
LogiBLOX Guide Printed in U.S.A.

LogiBLOX
Guide

Introduction

Getting Started

Understanding Attributes

Module Descriptions

LogiBLOX Versus X-BLOX/
Memgen

LogiBLOX Guide
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, Dual Block,
EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell,
LogiCORE, LogicProfessor, MicroVia, Plus Logic, PLUSASM, Plustran, P+, PowerGuide, PowerMaze, SelectI/O,
Select-RAM, Select-RAM+, Smartguide, SmartSearch, Smartspec, Spartan, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-
Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx
Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; Re. 34,363, Re. 34,444, and Re. 34,808. Other
U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein
are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct

R

Xilinx Development System

any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not
assume any liability for the accuracy or correctness of any engineering or software support or assistance provided
to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1998 Xilinx, Inc. All Rights Reserved.
LogiBLOX Guide

LogiBLOX Guide
Xilinx Development System

About This Manual

This manual describes the Xilinx LogiBLOX™ program, a tool used
to create high-level modules for insertion into a schematic or an
HDL-based design.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools. These operations are
covered in the Quick Start Guide. Other publications you can consult
for related information are the Development System Reference Guide,
Libraries Guide, and your third-party user guide.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://www.support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://www.support.xilinx.com/partinfo/databook.htm
LogiBLOX Guide — 2.1i v

LogiBLOX Guide
Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” covers the features of LogiBLOX, the
program components, the two possible design flows you can use
to generate designs with LogiBLOX, and the different outputs
generated by the program.

• Chapter 2, “Getting Started,” provides the basic procedures from
setting up a LogiBLOX project and creating a module to placing
that module in a schematic or in an HDL file.

• Chapter 3, “Understanding Attributes,” explains the major
attributes that you can use to customize LogiBLOX modules.

• Chapter 4, “Module Descriptions,” describes each library
module, including the input and output pins of the module and
the attributes you can specify to change the functionality of the
module.

• Appendix A, “LogiBLOX Versus X-BLOX/Memgen,” describes
the differences between LogiBLOX and its predecessors, X-BLOX
and Memgen.

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://www.support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://www.support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
vi Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.
LogiBLOX Guide — 2.1i vii

LogiBLOX Guide
• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
viii Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections.

• “What is LogiBLOX?” is a general introduction to LogiBLOX.

• “Why Use LogiBLOX?” lists specific features by which Logi-
BLOX enhances design entry and module processing.

• “Program Inputs and Outputs” describes how LogiBLOX
receives input in the form of pins and attributes that you specify
in the module, and the different kinds of output files that Logi-
BLOX can create.

• “Schematic Design Flow” describes how to use LogiBLOX in a
schematic-based environment.

• “HDL Design Flow” describes how to use LogiBLOX in
synthesis-based designs.

• “Program Configuration” describes how LogiBLOX is configured
when used in stand-alone mode.

What is LogiBLOX?
LogiBLOX is a graphical interactive tool for creating high-level
modules, such as counters, shift registers, and multiplexers. Logi-
BLOX includes both a library of generic modules and a set of tools for
customizing them.

The modules you create with LogiBLOX can be used in designs
generated with schematic editors from Aldec, Viewlogic, Mentor
Graphics, and Cadence, as well as third-party synthesis tools such
as Synopsys FPGA Compiler, Xilinx Foundation™, and Exemplar
Logic.
LogiBLOX Guide — 2.1i 1-1

LogiBLOX Guide
Use LogiBLOX modules whenever you need a customized version of
a standard function. With normal design entry libraries (for example,
the Xilinx Unified Library), you are constrained to whatever varia-
tions of a given function are provided in that library. Each variation of
that type of function (for example, a counter) corresponds to a
specific library component having a predefined set of inputs, outputs,
and bus widths, and a predefined set of capabilities (loadable,
synchronous, and so forth). With LogiBLOX, instead of having a
separate component for each variation on a given function, you start
with a generic template and tailor its I/O size and functionality
according to your specific needs.

This manual describes how to create and process LogiBLOX modules
for insertion into a schematic or an HDL-based design. The Logi-
BLOX graphical user interface (GUI) is available from your schematic
editor package. With HDL-based designs, you can use the LogiBLOX
Module Selector in its standalone mode to explicitly specify and
generate LogiBLOX modules.

You can use LogiBLOX in two ways to design your modules.

• The Module Selector is a graphical user interface available in
both schematic and synthesis-based environments. Use it to tailor
modules to your requirements. This is the most common way to
design modules in LogiBLOX.

• If you are a library user, you do not have access to the graphical
user interface. Instead, you must describe the modules and their
dependencies directly on the schematic.

LogiBLOX supports the following device families.

Table 1-1 Supported Device Families

Device Family Sub-families

Spartan™ Spartan, SpartanXL™

XC3000™
XC3000A™, XC3000L™, XC3100A™,
XC3100L™

XC4000™
XC4000E™, XC4000EX™, XC4000L™,
XC4000XL™, XC4000XV™

XC5200™ XC5200, XC5200L™

XC9500™ XC9500, XC9500XL™
1-2 Xilinx Development System

Introduction
Why Use LogiBLOX?
LogiBLOX includes the following features that enhance design entry
and module processing.

LogiBLOX Design Entry Features

• LogiBLOX facilitates design entry by allowing you to tailor
complex logic blocks to precisely match your design’s needs.

• The LogiBLOX graphical user interface allows you to quickly and
easily specify complex modules with the assistance of interactive
Design Rule Checker (DRC) checks and prompts.

• An image of the module with the specified pins and attributes is
updated each time you activate a module attribute or connection
in the Module Selector.

• The graphical user interface automatically disables selections that
are incompatible with your current design selections.

LogiBLOX Processing Features

• In a synthesis-based environment, the modules you create with
LogiBLOX are implemented as you incorporate them into the rest
of your design.

• In LogiBLOX, a simulation model (VHDL, EDIF, or Verilog) is
generated for each LogiBLOX module during design entry. This
enables immediate simulation of LogiBLOX design without
having to go through a logic implementation step.

• Many synthesis tools automatically infer LogiBLOX modules.
You can also incorporate LogiBLOX modules in HDL designs
through instantiation without compromising behavioral simula-
tion support.

• Modules are synthesized quickly “on-the-fly” by the LogiBLOX
module compiler.

Program Inputs and Outputs
The Module Selector is the LogiBLOX graphical user interface that
you use to create a LogiBLOX module. Specifying a LogiBLOX
module consists of a) selecting or deselecting optional pins on the
LogiBLOX Guide 1-3

LogiBLOX Guide
symbol, and b) specifying various module attributes. The result is a
module customized for a specific function.

After you complete the module specification, LogiBLOX uses its
symbol generator, model generator, and netlist generator to create
one or more of the following outputs and store them in the current
project directory.

• A schematic symbol for inclusion on the schematic

The symbol generator can create a symbol definition file that
your third-party interface converts into a schematic symbol.

• A behavioral VHDL simulation model

The model generator creates a behavioral VHDL simulation
model for the LogiBLOX module.

The behavioral model permits the design to be simulated imme-
diately in those environments that support mixed schematic and
behavioral simulation.

• Verilog gate-level simulation netlist

• EDIF gate-level netlist, produced as an alternative simulation
medium

The netlist generator creates an EDIF gate-level netlist for the
LogiBLOX module that can be converted to a third-party simula-
tion format. These netlists are for simulation only and are not
intended for design implementation.

• An NGO file for implementation of the module

Schematic Design Flow
To use the program in a schematic-based environment, follow these
steps.

1. Invoke the Module Selector from within your design entry tool.

Note: For Cadence, the Module Selector must be invoked outside the
schematic environment.

2. Specify your project directory using the LogiBLOX Setup
window.

3. Select a base module type (for example, Counter, Memory, or
Shift-register)
1-4 Xilinx Development System

Introduction
4. Customize the module by selecting pins and specifying
attributes.

5. After completely specifying a module, click OK. Clicking OK
initiates the generation of a schematic symbol and a simulation
model for the selected module.

6. Place the module on your schematic.

7. Connect the LogiBLOX module to the other components on your
schematic using ordinary nets, buses, or both.

8. Functionally simulate your design at any time.

9. Implement your design with the Xilinx implementation tools.

10. To simulate your design post-layout, convert your design to a
timing annotated netlist and use the back-annotation flow appro-
priate to your CAE tools to generate a timing simulation netlist.

HDL Design Flow
The product flow for synthesis-based designs is as follows.

Module-Instantiation Tools
You can instantiate the LogiBLOX components in your HDL code to
take advantage of their high-level functionality.

Express each LogiBLOX module in HDL code with a component
declaration, which describes the module type, and a component
instantiation, which describes how the module is connected to the
other design elements.

Follow these steps to use the LogiBLOX program.

1. Invoke the Module Selector from an icon or from the command
line.

2. Specify your project directory using the LogiBLOX Setup
window. The default directory is your current directory.

3. Select a base module type (for example, Counter, Memory, or
Shift-register, and so forth)

4. Customize the module by selecting pins and specifying
attributes.
LogiBLOX Guide 1-5

LogiBLOX Guide
5. After completely specifying a module, click OK. Clicking OK
initiates the generation of a component instantiation declaration,
a behavioral model, and an implementation netlist.

6. Deposit the HDL module declaration/instantiation into your
HDL design. The declaration is available as a .vei file for Verilog
and a .vhi file for VHDL.

7. Complete the signal connections of the instantiated LogiBLOX
module to the rest of your HDL design.

8. Behaviorally simulate your design. The HDL simulator sees the
component declaration and looks for a behavioral model.

Note: You may need to analyze the LogiBLOX HDL models with
the appropriate CAE HDL tools for your particular simulator.

9. Implement your design by invoking the Xilinx implementation
tools.

10. To simulate your design post-layout, convert your design to a
timing netlist and use the back-annotation flow appropriate to
your CAE tools.

Program Configuration
When you invoke LogiBLOX in stand-alone mode, the program looks
for the logiblox.ini configuration file in your current directory. If the
configuration file does not exist, the program displays a Setup
window that enables you to set the vendor, project directory, device
family, and outputs for LogiBLOX. The logiblox.ini file is created and
stored in your project directory after you create the first LogiBLOX
module. Thereafter, logiblox.ini is updated, if necessary, each time a
module is processed.
1-6 Xilinx Development System

Chapter 2

Getting Started

The LogiBLOX Module Selector is the LogiBLOX graphical user inter-
face (GUI). This chapter explains how to start the Module Selector,
configure your design directory, and create LogiBLOX modules.

This chapter contains the following sections.

• “Starting LogiBLOX” explains how to start LogiBLOX and use
the Module Selector in both schematic and synthesis environ-
ments.

• “Getting Help” explains how to get online help for LogiBLOX.

• “Configuring Your Program” explains how to use the Setup
window to initialize your project directory and specify the types
of output files you want produced.

• “Adding a Module to Your Design” explains how to create and
edit a LogiBLOX module, and include it in your design.

Starting LogiBLOX
LogiBLOX can be started either in stand-alone mode or from a third-
party schematic entry tool.

In stand-alone mode, LogiBLOX is started by entering the following
command on the command line.

lbgui

LogiBLOX is integrated into most third-party schematic entry tools.
The Module Selector is available in both schematic and synthesis
environments. Depending on which design entry tool you use, you
can typically access the Module Selector as follows.

• Invoke the program from within your schematic CAE tool,
usually from a pull-down menu or a toolbar.
LogiBLOX Guide — 2.1i 2-1

LogiBLOX Guide
• If you are in a synthesis-based environment and want to instan-
tiate a LogiBLOX module in your HDL design, you can invoke
the program as a stand-alone product by clicking on the Logi-
BLOX icon on a PC or by executing the program from the
command line on a workstation.

After you are in LogiBLOX, you can customize standard modules and
process them for insertion into your design. When you invoke the
Module Selector from your schematic capture tool, the last-used
module and its settings are displayed. If you select a LogiBLOX
module in your schematic and start the Module Selector, the selected
module appears, ready for editing.

Getting Help
Use the following methods to get help for LogiBLOX.

• To get context-sensitive help about the currently active control,
press the F1 key. A dialog box appears.

• To get task-oriented help, use the Help button in each dialog box.

Configuring Your Program
When you run LogiBLOX for the first time, you must configure your
project directory for LogiBLOX.

Note: You should not manually modify the configuration files used
by LogiBLOX. LogiBLOX changes these files when you create or edit
LogiBLOX modules.

Configuration Files
When you invoke LogiBLOX, the program looks for the logiblox.ini
configuration file in your current directory. If logiblox.ini does not
exist, the program displays a Setup window that enables you to set
the vendor, project directory, device family, and outputs for Logi-
BLOX. The logiblox.ini file is created and stored in your project direc-
tory after you create the first LogiBLOX module. Thereafter,
logiblox.ini is updated, when necessary, each time a module is
processed.
2-2 Xilinx Development System

Getting Started
The logiblox.ini File

The logiblox.ini file contains the information you recorded in the
initial setup window. When LogiBLOX is started, it reads this initial-
ization information and uses it to configure the Module Selector.

Following is an example of a logiblox.ini file.

GenerateVHDLModel=True
GenerateEdifModel=False
GenerateVerilogModel=False
GenerateVHDLInstantiation=True
GenerateVerilogInstantiation=False
GenerateNGDNetlist=False
IgnoreWarning=True
UserCancelled=True
TargetFamily=xc4000e
CAEVendor=synopsys
BusNotation=B<I>
PreviousModule=framecnt

Module Information

Also included in the project directory are the .mod files. These files
record information about the modules you add to your design. Each
.mod file represents a module that was generated for the current
project. The .mod files are created and changed automatically by
LogiBLOX.

Each module is recorded in a format similar to the following
example.

module ACCUM
symbol accum4
family xc4000e
symboltemplate accum02
attributes

BUS_WIDTH = 4
OPTYPE = ADD_SUB
REGISTERED = Q
STYLE = MAX_SPEED
ENCODING = SIGNED
ASYNC_VAL = 2#1100#
SYNC_VAL = 2#1001#

pins
ADD_SUB
C_IN
LogiBLOX Guide 2-3

LogiBLOX Guide
B(3:0)
LOAD
CLOCK
ASYNC_CTRL
SYNC_CTRL
Q_OUT(3:0)
OVFL
C_OUT

Setup Window
The setup window is displayed if the Module Selector does not find a
logiblox.ini file in the current directory. This is the case when you
start a new design.

Define the settings in this window each time you start a project. You
can also edit these settings after you have created a module by
clicking Setup in the Module Selector.

If you create a netlist for a symbol in your design and then change an
option on the Setup window, you must recreate the netlist to reflect
the new option settings.
2-4 Xilinx Development System

Getting Started
Vendor Panel

Use the Vendor panel to select the 3rd-party vendor and associated
bus notation.

Figure 2-1 Vendor Panel (Setup Window)

Vendor Name

Select a vendor from the pull-down list box. You must choose one of
the following in order to return to the Module Selector.

• Cadence

• Foundation

• Mentor

• Synopsys

• Viewlogic

• Other

Bus Notation

Different vendors use different notations to reference a bus index.
When you select one of the vendors in the Vendor Name list, Logi-
BLOX automatically assigns the default notation for that vendor. If
LogiBLOX Guide 2-5

LogiBLOX Guide
you select Other, you must also select a bus notation from the
following choices. You must choose one in order to return to the
Module Selector.

• B<I>

• BI

• B(I)

• B[I]

B is the name of the bus. I is the index of the bus. For example, if the
bus notation is B<I> and the bus name is Q_OUT[2:0], the expanded
bus will be Q_OUT<2>, Q_OUT<1>, Q_OUT<0>.
2-6 Xilinx Development System

Getting Started
Project Directory Panel

The project directory is the directory in which LogiBLOX stores the
logiblox.ini configuration file and all output files. Use the Project
Directory choice in the Setup window to set the directory path to
your project directory.

Figure 2-2 Project Directory Panel (Setup Window)

LogiBLOX Project Directory

You can define a project directory by doing one of the following.

• Open the Browse window and select a directory from the list of
available directories.

• Enter the directory name directly in the Project Directory field.

Note: In schematic environments such as Viewlogic and Mentor, this
option is disabled.

Note: In Windows 95, if you start LogiBLOX by selecting ‘Run’ in
the Start menu and entering ‘lbgui’ in the Run window, the default
project directory may show as C:\WIN95\DeskTop. This will send all
output generated by LogiBLOX to the desktop. You should change
the project directory to something else, such as C:\LOGIBLOX.
LogiBLOX Guide 2-7

LogiBLOX Guide
Device Family Panel

Use the Device Family choice in the Setup window to select one of the
supported Xilinx device families.

Figure 2-3 Device Family Panel (Setup Window)

Device Family

Select a device family from the pull-down list box. The default is the
XC4000E family. The following device families are supported by
LogiBLOX.

Spartan
SpartanXL
XC3000A
XC3000L
XC3100A
XC3100L
XC4000E
XC4000EX
XC4000L
XC4000XL
XC4000XV
XC5200
2-8 Xilinx Development System

Getting Started
XC9500
XC9500XL

LogiBLOX checks whether the appropriate libraries are installed for
each of these families. The families whose libraries are not installed
will not appear in the list of choices in the pull-down list box.

This information is needed by the Design Rule Checker (DRC). It is
also used for NGO file generation.
LogiBLOX Guide 2-9

LogiBLOX Guide
Options Panel

Use the Options choice in the Setup window to select the outputs you
require for your design. Each of your selections (except the Logi-
BLOX DRC box) generates a file that is placed in the project directory.

Figure 2-4 Options Panel (Setup WIndow)

There are four selection groups in the Options panel.

Simulation Netlist

The choices in this box create simulation netlists of the selected Logi-
BLOX module in different formats. You can choose one or more of the
following outputs.

• Behavioral VHDL netlist — generates a simulation netlist in
behavioral VHDL. The output file has a .vhd extension.

• Gate level EDIF netlist — generates a simulation netlist in EDIF
format. The output file has an .edn extension.

• Structural Verilog netlist — generates a simulation netlist in
structural Verilog. The output file has a .v extension.
2-10 Xilinx Development System

Getting Started
Component Declaration

The choices in this box create instantiation templates in different
formats that can be copied into your design. You can choose either,
both, or neither of the following outputs.

• VHDL template — generates a LogiBLOX VHDL component
declaration and instantiation template that can be inserted into
your VHDL design when a LogiBLOX module is to be instanti-
ated. The output file has a .vhi extension.

• Verilog template — generates a LogiBLOX Verilog module defi-
nition and instantiation template that can be inserted into your
Verilog design when a LogiBLOX module is to be instantiated.
The output file has a .vei extension.

