FO un d atl on Schematic-Based Designs
Serles 21' In_ HDL-Based Designs
Depth

Tutorials Functional Simulation

Design Implementation

Timing Simulation

Foundation Series 2.1i In-Depth Tutorials Printed in U.S.A.

Foundation Series 2.1i In-Depth Tutorials

& °
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

&

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, QPro, RealPCI, RealPCl 64/66, Selectl/O, Select-RAM, Select-RAM+, Smartguide,
Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock,
VersaRing, Virtex, WebLINX, XABEL, XACT step, XACTstep Advanced, XACT step Foundry, XACT-Floorplanner,
XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation
Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277, 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704, 5,329,174, 5,329,181,
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691, 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154, 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377, 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021,
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414, 5,481,206; 5,483,478; 5,486,707,
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097, 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384, 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001, 5,559,751, 5,561,367, 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051, 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424, 5,600,263; 5,600,264; 5,600,271; 5,600,597
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021, 5,617,041; 5,617,327; 5,617,573; 5,623,387,
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851, 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913, 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441, 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197,
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484, 5,726,584, 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974, 5,744,979; 5,744,995, 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604, 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564, 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313, 5,784,577, 5,786,240; 5,787,007; 5,789,938; 5,790,479;

Xilinx Development System

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004, 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774, 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901,
5,838,954, 5,841,296, 5,841,867, 5,844,422; 5,844,424, 5,844,829; 5,844,844, 5,847,577, 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.

Foundation Series 2.1i In-Depth Tutorials

Foundation Series 2.1i In-Depth Tutorials

Xilinx Development System

Preface

About the In-Depth Tutorials

These tutorials give a description of the features and additions to
Xilinx’s newest product—Foundation 2.1i. The primary focus of this
guide is to show the relationship between the design entry tools and
the design implementation tools.

This guide should be used as the initial learning tool for designers
who are unfamiliar with the features of the Foundation software.

Additional Resources

For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers Current listing of solution records for the Xilinx software tools
Database Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application Descriptions of device-specific design techniques and approaches
Notes http://support.xilinx.com/apps/appsweb.htm

Foundation Series 2.1i In-Depth Tutorials

Foundation Series 2.1i In-Depth Tutorials

Resource

Description/URL

Data Book

Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals

Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips

Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Quick Start Guide Contents

This guide covers the following topics.

Chapter 1, “Schematic-Based Design,” explains many different
facets of a schematic-based Foundation design flow using a
design of a runner’s stopwatch called “Watch”. This chapter also
shows how to use Foundation accessories such as the State
Editor, Project Manager, LogiBLOX, and the HDL Editor.

Chapter 2, “HDL-Based Design,” guides you through a typical
HDL-based design procedure using a design of a runner’s stop-
watch called “Watch”.

Chapter 3, “Functional Simulation,” explains how to use the
Logic Simulator to simulate a design before design implementa-
tion to verify that the logic that you have created is correct.

Chapter 4, “Design Implementation,” describes how to Translate,
Map, Place, Route, (Fit for CPLDs) and generate a Bit file for
designs.

Chapter 5, “Timing Simulation,” explains how to perform a
timing simulation using the block and routing delay information
from the routed design to give an accurate assessment of the
behavior of the circuit under worst-case conditions.

Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

e Couri er font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

e Couri er bol d indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del net=

Couri er bol d also indicates commands that you select from a
menu.

File - Open
= [talic font denotes the following items.

= Variables in a syntax statement for which you must supply
values

edi f 2ngd design_name
= References to other manuals

See the Development System Reference Guide for more informa-
tion.

Foundation Series 2.1i In-Depth Tutorials iii

Foundation Series 2.1i In-Depth Tutorials

= Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f 2ngd [option_name] design_name

Braces “{ }”” enclose a list of items from which you must choose
one or more.

| owpwr ={on]of f}
A vertical bar “|” separates items in a list of choices.
| owpwr ={on]of f}

A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

al I owbl ock block_name locl loc2 . . . locn;

Online Document

The following conventions are used for online documents.

Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

Xilinx Development System

Contents

Preface
About the In-Depth TutorialScccuveiiiiiiii e, i
Additional RESOUICEScovviiiie e i
Quick Start Guide CoNteNtScevvvveeviiiiiieererer e ii
Conventions
TYPOGraphiCal........cooiiiiiiiiiii e iii
ONlINE DOCUMENT ...ccvviiiieii et e e e et ee e s e s e e e e esaaas iv

Chapter 1 Schematic-Based Design

Getting STAredeeeeiiiieiie e 1-2
NOMENCIATUIE. ...cci ittt 1-2
Required SOftWAIEccooiiiiiiiiiiee e 1-2
Installing the TUtOral........cccouiiiiiiiii e 1-2
Tutorial Project Directories and FileS ... 1-3
Starting the Project Manageroooouuiiiiiiiiiiiieeiieieee e 1-3
Copying the Tutorial Files (Optional)ccceeeeeeiiiiiiiiiiiiiiinee, 1-5

DeSign DESCHPLIONcceeiiiiiee et 1-5

The ProjeCt MAnNagETueuiiiiaiaaiieiie et 1-8
HIErarChy BrOWSETccoiiiiiiiiiiiiiiiieiee e 1-9
Project Manager Functional Tabs.........ccccccoviiiiiiiiiiiiiinaneenn. 1-10
Message Console WINAOWccuevveiiieiiaaniiiiiiiiiiieee e 1-10

DESIGN ENLIY ..o 1-10
Starting the Schematic EAitOr ..o 1-11
Executing COMMEANGAScoooiiiiiiiiiiiiieie e e e 1-12

HOEKEYS .. 1-12
TOOIDAr BULLONS ...t 1-12
Manipulating the SCreen ..., 1-13
Creating a Schematic-Based Macrocccceeveeeeeeiiniiiinnneen. 1-14

Foundation Series 2.1i In-Depth Tutorials

Foundation Series 2.1i In-Depth Tutorials

Creating the CNT60 SchematiCcccccvvviveeieie e, 1-17
Opening the SchematiCcccoov v, 1-17
Connectivity—Hierarchy Connectors.........cc.ccccoeeevevvvvnennnnn. 1-17
Project Libraries..........oococvieviiiii e 1-18
Adding Components to CNTE0...........ccccvvveveieeeeee e 1-19
Correcting MIStaKeSuvvviveeee e i e 1-21
Placing the Remaining Componentscccccceveveeeeeeiennnns 1-22
Moving Hierarchy TerminalS...........ccooeccvvvieeeeieee e 1-22
Drawing NEtSccooiiiiiiiiiiiee it 1-22
AdAING BUSES....cciiiiiiiiiiet e 1-23
AddING BUS TAPS oottt 1-25
Saving the Schematiccccccoviiiiiiiii, 1-26
Placing the CNTB0 MaCIO.......cccceieiiiiiiiiiiiieeeeee e 1-26

Creating a LOgiBLOX MOAUIEcccoiiiiiiiiiiiiiieeeeeee e 1-28

Creating a State Machine Module..............ccccccccciiiiiiiiiiiiinee 1-30
Opening the State Editoroooiiiiiiiiiiieeeieeeeeee 1-31
AddINg NeW STatesuuuiiiiiiiiieee e 1-33
Adding @ TranSitioNueeiiiiiieii e 1-33
Adding @ State ACHIONeeeiiiiiiiiiiee e 1-34
Adding a State Machine Reset Conditionccccuuvuneee. 1-35
Adding a Transition Condition.............cccuvieiiiiiiieee e 1-36
Creating the State Machine Macrocccccooviiiiiiieeennnnn. 1-37
Placing the STMACH symbol ..o 1-37

Creating an HDL-Based Module...............ccooiiiiiiiiiiiniiiniiiiee 1-38
Using the HDL Design Wizard and HDL Editor 1-39
Using the Language ASSIStant..........ccccooeeiiiiiiiiiiiieeeeen s 1-41
Synthesizing the HDL Code and Creating a Macro............. 1-43
Adding the HEX2LED Component to the Schematic........... 1-43

Specifying Device INPUtS/OULPULSccooviviieeeiiiiiieeeiieee e 1-44
Hierarchy PUSHh/POP.........coiiiiiiiiiiii e 1-44
Adding INPUL PiNS.....oiiiiiie e 1-46

Labeling NEtSccooiiiiiie i 1-47

ASSIgNING PiN LOCALIONScceiiiiiiiiiiiiiee et 1-48

Using Global BUTferseeeiiiiiiiiiiiee e 1-50

Completing the SchematiC..........c.ccvveiiiiiiiie e, 1-51

Chapter 2 HDL-Based Design
Getting STAredeeeeiiiiieeie e 2-2

NOMENCIATUIE. ...ttt 2-2

Required SOftWAIEc.ooiiiiiiiiiieee s 2-2

Installing the TULOFal........c.oooiiiiiii e 2-2

Tutorial Project Directories and FileS ... 2-3

vi Xilinx Development System

Contents

VHDL OF VEIIHOQ? .ot 2-4
Starting the Project Managerooovvvvveieieeeee e 2-4
Copying the Tutorial Files (Optional)cccccvvvveveeeeeniiiciiiene, 2-5
(DTS To T =TS Tox g o] 1o o SO 2-6
The ProjeCt Manager.......uuuueiieeeeeiiieiiieeieeee e e e e e ss e siieee e e e e e e e 2-8
HIErarchy BrOWSENcuiieeieeiiiiiiiiiiieeeeee e e s e s sesiieen e ee e e e e e e 2-9
Project Manager Functional Tabs........cccccccevivviiiiiiiiieieeeeeeeen, 2-9
Message Console WINAOWcccvvveeirieeeeeiesisciiieieeee e e e e 2-10
DESIGN ENLIY ..o 2-10
AddiNg SOUrCe FileS......cooiiiiiiiiiee e 2-10
COorreCting HDL ©ITOISuuiiiiiiiiee ettt 2-11
Starting the HDL Editor.............cueeiiiiiiiiiiiieeeeeee i 2-12
Creating an HDL-Based Module.............ccoceeiiiiiiiiiiiiiiieieeee, 2-12
Using the HDL Design Wizard and HDL Editor 2-12
Using the Language ASSIStant............ccoooeiiiiiiiieiiiieeeeneenes 2-15
Creating a LogiBLOX Moduleoooiiiiiiiiiiiiieeeeieee e 2-17
Running the LogiBLOX Module Selector...........c.coocuuvveeeeen. 2-17
Instantiating the LogiBLOX Module in the HDL Code.......... 2-21
Synthesizing the DeSIgN......c.oii it 2-25
The Express Constraints Editor (Foundation Express Only).......... 2-27
Using the Express Constraints Editor (Foundation Express Only). 2-28
Viewing Synthesis Results (Foundation Express Only) 2-32

Chapter 3 Functional Simulation

Starting the Logic SIMUIator..........c..uuviiiiiiiiieee e, 3-2
Performing Simulation................eeeiiiii e 3-2
AddING SIGNAIS ..o 3-2
Adding Signals Using Probescccccoiiiiiiiiie 3-3
Adding Signals Using the Component Selection Window......... 3-5
Deleting @ Signal..........c.eeiiiiiiiiiiiiie e 3-7
AddING SHMUIUS ..o 3-8
Stimulating with the Internal Binary Counter..............ccccuvvvveeeen. 3-9
Stimulating with Keyboard Stimulatorscccccceiiiiiiiiiiinen. 3-10
Stimulating with Custom Formulaecccccoceiiiiiiiiiiiineen. 3-10
Other Sections of the Stimulator Selector...........cccccoecieerinnnee. 3-12
Running the Simulationo 3-12
Saving the SIMUIAtioN ... 3-16

Foundation Series 2.1i In-Depth Tutorials vii

Foundation Series 2.1i In-Depth Tutorials

Chapter 4 Design Implementation

Project Managementccuuiiiiiiiiiieeei e 4-1
Starting Implementation ..o 4-2
Implementing the Schematic DesSigncccccooviiiiiiiiiiiinenieennnn, 4-2
Implementing the HDL DeSigNuueeiiiiiaaiiiiiiiiiiieieeeeeeeeeee 4-3
Implementation OPLIONSeeviiiiiiiiaii e 4-5
Implementation Templateccccuviviiiiiiiie e 4-6
CONIOL FIlES .ot 4-7
Running Implementation — The Flow Engine............cccoooiiiiiiineeen. 4-8
Viewing Implementation ReSUItSc..uviiiiiiiiiiiiiiiieeeee e, 4-9
Other Implementation TOOIS..........c..uviiiiiiiiie e 4-11

Chapter 5 Timing Simulation

Invoking Timing SIMUlationcoeevviiviciiiiieiee e, 5-1

Simulating with Script Filescccociiiiiiiee e 5-2
Creating Script Files — Script Wizard and Script Editor 5-2
Viewing the Script File with the Script Editorccoccvvvveeee. 5-10
Running the Simulation from the Script Editor...............cceuv..... 5-11
Viewing the Printed Output Filecveveeiiiiiiiiiecee e, 5-13
Closing the SIMUIAtor...........ccvveviiieee e 5-13

viii Xilinx Development System

Chapter 1

Schematic-Based Design

This chapter guides you through a typical FPGA schematic-based
design procedure using a design of a runner’s stopwatch called
“Watch”. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices
that you can apply to your own design. The Watch design targets a
SpartanXL device; however, all of the principles and flows taught are
applicable to any Xilinx device family, unless otherwise noted.

For an example of how to design with CPLDs, see the online help by
selecting Hel p - Foundat i on Hel p Cont ent s from the Project
Manager. Under Tutorials, select CPLD Design Flows.

In the first part of the tutorial, you will use the Foundation design
entry tools to complete the design. The design is composed of
schematic elements, a state machine, a LogiBLOX component, and an
HDL macro. After the design is successfully entered in the Schematic
Editor, it is ready for functional simulation with the Foundation
Logic Simulator, implementation with the Xilinx Implementation
Tools, timing simulation.

Note: If you use Verilog or VHDL to create an HDL macro, then you
must have Base Express or Foundation Express and a valid license.

Foundation Series 2.1i In-Depth Tutorials 1-1

Foundation Series 2.1i In-Depth Tutorials

This chapter includes the following sections.

“Getting Started”

“Design Description”

“The Project Manager”

“Design Entry”

Getting Started

1-2

The following subsections describe the basic requirements for
running the tutorial.

Nomenclature

In this tutorial, the following terms are used:
= “Spartan family” includes the Spartan and SpartanXL devices.

= “Right-click” means click the right mouse button. Unless
specified, all other mouse operations are performed with the left
mouse button.

Throughout this tutorial, file names, project names, and directory
names (paths) are specified in lower case, and the design is referred
to as “Watch”.

Required Software

The Xilinx Foundation Series package, Version 2.1i, is required to
perform this tutorial. The design requires that you install the
SpartanXL libraries and device files, as well as the XABEL interface.
These options are selected by default in the install program.

Installing the Tutorial

This tutorial assumes that the software is installed in the default
location c:\fndtn\active. If you have installed the software in a
different location, substitute your installation path for
c:\fndtn\active.

Xilinx Development System

Schematic-Based Design

The tutorial projects are optionally installed (as sample projects) in
the c:\fndtn\active\projects directory when you install the Founda-
tion Series software. If you have installed the software, but are not
sure whether the tutorial projects were installed, check for directories
named c:\fndtn\active\projects\wtut*. These directories contain the
various tutorial files.

Note: For detailed instructions, refer to the Foundation Series 2.1i
Installation Guide and Release Notes.

Tutorial Project Directories and Files

During the software installation, the following schematic project
directories are installed.

« c:\fndtn\active\projects\wtut_sc
(incomplete schematic tutorial)

= c:\fndtn\active\projects\watch_sc
(complete schematic tutorial)

The schematic tutorial files are copied into these directories.

The wtut_sc project contains an incomplete copy of the tutorial

design. You will create the remaining files when you perform the
tutorial. As described in a later step, you can copy this project to
another area and perform the tutorial in this new area if desired.

The watch_sc solution project contains the design files for the
completed tutorial, including schematics and the bitstream file.To
conserve disk space, some intermediate files are not provided. Do not
overwrite any files in the solutions directories.

Starting the Project Manager

1. Double click the Foundation Series Project Manager icon on your
desktop or select St art — Prograns - Xi |l i nx Foundati on
Series 2.1i - Project Manager from the Start menu.

Foundation Series 2.1i In-Depth Tutorials 1-3

Foundation Series 2.1i In-Depth Tutorials

Hilins
Foundation

Project
b arnager

2. A Getting Started dialog box displays, allowing you to select a
project to open. If you have not opened this tutorial project before

now, click the Mor e Pr oj ect s. . . button.

Getting Started x|

1 % [pen an Existing Project

whb sc el More projects... |
wtimerde

witt_sc

flazh

gate

watch_sc ﬂ

d:fndin] Shactiveprojectzhwtut_sc

I Create a Mew Praject

™ always open last project

Cancel | Help |

Figure 1-1 Getting Started Dialog Box

3.

1-4

Browse to the c:\fndtn\active\projects directory in the
Directories list (it should open to this location by default) and
select the wtut_sc project in the Projects list of the Open Project
dialog box. Select Open to open the wtut_sc project.

Xilinx Development System

Schematic-Based Design

Copying the Tutorial Files (Optional)

You can either work within the wtut_sc directory as it has originally
been installed, or you can make a copy to work on. Perform the
following steps to make a working copy of the tutorial files.
Whenever copying projects in Foundation, it is important to use the
“Copy Project” feature in the Project Manager to ensure that the
project’s directory structure is kept intact.

1. SelectFil e - Copy Proj ect.

2. Under the Destination section, type Mywat ch (or a unique name
of your choice) in the Name field.

Click OK.
SelectFi | e — Qpen Proj ect .

Scroll down in the project list and select Mywat ch. Click Open.

o v > w

The Mywatch project may contain two UCF files. If this is the
case, select the wtut_sc.ucf file. Select Docurrent - Renpve or
press Del to remove the file from the project. Click Yes to
confirm the removal of the file.

This does not delete the file from disk. It only removes it from the
project so that it is not used during compilation. The file still
exists in the project directory on the disk. If you mistakenly
remove a file from a project, select Docunent — Add to add it
back.

Design Description

Throughout this tutorial, the design is referred to as Watch.

The design used in this tutorial is a hierarchical, schematic-based
design, meaning that the top-level design file is a schematic sheet
which refers to several other lower-level macros. The lower-level
macros are a variety of different types of modules including
schematic-based modules, LogiBLOX modules, state machine
modules, and HDL modules.

The design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules, and
by completing some others from existing files. After the design is
complete, you will simulate it to verify the functionality.

Foundation Series 2.1i In-Depth Tutorials 1-5

Foundation Series 2.1i In-Depth Tutorials

Watch is a simple runner’s stopwatch. The completed schematic is
shown in the following figure.

TENSOUTS ONESOUTS

TERSOUTY

ENSCUTE guESOUTH

IEMSONTH

= MESOUTE O

o — M)
TEfscuTe TENTHSOUTD
SRR sk oUT 5
uz
CL cLK_INT [Slate Maching
m | > LK CLKOUTP=® CLKEN_INT
LOC=P28 e RESET RS RST_INT
HESER STRTSTOR
[ipse P STMACH_V
1BUE
STRTSIOP
P AT 1~
LOC=P18
TENTHSOUT[2:0] OuTSs
L1 9:0 ey
0_oUT[Ea) EI..PU.S[-.U] |
BN _lasvng oTRL
CLREN INT |
- = ot cod ONESOUT| ourst
CLIC 1M Vnd cads 6:0
oEELT boiook TERM.ONT HE ¥2:0] 2

COUNTER —l
1 ONES[3:

ANDz2

ouTSs2
RST_INT

TENSOUT[6:0]

T TENS[3:0]

HEXZLED

Figure 1-2 Completed Watch Schematic

There are three external inputs and three external outputs in the

completed design. The following list summarizes the inputs and
outputs and their functions.

Xilinx Development System

Schematic-Based Design

Inputs:
e CLK—System clock for the Watch design.

= STRTSTOP—Starts and stops the stopwatch. This is an active-low
signal which acts like the start/stop button on a runner’s stop-
watch.

= RESET—Resets the stopwatch to 00.0 after it has been stopped.
Outputs:

= TENSOUT[6:0]—7-bit bus which represents the Tens digit of the
stopwatch value. This bus is in 7-segment display format to be
viewable on the 7-segment LED display on the Xilinx
demonstration board.

= ONESOUT[6:0]—similar to TENSOUT bus above, but represents
the Ones digit of the stopwatch value.

e TENTHSOUT[9:0]—10-bit bus which represents the Tenths digit
of the stopwatch value. This bus is one-hot encoded.

The completed design consists of the following functional blocks.
Most of these blocks do not appear yet on the schematic sheet in the
tutorial project since they will be created during this tutorial.

Functional Blocks
e STMACH_Aor STMACH_ V

State Machine macro. This module uses the Foundation State
Editor to enter and implement the state machine. One is an ABEL
version; the other is a VHDL version.

= CNT60

Schematic-based module which counts from 0 to 59, decimal.
This macro has two 4-bit outputs, which represent the ‘ones’ and
‘tens’ digits of the decimal values, respectively.

= TENTHS

LogiBLOX 10-bit, one-hot encoded counter. This macro outputs
the ‘tenths’ digit of the watch value as a 10-bit one-hot encoded
value.

Foundation Series 2.1i In-Depth Tutorials 1-7

Foundation Series 2.1i In-Depth Tutorials

= HEX2LED

HDL-based macro. This macro decodes the ones and tens digit
values from hexadecimal to 7-segment display format to view on
the FPGA Demonstration Board.

= OUTS], OUTS2, OUTS3

Schematic-based macros which define the external output pin
assignments for TENSOUT, ONESOUT, and TENTHSOUT
output buses.

