Foundation 1- Introduction
Series 2.11 User
Guide

2 - Project Toolset

3 - Design Methodologies -
Schematic Flow

4 - Schematic Design Entry
5 - Design Methodologies -
HDL Flow

6 - HDL Design Entry and

Synthesis

7 - State Machine Designs

8 - LogiBLOX

9 - CORE Generator System
10 - Functional Simulation

11 - Design Implementation

12 - Verification and
Programming

Foundation Series 2.1i User Guide Printed in U.S.A.

Foundation Series 2.1i User Guide

& °
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, QPro, RealPCl, RealPCl 64/66, Selectl/O, Select-RAM, Select-RAM+, Smartguide,
Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock,
VersaRing, Virtex, WebLINX, XABEL, XACT step, XACTstep Advanced, XACT step Foundry, XACT-Floorplanner,
XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation
Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277, 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704, 5,329,174, 5,329,181,
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248, 5,349,249; 5,349,250; 5,349,691, 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207, 5,386,154, 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377, 5,422,833; 5,426,378; 5,426,379; 5,430,687, 5,432,719; 5,448,181, 5,448,493; 5,450,021,
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253, 5,477,414, 5,481,206, 5,483,478; 5,486,707,
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097, 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001, 5,559,751, 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,5663,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051, 5,574,634, 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424, 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633, 5,617,021, 5,617,041; 5,617,327; 5,617,573; 5,623,387,
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851, 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913, 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896, 5,670,897, 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907, 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441, 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197,
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484, 5,726,584, 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974, 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313, 5,784,577, 5,786,240; 5,787,007; 5,789,938; 5,790,479;

Xilinx Development System

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004, 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774, 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901,
5,838,954, 5,841,296, 5,841,867, 5,844,422; 5,844,424, 5,844,829; 5,844,844, 5,847,577, 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.

Foundation Series 2.1i User Guide

Foundation
Series 2.11 User
Gulide

Foundation Series 2.1i User Guide

Appendix A -
Glossary

Appendix B -
Foundation Constraints

Appendix C -
Instantiated Components

Appendix D -
File Processing Overview

About This Manual

This Foundation Series 2.1i User Guide provides a detailed description
of the Foundation™ designh methodologies, design entry tools, simu-
lation (both functional and timing simulation). Information on
synthesis is included for Foundation Express users.The manual also
briefly describes the Xilinx design implementation tools. Detailed
descriptions of the design implementation tools can be found in two
other online books, Design Manager/Flow Engine Guide and Develop-
ment System Reference Guide.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data. These topics are covered in the Foundation Series 2.1i Quick Start
Guide. Consult the Verilog Reference Guide and the VHDL Reference
Guide for detailed information on using Verilog and VHDL with
Foundation Express.

Additional Resources

For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL
Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm
Answers Current listing of solution records for the Xilinx software tools
Database Search this database using the search function at

http://support.xilinx.com/support/searchtd.htm

Foundation Series 2.1i User Guide

Foundation Series 2.1i User Guide

Resource Description/URL
Application Descriptions of device-specific design techniques and approaches
Notes http://support.xilinx.com/apps/appsweb.htm
Data Book Pages from The Programmable Logic Data Book, which describe device-

specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals

Quiarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips

Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Manual Contents

This guide covers the following topics:

= Chapter 1, “Introduction,” lists supported architectures,
platforms, and features. It also lists the available documentation
and tutorials to help you get started with Foundation.

= Chapter 2, “Project Toolset,” explains the two Foundation project
types—Schematic Flow projects and HDL Flow projects—and
how to access the various Foundation design tools from the
Project Manager. It briefly describes each tool and its function.

= Chapter 3, “Design Methodologies - Schematic Flow,” describes
various design methodologies for top-level schematic designs
and state machine designs in Schematic Flow projects.

= Chapter 4, “Schematic Design Entry,” explains how to manage
your schematic designs and how to create hierarchical schematic
designs.

= Chapter 5, “Design Methodologies - HDL Flow,” describes
various desigh methodologies for HDL, schematic, and state
machine designs in HDL Flow projects.

= Chapter 6, “HDL Design Entry and Synthesis,” describes how to
create top-level HDL designs, explains how to manage large
designs, and discusses advanced design techniques.

Xilinx Development System

About This Manual

= Chapter 7, “State Machine Designs,” explains the basic
operations for creating state machine designs.

< Chapter 8, “LogiBLOX,” explains how to create LogiBLOX ™
modules and how to use them in schematic and HDL designs.

= Chapter 9, “CORE Generator System” gives an overview of the
Xilinx CORE Generator System.

= Chapter 10, “Functional Simulation,” describes the basic
functional simulation process.

= Chapter 11, “Design Implementation,” briefly describes how to
implement your design with the Xilinx Implementation Tools.
The chapter also describes how to select various design options
in the Implementation Options dialog box and describes the
Implementation reports.

= Chapter 12, “Verification and Programming,” explains how to
generate a timing-annotated netlist, how to perform a static
timing analysis, and describes the basic timing simulation
process. An overview of the device download tools is also
included.

= Appendix A, “Glossary,” defines some of the commonly used
terms in this manual.

= Appendix B, “Foundation Constraints,” discusses some of the
more common constraints you can apply to your design to
control the timing and layout of a Xilinx FPGA or CPLD. It
describes how to use constraints at each stage of design
processing.

= Appendix C, “Instantiated Components,” lists the components
most frequently instantiated in synthesis designs.

= Appendix D, “File Processing Overview,” contains diagrams of
the file manipulations for FPGAs and CPLDs during the design
process.

Foundation Series 2.1i User Guide iii

Foundation Series 2.1i User Guide

iv Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

e Couri er font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

e Couri er bol d indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del net=

Couri er bol d also indicates commands that you select from a
menu.

File - Qpen
= [talic font denotes the following items.

= Variables in a syntax statement for which you must supply
values

edi f 2ngd design_name
= References to other manuals

See the Development System Reference Guide for more informa-
tion.

Foundation Series 2.1i User Guide \%

Foundation Series 2.1i User Guide

= Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f 2ngd [option_name] design_name

Braces “{ }”” enclose a list of items from which you must choose
one or more.

| owpwr ={on]of f}
A vertical bar “|” separates items in a list of choices.
| owpwr ={on]of f}

A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

al I owbl ock block_name locl loc2 . . . locn;

Online Document

The following conventions are used for online documents.

Vi

Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections.

= “Architecture Support”

“Platform Support”
= *“Foundation Demo”
= “Tutorials”

e “Online Help”

e “Books”

Architecture Support

Foundation supports the following Xilinx device families.
= XC3000A/L

= XC3100A/L

e XCA4000E/L/EX/XL/XV/XLA

= XC5200

« XC9500, XCI9500XL, XCI500XV

= Spartan, SpartanXL

* Virtex

The primary difference between these products lies in the number of
gates and the architectural features of the individual devices.

For a detailed list of supported devices, see the “Device and Package
Support” chapter in the Foundation Series 2.1i Installation Guide and
Release Notes.

Foundation Series 2.1i User Guide 1-1

Foundation Series 2.1i User Guide

Platform Support

Foundation runs on Windows NT 4.0, Windows 95, and Windows 98.

Foundation Demo

Tutorials
Online Help
1-2

After you install the Foundation Series 2.1i software, a multimedia
demo of the Foundation product features is accessible from St art -
Programs - Xi |l i nx Foundation Series2.1i - Miltimedia
Qui ckStart (Requires CD).

Note: You must have the Foundation Series 2.1i Documentation CD
in your PC’s CD-ROM drive to run this demo.

The Foundation Series 2.1i Quick Start Guide contains a basic tutorial,
JCOUNT, a simple 4-bit Johnson counter. This tutorial provides an
overview of design entry, design implementation, and device
programming for a Schematic Flow project. The HDL Flow version of
the tutorial is also included for Base Express and Foundation Express
users.

An in-depth tutorial, the Foundation Watch Tutorial, is available from
the Education tab on the Xilinx support website (http://
support.xilinx.com/support/techsup/tutorials/index.htm).

Context-sensitive online help is available for Foundation applica-
tions. In addition, Foundation includes an “umbrella” help system
called the Xilinx Foundation Series On-Line Help System. The
umbrella help contains topics covering all of the design entry and
implementation tools provided in the product plus additional infor-
mation. It also contains in-depth information essential for designing
with FPGAs and CPLDs, including the following topics:

= CPLD design techniques
= FPGA design techniques
= Application notes

e Several tutorials

Xilinx Development System

Introduction

= Reference information on the HDL languages, CPLD schematic
library and attributes, and Foundation configurations

You can invoke the “umbrella” help system (shown in the following
figure) by selecting Hel p —» Foundat i on Hel p Cont ent s from the
Project Manager menu bar.

4 The Xilinx Foundation Series Online Help System =8| =]
Fil= Edit Bocokmark Options Help
Help Iopicsl Eactk I Erirt I e I S I ActiveE dit I

Xilinx Foundation Series On-Line Help System

Tools Techniques Reference il

CPLD Design Technigues Wyhat's Mew in

Foundation Series 2.1i

#} Project Manager

Schermatic Editor FPGA Design Technigues

Licensing Synthesis
Products

Foundation Express WHOL Reference Guide

[at Xilinx Support web site)

Project Flows

HDL Editor

Application Motes “erilog Reference Guide

[at ¥ilinx Support web site)

Il ©

State Editor

Entering Constraints ABEL Reference Guide

LA AR L

LogiBLox
=1

LogiB L 2

}

Foundation Configuration
Information

-
c
-
o
=
=2
@

I Logic Simulator Fou_n_dation Series Tuto_rial CPLO Schematic Library
(at Xilinx Support web site)
%%] Flow Engine State Editor Tutorial CPLD Attributes

Timing Analyzer CPLD Design Flows

i

Technical Support

WEEEEEEEE

Hierarchy Tutorial

o

JTAG Prograrmrmer

Advanced Tools Dther Tutorials

LAA R A

Y

Figure 1-1 The Online “Umbrella” Help System

Foundation Series 2.1i User Guide 1-3

Foundation Series 2.1i User Guide

Books

Multiple printed and online books are available for the Foundation
Series 2.1i product and the various tools included with it.

Printed Books

The Foundation Series 2.1i Installation Guide and Release Notes describes
installation procedures, new features, supported devices, and the
most critical known issues. It also includes information on the soft-
ware license required for the Base Express and Foundation Express
products.

The Foundation Series 2.1i Quick Start Guide provides an overview of
the features and additions to Xilinx’s 2.1i software. This book
contains a tutorial overview of design entry tools and design imple-
mentation tools.

Adobe Acrobat PDF files for viewing and printing all of the Founda-
tion Series 2.1i online books can be found in the print directory on the
Documentation CD-ROM. Refer to the Foundation Series 2.1i Installa-

tion Guide and Release Notes for information on accessing and printing
the PDF files. Or, click Hel p in the Document Viewer for instructions.

Online Books

1-4

The online Foundation Series 2.1i book collection is available from
the Foundation Series 2.1i Documentation CD or from the Xilinx
support page on the web at http://support.xilinx.com. You must use
aJava-enabled HTML browser to view the Xilinx online books. If you
do not already have an appropriate browser on your PC, you can
install Netscape 4.0 from the Foundation Design Environment CD-
ROM or the Foundation Documentation CD-ROM.

Document Viewer

The Document Viewer provided with Foundation Series 2.1i is
powered by the Docsan™ indexing tool. This tool provides your
HTML browser with optimal searching capabilities within the online
book collection. Refer to the online help provided with the Document
Viewer for detailed instructions on using this tool.

Xilinx Development System

Introduction

Foundation-Specific Online Books

The following online books contain information that applies only to
the Xilinx Foundation Series products.

Title

Description

Foundation Series 2.1i Quick
Start Guide

This guide gives an overview of the features and additions
to Xilinx’s Foundation 2.1i product. The primary focus of
this guide is to show the relationship between the design
entry tools and the design implementation tools. The guide
also contains in-depth tutorials for a schematic-based and
HDL-based stop watch design.

Foundation Series 2.1i User
Guide

This guide provides a detailed description of the Founda-
tion design methodologies, design entry tools, and both
functional and timing simulation. The manual also briefly
describes the Xilinx design implementation tools.

Verilog Reference Guide

This manual describes how to use Xilinx Foundation
Express to translate and optimize a Verilog description into
an internal gate-level equivalent.

VHDL Reference Guide

This manual describes how to use Xilinx Foundation
Express to translate and optimize a VHDL description into
an internal gate-level equivalent.

Foundation Series 2.1i User Guide 1-5

Foundation Series 2.1i User Guide

Design Entry Online Reference Books

The following books contain additional information not found in the
Foundation-specific books regarding the Xilinx schematic library
components (and constraints) and LogiBLOX.

Title

Description

Libraries Guide

This book describes the logic elements (primitives or
macros), that you use to create your designs as well as the
attributes and constraints used to process elements during
logic implementation. It also discusses relationally placed
macros (RPMs), which are macros that contain relative
location constraints (RLOC) information. The Xilinx
libraries enable you to convert designs easily from one
family to another.

LogiBLOX Guide

This guide describes the high-level modules you can use to
speed up design entry and the attributes that support logic
synthesis, primarily for FPGA architectures. It also explains
how to use the LogiBLOX program to create designs and
the different types of logic synthesis completed by the Logi-
BLOX program.

Note: The CORE Generator User Guide is not currently part of the
online book collection. It is an Adobe Acrobat file (.pdf) that can be
accessed from the CORE Generator Help menu (Hel p — Onl i ne
Docurnent ati on.)

Synthesis and Simulation Reference Book

The following book contains general information on Synthesis and
Simulation.

Title Description
Synthesis and Simulation This manual provides a general overview of designing
Design Guide FPGAs with Hardware Description Languages (HDLs). It

includes design hints for the novice HDL user, as well as for
the experienced user who is designing FPGAs for the first
time.

1-6

Xilinx Development System

Introduction

Implementation-Related Online Books

The following books contain detailed information on the Xilinx
implementation tools. Much of the information contained in these
books is for the standalone or command line versions of the tool.

Title

Description

Constraints Editor Guide

This manual describes the Xilinx Constraints Editor GUI
that can be used after the design has been implemented to
modify or delete existing constraints or add new constraints
to a design.

Design Manager/
Flow Engine Guide

This manual describes the Design Manager, a Xilinx Alli-
ance Series tool for managing multiple implementations of
the same design. This manual also explains the Xilinx Flow
Engine, which implements designs, and explains how to
interact with other programs that run in the Design
Manager environment; namely, the Design Editor, the
Timing Analyzer, the Hardware Debugger, the PROM File
Formatter, and the PROM Programmer.

Development System Refer-
ence Guide

This book describes the Xilinx design implementation soft-
ware, which includes programs to generate EDIF files, LCA
files, and BIT files. The book covers all the program options
and files that are generated by these programs. It also
contains in-depth information on timing constraints.

FPGA Editor Guide

The FPGA Editor is a graphical editor used to display and
configure FPGAs. The FPGA Editor enables you to place
and route critical components before running automatic
place and route tools on an entire design, modify placement
and routing manually, interact with the physical constraints
file (PCF) to create and modify constraints, and verify
timing against constraints.

Floorplanner Guide

This book describes the Floorplanner, a graphical interface
tool to help you improve performance and density of your
design.

Foundation Series 2.1i User Guide 1-7

Foundation Series 2.1i User Guide

Title

Description

Hardware User Guide

This manual describes the Xilinx Demonstration hardware
and its associated software interfaces. The hardware
includes the FPGA and CPLD demonstration boards, which
are used for design verification.

Timing Analyzer Guide

This manual describes Xilinx’s Timing Analyzer program, a
graphical user interface tool that performs static analysis of
a mapped FPGA or CPLD design. The mapped design can
be partially or completely placed, routed, or both.

Device Programming Online Books

Detailed information on the device programming process is included
in the following books.

Title

Description

JTag Programmer Guide

This guide documents the graphical interface used for in-
system programming and verification of CPLD and FPGA
parts. The guide also describes how to set up and use JTAG
download cables.

Hardware Debugger Guide

(FPGAs only) This manual describes how to program,
verify, and debug FPGA devices. It describes the XChecker,
MultiLINX, and Parallel 111 cables and explains how to
connect the cable pins to your target device for various
functions: downloading, verification, and debugging. It also
includes a tutorial for debugging a design using the demon-
stration boards as target devices.

PROM File Formatter Guide

(FPGAs only) This manual explains how to use a Windows-
based tool to format bitstream files into HEX format files
compatible with Xilinx and third-party PROM program-
mers. You use the PROM files to program a PROM device,
which is then used to configure daisy chains of one or more
FPGAs for one application (configuration) or several appli-
cations (reconfiguration).

1-8

Xilinx Development System

Contents

About This Manual

Conventions

Chapter 1

Chapter 2

Foundation Series

AddItioNal RESOUICESuuviiiiieiieeiii it i
Manual CONENESooiiiiiiiiieeie e ii
TYPOGraphiCal........cooiiiiiiiiiii e %
ONliNE DOCUMENTuiiiiiiiiiieee ettt e e e Vi
Introduction
ArchiteCture SUPPOITeeeiiiiieeiieeee et e e 11
Platform SUPPOITcooiieee e 1-2
Foundation DEeMO.........ooiueiiiiiiiiiece e 1-2
TULOFIAIS et e e e e e e e e eens 1-2
ONlINE HEIP e 1-2
BOOKS ...t 1-4
Printed BOOKS........ceeiiiiiiiiie et 1-4
ONliNE BOOKS.......cciiiiiiiiiiiiii e 1-4
DOCUMENT VIBWET ...ttt 1-4
Foundation-Specific Online BOOKS............ccuuveieieiieeniiniias 1-5
Design Entry Online Reference BOOKSccccccoeeiiiiiinnnneee. 1-6
Synthesis and Simulation Reference Book.......................... 1-6
Implementation-Related Online BOOKScccoeeiiiiiiiiinns 1-7
Device Programming Online BOOKS...........ccccccvieiieiiiiiininns 1-8

Project Toolset

Creating Foundation 2.1i ProjectS.......cccccveeeeeiieiciiiiiiiineeeee e 2-1
Schematic FIOW Projects.........uvvveeeii i 2-2
HDL Flow Projects (EXpress ONlY)cccccceeveeviiiiiviirinnieeeeeennnnn 2-5

(o] [=To 1Y/ = T T= o = OSSR 2-7
HIErarchy BrOWSENcevieeieiiiiiiiiiiiieir e eee e e e e e sssitvee e e e e e e e e 2-8

2.1i User Guide

Foundation Series 2.1i User Guide

FIlES TaD ..o 2-9
Versions Tab ... 2-10
Project FIowchart Area..........ccccuvveiieiieiee e e e 2-10
Flow Tab - Project Flowchart.............coocciiiivienee s 2-10
Alternatives to Flowchart BUttonsccccoevevrieeeniennennee, 2-11
CONENES TaAD ...evviiee e 2-11
=T 00T (T - o R 2-11
Synthesis Tab (Schematic Flow Only)............ccccvvvivenennenn. 2-11
MESSAGES AlBAuuiiiiei et 2-12
CoNSO0IE TaAD . 2-12
HDL Errors Tab (HDL FIow ONly)uvviiiiiiiiiiiiiiiiiiieeee. 2-12
HDL Warnings Tab (HDL Flow Only)........ccccceiiiiiiiiiiiinns 2-12
HDL Messages Tab (HDL Flow Only)ccccccoiiiiiiiiinnnnen. 2-12
ACCESSING LOGIBLOXeiiiiiiiiieiiieeee ettt 2-12
Accessing the CORE Generator SysStemoooooiiiiiiiieeeeeeeennnnn. 2-13
Documenting YOoUr DESIgNuueeiieiiaaiiiiiiiiiiieeie e 2-13
Project ArChivingoooooo i 2-13
Design ENtry TOOIS ... 2-14
Schematic EAitOr..........ooi i 2-14
State EdItOreeeeiiiieieeei e 2-15
HDL EQITOF ettt 2-15
SYMDBDOI EAItOr.....eeeiiiiieiiiie e 2-16
SYNNESIS TOOIS ... 2-16
Synthesis Button (HDL FIOW)c.ooiiiiiiiiiiieeee e 2-16
Synthesis Tab (Schematic FIOW) ... 2-17
Simulation/VerifiCation............ccooi i 2-17
LOQIC SIMUIALOT ..ot 2-17
TiMING ANAIYZEL ... 2-17
Specialized Simulation CoNntrolscccooeceveeiiiiiee e 2-18
HDL Behavioral Simulation Capabilitiescccooeiiiinnnnnnn. 2-18
ConStraints EdItOrScoouiiiiiiiiiie e 2-19
Express Constraints Editor (HDL FIOW)ccocciiieiiiiiecenen 2-19
Xilinx Constraints Editor...........ccooiiiiiiiiiiie e 2-19
Implementation TOOIS..........oouiiiiiiiiiiee e 2-20
CONIOL FIlES ..ot 2-20
User Constraints File ... 2-20
Implementation Guide File.........c.oocoiiiiiiiiiin e 2-20
Floorplanner File..........oooiiiiiiiiiiiiec e 2-21
Implementation TOOIS MENU...........ceeiiiiiiiiiiiiiee e 2-21
Constraints Editorcoccveiiiiiiiiie e 2-21
FIOW ENGINE .ot 2-21
FIOOMPIANNET ...t 2-21

X Xilinx Development System

Contents

Chapter 3

FPGA EQItOr.....ociiiiieiie e 2-22
CPLD ChipVIBWETuvviiiiiiieie ettt s e 2-22
Automatic Pin LOCKINGuevveiieeriiiiiiiieeiieeee e 2-22
Device Programming........cc.ceueeeereeeeeniiiiiiieieeereseeeesssssssnenneneeseeeesees 2-23
N X e (oTo] = 0 1o 1= 2-23
PROM File FOrmMatter.........ccocviiieeiiiiieriee e 2-23
Hardware DebUQQETcceeiiiiciiiee e e e 2-23
UHITIES oot 2-24
Schematic Symbol Library Managerccccouieeeeiiiieeiinniinns 2-24
Command HiStOrYoooiiiiiiiiie e 2-24
ProjeCt NOLES ...t 2-25
Implementation Template Managercccccvevviiiiiiiiiieeeeeeeenn. 2-25
ABEL to VHDL/Verilog CONVEIErcoooiiiieiviiieiiieae e 2-25
Altera HDL to VHDL/Verilog ConNVerter..........cccccceeeeeeiiniiiiieneen. 2-25

Design Methodologies - Schematic Flow

Schematic Flow Processing OVEIVIEWoccuuvuiieeiieeeeeeiniiiens 3-1
TOP-LEVEI DESIGNS ...ttt a e 3-3
All-Schematic DESIGNSuuuiiiiiiiieeaiie e 3-3
Creating the Schematic and Generating a Netlist..................... 3-3
Performing Functional Simulationcccccccoiiiiiiiiiinnn, 3-4
Implementing the DesigNooo i 3-5
Creating a New ReVISIONcccuuiiiiiiiiiieiieeiiieee e 3-7
Creating a New Version.........ooccuuviiiiiiiiiiiee e 3-8
Editing Implementation Constraintsccccceevviiiiiiiiiiieeneeeennn, 3-8
Verifying the DeSigN ..ot 3-11
Performing a Static Timing Analysis (Optional) 3-11
Performing a Timing Simulation..............ccccoieeiieennines 3-11
Programming the DeVICEccocuuiiiiiiiiiiieee e 3-12
Schematic Designs with Instantiated HDL-Based Macros............. 3-13
Creating HDL MAaCKOSuueiiiiiiiieeaie ettt 3-13
Creating the Schematic and Generating a Netlist..................... 3-14
Schematic Designs With Instantiated LogiBLOX Modules............. 3-15
Creating LOGIBLOX MOAUIESccociiiiiiiiiiiiiiieeee e 3-15
Importing Existing LOgiIBLOX ModUIEScoooviiiiiiiiiiiieieeeen, 3-15
Schematic Designs With Instantiated CORE Generator Cores 3-16
Creating Core SYMDOIS........uuviiiiiiiiiiiiieee e 3-16
Schematic Designs With Finite State Machine (FSM) Macros....... 3-18
Creating FSM MaCIOSuueiiiiiiiieeeie e 3-18
Creating the Schematic and Generating a Netlist..................... 3-19
Finite State Machine (FSM) DeSigNscccuveeeieieeeiiiiiiiieeeeeeennn 3-20
Creating a State Editor DeSIgNceevriiiiieeiiiiiiee e 3-20

Foundation Series 2.1i User Guide

Xi

Foundation Series 2.1i User Guide

DefiNiNg STateS.....cco i 3-21
Defining Transitions, Conditions, and ACtionscccccceveeeenn.. 3-22
Adding a Top-Level ABEL Design to the Project...................... 3-22

Chapter 4 Schematic Design Entry

Managing Schematic DeSIgNS......cccuuaiiiiiiiiiiiiiie e 4-1
DESIgN STTUCTUIEeveiiiiiiieie it 4-2
Single Sheet SchematiC...........cccooiiiiiiiiiii e, 4-2
Multi-sheet Flat SchematicC.............ccoviiiiiiiiiiii e 4-3
Hierarchical SChematicccoooiiiiiiii e 4-3
Adding New Sheets to the Projectccoooeiviiiiiinnins 4-5
Adding Existing Sheets to the Project...........ccccoceeeeeiiiiniiinneen. 4-6
Opening NoN-project SNEetS.........cooviiiiiiiiiiiiieeee e 4-6
Removing Sheets from the Projectcccoooviiiiiiieinns 4-6
Renumbering Symbol References..........cccccooiviiiiiiiinnn, 4-7
Copying a Section of a Schematic to Another Sheet................. 4-8
Troubleshooting Project Contents............occcuvvvieeiieieniiiniiiee 4-8

Hierarchical Schematic DeSIgNScoveiiiiiiiiiiiiieeeeee e 4-8
Creating a Schematic Macro (Bottom-Up Methodology) 4-9
Recognizing Hierarchical Macroscccccccoiiiiiiiiiiiiiiiinaeeeeen. 4-10
Navigating the Project Hierarchyccccccoiiiiiiiccnn, 4-10
Modifying EXiSting MacCIOScoociuumiiiiiiiieaae e 4-12
Difference between a Macro and a Schematicc........ 4-13
Hierarchy Symbol Changes ... 4-13
Using a Top-down Methodologycceveieaiiiiiiiiiiiiiiiieee e 4-13
Hierarchical Design Example.........ccccuiiiiiiiieiiiiiiieeeeeeeeen 4-14

Manually Exporting a Netlist...........cooiiiie e, 4-18

Creating a Schematic from a Netlist...........cccoooiiiiiiiic s 4-19

Miscellaneous Tips for Using the Schematic Editor Tool............... 4-20
Color-coded SYmbOIS..........uueeiiiiiiiiiie e 4-20
Using the Hierarchy Connector...........ccccceeeiiiiiiiiiiiiiieceeeeeen, 4-20
Using Input and Output BUffers...........ccccceeeiiiiiiiiiiiiieeeeenn 4-21
Schematic TabScoooiiiiiiii e 4-21
Simulate CUrrent MaCrOuvviiiiiiiiieiieee et 4-22

Chapter 5 Design Methodologies - HDL Flow

HDL Flow Processing OVEIVIEW..........cccccuviviiierieeee i sesiiieneeeeeeeens 5-1
TOP-1EVEI DESIGNS ...t 5-3
All-HDL DESIONS ...ttt ieete e e e e e s e e e e e e e e s s snnnnannee e e e e e e e e e e e nnnns 5-3
Creating the DESIgN ..o 5-3
Analyzing Design File SYNtaXcccccceeeeeiiiiiiiiieiiieeeeeeeees e 5-4

Xii Xilinx Development System

Contents

Performing HDL Behavioral Simulation (Optional).................... 5-5

Synthesizing the DESIGNuvviviiieeei e 5-5

Express Constraints Editorcccccvvvveeeeiiiiciiiiicee e 5-8
EXPress Time TraCKer.......coooviciiiieiiiie e 5-10
Performing Functional Simulationcccccccoovvviiiiiiiiieneeeeennn, 5-12
Implementing the DeSIgNoov v 5-15
Editing Implementation Constraintsccccceevvviiiciiviiiieeneeeennn, 5-17
Verifying the DeSIgN.......cccooi i 5-20
Performing a Static Timing Analysis.........ccccccccciiieerinniinns 5-20
Performing a Timing Simulation..............ccccveeeiiiiinnes 5-20
Programming the DEeVICEccocuiiiiiiiiiiieee e 5-21
HDL Designs with State Machines.............ccccoeieiiiiiiiiiniiiiieee, 5-21
Creating a State Machine Macroccccouveeieeiiieininiiiiiee, 5-21
HDL Designs with Instantiated Xilinx Unified Library Components 5-24
HDL Designs with Black Box Instantiationcccccceiieeennnnns 5-25
LogiBLOX Modules in a VHDL or Verilog Design 5-26
VHDL INStantiationceiiiieaiiiiiiiiieeee e 5-26
Verilog Instantiation ... 5-31
CORE Generator COREs in a VHDL or Verilog Design 5-36
VHDL INStantiationeceiiiiiainiiiiiiieeee e 5-36
Verilog Instantiation ... 5-42
XNF file in a VHDL or Verilog Designcccceeeeeiiiiiiiieieenenn. 5-48
Schematic Designs in the HDL FIOW...........oooiiiiiiiiiiiiiieiiis 5-49
Adding a Schematic Librarycccccveeeeiiioiiiiiiiieceeee e 5-49
Creating HDL MaCKOSuuueiiiiiiiieeeae et 5-50
Creating the Schematic and Generating a Netlist..................... 5-51
Selecting a Netlist FOrmat..........ccoocuveiiiiiiiiiee e 5-52
Completing the designuveieiiii e 5-52

Chapter 6 HDL Design Entry and Synthesis

HDL File SEIECHON ...t 6-1
Adding the File to the Project..........ccccoeiiiiiiiiiiiiieeeees 6-3
Removing Files from the Project............ccccooiiiiiiiices 6-3
Getting Help with the Language..........ooooovviiiiieiiiieiieiiieee 6-3

Synthesis of HDL MOdUIES............ccouiiiiiiiiieiieiiieeee e 6-5
Schematic Flow Methodology ..., 6-5
HDL Flow Methodology..........ccooiiiiiiiiiiiiiiieeee e 6-7

Managing Large DeSIgNScceiiiaraainiiiiiieiiiee e e 6-9
Design OPptiMIZation.........c.ocueiiiiiiiiiiiiee e 6-9
Setting Constraints Prior to Synthesiscccccceceiiiiiiiiiiiinne. 6-10

Design Partitioning GUIdeliNeScooviiiiiiiiiiiiiiiee e, 6-10

User Libraries for HDL FIOW Projects.........ceeeeeiiiiiiiiiiiiieeeeeeeen, 6-11

Foundation Series 2.1i User Guide Xiii

Foundation Series 2.1i User Guide

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Xiv

Creating a New Libraryccccoceeeeei i 6-12
Declaring and Using User Librariesccceecvvvviiviieeeeeiicennns 6-12
Using Constraints in an HDL Design........ccccccvvveeeevviiiniiiiiineeeeeeeenn, 6-12
Express Constraints Editorccccevvveeeeiiniciiiiiieecce e 6-12
Xilinx Logical CONSLraiNtS........ccevveieeeeiiiiiiiniieieeeee e e e 6-14
Reading Instance Names from an XNF file for UCF Constraints 6-15
Instance Names for LogiBLOX RAM/ROMcccccvvveveeeeennnn, 6-16
Calculating Primitives for a LogiBLOX RAM/ROM Module.. 6-16
Naming Primitives in LogiBLOX RAM/ROM Modules.......... 6-16
Referencing LOGIBLOX ENttI€S ..c.coeeeeiiiiiiiiiiiiiiieeeeeee e 6-17

State Machine Designs

State Maching EXample ... 7-2
State DIAgramooieiiiiiiie it 7-2
State Machine Implementation.............cccccceiiniiiiiiiiiiie s 7-3
Encoding TeChNiqQUES..........cc.uuiiiiiiiii e 7-4
Symbolic and Encoded State Machinesccccccceeiiiiiiiineen. 7-4
Compromises in State Machine Encodingccccoovviivviieeeenn. 7-5
Binary ENCOAINGuuuiiiiiiiiiiiiiiieee e 7-5
One-HOot ENCOAINGcoooiiiiiiiiiieieeee e 7-6
One-Hot Encoding in Xilinx FPGA Architecture................... 7-6
LIMIALIONS ...t 7-6
ENcoding fOr CPLDSuiiiiiiiaiiiiiiiiee e 7-7
LogiBLOX
Setting Up LOGIBLOX 0N @ PC......c.ooviiiiiiiiie e 8-2
Starting LOGIBLOXuviiiiiiiieeeie i ee e e e e s sssiaeneeen e e e e e e s e s nnnnnes 8-2
Creating LOGIBLOX MOAUIES........ccuuviiiiiiieee e e e e 8-4
LOGIBLOX MOAUIESccoooiiieeiieeeeeee et 8-5
Using LogiBLOX for Schematic Designs........ccccvvveeeeeeiiiiicciniinnnnn, 8-5
Using LogiBLOX for HDL DESIgNScccccuvvviiiiieieeeee e seceiivneeeeeeeas 8-6
Module-inferring TOOIScov i 8-6
Module-instantiation TOOISc.coovvviiiiiieri e 8-6
DOCUMENTALION ...t 8-6
CORE Generator System
Setting Up the CORE Generator System on a PC............c.oeeones 9-1
Accessing the CORE Generator SyStemooooiiciviiiiiieneeeeennnnne 9-2
Instantiating CORE Generator Modules...........cccccceiieeiininiiiiiiine. 9-6
DOCUMENTALION ...ceiiiiiiii ittt e e 9-6

Functional Simulation

Xilinx Development System

Contents

Basic Functional Simulation ProCess.........ccccovvveveiiiiineeeiiiee e 10-1
Invoking the SIMUIAtorcooviviii e 10-1
Attaching Probes (Schematic Editor Only)........ccccceeevvvvcivvinnnnn. 10-2
AddING SIgNAIScuviiiieiiiiie e 10-2
Creating BUSESoovvieeie it e e e e 10-3
APPIVING SHMUIUS ..evveeieieeeec e 10-3

Stimulator Selection Dialog............ccocevvvieiiiieeee e 10-3
Waveform Test VECIOISeeeviiiiiieiiiiiiiee e 10-4
SCHPL File MACIOeeviiiiiiieee e 10-4
RUNNING SIMUIAtIONeuiiiiiiiiiie e 10-4

HDL Top-down Methodologycoooiiiiiiiiiiieiii e 10-5

HDL with Underlying NetliStS..........coooiiiiiiiiiiiiie e, 10-6

Simulation SCript EItOr.......cooooiiiiiiiieeee e 10-7

Waveform Editing FUNCLIONSoooiiiiiiiiiiieiieieeeee e 10-7

Chapter 11 Design Implementation

Versions and REVISIONS..........ceiiiiiiiiieiiiieee e 11-1
Schematic FIOW ProjecCtS.........ccviiiiiiiiiiiiiiieeeeeee e 11-1
Creating VErSIONSeiiiiiia it 11-2
Creating ReVISIONS.......cciiiiiiiiiiiieieeee e 11-2
HDL FIOW PrOJECES ...eveeiiiiieiiiiiiiiieeeee e 11-3
Creating VErSIONSuiiiiii ittt 11-3
Updating VEISIONS ..ot 11-4
Creating ReVISIONS.......ccoiiiiiiiiiieieeeeee e 11-4
Creating a Nnew ReViSiON ...t 11-7
Creating the First Version and Revision in One Step 11-8
ReVISION CONLIOL........ccoiiiiiiiieiiiiiie e 11-9
Implementing @ DeSIgNcc.uuuiiiiiiiieaei e 11-9
Setting CONrol FIlESuuiiiiiiiee e 11-12
User Constraints File ... 11-12
GUIE FlES ..o 11-13
Guiding FPGA DESIgNS....coiiiiiaiiiiiiiiiiiiee e 11-13
Guiding CPLD DESIgNS ..c.etiiiiieiiiiiiiiiiiiiee et 11-14
Setting Guide Filesooiiiiiiiii 11-14
Floorplan Files ... 11-16
Selecting OPLIONSeeiiiieii e 11-18
Place & Route Effort LeVel.........ccveiiiiiiiiiiiiiiiii e 11-19
Program OPLiONSeeeiiiieaiaii it 11-19
Implementation TeMPIAteScooeeriiiiiiiiiiiiieee s 11-20
Simulation TEMPIALESoviiiiiiiiiiie e 11-20
Configuration Templates (FPGAS)....c.ccoceieriiiiiiiiiiiiieeeeeeen, 11-20
Template Manager..........ueeiiiiiiaiiiiiie et 11-21

Foundation Series 2.1i User Guide XV

Foundation Series 2.1i User Guide

FIOW ENQINE ...vvviiieieiieee e
Translateccocvvveeneeieeee e
MAP (FPGAS) ...coviiieeiee et
Place and Route (FPGAS)cccccvvvvvennnn.
CPLD Fitter coveeeieeeeeee e
Configure (FPGAS) ...ccooovvcviiiieeeeeee e
Bitstream (CPLDS)uvvvvvvveeeeeiiiiiiiiieeeeen

Implementation Reports........cccccceveeveeeeenienvnnnee,
Translation Report ...
Map Report (FPGAS)ccoeeviiiiiiiiiiieeeeeeenn,
Place and Route Report (FPGAS)................
Pad Report (FPGAS)cccoeeiiiiiiiiiiieeeeeeeen
Fitting Report (CPLDS)........coooviiiiiiiiiieeeeenn,
Post Layout Timing Reportcccvvveeeeeen.

Additional Implementation Tools.......................
Constraints EAitorccccovvieiiiiiiieeen
Flow Engine ControlS.........cccccoevveiiiiniieennnn.

Controlling Flow Engine Steps................
Running Re-Entrant Routing on FPGAs.
Configuring the FIOW...............oociiiieeeeen.
Floorplanner..........cccveeiiiieiiiiiiieeee e,
FPGA EditOr......cccviiiiieiiiiiiiee e
CPLD ChipViewercooccuuiiiieieiieeieeeee
Locking Device Pins........ccccccoeiiiiiiiiiiiienen,

Chapter 12 Verification and Programming

OVEIVIEW ..ottt e
Timing Simulation...........ccccove e,
Generating a Timing-annotated Netlist
Basic Timing Simulation Process.................
Timing AnalyZer ...,

Post Implementation Static Timing Analysis

Summary Timing Reportscccccoevveevenee.
Detailed Timing Analysis............ooocuvvvveeeneen.
In-Circuit Verificationccccceevviiiieeiiiiiieeeens
Downloading a Designcoccvvviieeiieieeeeenies
JTAG Programmer.......ccccceeeeeeieieeeeeeeeeeeeeeee
Hardware Debugger (FPGAs only)..............
PROM File Formatter..........cccocuvvveeinineeeeene

Appendix A Glossary

XVi

Xilinx Development System

Contents

= T4 (o] PP A-1
AIEC .. A-1
AlIASES ... A-1
ANAIYZE .. i e e e e A-2
AICHITECIUIE .. A-2
AHIDULE L. A-2
biNary €NCOdiNguuiiviiiiii i A-2
BItG BN .t A-2
Black BoX INStantiationcoouuiiiiiiiiiiieee e A-2
BIOCK ... A-2
Breakpoint ... A-3
DUFFEE .. A-3
BUS e A-3
L I SRS PSRRI A-3
[odo] 401 o1] gT=] o1 AN A-3
(oo 0 To 1 1To] o F P UPPRPPPR A-3
(oT0] 0153 1=Vl o | OO PPPRTRPP A-3
CONSEFAINES EAITON ...t e e A-4
CONSErAINS filE ..o A-4
CORE GENEIALON. .. i e ettt A-4
CPLD .. et anane A-4
(01 I B 11 T OSSPSR A-5
design entry tOOISuuiiiiiiiiee e A-5
design implementation tO0IS..........cccuuiiiiiiiiie e A-5
DESIGN MANAGETciiiiii ittt e e e A-5
EffOrt IEVEL... o A-6
ElADOIALE ..o A-6
EXPress COMPIlET ..o A-6
Express Constraints Editor...........ooccvviiiiiiiiiiiic e A-6
EXpress Time Tracker ... A-6
Finite State Machine Editor...........ccccccooiiiiiiiiii e A-7
L] RO PPRRRUPPR A-7
FlOOIPIANNING. ... A-7
FPGA oo A-7
[AN o 11 (o SRR A-7
F S M ittt a et aaa e A-7
functional SIMUIALION............eeiiiiiiiiiii e A-8
QUIEd DESIGN ..eeieiiiiiiie e A-8
guUIded MAPPING.....oieeeeeeiiiiie et A-8
o | SO PPRP SRR A-8
HDL EditOr . uiiii ittt ettt et e e e e e s sirae e e e s snnnaeae e A-8
HDL FIOW ©..vviiiec ettt e e e e nnnnaae e s A-8

Foundation Series 2.1i User Guide XVii

Foundation Series 2.1i User Guide

hierarchical deSIgNScceviiiiiiie e A-9

HIErarChy BrOWSENcoiiiiieiiiiieiie et e e e e s s teee e e e e e e s e s s rneee e A-9

IMPIEMENTALION.......uiiiiiiiic e A-9

Implementation Constraints EitOr............cccccvvvveeieee e, A-9

INSTANTIALION ... A-9

Language ASSIStaNt..........ccociciiiiiiie e A-9

o] = U V1Y, =T g - Vo 1= P A-9

o o3 (1 o PSPPSR A-10
[oTo |1 =7 @) RSP RRSTPI A-10
oo (o UUPRUPTPR A-10
LOQIC SIMUIALON ... A-10
[0 F=To] {0 TR T PP TP A-10
AP et e e e e r e e e e nnbareaeaas A-11
(0F=To] o] 1oV R PP RTT RPN A-11
MRP I8, et A-11
NCD il et e e e st e e e e s sabaaeee e A-11
1= PO A-11
L] 1 P UEPPRPPR A-12
NGA FIl e e e a e aea e A-12
NGDANNO ...ttt e e e e e e e e e e e et e e e e eaeaeebabebeeananaens A-12
NGDBUIIeeeieeiiiiiie et e s A-12
NGD il tteie ettt e e aea e A-12
NGM il .t e e a e aee e A-12
ONE-NOL ENCOAING ...t e e e A-13
OPLIMIZALION ..o e e e e A-13
(o] 01110 411U UUPPRPPPR A-13
PAR (Place and ROULE)ueiiiiiiiiiiiiiiieiieeee e A-13
PALN EIAY.......eeeiiiiiiiei e A-13
PO Il e A-13
PDF I8 it A-14
physical Design Rule Check (DRC)cocvvviieiiiiiiiieiiieee e A-14
PRYSICAI MACTO ...t A-14
11 o PR TU PR TR A-14
PINWITES ..ttt e e e s A-14
10 =To! A ST P PP PPRUPPRN A-14
Project FIOWCNAITooiiiiiiii e A-15
ProjeCt ManagQercuuueieiiiiiiiie ettt A-15
PROM File FOrMAeruviiiiiiiieeeiieiiiiieeiee e A-15
FOUTE ...ttt e et e e ettt e e e et e et e e e e e enb s e e e eenenns A-15
FOULE-tNIOUGN ..ot A-15
Schematic EAItOr..........uuuiiiiiiiiiiiee e A-15
SchematiC FIOW.........uuiiiiiiiiiee e A-15

Xviii Xilinx Development System

Contents

State diAagram ..o e e A-16
State MACKhINE ... e A-16
state Maching deSIgNSuuvviiiiei e A-16
3] (= R A-16
static timiNg @NaAlYSISuvviiiiiiie e A-16
static timiNg @NAIYZEr.......cuvvviiee i A-16
LS €= LU FS 0= | PSSR A-17
Stimulus INfOrMatioNcccevveeiiiii e A-17
SYMDBDOI EAItOr ... A-17
)Y 10] 6153 T TP T PP PP A-17
SYNENESIS ..o A-17
TIME TIACKET ..o e a e e e e A-17
TrANSILIONS ... e e e aaaaaen A-17
TRCE .. A-18
TWR Il i A-18
O i 1= TSP UPRPUPURRR A-18
VEITICAtION ... e A-18
RV 7= 10 o TSP PURPRPPT A-18
WHDL ...ttt e e e e e e e annees A-18
LAY] = PP A-19
Xilinx Constraints Editor..............ooooviiiiiiiiiiciccccee e A-19

Appendix B Foundation Constraints

Constraint Entry MechaniSms ... B-2
Translating and Merging Logical DeSigNnScccooviiiiiiiiiiieneeaannnn. B-3
The Xilinx Constraints EditOr............oooiiiiieiiiiiic e B-4
Constraints File OVEIVIEWc.uviiiiiiiiiieeiiee e B-4
Netlist Constraints File (NCF)cciiiiiiiiieeeees B-4
User Constraints File (UCKE).........uuiiiiiiiiiiiiiiieeeeee e B-4
Physical Constraints File (PCF)ccccouviiiiiiieiiiiiiieeeeeeeen B-5
CaSE SENSILIVILY ..oeiiiiiiiiiiiiiiii e B-6
TiMING CONSIIAINTSuveiiiiiiiiie et B-6
The “From:To” Style TIMESPEC ...cceeereeiiiiiiiiiiieee e B-6
USING TPSYNC ...ttt B-8
The Period Style TIMESPEC.......cuuiiiiiieiiiiiiiiiiieeee e B-10
The Offset CONSIrAINT.......cccoiiiiiieiiiiiieeeee e B-11
IgNOriNg Paths..........ueiiiii e B-13
CoNtrolliNg SKEWoooi it B-14
Constraint PreCedeNCEecvvvviiiiiiiiees e B-14
ACross CONSLraint SOUICESocuvvveeeiiiiiee et B-14
Within Constraint SOUICEScuvveeiiiiiieeeiiieee e B-15
Layout CONSLIAINTSooiiiiiiiieeeie et e e e e B-16

Foundation Series 2.1i User Guide Xix

Foundation Series 2.1i User Guide

Converting a Logical Design to a Physical Design B-16
“Last One WINS” ReSOIULIONcovuviiieiiiiiie e B-17
XCB5200XL CONSIFAINTS ...eeeeiiiiieeeiiieiee e B-17
Efficient Use of Timespecs and Layout Constraints....................... B-18
The “Starter Set” of Timing Constraintscccccceeevvvvvicivvnnnnnn. B-18
Standard Block Delay Symbols..........cccccovieiee e B-21
Table of Supported CONStraintsccccvveveeeeees i B-22
Basic UCF Syntax EXamplesccoooviiiiiiiiiiieee e cciiiieieee e B-25
PERIOD TiMESPEC. ..utiiiiiiiaeiaiiiiiiiie et e e e e e eiiteteee e e e e e eiiees B-25
FROM:TO TIMESPECS .ceeeeieiiitiiiieieeee ettt e e e B-25
OFFSET TIMESPEC .ceeeieiieiitiie ittt B-26
TIMING IGNOTE ... B-26
Path EXCEPLIONSt B-27
Miscellaneous EXamples ... B-28
User Constraint File EXamplecoooiiiiiiiiieiiiieeee e B-29
Constraining LogiBLOX RAM/ROM with Synopsyscccccceeeeens B-33
Estimating the Number of Primitives Usedccccccceeeeeenn. B-33
How the RAM Primitives are Namedcccccieeeieeieennnnn. B-33

Referencing a LogiBLOX Module/Component in the HDL Flow B-34
Referencing the Primitives of a LogiBLOX Module in the HDL Flow B-

35

HDL Flow Verilog EXample ..o B-35
LBV B-35
TSIV e e B-36
LB UCT oo e B-36

HDL Flow VHDL EXample.........cccouuiiiiiiiiiaiiiiiiiiieeceee e B-36
TESEVNA oo B-36
INSIAE.VNA.....ccoiii e B-37
LB UCT oo B-38

Appendix C Instantiated Components

Library/Architecture Definitions ..o, C-2
XC3000 LiBrarycooooiioiiiiieeeeee e C-2
XCA000E LiDrary.......cooo oo C-2
XCA000X LiDrary.....cccoou oo C-2
XC5200 LiBrarycooooi oo C-2
XCO000 LiBrarycoooeiiiiiiiieieeeeee e C-2
Spartan LIDIary ... C-2
SpartanXL LiDrary ... C-3
VIrteX LIDraryeoeoiiiii e C-3

STARTUP COMPONENT......cooiiiiiiiiiiiiiiiiee e C-3

STARTBUF COMPONENL.......coiiiiiiiiiiiiiiieieieie e C-3

XX Xilinx Development System

Contents

Appendix D

(2351 OF AN\ I 0] 4] oo = o | AP SR C-4
READBACK COMPONENT.....uuutiuutiiitiiaiaiaieieieeeeeeeeereeereeeereeeeeeeennnnnne C-5
RAM @nd ROMcciiiiiiiiieiiiiiie ettt C-6
GlObal BUFEIS i C-8
Fast Output Primitives (XC4000X 0NlY)ccoccvvvviieeiieeeee e C-10
(@ =3 @0 4] 0o 01T o £ USSR C-11
Clock Delay COMPONENES.........ccccvvviiiieiieeeeeeseeiiier e e e e e e e s seneeees C-13
File Processing Overview

FP GAS. ..ottt re e aaa e D-1
CPLDS ..ottt D-4

Foundation Series 2.1i User Guide XXI

Foundation Series 2.1i User Guide

XXii Xilinx Development System

Chapter 2

Project Toolset

This chapter explains how to create Foundation projects and how to
access the various Foundation tools that you use to complete the
project. Each tool and its function is briefly described. This chapter
contains the following sections.

= “Creating Foundation 2.1i Projects”
= “Project Manager”

= “Accessing LogiBLOX”

= “Accessing the CORE Generator System”
< “Documenting Your Design”

= “Project Archiving”

= “Design Entry Tools”

= “Synthesis Tools”

« “Simulation/Verification”

= *“Constraints Editors”

= “Implementation Tools”

= “Device Programming”

e “Utilities”

Creating Foundation 2.1i Projects

To organize your work, Foundation groups all related files into sepa-
rate logical units called projects. Schematic, HDL, and Finite State
Machine (FSM) designs must be defined as elements in a project. The
associated libraries as well as netlists, bitstream files, reports, and
configuration files are all part of the project.

Foundation Series 2.1i User Guide 2-1

Foundation Series 2.1i User Guide

2-2

Each project is stored in a separate directory called the project
working directory. The location of the project working directory is
specified when the project is created. The name of the project
working directory is the same as the name of the project.

A Foundation Series 2.1i project can be either a Schematic Flow
project or an HDL Flow project. If you are using the Base (DS-FND-
BAS-PC) or Standard (DS-FND-STD-PC) products, only the Sche-
matic Flow is available to you. Both flows are available to Base
Express (DS-FND-BSX-PC) and Foundation Express (DS-FND-EXP-
PC) users.

Schematic Flow Projects

A Schematic Flow project can have top-level schematic or ABEL files.
Top-level schematic designs can contain underlying schematic, Logi-
BLOX, CORE Generator, or ABEL macros. The top-level ABEL files or
underlying ABEL macros can be created with the Finite State
Machine (FSM) Editor or a text editor. (Top-level ABEL files are not
recommended for FPGA projects.)

If you have Base Express or Foundation Express, a Schematic Flow
project can also have underlying HDL, VHDL, or ABEL macros
created with the HDL Editor, FSM Editor, or another text editor.

To create a Schematic Flow project, perform the following steps.

1. Open the Project Manager by clicking on the Project Manager
icon (shown below) on your desktop or by St art —
Prograns - Xi | i nx Foundati on Series 2. 1i - Proj ect
Manager.

iManager:

2. Click the Cr eat e a NewPr 0j ect radio button on the Getting
Started dialog box. Click OK. (To create new projects, you can also
select Fi | e -~ NewPr oj ect from the Project Manager.)

Xilinx Development System

Project Toolset

Getting Started x|

" Open an Existing Project

watch3d - More projects... |
mywatch

watchwer
watchvhd
watch_sc

wiut_wver LI

d:Mfndtntactiveprojectsiwatch3

[~ Always open last project

Q. LCancel | Help |

3. Enter the project name, up to 8 characters, in the Name field of
the New Project dialog box.

4. Select a location for the project in the Directory box.
5. Select F2. 1i as the project type in the Type box.
6. Selectthe Schemati c Flow.
7. Enter the device family, part, and speed of your target device.
New Project x|
Mame: |abd ok |
Directoryr [D\FNDTNVACTIVESPROJECTS r
Browse... |
L AT =~ Hep |
Flow: & Schematic ¢ HOL
| Spartan =] |sosPras N ERE
8. Click K.

The Project Manager screen for the new project appears (see the
“Project Manager - Schematic Flow” figure). The Project Manager
screen contains three main sections.

Foundation Series 2.1i User Guide

Foundation Series 2.1i User Guide

= Onthe left side is the Hierarchy Browser consisting of a hierarchy
tree of the project files on the Files tab and of the project imple-
mentation versions on the Versions tab.

= The upper right area includes the Flow tab showing the design
flowchart with the functions used for Schematic Flow projects.
This section also contains Contents, Reports, and Synthesis tabs.
If you create any lower-level HDL or FSM macros for the project,
you can use functions on the Synthesis tab to list and update
them. From the Contents tab, you can view information on the
Files shown in the Hierarchy Browser area. You can access
system-created reports from the Reports tab.

= The bottom console area displays errors, warnings, and

messages.

Refer to the*“Project Manager” section later in this chapter for more
information on the Project Manager and the tools accessed from it.

40 abe - SO5PCB4-3 - Project Manager -0l x|
File Document Yiew Project Implementation Tools Help
O] 8] 6]x] =15 22 5] a8l
Files ' Wersions Flow *, Corterts . Reports Syrthesis
B abe
abc abc (S05PCH4-3)
simprims
sparan N @ qr—an
B » frn
DESIGN ENTRY 7 SIMULATION
LTI bl P gad
Ee i e o B
IMPLEMENTATION 7 VERIFICATION
v
=
PROGRAMMING
Pem Start Hilink Foundation F2.11 - Messages - Tue May 25 12:33:54 1999
FEfi == Opening project: abc -
Pem Creating project: abe
Pem Hiling sener initialization
Perm o Hilingwersion: 1, 0,0, 1
Pem Reading Kilink project
FEfi == Opening project: abc -
Pem Design Type Schematic
Pem Reading Xilink project
Console [T} = |

|Ready

Figure 2-1 Project Manager - Schematic Flow

2-4

Xilinx Development System

Project Toolset

HDL Flow Projects (Express Only)

An HDL Flow project can contain VHDL, Verilog, or schematic top-
level designs with underlying VHDL, Verilog, or schematic modules.
HDL files can be created by the HDL Editor, Finite State Machine
Editor, or other text editors.