VHDL component instantiations require a matching component
declaration, while Verilog instantiations require a matching module
port definition.

Implementation Netlist

Select NGO File to generate an implementation netlist in Xilinx-
NGD binary format. You must select this option when instantiating
LogiBLOX symbols in an HDL. The output file has an .ngc extension.
NGDBuild will read these files when processing the top level
module.

LogiBLOX DRC

Select the Stop Process on Warning check box to halt module
processing if any warning messages are encountered during the
design entry process.

Control Buttons

OK

Click OK to save your changes and close the Setup window. Logi-
BLOX saves the settings in the logiblox.ini file in the project directory.
This information is used to configure subsequent sessions with the
Module Selector.
LogiBLOX Guide 2-11

LogiBLOX Guide
Cancel

Click Cancel to close the Setup window without saving any of your
changes.

Apply

This button is disabled. It is present to comply with the Microsoft
Windows standard.

Help

Click Help to display help information for the various fields in the
window.

User Preferences Window
Use the User Preferences window to select the editor you want to use
for editing memory files. The default editor on UNIX™ platforms is
vi. The default editor on Windows 95 and Windows NT is Wordpad.

Select the User Prefs button in the Module Selector to bring up the
User Preferences window

Figure 2-5 User Preferences Window

Adding a Module to Your Design
To design LogiBLOX modules, follow these steps.

1. Start LogiBLOX from your third-party design tool.

2. Select a base module type.

3. Customize the module by changing the pin settings and
attributes if the defaults are not what you need.
2-12 Xilinx Development System

Getting Started
4. Place the modules in the schematic or in the HDL code and
connect them to the rest of your design.

A LogiBLOX module is displayed in the Module Selector GUI as an
illustration that is dynamically updated as you modify the module’s
fields. The LogiBLOX symbols are bundled into a library provided
with your third-party design editor. The LogiBLOX library must be in
your editor’s library search path for you to access it. For more infor-
mation, please refer to your CAE Interface User Guide.

Choosing a Module
Each LogiBLOX module can be considered a template with a base
function. Refer to the “Module Descriptions” chapter for a list of
these modules by function. After you have decided which module to
use, start the LogiBLOX program. The Module Selector window is
displayed.

When you invoke the Module Selector, the program displays the
details of the last module you generated. If you are invoking the
LogiBLOX program for the first time, the Module Selector displays
the Accumulator’s default settings.

When you modify an existing module, that module and all its charac-
teristics are displayed for editing.

Creating a Module
The graphical illustration of the module has check-boxes next to the
optional pins. If you select a box, the symbol pin is displayed and is
connected to the module. If you deselect the box, the pin disappears.

Use the attribute boxes to specify the module attributes. These
attributes may affect the appearance of the module. Refer to the
“Module Descriptions” chapter for a description of the module pins
and attributes.

To specify your module, click on the pins you want to activate and
the attributes you want to add to your module. The Module Selector
dynamically reveals or hides the attributes and pins that are affected
by your choice.
LogiBLOX Guide 2-13

LogiBLOX Guide
Figure 2-6 Module Selector Window

Module Selector Window Options

Module Name

Either type a name in the Module Name box to identify the module
you want to create, or click on the pull-down arrow to see the list of
modules that have already been created for your project. LogiBLOX
uses this name to create files in which it saves the different outputs it
generates for the module. If you select an existing module from the
pull-down list and alter its characteristics, you must change the
module name or you will overwrite the existing module. Overwriting
an existing module implies that you want to update the selected
module.

Note: Do not give a LogiBLOX module the same name as an existing
component in the Unified Libraries.

Module

Module

Attribute

Selection
Box

Graphical
Representation

Boxes
Selection
2-14 Xilinx Development System

Getting Started
Note: If you edit a LogiBLOX module that you have used multiple
times in a design, either by repeatedly adding the same module or by
copying it within the schematic tool, all copies of the module are also
modified.

Module Type

The Module Type box displays the type of the currently selected
module. Click on the pull-down arrow to select another module type
from the list of available modules.

Bus Width

Specify the data bus width for the module. You can use one of the
predefined settings (2, 4, 8, 16, or 32) from the pull-down menu, or
type in a custom bus width in the text box. Generally, the minimum
value allowed is 2 and the maximum value is 64. Decimal is the only
valid base. All LogiBLOX bus pins are big endian, that is, the bits in a
bus width of N are numbered N-1 through 0.

Details

The top part of the display shows a graphical illustration of the
current module.

Use the check-marks to select or deselect optional pins on the symbol.
For example, if you check the Overflow pin check box on the Accu-
mulators module, the pin is automatically drawn on the symbol.
Required pins, such as the Clock input pin, do not have check boxes.

Beneath the symbol image, LogiBLOX displays a list of the attributes
that pertain to the module. You can assign values to particular
attributes to further customize your module. To get online help for
the attributes and their possible values, move the mouse pointer over
the attribute, click the mouse button to move the focus, and press the
F1 key.

OK button

Click OK when you have completely specified the module and are
ready to insert it into your design. The program implements the
module and generates the requested simulation models, component
declarations, or both.
LogiBLOX Guide 2-15

LogiBLOX Guide
A log window is also displayed and records any errors and warnings
reported by the DRC.

If the DRC completes without any errors, the Module Selector
performs the following operations (depending on what you have
requested in the Setup window).

• In schematic-based environments, it generates a symbol defini-
tion file (the .mod file) that describes the schematic symbol that is
created for the module. It also launches the symbol generator
utility with a pointer to this file.

• Instructs the schematic editor to place the symbol on the sche-
matic or to replace the selected symbol with the new one.

• In HDL-based environments, it generates a component instantia-
tion/declaration for inclusion in the HDL code.

• Calls the model generator to create a behavioral or gate-level
simulation model for the current module.

• Calls the LogiBLOX module synthesizer to create a gate-level
implementation netlist.

Cancel button

Click Cancel to quit the Module Selector. This operation discards
any details you may have entered and leaves the project unchanged.

Setup button

If you wish to change device families or output types, click Setup
and make your new choices in the Setup window.

Note: You cannot change the device family after you have generated
a module in the current session. To target a different device family,
you must exit lbgui first and restart it.

User Prefs button

Click User Prefs to set the editor you want to use for editing
memory files. The default editor on UNIX platforms is vi. The default
editor on Windows 95 and Windows NT is Wordpad.

Help button

Click Help to access the online help tool.
2-16 Xilinx Development System

Getting Started
Editing a LogiBLOX Module
Part of the power of LogiBLOX is its ability to customize each module
to represent many functions. For example, you can customize the
ADD_SUB module to work as an adder only, a subtracter only, or as
both an adder and a subtracter.

To customize a module, select only the LogiBLOX module control
pins that are needed, specify a bus size for the module, and specify
module attributes when the default modes are not the desired ones.

To customize the module using the Module Selector, use the pin
connections and attribute setup fields in this dialog box.

The “Module Descriptions” chapter lists all LogiBLOX modules and
the attributes that are appropriate for each module. The same
attributes are described in full detail in the “Understanding
Attributes” chapter.

Including the Module in the Design
After designing the module, click OK to generate the module. Next,
place the module on the schematic or paste the instantiation into your
HDL file.

Log Window
When you generate a module, a log window is displayed. The log
window is a secondary window with scroll bars. LogiBLOX places
any output messages generated by the DRC, symbol generator,
model generator, and netlist generator processes in this window.

Each time you complete a module and press OK, the Module Selector
calls the Design Rule Checker. If the DRC reports no errors, Logi-
BLOX generates the required output. If the DRC finds errors, Logi-
BLOX displays the error messages in the log window and the
requested modules are not generated.

Connecting the Modules
This section provides information on connecting your LogiBLOX
modules to the rest of your design.
LogiBLOX Guide 2-17

LogiBLOX Guide
Schematic Design

Insert LogiBLOX modules in your schematic and connect them with
buses, nets, or both.

Note: You should specify bus widths using your CAE tool’s normal
mechanism. These values should match those on the module‘s bus
pins.

HDL File

Fill out the instantiation section of the HDL template file by indi-
cating the module’s connections to signals in your design.

Changing a Module
This section provides information on changing or copying a Logi-
BLOX module.

Schematic Module

To change a module that you have already placed on your schematic,
select the module and invoke the Module Selector. The Module
Selector displays the settings of the module that you want to edit.

Copying Modules

If you copy a module within your schematic or add repeated
instances to your schematic, the original module and all of its copies
share the same module configuration and simulation model.

Subsequent modifications to any one of these modules change all
copies of that module.

Warning: When editing a module, do not use the schematic editor’s
Editing commands. You must use LogiBLOX exclusively to ensure
that the appropriate information in the .mod and behavioral files is
up-to-date.

Copying Modules from Another Design

If you choose to copy a module from another design, such as by
copying an entire hierarchical module, you must invoke the GUI,
regenerate the module, and then dismiss it to recreate the module
and create the simulation model for that module. Alternatively, if
2-18 Xilinx Development System

Getting Started
your design includes several copied modules, you can copy the HDL
files into the new project directory and reanalyze them in the new
environment.

HDL Module

To complete your LogiBLOX module description, you must edit an
HDL template and specify the module pin connections. Refer to the
interface guide for your EDA tool for specific instructions.

After a LogiBLOX HDL module is instantiated, it must be modified
with the Module Selector. By invoking the LogiBLOX GUI in standa-
lone mode, you can load the previous module’s details and modify
them with new edits.
LogiBLOX Guide 2-19

LogiBLOX Guide
2-20 Xilinx Development System

Chapter 3

Understanding Attributes

This chapter covers data values syntax and the most common Logi-
BLOX attributes. Data values are a combination of radices and
numeric values that you assign to some LogiBLOX attributes.
Attributes are used to customize LogiBLOX modules.

This chapter contains the following sections.

• “Data Values” explains the use of numeric values for some
module attributes.

• “Implementation Styles” explains the different ways that some
LogiBLOX modules can be implemented, depending on the
device family.

• “Inverting and Decoding Masks for Gated Modules” explains the
use of inversion masks and decode masks on Simple Gates
modules.

• “Synchronous and Asynchronous Control” explains the use of
synchronous and asynchronous pins and attributes in many of
the LogiBLOX modules.

• “Location Attributes” explains the use of the Location attribute to
place I/O modules in a specific IOB location.

• “OE Phase” explains the use of the OE Phase attribute to control
the function of the Output Enable pin.

• “Constraining LogiBLOX Modules” explains how to constrain
LogiBLOX modules by using the Floorplanner, or by attaching
RLOC_ORIGIN and RLOC_RANGE constraints to them.
LogiBLOX Guide — 2.1i 3-1

LogiBLOX Guide
Data Values
Some module attributes are assigned numeric values. Data values
consist of the arithmetic base, or radix, followed by the numeric data
value in the specified base. LogiBLOX only allows bases 2, 4, 8, 10,
and 16. The default base is decimal and does not need to be specified.
The following formats are allowed.

base#value#
decimal_value

For example, the decimal value 17 can be expressed as follows.

The following attributes require a numeric data value.

• Async. Count and Sync. Count

• Async. Val and Sync. Val

• C Value

• Clock Divisor

• Count Limit

• Decode Mask

• Input Buses (decimal value only)

• Inversion Mask

• Memory Depth (decimal value only)

• Output Duty Cycle

Note: The Bus Width attribute also takes a numeric value, but it is
restricted to decimal values between 2 and 64, inclusive.

When a constant value (C Value) is specified, the precision of the
value might be less than the precision of the bus; if so, it will be sign-
extended on the left (toward the MSB). If the value is greater than the

Binary 2#10001#

Base 4 4#101#

Octal 8#21#

Decimal 17 or 10#17#

Hexadecimal 16#11#
3-2 Xilinx Development System

Understanding Attributes
precision of the bus, the higher order bits are ignored. In this case, a
warning is also printed.

The following table shows the valid characters for several radices.

• Numeric data values must contain only characters valid for the
specific radix.

• Negative data values are handled as twos-complement and are
represented by a minus sign in front of the data value (for
example, –2#0011# = 2#1101# = –3) .

• You can use the underscore character to increase the readability
of numbers. The underscore characters have no value and are
ignored by the software. For example, the value

2#00010010011100100110011101101001#

is more legible when it is formatted as

2#0001_0010_0111_0010_0110_0111_0110_1001#

• If the LogiBLOX module contains two or more registered
elements, the data values assigned to the Asynchronous Value
and Synchronous Value attributes for each element are combined
in a single assignment. The intended recipient of each data value
is indicated by a token that precedes the data value. The token
and data value are separated by a colon, and two token:data
value pairs are separated by a period. For example, an Accumu-
lator module may have the following assignment.

OVFL:1.REG:2#1111#

This line assigns a value of 1 to OVFL and a binary 1111 to REG.

Table 3-1 Valid Characters Using Various Base Values

Base Type Base Valid Data Value Characters

Binary 2 0 1 – _

Base 4 4 0 1 2 3 – _

Octal 8 0 1 2 3 4 5 6 7 – _

Decimal 10 0 1 2 3 4 5 6 7 8 9 – _

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 – _
A B C D E F a b c d e f
LogiBLOX Guide 3-3

LogiBLOX Guide
Asserting a module’s Asynchronous Control or Synchronous
Control pin affects all the registers contained within that module.

Implementation Styles
Some LogiBLOX modules can be implemented in more than one way
within the Xilinx architectures. The implementation methods are
called “styles.” Some styles use fewer Configurable Logic Blocks
(CLBs) at the expense of speed, while other styles use more CLBs to
achieve faster performance.

Types of Modules
This section covers modules that require the specification of an
implementation style. A STYLE attribute value can be assigned to the
LogiBLOX modules listed in the following table.

Table 3-2 Style Specification for Modules

Module Possible Style

Accumulators
Adders/Subtracters
Countersa

ALIGNED
ALIGNED RPM
FAST 3KA
MAXIMUM SPEED
MINIMUM AREA
RIPPLE CARRY
UNALIGNED
UNALIGNED RPM

Comparators ALIGNED
ALIGNED RPM
EDGE DECODE
MAXIMUM SPEED
MINIMUM AREA
RIPPLE CARRY
TREE
UNALIGNED
UNALIGNED RPM
WIRED AND

Data Registers D-TYPE
LATCHES
3-4 Xilinx Development System

Understanding Attributes
To have LogiBLOX automatically select the best style based on a
speed or area preference, specify the MAXIMUM SPEED or
MINIMUM AREA values. These attribute values indicate that Logi-
BLOX should choose the implementation style that best meets your
needs in the target architecture.

Note: A particular module’s choice of styles will vary depending on
the device family selected or the type of logic used.

The following list summarizes the optimal style definitions by
module and device family.

Accumulators, Adders/Subtracters, Counters

XC3000

MAXIMUM SPEED: FAST 3KA
MINIMUM AREA: RIPPLE CARRY

XC4000, XC5200

Decodersb CASCADE
MAXIMUM SPEED
NORMAL GATES

Multiplexers CASCADE
F5_MUX
MAXIMUM SPEED
MINIMUM AREA
NORMAL GATES
WIRED AND

Simple Gatesc CASCADE
EDGE DECODE
MAXIMUM SPEED
MINIMUM AREA
NORMAL GATES
WIRED AND

a.The STYLE attribute applies to binary counters only; it is ignored for counters
with a non-binary encoding.

b.The STYLE attribute values listed here apply to the xc5200 family only.

c.The style attribute applies to Type_1 Gates only.

Table 3-2 Style Specification for Modules

Module Possible Style
LogiBLOX Guide 3-5

LogiBLOX Guide
MAXIMUM SPEED: ALIGNED RPM
MINIMUM AREA: ALIGNED RPM

Comparators

XC3000

MAXIMUM SPEED: TREE
MINIMUM AREA: RIPPLE CARRY

XC4000 (Equality Comparisons)

MAXIMUM SPEED: ALIGNED RPM
MINIMUM AREA: TREE

XC4000 (Equality and Magnitude Comparisons)

MAXIMUM SPEED: ALIGNED RPM
MINIMUM AREA: ALIGNED RPM

XC5200

MAXIMUM SPEED: ALIGNED RPM
MINIMUM AREA: ALIGNED RPM

Multiplexers

XC3000, XC4000 (< 4-input Muxes)

MAXIMUM SPEED: NORMAL GATES
MINIMUM AREA: NORMAL GATES

XC3000, XC4000 (> 4-input Muxes)

MAXIMUM SPEED: WIRED AND
MINIMUM AREA: WIRED AND

XC5200 (< 16-input Muxes)

MAXIMUM SPEED: CASCADE
MINIMUM AREA: F5_MUX

XC5200 (> 16-input Muxes)

MAXIMUM SPEED: CASCADE
MINIMUM AREA: CASCADE

Simple Gates

XC3000, XC4000 (<= 4-input AND gates or > 4-input non-AND gates)
3-6 Xilinx Development System

Understanding Attributes
MAXIMUM SPEED: NORMAL GATES
MINIMUM AREA: NORMAL GATES

XC3000, XC4000 (> 4-input AND gates)

MAXIMUM SPEED: WIRED AND
MINIMUM AREA: WIRED AND

XC5200 (<= 7-input gates)

MAXIMUM SPEED: NORMAL GATES
MINIMUM AREA: NORMAL GATES

XC5200 (> 7-input gates)

MAXIMUM SPEED: CASCADE
MINIMUM AREA: CASCADE

Types of Styles
This section is an alphabetical reference of available styles.

ALIGNED, ALIGNED RPM, UNALIGNED, and
UNALIGNED RPM

These styles apply to Accumulators, Adders/Subtracters, Compara-
tors, and Counters. Aligned and Unaligned apply to all Spartan and
XC4000 devices. Aligned RPM and Unaligned RPM apply to all
Spartan, XC4000, and XC5200 devices.

Both styles use the fast carry logic and, therefore, constitute the
fastest and smallest implementation styles for Spartan, XC4000, and
XC5200 devices. On Spartan and XC4000 devices, the logic is aligned
into a vertical column of CLBs when the Aligned option is selected.
On XC5200 devices, the logic is aligned into two vertical columns of
CLBs.

In RPM modules, the CLBs comprising the module maintain a
constant relative position to each other.

In aligned modules, the initialization bit, i, occupies a CLB by itself
and the first bit of the module, bit 0, starts a new CLB. As a result, the
even bits of the module are aligned with CLB boundaries. In Spartan
and XC4000 devices, the bits are grouped in twos and in XC5200
devices, bits are grouped in fours. Each group of bits occupies a
single CLB.
LogiBLOX Guide 3-7

LogiBLOX Guide
• Bits (0, 1), (2, 3), (4, 5), … share the same CLBs in Spartan and
XC4000 families

• Bits (0, 1, 2, 3), (4, 5, 6, 7), … share the same CLBs in XC5200 fami-
lies

In unaligned modules, the initialization bit, i, shares the same CLB as
bit 0. The rest of the bits are grouped and occupy CLBs as follows.

