
SOFTWARE SOLUTIONS FOR
A PROGRAMMABLE WORLD

SOFTWARE

www.xilinx.com/xcell

ISSUE 2
FOURTH QUARTER 2015

Use C/C++ to Offload
Image Processing
to Programmable
Logic Leverage SDSoC

to Accelerate AES
Encryption on Zynq

SDNet Helps NTT
Hatch Lagopus FPGA
Reprogrammable
Platform

NI, Vivado Tools
Take Machine Vision
from Concept
to Deployment

PLDA’s QuickPlay
High-level Workflow
Builds Efficient
FPGA Apps

http://www.xilinx.com/xcell

Quick time-to-market demands are forcing you to rethink how you design, build and deploy your

products. Sometimes it’s faster, less costly and lower risk to incorporate an off-the-shelf solution

instead of designing from the beginning. Avnet’s system-on module and motherboard solutions for

the Xilinx Zynq®-7000 All Programmable SoC can reduce development times by more than four

months, allowing you to focus your efforts on adding differentiating features and unique capabilities.

Find out which Zynq SOM is right for you http://zedboard.org/content/design-it-or-buy-it

Lifecycle Technology

facebook.com/avnet twitter.com/avnet youtube.com/avnet

Shorten your development cycle with Avnet’s SoC Modules

Design it or Buy it?

http://zedboard.org/content/design-it-or-buy-it?cmp=glo-avt3-avt-tpm-xcell-201507

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
1-408-626-5981

EDITOR Diana Scheben

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Assoc.
1-408-842-2627

ADVERTISING SALES Judy Gelwicks
1-408-842-2627
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang,
Asia Pacific
melissa.zhang@xilinx.com

 Christelle Moraga,
Europe/Middle East/Africa
christelle.moraga@xilinx.com

 Tomoko Suto,
Japan
tomoko@xilinx.com

REPRINT ORDERS 1-408-842-2627

EDITORIAL ADVISERS Tomas Evensen

Lawrence Getman

Mark Jensen

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2015 Xilinx, Inc. All rights reserved. XILINX, the Xilinx Logo, and other
designated brands included herein are trademarks of Xilinx, Inc. All
other trademarks are the property of their respective owners.

The articles, information, and other materials included in this issue
are provided solely for the convenience of our readers. Xilinx makes
no warranties, express, implied, statutory, or otherwise, and accepts
no liability with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at the risk of the
user. Any person or entity using such information in any way releas-
es and waives any claim it might have against Xilinx for any loss,
damage, or expense caused thereby.

SOFTWARE

Letter from the Publisher
Xciting Times Ahead with the Zynq MPSoC

For those of you doing embedded software development, it’s imperative to
know what system hardware resources are available to you to create opti-
mized embedded systems. For those of you specializing in developing appli-
cation software, knowing the nitty gritty details about the system resources
isn’t so important, but knowing you have silicon that can give you options for
improving code performance is certainly a plus.

To this end, Xilinx® last quarter achieved a signi�cant silicon milestone.
In late September, Xilinx announced it had shipped to customers the �rst
samples of its Zynq® UltraScale+™ MPSoC (see video), the follow-up to its
award-winning Zynq-7000 All Programmable SoC. Whereas the Zynq SoC fea-
tured an ARM® dual Cortex™ A-9 processing system connected to program-
mable logic and on-board peripheral controllers on a single system-on-chip,
the Zynq UltraScale+ MPSoC ups the processing power available on an SoC to
a total of seven processors (64-bit, quad-core ARM Cortex-A53 and dual-core
ARM Cortex-R5 real-time processors, and an ARM Mali™-400 MP GPU), an
H.265/264 video codec, an advanced dynamic power management unit to op-
timize system power ef�ciency, a con�guration security unit, DDR4/LPDDR4
memory interface support, and loads of on-chip programmable logic.

Since the release of the Zynq SoC in 2011, the innovations that Xilinx
customers have been able to develop with the device have been truly re-
markable. Without delving too deeply into the silicon details, what makes the
Zynq SoC device unique are the more than 3,000 connections between the
processor and the on-chip programmable logic. Those connections enable
the processor and functions implemented in FPGA logic to communicate far
faster than would be achievable with any two-chip or even system-in-pack-
age con�guration. Customers thus have been able to create systems that sim-
ply weren’t possible before. And since the Zynq SoC’s launch, we have seen
Zynq SoC-based innovations in just about every market Xilinx serves, from
wireless communications to aerospace and defense.

Many of those innovations were created by FPGA engineering teams using
the Xilinx Vivado® Design Suite of hardware design tools. Earlier this year,
Xilinx took a bold leap forward by introducing the C, C++ and OpenCL™-based
SDx™ development environments: SDSoC™ for Zynq SoC design, SDAccel™
for FPGA-accelerated processing and SDNet™ for software-de�ned net-
working system development. While relatively new, the SDSoC development
environment is already opening up new possibilities to new users—embedded
software developers—as well as traditional FPGA experts. Further opportuni-
ties for innovation arise from the ability to create a system-level representation
of a system in C or C++ and then use the SDSoC environment to identify slow-
er-running code segments and of�oad them to the FPGA logic for acceleration.

Now, with the combination of the SDSoC environment and the silicon
foundation of the Zynq UltraScale+ MPSoC, I’m betting that we will see even
more truly remarkable system innovations created by an expanding number
of Xilinx users.

In this second issue of Xcell Software Journal, you will read how the
SDSoC and SDNet environments are enabling new levels of innovation.
I hope you enjoy reading the articles and are inspired to begin using the new
development environments—and, of course, sharing your experiences with
your peers by contributing technical articles to Xcell Software Journal.

 — Mike Santarini
Publisher

mailto:mike.santarini@xilinx.com
mailto:xcelladsales@aol.com
mailto:melissa.zhang@xilinx.com
mailto:christelle.moraga@xilinx.com
mailto:tomoko@xilinx.com
www.xilinx.com/xcell
https://www.youtube.com/watch?v=kkmVl9YJyLY

VIEWPOINT
Letter from the Publisher
Xciting Times Ahead with
the Zynq MPSoC…3

COVER STORY
Use C/C++ to Offload
Image Processing
to Programmable Logic

CONTENTS

FOURTH QUARTER
2015
ISSUE 2

6

16

XCELLENCE WITH SDSOC
FOR EMBEDDED DEVELOPMENT
Accelerate AES Encryption with SDSoC…16

XCELLENCE WITH SDNET
FOR SDN DEVELOPMENT
Innovating a Reprogrammable Network with SDNet…24

XCELLENT ALLIANCE FEATURES
Delivering FPGA Vision to the Masses…30

A Novel Approach to Software-Defined FPGA Computing…38

XTRA READING
IDE Updates and Extra Resources for Developers . . . 46

30

24

38

Use C/C++ to Offload
Image Processing
to Programmable
Logic

XCELL SOFTWARE JOURNAL: COVER STORY

6

SDSoC lets programmers
build complete
hardware-software
systems without
sacrificing performance.

by Olivier Tremois
DSP Specialist FAE
Xilinx, Inc.
olivier.tremois@xilinx.com

ISSUE 2, FOURTH QUARTER 2015

7

The “standard” image processing sys-
tems found today in medical, industrial
and a growing number of other applica-
tions are becoming ever more advanced.
In many cases, the imaging process-
ing complexity has already exceeded
the processing capabilities of PCs with
GPU acceleration. Even as design teams
raise their standards for image process-
ing quality and add product features,
they must meet customer demand for
more-compact, mobile, battery-powered
end products.

Many existing platforms are struggling
to meet such complex requirements.
Luckily, design teams can leverage Xil-
inx® Zynq®-7000 All Programmable SoCs
and the new Xilinx SDSoC™ develop-
ment environment to create compact,
low-power, feature-rich products with
advanced imaging systems using C/C++.
Let’s examine how to do this by using the
SDSoC environment to accelerate an im-
age pipeline processing system. I com-
pleted this project in less than a week
and was able to accelerate the system
example by orders of magnitude.

T

mailto:olivier.tremois@xilinx.com

they are applied to large images because of the se-
quential nature of the processor, which will process
1 pixel in a given time period.

A rank filter is a nonlinear filter that computes
the output image pixel by pixel. It does so by taking
the neighboring pixels of the input image pixel with-
in a specified shape called a structuring element,
sorting them and picking the one that is at the pth
rank. The erosion filter selects the minimum value
(p = 1). Dilation selects the maximum value (p = N,
where N is the number of pixels of the structuring
element). Median filtering selects the median value
(p = [N/2]). Classically, the structuring element is a
square, a diamond or a cross (Figure 1).

Our batch image processing system will read im-
ages stored in an SD card and process them using
different parameters for the noise level and for the
shape used as a structuring element. The dual ARM®
Cortex™-A9 cores of a Zynq-7000 SoC running at
667 MHz will perform the computations.

SOFTWARE IMPLEMENTATION
As a starting point, we write the complete appli-
cation in C++ so that we can estimate the per-
formance of the computations on the Cortex-A9.
The application contains a number of functions
to read and write BMP images on the SD card,
compute luminance, add noise and perform the

BATCH IMAGE PROCESSING
Our example system acquires images using a specif-
ic camera and then processes the images in batch
mode. The image size can be up to 3,000 x 2,000
pixels (6 megapixels). Although the processed im-
age is not live video, the intent is to send the images
through the image pipeline as quickly as possible.
The pipeline here is pretty simple: transform an RGB
image into grayscale; add salt-and-pepper noise;
and �lter the noisy image with three �lters (dilate,
median and erode).

Dilation, median and erosion filters belong to the
family of rank filters, which are primarily but not
exclusively applied to remove impulse noise for im-
age enhancement. These are nonlinear filters that
involve absolutely no arithmetic operations and
restrict their functions to data sorting and picking.
Although the algorithms are not highly complex,
they consume considerable processing time when

XCELL SOFTWARE JOURNAL: COVER STORY

8

Figure 1 — Structuring elements within
a 7 x 7 bounding box

#Size

Test 1

Test 2

Test 3

#Shape SW Latency

1,920 x 1,080 49 (square) 29 s

1,920 x 1,080 25 (diamond) 8.5 s

3,000 x 2,000 25 (diamond) 8.5 s

Figure 2 — Runtime for Zynq
processing system only

Our batch image processing system will read images stored in
an SD card and process them using different parameters for the
noise level and for the shape used as a structuring element.

7 x 7-pixel bounding box. The parameters that have
an impact on the pipeline latency (Figure 2) are the
size of the image (#Size) and the number of active
pixels in the structuring element (#Shape). Minimiz-
ing those latencies will improve system performance.
FPGAs perform incredibly well on signal processing
algorithms involving numerous additions and multi-
plications. Our system example will show that pro-
grammable logic is good not only at brute-force com-
putations, but also at more standard data processing.

various filter functions. Working within the SD-
SoC development environment’s SDDebug con-
figuration will enable rapid implementation on
the Xilinx ZC702 evaluation platform under the
Linux operating system.