LogiBLOX, CORE Generator, and ABEL modules as well as XNF files
can be instantiated in the VHDL and Verilog code using the “black
box instantiation” method.

To create an HDL Flow project, perform the following steps.

1. Open the Project Manager by clicking on the Project Manager
icon (shown below) or by St art — Prograns - Xi | i nx Foun-
dation Series 2. 1li - Project Manager.

2. Click the Cr eat e a NewPr 0j ect radio button on the Getting
Started dialog box. Click OK. (To create new projects, you can also
select Fi | e -~ NewPr oj ect from the Project Manager.)

Getting Started x|

" Open an Existing Project

watch3d - More projects... |
mywatch

watchwer
watchvhd
watch_sc

wiut_wver LI

d:Mfndtntactiveprojectsiwatch3

[~ Always open last project

Q. LCancel | Help |

3. Enter the project name in the Name box of the New Project
dialog.

Foundation Series 2.1i User Guide 2-5

Foundation Series 2.1i User Guide

2-6

4.
5.
6.

Select a location for the project in the Directory box.
Select F2.1i as the project type in the Type box.
Select the HDL Flow.

Note: When you select the HDL Flow button, the device family, part,
and speed boxes for the target device are removed. You do not need
to select a target device for HDL Flow projects until the design is
synthesized.

7.

New Project x|
Mame: I:-:_l,lz] Ok, I
Cancel |
Drirectary: ID:\FNDTN'\ACTNE'\PHDJECTS
Browse. .. |
Twpe |F21i =l Hep |
Flows " Schematic © HDL
Click OK.

The Project Manager screen for the new project appears. The Project
Manager screen contains three sections.

On the left side is the Hierarchy Browser consisting of a hierarchy
tree of the project files on the Files tab and of the project versions
on the Versions tab.

The upper right area includes the Flow tab showing the design
flowchart with the functions used for HDL Flow projects. This
section also contains Contents and Reports tabs. From the
Contents tab, you can view information on the Files and Versions
shown in the Hierarchy Browser area. You can access system-
created reports from the Reports tab.

The bottom Console tab displays errors, warnings, and messages.
The HDL Errors, HDL Warnings, and HDL Messages tabs
display information about synthesis results when a specific
version of the project is selected.

Refer to the “Project Manager” section later in this chapter for more
information on the Project Manager and the tools accessed from it.

Xilinx Development System

Project Toolset

40 xyz - design not implemented - Project Manager =]
Fie Document Wiew Froject Swnthesis |mplementation Tools Help

o T Y O O e s

Files ", Wersions

B owz
Wz

Flow ', Contents . Reports
Wz

DESIGN ENTRY 7

v
D b Bk » ET\

SYNTHESIS 7 SIMULATION

=S Jlt b EQJ

TMPLEMENTATION VERIFICATION

h

=S

PROGRAMMING

Pem oo

Pcm Hilimxversion: 1,0, 0,1 -
Pcm Reading Xilinx project

Cpening project: abe ----------

Pcm Design Type Schematic

Pcm Reading Xilinx project

Pcm Creating project xyz

Pcm Synopsys server initialization

Pcm License checking time 0.2 [g]

Pcm Opening Synopsys project

Pcm Synopsys version: 3, 2, 1000, 4015

Pom < Xiliny server initialization

Pcm Hilimxversion: 1,0, 0,1 _I
Pcm Synopsys server initialization

Pcm License checking time 0.1 [g]

Pcm Opening Synopsys project

Pcm Synopsys wersion: 3, 2, 1000, 4015 -

Console /HDL Errars / HDL Warnings / HDL Messages Hﬂ _>|

|Ready

Figure 2-2 Project Manager - HDL Flow

Project Manager

The Project Manager, the overall project management tool, contains
the Foundation Series tools used in the design process. The“Project
Manager - Schematic Flow” figure and the“Project Manager - HDL
Flow” figure illustrate the tools accessible for the two Foundation 2.1i
project flow types. It is through the Project Manager that you access
the tools for the design process from design entry tools to device
programming.

The Project Manager performs the following functions:
= Automatically loads all design resources when opening a project
= Checks that all project resources are available and up-to-date

= [lllustrates the design process flow

Foundation Series 2.1i User Guide 2-7

Foundation Series 2.1i User Guide

2-8

= Initiates applications used in the design process
= Displays error and status messages in the message window

= Provides automated data transfer between various Foundation
design tools

= Displays design status information

The three main regions of the Project Manager are discussed in the
following sections

Hierarchy Browser

Foundation organizes related files into a distinct logical unit called a
project. Related files include the following:

= Project documents (schematics, HDL source files, and state
diagram files)

= Project libraries

= Output and intermediate files (netlists, bitstreams, report and log
files)

« Configuration files

Two tabs in the Hierarchy Browser area on the Project Manager
window keep track of these files. The Hierarchy Browser is an inter-
active area in addition to a display area. You can open the listed files
and versions/revisions by double clicking on them in the Hierarchy
Browser—the application that is associated with the file type is
invoked. For example, if you double click on a schematic file, the
Schematic Editor displays the schematic file. You can also access
menus listing the functions you can perform on the displayed items
by right clicking on the item.

The Hierarchy Browser’s Files and Version tabs are summarized in
the following sections. To learn more about how to use the hierarchy
browser, select Hel p — Foundati on Hel p Cont ent s - Pr oj ect
Manager — Hi er archy Br owser.

Xilinx Development System

Project Toolset

Files Tab

The Files tab displays the hierarchy of the project files, project
libraries, and external files. From this tab you can add, remove, or
reorder the displayed files and libraries as well as open applications
associated with them.

Filez . “ersions
B~ newptj
MESr]
simprims
spartan

For new projects, the Project Manager automatically creates the
following files:

= Aconfiguration file called the Project Description File (PDF). The
PDF file has the same name as the project plus the .pdf extension.
The PDF file is stored at the top-level of the associated project
directory.

= Three types of library files (project library, Simprims library, and
device library). In HDL Flow projects, the Simprims library and
device library are not added until the device is selected in the
Synthesis phase.

A Foundation project always has one or more “top-level” design
file(s). In a Schematic Flow project, you can see what the top-level
designs in the project are by looking at the top level of the Hierarchy
Browser. In a Schematic Flow project, all top-level files must be sche-
matics, FSM (ABEL) diagrams, or ABEL files. In an HDL Flow
project, you designate the top-level entity or module at the time of
synthesis. The list of entities/modules is automatically generated
from the list of HDL source files that have been added to the project.
The added HDL design files are displayed in the File tab of the Hier-
archy Browser and can be VHDL, Verilog, or schematic files.

The following table shows some the of common project files included
in the Hierarchy Browser, their extensions, and the Foundation tool
that creates them.

Extension File Type Created By
pdf Project description file Project Manager
.sch Schematic source file Schematic Capture

Foundation Series 2.1i User Guide 2-9

Foundation Series 2.1i User Guide

2-10

Extension File Type Created By
AY Verilog source file HDL Editor
.vhd VHDL source file HDL Editor
.abl ABEL source file HDL Editor
.asf Finite State Machine FSM Editor

source file

.ucf User constraints file Constraints Editor
tve Test vector file Logic Simulator

For detailed information about the project files, libraries, and other
project information, refer to the online help by selecting Hel p -
Foundat i on Hel p Cont ent s » Foundat i on Confi gurati on

I nf or mati on.

Versions Tab

The Versions tab displays the revisions and versions of the chip
implementations of the design. For a newly created project, this tab is
empty.

Project management consists of control over design versions and
revisions. A version represents an input design netlist. Each time a
change is made to the source design, such as logic being added to or
removed from the schematic or the HDL source being modified, a
new version may be created. A revision represents an implementa-
tion on a given version, usually with new implementation options
such as different placement or router effort level.

Project Flowchart Area

The Foundation 2.1i Project Manager’s project flowchart area
contains four tabs that allow you to obtain current information about
your current project and facilitate the design process.

Flow Tab - Project Flowchart

The Flow tab displays the project flowchart. You use the buttons on
the flowchart to perform steps in the design flow, from design entry
through device programming. The buttons included in the flowchart
in this area depend on whether you have a Schematic Flow project or

Xilinx Development System

Project Toolset

an HDL Flow project (see the “Project Manager - Schematic Flow”
figure and the “Project Manager - HDL Flow” figure).

When you start programs from the project flowchart, the Project
Manager automatically controls the transfer of input and output data
(files) between the applications. It performs the necessary steps to
take the design to the point you requested.

Alternatives to Flowchart Buttons

In addition to the project flowchart, the Project Manager includes a
number of alternative ways to run the Foundation application tools.
You can access tools by right-clicking items listed in the Hierarchy
Browser area. Or, you can use the Tools menus in the Project Manager
Toolbar to access submenus for Design Entry, Simulation/Verifica-
tion, Implementation, and Device Programming tools. It is also
possible to start the Foundation applications directly from the
Windows environment. The latter method is not recommended
because, depending on the application, the Project Manager may not
be started and would not be available to track the project properly.

Contents Tab

The Contents tab displays info related to the object currently selected
(file, library, etc.) from the hierarchy tree on the Files tab. It displays

the full pathname of the object selected as well as the date the object

was last modified.

Reports Tab
Select this tab to access and display reports that have been generated
in the design process.

Synthesis Tab (Schematic Flow Only)

Using the Synthesis tab, you can update or synthesize VHDL,
Verilog, ABEL, and State Machine macros. Refer to the “Synthesis
Tools” section later is this chapter for more information on this tab.
(This tab is unnecessary in an HDL Flow project because the entire
project is synthesized.)

Foundation Series 2.1i User Guide 2-11

Foundation Series 2.1i User Guide

Messages Area

The tabs included in the Messages area display general project
messages and specific HDL processing messages.

Console Tab

The Console tab displays the contents of the project log.

HDL Errors Tab (HDL Flow Only)

This tab displays any errors encountered during HDL source file
analysis, for the object selected in the Hierarchy Browser.

HDL Warnings Tab (HDL Flow Only)

This tab displays warnings generated during HDL source file
processing, for the object selected in the Hierarchy Browser.

HDL Messages Tab (HDL Flow Only)

This tab displays messages other than errors or warnings generated
during HDL source file processing, for the object selected in the Hier-
archy Browser.

Accessing LogiBLOX

2-12

LogiBLOX is a graphical interactive tool for creating high-level
modules, such as counters, shift registers, and multiplexers.
LogiBLOX includes both a library of generic modules and a set of
tools for customizing them. You can access LogiBLOX from the
Project Manager by selecting Tool s - Desi gn Entry — Logi BLOX
nodul e gener at or, from the Schematic Editor by selecting Tool s
- Logi BLOX nodul e gener at or or from the HDL Editor by
selecting Tool s - Logi BLOX. For details about creating LogiBLOX
modules, refer to the “Creating LogiBLOX Modules” section of the
“LogiBLOX” chapter.

Note: LogiBLOX supports all Xilinx architectures except Virtex.

Xilinx Development System

Project Toolset

Accessing the CORE Generator System

The Xilinx CORE Generator is a graphical interactive tool that
generates and delivers parameterizable cores optimized for Xilinx
FPGAs. You can access the CORE Generator system from the Project
Manager by selecting Tool s - Desi gn Entry - CORE

CGener at or or from the Schematic Editor or HDL Editor by selecting
Tool s - CORE Gener at or. For more information on the CORE
Generator system, refer to the CORE Generator online help.

Documenting Your Design

To attach text files or other files to the Project, perform the following
steps.

1. Select Docunent - Add.

2. Inthe Add Document dialog box, select the documents from the
Files list box.

3. Click &K

The files are then displayed in the Hierarchy Browser area. This is a
convenient way to provide documentation for your design. Note that
you can add almost any kind of file to the project.

Project Archiving

Foundation 2.1i supports automatic project archiving. Any or all of
the following project components: project files, design source files,
synthesis files, implementation files, or documentation files can be
zipped into a single file or into multiple files. When you select Fi | e
- Archi ve Proj ect from the Project Manager, the Archive Project
Wizard - Setup window appears. In this window, you can specify the
location for the archive .zip file, add comments, provide a password,
or modify the compression factor. A second window, the Project
Components window, allows you to select the parts of the project to
be archived. Likewise, the Foundation Project Manager contains a
Restore Project option to automatically unzip archived projects.
(File - Restore Project).

Project archiving maintains revision control. The resultant files from
each implementation revision are archived in the project directory.
The source design for each version is not archived, only the resulting

Foundation Series 2.1i User Guide 2-13

Foundation Series 2.1i User Guide

netlists and files for each revision. Therefore, if you want to save iter-
ations of the source design (schematics, HDL files, for example), you
must back those up yourself.

Foundation 2.1i also supports archiving of symbol libraries as well as
any other user files (release notes, application notes, etc.) you want to
save. To archive symbol libraries or other user files, perform the
following steps:

1.
2.
3.

5.

SelectFi |l e -~ Archi ve Proj ect.
Select Next from the Archive Project Wizard - Setup window.

Select Next from the Project Components window to display the
User Files window.

Select Add Li br ari es and then select the libraries from the list
box that you want to archive. Or, select Add Files to select any
additional files to archive.

Select St ar t to begin archiving.

Design Entry Tools

This section describes the design entry tools. Foundation includes a
suite of tools for creating digital circuit designs. These tools provide
the following design entry capabilities.

Top-level schematic entry with the Xilinx Unified libraries
components, LogiBLOX symbols, CORE Generator modules,
HDL macros, and State Machine macros

Top-level HDL design entry and synthesis

Top-level HDL designs with state machine, CORE Generator, or
LogiBLOX instantiated components

Finite state machine diagram entry

Schematic Editor

With the Schematic Editor, you can create multi-sheet hierarchical
schematics. The editor features include the following.

2-14

Multiple sheet and hierarchical schematic support

Viewlogic schematic import

Xilinx Development System

Project Toolset

= Board-level and PLD schematic support (requires the Active-
CAD tool)

= Export of schematic netlists to XNF, EDIF, VHDL, and Verilog
formats

= Integration with synthesis design tools (HDL Editor and State
Diagram editor)

= Integration with the Logic Simulator

For detailed information about the Schematic Editor, select Hel p —
Foundati on Hel p Contents - Schemati c Edi t or. Also, see the
“Schematic Design Entry” chapter.

State Editor

State machine designs typically start with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and
finally into the source code itself. The State Editor, which allows you
to create state machine designs, also supports the following func-
tions:

= Generates behavioral VHDL, Verilog, or ABEL (Schematic Flow
only) code from the state diagram

= Invokes the Express or XABEL compiler to convert the behavioral
description into a gate-level netlist

= Simulates a state diagram macro graphically

For more information about how to use the State Editor, select Hel p
- Foundati on Hel p Contents - StateEditor.

HDL Editor

The HDL Editor, a text editor, is designed to edit HDL source files
created in the VHDL, Verilog, or ABEL (Schematic Flow only)
languages. The HDL Editor utilizes syntax coloring for the VHDL,
Verilog, and ABEL languages. The HDL Editor allows you to check
HDL language syntax as well as create HDL macro symbols for
placement on a schematic.

The Language Assistant tool (Tool s — Language Assi st ant in
the HDL Editor) furnishes the following templates with source code
for VHDL, Verilog, and ABEL.

Foundation Series 2.1i User Guide 2-15

Foundation Series 2.1i User Guide

= Language templates with basic language constructs

= Synthesis templates of functional blocks such as counters, flip-
flops, multiplexers, and Xilinx architectural features such as
Boundary Scan and RAM

For detailed information about the HDL Editor, select Hel p -
Foundat i on Hel p Cont ent s » HDL Edi t or. Also, refer to the
“HDL Design Entry and Synthesis” chapter.

Symbol Editor

With the Symbol Editor, you can edit features of component symbols
such as pin locations, pin names, pin numbers, pin shape, and pin
descriptions.

From the Project Manager, you can access the Symbol Editor by
selecting Tool s - Desi gnEntry - Synbol Editor.

For more details on how to use the Symbol Editor, select Hel p —
Foundat i on Hel p Contents - Advanced Tool s - Synbol
Edi t or.

Synthesis Tools

Synthesis tools are available for both HDL Flow projects and Sche-
matic Flow projects. If you are using the Base or Standard product,
synthesis tools are available for Finite State Machine ABEL macros
only.

Synthesis Button (HDL Flow)

For design synthesis, Base Express and Foundation Express users
have access to FPGA Express from Synopsys, the industry-leading
synthesis technology. The Express synthesis tools provide the
following capabilities.

= Architecture-specific optimization
« Verilog, VHDL, or mixed HDL synthesis
= Automatic Finite State Machine extraction

e Automatic GSR and 1I/0 insertion

2-16 Xilinx Development System

Project Toolset

= Graphical constraints editor. The Express Constraints Editor GUI
is available to Foundation Express users only. It is used to set
design constraints and view estimated design performance.

Synthesis Tab (Schematic Flow)

In a Schematic Flow project, the necessary synthesis of any under-
lying HDL macros in the design can be initiated in the various design
entry tools.The Synthesis tab provides the capability to synthesize
any or all of the HDL macros (FSM, ABEL, VHDL, or Verilog) in the
current project and update the macro symbol and netlist without
searching manually through the project and synthesizing/updating
them individually.

Simulation/Verification

Simulation and verification tools are available for both Schematic and
HDL Flow projects to determine if the timing requirements and func-
tionality of your design have been met.

Logic Simulator

The Logic Simulator is a real-time interactive design tool for both
functional and timing simulation of designs. You access the Logic
Simulator from the project flowchart when you click the Si nul a-
t i on button or the Timing Simulation icon on the Veri fi cati on
button.

The Logic Simulator creates an electronic breadboard of your design
directly from your design’s netlist. The breadboard is tested with
signals called test vectors. Each test vector lists logical states of all
stimulus signals at a selected time interval. See the “Functional Simu-
lation” chapter and the “Verification and Programming” chapter for
more information on simulations. For details on how to use the Logic
Simulator, select Hel p -~ Foundat i on Hel p Cont ent s - Logi ¢

Si nul at or.

Timing Analyzer

Select the Timing Analyzer icon on the Ver i fi cat i on button on the
project flowchart to access the Timing Analyzer for verification based
on the post-layout timing netlist. The Timing Analyzer is used to

verify that the delay along a given path or paths meets your specified

Foundation Series 2.1i User Guide 2-17

Foundation Series 2.1i User Guide

2-18

timing requirements. It creates timing analysis reports that you
customize by applying filters. It organizes and displays data that
allows you to analyze the critical paths in your circuit, the cycle time
of the circuit, the delay along any specified paths, and the paths with
the greatest delay. It also provide a quick analysis of the effect of
different speed grades on the same design.

Specialized Simulation Controls

Typically, the Simulation and Verification functions are invoked from
the project flowchart buttons. You can access the following individual
functions from the Project Manager toolbar, if needed.

e Gate Simulator

When you select Tool s - Si mul ation/ Verification-
Gat e Si nul at or from the Project Manager toolbar, you access
three startup options for the simulator.

= Opening the simulator with the netlist from the currently
open Foundation project

= Selecting the netlist manually
= Opening the simulator without loading a netlist
= Checkpoint Gate Simulation Control

Checkpoint simulation pulls simulation data from the current
stage of the design database. If you want to select which netlist
(hierarchical or flat NGA netlist) to use for timing simulation,
you can access the Checkpoint Gate Simulation Control dialog by
selecting Tool s - Si nul ati on/ Verification - Check-
poi nt Gate Si mul ati on Control on the Project Manager
toolbar.

HDL Behavioral Simulation Capabilities

Foundation Series 2.1i allows you to add HDL behavioral simulation
capabilities to all design flows. HDL simulators from Aldec, Incorpo-
rated, and from MTI can be added to your Xilinx software. Sale and
support for Aldec’s ACTIVE-VHDL Behavioral Simulator and for
MTI’s ModelSim product are handled directly by those vendors.

Xilinx Development System

Project Toolset

Constraints Editors

Two Constraints Editor GUIs are available in Foundation to assist
with constraining elements of your design to obtain the desired
performance.

Express Constraints Editor (HDL Flow)

The Express Constraints Editor is a feature available in the Founda-
tion Express product only. The Express Constraints Editor is a GUI
that allows you to set performance constraints, attributes, and optimi-
zation controls in the Synthesis phase before you start to optimize a
design. Constraint entry is in the form of constraints tables for logi-
cally related groups (clocks, ports, paths, modules). Design-specific
information based on the architecture specified for the selected
version of the design is automatically extracted and displayed in the
tables.

Xilinx Constraints Editor

The Xilinx Constraints Editor GUI allows you to create and edit
certain constraints after the translation step in the Implementation
phase of the design without directly editing the UCF (User Constraint
File).

You can start the Constraints Editor from the Project Manager by
selecting Tool s - | mpl enent ati on — Constraints Editor.

You can also invoke the Xilinx Constraints Editor by selecting St ar t
- Prograns - Xilinx Foundation Series2.1i - Accesso-
ries —» Constraints Editor.

The Xilinx Constraints Editor is not the same as the Express
Constraints Editor available in the HDL Flow and is most useful for
schematic and ABEL designs in Schematic Flow projects.

For more on the Constraints Editor, refer to the Constraints Editor
Guide, an online book.

Foundation Series 2.1i User Guide 2-19

Foundation Series 2.1i User Guide

Implementation Tools

2-20

Once you have completed design entry and are ready for physical
implementation of the design, you begin implementation processing
by clicking the | npl enent at i on button on the project flowchart.
All the steps needed to obtain the final results are invoked automati-
cally. Refer to the “Design Implementation” chapter for more infor-
mation.

Control Files

You can control the implementation of your design with a user
constraints file, an implementation guide file, or a Floorplanner file.
You can set these files by selecting | npl enent ati on - Set GQui de
File(s),orSet FloorplanFile(s),orSet Constraints

Fi | e(s) from the Project Manager. Or, you can access a dialog box
to set the files by clicking the Control Files SET button in the Physical
Implementation Settings section of the window that appears when
you implement a new version or revision of your design.

User Constraints File

Constraints can be applied to control the implementation of a design.
Location constraints, for example, can be used to control the mapping
and positioning of logic elements in the target device. Timing
constraints can be used to identify critical paths that need closer
placement and faster routing. For a list of the constraints that can be
applied for the various devices, refer to the “Attributes, Constraints,
and Carry Logic” chapter of the Libraries Guide.

The User Constraints File (UCF) is a user-created ASCII file that holds
the constraints. You can enter the constraints directly in the input
design. However, putting them in the UCF separates them from the
input design files and provides for easier modification and reduces
re-synthesis of your design. You can create the UCF using a text
editor or you can use the Xilinx Constraints Editor to produce the
UCF for you. UCF files can also be reused from design to design.

Implementation Guide File

Guide files from a previous implementation can be used to speed up
the current implementation. When an implementation guide file is

Xilinx Development System

Project Toolset

specified, only the sections of the current revision that are different
from the specified guide file for the previous revision are processed.

Floorplanner File

The Floorplanner tool generates an MFP file that contains mapping
and placement information. You can use this file as a guide for
mapping an implementation revision for the XC4000, Spartan, and
Virtex device families only. For Floorplanner guide files information,
refer to the Floorplanner Guide, an online manual.

Implementation Tools Menu

Typically, designs are implemented by using the Implementation
button on the project flowchart. However, you can access certain
specialized functions from the Project Manager Tools menu.

Constraints Editor

The Constraints Editor accessed from the Project Manager by
selecting Tool s - | nmpl enent ati on - Constraints Editor is
the Xilinx Constraints Editor. It becomes available for design imple-
mentation after the translation step in Flow Engine has completed.
For more on the Constraints Editor, refer to the Constraints Editor
Guide, an online book.

Flow Engine

The Flow Engine processes the design, controls the implementation
of the design, and guides the implementation revisions. When initi-
ated by selecting Tool s — | npl enent ati on —» Fl owEngi ne, the
Flow Engine is run as a standalone program. The project is not auto-
matically brought up-to-date as it is when initiated by the Implemen-
tation button on the project flowchart. For more information, see the
“Implementing a Design” section of the “Design Implementation”
chapter.

Floorplanner

Selecting Tool s — | npl enent ati on - Fl oor Pl anner from the
Project Manager window, accesses the Floorplanner tool (for FPGAs
only).The Floorplanner creates a file that contains mapping informa-
tion, which can be used by the Flow Engine as a guide for mapping

Foundation Series 2.1i User Guide 2-21

Foundation Series 2.1i User Guide

an FPGA implementation revision. For more information on the
Floorplanner, see the Floorplanner Guide, an online book.

FPGA Editor

Selecting Tool s - | npl enent ati on . FPGA Edi t or from the
Project Manager window opens the FPGA Editor. The FPGA Editor
provides a graphic view of your placed and routed design, allowing
you to make modifications. This option is supported for FPGAs only.

For more information on using the FPGA Editor, see the FPGA Editor
Guide, an online book.

CPLD ChipViewer

Selecting Tool s — | npl enent ati on - CPLD Chi pVi ewer from
the Project Manager window opens the ChipViewer. The ChipViewer
provides a graphical view of the CPLD fitting report. With this tool
you can examine inputs and outputs, macrocell details, equations,
and pin assignments. You can examine both pre-fitting and post-
fitting results.

More information on using the CPLD ChipViewer is available in that
tool’s online help or from the Umbrella Help menu accessed by Hel p
- Foundat i on Hel p Contents - Advanced Tool s - Chi p-

Vi ewner.

Automatic Pin Locking

170 pins can be locked to a previous revision by clicking on the revi-
sion in the Versions tab of the Project Manger and selecting Tool s -
| mpl enent ati on - Lock Devi ce Pi ns. The Lock Pins Status
dialog appears upon completion. You can click Vi ewLock Pi ns
Report from the Lock Pin Status dialog or select Tool s — | npl e-
nment ati on - Vi ewlLocked Pi ns Report to access the Lock Pins
Report. The Lock Pins Report contains information on any constraint
conflicts between the pin locking constraints in the existing UCF file
and the design file.

2-22 Xilinx Development System

Project Toolset

Device Programming

When the design meets your requirements, the last step in its
processing is programming the target device. To initiate this step,
click the Pr ogr anmi ng button in the project flowchart. The Select
Programming dialog appears listing one or more of the following
device programming tools: JTAG Programmer, Hardware Debugger,
PROM File Formatter. For CPLD designs, you must use the JTAG
Programmer.

JTAG Programmer

The JTAG Programmer downloads, reads back, and verifies FPGA
and CPLD design configuration data. It can also perform functional
tests on any device and probe the internal logic states of your design.

PROM File Formatter

The PROM File Formatter is available for FPGA designs only. The
PROM File Formatter provides a graphical user interface that allows
you to do the following.

= Format BIT files into a PROM file compatible with Xilinx and
third-party PROM programmers

= Concatenate multiple bitstreams into a single PROM file for daisy
chain applications

= Store several applications in the same PROM file

Hardware Debugger

The Hardware Debugger is a graphical interface that allows you to
download an FPGA design to a device, verify the downloaded
configuration, and display the internal states of the programmed
device.

Foundation Series 2.1i User Guide 2-23

Foundation Series 2.1i User Guide

Utilities

2-24

Foundation contains multiple utilities to help you manage and orga-
nize your project. Those available from the Project Manager’s Tool s
- Wilities menu are described below.

Schematic Symbol Library Manager

The Library Manager allows you to perform a variety of operations
on the design entry tools libraries and their contents, such as copying
macros from one project to another. These libraries contain the primi-
tives and macros that you use to build your design.

The Foundation design entry tools contain two types of libraries;
system libraries and user libraries.

= System libraries, which are supplied with the Foundation design
entry tools, contain sets of components for each device family as
well as for simulation. System library contents cannot be modi-
fied. The Foundation system libraries include: simprims,
xabelsim, xc3000, xc4000e, xc4000x, xc5200, xc9500, spartan, spar-
tanx, and virtex.

= User libraries contain user-defined components. Each project has
at least one user library known as the project working library. The
project working library is named the same as the project and is
located in the LIB subdirectory of the project directory. The
Library Manager automatically places any user-created macro in
the current project’s working library:.

You can access the Library Manager from the Project Manager by
selecting Tool s - Utilities— Schematic Synbol Li brary
Manager . Refer to the online help accessed from the Library Manager
window for details on how to use the Library Manager. Or, select

Hel p —» Foundati on Hel p Cont ent s -~ Advanced Tool s -
Synbol Li brary Manager.

Command History

Command History (Tool s - Utilities — Conmand H st ory)
sequentially lists the processes that have been performed for the
selected revision. You can select from two different modes: 1) Process,
which displays the name of the process only, and 2) Command Line,

Xilinx Development System

Project Toolset

which displays the full command line of each process. An option to
display the date and time for each command is also available.

Project Notes

Project Notes (Tool s — Utilities - Project Notes)opensa
standard text editor of your choice in which you can make notes for
the current project. Specify the text editor in the Configuration dialog
(File - Preferences - Configuration).

Implementation Template Manager

The Implementation Template Manager can create or modify three
types of templates for a selected device: implementation, simulation,
and configuration. Implementation templates control how an FPGA
design is mapped, optimized, placed, and routed and how a CPLD
design is fitted. Simulation templates control the creation of netlists
for front- and back-end simulation. Configuration templates control
the configuration startup, readback, and parameters for the device.

To access the Template Manager window, select Tool s - Utili -
ties— I npl ementation Tenpl at e Manager from the Project
Manager. For details on how to use the Implementation Templates
refer to the online help available from the Template Manager
window.

ABEL to VHDL/Verilog Converter

The ABEL2HDL utility accessed from Tool s —» Utilities -
ABEL2HDL in the Project Manager allows you to select an ABEL (.abl)
file and have it converted to a VHDL (.vhd) or Verilog (.v) file.

Altera HDL to VHDL/Verilog Converter

The AHDL2HDL utility accessed from Tool s —» Utilities -
AHDL2HDL in the Project Manager allows you to select an Altera HDL
(.tdf) file and have it converted to a VHDL (.vhd) or Verilog (.v) file.

Foundation Series 2.1i User Guide 2-25

Foundation Series 2.1i User Guide

2-26 Xilinx Development System

Chapter 3

Design Methodologies - Schematic Flow

This chapter describes various design methodologies supported in
the Schematic Flow project subtype.

This chapter contains the following sections.

= “Schematic Flow Processing Overview”

= “Top-Level Designs”

= “All-Schematic Designs”

= “Schematic Designs with Instantiated HDL-Based Macros”

= “Schematic Designs With Instantiated LogiBLOX Modules”

= “Schematic Designs With Instantiated CORE Generator Cores”
= “Schematic Designs With Finite State Machine (FSM) Macros”
= “Finite State Machine (FSM) Designs”

Schematic Flow Processing Overview

Refer to the“Project Toolset” chapter for information on how to create
a Schematic Flow project and for an overview of the tools available
for such projects.

The following figure illustrates the processing performed at the
various stages of a Schematic Flow project.

Foundation Series 2.1i User Guide 3-1

Foundation Series 2.1i User Guide

Create
Project

Select
Schematic Flow

Select
Target

Design Entry

Create
Top-Level
Schematic

Add Macros
Schematic, FSM, LogiBLOX,
HDL, CORE Generator

Optional

Functional Simulation
(Analyze Logic)

I Reports
Implementation
Netlist Translation

Xilinx
Constraints Editor

ﬁ

A

Map (FPGA)
or FIT (CPLDs)

Analyze Timing

rE

~

Place and Route
(FPGAs only)

Timing
Simulation

Analyze Timing

it

«

Create Bitsream

Reports

Programming
Download
X8773 Bitstream

Figure 3-1 Schematic Flow Project Processing

3-2 Xilinx Development System

Design Methodologies - Schematic Flow

Top-Level Designs

Schematic Flow projects can have top-level schematic or Finite State
Machine (ABEL) designs. A top-level design can have any humber of
underlying schematic, HDL, LogiBLOX, CORE Generator, ABEL, or
Finite State Machine (FSM) macros. Although individual modules
may require some form of synthesis, the entire project is not
synthesized and the netlist that is exported for implementation is not
optimized across module boundaries as in an HDL Flow project.

All-Schematic Designs

The following procedure describes how to create a top-level sche-
matic design that contains schematics only, that is, there are no
instantiated HDL or State Machine macros.

Creating the Schematic and Generating a Netlist

This section lists the basic steps for creating a schematic and gener-
ating a netlist from it.

1. Open the Schematic Editor by selecting the Schematic Editor icon
from the Design Entry box on the Project Manager’s Flow tab.

DESIGH ENTRY]

A4

2. Select Mode - Symnbol s to add components to your new
schematic. Select specific components from the SC Symbols
window.

3. Complete your schematic by placing additional components
from the Symbol toolbox including 170 ports, nets, buses, labels,
and attributes.

4. Save your schematic by selecting Fi | e - Save.

For more information about schematic designs, see the “Schematic
Design Entry” chapter or in the Schematic Editor window, select
Hel p -~ Schemati c Edit or Hel p Cont ent s.

Foundation Series 2.1i User Guide 3-3

Foundation Series 2.1i User Guide

Performing Functional Simulation

1.

Open the Logic Simulator by clicking the Functional Simulation
icon in the Simulation box on the Project Manager’s Flow tab.

[

SIMULRTION

Functional Sirmulation

The design is automatically loaded into the simulator. The Wave-
form Viewer window displays on top of the Logic Simulator
window.

Add signals by selecting Si gnal - Add Si gnal s.

From the Signals Selection portion of the Components Selection
for Waveform Viewer window, select the signals that you want to
see in the simulator.

Use CTRL-click to select multiple signals. Make sure you add
output signals as well as input signals.

Click Add and then Cl ose. The signals are added to the
Waveform Viewer in the Logic Simulator screen.

Select Si gnal - Add Sti nul at or s from the Logic Simulator
menu. The Stimulator Selection window displays.

In the Stimulator Selection window, create the waveform
stimulus by attaching stimulus to the inputs. For more details on
how to use the Stimulus Selection window, click the Help button.

After the stimulus has been applied to all inputs, click the Simu-
lation Step icon on the Logic Simulator toolbar to perform a
simulation step. The length of the step can be changed in the
Simulation Step Value pulldown menu to the right of the Simula-
tion Step box. (If the Simulator window is not open, select Vi ew
- Mai n Tool bar.)

@Logic Simulator - Xilink Foundation F2.11 [abc]

File Signal “Waveform Dewice Options Tools Yiew Window Help

=\ =8| B[] 4l) I] | e 1

== Wavelorm Yiewer 0 -10] x| |

34

T — P 1

Xilinx Development System

Design Methodologies - Schematic Flow

9. \Verify that the output waveform is correct. Click the Step button
repeatedly to continue simulating.

10. To save the stimulus for future viewing or reuse, selectFi | e -
Save Wavef or m Enter a file name with a .tve extension in the
File name box of the Save Waveform window. Click OK.

For more information about saving and loading test vectors, from
the Logic Simulator window, select Hel p — Logi ¢ Si mul at or
Hel p Cont ent s. Then select Si mul at or Ref er ence -

Wor ki ng Wt h Wavef orns - Savi ng and Loadi ng Wave-
forns.

Implementing the Design

1. Click the Implementation icon in the Implementation box on the
Project Manager’s Flow tab.

Implementation

2. The Implement Design dialog box appears.

Implement Design x|
Device ISDEPC84 j Speed I3 jv

Wersion name: IVE"I

Bevizion name: I'E‘\‘1

Contral Files: Set.. Dptions... |

Ok | LCancel | Help |

By default, the Implementation targets the device that was previ-
ously selected when you created the project. If you want to
retarget the design to a different device, use the Implement
Design dialog box. If you want to retarget to a new device family,
you must first do so in the Foundation Project Manager by
selecting Fi | e —» Proj ect Type.

The first time you implement the design, a new version of the
design is created and given the default version and revision name

Foundation Series 2.1i User Guide 3-5

Foundation Series 2.1i User Guide

shown in the Implement Design dialog box. You can modify the
version and revision names as desired.

3. Inthe Implement Designs dialog box, select Set . The Settings
dialog box appears.

4. Specify control files if desired. Click OK to return to the Imple-
ment Design dialog box.

5. In the Implement Design dialog box, select Opt i ons. The
Options dialog box displays.

petat 1]
FoundationEDIF — [~]
petat 1]

3-6 Xilinx Development System

Design Methodologies - Schematic Flow

6. Choose any desired implementation options.
7. Click OKto return to the Implement Design dialog box.

8. Click Run to implement your design. The Flow Engine displays
the progress of the implementation.

When Implementation is complete, a dialog box appears indi-
cating whether implementation was successful or not.

For more information on the Flow Engine, refer to the “Design
Implementation” chapter or select Hel p -~ Foundat i on Hel p
Cont ent s - Fl owEngi ne.

9. Select the Reports tab on the Project Manager window and then
double click the Implementation Report Files folder. Double click
a report icon to review your design reports.

Creating a New Revision

If you modify the design, then click the Implementation button to re-
implement the design after the first revision of a design version has
been implemented, the existing revision is overwritten. A warning
box appears to allow you to verify the overwrite operation.

Warning x|

Revizion werl-xrev [Implemented, OK] exists.
Do paow want bo avenwrite this revizion?

LCancel | Help |

™ Don't display this message again

You do not access the Implement Design dialog box for subsequent
versions/revisions.

If you want to implement a new revision of the design (for any
version), you must first create the new revision by selecting Pr oj ect
- Cr eat e Revi si on. This accesses the Create Revision dialog box
that has the same fields as the Implement Design dialog box. The
revision name is automatically entered. Modify the names, control
files, and/or options and run the Flow Engine as described previ-
ously for the first version/revision.

Foundation Series 2.1i User Guide 3-7

Foundation Series 2.1i User Guide

3-8

Create Revision x|

Device ISGSF'I:84 j Speed I3 jv

Wersion name: |V3'2

Bevizion name: I'E"”2

Contral Files: Set.. Dptions... |

Ok | LCancel | Help |

Creating a New Version

If you want to implement a new version of the design (after the initial
implementation), you must first create the new version by selecting
Proj ect — Creat e Versi on. This accesses the Create Version
dialog box that has the same fields as the Implement Design dialog
box. The version name is automatically entered. Modify the names,
control files, and/or options and run the Flow Engine as described
previously for the first version/revision.

Create Yersion x|

Device ISUSF’C84 j Speed I3 jv

Wersion name: Iver2

Bevizion name: I'BV'I

Cantrol Files: Set.. Options... |

Ok, | LCancel | Help |

Editing Implementation Constraints

Constraints are instructions placed on symbols or nets in a schematic
(or textual entry file such as VHDL or Verilog). They affect how the
logical design is implemented in the target device. Applying
constraints helps you to adapt your design’s performance to expected
worst-case conditions. The user constraint file (.ucf) is an ASCII file
that holds timing and location constraints. It is read (by NGDBuild)
during the translate process in the Flow Engine and is combined with
an EDIF or XNF netlist into an NGD file.

Xilinx Development System

Design Methodologies - Schematic Flow

In Foundation, a UCF file is automatically associated with a Revision.
This UCF file is copied and used as your UCF file within a new revi-
sion. You can directly enter constraints in the UCF file or you can use
the Xilinx Constraints Editor.

1. The Constraints Editor is a Graphical User Interface (GUI) that
you can run after the Translate program to create new constraints
in a UCF file. To access the Constraints Editor, select Tool s -
| mpl enent ati on - Constraints Editor from the Project
Manager.

The following figure shows an example of the Global tab of the
Implementation Constraints Editor.

atonstlainl: Editor - [Global - jct_schu.ngd / jct_schu.ucf] - O 5[
File ¥iew ‘wWindow Help

S ETETEE

Clock Het Hame | Period | Pad to Setup | Clock to Pad |
[E3 | | \ \

Pad to Pad
Global | Pots | Advanced

2 Editable Constraints | * > Source Constraints (read-only)

d e
|4l4 5 TFI]s, Ervors /i Wamings Jy o tMessages £

For Help, press Fi | 4

2. Design-specific information is extracted from the design and
displayed in device-specific spreadsheets. Click the tabs to access
the various spreadsheets.

Foundation Series 2.1i User Guide 3-9

Foundation Series 2.1i User Guide

3. Right-click on an item in any of the spreadsheets to access a
dialog box to edit the value. Use the online help in the dialog
boxes to understand and enter specific constraints and options.
Or, refer to the online software document, Constraints Editor Guide
for detailed information.

The following figure shows an example of the Pad to Setup
dialog box accessed when you right click anywhere on the CLR
Port row on the Ports tab of the Implementation Constraints
Editor and then select Pad t o Set up.
5 Constraints Editor - [Ports - jet_schu.ngd / jet_schu_ucf] =] |
File “iew ‘wWindow Help
D[] 2[%|
Port Hame Port Direction Location Pad to Setup Clock to Pad
CE NPT g,
CLK MPUT M2 M2
Leln} OUTPUT g,
[OUTPUT IR | |
= SOTRLT Pad to Setup ﬂ
Q3 OUTPUT
E Pad Met: Cancel
I™ 170 Configuration Options Group Mame: l_ Help |
Time Requirement
Prohibit 10 Locations... i
I20 Units: Ins j
Global Ports I Advanced
Fielative to Clack Pad Net |13 =]

47 Editable Constraints |5 Source Gonstraints (read-only) |

LEs :IJ
A AT = TR Errors £ Wamings }y Info Messages /

For Help, press F1

|

Fi
4.

3-10

gure 3-2 Implementation Constraints Editor - Ports Tab

After you finish editing the constraints, click Save to close the
Constraints Editor window

You must rerun the Translate step in the Flow Engine to have
your new constraints applied to the design.

Xilinx Development System

Design Methodologies - Schematic Flow

6. Click the Implementation icon on the Project Manager’s Flow tab
to rerun Translate (and the other phases).

Or, to just rerun the Translate phase, select Tool s - | npl enen-
tation - Fl owEngi ne. Click Yes to start at the Translate
phase when prompted. Then click the Step button at the bottom
of the Flow Engine Window window. Exit the Flow Engine when
the Translate phase is Completed.

Verifying the Design

Performing a Static Timing Analysis (Optional)

1. Click the Timing Analyzer icon in the Verification box on the
Project Manager’s Flow tab.

PR

YERIFICATION

Timing Analyzer

2. Perform a static timing analysis on mapped or placed and routed
designs for FPGAs.

For FPGAs, you can perform a post-MAP or post-place timing
analysis to obtain rough timing information before routing delays are
added. You can also perform a post-implementation timing analysis
on CPLDs after a design has been implemented using the CPLD fitter.

For details on how to use the Timing Analyzer, select Hel p - Foun-
dation Hel p Contents - Ti nm ng Anal yzer.

Performing a Timing Simulation

1. Open the Timing Simulator by clicking the Timing Simulation
icon in the Verification box on the Project Managers’s Flow tab.
The implementation timing netlist will be loaded into the simu-
lator.

Tirming Simulation

Foundation Series 2.1i User Guide 3-11

Foundation Series 2.1i User Guide

2. The Waveform Viewer window displays on top of the Logic
Simulator window.

Refer to the “Performing Functional Simulation” section for
instructions on simulating the design. (The operation of the simu-
lator is the same for functional and timing simulation.)

3. If you have already saved test vectors (for instance, in the
functional simulation), you may load these vectors into the
timing simulator by selecting Fi | e — Load Wavef orm

Programming the Device

1. Click the Device Programming icon in the Programming box on
the Project Manager’s Flow tab.

»
L3

Device Programming

2. From the Select Program box, choose the Hardware Debugger,
the PROM File Formatter, or the JTAG Programmer.

For CPLD designs, you must use the JTAG Programmer. For
instructions, select Hel p -~ Foundati on Hel p Contents -
JTAGPr ogr ammer.

For FPGA designs, use the JTAG Programmer, Hardware
Debugger, or PROM File Formatter. For instructions, select Hel p
- Foundat i on Hel p Cont ent s - Advanced Tool s and then
select the desired tool.

3-12 Xilinx Development System

Design Methodologies - Schematic Flow

Schematic Designs with Instantiated HDL-Based

Macros

This section explains how to create HDL macros and then add them
to a schematic design.

Creating HDL Macros

After you create an HDL macro, the macro is available from the SC
Symbols window in the Schematic Editor. Following are the steps to
create HDL macros.

1.

Open the HDL Editor by clicking the HDL Editor icon in the
Design Entry box on the Project Manager’s Flow tab.

ESIGN ENTRY
HOL Editor

When the HDL Editor appears, you may select an existing HDL
file or create a new one. The following steps describe creating a
new HDL file with the Design Wizard.

In the HDL Editor dialog box, select Use HDL Desi gn W zar d.
Click K.

From the Design Wizard window, select Next and then choose
VHDL, Veri | og, or ABEL and select Next . (You must have Base
Express or Foundation Express to select VHDL or Verilog.)

Enter a name for your macro in the Design Wizard - Name
window and then select Next .

Define your ports in the Design Wizard-Ports window.

Click Fi ni sh. The Wizard creates the ports and gives you a
template in which you can enter your macro design.

Complete the design for your macro in the HDL Editor.

Create a macro symbol by selecting Pr oj ect - Creat e Macro
from the HDL Editor window.

The synthesizer will not insert top level input and output pads
for this macro. Instead the top level schematic, which contains the

Foundation Series 2.1i User Guide 3-13

Foundation Series 2.1i User Guide

macro, includes all top level input and output pads required for
implementation.

For more information about creating HDL macros, from the
Project Manager window, select Hel p - Foundati on Hel p
Cont ent s - HDL Edi t or.

Creating the Schematic and Generating a Netlist

1.

6.

Open the Schematic Editor by clicking the Schematic Editor icon
in the Design Entry box on the Project Manager’s Flow tab.

Select Mode — Synbol s to add components to your new
schematic.

Any macros that you have created display in the SC Symbols
toolbox under the project working library’s heading.

Select the HDL macro that you created by clicking its name.

Move your cursor to the schematic sheet and place the macro
symbol by clicking.

Complete your schematic by placing additional components
from the Symbol toolbox including 170 ports, nets, buses, labels,
and attributes.

Save your schematic by selecting Fi | e - Save.

For more information about schematic designs, see the*“Schematic
Design Entry” chapter or, in the Schematic Editor window, select
Hel p —» Schemati c Edi t or Hel p Cont ents.

To complete the design, read the following sections in the order
listed:

3-14

“Performing Functional Simulation”
“Implementing the Design”
“Verifying the Design”

“Programming the Device”

Xilinx Development System

Design Methodologies - Schematic Flow

Schematic Designs With Instantiated LogiBLOX

Modules

LogiBLOX modules can be used in schematic designs. First, the
module must be created. The module can then be added to the sche-
matic like any other library component.

Creating LogiBLOX Modules

To use the program in a schematic-based environment, follow these
steps:

1.

8.

With a project open, invoke the LogiBLOX Module Selector from
within the Schematic Editor (Tool s — Logi BLOX Mbdul e
Cener at or).

Select a name and a base module type (for example, counter,
memory, or shift-register).

Customize the module by selecting pins and specifying
attributes.

After completely specifying a module, click OK. Selecting OK
initiates the generation of a schematic symbol and a simulation
model for the selected module. The schematic symbol for the
LogiBLOX component is incorporated into the project library and
is automatically attached to the cursor for immediate placement.

Place the module on your schematic.

Connect the LogiBLOX module to the other components on your
schematic using ordinary nets, buses, or both.

Complete your schematic by placing additional components
from the symbol toolbox including 170 ports, nets, buses, labels,
and attributes.

Save your schematic by selecting Fi | e - Save.

Importing Existing LogiBLOX Modules

You can also import LogiBLOX modules that already exist (for
example, from another project).

Foundation Series 2.1i User Guide 3-15

Foundation Series 2.1i User Guide

To convert an existing LogiBLOX module to a binary netlist and save
the component to the project working library, perform the following
steps.

1. Inthe Schematic Editor, select Tool s — | nport Logi BLOX.

2. From the Import LogiBLOX from MOD File dialog box, select the
MOD file for the LogiBLOX module that you want to import.
Click K.

The schematic symbol for the LogiBLOX component is
incorporated into the SC Symbols window in the Schematic
Editor.

3. Follow Steps 5 through 8 in the previous section—“Creating
LogiBLOX Modules”—to instantiate your module.

To complete the design, read the following sections in the order
listed:

= “Performing Functional Simulation”
< “Implementing the Design”
= “Verifying the Design”

= “Programming the Device”

Schematic Designs With Instantiated CORE
Generator Cores

3-16

Cores generated in the CORE Generator tool can be used in schematic
designs. After the core is selected and customized, its schematic
symbol is generated by the CORE Generator tool. The core can then
be added to the schematic like any other library component.

Creating Core Symbols

To use the CORE Generator tool in a schematic-based environment,
follow these steps:

1. With a project open, invoke the CORE Generator tool from within
the Schematic Editor (Tool s - CORE Cener at or).

2. SelectProj ect - Project Options. Ensure that Design Entry
is Schematic and that the Vendor is Foundation in the Project

Xilinx Development System

Design Methodologies - Schematic Flow

Options dialog box. The Family entry should reflect the project’s
target device. Click OK to exit the Project Options dialog box.

3. To aid selection, the available Cores are categorized in folders on
the View Mode section of the main CORE Generator window.
Double click a folder to see its sub-categories. When you double
click a sub-category folder, the available Cores are listed in the
“Contents of” section of the main CORE Generator window.

If you double click the name of the desired core, a new window
opens to allow you to view its description or access its data sheet.
(Acrobat Reader is required to view the data sheet.)

4. To select a core to instantiate into a schematic, highlight the core’s
name (click once) in the “Contents of” window and then select
Cor e - Cust om ze and enter a name for the core in the Compo-
nent Name field.

The name must begin with an alpha character. No extensions or
uppercase letters are allowed. The name may include numbers
and/or the underscore character.

5. Other available customization options are unique for each core.
Customize the core as necessary.

6. Select Gener at e to create a schematic symbol and a simulation
model for the selected core. The schematic symbol for the core is
incorporated into the project library and can be selected from the
SC Symbols list.

7. SelectFil e — Exit toreturn to the Schematic Editor.

8. Inthe Schematic Editor, select the symbol from the SC Symbols
list (Mode - Symnbol s) and place the core on your schematic.

9. Connect the core to the other components on your schematic
using ordinary nets, buses, or both.

10. Complete your schematic by placing additional components
from the symbol toolbox including 170 ports, nets, buses, labels,
and attributes.

11. Save your schematic by selecting Fi | e - Save.

To complete the design, read the following sections in the order
listed:

= “Performing Functional Simulation”

Foundation Series 2.1i User Guide 3-17

Foundation Series 2.1i User Guide

“Implementing the Design”
“Verifying the Design”

“Programming the Device”

Schematic Designs With Finite State Machine (FSM)
Macros

3-18

This section explains how to create state machine macros and
instantiate them in schematic designs.

Creating FSM Macros

After a macro is created, it is available from the SC Symbols window
in the Schematic Editor. These are the steps you follow to create State
Machine macros.

1.

Open the Finite State Machine (FSM) editor by clicking the FSM
Editor icon in the Design Entry box on the Project Manager’s
Flow tab.

When the State Editor window appears, you may select an
existing FSM macro or create a new one. The following steps
describe creating a new FSM macro with the Design Wizard.

Select Use HDL Desi gn W zar d. Click OK.
From the Design Wizard window, select Next .

From the Design Wizard - Language window, choose VHDL,
Veri | og, or ABEL. Click Next . (You must have Base Express or
Foundation Express to select VHDL or Verilog.)

Enter a name for your macro in the Design Wizard - Name
window. Select Next .

Define your ports in the Design Wizard-Ports window. Select
Next .

Xilinx Development System

Design Methodologies - Schematic Flow

8. Inthe Design Wizards - Machines window, select the number of
state machines that you want. Click Fi ni sh. The Wizard creates
the ports and gives you a template in which you can enter your
state machine design.

9. Create the design for your state machine in the State Editor.

10. When you are finished creating your state machine, create a
macro symbol by selecting Pr oj ect - Cr eat e Macr o.

The synthesizer will not insert top level input and output pads
for this macro. Instead the top level schematic, which contains the
macro, includes all top level input and output pads required for
implementation.

For more information about state machines, select Hel p -
Foundati on Hel p Contents — State Edi tor.

Creating the Schematic and Generating a Netlist
1. Open the Schematic Editor.

2. Select Mode - Synbol s to add components to your new
schematic.

Any macros that you have created display in the SC Symbols
toolbox under the project working library’s heading.

3. Select the state machine macro from the toolbox by clicking its
name.

4. Move your cursor to the schematic sheet and place the macro
symbol by clicking.

5. Complete your schematic by placing additional components
from the SC Symbols toolbox including 1/0 ports, nets, buses,
labels, and attributes.

6. Save your schematic by selecting Fi | e - Save.

For more information about schematic designs, see the “Schematic
Design Entry” chapter or, in the Schematic Editor window, select
Hel p —» Schemati c Edi t or Hel p Cont ent s.

To complete the design, read the following sections in the order
listed:

= “Performing Functional Simulation”

Foundation Series 2.1i User Guide 3-19

Foundation Series 2.1i User Guide

e “Implementing the Design”
= “Verifying the Design”

= “Programming the Device”

Finite State Machine (FSM) Designs

3-20

The FSM Editor allows you to specify functionality using the "bubble
state diagram" concept. Once you have described the state machine
(or machines) using the FSM Editor's available graphics objects, the
State Editor generates behavioral VHDL, Verilog, or ABEL code
(depending on which language type was selected when the state
diagram was begun). This code can then be synthesized to a gate-
level netlist.

A schematic project can have a top-level ABEL design created with a
text editor or with the FSM Editor. (Top-level ABEL designs are not
recommended for FPGA projects.)

The Finite State Machine Editor can also generate ABEL, VHDL, or
Verilog macros that can be included in top-level schematic or ABEL
designs.