• Bits (i, 0), (1, 2), (3, 4), (5, 6), … share the same CLBs in XC4000
families

• Bits (i, 0, 1, 2), (3, 4, 5, 6), … share the same CLBs in XC5200 fami-
lies

CASCADE

This style applies to Decoders, Simple Gates, and Multiplexers in
XC5200 devices.

• When used in Decoders, this style implements functions using
the dedicated carry logic multiplexer and function generators to
serialize the decoding logic chain.

• When used in Simple Gates, this style implements functions
using carry multiplexers to combine 4-input sub-functions. Wide
functions implemented with this style are significantly faster and
smaller.

• When applied to Multiplexers, this style uses carry multiplexer
logic that is unique to this family. It is expandable with little area
and timing impact.

Note that specifying the cascade style has placement implications.
Specifically, the logic becomes aligned into a vertical column of CLBs.

D-TYPE

This style applies to Data Registers. When this style is used, regular
flip-flops are constructed.

EDGE DECODE

This style applies to Simple Gates and Comparator symbols in
XC4000 devices.
3-8 Xilinx Development System

Understanding Attributes
• When applied to Type 1 Simple Gate symbols, this style uses
wide edge-decoders to implement the AND and NAND func-
tions.

• When applied to equality operations of Comparators, this style
uses a wired-AND implementation built using wide edge-
decoders to detect patterns being applied through I/Os. You may
only use it to compare a value against a constant.

Wide I/O decode functions using this style can be significantly faster
than CLB-based implementations. The I/Os that are used in a decode
or compare function will be placed on one edge of the chip.

FAST 3KA

This style applies to Accumulators, Adders/Subtracters, and
Counters in XC3000A and XC3100A devices. It uses a gate implemen-
tation carry look-ahead adder. It is the fastest implementation style
for carry-based modules in XC3000A and XC3100A devices. Modules
implemented with this style are 50 percent larger but 30 percent faster
than those implemented with the RIPPLE CARRY style.

F5_MUX

This style applies to Multiplexers in XC5200 devices and uses the fast
carry logic technique that is unique to this family. It is most efficient
for multiplexers with 16 inputs or less.

LATCHES

This style applies to Data Registers in XC4000EX, XC4000XL,
XC4000V, and XC5200 devices. When used, the normal CLB registers
are configured as transparent level-sensitive latches.

MAXIMUM SPEED

This style applies to Accumulators, Adders/Subtracters, Counters,
Comparators, Decoders (XC3000 and XC5200 devices only), Multi-
plexers, and Simple Gates. It ensures that the fastest implementation
style for the target architecture is used.
LogiBLOX Guide 3-9

LogiBLOX Guide
MINIMUM AREA

This style applies to Accumulators, Adders/Subtracters, Counters,
Comparators, Multiplexers, and Simple Gates. It ensures that the
smallest implementation style for the target architecture is used.

NORMAL GATES

This style applies to Decoders (XC3000 and XC5200 devices only),
Multiplexers, and Simple Gates. It uses a gate implementation, that is,
CLB look-up tables.

RIPPLE CARRY

This style applies to Accumulators, Adders/Subtracters, Counters,
and Comparators in the XC3000A, XC4000, and XC5200 families. This
style is not as efficient as the ALIGNED RPM style for XC4000 and
XC5200 devices.

• When applied to Accumulators, Adders/Subtracters, and
Counters, the RIPPLE CARRY style uses a gate implementation
style.

The RIPPLE CARRY style is smaller but slower for XC3000A
devices than the FAST 3KA style.

• When applied to Comparators, this style uses a gate implementa-
tion ripple propagation compare and applies only to equality
comparisons. The results are rippled from the MSB to the LSB.
The RIPPLE CARRY style is the style that uses the fewest CLBs
for equality comparisons in XC3000A devices.

TREE

This style applies to Comparators in XC3000A, XC4000, and XC5200
devices. It uses a gate implementation tree magnitude comparison
and applies to all comparison operations in supported devices. It is
the only way of implementing magnitude comparisons in XC3000A
devices. For XC4000 and XC5200 devices, this style is not as efficient
as the ALIGNED RPM or UNALIGNED RPM style.
3-10 Xilinx Development System

Understanding Attributes
WIRED AND

This style applies to Simple Gates, Multiplexers, and Comparators in
XC3000A and XC4000 devices. Wide input functions with this style
can be significantly faster.

This style uses tristate buffers (TBUFs) and horizontal long-lines.
Logic is aligned into horizontal rows of CLBs next to the horizontal
long lines.

Modules implemented in this style can only be as wide as the number
of tristate buffers per horizontal long-line in the target device.

• When applied to Simple Gates, this style implements AND and
NAND functions using a wired-AND implementation

• When applied to Multiplexers, this style uses wired-MUX imple-
mentation and increases the speed of wide MUX functions signif-
icantly, particularly in XC3000A and XC4000 devices.

• When applied to Comparators, this style uses a wired-AND
implementation and applies to equality comparisons in XC3000A
and XC4000 devices. It uses the same number of CLBs as the
RIPPLE CARRY style.

Note: The number of TBUFs allowed in a row for a particular device
is limited. PAR may fail if the Bus Width selected for the module is
greater than the number of TBUFs allowed in a row for the specific
device. Refer to the The Programmable Logic Data Book for the number
of TBUFs allowed in the target device.

Inverting and Decoding Masks for Gated Modules
The INVERSION MASK and DECODE MASK attributes specify indi-
vidually inverted or masked inputs and are available on Type 1, Type
2, and INVERT Simple Gates modules.

Table 3-3 Inversion and Decode Masks Summary

Attribute
Decode Input Value

(default)
Invert Input Value

INVERSION MASK 0 1

DECODE MASK 1 0
LogiBLOX Guide 3-11

LogiBLOX Guide
The INVERSION MASK and DECODE MASK attributes use different
polarities to achieve the same effect.

You can specify the inversion mask or the decode mask using any of
the radices specified in the “Data Values” section in this chapter.

The default value is chosen to be intuitive and, therefore, depends on
the nature of the module.

• On the bused AND, NAND, NOR, OR, XNOR, and XOR
modules, no inversion is performed on the inputs by default.

• On the INVERT module, the INVERSION MASK indicates which
bits in the bus will not be inverted. The default is to invert all the
bits in the bus, which is what one would expect from a bus-wide
inverter.

Type 1 Modules: One Input Bus
As an example, on a 5-bit Type 1 AND Gate with inputs 01011 and
INVERSION MASK = 2#10010#, Bits 1 and 4 are inverted (bit 4 is the
most significant bit). The resulting values are 11001. The DECODE
MASK achieves the same result with opposite polarities. If DECODE
MASK=2#01101#, Bits 1 and 4 are inverted and the resulting values
are 11001.

Figure 3-1 5-Input Type 1 AND Gate Using INVERSION MASK

Type 2 Modules: One Input Bus and One Input Signal
On a Type 2 AND Gate, only the input bus is affected by the INVER-
SION MASK, as shown in the following figure.

X7480

O

A [4]

A [0]

A [3]

A [2]

A [1]

A[4:0]
O

INVMASK= 2#10010#

TYPE 1
3-12 Xilinx Development System

Understanding Attributes
Figure 3-2 Type 2 AND Gate Using INVERSION MASK

INVERT Module
If you do not define INVERSION MASK, all signals connected to the
INVERT module are inverted. If you specify INVERSION MASK, the
outputs of the INVERT module are determined by the bit pattern of
INVERSION MASK. For each bit in the INVERSION MASK that is 1,
the corresponding bit in the bus is not inverted (in other words, the
bit retains its original value).

You can specify the value of the INVERSION MASK in any base.
Refer to the “Data Values” section for more information.

Figure 3-3 5-Input INVERT Using INVERSION MASK

Synchronous and Asynchronous Control
The synchronous/asynchronous control pins and attributes deter-
mine how modules containing flip-flops should be initialized after
power-up or set or reset during operation.

X7481

A

A O[2]

O[1]

B [2]

A

B [1]B[2:0]
O[2:0]

INVMASK=2#101#

TYPE 2

A O[0]
B [0]

X7483

O[4:0] I[4:0]

INVMASK= 2#10010#

O [4]I [4]

O [3]I [3]

O [2]I [2]

O [1]I [1]

O [0]I [0]

INVERT
LogiBLOX Guide 3-13

LogiBLOX Guide
• When the synchronous control pin is asserted, flip-flops go to
their indicated values on the next rising edge of the clock.

• When the asynchronous control pin is asserted, flip-flops go to
their indicated values immediately, independent of the clock.

LogiBLOX modules allow both types of control to be specified on the
same module with different values for each type of control. This
means that LogiBLOX allows you to set an entire register asynchro-
nously to one value or synchronously to a different value. These
values are constants specified by the ASYNC_VAL and SYNC_VAL
attributes on the LogiBLOX modules and are independent of each
other.

The modules that have synchronous (SYNC_CTRL) and asynchro-
nous (ASYNC_CTRL) control pins include the following.

• Accumulators

• Adder/Subtracters

• Clock Dividers

• Counters

• Data Registers

• Shift Registers

You can specify the SYNC_VAL or ASYNC_VAL attribute values on
all the above modules except the Clock Dividers module and LFSR
Counters, which use the SYNC_COUNT/ASYNC_COUNT
attributes. Refer to the Clock Dividers module and LFSR Counter
sections for a description of the SYNC_COUNT and
ASYNC_COUNT attributes.

ASYNC_VAL may also be applied to some registered I/O modules.

The values are loaded into the registers and counters under the
control of the ASYNC_CTRL and SYNC_CTRL inputs of the module.

For Accumulator and Adder/Subtracter modules, which contain
C_OUT and OVFL outputs, the values of the C_OUT and OVFL
registers can also be specified for the case when ASYNC_CTRL or
SYNC_CTRL is asserted. The values are specified in the ASYNC_VAL
and SYNC_VAL fields in conjunction with the value of the accumu-
lator register. Use the keyword REG to specify the Accumulator or
Sum register value (this is optional), C_OUT to specify the asynchro-
3-14 Xilinx Development System

Understanding Attributes
nous or synchronous control value of the C_OUT register, and OVFL
to specify the value of the Overflow register. Each data register type
value is preceded by a colon, and separated from other data types
with a “.” (period) symbol.

For example, given an accumulator with the ASYNC_VAL or
SYNC_VAL field set to either 1101.C_OUT:0.OVFL:1 or
REG:1101.C_OUT:0.OVFL:1, the registers are set as follows.

• The value “1101” or “REG:1101” sets the accumulator or sum
register to 1101 (the REG keyword is optional)

• The value “C_OUT:0” sets the carry out register to 0

• The value “OVFL:1” set the Overflow register to 1

The ASYNC_VAL constant is loaded immediately upon asserting the
module’s ASYNC_CTRL pin.

This load has priority over any clock-activated load.

The SYNC_VAL constant is loaded into the module if the module’s
SYNC_CTRL pin is High during the rising edge of the clock and the
clock is enabled. SYNC_CTRL normally has priority over other
synchronous functions on the same module. If the ASYNC_CTRL
and SYNC_CTRL inputs are not connected, these functions are not
synthesized.

Power-up Reset and Initialization
You can also use the ASYNC_VAL attribute to define a constant that
is loaded at power-up or on assertion of the device’s global reset net.
If you do not specify the ASYNC_VAL attribute, all registers and
counters except Linear-Feedback-Shift-Register counters (LFSR) and
one-hot counters are set to zero at power-up. LFSR counters are set to
their initial count state at power-up. One-hot counters start up with a
value of one.

I/O modules can optionally take input and output registers. I/O
modules with registers can be given an ASYNC_VAL attribute to
define their power-up states.

When the Global Set Reset (GSR) is activated, the register-based
modules, including Accumulators, Counters, Data Registers, and
Shift Registers, are loaded with the setting given by the ASYNC_VAL
LogiBLOX Guide 3-15

LogiBLOX Guide
attribute. The same is true for the Global Reset (GR) in the XC3000A
and XC5200 devices.

Location Attributes
Use the Location attribute in the Pads module (Pad Loc) to place I/O
modules in a specific IOB location.

To assign a location to a specific bit, precede the location with a bit
identifier. You can assign multiple bits by using a period as a sepa-
rator. For example, with a bus width of 8 bits, you could specify the
following assignment in the Pad Loc field.

0:P44.2:P45.7:P46

This specification assigns bit 0 to pad 44, bit 2 to pad 45, and bit 7 to
pad 46. Note that all of the bit positions do not need to be specified.

Note: Commas will not work as separators between bit assignments.

OE Phase
The attribute OE_PHASE is used to control the function of Output
Enable pin in the Tristate buffer and I/O modules. Its possible values
are ACTIVE_LOW and ACTIVE_HIGH.

If OE_PHASE is ACTIVE LOW, then when OE_ENABLE is LOW, the
Output = Input, and when OE_ENABLE is HIGH, the Output= High
Impedance.

If OE_PHASE is ACTIVE HIGH, then when OE_ENABLE is HIGH,
the Output = Input, and when OE_ENABLE = LOW, the Output=
High Impedance

For the XC3000, XC4000, XC5200, and Spartan families, the only
allowed value of OE_PHASE is ACTIVE_LOW. For XC9500, the only
allowed value is ACTIVE_HIGH. For XC9500XL, you can set the
value to either ACTIVE_LOW or ACTIVE_HIGH.

Constraining LogiBLOX Modules
LogiBLOX modules can be constrained by using the Floorplanner, or
by attaching RLOC_ORIGIN and RLOC_RANGE constraints to
them, if they are generated as RPMs (Relationally Placed Macros).
Modules that can be generated as RPMs include those which contain
3-16 Xilinx Development System

Understanding Attributes
carry logic (Accumulators, Adders, Subtracters, Counters, and
Comparators), registers (Data Registers), or RAM or ROM (Memo-
ries).

You can generate Accumulators, Adders, Subtracters, and Compara-
tors as RPMs by setting the Module Style for these modules to either
ALIGNED RPM or UNALIGNED RPM. Similarly, LogiBLOX Data
Registers and RAM can be generated as RPMs by setting the
USE_RPM attribute to TRUE in the LogiBLOX GUI.

The modules that can be generated as RPMs are listed in the table
below.

LogiBLOX modules are most conveniently constrained to specific
locations on an FPGA using the Xilinx Floorplanner. See the Floor-
planner Reference/User Guide for more information on using this tool.

LogiBLOX modules can also be constrained using RLOC_ORIGIN
and RLOC_RANGE constraints on a design schematic or in a UCF
file.

Constraining LogiBLOX Modules in Schematics
To constrain a LogiBLOX RPM module to a specific location in a sche-
matic, attach an RLOC_ORIGIN property to the LogiBLOX module
symbol that specifies the target location for the upper left hand corner
of the RPM.

To constrain a LogiBLOX RPM module to a specific range of CLBs in
a schematic, attach an RLOC_RANGE=Rr1Cc1:Rr2Cc2 property to
the LogiBLOX module symbol. This property specifies the range of
CLBs between rows r1 and r2 and columns c1 and c2 to which the
LogiBLOX module is directed.

Table 3-4 Modules that Can Be Generated as RPMs

STYLE MODULE Type Architecture

ALIGNED_RPM,
UNALIGNED_RPM

Accumulators
Adders/Subtracters
Counters
Comparators

XC4000, XC5200, Spartan
XC4000, XC5200, Spartan
XC4000, XC5200, Spartan
XC4000, XC5200, Spartan

Attribute MODULE Type Architecture

USE_RPM Data Registers
RAMs

XC3000, XC4000, XC5200, Spartan
XC4000, Spartan
LogiBLOX Guide 3-17

LogiBLOX Guide
See the Attributes, Constraints, and Carry Logic section of the
Libraries Guide for more information on specifying RLOC_ORIGIN
and RLOC_RANGE constraints.

Constraining LogiBLOX Modules in a UCF File
To constrain a LogiBLOX data register module into a range of CLBs in
a UCF file, you must LOC every individual flip-flop in the UCF.

The flip-flops inside the LogiBLOX modules are named FLOP0,
FLOP1, FLOP2, and so forth. A 20-bit data register contains FLOP0
through FLOP19.

For example, if the instance name (as opposed to the module name)
of a LogiBLOX 20-bit data register module is L1, you can set the loca-
tions as follows in a UCF file.

INST L1/FLOP0 LOC=CLB_R1C1;
INST L1/FLOP1 LOC=CLB_R1C1;
INST L1/FLOP2 LOC=CLB_R2C1;
.
.
.
INST L1/FLOP19 LOC=CLB_R10C1;
3-18 Xilinx Development System

Chapter 4

Module Descriptions

This chapter describes in alphabetical order the different types of
modules, their connections, and their attributes. Each module repre-
sents a common logic function and is described in detail.

Note: The pin and attribute names in the following module descrip-
tions are given in the following format: Carry Input (C_IN). The first
name is how the pin or attribute is listed in the GUI module. The
second name, in parentheses, is how the pin or attribute is listed in
the .mod file. If only one name is listed, then the name is the same in
both places.

The following list divides the different LogiBLOX modules into func-
tional categories and briefly summarizes each module.

Arithmetic

• ACCUMULATOR — Adds data to or subtracts it from the
current value stored in the accumulator register.

• ADDER/SUBTRACTER — Adds or subtracts two data inputs
and a Carry input.

• COMPARATOR — Compares the magnitude or equality of two
values.

• COUNTER — Generates a sequence of count values.

Logic

• CONSTANT — Forces a constant value onto a bus.

• DECODER — Activates 1-of-n lines on the output port, based on
the input address.

• MULTIPLEXER: Type 1, Type 2 — Routes 1-of-n input data lines
to the output port.
LogiBLOX Guide — 2.1i 4-1

LogiBLOX Guide
• SIMPLE GATES: Type 1, Type 2, Type 3 — Implements the AND,
INVERT, NAND, NOR, OR, XNOR, and XOR logic functions.

• TRISTATE BUFFER — Creates a tristated internal data bus.

I/O

• INPUT/OUTPUT — Connects internal and external pin signals.

• PAD — Represents an input/output pad.

Sequential

• CLOCK DIVIDER — Generates a clock pulse whose period is a
multiple of the clock input period.

• COUNTER — Generates a sequence of count values.

• SHIFT REGISTER — Shifts input data bits to the left or right.

Storage

• DATA REGISTER — Captures the input data on active Clock
transitions.

