
ISSUE 54, THIRD QUARTER 2005
XCELL JOURNAL

XILINX, INC.

R

Issue 54
Third Quarter 2005

T H E A U T H O R I T A T I V E J O U R N A L F O R P R O G R A M M A B L E L O G I C U S E R S

Xcell journalXcell journal
T H E A U T H O R I T A T I V E J O U R N A L F O R P R O G R A M M A B L E L O G I C U S E R S

Design Challenges:
Avoiding the Pitfalls,

Winning the Game

Design Challenges:
Avoiding the Pitfalls,

Winning the Game

PERFORMANCE
The PlanAhead Experience

COST
Using a CPLD to Implement
a QWERTY Keypad

POWER
Performance vs. Power:
Getting the Best of
Both Worlds

CONNECTIVITY
Managing Signal Integrity

DEBUGGING
Speed FPGA Debug with
Mixed-Signal Oscilloscopes

PERFORMANCE
The PlanAhead Experience

COST
Using a CPLD to Implement
a QWERTY Keypad

POWER
Performance vs. Power:
Getting the Best of
Both Worlds

CONNECTIVITY
Managing Signal Integrity

DEBUGGING
Speed FPGA Debug with
Mixed-Signal Oscilloscopes

The Programmable Logic CompanySM

FFoorr mmoorree iinnffoorrmmaattiioonn vviissiitt
wwwwww..xxiilliinnxx..ccoomm//ssppaarrttaann33ee

Pb-free devices
available now

©2005 Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Europe +44-870-7350-600; Japan +81-3-5321-7711; Asia Pacific +852-2-424-5200; Xilinx is a registered trademark, and The Programmable Logic Company is a service mark of Xilinx, Inc.

IInnttrroodduucciinngg tthhee nneeww SSppaarrttaann--33EE ffaammiillyy —— tthhee wwoorrlldd’’ss lloowweesstt--ccoosstt FFPPGGAAss

PPrriicceedd ttoo ggoo..

TThhee iinndduussttrryy’’ss ffiirrsstt 110000,,000000--ggaattee FFPPGGAA ffoorr oonnllyy $$22..0000**
Spartan-3E Platform FPGAs offer an amazing feature set for just $2.00! You get 100K gates, embedded

multipliers for high-performance/low-cost DSP, plenty of RAM, digital clock managers,

and all the I/O support you need. All this in a production-proven 90nm FPGA with a

density range up to 1.6 million gates.

PPeerrffeecctt ffoorr ddiiggiittaall ccoonnssuummeerr aappppss aanndd mmuucchh mmoorree!!
With the Spartan-3E series, we’ve reduced the previous unit cost benchmark by over

30%. Optimized for gate-centric designs, and offering the lowest cost per logic cell in

the industry, Spartan-3E FPGAs make it easy to replace your ASIC with a more flexible, faster-to-market

solution. Compare the value for yourself . . . and get going on your latest design!

MMAAKKEE IITT YYOOUURR AASSIICC

* Pricing for 500K units, second half of 2006

L“Life is full of challenges.” You have probably heard this thought often. But how often have you
really used challenges to learn more about yourself and grow from the experience?

You probably view challenges as unwelcome speed bumps on the road to success and happiness.
But are they really?

My personal experience has shown that challenges are tremendous opportunities for moving to
the next level. Whether personal, professional, or otherwise, challenges can reveal your blind spots,
provide the motivation for making a change, and show you where you need to make necessary
changes and grow.

At Xilinx®, we are very aware of the design challenges facing today’s system designers. Accordingly,
we are constantly looking to see what and how we need to change to keep up with market demands.
We also realize that we too may have a few blind spots, so we are continually asking our market for
suggestions on how to improve.

This issue of the Xcell Journal focuses on design challenges, comprising articles on system performance,
total cost, power management, connectivity, and debug.

To highlight just a few, Adrian Cosoroaba’s article, “Achieve Breakthrough Performance in Your
System,” discusses how Virtex™-4 FPGAs set new records in system performance while consuming
minimal power and providing superior signal integrity.

For reducing total cost, there are several articles illustrating examples of low-cost system
implementations. They include using a CPLD to implement a QWERTY keypad; implementing
video games in FPGAs; using Xilinx ISE™ 7 design tools to get the most out of your silicon while
slashing project costs; staying connected while driving safely using advanced telematics; and a
low-cost programmable PCI Express solution.

In Anil Telikepalli’s power management article, “Performance vs. Power: Getting the Best of Both
Worlds,” he discusses the fact that excessive power is expensive in many ways. Excessive power
creates the need for special design and operational considerations – everything from heat sinks to
fans to sophisticated heat exchangers. Even the cost of larger power supplies must be considered.

In the connectivity article “Bridging System Packet Interfaces,” co-authored by several Xilinx
engineers from the IP Solutions Division, Xilinx IP and reference designs provide superior
solutions for implementing custom bridging solutions between protocols. This article discusses the
benefits and utility of the SPI-4.2 to Quad SPI-3 Bridge, which demonstrates how to bridge four
SPI-3 cores to a single SPI-4.2 core.

And finally, Ross Nelson’s debug article, “Hardware/Software Co-Verification,” discusses how to gain
full visibility into your software and hardware and achieve a faster design iteration loop in the process.

We hope you enjoy this issue on design challenges. And remember: life is full of challenges, but
perception is everything.

L E T T E R F R O M T H E E D I T O R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2005 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. PowerPC is a trade-
mark of IBM, Inc. All other trademarks are the property
of their respective owners.

The articles, information, and other materials included in
this issue are provided solely for the convenience of our
readers. Xilinx makes no warranties, express, implied,
statutory, or otherwise, and accepts no liability with respect
to any such articles, information, or other materials or
their use, and any use thereof is solely at the risk of the
user. Any person or entity using such information in any
way releases and waives any claim it might have against
Xilinx for any loss, damage, or expense caused thereby.

Life’s Challenges:
Opportunity or Curse?

Forrest Couch
Managing Editor

EDITOR IN CHIEF Carlis Collins
editor@xilinx.com
408-879-4519

MANAGING EDITOR Forrest Couch
forrest.couch@xilinx.com
408-879-5270

ASSISTANT MANAGING EDITOR Charmaine Cooper Hussain

XCELL ONLINE EDITOR Tom Pyles
tom.pyles@xilinx.com
720-652-3883

ADVERTISING SALES Dan Teie
1-800-493-5551

ART DIRECTOR Scott Blair

O N T H E C O V E R

2020 3232

S Y S T E M P E R F O R M A N C E TOTAL COST

8282
C O N N E C T I V I T Y

9898

DEBUGGING

The PlanAhead Experience
Xilinx customers have used PlanAhead software to
reduce design costs and improve performance.

4848

P O W E R M A N A G E M E N T

Performance vs. Power: Getting the Best of Both Worlds
Xilinx conquers the 90 nm inflection point.

Using a CPLD to Implement a QWERTY Keypad
You can use a Xilinx CPLD to expand a typical handset
DTMF keypad into a QWERTY keypad.

Managing Signal Integrity
Being heard above the noise.

Speed FPGA Debug with Mixed-Signal Oscilloscopes
You can make internal measurements using Agilent
scopes and the Xilinx ChipScope Pro analyzer.

Hardware/software
integration is a sore spot
at virtually every company.
This article discusses how
software and hardware teams
can cooperate
to make
integration easier.

Viewpoint

66

T H I R D Q U A R T E R 2 0 0 5 , I S S U E 5 4 Xcell journalXcell journal
VIEWPOINT
When Hardware Met Software ...6

SYSTEM PERFORMANCE
Faster and More Flexible Embedded Systems ...10
Designing Control Circuits for High-Performance DSP Systems ...13
Achieve Breakthrough Performance in Your System ...16
The PlanAhead Experience ...20
Designing with DSP48 Blocks Using Precision Synthesis ...24
Never Design Another FIFO ..30

TOTAL COST
Using a CPLD to Implement a QWERTY Keypad...32
FPGA-Based Video Games ..35
High Performance Doesn’t Have to Mean High Cost ..38
Smart Telematics Systems from Xilinx and Microsoft Corp.’s Automotive Business Unit41
A Low-Cost Programmable PCI Express Solution ..44

POWER MANAGEMENT
Design Techniques to Reduce Power Consumption ...48
Performance vs. Power: Getting the Best of Both Worlds..52
Merging CPLD Features into Handheld Applications ..56
Power Solution – Intersil ...61
Power Solution – Nu Horizons and Linear Technology..62
Power Solution – National Semiconductor..63
Power Solution – Texas Instruments ...64

CONNECTIVITY
How to Detect Potential Memory Problems Early in FPGA Designs ...66
Losing Less from Lossy Lines ..69
Connecting Intel StrataFlash Memory to Spartan-3E FPGAs...72
Virtex-4 Source-Synchronous Interfaces Tool Kit...76
Bridging System Packet Interfaces ..79
Managing Signal Integrity ..82

DEBUGGING
Hardware/Software Co-Verification ...86
The scc-32/scc-16 Microsequencers and AHBDBG System Debugger ..90
Timing Closure with Synplify Pro Software ...94
Speed FPGA Debug with Mixed-Signal Oscilloscopes ..98

GENERAL
Designer Challenges for Pb-Free and Green Products ..101
A Shortcut to Effective Hierarchical Designs ..103
Xilinx Education Services: Knowledge Creates Performance...106

REFERENCE ..111

by Anthony Townsend
Xilinx Design Services Engineering Manager
Xilinx, Inc.
tony.townsend@xilinx.com

You have been there before – and if not,
you will be. After a seemingly infinite num-
ber of requirement changes and a schedule
so short that you have given up all sem-
blance of a life for the last two months,
your design has finally passed all block and
system-level simulations. You should be
happy. But you are not. Because you are
about to enter the most difficult, stressful,
and aggravating part of any project: hard-
ware/software integration.

Hardware/software integration is a sore
spot at virtually every company. Just ask
friends working for other companies; like
the pointy-haired manager, hardware/soft-
ware integration woes are universal. Take a
stroll through the technical section of your
local bookstore; you will find volumes
about designing for high speed, real time,
high performance, low power, and test.
What you will not find is a book about
designing for integration.

No one has figured out the magic for-
mula for integration – not even Xilinx®.
This article is not intended to be a cure-all
for your integration woes, but we can show
you a few ways to ease the pain.

When Hardware
Met Software

6 Xcell Journal Third Quarter 2005

Bridging the great divide of hardware/software integration.

V I E W P O I N T

Hardware Said ...
The design flow shown in Figure 1 is typi-
cal of what happens in the course of a hard-
ware design from conception to
completion. The majority of the flow is
straightforward – despite the feedback
paths, rarely do you encounter anything
that you cannot overcome. Once you have
completed coding the design and passed
simulation, you either have boards waiting
or are expecting them shortly.

Once the initial smoke tests are done on
the board, you begin bringing the design to
life. You start with basic access tests to
ensure that the host can communicate with
the board. You write basic software test

You sit down with the software engineer
and ask what they are doing. You explain
that your test code works and that you are
sure the hardware is correct. You wonder
what these guys have been doing for the
last six months – don’t they even have basic
software functioning?

Software Said ...
The design flow shown in Figure 1 is typi-
cal of what happens in the course of a soft-
ware design from conception to
completion. The majority of the flow is
straightforward – despite the feedback
paths, rarely do you encounter anything
that you cannot overcome. In the absence

code to test the interfaces to memory, the
interfaces and operation between chips,
and the interface to the host processor. You
write and execute code testing the memory
map, interrupts, status, and control regis-
ters, and verify the timing. Now it is time
to hand the tested board over to the soft-
ware team.

Now that you have delivered the board
to software, guess what – the hardware does
not work. It is irrelevant that the test code
you wrote verified the design because noth-
ing works. The data is corrupt, the inter-
rupts don’t clear (if they work at all), and
you are lucky the system doesn’t explode
the moment they power it on.

Third Quarter 2005 Xcell Journal 7

Develop Requirements

(Establish High Level
Technical Requirements) Refine

or

Stop

No

@
&
$%

*!

Develop Project & Quality Plan

(Work Packages, Schedule,
Dependencies, Deliverables,

Risks, Resources)

Interface

 Agreement

(Physical Pinout &
Timing Constraints)

Design Specification

Capture how the solution meets the requirements,
State Machines, Block Diagrams, Flow Charts,

Timing Diagrams, Algorithms, etc.

Test Specification

Capture Unit, Component, and
Integration Test Cases

Test Plan & System Test

Specification

 (Test Environment, Test
Approach, System Test Cases)

Requirements

Specification

 (Detailed Requirements
& Architecture)

IA Meet

Requirement?

TS

Accepted
DS

Accepted

RS Meet

Requirement?

Accept?

Design Meet

Requirement?

Test

Pass?

Test

Pass?

Test Suite
Meet

Requirement?

TS Meet

Requirement?

Execute

Unit Tests

Integrate

Individual Design

Components and

Execute

Integration Test

Cases

Implement Design Develop Test Suite

HW/SW Integration

Figure 1 – Typical design flow

V I E W P O I N T

of a hardware platform at the onset of the
project, you developed an emulated host
environment that allows you to develop
and test your code.

You start with basic tests of the OS. You
test function calls, interrupts, and the GUI.
You optimize the code for performance and
verify the operational paths. You check the
algorithms and verify the corner cases. You
do everything possible to ensure that the
software will be ready when the boards are
available, only to be told you will receive
the hardware six weeks later than expected.
(The project end date does not move.) You
finally receive the hardware.

You track down the power supply and
cables that did not show up with the board.
You power up the board – the system
appears dead. Now you begin the arduous
task of debugging and working through the
system. You discover that the hardware is
Big Endian, despite an earlier agreement
that data will be transferred in Little
Endian format.

You sit down with the hardware engi-
neer and ask what they are doing. They
immediately start telling you how their test
code works and that they are sure the hard-
ware is correct. You wonder what these
guys have been doing for the last six
months – don’t they even have basic hard-
ware functioning?

The Counselor Says ...
Although the preceding sections are some-
what exaggerated, the odds are that you
recognized either a past or current project
in them. But the reason why you may not
see a lot written about this subject is
because the issues involved don’t make
much sense.

If Figure 1 applies to both hardware and
software, then obviously the design flows
are very similar and almost interchangeable
– shouldn’t that help with integration?

What about the software/hardware inter-
face document (or whatever you call it at
your company) that describes how the
hardware and software interact – wouldn’t
it preclude any problems when integrating?

The issue here is not what is common
but what is not. The design community as
a whole has spent much more time and
resources developing hardware simulators
and emulators. This began in earnest with
the advent of VHDL by the military and
has expanded to Verilog and more recently
C-to-gates technology. Simulation technol-
ogy has developed to the point that it is
quite reliable and accurate. Most vendors
now provide HDL models that you can use
to simulate entire hardware systems as
opposed to individual devices. On the flip
side, the engineering community has large-
ly ignored the other parts of the system.

Software testing without a target plat-
form relies on the designers to build a
model of the system on a host. Software
engineers have to develop and test the sys-
tem software using this model. And
although this model is, in many cases, even
more complex than the software to be
designed, it cannot accurately model all of
the facets of a system (much less all indi-
vidual components).

Unlike the hardware models available to
hardware designers, few companies offer
similar models to software designers. Co-
simulation offers little advantage to either
software or hardware designers, because it
can be prohibitively time-consuming to
simulate even a few simple instructions –
much less an entire routine or operation.

The design flows may look basically the
same, but when it comes to the way in
which they are executed they are quite dif-
ferent. It is this difference (and the lack of
understanding the difference) that
accounts for the majority of the issues dur-
ing integration. To some extent, the hard-

ware team does not understand that the
software team requires the actual hardware
to truly validate even what the hardware
team may consider a simple function.

On the other hand, the hardware
team has become in many cases over-
reliant on technology. Most hardware
designers will tell you that the person
writing a test bench and the person
doing the design should be different peo-
ple. However hardware engineers will
write their own test code for board debug
and could be lulled into a false sense of
validation, making the same wrong
assumptions writing the test code as
when designing the logic.

To minimize the pain of integration,
you must rely not on technology, but com-
munication, understanding, and empathy.
Understanding what your counterparts on
the other side of the wall are doing and the
processes and techniques they follow and
use will allow you to better prepare for
integration. Communicating with them
will minimize the time and pain associated
with integration. Initially this will require
a little extra effort on both sides.

One of the best ideas is to have the soft-
ware team write the test code that the
hardware team uses to verify the board.
Although this is typically not planned or
scheduled, it makes sense from several
angles. First, if the software team writes
the test code, it minimizes the possibility
that a requirement could be interpreted
differently by the two teams – it will be
resolved in this early phase. Second, many
of the small problems that can cause major
delays later (such as Big Endian versus
Little Endian) will be found and their
impacts minimized. This, combined with
a software test plan that allows the hard-
ware team to know what software will be
tested (and in what order) can go a long
way in easing integration.

8 Xcell Journal Third Quarter 2005

The issue here is not what is common but what is not.
The design community as a whole has spent much more time
and resources developing hardware simulators and emulators.

V I E W P O I N T

The second idea is to have the hardware
team document their design early and
often. As the software team cannot truly
test until they have target hardware, they
must rely heavily on the documentation
supplied by the hardware team. It is critical
that the software team receives complete
documentation – and that the documenta-
tion is kept up to date. The hardware team
must also consult with the software team
before making design changes. Although a
change may seem trivial from a hardware
perspective, it could result in an extensive
software change, particularly in the latter
stages of the project.

Finally, the software team must have a
stable target platform. This does not mean a
perfect, bug-free platform but rather a con-
sistent, known platform. It is important that
the hardware team relay any and all known
board/logic issues to the software team. This
will prevent the software team from wasting
time chasing down a known problem.

Happily Ever After ...
Specifications may fluctuate. Timelines
may change. Management may have
pointy hair. Many technical and opera-
tional challenges exist in every project, but
nothing jeopardizes a project or brings
more stress to a design engineer than when
hardware and software are integrated. The
challenge is to plan and design for that
event from the beginning.

There is no magic formula for a smooth
hardware/software integration plan.
However, there should be a plan and an
understanding of what the other guy is
doing – or is going to do. Having this
understanding and actually talking with
your hardware or software counterpart will
make integration a lot less painful. A few
sacrifices now will be rewarded in the end.

Although the software team may not
have planned on writing test code for the
hardware team, burning a few extra cycles
to write it will allow both teams to detect
and correct problems early. This – com-
bined with a good integration/test plan,
well-documented hardware (including
unintended design features), and a stable
hardware platform – will go a long way in
making integration easier.

Third Quarter 2005 Xcell Journal 9

V I E W P O I N T

by Jay Gould
Product Marketing Manager,
Xilinx Embedded Solutions Marketing
Xilinx, Inc.
jay.gould@xilinx.com

Are there any real-time computing require-
ments that don’t mandate that your new
systems be faster and more flexible than
your previous designs? Ever-changing
industry standards dictate that tomorrow’s
embedded system designs accommodate a
new level of customization, while high per-
formance demands challenge traditional
processing designs.

You don’t want to be restricted by an over-
ly customized design, and you can’t just keep
toggling the system clock at ever-increasing
speeds to improve performance. There has to
be a better way to create faster and more flex-
ible embedded processing systems.

Platform FPGAs are programmable
SOCs that support a multitude of sophisti-
cated designs, and include on-board memo-
ry, DSP capability, embedded processing,
and hardware accelerated co-processing. The
re-programmability and field upgradeability
of these new devices mean that you can fix
bugs, enhance features, optimize perform-
ance, and add emerging industry standard
support throughout product life cycles and
even after deployment in the field.

With these powerful capabilities
immersed in a programmable SoC device, all
you need are the appropriate tools to unleash
and harness this embedded performance.

Intelligent Tools
In recent industry surveys, design engineers
made it clear that they often value intelli-
gent tools more than the actual devices and
operating systems they use to build their
own end products. If this trend is accurate,
choosing the appropriate tool suite before
beginning your next embedded system
design will be crucial to your product
schedule and overall success.

Today’s development environments
need to provide “platform-aware” tools
that understand all system options and
support multiple types of processor cores,
as well as the creation and customization
of co-processing and IP. Design wizards

Faster and
More Flexible
Embedded
Systems

Faster and
More Flexible
Embedded
Systems

10 Xcell Journal Third Quarter 2005

Programmable Platform FPGA
devices and intelligent tools
combine to create higher
performance processing solutions.

Programmable Platform FPGA
devices and intelligent tools
combine to create higher
performance processing solutions.

S Y S T E M P E R F O R M A N C E

and automatic module generation will
reduce errors and streamline the develop-
ment process, while integrating hardware
and software debuggers together will enable
you to find and fix bugs faster. If you choose
wisely, intelligent tools will accelerate devel-
opment and optimize performance.

Standard Flows and Innovation
Xilinx® created the Xilinx Platform Studio
(XPS) tool suite with the development of
Platform FPGAs in mind, supporting exist-
ing traditional flows for both hardware
(HDL/netlists for FPGAs) and embedded

software design (C/ELF code for process-
ing core engines) (Figure 1). In addition to
providing a unified development tool suite
for supporting the complete spectrum of
programmable processing solutions, XPS
won the IEC’s (International Engineering
Consortium) DesignVision Innovation
Award for introducing new capabilities that
accelerate embedded development. With
platform-aware tools like XPS, you can
quickly create a real-time hardware/soft-
ware system through an abstract flow of
design wizards.

The design wizards guide you through
the process of creating a basic system and
can reduce errors by masking-off design
options not supported by your initial selec-
tions and assumptions. For example,
although XPS supports both PowerPC™

ware debug capabilities through a single
probe. Other traditional methods require
multiple probes and switching hardware
connections between the different steps.

In fact, XPS uniquely integrates the
hardware and software debuggers together
so that they can cross-trigger each other.
This new visibility into the system allows
embedded design teams to find and fix
bugs faster, regardless of whether the flaws
originate in hardware or software.

Acceleration Through Co-Processing
Let’s say that you now have a flexible
processor-based platform that satisfies most
of your system requirements. How fast can
you clock the core to meet your perform-
ance requirements?

You probably have realized that clocking
your processor faster won’t take care of all
of your performance challenges. Besides
the physical limitations of discrete proces-
sors and heat dissipation, accelerated clock-
ing can’t ensure that your core can service
and complete all the real-time event
responses and applications with which you
have burdened it. More and more “multi-
processor” solutions are emerging to parti-
tion and offload lower priority tasks from a
main control processor so that the main
unit can ensure real-time responses.

Programmable platforms introduce
some additional ways to approach this
problem, with off-the-shelf devices that you
customize yourself for your own unique
applications. Supporting both hard and soft
processor cores, one solution offered by
Platform FPGAs is to focus high-priority
tasks on an immersed hard processor while
offloading lower priority tasks to a soft-
processor core instantiation. You have the
option to add one or more MicroBlaze soft
processors to a Platform FPGA device
already running an embedded PowerPC
engine. Example devices supporting this are
the Virtex™-II Pro FPGA or new Virtex-4
FX family devices with built-in PowerPCs.
The PowerPC cores in these devices can be
complemented with MicroBlaze IP cores
inserted as macros and built out of FPGA
hardware resources in the silicon.

Another alternate and promising
approach is to implement the concept of

hard- and MicroBlaze™ soft-processor
core designs, the tools are smart enough to
remove MicroBlaze options if you have
chosen PowerPC, and vice versa.

Importing, creating, and customizing IP
is streamlined through a separate design
wizard, and supports an IP repository to
facilitate IP reuse elsewhere on this design
or in the future on a different design.

XPS additionally innovates and acceler-
ates the development process with a variety
of automatic generators that replace
tedious and error-prone manual design
steps. Being aware of the Platform FPGA

silicon properties and options, XPS can
automatically generate software drivers for
selected peripherals, generate sample test
code for board options, and even create
BSPs (board support packages) for some of
the more widely used RTOS/eOS (real-
time operating systems/embedded operat-
ing systems) such as Wind River Systems’s
VxWorks or embedded Linux.

XPS also provides a unique utility
(Data2Mem) that merges C code into the
FPGA bitstream, enabling software devel-
opment and debug to proceed in real time
without time-consuming re-runs of FPGA
place and route tools.

Xilinx even provides new efficiencies
with a unified JTAG connection method-
ology that combines FPGA download,
FPGA debug, C code download, and soft-

Third Quarter 2005 Xcell Journal 11

Data2MEM

Download Combined
Image to FPGA

Compiled ELF Compiled BIT

Platform Studio

Instantiate the
ëSystem Netlistí
and Implement

the FPGA

?

HDL Entry

Simulation/Synthesis

Implementation

Download Bitstream
Into FPGA

Chipscope

Standard FPGA
HW Development Flow

VHDL or Verilog

System Netlist
Incl ude the BSP
and Compile the
Softw are Image

?

Code Entry

C/C++ Cross Compiler

Linker

Load Software
Into FLASH

Debugger

Standard Embedded
SW Development Flow

C Code

Board Support
Package

12 3 Compiled BITCompiled ELF

RTOS Board Support Package

Figure 1 – XPS design flow

S Y S T E M P E R F O R M A N C E

“co-processing” and use the intelligent tools
to build a direct connect from the embed-
ded PowerPC cores to high-performance
FPGA fabric, where hardware accelerator
functions can operate as extensions to the
PowerPC. As shown in Figure 2, you can
improve the overall system performance by
offloading computationally demanding
applications from the main CPU.