This section describes using the FSM Editor to produce a top-level
ABEL design for a Schematic Flow project. It also includes informa-
tion on using the FSM Editor to produce underlying ABEL, VHDL, or
Verilog macros for inclusion into a top-level design in a Schematic
Flow project.

Creating a State Editor Design

1. Click the FSM Editor icon in the Design Entry box on the Project
Manager’s Flow tab.

2. When the State Editor window appears, you may select an
existing FSM macro or create a new one. The following steps
describe creating a new FSM macro with the Design Wizard.

3. From the Design Wizard window, select Next .

Xilinx Development System

Design Methodologies - Schematic Flow

8.

From the Design Wizard - Language window, choose VHDL,
Veri | og, or ABEL (Schematic Flow only) and select Next .

In the Design Wizard - Name window, enter a name for your
design. Select Next .

Define your ports in the Design Wizard-Ports window. Select
Next .

In the Design Wizards - Machines window, select the number of
State Machines that you want. Click Fi ni sh. The Wizard creates
the ports and gives you a template in which you can enter your
macro design.

Define the states in the FSM Editor.

Defining States

1.

From the State Editor window, select FSM - St at e or click on
the State button in the vertical toolbar.

Place the state bubble. The default state name is S1.

Click on the state name to select it, then click again to edit the
text.

Type the desired state name.

Click on the state bubble to select it. Click and drag the small
squares to change the size and shape of the bubble. When the
state bubble is large enough to hold the name, click and drag the
state name to center it in the bubble.

Repeat steps 1-4 to create new states.

To ensure that the state machine powers up in the correct state,
you must define an asynchronous reset condition. This reset will
not be connected in the schematic, but its presence directs the
compiler to define the state encoding so that the machine will
power up in the correct state.

Select FSM - Reset , or click Reset in the vertical toolbar.

Place the reset symbol in the state diagram. Click inside a state
bubble to define this as the reset state.

To define the reset as asynchronous, right-click on the reset
symbol and select Asynchr onous.

Foundation Series 2.1i User Guide 3-21

Foundation Series 2.1i User Guide

3-22

10. Define the transition, conditions, and actions for the state
diagram.

11. When you have completed the state diagram, selectFi | e -
Save.

Defining Transitions, Conditions, and Actions

Transitions define the changes from one state to another. They are
drawn as arrows between state bubbles.

If there is more than one transition leaving a state, you must associate
a condition with each transition. A condition is a Boolean expression.
When the condition is true, the machine moves along the transition
arrow.

Actions are HDL statements that are used to make assignments to
output ports or internal signals. Actions can be executed at several
points in the state diagram. The most commonly used actions are
state actions and transition actions. State actions are executed when
the machine is in the associated state. Transition actions are executed
when the machine goes through the associated transition.

Adding a Top-Level ABEL Design to the Project

ABEL FSM designs can be used as top-level designs in a Schematic
Flow project. After you have created an ABEL macro using the FSM
Editor, perform the following steps to add the design to the project.

1. From the State Editor window, select Fi | e — Save to save the
ABEL state diagram.

2. SelectProject - Addto project.
3. Select Synt hesi s - Synt hesi ze.

To complete the design, read the following sections in the order
listed:

= “Performing Functional Simulation”
= “Implementing the Design”
= “Verifying the Design”

= “Programming the Device”

Xilinx Development System

Chapter 4

Schematic Design Entry

This chapter contains the following sections:

= “Managing Schematic Designs”

= “Hierarchical Schematic Designs”

= “Manually Exporting a Netlist”

= “Creating a Schematic from a Netlist”

= “Miscellaneous Tips for Using the Schematic Editor Tool”

Refer to the “Top-Level Designs” section of the “Design Methodolo-
gies - Schematic Flow” chapter for several examples of top-level sche-
matic designs.

Managing Schematic Designs

The following subsections describe various features of the schematic
design tool.

1. To access Schematic Editor, click the Schematic Editor icon in the
Design Entry box on the Project Manager Flow tab.

DESIGMN ENTRYLS
L 2 Schematic Editar

Foundation Series 2.1i User Guide 4-1

Foundation Series 2.1i User Guide

4-2

2. The Schematic Editor window opens.

30 Schematic Editor - [COUNT111.SCH] ol x|
EEiI%Edit Mode Options Hierarchy View Display Tools ‘wWindow Help 2=l x|
e = = eI N e R o R S
5 .
I
L
[
=
E
==
ioa
A
I _’llI
" COUNTT1T |
[01, 00 | Select and Drag

Design Structure

You can create Foundation schematic editor designs that have the
following structures:

= Single sheet designs
= Multi-sheet designs
= Hierarchical designs

Selecting a structure depends on the design size (number of symbols
and connections), purpose (board or chip design), and company
standards. The following sections describe each of these design types.

Single Sheet Schematic

Single sheet designs are typically used for small designs. The largest
page size is 44” x 34” (size E). The major advantage of a single sheet
schematic is that you can use physical connections for an entire
design, which makes tracking of the connections easier.

Xilinx Development System

Schematic Design Entry

The disadvantages of using large pages are:

= Schematics redraw slowly. A schematic with many symbols may
take a long time to scroll.

= Large schematics must be printed on plotters instead of laser
printers.

Multi-sheet Flat Schematic

If a design is too large to print on a single sheet, you can use a multi-
sheet design structure. When you create a new sheet, it is
automatically added to the current project. To make connections
between schematic sheets, you must make logical connections by
using the same net names. For example, if you use the net CLOCK on
sheet 1 and net name CLOCK on sheet 2, then both net segments are
logically connected.

These connections can be confirmed by using the Query option. To
activate the Query option, select Mode — Query from the Schematic
Editor main window and then select items on the schematic. To find
out more about Query options, select Hel p — Schenat i ¢ Edi t or
Hel p Cont ent s from the Schematic Editor main window. Select the
Index tab. Type Query in the search list box. Double click quer yi ng
connecti ons.

Following are the advantages of using the multi-sheet design
structure.

= Small sheet sizes that print on laser printers
= Unlimited design sizes without condensing the schematics

Note: All reference designators for symbols in the multi-sheet
schematics must be unique. The Foundation design entry tools
automatically assign these unique numbers. If you manually assign
the same reference numbers to two different devices, an error is
reported when you create a netlist.

Hierarchical Schematic

Since large number of symbols are used in FPGA and CPLD designs,
handling large designs using the multi-sheet design structure can
become very difficult and complex. Large designs typically require
thousands of simple primitives like gates and flip-flops. To simplify
schematics, designers prefer to use high-level components that have

Foundation Series 2.1i User Guide 4-3

Foundation Series 2.1i User Guide

4-4

clear functionality. These high-level components are implemented
using hierarchical macros. A hierarchical macro, a device in the
library that looks like a standard component, is implemented as a
symbol with an underlying schematic or netlist. For example, you can
create an equivalent of a counter by drawing a macro schematic with
only gates and flip-flops. This macro can then be saved and reused in
your designs. All FPGA and CPLD libraries already contain many
hierarchical macros.

Hierarchical designs are very effective with IC designs. In
hierarchical macro schematics, all net names and reference names are
local, which means that you can use the same signal names in
different macros.

The connections between hierarchical macro symbols and the under-
lying schematic is made via hierarchy connectors. Use the Hierarchy
Connector icon (shown below) in the Schematic Editor toolbar to
place hierarchy connectors.

D—

These connectors are converted into hierarchical symbol pins as illus-
trated in the following figure.

H\erarchy connector
becomes a macro pin

X8775

Xilinx Development System

Schematic Design Entry

After the macro symbol is placed on the schematic sheet, you can
connect wires to these pins on the macro. Only the signals shown as
symbol pins can be connected.

Some advantages of hierarchical designs follow:

= The symbols in a hierarchical schematic library can represent
large functional blocks implemented in detail on a lower level. By
viewing the high level schematic, you can see the general design
structure without being overwhelmed by the lower level details.

= Top-down or bottom-up methodology assists in team
development by defining design sections for each designer. All
conflicts between design sections are eliminated by allowing
interfaces only to explicitly defined pins and bus pins.

= You can use multiple instances of the same macro. If you use a
schematic sheet in a flat design, you must duplicate the macro for
each instance. If you then make a correction to the macro, you
must edit all instances. The hierarchical macro is modified once
and all instances are then updated.

< Macros can be used in multiple projects. You can develop a set of
reusable modules that are stored as hierarchical macros and used
in several designs.

Following are some of the disadvantages of hierarchical designs:

<« Netlist names can become very long because you must specify
the complete hierarchical path. The method used to create unique
reference identifiers adds the hierarchy reference name to each
symbol reference. For example, a symbol U58 in a macro called
H8 will be called H8/U58. In multilevel hierarchical designs,
these names can become very long depending on the number of
hierarchy levels.

= Updating macros often requires changing their symbols, which
then means that you must correct all schematics that use that
macro.

Adding New Sheets to the Project

To create a new empty sheet, select Fi | e -~ NewSheet . The new
sheet receives the name of the project with the sequential sheet
number assigned to it automatically. You can save the sheet with a
different name by selecting Fi | e - Save As. Each new sheet is

Foundation Series 2.1i User Guide 4-5

Foundation Series 2.1i User Guide

automatically added to the project contents in the Hierarchy Browser.
All schematic sheets that have been added to the project are visible in
the Files tab of the Hierarchy Browser.

To open a sheet that does not belong to the project, select Tool s -
Scr at chpad. To add a scratchpad sheet to the project, use the Fi | e
- Save As option to define the schematic name. Then select

Hi erarchy - Add Current Sheet to Proj ect.

Adding Existing Sheets to the Project

To add an existing schematic sheet to your project, select Hi er ar chy
- Add Sheet st o Proj ect . Inthe Add to Project window, select the
schematic file(s) you want to add and click the Add button. The sche-
matic editor loads each added sheet and verifies that the symbols
used in these schematics are available and that there are no duplicate
reference numbers. The list of project sheets is then updated.

Note: The schematic editor automatically adds libraries used by its
schematic sheets to the current project even if they are not listed in
the project libraries. The libraries are added when you open a
schematic file and symbols are not found in the current project
libraries.

Opening Non-project Sheets

When you select Fi | e — Qpen, only the sheets that belong to the
current project are shown. If you want to open a sheet that does not
belong to the current project, use the Browse button to select a
schematic file from any disk. The schematics opened with the Browse
option display the Cannot Edit message in their title bar. These sheets
can only be viewed. They cannot be edited.

To edit such schematics, select Hi er ar chy — Add Curr ent Sheet

t o Pr oj ect . The currently selected sheet, which is then added to the
current project, can then be edited. The schematic is copied to the
current project directory, so the changes do not affect other projects.

Removing Sheets from the Project

To remove a sheet from the project, from the Project Manager Files
tab, select the schematic sheet that you want to remove and select
Docunent — Renove. Click Yes.

4-6 Xilinx Development System

Schematic Design Entry

Note: Deleting the sheet from the project does not delete the
schematic file from the disk. If you want to delete unwanted files, you
can use the Windows Explorer and delete *.SCH files from the project
directory.

Renumbering Symbol References

The reference numbers are assigned sequentially in the order that you
place symbols on different sheets. As a result, the symbol reference
numbers in the multi-sheet schematics can be random. To order the
symbol numbers, you may want the symbol reference numbers to
correspond to different sheets. For example, symbols on the first
sheet may start with U100, and symbols on the second sheet may
start with U200.

To renumber project sheets and the associated symbol reference
numbers, from the Schematic Editor window proceed as follows:

1. Select Options — Annot at e.

2. The Annotation dialog box appears.

Annotation x|

Shest [NDTHMACTIVESPROJECTSAWFILTERNFILTERT.SCH

—dnnotate Referepices————
% Current sheet or macro i Selected |$I 'I
 whole project Lol First t: I'I 0o

™ Rename I
— Hi by, ———
I Annatate |
I Hieramchy Mescent
—
Inerement: 1]
Help |

3. From the Annotation window, click Whol e Pr oj ect .

4. Inthe References section, click Al | to apply the numbering to all
symbols.

Enter 100 in the First # field.

o

6. Pressthe Annot at e button.

7. Pressthe Cl ose button.

Foundation Series 2.1i User Guide 4-7

Foundation Series 2.1i User Guide

Copying a Section of a Schematic to Another Sheet

If you want to move or duplicate a section of a schematic to another
sheet, perform the following steps:

1. Place the cursor at the corner of the area to be copied, depress the
mouse button and drag the cursor to outline a rectangular area
for selection. All items within the selected area are selected when
you release the mouse button.

2. To select additional objects on the schematic sheet without
deselecting the currently selected object, use the Shift key.

3. Use the Copy or Cut options in the Edit menu. The Copy option
copies the selected objects to the clipboard. The Cut option copies
the selected block to the clipboard and deletes it from the
schematic. The clipboard is a temporary sheet that stores the
copied objects.

4. Go to the sheet where you want to paste the schematic objects
and select the Past e option from the Edit menu. A rectangle is
displayed at the cursor position. You can move it around the
schematic to position the copied block to the desired location.

5. Press the mouse button to confirm the location of the pasted
block.

Note: The selected schematic block contains all wires internal to the
block, that is, between symbols or labels within the selected area. All
wires connected to symbols outside the area are not copied to the
clipboard.

Troubleshooting Project Contents

If a netlist creation error is reported, try removing one sheet at a time
from the project until the netlist can be successfully created. Then
analyze the last-removed sheet for any possible errors.

Hierarchical Schematic Designs

48

A design has a hierarchical structure if any of the symbols on the
schematic sheet contain an underlying netlist or schematic. The hier-
archical macros may be user-created or may already exist in a library.
If you use one of these symbols, your design becomes hierarchical.

Xilinx Development System

Schematic Design Entry

Creating a Schematic Macro (Bottom-Up
Methodology)

To create a schematic macro using a bottom-up methodology;,
perform the following steps.

= Before you start drawing a schematic, make sure that the neces-
sary libraries have been assigned to the project. You can view the
currently attached project libraries in the Files tab of the Project
Manager.

= To add additional libraries, select Fi | e - Pr oj ect
Li br ari es from the Project Manager.

= When the Project Libraries window displays, select the
appropriate libraries and then click Add.

This operation transfers the selected libraries from the
Attached libraries window to the Project Libraries window,
which makes these libraries available to the Schematic Editor.

= Enter your schematic design in the Schematic Editor, just like any
other flat design, with the following constraints:

= Each macro is a self-enclosed entity. Any connection to the
top-level sheet can only be performed through hierarchy
connectors.

= The hierarchy connectors must be specified explicitly as
Input, Output, or Bidirectional. This specification is impor-
tant because the design entry tools automatically generate a
symbol. The location of the pins on the symbol depends upon
their schematic 1/0 definition (only inputs are on the left-
side of the symbol outline). If needed, edit this symbol in the
Symbol Editor.

= Tocreate the macro symbol, select Hi er ar chy — Creat e Macro
Synbol fromCurrent Sheet from the Schematic Editor
window. The new symbol is automatically placed in the current
project’s working library.

Foundation Series 2.1i User Guide 4-9

Foundation Series 2.1i User Guide

Recognizing Hierarchical Macros

Navigating the Project Hierarchy

You can recognize hierarchical macro symbols by their color. By
default, the schematic-based macros are dark blue. The netlist-based
macros are purple. You can change these default colors by selecting

Vi ew - Preferences - Col ors.

You can view the schematic of a hierarchical symbol by selecting

Hi er archy - Push. When the H cursor is active, double click on a
symbol to display its underlying schematic. You can use the tabs at
the bottom of the Schematic Editor window to navigate between the
top schematic (CALC in the following example) and its opened
macro schematics (CONTROL and MUXBLK?2A in the following

example).

$ Schematic Capture - [Macro - MUXBLK2A]
[] Pr¢ Edit Mode Options Hierarchy iew Display Wwindow Help

(=2 = = = SN e O B R S =

=la]x]
=lmlx]

I
=
1 e Bor
= s
A
e Wi 1
Py v [- —
C- "
JT-?. | T3 Ly
(;E o | E—
O[] [
Di_p20] I
=
Kiline Carparatian Proedt: |Hang]
2100 Logic Drive Macra: MUKELEZN
San Jase. C0, 95124 Dtz 00T
CALC [COMTROL | MUsBLEZ2S |
| 03,00 | Hierarchy Push/Pop

4-10

Xilinx Development System

Schematic Design Entry

If you double click on a symbol that does not have an underlying
schematic, HDL, or FSM file, the following message displays:

Synbol is a primtive cell.
To exit the H cursor mode, select Hi er ar chy - Pop.

You can also navigate the hierarchical structure of the design from the
Files tab on the Project Manager window shown in the next figure.

Files * “ersions

B~ calc_4ke.pdf

cale.uct

readme

= B calc.sch

§i1 - ipads

h1 - bardec

ha - gwitch T

h3 - debaunce

Bl hd- control

H hl-muxblkza
h& - alu
hé - stack
h7 - seg7dec
oscillator? - clockgen

calc_dke

simprims

¥e4000a

[|
L

[n |
T

Hierarchy sublevels can be expanded or collapsed by clicking on the
+ or - icons.

The Hierarchical Browser window shows the hierarchical design tree.
A plus (+) designates a hierarchy with additional hierarchical
sublevels. You can open them by single clicking on these icons.

A minus (-) denotes a hierarchy that already shows lower hierarchy
levels. Clicking on the - symbols inside the icons reduces the hier-
archy to the higher levels, which simplifies the viewing of very
complex designs.

An icon with no symbol indicates that the given hierarchical level has
no additional hierarchical sheets.

Foundation Series 2.1i User Guide 4-11

Foundation Series 2.1i User Guide

Note: Double clicking on the top schematic name or the name of any
of its underlying schematic macros loads that schematic to the screen
for viewing and editing.

Modifying Existing Macros

If you want to make some changes to an existing macro schematic,
perform the following steps:

1. Push into the schematic macro by clicking the Hierarchy Push/
Pop icon and double clicking on the macro symbol.

m't

2. Select the Select and Drag toolbar button to enter edit mode.

EX
3. Make changes to the schematic.

4, SelectFil e - Save.

When you change and save a hierarchical macro, you change all
instances of this macro in the entire design. If the modified macro
schematic has different 1/0 pins, its symbol changes and the pins
may not match their previous locations on the schematics. If this
happens, the wrong wires are automatically disconnected and will be
marked with crossed circles. These wires must be manually
reconnected by dragging the crossed circles over the target pins and
then releasing the mouse button.

If you edit a macro from the system library that comes with the
product, you cannot save it in the system library. You can only save it
into a project library. For clarity, use a different name for the modified
macro so that you can always be sure which symbols are currently
used on the schematics.

4-12 Xilinx Development System

Schematic Design Entry

Difference between a Macro and a Schematic

The following example explains what happens with the hierarchical
schematic when you create a macro. Assume that the project TEST
contains the schematic sheets TEST1 and TEST2. Create a macro for
the schematic sheet TEST2 as follows:

1. Usingthe Hi erarchy - Creat e Macro Synbol From
Cur rent Sheet option, convert the TEST2 schematic into a
macro called MACROL1 in the TEST project library.

The old schematic sheet TEST2 still resides in the project direc-
tory. You can open this schematic file, but there is no longer any
relationship between the TEST2.SCH schematic file and the TEST
project or MACROL1.

2. Use the Windows Explorer to delete the file TEST2.SCH from the
project directory.

Hierarchy Symbol Changes

If you update a hierarchical macro, its symbol is not modified unless
1/0 pins change. When pin change, a new symbol is generated based
on the new /0 pins, which may result in incorrect connections on
the schematics that have previously used the symbol. The schematics
that are currently open are automatically updated with the new
symbol when you make the change. Other schematics are updated
when you open them in the Schematic Editor.

When the symbols do not match the previous connections, the wires
are automatically disconnected from that symbol, and a crossed circle
is displayed at the end of these wires. To correct these connections,
you can drag the circles and drop them at the appropriate pins.

You can edit the newly created symbol in the Symbol Editor program
so that it matches the old pin locations.

Using a Top-down Methodology

To implement a top-down design, you first create a symbol for the
hierarchical macro and then create the underlying schematic.

1. Tocreate an empty symbol, select Tool s — Synmbol W zard
from the Schematic Editor.

2. Click Next .

Foundation Series 2.1i User Guide 4-13

Foundation Series 2.1i User Guide

4-14

In the Design Wizard - Contents dialog box, choose Schenat i ¢
in the Contents section. Enter the Symbol Name and then select
Next .

In the Design Wizard - Ports dialog box, select New

Enter all ports including bus pins and power supply pins, if any.
Select Next .

In the Design Wizard - Attributes, enter a reference for the new
symbol. Select Next .

Click Fi ni sh in the Design Wizard - Contents window.

Place the symbol on a schematic sheet and make the required
connections.

Push down into the symbol by clicking the Hierarchy Push/Pop
function and double clicking on the macro symbol.

1

An empty schematic sheet appears with the selected symbols’
input pins located to the left and the output pins located to the
right.

10. Enter the design and then select Fi | e - Save.

Hierarchical Design Example

This example explains how to create and use a hierarchical design.

Create a new project called MACROS.
a) From the Project Manager, select Fi | e -~ NewPr oj ect .

b) Inthe Name field of the New Project window, enter MACROS
and click OK.

Create the MACROS1 schematic.
a) Click the Schematic Editor icon on the Design Entry button.

b) Select the Symbol mode in the schematic toolbar and in the
SC Symbols toolbox, select the NAND2 symbol.

Xilinx Development System

Schematic Design Entry

c) Draw the schematic shown in the“MACROS1 Schematic”
figure including the input terminals, (INA, INB, INC) and
output terminal (OUT).

d) Use the Hierarchy Connector icon (shown below) to draw the
input and output terminals. Make sure you add the input
and output buffers.

C=
e) Connect the symbols (Mode - Draw W res).

You can edit symbol dimensions and pins using the Symbol
Editor. To open the Symbol Editor, select Tool s - Synbol
Edi t or from Schematic Editor, or double click on the placed
symbol, and click the Symbol Editor button on the Symbol
Properties dialog box. For more information on using the
Symbol Editor, refer to the Symbol Editor’s online help

(Hel p - Cont ent s).

f) Save the schematic using Fi | e - Save. The schematic is
automatically named as MACROS1.

e D—

BUF
we D—

1BUF NANDZ

e | fo—— o our
wa [
1 DBUF

uF MANDZ

Figure 4-1 MACROS1 Schematic
3. Create the MACROS1 symbol.

a) SelectHi erarchy — Create Macro Synbol From
Cur r ent Sheet . The Create Symbol window should display
the symbol name MACROSL1. Click that name and change it
to ONE, which will be the name of the hierarchical macro
symbol. In the Input pins section, make sure that the
following list of pins is entered: | NA, | NB, | NC. Ensure that
QUT is entered in the Output field.

Foundation Series 2.1i User Guide 4-15

Foundation Series 2.1i User Guide

b) Click OK. The netlist and the MACROSL1 schematic are saved
in the project library and a graphical symbol is automatically
created. A verification message displays to allow you to edit
the macro, if necessary, before continuing. Click No.

S[:%emalic Capture 4|
@ Sheet [D:WFHDTMHAACT IWESPROJECTSAMACROS macros]. SCH]

haz been saved inta library as hierarchical symbol [OME]
Do you want to edit it?

4. Create the second schematic (MACROS?2).

a) SelectFil e — New Sheet . A new schematic MACROS?2 is
automatically opened.

b) Select the Symbol mode in the schematic toolbar. In the SC
Symbols toolbox, select the FD symbol.

¢) Draw the schematic shown in the “MACROS2 Schematic”
figure including the input terminals (D, CLK) and output
terminal (OUT). Use the I/0 Terminal icon to draw the termi-
nals. Make sure you add the input and output buffers.

d) Connect the symbols (Mode - Draw W res).

You can edit symbol dimensions and pins using the Symbol
Editor. To open the Symbol Editor, select Tool s - Synbol
Edi t or from the Schematic Editor, or double click on the
placed symbol, and click the Symbol Editor button on the
Symbol Properties dialog box. For more information on using
the Symbol Editor, refer to the Symbol Editor’s online help
(Hel p - Cont ent s).

FD
b >——| — 0 Q————| —T ol
[RlF COEUF
[, c
o [-
“RUE

Figure 4-2 MACROS2 Schematic

4-16 Xilinx Development System

Schematic Design Entry

e) Save the schematic using Fi | e - Save. The schematic is
automatically named as MACROS2.

5. Create the MACROS2 symbol.

a) SelectHi erarchy - Create Macro Synbol From
Cur rent Sheet . The Create Symbol window should display
the symbol name MACROS?2. Click that name and change it
to TWO, which will be the name of the hierarchical macro
symbol. In the Input pins section, enter pins: CLK, D. Enter
QUT in the Output field. Note that only 1/0 terminals are
recognized as pins for the symbol.

b) Click OK. The netlist and the MACROS2 schematic are saved
in the project library and a graphical symbol is automatically
created.

c) Save the schematic using the Save option.
6. Create a new sheet for the top level.

a) SelectFil e -~ NewSheet . The empty sheet called
MACROS3 opens.

b) Select Mode - Synbol s and find symbol ONE in the SC
Symbols toolbox. Place two copies of that symbol, which are
automatically called H1 and H2, on the schematic. Similarly,
place two copies of the TWO symbol on the schematic. These
symbols are automatically named H3 and H4. Refer to the
following figure for placement details.

H1 H3
| HC
o
— HE
CLoUT |—
—— WA DUT
ONE TWO
H2
H4
| HC
— HE o
— WA OUT CLoUT |—
CME TWO

Foundation Series 2.1i User Guide 4-17

Foundation Series 2.1i User Guide

7. Use the Push/Pop option to view schematics.

Select Hi er ar chy — Hi er ar chy Push. A cursor with the letter
H displays. Point the cursor at the Symbol H1 and double click
the mouse button. The schematic ONE opens showing you the

schematic of the symbol H1.

8. View the project contents in the Files tab (shown in the following

figure) of the Project Manager.

o

Manually Exporting a Netlist

Files * “ersions
B~ macros.pdf

macros. uct
racros3.sch

= h1-one

Macros
simprims
¥ed4000e

External programs used in the Foundation Series software require
netlist in proprietary text formats such as XNF, EDIF, and structural

VHDL or Ve

rilog.

To export the project netlist, perform the following steps from the
Schematic Editor:

1. Select Options — Export Netli st. The Export Netlist dialog
box displays.

4-18

Xilinx Development System

Schematic Design Entry

4.

Export Hethst b
Laok jn: Ia Macros j gl IE H
L
I %piraj
rmacros. alb

File: name: Imacms.alb Open I
Files of type: [Edif 200 [~EDN] = Cancel |

From the File of Type pulldown menu, select the desired format.

Choose the source netlist ALB file. By default, the project netlist is
automatically selected.

Click OPENto start exporting.

Note: The EDIF netlist format is recommended for use with the
Xilinx Design Implementation Tools.

Creating a Schematic from a Netlist

You can generate a schematic from an existing netlist. The Schematic
Editor generates a schematic file and inserts it into the project
directory as a non-project document. You can then use Fi | e — Open
or add it to the project with Hi er ar chy — Add Sheet t o Pr oj ect.
The names of automatically generated schematic files begin with the
underline character (). The underline character is followed by four
initial letters of the project name and a three-digit suffix: 001 for the
first file, 002 for the second, and so forth.

To generate a schematic from a netlist, perform the following steps:

1.

SelectFi | e — Generate Schemati c fromNetli st from the
Schematic Editor window. The Generating Schematic dialog box
displays.

Select the desired netlist type from the List Files of Type list box.
Then select the desired netlist file.

Click the Opt i ons button to display the Page Setup dialog box
which allows you to select the desired page size and orientation.

Foundation Series 2.1i User Guide 4-19

Foundation Series 2.1i User Guide

4. Select the page size to be used for the generated schematics. The
smaller the page size you select, the more numerous are the sche-
matic files that are generated.

5. Select LandscapeorPortrait.

6. Select W r el ess to implement all connections using the connect-
by-name method.

7. Click &K

Miscellaneous Tips for Using the Schematic Editor
Tool

This section describes various tips for creating schematic designs.

Color-coded Symbols

Symbols are color-coded to represent their type.

« Schematic user macros — blue

« Primitives and empty symbols — red

= HDL, State Editor, and netlist macros — purple
= State Editor macros — purple

« Library macros — black

These color codes are the default values. If you wish to change the
defaults, select Vi ew - Pref erences - Col or s from the Sche-
matic Editor.

Using the Hierarchy Connector

Only use the Hierarchy Connector when specifying pins for a sche-
matic macro. Never use hierarchy connectors on top-level schematic
sheets.

D—

4-20 Xilinx Development System

Schematic Design Entry

Using Input and Output Buffers

Xilinx schematics require that you use input and output buffers
between input and output pads. The following figures illustrate
incorrect and correct input and output port design.

ma

| IFaD [

NANDZ

—
| 1PAD

NANDZ

Figure 4-3 Incorrect Port Design (Without Buffers)

FDr

| AT ™ o [+ [TEAD
uF LHBUF

Figure 4-4 Correct Port Design (With Buffers)

Schematic Tabs

Tabs on a schematic sheet facilitate navigation between schematic
sheets. The following example shows the tabs that display after
opening the schematics for the “lock™ project.

Foundation Series 2.1i User Guide 4-21

Foundation Series 2.1i User Guide

4-22

*}Schemalic Capture - [LOCK1.5CH]
Eile Edit Mode Options Hierarchy View Display 'Window Help

al=Ek|8] & |=le NaE]| <]l ¥ x| 2 bl

=lolx|
=lEl x|

[[
i
Q 11
E . , StateMachine WORD[2.0] -
4w T e WORD_MEM(3:
E START_NT —— START]
= wE
= GEMNER e
L= - W
F %y L R CLEWT
ﬁ 15 RAM 7
_I State Machine WORD_NO[SO]

WoRD oK

MORD_HO 0K WORDS

nssrr_ h WORD_HO_LY

CPEN_ | |U4
PROG Whdl eode e
ol = e

Lockl |

LOCK2

[00, 09

Select and Drag

Note the LOCK1 and LOCK?2 tabs in the lower left corner of the

figure. Clicking on the LOCK2 tab navigates to the LOCK2 schematic
sheet. For every new schematic sheet added to the design, a new tab
displays.

In addition, if you use Hi er ar chy — Push to display the schematic
for a component or macro, a new tab also displays in the lower left
corner.

Simulate Current Macro

In Foundation, you can simulate a macro in a schematic design:

1. Select the macro in your design.

2. Click Hi erarchy - Push and then double click the design.

3. After the design displays, select Opt i ons - Si mul at e
Cur rent Macr o. When the Logic Simulator window displays,
you can perform a functional simulation of the macro. Refer to
the “Functional Simulation” chapter for details.

Xilinx Development System

Chapter 5

Design Methodologies - HDL Flow

This chapter describes various design methodologies supported in
the HDL Flow project subtype.

This chapter contains the following sections.
= “HDL Flow Processing Overview”

= “Top-level Designs”

e “All-HDL Designs”

e “HDL Designs with State Machines”

= “HDL Designs with Instantiated Xilinx Unified Library Compo-
nents”

“HDL Designs with Black Box Instantiation”

“Schematic Designs in the HDL Flow”

HDL Flow Processing Overview

Refer to the“Project Toolset” chapter for information on how to create
an HDL Flow project and for an overview of the tools available for
such projects.

The following figure illustrates the processing performed at the
various stages of an HDL Flow project.

Foundation Series 2.1i User Guide 5-1

Foundation Series 2.1i User Guide

Create
Project

Select
HDL Flow

Design Entry
Add
Source

Analyze
(Check Syntax)

Synthesis

-

Optional

Synthesize
(Elaborate) Express Constraints
Editor

Enter
Constraints

E

Optimize

Functional
Simulation

Express Time Tracker

Analyze Timing

Implementation

Netlist Translation

Map (FPGAS)
or Fit (CPLDs)

Analyze Timing

A

Place and Route
(FPGAs only)

- Timing

Simulation

Optional

Analyze Timing

it 0

~
I Create Bitsream
I Reports

Programming
Download
Bitstream

Figure 5-1 HDL Flow Project Processing

i

X8772

5-2 Xilinx Development System

Design Methodologies - HDL Flow

Top-level Designs

HDL Flow projects do not require the designation of a top-level
design until synthesis. VHDL, Verilog, and schematic files can be
added to an HDL Flow project. VHDL and Verilog source files can be
created by the HDL Editor, Finite State Machine Editor, or other text
editors. When you initiate the synthesis phase, you designate one of
the project’s entities (VHDL), modules (Verilog), or schematics as the
top-level of the design. The list of entities, modules, and schematics is
automatically extracted from all the source files added to the project.
Synthesis processing starts at the designated top-level file. All
modules below the top-level file are elaborated and optimized.

HDL designs can contain underlying LogiBLOXs, CORE Generator
modules, and XNF/EDIF files that are instantiated in the VHDL and
Verilog code as “black boxes.” Black box modules are not elaborated
and optimized during synthesis. (Refer to the “HDL Designs with
Black Box Instantiation” section for more information on Black
Boxes.)

All-HDL Designs

The following procedure describes the HDL flow for designs that are
HDL only, that is, there are no schematics or instantiated LogiBLOX,
netlist, or state machine macros.

Creating the Design

1. Open the HDL Editor by clicking the HDL Editor icon in the
Design Entry box on the Project Manager’s Flow tab.

\- ESIGN ENTRY 7

HDL Editar

2. When the HDL Editor window appears, you may select an
existing HDL file or create a new one. The following steps
describe creating a new HDL file with the Design Wizard.

3. When the HDL Editor dialog box displays, select Use HDL
Desi gn W zar d. Click OK.

4. Click Next in the Design Wizard window.

Foundation Series 2.1i User Guide 5-3

Foundation Series 2.1i User Guide

54

5. From the Design Wizard - Language window, select VHDL or
Veri | og. Click Next .

Note: For top-level ABEL designs, you must use the Schematic Flow.

6. Inthe Design Wizard - Name window, enter the name of your
design file. Click Next.

7. Define your ports in the Design Wizard-Ports window by
clicking NEWentering the port name, and selecting its direction.
Click Fi ni sh. The Wizard creates the ports and gives you a
template (in VHDL or Verilog) in which you can enter your
design.

8. Create the design in the HDL Editor. The Language Assistant is
available to help with this step. It provides a number of language
templates for basic language constructs and synthesis templates
for synthesis-oriented implementation of basic functional blocks,
such as multiplexers, counters, flip-flops, etc. Access the
Language Assistant by selecting Tool s - Language Assi s-
tant.

9. Add the design to the project by selecting Proj ect - Addto
Proj ect .

10. Exit the HDL Editor.

For more information about HDL designs, see the“HDL Design Entry
and Synthesis” chapter or, in the HDL Editor window, select Hel p -
Hel p Topi cs.

Analyzing Design File Syntax

Syntax is checked automatically when the design is added to the
project. You can initiate a syntax check in the HDL Editor by selecting
Synt hesi s - Check Synt ax. You can also analyze syntax by
selecting Proj ect - Anal yze Al | Sour ces from the Project
Manager.

Use the HDL Error and HDL Warnings tabs in the messages area at
the bottom of the Project Manager to view any syntax errors or
messages output during analysis.

Xilinx Development System

Design Methodologies - HDL Flow

Performing HDL Behavioral Simulation (Optional)

If you installed an HDL simulation tool such as ACTIVE-VHDL or
ModelSIM, you can perform a behavioral simulation of your HDL
code. Please refer to the documentation provided with these tools for
more information.

Synthesizing the Design

After the design files have been successfully analyzed, the next step is
to translate the design into gates and optimize it for a target architec-
ture. These steps are performed by running the Synthesis phase.

1. Set the global synthesis options by selecting Synt hesi s -
Opt i ons from the Project Manager. In the Synthesis Options
dialog, you can set the following defaults:

Default clock frequency

Export timing constraints to the place and route software

Input XNF bus style

FSM Encoding (One Hot or Binary)

FSM Synthesis Style

Syntheszis Dptions

x|

— F5M Synthesis: Default encoding
' One Hot ¢ Binary

" Zero One Hot

—FSk syrthesiz: [nterpretation of YHOL 'when others'

% Fastest & smallest (only defined states) Help |

" Safest [all possible, including illegal, states)

Cancel |

— Export schematics to

 Auto % Yhd| O HHF Edif

"Verilog ‘ifdef support

" Enable & Dizable

Input #MF Bus Style ZadEdy

Drefault Frequency |5EI

2. Click OKto close the Synthesis Options dialog

Foundation Series 2.1i User Guide

5-5

Foundation Series 2.1i User Guide

5-6

tab.

3. Click the Synthesis icon on the Synt hesi s button on the Flow

The Synthesis/Implementation dialog box is displayed if this is
the first version and revision of a project. (By default on subse-
quent runs, the same settings are used and the given version is
overwritten. To create a new version, or to change settings, select

Proj ect - Create Version.)

Syntheziz/Implementation settings ﬂ
Top level: Jtreqr =l Bun I
Wersion namme: |ver1 OF. |
Synthesiz Settings: SET | Cancel |

Help |

Target Device

Farnily: ISF'AF!TANXL vI
Device: ISUE:{LPEBJ, VI Speed: |-5 vI

[V Edit Syrithesis/Implementation constraints

[v* &/iew E stimated Performance after Optimizatiors

= st B [mplementation feals
Phyzical Implementation zettings

Revizgion name: Ilev'l {10 i |

Control Files: SET

Select the name of the top-level module. Processing will start
from the file named here and proceed through all its underlying

modules.
Enter a version name.

Select the target device.

If you have Foundation Express, you have the following two

options.

Xilinx Development System

Design Methodologies - HDL Flow

Edit Synt hesi s/ | npl ementati on Constraints.
Selecting this options pauses synthesis processing after the
elaboration phase to allow you to specify constraints for the
design using the Express Constraints Editor GUI. For more
information refer to the “Express Constraints Editor” section.

Vi ewEst i mat ed Per f ormance after Qptim zati on.
Select this option to view the estimated performance results
after design optimization using the Express Time Tracker
GUIL. For more information refer to the “Express Time
Tracker” section.

9. Click Set to access the Settings dialog box containing Synthesis
Setting for this version.

Settings x|
Synthesis Settings | Implementation control files I
Optimize for: Effart Level:
* Epeed " High
© Area & Low

Target Clock Frequency: IED

™ Export timing constraints
¥/ Imzert 140 pads

™ Preserve hierarchy

oK I Cancel | Help |

Modify the Synthesis Settings as desired.

Modify the target clock frequency
Select the optimization strategy as speed or area
Select the effort level as high or low

Select whether 1/0 pads should be inserted for the desig-
nated top-level module

Click CK to return to the Synthesis/Implementation Settings
dialog box.

Foundation Series 2.1i User Guide 5-7

Foundation Series 2.1i User Guide

5-8

10. Click OK to synthesize the designated top-level design and its

underlying modules. (Or, click Run to synthesis and implement
the design.)

The synthesis compiler automatically inserts top-level input and
output pads required for implementation (unless instructed not
to do so in the Synthesis Settings).

Express Constraints Editor

The Express Constraints Editor is available with the Foundation
Express product only. It allows you to set performance constraints
and attributes before optimization of FPGA designs.

1.

The Express Constraints Editor window automatically displays
during Synthesis processing if you checked the Edit Synthesis/
Implementation Constraints box on the Synthesis/Implementa-
tion dialog.

Alternatively, you can access the Express Constraints Editor via

the Versions tab by right-clicking on the functional structure of a
project version or functional structure in the Hierarchy Browser

and then selecting Edi t Synt hesi s Constrai nts.

The following figure shows an example of the Clocks tab of the
Express Constraints Editor.

Xilinx Development System

Design Methodologies - HDL Flow

M ver3 [Constraints

—loi x|

Clacks | Paths I Farts I Modulesl Hilire Dptions

Hame

Clock

1 =default=

2010010

2 Mver3ICLK

QK I Export Congtraints. .. | Import Constraints... |

Figure 5-2 Express Constraints Editor - Clocks Tab

2.

Design-specific information is extracted from the design and
displayed in device-specific spreadsheets. Click the tabs to access
the various spreadsheets.

If you unchecked | nsert |/ Opads on the Synthesis/Imple-
mentation dialog, only the Modules and Xilinx Options tabs are
shown. The Clocks, Ports, and Paths tabs apply only to top-level
HDL designs.

Right-click on an item in any of the spreadsheets to edit the value,
access a dialog box to edit the value, or access a pulldown menu
to select a value. Use the online help in the dialog boxes to under-
stand and enter specific constraints and options.

The following figure shows an example of the dialog box
accessed when you right click on an output delay value
displayed on the Ports tab of the Express Constraints Editor.

Foundation Series 2.1i User Guide 5-9

Foundation Series 2.1i User Guide

5-10

ver3 [Constraints] g =1 5|
Elocksl Paths = Ports |M0dules| Hilin Dptionsl
= . Input Delay Output Delay Pad|___ Input Reg Use Slew
Hame |Direction (ng) (ns) Global Buffer Dir Delay 110 Reg Rate
1 =default= AUTOMATIC NONE DELAY TRUE SLOW
2 CE input 20/(RC,CLK)
3 CLK input 20/(RC, CLK)
4 CLR input 20/(RC, CLK)
5 LSBSEC<3+ |output SR, CLE)]
5 LSBSEC=2+ |output ZURT, GLK) Define Delay =l
7 LSBSEC=1> |output ZUPAT, GLE) |
8 LSBSEC<0> |outout 20(RC,CLK] b aximum D elay |
g WMSESEC=3- |outaut ZUPAT, GLE) |
10 MSBSEC=2= |output 20/(RC,CLK) o ns Cancel | |
11 MSBSEC=1= |output ZUPAT, GLE) |
12 WMSESEC=0- |outout 20/(RC, CLK) Help |
Relative ta group: —
| [(RC.CLK) - FFs clocked by rising /ver3/CLE R
Ok I Export Constraints... | Impart Constraints... |

Figure 5-3 Express Constraints Editor - Ports Tab

4,

Optionally, you can import a constraints file (.exc) to use now
(click I mport Constrai nt s)or you can export the entered
constraints to a constraints file (.exc) for reuse (click Expor t
Constrai nts).

After you finish editing the constraints, click OK to close the
Constraints window and continue the synthesis using the speci-
fied constraints.

Express Time Tracker

The Express Time Tracker is available with the Foundation Express
product only. It allows you view estimated performance results after
optimization of your design.

1.

The Optimized (Constraints) window, shown in the figures at the
end of this section, automatically displays after Synthesis
processing if you checked the View Estimated Performance after
Optimization box in the Synthesis/Implementation dialog
window.

Alternatively, you can access the Optimized (Constraints)
window via the Versions tab by right-clicking on an optimized

Xilinx Development System

Design Methodologies - HDL Flow

structure in the Hierarchy Browser and then selecting Vi ew
Synt hesi s Resul ts.

2. Click the tabs to access the performance results in the various
spreadsheets.

If you unchecked | nsert |/ Opads on the Synthesis/Imple-
mentation dialog, only the Models and Xilinx Options tabs are
shown. The Clocks, Ports, and Paths tabs apply only to top-level
HDL designs.

3. After you finish viewing the results, click OK to close the Opti-
mized (Constraints) window.

Figure 5-4 Express Time Tracker - Clocks Tab

Foundation Series 2.1i User Guide 5-11

Foundation Series 2.1i User Guide

ver3-Optimized [Constraints] loix|
Elocksl Paths ~ Ports |M0dules| Hilirs Dptionsl
- - |Input Delay| Input Output Delay Output| Global |Pad|_ . Input Reg| Use | Slew
Hame |Direction| " " glack (ns) Slack | Buffer | Dir Delay |1/ Reg| Rate [F29°
1 =default= ALTOMATIC NONE DELAY TRUE | SLOW
2 CE Lt [el] Fis,
3 CLK inpLt o) Fis, BUFG
4 CLR inpLt o) Fis,
5 LSBSEC=3= |output 20HRC,CLK_BUFGed) | 110
& LSBSEC=2= |output ZONRC, CLE_BUFGed)| 107
7 LSBSEC=1= |output ZONRC, CLE_BUFGed)| 107
& LSBSEC=0= |output ZONRC, CLE_BUFGed)| 105
] MSBSEC=3= | output R, CLE_BUFGed)| 110
10 MSBSEC=2= |output ZONRC, CLE_BUFGed)| 107
11 MSBSEC=1 = | output ZONRC, CLE_BUFGed)| 107
12 MSBSEC=0= |output ZONRC, CLE_BUFGed)| 105
| | i

5-12

Figure 5-5 Express Time Tracker - Ports Tab

Performing Functional Simulation

Functional Simulation may be performed to verify that the logic you
created is correct. Gate-level functional simulation is performed after
the design is synthesized.

Note: There are several ways to apply stimulus and simulate a
design. This section discusses one way: using the stimulator dialog.
For more information on using the simulator, refer to its online help.

1.

Open the Logic Simulator by clicking the Functional Simulation
icon in the Simulation box on the Project Manager’s Flow tab.

h
»
SYNTHESIS 4 SIMULASION
r - - -
'. Functional Simulation

The design is automatically loaded into the simulator. The Wave-
form Viewer window displays inside of the Logic Simulator
window.

Xilinx Development System

Design Methodologies - HDL Flow

&' Logic Simulator - Xilinx Foundation F1.5 [watchvhd] =lo| x|
File Signal ‘wWaveform Device Option: Tools View Window Help

=|@|8] kS| 4) o[z] @f[ees =] B8]

= Waveform Yiewer 0 =l= =] ;I
| =e=|C IM—ll== o [mr | 0.0
”-L”-L”JI S0ns/fdiv ||-|-|-|-'I 500ns |[lus 1. fus [Eus 2. fus [Fus |
| 0.a ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| ||||||||| |||||
I e B

=
Metlizt lnaded successfully | 0o

3. Add signals by selecting Si gnal - Add Si gnal s.

4. From the Signals Selection portion of the Components Selection
for Waveform Viewer window, select the signals that you want to
see in the simulator.

5. Use CTRL-click to select multiple signals. Make sure you add
output signals as well as input signals.

6. Click Add and then C ose. The signals are added to the
Waveform Viewer in the Logic Simulator screen.

7. SelectSi gnal — Add Sti nmul at or s from the Logic Simulator
menu. The Stimulator Selection window displays.

Foundation Series 2.1i User Guide 5-13

Foundation Series 2.1i User Guide

8.

A Stimulator Selection =l =]
Heyboard: Cloeks:
1 o v 1 e
0 0
1) [cs

c 8 4 0
Bc: 0000' 0@@0' OOOOI @000'
Lt 0000' 0000' OOOOI 0000'
(e HHHE' HEHH' EHHHI HHHH'

[

Fnrmula...l Close | Help |

In the Stimulator Selection window, create the waveform
stimulus by attaching stimulus to the inputs. For more details on
how to use the Stimulus Selection window, click Hel p.

After the stimulus has been applied to all inputs, click the Simu-
lator Step icon on the Logic Simulator toolbar to perform a simu-
lation step. The length of the step can be changed in the
Simulation Step Value box to the right of the Simulation Step box.
(If the Simulator window is not open, select Vi ew - Mai n

Tool bar.)

@Lugic Simulator - Xilinx Foundation F2.1i [abc]
File Signal ‘wawveform Device Options Tools Yiew ‘Window Help

' ||| 8| B[] 4 &) oo = @ [pes]] &)

! == Waveform Viewer 0 Simulation Step - |EI|£||

10. To save the stimulus for future viewing or reuse, select Fi | e —

5-14

Save Wavef or m Enter a file name with a .tve extension in the
File name box of the Save Waveform window. Click OK.

For more information about saving and loading test vectors,
select Hel p — Logi ¢ Si mul at or Hel p Cont ent s from the
Logic Simulator window. From the Help Index, select Wr ki ng
Wt hWavef or ns - Savi ng and Loadi ng Wavef or ns.

Xilinx Development System

Design Methodologies - HDL Flow

Implementing the Design

Design Implementation is the process of translating, mapping,
placing, routing, and generating a Bit file for your design. Optionally,
it can also generate post-implementation timing data.

1. Click the Implementation icon on the Implementation phase
button on the Project Manager’s Flow tab.

IMPLEMENTAT k

¥
Implementation

2. The Synthesis/Implementation dialog box appears if the imple-
mentation is out-of-date.

A revision represents an implementation run on the selected-
version. Modify the name in the Revision Name box, if desired.
The synthesis settings are grayed out if synthesis has already

been run.

Synthezis/Implementation settings il
Top level | freqr = Fiun I
Wersion name: |ver1 Ok |
Synthesiz Settings: SET | Cancel |

Help |

Target Device

Farnily: ISF'AF!T.L\NXL 'I
Device: ISDSXLF'CBq. vI Speed: |-5 VI

IV Edit Spnthesis/Implementation constraints

IV Aiew Estimated Performance after Optimizatiore

= |t B [mplementation ol
Phwzical Implementation settings

Revision name: Irev'l [ptions |

Cottral Files: SET

3. Click Set to access the Implementation control files dialog box.
Identify any guide file, constraints file, or Floorplan file to use for
this implementation.

Foundation Series 2.1i User Guide 5-15

Foundation Series 2.1i User Guide

5-16

Click CK to return to the Synthesis/Implementation Settings
dialog box.

Click Opt i ons on the Synthesis/Implementation dialog box to
set the Place and Route Effort level and edit implementation,
simulation, or configuration options, if desired.

—_—

Defaut =]
Foundation EDIF =]
Defak 7]

Click OK to return to the Settings/Implementation Settings dialog
box.

Xilinx Development System

Design Methodologies - HDL Flow

5. Click Run to implement the design. The Flow Engine displays the
progress of the implementation.

The Project Manager displays a status message when Implemen-
tation is complete. View the Console tab on the Project Manager
window for the results of all stages of the implementation. The
\ersions tab also indicates the status of the implemented revi-
sion.

6. To view design reports, select the desired revision in the \ersions
tab of the Project Manager. Then select the Reports tab in the
Project Manager Flow window.

Click on the Implementation Report Files icon to view the imple-
mentation reports. Click on the Implementation Log File icon to
view the Flow Engine’s processing log.

For more information on the Flow Engine, select Hel p -
Foundati on Hel p Cont ents — Fl owEngi ne.

Editing Implementation Constraints

Design constraints affect how the logical design is implemented in
the target device. Applying constraints helps you to adapt your
design’s performance to expected worst-case conditions. The user
constraint file (.ucf) is an ASCI| file that holds timing and location
constraints. It is read (by NGDBuild) during the translate process in
the Flow Engine and is combined with an EDIF or XNF netlist into an
NGD file.

Each revision contains an associated UCF file. The UCF file may be a
default (empty) UCF or one that you customize yourself. You can
directly enter constraints in the UCF file through a text editor or you
can use the Xilinx Constraints Editor.

1. The Constraints Editor is a Graphical User Interface (GUI) that
you can run after the Translate program to create new constraints
in a UCF file. To access the Constraints Editor, select Tool s -
| mpl enent ati on - Constrai nts Edi t or from the Project
Manager.

The following figure shows an example of the Global tab of the
Implementation Constraints Editor.

Foundation Series 2.1i User Guide 5-17

Foundation Series 2.1i User Guide

File Wiew Window Help

ol=d| 2|

2. Design-specific information is extracted from the design and
displayed in device-specific spreadsheets. Click the tabs to access
the various spreadsheets.

3. Right-click on an item in any of the spreadsheets to access a
dialog box to edit the value. Use the online help in the dialog
boxes to understand and enter specific constraints and options.
Or, refer to the online software document, Constraints Editor Guide
for detailed information.

The following figure shows an example of the Pad to Setup
dialog box accessed when you right click anywhere on a Port row
on the Ports tab of the Implementation Constraints Editor and
then select Pad t o Set up.

5-18 Xilinx Development System

Design Methodologies - HDL Flow

File Wiew Window Help

QUTPUT

QUTPUT

QuUTPUT
QUTPUT

Figure 5-6 Implementation Constraints Editor - Ports Tab

4. After you finish editing the constraints, click Save to close the
Constraints Editor window

5. You must rerun the Translate step in the Flow Engine to have
your new constraints applied to the design.

6. Click the Implementation icon on the Project Manager’s Flow tab
to rerun Translate and the rest of the flow.

Foundation Series 2.1i User Guide 5-19

Foundation Series 2.1i User Guide

5-20

Verifying the Design

After the design has been implemented, the Timing Analyzer or the
Timing Simulator can be used to verify the design. The Timing
Analyzer performs a static timing analysis of the design. The Timing
Simulator uses worst-case delays and user input stimulus to simulate
the design.

Performing a Static Timing Analysis

1.

Click the Timing Analyzer icon in the Verification box on the
Project Manager’s Flow tab to perform a static timing analysis.

%;Eﬂ p ﬁ[@

IMPLEMENTATION i VERIFICATIO

Tirming Analyzer

For FPGAs, you can perform a post-MAP, post-place, or post-
route timing analysis to obtain timing information at various
stages of the design implementation. You can perform a post-
implementation timing analysis on CPLDs after a design has
been fitted.

For details on how to use the Timing Analyzer, select Hel p - Foun-
dation Hel pContents — Ti m ng Anal yzer.

Performing a Timing Simulation

1.

Open the Timing Simulator by clicking the Timing Simulation
icon in the Verification box on the Project Managers’s Flow tab.
The implementation timing netlist with worst-case delays will be
loaded into the simulator.

%";iﬂ Jlt R

IMPLEMENTATION

Tirming Simulation

The Waveform Viewer window displays inside the Logic Simu-
lator window.

Refer to the “Performing Functional Simulation” section earlier
in this chapter for instructions on simulating the design. (The

Xilinx Development System

Design Methodologies - HDL Flow

operation of the simulator is the same for functional and timing
simulation.)

If you have already saved test vectors (for instance, in the
functional simulation), you may load these vectors into the
timing simulator by selecting Fi | e - Load Waveform

Programming the Device

1.

Click the Device Programming icon in the Programming box on
the Project Manager’s Flow tab.

Device Programming

From the Select Program box, choose the Hardware Debugger,
the PROM File Formatter, or the JTAG Programmer. For CPLD
designs, use the JTAG Programmer. For instructions, select Hel p
- Foundat i on Hel p Cont ents - Advanced Tool s - JTAG
Pr ogr ammrer . For FPGA designs, use the JTAG Programmer,
Hardware Debugger, or PROM File Formatter. For instructions,
select Hel p - Foundati on Hel p Cont ents - Advanced
Tool s and then select the desired tool.

