Issue 14. Third Quarter 1994 THE QUARTERLY JOURNAL FOR XILINX PROGRAMMABLE LOGIC USERS The Programmable Logic CompanySM ## Inside This Issue: ### **GENERAL** | From the Fawcett: | |---------------------------------| | Wanted: User Feedback 2 | | Guest Editorial: Lowering High- | | Density PLD Costs 3 | | Customer Success Story 5 | | New Product Literature6 | | Upcoming Events | | Financial Results 7 | | Advanced Training Sessions9 | | Component Availability Chart 10 | | Development Systems Chart11 | | Alliance Program Chart12 | | Alliance Contact Chart | | XC7200 Programming Support 14 | | XC1700 Programming Support 15 | #### **PRODUCTS** | World's First 5 ns EPLDs | 16 | |-------------------------------|----| | Quad Flat Packs for EPLDs | | | New FPGA Technology | 17 | | HardWire LCA Update: | 18 | | Third Price Reduction of 1994 | | #### **DEVELOPMENT SYSTEMS** | EPLDs & Synopsys Logic Synthesis 20 | | |-------------------------------------|--| | Previewing the Next XACT Release 22 | | | PAL to EPLD Conversions | | | Improved Synopsys Libraries 24 | | | Features Added to Viewsynthesis 25 | | | XACT 5.0 Place & Route | | #### **HINTS & ISSUES** | Controlling PPR Run Times | 27 | |----------------------------------|----| | ast Integer Multipliers in FPGAs | 28 | | High-Performance EPLD Designs | | | Meeting PCI Compliance | | | Handling Large PROM Files | 34 | | Mixed FPGA Daisy Chains | 35 | | KC3100 Breaks 300-MHz Barrier | 36 | | nexpensive Voltage Sensor | | | XACT 5.0 Software Documentation | | | Questions & Answers 38- | 39 | | AX Response Form | 40 | ## **GENERAL FEATURES** ## Lowering PLD Costs Marketing vice president Chuck Fox examines the factors driving PLD price reductions... See Page 3 ## PRODUCT INFORMATION New Product: ## The 5 ns EPLD Introducing the first EPLDs with 5 ns pin-to-pin timing... See Page 16 ## **DESIGN TIPS & HINTS** ## Multipliers in FPGAs How to implement a fast integer multiplier in an FPGA... See Page 17 ## Meeting PCI Compliance PCI-compliant EPLDs can implement bus interfaces and bridges... See Page 21 ## **WANTED: User Feedback** By BRADLY FAWCETT ◆ Editor **66**One observer noted that Xilinx support was being actively touted in more than 25 CAE vendors' exhibits. The 31st annual Design Automation Conference (DAC) was held in San Diego in early June. Although I did not attend personally, Xilinx sponsored a booth and sent various research and development, applications engineering, marketing, and sales personnel to attend the show. I chatted with a few of them when they returned, and can report that some recurring themes of importance to programmable logic users and vendors were evident at the conference. The market growth of programmable logic has attracted a lot of attention from CAE tool suppliers. Five years ago, the DAC exhibit floor was a mixture of CAE and custom silicon suppliers, with the emphasis almost entirely on gate array and custom cell design. Now, gate array and custom cell design. Now the tool vendors are still there, but you have to look harder have to look harder to find the gate array manufacturers, and Xilinx wasn't the only programmable logic vendor present on the floor. More significantly, many of the CAE companies were emphasizing their programmable logic design tools, including major suppliers such as Mentor Graphics, Cadence Design Systems, and Synopsys. One observer noted that Xilinx support was being actively touted in more than 25 CAE vendors' exhibits. Our thanks to the many visitors who stopped by our booth at DAC. It was gratifying to see the high level of interest in our products, particularly the recently-released XC4025 FPGA. Not surprisingly, one recurring theme both on the exhibit floor and in the technical program was the control of design flows and tool interoperability. The pendulum seems to have swung away from the large front-to-back-end tool sets that were pervasive in the 1980s and fueled the growth of companies like Mentor Graphics and Daisy. Instead, it has swung toward the collections of "point tools" offered by several suppliers. Naturally, design engineers facing productivity and time-to-market pressures want to use the best tool available for each design task, but want those tools to work together in a smooth, easy-to-use development flow. Design flow managers from companies such as Data I/O, Mentor Graphics, and Intergraph were receiving a lot of attention on the exhibit floor. Tool interoperability and design flows have been a subject of great interest to Xilinx since the introduction of our first interface to a thirdparty schematic editor in 1987. Since then, our design environment has always been "open," in that we rely on third-party CAE vendors to provide design entry and simu- lation tools, and assist them in establishing links to our architecture-specific "place-and-route" implementation programs. This process was formalized about five years ago with the formation of our Alliance Program, which currently boasts more than 30 member companies (see the chart on page 12). XCELL Please direct all inquiries, comments and submissions to: Editor: Bradly Fawcett Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 **Phone:** 408-879-5097 FAX: 408-879-4676 E-Mail: brad.fawcett@xilinx.com ©1994 Xilinx Inc. All rights reserved. XCELL is published quarterly for customers of Xilinx, Inc. Xilinx, the Xilinx logo and XACT are registered trademarks; all XC-designated products, UIM, HardWire and XACT-Performance are trademarks; and "The Programmable Logic Company" is a service mark of Xilinx, Inc. All other trademarks are the property of their respective owners. Continued on page 8 #### **GUEST EDITORIAL** ## Lowering High-Density PLD Costs by CHUCK FOX, Vice-President of Product Marketing Industry experts project that the programmable logic market will grow another 30 to 35 percent in 1994. The reason is simple — all things being equal, designers would rather have the flexibility of programmable logic than the rigidity of mask-programmed logic in implementing their designs. Of course, all things aren't equal. High-density PLDs are more expensive, less dense, and typically offer lower performance than mask-programmed gate arrays. PLD manufacturers such as Xilinx are aggressively narrowing these gaps in all three areas. However, of the three, we believe that cost is the most important factor in expanding the use of high-density programmable logic. By reducing programmable logic prices, the incentive for implementing designs in mask-programmed gate arrays is removed. PLD price reductions are driven by three factors: - · New submicron wafer-process technologies. - Higher volumes resulting in improved manufacturing efficiency. - · New device architectures. New submicron wafer-process technologies reduce the cost of the silicon very quickly, allowing substantial price reductions to continue. Perhaps more significantly, existing Xilinx PLD architectures will decrease in price faster than their equivalentdensity mask-programmed counterparts. The largest component of cost for large PLDs is the silicon (die size). This is not true of the mask-programmed device (Figure 1). For example, at 5,000 gates, the silicon cost of a PLD constitutes over 80 percent of the overall cost to produce. However, for a 5,000-gate maskprogrammed gate array, the silicon cost is a very small part of the manufacturing 66 Unlike programmed devices, PLDs benefit from manufacturing economies-of-scale..." #### **GUEST EDITORIAL** Continued from page 3 density points like these will change the way logic design is done by the end of the decade. costs (less than 10 percent); the die size is small enough that the package/assembly and test costs dominate. Converting to 0.6 micron may cut both die sizes in half, but will have a much greater cost reduction effect on the programmable device. Thus, new submicron technology will narrow the cost gap with mask programmed devices. The effect is even more pronounced at higher gate densities. Increasing production volumes also lower PLD costs. Unlike mask-programmed devices, PLDs benefit from manufacturing economies-of-scale because they are standard products. No factory customization is required. This allows fixed costs — largely associated with equipment for packaging and testing — to be amortized over an increasingly large volume of standard parts, reducing the per unit cost-to-manufacture. The third significant factor driving PLD cost reduction is *new architecture development*. Xilinx is actively pursuing new product developments that will increase the number of programmable gates per area of silicon. These increases in "gate efficiency" will greatly accelerate FPGA price-performance. The combined result of these three factors will be astounding. We can project what the future will bring by looking at what we've already done (Figure 2). In 1985, volume pricing for a 1,000-gate device was hundreds of dollars; today that same device costs a few dollars. At that time, the largest device we could provide was 1,000 gates. Today, for the same "hundreds of dollars" price, we can provide 25,000 gates. In 1990, a 10,000 gate device in ceramic packaging (XC4010) cost almost \$1,000; today, the XC4010D device in PLCC84 (plastic) packaging is well under \$100 in high volume. So what's possible by the year 2000 (only 5+ years away): - 20,000-gate FPGAs for < \$5 - 100,000-gate FPGAs for < \$50 - FPGAs with over 200,000 gates Price and density points like these will change the way logic design is done by the end of the decade. With ample capacity in advanced submicron process technology and increasing R&D investment in new products, our users stand to benefit greatly. Take a look at today's prices, and ask for 1995 price projections. You might be surprised at what you find out! ## Silicon Graphics Counts on FPGA Synthesis Silicon Graphics, Inc. (SGI) excels in the design and production of high performance, graphical workstations. Their advanced
image-processing and visualization techniques have made them a market leader. The company is extremely innovative, and strives to stay on the cutting edge of technology. In order to remain a technology leader, SGI must design creative solutions and get products to market quickly. Xilinx has been able to aid SGI in meeting this goal during the development of the Sirius Video Card. Recently, SGI's Advanced Graphics Division developed a high-end video card to produce broadcast-quality digital video effects. This card allows multiple video-production-related applications to coexist on a single hardware platform, replacing the need for a \$200,000 cluster of video effect boxes. The card is a \$25,000 option for the SGI Onyx Reality Engine, the company's flagship product. A team of six SGI engineers was given eight months to develop the card, based on a previous design which consisted of more than 70 PALs. The PAL count was expected to rise to 200 once the additional required functions were added. Kirk Law, Video Hardware Manager, said, "We needed a technology with the integration benefits of an ASIC, but without the ASIC NRE costs and development time." Previous positive experience with Xilinx FPGAs led the team members to use Xilinx XC4000 family devices. Thirteen new FPGA designs were required, ranging from the low-density XC4003 up to the high-density XC4010. To meet the aggressive schedule, the design team relied on synthesis to design the FPGAs. The Verilog-HDL hardware description language and Synopsys' FPGA Compiler were used. Using synthesis allowed the engineers to spend a significant amount of time on simulation. This upfront work led to very clean designs. Board-level synthesis helped to identify many problems before system fabrication. SGI's design team also took advantage of X-BLOX, the Xilinx graphical module synthesis system that optimizes for the XC4000 architecture. As a result, the design cycle progressed rapidly, and the need to debug low level components was eliminated. The final Sirius Video Card consists of 18 FPGAs. The largest is a VME Master Bus Controller, managing a 64-bit DMA interface. This design uses an XC4010 and supports data rates up to 50 Mbits per second. The fastest circuits within the system are state machines running at 50 MHz. These are implemented in XC4006 and XC4010 devices. Xilinx FPGAs, in conjunction with synthesis, allowed six SGI engineers to complete the Sirius Video card prototype in six months — two months ahead of schedule. The resulting product has helped SGI retain their competitive edge in the graphical workstation market. • Image courtesy Silicon Graphics, Inc. ## **New Product Literature** Learn about the newest Xilinx products and services through our extensive library of product literature. The most recent pieces are listed below. To order please contact your local Xilinx sales representative. | TITLE | DESCRIPTION PART | NUMBER | |--|--|-------------| | PLDs | | | | XC7336 Datasheet | Technical Data | #0010190-02 | | A Zero-Wait-State Synchronous DRAM
Controller for the Pentium Processor | Technical applications note | #0010217-01 | | Designing Flexible PCI Interfaces with Xilinx EPLDs | Technical applications note | #0010216-01 | | Designing with the XC7336 and XC7318 | Technical applications note | #0010218-01 | | PROMs | | | | XC17128D/XC17256D Serial PROM Datasheet | Technical Data | #0010212-01 | | MILITARY | | | | XC4000 Hi-Reliability Datasheet | Technical Data | #0010209-01 | | HARDWIRE LCA | | | | 1994 HardWire Databook | Technical Data | #0010164-02 | | DEVELOPMENT SYSTEMS | | | | Development Systems Reference Guide | Pricing & ordering info on Xilinx develop-
ment system software and documentation | #0010161-03 | | Development Systems Quick
