
HARDWARE
Editorial .. 2
FPGAs

New XC4000X Series 3
3.3V SpartanXL 4-5

FPGAs vs. ASICs
An Effective Alternative 6-7
Rapidly Changing ASIC
Conversion Market 8-9

Replacing ASICs 10-11
CPLDs

XC9500XL 3.3V
FastFLASH 12

Chip Scale Packaging 13
�ARM� Yourself 14-15
Max Headroom 15

SOFTWARE
Silicon Xpresso 16-17
Alliance Series 1.5

Guaranteeing Designs
Work in All Conditions . 18-19

XC9500 Design Speed 19
Unleash Creativity 20

Column: HDL Advisor 21-23

DESIGN HINTS
System Emulation 24-25
Reducing CPLD Power

Consumption 26-27
Synplify: Inferring RAM 28-29
MINC Synario: Upgraded

PLSynthesizer 30-31
Viewlogic IntelliFlow:

Design Process 32-33
Q&A From Our Hotline 34-35
Your Best Debug Tools 36

Upcoming Training 37
Product Selection Matrix .. 38-39

The Programmable Logic CompanySM

Inside This Issue:

T H E Q U A R T E R L Y J O U R N A L F O R X I L I N X P R O G R A M M A B L E L O G I C U S E R S

XCELL

DESIGN TIPS & HINTS

DEVELOPMENT SYSTEMS

Issue 30
Fourth
Quarter
1998

PRODUCT INFORMATION

Three New 3.3V Families
XC4000X
Industry-leading
system performance
with double the
capacity...

See page 3

SpartanXL
Now with faster
systems speeds at
the same low
Spartan price...

See pages 4-5

XC9500XL
New 3.3V CPLD
family offers higher
performance and
new features...

See page 12

Alliance Series 1.5 Software
Three articles explore features of
the new Alliance software release,
from design stability to XC9500
design speed to design creativity...

See pages 18-20

Reducing CPLD Power Consumption
Minimizing CPLD power consumption
is easy...

See pages 26-27

2

XCell
Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3450
Phone: 408-559-7778
FAX: 408-879-4780
©1998 Xilinx Inc.
All rights reserved.

XCell is published quarterly for customers
of Xilinx, Inc. XILINX and the Xilinx logo
are registered trademarks of Xilinx, Inc.
Spartan, Virtex, HardWire, Alliance Series,
Foundation Series, AllianceCORE,
LogiCORE, WebLINX, SelectRAM,
SelectRAM+, Dual Block, FastFLASH, and
all XC-prefix products are trademarks, and
�The Programmable Logic Company� is a
service mark of Xilinx, Inc. Other brand or
product names are trademarks or registered
trademarks of their respective owners.

The articles, information, and other mate-
rials included in this issue are provided
solely for the convenience of our readers.
Xilinx makes no warranties, express, im-
plied, statutory, or otherwise, and accepts
no liability with respect to any such articles,
information, or other materials or their
use, and any use thereof is solely at the risk
of the user. Any person or entity using such
information in any way releases and waives
any claim it might have against Xilinx for
any loss, damage, or expense caused thereby.

EDITORIAL

current XC4000XL product line, at half the cost.
The XC4000XLA family is the industry�s lowest
power, highest performance, full line of 3.3V
FPGA products.

� The XC4000XV family, first unveiled last
October, now consists of five 2.5V FPGAs, with
densities from 220,000 to 500,000 system
gates, including the newly announced
XC40110XV. This second generation of 0.25µ
devices offers the industry�s highest perfor-
mance, and includes the largest FPGA devices
available today.

� The SpartanXL family consists of five 3.3V
FPGAs. These new, very low cost devices follow
the introduction earlier this year of the 5V
Spartan line that features on-chip RAM and
broad support for cores. The new SpartanXL
products are available in densities ranging from
5,000 to 40,000 system gates.

All of these devices are supported by the Xilinx
Foundation Series 1.5 and Alliance Series 1.5
software, which includes the new Xilinx
AKAspeed TM technology that delivers fast compile
times and high clock speeds. These tools also
support ASIC-like design features such as the
reporting of minimum timing delays, prorated for
both voltage and temperature. A wide variety of
cores are also available, all managed by the Xilinx
CORE Generator.

These new products are driving programmable
logic into new applications that include digital
cameras, digital television, set-top boxes, arcade
games, PCMCIA modem cards, GPS driver informa-
tion systems, and portable phones � applications
that previously did not benefit from the many
advantages of programmable logic.

And, even after all this, our million-gate Virtex
family arrives next quarter, with system-level fea-
tures that bring out-of-this-world possibilities � light
years ahead of anything you�ve seen before. It�s not
science fiction, but it does come from the future.

Our mission is to help you explore new
worlds, and new applications; to boldly go where
no programmable logic device has gone before.
And, our next generation of stellar devices are
here now; no �science fiction.�

We recently announced more than
20 new devices with densities rang-
ing from 800 to 500,000 system
gates, all fully supported by our
highly acclaimed Alliance Series 1.5
and Foundation Series 1.5 software.
A whole new world of possibility is
now available, because these devices
not only represent the cutting edge in
performance and density, they also
set new standards for low cost, high
reliability, and ease of use.

This unprecedented offering brings you the
broadest choice of 3.3V and 2.5V devices available
anywhere, in four new families:

� The XC9500XL family consists of four 3.3V
devices with logic densities ranging from 36 to
288 macrocells (800 to 6,400 gates). These
devices are manufactured using advanced 0.35µ
Flash technology for the industry�s highest reli-
ability in programming and data retention, as
well as the lowest device cost and the smallest
die size. These are the industry�s highest perfor-
mance CPLDs with pin-to-pin speeds of 4 nano-
seconds and system clock frequencies of
200MHz, available in the most popular surface
mount technology, including chip-scale packag-
ing. All of our XC9500 products offer the
industry�s best pin locking and in-system pro-
gramming capability as well as enhanced JTAG
Boundary Scan support.

� The XC4000XLA FPGA family consists of eight
3.3V FPGAs ranging in density from 26,000 to
80,000 system gates. The XC4000XLA devices are
manufactured with an advanced 0.25µ process
that boosts performance by 30 percent over the

Xilinx � The Next Generation
by Carlis Collins,
Managing Editor

of Corporate
Communications,

editor@xilinx.com

3

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

PRODUCT INFORMATION - FPGAs

Optimized for 3.3V designs, the Xilinx XC4000X
Series FPGAs double the capacity of FPGAs while
delivering industry-leading system performance.
Consisting of the new XC4000XLA and XC4000XV
families, the XC4000X Series is an enhanced version
of the industry standard XC4000 architecture.
Consisting of 12 devices with capacities ranging
from 30,000 to 500,000 system gates, these FPGAs
feature the patented SelectRAMTM memory; offering
a completely flexible logic distribution, as well as
single-port or dual-port memory. Designed with
advanced CMOS processes, the XC4000X Series
delivers industry-leading performance while
significantly reducing power consumption.

Unprecedented Performance
The XC4000X Series uses unique architectural

enhancements and aggressive process technology
to attain unprecedented speed at full capacity.
Additional routing resources and highly buffered
clock networks ensure that you get the highest
array performance possible. New three-state I/O
registers and FastCLK I/O buffers significantly
increase system performance.

Double the Capacity
The XC4000XV Family, offering up to 500,000

system gates, is twice the capacity of competing
products. Plus, it offers a high level of perfor-
mance, with efficient clock buffering and abun-

dant, fast, segmented routing that ensures mini-
mal interconnect delay.

Power Consumption Less Than Half
The XC4000XLA consumes half the power

of the equivalent XC4000XL device, and the
XC4000XV only consumes a third of the power,
as shown in Figure 1. These savings are derived
from efficient design layout, smaller process
geometries, and lower operating voltages.

Conclusion
The new XC4000X FPGA family represents the

next generation of programmable logic technol-
ogy, with the fastest, highest capacity devices
available. Combined with our highly acclaimed
Alliance Series 1.5 and Foundation Series 1.5
software, this family is the perfect choice for
your next design.

New XC4000X Series
FPGAs Doubling Gate Capacities and

Delivering Industry-Leading Speed
by Bruce Weyer,
Sr. Director, Marketing,
weyer@xilinx.com

XC4013XLA XC4020XLA XC4028XLA XC4036XLA XC4044XLA XC4052XLA XC4062XLA XC4085XLA XC40110XV XC40150XV XC40200XV XC40250XV
Logic Cells 1,368 1,862 2,432 3,078 3,800 4,598 5,472 7,448 10,982 12,312 16,758 20,102

System Gates 10-30K 13-40K 18-50K 22-65K 27-80K 33-100K 40-130K 55-180K 75-200K 100-300K 130-400K 180-500K

Max RAM Bits 18,432 25,088 32,768 41,472 51,200 61,952 73,728 100,352 131,072 165,888 225,792 270,848

User I/Os 192 224 256 288 320 352 384 448 448 448 448 448

Packages PQ160 PQ160 HQ160 HQ160 HQ160 HQ160 HQ160 HQ160
PQ208 PQ208 HQ208 HQ208 HQ208 HQ208 HQ208 HQ208
PQ240 PQ240 HQ240 HQ240 HQ240 HQ240 HQ240 HQ240 HQ240 HQ240

HQ304 HQ304 HQ304 HQ304 HQ304 HQ304
BG256 BG256 BG256

BG352 BG352 BG352 BG352 BG352 BG352 BG352 BG352
BG432 BG432 BG432 BG432 BG432 BG432 BG432 BG432 BG432

BG560 BG560 BG560 BG560 BG560 BG560 BG560
PG559 PG559

Table 1: The
XC4000X Family

Figure 1:
Relative Power
Consumption

XC4000XL XC4000XLA XC4000XV

Process tech: 0.35µ 0.35µ 0.25µ

I/O voltage: 3.3V 3.3V 3.3V

Core voltage: 3.3V 3.3V 2.5V

1.0�

0.8�

0.6�

0.4�

0.2�

W
at

ts

4

memory capabilities offered in the 5V family. The
Spartan series is the only ASIC replacement FPGA
that offers this key feature. On-chip RAM is useful
for scratch-pad memories, shift registers, and
FIFOs such as those used in a PCI interface.

The SpartanXL family (and the 5V Spartan fam-
ily) are the industry�s most cost-effective FPGAs,
made possible by total cost management, which
includes reduction of the assembly and test costs
by using low-cost packaging and new, efficient test
methodologies.

New Features
The SpartanXL architecture adds several key

new features to the original 5V Spartan family. The
dedicated carry logic has improved performance,
providing 16-bit addition in only 8 ns. Clock
routing has been simplified with eight identical,
global, low-skew buffers to choose from. The new
Express Mode decreases configuration time by a
factor of eight. Configuration through the dedi-
cated IEEE-compatible Boundary Scan logic has
been simplified, and is now supported by the
JTAGProgrammer software and cable. Synthesis is
simplified as well, by offering level-sensitive
latches throughout the device.

The SpartanXL architecture features the industry�s
most versatile I/O cell, with features that include:

� 5V input tolerance even before power is applied

� 3.3V or 5V PCI compatibility

� Programmable 12 mA or 24 mA output drive

� Input fast capture latch for shorter setup times

� Output look-up table for the fastest pin-to-pin
speeds

High Speed at Low Power
The SpartanXL series provides system-level

speed beyond 100MHz. I/O toggle frequency
achieves 100MHz, while functions such as stan-

The number of different applications sup-
ported by the Spartan� Series FPGAs has been
dramatically increased with the shipment of the
new 3.3V SpartanXL family. For the first time, an
FPGA family can provide system speeds beyond
100MHz at prices below $3.00*, while supporting
all the features needed for complete logic integra-
tion. The unique combination of blazing speed
and low price eliminates the need for dedicated
chips or gate arrays in high-volume applications
such as digital imaging and PC peripherals.

Using an advanced 0.35µ process, to achieve
smaller die size and higher performance, the
SpartanXL family builds on the success of the
Spartan Series, the industry�s fastest-growing
FPGA family. This unique five-layer-metal process,
developed by Xilinx, provides the most effective
base for a 3.3V logic solution. The five devices in
the SpartanXL family offer the same 5,000 to
40,000 gate density range as the 5V Spartan fam-
ily, introduced in January 1998. Furthermore,
they use the same low-cost packages, allowing
easy migration between voltage levels.

The SpartanXL architecture features the same
synchronous single-port and dual-port SelectRAM

The 3.3V SpartanXL�

FPGA Series
Invades New Territory with
High Speed and Low Cost

by Marc Baker, Appli-
cations Engineer,
marc.baker@xilinx.com

Figure 1:
SpartanXL Family
Voltage Compatibility

*84 PLCC, 100K
units, -3 speed

5

dard 16-bit binary counters run at 120MHz inter-
nally. The SpartanXL speed grades were dramati-
cally improved since the initial software release,
and the new speed files are available on WebLINX
(www.xilinx.com) in the File Download area.

The 3.3V supply reduces power consumption
significantly. Xilinx FPGAs benefit from efficient
segmented routing that minimizes the amount of
power consumed by each net. For the latest
power and speed information, see the SpartanXL
Series datasheet on WebLINX.

Software Support and
Core Solutions

The SpartanXL family is fully supported by the
Xilinx Alliance Series 1.5 and Foundation Series
1.5 development software. New support includes
libraries specifically for the Spartan and
SpartanXL families, simplifying design with these
products. Dozens of Xilinx Alliance partners pro-
vide design entry and verification tools.

Pre-defined system functions are available as
core solutions for the SpartanXL family. Xilinx
offers PCI and DSP LogiCORE solutions via the
CORE Generator software, included in the 1.5
version of the Xilinx development system. Several
third-party vendors provide AllianceCORE solu-
tions, which are pre-verified for the SpartanXL
family. Implementing these common functions in
a SpartanXL FPGA costs less than an ASIC, due to

Figure 2:
Availability Chart

Figure 3: Spartan Cost
Reduction Roadmap

the dramatically lower prices offered by the
SpartanXL family.

Conclusion
The SpartanXL series complements the

XC4000XLA family, which applies the same pro-
cess technology to our higher density devices. For
applications where less logic is needed, the
XC9500XL family provides the fastest CPLDs in the
industry. Together, these families provide the
broadest choice of 3.3V devices. Rapid applica-
tion of aggressive new process technologies al-
lows these PLDs to penetrate new applications
that were once the stronghold of ASICs, such as
arcade games, graphics cards, and automotive
cabin controls.

Xilinx Spartan Series
5 Volt (0.5/0.35µ) XCS05 XCS10 XCS20 XCS30 XCS40
3 Volt (0.35/0.25µ) XCS05XL XCS10XL XCS20XL XCS30XL XCS40XL

System Gates 2K-5K 3K-10K 7K-20K 10K-30K 13K-40K

Logic Cells 238 466 950 1368 1862

Max Logic Gates 3,000 5,000 10,000 13,000 20,000

Flip-Flops 360 616 1120 1536 2016

Max RAM bits 3,200 6,272 12,800 18,432 25,088

Max I/O 77 112 160 192 205

Performance >80MHz >80MHz >80MHz >80MHz >80MHz

No Compromises:
Performance, RAM, Cores, and Low Price

/techdocs/htm_index/sw_M1.5_updates.htm
/partinfo/spartan.pdf

6

employing a leading-edge, multi-feature size 0.35µ/
0.25µ technology. In the past, a larger die size was
necessary to provide sufficient logic density for
typical FPGA designs but caused FPGAs to be priced
out of range for higher volume production.