• MEMORY: ROM, RAM, SYNC_RAM, DP_RAM — Stores infor-
mation and makes it readable.

• SHIFT REGISTER — Shifts input data bits to the left or right.
4-2 Xilinx Development System

Module Descriptions
ACCUMULATOR
The Accumulator takes the data on its B input port and its Carry
Input port and adds this data to or subtracts it from the current value
stored in the accumulator register. It then loads the result back into
the register, making it available at the Q_OUT port.

There are two types of accumulators: those that accumulate the value
applied to the symbol’s B input port and those that accumulate a
constant value. The following figure illustrates the accumulation of
values applied to the symbol’s B pin.

Figure 4-1 The Accumulator Module

The Carry Output and the Overflow outputs are generated by the
Adder/Subtracter to indicate the status of the present arithmetic
operation. You can latch these outputs by specifying the appropriate
LogiBLOX Guide 4-3

LogiBLOX Guide
attribute. You can also load separate predefined values synchro-
nously or asynchronously into any or all of the module’s registers.

Input Pins

Add/Sub (ADD_SUB)

The input on this pin determines whether the module should add the
value on the B input port to or subtract it from the value in the Accu-
mulator register. If the input is High, the module performs an addi-
tion. If the input is Low, the module performs a subtraction.

Connections: This pin is available only if you set the Operation
attribute to Add/Subtract. If you select either of the individual Add
or Subtract operation modes, the Add/Sub input pin is removed
from the module.

Carry Input (C_IN)

The Carry Input port, together with the data on the B input port, is
added to or subtracted from the current accumulator register value.

Connections: Carry Input is optional. Its value depends on whether
the Operation mode is Add or Subtract. If Carry Input is not speci-
fied, the default values are 0 for Add and 1 for Subtract.

B

The data on the B input port, along with the Carry Input port, is
added to or subtracted from the current accumulator register value.

Table 4-1 Accumulator Register Truth Table

Load
Sync.

Control
Clock

Enable
Clock

Async.
Control

Q_OUT

X X X X H ASYNC_VAL

X X L X L Q_OUTprev
a

a.Q_OUT prev denotes the previous contents of the register.

X H H ↑ L SYNC_VAL

L L H ↑ L Q_OUTprev +/- B

H L H ↑ L B
4-4 Xilinx Development System

Module Descriptions
Connections: The B input is present if a Constant value is not specified.
If you set the Constant Value attribute, you generate a schematic
symbol with a Constant input instead of the B input.

Load (LOAD)

When the Asynchronous Control and the Synchronous Control pins
are Low and Load is High, the Accumulator register is loaded
directly with the value on the B input port on the next active Low-to-
High Clock transition.

Connections: Load is optional. If you do not specify this input, the
accumulator always adds or subtracts; it never loads.

Note: The Carry Out and Overflow outputs generated by the
module’s adder/subtracter are unknown during a load operation.

Clock Enable (CLK_EN)

Whenever the Clock Enable input is High, either the data on the B
input port, the output of the adder/subtracter, or the value assigned
to the Synchronous Value attribute is loaded into the accumulator
register on the next active Low-to-High Clock transition.

If the Clock Enable input is Low, the register contents are unaffected
by the Clock and the register holds its current value. This input does
not affect asynchronous load operations, which occur when the
Asynchronous Control pin is asserted.

Connections: Clock Enable is optional. Use this input when you need
to disable the clock temporarily. If you do not use the Clock Enable
input, the Clock is always enabled.

Clock (CLOCK)

If the Clock Enable input is High, the rising clock edge loads the
selected data into the accumulator register. The falling (negative)
clock edge can be used by connecting an inverter to the Clock input.

Connections: The Clock pin is always specified.

Async. Control (ASYNC_CTRL)

The Asynchronous Control input is a level-sensitive input. When this
input is High, it loads the value assigned to the Asynchronous Value
LogiBLOX Guide 4-5

LogiBLOX Guide
attribute into the accumulator register independently of the Clock
and Clock Enable.

Connections: If you specify the Asynchronous Control pin, you can
assign a value to the Asynchronous Value attribute. By default, the
Asynchronous Value is assigned a value of zero if it is not specified.
The Asynchronous Value attribute may also be specified to define the
accumulator register’s power-on value.

Sync. Control (SYNC_CTRL)

Whenever the Synchronous Control and Clock Enable inputs are
High, the value assigned to the Synchronous Value attribute is loaded
into the accumulator register on the next active clock transition. This
input has priority over the Load input if both pins are High at the
same time.

Connections: If you specify the Synchronous Control pin and do not
assign a value to the Synchronous Value attribute, a default value of 0
is used and a warning is issued.

Note: Asserting either Asynchronous Control or Synchronous
Control affects all registered elements — the Accumulator register
and potentially the Registered Carry Output and Registered Over-
flow registers. The Asynchronous Value and Synchronous Value
attributes may contain data for all three registered elements. See the
“Synchronous and Asynchronous Control” section of the “Under-
standing Attributes” chapter for more information.

Output Pins

Q_OUT

Q_OUT always reflects the current contents of the Accumulator
register.

Connections: Q_OUT is always specified.

Overflow, Reg’d Overflow (OVFL)

Overflow is the overflow output from the adder/subtracter. Regis-
tered Overflow is the overflow from the Accumulator register. The
overflow output is High when the result of the operation exceeds the
maximum allowed value of the adder/subtracter.
4-6 Xilinx Development System

Module Descriptions
Connections: Overflow and Registered Overflow are optional. If you
specify one, you cannot specify the other.

Carry Output, Reg’d Carry Output (C_OUT)

Carry Output is the carry out from the most significant bit of the
adder/subtracter. Registered Carry Output is the carry out from the
most significant bit of the Accumulator register.

Connections: Carry Output and Registered Carry Output are optional.
If you specify one, you cannot specify the other.

Attributes

C Value (C_VALUE)

Use the Constant Value attribute to replace the B input port with a
constant value. If you do not define this attribute, the B pin is present.

Operation (OPTYPE)

Use the Operation attribute to specify one of the three possible arith-
metic operation modes: Add, Subtract, or Add/Subtract. If you select
Add/Subtract, the Add/Sub input pin is automatically added to the
module.

Style (STYLE)

Style defines the implementation style (area or speed preference).

Usage: For more information, see the “Implementation Styles”
section of the “Understanding Attributes” chapter.

Encoding (ENCODING)

Encoding defines the encoding scheme assumed in the generation of
the overflow output logic. Valid values are Signed and Unsigned.

Async. Val (ASYNC_VAL)

The value of the Asynchronous Value attribute defines the power-on
contents of the register. It also determines the data values assigned to
the three registered elements: the Accumulator register, the Regis-
tered Carry Out register, and the Registered Overflow register. On
assertion of the Asynchronous Control pin, the data values for the
LogiBLOX Guide 4-7

LogiBLOX Guide
specified pins are extracted from the value assigned to the Asynchro-
nous Value attribute.

See the “Synchronous and Asynchronous Control” section of the
“Understanding Attributes” chapter for more information about
specifying the Asynchronous Value of these registers.

Usage: Asynchronous Value is always available. You can define it
whether or not you use the Asynchronous Control pin. If you do not
specify a value, the default value is zero.

Sync. Val (SYNC_VAL)

The Synchronous Value attribute defines the value to which the
register returns on assertion of the Synchronous Control pin. It also
determines the data values assigned to the three registered elements:
the Accumulator register, the Registered Carry Out register, and the
Registered Overflow register. On assertion of the Synchronous
Control pin, the data values for the specified pins are extracted from
the value assigned to the Synchronous Value attribute.

See the “Synchronous and Asynchronous Control” section of the
“Understanding Attributes” chapter for more information about
specifying the Synchronous Value of these registers.

Usage: Synchronous Value is available only if you specify the
Synchronous Control pin.
4-8 Xilinx Development System

Module Descriptions
ADDER/SUBTRACTER
The Adder/Subtracter module adds or subtracts two data inputs and
a Carry Input. You can use this module as an adder, as a subtracter,
or both. The Adder/Subtracter provides a Carry Output and an
Overflow output to indicate the status of the current arithmetic oper-
ation.

There are two types of Adders/Subtracters: those that add or subtract
the values applied via two bus-pins, and those that add a constant to
or subtract a constant from a value applied to one bus-pin.

The Adder/Subtracter module permits the user to register any or all
of its outputs.

Figure 4-2 The Adder/Subtracter Module (Unregistered)
LogiBLOX Guide 4-9

LogiBLOX Guide
Figure 4-3 The Adder/Subtracter Module (Registered)

Input Pins

A

The data on the A input port, along with the Carry Input port, is
added to or subtracted from the data on the B input port (A+B + C_IN
or A – B – C_IN).

Connections: Pin A is required.

Add/Sub (ADD_SUB)

The input on this pin determines whether the module should operate
as an adder or as a subtracter. If the input is High, the module
performs an addition. If the input is Low, the module performs a
subtraction.
4-10 Xilinx Development System

Module Descriptions
Connections: This pin is available only if you set the Operation
attribute to Add/Subtract. If you select either of the individual Add
or Subtract operation modes, the Add/Sub input pin is removed
from the module.

Carry Input (C_IN)

The Carry Input port, together with the data on the B input port, is
added to or subtracted from the value on port A (A + B + C_IN or A –
B – C_IN).

Connections: Carry Input is optional. Its value depends on whether
the Operation mode is Add or Subtract. If Carry Input is not speci-
fied, the default values are 0 for Add and 1 for Subtract.

B

The data on the B input port, along with the Carry Input port, is
added to or subtracted from the data on the A input port (A + B +
C_IN or A – B – C_IN).

Connections: The B input is present if a Constant value is not specified.
If you set the Constant Value attribute, you generate a schematic
symbol with a Constant input instead of the B input.

Additional Input Pins for Registered Modules

Load (LOAD)

When the Asynchronous Control and the Synchronous Control pins
are Low, the data on the B port is loaded directly into the register on
the next active Clock transition.

Connections: Load is optional. If Load is High, the data on the B port is
loaded directly into the register. If Load is Low, the output of Adder/
Subtracter is registered instead.

Clock Enable (CLK_EN)

Whenever the Clock Enable input is High, either the data on the B
input port, the output of the adder/subtracter, or the value assigned
to the Synchronous Value attribute is loaded into the register on the
next active Clock transition.

If the Clock Enable input is Low, the register contents are unaffected
by the Clock and the register holds its current value. This input does
LogiBLOX Guide 4-11

LogiBLOX Guide
not affect an asynchronous load operation, which occurs when the
Asynchronous Control pin is asserted.

Connections: Clock Enable is optional. Use this input when you need
to disable the clock temporarily. If you do not use the Clock Enable
input, the Clock is always enabled.

Clock (CLOCK)

If the Clock Enable input is High, the rising clock edge loads the
selected data into the Adder/Subtracter register. The falling (nega-
tive) clock edge can be used for loading data by connecting an
inverter to the Clock input.

Connections: The Clock pin is always specified when any of the
Adder/Subtracter modules outputs are registered.

Async. Control (ASYNC_CTRL)

The Asynchronous Control input is a level-sensitive input. When this
input is High, it loads the value assigned to the Asynchronous Value
attribute into the Adder/Subtracter register independently of the
Clock and Clock Enable.

Connections: If you specify the Asynchronous Control pin, you can
assign a value to the Asynchronous Value attribute. By default, the
Asynchronous Value is assigned a value of zero if it is not specified.
The Asynchronous Value attribute may also be specified to define the
Adder/Subtracter register’s power-on value.

Sync. Control (SYNC_CTRL)

Whenever the Synchronous Control and Clock Enable inputs are
High, the value assigned to the Synchronous Value attribute is loaded
into the Adder/Subtracter register on the next active clock transition.
This input has priority over the Load input if both pins are High at
the same time.

Connections: If you specify the Synchronous Control pin and do not
assign a value to the Synchronous Value attribute, a default value of 0
is used and a warning is issued.

Note: Asserting either Asynchronous Control or Synchronous
Control affects all registered elements — the Adder/Subtracter
register and potentially the Carry Output and Overflow registers.
The Asynchronous Value and Synchronous Value fields may contain
4-12 Xilinx Development System

Module Descriptions
data for all three registered elements. See the “Synchronous and
Asynchronous Control” section of the “Understanding Attributes”
chapter for more information about specifying the synchronous and
asynchronous value of these elements.

Output Pins
One or more of the following output pins must be specified:

Sum (SUM)

Sum contains the result of the arithmetic operation performed on the
Adder/Subtracter’s inputs. The output is called Sum if the module is
not registered. For a registered module, the output is Q_OUT.

Connections: The Sum bus is the output of the Adder/Subtracter and
is required if no other output pin is specified.

Overflow (OVFL)

Overflow is the overflow output from the adder/subtracter. The
overflow output is High when the result of the operation exceeds the
maximum allowed value of the adder/subtracter.

Connections: Overflow is optional. Either the Overflow or the Regis-
tered Overflow output can be specified, but not both.

Carry Output (C_OUT)

Carry Output is the carry out from the most significant bit of the
adder/subtracter.

Connections: Carry Output is optional. Either the Carry Output or the
Registered Carry Output can be specified, but not both.

Additional Output Pins for Registered Modules

Q_OUT

Q_OUT always reflects the current contents of the Adder/Subtracter
register.

Connections: Q_OUT is always specified for registered modules.
LogiBLOX Guide 4-13

LogiBLOX Guide
Reg’d Overflow (OVFL)

Registered Overflow is the overflow from the Adder/Subtracter
register. The overflow output is High when the result of the operation
exceeds the maximum allowed value of the adder/subtracter.

Connections: Registered Overflow is optional. Either the Overflow or
the Registered Overflow output can be specified, but not both.

Reg’d Carry Output (C_OUT)

Registered Carry Output is the carry out from the most significant bit
of the Adder/Subtracter register.

Connections: Registered Carry Output is optional. Either the Carry
Output or the Registered Carry Output can be specified, but not both.

Attributes

C Value (C_VALUE)

Use the Constant Value attribute to replace the B input port with a
constant value. If you do not define this attribute, the B pin is present.

Operation (OPTYPE)

Use the Operation attribute to specify one of the three possible arith-
metic operation modes: Add, Subtract, or Add/Subtract. If you select
Add/Subtract, an Add/Sub pin is automatically added to the
module.

Style (STYLE)

Style defines the implementation style (area or speed preference).

Usage: For more information, see the “Implementation Styles”
section of the “Understanding Attributes” chapter.

Encoding (ENCODING)

Encoding defines the encoding scheme assumed in the generation of
the overflow output logic. Valid values are Signed and Unsigned.
4-14 Xilinx Development System

Module Descriptions
Additional Attributes for Registered Modules

Async. Val (ASYNC_VAL)

The value of the Asynchronous Value attribute defines the power-on
contents of the register. It also determines the data values assigned to
the three registered elements: the Adder/Subtracter register, the
Registered Carry Out register, and the Registered Overflow register.
On assertion of the Asynchronous Control pin, the data values for the
specified pins are extracted from the value assigned to the Asynchro-
nous Value attribute.

Usage: Asynchronous Value is always available. You can define it
whether or not you use the Asynchronous Control pin. If you do not
specify a value, the default value is zero.

Sync. Val (SYNC_VAL)

The Synchronous Value attribute defines the value to which the
register returns on assertion of the Synchronous Control pin. It also
determines the data values assigned to the three registered elements:
the Accumulator register, the Registered Carry Out register, and the
Registered Overflow register. On assertion of the Synchronous
Control pin, the data values for the specified pins are extracted from
the value assigned to the Synchronous Value attribute.

Usage: Synchronous Value is available only if you specify the
Synchronous Control pin. The default value is zero.
LogiBLOX Guide 4-15

LogiBLOX Guide
CLOCK DIVIDER
The Clock Divider module uses a Linear-Feedback-Shift-Register
(LFSR) counter and decoder to generate an output pulse train that is a
function of the clock input and the control attributes.

The Clock Output period is a multiple of the Clock period specified
by the Clock Divisor attribute. Even multiples of the Clock period
produce a 50 percent duty cycle on the Clock Output, while odd
multiples produce a Low Output for one extra Clock period. You can
use the Output Duty Cycle attribute to control the duty cycle if you
need values other than 50 percent.

The Bus Width field is not applicable to this module and is therefore
disabled.

Figure 4-4 The Clock Divider Module
4-16 Xilinx Development System

Module Descriptions
Figure 4-5 Simple Clock Divider Example

Input Pins

Async. Control (ASYNC_CTRL)

The Asynchronous Control input is a level-sensitive input. When this
input is High, the Clock Divider’s internal counter is reset to the
value specified with the Asynchronous Count attribute.

Connections: If you specify the Asynchronous Control pin, you can
assign a value to the Asynchronous Value attribute. By default, the
Asynchronous Value is assigned a value of zero if it is not specified.
The Asynchronous Value attribute may also be specified to define the
accumulator register’s power-on value.

Sync. Control (SYNC_CTRL)

Whenever the Synchronous Control and Clock Enable inputs are
High, the Clock Divider’s internal counter is reset to the value speci-
fied with the Synchronous Count attribute on the next active clock
transition.

Connections: If you specify the Synchronous Control pin and do not
assign a value to the Synchronous Value attribute, the default value is
the first count in the LFSR count sequence and a warning is issued.

1 2 3 4 5 6 7 1

CLOCK

EXAMPLE 1

2 3 4 5 6 7 1

X7371

CLK_OUT

ASYNC_CTRL

CLK_DIV

SYNC_CTRL

CLK_EN

CLOCK CLK_OUT

DIVIDE_BY=7

DUTY_CYCLE=2
LogiBLOX Guide 4-17

LogiBLOX Guide
Clock Enable (CLK_EN)

When the Clock Enable input is High, the Clock Divider’s internal
counter increments on the next active Clock transition. When the
Clock Enable is Low, the Clock Divider is unaffected by the Clock.

Connections: Clock Enable is optional. Use this input when you need
to disable the clock temporarily. If you do not use the Clock Enable
input, the Clock is always enabled.

Clock (CLOCK)

If the Clock Enable input is High, the rising clock edge increments the
Clock Divider’s internal counter. The falling (negative) clock edge
can be used by connecting an inverter to the Clock input.

Connections: The Clock pin is always specified.

Output Pins

Clock Out (CLK_OUT)

The Clock Output port produces a pulse train whose period is a
multiple of the period of the Clock input. The Clock Output has a 50
percent duty cycle except when the Clock Divisor attribute is
assigned an odd number, in which case the Clock Output is Low for
one extra Clock period. Alternatively, the duty cycle can be controlled
with the Output Duty Cycle attribute.