Reference Card | One-page overview of development system pricing & ordering information | #0010104-04 | | Base Development System Overview | Features & benefits | #0010154-02 | | X-BLOX Overview | Features & benefits | #0010107-04 | | Designing Xilinx with Mentor Graphics | Features & benefits | #0010067-04 | | Designing Xilinx with OrCAD | Features & benefits | #0010135-03 | | Designing Xilinx with Synopsys | Features & benefits | #0010145-03 | | Designing Xilinx with Viewlogic | Features & benefits | #0010166-02 | | CORPORATE | | | | 1994 Databook (Second Edition,
August 1994) | Technical data on FPGAs, EPLDs, PROMs & development systems. Includes app notes. | #0401253-0 | | The Total High Performance Logic Solution | Technical information on high-performance XC3100A, XC4000 & XC7000 families. Includes customer testimonials. | #0010194-0 | For a complete list, please contact your sales representative or see XCELL Issue #10. #### **UPCOMING EVENTS** Xilinx will be participating in several conferences and workshops this autumn. Look for Xilinx technical papers and/or product exhibits at these upcoming industry forums. For further information about any of these conferences, please contact Kathleen Pizzo (Tel: 408-879-5377 FAX: 408-879-4780). ◆ #### Sept. 7-9 Fourth International Workshop on Field Programmable Logic and Applications (FPL '94) Prague, Czech Republic #### Sept. 19 - 23 EuroDAC/EuroVHDL Grenoble, France #### Sept. 19 - 23 IEEE ASIC Conference and Exhibit (ASIC '94) Rochester, New York #### Sept. 27 - 29 Wescon/IDEA Electronic Conference and Exhibition Anaheim, California #### Oct. 10 - 12 International Conference on Computer Design (ICCD '94) Cambridge, Massachusetts #### Oct. 25 - 26 Silicon Design Show London, England #### Oct. 26 - Nov. 4 The Electronic Design Automation & Test Conference and Exhibition Taipei (Oct. 26 - 28), Seoul (Oct. 31 - Nov. 2), Beijing (Nov. 4 - 5) #### Nov. 2 - 6 Frontiers in Education San Jose, California #### Nov. 8 - 12 Electronica Munich, Germany For further information about any of these conferences, contact Kathleen Pizzo (Tel: 408-879-5377 Fax: 408-879-4780). #### **FINANCIAL REPORT** ## Xilinx Named Best Financially Managed 'Fabless' Chip Company For 4th Year in a Row For a record fourth consecutive year, market research firm In-Stat Inc. named Xilinx the Best Financially Managed IC Company. The coveted Kachina Award was presented to Xilinx at In-Stat's annual Semiconductor Forum in May. The Kachina Award is a statue carved by the Hopi Indians of Arizona. According to Hopi legend, the Kachina is a warrior who faces great difficulties and shows great strength. Xilinx was chosen over all other "fabless" companies, including Adaptec, Altera, Cirrus Logic, and Lattice Semiconductor. The companies are ranked based on criteria such as operating income, net income, return on investment, inventory turnover, and sales per employee. A separate set of awards is presented to IC companies that have their own fabrication facilities. This marked the first time that any company has won the award four years in a row. "To win our fourth Kachina award is particularly satisfying considering recent predictions about shortages of submicron foundry capacity for fabless suppliers, " noted Xilinx President Bernie Vonderschmitt. "We have no delinquency issues and remain in an excellent position for submicron availability." Xilinx sales revenues for the first fiscal quarter (ending July 2, 1994) were \$75.2 million, an increase of 38 percent over the same quarter last year. Domestic revenue was down slightly from the previous quarter, due to aggressive price reductions (especially for the XC4000 FPGA family) and inventory adjustments by several networking companies. However, international revenues increased by \$4.6 million over the March-ending quarter, accounting for 32 percent of total revenues. #### THE FAWCETT Continued from page 2 Several of the new features of the recent XACT 5.0 release targeted design-flow issues, such as making timing constraints easier to enter, improving the back-annotation of timing results to support simulation, and the development of XSimMake, an automated script supporting the generation of simulation netlists. Look for further improvements, including the redesign of our own flow manager (XDM) in the next few months. (See the preview of the next XACT release on page 22.) With increasing productivity on every engineer's mind, logic synthesis tools were of great interest to DAC attendees. Xilinx has established an offshoot to the Alliance Program, called the Synthesis Syndicate, specifically to work with synthesis-tool vendors on improving programmable logic support. In addition, we are co-developing synthesis tools with market-leader Synopsys. Graphical-HDL tools, programs that generate VHDL from a block diagram entered with graphical symbols, are start- XILINX XILINX The Xilinx booth at DAC. ing to appear on the market, in an attempt to overcome the verbosity of textual high-level languages and provide an easier bridge to synthesis tools for non-English-speaking engineers. Xilinx is proud to be on the forefront of this trend with the release of the X-BLOX library three years ago and a lead role in the development of the LPM (Library of Parameterized Modules) concept. Windows for the PC is rapidly gaining popularity as a development platform. PCbased Verilog and VHDL simulators are migrating to this platform. The XACT 5.0 release was a step in the right direction, as the Xilinx implementation tools became Windows compatible; the next release will be a further step in improving design productivity, including tighter integration with the Windows environment. However, we don't feel that Windows will replace UNIX, which will remain the primary operating system for workstation environments, and we intend to continue to support both environments in our development system offerings. Another interesting trend tied to increasing designer productivity is the growing
popularity of FPGA-based emulation systems for verifying large digital designs. This technology fills an important gap in digital system design, providing a viable validation mechanism when the complexity of the system makes software simulation too difficult and time-consuming. Since all of today's commercially-available emulators are based on Xilinx FPGAs, this is a trend we're glad to see and a market we will continue to aggressively support! Perhaps the most significant trend that we observed at DAC has more to do with the behavior of the users than the tools — CAE tool users are becoming more open about telling their CAE tool suppliers what they want in addition to demanding good price-performance from their design tools. This is certainly a trend that we encourage; we welcome your feedback, comments, and suggestions about our products. In fact, we'd like to hear more from you; your inputs are key to product refinement. Some of you will be receiving surveys from Xilinx in October or November; Continued *Some of you will be receiving surveys from Xilinx in October or November; please set aside a few minutes, answer the questions, and return your survey to us promptly.* Continued from previous page please set aside a few minutes, answer the questions, and return your survey to us promptly. There are a lot of other ways of getting your comments to us — talk to our sales representatives and distributors (believe me — they are not shy about passing along your comments to us), contact your local Field Applications Engineers, call the Application Engineers on the hotline, or write, call, fax, or e-mail us here at Xilinx headquarters. If you'd like to send your comments to me, I'll gladly pass them along to the appropriate R&D and marketing managers. It's important that you provide us with the background information that led to your comment or suggestion — the size of your designs, your level of experience with the tools, your designs' requirements (speed, power, cost, etc.), whether you use PLDs for prototyping or production, and so on. Be a vocal user and tell us what you want and need. We're hoping to hear from you soon! ## Advanced Training Sessions Scheduled The Advanced Training classes long offered at the Xilinx headquarters and often used as the basis of customer presentations by Field Application Engineers are now being scheduled at other locations throughout the United States. The classes are open to all Xilinx customers at no charge. Contact your local sales office for more information, or call the Xilinx Training Registrar at (408) 879-5090. Advanced Training differs from the regular Training Class in that students must have prior experience with the Xilinx software. Instead of using labs to teach how to run the software, Advanced Training focuses on design techniques to optimize density and performance. The latest features of the software are described in detail, with demonstrations of many of the advanced implementation options. Advanced Training is another link in the technical support offered to Xilinx customers, in addition to local Field Applications Engineers, Hotline support, seminars, and technical literature. If Advanced Training is not scheduled in your area, and you are interested in more detail on how to use Xilinx products, please contact your local sales office or Field Applications Engineer. #### **COMPONENT AVAILABILITY CHART - AUGUST 1994** COD_E TYPE PLASTIC LCC PC44 PLASTIC OFP NN PQ44 CERAMIC LCC WC44 PLASTIC DIP PD48 48 PLASTIC VQFP VQ64 • 64 ... PLASTIC LCC PC68 . ** ***** 68 CERAMIC LCC WC68 CERAMIC PGA PG68 PLASTIC LCC PC84 . CERAMIC LCC WC84 CERAMIC PGA PG84 444 ** CERAMIC QFP CQ100 NN PLASTIC POFP PQ100 . 444 100 PLASTIC TOFP TQ100 . ++ PLASTIC VOFP VQ100 NN 44 44 ++ TOP BRZ. CQFP CB100 • 120 CERAMIC PGA PG120 *** * *** PLASTIC PGA PP132 *** *** ++ 132 CERAMIC PGA PG132 ++ 44 44 PLASTIC TQFP TQ144 . . CERAMIC PGA PG144 156 CERAMIC PGA PG156 ++ 160 PLASTIC PQFP PQ160 44 **+ +** CERAMIC QFP CQ164 164 TOP BRZ. CQFP CB164 PLASTIC PGA PP175 175 CERAMIC PGA PG175 44 176 PLASTIC TOFP TQ176 191 CERAMIC PGA PG191 196 TOP BRZ. CQFP CB196 PLASTIC PQFP PQ208 44 208 METAL MQFP MQ208 223 CERAMIC PGA PG223 225 PLASTIC BGA BG225 PQ240 PLASTIC PQFP 240 METAL MQFP MQ240 PG299 CERAMIC PGA ^{♦ =} Product currently shipping or planned N = New since last XCELL | | XILINX R | ELEASED SOFT | WARE STA | TUS - | AUC | UST | 1994 | 1 | | |------------------------|--|--|------------------|----------|--------|-------|-------
---|--------| | | | | | PREVIOUS | Curr | | | | | | PRODUCT | PRODUCT | PRODUCT | XILINX PART | VER. | PC1 | SN2 | AP1 | HP7 | LAST | | CATEGORY | DESCRIPTION | Function | Number | REL. | 6.2 | 4.1.x | 10.4 | 9.01 | UPDATE | | XILINX INDIVI | DUAL PRODUCTS | | | | | | | | | | CORE FPGA | XC2,3,4K SUPPORT | CORE IMPLEMENTATION | DS-502-xxx | 1.42 | 5.00 | 5.00 | 1.42 | 5.00 | 07/94 | | CORE EPLD | XC7K SUPPORT | CORE IMPLEMENTATION | DS-550-xxx | 4.10 | 5.00 | 5.00 | | 5.00 | 07/94 | | Mentor ¹ | V7.00 | I/F AND LIBRARIES | DS-343-xxx | 4.10 | | | 4.20 | | 07/94 | | Mentor ¹ | V8.2_5 | I/F AND LIBRARIES | DS-344-xxx | 1.10 | | 5.00 | 1.10 | 5.00 | 07/94 | | OrCAD ² | | I/F AND LIBRARIES | DS-35-xxx | 4.23 | 5.00 | | | | 07/94 | | Synopsys ¹ | | I/F AND LIBRARIES | DS-401-xxx | 2.00 | | 3.01 | 3.01 | 3.01 | 09/93 | | VIEWLOGIC ² | ViewDraw | I/F AND LIBRARIES | DS-390-xxx | 4.15 | 5.00 | 5.0. | 5101 | 3,01 | 07/94 | | VIEWLOGIC ² | VIEWSIM | I/F AND LIBRARIES | DS-290-xxx | 4.15 | 5.00 | | | | 07/94 | | Viewlogic ² | | I/F AND LIBRARIES | DS-391-xxx | 4.15 | 5.00 | 5.1 | | 5.1 | 07/94 | | XABEL ² | | ENTRY, SIM, LIB, OPT. | DS-371-xxx | 4.30 | 5.00 | 5.00 | | 3.1 | 7/94 | | X-BLOX [†] | | MODULE GENERATION & OPT. | DS-380-xxx | 1.04 | 5.00 | 5.00 | 1.04 | 5.00 | 7/94 | | | | MODULE GENERATION & OFT. | D3-300-XXX | 1,04 | 3.00 | 3.00 | 1.04 | 3.00 | 7/94 | | XILINX PACKAG | I kill to the later late | | 342 | | | | | | | | Mentor 8 | Standard | | DS-MN8-STD-xxx | 1.10 | | 5.00 | 1.10 | 5.00 | 07/94 | | OrCad | BASE | | DS-OR-BAS-xxx | 5.0 | 5.01 | | | | 07/94 | | OrCad | Standard | | DS-OR-STD-xxx | 1.10 | 5.00 | | | | 07/94 | | Synopsys | Standard | | DS-SY-STD-xxx | 1.01 | | 1.10 | 1.10 | 1.10 | 09/93 | | Viewlogic | Base | | DS-VL-BAS-xxx | 5.0 | 5.01 | | | | 07/94 | | Viewlogic | Standard | | DS-VL-STD-xxx | 1.20 | 5.00 | 5.00 | | 5.00 | 07/94 | | Viewlogic/S | BASE | | DS-VLS-BAS-xxx | 5.0 | 5.01 | | | | 07/94 | | Viewlogic/S | Standard | | DS-VLS-STD-xxx | 1.20 | 5.00 | | | | 07/94 | | Viewlogic/S | Extended ³ | | DS-VLS-EXT-xxx | 1.20 | 5.00 | | | | 07/94 | | XILINX HARDV | /ARF | | | | | | | | | | DEVICE PGMR. | Prom. Pgmr. | | HW-112 (XPP) | 3.31 | 5.00 | 5.00 | | | 06/94 | | DEVICE PGMR. | EPLD/PROM. PGMR. | | HW-120 (PROLINK) | 3.14 | 5.00 | 3.00 | | | 06/94 | | THIRD PARTY | RODUCTION SOFT | WARE VERSIONS | | | | | | | | | CADENCE | Composer | SCHEMATIC ENTRY | N/A | 4.2.2 | | 4.30 | | 4.30 | vil. | | CADENCE | VERILOG | SIMULATION | N/A | 1.7BP | | ***** | | Marin Control of the | N/A | | CADENCE (VALID) | CONCEPT | SCHEMATIC ENTRY | N/A | | | 2.0.5 | | 2.0.5 | N/A | | CADENCE (VALID) | RAPIDSIM | | N/A | 1.60 | | 1.7 | | 1.7 | N/A | | MENTOR | NETED | SIMULATION FOR THE STATE OF | | 3.0BP | | 4.10 | 7.101 | 4.10 | N/A | | | | SCHEMATIC ENTRY | N/A | | | | 7.XX | | N/A | | MENTOR | QUICKSIM | SIMULATION Source Francis | N/A | 0.0 | | 0.0.5 | 7.XX | 0.0.= | N/A | | MENTOR | DESIGN ARCHITECT | SCHEMATIC ENTRY | N/A | 8.2 | | 8.2_5 | 8.2_5 | 8.2_5 | N/A | | MENTOR | QUICKSIM II | SIMULATION | N/A | 8.2 | | 8.2_5 | 8.2_5 | 8.2_5 | N/A | | OrCad | SDT 386+ | SCHEMATIC ENTRY | N/A | | 1.10 | | | | N/A | | OrCad | VST 386+ | SIMULATION | N/A | | 1.10 | | | | N/A | | SYNOPSYS | FPGA/DESIGN COMP. | Synthesis | N/A | 3.0c | | 3.1 | 3.1 | 3.1 | N/A | | Viewlogic | ViewDraw | SCHEMATIC ENTRY | N/A | | 4.1.3a | 5.1 | | 5.1 | N/A | | Viewlogic | VIEWSIM | SIMULATION | N/A | | 4.1.3a | 5.1 | | 5.1 | N/A | | DATA I/O | ABEL COMPILER | Entry and Simulation | N/A | | 5.0 | 5.0 | | | N/A | | Data I/O | Synario | Entry and Simulation | N/A | | 1.0 | | | | N/A | NOTE: ¹FPGA Only ²FPGA and EPLD ³Includes ViewSynthesis v2.3.1 | ALLIANC | - I KOGKAM - | COMI | ANIES & PROD | | | | | |-------------------------------------|--|--|--|---|-----------------|----------------------|-----| | Company | PRODUCT NAME | Version | Function | Vendor