The Project Manager

1-8

The Project Manager controls all aspects of the design flow.You can
access all of the various design entry and design implementation
tools as well as the files and documents associated with your project.
The Project Manager also maintains revision control over multiple
design iterations.

The Project Manager is divided into three main subwindows. To the
left is the Design Hierarchy Browser which displays the project
elements. To the right is a set of tabs, each one opens a separate
functional window. The third window at the bottom of the Project
Manager is the Message Console and shows status messages, errors,
and warnings, and is updated during all project actions. These
windows are discussed in more detail in the following sections.

Xilinx Development System

Schematic-Based Design

40 wiut_sc - SOSXLPCA4-5 - Project Manager -(0] |
File Document View Project Implementation Tools Help
De| 8] olw = [5f @] 0] 8l
Files . Yersions Flowr Corterts . Reports , Synthesis
B wiit_sc
+ watchl.sch wiut_sc (S05HLPCE4-5)
St st
~ simprims N
spartany @ ﬁi— |’ &
DEs1aN ENTRY o/ SIMULATION
v
BoE | @0
IMPLEMENTATION 7 VERIFICRATION
Epe
PROGRAMMING

Fern: StartAiling Foundation F2.11 - Messages - Mon Jun 28 07:53:17 1999
Pem :—---- Opening project wit se-——-——

Pem : Design Type Schematic

Pern: Kiling server initialization

Pern : Kilingversion: 1,0,0,1

Pern : Opening xiling project

Pem : Reading Xiling project

Console [|

|Ready

Figure 1-3 Project Manager

Hierarchy Browser

The Hierarchy Browser displays the project source files in a
hierarchical tree. Within this display, you can quickly navigate to any
point in your design.

In the Files tab of the Hierarchy Browser, the design source files and
libraries are displayed. Next to each filename, an icon tells you the
file type (schematic, HDL file, state machine, library, text file). If a file
contains lower levels of hierarchy, the icon has a “+” in the lower
right corner. You can expand the tree by clicking this icon. You can

open a file to edit by simply double-clicking the filename in the
browser.

Foundation Series 2.1i In-Depth Tutorials 1-9

Foundation Series 2.1i In-Depth Tutorials

A Versions tab is also available behind the Files tab. This tab displays
a design’s implementation revisions. Because this is a new design
which has not yet been implemented, the Versions tab does not yet
contain any revision information. Versions are discussed in more
detail later in the tutorial during design implementation.

Project Manager Functional Tabs

As mentioned previously, the right-hand side of the Project Manager
contains a series of functional tabs. Briefly, the functions of these tabs
follow.

= Flow—Provides access to tools you use to complete your entire
design, arranged in a flow-chart style to guide you through the
design flow. Status indicators in the lower right corner of each
phase button indicate whether the step has been completed
successfully.

= Contents—Lists contents and date the file selected in the
Hierarchy Browser was last modified.

= Reports—Displays design flow reports.

= Synthesis—Displays all of the HDL macros contained in the
project, and, from this tab, you can update these macros.

You have the option to browse through these tabs to see how the tabs
are updated during the design flow process.

Message Console Window

Errors, warnings, and informational messages are displayed in the
Message Window. Errors are displayed in red, warnings in blue, and
informational messages in black.

Design Entry

In this hierarchical design, you will create various types of macros,
including schematic-based macros, HDL-based macros, state
machine macros, and LogiBLOX macros. You will learn the process
for creating each of these types of macros, and then you will connect
them all together to create the completed Watch design. This tutorial
gives you experience with creating and using each type of design
macro so that you can apply this knowledge to your own design.

1-10 Xilinx Development System

Schematic-Based Design

Starting the Schematic Editor
There are two different ways to open the Schematic Capture tool.

= From the Flow tab, click the Schematic Capture icon in the
Design Entry phase button. This instructs the Schematic Editor to
open the project’s top level schematic sheet.

wiut_sc (S09XLPCE4-5)

LS s @
DESIGH EMTH S chematic Editor SIMULATION

v
So» » @
YERIFICATION

IMPLEMENTATION 7

EES

PROGRAMMING

e Double click the file name WATCH.SCH in the Files tab.

The Schematic Editor opens with the Watch schematic sheet loaded.
The Watch schematic is incomplete at this point. Throughout the
tutorial, you create the components to complete the design. The
unfinished design is shown in the figure below.

Foundation Series 2.1i In-Depth Tutorials 1-11

Foundation Series 2.1i In-Depth Tutorials

TEMSOLTO C ESOUTD
TEISOUT TEWTHSOUT
TETHSOUT:
zgk=t) ESOUTH CWESOUTY TRWTHSOUTT
THEOUTe
TRhS] T e TENTHSOUTS
= TEMTHZOUT+
TEMTHSOUT:
[TEN LT [T ESOUTY CMESOUTE TETHSOUT2
E[&ll z TENTHS0UT
o TENTHSOUTD

I3 RO

[HFUTS|S: O]

OouTsA

[NPUTE|E: O

ouTs2

HPUTSE 2]

Figure 1-4 Incomplete Watch Schematic

If you need to stop the tutorial at any time, save your work by
selecting Fi | e —» Save from the pulldown menus.

Executing Commands

There are three ways to execute commands within the Foundation
tools: pulldown menus, hotkeys, and toolbar buttons. In most cases,
this tutorial instructs you to use the pulldown menus.

Hotkeys

You can use the keyboard to execute various commands. These
“hotkeys” are listed next to the commands within the pulldown
menus. Some of the hotkeys are the function keys, some are single

letters, and some require the Ctrl or Alt keys. You cannot customize
them.

Toolbar Buttons

There are also toolbars that are located beneath the pulldown menus
and to the left of the main Schematic Editor window. Hold your
mouse over the buttons to see their function.

1-12 Xilinx Development System

Schematic-Based Design

*)S[:hemalic Editor - (WATCH.SCH] =] |
E File Edit Mode Options Hierarchy “iew Display Tooks ‘window Help =& x|
el L A = N e = S e [o e s = = e
Ly B
L] e S
= UT1 TENTHSOUT?
— OMEZOUTH ONESOUTI TENTHSOUTE
_L TENTHSOUTS
ORESOUTE TENTHSOUT4
- TENTHSOUTZ
E OMESOUTH OMESOUTZ TENTHSOUTZ
= o L
=)
A
ouTS3
INPUTS[2:0]
ouTS1
INPUTS[B:0]
ouTs?
INPUTS[B:0]
] L+
T owatcH
[72,68 | Select and Drag

Figure 1-5 Schematic Editor

Manipulating the Screen

Under the Display pulldown menu is a series of commands that
modify the viewing area of the Schematic Editor window. Zoom in
the schematic to comfortably view it.

Foundation Series 2.1i In-Depth Tutorials 1-13

Foundation Series 2.1i In-Depth Tutorials

1-14

Creating a Schematic-Based Macro

A schematic-based macro consists of a symbol and an underlying
schematic. You can create either the underlying schematic or the
symbol first, and the tools can automatically generate the
corresponding symbol or schematic file, respectively. In the
following steps, you create a schematic-based macro by first creating
the symbol using the Symbol Wizard. A template schematic file is
then created by the tools, and you complete the schematic with the
appropriate logic. The created macro is then automatically added to
the project’s library.

The macro you will create is called CNT60. CNT60 is a binary counter
with two 4-bit outputs, which represent the Ones and Tens values of
the stopwatch. The counter counts from 0 to 59, decimal.

1. Select Tool s —» Synbol W zar d. The Design Wizard opens.

The Design Wizard guides you through the process of creating a
macro symbol. It also creates a “skeleton” file based on the pins
you define and the type of macro (schematic, ABEL, VHDL, or
state machine). The State Editor and the HDL Editor (described
later in this tutorial) also use the Design Wizard.

2. Click Next .

3. Inthe Symbol Name field, type CNT60. In the Contents section,
select Schemmat i c. This tells the tool that the underlying file for
the symbol is a schematic.

Xilinx Development System

Schematic-Based Design

Design Wizard - Contents
%’uoose the name of the symbol you create. Then select
how spmbol's contents will be described.

In case of State Diagram and HOL Code, you can also
chooze the language uzed for dezcription.

" Surbol M ane

JcHTED
Cottents HOL Language
& YL
e « i
Ermpty State Diagran AREL
& Schematc ¢ HOL Code 1 erilog

< Back I Hest » I Cancel

Figure 1-6 Symbol Wizard - Contents Page

4,
5,

Click Next .

Click Newto create a new pin. In the Nare field, type CE. Check
that the direction of the pinissetto | nput .

Repeat Step 5 for input pins CLK and CLR.

Repeat Step 5 for output bus pins LSBSEC[3:0] and MSBSEC]3:0].
To create a bus pin, type the name of the bus in the Nan®e field
(that is, LSBSEC), and then use the up/down arrows in the Bus
field to set the bounds of the bus (that is, 3:0). Check that the
Direction of the pin is set to Output.

Foundation Series 2.1i In-Depth Tutorials 1-15

Foundation Series 2.1i In-Depth Tutorials

Design Wizard - Ports

To create a new port click New.

Uz Ta change attibutes of a part, select it on the list. Then
you zan change its name, range and direction; to et other
—1 CE R‘? attributes click Advanced.
(B itnic)| To delete a port select it on the list and click Delete.
N Fet Marme: Bus
[MSBSECZ:0]
LSBSEC[:0] Direction —————————————————
— CLR | [MSBSEC[3:0]
MSBSEL Input £ Qutput
| Bidirectional
CHNTEO
R | Dielete | Advanced... |

< Back I Nest » I Cancel |

Figure 1-7 Symbol Wizard - Ports Page
8. Click Next .

Note: In the Comments section, you can type text that appears on the
symbol when it is placed. You can also define a longer comment that
only appears in the SC Symbols window when you place
components.

9. Click Next and then click Fi ni sh.

The symbol is created and placed in the project library and can be
accessed from the SC Symbols toolbox. The Symbol Wizard
automatically creates and opens a schematic sheet with 1/0
terminals corresponding to the defined symbol pins.

Note: If the schematic is not automatically created, the most likely
cause is that Empty was selected in step 4. Repeat steps 1-9, and click
Yes or OK when prompted to overwrite the existing symbol.

1-16 Xilinx Development System

Schematic-Based Design

Creating the CNT60 Schematic

You have now created the symbol for CNT60 with the help of the
Symbol Wizard. The next step is to create the underlying
corresponding schematic for this macro. You can then reference this
macro symbol by placing it on a schematic sheet.

Opening the Schematic

1. Ifthe CNT60 schematic is not open, select Fi | e — Open. The
Open Sheet dialog box opens. Click Br owse, select cnt60.sch
from the files list, then click OK.

2. Zoom in or out until all of the Hierarchy Connectors are clearly
visible. The hierarchy connectors represent connections between
this schematic sheet and the pins of the corresponding symbol.

#)Schematic Capture - [Macro - CNT60] LAl
Eile Edit Mode Options Hierarchy View Display Window Help Ll6lx
23] [) QU] e o

0 ;
g

o

4

I e - el | SESECII)

E .o = 13B5EC[20]

El

O of -

o

@

Figure 1-8 CNT60 Schematic Hierarchy Connectors

Connectivity—Hierarchy Connectors

Hierarchy Connectors logically connect the CNT60 symbol and its
underlying schematic. The name of each pin on the symbol must
have a corresponding connector in the underlying schematic.

Foundation Series 2.1i In-Depth Tutorials 1-17

Foundation Series 2.1i In-Depth Tutorials

1-18

The Symbol Wizard automatically places hierarchy connectors on the
schematic. If you need to add hierarchy connectors manually, you
can use the Hierarchy Connector icon in the vertical toolbar.

=

When you save a macro, the Schematic Editor checks the hierarchy
connectors against the corresponding symbol. If there is a
discrepancy, you can let the software update the symbol
automatically, or you can modify the symbol manually. Hierarchy
connectors should only be used to connect signals between levels of
hierarchy. Never use hierarchy connectors on top-level schematic
sheets.

Project Libraries

When you create a new project in Foundation, three libraries are
automatically added to the project: the appropriate device family
library based on the target family you have chosen (for example,
SpartanXL), the project library (with the same name as the project),
and the SIMPRIMS library (for simulation). All libraries which are
part of the project are listed in the Files tab of the Project Manager.
You can double click on any of these libraries to see the contents of
the library.

Filzzs * “ersions
B - wiuat_sc
E + watch1.5ch
: wtut_sc
simprims
spartany

Figure 1-9 Project Libraries

The device family library (SpartanXL for this project) contains all of
the Xilinx Unified Library components for the given family. A
complete description of all of these components can be found in the
Xilinx Libraries Guide.

The project library (WTUT _SC for this project) is a writable library
containing user-created macros. Any macro you create in this project
is automatically placed in this library.

Xilinx Development System

Schematic-Based Design

Additionally, you can copy macros from other libraries into this
project library and vice versa using the Schematic Symbols Library
Manager which you can open with the Tool s — Utilities menu
in the Project Manager.

To facilitate simulation with the Foundation Logic Simulator, the
SIMPRIMS is added to the project. This library contains the
simulation models for the Xilinx devices.

You can add more libraries to the project by choosing Fi | e -

Pr oj ect Li brari es from the Project Manager. After you add a
library to the project, you can use any component from that library in
the current project.

Adding Components to CNT60

Components from all of the libraries (except SIMPRIMS) for the given
project are available from the SC Symbols toolbox to place on the
schematic. The available components listed in this toolbox are
arranged alphabetically within each library.

1. From the menu bar, select Mode - Symnbol s or click the Symbols
Toolbox button in the vertical toolbar on the left side of the
Schematic Editor.

Dl

This opens the SC Symbols window and displays the libraries
and their corresponding components.

Foundation Series 2.1i In-Depth Tutorials 1-19

Foundation Series 2.1i In-Depth Tutorials

(-} SPARTAHX =]
ACC1E —
AiCC
ACCE
ADDE
D04
ADDE
ADSIHE
DTS
ADSUS
ARDZ2
ANDZE
ANDZE2
ANDE
AMD3E
ARD3E2
ANDEE3
LMD

BiCd

L]

Figure 1-10 SC Symbols Toolbox

2. The first component you will place is an AND2, a 2-input AND
gate. You can select this component by either scrolling down the
list and selecting it or by typing AND2 in the bottom of the SC
Symbols Window. Then move the mouse back into the schematic
window.

In the SC Symbols window, when the AND2 component is
selected, a description of the component appears in the bottom of
the window.

3. Move the symbol outline to the location shown in the following
figure and click the left mouse button to place the object.

1-20 Xilinx Development System

Schematic-Based Design

CD4CE

o LSBSECS

LSBSECI

7
FTTT1

ce [CE CEDQ

cun © ~ LSBSEC[3:0]
CLR
|
D — -
% AND4
CR4RE

ANDZ
o1 | WSBIRCY |

oz WS RSEC,

o} | wsgsECE
MEBEEC[30]

cur [ﬂ) S

o
r AHDZ

Figure 1-11 Completed CNT60 Schematic

Note: The preceding schematic illustrates the completed CNT
schematic. Use this figure as a reference for drawing nets and buses
in the following subsections.

Correcting Mistakes

If you make a mistake when placing a component, you can easily
move or delete the component.

1. Press the Esc key on the keyboard to exit the Symbols Mode.

2. Select the component you want to move or delete. Make sure that
no other components are selected (clicking on a blank area of the
schematic deselects everything).

3. Click and drag to correctly place the component, or press the Del
key on the keyboard or the Cut icon in the toolbar to delete the
component.

Foundation Series 2.1i In-Depth Tutorials 1-21

Foundation Series 2.1i In-Depth Tutorials

1-22

Placing the Remaining Components

Follow the steps listed previously in the “Adding Components to
CNT60” section to place the CD4ACE, OR2, CB4RE, INV, and AND4
components on the schematic sheet as shown in the “Completed
CNT60 Schematic” figure. For a detailed description of the
functionality of each of these components, refer to the Xilinx Libraries
Guide.

Moving Hierarchy Terminals

To make the schematic easier to draw and clearer to read, move some
of the hierarchy connectors which were automatically created by the
Symbol Wizard. Follow these steps to relocate the hierarchy
connectors as shown in the “Completed CNT60 Schematic” figure.

1. With the mouse cursor in point/select mode, select the CLR
hierarchy connector, and drag it to the lower left area of the
schematic sheet. If the mouse cursor is not in point/select mode,
Press the Esc key on the keyboard to get into this mode.

2. To move the bus hierarchy terminal MSBSEC[3:0], select and
drag an area surrounding the entire bus hierarchy terminal and
label it, so that both the bus and the label are highlighted in red.
With the bus and label highlighted, click on the terminal again,
and drag the entire unit down to the lower right area of the sche-
matic sheet. Release the mouse to place the terminal, and then
click anywhere else on the schematic sheet to deselect the bus
and label.

Drawing Nets

You use the Draw Wires icon in the vertical toolbar to draw wires
(also called nets) between the various components on the schematic.
Use Nets to physically connect single bits together.

Signals can also logically be connected by naming multiple segments
identically. In this case, the nets do not need to be physically
connected on the schematic to make the logical connection. In the
CNT60 schematic, you will draw nets to connect the components
together. Do not yet worry about drawing the nets for the LSBSEC
and MSBSEC buses. These nets will be drawn in the next section.

Follow these steps to draw a net between the AND2 and the CB4RE
components on the CNT60 schematic.

Xilinx Development System

Schematic-Based Design

1. Click the Draw Wires icon in the vertical toolbar.

N

2. Click the source symbol pin (output pin of the AND2), then click
on the destination pin (CE pin on the CB4RE). The net will
automatically be drawn between the two pins.

Note: You can specify the shape of the net by moving the mouse in
the direction you want to draw the net and then single-clicking to
create a 90-degree bend in the wire.

Draw the nets to connect the remaining components as shown in the
“Completed CNT60 Schematic” figure. To draw a net between an
already existing net and a pin, click once on the component pin and
once on the existing net. A junction point will be drawn on the
existing net.

You should now have all the nets drawn except those connected to
the LSBSEC and MSBSEC buses. You will draw these in the next
section.

Adding Buses

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires. You have the option to group signals
in the form of a bus and “tap” this bus off to use each signal
individually. In this CNT60 schematic, you will create two buses,
each comprised of the 4 output bits of each counter. These buses will
be named LSBSEC[3:0] and MSBSEC]3:0], and they will also be
connected to hierarchy connectors to connect them to the CNT60
symbol.

Add buses to the schematic as follows.

1. Select Mode — Dr awBuses or click the Draw Buses button in the
vertical toolbar to get into the Draw Buses mode.

e

2. The CNT60 schematic has some bus “stubs” connected to
Hierarchy Connectors which represent the symbol pins on the
CNT60 macro symbol as defined with the Symbol Wizard.

Foundation Series 2.1i In-Depth Tutorials 1-23

Foundation Series 2.1i In-Depth Tutorials

Click the end of the LSBSEC[3:0] stub, then move the mouse to a
new position. Click to make a corner in the bus.

Terminate the bus by either double clicking with the left mouse
button, or single-clicking with the right mouse button. This opens
the Add Bus Terminal/Label dialog box where you can define
the bus name, width, and the type of terminal you want to use.

In the Add Bus Terminal/Label dialog box, change the Terminal
Marker type to None by choosing this selection from the
pulldown menu. This sets the type of terminal for the point
where you are terminating the bus. Do not change any of the
other settings. Click Bus End (the bus name and width were
defined with the Symbol Wizard, so it is unnecessary to redo this
here).

CD4CE

o0
ol
o2
[#4]
CE CED
c TC
cun LSBSEC[2:0]
TN
INW

Add Bus Terminal/Label x|
Bus Label [e.g. BUS[O:2]): v Simple Buz
I =l
| = =
Terminal
Marker:
fiCE
ANDS
|
Wk Bus End Lancel Help ol |
|
ANDZ
cal
CE cEO L
1 Tel
CLR
- —
ORz2

— 1 ISBSEC[3:0]

Figure 1-12 Creating Bus Ends

5.
6.

1-24

Repeat Steps 2 through 4 for the MSBSEC[3:0] bus.

If you make a mistake, press the Esc key on the keyboard to exit
the Draw Buses mode. Then click the bus you want to delete so
that it is highlighted. Press Del to remove the bus.

Xilinx Development System

Schematic-Based Design

7. After adding the two buses, press Esc or right-click to exit the
Draw Buses mode.

Adding Bus Taps

Next, you add nets to attach the appropriate pins from the CB4RE
and CDA4CE counters to the buses. Use Bus Taps to tap off a single bit
of a bus and connect it to another component. The Schematic Capture
tool can automatically name the bus taps incrementally as they are
drawn.

You have the option to enlarge the view of the schematic to make it
easier to draw the nets.

1. Select Mbde - Dr awBus Taps or click the Draw Bus Taps button
in the vertical toolbar. The cursor changes, indicating that you are
now in Draw Bus Taps mode.

K

2. Click the LSBSEC]3:0] bus label.

The status bar at the bottom of the window displays the message
Expand Bus Tap: LSBSECS. This tells you that the next bus tap
drawn will be labeled LSBSECS3.

Note: The default is to start at 3 and decrement as bus taps are
drawn. You can use the up and down arrow keys to change which
bus bit will be tapped first.

3. Click the Q3 output pin of the CD4CE component to draw the
bus tap. The net is automatically drawn and labeled. The status
bar now reads Expand Bus Tap: LSBSEC2.

4. Click next on each of the other output pins of the CD4CE
component. The bus taps will be drawn and labeled
incrementally.

Note: If the bits are not automatically being labeled incrementally,
check that you clicked the bus name (label) before clicking the
counter output pins.