To generate a truly operational executable file,
we select option -O3 to turn on all compiler opti-
mization. The shape of the structuring element is a
parameter of the application such that we can ap-
ply any kind of structuring element that fits within a

ISSUE 2, FOURTH QUARTER 2015

9

main
99.99%
(0.00%)

0.13%
1x

ref_rgb2y
0.13%

(0.13%)
1x

ref_median
92.33%
(4.65%)

1x

sort_array
87.69%

(87.69%)
2055636x

87.69%
2055636x

BMP_Write
6.47%

(1.25%)
8x

6.47%
8x

BMP_CreateBlank
5.22%

(5.22%)
8x

5.22%
8x

ref_PseudoCasuallnt
0.24%

(0.24%)
2073600x

0.24%
2073600x

SaveResults
7.08%

(0.61%)
8x

BMP_Read
0.12%

(0.12%)
1x

ref_ImpulsiveNoise
0.34%

(0.09%)
1x

92.33%
1x

7.08%
8x

0.12%
1x

0.34%
1x

Figure 3 — Profiling result on the initial software

contains subloops that go through the structuring
element and sort all the elements. In this example,
we use a standard bubble sort algorithm. Other re-
duced-complexity algorithms exist for microproces-
sor implementation, but the regularity of this one is
more adapted to hardware implementation:

for (i=0; i<HeightOfImage; i++)
for (j=0; j<WidthOfImage; j++)
 {
 Some Code
 for (s=0; s<NumberOfStages; s++)
 for (k=0; k<HeightOfStructElem; k++)
 for (l=0; l<WidthOfStructElem; l++)
 {
 Swap pixels if not correctly ordered
 }
 }

Because we want to be able to process 1 pixel of
the output image per clock cycle, we must add a di-
rective to start a pixel vector sort with every clock
tick. We pipeline the second loop that goes over the
columns of the image with an initiation interval (II)
of 1. (The II is the number of clock cycles required
before a new iteration of the loop can launch.) Us-
ing this single directive, the SDSoC environment
will automatically unroll the remaining inner loops,

XCELL SOFTWARE JOURNAL: COVER STORY

10

A basic profiling (Figure 3) shows that comput-
ing luminance from RGB values (0.13 percent) and
adding noise to the pixel (0.34 percent) run pretty
fast in software. The main contributor to total time
is the median filter (92.33 percent). Other functions
contributing to total time are file reads and saves.

MOVING A FUNCTION TO HARDWARE
The �rst goal for this acceleration is to be able to
process one new sample every clock cycle. Some
code rewriting and a rethinking of the interface can
yield greater acceleration. Even if the clock rate of
the on-chip programmable logic (PL) is much lower
than that of the processing system (PS), being able
to process one input pixel per clock should provide
great acceleration.

The median filter is the only function that will
shift to the hardware. Although the SDSoC environ-
ment makes it easy to shift functions into the PL
with a simple right click in the environment’s Proj-
ect Explorer, it will not add any directive (except
at the interface) or change a single line of code for
performance purposes. Those modifications are the
embedded programmer’s responsibility, which ex-
plains why the initial acceleration generally will not
be that dramatic.

The function specified above contains two nest-
ed loops to go through the entire image. It also

Line N-4 Line N-5

Line N-3 Line N-4

Line N-2 Line N-3

Line N-1 Line N-2

Current Line - N

Current pixel introduction
shifts the other pixels in corresponding column

by 1 position up to the first line buffer

Line N-1

Current Pixel

Figure 4 — Data motion in line buffers when receiving a new pixel

achieve this 1-pixel/clock objective, all data move-
ment must be performed with a throughput of one
clock cycle.

Moreover, all the pixels belonging to the pixel
neighborhood and the structuring element must
likewise be accessed in one clock cycle. That is why
we also define an analysis window that contains
the specific pixels in question (and which varies
from pixel to pixel). In the SDSoC environment and
VHLS, the code is not timed in any way; the tool will
parallelize anything that can be parallelized with
respect to the resource used and our directives. In
our sample batch image processing system code,
we add the line buffer and analysis window to the
code just by declaring two arrays with the right

allowing the hardware to process all the iterations
in parallel.

Image processing algorithms implemented in sin-
gle-core processors are fairly easy to code because
various processor features allow smooth data move-
ment between external memory and the processor
itself. Memory caches L1 and L2 will temporarily
store data that may be reused later, improving data
access latency.

Such a mechanism does not exist by default in
FPGAs. Although this prevents us from using the
same C/C++ source code to create a hardware accel-
erator, it is a chance for us to design a memory cache
that will have the right performance and size for our
application. This is a good example of an instance in
which we have to change the C/C++ source code not
to keep the same functionality, but to improve the
performance to a level that suits our requirements.
Xilinx’s Vivado® High-Level Synthesis (HLS), which
is the SDSoC engine that generates register trans-
fer level (RTL) IP from C/C++ code, will generate a
hardware architecture that is adapted to our code,
taking into account our directives. That’s why line
buffers and analysis windows are not automatical-
ly generated when analyzing the image processing
code; Vivado HLS adheres to the code as written,
which prevents the tool from hiding optimizations
that could be done without the developer’s consent.

Designers who are familiar with image processing
in hardware know all about line buffers and anal-
ysis windows. In order to avoid multiple reads of
the same pixel from the external memory, pixels are
temporarily stored in internal memory (block RAM)
and then overwritten when they are no longer useful
for the remaining execution. The block RAMs have
two ports that can be used as memory reads, memo-
ry writes or both. When the accelerator accepts the
pixel corresponding to line L and column C, all the
pixels corresponding to column C and line (L-1 …
L-6) are read from the line buffer and rewritten to
another location, as Figure 4 illustrates. In order to

ISSUE 2, FOURTH QUARTER 2015

11

pix_ t line_buf f er[KMED] [MAX_WIDTH] ;
pragma HLS ARRAY_PARTITION variable=line_buf f er complet e
dim=1

pix_ t window[KMED*KMED] ;
pragma HLS ARRAY_PARTITION variable=window complet e dim=0

/ / Line Buf f er fill
if (col < widt h)
Buf f erFill:f or (int ii = 0 ; ii < KMED-1 ; ii++)

pixel[ii] = line_buf fer[ii] [col] =line_buf fer[ii+1] [col] ;

/ / There is an of fset t o accommodat e t he act ive pixel region
if ((col < widt h) && (row < height))
{

pix = in_pix[index_in++] ;
pixel[KMED-1] = line_buf f er[KMED-1] [col] = pix;

}

/ / Line Buf f er fill
if (col < widt h)
Buf f erFill:f or (int ii = 0 ; ii < KMED-1 ; ii++)
 pixel[ii] = line_buf fer[ii] [col] =line_buf fer[ii+1] [col] ;

/ / There is an of fset t o accommodat e t he act ive pixel region
if ((col < widt h) && (row < height))
{

pix = in_pix[index_in++] ;
pixel[KMED-1] = line_buf f er[KMED-1] [col] = pix;

}

The first goal for this acceleration is to be able to process
one new sample every clock cycle. Some code rewriting and

a rethinking of the interface can yield greater acceleration.

Figure 5 — Array declaration for the line buffer,
analysis window and structuring element

Figure 6 — Data motion between the line buffers

XCELL SOFTWARE JOURNAL: COVER STORY

12

partitioning directives (Figure 5). We then describe
data motion as read/write accesses to those arrays
(Figure 6).

Because it relies on data access in an array, the
pixel-value sorting procedure can be complex to im-
plement in the hardware architecture. The C code
for software implementation takes the vector of the
pixel that has been validated through the structuring
element and sorts it using a standard bubble sort.
More-efficient algorithms exist but provide a signif-
icant benefit only on larger vectors. The complexity
of this algorithm is proportional to the square of the
number of pixels of the structuring element—up to
(7 x 7)2 for our sample design.

In hardware, the architecture must be dimen-
sioned for the worst case. If we want to achieve
our 1-pixel/clock goal, we need to implement a
very regular structure. To this aim, we specify that
the input vector will always have the maximum
size (7 x 7) and that all nonvalidated pixels will

have the value 0 so that they will be at the bot-
tom of the sorted vector. We also dimension the
number of stages for the worst case, even if the
number of stages could be lower for a structuring
element with fewer active pixels. Parallelization
of the different stages can occur only if the same
vector is not reused at each stage. The result is an
array into which the initial vector enters at col-
umn index 0 and exits at column index 7 x 7 = 49
(Figures 7 and 8).

SDSOC SYSTEM COMPILER
SDSoC is not a simple full-system compiler. It per-
forms an extensive code analysis in order to decide
what kind of data mover would best suit the func-
tions that are required to be in hardware, and to
which port to connect the data mover. For each pa-
rameter of the function, we must determine wheth-
er it is best to use an ARM® AMBA® AXI4-Lite, AXI4-
Full memory-mapped or AXI4-Stream data mover.

Sort(In[2],Out[2])
{
 Out[0] = min(In[0],In[1]);
 Out[1] = max(In[0],In[1]);
} Sorted

Vector
Input

Vector

Nonactivated
Pixel

Activated
Pixel

Highest
Value

Lowest
Value

Sort(In[2],Out[2])
{
 Out[0] = min(In[0],In[1]);
 Out[1] = max(In[0],In[1]);
} Sorted

Vector
Input

Vector

Nonactivated
Pixel

Activated
Pixel

Highest
Value

Lowest
Value

Figure 7 — Sorting network for a 10-element vector

ISSUE 2, FOURTH QUARTER 2015

13

void sort ing_ net work(pix_ t window[KMED*KMED] ,mask_t shape[KMED*KMED] ,
 kmed2_ t NShape,kmed2_ t CompNShape,
 pix_ t *pixmin,pix_ t *pixmed,pix_ t *pixmax)
{
st at ic const int N = KMED*KMED;
pix_ t t min,t max,t 0 ,t 1 ;

st at ic pix_ t z[N] [N+1] ; / / Array t hat cont ains t he sort ing net work
pragma HLS ARRAY_PARTITION variable=z complet e dim=0

unsigned int i, k, st age;

/ / Init ializat ion of t he f irst row of t he net work
/ / pixels t hat do not belong t o t he mask are set t o 0
L1 :f or (i=0; i<N; i++)
 if (shape[i]) z[i] [0] = window[i] ;
 else z[i] [0] = 0 ;

/ / sort ing_net work: This descript ion is correct f or KMED odd
L2 :f or (st age = 1 ; st age <= N; st age++)
{
 k = (st age&1)^ 1; / / st age odd -> k=0 st age even -> k=1
 L3 :f or (i = k; i<N-1 ; i= i+2)
 {
 t 0 = z[(i)] [st age-1] ;
 t 1 = z[(i+1)] [st age-1] ;
 t min = MIN(t 0 ,t 1) ;
 t max = MAX(t 0 ,t 1) ;
 z[(i)] [st age] = t min;
 z[(i+1)] [st age] = t max;
 }
 / / Copy t he value t hat has not been sort ed t o t he next st age
 if (k==0) z[N-1] [st age] = z[N-1] [st age-1] ;
 else z[0] [st age] = z[0] [st age-1] ;
}
*pixmin = z[CompNShape] [N] ;
*pixmed = z[CompNShape+NShape/ 2] [N] ;
*pixmax = z[N-1] [N] ;
ret urn;
}

SDSoC is not a simple full-system compiler. It performs an
extensive code analysis in order to decide what kind of data

mover would best suit the functions that are required to be in
hardware, and to which port to connect the data mover.

Figure 8 — Sorting network described in C

XCELL SOFTWARE JOURNAL: COVER STORY

14

We also have to determine which connector to use:
the AXI4 High Performance (HP), General Pur-
pose (GP) or Accelerator Coherency Port (ACP),
or even ports from other accelerators, either built
from within the SDSoC environment or contained
in the board support package (BSP).

The SDSoC environment will then create a design,
adding all necessary IP to make a fully functional

system—a direct memory access (DMA) for AXI4
Stream data movers, for example—and will modify
the C source code (instead of the initial C++ code) in
order to call the hardware. In our case, the interface
is pretty simple: Two input arrays and three output
arrays will be accessed through AXI4-Stream and
DMAs, and a few scalars will be set through AXI4-Lite.
We don’t have to think about setting the DMAs or
look at the address at which the scalar registers are
accessible; the SDSoC environment manages every-
thing automatically, under the hood.

When I built the sample system, I first verified
that the source code was Vivado HLS compliant
and then added the VHLS directives. Using specific
SDSoC directives, I specified that the data would
be stored contiguously in the physical space (with
memory allocated using the function sds_alloc)
and that I wanted a DMA to access it (Figure 9).

 I then switched the build configuration to
SDEstimate in order to have a first rough estimate
of the acceleration that was achievable (Figure
10). I did not have to wait a long time for this step,
because at this point no hardware had been built.