HDL Designs with State Machines

This section explains how to create a state machine and add it into a
HDL Flow project.

The Files tab in the Hierarchy Browser displays the state machine
name. HDL code is automatically generated from the FSM diagram.
The module (VHDL) or entity (Verilog) name is automatically added
to the top-level selection list.

Creating a State Machine Macro

1.

Open the State Editor by clicking the FSM icon in the Design
Entry box on the Project Manager’s Flow tab.

Select Use t he HDL Desi gn W zar d. Click OK.

From the Design Wizard window, select Next .

Foundation Series 2.1i User Guide 5-21

Foundation Series 2.1i User Guide

5-22

From the Design Wizard - Language window, choose VHDL or
Veri | og and select Next .

In the Design Wizard - Name window, enter a name for your
macro. Select Next .

Define your ports in the Design Wizard-Ports window. Select
Next .

In the Design Wizards - Machines window, select the number of
state machines that you want. Click Fi ni sh. The Wizard creates
the ports and gives you a template in which you can enter your
macro design.

Complete the design for your FSM in the State Editor.

Add the macro to the project by selecting Proj ect - Addto
Pr oj ect from the Project Manager.

You will see the FSM module listed in the Files tab of the Project
Manager.

Following is an example of VHDL code (my_fsm.vhd) generated
from the State Editor for a state machine macro.

l'ibrary | EEE;

use | EEE. std_|l ogic_1164. al | ;

use |EEE. std_logic_arith.all;
use | EEE. std_l ogi c_unsi gned. al | ;

entity ny_fsmis
port (clk: in STD_LOd C

in_a: in STD LOd G
in_b: in STD LOd G
in_c: in STD_LOGE G
reset: in STD LOG C
out _a: out STD LCG G
out _b: out STD LCG C,
out_c: out STD LOG Q);

end;

architecture ny_fsmarch of ny_fsmis

-- SYMBOLI C ENCODED state nmachi ne: Sreg0
type Sreg0_type is (S1, S2, S3);
signal Sreg0: SregO_type;

Xilinx Development System

Design Methodologies - HDL Flow

begin
--concurrent

signal assignnents

--di agram ACTI ONS

process (clk)

begin

if clk event
if reset="1

and clk ="'1
t hen

t hen

’

Sreg0 <= SI;

el se

case Sreg0

when S1 =>
if ina=
Sreg0 <=
end if;

when S2 =>

if inb ="

Sreg0 <=
end if;
when S3 =>
if inc =
Sreg0 <=

end if;

is

"1 then
S2;

s

t hen

"1 then
S1;

when ot hers =>

nul | ;
end case
end if;
end if;
end process;

assi gnment statenents for conbinatori al

when (Sreg0 = S2) el se
when (Sreg0 = S3) el se
when (Sreg0 = S2) el se
when (Sreg0 = S3) el se
when (Sreg0 = S2) el se
when (Sreg0 = S3) el se

-- signal

-- outputs

out ¢ <="'0
O’
1

out_a <= "1
o
O’

out b <="'0
"
0

end ny_fsm arch;

Foundation Series 2.1i User Guide

5-23

Foundation Series 2.1i User Guide

For more information about creating state machine modules,
refer to the*State Machine Designs” chapter. Or, select Hel p -
Foundat i on Hel p Cont ent s and then Click St at e Edi t or.

HDL Designs with Instantiated Xilinx Unified Library
Components

5-24

It is possible to instantiate certain Xilinx Unified Library components
directly into your VHDL or Verilog code. In general, you will find this
most useful for components that the Express compiler is unable to
infer, such as BSCAN, RAM, and certain types of special Xilinx
components. The “Instantiated Components” appendix lists the most
commonly instantiated components, including descriptions of their
function and pins.

When instantiating Unified Library components, the component
must first be declared before the begi n keyword in VHDL the archi-
tecture and then may be instantiated multiple times in the body of the
architecture.

The following example shows how to instantiate the STARTUP
component in a VHDL file, which in turn allows use of the dedicated
GSR (global set/reset) net.

The following sample written in VHDL shows an example of an
instantiated Xilinx Unified Library component, STARTUP.

library IEEE;
use IEEE.std_logic_1164.all;

entity gsr_test is
port (
CLK: in STD LOG C
DIN in STD LOG G
RESET: in STD LOG C
Q QUT: out STD LOJ C
)

end gsr_test;

architecture gsr_test_arch of gsr_test is
conmponent STARTUP

port (GSR in std_logic);
end conponent;

Xilinx Development System

Design Methodologies - HDL Flow

begin
Ul: STARTUP port map (GSR=>RESET);

process (CLK)
begin
if (CLK event and CLK="1") then
QAUT <= D IN,
end if;
end process;

end gsr_test_arch;

1. The HDL code must be added to the project. Select Pr oj ect -
Add t o Pr oj ect from the HDL Editor or select Docunent -
Add from the Project Manager.

2. Synthesize the design by selecting the Synt hesi s button on the
Project Manager Flow tab.The synthesizer will automatically
include top level input and output pads for the designated top-
level design.

For more information about HDL designs, see the “HDL Design
Entry and Synthesis” chapter or, in the HDL Editor window,
select Hel p — Hel p Topi cs.

3. To complete the design, refer to the “Synthesizing the
Design’through the “Programming the Device” sections under
the “All-HDL Designs” section.

HDL Designs with Black Box Instantiation

LogiBLOXs, CORE Generator modules, ABEL modules, and EDIF
and XNF files can be instantiated in the VHDL and Verilog code
using the “black box instantiation” method.

The Files tab in the Hierarchy Browser does not display the black box
module name under the HDL file(s) in which it is instantiated. The
Express compiler does not synthesize the black box. It is left as an
unlinked cell and resolved in the Translate phase of the implementa-
tion.

This section describes how to create HDL designs that instantiate
black boxes.

Foundation Series 2.1i User Guide 5-25

Foundation Series 2.1i User Guide

5-26

LogiBLOX Modules in a VHDL or Verilog Design

LogiBLOX modules may be generated in Foundation and then
instantiated in the VHDL or Verilog code. This flow may be used for
any LogiBLOX component, but it is especially useful for memory
components such as RAM. Never describe RAM behaviorally in the
HDL code, because combinatorial feedback paths will be inferred.

The module being instantiated must be located in the HDL project
directory (that is, the directory where the top-level HDL file resides).
Running LogiBLOX from the Foundation project ensures this condi-
tion is met.

LogiBLOX provides a template tool for generating the VHDL or
Verilog component declaration statement.

VHDL Instantiation

This section explains how to instantiate a LogiBLOX module into a
VHDL design using Foundation. The example described below
creates a RAMA48X4S using LogiBLOX.

1. Access the LogiBLOX Module Selector window using one of the
following methods. Its operation is the same regardless of where
it is invoked.

= From the Project Manger, select Tool s - Desi gn Entry -
Logi BLOX nmodul e gener at or

= From the HDL Editor, select Tool s - Logi BLOX

= From Schematic Editor, select Tool s — Logi BLOX Mbdul e
Gener at or

2. Click Set up on the LogiBLOX Module Selector screen. (The first
time LogiBLOX is invoked, the Setup screen appears automati-
cally.)

3. Inthe Setup window, enter the following items.

= Under the Device Family tab, use the pulldown list to select
the target device family (SpartanXL, for example).

Xilinx Development System

Design Methodologies - HDL Flow

spattersl 7]

= Under the Options tab, select the Simulation Netlist and
Component Declaration template.To instantiate the Logi-
BLOX module in VHDL code, select VHDL t enpl at e in the
Component Declaration area. If you plan to perform a behav-
ioral simulation, select Behavi oral VHDL netl i st inthe
Simulation Netlist area, as shown below. Click OK.

| [l et

4. Inthe LogiBLOX Module Selector window, define the type of
LogiBLOX module and its attributes. The Module Name speci-
fied here is used as the name of the instantiation in the VHDL

code.

Foundation Series 2.1i User Guide 5-27

Foundation Series 2.1i User Guide

i LogiBLOX Module Selector — =] x|
— Selection oK
Module Hame: Module Type: [Data Bus Width:
|memory =] IMemories =] |4 =] Cancel
— Details Selup

ﬁﬂno

RO

Uzer Prefs

Help

FlEk

temary Depth = |48

Mem File = |

Fultiplexer Style = I F asimum 5peed

Uze RPMz = IFaIse

T = IFaIse

When you click OK, the LogiBLOX module is created automati-

cally and added to the project library.

The LogiBLOX modaule is a collection of several files including
those listed below. The files are located in your Xilinx project

directory for the current

component_name.ngc

component_name.vhi

component_name.vhd
component_name.mod

logiblox.ini

project.

Netlist used during the Translate
phase of Implementation

Instantiation template used to add a
LogiBLOX module into your VHDL
source code

VHDL file used for functional simu-
lation

Configuration information for the
module

LogiBLOX configuration for the
project

The component name is the name given to the LogiBLOX module
in the GUI. The port names are the names provided in the .vhi

file.

5-28

Xilinx Development System

Design Methodologies - HDL Flow

6. Inthe HDL Editor, open the LogiBLOX-created .vhi file
(memory.vhi) located under the current project. The .vhi file for
the memory component created in the previous steps is shown
below.

-- Logi BLOX SYNC_RAM Modul e " rmenory"
-- Created by Logi BLOX version C. 16
-- on Tue Jun 01 16:46: 04 1999
-- Attributes

-- MODTYPE = SYNC_RAM

-- BUS WDTH = 4

-- DEPTH = 48

-- STYLE = MAX_SPEED

-- USE_RPM = FALSE

component menory

PORT(

A: IN std_logic_vector(5 DOANTO 0);
DO QUT std_l ogi c_vector (3 DOANTO 0);
Di: INstd_logic_vector(3 DOANNTO 0);
WR_EN I N std_| ogi c;

WR _CLK: IN std_l ogic);

end conponent;

-- Conponent Instantiation

i nstance_name : menory port map
(A =>,

DO => ,

D =>,

WR EN => ,

WR CLK =>);

7. Open asecond session of the HDL Editor. In the second HDL
Editor window, open the VHDL file in which the LogiBLOX
component is to be instantiated.

Note: Instead of opening a second sesssion, you could use Edi t -
I nsert Fil e from the HDL Editor tool bar to insert the file into the
current HDL Editor session.

Foundation Series 2.1i User Guide 5-29

Foundation Series 2.1i User Guide

Cut and paste the Component Declaration from the LogiBLOX
component’s .vhi file to your project’s VHDL code, placing it
after the architecture statement in the VHDL code.

Cut and past the Component Instantiation from the LogiBLOX
component’s .vhi file to your VHDL design code after the
“begin” line. Give the inserted code an instance name. Edit the
code to connect the signals in the design to the ports of the Logi-
BLOX module.

The VHDL design code with the LogiBLOX instantiation for the
component named memory is shown below. For each .ngc file
from LogiBLOX, you may have one or more VHDL files with the
.ngc file instantiated. In this example, there is only one black box
instantiation of memory, but multiple calls to the same module
may be done.

l'ibrary | EEE;
use | EEE. std_|l ogic_1164. al | ;
use |EEE. std_logic_arith.all;

entity top is
port (D in STDLOAC CE in STD LOG G
CLK: in STD LOAC, Q out STD LOGE G
Atop: in STD LOA C_VECTOR (5 downto 0);
DO op: out STD LOA C_VECTOR (3 downto 0);
Ditop: in STD LOG C VECTOR (3 downto 0);
WR ENtop: in STD LCQ C;
WR _CLKtop: in STD LOA C);
end top;

architecture inside of top is

conponent userff

port (D in STDLOAC CE in STD LOG G
CLK: in STD LOAC Q out STD LOAO);

end conponent;

conmponent nenory
port (A: in STD LOG C_VECTOR (5 downto 0);

Di: in STD LOA C_VECTOR (3 downto 0);
WR_EN. in STD LOG G
WR_CLK: in STD LOGQ C

DO out STD LOGE C VECTOR (3 downto 0));
end conponent;

5-30 Xilinx Development System

Design Methodologies - HDL Flow

begin
UO userff port map (D=>D, CE=>CE, CLK=>CLK, Q=>Q;

Ul: nenory port map(A=>At op, DI =>DI t op, WR_EN=>WR_EM op,
WR_CLK=>WR_CLKt op, DO=>DC op) ;
end inside;

8. Check the syntax of the VHDL design code by selecting
Synt hesi s - Check Synt ax in the HDL Editor. Correct any
errors. Then save the design and close the HDL Editor.

9. The design with the instantiated LogiBLOX module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note: When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is just
reflecting the black box instantiation.

10. To complete the design, refer to the “Synthesizing the
Design’through the “Programming the Device” sections under
the “All-HDL Designs” section.

Verilog Instantiation

This section explains how to instantiate a LogiBLOX module into a
Verilog design using Foundation. The example described below
creates a RAMA48X4S using LogiBLOX.

1. Access the LogiBLOX Module Selector window using one of the
following methods. Its operation is the same regardless of where
it is invoked.

= From the Project Manger, select Tool s - Design Entry -
Logi BLOX nodul e gener at or.

< From the HDL Editor, select Tool s - Logi BLOX.

= From Schematic Editor, select Tool s — Logi BLOX Mbdul e
CGener at or.

2. Click Set up on the LogiBLOX Module Selector screen. (The first
time LogiBLOX is invoked, the Setup screen appears automati-
cally.)

3. Inthe Setup window, enter the following items.

Foundation Series 2.1i User Guide 5-31

Foundation Series 2.1i User Guide

= Under the Device Family tab, use the pulldown list to select
the target device family (XC4000E, for example).

spartarsl =]

= Under the Options tab, select Veri | og t enpl at e in the
Component Declaration area. If you plan to perform a behav-
ioral simulation, select St ructural Veril ognetlist in
the Simulation Netlist area, as shown below. Click OK.

| ED FErRetlist

4. Inthe LogiBLOX Module Selector window, define the type of
LogiBLOX module and its attributes. The Module Name speci-
fied here is used as the name of the instantiation in the Verilog

code.

5-32 Xilinx Development System

Design Methodologies - HDL Flow

i LogiBLOX Module Selector — =] x|
— Selection oK
Module Hame: Module Type: [Data Bus Width:
|memory =] IMemories =] |4 =] Cancel
— Details Selup

ﬁﬂno

RO

Uzer Prefs

Help

FlEk

temary Depth = |48

Mem File = |

Fultiplexer Style = I F asimum 5peed

Uze RPMz = IFaIse

T = IFaIse

When you click OK, the LogiBLOX module is created automati-

cally and added to the project library.

The LogiBLOX modaule is a collection of several files including
those listed below. The files are located in your Xilinx project

directory for the current

component_name.ngc

component_name.vei

component_name.v
component_name.mod

logiblox.ini

project.

Netlist used during the Translate
phase of Implementation

Instantiation template used to add
LogiBLOX module into your
Verilog source code

Verilog file used for functional
simulation

Configuration information for the
module

LogiBLOX configuration for the
project

The component name is the name given to the LogiBLOX module
in the GUI. The port names are the names provided in the .vei

file.

Foundation Series 2.1i User Guide

5-33

Foundation Series 2.1i User Guide

5-34

6. Inthe HDL Editor, open the LogiBLOX- created .vei file
(memory.vei) located under the current project. The .vei file for
the memory component created in the previous steps is shown
below.

/1 Logi BLOX SYNC_RAM Modul e "menory"
/1l Created by Logi BLOX version C. 16
/1 on Wed Jun 01 10:40:25 1999
/1 Attributes

I MODTYPE = SYNC_RAM

I BUS WDTH = 4

I DEPTH = 48

/1 STYLE = MAX_SPEED

I USE_RPM = FALSE

[] = m o m m e e e e e
nenory i nst ance_nane
(-A0),

- DA(),

.DI(),

VR _EN(),

VR _CLK()) ;

nmodul e nenmory(A, DO, DI, WR EN, WR CLK);
i nput [5:0] A

output [3:0] DG

input [3:0] DI;

i nput WR_EN,

i nput WR_CLK;

endnodul e

7. Open asecond session of the HDL Editor. In the second HDL
Editor window, open the Verilog design file in which the Logi-
BLOX component is to be instantiated.

Note: Instead of opening a second sesssion, you could use Edi t —
I nsert Fil e from the HDL Editor tool bar to insert the file into the
current HDL Editor session.

Cut and paste the module declaration from the LogiBLOX
component’s .vei file into the Verilog design code, placing it after
the “endmodule” line within the architecture section or the
Verilog design code.

Xilinx Development System

Design Methodologies - HDL Flow

Cut and paste the component instantiation from the .vei file into
the design code. Give the added code an instance name and edit
it to connect the ports to the signals.

The Verilog design code with the LogiBLOX instantiation for the
component named memory is shown below. For each .ngc file
from LogiBLOX, you may have one or more VHDL files with the
.ngc file instantiated. In this example, there is only one black box
instantiation of memory, but multiple calls to the same module
may be done.

nmodul e top (D, CE, CLK, Q
At op, DQtop, Ditop, WR_ENtop, WR CLKtop);

i nput D

i nput CE;
i nput CLK;
out put Q

i nput [5:0] Atop;
output [3:0] DO op;
input [3:0] Ditop;

i nput WR_ENt op;

i nput WR_CLKt op;

userff U0 (.D(D),.CE(CE),.CLK(CLK),. QQ);

menory Ul (.A(Atop),
. DO (D op),
.DI (Ditop),
.WR_EN (WR_ENt op) ,
.MR_CLK (WR_CLKtop));
endnodul e

Note: An alternate method is to place the module declaration from
the .vei file into a new, empty Verilog file (MEMORY.V) and add the
new file (shown below) to the project.

/1 Logi BLOX SYNC_RAM Modul e "menory"
/1 Created by Logi BLOX version C. 16
I on Wed Jun 01 10:40:25 1999
/1 Attributes

I MODTYPE = SYNC_RAM

I BUS_WDTH = 4

11 DEPTH = 48

Foundation Series 2.1i User Guide 5-35

Foundation Series 2.1i User Guide

5-36

I STYLE = MAX_SPEED

/1 USE_RPM = FALSE
i T
nodul e MEMORY (A, DO DI, WR EN, WR CLK);

input [5:0] A

output [3:0] DG
input [3:0] DI;
i nput WR_EN,

i nput WR_CLK;
endnodul e

8. Check the syntax of the Verilog design code by selecting
Synt hesi s » Check Synt ax inthe HDL Editor. Correct any
errors and then save the design and close the HDL Editor.

9. The design with the instantiated LogiBLOX module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note: When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is just
reflecting the black box instantiation.

10. To complete the design, refer to the “Synthesizing the Design”
section through the “Programming the Device” section under the
“All-HDL Designs” section in this chapter.

CORE Generator COREs in a VHDL or Verilog Design

CORE Generator COREs may be generated in Foundation and then
instantiated in VHDL or Verilog code. COREs can be generated for
valid Foundation projects only.

This flow may be used for any CORE Generator CORE. The CORE
being instantiated must be located in the HDL project directory (that
is, the directory where the top-level HDL file resides). Running Logi-
BLOX from the Foundation project ensures this condition is met.

VHDL Instantiation

This section explains how to instantiate a CORE component into a
VHDL design using Foundation.

1. With a valid Foundation project open, access the CORE
Generator window using one of the following methods. Its
operation is the same regardless of where it is invoked.

Xilinx Development System

Design Methodologies - HDL Flow

Efl xilinx CORE Generator 2.1i

= From the Project Manger, select Tool s - DesignEntry -
CORE Cener at or

< From the HDL Editor or Schematic Editor, select Tool s -
CORE Gener at or

Select Pr oj ect — Proj ect Opti ons. In the Project Options
dialog box, ensure that Design Entry is VHDL, that Behavioral
Simulation is VHDL, and that the Vendor is Foundation. The

Family entry should reflect the project’s target device. Click OK to
exit the Project Options dialog box.

To aid selection, the available COREs are categorized in folders
on the View Mode section of the main CORE Generator window.
Double click a folder to see its sub-categories. When you double
click a sub-category folder, the available COREs are listed in the
“Contents of” section of the main CORE Generator window.

10l =|
File Project Core Web Help
De +« B HL |
Project Path: |D:IFNDTNLActivelProjects‘tE}{AMPLE1 LI Target Famihy Yirtex
View mode: Taxonomy Contents of: /Storage Elements & MemoariesiRAMs & ROMs
| Basic Elements Mame | Type |Versi0n Family Yendor
1 Communication & Networking Single Port Black Memnary gl 1.0 virtex,Spa... Xiling, |...
1 Digital Signal Pracessing Registered SinglePort R... pglCRE 1.0 HCA000,5... Hiling
jm?th Functions contrallers & Pariaheral Registered ROM WECHPE 1D ¥C4000,5... Xilin
icroprocessors, Controllers & Peripherals . B -
- Renistered DualPort RAM WRE D HCA000,5. Hilin
__| ProtoType & Development Hardware Products o i '

| Standard Bus Interfaces

-] Delay Elements

‘_J Starage Elements & Memories

Dual Fort Block Memory ggiCi®E 1.0 Virtex,Spa... Hilir, |...

Foundation Series 2.1i User Guide

To select a CORE, double click on the CORE’s name in the
“Contents of” window. A new window opens to allow you to
view a description of the CORE or its data sheet, to customize the
CORE for your application, and to generate the customized
CORE. (Acrobat Reader is required to view the data sheet.)

5-37

Foundation Series 2.1i User Guide

addr[3:0]

dafn:0]

5. When the CORE’s window appears, enter a name for the compo-
nent in the Component Name field.

The name must begin with an alpha character. No extensions or
uppercase letters are allowed. After the first character, the name
may include numbers and/or the underscore character.

6. Other available customization options are unique for each CORE.
Customize the CORE as necessary.

7. Select Gener at e to create the customized CORE and add its files
to the project directory.

5-38 Xilinx Development System

Design Methodologies - HDL Flow

The customized CORE component is a collection of several files
including those listed below. The files are located in your Xilinx
project directory for the current project.

component_name.coe ASCII data file defining the coeffi-
cient values for FIR filters and
initialization values for memory
modules

component_name.xco CORE Generator file containing the
parameters used to generate the
customized CORE

component_name.edn EDIF implementation netlist for the
CORE

component_name.vho VHDL template file

component_name.mif Memory Initialization Module for

Virtex Block RAM modules

The component name is the name given to the CORE in the
customization window. The port names are the names provided
in the .vho file.

An example .vho file is shown below.

-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transnitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programuable or hardw re device without --
-- Xilinx's prior witten perm ssion. --

-- The followi ng code nmust appear in the VHDL architecture header:

------------- Begin CQut here for COVPONENT Decl aration ------ COW_TAG
component sram

port (

addr: IN std_| ogi c_VECTOR(3 downto 0);
clk: IN std_l ogic;

di: IN std_|l ogi c_VECTOR(3 downto 0);
we: IN std_|ogic;

en: IN std_l ogic;

rst: IN std_logic;

do: QUT std_l ogi c_VECTOR(3 downto 0));
end conponent;

Foundation Series 2.1i User Guide 5-39

Foundation Series 2.1i User Guide

-- COWP_TAG END ------ End COVPONENT Declaration ------------

-- The followi ng code nust appear in the VHDL architecture
-- body. Substitute your own instance name and net nanes.

""""""" Begin CQut here for | NSTANTI ATION Tenplate ----- | NST_TAG
your _i nstance_nanme : sram

port map (

addr => addr,

clk => clk,

di => di,

we => we,

en => en,

rst => rst,

do => do);

-- INST_TAG END ------ End | NSTANTI ATI ON Tenpl ate ------------

-- The followi ng code nmust appear above the VHDL configuration
-- declaration. An exanple is given at the end of this file.

------------- Begin Cut here for LIBRARY Declaration -------- LIB_TAG
-- synopsys transl ate_off

Li brary XilinxCoreLi b;

-- synopsys transl ate_on

-- LIB_TAGEND ------- End LI BRARY Declaration ------------

-- The followi ng code nmust appear within the VHDL top-Ievel

-- configuration declaration. Ensure that the translate_off/on

-- conpiler directives are correct for your synthesis tool(s).
------------- Begin CQut here for CONFI GURATI ON sni ppet ------ CONF_TAG

-- synopsys transl ate_of f

for all : sramuse entity XilinxCorelLib. C_ MEM SP_BLOCK V1_0(behavi oral)
generic map(

c_has_en => 1,

c_rst_polarity => 1,

c_clk_polarity => 1,

c_ wdth => 4,

¢c_has_do => 1,

5-40 Xilinx Development System

Design Methodologies - HDL Flow

c_has di => 1,
c_en_polarity => 1,
c_has_we => 1,
c_has_rst => 1,
c_address_w dth => 4,
c_read_mf => 0,
c_depth => 16,

Cc_pi pe_stages => 0,
c_nmeminit_radix => 16,
c_default _data => "0",
c_neminit _file => "srammf",
c_we_polarity => 1,
c_generate_nmf => 0);
end for;

-- synopsys translate_on

-- CONF_TAG END ------ End CONFI GURATI ON sni ppet -----=-=-----

-- <Insert LIBRARY Declaration here>

-- configuration <cfg_my_design> of <ny_design> is
-- for <ny_arch_nane>

-- <l nsert CONFI GURATI ON Decl arati on here>
-- end for;

-- end <cfg_ny_desi gn>;

-- If this is not the top-level design then in the next |evel up, the
follow ng text

-- shoul d appear at the end of that file:

-- configuration <cfg> of <next_level>is

-- for <arch_nane>

-- for all : <my_design> use configuration <cfg_ny_design>;
-- end for;

-- end for;

-- end <cfg>;

8. SelectFil e » Exit toclose the CORE Generator.

Foundation Series 2.1i User Guide 5-41

Foundation Series 2.1i User Guide

5-42

9. Inthe HDL Editor, open the CORE’s .vho file
(component_name.vho) located under the current project.

10. Open a second session of the HDL Editor. In the second HDL
Editor window, open the VHDL file in which the CORE compo-
nent is to be instantiated.

Note: Instead of opening a second sesssion, you could use Edi t —
I nsert Fil e from the HDL Editor tool bar to insert the file into the
current HDL Editor session.

11. Cut and paste the Component Declaration from the CORE
component’s .vho file to your project’s VHDL code, placing it
after the architecture statement in the VHDL code.

Cut and past the Component Instantiation from the CORE
component’s .vho file to your VHDL design code after the
“begin” line. Give the inserted code an instance name. Edit the
code to connect the signals in the design to the ports of the CORE
component.

12. Check the syntax of the VHDL design code by selecting
Synt hesi s - Check Synt ax in the HDL Editor. Correct any
errors. Then save the design and close the HDL Editor.

13. The design with the instantiated CORE module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note: When the design is synthesized, a warning is generated that
the CORE module is unexpanded. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is just
reflecting the black box instantiation.

14. To complete the design, refer to the “Synthesizing the
Design’through the “Programming the Device” sections under
the “All-HDL Designs” section.

Note: The instantiated module must be in the same directory as the
HDL code in which it is instantiated.
Verilog Instantiation

This section explains how to instantiate a CORE component into a
Verilog design using Foundation.

Xilinx Development System

Design Methodologies - HDL Flow

1. With a valid Foundation project open, access the CORE
Generator window using one of the following methods. Its
operation is the same regardless of where it is invoked.

= From the Project Manger, select Tool s - DesignEntry -
CORE Cener at or

e From the HDL Editor, select Tool s -~ CORE Gener at or

2. Select Proj ect - Project Options. In the Project Options
dialog box, ensure that Design Entry is Verilog, that Behavioral
Simulation is Verilog, and that the Vendor is Foundation. The

Family entry should reflect the project’s target device. Click OK to
exit the Project Options dialog box.

3. To aid selection, the available COREs are categorized in folders
on the View Mode section of the main CORE Generator window.
Double click a folder to see its sub-categories. When you double
click a sub-category folder, the available COREs are listed in the
“Contents of” section of the main CORE Generator window.

Efl xilinx CORE Generator 2.1i

10l =|
File Project Core Web Help
D+ BHXL |
Project Path: |D:IFNDTNLActive‘tProjectsIEXAMPLEE LI Target Famihy Yirtex
View mode: Taxonomy ontents of: /Storage Elements & Memaries/RAMs & ROMs
| Basic Elements Mame Type |Vers...| Family Yendor
1 Communication & Networking Dual PartBlock Memary oglc#5 1.0 virtew,Sp... Xilin, Inc.
1 Digital Signal Pracessing Registered DUaIPOM RAM jolC%RE 1.0 XC4000,.. Xiling
jm?th Functions contrallers & Pariaheral Registered ROM WECHFE 1.0 ¥C4000,.. ilinx
icroprocessors, Controllers & Peripherals) . e -
- Renistered SingleFort RAM R0 Hiling
__| ProtoType & Development Hardware Products 2 J it

] Standard Bus Interfaces l[Single Part Block Mermary
‘_J Storage Elements & Memaries
-] Delay Elements

4. To select a CORE, double click on the CORE’s name in the
“Contents of” window. A new window opens to allow you to
view a description of the CORE or its data sheet, to customize the
CORE for your application, and to generate the customized
CORE. (Acrobat Reader is required to view the data sheet.)

Foundation Series 2.1i User Guide 5-43

Foundation Series 2.1i User Guide

dafn:0]

5. When the CORE’s window appears, enter a name for the compo-
nent in the Component Name field.

The name must begin with an alpha character. No extensions or
uppercase letters are allowed. After the first character, the name
may include numbers and/or the underscore character.

6. Other available customization options are unique for each CORE.
Customize the CORE as necessary.

7. Select Gener at e to create the customized CORE and add its files
to the project directory.

The customized CORE component is a collection of several files
including those listed below. The files are located in your Xilinx
project directory for the current project.

5-44 Xilinx Development System

Design Methodologies - HDL Flow

component_name.coe ASCII data file defining the coeffi-
cient values for FIR filters and
initialization values for memory
modules

component_name.xco CORE Generator file containing the
parameters used to generate the
customized CORE

component_name.edn EDIF implementation netlist for the
CORE

component_name.veo Verilog template file

component_name.mif Memory Initialization Module for

Virtex Block RAM modules

The component name is the name given to the CORE in the
customization window. The port names are the names provided
in the .veo file.

An example .veo file produced by the CORE Generator system
followvs.
/***

* This file was created by the Xilinx CORE Generator tool, and *
* is (c) Xilinx, Inc. 1998, 1999. No part of this file may be *
* transmitted to any third party (other than intended by Xilinx) *
* or used without a Xilinx programmable or hardwi re device w thout *
* Xilinx’s prior witten permn ssion. *

/

R R S R o S S S o S R O R R T S R R R S o R IR I o I S T

/1 The followi ng |line nmust appear at the top of the file in which

/1l the core instantiation will be nade. Ensure that the translate off/_on
/1 conpiler directives are correct for your synthesis tool (s)

I Begin Cut here for LIBRARY inclusion -------- /1 LIB_TAG

/'l synopsys translate_off

“include "XilinxCorelLib/C MEM SP_BLOCK V1_0.Vv"

/'l synopsys transl ate_on

/1l LIB TAGEND ------- End LIBRARY inclusion --------------

Foundation Series 2.1i User Guide 5-45

Foundation Series 2.1i User Guide

/1 The follow ng code nmust appear after the nmodule in which it
/1l is to be instantiated. Ensure that the translate_off/_on conpiler
/1 directives are correct for your synthesis tool(s).

I Begin Cut here for MODULE Decl aration

nmodul e nux4 (
ADDR,

CLK,

D,

V\E,

EN,

RST,

DO ;

input [3 : 0] ADDR;
i nput CLK;

input [3: 0] DI;
i nput W\E;

i nput EN;

i nput RST;

output [3 : 0] DG
/'l synopsys transl ate_off

C_MEM SP_BLOCK_V1_0 #(
4,

:
5o

PR RRPRRPRORE

5-46

------- /1 MOD_TAG

Xilinx Development System

Design Methodologies - HDL Flow

. CLK(CLK) ,
.DI(Dl),
- VE(VE)
.EN(EN),
. RST(RST),
.DA(DY));

/1 synopsys translate_on

endnodul e
/1 MOD_TAG END ------- End MODULE Decl aration -------------

/1 The followi ng nmust be inserted into your Verilog file for this
/1 core to be instantiated. Change the instance name and port connections
/'l (in parentheses) to your own signal nanes

I Begin CQut here for | NSTANTIATION Tenplate ---// | NST_TAG
nmux4 Your | nst anceName (

. ADDR(ADDR) ,

. CLK(CLK)

.D(D),

- VEE(V) ,

. EN(EN),

. RST(RST),

-DA(DOY)) ;
/1 INST_TAG END ------ End | NSTANTI ATION Tenpl ate ---------

8. SelectFil e » Exit toclose the CORE Generator.

9. Inthe HDL Editor, open the CORE’s .veo file
(component_name.veo) located under the current project.

10. Open a second session of the HDL Editor. In the second HDL
Editor window, open the Verilog file in which the CORE compo-
nent is to be instantiated.

Note: Instead of opening a second sesssion, you could use Edi t —
I nsert Fil e from the HDL Editor tool bar to insert the file into the
current HDL Editor session.

11. Cut and paste the Component Declaration from the CORE
component’s .veo file to your project’s Verilog code, placing it
after the architecture statement in the Verilog code.

Cut and past the Component Instantiation from the CORE
component’s .veo file to your Verilog design code after the

Foundation Series 2.1i User Guide 5-47

Foundation Series 2.1i User Guide

5-48

12.

13.

“begin” line. Give the inserted code an instance name. Edit the
code to connect the signals in the design to the ports of the Logi-
BLOX module.

Check the syntax of the VHDL design code by selecting
Synt hesi s - Check Synt ax in the HDL Editor. Correct any
errors. Then save the design and close the HDL Editor.

The design with the instantiated CORE module can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note: When the design is synthesized, a warning is generated that
the CORE module is unexpanded. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is just
reflecting the black box instantiation.

14.

To complete the design, refer to the “Synthesizing the
Design’through the “Programming the Device” sections under
the “All-HDL Designs” section.

Note: The instantiated module must be in the same directory as the
HDL code in which it is instantiated.

XNF file in a VHDL or Verilog Design

This section explains how to instantiate an XNF file as a black box in a
VHDL or Verilog design.

1.

To attach an XNF module in the VHDL or Verilog code, use the
nets named in the PIN records and/or SIG records in the XNF file
as the port names of the component instantiation. The following
is an example XNF file with PIN and SIG records.

SYM current_state_reg<4>, DFF, LIBVER=2.0.0

PIN, D, |, next_state<4>, |,
PIN, C I, N1O, ,

PIN, Q O current_state<4>, |,
END

SI G current_state<4>

SIG CLK, 1|, ,

SI G DATA I, ,

SIG SYNCFLG O ,

To reference buses in the instantiation of XNF modules, the nets
named in PIN records and/or SIG records must be of the form.

netname<number>

Xilinx Development System

Design Methodologies - HDL Flow

This designation allows the bus to be referenced in the VHDL
component as a vector data type.

2. Using the filename of the XNF file as the name of the component
and the name of nets in the XNF file as port names, instantiate the
XNF file in the VHDL or Verilog code.

3. The design with the instantiated XNF black box can then be
synthesized (click the Synt hesi s button on the Flow tab).

Note: When the design is synthesized, a warning is generated that
the XNF module is unexpanded. Modules instantiated as black boxes
are not elaborated and optimized. The warning message is just
reflecting the black box instantiation. Expansion of the XNF module
takes place during the Translation stage of the Implementation phase.

4. To complete the design, refer to the “Synthesizing the
Design’through the “Programming the Device” sections under
the “All-HDL Designs” section.

The instantiated module must be in the same directory as the HDL
code in which it is instantiated.

Schematic Designs in the HDL Flow

To take advantage of cross-boundary optimization and top-down
synthesis methodology, you can use the HDL flow instead of the
Schematic flow for top-level schematic designs with underlying HDL
macros. In the HDL flow, your entire design is synthesized and opti-
mized resulting in overall design performance improvement. The
HDL flow is recommended for schematic top-level designs that
contain underlying HDL macros. Used in this way, the tool behaves
like an HDL block level diagram editor.

The following sections describe the HDL flow procedure for top-level
schematic designs containing underlying HDL macros.

Adding a Schematic Library

In an HDL flow project, the device family is not selected until the
design is synthesized. Therefore, you need to add a Xilinx library
manually to make the Xilinx components available for schematic
entry.

Foundation Series 2.1i User Guide 5-49

Foundation Series 2.1i User Guide

5-50

1.

From the Project Manager window, select Fi | e - Pr oj ect
Li brari es.

Project Libraries x|
Attached Libraries: Project Libraries:
TnErm_new ;l Eddlss I abc
Fimprims simprims
spartan << F| sparkans
spartani il w4000
wabelsim i
%4000 Ll
4000
:295003 L|b Manager
Attach... Cloze | Help |

Select the target library for the desired device in the Attached
Libraries window.

Click Add to add the library to your project. The library name will
appear in the Files tab.

Note: If you want to create a top-level schematic to act only as a block
diagram for your HDL designs, you do not need to add a schematic
library.

Creating HDL Macros

Use the following procedure to create a macro from an HDL file (or
State Machine) for use in a schematic.

1.

Click the HDL Editor on the Design Entry button on the Project
Manager’s Flow tab.

Create or open an HDL file in the HDL Editor.

To create a symbol for the HDL file after you have finished
editing or creating the file, select Pr oj ect - Create Macro
from the HDL Editor. The symbol is created and added to the SC
Symbols list.

(If you are asked for an initial target device when the macro is
being created, enter any device. The synthesis that is done here is
only necessary to create the symbol.)

Note: If the Create Macro or Update Macro option is not available,
check whether the HDL file has already been “added” to the project.
If it is listed in the Files tab of the Project Manager, it is currently
“added” to the project. Remove the file from the project by selecting it

Xilinx Development System

Design Methodologies - HDL Flow

and choosing Docunent - Renpve. You can now create the macro.
The file will be automatically added to the project when the entire
design is analyzed later.

Creating the Schematic and Generating a Netlist

This section lists the basic steps for creating a schematic and gener-
ating a netlist from it.

1. Open the Schematic Editor by selecting the Schematic Editor icon
from the Design Entry box on the Project Manager’s Flow tab.

I@%‘D—

»
DESIGN ENTR g #
.
2. Select Mode - Symbol s to add components to your new
schematic. Select specific components from the SC Symbols
window.

3. To define the ports, use Hierarchy Connectors.

C-
Hirc:h_l,.l Connector

Do not use pad components (IPAD, OPAD, etc.) from the Xilinx
Unified Libraries. Foundation will synthesize the design from the
top down and will add ports as well as buffers, if necessary.

Care must be taken when adding attributes to the schematic as
follows:

= Pinlocations, slew rates, and certain other design constraints
may be added to the design using the Express Constraints
Editor or a UCF file.

= Pin location or slew rate constraints may be placed on the I/
O buffer (or flip-flop or latch) on the schematic. Do not place
them on the net or the hierarchy connector.

4. Save your schematic by selecting Fi | e - Save.

5. Add the schematic to your project by selecting Hi erarchy -
Add Current Sheet t o Proj ect. The schematic is netlisted

Foundation Series 2.1i User Guide 5-51

Foundation Series 2.1i User Guide

5-52

and added to the project. The schematic (as well as any under-
lying HDL files) appear in the Files tab.

Note: If the HDL macros in the schematic have lower levels of hier-
archy or use user-defined libraries, you must add the files for the
lower levels to your project manually. Select Docunent - Add from
the Project Manager to add the files. Foundation needs access to all
the design files before synthesis can occur.

Selecting a Netlist Format

When a schematic is added to the project or when Foundation
analyzes the schematic portion of the design, the schematic is
netlisted into one of three formats: VHDL, XNF, or EDIF. (By default,
VHDL is used.)

From the Project Manager, select Synt hesi s — Opti ons and
choose a netlist format in the “Export schematics to” section based on
the following criteria.

= |fthe design is only a block diagram (there are no Unified Library
components), use VHDL.

= |If no attributes are passed from the schematic (including within
Xilinx macros), use VHDL

= [fthe schematic includes XNF macros that contain RLOCs, use
VHDL or select the Preserve Hierarchy option (in the Synthesis
Settings dialog box).

= [fany attributes have been applied within the schematic, then
select XNF or EDIF.

= |fthe design targets a Virtex device, XNF may not be used.

Completing the design

Synthesize the design in the same manner you would a top-level
HDL design.

1. Click the Synthesis (or Implementation) button on the Flow tab.

2. Select the schematic as the top-level in the Synthesis/Implemen-
tation settings dialog box.

3. Inthe Target Device section, be sure to select the device family
that matches the schematic library you added to the project.

Xilinx Development System

Design Methodologies - HDL Flow

4, Click Run.

Foundation links all the project files and synthesizes the design using
the top-down methodology.

HDL files from the schematic are added to the project when the sche-
matic is analyzed. All HDL and State Machine files for which sche-
matic macros were created are added to the Files tab. You may open
and edit these files by double clicking on them in the Files tab.
However, you can only update the HDL macros by opening them
from the Schematic Editor and then selecting Pr oj ect — Updat e
Macr o.

For more information on completing an HDL flow project, refer to the
“Synthesizing the Design”through the “Programming the Device”
sections under the “All-HDL Designs” section.

Foundation Series 2.1i User Guide 5-53

Foundation Series 2.1i User Guide

5-54 Xilinx Development System

Chapter 6

HDL Design Entry and Synthesis

This chapter give an overview of HDL file selection for projects,
compares synthesis of HDL modules in Schematic Flow projects and
HDL Flow projects, explains how to manage large designs, and
discusses advanced design techniques.

This chapter contains the following sections:
= “HDL File Selection”

= “Synthesis of HDL Modules”

= “Managing Large Designs”

= “Design Partitioning Guidelines”

= “User Libraries for HDL Flow Projects”
e “Using Constraints in an HDL Design”

Refer to the“Design Methodologies - HDL Flow” chapter for several
examples of HDL designs.

HDL File Selection

To begin entering or editing a design in HDL, click the HDL Editor
icon, which is part of the Design Entry button on the Project
Manager’s Flow tab. The Editor dialog box displays and presents
options for a design file, as shown in the following figure.

Foundation Series 2.1i User Guide 6-1

Foundation Series 2.1i User Guide

6-2

HDL Editor x|

— Create new document;

QI = Create Empty

— Open:
EI = Existing document
E‘I = 'memony. vhi
2| © Untitied vhd
il = 'memony. whd'

EI i 'DAFMD T A ctivetexeiU ntited.

(] I Cancel

= Create new document

Use HDL Design Wizard

Use this option for new designs. The Wizard includes dialogs
for you to select the HDL language (VHDL or Verilog), enter
the design name, and create ports. When finished, “skeleton”
code pops up, complete with the library, entity, ports, and
architecture already declared.

Create Empty

Use this option for new designs. This option starts the HDL
Editor and displays a blank page.

< Open

Existing Document
Use this option to select an already existing HDL file.
Active document

Use this option to select from the list of up to the last four
active documents.

Xilinx Development System

HDL Design Entry and Synthesis

Adding the File to the Project

After creating an HDL file for an HDL Flow project, you must “add”
the HDL file to the project. You can do this from within the HDL
Editor by choosing Pr oj ect - Addt o Proj ect . Alternatively, you
can add files to the project by selecting Synt hesi s —» Add Sour ce
Fi | e(s) or Docunent - Add from the Project Manager.

In an HDL Flow project, the top level of the design is chosen prior to
design “elaboration” in the Synthesis phase. For Verilog, it is not
necessary to add files in a specific order. For VHDL, it is important to
add the files in the order in which they must be analyzed. Any files
depending on the successful analysis of another must appear below
that file in the Files tab.

Removing Files from the Project

You can remove files from a project by clicking on the file and
selecting Docunent - Renove from the Project Manger.

Note: Removing a file from a project does not erase the file from the
disk. It merely removes it from the project.

Getting Help with the Language

The Foundation HDL Editor provides HDL language assistance
through both the Language Assistant and the Online Synthesis
Documentation. The Language Assistant, shown in the“VHDL
Language Assistant” figure, provides templates to aid you in
common VHDL logic functions, and architecture-specific features.
The “Verilog Language Assistant” figure shows the Verilog Language
Assistant that provides templates to aid in for editing Verilog files.
The Language Assistant also includes CORE Generator Instantiation
templates (see the “CORE Generator Templates in Language
Assistant” figure) for modules created with the CORE Generator tool.

To access the Language Assistant, open the HDL Editor, and select
Tool s -~ Language Assi st ant .

The HDL Editor also checks syntax. From the HDL Editor, select
Synt hesi s - Check Synt ax to analyze the file.

Refer to the HDL Editor’s online help for more information on the
Language Assistant.

Foundation Series 2.1i User Guide 6-3

Foundation Series 2.1i User Guide

6-4

{7 Language Assistant - YHDL

2l x|

- Templates
i Language templates
B S_l,lnthBS|s templates
- Bamel Shifter
[+~ Boundary Scan

- Debounce circuit
- Decoder

- Encoder

[#- Flip Flops

- Global Clack Buffer
- HEXZLED Conwerter
[#- Latches

[+ Multiplexers

- Pulldown

- Pullup

- Rahd SR

- Readback

[+ Shift Benisters

Hide preview << | I

||~ N-bit Comparator, sprchronous with reset |-
- Pleage defing the value of M for & and B

- CLE: in STD_LOGIC:
RESET: inSTD_LOGIC;
A, B:inSTD_LOGIC_YECTOR[M down
&LB, 4GE: out STD_LAGIC;
ALEB, AGER: out STD_LOGIC;
AER, AWER: out STD_LOGIC

process[CLK RESET) —
begin
if [HESET 1] then
ALB <="0"
AGB <=0
ALEB <='0"
o AGEB <="0%
AEB <=0
AMEB <="0";
ELSIF [CLE'event and CLE ="' then
if[A< B)then ALE <="1"

else ALB <="0" -
Il il

e i e

Figure 6-1 VHDL Language Assistant

Q Language Asszistant - Yerilog

2l x|

B Synthesm templates
- Bael Shifter
[~ Boundary Scan

- Debounce circuit

- Decoder

- Encoder

[#- Flip Flops

- Global Clock, Butfer
- HEXZLED Corrverter
[#- Latches

[+ Multiplezers

- Pulldown

- Pullup

- RadMAROM

- Readback,

[+ Shift Registers

[#- Startup

[+ State Machines

Hide preview << | Use I

ey

;I 24 N-bit Comparator, synchronous with reset |-
M Please define the value of M for & and B

M input CLE;

A input RESET;

I input [M:0] 4, B;

M output &LB, AGE;

M output &L ER, AGER;

M output AR, AMER:

req ALE, AGE, ALEB, AGEB, AER, ANEE;

ahwaps (@(pozedge CLK or pozedge RESET)

if [RESET]
begin
ALB «<=1b0;
AGE <=1'b0;
L ALEB <=1'b0;
AGEB <=1'b0;
AER <= 1b0;

AMEB <= 1'b0; -
=l L|_I

Eae| e | 5EEE

Figure 6-2 Verilog Language Assistant

Xilinx Development System

HDL Design Entry and Synthesis

Q Language Assistant - YHDL 2x|
B~ T_emplates - Thiz file was created by the Xilink CORE Generator tool, and - ;I

- ig [#ilire, Inc. 1998, 1939, Mo part of this file may be

- tranzmitted bo any third party [other than intended by <iline] - -

- of uzed withaut a =iling programmable ar hardwire dewce wﬂhnut
- Wilire's prior written permizsion,

T core?
I Language terplates
- Synthesiz templates
e User templates

- The following code must appear in the YHOL architecture header:

------------- Beain Cut here for COMPOMNEMT Declaration - COMP_TAG
compatent my_care]

part |

d: M std_logic VYECTORI[Y downto O];

c: M std_logic;

ce: M std logic; -
4| | _'l_l

Hide preview <<| Lsze I Edi | i [=5] | Deletel

Figure 6-3 CORE Generator Templates in Language Assistant

Synthesis of HDL Modules

Foundation projects can be either Schematic Flow or HDL Flow
projects. Many of the HDL editing and synthesis operations
described in this section are the same for both flows; however, differ-
ences do exist and are noted where appropriate. This section
describes how to synthesize your design without also continuing
through implementation.

Schematic Flow Methodology

In a Schematic Flow project, VHDL and Verilog modules can only be
underlying modules in a top-level schematic design. Each HDL file is
synthesized and optimized separately. Top-level ABEL designs and
ABEL State Machine designs are only supported in the Schematic
Flow.

The Schematic Flow methodology can be beneficial if you have a few
HDL blocks in an otherwise schematic environment. In this case, you
synthesize each individual HDL module separately.

Following is the general procedure to synthesize HDL Modules in
Schematic Flow Projects.

1. Open the HDL file in the HDL Editor. This can be done by the
methods listed in the “HDL File Selection” section or by double

Foundation Series 2.1i User Guide 6-5

Foundation Series 2.1i User Guide

clicking on the .vhd (VHDL) or .v (Verilog) file in the Project
Manager.

2. Select Synt hesi s - Opti ons to access the FPGA Express
Options window. In the General tab, select the optimization
options for the module.

3. Click on the Advanced tab. Select the top-level entity and archi-
tecture, and click OK.

4. To synthesize the module and create a symbol, choose Pr oj ect
- Cr eat e Macr o from the HDL Editor window.

5. Repeat step 4 for each HDL module.

6-6 Xilinx Development System

HDL Design Entry and Synthesis

HDL Flow Methodology

In an HDL Flow project, all top-level VHDL and Verilog files and
schematics are exported to the synthesis tool and optimized. Pre-
Implementation constraint editing, cross-boundary optimization, and
auto 1/0 buffer insertion are only available in an HDL Flow Project.

The HDL Flow approach provides an easier method of compilation. It
requires only a single synthesis action for all HDL modules. In
addition, this method includes optional cross-boundary optimization
of the entire design, editing of constraints prior to implementation,
and auto 170 buffer insertion.

Following is the general procedure to synthesize HDL modules in
HDL Flow Projects.

1. Besure that all HDL files are added to the project. See the
“Adding the File to the Project” section for instructions on
adding files to a project. Underlying HDL macros in top-level
schematics in HDL projects are an exception to this; files for those
HDL macros are added automatically during synthesis.

2. From the Project Manager window, set the global synthesis
options by selecting Synt hesi s - Opti ons to open the
Synthesis Options dialog box.

Synthesis Options x|
— FSM Synthesis: Default encoding
' One Hot ¢ Binary € Zera One Hat
Cancel |

—FSk syrthesiz: [nterpretation of %HOL 'when others'

% Fastest & smallest (only defined states] Help |

" Safest [all possible, including ilegal, states)

— Export schematics to

 Auto % Yhd| i HNF € Edif

"Verilog ‘ifdef support

" Enable & Digable
Input #MF Bus Style Za(Edy
Drefault Frequency L]

Foundation Series 2.1i User Guide 6-7

Foundation Series 2.1i User Guide

In the Synthesis Options dialog box, set the Default FSM
Encoding style, XNF Bus Style, and Default Frequency. Check the
Export Ti m ng Constrai nt box if you want to have timing
and pin location constraints entered after the elaboration step to
be automatically exported to place and route tools.

For FSM Encoding style, use the following guidelines for best
results.

= If your target device is an FPGA, choose One Hot.
= Ifyour target device is a CPLD, choose Binary.

Refer to the “Selecting a Netlist Format” section of the “Design
Methodologies - HDL Flow” chapter for information on setting
the “Export schematic to” option.

Click K when all desired options are set.

3. To synthesize the design, click the Synt hesi s button on the
Flow tab. This opens the Synthesis/Implementation dialog box.

Syntheziz/Implementation settings ﬂ
Top level: Jtreqr =l Bun I
Wersion namme: |ver1 OF. |
Synthesiz Settings: SET | Cancel |

Help |

Target Device

Farnily: ISF'AF!TANXL vI
Device: ISUE:{LPEBJ, VI Speed: |-5 vI

[~ Edit Syrthesis/Implementation constraints

[‘iew E stimated Performance after Dptimization

= st B [mplementation feals
Phyzical Implementation zettings

Revizgion name: Ilev'l {10 i |

Control Files: SET

4. In the Synthesis/Implementation dialog box, you can do the
following.

= Select the name of the top-level entity or module from which
processing of the design hierarchy should begin

6-8 Xilinx Development System

HDL Design Entry and Synthesis

= Enter a version name
= Select the target device

= Choose to edit constraints after elaboration. This option
opens the Express Constraints Editor before the design is
optimized by the synthesis engine.

= Choose to view the estimated performance after optimization
spreadsheets. This opens the Express Time Tracker and
displays the design’s pre-implementation timing estimates.

= Click SET to access the Synthesis Setting and modify the
synthesis settings as desired

When ready, click Run to synthesize the design.

Managing Large Designs

The following subsections explain how to manage large designs.

Design Optimization

With Foundation, you can control optimization of the design on a
module-by-module basis. This means that you have the ability to, for
example, optimize certain modules of your design for speed and
some for area. In addition, an effort level for the optimization engine
can be set to either high or low.

For the Schematic Flow projects, the optimization goals may be set in
the HDL Editor, by selecting Synt hesi s - Opti ons.

For Foundation HDL Flow projects, the optimization goals are set for
individual modules in the “module” tab of the Express Constraints
Editor. (The module tab is shown in the following figure.)

Foundation Series 2.1i User Guide 6-9

Foundation Series 2.1i User Guide

il verl [Constraints]]
Clocks I Faths | Ports Modules | iing Options I
L Duplicate
Hame Hierarchy | Primitives Opera_tor Cpiiizs Effort Register
Sharing for
Merge
1 B =default= Eliminate Prezerve on Speed Lo Dizable
2 EHER v TIMER
B [LIMLIMKED - Th (TIMER)
4 Bl 0504 - OS Preserve
L | i

Ok I E xport Constraints...l Irnport Constraints...l

Setting Constraints Prior to Synthesis

With the Foundation Express product you can set performance
constraints and attributes to guide the optimization process on a
module-by-module basis. Select Edi t Synt hesi s/ | npl enent a-
ti on Constrai nt s in the Synthesis/Implementation settings
dialog box to access the Express Constraints Editor window. This
window contains tabs with spreadsheets and dialog boxes specific to
the target architecture. You need to select Vi ewEst i mat ed

Per f ormance after Qpti m zati on in the Synthesis/Implemen-
tation settings dialog box to view spreadsheets containing the results
obtained as a result of setting the constraints. Refer to the“Using
Constraints in an HDL Design” section for more information on
constraints in HDL designs.