Note: If the nets appear disconnected, try selecting Di spl ay —
Redr awto refresh the screen.

Foundation Series 2.1i In-Depth Tutorials 1-25

Foundation Series 2.1i In-Depth Tutorials

1-26

If there is an error with the labeling of the bus taps, double click
the bus tap net to edit the label.

5. Repeat Steps 1 through 4 for the MSBSEC]3:0] bus.
6. Press Esc twice or right-click to exit the Draw Bus Taps mode.

7. Complete the schematic by drawing the nets to connect the
MSBSEC bus taps to the INV and AND4 components. If
necessary, refer to the “Drawing Nets” section for guidance.

8. Compare your CNT60 schematic again with the “Completed
CNT60 Schematic” figure to ensure that all connections are
properly made.

Saving the Schematic
The CNT60 schematic is now complete.

Save the schematic by selecting Fi | e - Save or clicking the Save
icon in the horizontal toolbar.

=]

All errors, warnings, and informational messages are displayed in the
Message Window in the Project Manager. If any errors are issued,
resolve them and save the schematic again.

Placing the CNT60 Macro

So far, you have created the CNT60 macro. The next step is to place
this macro on the top-level Watch schematic sheet, where it may then
be connected to other components in the design.

1. Open the Watch schematic sheet. If the Watch schematic is
already open, you will see a tab at the bottom of the Schematic
Capture tool where you can select that sheet.

2. If the Watch schematic is not open, select Fi | e - Open, select
the Watch sheet, and click OK.

3. Open the SC Symbols Toolbox to display a list of all the available
design components. As mentioned before, you can select the
Symbols Toolbox icon to open the SC Symbols Toolbox.

Xilinx Development System

Schematic-Based Design

4.

5.

O

Near the bottom of the SC Symbols Toolbox, there is a header
with the name of the project representing the current project
library. Beneath this, find the newly created CNT60 macro in this
list. Select this component.

Place the CNT60 macro as shown below.

oUTS3

— (W PUTS[E0]

oUTSE

— (W PUTS]

— LK W SESEC [f—

LEESEC [0 —

QuTS2

— | EUTS]

Figure 1-13 Placing the CNT60 Macro

6.

Press Esc to exit the Symbols mode. The cursor now returns to
the standard “point and select” mode.

Notice that the SC Symbols window remains open. With this
window open, you can quickly place additional symbols without
having to click on the Symbols Toolbox icon again. If you want to
close the SC Symbols window, click the ‘-" button in the upper
left corner of the window.

Do not yet worry about connecting nets to the pins of the CNT60
symbol. You will do this later in the tutorial after you add the
other components to the Watch schematic.

Foundation Series 2.1i In-Depth Tutorials 1-27

Foundation Series 2.1i In-Depth Tutorials

1-28

Creating a LogiBLOX Module

LogiBLOX is a graphical interactive design tool that you use to create
high-level modules such as counters, shift registers, RAM, and
multiplexers. You can customize and pre-optimize the modules to
take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions
and on-chip RAM for dual-port and synchronous RAM.

In this design, you create a LogiBLOX module called Tenths. Tenths
is a 10-bit one-hot encoded counter. It counts the tenths digit of the
stopwatch’s time value. To better see the digit when it is downloaded
on the FPGA Demonstration Board, the encoding is set to one-hot.
The series of LED lights displays the Tenths digit, where one light is
on for each count of the tenths digit.

You use the LogiBLOX Module Selector GUI to select the type of
module you want to create, as well as the specific features of the
module. You may invoke this GUI from either the Project Manager,
the Schematic Editor, or the HDL Editor. The operation of the tool is
the same regardless of where you invoke it.

1. From within the Schematic Editor, select Tool s - Logi BLOX.
2. Fill in the Logiblox Module Selector with the following settings:
= Module Name: Tenths
Defines the name of the module.
= Module Type: Counters
Defines the type of module.
= Bus Width: 10

Defines the width of the data bus. You either choose from the
pulldown menu, or type in a value.

= Operation: Up

Defines how the counter will operate. This field is dependent
on the type of module selected.

« Style: Maximum Speed

Defines the type of optimization strategy for the module.
This dictates how the layout of the module is defined.

Xilinx Development System

Schematic-Based Design

= Encoding: One Hot
Defines the register encoding for the module.
= Async Val: 0000000001
Defines the value of the module on power-up and reset.

3. “Check” or “uncheck” the appropriate boxes on the module
diagram so that only the following pins are used.

Q_OUT, Clock Enable, Async Control, Terminal Count

W

B e gy Wil |
0oaaa00aa

Figure 1-14 LogiBLOX Module Selector

4. Click OK. The module is created and automatically added to the
project library. Additionally, it will be automatically attached to
the cursor to immediately place on the schematic.

Foundation Series 2.1i In-Depth Tutorials 1-29

Foundation Series 2.1i In-Depth Tutorials

1-30

Note: If you do not want to place the symbol at this time, you can
press the Esc key on the keyboard to get out of the Place Symbol
mode. You can then select it at any time from the SC Symbols
Toolbox to place on the schematic.

5. Place the newly created Tenths component on the Watch
schematic sheet, as shown below. You will connect this symbol to
the rest of the schematic later in the tutorial. The symbol is
labeled “L1” on the schematic sheet.

L1
S
OUTS3
) HEUTS]
—{amvNe_oTRL
I oOUTS1
—ELcK TERM_CHT —
s HPUTSFiS]
BUS _WIDTH=10
COUNTER
L1
—ee LEESEL {1
— e WSESEC 10— ouTS2
cLR —HEUTSE]

Figure 1-15 Placing the Logiblox TENTHS component

6. Save the schematic by selecting Fi | e — Save. Close the Sche-
matic Editor.

Creating a State Machine Module

With the Foundation State Editor, you graphically create finite state
machines. You draw states, inputs/outputs, and state transition
conditions on the diagram using a simple windows GUI. Transition
conditions and state actions are typed into the diagram in
appropriate VHDL, Verilog, or ABEL syntax. The State Editor then
synthesizes the diagram into either VHDL, Verilog or ABEL code.
The resulting HDL file is finally synthesized to create a netlist and/or
macro for you to place on a schematic sheet.

Xilinx Development System

Schematic-Based Design

For this tutorial, a partially complete state machine diagram is
provided. In the next section, you complete the diagram and
synthesize the module into a macro to place on the Watch schematic.
Both a VHDL and an ABEL version of the State Machine diagram
have been provided for you.

If you have a Foundation Express package, you can use either the VHDL or
ABEL version. If you have a Foundation Standard or a Foundation Base
package, then you must use the ABEL version of the diagram.

Opening the State Editor

To invoke the State Editor, click the State Editor button in the Flow
tab of the Project Manager.

wilt_sc (S05XLPCE4-5)

B) ﬁ p Fig
DES: 7 SIMULATION
o B e @ L |
IMPLEMENTATION ¥ VERIFICATION

A dialog box prompts you to select a document. Click Exi st i ng
Docunent, click OK, and then select STMACH_V.ASF (VHDL) or
STMACH_A.ASF (ABEL) to open the partially completed stopwatch
state machine.

The unfinished State Machine diagram is shown below.

Foundation Series 2.1i In-Depth Tutorials 1-31

Foundation Series 2.1i In-Depth Tutorials

STMACH_Y

Wdiagram ACTIONS @—CLK

D— reset —Dclkout
Dt D=

stopurtch

cloout <=0
st 2= 0%

Figure 1-16 Incomplete State Machine Diagram
= The circles represent the various states.

= The purple underlined expressions are the transition conditions,
defining how you move between states.

= The boxes containing expressions attached to each state are
output actions for each state, defining how the outputs behave in
each state.

In the State Machine diagrams, the transition conditions and the state
actions are written in proper HDL syntax, either VHDL or ABEL.

In the following section, you add the remaining states, transitions,
actions, and also a reset condition to complete the state machine.

1-32 Xilinx Development System

Schematic-Based Design

Adding New States
Complete the state machine by adding a new state called CLEAR.

1. Click the State icon in the vertical toolbar.

S

The state bubble is now attached to the cursor.

2. Place the new state on the left-hand side of the diagram as shown
below. Click the mouse to place the state bubble.

3. The state is given a default name, in this case S1. Double click the
S1in the state bubble, and change the name of the state by typing
CLEAR The name of the state is for your use only; it does not
affect the synthesis, and so you can name it whatever you want.

Figure 1-17 Adding the CLEAR State

You can change the shape of the state bubble by clicking the bubble
and dragging in the direction to “stretch” the bubble.

Adding a Transition

A transition defines the movement between states of the state
machine. Transitions are represented by arrows in the State Editor.
You will be adding a transition from the CLEAR state to the ZERO
state in the following steps. Because this transition is unconditional,
there is no Transition Condition associated with it.

1. Click the Transition icon in the vertical toolbar.

i

Foundation Series 2.1i In-Depth Tutorials 1-33

Foundation Series 2.1i In-Depth Tutorials

2. Click first on the CLEAR state, then on the ZERO state to draw
the transition arrow. The arrow’s shape can be manipulated by
clicking it and then dragging the mouse.

=ta

Figure 1-18 Adding State Transition

Adding a State Action

1-34

A State Action dictates how the outputs should behave in a given
state. There are three types of state actions: Entry Action, State
Action, and Exit Action. These determine if the outputs should act
upon entry to, existence in, or exit from a given state, respectively.

You will add two state actions to the CLEAR state, one to drive the
CLKOUT output to 0, and one to drive the RST output to 1.

1. Click the State Action icon in the vertical toolbar.

x

2. Move the mouse over the diagram so that the small round ball at
the end of the pointer is over the CLEAR state. After you are in
this position, click the mouse to place the State Action box.

3. When a cursor appears, type the following state action:

For ABEL:
cl kout = 0;
rst = 1;
For VHDL:
clkout <= ‘0%;

rst<="'1";

Xilinx Development System

Schematic-Based Design

4. Click in an empty space in the diagram to exit out of state action
entry mode. The State Action should now appear in a black box
next to the CLEAR state.

You have the option to click and drag the State Action to move it.

Figure 1-19 Adding State Actions

Adding a State Machine Reset Condition

Using the State Machine Reset, you specify a reset condition for the
State Machine. The state machine initializes to this specified state and
enters the specified state whenever the reset condition is met. In this
design, you add a Reset condition which sends the state machine to
the CLEAR state whenever the RESET signal is asserted.

1. Click the Reset icon in the vertical toolbar.

A

2. Place the Reset triangle onto the diagram near the CLEAR state,
as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for
this Reset. Move the cursor to the CLEAR state, and click the state
bubble.

clkout == '0";
=t 1= 1Y

Figure 1-20 Adding Reset

Foundation Series 2.1i In-Depth Tutorials 1-35

Foundation Series 2.1i In-Depth Tutorials

Adding a Transition Condition

Add the Transition Condition to the Reset. Transition Conditions are
applied to all transitions, not only Reset transitions, in the same way.
Transition Conditions are attached to the transition arrows, and
describe the required condition for the movement between states.

Add a transition condition which tells the state machine to reset to
the CLEAR state whenever the signal RESET is high.

1. Click the Condition icon in the vertical toolbar.

=2

2. Click the transition arrow which was drawn between the Reset
triangle and the CLEAR state.

3. When the cursor appears, type in the following condition:

= For ABEL:
reset

= For VHDL:
reset = ‘1’

4. Click in an empty space in the diagram to exit the Draw
Condition mode. The condition should now appear underlined
and in purple text.

clkout =="0";
et €= 1Y

Figure 1-21 Adding Reset Transition Condition

5. Save your changes by selecting File - Save.

1-36 Xilinx Development System

Schematic-Based Design

Creating the State Machine Macro

You will now synthesize the state machine and a macro will be
created that you can place on the Watch schematic. The macro
symbol will automatically be added to the project library. The
synthesis process encompasses the creation of the HDL code from the
state machine diagram and the synthesis of the HDL code by either
the Foundation Express (VHDL) or XABEL (ABEL) compiler.
Additionally, you have the option to use the State Editor to create a
symbol for the state machine which you can place on the schematic.

1. Select Proj ect — Create Macro. This synthesizes the design
as well as creates the macro symbol and adds the symbol to the
SC Symbols toolbox.

2. To view the HDL code which the State Editor produced, select
Tool s — HDL Edi t or.

3. Close the State Editor by clicking the X in the upper right corner
of the window.

Placing the STMACH symbol

You can now place the STMACH state machine macro on the Watch
schematic. If it is not already opened, open the Schematic Editor.
Open the SC Symbols Toolbox to view the list of available library
components. You should now be able to locate the STMACH_A or
STMACH_V macro in this list. (If the SC Symbols Toolbox was
already open, and you do not see the STMACH macro, select Fi | e
- Updat e Li brari es.) Select the appropriate symbol, and add it to
the Watch schematic as shown below. Do not worry about drawing
the wires to connect this symbol. You will connect the entire
schematic later in the tutorial.

Foundation Series 2.1i In-Depth Tutorials 1-37

Foundation Series 2.1i In-Depth Tutorials

L2
State Machine
—ew CLoUT|l—
—|rEsET ReT|—
—_|sTATETOR
STMACH W
L1
QUTS3
— 4 PUTE]
—sEvHe_CTRL
— e e DTS
—JELocy TERM_CHT —
— HPUTE]

Figure 1-22 Placing the State Machine Macro

Save the schematic.

Creating an HDL-Based Module

With Foundation you can create modules from HDL code. The HDL
code is synthesized by either the Express compiler (for VHDL or
Verilog), or the XABEL compiler (for ABEL), and a symbol is
generated which you can place on the schematic.

Note: If you use Verilog or VHDL to create an HDL macro, then you
must have Base Express or Foundation Express and a valid license.

You will create an HDL module from scratch. This macro serves to
convert the two 4-bit outputs of the CNT60 module into 7-segment
LED display format.

1-38 Xilinx Development System

Schematic-Based Design

Using the HDL Design Wizard and HDL Editor

The HDL Wizard is very similar to the Symbol Wizard that you used
to create the CNT60 macro earlier.You enter the name and ports of
the component and the HDL Wizard creates a “skeleton” HDL file
which you can complete with the remainder of your code.

1. From the Flow tab in the Project Manager, click the HDL Editor
button.

witlt_sc (S05XLPCE4-9)

D™ » @
Tnv [4 SIMULATION
s BH l» @ J

IMPLEMENTATION 7 YERIFICATION
-

2. Adialog box opens, asking if you want to create an empty HDL
file, select an existing HDL file, or use the HDL Wizard to create a
new file. Click the radio button next to Use HDL Desi gn W zar d
and click OK.

3. Follow the instructions from the Wizard. When you are
prompted for a preferred HDL language, choose one.

Note: You must have a Base Express or Foundation Express package
in order to use VHDL or Verilog.

4. When you are prompted for a file name, type HEX2LED and click
Next .

5. The HEX2LED component will have a 4-bit input port named
HEX, and a 7-bit output port named LED. To enter these ports,
click the Newbutton in the Ports dialog box. Select | nput as the
direction and type HEX in the Name field. Then, click the arrow
next to the Bus field to select 3: 0, which is the width of the bus.
In the Name field, you should now see HEX[3:0], and a
corresponding pin should appear on the symbol diagram on the
left.

Foundation Series 2.1i In-Depth Tutorials 1-39

Foundation Series 2.1i In-Depth Tutorials

Design Wizard - Ports

To create a new port click Mew.

u? To change attributes of a port, select it an the list. Then
you can change itz hame, range and direction; to set other
attributes click Advanced.

To delete a port zelect it on the list and click Delete.

I amme: Bu

&3
[LEDIED]

Diection ————————————————
’7 " Input & Output

¢ Bidirectional

e HE[3:0]

hewy | Delete | Advanced... |

< Back I Finizh I Cancel |

Figure 1-23 HDL Wizard

6. Repeat the previous step for the LED[6:0] output bus. Be sure to
set the direction to Qut put .

If you use ABEL, set the outputs to combinatorial instead of the
default (registered). To set the outputs, make sure the LED[6:0]
pin is highlighted and click the Advanced . .. button. In the
Advanced Port Settings dialog box, click the radio button next to
Combinatorial.

7. Click Fi ni sh to complete the Wizard session. A “skeleton” HDL
file now appears in the HDL Editor.

1-40 Xilinx Development System

Schematic-Based Design

HEX2LED.vhd - HDL Editor =] 1]
File Edit 5Search Yiew Synthesiz Project Tools Help

Di=@| 8] 2] ol] = Sajeltlielal 2(w

1 [library IEEE;

2 wuse IEEE.std_logic_1164.all;

3

4 entity HEXZLED is

5 port

6 HEX: in STD_LOGIC_VECTOR {3 downto B});

7 LED: out STD_LOGIC_VECTOR (6 downto @)

8 J;

9 end HEXZLED;

18

11 architecture HEX2LED_arch of HEXZ2LED is

12 begin

13 -- <<enter your statements herel>

14 end HEXZLED_arch;

15

| 2
4 | i
Ready Ln1,Call WHDL FLIM &

Figure 1-24 Skeleton HDL File

In the HDL Editor, the ports are already declared in the HDL file, and
some of the basic file structure is already in place. Keywords are
printed in red, comments in green, and values are gray. This color-
coding enhances readability and recognition of typographical errors.

Using the Language Assistant

Use the templates from the Language Assistant for commonly used
HDL constructs, as well as synthesis templates for commonly used
logic components such as counters, D flip-flops, multiplexers, and
global buffers. You can add your own templates to the Language
Assistant for components or constructs you use often.

1. Toinvoke the Language Assistant, select Tool s — Language
Assi st ant from the HDL Editor pulldown menu.

Foundation Series 2.1i In-Depth Tutorials 1-41

Foundation Series 2.1i In-Depth Tutorials

1-42

2.

The Language Assistant is divided into three sections: Language
Templates, Synthesis Templates and User Templates. To expand
the view of any of these sections, click the ‘+’ next to the topic.
Click any of the listed templates to view the template in the right
hand pane.

Use the template called HEX2LED Converter located under the
Synthesis Templates heading. Locate this template, preview it in
the right hand pane by clicking the template. This template
provides source code to convert a 4-bit value to 7-segment LED
display format.

Q Language Assistant - YHDL el B

[=I- Swnthesis templates ;I --HEX-tU-seven-segnjent decoder -
- Banrel Shifter - :] STD_LOG
- Boundary Scan LED: out STD_LOC

- Comparator o - gegment encoding
- Debounce circuit -

- Decoder
- Encoder o
[+ Flip Flopsz 4] |2

[

- Multiplzxers with HE< SELect ~|
- Pulldown ﬂ LI—I k
Hide preview <<| Usze | Exclit | HEw | Deletel

Figure 1-25 HDL Language Assistant

4.

Before adding this template to your HDL file, be sure that the
cursor in the HDL Editor is positioned below the line with the
comments “<<enter your statements here>>" for VHDL. For
Verilog, enter code after the “// Add your code here” line. For
ABEL, add the template below the line “<<add your equations
here>>". When you use the template, the code is placed
wherever the cursor is currently positioned in the HDL Editor.

To add the HEX2LED Converter template code, click the Use
button in the Language Assistant while the HEX2LED Converter
template is selected. The code is automatically placed in the HDL
file.

Close the Language Assistant by clicking the X in the upper right
corner of the window.

Xilinx Development System

Schematic-Based Design

7. (Verilog only) After the “//add your declarations here”
statement and before the HEX2LED converter that you just
added, add the following line of code to the HDL file to allow an
assignment.

reg LED;

8. You now have complete and functional HDL code and can check
the syntax using Synt hesi s - Check Synt ax.

9. After you successfully complete the syntax check, save the file by
selecting Fi | e » Save from the HDL Editor.

Synthesizing the HDL Code and Creating a Macro

Synthesize the code and create a macro symbol which may be placed
on the schematic.

1. From within the HDL Editor, select Pr oj ect — Cr eat e Macr o.

The code is synthesized, and a symbol is created and placed in
the project library.

2. Close the HDL Editor by clicking the X in the upper right corner
of the window.

Adding the HEX2LED Component to the Schematic

You are now ready to place the HEX2LED macro on the Watch
schematic. Open the Schematic Editor if it is not already open. Open
the SC Symbols Toolbox (refer to the “Adding Components to
CNT60” section) to view the list of available library components. You
should now be able to locate the HEX2LED macro in this list. Select it,
and add it to the Watch schematic as shown in the next figure.

This component will be placed on the Watch schematic sheet in two
separate instances. To duplicate the component in the schematic,
click the left mouse button while the pointer is on the placed symbol,
and then click again to place the duplicate symbol.

Note: The Symbols Toolbox icon must still be depressed on the
vertical toolbar to enable this feature to automatically duplicate a
symbol.

Again, do not worry about drawing the wires and buses to connect
this macro. You will connect the entire schematic later in the tutorial.

Foundation Series 2.1i In-Depth Tutorials 1-43

Foundation Series 2.1i In-Depth Tutorials

1-44

CLE_EH

—]CE
— LK

—]CLR

Lo K TERM_CHT
Bk OUTS
BUS_ WIDTH=10 R) - N -
COUNTER
HEX2LED
11
LEESEC F120]
PR— L4 ouTS?
Whdl code
—HEERA] LED] — | TS
HEX2LED

ull

Figure 1-26 Placing the HEX2LED Component

Specifying Device Inputs/Outputs

When specifying device 1/0 on a schematic sheet, use components
from the Xilinx Unified Library to represent the input/output pads
and buffers in the device. The SpartanXL library, which is attached to
this Foundation project, contains primitive components for these,
such as IPAD, OPAD, IBUF, OBUF, and IOPAD. You can place 1/0
components on any level of hierarchy in a Foundation schematic.
However, it is recommended that the pad and the buffer (that is,
IPAD/IBUF) reside on the same level of hierarchy. In other words, do
not split up the pad and the buffer between levels of hierarchy.