Because the high-end Xilinx FPGAs (such as the
Virtex Series) contain more transistors (75 million)
than the Pentium II microprocessor, Xilinx wafer
foundry partners have chosen these complex devices
to debug new fab processes, replacing DRAMs as the
technology driver. Becoming a fab process driver
means that Xilinx FPGAs will remain on the leading
edge of process technology for years to come.

FPGAs Close the Price Gap
The SpartanXL family (3V version) is currently the

lowest cost FPGA family in the industry. The entire
Spartan/SpartanXL Series incorporates ASIC-like
features such as dual-port synchronous on-chip
memory and supports frequencies up to 80+MHz.

The key to the Spartan family�s low production
pricing is an �I/O pad-limited� die size. �I/O pad-
limited� means that a die is reduced to the limits
imposed by the I/O bonding pads. Pad-limited en-
ables the Spartan Series FPGA die to be cost equiva-
lent to most mask gate arrays of up to 205 I/O pins.
With Spartan or SpartanXL prices starting at $2.95
(84 PLCC, 100K units, -3 speed), the series is able to
realistically compete with mask gate arrays for pro-
duction based upon the same I/O count.

For example, the 160 I/O SpartanXL S20XL, shown
in Figure 1, has a comparable die size and cost as the
160 I/O 0.35µm gate array, even though the gate array
contains a denser architecture (and higher gate
count). By sizing the die at the pad-limits, the FPGA
cost can be equivalent to most gate arrays.

Lower Manufacturing Cost
Because Spartan Series FPGAs were designed for

low power consumption, inexpensive plastic pack-
ages can be used to help keep manufacturing costs
low. Other production savings accrue from a

In this fast-paced electronics industry, gate
array engineers are under increasing pressure to
produce new ASIC designs ever more quickly. As
traditional masked gate arrays decline in usage, a
new generation of programmable devices have
become a viable alternative for the gate array user.

The new �ASIC Replacement� FPGAs have
continued to narrow the price gap with mask
ASICs while maintaining the user advantages of
quick production and in-system
reprogrammability. These FPGAs have begun to
replace mask gate arrays in traditional ASIC vol-
ume applications, from networking encryption
engines to PC adapters to digital camcorders.

In this article we examine recent advances in
programmable technology and the advantages of
the new ASIC Replacement FPGA.

For a list of Spartan and SpartanXL devices, see
the Xilinx Spartan Series Table on page 5 in the
�3.3V SpartanXL FPGA Series� article.

ASIC Replacement FPGAs
The Xilinx Spartan Series FPGAs were created

to provide a cost effective and flexible replace-
ment for low-end (<40K system gates) ASICs in
volume production. These new FPGAs offer the
ASIC designer the advantages of in-system
reprogrammability at prices that are competitive
with masked gate arrays. To become an effective
ASIC solution, the Spartan Series had to sub-
stantially reduce die-size over the previous
generation FPGAs while measurably improving

gate-area density and system
performance.

Although FPGAs have
historically lagged the ASIC
industry by one or two fab-
process generations, current
Spartan Series FPGAs were
able to surpass most of
today�s gate arrays by

FPGAs vs. ASICs

FPGAs Can Be an Effective
Alternative to Mask Gate Arrays

by Steve Sharp,
sharp@xilinx.com

Figure 1. Spartan FPGAs
match die size with
mask gate arrays.

7

streamlined test methodology, built-in self-test
features, and shorter test times. The combination
of lower manufacturing overhead and small die-
size eliminate cost barriers and enables Spartan
Series FPGAs to be effective for both prototyping
and for mass production.

FPGA Production Parts �Off-the-shelf!�
It is paramount to attain the best development

time-to-production because today�s product life
cycles are often brief (9-18 months). Program-
mable logic is uniquely able to support both rapid
prototyping and a quick ramp to full manufactur-
ing. For many Xilinx customers the immediate
availability of production is the most important
benefit of programmable logic. After development,
early production shipments are critical to market
acceptance.

When FPGAs are used in production, marketing
channels are quickly stocked for initial sales and new
product revenue flow begins. Because the standard
ASIC has an 8-16 week production leadtime, a 3-4
month sales delay would substantially decrease rev-
enues and profits throughout the life of the product
(see Figure 2). By using FPGAs in production; how-
ever, your market penetration is immediate.

The well-known McKinsey study found that a
six-month delay costs one third of the profits over
the lifetime of the product.

FPGA-to-ASIC Conversions
FPGA-to-ASIC conversions have been a popular

approach to reduce unit production costs. How-
ever, it has become more difficult to cost justify
these conversions in lower-density designs be-
cause of the new low price FPGAs along with the
flexibility that FPGAs offer in today�s quickly
changing markets.

Conversion to a lower density ASIC means losing
FPGA advantages of �off-the-shelf� production deliv-
eries and simple field software updates, while incur-
ring re-design risks (see Figure 3). Conversion
costs such as NRE, silicon re-spins, test vectors, new
device characterization, and internal engineering
costs, usually outweigh the nominal unit cost differ-
ence between FPGAs and ASICs.

In higher density designs, using an ASIC that is
crafted to exactly mirror the FPGA features can
minimize the costs and the associated re-design
risks. For example, the Xilinx HardWire� family

offers exact ASIC replacements for our higher-
density FPGAs, making conversion very quick,
easy, and inexpensive.

However, for most other manufacturers�
FPGAs, the conversion time-to-production is
frequently under-estimated. The time from start to
full production typically exceeds four months. The
common milestones are:

� Conversion/internal engineering time �
three weeks

� Prototype fab time � three weeks

� Full production deliveries � 10 weeks

In total, 16
weeks are spent
before production
is fully ramped and
the transition to the
ASIC is complete.
When a short prod-
uct life or a mid-life
product enhance-
ment is likely,
conversions be-
come worthless.

Conclusion
There are compelling advantages to use pro-

grammable logic for both development and pro-
duction. Today�s FPGAs support standard Verilog
and VHDL design flows that help ASIC designers
transition to programmable logic. Advanced pro-
cess technology has leveled the playing field, and
allowed FPGAs to be very price competitive with
low-density gate arrays. When ASIC users now
consider pricing, time-to-production, and
reprogrammability, the preferred ASIC technology
becomes the new Spartan Series FPGAs.

Figure 2: FPGA beats
ASIC by more than 3
months to first customer
shipment!

Figure 3: FPGA to ASIC
conversion to produc-
tion takes at least four
months.

0 5 10 15 20 25 30
WEEKS

FPGA

ASIC

DEVELOPMENT TIME
16 WEEKS

PRODUCTION
LEAD-TIME

2 WEEKS
TOTAL TIME TO
FIRST SHIPMENT

DEVELOPMENT TIME
20 WEEKS

PRODUCTION
LEAD-TIME

12 WEEKS

18 WEEKS

32
WKS

0 5 10 15 20
WEEKS

FPGA

to

ASIC

3
WKS

3
WKS

10
WEEKS

16 WEEKS
TOTAL

CO
N

VE
R

SI
O

N
 T

IM
E

PR
O

TO
 F

AB
 T

IM
E

ASIC
PRODUCTION

DELIVERY
TIME

8

FPGAs vs. ASICs

The Rapidly Changing
ASIC Conversion Market

by Shelly Davis,
HardWire Marketing

Manager,
sdavis@xilinx.com

As programmable logic devices continue to
grow in density, designers are increasingly using
FPGAs where they previously used ASICs. The
advantages of off-the-shelf availability and rapid
prototyping make FPGAs a very attractive solution.
However, you must answer a key question: will you
use FPGAs for both development and production
volumes, or will you convert the design to some
form of ASIC, such as a gate array or standard cell,
for cost reduction?

Third-Party ASIC Conversion Problems
The FPGA-to-ASIC conversion market has been

dynamic over the past few years. Several companies
have entered the market, only to find themselves in
financial trouble. Microchip Technologies exited
after 15 months of business and the D.I.I. group
who purchased Orbit Semiconductor took a $60M

loss last quarter due to the difficulties they
continue to experience. It is not due to a
lack of conversion business in the market-
place that problems are caused for the
small ASIC vendor. The problem is caused
instead by the difficulty of accurately con-
verting today�s complex PLDs. There are
several factors contributing to this.

Most third party FPGA-to-ASIC conver-
sion companies use gate array technology
for the translation. The features of today�s
FPGAs, such as PCI compliance and the
ability to implement 50K bits of RAM or
more, exceeds the capability of most gate
array vendors. In addition, the growing
requirement for fast, on-chip RAM is
perfectly suited to SRAM-based FPGAs, or
fully diffused standard cell embedded
RAM, but not for gate array processes.
Even the most efficient gate array process

will require 5 to 6 gates per RAM bit to convert
FPGA RAM to ASIC RAM. For a design with 15K bits
of RAM, this can translate into a minimum of 90K
gates on a gate array. Therefore, a design that was

slated for cost reduction from an FPGA to a smaller
gate array may achieve only a small cost reduction
because of the increase in die area required for the
RAM.

Gate array price erosion has been fierce in the
past few years. While this price reduction has
benefited companies using gate arrays, some of
the smaller gate array vendors are in poor finan-
cial condition, making it difficult for those compa-
nies to sustain innovation. This lack of new prod-
uct development is now causing them to have
difficulty converting many of the more complex
FPGA designs.

Leaving an FPGA conversion to a third party gate
array company is complicated, not well suited
technologically, and doesn�t offer much cost reduc-
tion because a 100K-gate FPGA often becomes a
500K gate array under these circumstances.

Pad Limitation
True pad limitation is achieved when there is

such an abundance of gates available in a device,
that the size of the die is determined solely by the
number of required pads. The standard cell pro-
viders, with their dense core offerings, have been
pad limited for some time. At process geometries
below 0.5µ, many architectures, including FPGAs
and gate arrays, become pad limited. For an FPGA-
to-ASIC conversion company, who depends on
achieving cost reduction through a die area
shrink, pad limitation reduces the cost benefit of
the gate array. In many cases, because the cus-
tomer needs all the pads provided on the FPGA,
the gate array device will be of equal size, in order
to include the same number of pads. Size reduc-
tion due to translating programmable SRAM gates
to much smaller metal vias is nullified.

Diverging Architectures
While the features and performance of FPGAs

continually increase to include many ASIC-like
features, the actual implementation and design
methodology are becoming dissimilar; architectur-

�Will you use
FPGAs for both

development and
production

volumes, or will
you convert the
design to some

form of ASIC, such
as a gate array or
standard cell, for
cost reduction?�

9Figure 1: XH3
Architecture

The XH3 Architecture
ally, FPGA technology and ASIC technology are
diverging. The ability of one architecture to be
�converted� to the other will require more than just
re-targeting to a specific ASIC vendor�s libraries.
Gate array processes without embedded RAM struc-
tures that are specific to the original FPGA will
quickly exceed gate count capability. In addition, in-
depth knowledge of the FPGA�s functionality and
detailed specifications of industry standards like PCI
will be basic requirements. Furthermore, the ability
to provide accurate timing of I/Os and critical sys-
tem performance will be essential to convert these
newer, more complex designs.

FPGA designers who depend on ASIC cost re-
ductions will find their options changing over the
next 18 months. Many smaller ASIC vendors will
de-emphasize FPGA conversions because they lack
the capability to convert them in a cost-efficient
and technically effective manner. In the meantime,
FPGA price per gate continues to decline to a point
that, for 40K system gates and below, FPGAs can
be considered for production volume in �formerly
ASIC� applications. Companies that continue to
provide FPGA-to-ASIC conversions will need to
offer increasingly FPGA-specific solutions, because
a generic gate array process will not serve the
requirements of all PLD features.

Xilinx is one example of a company that pro-
vides a specialized solution for FPGA conversions.
The Xilinx HardWire Business Unit continues to
develop new ASIC technologies suitable for con-
verting complex, RAM-intensive FPGAs. Xilinx
recently introduced the XH3 FpgASIC architecture
which provides dense gate array logic surrounded
by an I/O ring that replicates the Xilinx FPGA I/O.
FPGA features are built into the base arrays, fur-
ther reducing the risk of conversion problems.

Xilinx HardWire devices are an excellent cost
reduction path for FPGA�s above 40K system gates
and are especially suited for most dense FPGAs.

Another company specializing is Clear Logic
Corporation, who offers a solution for Altera
FPGAs only. Clear Logic offers their proprietary
ClearFire � technique for laser cutting metal
fuses in base arrays which closely resemble the
logic resources in the Altera Flex8000 family of
FPGAs. The advantage to the customer is that by
optimizing processes, libraries, and feature sets to
convert Altera PLDs exclusively, the risk of con-

verting the design incorrectly is reduced. In the
future, this type of focus will be required to pro-
vide accurate FPGA cost reductions.

Conclusion
In the future, FPGA technology will be increas-

ingly suited for applications previously considered
as gate array or standard cell territory. Many logic
designers are realizing that they can take advantage
of FPGA time-to-market benefits and still achieve a
gate array cost point for volume production.

However, options for translating the FPGA to an
ASIC are changing. Because of the complexity of
the FPGA features and the density of RAM, many
smaller gate array conversion vendors are drop-
ping out of the market. Pad limitation for both
FPGA�s and gate arrays can minimize cost reduc-
tion benefits unless creative pad options can be
implemented. Architecturally, FPGA�s and gate
arrays are also diverging. Differing design meth-
odology and RAM implementations can be very
inefficient if not specifically accounted for in the
conversion process. The new models for success
in the conversion market will be companies who
specialize in converting a single architecture, such
as Clear Logic with Altera devices, Lucent with
MACOTM and Xilinx with HardWire FpgASIC�s.
These will be the options that provide the closest
match and the most expertise for the 200K+ gate
FPGA�s of today.

10

One of the first things you usually notice
about a printed circuit board design is the use of
the �big chips.� It is not hard to find the
microcontroller, the memories, the FPGAs, and
the ASICs. And, sometimes the unused capacity in
one FPGA is enough to replace several ASICs. If
you want to reduce your overall development/
manufacturing/test costs it often makes sense to
incorporate ASIC functions into your FPGAs.

Telecommunications
I�ll discuss three different common tasks per-

formed in telecommunications: framing, multi-
plexing, and performance monitoring.

In a typical digital communications applica-
tion, there may be a T1 or E1 framer ASIC. These
devices usually cost about $20 in quantity, and

they may be under-
utilized by the
application. Some-
times, only the
transmit section, or
just the receive
section are used, or
sometimes the
pattern being gen-
erated is fixed, and
the device is not
being used to its
fullest. The descrip-

tion of these functions is available from a number
of sources such as ITU G-series documents
(G.703 for example), or from ANSI, ATIS T1
documents.