Interface Name | FPGA
Support | EPLD
Support | | | Accel (Omation) | Tango
Schema III | 1.4
3.34 | Schematic Entry
Schematic Entry | SCH2XNF
Schema Xilinx Interface | 1 | | | | Acugen | | | Automatic Test Generation | | 1 | | | | ALDEC | Susie | 6.12 | Simulation | SusieXNF | 1 | | | | Altium | P-CAD | 6.0 | Schematic Entry | PC-Xilinx | 2k,3k | | | | Cadence (Valid) | Concept
Rapidsim
Composer
Verilog | 1.7
4.10
4.3
2.0.5 | Schematic Entry
Simulation
Schematic Entry
Simulation | Xilinx Front End
Xilinx Front End
Xilinx Front End
Xilinx Front End | *** | | 1 | | Capilano | DesignWorks | 3.1 | Schematic Entry/Simulation | XDK-1 | 1 | | | | Compass | Asic Navigator
QSim
X-Syn | | Schematic Entry
Simulation
Synthesis | Xilinx Design Kit | 3k,4k | | 1 | | CV (Prime) | Design Entry | 2.0 | Schematic Entry | Xilinx Kit | / | | | | Data I/O | ABEL
Synario | 5.0
1.0 | Synthesis
Schematic Entry | Xilinx Fitter
Xilinx Fitter | 1 | 1 | | | EPS | SIMETRI | 2.0 | Simulation | XNF2SIM | 1 | 1 | | | Exemplar Logic | CORE | 1.2 | Synthesis | FS-001 | 1 | | 1 | | Flynn Systems | FS-ATG | | Automatic Test Generation | FS-High Density | / | | - | | GenRad | System Hilo | 4.3 | Simulation | Xilinx Tool Kit | 1 | | | | IKOS | 2800/2900
Voyager | 5.02
1.2 | Simulation
Simulation | Xilinx Tool Kit
Xilinx Tool Kit | 1 | | | | Intergraph | ACE Plus AdvanSIM 1076 VeriBest Design Systems Synovation PLDSyn | 12.0
12.1
12.0
12.1
12.0
12.0 | Schematic Entry Simulation Schematic Entry/Simulation Synthesis Schematic Entry/ Synthesis/Simulation | AdvanSIM & Veribest
Xilinx FPGA Design Kit
AdvanSIM " " "
VeriBest Design Kit
SynLibs | 11111 | Q4
Q4
Q4
Q4 | 111 | | ISDATA | LOG/iC | 3.4 | Synthesis | XNF-PP | / | | | | Logic Modeling | Smart Model Library
LM1200 | | Simulation Models
Hardware Modeler | (In Library)
Xilinx Logic Module | 1 | / | | | Logical Devices | CUPL | | Synthesis | Xilinx Fitter | | | | | Mentor Graphics | QuickSim II
Design Architect
Autologic | 8.2_5
8.2_5
8.2 | Simulation
Schematic Entry
Synthesis | Call Xilinx
Call Xilinx
Xilinx Synthesis Library | 1 | 1 | 1 | | MINC | PLDesigner-XL | 3.0 | Synthesis | Xilinx Design Module | 1 | 1 | | | Minelec | Ulticap | 1.32 | Schematic Entry | Xilinx Interface | 2k,3K | | | | Nishimura | G-DRAW
G-LOG | 5.0
4.03 | Schematic Entry
Simulation | GDL2XNF
XNF2GDL | 1 | | | | OrCAD | SDT 386+
VST 386+
PLD 386+ | 1.1
1.1
2.0 | Schematic Entry
Simulation
Synthesis | Call Xilinx
Call Xilinx | 1 | 1 | 1 | | Phase Three Logic | CapFast | 2.2 | Schematic Entry | SCH2XNF | 1 | | | | Protel | | 2.0 | Schematic Entry | | 1 | Q3 | | | Quad Design
(Viewlogic Division) | Motive | 3.4 Plus | Timing Analysis | XNF2MTV | / | | | | Simucad | Silos III | 92.115 | Simulation | Included | 1 | | | | Sophia Systems | Vanguard | 5.31 | Schematic Entry | Xilinx I/F Kit | / | Q4 | / | | Synopsys | FPGA Compiler
Design Compiler | 3.1
3.1 | Synthesis
Synthesis | Call Xilinx
Call Xilinx | 3K,4k
3K,4k | | | | Teradyne | Lasar | 6 | Simulation | Xilinx I/F-Kit | / | | | | Topdown Design | V-BAK | 1.0 | XNF to VHDL translator | XNF interface | ? | | | | Viewlogic | ViewDraw
ViewSim
ViewSynthesis | 4.1.3a
4.1.3a
2.3 | Schematic Entry
Simulation
Synthesis | Call Xilinx
Call Xilinx
Call Xilinx | 1 | 1 | 1 | | AL | LIANCE PROGRAM | - PLA | TFOR | MS & (| CONT | ACTS | |------------------------------------|---------------------|-------
---|--------|------|--------------------| | COMPANY | CONTACT NAME | PC | Name of the Owner, where which is | AFOLLO | НР | Phone Number | | Accel - Tango | Nancy Eastman | 1 | | | | 619-554-1000 | | Accel - Schema | Steve Halbrook | 1 | | | | 214-231-5167 | | Acugen | Peter de Bruyn Kops | | | | | 603-881-8821 | | ALDEC | Gregor Sowinski | 1 | | | | 805-499-6867 | | Altium | Ray Turner | / | 1 | | | 408-534-4148 | | Capilano | Chris Dewhurst | | | | | 604-522-6200 | | Compass | Mahendra Jain | | 1 | 1 | 1 | 408-434-7950 | | CV (Prime) | Kevin O'Leary | | 1 | | | 617-275-1800 | | EPS | Michael Massa | 1 | 1 | | | 617-487-9959 | | Exemplar Logic | Michiel Ligthart | 1 | 1 | 1 | | 510-849-0937 | | Flynn Systems | Mike Jingozian | | | | | 603-891-1111 | | GenRad | Anne Crow | | 1 | | 1 | 011-44-329-82-2240 | | IKOS | Larry Melling | | 1 | 1 | 1 | 408-255-4567 | | Intergraph | Vince Mazur | | 1 | | | 303-581-2301 | | ISDATA | Peter Bauer | 1 | 1 | 1 | 1 | 011-49-0721-751087 | | Logic Modeling (Synopsis Division) | Laura Horsey | 1 | 1 | 1 | 1 | 503-531-2271 | | Logical Devices | Joleen Rasmussen | | | | | 305-428-6868 | | MINC | Lynne Dolan | 1 | 1 | | 1 | 719-590-1155 | | Minelec | | | | | | 011-32-02-4603175 | | Nishimura | Robert Bartels | 1 | 1 | | 1 | 415-398-1669 | | Omation (See Accel) | | | | | | | | Phase Three Logic | | 1 | 1 | | 1 | 503-645-0313 | | Protel | Matthew Schwaiger | 1 | 1 | | | 408-243-8143 | | Quad Design (Viewlogic Division) | Vern Potter | 1 | 1 | 1 | 1 | 805-988-8250 | | Simucad | John Williamson | 1 | | | | 510-487-9700 | | Sophia Systems | Terry Wilfley | 1 | / | Q3 | | 415-813-4762 | | Teradyne | Phil Maukalis | 1 | / | | | 617-422-3677 | ## Programming Solutions Update The recently-established Xilinx Programming Solutions group is responsible for coordinating the one-time programming of Xilinx devices. The Serial Configuration PROMs, as well as the XC7200 and XC7300 EPLD families require programming support (as opposed to the in-system configuration of the SRAM-based FPGA families). In addition to supporting the Xilinx HW112 PROM Programmer and the HW120 EPLD/PROM Programmer, the Programming Solutions group works with more than 30 third-party device programming vendors, providing information on programming algorithms and technical support. The Programming Solutions group also works with users who may be having difficulties pro- gramming Xilinx devices. The following tables contain detailed listings of programming support currently available for Xilinx SPROM and XC7200 EPLD products. For each device programmer, the number shown in the Xilinx product column is the earliest software/firmware revision that provided support for that device. Where appropriate, part numbers for adapters are listed under the package type. Support for Xilinx devices is continuously being added to these vendors' product lines, so if a desired combination is not listed here, please contact the programmer vendor or your local Xilinx sales representative. | FKO | GRAM | AIEI | (2) | | U | | | AILIIN | A AC | SOO EL | LLA | | UGU | 31 13 | | |-----------------------|---|---|---|---|---|---|--|---|---|--|--------|-----------|-------------|-------------|-----------| | VENDOR | Model | 7318 | 7336 | 7354 | 7372 | 73108 | 73144 | PC44 | PC68 | PC84 | PQ44 | PQ100 | PQ160 | PG184 | BG225 | | ADVIN SYSTEMS | Риот-U84 | P 8/94 | P 8/94 | P 8/94 | P 3Q94 | P 8/94 | P4Q94 | USA-84 | USA-84 | USA-84 | | AM-XC100Q | AM-XC160Q | | | | B&C MICROSYSTEMS | PROTEUS-UPXX | 3.7ĸ | 3.7ĸ | 3.7ĸ | P 9/94 | 3.7ĸ | P 4Q94 | Х | χ | Х | | | | | | | BP MICROSYSTEMS | BP 1200 | \$ 8/94 | 5 8/94 | 5 8/94 | P 9/94 | 5 8/94 | P 4Q94 | SM44P | SM68P or SM84UP | SM84P or SM84UP | | | | | | | Data I/O | 2900
3900
UniSite
AutoSite | S 8/94
S 8/94
S 8/94
S 8/94 | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | P 9/94
P 9/94
P 9/94
P 9/94 | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | P 4Q94
P 4Q94
P 4Q94
P 4Q94 | PPI-0243
3900-PLCC
USBASE-PLCC
PLCC-44-1 | PPI-XXXX
3900-PLCC
USBASE-PLCC
PLCC-68-1 | PPI-0208
3900-PLCC
USBASE-PLCC
PLCC-84-1 | | | | | | | DEUS EX MACHINEX | XPGM | V1.00 | V1.00 | V1.00 | P 8/94 | V1.00 | P 4Q94 | 5 | 6 | 7 | | | | | | | Elan | 6000 APS | P 8/94 | P 8/94 | P 8/94 | P 3Q94 | P 8/94 | P 4Q94 | χ | | | | | | | | | Hi-Lo System Research | Au-03A
Au-07 | P 10/94
S 8/94 | P 10/94
S 8/94 | P 10/94
V3.02 | P 10/94
P 4Q94 | P 9/94
P 9/94 | P 4Q94
P 4Q94 | PAC-PLCC44 | PAC-PLCC68 | | | | | | | | ICE TECHNOLOGY LTD. | MICROMASTER 1000 SPEEDMASTER 1000 MICROMASTER LV LV40 PORTABLE SPEEDMASTER LV | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | \$ 9/94
\$ 9/94
\$ 9/94
\$ 9/94
\$ 9/94 | \$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94
\$ 8/94 | P 4Q94
P 4Q94
P 4Q94
P 4Q94
P 4Q94 | AD-7336-PLCC-44
AD-7336-PLCC-44
AD-7336-PLCC-44
AD-7336-PLCC-44
AD-7336-PLCC-44 | AD-7354-PLCC-68
AD-7354-PLCC-68
AD-7354-PLCC-68
AD-7354-PLCC-68
AD-7354-PLCC-68 | AD-73108-PLCC-84
AD-73108-PLCC-84
AD-73108-PLCC-84
AD-73108-PLCC-84
AD-73108-PLCC-84 | | | | | | | LOGICAL DEVICES | ALLPRO-88
ALLPRO-88XR
XPRO-1 | P 8/94
P 8/94
1.01 | P 8/94
P 8/94
1.01 | P 8/94
P 8/94
1.01 | P 9/94
P 9/94
1.01 | 1.01 | | X
X
MODXP1-5444L | X
X
MODXP1-5468L | X
X
MODXP1-108L | | | MODXP1-160Q | MODXP1-184G | MODXP1-10 | | SMS | EXPERT | S 8/94 | \$ 8/94 | S 8/94 | P 10/94 | P 9/94 | P 4Q94 | TOP1 | TOP1 | TOP1 | | | | | | | System General | TURPRO-1 | 5 8/94 | 5 8/94 | P 8/94 | P 9/94 | P 9/94 | P 4Q94 | Х | | | | | | | | | TRIBAL MICROSYSTEMS | | \$ 8/94 | 5 8/94 | V3.02 | P 4Q94 | P 9/94 | P 4Q94 | Х | PAC-PLCC68 | | | | | | | | Xeltek | SUPERPRO
SUPERPRO II | 2.1
2.1 | 2.1 | 2.1
2.1 | P 9/94
P 9/94 | P 8/94
P 8/94 | P 4Q94
P 4Q94 | XXC7354-44PL/40D
XXC7354-44PL/40D | XXC7354-68PL/40D
XXC7354-68PL/40D | | | | | | | | XILINX | HW-120 | V3.21 | V3.21 | V3.21 | V3.21 | V3.21 | P4O94 | HW126-PC44 | HW126-PC68 | HW126-PC84 | S 8/94 | 5 8/94 | HW126-PO160 | HW126-PG184 | HW126-BG2 | C = Currently Supported (no version number) X = No adapter required P = In Production S = Shipping | VENDOR | MODEL | 1736A | 1765 | 17128 | 17xxD | 17xxL | DIP8 | PC20 | JST 1994 | |---------------------------|---|---|---|--|--|---|--|--|---| | Advin Systems |
PILOT-U24
PILOT-U28
PILOT-U32
PILOT-U40
PILOT-U84
PILOT-142
PILOT-143
PILOT-144
PILOT-145 | 10.53
10.53
10.53
10.53
10.53
10.73
10.73
10.73
10.73 | 10.53
10.53
10.53
10.53
10.53
10.73
10.73
10.73
10.73 | 10.76C
10.76C
10.76C
10.76C
10.76C
10.76C
10.76C
10.76C
10.76C
10.76C | 10.71
10.71
10.71
10.71
10.71
10.71
10.73
10.73
10.73
10.73 | 10.77
10.77
10.77
10.77
10.77
10.77
10.77
10.77
10.77 | X
X
X
X
X
AM-1736
AM-1736
AM-1736 | PX-20
PX20
PX20
PX20
PX20
PX20
PX20
PX20
PX | \$08
\$0-8
\$0-8
\$0-8
\$0-8
\$0-8
\$0-8
\$0-8
\$ | | B&C Microsystems | Proteus-UP40 | V3.4e | V3.4e | V3.4e | V3.5f | V3.7f | X | AMUPLC84 | | | BP Microsystems | CP-1128
EP-1140
BP-1200 | C
C
C | CCC | V2.17*
V2.17
V2.17 | V2.21c*
V2.21c
V2.21c | V2.34
V2.34
V2.34 | FH28A
FH40A
SM48D | FH28A + 3rd Party
FH40A + 3rd Party
SM20P or SM84UP | FH28A + 3rd Party
FH40A + 3rd Party
3rd Party | | DATA I/O | UniSite/Site40/48
UniSite/ChipSite
UniSite/PinSite
2900
3900
AutoSite
UniPak 2B
ChipLab | V3.0
V3.4
V3.4
V1.5
V1.0
V1.1
V23
V1.1 | V4.0
V4.0
V4.0
V2.1
V1.5
V1.5
V24
V1.0 | V4.1
V4.1
V4.1
V2.2
V1.6
V1.6 | V4.1
V4.1
V4.1
V2.2
V1.6
V1.0 | V4.6
V4.6
V4.6
V3.4
V2.4
V2.4
V1.1 | X
X
X
X
0101
DIP-300-1
351B120D
X | USBASE-PLCC
USBASE-PLCC
USBASE-PLCC
2900-PLCC
3900-PLCC
PLCC-20-2 | USBASE-SOIC
USBASE-SOIC
USBASE-SOIC
2900-SOIC
3900-SOIC | | Elan Digital
Systems | 3000-145
5000-145
6000 APS | C
C
K2.01 | C
C
K2.01 | C
C
K2.02 | K2.01 | K2.10 | A116
A116
X | uPDi84 | | | Hi-Lo System
Research | All-03A
All-07 | V3.30
V3.30 | V3.30
V3.30 | V3.30
V3.30 | V3.30
V3.30 | V3.30
V3.30 | X
PAC-DIP40 | CNV-PLCC-XC1736
PAC-PLCC44 | CVN-SOP-NDIP1 | | ICE Technology
Limited | Micromaster
1000/1000E
Speedmaster
1000/1000E | V1.1
V1.1 | V1.5
V1.5 | V2.23
V2.23 | V2.21
V2.21 | | X
X | AD-1736/65-20
AD-1736/65-20 | | | Link Com. Gphcs. | CLK-3100 | С | С | V4.1 | V4.13 | | X1736 | PLCC-17XX | | | Logical Devices | ALLPRO-88
ALLPRO-88XR
CHIPMASTER 3000
XPRO-1 | 2.2
1.1
2.0
1.01 | 2.2
1.0
2.0
1.01 | 2.3
2.3
2.1
1.01 | V2.3
V1.3
2.0
1.01 | 1.01 | X
X
X
MODXLN-173 | OPTSOI-080
OPTPLC-208
MODXLN-173 | OPTSOI-080
OPTSOI-080
MODXLN-173 | | MQP Electronics | S2610 | | | С | С | | X | | MODALIV 175 | | Micro Pross | ROM 5000 B
ROM 3000 U | C | C | V1.70
V3.60 | V1.70
V3.60 | | Mu 40 | | | | Red Square | IQ-180
IQ-280
Uniwriter 40
Chipmaster 5000 | 0000 | 0000 | | V8.2
V8.2
V8.2
V8.2 | | | | | | Retnel Systems | ZAP-A-PAL | С | С | | V3.8J | | Module #36 | | | | SMS | Expert
Optima
Multisyte
Plus48
Sprint Plus | B/93
B/93
B/93
B/93 | B/93
B/93
B/93
B/93 | A/94
A/94
A/94
A/94 | A/94
A/94
A/94
A/94 | A/94
A/94
A/94 | TOP40DIP | TOP1PLC or
TOP3PLC/TOP3PLC | | | Stag | Eclipse
Quasar | 10.76C | 10.76C | 4.4
10.76C | 2.2
10.76C | 10.76C | EPU48D
X | EPU84P
AMPLCC20 | | | SUNRISE | T-10 | Χ | Χ | | V3.13 | | X | | | | System General | TURPRO-1
Turpro-1 F\X
APRO | 000 | CCC | V2.14
V2.14
V2.14 | V2.01
V2.01
V2.01 | V2.12
V2.12
V2.12 | DIP-Adapter
DIP-Adapter
X | P20-Adapter
P20-Adapter
X | | | Tribal Microsystems | TUP-300
TUP-400
FLEX-700 | 0 0 | C
C
C | V3.31
V3.31
V3.31 | V3.31
V3.31
V3.31 | V3.37C
V3.37C
V3.37C | X
X
X | CNV-PLCC-XC1736 | P Q494
P Q494
P Q494 | | Xeltek | SuperPRO
SuperPRO II | 1.5B
1.5B | 1.5B
1.5B | 1.7C
1.7C | 1.7D
1.7D | 1.8
1.8 | χ*
χ* | 20-PL/8-D-ZL-XC1736
20-PL/8-D-ZL-XC1736 | 16SO15/D6-ZL
16SO15/D6-ZL | | XILINX | HW112
HW120 | C
V5.00 | C
V5.00 | V3.11
V5.00 | V3.31
V5.00 | V3.31
V5.00 | X
HW-120-PRM | HW-112-PC20
HW-120-PRM | HW-112-SO8
