, then the 32-bit
linear address corresponds to the physical address.
Otherwise, the paging unit translates the linear address
space into the physical address space. The physical ad­
dress is what appears on the address pins and is re­
sponsible for specifying WTL 3167 instructions. (For
more details refer to the Intel 80386 data sheet and
the 80386 Programmer's Reference Manual). The
logical to physical address translation is fully transpar­
ent to the applications programmer. Applications pro­
grammers need only to know which logical addresses
will be mapped into WTL 3167 physical addresses.

WTL 3167 MS-DOS REAL MODE ADDRESSING

This paragraph describes how logical addresses are
mapped into physical addresses for the WTL 3167 in
the MS-DOS environment. OEMs that support the
WTL 3167 under real mode MS-DOS must implement
the same address translation scheme described in this
paragraph.

While the 8086 can form addresses only up to 20 bits
long, the 80386 has access to 21 bits in real-address

mode. For example, assuming a selector value equal
to OFFFF hex and an offset of OFFFF hex, in real
mode the effective address would be 10FFEF hex
(Selector x 6 + Offset = FFFFO hex + FFFF hex =
10FFEF hex). The 8086 would truncate the high or­
der bit, wrapping this address to OFFEF hex, while
the 80386 would preserve the entire 21 bits. 80386 us­
ers then have access to extra 65520 bytes of memory
that do not conflict with the traditional one megabyte
address range for MS-DOS. Such extra memory is
enough to accommodate the WEITEK coprocessor.

In MS-DOS the WTL 3167 resides at logical base ad­
dress 100000 hex with instructions mapped into ad­
dresses 100000 hex to 10EFFF hex. The 80386 paging
unit is then used to map logical addresses 100000 hex
through 10EFFF hex to the physical address space
ranging from COOOOOOO hex through COOOEFFF hex.
More details on how to implement this address transla­
tion scheme are presented in the Systems Program­
mer's Section. Thanks to this address translation, real
mode programs can access the WTL 3167 coproces­
sor. MS-DOS applications can address the WTL 3167
by setting a segment register (for example fs) to
FFFF hex, adding an address offset of 0010 hex (to
access base address 100000 hex), then executing move
instructions that generate coprocessor addresses be­
tween 100000 hex and 10EFFF hex.

r-------------------------------~
I
I

Offset !""-
I

Calculation I
I

Linear
I
I L.......,

Segmentation Address Paging I
I Unit 32 Unit I Selector I

I
I

________________________________ J

Figure 43. Address translation

© Copyright WEITEK 1988
All Rights Reserved 36

Physical
Add~ess WTL

' 32 3167

o

o

o

o

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Applications Programmer's Section, continued

Assuming that the single-precision add instruction of
registers ws1 and ws2 has to be coded under MS-DOS,
the following instruction would do:

mov FFFF:0019h, al

The address FFFF:0019h is derived as follows:

COPROCESSOR SEGMENT =
OFFSET TO ADDRESS 100000h =
OPCODE = ADD. S =
Source1 = F1 =
Source2/Destination = T2 =

FFFF:OOOOh
0010h
OOOOh
0001h
0008h

ACTUAL ADDRESS GENERATED = FFFF:0019h

The segmented address, written FFFF:0019h, is
equivalent to address 100009 hex. The use of the fs
segment and the offset of 10 hex is pre-programmed
into the WTL 3167 real mode macro set.

EXECUTION TIMES FOR INDIVIDUAL
INSTRUCTIONS

To estimate WTL 3167 performance, the table in
figure 44 may be used. The double-precision memory­
to-register estimates include a load ws1 instruction.

The figures below assume that new instructions are sent
to the WTL 3167 within six cycles of the acknowledg­
ment of a transfer by the coprocessor.

ESTIMATED TIMES FOR TRANSCENDENTAL
FUNCTIONS

Figure 45 gives the execution times for procedures in
our library of transcendental functions. The exact
times may vary according to the values of the operands
handed to the functions; the times in the table are av­
erage times. Transcendental routines are provided to
compiler vendors with WTL 3167 support.

Instruction Type Single-Precision Double-Precision
Register-to-Register Register-to-Register

LOAD, Compare, ABS 3 cycles 3 cycles
ADD, SUB, NEG, Conversion 6 cycles 6 cycles

MUL 6 cycles 10 cycles

AMUL 9 cycles 13 cycles
MULN 12 cycles 16 cycles

DIV 38 cycles 66 cycles
SQRT 60 cycles 118 cycles
MAC 12 cycles 16 cycles
MACD.S 12 cycles
STORE* 3 cycles

*Store operations require a variable number of cycles because they cannot be performed if
any other operation is in progress.