The SDSoC environment computes the speedup
estimate from the processor runtime (computed
using the hardware-adapted code, which is slower
than the original, processor-adapted code, and with
compiler optimization set to –O0) and the number of
clock cycles (computed by VHLS as the latency of
the hardware accelerator). This latency is the max-
imum latency of the hardware accelerator, so this
estimation should be taken for what it is—a rough

Figure 9 — Directives in the SDSoC environment to override default behavior

Figure 10 — Performance estimates obtained
during the SDEstimate phase

ISSUE 2, FOURTH QUARTER 2015

15

estimate. This acceleration is almost 700x for the
hardware accelerator itself. There are many file ac-
cesses that take time at the “main” level; that’s why
the overall acceleration is “only” 5x. In practice, we
can choose the top-level function at which the glob-
al acceleration is computed so that we can obtain a
more meaningful acceleration value.

The final step of the flow is to build the entire sys-
tem. In this phase, all the accelerators are built and
connected to the processor. The C++ source code is
then modified in order to start and control these ac-
celerators (instead of calling the original C function).
At this stage, we are able to have an exact value of
the acceleration obtained using the hardware accel-
erators, taking into account all the data transfers to
and from DDR. This acceleration value also takes
into account the time it takes to flush the cache, as
our data is in a cacheable part of the memory.

The time taken by the hardware accelerator is
proportional to the size of the image and not to
the size of the structuring element. That’s why the
higher the number of active pixels in the structur-
ing element, the higher the acceleration ratio will
be. The latency referred to in Figure 11 is that of

the full image pipeline, containing the software
and hardware elements.

 When I undertook this project, building the
software application proved to be the longest
phase. From there, it took less than 2 hours to mod-
ify the code so that I had fully compliant Vivado
HLS code with the right directives in place to
optimize the throughput. Given the size of the
hardware part of this design (half the lookup ta-
ble of the chip), the last stage—synthesis, place
and route, bitstream, SD card—took more than
2 hours to complete.

The SDSoC environment’s integrated tools for
system-level profiling, automated software accel-
eration in programmable logic and full-system-op-
timizing compilation—automatically generating
the right connectivity to minimize memory access
bottlenecks—allowed me to go through this ex-
ample project in less than a week.

That short time frame wouldn’t have been pos-
sible using a standard RTL flow for the creation
of the accelerator and my own programming abil-
ities to take advantage of the different drivers to
modify the C code. n

Test 1

Test 2

Test 3

1,920 x 1,080 29.2 s 154.8 ms 189x
49

(square)

1,920 x 1,080 8.6 s 154.7 ms 56x
25

(diamond)

3,000 x 2,000 25 s 447 ms 56x
25

(diamond)

#Size #Shape Acceleration
Pure SW
Latency

SW + HW
Latency

Figure 11 — Runtime for Zynq Processing System with accelerated function in Programmable Logic

At this stage, we are able to have an exact value of the
acceleration obtained using the hardware accelerators,

taking into account all the data transfers to and from DDR.

Accelerate
AES Encryption
with SDSoC
by Adam Taylor
Chief Engineer
e2v
aptaylor@theiet.org

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

16

mailto:aptaylor@theiet.org

T he Advanced Encryption
Standard (AES) has become
an increasingly popular cryp-
tographic speci�cation in many
applications, including those
within embedded systems.
Since the National Institute
of Standards and Technology
(NIST) selected the speci�-
cation as a standard in 2002,

developers of processor, microcontroller, FPGA and SoC
applications have turned to AES to secure data entering,
leaving and residing within their systems. The algorithm is
described very ef�ciently at a higher abstraction level, as is
used in traditional software development; but because of
the operations involved, it is most ef�ciently implemented
in an FPGA. Indeed, developers can even get some opera-
tions “for free” in the routing.

For those reasons, AES is an excellent example of how
developers can benefit from the Xilinx® SDSoC™ devel-
opment environment by describing the algorithm in C and
then accelerating the implementation in hardware. In this
article we will do just that, first gaining familiarity with the
AES algorithm and then implementing AES256 (256-bit
key length) on the processing system (PS) side of a Xilinx
Zynq®-7000 All Programmable SoC to establish a baseline
of software performance before accelerating it in the on-
chip programmable logic (PL). To gain a thorough under-
standing of the benefits to be gained, we will perform the
steps in all three operating systems the SDSoC environ-
ment supports: Linux, FreeRTOS and BareMetal.

THE ALGORITHM
AES is a symmetric block cipher that can be used with
varying key lengths of 128, 192 and 256 bits. The key
length determines the number of processing steps re-
quired to encrypt or decrypt data. As their name implies,
block cipher algorithms work on blocks of data. The AES
algorithm operates on a �xed block size of 16 bytes at a
time. Thus, if we wish to encrypt fewer than 16 bytes, we
must pad out the unused bytes.

Describe the AES256 crypto algorithm in C,
then speed performance in hardware.

ISSUE 2, FOURTH QUARTER 2015

17

Because AES is a symmetric cipher, the same
actions and key are used to encrypt and decrypt
information. In contrast, asymmetric algorithms
such as RSA use different keys for data encryption
and decryption.

Each of the four stages in the AES algorithm is applied
to what is called the state. The combination of the four
AES stages is called a round. The number of rounds re-
quired depends on the key length.

Quite simply, the AES state starts out as the 16 bytes
we wish to encrypt. Each new step updates the state.
Before processing the state, we need to format the in-
put byte string correctly into the initial state as a 4 x 4
matrix (Figure 1).

Now that we have rearranged the initial 16 bytes into
the initial state as a 4 x 4 grid, we can explore how each
step manipulates its input state.

AddRoundKey: This is the only step that uses the
encryption key. As we have already noted, the number
of encryption algorithm rounds required depends on the
key size (128, 192 or 256 bits). The encryption key must
undergo key expansion to ensure that the bytes in the key
are not reused during each round before use. Not surpris-
ingly, the expanded key length is different for each key
size. The expanded key size will be:

Expanded Key Size (bytes) = 16 * (Rounds + 1)

The operation within this step is simple. The input
state bytes are exclusive-ORed with 16 bytes of the ex-
panded key. Each round uses a different section of the
expanded key; round 0 uses bytes 0 to 15, round 1 uses
bytes 16 to 31 and so on. For each round, byte 1 of the
state is exclusive-ORed with the least significant byte
of the expanded key, byte 2 is exclusive-ORed with
least significant byte + 1 and so on.

SubBytes: This step uses byte substitution to
swap out state values with another value. The val-
ues within the substitution box are predefined
and have been designed to have low correlation
between input bits and output bits. The substi-
tution box (S-box) is a 16 x 16 matrix. We use the

upper and lower nibbles of the byte being sub-
stituted to index into the substitution table. For
example, using the S-box encryption in Figure 2,
if the first initial state byte is 0 x 69, then the
substitution value 0 x F9 will replace it. The up-
per nibble of the state byte selects the row in
the substitution box; the lower nibble selects

Initial State – 4 x 4 Grid

16-byte Input

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

Figure 1 — Initial state translation of the 16 bytes into a 4 x 4 grid

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 CB 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA 23 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

S-box for Encryption

S-box for Decryption

Figure 2 — AES S-box contents

18

the column. Note in Figure 2 that there are sep-
arate substitution boxes for encryption and
decryption and that their content differs.

ShiftRows: This step rearranges the input state
matrix by performing a circular byte shift for each
row. We rotate each row right by a different factor
(Figure 3). We leave row 1 unchanged. We rotate row
2 by 1 byte, row 3 by 2 bytes and row 4 by 3 bytes.
When we decrypt, we perform the same operations,
but we rotate left instead of right.

MixColumns: This is the most complicated step within
a round, requiring 16 multiplications and 12 exclusive-OR
operations. The operations are performed column by col-
umn on the input state matrix, which is multiplied against
a �xed matrix to create a new state column (Figure 4).
Each entry in the column is multiplied by a row in the ma-
trix. The results of each multiplication are XORed together
to form the new state value. The �rst column and row to
be multiplied are highlighted in Figure 4.

Here are the MixColumns equations for the �rst
column:

B1’ = (B1 * 2) XOR (B2 * 3) XOR (B3 * 1) XOR (B4 * 1)
B2’ = (B1 * 1) XOR (B2 * 2) XOR (B3 * 3) XOR (B4 * 1)
B3’ = (B1 * 1) XOR (B2 * 1) XOR (B3 * 2) XOR (B4 * 3)
B4’ = (B1 * 3) XOR (B2 * 1) XOR (B3 * 1) XOR (B4 * 2)

This process is then repeated against the same multipli-
cation matrix for the next column in the input state until
all of the input state columns have been addressed.

Now that we understand the detailed steps needed
for the AES encryption and decryption algorithms,
we need to know the order in which to apply the
steps in a round and whether we must apply all of

Let’s look at the algorithm we must use for expand-
ing the key so that we provide suf�cient key bits for the
number of AddRoundKey steps to be performed
(Figure 5). Key sizes of 16, 24 or 32 bytes will respec-
tively require 44, 52, or 60 rounds for key expansion.
The �rst bytes of the expanded key are equal to the
initial key. This means that for our AES256 example,
the �rst 32 bytes of the expanded key are the key itself.
Key expansion generates the 32 additional bits for the
expanded key in each iteration.

The following are the key expansion steps.

RotateWord: Similar to ShiftRows, this step reorga-
nizes a 32-bit word such that the most signi�cant byte
becomes the least signi�cant byte.

the steps for each round. Each AES encryption round
comprises all four steps, in the following order:

1. SubBytes;

2. ShiftRows;

3. MixColumns (for rounds 1 to N – 1 only);

4. AddRoundKey (using the expanded key).

Of course, we need to be able to reverse the pro-
cess and turn the unreadable cipher text back into
plain text so that the encrypted information will be
useful. To do so, we order the steps as follows:

1. Invert ShiftRows;

2. Invert SubBytes;

3. AddRoundKey (using the expanded key);

4. Invert MixColumns (for rounds 1 to N – 1 only).

Before executing the �rst round of encryption, we

need to perform an initial AddRoundKey operation
for both encryption and decryption.

ISSUE 2, FOURTH QUARTER 2015

19

AES is described efficiently at a higher abstraction level, as in traditional
software development, but is most efficiently implemented in an FPGA.

Developers can even get some operations “for free” in the routing.

ShiftRows Input State

Resultant Output State

B1 B5 B9 B13
B6 B10 B14 B2
B11 B15 B3 B7
B16 B4 B8 B12

B9

 Figure 3 — ShiftRows operation

Input State First Column to be Multiplied

Constant Multiplication Matrix

Decryption Constant Multiplication Matrix

E B D 9
9 E B D
D 9 E B
B D 9 E

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

B9

Figure 4 — MixColumns function
for encryption and decryption

CREATING THE CODE
To ensure we can accelerate the encryption part
of the AES code within the PL side of the Zynq
SoC, we must develop the code from day one
with this objective in mind (see the coding rules
here). The first thing to consider is the architec-
ture of the algorithm; we need to segment it prop-
erly. AES lends itself well to this approach because
we can write functions for each of the stages and
then call them as required. We must also write
the function to be accelerated within its own �le.
Our software architecture will include the following.

main.c: This �le contains the key expansion algorithm,
the encryption key and the plain-text input, along with
the call to the AES encryption function.

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

20

SubWord: This step uses the same substitution box
used to make byte substitutions in the encryption.

rcon: This stage performs the exponentiation of 2 to a
user-de�ned value. As in the MixColumns stage, rcon is
performed over the Galois �eld (28); therefore it is com-
mon to use a precalculated lookup table for this step.

EK: This returns 4 bytes from the expanded key.

K: Like EK, this returns 4 bytes from the key.

How will we know that we have correctly imple-
mented the encryption and key expansion algorithms?
The NIST speci�cation for AES helpfully contains
a number of worked examples that we can use for
checking our own implementations.

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin

word temp

i = 0

while (i < Nk)
 w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
 i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]
 temp = w[i-l]
 if (i mod Nk = 0)

 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
 else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
 end if
 w[i] = w[i-Nk] xor temp
 i = i + 1

end while
end

Figure 5 — Key expansion algorithm

The first bytes of the expanded key are equal to
the initial key. This means that for our AES256 example,
the first 32 bytes of the expanded key are the key itself.

https://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-s-MicroZed-Chronicles-Part-91-More-on-High-Level/ba-p/642082

the execution of the function. To do this, we’ll use
sds_clock_counter in sds_lib.h.