HW-120-PRM | | | | | | | | | | | | C = Currently Supported (no version number) X = No adapter required ## Xilinx Unveils World's First 5 ns EPLDs Xilinx is proud to introduce the highest performing Complex PLDs in the industry: the 5 ns XC7318 and XC7336 EPLDs. This level of performance was previously available only from low-density, limited-function PAL devices. The new Xilinx ultra-high speed EPLDs are perfect for providing support for the latest generation of fast microprocessors such as the Pentium, PowerPC and Alpha. The introduction of Xilinx EPLDs with 5 ns pin-to-pin speeds forces a shift in the programmable logic market — there is no longer any need to resort to low-density PALs for speed-critical designs. Multiple high-speed PALs and GALs can be integrated into the XC7318 and XC7336 without compromising performance. The resulting higher integration levels also lead to reductions in design complexity and cost; fewer parts translates into lower system power consumption, fewer programming patterns, lower inventory requirements, increased system reliability and reduced board space. The XC7336 and XC7318 can support the logic requirements of today's fastest systems through the use of the XACT EPLD Version 5.0 software tools. XACT 5.0 EPLD provides push-button conversion of PAL designs, and interfaces with all of the industry's most popular schematic and synthesis design tools, as well as many popular PAL-specific design packages such as PALASM, ABEL and CUPL. Furthermore, design fitting and the use of special XC7000 architectural features are done automatically by the new tools. XACT EPLD 5.0 is so automatic that the Xilinx EPLD architecture can remain completely transparent to the user, and the design can still be completed with ease. The XC7000 EPLDs and supporting software provide an extremely effective solution to design integration needs. Designs that are easily implemented in the XC7336-5 and XC7318-5 devices would require competitive offerings that are up to 60% larger. Development tools for the XC7318 and XC7336 include SMARTswitch™, an optimizer that automatically utilizes an extra level of high fan-in logic embedded in the device's Universal Interconnect Matrix. The XC7318-5 and XC7336-5 are available now in 44-pin PLCC and space-saving 44-pin PQFP packages. Programming support is available using the HW120 programmer for prototyping, with Xilinx offering programming services directly from the factory for large-volume requirements. Xilinx also supports an extensive network of third-party programmer platforms. (See page 14) *Please contact your Xilinx sales representative for more information.* ## **Quad Flat Packs for EPLDs** Xilinx is expanding the packaging options for the XC7300 EPLD family by introducing quad flat packs, including PQ44 versions of the XC7318 and XC7336 and PQ100 versions of the XC7372 and XC73108. The new packages will be available for these products in all speed grades. The PQ44 and PQ100 have significantly smaller dimensions than their PLCC counterparts. The PQ44 is 43 percent smaller in terms of surface area than the PC44; the PQ100 is 53 percent smaller than the PC84. This smaller area helps to conserve board real estate, a vital concern when form factor is a significant issue. The PQ100 offers another specific advantage: the increased number of pins allows the XC7372 and XC73108 to be more completely bonded out than with the PC84 option. This increases the num- ber of user-accessible I/Os compared to the PC84 package. Engineering samples are available now for both package options, with production scheduled for the end of September. Programming support will be available on the HW120 (both algorithms and adapters) in August. The PQ44 and PQ100 package files for the XEPLD 5.0 development tools are available on the Xilinx Bulletin Board Service. Please contact EPLD Marketing or your local sales representative for more information. ## 66The PQ44 and PQ100 have significantly smaller dimensions than their PLCC counterparts.** ## Xilinx Introduces New FPGA Technology In July, Xilinx released initial information about a new FPGA technology currently in development. Named MicroVia® technology, it has three main elements: three layer metal technology, a metal-to-metal antifuse, and a sea-of-gates architecture. The combination of these three elements has the potential to make MicroViabased devices very low cost. The routing and programmable elements can be constructed "above" the logic in the upper layers of metal. This means that the FPGA can have extensive routing, a small die size, and high gate use. The MicroVia technology will be the third process — after SRAM and EPROM — adopted by Xilinx for the manufacture of programmable logic devices. We believe that multiple processes and device architectures are required for the fastest improvement in the capabilities of today's PLDs. We don't believe that any one process is "best" — rather there are tradeoffs associated with each process and architecture. MicroVia-based products will complement our current and future products made in other technologies. Our strategy is to invest in multiple technologies. As stated by Bernie Vonderschmitt, Xilinx President, "The FPGA products that will result from the MicroVia technology, along with cost reductions in our current SRAM- and EPROM-based offerings, clearly underscore our commitment to an ongoing program of continually driving down costs through technology and process improvements." Specific product details will be available when the products are in production, which is projected for early 1995. • ## "Design Once" The product development and time-to-market advantages of using FPGAs has been well understood
for some time. More recently, users have been appreciating the Xilinx commitment to continual cost reduction of FPGA components through improvements in IC architectures and processes. Further dramatic cost reductions, with no additional engineering load, are possible through conversion to HardWire products. HardWire Logic Cell Arrays (LCAs) are mask-programmed versions of the XC2000, XC3000, XC3100, and XC4000 family FPGA devices. In the HardWire components, the FPGA's memory cells and logic that they control have been replaced by metal connections. Thus, a HardWire LCA is a semicustom device manufactured to provide a specific functionality, yet is completely compatible with the FPGA it replaces. Xilinx uses the term "Design Once" to describe the key HardWire advantage — the conversion process is completely transparent to the user, seamless and risk free, without the engineering burden associated with gate array redesign. Over the last year, users moving into volume production have migrated their FPGA designs to HardWire products in record numbers. Xilinx leading-edge programmable IC solutions combined with HardWire cost reduction provide high-volume users with a cost effective manufacturing solution as well as a highly efficient design and development methodology. The proprietary HardWire conversion process is turn-key - automatically mapped, verified and guaranteed by Xilinx based upon the user's verified FPGA design. No remapping to other cell libraries, redesign of logic, translation, vector generation or simulation is required of the user. Using patented test logic structures and Automatic Test Pattern Generation programs (ATPG), Xilinx guarantees 100% fault coverage without the need for test development or vector generation by the user. Also, all unique functions and features of the FPGA (e.g., power-on reset, configuration modes, JTAG and RAM/ ROM) are supported. Prototype devices are delivered in as little as 4 to 6 weeks in the qualified production package and process. The "Design-Once" advantage is made possible by Xilinx DesignLock Technology, an automatic conversion process which preserves all characteristics and features of the original FPGA design. Once proven in production, the working FPGA design is, itself, the primary design verification vehicle. User simulation of the converted HardWire design is not required because the design has been effectively emulated in hardware by the FPGA. DesignLock Technology uses the .LCA file generated by the designer in developing the FPGA as the verified physical data base from which the HardWire device is personalized. The relative physical LCA placement and routing of the FPGA, and therefore relative timing, is precisely maintained in the HardWire device. The conversion process is self-verifying and all device features are preserved. The resulting HardWire die size is *frocess is completely transparent to the user, seamless and risk free...* Continued greatly reduced due to the elimination of all programmable elements. Overall routing delays are reduced as well, while relative timing is maintained. Prior to beginning the HardWire conversion, Xilinx uses proprietary software to identify potential design hazards, such as race conditions, asynchronous signals, delay lines and oneshots, which may be exacerbated by the reduced routing delays. Such potential hazards are analyzed, reviewed with the designer and corrected as necessary. Leading-edge system design innovations are increasing at a furious rate. In order to compete effectively and meet market windows, designers must reduce development time while making the most efficient use of limited engineering resources. Also, new and evolving system standards require adaptive and agile design methodologies. Today, digital designers are increasingly looking at ASIC solutions in terms of total cost of ownership - development efficiency, performance and density, as well as component cost. The high growth rate of programmable logic speaks for its efficiency as a total development and production solution. This, combined with HardWire cost reduction, is providing Xilinx users with optimum product solutions. See for yourself and Design Once! ## Xilinx Announces Third Price Reduction of 1994 Xilinx continues to drive down the cost of FPGAs with design improvements, new process technology and the addition of lower cost packages. Beyond the reductions announced in January and April, prices have been reduced again in July for the XC4000H family, the XC3000A family and all XC4000 devices in 208-and 240-pin plastic quad flat packs. These price reductions are part of an aggressive effort to make Xilinx FPGAs a cost-effective solution for high-volume applications. The XC4000H family is a high I/O version of XC4000. With almost twice the number of IOBs and pins as the XC4000, these products already offered the lowest price per pin of any FPGA. In July, the prices for these devices were reduced by up to 22 percent. For I/O intensive applications, the XC4000H clearly offers a tremendous value. Xilinx has also reduced prices on the XC4008, XC4010, and XC4013 devices in plastic quad flat packs by up to 10 percent in July. These packages have the same pin-outs and dimensions as the higher-priced metal quad flat packs. Using the PQFP as a drop-in replacement for a MQFP can combine the inherent cost savings of a plastic package with the new price reductions for an immediate cost savings of up to 25 percent. Prices for the XC3000A family also were lowered in July. Through design improvements, the XC3000A not only offers higher performance and improved routing resources, but now also a lower cost, making it the most cost-effective solution in the XC3000 series. The XC3000A devices are upward-compatible with the corresponding XC3000 series FPGAs and can be used as drop-in replacements. Contact your local Xilinx distributor or sales representative for specific pricing information. ## Designing EPLDs Using Sy Designing complex systems with Xilinx EPLDs keeps getting easier and easier. The new Xilinx EPLD Synopsys Interface, scheduled for release in the fourth quarter, allows designers to use either the Synopsys Design Compiler or FPGA Compiler to create efficient, high-performance EPLD designs quickly. Now, as with Xilinx FPGAs, technology-independent, high-level design languages such as VHDL and Verilog-HDL can be used to create EPLD designs without understanding the details of EPLD architecture. However, advanced EPLD users have the option of precisely controlling design implementation from within the HDL design in order to fine-tune mapping efficiency and performance. Comprehensive design verification is provided from beginning to end, including both functional and timing simulation, via the Synopsys VSS simulator. Xilinx software also provides a detailed timing analysis along with thorough reports of device resource utilization and physical mapping. All EPLD-specific optimization is performed by the Xilinx DS-550 EPLD soft- 66...technology-independent, high-level design languages such as VHDL and Verilog-HDL can be used to create EPLD designs without understanding the details of EPLD architecture. ware, achieving the best possible implementation for any target EPLD. Furthermore, since design implementation takes only a few minutes, design iterations are based on actual timing and resource data rather than estimates from the synthesizer. The following examples illustrate how easy it is to express common logic func- tions using generic VHDL and how to explicitly control EPLD resources. ### Flip-Flops and Latches Registers can be inferred in EPLD designs just like in any other Synopsys design. For example, the following behavioral VHDL process implements a D-type flip-flop with asynchronous clear and synchronous clock-enable: ``` process (CLEAR, CLOCK) begin if (CLEAR = '1') then Q <= '0'; elsif (CLOCK'event and CLOCK='1') then if (CE = '1') then Q <= D; end if; end if; end process; ``` Simple registered functions are placed into either macrocells or input pads at the discretion of the XEPLD software, which optimizes resource allocation in the device. To explicitly assign a register to an input pad, instantiate the IFD component from the XC7000 library as follows: U1: IFD port map (d=>DATA_INPUT, c=>CLOCK, q=>REG_DATA); The XEPLD register optimization feature can be disabled by specifying the NO_IFD attribute. Then, all registers in the design, except IFD instances, will be placed into macrocells. #### I/O Ports Unless otherwise specified, the Synopsys compiler automatically infers ordinary input buffers, output buffers, and I/O buffers for all top-level I/O ports. For example, the compiler infers the generic OBUFE buffer to implement the following behavioral description of a three-state output: OUTPUT1 <= SIGNAL1 when (OE = '1') else 'Z'; ## Psys Logic Synthesis The XC7000 component library also includes special-purpose I/O buffer cells that allow the explicit instantiation of EPLD-specific I/O functions. For example, a high-speed clock input can be assigned to the global FastCLK pin by instantiating the BUFG component. Some of the inputs to an EPLD can be routed directly to Function Blocks using high-speed FastInput paths that bypass the Universal Interconnect Matrix (UIMTM). To designate FastInput signals, instantiate the "F" attribute cell in the source design and connect it to the intended FastInput signal. For example: ``` port (STROBE : in std_logic; ... — in the design entity — U1: F port map (STROBE); — in the architecture body — ``` Similar XC7000 library attribute cells can be used to control the automatic assignment by XEPLD of global clocks, FOE signals, input-pad registers, UIM AND-gates, and Fast Function Blocks. ### **High-Performance Counters** The XC7000 library supports the DesignWare increment and decrement operators, allowing counter functions to be described behaviorally as in any other Synopsys design. Full-featured