By its very nature, FPGA hardware fab-
ric is parallel in structure and can be used
to accelerate system functions orders of
magnitude faster than clocking methods
can provide. In this example, the PowerPC
core is complemented by an APU
(Auxiliary Processor Unit), which inter-

faces to a parallel soft processor that can
handle applications such as data process-
ing, floating-point mathematics, and video
processing. This direct connection provides
a high-bandwidth, low-latency solution with
parallel advantages over other multi-core
processor and arbitrated busing solutions.

Performance Analysis
Do you need to find out where your per-
formance is lost in your design?
Embedded software debugging and analy-
sis is always a bit of a challenge because
code execution is often “invisible” to you.
On paper, your design looks like it meets
specifications, but when running in real-
time hardware with asynchronous inter-
rupts and real-world situations, you find
that often you don’t meet your own per-
formance requirements. Now is the time
when intelligent tools can provide you
with a unique view inside the operating
device rather than leave you guessing out-
side of a black box.

Version 7.1 of Xilinx Platform Studio
introduces a series of performance analysis
tools and views that provide great insight as
to how your software is actually executing
and where performance is leaking away from
you (Figure 3). By knowing which software
functions take up the most execution time
and which functions call other functions – as
well as the number of times called – you can

get an illuminating view of exactly how your
embedded design is running. Functions that
take a long time to execute, or functions that
are called a large number of times by other
routines, may be excellent candidates to
accelerate by moving them to parallel hard-
ware as co-processing extensions.

Figure 3 also shows that if the tools
track and display your software execution
clearly, you can quickly and easily identify
areas that could be more efficient. This
can save a lot of what-if experiment sce-
narios that are time-consuming and often
result in relatively small performance
improvements. In-lining some C code or
an entire function may provide tiny local-
ized speed-ups, but moving time-consum-
ing routines into high-performance
FPGA hardware can often result in an
order-of-magnitude improvement. With
intelligent views of the code execution by
specific function names, you can see
exactly which software routines to adjust,
providing a much higher return on
improving system performance.

Conclusion
Intelligent platform-aware tools can help you
identify the inefficiencies in your embedded
software code and allow you to optimize per-
formance. Knowing which specific software
functions you need to streamline allows you
to evolve your hardware/software partition-
ing and accelerate more modules in pro-
grammable FPGA fabric.

The high-performance nature of parallel
FPGA hardware resources and the advent of
easy-to-use, programmable co-processing
technologies like the Virtex-4 FX APU
enable you to create faster and more flexible
embedded processing systems.

Xilinx offers clear advantages for
embedded processing over traditional dis-
crete or competitive FPGA solutions. Our
tools, combined with our programmable
embedded Platform FPGAs, offer a signif-
icant performance improvement for real-
time developers.

To learn more about the Platform Studio
tool suite, please visit www.xilinx.com/edk.
A good starting point to learn about all of
our embedded processing solutions is
www.xilinx.com/processor.

12 Xcell Journal Third Quarter 2005

PowerPC

Hard Processor Block

PLB

OCM FPGA Fabric

APU
I/F

FPGA
Interface

APU
Control

Soft
Auxiliary

Processor

Figure 2 – Virtex-4 FX APU

Figure 3 – XPS performance analysis views

S Y S T E M P E R F O R M A N C E

by Narinder Lall
Sr. DSP Marketing Manager
Xilinx, Inc.
narinder.lall@xilinx.com

Brad Taylor
System Generator Applications Manager
Xilinx, Inc.
brad.taylor@xilinx.com

FPGAs have made significant strides as
engines for implementing high-perform-
ance signal processing functions, whether
for ASIC replacement or performance
acceleration in the signal processing chain
with DSP processors. Although much has
been written about how to use FPGAs as
signal processors, not much has been pub-
lished about building control circuits with-
in such systems.

There are perhaps two key decisions to
make when implementing control circuits
for FPGA-based DSP systems:

• Should the control circuit be imple-
mented in hardware or developed as a
software algorithm?

• What building blocks are available to
make the development of the control
circuit as efficient and painless as
possible?

Software or Hardware?
In this first stage, you can make tradeoffs
between algorithms that are implemented
in hardware, and those that are better
implemented in software using a soft
microprocessor (Xilinx® PicoBlaze™ and
MicroBlaze™ processors) or hard embed-
ded microprocessor (PowerPC™ 405).
Table 1 shows the tradeoffs between hard-
ware- and software-based approaches.

A number of attributes need to be con-
sidered when making tradeoffs between
these approaches. These include:

• Algorithm complexity. You can easily
implement simple algorithms (like
those that do not need many lines of
C-code) in both software and hard-
ware. Although no absolute measure
exists to correlate how many lines of
C-code represent one slice, a good

rule of thumb is that one line equals 1
to 10 slices. When algorithm com-
plexity rises, implementing and test-
ing the algorithm in hardware
becomes more challenging. You can
more easily implement complex algo-
rithms in lines of C code on a micro-
processor, which is the preferred route
most designers choose.

• Need for an RTOS. If an RTOS is
a mandatory piece of the control
algorithm, this again favors a software
approach that exploits the use of
the hard embedded PowerPC on
Virtex™-II Pro or Virtex™-4 FX
FPGAs, or on external microproces-
sors. RTOS support for these micro-
processors currently includes support
from Wind River and MontaVista.

• Communication with the host.
Communication with a host processor
will often – but not always – require a
bus architecture of some kind. In this
instance, a microprocessor such as the

Designing Control Circuits for
High-Performance DSP Systems
Designing Control Circuits for
High-Performance DSP Systems

Third Quarter 2005 Xcell Journal 13

These simple techniques could save you days of work.These simple techniques could save you days of work.

S Y S T E M P E R F O R M A N C E

MicroBlaze processor or PowerPC
processor is ideal, as both support bus
architectures such as the OPB.
Hardware-based host communication
using state machines, although possible,
can be somewhat more cumbersome.

• Speed of decisions. If you specify
speed of decisions as clocks per deci-
sion, then for decisions that are needed
quickly it is obvious that a hardware
circuit will be preferred, if not
required. For decisions that can be
made in hundreds or thousands of
clock ticks, software-based algorithms
will be sufficiently capable to handle
this level of performance.

• Need for floating point. Although
floating point is largely tangential to
control functions, cases do exist where
systems employ floating point for con-
trol. One example is the calculation of
filter coefficients. In sonar systems that
require matrices to be inverted, floating-
point control is often preferred, as it is
often easier to develop with. Floating-
point control is also preferred when
control precision is high and the algo-
rithms are not available in fixed point.

Once you’ve decided on hardware or
software, you have access to a number of
building blocks. Each one is particularly
suited to different types of control tasks.

Types of Control Tasks and Possible Circuits
Many different types of control tasks
exist. For this article, we have chosen to
focus on the following types of problems,
which are commonly found in signal pro-
cessing systems.

• Hardware-Based

– Data-Driven Multiplexing

– Implementing Finite State
Machines (FSMs)

– Sample Rate Control

– Sequencing – Pattern Generation

• Software-Based

– Implementing Low-Rate Control
Algorithms

Task 2: Implementing FSMs
Finite state machines are used when decisions
must be made based on the current “stored”
state of the input(s). For hardware-based
high-performance DSP systems, it is not
uncommon to see circuits where monitoring
of state(s) is performed every clock tick.

Although you can implement them in
many ways, perhaps the most common
ways to implement FSMs within a System
Generator design are through m-code
CASE statements (popular with algorithm

– High Complexity Control of Physical
Layer Data Paths (MAC layer) (out-
side the scope of this article)

Table 2 shows a summary of the tools and
types of typical control tasks. These are not
hard-and-fast recommendations – merely
some suggestions for some of the better
options. As Xilinx System Generator for DSP
is the tool of choice for modeling and design-
ing DSP systems onto FPGAs, in this article
we’ll also provide some examples using free
demos contained within System Generator
that demonstrate the use of the control circuit.

Task 1: Data-Driven Multiplexing
An example of a control task that does not
require monitoring of the current state is data-
driven multiplexing, in which data is moni-
tored and tests are performed on that data.
The results of those tests determine the output
of the control circuit. Figure 1 shows an exam-
ple of data-driven multiplexing. Here the
function is determined by a simple MATLAB
function called xlmax. Input y is selected
unless x > y, in which case input x is selected.

14 Xcell Journal Third Quarter 2005

Clocks Per Algorithm RTOS Floating Communicate
Decision Complexity Point With Host

Hardware-Based Control 1-10 Simple No No Difficult

Software-Based Control 100-100000 Complex Yes Sometimes Easy

Class of Control Problem

State Data-Driven Sample Rate Low-Rate Control
Toolkit Sequencing Machine Muxing Control Algorithm

Pattern Generation
Components (ROMs,
Expressions, Comparators,
Counters, Delays)

X

M-code X X

Comparators/Muxes X

FIFOs/Clock Enables/Up/
Down Conversion X

PicoBlaze X

MicroBlaze/PowerPC 405 X

Figure 1 – Data-driven muxing using m-code

Table 1 – Hardware/software tradeoffs

Table 2 – Types of control problems and tool kits available in System Generator

S Y S T E M P E R F O R M A N C E

developers) and writing HDL (preferred by
hardware engineers). HDL can be easily
incorporated into System Generator
designs using a black box and co-simulated
using ModelSim if necessary.

Figure 2 illustrates how easily you can
implement an FSM in System Generator
using the m-code block that pulls in a
MATLAB script contained in the file
detect1011_w_state. The purpose of this
script is to detect a 1011 pattern from a sig-
nal passed through from the MATLAB
workspace.

Task 3: Sample Rate Control
In high-performance DSP systems, samples
often arrive into a system or a piece of a sys-
tem at a different rate than that of the
FPGA clock. We recommend that engi-
neers therefore learn techniques for per-

forming sample rate control. Possible solu-
tions within System Generator that facili-
tate the design of sample rate control
circuits include up/down sampling, clock
domains, FIFOs, and clock enables.

Figure 3 demonstrates how you can
implement multiple IIR filters using a sin-
gle time-shared second-order section
(biquad). Specifically, 15 distinct IIR fil-
ters, each consisting of 4 cascaded biquads,
are realized in a “folded” architecture that
uses a single hardware biquad. Hardware
folding is a technique to time-multiplex
many algorithm operations onto a single
functional unit (adder, multiplier). For
low-sample-rate applications like audio and
control, the required silicon area can be sig-
nificantly reduced by time-sharing the
hardware resources.

This design uses a number of control
circuits, including a count-limited counter
feeding into a two-input mux (that selects
between the serial data and the feedback
path) and up-sample and down-sample
blocks (that control the data rate through
the biquad).

Task 4: Sequencing (Pattern Generation)
Sequencing problems usually involve the
need for a periodic control pattern that is
predictable and not necessarily dependent
on the current “stored” state. A common
solution for sequencing is to use a simple
pattern generator. You can build a pattern
generator using building blocks like coun-
ters, comparators, delays, ROMs, or the
logic expression block within the System
Generator block set. The beauty of this
underutilized technique lies in its simplici-
ty – yet many designers often opt for more
complex, unnecessary state machines.

An example of a pattern generator is
contained in the biquad block in Figure 3.
The address generator within the biquad
block (not shown) generates all of the
addresses of the RAMs and ROMs, as well
as the write-enable signal for the single-
port RAM in the folded biquad module.

Task 5: Low-Rate Control Algorithms
Implementing low-rate algorithms using a
Xilinx microprocessor is becoming increas-
ingly common. With a choice of three

mainstream processors – the PicoBlaze 8-
bit processor, MicroBlaze 32-bit processor,
and embedded IBM PowerPC 405 32-bit
processor – you have the ability to scale
depending on the task at hand. Common
tasks that often necessitate the need for
on-chip processors include calculating fil-
ter coefficients, scheduling tasks, detecting
packets (such as in an FEC receiver), and
RTOS implementation.

Figure 4 shows a simple control circuit
built using the PicoBlaze microprocessor.
This example forms the receive path of a
16-QAM demodulator that performs
adaptive channel equalization and carrier
recovery on a QAM input source. An

attached synchronization marker (ASM)
applied by the transmitter is stripped
from the demodulated data before con-
catenated FEC is applied. The PicoBlaze
microcontroller controls the RS decoder,
maintains frame alignment of the
received packets, and performs periodic
adjustments of the de-mapping QAM-16
quadrant reference.

Conclusion
When implementing control circuits for
high-performance FPGA-based DSP sys-
tems, you have access to a number of
building blocks within System Generator
to make this an easier task. Tables 1 and 2
list some of the tradeoffs to consider and
summarize possible control solutions.

All of these designs – and many more –
are included within the Xilinx System
Generator tool, which retails for $995.
You can also try the tool free for 60 days
by downloading the evaluation version at
www.xilinx.com/systemgenerator_dsp.

Third Quarter 2005 Xcell Journal 15

Figure 2 – Implementing an FSM
in System Generator

Figure 3 – Sample rate control

Figure 4 – QAM packet detection using
the PicoBlaze microprocessor

S Y S T E M P E R F O R M A N C E

by Adrian Cosoroaba
Marketing Manager
Xilinx, Inc.
adrian.cosoroaba@xilinx.com

Performance in today’s systems is defined
by more than FPGA clock rates. Every sys-
tem has different requirements, and the
maximum achievable performance is deter-
mined by various factors such as logic fab-
ric performance, I/O bandwidth,
embedded processing, and DSP perform-
ance, among others. These requirements
can also be subject to power restrictions, as
well as signal integrity and cost budgets.

Xilinx® developed the Virtex™-4
FPGA family after consulting hundreds
of customers to address these require-
ments and make it easier than ever to
meet system performance goals. In this
article, we’ll look at how Virtex-4 FPGAs
provide new and unique capabilities to
help you meet diverse requirements for
system performance.

System Design Challenges
With each new generation of devices, semi-
conductor vendors are able to offer higher
clock rates, due to shrinking process
geometries. However, today’s system per-
formance challenges go beyond traditional
glue logic and maximized clock rates. In a
PC, for example, the real system perform-
ance bottleneck lies not in clock frequency
but in how the other blocks of the system
work together at the desired frequency.

Achieve Breakthrough Performance
in Your System
Achieve Breakthrough Performance
in Your System

16 Xcell Journal Third Quarter 2005

Virtex-4 FPGAs set new records in system
performance while consuming minimal power
and providing superior signal integrity.

Virtex-4 FPGAs set new records in system
performance while consuming minimal power
and providing superior signal integrity.

S Y S T E M P E R F O R M A N C E

Let’s consider these challenges in the per-
spective of applications employing high-
performance FPGAs. Seemingly diverse
applications like video stream processing,
packet data processing, storage systems,
wireless base stations, and many others
incorporate similar functions, including:

• Incoming and outgoing data streams

• Bridging multiple connectivity
standards

• Arithmetic and DSP (signal condi-
tioning and data processing)

• External memory interfacing

• State machines

• Data buffering

• Embedded processing (Figure 1)

To facilitate these applications, Virtex-4
FPGAs include common building blocks as
embedded – yet parameterizable – hard IP.
The integration of complex functions like
DSP slices, embedded CPUs, dedicated
I/O circuitry, and on-chip RAM (block
RAM, FIFOs) provides you with unprece-
dented capabilities to build programmable
systems within a single FPGA device.

Meeting system requirements takes the
right combination of I/O bandwidth, pro-
grammable logic, on-chip RAM, DSP, and
embedded processing. To provide the ideal
combination of functions, Virtex-4 FPGAs
come in three flavors (LX, SX, and FX plat-
forms) comprising 17 devices.

Virtex-4 FPGAs offer not only
enhanced logic fabric capabilities, but also
customized XtremeDSP™ MACs and
embedded PowerPC™ processors that give
you enough performance headroom to
reach your design performance goals.

I/O bandwidth is often the limiting fac-
tor in the quest for performance. To remove
I/O bottlenecks, Virtex-4 FPGAs have
unique built-in 1 Gbps ChipSync™ source-
synchronous circuitry and 622 Mbps to
10.3125 Gbps serial transceivers that can
help you achieve bandwidth targets.

System Performance Categories
Let’s look at various aspects of performance
and Virtex-4 FPGAs in the context of seven

90 nm technology. A flexible
look-up table (LUT) architecture
(with the ability to covert any
LUT into a 16-bit RAM or 16-bit
shift register), a high-speed carry
chain, and arithmetic blocks pro-
vide further performance gains.

The 500 MHz global clocking
structure, the key driver behind
logic performance, is fully differen-
tial to reduce skew, jitter, and duty-
cycle distortion. Virtex-4 FPGAs
also provide a hierarchical clocking
structure (global and regional
clocks) and clock management cir-
cuitry. Evaluations of logic fabric
performance using a suite of real-
world designs demonstrate a per-
formance advantage as much as

70% above our nearest 90 nm competitor.
Averaged across this suite of designs, the
Virtex-4 performance advantage is 15%.
This performance boost means that Virtex-
4 devices effectively provide an extra speed-
grade advantage.

Embedded Processing
Virtex-4 FX platform FPGAs provide up
to two enhanced PowerPC 405 cores,
each delivering 702 DMIPS performance

major performance categories: logic fabric,
embedded processing, DSP, on-chip RAM,
high-speed serial, I/O memory bandwidth,
and I/O LVDS bandwidth. Figure 2 offers
a comparison with the nearest 90 nm
FPGA vendor in each of these categories.

Logic Fabric Performance
Xilinx enhanced the performance of its
already fast programmable logic fabric by
building Virtex-4 devices with advanced

Third Quarter 2005 Xcell Journal 17

D
S
P

CPU/APU

FPGA

Fabric
Logic

Memory Buffer
(DDR2, QDR II, etc.)

Memory
Interface

Control
Bus

Incoming
Data Stream

Outgoing
Data Stream

I/O I/O

I/O

FIFO

Block RAM

I/O

Figure 1 – FPGA-based system

Figure 2 – Performance comparison for Virtex-4 FPGAs

S Y S T E M P E R F O R M A N C E

at 450 MHz, while consuming only 0.45
mW/MHz. This is more than three times
the performance of the best soft micro-
processor cores.

Moreover, the new Auxiliary Processor
Unit (APU) controller makes it easy to reach
even higher levels of performance by inte-
grating custom co-processors and hardware
accelerators. The APU controller provides a
low-latency path for connecting co-processor
modules implemented in the FPGA to the
embedded PowerPC processor. These user-
defined, configurable hardware accelerator
functions operate as extensions to the
PowerPC 405, offloading the CPU from
demanding computational tasks. For exam-
ple, implementing floating-point calcula-
tions in hardware improves performance by a
factor of 20 over software emulation. A
10/100/1000 Mbps tri-mode Ethernet
MAC implemented alongside a PowerPC
processor enables Ethernet connectivity.

DSP Performance
The XtremeDSP™ slice is a versatile,
user-configurable block providing twice
the DSP performance of previous imple-
mentations while drawing less than 1/7th
the power. Each slice contains a dedicated
two’s complement, signed 18 x 18 bit mul-
tiplier, and a three-input adder/sub-
tracter/accumulator with feedback path.
With as many as 512 XtremeDSP slices
running at 500 MHz, a single Virtex-4
FPGA delivers 256 GigaMAC/s (18 x 18
GMACs) performance.

You can configure the XtremeDSP slices
to implement multipliers, counters, multi-
ply-accumulators, and many more functions,
all without consuming logic fabric resources.
The ability to implement complex systolic
functions without incurring the delay of fab-
ric routing provides significant performance
gains. For example, in a 32-tap FIR imple-
mentation, the Virtex-4 FPGA outperforms
competing devices by 40%.

On-Chip Memory Performance
The Virtex-4 family carries forward the size
and basic structure of on-chip memory, 18
Kb dual-port block RAM (proven in previ-
ous generations), but adds a data-output
pipeline register to increase speed to 500

MHz. The two ports still have individual
width control, and in write mode you can
choose between automatically reading the
previously stored data or the new data. Two
neighboring block RAMs, when combined,
form a 32K x 1 RAM without loss of speed,
or a 512-deep 64-wide RAM with automat-
ic Hamming error correction – without
using any extra logic.

Each block RAM also contains its own
FIFO controller, a unique Virtex-4 FPGA
feature that provides 500 MHz function-
ality without additional logic resources.
Compared to competing devices, the
block RAMs provide at least 20% better
performance.

But getting your FPGA internal blocks to
run fast is only half the battle. Maximum sys-
tem performance requires efficient interac-
tion between the FPGA and other
components in your system. Virtex-4 FPGAs
offer the flexibility to achieve the highest
possible bandwidth for chip-to-chip, board-
to-board, and box-to-box connectivity.

High-Speed Serial I/O
As designs move to faster interface speeds,
serial interconnect saves power and board
space while reducing design complexity and
cost. Virtex-4 RocketIO™ MGTs offer
performance from 622 Mbps to 10.3125
Gbps, one of the broadest ranges offered by
any device. The transceivers are fully pro-
grammable and can implement a myriad of
speeds and serial standards. Link-layer IP is
available for such standards as PCI Express,
Serial-ATA, Fibre Channel, Gigabit
Ethernet, and Aurora.

Memory I/O Bandwidth
The great majority of systems today need a
data buffer external to the FPGA for tem-
porary storage. This buffer’s bandwidth
can be the critical factor in determining
overall performance.

Memory interfaces like DDR2
SDRAM, QDR II SRAM, or RLDRAM II
are source-synchronous, with per-pin data
rates of more than 533 Mbps. Memory
bandwidth is determined not only by the
per-pin data rate but also by the width of
the bus. The ChipSync circuitry built into
every I/O simplifies the physical layer

interface and provides the capability to
implement buses three times wider than
other programmable solutions, for band-
widths as high as 260 Gbps.

To enable reliable data capture,
ChipSync circuitry also includes built-in
delay elements, adjustable in 75 ps incre-
ments, to ensure the proper alignment
between clock and data signals. The
unique capability to calibrate timing at
run time, rather than at design time, sub-
stantially improves design margins. Xilinx
also provides hardware-verified reference
designs, development systems, and soft-
ware tools to further speed up the imple-
mentation of memory interfaces.

LVDS I/O Bandwidth
ChipSync technology simplifies the design
of differential parallel bus interfaces, with
embedded SERDES blocks that serialize
and de-serialize parallel interfaces to match
the data rate to the speed of the internal
FPGA circuits. Additionally, this technology
provides per-bit and per-channel de-skew
for increased design margins, simplifying
the design of interfaces such as SPI-4.2,
XSBI, and SFI-4, as well as RapidIO.

Virtex-4 FPGAs incorporate ChipSync
technology into every I/O, providing the
most flexible I/O solution available. This
enables wider 1 Gbps LVDS buses for up to
480 Gbps bandwidth, 60% higher than the
competition.

Other Performance Challenges
Achieving the desired system performance
with your FPGA is often impeded by sig-
nal integrity, cost, and power budget
restrictions.

The innovative Application Specific
Modular Block (ASMBL) architecture
enables I/O, clock, power, and ground pins
to be located anywhere on the silicon chip,
not just along the periphery. This architec-
ture alleviates the problems associated with
I/O and array dependency, power and
ground distribution, and hard-IP scaling.

Furthermore, the Virtex-4 FPGA pack-
aging technology, SparseChevron, enables
distribution of power and ground pins
evenly across the package. The benefit to
you is improved signal integrity. As

18 Xcell Journal Third Quarter 2005

S Y S T E M P E R F O R M A N C E

Third Quarter 2005 Xcell Journal 19

demonstrated by Dr. Howard Johnson,
Virtex-4 FPGA devices have seven times
less simultaneously switching output
(SSO) noise and crosstalk when compared
to competing devices.

The ASMBL architecture, with its col-
umn-based implementation of program-
mable logic, DSP slices, block RAM, I/O
columns, MGTs, clocking, and PowerPC
embedded cores, provides another signifi-
cant benefit in that it allows a more flexi-
ble allocation of resources. This enables
Xilinx to offer three Virtex-4 FPGA plat-
forms: the LX platform, optimized for
logic resources; the SX platform, opti-
mized for DSP; and the FX platform, opti-
mized for embedded processing and
high-speed serial applications.

Device power budgets impose an addi-
tional impediment to meeting performance
goals. Because power consumption increas-
es with clock rate, you may exceed your
power budget at frequencies below your
performance target, even if your chosen
device has more performance on tap.
Selecting a device with low power con-
sumption will help you achieve perform-
ance goals while staying within your power
budget, and can deliver the additional ben-
efits of lower system cost and higher relia-
bility through reduced power supply and
cooling requirements.

Virtex-4 FPGAs incorporate unique
triple-oxide 90 nm technology that signifi-
cantly reduces static power. Additionally, by
implementing commonly used functions

such as embedded IP, Virtex-4 FPGAs fur-
ther reduce dynamic power when compared
to previous generations or competing
devices. Measurements and analysis of Xilinx
against competing tools and silicon show
that Virtex-4 FPGAs consume 1 to 5W less
than the competition’s 90 nm FPGAs.

Conclusion
Virtex-4 FPGAs incorporate innovative
built-in silicon features, extensive embed-
ded IP, triple-oxide 90 nm technology, and
unique packaging to provide designers with
capabilities that enable breakthrough per-
formance at the lowest cost.

For more information about getting
started with your Virtex-4 FPGA design,
visit www.xilinx.com/virtex4.

Increase your embedded software performance by using Nucleus PLUS on your processor-based Xilinx designs. By
integrating with Xilinx’s MLD technology, Nucleus PLUS is configured to your system design automatically, making
software integration with your FPGA design easy. The compact design of Nucleus PLUS
can run from on-chip memory to help minimize power dissipation and deliver increased
performance. This, combined with a wealth of middleware, including the Nucleus NET
TCP/IP solution supporting Xilinx Ethernet IP, makes it ideal for products targeted at
the networking, telecommunications, datacoms and consumer markets.

