
SOFTWARE SOLUTIONS FOR
A PROGRAMMABLE WORLD

SOFTWARE

www.xilinx.com/xcell

ISSUE 1
THIRD QUARTER 2015

The Next Logical Step
in C/C++, OpenCL
Programming

Exploring the SDSoC Environment:
Build a Sample Design

System-level HW-SW
Optimization on the Zynq SoC

SDAccel Software Application
Design Flows for FPGAs

MathWorks: Make Design Trade-offs
at the Desktop, Not the Lab

http://www.xilinx.com/xcell

Quick time-to-market demands are forcing you to rethink how you design, build and deploy your

products. Sometimes it’s faster, less costly and lower risk to incorporate an off-the-shelf solution

instead of designing from the beginning. Avnet’s system-on module and motherboard solutions for

the Xilinx Zynq®-7000 All Programmable SoC can reduce development times by more than four

months, allowing you to focus your efforts on adding differentiating features and unique capabilities.

Find out which Zynq SOM is right for you http://zedboard.org/content/design-it-or-buy-it

Lifecycle Technology

facebook.com/avnet twitter.com/avnet youtube.com/avnet

Shorten your development cycle with Avnet’s SoC Modules

Design it or Buy it?

http://zedboard.org/content/design-it-or-buy-it?cmp=glo-avt3-avt-tpm-xcell-201507
http://zedboard.org/content/design-it-or-buy-it

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
1-408-626-5981

EDITOR Diana Scheben

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Assoc.
1-408-842-2627

ADVERTISING SALES Judy Gelwicks
1-408-842-2627
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang,
Asia Pacific
melissa.zhang@xilinx.com

 Christelle Moraga,
Europe/Middle East/Africa
christelle.moraga@xilinx.com

 Tomoko Suto,
Japan
tomoko@xilinx.com

REPRINT ORDERS 1-408-842-2627

EDITORIAL ADVISERS Tomas Evensen

Lawrence Getman

Mark Jensen

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2015 Xilinx, Inc. All rights reserved. XILINX, the Xilinx Logo, and other
designated brands included herein are trademarks of Xilinx, Inc. All
other trademarks are the property of their respective owners.

The articles, information, and other materials included in this issue
are provided solely for the convenience of our readers. Xilinx makes
no warranties, express, implied, statutory, or otherwise, and accepts
no liability with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at the risk of the
user. Any person or entity using such information in any way releas-
es and waives any claim it might have against Xilinx for any loss,
damage, or expense caused thereby.

SOFTWARE

Letter from the Publisher
Welcome to Xcell Software Journal
Earlier this year, Xilinx® released its SDx™ line of development environments,
which enable non-FPGA experts to program Xilinx device logic using C/C++
and OpenCL™. The goal of the SDx environments is to let software develop-
ers and embedded system architects program our devices as easily as they
program GPUs or CPUs. Xilinx’s FPGA hardware technology has long been
able to accelerate algorithms, but it was only recently that the underlying soft-
ware technology and hardware platforms reached a level where it was feasible
to create these development environments for the broader software- and sys-
tem-architect communities of C/C++ and OpenCL users.

The hardware platforms have evolved rapidly during this millennium. In the
early 2000s, the semiconductor industry changed the game on software develop-
ers. To avoid a future in which chips reached the energy density of the sun, MPU
vendors switched from monolithic MPUs to homogeneous multicore, distrib-
uted processing architectures. This switch enabled the semiconductor indus-
try to continue to introduce successive generations of devices in cadence with
Moore’s Law and even to innovate heterogeneous multicore processing systems,
which we know today as systems-on-chip (SoCs). But the move to multicore
has placed a heavy burden on software developers to design software that runs
efficiently on these new distributed processing architectures. Xilinx has stepped
in to help software developers by introducing its SDx line of development en-
vironments. The environments let developers dramatically speed their C/C++
and OpenCL code running on systems powered by next-generation processing
architectures, which today are increasingly accelerated by FPGAs.

Indeed, FPGA-accelerated processing architectures, pairing MPUs with
FPGAs, are fast replacing power-hungry CPU/GPU architectures in data cen-
ter and other compute-intensive markets. Likewise, in the embedded systems
space, new heterogeneous multicore processors such as Xilinx’s Zynq®-7000
All Programmable SoC and upcoming Xilinx UltraScale+™ MPSoC integrate
multiple processors with FPGA logic on the same chip, enabling companies
to create next-generation systems with unmatched performance and differ-
entiation. FPGAs have traditionally been squarely in the domain of hardware
engineers, but no longer.

Now that Xilinx has released its SDx line of development environments to use
on its hardware platforms, the software world has the ability to unlock the acceler-
ation power of the FPGA using C/C++ or OpenCL within environments that should
be familiar to embedded-software and -system developers. This convergence of
strong underlying compilation technology for our high-level synthesis (HLS) tool
flow with programming languages and tools designed for heterogeneous architec-
tures brings the final pieces together for software and system designers to create
custom hardware accelerators in their own heterogeneous SoCs.

Xcell Software Journal is dedicated to helping you leverage the SDx envi-
ronments and those from Xilinx Alliance members such as National Instru-
ments and MathWorks®. The quarterly journal will focus on software trends,
case studies, how-to tutorials, updates and outlooks for this rapidly growing
user base. I’m confident that as you read the articles you will be inspired to
explore Xilinx’s resources further, testing out the SDx development environ-
ments accessible through the Xilinx Software Developer Zone. I encourage
you to read the Xcell Daily Blog, especially Adam Taylor’s chronicles of using
the SDSoC development environment. And I invite you to contribute articles
to the new journal to share your experiences with your colleagues in the van-
guard of programming FPGA-accelerated systems.

 — Mike Santarini
Publisher

There is a new bass player
for the blues jam in the sky . . .
This issue is dedicated to analyst and
ESL visionary Gary Smith, 1941 – 2015.

mailto:mike.santarini@xilinx.com
mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
www.xilinx.com/xcell
http://www.xilinx.com/products/design-tools/software-zone.html
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-s-MicroZed-Chronicles-Part-85-SDSoC-the-first/ba-p/633707
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-s-MicroZed-Chronicles-Part-85-SDSoC-the-first/ba-p/633707

VIEWPOINT
Letter from the Publisher
Welcome to Xcell Software Journal . . . 3

COVER STORY
The Next Logical Step in C/C++,
Open CL Programming

CONTENTS

THIRD QUARTER
2015
ISSUE 1

6

14

XCELLENCE WITH SDSOC
FOR EMBEDDED DEVELOPMENT
SDSoC, Step by Step: Build a Sample Design . . . 14

Using the SDSoC IDE for System-level HW-SW
Optimization on the Zynq SoC . . . 20

XCELLENCE WITH SDACCEL
FOR APPLICATION ACCELERATION
Compile, Debug, Optimize . . . 30

Developing OpenCL Imaging
Applications Using C++ Libraries . . . 36

XCELLENT ALLIANCE FEATURES
MATLAB and Simulink Aid
HW-SW Co-design of Zynq SoCs . . . 42

XTRA READING
IDE Updates and Extra Resources for Developers . . . 50

36

42

20

30

The Next Logical Step
in C/C++, OpenCL
Programming

XCELL SOFTWARE JOURNAL: COVER STORY

6

New environments
allow you to maximize
code performance.

by Mike Santarini
Publisher, Xcell Publications
Xilinx, Inc.
mike.santarini@xilinx.com

Lawrence Getman
Vice President, Corporate Strategy and Marketing
Xilinx, Inc.
larryg@xilinx.com

THIRD QUARTER 2015

7

Ever since Xilinx® invented and brought
to market the world’s first FPGAs in the
early 1980s, these extraordinarily ver-
satile programmable logic devices have
been the MacGyver multipurpose tool
of hardware engineers. With Xilinx’s
recent releases of the SDx™ line of de-
velopment environments—SDAccel™,
SDSoC™ and SDNet™—Xilinx is em-
powering a greater number of creative
minds to bring remarkable innovations
to the world by enabling software devel-
opers and systems engineers (non-FPGA
designers) to create their own custom
software-defined hardware easily with
Xilinx devices.

Before we take a look at these new
environments and other software devel-
opment resources from Xilinx and its Al-
liance members, let’s consider the evolu-
tion of processing architectures and their
impact on software development.

IT’S A SOFTWARE PROBLEM …
Prior to 2000, the typical microprocessor
largely comprised one giant monolithic
processor core with onboard memory and

E

mailto:mike.santarini@xilinx.com
mailto:larryg@xilinx.com

up the clock on each new monolithic MPU archi-
tecture, given the silicon process technology road
map and worsening transistor leakage, MPUs would
soon have the same power density as the sun.

It was for this reason that the MPU industry quick-
ly transitioned to a homogeneous multiprocessing
architecture, in which computing was distributed to
multiple smaller cores running at lower clock rates.
The new processing model let MPU and semiconduc-
tor vendors continue to produce new generations of
higher-capacity devices and reap more performance
mainly from integrating more functions together in a
single piece of silicon. Existing programs could not
take advantage of the new distributed architectures,
however, leaving software developers to figure out
ways to develop programs that would run efficiently
across multiple processor cores.

a few other odds and ends, making MPUs relatively
straightforward platforms on which to develop next-gen-
eration apps. For three decades leading up to that point,
every 22 months—in step with Moore’s Law—micropro-
cessor vendors would introduce devices with great-
er capacity and higher performance. To increase the
performance, they would simply crank up the clock
rate. The fastest monolithic MPU of the time, Intel’s
Pentium 4 Pro, topped out at just over 4 GHz. For
developers, this evolution was great; with every gen-
eration, their programs could become more intricate
and perform more elaborate functions, and their pro-
grams would run faster.

But in the early 2000s, the semiconductor indus-
try changed the game, forcing developers to adjust
to a new set of rules. The shift started with the real-
ization that if the MPU industry continued to crank

XCELL SOFTWARE JOURNAL: COVER STORY

8

Figure 1 — The Zynq UltraScale+ MPSoC

But to make these FPGA-accelerated heteroge-
neous architectures practical for mass deployment
and accessible to software developers, FPGA ven-
dors have had to develop novel environments. In
Xilinx’s case, the company offers three development
platforms: SDAccel for data center developers,
SDSoC for embedded systems developers, and
SDNet for network line card architects and develop-
ers. The new Xilinx environments give developers
the tools to accelerate their programs by easily pro-
gramming slow portions of their code onto program-
mable logic to create optimized systems.

SDACCEL FOR OPENCL, C/C++ PROGRAMMING
OF FPGA-ACCELERATED PROCESSING
The new Xilinx SDAccel development environment
gives data center application developers a complete
FPGA-based hardware and software solution (Fig-
ure 2). The SDAccel environment includes a fast,
architecturally optimizing compiler that makes ef-
ficient use of on-chip FPGA resources. The environ-
ment provides developers with a familiar CPU/GPU-
like work environment and software-development
flow, featuring an Eclipse-based integrated design
environment (IDE) for code development, profiling
and debugging. With the environment, developers
can create dynamically reconfigurable accelerators
optimized for different data center applications that
can be swapped in and out on the fly. Developers
can use the environment to create applications that
swap many kernels in and out of the FPGA during
run time without disrupting the interface between
the server CPU and the FPGA, for nonstop applica-
tion acceleration. The SDAccel environment targets
host systems based on x86 server processors and
provides commercial off-the-shelf (COTS), plug-in
PCIe cards that add FPGA functionality.

With the SDAccel environment, developers with
no prior FPGA experience can leverage SDAccel’s
familiar workflow to optimize their applications and
take advantage of FPGA platforms. The IDE provides

Meanwhile, as these subsequent generations of
silicon process technologies continued to double
transistor counts, they enabled semiconductor com-
panies to take another innovative step and integrate
different types of cores on the same piece of silicon
to create SoCs. These heterogeneous multiprocessor
architectures posed additional challenges for embed-
ded software developers, who now had to develop
custom software stacks to get applications to run op-
timally on their targeted systems.

Today, the semiconductor industry is chang-
ing the game yet again—but this time software
developers are welcoming the transition. Faced
with another power dilemma, semiconductor
and systems companies are turning to FPGA-ac-
celerated heterogeneous processing architec-
tures, which closely pair MPUs with FPGAs to
increase system performance at a minimal power
cost. This emerging architecture has been most
notably leveraged in new data center processing
architectures. In a now-famous paper, Microsoft
researchers showed that the architectural pair-
ing of an MPU and FPGA produced a 90 percent
performance improvement with only a 10 per-
cent power increase, producing far superior per-
formance per watt than architectures that paired
MPUs with power-hungry GPUs.

The advantages of FPGA-accelerated heteroge-
neous multiprocessing extend beyond data center
applications. Numerous embedded systems using
Xilinx’s Zynq®-7000 All Programmable SoC have
greatly benefited from the devices’ on-chip marriage
of ARM processors and programmable logic. Sys-
tems created with the upcoming Zynq UltraScale+™
MPSoC are bound to be even more impressive.
Zynq UltraScale+ MPSoC integrates into one device
multiple ARM® cores (quad Cortex™-A53 applica-
tions processors, dual Cortex-R5 real-time proces-
sors and a Mali™-400MP GPU), programmable logic,
and multiple levels of security, increased safety and
advanced power management (Figure 1).