Figure 44. Latency

37
© Copyright WEITEK 1988

All Rights Reserved

Applications Programmer's Section, continued

Function Single- Double- Absolute Relative Monotonicity
Precision Precision Accuracy(1) Accuracy(17)

SQRT (2) 117 cycles 285 cycles n/a (3) 5 ULPs TOT (4)
SIN (5) 146 292 1.6 ULPs (18) 5 TOT
COS (5) 140 285 2.2 5 TOT
ATAN (6) 157 398 3.0 5 TOT
EXP (7) 179 401 2.2 5 TOT
LOG (8) 171 365 2.7 5 TOT
TAN (9) 188 340 (10) nla (3) 5 ULPs nla (11)
COTAN (9) 150 372 (10) nla (3) 5 ULPs nla (11)
ASIN (12) 175 467 nla (3) 5 ULPs nla (11)
ACOS (12) 175 467 nla (3) 5 ULPs nla (11)
SINH (13) 185 400 (14) nla (3) 5 ULPs nla (11)
COSH (13) 185 400 (14) nla (3) 5 ULPs nla (11)
TANH (15) 194 350 nla (3) 5 ULPs nla (11)
REM (6) nla n/a nla (3) 5 ULPs nla (11)
MOD (6) nla nla nla (3) 5 ULPs nla (11)
ASCII-+BINARY (16) .01 ULP .01 ULP To .01 ULP
BINARY-+ASCII (16) .01 ULP .01 ULP To .01 ULP

Notes:

1. As determined by Alex Liu' s "Elefunt" program
2. Square root can be implemented much faster using the SQRT instruction. The routine is used when

running code written for the WTL 1167. The number shown is an average for 100,000 uniformly
distributed numbers from 0 through 50,000

3. Absolute accuracy tests do not exist for these functions
4. TOT is an abbreviation for "to the degree tested"
5. Average for 50,000 uniformly distributed numbers from 0 through 'TT/4, 25,000 uniformly distributed

numbers from 'TT/4 through 'TT/2, and 25,000 uniformly distributed numbers in the range of 'TT/2
through 'TT

6. Average for 100,000 uniformly distributed numbers from -1 through 1
7. Average for 100,000 uniformly distributed numbers from -10 through 10
8. Average for 100,000 uniformly distributed numbers from e_10 through e10 •

9. Average from 0 to 4.1 X 103
10. Average from 0 to 6.7 X 107

11. Monotonicity has yet to be determined
12. Average from 0 to 1
13. Average from 0 to 89
14. Average from 0 to 710
15. Average from 0 to 00

16. See figures 46 and 47
17. As determined by Cody and Waite's transcendental routines.
18. ULP is an abbreviation for II units in the last place"

Figure 45. Average execution times for transcendental functions

© Copyright WEITEK 1988
All Rights Reserved 38

0

o

Applications Programmer's Section, continued

String Single

0 310
1 384
1.23456 704
123456. 672
123456789012345. 1120
1234567890.12345 1088
12345678901234567890. 1376
1234567890.1234567890 1344
1234567890. 12345678ge10 1568
12345678901234567890.e10 1568
1.2345678901234567890e38 1600
12.345678901234567890e-38 1664
1.23456e15 832
1 .23456e-15 896

Counts are ± 30 cycles
Figure 46. ASCII-+float (cycles)

c

o

39

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Double

310
416
704 }
672

6 Digits

1152 } 15 Digits
1184 "
1696
1696 20 Digits
1888 > (and
1856 optional
1856 exponent)

2048
864 6 Digits
896

© Copyright WEITEK 1988
A 11 Dinht-c DoC'o u.o.rl

Applications Programmer's Section, continued

Format

f9.2

f17.10

f27.20

e9.2

e17.10

e27.10

g9.2

g17.10

g27.20

Counts are ± 30 cycles

FIgure 47. Float -+ASCII (cycles)

© Copyright WEITEK 1988
All Rights Reserved

Number

.12345
1
1234.567
.00000000001
.0001
1.23456789
12345.6
le-20
le-l0
1
12345.6

1
lel0
le38
1
lel0
le38
1
lel0
le38

le-37
.01
.5
90
1000
le38
le-37
le-l0
.01
.5
1000
le9
1e38
le-307
le-37
.01
.5
1000
le19
le38
1e308

40

(J

Single Double

672 704
672 736
736 768
576 576
800 832
864 992
864 1056
768 800
960 1088
960 1344
928 1440

936 960
936 1040
944 1408

1104 1216
1104 1240
1112 1488
1152 1560
1160 1592 o
1168 1648

1048 1512
1048 1088
736 776
744 776

1056 1160
1056 1528
1208 1760
1208 1352
1208 1344
904 1088
912 1040
936 1056

1232 1600
- 1936

1264 1944
1264 1776
960 1376
968 1400
984 1488

1312 1768
- 1968

o

c

o

o

Applications Programmer's Section, continued

DATA TYPES

The WTL 3167 floating-point coprocessor provides
compatibility with the formats specified in IEEE Stan­
dard 754, Version 10.0. Several number types are re­
quired to implement the standard. The types supported
by the WTL 3167 are described below.

NORMALIZED NUMBERS (NRM)

Most calculations are performed on normalized
numbers. Single-precision normalized numbers have an
exponent that ranges from binary 00000001 to
binary 11111110 (1 to 254) and a normalized
fraction field (the leftmost or hidden bit is a one).
In decimal notation, this allows one to represent a
range of both positive and negative numbers from
roughly 10+38 to 10-38 with accuracy to seven decimal

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

places. Double-precision numbers have an exponent
ranging from one to 2,046 and a normalized fraction
field.

INFINITY (INF)

Infinity has an exponent of all ones and a fraction field
equal to zero. Both positive and negative infinity are
allowed.

ZERO

ZERO has an exponent of zero, a hidden bit equal to
zero, and a value of zero in the fraction field. Both +0
and -0 are supported.