Discover how Nucleus software can make your embedded development for Xilinx FPGAs
easy. Go to our dedicated Web page for more articles and free downloads at
www.acceleratedtechnology.com/xilinx.

Nucleus EDGE, our new embedded development environment based on Eclipse, offers a complete tools solution for
developing designs with Xilinx PowerPC cores. Nucleus EDGE provides you with a Builder, Editor and Project
Manager, utilizing optimizing compilers, comprehensive embedded debuggers and RTOS profiling tools.

Nucleus PLUS is readily
available for:

• MicroBlaze
• PowerPC 405
• Spartan-3 and Virtex-4

©2005 Mentor Graphics Corporation. All rights reserved. Mentor Graphics is a trademark of Mentor Graphics Corporation.

Accelerated Technology, A Mentor Graphics Division
info@AcceleratedTechnology.com • www.AcceleratedTechnology.com

For more information on the Nucleus complete development solution from UML through to
embedded RTOS, go to www.acceleratedtechnology.com.

Nucleus. Embedded made easy.

S Y S T E M P E R F O R M A N C E

by Chris Zeh
Product Applications Engineer
Xilinx, Inc.
chris.zeh@xilinx.com

A growing number of Xilinx® customers
are enjoying improved performance,
reduced engineering time and design costs,
and the ease of use offered by the
PlanAhead™ design and analysis tool.
These customers are expressing the same
realization – a complete paradigm shift in
their FPGA design flow.

Over the past several weeks, I have
talked with several application engineers at
Xilinx about their experiences with
PlanAhead software. I found three main
hurdles where the PlanAhead design tool
offers a significant advantage: when the
design fails to meet timing; when the
design doesn’t fit into the target device; and
when the place and route run time is too
long. I also found that many of the engi-

neers use PlanAhead software to view the
results from place and route.

In this article, I’ll discuss the processes
that these engineers and I use, and provide
statistics on what customers are seeing
from using PlanAhead software. When
doing your own floorplanning, remember
that poor floorplanning can give you
worse timing, larger device utilization,
and longer place and route run times. My
goal is to outline the concepts to help you
accomplish your performance goals.

Failure to Meet Timing
When we as application engineers receive a
design that has difficulty meeting timing,
we run the design without any floorplan-
ning constraints. This entails removing
existing area groups and larger component
physical constraints but keeping pin place-
ment. If the place and route time is very
long, then we run TimeAhead, the static
timing tool within PlanAhead software, to

get an early estimation of the critical paths.
The TimeAhead analysis also helps identify
areas of the design that need RTL revisions
to add registers to pipeline critical paths.

If possible, we run place and route on the
design and view the placement and timing
results within the PlanAhead environment.
The timing results from the placed and rout-
ed design show us the critical paths based on
actual delays (Figure 1). The device view dis-
plays the placed design, along with the tim-
ing paths from the TRCE report.

We create Pblocks or area groups based
on critical paths of the design from the tim-
ing report. These Pblocks can be floating or
defined as a specific rectangle or shape.
Pblocks can contain logic from anywhere in
the design and are not limited to the RTL
logic hierarchy. Analyzing the imported
placed and routed design, we use the current
placement of the elements that make up the
Pblock to determine a good starting point
for the Pblock rectangle.

The PlanAhead ExperienceThe PlanAhead Experience

20 Xcell Journal Third Quarter 2005

Xilinx customers have used PlanAhead software
to reduce design costs and improve performance.
Xilinx customers have used PlanAhead software
to reduce design costs and improve performance.

S Y S T E M P E R F O R M A N C E

Pblocks can direct the flow of the
design based on the connectivity of
different modules. The connectivity
of the I/Os to and between modules is
shown for the placed and routed
design through net bundles. We cre-
ate Pblocks to cover the critical paths,
which are usually associated with get-
ting on or off the device.

The schematic view also displays
the connectivity of the design (Figure
2). Pblocks are created either in the
device, schematic, or netlist views.
The critical paths and other timing
paths relative to the existing floor-
planning can be highlighted in the
device and schematic views.

Normally, the schematic view is
used to examine the critical modules
and paths without worrying about the
actual placement of those modules.
The congestion around existing
Pblocks and the resource utilization
of a Pblock are seen in the device
view. If the timing is critical within
the Pblock (indicated by a high
resource utilization count) then we
resize the Pblock to give the congest-
ed logic more room to meet timing by
condensing the logic to shorten the
interconnect lengths and delays. We
can also move the Pblocks to alleviate
congestion or merge congested logic
into a single Pblock.

We create and place the Pblocks, then
run place and route with our floorplanning
constraints. We also lock the locations of the
larger components and critical logic, which
includes block RAMs, DSP48s, and DCMs.
Then we run place and route on the design
and repeat the process by reviewing the tim-
ing report and placement of the design and
modifying the constraints (Figure 2). We
can also create smaller “child” Pblocks inside
other Pblocks to help the grouping of a few
components for timing-critical paths.

Place and route is run on individual
Pblocks in addition to the entire design.
This helps determine if timing can be met
inside the module or Pblock without affect-
ing the rest of the design. If we are unable
to meet timing on a specific Pblock, we go
back to the source code and re-write it.

issues early in the flow. We use the
schematic and device views to view
the placement of these components.
We then move the placement of
either the DCM or the global buffer
so that these components are near
each other.

The Design Doesn’t Fit
When a design has difficulty fitting
into the target device, we run it with-
out any floorplanning constraints.
Usually, overlapping Pblocks exist,
which we remove. We place the large
components manually, as we described
in the previous section, to help the
place and route tools.

If timing is not a critical issue for
this design, we then create Pblocks
of the major hierarchical blocks of
the design. The Pblocks are used to
direct the flow of the design based
on connectivity of the module with
net bundles. The bundles show the
amount of connectivity based on the
size of the bundle. We place the
Pblocks close to the components
that drive them based on the net
bundles and Pblock statistics. We
also place the entire design into a
Pblock and use the compression
attribute on the Pblock(s) to tell
MAP to pack this portion of the
design as tight as possible. This

attribute opens up more room on the rest
of the device for the remaining logic, but
has a negative effect on timing.

We also run place and route on the
individual Pblocks of the design. This
helps ensure that the logic placed in the
Pblocks can be placed and routed within
the defined Pblock size and eventually in
the device specified. We can manually
compress the size of the Pblock until MAP
fails. Once MAP fails, we revert back to
the last known good size of the Pblock.

The statistics of the Pblock may
report that we used more than 100%,
but MAP will determine if it passes. We
repeat this process if other non-timing
critical Pblocks exist and use the com-
pression attribute to pack those Pblocks
as tight as possible.

PlanAhead software can import the
updated netlist for any module and keep
the Pblocks originally created. After meet-
ing timing requirements, we place location
constraints on all of the elements of that
Pblock. This helps ensure that timing is
retained when the rest of the design is
placed and routed.

The majority of timing failures that we
see are related to setup violations. We also
see hold violations, which are tricky to fix.
Most of the time, a hold violation occurs
because of the placement of critical clock-
ing components. We get a large number of
clock skew and hold violations when the
DCM and corresponding global buffer are
placed on opposite sides of the device.

PlanAhead software also has a robust set
of DRC checks to highlight these types of

Third Quarter 2005 Xcell Journal 21

Figure 1 – Timing analysis and placement
view of a sample design

Figure 2 – Design connectivity in the
schematic view and timing analysis with

the larger components placed

S Y S T E M P E R F O R M A N C E

At this point, we run place and
route on every Pblock as well as the
entire design. If it still does not fit,
we pick a larger device, or go back
to the source code and rewrite it.
The majority of the time, we run
place and route on a Pblock-by-
Pblock basis and import the updat-
ed module into the PlanAhead
design tool. This process retains the
existing Pblock size and physical
location constraints. Once the
design fits into the desired device,
we lock the physical locations for
the entire design.

Place and Route Time is Too Long
For the majority of designs received
by the application engineers, the
previous two issues are the most
critical. Because the place and route
run time decreases once these issues
are resolved, the tools do not require
the same long run times necessary
to meet performance goals. If none
of the previous issues are of concern,
we then view the timing report and
placed and routed design to create
Pblocks of the major modules.

The key to decreased place and
route run times is the physical loca-
tion constraints for the entire
design. To find the correct place-
ment constraints for the design, we
run place and route on each Pblock
and size it according to the timing
constraints for each Pblock. This is
also possible when utilizing an
incremental update approach based
on the logical hierarchy in the
design. PlanAhead software can
selectively update any module in
the design with an iterated module
netlist. This allows us to take
advantage of an incremental syn-
thesis approach. We can determine
the placement of Pblocks by view-
ing the connectivity between mod-
ules and I/O pads, and also
between the modules themselves.
The non-timing-critical Pblocks
can be compressed manually and
the larger components placed.

Place and route is then run on
the design, repeating the process by
reviewing the timing report and
placement of the design and modi-
fying the constraints accordingly.
You may have to combine the
approaches and try these tech-
niques over several interactions if
you have a combination of several
of these issues.

View the Design
Many of the application engi-
neers use the PlanAhead design
tool as a visual representation of
the design before and after run-
ning place and route. We use the
tool to graphically see the timing
paths and placement of the
design. The schematic, device,
and package views give us differ-
ent angles on the design (Figure
3). The device view gives us the
ability to see the correlation
between the SLICE/CLBs and
the I/O banks. Timing paths are
also clearly displayed and correc-
tive action can be taken.

Through interacting with the
application engineers, the vast
majority of customers have report-
ed good experiences and results.
Table 1 illustrates some customer
issues before and after using
PlanAhead software.

Conclusion
In this article, I have discussed
the ways that Xilinx customers
and application engineers are
using the PlanAhead design tool
to overcome three main areas of
concern. These concepts should
help you accomplish your per-
formance goals. I hope you will
agree with one recent customer,
who stated, “PlanAhead software
allows us to achieve quicker veri-
fication and prototyping, with
fewer iterations.”

For more information about
the PlanAhead design tool, visit
www.xilinx.com/planahead.

22 Xcell Journal Third Quarter 2005

Before PlanAhead
Software

Customer A ~90 % LUT Utilization

Fails Timing

Customer B Fails Timing

Request: 250 MHz

Actual: 235 MHz

Customer C Fails Timing

Long Place and
Route Run Time

Customer D Fails Timing

Device is Too Small
for Design

Customer E Fails Timing

Customer F Fails Timing

Long Place and
Route Run Time

After PlanAhead
Software

~82 % LUT Utilization

Meets Timing with
Two New Netlists

Meets Timing with 0 Timing
Errors and 0 Timing Score

Timing Errors and
0 Timing Score

Reduce Place and Route
Run Time by ~85%

Timing Errors and
0 Timing Score

Reduced Utilization
by 11% and Now Fits

Reduce Timing Score
by ~98%

Reduced Timing Errors
by ~97%

Reduced Timing Errors
by ~90%

Reduced Place and Route
Run Time by ~30%

Figure 3 – The device, package, and
schematic views of the design with timing

analysis from TimeAhead

Table 1 – Results from customers using the PlanAhead design tool

S Y S T E M P E R F O R M A N C E

Virtex-4 FPGAs beat the competition
in EVERY performance category.

Only Virtex™-4 Platform FPGAs offer you superior performance

in every aspect of a system. No other FPGA comes close to

Virtex-4, which delivers a significant advantage in I/O bandwidth,

on-chip RAM speed, DSP & processing compute bandwidth, and

logic fabric performance. Having all the right features is the only

way to achieve breakthrough performance at the lowest cost.

The World's Fastest AND Lowest
Power FPGAs!

Virtex-4 FPGAs also give you high performance without breaking

your power budget, with significantly lower power consumption

than competing 90nm FPGAs, 73% lower static power, up to 86%

lower dynamic power, and 94% lower inrush current.

Visit our website today, and find out more about the real leader in

FPGA performance.

Virtex-4 beats competing FPGAs in every performance category

The Programmable Logic CompanySM

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

View The
TechOnLine

Seminar Today

by Douang Phanthavong
Technical Marketing Engineer
Mentor Graphics Corporation
douang_phanthavong@mentor.com

Most FPGAs today have all the discrete ele-
ments essential for DSP design. By utiliz-
ing these logic fabrics, FPGA designers
have successfully managed to tape out
countless DSP projects for both prototyp-
ing and production runs.

Conventional DSP Design in FPGAs
Before dedicated DSP blocks, the conven-
tional DSP design methodology was no
different than any other FPGA methodol-
ogy. You may still use some typical ASIC
design techniques: identifying the most
common critical block; creating the opti-
mal design solution for that particular
block; and making that block reusable and
available for your colleagues. You can
characterize critical DSP blocks such as
multipliers, accumulators, and even coef-
ficient storage, and perform this individ-
ual block characterization technique at
both the RTL and gate level.

Designing with DSP48 Blocks
Using Precision Synthesis

24 Xcell Journal Third Quarter 2005

Achieve close to custom silicon performance in FPGA DSP designs.

S Y S T E M P E R F O R M A N C E

In addition, you may also use tech-
niques such as special floorplanning, block-
based design (bottom-up methodologies),
and special constraints files to meet design
requirements. After going through these
design processes, you still have to surmount
a few big hurdles, such as minimizing place
and route iterations and interconnect
delays. Unfortunately, unlike logic delays,
you have little control over these obstacles.

Typically, the FPGA design timing
budget has already factored in these rout-
ing/interconnect delays. For many DSP
design applications, however, exceeding
certain routing delay limits is simply unac-
ceptable. That is why dedicated DSP
blocks in high-end FPGAs – such as the
Xilinx® XtremeDSP™ slice (also referred
to as DSP48) in Virtex™-4 devices – are
playing a critical role in designing high-
performance DSP systems.

How to Compete with ASICs
How important is it to achieve a maximum
operating bandwidth (sometimes referred
to as “custom silicon performance”) when
designing a complex DSP system using
current FPGAs? The obvious answer, of
course, is “very important.” Until recently,
the only available dedicated arithmetic
block was the multiplier, a key element for
DSP functions.

To be more competitive with ASICs in
this space, however, all major DSP ele-
ments – including multipliers, adders, sub-
tractors, pipeline registers, and other
arithmetic operations – must perform close
to custom silicon levels. Access to a synthe-
sis tool that allows you to take full advan-
tage of this advanced DSP silicon
functionality is also important. In this arti-
cle, we’ll use the DSP48 dedicated block
available in Virtex-4 devices and the
Mentor Graphics Precision Synthesis tool
as examples to illustrate relevant challenges
and solutions.

Dedicated DSP48 blocks, combined
with the advanced compiler in Precision
Synthesis, enable you to seamlessly imple-
ment various high-performance DSP func-
tions. Applications benefiting from these
features include digital media and broad-
casting and VoIP, among others.

lowed by three 48-bit datapath multiplex-
ers, followed by a three-input 48-bit adder
and subtractor. The data and control inputs
feed directly to the arithmetic portions, or
are optionally registered once or twice (by
AREG and BREG) to accommodate the
construction of various highly pipelined
DSP applications.

Multiplier
The multiplier accepts two 18-bit two’s
complement operands producing a 36-bit
two’s complement result. The result is sign-
extended to 48 bits and can optionally be
fed into an adder/subtractor to form a
MULT-ADD arithmetic function. The
adder/subtractor accepts three 48-bit two’s
complement operands, and produces a 48-
bit two’s complement result.

When the result is sign extended from
the 36 bit to 48 bit, the most significant bit
(MSB) is simply copied 12 times to make a

Not long ago, data paths were an obsta-
cle when implementing DSP functions in
FPGAs. They were mostly contributed by
arithmetic operations such as multiplica-
tion, addition, and subtraction. A simple
math equation of Y = (C ± (A * B) + CIN) can
generate a plethora of LUTs with multiple
levels of logic. On the other hand, a well-
integrated DSP48 slice coupled with the
powerful new features of an advanced tool
like Precision Synthesis can enable you to
extract very close to custom silicon per-
formance on your next DSP design.

DSP48 Slice: Features and Functions
A DSP48 tile comprises two DSP48 slices,
a shared 48-bit C bus, and internal dedi-
cated interconnect. The DSP48 slice itself
comprises the all-important elements for
DSP functions (Figure 1). The math por-
tion of the DSP48 slice comprises an 18 x
18-bit two’s complement multiplier fol-

Third Quarter 2005 Xcell Journal 25

C

A

48

48 18

72

18

18

36

36

36

48

48 48

48

48

48

48

48

48

Wire Shift Right by 17 Bits

Zero

18BCOUT

CIN

SUBSTRACT

PCOUT

PCIN

18

B

P

18

A

18

72

18

18

36

36

36

48

48 48

48

48

48

48

48

48

Wire Shift Right by 17 Bits

Zero

18BCOUT

BCIN

BCIN

CIN

SUBSTRACT

PCOUT

PCIN

18

B

P

18

X

Y

X

X

Y

X

Figure 1 – DSP tile comprising two DSP48 slices

S Y S T E M P E R F O R M A N C E

48-bit result. For example, a “36’b 0101
1111 1111 10101 1101 1110 1111 1000
1110” result would become “48’b 0000
0000 0000 0101 1111 1111 10101 1101
1110 1111 1000 1110”.

Precision Synthesis supports this auto-
matic sign extension when any of the
DSP48 operators are inferred. This is a
simple concept, but very powerful, because
it allows you to perform wider arithmetic
operations without having to manually set
the correct bus width for the output result.

Accumulator (Adder/Subtractor)
The adder/subtractor stages are functions
of the inputs, which are driven by the
upstream multiplexers, carry-select logic,
and multiplier arrays. The CIN, X multi-
plexer output, and Y multiplexer output
are always added together. You can control
this combined result to be selectively added
to or subtracted from the Z multiplexer
output: Adder Out = (Z ± (X + Y + CIN).

Pipeline Registers
This is a unique advantage of the DSP48
block compared to other DSP FPGA archi-
tectures. Each DSP48 slice contains the
following pipeline registers at each stage:

• One or two pipeline registers for A and
B inputs (AREG and BREG)

• One pipeline register at the output
multiplier stage (MREG)

• One pipeline register at the output
stage (PREG)

• One pipeline register at the C input

• One pipeline register for opmode and
other control signals

DSP48 Ports
The DSP48 slice input and output ports
support many common DSP and math
algorithms. Two direct 18-bit input data
ports are labeled A and B. As shown in
Figure 1, two DSP48 slices within a
DSP48 tile share a 48-bit input data port
labeled C. Each of them has one direct 48-
bit output port labeled P, a cascaded input
datapath (B cascade), and a cascaded out-
put datapath (P cascade), providing a cas-

caded input and output stream between
adjacent DSP48 slices.

Operating Mode
The 7-bit operating mode (opmode) inputs
provide a way for the design to change its
functionality from clock cycle to clock cycle
if desired. There are more than 40 dynami-
cally controlled opmodes, although you can-
not set all possible combinations (as
described in the Virtex-4 datasheet, www.
xilinx.com/bvdocs/userguides/ug073.pdf). The
opmode bits can be optionally registered
under the control of the configuration

memory cells. Precision Synthesis auto-
matically assigns a correct opmode for
each DSP48 operator being inferred. The
synthesis tool uses a simple control signal
– along with the arithmetic operations in
the HDL source code – to accurately
determine each DSP48 function.

Precision Synthesis with Virtex-4 FPGAs
In advanced FPGA architectures, the
basic DSP building blocks (for delay, data
storage, multiplication, addition, subtrac-
tion, summation, and accumulation) are
no longer built using discrete compo-

nents. To tightly integrate
these essential DSP compo-
nents in high-end FPGAs, a
well-planned DSP block is
designed as part of the FPGA
chip’s dedicated resources. A
Virtex-4 DSP48 block sup-
ports many independent
functions, including multipli-
er, multiplier-accumulator
(MAC), multiplier followed
by adder, three-input adder,
barrel shifter, and pipeline.

To take full advantage of
these DSP blocks without hav-
ing to learn about the imple-
mentation details in depth, any
good FPGA synthesis tool must
provide intelligent and accurate
inference and mapping capabil-
ities for DSP functions. Using
the Precision Synthesis tool,
you can focus your design time
more effectively on more
important tasks and critical
deliverables and meet increas-
ingly tight project schedules.

X

+

B

X

+

h0

B

0

h1

18

18

48

X

+

B

h2 X

+

B

h3

 module top (h, B, P, clk);

 parameter tap = 4;
 parameter sub_in_width = 18;
 parameter sub_out_width = 48;
 `define sub_out_width 48

 input clk;
 input signed[sub_in_width-1:0] B;
 input signed[sub_in_width*tap-1:0] h;
 output signed[sub_out_width-1:0] P;

 // Wiring array declarations being used for internal signals
 wire signed[sub_out_width-1:0] PCOUT_INT [0: tap-1];
 wire signed[sub_out_width-1:0] PCIN_INT [0: tap-1];

 mult_add U0 (.A(h[sub_in_width-1:0]),
 .B(B), .clk(clk),
 .PCIN(`sub_out_width'b0),
 .PCOUT(PCOUT_INT[0]));
 generate
 genvar i;
 for (i=1; i < tap; i=i+1) begin : dsp48
 mult_add UI (.A(h[i*sub_in_width+(sub_in_width-1) : i*sub_in_width]),
 .B(B),
 .clk(clk),
 .PCIN(PCOUT_INT[i-1]),
 .PCOUT(PCOUT_INT[i]));
 end
 endgenerate

 assign P = PCOUT_INT[tap-1];

 endmodule
 //==

 module mult_add(B, A, PCOUT, PCIN, clk);
 parameter sub_in_width = 18;
 parameter sub_out_width = 48;

 input clk;
 input signed[sub_in_width-1:0] A,B;
 input signed[sub_out_width-1:0] PCIN;

 output reg signed[sub_out_width-1:0] PCOUT;

 //a,b,m,and p pipelined registers
 reg signed[sub_in_width-1:0] breg;
 reg signed[sub_in_width-1:0] areg;
 reg signed[sub_out_width-1:0] mreg;

 always @ (posedge clk)
 begin
 areg <= A;
 breg <= B;
 mreg <= areg * breg;
 PCOUT <= mreg +PCIN;
 end

 endmodule

Figure 2 – A transposed FIR filter block diagram

Figure 3 – Verilog coding examples for FIR filter adder
tree design using DSP48 in Virtex-4 FPGAs

26 Xcell Journal Third Quarter 2005

S Y S T E M P E R F O R M A N C E

Transposed FIR Filter
Figure 2 shows a block diagram, whereas
an example of the coding style of a trans-
posed FIR filter structure is illustrated in
Figure 3. The post-place and route area
and timing results are in shown in Table
1, in which Precision Synthesis will infer

the MULT_ADD operator (block dia-
gram shown in Figure 4); map MULTI-
PLIER with input-pipeline registers; and
adder logic using DSP blocks.

As you can see from Table 1, Precision
Synthesis uses the same RTL design to tar-
get different Virtex families, starting from
the first Virtex device (2.5v, 0.22 µm, five
layers metal process) to the latest Virtex-4
device (1.5v, 90 nm copper process). You
may notice that the exponential QoR
improvement begins with the Virtex-II
family; most of the improvement was con-
tributed by the integration of a dedicated
multiplier in Virtex-II FPGAs.

Since then, these dedicated resources
have been continuously enhanced and
eventually transformed into the advanced
DSP48 slice in the Virtex-4 family. Based
on the results in Table 1, it would be diffi-
cult for anyone to doubt the tremendous
QoR improvements that the Virtex-4

device has brought to today’s FPGA DSP
design community. The advantages of ded-
icated DSP48 slices over discrete DSP ele-
ments are also quite clear.

The transposed FIR filter structure in
Figure 2 is optimal for use with the
DSP48 slice. Precision Synthesis can
absorb all FPGA fabric into DSP48 slices,
including pipeline registers, adders, and
multipliers.

You may choose to use one of many
different approaches to code this DSP
design block. Let’s describe one approach
where you only have to implement a sim-
ple MULT-ADD operator and use Verilog
2001 to generate the rest of the blocks.
The design specifications are:

• Signed 18-bit input sampled (B(n))

• Signed 18-bit input coefficients (h(n))

– Use registers to store coefficients

• Signed 48-bit output stream (P(n))

• 16 taps

Precision Synthesis supports the Verilog
2001 generate statement, which you can
use to generate this MULT-ADD operator
as shown by the coding example (Figure 3)
and technology schematic (Figure 5). The
pros to using the transposed FIR filter far
outweigh the cons.

Advantages:

• Low latency – the maximum latency
never exceeds the pipelining time
through the slice containing the first
coefficient. Typically, this is three clock
cycles from the time data is input to
the displayed result.

• Efficient mapping to the DSP48 slice –
mapping is enabled by the adder chain
structure of the transposed FIR filter.

• No external logic – no external
FPGA fabric is required, enabling
you to achieve the highest possible
performance.

Disadvantages:

• Performance may be limited by a high
fan-out input signal if a large number
of taps exist.

