
Xilinx/Concept-HDL Interface Guide — 2.1i Printed in U.S.A.

Xilinx/
Concept-HDL
Interface Guide

Getting Started

Using Setup

Using Concept-HDL with
Xilinx Designs

Conducting Simulation

Using Genview

Upgrading to Concept-HDL

Xilinx/Concept-HDL Interface Guide
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O, Select-RAM, Select-RAM+, Smartguide,
Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock,
VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation
Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;

R

Xilinx Development System

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.
Xilinx/Concept-HDL Interface Guide — 2.1i

Xilinx/Concept-HDL Interface Guide
Xilinx Development System

About This Manual

This document describes the Xilinx/Concept-HDL interface, an
HDL-based design creation tool.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Alliance Quick Start Guide and the
Foundation Quick Start Guide. Other publications you can consult for
related information are the Libraries Guide, Design Manager/Flow
Engine User Guide, and the Development System Reference Guide.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
Xilinx/Concept-HDL Interface Guide — 2.1i i

Xilinx/Concept-HDL Interface Guide
Manual Contents
This manual covers the following topics.

• Chapter 1, “Getting Started” chapter—Provides an overview of
Concept-HDL and describes the Xilinx/Concept-HDL design
flow.

• Chapter 2, “Using Setup” chapter—Describes how to set up a
new Concept-HDL project or change existing setup information
for projects with Xilinx designs.

• Chapter 3, “Using Concept-HDL with Xilinx Designs” chapter—
Describes how to enter Xilinx-specific design information in
Concept-HDL.

• Chapter 5, “Conducting Simulation” chapter—Provides informa-
tion required to simulate Xilinx designs in Concept-HDL.

• Chapter 4, “Using Genview” chapter—Describes how to use
Genview to create and change views used in Concept-HDL.

• Chapter 6, “Upgrading to Concept-HDL” chapter—Describes
how to convert Concept-SCALD designs to Concept-HDL
designs.

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
ii Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.
Xilinx/Concept-HDL Interface Guide — 2.1i iii

Xilinx/Concept-HDL Interface Guide
• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
iv Xilinx Development System

Chapter 1

Getting Started

Cadence Concept-HDL is a graphical user interface (GUI) that
presents a complete mixed-level design environment. Concept-HDL
supports both behavioral and structural design descriptions in text
and graphics and incorporates block editing functions for quick
architectural design. It runs on Windows NT and on UNIX worksta-
tions.

Concept-HDL is based on the older SCALD architecture. Where
SCALD was a proprietary format, Concept-HDL directly outputs the
industry standards for Verilog-HDL and VHDL when you save your
design. This eliminates the need for a secondary expansion step for
generating the netlist for simulation.

This chapter describes getting started with Concept-HDL and
contains the following sections.

• “Understanding Concept-HDL”

• “Starting Concept-HDL”

Understanding Concept-HDL
Concept-HDL operates under the Cadence Project Manager to
provide a wide range of design functions. Using Concept-HDL you
can quickly and efficiently instantiate components, create and name
nets, and see your design elements. The following figure shows a
sample design in Concept-HDL.
Xilinx/Concept-HDL Interface Guide — 2.1i 1-1

Xilinx/Concept-HDL Interface Guide
Figure 1-1 Concept-HDL Design Entry Window

Concept-HDL offers the following major features.

• Top-down (hierarchical) design allowing you to quickly draw
blocks and connect wires between blocks.

• Cross-view generation of blocks from HDL descriptions or auto-
matic generation of HDL text from high-level diagrams.

• Cross-probing between Concept-HDL and other tools.

Understanding Library.Cell:View
Concept-HDL’s library structure is organized according to
Library.Cell:View (L.C:V).

A library is a collection of related cells that describe components of a
single design (a design library) or common components used in
many designs (a reference library).

You reference each library by a logical name and each library has a
unique physical directory associated with it. You define library
names and map them to physical directories in the cds.lib file.
1-2 Xilinx Development System

Getting Started
A cell is an object with a unique name stored in a library. Each Verilog
module, macromodule, or UDP, or each VHDL entity, architecture,
package, package body, or configuration is a unique cell.

Each cell within a library is a separate file system directory. Every
unique element of a design is its own cell and, therefore, has its own
cell directory.

You use views to delineate between representations, such as sche-
matic, VHDL, and Verilog, abstraction levels such as behavior, RTL,
post-synthesis, and status.