Single-Precision
31 30

lsi e

8

e f

255 not 0

255 0

1 .. 254 any

0 0

6362 52 51

lsi e I
11

e f

2047 not 0

2047 0

1 .. 2046 any

0 0

Figure 48. IEEE data types

23 22

I f

23

Value

none
(-1) S X infinity
(-1) S X 2e- 127 X (1 .f)
(-1)SxO

Double-Precision

Value

none

(-1) S X infinity
(-1) S X 2e-1023 X (1.f)

(-l) s x 0

41

f

52

0

I
Name

NaN (Not A Number)

Infinity

Normalized number

Zero

0

I
Name

NaN (Not A Number)

Infinity

Normalized number

Zero

© Copyright WEITEK 1988
All Riphtro; Rero;erveci

Applications Programmer's Section, continued

NOT A NUMBER (NaN)

NaN is a special data format usually used as a flag for
data flow control, for uninitialized variables, or to
signify an invalid operation such as 0 times infinity.
The format for a NaN is an exponent of all ones and a
non-zero fraction.

DENORMALIZED NUMBERS (DNRM)

Denormalized numbers have a zero exponent and a
denormalized (hidden bit equal to zero) non-zero
fraction field. They represent numbers smaller
than 2 -127 (single-precision) or 2 -1023 (double-preci­
sion) .

ROUNDING OPTIONS

The WTL 3167 supports all four rounding modes of
the IEEE standard: round to nearest, round toward
zero, round toward plus infinity, and round toward mi­
nus infinity. Rounding may be biased or unbiased. Bi­
ased rounding introduces a small offset in the direction
of the bias. Positive bias, negative bias, or a bias toward
zero are specified in the IEEE format. Unbiased
rounding rounds the result to the nearest representable
number. In the case of a number exactly halfway be­
tween two representable numbers, the number is
rounded toward the closest even number, resulting in
half of the numbers rounding up and half rounding
down, on average.

ROUND TO NEAREST (RN)

Rounds the result to the nearest representable value. If
two numbers are equally near the result, the even num­
ber is chosen.

ROUND TOWARD ZERO (RZ)

Rounds the result to the value closest to but not greater
than the magnitude of the result.

ROUND TOWARD PLUS INFINITY (RP)

Rounds the result to the value closest to but not less
than the result.

© Copyright WEITEK 1988
All Rights Reserved 42

ROUND TOWARD MINUS INFINITY (RM)

Rounds the result to the value closest to but not greater
than the result.

IEEE CONSIDERATIONS

While the IEEE floating-point formats are supported by
the WTL 3167, some features of the IEEE standard
are not provided due to the design focus on high
speed.

EXCEPTION HANDLING

The occurrence of an enabled exception causes an in­
terrupt. Due to extensive instruction overlapping, the
exact location of an exception is not maintained. In the
debugging stage of a program it is possible to identify
the instruction which caused the exception by perform­
ing a store context after every floating-point instruction
and then testing the enabled exception bit.

The following exceptions are flagged by the
WTL 3167:

Undefined Opcode Exception (UOE)

Whenever an illegal opcode is detected, the undefined
opcode exception is set. On a read bus operation, for
example, only store-type opcodes are allowed. If a
read bus operation specifies any other instruction, such
as MUL.S, then the undefined opcode exception bit is
set.

Precision Exception (PE)

The precision exception (PE) flag of the accumulated
exception field is set whenever there is a loss of accu­
racy. The coprocessor data paths compute results to
higher precision than the number of mantissa bits that
appear in the result. If any of the fraction bits less than
the .LSB was equal to one prior to rounding, then the
PE bit will be set high. The precision exception will also
be signaled if there is a partial or complete loss of sig­
nificance in a float-to-fixed operation.

o

o

o

o

o

o

Applications Programmer's Section, continued

Overflow Exception (OE)

An overflow exception (OE) is generated when the
result of a floating-point operation overflows the largest
representable number. The result produced at the out­
put is either infinity or the largest representable positive
or negative number, depending upon the rounding
mode as follows:

Largest positive
normalized number

Largest negative
normalized number

+Infinity

-Infinity

if ((RM or RZ)
and the result is positive)

if ((RP or RZ)
and the result is negative)

if ((RN or RP) and the result
is positive)

if ((RN or RM) and the result
is negative)

Overflow is also generated when converting floating­
point-to-fixed point and the result overflows the 32-bit
format.

Underflow Exception (UE)

When the result of an operation after rounding is less
than the minimum normalized number in the destina­
tion format, UE is asserted and the result is flushed to
zero. A result of exactly zero does not underflow.

43

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Zero Divide Exception (ZE)

The WTL 3167 will assert a ZE exception when per­
forming division on a normalized dividend and a zero
divisor. The result is a properly signed infinity.

Invalid Operation Exception (IE)

IE is asserted if a NaN input or if an invalid operation
occurs. The invalid WTL 3167 operations are ooxO,
0/0, 00/00, subtraction of like infinities (00 - 00) and
addition of opposite infinities 00+ (-00). The result of
any invalid operation is a NaN with the fraction and
exponent of all ones. The sign bit is zero.