THIRD QUARTER 2015

9

The SDAccel environment includes a fast,
architecturally optimizing compiler that makes

efficient use of on-chip FPGA resources.

http://research.microsoft.com/en-us/events/catapult-fs2015/
http://research.microsoft.com/en-us/events/catapult-fs2015/
http://www.xilinx.com/products/silicon-devices/soc.html

ten in C++ (as opposed to RTL) so developers can
use them exactly as written during all development
and debugging phases. Early in a project, all devel-
opment will be done on the CPU host. Because the
SDAccel libraries are written in C++, they can sim-
ply be compiled along with the application code for
a CPU target—creating a virtual prototype—which
permits all testing, debugging and initial profiling
to occur initially on the host. During this phase, no
FPGA is needed.

SDSOC FOR EMBEDDED DEVELOPMENT
OF ZYNQ SOC- AND MPSOC-BASED SYSTEMS
Xilinx designed the SDSoC development environ-
ment for embedded systems developers program-
ming the Xilinx Zynq SoCs and soon-to-arrive Zynq
UltraScale+ MPSoCs. The SDSoC environment pro-
vides a greatly simplified embedded C/C++ application

XCELL SOFTWARE JOURNAL: COVER STORY

10

coding templates and software libraries, and it en-
ables compiling, debugging and profiling against
the full range of development targets, including
emulation on the x86, performance validation us-
ing fast simulation, and native execution on FPGA
processors. The environment executes the applica-
tion on data-center-ready FPGA platforms complete
with automatic instrumentation insertion for all
supported development targets. Xilinx designed
the SDAccel environment to enable CPU and GPU
developers to migrate their applications to FP-
GAs easily while maintaining and reusing their
OpenCL™, C and C++ code in a familiar workflow.

SDAccel libraries contribute substantially to the
SDAccel environment’s CPU/GPU-like develop-
ment experience. They include low-level math li-
braries and higher-productivity ones such as BLAS,
OpenCV and DSP libraries. The libraries are writ-

Compiler Debugger Profiler Libraries

SDAccel — CPU/GPU Development Experience on FPGAs

OpenCL, C, C++ Application Code

x86-Based Server FPGA-Based Accelerator BoardsPCIe

Environment

Figure 2 — The SDAccel development environment for OpenCL, C and C++ enables up to 25x better
performance/watt for data-center-application acceleration leveraging FPGAs.

integration and verification of smarter heteroge-
neous systems.

SDNET FOR DESIGN AND PROGRAMMING
OF FPGA-ACCELERATED LINE CARDS
SDNet is a software-defined specification environ-
ment using an intuitive, C-like high-level language
to design the requirements and create a specifica-
tion for a network line card (Figure 4). The envi-
ronment enables network architects and develop-
ers to create “Softly” Defined Networks, expanding
programmability and intelligence from the control
to the data plane.

In contrast to traditional software-defined net-
work architectures, which employ fixed data plane
hardware with a narrow southbound API connection
to the control plane, Softly Defined Networks are
based on a programmable data plane with content
intelligence and a rich southbound API control plane
connection. This enables multiple disruptive capabil-
ities, including support of wire-speed services that
are independent of protocol complexity, provisioning

programming experience, including an easy-to-use
Eclipse IDE running on bare metal or operating sys-
tems such as Linux and FreeRTOS as its input. It is a
comprehensive development platform for heteroge-
neous Zynq SoC and Zynq MPSoC platform deploy-
ment (Figure 3). Complete with the industry’s first
C/C++ full-system optimizing compiler, the SDSoC
environment delivers system-level profiling, auto-
mated software acceleration in programmable log-
ic, automated system connectivity generation and
libraries to speed programming. It also provides a
flow for customer and third-party platform devel-
opers to enable platforms to be used in the SDSoC
development environment.

SDSoC provides board support packages (BSPs)
for Zynq All Programmable SoC-based development
boards including the ZC702 and ZC706, as well as
third-party and market-specific platforms includ-
ing the ZedBoard, MicroZed, ZYBO, and video and
imaging development kits. The BSPs include meta-
data abstracting the platform from software devel-
opers and system architects to ease the creation,

THIRD QUARTER 2015

11

Compiler Debugger Profiler Libraries

x86-Based Server FPGA-Based Accelerator BoardsPCIe

Environment

Rapid
system-level
performance
estimation

C/C++ Development

System-level Profiling

Specify C/C++ Functions
for Acceleration

Full System
Optimizing Compiler

The SDSoC Development Environment

• Embedded C/C++ application development experience
• System-level profiling
• Full system optimizing compiler
• Expert use model for platform developers & system architects

SoC MPSoC

Figure 3— The SDSoC development environment provides a familiar embedded C/C++ application
development experience, including an easy-to-use Eclipse IDE and a comprehensive design environment

for heterogeneous Zynq All Programmable SoC and MPSoC deployment.

XCELL SOFTWARE JOURNAL: COVER STORY

12

of per-flow and flexible services, and support for rev-
olutionary in-service “hitless” upgrades while operat-
ing at 100 percent line rates.

These unique capabilities enable carriers and mul-
tiservice system operators (MSOs) to provision differ-
entiated services dynamically without any interrup-
tion to the existing service or the need for hardware
requalification or truck rolls. The environment’s dy-

namic service provisioning enables service providers
to increase revenue and speed time to market while
lowering capex and opex. Network equipment pro-
viders realize similar benefits from the Softly Defined
Network platform, which allows for extensive differ-
entiation through the deployment of content-aware
data plane hardware that is programmed with the
SDNet environment.

Compiler Debugger Profiler Libraries

x86-Based Server FPGA-Based Accelerator BoardsPCIe

Environment

Rapid
system-level
performance
estimation

C/C++ Development

System-level Profiling

Specify C/C++ Functions
for Acceleration

Full System
Optimizing Compiler

The SDSoC Development Environment

• Embedded C/C++ application development experience
• System-level profiling
• Full system optimizing compiler
• Expert use model for platform developers & system architects

SoC MPSoC

SDNet — Software Defined Specification Environment for Networking

SDNet Specifications

SDNet Compiler

HW/SW Implementation

SDK/API Executable Image

• LogiCORE
• SmartCORE
• Custom Core
• SW Function

System
Architect

Implementation
Engineer

“Softly” Defined Line Card

FPGA or SoCFPGA or SoC

Figure 4 — The SDNet environment enables network architects to create a specification
in a C-like language. After a hardware team completes the design, developers can use

SDNet to update or add protocols to the card in the field.

THIRD QUARTER 2015

13

EMBEDDED DEVELOPMENT ENVIRONMENTS
To further help embedded software engineers with
programming, Xilinx offers a comprehensive set
of embedded tools and run-time environments de-
signed to enable embedded software developers to
move efficiently from concept to production. Xil-
inx offers developers an Eclipse-based IDE called
the Xilinx Software Development Kit (SDK), which
includes editors, compilers, debuggers, drivers
and libraries targeting Zynq SoCs or FPGAs with
Xilinx’s 32-bit MicroBlaze™ soft core embedded
in them. The environment provides out-of-the-box
support for advanced features such as security and
virtualization software drivers built on Xilinx’s
unique Zynq SoCs and MPSoCs. This allows devel-
opers to innovate truly differentiated connected
systems that are both smarter and secure.

Xilinx offers a comprehensive suite of open-
source resources to develop, boot, run, debug and
maintain Linux-based applications running on a
Xilinx SoC or emulation platform. Xilinx provides
example applications, kernel construction, Yocto
recipes, multiprocessing and real-time solutions,
drivers and forums, as well as many community
links. Linux open-source developers will find a very
comfortable environment in which to learn, develop
and interact with others of like interests and needs.

A POWERFUL AND GROWING ALLIANCE
OF PROGRAMMING ENVIRONMENTS
In addition to offering developers the new SDx de-
velopment environments and SDK, Xilinx has built
strong alliances over the past decade with compa-
nies that already have well-established develop-
ment environments serving developers in specific
market segments.

National Instruments (Austin, Texas) offers hard-
ware development platforms fanatically embraced by
control and test system innovators. Xilinx’s FPGAs
and Zynq SoCs power the NI RIO platforms. Nation-
al Instruments’ LabVIEW development environment

is a user-friendly graphics-based program that runs
Xilinx’s Vivado® Design Suite under the hood so that
National Instruments’ customers need not know any
of the details of FPGA design; indeed, some perhaps
don’t even know a Xilinx device is at the heart of
the RIO platforms. They can simply program their
systems in the LabVIEW environment and let NI’s
hardware speed the performance of designs they
are developing.

MathWorks® (Natick, Mass.), for its part, add-
ed FPGA support more than a decade ago to its
MATLAB®, Simulink®, HDL Coder™ and Embedded
Coder® with Xilinx’s ISE® and Vivado tools running
under the hood and completely automated. As a re-
sult, the users—who are mainly mathematician al-
gorithm developers—could develop algorithms and
speed algorithm performance exponentially by run-
ning the algorithms succinctly on an FPGA fabric.

Xilinx added an FPGA-architecture-level tool
called System Generator to its ISE development
environment more than a decade ago and, more
recently, added the tool to the Vivado Design Suite
to enable teams with FPGA knowledge to tweak
designs for further algorithm performance gains.
This combination of MathWorks and Xilinx tech-
nologies has helped customer companies produce
thousands of innovative products.

A number of members in Xilinx’s Alliance eco-
system offer development tools in support of the
SDx and Alliance environments; they include
ARM, Lauterbach, Yokogawa Digital Comput-
er Corp. and Kyoto Microcomputer Corp. As for
OS and middleware support, Xilinx and its eco-
system of Alliance members provide customers
with multiple software options, including Linux,
RTOS, bare-metal, and even hypervisor and Trust-
Zone-enabled solutions for safety and security.

For more information on the SDx environ-
ments and Xilinx’s extensive and growing devel-
oper solutions, visit Xilinx’s new Software De-
veloper Zone. n

This combination of MathWorks and Xilinx
technologies has helped customer companies

produce thousands of innovative products.

http://www.xilinx.com/tools/sdk.htm
http://www.ni.com/
http://www.mathworks.com
http://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html#os
http://www.xilinx.com/products/design-tools/software-zone.html
http://www.xilinx.com/products/design-tools/software-zone.html

SDSoC,
Step by Step:
Build a Sample
Design

A ZedBoard example proves
quick to build and optimize
using the seamless environment.

by Adam Taylor
Chief Engineer
e2v
aptaylor@theiet.org

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

14

mailto:aptaylor@theiet.org

Until the release of the Xilinx® SDSoC™ de-
velopment environment, the standard SoC
design methodology involved a mix of dis-
parate engineering skills. Typically, once the
system architect had generated a system
architecture and subsystem segmentation
from the requirement, the solution would
be split between functions implemented
in hardware (the logic side) and functions
implemented in software (the processor
side). FPGA and software engineers would
separately develop their respective func-
tions and then combine and test them in ac-
cordance with the integration test plan. The
approach worked for years, but the advent
of more-capable SoCs, such as the Xilinx
Zynq®-7000 All Programmable SoC and the
upcoming Xilinx Zynq UltraScale+™ MP-
SoC, mandated a new design methodology.

The SDSoC methodology enables a
wider user base of engineers to develop
extremely high-performing systems. Engi-
neers new to developing in the SDSoC de-
velopment environment will discover that
it’s easy to get a system up and running
quickly and just as easy to optimize it.

A simple, representative example will
illustrate how to accomplish those tasks
and reap the resultant benefits. We will tar-
get a ZedBoard running Linux and using
one of the built-in examples: the Matrix
Multiplier and Addition Template.

SDSoC,
Step by Step:
Build a Sample
Design

THIRD QUARTER 2015

15

A BRIEF HISTORY
OF DESIGN METHODOLOGIES
The programmable logic device segment has
been fast-moving since the devices’ intro-
duction in the 1980s. At first engineers pro-
grammed the devices via schematic entry (al-
though the earlier PLDs, such as the 22v10,
were programmed via logic equations). This
required that electronics engineers perform
most PLD development, as logic design and
optimization are typically the EE degree’s
domain. As device size and capability in-
creased, however, schematic entry naturally
began to hit boundaries, as both design time
and verification time rose in tandem with de-
sign complexity. Engineers needed the capa-
bility to work at a higher level of abstraction.

Enter VHDL and Verilog. Both started
as languages to describe and simulate log-
ic designs, particularly ASICs. VHDL even
had its own military standard. It is a logical
step that if we are describing logic behav-
ior within a hardware description language
(HDL), it would be great to synthesize the
logic circuits required. The development of
synthesis tools let engineers describe logic
behavior typically at a register transfer lev-
el. HDLs also provided a significant boost
in verification approach, allowing the de-
velopment of behavioral test benches that
enabled structured verification. For the
first time, HDLs also enabled modularity
and vendor independence.

Again, the inherent concurrency of HDLs,
the register transfer level design approach
and the implementation flow, which re-
quired knowledge of optimization and tim-
ing closures, ensured that the PLD devel-
opment task would largely fall to EEs.

U

FAMILIAR ENVIRONMENT
The SDSoC development environ-
ment is based on Eclipse, which
should be familiar to most software
developers (Figure 1). The environ-
ment seamlessly enables acceleration
of functions within the PL side of the
device. It achieves this by using the
new SDSoC compiler, which can han-
dle C or C++ programs.