Each view within a cell is a separate file system directory that
contains all of the files pertaining to a particular representation of a
given design element. For example, one view directory might contain
the RTL representation of a particular Verilog module, while the
behavioral representation is stored in another view directory.

Following the Xilinx/Concept-HDL Design Flow
Concept HDL supports top-down, mixed-level, and bottom-up FPGA
design flows. You use Xilinx Design Manager in the place and route
part of the flow.

In the bottom up design methodology, you enter the design using
Xilinx provided primitives and macros.

In the top-down and mixed-level design methodology, the logic to be
implemented is entered as a block in Concept-HDL schematic editor
along with other design units. This block can either be described in
HDL or entered as a schematic.

Concept-HDL works with Synplicity’s Synplify for design synthesis.
Concept-HDL writes Verilog and VHDL directly from a block
diagram schematic. Synplify then synthesizes the structural netlist of
the entire design.

You can specify synthesis constraints and attributes on component
instances in Concept-HDL. When you save the design, HDL Direct
creates a netlist and a synthesis constraints file. This provides
Concept-HDL with the ability to pass constraints to the synthesis
engine to control the way you implement the design in the physical
device.

A mixed-level design consists of macros defined in Xilinx primitives
and macros described using Verilog or VHDL. Concept-HDL can also
Xilinx/Concept-HDL Interface Guide — 2.1i 1-3

Xilinx/Concept-HDL Interface Guide
treat HDL macros as black boxes for designs where the FPGA layout
or synthesis is complete.

The following figure shows the Xilinx/Concept-HDL design flow.

Figure 1-2 Xilinx/Concept-HDL Design Flow

System Requirements
The Xilinx/Concept-HDL design flow runs on the Sun Solaris
SPARC5 with the following minimum requirements.

• 128 MB of disk space

• 64 MB of RAM

• 70 MHz

• 150 MB of swap space

The Xilinx/Concept-HDL design flow also runs on Windows NT 4.0,
and requires the following minimum hardware requirements.

• Pentium P5 processor—166 MHz (minimum)

Design Entry Simulator
Verilog-XL

design.vedif edif

.vm

X8907

Synthesis
(Synplicity)

Timing
Simulation Flow

Build Physical

Xilinx
Implementation Tools

(Design Manager)
1-4 Xilinx Development System

Getting Started
• 128 MB of disk space

• 64 MB of RAM

• 150 MB of swap space

Starting Concept-HDL
Concept-HDL runs under the Cadence Project Manager. The main
Project Manager window appears in the following figure.

Figure 1-3 Project Manager Open Project Window

Starting A New Design
You can start the design process in Concept-HDL by using the Board
Design flow or the Programmable IC flow in Project Manager.
Xilinx/Concept-HDL Interface Guide — 2.1i 1-5

Xilinx/Concept-HDL Interface Guide
Use the following steps to start a new design in Project Manager
using the Board Design flow.

1. Select the New button. A New Project Wizard dialog box appears
prompting you for the name and location of your new project.

Enter this information. You can get an informational dialog box
describing the location of errors such as missing libraries.

2. Follow the prompts in the New Project Wizard to create a new
project.

Use the following steps to start a new design in Project Manager
using the Programmable IC flow.

1. Create a project using the steps outlined previously.

2. Select Flows→Programmable IC.

Opening an Existing Design
To open an existing design in Project Manager, select the Open
button. Select the design you want to open from the dialog box that
appears.

After starting a new design or opening an existing design, the
window shown in the following figure appears.This is the default
Board Design window.
1-6 Xilinx Development System

Getting Started

Figure 1-4 Board Design Flow Window

Select Flows→Programmable IC to launch the Programmable IC
Board Design window, shown in the following figure.
Xilinx/Concept-HDL Interface Guide — 2.1i 1-7

Xilinx/Concept-HDL Interface Guide
Figure 1-5 Programmable IC Board Design Window

You can perform the following design steps from the Project Manager
Board Design Window.