Design Partitioning Guidelines

6-10

The way in which a design is partitioned can affect how well the
optimizer can optimize the combinatorial logic. If a design is poorly
partitioned in the entry phase, logic optimization can suffer. Here are
some HDL coding and partitioning guidelines that will help improve
logic optimization.

= Avoid imposing boundaries on combinatorial paths.

If parts of a combinatorial logic path are compiled in separate
modaules, no logic optimization can be performed across the
block boundaries.

Xilinx Development System

HDL Design Entry and Synthesis

Instead, partition the design so that combinatorial paths are not
split across multiple modules. This gives the software the best
opportunity to optimize combinatorial logic on the path.

5

COMB. COMB. COMB.

i LOGIC LOGIC LOGIC -
REG A B c REG
A C

X8145

Figure 6-4 Combinatorial Logic Path Split Across Boundaries
(Inefficient Use of Design Resources)

REG REG

X8146

Figure 6-5 Combinatorial Logic Path Grouped Into One Block
(Efficient use of Design Resources)

= Register all block outputs.

Partition the design into modules in such a way that all block
outputs are registered. This guarantees that no boundaries are
imposed on any combinatorial paths, as discussed previously.

User Libraries for HDL Flow Projects

In the Foundation Express environment, a user library is an HDL file
which is referenced by another file through a LIBRARY statement. A
user library can contain packages and/or entities.

Foundation Series 2.1i User Guide 6-11

Foundation Series 2.1i User Guide

Creating a New Library

User libraries are stored as part of the Foundation project. Following
are the basic steps to create new libraries in HDL Flow projects.

1. Select Synt hesi s - NewlLi br ary from the Project Manger.

2. Enter a name for the new library and click OK. The new library is
added to the list of project files on the Files tab.

3. To add files to the new library, right click on the library name in
the Files tab list.

4. Selectthe Add Source Fi | est o“library_name” option to access
the Add Document dialog window where you can select the files
to be added to the library. The files are analyzed automatically as
they are added.

Declaring and Using User Libraries

In the VHDL or Verilog code, user libraries for Foundation projects
are declared and used just like system libraries such as IEEE. For
example, to access the entities defined in the library mylib.vhd, use
the following VHDL syntax:

library MYLIB
use MYLIB. all;

User library directories that are part of a project are automatically
searched when referenced in VHDL.

Using Constraints in an HDL Design

The following sections provide information on adding constraints to
HDL designs.

Express Constraints Editor

Foundation Express users have access to the Express Constraints
Editor. The Express Constraints Editor includes a window with five
different tabs. The following three tabs represent constraints that can
be applied to the design prior to synthesis: Clock, Paths, and Ports.

= The Clocks tab allows you to specify overall speeds for the clocks
in a design.

6-12 Xilinx Development System

HDL Design Entry and Synthesis

The Paths tab allows you precise control of point-to-point timing
in a design.

The Ports tab allows OFFSETS, pullups/pulldowns, and pin
locations to be specified in a design.

#8 verl [Constraints] _ o) x|
Elocksl Paths ~ Ports | Modulesl Hilirs Dptionsl
Output -
= - |Input Delay| Pad|_ . Input Reg Use Slew

Hame |Direction {ns) [:;Isa?! Global Buffer Dir Delay 110 Reg Rate Pad Loc j
1 =default= ALTOMATIC NONE DELAY TRUE SLOW
2 RESET |input [el]
3 PUSHE |input o)
4 SPEED |input o)
5 ISP &6 | output e
& DISP&=5= | output W
7 DISP A== | output W
& DISPA<3» | output o hd

QK I Export Congtraints. .. | Import Constraints... |

The

timing constraints specified in the Express Constraints Editor

tabs are translated into FROM:TO or PERIOD timespecs and placed
in an NCF file. Following is an example:

Cur
app

Exp

TIMESPEC TS_CLK = PERIOD “CLK” 20 ns HIGH 10;

rently, Express cannot apply all Xilinx constraints. Express can
ly the following constraints:

PERIOD

FROM:TO timespecs which use FFS, LATCHES, and PADS
Pin location constraints

Slew rate

TNM_NET

PULLUP / PULLDOWN
OFFSET:IN:BEFORE

OFFSET:OUT:AFTER

ress cannot apply the constraints listed below:
TPSYNC

TPTHRU

Foundation Series 2.1i User Guide 6-13

Foundation Series 2.1i User Guide

6-14

- TIG

e user-RLOCs, RLOC_ORIGIN, RLOC_RANGE
* non-1/0 LOCs

= KEEP

e U_SET, H_SET, HU_SET

= user-BLKNM and user-HBLKNM

e PROHIBIT

Express can create its own timegroups by grouping logic with
common clocks and clock enables. In addition, you can form user-
created timing subgroups by right clicking on an existing timing path
and choosing New Sub Path.

Xilinx Logical Constraints

For constraints that cannot be applied using the Express Constraint
Editor, a UCF file can be used to specify logical constraints.
Constraints or attributes that can be applied within a schematic,
netlist, or UCF file are known as logical constraints. Logical
constraints ignore timing paths, prohibit pin locations, or constrain
placement of elements in an FPGA or CPLD design. In order to use a
logical constraint correctly, the "instance" name of the logic in a
design must be used. Instance names are XNF SYM record names,
XNF SIG record names, XNF net names, and EXT record names. For
examples of reading these instance names out of a XNF file from
Express, refer to the following figure.

SYM, current_state_reqg<4:>, DFF, LIBYER=2.0.0
PIM, D, I, next_state<d:, ,

PIN, C, I, W10, .

PIN, 3, O, current_state<d:, ,

END

510, current_state<d:

EXT, CLk, I, .

EXT, DAaTA, I, .

EXT, SWMWCFLG, O, ,

Figure 6-6 XNF example

In the preceding figure, the SYM record name can be referenced by a
logical constraint by using the instance name, current_state_reg<4>.
A net called N10 or current_state<4> can also be used in a logical

Xilinx Development System

HDL Design Entry and Synthesis

constraint. EXT records correspond to pins used on a package. The
EXT records named CLK, DATA, and SYNCFLG can be referenced in
a pin locking constraint.

For more information on Xilinx constraints, refer to the “Attributes,
Constraints, and Carry Logic” chapter in the Libraries Guide.

Reading Instance Names from an XNF file for UCF
Constraints

UCF constraints are applied by referencing instance names that are
found in the XNF file. Instance names for logic in a design can be
found by reading the XNF file. Refer to XNF syntax in the “XNF
example” figure for the examples in this section. The following
examples illustrate valid entries within a UCF file.

< A TNM constraint can be applied to an FF by using the instance
name from the XNF file. Similarly, a LOC/RLOC can be applied:

INST “current_state_reg<4>" TNM=group1;
INST “current_state_reg<4>" LOC=CLB_R5C5;

By attaching a TNM to this flip-flop instance name, this flip-flop
can be referenced in a FROM:TO timing specification. Any
symbol that can have an M1 constraint applied is referenced by
using the string following the keyword: SYM.

< Apinonadevice may be locked to a package-specific position by
referencing the EXT record name and adding the .PAD string:

INST “DATA.PAD” LOC=P124;

= An attribute which can be placed on a net, like KEEP or TNM,
can be referenced by referencing the netname on the PIN record
or SIG record:

NET “current_state<4>" KEEP;
NET “current_state<4>" TNM=group2;

A final note on referencing instance names from a XNF file: match the
case; hames are case-sensitive. If the case of names in the XNF file is
not followed exactly, the implementation software may not be able to
find (or may incorrectly find) an instance name for a constraint.

Foundation Series 2.1i User Guide 6-15

Foundation Series 2.1i User Guide

Instance Names for LogiBLOX RAM/ROM

In the Foundation Express methodology, whenever large blocks of
RAM/ROM are needed, LogiBLOX RAM/ROM modules should be
instantiated by the user in the HDL code. With LogiBLOX RAM/
ROM modaules instantiated in the HDL code, timing and/or
placement constraints on these RAM/ROM modules and the RAM/
ROM primitives that comprise these modules, are specified in a .ucf
file.

To create timing and/or placement constraints for RAM/ROM
LogiBLOX modules, you must know how many primitives are used
and how the primitives inside the RAM/ROM LogiBLOX modules
are named.

Note: LogiBLOX does not support Virtex. You can get a Virtex RAM
from the CORE Generator system.

Calculating Primitives for a LogiBLOX RAM/ROM
Module

When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible
by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether
32x1 or 16x1 primitives are used, the number of RAM/ROMs
primitives can be calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1’s. Based on the depth, each bank would have
three RAM16x1’s.

Naming Primitives in LogiBLOX RAM/ROM Modules

Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX would be named as follows:

MEMD O MEMLO MEMR2.O MEMB O
NEMD_1 MEML_1 MEM2_1 MEMB_1
NEMVD_2 MEML_2 MEM2_2 MEMB_2

6-16 Xilinx Development System

HDL Design Entry and Synthesis

Each primitive in a LogiBLOX RAM/ROM module has an instance
name of MEMX_y, where y represents the primitive position in the
bank of memory, and where x represents the bit position of the RAM/
ROM output.

Referencing LogiBLOX Entities

This section is written in terms of the Verilog example, using the files
illustrated in Figures 6-6 through 6-9. This section also applies to the
VHDL example in Figures 6-10 through 6-13.

LogiBLOX RAM/ROM modules in an HDL Flow project are
constrained using a UCF file.

LogiBLOX RAM/ROM modules instantiated in the HDL code can be
referenced by the complete hierarchical instance name. If a LogiBLOX
RAM/ROM module is at the top-level of the HDL code, then the
instance name of the LogiBLOX RAM/ROM module is just the
instantiated instance name. In the case of a LogiBLOX RAM/ROM
that is instantiated within the hierarchy of the design, the instance
name of the LogiBLOX RAM/ROM module is the full hierarchical
path to the LogiBLOX RAM/ROM. The hierarchy level names are
listed from the top level down and are separated by a " "

In the Verilog example, the RAM32X1S is named "memory". The
memory module is instantiated in the Verilog module "inside" with
an instance name "U1". "inside" is instantiated in the top-level
module "test" with an instance name "U0". Therefore, the RAM32X1S
can be referenced in a UCF file as "U0_U1". For example, to attach a
TNM to this block of RAM, the following line could be used in the
UCEF file:

INST “U0_U1" TNM=block1,

Since U0_U1 is composed of two RAM primitives, a timegroup called
block1 is created; the blockl TNM can be used throughout the UCF
file as a timespec end/start point, and/or U0_U1 could have a LOC
area constraint applied to it. If the RAM32X1S has been instantiated
in the top-level file and the instance name used in the instantiation is
U1, then this block of RAM can just be referenced by U1.

Sometimes it is necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a

Foundation Series 2.1i User Guide 6-17

Foundation Series 2.1i User Guide

LogiBLOX RAM/ROM module. Consider the RAM32X2S example.
Suppose that each of the RAM primitives needs to be constrained to a
particular CLB location.

Based on the rules for determining the MEMXx_y instance names,
using the example from above, each of the RAM primitives can be
referenced by concatenating the full-hierarchical name to each of the
MEMX_y names. The RAM32x2S created by LogiBLOX will have
primitives named MEMO_0 and MEM1_0. So, CLB constraints in a
.ucf file for each of these two items would be:

INST “U0_U1/MEMO_0" LOC=CLB_R10C10
INST “U0_U1/MEMO_1" LOC=CLB_R11C11

In the following figure, the LogiBLOX module is contained in the
“inside UO” component.

test.v:

module test(DATA,DATADUT,ADDR,C.ENB):
input [3:0] DATA;

output [2:0] DATAOUT;

input [5:0] ADDR:

input

input EMB:

wire [3:0] dataoutreg;

req [3:0] datareq;

req [3:0] DATAOUT:

req [S:0] addrreg;

inside U0 C.MDATACdatareqd,.MDATACUT(dataoutreq), . MADDR Caddrregd, . COC), . WECENB)]

always@iposedge C)
datareq = DATA;

always@iposedge C)
DATAOUT = dataoutreq;

always@{posedge)
addrreq = ADDR;
endmodul e

Figure 6-7 Top-level Verilog File

The following figure illustrates the instantiated LogiBLOX module,
“memory U1”.

6-18 Xilinx Development System

HDL Design Entry and Synthesis

inside.v:
module inside(MDATA, MDATAOUT, MADDR, C,WED;

input [3:0] MDATA;
output [3:0] MDATAOUT;
input [5:0] MADDR;
input C;

input WE:

memary U1

{ . ACMADDRY .
LDOCHMDATAOUTS
LDICMDATAD ,
-WR_ENCWE) ,
JWR_CLECCH)

endmodule

Figure 6-8 Verilog File with Instantiated LogiBLOX Module

When the LogiBLOX module is created, a .vei file is created, which is
used as an instantiation reference.

S8 LogiBLO¥ SYMC_RAM Module "memory”
Jf Created by LogiBLOX version M1.4.12
i on Fri Dec 19 14:56:42 1997

S Attributes

A MODTYPES = SYMC_RAM

A BUS_WIDTH = 4

A DEPTH = 44

memory instance_name
C.Aa 0.

oo o,

DI 0,

CWR_EN (D,

JWRCLE O 3;

module memory (A, DO, DI, WR_EN, WR_CLK);
input [5:0] A;

output [3:0] DO;

input WR_ENM:

input WR_CLK:

endnodule

Figure 6-9 VEI File Created by LogiBLOX

Foundation Series 2.1i User Guide 6-19

Foundation Series 2.1i User Guide

6-20

test.ucf:

IHST U0_U1 THM = usermem;
TIMESPEC T5_E= FROM @ FFS (TO:

INST U0_U1/memd_0 LOC=CLE_R7C2;

Usermem:

a0:

Figure 6-10 UCF File for Verilog Example

test.vhd:

Tibrary IEEE;

use IEEE.STD_LOCIC_
use IEEE.STOD_LOGIC_

entity test is
part{

1164.al1;
UMSIGHED.all;

DATA: in STO_LOCIC_VECTORCI downto 00

DATAQUT: out STO_LOGIC_WECTOR(3 downto 03;
ADDR: din STD_LOCIC_VECTORCS downto 00
C, ENB: in STD_LOGIC);

end test;

architecture detail

s of test is

signal dataoutreg,datareg: STO_LOCIC_WECTOR(3 downto 0J;
signal addrreg: STD_LOGIC_VECTOR(S downto 03

component inside
port(

MDATA: in STD_LOGIC_VECTOR(3 downto 0):

MDATAOUT: out STD_LOGIC_VECTOR(C3 downto 03;

MADDR: in STD_LOGIC_VECTOR(S downto 0):

CLWE: in STD_LOGIC);

end component;
hegin

Uo: inside port
map (MOATA=»datareg.

process(C)

hegin
if(C event
datareg <=
end if:

end process;

process{ € 3

hegin
if{C event
DATAOUT <=
end if;

end process;

process(C)

hegin
if (7 event
addrreg <=
end if:

end process;

end details;

LMOATAOUT=>dataoutreq. (MADDR=>addrreq, (=>C,WE=>ENB); map

and C="1") then
DATA;

and C="1"3 then
dataoutreq;

and C="1") then
AD0R;

Figure 6-11 Top-level VHDL Example File

Xilinx Development System

HDL Design Entry and Synthesis

inside. vhd:

entity inside is
port{ MDATA: in STO_LOCIC_WECTOR(Z downto 03;
MDATAOUT: out STD_LOCIC_VECTORCZ downto 03;
HMADDR: in STO_LOGIC_WECTORCS downto 03
C,WE: in STD_LOGICT:
end inside;

architecture details of inside 15

component memory

port{ A: in STO_LOGIC_WECTOR(S downto 0J;
0o: out STD_LOGIC_WECTOR(Z downto 03
DI: in STD_LOGIC_WECTOR(C3 downto 0);
WR_EM,WR_CLk: in STD_LOGIC]:

end component;

hegin
U1: memory port mapCé=>MADDR, DO=>MDATAOUT ,DI=>MDATA, WR_EM=>WE ,WR_CLK=>C);
end details;

Figure 6-12 VHDL File with Instantiated LogiBLOX Module

LogiBLOX SYHC_RAHM Hodule "‘memory"
Created by LogiBLOX version C.16

on Tue Jun 22 12:57:86 1999
Attributes

HODTYPE = SYHC_RAH

BUS_WIDTH = &4

DEPTH = 16

STYLE = MAX_SPEED

USE_RPFH = FALSE

component memory
PORT(

A: IN std_logic_vector{3 DOWNTO B8);
DO: OUT std logic_vector{3 DOWNTOD A);
DI: IM std_logic_vector({3 DOWNTO 8);
WR_EHN: IN std_logic;
WR_CLE: IN std_logic);

end component;

instance_name : memory port map
(A =>,

po =» ,

DI =» ,

WR_EH => ,

MR_CLK =>);

Figure 6-13 VHI File Created By LogiBLOX

Foundation Series 2.1i User Guide 6-21

Foundation Series 2.1i User Guide

test.ucf:
IHST U0_U1 THM = usermem;

TIMESPEC T5_E= FROM @ FFS :TO: usermem: 30;
INST UO0_U1/memd_0 LOC=CLB_R7C2:

Figure 6-14 UCF File for VHDL Example

6-22 Xilinx Development System

Chapter 7

State Machine Designs

This chapter explains the basic operations used to create state
machine designs.

State machine design typically starts with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and,
finally, into the source code itself. To illustrate the process of
developing state machines, this chapter discusses an example in
which a state machine repetitively sequences through the five
numbers 9,5, 1, 2, and 4.

This chapter contains the following sections.
« “State Machine Example”

= “State Diagram”

= “State Machine Implementation”

= “Encoding Techniques”

Refer to the“Finite State Machine (FSM) Designs” section of the
“Design Methodologies - Schematic Flow” chapter for a detailed
procedure on creating a state machine design. For an example of how
to create a state machine, refer to the Foundation WATCH tutorial
accessed from the Xilinx Support web site at
http:\\support.xilinx.com.

For additional information, select Hel p — Foundati on Hel p

Cont ent s. Click St at e Edi t or under Tools or The St at e Edi t or
under Tutorials in the Xilinx Foundation Series On-Line Help System
menu.

For information on creating state machine macros, refer to the
“Schematic Designs With Finite State Machine (FSM) Macros” section
of the “Design Methodologies - Schematic Flow” chapter and to the

Foundation Series 2.1i User Guide 7-1

Foundation Series 2.1i User Guide

“HDL Designs with State Machines” section of the “Design
Methodologies - HDL Flow” chapter.

State Machine Example

The state machine in this example has four modes, which can be
selected by two inputs: DIR (direction) and SEQ (sequence). DIR
reverses the sequence direction; SEQ alters the sequence by swapping
the position of two of the numbers in the sequence. When the
machine is turned on, it starts in the initial state and displays the
number 9. It then sequences to the next number shown, depending
on the input. This sequence is summarized in the following table.

Table 7-1 State Relationships

SEQ DIR |Sequence of Displayed Number
9.551-52-5459. ..
9.4-,2-1-559...
9552515459, ..
9,4-,1-2-559...

O| | O|F

1
1
0
0

Conceptual descriptions show the state progression and controlling
modes, but they do not clearly show how change conditions result.

State Diagram

The state diagram is a pictorial description of state relationships. The
“State Diagram” figure gives an example. Even though a state
diagram provides no extra information, it is generally easier to
translate this type of diagram into a state table. Each circle contains
the name of the state, while arrows to and from the circles show the
transitions between states and the input conditions that cause state
transitions. These conditions are written next to each arrow.

7-2 Xilinx Development System

State Machine Designs

Display =9
dir=0 dir=0
Display = 5 ﬂ =1 dir =Q Display = 4
S 950¢ 0&d -
€q z0g p =7 e
seq = seq=1
2 &
dir=0 dir=0

V
Display =1 seq=1&dir=0 Display =2
or
seq=0&dir=1

X2025
Figure 7-1 State Diagram

State Machine Implementation

A state machine requires memory and the ability to make decisions.
The actual hardware used to implement a state machine consists of
state registers (flip-flops) and combinatorial logic (gates). State
registers store the current state until the next state is calculated, and a
logic network performs functions that calculate the next state on the
basis of the present state and the state machine inputs. The following
figure shows the logic transitioning through the state registers to the
output decoder logic.

Foundation Series 2.1i User Guide 7-3

Foundation Series 2.1i User Guide

Feedback

. State
Logic Gates Registers
Inputs

R

Outputs

D> Outputs

Logic Gates
X4635

Figure 7-2 Parts of a State Machine

The amount of logic used to calculate the next state varies according
to the type of state machine you are implementing. You must choose
the most efficient design approach, depending on the hardware in
which the design will be implemented.

Encoding Techniques

7-4

The states in a state machine are represented by setting certain values
in the set of state registers. This process is called state assignment or
state encoding.

There are many ways to arrange, or encode, state machines. For
example, for a state machine of five states, you can use three flip-flops
set to values for states 000, 001, 010, 011, 100, which results in a highly
encoded state machine implementation. You can also use five flip-
flops set to values 00001, 00010, 00100, 01000, 10000, that is, one flip-
flop per state, which results in a one-hot-encoded state machine
implementation. State encoding has a substantial influence on the
size and performance of the final state machine implementation.

Symbolic and Encoded State Machines

A symbolic state machine makes no reference to the actual values

stored in the state register for the different states in the state table.
Therefore, the software determines what these values should be; it
can implement the most efficient scheme for the architecture being
targeted or for the size of the machine being produced.

Xilinx Development System

State Machine Designs

All that is defined in a symbolic state machine is the relationship
among the states in terms of how input signals affect transitions
between them, the values of the outputs during each state, and in
some cases, the initial state.

An encoded state machine requires the same definition information
as a symbolic machine, but in addition, it requires you to define the
value of the state register for each state.

Symbolic state machines are supported for CPLDs, but they are less
efficient than encoded state machines.

Compromises in State Machine Encoding

A good state machine design must optimize the amount of
combinatorial logic, the fanin to each register, the number of registers,
and the propagation delay between registers. However, these factors
are interrelated, and compromises between them may be necessary.
For example, to increase speed, levels of logic must be reduced.
However, fewer levels of logic result in wider combinatorial logic,
creating a higher fanin than can be efficiently implemented given the
limited number of fanins imposed by the FPGA architecture.

As another example, you must factor out the logic to decrease the
gate count; that is, you must extract and implement shared terms
using separate logic. Factoring reduces the amount of logic but
increases the levels of logic between registers, which slows down the
circuit. In general, the performance of a highly encoded state machine
implemented in an FPGA device drops as the number of states grows
because of the wider and deeper decoding that is required for each
additional state. CPLDs are less sensitive to this problem because
they allow a higher fanin.

Binary Encoding

Using the minimum number of registers to encode the machine is
called binary, or maximal, encoding, because the registers are used to
their maximum capacity. Each register represents one bit of a binary
number. The example discussed earlier in this chapter has five states,
which can be represented by three bits in a binary-encoded state
machine.

Although binary encoding keeps the number of registers to a
minimum, it generally increases the amount of combinatorial logic

Foundation Series 2.1i User Guide 7-5

Foundation Series 2.1i User Guide

7-6

because more combinatorial logic is required to decode each state.
Given this compromise, binary encoding works well when
implemented in Xilinx CPLD devices, where gates are wide and
registers are few.

One-Hot Encoding

In one-hot encoding, an individual state register is dedicated to one
state. Only one flip-flop is active, or hot, at any one time. There are
two ways that one-hot encoding can significantly reduce the amount
of combinatorial logic used to implement a state machine.

As noted in the “Compromises in State Machine Encoding” section,
highly encoded designs tend to require many high fanin logic func-
tions to interpret the inputs. One-hot encoding simplifies this inter-
pretation process because each state has its own register, or flip-flop.
As a result, the state machine is already “decoded,” so the state of the
machine is determined simply by finding out which flip-flop is
active. One-hot encoding reduces the width of the combinatorial logic
and, as a result, the state machine requires fewer levels of logic
between registers, reducing its complexity and increasing its speed.

Although one-hot encoding can be used for CPLDs and FPGAs, it is
better suited to FPGAs.

One-Hot Encoding in Xilinx FPGA Architecture

One-hot encoding is well-suited to Xilinx FPGAs because the Xilinx
architecture is rich in registers, while each configurable logic block
(CLB) has a limited number of inputs. As a result, state machine
designs that require few registers, many combinatorial elements, and
large fanin do not take full advantage of these resources. In general, a
one-hot state machine implemented in a Xilinx FPGA minimizes both
the number of CLBs and the levels of logic used.

Limitations

In some cases, the one-hot method may not be the best encoding
technique for a state machine implemented in a Xilinx device. For
example, if the number of states is small, the speed advantages of
using the minimum amount of combinatorial logic may be offset by
delays resulting from inefficient CLB use.

Xilinx Development System

State Machine Designs

Encoding for CPLDs

CPLD devices generally implement binary-encoded state machines
more efficiently. Binary encoding uses the minimum number of
registers. Each state is represented by a binary number stored in the
registers. Using as few registers as possible usually increases the
amount of combinatorial logic needed to interpret each state.

CPLD devices have wide gates and a large amount of combinatorial
logic per register, so it is best to start with binary encoding. If the
complexity of the state machine logic is such that binary encoding
exhausts all product term resources of a CPLD, try a slightly less fully
encoded state machine.

The syntax used to specify one-hot encoded state machines for
FPGAs is also supported for CPLD designs.

Foundation Series 2.1i User Guide 7-7

Foundation Series 2.1i User Guide

7-8 Xilinx Development System

LogiBLOX

Chapter 8

LogiBLOX is an on-screen design tool for creating high-level modules
such as counters, shift registers, and multiplexers for FPGA and
CPLD designs. LogiBLOX includes both a library of generic modules
and a set of tools for customizing these modules. LogiBLOX modules
are pre-optimized to take advantage of Xilinx architectural features
such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM. With LogiBLOX, high-level
LogiBLOX modules that will fit into your schematic-based design or
HDL-based design can be created and processed.

This chapter contains the following sections.
“Setting Up LogiBLOX on a PC”

= “Starting LogiBLOX”

e “Creating LogiBLOX Modules”

e “LogiBLOX Modules”

e “Using LogiBLOX for Schematic Designs”

e “Using LogiBLOX for HDL Designs”

= “Documentation”

Note: LogiBLOX supports all Xilinx architectures except Virtex.

For information about instantiating LogiBLOX into designs, refer to
the “Schematic Designs With Instantiated LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter and
the*“HDL Designs with Black Box Instantiation” section of the
“Design Methodologies - HDL Flow” chapter.

For an example of how to use a LogiBLOX module, refer to the in-
depth Foundation Watch tutorial available via the Xilinx web site at
http://support.xilinx.com.

Foundation Series 2.1i User Guide 8-1

Foundation Series 2.1i User Guide

Setting Up LogiBLOX on a PC

LogiBLOX is automatically installed with the Xilinx design imple-
mentation tools and is ready to use from the Foundation Project
Manager interface when you start the product.

Starting LogiBLOX

8-2

LogiBLOX can be started from the Project Manager window using
Tool s - Design Entry - Logi BLOXnodul e gener at or. Logi-
BLOX can also be started within Schematic Capture by selecting
Opti ons - Logi BLOX or in the HDL Editor by selecting

Synt hesi s - Logi BLOX. The LogiBLOX Module Selector dialog
box then opens. See the “LogiBlox Module Selector - Accumulators”
figure for an example.

The first time you access LogiBLOX, a Setup dialog appears. Or, you
can click Set up on the LogiBLOX Module Selector dialog box to
access the Setup dialog box.

Use the Device Family tab (shown below) to select a Device Family.

Setup |
\r"endorl Project Directory - Device Family | Dptionsl
Device Family:
Ispartanr:l j
Qg | Cancel | Aol | Help |

You can instantiate a LogiBLOX module in VHDL or Verilog code.
Use the Options tab to select appropriate Simulation Netlist and
Component Declaration template. For VHDL, select VHDL t enpl at e
and Behavi oral VHDL netl i st (shown below). For Verilog, select
Verilogtenplateand Structural Verilognetlist.

Xilinx Development System

LogiBLOX

Setup |
endar I Project Directory | Device Famiy Options |
— Simulation Metlist————— Component Declaration——

¥ Behavioral YHDL netlist I HiH
[¥ | Giate [evel EDIE metist ™ Werilog template

[Structural Yerilog netlist

I HEE Eile ¥ Stop Process on Yarning

— Implementation Netlist—‘ "LogiBLDX DRC

Qg I Cancel | Aol | Help |

You can use LogiBLOX components in schematics and HDL designs
for FPGAs and CPLDs. Once you are in the LogiBLOX GUI, you can
customize standard modules and process them for insertion into your
design.

Note: Once a LogiBLOX module is created, do not change
parameters for the module on the schematic. Any changes to the
module parameters must be made through the LogiBLOX GUI and a
new module created.

You can also import an existing LogiBLOX module from another
directory or project into the current project library by selecting
Options - I nport Logi BLOX from the Schematic Capture
window and choosing the MOD file of the module you want to
import. For details, see the “Importing Existing LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter.

Foundation Series 2.1i User Guide 8-3

Foundation Series 2.1i User Guide

§* LogiBLDX Module Selector =lol =]
— Selection
kK
Module Mame: Module Type: Bus Width: l—l
|| j I.-’-‘n.c-:umulatnrs j |4 j Cancel |
— Details Selup |
Add/Sub Lser Prafs
Carry Input v _I
Help |
o
—) o_out
B +i-
i B
Clack Enable [Bl B
Clack.
[~ Owerflow
Async, Contral [
Sync. Contral [~ o Cay Bl
CWalue = I
Operation = I.ﬂ.deSubtract j
Style = IMa:-:imum Speed j
Encoding = IUnsigned j
Azunc. Yal = I
S, Yal= I

Figure 8-1 LogiBlox Module Selector - Accumulators

Creating LogiBLOX Modules

Once you have opened LogiBLOX, create a module as follows:

1. Enter the name of the module you want to create in the Module
Name field, or select an existing one from the list box.

2. Select the type of module from the Module Type list box.

3. Select the bus width for the module from the Bus width list box.

4. Select or deselect optional pins of the module symbol displayed
in the Details box by clicking the appropriate check boxes.

5. Click OK. LogiBLOX automatically creates the MOD file, which
contains symbol pins and a template for each module, and an

EDIF netlist for simulation.

8-4

Xilinx Development System

LogiBLOX

The Project Manager automatically converts the EDIF netlist and
reads the generic module file from the \fndtn\active\config\logi-
blox directory and the MOD file to customize the module symbol.
The Project Manager then generates the ALR and ASX files
containing the module’s binary netlist and ports description and
saves the module to the project working library. The module is then
ready to use in your project.

LogiBLOX Modules

LogiBLOX has many different modules that you can use in a
schematic or HDL synthesis design. The following is a list of the
LogiBLOX modules.

Accumulator Adder/Subtracter Clock Divider

Comparator Constant Counter

Data Register Decoder Input/Output
(schematic only)

Memory Multiplexer Pad (schematic only)

Shift Register Simple Gates Tristate Buffers

Using LogiBLOX for Schematic Designs

LogiBLOX modules can be created for use in schematic designs. First,
the module is created. Then, the module is added to the schematic
like any other library component. For details on this procedure, refer
to the “Schematic Designs With Instantiated LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter.

Foundation Series 2.1i User Guide 8-5

Foundation Series 2.1i User Guide

Using LogiBLOX for HDL Designs

The tools for synthesis-based designs are described in the following
subsections.

Module-inferring Tools

Base Express and Foundation Express infer LogiBLOX components
where appropriate. Use the HDL Editor to create the HDL file; the
Design Wizard can help you with this process.

Module-instantiation Tools

You can instantiate the LogiBLOX components in your HDL code to
take advantage of their high-level functionality. Define each
LogiBLOX module in HDL code with a component declaration,
which describes the module type, and a component instantiation,
which describes how the module is connected to the other design
elements. For more information, refer to the*“HDL Designs with Black
Box Instantiation” section of the “Design Methodologies - HDL
Flow” chapter.

Documentation

The following documentation is available for the LogiBLOX program:

= The LogiBLOX Guide is available with the Xilinx online book
collection on the CD-ROM supplied with your software or from
the Xilinx web site at http://support.xilinx.com.

= You can access LogiBLOX online help from LogiBLOX or from
the Foundation online help system.

= The Xilinx Software Conversion Guide from XACTstep v5.X.X to
XACTstep vM1.X. X compares XBLOX and LogiBLOX. It describes
how to convert an XBLOX design to LogiBLOX. This document is
available on the Xilinx web site at http://support.xilinx.com.

8-6 Xilinx Development System

Chapter 9

CORE Generator System

The Xilinx CORE Generator System is a design tool that delivers
parameterizable COREs optimized for Xilinx FPGAs. It provides the
user with a catalog of ready-made functions ranging in complexity
frorm simple arithmetic operators such as adders, accumulators, and
multipliers, to system-level building blocks including filters, trans-
forms, memories.

This chapter contains the following sections:

“Setting Up the CORE Generator System on a PC”

“Accessing the CORE Generator System”

“Instantiating CORE Generator Modules”

“Documentation”

Setting Up the CORE Generator System on a PC

The CORE Generator tool can be selected from the setup menu
during installation of the Foundation Series 2.1i Design Environment.
If you select to install it, it is ready to use from the Foundation Project
Manager interface when you start the product.

New COREs can be downloaded from the Xilinx web site and added
to the CORE Generator System. The URL for downloading CORES is

http:/www.xilinx.com/products/logicore/coregen

You can check this web site to verify you have the latest version of
each CORE and CORE data sheet.

Foundation Series 2.1i User Guide 9-1

Foundation Series 2.1i User Guide

Accessing the CORE Generator System

In the Foundation Series 2.1i software, the CORE Generator System
must be started within a valid Foundation project. Within an open
project, it can be started from the Project Manager window using
Tool s - DesignEntry - CORE Gener at or. It can also be started
within the HDL Editor or the Schematic Editor by selecting Tool s —

9-2

CORE Gener at or.

The Xilinx CORE Generator dialog box (an example is shown below)
then opens to allow selection of the available COREs. The COREs are
categorized on the left side of the window. The specific COREs are

selected in the “Contents of” section of the window.

Efl xilinx CORE Generator 2.1i

10l =|
File Project Core Web Help
De +« B HL |
Project Path: |D:IFNDTNLActivelProjects‘tE}{AMPLE1 LI Target Famihy Yirtex
View mode: Taxonomy Contents of: /Storage Elements & MemoariesiRAMs & ROMs
| Basic Elements Mame | Type |Versi0n Family Yendor
1 Communication & Networking Single Port Black Memnary gl 1.0 virtex,Spa... Xiling, |...
1 Digital Signal Pracessing Registered SinglePort R... pglCRE 1.0 HCA000,5... Hiling
e ontrollers & Periaharal Registered ROM RECERE 1D HC4D00S. Nilin
I Microprocessars, Controllers & Peripherals Registered DualPart RAM pglCRRE 1.0 HCA000,5... Hiling
__| ProtoType & Development Hardware Products Dual Fart Black Merna SPE Virtex Spa. Wilir |
| Standard Bus Interfaces L ’ 3RA... e

‘_J Starage Elements & Memories
-] Delay Elements

Xilinx Development System

CORE Generator System

You can select Proj ect - Proj ect Opti ons to access the project
setup options. However, the Foundation Series software automati-
cally sets the Project Options (shown in the following figure) to the

appropriate values for the project. You do not need to set them manu-
ally.

PMlelist Bl FatmaE e

Foundation Series 2.1i User Guide 9-3

Foundation Series 2.1i User Guide

You select a CORE by clicking on its name in the “Contents of”
section of the CORE Generator window. This opens a new window
where you can customize the CORE for your use, view its data sheet,
and get other information concerng the CORE. The items that can be
customized for a particular CORE depend on what the CORE is. The
following figure shows that window that opens when you select a
single port block memory core for a Virtex project.

& Single Port Block Memary x|

Ef Parameters |ﬂ Care Ovemewl B2 Comactl

Single Port Block Memory

Component Name
Cepth
Data Width

Fins... | Initial Contents. ..

Load Parameters.. | Showialues.. |

e ETE)

coe file: | Mo parametets or coeflicients read

Address Width 0
Blocks 0
Slices 1}
Bits Unused 0

Initial Contents Setto 0

Cancel | Data Sheet.. | mgfc(ékf

Click the Data Sheet button to view detailed information on the
CORE. You must have the Adobe Acrobat Reader installed on your
PC to view the data sheet.

After you customize the CORE for your project, you need to generate
the new CORE.

After the CORE has been successfully generated, the new CORE and
its related files are placed in the current Foundation project directory
for use in a schematic or HDL file.

You can select a schematic CORE from the SC Symbols menu in the
Schematic Editor. An example of a schematic CORE is shown in the
following figure.

9-4 Xilinx Development System

CORE Generator System

(-} SCHE_COR |«
MU¥_CORE
MUK

(-} SPARTANX
ACC1E
ACC4
ACCH

L]

As shown in the figure below, the Language Assistant in the HDL

U1
%QREGen MB%I?H]E

50
oo f3:0]

D1 [3:0]
o2 [3:0]

D3[3:0]

MUX_CORE

Editor (Tool s - Language Assi st ant) includes CORE Generator
Modules. You can get assistance with instantiating them in VHDL or

Verilog.

Q Language Assistant - YHDL

21|

=- T_emplates
E| Carefien Instantistions

templates

- This file wasz created by the Xiling CORE Generator tool, and

- ig [c] Hilinx, [ne. 1998, 1939, No part of this file may be

- trangmitted ta any third party [other than intended by Xiling] -

- or uged without a Xiline programmable or hardwire device without -
- Hilins's prior written permission. -

- Synthesiz templates
Lo | zer templates

Hide preview << | Usze I

- The following code must appear in the YHOL architecture header:

------------- Begin Cut here for COMPOMEMNT Declaration - COMP_TAG
component muxd
port |
dl: IN td_logic_WYECTOR[3 downta 0);
d1: IN td_logic_VECTOR[3 dawnta 0);
d2: IN #td_logic_VECTOR[3 downta 0);
d3: IN td_logic_VECTOR[3 dawnta 0);
30: I std_logic:
210 I std_logic:
o OUT std_logic YECTOR[3 downto 0]);
end component;
- COMP_T&AG_EMD - End COMPOMENT Declaration -----------

K|

e P NS

-

Foundation Series 2.1i User Guide

9-5

Foundation Series 2.1i User Guide

Instantiating CORE Generator Modules

For information on using COREs in schematic designs, refer to the
“Schematic Designs With Instantiated CORE Generator Cores”
section of the “Design Methodologies - Schematic Flow” chapter.

For information on using COREs in HDL designs, refer to the “CORE
Generator COREs in a VHDL or Verilog Design” section of the
“Design Methodologies - HDL Flow” chapter.

Documentation

9-6

The following documentation is available for the CORE Generator
System:

= The CORE Generator System 2.1i User Guide is available from the
CORE Generator’s help menu by selecting Hel p - Onl i ne
Docurent at i on. This book is in PDF format and requires the
Adobe Acrobat Reader to view it.

= You can access the CORE Generator Home Page and other web
resources from the CORE Generator’s help menu by selecting
Hel p — Hel ponthe Wb.

Xilinx Development System

Chapter 10

Functional Simulation

For schematic and HDL designs, functional simulation is performed
before design implementation to verify that the logic you created is
correct. Your design methodology determines when you perform
functional simulation. Generally, for Schematic Flow projects, you
can perform functional simulation directly after you have completed
your design within the design entry tools. For HDL Flow projects,
you perform functional simulation after the design has been entered
and synthesized. However, if your design contains underlying
netlists (XNF or EDIF), the design must first be “translated” in the
Implementation phase in order to merge these additional netlists.

This chapter contains the following sections:
= “Basic Functional Simulation Process”

e “HDL Top-down Methodology”

e “HDL with Underlying Netlists”

« “Simulation Script Editor”

= “Waveform Editing Functions”

Basic Functional Simulation Process

This section describes the basic process for performing simulation.

Invoking the Simulator

You can invoke the simulator from either the Project Manager or
directly from the Schematic Editor. To invoke the simulator (for
functional simulation) from the Project Manager, click on the
Functional Simulation icon in the Simulation button on the Flow tab.

Foundation Series 2.1i User Guide 10-1

Foundation Series 2.1i User Guide

Note: For a schematic design, you can invoke the simulator (for
functional simulation) from the Schematic Editor by clicking on the
Simulator toolbar button.

SIM

JLIL
i

Attaching Probes (Schematic Editor Only)

Prior to opening the Simulator, you can attach probes to signals in the
Schematic Editor to allow those signals to be automatically loaded
into the Simulator Waveform Viewer. Select Mode - Test Poi nt s.
The SC probes toolbox displays. You can select both input and output
test points.

LY

Figure 10-1 Input Test Points

Figure 10-2 Output Test Points

A gray box appears next to the signal name, indicating the placement
of the probe. You can add probes at any point during the simulation
to add signals to the Waveform Viewer.

Adding Signals

Once in the Simulator, you can add signals by selecting the Add
Signals toolbar button.

T

10-2 Xilinx Development System

Functional Simulation

Creating Buses

You can create buses by combining any set of signals. Highlight the
desired signals and then selecting Si gnal - Bus - Conbi ne. This
same menu may be obtained by right-mouse-clicking in the signal list
area of the Waveform Viewer. To expand or collapse the bus, click on
the Bus Expansion toolbar button.

Applying Stimulus

You can apply stimulus in a number of various ways.

Stimulator Selection Dialog

Click the St i nul at or Sel ecti on toolbar button (below) to access
the Stimulator Selection dialog.

|

Using Stimulator Selection dialog box, you can add stimulus using
keyboard keys, formulas, or output signals of an internal software-
generated 16- bit binary counter. For more information on these
methods, click Hel p in the Stimulator Selection dialog box.

A Stimulator Selection =loixl

Heyboard: Cloeks:

e = i i e g e e)]
I [1 o v o Y 5
1 e =

c g 4 0
B (@000 [000d] eod]oood]
HEc: (2309 ([@00d] @ead|eaad|
Form REE| EEEE| EEEE| | EEEE|

G

Furmula...l Close | Help |

Foundation Series 2.1i User Guide 10-3

Foundation Series 2.1i User Guide

Waveform Test Vectors

A second method of applying stimulus is by editing and using wave-
form test vectors. Test vectors may be edited and/or created using the
Wavef orm- Edit... menu selection. Additionally, test vectors
and/or simulation results may be saved by selecting Fi | e - Save
Wavef or m These test vector waveforms may then be loaded into the
simulator at any time by selecting Fi | e — Load Wavef orm

For more information on using and saving waveforms, refer to the
online Help at Hel p - Logi ¢ Si mul at or Hel p Contents -
Si mul at or Ref erence - Wor ki ngwi t h Wavef or ns.

Script File Macro

A third method of applying stimulus is through a script file macro.
Stimulus is entered through commands in the script file (.cmd) and
the simulator displays the input and output response in the
Waveform Viewer when the script is run.

Note: Foundation contains a Macro Editor for creating simulation
scripts. See the “Simulation Script Editor” section.

Proper script syntax is documented in the online Help atHel p -
Logi c Si mul ator Hel p Contents - Si nul at or Reference -
Si mul ati on Scri pts. To runacommand script, selectFil e -
Run Script Fil e, and choose the appropriate .cmd file. Addition-
ally, you can edit the .cmd file by selecting Tool s — Scri pt

Edi t or.

Running Simulation

Click the Simulator Step icon on the Logic Simulator toolbar to
perform a simulation step. The length of the step can be changed in
the Simulation Step Value box to the right of the Simulation Step box.
(If the Simulator window is not open, select Vi ew - Mai n Tool bar.)

@Lugic Simulator - Xilink Foundation F2.11 [abc]

File Signal “Waveform Device Options Jools View ‘Window Help

FEETEE e T
1 = Waveform Viewer 0 ;lglill

— o — ... e 1

10-4 Xilinx Development System

Functional Simulation

To start a simulation for an extended amount of time, select Opt i ons
- Start Long Si nul ati on. In the dialog box, enter the desired
length of simulation.

Start Long Simulation il
Simulation Running Time: (00:00:10 =
w
Start Cancel | Help |

To interrupt the simulation while it is running, click the Stop button
in the toolbar.

Save Simulator results by selecting Fi | e — Save Si nul ati on
State and Fi |l e - Save Wavef or m Choosing Save Simulation
State saves the simulation results and current state of the simulation
only. On the other hand, Save Waveforms saves the waveforms in test
vector format, allowing you to resimulate the saved waveforms at a
later time.

For more information about simulator options and features, refer to
the online Help by selecting Hel p —» Logi ¢ Si mul at or Hel p
Cont ent s.

HDL Top-down Methodology

If your design has been created and synthesized as a top-level design,
then click the Functional Simulation icon on the Simulation button in
the Foundation Project Manager to automatically invoke the
simulator and load the netlist. The Functional Simulation icon is
shown in the following figure.

For a description of how to select signals, choose stimulators, and run
the simulation, refer to the online help tutorial by selecting Hel p -
Foundat i on Hel p Cont ent s. Then, under Tools, click on Logi ¢
Si mul at or. Double click onthe Getti ng Started Tutori al .

Foundation Series 2.1i User Guide 10-5

Foundation Series 2.1i User Guide

HDL with Underlying Netlists

If your design includes underlying netlists (XNF or EDIF), the design
must first be “translated” with the Xilinx Implementation tools in
order to merge these additional netlists. Follow the steps below to
successfully combine all of the individual modules into one netlist for
simulation by “translating” the design in the Xilinx Implementation
tools.

10-6

1.

From the Project Manager, select Pr oj ect — Creat e Ver si on.
The Synthesis/Implementation dialog appears. The new version
is given the default name shown in the Version Name box unless
you change it. Click OK and the new version is created.

From the Project Manager, select Pr oj ect — Creat e Revi -
si on. The New Revision dialog appears. The new revision is
given the default name shown in the Name box unless you
change it. Click OK and the new revision is added to the newly
created version from step 1.

From the Versions tab, right click on the newly created revision
and select | nvoke i nteracti ve Fl owEngi ne.

From within the Flow Engine, select the Step button to translate
the design.

L3

Step

After Translate is complete, go back to the Foundation Project
Manager, and select Tool s - Si rmul ati on/ Veri fication -
Checkpoi nt Gate Si mul ati on Control .

Choose the appropriate NGD file from the Revision which was
just created, and click OK. This invokes the simulator and loads
the netlist.

For a description of how to select signals, choose stimulators, and
run the simulation, refer to Steps 2 through 10 in the“Performing
Functional Simulation” section of the “Design Methodologies -
HDL Flow” chapter.

Detailed information can also be found in the online help tutorial
by selecting Hel p - Foundat i on Hel p Cont ent s. Then click
on Logi ¢ Si nul at or. Double click on the Getti ng Start ed

Xilinx Development System

Functional Simulation

Tut ori al . Another very detailed source can be found by
selecting Hel p —» Foundat i on Hel p Cont ent s. Click CPLD
Desi gn FI ows. Scroll down and click The Functi onal Si nu-
| ati on Tutori al . You can also click Cr eati ng a New Test
Vect or Fi |l e to find out detailed information about creating
stimuli.

Simulation Script Editor

The Simulation Script Editor facilitates script creation. To access this
editor, select Tool s - Scri pt Edi t or from the Logic Simulator.
The Script Editor includes the following features:

A Script Wizard for creating new simulation script files
Syntax highlighting of simulation commands

Simulation scripts in Macro Assistant (Tool s — Macr o
Assi st ant). The Macro Assistant contains examples of
Viewsim-compatible macros as well as Aldec® proprietary
macros.

Script command reference (Hel p - SI MMacr os Hel p)
Debugging capabilities

An online link to the simulator which allows single stepping
through command sequences and support for breakpoints

For a description of the Macro Editor and commands, select Hel p —
SI MMacr os Hel p.

Waveform Editing Functions

Foundation supports dragging of signal transitions within the Wave-
form Editor. Following is an example.

1.

2
3
4.
5

Open the “watch_sc” project in the Project Manager.

Click the Functional Simulation icon in the Simulation button.
In the Logic Simulator, selectFi | e - Load Wavef orm
Double click “watch_sc.tve” in the Load Waveform list box.

Right click the mouse button. Select Edit from the menu. The Test
Vector State Selection box displays.

Foundation Series 2.1i User Guide 10-7

Foundation Series 2.1i User Guide

#l Test Yector State Selection [Norm._. x|

Low High Unkn_X High_2Z2
(= || = || = ||~
Del Bus Bus State
ol ==l

Hold Chil key to drag ranzitions.
Cancell More I Fast I Help I

6. After the Test Vector State Selection box displays, press and hold
the left mouse button at the point of the signal that you want to
begin altering the signal transition. Drag the mouse to the desired
endpoint. The following figure displays an example selection for
the STRTSTOP signal.

£l Logic Simulator - Xilink Foundation F1.5 [watch_sc] I =1 3|
File Signal “waveform Device Dptlons Tool: Wiew ‘window Help

(8] i) e 8] (3 @il al]
F7 Waveform Viewer 0 - d:‘Indtn\active\projects\watch_zciwatch_zc.tve (o] x|
| el == = || e | &50ns
”-'-”-'-”JI E0ns/div |‘—|—‘—|—'I 50!1115 lus 1. EBus [Fus Z.Eus [2us |
0.0 IIII|IIII i |I|II IIII|IIII IIII|IIII IIII|IIII IIII|IIII IIII|IIII IIII|

TENS . (hex)#d
ONES . (hexz)#d
TENTHS (hex)4
CLE. =l
STRTSTOP [C=l-
RESET. FD
GERGL s Csl

= oo

— —~ — — I o ™

7. Select High from the Test Vector State Selection box. The low
signal transforms to high.

10-8 Xilinx Development System

Chapter 11

Design Implementation

This chapter contains the following sections.
= “Versions and Revisions”

< “Implementing a Design”

= “Setting Control Files”

= “Selecting Options”

< “Flow Engine”

= “Implementation Reports”

= “Additional Implementation Tools”

Versions and Revisions

Each project may have multiple versions and revisions. You have
complete control over the creation of versions and revisions. They
may be used to create snapshots of the project. A generally accepted
project structure is to have versions represent logic changes in a
design and revisions to represent different implementations on a
single design version. The Project Manager graphically displays
information about versions and revisions in the Versions tab of the
Hierarchy Browser.

Schematic Flow Projects

In Schematic Flow projects, new versions of the design and revisions
on each version are associated with the Implementation phase. You
determine when to create a new version or revision. For example,
versions may represent logic changes in a design such as replacing an
AND gate with an OR gate. Revisions may represent different execu-
tions of the design flow on a single design version with new imple-

Foundation Series 2.1i User Guide 11-1

Foundation Series 2.1i User Guide

mentation options (for example, changing to a different device in the
same device family).

Creating Versions

When you click the | npl errent at i on phase button, the current
version/revision is overwritten by default. If you want your changes
implemented in a new version, you must explicitly create the new
version. This is done by selecting Pr oj ect — Creat e Versi on to
access the Create Version dialog box shown in the following figure.

Create Version x|

Device ISDEPCS4 j Speed I3 jv

Yersion name: |ver2

BRevizion name: If'3\"1

Caontral Files: Set.. Options... |

oK | LCancel | Help |

Creating Revisions

Revisions represent different implementations of a single design
version. You can create a new revision for a version by selecting
Proj ect — Create Revi si on to access the Create Revision dialog
box shown in the following figure.

Create Revision x|

Device ISDEPC84 j Speed I3 jv

Wersion name: Iver2

BRevizion name: |“3V2

Cantral Files: Set.. Options... |

ak | Cancel | Help |

In either the Create Version or the Create Revision dialog box, you
can select a new device (in the same device family), a new speed for
the device, name the version, name the revision, or enter comments.

11-2 Xilinx Development System

Design Implementation

Click CK to create the new revision and/or version. When you are
ready to implement the new revision/version, click the | npl enen-
t ati on phase button.

Or, Click Run to create the new revision and/or version and run
implementation immediately.

HDL Flow Projects

In HDL Flow projects, new versions of the design are associated with
the Synthesis phase. Whenever you change the logic in the design or
select a new target device, you must synthesize the design. Revisions
on each version are associated with the Implementation phase. As in
the Schematic Flow, versions and revisions of a design are over-
written unless you explicitly create a new version or revision.

Creating Versions

You can create a new version of the design by selecting Pr oj ect -
Cr eat e Ver si on. This accesses the Synthesis/Implementation
settings dialog box (see the*“Synthesis/Implementation Dialog Box”
figure) where you can select the Top Level design, name the version,
select a target device.

Foundation Series 2.1i User Guide 11-3

Foundation Series 2.1i User Guide

11-4

Create Yersion x|
Top lewvel: I contral j Bun
“Wersion name: |ver1 [l |
Synthesiz Settings: SET | Cancel |

Target Device

Farnily:

Device: ISDSXLF'CBq. j Speed: |-5 j

I Edit Spnthesis/Implementation constraints

™ Wiew Estimated Performance after Optimization

™ &uto Fun Implementation tools
Phwzical Implementation settings

Revision name: Irev'l [ptions |

Cottral Files: SET

Figure 11-1 Synthesis/Implementation Dialog Box

Updating Versions

If you click the Synthesis phase button to synthesize the design for
the first time, the Synthesis/Implementation settings dialog box also
appears. However, the Physical Implementation Settings at the
bottom of the screen are not available. In this case, the design will be
synthesized only, not implemented.

Clicking the Synthesis phase button after making changes to an
existing version, automatically updates the existing version. No new
version is created. You can also update an existing, synthesized
version by right-clicking on the functional structure or on the opti-
mized structure in the Versions tab and then selecting Updat e.

Creating Revisions

Revisions of HDL Flow projects represent different implementations
of a design version.

You implement the design and create a new revision by clicking the
| mpl enent at i on phase button. What happens after you click the

Xilinx Development System

Design Implementation

Implementation phase button depends on whether this is the first
revision for the version or if there are existing revisions of the version.