Third Quarter 2005 Xcell Journal 27

Using Precision Sythesis, Target Device LUTs Reg Block Mult Post PnR
ISE 7.1_sp1 & DSP Timing

Virtex-4 (1.5v, 90-nm
copper process) 4VSX35ff668: 12 0 0 16 2.151ns

Virtex-II Pro (1.5v, 0.13 µm,
9-layer copper process) 2VP30ff1152: 7 720 1332 16 4.998ns

Virtex-II (1.5v, 0.15/0.12 µm,
8-layer metal process) 2V4000ff1152: 6 720 1332 16 6.905ns

Virtex-E (1.8v, 0.18 µm metal,
6-layer process) v3200efg1156: 8 8722 2165 0 16.005ns

Virtex (2.5v, 0.22 µm,
5-layer metal process) v800fg680: 6 8722 2165 0 20.704ns

PCIN

PCOUT

DSP48 SLICE

X

+

A

B

0

Figure 4 – A transposed MULT-ADD
block diagram

Figure 5 – Technology schematic for the 16-tap transposed FIR filter design

Table 1 – Precision Synthesis post-place and route area and timing results

S Y S T E M P E R F O R M A N C E

28 Xcell Journal Third Quarter 2005

Mapping Beyond Multipliers
Precision Synthesis automatically infers
and maps all multiplier and arithmetic
operators into DSP48 where possible. In
DSP designs, however, critical data paths
are not necessarily always lying on multi-
pliers. Adders, subtractors, counters, and
other operators could also be the source of
the critical timing path. To help deal with
these situations, Precision Synthesis lets
you control each arithmetic operator by

individually manipulating the mapping.
These features deliver two main advantages:

• An extra boost in solving timing prob-
lems when necessary.

• DSP mapping controllability when
desired because of resource availability
and timing requirements.

Precision Synthesis gives you the
option to map the following operators
into a DSP48 slice. Figure 6 shows the

RTL schematic of a DEC operator:

• Adder/subtractor/addsub – default to
CARRY CHAIN and/or LOGIC

• INC/DEC/INCDEC – default to
CARRY CHAIN and/or LOGIC

• EQ/NEQ/LT/LTE/GT/GTE – default
to CARRY CHAIN and/or LOGIC

• Counter – default to CARRY CHAIN
and/or LOGIC

• Mult/mult-add/mult-acc – default to
DSP48

You can map the DEC operator into a
DSP48 slice by using the Precision Synthesis
GUI (Figure 7) or interactive command line
as follows:

• From the RTL hierarchical browser,
right-click on the DEC operator. Select
Set Attributes > New.

• Enter attribute name and value.

• You can use the command line to accom-
plish the same task: set_attribute -design
rtl -name use_resource -value DSP48 -
instance rtlc_1_dec_0.

Conclusion
For MULT-ACC with adder/subtractor and
multiple stages of internal input pipeline
registers, the Xilinx Virtex-4 architecture
has specific advantages over other vendors.
For wide multipliers without accumulators,
you may find that DSP48 in Virtex-4
devices and other DSP vendors compete
more closely in terms of performance. But
regardless of your design application, it
would be beneficial to test-drive the DSP48
functions in tandem with the Mentor
Graphics Precision Synthesis tool for your
next design project.

By supporting advanced DSP48 inferenc-
ing capabilities, Precision Synthesis makes it
possible to easily model DSP RTL behavior
at a very high level. It also provides added
flexibility with RTL coding styles. The
DSP48 inference capability in Precision
Synthesis, combined with the advanced
DSP48 slice in Virtex-4 FPGAs, provides a
powerful system solution if you are consider-
ing designing in DSP with today’s advanced
FPGA architectures.

QD

CLK

+ QD

A(47:0)

PREG(47:0)

Figure 7 – Setting the use_resource attribute in Precision Synthesis

Figure 6 – RTL schematic for a simple INCDEC design

S Y S T E M P E R F O R M A N C E

14-Bit, 125Msps ADC
Only 395mW

Lowest Noise, Lowest Power, Smallest Solution Size, Pin-Compatible Family

 , LTC and LT are registered trademarks of Linear Technology
Corporation. All other trademarks are the property of their
respective owners.

Nu Horizons Electronics Corp.

Tel: 1-888-747-NUHO

FREE High Speed ADC Evaluation Board,

for qualified individuals:

www.nuhorizons.com/Linear

The LTC®2255 family features excellent AC performance with 72.4dB SNR, 88dB SFDR and extremely low power. At just
395mW, the LTC2255 consumes nearly half the power of the competition, benefiting wireless base stations, imaging
systems and portable instrumentation where efficiency and cooling are critical. Part of a pin-compatible family in a small
5mm x 5mm QFN package requiring only a few tiny external components, they offer the smallest solution size available.

High Speed ADC Evaluation Board ▼ Info ▼ Features

• Sample Rate: 125Msps/105Msps

• Single 3V Supply (2.85V to 3.4V)

• Low Power: 395mW/320mW

• 72.4dB SNR

• 88dB SFDR

• Clock Duty Cycle Stabilizer

• Pin-Compatible Family in
 5mm x 5mm QFN Package

by Tom Fischaber
Staff Design Engineer, IP Solutions Division
Xilinx, Inc.
tom.fischaber@xilinx.com

James Ogden
Design Engineer, IP Solutions Division
Xilinx, Inc.
james.ogden@xilinx.com

In digital designs, first-in first-out memory
queues (FIFOs) are ubiquitous constructs
required for data manipulation and buffer-
ing – tasks that are often very challenging.
Are all clock domain crossings properly
timed and synchronized? How do I convert
my 16-bit data path to 64 bits? These ele-
ments of a FIFO design are difficult and
time-consuming to implement, and are
often error-prone. The Xilinx® FIFO
Generator core solves these challenges and
provides an assortment of complex FIFO
designs through a convenient, configurable
graphical user interface (GUI), enabling
you to focus on your system requirements.

From application notes and reference
designs to IP cores, Xilinx has a long histo-
ry of developing FIFOs. With the intro-
duction of the FIFO Generator, almost any
imaginable FIFO configuration is provided
as a fully optimized, pre-engineered solu-
tion delivered through Xilinx CORE
Generator™ software. The FIFO
Generator supports a suite of memory
types, including block RAM, distributed

RAM, shift registers, and the Virtex™-4
built-in FIFO. The core also supports
write and read interfaces with either a sin-
gle common clock or dual independent
clocks. These and other options are easily
customizable through the GUI. In this
article, we’ll highlight the benefits of the
FIFO Generator solution and how it can
help you quickly develop a FIFO that
exactly meets your needs.

Common and Independent Clock Domains
The FIFO Generator supports FIFOs both
with a single common clock and dual
independent clocks for write and read
operations. The common clock configura-
tion provides small, fast, low-latency
FIFOs supporting a variety of status flags,
and is ideally suited for single-clock data-
buffering applications.

The independent clock configuration
provides even greater utility, solving
notoriously difficult and error-prone
FIFO designs at the touch of a button.
The FIFO Generator handles the syn-
chronization between clock domains,
placing no requirements on phase and
frequency. Not only does the FIFO
Generator core solve the complexities of
independent clock designs, but it also
provides a variety of additional capabili-
ties (including a full suite of status flags),
enabling you to customize the FIFO
Generator for your application.

The first page of the FIFO Generator
GUI is shown in Figure 1, and highlights
how you can configure the FIFO with a
single common clock or dual independent
clocks using various memory types. Figure
1 also includes the key features supported
in each configuration for the FIFO
Generator v2.1 release, available for free in
ISE™ 7.1i software with IP Update 1.

Virtex-4 Built-In FIFO Support
Included in the Virtex-4 architecture is a
built-in FIFO controller with every on-
chip block RAM (see Peter Alfke’s article,
“FIFOs Made Easy,” in the First Quarter
2005 issue of the Xcell Journal). By utilizing
this new built-in FIFO, the FIFO
Generator provides easy access to these
high-performance independent clock
FIFOs, saving valuable FPGA fabric
resources while providing substantially
lower power consumption.

The FIFO Generator also expands on
the capabilities of built-in FIFOs by pro-
viding FIFOs of arbitrary width and
depth, as well as providing additional sta-
tus flags. The concatenating of multiple
embedded FIFOs and additional logic for
status flags are handled automatically,
enabling very high-performance designs
to be supported with only minimal FPGA
resources. A functional diagram of the
built-in FIFO design is illustrated in
Figure 2.

Never Design Another FIFONever Design Another FIFO

30 Xcell Journal Third Quarter 2005

The FIFO Generator IP core delivers fully optimized FIFO solutions for
any configuration, freeing you to focus on your own design challenges.
The FIFO Generator IP core delivers fully optimized FIFO solutions for
any configuration, freeing you to focus on your own design challenges.

S Y S T E M P E R F O R M A N C E

Non-Symmetric Aspect Ratios/FWFT
Applications requiring data width conver-
sion almost always require two clocks to
operate at different frequencies. When the
frequencies are related, this task can be easy
to implement. However, if the two clock
rates have no relationship, this task can be
daunting. The FIFO Generator provides
automatic width conversion of the stored
data, while allowing any relationship
between the two clock domains. Figure 3
illustrates how a FIFO with an 8-bit write

Memory Types
In addition to the built-in FIFO in Virtex-
4 devices, the FIFO Generator supports a
suite of memory types including block
RAM, distributed RAM, and shift regis-
ters. The FIFO Generator combines the
selected memory type in width and depth,
always generating an optimized solution.
Table 1 highlights some of the benefits of
each memory type.

Conclusion
The Xilinx FIFO Generator core is an all-
in-one FIFO solution, providing complex
capabilities at the touch of a button. Most
traditional FIFO capabilities are already
included, as are special features such as
built-in FIFO support for Virtex-4
FPGAs, non-symmetric aspect ratios, and
FWFT. This core provides peace of mind
for system designers – we focus on the
FIFO design while you solve your own
design challenges. Xilinx will continue to
enhance the FIFO Generator for Xilinx
FPGA families, as well as adding high-
value features that meet your next-genera-
tion design requirements.

For more information about the FIFO
Generator, visit www.xilinx.com/xlnx/xebiz/
designResources/ip_product_details.jsp?key=
FIFO_Generator. For more information
about the Virtex-4 built-in FIFO and its
benefits, visit www.xilinx.com/publications/
xcellonline/xcell_52/xc_pdf/xc_v4fifo52.pdf.

We would love to hear about your
experience with the FIFO Generator, or if
you have suggestions for new features. To
provide feedback about your experience
or request new capabilities, e-mail
fifo_generator@xilinx.com.

interface and 2-bit read interface operates,
providing a 4:1 write-to-read aspect ratio.

Although FIFOs with different bus
widths and independent clocks are com-
plex to design, the FIFO Generator makes
this design feature just as simple to create
and use as any other FIFO configuration.
The solution further combines this func-
tionality with other rich features, including
a full suite of status flags and first-word fall-
through (FWFT).

FWFT provides the ability to look ahead
to the next word available from
the FIFO without issuing a read
operation. When data is available
in the FIFO, the first word falls
through the FIFO and appears
automatically on the output bus.
FWFT is useful in applications
that require low latency access to
data and in applications that
require throttling based on the
contents of the data that is read.
FWFT support is new in the
FIFO Generator v2.1 release.

WRITE DOMAIN READ DOMAIN

FULL

WR_EN
WE

DIN
DIN

WR_ACK

OVERFLOW

PROG_FULL

Logic for
Optional Flags:
Write Domain

Built-In
FIFO

Logic for
Optional Flags:
Read Domain

UNDERFLOW

EMPTY

RD_EN
RE

DOUT DOUT

VALID

PROG_EMPTY

Cascaded Built-In FIFO Primitives

11 00 00 01 11 11

00
Time

01

11

01 11

11

01 11

Read
Operation

Write
Operation

LSBMSB

Figure 1 – FIFO Generator GUI

Figure 2 – Built-in FIFO capabilities expanded by the FIFO Generator

Figure 3 – Non-symmetric aspect ratios
(4-to-1 ratio)

Independent Common Small Medium High Minimum
Clocks Clocks Buffering to Large Performance Fabric

Applications Buffering Resources
Applications

Built-In FIFO • • • • •
Block RAM • • • • •
Shift Register • • •
Distributed RAM • • •

Third Quarter 2005 Xcell Journal 31

Table 1 – Memory type support and benefits

S Y S T E M P E R F O R M A N C E

by Mike Gulotta
Xilinx FAE
Xilinx, Inc.
mike.gulotta@xilinx.com

As cell phones and other portable hand-
held devices continue to add features,
design trade-offs are constantly evolving.
Popular features such as text messaging
and web browsing demand more data
entry, but that can be cumbersome with
traditional dual tone multiple frequency
(DTMF) (0-9, #, *) keypads. Using this
type of keypad requires multi-tap data
entry, which is inefficient and error-prone.

One option to make text entry easier is
to use a QWERTY keypad (Figure 1). This
type of keypad employs 40 or more keys
versus the normal 12 in a DTMF handset,
although the additional keys make the
handset larger and involve more electronic
components.

Text message users may be willing to
trade size for a QWERTY keypad; text
entry is much easier and you can use two
thumbs to enter text messages or data.
Recently, some cell phone manufacturers
have released handsets with QWERTY
keypads that cater to text users.

There are many ways to design data entry
keypads, but no standard exists. In this arti-
cle, we’ll examine one possible solution to
the design challenge of adding additional
keys to a traditional DTMF-type keypad.

Using a CPLD to Implement
a QWERTY Keypad
Using a CPLD to Implement
a QWERTY Keypad

32 Xcell Journal Third Quarter 2005

You can use a Xilinx
CPLD to expand a typical
handset DTMF keypad
into a QWERTY keypad.

You can use a Xilinx
CPLD to expand a typical
handset DTMF keypad
into a QWERTY keypad.

$ T O T A L C O S T

QWERTY Building Blocks
Our solution uses a Xilinx®

CoolRunner™-II CPLD; its low power,
small package options, and low cost make
it an ideal candidate for this application.

Going from a DTMF to a QWERTY
keypad requires more keys and thus more
general-purpose I/O (GPIO). For
instance, a DTMF keypad may have only
four rows and three columns, whereas a
QWERTY keypad may have as many as

eight rows and eight columns. But keypad
size can vary depending on the require-
ments of the end system.

Typically, a processor or DSP is used as
an interface to the keypad’s rows and
columns (see Figure 2). The processor
scans the rows and monitors the columns
for a logic change. When a change occurs,
it indicates that the user pressed one of the
buttons. By knowing which row was being
scanned and which column changed state,
the processor can deduce which specific
button was pushed.

Expanding I/O
When designing keypads that require more
I/O (as is the case with a QWERTY key-
pad), you may find that your existing
processor does not have enough GPIO. A
possible solution is to use a CPLD as an
I/O expander to reduce the number of I/Os
required from the processor.

Figure 3 introduces a CPLD in between
the processor and keypad where one side of
the CPLD interfaces to the keypad

resent the encoded word. Six bits provide
26 or 64 different values, each representing
a different key. However, one value must
represent the state when no keys are
pressed. So really, only 63 keys can be rep-
resented in this example (without adding
an additional GPIO).

The processor does not need to scan the
keypad because this is being performed by
the CPLD; however the processor is still
required to monitor for changes on its
GPIO – only it would not need to deduce
which key was pressed because the infor-
mation is encoded in a six-bit word.

Switch debounce is also needed. It can
be designed in the CPLD or the processor,
depending on which device has available
resources. Performing this in the processor
will keep the size and cost of the CPLD to
a minimum.

Summarizing this design example, the
CPLD scans the keypad for a pressed key
and provides an encoded word to the
processor to read and interpret. This func-
tion not only offloads the processor from
scanning but expands the GPIO.

rows/columns and the other side interfaces
to the processor’s available GPIO. In this
example, an 8 x 8 keypad requires the same
number of processor GPIO ports as the 4 x
4 keypad (actually one less) when using a
CPLD. Without the CPLD, the processor
would require 16 GPIO ports instead of 7.

Scanning and Encoding
In addition to reducing the processor’s GPIO
requirements, the CPLD can offload some of

the processor functions, such as
scanning the rows and monitoring
the columns for a change in state.
When the user presses a key, the
CPLD stops scanning and imme-
diately produces an encoded word,
which is sent to the processor. The
encoded word lets the processor
know which key was pressed. This
will reduce processor I/O require-
ments because an encoded word is
used to convey which button is
pressed to the processor.

In the example shown in
Figure 3, six bits are used to rep-

Third Quarter 2005 Xcell Journal 33

4 x 4 Keypad

row0

row1

row3

row3

col0 col1 col2 col3

Processor

GPIO1

GPIO2

GPIO3

GPIO4

GPIO5

GPIO6

GPIO7

GPIO8

Figure 1 – QWERTY keypad (Motorola model A630)

Figure 2 – Simple 4 x 4 keypad connected to a processor requiring eight GPIO

$ T O T A L C O S T

The design fits nicely (~75% utiliza-
tion) in a CoolRunner-II 32-macrocell
device, leaving ~25% headroom for other
possible functions. Plus, there are addi-
tional design ideas that can reduce power
and make use of CoolRunner-II power-
saving features.

CPLD Design Details
To scan the keypad rows, a barrel shift
register is initialized with all ones, except
for a single bit preset to zero. Each bit of
the shift register drives an output pin of
the CPLD that is connected to a row of
the keypad. As the shift register is

clocked, the zero bit shifts through the
barrel shifter and scans the rows by driv-
ing them low one at a time. The keypad
columns are inputs to the CPLD and
each input is pulled up through an inter-
nal pull-up resistor.

When no keys are being pushed, all col-
umn inputs to the CPLD are passively
pulled up to logic high. All the column
inputs are AND’d together and a logic one
at the output indicates that no keys are
being pressed.

The output of the AND is used as an
enable to the shift register. When a key is
pressed, the connection between the row
and column is made and the column with
the key being pressed is driven low by the
row associated with that key. The output
of the AND will go low and disable the
shift register when the key is pressed.

At this point the shift register is driving
the row of the key being pressed to a low,
and the column of that key is also at a low.
To correlate this information, two
encoders are used: one for the row bits
(outputs of the shift register) and another
for the column inputs. The outputs of the
two encoders are grouped together to form
the encoded word that is sent to the
processor. Figure 4 shows a block diagram
of the operation.

Conclusion
By using Xilinx CoolRunner-II CPLDs,
you get design flexibility and low power.
Besides I/O expansion, other “glue” func-
tions can be absorbed into the CPLD,
such as voltage translation, I/O standards
translation, and input hysteresis.

Because CPLDs are programmable,
you can use the same device with different
keypads and in different products, leading
to higher volume quantities and lower
cost. The ability to reprogram them (along
with simple-to-use design tools) allows for
late design changes and lower risk.

To learn more about this application,
see the Xilinx application note,
“Implementing Keypad Scanners with
CoolRunner-II,” at www.xilinx.com/
bvdocs/appnotes/xapp512.pdf. For more
information about Xilinx CPLDs, visit
www.xilinx.com/cpld/.

34 Xcell Journal Third Quarter 2005

8 x 8 Keypad

Processor

GPIO1

GPIO2

GPIO3

GPIO4

GPIO5

GPIO6

en0

en1

en2

en3

en4

en5

CLK

8

8

GPIO7

CPLD

Column
Encoder

Row
Encoder

Row Outputs
to Keypad (8x8)

Column Inputs
from Keypad (8x8)

Shift Register

Clk

Encoded Input
to Processor

en
clk

1
1
1
1
1
0
1
1

Figure 3 – GPIO expansion with a CoolRunner-II CPLD

Figure 4 – Block diagram

$ T O T A L C O S T

by Eric Crabill
Staff Design Engineer
Xilinx, Inc.
eric.crabill@xilinx.com

In an attempt to help me maintain a better
work/life balance, my wife suggested that I
pick up a hobby. The first thing that came
to mind was developing FPGA-based video
games. I have never been a good game play-
er, but I am fascinated by game hardware.
The reason I studied electrical engineering
in the first place was to get a job at Atari
Games, but they closed their doors before I
earned my degree.

Silicon, software, and solutions from
Xilinx® are all you need to develop game
platforms and write games. You can get
started for less than $100 with the Xilinx
Spartan™-3 Starter Kit and ISE™
WebPACK™ software. Implementing
video games in FPGAs is not only fun, it
creates an opportunity to learn more
about FPGA devices and development
tools through experimentation – without
the stress of deadlines.

FPGA-Based Video GamesFPGA-Based Video Games

Third Quarter 2005 Xcell Journal 35

Implementing video games in FPGAs is fun and educational.Implementing video games in FPGAs is fun and educational.

$ T O T A L C O S T

FPGA Gaming Platforms
Simple gaming platforms only require
three components: a human interface
device for input, another for output, and a
mechanism for implementing the game
logic or game program. Many commercial
development boards with Xilinx FPGAs
satisfy these requirements.

However, to create something that I
could truly call my own, I chose to design
a platform that was:

• Entirely Xilinx-based

• Inexpensive to build

• Suitable for cooperative development

• Capable of respectable performance

After a number of iterations, I created a
block diagram (Figure 1) for a simple and
yet highly flexible reconfigurable video
game platform that met my requirements.

The platform is designed to support the
largest Spartan-3 device available in the free
ISE WebPACK tools – the XC3S1000; this
device is used to implement the game logic
or game program. The platform also uses
the Xilinx System ACE™ CF configura-
tion controller to great advantage.

At power on, the SystemACE CF con-
troller configures the XC3S1000 from one
of eight user-selectable configurations on the
Compact Flash card. After the initial power-
on configuration loads, the XC3S1000
can instruct the controller to reconfigure
using any of the other configurations.
Furthermore, the design in the XC3S1000
may access the Compact Flash card through
the System ACE CF controller as a disk. You
can use the extra space on the Compact
Flash card for program and data storage.

In terms of human interface devices,
there are two joystick ports, a stereo audio
output jack, and a VGA port capable of
4,096 colors. The platform also provides a
standard serial port to use for linking sys-
tems, textual interaction through a termi-
nal, or debugging. Schematics and
photoplots for this design are available at
the FPGA Games website (see the resources
list at the end of the article).

A completed prototype of the platform
(Figure 2) is quite small at 4 x 6 inches and
could easily be smaller, possibly fashioned

There are two general methods: software
emulation and hardware emulation.

In either case, emulation may involve
the use of ROM images, which contain
copyrighted software and audiovisual con-
tent. Make sure that you obtain legal ROM
images for emulation – either by purchasing
original ROMs or by obtaining the legal
rights to use downloaded ROM images
from services such as StarROMS. Don’t let
flattery turn into thievery.

into a handheld unit with an integrated
LCD screen. The Compact Flash card
becomes, in effect, the game cartridge. The
fun doesn’t start, though, until you have
some games to play!

Games Via Emulation
Emulation is the sincerest form of flattery.
With a suitable platform, you can emulate a
wide variety of games and game systems,
including those found exclusively in arcades.

36 Xcell Journal Third Quarter 2005

256Kx18 FT
ZBT SSRAM

25.175 MHz
Oscillator

User Option
Oscillator

Pushbutton

User LEDs

JTAG Port

System ACE
CF Controller

Compact Flash
Socket and Card

256Kx18 FT
ZBT SSRAM

VGA Video
Output Port

Stereo Audio
Output Port

Serial Port

Player 1
Joystick Port

Player 2
Joystick Port

Power Jack
and Switch

5V Power Supply

3.30V
Regulator

2.50V
Regulator

1.20V
Regulator

XC3S1000
Spartan-3

FPGA

Figure 1 – Block diagram of a reconfigurable video game platform

Figure 2 – Prototype of a reconfigurable video game platform

$ T O T A L C O S T

The Atari 2600 Video Computer
System, originally released in 1977, makes
a wonderful case study of emulation.
Although the system is nearly 30 years old,
only recently have people been able to
emulate it well.

Software Emulation
Software emulation involves the creation of
a program that runs on one system (the
host) to simulate the behavior of
another (the target). For game sys-
tems, the emulation of the target
must include human interface
devices as well as the game logic,
which is typically a microprocessor
running a game program.

In most cases, software emula-
tion requires a host with perform-
ance at least an order of
magnitude greater than the target.
This is because it may take a fair
number of instructions (or cycles)
on the host to emulate what hap-
pens in one instruction (or cycle)
of the target.

Software emulation of game
systems is entirely feasible if you
use Xilinx Platform FPGA devices
such as the Virtex™-4 FX family
with integrated PowerPC™
processors. For example, you can
emulate the Atari 2600 Video Computer
System on a PowerPC host created with the
Xilinx Embedded Development Kit. If you
are coding-challenged like me, porting an
existing emulator is quicker than writing
one from scratch.

For each emulated cycle of the target
system, the emulator must exactly match
the target behavior. However, most emu-
lators do not run with cycle-for-cycle
accuracy in real time. One technique is to
periodically emulate behaviors faster than
real time, and then halt until the next
period begins.

Hardware Emulation
Hardware emulation involves re-creating
the original hardware – or something func-
tionally equivalent – in programmable
logic. This approach may yield the most
authentic emulation, but requires detailed

knowledge of the emulated system, some-
times down to the transistor level.

Again, consider the Atari 2600 Video
Computer System. It is based on a 6507
processor (a derivative of the venerable
6502), the 6532 peripheral (RAM, I/O, and
a timer), and a ROM (4 KB). The processor
is available from the Open Cores website,
and the rest are easy to create.

An additional custom peripheral called

the Television Interface Adapter (TIA)
implements audio and video output and
user inputs. The TIA was designed in
NMOS, and while its schematics are avail-
able, the TIA is surprisingly complex for a
few thousand gates. The TIA design uses
dynamic logic, latches, all manner of asyn-
chronous resets and presets, gated clocks,
and circuits cascaded using ripple tech-
niques. To further complicate the situa-
tion, game programmers learned how to
exploit undocumented “features” in TIA
hardware. As a result, any hardware imple-
mentation must truly reproduce the origi-
nal behavior in real time, cycle for cycle.

Ed Henciak, an expert Xilinx user from
Pennsylvania, had the understanding,
skills, and patience to implement a hard-
ware emulation of the Atari 2600 Video
Computer System in an FPGA. I was so
amazed with his results that I sent him a

prototype unit of my game platform. He
sent me back some exciting pictures of his
design running on it (Figure 3). In the
near future, Ed plans to release his design
with a low-cost FPGA-based game plat-
form of his own.