 The development cycle at the
highest abstraction level used in the
SDSoC environment is as follows:

1. We develop our application in C or C++.

2. We profile the application to determine the perfor-
mance bottlenecks.

3. Using the profiling information, we identify func-
tions to accelerate within the PL side of the device.

4. We can then build the system and generate the SD
card image.

5. Once the hardware is on the board, we can analyze
the performance further and optimize the accelera-
tion functions as required.

We can develop applications in the SDSoC environ-
ment that function variously on bare metal, FreeRTOS
or Linux operating systems. The environment comes
with built-in support for most of the Zynq SoC devel-
opment boards, including the ZedBoard, the MicroZed
and the Digilent ZYBO Zynq SoC development board.
Not only can we develop our applications faster as a
result, but we can use this capability to define our own
underlying hardware platform for use when our custom
hardware platform is ready for integration.

When we compile a program within the SDSoC
environment, the output of the build process provides
the suite of files required to configure the Zynq SoC
from an SD card. This suite includes first- and sec-
ond-stage boot loaders, along with the application
and images as required for the operating system.

HDLs have long been the de facto standard for PLD
development but have evolved over the years to take
industry needs into account. VHDL alone underwent
revisions in 1987 (the first year of IEEE adoption),
1993, 2000, 2002, 2007 and 2008. As happened with
schematic design entry, however, HDLs are hitting
up against the buffers of increases in development
time, verification time and device capability.

As the PLD’s role has expanded from glue logic to
acceleration peripheral and ultimately to the heart
of the system, the industry has needed a new design
methodology to capitalize on that evolution. In re-
cent years, high-level synthesis (HLS) has become
increasingly popular; here, the design is entered in
C/C++ (using Xilinx’s Vivado® HLS) or tools such
as MathWorks®’ MATLAB® or National Instruments’
LabVIEW. Such approaches begin to move the de-
sign and implementation out from the EE domain
into the software realm, markedly widening the user
base of potential PLD designers and cementing the
PLD’s place at the heart of the system as new design
methodologies unlock the devices’ capabilities.

It is therefore only natural that SoC-based de-
signs would use HLS to generate tightly integrat-
ed development environments in which engineers
could seamlessly accelerate functions in the logic
side of the design. Enter the SDSoC environment.

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

16

Figure 1 — SDSoC Welcome page

SDSOC EXAMPLE
Let’s look at how the SDSoC environment works and see
how quickly we can get an example up and running. We
will target a ZedBoard running Linux and using the built-
in Matrix Multiplier and Addition Template.

The first task, as always, is to create a project. We can
do so either from the Welcome screen (Figure 1) or by
selecting File -> New -> SDSoC project from the menu.
Selecting either option will open a dialog box that will let
us name the project and select the board and the operat-
ing system (Figure 2).

 This will create a project under the Project Explorer
on the left-hand side of the SDSoC GUI. Under this proj-
ect, we will see the following folders, each with its own,
graphically unique symbol:

• SDSoC Hardware Functions: Here we will see the func-
tions we have moved into the hardware. Initially, as we
have yet to move functions, this folder will be empty.

• Includes: Expanding this folder will show all of the
C/C++ header files used in the build.

• src: This will contain the source code for the
demonstration.

To ensure that we have everything correctly con-
figured not only with our SDSoC installation and
environment, but also with our development board,
we will build the demo so that it will run on only the
on-chip processing system (PS) side of the device.

Of course, the next step is to build the project. With the
project selected on the menu, we choose Project->Build
Project. It should not take too long to build, and when we
are done we will see folders as shown in Figure 3 appear
under our project within the Project Explorer. In addi-
tion to the folders described above, we will have:

• Binaries: Here we will find the Executable and Linkable
Format (ELF) files created from the software compi-
lation process.

• Archives: The object files that are linked to create the
binaries reside here.

• SDRelease: This contains our boot files and reports.

THIRD QUARTER 2015

17

Figure 2 — Creating the project

C O V E R S T O R Y

With the first demo built such that it will run only on the
Zynq SoC’s PS, let’s explore how we know it is working
as desired. Recall that SDSoC acceleration works by pro-
filing the application; the engineer then uses the profiled
information to determine which functions to move.

We achieve profiling at the basic level by using a pro-
vided library called sds_lib.h. This provides a basic time-
stamp API, based on the 64-bit global counter, that lets us
measure how long each function takes. With the API, we
simply record the function start and stop times, and the
difference constitutes the process execution time.

The source code contains two versions of the algo-
rithm for matrix multiply and add. The so-called golden
version is not intended for offloading to the on-chip pro-
grammable logic (PL); the other version is. By building
and running these just within the PS, we can ensure that
we are comparing eggs with eggs and that both process-
es take roughly the same time to execute.

With the build complete, we can copy all of the files in
the SDRelease -> sd_card folder under the Project Explor-
er onto our SD card and insert the card into the ZedBoard
(with the mode pins correctly set for SD card configuration).
With a terminal program connected, once the boot sequence
has been completed we need to run the program. We type
/mnt/mult_add.elf (where mult_add is the name of the proj-
ect we have created). When I ran this on my ZedBoard, I
got the result shown in Figure 4, which demonstrates that
the two functions take roughly the same time to execute.

Having confirmed the similar execution times, we
will move the multiply function into the PL side of the
SoC. This is simple to achieve.

Looking at the file structure within the src directory
of the example, we will see:

• main.cpp, which contains the main function, golden
calculation, timestamping, and calls to the mult and
add functions used in the hardware side of the device;

• mmult.cpp, which contains the multiplication func-
tion to be offloaded into the hardware; and

• madd.cpp, which contains the addition function to be
offloaded into the hardware.

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

18

Figure 3 — Project Explorer view when built

Figure 5 — Moving the multiplier kernel to
the PL side using the Project Explorer

Figure 4 — Execution time of both functions in the PS

mult_add.elf
main.cpp
mmult.cpp
madd.cpp

The next step is to offload just one of these functions
to the PL side of the SoC. We can achieve this by one of two
methods:

1. Within the Project Explorer, we can expand the file such
that we can see the functions within that file, select the
function of interest, right click and select Toggle HW/SW
[H] (Figure 5).

2. We can open the file and perform the same option under
the outline tab on the right, which shows the functions as
well (Figure 6).

Toggling the mmult() function to be accelerated within
the hardware will result in an [H] being added to the back
of the function (Figure 7).

We will also see the function we have selected un-
der SDSoC Hardware Functions (beneath our project
within the Project Explorer tab; Figure 8). This pro-
vides an easy way to see all of the functions that we
have accelerated within our design.

Once we have taken the steps described here, the next
time we build the project the SDSoC linker will automat-
ically call Vivado HLS and the rest of the Vivado Design
Suite to implement the functions within the PL side of the
SoC. As it does so, it will create the relevant software driv-
ers to support function acceleration. From our perspec-
tive, offloading the function to the PL side of the device be-
comes seamless, except for the increase in performance.

I moved the mmult() function into the hardware
after compilation and SD card image generation, running
it on my ZedBoard. As Figure 9 shows, the execution time
(in processor cycles) was only 52,444 / 183,289 = 0.28,
or 28 percent of the previous execution time of 183,289
processor cycles when executed within the PS side of the
device (Figure 4). When we consider the performance of
the same function when executed within the PS side of
the device, we see that we achieve this considerable in-
crease in execution time by a simple click of the mouse.

The straightforward example presented here demon-
strates the power and seamlessness of the SDSoC envi-
ronment and the tightly integrated HLS functions. n

THIRD QUARTER 2015

19

Figure 6 — Moving the multiplier kernel to
the PL side using the outline window

Figure 7 — The mmult() function in hardware

Figure 8 — Identifying our accelerated functions

Figure 9 — The accelerated results

Once we have taken the steps described here,
the next time we build the project the SDSoC linker will

automatically call Xilinx Vivado HLS and Vivado to
implement the functions within the PL side of the SoC.

Using the SDSoC IDE
for System-level
HW-SW Optimization
on the Zynq SoC
by Daniele Bagni
DSP Specialist FAE
Xilinx, Inc.
danieleb@xilinx.com

Nick Ni
Product Manager, SDSoC
Development Environment
Xilinx, Inc.
nickn@xilinx.com

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

20

mailto:danieleb@xilinx.com
mailto:nickn@xilinx.com

A Choleksy matrix
decomposition example
yields an acceleration
estimate in minutes.

THIRD QUARTER 2015

21

T
he Xilinx® Zynq®-7000 All Programmable
SoC family represents a new dimension
in embedded design, delivering unprec-
edented performance and flexibility
to the embedded systems engineering

community. These products integrate a feature-rich,
dual-core ARM® Cortex™-A9 MPCore™-based pro-
cessing system and Xilinx programmable logic in a
single device. More than 3,000 interconnects link the
on-chip processing system (PS) to on-chip program-
mable logic (PL), enabling performance between the
two on-chip systems that simply can’t be matched
with any two-chip processor-FPGA combination.
When Xilinx released the device in 2011, the Zynq
SoC gained an instant following among a subset of
embedded systems engineers and architects well-
versed in hardware design languages and methodol-
ogies as well as in embedded software development.
The first-of-its-kind Zynq SoC today is deployed in
embedded applications ranging from wireless infra-
structure to smart factories and smart video/vision,
and it is quickly becoming the de facto standard plat-
form for advanced driver assistance systems.

To make this remarkable device available to em-
bedded engineers who have a strong software back-
ground but no HDL experience, Xilinx earlier this year
introduced the Eclipse-based SDSoC™ integrated de-
velopment environment, which enables software en-
gineers to program the programmable logic as well as
the ARM processing system of the Zynq SoC.

Let’s take a closer look at the features of the
Zynq SoC [1] and at how software engineers can
leverage the SDSoC environment to create system
designs not possible with any other processor-plus-
FPGA system. For our investigation, we will use
the Xilinx ZC702 evaluation board [2], containing a
Zynq Z-7020-1 device, as the hardware platform.

As shown in Figure 1, the Zynq SoC comprises two ma-
jor functional blocks: the PS (composed of the applica-
tion processor unit, memory interfaces, peripherals and
interconnect) and the PL (the traditional FPGA fabric).

Verilog using Vivado, in C/C++ using Vivado High
Level Synthesis (HLS) [3] or in model-based design
using Vivado System Generator for DSP [4].

3. Engineers then use Vivado IP Integrator [5] to
create a block-based design of the whole embed-
ded system. The full system needs to be developed
with different data movers (AXI-DMA, AXI Memory
Master, AXI-FIFO, etc.) and AXI interfaces (GP, HP
and ACP) connecting the PL IP with the PS. Once
all design rules checks are passed within IP Inte-
grator, the project can be exported to the Xilinx
Software Development Kit (SDK) [6].

4. Software engineers develop drivers and applica-
tions targeting the ARM processors in the PS using
the Xilinx SDK.

In recent years, Xilinx made substantial ease-of-use
improvements to the Vivado Design Suite that enabled
engineers to shorten the duration of the IP develop-
ment and IP block connection steps (step 2 and part of
step 3 above). For IP development, the adoption of such
new design technologies as C/C++ high-level synthesis
in the Vivado HLS tool and model-based design with
Vivado System Generator for DSP cut development

The PS and PL are tightly coupled via interconnects
compliant with the ARM® AMBA® AXI4 interface.
Four high-performance (HP) AXI4 interface ports
connect the PL to asynchronous FIFO interface (AFI)
blocks in the PS, thereby providing a high-throughput
data path between the PL and the PS memory system
(DDR and on-chip memory). The AXI4 Accelerator
Coherency Port (ACP) allows low-latency cache-co-
herent access to L1 and L2 cache directly from the PL
masters. The General Purpose (GP) port comprises
low-performance, general-purpose ports accessible
from both the PS and PL.

In the traditional, hardware-design-centric flow, us-
ing Xilinx’s Vivado® Design Suite, designing an embed-
ded system on the Zynq SoC requires roughly four steps:

1. A system architect decides a hardware-software parti-
tioning scheme. Computationally intensive algorithms
are the ideal candidates for hardware. Profiling re-
sults are used as the basis for identifying performance
bottlenecks and running trade-off studies between
data movement costs and acceleration benefits.

2. Hardware engineers take functions partitioned to
hardware and convert/design them into intellectu-
al-property (IP) cores—for example, in VHDL or

Processing System
Programmable

Logic:
System Gates,

DSP, RAM
S_AXI_HP0

XADC

S_AXI_HP1

S_AXI_HP2

S_AXI_HP3

S_AXI_ACP

S_AXI_GP0/1 M_AXI_GP0/1EMIO

AMBA Switches

PCIe

Multistandard I/Os (3.3V & High Speed 1.8V)

AMBA Switches

AMBA Switches

Static Memory Controller
Quad-SPI, NAND, NOR

Multi Gigabit Transceivers

M
ul

ti
st

an
d

ar
d

 I/
O

s
(3

.3
V

 &
 H

ig
h

S
p

ee
d

 1
.8

V
)

GPIO

Dynamic Memory Controller
DDR3, DDR2, LPDDR2

2x SPI

2x I2C

2x CAN

2x UART
I/O

MUX

2x SDIO
with DMA

2x USB
with DMA

2x GigE
with DMA

Cortex-A9 MPCore
32/32 KB I/D Caches

Cortex-A9 MPCore
32/32 KB I/D Caches

NEON/ FPU Engine NEON/ FPU Engine

ARM CoreSight Multicore and Trace Debug

512KB L2 Cache Snoop Control Unit (SCU)

Timer Counters 256KB On-Chip Memory

General Interrupt Controller DMA Configuration

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

22

Figure 1 — Zynq high-level architecture overview

synchronize hardware and software and to pre-
serve original program semantics, while enabling
task-level parallelism and pipelined communication
and computation to achieve high performance. The
SDSoC environment automatically orchestrates all
necessary Xilinx tools (Vivado, IP Integrator, HLS
and SDK) to generate a full hardware-software sys-
tem targeting the Zynq SoC—and does so with min-
imum user intervention.