After I had written the source code (available on
the github), I recorded a time of 36,662 processor cy-
cles when executing the AES algorithm in software
running on a single ARM® Cortex™-A9 processor
core in the Zynq SoC.

OPTIMIZATION FOR ACCELERATION
Accelerating the AES algorithm is slightly more compli-
cated than the matrix multiplication algorithm we exam-
ined in the previous issue. This is because the main loop
of the AES algorithm consists of interdependent stages.

I accelerated the AES algorithm by examining the
loops to see where I could unroll them, optimizing the
memory bandwidth, selecting the correct frequency
for the data motion clock frequency and selecting the
correct frequency for the hardware functions.

The main loop of the AES encryption function com-
prises the functions that perform each AES step. Each
function in the AES algorithm must be completed and
the result computed before the next function can run.
This interdependency requires us to focus our efforts

aes_enc.c: This �le performs the encryption. We will
code each of the stages as its own function so that
it can be called as required for the AES round. To
ensure the design is common to those implemented
on processors, we use lookup tables for the mixed
step’s multiplications.

aes_enc.h: This �le houses the de�nition of the
aes_function and the parameters used to determine
the size (e.g., mk, nb and nr).

sbox.h: This includes the substitution box used for
the substitute bytes, the lookup table for the rcon
function that performs key expansion, and the mul-
tiplication lookup tables for the MixColumns mul-
tiplications.

Within this structure, we can select the AES en-
cryption function (Figure 6) as the one we wish to ac-
celerate simply by right clicking on the function and
selecting Toggle HW/SW.

To ensure that we are able to determine the base-
line performance and the savings we get from the
accelerating the function, we must be able to time

ISSUE 2, FOURTH QUARTER 2015

21

void aes_enc(uint8_t state[4][4],uint8_t cipher[4][4],uint8_t ekey[240])
{

 uint8_t iteration = 0;
 //uint8_t x,y;

 uint8_t sub[4][4];
 uint8_t shift[4][4];
 uint8_t mis[4][4];
 uint8_t round[4][4];

 addroundkey(state,Ø,sub,ekey);

 loop_main : for(iteration = 1; iteration < nr; iteration++)
 {
 subbytes(sub,shift);
 shift_row_enc(shift,mix);
 mixcolumn(mix,round);
 addroundkey(round,iteration,sub,ekey);
 }
 subbytes(sub,shift);
 shift_row_enc(shift,round);
 addroundkey(round,nr,cipher,ekey);

}

 Figure 6 — The function to be accelerated

https://github.com/ATaylorCEngFIET/MicroZed-Chronicles
http://issuu.com/xcelljournal/docs/xcell_software_journal_issue_1/14?e

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDSOC

22

on the AES steps created as separate functions. There is
plenty of potential for optimization within these steps.

We can pipeline the AddRoundKey, SubBytes and
MixColumns steps for increased performance. Within
these functions, we execute the HLS Pipeline command
by putting pragmas within the first loop. We should un-
roll the inner loop. Several of these functions read from
lookup tables normally built from block RAM. We need
to increase the memory bandwidth, so for this exam-
ple I have specified the pragma parameter “complete,”
which implements the memory contents as discrete
registers as opposed to BRAM.

The ability to transfer the data between the PS and
the PL on the Zynq SoC is also of key importance in
boosting performance. My first step was to set the data
motion clock network at its highest possible clock fre-
quency: 200 MHz. My second approach was to ensure
that direct memory access was used for data transfer
between the PS and PL. To do this, I had to rewrite the
interface slightly and use the sds_alloc function to en-
sure that the data was contiguous in memory, as DMA
transfer requires (Figure 7).

My third and �nal optimization step was to set the
hardware function’s clock rate at the highest frequency
supported for this application: 166.67 MHz.

RESULTS ON THE SUPPORTED
OPERATING SYSTEMS
When I �nally put these all together and built the exam-
ple, the PL-accelerated AES code ran on Linux in 16,544
processor clock cycles, or 45 percent (16,544 / 36,662)
of the cycles needed when running the AES code in
software alone. That’s a massive 55 percent reduction
in execution time for a fairly complex and interdepen-
dent algorithm.

Of course, we can select the BareMetal or FreeRTOS
operating system within the SDSoC environment as well.
Creating BareMetal and FreeRTOS projects and reusing
the code allows a comparison of performance among the
three supported operating systems. For a given project,
the OS selection will depend on the mission require-
ments, performance budgets and response times.

Figure 8 reveals the three operating systems’ perfor-
mance in the Zynq SoC’s PS and PL (Figure 8).

It is not surprising that FreeRTOS and BareMetal
provide similar reductions, as both are much simpler
implementations than the full Linux OS.

As our results show, using the SDSoC development
environment to accelerate AES encryption provides a
real performance improvement and is easy to achieve—
without in-depth FPGA design experience. n

Data Motion Network
Accelerator Argument IP Port Direction Declared Size(bytes) Pragmas Connection

aes_enc_0 state state_PORTA IN 16*1 S_AXI_ACP:AXIDMA_SIMPLE

 cipher cipher_PORTA OUT 16*1 S_AXI_ACP:AXIDMA_SIMPLE

 ekey ekey_PORTA IN 240*1 S_AXI_ACP:AXIDMA_SIMPLE

Figure 7 — The data motion network between the PS and PL

 Operating System PS Only PS with PL Acceleration Reduction

 BareMetal 28574 7102 75%

 FreeRTOS 28368 7104 75%

 Linux 36662 16544 54.8%

Figure 8 — OS performance in the Zynq PS and PL. FreeRTOS and BareMetal provide similar reductions.

http://snickerdoodle.io/?utm_source=XcellSJ&utm_medium=email&utm_campaign=Xcell20151201

Innovating a
Reprogrammable
Network with SDNet

Lagopus FPGA
maximizes SDN/
NFV capability
for telecom and
the cloud.

by Koji Yamazaki
Researcher
NTT Labs
yamazaki.k@lab.ntt.co.jp

Yoshihiro Nakajima
Researcher
NTT Labs

Takahiro Hatano
Researcher
NTT Labs

Hirokazu Takahashi
Researcher
NTT Labs

Akihiko Miyazaki
Researcher
NTT Labs

Katsuhiro Shimano
Researcher
NTT Labs

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDNET

24

mailto:yamazaki.k@lab.ntt.co.jp

Innovating a
Reprogrammable
Network with SDNet

ISSUE 2, FOURTH QUARTER 2015

25

N
ippon Telegraph and
Telephone Corp (NTT)
is the holding company
for a global telecom-
munications group
that formulates man-
agement strategies and
promotes research and
development. We are
researchers in NTT’s
R&D division and are

leading two innovative projects for software-de�ned
networking (SDN) and network function virtualization
(NFV). For one project, we have developed a high-per-
formance software SDN/OpenFlow switch called La-
gopus [1], which we believe to be the best OpenFlow
1.3-compliant switch to have been released to date
as open-source software. For our second project, we
have developed a software-packet-processing-aware,
40-Gbit/second (Gbps) FPGA network interface card
(NIC) called Lagopus FPGA.

Our early adoption of the Xilinx® SDNet™ Soft-
ware Defined Specification Environment for Net-
working was key to our ability to develop these
technologies. Here’s how we used SDNet to meet
our goals for the projects.

LAGOPUS FPGA FOR SDN/NFV EXCELLENCE
Cloud service providers and network service opera-
tors are turning to SDN as a key enabling technology
for automated provisioning systems. NFV has a crit-
ical role in letting telecom operators reduce capex
and opex by changing network systems from propri-
etary-hardware-based equipment to commodity-hard-
ware-based systems that leverage PC servers, mer-
chant silicon-based switches and software appliances.
Many cloud service providers and telecom operators
will deploy SDN and NFV for their next-generation
commercial networks.

NTT Group is a leader in SDN and NFV in both the
commercial-services and research spheres. NTT has

flexible architecture increases the Lagopus switch’s
10-Gbps line rate as a pure software implementation to
a 40-Gbps line rate via FPGA acceleration. This perfor-
mance improvement comes at a cost of less than 10 per-
cent of the x86 CPU’s power dissipation. The architec-
ture also greatly enhances our network troubleshooting
ability, which is essential in a truly virtualized network.

Currently, we are co-designing an advanced soft-
ware-programmable data plane for Lagopus and original
hardware intellectual property (IP) for network carriers
using a leading-edge FPGA and design tools, in expecta-
tion not only of gaining higher system performance, but
also of reducing power and cost. In collaboration with a
Xilinx team, we have successfully integrated Lagopus and
our IP within 80-Gbps NIC demo boards based on Xilinx
Virtex®-7 All Programmable FPGAs. We demonstrated La-
gopus FPGA for the first time in February at NTT R&D
Forum 2015 (Tokyo). We also presented our achievements
[2] in August at Hot Chips 27 (Cupertino Calif.).

We leveraged the SDNet development environ-
ment to create the Lagopus FPGA system. The novel,

Performance

Flexibility Availability

Software
(x86 CPU)

Commodity server

Hardware
(FPGA)

NFV application

Network

SDN switch

FPGA
SDN/NFV
front-end

accelerator

NIC

Configuration

x86

DPDK PMD API

Data plane

Higher Performance

Conventional
SDN hardware

switch
S

SDN switch

40G 40G

Higher Availability

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDNET

Figure 1 — Concept and architecture of Lagopus FPGA

26

launched an advanced SDN/NFV-related reearch en-
deavor called the O3 Project with funding from Japan’s
Ministry of Internal Affairs and Communications.
Lagopus is major deliverable of the O3 Project to
achieve high-performance software-packet processing
and flexible flow control using the Open Networking
Foundation’s OpenFlow 1.3 protocol with commod-
ity Intel x86 servers and a commodity NIC. The key
benefits with Lagopus are high-performance soft-
ware-packet processing at more than 10 Gbps on com-
modity servers; elastic network flow control for up to
1 million flow entries; and a scalable flow dispatcher
for NFV applications such as virtual Provider Edge
(vPE), virtual Customer Premises Equipment (vCPE)
and virtual Evolved Packet Core (vEPC) frameworks.

The Lagopus FPGA project aims to explore
40/100-Gbps-capable, high-performance packet pro-
cessing with flexible partitioning between software
and hardware-accelerated functions on an FPGA
running on commodity servers. Figure 1 shows the
concept and architecture of Lagopus FPGA. The

cases in both cloud computing data centers and wide
area networks. For NTT, the flexible, software-defined
hardware design technology enables agile deployment
of differentiated network services.

DESIGN BASICS WITH THE SDNET ENVIRONMENT
With competition on the rise in the emerging mar-
ket for SDN/NFV technology, one design challenge
for the Lagopus FPGA project was to work within a
tight development window in order to achieve time-
ly deployment and promotion. We started designing
the Lagopus FPGA system in October 2014 and com-
pleted our �rst integration just three months later,
in January 2015.

dynamically reprogrammable data plane packet-pro-
cessing tool chain let us accelerate Lagopus and NFV
applications by offloading high-intensity data plane op-
erations such as packet classification, editing, search,
load balancing and statics metering—all realized over
various multigigabit Ethernet line rates (10/40/100
GbE)—to the FPGA NIC without compromising perfor-
mance. We believe this is the best solution for our proj-
ect to enforce the classification IP, a key component for
SDN/NFV technology. The environment’s quick, recon-
figurable packet pipeline capability lets us quickly and
easily update protocols and features for networking.

The SDNet environment broadens Lagopus FPGA’s
potential utilization by covering a broad range of use

ISSUE 2, FOURTH QUARTER 2015

27

SDNet broadens Lagopus FPGA’s potential utilization: The
flexible, software-defined hardware design technology

enables agile deployment of differentiated network services.