Connections: The Clock Output pin is always specified.

Attributes

Clock Divisor (DIVIDE_BY)

The Clock Divisor attribute specifies the number of input Clock
cycles for each Output Clock Cycle. This value must be a positive
integer.

Usage: The Clock Divisor can be set to a value of 2 or higher. A value
must be specified for this parameter.

Output Duty Cycle (DUTY_CYCLE)

The Output Duty Cycle attribute defines the High time of the output
clock wave form in terms of multiples of the input clock period. This
4-18 Xilinx Development System

Module Descriptions
value is an integer that is less than the Clock Divisor value. If Output
Duty Cycle is not specified, a value of one-half the Clock Divisor
value is used. If Clock Divisor is odd and Output Duty Cycle is not
specified, the duty cycle is less than 50 percent because the output is
High for only (n-1)/2 input clock periods.

Usage: Output Duty Cycle can be set to 1 or more but must be less
than the value assigned to the Clock Divisor attribute.

Async. Count (ASYNC_COUNT)

The value of the Asynchronous Count attribute defines the power-on
contents of the register. It also defines the value to which the register
returns on assertion of the Asynchronous Control pin.

Usage: Asynchronous Count specifies the point in the Clock Divider’s
count sequence to which the internal LFSR counter returns on asser-
tion of Asynchronous Control. For example, Asynchronous Count=0
causes the LFSR counter to return to the first count in its sequence.

Sync. Count (SYNC_COUNT)

The Synchronous Count attribute defines the value to which the
register returns on assertion of the Synchronous Control pin.

Usage: Synchronous Count is available only if you specify the
Synchronous Control pin. The Synchronous Count attribute specifies
the point in the Clock Divider’s count sequence to which the internal
LFSR counter returns on assertion of Synchronous Control. For
example, Synchronous Count=0 causes the LFSR counter to return to
the first count in its sequence.
LogiBLOX Guide 4-19

LogiBLOX Guide
COMPARATOR
Comparator modules compare the magnitude of two values, their
equality, or both their magnitude and equality. There are two types of
comparators: those that compare the values applied to the symbol’s
two bus-pins, and those that compare a constant against the value
applied to the A bus-pin.

Figure 4-6 The Comparator Module

The following comparisons are available and can be used in any
combination.

Input Pins

A

The data on the A input port is compared to the data on the B input
port.

Connections: A is a required input.

Table 4-2 COMPARE — Available Comparisons

Equality Magnitude

A=B A<B A>B

A≠B A≤B A≥B
4-20 Xilinx Development System

Module Descriptions
B

The data on the B input port is compared to the data on the A input
port.

Connections: The B input is present if a Constant value is not specified.
If you set the Constant Value attribute, you generate a schematic
symbol with a Constant input instead of the B input bus.

Output Pins
At least one of the following outputs must be specified:

A = B (A_EQ_B)

This output is an active High output when the data on the A input
port equals the data on the B input port.

A <> B (A_NE_B)

This output is an active High output when the data on the A input
port does not equal the data on the B input port.

A < B (A_LT_B)

This output is an active High output when the value on the A input
port is less than the value on the B input port.

A > B (A_GT_B)

This output is an active High output when the value on the A input
port is greater than the value on the B input port.

A <= B (A_LE_B)

This output is an active High output when the value on the A input
port is less than or equal to the value on the B input port.

A >= B (A_GE_B)

This output is an active High output when the value on the A input
port is greater than or equal to the value on the B input port.
LogiBLOX Guide 4-21

LogiBLOX Guide
Attributes

C Value (C_VALUE)

Use the Constant Value attribute to replace the B input port with a
constant. If you do not define this attribute, the B pin is present.

Style (STYLE)

Style defines the implementation style (area or speed preference).

Usage: Setting Style to Edge Decode or Wired AND causes all of the
outputs to disappear except A = B and A <> B. For more information,
see the “Implementation Styles” section of the “Understanding
Attributes” chapter.

Encoding (ENCODING)

Encoding defines the encoding scheme used to represent the data
type of the module. Valid values are Signed and Unsigned.
4-22 Xilinx Development System

Module Descriptions
CONSTANT
The Constant module is used to force a constant value onto a bus. The
Constant value is assigned to the module by means of a LogiBLOX
attribute and can only be changed during the LogiBLOX module
generation process.

Figure 4-7 The Constant Module

Output Pins

C

The C output port contains the constant value specified by the user.

Connections: The C output pin is always present.

Attributes

C Value (C_VALUE)

Use the Constant Value attribute to define the data value that is
forced onto a bus.

Usage: Edit the Constant Value attribute field to assign a value to the
constant. Refer to the “Data Values” section of the “Understanding
Attributes” chapter for information on how to specify the data
values.
LogiBLOX Guide 4-23

LogiBLOX Guide
COUNTER
The Universal Counter module generates a sequence of count values
determined by the selected encoding and the status of the control
inputs. The Counter module can be an up counter, down counter, or
up/down counter with a predefined asynchronous or synchronous
pre-load, and a dynamic synchronous parallel load.

Figure 4-8 The Counter Module

LogiBLOX counter modules can be loaded with a value applied to a
bus pin or with a pre-defined constant.
4-24 Xilinx Development System

Module Descriptions
Input Pins

D_IN

The Parallel Data from the D_IN input port is loaded into the counter
during a Parallel Load operation on an active Clock transition.

Connections: The D_IN port is optional. When it is specified, the Load
pin is also specified. If the module uses the LFSR Encoding, the
maximum bus width for this module is 31, otherwise, the maximum
bus width is 64.

Load (LOAD)

When the Parallel Load input is High, the data on the D_IN input
port is loaded into the counter on the next active Clock transition.
When the Load input is Low, the counter responds to the Up/Down
control input. In order for a Load operation to take place, Asynchro-

Table 4-3 Universal Counter Truth Table (Binary Style)

UP/DN Load
Sync.

Control
Clock
Enable

Clock
Async.
Control

Q_OUT Terminal Count

X X X X X H Async_Value Xa

a.An X in the Terminal Count column means this value is undefined,
because Terminal Count is a function of the UP/DN and Q_OUT pins.

X X X L ↑ L Q_OUTprev TERM_CNTprev

X X H H ↑ L Sync_Value X

X H L H ↑ L D_IN X

H L L H ↑ L Q+1b

b.Q is the count value before the clock.

L

H L L H ↑ L Count Limitc

c.The Count Limit value has priority over the maximum (up)-(H...H)
or minimum (down)-(L...L) count values (See Count Limit attribute
for restrictions).

H

L L L H ↑ L Q–1 L

L L L H ↑ L Count Limit H
LogiBLOX Guide 4-25

LogiBLOX Guide
nous Control and Synchronous Control must both be Low and the
Clock Enable must be High.

Connections: The Load input is automatically specified when the
D_IN port is specified.

Up/Down (UP_DN)

The Up/Down control input controls the direction of the count on the
next active Clock transition. When Up/Down is High, the counter
value is increased by one; when Up/Down is Low, the counter value
is decreased by one.

Connections: The Up/Down input pin is present only if the Up/Down
Operation mode has been selected. Because the LFSR counter does
not support down-counting, it must use the Up Operation type.

Async. Control (ASYNC_CTRL)

The Asynchronous Control input is a level-sensitive input. When this
input is High, it loads the value assigned to the Asynchronous Value
attribute (or Asynchronous Count for an LFSR counter) into the
counter independently of the Clock and Clock Enable.

Connections: If you specify the Asynchronous Control pin, you can
assign a value to the Asynchronous Value or Asynchronous Count
attribute. By default, the attribute is assigned a value of zero if it is
not specified. The Asynchronous Value and Asynchronous Control
attributes may also be specified to define the counter register’s
power-on value.

Sync. Control (SYNC_CTRL)

Whenever the Synchronous Control and Clock Enable inputs are
High, the value assigned to the Synchronous Value attribute (or
Synchronous Count for an LFSR counter) is loaded into the counter
on the next active clock transition. This input has priority over the
Load input if both pins are High at the same time.

Connections: If you specify the Synchronous Control pin, you must
assign a value to the Synchronous Value attribute (or Synchronous
Count for an LFSR counter).
4-26 Xilinx Development System

Module Descriptions
Clock Enable (CLK_EN)

When the Clock Enable input is High, the enabled load and count
actions take place on the next active Clock transition. When Clock
Enable is Low, the counter contents are unaffected by the Clock.

Connections: Clock Enable is optional. Use this input when you need
to disable the clock temporarily. If you do not use the Clock Enable
input, the Clock is always enabled.

Clock (CLOCK)

If the Clock Enable input is High, the rising clock edge either loads
the selected data into the counter or increments/decrements the
counter. The falling (negative) clock edge can be used by connecting
an inverter to the Clock input.

Connections: The Clock input pin is always specified.

Output Pins
At least one of the output pins, Q_OUT or Terminal Count, must be
specified.

Q_OUT

The Counter Output pin (Q_OUT) contains the current value of the
counter.

Terminal Count (TERM_CNT)

The Terminal Count output pin goes High for one clock cycle every
Count Limit cycles, where Count Limit is either specified by the user
or, if not specified by the user, reaches its maximum value. The
maximum value of Count Limit is listed in the “Counter — Encod-
ings” table.

• For an Up Counter, the Terminal Count is High during the cycle
in which the counter reaches its maximum sequence value.

• For a Down Counter, the Terminal Count is High during the cycle
in which the counter reaches its minimum sequence value, typi-
cally zero.
LogiBLOX Guide 4-27

LogiBLOX Guide
For example, for a 4-bit binary Up Counter with no Count Limit
attribute specified, the Terminal Count is High when the counter
reaches its maximum value of 1111.

The Terminal Count is not qualified with the Clock Enable. To
cascade counters, AND the Terminal Count with a common Clock
Enable. Refer to the “Cascading Counters with Clock Enable” figure
at the end of this section for more information.

Attributes

Operation (OPTYPE)

Use the Operation attribute to specify one of the three possible types
of counters: Up, Down, or Up/Down. If you select Up/Down, an
Up/Down pin is automatically added to the module. Note that when
the Encoding attribute is set to LFSR, the only value allowed for
Operation is Up.

Style (STYLE)

Style defines the implementation style (area or speed preference).

Usage: Maximum Speed is the default implementation style and is the
only valid style for all counters other than Binary counters. When the
Encoding attribute is set to Binary, Style can be set to any of the avail-
able values. For more information, see the “Implementation Styles”
section of the “Understanding Attributes” chapter.

Encoding (ENCODING)

You can use this parameter to define the encoding of the Q_OUT port.
When Encoding is set to LFSR, the only value allowed for Operation
is Up, Style must be set to Maximum Speed, and the Asynchronous
Count and Synchronous Count attributes are enabled instead of
Asynchronous Value and Synchronous Value.

Usage: Encoding defines the count sequence of the counter. Refer to
the following table for a list of available encodings.
4-28 Xilinx Development System

Module Descriptions
Note: n is the width of the counter.

Count Limit (COUNT_TO)

The Count Limit value defines the number of cycles before the
counter resets to its initial value, after which the count sequence
restarts. Thus, Terminal Count will be High for one cycle every Count
Limit cycles. You should specify Count Limit only if the length of the
count sequence is different than the MAX Count Limit associated
with the counter’s encoding. The allowed values for Count Limit
vary depending on the counter encoding chosen.

• Binary: The Count Limit attribute values are any number
between 2 and 2n-1 inclusive.

• Johnson: The only allowed Count Limit attribute values are 2n or
2n–1

• LFSR: The Count Limit attribute can be any number between 2
and 2n–1 inclusive.

• One-Hot: The Count Limit attribute may not be set.

When Count Limit is used with a Binary counter, the following
applies. If counting down, the counter counts down to 0 and on the
next cycle, Q_OUT goes to Count Limit. If counting up, the counter
counts up to Count Limit and on the next cycle, Q_OUT goes to 0.

The behavior of a counter loaded with a value outside the range of
the Count Limit (with D_IN, Sync_Val, or Async_Val) is undefined.
However, Binary and Johnson counters are guaranteed to return to
legal count sequences after as many as 2n (Binary) or 2n (Johnson)
clock pulses.

Table 4-4 Counter — Encodings

Encoding Counter Configuration MAX Count Limit

Binary Binary Counter 2n-1

Johnson Johnson Counter 2n

LFSR Linear Feedback Shift Register 2n–1

One Hot Generates a ONE_HOT sequence. n
LogiBLOX Guide 4-29

LogiBLOX Guide
Async. Val (ASYNC_VAL)

The value of the Asynchronous Value attribute defines the power-on
contents of the counter. It also defines the value to which the counter
returns on assertion of the Asynchronous Control pin.

Usage: Asynchronous Value is always available. You can define it
whether or not you use the Asynchronous Control pin. If you do not
specify a value, its default value depends on the kind of counter you
specify with the Encoding attribute. For Binary and Johnson counters
the default value is zero. For One-Hot counters the default value is 1.
If the Encoding attribute is set to LFSR, you cannot assign a value to
the Asynchronous Value attribute.

Sync. Val (SYNC_VAL)

The Synchronous Value attribute defines the value to which the
register returns on assertion of the Synchronous Control pin.

Usage: Synchronous Value is available only if you specify the
Synchronous Control pin. Note that when the Encoding attribute is
set to LFSR, you cannot assign a value to Synchronous Value.

Async. Count (ASYNC_COUNT)

The Asynchronous Count attribute specifies the counter’s reset state
on assertion of the Asynchronous Control pin. The number specified
for this attribute represents the number of transitions from the
counter’s initial default state. For example, if Asynchronous Count is
set to 5, then the value in the counter after its first five transitions is
the value assigned to the counter whenever the Asynchronous
Control pin is asserted.

Usage: Asynchronous Count is always available. You can define it
whether or not you use the Asynchronous Control pin. If you do not
specify a value, the default value is zero. Use Asynchronous Count
instead of Asynchronous Value when the Encoding attribute is set to
LFSR.

Sync. Count (SYNC_COUNT)

The Synchronous Count attribute specifies the counter’s reset state on
assertion of the Synchronous Control pin. The number specified for
this attribute represents the number of transitions from the counter’s
initial default state. For example, if Synchronous Count is set to 5,
4-30 Xilinx Development System

Module Descriptions
then the value in the counter after its first five transitions is the value
assigned to the counter whenever the Synchronous Control pin is
asserted.

Usage: Synchronous Count is available only if you specify the
Synchronous Control pin. Use Synchronous Count instead of
Synchronous Value when the Encoding attribute is set to LFSR.

Counter Encoding Features and Selection Criteria
Each of the four counter encodings has benefits and limitations that
are determined by the available chip resources. The “Counter —
Encodings” table lists the criteria that can be used to select the appro-
priate encoding for each application. A brief description of each
encoding follows.

Binary

The Binary Counter produces a predictable binary output pattern and
is the recommended encoding for Up/Down counter applications. It
is used to produce sequences for address generation, binary arith-
metic, or related applications. Variations in count modulo are set by
using the Count Limit attribute or Synchronous Load capability. The
Binary Counter is synthesized to take advantage of fast carry logic on
the XC4000 and XC5200 families. For a binary encoding, the width of
the signal connected to D_IN and Q_OUT can be >= log2 Count
Limit.

When the Style is set to Maximum Speed, the bus width determines
the implementation of the Binary Counter in the XC4000EX family. If
the bus width is greater than four bits, the counter is implemented
using carry logic. If the bus width is four bits or less, gates are used in
the implementation.

Johnson

The Johnson Counter is the fastest encoding available. This encoding
is used to produce very fast state machines and glitchless decoders. It
supports Asynchronous and Synchronous Loads, but the loaded
values must correspond to the normal count sequence to maintain
predictable output results. Valid values for the Synchronous Value
and Asynchronous Value attributes include:

• All zeros
LogiBLOX Guide 4-31

LogiBLOX Guide
• All ones

• Zeros followed by ones

• Ones followed by zeros

For example, a 3-bit Johnson up counter sequence is as follows.

000
100
110
111
011
001

One bit in the count sequence changes per clock cycle if the default
Count Limit=2n is used. If Count Limit is assigned by the user to
2n–1, then 2 bits will change during one clock cycle in the middle of
the sequence as in the following 3-bit example with Count Limit=5.

000
100
110
011
001

LFSR

The LFSR counter is fast and uses chip resources efficiently. It can be
configured to support any Count Limit value, but the output pattern
is difficult to determine. It is used for frequency division, such as the
CLK_DIV module, modulo x counting, and pseudo-random-pattern
generation. It does not support down counting. The width of the
LFSR counter must be between 2 and 31 bits. If more bits are needed,
several LFSR counters can be cascaded. Refer to the “Cascading
Counters” section section for examples of cascaded counters.

In an LFSR counter, the MSB bit toggles first.

Note: Specifying the Asynchronous Count and Count Limit
attributes may result in unexpected behavior in an LFSR counter. For
example, if Asynchronous Count is set to 2 and Count Limit is set to
5, at startup the counter should start with the second cycle and
TERM_CNT should go high at the fifth cycle, that is, after three rising
clock edges (this is how a Binary counter works). But TERM_CNT
goes high after two rising clock edges. After that, it goes high every
4-32 Xilinx Development System

Module Descriptions
fifth rising edge. This behavior occurs because a Count Limit of 5
specifies a Binary counter with six states (0 to 5), while it specifies an
LFSR counter with five states.

One Hot

In this encoding, only one bit is High at a time. Use this encoding to
enable a selection of mutually exclusive actions. Do not specify the
Count Limit attribute for this encoding.

• An up-counter has the “1” in the least index bit at reset and shifts
it one bit toward the greatest index bit at each clock cycle,
returning it to the least index bit after n cycles. Terminal Count is
High when the high bit is the highest index bit.

• A down-counter has the same initial state, but shifts toward the
least bit and has Terminal Count High when the high bit is the
least index bit.

Valid One Hot values for loading or assigning to the Asynchronous
Value and Synchronous Value attributes may have only a single bit
set. Ensure that neither multiple set bits nor no set bits are ever
loaded into a One Hot counter, because this will result in improper
count behavior.

Cascading Counters
If you need to cascade LogiBLOX counters, exercise caution if the
counter module has a Clock Enable control signal. The Terminal
Count outputs of all LogiBLOX counters do not incorporate the input
Clock Enable control. As a result, the Clock Enable control signal of
the first counter in the cascade chain needs to be ANDed with the
Terminal Count of each counter. This ANDed term should then be
used to enable the next counter in the chain.
LogiBLOX Guide 4-33

LogiBLOX Guide
Figure 4-9 Cascading Counters with Clock Enable

LogiBLOX counter chains which do not have an initial Clock Enable
control signal can be implemented simply by connecting the Terminal
Count from each stage to the subsequent stage.