Hierarchy Push/Pop

Descend into a lower-level of hierarchy to view the underlying file.
You will be pushing down into the OUTS1 macro, which is a
schematic-based user-created macro.

1. To push down into OUTS], click the Hierarchy Push/Pop button.
The mouse cursor changes to the letter “H”. Double click the
OUTS1 symbol.

Hy

Xilinx Development System

Schematic-Based Design

In the OUTS1 schematic, you see a series of output buffers
(OBUF) and output pads (OPAD). These represent output pins

on the SpartanXL device. Each of these pads hasa LOC=P__

attribute attached to them. This attribute assigns each of the pins
to a particular pin on the target device. You will add more pins

with LOC attributes in the next section.

IHPUTS0

ONESOUTD

IMPUTS1

QNESOUTI

IHNPUTSZ

ONESOUTE

INPUTS2

ONESOUTS

IHPUTSd

ONESOLTS

IHNPUTSS

ONESOUTS

IMPUTSE

ONESOUTA

INPUT S[6:0] [P
KN

Figure 1-27 OUTS1 Schematic Macro

o

OFAD

apAD

OFAD

arAD

OFAD

OFAD

LOC=P49

LOC=P48

LOC=P47

LOC=P46

LOC=P45

LOC=P50

LOC=P51

[|

[|

uil

The OUTS2 and OUTS3 macros are similar to OUTS1, except that
the pins have been locked to different device 1/0.

2. “Pop” back out of the OUTS1 component. You can do this in one

of two ways. Either click the Hierarchy Push/Pop icon, then

double click in an empty space in the OUTS1 schematic, or click

the Watch tab at the bottom of the Schematic Capture tool to
return to the top-level Watch schematic sheet.

Foundation Series 2.1i In-Depth Tutorials

1-45

Foundation Series 2.1i In-Depth Tutorials

Adding Input Pins

Add three more input pins to the Watch schematic, called CLK,
RESET and STRTSTOP.

1. Add an IPAD and an IBUF for each of the two input pins, RESET
and STRTSTOP. Add an IPAD and a BUFG for the input clock
signal, CLK. To add these components, click the SC Symbols icon
in the vertical toolbar to open the SC Symbols Toolbox. Browse to
locate the IPAD, IBUF, and BUFG components in the SpartanXL
library. Drop these on the schematic as shown below.

Draw a net between each IPAD/IBUF pair and the IPAD/BUFG
input. If necessary, refer to the section on drawing nets (see the
“Drawing Nets” section) for instruction.

n

2| s(@|%[S] & |o|e] NQlE] of «| il F o
3
o U2
T .
— e . | cllete Mashingr]
f— BUFG —] RESET RET|—
i | T [— STRTSTOPR
[

E oo STMACH_V
. ™ %UF
> L1
B

Figure 1-28 Placing CLK, RESET and STRTSTOP I/O

Components

1-46 Xilinx Development System

Schematic-Based Design

Labeling Nets

It is important to label nets and buses for several reasons. It aids in
debugging and simulation, as you will more easily trace nets back to
your original design. Any nets which remain unnamed in the design
will be given machine-generated names which will mean nothing to
you later in the implementation process. Naming nets also enhances
readability and aids in documenting your design.

Label the three input nets you just drew. When naming input and
output pins, it is advisable to label the net between the pad and the
buffer. This name is carried through the entire design flow including
place and route. If you label only the output of the buffer (in the case
of an input pin) or input of the buffer (in the case of an output pin),
you will not be able to easily trace your 1/0 pins in implementation
tools and reports.

1. Double click the RESET net.
2. Inthe Net Name field, type RESET as shown below.

| IFAD [
“BUFG
| IFAD [
HBuF
| IFAD [
HBuF
Net Name x|
Het Mame: 0K |
RESET Cancal |
Attributes | Eepeat | Help |

Figure 1-29 Labeling Nets
3. Click &K

4. Repeat Steps 1 through 3 for the STRTSTOP and CLK pins. You
have the option to click and drag the new attributes to better
place them on the schematic.

Foundation Series 2.1i In-Depth Tutorials 1-47

Foundation Series 2.1i In-Depth Tutorials

o

IBUF

SIBISIQD|>_

IBUF

Figure 1-30 Labeled Nets

Assigning Pin Locations

Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place and route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(Printed Circuit Board).

Define the initial pinout by running the place-and-route tools
without pin assignments, then locking down the pin placement so
that it reflects the locations chosen by the tools. In this design, you
assign locations to the pins in the Watch design so that the design can
function in a Xilinx demonstration board. Because the design is
simple and timing is not critical, these pin assignments will not
adversely affect the ability of PAR to place and route the design.

Specify pin locations by attaching a LOC parameter to a pad
component. Assign a LOC parameter to the pad associated with the
RESET signal on the Watch schematic as follows.

1. Double click the IPAD connected to the net labeled RESET. The
Symbol Properties dialog box opens.

2. Inthe Parameters section, add a new parameter with these
values:

Name: LOC
Description: P28
This step assigns the RESET signal to pin P28 of the target device.

1-48 Xilinx Development System

Schematic-Based Design

Symbol Properties il

Mame: IIF'.&D vl IavelHEmEe |
BReference: |$|1 Move Reference |

Section: MO SECTIONS = Attributes |
Eoctprint: I - I Comments |
Technology: I vI Pir Parameters |

— Parameters:
Mame: Loc - Change
Description: |P28 Eravse

EXT=IPAD Delete |
fe s |
+% LOC=F28 Dizplay &l |
Clear Display |

[ieplam ke |

Sumbal Editc-rl

Apply | ok | Cancel | Help |

Figure 1-31 Assigning Pin Locations
3. Click Add. The parameter appears in the list box.

Notice the two black dots to the left of the parameter. This
indicates that both the Name field and the Description field of the
parameter will be displayed on the schematic. You can double
click on the parameter to change the number of dots shown.

= One dot—only the Description field will show on the
schematic

= Zero dots—neither the Description field nor the Name field
will appear on the schematic.

This function only affects what is displayed on the schematic; in
all cases, the parameter has the same effect on the tools.

4. Click Appl y. You see the parameter next to the IPAD.
5. Click CKto close the window.

6. Repeat Steps 1 through 5 to assign the STRTSTOP input pin to
pin P18.

Foundation Series 2.1i In-Depth Tutorials 1-49

Foundation Series 2.1i In-Depth Tutorials

1-50

Note: You may click and drag the attributes to position them where
you wish on the schematic.

LOC=P28
1PAD) RESET
[e > I
| 1PAD STRTSTOP ™~
IBUF
LOC=P18

Figure 1-32 STRTSTP Pin Assignment

Using Global Buffers

All Xilinx devices contain a set of Global Buffers which provide low-
skew distribution of high fanout signals. The number and type of
global buffers differ depending on the Xilinx device family you
target. Consult the Xilinx Libraries Guide for more information
regarding the various types of global buffers available.

In the Watch design, you will use a BUFG component from the
SpartanXL library to drive the clock signal. The signal on the output
of the BUFG is the buffered clock signal which will drive all the
clocks in the system

Draw a net between the output of the IPAD and the input of the
BUFG that you created earlier.

U2
] CLk L\/‘ __| Siate Maghing
BUFG —{ rESET RST
— sTRTSTOR
STMACH_

Figure 1-33 BUFG Connection

Xilinx Development System

Schematic-Based Design

Completing the Schematic

Complete the schematic by wiring the components you have created
and placed, adding any additional necessary logic, and labeling nets
appropriately. The following steps guide you through the process of
completing the schematic, or you may want to use the completed
schematic shown below for guidance. Each of the actions in this
section has been discussed in detail in earlier sections of the tutorial.
If you need to review these sections, you may return to them. The
finished schematic is shown in the following figure as a guide.

TENSOUTS ONESOUTD
Tejis
ENSCUT
IENSOT
ENSCUT
e
S
uz2
State Machine
CLK OLKOUTH====® CLKEN_INT
LOC=P2s RESET RS RST_INT
RESET STRTSTOR
s > STMACH_V
IBUE
STRTSIOP
IPAD
LOC=P18
TENTHS OUT[9:0] ouTS3
L 9:0 s
0, OUT[s0] E'»PU.S[;O] |
RSTINT Fasvhe cTRL
CLKERINT |
- - Vil cod ONESOUT| ourst
CLE_ I ek codle .
oM boiock TERM :NT—l lHEX50] LED{E:0] [6:0]
COUNTER HEXGLED
CLRERLINT — ONES[3:0] ouTSs
AND2 FHET_INT ‘H:L'.(\ J cyé:l:‘ TENSOUT]s:0]
LENT&O TENS[3:0] I LEDE:0
HEX2LED

Figure 1-34 Completed Watch Schematic

Foundation Series 2.1i In-Depth Tutorials 1-51

Foundation Series 2.1i In-Depth Tutorials

1-52

10.

11.

12.

Draw a net (see the “Drawing Nets” section) between the BUFG
and the CLK pin of the STMACH state machine macro. Label this
net CLK_INT.

Draw a net (see the “Drawing Nets” section) between the IBUF of
the RESET input and the RESET pin of the STMACH state
machine macro.

Place an INV (inverter) component (see the “Adding
Components to CNT60” section) from the SpartanXL library
between the IBUF of the STRTSTOP input and the STRTSTOP pin
of the STMACH state machine macro. Draw nets (see the
“Drawing Nets” section) to connect the INV to the both the IBUF
and the STMACH state machine macro.

Place an AND2 component (see the “Adding Components to
CNT60” section) to the left of the CNT60 macro.

Draw a net (see the “Drawing Nets” section) to connect the
output of the AND2 with the CE pin of the CNT60 macro.

Draw a net (see the “Drawing Nets” section) to connect the
TERM_CNT pin of the TENTHS macro to one of the inputs to the
AND2.

Draw a hanging net (see the “Drawing Nets” section) from the
CLKOUT pin of the STMACH macro. To terminate a hanging
wire, double click.

Press Esc to get back into point/select mode and then label the
net you drew in Step 7 CLKEN_INT.

Draw a hanging net at the CLK_EN input pin of the TENTHS
macro. Label this net CLKEN_INT (see the “Labeling Nets”
section).

Draw a hanging net (see the “Drawing Nets” section) at the other
input of the AND2 component. Label this net CLKEN_INT again
(see the “Labeling Nets” section).

Draw a hanging net (see the “Drawing Nets” section) from the
RST output pin of the STMACH macro. Label this net RST_INT.

Draw two more hanging nets (see the “Drawing Nets” section),
also named RST_INT, from the ASYNC_CTRL pin of the
TENTHS macro and from the CLR pin of the CNT60 macro.

Xilinx Development System

Schematic-Based Design

13. Draw two hanging nets (see the “Drawing Nets” section), each
named CLK_INT, from the CLOCK pin of the TENTHS macro
and from the CLK pin of the CNT60 macro.

Note: Remember that nets are logically connected if their names are
the same, even if the net is not physically drawn as a connection in
the schematic. This method is used to make the logical connection of
the RST_INT, CLKEN_INT and CLK_INT signals.

14. Draw buses (see the “Adding Buses” section) to complete the
schematic. Label them as shown on the preceding schematic
diagram.

The schematic is now complete!

15. Save the design by selecting Fi | e - Save.

Foundation Series 2.1i In-Depth Tutorials 1-53

Foundation Series 2.1i In-Depth Tutorials

1-54 Xilinx Development System

Chapter 2

HDL-Based Design

This chapter guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch called Watch. The
design example used in this tutorial demonstrates many device
features, software features and design flow practices which you can
apply to your own design. This design targets an SpartanXL device;
however, all of the principles and flows taught are applicable to any
Xilinx device family, unless otherwise noted.

For an example of how to design with CPLDs, see the online help by
selecting Hel p - Foundat i on Hel p Cont ent s from the Project
Manager. Under Tutorials, select CPLD Design Flows.

In the first part of the tutorial, you use the Foundation design entry
tools to complete the design. The design is composed of HDL
elements and a LogiBLOX macro; you will synthesize the design
using the Express tools.

Then, you will functionally simulate the design using the Foundation
Logic Simulator. In the third part, you will implement the design
using the Xilinx Implementation Tools. The simulation,
implementation, and bitstream generation are described in
subsequent chapters.

This chapter includes the following sections.
e “Getting Started”

= “Design Description”

= “The Project Manager”

= “Design Entry”

= “Synthesizing the Design”

= “The Express Constraints Editor (Foundation Express Only)”

Foundation Series 2.1i In-Depth Tutorials 2-1

Foundation Series 2.1i In-Depth Tutorials

= “Using the Express Constraints Editor (Foundation Express
Only)”

= “Viewing Synthesis Results (Foundation Express Only)”

Getting Started

2-2

The following subsections describe the basic requirements for
running the tutorial.

Nomenclature

In this tutorial, the following terms are used:

« “Spartan family” includes the Spartan and SpartanXL devices
only.

= “Right-click” means click the right mouse button. Unless
specified, all other mouse operations are performed with the left
mouse button.

Throughout this tutorial, file names, project names, and directory
names (paths) are specified in lower case, and the design is referred
to as Watch.

Required Software

The Xilinx Foundation Series package, Version 2.1i, is required to
perform this tutorial. The design requires that you have installed the
SpartanXL libraries and device files and are licensed for Foundation
Express or Base Express. You must also have the Watch projects
which are installed with the Sample Designs or which may be
downloaded from http://support.xilinx.com.

Note: A Foundation Express license is required to access the Express
Constraints GUI.

Installing the Tutorial

This tutorial assumes that the software is installed in the default
location c:\fndtn. If you have installed the software in a different
location, substitute your installation path for c:\fndtn.

The tutorial projects are optionally installed (as sample projects) in
the c:\fndtn\active\projects directory when you install the

Xilinx Development System

HDL-Based Design

Foundation Series software. If you have installed the software, but
are not sure whether the tutorial projects were installed, check for
directories named c:\fndtn\active\projects\wtut*. These directories
contain the various tutorial files.

Note: For detailed instructions, refer to the Foundation Series 2.1i
Install and Release Document.

Tutorial Project Directories and Files

During the software installation, the WTUT_VHD and WTUT_VER
directories are created within c:\fndtn\active\projects, and the
tutorial files are copied into these directories. These directories
contain complete and incomplete versions of the design, done in
VHDL and Verilog, respectively. You will complete the design in the
tutorial. However, solutions projects with all completed input and
output files are also provided. The following table lists the associated
project.

Table 2-1 Tutorial Project Directories

Directory Description
WTUT_VHD | Incomplete Watch Tutorial - VHDL
WTUT_VER | Incomplete Watch Tutorial - Verilog
WATCHVHD | Solution for Watch - VHDL
WATCHVER | Solution for Watch - Verilog

The WATCHVHD and WATCHVER solution projects contain the
design files for the completed tutorials, including HDL files and the
bitstream file.To conserve disk space, some intermediate files are not
provided. Do not overwrite any files in the solutions directories.

The WTUT_VHD and WTUT_VER projects contain incomplete
copies of the tutorial design. You will create the remaining files when
you perform the tutorial. As described in a later step, you have the
option to copy the Watch project to another area and perform the
tutorial in this new area if desired.

VHDL or Verilog?

This tutorial has been prepared for both VHDL and Verilog designs.
This document applies to both designs simultaneously, noting
differences where applicable. You will need to decide which HDL

Foundation Series 2.1i In-Depth Tutorials 2-3

Foundation Series 2.1i In-Depth Tutorials

language you would like to work through the tutorial when you open
the project.

Starting the Project Manager

1. Double click the Foundation Series Project Manager icon on your
desktop or select Pr ograns — Xi | i nx Foundati on Seri es -
Xi |'i nx Foundati on Project Manager from the Start menu.

il
Faundation

Froject
b anager

2. A Getting Started dialog box opens. You can select a recently
opened project from this box. If have not opened this tutorial
project before now, click the Mbr e Pr oj ect s. . . button.

Getting Started x|

=1 ¥ Open an Existing Praject

witut_whd «| Mo projects...
dye :
stop_wer

stop_vhd
wikLk_wer

flash hd|

c:hfndtnbactive\projectzhistut_vhd

" Create a Mew Project

[Always open last project

EK| Cancel | . Hep |

Figure 2-1 Getting Started Dialog Box

2-4 Xilinx Development System

HDL-Based Design

3. Inthe Directories list, browse to c:\fndtn\active\projects. In the
Projects list, open WTUT_VHD or WTUT_VER by double
clicking.

Copying the Tutorial Files (Optional)

You can either work within the project directory as it has been
installed from the CD, or you can make a copy to work on. To make a
working copy of the tutorial files, begin with an opened project and
perform the following steps.

Note: Whenever copying projects in Foundation, it is important to
use the “Copy Project” feature in the Project Manager to ensure that
the project’s directory structure is kept intact.

1. SelectFil e - Copy Proj ect.

2. Under the Destination section, type “wtch_hdlI” in the Name
field.

3. Click &K
4. SelectFil e - Open Project.

5. Scroll down in the project list and select the wtch_hdl project
name. Click Open.

6. The wtch_hdl project will contain two UCF files. If this is the
case, select wtut_vhd.ucf or wtut_ver.ucf. Select Docunent -
Renove or press Del to remove the file (wtut_ver.ucf or
wtut_vhd.ucf). Click Yes to confirm the removal of the file.

This does not delete the file from the disk. It merely removes it
from the project so that it is not used during compilation. The file
still exists in the project directory on the disk. If you mistakenly
remove a file from a project, select Docunent — Add to add it
back.

Design Description

The design used in this tutorial is a hierarchical, HDL-based design,
meaning that the top-level design file is an HDL file that references
several other lower-level macros. The lower-level macros are either
HDL modules or LogiBLOX modules.

Foundation Series 2.1i In-Depth Tutorials 2-5

Foundation Series 2.1i In-Depth Tutorials

2-6

The design begins as an unfinished design. Throughout the tutorial,
you complete the design by generating some of the modules from
scratch and by completing some others from existing files. When the
design is complete, you simulate it to verify the design’s
functionality.

Watch is a simple runner’s stopwatch. There are three external
inputs, and three external output buses in the completed design. The
system clock is an externally generated signal. The following list
summarizes the input lines and output buses.

Inputs:

= STRTSTOP —Starts and stops the stopwatch. This is an active
low signal which acts like the start/stop button on a runner’s
stopwatch.

= RESET—Resets the stopwatch to 00.0 after it has been stopped.
e CLK—Externally generated system clock
Outputs:

= TENSOUT[6:0]—7-bit bus which represents the Ten’s digit of the
stopwatch value. This bus is in 7-segment display format
viewable on the 7-segment LED display on the Xilinx
demonstration board.

< ONESOUT[6:0]—Similar to TENSOUT bus above, but represents
the One’s digit of the stopwatch value.

e TENTHSOUT[9:0]—10-bit bus which represents the Tenths’ digit
of the stopwatch value. This bus is one-hot encoded.

The completed design consists of the following functional blocks.
e STATMACH

State Machine module.
= CNT60

HDL-based module which counts from 0 to 59, decimal. This
macro has 2 4-bit outputs, which represent the ones and tens
digits of the decimal values, respectively.

= TENTHS

Logiblox 10-bit, one-hot encoded counter. This macro outputs the
tenths digit of the watch value as a 10-bit one-hot encoded value.

Xilinx Development System

HDL-Based Design

= HEX2LED

HDL-based macro. This macro decodes the ones and tens digit
values from hexadecimal to 7-segment display format for
viewing on the FPGA Demonstration Board.

= SMALLCNTR

A simple Counter.

Foundation Series 2.1i In-Depth Tutorials 2-7

Foundation Series 2.1i In-Depth Tutorials

The Project Manager

The Project Manager controls all aspects of the design flow. Through
the Project Manager, you can access all of the various design entry
and design implementation tools. You can also access the files and
documents associated with your project. The Project Manager
maintains revision control over multiple design iterations.

The Project Manager is divided into three main subwindows. To the
left is the Design Hierarchy Browser which displays the elements
included in the project. To the right is a set of tabs, each one brings up
a separate functional window. The third window at the bottom of the
Project Manager is the Message Console and shows status messages,
errors, and warnings and is updated during all project actions. These

windows are discussed in more detail in the following sections.

#leul_vhd - design not implemented - Project Manager
File Document “iew Project Spnthesis Implementation Tools Help

=10l

Die| 6] oln| =% &)@] Bls| Xl

Files *, Wersions

B~ wiut_vhd

-- +f stopweatch.vhd

#- statmach vhd

Bl cntg0.uhd
wint vhd

Flowe *, Conterts

Reports

wetut_vhd

SYNTHESIS T

9

e 0 W J

IMPLEMENTRTION 7

v

=

SIMULATION

» @i&?J

VERIFICATION

»

»
=

PROGRAMMING

Pem
Pem
Pem
Ferm
Ferm
Pem
Pem
Pem

: Start Xilink Foundation F2.1i - Messages - FriJun 25 07:38:45 1939
Lo Opening project: wiut_vhd ——-—-

:Design Type HOL

< Kiling server initialization

:Hiling wersion: 1,10, 0,1

: Opening Xiling project

:Synopsys servet initialization

:License checking time 0.3 [s].

—CunsoIeA HDL Errars HDLWarnings HOL Messages

[

|DAFNDTHACTIVEIPROJECTSMTLT_YHOWCNTEO.VHD - CNTED

Figure 2-2 Project Manager

2-8

Xilinx Development System

HDL-Based Design

Hierarchy Browser

In the Files tab of the Hierarchy Browser, design source files and
libraries are displayed. Next to each filename is an icon which tells
you the file type (HDL file, state machine, schematic, library, text file,
for example). If a file contains lower levels of hierarchy, the icon has a
+ to the left of the name. HDL files have this + to show the entities
(VHDL) or modules (Verilog) within the file. You can expand the tree
by clicking this icon. You can open a file to edit by double clicking the
filename in the browser.