FAST MODE

The WTL 3167 always operates in Fast Mode: denor­
malized inputs to either the multiplier or AL U are
flushed to zero as well as unnormalized outputs. The
minimum normalized number has an exponent of one
and a fraction field of zero. Zero has an exponent of
zero and a fraction field of all zeros. This allows to
represent numbers between the smallest normalized
number and zero. These numbers are known as denor­
mals (DNRM). Since denormals are very close to zero,
most applications can substitute zero for a denormal
without a significant loss of accuracy.

© Copyright WEITEK 1988
A 11 Dinht-c 1)Q,C.:s. UAri

Applications Programmer's Section, continued

OPERATION STATUS AND RESULT

The following tables show the results which are
obtained for various combinations of input data for­
mats and rounding options. The format used in these
tables is: (status) result. When OK is indicated for the
status, no exception is flagged.

Source1

ZERO DNRM

NaN (IE) NaN (IE) NaN

INF (OK) INF (OK) INF

NRM (OK) NRM (OK) NRM

DNRM (OK) ZERO (3) (OK) ZERO

ZERO (OK) ZERO (3) (OK) ZERO (3)

Notes:

1. +INF+INF -+ +INF
-INF-INF -+ -INF

2. +INF-INF -+ NaN (invalid operation)
-INF+INF -+ NaN (invalid operation)

3. +ZERO+ZERO -+ +ZERO (RN,RZ,RP,RM)
-ZERO-ZERO -+ -ZERO (RN,RZ,RP,RM)
+ZERO-ZERO -+ +ZERO (RN,RZ,RP)
+ZERO-ZERO -+ -ZERO (RM)
-ZERO+ZERO -+ +ZERO (RN,RZ,RP)
-ZERO+ZERO -+ -ZERO (RM)

Source2

NRM INF NaN

(IE) NaN (IE) NaN (IE) NaN

(OK) INF
(OK) INF (1)

(IE) NaN
(IE) NaN (2)

(OE) (4)
(OK) NRM

(OK) INF (IE) NaN
(UE) ZERO
(OK) ZERO

(OK) NRM (OK) INF (IE) NaN

(OK) NRM (OK) INF (IE) NaN

4. OVF will produce INF or maximum normalized number (MAX.NRM), depending upon the rounding
mode:
+MAX.NRM IF [(RM,RZ) AND (RESULT IS +)]
-MAX.NRM IF [(RP,RZ) AND (RESULT IS -)]
+INF IF [(RN,RP) AND (RESULT IS +)]
-INF IF [(RN,RM) AND (RESULT IS -)]

Figure 49. Status and result output for add and subtract

© Copyright WEITEK 1988
All Rights Reserved 44

)

o

o

o
Applications Programmer's Section, continued

Source1 Source2

ZERO DNRM NRM

NaN (IE) NaN (IE) NaN (IE) NaN

INF (OK) INF (OK) INF (OK) INF

(OE) (4)
NRM (ZE) INF (ZE) INF (OK) NRM

(UE) ZERO

DNRM (IE) NaN (IE) NaN (OK) ZERO

ZERO (IE) NaN (IE) NaN (OK) ZERO

Note:

4. Refer to Note 4 on page 44.

o Figure 50. Operation status and result output for divide

o

45

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

INF NaN

(IE) NaN (IE) NaN

(IE) NaN (IE) NaN

(OK) ZERO (IE) NaN

(OK) ZERO (IE) NaN

(OK) ZERO (IE) NaN

© Copyright WEITEK 1988
All Ril!:hts Reserved

Applications Programmer's Section, continued

The following table shows the compare status for
different input combinations; the compare status is en­
coded in the condition code field of the peR.

Source1

NaN -INF -NRM

NaN U U U

+INF U G G

+NRM U G G

+DNRM U G G

ZERO U G G

-DNRM U G G

-NRM U G 0, 1, 2

-INF U E L

U: Unordered
E: Source1 = Source2
L: Source1 < Source2
G: Source1 > Source2

Source2

-DNRM ZERO

U U

G G

G G

E E

E E

E E

L L

L L

+DNRM

U

G

G

E

E

E

L

L

0, 1, 2 may be: Source1 = Source2, Source1 < Source2, or Source1 > Source2

Figure 51. Status for floating-point compare

© Copyright WEITEK 1988
All Rights Reserved 46

+NRM +INF

U U

G E

0, 1, 2 L

L L

L L

L L

L L o
L L

o

Applications Programmer's Section, continued

Source1 Source2/Destination

7FFFFFFF 41DFFFFF
FFCOOOOO

00000001 3FFOOOOO
00000000

00000000 00000000
00000000

FFFFFFFF BFFOOOOO
00000000

80000000 C1EOOOOO
00000000

Figure 52. Integer to double-precision conversions (I32-+F64)

Source1 Source2/Destination

c 7FFFFFFF 4FOOOOOO

7FFFFFCO 4FOOOOOO

7FFFFF80 4EFFFFFF

00000001 3F800000

00000000 00000000

FFFFFFFF BF800000

80000080 CEFFFFFF

80000040 CFOOOOOO

80000000 CFOOOOOO

Figure 53. Integer to single-precision conversions (I32-+F32)

o

47

Status

OK

OK

OK

OK

OK

Status

OK

PE

OK

OK

OK

OK

OK

PE

OK

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Comments

Largest positive
integer

+1

ZERO

-1

Largest negative
integer

Comments

Largest positive
integer

Inexact

Exact

+1

ZERO

-1

Exact

Inexact

Largest negative
integer

© Copyright WEITEK 1988
A. 11 "J"'\ ~ _ 1_ L _ T"'Io _ _ _ _1

Systems Programmer's Section

The system software is responsible for mapping logical
addresses to the physical address space of the
WTL 3167, detecting the presence of the WEITEK
coprocessor, handling exceptions, saving the coproces­
sor registers when switching between tasks, and emulat­
ing the device when it is not present. In non-multi-task­
ing environments like MS-DOS, only address mapping,
and presence detection need to be performed.

