

Winbond Single-Slot PC Card Power Interface Switch for Parallel PCMCIA Controller W83L350R W83L350G

Datasheet Revision History

	PAGES	DATES	VERSION	VERSION ON WEB	MAIN CONTENTS
1.		Apr./06	0.5	N.A	All versions before 0.5 are for internal use only.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

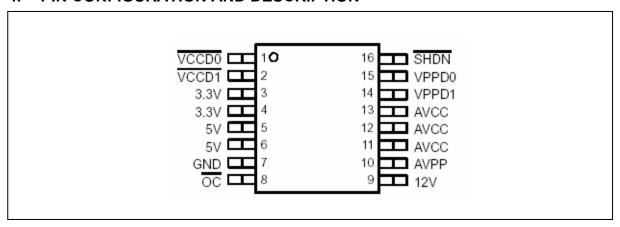
Table of Contents-

1.	GENERAL DESCRIPTION	1
2.	FEATURES	1
3.	APPLICATIONS	1
4.	PIN CONFIGURATION AND DESCRIPTION	2
5.	APPLICATION CIRCUIT	3
6.	INTERNAL BLOCK DIAGRAM & CONTROL LOGIC TABLE	4
7.	ELECTRICAL CHARACTERISTICS	6
8.	TYPICAL OPERATING WAVEFORM &TIMING DIAGRAMS	7
9.	PACKAGE DIMENSION	19
10.	ORDERING INFORMATION	20
11.	HOW TO READ THE TOP MARKING	20

1. GENERAL DESCRIPTION

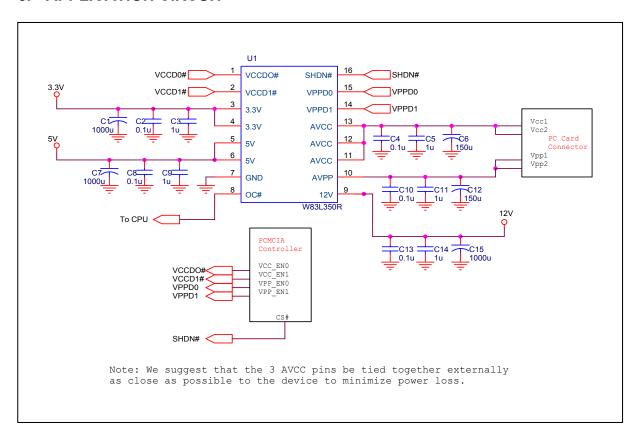
The W83L350R PC Card power-interface switch provides an integrated power-management solution for a single PC Card. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit. The circuit allows the distribution of 3.3-V, 5-V,and/or 12-V card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability. Current-limit reporting can help the user isolate a system fault to the PC Card. controllers. The W83L350R features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5 V. Bias power can be derived from either the 3.3-V or 5-V inputs. This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available. End equipment for the W83L350R includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

2. FEATURES

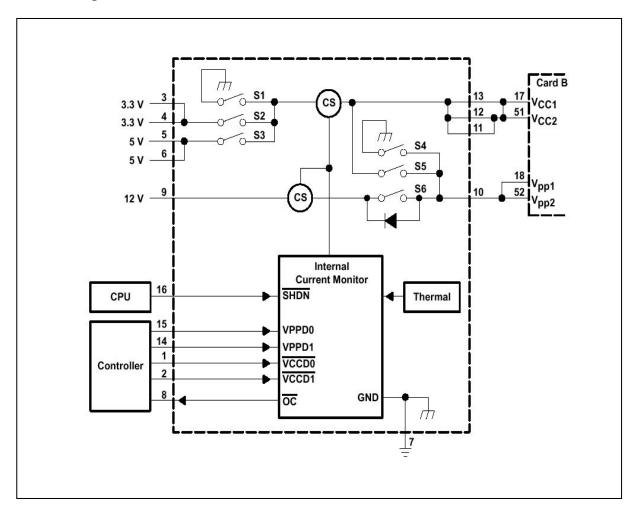

- Fully Integrated VCC and VPP Switching for Single-Slot PC Card Interface
- Low r_{DS(on)} (70-mΩ 5-V VCC Switch and 3.3-V VCC Switch)
- Compatible With Industry-Standard Controllers
- · Meets PC Card Standards
- · Short-Circuit and Thermal Protection
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Space-Saving 16-Pin SSOP (DB)
- Compatible With 3.3-V, 5-V, and 12-V PC Cards
- · Break-Before-Make Switching