= [fthis is the first revision and the design has already been synthe-
sized, the Synthesis/Implementation dialog box shown in the
following figure appears. Only the Physical Implementation
Settings at the bottom of the screen are available at this point. You
can name the revision and/or click Opt i ons to access the
Options dialog box. When you click Run, the Flow Engine starts.

Synthezis/Implementation settings il

Toplevel |CD407E o] R |
Werzion name: |ver2 LCancel |

Synthesiz Settings: SET | Help |

Target Device

Farmily: ISF'AF!T.&NXL vl
Device: |505><LF'C84 'I Speed: |-5 'I

™ Edit Synthesied mplementation constraints

™ iew Estimated Perfarmanse, after Hptimization

¥ &0t B (mplementation ol

Physical Implementation settings

Rievizion name; Ireﬂ Options |

Control Fies: seT | ok |

= For later revisions, if you change the design and then click the
| mpl enent at i on phase button, the design can be automatically
updated, synthesized, and implemented. The Project Manager
displays a dialog box (shown in the following figure) to inform
you that the current version will be overwritten. Select OK to
overwrite the current version or Cancel to abort the update.

Warmning: Source is out of date x|

Wergion werl will be ovenwritten.
Cancel and create a new version ba retain verl data.

Cancel | Help |

™ Don't display this meszage again

= After you select OK, the current version is updated and another
dialog box (shown in the following figure) appears to inform you

Foundation Series 2.1i User Guide 11-5

Foundation Series 2.1i User Guide

11-6

that the current revision will be overwritten. Select OK to over-
write the current revision or Cancel to abort the update.

Warning x|

Fievizion verl-»revl [Implemented, OK] exists.
Do you wart to overrite this revision?

Cancel | Help |

[Don't display this message again

= After you select OK, the Flow Engine appears. If you want to
modify the implementation options, you must select | npl enen-
tati on - Opti ons from the Project Manager menu bar before
clicking the | mpl enent at i on phase button.

= Ifyouclick the | npl ement at i on phase button and you have
made no changes to the design, the completed Flow Engine
appears. You can then choose to re-start the Flow Engine in inter-
active mode.

%% watch3[ver3->re¥3] - Flow Engine ~=la] x|
Flow “iew Setup Utilities Help

=B 2=l Bk o

XCADDOE Design Flow [rewv3) Status: OK
Translate Map Place&FRoute Timing Configure
| Completed | Completed | Completed | Completed | Completed
=

#zcpy watchd . bit d:windtn™~active~projects~watchi~watchl bit

®Zcpy watch3.ll d:windtnhactiveprojects watchi~watchi 11 -
1| | »
> 1 [» | [«]]
For Help, press F1 [#C4003E-1-PCE4 |watch3ucf [Mone 2

Xilinx Development System

Design Implementation

Creating a new Revision

After the design has been synthesized, you can manually create a
new revision for a version by selecting Pr oj ect — Cr eat e Revi -
si on. This accesses the Create Revision dialog box (shown below)
where you can name the revision, set the implementation options, or
choose to use a Guide or Floorplan file from a previous revision.

Create Revision x|
Top level: I cantral j Bun I
WEIsion name: Iver‘l OF. |
Syrthesiz Settings: SET| | LCancel I

Help |

Target Device

Family: ISF'AF!TANXL VI

Device: [505 PCa4 El spesd |5 7]

= Edit Snthesis/ mplementation constiaitte

= iewEstimated Perfarmanse after Wptmizatisn

¥ it B | mplementation taals
Phyzical Implementation settings

Revision name: Ireﬂ Optionz |

Cottral Files: SET

Click CK to create the revision only. Click RUN to create the revision
and to start the Flow Engine to implement the newly created revision.

Note: You can also right click on an optimized structure in the
Versions tab and select Tar get NewDevi ce to access the Target
New Device dialog box shown in the following figure. You may select
a new device in the same family or a new speed grade. If you want to
target a new device family, you must create a new version and resyn-
thesize the design.

Foundation Series 2.1i User Guide 11-7

Foundation Series 2.1i User Guide

Target Hew Device |
Top level: I control j Bun I
YerEion name: Iveﬂ Ok, |
Synthesis Settings: SET| | Cancel I

Help |

Target Device

Farnily: ISF'AF!TANXL vI

Device: [BORKFCES " ~| Speed |5 ~|

= Edit Sonthesis/mplementation constiaitte

= Yiew Estimated Perfarmanse after Wptmieation

[it Fim [mplementation taols:
Phyzical Implementation settings

Revision name: Ireﬂ Optionz |

Cantral Files: SET

Creating the First Version and Revision in One Step

If the design has not been synthesized, you can create the first version
and revision automatically in one step by selecting the | npl enment a-
t i on phase button immediately after design entry. When you click
the | npl enent at i on phase button without first synthesizing the
design, the Synthesis/Implementation dialog box shown in the
following figure appears. All fields are available—the Target Device
and Synthesis Settings associated with the synthesis phase as well as
the Physical Implementation Setting associated with the implementa-
tion phase. You can enter the version and revision information and
then click OK. The Project Manager performs all the necessary
processing to synthesis and implement the design to create the first
version and revision.

Xilinx Development System

Design Implementation

Syntheziz/Implementation zettings il
Top level CHT BCD j | Hun I
Wersion name: |wverl Ok |
Synthesis Settings: SET | Cancel |

Target Device

Farnily: ISF'.-’-\F!T."—‘«NHL VI

Drevice: ISDE><LF'E84 j Speed: |-5 j

[~ Edit Synthesis/Implementation constraints

[~ Wiew E stimated Performance after Optimization

[| it Pl mplermertation bosls:
Physical Implementation settings

Revizion name: Irev1 Options |

Contral Files: SET

Revision Control

Foundation maintains revision control, meaning that the resultant
files from each implementation revision are archived in the project
directory. Note that the source design for each version is not archived,
only the resulting netlists and files for each revision. Therefore, if you
wish to save iterations of the source design (Schematic, HDL files, for
example), you should use the project archive functions to archive the
appropriate files.

See the “Project Archiving” section in the “Project Toolset” chapter
for more information on the Foundation archiving feature.

Implementing a Design

You can implement your design automatically using the Implementa-
tion phase button on the Project Manager’s Flow tab or you can
implement your design by executing the Flow Engine steps sepa-
rately. The Implementation phase button method is described in this
section. Refer to “Flow Engine Controls” section under the “Addi-
tional Implementation Tools” section for information on controlling
the Flow Engine manually.

Foundation Series 2.1i User Guide 11-9

Foundation Series 2.1i User Guide

11-10

When you implement your design using the Implementation phase
button, the Project Manager invokes the Flow Engine and automati-
cally performs all steps needed to update your design for implemen-
tation.

1.

From the Project Manager, click the | npl enent at i on phase
button on the project flowchart.

Implementation

The implementation window that appears now depends on
whether your project is a Schematic Flow project or an HDL Flow
project.

a) If your project is a Schematic Flow project, the Implement
Design dialog box shown in the following figure appears.

Implement Design x|

Device ISDEF’EE‘4 j Speed I3 jv

Wersion name; I‘\"Ef'I

BRevizion name: I“f\"I

Cantral Files: Set... Dptions... |

ak | Cancel | Help |

By default, the implementation targets the device selected
when the project was created. You can specify a different
device within the same family and a new speed grade. If you
want to target a device in a different family, you must use
File - Project Type to select a new family before you
click the I npl enent phase button.

Availability of fields in the Implement dialog box depend on
whether the design has been implemented before. After the
first implementation, only the revision name is available for
editing.

b) If your project is an HDL Flow project, the Synthesis/Imple-
mentation dialog box shown in the following figure appears

Xilinx Development System

Design Implementation

if the design has been synthesized and no revisions exist for
the current synthesized version. (Refer to the “HDL Flow
Projects” in the Versions and Revisions section for a descrip-
tion of the various paths available in HDL Flow projects for
creating new revisions and updating existing ones for imple-

mentation.)

Synthezis/Implementation settings ﬂ
Top level ffreqrt = Bun I
Wersion name: |ver1 agK |
Synthesis Settings: SE | Laneel |

Help |

Target Device

Farnily: ISF'AF!T.L\NXL 'I

Device: ISDS}<LF‘C84 j Speed: I-E j

[|Edit Eprittiesis/ mplementation canstiaiits

I [Wiew Estimated|Perfarmatice atten Dptimization

¥ |0t B [mplementation teols
Phwzical Implementation settings

Revision name: Ilev'l Options |

Contral Files: SET

3. Select Opt i ons in the Implement Design dialog box or in the
Synthesis/Implementation dialog box to access the Options
dialog box. (For HDL Flow projects, you may need to select
| mpl enent ati on - Opti ons from the Project Manager menu
bar to access the Options dialog box.) Use the Options dialog box
to set important implementation options such as selecting a UCF
file, specifying templates, or producing optional design data.

Refer to the “Selecting Options” section for more information on
the Options dialog box.

4. After you have selected all of your options, you are ready to
initiate the Flow Engine to implement the design.

= Ina Schematic Flow project click OK on the Options dialog
box to close it and return to the Implement Design dialog
box. On the Implement Design dialog box, click Run.

Foundation Series 2.1i User Guide 11-11

Foundation Series 2.1i User Guide

= Inan HDL Flow project, click OK on the Options dialog box to
close it and return to the Synthesis/Implementation dialog
box. Click Run on the Synthesis/Implementation dialog box
to start the Flow Engine. (Refer to the “HDL Flow Projects” -
“Creating Revisions” section for additional ways the Flow
Engine is accessed when implementing HDL Flow projects.)

Refer to the“Flow Engine” section for more information.

Setting Control Files

You can designate a user constraints file, guide files, or Floorplan files
to control the current implementation. You can set the control files
from the Project Manager’s Implementation pulldown menu or via
the Control Files Set button on the Synthesis/Implementation dialog
box.

User Constraints File

User constraints files (design_name.ucf) contain logic placement and
timing requirements to control the implementation of your design.
Refer to the “Foundation Constraints” appendix for detailed informa-
tion on creating .ucf files and on constraint syntax.

If you want to control the implementation of your design with a user
constraints file, you can specify this file in the Set Constraints File
dialog box. The software implements your design to meet the speci-
fied timing requirements and other constraints specified in this file.

1. Inthe Project Manager, select | npl enent ati on - Set
Constrai nts Fi |l e(s) toopen the dialog box shown in the

following figure.

Set Constraints File |

Iv Copy Constraints Diata From: Hone j

Qg I Caticel | Help |

Figure 11-2 Set Constraints File Dialog Box

2. Make sure Copy Const r ai nt s Dat a Fr omis selected.

11-12 Xilinx Development System

Design Implementation

3. Inthe drop-down list box, choose one of the following.

= A revision that contains the user constraints file (UCF) you
want to use for this implementation

< None if you do not want to copy constraints data
= Cust omto guide from a specific file

If you select Cust om the following dialog box appears. Type
the name of a specific file in the Constraints File field, or click
Br owse to open a file selection dialog box in which you can
choose an existing UCF file.

Custom x|

Constraints File: Ifilter.ucﬂ Bromze... |

0K I Cancel | Help

Figure 11-3 Set Constraints File Custom Dialog Box
4. Inthe Set Constraints File dialog box, click OK.

When you implement the design, the Flow Engine uses the
copied data to constrain the implementation.

Guide Files

You can select a previously routed or fitted implementation revision
or a guide file to use as a guide for the current implementation. The
procedure for guiding your implementation is the same for FPGAs
and CPLDs. However, the way the design is implemented differs
between the two.

Guiding FPGA Designs

When guiding an FPGA design, the software attempts to use the
guide for placing logic and routing signals for the current implemen-
tation revision of the design. This ensures consistent implementations

Foundation Series 2.1i User Guide 11-13

Foundation Series 2.1i User Guide

11-14

between place and route iterations. Guiding a design for an FPGA
works as follows.

= |facomponent in the new design has the same name as that of
the guide design or file, it is placed as in the guide.

= |fan unnamed component in the new design is the same type as a
component within the guide, it is placed as in the guide.

= If the signals attached to a component in the new design match
the signals attached to the component of the guide, the pins are
swapped to match the guide, where possible.

= [fthe signal names in the input design match the guide, and have
the same sources and loads, the routing information from the
guide design is copied to the new design.

After these components and signals are placed and routed, the
remainder of the logic is placed and routed. If you have made only
minor changes to your design and want the remaining logic placed
and routed exactly as in your guide design, select the Match Guide
Design Exactly option. This option locks the placement and routing
of the matching logic so that it cannot change to accommodate addi-
tional logic.

Note: Setting the Match Guide Design Exactly option is not recom-
mended for synthesis based designs.

Guiding CPLD Designs

For CPLDs, each time you implement your design, a guide file is
created (design_name.gyd) which contains your pinout information.
You can reuse this file in subsequent iterations of your design if you
want to keep the same pinouts. If you select a valid implementation
revision or guide file name, the pinouts from that file will be used
when the design is processed.

Note: You can override guide file locations by assigning locations in
your design file or constraints file.

Setting Guide Files

1. Inthe Project Manager, select | npl enent ati on - Set Gui de
Fi | e(s) toopen the dialog box shown in the following figure.

Xilinx Development System

Design Implementation

Set Guide File[s) x|

ML

¥ Enable Guide

¥ Match Guide Design Exactly

Qg I Caticel | Help |

Figure 11-4 Set Guide File(s) Dialog Box
2. Make sure Copy Cui de Dat a Fr omis selected.

3. Inthe drop-down list box, choose one of the following.

= Arrevision that contains the guide file you want to use for this
implementation

< None if you do not want to copy a guide file

= Cust omto guide from any mapped or routed file for FPGAs
or fitted file for CPLDs, including designs not generated from
within the Design Manager

If you select Cust om the following dialog box appears. Type
the name of a mapped, routed, or fitted file in the Guide File
field, or click Br owse to open a file selection dialog box in
which you can choose an existing file. Choose an NCD file for
FPGAs or a GYD file for CPLDs. You can also specify a
mapping guide file for FPGAs.

Custom x|
Guide Fil: | Bowse.._ |
Mapping Guide File: I Browsze. . |
’TI Cancel | Help |

Figure 11-5 Set Guide File(s) Custom Dialog Box

Note: The implementation revision or revision data is based on a
placed and routed design. Guide from a placed and routed file rather
than a mapped file to reduce runtime. To guide from a mapped file,

Foundation Series 2.1i User Guide 11-15

Foundation Series 2.1i User Guide

11-16

you must use the Custom option. If you use this option, you cannot
guide mapping using the Set Floorplan File(s) command. Guided
mapping is not supported for Virtex devices.

4. Inthe Set Guide File(s) dialog box, make sure Enabl e Gui de is
selected.

By default, this option is enabled and instructs the software to
use the specified guide file. If you do not want to guide your
design but want to keep your guide file intact, disable this option.

5. For FPGA devices, select Mat ch Gui de Desi gn Exact | y if you
want to lock the placement and routing of matching logic.

If you do not select this option, the guide files are used as a
starting point only. This allows the mapper, placer, and router
greater flexibility in accommodating design modifications, often
resulting in greater overall success.

Note: For synthesis-based designs, use the Match Guide Design
Exactly option only if the guide file is from the same design version.

6. Click &K

When you implement the design, the Flow Engine uses the
copied data to guide the implementation.

Floorplan Files

When you use the Floorplanner, an MFP file is generated that
contains mapping information. You can instruct the Design Manager
to use this file as a guide for mapping an implementation revision
using the Set Floorplan File(s) command. To use this command, you
must select an implementation revision that has been mapped and
modified using the Floorplanner. For information on using the Floor-
planner, see the Floorplanner Guide.

Note: If you use the Set Floorplan File(s) command you cannot guide
mapping using the Set Guide File(s) command Custom option. The
Set Floorplan File(s) command is available for the XC4000, Virtex,
and Spartan device families only.

1. From the Project Manager, select | npl enent ati on — Set
Fl oor pl an Fil e(s) to open the dialog box shown in the
following figure.

Xilinx Development System

Design Implementation

Set Floorplan File(s) x|

¥ ‘Copy Floorplan D ata From: Mone j

v Enable Floorplan

oK I Cancel | Help |

Figure 11-6 Set Floorplan File(s) Dialog Box
2. Make sure Copy Fl oor pl an Dat a Fr omis selected.
3. Inthe drop-down list box, choose one of the following.

= Arevision that contains the floorplan files you want to use
for this implementation

= None if you do not want to copy floorplan data

= Cust omto guide from any mapped file in your file system,
including designs not generated from within the Design
Manager

If you select Cust om the following dialog box appears. Type
the name of a specific file in the Floorplanning File field, or
click Br owse to open a file selection dialog box in which you
can choose an existing file. Specify an FNF file for the Floor-
planning File field and an MFP file for the Floorplanned
Guide File field.

Custom x|

Flaarplanting Fils: Ifi"ef-f”ﬂ Browse. . |

Flaorplanned Guide File: Ifi“Bf-me Browse...

0K, I Cancel | Help |

Figure 11-7 Set Floorplan File(s) Custom Dialog Box

4. Inthe Set Floorplan File(s) dialog box, make sure Enabl e
FI oor pl an is selected.

Foundation Series 2.1i User Guide 11-17

Foundation Series 2.1i User Guide

Note: By default, this option is enabled and instructs the software to
use the specified Floorplanner file. If you do not want to guide your
design but want to keep your Floorplanner file intact, disable this
option.

5. Click CK.

The Flow Engine uses the copied data to guide the implementa-
tion.

Selecting Options

11-18

For FPGAs, options specify how a design is optimized, mapped,
placed, routed, and configured. For CPLDs, they control how a
design is translated and fit. Implementation options are specified in
the Options dialog box.

In a Schematic Flow project, select Opt i ons on the Implement
Design dialog box to access the Options dialog box shown in the
following figure.

In an HDL Flow project, select Opt i ons on the Synthesis/Implemen-
tation dialog box to access the Options dialog box.

I][l%iuns

 Place & Route Effort Level

Eastsst | High
Runtirme 1 4 ! ' 1 E ffiart

— Program Options

Irnplementation: IDefauIt j Edit Optiots... |
Simlation: IFUundation EDIF j Edit Options... |
Configuration: IDefauIl j Edit Options... |

(] I Cancel | Help |

Xilinx Development System

Design Implementation

Place & Route Effort Level

The Place & Route Effort Level setting controls how much effort the
placer and router should use to best place and route a design at the
expense of longer runtimes.

Program Options

The Program Options are grouped into implementation, simulation,
and configuration options. These can be used to create customized
templates for various implementation styles you may want to try. For
example, one implementation style could be Quick Evaluation, while
another could be Timing Constraint Driven.

You can have multiple templates in a project. By choosing a template,
you are choosing an implementation, simulation, or configuration
style. In the Program Option portion of the Options Dialog, select
Edi t Opti ons for Implementation, Simulation, or Configuration to
access the associated template. An example of the Implementation
Options dialog box is shown in the following figure. The options
shown in each template depends on the target device family. For
detailed information on the templates for each device family, refer to
the “Implementation Flow Options” chapter of the Design Manager/
Flow Engine Guide.

Foundation Series 2.1i User Guide 11-19

Foundation Series 2.1i User Guide

11-20

XC4000 Implementation Dptions: Default x|

Optimize and Map | Place and Route | Timing Reports | Interface

i~ Logic Optimization Options
ir2fis

¥ Beplicate Logic to Allow Logic Level Reduction

[" Generate 5-Input Functions

— Map Optiong

CLE Packing Strategy: IFit Device 'I
Pack CLE Fegisters for: IStructure 'I

Pack 1/0 Registers/Latches into 0B < for: II:Iff j

[~ Use Generic Clock Buffers [BUFGs) in place of BUFGPs and BUFGSs

Ok, I Cancel Default

Implementation Templates

Implementation templates control how the software maps, places,
routes, and optimizes an FPGA design and how the software fits a
CPLD design.

Simulation Templates

Simulation templates control the creation of netlists in terms of the
Xilinx primitive set, which allow you to simulate and back-annotate
your design. In back-annotation, physical design data is distributed
back to the logic design to perform back-end simulation. You can
perform front and back-end simulation on both pre- and post-routed
designs. Select a simulation template to use from the Simulation
drop-down list.

Configuration Templates (FPGAS)

Configuration templates control the configuration parameters of a
device, the startup sequence, and readback capabilities. Select a

Xilinx Development System

Design Implementation

configuration template to use in this implementation from the

Configuration drop-down list.

Note: Configuration options are supported for the FPGA device
families only. There are no configuration options for the CPLD fami-

lies.

Template Manager

To create new templates or as an alternate way to access the templates

use the Template Manager.

1. From the Project Manager menu, select Tool s - Wilities -
| mpl enent ati on Tenpl at e Manager . This opens the

Template Manager dialog box.

Template Manager

x|

Eamily:

Cloge

* Implementation Templates

= Sirmulation T emplates

= Configuration Templates Edt..
Template List:
Default Copy...

Delete...

Import...

Export...

Help

_It

Bename...

Customize...

R E

2. From the Template Manager dialog box, click the button associ-
ated with the type of template on which you wish to perform an
operation (Configuration, Simulation, or Implementation).

Foundation Series 2.1i User Guide

11-21

Foundation Series 2.1i User Guide

3. Click the appropriate button for the operation (New, Edit, Copy,
and so forth).

4. After you have made all of your template entries, click Cl ose.

Flow Engine

The Project Manager’s Implementation phase button automatically
invokes and controls the Flow Engine to process the design. The Flow
Engine interface prominently displays the status of each implementa-
tion stage as shown in the following figures.

% watch3([ver5-3rev1] - Flow Engine I =1 3|
Flow iew Setup Utiiies Help

=B 2z Bkl @)

ACADDDE Design Flow [rewvl] Status: OK
Translate Map Place&Route Timing Configure
| Completed | Completed | Completed | |
=

Total REAL time to PARE completion: 12 =secs
Total CPU time to PAR completion: 0 =ecs

PAR done.

-
«| | »

C» | [1 1 [=]

For Help, press F1 [#C4003E-1-PCB4 |watchZuck [None 2

Figure 11-8 Flow Engine - FPGA Processing

11-22 Xilinx Development System

Design Implementation

% watch3([ver8-3rev1] - Flow Engine I =1 3|
Flow iew Setup Utiiies Help

e = e] e 24

AC9500 Design Flow [revl) Status: OK
Translate Timing Bitstream
| Completed | | [

Writing HGD file "watch3 ngd" . ..

Writing HGDBUILD log file "watch3 . bld". ..

HGDEUILD done. -
4| | L|_I
[» | | » | | 1+« | |

For Help, press F1 |#C9536-6-PC44 |watch3uck [None 2

Figure 11-9 Flow Engine - CPLD Processing

When you process your design, the Flow Engine translates the design
file into the Xilinx internal database format (NGD). The Flow Engine
then implements your design and generates bitstream data.

Process indicators in the Flow Engine main window show you which
of these stages is currently processing. The arrows between each step
turn black after the previous step is completed. Underneath each
process indicator, a progress bar shows the status of each processing
step, whether running, completed, aborted, or failed.

By default, all implementation processing stages are performed. If
you want, you can control processing of your design by using the
STOP button in the Flow Engine Tool bar to stop processing after a
designated stage. Refer to the “Flow Engine Controls” section under
the “Additional Implementation Tools” section for more information
on additional features of the Flow Engine.

For an overview of the processing and file manipulation performed
for FPGAs and CPLDs, refer to the*File Processing Overview”
appendix.

Foundation Series 2.1i User Guide 11-23

Foundation Series 2.1i User Guide

11-24

Translate

The Flow Engine’s first step, Translate, merges all of the input
netlists. This is accomplished by running NGDBuild. For a complete
description of NGDBuild, refer to the “NGDBuild” chapter of the
Development System Reference Guide.

MAP (FPGAS)

The MAP program maps a logical design to a Xilinx FPGA. The input
to a mapping program is an NGD file, which contains a logical
description of the design in terms of both the hierarchical
components used to develop the design and the lower level Xilinx
primitives, and any number of NMC (macro library) files, each of
which contains the definition of a physical macro. MAP first
performs a logical DRC (Design Rule Check) on the design in the
NGD file. MAP then maps the logic to the components (logic cells, 1/
O cells, and other components) in the target Xilinx FPGA. The output
design is an NCD (Native Circuit Description) file physically
representing the design mapped to the components in the Xilinx
FPGA. The NCD file can then be placed and routed.

You can run the Mapper from a GUI (Flow Engine) or command line.
For a description of the GUI, see the Design Manager/Flow Engine
Guide, an online book. For a description of the MAP command and its
options, see the Development System Reference Guide, an online book.

Place and Route (FPGAS)

After an FPGA design has undergone the necessary translation to
bring it into the NCD (Native Circuit Description) format, it is ready
to place and route. This phase is done by PAR (Xilinx's Place and
Route program). PAR takes an NCD file, places and routes the design,
and produces an NCD file, which is used by the bitstream generator
(BitGen). The output NCD file can also act as a guide file when you
place and route the design again after you make minor changes to it.

In the Xilinx Development System, PAR places and routes a design
using a combination of two methods.

= Cost-based — This means that placement and routing are
performed using various cost tables which assign weighted
values to relevant factors such as constraints, length of
connection and available routing resources.

Xilinx Development System

Design Implementation

= Timing-Driven — PAR places and routes a design based upon
your timing constraints.

For a complete description of PAR, see the “PAR—PIlace and Route”
chapter in the Development System Reference Guide.

CPLD Fitter

The CPLD Fitter implements designs for the XC9500/ XL devices. The
Fitter outputs the files listed below.

= The Fitting report (design_name.rpt) lists a summary and detailed
information about the logic and I/0 pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

= The Static timing report (design_name.tim) shows a summary
report of worst-case timing for all paths in the design; it
optionally includes a complete listing of all delays on each
individual path in the design.

= The Guide file (design_name.gyd) contains all resulting pinout

information required to reproduce the current pinout if you run
the Lock Pins command before the next time the fitter is run for
the same design. (The Guide file is written only upon successful
completion of the fitter.) Multi-Pass Place and Route and Guide
Files are not accessible via the Foundation Project Manager.
Access these functions through the standalone Design Manager
(Start - Progranms - Accessories - Design Manager.

= The Programming file (design_name.jed for XC9000) is a JEDEC-
formatted (9k) programming file to be downloaded into the
CPLD device.

= Timing simulation database (design_name.nga) is a binary
database representing the implemented logic of the design,
including all delays, consisting of Xilinx simulation model
primitives (simprims).

For detailed information about implementing CPLD designs, refer to
the CPLD Design Techniques and CPLD Flow Tutorial in the Foundation
on-line help.

Foundation Series 2.1i User Guide 11-25

Foundation Series 2.1i User Guide

Configure (FPGAS)

After the design has been completely routed, you must configure the
device so that it can execute the desired function. Xilinx’s bitstream
generation program, BitGen, takes a fully routed NCD (Circuit
Description) file as its input and produces a configuration
bitstream—a binary file with a .bit extension. The BIT file contains all
of the configuration information from the NCD file defining the
internal logic and interconnections of the FPGA, plus device-specific
information from other files associated with the target device. The
binary data in the BIT file can then be downloaded into the FPGA's
memory cells, or it can be used to create a PROM file.

For a complete description of BitGen, see the “BitGen” chapter in the
Development System Reference Guide. This chapter also explains how to
use the command line to run BitGen.

Within the Flow Engine, BitGen runs as part of the Configure process.
For details consult the various configuration template options in the
“Working with Templates” section in the “Using the Design
Manager” chapter of the Design Manager/Flow Engine Guide.

Bitstream (CPLDs)

At the end of a successful CPLD implementation, a .jed programming
file is created. The JTAG Programmer uses this file to configure
XC9500/XL/XV CPLD devices.

Implementation Reports

The implementation reports provide information on logic trimming,
logic optimization, timing constraint performance, and 1/0 pin
assignment. To access the reports, select the Reports tab from Project
Flow area of the Project Manager. Double click the Implementation
Report Files icon to access the implementation reports.

The Implementation Log on the Reports tab is a record of all the
implementation processing.

11-26 Xilinx Development System

Design Implementation

Floeay \ Contents * Feparts \

FPre-Synthesis Post-Synthesis Implementation Implementation

Report Report Report Files Log File

Impaort EDIF
netlist

Expoart netlist

Double click the Implementation Report Files icon to access the
Report Browser shown in the following figures. To open a particular

report, double click its icon.

Report Browser - freqm{verl->rex1) il
Translation Map Repott Place & Foute Pad Report Asynchronous
Report Report Delay Report
Post Layout Bitgen Report =
Timing Report =
Figure 11-10 Report Browser - FPGAs
=l

i Report Browser - jet_schiver]->revl]

Post Layout

Fitting Report
Timing Report

Tranzlation
Report

Figure 11-11 Report Browser - CPLDs

Foundation Series 2.1i User Guide

11-27

Foundation Series 2.1i User Guide

11-28

Translation Report

The translation report (.bld) contains warning and error messages
from the three translation processes: conversion of the EDIF or XNF
style netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

Missing or untranslatable hierarchical blocks
Invalid or incomplete timing constraints

Output contention, loadless outputs, and sourceless inputs

Map Report (FPGAS)

The Map Report (.mrp) contains warning and error messages
detailing logic optimization and problems in mapping logic to
physical resources. The report lists the following information:

Erroneously removed logic. Sourceless and loadless signals can
cause a whole chain of logic to be removed. Each deleted element
is listed with progressive indentation, so the origins of removed
logic sections are easily identifiable; their deletion statements are
not indented.

Logic that has been added or expanded to optimize speed.

The Design Summary section lists the number and percentage of
used CLBs, 10Bs, flip-flops, and latches. It also lists occurrences
of architecturally-specific resources like global buffers and
boundary scan logic.

Note: The Map Report can be very large. To find information, use key
word searches. To quickly locate major sections, search for the string

*, because each section heading is underlined with dashes.

Place and Route Report (FPGAS)

The Place and Route Report (.par) contains the following
information.

The overall placer score which measures the “goodness” of the
placement. Lower is better. The score is strongly dependent on
the nature of the design and the physical part that is being
targeted, so meaningful score comparisons can only be made
between iterations of the same design targeted for the same part.

Xilinx Development System

Design Implementation

= The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If non-zero, you may be
able to improve results by using re-entrant routing or the multi-
pass place and route flow.

= The timing summary at the end of the report details the design’s
asynchronous delays.

Pad Report (FPGAS)

The Pad Report lists the design’s pinout in three ways.
= Signals are referenced according to pad numbers.
= Pad numbers are referenced according to signal names.

= PCEF file constraints are listed. This section of the Pad Report can
be cut and pasted into the .pcf file after the SCHEMATIC END;
statement to preserve the pinout for future design iterations.

Fitting Report (CPLDs)

The Fitting Report (design_name.rpt) lists summary and detailed
information about the logic and 1/0 pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

Post Layout Timing Report

A timing summary report shows the calculated worst-case timing for
the logic paths in your design.

Additional Implementation Tools

From the Project Manager’s Tools menu, you can select Tool s -
| mpl enent at i on to access the additional implementation tools
described below.

Constraints Editor

You can invoke the Xilinx implementation Constraints Editor by
selecting Tool s — | npl ement ati on - Constraints Editor.

Foundation Series 2.1i User Guide 11-29

Foundation Series 2.1i User Guide

11-30

The Xilinx Constraints Editor is a Graphical User Interface (GUI) that
provides you with a convenient way to create user constraints files
without having to learn constraints syntax.

The Constraints Editor interface consists of a main window, three tab
windows for creating global, port, and advanced constraints, and a
number of dialog boxes.

Information on the Xilinx Constraints Editor can be found in the
Constraints Editor Guide, an online book.

Flow Engine Controls

You can invoke and run the Flow Engine manually by selecting
Tool s — | npl ement ati on - Fl owENgi ne. Be aware that when
invoked from the Tools menu, Flow Engine processing is nhot under
Project Management control.

Controlling Flow Engine Steps

If you want to implement your design in separate steps instead of
automatically with the Implementation phase button, use the
following procedure.

1. Create a new revision by selecting Pr oj ect — Create Revi -
si on. In the New Revision dialog box, you can accept the
defaults or change the target device, speed, and revision name.
Click OK to create the revision.

2. Inthe Project Manager Versions tab, select the revision.

3. Select Tool s - I npl enent ati on - Fl owEngi ne from the
Project Manager’s menu bar.

4. If you want to modify the implementation option settings, select
Set up - Opti ons from the menu in the Flow Engine to access
the Options dialog box.

5. Set the appropriate options in the Options dialog box.

Refer to the “Selecting Options” section for information on the
Options dialog box.

6. Click OKto return to the Flow Engine.
7. To start the Flow Engine, do one of the following.

< In the Flow Engine window, select Fl ow - Run.

Xilinx Development System

Design Implementation

= Select Fl ow - St ep to single step through the implementa-
tion process.

Optionally, you can select Set up — St op Af t er and select
where to stop processing.

Running Re-Entrant Routing on FPGASs

You can use re-entrant routing to further route an already routed
design. The design maintains its current routing and additional
routing is added. You can reroute connections by running cost-based
cleanup, delay-based cleanup, and additional re-entrant route passes.
Cleanup passes attempt to minimize the delays on all nets and
decrease the number of routing resources used. Cost-based cleanup
routing is faster while delay-based cleanup is more intensive.

Re-entrant routing offers the following advantages.

= Cleanup passes significantly reduce delays, especially on non-
timing driven runs.

= For timing-driven runs, cleanup passes can improve timing on
elements not covered by timing constraints.

= For designs which do not meet timing goals by a narrow margin,
delay-based cleanup passes can reorganize routing so that addi-
tional re-entrant route passes enable the design to meet timing
goals.

Note: Re-entrant Routing is supported for the FPGA device families
only.

Use the following procedure to perform Re-Entrant Routing.

1. Inthe Project Manager Versions tab, select an implemented revi-
sion.

2. Select Tool s - I npl enent ati on — FI owEngi ne from the
Project Manager’s menu bar.

3. Select Set up -~ FPGARe- ent r ant Rout e from the Flow Engine
to access the FPGA Re-entrant Route dialog box.

Foundation Series 2.1i User Guide 11-31

Foundation Series 2.1i User Guide

11-32

FPGA Re-entrant Route
W &l

— Re-entrant Route Options Cancel

oK

Pl

un : Lozt Bazed Clean-up Fasses Help
Run [1 j Cost Based Cl P Hel
Run ID ill Lelay Bazed Clean-up Pazzes
Fiun IAuto j Fe-entrant Route Paszes

¥ Usze Timespecs During Re-entrant Route

4. Select Al | owRe- ent rant Routi ng to route the previously

routed design again.

Select a number between 1 and 5 for the Run _ Cost - Based
d eanup Passes field.

These cleanup passes reroute nets if the new routing uses less
costly resources than the original configuration. Cost is based on
pre-determined cost tables. Cost-based cleanup usually has a
faster runtime than the delay-based cleanup, but does not reduce
delays as significantly.

Note: If you run both cost-based and delay-based cleanup passes, the
cost-based passes run first.

6. Select a number between 1 and 5 for the Run _ Del ay- Based

d eanup Passes field.

These cleanup passes reroute nets if new routing will minimize
the delay for a given connection. Delay-based cleanup usually
produces faster in-circuit performance.

Select a number between 1 to 2000 for the Run _ Re- entr ant
Rout e Passes field to run additional re-entrant routing passes.

These passes are either timing driven or non-timing driven
depending on whether you specified timing constraints.

Select Use Ti nespecs Duri ng Re- ent r ant Rout e if you want
to reroute the design within the specified timing constraints in
your design file.

Xilinx Development System

Design Implementation

9. Click OK. This causes the Place and Route icon in the Flow Engine
to show a loop back arrow and the Re-Entrant route label.

10. If you are specifying timing or location constraints, you have the
option to relax them to give PAR more flexibility. If you modify
the UCF file, you must step backwards with the Flow Engine and
re-run Translation in order to incorporate the changes.

Since your design is already implemented, step back to the begin-
ning of Place and Route using the Step Backward button at the
bottom of the Flow Engine, and then click the button to start
again.

Configuring the Flow

You can configure the implementation flow and control certain
aspects of the Flow Engine interface. To configure the flow, use the
following procedure.

1. Inthe Project Manager Versions tab, select an implemented revi-
sion (or create a new revision).

2. Select Tool s - I npl enentati on - Fl owEngi ne from the
Project Manager’s menu bar.

3. From the Flow Engine menu, select Set up — Advanced to
access the Advanced dialog box.

Advanced x|
Implementation State: Wew] Ok |
.) Cancel |
[~ Usze Flashing to Indicate Heartbeat

Help |

4. Select a state from the Implementation State list box to update the
Flow Engine as to which implementation state was last
completed.

Note: The advanced setting is not used in normal Flow Engine use. It
is used if some processing on the design was performed outside of
the Project Manager or Flow Engine framework, such as in the FPGA
Editor. It can also be used if you ran the Flow Engine Step Back

Foundation Series 2.1i User Guide 11-33

Foundation Series 2.1i User Guide

11-34

button by mistake and want to reset the implementation state to its
original state.

5. SelectUse Fl ashingtol ndi cat e Heart beat to enable
flashing icons to indicate that a process step is being processed. A
trade-off of this feature is that flashing icons slow down the
implementation process.

6. Click CK.

Floorplanner

The Floorplanner is a graphical placement tool that gives you control
over placing a design into a target FPGA. You can access the Floor-
planner through Tool s - | npl enent ati on - Fl oor pl anner on
the Project Manager’s menu bar.

Floorplanning is an optional methodology to help you improve
performance and density of a fully, automatically placed and routed
design. Floorplanning is particularly useful on structured designs
and data path logic. With the Floorplanner, you see where to place
logic in the floorplan for optimal results, placing data paths exactly at
the desired location on the die.

With the Floorplanner, you can floorplan your design prior to or after
running PAR. In an iterative design flow, you floorplan and place and
route, interactively. You can modify the logic placement in the Floor-
plan window as often as necessary to achieve your design goals. You
can save the iterations of your floorplanned design to use later as a
constraints file for PAR.

The Floorplanner displays a hierarchical representation of the design
in the Design Hierarchy window using hierarchy structure lines and
colors to distinguish the different hierarchical levels. The Floorplan
window displays the floorplan of the target device into which you
place logic from the hierarchy. The following figure shows the
windows on the PC version.

Logic symbols represent each level of hierarchy in the Design Hier-
archy window. You can modify that hierarchy in the Floorplanner
without changing the original design.

You use the mouse to select the logic from the Design Hierarchy
window and place it in the FPGA represented in the Floorplan
window.

Xilinx Development System

Design Implementation

Alternatively, you can invoke the Floorplanner after running the
automatic place and route tools to view and possibly improve the
results of the automatic implementation.

FPGA Editor

The FPGA Editor is a graphical application for displaying and
configuring FPGAs. You can use the FPGA Editor to place and route
critical components before running the automatic place and route
tools on your designs. You can also use the FPGA Editor to manually
finish placement and routing if the routing program does not
completely route your design. In addition, the FPGA Editor reads
from and writes to the Physical Constraints File (PCF).

For a description of the FPGA Editor, see the FPGA Editor Guide, an
online book.

You can access the FPGA Editor through Tool s - | npl enent a-
tion » FPGA Edi t or on the Project Manager’s menu bar.

CPLD ChipViewer

The ChipViewer provides a graphical view of the CPLD fitting
report. With this tool you can examine inputs and outputs, macrocell
details, equations, and pin assignments. You can examine both pre-
fitting and post-fitting results.

More information on using the CPLD ChipViewer is available in that
tool’s online help (Tool s - I npl ement ati on — CPLD Chi p-

Vi ewer — Hel p) or from the Umbrella Help menu accessed by Hel p
- Foundat i on Hel p Cont ents — Advanced Tool s - Chi p-

Vi ewner.

Locking Device Pins

You can automatically generate pin locking constraints in your UCF
file for use with other Xilinx implementation tools. Pinout informa-
tion is taken from a placed NCD file for FPGAs or a fitted GYD file

for CPLDs.

To lock device pins, do the following.

1. From the Versions tab in the Project Manager window, select an
implementation revision.

Foundation Series 2.1i User Guide 11-35

Foundation Series 2.1i User Guide

2. Select Tool s - I npl enentati on - Lock Devi ce Pi ns from
the Project Manager menu bar.

3. When the Lock Pins Status confirmation dialog box appears, click
OKor click Vi ewLock Pi ns Report to view the report.

Pin locking constraints that created with this command are
added to your UCF file in the PINLOCK section.

If you want to view the report after you have dismissed the Lock Pins
Status dialog box, use Tool s - | npl enent ati on - Lock Pi ns
Report from the Project Manager.

11-36 Xilinx Development System

Chapter 12

Verification and Programming

This chapter contains the following sections.

“Overview”

= “Timing Simulation”

= “Timing Analyzer”

= “In-Circuit Verification”

< “Downloading a Design”

Overview

Design verification is the process of testing the functionality and
performance of your design. Design verification should occur
throughout your design process. Foundation supports three comple-
mentary methods for design verification. These are described below.

e Simulation

You can perform simulations to determine if the timing require-
ments and functionality of your design have been met.

= Functional Simulation can be performed in Schematic Flow
projects immediately after design entry and in HDL Flow
projects after synthesis. Refer to the“Functional Simulation”
chapter for information on Functional Simulation.

= Timing Simulation is performed during the Implementation
phase. The“Timing Simulation” section of this chapter
discusses design verification using Timing Simulation.

= Static timing analysis

Static timing analysis is best for quick timing checks of your
design.

Foundation Series 2.1i User Guide 12-1

Foundation Series 2.1i User Guide

= For Foundation Express users, the Express Time Tracker
provides post-synthesis, pre-implementation timing analysis
for HDL Flow projects. Refer to “Express Time Tracker”
section of the “Design Methodologies - HDL Flow” chapter
for information.

= For Schematic Flow projects and HDL Flow projects, static
timing analysis can be done at two different stages of the
Implementation phase for FPGA devices: after Map or after
Place and Route. It can be done after Fit for CPLDs. Refer to
the “Timing Analyzer” section in this chapter for information
on static timing analysis within the Implementation phase.

= In-circuit verification

As a final test, you can verify how your design performs in the
target application. In-circuit verification tests the circuit under
typical operating conditions. To perform in-circuit verification,
you download your design bitstream into a device with the
Xilinx XChecker cable. Refer to “In-Circuit Verification” in the
Device Programming section of this chapter for information.

When the design meets your requirements, the last step in its
processing is downloading the design and programming the target
device.

Timing Simulation

12-2

Timing simulation verifies that your design runs at the desired speed
for your device under worst-case conditions. It can verify timing rela-
tionships and determine the critical paths for the design under worst-
case conditions. It can also determine whether the design contains
set-up or hold violations.

The procedures for functional and timing simulation are nearly iden-
tical. Functional simulation is performed before the design is placed
and routed and simulates only the functionality of the logic in the
design. Timing simulation is performed after the design is placed and
routed and uses timing information based on the delays in the placed
and routed design. Timing simulation describes the circuit behavior
far more accurately than Functional simulation.

Like functional simulation, you must use input stimulus to run the
simulation. To create stimulus, refer to the*“Functional Simulation”
chapter.

Xilinx Development System

Verification and Programming

Note: Naming the nets during your design entry is very important
for both functional and timing simulation. This allows you to find the
nets in the simulations more easily than looking for a machine-gener-
ated name

Generating a Timing-annotated Netlist

Before performing timing simulation on your design, you must
generate a timing-annotated netlist by implementing the design as
follows.

1. Within the Project Manager, click the Implementation icon.

a) For Schematic Flow projects, this opens the Implement
Design dialog box.

b) For HDL Flow projects, this opens the Synthesis/Implemen-
tation dialog box.

2. Click the Opt i ons button. This opens the Options dialog box.

3. Verify that the Simulation Template is Foundat i on EDI F.
(Change it to Foundat i on EDI F, if necessary.)

4. Implement the design.

a) For Schematic Flow projects, click Run in the Implement
Design dialog box.

b) For HDL Flow projects, click OK in the Synthesis/Implemen-
tation dialog box.

Basic Timing Simulation Process

After the design has been implemented and timing simulation data
produced as described in“Generating a Timing-annotated Netlist”
section, you can perform a timing simulation. This section describes
the basic steps to perform timing simulation.

1. Open the Timing Simulator by clicking the Timing Simulation
icon on the Verification phase button.

A E&
IMPLEMENTATION i VERIF
v Timing Simulation

Foundation Series 2.1i User Guide 12-3

Foundation Series 2.1i User Guide

2. The implementation timing netlist is loaded into the simulator.
The Waveform View window displays on top of the Logic Simu-
lator window as shown in the following figure.

&' Logic Simulator - Xilinx Foundation F1.5 [watchvhd] =lo| x|
File Signal ‘wWaveform Device Option: Tools View Window Help

=|@|8] kS| 4) o[z] @f[ees =] B8]

= Waveform Viewer 0 =lo] x| ;I
| =e=|C IM—ll== o [mr | 0.0

”-L”-L”JI S0ns/fdiv ||-|-|-|-'I 500ns |[lus 1. fus [Eus 2. fus [Fus |

| 0.a IIII|IIII IIII|IIII IIII|IIII IIII|IIII IIII|IIII IIII|IIII IIII|IIII IIII|

1T [LT [

Metlist loaded successtully | 0o

3. Simulate the design as described in the*“Functional Simulation”
chapter. Although the procedure is the same for functional and
timing simulation, you are now simulating based on a design
with worst-case delays in the timing simulator.

4. Use the controls from the Simulator window to verify your
design.

Timing Analyzer

The Timing Analyzer performs static timing analysis of an FPGA or
CPLD design. A static timing analysis is a point-to-point analysis of a
design network. It does not include insertion of stimulus vectors.The
FPGA design must be mapped and can be partially or completely
placed, routed, or both. The CPLD design must be completely placed
and routed (fitted).

12-4 Xilinx Development System

Verification and Programming

The Timing Analyzer verifies that the delay along a given path or
paths meets your specified timing requirements. It organizes and
displays data that allows you to analyze the critical paths in a circuit,
the cycle time of the circuit, the delay along any specified path, and
the paths with the greatest delay. It also provides a quick analysis of
the effect of different speed grades on the same design.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous designs, the
Timing Analyzer takes into account all path delays, including clock-
to-Q and setup requirements while calculating the worst-case timing
of the design. However, the Timing Analyzer does not perform setup
and hold checks. You must use a simulation tool for these checks.

The Timing Analyzer creates timing analysis reports, which you
customize by applying filters with the Path Filters menu commands.

For a complete description of the Timing Analyzer, see the Timing
Analyzer Guide, an online manual.

Post Implementation Static Timing Analysis

Post-implementation timing reports incorporate all delays to provide
a comprehensive timing summary. If an implemented design has met
all of your timing constraints, then you can proceed by creating
configuration data and downloading a device. On the other hand, if
you identify problems in the timing reports, you can try fixing the
problems by increasing the placer effort level or using re-entrant
routing. You can also redesign the logic paths to use fewer levels of
logic, tag the paths for specialized routing resources, move to a faster
device, or allocate more time for the paths.

Edit the Implementation template (from the Project Manager, select
| mpl enent ati on - Opti ons) to modify the Place & Route effort
level. For information on re-entrant routing, see the “Running Re-
Entrant Routing on FPGAS” section in the “An Introduction to
Design Implementation chapter.

Summary Timing Reports

Summary reports show timing constraint performance and clock
performance. Implementing a design in the Flow Engine can
automatically generate summary timing reports. To create summary
timing reports, perform the following steps.

Foundation Series 2.1i User Guide 12-5

Foundation Series 2.1i User Guide

12-6

Summary reports show timing constraint performance and clock
performance. Implementing a design in the Flow Engine can
automatically generate summary timing reports. To create summary
timing reports, perform the following steps:

1. Open the Options dialog box (I npl enent ati on - Opti ons)
from the Project Manager) and select Edi t Opt i ons for the
Implementation template.

2. Select the Timing Reports tab.

3. Fora post-map report, select Pr oduce Logi ¢ Level Ti m ng
Report . For a post-PAR report select Pr oduce Post Layout
Ti mi ng Report.

4. To modify the reports to highlight path delays or paths that have
failed timing constraints, select a report format.

5. After MAP or PAR has completed, the respective timing reports
appear in the Report Browser.

Detailed Timing Analysis

To perform detailed timing analysis, select Tool s - Si nul ati on/
Verification - Interactive Ti m ng Anal yzer from the
Project Manager menu. You can specify specific paths for analysis,
discover paths not affected by timing constraints, and analyze the
timing performance of the implementation based on another speed
grade. For path analysis, perform the following:

1. Choose sources. From the Timing Analyzer menu, select Pat h
Filters -~ CustomFilters - Sel ect Sources.

2. Choose destinations. From the Timing Analyzer menu, select
Path Filters — CustomFilters - Sel ect Desti na-
tions.

3. To create a report, select one of the options under the Analyze
menu.

To switch speed grades, select Opt i ons — Speed Gr ade. After a
new speed grade is selected, all new Timing Analyzer reports will be
based on the design running with new speed grade delays. The
design does not have to be re-implemented, because the new delays
are read from a separate data file.

Xilinx Development System

Verification and Programming

In-Circuit Verification

As a final test, you can verify how your design performs in the target
application. In-circuit verification tests the circuit under typical oper-
ating conditions. Because you can program your Xilinx devices
repeatedly, you can easily load different iterations of your design into
your device and test it in-circuit.

To verify your FPGA designs in-circuit, download your design
bitstream into a device with the Xilinx XChecker cable.

Refer to the following section for more information on programming
your target device.

Downloading a Design

To download your design, you must successfully run implementation
to create a configuration bitstream. Xilinx provides the MultiLINX
cable, Parallel Cable 11, or the XChecker cable, depending on which
development system you are using, to download the bitstream to a
device.

You can use the XChecker cable or MultiLINX cable to read back and
verify configuration data. Detailed cable connection and daisy-chain
information is provided in the Hardware Debugger Guide.

Note: The Xilinx Parallel Cable 11l can be used for FPFGA and CPLD
design download and readback, but it does not have a design verifi-
cation function.

With the XChecker cable, you can use the Hardware Debugger Pick
function to take snapshots of the circuit at specific clock cycles. You
can obtain these snapshots by performing serial readback of the
nodes during in-circuit operation. With the Hardware Debugger soft-
ware, you can speed up your analysis by limiting the readback
bitstream to only those nodes and clock cycles in which you have
interest.

You can also use the XChecker cable to probe your design after you
download it. Probing internal nodes allows you to pinpoint the loca-
tion of any design problems.

Use the XChecker cable when you do not want to specify additional
I0Bs and routing resources on your Xilinx FPGA for probing. This

Foundation Series 2.1i User Guide 12-7

Foundation Series 2.1i User Guide

12-8

allows you to decide how you want to probe after you have down-
loaded your design.

The MultiLINX cable is compatible in supporting Readback & Verify
for all the FPGASs supported by the XChecker cable. Plus, the Multi-
LINX cable supports the XC4000E/ XL, Spartan/XL, and Virtex
devices whose bit file size is more than 256K bits.

Note: Debug is not currently available with the MultiLINX cable.

JTAG Programmer

You can use JTAG programmer to download, read back, and verify
design configuration data and to perform functional tests on any
FPGA or CPLD device. You can also use it to probe internal logic
states of a CPLD design.

JTAG Programmer uses sequences of JTAG instructions to perform
programming and verification operations.

You need to provide JEDEC files for each XC95000 device, BIT files
for each Xilinx FPGA device in the JTAG programming chain, and
BSDL files for the remaining devices.

JTAG Programmer supports the following Xilinx device families:
XC4000E/L/EX/XL/XV/XLA, XC5200, XC95000/ XL/ XV, Spartan/
XL, and Virtex.

There are two download cables available for use with the JTAG
Programmer. The first is an RS232 serial cable known as the XChecker
Cable. The second is the Parallel Download Cable which can be
connected to a PC’s parallel printer port.

There are a few advantages to be considered in selecting a cable:
= The XChecker Cable connects to the serial port of PCs.

= The Parallel Cable has better drive capability. The Parallel Cable
can drive up to 10 XC9500 devices in a boundary-scan chain, and
the XChecker Cable can drive up to 4 XC9500 devices.

= The Parallel Cable is at least 5 times faster.

Refer to the JTAG Programmer Guide in the online book collection for
complete information on the JTAG Programmer.

Xilinx Development System

Verification and Programming

Hardware Debugger (FPGAs only)

The Hardware Debugger is a graphical interface that allows you to
download a design to a device, verify the downloaded configuration,
and display the internal states of the programmed device. Use the
program to perform the following tasks.

= Download aBIT file to an FPGA or a PROM file to a daisy chain
of FPGAs. Downloading refers to the process of programming or
configuring a device.

= Verify the configuration data of a single device using an
XChecker cable. Verification consists of reading the configuration
data that was sent to the device and comparing it to the original
bitstream to ensure that the design was correctly received by the
device.

= Debug the internal logic states of a configured device using an
XChecker cable. Debugging consists of reading internal device
states to verify that the design is functioning correctly.

You can use the Hardware Debugger with the following Xilinx
devices: XC3000A/L, XC3100A/L, XC4000E/EX/L/ XL/ XV, XC5200,
Virtex, Spartan/XL, and Virtex.

Your target board can be either a Xilinx FPGA demonstration board
or your own board. The demonstration boards can be used to test
most designs.

Refer to the Hardware Debugger Guide in the online book collection for
complete information on the Hardware Debugger.

PROM File Formatter

The PROM File Formatter provides a graphical user interface that
allows you to format BIT files into a PROM file compatible with
Xilinx and third-party PROM programmers. It is also used to
concatenate multiple bitstreams into a single PROM file for daisy
chain applications. This program also enables you to take advantage
of the Xilinx FPGA reconfiguration capability, as you can store
several applications in the same PROM file.

PROM files are also compatible with the Xilinx Hardware Debugger
software. You can use the Hardware Debugger to download a PROM
file to a single FPGA or to a daisy chain of FPGA devices.

Foundation Series 2.1i User Guide 12-9

Foundation Series 2.1i User Guide

12-10

A Xilinx PROM file consists of one or more data streams. In this
context, a data stream represents all the configuration data required
to implement a given application. Each data stream contains one or
more BIT files and once saved, will have a separate preamble and
length count.

The PROM file can be formatted in one of three industry standard
formats: Intel MCS-86%, Tektronix TEKHEX, and Motorola EXOR-
macs.