• Setup

Opens the Setup dialog boxes, allowing you to add and remove
libraries

• Design Entry

Launches Concept-HDL’s schematic editor

• Verify Logic

Lets you perform pre-synthesis functional simulation

• Synthesize

Launches Synplify
1-8 Xilinx Development System

Getting Started
• Verify Synthesis

Allows you to check the post-synthesis Verilog netlist

• Place & Route

Launches Xilinx Design Manager

• Verify P&R

Allows you to check the P&R Verilog netlist and an SDF file

• Build Physical

Allows you to create library components or use standard library
components

The “Using Setup” chapter provides information for using the Setup
dialog boxes. The “Using Concept-HDL with Xilinx Designs” chapter
describes how to use Concept-HDL to prepare designs for Design
Manager.
Xilinx/Concept-HDL Interface Guide — 2.1i 1-9

Xilinx/Concept-HDL Interface Guide
1-10 Xilinx Development System

Chapter 2

Using Setup

Use the Setup feature of Concept-HDL for selecting libraries, setting
up design configurations, and specifying options for other tools.

This chapter describes the steps you take when using the Setup
feature when creating Xilinx designs. This chapter contains the
following sections.

• “Opening Setup”

• “Modifying the cds.lib File”

• “Working with Xilinx Libraries”

• “Selecting Xilinx as the PIC Vendor”

• “Using Setup for Synthesis”

Opening Setup
You open Setup from the Pic Design window by clicking the Setup
oval. The Project Setup window appears, as shown in the following
figure.
Xilinx/Concept-HDL Interface Guide — 2.1i 2-1

Xilinx/Concept-HDL Interface Guide
Figure 2-1 Project Setup Window

You can change a wide range of Concept-HDL settings and tools
access in this window. Make sure you select the appropriate Xilinx
project libraries by adding them to the Project Libraries list.

You can add or remove libraries at any time in the project.

Modifying the cds.lib File
This section describes how to modify the cds.lib file after you add or
remove libraries.

1. Open the project.

2. Select Tools→Setup. The Project Setup dialog box appears.

3. Select the Global tab.

4. Click the Edit button next to the cds.lib box.

5. Edit the cds.lib file.
2-2 Xilinx Development System

Using Setup
Add libraries to the cds.lib file directly by specifying their logical
names and their physical locations, or you can add files that
contain a list of libraries and their locations.

6. Select File→Save.

7. Select File→Exit.

8. Click Yes in the confirmation window to update the library list.

9. Click Apply in the Project Setup window to save your changes, or
OK to save your changes and exit Project Setup.

When using cds.lib with Xilinx, include a reference to the following
libraries.

DEFINE <library> worklib

INCLUDE $CDS_INST_DIR/share/cdssetup/cds.lib

DEFINE <device_family> $XILINX/cadence/data/<device_family>

DEFINE xcpads $XILINX/cadence/data/xcpads

Make modifications in the physical paths to point to the appropriate
locations.

Working with Xilinx Libraries
Use the following instructions to add or remove libraries you can use
with Concept-HDL on existing projects.

1. Open the project.

2. Select Tools→Setup. The Project Setup dialog box appears.

3. Select the Global tab.

You can view the contents of a library by selecting the library and
clicking View. A window displaying the contents of the library
appears. You cannot make any changes in this window.

4. Modify the Project Libraries list under Library.

Add one library by selecting the library in the Available Libraries
list and clicking Add. You can add all the libraries in the Avail-
able Libraries list by selecting Add All.

Remove one library by selecting the library in the Project
Libraries list and clicking Remove. The Remove All button
removes all the libraries in the Project Libraries list.
Xilinx/Concept-HDL Interface Guide — 2.1i 2-3

Xilinx/Concept-HDL Interface Guide
5. Choose the search order for the project libraries.

The order of the libraries in the Project Libraries list determines
their search order. To move a library one level up, select the
library and then click Up. To move a library one level down,
select the library and then click Down.

6. Clicking Apply saves your changes. Selecting OK saves your
changes and exits Project Setup.

Selecting Xilinx as the PIC Vendor
To specify the Xilinx flow, use the following instructions.

1. Select the Tools tab and Click on PIC Setup in the Tools tab. Select
Xilinx as the PIC vendor.

A vendor options form appears with the Xilinx tab selected.
Select the appropriate device family. The form also shows the
default values of the property format file, package file, and pin
file.

2. Enter the package file.

$XILINX/cadence/data/<device_family>.pkg

3. Enter the property format file (pff).

$XILINX/cadence/data/xilinx.pff

4. Enter the pin file.

$XILINX/cadence/data/xilinx.pga.pin

Select the radio button options for User And Programming Pins and
Create Custom Library Component.