counters of any size are implemented automatically and efficiently by XEPLD to operate at the EPLD's maximum clock frequency. The following example shows a 24-bit loadable counter with synchronous reset and count-enable controls described behaviorally in generic VHDL: ``` signal COUNT: std_logic_vector (23 downto 0); -- in architecture header — process (CLOCK) begin if (CLOCK'event and CLOCK = '1') then if (RESET = '1') then ``` If programmed into an XC7354-10 EPLD, the above counter can be switched at random between increment, hold, load, and reset operations on any clock cycle while being clocked at up to 76 MHz. #### **Arithmetic Functions** The XC7000 library also supports the DesignWare addition (+), subtraction (-) and magnitude compare (<, <=, >=, >) operators, allowing generic behavioral VHDL descriptions of these arithmetic functions for any size operands. Each of these functions benefits from the high-speed arithmetic carry chain of the EPLD architecture. For example, the following behavioral VHDL description can be used to express a 16-bit adder-subtracter: ``` signal A, B, SUM: std_logic_vector (15 downto 0); — in arch. header — process (A, B, SUBT) begin if (SUBT = '1') then SUM <= A - B; else SUM <= A + B; end if; end process; ``` For creating registered arithmetic functions, such as accumulators or pipelined adder/subtracters with register control logic, the XC7000 library contains EPLD-specific macros that produce the most efficient implementations. The ACC component (Adder/Subtracter/Accumulator) or the ADSUR component (Adder/Subtracter with registered output) can be instantiated, and each is scalable for any size operand. For example, to connect the outputs of the above 16-bit adder-subtracter into a register with clock-enable and reset, replace the process shown above with the following ADSUR component instance. This ensures that each bit of arithmetic and register logic remain together in the same EPLD macrocell: U1: ADSUR generic map (width=>16) port map (a=>A, b=>B, q=>SUM, sub=>SUBT, c=>CLOCK, ce=>CLK_EN, r=>RESET); If programmed into an XC7354-10 EPLD, the above registered adder can be clocked at up to 48 MHz. The Xilinx EPLD Synopsys Interface allows design at the conceptual level without concern for device details. Hence, users are free to concentrate on the functionality of their designs and to create working devices quickly with minimal effort. Full-simulation capabilities and comprehensive reports to verify your design process are provided. In addition, the XC7000 library and the Xilinx software allow users to exercise precise control over all specialized device features to create the most efficient, high-performance designs. The EPLD Synopsys Interface will be included with the next release of the DS-401 Xilinx-Synopsys Interface (XSI) software. Please contact Xilinx EPLD product marketing for more information. ◆ ## Previewing the Next Major XACT Software Release The next software release will take another major step to improve design productivity when implementing EPLDs and FPGAs. Interactive applications are being redesigned with the focus on ease-of-use. These programs will run as standard Windows applications on the PC and as Motif applications on Workstations. All interactive programs will also offer hyper-text-based on-line help. with the focus on ease-of-use. These programs will run as standard Windows applications on the PC and as Motif applications on Workstations. All interactive programs will also offer hyper-text-based on-line help. #### For FPGA users: FPGA users can expect to see a new a Design Manager replace the current XDM tool. This new product will help users manage their design revisions, control the processing of their designs and launch other Xilinx design tools. It will contain a graphical design flow manager, easy-to-use option selection, a report browser, and on-line help. Other interactive tools such as XDelay, XChecker, and MakePROM are being redesigned to enhance their functionality and ease-of-use. Designers using higher-density FPGAs will have access to the new XACT-Floorplanner, an interactive design layout and constraints generation tool. The Floorplanner will be especially useful for bus-oriented or highly-structured designs. #### For EPLD users: The new Design Manager will also support Xilinx EPLDs with improved timing-driven design optimization. In addition, this release is expected to include automatic multi-chip partitioning software and automatic device selection within the EPLD family of devices. The current target for production release is the 2nd quarter of 1995. Limited Beta copies may be available in the 1st quarter. The features and functions may vary (increase or decrease) depending on development schedules and quality checks. Xilinx will keep users updated on the current status and feature set of this next release via *XCELL*, customer presentations and mailers to in-warranty customers. ## Patch Required for XC3000A, XC3000L, XC3100A An XACT 5.0 patch with new BSD files has recently been mailed to all XACT 5.0 sites. After installing this patch, all XC3000A, XC3100A and XC3000L designs done with XACT 5.0 must rerun Makebits. No rerouting or resimulation is necessary. Designs done with ES-3KA software or XC3000/XC3100 designs are not affected. ## Automatic Software Makes PAL to EPLD Conversion Easier The type of design implemented in a PAL® typically consists of wide fan-in, two-level logic (AND-OR) functions. Since EPLDs contain these types of logic structures and have the deterministic timing and high performance of PALs, it's easy to see why many designers are turning to these devices for PAL consolidation. However, there are some subtle (and perhaps not-so-subtle) differences between the architectures of PALs and EPLDs which raise concerns about whether a PAL design will operate the same way when designed into an EPLD. During a typical PAL-to-EPLD conversion process, a designer might unwittingly change the logical functionality and performance of a known working design. These problems can be avoided by using Xilinx EPLD hardware and the DS-550 EPLD implementation software because they work together to maintain the correct logic functionality of the design. Consider a design originally implemented with popular industry-standard 22V10 PALs. The registers on the 22V10 may be synchronously preset and asynchronously reset. Since the inversion of output signals occurs after the register, signals declared as active Low actually behave at the device pin as if they were synchronously reset and asynchronously set. Because inversion control occurs before the register in the Xilinx EPLD, the DS-550 automatically changes the asynchronous reset functions to an asynchronous preset in cases where the output was declared active Low in the original design. The registers on the Xilinx EPLD don't have explicit synchronous presets. However, the DS-550 software automatically programs the macrocell to emulate this function by adding a preset product term to the original equation. As a result, a design created originally for the 22V10 will function exactly the same in a Xilinx EPLD. #### PALCONVT The DS-550 software also contains a PAL conversion utility, PALCONVT, that speeds up the conversion process. PALCONVT generates a top-level design file that defines each signal in the design as an EPLD input pin, output pin, or node. It automatically inserts statements in the file that tell the fitter which PAL equation files are used in the design. PALCONVT automatically corrects signal inversion inconsistencies between different PAL files. To establish proper interconnectivity, signal names in the PAL file pin lists must match and be declared with the same polarity. Depending on the PAL compiler used, the signal polarities may not match. Rather than require the designer to edit the PAL equation files, PALCONVT automatically resolves the polarity inconsistencies in the pin lists while maintaining the correct logical functionality of the original design. After verifying that the signal declarations are correct, a designer can use the DS-550 fitter to process the design. The fitter reads the top-level design file and, using the PALCONVT-generated pin declarations to define the EPLD's I/O, maps the logic equations from the included PAL files into an EPLD. The DS-550's powerful PAL conversion features allow designers to convert multiple PAL designs into one Xilinx EPLD easily. In addition to speeding up the conversion process, the software automatically programs the Xilinx EPLD to emulate 22V10-specific functionality, thus eliminating design inconsistencies. ◆ ## Improved Synopsys Libraries To Be Availabile in October Synopsys users targeting Xilinx FPGA devices will soon be able to take advantage of the recent development work in the area of synthesis libraries. Version 3.1 of the Xilinx/Synopsys Interface (DS-401) will be available in October. These libraries incorporate a number of improvements. - All cell names and pin names have been converted to XACT 5.0 Unified Library standards. - 2. The design flow, including netlist translation and processing through XACT, has been updated to allow simple operation with XACT 5.0. For example, a utility program is now included that helps the user set up the Synopsys setup file with the required library information. - Libraries for all popular XC3000, XC3000A, XC3000L, XC3100, XC3100A, XC4000, XC4000A, and XC4000H devices are now included. - 4. Wire load models have been re-engineered to more accurately reflect actual device delays. Hundreds of test cases were run on the full range of device types and speed grades, and the results were analyzed statistically to produce the new models. Using FPGA Compiler, estimated circuit delays are usually within ±10% of post-layout results. 5. Input/output cells have been updated to allow more comprehensive pad insertion by the Synopsys tools. Using features in Synopsys version 3.1, the
compiler can now automatically insert a wide range of I/O pads including input, output, bi-directional, input registers, and output registers. In addition, separate I/O libraries are now available for the XC4000, XC4000A, and XC4000H families that reflect the differences in the I/O structures for those devices. Users of the new Xilinx/Synopsys Interface v3.1 will achieve a higher quality of result with less effort and a higher degree of predictability. Many of the improvements are available to all Synopsys synthesis users; however, the high degree of coupling between FPGA Compiler and XACT 5.0 makes that combination the best choice for performance-oriented designs or where a close match between synthesis results and post-layout results is important. Xilinx/Synopsys Interface v3.1 will achieve a higher quality of result with less effort and a higher degree of predictability. ## New Features Added to ViewSynthesis A new, improved version of the ViewSynthesis logic synthesis compiler is available. ViewSynthesis is included in the Xilinx XACT 5.0 Viewlogic Stand-Alone Extended package or can be purchased from Viewlogic. The ViewSynthesis v2.3.1 release contains many new features that will increase device performance and utilization when synthesizing to Xilinx FPGAs. New features added to ViewSynthesis v2.3.1 for Xilinx FPGA devices include: #### · Synthesis to the Clock Enable Pin ViewSynthesis v2.3.1 will take advantage of the dedicated clock enable pin for the flip-flops inside the Configurable Logic Blocks (CLBs) automatically for both XC3000 and XC4000 FPGAs. No additional work or attributes are required. ViewSynthesis will Load - Data Clock synthesize to the clock enable pin whenever it finds a multiplexer preceding the data pin of a register. Synthesis to logic in IOBs (including latches, flip-flops, and 3-state buffers) #### · Automatic I/O insertion A program called IOPAD is included with ViewSynthesis v2.3.1. This program will insert the I/O and use the logic in the Input/Output Block (IOB) automatically as in the example below. The logic resources used in the IOB include the input latch (INLAT), the input and output flip-flops (OUTFF, INFF), and the 3-state buffer (OBUFT, OUTFFT). Schematics are no longer required to instantiate the I/O. The IOPAD program will instantiate the I/O without the need for any additional VHDL or specify special attributes. ### Global signal and Global Clock Buffer specification This feature provides for the easy specification of signals to be used as global signals or connected to global clock buffers. DQ Data Clock Load - CE D Q New synthesis libraries are not required for ViewSynthesis v2.3.1. However, ViewSynthesis v2.3.1 also includes library support for the Xilinx Unified Libraries. As with previous versions of ViewSynthesis, the libraries include support for all XC2000, XC3000 and XC4000 FPGA devices. Viewlogic is not stopping here. The next version of ViewSynthesis, v3.0, promises more Xilinx-specific features, such as support for XACT-Performance™, XC7000 EPLDs, CLB mapping for XC3000 and XC4000 FPGAs, Xilinx optimization and finite-state machines. This version should be available in the fourth quarter of 1994. ViewSynthesis v2.3.1 is being sent as an update to all Xilinx users under current maintenance for the DS-VLS-EXT-PC1 package, and, of course, is included in new purchases of this product. Viewlogic has this version available by request for all of their customers under maintenance. ## XACT 5.0 Delivers "Place & Route" Improvements XACT 5.0 is delivering industry-leading completion rates and performance levels for FPGA placement and routing. Using a benchmark suite of more than 250 difficult-to-route designs, comparisons were made against the previous version of the Xilinx place and route tools, PPR v1.42 (XC4000) and APR (XC3000). Overall results are shown in the accompanying chart. These comparisons were made using default parameters, without any "tweaking" of placement and routing parameter. Therefore, these results reflect what users can expect "out of the box." PPR now supports both the XC3000A/ XC3100A and the XC4000 family devices. The suite of designs used to benchmark PPR is composed of the most difficult designs received from users plus test cases developed here at Xilinx. Many are synthetic cases designed to stress the tools and are not intended to fully route. The not complete automatically the first time. For those designs, adjustment of the PPR parameters controlling placement and routing effort levels may help. (See Volume II of the XACT Reference Guide.) If a satisfactory implementation is not achieved with the default parameters, set the effort parameters to different settings at substantially different points on the scale. However, maximum effort in placement or routing doesn't always generate successful completion, and will increase PPR run times. Again, this is highly dependent on the structure of the design. Although not a preferred method, the interactive design editor provides another option should the automatic tools fail to complete the design. Significant device performance improvements have been achieved by PPR v5.0 as well. An average of 20% performance improvements is being seen on XC3000A and XC4000 series devices. The test suite was a subset of the "Designs from Hell" suite. A 20% improvement allows the use of a slower speed grade, resulting in a significant decrease in component costs. Again, results are design-dependent. XACT-Performance, the timing-driven placement and routing feature within PPR, is now available for XC3000A/XC3100A devices as well as the XC4000 family. A new XACT-Performance "Group" feature aids users in achieving the desired device performance by allowing the tools to focus on critical timing areas of the design. Xilinx is continuing to make algorithmic improvements that increase the capabilities of the automated implementation tools. As these improvements become available, they will be incorporated in subsequent releases. Xilinx R&D group refers to this test suite as the "Designs from Hell." Actual "real-life" users will experience much higher completion rates than reflected by this data. These positive results are very designdependent. A few user designs still will ## **Controlling PPR Run-Time** With version 5.0, the latest update of XACT, designs have seen better chip performance and faster PPR run times overall. However, a few rare designs have actually taken longer to process using PPR's automatic defaults. The PPR program was designed to handle a wide range of situations automatically, from a half-full 2000-gate part to a 100-percent-full 13,000-gate part. Recognizing that every situation is unique, we also have made it easy to adjust the PPR defaults to better accommodate individual needs. Benchmarks and tests are being performed continuously to determine the optimal set of defaults. #### **Speeding Up PPR** For XC4000 designs, we have discovered that a run time reduction of 20 to 30 percent, with a minimal impact on design performance can be achieved by the following method: - Using a text editor, create a file called XACTINIT.DAT in your design directory. - 2. Add the line: permute_size = 4 To achieve an additional five to seven percent decrease in PPR run time, you can also add the following lines to that local XACTINIT.DAT file: /ppr/improve_routing = false /ppr/router_effort = not_in_use If your XC3000A, XC3100A or XC4000 design does not have strict performance and routability requirements, you can dramatically reduce run-time with the following command line options: PPR <design_name> placer_effort=1 router_effort=1 However, these two changes (especially the last one) are NOT advisable for general designs. These settings may be useful for early exploration. PPR will complete much sooner, but is likely to produce an implementation with lower performance than if the default options are used. On the other end of the spectrum, if you have an XC3000A, XC3100A or XC4000 design that has trouble routing or achieving the desired performance, use the following PPR command line options: PPR <design_name> placer_effort=5 router_effort=4 This forces PPR to work harder and produce a better result, but at the expense of longer run times. The PPR program was designed to handle a wide range of situations automatically, from a half-full 2000-gate part to a 100-percent-full 13,000-gate part. Recognizing that every situation is unique, we also have made it easy to adjust the PPR defaults to better accommodate individual needs. ## Fast Integer Multipliers This application example was prepared by Ken Chapman, a Xilinx Field Applications Engineer based in England. An abbreviated version appeared in EDN Magazine's Design Ideas column in March, 1993, and was recently chosen the overall 1993 Design Idea winner. Congratulations, Ken! Digital multipliers are needed in many system applications, including digital filters, correlators, and neural networks. These multipliers typically are required to handle operands of up to 16 bits, and need to provide results in less than 50 ns (20 MHz systems). Figure 1 is a common module found in many signal processing applications. (For example, with the output 'y' applied to an activation function, this would be a simple neuron.) The increasing density of programmable logic devices has led to complete systems and sub-systems being implemented in one FPGA device. However, digital multipliers generally are considered too slow when implemented in FPGAs, or too large to make effective use of a programmable part. As an alternative, dedicated multiplier devices are connected to - Shift and Add One operand is shifted to the left by one bit each cycle and applied to an accumulator when the corresponding bit in the second operand is high. - Look-up table The operands are applied as addresses to a pre-programmed memory that outputs the result. - Logical tree Each of the resultant bits are a logic
function of the relevant bits of each operand. Using a 16-bit x 16-bit multiplier as an example, let's consider each technique. The **shift and add** implementation is compact but very slow. The result is obtained after 16 clock cycles and the accumulator must be 32-bits wide. The accumulator will determine the maximum clock rate dependent on the carry logic chain. This implementation also precludes any new operands from being applied until the calculation has been completed, read, and cleared. The speed of the **look-up table** solution depends on the speed of the memory used, but rapidly becomes unwieldy as operand size increases. This 16x16 example requires a 4,294,967,296 x 32-bit memory! Small multipliers work well this way, such as a 4-bit x 4-bit multiply implemented in a byte-wide ROM. Some very complex implementations of **logical trees** have been developed employing product sharing, and are to be found in many dedicated arithmetic devices. The gate count is high and can be considered a reduced version of the ROM table. The logic involved tends to have Figure 1 the main system, often resulting in a performance degradation caused by the delays inherent in getting the data to and from the multiplier device. (Often, these data movements are time-multiplexed to reduce the large I/O requirement.) Thus, techniques for implementing a compact and fast digital multiplier in a programmable part are needed. ### Implementation Techniques There are three main implementations of digital multipliers: ## **Using FPGAs** high fan-in requirements (up to 32 inputs). The XC4000 FPGA architecture includes the types of logic resources needed for digital multipliers: - High-density devices are available (currently, up to 25,000 gates), providing ample density for a multiplier and substantial additional logic. - Fast, dedicated carry logic circuitry provides for compact and high-speed simple arithmetic functions such as addition. - The XC4000 architecture includes the ability to configure custom blocks of RAM and ROM using the look-up-tablebased function generators. Having all these features available means that any of the described techniques may be implemented. #### Fast and Compact Multipliers If the multiplier needs to be both fast and compact, the choice of multiplier implementations can be difficult. The compact **shift and add** technique may be too slow for many applications, but is easily implemented in the XC4000 architecture. The accumulator can make excellent use of the fast carry logic, with a reasonably low cycle time (even for a result of 32 bits). A **look-up table** built from a custom ROM block is ideal for small multipliers. Since any configurable logic block (CLB) can be configured as either two 16 x 1 memories or a single 32 x 1 memory, it is easy to see how small look-up tables can be implemented. Unfortunately, the larger memory requirements of larger operands can use up the available CLB resources rapidly. Operands with more than four bits soon become difficult to handle. **Logic trees** can be implemented, but again, as the operand width increases, the fan-in requirement of the logic soon ex- ceeds the nine inputs available to a CLB. As a result, functions have to be split. This prevents a compact design, and impacts performance due to the multiple block delays between the operands and the result. However, the XC4000 device architecture does offer an easy way to pipeline any design, using the two registers in each CLB. Once again, operands of more than four bits become an escalating problem to handle. The real strengths of the XC4000 FPGA architecture in this application are its ability to handle small look-up tables, provide logic functions of less than nine inputs, and form fast adders of any size. Therefore, the ideal solution may be to use a hybrid technique tailored to these properties: using small look-up tables for partial products and combining the results by addition. #### Anatomy of a Hybrid Multiplier Partial products are formed by splitting the first operand into sections and multiplying each section by all of the second operand. These products contain all the information about the multiplication that must then be combined by addition, while at the same time restoring the bit weighting of the sections from the first operand. Figure 2 is a block diagram of the implementation of an 8 x 8 multiplier that multiplies the two operands called 'X_OPERAND' and 'A_OPERAND'. (X-BLOX modules could be used to enter this design easily in a block diagram format.) The first operand is split into two nibbles. Both nibbles produce a 12-bit partial product after multiplication by the second operand. These products are applied to a Continued on the next page the XC4000 FPGA architecture in this application are its ability to handle small look-up tables, provide logic functions of less than nine inputs, and form fast adders of any size. ## Fast Integer Multipliers Using FPGAs Continued from the previous page 16-bit combining adder to form the final 16-bit result. To restore the weighting factor of the two nibbles, the 12-bit partial products are expanded into 16-bit operands. The product from the low order nibble, with a weighting of one, is converted to 16 bits by padding four additional MSBs with the value of zero. The product from the high order nibble, with a weighting of 16, is effectively shifted by four bits using four additional LSBs, again with value of zero. The resulting 16-bit operands form the inputs to the adder. It is not possible for the adder to overflow because it is known that an integer multiply of two operands with 'n' and 'm' bits (respectively) will generate an 'n+m' bit result. In this 8-bit x 8-bit example, the maximum result occurs when multiplying FF x FF = FE01 (hex). To create a compact, fast and easy-toimplement design, make the look-up tables for the partial products as small as possible. The simple 16 x 1 memory elements are combined to expand the width of the memory to that required for the partial products. In