Note: You can also format BIT files into a HEX format file. This file
type is not considered a PROM file since you cannot use it to program
PROM devices. A HEX format file is ordinarily used as input to user-
defined programs for microprocessor downloads.

You can store PROM files in PROM devices or on your computer. In

turn, you can use the files to program your FPGA devices either from
a PROM device on your board or from your computer using a serial

or parallel cable. Refer to the Hardware Debugger Reference/User Guide
for more information.

Refer to the PROM File Formatter Guide in the online book collection
for complete information on the PROM File Formatter.

Xilinx Development System

Glossary

Appendix A

ABEL

actions

Aldec

aliases

This appendix contains definitions and explanations for terms used
in the Foundation Series 2.1i User Guide.

ABEL is a high-level language (HDL) and compilation system
produced by Data I/0 Corporation.

In state machines, actions are HDL statements that are used to make
assignments to output ports or internal signals. Actions can be
executed at several points in a state diagram. The most commonly
used actions are state actions and transition actions. State actions are
executed when the machine is in the associated state. Transition
actions are executed when the machine goes through the associated
transition.

An Electronic Design Automation (EDA) vendor. Aldec provides the
Foundation Project Manager, Schematic Editor, Logic Simulator, and
HDL Editor.

Aliases, or signal groups, are useful for probing specific groups of
nodes.

Foundation Series 2.1i User Guide A-1

Foundation Series 2.1i User Guide

analyze

A process performed to check the syntax of an HDL file.

architecture

attribute

Architecture is the common logic structure of a family of program-
mable integrated circuits. The same architecture can be realized in
different manufacturing processes. Examples of Xilinx architectures
are the XC4000, Spartan, and XC9500 devices.

Attributes are instructions placed on symbols or nets in a schematic
to indicate their placement, implementation, naming, direction, or
other properties.

binary encoding

BitGen

Using the minimum number of registers to encode a state machine is
called binary, or maximal, encoding, because the registers are used to
their maximum capacity. Each register represents one bit of a binary
number.

The BitGen program produces a bitstream for Xilinx FPGA device
configuration. The BitGen program displays as the Configure step
within the Flow Engine.

Black Box Instantiation

block

A-2

Instantiation where the synthesizer is not given the architecture or
modules.

A group consisting of one or more logic functions. Also called CLB.

Xilinx Development System

Glossary

breakpoint

A breakpoint is a condition for which a simulator must stop to
perform simulation commands.

buffer

A buffer is an element used to increase the current or drive of a weak
signal and, consequently, increase the fanout of the signal. A storage
element.

bus

A bus is a group of nets carrying common information. In LogiBLOX,
bus sizes are declared so that they can be expanded accordingly
during design implementation.

CLB

The Configurable Logic Block (CLB). Constitutes the basic FPGA cell.
It includes two 16-bit function generators (F or G), one 8-bit function
generator (H), two registers (flip-flops or latches), and
reprogrammable routing controls (multiplexers).

component

A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.

condition
If there is more than one transition leaving a state in a state machine,
you must associate a condition with each transition. A condition is a
Boolean expression.

constraint

Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Foundation Series 2.1i User Guide A-3

Foundation Series 2.1i User Guide

Using attributes, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops. CLBs are arranged in columns and rows on the
FPGA device. The goal is to place logic in columns on the device to
attain the best possible placement from the standpoint of both
performance and space.

constraints editor

A GUI tool that you can use to enter design constraints. In
Foundation2.1i, there are two constraint editors. The Express
Constraints Editor is integrated with the synthesis tools for pre-
implementation optimization. It available only in the Foundation
Express product configuration. The Xilinx Constraints Editor is inte-
grated with the Design Implementation tools and available in all
product configurations.

constraints file

A constraints file specifies constraints (location and path delay) infor-
mation in a textual form. An alternate method is to place constraints
on a schematic.

CORE Generator

CPLD

A-4

A software tool for generating and delivering parameterizable cores
optimized for FPGAs. Like LogiBLOX modules, cores are high-level
modules. The library includes cores as complex as DSP filters and
multipliers, and as simple as delay elements. You can use these cores
as building blocks in order to complete your designs more quickly.

Complex Programmable Logic Device (CPLD) is an erasable
programmable logic device that can be programmed with a schematic
or a behavioral design. CPLDs constitute a type of complex PLD
based on EPROM or EEPROM technology. They are characterized by
an architecture offering high speed, predictable timing, and simple
software.

Xilinx Development System

Glossary

The basic CPLD cell is called a macrocell, which is the CPLD imple-
mentation of a CLB. It is composed of AND gate arrays and is
surrounded by the interconnect area.

CPLDs consume more power than FPGA devices, are based on a
different architecture, and are primarily used to support behavioral
designs and to implement complex counters, complex state machines,
arithmetic operations, wide inputs, and PAL crunchers.

CPLD fitter

The CPLD Fitter implements designs for the XC9500 devices.

design entry tools

The Foundation design entry tools consist of the Schematic Editor,
HDL Editor, and State Editor. The tools can be accessed via the
Design Entry button in the Project Manager’s Flow tab. The optional
Base Express and Foundation Express packages contain VHDL and
Verilog design entry tools.

design implementation tools

A set of tools that comprise the mainstream programs used for Xilinx
design implementation. Many of these tools are invoked automati-
cally by the Flow Engine.Those tools include NGDBuild, MAP, PAR,
NGDAnNNo, TRCE, all the NGD2 translator tools, BitGen, and
PROMGen. The GUI-based tools are Design Manager/Flow Engine,
Constraint Editor, FPGA Editor, Floorplanner, PROM File Formatter,
JTAG Programmer, and Hardware Debugger.

Design Manager

Xilinx Alliance graphical user interface for managing and
implementing designs. In Foundation, a standalone version of the
Alliance Design Manager can be accessed from St art — Pr ogr ans
- Xi | i nx Foundati on Series 2. 1li - Accessories - Design
Manager .

Foundation Series 2.1i User Guide A-5

Foundation Series 2.1i User Guide

effort level

Effort level refers to how hard the Xilinx Design System (XDS) tries to
place and route a design. The effort level settings are.

= High, which provides the highest quality placement but requires
the longest execution time. Use high effort on designs that do not
route or do not meet your performance requirements.

< Medium, which is the default effort level. It provides the best
trade-off between execution time and high quality placement for
most designs.

= Low, which provides the fastest execution time and adequate
placement results for prototyping of simple, easy-to-route
designs. Low effort is useful if you are exploring a large design
space and only need estimates of final performance.

elaborate
The HDL process that combines the individual parts of a into a single
design and then synthesizes the design.

Express Compiler
Engine used to compile VHDL and Verilog code for the Base Express
and Foundation Express products.

Express Constraints Editor

GUI available in the synthesis phase of Foundation Express
containing spreadsheets used to define specific optimization require-
ments. See also Express Time Tracker. The Express Time Tracker is
available at the end of the synthesis phase of Foundation Express. It
contains spreadsheets detailing optimization results.

Express Time Tracker

GUI available at the end of the synthesis phase of Foundation
Express. It contains spreadsheets detailing optimization results.

A-6 Xilinx Development System

Glossary

Finite State Machine Editor

fitter

Design Entry tool to create and edit state machine descriptions.

The fitter is the software that maps a PLD logic description into the
target CPLD.

floorplanning

FPGA

Floorplanning is the process of choosing the best grouping and
connectivity of logic in a design.

It is also the process of manually placing blocks of logic in an FPGA
where the goal is to increase density, routability, or performance.

Field Programmable Gate Array (FPGA), is a class of integrated
circuits pioneered by Xilinx in which the logic function is defined by
the customer using Xilinx development system software after the IC
has been manufactured and delivered to the end user. Gate arrays are
another type of IC whose logic is defined during the manufacturing
process. Xilinx supplies RAM-based FPGA devices.

FPGA applications include fast counters, fast pipelined designs,
register intensive designs, and battery powered multi-level logic.

FPGA Editor

FSM

The FPGA Editor is a graphical application for displaying and
configuring FPGAs. You can use the FPGA Editor to place and route
critical components before running the automatic place and route
tools on your designs.

Finite State Machine.

Foundation Series 2.1i User Guide A-7

Foundation Series 2.1i User Guide

functional simulation

A process to test the logic in a design before implementation to deter-
mine if it works properly. Uses unit delays because timing informa-
tion is not available before implementation.

guided design

Guided design is the use of a previously implemented version of a
file for design mapping, placement, and routing. Guided design
allows logic to be modified or added to a design while preserving the
layout and performance that have been previously achieved.

guided mapping

HDL

HDL Editor

HDL Flow

A-8

An existing NCD file is used to “guide” the current MAP run. The
guide file may be used at any stage of implementation: unplaced or
placed, unrouted or routed. In 2.1i, guided mapping is supported
through the Project Manager.

Hardware Description Language. A language that describes circuits
in textual code. The two most widely accepted HDLs are VHDL and
Verilog.

Design entry tool to produce/edit HDL files. The HDL Editor also
provides a syntax checker, language templates, and access to the
synthesis tools.

An HDL Flow project can contain VHDL, Verilog, or schematic top-
level designs. It can contain underlying schematic, HDL (VHDL or
Verilog), or State Machine designs. The entire design is always
exported in HDL terms and synthesized. Top level schematic designs
in an HDL Flow are exported as schematic netlists, optimized by the
synthesis tool, and then exported for Implementation. On the Project
Manager Flow tab, a Synthesis button is included between the Design
Entry and Implementation buttons for this project type.

Xilinx Development System

Glossary

hierarchical designs

A hierarchical design is a design composed of multiple sheets at
different levels of your schematic or of multiple HDL files with a top-
level modules calling other modules.

Hierarchy Browser

The left-hand portion of the Foundation Project Manager that
displays the current design project. The browser also displays two
tabs, Files and Versions.

implementation

For FPGAs, implementation is the mapping, placement and routing
of a design. For CPLDs, implementation is the fitting of a design.

Implementation Constraints Editor

See Xilinx Constraints Editor.

instantiation

Incorporating a macro or module into a top-level design. The
instantiated module can be a LogiBLOX module, VHDL module,
Verilog module, schematic module, state machine, or netlist.

Language Assistant

The Language Assistant in the HDL Editor provides templates to aid
you in common VHDL and Verilog constructs, common logic func-
tions, and architecture-specific features.

Library Manager

The Library Manager is the tool used to perform a variety of opera-
tions on the design entry tools libraries and their contents. These
libraries contain the primitives and macros that you use to build your
design.

Foundation Series 2.1i User Guide A-9

Foundation Series 2.1i User Guide

locking

LogiBLOX

logic

Lock placement applies a constraint to all placed components in your
design. This option specifies that placed components cannot be
unplaced, moved, or deleted.

A Xilinx design tool for creating high-level modules such as counters,
shift registers, RAM, and multiplexers.The modules are customizable
and pre-optimized for Xilinx FPGA and CPLD architectural features.
All Xilinx devices with the exception of Virtex support LogiBLOX.

Logic is one of the three major classes of ICs in most digital electronic
systems — microprocessors, memory, and logic. Logic is used for
data manipulation and control functions that require higher speed
than a microprocessor can provide.

Logic Simulator

macro

A-10

The Logic Simulator, a real-time interactive design tool, can be used
for both functional and timing simulation of designs. The Logic
Simulator creates an electronic breadboard of your design directly
from your design’s netlist. The Logic Simulator can be accessed by
clicking the Functional Simulation icon on the Simulation button or
the Timing Simulation icon on the Verification button in the Project
Manager.

A macro is a component made of nets and primitives (flip-flops or
latches) that implements high-level functions, such as adders,
subtractors, and dividers. Soft macros and RPMs are types of macros.

A macro can be unplaced, partially placed, or fully placed, and it can
also be unrouted, partially routed, or fully routed. See also “physical
macro.”

Xilinx Development System

Glossary

MAP

mapping

MRP file

NCD file

net

The MAP program maps a logical design to a Xilinx FPGA. The input
to a mapping program is an NGD file. The MAP program is initiated
within the Flow Engine during Implementation.

Mapping is the process of assigning a design’s logic elements to the
specific physical elements that actually implement logic functions in
a device.

An MRP (mapping report) file is an output of the MAP run. It is an
ASCII file containing information about the MAP run. The informa-
tion in this file contains DRC warnings and messages, mapper warn-
ings and messages, design information, schematic attributes,
removed logic, expanded logic, signal cross references, symbol cross
references, physical design errors and warnings, and a design
summatry.

An NCD (netlist circuit description) file is the output design file from
the MAP program, LCA2NCD, PAR, or EPIC. It is a flat physical
design database correlated to the physical side of the NGD in order to
provide coupling back to the user’s original design. The NCD file is
an input file to MAP, PAR, TRCE, BitGen, and NGDAnNnNo.

A net is a logical connection between two or more symbol instance
pins. After routing, the abstract concept of a net is transformed to a
physical connection called a wire.

A net is an electrical connection between components or nets. It can
also be a connection from a single component. It is the same as a wire
or a signal.

Foundation Series 2.1i User Guide A-11

Foundation Series 2.1i User Guide

netlist

NGA file

NGDANNoO

NGDBuild

NGD file

NGM file

A-12

A netlist is a text description of the circuit connectivity. It is basically a
list of connectors, a list of instances, and, for each instance, a list of the
signals connected to the instance terminals. In addition, the netlist
contains attribute information.

An NGA (native generic annotated) file is an output from the
NGDAnNnNo run. An NGA file is subsequently input to the appropriate
NGD2 translation program.

The NGDAnNno program distributes delays, setup and hold time, and
pulse widths found in the physical NCD design file back to the
logical NGD file. NGDAnno merges mapping information from the
NGM file, and timing information from the NCD file and puts all this
data in the NGA file.

The NGDBuild program performs all the steps necessary to read a
netlist file in XNF or EDIF format and create an NGD file describing
the logical design. The NGDBuild program executes as the Translate
step within the Flow Engine.

An NGD (native generic database) file is an output from the
NGDBuild run. An NGD file contains a logical description of the
design expressed both in terms of the hierarchy used when the design
was first created and in terms of lower-level Xilinx primitives to
which the hierarchy resolves.

An NGM (native generic mapping) file is an output from the MAP
run and contains mapping information for the design. The NGM file
is an input file to the NGDANno program.

Xilinx Development System

Glossary

one-hot encoding

For state machines, in one-hot encoding, an individual state register
is dedicated to one state. Only one flip-flop is active, or hot, at any
one time.

optimization

optimize

Optimization is the process that decreases the area or increases the
speed of a design. Foundation allows you to control optimization of a
design on a module-by-module basis. This means that you have the
ability to, for instance, optimize certain modules of your design for
speed, some for area, and some for a balance of both.

The third step in the FPGA Express synthesis flow. In this stage, the
implemented design is re-synthesized with constraints the user speci-
fies. This is the final step before writing out the XNF file from FPGA
Express.

PAR (Place and Route)

path delay

PCF file

PAR is a program that takes an NCD file, places and routes the
design, and outputs an NCD file. The NCD file produced by PAR can
be used as a guide file for reiterative placement and routing. The
NCD file can also be used by the bitstream generator, BitGen.

A path delay is the time it takes for a signal to propagate through a
path.

The PCF file is an output file of the MAP program. It is an ASCII file
containing physical constraints created by the MAP program as well
as physical constraints entered by you. You can edit the PCF file from
within the FPGA Editor. (FPGA only)

Foundation Series 2.1i User Guide A-13

Foundation Series 2.1i User Guide

PDF file

Project Description File. The PDF file contains library and other
project-specific information. Not to be confused with an Adobe
Acrobat document with the same extension.

physical Design Rule Check (DRC)

Physical Design Rule Check (DRC) is a series of tests to discover
logical and physical errors in the design. Physical DRC is applied
from the FPGA Editor, BitGen program, PAR program, and Hard-
ware Debugger. By default, results of the DRC are written into the
current working directory.

physical macro

pin

pinwires

project

A-14

A physical macro is a logical function that has been created from
components of a specific device family. Physical macros are stored in
files with the extension .nmc. A physical macro is created when the
FPGA Editor is in macro mode. See also “macro.”

A pin can be a symbol pin or a package pin. A package pin is a
physical connector on an integrated circuit package that carries
signals into and out of an integrated circuit. A symbol pin, also
referred to as an instance pin, is the connection point of an instance to
a net.

Pinwires are wires which are directly tied to the pin of a site (CLB,
IOB, etc.)

Foundation organizes related files into a distinct logical unit called a
project, which contains a variety of file types. A project is created as
either a Schematic Flow or an HDL Flow project.

Xilinx Development System

Glossary

Project Flowchart

The right-hand portion of the Foundation Project Manager that

provides access to the synthesis and implementation tools, and the
current design project. The project flowchart can display up to four
tabs: Flow, Contents, Reports, and Synthesis (Schematic Flow only).

Project Manager

The Project Manager, the overall Foundation project management
tool, contains the Foundation Series tools used in the design process.

PROM File Formatter

The PROM File Formatter is the program used to format one or more
bitstreams into an MC86, TEKHEX, EXORmacs or HEX PROM file
format.

route
The process of assigning logical nets to physical wire segments in the
FPGA that interconnect logic cells.

route-through

A route that can pass through an occupied or an unoccupied CLB site
is called a route-through. You can manually do a route-through in the
FPGA Editor. Route-throughs provide you with routing resources
that would otherwise be unavailable.

Schematic Editor

The schematic design tool accessed by selecting the Schematic Editor
icon on the Design Entry button in the Project Manager.

Schematic Flow

A project that uses the Schematic Flow can have top-level schematic,
ABEL, or state machine files. It can contain underlying schematic,
HDL (VHDL, Verilog, or ABEL), state machine designs, or netlists.

Foundation Series 2.1i User Guide A-15

Foundation Series 2.1i User Guide

state diagram

A state diagram is a pictorial description of the outputs and required
inputs for each state transition as well as the sequencing between
states. Each circle in a state diagram contains the name of a state.
Arrows to and from the circles show the transitions between states
and the input conditions that cause state transitions. These conditions
are written next to each arrow.

state machine

A state machine is a set of combinatorial and sequential logic
elements arranged to operate in a predefined sequence in response to
specified inputs. The hardware implementation of a state machine
design is a set of storage registers (flip-flops) and combinatorial logic,
or gates. The storage registers store the current state, and the logic
network performs the operations to determine the next state.

state machine designs

states

State machine designs typically start with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and,
finally, into the source code itself.

The values stored in the memory elements of a device (flip-flops,
RAMs, CLB outputs, and 10Bs) that represent the state of that device
for a particular readback (time). To each state, there corresponds a
specific set of logical values.

static timing analysis

A static timing analysis is a point-to-point delay analysis of a design
network.

static timing analyzer

A-16

A static timing analyzer is a tool that analyzes the timing of the
design on the basis of its paths.

Xilinx Development System

Glossary

status bar

The status bar is an area located at the bottom of a tool window that
provides information about the commands that you are about to
select or that are being processed.

stimulus information

Stimulus information is the information defined at the schematic
level and representing a list of nodes and vectors to be simulated in
functional and timing simulation.

Symbol Editor

With the Symbol Editor, you can edit features of component symbols
such as pin locations, pin names, pin numbers, pin shape, and pin
descriptions for component symbols.

Synopsys

Synopsys supports HDL, a behavioral language for entering equa-
tions. HDL also enables you to include LogiBLOX schematic compo-
nents in a design.

synthesis

The HDL design process in which each design module is elaborated
and the design hierarchy is created and linked to form a unique
design implementation. Synthesis starts from a high level of logic
abstraction (typically Verilog or VHDL) and automatically creates a
lower level of logic abstraction using a library containing primitives

Time Tracker

See Express Time Tracker.

transitions

Transitions define the movement from one state to another in a state
machine. They are drawn as arrows between state bubbles.

Foundation Series 2.1i User Guide A-17

Foundation Series 2.1i User Guide

TRCE

TWR file

UCF file

verification

Verilog

VHDL

A-18

TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program
that will automatically perform a static timing analysis on a design
using the specified (either timing constraints. The input to TRCE is an
NCD file and, optionally, a PCF file. The output from TRCE is an
ASCII timing report which indicates how well the timing constraints
for your design have been met.

A TWR (Timing Wizard Report) file is an output from the TRCE
program. A TWR file contains a logical description of the design
expressed both in terms of the hierarchy used when the design was
first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves.

A UCEF (user constraints file) contains user-specified logical
constraints.

Verification is the process of reading back the configuration data of a
device and comparing it to the original design to ensure that all of the
design was correctly received by the device.

Verilog is a commonly used Hardware Description Language (HDL)
that can be used to model a digital system at many levels of abstrac-
tion ranging from the algorithmic level to the gate level. It is IEEE
standard 1364-1995. Foundation Express and Base Express products
include design entry tools to create Verilog designs. Recognizable as a
file with a .v extension.

VHDL is an acronym for VHSIC Hardware Description Language
(VHSIC is an acronym for Very High-Speed Integrated Circuits). An

Xilinx Development System

Glossary

industry-standard (IEEE 1076.1) HDL. Recognizable as a file with a
.vhd or .vhdl extension.

VHDL can be used to model a digital system at many levels of
abstraction ranging form the algorithmic level to the gate level. It is
IEEE standard 1076-1987. Foundation Express and Base Express
products include design entry tools to create VHDL designs.

Wire
A wire is either a net or a signal.

Xilinx Constraints Editor

A GUI tool that you can use to enter design constraints. The Xilinx
Constraints Editor is integrated with the Design Implementation
tools and available in all product configurations.

Foundation Series 2.1i User Guide A-19

Foundation Series 2.1i User Guide

A-20 Xilinx Development System

Appendix B

Foundation Constraints

This appendix discusses some of the more common constraints you
can apply to your design to control the timing and layout of a Xilinx
FPGA or CPLD; it describes how to use constraints at each stage of
design processing.

This appendix contains the following sections.

= “Constraint Entry Mechanisms”

= “Translating and Merging Logical Designs”

* “The Xilinx Constraints Editor”

* “Constraints File Overview”

= “Timing Constraints”

= “Layout Constraints”

= “Efficient Use of Timespecs and Layout Constraints”
= “Standard Block Delay Symbols”

= “Table of Supported Constraints”

= “Basic UCF Syntax Examples”

e “User Constraint File Example”

e “Constraining LogiBLOX RAM/ROM with Synopsys”

For a complete listing of all supported constraints, refer to the
Libraries Guide (Chapter 12, “Attributes, Constraints, and Carry
Logic”). For a more complete discussion of how timing constraints
work in Foundation, refer to the Development System Reference Guide
(“Using Timing Constraints™). For information on all attributes,
including timing constraints, used in CPLD designs, refer to the
Foundation online help.

Foundation Series 2.1i User Guide B-1

Foundation Series 2.1i User Guide

Constraint Entry Mechanisms

With the Foundation version of the Xilinx design implementation
tools, you control the implementation of a design by defining
constraints that affect the mapping and layout of the physical circuit.
Additionally, you can specify the “path” timing requirements of the
circuit to obtain the best results and allow the implementation tools
to choose the layout which best satisfies these requirements.

The various design constraints available within Foundation can be
entered at the time you create the design (i.e., the logical domain) or
after the design is mapped (that is, the physical domain).

Constraints entered in the logical domain are created in the following
ways
= Entered into the schematic

= Applied to a synthesis process and then forward-annotated
through a netlist constraints file (NCF)

= Created with the Constraints Editor (see “The Xilinx Constraints
Editor” section.)

Constraints entered in the physical domain are entered directly into
the Physical Constraints File (PCF). These constraints are
conceptually the same as those entered during design creation;
however, they are directly related to objects within the physical
design database and are therefore applied using the PCF syntax.

The following figure illustrates the constraints entry approach for the
Foundation version of the Xilinx tools.

B-2 Xilinx Development System

Foundation Constraints

Translating

Schematic Entry
or HDL Tool

Entry Tool

Netlist

User
Constraints File

NGDBuild

Constraints Editor

Physical
Constraints
File

To Physical Implementation Tools
X8085

Figure B-1 Constraint Entry Flow

and Merging Logical Designs

The process of implementing a design within the Foundation tools
starts with a logical design file (NGD) that represents the design
created by the NGDBuild application (as shown in the “Constraint
Entry Flow” figure).

The NGD file contains all of the design’s logic structures (gates) and
constraints. The NGD file is produced through the NGDBuild process
which controls the translation and merging of all of the related logic
design files.

Foundation Series 2.1i User Guide B-3

Foundation Series 2.1i User Guide

All design files are translated from industry standard netlists into
intermediate NGO files by one of two netlist translation programs
XNF2NGD or EDIF2NGD. The exception to this rule is logic, which is
created through the use of LogiBLOX components. LogiBLOX
components may be compiled directly in memory, and are, therefore
never written to disk as a separate intermediate NGO file.

The Xilinx Constraints Editor

The Xilinx Constraints Editor is a Graphical User Interface (GUI) that
provides a convenient way for you to create certain new constraints.
Constraints created with the Constraints Editor are written to the

UCF (User Constraints File). See the “User Constraints File (UCF)”
section.

For more information on the Constraints Editor, see the Constraints
Editor Guide, an online book.

Constraints File Overview

B-4

The following subsections describe the Netlist Constraints File, User
Constraints File, and the Physical Constraints File.

Netlist Constraints File (NCF)

The Netlist Constraints File (NCF) is an ASCII file generated by the

synthesis program. It contains the logical contraints entered in the
design.

User Constraints File (UCF)

The User Constraint File was developed to provide a convenient
mechanism for constraining a logical design without returning to the
design entry tools. UCF constraints intentionally overwrite
constraints that are present in the netlist.

UCF constraints override any constraints contained within the netlist
created by the schematic or synthesis tools. A constraint that is being
applied via the UCF file must specify the complete hierarchical path
name for the instance or net being constrained.

In the Foundation, UCF constraints are considered more significant
because they appear later in the design flow and provide a mecha-

Xilinx Development System

Foundation Constraints

nism for establishing or modifying logical design constraints without
requiring you to re-enter a schematic or synthesis tool.

The process of building the complete logical design representation
(NGD files) is the job of NGDBuild. In developing this complete
design database, NGDBuild annotates design constraints with those
it finds in a UCF file. If a UCF file exists with the same name as the
top-level netlist then it will automatically be read. Otherwise, you
must indicate a specific file for User Constraints in the Options dialog
box. The syntax for the UCF constraints file is explained (on a per-
constraint basis) in the “Timing Constraints” section.

Note: Versions prior to M1.2 required the -uc switch to identify a
User Constraint File that needed to be annotated to the design.
Versions M1.2 and later allow UCF file annotation to be performed by
default—if the UCF file has the same base name as the input.

Physical Constraints File (PCF)

(FPGA only) The layout tools work on the physical design, so the
PCF file is written in terms that these tools can readily interpret.
Layout and timing constraints are written in terms of the physical
design’s components (COMPSs), fractions of COMPs (BELSs), and
collections of COMPs (macros).

Because of this different design viewpoint, the PCF syntax is not
necessarily the same as that used in the logical design constraint files
(UCF/NCF). Furthermore, because the PCF file is written for the
physical design implementation tools, its syntax may not be as
intuitive as the UCF file. Regardless of the syntactical challenges
associated with using a PCF file, many designers will choose to work
at the physical level of design abstraction for the following reasons.

= Itis readily modified and immediately applicable to the present
task —implementing an FPGA (that is, there is no need to re-run
NGDBuild or MAP in order to run layout or analysis tools).

= The implications of logical design structures on the physical
design’s implementation only become obvious once the design is
evaluated using the physical tools. Altering the PCF file for
“what-if” analysis can be desirable.

= Certain constraints are only available within the PCF file.

Foundation Series 2.1i User Guide B-5

Foundation Series 2.1i User Guide

Note: If you modify the PCF file, you should be certain that you enter
your constraints after the line “SCHEMATIC END ;”. Otherwise,
your constraints will be overwritten every time MAP is re-executed.

Case Sensitivity

Since EDIF is a case-sensitive format, the Foundation constraints are
case sensitive as well. Always specify the net names and instance
names exactly as they are in your schematic or code. Be consistent
when using TNMs and other user-defined names in your constraints
file; always use the same case throughout. For site names (such as
“CLB_R2C8” or “P2”), you should use only upper case letters, since
site names within Xilinx devices are all upper case.

Timing Constraints

B-6

The following subsections discuss timing constraints. Many timing
constraints can be created using the Constraints Editor. If a constraint
can be created with the Constraints Editor, it will be noted in the
sections that follow.

The “From:To” Style Timespec

When using the From:To style of constraint, the path(s) that are
constrained are specified by declaring the start point and end point,
which must be a pad, flip-flop, latch, RAM, or user-specified sync
point (see TPSYNC). To group a set of endpoints together, you may
attach a TNM attribute to the object (or to a net that is an input to the
object). With a macro, the TNM traverses the hierarchy to tag all rele-
vant objects. A TIMEGRP is a method for combining two or more sets
of TNMs or other TIMEGRPS together, or alternatively, to create a
new group by pattern matching (grouping a set of objects that all
have output nets that begin with a given string)

You can create a From:To timespec with the Constraints Editor.

You use TNMs to identify a group of design objects which are to be
referenced within a Timespec. If a TNM is placed on a net, the
Foundation tools determine TNM membership by tracing forward
from the specified net to all the valid endpoints of the net. Refer to the
Development System Reference Guide (“Using Timing Constraints”) for
more information on this subject. The following schematic shows an
example of TNM, TIMESPEC, and TIMEGRP statements.

Xilinx Development System

Foundation Constraints

EN

—_8 D D D Q-2
EN

- B4 l’> DATA_EN

TNM=PIPEA

TIMESPEC TIMESPEC
BUSPADS=PADS(BUS*) TS01=FROM:BUSPADS: TO:PIPEA:20
TS02=FROM FFS TO RAMS 15

X8572

The following file corresponds to the preceding figure.

This is a coment line
UCF FROM TO styl e Ti nespecs

NET DATA EN TNM = PI PEA ;
TI MEGRP BUSPADS = PADS(BUS*) ;
TI MESPEC TSO01 = FROM BUSPADS: TQ Pl PEA: 20 ;

Spaces or colons (:) may be used as field separators
TI MESPEC TS02 = FROM FFS TO RAMS 15 ;

The first line of the above example illustrates the application of the
TNM (Timing Name) PIPEA to the net named DATA_EN. The second
line illustrates the TIMEGRP design object formed using a pattern
matching mechanism in conjunction with the predefined TIMEGRP
“PADS”. In this example, the TIMEGRP named BUSPADS will
include only those PADs with names that start with BUS.

Each of the user-defined Timegroups is then used to define the object
space constrained by the timing specification (Timespec) named
TS01. This timing specification states that all paths from each member
of the BUSPADS group to each member of the PIPEA group need to
have a path delay that does not exceed 20 nanoseconds (ns are the
default units for time). The TIMESPEC TS02 constraint illustrates a
similar type of timing constraint using the predefined groups FFS
and RAMS.

Foundation Series 2.1i User Guide B-7

Foundation Series 2.1i User Guide

Note: All From:To Timespecs must be relative to a Timegroup. The
above example illustrates that you can define Timegroups either
explicitly (TIMEGRPS) or implicitly (TNMs), or they may be
predefined groups (PADS, LATCHES, FFS, RAMS).

There is an additional keyword that you can add to the From:To spec-
ification that allows the user to narrow the set of paths that are
covered—THRU. By using the From:Thru:To form of a Timespec, you
are able to constrain only those paths that go through a certain set of
nets, defined by the TPTHRU keyword, as shown in the following
example.

UCF exanpl e of FROM TO Ti mespec using THRU

NET $116/thi snet TPTHRU=t hese ;
NET $116/that net TPTHRU=t hese ;

TI MEGRP sfl ops=FFS(DATA*)
TI MEGRP df | ops=FFS(OUTREG")

Tl MESPEC TS23=FROM sfl ops: THRU: t hese: TG df | ops: 20 ;

Here, only those paths that go from the Q pin of the sflops through the
nets $11 6/ t hi snet and $11 6/ t hat net and on to the D pin of dflops
will be controlled by TS23.

Using TPSYNC

(FPGA only.) In the Foundation design implementation tools, you can
define any node as a source or destination for a Timespec with the
TPSYNC keyword. The use of TPSYNC is similar to TPTHRU—it is a
label that is attached to a set of nets, pins, or instances in the design.

For example, suppose a design has a PAD ENABLE_BUS that must
arrive at the enable pin of several different 3-state buffers in less than
a specified time. With the Foundation tools, you can now define that
3-state buffer as an endpoint for a timing spec. The following figure
illustrates TPSYNC.

B-8 Xilinx Development System

Foundation Constraints

BUSO
= > D
ENABLE_BUS TPSYNC=BUS3
= = D > BUS3STATE
D Q
B
> 8 'l> EN

TIMESPEC
TSNewSpa3=FROM:PAD(ENABLE_BUS):TO:bus3:20ns

X8569

The following UCF file corresponds to the above example.

TPSYNC exanple; pad to a 3-state buffer enable pin
Note TPSYNC attached to 3-state buffer's output NET

NET BUS3STATE TPSYNC=bus3;
TIMESPEC TSNewSpc3=FROM:PAD(ENABLE_BUS):TO:bus3:20ns;

In the NET statement shown above, the TPSYNC is attached to the
output net of a 3-state buffer called BUS3STATE. If a TPSYNC is
attached to a net, then the source of the net is considered to be the
endpoint (in this case, the 3-state buffer itself). The subsequent
TIMESPEC statement can use the TPSYNC name just as it uses a
TNM name.

The next TPSYNC UCEF file example shows you how to use the
keyword PIN instead of NET if you want to attach an attribute to a
pin.

Note TPSYNC attached to 3-state buffer’s enable PIN

PIN $116/BUSMACRO1/TRIBUF34.T TPSYNC=bus1;
TIMESPEC TSNewSpc1=FROM:PAD(ENABLE_BUS):TO:bus1:20ns;

In this example, the instance name of the 3-state buffer is stated
followed by the pin name of the enable (.T). If a TPSYNC is attached
to a primitive input pin, then the primitive’s input is considered the
startpoint or endpoint for a timing specification. If it is attached to a
output pin, then the output of the primitive is used.

Foundation Series 2.1i User Guide B-9

Foundation Series 2.1i User Guide

The last TPSYNC example shows you how to use the keyword INST
if you want to attach an attribute to a instance:

Not e TPSYNC attached to 3-state buffer | NSTANCE (UCF
file)

I NST $11 6/ BUSMACRO2/ BUFFER 2 TPSYNC=bus2;
TI MESPEC TSNewSpc2=FROM PAD(ENABLE_BUS) : TO bus2: 20ns;

If a TPSYNC is attached to an instance, then the output of the instance
is considered the startpoint or endpoint for a timing specification.
The Period Style Timespec

The TIMESPEC form of the PERIOD constraint allows flexibility in
group definitions and allows you to define clock timing relative to
another TIMESPEC.

You can create a Period constraint with the Constraints Editor.

The following schematic example illustrates the use of the PERIOD
Timespec referenced to timegroups CLK2_GRP and CLK3.

D—[>—D o o>

— [: TNM=CLK2_GRP : [
CLK2 - o Q

TNM=CLK3

J
\%

|
Q
~
w

TIMESPEC
TS03=PERIOD CLK2_GRP 50
TS04=PERIOD CLK3 TSO3 * 2

TNM=CLK2_GRP Paths

lllllll TNM=CLK3 Path

X8570

The following syntax is the corresponding UCF file.
UCF PERI OD styl e Ti mespecs

NET CLK2 TNM = CLK2_GRP ;
NET CLK3 TNM = CLKS3 ;

B-10 Xilinx Development System

Foundation Constraints

TI MESPEC TS03
TI MESPEC TS04

PERI OD CLK2_GRP 50 ;
PERI OD CLK3 TS03 * 2 ;

Furthermore, the example shows how constraints and nets may be
given the same name because they occupy separate name-spaces.
Also, it shows the constraint syntax whereby one Timespec is defined
relative to another (the value of TS04 is declared to be two times that
of TS03).

The PERIOD constraint covers all timing paths which start or end at a
register, latch, or synchronous RAM that is clocked by the referenced
net. The only exception to this rule are paths to output pads, which
are not covered by the PERIOD constraint. (Input pads, which are the
source of a “pad-to-setup” timing path for one of the specified
synchronous elements, are covered by the PERIOD constraint.)

The flexibility of the TIMESPEC form of the PERIOD constraint arises
from being able to modify the contents of the TIMEGRP once the
design has been mapped. By adding or removing objects from the
TIMEGRP, which are listed in the PCF file, you can alter the paths
that are covered by the PERIOD constraint.

If you do not need the flexibility offered by the TIMESPEC form, you
can use the NET form of the PERIOD constraint may be used. The
syntax for the NET form of the PERIOD constraint is simpler than the
TIMESPEC form, while continuing to provide the same path
coverage. The following example illustrates the syntax of the NET
form of the PERIOD constraint.

NET formof the PERIOD tim ng constraint
(no TSidentifier)

NET CLK PERI CD = 40 ;

This is the recommendation of using PERIOD on a single clock design
in which data does not pass between the clock domains.

With the Foundation 1.5 release, PERIOD will now include clock
skew in the path analysis.

The Offset Constraint

Use offsets to define the timing relationship between an external
clock and its associated data-in or data-out-pin. Using this option,
you can do the following.

Foundation Series 2.1i User Guide B-11

Foundation Series 2.1i User Guide

B-12

= Calculate whether a setup time is being violated at a flip-flop
whose data and clock inputs are derived from external nets.

= Specify the delay of an external output net derived from the Q
output of an internal flip-flop being clocked from an external
device pin.

You can create a Pad to Setup or Clock to Pad offset constraint with
the Constraints Editor.

There are basically three types of offset specifications.
« Global

= Specific

= Group

Since the global and group OFFSET constraints are not associated
with a single data net or component, these two types can also be
entered on a TIMESPEC symbol in the design netlist with Tsid. See
the “Using Timing Constraints” in the Development System Reference
Guide for details.

In the following example, the OFFSET constraint is applied to a net
that connects with a PAD (as shown in the figure later in this section).
It defines the delay of a signal relative to a clock and is only valid for
registered data paths. The OFFSET constraint specifies the signal
delay external to the chip, allowing the implementation tools to auto-
matically adjust relevant internal delays (CLK buffer and distribution
delays) to accommodate the external delay specified with the
following.

Net form of the OFFSET tim ng constraint
NET ADDO_I N OFFSET = IN 14 AFTER CLK ;

In analyzing OFFSET paths, the Xilinx timing tools adjust the
PERIOD associated with the constrained synchronous element based
on both the timing specified in the OFFSET constraint and the delay
of the referenced clock signal. In the following figure, assume a delay
of 8 ns for the signal CLK to arrive at the CLB, a 5 ns setup time for
ADDO, and a 14 ns OFFSET delay for the signal ADDO. Assume a
period of 40 ns is specified. The Foundation tools allocate 29 ns for
the signal ADDO to arrive at the CLB input pin (40ns-14ns+8ns -
5ns =29 ns).

Xilinx Development System

Foundation Constraints

10B

ADDO IN ADDO

M CLK IN CLK

CLK 10B plo CLB

OFFSET of ADDO
with respect to CLK

X8086

This same timing constraint could be applied using the
FROM:PADS:TO:FFS timing constraint. However, using a From:To
methodology would require you to know the intrinsic CLK net delay;,
and you would have to adjust the value assigned to the From:To
Timespec. The internal CLK net delay is implicit in the OFFSET/
PERIOD constraint. Furthermore, migrating the design to another
speed grade or device would require modification of the From:To
Timespec to accommodate the new intrinsic CLK net delay. An alter-
native solution is to use the flip-flop in the 10B of certain FPGA archi-
tectures (XC4000E/EX, for instance), as the clock-to-setup time is
specified in the Programmable Logic Data Book.

Note: Relative Timespecs can only be applied to similar Timespecs.
For example, a PERIOD Timespec may be defined in terms of another
PERIOD Timespec, but not a FROM:TO Timespec.

Ignoring Paths

(FPGA only.) When you declare a a Timespec that includes paths
where the timing is not important, the tools may create a less optimal
route since there is more competition for routing resources. This
problem can be alleviated by using a TIG (timing ignore) attribute on
the non-critical nets. TIG causes all paths that fan out from the net or
pin where it is applied to be “ignored” during timing simulation.

You can create a Timing Ignore constraint with the Constraints Editor.

The following syntax indicates that $11 456/ sl ow_net should not
have the Timespec TS01 or TS04 applied to it.

#Ti mespec-specific TIG exanple (UCF file)

Foundation Series 2.1i User Guide B-13

Foundation Series 2.1i User Guide

B-14

NET $11456/sl ow _net TIG=TS01, TS04 ;

On the other hand, the following syntax indicates that the layout
tools should ignore paths through the $11 456/ sl ow_net net for all
known Timespecs.

#G obal TI G exanple (UCF file)
NET $11 456/ sl ow_net TIG

Controlling Skew

(FPGA only.) Skew is the difference between the minimum and
maximum of the maximum load delays on a net. You can control the
maximum allowable skew on a net by attaching the MAXSKEW
attribute directly to the net.

#MAXSKEW exanmpl e (UCF file)
NET $11 345/ net _a MAXSKEWE3 ;

The above example indicates that 3 ns is the maximum skew allowed
on $11 345/ net _a. For a detailed example of how MAXSKEW works,
see the “Additional Timing Constraints” section in the Development
System Reference Guide.

Constraint Precedence

A design may assign a precedence to Timespecs only within a certain
class of constraints. For example, you may specify a priority for a
particular From:To specification to be greater than another, but you
may not specify a From:To constraint to have priority over a TIG
constraint. The following example illustrates the explicit assignment
of priorities between two same-class timing constraints, the lowest
number having the highest priority.

Priority UCF exanple

TI MESPEC TS01 = FROM GROUPA TO GROUPB 40 PRI ORI TY 4;
TI MESPEC TS02 = FROM GROUP1 TO GROUP2 35 PRIORITY 2;

The following sections illustrate the order of precedence for the
various types (and various sources) of timing constraints.

Xilinx Development System

Foundation Constraints

Across Constraint Sources

Across constraint sources, the following priorities apply

= Physical Constraint File (PCF)—the highest priority

= User Constraint File (UCF)

= Input Netlist / Netlist Constraint File (NCF)—the lowest priority

Within Constraint Sources

Within constraint sources, the following priorities apply.
= TIG (Timing Ignore)—the highest priority

= FROM:source:THRU:point: TO:destination specification

The priority of each type of FROM:THRU:TO specification is as
follows (highest priority is listed first).

FROM:USER1: THRU:USER_T:TO:USER2 specification
(USER1 and USER? are user-defined groups)

FROM:USER1: THRU:USER_T:TO:FFS specification
or

FROM:FFS:THRU:USER_T:TO:USER?2 specification
(FFS is any pre-defined group)

FROM:FFS:THRU:USER_T:TO:FFS specification

= FROM:source:TO:destination specification

The priority of each type of FROM:TO specification is as follows
(highest priority is listed first).

FROM:USER1:TO:USER2 specification
FROM:USER1:TO:FFS specification
or

FROM:FFS:TO:USER?2 specification

FROM:FFS:TO:FFS specification
= PERIOD specification

Foundation Series 2.1i User Guide B-15

Foundation Series 2.1i User Guide

= “Allpaths” type constraints—the lowest priority

Layout constraints also have an inherent precedence which is based
on the type of constraint and the site description provided to the
tools. If two constraints have the same priority and cover the same
path, then the last constraint in the constraint file will override any
other constraints that overlap.

Layout Constraints

B-16

(FPGA only.) The mapping constraints in the example below illus-
trate some of the capabilities to control the implementation process
for a design. The OPTIMIZE attribute is attached to the block of logic
associated with the instance “GLUE.” All of the combinatorial logic
within the block GLUE will be optimized for speed (minimizing
levels of logic) while other aspects of the design will be processed by
the default mapping algorithms (assuming the design-based optimi-
zation switches are not issued).

Mappi ng constraint

I NST GLUE OPTI M ZE = SPEED

Layout constraint

NET | OBLOCK/ DATAO_I N LOC = P12 ;

The layout constraint in the example above illustrates the use of a full
hierarchical path name for the net named DATAO_IN in the
application of the 1/0 location constraint. In this example, IOBLOCK
is a hierarchical boundary that contains the net DATAO_IN. Location
constraints applied to “pad nets” are used to constrain the location of
the PAD itself, in this case to site P12.

Note: If the design contains a PAD, the constraint could have been
just as easily applied to it directly (some design flows do not provide
explicit /0 pads in the design netlist).

Converting a Logical Design to a Physical Design

The process of mapping translates a design from the logical design
domain to the physical design domain. The MAP process creates both
the physical design components (CLBs, 10Bs, and so forth) and the
physical design constraints (layout and timing). The physical design
components are written into a Native Circuit Description (NCD) file.

Xilinx Development System

Foundation Constraints

The physical design constraints are written into a Physical
Constraints File (PCF).

As the design flow of the “Constraint Entry Flow” figure shows,
MAP not only writes a PCF file, but also reads a specified pre-existing
PCF file. MAP reads an existing PCF file in order to facilitate the
overriding of constraints that are contained within another logic
design using the “last one wins” resolution mechanism provided by
the PCF file. The following subsection briefly describes this approach.

“Last One Wins” Resolution

MAP creates new physical design constraints each time it converts a
logical design into a physical design. The constraints that are created
during this process are written into the “Schematic” section of the
PCEF file. This section is recreated each time MAP is run based on the
constraints that are contained within the NGD file. The schematic
section is always written at the top of the PCF file, and constraints
that are in the PCF file but outside of the Schematic section (after the
line “SCHEMATIC END”) are considered to be in the “User” section
of the PCF file. The user section is read, syntactically checked, and
rewritten each time MAP is run. Since these constraints always follow
those written into the schematic section, they will always take
precedence (following the “last-one-wins” rule).

Note: If the design contains a PAD, the constraint could have been
just as easily applied to it directly (some design flows do not provide
explicit /0 pads in the design netlist).

XC5200XL Constraints

There are some special considerations for constraints for the
XC5200XL family.

= The XC5200XL family requires that some constraints (such as
LOC and RLOC) specify a logic cell name within the CLB. For
instance, the following constraint will LOC the instance ISYM52
to the lowest logic cell of the CLB in row 5 and column 2.

I NST | SYMb2 LOC = CLB_R5C2. LCO ;

If this was an XC4000 design, an extension would be optional (the
XC4000 family does not use the LCx notation; it uses FFX and
FFY to specify which flip-flop and F and G to specify which func-
tion generator).

Foundation Series 2.1i User Guide B-17

Foundation Series 2.1i User Guide

= The XC5200XL family does not have flip-flops in the 10B, so two
new constraints have been provided: INREG and OUTREG. PAR
will attempt to place a register with a INREG attribute near the
I0OB that drives its Din pin, so it can use fast routes. OUTREG will
cause PAR to attempt to place a register near the I0B that Qout
sources, as shown in the following example.

I NST near _i nput _fl op | NREG ;
I NST near _out put _fl op OUTREG ;

Efficient Use of Timespecs and Layout Constraints

B-18

The previous section described the mechanisms available for
constraining a design’s timing within the Foundation tools. The
sections that follow summarize each of the constraints that are
available.

The robust nature of the language enables you to define your design
requirements at the highest level of abstraction first, and then fine
tune the timing requirements by using more specific Timespecs, if
needed. This is the methodology that will best describe your require-
ments to the tools.

The following observations help to illustrate the reasons why this
methodology should be followed (from a tool runtime perspective).

= Using explicit Timegroups causes slower runtimes than using
implicit timegroups arising from the use of constraints such as
PERIOD.

= Processing larger Timegroups takes longer than processing
smaller Timegroups.

= Using many specific Timespecs results in slower runtimes than
using a smaller set of more general Timespecs.

In conclusion, overall design runtime is improved when a “qualified
global” timing methodology is employed instead of a “thorough-
detailed” timing methodology.

The “Starter Set” of Timing Constraints

The following examples clearly identify the “preferred” mechanism
for controlling the timing of your design. The preferred method
assumes a goal of getting the required results in the fastest run time
possible. If the design has a single clock and required 1/0 timing that

Xilinx Development System

Foundation Constraints

equals the clock period, all that you need are the three constraints
shown in the following example.

d obal UCF exanpl e

NET CLK1 PERI CD = 40 ;
NET QUT* OFFSET = OUT 13 AFTER CLK ;

TI MESPEC TSO01 = FROM PADS TO PADS 40 ;

Note: When you use net name wild cards in OFFSETS, make sure
that the name is unique to valid nets; otherwise processing errors will
occur.

If you need to account for extra delay external to the FPGA, then you
could add the following.

NET | NPUT* OFFSET = IN 8 BEFORE CLK ;

The PERIOD constraint covers all pad-to-setup and clock-to-setup
timing paths. The OFFSET constraint covers the clock-to-pad timing
for each of the output nets beginning with OUT. Both the OFFSET
and PERIOD constraints account for the delay of the Clock Buffer/
Net in the 1/0 timing calculations.

The following PCF fragment illustrates the differences in syntax
between the UCF and PCF languages. In addition to the syntactical
changes, remember that net and instance names may change. As an
example, one of the net matches resulting from the UCF “NET OUT*”
constraint is now applied to “COMP OUT1_PAD”. The name
OUT1_PAD is the name assigned to the pad instance. In addition to
name changes, another difference is the verbosity of the PCF. In the
PCF there is additional syntax for “MAXDELAY,” “TIMEGRP,” and
“PRIORITY.” These are all optional qualifications of the Timespec
within the UCF, but written explicitly to the PCF file illustrating the
full flexibility of the language.

d obal PCF exanple
SCHENMATI C START;

NET PERIOD “CLK_IN" = 40 nS HIGH 50.00% ;

COMP “OUT1_PAD"” OFFSET = OUT 40 ns AFTER COMP “CLK";
COMP “OUT2_PAD"” OFFSET = OUT 40 ns AFTER COMP
“CLK";COMP “INPUT1_PAD"” OFFSET = IN 28 ns BEFORE COMP
“CLK™;

Foundation Series 2.1i User Guide B-19

Foundation Series 2.1i User Guide

B-20

TS01 = MAXDELAY FROM TIMEGRP “PADS” TO TIMEGRP “PADS”
40000 pS PRIORITY 0;

SCHEMATIC END;

The next UCF example illustrates the use of both global constraints
(PERIOD, OFFSET) to generally constrain the design and detailed
Timespecs (FROM:THRU:TO) to provide fast and slow exceptions to
the general timing requirements. Because the amount of constraints
placed on a design directly impact runtime, Xilinx recommends that
you first apply global constraints, then apply individual constraints
only to those elements of the design that require additional
constraints (or an exception to a constraint). The more global the
constraints, the better the runtime performance of the tools.

Sample UCF file
Specify target device and package

CONFIG PART = XC4010e-PQ208-3 ;
Global constraints

NET CLK1 PERIOD =40,
NET DATA_OUT* OFFSET = OUT 15 AFTER DCLK ;
TIMESPEC TS01 = FROM PADS TO PADS 40;

Layout constraints
NET SCLINF LOC = P125;

Detailed constraints
Exception to cover X_DAT and Y_DAT buses

Ignore timing on reset net

NET RESET_NTIG;

Slow exception for data leaving INA FFs
TIMESPEC TS02 = FROM FFS(INA*) TO FFS 80 ;
Faster timing required for data leaving RAM
TIMESPEC TS03 = FROM RAMS TO FFS 20 ;

Form special timegroups related to RAMs

INST $1164 TNM = SPDRAM ;
NET RAMBUSO TPTHRU = RAMVIA ;
NET RAMBUS1 TPTHRU = RAMVIA ;

Specify timing for this special timing path

Xilinx Development System

Foundation Constraints

TI MESPEC TS04 = FROM SPDRAM THRU RAMVI A TO FFS 45

Standard Block Delay Symbols

The “Timing Symbols and Their Default Values™ table lists the block
delay symbols, each with their corresponding description. There is a
one-to-many correspondence between these symbol names and the
Programmable Logic Data Book symbol names. For those symbols listed
with a disabled default, no timing analysis is performed on paths that
have a segment composed of symbol path. For example, paths which
have a set/reset to output path will not be analyzed. Any of the block
delays (Symbol) listed in the table may be explicitly enabled or
disabled using the PCF file.

The following example shows the PCF syntax that enables the path
tracing for all paths that contain RAM data to out paths. This PCF
directive is placed in the user section of the PCF.

SCHENMATI C END;

/1l This is a PCF comment |ine
/1 Enable RAM data to out path tracing

ENABLE = ram d_o;

Table B-1 Timing Symbols and Their Default Values

Symbol Default Description

reg_sr_q Disabled Set/reset to output propagation delay

lat_d q Disabled Data to output transparent latch delay

ram_d o Disabled RAM data to output propagation delay

ram_we o |Enabled RAM write enable to output propaga-
tion delay

tbuf t o Enabled TBUF tristate to output propagation
delay

tbuf i o Enabled TBUF input to output propagation
delay

io_pad_I Enabled 10 pad to input propagation delay

io_t pad Enabled 10 tristate to pad propagation delay

req_sr_clk |Disabled Set/Reset to clock setup and hold
checks

Foundation Series 2.1i User Guide

B-21

Foundation Series 2.1i User Guide

Table B-1 Timing Symbols and Their Default Values

Symbol Default Description
io o | Enabled 10 output to input propagation delay
(Disabled for tristated 10Bs.)
io_o_pad Enabled 10 output to pad propagation delay

Table of Supported Constraints

The following table summarizes all supported constraints; it also
shows whether the constraint must be entered at the schematic level
or whether it can be specified in one or more of the valid constraint
file types (NCF, UCF, or PCF). For further explanation and examples
of each of the constraints, see the online Libraries Guide (Chapter 12,
“Attributes, Constraints, and Carry Logic”).

Certain constraints can only be defined at the design level, whereas
other constraints can be defined in the various configuration files.
The following table lists the constraints and their applicability to the
design, and the NCF, UCF, and PCF files.

The CE column indicates which constraints can be entered using the
Xilinx Constraints Editor, a GUI tool in the Xilinx Development
System. The Constraints Editor passes these constraints to the imple-
mentation tools through a UCF file.

A check mark (V) indicates that the constraint applies to the item for
that column.