Using Setup for Synthesis
Set Setup Options for synthesis by clicking on the synthesis tab. Use
synthesis setup to create a Synplify project file with options for the
following.

• Synplify Home

Specifies the location of Synplify installation

• Synthesis View
2-4 Xilinx Development System

Using Setup
Used as run directory for Synplify (location of the post-synthesis
Verilog file)

• Configuration

Specifies the configuration used by Hierarchy Editor to pick up
various Verilog files that constitute the design. You create a
project file in the synthesis view using this set of files along with
other options.

The other options available under Configuration include the
following.

• Input HDL

Specifies the HDL used as the input to Synplify

• Output HDL

Specifies the name given by Synplify when generating the post-
synthesis netlist

• Output Format

Specifies the output format of the netlist given to Design
Manager as input.
Xilinx/Concept-HDL Interface Guide — 2.1i 2-5

Xilinx/Concept-HDL Interface Guide
2-6 Xilinx Development System

Chapter 3

Using Concept-HDL with Xilinx Designs

This chapter describes how to use Concept-HDL to create your Xilinx
designs. This chapter includes the following sections.

• “Understanding Library and Database Structure”

• “Using Design Entry”

• “Verifying Logic”

• “Synthesizing Your Design”

• “Verifying Synthesis”

• “Using Place and Route”

• “Verifying Place and Route”

• “Building the Physical Design”

For detailed information about to create designs and enter design
elements in Design Entry or to use other parts of the Cadence Project
Manager, refer to the Cadence-HDL documentation.

Understanding Library and Database Structure
Design Entry places data according to Library.Cell:View. So, in a
design with a schematic macro named foo, the data hierarchy exists as
illustrated in the following figure.
Xilinx/Concept-HDL Interface Guide — 2.1i 3-1

Xilinx/Concept-HDL Interface Guide
Figure 3-1 Schematic Macro Library.Cell:View Approach

Consider an example of a design with a schematic top-level named
foo, shown in the following figure.

sym_1 * sch_1 **

worklib

foo

The symbol
name.

The schematic
name.

Library

Cell

X8861

View
3-2 Xilinx Development System

Using Concept-HDL with Xilinx Designs
Figure 3-2 Schematic Top-Level Library.Cell:View

Using Design Entry
For details about how to use the Concept-HDL Design Entry, refer to
Cadence documentation.

When using Design Entry in the Xilinx/Concept-HDL flow, add
synthesis constraints to the HDL or provide these constraints to
Synplify with the Synplify Constraints editor before passing sche-
matic properties to the P&R tool.

Verifying Logic
You conduct functional simulation to verify design logic after
completing design entry.

To verify the logic, use the default configuration for functional simu-
lation, cfg_verilog. VHDL is not supported.

sch_1 xilinx

worklib

Cellfoo

The schematic
name.

The view name
contains the

EDIF output from
Concept-HDL.

Library

X8859

View
Xilinx/Concept-HDL Interface Guide — 2.1i 3-3

Xilinx/Concept-HDL Interface Guide
Click on Setup to invoke the project setup tool. Choose setup options
for simulation by clicking on the simulation tab. In the Addt’l Cmd
Line Options field, add the following.

+define+XILINX

If your design contains LogiBLOX modules, add the SIMPRIM
libraries to your simulation environment using the following steps.

1. Select Verify Logic from the Programmable ICs window.

A Verilog-XL dialog box appears where you can specify configu-
ration and the run directory, as shown in the following figure.

Figure 3-3 Verilog-XL Verify Logic Dialog Box

2. Select the Setup pushbutton in the Verilog-XL dialog box.

The Setup Verilog-XL window appears.

3. Select the Library tab in the Setup Verilog-XL window, then enter
the path to the SIMPRIM libraries in the Verilog Files/Directory-
field.

Alternatively, click on the small folder icon on the Verilog Files/
Directory data entry field.

A browse button (ellipses) appears, as shown in the following
figure.
3-4 Xilinx Development System

Using Concept-HDL with Xilinx Designs
Figure 3-4 Setup Verilog-XL Window

4. Use the ellipses icon to toggle to the location of the SIMPRIM
libraries, then select the OK pushbutton.

You can find additional information in the “Conducting Simulation”
chapter.