Unleash Your Imagination
If you aren’t nostalgic for the video game sys-
tems of yesteryear, unleash your imagination

and implement a game you enjoy
from the ground up. I find won-
derful ideas by scouring the web-
sites of hobbyists working with
discrete embedded processors.

Some of the best games are
simple. You can start small with an
addictive puzzle or action game
(for example, Tetris, Minesweeper,
Pong, or Breakout), implementing
it directly in logic or with a Xilinx
PicoBlaze™ processor.

Once you are comfortable
with games like this, you can
graduate to more complex ones
running on Xilinx MicroBlaze™
or PowerPC processors. The
Xilinx Embedded Development
Kit is a great tool for this activi-
ty, as it provides a wealth of
peripherals to choose from and
complete development environ-

ments for both processors.

Conclusion
You can develop games on a wide variety
of Xilinx FPGA development boards. It is
a fun and rewarding activity. If you are
interested in reading more, the following
websites provide great information, moti-
vation, and example projects:

• www.fpgaarcade.com

• http://office-dsan.hp.infoseek.co.jp
(Japanese)

• http://members.iinet.net.au/
~msmcdoug/pace

• www.fpga-games.com

• www.retrogames.com

• www.starroms.com

• www.opencores.org.

Third Quarter 2005 Xcell Journal 37

Figure 3 – Hardware emulation of the Atari 2600 VCS
running Pitfall by Activision (courtesy of Ed Henciak)

$ T O T A L C O S T

by Lee Hansen
Sr. Product Marketing Manager
Xilinx, Inc.
lee.hansen@xilinx.com

Every customer I know is feeling the pres-
sure to cut design costs. Project budgets
continue to shrink, while the pressure to be
first to market forces shorter design cycles
and fewer engineers per project. But did
you know that there’s a wealth of technolo-
gy meant to help you do just that – short-
en your design cycle, solve your design
bottlenecks, and lower your overall design
costs? These features are already built into
Xilinx® Integrated Software Environment
(ISE™) software.

Higher Performance –
Faster Project Completion
The measured 70% performance advantage
of ISE design tools (versus competing PLD
tools) applies beyond bleeding-edge, high-
performance digital projects. Lower speed
projects also benefit from this performance
advantage by allowing you to hit your per-
formance targets early in the design cycle.
You spend less time tweaking and iterating
through the implementation phase.

ISE place and route tools also help you
ensure efficient implementation. The place
and route tools and reports can offer inter-
active suggestions about how you can
change your HDL code. These suggestions
help make more efficient use of FPGA
resources and can save overall design space.

High Performance Doesn’t
Have to Mean High Costs
High Performance Doesn’t
Have to Mean High Costs

38 Xcell Journal Third Quarter 2005

ISE 7 design tools deliver the technology to get the most out of your silicon while slashing project costs.ISE 7 design tools deliver the technology to get the most out of your silicon while slashing project costs.

$ T O T A L C O S T

More high-performance technology is
packed directly into ISE design tools than
any other PLD design offering, including
core capabilities like timing-driven map-
ping, global optimization, design re-timing,
and FPGA physical synthesis. Together, this
ProActive Timing Closure technology leads
to higher overall design performance, and
more technology focused on helping you
achieve timing closure.

The timing-driven map option helps
deliver better utilization to your target
Xilinx FPGA device, particularly if the
device is already more than 90% utilized
(the point at which most PLD users have to
consider moving up to the next higher den-
sity and more costly device). Timing-driv-
en map combines placement with logic
slice packing to improve placement quality
for “unrelated logic.”

Using timing-driven map offers you the
potential to stay in your chosen device –
even if utilization is pushing 90% or high-
er – when competing tools would have
forced the design into a larger and more
expensive device.

Cutting Through Design-Flow Bottlenecks
ISE design tools focus on solving the prob-
lems that plague traditional PLD designs
and deliver new tools and technology to
speed you through the design flow faster,
saving time and money. The ISE 7.1i ver-
sion includes a host of new tools – includ-
ing Technology Viewer, message filtering,
design summary, ISE Simulator, and
ModelSim Xilinx Edition-III – all focused
on “ease-of-design” to get you through to
project completion faster.

New ISE 7.1i Tools and Technologies
The Technology Viewer lets you view your
post-synthesis HDL-based design at the
block level in a schematic-like display. It is
built on the same graphic interface as RTL
Viewer, so there are no new commands or
menus to learn. Full hierarchy is represent-

deem non-critical to your design and sup-
press it from future reports. Message filter-
ing delivers more streamlined and
pertinent report information, and allows
you to quickly see the data necessary to
your project, making debug and verifica-
tion quicker and easier.

ISE and ChipScope™ Pro 7.1i tools
offer new remote programming and remote
debug capabilities. ChipScope Pro and
iMPACT programming tools can now run
in server/client mode over a TCP/IP con-
nection. You can sit in your office while
debugging or programming a board next
door in the lab or on the other side of the
world. You can share a single board or
debug system in the lab with other engi-
neers on your team, or allow help desk per-
sonnel to debug a problem remotely at a
customer site. Remote programming and
debug save you the cost of additional soft-
ware, and make more efficient use your
existing project workstation setup.

Existing Features that Drive Design
The architecture wizards inside ISE design
tools are a collection of graphical-based
menus and dialog boxes with which you
can quickly and easily set the parameters
of advanced silicon features. For example,
the XtremeDSP™ slice wizard, shown in
Figure 1, provides control over the
Virtex™-4 XtremeDSP silicon slice tech-
nology. This new silicon capability lets
you build high-performance DSP filters
and custom pre- or post-co-processing
DSP algorithms.

The XtremeDSP slice wizard lets you
specify accumulator, adder/subtractor,
multiplier, or multiplier and adder/accu-
mulator DSP modes. You can graphically
set input and output bus data widths,
pipelining options, clock enable, and reset
pin setups, and then review parameters and
output the results as HDL-ready code.
Once configured, the architecture wizard
writes editable VHDL or Verilog source

ed, so you can easily push down or pop up
through your design, highlighting and
identifying critical elements by pin, net, or
instance name. The Technology Viewer –
combined with the RTL Viewer, ISE
Floorplanner, and FPGA Editor – bring
you more ways to visualize your design and
to see and control exactly how the imple-
mentation phase is completing your
design, helping avoid time-consuming
problems and re-implementation steps.

ISE 7.1i software includes a new design
summary view that takes the most com-
monly sought-after design information

and places it in one easy-to-use automated
display, eliminating the need to search
through multiple tool reports and outputs
to find exactly what you need. The design
summary also contains a list of hyper-
linked detailed implementation reports.
You can easily jump to more detailed
information. The design summary saves
design time by delivering the core up-to-
date design information.

The new message filtering capability lets
you select the report information that you

Third Quarter 2005 Xcell Journal 39

Figure 1 – XtremeDSP architecture wizard

The architecture wizards inside ISE design tools are a collection
of graphical-based menus and dialog boxes with which you can

quickly and easily set the parameters of advanced silicon features.

$ T O T A L C O S T

code that is instantiated directly into your
target project. The architecture wizards
help reduce the learning curve associated
with new silicon releases, and allow begin-
ning FPGA designers to quickly get up to
speed programming even the most
advanced silicon.

The pin and area constraints editor
(PACE) delivered within ISE design tools
includes graphical pin and area management
that is both powerful and easy to use, as
shown in Figure 2. You can drag-and-drop
pin assignments onto a graphical map of the
device, either by footprint or
architectural area. You can group
pins logically and by color for
easy recognition, specify I/O
standards and banks, prohibit
I/O locations, and verify legal pin
assignments on the fly.

PACE can also interface
through CSV files, letting the
FPGA engineer send pin defini-
tions directly to PCB layout, or
read PCB layout information
and back-annotate that infor-
mation to the FPGA design.
PACE can be the starting point
of your project, and PACE
writes out HDL language tem-
plate files based on the hierarchy and logic
area groups you’ve defined. PACE includes
several design rule checks including simul-
taneous switched output (SSO), which
help predict ground bounce problems and
account for exact pin delay across your
entire design. PACE delivers a wealth of
productivity that can help reduce design
headaches and lower project costs.

Incremental Design – Shorter
Re-Implementation Times
Incremental design, first introduced in ISE
5.1i software nearly three years ago, can slash
re-implementation time by as much as 75%.
Your design is first floorplanned in PACE or
our optional PlanAhead™ software. The
design is then completed through the normal
implementation cycle. If subsequent modifi-
cations are required, incremental design re-
implements only the area(s) affected by the
design change, leaving the other completed
design areas intact and dramatically shorten-

ing the design cycle. Incremental design can
deliver more design cycles when you need
them and shorten your design time.

An Array of Verification Options
Verification is one of the most time-con-
suming and time-critical phases of the
design flow. Incomplete or time-consuming
verification strategies can take up more than
half of the overall design flow and leave crit-
ical logic areas unpredictable. ISE delivers
enhancements to the verification flow that
help cut the time and cost of verification.

Two HDL Simulation Choices
The ISE Simulator is a new, full-featured
HDL simulator delivered with and inte-
grated directly into ISE design tools. It
offers the ability to simulate directly from
the ISE Project Navigator process window,
where test benches, stimulus, and output
graphics are generated. ISE Simulator sup-
ports VHDL and Verilog, functional and
timing simulation, and is licensed through
the fast and painless Xilinx software regis-
tration ID process – no licensing dongles
or Ethernet keys.

ISE 7 software is also the release of the
new ModelSim Xilinx Edition-III HDL
Simulator. Free to all ISE customers, MXE-
III Starter offers 50% faster HDL simula-
tion and 20 times more design capacity
than the previous version. For large-density
FPGA designs, you can purchase the MXE-
III full version, which provides five times
the design capacity and 30% faster per-
formance than the MXE-III starter.

ISE design tools preserve design hierar-
chy throughout the entire design flow,
while other solutions are forced to flatten
design hierarchy during implementation
and verification and then reconstruct that
hierarchy for debug. By preserving hierar-
chy, Xilinx and partner verification tools
are able to compile and run your design
faster. And because signal names, compo-
nents, and design instances are preserved
throughout the flow, debug is more accu-
rate and cross-probing is easier.

Unrivaled Real-Time Verification
ISE design tools also link directly to our
optional, separately purchased ChipScope
Pro real-time debug environment. The
ChipScope Pro tools insert low-profile logic
analyzer, bus analyzer, and virtual I/O soft-
ware cores during design capture. These
cores are then synthesized and implement-
ed into your silicon, allowing you to view:

• Any internal signal within the FPGA

• Embedded processor signals, including
the IBM CoreConnect processor local
bus or on-chip peripheral bus support-
ing the IBM PowerPC™ 405 inside
Virtex-4 FX devices

• Embedded processor signals for the
MicroBlaze™ soft-processor core

Signals are captured at or near operat-
ing system speed and brought out through
the programming interface, freeing up
pins for your design, not debug. You can
then analyze captured signals through the
ChipScope Pro software logic analyzer.
ChipScope Pro software can literally slash
as much as 50% off traditional ASIC and
structured-ASIC verification flows.

Conclusion
The advanced technology built into ISE
7 software can cut your design and verifi-
cation times, slash project costs, and offer
potentially lower device savings in the
long run. All ISE configurations,
ChipScope Pro analyzer, PlanAhead soft-
ware, MXE-III, and ISE Simulator are
available for purchase from the Xilinx
online store, Xilinx distributors, or by
calling (800) 888-FPGA (3742).

40 Xcell Journal Third Quarter 2005

Figure 2 – PACE – pin and area constraints editor

$ T O T A L C O S T

by Rodney Stewart
System Architect, Automotive
Xilinx, Inc.
rodney.stewart@xilinx.com

David Vornholt
Strategic Relationships Manager
Xilinx, Inc.
david.vornholt@xilinx.com

According to a U.S. Department of
Transportation study, people worldwide
spend more than 500 million commuter
hours per week in automobiles. With so
much time behind the wheel, people are
looking for ways to stay entertained, talk
to loved ones, and perhaps even com-
plete some tasks that they would normal-
ly complete in the workplace.

Staying connected while in the auto-
mobile is paramount on the list – just
look at cell phone usage. Also, encoun-
tering heavy traffic along the way, not
taking the right route, or something as

mundane as running out of fuel can
affect punctuality.

How can drivers stay connected while
driving safely and make it to their desti-
nation on time? The smart way is to have
communication and control activated
through voice command in combination
with a connection to the Internet. This is
delivered in the Microsoft Telematics
Platform, a hub for the seamless integra-
tion of various mobile devices and the
delivery of information through the
Internet and wireless networks.

The Microsoft Telematics Platform
offers:

• Advanced high-quality speech recogni-
tion and synthesis technology

• On-demand web services such as
traffic jam avoidance, accessing cur-
rent headlines, or finding the closest
gas station with the lowest prices
through MSN Autos (currently only
in the U.S.)

• Customized navigation – points of
interest or turn-by-turn directions
with the help of GPS

• PDA/cell phone integration with
Bluetooth technology, which wirelessly
connects cell phones and PDAs to the
vehicle’s electronics system, allowing driv-
ers to use their voice to make and receive
calls, get meeting reminders, and access
important data through the car’s audio
system

• Remote diagnostics to check on the
“health” of the vehicle, including prob-
lem and maintenance alerts, potentially
improving engine performance over the
life of the car

Microsoft Corp.’s Automotive Business Unit
and Xilinx® have worked together to create a
reference platform that delivers these benefits
with a low cost point to catalyze the develop-
ment of simpler, more reliable, and affordable
solutions to drivers around the world.

Smart Telematics Systems
from Xilinx and Microsoft Corp.’s
Automotive Business Unit

Smart Telematics Systems
from Xilinx and Microsoft Corp.’s
Automotive Business Unit

Third Quarter 2005 Xcell Journal 41

Spartan-3 FPGAs are chosen for their design flexibility and performance.Spartan-3 FPGAs are chosen for their design flexibility and performance.

$ T O T A L C O S T

A Flexible and Scalable Platform
The traditional automotive electronic
design approach has been to develop very
specific, tailored, and rigid solutions
based on the needs of automotive manu-
facturers. Telematics and infotainment
are forcing the automotive industry to
rethink the products and systems
designed into a typical “connected car.”

The convergence of the consumer
world into the vehicle – in applications
such has telematics – has forced “con-
sumer development” thinking into an
industry that is traditionally slow, conser-
vative, and cost driven. New requirements
carried across from the consumer industry
demand rapid change, as consumers
always expect to have the next big thing.

This demand is forcing the need for
flexible architectures and changes to
design methodology that can cope with
not only current applications but future
and possibly unknown features. This con-
flicts with the multi-year development
and validation cycles that typical automo-
tive electronic designs generally require. It
is now essential that a platform developed
today (for a vehicle to be released in two
to three years) has sufficient system
resources to cope with unexpected
changes both throughout the product
development cycle and after introduction.

As with any platform, flexibility and
scalability are key to the successful adop-
tion of the architecture, from basic sys-
tems through to high-performance,
high-end telematics systems. With this in
mind, Microsoft has developed a true
automotive standard telematics platform
that is customizable and scalable.

The platform incorporates an ARM 9-
based microcontroller, supports memory
from 32 MB flash/32 MB DRAM
upwards, and includes integrated GPS
Bluetooth and a GSM phone module.
External vehicle connections include a
CAN network interface as well as protect-
ed analog and digital I/O for functions
such as LED drivers and button inputs.
The basic architecture of the platform is
shown in Figure 1.

Microsoft took advantage of the flexi-
bility and high integration possibilities of

containing multiple buses, interfaces, and
clocks within one device, making design
with EMI more manageable. In addition,
reducing component count and board
space leads to lower production costs and
a higher quality of manufacture – impor-
tant factors in any automotive design.

Understanding the nature of vehicle
development and the multitude of vehicle

FPGA technology. A Spartan™-3
XC3S400 FPGA was used in this plat-
form for multiple independent purposes
such as a GSM phone interface, vehicle
interfaces (CAN controller and K-line),
and sophisticated audio signal condition-
ing and routing (shown in Figure 2).

The high levels of integration that
FPGAs offer also have the advantage of

42 Xcell Journal Third Quarter 2005

14.769 MHz

48 MHz FPGA System Clock

12288
KHz

S

Gain

FPGA
Block Diagram

UART Clock

L

R
L

RL

L

R

CPU

t

 2

 6

3

X R

LPB

XC3S400-FT256

Processor
Local Bus

I2S
D_IN

I2S
D_OUT

Codec_clk
(256 fs)

UPLL_clk

up_uclk

Phone
Interface

K-Line
Interface

Misc. I/O
LEDs, Etc. I/O

 B
us

B
_c

s

C
_c

s

C
3-

cs

rd
_n

w
r_

n

al
e

FULL
UART

4-way
MUX

Mini-
UART

FPGA
Registers

CAN Controller
Interface State Machine

“0”

“0”
“0”

“0”

“0”

I2S
Decoder

I2S
Decoder

I2S
Encoder

Speech FIFO
(DMA)

1024 x 16

Acoustic Echo
Cancellation

Noise
Reduction

PCM DecoderPCM Encoder

CLK_24
To CAN

PCMFR PCMCLK PCMRX PCMTX
BLUETOOTH

PCMTX PCMRX
GSM

Clock Generator

CODEC
I2S_TX

CODEC
I2S_RX

Memory
Card

NAND Flash
32-512 MB

SDRAM
32-512 MB

Serial
Debug

JTAG
Debug

USB
Flash
Drive

FPGA
200K-400K Gates

JTAG

PCM uF

CPU
300-400 MHz

NAND JTAG

CMS Voice In

CMS Voice Out

PCM uF

Line Out

Mic In

125 mF

UART

Memory
IF

32-bit
18-bit

MMC150

AJD
and
GPIO UART UART UART

CS

PC1

USB Divide

USB Mont
USB Mont

LCD cfm
USB

Debug

SIM Socket

Mono CODEC

Stereo CODEC
TLV320AIC

Cellphone
Module

Data/Voice

Bluetooth GPS
CAN

Color
Graphic

LCD

Analog
and

Discrete I/O

Figure 1 – Microsoft telematics platform hardware architecture

Figure 2 – Xilinx Spartan-3 FPGA design

$ T O T A L C O S T

interfaces available, Microsoft intentionally
designed a flexible solution that allows
rapid changes to the back-end vehicle
interface without affecting the underlying
architecture and performance of the sys-
tem. For example, in the future it would be
possible to adapt the FPGA solution to suit
the needs of the end application with auto-
motive buses such as MOST, IDB-1394, or
another digital vehicle network.

Voice Recognition System
Central to the Microsoft Telematics
Platform is the voice recognition (VR) sys-
tem. The audio signal path within any VR
system is analog biasing/filtering, digitiza-
tion, and digital filtering before the signal
is finally presented to the VR engine for
speech processing.

Within this path, multiple opportuni-
ties exist for unwanted noise to be intro-
duced into the system (both onboard the
electrical platform and within the vehicle
environment even before the electronics).
Both the product developer and the vehicle
manufacturer must ensure that the micro-
phone position and type are correctly suit-
ed to the application and environment.

In a perfect world, the VR engine will
receive clean, consistent speech signals –
but given the dynamic nature of the vehicle
environment, acceptable voice recognition
implementation is not a straightforward
exercise. Factors such as vehicle speed, win-
dow position (open/closed), road noise,
and weather conditions (rain/wind) only
add to already difficult VR problems such
as languages, accents, and gender. These
added factors have increased the impor-
tance of preconditioning using highly
adaptive digital filtering algorithms before
the signal is presented to the VR engine.

Microsoft chose to implement this sig-
nal preconditioning in hardware and take
advantage of Xilinx parallel DSP process-
ing. Spartan-3 FPGAs, with as many as
104 embedded 18-bit multipliers, are ideal
for implementing compact DSP structures
such as MAC engines, distributed arith-
metic FIR filters, and fully parallel FIR fil-
ters in a low-cost device.

Microsoft also offloaded processor-
intensive software filtering into hardware.

Of course, this pre-processing is possible in
ASSPs such as dedicated DSP chips. But
the benefits gained through high levels of
integration in other parts of the platform
would be lost.

The combination of telematics and VR
allows implementations of adaptable and
upgradeable VR engines and DSP filters
tailored to suit certain types of users and
environments (Language: English, Accent:
Scottish, Gender: Female).

The importance of designing automo-
tive products (especially in the infotain-
ment section of the vehicle) with sufficient
spare bandwidth to cope with new and
unexpected future upgrades also applies to
the FPGA. It is now becoming clear to
automotive OEMs that architectures that
allow for flexible and scalable firmware are
a necessity in future platforms.

Although not currently implemented
in the Microsoft platform, it would be
possible to easily add soft processors to
act as system co-processors. Just as the
DSP processing was offloaded from the
main processor in Microsoft’s design, it
would also be possible to use embedded
processors (such as the Xilinx 32-bit
MicroBlaze™ soft processor or 8-bit
PicoBlaze™ microcontrollers) to take
some of the processing load from the
main system processor.

FPGAs for Automotive Applications
In-car electronics have seen tremendous
growth in recent years, not only in tradi-
tional body control and engine manage-
ment but in the new areas of driver
assistance systems and telematics applica-
tions. Figures recently published by the
IEEE indicated an annual increase in car
electronics of 16%, with a prediction that
by 2005 electronics will account for 25%
of the cost of a mid-size car.

Telematics systems exhibit characteris-
tics more like those of consumer products –
short time to market, short time in market,
and changing standards and protocols.
These issues impact the way engineers
approach designs and select the hardware
needed to quickly create, iterate, and sup-
port future upgrading.

FPGA technology can now solve these

requirements. Xilinx is committed to serv-
ing telematics and car infotainment appli-
cations through its Xilinx Automotive (XA)
family, which delivers:

• Extended temperature ranges – up to
125°C

• Full production part approval process
(PPAP) support

• Industry-recognized AEC-Q100 device-
qualification flow

• Compliance with the worldwide auto-
motive quality standard ISO TS 16949,
as well as Pb-free packaging to meet the
RoHS directive

These devices, based on our Spartan
family of FPGAs, are ideal for digital
designs requiring low cost per logic cell
(system gate), low cost per I/O, and
advanced features such as multiple I/O
standards on a singe device and embedded
multipliers for high-speed DSP.

Conclusion

Backed by a commitment from supporters
such as the Microsoft Automotive Business
Unit and Xilinx Automotive, the vision of
Microsoft’s Telematics Platform is now
becoming a reality. The convergence of key
technologies is being adopted today by
first-tier automobile manufacturers in a
platform that enables:

• A valuable and affordable telematics solu-
tion

• Reliable connectivity through wireless
networks

• High-quality voice recognition

• A broadly supported operating system
for application developers

• Low-cost hardware

This is giving rise to a “virtuous cycle” of
continuous investment by developers, who
will use these platforms to create even more
value for end users.

For more information, visit
w w w. m i c r o s o f t . c o m / a u t o m o t i v e /
windowsautomotive/about.mspx/ and www.
xilinx.com/automotive/.

Third Quarter 2005 Xcell Journal 43

$ T O T A L C O S T

by David “Andrew” Brierley-Green
Senior Principal Engineer
Philips Semiconductors
david.brierley-green@philips.com

Ho Wai Wong-Lam
Program Manager
Philips Semiconductors
ho.wai.wong-lam@philips.com

PCI Express is a new interconnect standard
that provides a serial replacement for the
PCI, AGP, and PCI-X buses, which are
commonly used in computer and embed-
ded systems. The market has embraced the
adoption of PCI Express in computers, and
a wide variety of PCI Express plug-in cards
and ExpressCards are now available.

Many plug-in cards and embedded
systems that use FPGAs to implement
PCI and PCI-X are expected to migrate
to PCI Express in the coming years.
Higher throughput, lower printed circuit
board complexity, and the unification of
various interconnectivity standards into
one PCI Express standard are all factors
that entice more developers to adopt PCI
Express technology.

A programmable solution offers flexi-
bility, short time to market, and low up-
front costs, and is ideal for emerging and
low- to mid-volume applications. Philips
Semiconductors offers the PX1011A-EL1
x1 PCI Express PHY to form a low-cost
programmable PCI Express solution with

Xilinx® Spartan-™3/E FPGAs containing
the Xilinx PCI Express Endpoint core. This
combination achieves a price point that is a
fraction of previously available program-
mable solutions for PCI Express. It enables
designers of high-volume applications to
take advantage of a programmable and
compliant PCI Express solution.

PCI Express and Its Physical Layer
Like all modern networking and connectiv-
ity standards, PCI Express uses a layered
protocol model. Data is transferred at 2.5
Gbps over a single PCI Express lane; this
configuration is referred to as an x1 link.
PCI Express is scalable in that you can bun-
dle multiple lanes together. For example,

A Low-Cost Programmable
PCI Express Solution
A Low-Cost Programmable
PCI Express Solution

44 Xcell Journal Third Quarter 2005

Our solution comprises a Philips PX1011A-EL1 device and a
Spartan-3/E FPGA containing the PCI Express Endpoint core.
Our solution comprises a Philips PX1011A-EL1 device and a
Spartan-3/E FPGA containing the PCI Express Endpoint core.

$ T O T A L C O S T

an x4 link consists of four x1 lanes. A max-
imum of 32 lanes is allowed in a link,
resulting in an aggregate bandwidth of 80
Gbps in each direction.

The physical layer’s main function is
to get packets of data across the link with
a 10-12 or lower bit error rate. Factors
such as signal voltage levels, equalization,
receiver performance, transmit bit order,
coding, and link initialization and train-
ing are dealt with in the physical layer.
The main purpose of link initialization
and training is to configure the link width
(number of lanes), lane ordering, and cor-
rect polarity reversal within a differential
conductor pair. The logical physical sub-
layer handles link training.