Determine Packet Processing
Requirements and Functionality

$ ppp -pxFile class_sdnet.px -bus lbus -dw 256 optimizedRTL
Target optimizedRTL completed.

Write SDNet
Functional Specification

Compile SDNet
Functional Specification

Debug SDNet
Functional Specification

Verify Generated RTL

Integrate Packet Processor
in FPGA Design with Vivado

 class:: Tuple[out] { classVLAN :: Section[2] {
 struct{ ...
 DST_MAC : 48, method update ={
 SRC_MAC : 48, L2KEY.VLAN_ID =vlan,
 VLAN_ID : 16, ...
 ETH_TYPE : 16 }
 } method increment_offset = size[];
 }L2KEY; }

Figure 2 — Design flow of the SDNet environment

and an example code snippet of the SDNet speci�ca-
tion. We decided to create a perfect-match �lter that
uses key information from a virtual LAN. With this, we
can accelerate Lagopus’ software data plane on the x86
by of�oading hardware classi�cation to the FPGA NIC.
We can con�gure the �lter entries via a DPDK �ow di-
rector API by injecting �ow entries with the OpenFlow
protocol between Lagopus and the SDN controller.

To implement this strategy, we created a corre-
sponding SDNet functional description as shown in
the Figure 2 code snippet. We then fed the code into
the SDNet compiler, specifying options such as bus
type, bus width and generated RTL type. The compila-
tion completed within a few seconds. The actual code
size of the SDNet functional description was about
250 lines of code. In contrast, the RTL equivalent com-
prised several tens of thousands of code lines. Consid-
ering that we were working under an intense schedule,
we very much appreciated the simplicity of the SDNet
speci�cation. It would have been impossible to design

XCELL SOFTWARE JOURNAL: XCELLENCE WITH SDNET

28

That was quite an accomplishment, given the com-
plexity of the system design. Figure 1 shows the top-level
architecture of the Lagopus FPGA system, which com-
prises four technical software layers, including a soft
FPGA IP bundle: (1) NFV applications; (2) the Lagopus
software switch; (3) a hardware abstraction layer, such
as an application programming interface (API) and Intel’s
Data Plane Development Kit (DPDK), a set of libraries
and drivers for x86 fast packet processing; and (4) the
FPGA NIC IP core suite. The multiple technical layers
can make it dif�cult to trace the source of issues such as
dropped packets and performance degradation, hamper-
ing the ability to debug and immediately isolate faults;
indeed, this is a key challenge for all SDN/NFV architec-
tures. To overcome these dif�culties, we leveraged the
SDNet environment and Xilinx’s Vivado® Design Suite.

We started the design of Lagopus FPGA by deter-
mining our requirements for packet-processing func-
tionality and mapping out a development �ow. Figure 2
shows a general description of the development �ow

Ingress Traffic (rx)

Classifier (SDNet)

Multicore
Processor

DMA Transfer

FPGA

DST DST DST

RAM1

RAM2

RAM3

RAM4

RAMN

RAM5

Processor rx Workload
w/o Lagopus FPGA

W
o

rk
lo

ad

w/ Lagopus FPGA

W
o

rk
lo

ad

#1 #2 #3 #4 #5 #N

Cores

Cores

Flow Dispatcher

#1 #2 #3 #4 #5 #N

Figure 3 — FPGA flow classification and dispatch

imize the feature set, optimize the performance
and lower the power consumption of the Lago-
pus FPGA system. NTT R&D’s leadership in SDN/
NFV and our use of Xilinx’s SDNet development
environment will enable us to bring revolutionary
changes to the telecom and cloud infrastructure.
Toward that end, we continue to refine our design
technique by leveraging a softly defined, repro-
grammable SDNet load module. Dynamic and rapid
modification of the SDNet specification, including
the API, will provide further benefit for us when we
define future platforms. n

REFERENCES

[1] http://lagopus.github.io/

[2] K. Yamazaki, Y. Nakajima, T. Hatano and A. Miyaza-
ki, “Lagopus FPGA: A reprogrammable data plane for
high-performance software SDN switches.” Presented
at Hot Chips 27, August 2015.

and verify such a complicated module in RTL from
scratch given our development time constraints.

For the next step, we integrated the generated RTL
with other peripheral IP on the Vivado Design Suite
by employing a Tool Command Language (Tcl) shell.
Figure 3 shows the integrated SDNet classi�er and our
customized �ow dispatcher, which we targeted to pro-
gram a Xilinx Virtex-7 XC7VX690T FPGA.

Since the classi�ed packet �ow (targeting 32 receive
[rx] DMA queues) can be dispatched ef�ciently with La-
gopus’ software data plane on an x86 multicore CPU, the
integrated FPGA design enables the system not only to
reduce the CPU cycles of the OpenFlow worker threads
of Lagopus, but also to balance the workload on each
core (Figure 3). As a result, we achieved higher-perfor-
mance, 40-Gbps wire-speed software packet processing
with Lagopus FPGA, at a cost of less than 10 percent of
the x86 CPU’s power dissipation, as Figure 4 shows.

The SDNet environment and the Vivado Design
Suite facilitated our project launch, letting us max-

ISSUE 2, FOURTH QUARTER 2015

29

Onboard

Static

PCIe

I/O*

MMCM

BRAM

Logic

Signals

Clocks

GTH

Total: 425 W

Lagopus FPGA design: 7 W

Wattage of Wire-Speed Transmission

CPU #2
115 W (27%)

CPU #1
115 W (27%)

FPGA NIC
19 W (5%)Others

(RAM/HDD etc.)
176 W (41%)

Lagopus FPGA Throughput on Each Frame Size

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

40G Line Rate

4 cores + FPGA, Flow Director=ON

4 cores only, Flow Director=OFF

8 cores + FPGA, Flow Director=ON

4 cores: RX(1C), Worker(2C), TX(1C
8 cores: RX(2C), Worker(5C), TX(1C)

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00
0 200 400 600 800 1000 1200 1400 1600

Frame Size (Bytes)

40-Gbps wire speed
from 384 bytes

* The I/O amount is too small
 to register on the chart.

Total: 42

Lagopus FPGA

Wattage of

CPU #2
115 W (27%) 1

Others
(RAM/HDD

176 W (4

pus FPGA Throughput on Each Frame Size

Rate

FPGA, Flow Director=ON

4 cores only, Flow Director=OFF

8 cores + FPGA, Flow Director=ON

4 cores: RX(1C), Worker(2C), TX(1C
8 cores: RX(2C), Worker(5C), TX(1C)

 200 400 600 800 1000 1200 1400 1600

Frame Size (Bytes)

40-Gbps wire speed0 s p
from 384 byteso 4

Figure 4 — Performance vs. power dissipation

We achieved 40-Gbps wire-speed software packet
 processing with Lagopus FPGA, at a cost of

less than 10 percent of x86 power dissipation.

Delivering
FPGA Vision
to the Masses
NI’s Vision Development Module and
Vision Assistant take machine vision from
idea to prototype to application deployment.

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

30

by Kiran Nagaraj
Senior Software Engineer
National Instruments Corp.
kiran.nagaraj@ni.com

Christophe Caltagirone
Senior Software Engineer
National Instruments Corp.
christophe.caltagirone@ni.com

Dinesh Nair
Chief Architect
National Instruments Corp.
dinesh.nair@ni.com

ISSUE 2, FOURTH QUARTER 2015

31

V
ision systems are going main-
stream. The cost/benefit analy-
sis and possible application of
technology are now at a point
where engineers are design-
ing vision into everything from
autonomous vehicles to con-
sumer-electronics quality inspec-

tion systems. This mass adoption is driving vision out
of the lab, into embedded systems and onto the facto-
ry �oor. The deployed systems often require advanced
synchronization with I/O, many widely distributed
cameras or vision in the control loop. As processes
and applications become more complex, vision sys-
tems are requiring faster and more advanced process-
ing as well as tighter timing and synchronization.

To meet those requirements, vision system designers
are increasingly relying on heterogeneous processing
platforms comprising a combination of real-time pro-
cessors and FPGA, GPU or DSP processing elements
that can handle specialized tasks, I/O requirements and
processing performance needs. Smart cameras, frame
grabbers and vision systems are all leveraging heteroge-
neous architectures to meet application requirements.

The parallel processing capability of FPGAs, such
as those in the Xilinx® All Programmable FPGA line-
up, is a natural fit for implementing many image pro-
cessing algorithms. FPGAs can be used for performing
both data-intensive processing and high-speed sensor
measurements. The devices also have incredibly low
latency, which is critical for vision applications be-
cause latency accounts for the time that elapses until a
decision is made based on the image data. FPGAs can
help avoid jitter and thus serve as highly deterministic
processing units.

Building a heterogeneous system that includes an
FPGA, however, introduces serious programming
challenges for system designers. As time-to-mar-
ket pressures mount, vision system designers need
the ability to prototype a solution with complex
features quickly. Programming on heterogeneous

mailto:kiran.nagaraj@ni.com
mailto:christophe.caltagirone@ni.com
mailto:dinesh.nair@ni.com

parallel streams (for such tasks as latency balancing).
VDM includes more than 50 FPGA image processing
functions as well as functions to transfer images effi-
ciently between the processor and the FPGA. You can
use Vision Assistant within VDM to rapidly prototype
and develop FPGA vision applications.

CONFIGURATION-BASED PROTOTYPING
Vision Assistant is a con�guration-based prototyping
tool that empowers you to iterate on image process-
ing algorithms and see how changes in parameters
affect the image. With Vision Assistant, you can visu-
alize the output (processed image) after every vision
block in an image pipeline (Figure 1). You can use
the tool to test different algorithms and parameters
on different sets of images without having to compile

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

Figure 1 — Vision Assistant with device utilization estimates

32

systems requires a tool that can help the domain
expert design intellectual property (IP) functions
on multiple platforms and test the vision algorithm
before compiling and running the algorithm on the
target hardware. The tool should allow easy ac-
cess to throughput and resource usage information
throughout the prototyping process.

NI refers to this as algorithm engineering: the pro-
cess by which you, the domain expert, can focus on
solving the problem at hand without being preoccu-
pied with the underlying hardware technology. NI’s
Vision Development Module (VDM) with Vision Assis-
tant arms you with that capability.

VDM with Vision Assistant helps in fast prototyping
and code generation, FPGA resources estimation, au-
tomatic code parallelization, and synchronization of

code to ensure that your implementation yields the
same results.

One consideration is which kernel size to use for
an image �ltering operation. The choice of kernel size
affects resource usage and latency in the pipeline,
with a larger kernel usually requiring more resources
than a smaller one.

To select the most appropriate kernel size for
your application, you can use Vision Assistant
to experiment until you achieve the best perfor-
mance in terms of minimal resource consumption
and maximum performance. A real-time estimate of

your IP, thereby greatly reducing the time required to
design your vision algorithm.

NI has customized the tool to handle FPGA pro-
grammers’ requirements. The key concerns when
building any algorithm on an FPGA are resource
consumption on the FPGA fabric, the latency of the
pipeline and the maximum frequency the algorithm
can achieve on a specific fabric. Vision Assistant
helps by providing an estimate of the resources
consumed for each block in the image pipeline. You
can use the tool to test the results of algorithms
in the prototyping environment and the deployed

ISSUE 2, FOURTH QUARTER 2015

33

You can use Vision Assistant to test the results of algorithms
in the prototyping environment and the deployed code

to ensure that your implementation yields the same results.

Figure 2 — Performance meter utility

and the host. The acquisition logic depends on whether
the vision system is based on inline processing or co-
processing. Vision Assistant also helps you create other
VIs, such as the Host VI, which runs on the processor,
and the FPGA VI. You would then compile the FPGA VI
using Xilinx Vivado® tools to generate a bitstream for de-
ployment on the FPGA.