Synthesizing Your Design
If your design is purely schematic, you can skip synthesis and move
on to Place and Route. If your design contains HDL blocks, you can
synthesize after conducting functional simulation

You synthesize Xilinx designs in Concept-HDL with Synplify. You
start synthesis by clicking on the Synthesize button in the Program-
mable IC window.
Xilinx/Concept-HDL Interface Guide — 2.1i 3-5

Xilinx/Concept-HDL Interface Guide
Creating the Synthesis View
The first step in design synthesis with Concept-HDL is to create a
synthesis view. Use the following steps to create a synthesis view.

1. Click on Synthesize. Select the various options provided in the
setup.

A project file, syn.prj, is created in the synth view. By default, this
project file contains all source files, constraints files, top level
module, target technology, result format and the result file loca-
tion.

2. Click on Run. This launches Synplify.

3. Within the Synplify Project window, click on Target→Set
Device Options. Set the appropriate options for your target
family.

4. Click on Run. Synplify creates the implementation netlist in the
run directory.

Understanding the Synthesis Data Flow
The library structure is organized according to a Library.Cell:View
approach. Consider an example of a design with a HDL macro
named foo, shown in the following figure.
3-6 Xilinx Development System

Using Concept-HDL with Xilinx Designs
Figure 3-5 Macro Library.Cell:View Approach

Additionally, consider an example of a design with a HDL top-level
named foo, shown in the following figure.

Figure 3-6 HDL Top-Level Design with Library.Cell:View

sym_1 * vlog_rtl **

worklib

Cellfoo

The symbol
name.

The view name
contains

the HDL netlist.

Library

X8858

View

sch_1 vlog_rtl synth xilinx

worklib

foo

Library

Cell

X8860

View

The symbol
name.

The synthesis
name contains

the Synplify
project file.

The xilinx name
contains the EDIF

output file.

The view name
contains

the HDL netlist.
Xilinx/Concept-HDL Interface Guide — 2.1i 3-7

Xilinx/Concept-HDL Interface Guide
Verifying Synthesis
You can perform post-synthesis simulation to verify synthesis. The
default configuration used for functional simulation is cfg_synth.

Synplify creates a post-synthesis verilog netlist with a .vm extension.
This netlist is moved into the synthesis view. VHDL is not supported.

See the “Conducting Simulation” chapter for more information.

Using Place and Route
Xilinx-specific options for the P&R tool include the target family,
interface view (P&R tool run directory), property format file, package
file and pin file.

When selecting a part, ensure that you set the simulation template to
Concept Verilog XL. Unselect the following Include.

‘uselib Directive in Verilog file

Set the simulation netlist name to the following.

<design>_routed

You do this in Xilinx Design Manager by selecting the templates from
the Options pull-down menu.

Earlier versions of Design Manager ran on the EDIF netlist created by
Synplify for top-down and mixed-level flows, and the SIR2edf netlist
for bottom-up flows. However, you can now create netlists for each
schematic block and synthesize individual HDL blocks. Concept-
HDL partitions the design into pure schematic and HDL blocks.
SIR2edf creates netlists using the schematic and HDL blocks pass on
to Synplify. This provides you the ability to use a previously gener-
ated EDIF view for blocks, rather than requiring a Verilog, VHDL, or
schematic view.

Verifying Place and Route
You specify the appropriate P&R options according to the device
type. Cadence Project Manager renames the timing verification files
in the interface view to the following

• < design>_routed.v

• < design>_routed.tv
3-8 Xilinx Development System

Using Concept-HDL with Xilinx Designs
• < design>_routed.pin

• < design>_routed.sdf

You use these files in timing verification and building physical views
for the design.

Refer to the Design Manager documentation for specific instructions
about using Design Manager.

Building the Physical Design
You can use either use a standard library component or create a
custom component for the design implemented.

If you choose the Create Custom Library component option,
Concept-HDL creates a separate cell with the following views.

• Symbol

• Chips

• Entity

The PIC design retains the vlog_routed view created in the Verify
P&R step. The vlog_routed view contains an implemented Verilog
file and SDF file. In addition to creating this custom library compo-
nent, the Build Physical Design process creates a pic_1 schematic
view containing master.tag and page1.csb, instantiating this custom
library component.

If you use a standard library component the pic_1 schematic view
instantiates this component.

Open the schematic view pic_1 in Concept-HDL and save it to obtain
the netlist.