this example, 16 x 12 memories are synthesized using just six CLBs, each containing two 16 x 1 tables. A memory with 16 addresses has 4 address lines, meaning that only the nibble section from the X_OPERAND can be applied. The need to connect the A_OPERAND has been totally eliminated in this design by ensuring that only those partial products that can be obtained by a single value of A_OPERAND are available at any one time. In other words, at any given time, the X_OPERAND can only be multiplied by a constant, as determined by the contents of the look-up tables. By preloading the look-up tables with only those partial products that can be obtained from the present value of A_OPERAND, the size of the look-up table is greatly reduced. These partial products in the look-up table are, quite simply: 0, 1 x A_OPERAND, 2 x A_OPERAND, ... , 15 x A_OPERAND These 16 partial products must be recalculated and reloaded for each new value of A_OPERAND. Building the look- up tables from RAM means that the 16 partial products relating to a given value of A_OPERAND can be modified. This is performed using an accumulator, address counter and small state machine that accesses each location of the memory and stores a new product. Both tables are modified to contain the same data, so each nibble of the X_OPERAND is multiplied by the same value. Clearly, the multiplier can not be used for the period during which the table contents are being modified, and results cannot be obtained quickly when changing the value of A_OPERAND. In contrast, changes in the X_OPERAND will give a result with minimal delay, and the data path can easily be pipelined to optimize performance in a clocked system. Most applications can tolerate the time spent modifying the look-up tables for a new value of the A_OPERAND. Consider the module of Figure 1. In many cases, only the ability to modify 'A' is required in order to tune a system. Another example is video processing, where 'A' is changed only at the end of each page, during the screen fly-back. For some applications, 'A' will be fixed from the design concept and throughout the life of the system. (Computer simulations may provide the optimum values for multiplicands and offsets in the system.) In these cases, the look-up tables can be implemented as ROMs in the XC4000 with the partial products predefined, thereby eliminating the overhead logic needed to program the tables and increasing performance by removing the address multiplexers from the data path. The reconfigurable nature of XC4000 devices would still permit different contents to be loaded into the look-up tables (representing different values for A_OPERAND) by using multiple device configuration bitstreams. The technique expands easily by units of four bits on the X_OPERAND, where each additional nibble connects to a sepa- rate look-up table. The size and contents of each table are determined by the second operand (A_OPERAND). Further levels of combining adders are required for more than two look-up tables. These will impact performance, but their effect can be minimized with a pipelined design (registers at the table outputs and each adder). Negative values in two's-complement format can be converted using simple 'invert and add 1' pipeline stages where necessary, handling the sign bits separately. For example, a 16 x 16 multiplier of this type uses four tables to generate 20-bit partial products corresponding to each nibble. Two 24-bit combining adders are used to form partial products for the high and low order bytes of the input data. A final 32-bit adder combines these products, restoring the weighting of 256 to the high order product (a shift of 8 bits). #### Performance The figures shown in Table 1 are worst case for an XC4000-5 device. The designs were each processed using the Xilinx automatic tools without user intervention. The combinatorial speed is taken as a device pin-to-pin delay,
including 10 nanoseconds of I/O delays. Since the multiplier is generally imbedded in the system, these time values may be deducted in estimating in-system performance. Pipelined speed is determined by the speed of the slowest element, which is the largest adder in the system. | Style | 8 x 8-bit
RAM
Look-up | 8 x 8-bit
ROM
Look-up | 16 x 16-bit
RAM
Look-up | 16 x 16-bit
ROM
Look-up | |--------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------| | CLB Count | 39 | 22 | 117 | 84 | | Combinatorial
Delay | 56 ns | 46 ns | 96 ns | 88 ns | | Pipelined
Performance | 39.9 MHz | 41.3 MHz | 25 MHz | 25.5 MHz | Table 1: Performance of hybrid multipliers implemented in an XC4000-5 FPGA ## High-Performance EPLD Design Techniques Twenty years ago, CMOS logic technology was undemanding. It had high noise immunity, low power, and relatively slow edges during logic-state transitions. However, in the never-ending quest for speed and as an unavoidable result of today's smaller device geometries, CMOS devices have lost some of this 'user-friendliness'. With high-performance devices like the XC7318 and XC7336 EPLDs, output edge rates can be faster than TTL. Excessive noise due to "ground bounce" must be avoided, and transmission-line effects on printed circuit board (PCB) traces must be considered. These problems can lead to poor signal quality and noise immunity, reducing system reliability. The XC7318 and XC7336 EPLDs feature 5 ns pin-to-pin delays and perform at clock rates of up to 167 MHz in many applications. To add to the performance of systems requiring this speed, these parts also provide 24 mA high current drivers, eliminating the need for additional buffering. Many printed circuit board (PCB) design techniques can be used to minimize note, *Designing with the XC7336/XC7318*, and are summarized below. (Of course, many of these same techniques can be used on high-speed FPGA designs.) #### **Design Techniques** - Use wide spacing between fast signal lines — particularly clocks — to minimize crosstalk. - Avoid using sockets for PCB connections. Direct soldering minimizes inductance and reduces ground rise. - Locate the XC7318 and XC7336 EPLDs electrically near chips they drive or are driven by. - 4. Connect all device GND pins to the PCB ground. - Unused inputs must be tied to ground, except MR (master reset), which must be tied High. - Use multi-layer PC boards with separate power and ground planes. - 7. Decouple the chip $V_{\rm cc}$ with 0.1 μF capacitors directly at each chip $V_{\rm cc}$ pin to the nearest electrical ground. - 8. Decouple the PCB with 0.1 μF ceramic and 100 μF electrolytic filter capacitors. - 9. Limit the number of outputs that switch simultaneously to minimize ground bounce. Skew signals that simultaneously switch by a few nanoseconds. One simple method is to assign subgroups of the signals to one 3-state enabled driver group and a second subgroup to a slightly delayed version of the enable signal. A similar approach can be taken with clocks. • for speed and as an unavoidable result of today's smaller device geometries, CMOS devices have lost some of this 'user-friendliness'." problems associated with fast IC switching rates. These techniques have been explained in detail in a Xilinx application ## Meeting PCI Compliance with XC7300 EPLDs The Peripheral Component Interconnect (PCI) bus is becoming a fundamental building block in many high-performance PCs and workstations. Virtually all major computer and add-on adapter card manufacturers have released or announced products that support PCI. PCI is a fast, complex bus with unique electrical specifications. Operating at 33 MHz, the PCI bus is capable of transferring 32-bit data at a rate of 132 Mbytes/second, and is ideally suited for high-bandwidth graphics, disk storage and multi-media applications. PCI equipment manufacturers face the challenge of locating PCI compliant devices. Xilinx now provides a broad range of programmable logic devices that help designers develop compliant, high-performance PCI solutions: the XC7300 EPLD family. These devices are fully-compliant with the PCI Local Bus specification, and can be used to implement the interface between an add-on adapter card (graphics, SCSI, ATM, etc.) and the PCI bus, also known as a PCI bridge. The PCI specification defines a multi-level bus structure of primary and secondary PCI buses, all of which include a PCI bridge. In addition, the PCI specification outlines a 5 V to 3.3 V transition path to provide for a "quick and easy" transition from 5 V to 3.3 V component technology. The dual-voltage I/O drivers of the XC7300 EPLD family enable designers to develop a single, "universal" add-on adapter card that can operate in either a 5 V or 3.3 V PCI signaling environment. As a member of the PCI Special Interest Group (PCI-SIG), Xilinx is dedicated to aiding designers in the development of PCI systems. Additional information that will assist users in understanding the PCI bus and the use of Xilinx devices in PCI applications is now available: - The Peripheral Component Interconnect Bus — An X-Note overviewing the PCI Local Bus architecture, its electrical specifications, and recommended design solutions using Xilinx FPGAs and EPLDs. - Designing Flexible PCI Interfaces with Xilinx EPLDs An application note containing PCI compliant electrical specifications and design files for an example PCI bridge interface. For further information regarding PCI-compliant Xilinx devices, contact your local sales representative, or Xilinx Product Marketing (Tel: 800-255-7778 or 408-879-5083 E-Mail: pci@xilinx.com). ## **Handling Large PROM Files** The XPP utility program supports the programming of Xilinx serial PROM devices in the HW112 programmer. XPP supports the programming of multiple device types in a single session, allowing long configuration patterns for daisy-chained FPGAs to be programmed into multiple SPROM devices. However, the current release of XPP can only load files of a limited size. For example, if you are programming XC4000 devices, the maximum file size that XPP can load is: - · a daisy chain of four XC4005 bit files - · a daisy chain of two XC4010 bit files - a single XC4013 bit file 66If YOUr daisy chain configurations are within the size that XPP can load, you can use the XPP software to split a PROM file...99 If your daisy chain configurations are within the size that XPP can load, you can use the XPP software to split a PROM file across multiple XC17xxx devices. This procedure is documented in the *XACT Hardware and Peripherals Guide*, in the XPP/Serial Configuration PROM Programmer section. Just enter a list of SPROM device part numbers and XXP automatically splits the file up to fit the SPROMs in the order listed; it is recommended that you always concatenate the SPROMs starting with the largest and ending with the smallest. If your daisy chains are too long for the XPP program, the PROM programming file must be cut into smaller units. This can be accomplished with a utility called PSPLIT available on the Xilinx Bulletin Board System (BBS), as follows: 1. Call the XILINX BBS at 408-559-9327. If this is your first time calling into the BBS, fill in the login information, hang up and than call the Technical Hotline (800-255-7778) and request a change to your BBS access permissions to allow the downloading of files. (If you are unable to access the BBS, please contact the Technical Hotline or your local Xilinx Field Application Engineer to obtain a copy of PSPLIT.) - Download psplit.zip. This program will partition a large PROM file into smaller PROM files. - Unzip this file in the XACT directory. This will produce two files: psplit.exe and a psplit.doc. Please read the psplit.doc text file for directions on the use of PSPLIT. - 4. Run "psplit" on the MAKEPROM file that contains your design file. The PSPLIT utility accepts two input parameters: the original PROM file name and the size in kilobytes of the desired partition. Multiple executions of PSPLIT may be needed for a mix of SPROM sizes. For example, suppose you had a PROM file named < design>.EXO that you wanted to partition into an XC17128D and XC1765D SPROM. The XC17128D holds 128 Kbits, or 16 Kbytes. Thus, the first command line would be psplit <design>.EXO 16 psplit program | 128 Kbits = 16 Kbytes your prom file name This will create 2 files: <design>1.EXO and <design>2.EXO. Both of these files would be set up for a 16 Kbyte SPROM. In this case, the second file is intended for a 65 Kbit (8 Kbyte) SPROM, so PSPLIT is run again on that file: psplit <design>2.EXO 8 If more than one file is created by this command, the file was too big to fit into a single XC1765D. One peculiarity about using PSPLIT arises when dealing with the XC1736 See LARGE PROM FILES, next page ## **Mixed FPGA Daisy Chains** Xilinx FPGAs can be configured in a common daisy-chain structure. The lead device generates CCLK pulses and feeds serial configuration information into the next downstream device, which in turn feeds data into the next downstream device, and so on. There is no limit to the number of devices in a daisy chain. XC2000, XC3000 and XC4000 devices can be mixed freely with only one constraint: the lead device must be a member of the highest-order family used in the chain. The reason is shown and explained on pages 2-29 and 2-30 of the 1994 Xilinx Data Book. In a daisy-chain, all CCLK pins are interconnected, and DOUT of any upstream device feeds the DIN input of its downstream neighbor. Those are the basic connections. For control purposes, it is advisable to interconnect all the slave INIT pins (the XC2000 does not have this pin) and connect them to the INIT pin of the lead XC4000 device or the RESET input of the lead XC3000 device. Interconnected INIT pins prevent the master from starting the configuration process