Digital multiplexers/demultiplexers
(MULDEM�s) are also common ASICs. They take a
number of T1 or E1 signals, multiplex and

demultiplex them, to and from a higher rate sig-
nal. Again, you can refer to the ITU or ANSI stan-
dards to get all the information you need to
implement the function in an FPGA. Quite fre-
quently, if the application also involves a fiber
optic channel, or a radio link, other logic is re-
quired, which can easily be implemented on the
same FPGA.

Performance monitoring consists of accumulat-
ing bit errors, coding violations, out of frame con-
ditions and CRC errors. It must also keep track of
these in light of error statistics. In these applica-
tions, monitoring bit streams at rates from 1 to 50
megabits per second is not a task that is easily
performed by a microcontroller. To detect and
keep track of the events, and then present them in
a digested fashion to the microcontroller, allows
for more features and higher performance. These
circuits are all simple counters, shift registers and
multiplexers, easily implemented in an FPGA.

Signal Processing
Digital finite impulse response filters (FIRs)

are common elements of any communications
system as well as control systems. Depending on
the speed, resolution and number of taps re-
quired, an FPGA may be a good choice.

One such application is the root Nyquist trans-
mit filter. In any channel, to provide for zero
inter-symbol interference (ISI), you need to filter
the transmit symbols. Many designs take the opti-
mal ISI-free filter for a channel and split it into
two parts: half at the transmit end, and half at the
receive end. This also minimizes transmit band-
width in the channel. Taking half of a filter is the
same as the square root of the response, hence
the name root Nyquist filter.

FPGAs vs. ASICs

Many ASICs Can Easily beREPLACED
with FPGAs by Austin Lesea, Principal Engineer,

austin.lesea@xilinx.com

�If you want to reduce

your overall development/

manufacturing/test costs it

often makes sense to

incorporate ASIC functions

into your FPGAs.�

11

A typical FIR structure for the transmit filter is a
shift register which is clocked at three times the
symbol rate (or more), where the outputs or taps
of the flip-flops in the register pass through resis-
tors to a summing junction. The resistor values are
chosen to set the gains in the taps of the filter. The
sign of the value to be summed is chosen by select-
ing the normal, or the inverting output of the regis-
ter. In one example, a 22-tap FIR is easily imple-
mented in the I/O blocks of the FPGA along one
side of the device. The output of the summing
junction need only pass through a simple low pass
filter to remove the sampling clock and the har-
monics. Such filters are commonly used in all
digital radio systems. Each bit of a modulation
format�s symbol requires such a filter, so for QAM,
two such filters are required, and for 16QAM, four
such filters are required.

Resistor/register FIR structures are useful to
symbol rates up to a few mega symbols per sec-
ond, and are easily implemented in an FPGA.

General Purpose Applications
Another good example of the �no more ASICs�

design philosophy is in forward error correcting.
Most communication channels have errors that
occur (fiber, radio, magnetic, or metallic based
channels) and need some amount of error correc-
tion to make the channel useful. Rather than buy-
ing ASICs to do the job, again it makes sense to
perform the functions in an FPGA. Some forward
error correction algorithms require a large
memory block, but using an external RAM device
is still less expensive than the ASIC alternative.

Some error correcting schemes are fairly easy
to implement, and require only feedback shift
register structures, such as Reed-Solomon codes.
The simple schemes have a high overhead; they do
not correct many errors per block or byte in rela-
tion to the extra bits required. These codes typi-

cally require 50% or more bits as check bits.
More powerful error correcting codes are

popular where bandwidth or more bits becomes a
liability. These are the Bose-Chaudhuri-
Hocqueghem (BCH) codes. These codes can cor-
rect both random and burst errors, and can recog-
nize when they cannot correct the errors. The
more powerful the error correction scheme, the
more memory is required. Some BCH codes, 511
bits for a 493-bit block for example, will correct
one, two, or three bit errors in any block. The
efficiency of this code is that it only adds less than
4% more bits to the channel.

Frequency synthesis is another area where the
often expensive and single-sourced parts may be
easily replaced by an FPGA. Fractional synthesiz-
ers, pulse swallowers, direct digital frequency
synthesizers, as well as the phase detectors for
phase locked loops, are all easily implemented in
FPGAs.

Conclusion
By designing ASIC functions into an FPGA, you

usually save money, power, and board space. Once
designed, the function becomes part of your
company�s intellectual property, and can be re-
used. For example, if an application needs to
change from being a T1 to and E1 design, often
only the FPGA program needs to change, and the
board remains the same. In fact, some designs
initialize as T1 or E1 depending on configurations
stored in memory, once the application is selected.

If at some point the standards change, or the
competition adds some highly desirable feature
(or you want to add a new feature), the FPGA also
gives you a future - it can be easily changed. If an
ASIC is part of the design, you will end up with a
board re-layout, and probably have to add an FPGA
to �band-aid� the design. Why not get the design
right the first time?

�By designing ASIC functions into an FPGA, you
usually save money, power, and board space. Once

designed, the function becomes part of your company�s
intellectual property, and can be re-used.�

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

12

PRODUCT INFORMATION - CPLDs

With 10 million 5V XC9500 devices shipped,
the world�s leading FLASH CPLD family continues
to break all records as the fastest growing CPLD
family in the industry. Building on that success,
we are introducing the new 3.3V XC9500XL. Best

of all, the XC9500XL
family is already sup-
ported by your Alliance
Series 1.5 and Foundation
Series 1.5 development
systems.

The XC9500 architec-
ture is already widely
recognized as among the
most advanced in the
world. The new 3.3V
XC9500XL improves on

this success with all-new features:

� High-speed FastCONNECT II switch matrix for
up to 200MHz system performance

� New ultra-wide block fan-in of 54 for extra-
wide functions

� Three global clocks with local clock inversion

� Global and individual output enables (OEs)
with local OE inversion

� Dedicated clock-enable signal in each register

� Input hysteresis and bus-hold for all user I/O
pins

� Inputs compatible with 5V, 3.3V, and 2.5V
signals

� Leading-edge 0.35µ feature-size FastFLASH
technology

Of course, the XC9500XL architecture also
supports the leading-edge features available in the
XC9500 family:

� Superior pin-locking characteristics

� Up to 90 product-term functions per macrocell

� Built-in D-type or T-type flip-flop option

� 18-macrocell function blocks for efficient
16-bit look-ahead logic implementations

� Dedicated JTAG/ISP pins for immunity from
�ISP Lock-Out�

� Highest programming reliability:10,000 pro-
gram/erase cycles and 20-year data retention

The XC9500XL devices were developed to
operate with leading-edge FPGAs in today�s ad-
vanced communications and computing systems
using a 3.3V power supply. You can optimally
partition fast state machines and control functions
into XC9500XL devices and partition complex
subsystem functions (including cores) into Spar-
tan-XL or XC4000X FPGAs, all using a unified
software environment.

Conclusion
Now you have the best 3.3V CPLDs available,

fully supported by the Xilinx Alliance Series 1.5
and Foundation Series 1.5 software. The
XC9500XL family offers the best in speed, flexibil-
ity and reliability, along with the high-quality
support you expect from Xilinx.

XC9500XL 3.3V FastFLASH CPLDs
Even More Speed and Features At Lower Costs

by David Chiang,
Manager, CPLD

Technical Marketing,
david.chiang@xilinx.com

Table 1: XC9500XL CPLD Family

FEATURE XC9536XL XC9572XL XC95144XL XC95288XL

Macrocells 36 72 144 288

Usable Gates 800 1,600 3,200 6,400

Registers 36 72 144 288

Fastest tPD (ns) 4 5 5 6

Fastest fSYS (MHz) 200 178 178 151

Package Options PC44 (34) PC44 (34)
 (# user I/O pins) VQ64 (36) VQ64 (52) TQ100 (81)

TQ100 (72) TQ144 (117) TQ144 (117)
PQ208 (168)
BG352 (192)

CS48 (36) CS48 (38) CS144 (117)

�The XC9500
architecture is already

widely recognized as

among the most advanced

in the world. �

13

print without the added expense of fine-line li-
thography boards.

Conclusion
Xilinx continues to be an innovator in leading-

edge, easy-to-use package technology. These two
new chip scale packages are another milestone in
our continuing efforts to make programmable
logic even more flexible and accessible to you.

31.2mm

31.2m
m

22mm

22
m

m

12mm

12
m

m

160 PQFP

144 TQFP

144 Chip
Scale

Package

Figure 1: Package Size
Comparison

New Chip Scale

Packaging

for Small, Lightweight Designs

by Frank Toth, Market-
ing Manager for
FastFLASH Products,
frank.toth@xilinx.com

Xilinx has just introduced two new chip scale
packages for the new XC9500XL family: A 48-pin
version for the XC9536XL and a 144-pin version
for the XC95144XL. The 12x12 millimeter pack-
age for the XC95144XL features 117 I/Os and has
a seven times smaller footprint than the 160-pin
plastic quad flat pack device (see Figure 1). In
addition, the 48-pin CSP package for the 3.3V
XC9536XL gives you access to 36 I/Os while the
XC9572XL has 38 I/Os available.

According to Electronic Trend Publications in
San Jose, the use of CSP packages is expected to
grow by 108% per year over the next few years,
reaching more than 6.1 billion units shipped
worldwide by 2002. This dramatic growth is
occurring because CSP packages bring you the
benefits of:

� An extremely small form factor for such appli-
cations as PCMCIA cards, portable and wire-
less designs, and PC add-in cards.

� Lower inductance and lower capacitance

� The absence of the thin, fragile leads found on
other packages

� A very thin, very light weight package

� You can take advantage of existing
circuit board lithography and assem-
bly equipment. (Board-level assem-
blers, like Solectron, have already
qualified CSPs.)

Xilinx also has a simple board layout
solution (see Figure 2) for the 48-lead
package that uses widely available 5-mil
board traces without resorting to more
expensive fine line printed circuit board
technologies that require features like
buried and micro vias. This gives you all
the advantages of the smaller CSP foot-

Figure 2: Two Sample
Board Layouts

Notes: Solder land diameter 0.013 inch (0.33 mm) NSMD (non-solder mask defined), via land diameter
0.020 inch (0.5 mm) and via hole diameter 0.012 inch (0.3 mm) are recommended.

14

Leading digital system manufacturers are
rapidly adopting 3.3V components for higher
performance, lower costs, lower power, and
higher system reliability. With many new 3.3V
CPLD families being introduced, the choices can
seem confusing and overwhelming. To simplify
your decision, �ARM� yourself with the three most
important criteria when choosing a new 3.3V
CPLD family: Architecture, Reliability, and
Manufacturing-friendliness.

Architecture
CPLDs are commonly used in state machine

and control applications, and they are often used
to implement the last design fixes before board
production. As such, they need the architectural
flexibility to adapt to last minute changes without
pin assignment changes. For maximum protection

against unexpected
design iterations,
the architecture
should have supe-
rior pin-locking
characteristics and
excellent logic
resource allocation.

You should look
for superior switch
matrix routability,

wide block fan-in, an abundance of clocking
options, and flexible macrocell capability. This
will give you the utmost flexibility to make those
last-minute changes without reworking your
entire board.

Reliability
Device reliability is a critical issue, yet many

CPLD manufacturers have not kept up with the
latest advances. The reliability of CPLDs is a large
part of overall system reliability for several reasons:

� CPLDs are being programmed and tested
within the system instead of being externally
programmed and tested prior to board assem-
bly. Thus, any programming failure involves

not only the device cost but also expensive
board rework costs as well.

� Leading-edge manufacturers are continuing to
increase the operating life of new digital sys-
tems. This puts a strain on older CPLD tech-
nologies developed for a system life of less
than 10 years.

� More systems are incorporating field upgrade
capabilities to prolong system life. Because in-
system programming is done under variable
field conditions, programming reliability is
critical.

You should look for a CPLD family that offers
the highest level of programming reliability and
data retention, to ensure that your designs will
continue to work under any conditions. Flash
technology currently offers the highest reliability,
with an endurance rating of 10,000 program/
erase cycles and 20 years data retention. Most
older technologies can offer only 100 cycles and
10 years of data retention. Fortunately, the new
Flash CPLD technologies can easily support in-
creased programming reliability levels with no
additional cost.

Manufacturing-friendliness
Working prototypes do not provide sales dol-

lars until they are produced and sold. CPLDs
enable rapid test development and production
release, which makes industry-standard, JTAG, in-
system programming support invaluable. The
IEEE Std 1149.1 (JTAG) interface is the most
popular method for in-system programming,
because it is supported by the most CPLD and
FPGA vendors. Full conformance to the JTAG
standard, enables suppliers of in-system program-
ming and test tools to easily support your future
designs.

For full compatibility with third party in-system
programming suppliers, you should look for full
JTAG Boundary-Scan test capability and JTAG in-
system programming interface.

Choosing A 3.3V CPLD?

�ARM� Yourself�
by Dave Chiang,
Manager, CPLD

Technical Marketing,
david.chiang@

xilinx.com

A RCHITECTURE

R ELIABILITY

MANUFACTURING-
FRIENDLINESS

15

The FastFLASH XC9500XL Advantage
The XC9500XL 3.3V CPLD family uniquely

excels in all three �ARM� criteria, and offers the
highest level of programming reliability in a JTAG-
compatible, in-system programmable family. The
XC9500XL family features:

� The most flexible architecture

� Wide 54-input function blocks*

� Up to 90 product-terms per output*

� Three global clocks, with local inversion
capability

� Immunity from all power supply sequencing
problems

� Compatibility with 5V, 3.3V, and 2.5V signals

� Highest reliability rating

� 20 year data retention*

� 10,000 endurance cycles*

The XC9500 CPLDs are not only the most-
advanced in-system programmable CPLDs in the
industry, they are also the roomiest. If you are
currently using other 128- or 256-macrocell
CPLDs, you may be missing out on valuable
density �headroom.�

Two members of the XC9500 family, the
XC95144 and the XC95288 offer 12% more
macrocells than competing CPLDs. The
XC95144 offers 144 macrocells, 16 more than
the competing 128-macrocell devices currently
available. The XC95288 has 288 macrocells, 16
more than the competing 256-macrocell CPLDs.
This extra headroom that Xilinx offers gives you
a significant advantage � you can always use
more macrocells.

To top it off, the XC95144 and the XC95288
cost less than the competitor�s higher-density
offerings.

$45�

$40�

$35�

$30�

$25�

$20�

$15�

$10�

$5�

0�
Competitor A Xilinx Competitor A Xilinx
128-macrocell XC95144 256-macrocell XC95288

10
0-

U
ni

t
Li

st
 P

ri
ce

More Density At Lower Prices!

$12.50$14.25

$41.50
$39.80

Get Max Headroom with XC9500 CPLDs
Conclusion

Xilinx CPLDs offer 12% more density, with
up to 12% less cost � that�s something to be
excited about.

by John Spencer
Ahn, CPLD Product
Marketing Manager,
john.ahn@xilinx.com

○ ○

� Full IEEE Std 1149.1 (JTAG) test and
programming

� The most complete Boundary-Scan support
with eight instructions*

� JTAG supported in-system programming
instructions.