Intel defines a specification for the PIPE

requests from the software layer into pack-
ets called transaction layer packets (TLPs)
and relies on the underlying data link and
physical layers to deliver the TLPs to the
corresponding transaction layer at the des-
tination node. An important function of
the transaction layer is flow control.

PX1011A-EL1
A block diagram of the PX1011A-EL1 is
shown in Figure 1. The interface between
the PX1011A-EL1 and the higher layer
logic is a variant of the PIPE interface.

On the transmit side, the PX1011A-
EL1 receives 8-bit words of data from the
MAC, along with a control bit that indi-
cates whether the 8-bit word is data or a
control character. The data is transferred at
a rate of one word per cycle of a 250 MHz
clock. The data is first buffered in a FIFO,
which allows for phase differences between
the PIPE clock and the internal 250 MHz
transmit clock generated by the transmit
phase-locked loop (TXPLL). The data is
then 8B/10B encoded, with the 10-bit
data serialized and differentially transmit-
ted onto the transmission line.

On the receive side, the PX1011A-EL1
receives serial differential data from the
transmission line. A clock is recovered
from the data; this clock is used to sample
the serial data in the center of the data eye.
The retimed serial data is then passed
through a serial-parallel converter.

The next step is to find the 10-bit sym-
bol boundaries with a special 10-bit charac-
ter called a “comma,” or K28.5 character.
The K28.5 character cannot occur by
chance because of the concatenation of any
other legal 10-bit characters. Once symbol
synchronization has been achieved, the
realigned 10-bit characters are passed
through an elastic buffer that compensates
for the frequency difference (if any) between
the recovered and locally generated transmit
clocks. This frequency compensation hap-
pens when you add or remove special char-
acters (called “skip” characters) that are
provided in the PCI Express protocol for
this purpose. The retimed 10-bit characters
are then decoded and the resulting 8-bit
data words are registered and output from
the PX1011A-EL1 to the MAC device.

– Physical Interface for PCI Express –
between the media access layer (MAC) and
PHY. Part of the logical sub-layer of the
physical layer resides in the MAC portion of
the PIPE interface. The physical coding sub-
layer (PCS) of the physical layer and the
electrical physical layer reside in the PHY
portion of the PIPE interface. Therefore,
PCI Express PHY devices that are based on
the PIPE interface do not contain all of the
functions described in the physical layer of
the PCI Express specification.

The data link layer provides packets to
and receives packets from the physical
layer. The data link layer makes the unreli-
able link appear perfect to higher layers by
retransmitting packets with errors. The
transaction layer translates PCI transaction

Third Quarter 2005 Xcell Journal 45

MAC

FIFO

8B/10B
Encoder

TXPLL

T
xD

at
a[

7:
0]

R
xD

at
a[

7:
0]

ss
_t

xc
lk

lo
ca

l c
lo

ck
 2

50

rx
by

te
 c

lo
ck

 2
50

8

8

8

8

10

10

10
Tx serial clock

TXN TXP RXN RXP

ss
_r

xc
lk

Parallel to Serial

Serial to Parallel

Data Recovery
Circuit

CLK Recovery
Circuit PLL

Elastic Buffer

8B/10B
Decoder

Register

K28.5
Detect

Figure 1 – Block diagram of PX1011A-EL1

$ T O T A L C O S T

The PX1011A-EL1 (shown in Figure 2)
uses an 81-pin LFBGA package with 0.8
mm pitch. The package is approximately 9
x 9 mm and has a height of 1.05 mm. The
power dissipation is less than 300 mW total
during active operation. A leaded version is
available, with a lead-free version to follow.

PXPIPE Interface
The PIPE specification was defined for
an on-chip interface, and it does not
address very well the difficulties that arise
with a chip-to-chip connection. The
PIPE interface defines a single 250 MHz
clock, called PCLK, to
which both the trans-
mit and receive sides of
the interface are syn-
chronized. PCLK is an
output of the PHY and
an input to the MAC.
This means that the
MAC responds to the
rising edge of PCLK by
shifting out a word for
transmission. Taking
into account of the
time of flight for signals
across the channel,
which includes PCB
traces and possibly a
connector, we see that
the two instances of one-way propaga-
tion delay must be included in the tim-
ing budget. The total of the round-trip
propagation delay plus the clock-to-out
delay of the MAC plus the setup time of
the PHY must be less than one PCLK
period (4 ns).

The classic solution to this problem is
to use source-synchronous clocking. With
source-synchronous clocking, the clocks
propagate in the same direction as the data
rather than in the opposite direction.
Because both clock and data incur the
same propagation delay, they cancel out
the timing budget. You could, in theory,
have a propagation delay longer than the
clock period.

By comparison, the Intel PIPE specifi-
cation solves this timing budget problem
by introducing the option of a 16-bit data
interface, thus doubling the timing budget

from 4 ns to 8 ns. This solution comes at a
cost of higher pin count (thus a larger
package and higher cost) and introduces an
extra layer of logic to convert from 16 to 8
bits, thus increasing latency.

Philips Semiconductors has defined an
alternative version of the PIPE interface
named PXPIPE. Rather than a single byte-
rate clock, we provide two clocks: a trans-
mit byte clock and a receive byte clock. The
PXPIPE interface also specifies the use of
SSTL2 signaling. Being an on-chip inter-
face, the original PIPE specification does
not specify any signaling levels.

Applications
The small size and low power consump-
tion make the PX1011A-EL1 ideally suit-
ed for ExpressCard applications.
ExpressCards are the new generation of
PCMCIA PC cards used to add function-
ality to portable computers. ExpressCards
use either a USB2.0 or PCI Express x1
host interface. They have restrictive com-
ponent height requirements and stringent
power consumption limits.

The PX1011A-EL1/Spartan-3/E PCI
Express solution has many potential applica-
tions. This list shows some of the potential
areas, and by no means represents an
exhaustive enumeration. The Philips/Xilinx
solution opens up a new horizon of poten-
tial applications that can make use of a low-
cost and programmable PCI Express
solution. The scope of applications is limit-
ed only by your imagination.

• Storage/RAID

• PC controlled and embedded test
equipment

• Digital TV tuners

• Home printers

• Disk recorders

• Professional graphics boards

• Professional cameras

• Image capture and processing

• Digital media creation

• Digital music mixers

• Network security systems

• Voice over IP

• DSL modems

• Medical imaging (ultrasound, X-rays)

“PX Surfboard” Demo Design
A demo design called the “PX Surfboard”
showcases the Philips/Xilinx PCI Express
solution. The demo can be used for inter-
operability and compliance testing. In
addition, it shows how you can design a
system using the PX1011A-EL1/Spartan-
3 solution. Schematics and Gerber files
are also available.

Conclusion
The Philips PX1011A-EL1 device, used
in conjunction with a Xilinx Spartan-3/E
FPGA containing the PCI Express
Endpoint LogiCORE™ solution, pro-
vides a low-cost, low-power, fully stan-
dards-compliant PCI Express solution
with proven interoperability with other
vendors’ PCI Express solutions. For more
information, please visit the following
websites:

• www.semiconductors.philips.com/
markets/connectivity/wired/pciexpress/
solution/index.html

• www.xilinx.com/xlnx/xebiz/
designResources/ip_product_
details.jsp?key=DO-DI-PCIE-PIPE

46 Xcell Journal Third Quarter 2005

Figure 2 – PX1011A-EL1 device

$ T O T A L C O S T

by Arthur Yang
Sr. Product Applications Engineer
Xilinx, Inc.
arthur.yang@xilinx.com

Each generation of FPGAs gets increasing-
ly faster, denser, and larger. What can you
do to ensure that power doesn’t increase in
conjunction? A number of design decisions
can impact the power consumption of your
system, ranging from the obvious choice of
device selection to the more minute details
of choosing state machine values based on
frequency of use.

To understand why the design tech-
niques we’ll discuss in this article con-
serve power, let’s give a brief primer on
power consumption.

Power comprises two factors: dynamic
and static power. Dynamic power is the
power required to charge and discharge the
capacitive loads within the device. It is
highly dependent on frequency, voltage,
and loading. Each of these three variables is
under your control in one form or another.

Dynamic Power = Capacitance x Voltage2

x Frequency

Static power is the sum of power
caused by leakage (source-to-drain and

gate leakage, often lumped as quiescent
current) for all of the transistors in the
device, as well as any other constant
power requirements. Leakage current is
highly dependent on junction tempera-
ture and transistor size. For more details,
see Xilinx® White Paper 221, “Static
Power and the Importance of Realistic
Junction Temperature Analysis,” at
www.xilinx.com/bvdocs/whitepapers /
wp221.pdf.

Constant power requirements would
include current leakage due to termina-
tion, such as a pull-up resistor. Not much
can be done to affect leakage, but constant
power may be controlled.

Think About Power Early
The decisions you make about power have
the greatest impact in the early stages of
your design. Deciding on a part can have
huge implications on power, whereas
inserting a BUFGMUX on a clock will
have much less impact. It is never too
early to start thinking about power for
your next design.

The Right Part for the Job
Not all parts have the same quiescent power.
As a general rule, the smaller the device

process technology, the higher the leakage
power. But not all process technology is creat-
ed equal. For example, the dramatic differ-
ences in quiescent power for 90 nm
technology between Virtex™-4 devices and
other 90 nm FPGA technology can be seen in
Xilinx White Paper 223, “Power vs.
Performance: The 90 nm Inflection Point,” at
www.xi l inx .com/bvdoc s /whi tepaper s /
wp223.pdf.

However, as quiescent power rises as
process technology shrinks, dynamic power
decreases because smaller processes come
with lower voltage and capacitance.
Consider what will be more relevant to your
design – standby (quiescent) power or
dynamic power.

All Xilinx devices have dedicated logic
in addition to the general-purpose slice
logic cells. These take the form of block
RAM, 18 x 18 multipliers, DSP48 blocks,
and SRL16s, among others. You should
always use dedicated logic rather than its
slice-based equivalent. Not only does dedi-
cated logic have higher performance, but it
requires less density and therefore con-
sumes less power for the same given opera-
tion. Consider the types and quantity of
dedicated logic when evaluating your
device options.

Design Techniques
to Reduce Power
Consumption

Design Techniques
to Reduce Power
Consumption

48 Xcell Journal Third Quarter 2005

Control power consumption with these design
techniques and ISE power analysis tools.
Control power consumption with these design
techniques and ISE power analysis tools.

P O W E R M A N A G E M E N T

Selecting an appropriate I/O standard
can save power as well. These are simple
decisions, such as choosing the lowest
drive strength or lower voltage standards.
When a high-power I/O standard is
required for system speeds, plan on a
default state to lower power. Some I/O
standards (such as GTL/+) require a pull-
up to function properly. So if the default
state of the I/O were high instead of low,
the DC power through the termination
resistor would be saved. For GTL+,
setting the proper default state for the
50 ohm termination to 1.5V can result in
30 mA power savings per I/O.

Data Enable
Chip select or clock-enable logic is often
used to enable registers when the data on
the bus is relevant to them. Take this a step
further and “data enable” the logic as early
as possible to prevent unnecessary transi-
tions between the data bus and combinato-
rial logic to the clock-enabled registers, as
shown in Figure 1. The waveforms in red
indicate the original design; the ones in
green indicate the modified design.

Another option is to perform this “data
enable” on the board instead of on the chip.
Xilinx Application Note 347, “Decrease
Power Consumption of a Processor using a
CoolRunner™ CPLD,” at www.xilinx.com/
bvdocs/appnotes/xapp347.pdf, discusses this
concept to minimize processor clock cycles.

ately is a simple way to reduce power with
little impact on the design. Simpler
encoding styles (one-hot or grey-code)
also utilize less decode logic.

Consider a state machine where the fre-
quent state transitions are between states 7
and 8. If you select binary encoding for this
state machine, this means that for every state
transition between 7 and 8, four bits would
need to change state, as shown in Table 1.

If the state machine were designed
using a grey-code instead of binary, this
would limit the amount of logic transi-
tions required to move between these two
states to only one bit. Alternatively, if
states 7 and 8 were encoded as 0010 and
0011, respectively, this would also serve
the same purpose.

Clock Management
Of all the signals in a design that can
draw power, clocks are the largest offend-
ers. Although a clock may run at 100
MHz, the signals derived from this clock
often run at a small fraction of the main

clock frequency (commonly 12% to
15%). In addition, the fanout for clocks
is naturally high – so these two factors
show that clocks should be studied for
purposes of power reduction.

If a section of a design can be in an
inactive state, consider using a BUFG-
MUX to disable the clock tree from tog-
gling, instead of using clock enables.
Clock enables will prevent registers from
toggling unnecessarily; however the clock
tree will still toggle, consuming power.
But clock enables are better than nothing.

Isolate clocks to use the fewest amount
of quadrants possible. Unused clock tree
quadrants will not toggle, thereby lower-
ing the load on the clock net. Careful
floorplanning may achieve this goal with-
out affecting the actual design.

The concept here is to use a CPLD to
offload simple tasks from the processor,
allowing it to stay in a standby mode longer.

Applying this same idea to FPGAs is
certainly feasible as well. Although
FPGAs do not necessarily have a standby

mode, using a CPLD to intercept bus
data and selectively feed data to the
FPGA can save unnecessary input transi-
tions. CoolRunner-II CPLDs contain a
feature called “data gate,” which disables
logic transitions on the pin from reaching
the internal logic of the CPLD. The data
gate enable may be controlled either by
logic on-chip or by a pin.

State Machine Design
Enumerate state machines based on the
anticipated next state condition and
choose state values that have few switch-
ing bits between common states. By
doing so, you can minimize the amount
of transitions (frequency) for state
machine nets. Identifying common state
transitions and selecting values appropri-

Third Quarter 2005 Xcell Journal 49

data5

data4

data3

clock_enable

data2

data1

data0

clock_enable

clock_enable

clock_enable

LUT4

LUT4

LUT4

FDCE

I0

I1

I2

I2

I0

I1

I2

I2

I0

I1

I2

I2

o

o

o

o0

o1

s0

oclock
ground

o

ce
c

clr

o

BUFGMUX

S3
0
1
0

S3
0
0
0

S2
0
1
0

S1
1
1
1

S0
0
0
0

S2
1
0
1

S1
1
0
1

S0
1
0
1

Original State Machine Encoding Modified State Machine Encoding
State

State 7
State 8
State 7

Current

Figure 1 – Reducing power with enable signals

Table 1 – Reducing signal transitions with state encoding

P O W E R M A N A G E M E N T

Power Estimation Tools
Xilinx provides power estimation tools in
two forms: a pre-implementation tool
called Web Power Tools and a post-imple-
mentation tool called XPower. The Web
Power Tools at www.xilinx.com/power pro-
vide power estimation based on ballpark
estimates of logic usage. With this, you can
get a power assessment with only a design
utilization estimate – no actual design files.

XPower is a post-implementation tool
that analyzes the actual device usage and, in
conjunction with actual post-fit simulation
data (in the form of a VCD file), delivers

accurate power data. With XPower, you can
analyze design changes for impact on overall
power without touching a piece of silicon.

Web-Based Power Tools
Web-based power estimation is the quick-
est and easiest way to get an idea of device
power consumption early in the design
flow. A new version of these tools is
released every quarter, so information is
current, and no installation or download-
ing is required – just an Internet connec-
tion and a web browser. You can specify
design parameters and save and load design
settings, eliminating the need to re-enter
design parameters with iterative use. Just an
estimate of design behavior and a target
device will get you started.

XPower – Integrated,
Design-Specific Power Analysis
XPower, a free part of all Xilinx ISE™
design tool configurations, allows you to
get a much more detailed estimate of your

design-based power requirements.
XPower estimates device power based on
a mapped or placed and routed design.
XPower calculates an estimate of power
with an average design suite error of less
than 10% for mature in-production
FPGA and CPLDs. It considers device
data along with your design files and
reports estimated device power con-
sumption at a high level of accuracy, cus-
tomized to your specific design
information.

XPower is integrated directly into ISE
software and gives hierarchical and detailed

net power displays, detailed
summary reports, and a power
wizard that makes it easy to run
for new users. XPower can
accept simulated design activi-
ty data and runs in both GUI
and batch mode (Figure 2).

XPower considers each net
and logic element in the
design. The ISE design files
provide exact resource use;
XPower cross-references
routing information with
characterized capacitance
data. Physical resources are

then characterized for capacitance.
Design characterization is continuous
and ongoing for newer devices to pro-
vide the most accurate results. XPower
uses net toggle rates as well as output
loading. XPower then computes power
and junction temperature, and can dis-
play individual net power data as well.

Conclusion
Increasing demands for cheaper and sim-
pler thermal management – as well as
power supplies coupled with the increas-
ing power requirements of cutting-edge
FPGAs – have elevated the concept of
designing for low power to greater
heights. The latest device offering from
Xilinx, Virtex-4 FPGAs, offers the high
performance of 90 nm without the
assumed dramatic increase in static
power. When used with Xilinx power
estimation tools and considerations for
low-power design, meeting your power
goals is easier than ever.

50 Xcell Journal Third Quarter 2005

Figure 2 – XPower

Xilinx Events
and Tradeshows

Xilinx participates in
numerous trade shows and
events throughout the year.

This is a perfect opportunity to
meet our silicon and software

experts, ask questions,
see demonstrations of new
products, and hear other
customer success stories.

For more information
and the current
schedule, visit

www.xilinx.com/events/.

Worldwide Events Schedule

North America

July 12-13 NSREC
Seattle, WA

Aug. 16-18 National Instruments Week
Austin, TX

Aug. 23-25 Intel Developer Forum Fall
San Francisco, CA

Sept. 7-9 MAPLD
Washington, D.C.

Sept. 13-14 Embedded Systems Conference
Boston, MA

Oct. 18-20 MILCOM
Atlantic City, NJ

P O W E R M A N A G E M E N T

Enabling success from the center of technology™

1 800 332 8638

www.em.avnet.com

© Avnet, Inc. 2005. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Avnet Electronics Marketing has collaborated with National

Semiconductor® and Xilinx® to create a design guide that

matches National Semiconductor’s broad portfolio of power

solutions to the latest releases of FPGAs from Xilinx.

Featuring parametric tables, sample designs and step-by-step

directions, this guide is your fast, accurate source for choosing the

best National Semiconductor Power Supply Solution for your design.

It also provides an overview of the available design tools, including

application notes, development software and evaluation kits.

Go to em.avnet.com/powermgtguide

to request your copy today.

Support Across The Board.
™

Power Management Solutions for FPGAs

National Devices supported:

• Voltage Regulators

• Voltage Supervisors

• Voltage References

Xilinx Devices supported:

• Virtex™

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-4FX, 4LX, 4SX

• Spartan™-II

• Spartan™-IIE

• Spartan-3, 3E, 3L

by Anil Telikepalli
Marketing Manager, Virtex Solutions
Xilinx, Inc.
anil.telikepalli@xilinx.com

The debate over which high-performance
90 nm FPGA has the lowest power is heat-
ing up. The industry has crossed a critical
inflection point at the 90 nm process,
where performance competes with power
and thermal budgets. Customers want as
much performance as possible, but increas-
ingly the decision about which FPGA to
use is based on which device consumes the
least amount of power.

Excessive power is expensive in many
ways. It creates the need for special design
and operational considerations – every-
thing from heat sinks to fans to sophisti-
cated heat exchangers. Even the cost of
larger power supplies must be considered.

Perhaps the most critical issue is the
effect excessive power can have on reliabili-
ty. As junction temperatures rise, transis-
tors consume more power, further
increasing the device temperature. Left
unchecked, this phenomenon leads to ther-
mal runaway. Continuously operating sys-
tems with junction temperatures from
85°C to over 100°C threaten the reliability
of the device.

Performance vs. Power:
Getting the Best of Both Worlds
Performance vs. Power:
Getting the Best of Both Worlds

52 Xcell Journal Third Quarter 2005

Xilinx conquers the 90 nm inflection point.Xilinx conquers the 90 nm inflection point.

P O W E R M A N A G E M E N T

Fortunately, Xilinx® encountered the
first evidence of this 90 nm inflection point
more than three years ago, in the early
development stages of Spartan™-3 FPGAs
(the first Xilinx FPGA family with the 90
nm process). Xilinx began immediately
developing new ways to cope with the
inherent power issues posed by the 90 nm
process. Consequently, when the higher
performance Virtex™-4 family was intro-
duced in September 2004, Xilinx was con-
fident that the new family would
simultaneously deliver the highest per-
formance and lowest power consumption
in a 90 nm FPGA.

Reducing Power in FPGAs
There are two major components to power
consumption: static power and dynamic
power. Each component poses a unique
challenge. For the 90 nm FPGA, the most
challenging component is static power.

Static Power
Static power is the standby power that is
wasted even if the design is not perform-
ing any function. It occurs as a result of
leakage current in the transistors within
the FPGA. Leakage current increases as
transistors get smaller with each new
process. This principle is one of the major
reasons the 90 nm process crosses a major
inflection point (Figure 1).

but they leak more. Thicker gate oxides
reduce leakage, but they also reduce per-
formance. However, unlike ASICs, ASSPs,
and microprocessors, Xilinx FPGAs do
not need all of their transistors to switch at
maximum speed. A substantial number of
transistors make up the configuration
memory cells used for programmable
logic, while pass transistors are used to
implement the programmable intercon-
nect routing. Configuration memory cells
do not need to be fast, and programmable
interconnect transistors only need to be
fast from source to drain and not under
gate control. These factors have allowed
Xilinx to selectively increase gate-oxide
thickness to reduce leakage current with-
out compromising performance.

Virtex-4 FPGAs incorporate a new
process approach called triple-oxide tech-
nology to solve the static power problem.
Although this third gate-oxide layer is still
very thin, these transistors exhibit sub-
stantially lower leakage than the standard
thin-oxide transistors used in Virtex-II
Pro FPGAs and in various other parts of
Virtex-4 FPGAs.

In addition, Xilinx optimized a number
of other transistor parameters (including
VT) to balance performance and leakage
across I/O, configuration memory, inter-
connect pass transistors, and logic and
interconnect buffers. Figure 2 shows that
Virtex-4 FPGAs consume 50% less static
power than their predecessor, 130 nm
Virtex-II Pro FPGAs. We believe that this

For the first time, static power is
threatening to eclipse dynamic power as
the component responsible for the great-
est amount of total power consumption in
an FPGA. As processes get smaller, core
voltage decreases and parasitic capacitance
decreases; consequently, the rate of
increase in dynamic power drops, despite
the increase in frequency that accompa-
nies a new process. In contrast, below
0.25 µms static power has grown expo-
nentially with each new process.

This is where the inflection point real-
ly becomes a critical factor for the FPGAs
and where Xilinx has established a sub-
stantial lead. Smaller transistors are faster,

Third Quarter 2005 Xcell Journal 53

500

1990 1995 2000 2005 2010 2015 2020

100

1

0.01

0.0001

0.0000001

350 250 180 130 90 65

Dynamic Power

Technology Node (nm)

Static Power
(leakage)

Static Power Significant at 90 nm
N

or
m

al
iz

ed
 P

ow
er

International
Technology Roadmap
for Semiconductors
(ITRS) 2001, 2002.
Courtesy: Moore's Law
Meets Static Power,
Computer, December 2003.
IEEE Computer Society

45 22

6

5

4

3

2

1

0
0 25K

XC2VP20

XC4VLX25

XC4VLX100

XC2VP100 XC4VLX200

Virtex-II Pro

50% Lower Power

Virtex-4

50K 75K 100K

Logic Cells

R
el

at
iv

e
S

ta
tic

 P
ow

er
(W

or
st

 C
as

e
P

ro
ce

ss
 @

 8
5o C

)

125K 150K 175K 200K

Figure 1 – The 90 nm inflection point

Figure 2 – The use of “triple-oxide” technology reverses the trend:
the Virtex-4 device actually consumes less static power than its 130 nm predecessor.

P O W E R M A N A G E M E N T

is the first time in FPGA history that stat-
ic power decreased when moving to a
new, smaller process node.

Dynamic Power
The three contributing elements to
dynamic power in an FPGA are core volt-
age (V), frequency (f), and parasitic
capacitance (C). In addition, dynamic
power is proportional to the data toggle
rate (k). Fortunately, core voltage and
capacitance decrease with each new
process node, which lowers dynamic
power. Conversely, increasing the operat-
ing frequency of a design increases
dynamic power. The well-known formula
for dynamic power that applies here is:

P = k * CV2f

One major area of opportunity to
reduce dynamic power consumption in
FPGAs involves the way in which a design
uses embedded functions. Embedded
functions consume less static and dynam-
ic power when implemented as hard-
wired functions instead of configurable
logic blocks and programmable intercon-
nects. Hard fixed logic uses far fewer tran-
sistors than programmable logic.
Additionally, the lack of programmable
interconnect transistors in hard-wired
embedded functions further reduces
dynamic power consumption.

These hard IP cores occupy far less
real estate, deliver much higher perform-
ance, and consume 80-95% less power
than soft IP versions of the same func-
tions. And by making these hard IP cores
programmable and parameterizable, you
can maintain the flexibility inherent
to FPGAs.