It is important to note that the system that houses the
image processing pipeline can be broadly categorized as
inline processing or coprocessing, depending on where
the acquisition logic resides. In inline processing, the ac-
quisition logic resides on the FPGA; the camera is con�g-
ured using the acquisition logic and the image is processed
on the FPGA. The results and the processed image are
then sent back to the host for evaluation and further anal-
ysis. In coprocessing, the acquisition logic for the camera
resides on the processor. Transferring the image from the
processor to the FPGA and then sending the processed im-
age back from the FPGA to the processor require a �nite
amount of time. You also can partition the processing of
the image pipeline between the processor and the FPGA.

As a developer of a vision system that uses an FPGA,
you need to be aware of the throughput that the FPGA
can achieve. You can use throughput information and
real-time resource estimation to determine how many
functions (IP blocks) you can deploy to the FPGA. In a
coprocessing scenario, the processor performance de-
termines the �nal throughput. This is true when using the
FPGA IP functions that NI ships with the Vision Develop-
ment Module because those functions are fully pipelined
and yield better performance than most processors.

PROTOTYPE TO DEPLOYMENT
The vision FPGA IP of the Vision Development Mod-
ule lets developers use massively parallel processing
and the Xilinx Vivado High-Level Synthesis (HLS) tool
to achieve fully pipelined, low-latency, architecture-op-
timized vision IP on the FPGA. Vision FPGA IP from
NI currently targets three Xilinx FPGA families—
Kintex®-7, Virtex®-5 and Spartan®-6—as well as the Xil-
inx Zynq®-7000 All Programmable SoCs.

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

34

The vision FPGA IP of the
Vision Development Module
lets developers use massively
parallel processing and the
Vivado High-Level Synthesis
tool to achieve fully pipelined,
low-latency, architecture-
optimized vision functions
on the FPGA.
vision IP functions, as in Figure 1, is a useful feature
to have during prototyping.

Running multiple image pipelines in parallel is a
common requirement. Such scenarios dictate that at
the time the pipelines merge into a single pipeline,
the latency of the parallel pipelines must be balanced.
NI provides a synchronization buffer as part of its vi-
sion FPGA IP toolset. Vision Assistant automatically
computes the latencies in the pipeline and ensures
balanced latency at the time that the parallel pipelines
merge to con�gure the synchronization buffer for you.
This guarantees that the FIFOs in the synchronization
buffers have suf�cient depth based on the maximum
latency of the pipelines.

The performance meter utility in Vision Assistant
estimates the maximum time taken for processing
each frame (Figure 2), letting you know the collective
latency of all the blocks in the pipeline. Most of the
processors in NI’s hardware portfolio have a real-time
operating system running on them, so using Vision
Assistant makes it easy to estimate the time required
to execute a vision function.

For those who are new to LabVIEW, it should be
noted that Vision Assistant ensures the creation of a
fully functional project, including all dependencies,
such as transfer virtual instruments (VIs) and DMA
FIFOs, and the image acquisition logic. A VI is similar
to a function or subroutine in other programming lan-
guages. Transfer VIs are required to transfer the image
data between the host/acquisition logic and the FPGA.
DMA FIFOs do not involve the host processor; there-
fore, they are the fastest available method for transfer-
ring large amounts of data between the FPGA target

a single-cycle timed loop (SCTL); using the SCTL
ensures that the modules in the loop clock at a
user-specified frequency.

Figure 3 shows an FPGA VI that depicts the four-
wire protocol and the synchronization buffer to merge
the pixel. The four-wire protocol is designed for algo-
rithms that run in parallel; it improves throughput by
ensuring that the data is processed in a producer-con-
sumer architecture. Further, the four-wire handshake
consumes minimal resources on the FPGA. This is
critical because the protocol constitutes overhead for
the underlying vision functionality.

Vision FPGA IP also gives you the flexibility of
adding custom code within the pipeline to provide
an open environment. The custom code requires a
wrapper VI that has the four-wire handshake imple-
mentation. You can then insert custom code in the im-
age pipeline. You must ensure that the custom code
is fully pipelined; otherwise it might affect the integ-
rity of the pipeline. You can implement your custom

An image can be viewed as a two-dimensional ar-
ray, and operation on an image is mostly matrix-based.
FPGAs’ inherent parallelism enables their high-speed
performance. You can achieve the matrix operations on
the image using loops; you can unroll the loops and take
advantage of the parallelism feature of the FPGA to per-
form several tasks after unrolling. LabVIEW FPGA and
the LabVIEW FPGA IP Builder are the primary tools
developers use to create vision IP on FPGAs.

Vision FPGA IP functions are single-pixel pro-
cessing, so they accept 1 pixel from a pixel stream
and then output 1 pixel. The IP functions interact
with one another using enable-based handshaking
or a four-wire handshaking protocol. The primary
reason for this implementation is that the complex-
ity of the control path increases with the number
of functions in the image pipeline, thus requiring a
seamless handover of data between the functions.
The four-wire protocol ensures lossless data trans-
fer between vision FPGA IP functions placed in

ISSUE 2, FOURTH QUARTER 2015

35

Figure 3 — Internals of the FPGA VI with a synchronization node

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

36

code using LabVIEW, or you can use existing code
in VHDL through an HDL integration node in Lab-
VIEW FPGA.

The vision FPGA IP toolset provides preprocess-
ing functions such as edge detection filters, convo-
lution filters, lowpass filters, gray morphology, bina-
ry morphology and threshold. It also includes vision
IP functions that perform arithmetic and logical
operations, as well as functions that output results
such as the centroid. Another function, the Simple
Edge Tool, finds edges along a line and is useful for
caliper applications. The Quantify function accepts
a masked image as well as the image stream to be
processed and returns a report that has information
about the area, mean and standard deviation of the
regions defined by the masked image. Linear Aver-
age computes the average pixel intensity (mean line
profile) on all or part of the image.

The latest addition to NI’s vision FPGA IP list is
the Particle Analysis Report. You can perform par-
ticle analysis, or blob analysis, to detect connected

regions or groupings of pixels in an image and then
make selected measurements of those regions. With
this information, you can detect flaws on silicon wa-
fers, detect soldering defects on electronic boards
or locate objects in motion control applications.

A unique feature of this IP is that it can detect par-
ticles when the particle information is spread across
two frames. NI ships a Particle Analysis Report ex-
ample with VDM; Figure 4 shows the Host VI with
the image display. This capability is needed in in-
spection systems, where you cannot always ensure
that the objects under inspection are captured in a
single frame.

Nearly 70 percent of NI’s vision FPGA IP func-
tions were developed using the IP Builder, a utili-
ty in LabVIEW FPGA that allows you to code in
graphical code using LabVIEW and then output RTL
code using Vivado HLS. The major advantage of this
approach is that users familiar with graphical cod-
ing can develop the application along with a di-
rective file that states their frequency and latency

Figure 4 — Particle Analysis Report example with retain overlap enabled

ISSUE 2, FOURTH QUARTER 2015

37

requirements. Using LabVIEW IP Builder with Viva-
do HLS generates the appropriate VHDL code. You
can use array-based operations on images, and Viva-
do HLS ensures that, based on the directives set, the
VI will achieve the required frequency of operation
and minimum latency.

Vivado HLS is a good fit for vision development
because it helps abstract algorithmic descriptions
and data-type specifications (integer, fixed-point)
from the generated C code of the IP Builder. It also
generates the necessary simulation models for ear-
ly testing of functionality. The generated architec-
ture-aware VHDL code yields high-quality, highly
repeatable results.

NI is committed to the concept of providing open,
flexible systems with the right software tools to lever-
age them. Developers are designing vision systems
based on heterogeneous architectures into a growing
range of applications. The next frontier for the soft-

ware design of these heterogeneous systems could be
for the compiler or application development engine to
decide intelligently where to deploy the components
of an algorithm, using the capabilities and resources
of the various system components (CPU, GPU and
FPGA) to make that determination.

As more-advanced products and processes push
the limits of what vision systems are asked to do,
application developers will require an effective
prototyping and algorithm development environ-
ment for vision functionality. Providing the right
tools to developers and domain experts will fuel
the next wave of innovation in vision system design
for the masses.

If you are interested in trying out NI’s vision
FPGA IPs, you need to install LabVIEW FPGA and
VDM. You can do so initially for a 30-day evaluation
period and then extend or purchase the license at
ni.com/vision. n

Vivado HLS is a good fit for vision development because it
helps abstract algorithmic descriptions and data-type
specifications from the generated C code of the IP Builder.

Get Published

Interested in adding “published author” to your resume. Submit an article for
publication in Xcell Software Journal! For more information, please contact:

Mike Santarini, Publisher
Xcell Publications, xcell@xilinx.com

www.xilinx.com/xcell/

http://ni.com/vision
http://www.xilinx.com/xcell

A Novel Approach
to Software-Defined
FPGA Computing

QuickPlay’s
high-level workflow
lets software developers
build efficient FPGA-based
applications in no time.

by Stephane Monboisset
Director, QuickPlay Marketing
and Business Development
PLDA
smo@quickplay.io

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

38

mailto:smo@quickplay.io

With the rise of the Internet of Things and Big Data pro-
cessing, the need for transferring and processing data
has skyrocketed, and CPUs alone can no longer address
the exponential increase. Adding more processors and
more virtual machines to run a given application just
doesn’t cut it, as there is only so much that can be
parallelized on multiple CPUs for a given application.
Field-programmable gate arrays, on the other hand,
have the requisite I/O bandwidth and processing power,
not only from a pure processing standpoint but, equal-
ly important, from a power standpoint. For data-center
equipment manufacturers, the use of FPGAs has long
been an appealing prospect. Intel’s recent acquisition
of the second-largest FPGA vendor is further testament
that a CPU-only solution no longer suf�ces.

The major roadblock to more-widespread FPGA
adoption has been the complexity of implementing
them. Until now, the only way to develop an application
on an FPGA-based platform has been to deal with some
of the lowest levels of hardware implementation. This
has kept a large potential customer base—software de-
velopers—away from the devices and has made life in-
creasingly complicated for traditional FPGA designers.

Recent methodologies for FPGA design, centered on
high-level synthesis (HLS) tools and leveraging software
programming languages such as OpenCL™, C and C++,
have provided a sandbox for software developers to reap
the benefits of FPGA-based hardware acceleration in
numerous applications. But the methodologies often fall
short in one essential respect: enabling software develop-
ers to define and configure, on their own, the hardware
infrastructure best suited for their application. The indus-

ISSUE 2, FOURTH QUARTER 2015

39

try has continued to pursue the holy grail of a high-level
workflow for implementing applications on FPGA-based
platforms that does not require specific FPGA expertise.

Over the past five years, PLDA has developed just
such a workflow. Called QuickPlay, it efficiently ad-
dresses the implementation complexity challenge and
enables multiple use models for FPGA development.
But one of its core sources of value is the way in which
it lets software developers take applications intended
for CPUs and implement them, partially or fully, on
FPGA hardware. QuickPlay leverages all of the FPGA
resources, turning these powerful but complex devices
into software-defined platforms that yield the benefits
of FPGAs without the pain of hardware design.

Consider a software algorithm that can be broken
down into two functions: Data is processed into one
function and is then sent to another for further process-
ing. From a software perspective, this implementation
is as simple as a call to Function1() followed by a sep-
arate call to Function2(), using pointers to the location
of the data to be processed.

Implementing such an algorithm on an FPGA-based
hardware platform without the right hardware abstrac-
tion tool flow would require the software developer
to come up with a hardware design resembling that in
Figure 1 (where Kernel 1 and Kernel 2 are the respective
hardware implementations of Function 1 and Function 2).
The hardware design would need to include two elements:
the control plane and the data plane.

The control plane is the execution engine that gener-
ates clocks and resets, manages system startup, orches-
trates data plane operations, and performs all housekeep-
ing functions. The data plane instantiates and connects
the processing elements, Kernel 1 and Kernel 2, as well
as the necessary I/O interfaces required to read data in
and write processed data out. In our example, those in-
terfaces are Ethernet and PCI Express (PCIe), as Figure
1 shows, though different application requirements will
call for different I/O interfaces.

A software developer could easily generate Kernel 1
and Kernel 2 using an HLS tool that compiles the

W

an experienced hardware designer weeks to achieve a
working design on a new piece of FPGA hardware.