A Versions tab is also available behind the Files tab. Since this is a
new design which has not yet been implemented, the Versions tab is
empty. This tab is discussed in more detail later in the tutorial during
design implementation.

Project Manager Functional Tabs

As mentioned previously, the right-hand side of the Project Manager
contains a series of functional tabs. The functions of these tabs
follows:

= Flow—Provides access to tools you use to complete your entire
design, arranged in a flow-chart style to guide you through the
design flow. Status indicators in the upper right corner of each
phase box indicate whether the step has been completed
successfully.

e Contents—Lists the contents and date of the last modification of
the file selected in the Hierarchy Browser.

= Reports—Accesses design flow reports.

You have the option to browse through these tabs at this time, and at
any time during the tutorial to see how the tabs are updated during
the design flow process.

Foundation Series 2.1i In-Depth Tutorials 2-9

Foundation Series 2.1i In-Depth Tutorials

Message Console Window

Errors, warnings, and informational messages are displayed in the
Message Window. Errors are displayed in red, warnings in blue, and
informational messages in black.

Information about synthesis results are displayed under the HDL
Errors, HDL Warnings, and HDL Messages tabs. Because the HDL
messages, errors and warnings are associated with a specific file or
version, you must select a synthesis version (functional structure or
optimized structure) or a specific file in the Files or Version tab to see
messages.

Design Entry

2-10

In this hierarchical design, you will examine HDL files, correct syntax
errors, create an HDL macro, and add a LogiBLOX module. This
tutorial gives you experience with creating and using each type of
design macro so that you can apply these procedures to your own
design.

Adding Source Files

You must add HDL files to the project before they can be synthesized.
Four HDL files have already been added to this project, but have not
yet been analyzed. Use Synt hesi s - Anal yze Al | Source Fil es
to update these files.

Now add the remaining HDL file to the project. Select Synt hesi s -
Add Sour ce Fi | es and select SMALLCNTR.VHD or
SMALLCNTR.V from the project directory.

This file will be analyzed when it is added to the project. HDL files
that have been added to the project always have one of four status
indicators associated with the file. These indicators are:

= Ared question mark means the file has been modified and needs
to be re-analyzed. Right-click the file and select Analyze.

E- P smallcntry

« Ared X means errors have been found. Select this file and
examine the errors under the HDL Errors tab. Errors are also
given in the HDL Editor.

Xilinx Development System

HDL-Based Design

e hexZledy

= A red exclamation point means warnings have been issued.
Select the file and examine the warnings under the HDL
Warnings tab. Many warnings can be safely ignored.

¥ ctatmach .y

= A green check means that the file is up-to-date with no errors or
warnings.

E- + stopwatch.y

Correcting HDL errors

The SMALLCNTR design contains a syntax error that must be
corrected. The red “x” next to the filename indicates an error was
found during analysis. The Project Manager reports errors in red and
warnings in blue in the console.

Note: To open help on Express errors or warnings, select the error or
message in the HDL Error or Warning tab, then press the F1 key.

1. Open SMALLCNTR.VHD or SMALLCNTR.V in the HDL Editor
by double clicking the file name in the Files tab of the Hierarchy
Browser.

2. Correct any errors in the HDL source file. The comments next to
the error explain this simple fix.

3. SelectFil e - Save to save the file.

4. Re-analyze the file by selecting Synt hesi s - Check Synt ax, in
the HDL Editor or by right-clicking the HDL file in the Project
Manager and selecting Analyze.

Foundation Series 2.1i In-Depth Tutorials 2-11

Foundation Series 2.1i In-Depth Tutorials

Starting the HDL Editor

There are three different ways to open the HDL Editor tool.

= From the Flow tab, click the HDL icon within the Design Entry
phase button.

witit_whiod

=

SIMULATION

v
ool [&
IMPLEMENTATION 7 YERIFICATION
v
>
PROGRAMMING

= Double click an HDL file in the Files tab.
= Right-click an HDL file in the Files tab and select Edit.

If you need to stop the tutorial at any time, save your work by
selecting Fi | e » Save from the menus.

Creating an HDL-Based Module

With Foundation, you can easily create modules from HDL code. The
HDL code is connected to your top-level HDL design through
instantiation and compiled with the rest of the design.

You will create a new HDL module. This macro serves to convert the
two 4-bit outputs of the CNT60 module into a 7-segment LED display
format.

Using the HDL Design Wizard and HDL Editor

You enter the name and ports of the component in the HDL Wizard
and the Wizard creates a “skeleton” HDL file which you can
complete with the remainder of your code.

2-12 Xilinx Development System

HDL-Based Design

1. From the Flow tab in the Project Manager, click the HDL Editor
button.

2. Adialog box opens, asking if you want to create an empty HDL
file, select an existing HDL file, or use the HDL Wizard to create a
new file. Click the radio button next to Use HDL Desi gn W zar d
and click OK.

3. Follow the instructions from the Wizard. When you are
prompted for a preferred HDL language, choose whichever one
you want, VHDL or Verilog.

4. When you are prompted for a file name, type HEX2LED and click
K

5. The HEX2LED component has a 4-bit input port named HEX and
a 7-bit output port named LED. To enter these ports, first click the
New button in the Ports dialog box. Select | nput as the direction
and type HEX in the Name field. Then, click the arrow next to the
Bus field to select 3: 0, which is the width of the bus. In the Nane
field, you should now see HEX[3:0], and a corresponding pin
should appear on the symbol diagram on the left.

Deszign Wizard - Ports

To create a new part click Mew.

? To change attributes of a part, select it o the list. Then
you can change its name, range and direction; to zet other
attributes click Advanced.

To delete a port zelect it on the list and click Delete.

Marme: Bu

1]
[LED[E0]

Directon ——————————————
’7 € Input & Qutput

— HEX[3:0]
LED

" Bidirectional

Hew | Drelete | Advanced... |

< Back I Finizh I Cancel |

Figure 2-3 HDL Wizard

6. Repeat the previous step for the LED[6:0] output bus. Be sure that
the direction is set to Qut put .

Foundation Series 2.1i In-Depth Tutorials 2-13

Foundation Series 2.1i In-Depth Tutorials

7. Click Fi ni sh to complete the Wizard session. A “skeleton” HDL

file now displays in the HDL Editor.

HEXZ2LED. vhd - HDL Editor iy] |
File Edit S5Search Yiew Synthesiz Project Tools Help
D= 8] HE=]a] o] | I [A N e el L
1 [library IEEE;
2 wuse IEEE.std logic_ 1164.all;
3
4 entity HEXZLED is
5 port |
6 HEX: in STD_LOGIC VECTOR {2 downto 8);
7 LED: out STD_LOGIC_VECTOR (6 downto @)
8 J;
9 end HEXZLED;
18
11 architecture HEX2LED arch of HEXZLED is
12 begin
13 -- <<enter your statements herel>
14 end HEXZLED_arch;
15
KN i
KN i
Ready Ln1.Call WHDL FLIRA &

Figure 2-4 Skeleton VHDL File

2-14

Xilinx Development System

HDL-Based Design

HEXZLED.v - HDL Editor =101 x|
File Edit Search “iew Synthesic Project Tool: Help
D[=|E| 8] & [=|e] =]] =l Bl leld] 2w

1 module HEX2LED (HEX, LED) ;

input [3:8] HEX ;
output [6:8] LED ;

3
L
5
6 // add your declarations here
7
8 // add your code here

9

18 endmodule

4] | |

KN 1|
Ready Ln1.Call MWerilog I_l_lml—j

Figure 2-5 Skeleton Verilog File

In the HDL Editor, the ports are already declared in the HDL file, and
some of the basic file structure is already in place. Keywords are
printed in red, comments in green, and values are gray. This color-
coding enhances readability and recognition of typographical errors.

Using the Language Assistant

You use the templates in the Language Assistant for commonly used
HDL constructs, as well as synthesis templates for commonly used
logic components such as counters, D flip-flops, multiplexers, and
global buffers. You can add your own templates to the Language
Assistant for components or constructs you use often.

1. Toinvoke the Language Assistant, select Tool s — Language
Assi st ant from the HDL Editor pulldown menu.

2. The Language Assistant is divided into three sections: Language
Templates, Synthesis Templates, and User Templates. To expand
the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template in the right
hand pane.

Foundation Series 2.1i In-Depth Tutorials 2-15

Foundation Series 2.1i In-Depth Tutorials

2-16

Use the template called HEX2LED Converter located under the
Synthesis Templates heading. Locate this template and preview it
in the right hand pane by clicking the template. This template
provides source code to convert a 4-bit value to 7-segment LED
display format.

Q Language Assistant - YHDL 2x|
=)+ Synthesis templates ;I --HEX-tD-seven-segment decaoder -
. Barrel Shifter - HEX.: in STD_LOG
- Boundary Scan - LED: ot STD_LOC
- Comparator - zegment encoding
- Debounce circuit - 0
- Decoder
- Encader 5 || 1<_ B
[+ Flip Flops -4 12
. 3
o ith HE> SELect
[+ Multiplexers o B _ILI
- Pulldowan j ﬂ—l D
Hide preview << | Usze | Erf | [t | Deletel

Figure 2-6 Language Assistant

4.

Before adding this template to your HDL file, be sure that the
cursor in the HDL Editor is positioned below the line with the
comments “<<enter your statements here>>" for VHDL. For
Verilog, enter code after the “// Add your code here” line. When
you use the template, the code is placed wherever the cursor
currently is in the HDL Editor.

To add the HEX2LED Converter template code, click the Use
button in the Language Assistant while the HEX2LED Converter
template is selected. The code is automatically placed in the HDL
file.

Close the Language Assistant by clicking the X in the upper right
corner of the window.

(Verilog only) After the “//add your declarations here”
statement and before the HEX2LED converter that you just
added, add the following line of code to the HDL file to allow an
assignment.

reg LED;

Xilinx Development System

HDL-Based Design

8. You now have complete and functional HDL code and can check
the syntax using Synt hesi s - Check Synt ax.

9. After you successfully complete the syntax check, save the file by
selecting Fi | e —» Save from the HDL Editor.

10. Add this HDL file to your current project by selecting Pr oj ect
-~ Addto Proj ect.

11. Exit the HDL Editor.

Creating a LogiBLOX Module

LogiBLOX is a graphical interactive design tool you use to create
high-level modules such as counters, shift registers, RAM and
multiplexers. You can customize and pre-optimize the modules to
take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic
functions, and on-chip RAM for dual-port and synchronous RAM.

In this section, you create a LogiBLOX module called Tenths. Tenths
is a 10-bit one-hot encoded counter. It counts the tenths digit of the
stopwatch’s time value. The encoding is set to one-hot counter so that
the digit is easily viewed on the FPGA Demo Board when
downloaded. A series of LED lights display the Tenths digit, where
one light will be on for each count of the tenths digit.

Running the LogiBLOX Module Selector

You select the type of module you want in the GUI of the LogiBLOX
Module Selector dialog box as well as the specific features of the
module. You can invoke this GUI from either the Project Manager,
the HDL Editor, or the Schematic Editor. The operation of the tool is
the same regardless of where you invoke it.

1. If you have closed the HDL Editor, open STOPWATCH.VHD or
STOPWATCH.V.

2. From within the HDL Editor, select Tool s - Logi BLOX.

3. The Setup window opens if this is your first call to the LogiBLOX
module generator. If the Setup window does not open, click the
Set up button. Enter the following items.

a) Under the Device Family tab, use the pulldown to select
SpartanXL.

Foundation Series 2.1i In-Depth Tutorials 2-17

Foundation Series 2.1i In-Depth Tutorials

b) Under the Options tab, select VHDL Template or Verilog
Template, depending on the language you are using.

c) Ifyou plan to simulate with an HDL simulator, select
Behavioral VHDL Netlist or Structural Verilog netlist,
depending on the HDL simulator you want to use.

4. Click OKwhen you have defined all of the options.

Setup x|

"\-"enu:lu:url Project Direu:tu:uryl Dievice Farmily

— Simulation Metligt————— Component Declaration——
¥ Behavioral WHDL netlist W WHDL template
¥ Gatelevel EDIE netlist [~ Verilog template
[T Stuctural Verilog netlist

¥ HEEFie ¥ Stop Process on Warming

— Implementation Netlist—‘ "LngiE L= DRC

(] I Cancel | Spply Help

Figure 2-7 LogiBLOX Setup for VHDL Designs
5. Fill in the LogiBLOX Module Selector with the following settings.

< Module Type: Counters

Defines the type of module.
= Module Name: Tenths

Defines the name of the module.
= Bus Width: 10

Defines the width of the data bus. You either choose from the
pulldown menu, or type in a value.

= Operation: Up

Defines how the counter will operate. This field is dependant
on the type of module you select.

2-18 Xilinx Development System

HDL-Based Design

« Style: Maximum Speed

Defines the type of optimization strategy for the module.
This dictates how the layout of the module is defined.

= Encoding: One Hot
Defines the register encoding for the module.
= Async Val: 0000000001
Defines the value of the module on power-up and reset.

6. Check or uncheck the appropriate boxes on the module diagram
so that only the following pins are used.

< Async. Control
= Clock Enable
e QOUT

e Terminal Count

Foundation Series 2.1i In-Depth Tutorials 2-19

Foundation Series 2.1i In-Depth Tutorials

Figure 2-8 LogiBLOX Module Selector

7. Click OK. The module is created and automatically added to the
project library.

A number of files are added to the project directory. These files
follow:

= TENTHS.NGC

This file is the netlist that is used during the Translate phase
of implementation.

= TENTHS.VHI or TENTHS.VEI

This is the instantiation template that is used to incorporate
the LogiBLOX module in your source HDL.

2-20 Xilinx Development System

HDL-Based Design

e TENTHS.VHD or TENTHS.V

This is the HDL file to be used only for functional simulation.
Do not attempt to synthesize this file. Also do not add this
file to the Foundation project.

= TENTHS.MOD

This file stores the configuration information for the Tenths
module.

e LOGIBLOX.INI
This file stores the LogiBLOX configuration for the project.

Instantiating the LogiBLOX Module in the HDL Code

VHDL Flow
1. Open STOPWATCH.VHD in the HDL Editor.
2. Place your cursor after the line that states:
“-- Place the LogiBLOX Component Declaration for Tenths here”

SelectEdit — I nsert Fil e and choose Tenths.vhi. The VHDL
template file for the LogiBLOX instantiation is inserted.

The Component Declaration does not need to be modified.

3. Highlight the inserted code from “--Component Instantiation” to
“TERM_CNT=>);". Select Edi t - Cut .

Foundation Series 2.1i In-Depth Tutorials 2-21

Foundation Series 2.1i In-Depth Tutorials

stopwatch.vhd - HDL Editor - o] x|
File Edit Search Wiew Spnthesis Project Tool: Help

DR g &]5|@]| x|] =] Jfelslelal B[M
32 =]
33 --Place the Logiblox Component Declaration for Tenths here

33 -

35 -- Component Declaration

36 -------——

37 component tenths

38 PORT(

39 CLKE_EH: IH std_logic;

40 CLOCK: IN std_logic;

41 ASYNC_CTRL: IN std_logic;

42 Q_0UT: 0UT std_logic_wector{? DOWNTOD 0);

43 TERM_CHT: OUT std_logic);

44 end component;

45

46 component cnté6@

L7 port { CE : in STD_LOGIC;

48 CLK : in STD_LOGIC;

49 CLR : in STD_LOGIC;

50 LSBSEC : out STD_LOGIC_UECTOR(Z downto 8);

51 MSBSEC : out STD_LOGIC_UECTOR(3 downto @)});

52 end component;

bl o
Feady [Ln33.Co53 wHOL [[[| 4
Figure 2-9 VHDL Component Declaration of LogiBLOX Module

4. Place the cursor after the line that states:

“--Place the LogiBLOX Component Instantiation for Tenths
here.”

Select Edi t — Past e to place the instantiation here.
Change “instance_name” to “XCOUNTER”.

5. Edit this instantiated code to connect the signals in the Stopwatch
design to the ports of the LogiBLOX module. The completed code
looks like the following.

2-22 Xilinx Development System

HDL-Based Design

stopwatch.vhd - HDL Editor
File Edit Search Yiew Synthesiz Project Tools Help

=101]

D|S(|E| & =@ w|] | = &lelilele] 2]

81

--Place the Logiblox Component Instantiation for Tenths here

-- Component Instantiation
KCOUNTER : Tenths port map
{CLK_EH => clkenable,
CLOCK => clk,

ASYNC_CTRL => rstint,
0_0UT => xcountout,
TERH_CHT => xtermcnt];

sixty: cnt6l@ port map{CE=>cnté6Benable,
CLK=>CLK,
CLR=>rstint,
LSBSEC=>1sbecnt,
MSBSEC=>msbcnt) ;

[

[Ln91.Cal22 [VHOL UM | 4

Figure 2-10 VHDL Component Instantiation of LogiBLOX

Module
6. Save the design and close the HDL Editor.

Verilog Flow
1. Open STOPWATCH.V in the HDL Editor.

2. Place your cursor after the line that states:

“-- Place the LogiBLOX Module Declaration for Tenths here”

This line is at the end of the file.

SelectEdit — | nsert Fi |l e and choose Tenths.vei. The Verilog

template file for the LogiBLOX instantiation is inserted.

The Component Declaration does not need to be modified.

Note: Alternatively, the remaining module declaration can be placed
in a new Verilog file (name it TENTHS.V) and added to the project.
Be careful not to overwrite the Verilog simulation model, also named
TENTHS.V, if one has been created. This module declaration is
required to define the port directions of the ports of the LogiBLOX

module.

Foundation Series 2.1i In-Depth Tutorials

2-23

Foundation Series 2.1i In-Depth Tutorials

3. Highlight the inserted code from “Tenths instance_name” to
“ TERM_CNT=());”. Select Edi t — Cut.

stopwatch.v - HDL Editor - 10 x|
File Edit Search “iew Synthesic Project Tool: Help
D|=E| 8| &= @] el | = Zafelelelal BN
50 2l
51 assign cnt6Benable = xtermcnt & clkenable;
52 assign TENTHSOUT = "~xcountout;
53 assign strtstopinu = “STRTSTOP;
54
55 endmodule
56
57
58 //Place the Logiblox Hodule Declaration for Tenths here
59
68 module tenths{CLK_EN, CLOCK, ASYHC_CTRL, Q_0UT, TERM_CHT};
61 input CLK_EH;
62 input CLOCK;
63 input ASYNC_CTRL;
64 output [9:0] Q_OUT;
65 output TERM_CHNT;
66 endmodule|
KT
Ready LnBG. Cal 10 MWerilog &

2-24

Figure 2-11 Verilog Module Declaration of LogiBLOX Module
4. Place the cursor after the line that states:

“--Place the LogiBLOX Component Instantiation for Tenths
here.”

Select Edi t — Past e to place the instantiation here.
Change “instance_name” to “XCOUNTER”.

5. Edit this code to connect the signals in the Stopwatch design to
the ports of the LogiBLOX module. The completed code is shown
in the following figure.

Xilinx Development System

HDL-Based Design

stopwatch.v - HDL Editor P] 4
File Edit Seach “iew Senthesiz Project JTools Help

D& &| & [=|@] <]« | =1 3z|ile|d] 2]
24 =]

25 //Place the Logiblox Component Instantiation for Tenths here
26 Tenths XCOUNTER
27 (.CLE_EM{clkenable},

28 .CLOCK(CLK},

29 -ASYHC_CTRL{rstint},

38 -0_0UT(%countout),

31 -TERM_CHT{ztermcnt));

32

33 cnt6@ sixty{.CE{cnt&Benable},
34 -CLE(CLK},

35 .CLR(rstint),

36 .LSBSEC{1sbcnt),
37 -MSBSEC{mshcnt));
38

39 HEX2LED lsbled(.HEX(lsbcnt),.LED{ONESOUT));
48 HEX2LED msbled(.HEX({msbcnt),.LED{TENSOUT});

41 hd
KN _'I_I
Figure 2-12 Verilog Component Instantiation of LogiBLOX
Module

6. Save the design and close the HDL Editor.

Synthesizing the Design

Now that the design has been entered and analyzed, the next step is
to synthesize the design. In this step, the HDL files are translated into
gates and optimized to the target architecture.

1. Set the global synthesis options by selecting Synt hesi s -
Opt i ons. Set the Default Frequency to 50MHz, and check the
Export Timing Constraints box. Click OK to accept these values.

2. Click the + next to STOPWATCH.VHD (or STOPWATCH.V).
This shows the entities (or modules) within the HDL file. Some
files may have multiple entities (or modules).

3. Right click the entity named “stopwatch” and select
Synt hesi ze.

This step can also be done by clicking the Synthesis button under
the flow tab. Select the stopwatch entity or module by using the
pulldown in the Top Level field. Be sure that the Version Name
field has an entry.

Foundation Series 2.1i In-Depth Tutorials 2-25

Foundation Series 2.1i In-Depth Tutorials

2-26

Complete the Target Device fields with this information;
= Family: SpartanXL

= Device: SO5XLPC84

= Speed Grade: -5

Check the boxes labeled Edit Synthesis/Implementation
Constraints and View Estimated Performance after Optimization.

Selecting the Edit Synthesis/Implementation Constraints box
automatically opens the Express Constraints Editor after
synthesis is complete.

Selecting the View Estimated Performance after Optimization
box automatically opens the Optimized dialog box which
displays the results of the synthesis and optimization.