You perform the build physical step after implementing the design
creates a schematic view pic_1. This schematic instantiates the
custom component created or the standard component selected at the
time of building the physical views. While the sch_1 schematic view
contains the logical design, implementation occurs in the physical
device instantiated in the pic_1 view. Choose the view pic_1 for pack-
aging the implemented design.
Xilinx/Concept-HDL Interface Guide — 2.1i 3-9

Xilinx/Concept-HDL Interface Guide
3-10 Xilinx Development System

Chapter 4

Conducting Simulation

This chapter describes how to simulate Xilinx designs entered in
Concept-HDL. This chapter includes the following sections.

• “Supported Simulators”

• “Using Global Signals in the Xilinx Design Flow”

• “Simulating a Verilog Design”

• “Setting Verilog Global Set/Reset”

Supported Simulators
The Concept-HDL schematic editor and simulation interface provide
the capability to create a netlist of your design and take it into a simu-
lation environment. You can set up and launch either Verilog-XL or
Leapfrog as your primary simulator. However, Xilinx supports
Verilog-XL; the Leapfrog flow is solely supported by Cadence.

Using Global Signals in the Xilinx Design Flow
You use Xilinx global signals for both functional simulation and
timing simulation of the designs having Xilinx primitives and
macros. Depending upon the family of Xilinx devices used, you
declare appropriate global signals in the global module.

The simulation interface provided in Concept HDL runs edbconfig
to create the global signals module. The global module (glbl) contains
the following lines with the term $XILINX replaced with its value.

‘ifdef XILINX

‘include "$XILINX\cadence\data\global.v"

‘endif
Xilinx/Concept-HDL Interface Guide — 2.1i 4-1

Xilinx/Concept-HDL Interface Guide
The included file $XILINX\cadence\data\global.v is the list of
global signals in all the families, not a complete Verilog module.

To include the global signals in the global module, you must specify
the following additional command line option.

+define+XILINX

When you use global signals from the Xilinx installation do not name
any of the symbols, such as the signal connected to the startup
symbol <global_signal>/g’ . Using this name creates multiple
declarations of this signal in the glbl module (one created by
edbconfig and the other included from the Xilinx installation).

Simulating a Verilog Design
Before you simulate a Verilog design in Concept-HDL, make sure you
set up Project Manager with Verilog-XL as the primary simulator
(select Verilog-XL from the Tools tab in the Setup window). Ensure
that you saved the schematic you created in Design Entry with the
proper libraries. Saving the schematic in Design Entry creates a
netlist.

You can optionally override default bindings by launching Hierarchy
Editor, modifying the various cells and instances, and saving the
configuration.

Use the following steps to start simulation.

1. Start the Verilog-XL interface by selecting Tools →Simulate
from the Programmable IC Window pulldown menu.

This launches the Verilog-XL interface.

2. Select the design configuration from the Verilog-XL interface. The
default configuration for Verilog simulation is cfg_verilog.

3. Select the Setup button in the Verilog-XL interface.

The Setup Verilog window appears, as shown in the following
figure.

From this window you can set Verilog-XL command line options,
chose to include the Verilog model libraries, specify parameters for
SDF back-annotation, and generate and include a Verilog testbench.
4-2 Xilinx Development System

Conducting Simulation
Figure 4-1 Setup Verilog-XL Window

Setting Verilog Global Set/Reset
For Verilog simulation, ensure all behaviorally described (inferred)
and instantiated registers have a common signal which asynchro-
nously sets or resets the register. You must toggle the global set/reset
signal (GSR) for XC4000E/L/X, Spartan/XL, and Virtex designs, or
global reset (GR) for XC5200, XC3000A/L, or XC3100A/L designs.
Toggling the global set/reset emulates the Power-On-Reset of the
FPGA. If you do not do toggle the global set/reset signal, the flip-
flops and latches in your simulation enter an unknown state.

The GSR signal in XC4000E/L/X, Spartan/XL, and Virtex devices,
and the GR signal in XC5200 devices are active High. The GR signal
in XC3000A/L and XC3100A/L devices are active Low.

Your implemented design contains the global set/reset net even if the
design does not instantiate the STARTUP block. STARTUP gives you
the option to control the global reset net from an external pin.
Xilinx/Concept-HDL Interface Guide — 2.1i 4-3

Xilinx/Concept-HDL Interface Guide
The Programmable Logic Data Book describes how to set the global set/
reset pulse width so that it reflects the actual amount of time for the
chip to go through the reset process after receiving power. The dura-
tion of the pulse is specified as TPOR (Power-On-Reset).