Assuming we have an application completely de-
scribed in C/C++ targeting the PS and we have already
decided which functions to partition to the PL for ac-
celeration, the SDSoC development flow roughly pro-
ceeds as follows (Figure 2):

1. The SDSoC environment builds the application
project using a rapid estimation flow (by calling
Vivado HLS under the hood). This will provide the
ballpark performance and resource estimation in
minutes.

and verification time dramatically while letting design
teams use high-level abstractions to explore a great-
er range of architectures. Designs that took weeks to
accomplish with VHDL or Verilog could be completed
in days using the new tools.

Xilinx enhanced the flow further with Vivado IP
Integrator. This feature of the Vivado Design Suite en-
ables the design of a complicated hardware system ,
embedded or not, simply by connecting IP blocks in a
graphical user interface (GUI), thereby allowing rapid
hardware system integration.

The new Vivado Design Suite features made life a
bit easier for design and development teams working
with the Zynq SoC. But with a hardware-centric op-
timization workflow, not too much could be done to
shorten the development time required to explore dif-
ferent data movers and PS-PL interfaces (part of step 3
above) and to write and debug drivers and applications
(step 4). If the whole system did not meet the design
requirement in terms of throughput, latency or area,
the team would have to revisit the hardware archi-
tecture by modifying the system connectivity during
step 3; those modifications inevitably would lead to
changes in the software application in step 4. In some
cases, a lack of acceleration or a hardware utilization
overflow would force the team to revisit the original
hardware-software partitioning. Multiple hardware
and software teams would have to create another iter-
ation of the system to explore other architectures that
might meet the end requirement.

These examples show the time-to-market im-
pact of system optimization done manually. System
optimization nonetheless is critical for a tightly
integrated system such as the Zynq SoC because
bottlenecks often occur in the system connectivity
between the PS and the PL.

The SDSoC environment greatly simplifies the
Zynq SoC development process, slashing total de-
velopment time by largely automating steps 2, 3
and 4. The development environment generates
necessary hardware and software components to

THIRD QUARTER 2015

23

Rapid
system-level
performance
estimation

C/C++ Development

System-level Pro�ling

Specify C/C++ Functions
for Acceleration

Full System
Optimizing Compiler

Figure 2 — The main steps in the SDSoC design flow

The SDSoC environment automatically orchestrates
all necessary Xilinx tools to generate a full

hardware-software system targeting the Zynq SoC—
and does so with minimum user intervention.

32-bit floating-point representa-
tion as an application example
for hardware-software partition-
ing on the Zynq SoC.

The Cholesky decomposition
transforms a positive definite
matrix into the product of a low-
er and upper triangular matrix
with a strictly positive diagonal.
The matrix B is decomposed in
the triangular matrix L, so that
B = L’ * L, with L’ the transposed
version of L, as illustrated in the
following MATLAB® code for the
case of a 4 x 4 matrix size:

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

24

2. If we deem it necessary, we optimize the C/C++
application and the hardware functions with prop-
er directives, and rerun the estimation until the
desired performance and area are achieved.

3. The SDSoC environment then builds the full sys-
tem. This process will generate the full Vivado De-
sign Suite project and the bitstream, along with a
bootable run-time software image targeting Linux,
FreeRTOS or bare metal.

PERFORMANCE ESTIMATION OF HARDWARE VS.
SOFTWARE WITH THE SDSOC ENVIRONMENT
Linear algebra is a fundamental and powerful tool
in almost every discipline of engineering, allowing
whole systems of equations with multidimensional
variables to be solved computationally. For exam-
ple, engineers can describe linear control theory
systems as matrices of “states” and state changes.
Digital signal processing of images is another
classic example of linear algebra’s application.
In particular, matrix inversion through the Cholesky
decomposition is considered one of the most effi-
cient methods for solving a system of equations or
inverting a matrix. Let’s look closely at a Cholesky
matrix decomposition of 64 x 64 real data in a

A = ceil(64*randn(4,4)) % generate random
data

B = A * A’ % make the matrix to
be symmetric

L = chol(B) % compute cholesky
decomposition

B2 = (L’ * L) % reconstruct the
original matrix B

A =
 -13 53 41 20
 -19 98 12 9
 2 30 -65 33
 4 -13 61 17
B =
 5059 6113 -441 2100
 6113 10190 2419 -465
 -441 2419 6218 -3786
 2100 -465 -3786 4195
L =
 71.1266 85.9453 -6.2002 29.5248
 0 52.9472 55.7513 -56.7077
 0 0 55.4197 -7.9648
 0 0 0 6.6393
B2 =
 5059 6113 -441 2100
 6113 10190 2419 -465
 -441 2419 6218 -3786
 2100 -465 -3786 4195

Figure 3 — Structure of the C/C++ test bench for the SDSoC environment

noncontiguous pages in the Physical Address Space.
The Simple DMA is cheaper than the Scatter-Gather
DMA in terms of area and performance overheads,
but it requires sds_alloc to obtain physically contig-
uous memory.

Selecting the candidate accelerator is easily accom-
plished with a mouse click on a specific function via
the SDSoC environment’s GUI. As shown in Figure 4,
the routine cholesky_alt_top is marked with an “H” to
indicate that it will be promoted to a hardware accel-
erator. We can also select the clock frequency for the
accelerator and for the data motion cores (100 MHz as
illustrated in the SDSoC project page of Figure 4).

We can now launch the “estimate speedup” process.
After a few minutes of compilation, we get all the cores
and the data motion network generated in a Vivado
project. The SDSoC environment also generates an
SD card image that comprises a Linux boot image

Let’s see how we can obtain an estimation of the
performance and resource utilization that we can
expect from our application, without going through
the entire build cycle.

Figure 3 shows the test bench structure suitable for
the SDSoC environment. The main program allocates
dynamic memory for all the empty matrices and fills
them with data (either read from a file or generated
randomly). It then calls the reference software func-
tion and the hardware candidate function. Finally, the
main program checks the numerical results comput-
ed by both functions to test the effective correctness.

Note the use of a special memory allocator called
sds_alloc for each input/output array to let the SDSoC
environment automatically insert a Simple DMA
IP between each I/O port of the hardware accelera-
tor; in contrast, malloc instantiates a Scatter-Gather
DMA, which can handle arrays spread across multiple

THIRD QUARTER 2015

25

Selecting the candidate accelerator is easily
accomplished with a mouse click on a specific

function via the SDSoC environment’s GUI.

Figure 4 — Setting the hardware accelerator core and its clock frequency from the SDSoC project page

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

26

including the FPGA bitstream and
the application binary of the soft-
ware-only version. We boot from this
SD card and run the application on
the ZC702 target platform.

Once Linux has booted on the
board, we can execute the soft-
ware-only application, and the SD-
SoC environment then generates
the performance estimation report
of Figure 5. We see both the FPGA
resources utilization (26 DSP, 80
BRAM, 15,285 LUT, 17,094 FF) and
the performance speedup (1.75)
of the cholesky_alt_top function
if executed in hardware instead of
software. We can also see, from
the main application point of view,
that the overall speedup is lower
(1.23) because of other software
overhead such as malloc and data
transfer. Our complete application
is indeed small, focusing mainly on
illustrating the SDSoC flow and de-
sign methodology; we would need
more routines to be accelerated in
the PL, but that is beyond the scope
of this article.

Using the SDSoC environment,
we have generated this information
in a few minutes without requir-
ing synthesis and place-and-route
FPGA compilation; those processes
could take hours, depending on the
complexity of the hardware system.
Estimations like this one are often
enough to analyze the system-level
performance of hardware-software
partitioning and let users very rap-
idly iterate a design to create an
optimized system.

Figure 5 — SDSoC-generated performance,
speedup and resources estimation report

Figure 6: Vivado HLS synthesis estimation report

THIRD QUARTER 2015

27

UNDERSTANDING
THE PERFORMANCE
ESTIMATION RESULTS
When the SDSoC environment
compiles the application code for
the estimate-speedup process,
it generates an intermediate
directory (_sds in Figure 5) in
which it places all intermediate
projects (Vivado HLS, Vivado IP
Integrator, etc.). In particular,
it inserts calls to a free-running
ARM performance counter func-
tion, sds_clock_counter(), in
the original code to measure the
execution time of key parts of the program functions.
That is why the target board needs to be connected
with the SDSoC environment’s GUI during the esti-
mate-speedup process. All the numbers reported in
Figure 5 are measured with those counters during
run-time execution. The only exception is the hard-
ware-accelerated function, which does not exist
until after the entire FPGA build (including place-
and-route implementation); therefore Vivado HLS
computes the hardware-accelerated function’s es-
timated cycles—together with the resource utiliza-
tion estimates—under the hood, during the effective
Vivado HLS Synthesis step.

 Assuming the candidate hardware accelerator
function runs at FHW

 MHz clock frequency and needs
CK

HW
 clock cycles for the whole computation (this is

the concept of latency), and assuming the function
takes CK

ARM
 at a clock frequency of F

ARM
 MHz when

executed on the ARM CPU, then the hardware acceler-
ator achieves the same performance as the ARM CPU
if the computation time is the same, that is, CK

HW
 / F

HW

= CK
ARM

 / F
ARM

. From this equation, we get CK
ARM

 =
CK

HW
*F

ARM
 / F

HW
. This represents the maximum amount

of clock cycles the accelerator can offload from the
processor to show any acceleration that results from
migrating the function to hardware.

In Figure 6, we report the Vivado HLS synthesis es-
timation results. Note that the hardware accelerator
latency is CKHW

 = 83,652 cycles at F
HW

= 100-MHz clock
frequency. Since in the ZC702 board we have F

ARM

= 666 MHz and therefore CK
ARM

= CK
HW

*F
ARM

 / F
HW

 =
83,653*666/100 = 557,128, the resultant hardware ac-
celeration is well aligned with the result of 565,554
cycles reported by the SDSoC environment in Figure 5.
This is why the SDSoC environment can estimate the
number of clock cycles that the accelerator requires
without actually building it via place-and-route.

BUILDING THE HARDWARE-SOFTWARE SYSTEM
WITH THE SDSOC ENVIRONMENT
Having determined that this hardware acceleration
makes sense, we can implement the whole hardware
and software system with the SDSoC environment.
All we need to do is add the right directives (in the
form of pragma commands) to specify, respectively,
the FIFO interfaces (due to the sequential scan of
the I/O arrays); the amount of data to be transferred
at run time for any call to the accelerator; the types
of AXI ports connected between the IP core in the
PL and the PS; and, finally, the kind of data movers.
The following C/C++ code illustrates the applica-
tions of those directives. Note that in reality the last

Figure 7 — Makefile for the Release build

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

28

directive is not needed, because the SDSoC environment
will instantiate a Simple DMA due to the use of sds_alloc;
we have included it here only for the sake of clarity.

We can build the project in Release configura-
tion directly from the SDSoC environment’s GUI,
or we can use the Makefile reported in Figure 7 and
launched from the SDSoC Tool Command Language
(Tcl) interpreter. As is the case with any tool in the
Vivado Design Suite, designers can either adopt the
GUI or Tcl scripting. To improve the speedup gain,
we increase the clock frequency of the hardware
accelerator to FHW

 =142 MHz (set by the -clkid 1
makefile flag).

After less than half an hour of FPGA compilation,
we get the bitstream to program the ZC702 board
and the Executable Linkable Format (ELF) file to
execute on the Linux OS. We then measure the per-
formance on the ZC702 board: 995,592 cycles for
software-only and 402,529 cycles for hardware ac-
celeration. Thus, the effective performance gain for
the cholesky_alt_top function is 2.47.

Figure 8 illustrates the block diagram of the whole
embedded system created when the SDSoC environ-

ment calls Vivado IP Integrator in a process transpar-
ent to the user (for the sake of clarity, only the AXI4
interfaces are shown). In addition, the SDSoC environ-

ment reports the Vivado IP Integrator block diagram
as an HTML file to make it easy to read (Figure 9). This
report clearly shows that the hardware accelerator is
connected with the ACP port via a simple AXI4-DMA,
whereas the GP port is used to set up the accelerator
via an AXI4-Lite interface.