SETTING-UP WTL 3167 ADDRESSING

The Operating System must provide a mechanism to
map logical addresses into the proper WTL 3167
physical addresses.

MS-DOS ENVIRONMENT

Ordinarily, the WTL 3167 memory space is inaccessi­
ble in real mode, since Intel intended only the first
megabyte of the 386 memory space to be used. How­
ever, there is an anomaly of real-mode memory ad­
dressing that allows an extra 65520 bytes of the mem­
ory space to be accessed, which is enough to accom­
modate the WTL 3167. The anomaly occurs when a
segment register is loaded with the value FFFF hex, and
an offset of 10 hex or greater is provided for a
memory address. After multiplying the segment regis­
ter value by 16 and adding the offset, an address ex­
ceeding the 1-megabyte boundary is obtained. On the
original 8086/8088, the address wraps around to zero.
On the 386, the address extends into the second mega­
byte of the memory space. This allows a real-mode
program to access linear addresses from 100000 hex
to 10FFEF hex. The 386's paging mechanism can map
those linear addresses to physical addresses in the
WTL 3167's memory space.

The paging must be set up by an initialization program
run at boot time. The program must enter the 386's
Virtual 8086 mode, set up paging tables and seg­
ment descriptor tables, address memory according
to those tables, an then go back to real mode.
The paging mechanism must map the first megabyte
of memory to itself, and must map the addresses
from 100000 hex to 10EFFF hex to the WTL 3167
space at OCOOOOOOO hex through OCOOOEFFF hex.

© Copyright WEITEK 1988
All Rights Reserved 48

If there is an Extended Memory Manager, the page
mapping should be handled at the same time. Because
there exist programs which rely on the wraparound of
the addresses greater than one megabyte, the Extended
Memory Manager should provide for the ability to dy­
namically turn the WTL 3167 mapping on and off.
The steps to perform memory-mapping in a Vir­
tual 8086 environment are explained in detail in the
Memory Management chapter of the Intel 80386 Pro­
grammer's Reference Manual.

Once the paging is set up, the WTL 3167 space can be
accessed starting at OFFFF: 1 a hex.

DOS PROTECTED MODE ENVIRONMENT

In the MS-DOS protected mode environment the ap­
plication program runs in 386 protected mode to exe­
cute native 386 code and/or access the larger memory
space. Currently there are three tools available for run­
ning programs in protected mode under MS-DOS:
RUN386 by Phar Lap, X-AM by IGC, and OS 386 by
AI Architects. The RUN386 program sets up the ad­
dressing for the WTL 3167, by pointing the fs register
to a segment containing the WTL 3167 memory space.
The WTL 3167 space starts at offset a hex within the
fs segment. Under X-AM, the processor assumes a flat
segmentation model: all segment registers are set to
zero, and the entire 386 memory space is accessed
via 32-bit offset values. The WTL 3167 memory
space is re-mapped from OCOOOOOOO hex to the loca­
tion OFFCOOOOO hex.

Since all segment registers point to the same zero
value, no segment override bytes are necessary when
running under X-AM. The default registers ds, es and
ss will always suffice to access the WTL 3167's space.

UNIX AND XENIX ENVIRONMENTS

UNIX and XENIX provide a flat memory space, with
all 386 segment registers pointing to zero, and the en­
tire memory space addressed through 32-bit offsets.
UNIX handles the page re-mapping of the WTL 3167
memory space, so that the applications program can
immediately access the WTL 3167 starting at offset
OFFCOOOOO hex.

()
'"',--

o

o

c

o

Systems Programmer's Section, continued

COPROCESSOR PRESENCE DETECTION

Many application programs will need to test for the
existence of the WEITEK coprocessor (either
WTL 3167 or WTL 1167). If an application program
needs to decide whether to run on the WEITEK co­
processor or the 80387, this information is necessary.

MS-DOS ENVIRONMENT

In the MS-DOS real mode environment, a simple pro­
gram in the ROM BIOS, or resident in main memory
must detect the presence of the WEITEK coprocessor,
and modify the interrupt 11 hex routine so that bits 23
and 24 of the value returned in register eax by the in­
terrupt 11 hex call are set if the WEITEK coprocessor
is present.

To detect the presence of the WEITEK coprocessor
systems programmers will use a simple detection rou­
tine consisting of a software sequence that loads a co­
processor register with a specific data pattern and then
reads it back. The code fragment in figure 54, based
on the MS-DOS macros offered by WEITEK, can be
used to detect the WEITEK coprocessor presence and
modify the interrupt 11 hex routine. It is important to
note that this code assumes that the page tables for real
mode addressing have been set up. It also takes advan­
tage of the fact that a reference to memory that does
not exist will eventually return some undefined result
and the system will not hang. It finally assumes that the
physical address of the WEITEK coprocessor is the
standard address of OCOOOOOOO hex.