Conclusion
Arm yourself with the XC9500XL family for all

your 3.3V CPLD needs, and you can rest assured
that your designs will remain trouble free.

*These are the highest
available in the 3.3V
CPLD industry.

�...you can rest

assured that your designs

will remain trouble free.�

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

16

PRODUCT INFORMATION - SOFTWARE

Last September, Xilinx announced a new
framework for hardware development called
Silicon Xpresso. As its name implies, this frame-
work brings the World Wide Web and Java® into
the hardware development system.

The Web today is already a powerful tool for
the programmable logic designer. The technical
nature and time to market pressure of hardware
design requires immediate access to up-to-date
information. All the semiconductor vendors invest
significant resources in creating and maintaining
these informational websites. And with this invest-

ment, their customers receive
significant returns.

These websites contain applica-
tion notes, solutions databases,
updates to software releases, and
in-depth technical descriptions of
the products and their architec-
tures. Some of these sites, such as
WebLINX from Xilinx, even provide

a large array of downloadable IP in the form of
parameterizable and predefined cores. The usage
of pre-existing verified cores as well as the auto-
matic generation of new cores has become an
invaluable time saver for programmable logic
development. Thus, today�s Web has become the
informational infrastructure of choice of the
hardware designer.

Leveraging the existence of this infrastructure
and the acceptance of the powerful Java language
as a standard development environment for Web-
based tools and applications, Xilinx has initiated a
new paradigm where the Web is also used as an
interactive component in the development and
design of applications. You can now use the Web
for development, debug, and deployment as well

as making the Web an integral part of your devel-
oped end-product. Furthermore, this means that
your customer, the end user, can take advantage
of this environment for field upgrades, deploy-
ment, and real-time usage of your products.

At this time, the first two phases of Silicon
Xpresso have been announced. Phase 1, provides
new technology in form of two new products:
WebFitter and a Java API for Boundary Scan.
Phase 2, is a significant enhancement of our
existing technologies on the Web and in our exist-
ing development tools.

WebFitter
WebFitter is a design evaluation tool that al-

lows you to quickly and efficiently evaluate your
CPLD designs using the latest revision of our fitter
software. You need not learn any software details
or use any of your computing power to evaluate
your design.

Typically, you need to go through many steps
to evaluate a PLD design. Valuable time is spent
loading, configuring, and learning design software
before the design can be evaluated. You also need
to make sure you have the latest software from the
PLD vendor and then use your own computer to
evaluate the design.

WebFitter makes it much easier to evaluate
your design in silicon, and designs run fast over
the network. WebFitter eliminates the need for
licenses, and software CDs, freeing system time
for other tasks. WebFitter is easy to use; you
simply register, and submit your design. Then you
receive a return email pointing to your data and
analysis reports. You can select files that specify
the pin-to-pin delays, mapping information, and
the resulting pinout. A JEDEC Programming File
can also be downloaded for use with the Xilinx

by Wallace Westfeldt,
Frank Toth,

Neil Jacobson and
Scott Lewis

Xpresso�
Silicon

Designing with the Web

Java is a registered
trademark of Sun
Microsystems, Inc.

/
/products/logicore/coregen/corelinx.htm

17

JTAG Programmer Software (and download cable)
to program the Xilinx device. If an error occurs,
you can gather information from the log files. You
can download a zipped version of all the files, and
you can choose to save or delete the design once it
is completed.

Java API For Boundary Scan
The proposed Sun Microsystems Java API for

Boundary Scan devices allows complete support of
all JTAG and JTAG-based ISP operations for all
IEEE 1149.1-compliant (JTAG) devices. Because
the API is Java based it also facilitates access to this
functionality over the Internet. This enabling tech-
nology then provides the framework for you to
develop and deploy systems based on any Bound-
ary Scan programmable logic device.

The Java API for Boundary Scan provides you
with cross-product, multi-platform support for in-
system programming, test, and debug. It takes
advantage of the write once/run anywhere feature
of Java and provides complete support of Bound-
ary Scan through the entire product life cycle
(prototyping, manufacturing, and field upgrade).

Currently each PLD (or other Boundary Scan
product) vendor writes a separate format stimulus
file for each device which requires separate trans-
lators and compilers for each platform. Having
more than one type of device on a board means
that you must integrate all translators and compil-
ers together in one chain, and call separate rou-
tines. Supporting all devices and platforms is an
arduous task. Any changes or additions must be
painstakingly �edited in� every time a device is
added or a change is made.

The Java API for Boundary Scan solution is
simple and easy to use across all platforms and can
seamlessly incorporate PLDs from different vendors.
The write once/run anywhere feature ensures that
new parts can easily be integrated into the JTAG

environment, simplifying the programming flow and
setting the stage for you to easily program and test
multiple vendors� devices on the same board. You
need not re-write code for separate translators and
compilers every time a new device is introduced
into the environment. In addition, because of the
rich set of existing Java reference materials and
development tools, systems incorporating the Java
API for Boundary Scan can be quickly developed,
debugged, and deployed.

The use of Java�s rich set of existing class librar-
ies enables tight integration of hardware subsystems
in very powerful ways. This can facilitate the devel-
opment of systems that interact with one another
remotely, to re-program the system PLD�s, allowing
you to incorporate new functionality on-demand.

Web-Enabled Design Software
In the current release of the Foundation Series

1.5 and the upcoming release of the Alliance Se-
ries 1.5i, we have added a direct
connection from the Project Man-
ager and Design Manger to our
website. This direct connection
(PC only for now) means immedi-
ate access to the latest Xilinx tech-
nical information as well as
CoreLINX where valuable and
updated IP can be downloaded.

The Future of Silicon
Xpresso

Silicon Xpresso is designed to
provide increased benefits to you
and your customers. By providing enabling tech-
nologies that are Web intelligent we are providing
not only the environment for design but also the
environment for deployment and usage. This will
enable you to provide more flexible applications in
a broader spectrum of markets.

FOR MORE INFORMATION, CONTACT:

� Frank Toth (Java API for Boundary-Scan) 408-8796836 frank.toth@xilinx.com

� Neil Jacobson (Java API for Boundary-Scan) 408-879-4885 neil.jacobson@xilinx.com

� Scott Lewis (WebFitter) 408-879-4556 scott.lewis@xilinx.com

� Wallace Westfeldt (Silicon Xpresso) 303-413-3280 wallace.westfeldt@xilinx.com

�Today�s
Web has become

the informational

infrastructure of

choice of the

hardware designer.�

18

ALLIANCE SERIES 1.5 SOFTWARE

The new Alliance Series 1.5 software provides
two significant new features that support the
XC4000XL family. Version 1.5 now provides mini-
mum delay information to help you create race-
free asynchronous circuits and it provides pro-
rated delay information that allows you to analyze
your circuit under varying voltage and tempera-
ture conditions.

Minimum Delays
FPGA densities now approach one million

system gates, making the availability of minimum
delay information a significant factor for system-
level timing analysis. Simulation models generated
using minimum delays ensure that race condi-
tions are not generated with a best-case process,
and guarantees correct design operation when
implemented on devices made from multiple
fabrication lines.

Minimum delays for timing simulation are
generated using a utility called NGDANNO, which
can annotate a minimum or maximum delay value
in the design.sdf file. Running NGDANNO with no
specific command line option will annotate worst-
case delays. To generate minimum delays, run
NGDANNO with the �-s min� command line
option. By using the �-s min� and �-o� (output)

switches, you can generate both maximum and
minimum delay values.

Generate minimum delays using the following
command at the DOS prompt:
ngdanno –s min design.ncd map.ngm –o design_min.nga

ngd2vhdl –w design_min.nga design_min.vhd

Generate maximum delays using the following
command at the DOS prompt:
ngdanno design.ncd map.ngm –o design.nga

ngd2vhdl –w design.nga design.vhd

After the design.nga netlist is created,
NGD2VER (Verilog Netlister), NGD2VHDL (VHDL
Netlister), or NGD2EDIF (EDIF Netlister) is used
to create the structural simulation netlist. Using
NGD2VER or NGD2VHDL, the minimum delays are
output into an SDF file, whereas NGD2EDIF writes
minimum delays in the EDIF netlist as pin/in-
stance properties.

Timing Analyzer (TRACE) has the option to
view the minimum delays for XC4000XL devices.
Minimum delays for the nets can be viewed by
setting the speed grade options to �min� and
analyzing the design. In the Timing Analyzer win-
dow, click on �options,� choose �speed grade�
and select �min.� Selection of other speed grade
options generates the maximum delays.

Prorated Delays for
Voltage and Temperature

Design operating conditions vary, based on
your application. Voltage and temperature prorat-
ing allows you to test your design under real
operating conditions. The delays vary from worst
case to best case based on the voltage and tem-
perature, and can be calculated for a voltage
range of 3.0V to 3.6V and a temperature range of
0°C to 85°C. The default value is 70°C and 3.3V.

To calculate the prorated delays for timing
simulation, specify operating conditions in the
Physical Constraints File (.pcf) and run the
NGDANNO utility. The syntax for specifying the
temperature and voltage is:

Guaranteeing Designs Work in All Conditions
Using Minimum and Prorated Delay Information in New Alliance Series 1.5 Software

by Julie Callow, Tech-
nical Manager, Alli-
ance EDA Program,

julie@xilinx.com;
and

Mahadevan Ramasame,
Technical Marketing

Engineer,Alliance
Series,

mahadeva@xilinx.com

Figure 1

19

VOLTAGE = value[units];

value = a real or integer number specifying voltage

Units = unit of measure (volts) [optional]

TEMPERATURE = value[units];

 value = a real or integer number specifying
temperature

Units = unit of measure (F, K, or C) [optional]

(default unit is C)

An example design.pcf file:
VOLTAGE = 3.15 ;

TEMPERATURE = 70 ;

Generate the prorated delays for voltage and
temperature using the following command at the
DOS prompt:
ngdanno –p design.pcf design.ncd map.ngm –o design_prorated.nga

ngd2vhdl –w design_prorated.nga design_prorated.vhd

If the specified voltage and temperature range
doesn�t fall within bounds, a warning will be
issued and the constraint won�t apply. NGDANNO
will generate a warning when the standard delays
(calculated at standard operating conditions) are
not used during back annotation.

Timing Analyzer (TRACE) has the option to
view the prorated delays for voltage and tempera-

Conclusion
If you want to create the most efficient CPLD

designs, with the least time and effort, upgrade
now to our new v1.5 development tools. For infor-
mation on upgrading contact your local Xilinx
sales representative or authorized distributor. For
a complete listing of Xilinx sales contacts, visit
WebLINX at www.xilinx.com.

Speed Up Your XC9500 Design
With The New v1.5 Software

Figure 2

by Dave Grace, Soft-
ware Product Manager
- CPLD Division,
dave.grace@xilinx.com

Our latest advances in CPLD Implementation
tools (v1.5) are now included in both the Alliance
1.5 and Foundation 1.5 products. Enhancements
to the speed, area, and timing-driven optimization
algorithms have resulted in faster runtimes and
faster silicon performance.

Faster Runtime
This new release of the Xilinx implementation

technology has improved runtime by 36%* over
the previous V1.4 release. Plus, you will see up to
50% reductions in runtime for designs that use
more than 100 macrocells.

Faster Performance
Using the same device, package, and speed

grade, V1.5 delivers a 15%* improvement in
system clock performance. This allows you to
choose the best device/package/speed grade
combination, based on your cost/performance
requirements.

*Design Test Suite of 50
HDL (VHDL & Verilog)
Designs. Windows NT 4.0
& Windows 95/98.

ture for XC4000XL devices.
Enter the voltage and
terperature in the design.pcf
file and invoke the Timing
Analyzer. Click on �options,�
and choose the speed grade to
generate the prorated delays
for the specified voltage and
temperature.

Conclusion
As Xilinx continues to pro-

vide higher density ASIC re-
placement devices, minimum
delays together with voltage
and temperature prorating analysis becomes an
integral part of the FPGA design flow. Minimum
delays along with voltage and temperature prorat-
ing support will be extended to the XC4000XLA,
Spartan, and Virtex families in future Alliance
Series software releases.

/company/sales/offices.htm

20

minimum and maximum delays as well as voltage
and temperature prorating factors. In high-perfor-
mance systems, minimum delay analysis is a re-
quirement for creating race-free asynchronous
circuits and guaranteeing correct design operation.

Design Planning
The floorplanner has been rewritten from the

ground up to leverage your expertise. Physical
design floorplanning allows you to analyze a
design�s hierarchy, identify structured and unstruc-
tured logic, and create an optimal physical hierar-
chy for your design. Most designs do not need
floorplanning to meet the design requirements,
however if you need maximum design perfor-
mance, this tool delivers the power and flexibility
of area-based floorplanning. For example, you can
precisely place large RAM arrays or relatively place
structured logic.

Device Support
The Alliance Series 1.5 software supports our

new Virtex family, which features a synthesis-
friendly architecture, fabricated on an advanced
0.25µ process. It is the first FPGA architecture to
offer system design capabilities with 160MHz chip-
to-chip communication, DLLs, 133MHz access to
external and internal memory, and true dual-port
memory. Virtex offers large on-chip memory for
buffering and processing as well as flexible inter-
faces that connect to existing and emerging I/O
standards.

In addition, the Alliance Series software sup-
ports the new XC4000XLA, SpartanXL, and the
XC9500XL device families.

Installation and Security
No license servers or dongles are required.

Simply enter the serial number, found on the back
of your CD package when you install the Alliance
Series software, for instant access.

Conclusion
The new Alliance Series 1.5 software enables

you to quickly create high performance designs
using the most advanced FPGAs and CPLDs in the
industry.

Our latest Alliance Series 1.5 software not
only improves your design performance and
reduces runtimes, it also provides support for the
industry�s first million-gate FPGAs, the new Virtex
family from Xilinx. The Alliance Series also works
seamlessly with industry-leading synthesis and
simulation vendors like Exemplar, Synopsys,
Synplicity, and Model Technology, making your
job easier than ever before.

�The Alliance Series 1.5 delivers higher
frequency of operation and faster runtimes.
The intuitive design flow, with its graphical con-
straints editor and flexible report generation capa-
bilities, offers greater insight to design processing,
allowing the engineer to achieve the design goal
quickly, and with ease�� said Praveen Shekokar,
Director of Engineering at Comit Systems Inc.
(www.comit.com).

Productivity Enhancements
The Alliance Series 1.5 software uses our new

AKAspeed TM technology to deliver a suite of new
algorithms and fea-
tures that give you the
industry�s fastest tim-
ing-driven compile
times � up to 30x
faster than MAX+plus
II � with clock per-
formance improve-
ments up to 30%.

A graphical con-
straint editor guides
you to the best con-

straint methodology, reducing mistakes and elimi-
nating the need to learn cryptic syntax. You enter
design constraints through an easy-to-use graphi-
cal user interface that allows you to select con-
straints such as clock rates, input setup delays,
and clock-to-out delays. This powerful editor
allows you to easily create groups based on net
names for multi-cycles path constraints.