Synthesis/Implementation settings il
Top lewvel I stapwatch j Bun I
Wersion name: Iver'l Ok |
Syrthesis Settings: SET | Cancel |

Help |

Target Device

Family |SPARTAN<L -]

Device: ISDSXLF'EE#. j Speed: |-5 j

[V Edit Syrthesis/Implementation constraints

[V /ieny Estimated Performance after Optimizatiore

= isito Bfun Implementation fols
Phyzical Implementation zettings

R evizion name: Irev1 [ptions |

Control Files: SET

Figure 2-13 Synthesis/Implementation Window

6.

Click Run. Express synthesizes the design and opens the Express
Constraints Editor.

Xilinx Development System

HDL-Based Design

Note: The Express Constraints Editor is not available to non-
registered users or with Base Express licenses. All the functionality
covered by the Express Constraints Editor can be achieved by
component instantiation (Pullups, Pulldowns, Clock Buffers, I/0 Flip
Flops), UCF file (timing constraints, pin location constraints), or MAP
options (merging flip flops into I0Bs). If you are a Base Express
customer, skip to the “Functional Simulation” chapter.

The Express Constraints Editor (Foundation
Express Only)

You control optimization options and pass timing specifications to
the Place and Route software through a GUI in the Express Synthesis
software. This editor is only available with the Foundation Express
product not Base Express. All timing specifications are passed in the
netlist directly to the place and route engine and are used in the
synthesis process for timing estimation purposes only.

e Clocks

The Default Frequency set in Synt hesi s — Opt i ons is applied
to all clocks in the design. To change the specification of a clock,
click inside the box to the right of the clock and select Define.
Enter the clock period or give the rise and fall times.

e Paths

All types of paths that can be covered by timing specifications are
listed here, with unique specifications given for each clock in the
design. To modify these specifications, enter a new delay in the
Reqg. Delay column.

To create a subpath within a path, right click the source or
destination and select New Subpath. Give the subpath a new
name and delay value, then select sources and destinations by
double clicking the instances. You can also use wildcards in the
selection filters to choose a group of elements.

Foundation Series 2.1i In-Depth Tutorials 2-27

Foundation Series 2.1i In-Depth Tutorials

e Ports

With the Ports tab, you set input and out delay requirements,
assign clock buffers, insert pullup or pulldown resistors in the I/
O, set delay properties for input registers, set slew rate, disable
the use of 170 registers, and assign pin locations. For all but the
pin locations, click in the box to use the pulldown menu. For pin
locations, type the pin number in the box.

e Modules

With the Modules tab, you to keep or eliminate hierarchy and
disable resource sharing. You can also override the default
settings for effort and area versus speed at the module level.

= Xilinx Options

The Ignore unlinked cells during GSR mapping option directs
Express to infer a global reset signal (and, therefore, insert the
STARTUP module), even if black boxes have been instantiated.
Express cannot know the reset characteristics of any logic in black
boxes, so it will not insert STARTUP unless you check this
option.

Using the Express Constraints Editor (Foundation
Express Only)

2-28

Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place-and-route tools. However, it is usually necessary, at some
point, to lock the pinout of a design so that it can be integrated into a
PCB (printed circuit board).

Define the initial pinout by running the place-and-route tools
without pin assignments, then locking down the pin placement so
that it reflects the locations chosen by the tools. Assign locations to
the pins in the Watch design so that the design can function in a
Xilinx demonstration board. Because the design is simple and timing
is not critical, these pin assignments do not adversely affect the
ability of PAR to place-and-route the design.

For HDL-based designs, these pin assignments can be done in a User
Constraints File ((UCF) or with the Express Constraints Editor.

Xilinx Development System

HDL-Based Design

Although UCF files are provided for this tutorial, you will assign the
pin location constraints in the Express Constraints Editor.

1. Inthe Express Constraint Editor, click the Import Constraints
button. Select WATCHVHD.EXC or WATCHVER.EXC,
depending on the language you are using. These files are located
in the project directory.

This file has been created for you. The only difference you should
see between your initial constraints and the ones saved in the
.EXC file is the set of pin locations under the Ports tab.

You can save Constraint Editor settings for a design by selecting
Fil e -~ Export Constrai nts.When this .EXC file is read in
for a later synthesis run, all constraints are re-established in the
GUI, as long as they can be matched to instances in the current
version.

2. Under the Paths tab, click in the box in Row 2 below the Req.
Delay header (from All Input Ports to RC-CLK). Change the
delay to 15. Under the Ports tab, the Input Delays for RESET and
STRTSTOP have changed to 15, as these represent all the Pad to
Setup delays.

You can change the values of individual Input or Output Delays
by clicking the value in the Ports tab and either editing the value
there or using the pulldown tab to select a value or define a new
one. Change the values on one of the output signals using one of
these methods.

3. Under the Paths tab, right click either RC- CLK or Al | Cut put
Por t s in the third row and select New Subpat h. The Create/
Edit Timing Subpath window opens.

Give this new subpath a name, Sub_flops_to_out, and a Delay
value, 18. On the left hand side, double click all four flip flops
that contain the name /verl/sixty/Isbcount/QOUT*, to
determine the sources of this subpath. On the lower right hand
side, use the filter to select the destinations. Type ONE* in the
field and click the Sel ect button. All the ports beginning with
ONESOUT will be highlighted. Click OK to see your new
subpath.

Foundation Series 2.1i In-Depth Tutorials 2-29

Foundation Series 2.1i In-Depth Tutorials

Note: Base Express users cannot access the Express Constraints
Editor. Pin location constraints must therefore be defined in a UCF
file, which Xilinx has provided. Select | npl enent ati on -

| mpl enent ati on Opt i ons. Click the Browse button next to User
Constraints and select BASE.UCF.

Create / Edit Timing Sub Path 2 x|

Primany Fath: IFF'S clocked by riging Averl /CLK > All Output Parts

Sub-path Name: IS ub_flaps_to_out Dielay: I'I g

Dbject | Attibu.. | Dbject | Attibu.. []
T Averl MACHINE M 'current_state_rege2:" = TENTHSOUT<4> out

T Averl MACHINE M curent_state_rege4s" + TENTHSOUT«3x aut

T Averl MACHINE M current_state_regs0:" + TENTHSOUT«2» out

TF Averl MACHINE M current_state rege1s" = TENTHSOUT<1: out

TF Averl AMACHIME # 'current_state_regeSe" *+ TEMTHSOUT<O>» aut

T Averl MACHINE M curent_state_regs 3" DNESDUT out
Ea’veﬂ fsinty/lsboount/ "goutsig_reg< 0" HDNESDUT<5> out
E.-"veﬂ fzinty/lzboount goutgig_reg<1:" HDNESDUTGD out
Ea’veﬂ Ssivtydlzboount/ 'qoutsig_regl 2" DNESDUT<3> out
Ea’ver‘l fainty/lsboount 'goutsig_regs 3" DNESDUT<2> out

T Averl fsisty//msbeount ! 'qoutzig_reg<0s" uDNESDUTd ¥ out fi
TF fverl fsivty/meboount/ 'goutsig_regels" HDNESDURD) aut

T Averl fsisty/msbcount 'goutsig_rege 2" + TENSOUT<E> out

T Averl fsisty/msbcount 'goutsig_reg< 3" * TENSOUT<S: out -

Select&l | Cleartn | Selectdl | Clearal
Select: Select | Select: OME®
QK. | Cancel | Help I

Figure 2-14 Editing Subpath in the Express Constraints Editor

4. Under the Ports tab, add the three final pin locations in the Pad
Loc column. Scroll to the right to see this column. CLK must be
assigned to P13. RESET must be assigned to P28, and STRTSTOP
must be assigned to P18. To reassign, click the box and enter the
pin number (including the P).

Note: The remaining I/0s have pin assignments. This information is
contained in the .exc file. which you imported in Step 1.

2-30 Xilinx Development System

HDL-Based Design

B e et el e

R T
-

ONE

~10J x|

] | 2 e

15(RC, CLE)

1R, CLK)

5 |TENTHSOUT=9=
|6 [TENTHSOUT=8=
TENTHSOUT=7>=
TENTHSOUT=6=
TENTHSOUT=5=
[10_ [TENTHSOUT=4=
TENTHSOUT=3=
TENTHSOUT=2=
TENTHSOUT=1=
[14 [TENTHSOUT=0=
OMESOUT=6>
OMESOUT=5>

T=d=

ONESOUT=3>

1HVRC,CLE)

PORC,CLE)

Figure 2-15 Ports Tab Display

5. Click OKto continue synthesis. Express now optimizes the

design.

Foundation Series 2.1i In-Depth Tutorials

2-31

Foundation Series 2.1i In-Depth Tutorials

Viewing Synthesis Results (Foundation Express

Only)

With the View Estimated Performance after Optimization box
checked, the Express Constraints Editor opens after the optimization
phase of synthesis with preliminary performance results. The delay
values are based on wireload models and, therefore, must be
considered preliminary. Consult the post-route timing reports for the
most accurate delay information.

1. Under the Clocks tab, examine the estimated delay value of the
clock. Delays greater than the specification appear in red.

2. Under the Paths tab, examine the estimated delays for the paths
and subpath. Click the source or destination of a path to see the

members of the path, and click a specific path to see the

individual segments of that path.

#f ver1-Optimized [Constraints] o =] |
Clocks Fathz IF'orts | Modules | ilinx Options
From To = Ingtance Path Cell Type |Delay|Fanout
1 = Al Input Ports <3 Al Output Ports 1 Goutsio_reg=0=/C DFF oo | 14
2 > &l Input Ports F1 RC - CLK_BUFGed 2 goutsig_reg=0=12 DFF 14 12
E B F1L RC - CLK_BUFGed B3 Al Cutput Ports — |3 218140 [==1} 5.2 12
4 =, Sub_flops_to_out-From = Sub_flops_to_out |4 18100 EQM E5S 1
= = me e mees e '—“_I—I 5 c1541 OBUF a1
= 15400 OBUF 13.0 a
Sub_flops_to_out-F|Sub_flops_to_out-T| Est. Delay / «| |7 CMNESOT=6=/0NESOUT=6= | OUT 13.0 u]
rom o Slack
1 goutsig_reg=0= OMESOUT=E= 130/ 50
2 goutsig_reg=0= ONESOUT=5= 1307 50
3 goutsig_reg=0= ONESOUT=4= 130/ 50
4 goutsig_reg=0= CMESOUT=3= 1307 50
5 qoutsig_reg=0= ONESOUT=2= 130/ 50
B | qoutsig_reg=0= OMESOUT=1= 130/ 50 |«
4 »

Figure 2-16 Estimated Timing Data Under Paths Tab

3. Examine the Ports tab to see that all of the settings and delays
have been assigned and met.

2-32

Xilinx Development System

HDL-Based Design

4. Under the Modules tab, you can examine the elements used to
synthesize this design. Click the box in the second row under
Area and select Det ai | s. This section summarizes all the design
elements used in the Stopwatch design that Express knows
about.

Since the Tenths module is a LogiBLOX component and has not
been synthesized by Express, it is UNLINKED and no summary
information is available.

Note: Black boxes (modules not read into the Express design
environment) are always noted as UNLINKED in the Express
reports. As long as the underlying netlist (.xnf, .ngo, .ngc or EDIF) for
a black box exists in the project directory, the Implementation tools
merge the netlist in during the Translate phase. Since the Tenths
module was built using LogiBLOX called from the project, the tenths
NGC file will be found.

5. Click OKto complete the Synthesis phase.

At this point, an XNF file exists for the Stopwatch design. See the
“Functional Simulation” chapter to perform a post-synthesis
simulation of this design or refer to the “Design Implementation”
chapter to place and route the design.

Foundation Series 2.1i In-Depth Tutorials 2-33

Foundation Series 2.1i In-Depth Tutorials

2-34 Xilinx Development System

Chapter 3

Functional Simulation

You can perform functional simulation before design implementation
to verify that the logic that you have created is correct. Foundation
provides a Logic Simulator, which is a gate-level simulator. You can
perform functional simulation on a schematic-based design
immediately after the design is captured in the Schematic Capture
tool. In the case of an HDL-based design, you can perform functional
simulation immediately following synthesis. In a later section, you
can perform timing simulation, which takes place after the design is
implemented (placed and routed) with the Xilinx Implementation
Tools.

This chapter contains the following sections.
= “Starting the Logic Simulator”

= “Performing Simulation”

= “Adding Signals”

e “Adding Stimulus”

= “Running the Simulation”

= “Saving the Simulation”

Foundation Series 2.1i In-Depth Tutorials 3-1

Foundation Series 2.1i In-Depth Tutorials

Starting the Logic Simulator

Performing

Click the Functional Simulation phase button in the Project
Flowchart.

wiiut_sc (4003EPCE4-3) -
S O S
DESIGMN ENTRY o SIMULATION -
v | Functional Simulation
)
oo H | @ 5
IMPLEMENTATION 7 WERIFICATION
L

You may be prompted to update the schematic netlist if you modified
the schematic but did not write out a netlist. In this case, click Yes to
update the netlist.

The Logic Simulator is invoked, and the project netlist is
automatically loaded into the simulator.

Simulation

There are three basic steps to simulate your design:
1. Adding signals

2. Adding stimulus

3. Running the simulation

There are several different ways to perform each of these steps. These
methods are discussed briefly in the following sections. In this
tutorial, you use the simulator in various ways, and then you can
decide what is best for you with your own designs.

Adding Signals

3-2

In order to view signals during the simulation, you must first add
them to the Waveform Viewer in the Simulator. The signals are then
listed in the Waveform Viewer. You can view and monitor the
waveforms next to the corresponding signal names, as well as
monitor the state of these signals in the schematic during the
simulation.

Xilinx Development System

Functional Simulation

There are two basic methods for adding signals to the Simulator
Waveform Viewer.

= Using Probes from the Schematic Capture tool

= Using the Component Selection window in the Simulator

Adding Signals Using Probes

Note: This section only applies to schematic-based design flows. If
you are using either the all-vVHDL or all-Verilog versions of the watch
design, skip to the “Adding Signals Using the Component Selection
Window” section.

In order to add signals for the Watch design simulation, you can use
Probes from the Schematic Capture tool to identify signals that you
want to view in the Simulator.

1. Bring up the Schematic Capture tool from within the Simulator
by clicking the SC icon in the Simulator toolbar.

]

2. After the schematic has opened, click the Simulation Toolbox
icon in the Schematic Capture toolbar.

E|

This opens the SC Probes toolbox which has several buttons you
can use to control the simulation from within the Schematic
Capture tool.

SC
N,
[=

jral IE3]

Note: You can view the results of the simulation either in the
Simulator Waveform Viewer or by looking at the annotated values
that appear directly on the schematic. These methods are examined
more closely later in the tutorial.

Foundation Series 2.1i In-Depth Tutorials 3-3

Foundation Series 2.1i In-Depth Tutorials

34

When the SC Probes toolbox is open, the cursor is automatically
put into the Add Probes mode. You can see a probes icon
attached to the cursor as shown in the following figure and the
Add Probes button in the SC Probes toolbox is depressed. When
you are adding probes to the schematic, you must remain in this
Add Probes mode.

Re:

Figure 3-1 Cursor in Add Probes Mode

3.

With the cursor in Add Probes mode, click once on the CLK
signal name on the schematic. A gray box appears to the left of
the CLK label. This gray box indicates that a probe has been
attached to this signal.

Repeat Step 3 to add probes to the RESET and STRTSTOP signals
and to the TENTHSOUT[9:0], ONESOUTI[6:0] and
TENSOUTI6:0] buses.

Return to the Simulator Waveform Viewer by clicking the SIM
button in the SC Probes toolbox.

=| SC Probes

SIM
PEERETER
L =]
J?le |u|atol-|

You should now see all of the signals you just probed listed in the
Simulator Waveform Viewer.

Xilinx Development System

Functional Simulation

@ Logic Simulator - Xilinx Foundation F1.5 [wtut_zc] - [waveform Yiewer 0] o =] B
£ File Signal Waveform Device Options JTools Yiew Window Help -|E'|£|

Dql Hlél Eﬁul:ﬁcl @ |Functi0na| j| ﬂ ﬂ |5Uﬂ8 j| @ |Break j| ﬁl ﬁl

[B === 3 [~ mw| [oo
wl E0ns/div HI 2 00ks
r________________

4000ns
il

E00ns
il

S 0050s
i

L. dus
il

L. fus
il

L. Sus
wnlin

lus L. Zus Eus £. 2us

0.0 IIII|IIIIIIII|IIII IIII|IIIIIIII|IIII I\I\llllllllllllllll

EEE s BEE 1Y e e e

CLE....... .
RESET.
STRTSTOF. . ..
TENTHSOUTS . (}
ONESOUTE . (hes
TENSOUTE . (hes

BN HNias H

]

Figure 3-2 Simulator Signals List

Adding Signals Using the Component Selection
Window

Follow these steps to add more signals using the Component
Selection window within the Simulator.

1. Click the Component Selection icon in the toolbar in the
Simulator or select Si gnhal - Add Si gnal s.

Ji==1|
The Component Selection Window opens.

This window is divided into three panes. The left-most pane is
the Signals Selection pane. This pane displays a list of all of the
available signals for a given level of hierarchy. The middle pane,
Chip Selection, displays a list of all of the components for a given
level of hierarchy.

You can select a different level of hierarchy in the right-most
pane entitled Scan Hierarchy. For instance, click the OUTS1
macro in the Scan Hierarchy pane. You are now looking at
signals and components from the OUTS1 macro in the Signals
Selection and Chip Selection panes, respectively.

Foundation Series 2.1i In-Depth Tutorials 3-5

Foundation Series 2.1i In-Depth Tutorials

Note: Because Express flattens the design during synthesis, you will
only see this OUTS1 component with the schematic version of the

design.
@Lugic Simulator - Xilinz Foundation F1.5 [wtut_sc] - [Component Selection for Waveform Yiewer] - |I:I|1|
. Flle Signal Waveform Device Options Tools View Window Help - |E' |1|

J nlél Eﬁil | J Functional J ﬂ J |5Uns J| J |Break j| H | ﬁl

Slgnals Selection

Chlp Selection il Pins for: SH7 - OUTS1

ﬁﬂf (ONES3, ONEST) A E} INPUTSS
| F¥ (ONESOUTE , QNESOUTO) $H7 - OUTSL E= 1HPUTSS |
| AT ¢ TEWS3, TENSD) $HY - OUTS3 E= IHPUTSY |
| fIF¥ (TENSOUTE , TENSOUTD) $I1 - IPAD E= IHPUTS3
{FW (TENTHSOUTS, TENTHSOUTO) —M @88 512 - IPAD E= IHPUTS2
[Ir¥ cLE $I3 - IBUF E= IHPUTS1
{ T crE_1NT $I4 - IEUF E= IHPUTSO
|\ CLEEN_INT - §I57 - 0SC4
K | o |l 158 - BUFG
| Sort Sort | Info | Atirib. | Hierarchy |
Figure 3-3 Scan Hierarchy Signals Selector
Return to the Root level of hierarchy by clicking the Hierarchy
button and then selecting Root in the Scan Hierarchy pane to
again view the signals from the top-level of the Watch design.
2. Thisstep is divided into two parts, a) and b), for schematic-based
design and HDL-based design, respectively.
a) Schematic-based design only
In the Signals Selection pane, several signals have red
checkmarks next to their names. These signals have already
been added to the Simulator, in this case by using probes in
the Schematic Capture tool. Now you add more signals to the
Waveform Viewer.
From the Signals Selection pane, you can either double click
signals to add them to the Waveform Viewer, or you can
single click and then press Add. Use whichever method you
prefer to add the following buses.
ONES3, ONESO
TENS3, TENSO
3-6 Xilinx Development System

Functional Simulation

Note: Itis possible to add these signals using probes on the schematic
as you did for the other signals, but this process demonstrates the
various methods for adding signals.

b) HDL-based design only

You add signals from the Signals Selection pane to the
Waveform Viewer to view them during the simulation. From
the Signals Selection pane, you can either double click signals
to add them to the Waveform Viewer, or you may single click
and then press Add. Use whichever method you prefer to
add the following signals.

TENTHSOUTY9, TENTHSOUTO
ONESOUT6, ONESOUTO
TENSOUT6, TENSOUTO

CLK

STRTSTOP

RESET

If you mistakenly add any signals you do not want to add, you
double click them again in the Signals Selection pane to remove
them from the Waveform Viewer. The red checkmark should
then disappear.

3. Close the Component Selection window by clicking the Cl ose
button.

All of the signals you added are now shown in the Waveform
Viewer.

Deleting a Signal

To delete any of the signals from the Waveform Viewer, first select
the signal in the signal list in the Waveform Viewer, right-click, and
then select Del et e Si ghal s — Sel ect ed. This operation removes
the highlighted signal from the Waveform Viewer.

Foundation Series 2.1i In-Depth Tutorials 3-7

Foundation Series 2.1i In-Depth Tutorials

Adding Stimulus

To define the function of the input signals, you must add stimulus to
your simulation. There are many ways to define stimulus with the
Foundation Simulator. Some of these methods are listed below and
are discussed in more detail in the sections to follow.

= Keyboard stimulus

e Custom formulae

= Internal binary counter outputs
= Stimulator state selector

= Script file

= Waveform file

In this tutorial, you use the keyboard stimulus, custom formulae,
internal binary counter, and script file. The script file method is used
later in the tutorial when you are performing a timing simulation. All
of these stimulator methods may be used in both functional and
timing simulations.