In the Xilinx software, use the Verilog UniSims library only in RTL
simulations of your designs. Simulation at other points in the flow
use the Verilog SimPrims libraries.

Defining GSR in a Test Bench
For pre-NGDBuild UniSims functional simulation, you must set the
value of the appropriate Verilog global signals (glbl.GSR or glbl.GR)
to the name of the GSR or GR net, qualified by the appropriate scope
identifiers.

The scope identifiers are a combination of the test module scope and
the design instance scope. You need the scope qualifiers because the
Verilog UniSims simulation models interpret the glbl.GSR and
glbl.GR wires to emulate a global reset signal using the scope infor-
mation.

In your testfixture, enter the following commands to toggle the global
signal, GSR or set the GSR for the 4000 series, Virtex, and Spartan
designs.

reg GSR

assign glbl.GSR = GSR

GSR = 1’b1;

GSR = 1’b0;

To set the GR for the 3000 series, enter the following commands.

reg GR

assign glbl.GR = GR

#0 GR = 1’b0;

#100 GR = 1’b1;
4-4 Xilinx Development System

Conducting Simulation
To set the GR for the 5200 series, enter the following commands.

reg GR

assign glbl.GR = GR

#0 GR = 1’b1;

#100 GR = 1’b0;

To set the PRLD for the 9500 series, enter the following commands.

reg PRLD

assign glbl.PRLD = PRLD

#0 PRLD = 1’b1;

#100 PRLD = 1’b0;

For post-NGDBuild and post-route timing simulation, the testfixture
template (.tv file) produced by running NGD2VER with the –tf
option contains most of the code previously described for defining
and toggling GSR or GR.

Use the following steps to define the global set/reset signals in a
testfixture for your design.

Note: In the following steps, testfixture_name refers to the testfixture
module name and instance_name refers to the designated instance
name for the instantiated design netlist within the test bench.

1. For Verilog simulation without a STARTUP block in design, name
the global set/reset net to testfixture_name.instance_name.GSR or
testfixture_name.instance_name.GR (Verilog is case-sensitive).
Declare the signal as a Verilog reg data-type.

2. For Verilog simulation with a STARTUP block in the design, the
GSR/GR pin connects to an external input port, and glbl.GSR/
glbl.GR is defined within the STARTUP block to make the
connection between the user logic and the global GSR/GR net
embedded in the Unified models. For post-NGDBuild functional
simulation, post-Map timing simulation, and post-route timing
simulation, glbl.GSR/glbl.GR is defined in the Verilog netlist
created by NGD2VER.

At the beginning of the simulation, you toggle the port or signal
in your design that controls global set/reset, usually an external
input port in the Verilog netlist. This signal can also be a wire if
logic internal to your design controls global reset.
Xilinx/Concept-HDL Interface Guide — 2.1i 4-5

Xilinx/Concept-HDL Interface Guide
Give the name test to the main module in the testfixture file. This
name is consistent with the name of the testfixture module written
later in the design flow by NGD2VER during post-NGDBuild, post-
MAP, or post-route simulation. If you maintain this naming consis-
tency, you can use the same testfixture file for simulation at all stages
of the design flow with minimal modification.
4-6 Xilinx Development System

Chapter 5

Using Genview

This chapter describes how to use Genview with Concept-HDL when
creating Xilinx designs. This chapter includes the following sections.

• “Creating Symbols with Genview”

• “Generating a Destination View”

Creating Symbols with Genview
Concept-HDL provides the Genview utility to create a symbol for
user-written HDL designs. Genview lets you optionally place this
HDL file in the HDL-centric library structure.

You can instantiate the symbols created by Genview just as you can
with any other component. Genview supports creating views for a
cell by specifying a HDL (Verilog or VHDL) file. Additionally, you
can import the HDL and create a view corresponding to it for the cell.

Generating a Destination View
To generate a destination view from a HDL file, use the following
instructions.

1. Open the Genview user interface from Tools→Generate
View.

2. Select the File button to enable the file field.

3. Enter the path of the source HDL file in the File field. You can
optionally browse to select the path of the source HDL file.

4. Select the Verilog or VHDL from the combo box depending upon
the selection of the source HDL file.
Xilinx/Concept-HDL Interface Guide — 2.1i 5-1

Xilinx/Concept-HDL Interface Guide
If you want to import a Verilog or a VHDL view, check the ON
button in the Import as View field and enter the view name
where you want to import the source HDL file.