Functions that Xilinx provides as hard
IP cores in Virtex-4 FPGAs include:

• 450 MHz PowerPC™ processors for
all microcontroller and embedded
processing applications with an APU
(auxiliary processing unit) interface
for hardware acceleration

• 500 MHz XtremeDSP™ slice capa-
ble of simple math and filter func-
tions to complex high-performance
DSP functions

• 500 MHz digital clock managers
(DCM) and phase-matched clock
dividers (PMCD) that support clock
synthesis, clock management, and
phase matching

• A ChipSync™ block in every I/O
with built-in SERDES and a data-
alignment function to simplify source-
synchronous interfaces in memory,
networking, and telecom applications

• RocketIO™ transceivers (622 Mbps-
10.3125 Gbps) with built-in physical
coding sublayer (PCS) and physical
media attachment (PMA)

• Tri-mode Ethernet MACs
(10/100/1000 Mbps) that can interface
directly with RocketIO transceivers

• Smart RAM memory with distributed
RAM and 18 Kb block RAM – each
block RAM has built-in FIFO logic to
convert RAM into FIFO and comes
with built-in error correction code
(ECC) circuits

Besides the obvious advantages associ-
ated with moving these commonly used
blocks into hard IP, you must not over-
look the inherent contribution that Xilinx
advanced silicon modular block (ASMBL)
architecture makes to the Virtex-4 power
advantage. Because each of the three
Virtex-4 platforms – the LX, FX, and SX
– satisfies distinct requirements for a par-

ticular application domain (logic,
embedded processing, and signal pro-
cessing), their standard ratio of logic
cells, memory, I/O, DSP, and processors
has been optimized for that domain.
Consequently, the Virtex-4 device is the
first FPGA to offer domain-optimized
power consumption.

End-Market Power Requirements
Having achieved substantial power sav-
ings both in static power (as a result of
triple-oxide technology) and dynamic
power (using embedded hard IP), you
might wonder what it all means for your
designs. The simplest example often pro-
vides the best perspective. Using an
equivalent amount of generic logic and
memory in Virtex-4 devices and the near-
est competitor’s devices of equivalent
density, with no consideration of other
embedded IP, the Virtex-4 FPGA saved
1-5W in power (see Figure 3). But how
does this translate to measurable benefits
in real-world applications?

Power Budgets
Every product has a power budget driven
by standards, cost goals, and reliability
requirements. As power consumption
and temperature are interrelated, it is
important to meet operating temperature
goals as well. System architects have spe-
cific power budgets at the system level –
for each board as well as for devices used

54 Xcell Journal Third Quarter 2005

Total Power Consumption

Design Details -- Logic & Memory

Static Power at Tj = 85oC

Dynamic Power at 200 MHz
- 50% of LUTs and FFs in Virtex-4 device;
 equivalent ALUTs and FFs in corresponding
 competing device, 12.5% toggle rate

- M4K blocks used in competing device,
 equivalent 18 Kb block RAM in corresponding
 Virtex-4 device

Virtex-4

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

P
ow

er
 (

m
W

)

2S
15

XC
4V

LX
15

2S
18

0

XC
4V

LX
16

0

2S
13

0

XC
4V

LX
10

0

2S
90

XC
4V

LX
80

2S
60

XC
4V

LX
60

2S
30

XC
4V

LX
25

Competing Device

Figure 3 – Virtex-4 designs consume 1 to 5 watts lower power per FPGA

P O W E R M A N A G E M E N T

on the board. Markets where high-per-
formance FPGAs are used, such as wired
and wireless networks, storage/servers,
automotive, and aerospace/defense, also
have aggressive power budgets. Let’s dis-
cuss a few applications where tight power
budgets are critical.

Wired Networks: Metro Aggregation
Metro aggregation refers to the aggrega-
tion of access connections at central offices
(COs) within a metropolitan area network
(MAN). The equipment within each CO
must operate continuously, placing a heavy
burden on operational costs and the effec-
tive capacity of power supplies and air con-
ditioning systems. Any means by which
equipment vendors can help reduce total
system power consumption equates to real
benefits for service providers.

The power budgets for the cards in a
rack of metro aggregation equipment usu-
ally average 20-30W. The FPGAs used in
these boards consume 4-5W each, and
many designs use multiple FPGAs.

For example, power budgets for a
multi-service provisioning platform line
cards and FPGAs include:

• 12-port DS3 card: 30W; FPGA = 4-
5W

• 4-port OC-12 card: 28W; FPGA
= 4-5W

• 12-port 10/100 Base-T card: 50W;
FPGA = 4-5W

• 32-port T1/E1 card: 9 W; FPGA
= 2-3W

Using Virtex-4 FPGAs in these appli-
cations would dramatically benefit service
providers’ operational costs. Each Virtex-4
FPGA can save 1-5W when compared to
competitive 90 nm FPGAs.

Wired Networks: Metro Access
Unlike the metro aggregation equipment
deployed in COs, metro access equipment

exists at the edge of the network. It is
deployed outdoors, where air flow is limited
and air conditioning is virtually non-exis-
tent. Example systems include passive opti-
cal networks (PONs), digital loop carriers
(DLCs), and cable modem termination sys-
tems (CMTS). These systems operate con-
tinuously at temperatures often well above
85°C, taking junction temperatures as high
as 100°C. Transistor leakage current – and
hence static power – increase with tempera-
ture. As a result, equipment vendors in this
space are constrained by stringent power
budgets (10 to 12W per card, 4 to 8W per
FPGA) to ensure reliability.

As power-sensitive as these applications
are, saving as little as 0.5W can make a
design workable. Virtex-4 devices elimi-
nate as much as 1-5W per FPGA, dramat-
ically benefiting both equipment vendors
and service providers.

Wireless Base Stations
Because of its quick deployment and low
establishment costs, the growth of the cell
phone market has overtaken the growth of
fixed-telephony networks. Once again,
service providers can measure the value of
reduced power consumption in Virtex-4
FPGAs both in terms of the mitigation of
reliability issues (arising from the outdoor
environment in which the base stations
are deployed) as well as the reduction of
operational expenditures.

Service providers running a typical
wireless base station network of 35,000
units can save more than $1M per year
just in electricity charges. Consider the
following power budgets:

• 16 line cards/base station;
1 FPGA/line card

• Power budget/line card = 20W

• FPGA power budget = 6W

Based on an extremely conservative
estimation of a 2W power reduction

using Virtex-4 FPGAs, service providers
would see a 32W power savings per base
station, amounting to a savings of 1.12
MW for the entire network. Using
10¢/KWh, this saves about $1M per year
for 35,000 base stations in the network.

Cutting 32 watts per base station also
impacts service providers’ bottom lines in
the form of capital expenditure reductions
for cooling equipment costs, battery back-
up costs, and power supply and power
management costs.

Conclusion
The battle to deliver maximum perform-
ance at the lowest cost has taken center
stage in the evolution of FPGAs. Today,
customers are demanding minimum
power expenditure as well. Power conser-
vation impacts every budget, whether
technological or financial. Product accept-
ability, reliability, and profitability depend
as much or more on power efficiency as
they do on performance. Besides offering a
robust feature set, Virtex-4 FPGAs exhibit
a real power consumption advantage.

Nonetheless, competition in the FPGA
market does not end with 90 nm devices.
Interesting new dynamics arise when
moving into the 65 nm node and below.
Fortunately for Xilinx, one inherent value
of using triple-oxide technology is that it
scales nicely with each new process.

As for the value of embedding hard IP
where appropriate, it is practically an
industry axiom. Xilinx has incorporated
the right amount of programmable
embedded IP with programmable logic to
make the whole solution more flexible,
with higher performance and lower
power. In the long term, customers will
only use platform FPGAs that provide the
best performance and power.

For more information about power
budgets, seminars/tutorials, white papers,
and power analysis/optimization tools,
visit www.xilinx.com/virtex4/lowpower.

Third Quarter 2005 Xcell Journal 55

Product acceptability, reliability, and profitability depend as
much or more on power efficiency as they do on performance.

P O W E R M A N A G E M E N T

by Steve Prokosch
High Volume Marketing Manager
Xilinx, Inc.
steve.prokosch@xilinx.com

Xilinx® CPLDs have been a great solution
for control logic, state machines, and sim-

ple system integration for years, but were
not used in consumer portable equip-

ment because of the stigma of high
power consumption. In the late
1990s, CPLDs ventured into the
low-power domain with the first
CoolRunner™ product family.

But prices remained out of reach for
many high-volume applications.

Today, through a steady progression of
Moore’s law, pricing is low enough to be

competitive with discrete logic devices.
Now you can easily implement a wide vari-
ety of logic functions in a single package.
Plus, you can save board space and get the
benefits of reprogrammable logic to maxi-
mize time to market.

Merging CPLD Features
into Handheld Applications
Merging CPLD Features
into Handheld Applications

56 Xcell Journal Third Quarter 2005

The integration of reprogrammable logic into high-volume, low-power consumer applications.The integration of reprogrammable logic into high-volume, low-power consumer applications.

P O W E R M A N A G E M E N T

Some designers may still believe that
CPLDs are just logic and flip-flops. But
with today’s new breed of CPLDs, you get
a lot more from a single device. For
instance, new discrete logic devices are
introduced every year, driven by demands
from system integration that arise from
product legacy mismatch. CPLDs fill this
niche nicely by offering multiple I/O
banks at low cost points.

CPLDs are also offering more inte-
gration of common features, such as
voltage translation, I/O standards
translation, HSTL and SSTL memory
interfaces, clocking features, and higher
performance flip-flops. But integration
isn’t the only addition to current CPLD
product offerings; CoolRunner-II
CPLDs include an elaborate scheme
to prevent read back and copycat
designs. Potential thieves would have
to go to extreme measures for the
encapsulated design file, such that the
money and effort required becomes
truly cost prohibitive.

CoolRunner-II CPLDs also offer
low-power features to assist you in low-
ering overall dynamic power consump-
tion. These features include gating
inputs, clock frequency scaling (division
and doubling), and input hysteresis.
With these features, you can differenti-
ate your product and still consume low
power, maintain low cost, and get your
product to market quickly.

Success Story
HTC Corporation specializes in designing
and manufacturing mobile computing and
communication solutions for OEM and
ODM customers. Today, with design
expertise in consumer products, HTC has
expanded into the wireless handset mar-
ket. Figure 1 shows the HTC GSM/GPRS
Magician handset platform with camera,
touch screen, SD/MMC memory expan-

By being cost competitive and continu-
ally adding features that other handset man-
ufacturers wait to see a demand for, HTC
has grabbed market share from some of the
most well-known manufacturers. Studies
show that low-end handsets are decreasing
in volume, while feature-rich handsets are
continuing to grow (see Table 1). By 2006,

approximately 40% of new handset
sales will be in the entry-level category,
a figure forecasted to decline 10% each
year thereafter. With this dramatic shift,
handset manufacturers will have to
change their products rapidly to meet
consumer trends.

In addition, Windows CE operat-
ing system handsets have seemed to
catch on with users. According to a
Gartner Research report from April
2005, Windows CE-based PDAs have
taken the lead in shipments (Table 2).

Three years ago, HTC began to
study alternative logic devices that
would give their products a competi-
tive advantage in the market. They
looked at price, features, ease of use,
and power consumption. The study
also included integration challenges
and how to keep re-inventing new
products with market dynamics.

To keep pace with changing tech-
nology in displays, touch screens,
memory, and wireless communica-
tions, HTC needed a flexible and fea-
ture-rich solution. With changes to
these technology products occurring
every six to eight months, redesigns

would occur often to incorporate the lat-
est and lowest cost components. HTC
examined multiple vendors from both a
support perspective and best features/low-
est cost competitiveness. The company
also looked at partnerships, paying partic-
ular attention to those who stand behind
promises of pricing, roadmaps, and tech-
nical assistance.

sion, microphone, audio jack, and mini
USB connector for synchronization.

The company’s products include smart
phones, smart music phones, PDA phones,
and compact PDAs. With this strong focus,
Microsoft chose HTC as a platform devel-
opment partner for Windows CE designs.

According to THT Business Research,

HTC is the world’s largest producer of
pocket PC-based PDAs, accounting for
48% of total OEM supply. They began
manufacturing processes in the second
quarter of 2001, foreseeing a huge market
in G3 handsets. Now HTC produces more
than 90% of the PDA phones based on
Windows CE and continues to ship more
than 3.5 million units per year.

Third Quarter 2005 Xcell Journal 57

CPLDs are also offering more integration of common features, such as
voltage translation, I/O standards translation, HSTL and SSTL memory

interfaces, clocking features, and higher performance flip-flops.

Figure1 – HTC Magician handset platform

P O W E R M A N A G E M E N T

A Clear Choice
With a list of both supplier and component
criteria, HTC chose Xilinx as a preferred
vendor for low-power CPLD products.
Weighing competitors not only by price,
but by reputation of product, delivery,
quality, and attention to special needs,
Xilinx came out on top. According to
HTC, the device features were what tipped
the scale. Not only did the base power con-
sumption meet or exceed power budgets,
but key low-power enhancements played a
large role in part selection. “HTC has
received a substantial amount of perform-
ance capabilities in Xilinx products,” said
Peter Chou, HTC’s president. “Their com-
bination of leading-edge technologies,
complete programmable system design,

and full technical service support are essen-
tial to the success of HTC.”

When compared to other suppliers,
power consumption was basically equal;
the deciding factor was integrating differ-
ences from other competing products.
Integrated low-power features gave HTC
designers a creative method to both
increase battery life and phone features.
By using clock features, the designers
eliminated external oscillators and

reduced costs. These clocking features
also helped reduce overall power con-
sumption and increase battery life. With
this one feature, they reduced board space
without using additional power.

Another low-power feature that
helped overall battery life was input gat-
ing. This technique has been used on
other products, but Xilinx was one of the
first companies to incorporate it in a
CPLD. This feature helped reduce over-

all dynamic power consump-
tion by powering down
circuits to their standby or
quiescent state. By turning
off circuits that are only used
part of the time, battery life
can be extended well beyond
a competitor’s product with
the same features.

Device integration also
added a key advantage to

HTC’s designs. By using a single device
to shift voltage levels for certain circuits,
discrete devices were eliminated. Plus,
the availability of small chip-scale pack-
ages saved board space when compared to
discrete devices. By consolidating various
functions into a single reprogrammable
device, HTC saved layout problems
when faced with high integration goals.
Also, by condensing signal paths on a
PCB layer, layout became much easier.

Faster Designs with WebPACK
To make use of special features as HTC
has, you need to be able to implement
them without extra effort. Low-power
features such as clock frequency scaling,
signal gating, and hysteresis are easy to
use and have example code listed in
ISE™ WebPACK™ software. This
enabled HTC to turn designs around
faster with the confidence that all critical
timing and power consumption goals
would be met.

The best part of Xilinx WebPACK soft-
ware is that the features are free. Not only
can you design with high-level languages
like VHDL and Verilog, but functional
and timing verification tools work flawless-
ly. Plus, the XPower power analysis tool
gives you a reliable estimation of how
much power will be consumed at each
point of the operation. This easy-to-use
software tool gave the HTC designers con-
fidence that the results they saw through
simulation were the results they measured
in actual designs. For HTC, precisely
knowing what to expect let them pack the
most into their designs.

Conclusion
HTC has embraced low-power CPLDs
with a passion, taking advantage of the
features offered by CoolRunner-II prod-
ucts and obtaining a larger share of mid-
to high-end handset sales than their com-
petitors. With more users embracing
more features, HTC is well positioned to
continue their leadership and maintain
growth in emerging markets. Through
the use of Xilinx silicon products and
software tools, HTC will continue to
design innovative solutions and deliver
these products on time.

To further explore the Xilinx family of
CPLDs, visit www.xilinx.com/cpld/
index.htm. To see HTC’s line of handsets,
visit www.htc.com.tw.

2001 2002 2003 2004 2005 2006 2007 2008

Entry Level 97.7 95.4 84.2 68.6 52.5 40.1 29.3 20.8

Midrange Feature 1.9 3.1 10.6 21.1 28.0 31.4 32.2 34.3

High End 0.1 0.6 3.4 7.3 12.6 19.0 26.4 30.3

Converged
0.4 0.8 1.8 3.0 7.0 9.5 12.0 14.6Mobile Device

Operating System Units Shipped Market Share

Windows CE 1,759,497 45.5%

Palm OS 1,301,740 33.7%

RIM 698,000 18.1%

Linux 24,300 0.6%

Others 82,000 2.1%

Table 1 – Worldwide mobile phone shipment share by feature tier, 2001-2008 (%) (Data supplied by
IDC – worldwide mobile phone 2005-2008 forecast by feature tier)

Table 2 – Shipment of PDAs by operating system worldwide

HTC has embraced low-power CPLDs with a
passion, taking advantage of the features

offered by CoolRunner-II products ...

58 Xcell Journal Third Quarter 2005

P O W E R M A N A G E M E N T

The Intersil ISL6521 quad regulator IC solution includes one switch-
ing regulator for loads as high as 20A and three linear regulators that
each drive 120 mA or 3A with external transistors. High integration
brings these four regulators together with full protection, power-on
reset, and softstart features in one space- and cost-saving IC.

Applications for this new IC range broadly, providing power solu-
tions for FPGAs, ASICs, POL, embedded systems, and I/O across
medical, industrial, computing, and telecom.

The ISL6521 combines multiple switchers and/or linears in a sin-
gle 16-lead SOIC package, delivering the integration and flexibility
FPGA-based designers need. This single IC solution increases avail-
able board space while reducing costs and the number of required
external components.

The ISL6521 PWM controller is intended to regulate the low-
voltage supply that requires the greatest amount of current (usually
the core voltage for the FPGA, ASIC, or processor) with a synchro-
nous rectified buck converter. The linears are intended to regulate
other system voltages, such as I/O and memory circuits. Both the

switching regulator and linear voltage reference provide ±2% of stat-
ic regulation over line, load, and temperature ranges. All outputs are
user-adjustable by means of an external resistor divider. All linear
controllers can supply up to 120 mA with no external pass devices.

Employing bipolar NPNs for the pass transistors, the linear reg-
ulators can achieve output currents of 3A or higher with proper
device selection. The ISL6521 monitors all output voltages. The
PWM controller’s adjustable overcurrent function monitors the out-
put current by using the voltage drop across the upper MOSFET’s
rDS(ON). The linear regulator outputs are monitored through the
FB pins for undervoltage events.

Third Quarter 2005 Xcell Journal 61

High integration with full features enables space and cost savings.

The Intersil ISL6521 Simplifies
Power Solutions for Xilinx FPGAs

Features
• Provides one regulated voltage-switching regulator capable of 20A and three

linear regulators capable of 120 mA or up to 3A with an external transistor

• Externally resistor-adjustable outputs

• Simple single-loop control design / voltage-mode PWM control

• Fast PWM converter transient response / high-bandwidth error amplifier /
full 0% to 100% duty ratio

• Excellent output voltage regulation / all outputs: ±2% over temperature

• Overcurrent fault monitors / switching regulator does not require extra current
sensing element, using instead the MOSFET’s Rds(on)

• Small converter size / 300 kHz constant frequency operation /
small external component count

• Commercial and industrial temperature range support

• Pb-free available (RoHS compliant)

Applications
• FPGA and PowerPC™-based boards

• General purpose, low-voltage power supplies

For a copy of “Power Management Application Guide for
Xilinx® FPGAs,” visit www.intersil.com/Xilinx/index.asp.

P O W E R M A N A G E M E N T

Linear Technology offers a broad range of regulators to simplify the
design and selection of DC/DC converters to power the Xilinx®

Spartan™-3 family of FPGAs. Our converters range from low
dropout linear regulators to sophisticated dual-output switching con-

trollers that offer high efficiency and on-chip power supply tracking.
Linear’s free SwitcherCAD™ software allows quick and simple sim-
ulation of power supply designs. To download SwitcherCAD soft-
ware, please visit www.nuhorizons.com/linear.

62 Xcell Journal Third Quarter 2005

Linear Technology DC/DC converters power Spartan-3 devices.

Spartan-3 FPGA Power Management Solutions

Single Output Regulators for Spartan-3 FPGAs Core Voltage: 1.2V
≤200 mA ≤500 mA ≤2A-2.5A ≤3A-5A ≤25A

1.8V LTC3025 Linear LT3021 Linear LTC3026 Linear LT3150 Linear LTC3713 Controller LTC3713 Controller

2.5V to 5V LTC3405A Switcher LTC3406 Switcher LTC3412 Switcher
LTC3414 Switcher
LTC3801 Controller

LTC3801 Controller
LTC1773 Controller

LTC3713 Controller
LTC3832 Controller
LTC1778 Controller

≤12V LT1616 Switcher
LT1976 Switcher
LT1767 Switcher

LT1976 Switcher
LT3431 Switcher

LTC1778 Controller

LTC1771 Controller
LTC1778 Controller

LTC1778 Controller LTC1778 Controller

≤24V LT1934 Switcher
LT1976 Switcher
LT1767 Switcher

LT1976 Switcher
LT3431 Switcher

LTC1778 Controller

LT3431 Switcher
LTC1778 Controller

LTC1778 Controller LTC1778 Controller

www.nuhorizons.com/linear www.linear.com

P O W E R M A N A G E M E N T

• Highly efficient 2A to 25A solution

• Input voltage from 1V to 16V

• Adjustable output voltage as low as 0.6V

• Power-good flag and output enable

• 1.5% reference accuracy over temperature

• Current limit without sense resistor

• Programmable softstart

• Switching frequency from 50 kHz to 1 MHz

• Available in small TSSOP-14 packaging

The LM2743 and LM2744 are high-speed synchronous buck reg-
ulator controllers that drive external MOSFETs to supply as much
as 25A of current. They can provide simple down conversion to
output voltages as low as 0.6V. Although the control sections of the
ICs are rated for 3 to 6V, the driver sections are designed to accept
input supply rails as high as 16V. The use of adaptive non-overlap-
ping MOSFET gate drivers helps avoid potential shoot-through
problems while maintaining high efficiency.

A wide range of switching frequencies from 50 kHz to 1 MHz
gives Xilinx® FPGA and system power supply designers the flexibili-
ty to make better trade-offs between component size, cost, and effi-
ciency. A versatile softstart and tracking pin allows ratiometric,
coincidental, or offset tracking, which are critical for FPGA systems.
An evaluation board is available.

Third Quarter 2005 Xcell Journal 63

LM2743

SS/TRK

EAO GND

VCC

ISEN

3V to 6V

ON

OFF

Output power good

Input power

1V to 16V

VOUT = O.6V to 0.85*VIN

Up to 25A loadsSD

(Bias)

PGOOD

HG

FB

LG

LM2743 Typical application diagram

LM2743/44 Low-Voltage Synchronous Buck Controllers

Versatile FPGA Power Solutions from National Semiconductor

For free samples, evaluation boards, or more information,
visit power.national.com or call 1-800-272-9959.

• Complete, easy-to-use switcher solution has the smallest foot-
print and highest power density in the industry

• Choice of switching frequencies allows designers to
trade-off efficiency against solution size and EMI

• Current mode control improves phase margin, line reg-
ulation, and rejection of transients

• Internal softstart circuitry, cycle-by-cycle, thermal shutdown, and over-voltage protection

The LM2734 and LM2736 are monolithic, high-frequency (550
kHz and 1.6 MHz) PWM step-down DC/DC converters in tiny six-
pin thin SOT-23 packaging. They provide local DC/DC conversion
for Xilinx FPGAs with currents up to 1A.

Both regulators need no external compensation and are supported
by WEBENCH®, National’s online design tool. The ability to drive
up to 1A loads with an internal 300 mΩ NMOS switch using state-
of-the-art 0.5 µm BiCMOS technology results in the best power den-
sity available. The world-class control circuitry supports exceptionally
high frequency conversion over the entire 3V to 20V input operating
range, down to the minimum output voltage of 0.8V. Even though
the operating frequencies are very high, efficiencies as high as 90% are
easy to achieve. Additionally, a current-mode control loop provides
fast transient response and accurate regulation in the smallest possible
PCB area. An evaluation board is available.

OFF

ON

C1
10 µF

VIN

5V

(3V to 18V)

LM2734 Typical application diagram

(Down to 0.8V)

D1

D2

C2
0.01 µF

L1
10 µH

VOUT

3.3V/1A
C3
10 µFR1

31.6 kΩ

R2
10 kΩ

EN

LM2734

GND
FB

VIN BOOST

SW

LM2734/36 1A SOT-23 Buck Regulators

Feature LM2734 LM2736

Input Range 3.0V to 20V 3.0V to 18V

Output Load 1A 750 mA

Output Range 0.8V to 18V 1.25V to 16V

Internal References 0.8V, 2% 1.25V, 2%

Operating Frequency 550 kHz/1.6 MHz/3 MHz

P O W E R M A N A G E M E N T

Features

• Two 95% efficient, 3A buck controllers and one 300 mA LDO

• Adjustable output voltages:

– From 1.2V for bucks

– From 1.0V for LDO

• Input voltage range of 2.2V to 6.5V

• Independent softstart for all three power supplies

• LDO stable with small ceramic output capacitor

• Independent enable for each supply for flexible sequencing

• 4.5 mm x 3.5 mm x 0.9 mm 20-pin QFN package

• 1 ku price: $1.90

Applications

• DSL modems

• Set-top boxes

• Plasma TV display panels

• DVD players

The TPS75003 power management IC for Xilinx® Spartan™-II,
Spartan-IIE, and Spartan-3 FPGAs integrates multiple func-
tions to significantly reduce the number of external components
required – and simply your designs. Combining increased
design flexibility with cost-effective voltage conversion, the
device includes programmable softstart for in-rush current con-
trol and independent enables for sequencing the three channels.
The TPS75003 meets all Xilinx startup profile requirements,
including monotonic ramp and minimum ramp times.

64 Xcell Journal Third Quarter 2005

Highly integrated triple supply powers Spartan-3 core, I/O, and VCCAUX rails.