Table B-2 Constraint Applicability Table

Attribute/Constraint Design NCF UCF CE PCF
BASE v
BLKNM Vv v v
BUFG v v v
CLKDV_DIVIDE Vv v v
COLLAPSE v v v
COMPGRP v
CONFIG**
DECODE v v
B-22 Xilinx Development System

Foundation Constraints

Table B-2 Constraint Applicability Table

Attribute/Constraint

Design

NCF

UCF

CE

PCF

DIVIDE1_BY

v

\/

DIVIDE2_BY

Vv

DOUBLE

DRIVE

| <L <

DROP_SPEC

<

<

\/*

DUTY_CYCLE_CORRECTION

EQUATE_F

EQUATE G

FAST

FILE

< L L <

FREQUENCY

HBLKNM

HU_SET

INIT

\/***

INIT_Ox

INREG

10B

IOSTANDARD

KEEP

KEEPER

LOC

<L L <

<

<L L <L <

LOCATE

LOCK

MAP

MAXDELAY

\/*

MAXSKEW

\/*

MEDDELAY

NODELAY

NOREDUCE

<L L L)L <

< <

L L L <

Foundation Series 2.1i User Guide

B-23

Foundation Series 2.1i User Guide

Table B-2 Constraint Applicability Table

Attribute/Constraint Design NCF UCF CE PCF
OFFSET v v v V*
ONESHOT v
OPT_EFFORT v v v
OPTIMIZE v v v
OUTREG v v v v
PATH v
PART v v v
PENALIZE TILDE v
PERIOD v v v v V*
PIN v
PRIORITIZE v
PROHIBIT v v v v V*
PULLDOWN v v v v
PULLUP v v v v
PWR_MODE v v v
REG v v v
RLOC v v v
RLOC_ORIGIN v v v v
RLOC_RANGE v v v v
S(ave) - Net Flag attribute v v v
SITEGRP v
SLOW v v v v
STARTUP_WAIT v v v
TEMPERATURE v v v v v
TIG v v v v V*
Time group attributes v v v v v
TNM v v v v
TNM_NET v v v v
TPSYNC v v v
B-24 Xilinx Development System

Foundation Constraints

Table B-2 Constraint Applicability Table

Attribute/Constraint Design NCF UCF CE PCF
TPTHRU v v v v
TSidentifier v v v v V*
U_SET v v v
USE_RLOC v v v
VOLTAGE v v v v v
WIREAND v v v
XBLKNM v v v

*Use cautiously — although the constraint is available, there are differences between the UCF/NCF and

PCF syntax.

**The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not confuse this attribute
with the CONFIG primitive, which is a table containing PROHIBIT and PART attributes.

***INIT is allowed in the UCF for CPLDs only.

Basic UCF Syntax Examples

The following sections summarize the functions of timespecs.

PERIOD Timespec

The PERIOD spec covers all timing paths that start or end at a

register, latch, or synchronous RAM which are clocked by the refer-
ence net (excluding pad destinations). Also covered is the setup
requirement of the synchronous element relative to other elements
(for example, flip flops, pads, and so forth).

Note: The default unit for time is nanoseconds.

NET clk20MHz PERIOD =50 ;
NET clk50mhz TNM = clk50mhz ;
TIMESPEC TS01 = PERIOD : clk50mhz : 20 ;

FROM:TO Timespecs

FROM:TO style timespecs can be used to constrain paths between
time groups.

Note: Keywords: RAMS, FFS, PADS, and LATCHES are predefined
time groups used to specify all elements of each type in a design.

Foundation Series 2.1i User Guide B-25

Foundation Series 2.1i User Guide

B-26

TIMESPEC TS02 = FROM : PADS: TO:FFS:36;
TIMESPEC TS03=FROM :FFS: TO: PADS: 36 ns;
TIMESPEC TS04 = FROM : PADS : TO : PADS : 66 ;
TIMESPEC TS05 =FROM : PADS : TO : RAMS : 36 ;
TIMESPEC TS06 = FROM : RAMS : TO : PADS : 35.5;

OFFSET Timespec

To automatically include clock buffer/routing delay in your
“PADS:TO: synchronous element or synchronous element : TO:PADS
timing specifications, use OFFSET constraints instead of FROM:TO
constraints.

= For an input where the maximum clock-to-out (Tco) of the
driving device is 10 ns.

NET i n_net_name OFFSET=I N:. 10: AFTER: cl k_net

= For an output where the minimum setup time (Tsu) of the device
being driven is 5 ns.

NET out _net _nane OFFSET=C0UT: 5: BEFORE: cl k_net

Timing Ignore

If you can ignore timing of paths, use Timing Ignore (TI1G).

Note: The “*” character is a wild-card which can be used for bus
names. A “?” character can be used to wild-card one character.

< Ignore timing of net reset_n:

NET : reset n: TIG;

= Ignore data_reg(7:0) net in instance mux_mem:
NET : mux_mem/data_reg*: TIG ;

= Ignore data_reg(7:0) net in instance mux_mem as related to a
TIMESPEC named TS01 only:

NET : mux_mem/data_reg*: TIG = TS01 ;
= Ignore datal_sig and data?_sig nets:

NET : data?_sig: TIG;

Xilinx Development System

Foundation Constraints

Path Exceptions

If your design has outputs that can be slower than others, you can
create specific timespecs similar to this example for output nets
named out_data(7:0) and irg_n.

TIMEGRP slow_outs = PADS(out_data*: irg_n) ;
TIMEGRP fast_outs = PADS : EXCEPT : slow_outs;
TIMESPEC TS08 = FROM : FFS: TO : fast_outs: 22 ;
TIMESPEC TS09 = FROM : FFS: TO : slow outs: 75;

If you have multi-cycle FF to FF paths, you can create a time group
using either the TIMEGRP or TNM statements.

Warning: Many VHDL/verilog synthesizers do not predictably
name flip flop Q output nets. Most synthesizers do assign predictable
instance names to flip flops, however.

e TIMEGRP example.

TIMEGRP slowffs = FFS(inst_path/ff_q_output_netl*: inst_path/
ff_q_output_net2*);

= TNM attached to instance example.

INST inst_path/ff_instance_namel _reg* TNM = slowffs ;
INST inst_path/ff_instance_name2_reg* TNM = slowffs ;

= IfaFF clock-enable is used on all flip flops of a multi-cycle path,
you can attach TNM to the clock enable net.

Note: TNM attached to a net “forward traces” to any FF, LATCH,
RAM, or PAD attached to the net.

NET ff_clock_enable_net TNM = slowffs ;

= Example of using “slowffs” timegroup, in a FROM:TO timespec,
with either of the three timegroup methods previously shown.

TIMESPEC TS10 = FROM : slowffs : TO : FFS : 100 ;

Foundation Series 2.1i User Guide B-27

Foundation Series 2.1i User Guide

B-28

Miscellaneous Examples

= Assign an 10 pin number or place a basic element (BEL) in a
specific CLB. BEL = FF, LUT, RAM, etc...

INST io_buf _instance_name LOC =P110;
NET io_net_name LOC =P111;
INST instance_path/BEL_inst hame LOC = CLB_R17C36 ;

= Prohibit 10 pin C26 or CLB_R5C3 from being used.

CONFIG PROHIBIT = C26 ;
CONFIG PROHIBIT = CLB_R5C3;

= Assign an OBUF to be FAST or SLOW.

INST obuf_instance_name FAST ;
INST obuf_instance_name SLOW ;

« Constrain the skew or delay associate with a net.

NET any_net_name MAXSKEW =7 ;
NET any_net_name MAXDELAY = 20 ns;

« Declare an IOB input FF delay (default = MAXDELAY).

Note: MEDDELAY/NODELAY can be attached to a CLB FF that is
pushed into an IOB by the “map -pr i” option.

INST input_ff_instance_name MEDDELAY ;
INST input_ff_instance_name NODELAY ;

= Also, constraint priority in your .ucf file is as follows.
Highest

1. Timing Ignore (TIG)

2. FROM : THRU : TO specs
3. FROM : TO specs lowest
4. OFFSET

5. PERIOD specs

See the on-line documentation set for additional timespec features or
additional information.

Xilinx Development System

Foundation Constraints

User Constraint File Example

The user constraint file (.ucf) is a user-created ASCII file that holds
timing and location constraints. It is read by NGDBuild during the
translate process and is combined with an EDIF or XNF netlist into an
NGD file. If a UCF file exists with the same name as the top-level
netlist, then it will automatically be read. Otherwise, specify a file for
User Constraints in the Implement Control Files Settings dialog box.

For Foundation 2.1i, if you already have an existing UCF file
associated with a Revision, this UCF file is automatically copied and
used as your UCF file within a new revision.

The following example shows how to lock 1/0s to pin locations and
how to write Timespec and Timegroup constraints.

Note: You can also lock pin locations within the Project Manager by
selecting Tool s — | npl enent ati on — Lock Devi ce Pins.

FRED ~._ TED ~_ NED
> | > | > <]
IPAD IBUF OBUF OPAD

Hierarchy Block

JIM[7:0 JACK[7:0
N [0l 'l> [0l LOU[7:0]
IPADS IBUF8

LOU[7:0] . IT[7:0]

> <]
IBUF8 OPAD8
Schematic of Hierarchy Block X8076

Figure B-2 Locking I/Os to Pin Locations

Foundation Series 2.1i User Guide B-29

Foundation Series 2.1i User Guide

B-30

HH OHH O H H

T1,

This is a UCF conment

Lock the input pins

NET
NET
NET
NET
NET
NET
NET
NET
NET

FRED LOC = P18;

JI M<0> LCC = P20;
JI 1> LCC = P23;
JI Mc2> LCC = P24;

JI k3> LOC = P25;
JI k4> LOC = P26;
JIM5> LCC = P27;
JI M6> LCC = P28;

JI 7> LCC = P38;

Lock the output pins

NET
NET
NET
NET
NET
NET
NET
NET
NET

NED LCC = P19;

HI ERARCHY_BLOCK/ <I| TO>
H ERARCHY_BLOCK/ <I T1>
HI ERARCHY_BLOCK/ <I T2>
H ERARCHY_BLOCK/ <I T3>
HI ERARCHY_BLOCK/ <| T4>
HI ERARCHY_BLOCK/ <| T5>
HI ERARCHY_BLOCK/ <I T6>
H ERARCHY_BLOCK/ <I T7>

LCC
LCC
LCC
LCOC
LCC

LOC =

LCC
LOC

The constraints below |lock the 1/0O signals to pads.

The net nane that connects to the pad is used to
constrain the 1/0

The pin grid array packages use pin nanes |ike B3 or
i nstead of P<Pin Nunber>.

P44
P45
P46
P47
P48
P49
P50
P462

For more information on constraint precedence, refer to the “Using
Timing Constraints” chapter in the Development System Reference

Guide.

Xilinx Development System

Foundation Constraints

This example shows how to specify timing constraints.

MAY ToM TIM Im JOE
> > D Q D Q >]

L~ L
IPAD IBUF OBUF OPAD
c C
CLK_PD ~_ CLK
[> >
IPAD BUFG
SYNCHRONOUS
IFD RAM OFD
JEN BOB VAL AL
—Db Q D Q D QF9——
IPAD * —{ A[3:0] OPAD

C —1)C
* — WE
C

CLK2_PD n_ CLK2_| CLK2
— ™~ = N
[> > >

IPAD IBUF BUFG

* Nets not used in timing constraints. X8075

Figure B-3 Specifying Timing Constraints

Foundation Series 2.1i User Guide B-31

Foundation Series 2.1i User Guide

---User Constraint File (UCF):
This is a coment

Period specifies mninum PER OD of CLK net. Offset specifies that
data on MAY can arrive up to 6 ns before the clock edge arrives on CLK

NOTE: Period constraints do not apply to elenments in input or output
pads.

NET CLK PERIOD = 20 ns ;
NET MAY OFFSET IN 6ns before CLK PD ;

Groups all clocked | oads of CLK2 into CLK2_LQADS ti negroup
Groups all clocked | oads of VAL into VAL_LOADS
timegroup TNM # => Ti megroup NaMe

NET CLK2 TNM=CLKZ2_LOADS ;
NET VAL TNMEVAL_LOAD ;

Specifies worst case speed of path fromI|PAD to CLK2 # | oads. |ncludes
pad, buffer, and net delays. TSOl is a Tinmespec identifier; it can

have nanes of the form TS<string> PADS (CLK2_PD) is a Tinegroup nane
specified inside of a Tinespec.

TI MESPEC TS01=FROM PADS (CLK2_PD) TO CLK2_LOADS=15ns ;
Specifies the maxi mum frequency for all |oads cl ocked by CLK2.
TI MESPEC TS02=FROM CLK2_LOADS TO CLK2_LOADS=30Nhz;

Specifies the mninmumdelay on the path from Synchronous RAM to OFD.
Includes clock-to-out“User Constraint File Example” delay, net delay,
and setup time.

TIMESPEC TS03=FROM CLK2_LOADS TO VAL_LOAD=15000ps ;

B-32 Xilinx Development System

Foundation Constraints

Constraining LogiBLOX RAM/ROM with Synopsys

In the M1 XSI (Xilinx Synopsys Interface) HDL methodology;,
whenever large blocks of RAM/ROM are needed, LogiBLOX RAM/
ROM modules are instantiated in the HDL code. With LogiBLOX
RAM/ROM modules instantiated in the HDL code, timing and/or
placement constraints on these RAM/ROM modules, and the RAM/
ROM primitives that comprise these modules, can be specified in a
UCF file. To create timing and/or placement constraints for RAM/
ROM LogiBLOX modules, knowledge of how many primitives will
be used and how the primitives, and/or how the RAM/ROM
LogiBLOX modules are named is needed.

Estimating the Number of Primitives Used

When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible
by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether
32x1 or 16x1 primitives are used, the number of RAM/ROM can be
calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1s. Based on the depth, each bank would have three
RAM16x1s.

How the RAM Primitives are Named

Using the example of a RAM48x4, the RAM primitives inside the
LogiBLOX are named as follows.

MEMO_0 MEM1_0 MEM2_0 MEM3_0

MEMO_1 MEM1_1 MEM2_1 MEM3_1

MEMO_2 MEM1_2 MEM2_2 MEM3_2

Each primitive in a LogiBLOX RAM/ROM module has an instance
name of MEMX_y, where y represents the primitive position in the

bank of memory and where x represents the bit position of the RAM/
ROM output.

Foundation Series 2.1i User Guide B-33

Foundation Series 2.1i User Guide

For the next two items, refer to the Verilog/VHDL examples included
at the end of this section. The Verilog/VHDL example instantiates a
RAM32x2S, which is in the bottom of the hierarchy. The RAM32x2S
was implemented with LogiBLOX. The next two items are written
within the context of the Verilog examples but also apply to the
VHDL examples as well.

Referencing a LogiBLOX Module/Component in the
HDL Flow

LogiBLOX RAM/ROM modules in the HDL Flow are constrained via
a UCF file. LogiBLOX RAM/ROM modules instantiated in the HDL
code can be referenced by the full-hierarchical instance name. If a
LogiBLOX RAM/ROM module is at the top-level of the HDL code,
then the instance name of the LogiBLOX RAM/ROM module is just
the instantiated instance name.

In the case of a LogiBLOX RAM/ROM, which is instantiated within
the hierarchy of the design, the instance name of the LogiBLOX
RAM/ROM module is the concatenation of all instances which
contain the LogiBLOX RAM/ROM. The concatenated instance names
are separated by a “_". In the example, the RAM32X1S is named
nmenory. The module nenor y is instantiated in Verilog module

i nsi de with an instance name UO. The module i nsi de is instanti-
ated in the top-level module test. Therefore, the RAM32X1S can be
referenced in a .ucf file as U0/UO. For example, to attach a TNM to
this block of RAM, the following line could be used in the UCF file.

I NST U0_UO TNMebl ockl ;

Since U0/UQ is composed of two primitives, a Timegroup called
block1 would be created; blockl TNM could be used throughout the
.ucf file as a Timespec end/start point, and/or U0/UO could have a
LOC area constraint applied to it. If the RAM32X1S has been
instantiated in the top-level file, and the instance name used in the
instantiation was UQ, then this block of RAM could just be referenced
by UO.

B-34 Xilinx Development System

Foundation Constraints

Referencing the Primitives of a LogiBLOX Module in
the HDL Flow

Sometimes it is necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX RAM/ROM module.

Returning to the RAM32x2S example above, suppose that the each of
the RAM primitives had to be constrained to a particular CLB
location. Based on the rules for determining the MEMXx_y instance
names and using the example from above, each of the RAM
primitives could be referenced by concatenating the full-hierarchical
name to each of the MEMx_y names. The RAM32x2S created by
LogiBLOX would have primitives named MEMO_0 and MEM1_0. So,
for an HDL Flow project, CLB constraints in a UCF file for each of
these two items would be.

I NST U0_U0/ MEMD_0 LOC=CLB_R10C10 ;
I NST U0_UO/ MEMD_1 LOC=CLB_RL1Cl1 ;

HDL Flow Verilog Example

Following is a Verilog example.

test.v:
nodul e test (DATA, DATACQUT, ADDR, C, ENB) ;

i nput [1:0] DATA

out put [1:0] DATAQUT;
i nput [4:0] ADDR

i nput G

i nput ENB;

wire [1:0] dataoutreg;
reg [1: 0] datareg;
reg [1: 0] DATAQUT;
reg [4:0] addrreg;

inside U0 (.MDATA(dat areg),. MDATAOUT(dat aoutreg),
. MADDR(addrreg),.C(C), . WE(ENB)) ;

DATA;
dat aout r eg;
ADDR; endnodul e

al ways @ posedge C) datareg
al ways @ posedge C) DATACUT
al ways @ posedge C) addrreg

Foundation Series 2.1i User Guide B-35

Foundation Series 2.1i User Guide

inside.v:
nodul e i nsi de(MDATA, MDATAQUT, MADDR, C, V) ;

i nput [1: 0] MDATA;

out put [1:0] MDATAOQOUT;
i nput [4:0] MADDR;

i nput G

i nput W\E;

menory U0 (. A(MADDR), . DQ(MDATAQUT),
. DI (MDATA), .WR EN(VE), .WR CLK(Q));

endnodul e

test.ucf

INST “U0_UQ” TNM = usermem,;
TIMESPEC TS_6=FROM : FFS :TO: usermem: 50;
INST “U0_UO0/mem0_0" LOC=CLB_R7C2;

HDL Flow VHDL Example

Following is a VHDL example.

test.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use |IEEE.STD_LOGIC_UNSIGNED.all;

entity test is
port(
DATA: in STD_LOGIC_VECTOR(1 downto 0);
DATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
ADDR: in STD_LOGIC_VECTOR(4 downto 0);
C, ENB: in STD_LOGIC);
end test;

architecture details of test is
signal dataoutreg,datareg: STD_LOGIC_VECTOR(1 downto 0);
signal addrreg: STD_LOGIC_VECTOR(4 downto 0);

component inside
port(
MDATA: in STD_LOGIC_VECTOR(1 downto 0);
MDATAOQOUT: out STD_LOGIC_VECTOR(1 downto 0);
MADDR: in STD_LOGIC_VECTOR(4 downto 0);

B-36 Xilinx Development System

Foundation Constraints

CVE in STD LOG O);
end conponent;

begin
U0: inside port
map(MDATA=>dat ar eg. , MDATAQUT=>dat aout r eg. , MADDR=>addr r eg, C=>C, WE=>ENB) ;

process(C)
begin
i f(Cevent and C=1) then
dat areg <= DATA
end if;
end process;

process(C)
begin
i f(Cevent and C=1) then
DATAQUT <= dat aoutr eg;
end if;
end process;

process(C)
begin
i f(Cevent and C=1) then
addrreg <= ADDR;
end if;
end process;

end details;

inside.vhd

entity inside is
port (
MDATA: in STD LOG C VECTOR(1 downto 0);
MDATAQUT: out STD LOG C VECTOR(1 downto 0);
MADDR: in STD LOG C VECTOR(4 downto 0);
C VW in STD LOGA Q) ;
end inside;

architecture details of inside is component menory
port (
A: in STD LOG C_VECTOR(4 downto 0);
DO out STD LOd C _VECTOR(1 downto 0);
D: in STD_LOd C_VECTOR(1 downto 0);
WR_EN, WR_CLK: in STD_LCA Q);
end conponent;

Foundation Series 2.1i User Guide B-37

Foundation Series 2.1i User Guide

begin
Uo: menory port map(A=>MADDR, DO=>NDATAQUT,
DI =>MDATA, WR_EN=>WE, WR_CLK=>C) ;
end details;

test.ucf

INST “U0_UQO” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0/mem0_0" LOC=CLB_R7C2;

B-38 Xilinx Development System

Appendix C

Instantiated Components

This appendix lists the Xilinx Unified Library components most
frequently instantiated in synthesis designs for FPGAs. This
appendix contains the following sections:

= “Library/Architecture Definitions”

e “STARTUP Component”

e “BSCAN Component”

e “READBACK Component”

« “RAM and ROM”

* “Global Buffers”

= “Fast Output Primitives (XC4000X only)”

< “|OB Components”

“Clock Delay Components”

The function of each component is briefly described and the pin
names are supplied, along with a listing of the Xilinx product families
involved. Associated instantiation can be used to include the
component in an HDL design. For complete lists of the Xilinx
components, see the online Libraries Guide.

Note: To check which components can be instantiated for a design for
a given device, go to c:./fndtn/synth/lib/device_name (if Foundation
is not installed at c:/fndtn, go to where you installed it). Compare the
list of components shown in the device_name (xc4000e, virtex, for
example) directory against the Libraries Guide. Items that match can
be instantiated.

Foundation Series 2.1i User Guide C-1

Foundation Series 2.1i User Guide

Library/Architecture Definitions

C-2

The following subsections describe which Xilinx architectural fami-
lies are included in each library.

XC3000 Library

Information appearing under the title of XC3000 pertains to the
XC3000A and XC3100A families. This includes the XC3000L and
XC3100L, which are identical in architecture and features to the
XC3000A and XC3100A, respectively, but operate at a nominal supply
voltage of 3.3 V.

XC4000E Library

Wherever XC4000E is mentioned, it includes the XC4000E and
XC4000L families. The XC4000L is identical in architecture and
features to the XC4000E but operates at a nominal supply voltage of
3.3V

XC4000X Library

Information under the title XC4000X pertains to the XC4000EX,
XC4000XL, XC4000XV, and XC4000XLA families. The XC4000XL is
identical in architecture and features to the XC4000EX but operates at
a nominal supply voltage of 3.3 V. The XC4000XV has identical
library symbols to the XC4000EX and XC4000XL but operates at a
nominal supply voltage of 2.5 V and includes additional features (the
DRIVE attribute).

XC5200 Library

The title XC5200 pertains to the XC5200 family.

XC9000 Library

The title XC9000 pertains to the XC9500, XC9500XL, and XC9500XV
CPLD families.

Spartan Library

The Spartan library pertains to the Spartan family XCS* devices.

Xilinx Development System

Instantiated Components

SpartanXL Library
The SpatanXL library pertains to the SpartanXL family XCS*XL
devices.

Virtex Library
The Virtex Library pertains to the Virtex family XCV* devices.

STARTUP Component

The STARTUP component is typically used to access the global set/
reset and global 3-state signals. STARTUP can also be used to access
the startup sequence clock.

For information on the startup sequence and the associated signals,
see the Programmable Logic Data Book and the online Libraries Guide.

Table C-1 Design STARTUP Components

Name Library Description Outputs Inputs
STARTUP XC4000E |Used to connect Global Set/Reset, | Q2, Q3, GSR,
XC4000X | global 3-state control, and user Q10Q4, GTS, CLK
XC5200* | configuration clock. DONEIN
Spartan
SpartanXL
STARTUP_ Virtex Used to connect Global Set/Reset, GSR,
VIRTEX global 3-state control, and user GTS, CLK
configuration clock.

* For 5200, GSR pin is GR

STARTBUF Component

The STARTBUF component allows you to functionally simulate the
STARTUP component. As with STARTUP, a STARTBUF component
instantiated in your design specifies to the implementation tools to

Foundation Series 2.1i User Guide C-3

Foundation Series 2.1i User Guide

use GSR. Using the STARTBUF component in VHDL designs is the

preferred method for using GSR/GR.

Table C-2 STARTBUF Library Component

Name Library Description Outputs Inputs
STARTBUF XC4000E | Used to connect Global Set/ | GSROUT, GSRIN,
XC4000X | Reset, global tristate control, |GTSOUT, GTSIN,
XC5200* | and user configuration clock. | Q20UT, CLKIN
Spartan Q30UT,
SpartanXL Q1Q40UT,
DONEINOUT

BSCAN Component

To use the boundary-scan (BSCAN) circuitry in a Xilinx FPGA, the
BSCAN component must be present in the input design. The TDI,
TDO, TMS, and TCK components are typically used to access the
reserved boundary scan device pads for use with the BSCAN
component but can be connected to user logic as well. For more
information on the BSCAN component, the internal boundary scan
circuitry, and the directional properties of the four reserved boundary
scan pads, refer to Programmable Logic Data Book and the online

Libraries Guide.

Table C-3 Boundary Scan Components

Name Library Description Outputs Inputs
BSCAN XC4000E | Indicates that the boundary scan TDO, TDI,
XC4000X |logic should be enabled after the DRCK, TMS,
XC5200 FPGA has been configured. IDLE, TCK,
Spartan SEL1,SEL2| TDOL,
SpartanXL TDO2
BSCAN_ Virtex Used to create internal boundary TDO1, ,TDO1,
VIRTEX scan chains in a Virtex device. TDO2 TDO2
TDI XC4000E | Connects to the BSCAN TDI input. I —
XC4000X |Loads instructions and data on
XC5200 each low-to-high TCK transition.
Spartan
SpartanXL
C-4 Xilinx Development System

Instantiated Components

Table C-3 Boundary Scan Components

Name Library Description Outputs Inputs
TDO XC4000E | Connects to the BSCAN TDO — o]
XC4000X |output. Provides the boundary
XC5200 scan data on each low-to-high TCK
Spartan transition.
SpartanXL
TMS XC4000E | Connects to the BSCAN TMS I —
XC4000X |input. It determines which
XC5200 boundary scan is performed.
Spartan
SpartanXL
TCK XC4000E | Connects to the BSCAN TCK I —
XC4000X |input. Shifts the serial data and
XC5200 instructions into and out of the
Spartan boundary scan data registers.
SpartanXL

* The XC5200 has three additional pins: Reset, Update, Shift

READBACK Component

To use the dedicated readback logic in a Xilinx FPGA, the

READBACK component must be inserted in the input design. The
MDO0, MD1, and MD2 components are typically used to access the
mode pins for use with the readback logic but can be connected to

user logic as well. For more information on the READBACK

component, the internal readback logic, and the directional properties

Foundation Series 2.1i User Guide

C-5

Foundation Series 2.1i User Guide

of the three reserved mode pins, see the Programmable Logic Data Book
and the online Libraries Guide.

Table C-4 Readback Components

Name Library Description Outputs Inputs
CAPTURE_ Virtex Controls when to capture register — CAP,
VIRTEX information for readback. CLK
READBACK | XC4000E | Accesses the bitstream readback DATA,RIP | CLK,
XC4000X | function. A low-to-high transition TRIG
XC5200 on the TRIG input initiates the
Spartan readback process.
SpartanXL

MDO XC4000E | Connects to the Mode 0 (MO0) input I —
XC4000X | pin, which is used to determine the
XC5200 configuration mode.

MD1 XC4000E | Connects to the Mode 1 (M1) input — (0]
XC4000X | pin, which is used to determine the
XC5200 configuration mode.

MD2 XC4000E | Connects to the Mode 2 (M2) input I —
XC4000X | pin, which is used to determine the
XC5200 configuration mode.

RAM and ROM

C-6

Some of the most frequently instantiated library components are the
RAM and ROM primitives. Because most synthesis tools are unable
to infer RAM or ROM components from the source HDL, the
primitives must be used to build up more complex structures. The
following list of RAM and ROM components is a complete list of the
primitives available in the Xilinx library. For more information on the

Xilinx Development System

Instantiated Components

components, see the Programmable Logic Data Book and the online
Libraries Guide.

Table C-5 Memory Components

Name Library Description Outputs Inputs
RAM16X1 XC4000E | A 16-word by 1-bit static read-write 0] D, A3,
XC4000X |random-access memory compo- A2, Al,
nent. A0, WE
RAM16X1D | XC4000E |A 16-word by 1-bit dual port SPO, D, A3,
XC4000X |random access memory with DPO A2, Al,
Spartan synchronous write capability and A0,
SpartanXL |asynchronous read capability. DPRA3,
Virtex DPRA2,
DPRAL,
DPRAO,
WE,
WCLK
RAM16X1S XC4000E | A 16-word by 1-bit static random @] D, A3,
XC4000X |access memory with synchronous A2, AL,
Spartan write capability and asynchronous A0, WE,
SpartanXL |read capability. WCLK
Virtex
RAM32X1 XC4000E | A 32-word by 1-bit static read-write 0] D, A0,
XC4000X | random access memory. Al, A2,
A3, A4,
WE
RAM32X1S XC4000E | A 32-word by 1-bit static random o D, A4,
XC4000X |access memory with synchronous A3, A2,
Spartan write capability and asynchronous Al, AQ,
SpartanXL | read capability. WE,
Virtex WCLK
RAMB4 Sn Virtex 4096-Bit dedicated random access DOA WEA,
memory blocks with synchronous DOB ENA,
write capability RSTA,
CLKA,
ADDRA,
DIA
Foundation Series 2.1i User Guide C-7

Foundation Series 2.1i User Guide

Table C-5 Memory Components

Name Library Description Outputs Inputs
RAMB4 Virtex 4096-Bit dual-ported dedicated DOA WEA,
Sn_Sn random access memory blocks with DOB ENA,

synchronous write capability RSTA,
CLKA,
ADDRA,
DIA,
WESB,
ENB,
RSTB,
CLKB,
ADDRB,
DIB
ROM16X1 XC4000E | A 16-word by 1-bit read-only 0] A3, A2,
XC4000X | memory component. Al, A0
Spartan
SpartanXL
ROM32X1 XC4000E | A 32-word by 1-bit read-only 0] A4, A3,
XC4000X | memory component. A2, Al,
Spartan A0
SpartanXL

Global Buffers

Each Xilinx PLD device has multiple styles of global buffers; the
XC4000EX devices have 20 actual global buffers—eight BUFGLSS,
eight BUFEs, and four BUFFCLKSs. For some designs it may be
necessary to use the exact buffer desired to ensure appropriate clock
distribution delay.

For most designs, the BUFG, BUFGS, and BUFGP components can be
inferred or instantiated, thus allowing the design implementation

C-8

Xilinx Development System

Instantiated Components

tools to make an appropriate physical buffer allocation. For more
information on the components, see the Programmable Logic Data Book.

Table C-6 Global Buffer Components

Name Library Description Outputs Inputs
BUFG XC3000 An architecture-independent 0] I
XC4000E | global buffer, distributes high fan-
XC4000X | outclock signals throughout a PLD
XC5200 device.
XC9000
Spartan
SpartanXL
Virtex
BUFGP XC4000E | A primary global buffer, distrib- 0] I
XC5200 utes high fan-out clock or control
Spartan signals throughout PLD devices.
Virtex
BUFGS XC4000E | A secondary global buffer, distrib- @] I
XC5200 utes high fan-out clock or control
Spartan signals throughout a PLD device.
BUFGLS XC4000X | Global low-skew buffer. BUFGLS 0] I
SpartanXL | components can drive all flip-flop
clock pins.
BUFGE XC4000X | Global early buffer. XC4000EX O I
devices have eight total, two in
each corner. BUFGE components
can drive all clock pins in their
corner of the device.
BUFFCLK XC4000X | Fast clocks. XC4000EX devices O I
have 4 total, 2 each on the left and
right sides. BUFFCLK components
can drive all IOB clock pins on
their left or right half edge.
BUFGSR XC9000 Global Set/Reset buffer O |
BUFGTS XC9000 Global Tri-State Enable buffer. o |
Foundation Series 2.1i User Guide C-9

Foundation Series 2.1i User Guide

Fast Output Primitives (XC4000X only)

One of the features added to the XC4000X architecture is the fast
output MUX. There is one fast output MUX located in each 10B
which can be used to implement any two input logic functions. Each
component can have zero, one, or two inverted inputs. Because the
output MUX is located in the IOB, it must be connected to the input
pin of either an OBUF or an OBUT. For more information on the
output primitives, see the Programmable Logic Data Book.

Note: For information on how to instantiate output MUXs with
inverted inputs, see the Synopsys (XSI) Interface/ Tutorial Guide.

Table C-7 Fast Output Primitives

Name Library Description Outputs Inputs

OAND?2 XC4000X | 2-input AND gate that is imple- 0] F 10
mented in the output multiplexer
of the XC4000EX IOB.

ONAND?2 XC4000X | 2-input NAND gate that is imple- 0] F 10
mented in the output multiplexer
of the XC4000EX IOB.

OOR2 XC4000X | 2-input OR gate that is imple- 0] F 10
mented in the output multiplexer
of the XC4000EX IOB.

ONOR2 XC4000X | 2-input NOR gate that is imple- 0] F 10
mented in the output multiplexer
of the XC4000EX IOB.

OXOR2 XC4000X | 2-input exclusive OR gate that is 0] F 10
implemented in the output multi-
plexer of the XC4000EX IOB.

OXNOR2 XC4000X | 2-input exclusive NOR gate that is @] F 10
implemented in the output multi-
plexer of the XC4000EX IOB.

OMUX2 XC4000X | 2-by-1 MUX implemented in the 0] DO, D1,
output multiplexer of the SO
XC4000EX IOB.

C-10 Xilinx Development System

Instantiated Components

IOB Components

Depending on the synthesis vendor being used, some 0B
components must be instantiated directly in the input design. Most
synthesis tools support I0B D-type flip-flop inferences but may not
yet support I0B D-type flip-flop inference with clock enables.
Because there are many slew rates and delay types available, there
are many derivatives of the primitives shown. For a complete list of
the 10B primitives, see the online Libraries Guide.

Table C-8 Input/Output Block Components

Name Library Description Outputs Inputs
IBUF XC3000 Single input buffers. An IBUF 0] I
XC4000E |isolates the internal circuit from the
XC4000X |signals coming into a chip.
XC5200
XC9000
Spartan
SpartanXL
OBUF XC3000 Single output buffers. An OBUF 0] I
XC4000E |isolates the internal circuit and
XC4000X | provides drive current for signals
XC5200 leaving a chip.
XC9000
Spartan
SpartanXL
OBUFT XC3000 Single 3-state output buffer with @] T
XC4000E | active-low output enable. (3-state
XC4000X | High.)
XC5200
XC9000
Spartan
SpartanXL
OBUFE XC9000 Single 3-state output buffer with o I, T
active-high output enable. (3-state
Low.)

Foundation Series 2.1i User Guide C-11

Foundation Series 2.1i User Guide

Table C-8 Input/Output Block Components

Name Library Description Outputs Inputs

IFD XC3000 Single input D flip-flop. Q D,C
XC4000E
XC4000X
XC5200
Spartan
SpartanXL

OFD XC3000 Single output D flip-flop. Q D,C
XC4000E
XC4000X
XC5200
Spartan
SpartanXL

OFDT XC3000 Single D flip-flop with active-high 0] D,CT
XC4000E | 3-state active-low output enable
XC4000X | buffers.

XC5200
Spartan
SpartanXL

IFDX XC4000E |Single input D flip-flop with clock Q DO, D1,
XC4000X |enable. SO
Spartan
SpartanXL

OFDX XC4000E | Single output D flip-flop with Q D,C,CE
XC4000X | clock enable.
Spartan

SpartanXL

C-12 Xilinx Development System

Instantiated Components

Table C-8 Input/Output Block Components
Name Library Description Outputs Inputs
OFDTX XC4000E | Single D flip-flop with active-high o D, C, CE,
XC4000X | tristate and active-low output T
XC5200 enable buffers.
Spartan
SpartanXL
ILD_1 XC3000 Transparent input data latch with Q D, G
XC4000E |inverted gate. (Transparent High.)
XC4000X
XC5200
Spartan
SpartanXL

Clock Delay Components

These components are delay locked loops that are used to eliminate
the clock delay inside the device. The delay locked loop is a digital
variation of the analog phase locked loop.

Table C-9 Clock Delay Component

Name Library Description Outputs Inputs
CLKDLL Virtex Clock delay locked loop used to CLKQO, CLKIN,
minimize clock skew. CLKO0, CLKFB,
CLK180, |RST
CLK270,
CLS2X,
CLKDV,
LOCKED
CLKDLLHF | Virtex High frequency clock delay locked | CLKO, CLKIN,
loop used to minimize clock skew. | CLK180, CLKEFB,
CLKDV, RST
LOCKED

Foundation Series 2.1i User Guide

C-13

Foundation Series 2.1i User Guide

C-14 Xilinx Development System

Appendix D

File Processing Overview

This section shows the files created/used by Foundation to process
FPGA and CPLD designs. These figures represent 1) a high-level
overview of Foundation’s processing tools and 2) the manipulation of
the various netlist and constraint files by these tools.

FPGAS

The following three figures illustrate the processing that Foundation
performs to create FPGA designs.

CORE Generaor
or LogiBOLX GUI

Finite State
Machine Editor

VHD or V ABL
Viewlogic Schematic Express XABEL
Import Utility Capture Compiler Compiler

XNF/EDN

HDL Editor

Symbol
Descriptor

Design Netlist
and Constraints
XNF/EDN UCF
User-created
Simulation Gate-Level Simulation Netlist Merging/Mapping
Stimulus

See Next Page
X8092

Figure D-1 Manipulation of Netlist and Constraint Files for
FPGAs (Part 1)

Foundation Series 2.1i User Guide D-1

Foundation Series 2.1i User Guide

o) (o) -
I EDIF2NGD I EDIF2NGD I XNF2NGD

binary. NGO NGO
User Constraints

UCF NGDBuild

* Merges .ngo files

Constraints Editor .
« Expands LogiBLOX references

GUI « Expands Macro references
«.ngd output is complete logical design
Netlist Constraints representation (binary)
NCF

NGD

Map
* Maps logical components to physical
components of target architecture
« Converts user-end design capture
tool-generated constraints to physical
constraints
«.ncd output is a physical design netlist

NGM

Used for generation
: of timing annotated
(binary) post-route netlist

NCD/PCF

Knowledge-driven

TRCE

Static Timing
Analyzer

Place and Route
See next page.

Post-map Static Timing
Analysis Report (text)

Block delays/estimated

X8091 route delays

Figure D-2 Manipulation of Netlist and Constraint Files for
FPGAs (Part 2)

D-2 Xilinx Development System

File Processing Overview

NCD/PCF

PAR

* Places mapped physical components into
specific component locations (sites) in
target device

« Creates connections (routes) between sites
to provide design's interconnectivity

« Iterate placement and routing phases
to meet timing/physical constraints

if necessary.

PCF

From MAP NGM

From MAP

NGDAnno BitGen

TRCE
Static Timing
Analyzer

BIT

Post-map Static Timing
Analysis Report (text)

PROM File
Formatter

NGD2VHD
NGD2VER

Hardware

Debugger

Block and Routing Delays

NGD2EDIF

User-created
Stimulus

I Third-party Simulators

X8093

Figure D-3 Manipulation of Netlist and Constraint Files for
FPGAs (Part 3)

Foundation Series 2.1i User Guide D-3

Foundation Series 2.1i User Guide

CPLDs

D-4

The following three figures illustrate the processing that Foundation
performs to create CPLD designs.

Finite State
Machine Editor

CORE Generaor
or LogiBOLX GUI

Symbol
Descriptor

HDL Editor

VHD or V

Viewlogic Schematic Express XABEL
Import Utility Capture Compiler Compiler

Simulation
Only

XNF/EDN

Design Netlist
and Constraints

XNF/EDN UCF

User-created
Simulation Gate-Level Simulation Netlist Merging/Mapping
Stimulus

See Next Page

X8092

Figure D-4 Manipulation of Netlist and Constraint Files for
CPLDs (Part 1)

Xilinx Development System

File Processing Overview

EDN EDN

Lr)

EDIF2NGD EDIF2NGD

I XNF2NGD

binary; NGO NG

User Constraints

«E{{

NGDBuild

Constraints Editor * Merges .ngo files

Netlist Constraints representation (binary)

* Expands LogiBLOX references
* Expands Macro references
«.ngd output is complete logical design

3

CPLD Fitter NGD

Implementation Options

Design Loader

Auto Device/Speed Selector

Logic Synthesis
Technology Mapping

Global Net Optimization

Logic Optimization Partitioning

Export Level Generator

Exporting
Assignments

PTerm Mapping

Pin Feedback Generation
Post-Mapping
Enhancements

Power/Slew Optimization

Routing

Fitter Report (Text)

X8226

Figure D-5 Manipulation of Netlist and Constraint Files for

CPLDs (Part 2)

Foundation Series 2.1i User Guide

Foundation Series 2.1i User Guide

TSIM Timing
Timing Analyzer HPLUSAS6 Simulator
Engine
Timing Analyzer
VM6

HPREP6

|

TIM

Static Timing

Report (Text) NGD2EDIF

NGD2VHD

NGD2VER

JTAG Download

User-created
Stimulus

Gate-level
Simulators

I Third-party Simulators ‘

X8227

Figure D-6 Manipulation of Netlist and Constraint Files for
CPLDs (Part 3)

D-6 Xilinx Development System

	About This Manual
	Additional Resources
	Manual Contents

	Conventions
	Typographical
	Online Document

	Introduction
	Architecture Support
	Platform Support
	Foundation Demo
	Tutorials
	Online Help
	Books
	Printed Books
	Online Books
	Document Viewer
	Foundation-Specific Online Books
	Design Entry Online Reference Books
	Synthesis and Simulation Reference Book
	Implementation-Related Online Books
	Device Programming Online Books

	Project Toolset
	Creating Foundation 2.1i Projects
	Schematic Flow Projects
	HDL Flow Projects (Express Only)

	Project Manager
	Hierarchy Browser

	Files Tab
	Versions Tab
	Project Flowchart Area
	Flow Tab - Project Flowchart
	Alternatives to Flowchart Buttons
	Contents Tab
	Reports Tab
	Synthesis Tab (Schematic Flow Only)

	Messages Area
	Console Tab
	HDL Errors Tab (HDL Flow Only)
	HDL Warnings Tab (HDL Flow Only)
	HDL Messages Tab (HDL Flow Only)

	Accessing LogiBLOX
	Accessing the CORE Generator System
	Documenting Your Design
	Project Archiving
	Design Entry Tools
	Schematic Editor
	State Editor
	HDL Editor
	Symbol Editor

	Synthesis Tools
	Synthesis Button (HDL Flow)
	Synthesis Tab (Schematic Flow)

	Simulation/Verification
	Logic Simulator
	Timing Analyzer
	Specialized Simulation Controls
	HDL Behavioral Simulation Capabilities

	Constraints Editors
	Express Constraints Editor (HDL Flow)
	Xilinx Constraints Editor

	Implementation Tools
	Control Files
	User Constraints File
	Implementation Guide File
	Floorplanner File

	Implementation Tools Menu
	Constraints Editor
	Flow Engine
	Floorplanner
	FPGA Editor
	CPLD ChipViewer
	Automatic Pin Locking

	Device Programming
	JTAG Programmer
	PROM File Formatter
	Hardware Debugger

	Utilities
	Schematic Symbol Library Manager
	Command History
	Project Notes
	Implementation Template Manager
	ABEL to VHDL/Verilog Converter
	Altera HDL to VHDL/Verilog Converter

	Design Methodologies - Schematic Flow
	Schematic Flow Processing Overview
	Top-Level Designs
	All-Schematic Designs
	Creating the Schematic and Generating a Netlist
	Performing Functional Simulation
	Implementing the Design
	Creating a New Revision
	Creating a New Version

	Editing Implementation Constraints
	Verifying the Design
	Performing a Static Timing Analysis (Optional)
	Performing a Timing Simulation

	Programming the Device

	Schematic Designs with Instantiated HDL-Based Macros
	Creating HDL Macros
	Creating the Schematic and Generating a Netlist

	Schematic Designs With Instantiated LogiBLOX Modules
	Creating LogiBLOX Modules
	Importing Existing LogiBLOX Modules

	Schematic Designs With Instantiated CORE Generator Cores
	Creating Core Symbols

	Schematic Designs With Finite State Machine (FSM) Macros
	Creating FSM Macros
	Creating the Schematic and Generating a Netlist

	Finite State Machine (FSM) Designs
	Creating a State Editor Design
	Defining States
	Defining Transitions, Conditions, and Actions
	Adding a Top-Level ABEL Design to the Project

	Schematic Design Entry
	Managing Schematic Designs
	Design Structure
	Single Sheet Schematic
	Multi-sheet Flat Schematic
	Hierarchical Schematic
	Adding New Sheets to the Project
	Adding Existing Sheets to the Project
	Opening Non-project Sheets
	Removing Sheets from the Project
	Renumbering Symbol References
	Copying a Section of a Schematic to Another Sheet
	Troubleshooting Project Contents

	Hierarchical Schematic Designs
	Creating a Schematic Macro (Bottom-Up Methodology)
	Recognizing Hierarchical Macros
	Navigating the Project Hierarchy
	Modifying Existing Macros
	Difference between a Macro and a Schematic
	Hierarchy Symbol Changes
	Using a Top-down Methodology
	Hierarchical Design Example

	Manually Exporting a Netlist
	Creating a Schematic from a Netlist
	Miscellaneous Tips for Using the Schematic Editor Tool
	Color-coded Symbols
	Using the Hierarchy Connector
	Using Input and Output Buffers
	Schematic Tabs
	Simulate Current Macro

	Design Methodologies - HDL Flow
	HDL Flow Processing Overview
	Top-level Designs
	All-HDL Designs
	Creating the Design
	Analyzing Design File Syntax
	Performing HDL Behavioral Simulation (Optional)
	Synthesizing the Design
	Express Constraints Editor
	Express Time Tracker
	Performing Functional Simulation
	Implementing the Design
	Editing Implementation Constraints
	Verifying the Design
	Performing a Static Timing Analysis
	Performing a Timing Simulation

	Programming the Device

	HDL Designs with State Machines
	Creating a State Machine Macro

	HDL Designs with Instantiated Xilinx Unified Library Components
	HDL Designs with Black Box Instantiation
	LogiBLOX Modules in a VHDL or Verilog Design
	VHDL Instantiation
	Verilog Instantiation

	CORE Generator COREs in a VHDL or Verilog Design
	VHDL Instantiation
	Verilog Instantiation

	XNF file in a VHDL or Verilog Design

	Schematic Designs in the HDL Flow
	Adding a Schematic Library
	Creating HDL Macros
	Creating the Schematic and Generating a Netlist
	Selecting a Netlist Format
	Completing the design

	HDL Design Entry and Synthesis
	HDL File Selection
	Adding the File to the Project
	Removing Files from the Project
	Getting Help with the Language

	Synthesis of HDL Modules
	Schematic Flow Methodology
	HDL Flow Methodology

	Managing Large Designs
	Design Optimization
	Setting Constraints Prior to Synthesis

	Design Partitioning Guidelines
	User Libraries for HDL Flow Projects
	Creating a New Library
	Declaring and Using User Libraries

	Using Constraints in an HDL Design
	Express Constraints Editor
	Xilinx Logical Constraints
	Reading Instance Names from an XNF file for UCF Constraints
	Instance Names for LogiBLOX RAM/ROM
	Calculating Primitives for a LogiBLOX RAM/ROM Module
	Naming Primitives in LogiBLOX RAM/ROM Modules
	Referencing LogiBLOX Entities

	State Machine Designs
	State Machine Example
	State Diagram
	State Machine Implementation
	Encoding Techniques
	Symbolic and Encoded State Machines
	Compromises in State Machine Encoding
	Binary Encoding
	One-Hot Encoding
	One-Hot Encoding in Xilinx FPGA Architecture
	Limitations

	Encoding for CPLDs

	LogiBLOX
	Setting Up LogiBLOX on a PC
	Starting LogiBLOX
	Creating LogiBLOX Modules
	LogiBLOX Modules
	Using LogiBLOX for Schematic Designs
	Using LogiBLOX for HDL Designs
	Module-inferring Tools
	Module-instantiation Tools

	Documentation

	CORE Generator System
	Setting Up the CORE Generator System on a PC
	Accessing the CORE Generator System
	Instantiating CORE Generator Modules
	Documentation

	Functional Simulation
	Basic Functional Simulation Process
	Invoking the Simulator
	Attaching Probes (Schematic Editor Only)
	Adding Signals
	Creating Buses
	Applying Stimulus
	Stimulator Selection Dialog
	Waveform Test Vectors
	Script File Macro

	Running Simulation

	HDL Top-down Methodology
	HDL with Underlying Netlists
	Simulation Script Editor
	Waveform Editing Functions

	Design Implementation
	Versions and Revisions
	Schematic Flow Projects
	Creating Versions
	Creating Revisions

	HDL Flow Projects
	Creating Versions
	Updating Versions
	Creating Revisions
	Creating a new Revision
	Creating the First Version and Revision in One Step

	Revision Control

	Implementing a Design
	Setting Control Files
	User Constraints File
	Guide Files
	Guiding FPGA Designs
	Guiding CPLD Designs
	Setting Guide Files

	Floorplan Files

	Selecting Options
	Place & Route Effort Level
	Program Options
	Implementation Templates
	Simulation Templates
	Configuration Templates (FPGAs)
	Template Manager

	Flow Engine
	Translate
	MAP (FPGAs)
	Place and Route (FPGAs)
	CPLD Fitter
	Configure (FPGAs)
	Bitstream (CPLDs)

	Implementation Reports
	Translation Report
	Map Report (FPGAs)
	Place and Route Report (FPGAs)
	Pad Report (FPGAs)
	Fitting Report (CPLDs)
	Post Layout Timing Report

	Additional Implementation Tools
	Constraints Editor
	Flow Engine Controls
	Controlling Flow Engine Steps
	Running Re-Entrant Routing on FPGAs
	Configuring the Flow

	Floorplanner
	FPGA Editor
	CPLD ChipViewer
	Locking Device Pins

	Verification and Programming
	Overview
	Timing Simulation
	Generating a Timing-annotated Netlist
	Basic Timing Simulation Process

	Timing Analyzer
	Post Implementation Static Timing Analysis
	Summary Timing Reports
	Detailed Timing Analysis

	In-Circuit Verification
	Downloading a Design
	JTAG Programmer
	Hardware Debugger (FPGAs only)
	PROM File Formatter

	Glossary
	ABEL
	actions
	Aldec
	aliases
	analyze
	architecture
	attribute
	binary encoding
	BitGen
	Black Box Instantiation
	block
	breakpoint
	buffer
	bus
	CLB
	component
	condition
	constraint
	constraints editor
	constraints file
	CORE Generator
	CPLD
	CPLD fitter
	design entry tools
	design implementation tools
	Design Manager
	effort level
	elaborate
	Express Compiler
	Express Constraints Editor
	Express Time Tracker
	Finite State Machine Editor
	fitter
	floorplanning
	FPGA
	FPGA Editor
	FSM
	functional simulation
	guided design
	guided mapping
	HDL
	HDL Editor
	HDL Flow
	hierarchical designs
	Hierarchy Browser
	implementation
	Implementation Constraints Editor
	instantiation
	Language Assistant
	Library Manager
	locking
	LogiBLOX
	logic
	Logic Simulator
	macro
	MAP
	mapping
	MRP file
	NCD file
	net
	netlist
	NGA file
	NGDAnno
	NGDBuild
	NGD file
	NGM file
	one-hot encoding
	optimization
	optimize
	PAR (Place and Route)
	path delay
	PCF file
	PDF file
	physical Design Rule Check (DRC)
	physical macro
	pin
	pinwires
	project
	Project Flowchart
	Project Manager
	PROM File Formatter
	route
	route-through
	Schematic Editor
	Schematic Flow
	state diagram
	state machine
	state machine designs
	states
	static timing analysis
	static timing analyzer
	status bar
	stimulus information
	Symbol Editor
	Synopsys
	synthesis
	Time Tracker
	transitions
	TRCE
	TWR file
	UCF file
	verification
	Verilog
	VHDL
	Wire
	Xilinx Constraints Editor

	Foundation Constraints
	Constraint Entry Mechanisms
	Translating and Merging Logical Designs
	The Xilinx Constraints Editor
	Constraints File Overview
	Netlist Constraints File (NCF)
	User Constraints File (UCF)
	Physical Constraints File (PCF)
	Case Sensitivity

	Timing Constraints
	The “From:To” Style Timespec
	Using TPSYNC
	The Period Style Timespec
	The Offset Constraint
	Ignoring Paths
	Controlling Skew
	Constraint Precedence
	Across Constraint Sources
	Within Constraint Sources

	Layout Constraints
	Converting a Logical Design to a Physical Design
	“Last One Wins” Resolution
	XC5200XL Constraints

	Efficient Use of Timespecs and Layout Constraints
	The “Starter Set” of Timing Constraints

	Standard Block Delay Symbols
	Table of Supported Constraints
	Basic UCF Syntax Examples
	PERIOD Timespec
	FROM:TO Timespecs
	OFFSET Timespec
	Timing Ignore
	Path Exceptions
	Miscellaneous Examples

	User Constraint File Example
	Constraining LogiBLOX RAM/ROM with Synopsys
	Estimating the Number of Primitives Used
	How the RAM Primitives are Named
	Referencing a LogiBLOX Module/Component in the HDL Flow
	Referencing the Primitives of a LogiBLOX Module in the HDL Flow
	HDL Flow Verilog Example
	test.v:
	inside.v:
	test.ucf

	HDL Flow VHDL Example
	test.vhd
	inside.vhd
	test.ucf

	Instantiated Components
	Library/Architecture Definitions
	XC3000 Library
	XC4000E Library
	XC4000X Library
	XC5200 Library
	XC9000 Library
	Spartan Library
	SpartanXL Library
	Virtex Library

	STARTUP Component
	STARTBUF Component
	BSCAN Component
	READBACK Component
	RAM and ROM
	Global Buffers
	Fast Output Primitives (XC4000X only)
	IOB Components
	Clock Delay Components

	File Processing Overview
	FPGAs
	CPLDs