If the hardware designer has connected the PRES- sig­
nal of the WEITEK coprocessor to an 110 port, the
systems software designer can determine the coproces­
sor presence by reading such 110 port. This method is
simpler than the previous one but it is system depend­
ent. It may be necessary to change the 110 port address
for each machine.

Once the operating system has detected the presence
of the WEITEK coprocessor and modified the inter­
rupt 11 routine, available DOS compilers and applica­
tions can detect the presence of the WEITEK
coprocessor by calling Interrupt 11 hex and checking
the eax bits 23 and 24 status as shown in figure 55.

49

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

OIS Power-up Sequence for
WEITEK Coprocessor

WEITEK coprocessor
Addressing Set-up

Set up • Presence Flag·
to be used by applica­

tions programs

Figure 54. Operating systems power-up sequence for
WTL 3167

; see if WEITEK coprocessor is present
XOR EAX, EAX
INT 11h
AND EAX, 11 shl 23
JNZ short J3167
K3167: ; WEITEK coprocessor not present
J3167: ; WEITEK coprocessor is present

Figure 55. Compiler test for presence of WTL 3167

© Copyright WEITEK 1988
A 11 "Ri"ht~ "Rt>~t>1'''t>rl

Systems Programmer's Section, continued

MS-DOS PROTECTED MODE ENVIRONMENT

The MS-DOS protected mode environment (RUN386,
X-AM, or OS 386) is responsible for detecting the
presence of the WEITEK coprocessor. Code similar to
that proposed in figure 56, properly modified for pro­
tected mode addressing, can be used by MS-DOS pro­
tected mode development environment manufacturers
to detect the presence of the WEITEK coprocessor.

Once the environment has detected the presence or
absence of the coprocessor it must provide a way to
communicate it to application programs. Such method
is specific to the environment. Clearly the INT llh
mechanism cannot be used in protected mode. For
Phar Lap-based environments, for example, identical
ds and fs segment registers indicate to the application
that the WEITEK coprocessor is present. For other en­
vironments the reader should consult the manufactur­
er's documentation.

© Copyright WEITEK 1988
All Rights Reserved 50

UNIX AND XENIX ENVIRONMENTS

UNIX and XENIX environments detect the presence
of the WEITEK coprocessor using routines similar to
that shown in figure 56. In both UNIX and XENIX
environments a program can detect the presence of the
WEITEK coprocessor through system call "sysi86".
See the appropriate system documentation for the
name of the system call and the parameter definitions.

C)

o

o

o

o

Systems Programmer's Section, continued

; see if WEITEK coprocessor is present

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

; (this code assumes that page tables for real mode addressing have already been set up)
; load FFFFh into fs segment register
MOV fs, FFFFh
; save contents of memory which may change if WEITEK coprocessor is not present
MOV ECX, fs:0404h
MOV EDX, fs:0408h
; read register ws 1 into eax
WFST EAX, ws1
; write the data now in EAX into WEITEK coprocessor register ws2
WFLD ws2, EAX
; complement data in EAX, save it in EBX, and write it back into register ws1
NOT EAX
MOV EBX, EAX
WFLD ws 1, EAX
; read the two WEITEK coprocessor registers ws1 and ws2, and compare them to EBX
WFST EAX, ws1
CMP EAX, EBX
WFST EAX, ws2
; restore memory which may have changed
WFLD ws1, EAX
WFLD ws2, EDX
; restore Interrupts
STI
; branch if either register does not compare
JNZ short iOinit
NOT EAX
CMP EAX, EBX
JNZ short iOinit
; if the WEITEK coprocessor is present the system must modify the interrupt 11 h routine so that bits
; 23 and 24 of the value returned by interrupt 11 h in EAX is set (See Note). Application software
; will then use this mechanism to determine whether the WEITEK coprocessor is present.
MOV di, offset Handlerjump
MOV dword ptr [di-4J, 11 shl 23
iOinit: ; WEITEK coprocessor is not present

Note: the code that modifies interrupt 11 h assumes that the interrupt handler has been previously
loaded as follows:

Handler:
MOV EAX, 0
Handlerjump:
JMP far ptr original ; Jump to original interrupt 11 h handler routine

Figure 56. Test for presence of WEITEK coprocessor (WTL 3167 or WTL 1167)

51
© Copyright WEITEK 1988

All Ripht" Re"erven

Systems Programmer's Section, continued

INITIALIZATION

Multitasking operating systems and application
programs must initialize the WEITEK coprocessor. The
code in figure 58. written using WEITEK macros. will
suffice to initialize any WEITEK coprocessor:
WTL 3167 old or new. WTL 1167. WTL 1167
type A.

The rounding mode. the exception mask field and the
accumulated exception field of the peR need to be
initialized as well. The instruction in figure 57. for

example. will set round to nearest rounding mode and
will mask and clear all exceptions.