3. APPLICATIONS

- Notebook computer
- Desktop computer
- Personal digital assistant (PDA)
- · Bar-code scanner


4. PIN CONFIGURATION AND DESCRIPTION

SYMBOL	PIN	I/O		
VCCD0#	1	I	Logic input that controls voltage of AVCC(see control logic table)	
VCCD1#	2	I	Logic input that controls voltage of AVCC(see control logic table)	
3.3V	3	I	3.3V VCC input for card power and/or chip power	
3.3V	4	I	3.3V VCC input for card power and/or chip power	
5V	5	I	5V VCC input for card power and/or chip power	
5V	6	ı	5V VCC input for card power and/or chip power	
GND	7		Ground	
OC#	8	0	Logic-level over-current reporting output that goes low when an over-current conditions exists	
12V	9	I	12V VPP input for card power	
AVPP	10	0	Switched output that delivers 0V,3.3V,5V,12V or high impedance to card	
AVCC	11	0	Switched output that delivers 0V,3.3V,5V or high impedance to card	
AVCC	12	0	Switched output that delivers 0V,3.3V,5V or high impedance to card	
AVCC	13	0	Switched output that delivers 0V,3.3V,5V or high impedance to card	
VPPD1	14	I	Logic input that controls voltage of AVPP(see control logic table)	
VPPD0	15	I	Logic input that controls voltage of AVPP(see control logic table)	
SHDN#	16	ı	Login input that shuts down the device and sets all power outputs to high impedance state	