X7484

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

CLK_EN

CLOCK

Q_OUT
[27:0]

TERM_CNT

COUNTER

COUNTER

To Next CE

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT
[15:0]

TERM_CNT
4-34 Xilinx Development System

Module Descriptions
DATA REGISTER
The Data Register module is used to capture the data applied to its
D_IN port on active Clock transitions. The contents of the data
register are always present on the Q_OUT port. The module is
synthesized as an array of flip-flops that can be loaded with
predefined asynchronous and synchronous data.

Figure 4-10 The Data Register Module

Input Pins

D_IN

The data applied to the D_IN input port is loaded into the register
when the Clock Enable is High and an active Clock transition occurs
on the Clock pin.

Connections: The D_IN port is always specified.

Table 4-5 Data Register Truth Table

D_IN Sync. Control
Clock

Enable
Clock

Async.
Control

Q_OUT

X X X X H ASYNC_VAL

X X L ↑ L Q_OUTprev

X H H ↑ L SYNC_VAL

data L H ↑ L data
LogiBLOX Guide 4-35

LogiBLOX Guide
Async. Control (ASYNC_CTRL)

The Asynchronous Control input is a level-sensitive input. When this
input is High, it loads the value assigned to the Asynchronous Value
attribute into the data register independently of the Clock and Clock
Enable.

Connections: If you specify the Asynchronous Control pin, you can
assign a value to the Asynchronous Value attribute. By default, the
Asynchronous Value is assigned a value of zero if it is not specified.
The Asynchronous Value attribute may also be specified to define the
accumulator register’s power-on value.

Sync. Control (SYNC_CTRL)

Synchronous Control is optional. Whenever the Synchronous Control
and Clock Enable inputs are High, the value assigned to the Synchro-
nous Value attribute is loaded into the data register on the next active
clock transition. This input has priority over the Clock Enable input if
both pins are High at the same time.

Connections: If you specify the Synchronous Control pin, you must
assign a value to the Synchronous Value attribute.

Clock Enable (CLK_EN)

When the Clock Enable input is High, the D_IN input data or the
value assigned to the Synchronous Value attribute is loaded into the
register on the next active Clock transition. When the Clock Enable is
Low, the register contents are unaffected by the Clock. This input
does not affect asynchronous load operations, which occur when the
Asynchronous Control pin is asserted.

Connections: Clock Enable is optional. Use this input when you need
to disable the clock temporarily. If you do not use the Clock Enable
input, the Clock is always enabled. When the Style attribute is set to
Latches, this input becomes a Gate Enable.

Clock (CLOCK)

If the Clock Enable input is High, the rising clock edge loads the
selected data into the register. You can implement an active falling
(negative) clock edge by connecting an inverter to the Clock input.

Connections: The Clock pin is always specified. When the Style
attribute is set to Latches, this input becomes a Gate.
4-36 Xilinx Development System

Module Descriptions
Output Pins

Q_OUT

Q_OUT always reflects the Data Register’s contents.

Connections: Q_OUT is always specified.

Attributes

Style (STYLE)

Style defines whether the module is implemented as an array of
Latches or D-Type flip-flops.

Usage: Set this attribute to D-Type or Latches. The value D-Type is
valid for all architectures. The value Latches is only valid for the
XC4000EX and XC5200 device families.

Async. Val (ASYNC_VAL)

The value of the Asynchronous Value attribute defines the power-on
contents of the register. It also defines the value to which the register
returns on assertion of the Asynchronous Control pin.

Usage: Asynchronous Value is always available. You can define it
whether or not you use the Asynchronous Control pin. If you do not
specify a value, the default value is zero.

Sync. Val (SYNC_VAL)

The Synchronous Value attribute defines the value to which the
register returns on assertion of the Synchronous Control pin.

Usage: Synchronous Value is available only if you specify the
Synchronous Control pin.

Use RPMs (USE_RPM)

The Use RPMs attribute determines whether the data flip-flops in the
register maintain a constant relative location to each other. This
attribute applies to the XC4000 and XC5200 device families only.

Usage: Use RPMs can be set to True or False. The default is False.
LogiBLOX Guide 4-37

LogiBLOX Guide
DECODER
The Decoder module converts unsigned binary data on the Select
port to a 1-of-n one-hot output on the D_OUT port. The width (preci-
sion) of the Select and D_OUT ports is determined by the Bus Width
attribute.

Figure 4-11 The Decoder Module

Input Pins

Select (SEL)

The data on the Select pin is converted to a one-hot value on the
D_OUT port.

Connections: The Select pin is always specified. Specify its bus width
by selecting the appropriate width from the Bus Width pull-down list
box. The valid range of values for the bus width is 2 through 8.

Enable (ENABLE)

When the Enable Input is High, the selected Output is High. When
the Enable Input is Low, the Decoder is disabled and all bits of the
Output are Low. If the Enable Input is not specified, the Decoder is
always enabled.

Connections: The Enable input is optional.

Output Pins

D_OUT

When enabled, one of the lines of the D_OUT port will be High (one-
hot encoding). The width of the D_OUT pin is 2n, where n is the
width of the Select pin.

Connections: The D_OUT pin is always specified.
4-38 Xilinx Development System

Module Descriptions
Attributes

Style (STYLE)

The Style attribute is only enabled for the XC5200 device family. You
can select Cascade, Maximum Speed, or Normal Gates. For more
information, see the “Implementation Styles” section of the “Under-
standing Attributes” chapter.

For other device families, Style is always set to Normal Gates.
LogiBLOX Guide 4-39

LogiBLOX Guide
INPUT/OUTPUT
Input/Output modules represent the physical pins on a device that
are actually used in a design. Pad modules are connected to the I/O
modules to simulate input/output wires.

There are three types of I/O modules. These modules represent all
the possible logic combinations that can fit into the Input/Output
blocks (IOBs).

Input Modules

Input modules are device-input modules that connect a Pad to an
internal pin signal or bus.

Figure 4-12 The Input Module

Output Modules

Output modules are device-output modules that connect an internal
pin signal or bus to a Pad.
4-40 Xilinx Development System

Module Descriptions
Figure 4-13 The Output Module

Bi-directional Modules

Bi-directional modules combine the function of an Input module with
that of an Output module.
LogiBLOX Guide 4-41

LogiBLOX Guide
Figure 4-14 The Bi-directional I/O Module

I/O modules can be registered or buffered. Buffered I/O modules
simply output whatever appears on the input port. Registered I/O
modules are used to store the I/O values and are implemented as
IOB registers.

Bi-directional modules expand into one or more input and output
data and control signals, plus tristate input/output buffers.

Input Pins
This section describes the input pins of the Input and Output
modules. The input pins of the Bi-directional module are just combi-
nations of the same input pins for the Input and Output modules.

Input Module

P

The P pin represents the input to the Input module
4-42 Xilinx Development System

Module Descriptions
Connections: This input is always specified. For Bi-directional
modules, P is both the input and output of the I/O module. Connect
a Pad module to the P pin to simulate a wire.

Registered Input Module

If you select an input operation that includes a register, the following
inputs are also available.

Figure 4-15 Registered Input Module

Input Clock (ICLOCK)

The Clock input loads the selected data into the register on the rising
(positive) edge. You can implement an active falling (negative) edge
by connecting an inverter to the Clock input.

Connections: The Input Clock pin is always specified on registered
modules. If the Clock Enable input is specified and Low, the Clock is
temporarily disabled and the register contents remain unchanged.

Input Clock Enable (ICLK_EN)

When it is specified and Low, the Input Clock Enable input tempo-
rarily disables the clock, causing the register to hold its previous
value. When the Input Clock Enable input is High, the input data is
loaded into the register on the next active Clock transition.
LogiBLOX Guide 4-43

LogiBLOX Guide
Connections: The Input Clock Enable pin is optional. If this input is
not specified, the Clock is always enabled.

Output Module

O

The O pin is the input to the Output module.

Connections: The O pin is always connected.

Registered Output Module

If you select an output operation that includes a register or tristate,
the following pins are available.

Figure 4-16 Registered Output Module With Tristate

Output Enable (OE)

The Output Enable input appears on a buffered tristate Output
module. For all devices except the XC9500 and XC9500XL families,
when Output Enable is High, the signal on the P pin is tristated.
4-44 Xilinx Development System

Module Descriptions
When Output Enable is Low, the signal is enabled. For the XC9500
device family, the signal on the P pin is tristated when Output Enable
is Low and enabled when Output Enable is High. For the XC9500XL
family, the value of the OE Phase attribute determines the behavior of
the signal on the P pin when Output Enable is High or Low.

Connections: The Output Enable pin is always specified on a tristate
Output module.

Note: In the Unified Libraries this pin is labeled T (for Tristate) rather
than OE on the output buffers. Also, the bubble is not present, indi-
cating that the signal is active when T is High.

Output Clock (OCLOCK)

The Clock pin, when enabled, loads the selected data into the register
on the rising edge. You can use an active falling edge by connecting
an inverter to the Clock input.

Connections: The Output Clock pin is always specified on a registered
Output module.

Output Clock Enable (OCLK_EN)

When the Clock Enable pin is High, the input data is loaded into the
register on the next active Clock transition. When the Clock Enable is
Low, the register contents are unaffected by the active Clock transi-
tion (hold).

Connections: The Clock Enable pin is optional. If this pin is not speci-
fied, the Clock is always enabled.

Output Pins
This section describes the output pins of the Input and Output
modules. The output pins of the Bi-directional module are just combi-
nations of the same output pins for the Input and Output modules.

Input Module

I

The I pin is the output of the buffered Input module.

Connections: The I pin is always connected.
LogiBLOX Guide 4-45

LogiBLOX Guide
Registered Input Module

IQ

On a registered module, the I pin is replaced by the IQ pin.

On a registered buffer Input module, the output of the register is the
IQ pin and the buffer output is the I pin.

Connections: The IQ pin is always specified in a registered Input
module.

Output Module

P

The P pin represents the output of the Output module and connects
to a signal outside the chip.

Connections: This pin is always specified. You must connect a Pad
symbol to the P pin of an Output module.

Attributes

IO Type (MODTYPE)

The IO Type attribute specifies the type of I/O function: Input,
Output, or Bi-directional.

Usage: For each mode you select, the Input/Output module graphic is
adjusted appropriately. Refer to the appropriate pin descriptions
section.

Input Operation (IN_TYPE)

The Input Operation attribute specifies the operation mode of the
Input module.

Usage: Valid values include Buffer Only, Register Only, Latch Only,
Buffer and Register, and Buffer and Latch.

If you select an input option with a register, the Input Clock pin is
automatically added. The Input Clock Enable pin is optional.

If you select an input option with a latch, the Input Gate pin is auto-
matically added. The Input Gate Enable pin is optional.
4-46 Xilinx Development System

Module Descriptions
Output Operation (OUT_TYPE)

The Output Operation attribute specifies the operation mode of the
Output module.

Usage: Valid values include Buffer Only, Register Only, Tristate, and
Register with Tristate.

If you select an output option with a register, the Output Clock pin is
automatically added. The Output Clock Enable pin is optional.

If you select an output option with a tristate, the Output Enable pin is
automatically added.

Async. Val (ASYNC_VAL)

The Asynchronous Value attribute controls the power-on state of the
registers.

Usage: This attribute applies to the registered I/O modules only. For
dual-register modules, you can specify the asynchronous value for
either or both registers by using any of the following formats:

IN:15

OUT:31

OUT:31.IN:15

where OUT is the Output register and IN is the Input register.

OE Phase (OE_PHASE)

This attribute determines whether the signal on the P pin in a tristate
Output module is tristated when the Output Enable is High or Low.

Usage: This attribute can only be set by the user for the XC9500XL
device family. The attribute is set to Active High for the XC9500
family and to Active Low for all other families by default.
LogiBLOX Guide 4-47

LogiBLOX Guide
MEMORY
The Memory module allows you to create ROM, RAM, Synchronous
RAM, and Dual Port RAM modules. These modules store informa-
tion in the form of words in a tabular fashion. Use these modules for
the following purposes.

• Store information from a user-edited memory file (.mem file) and
access that information as needed (ROM)

• Store dynamic information into memory and then read that infor-
mation from memory (RAM)

Figure 4-17 The Memory Module

ROM — Read-Only Memory Modules
The Read-Only Memory (ROM) module is a memory for storing
information from a user-edited memory file (.mem file). The word
storage capacity of the ROM is called the depth. The depth must be a
multiple of 16, ranging from 16 to 256 words.

The size of the data stored within the ROM ranges from 1 through 64
bits. The largest word stored in the ROM should be within the bound-
aries set by the bus width of the Data Out pin, DO.

To read a word from the ROM, specify a binary number on the
Address bus that matches the location of the desired word. The data
is immediately output at the Data Out pin. Only addressable loca-
tions that are within the valid range will be synthesized.
4-48 Xilinx Development System

Module Descriptions
Figure 4-18 The ROM Module Symbol

Input Pins

A

A binary value on the Address port selects a word by pointing to the
ROM location in which that word is stored. The Data Output port
displays the selected word.

Connections: The Address input is always specified.

Output Pins

DO

The Data Output port reflects the word currently addressed in the
ROM.

Connections: The Data Output pin is always specified.

Attributes

Memory Depth (DEPTH)

The Depth attribute defines the number of locations that can be
addressed in the ROM module or the number of words that can be
stored in the ROM. The depth must be a multiple of 16 and range
from 16 to 256 words.

Mem File (MEMFILE)

The Memory File attribute references the name of a memory defini-
tion file that defines the contents of the ROM. The name of the
memory definition file must have a .mem file extension. The exten-

X7382

A

DEPTH =
MEMFILE =
TRIM =

DO

ROM
LogiBLOX Guide 4-49

LogiBLOX Guide
sion can be omitted from the Memfile attribute. If the memory defini-
tion file exists, it will be read; otherwise, you can generate a Memfile
template file from LogiBLOX by clicking on the Edit button. The
template file created by LogiBLOX does not contain correct data and
must be edited before you can use it. Refer to the “Memory Defini-
tion File Syntax” section for more information.

Usage: The Memory File attribute must be specified for ROM
modules.

Multiplexer Style (STYLE)

The Multiplexer Style attribute determines the way multiplexers are
built in memory modules. These multiplexers use address lines as
select lines and choose among the outputs of the memory distributed
in the CLBs. The Wired AND style uses Tristate buffers and long
lines. The Normal Gates style uses CLB logic functions to implement
the multiplexers.

Usage: Choose between the Maximum Speed, Normal Gates, and
Wired AND values. If Memory Depth is set less than 64, the
Maximum Speed value defaults to Normal Gates. If Memory Depth is
set to 64 or more, Maximum Speed defaults to Wired AND.

Use RPMs (USE_RPM)

The Use RPMs attribute determines whether the function generators
that comprise the ROM maintain a constant relative location to each
other. This attribute applies to the XC4000 and XC5200 device fami-
lies only.

Usage: Use RPMs can be set to True or False. The default is False.

Trim (TRIM)

Empty data columns are preserved by the software unless the Trim
attribute is set to TRUE. If the software trims empty ROM primitives,
it may yield a smaller design. The trade-off of having a smaller design
is that you may not modify the contents of the ROM without
rerouting the design. The default value is FALSE.
4-50 Xilinx Development System

Module Descriptions
RAM — Random-Access Memory Modules
Random-Access Memory modules are used to store dynamic data.
There are three different types of RAM modules: level-sensitive
Asynchronous RAMs, Synchronous RAMs, and Dual Port RAMs.

RAM modules are not supported for the XC3000, XC5200, and
XC9500 device families.

There are two ways of using RAM modules. One way consists of
storing data dynamically by addressing locations from the Address
bus pin and writing binary data furnished by the Data Input port into
these locations. The other way consists of initializing the RAM
module’s contents at power-up by specifying the Memfile attribute.
You can access the latter information the same way as you would in a
ROM module. Furthermore, you can overwrite the information by
writing new data in the RAM locations.

Storing Data Dynamically

To store a new word into the RAM and read it out on the output port,
the address of the location to be written is placed on the address bus
pin (A), the data to be written is placed on the data bus pin (DI), and
Write Enable is driven from low to high.

For Asynchronous RAM modules, when Write Enable goes High, the
data on the Data Input port is immediately stored into the currently
addressed location and read out at the Data Out port. For Synchro-
nous RAM and Dual Port RAM modules, the Write Enable Clock
must also go High. Once a word is stored in the RAM, you can re-
access it from the Address pin independently of the Write Enable
signal.

If Write Enable stays Low while a value appears at the Data In port,
this data is ignored. Only values that occur on a rising Write Enable
pulse can be written. The data on the Address bus and on the Data
Input port cannot change for the duration of the Write Enable pulse.

Initializing RAM Contents

In XC4000 devices, the contents of the RAM module are undefined at
power-up. In XC4000E and XC4000EX devices, the power-on state of
the RAM can be controlled by using a Memory Definition File (.mem
file).
LogiBLOX Guide 4-51

LogiBLOX Guide
You can use the RAM module like a ROM to store a memory defini-
tion file that fits the depth of the module. The depth of the module
refers to the word storage capacity of the RAM. The depth must be a
multiple of 16, ranging from 16 to 256 words.

The width of the words contained in the memory definition file must
also be within the width of the RAM module. The width of the RAM
module ranges from 1 through 64 bits. The width of the module is set
by the bus width of the Data Out pin.

You may overwrite the RAM locations using the Data Input pin to
feed new data into the locations addressed by the Address bus.

Level-Sensitive Asynchronous RAM Modules (RAM)

Figure 4-19 The RAM Module Symbol

Each time the Write Enable pin goes High, the data on the Data Input
is stored into the addressed RAM location when Write Enable is
active High. In addition, to prevent new data from overwriting the
current location, there is a time frame during which the data on the
Address and the Data In pins cannot change: when the Write Enable
pin is Low before going High and triggering a write operation, and
when the Write Enable goes Low again immediately after going
High. These states are referred to as the Setup and Hold times respec-
tively. The setup and hold time constraints on the Address and Data
Input pins with respect to the Write Enable pulse cause the Level-
Sensitive RAM module to have lower bandwidth than the synchro-
nous RAM modules.

DI

WR_EN

A

DO

X7383

RAM

DEPTH =

MEMFILE =
4-52 Xilinx Development System

Module Descriptions
Synchronous RAM Modules (SYNC_RAM)

Figure 4-20 The Synchronous RAM Module Symbol

This module is identical to the Level-Sensitive RAM except that
writes to the RAM are synchronized to the Write Enable Clock. When
the Write Enable input is high and the Write Enable Clock goes from
low to high, the data on the Data Input pin is written to the location
specified by the Address input pin. The data on the Data Input pin
appears on the Data Output pin after it is written to the RAM. New
data appearing in the Data Input pin must wait for the next high on
the Write Enable pin and a low to high transition on the Write Enable
Clock before it is written.