Thus, any tool that aims to enable software devel-
opers to augment their applications with custom hard-
ware must be able to:

• create functional hardware from pure software code;

• incorporate existing hardware IP blocks if needed;

• infer and create all of the support hardware (inter-
faces, control, clocks, etc.);

• support the use of commercial, off-the-shelf boards
and custom platforms;

• ensure that the generated hardware is correct by
construction so that it requires no hardware debug;
and

• support debug of functional blocks using standard
software debug tools only.

CLOCK
DOMAINS

CLOCKS and RESETS

PCIeEthernet Kernel 1 Kernel 2

CONTROL

Switches

Buttons

UART

FLASH

LED

ETH

Ethernet
clkrst_eth

PCIe
Interfaces
USB UART FLASH TimeStamp

UART
FLASH

TimeStamp
Kernel 1
clkrst_axi_k1

PCIe
clkrst_pcie

System
clkrst_system

Kernel 2
clkrst_axi_k2

Kernels
 K1 K2

io_switches

System

io_buttons

io_uart

io_flash

io_led

io_pcieio_eth

io_clkrst
clkrst_eth

clkrst_pcie

clkrst_eth clkrst_pcie

clkrst_system

clkrst_axi

clkrst_axi

clkrst_timeS
tamp

clkrst_flash

clkrst_uart

clkrst_usb

clkrst_pcie

clkrst_eth

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

Figure 1 — A detailed hardware implementation of a two-function algorithm using traditional FPGA tools

QuickPlay leverages all of the FPGA resources, turning
these powerful but complex devices into software-defined
platforms that yield the benefits of FPGAs without the
pain of hardware design.

40

software functions Function1() and Function2(), typi-
cally written in C or C++, into FPGA hardware descrip-
tions in VHDL or Verilog, without requiring specific
hardware expertise. Every other element in the design
that is not algorithmic in nature (interfaces, control,
clocks and resets), however, could not be generated
with HLS tools, and hardware designers would have to
design them as custom hardware description language
functions or IP. The job of sourcing those elements and
connecting them poses yet another challenge, as some
elements may not be readily available or may have dif-
ferent interfaces (type and size), clocking requirements,
specific startup sequences and so on.

Beyond the design work—and equally challenging—is
the implementation work, which includes mapping the
design onto the resources of the selected FPGA platform,
generating the appropriate constraints, and confirming
that those constraints are met after logic synthesis and
implementation on the FPGA hardware. It can take even

form level, and thus would defeat the purpose of a tool
aimed at abstracting hardware to software developers.

QuickPlay uses an intuitive dataflow model that
mathematically guarantees deterministic execution, re-
gardless of the execution engine. The model consists
of concurrent functions, called kernels, communicating
with streaming channels. It thus correlates well with
how a software developer might sketch an application
on a whiteboard. To guarantee deterministic behavior,
the kernels must communicate with each other in a way
that prevents data hazards, such as race conditions and
deadlocks. This is achieved with streaming channels
that are (1) FIFO-based, (2) blocking read and blocking
write, and (3) point-to-point.

Those are the characteristics of a Kahn Process Net-
work (KPN), the computation model on which PLDA
built QuickPlay. Figure 2 shows a QuickPlay design ex-
ample illustrating the KPN model.

The contents of any kernel can be arbitrary C/C++
code, third-party IP or even HDL code (for the hard-
ware designers). QuickPlay then features a straightfor-
ward design �ow (Figure 3).

Let’s take a closer look at each step of the QuickPlay
design process.

Step 1: Pure software design. At this stage you create
your FPGA design by adding and connecting processing
kernels in C and by specifying the communication chan-
nels with your host software. QuickPlay’s Eclipse-based
integrated development environment (IDE) provides a C/
C++ library with a simple API to create kernels, streams,
streaming ports and memory ports, and to read and write
to and from streaming ports and memory ports.

PLDA engineered QuickPlay from the ground up to
meet all of those requirements, thereby enabling pure soft-
ware developers to specify, build and integrate FPGAs into
their software architectures with minimal effort.

SOFTWARE-CENTRIC METHODOLOGY
The overall process of implementing a design using
QuickPlay is straightforward:

1. Develop a C/C++ functional model of the hardware
engine.

2. Verify the functional model with standard C/C++
debug tools.

3. Specify the target FPGA platform and I/O interfaces
(PCIe, Ethernet, DDR, QDR, etc.).

4. Compile and build the hardware engine.

The process seems simple; but if it is to work seam-
lessly, it is critical that the generated hardware engine
be guaranteed to function identically to the original
software model. In other words, the functional model
must be deterministic so that, no matter how fast the
hardware implementation runs, both hardware and
software executions will yield the exact same results.

Unfortunately, most parallel systems suffer from
nondeterministic execution. Multithreaded software
execution, for example, depends on the CPU, on the OS
and on nonrelated processes running on the same host.
Multiple runs of the same multithreaded program can
have different behaviors. Such nondeterminism in hard-
ware would be a nightmare, as it would require debug-
ging the hardware engine itself, at the electrical wave-

ISSUE 2, FOURTH QUARTER 2015

41

DATA_IN_1

DATA_IN_2

KERNEL_1
KERNEL_1_1

DATA_IN_0 DATA_OUT_1

DATA_OUT_2

KERNEL_2
KERNEL_2_1

DATA_IN DATA_OUT

IN_1

MERGE
IN_0 OUT_0

KERNEL_3
KERNEL_3_1

DATA_IN_1 DATA_OUT

M
E
M
_P

O
R
T

DATA_IN_2

MEMORY
MEMORY_1

DATA_OUT

Figure 2 — A design example in QuickPlay

you are done with this debug phase and have �xed
all functional issues, you will not need any further
debugging at the hardware level.

It’s important to remember that the functional
model involves none of the hardware infrastruc-
ture elements. In the example above, the focus is
on a simple, two-function model; none of the sys-
tem aspects added in Figure 1 (such as the commu-
nication components, the control plane, and clock-
ing and resets) are in play during this modeling and
verification phase.

Step 3: Hardware generation. This step generates
the FPGA hardware from your software model. It in-
volves three simple actions:

1. Using a drop-down menu in the QuickPlay GUI,
select the FPGA hardware into which you want to
implement your design. QuickPlay can implement
designs on a growing selection of off-the-shelf boards

XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

42

In addition, the QuickPlay IDE provides an intuitive
graphical editor that allows you to drag and drop ker-
nels and other design elements and to draw streams.

Step 2: Functional veri�cation. In this step, the fo-
cus is on making sure that the software model written
in Step 1 works correctly. You do this by compiling the
software model on the desktop, executing it with a test
program that sends data to the inputs, and verifying
the correctness of the outputs. The software model of
the FPGA design is executed in parallel, with a distinct
thread for each kernel to mimic the parallelism of the
actual hardware implementation.

You would then debug your software model using
standard software debug techniques and tools such
as breakpoints, watchpoints, step-by-step execution
and printf. (You will probably want to run more tests
once the implementation is in hardware; we’ll deal
with that shortly.) From a design �ow standpoint,
this is where you do all of your veri�cation. Once

void Main (qplStream & data_in, qpOStream &data_out) {
 qpCreateStream(st1, st2, st3, st4, st5);
 qpCreateKernel(“kernel_1”, kernelFunction(function_1), data_in, st1);
 qpCreateKernel(“kernel_2”, kernelFunction(function_2), st1, st2, st3, void* mem);
 ...
}
void function_1 (qplStream & data_in, qpOStream &data_out) {
 double matrix[1024];
 unsigned int i;
 qpReadStream(data_in,matrix,1024);
 for (i=0; i<1024; i++)
 matrix[i] *= matrix[i-1];
 qpWriteStream(data_out,matrix, 1024,true);
}

QuickPlay Compilation and Execution Flow

User Code

Tool Chain

Executables

Hardware

Front End

FPGACPU

C/C++ Compiler

Kernel Kernel

Kernel

Kernel

Kernel

Memory

FPGA Bitstreamx86 Executable

Back End

VHDL Verilog

Figure 3 – QuickPlay features a straightforward design flow.

3. Launch the build process. This will run the HLS engine
(creating hardware from C code), create the needed sys-
tem hardware functions (the control plane logic in our orig-
inal example) and run any other tools necessary (for ex-
ample, Xilinx’s Vivado® integrated design environment) to
build the hardware images that the board will require. No
manual intervention is required to complete this process.

Step 4: System execution. This is similar to the exe-
cution of the functional model in Step 2 (functional veri-
�cation), except that now, while the host application still
runs in software, the FPGA design runs on the selected
FPGA board. This means that you can stream real data in
and out of the FPGA board and thereby bene�t from ad-
ditional veri�cation coverage of your function. Because

that feature leading-edge Xilinx® All Programmable
FPGAs, PCIe 3.0, 10-Gbit Ethernet, DDR3 SDRAM,
QDR2+ SRAM and more.

2. Select the physical interfaces (and therefore the
protocols) to map to the design input and output
ports. These are also simple menu selections. The
choice will depend on the interfaces that are avail-
able on the FPGA board you have selected, such as
PCIe, TCP/IP over 10-Gbit Ethernet and UDP over 10-
Gbit Ethernet. Selecting the communication protocol
automatically invokes not only the hardware IP block
required to implement the connection, but also any
software stacks layered over it, so that the complete
system is created.

ISSUE 2, FOURTH QUARTER 2015

43

io_pcie

CLOCK
DOMAINS

CLOCKS and RESETS

PCIeEthernet Kernel 1 Kernel 2

CONTROL

Switches

Buttons

UART

FLASH

LED

ETH
Interfaces

Ethernet
clkrst_eth

PCIe USB UART FLASH TimeStamp

UART
FLASH

TimeStamp
Kernel 1

clkrst_axi_k1
PCIe

clkrst_pcie
System

clkrst_system
Kernel 2

clkrst_axi_k2

Kernels
 K1 K2

io_switches

System

io_buttons

io_uart

io_flash

io_led

io_eth

io_clkrst
clkrst_eth

clkrst_pcie

clkrst_eth clkrst_pcie

clkrst_system

clkrst_axi

clkrst_axi

clkrst_timeStamp

clkrst_flash

clkrst_uart

clkrst_usb

clkrst_pcie

clkrst_eth

TimeStamp io_timestamp

DEBUG and MONITORING

Ethernet
Hosting

PCIe
Hosting

board signals
clock & reset signals
axi-stream - functional data
axi-stream - debug data
axi-lite - control

Master Slave

Figure 4 — The debug infrastructure is automatically created.

Once you are done with the software debug phase and
have fixed all functional issues, you will not need any further

debugging at the hardware level.

 XCELL SOFTWARE JOURNAL: XCELLENT ALLIANCE

44

this will run so much faster, and because you can use live
data sources, you are likely to run many more tests at
this stage than you could during functional veri�cation.

Step 5: System debug. Because you’re running so
many more tests now than you were doing during the
functional veri�cation phase, you’re likely to uncover
functional bugs that weren’t uncovered in Step 2. So
how do you debug now?

As already noted, you never have to debug at the
hardware level, even if a bug is discovered after
executing a function in hardware. Because Quick-
Play guarantees functional equivalence between
the software model and the hardware implementa-
tion, any bug in the hardware version has to exist
in the software version as well. This is why you
don’t need to debug in hardware; you can debug
exclusively in the software domain.

Once you have identi�ed the test sequence that
failed in hardware, QuickPlay can capture the se-
quence of events at the input of the design that gen-
erated the faulty operation and replay it back into
the software environment, where you can now do
your debug and identify the source of the bug using
the Eclipse debugger.

This is possible because QuickPlay automatically
provisions hardware with infrastructure for observ-
ing all of the critical points of the design. You can
disable this infrastructure to free up valuable hard-
ware real estate. Figure 4 shows the example sys-
tem with added debug circuitry. Without QuickPlay,
some sort of debug infrastructure would have to be
inserted and managed by hand; with QuickPlay, this
all becomes automatic and transparent to the soft-
ware developer.