How much time did it take us to generate the SD
card for the ZC702 board with the embedded system
up and running? We needed one working day to write
a C++ test bench suitable to both Vivado HLS and the
SDSoC environment, and then we needed one hour of
experimentation to get good results from the Linear
Algebra HLS Library and one hour to create the embed-
ded system with the SDSoC environment (the FPGA
compilation process). Altogether, the process took 10
hours. We estimate that doing all this work manually
(step 3 with Vivado IP Integrator and step 4 with Xilinx
SDK) would have cost us at least two weeks of full-
time, hard work, not counting the experience needed
to use those tools efficiently.

axi_interconnect_M_AXI_GP0

S00_AXI

M00_AXI
M01_AXI

M02_AXI

aux_reset_in
mb_debug_sys_rst

dom_locked

proc_sys_reset_0

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

AXI Interconnect

Processor System Reset

cholesky_at_top_0

ap_ctrl
A
L

ap_return[31:0]

Cholesky_alt_top (Pre-Production)

datamover_0

S_AXI_LITE
M_AXI_MM2S

M_AXIS_MM2S
mm2s_prmry_reset_out_n

AXI Direct Memory Access

cholesky_alt_top_0_if

S_AXI

M_AXIS_0
AP_CTRL

interrupt

AXI4-Stream Accelerator Adapter

S_AXI_0
AP_FIFO_IARG_0
AP_FIFO_OARG_0

ap_oscalar_0_din[31:0]

aux_reset_in
mb_debug_sys_rst

dom_locked

proc_sys_reset_3

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Processor System Reset

aux_reset_in
mb_debug_sys_rst

dom_locked

proc_sys_reset_0

bus_struct_reset[0:0]
peripheral_reset[0:0]

Processor System Reset

mb_reset

acp_axcache_0xF

Constant

dout[3:0]

datamover_1

S_AXI_LITE M_AXIS_S2MM
s2mm_prmry_reset_out_n

AXI Direct Memory Access

S_AXI_S2MM

axi_interconnect_S_AXI_ACP

S00_AXI

M00_AXI

AXI Interconnect

S01_AXI

S00_AXI_arcache

S01_AXI_awcache

xlconcat

Concat

dout[1:0]

ps7

PTP_ETHERNET_0

ZYNQ7 Processing System

S_AXI_ACP
IRQ_F2P[1:0]

DDR
FIXED_IO

USBIND_0
M_AXI_GPO

aux_reset_in
mb_debug_sys_rst

dom_locked

proc_sys_reset_2

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Processor System Reset

DDR
FIXED_IO

Figure 8 — IP Integrator block-based design done by the SDSoC environment

#pragma SDS data access_pattern(A:SEQUENTIAL, L:SEQUENTIAL) //fifo interfaces
#pragma SDS data copy(A[0:BUF_SIZE], L[0:BUF_SIZE]) // amount of data transf
#pragma SDS data sys_port (A:ACP, L:ACP) // type of AXI ports
#pragma SDS data data_mover (A:AXI_DMA_SIMPLE, L:AXI_DMA_SIMPLE) // type of DMAs

int cholesky_alt_top(MATRIX_IN_T A[ROWS_COLS_A*ROWS_COLS_A],
 MATRIX_OUT_T L[ROWS_COLS_A*ROWS_COLS_A]);

THIRD QUARTER 2015

29

The SDSoC development environment enables the
broader community of embedded system and soft-
ware developers to target the Zynq SoC with a familiar
embedded C/C++ development experience. Complete
with the industry’s first C/C++ full-system optimizing
compiler, the SDSoC environment delivers system-
level profiling, automated software acceleration in pro-
grammable logic, automated system connectivity gen-
eration and libraries to speed development. For more in-
formation, including how to obtain the tool, visit http://
www.xilinx.com/products/design-tools/software-
zone/sdsoc.html. n

REFERENCES

1. UG1165, Zynq-7000 All Programmable SoC:
Embedded Design Tutorial

2. UG850, ZC702 Evaluation Board for the Zynq-
7000 XC7Z020 All Programmable SoC User
Guide

3. UG871, Vivado Design Suite Tutorial: High-Level
Synthesis

4. UG948, Vivado Design Suite Tutorial: Mod-
el-Based DSP Design using System Generator

5. UG994, Vivado Design Suite User Guide: Design-
ing IP Subsystems Using IP Integrator

6. UG782, Xilinx Software Development Kit (SDK)
User Guide

Figure 9 — SDSoC connectivity report

Data Motion Network
 Accelerator Argument IP Port Direction Declared Size (bytes) Pragmas Connection

 cholesky_alt_top_0 A A IN 4096*4 • length:
 (BUF_SIZE) S_AXI_ACP:AXIDMA_SIMPLE
 • sys_port:ACP

 L L OUT 4096*4 • length:
 (BUF_SIZE) S_AXI_ACP:AXIDMA_SIMPLE
 • sys_port:ACP

 return AP_return OUT 4 M_AXI_GP0:AXILITE:0xC0

Accelerator Callsites

Accelerator Callsite IP Port Transfer Size (bytes) Paged or Contiguous Cacheable or
 Non-cacheable

 cholesky_alt_top_0 cholesky_alt_tb.cpp:246:23 A (BUF_SIZE) * 4 contiguous cacheable

 L (BUF_SIZE) * 4 contiguous cacheable

 ap_return 4 paged cacheable

After less than half an hour of
FPGA compilation, we get the
bitstream to program the ZC702
board and the Executable
Linkable Format (ELF) file to
execute on the Linux OS.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1165-zynq-embedded-design-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1165-zynq-embedded-design-tutorial.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug948-vivado-sysgen-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug948-vivado-sysgen-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
cholesky_alt_tb.cpp

Compile, Debug,
Optimize

by Jayashree Rangarajan
Senior Engineering Director,
Interactive Design Tools
Xilinx, Inc.
jayr@xilinx.com

Fernando Martinez Vallina
Software Development Manager, SDAccel
Xilinx, Inc.
vallina@xilinx.com

Vinay Singh
Senior Product Marketing Manager,
SDAccel
Xilinx, Inc.
singhj@xilinx.com

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

30

mailto:jayr@xilinx.com
mailto:vallina@xilinx.com
mailto:singhj@xilinx.com

X
ilinx® FPGA devices mainly comprise a
programmable logic fabric that lets appli-
cation designers exploit both spatial and
temporal parallelism to maximize the per-

formance of an algorithm or a critical kernel in a large
application. At the heart of this fabric are arrays of
lookup-table-based logic elements, distributed memo-
ry cells and multiply-and-accumulate units. Designers
can combine those elements in different ways to im-
plement the logic in an algorithm while achieving pow-
er consumption, throughput and latency design goals.

The combination of FPGA fabric elements into
logic functions has long been the realm of hardware
engineers, involving a process that resembles assem-
bly-level coding more closely than it mimics modern
software design practices. Whereas common software
design procedures long ago moved beyond assembly
coding, FPGA design practices have progressed at a
slower pace because of the inherent differences be-
tween CPU and FPGA compilation.

In the case of CPUs and GPUs, the hardware is
fixed, and all programs are compiled against a static
instruction set architecture (ISA). Although the ISAs
differ between CPUs and GPUs, the basic underlying
compilation techniques are the same. Those similar-
ities have enabled the evolution of design practices
from handcrafted assembly code into compilation, de-
bug and optimization design procedures that leverage
the OpenCL™ C, C and C++ programming languages
common to software development.

In the case of FPGA design, designers can create
their own processing architecture to perform a specific
workload. The ability to customize the architecture to a
specific system need is a key advantage of FPGAs, but
it has also acted as a barrier to adopting software devel-
opment practices for FPGA application development.

Six years ago, Xilinx began a diligent R&D effort
to break down this barrier by creating a development
environment that brought an intuitive software devel-
opment design loop to FPGAs. The Xilinx SDAccel™
development environment for OpenCL C, C and C++

Compile, Debug,
Optimize

Xilinx’s SDAccel development environment
enables software application design flows
for FPGAs.

THIRD QUARTER 2015

31

enables application compile, debug and optimization
for FPGA devices in ways similar to the processes
used for CPUs and GPUs, with the advantage of up to
25x better performance/watt for data center applica-
tion acceleration.

Software designers can use the SDAccel develop-
ment environment to create and accelerate many func-
tions and applications. Let’s look at how the SDAccel
environment enables a compile, debug and optimiza-
tion design loop on a median filter application.

MEDIAN FILTER
The median filter is a spatial function commonly used
in image processing for the purpose of noise reduction
(Figure 1). The algorithm inside the median filter uses
a 3 x 3 window of pixels around a center pixel to com-
pute the value of the center based on the median of all
neighbors. The equation for this operation is:

outputPixel[i][j] =
median(inputPixel[i-1][j-1], inputPix-

el[i-1][j], inputPixel[i-1][j+1],
 inputPixel[i][j-1], inputPixel[i]

[j], inputPixel[i][j+1],
 inputPixel[i+1][j-1], inputPixel[i+1]

[j], inputPixel[i+1][j+1]) ;

COMPILE
After the functionality of the median filter has been
captured in a programming language such as Open-
CL C, the first stage of development is compilation.
On a CPU or GPU, compilation is a necessary and
natural step in the software design flow. The target
ISA is fixed and well known, leaving the program-
mer to worry only about the number of available
processing cores and cache misses in the algorithm.
FPGA compilation is more of an open question: At
compilation time, the target ISA does not exist, the
logic resources have yet to be combined into a pro-
cessing fabric and the system memory architecture
is yet to be defined.

The version of the algorithm in Figure 2 executes
the getMedian function inside a “for” loop with a fixed
bound. Depending on the performance target for the
filter and the FPGA selected, the SDAccel environ-
ment can either reuse the compute resources across
all three channels or allocate more logic to enable spa-
tial parallelism and run all channels at the same time.
This decision, in turn, affects how memory storage for
the array RGB is implemented.

From an application programmer’s perspective,
the steps described above are transparent and can be
thought of as –O1 to –O3 optimizations in the GNU
Compiler Collection (GCC).

The compiler in the SDAccel development envi-
ronment provides three features that help program-
mers tackle those challenges: automatic extraction
of parallelism among statements within a loop and
across loop iterations, automatic memory archi-
tecture inference based on read and write patterns
to arrays, and architectural awareness of the type
and quantity of basic logic elements inside a giv-
en FPGA device. We can illustrate the importance of
these three features with regard to source code for a
median filter (Figure 2).

The median filter operation is expressed as a se-
ries of nested loops with two main sections. The
first section fetches data from an array in external
memory called input and stores the values into a lo-
cal array RGB. The second section of the algorithm
is the “for” loop around the getMedian function;
getMedian is where the computation takes place.

By analyzing the code in Figure 2, the SDAccel
environment understands that there are no loop-car-

ried dependencies on the array RGB. Each loop iter-
ation has a private RGB copy, which can be stored on
different physical resources. The other main char-
acteristic that the SDAccel environment can derive
from this code is the independent nature of calls to the
getMedian function.

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

32

Figure 2 — Median filter code

Figure 1 — Median filter operation

for (int y=0; y < height; y++) {
 int offset = y * width;
 int prev = offset - width;
 int next = offset + width;

 for (int x=0; x < width; x++) {
 // Get pixels within 3x3 aperture
 uint rgb[SIZE];
 rgb[0] = input[prev + x - 1];
 rgb[1] = input[prev + x];
 rgb[2] = input[prev + x + 1];

 rgb[3] = input[offset + x - 1];
 rgb[4] = input[offset + x];
 rgb[5] = input[offset + x + 1];

 rgb[6] = input[next + x - 1];
 rgb[7] = input[next + x];
 rgb[8] = input[next + x + 1];

 uint result = 0;

 // Iterate over all color channels
 for (int channel = 0; channel < 3;

channel++) {
 result |= getMedian(channel, rgb);
 }

 // Store result into memory
 output[offset + x] = result;
 }

terms of hardware resources, the generation of data
for printf consumes a few registers—a negligible cost
in the register-rich FPGA fabric. Data decoding occurs
in the driver to the FPGA. By leveraging the host CPU
to execute the data decode and presentation layers for
printf, a software programmer can use printf with vir-
tually zero cost in FPGA resources.

The second technique for debugging borrowed from
CPUs is the use of tools such as the GNU Project De-
bugger (GDB) to include breakpoints and single step-
ping through code. Programmers can use the SDAccel
environment’s emulation modes to attach GDB to a
running emulation process. The emulation process is
a simulation of the application-specific hardware that
the developer will execute on the FPGA device. Within
the context of an emulation process, GDB can watch
the state of variables, insert breakpoints and single step
through code. From an application programmer’s per-
spective, this is identical to how GDB works on a CPU.

OPTIMIZE
After compiling and debugging, the next step in the
software development cycle is to optimize the appli-
cation. The principles behind application optimiza-
tion on an FPGA are the same as on a CPU; the differ-
ence is in the approach. For a CPU, application code
is massaged to fit into the boundaries of the cache
and arithmetic units of a processor. In an FPGA, the
computation logic is custom assembled for the cur-
rent application. Therefore, the size of the FPGA and
the application’s target performance dictate the opti-
mization constraints.

DEBUG
An axiom of software development is that application
compilation does not equal application correctness. It
is only after the application starts to run on the tar-
get hardware that a programmer can start to discover,
trace and correct errors in the application—in other
words, debug.

CPU application debug is a well-understood prob-
lem, with a multitude of tools from both commercial
vendors and the open-source community available to
address it. Once again, FPGAs are another story. How
does an application programmer debug something
that was created to implement the functionality of a
piece of code at a given performance target?