5. APPLICATION CIRCUIT

6. INTERNAL BLOCK DIAGRAM & CONTROL LOGIC TABLE

Block Diagram

Control Logic Table

AVPP

	OUTPUT		
SHDN#	VPPD0	VPPD1	AVPP
1	0	0	0V
1	0	1	AVCC
1	1	0	12V
1	1	1	Hi-Z
0	Х	Х	Hi-Z

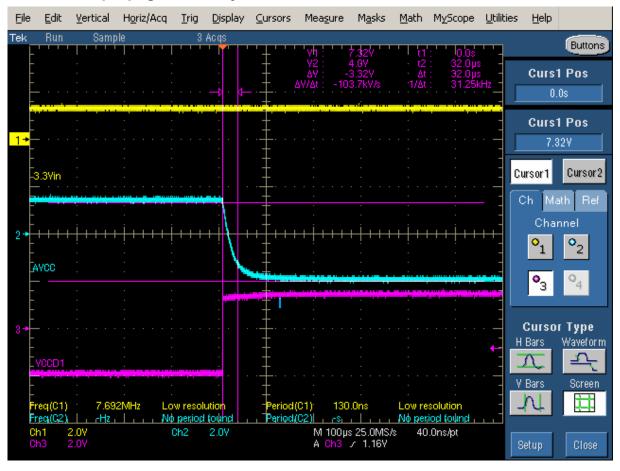
AVCC

	CONTROL SIGNALS					
SHDN#	VCCD1#	VCCD0#	AVCC			
1	0	0	0V			
1	0	1	3.3V			
1	1	0	5V			
1	1	1	0V			
0	X	X	Hi-Z			

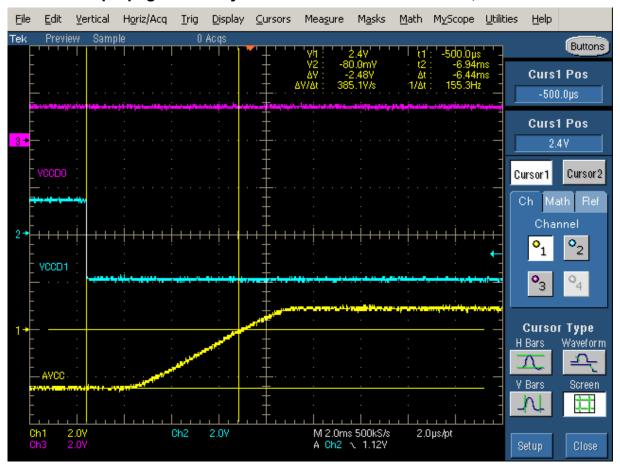
7. ELECTRICAL CHARACTERISTICS

Power switch

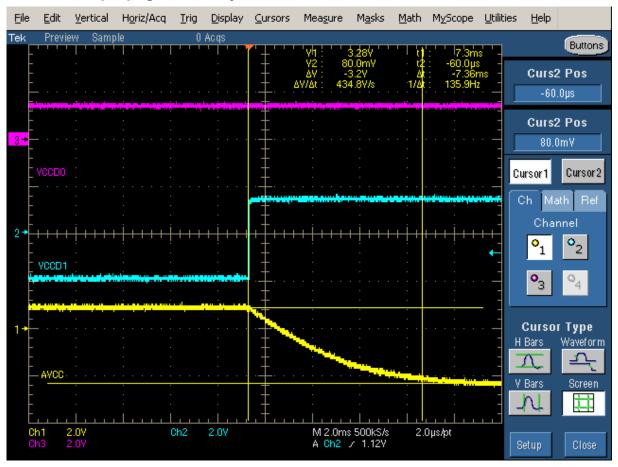
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	5 V to AVCC	AVCC V I(5V) = 5 V		120		mΩ	
	3.3 V to AVCC	V I(3.3V) = 3.3 V		125			
Switch resistance	5 V to AVPP	TA = 25°C		2			
	3.3 V to AVPP	TA = 25°C		1.5		Ω	
	12 V to AVPP	TA = 25°C		1.5			
Vo(AVPP) Clam	np low voltage	lpp at 10 mA		0.3	0.8	V	
Vo(AVCC) Clamp low voltage		Icc at 10 mA		0.1	0.8	V	
IOS	I O(AVCC)	TA = 05°C =t=t		1	2.5	Α	
Short-circuit	10(1100)	TA = 25°C, output powered into a short to		'	2.5	Λ	
Output current limit	I O(AVPP)	GND		180	400	mA	
Logic input high level	VIH		2.0			٧	
Logic input low level	VIL				0.8	V	
Logic output high level, OC#	VOH		2.4			V	
Logic output low level, OC#	VOL				0.4	V	


8. TYPICAL OPERATING WAVEFORM & TIMING DIAGRAMS

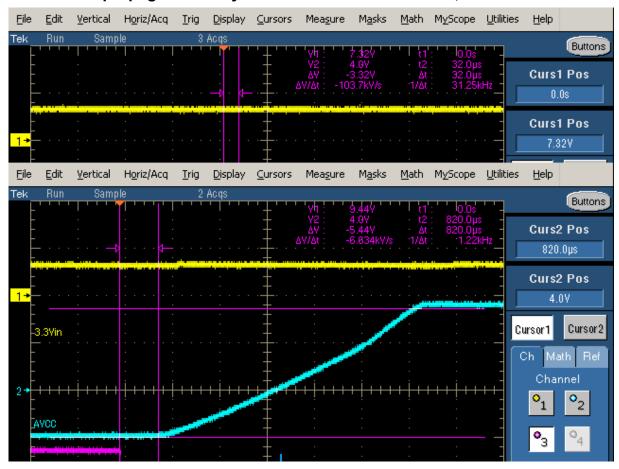
a. AVCC propagation delay and rise time with 1uF load, 3.3V switch



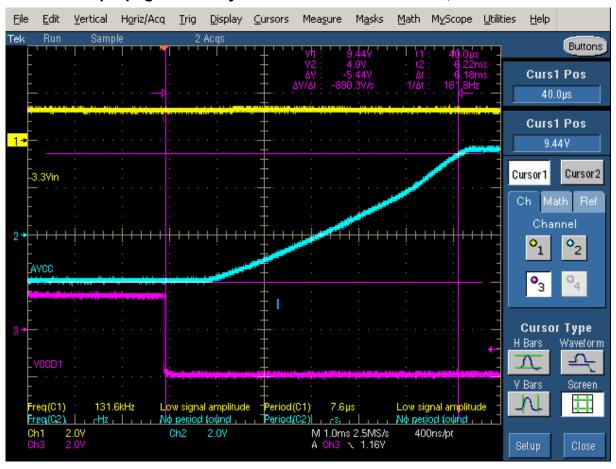
b. AVCC propagation delay and fall time with 1uF load, 3.3V switch



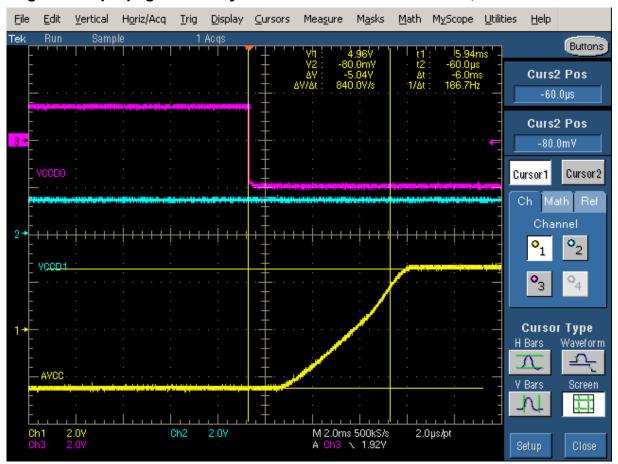
c. AVCC propagation delay and rise time with 150uF load, 3.3V switch