This module is faster than a Level-Sensitive RAM due to the synchro-
nous nature of the write, which allows pipelining of data on the Data
Input pin.

Dual Port RAM Modules (DP_RAM)

Figure 4-21 The Dual Port RAM Module Symbol

DI

WR_CLK

WR_EN

A

DO

X7384

SYNC_RAM

DEPTH =

DI

WR_CLK

WR_EN

A

DP_RAM

DPRA

X7385
DEPTH =

SPO

DPO
LogiBLOX Guide 4-53

LogiBLOX Guide
The Dual Port RAM module includes two independent pairs of
Address and Data Output pins that share access to the same region of
memory, allowing simultaneous read and write access to it. Writes are
synchronized by the Write Enable Clock input.

Input Pins

All input pins of the respective RAM modules are always specified.

DI

The Data Input port determines the contents as well as the data that
appears at the Data Output port that will be stored into the RAM
when the Write Enable input goes High. Only the data currently at
the Data Input port is read when Write Enable goes High.

Connections: The Data Input port is always specified.

WR_EN

For Asynchronous RAM modules, when the Write Enable input is
High, the data on the Data Input port is written into the currently
selected address location. When Write Enable is Low, no new data
can be written into the RAM. For Sync_RAM and DP_RAM modules,
a High on this input must be accompanied by a rising edge of the
Write Enable Clock input to store the data into the memory location.

Connections: Write Enable is always specified.

WR_CLK

When the Write Enable Clock input goes High, the data on the Data
Input port is stored into the currently addressed location and imme-
diately read out at the Data Output port.

Connections: This input is available and required for the SYNC_RAM
and DP_RAM modules only. For a valid write operation, the Write
Enable input must first go High before this input goes High.

A

This input bus addresses a location in the RAM. Its purpose is
twofold: 1) it selects the location whose contents are to appear on the
Data Output port, or 2) it selects the location where new data is
written whenever the Write Enable input goes High (for the level-
sensitive RAM) or when the Write Enable Clock goes high while the
4-54 Xilinx Development System

Module Descriptions
Write Enable input is High (for SYNC_RAM and DP_RAM). The
width of the Address port is always log2 Depth.

Connections: The Address input is always specified.

DPRA

The Dual Port Read Address port is used for the secondary address
line in a dual port RAM.

Connections: The Dual Port Read Address input is available for Dual
Port RAM modules only. It is always specified.

Output Pins

DO

The Data Output port displays the contents of the location being
accessed. The width of the Data Output port is set by the Bus Width
attribute.

Connections: The Data Output pin is always specified. On DP_RAM
modules this output port is called Single Port Output.

SPO

The Single Port Output is used to output the data that appears on the
Data Input pin whenever the Write Enable Clock is High.

Connections: This output is only used by DP_RAM modules. It is
always specified.

DPO

The Dual Port Output is used to output the data that resides at the
address specified by the Dual Port Read Address (DPRA) input of the
DP_RAM module. The value of DPO can change independently of
the Write Enable Clock going High.

Connections: This output is used only by DP_RAM modules. It is
always specified.
LogiBLOX Guide 4-55

LogiBLOX Guide
Attributes

Memory Depth (DEPTH)

The Depth attribute defines the number of words that can be stored in
the RAM module. The depth must be a multiple of 16 and range from
16 to 256 words. The default value is 16. The width of the address
port is always log2 Depth.

Mem File (MEMFILE)

The Memory File attribute references the name of a Memory Defini-
tion File that defines the contents of the RAM. The name of the
Memory Definition File must have a .mem file extension. The exten-
sion can be omitted when specifying the Memfile attribute. If the
Memory Definition File exists, it will be read; otherwise, you can
generate a template file from LogiBLOX by clicking on the Edit
button. The template file created by LogiBLOX does not contain valid
data and must be edited before you can use it.

Usage: The Memory File attribute is optional for RAM modules.

Multiplexer Style (STYLE)

The Multiplexer Style attribute determines the way multiplexers are
built in memory modules. These multiplexers use address lines as
select lines and choose among the outputs of the memory distributed
in the CLBs. The Wired AND style uses Tristate buffers and long
lines. The Normal Gates style uses CLB logic functions to implement
the multiplexers.

Usage: Choose between the Maximum Speed, Normal Gates, and
Wired AND values. If Memory Depth is set less than 64, the
Maximum Speed value defaults to Normal Gates. If Memory Depth is
set to 64 or more, Maximum Speed defaults to Wired AND.

Use RPMs (USE_RPM)

The Use RPMs attribute determines whether the function generators
that make up the RAM maintain a constant relative location to each
other. This attribute applies to the XC4000 and XC5200 device fami-
lies only.

Usage: Use RPMs can be set to True or False. The default is False.
4-56 Xilinx Development System

Module Descriptions
Memory Definition File Syntax
A memory definition file, or MEMFILE, consists of two parts — the
Header, which describes characteristics of the ROM or RAM module,
and the Data portion, which defines the contents of the memory
module. The beginning of the Data portion of the file is delimited by
the DATA keyword. The memory definition file is not case-sensitive.

Memory Definition File Header

The Header defines characteristics of the memory module, such as its
size and radix. Each of the following keywords must exist on a single
line in the MEMFILE. Continuation characters are not allowed in the
Header.

Depth (optional)

The Depth attribute defines the depth, in words, of the module. The
Depth is specified in decimal notation, unless a radix definition
precedes it. The value specified must match the value of the Memory
Depth attribute.

depth memory_depth

Width (optional)

The Width definition sets the width of the memory, which is the
number of bits in each word. The width must be a positive, non-zero,
integer. The Width is specified in decimal, unless a radix definition
precedes it. The value specified must match the value of the Bus
Width attribute.

width memory_width

Default

The Default definition sets the value of all memory locations that are
not specified in the MEMFILE Data section. If no default value is
specified, all unspecified locations are set to zero. The default defini-
tion uses the current radix, which is 10, unless a radix definition
precedes it.
LogiBLOX Guide 4-57

LogiBLOX Guide
Radix

This keyword defines the radix (or base) of the numbers following
each radix definition in the MEMFILE. Multiple radix definitions can
appear in the header and affect all non-radixed numbers up to and
including the next Radix definition. A radix definition affects the
MEMFILE Header section and the MEMFILE Data section.

The default radix for the MEMFILE Header section is 10. The default
radix for the MEMFILE Data section is 16.

radix integer

Comments

Comments must be preceded by a semicolon. You can start your
comment anywhere on the line. A semicolon at the end of a line
generates a blank comment because it does not affect the next line of
text.

; commentstring

Example

The following example illustrates the syntactical concepts defined
above:

; The default radix is 10
Default 10; Defines the default ROM contents = 1010=10
Radix 16; Re-defines the default radix = 1610=16
Depth 10; Defines the depth = 1016=16
Radix 10; Re-defines the default radix = 1016=16
Width 12; Defines the width = 1216=18

Memory Definition File Data Section

The data values specified in the MEMFILE Data Section define the
contents of the memory. Data values are specified sequentially, begin-
ning with the lowest address in the memory, as defined. The address
of a data value may be specified. The default radix of the data values
is 16. If more than one radix definition is given in the MEMFILE
Header Section, then the last such definition is the radix used in the
Data Section.

data data values

Data values may be separated by commas, white space, or both.
4-58 Xilinx Development System

Module Descriptions
Addressing

An address is specified as follows.

address:

For example, the following definition defines a 16-word memory
with the contents 6, 4, 5, 5, 2, 7, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, starting at
address 0. Note that the contents of locations 2, 3, 6, and 8 through 15
are defined via the default definition. Two starting addresses, 4 and 7,
are given.

depth 16
default 5
data 6,4,
4: 2, 7,
7: 3

ASCII Data

You can specify ASCII data values by enclosing a string of characters
in double quotes. You can include a double quote by prefacing the
character with a backslash (\). A MEMFILE may contain both ASCII
strings and numeric values. Each ASCII character gets assigned to
one address location.

For instance, the following defines the contents of 16 memory loca-
tions. Two ASCII BEL characters (7) are defined here — one before the
“R” and one after the two “l” characters.

data 7, "Ring the bell", 7, 0.

Differences Between the LogiBLOX Memfile and the
Memgen/XBLOX Memfile

LogiBLOX imposes some restrictions on the memfiles that were
previously supported by Memgen or X-BLOX 5.2.1:

• The LogiBLOX memfile does not allow a PART declaration.

• The radix of the data section is set by the RADIX command in the
data section and cannot be changed. The radix cannot be over-
ridden by using notation such as 2#1101#.

• The characters ‘#’ and ‘_’ are not allowed in the memfile.

• The depth value must be a multiple of 16. The valid range is 16 to
256 words.
LogiBLOX Guide 4-59

LogiBLOX Guide
MULTIPLEXER
Select the type of multiplexer you want: Type 1 or Type 2. Type 1
includes one input bus and one select line. Type 2 includes at least
two input buses and one select line.

Figure 4-22 The Multiplexer Module

Type 1 (One input bus)

The Type 1 Multiplexer module routes one bit of an n-bit Input to the
Output under the control of the Select input port, where the value of
n is determined by the width of the input port. The Select input
encoding can be binary or one-hot.
4-60 Xilinx Development System

Module Descriptions
Figure 4-23 The Type 1 Multiplexer Logic Diagram

Type 2 (Two to eight input buses)

The Type 2 Multiplexer module routes one of two or more Input
Buses to the Output Bus under the control of the Select input port.
The Select input encoding can be binary or one-hot.

Figure 4-24 The Type 2 Multiplexer Module

X7387

M [1]

M [0]

s[n-1]
.
.
.

s[0]

s[2n-1]
.
.
.

s[0]

•
•

M[2 -1]
n

O

ONE-HOTBINARY
LogiBLOX Guide 4-61

LogiBLOX Guide
Figure 4-25 The Type 2, 2-input Multiplexer Logic Diagram

Input Pins

M

M is the Mux input bus data port of the Type 1 Multiplexer. The
width of this bus is specified via the Bus Width attribute.

Connections: The Mux input is always specified on Type 1 Multi-
plexers.

MA through MH

MA, MB, ..., MH are the input bus data ports of the Type 2 Multi-
plexer. For a 3-input bus module with binary encoded Select, MA is
selected when the Select input evaluates to zero, MB is selected when
the Select input evaluates to 1, and MC is selected when the Select
input evaluates to 2. If the value of the Select input is 3, the Multi-
plexer outputs are all High.

X7389

O [n-1]

MA [n-1]

MB [n-1]

•

O [2]

MA [2]

MB [2]

O [1]

MA [1]

MB [1]

O [0]

MA [0]

MB [0]

•
•

S [1]
S [0]S

ONE-HOTBINARY

2 Inputs
4-62 Xilinx Development System

Module Descriptions
Connections: The MA and MB inputs are always connected on Type 2
Multiplexers. The other inputs are dependent on the value of the
INPUT_BUSES attribute. For example, if INPUT_BUSES=4, then MA,
MB, MC, and MD would be the input buses shown. The input and
output buses must have the same width. The maximum bus width is
64.

S

The Select input port chooses which input bus line is directed to the
Multiplexer output line. Depending on the encoding scheme, the
Select input can address more lines than are available on the input
bus.

Connections: The Select input is required. The Select input port is from
1 to 64 bits wide on a Type 1 Multiplexer. On a Type 2 Multiplexer, the
Select input port is from 1 to 8 bits wide, depending on the Select
encoding method.

Output Pins

O

The Multiplexer output line (for a Type 1 multiplexer) or Bus port (for
a Type 2 multiplexer) reflects the selected input bus port data. If the
selected input port is unavailable (out-of-range), the Multiplexer
outputs are High.

Connections: The output pin must be connected.

Attributes

Operation (OPTYPE)

The Operation attribute specifies the type of multiplexer module you
want: single-bus input or multiple-bus input.

Usage: Valid values are Type 1 (single-bus input) and Type 2
(multiple-bus input).

Style (STYLE)

Style defines the implementation style (area or speed preference).
LogiBLOX Guide 4-63

LogiBLOX Guide
Usage: For more information, see the “Implementation Styles”
section of the “Understanding Attributes” chapter.

Input Buses (INPUT_BUSES)

Use the Input Buses attribute to specify the number of input buses.
The number of buses can be any number in the range from 2 to 8.

Usage: This attribute only applies to Type 2 modules.

Encoding (ENCODING)

Use the Encoding attribute to specify the encoding scheme used to
represent the Select bus.

Usage: Valid values are Binary and One Hot.
4-64 Xilinx Development System

Module Descriptions
PAD
Connect a Pad module to an Input/Output module to simulate the
connection to a pin pad.

Figure 4-26 The Pad Module

Attributes

Operation (OPTYPE)

This attribute selects the type of I/O module to which you will
connect the Pad module. Valid values are Input, Output, and Bi-
Directional.

Pull-up/down Resistors (FLOAT_VAL)

This attribute is used to tie all the pads of a symbol to pullup or pull-
down resistors. If no external signal is driving an input pad or tristate
output pad, and it is not pulled up/down, it will float. You can use a
value of Pull Up to drive a value that tends to 1 or a value of Pull
Down to drive a value that tends to 0.

This attribute is grayed out for the XC9500 and XC9500XL families.

Usage: This attribute is optional and applies only to Input or tristat-
able Output modules. By default, no resistor is specified.

See the XC4000E and XC4000EX sections in The Programmable Logic
Data Book for timing details.
LogiBLOX Guide 4-65

LogiBLOX Guide
Delay (DELAY)

By default, a delay, representing the internal IOB delay block, is used.
The delay block ensures that the data path from Pad to register, also
known as the setup time, is always longer than the external clock
delay.

Using the IOB delay block prevents external data from overwriting
the data currently at the Data Input port of the register before that
data has been clocked into the register. Delaying the source data
makes it unnecessary to specify a hold time to slow down the
external data.

This attribute is grayed out for the XC9500 and XC9500XL families.

Usage: This attribute is only valid for modules that include an input
register. The default is to use a Delay block. Select from the following
values.

• (none): This is the default. Use a Delay block to slow down the
time it takes for the signal to go from the device pin (Pad pin) to
the register data input pin.

• Medium Delay: This is only applicable to XC4000EX devices. It is
a partial delay block within the IOB. See The Programmable Logic
Data Book for more details.

• No Delay: Bypass the Delay block. If you get rid of the Delay
block, ensure that the external hold time is adequate. Refer to The
Programmable Logic Data Book for more information.

Slew Rate (SLEWRATE)

The slew rate of each output buffer is, by default, reduced in order to
minimize power bus transients when switching non-critical signals.
This reduces ground bounce when all outputs are being transitioned
at the same time. See The Programmable Logic Data Book for more
details.

This attribute is grayed out for the XC9500 and XC9500XL families.

Usage: This attribute is only valid for modules that include an output
register. Set the Slew Rate to Fast to ensure that the fastest rate avail-
able is used for the slew rate of a critical output. The default value is
Slow.
4-66 Xilinx Development System

Module Descriptions
Pad Loc (PAD_LOC)

The Pad Loc attribute specifies the pin location for an I/O pad.

Unlike other LogiBLOX attributes, the LogiBLOX Pad Loc setting can
be overridden by location attributes specified on the LogiBLOX
symbol in the schematic.

Usage: To assign a location to a specific bit, precede the location with a
bit identifier. You can assign multiple bits by using a period as a sepa-
rator. For example, with a bus width of 8 bits, you could have the
following assignment:

PAD_LOC=0:P44.2:P45.7:P46

This specification assigns bit 0 to pad 44, bit 2 to pad 45, and bit 7 to
pad 46.

Note: Commas will not work as separators between bit assignments.
LogiBLOX Guide 4-67

LogiBLOX Guide
SHIFT REGISTER
The Shift Register module is multi-functional, with predefined asyn-
chronous or synchronous pre-load, and dynamic synchronous
parallel load.

Figure 4-27 The Shift Register Module

The Shift Register can be synthesized in any one of the following
configurations. For examples, refer to the figures at the end of this
section.

• Serial-in/serial-out shift register (FIFO or LIFO)

• Serial-in/parallel-out shift register

• Parallel-in/parallel-out shift register

• Parallel-in/serial-out shift register

You can also select the shift style of the register. The shift styles
include the following.

• Logical — Data is shifted either left or right. For a left shift, the
value specified by LS_IN is shifted into the LSB position. For a
4-68 Xilinx Development System

Module Descriptions

LS_OUT

ASYNC_VAL LSB

Qprev LSB

SYNC_VAL LSB

D_IN LSB

Qprev[LSB+1]

LS_IN
right shift, the value specified by MS_IN is shifted into the MSB
position.

• Circular — Data is shifted in a circular pattern. For a left shift, the
MSB is shifted into the LSB position. For a right shift, the LSB is
shifted into the MSB position.

• Arithmetic — Data is shifted left to effectively multiply it by 2 or
shifted right to effectively divide it by 2. For a left shift, a value of
0 is stuffed into the LSB. For a right shift, the Sign bit is extended
if the data is signed. If the data is unsigned, a value of 0 is stuffed
into the MSB.

Figure 4-28 The Shift Register Data Flow Diagram

Table 4-6 Universal Shift Register Truth Table (Logical Style)

RT/LFT Load
Sync.

Control
Clock

Enable
Clock

Async.
Control

Q_OUT MS_OUT

X X X X X H ASYNC_VAL ASYNC_VAL MSB

X X X L ↑ L Qprev Qprev MSB

X X H H ↑ L SYNC_VAL SYNC_VAL MSB

X H L H ↑ L D_IN D_IN MSB

H L L H ↑ L Qprev/2 MS_IN

L L L H ↑ L Qprevx2 + LS_IN Qprev [MSB-1]

D Dn o

LS_IN

LS_OUT

MS_IN

MS_OUT

n o

• • •

• • •

X7392

Q QQ1

1D
LogiBLOX Guide 4-69

LogiBLOX Guide
Input Pins

D_IN

The Parallel Data from the Data Input port is loaded into the register
during a Parallel Load operation on an active Clock transition.

Connections: The Data Input port is optional. When it is specified, the
Load pin is also specified.

Load (LOAD)

When the Parallel Load input is High, the data on the Data Input port
is loaded into the Shift register on the next active Clock transition.
When the Load input is Low, the counter responds to the Right/Left
control input.