until all slaves are ready. This is always assured at power-up because the master uses four times as many internal clocks for the power-up as any slave. However, during the reconfiguring pro- cess, master and slave devices consume the same number of clocks to clear a frame. A fast master might be ready before a slow slave, so interconnecting INITs solves this problem. The D/P and RESET pins (XC2000, XC3000) and the XC4000 PRO-GRAM pins can be used in different ways, depending on the designer's preferences regarding reconfiguration, pin use, and the need for a global RESET input. If there is no need for a global logic RESET input, it is best to permanently ground the XC2000/3000 D/P pin so that the RESET input functions as the Reconfigure input, and is connected to all XC4000 PROGRAM inputs. If there is a need for a global logic RESET input to reset all flip-flops in the user logic without causing reconfiguration, external logic must combine RESET and D/P in such a way that pulling Low RESET does not affect D/P, but pulling Low D/P also pulls down RESET. Figure 22 on page 2-126 in the 1994 Data Book shows such an implementation. ◆ 66 There is no limit to the number of devices in a daisy chain. XC2000, XC3000 and XC4000 devices can be mixed freely with only one constraint: the lead device must be a member of the highest-order family used in the chain. ## Large PROM Files Continued from previous page SPROM device. Since its capacity in bits is not an even number of kilobytes, PSPLIT will accept the text string "xc1736" as its second input parameter in place of the number of kilobytes, as in: psplit <design>.EXO xc1736 Once PSPLIT has been used to generate separate PROM files for the multiple SPROMs to be used in a daisy chain, use XPP to program the individual SPROMs • ## XC3100A Breaks Through the 300-MHz Barrier (for a presettable divide-by-n counter) The newest XC3100A-2 devices can implement a presettable divide-by-N 66This design minimizes power consumption. Only a very small part of the circuit operates at the high input frequency." counter at a maximum input frequency of 325 MHz. This means that any phase-locked-loop design with a frequency of up to 325 MHz can be built in one XC3100A part and that the VCO frequency can be adjusted in increments of the reference frequency. The design uses a pulse- skipping technique, a variation on the popular two-modulus prescaler method used in most high-frequency PLL designs. This design minimizes power consumption. Only a very small part of the circuit operates at the high input frequency. A 255-MHz predecessor to this design was demonstrated at the Electronica show in November 1992 and was described in XCELL #8. This example demonstrates the high performance of the XC3100 family devices. 325-MHz operation must be considered the "high water mark" for FPGA design. Typical performance is usually limited to a 60 to 95 MHz system clock range, but small, well-defined subsystems can operate much faster, as demonstrated by this 325-MHz PLL design. • ## Inexpensive Voltage Sensor and RESET Delay Circuit Dallas Semiconductor offers an inexpensive 3-terminal device that generates an active Low RESET output (while V_{cc} is below 4.0 V), and keeps that RESET signal Low for an additional 250 to 450 ms after V_{cc} exceeds 4.0 V. The device consumes only 50 µA when RESET is High, and up to 1 mA when RESET is Low (there is an internal pull-up resistor of 5 k Ω nominal). When V_{cc} drops below 4.0 V, RESET goes Low within 100 ns. The device also monitors its own RESET output and keeps it Low for 250 to 450 ms after an external signal has stopped pulling this pin Low. This can be used for contact debouncing. The device comes in a 3-lead TO-92 or 4-lead SOT-223 package. The part numbers are DS1233-15 for detecting 5 V -15%, and DS1233A-15 for detecting Please contact Dallas Semiconductor (tel: 214-450-0448) or their sales representatives for price and availability information. ## A Guide to XACT 5.0 Software Documentation Xilinx XACT development system software includes a broad spectrum of design tools for FPGAs and EPLDs. The documentation supporting these tools is fairly extensive and is organized into five categories: installation notes, user/design guides, reference guides, library guides, CAE interface guides, and release notes. These categories are outlined in the table, with a brief description of the content of each type of manual. | Туре | Content | |---------------|---| | Installation | Instructions covering standard installation and custom options, including a walk-through of a typical installation. | | User/Design | Overview and general information about design entry, implementation, and verification, including design and configuration hints, design flow, specific examples, and tutorials. | | Reference | Capability and function, including details about syntax, commands, options, variables and arguments, as well as warning and error message explanations where applicable. | | Libraries | Details about all design elements provided in Xilinx libraries, from primitives to macros, including symbols, functional descriptions, truth tables, and schematic representations specific to each device architecture. A functional selection guide identifies all design elements available in the architecture. | | CAE Interface | Design-tool-specific information about using Xilinx software within supported CAE environments, including extensive tutorials. | | Release | Descriptions of the product, identifying the applicable software versions and the devices supported, and including workarounds to any known problems. | The XACT 5.0 release is supported by sixteen manuals. The document set included with the software updates is customized for the specific software package involved. In addition, Xilinx distributes manuals from Viewlogic and Data I/O for the appropriate packages. The complete set is described in the table at right. In addition to the manuals, there are several reference cards, and a release document specific to each software module and package. | Manual | Part Number | |--|-------------| | XACT Installation Guide | 0401195 | | XACT User Guide | 0401128 | | XACT Reference Guide, Vol I, Design Entry | 0401129 | | XACT Reference Guide, Vol II, Design Implementation | 0401130 | | XACT Reference Guide, Vol III, Simulation | 0401131 | | XACT Hardware and Peripherals Guide | 0401132 | | XACT Libraries Guide | 0401098 | | XEPLD Design Guide | 0401191 | | XEPLD Reference Guide | 0401203 | | X-BLOX User Guide | 0401189 | | Xilinx ABEL User Guide | 0401136 | | Xilinx Synopsys Interface User Guide | 0401042 | | Viewlogic Interface User Guide | 0401133 | | OrCAD Interface User Guide | 0401134 | | Mentor Graphics V8 Interface User Guide | 0401135 | | XACT Global Index | 0401137 | | Viewlogic Workview Series I, Volume 1 | 0401044 | | Viewlogic Workview Series I, Volume 2 | 0401045 | | Viewlogic Workview Series I, Volume 3 | 0401046 | | Xilinx-ABEL Design Reference Manual | 0401221 | | Reference Card | Part Number | | KEPLD Software | 0401202 | | KEPLD Hardware | 0401201 | | X-BLOX Symbol | 0401196 | | Viewlogic Quick Reference | 0401200 | | 2010 0 1 1 0 1 | 0401197 | | OrCAD Quick Reference | 0101137 | | OFCAD Quick Reference
Mentor Graphics Quick Reference
Mentor Graphics Help | 0401198 | Additional copies of Xilinx manuals can be ordered through your local sales office or sales representative. ### General ## Q. I can't run XKEY.EXE to configure my programmable key. A. XKEY is used to configure the new programmable key. The version included with the XACT 5.0 release requires that a co-processor be present on the PC. This means that 386s and 486SXs cannot run XKEY. The workaround is to download XKEYEMUL.ZIP from the BBS. ### Q. I can't install the XACT 5.0 PC software from a CD-ROM attached to my SUN workstation. A. By default, the install program checks to see which platform you're running on, and only lets you install software for that platform. For example, this means that you cannot normally install PC software from a SUN CD-ROM - drive. The workaround is as follows: - In a place on the network that is accessible by the PC, create a CD image directory called "cd_image", and a subdirectory named "pc1": mkdir /<path>/cd_image mkdir /<path>/cd_image/pc1 - Copy the top-level files from the CD into the CD image directory: cp -p /cdrom/* /<path>/cd_image - Use the cd_copy program to copy the contents of the pc1 directory on the CD-ROM: - /cdrom/sn2/install/cd_copy. -r /cdrom/pc1 / <path>/cd_image/pc1 - On the target PC, mount the workstation drive. - 5) From the PC, go to the mounted drive and run the INSTALL.EXE program. ### **EPLD** ## Q. How are pins assigned in an EPLD design? - A. There are two ways to assign pins before running the fitter: - In a PLD file, insert the keyword PIN followed by a list of numbers at the end of the pin declaration (for example: INPUTPIN sig1 sig2 sig3 PIN 11 12 13). This can be done only in top-level files (not include or schematic PLD files). - On a schematic, use the LOC=<pin#> attribute on PAD symbols. ## Q. How do I freeze my pinout for design iterations? A. After running the fitter once, run PINSAVE. This creates a file f. This file can be edited to change the pinout of the design. Use the -f (pin freeze) option during subsequent runs of fiteqn or fitnet to use the information in the .vmf file. ## Q. During simulation, all flip-flops are stuck at 0 or the preload value. A. There is a global signal in
the simulation netlist that affects flip-flops. PRLD is an active-High signal that forces all flip-flops to their preload values. Make sure that PRLD is forced High to initialize the flip-flops at the start of simulation, then forced Low to release the flip-flops. ## **FPGA** ### Q. When I lock down some of my TBUFs, PPR gives an error message. This worked OK with the pre-XACT 5.0 software. A. TBUF bus-lines cannot be partially constrained in PPR 5.0.0. Currently, you must constrain all TBUFs on a bus, or constrain none of them. We suggest that you try removing all of the TBUF constraints. Much work was put into PPR relating to TBUF placement and you should see much better results, even without constraints. ## **Mentor Graphics (HP)** - Q. When PLD_DMGR is invoked, a warning message is generated and no icons appear. - A. Some HP systems do not have the necessary fonts installed for use with XACT 5.0. The fix is to perform mkfontdir on \$LCA/mgc. This will compile the HP fonts and create the necessary fonts.dir. ## Q. I can't simulate RAMs or ROMs correctly. A. The RAM and ROM macros included in the Mentor Graphics Interface for the HP platform will not simulate properly. An update is available from Xilinx Technical Support to fix this problem. NOTE: This problem only occurs in the HP version of the interface. The Sun version works correctly. ## **ViewLogic** ### Q. Sometimes Workview does not recognize my old Xilinx key when the new programmable key is attached. A. A possible workaround is to set SECDLY to 64000 in the WORKVIEW.INI file. This has fixed some, but not all, of the problems. Other workarounds are being investigated. Please contact the Hot-Line if you are still experiencing problems. ## Q. I'm trying to simulate an old XC4000 design with XACT 5.0, but VSM complains about the STARTUP symbol. A. If VSM 4.1.3 (included with XACT 5.0) is run on a design created with preunified libraries, VSM may report: ER Error - Could not find WIR file startup.1 The solution is to add the shm4000 library (included with XACT 5.0) to the VIEWDRAW.INI file. This will allow VSM to find the files that it needs. ## Q. During EPLD simulation, why do so many internal nodes have a "?" value? A. During logic collapsing, most internal signal names are lost. A list of signals that will be visible during simulation can be found in the *design>lgx* file. ### **OrCAD** #### Q. After installing the XACT 5 unified libraries, the following error occurs when invoking OrCad SDT 4.xx: library header is incorrect for c:\xact\xc4000 A. The unified libraries shipped with XACT 5 are in the OrCad 386+ 32 bit format. These libraries are not compatible with OrCad 4. The unified libraries are NOT available for OrCad 4. You may continue using OrCad 4 with the pre-XACT 5 libraries. However, you will not be able to take advantage of the new features offered with the unified libraries. An upgrade to OrCad 386+ is recommended. #### **FAX RESPONSE FORM** #### Corporate Headquarters Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Tel: 408-559-7778 Fax: 408-559-7114 #### Europe Xilinx, Ltd. Suite 1B, Cobb House Oyster Lane Byfleet Surrey KT147DU United Kingdom Tel: 44-932-349401 Fax: 44-932-349499 #### Japan Xilinx, KK Daini-Nagaoka Bldg. 2F 2-8-5, Natchobori, Chuo-ku, Tokyo 104 Japan Tel: 81-33-2879191 Fax: 81-33-2979189 #### Asia Pacific Xilinx Asia Pacific Unit 2308-2319 Tower 1 Metroplaza Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852-410-2740 Fax: 852-418-1600 ## **FAX in Your Comments and Suggestions** | To: Brad Fawcett, XCELL Editor | Xilinx Inc. FAX : 408-879-4676 | |---|---------------------------------------| | From: | Date: | | ☐ Please add my name to the | XCELL mailing list. | | NAME | | | COMPANY | | | ADDRESS | | | CITY/STATE/ZIP | | | PHONE | | | XCELL as a Customer Featur | | | XCELL as a Customer Featur | | | XCELL as a Customer Featur Comments and Suggestions: | re. | | XCELL as a Customer Featur Comments and Suggestions: | re. | | XCELL as a Customer Featur Comments and Suggestions: | re. | | XCELL as a Customer Featur Comments and Suggestions: | re. | | XCELL as a Customer Featur Comments and Suggestions: | re. | | XCELL as a Customer Featur Comments and Suggestions: | re. | 2100 Logic Drive San Jose, CA 95124-3450 U.S. Postage PAID First Class Permit No. 2196 San Jose, CA