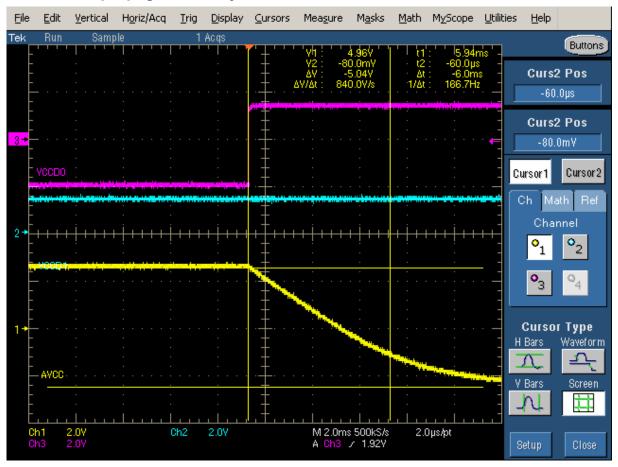
d. AVCC propagation delay and fall time with 150uF load , 3.3V switch



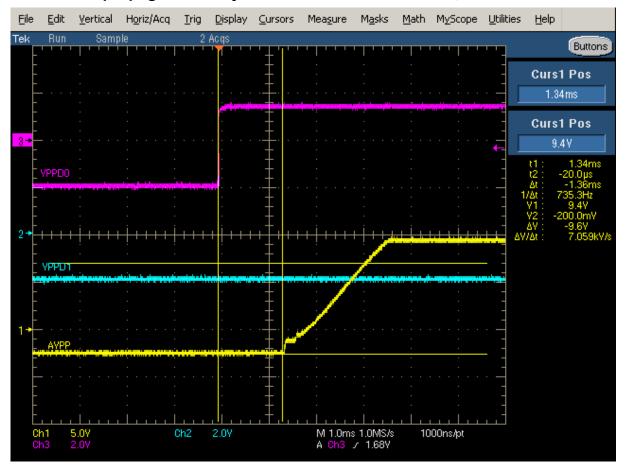
e. AVCC propagation delay and rise time with 1uF load, 5V switch



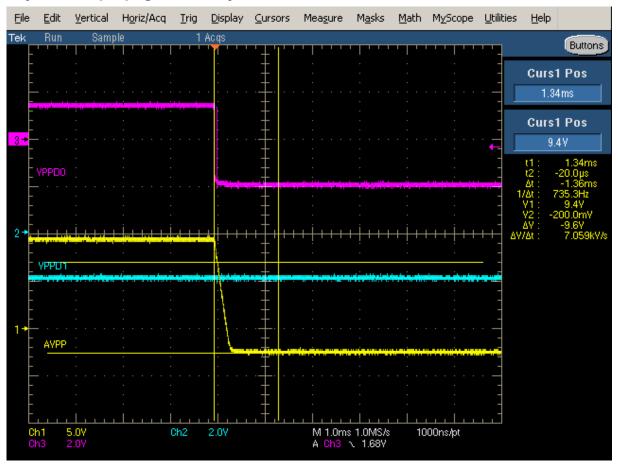
f. AVCC propagation delay and fall time with 1uF load, 5V switch



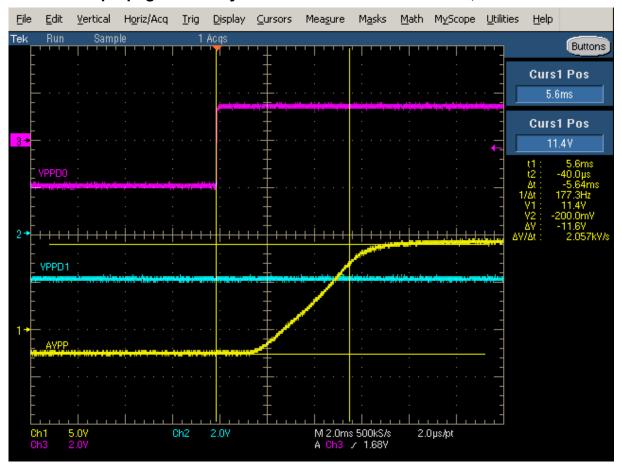
g. AVCC propagation delay and rise time with 150uF load, 5V switch