AKAspeed technology brings the power of ASIC
development tools to the FPGA world by allowing
timing analysis and delay simulation with both

Unleash Your Creative Potential
With The New Alliance Series 1.5 Software

by Hitesh Patel,
Technical Marketing

Manager,
hiteshp@xilinx.com

Floorplanner

http://www.comit.com

21

ing these examples are VHDL and Verilog designs
that use the CASE construct with the NESTED IF to
more effectively describe the same function. The
CASE construct reduces the delay by approximately
3 ns (using an XC4005E-2 part). The implementa-
tion of this design is shown in Figure 2.

Improper use of the �NESTED IF� statement
can result in increased area and longer delays.
Each IF keyword specifies priority-encoded logic.
To avoid long path delays, do not use extremely
long NESTED IF constructs as shown in the follow-
ing VHDL/Verilog examples. These designs are
shown implemented in gates in Figure 1. Follow-

COLUMN

by Roberta Fulton,
Technical Marketing
Engineer, Alliance
Series, roberta.
fulton@xilinx.com

Using Nested If Statements

Inefficient Use of Nested If Statement

Continued on the following page

VERILOG EXAMPLE

//

// NESTED_IF.V //

// Nested If vs. Case Design Example //

// August 1997 //

//

module nested_if (ADDR_A, ADDR_B, ADDR_C, ADDR_D, RESET, CLK,
DEC_Q);

input [1:0] ADDR_A ;

input [1:0] ADDR_B ;

input [1:0] ADDR_C ;

input [1:0] ADDR_D ;

input RESET, CLK ;

output [5:0] DEC_Q ;

reg [5:0] DEC_Q ;

// Nested If Process //

always @ (posedge CLK)

begin

if (RESET == 1’b1)

begin

if (ADDR_A == 2’b00)

begin

DEC_Q[5:4] <= ADDR_D;

DEC_Q[3:2] <= 2’b01;

DEC_Q[1:0] <= 2’b00;

if (ADDR_B == 2’b01)

begin

DEC_Q[3:2] <= ADDR_A + 1’b1;

DEC_Q[1:0] <= ADDR_B + 1’b1;

if (ADDR_C == 2’b10)

begin

DEC_Q[5:4] <= ADDR_D + 1’b1;

if (ADDR_D == 2’b11)

DEC_Q[5:4] <= 2’b00;

end

else

DEC_Q[5:4] <= ADDR_D;

end

end

else

DEC_Q[5:4] <= ADDR_D;

DEC_Q[3:2] <= ADDR_A;

DEC_Q[1:0] <= ADDR_B + 1’b1;

end

else

DEC_Q <= 6’b000000;

end

endmodule

VHDL EXAMPLE

— NESTED_IF.VHD

— May 1997

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

entity nested_if is

port (ADDR_A: in std_logic_vector (1 downto 0); — ADDRESS Code

ADDR_B: in std_logic_vector (1 downto 0); — ADDRESS Code

ADDR_C: in std_logic_vector (1 downto 0); — ADDRESS Code

ADDR_D: in std_logic_vector (1 downto 0); — ADDRESS Code

RESET: in std_logic;

CLK : in std_logic;

DEC_Q: out std_logic_vector (5 downto 0)); — Decode OUTPUT

end nested_if;

architecture xilinx of nested_if is

begin

———————— NESTED_IF PROCESS ———————

NESTED_IF: process (CLK)

begin

if (CLK’event and CLK = ‘1’) then

if (RESET = ‘0’) then

if (ADDR_A = “00”) then

DEC_Q(5 downto 4) <= ADDR_D;

DEC_Q(3 downto 2) <= “01”;

DEC_Q(1 downto 0) <= “00”;

if (ADDR_B = “01”) then

DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;

DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

if (ADDR_C = “10”) then

DEC_Q(5 downto 4) <= unsigned(ADDR_D) + ‘1’;

if (ADDR_D = “11”) then

DEC_Q(5 downto 4) <= “00”;
 end if;

else

DEC_Q(5 downto 4) <= ADDR_D;

end if;

end if;

else

DEC_Q(5 downto 4) <= ADDR_D;

DEC_Q(3 downto 2) <= ADDR_A;

DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

end if;

else

DEC_Q <= “000000”;

end if;

end if;

end process;

end xilinx;

22

HDL Advisor
Continued from the

previous page

Nested If Example Modified to Use If-Case
Note: In the following example, the hyphens (�don�t cares�) used for bits in the CASE statement may evaluate incorrectly to False for some synthesis tools.

VHDL EXAMPLE

— IF_CASE.VHD

— May 1997

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

entity if_case is

port (ADDR_A: in std_logic_vector (1 downto 0); — ADDRESS
Code

ADDR_B: in std_logic_vector (1 downto 0); — ADDRESS Code

ADDR_C: in std_logic_vector (1 downto 0); — ADDRESS Code

ADDR_D: in std_logic_vector (1 downto 0); — ADDRESS Code

RESET: in std_logic;

CLK : in std_logic;

DEC_Q: out std_logic_vector (5 downto 0)); — Decode
OUTPUT

end if_case;

architecture xilinx of if_case is

signal ADDR_ALL : std_logic_vector (7 downto 0);

begin

——concatenate all address lines ———————————-

ADDR_ALL <= (ADDR_A & ADDR_B & ADDR_C & ADDR_D) ;

————Use ‘case’ instead of ‘nested_if’ for efficient gate
netlist———

IF_CASE: process (CLK)

begin

if (CLK’event and CLK = ‘1’) then

if (RESET = ‘0’) then

case ADDR_ALL is

when “00011011” =>

DEC_Q(5 downto 4) <= “00”;

DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;

DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

when “000110—” =>

DEC_Q(5 downto 4) <= unsigned(ADDR_D) + ‘1’;

DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;

DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

when “0001——” =>

DEC_Q(5 downto 4) <= ADDR_D;

DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;

DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

when “00———” =>

DEC_Q(5 downto 4) <= ADDR_D;

DEC_Q(3 downto 2) <= “01”;

DEC_Q(1 downto 0) <= “00”;

when others =>

DEC_Q(5 downto 4) <= ADDR_D;

DEC_Q(3 downto 2) <= ADDR_A;

DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

end case;

else

DEC_Q <= “000000”;

end if;

end if;

end process;

end xilinx;

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

INV

INV

IBUF

OR2

OR2

AND3

AND3

NAND4

OR4

CLK

XOR2

INV

NOR2

NOR2

BUFGS_F

INV

OFD_S

OFD_S

OFD_S

OFD_S

OFD_S

OFD_S

NOR2

NOR2

NOR2

RESET

NOR2

x8503

Figure 1: The gate imple-
mentation for a design
with an inefficient use

of a nested if statement.

23

VERILOG EXAMPLE

//

// IF_CASE.V //

// Nested If vs. Case Design Example //

// August 1997 //

//

module if_case (ADDR_A, ADDR_B, ADDR_C, ADDR_D, RESET, CLK,
DEC_Q);

input [1:0] ADDR_A ;

input [1:0] ADDR_B ;

input [1:0] ADDR_C ;

input [1:0] ADDR_D ;

input RESET, CLK ;

output [5:0] DEC_Q ;

wire [7:0] ADDR_ALL ;

reg [5:0] DEC_Q ;

// Concatenate all address lines //

assign ADDR_ALL = {ADDR_A, ADDR_B, ADDR_C, ADDR_D} ;

// Use ‘case’ instead of ‘nested_if’ for efficient gate netlist
//

always @ (posedge CLK)

begin

if (RESET == 1’b1)

begin

casex (ADDR_ALL)

8’b00011011: begin

DEC_Q[5:4] <= 2’b00;

DEC_Q[3:2] <= ADDR_A + 1;

Comparing the If Statement
and the Case Statement

The IF statement generally produces priority-
encoded logic and the CASE statement generally
creates balanced logic. An IF statement can con-
tain a set of different expressions while a CASE
statement is evaluated against a common control-

DEC_Q[1:0] <= ADDR_B + 1’b1;

end

8’b000110xx: begin

DEC_Q[5:4] <= ADDR_D + 1’b1;

DEC_Q[3:2] <= ADDR_A + 1’b1;

DEC_Q[1:0] <= ADDR_B + 1’b1;

end

8’b0001xxxx: begin

DEC_Q[5:4] <= ADDR_D;

DEC_Q[3:2] <= ADDR_A + 1’b1;

DEC_Q[1:0] <= ADDR_B + 1’b1;

end

8’b00xxxxxx: begin

DEC_Q[5:4] <= ADDR_D;

DEC_Q[3:2] <= 2’b01;

DEC_Q[1:0] <= 2’b00;

end

default: begin

DEC_Q[5:4] <= ADDR_D;

DEC_Q[3:2] <= ADDR_A;

DEC_Q[1:0] <= ADDR_B + 1’b1;

end

endcase

end

else

DEC_Q <= 6’b000000;

end

endmodule

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

INV

INV

AND4
NAND2

NOR2

NOR2

XOR2

XNOR2

INV

INV

INV

INV
INV

NOR2

NOR2

NOR2

NOR2

NOR3

NOR2

OR2
AND2

NAND2

IBUF

BUFGS_F

NOR3

OFD_S

OFD_S

OFD_S

OFD_S

OFD_S

OFD_S

RESET

CLK x8504

ling expression. In general, use the CASE state-
ment for complex decoding and use the IF state-
ment for speed critical paths. Most current syn-
thesis tools can determine if the IF-ELSEIF
conditions are mutually exclusive, and will not
create extra logic to build the priority tree.

Figure 2: The gate imple-
mentation for a design
modified to use if-case.

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

24

DESIGN HINTS

Several third-party products now use Xilinx
FPGAs to provide you with system emulation and
rapid-prototyping tools that help you get your
designs up and running as quickly as possible.
The same features that make Xilinx FPGAs excel-
lent ASIC replacements also make them excellent
emulation devices.

Because Xilinx FPGAs offer internal perfor-
mance of over 100MHz, these third-party emula-
tors can run at system speeds when efficient EDA
tools and verification flows are used to create the
emulation netlist. In addition, the ability to repro-
gram during system debugging is a key feature

System, and system-on-a-chip (SOC), ASIC
emulation with Xilinx FPGAs provides you with
three distinct advantages:

� Speed - In a matter of hours, with an emula-
tion engine, you can exercise more product
functions than are possible in days or weeks of
simulation.

� Rapid prototyping - With the automated
emulation software and ready made emulation
hardware, system prototypes involving ASICs,

FPGAs, standard parts, and micro-
processors can be produced very
quickly. Development and debug-
ging of the prototypes is much
easier and faster with an emula-
tion system than with a home-
grown breadboard.

� Promotes hardware/soft-
ware co-design - Real software
can be run on the emulated sys-
tem, so hardware and software
interface issues are caught early.
Overall system development time
is greatly reduced because costly
re-work cycles are shortened in

an emulated system that can be reprogrammed
rather than remanufactured.

The Advantages of Xilinx
High-density FPGAs

System designers, or their team members in
verification, can emulate vast sections or even
whole systems-on-a-chip (SOC) using high capac-
ity, high-performance Xilinx FPGAs. �In a system
prototyping environment, the large capacity, high
pin count FPGAs, such as the Xilinx XC4000XV
family, greatly simplify the process of building
system prototypes with large ASICs. Our custom-
ers are able to preserve the hierarchy of their
design by mapping large design blocks into indi-
vidual FPGAs for prototyping. Consequently design
debugging becomes much more intuitive,� stated
Michel Courtoy, Director of Product Marketing at
Aptix Corporation.

Whether a Xilinx FPGA, an ASIC, or both are
used in your system design, emulation can be a
critical tool for system verification because simu-
lation speed becomes a major barrier to on-time
delivery as the complexity of chips and systems
increase. The functional simulation and verifica-
tion of high-density HDL is a major portion of the
system design schedule. Design verification and
the resulting timing and functional closure of the
design will often be two to four times greater than
the design entry time.

Running a significant number of well-con-
structed vectors, in a timely manner, is crucial to
catching the maximum number of bugs in the
shortest time. The earlier in the design and imple-
mentation cycle the functional errors are caught
and corrected the greater the savings of time and
effort. Emulators can run greater than 10 6 times
faster than workstation simulators. The thorough-
ness of the verification is especially true if several
components of the system can be simulated to-
gether. And, if more of those components can be
placed on the same high-density Xilinx FPGA, you
need to do less partitioning and therefore the
emulation can be created that much sooner. The
high-density parts from Xilinx with capacities of

System Emulation and Rapid
by Roberta Fulton,

Alliance EDA Technical
Marketing Engineer,
roberta@xilinx.com

�The same
features that make

Xilinx FPGAs excellent

ASIC replacements

also make them

excellent emulation

devices.�

25

The Aptix solution offers an open architecture
approach. The Aptix System Explorer MP3A and
MP4 products are based on Field Programmable
Interconnect Components (FPIC) and Field Pro-
grammable Circuit Boards (FPCB). The FPCBs
allow component insertions directly on the board
or through a daughter-board module using the
standard hole patterns on the FPCBs. The Aptix
Axess software connects your components on the
FPCB through the reprogrammable FPIC.

The Aptix emulation systems are very flexible.
The programmable interconnect devices, FPGAs,
and other devices can be mounted on a board
that provides routing paths such that each pin
hole on the board connects to a programmable
interconnect path. You can also mount them on
daughter boards allowing you to mix and match
different Xilinx FPGAs and quickly upgrade to the
latest versions to obtain the best performance.
Other system devices such as RF components or
microprocessors can also use this daughter board
approach.

Because of this open architecture, multiple
projects can use the System Explorer. All popular
EDA design tools are supported as well. This
system can be used as a �faster simulation� en-
gine or as a hardware prototype allowing real
data and software to be run through the emulated
hardware system. With flash memory to hold the
interconnect paths the emulated systems can be
detached from the workstation and you have a
rapid-prototype you can put in the real system
environment.

These Aptix and Quickturn solutions provide
the greatest flexibility for both running simula-
tions and hardware prototyping with a wealth of
development and debugging tools and options.

Conclusion
Xilinx FPGAs, with their ever-increasing capaci-

ties and speed performance, are crucial to the
verification of systems and large ASICs through
FPGA-emulation.

Prototyping Using Xilinx FPGAs
100K to one million gates can aid in the retention
of design hierarchy and in reducing the partition-
ing overhead.

High-End Emulation Systems
There are a number of fine methodologies and

tools for emulation and rapid-prototyping that use
Xilinx FPGAs to their advantage. FPGA-based emu-
lation is recognized as the most flexible hardware
emulation technology. It provides the highest in-
circuit emulation speeds and supports all design
styles from fully synchronous to fully asynchro-
nous. The Aptix System Explorer series and the
Quickturn System Realizer are two high-end emu-
lation products using Xilinx FPGAs for emulation.

This technology as expressed in Quickturn�s
System Realizer product can support designs from
100k to three million gates. HDL code is com-
piled, partitioned into blocks, and mapped into
the logic elements of the Xilinx FPGAs within the
System Realizer. The product can support IP as
soft cores in either HDL or netlist forms, includ-
ing vendor encryption if necessary. Or the core
can be bonded out in the Component Adapter
Card in the Programmable Target Interface Mod-
ule (PTIM) which is a standard part of System
Realizer.