Open the Stimulator Selection Window by clicking the Stimulator
icon in the toolbar or by selecting Si gnal - Add Stinul ators. ..

|

The various components of this window are discussed in the
following sections.

i) Stimulator Selection =10 x|
Heyboard: Clocks:
Dnoeouoeow)| s e
SR EELTELL |
10 v e s] (ool [C=s

c 8 4 0
B (@000 [000d] eod]oood]
HEc: (2309 ([@00d] @ead|eaad|
Form REE| EEEE| EEEE| | EEEE|

G

Furmula...l Close | Help |

Figure 3-4 Stimulator Selector

3-8 Xilinx Development System

Functional Simulation

Stimulating with the Internal Binary Counter

The Foundation Simulator includes an internal free-running 16-bit
binary counter. You can use each of the 16 output bits of the counter
as stimulators. These signals provide 50% duty cycle signals, each bit
having half the frequency of the next least significant bit. These are
useful when defining clock stimulus. You may define the frequency
of the LSB of the counter (B0) and can therefore derive the frequen-
cies of the other counter outputs.

These counter outputs are represented by the round yellow LEDs in
the Stimulator Selection window. The row of red round LEDs below
it represents the complement of the counter outputs. The BO output
(LSB) of the counter is the farthest LED to the right, and B15 (MSB) is
all the way to the left.

To simulate the system clock, you assign stimulus to the CLK signal
in the simulator. You use the B0 stimulator signal to stimulate the
CLK signal in the Watch design.

1. Inthe Waveform Viewer, select the CLK signal by clicking it.

2. Inthe Stimulator Selection Window, click the B0 stimulator (the
right-most yellow LED). You should now see a BO next to the
CLK signal in the Waveform Viewer indicating that the BO
stimulator is assigned to CLK.

3. Select Opti ons - Pref erences from the Simulator window.
This opens the Preferences window. In the Simulation tab of this
window, you can set the frequency of the BO counter output.

4. Set the BO frequency to 10MHz.

Foundation Series 2.1i In-Depth Tutorials 3-9

Foundation Series 2.1i In-Depth Tutorials

Preferences x|
Simulation | General I Power On I Reports I Log Files I
Clocks——————— Memory Bange
BO Period: Lower Mem dddress:
|1 00ns vI |2D48 vI
B0 Frequency: Upper Mem Address:
I'IU tHz vl |2U48 vl
Simulation Precizion:
Im V¥ Transport Delay
Ok, I Cancel | Help

Figure 3-5 Simulator Preferences

5. Press OK to close the Preferences window.

Stimulating with Keyboard Stimulators

You assign keyboard keys as stimulus for signals in your design with
the keyboard in the Stimulator Selection window. After you assign
this stimulus, the signal’s value toggles between 1 and 0 whenever
you press the corresponding key on your PC’s keyboard.
Additionally, you can assign a constant 1 or 0 to a signal using the 1
and 0 keys on the Stimulator Selector’s keyboard.

Now assign the R keyboard stimulus to the RESET signal in the
Watch design.

1. Click and drag the Rkey on the keyboard in the Stimulator
Selector onto the RESET signal name in the Waveform Viewer.

You should now see an R next to the RESET signal in the Wave-
form Viewer, which indicates that this is the assigned stimulus.

2. Press the Rkey on your PC keyboard a few times to see the state
of the stimulus changing in the Waveform Viewer.

Stimulating with Custom Formulae

The 16 square LEDs in the Stimulator Selector represent Custom
Formulae. You have the option to define each of these 16 formulae to
any custom stimulus pattern you want.

3-10 Xilinx Development System

Functional Simulation

Now create a custom formula and then assign that formula to the
STRTSTOP signal in the Watch design.

1. Click the For mul a. . . button in the Stimulator Selection
Window to bring up the Set Formulas window.

Note: There are two sections of the Set Formulas window: Clocks and
Formulas. Any pattern that you specify for a Clock repeats forever.
Any pattern that you specify for a Formula executes just once, and
then holds the last specified value for the rest of the simulation.

2. Double click on FO in the Formulas section. The Edit Formula
field at the bottom of the window should now be active.

3. Type the following formula into the Edit Formula field:
H200L100H2000L100H500L200H1000

This formula means “High for 200ns, then Low for 100ns, then
High for 2000ns, then Low for 100ns, etc...”. This defines the
stimulus pattern which you assign to STRTSTOP.

4. Click Accept . This assigns the formula you just entered to the FO
formula. You should now see it displayed next to the FO.

i Set Formulas

Formula Stimulators

__________ Clocks - - Accept

c: Delete

—————————— Formulas ----------
Fo: H100L20H 2000L 20H200L20H1 000 Delete Al

F2: Cloze
F5: Cancel

Help

Pl |

Edit Formul a:

Figure 3-6 Creating Formulas

5. Click d ose.

Foundation Series 2.1i In-Depth Tutorials 3-11

Foundation Series 2.1i In-Depth Tutorials

6. Assign this newly created FO formula to the STRTSTOP signal.
Click the FO LED in the Stimulator Selection box (the farthest
square LED to the right) and drag it onto the STRTSTOP signal in
the Waveform Viewer. You should now see an FO next to the
STRTSTOP signal indicating that the FO formula has been
assigned as stimulus for that signal. The FO formula may now
also be used for any other signals you want within this same
project.

Other Sections of the Stimulator Selector

There are a few more sections of the Stimulator Selector that are not
used in this tutorial, but are discussed briefly here. For complete
documentation on these topics, refer to the Foundation Logic
Simulator online help.

The Clocks section contains four custom clock signals. These custom
clocks are defined in the Set Formulas window as mentioned above
in the Custom Formula section. These custom clocks are useful for
clocks with duty cycles other than 50%. You could not use the
internal binary counter outputs for those types of clocks or for other
repeating functions.

The EN, DS, CC, OV, and CS buttons pertain to the “mode” of the
signal and stimulus. These modes control options, such as whether
the stimulus is overridden by internally driven signals and whether
the stimulus is enabled or disabled at a given time.

Finally, the Delete button deletes the stimulus from a selected signal.
This function does not delete the signal from the waveform viewer. It
merely deletes the stimulus associated with that signal.

Close the Stimulator Selection window by clicking Cl ose.

Running the Simulation

3-12

Now you should see the three inputs of the Watch design, CLK,
RESET, and STRTSTORP listed in the Waveform Viewer, each having
some type of stimulus associated with it. You should also see the
outputs TENTHSOUT, TENSOUT, ONESOUT, ONES, and TENS
listed (ONES and TENS will only be visible for the schematic-based
designs). You are now ready to run the simulation.

Xilinx Development System

Functional Simulation

@ Logic Simulator - Xilink Foundation F1.5 [wiut_sc] - [waveform Viewer 0] -1alx
File Signal Waveform Device Options Tools View Window Help -8 ﬂ

ﬂﬂ@ Eﬂ @ ‘Functiona\ j| ﬂ ﬂ ‘SDns j| @ |Break j| Eﬂ

) BeEi=(== 3 |20 mu 0.0

%MH 200ns [400ns |600ns [B00ns [lus |L.Zus |l.dus |L.gus [l.8us JPus [2.Zus |
i

0.0 punlidonlwabiaidun bl il bideadaobibididuo b el

cix. ... B
RESET. ...t [
STRTSTOE. . . . |F

TENTHSOUTY . {

1
1
1
B
BIONESOUTE . (he:
B
B
B

TENSOUTS . (he:
ONES3 . (hex)#
ITENGI . (hex)#

e T B

Figure 3-7 Signals with Stimulus

Use the Step button in the Simulator toolbar to advance the
simulation for a set amount of time. You can define the size of the
Step using the pulldown menu next to the Step button, shown below.

Figure 3-8 Simulator Step
1. Set the Step size to 100ns.

2. Pressther key onyour PC keyboard until the RESET stimulus
state is low.

3. Click the St ep button to advance the simulation.

+4

The CLK signal is clocking based on the BO frequency you set
earlier.

Foundation Series 2.1i In-Depth Tutorials 3-13

Foundation Series 2.1i In-Depth Tutorials

3-14

The STRTSTOP signal follows the formula created earlier.
Continue to click the St ep button to advance the simulation.

Does the circuit appear to be working properly? Is the stopwatch
counting? Remember that the tenths digit is a one-hot encoded
value. To better see the results, you can change the radix of this
bus to binary by first clicking the TENTHSOUT bus, right-
clicking and selecting Bus - Di spl ay — Bi nary. You may also
change the scale of the Waveform Viewer by clicking on the
Scal e buttons.

I.I.I.LI.I.LI.II Sns,/div ||_|_|_|_|I[

[4. ldus

Recall that the ONESOUT and TENSOUT buses are in 7-segment
display format, so the value of the bus may not be readily clear.
Below is a diagram of the layout of the 7-segment display to help
with verification.

-n’ o

'

\ Decimal point

X8774

Figure 3-9 7-Segment Display

If the design is schematic-based, you can view a model of the 7-
segment display on the schematic, as described below, for easier
debugging. With a schematic-based design, you are also viewing
the ONES and TENS bus in the Waveform viewer. These buses
are the 4-bit binary values of the ones and tens digits. To better
see these values, you can change the radix of the buses. by
clicking the ONES bus, right-clicking and selecting Bus -

Di spl ay — Deci mal . Repeat this procedure for the TENS bus.

Xilinx Development System

Functional Simulation

You can view the results of the simulation in the Waveform
Viewer or on the Schematic (for schematic-based design only). To
view the simulation on the Schematic, click the Schematic
Capture icon in the Simulator toolbar. This opens the Schematic
Capture tool. You can see simulation values annotated onto the
schematic. You can continue stepping the simulation from within
the Schematic Capture tool. Click the Simulation Toolbox icon in
the Schematic Capture tool to open the SC Probes window if it is
not already open. Then, click the Step button in the SC Probes
window to advance the simulation.

On the schematic, verify that the value is being displayed
properly on the model of the 7-segment display. Green LEDs
indicate that the LED is active; red LEDs indicate that it is
inactive.

5. Step the simulation until time = 4.6us. At this point in the
simulation, the stopwatch is stopped. Press the r key on the
keyboard to toggle the RESET signal and reset the stopwatch.
Press r once so that it goes high, then step the simulation once,
then press r again to set RESET back to low. Continue stepping
the simulation.

6. Asan alternative to manually clicking the St ep button, you may
run an extended simulation. Select Opt i ons — Start Long
Si mul at i on and set the Simulation Running Time to be 20 sec.

7. Click St ar t. The simulation runs for 20 seconds of simulation
time.

Start Long Simulation x|

Simulation Running Time: i'l
Start I Cancel | Help |

Figure 3-10 Start Long Simulation

8. Scroll back in the Waveform Viewer using the scroll bar on the
bottom of the window to inspect the results of the simulation.
Does it still appear to be working?

Foundation Series 2.1i In-Depth Tutorials 3-15

Foundation Series 2.1i In-Depth Tutorials

Saving the Simulation

After you run a simulation, you can save it for future use. You can
save the Waveforms you captured as test vectors, and then load them
into the simulator to use again later.

1. SelectFil e -~ Save Wavef or m In the dialog box that opens,
you can enter a name for the waveform file (TVE). You can
choose any name and save the waveform file.

You can load this waveform file into the simulator using the
Fil e -~ Load Wavef or mcommand.

2. Close the Simulator.

3-16 Xilinx Development System

Chapter 4

Design Implementation

Design Implementation is the process of translating, mapping,
placing, routing, and generating a BIT file for your design. The
Design Implementation tools are embedded into the Foundation
Project Manager for easy access and project management.

This chapter contains the following sections.

= “Project Management”

« “Starting Implementation”

e “Implementation Options”

= “Running Implementation — The Flow Engine”
= “Viewing Implementation Results”

e “Other Implementation Tools”

Project Management

Project management controls design versions and revisions. A
version represents an input design netlist. Each time a change is
made to the source design, such as logic being added to or removed
from the schematic or the HDL source being modified, a new version
is created. A revision represents an implementation on a given
version, usually with new implementation options, such as different
placement or router effort level.

Foundation maintains revision control, meaning that the resulting
files from each implementation revision are archived in the project
directory.

Foundation Series 2.1i In-Depth Tutorials 4-1

Foundation Series 2.1i In-Depth Tutorials

Note: In 2.1i, you can archive an entire project, design source files,
synthesis files, and implementation files.

Foundation manages and displays your design versions and
revisions graphically in the Versions tab of the Project Manager. Since
you have not yet implemented the design, the Versions tab is
currently empty.

Starting Implementation

This section describes how to begin implementation depending on
which tutorial you performed: HDL or schematic.

= If you performed the schematic tutorial, proceed to the
“Implementing the Schematic Design” section.

= If you performed the HDL tutorial, proceed to the
“Implementing the HDL Design” section.

Implementing the Schematic Design

To begin implementation of your schematic design, click the
Implementation phase button in the Project Flow diagram.

B »

IMPLEMENTATION ¥

If you are asked if you wish to update the EDIF netlist because the
schematic is newer, say Yes to update the EDIF netlist. This EDIF
netlist is the actual input file to the Design Implementation tools.

Next you will see the Implement Design dialog box.

4-2 Xilinx Development System

Design Implementation

Implement Design x|

Device ISDE'XLF'EEM j Speed |5 jv

Yersion name: I“'B"I

Bevizion name: I“EV'I

Contral Files: Setb.. Dptions... |

kK | Cancel | Help |

Figure 4-1 Implement Design Dialog Box

With this dialog box, you can select the target device and various
implementation options. The target device is already set to
XCS05XLPC84-5 because that was the device selected when the
Foundation project was created. The Version and Revision fields have
been filled in automatically. You can also find these version and
revision names in the Project Manager Versions tab after
implementation.

Proceed to the “Implementation Options” section.

Implementing the HDL Design

In the “HDL-Based Design” chapter, you analyzed, synthesized, and
optimized your design. To implement the design, perform the
following steps.

1. Click the Implementation phase button in the Project Flow
diagram.

S0y

IMPLEMENTATION ¥

2. After the Synthesis/Implementation dialog box displays, click
Opt i ons to access the Implementation Options dialog box. To
set up your options, refer to the following “Implementation
Options” section.

The Revision Name field is automatically filled in. If you want to
use a new name, enter it in the box.

Foundation Series 2.1i In-Depth Tutorials 4-3

Foundation Series 2.1i In-Depth Tutorials

SPARTANSL =

S05¢LPCE4 =

Figure 4-2 Synthesis/Implementation Dialog Box

4-4 Xilinx Development System

Design Implementation

Implementation Options

Click the Opt i ons button. The Options dialog box opens. A
summary of the options provided in this box follows.

Options

~ Place & Route Effort Level

Fastest | High
- Effort

Runtime I T ' ' I

- Program Options

j Edit Options... |
j Edit Options... |
>| Edi Options.. |

|mplementation: IDefauIt

Simulatiar: |Fnundation EQIF

Configuration: IDefauIt

0k | LCaniel | Help |

Figure 4-3

Foundation Series 2.1i In-Depth Tutorials

Implementation Options Dialog Box

Place and Route Effort level slider bar. Use this slider bar to select
the amount of time and effort the tools spend implementing the
design.

Program Option Templates. You can access various
implementation, simulation, and configuration options. For this
design, make sure that “Foundation EDIF” is selected for
Simulation and “Default” for Implementation and Configuration.
Either of these two templates can be set to Off if you do not wish
these output files to be created. See the next section for a
description of the Implementation template.

See the Design Manager/Flow Engine Guide for more details about
these optional target settings.

4-5

Foundation Series 2.1i In-Depth Tutorials

Implementation Template

You enter and modify implementation options by using the
Implementation template.

1. Clickthe Edi t Opti ons button for the Implementation Program
Options. This opens the Spartan Implementation Options dialog
box.

There are four tabs to control various aspects of the design
implementation.

2. Click the Timing Reports tab.

3. Click the checkbox next to Pr oduce Logi c Level Ti m ng
Report.

SPARTAN Implementation Options: Default il

Translate I Dptimize and Map | Place and Foute Timing Reports

r— Logic Level Timing Fleport

v Produce Logic Level Timing Report

Limit Beport to 1 =l Faths per Timing Constraint
= Report Paths Using Advanced Design Analysis
& Feport Paths in Timing Corstraints

£~ Feport Pathz Failing Tirming Constrainks

— Post Layout Timing Repart
v Produce Post Layout Timing Beport

Lirnit Feport to 3 _| Pathz per Timing Conztraint
= Report Paths Using Advanced Design Analysis
= Report Pathz in Tirming Constraints

f* Report Paths Failing Timing Constraints

Qg I Cancel | Default |

Figure 4-4 Implementation Options Templates

The Logic Level Timing Report is generated after the design is
mapped, but before it is placed and routed.

4-6 Xilinx Development System

Design Implementation

It includes logical block delays and optimal routing delays.
Because no actual routing delay information is known at this
time, the routing delays used are the best possible case delays
based on an optimal placement.

The Post Layout Timing Report is generated after the design has
been placed and routed and includes all of the routing delays for
the design.

These reports are examined later.

4. If you want, examine the options available in the other tabs. For
complete documentation on these options, refer to the online
document, Design Manager Flow Engine Guide.

5. Click OK on the Implementation Options dialog box.

Control Files

By default, Foundation creates a blank UCF file in the project
directory. You can edit this UCF file from the Files view in the Project
Manager.

Because the name of this UCF file is the same as the project name, it is
loaded by default. If you have other UCF files that you want to use
instead, browse to find and select them.

You can also designate guide files or Floorplanner files to control the
current implementation. For details, refer to the “Setting Control
Files” section in the “Design Implementation” of Foundation Series 2.1i
User Guide.

Foundation Series 2.1i In-Depth Tutorials 4-7

Foundation Series 2.1i In-Depth Tutorials

Running Implementation — The Flow Engine

After setting the implementation options that you want, you are
ready to implement the design.

1. Click Run in the Schematic Implement Design or click Run in the
Synthesis/Implementation dialog box.

The Flow Engine displays and implementation begins. The Flow
Engine is the tool which performs the design implementation.
The design flow and its status are represented graphically, and a
log of the processes is shown in the console at the bottom of the
Flow Engine.

82, wiul_sc (ver1->rev1] - Flow Engine]]
Flow VWiew Setup Utlities Help
¥ [b] miw?
SPARTANXL Design Flow [rev1] Status: OK
Translate Map Place&Route Timing (Sim] Configure
Completed | Completed \ Completed | Completed | Completed
Verifving F/HMAP validity based on pre-trimmed logis... j

Removing wunused logic. ..
Packing leogic in CLBs...
Running cover...
Undirected packing...
Running physical dssigm DRC. ..

Design Sunmary:

Munker of errors: 0
Hunker of warnings: El
Hunkrer of bonded IOBs: 1 out of &l 1%
ICE Flops: [5} J
TOE Latches: [¢]
Total squivalent gats count for design: O
additicnal JTAG gate count for IOBs: 48

Writing design file "map.ncd"...
Removed Logic Summary:
332 block(s) remcved

5 block(s) optimized away
234 sigmal(s) removed

Mapping completed.
Zee MAP report file "map.mrp" for details.

B o

Far Help, press F1 HCS08AL-5-PCE4 | wiut_sc.uc [None

Figure 4-5 Flow Engine

2. When the implementation is complete, the Flow Engine closes
automatically, and the Foundation Project Manager is fully
visible.

4-8 Xilinx Development System

Design Implementation

A dialog box opens indicating if the implementation completed
successfully. You can also view the implementation log.

If you encountered any errors in the implementation, refer to the
Implementation Log file for details on the error.

Viewing Implementation Results

As mentioned earlier, the Foundation Project Manager maintains
control over all of your design implementation versions and

revisions. You can directly view and analyze these implementations
from the Project Manager.

1. Click the Versions tab on the left-hand side of the Project
Manager. You should see a hierarchical display of the

implementation you just ran. The revision that is most current is
displayed in bold.

Files * “ersions
Bl B2 wiut_sc
B[ver1
[rev1 (implemented, 0K)

Figure 4-6 Versions Tab (Schematic Design)

Files ' Wersions \

Bl [£ ver1 (SPARTANXL-S05XL PC84-5)
---{,}wer'] {functional structure)
---ﬁ%ver'l-omimized (optimized structure)
.. [EL rev1 (Implemented, OK)

Figure 4-7 Versions Tab (HDL Design)

2. With the current revision selected, click the Reports tab in the
right-hand side of the Project Manager. The Reports tab displays
reports and logs for the selected revision of the design.

Foundation Series 2.1i In-Depth Tutorials 4-9

Foundation Series 2.1i In-Depth Tutorials

3. Double click the report entitled Implementation Report Files.
This displays the Xilinx Report Browser, which contains all of the
implementation reports. You have the option to browse through
any of these reports at this time.

4. From within the Xilinx Report Browser, double click the Logic
Level Timing Report. Inspect this report to find the maximum
system frequency specified. Remember this frequency.

5. Again, from within the Xilinx Report Browser, double click the
Post-Layout Timing Report. Inspect this report to find what the
maximum frequency is. Compare this with the delay you found
in the Logic Level Timing Report.

The difference in the two reports’ delays can be accounted for by
the actual routing delays. The routing delays which are assumed
in the Logic Level Timing Report are best-case, which is why they
are generally smaller than the actual delays after placement and
routing. Logic Level timing is useful because it gives you a
preliminary look at how realistic your timing goals are, given the
design’s current mapped state.

A rough guideline (known as the 50/50 rule) is that the logical
block delays in any particular path will make up about 50% of the
total path delay once the design is routed. This is, of course, just a
guideline, and designs vary from case to case. But, this gives you
some estimate to determine whether the design’s timing is even
close to your goals before the design is completely placed and
routed.