The SDAccel development environment address-
es this question by borrowing two concepts from the
CPU world: printf and GDB debugging.

The printf function is a fundamental tool in the soft-
ware programmer’s toolbox. It is available in every
programming language and can be used to expose the
state of key application variables during program exe-
cution. For CPU devices, this is as simple as monitor-
ing the status of registers. There is no cost in hardware
for printf functionality.

In the case of FPGAs, the implementation of printf
can potentially consume logic resources that could
otherwise be used for implementing algorithm func-
tionality. The printf implementation in the SDAccel
environment provides the functionality without con-
suming additional logic resources. The environment
achieves this by separating printf data generation
from the decoding and user presentation layers. In

THIRD QUARTER 2015

33

Figure 3 — Memory access transaction trace

The printf implementation in the SDAccel
environment provides the functionality without

consuming additional logic resources.

C O V E R S T O R Y

code of Figure 4, the async_work_group_copy function
brings the contents of entire lines from the input image
in DDR memory to memories inside the kernel data path.

The memory transaction trace in Figure 5 shows the
result of using async_work_group_copy. As Figure 5
shows, the kernel involves a setup time before memo-
ry transactions occur that is not present in the original
code for the median filter (Figure 2).

The setup time difference has to do with the logic
derived from the code. In the original code of Figure 2,
the application immediately starts a single transac-
tion to memory and then waits for the data to be
available. In contrast, the optimized code of Figure 4
determines whether a memory transaction needs to
occur or whether the data is already available in the
kernel’s local memory. It also allows the generated
logic to schedule memory transactions back-to-back
and to overlap read and write transactions.

The compiler in the SDAccel environment automat-
ically optimizes the compute logic. The programmer
can assist the automatic optimizations by analyzing the
data transfer patterns inferred from the code. Figure 3
shows the read and write transactions from the median
filter code to the memories for input and output.

Each vertical line in the plot represents a transac-
tion to memory. The green bar shows the duration of
media filter function activity. It can be seen from the
plot that although the median filter is always active,
there are large gaps between memory transactions.
The gaps represent the time it takes the median filter
to switch from one transaction to the next. Since each
transaction to memory accesses only a single value,
the gaps between transactions represent an import-
ant performance bottleneck for this application.

One way to solve the performance problem is to state
burst transactions from external memories to local memo-
ries explicitly inside the application code. The code excerpt
in Figure 4 shows the use of the async_work_group_copy
function employed in OpenCL C kernels. The purpose of
this function call is to tell the compiler that each transac-
tion to memory will be a burst containing multiple data
values. This enables more efficient utilization of the avail-
able memory bandwidth on the target device and reduc-
es the overall number of transactions to memory. In the

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

34

Figure 4 — Median filter code with
explicit burst memory transfers

for (int line = 0; line < height; line++) {

 local uint linebuf0[MAX_WIDTH];

 local uint linebuf1[MAX_WIDTH];

 local uint linebuf2[MAX_WIDTH];

 local uint lineres[MAX_WIDTH];

 // Fetch Lines

 if (line == 0) {

 async_work_group_copy(linebuf0,

input, width, 0);

 async_work_group_copy(linebuf1,

input, width, 0);

 async_work_group_copy(linebuf2,

input + width, width, 0);

 }

…

}

Software programmers
who use SDAccel can
leverage the flexibility
of the logic fabric to
build high-performance,
low-power applications
without having to
understand all of the
details associated
with hardware design.

development flows. The SDAccel development envi-
ronment enables this design loop with tools and tech-
niques similar to the development environment on a
CPU, with FPGA-based application acceleration of up
to 25x better performance per watt and with a 50x to
75x latency improvement. Software programmers who
use SDAccel can leverage the flexibility of the logic
fabric to build high-performance, low-power applica-
tions without having to understand all of the details
associated with hardware design. n

Whether the final device is a CPU or an FPGA,
profiling is an essential component of application
development. The SDAccel environment’s visualiza-
tion and profiler capabilities let an application pro-
grammer characterize the impact of code changes
and application requirements in terms of kernel oc-
cupancy, transactions to memory and memory band-
width utilization.

The design loop created by the operations of com-
pile, debug and optimize is fundamental to software

THIRD QUARTER 2015

35

Figure 5 — Memory access transaction trace after code optimization

GET A DAILY DOSE OF XCELL

for hardware
engineers

for software
engineers

What’s Recent:

n Half Wheelchair, Half Segway, Half Battlebot: Unprecedented mobility for the disabled—controlled by Zynq

n Regular Universal Electronic Control Unit tester for vehicles up and running in two months thanks to NI LabVIEW and LabVIEW FPGA

n Radar looks deep into Arctic snow and ice to help develop sea-level climate models

n Passive, Wi-Fi radar that sees people through walls prototyped with NI LabVIEW and two FPGA-based USRP-2921 SDR platforms

n 500-FPGA Seismic Supercomputer performs real-time acoustic measurements on its heart of stone to simulate earthquakes

Xilinx has extended its award-winning journal and added an exciting new Xcell Daily Blog.
The new site provides dedicated readers with a frequent flow of content to help engineers and developers

leverage the flexiblility and extensive capabilities of all Xilinx products and ecosystems.

http://forums.xilinx.com/t5/Xcell-Daily-Blog/Half-Wheelchair-Half-Segway-Half-Battlebot-Unprecedented/ba-p/650796
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Universal-Electronic-Control-Unit-tester-for-vehicles-up-and/ba-p/650789
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Radar-looks-deep-into-Arctic-snow-and-ice-to-help-develop-sea/ba-p/650121
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Passive-Wi-Fi-radar-that-sees-people-through-walls-prototyped/ba-p/649206
http://forums.xilinx.com/t5/Xcell-Daily-Blog/500-FPGA-Seismic-Supercomputer-performs-real-time-acoustic/ba-p/647614

Developing OpenCL
Imaging Applications
Using C++ Libraries

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

36

Xilinx’s SDAccel development
environment leverages the
power of preexisting libraries
to accelerate application design.

by Stephen Neuendorffer
Principal Engineer, Vivado HLS
Xilinx, Inc.
stephenn@xilinx.com

Thomas Li
Software Engineer, Vivado HLS
Xilinx, Inc.
thl@xilinx.com

Fernando Martinez Vallina
Development Manager, SDAccel
Xilinx, Inc.
vallina@xilinx.com

THIRD QUARTER 2015

37

I
maging applications have grown in both
scale and ubiquity in recent years as online
pictures and videos, robotics, and driver
assistance applications have proliferated.
Across these domains, the core algorithms
are very similar and require a development
methodology that lets application develop-

ers quickly retarget and differentiate products based
on markets and deployment targets.

As a result of those needs, imaging applications typ-
ically start as a software program targeting a CPU and
employ library calls to standard functions. The com-
bination of software design techniques with readily
available libraries makes it easy to get started and to
create a functionally correct application on a desktop.

The challenge for the developer lies in optimiz-
ing the imaging application for an execution target.
By leveraging technology from Xilinx® Vivado® HLS,
Xilinx’s SDAccel™ development environment makes
the use of C++ libraries straightforward for OpenCL™
application developers targeting FPGAs.

SET OF PARALLEL COMPUTATION TASKS
One key characteristic of imaging applications is that
they are fundamentally a set of operations on a pixel
with respect to a surrounding neighborhood of pix-
els in space and, for some applications, in time. We
therefore can think of an imaging application as a set
of parallel computation tasks that a developer can ex-
ecute on a CPU, GPU or FPGA.

The CPU is always the easiest target device with
which to start. The code typically already runs on
the CPU before optimization is considered and can
leverage the wealth of available libraries. The prob-
lem with executing imaging workloads on a CPU is
the achievable sustained performance. The overall
performance is limited by cache hits/misses and the
nontrivial task of parallelization into multiple threads
running across CPU cores.

mailto:stephenn@xilinx.com
mailto:thl@xilinx.com
mailto:vallina@xilinx.com

OPENCL FRAMEWORK
The OpenCL framework provides a common program-
ming model for expressing data parallel programs. The
framework, which has evolved into an industry standard,
is based on a platform and a memory model that are con-
sistent across all device vendors supporting OpenCL. A
device is defined as any hardware, be it a CPU, GPU or
FPGA, capable of executing OpenCL kernels.

The platform in an OpenCL application defines
the hardware environment in which an application
is executed. Figure 1 shows the main elements of an
OpenCL platform.

A platform for OpenCL always contains one host,
which is typically implemented on a processor. The
host is responsible for launching tasks on the device
and for explicitly coordinating all data transfers be-
tween the host and the device.

In addition to the host, a platform contains at least
one device. The device in the OpenCL platform is the
hardware element capable of executing OpenCL ker-
nel code. In the context of an OpenCL application,
the kernel code is the computationally intensive part
of the algorithm that requires acceleration.

In the case of CPU and GPU devices, the kernel
code is executed on one or more cores in the device.
Each core is exactly the same per the device specifi-
cation; this stricture forces the application developer
to modify the code to maximize performance within
a fixed architecture.

GPUs hold the promise of much higher perfor-
mance than CPUs for imaging applications because
GPU hardware was purposely built for imaging work-
loads. Until recent years, the drawback of GPUs for
general imaging applications had been the program-
ming model. GPU programming differed from that
for CPUs, and GPU models were not portable across
GPU device families. That changed with the standard-
ization of programming for parallel systems such as
GPUs under the OpenCL framework.

FPGAs provide an alternative implementation
choice for imaging workloads. Developers can cus-
tomize the FPGA logic fabric into workload-specific
circuits. The flexibility of the FPGA fabric lets an appli-
cation developer leverage the performance and power
consumption benefits of custom logic while avoiding
the cost and effort associated with ASIC design.

As it was for the GPU, one barrier for adoption
of FPGA devices has been the programming model.
Traditionally, FPGAs have been programmed with
a register transfer language (RTL) such as Verilog
or VHDL. Although those languages can express
parallelism, the level of granularity is significantly
lower than what is needed to program a CPU or a
GPU. As in the case of GPUs, however, adoption
of the OpenCL standard to express FPGA program-
ming in a way that is familiar to software applica-
tion developers has overcome the programming
model hurdle.

DDR memory

DEVICEHOST
PCIe

DDR memory

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

38

Figure 1 — The basic OpenCL platform contains one host and at least one device.

sible to both the host and the device and is typically
implemented in DDR attached to the FPGA. Depend-
ing on the FPGA used on the acceleration board, a por-
tion of the global memory can also be implemented
inside the FPGA fabric. The local and private memory
spaces are visible only to the kernels executing inside
the FPGA fabric and are built entirely inside that fab-
ric using block RAM (BRAM) and register resources.

Let’s see how the SDAccel environment leverages
OpenCL and C++ libraries for a stereo imaging block
matching application.

STEREO BLOCK MATCHING
Stereo block matching uses images from two cam-
eras to create a representation of the shape of an ob-
ject in the field of view of the cameras. As Figure 3

For an FPGA, in contrast, the SDAccel development
environment generates custom cores per the specific
computation requirements of the application kernel. The
application developer thus is free to explore implementa-
tion architectures based on the needs of the algorithm to
reduce overall system latency and power consumption.

The second OpenCL component is the memory
model (Figure 2). This model, which is common to all
vendors, defines a single memory hierarchy against
which a developer can create a portable application.

The main components of the memory model are
the host, global, local and private memories. The host
memory refers to the memory space that is accessible
only to the host processor. The memories visible to
the FPGA (the device) are the global, local and private
memory spaces. The global memory space is acces-

THIRD QUARTER 2015

39

For an FPGA, the SDAccel development environment
generates custom cores per the specific

computation requirements of the application kernel.

Host

Host Memory Global Memory
Constant

Global Memory

On-chip Global Memory

FPGA

Local Memory

Kernel A Kernel B

Local Memory Local Memory Local Memory

Compute Unit 0 Compute Unit 1 Compute Unit 0 Compute Unit 1

PE PE PE PE

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

PCIe

Figure 2 — The OpenCL memory model defines a single memory hierarchy for application development.

Vivado HLS provides image processing functions
based on the popular OpenCV framework. The func-
tions are written in C++ and have been optimized to
provide high performance in an FPGA. When synthe-
sized into an FPGA implementation, the equivalent of
anywhere from tens to thousands of RISC processor in-
structions are executed concurrently every clock cycle.

The code for the application uses Vivado HLS vid-
eo processing functions to create the application.
The application code contains C++ function calls to
Vivado HLS libraries as well as pragmas to guide the
compilation process. The pragmas are divided into
those for interface definition and those for perfor-
mance optimization.

The interface definition pragmas determine how
the stereo block matching accelerator connects to
the rest of the system. Since this accelerator is ex-
pressed in C++ instead of OpenCL C code, the appli-
cation programmer must provide interface definition

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDACCEL

40

shows, the algorithm uses the input images of a
left and a right camera to search for the correspon-
dence between the images. Such multi-camera im-
age processing tasks can be applied to depth maps,
image segmentation and foreground/background
separation. These are, for example, all integral
parts of pedestrian detection applications in driver
assistance systems.