Once the design is in the system, powerful
debugging tools can be brought into play as a
large number of vectors are processed at speeds
several orders of magnitude higher than simula-
tors. The Vector Debug mode reads vector data
off of your workstation disk and applies it to the
circuit in the emulator. The Regression Test mode
provides automatic vector comparison for quick-
go/no-go testing. 128K of vectors can be run at
speeds up to 1MHz in an IC-tester-like validation
environment. Add-in cards can increase the vec-
tor capacity. The In-Circuit Emulation mode is the
most powerful and comprehensive way to verify
complex systems. The emulation hardware be-
comes part of the system hardware prototype that
runs real data and software.

26

Power usage in CMOS circuits appears to be
straightforward, yet it is often deceptive. This
article will help you understand CPLD power
dissipation and will give you some guidelines for
minimizing power consumption.

Most vendors provide a table or an equation
that specifies the various components of power
dissipation for a CMOS part, as shown in Figure 1.
Typically, these include:

� A component for the input receivers, which
must be de-rated if driven from TTL rather than
CMOS external drivers.

� A component for the internal core of the chip,
which usually has a negligible DC component

� An AC component that requires detailed knowl-
edge of the various switching frequencies encoun-
tered. It also requires knowledge of exactly how
much circuitry is used or unused at any time.

� A component attributed to the output stages which
are functions of both the switching frequencies as
well as the external load capacitance.

The power is found as the sum of all components:

Power = P IN + PCORE + POUT (AC and DC)

This approach
is intellectually
satisfying, but
usually you find
that you have little
knowledge of the
load capacitance
or various switch-

ing frequencies that your circuits create and en-
counter. You must resort to estimating the speed
and loading parameters to obtain a power esti-
mate. One estimate is often used as the basis for
another, giving fuzzy, inaccurate results.

Because of the complexity of arriving at a
simple number, many CPLD vendors have resorted
to simplifying the power estimation process by
providing a single equation. Frequently, when
misused, this results in optimistic values. Often,
calculation constants are introduced to simplify
the process, but no limitation guidelines or expla-
nation of their meaning is given.

Power Dissipation Factors
The basic structure of a CPLD differs from

other CMOS devices primarily in its programmable
internal core. If Figure 1 was modified to insert a
programmable AND array structure into the core,
most of the power differences between a CPLD and
other CMOS chips would be explained. Input
power must be accounted for, as well as output
power, but the core power is different, due to the
CPLD sense amplifier approach.

Figure 2 shows a simplified structure for a
programmable �AND� gate (actually, it is a NOR
internally) which performs the programmable
logic operations. It shows three transistors with
floating gates that form a �Wired NOR� when ap-
propriately programmed. XC9500XL devices nor-
mally have 108 transistors attached to the Bitline
for each product term. The pullup and pulldown
resistors (R1 and R2) attached to the Bitline are
actually transistors.

When the Bitline is High (exceeding the trip
voltage of the sense amplifier), the output switches.
Otherwise, the output remains Low. From a power
dissipation viewpoint, lower consumption occurs
when Vbitline_hi is driven onto the bitline. Because
CPLDs are comprised of macrocells that include
flip-flops, it is important to realize that the flip-flops
consume negligible power compared to the pro-

Reducing CPLD Power Consumption
by Jesse Jenkins, CPLD
Applications Manager,

jesse@xilinx.com

Figure 1: Power Compo-
nents of a Typical CMOS
Chip

Figure 2: Simplified CPLD Programmable Structure

Figure 3: Trip Voltage, Bitline High and Bitline Low Relationships

27

very near DC. This
is because the
exact state of the
sequential machine
will dictate just
how many specific bitlines are High or Low when
the clock is turned off (or very slowly switching).
Very quickly after the frequency rises, the ICC
assumes a much more linear relationship with
frequency. Al-
though counter-
intuitive, it is pos-
sible for a short
frequency range to
have ICC drop as
frequency rises.

Power Minimization Techniques
The following checklist will help you dramati-

cally lower power consumption:

� Minimize HP macrocells - By carefully
selecting only those macrocells that need to be
in high speed mode, others can be set into low
power mode, which will reduce power.

� Use global resources - Product term clocks,
3-states, and set/resets may increase s-term
current draw.

� Set VCCIO to 2.5V - Restricting the voltage
swing of the output stage will lower the CV 2f
portion of the output power consumed.

� Attach unused XC9500 input pins to a
UPG - Unused pins should not float. One easy
way to do this is to use the
User Programmable Ground
Option (UPG), which drives
the pins Low and gives addi-
tional noise immunity.
(XC9500 devices have bus-
hold circuitry that automati-
cally sets input pins to a
known state.)

Conclusion
The general ideas discussed here are appli-

cable to most manufacturers� CPLDs, but in par-
ticular to both the Xilinx XC9500 and XC9500XL
CPLDs. Xilinx CPLDs offer abundant options to
substantially reduce power dissipation and still
provide high performance.

grammable cells. With that in mind, a CPLD design
can be viewed as being a collection of product
terms driving pins and flip-flops. The switching
speed of the product terms and output pins be-
comes the dominant factor in most cases.

There is a component of current always present
in the standard CPLD programmable structure.
The current will be typically one of two values
passing either through R2 or through the transis-
tors to ground. This is the primary factor contrib-
uting to DC current consumption in the CPLD core.
It cannot be ignored.

R1 in Figure 2 is actually a programmable
transistor structure. R1 can be programmed to
supply current to the Sense Amp input node to
select between a fast ramping input signal, or a
low current slower ramping signal. Table 1 gives
relative values of the current drawn by a product
term depending on the value of R1 and the condi-
tion of the Bitline.

Table 1 indicates several things:

� Each product term can have several different
static current values.

� The range is large (10X).

� The value is a strong function of whether the
product term is driving High or Low.

For combinatorial designs, where all product
term inputs are directly driven from the input pins,
this is easily accounted for and an accurate static
power estimation can be measured. For sequential
circuits, the binary values of flip-flops will be
attached to the various product terms, so it is
difficult to know what the power consumption is
unless careful analysis includes the state of the
circuit in the estimation.

In Figure 4, consider the case where Input 1
and Input 2 are both logical ones. If the state
variable feeds back a logical one, the Bitlines will
both be High. However, if the State variable
feedsback a logical zero, both Bitlines will be Low
and draw significantly more current. This means
that system reset may draw the highest current.
Frequently, this behavior is seen when you attempt
to measure accurate power when the clock is
stopped. Figure 5 gives an example of how this
creates an ambiguous measurement.

As shown in Figure 5, there exists an ambigu-
ous region for ICC when the switching frequency is

Figure 4: State Influence
on CPLD Power

Figure 5: I
CC

 VS
Frequency

Table 1: Relative Product Term Currents
R1 Configuration Bitline = High Bitline = Low

High Speed 0.5I 1.0I

Low Power 0.1I 0.5I

28

Figure 1: The Technology
View in HDL Analyst

Synplicity has added automatic RAM
inferencing to Synplify version 5.0.5. Now, you no
longer need to manually instantiate RAM as a black
box or Xilinx-specific primitive; you can make
designs that are truly technology independent.

This article describes how to successfully in-
corporate RAM into your next VHDL or Verilog
design with Synplify. Synplify integrates both RAM
timing estimates and regular timing constraints to
efficiently optimize your next design, and includes:

� Automatic synchronous RAM inferencing

� SelectRAM� or register implementations

� Timing estimates on RAM blocks

� Flexible coding styles

RAM Implementation
Synplify v5.0.5 can automatically infer RAM

structures when coded as an indexed array or as a
CASE statement. However, it will infer only syn-
chronous RAMs; asynchronous RAMs are not
supported. See the following examples for a sug-
gestion on coding styles for RAM blocks.

When a RAM block is recognized, Synplify will
automatically implement the circuit using
RAM16X1S, RAM32X1S, and RAM16X1D Xilinx
RAM primitives. If a RAM block is more complex
than a single 16x1 primitive, Synplify creates the
necessary write enable and data multiplexing logic

to implement the circuit using multiple RAM
blocks. HDL Analyst displays a RAM block in the
RTL view, making the schematic view easier to
read. To see how the large RAM blocks are imple-
mented, use the technology view in HDL Analyst,
as shown in Figure 1.

If you want to map your RAM into standard
logic and registers, you can disable the usage of
Xilinx SelectRAM TM, by setting the syn_ramstyle
attribute to �registers.� This attribute can be ap-
plied directly in the HDL source code or through
Synplify�s Synthesis Constraint OPtimization Envi-
ronment (SCOPE �).

To effectively optimize designs that incorporate
RAM, the synthesis tool must understand the tim-
ing delays through the RAM blocks for the critical
path optimization. Synplify understands the timing
characteristics of the RAM primitives, and includes
all RAM delays in the analysis and optimization of
critical paths.

Inferring RAM in Synplify
by Allen Drost,

Corporate Applications
Engineering Group

Manager,
allen@synplicity.com

�Inferring RAM is

the most effective method of

designing memory into

your FPGA design. Synplify

provides a full suite of

features to implement,

analyze, and optimize your

RAM design.�

29

Example 3: Single-ported Verilog
module test_ram32x2 (clk, we, addr, data_in,

data_out);

input clk, we;

input [1:0] data_in;

input [4:0] addr;

output [1:0] data_out;

reg [1:0] mem [31:0];

always @(posedge clk)

if (we) mem[addr] = data_in;

assign data_out = mem[addr];

endmodule

Example 4: Dual-ported Verilog
module ram4x4(z, raddr, d, waddr, we, clk);

output [3:0] z;

input [3:0] d;

input [1:0] raddr, waddr;

input we;

input clk;

reg [3:0] z;

reg [3:0] mem0, mem1, mem2, mem3;

always @(mem0 or mem1 or mem2 or mem3 or
raddr)

begin

case (raddr[1:0])

4’b00: z = mem0;

4’b01: z = mem1;

4’b10: z = mem2;

4’b11: z = mem3;

endcase

end

always @(posedge clk) begin

if(we) begin

case (waddr[1:0])

4’b00: mem0 = d;

4’b01: mem1 = d;

4’b10: mem2 = d;

4’b11: mem3 = d;

endcase

end

end

endmodule

Conclusion
Inferring RAM is the most effective method of

designing memory into your FPGA design. Synplify
provides a full suite of features to implement,
analyze, and optimize your RAM design.

Example 1: Single-ported VHDL
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity ramtest is

port (q : out std_logic_vector(3 downto
0);

d : in std_logic_vector(3 downto 0);

addr : in std_logic_vector(2 downto 0);

we: in std_logic;

clk : in std_logic);

end ramtest;

architecture rtl of ramtest is

type mem_type is array (7 downto 0) of
std_logic_vector (3 downto 0);

signal mem : mem_type;

begin

q <= mem(conv_integer(addr));

process (clk, we, addr) begin

if (rising_edge (clk)) then

if (we = ‘1’) then

mem(conv_integer(addr)) <= d;

end if;

end if;

end process;

end rtl;

Example 2: Dual-ported VHDL
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity ramtest is

port (q : out std_logic_vector(3 downto
0);

d : in std_logic_vector(3 downto 0);

addr_in : in std_logic_vector(2 downto 0);

addr_out : in std_logic_vector(2 downto 0);

we : in std_logic;

clk : in std_logic);

end ramtest;

architecture rtl of ramtest is

type mem_type is array (7 downto 0) of
std_logic_vector (3 downto 0);

signal mem : mem_type;

begin

q <= mem(conv_integer(addr_out));

process (clk, we, addr_in) begin

if (rising_edge (clk)) then

if (we = ‘1’) then

mem(conv_integer(addr_in)) <= d;

end if;

end if;

end process;

end rtl;

Examples
(Note: Synplify supports inferencing of single and dual ported RAM in VHDL and Verilog, using either

indexed arrays or case statements)

For more information
please see the
Synplicity website at
www.synplicity.com.

http://www.synplicity.com

30

MINC recently released a substantial upgrade
of its leading edge, VHDL and Verilog synthesis
product for programmable IC devices,
PLSynthesizer. The new release, version 6.1, adds
support for the XC4000XL and XC4000XV high-
density devices from Xilinx. Runtimes for the new
version are three to five times faster with vastly
improved quality of results, which mean faster
circuitry that occupies less space.

Key features of PLSynthesizer v6.1 include:
� Advanced VHDL/Verilog synthesis including

support for IEEE and Synopsys synthesis sub-
sets and coding styles

� Specific technology optimization for AREA /
SPEED criteria with several optimization efforts

� Hierarchy handling
� Automatic resource sharing
� Technology-specific macro inference
� Automatic state machine recognition/extraction
� Several automatic state encoding algorithms
� User constraint-based synthesis and optimization
� Technology re-targeting flow
� Support of the most popular FPGA and CPLD/

PLD devices
� Comprehensive and easy-to-use GUI
� Windows 95/NT and Unix support

Advanced Operator Inference
Engine and Macro Generation

Operator inference refers to the procedure of
identifying elements
of the design that
may be implemented
as macro blocks
rather than as more
complex and costly
glue-logic (Boolean

equations). To achieve the highest quality of re-
sults from an HDL design, PLSynthesizer includes
an extremely powerful operator inference engine
that can use a built-in macro generator or Xilinx
LogiBLOX. Operator inference is the procedure by
which a macro is recognized within a behavioral
HDL description and implemented in a technology-
specific and therefore efficient implementation.

Further, using LogiBLOX and its low-level NGD
output netlist ensures you of the best operator

implementation possible. This is very important on
data-path and timing critical designs where in-
efficient operator synthesis may require you to
resort to handcrafted, schematic-based designs to
achieve your design goals. The operators that can
be inferred by PLSynthesizer are: Adder, Adder/
Subtractor, Comparator, Counter, Decrementor,
Incrementor, Multiplexer, Multiplier, Registers,
Subtractor, and Combinational logic shifters.

Arithmetic Resource Sharing
PLSynthesizer features automatic resource

sharing (also known as folding) of adders/
subtractors and multipliers. The goal is to mini-
mize the number of such operators and the subse-
quent logic in the synthesized design. This optimi-
zation is based on the principle that two similar
arithmetic resources may be implemented as one
single arithmetic operator if they are never used at
the same time. The optimizer performs both re-
source sharing and, if required, reduction of the
number of multiplexers that are created in the
process. For example, consider the code fragment
shown in Figure 1.

PLSynthesizer can implement the architecture
for this as shown in Figure 2.

This example illustrates how PLSynthesizer can
fold both adders and subtractors together and
generate adder/subtractors for better optimization
of the result. In addition to this technique,
PLSynthesizer utilizes unique multiplexer and XOR
optimizations. PLSytnthesizer can even infer com-
binational shifters from IF- and CASE-type code
structures.