5. In the destination area, select the library from the combo box.
This shows where the destination view generates.

6. Enter the destination view name or browse from the available
path selections.

7. Select the destination view type from the combo box.

8. Click OK. Genview creates the destination view and returns with
the status.

To generate a destination view from a View, use the following instruc-
tions.

1. Open the Genview user interface from Tools→Generate
View.

The Lib.cell:view radio button is the default selection.

2. You can specify the source view in the library.cell:view field, or
use the Browse button to select a source view.

3. Specify the destination by either browsing to select the view or
enter any view name.

4. Select the destination view type from the combo box. The avail-
able destination views are Schematic, Symbol, Verilog, and
VHDL.

5. Click OK. Genview creates the destination view and returns with
the status.

Genview does not allow you to generate a Verilog or VHDL view
from the schematic view. Use HDL Direct to do this by writing the
schematic in Concept-HDL. Also, Genview does not allow you to
generate the same destination view from the same source view.
5-2 Xilinx Development System

Chapter 6

Upgrading to Concept-HDL

This chapter describes how to upgrade existing Concept-SCALD
libraries and designs to Concept-HDL. This chapter includes the
following sections.

• “Starting chdl_uprev”

• “Upgrading Design Parts”

• “Completing the Upgrade”

Starting chdl_uprev
Cadence provides a utility, chdl_uprev, to migrate existing Concept-
SCALD designs to the Concept-HDL database. The following figure
shows the primary chdl_uprev interface.

Figure 6-1 Concept-HDL Uprev Dialog Box

From this dialog box you can choose to transfer Concept-SCALD
libraries or designs to Concept-HDL. You can enter the path to the
libraries and designs or browse to choose the proper path. After you
Xilinx/Concept-HDL Interface Guide — 2.1i 6-3

Xilinx/Concept-HDL Interface Guide
select a library or design, and select the path to it, press the Next
button.

Upgrading Design Parts
After you select a design, and select the path to it, pressing the Next
button takes you to the Concept-HDL Uprev Selection dialog box,
shown in the following figure.

Figure 6-2 Concept-HDL Uprev Selection Dialog Box

In this dialog box you can select the parts you want to upgrade. You
specify the new design directory in the Destination Path field. You
press the Next button after selecting the parts you want to upgrade.
6-4 Xilinx Development System

Upgrading to Concept-HDL
Completing the Upgrade
Pressing the Next button in the Concept-HDL Uprev Selection dialog
box launches the dialog box shown in the following figure.

Figure 6-3 Concept-HDL Uprev Transfer Dialog Box

This dialog box displays the location of the cds.lib file the chdl_uprev
process creates; you can change the location of the new cds.lib file
prior to generation. When you select the Viewer button, the upgrade
begins. Error and warning messages display in the Messages field.
Xilinx/Concept-HDL Interface Guide — 2.1i 6-5

Xilinx/Concept-HDL Interface Guide
6-6 Xilinx Development System

	About This Manual
	Additional Resources
	Manual Contents

	Conventions
	Typographical
	Online Document

	Getting Started
	Understanding Concept-HDL
	Understanding Library.Cell:View
	Following the Xilinx/Concept-HDL Design Flow
	System Requirements

	Starting Concept-HDL
	Starting A New Design
	Opening an Existing Design

	Using Setup
	Opening Setup
	Modifying the cds.lib File
	Working with Xilinx Libraries
	Selecting Xilinx as the PIC Vendor
	Using Setup for Synthesis

	Using Concept-HDL with Xilinx Designs
	Understanding Library and Database Structure
	Using Design Entry
	Verifying Logic
	Synthesizing Your Design
	Creating the Synthesis View
	Understanding the Synthesis Data Flow

	Verifying Synthesis
	Using Place and Route
	Verifying Place and Route
	Building the Physical Design

	Conducting Simulation
	Supported Simulators
	Using Global Signals in the Xilinx Design Flow
	Simulating a Verilog Design
	Setting Verilog Global Set/Reset
	Defining GSR in a Test Bench

	Using Genview
	Creating Symbols with Genview
	Generating a Destination View

	Upgrading to Concept-HDL
	Starting chdl_uprev
	Upgrading Design Parts
	Completing the Upgrade