; initialize exception masks and rounding mode
WFLDCTX 003FFOOOOh

Figure 57. Exception mask and rounding mode
initialization

WFLDCTX
WFSTRL

B8000000h
EAX

; load B8000000h int PCR
; store revision level

CMP
JNE
k1init:
WFLDCTX

JMP
j1 init:
WFLDCTX
WFLDCTX
i1 init:

ah. OOh
short j1 init

016000000h

short i 1 init

056000000h
098000000h

; initialize Multiplier and ALU units flowthrough timers in
; WTL 1167

; initialize Multiplier flowthrough timer in WTL 1167 type A
; initialize ALU flowthrough timer in WTL 1167 type A

: regardless of the coprocessor type load the following remaining power-up sequence
WFLDCTX 064000000h
WFLDCTX OAOOOOOOOh
WFLDCTX 030000000h

Figure 58. Initializing the WEITEK coprocessor

© Copyright WEITEK 1988
All Rights Reserved 52

" I
J

o

o

c

c'

0··
..

Systems Programmer's Section, continued

EXCEPTION HANDLING

When an enabled exception occurs, the WTL 3167
signals an interrupt to the host processor.
The 80287/80387 and the WTL 3167 interrupt re­
quests are "ORed" to generate the exception interrupt
(see page 8). Whenever an interrupt occurs, the op­
erating system must first check both the WTL 3167
and the 80287/80387 to assess which device flagged
the exception. To handle the WTL 3167 exception in­
terrupt the operating system must first clear the inter­
rupt, in order to allow processing to continue, and then
transmit the interrupt information to the executing pro­
gram. The operating system can simply notify the exe­
cuting program of a problem, expecting the application
program to identify and correct the problem, or it can
identify the problem and then pass the information to
the application program. In the first case it should clear
the interrupt by setting the appropriate bits in the en­
able exception byte, but leave untouched the accumu­
lated exception byte.

This allows the executing program to determine exactly
which exceptions occurred by reading the context reg­
ister itself. In the second case, the operating system
clears the interrupt by storing the value of the accumu­
lated exception byte and then clearing it. The content
of the accumulated exception byte is then passed to the
application program.

MS-DOS application programs handle IRQ13 interrupts
by trapping INT 75. After resolving WTL 3167 excep­
tions, the routine clears the exception byte and chains
to the INT 75 vector. The INT 75 service routine clears
the interrupt controllers and invokes the Non Mask­
able Interrupt (NMI) handler (for compatibility
with 808818086 software).

53

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

CONTEXT SWITCHING

In a multi-tasking environment, such as UNIX and XE­
NIX, the operating system must save the context of the
WTL 3167 when switching between two processes.
Saving the WTL 3167 simply means saving the thirty­
two registers in the register file and the context register.
A block move is very effective in saving the register
file. Restoring the WTL 3167 context is simple too.
The thirty-two registers must be reloaded as well as the
context register. It is also required that the operating
system repeat the coprocessor initialization described
in figures 57 and 58 in case another program had
loaded the WTL 3167, rounding mode, exception
mask, and accumulated exception field of the peR with
inappropriate values. UNIX System V.3 and XENIX
for the 80386 handle context switching for the
WTL 3167.

COPROCESSOR EMULATION

If emulation of the WTL 3167 is needed, then it is the
operating system's responsibility to provide it. When
the WTL 3167 is not present and an address specifying
a coprocessor instruction is broadcast by the 80386,
the operating system must identify the fault and call the
emulator. The emulator needs to decode the address in
order to identify the floating-point instruction which it
specifies, and it must then execute the instruction with
the system's available resources. The emulator must
duplicate all of the WTL 3167's internal registers and
properly update them after each instruction.
UNIX System V.3 already incorporates a complete
WTL 3167 emulator. Customers who intend to incor­
porate WTL 3167 emulation in other operating systems
should contact WEITEK for more details.

© Copyright WEITEK 1988
All Ri~hts Reserved

WfL 1167 and WfL 3167 Compatibility

This section describes the hardware and software
differences between the WTL 3167 and the WTL 1167
coproc~ssor daughter board.

HARDWARE COMPATIBILITY

The single-chip WTL 3167 is pin for pin compat­
ible with the WTL 1167 and will fit into the stan­
dard 121-pin extended math coprocessor socket. The
WTL 1167 coprocessor daughter board features a
socket for the 80387, allowing both the WEITEK and
the Intel coprocessors to co-exist in the same system.
Hardware developers can offer the option of using both
the WTL 3167 and the 80387 coprocessors by featur­
ing two separate sockets on the system mother board,
or by using a small daughter board that accommodates
both coprocessors. Figure 5 shows the physical dimen­
sions of the WEITEK daughter board that accommo­
dates both the 80387 and the WTL 3167.

The WTL 3167 DC power consumption is less than
one fifth that of the WTL 1167 daughter board.
The 16 and 20 MHz WTL 3167 AC specs are upward
compatible with those of the WTL 1167 daughter
board. The WTL 3167 is available in faster speed
grades than the WTL 1167. For more details on the
coprocessor DC and AC specifications, the reader
should refer to pages 9 to 11. The WTL 3167 AC
specifications match the new AC specifications for the
Intel 80386 microprocessor.

© Copyright WEITEK 1988
All Rights Reserved 54

APPLICATION SOFTWARE COMPATIBILITY

The WTL 3167 is upward object-code-compatible
from the WTL 1167. The application programs and
all of the software tools available for the WTL 1167
coprocessor daughter board will run as is on the
WTL 3167. The WTL 3167 will respond as a faster
WTL 1167. For more details on the single-chip instruc­
tion execution times, refer to pages 37 to 40.