MINC�s Upgraded PLSynthesizer Supports
by Greg Brown,

Sr. Product
Marketing Manager,
gregb@synario.com

 Figure 1. Operator
Inference and Resource
Sharing

...
signal A,B,C,O : std_logic_vector (7 downto 0);
signal S : std_logic_vector(1 downto 0);
...
with S select

O <= A+B when “01”,
 A when “-0”,
 B-C when others;

Figure 2. Intelligent Resource Sharing Results in Efficient
Arithmetic Implementations

31

Finite State Machine
Extraction and Encoding

PLSynthesizer performs advanced finite state
machine extraction and encoding. You can control
these features on a global, entity/module, or even
signal level. With this level of control, you can
synthesize and optimize multiple state machine
structures at the same time, each with its own
optimal encoding scheme. The encoding options
for Xilinx technologies are: One-hot, Compact,
Sequential, Gray, Johnson, and User defined.

A unique feature of the advanced extraction
process is that it is independent of the VHDL or
Verilog coding style employed.

Support for Bottom-up and
Hierarchical Design Methods

PLSynthesizer supports bottom-up and hierar-
chical design methods by giving you control over
hierarchical flattening on a global and/or entity/
module basis and whether or not I/O pads are to
be inserted on the current top-level design. The
synthesized output files can even preserve the
original bus structures at the port level if desired.

Synthesis/Optimization Constraints
The use of design constraints (properties) is a

powerful method to control several aspects of
synthesis and post-synthesis results. Some are
taken into account by PLSynthesizer to control its
own operation, while others are simply passed on
to back-end tools. For example, a pin assignment
property applied on signals allows you to specify a
given pinout in the target device.

There are three mechanisms by which con-
straints can be applied: within the GUI, with a
separate constraint file, and with VHDL attributes.
Constraints can be applied globally or locally on
an entity/module basis and in some cases on indi-
vidual signals or nodes. The constraints give you a
high degree of control over such features as
speed/area optimization tradeoffs, CPU effort level,
hierarchy flattening, state machine extraction and
encoding, enumerated type encoding, state register
type, multiplexer and XOR extraction, combina-
tional shifter extraction, pin assignment, and signal
preservation.

Simple, Yet Powerful and Easy to
Use Interface

PLSynthesizer can be run from the command
line on Unix platforms or from its GUI on Win-
dows® and Unix platforms. The GUI supports a
simple, three-step process (load design, select
target technology, GO!) or a constraint-driven
process utilizing all the power and flexibility
PLSynthesizer offers. The constraint-driven mode
gives you control over all PLSynthesizer features
and utilizes simple and easy to understand dialogs
based on source options and technology options.

Conclusion
PLSynthesizer v6.1 has the performance, capac-

ity and quality of results to help you make the most
out of Xilinx high-density FPGAs. PLSynthesizer
supports the XC3000A, XC3000L, XC3100A,
XC3100L, XC4000E, XC4000EX, XC4000L,
XC4000XL, XC40000XV, XC5200, XC7000, and
XC95000 devices. The Spartan devices will be
added in v6.2, scheduled for Q4 of 1998.
PLSynthesizer is available for Window® 95/NT,
SunOS, Solaris, and HP-UX. PLSynthesizer is also
being integrated into the MINC Synario design
environment to provide a full range design entry,
analysis, and implementation environment.

High-Density Xilinx FPGAs

Greg Brown has more than ten years experience in the EDA industry and
has held positions in development, consulting, management, and marketing
of IC, ASIC, and programmable logic design tools at Mentor Graphics,
VeriBest, and MINC Incorporated. Currently, he is the Sr. Product
Marketing Manager at MINC.

For more information, contact: MINC Incorporated, 6755 Earl Drive
Colorado Springs, Colorado 80918, www.minc.com or www.synario.com

Figure 3: PLSynthesizer

http://www.minc.com
http://www.synario.com

32

With Xilinx and third-party intellectual prop-
erty (IP) companies providing solutions through
the Xilinx LogiCORE and AllianceCore programs,
you now have the choice of making or buying
functionality for your designs. This has created a
situation where various design sources may reside
inside a single high-density FPGA.

For example, you may have a top-level sche-
matic tying all of your underlying macros to-
gether. These macros may consist of blocks of
purchased IP, in-house VHDL and Verilog, and
even some schematic primitives. When combining
these various design sources with a gamut of
entry, synthesis, and verification tools, developing
a workable design flow becomes an overwhelm-
ing task, and that�s where IntelliFlow from
Viewlogic becomes extremely useful.

For example, assume that you have a design that
has a top-level schematic with underlying VHDL
and Verilog blocks. When you are ready to take this
design through place and route and back into your
simulation environment for verification, you will
probably come across the following set of issues:

� How do I synthesize my language macros and
integrate these with my schematic?

� What options do I choose in the place and
route tools so that I get the correct netlist out
for verification?

� I�m targeting a device in a BG560 package.
How am I going to create a 560 pin symbol
with all of my power, ground, no connect, and

programming pin information to use on my
board design?

IntelliFlow,� which is part of Viewlogic�s
Workview Office ® suite of tools, is a turnkey
process manager for the design of complex pro-
grammable devices. The purpose behind a pro-
cess manager like IntelliFlow is to take care of
these issues for you. This way you can concentrate
on the design without spending time on the inter-
face details.

With IntelliFlow, you can mix schematics, VHDL,
Verilog, and blocks of IP to generate high-quality
results for your Xilinx FPGAs and CPLDs. IntelliFlow
understands the mixed formats of the source files
in your design and automatically configures tool
flows to make the proper conversions between
formats automatically, allowing you to focus on the
design and not the interaction of tools.

For language-only or mixed language-sche-
matic designs, the types of tasks supported by
IntelliFlow are:

� Functional Simulation

� Synthesis

� Place and Route

� Timing Simulation

� Bit and PROM File Creation

� Automatic Board-level Symbol Creation

With the IntelliFlow process manager, the first
step in doing a Xilinx design is to add your design
source. In the example case of a block-level dia-
gram with underlying language blocks, you would
add your top-level schematic. IntelliFlow will
parse and extract the design hierarchy for you,
recognizing the VHDL and Verilog blocks and
automatically pulling the necessary source files
into the design process.

The second step is to pick your family, die,
package, and speed that you are targeting.
IntelliFlow has a database that contains all of the
dies, packages, and speeds that are available for
Xilinx, including the new Virtex family. By allow-
ing you to select the die, package, and speed

Managing the Design Process with
by Philip Lewer,

Viewlogic Product
Marketing Manager,

plewer@viewlogic.com

�Full control over all of the

Xilinx implementation tools is available

through the IntelliFlow interface, giving

you a combination of ease of use without

loss of power.�

33

individually, IntelliFlow protects you from picking
an invalid combination.

The third step is to pick the type of simulation
that you are planning on performing. If you have
written a test fixture or testbench, you would
select Verilog simulation or VHDL simulation
respectively. On the other hand, if you are a user
of Viewlogic�s ViewSim� gate-level simulator,
you would choose gate-level simulation. At this
point, IntelliFlow will take your schematic, create
an EDIF netlist, and feed this EDIF netlist along
with the underlying language blocks into FPGA
Express� for synthesis. This saves you from
having to reformat your design manually and
invoking multiple point tools.

With the design loaded in FPGA Express, you
are ready to synthesize, place and route, and
simulate. To perform these three steps, you just
double-click on the Implement and Perform
Timing Simulation tool. That�s it. Behind the
scenes, IntelliFlow will run FPGA Express. The
netlist created by FPGA Express is fed into the
Xilinx Alliance Series place and route tools. Since
you have already chosen your simulation method-
ology, the correct Xilinx tools are run so that you
get a VHDL, Verilog, or EDIF netlist that can be
simulated. The netlist is translated, compiled, and
loaded into the correct simulator.

When it is time to do board-level verification
or layout, you just double-click on the Implement
and Create Board Level Symbol Process. This
process has many tools in common with the simu-
lation process. Because of this, IntelliFlow knows
not to re-run synthesis and place and route,
which saves you time. Instead, it quickly takes the
files that have already been created by the Xilinx
Alliance tools and creates a symbol, on the fly.
This symbol not only contains the pins that you
have defined in your design, but power, ground,
no connects, package information, and attributes
that point to the underlying model for board-level
simulation.

Although IntelliFlow handles the interactions
of the various tools used in the design process
behind the scenes, there is no loss of power for

the Xilinx user. With IntelliFlow, you have full
control over all of the tools used in the design
flow. This includes the Viewlogic as well as the
Xilinx tools. For example, if you are used to enter-
ing design constraints with the FPGA Express
Timing and Constraint Editor, this editor is avail-
able to you via IntelliFlow. If you need to use the
EPIC Design Editor or Xilinx Floorplanner, you
can launch these from IntelliFlow. Individual
settings for all of the Xilinx Alliance place and
route tools are accessible. With context sensitive
help, explanations for all of these tool settings are
only a click away.

Conclusion
IntelliFlow provides a single graphical user

interface for controlling design entry, functional
simulation, synthesis, place and route, timing
simulation, and board-level symbol creation.
IntelliFlow performs data format changes auto-
matically and runs the specific tools with the
correct parameter settings for each of the Xilinx
technologies. Full control over all of the Xilinx
implementation tools is available through the
IntelliFlow interface, giving you a combination of
ease of use without loss of power. With
IntelliFlow, you can focus on your design without
having to deal with details of each tool used in the
process or to learn new, complex design flows,
reducing design errors and shortening your prod-
uct development cycle.

Viewlogic�s IntelliFlow

Figure 1: IntelliFlow
Targeting the Xilinx
Virtex Family

For more information
on the Viewlogic
solution for FPGAs
and other types of
programmable
devices, contact
Viewlogic at 1-800-
873-8439 or visit our
website at
www.viewlogic.com.

http://www.viewlogic.com

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

34

Q&AQ&A

COMMMON QUESTIONS AND ANSWERS FROM OUR HOTLINE

○ ○

and Verilog files. The design may also reference
black-box modules, such as LogiBLOX compo-
nents, schematic modules, or other netlists. These
black-box modules will not be analyzed and opti-
mized by the Express compiler, however, because
the contents are unknown to Express.

In a future update of the Foundation Series
software, the HDL flow will support schematic
files, so they may be analyzed and optimized by
Express. This will be particularly useful for creat-
ing top-level schematic designs which serve as a
�block diagram� of a design containing several
HDL blocks. The Express compiler will therefore
have the ability to optimize these HDL blocks
across their boundaries. In the initial Foundation
Series 1.5 release, however, schematic files are
only supported as black-boxes within an HDL flow
project.

Foundation 1.5 contains two distinct project
�flow� types: Schematic and HDL. The flow type is
selected when the project is created. Once the
project has been created, it is not possible to
change the project flow type. If you wish to
change the project flow type after the project has
been created, you must create a new project.

SCHEMATIC FLOW:
The schematic flow is used for top-level sche-

matic designs, as well as top-level ABEL designs.
Top-level schematics may contain any number of
lower-level HDL modules (VHDL, Verilog, ABEL),
LogiBLOX, State Editor modules, or black-box
netlist modules. This flow is very similar to the
standard flow used in Foundation 1.4 and earlier.

HDL FLOW:
The HDL flow is used for top-level VHDL or

Verilog designs. A project may include both VHDL

Foundation What are these new �Project Flow� types in Foundation 1.5, and when
should I use one versus the other?

to the new Foundation 1.5 features including the
embedded implementation tools and FPGA Ex-
press HDL compiler. It will also allow you to
target devices supported only with the 1.5 release,
such as SpartanXL, XC9500XL, XC4000XLA, and
Virtex.

To change the project type to the new Founda-
tion 1.5 project type, select File -> ProjectType
from the Project Manager. Change the type to:
Foundation Series v1.5.

If your design contains State Editor modules
which are VHDL-based, please see Xilinx Solution
4402 (http://www.xilinx.com/techdocs/
4402.htm) for more information about necessary
modifications.

Note: If your design contains VHDL, and was
done within the Foundation environment using
the XVHDL (Metamor) compiler, changing the
project type from XACTStep M1 to Foundation
Series v1.5 will also cause the VHDL compiler
used to change from Metamor (XVHDL) to

How do I migrate a design done with pre-Foundation 1.5 software to
Foundation 1.5?

By default, when you open a project in Foun-
dation 1.5 which was created with Foundation 1.4
(or earlier), the project type will remain as the
old project type (such as XACT Step M1 or
XACTStep v6). Once the project has been opened
in Foundation 1.5, however, it is possible to
change the project type to the new Foundation 1.5
project type. The Project Type dictates things such
as what target devices are available, what the
menus and GUIs look like, and what type of out-
put netlist format is used. Changing to the Foun-
dation Series 1.5 project type will give you access

by Kamal Koraitem,
Xilinx Product

Applications Group,
kamalk@xilinx.com

/techdocs/4402.htm

35

○ ○

○ ○

Synopsys FPGA Express. For more detailed infor-
mation about this conversion process and issues
involved, please see the Application Note entitled
�Metamor to Express Conversion Guide� located
in the Foundation Online Help System. From the
Project Manager, select Help->Foundation Help
Contents -> Application Notes.

For existing Foundation Express 1.4 designs,
there is no migration path to bring the existing
Express and M1 projects into the Foundation 1.5
project environment. This limitation is due to the
new version/revision management employed by
the integrated Foundation 1.5 tools. You will have
two options:

1. Create a new HDL-type project in Foundation
1.5. Copy all source files (source HDL, NGO
from LogiBLOX/Coregen, other XNF or EDIF
files, .UCF file) to the new project directory
and add the HDL files to the project. You will
have to recreate all synthesis implementations
as well as place and route revisions, as this
information may not be imported from existing
Express projects.

If you plan on using the Foundation Simula-
tion tool to perform a post-synthesis simula-
tion on an HDL design containing LogiBLOX,
you will need to create new LogiBLOX simula-
tion models. Copy the .MOD file for each mod-
ule into your project directory. Open the
LogiBLOX GUI from the Project Manager
(Tools -> Design Entry -> LogiBLOX module
generator) and select the module using the
Module Name pulldown. Click OK to create a
new .NGC file (for implementation) and .ALR
file (for functional simulation). This must be
done for each module in the design.

2. Use the Foundation 1.5 tools in the same man-
ner as the F1.4 tools were used. The GUIs for
Foundation Express and the Xilinx Design
Manager are available from Start -> Programs
-> Xilinx Foundation Series -> Accessories.
The Foundation Simulation flows and all
project management issues are identical to the
flow described in the Foundation Express
Application Note Supplement that was shipped
with Foundation 1.4.

Foundation
(continued)

InstallWhile installing Alliance 1.5 or Foundation 1.5, I received a
�ComponentMoveData Error�? How can I workaround this?

This error may occur in a couple of different scenarios. The complete solution is documented under:
http://www.xilinx.com/techdocs/4298.htm

ImplementationStarting any Xilinx GUI application from a workstation command line issues
a message informing me that I have an old version of the registry program
running on my machine. How did this happen?

The version 1.5 graphical applications may
require you to update your registry information to
a newer version compatible with the 1.5 software
release, depending on if you had an older version
running on your machine from a previous re-
lease. For more information on this, please refer-
ence: http://www.xilinx.com/techdocs/
4024.htm Q&AQ&A

/techdocs/4298.htm
/techdocs/4024.htm

36

If you suspect timing problems of any kind,
it�s best to test your circuit under extreme operat-
ing conditions. All CMOS circuits get slower when
hot, and faster when cold; the delay change is
about 0.3% per degree centigrade. Testing at both
temperature extremes can give you a good indica-
tion of your real timing margins.