The overall process is to model in software, then
build the system and test in hardware. If there are
any bugs, import the failing test sequences back
into the software environment, debug there, �x the
source code and then repeat the process. This rep-
resents a dramatic productivity improvement over
traditional �ows.

Step 6 (optional): System optimization. Once you
have completed the debug phase, you have a functional
design that operates on the FPGA board correctly. You
may want to make some performance optimizations,
however, and this is the proper time to do that, as you
already know that your system is running correctly.

The �rst optimization you should consider is to re�ne
your functional model. There are probably additional
concurrency opportunities available; for example, you
might try decomposing or refactoring functions in a dif-
ferent way. At this level, optimizations can yield spec-
tacular performance improvements. Needless to say,
doing so with a VHDL or Verilog design would require
signi�cant time, whereas doing the modi�cations in C
would be a quick and straightforward process.

Second, you may want to try a different FPGA board
with a faster FPGA. Because the mapping from the func-
tional model to the board is so easy, it’s a simple matter to
try a variety of boards in order to select the optimal one.

The third optimization has to do with the hard-
ware kernels that QuickPlay creates via high-level
synthesis. While the resulting hardware is guaran-
teed to operate correctly and ef�ciently, it may not
operate as ef�ciently as hardware handcrafted by
a hardware engineer. At this stage, you have sev-
eral options: You can optimize your code and tune
QuickPlay HLS settings to improve the generated
hardware, use Vivado HLS to generate more-ef�-
cient hardware, or have a hardware designer hand-
craft the most critical blocks in HDL.

None of these optimization steps is mandatory, but
they provide options when you need better-performing
hardware and have limited hardware design resources
available. A hardware engineer may be able to help with
these optimizations. Once you have made any of these
changes, simply repeat the build process.

A UNIVERSAL STREAMING CONDUIT
QuickPlay provides a universal streaming API that
entirely abstracts away the underlying physical com-
munication protocol. Streaming data is received via
the ReadStream() function and is sent out using the

As a result of the abstraction that QuickPlay provides, the
algorithms remain pure, focused solely on data manipulation
and independent of the underlying communication details.

ISSUE 2, FOURTH QUARTER 2015

45

WriteStream() function. Those functions can be used to
send and receive data between kernels, to embedded or
board-level memory, or to an embedded or external host
CPU, thus providing broad architectural �exibility with
no need for the developer to comprehend or manage the
underlying low-level protocols.

The selected protocol determines the hardware through
which that data arrives and departs. At present, QuickPlay
supports ARM® AMBA® AXI4-Stream, DDR3, PCIe (with
DMA) and TCP/IP; more protocols are being added and
will be added as demand dictates. Selecting the desired
protocol sets up not only the hardware needed to imple-
ment the protocol, but also the software stacks required to
support the higher protocol layers, as shown in Figure 5.

QuickPlay manages the exact implementation of these
reads and writes (size, alignment, marshaling, etc.). The
most important characteristic of the ReadStream() and
WriteStream() statements is that they are blocking: When
either statement is encountered, execution will not pass
to the next statement until all of the expected data has
been read or written. This is important for realizing the
determinism of the algorithm.

The “binding” between the generic ReadStream() and
WriteStream() statements and the actual underlying
protocol hardware occurs at runtime via the QuickPlay
Library. This not only prevents the communication de-
tails from cluttering up the software program, but also
provides modularity and portability. The communication
protocol can easily be changed without requiring any

changes to the actual kernel code or host software.
The ReadStream() and WriteStream() statements will
automatically bind to whichever protocol has been se-
lected, with no effect on program semantics.

As a result of the abstraction that QuickPlay provides,
the software algorithms remain pure, focusing solely on
data manipulation in a manner that’s completely inde-
pendent of the underlying communication details.

PRODUCTION-QUALITY OUTPUT
Depending on the HLS tool being used, results might be
improved by learning coding styles that result in more ef-
ficient hardware generation, but that is optional.

While in other situations the hardware platform
you use may be viewed simply as a prototyping vehi-
cle, the systems you create using QuickPlay are pro-
duction-worthy. Going from a purely software imple-
mentation to a hardware-assisted or hardware-only
implementation traditionally takes months. QuickPlay
reduces that time to days.

The QuickPlay methodology achieves the long-
sought goal of allowing software engineers to cre-
ate hardware implementations of all or portions of
their application. By working in their familiar do-
main, software engineers can make use of custom
hardware as needed, automatically generating hard-
ware-augmented applications that operate more ef-
ficiently and can be production-ready months ahead
of handcrafted designs. n

Universal Streaming C/C++ API - ReadStream() and WriteStream()

Software Stacks Hardware Stacks

TCP/IP SocketDMA API

Host NIC

PCIe Driver

Host PCIe Link

TCP/IP Socket

NIC Driver DDR3 Controller IP

AXI4-Streaming IP AXI4-Streaming IP AXI4-Streaming IP

TCP/IP IP PCIe DMA IP

PCIe

FPGA FPGA FPGA

DDR3 Memory

10GbE

Figure 5 — Selecting the desired protocol sets up the required hardware and software stacks.

http://www.quickplay.io

SDSOC™ DEVELOPMENT ENVIRONMENT
The SDSoC environment provides a familiar embedded
C/C++ application development experience, including
an easy-to-use Eclipse IDE and a comprehensive design
environment for heterogeneous Xilinx All Programma-
ble SoC and MPSoC deployment. Complete with the
industry’s �rst C/C++ full-system optimizing compiler,
SDSoC delivers system-level pro�ling, automated soft-
ware acceleration in programmable logic, automated
system connectivity generation and libraries to speed
programming. It lets end-user and third-party platform
developers rapidly de�ne, integrate and verify sys-
tem-level solutions and enable their end customers with
a customized programming environment.

• SDSoC Backgrounder (PDF)

• SDSoC User Guide (PDF)

• SDSoC User Guide: Getting Started (PDF)

• SDSoC User Guide: Platforms and Libraries (PDF)

• SDSoC Release Notes (PDF)

• Boards, Kits and Modules

• SDSoC Video Demo

• Buy/Download

SDACCEL™ DEVELOPMENT ENVIRONMENT
The SDAccel environment for OpenCL™, C and C++
enables up to 25x better performance/watt for data
center application acceleration leveraging FPGAs. A
member of the SDx family, the SDAccel environment
combines the industry’s �rst architecturally optimiz-
ing compiler supporting any combination of OpenCL,

Xtra, Xtra

XCELL SOFTWARE JOURNAL: XTRA, XTRA

46

C and C++ kernels, along with libraries, development
boards, and the �rst complete CPU/GPU-like develop-
ment and run-time experience for FPGAs.

• SDAccel Backgrounder

• SDAccel Development Environment: User Guide

• SDAccel Development Environment: Tutorial

• Xilinx Training: SDAccel Video Tutorials

• Boards and Kits

• SDAccel Demo

SDNET™ DEVELOPMENT ENVIRONMENT
The SDNet environment, in conjunction with Xilinx
All Programmable FPGAs and SoCs, lets network engi-
neers de�ne line card architectures, design line cards
and update them with a C-like environment. It enables
the creation of “Softly” De�ned Networks, a technolo-
gy dislocation that goes well beyond today’s Software
De�ned Networking (SDN) architectures.

• SDNet Backgrounder — Xilinx

• SDNet Backgrounder — The Linley Group

• SDNet Demo

SOFTWARE DEVELOPMENT KIT (SDK)
The SDK is Xilinx’s development environment for
creating embedded applications on any of its micro-
processors for Zynq®-7000 All Programmable SoCs
and the MicroBlaze™ soft processor. The SDK is the
�rst application IDE to deliver true homogeneous- and
heterogeneous-multiprocessor design and debug.

• Free SDK Evaluation and Download n

Xilinx® is constantly refining its software and updating its
training and resources to help software developers design
innovations with the Xilinx SDx™ development environments
and related FPGA and SoC hardware platforms. Here is list of
additional resources and reading. Check for the newest
quarterly updates in each issue.

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1027-intro-to-sdsoc.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDIQFjADahUKEwivgNfe26THAhVQVogKHeNtAMg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_2%2Fug1028-sdsoc-getting-started.pdf&ei=QdnLVe_bNtCsoQTj24HADA&usg=AFQjCNHDUjd2MQOq6Etk8Wjmc_Gw8lpE5g&sig2=mdwSmuNMQjPtmtdVhwKmMg
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwivgNfe26THAhVQVogKHeNtAMg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_2%2Fug1146-sdsoc-platforms-and-libraries.pdf&ei=QdnLVe_bNtCsoQTj24HADA&usg=AFQjCNHat4P7zKUjvvgfYC8jx1L31jnJXA&sig2=-NgXI6QR8PbuBT6NRXZz4g
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug1185-sdsoc-release-notes.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#boardskits
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QtwIwAGoVChMI4ZK3w9-kxwIVi5aICh3ARwKF&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSiOXTJ8IkJA&ei=Ot3LVeGNHoutogTAj4moCA&usg=AFQjCNE6UzbgVHtr_M3xP_KEGb-xq2_fyw&sig2=Wc7H7Ava48xpUhrXsXEoaA
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#buy
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1023-sdaccel-user-guide.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCUQFjABahUKEwj9-bSt3aTHAhUPWYgKHTI3Axg&url=http%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fsw_manuals%2Fxilinx2015_1%2Fug1021-sdaccel-tutorial.pdf&ei=89rLVb20G4-yoQSy7ozAAQ&usg=AFQjCNGkFZXlkUes4LWkg6YC1R7FFCt_dg&sig2=Q0EyT6IZpSjK7v1iCDAP-Q
http://www.xilinx.com/training/sdaccel/
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#boardskits
https://www.youtube.com/watch?v=h0EwiBycNss
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/publications/prod_mktg/sdnet/backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/linley-group-sdnet-wp.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html

This year’s
best release.

The definitive resource for software developers speeding
C/C++ & OpenCL code with Xilinx SDx IDEs & devices
The Award-winning Xilinx Publication Group is rolling out a brand new trade journal specifically for the
programmable FPGA software industry, focusing on users of Xilinx SDx™ development environments and
high-level entry methods for programming Xilinx All Programmable devices.

This is where you come in.
Xcell Software Journal is now accepting reservations for advertising opportunities in this new, beautifully
designed and written resource. Don’t miss this great opportunity to get your product or service into the
minds of those who matter most. Call or write today for your free advertising packet!

For advertising inquiries (including calendar and advertising rate card), contact xcelladsales@aol.com
or call: 408-842-2627.

Solutions
for a

Progammable
World

Xcell Publications

http://www.xilinx.com/xcell

n ArrayFire uses Xilinx SDAccel for real-time video image feature detection at SC15

n Adam Taylor’s MicroZed Chronicles, Part 108: Creating our hardware definition for SDSoC

n Adam Taylor starts new SDSoC design article series on Embedded.com

n Zynq-based Red Pitaya Open Instrumentation Platform adds simplified Visual Programming language for beginners

n Xilinx System Generator 2015.3: MathWorks’ HDL Coder integration means you can tweak performance but keep “easy to use”

https://forums.xilinx.com/t5/Xcell-Daily-Blog/ArrayFire-uses-Xilinx-SDAccel-for-real-time-video-image-feature/ba-p/667188
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-s-MicroZed-Chronicles-Part-108-Creating-our-hardware/ba-p/665756
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Adam-Taylor-starts-new-SDSoC-design-article-series-on-Embedded/ba-p/664749
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Zynq-based-Red-Pitaya-Open-Instrumentation-Platform-adds/ba-p/662421
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Xilinx-System-Generator-2015-3-MathWorks-HDL-Coder-integration/ba-p/659698
http://www.forums.xilinx.com/t5/Xcell-Daily/bg-p/Xcell

	p04-05_TOC
	p06-15_02_Cover Story
	p16-22_02_XSDSoC_Taylor
	p24-29_XSDNet_Yamazaki
	p38-45_02_XA_PLDA