The WTL 3167 features some new instructions that will
trigger an Invalid Opcode exception, if used with the
WTL 1167. The new instructions include: square root,
reverse subtract, and double-precision multiply accu­
mulate.

SYSTEM SOFTWARE COMPATIBILITY

Addressing, initialization, presence detection, excep­
tion handling, context switching, and coprocessor emu­
lation for the WTL 3167 are the same as they are for
the WTL 1167. Therefore, the WTL 3167 works in all
of the operating system environments that support the
WTL 1167 coprocessor daughter board. o

o

C~:

o

Ordering Information

COPROCESSOR

Part Description Temperature Range

16 MHz WTL 3167 Coprocessor TeAsE = 0 to 85° C

20 MHz WTL 31 67 Coprocessor TeAsE = 0 to 85° C

25 MHz WTL 3167 Coprocessor TeAsE = 0 to 85° C

Figure 59. WTL 3167 Coprocessor ordering information

COPROCESSOR BOARD

Customers ordering the coprocessor along with the
small daughter board shown in figure 5, should refer to
the order numbers below.

Part Description Temperature Range

16 MHz WTL 3167 Coprocessor Board TeAsE = 0 to 85° C

20 MHz WTL 3167 Coprocessor Board TeAsE = 0 to 85° C

25 MHz WTL 3167 Coprocessor Board TeAsE = 0 to 85° C

Figure 60. WTL 3167 Coprocessor board ordering information

55

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Order Number

3167-016-GCU

3167 -020-GCU

3167 -025-GCU

Order Number

3167-016-BRD

3167-020-BRD

3167-025-BRD

© Copyright WEITEK 1988
All Ri~hts Reserved

Revision Summary

This table lists many of the most major changes since the September, 1986 printing of this data sheet. The data
sheet has undergone a complete transformation since then. It is now more accurate, more complete, and much
longer. Few, if any, sections from the old data sheet exist unchanged in the new one.

Change

1. Specifications

2. Software Tools Overview

3. Instruction Encoding

4. Ordering Information

© Copyright WEITEK 1988
All Rights Reserved

Description

Revised, page 10-11

Revised, page 20

Revised, page 32

Revised, page 55

56

o

o

o

c

o

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

o

o

c

o

o

For additional information on WEITEK products, please rIll out the form below and mail.

Name Title

Company Phone

Address

Comments
I am currently involved in a design with the following Weitek products ______________ and wish to be added to your
design data base to insure that I receive status updates.

APPLICATION:

D ENGINEERING WORKSTATIONS

D GRAPHICS

D PERSONAL COMPUTERS

Check the products on which you wish to receive data sheets:

ATTACHED PROCESSORS

D XL-SERIES OVERVIEW

D XL-8200 OVERVIEW

WEITEKuse: Rec'd

Status

WEITEKWTL 3167

COPROCESSORS

D 1167

D 1164/1165

D 3164/3364

D 3167

Out

D SCIENTIFIC COMPUTERS

D OTHER _______ _

BUILDING BWCKS

D 2264/2265

D 3132/3332

D 1232/1233

D 1066

D 2010

D 2245

TPT

Please Comment On The Quality Of This Data Sheet.

D Have a sales person call

D 2516

D 2517

Source: DS

Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have
missed something that may be important to you. If you believe this is the case, please describe what the
missing information is, and we will consider including it in the next printing of the data sheet.

Fold, Staple and Mail to Weitek Corp.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1374 SUNNYVALE. CA

POSTAGE WILL BE PAID BY ADDRESSEE

WEITEK Corporation
1060 E. Arques Ave.
Sunnyvale, CA 94086-BRM-9759

ATTN: Ed Masuda

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

o

o

o

(~

WEITEK ~

~

Headquarters
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

WEITEK'S CUSTOMER COMMITMENT:

Weitek's mission is simple: to provide you with VLSI solutions
to solve your compute-intensive problems. We translate that
mission into the following corporate objectives:

1. To be first to market with performance breakthroughs, allow­
ing you to develop and market systems at the edge of your art.

2. To understand your product, technology, and market needs, so
that we can develop Weitek products and corporate plans that
will help you succeed.

3. To price our products based on the fair value they represent to
you, our customers.

4. To invest far in excess of the industry average in Research and
Development, giving you the latest products through techno­
logical innovation.

S. To invest far in excess of the industry average in Selling, Mar­
keting, and Technical Applications Support, in order to pro­
vide you with service and support unmatched in the industry.

6. To serve as a reliable, resourceful, and quality business part­
ner to our customers.

These are our objectives. We're committed to making them
happen. If you have comments or suggestions on how we can
do more for you, please don't hesitate to contact us.

Domestic Sales Offices
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

Corporate Place IV
III South Bedford St.
Suite 200
Burlington, MA 01803
FAX (617) 229-4902
TEL (617) 229-8080

European Sales Headquarters
Greyhound House, 23/24 George St.
Richmond, Surrey, TW9 UY
England
TELEX 928940 RICHBI G
FAX 011-441 940 6208
TEL0l1-4415490164

Japanese Representative
4-8-1 Tsuchihashi
Miyamae-Ku
Kawasaki, Kanagawa-Pre
213 Japan
FAX 044-877-4268
TEL 044-852-1135

0·.' . . ,

C)

o