Don�t be too cautious in your temperature
testing. Our devices tolerate well over +100°C
(which is the boiling point of water, so if you wet
your finger before touching the package, it will
sizzle) and well under -40°C (where your finger
will stick to the package). If you can keep your
finger on the package for 10 seconds, then the
surface temperature is below +65°C.

Two failure modes
Digital circuits can fail for two very different

reasons:

� The circuit is too slow � As you know, a
lack of circuit speed (excessive delays) limits

the performance. It is therefore a
common practice to check for proper
design operation by increasing the
clock frequency until the circuit fails.
In large, complex systems it may be
impossible or impractical to change
the clock frequency.

� The circuit is too fast � Exces-
sive circuit speed can also cause fail-
ure, but this cannot be tested by vary-
ing the clock rate. This type of failure
can show up at any clock rate, and is
more likely to affect slow designs that
have not taken high speed issues, such
as potential race conditions and hold
times, into consideration.

Luckily there are easy ways to manipulate the
performance of any CMOS device, even after it has
been soldered into the system. To verify timing
margins, you can:

� Apply cold spray and cool the chip down as
much as possible. At -40°C, the circuit delays
are about 20% shorter than at room tempera-
ture, where they are about 20% shorter than at
the worst-case test temperature of +85°C. That
means a 36% decrease in delay, or a 56%
increase in performance, compared to the
worst-case spec. This is equivalent to several
speed grade improvements.

� Raise the supply voltage to 10% above nominal.
Raising the supply voltage increases perfor-
mance, roughly proportional with the voltage.

By applying heat (up to +100°C) and lowering
the supply voltage (to 10% below nominal) you can
create the opposite effect, decreasing performance.

The beauty of the extreme temperature tests is
that you can do them in a working system, on
individual devices, without any expensive or de-
structive re-work.

A general test of design stability
Test your circuit both at high temperature and

low Vcc, as well as at cold temperature and high Vcc:

� If your design fails at high temperatures and
low Vcc, it is due to insufficient performance
margins � the chip is too slow � and you
should use a faster speed grade to improve
your performance margin.

� If your design fails at cold temperatures and
high Vcc, it is due to a poor asynchronous
design that must be corrected, because the
design has race conditions.

You should never release to production a
digital design that fails at cold temperature or
high Vcc!

Conclusion
If your design passes these hot/cold tempera-

ture and high/low Vcc tests, you are assured that
it will work, in the field, under the worst operat-
ing conditions.

Heat Gun and Cold Spray
Your Best Debugging Tools

by Peter Alfke,
Director of Applica-

tions Engineering,
peter@xilinx.com

�You should

never release to

production a

digital design that

fails at cold

temperature or

high Vcc!�

37

by Stacey Pinckert,
Education Coordinator,
Stacey.Pinckert@
xilinx.com

FPGA Tools Courses (2 days)
LOCATIONS SEPT. OCT. NOV. DEC. JAN. FEB. MAR. APRIL MAY JUNE
Huntsville, AL 8-9
Phoenix, AZ 12-13
San Jose, CA - Xilinx, Inc. 22-23 27-28 17-18 8-9 6-7 3-4 3-4, 28-29 25-26 23-24

31-4/1
Los Angeles, CA 28-29
Irvine, CA 14-15
San Diego, CA 17-18
Toronto, Ontario, Canada 16-17
Orlando, FL 7-8
Boston, MA 16-17 1-2 3-4
Raleigh, NC 28-29 7-8
Fairfield, NJ 7-8
Long Island, NY
Houston, TX 17-18 20-21 28-29
Dallas, TX 29-30 17-18 21-22
Austin, TX 19-20 5-6

Foundation Interface Courses (1 day)
LOCATIONS SEPT. OCT. NOV. DEC. JAN. FEB. MAR. APRIL MAY JUNE
San Jose, CA 21 26 7 5 2 2, 30 27 24 22

Foundation Express Courses (1 day)
LOCATIONS SEPT. OCT. NOV. DEC. JAN. FEB. MAR. APRIL MAY JUNE
Huntsville, AL 10
Phoenix, AZ 11 9
San Jose, CA 29 29 10 8 5 5 2, 30 27 25
Irvine, CA 13
Los Angeles, CA 27
San Diego, CA 16
Montreal, Canada 25
Orlando, FL 9
Atlanta, GA 22
Boston, MA 3 5
Raleigh, NC 9
Long Island, NY 6
Austin, TX 18
Dallas, TX 28
Houston, TX 27

Synthesis Courses (3 days)
COURSE TYPE LOCATIONS SEPT. OCT. NOV. DEC. JAN. FEB. MAR. APRIL MAY JUNE

Verilog Methodology San Jose, CA 11-13 8-10

Verilog Methodology Bethesda, MD 22-24

Verilog Methodology Columbia, MD 18-20

Verilog Methodology Portland, OR 2-4 17-19 19-21

Verilog Methodology Dallas, TX 16-18

VHDL Methodology San Jose, CA 11-13 19-21

VHDL Methodology Orlando, FL 10-12

VHDL Methodology Portland, OR 26-28 20-22 14-16

Customer Education Services Class Schedule: North America
1998 through June 1999

38

XC
40

28
EX

XC
40

36
EX

XC
40

13
XL

A

XC
40

20
XL

A

XC
40

28
XL

A

XC
40

36
XL

A

XC
40

44
XL

A

XC
40

52
XL

A

XC
40

62
XL

A

XC
40

85
XL

A

XC
40

11
0X

V

XC
40

15
0X

V

XC
40

20
0X

V

XC
40

25
0X

V

XC
S0

5/
XL

XC
S1

0/
XL

XC
S2

0/
XL

XC
S3

0/
XL

XC
S4

0/
XL

XC
95

36

XC
95

72

XC
95

10
8

XC
95

14
4

XC
95

21
6

XC
95

28
8

XC
95

36
XL

XC
95

72
XL

XC
95

14
4X

L

XC
95

28
8X

L

XC4000EX (5 Volt) XC4000XLA (3.3 Volt) XC4000XV (2.5 Volt) Spartan (5V, XL 3.3V) XC9500 (5 Volt) CPLDs XC9500XL (3.3 Volt) CPLDs

FPGA/CPLD Package Options and User I/O

IOBs 256 288 192 224 256 288 320 352 384 448 448 448 448 448 80 112 160 192 224 34 72 108 133 166 192 36 72 117 192

PLCC Packages
44 34 34 34 34

� 84 61 61 69 69
CS Packages

48 34 36 38
144 117

PQFP / HQFP Packages
� 100 72 81 81

160 129 129 129 129 129 129 129 129 108 133 133
208 160 160 160 160 160 160 160 160 160 160 169 169 166 168 168
240 193 193 192 193 193 193 193 193 193 193 193 193 192 193
304 256 256 256 256 256 256 256 256

VQFP Packages
44 34
64 36 52

100 77 77 77 77
TQFP / HTFP Packages

100 72 81 81 72 81
144 113 113 112 113 113 117 117
176 145 145

CBFP Packages
228 192 192

BGA Packages
225
256 192 205 205 192 205
352 256 288 256 288 289 289 289 289 289 289 166 192 192
432 288 288 320 352 352 352 352 352 352 352
560 352 384 448 432 432 432 432

PGA Packages
299 256 256
411 288 288 320 352
475 384
559 448 448 448 448 448

XC4000XLA Available Sept. (XC4013, XC4062 (HQ240)). Remainder available Q4. SpartanXL Available Q4

For information on other product families, see WebLINX at www.xilinx.com

/products/products.htm

39

Usable Logic System Logic Total Total Max. Config. XC1700 Serial
Gates (K) Gates Gates1 Cells2 CLBs Flip-Flops Max. I/O RAM Bits Memory (Kb) PROM Requirements

XC4000EX Family - 5 Volt 0.5µm Triple Layer Metal Process

XC4028EX 18-50 28K 50K 2,432 1,024 2,560 256 32.8K 668 XC1701
XC4036EX 22-65 36K 65K 3,078 1,296 3,168 288 41.5K 833 XC1701
XC4000XLA Family - 3.3 Volt Advanced 0.35µm Five Layer Metal Process

XC4013XLA 10 - 30 13K 30K 1,368 576 1,536 192 18.4K 393 XC17512L
XC4020XLA 13 - 40 20K 40K 1,862 784 2,016 224 25.1K 522 XC17512L
XC4028XLA 18 - 50 28K 50K 2,432 1,024 2,560 256 32.8K 668 XC1701L
XC4036XLA 22 - 65 36K 65K 3,078 1,296 3,168 288 41.5K 833 XC1701L

XC4044XLA 27 - 80 44K 80K 3,800 1,600 3,840 320 51.2K 1,015 XC1701L
XC4052XLA 33 - 100 52K 100K 4,598 1,936 4,576 352 62.0K 1,215 XC1702L
XC4062XLA 40 - 130 62K 130K 5,472 2,304 5,376 384 73.8K 1,434 XC1702L

XC4085XLA 55 - 180 85K 180K 7,448 3,136 7,168 448 100.4K 1,925 XC1702L
XC4000XV Family - 2.5 Volt 0.25µm Five Layer Metal Process
XC40110XV 75-200 110K 220K 9,728 4,096 8,704 448 131.1K 2,488 XC1704L

XC40150XV 100 - 300 150K 300K 12,312 5,184 11,520 448 165.9K 3,373 XC1704L
XC40200XV 130 - 400 200K 400K 16,758 7,056 15,456 448 225.8K 4,551 XC1704L & XC17512L
XC40250XV 160 - 500 250K 500K 20,102 8,464 18,400 448 270.9K 5,434 XC1704L & XC1702L
Spartan Family - 5 Volt and 3.3 Volt (XL) Advanced 0.5µm & 0.35µm (XL) Process

XCS05/XL 2 - 5 3K 5K 238 100 360 80 3.2K 54 XC17S05 (XL)
XCS10/XL 3 - 10 5K 10K 466 196 616 112 6.3K 95 XC17S10 (XL)
XCS20/XL 7 - 20 10K 20K 950 400 1,120 160 12.8K 179 XC17S20 (XL)

XCS30/XL 10 - 30 13K 30K 1,368 576 1,536 192 18.4K 249 XC17S30 (XL)
XCS40/XL 13 - 40 20K 40K 1,862 784 2,016 224 25.1K 330 XC17S40 (XL)

Notes: 1. System Gates include 20-30% of CLBs used as RAM 2. A Logic Cell is defined as a 4 input LUT and a register

FPGA/CPLD Product Selection Matrix

Pin-to-Pin
Macrocells Max. I/O Delay (ns)

XC9500 Family - 5 Volt CPLDs
XC9536 36 34 5
XC9572 72 72 7.5

XC95108 108 108 7.5
XC95144 144 133 7.5
XC95216 216 166 10
XC95288 288 192 15

Density PD8 SO8 VO8 PC20 SO20 VQ44 3 Volt 5 Volt

Serial PROM Package Options
XC1736E 36K Y Y Y Y Y
XC1765E (EL) 65K Y Y Y Y Y (EL) Y

XC17128E (EL) 128K Y Y Y Y (EL) Y
XC17256E (EL) 256K Y Y Y Y (EL) Y
XC17512L 512K Y Y Y Y
XC1701 1M Y Y Y Y

XC1701L 1M Y Y Y Y
XC1702L 2M Y Y
XC1704L 4M Y Y

XC17S05 54K Y Y Y
XC17S05XL 55K Y Y Y
XC17S10 95K Y Y Y

XC17S10XL 96K Y Y Y
XC17S20 178K Y Y Y
XC17S20XL 179K Y Y Y
XC17S30 248K Y Y Y

XC17S30XL 249K Y Y Y
XC17S40 329K Y Y Y
XC17S40XL 331K Y Y Y

Slowest Fastest Comments

Speed Grade Options
XC4000EX -4 -2
XC4000XLA -3 -08
XC4000XV -2 -09

Spartan -3 -4
SpartanXL -4 -5

Ordering Information for
FPGAs / CPLDs

Example: XC4036XLA-08PQ160C

Device Type

Speed Grade

Package Type

Number of Pins

Temp. Range

Pin-to-Pin
Macrocells Max. I/O Delay (ns)

XC9500XL Family - 3.3 Volt CPLDs

XC9536XL 36 36 4
XC9572XL 72 72 5
XC95144XL 144 117 5
XC95288XL 288 192 6

40

First Class Presort
U.S. Postage

PAID
Permit No. 2196

San Jose, CA

Corporate
Headquarters
Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Tel: 408-559-7778
Fax: 408-559-7114

Europe
Xilinx, Ltd.
Benchmark House
203 Brooklands Road
Weybridge
Surrey KT14 0RH
United Kingdom
Tel: 44-1-932-349401
Fax: 44-1-932-349499

Japan
Xilinx, KK
Daini-Nagaoka Bldg. 2F
2-8-5, Hatchobori,
Chuo-ku, Tokyo 104
Japan
Tel: 81-3-3297-9191
Fax: 81-3-3297-9189

Hong Kong
Xilinx Asia Pacific
Unit 4312, Tower II
Metroplaza
Hing Fong Road
Kwai Fong, N.T.
Hong Kong
Tel: 852-2424-5200
Fax: 852-2494-7159

To subscribe to the Xilinx XCell Journal,
cancel your XCell subscription, or order
other Xilinx literature, send your request
to: literature@xilinx.com

Please be sure to include:
1. Your full name and mailing address
2. Your title and your company name
3. Your request (XCell subscription)

PN:XLQ498

You can view previous
issues of XCell, on-line, at:
www.xilinx.com/xcell/
xcell.htm

2100 Logic Drive
San Jose, CA 95124-3450

R

/xcell/xcell.htm
/
/forms/literature.htm

	Inside This Issue
	Xilinx – The Next Generation
	New XC4000X Series FPGAs
	3.3V SpartanXL FPGAs
	FPGAs: Alternative to Gate Arrays
	ASIC Conversion Market
	ASICs Can be Replaced with FPGAs
	XC9500XL 3.3V FastFLASH CPLDs
	Chip Scale Packaging
	3.3V CPLD? "ARM" Yourself...
	Max Headroom with XC9500 CPLDs
	Silicon Xpresso - Designing with the Web
	Guaranteeing Designs Work in All Conditions
	Speed Up XC9500 Design with v1.5 Software
	Unleash Your Potential with Alliance 1.5
	Using Nested If Statements
	System Emulation/Rapid Prototyping Using FPGAs
	Reducing CPLD Power Consumption
	Inferring RAM in Synplify
	MINC’s Upgraded PLSynthesizer
	Managing Design Process with Viewlogic's IntelliFlow
	Q & A from our Hotline
	Foundation
	Install
	Implementation

	Heat Gun & Cold Spray - Debugging Tools
	Class Schedule: North America
	Package Options and User I/O
	Product Selection Matrix