USING C++ LIBRARIES FOR VIDEO
The SDAccel development environment leverages tech-
nology from Xilinx’s Vivado HLS C-to-RTL compiler as
part of the core kernel compiler, letting the SDAccel en-
vironment use kernels expressed in C and C++ in the
same way as kernels expressed in OpenCL C. Applica-
tion developers thus can use C++ libraries and code pre-
viously optimized in Vivado HLS to increase productivity.

The main code for the stereo block matching appli-
cation is shown on the next page.

Left camera
Viewing ray

Right camera

Figure 3 — Conceptual image of multi-camera processing

The SDAccel development environment leverages tech nology from
Xilinx’s Vivado HLS C-to-RTL compiler as part of the core kernel
compiler, letting the SDAccel environment use kernels expressed
in C and C++ in the same way as kernels expressed in OpenCL C.

FindStereoCorrespondenceBM function to start
operating as soon as the Split function produces
pixels, without having to wait for a complete image
to be produced. The net result is a more efficient
architecture and reduced processing latency rela-
tive to sequential processing of each function with
full frame buffers in between them.

Imaging applications are a compute-intensive
application domain with a rich set of available
libraries; the devil is in optimizing the application for
the execution target. The SDAccel environment lets
developers leverage C++ libraries to accelerate the
development of imaging applications for FPGAs pro-
grammed in OpenCL. n

pragmas that match the assumptions of the OpenCL
model in the SDAccel environment.

The pragmas marked with m_axi state that the
contents of the buffer will be stored in device global
memory. The pragmas marked with s_axilite are re-
quired for the accelerator to receive the base address
of buffers in global memory from the host.

The performance optimization pragma in this
code is dataflow. The dataflow pragma yields an
accelerator in which different subfunctions can
also execute concurrently.

In this accelerator, because of the underlying im-
plementation of the hls::Mat datatype, data is also
streamed between each function. This allows the

THIRD QUARTER 2015

41

void stereobm(
 unsigned short img_data_lr[MAX_HEIGHT*MAX_WIDTH],
 unsigned char img_data_d[MAX_HEIGHT*MAX_WIDTH],
 int rows,
 int cols)
{
#pragma HLS INTERFACE m_axi port=img_data_lr offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=img_data_d offset=slave bundle=gmem1
#pragma HLS INTERFACE s_axilite port=img_data_lr bundle=control
#pragma HLS INTERFACE s_axilite port=img_data_d bundle=control
#pragma HLS INTERFACE s_axilite port=rows bundle=control
#pragma HLS INTERFACE s_axilite port=cols bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

 hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC2> img_lr(rows, cols);
 hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1> img_l(rows, cols);
 hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1> img_r(rows, cols);
 hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_16SC1> img_disp(rows, cols);
 hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC1> img_d(rows, cols);

 hls::StereoBMState<15, 32, 32> state;

#pragma HLS dataflow
 hls::AXIM2Mat<MAX_WIDTH>(img_data_lr, img_lr);
 hls::Split(img_lr, img_l, img_r);
 hls::FindStereoCorrespondenceBM(img_l, img_r, img_disp, state);
 hls::SaveAsGray(img_disp, img_d);
 hls::Mat2AXIM<MAX_WIDTH>(img_d, img_data_d);
}

MATLAB and Simulink
Aid HW-SW Co-design
of Zynq SoCs
by Eric Cigan and Noam Levine
FPGA/SoC Technical Marketing
MathWorks

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

42

The open question was how they would program the
new devices. Designers imagining the potential of hard-
ware-software co-design sought integrated workflows
that would intelligently partition designs between ARM
processors and programmable logic. What they found,
however, were distinct hardware and software work-
flows: conventional embedded software development
flows targeting ARM cores, alongside a combination of
IP assembly, traditional RTL and emerging high-level syn-
thesis tools for programmable logic.

INTEGRATED WORKFLOW
In September 2013, MathWorks introduced a hard-
ware-software workflow for Zynq-7000 SoCs using
Model-Based Design. In this workflow (Figure 1), de-
signers could create models in Simulink that would
represent a complete dynamic system—including a
Simulink model for algorithms targeted for the Zynq
SoC—and rapidly create hardware-software imple-
mentations for Zynq SoCs directly from the algorithm.

System designers and algorithm developers used
simulation in Simulink to create models for a com-
plete system (communications, electromechanical
components and so forth) in order to evaluate design
concepts, make high-level trade-offs, and partition al-
gorithms into software and hardware elements. HDL
code generation from Simulink enabled the creation
of IP cores and high-speed I/O processing on the Zynq
SoC fabric. C/C++ code generation from Simulink en-
abled programming of the Zynq SoC’s Cortex-A9 cores,
supporting rapid embedded software iteration.

The approach enabled automatic generation of the
AMBA® AXI4 interfaces linking the ARM processing
system and programmable logic with support for the
Zynq SoC. Integration with downstream tasks—such
as C/C++ compilation and building of the executable
for the ARM processing system, bitstream generation
using Xilinx implementation tools, and downloading to
Zynq development boards—allowed for a rapid proto-
typing workflow.

Model-Based Design
workflow lets engineers
make design trade-offs
at the desktop rather
than the lab.

T
he introduction of the Xilinx® Zynq®-7000
All Programmable SoC family in 2011
brought groundbreaking innovation to
the FPGA industry. These devices, with

their combination of dual-core ARM® Cortex™-A9
MPCore™ processors and ample programmable
logic, offered advantages for a wealth of applica-
tions. By adopting Zynq SoCs, designers could reap
the benefits of software application development
on one of the industry’s most popular processors
while gaining the flexibility and throughput poten-
tial provided via hardware acceleration on a high-
speed, programmable logic fabric.

Using MATLAB® and Simulink® from Math-
Works®, innovators today can leverage a highly
integrated hardware-software workflow to create
highly optimized systems. The case study present-
ed here illustrates this model-based workflow.

When Xilinx released the first Zynq SoC in De-
cember 2011, designers seized on the idea that they
could migrate their legacy, multichip solutions,
built from discrete processors and FPGAs, to a sin-
gle-chip platform. They could create FPGA-based
accelerators on the new platform to unclog soft-
ware execution bottlenecks and tap into an array
of off-the-shelf, production-ready intellectual prop-
erty from Xilinx and its IP partners that would ad-
dress applications in digital signal processing, net-
working, communications and more.

THIRD QUARTER 2015

43

as the means for algorithm devel-
opers to work closely with hard-
ware designers and embedded
software developers to acceler-
ate the implementation of algo-
rithms on programmable SoCs.
Once the generated HDL and C
code is prototyped in hardware,
the design team can use Xilinx
Vivado® IP Integrator to integrate
the code with other design com-
ponents needed for production.

CASE STUDY: THREE-PHASE
MOTOR CONTROL

For several reasons, custom
motor controllers with efficient
power conversion are one of the
most popular applications to
have emerged for programma-
ble SoCs. Higher-performance,
higher-efficiency initiatives are
one factor. With electric mo-
tor-driven systems accounting

for as much as 46 percent of global electricity con-
sumption, attaining higher efficiency with novel con-
trol algorithms is an increasingly common motor drive
design goal. Xilinx Zynq programmable logic enables
precise timing, providing an ideal platform for imple-
menting low-latency, high-efficiency drives.

Another driver is multi-axis control. Ample pro-
grammable logic and DSP resources on programma-
ble SoCs open up possibilities for implementing multi-
ple motor controllers on a single programmable SoC,
whether motors will operate independently or in com-
bination, as in an integrated motion control system.

Integration of industrial networking IP is a further
factor. Xilinx and its IP partners offer IP for integra-
tion with EtherCAT, PROFINET and other industrial
networking protocols that can be readily incorporated
into programmable SoCs.

Central to this workflow are two technologies: Embed-
ded Coder® and HDL Coder™. Embedded Coder gener-
ates production-quality C and C++ code from MATLAB,
Simulink and Stateflow®, with target-specific optimiza-
tions for embedded systems. Embedded Coder has be-
come so widely adopted that when you drive a modern
passenger car, take a high-speed train or fly on a commer-
cial airline, there’s a high probability that Embedded Cod-
er generated the real-time code guiding the vehicle. HDL
Coder is the counterpart to Embedded Coder, generating
VHDL or Verilog for FPGAs and ASICs, and is integrat-
ed tightly into Xilinx workflows. This mature C and HDL
code generation technology forms the foundation of the
Model-Based Design workflow for programmable SoCs.

Design teams using Model-Based Design in applica-
tions such as communications, image processing, smart
power and motor control have adopted this workflow

RESEARCH REQUIREMENTS

DESIGN

IMPLEMENTATION

System Modeling

Software/Hardware Partitioning

Build Executable IP Core Generation

ARM Cortex-A9 Programmable Logic

Algorithms for
ARM core

Algorithms for
programmable fabric

Verification

C code
generation

HDL code
generation

Zynq-7000 SoC
development

boards

Hardware /
software
design
iterations

INTEGRATION

Model-Based Design for Zynq-7000 All Programmable SoCs

Figure 1 — Designers can create models in Simulink that represent
a complete dynamic system and create hardware-software
implementations for Zynq SoCs directly from the model.

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

44

• A Mode Select state machine running on the ARM
core determines the motor controller operating
mode (for example, open-loop operation or closed-
loop regulation). This state machine manages the
transitions between the start-up, open-loop control
and encoder calibration modes before switching to
a closed-loop control mode.

• The encoder sensor signal is passed via an external
port to an Encoder Peripheral in the programmable
logic and then to a Position/Velocity Estimate block
that computes the motor’s state (shaft position and
velocity).

• A sigma-delta analog-to-digital converter (ADC)

To illustrate the use of this workflow on a common
motor control example, consider the case of a field-ori-
ented control algorithm for a three-phase electric mo-
tor implemented on a Zynq-7020 SoC (details of this
hardware prototyping platform are available at http://
www.mathworks.com/zidk). The motor control system
model includes two primary subsystems (Figure 2): a
motor controller targeting the Zynq SoC that has been
partitioned between the Zynq processing system and
programmable logic, and a motor controller FPGA mez-
zanine card (FMC) connected to a brushless DC motor
equipped with an encoder to measure shaft angle.

We can look at hardware-software partitioning in
terms of data flow:

• We assign the Velocity Control and Mode Select
blocks to the ARM Cortex-A9 processing system
because those blocks can run at a slower rate than
other parts of the model and because they are the
portions of the design most likely to be modified
and recompiled during development.

ARM Cortex-A9
Processing System

Core controller (C)

Open-source LINUX

Mode Select

Velocity Control AX
I4

 In
te

rf
ac

e

Core controller(HDL)

Programmable Logic Motor FMC Card

Current Controller
• Open-loop mode
• Calibrate
 encoder mode
• Closed-loop
 mode
• Standby mode

Position / Velocity
Estimate

Current
Conversion

Voltage
Conversion

Encoder
Peripheral

ADC
Peripheral

PWM
Peripheral

Is
ol

at
io

n

Encoder
Interface

Inverter
Module

∑∆ ADC

HDL (hand-coded)HDL code (from model)C code (from model)

Figure 2 — The motor control system model includes two primary subsystems.

THIRD QUARTER 2015

With electric motor-driven
systems accounting for as
much as 46 percent of global
electricity consumption,
attaining higher efficiency
with novel control algorithms
is an increasingly common
motor drive design goal.

45

http://www.mathworks.com/zidk
http://www.mathworks.com/zidk

C O V E R S T O R Y

• a model of the motor control algorithm that will be
targeted for the Zynq SoC;

• a plant model, which includes the drive electronics
of the FMC, a permanent-magnet synchronous ma-
chine (PMSM) model of the brushless DC motor, a
model of an inertial load on the motor shaft and an
encoder sensor model; and

• an output-verification model, which includes
post-processing and graphics to help the algorithm
developer refine and validate the model.

In Simulink, we can test out the algorithm with
simulation long before we start hardware testing. We
can tune the PI controller gains, try various stimulus
profiles and examine the effect of different process-
ing rates. As we use simulation, though, we face a fun-
damental issue: Because of the disparate processing
rates typical of motor control—that is, overall me-
chanical response rates of 1 to 10 Hz, core controller
algorithm rates of 1 to 25 kHz and programmable logic
operating at 10 to 50 MHz or more—simulation times
can run to many minutes or even hours. We can head

senses the motor current, and a hand-coded ADC
Peripheral block processes the current.

• The Current Controller takes the motor state and cur-
rent, as well as the operating mode and velocity control
commands passed from the ARM core over the AXI4 in-
terface, and computes the current controller command.
When in its closed-loop mode, the Current Controller
uses a proportional-integral (PI) control law, whose
gains can be tuned using simulation and prototyping.

• The current controller command goes through the
Voltage Conversion block and is output to the mo-
tor control FMC via the PWM Peripheral, ultimately
driving the motor.

Designers can model the complete system in Sim-
ulink (Figure 3).

 In Model-Based Design, the system increases to
four components in the top-level Simulink model:

• an input model, which provides a commanded
shaft velocity and on/off commands to the control-
ler as stimulus;

Verify
Outputs

System
Inputs

FOC_Velocity_Encoder_Core_Algorithm Motor_And_Load

comm

C/D D/C

boolean

boolean

uint 16

uint 16

uint 16

uint 16

boolean

single

Position
Velocity

Current
Convert

Disabled
Mode
Select

...1010...

Open
Loop

Calibrate
Encoder

Velocity
Control

Current
Control

Volt
Convert

...1010...