Connections: The Load input is automatically specified when the Data
Input port is specified.

MSB Serial Input (MS_IN) and LSB Serial Input (LS_IN)

The MSB Serial Input port is only valid for a Logical style Shift
Register when the shift direction is to the right. It allows you to
specify a value to be stuffed into the MSB when a right shift has taken
place. If no value is specified, a value of 0 is used.

The LSB Serial Input port is only valid for an Arithmetic or Logical
style Shift Register when the shift direction is to the left. It allows you
to specify a value to be stuffed into the LSB when a left shift has taken
place. If no value is specified, a value of 0 is used.

Connections: The MSB Serial Input and LSB Serial Input ports are
optional.

Right/Left (RIGHT_LEFT)

The Right/Left Shift control input, when High, enables the left-to-
right shifting of data (from MSB to LSB); when Low, it enables the
right-to-left shifting of data (from LSB to MSB). Inverting this input
reverses the active High/Low definition, but does not change the
MSB/LSB definitions or the shift direction.

Connections: The Right/Left pin is automatically specified when the
Operation attribute is set to Right/Left.
4-70 Xilinx Development System

Module Descriptions
Async. Control (ASYNC_CTRL)

The Asynchronous Control input is a level-sensitive input. When this
input is High, it loads the value assigned to the Asynchronous Value
attribute into the shift register independently of the Clock and Clock
Enable.

Connections: If you specify the Asynchronous Control pin, you can
assign a value to the Asynchronous Value attribute. By default, the
Asynchronous Value is assigned a value of zero if it is not specified.
The Asynchronous Value attribute may also be specified to define the
accumulator register’s power-on value.

Sync. Control (SYNC_CTRL)

Whenever the Synchronous Control and Clock Enable inputs are
High, the value assigned to the Synchronous Value attribute is loaded
into the shift register on the next active clock transition. This input
has priority over the Load input if both pins are High at the same
time.

Connections: If you specify the Synchronous Control pin and do not
assign a value to the Synchronous Value attribute, a default value of 0
is used and a warning is issued.

Clock Enable (CLK_EN)

When the Clock Enable input is High, the enabled load and shift
actions take place on the next active Clock transition. When Clock
Enable is Low, the register contents are unaffected by the Clock.

Connections: Clock Enable is optional. Use this input when you need
to disable the clock temporarily. If you do not use the Clock Enable
input, the Clock is always enabled.

Clock (CLOCK)

If the Clock Enable input is High, the rising clock edge either loads
the selected data into the register or performs a shift on the rising
(positive) edge. The falling (negative) clock edge can be used by
connecting an inverter to the Clock input.

Connections: The Clock input pin is always specified.
LogiBLOX Guide 4-71

LogiBLOX Guide
Output Pins
At least one of the output pins must be specified.

Q_OUT

The Parallel Data output port contains the current value of the
register.

Connections: If you do not specify this signal, at least one of the MSB
Output or LSB Output pins must be specified.

MSB Output (MS_OUT)

The MSB serial-data (left-shift) output port is used for shifting or for
parallel-to-serial data conversions. MS_OUT is equal to the MSB of
the shift register.

Connections: This pin is optional.

LSB Output (LS_OUT)

The LSB serial-data (right-shift) output port is used for shifting or
parallel-to-serial data conversions. LS_OUT is equal to the LSB of the
shift register.

Connections: This pin is optional.

Attributes

Operation (OPTYPE)

Use the Operation attribute to specify one of the three possible types
of shift registers: Right, Left, or Right/Left. If you select Right/Left, a
Right/Left pin is automatically added to the module.

Shift Type (SHIFT_TYPE)

The shift type can be chosen from the values listed in the following
table.
4-72 Xilinx Development System

Module Descriptions
Usage: Shift Type defines the operation mode of the module: arith-
metic, circular, or logical.

Encoding (ENCODING)

You can use this parameter to define the encoding scheme of the data
type of the Shift register. Valid values are Signed and Unsigned.

Async. Val (ASYNC_VAL)

The value of the Asynchronous Value attribute defines the power-on
contents of the shift register. It also defines the value to which the
register returns on assertion of the Asynchronous Control pin.

Usage: Asynchronous Value is always available. You can define it
whether or not you use the Asynchronous Control pin. If you do not
specify a value, the default value is zero.

Sync. Val (SYNC_VAL)

The Synchronous Value attribute defines the value to which the shift
register returns on assertion of the Synchronous Control pin.

Usage: Synchronous Value is available only if you specify the
Synchronous Control pin.

Table 4-7 Shift Types

Type Behavior of LS_IN and MS_IN pins

Arithmetic The MSB is the sign bit. MS_IN may not be specified.

Circular MS_IN and LS_IN are not allowed.

Logical Shifts in a ‘0’ at the MSB during a right-shift when
MS_IN is not specified. Shifts in a ‘0’ at the LSB during
a left-shift when LS_IN is not specified.
LogiBLOX Guide 4-73

LogiBLOX Guide
Figure 4-29 Typical Serial-in/Parallel-out Right Shift Register

Figure 4-30 Typical Serial-in/Serial-out Right Shift Register

X7393

MS_IN

ASYNC_CTRL

SYNC_CTRL

CLOCK

Q_OUT [7:0]

ASYNC_VAL = 4#20#

SYNC_VAL = 4#33#

ENCODING = UNSIGNED

OPTYPE = RIGHT

SHIFT_TYPE = LOGICAL

SHIFT

SERIAL_DATA_IN

ASYNC_CONTROL

SYNC_CONTROL

CLOCK

PARALLEL_DATA_OUT [7:0]

MS_IN

ASYNC_CTR

SYNC_CTRL

CLOCK

SH

SERIAL_DATA_IN

ASYNC_CONTROL

SYNC_CONTROL

CLOCK
4-74 Xilinx Development System

Module Descriptions
Figure 4-31 Typical Parallel-in/Serial-out Right Shift Register

X7395

D_IN [31:0]

LOAD

ASYNC_CTRL

SYNC_CTRL

CLOCK

LS_OUT

ASYNC_VAL = 16#10#

ENCODING = UNSIGNED

OPTYPE = RIGHT

SYNC_VAL = 16#20#

SHIFT_TYPE = LOGICAL

SHIFT

LOAD_CONTROL

PAR_DATA_IN [7:0]

ASYNC_CONTROL

SYNC_CONTROL

SERIAL_DATA_OUT

CLOCK
LogiBLOX Guide 4-75

LogiBLOX Guide
SIMPLE GATES
This section describes the generic bused gate functions of LogiBLOX.
Bused gate functions are defined as generalizations of the common
logic primitives: AND, INVERT, NAND, NOR, OR, XNOR, and XOR.
Except for the INVERT function, each of these can be implemented in
three different ways, depending on the number and type of inputs.

Figure 4-32 The Simple Gates Module

The following functions are described for the AND gate, but the same
bus expansion criteria apply to the other functions.

Type 1 AND gate: O = A0 • A1 •…• A(n-1)

Figure 4-33 Type 1 AND Gate: Symbol and Logic Diagram

A
O

STYLE =
INVMASK =
DECODEMASK =

X8020

A [0]

O
A [1]

A [n-1]

•
•
•

4-76 Xilinx Development System

Module Descriptions
Type 2 AND gate: On = A • Bn

Figure 4-34 Type 2 AND Gate: Symbol and Logic Diagram

Type 3 AND gate: On = An • Bn

Figure 4-35 Type 3 AND Gate: Symbol and Logic Diagram

You can use the inversions of these logic functions by connecting an
INVERT module to the outputs. You can also invert individual inputs
(active Low) by using the Inversion Mask attribute associated with
each module or specify which individual inputs will be active High
with the Decode Mask attribute. See the “Inverting and Decoding

A

B
O

STYLE =

INVMASK =

DECODEMASK =

X8021

A O [0]

B [0]

B [1]

B [n-1]

O [1]

O [n-1]

•
•
•

A

B
O

INPUT_BUSES =
STYLE =

X8022

O [n-1]A [n-1]

B [n-1]

O [1]A [1]

B [1]

O [0]A [0]

B [0]

•

•

•

LogiBLOX Guide 4-77

LogiBLOX Guide
Masks for Gated Modules” section of the “Understanding Attributes”
chapter for more information.

INVERT gate: On = Αn

Figure 4-36 INVERT gate: Symbol and Logic Diagram

Attributes

Logic Type (OPTYPE)

To select the type of logic, click on the radio button located under the
type of logic you want. The following descriptions use the AND
module for an example, but the logic applies to all of the Simple
Gates modules except the INVERT module.

• Type_1 (One input bus): The Type 1 AND module logically
ANDs the individual signals of an input bus of width (n) to
produce a single output signal, where (n) varies from 2-64 bits.

• Type_2 (One input net and one input bus): The Type 2 AND
module logically ANDs the individual signals of an input bus of
width (n) with a single input to produce an output bus of width
(n), where (n) varies from 2-64 bits.

• Type_3 (2-8 input buses): The Type 3 AND module logically
ANDs (m) input buses of width (n), where (m) varies from 2-8
buses and (n) varies from 2-64 bits. The output is a single bus of
width (n).

Usage: This attribute does not apply to the INVERT module.

X8019

OA

INVMASK =
DECODEMASK =

O [n-1]A [n-1]

O [1]A [1]

O [0]A [0]

•
•
•

4-78 Xilinx Development System

Module Descriptions
Gate Type (module)

Use this attribute to select the type of gate: AND, INVERT, NAND,
NOR, OR, XNOR, or XOR.

Input Buses (INPUT_BUSES)

Specifies the number of Input buses (m) of the module.

Usage: This attribute applies to Type 3 modules only. Its value must
be in the range 2-8.

Style (STYLE)

Style defines the implementation style (area or speed preference).

Usage: This attribute does not apply to the INVERT module. For more
information, see the “Implementation Styles” section of the “Under-
standing Attributes” chapter.

Inversion Mask (INVMASK)

A High level on this attribute inverts the input of the gate. See the
“Inverting and Decoding Masks for Gated Modules” section of the
“Understanding Attributes” chapter for more information.

Usage: This attribute does not apply to Type 3 modules.

Decode Mask (DECODEMASK)

A Low level on this attribute inverts the input value. See the
“Inverting and Decoding Masks for Gated Modules” section of the
“Understanding Attributes” chapter for more information.

Usage: This attribute does not apply to Type 3 modules.
LogiBLOX Guide 4-79

LogiBLOX Guide
TRISTATE BUFFER
The Tristate Buffer module synthesizes internal non-inverting tristate
buffers.

Tristate buffers are not supported for the XC9500XL family.

Figure 4-37 The Tristate Buffer Module

Inputs

I

The Input data port has the same width as the Output port.

Connections: The Input pin is always specified.

Output Enable (OE)

If the OE Phase attribute is Active Low, then when the Output Enable
input is Low, the Input data passes to the Output. When the Output
Enable is High, the Output is in high-impedance. If the OE Phase
attribute is Active High, then when the Output Enable input is High,
the Input data passes to the Output. When the Output Enable is Low,
the Output is in high-impedance.

The Output Enable input must be driven. OE Phase can be Active
High for the XC9500 and XC9500XL device families. To synthesize an
active-High Output Enable for other device families, add an inverter
to this line. This inverter is implemented within the internal tristate
buffer block.

Connections: The Output Enable pin is always specified.

Note: In the Unified Libraries this pin is labeled T (for Tristate) rather
than OE. Also, the bubble is present when OE Phase is Active Low
and is absent otherwise.
4-80 Xilinx Development System

Module Descriptions
Outputs

O

The Output port reflects the state of the Input port when the Output
Enable is Low. When the Output Enable is High, the Output is in
high-impedance. Although Tristate Buffer output ports can be tied
together, only one port at a time can be active.

Connections: The Output pin is always specified.

Attributes

Pull-up Resistors (FLOAT_VAL)

You can use this attribute to add pull-up resistors to Tristate Buffer
outputs that are connected to on-chip buses.

This attribute is not supported for the XC9500 family.

Usage: This is an optional parameter for this module. Use this
attribute to specify the number of pull-ups: Single or Double. If this
attribute is not specified, no pull-up is added. The double pull-up
resistor draws more power than a single resistor but supports faster
transition times. See The Programmable Logic Data Book for timing
details.

OE Phase (OE_PHASE)

This attribute determines whether the Input data passes to the
Output port when the Output Enable is High or Low.

Usage: This attribute can only be set by the user for the XC9500XL
device family. The attribute is set to Active High for the XC9500
family and to Active Low for all other families by default.
LogiBLOX Guide 4-81

LogiBLOX Guide
4-82 Xilinx Development System

Appendix A

LogiBLOX Versus X-BLOX/Memgen

LogiBLOX is a superset of both X-BLOX™ and Memgen. For an HDL
flow, the methodology is the same; LogiBLOX generates the HDL
template to instantiate a module.

For a schematic design flow, the LogiBLOX design rules are much
simpler than the X-BLOX design rules:

• Bus size: In an X-BLOX design, data type and bus width of a
module can be specified at a single point in a data path. During
module expansion, X-BLOX propagates the information through
the entire data path.

Each LogiBLOX symbol is already sized with the bus_width
attribute. The results of this difference are:

a) BUS_DEF, CAST, SLICE, ELEMENT, and BUS_IFnn are no
longer needed on a LogiBLOX schematic. The bus_width and
encoding of the LogiBLOX module are implicitly defined.

b) The bus connected to the LogiBLOX symbol should be
labeled with size information as a standard schematic bus,
that is, Datain[7:0] in Viewlogic. One of the main benefits of a
sized module is that data propagation during module expan-
sion is eliminated, which decreases the LogiBLOX implemen-
tation run time.

• The differences between the .mem file of LogiBLOX and the
.mem file of Memgen or of the PROM, SRAM, and DPRAM
symbols are as follows:

a) The LogiBLOX memfile does not allow PART declaration.

b) The radix of data section is determined by the RADIX
command. It cannot be overridden by 2#1101#, for example.

c) '#' and '_' are disallowed.
 LogiBLOX Guide — 2.1i A-1

LogiBLOX Guide
d) The depth value should be a multiple of 16; the maximum
value is 256.

• X-BLOX can perform global design optimization such as imple-
menting flip-flops in IOBs and inserting global buffers. This
process, which was run-time consuming, is bypassed in Logi-
BLOX. (The MAP program has the ability to perform this optimi-
zation.) One of the consequences is the X-BLOX Inputs, Outputs
and Bidir_IO symbols are replaced by LogiBLOX PAD and I/O
modules. The replacement allows you to address a complex IO
configuration.

• The symbol attributes are mostly identical for both LogiBLOX
and X-BLOX. Some have changed such as:

LOC[0] = P19, LOC[1]=P20

becomes

PAD_LOC = 0:P19.1:P20

The constraints (L, LT, TL, T, TR, RT, R, RB, BR, B, BL, LB) are no
longer valid for the I/O modules.
A-2 Xilinx Development System

	About This Manual
	Additional Resources
	Manual Contents

	Conventions
	Typographical
	Online Document

	Introduction
	What is LogiBLOX?
	Why Use LogiBLOX?
	Program Inputs and Outputs
	Schematic Design Flow
	HDL Design Flow
	Module-Instantiation Tools

	Program Configuration

	Getting Started
	Starting LogiBLOX
	Getting Help
	Configuring Your Program
	Configuration Files
	The logiblox.ini File
	Module Information

	Setup Window
	Vendor Panel
	Project Directory Panel
	Device Family Panel
	Options Panel
	Control Buttons

	User Preferences Window

	Adding a Module to Your Design
	Choosing a Module
	Creating a Module
	Module Selector Window Options

	Editing a LogiBLOX Module
	Including the Module in the Design
	Log Window
	Connecting the Modules
	Schematic Design
	HDL File

	Changing a Module
	Schematic Module
	Copying Modules
	Copying Modules from Another Design
	HDL Module

	Understanding Attributes
	Data Values
	Implementation Styles
	Types of Modules
	Types of Styles
	ALIGNED, ALIGNED RPM, UNALIGNED, and UNALIGNED RPM
	CASCADE
	D-TYPE
	EDGE DECODE
	FAST 3KA
	F5_MUX
	LATCHES
	MAXIMUM SPEED
	MINIMUM AREA
	NORMAL GATES
	RIPPLE CARRY
	TREE
	WIRED AND

	Inverting and Decoding Masks for Gated Modules
	Type 1 Modules: One Input Bus
	Type 2 Modules: One Input Bus and One Input Signal
	INVERT Module

	Synchronous and Asynchronous Control
	Power-up Reset and Initialization

	Location Attributes
	OE Phase
	Constraining LogiBLOX Modules
	Constraining LogiBLOX Modules in Schematics
	Constraining LogiBLOX Modules in a UCF File

	Module Descriptions
	ACCUMULATOR
	Input Pins
	Output Pins
	Attributes

	ADDER/SUBTRACTER
	Input Pins
	Additional Input Pins for Registered Modules

	Output Pins
	Additional Output Pins for Registered Modules

	Attributes
	Additional Attributes for Registered Modules

	CLOCK DIVIDER
	Input Pins
	Output Pins
	Attributes

	COMPARATOR
	Input Pins
	Output Pins
	Attributes

	CONSTANT
	Output Pins
	Attributes

	COUNTER
	Input Pins
	Output Pins
	Attributes
	Counter Encoding Features and Selection Criteria
	Cascading Counters

	DATA REGISTER
	Input Pins
	Output Pins
	Attributes

	DECODER
	Input Pins
	Output Pins
	Attributes

	INPUT/OUTPUT
	Input Pins
	Input Module
	Registered Input Module
	Output Module
	Registered Output Module

	Output Pins
	Input Module
	Registered Input Module
	Output Module

	Attributes

	MEMORY
	ROM — Read-Only Memory Modules
	Input Pins
	Output Pins
	Attributes

	RAM — Random-Access Memory Modules
	Storing Data Dynamically
	Initializing RAM Contents
	Level-Sensitive Asynchronous RAM Modules (RAM)
	Synchronous RAM Modules (SYNC_RAM)
	Dual Port RAM Modules (DP_RAM)
	Input Pins
	Output Pins
	Attributes

	Memory Definition File Syntax
	Memory Definition File Header
	Memory Definition File Data Section
	Differences Between the LogiBLOX Memfile and the Memgen/XBLOX Memfile

	MULTIPLEXER
	Input Pins
	Output Pins
	Attributes

	PAD
	Attributes

	SHIFT REGISTER
	Input Pins
	Output Pins
	Attributes

	SIMPLE GATES
	Attributes

	TRISTATE BUFFER
	Inputs
	Outputs
	Attributes

	LogiBLOX Versus X-BLOX/Memgen