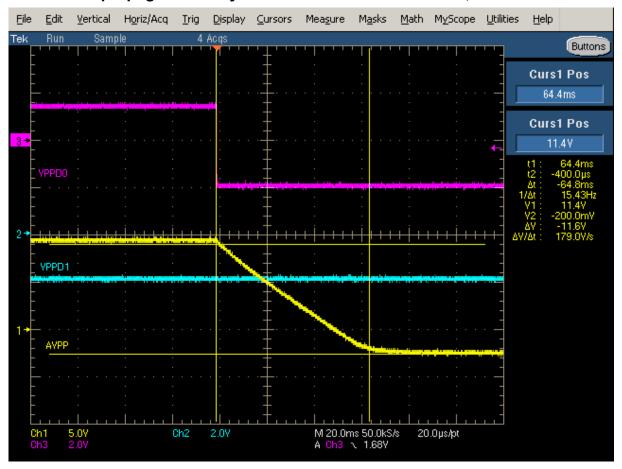
h. AVCC propagation delay and fall time with 150uF load, 5V switch



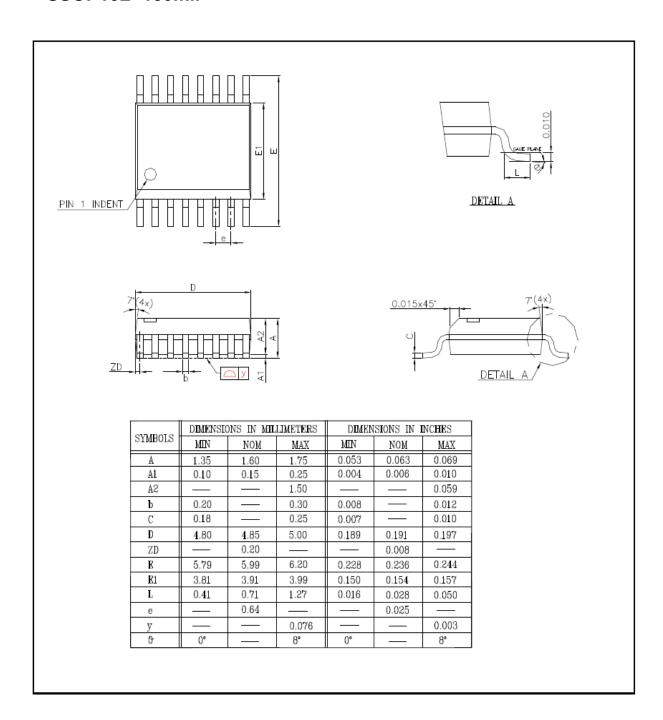
i. AVPP propagation delay and rise time with 1uF load, 12V switch



j. AVPP propagation delay and fall time with 1uF load, 12V switch



k. AVPP propagation delay and rise time with 150uF load , 12V switch



I. AVPP propagation delay and fall time with 150uF load , 12V switch

9. PACKAGE DIMENSION SSOP16L -150mil

10. ORDERING INFORMATION

PART NUMBER	PACKAGE TYPE	REMARKS
W83L350R	16 SSOP	
W83L350G	16 SSOP(Pb-free package)	

11. HOW TO READ THE TOP MARKING

W83L350G 24239040 316GARB

Left line: Winbond logo

1st & 2nd lines: W83L350R,W83350G(Pb-free package) – the part number

3rd line: Tracking code Tracking code 316 G A

316: Packages assembled in Year 03', week 16

<u>G</u>: assembly house ID; O means OSE, G means GR, etc.

A: The IC version

RB: Wonbond internal use

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sale.

Important Notice

Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

Headquarters No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577

Taipei Office 9F, No.480, Rueiguang Rd., Neihu District, Taipei, 114, Taiwan, R.O.C. TEL: 886-2-8177-7168 FAX: 886-2-8751-3579

http://www.winbond.com.tw/

Winbond Electronics Corporation America 2727 North First Street, San Jose,

CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798

Winbond Electronics Corporation Japan 7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800 Winbond Electronics (Shanghai) Ltd. 27F, 2299 Yan An W. Rd. Shanghai,

200336 China TEL: 86-21-62365999 FAX: 86-21-62365998

Winbond Electronics (H.K.) Ltd. Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Please note that all data and specifications are subject to change without notice.

All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

- 21 -