...1010...

Figure 3 — This control-loop model for a motor control system with
simulation results shows the response to a velocity pulse command.

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

46

THIRD QUARTER 2015

47

Field-Oriented Velocity Control
Zynq ARM Real-Time

inputSourceEnum.StandAloneTest

Input_Source

Signal_Builder_Experiments

Calibrate +100 rad/sec, no load
motorOn (logical)

PVelocity, 2=CalibrateEncoder, 3=Velocity

velocityCommand (rad/esc)

boolean

Select_Source

Enum

single

motorOn

commandType

velocityCommand

<motorOn>

<commandType>

<velocityCommand>

motorOn

on

off

commandType

velocityCommand

Slider_Gain

velocityCommand

commandTypeEnum.Velocity

Command_Mode

Sine_Wave

1

0

1

DSP

F = 0.1 Hz

100

FOC_Velocity_Encoder_C FOC_Velocity_Encoder_FPGA_Interface

FPGA Interface For Bitstream

Mode
Select

Velocity
Control

PWM
Volt

Convert

Z-1

Current
ConvertADC

Encoder
Position
Velocity

Disabled

Open
Loop

Calibrate
Encoder

Current
Control

Z-1

Z-1

Z-1

Convert

Data_Type_Conversion

phaseCurrentA

phaseCurrentB

electricalPosition

encoderOffset

controllerMode

PhaseCurrent

rotorPosition

rotorVelocity

Scope

Display

Copyright 2014 The MathWorks, Inc.

Figure 4(a) — Simulink model for testing prototype hardware

5

4

3

2

1

0

-1

-2

-3

-4

100

80

60

40

20

0

-20

0 1 2 3 4 5 6 7
Time (sec)

M
ea

su
re

d
 v

el
o

ci
ty

 (r
ad

/s
ec

)
P

ha
se

 c
ur

re
nt

s
(a

m
p

s)

Prototype’s startup response (in green)
differs from those from simulation (red,
purple) because of a difference in the shaft
angle at t=0.

M
e

sas
urur

eded
ve

lo
ci

ty
e

ucu
rrrr

enen
tst

 (a
m

p
s))

Prototype hardware
System simulation
Control loop simulation

Prototype hardware
System simulation
Control loop simulation

Figure 4(b) — Comparison of results from hardware prototype and simulation

C O V E R S T O R Y

cessing in MATLAB, but for now we can repeat the
pulse test (Figure 3).

Figure 4b shows the results of the shaft rotation-
al velocity and the phase current for the hardware
prototype compared with the simulation results. The
startup sequence for the hardware prototype differs
noticeably from those for the two simulation models.
This is to be expected, however, because the initial
angle between the motor’s rotor and stator in the
hardware test differs from the initial angle used in
simulation, resulting in a different response as the
current control algorithm drives the motor through
its encoder calibration mode. When the pulse is ap-
plied at 2 seconds, the results from simulation and
prototype hardware match almost exactly.

Based on these results, we could continue with fur-
ther testing under different loading and operating con-
ditions, or we could move on to performing further C
and HDL optimizations.

Engineers are turning to Model-Based Design work-
flows to enable hardware-software implementation of
algorithms on Xilinx Zynq SoCs. Simulink simulation
provides early evaluation of algorithms, letting designers
evaluate the algorithms’ effectiveness and make design
trade-offs at the desktop rather than in the lab, with a re-
sultant increase in productivity. Proven C and HDL code
generation technology, along with hardware support for
Xilinx All Programmable SoCs, provides a rapid and re-
peatable process for getting algorithms running on real
hardware. Continuous verification between the simula-
tion and hardware environments lets designers identify
and resolve issues early in the development process.

Workflow support for Zynq-based development
boards, software-defined radio kits and motor control
kits is available from MathWorks. To learn more about
this workflow, visit http://www.mathworks.com/zynq. n

MATLAB and Simulink are registered trademarks of The
MathWorks, Inc. See http://www.mathworks.com/trade-
marks for a list of additional trademarks. Other product
or brand names may be trademarks or registered trade-
marks of their respective holders.

off this issue with a control-loop model that uses be-
havioral models for the peripherals—the PWM, cur-
rent sensing and encoder processing—producing the
time response shown in Figure 3.

After we use the control-loop model to tune the control-
ler, our next step is to prove out the controller in simula-
tion using high-fidelity models that include the peripherals.
We do this by incorporating timing-accurate specification
models for the C and HDL components of the controller.
These specification models have the necessary semantics
for C and HDL code generation. With simulation, we then
verify that the system with specification models tracks ex-
tremely closely to the control-loop model.

Once performance has been validated with the
high-fidelity models, we move on to prototyping the
controller in hardware. Following the workflow
shown in Figure 1, we start by generating the IP core.
The IP core generation workflow lets us choose the
target development board and walks us through the
process of mapping the core’s input and output ports
to target interfaces, including the AXI4 interface and
external ports.

Through integration with the Vivado Design Suite,
the workflow builds the bitstream and programs the
fabric of the Zynq-7020 SoC.

With the IP core now loaded onto the target device,
the next step is to generate embedded C code from the
Simulink model targeting the ARM core. The process
of generating C code, compiling it and building the ex-
ecutable with embedded Linux is fully automated, and
the prototype is then ready to run.

To run the prototype hardware and verify that it
gives us results consistent with our simulation models,
we build a modified Simulink model (Figure 4a) that
will serve as a high-level control panel. In this model,
we removed the simulation model for the plant—that
is, the drive electronics, motor, load and sensor—and
replaced it with I/Os to the ZedBoard.

Using this model in a Simulink session, we can turn
on the motor, choose different stimulus profiles, moni-
tor relevant signals and acquire data for later post-pro-

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

Continuous verification between the simulation and
hardware environments lets designers identify

and resolve issues early in the development process.

48

http://www.mathworks.com/zynq
http://www.mathworks.com/trademarks
http://www.mathworks.com/trademarks

This year’s
best release.

The definitive resource for software developers speeding
C/C++ & OpenCL code with Xilinx SDx IDEs & devices
The Award-winning Xilinx Publication Group is rolling out a brand new trade journal specifically for the
programmable FPGA software industry, focusing on users of Xilinx SDx™ development environments and
high-level entry methods for programming Xilinx All Programmable devices.

This is where you come in.
Xcell Software Journal is now accepting reservations for advertising opportunities in this new, beautifully
designed and written resource. Don’t miss this great opportunity to get your product or service into the
minds of those who matter most. Call or write today for your free advertising packet!

For advertising inquiries (including calendar and advertising rate card), contact xcelladsales@aol.com
or call: 408-842-2627.

Solutions
for a

Progammable
World

Xcell Publications

http://www.xilinx.com/xcell
mailto:xcelladsales@aol.com

SDSOC™ DEVELOPMENT ENVIRONMENT
The SDSoC environment provides a familiar embedded
C/C++ application development experience, including
an easy-to-use Eclipse IDE and a comprehensive design
environment for heterogeneous Xilinx All Programma-
ble SoC and MPSoC deployment. Complete with the
industry’s first C/C++ full-system optimizing compiler,
SDSoC delivers system-level profiling, automated soft-
ware acceleration in programmable logic, automated
system connectivity generation and libraries to speed
programming. It lets end-user and third-party platform
developers rapidly define, integrate and verify sys-
tem-level solutions and enable their end customers with
a customized programming environment.

• SDSoC Backgrounder (PDF)

• SDSoC User Guide (PDF)

• SDSoC User Guide: Getting Started (PDF)

• SDSoC User Guide: Platforms and Libraries (PDF)

• SDSoC Release Notes (PDF)

• Boards, Kits and Modules

• SDSoC Video Demo

• Buy/Download

SDACCEL™ DEVELOPMENT ENVIRONMENT
The SDAccel environment for OpenCL™, C and C++
enables up to 25x better performance/watt for data
center application acceleration leveraging FPGAs. A
member of the SDx family, the SDAccel environment
combines the industry’s first architecturally optimiz-
ing compiler supporting any combination of OpenCL,

Xtra, Xtra

XCELL SOFTWARE JOURNAL: XTRA, XTRA

50

C and C++ kernels, along with libraries, development
boards, and the first complete CPU/GPU-like develop-
ment and run-time experience for FPGAs.

• SDAccel Backgrounder

• SDAccel Development Environment: User Guide

• SDAccel Development Environment: Tutorial

• Xilinx Training: SDAccel Video Tutorials

• Boards and Kits

• SDAccel Demo

SDNET™ DEVELOPMENT ENVIRONMENT
The SDNet environment, in conjunction with Xilinx
All Programmable FPGAs and SoCs, lets network engi-
neers define line card architectures, design line cards
and update them with a C-like environment. It enables
the creation of “Softly” Defined Networks, a technolo-
gy dislocation that goes well beyond today’s Software
Defined Networking (SDN) architectures.

• SDNet Backgrounder — Xilinx

• SDNet Backgrounder — The Linley Group

• SDNet Demo

SOFTWARE DEVELOPMENT KIT (SDK)
The SDK is Xilinx’s development environment for
creating embedded applications on any of its micro-
processors for Zynq®-7000 All Programmable SoCs
and the MicroBlaze™ soft processor. The SDK is the
first application IDE to deliver true homogeneous- and
heterogeneous-multiprocessor design and debug.

• Free SDK Evaluation and Download n

Xilinx® is constantly refining its software and updating its
training and resources to help software developers design
innovations with the Xilinx SDx™ development environments
and related FPGA and SoC hardware platforms. Here is list of
additional resources and reading. Check for the newest
quarterly updates in each issue.

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1027-intro-to-sdsoc.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDIQFjADahUKEwivgNfe26THAhVQVogKHeNtAMg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_2%2Fug1028-sdsoc-getting-started.pdf&ei=QdnLVe_bNtCsoQTj24HADA&usg=AFQjCNHDUjd2MQOq6Etk8Wjmc_Gw8lpE5g&sig2=mdwSmuNMQjPtmtdVhwKmMg
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwivgNfe26THAhVQVogKHeNtAMg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_2%2Fug1146-sdsoc-platforms-and-libraries.pdf&ei=QdnLVe_bNtCsoQTj24HADA&usg=AFQjCNHat4P7zKUjvvgfYC8jx1L31jnJXA&sig2=-NgXI6QR8PbuBT6NRXZz4g
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1185-sdsoc-release-notes.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#boardskits
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QtwIwAGoVChMI4ZK3w9-kxwIVi5aICh3ARwKF&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSiOXTJ8IkJA&ei=Ot3LVeGNHoutogTAj4moCA&usg=AFQjCNE6UzbgVHtr_M3xP_KEGb-xq2_fyw&sig2=Wc7H7Ava48xpUhrXsXEoaA
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#buy
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1023-sdaccel-user-guide.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCUQFjABahUKEwj9-bSt3aTHAhUPWYgKHTI3Axg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_1%2Fug1021-sdaccel-tutorial.pdf&ei=89rLVb20G4-yoQSy7ozAAQ&usg=AFQjCNGkFZXlkUes4LWkg6YC1R7FFCt_dg&sig2=Q0EyT6IZpSjK7v1iCDAP-Q
http://www.xilinx.com/training/sdaccel/
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#boardskits
https://www.youtube.com/watch?v=h0EwiBycNss
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/publications/prod_mktg/sdnet/backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/linley-group-sdnet-wp.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html

800 453 6202

Learn more at ni.com/labview/fpga.

©2015 National Instruments. All rights reserved. CompactRIO, LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments.
Other product and company names listed are trademarks or trade names of their respective companies. 23284

Take advantage of an integrated hardware and software platform to shorten development

cycles and deliver FPGA-enabled technology to market faster. With rugged CompactRIO

controllers and LabVIEW FPGA software, you can program and customize Xilinx FPGAs in

a more productive environment with a higher level of abstraction–all without knowledge

of hardware description languages. Use LabVIEW FPGA’s cycle-accurate simulation, built-in

functions for I/O, memory management, bus interfaces, and cloud compile capabilities to

design, validate, and deploy projects faster.

LabVIEW system
design software offers
fl exibility through FPGA
programming, simplifi es
code reuse, and helps
you program the way
you think–graphically.

Program FPGAs Faster
With a Platform-Based Approach

design software offers
fl exibility through FPGA
programming, simplifi es

23284 ECM_Ad_8.5x11.indd 1 8/26/15 10:11 AM

http://www.ni.com/labview/fpga

GENERATE
HDL CODE
AUTOMATICALLY

MATLAB

Simulink

from

Find it at
mathworks.com/accelerate
datasheet
video example
trial request

m

®

HDL CODER™ automatically

converts Simulink models and
MATLAB algorithms directly into
Verilog and VHDL code for FPGAs or
ASIC designs. The code is bit-true, cycle-
accurate and synthesizable.

©
20

15
 T

he
 M

at
hW

or
ks

, I
nc

.

®

®

Client Name: The Mathworks
REQ #: 082415A

Title: HDL_NEW_8.5X11.0
Size: 8.5” x 11”

This advertisement prepared by:
Magnitude 9.6

345 W. 13th Street
New York, NY 10014

240-362-7079
Edwin_Havens@yahoo.com

and

C M Y K

Cosmos Communications 1

1
js

31369a 08.19.15 133

QC

http://www.mathworks.com/accelerate