6. After you have perused the timing reports, close the reports and
close the Report Browser.

7. Return to the Flow tab on the right-hand side of the Project
Manager by clicking on it.

4-10 Xilinx Development System

Design Implementation

Other Implementation Tools

The Foundation Project Manager also gives you access to the other
implementation tools, including the Timing Analyzer, FPGA Editor,
Floorplanner, JTAG Programmer, Prom File Formatter and Hardware
Debugger. These tools can be invoked from the Tool s -

| mpl enent ati on and Tool s - Devi ce Progr anm ng menus.
The Timing Analyzer and Device Programming tools are also
available from the Flow diagram.

These implementation tools are sensitive to the implementation
revision. In other words, depending on which Revision you have
selected in the Versions tab when you invoke the tool, it will load the
tool with data from that implementation revision.

Now you can invoke any of these tools to see what they look like. For
more information on using these tools, refer to the appropriate online
documentation for each tool.

Foundation Series 2.1i In-Depth Tutorials 4-11

Foundation Series 2.1i In-Depth Tutorials

4-12 Xilinx Development System

Chapter 5

Timing Simulation

Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions. For this reason, timing

simulation is performed after the design has been placed and routed.

This chapter includes the following sections.
= “Invoking Timing Simulation”

= “Simulating with Script Files”

Invoking Timing Simulation

To invoke the timing simulator, click the Timing Simulation icon in
the Verification phase button in the Project Manager Flow diagram.

The simulator used for timing simulation is the same one used for
functional simulation. The only difference is that the design which is

loaded into the simulator for timing simulation contains worst-case
routing delays based on the actual placed and routed design.

The simulator is now loaded and ready to simulate. For this
simulation, you use script files.

Foundation Series 2.1i In-Depth Tutorials 5-1

Foundation Series 2.1i In-Depth Tutorials

Simulating with Script Files

In the “Functional Simulation” chapter, you simulated by applying
various types of stimulus including keyboard stimulus, formulae,
and by using the internal binary counter. In this chapter, you use a
script file to simulate the design.

Script files contain commands to stimulate inputs, display signals,
and advance the simulation. You enter your commands in the script
file and then press one button to run the entire simulation. Script files
in Foundation support Viewlogic-style commands, as well as other
Foundation-specific commands. The Simulator Online Help provides
a full list and description of all the supported commands.

Creating Script Files — Script Wizard and Script

Editor

5-2

The Script Editor is a text editor that you use to enter, edit, and view
script files, as well as actually run the simulation. You may either
create a script file from scratch, use an existing one, or create one with
the help of the Script Wizard, an interactive tool which helps you
create script files for simulation. In this section, you use the Script
Wizard to create a complete script file to simulate the Watch design
and then view the script file and run the simulation from the Script
Editor.

1. Toinvoke the Script Editor, select Tool s - Scri pt Edit or
from the pulldown menus within the Simulator. A dialog box
prompts you to select a script file.

2. Choose Use Scri pt W zar d to invoke the Script Wizard.

3. Follow the instructions in the Wizard to advance to the
Initialization page.

4. On the Initialization page, select the following options.

Xilinx Development System

Timing Simulation

= Delete Existing Signals — clears all the waveforms at the

start of each simulation.

= Restart (Power On) — forces the simulator to perform a

global reset at the start of the simulation to initialize all of the

registers.

« Simulation Mode: Timing

= Step Size: 10 ns — determines the size of the simulation step.

e Generate additional comments — inserts comments into the
script file to aid you in further editing of the script file.

= Script File Description — type “Simulation Script File for

Watch Tutorial.” Whatever you type here will be placed as a
comment at the top of the script file.

Initialization

Thiz page allows to specify zome initial actions to be taken at the
beginning of the script file execution. |t iz alzo possible to add a script
descriphion.

~ Initialization

¥ Delete Existing Signals ¥ Restart [Power On)

— Simulation
W Mode: ITiming 'l Step Size: I'I Ons
~ Filez

Browse,..

Browse,., |

[Delete Frint File: I
[Logaing Enabled: |

Script File Description: ¥ Generate additional comments

Simulation Script File for Watch Tutarial ;I
< Back I Mest » I Cancel | Help

Figure 5-1 Script Wizard -- Initialization

Note: For more information on any of the options in the Wizard, refer
to the Help topic for the appropriate page, by clicking the Hel p

button.

Foundation Series 2.1i In-Depth Tutorials

5-3

Foundation Series 2.1i In-Depth Tutorials

5. Click Next to advance to the Vectors page.

Vectors provide a more convenient way to use buses in the script
file. By defining vectors, you can more easily refer to these buses
in the rest of the script file. You can also create vectors out of any
group of signals, regardless of whether they are a bus in the
original design.

In this step, you define vectors for the three output buses,
ONESOUT[6:0], TENSOUTI[6:0], and TENTHSOUTI[9:0]. For
simplicity, name these vectors ONES, TENS and TENTHS,
respectively.

6. Click the Newbutton. This adds a new vector to the vector list
entitled Vector_Name_1 by default. Type TENS in the place of
Vector_Name_1 to rename it.

7. Click the Browse. . . button. This displays a Component
Selection window which contains all of the signals in the design.
On the right-hand side, scroll down to find the TENOUTS6..0 7-
bit bus. Select this bus, and then click OK. By doing this, you have
assigned the seven bits of the TENSOUT bus to the newly created

TENS vector.
i’ Component Selection x|
-4+ Ruoct Level =| [signal | Tope | =]
B $HE:_HE TLHI/DATA Label
Bk $HT: _H7 ULH1/EXT_CLK Label
B $HI:_H3 TN H1/GRST Label
""" & 31w ipad TLH1/TRIG Label
""" B 9122 4 ipad Iz ONES3 [4-6if Bus
jﬁ i:i i IE ONESOUTS [7-bil Bus
----- & $150: »_ckbu ULRESET Label
_____ & 559 v T RST_INT Label
_____ B U605 and? _|[msTRTSTOR Label
,,,,, & GND - »_zero E TENS3[4bi] Bus
- H1 : H 5 Bus
g L1 L G Bus
Ml 11111 LI ML TENS ‘ector LI
| owen |

Figure 5-2 Script Wizard Component Selection

The seven bits of the TENSOUT bus are listed as components in
the newly created TENS vector.

5-4 Xilinx Development System

Timing Simulation

8. With the TENS vector selected, click the Radi x pulldown menu
to change the radix of the vector to Binary. This determines how
the vector is displayed in the simulator.

9. Repeat Steps 6 through 8 to create vectors called ONES and
TENTHS for both the ONESOUT[6:0] and TENTHSOUT[9:0]
buses, respectively.

Yectors

Thiz page allows to setup vectors [busses). Using vectors can make
zome script operations easier to describe. Wectors can contain any group
of signals, either busses and/or descrete signals.

Defined Wectors:

Mame | Components | Fi adix |
Wl TEMS TEMSOUTE TENSOUTSTEMS... Binary
Wl OMES OMESOUTE OMESOUTS OMES... Binary
Wl TENTHS TEWMTHSOUTA TEMTHSOUTE ... Binary
Radiz:
Arrange Yector Components... | Im

Mew Bemove

Click an a wectar label in Defined Yectors list to maodify the vectar
COMParents.

< Back | Nest » Cancel Help

Figure 5-3 Script Wizard Vectors
10. Click the Next button to advance to the Stimulators page.

Stimulators define the action of the inputs in the design. There
are several different commands that can be used to define input
stimulus. You will use three different methods in this tutorial.
For a complete description of all available commands, refer to the
online help.

11. To select the first signal to stimulate, click the Br owse. . .
button.

Foundation Series 2.1i In-Depth Tutorials 5-5

Foundation Series 2.1i In-Depth Tutorials

12. In the Component Selection window, scroll down the signal list
on the right-hand side, and locate the CLK signal. Select it and
click OK.

13. See the CLK signal listed in the Simulators and Watched Signals
list. Click the CLK signal and the Stimulator Type field now
becomes active. Use the pulldown menu in the Stimulator Type
field to select Clock.

14. In the Value field, set the pattern of the clock. By typing 0 1
(delimited by a space) in the value field, you define the clock as
having a pattern of low for one simulation step (previously
defined as 10ns), then high for one simulation step. This pattern
repeats indefinitely to produce the clock signal.

Stimulators

Thig page allows to gelect multiple signals and aszign to them different
kind af stimulatars. It iz alzo pozsible to define a set of watched signals
[i.e. traced in & print file).

Stimulated and ‘W atched Signals:

Mame | Stimulator | Walue | ‘whatch |
1 CLE Clock a1 Mo
MHew | Bemove | Browse... Toggle Watchl
Stirmulator Type: Walue: [clock state sequence g 101 1...]
Clock =] o =

< Back I Mest » I Cancel | Help |

Figure 5-4 Clock Stimulus

15. Repeat Steps 11 and 12 to add the STRTSTOP signal to the
Stimulated signals list.

16. With the STRTSTOP signal selected in the Stimulated Signals list,
set the Stimulator Type to Aldec Waveform.

5-6 Xilinx Development System

Timing Simulation

17.

18.

19.

20.

21.

In the Value field, type the following:
H200L100H2000L100H500L200H1000

Similar to the Custom Formula you created in the Functional
Simulation section, this waveform means high for 200ns, then
low for 100ns, then high for 200ns, and so on. This waveform will
define a stimulus pattern for the STRTSTOP input signal.

Repeat Steps 11 through 12 to add the RESET signal to the
Stimulated Signals list.

With the RESET signal selected in the Stimulated Signals list, set
the Stimulator Type to be Waveform.

In the value field type the following.
@=0 6500=1 400=0

This means “at Ons the signal is 0, 650ns later the signal is high,
40ns later the signal is low.” Note that the units of this
measurement are tenths of nanoseconds. This waveform
provides a reset pulse to reset the stopwatch during the
simulation.

The Stimulators page also allows you to select signals which you
wish to “watch” in a printed output file. Since you will be setting
a printed output file in the next section of the Wizard, you will
add more signals to this list so that they may be watched.

Repeat Steps 11 and 12 to add the TENS, ONES, and TENTHS
vectors to the Stimulated and Watched Signals list. Be sure that
you add the vectors and not the buses.

Foundation Series 2.1i In-Depth Tutorials 5-7

Foundation Series 2.1i In-Depth Tutorials

i) Component Selection x|
=4 Root Lavel | | Signal [Ty | =]
-k $HE: _HE L H1/TRIG Label
ik ST _H7 £ ONES2 [4-bit] Bus
-2 $HI: _H3 [E OMESOUTE [7-hit] Bus
3112 »_ipad 1 RESET Label
o 3122 % ipad T RST_INT Latel
ﬁ ::i iy L STRTSTOP Label
456 % ckbul FE TENS3 [4-bit] Bus
§158+ & inv [E TENSOUTE [7-4it] Bus
$160+ »_and2 _||IR renTHsOuTS (106 Bus
GND - »_zem TEMS | Wector
- H1 - H1 Wector
G- L1 L1 TEMTHS Wector
el 111111 Ll hd
Ok | Cancel |

Figure 5-5 Selecting Vectors to Watch

22. Because the TENS, ONES, and TENTHS vectors are outputs, they
should not have stimulus assigned to them. Select each of these

5-8

vectors individually and set the Stimulator Type to be None.

You should now see six signals listed in the window.

Xilinx Development System

Timing Simulation

Stimulators

This page allows pou to select signals you want bo aesign stimulators to.
You can alzo define signals whose states will be traced in a print file.

Stimulated and 'watched Signals:

Mame | Stimulator | Walue | Watchl
1 CLK Clock 01 e
TLSTRTSTOR Aldec Wavefo,.. HZ00L100HZ.. Yes
TLRESET " aveform @0=0 6500=1... “es

[Mone] [Mot Applicable] Yes
[Mone] [Mot Applicable] — Yes
[Mone] [Mot &pplicable] Yes
MHew | Bemove | Browse. .. Tloaale Watchl
Stimulatan TVpe: waltes (Hettpplicatie]
I[Nc-ne] j I j

¢ Back I Hest » I Cancel | Help |

Figure 5-6 Signals’ Stimulus
23. Click Next to advance to the Breakpoints and Simulation page.

24. Breakpoints allow you to monitor the simulation for some output
response. You can specify how the simulator will notify you
when the output response is detected.

On the Breakpoints and Simulation page, click the Br owse. . .
button to choose the first signal to set a breakpoint on.

25. In the Component Selection window, choose the ONES vector
from the signal list and click OK.

26. You should now see the ONES vector listed in the Defined
Breakpoints list. Highlight ONES, and then from the Condition
pulldown menu, select Low St at e. This defines the condition
which must be present on the ONES vector for the breakpoint to
occur.

27. In the Action field, type the following:

print > timout.txt

Foundation Series 2.1i In-Depth Tutorials 5-9

Foundation Series 2.1i In-Depth Tutorials

5-10

This tells the simulator to write out an output report called
tim_out.txt whenever the breakpoint condition is met.

28. Set the Simulation Command to Cycle, and the Simulation Value
to 400. This tells the simulator to run for 400 clock cycles.

Breakpoints and Simulation

Thiz page allows to define breakpoints-the wayp of contralling and
maonitoring the zsimulation. Ereakpoints may be specified for signals and
busses [vectors]. One or more actions may be assigned to each

break point.

Defined Breakpoints:

Signal name | Condition | Action |
UL OMES Lows Stake prink s Kot ket
Condition: Action;
ILc-w State j Iprint » tirn_out txt
Mew | Bemove | Browse. ..
Simulation Command: Simulation Walue:
Cycle j |4EID

< Back I Finizh I Cancel | Help |

Figure 5-7 Breakpoints and Simulation

29. Click Fi ni sh. You can now view your completed script file in
the Script Editor.

Viewing the Script File with the Script Editor

The Script Editor is very similar to the HDL Editor. Commands are
color-coded, with simulation command keywords highlighted in red
and comments in green for easy reading and debugging.

The Script Editor also provides a Macro Assistant that is very similar
to the Language Assistant which you saw earlier in the HDL Editor.

1. From within the Script Editor, select Tool s —» Macro
Assi st ant to invoke the Macro Assistant.

Xilinx Development System

Timing Simulation

The Macro Assistant provides templates and help for the various
script file commands. Browse through the various templates to
see what is available.

(2 SIM Macro Assistant x|
B Aldec Macros ;I ald_wim <signal_name> <aldec_formuls: ;I

Hid;.preview <<| Usge I Edit | [d Bty | Deletel

- ald clock aldwfrm <signal_name> <aldec_formula>

- azzign_aldform
- bo_freq

- bi_period

- check design
- check memomn
- check memaory block
- check results
- check timing
- chk_zimulation
- chk_wawve

- clear_print

- delay
w
- delete_signals _IJ
Aslabe wmafarrme LI ll .

Figure 5-8 Macro Assistant

2.

Close the Macro Assistant by clicking the X in the upper-right
corner of the window.

Save the script file that was created by the Script Wizard by
selecting Fi | e —» Save. Be sure that the file is being saved into
the current Foundation project directory (that is,
C:\FNDTN\ACTIVE\PROJECTS\watch_proj_name). Name the
script file watchtim.cmd.

Look through the script file to see what the Script Wizard
created.

Running the Simulation from the Script Editor

1.

You can execute the simulation directly from the Script Editor. To
do this, select Execut e - Go.

A log of the executed commands appears at the bottom of the
Script Editor, including messages indicating when breakpoints
were encountered.

Foundation Series 2.1i In-Depth Tutorials 5-11

Foundation Series 2.1i In-Depth Tutorials

2. To view the simulation results in the Waveform Viewer, move
the Script Editor window and bring the Waveform Viewer
window to the front of your view. Inspect the simulation results
to make sure they are accurate.

You should now see that this is indeed performing a timing
simulation based on actual delays in the placed and routed design. If
you zoom in to get a closer view of the waveforms, you will see that
there is a delay from the rising edge of the clock to the transitions or
the counter outputs.

@Logic Simulator - Xilinx Foundation F1.5 [watch_sc] - [wWaveform Yiewer 0] = |EI|5|

File Signal Waveg.aim Device Options Toolz Yiew Window Help _|ﬁ||5|
2 sC .

EIEI@' E%uliD-l | | Timing =] U_INI ﬁl |1Dns j| @l |Break j| ﬁl ﬁl

[s c—=Me—ll== = |7 e | $96ns

'-'-'-'-'-'-'-'-'I Zns/div | LU 560ns [580ns | [600ns |[GZ0ns |640ns [G60ns |680ns [700ns [720ns [740ns [760ns [780ns

s5zn=s ooloo b booabodebeco boondboce becocdbeendbece beond Boeecbecn e Bocc Lecndbeen e becnd beend b Lo e L

EB|TENS. (bin)#4 0

EB|OHES . (bin)#4 0 yoooo

E|ITENTHS . (bin)d |0|[2X I 0001000000 y0000000001

LCIE......... 0 T e B S e S e e e e e SR e I S e e

i|STRTSTOR. . |[Fildf———1 - e

i[RESET. [t | e T P

LGER. [0 o | et [———
[i N I

5-12

Figure 5-9 Timing Simulation Waveforms

Note: For the HDL design, the Tenths output bus will be inverted:
1110111111 instead of 0001000000. You are looking at the signals after
the inverters in the HDL design instead of before the inverters as in
the schematic.

For more detailed information related to actual path delays and
system performance requirements, you can use the Xilinx Timing
Analyzer to do Static Timing Analysis. Refer to the Timing Analyzer
Guide for details.

Xilinx Development System

Timing Simulation

Viewing the Printed Output File

As previously mentioned, you set a breakpoint action to write to a
printed output file called tim_out.txt. This file is a text file that is
viewable in any text editor. You can use the Script Editor or any other
text editor to view this file.

To view this file from the Script Editor, select Fi | e » Open from the
Script Editor and set the File Type filter to *. *. Locate the file
tim_out.txt, and click Open.

This file is a printed output file in the form of a state table, showing
the states of all the “watched” signals at the times at which
breakpoints were encountered. The times of the five breakpoints
should match the times listed in the log console area of the Script
Editor when the simulation was originally run. You should still be
able to see the console messages to verify this.

Closing the Simulator

When you are satisfied with the results of the simulation, you may
close the Script Editor and the Simulator.

Foundation Series 2.1i In-Depth Tutorials 5-13

Foundation Series 2.1i In-Depth Tutorials

5-14 Xilinx Development System

	Preface
	About the In-Depth Tutorials
	Additional Resources
	Quick Start Guide Contents

	Conventions
	Typographical
	Online Document

	Schematic-Based Design
	Getting Started
	Nomenclature
	Required Software
	Installing the Tutorial
	Tutorial Project Directories and Files
	Starting the Project Manager
	Copying the Tutorial Files (Optional)

	Design Description
	The Project Manager
	Hierarchy Browser
	Project Manager Functional Tabs
	Message Console Window

	Design Entry
	Starting the Schematic Editor
	Executing Commands
	Hotkeys
	Toolbar Buttons

	Manipulating the Screen
	Creating a Schematic-Based Macro
	Creating the CNT60 Schematic
	Opening the Schematic
	Connectivity—Hierarchy Connectors
	Project Libraries
	Adding Components to CNT60
	Correcting Mistakes
	Placing the Remaining Components
	Moving Hierarchy Terminals
	Drawing Nets
	Adding Buses
	Adding Bus Taps
	Saving the Schematic
	Placing the CNT60 Macro

	Creating a LogiBLOX Module
	Creating a State Machine Module
	Opening the State Editor
	Adding New States
	Adding a Transition
	Adding a State Action
	Adding a State Machine Reset Condition
	Adding a Transition Condition
	Creating the State Machine Macro
	Placing the STMACH symbol

	Creating an HDL-Based Module
	Using the HDL Design Wizard and HDL Editor
	Using the Language Assistant
	Synthesizing the HDL Code and Creating a Macro
	Adding the HEX2LED Component to the Schematic

	Specifying Device Inputs/Outputs
	Hierarchy Push/Pop
	Adding Input Pins

	Labeling Nets
	Assigning Pin Locations
	Using Global Buffers
	Completing the Schematic

	HDL-Based Design
	Getting Started
	Nomenclature
	Required Software
	Installing the Tutorial
	Tutorial Project Directories and Files
	VHDL or Verilog?
	Starting the Project Manager
	Copying the Tutorial Files (Optional)

	Design Description
	The Project Manager
	Hierarchy Browser
	Project Manager Functional Tabs
	Message Console Window

	Design Entry
	Adding Source Files
	Correcting HDL errors
	Starting the HDL Editor
	Creating an HDL-Based Module
	Using the HDL Design Wizard and HDL Editor
	Using the Language Assistant

	Creating a LogiBLOX Module
	Running the LogiBLOX Module Selector
	Instantiating the LogiBLOX Module in the HDL Code

	Synthesizing the Design
	The Express Constraints Editor (Foundation Express Only)
	Using the Express Constraints Editor (Foundation Express Only)
	Viewing Synthesis Results (Foundation Express Only)

	Functional Simulation
	Starting the Logic Simulator
	Performing Simulation
	Adding Signals
	Adding Signals Using Probes
	Adding Signals Using the Component Selection Window
	Deleting a Signal

	Adding Stimulus
	Stimulating with the Internal Binary Counter
	Stimulating with Keyboard Stimulators
	Stimulating with Custom Formulae
	Other Sections of the Stimulator Selector

	Running the Simulation
	Saving the Simulation

	Design Implementation
	Project Management
	Starting Implementation
	Implementing the Schematic Design
	Implementing the HDL Design

	Implementation Options
	Implementation Template
	Control Files

	Running Implementation — The Flow Engine
	Viewing Implementation Results
	Other Implementation Tools

	Timing Simulation
	Invoking Timing Simulation
	Simulating with Script Files
	Creating Script Files — Script Wizard and Script Editor
	Viewing the Script File with the Script Editor
	Running the Simulation from the Script Editor
	Viewing the Printed Output File
	Closing the Simulator