TI Power Solutions

For more information about the complete line of TI
power management solutions for Xilinx FPGAs, including

a library of reference designs, schematics, and BOMs,
visit www.ti.com/xilinxfpga. For questions, samples, or an

evaluation module, e-mail fpgasupport@list.ti.com.

TPS75003

IS1
SW1
FB1
IS2

FB2
SW2

OUT3
FB3

AGND
DGND

IN1
IN2
IN3
EN1

EN2
SS1

SS2
EN3
SS3
DGND

DGND

5 V_INPUT

VCCAUX

100 µF

1.5 nF 1.5 nF 10 nF

0.033 0.033

5 µH

15 µH
VCCINT
1.2 V @ 2 A

VCCO
3.3 V @ 2 A

VCCAUX
2.5 V @ 300 mA

100 µF

100 µF

10 µF61.9 k

15.4 k

61.9 k

36.5 k

Q2

Q1

D1

D2

3 A
BUCK1

3 A
BUCK2

300 mA
LDO

P O W E R M A N A G E M E N T

by Larry French
FAE Manager
Micron Semiconductor Products, Inc.
lfrench@micron.com

As a designer, you probably spend a signif-
icant amount of time simulating boards
and building and testing prototypes. It is
critical that the kinds of tests performed on
these prototypes are effective in detecting
problems that can occur in production or
in the field.

DRAM or other memory combined in
an FPGA system may require different test
methodologies than an FPGA alone.
Proper selection of memory design, test,
and verification tools reduces engineering
time and increases the probability of
detecting potential problems. In this arti-
cle, we’ll discuss the best practices for thor-
oughly debugging a Xilinx® FPGA design
that uses memory.

Memory Design, Testing, and Verification Tools
You can use many tools to simulate or
debug a design. Table 1 lists the five essen-
tial tools for memory design. Note that this
is not a complete list as it does not include
thermal simulation tools; instead, it focus-
es only on those tools that you can use to
validate the functionality and robustness of
a design. Table 2 shows when these tools
can be used most effectively.

This article focuses on the five phases
of product development, as shown in
Table 2:

• Phase 1 – Design (no hardware,
only simulation)

• Phase 2 – Alpha (or Early) Prototype
(design and hardware changes likely to
occur before production)

• Phase 3 – Beta Prototype (nearly
“production-ready” system)

• Phase 4 – Production

• Phase 5 – Post-Production (in the
form of memory upgrades or field
replacements)

The Value of SI Testing
SI is not a panacea and should be used
judiciously. SI should not be overused,
although it frequently is. For very early or
alpha prototypes, SI is a key tool for
ensuring that your system is free of a
number of memory problems, including:

• Ringing and overshoot/undershoot

• Timing violations, such as:

– Setup and hold time

– Slew rate (weakly driven or
strongly driven signals)

– Setup/hold time (data, clock,
and controls)

How to Detect Potential Memory
Problems Early in FPGA Designs
How to Detect Potential Memory
Problems Early in FPGA Designs

66 Xcell Journal Third Quarter 2005

System compatibility testing for FPGA memory requires
methods other than traditional signal integrity analysis.
System compatibility testing for FPGA memory requires
methods other than traditional signal integrity analysis.

C O N N E C T I V I T Y

– Clock duty cycle and differential
clock crossing (CK/CK#)

– Bus contention

By contrast, SI is not useful in the beta
prototype phase unless there are changes to
the board signals. (After all, each signal net
is validated in the alpha prototype.)
However, if a signal does change, you can
use SI to ensure that no SI problems exist
with the changed net(s). Rarely – if ever – is
there a need for SI testing in production.

SI is commonly overused for testing
because electrical engineers are comfort-
able looking at an oscilloscope and using
the captures or photographs as documen-
tation to show that a system was tested
(Figure 1). Yet extensive experience at
Micron Technology shows that much
more effective tools exist for catching fail-
ures. In fact, our experience shows that SI
cannot detect all types of system failures.

Limitations of SI Testing
SI testing has a number of fundamental
limitations. First and foremost is the
memory industry migration to fine-pitch
ball-grid array (FBGA) packages.
Without taking up valuable board real
estate for probe pins, SI is difficult or
impossible because there is no way to
probe under the package.

Micron has taken several hundred

• SI is time-consuming. Probing 64-bit
or 72-bit data buses and taking scope
shots requires a great deal of time.

• SI uses costly equipment. To gather
accurate scope shots, you need high-
cost oscilloscopes and probes.

• SI takes up valuable engineering
resources. High-level engineering
analysis is required to evaluate scope
shots.

• SI does not find all errors. Margin and
compatibility testing find errors that are
not detectable by SI.

The best tests for finding FPGA/
memory issues are margin and compati-
bility testing.

Margin Testing
Margin testing is used to evaluate how sys-
tems work under extreme temperatures
and voltages. Many system parameters
change with temperature/voltage, includ-
ing slew rate, drive strength, and access
time. Validation of a system at room tem-
perature is not enough. Micron found that
another benefit of margin testing is that it
detects system problems that SI will not.

Four-corner testing is a best industry
practice for margin testing. If a failure is

thousand scope shots in our SI lab dur-
ing memory qualification testing. Based
on this extensive data, we concluded
that system problems are most easily
found with margin and compatibility
testing. Although SI is useful in the
alpha prototype phase, it should be
replaced by these other tests during beta
prototype and production.

Here are some other results of our
SI testing:

• SI did not find a single issue that
was not identified by memory or
system-level diagnostics. In other
words, SI found the same failures as
the other tests, thus duplicating the
capabilities of margin testing and
software testing.

Third Quarter 2005 Xcell Journal 67

Tool Example

Electrical Simulations SPICE or IBIS

Behavioral Simulations Verilog or VHDL

Signal Integrity Oscilloscope and probes;
possibly mixed-mode to
allow for more accurate
signal capture

Margin Testing Guardband testing and
four-corner testing by
variation of voltage
and temperature

Compatibility Testing Functional software
testing or system
reboot test

Tool Design Alpha Proto Beta Proto Production Post-Prod

Simulation – Electrical Essential Very Valuable Limited Value Rarely Used No Value

Simulation – Behavioral Essential Very Valuable Limited Value Rarely Used No Value

Signal Integrity Unavailable Critical Limited Value Rarely Used No Value

Margin Testing Unavailable Essential Essential Essential Essential

Compatibility Unavailable Valuable Essential Essential Essential

Table 1 – Memory design, test,
and verification tools

Table 2 – Tools for verifying memory functionality versus design phase

How Does the Logic Analyzer (or Mixed-Mode Analysis) Fit In?

You may have noticed that Table 1 does not include logic analyzers. Although it is rare
to find a debug lab that does not include this tool as an integral part of its design and
debug process, we will not discuss logic analyzers in this article. Because of the cost and
time involved, they are rarely the first tool used to detect a failure or problem in a sys-
tem. Logic analyzers are, however, invaluable in linking a problem, after it has been
identified, to its root cause. Like signal integrity (SI), logic analyzers should be used
after a problem has been detected.

Figure 1 – Typical signal integrity shot
from an oscilloscope

C O N N E C T I V I T Y

going to occur during margin testing, it
will likely occur at one of these points:

• Corner #1: high voltage, high
temperature

• Corner #2: high voltage, low
temperature

• Corner #3: low voltage, high
temperature

• Corner #4: low voltage, low
temperature

There is one caveat to this rule. During
the alpha prototype, margin testing may
not be of value because the design is still
changing and the margin will be improved
in the beta prototype. Once the system is
nearly production-ready, you should per-
form extensive margin testing.

Compatibility Testing
Compatibility testing refers simply to the
software tests that are run on a system.
These can include BIOS, system operat-
ing software, end-user software, embed-
ded software, and test programs. PCs are
extremely programmable; therefore, you
should run many different types of soft-
ware tests.

In embedded systems where the FPGA
acts like a processor, compatibility testing
can also comprise a large number of tests.
In other embedded applications where the
DRAM has a dedicated purpose such as a
FIFO or buffer, software testing by defini-
tion is limited to the final application.
Thorough compatibility testing (along
with margin testing) is one of the best
ways to detect system-level issues or fail-
ures in all of these types of systems.

Given the programmable nature of
Xilinx FPGAs, you might even consider a
special FPGA memory test program. This
program would only be used to run
numerous test vectors (checkerboard,
inversions) to and from the memory to
validate the DRAM interface. It could eas-

ily be written to identify a bit error,
address, or row – in contrast to the stan-
dard embedded program that might not
identify any memory failures. This pro-
gram could be run during margin testing.
It would be especially interesting for
embedded applications where the memo-
ry interface runs a very limited set of
operations. Likely, this type of test would
have more value than extensive SI testing
of the final product.

Tests Not To Ignore
The following tests, if ignored, can lead
to production and field problems that are
subtle, hard to detect, and intermittent.

Power-Up Cycling
A good memory test plan should include
several tests that are sometimes skipped
and can lead to production or field prob-
lems. The first of these is power-up
cycling. During power-up, a number
of unique events occur, including the
ramp-up of voltages and the JEDEC-
standard DRAM initialization sequence.
Best industry practices for testing
PCs include power-up cycling tests to
ensure that you catch intermittent
power-up issues.

Two types of power-up cycling exist:
cold- and warm-boot cycling. A cold boot
occurs when a system has not been run-
ning and is at room temperature. A warm
boot occurs after a system has been run-
ning for awhile and the internal tempera-
ture is stabilized. You should consider
both tests to identify temperature-
dependent problems.

Self-Refresh Testing
DRAM cells leak charge and must be
refreshed often to ensure proper opera-
tion. Self-refresh is a key way to save sys-
tem power when the memory is not used
for long periods of time. It is critical that
the memory controller provide the prop-

er in-spec commands when entering and
exiting self-refresh; otherwise, you could
lose data.

Like power-up cycling, self-refresh
cycling is a useful compatibility test. If an
intermittent self-refresh enter or exit
problem is present, repeated cycling can
help detect it. Applications that do not
use self-refresh should completely skip
this test.

Sustaining Qualifications
One last area to consider is the test
methodology for sustaining qualifica-
tions. That is, what tests should you per-
form to qualify a memory device once a
system is in production? This type of test-
ing is frequently performed to ensure that
an adequate supply of components will be
available for uninterrupted production.

During production a system is stable
and unchanging. Our experience has
shown that margin and compatibility
testing are the key tests for sustaining
qualifications. Because a system is stable,
SI has little or no value.

Conclusion
In this article, our intent has been to
encourage designers to rethink the way
they test and validate FPGA and memo-
ry interfaces. Using smart test practices
can result in an immediate reduction in
engineering hours during memory quali-
fications. In addition, proper use of mar-
gin and compatibility testing will
identify more marginalities or problems
within a system than traditional methods
such as SI. No “one-size-fits-all” test
methodology exists, so you should iden-
tify the test methodology that is most
effective for your designs.

For more detailed information on test-
ing memory, see Micron’s latest
DesignLine article, “Understanding the
Value of Signal Integrity,” on our website,
www.micron.com.

68 Xcell Journal Third Quarter 2005

...margin and compatibility testing will identify more marginalities or
problems within a system than traditional methods such as SI.

C O N N E C T I V I T Y

by Bill Hargin
Product Manager, HyperLynx
Mentor Graphics
bill_hargin@mentor.com

A few months ago, I needed a few new hard
drives: two desktop drives for home and a
bigger 120 GB drive for my laptop, which
was out of space. Browsing through a
Seattle-area computer store, I compared
the prices of Ultra ATA drives (older, paral-
lel architectures) and Serial ATA (SATA)
disk drives, discovering that the higher
throughput of the SATA drives had result-
ed in price points that were twice those of
the Ultra ATA drives. To me, this present-
ed a crisp picture of the economic drivers
behind the SERDES technology wave:
higher throughput commanding a higher
price, yet lower manufacturing costs.

You would think hardware designers
would be making a mad dash toward seri-
al design. However, I find that the “dash”
toward SERDES seems to hover around
20 percent. Pondering this, I have come to
believe that there are three primary rea-
sons for the reticence among the remain-
ing 80 percent:

1. Speed. Many applications are not
pushing the speed envelope.

2. Resistance to change. Even innovative
engineers are creatures of habit.

3. Real or perceived technical hurdles.
SERDES design requires a different
approach than wide, parallel bus
design.

Losing Less from Lossy LinesLosing Less from Lossy Lines

Third Quarter 2005 Xcell Journal 69

Managing signal loss when designing with RocketIO transceivers.Managing signal loss when designing with RocketIO transceivers.

C O N N E C T I V I T Y

In this article, I’ll address the third rea-
son in detail. Although my focus is on
Xilinx® Virtex™-II Pro RocketIO™ tech-
nology, the information would apply to
any serial interface, including RocketIO
transceivers in Virtex-4 devices.

Line Loss
An ideal lossless transmission line assumes
that a signal propagates down the line with
no energy loss. In other words, if a 1.0V
signal with a 1.0 ns rise time enters one end
of the line, the same 1.0V and 1.0 ns signal
will come out the far end.

This is a good approximation when sig-
nal rise times are on the order of 1.0 ns (or
slower), and with trace lengths of 10 in (or
shorter). However, as rise times trend
toward 100 ps and lengths get significantly
longer (as in a backplane), the lossy effects
of transmission lines begin to influence sig-
nal quality dramatically. As Figure 1 shows,
these effects – both attenuation and rise-
time degradation – vary directly with
length at higher frequencies.

To describe and accurately predict the
behavior of real interconnects, two impor-
tant mechanisms that absorb energy from
the signal must be modeled:

• Resistive loss. From DC through fre-
quencies up to a few megahertz, the
current in a trace moves through the
entire cross-sectional area of the trace.
At higher frequencies, however, current
flows along the perimeter of a line
rather than uniformly across the entire

Deterministic jitter encompasses the
list of systematic interconnect effects that
will reoccur if you repeat the same stimu-
lus. Dielectric and resistive loss, as well as
crosstalk, reflections, via parasitics, return-
path discontinuities, and any systematic
aspect of an interconnect design contribute
to deterministic jitter.

If the combined effects of random and
deterministic jitter are significant enough,
ISI will result, indicating that bit distinc-
tions have become “blurry” at the receiv-
er. This becomes particularly serious
when rise-time degradation becomes
comparable to the bit period of the signal.
As a result, the shape of the received
waveform will depend on the prior bit
pattern (ISI).

These effects are best modeled using
an oscilloscope that supports eye diagram
analysis. Eye diagrams provide a visual
display of the signal quality over many bit
transitions with both deterministic and
random jitter serving to close the “eye.”

At a glance, an eye diagram will show
if an interconnect is acceptable. Pass/fail
criteria are often specified by an eye mask,
shown as a blue hexagon on the left-hand
side of Figure 2. Eye masks, which con-
form to the various SERDES specifica-
tions, define minimum and maximum
keep-out regions where proper bit transi-
tions should not appear for proper receiv-
er interpretation of the driver’s intent.

cross-section. As a result, the series
resistance of the signal and return path
conductors increases with the square
root of frequency as the effective cross-
section of the interconnect path is
reduced. Resistive loss is also referred
to as “skin effect.” But no matter what
you call it, it is the same phenomenon,
and something you should be con-
cerned about at high frequencies.

• Dielectric loss. The second important
loss mechanism is dielectric loss, which
is simply the conversion of electrical
energy from the alternating electric field
into heat. Dielectric loss, often specified
in decibels per meter, increases with fre-
quency and varies inversely with a mate-
rial’s “loss tangent” – a function of the
material’s resin type and molecular
structure. Depending on resin content,
“vanilla” FR-4 has a loss tangent ranging
from 0.02-0.03. Lower loss tangent
equates to more of the output signal
getting to its destination, as well as
higher material costs compared to FR-4.
GETEK, for example, has a loss tangent
of 0.012. Nelco 4000-13 is 0.01. And
the loss tangent for Rogers 4003 is as
low as 0.0027. For an actual design, you
will want to discuss the tradeoffs with
your board vendor.

Loss, Jitter, and ISI
I’ve often heard engineers use
the terms inter-symbol inter-
ference (ISI), jitter, and loss
to refer to the same thing: the
unknown cause of a less-
than-optimal signal or bit-
stream. In fact, these are
different phenomena.

Random jitter is used to
describe random events that
result in a delay between the
expected and actual signal
transition. The distribution of
random effects follows a classic
Gaussian distribution, where
the results vary wider (in time)
as more data is observed. This
data is typically provided by
the driver manufacturer.

Figure 1 – Reciever waveforms for a lossless line,
as well as 10, 20, and 40 in lines, showing
both attenuation and rise-time degradation

for a 2 GHz signal. (Simulated with Mentor
Graphics HyperLynx.)

Figure 2 – The eye shows encroachment on the XAUI eye mask
when using 10% pre-emphasis for a 36 in FR-4 transmission
path with four vias and two Teradyne VHDM-HSD5 connec-

tors (simulated with HyperLynx LineSim GHz).

70 Xcell Journal Third Quarter 2005

C O N N E C T I V I T Y

Typically used bit patterns, or “pulse
trains,” include 8b/10b encoding and
PRBS (pseudo-random bit stimulus). The
8b/10b data transmission scheme is con-
sidered ideal for high-speed local area net-
works and computer links. Realistic, long
character sequences eventually hit some
kind of worst-case history, but this can
take a long time. A PRBS stimulus, as
shown on the right-hand side of Figure 2,
provides a means to force as much “action”
on a serial data path as possible, in the
smallest number of cycles. It is “pseudo-
random” because it actually repeats after a
pre-determined “n” number of bits.

Losing Less from Lossy Lines
Assuming that you have followed good
routing rules (for example, achieving a con-
sistent differential impedance of 100 ohms
and avoiding excessive routing skew), there
are five major ways to mitigate loss:

1. Reduce resistive loss by widening
traces. Because resistive loss or “skin
effects” are the result of a reduced
cross-sectional area in a trace, wider
traces result in a larger cross-sectional
area, so the percent reduction due to
resistive loss becomes smaller.

2. Reduce dielectric loss by shortening
lines. Dielectric loss is a function of
the material used and the length
over which a signal is transmitted.
Shortening the overall interconnect
length (which may not be possible
in many systems) can be an effective
means of eliminating loss.

3. Reduce dielectric loss by employing
lower loss tangent dielectrics. To
reduce dielectric loss, more expensive
materials – with lower loss tangents –
can be considered, perhaps after
exhausting less-expensive approaches.

4. Increase driver pre-emphasis. Boost
the initial voltage level of each edge
to compensate for high-frequency
loss. (The trade-off here is additional
power consumption.)

5. Equalization at the receiver. The
incoming signal’s lower frequency

components are intentionally attenu-
ated to artificially balance between
high- and low-frequency compo-
nents. The result is then amplified,
with equalization of the low- and
high-frequency signal components.

Although it is possible to estimate rise-
time degradation and loss based on rules
of thumb, the only way to get a realistic
prediction of the impact from losses is to
use a software simulator with the capabil-

ity of simulating lossy lines. The
HyperLynx Virtex-II Pro RocketIO
Design Kit, along with HyperLynx simu-
lation software, will enable you to simu-
late the preceding effects with Xilinx
RocketIO technology.

The HyperLynx RocketIO Design Kit
In an effort to make multi-gigabit inter-
connect implementation as painless as pos-
sible, Xilinx and Mentor Graphics have
teamed up to provide the RocketIO Design
Kit for HyperLynx. Editable, pre-config-
ured circuits in the kit are ready to simulate
for both chip-to-chip applications and
PCB backplanes – including connectors
and pre-configured differential striplines.

The FR-4 traces used are a differential
pair of centered striplines, 12 mils wide
and 20 mils apart, with a 50 ohm charac-
teristic impedance.

Figure 2 shows simulation results for
the Xilinx backplane example with a 36 in
transmission path and four vias. The eye in
the figure shows encroachment on the
XAUI (10 Gb Extended Attachment Unit
Interface) eye mask when using 10 percent
pre-emphasis. Here, we can clearly see the
effects of ISI at the receiver.

Although you could engage any of the
five primary loss-reduction mechanisms
to open up the eye, let’s assume that the
36 in backplane is a design requirement

and that the four vias
are inevitable. One of
the remaining options
is pre-emphasis, which
can be bumped up to
20, 25, or 33 percent.
Figure 3 shows the
results at 25 percent
pre-emphasis: the eye
is wide open, which is
great. With the wide
margin around the
XAUI mask’s internal
keep-out region, I
would want to simu-
late this again at 20
percent pre-emphasis
in an attempt to con-
serve power.

Conclusion
Although I simulated only one solution
here, any permutation of the five ways to
deal with loss is possible. Moreover, you
could also examine non-ideal routing
effects, including simulation of the
impacts of differential length skew. With
the availability of helpful simulation tools
like HyperLynx, you don’t need to fabri-
cate prototypes – wondering whether
you’ve over-designed or under-designed,
spent too much or spent too little.

In a future extension of this theme,
we’ll revisit the Xilinx SIS Kit backplane
design and examine the impact of the
new equalization technology in the
Virtex-4 implementation of RocketIO
transceivers.

The HyperLynx RocketIO Design
Kit is available from www.mentor.com/
hyperlynx.

Third Quarter 2005 Xcell Journal 71

Figure 3 – Results with pre-emphasis bumped to 25% show significant
improvement. Also shown is a graph of resistive and dielectric loss (dB)
as a function of frequency (MHz) for the backplane (simulated with

HyperLynx LineSim GHz).

C O N N E C T I V I T Y

by Ying Sue
Senior Technical Marketing Engineer,
Flash Products Group
Intel
ying.sue@intel.com

The Xilinx® Spartan™-3E family of
FPGAs targets high-volume, cost-sensitive
consumer electronic applications with a
density range from 100,000 to 1.6 million
system gates. It offers performance and cost
enhancements over the previous generation
of Spartan devices, as well as a new config-
uration mode allowing a glueless interface
to standard parallel NOR flash memories.
Nearly all of the configuration pins can be
used as user I/Os after configuration.

This configuration mode, known as the
byte-wide peripheral interface (BPI) paral-
lel flash mode, lets you take advantage of
low-cost and high-density Intel StrataFlash
3V Memory (J3), or J3 Memory. J3
Memory uses Intel ETOX process technol-
ogy with multi-level cell capability, which
provides 2X the bits in 1X the space. J3
Memory is available in a variety of pack-

Connecting Intel StrataFlash
Memory to Spartan-3E FPGAs
Connecting Intel StrataFlash
Memory to Spartan-3E FPGAs

72 Xcell Journal Third Quarter 2005

You can gluelessly connect the Spartan-3E FPGA to
the low-cost and high-density Intel StrataFlash Memory.
You can gluelessly connect the Spartan-3E FPGA to
the low-cost and high-density Intel StrataFlash Memory.

C O N N E C T I V I T Y

ages and densities for increased flexibility
and can be gluelessly connected to the
Spartan-3E FPGA to store any of the fol-
lowing:

• Bitstreams for one or more FPGAs

• Boot code, parameters, and data for
soft CPU cores in the FPGA

• Multiple bitstreams for the same
FPGA utilizing the MultiBoot feature
of the Spartan-3E device

Figure 1 shows how dual bitstreams
(for MultiBoot) and code/data storage can
coexist in a J3 Memory device.

Design Notes
Figure 2 illustrates the connection
between two Spartan-3E FPGAs and a J3
Memory flash device in a 3.3V environ-
ment. In this section, we’ll examine key
design considerations, such as power
sequence, reset, hot-swap, flash content
protection, and x8/x16 mode toggling.

Power-Up Sequence
Three supply voltages are required to sup-
port the Spartan-3E device and J3
Memory in a 3.3V application:

• 3.3V: connected to the VCC and
VCCQ supplies of J3 Memory, as well
as to the VCCO_1 and VCCO_2
supplies of the FPGA

• 2.5V: connected to the VCCAUX
supply of the FPGA

• 1.2V: connected to the VCCINT
supply of the FPGA

VCCO_0 and VCCO_3 supplies of
the FPGA can be 3.3V, 2.5V, 1.8V, 1.5V,
or 1.2V, as required by the application.

The Spartan-3E FPGA datasheet
describes the power-on precaution in the
serial flash mode (SPI mode), where the
FPGA might be reading from the flash
device before the flash memory is ready.
The same consideration applies to paral-
lel flash devices, because typical flash
devices require some time (60 µs for J3
Memory) to complete internal initializa-
tion after the voltage reaches a nominal
level (2.7V for J3 Memory).

required voltage. This scenario typical-
ly does not cause issues because the
flash device (such as J3 Memory) is
ready for reading when the FPGA
starts its programming sequence.

• 3.3V is valid after 2.5V and 1.2V. To
work around this scenario, you can
typically use a 3.3V voltage monitor
to hold the PROG_B or INIT_B pin

If the 2.5V and 1.2V are valid and the
3.3V reaches 0.4V to 1.0V (a voltage level
below the minimum operating voltage of
a flash device such as J3 Memory), the
FPGA starts its programming sequence
before the flash device is ready. Either of
two scenarios might occur:

• 3.3V is valid (reaching 2.7V) before
2.5V and 1.2V reach their minimum

Third Quarter 2005 Xcell Journal 73

FPGA Diagnostics

Bitstream

FPGA Application

Bitstream

Soft CPU Core Boot &

Application Code

+

Data

0x1FFFFF

0x00000

0

Intel StrataFlash Memory (J3)

FPGA Diagnostics

Bitstream

FPGA Application

Bitstream

Soft CPU Core Boot &

Application Code

+

Data

0x1FFFFF

0x000000

GSR

GTS

MBT

CLK

STARTUP_SPARTAN3E

>300 ns

First Configuration Second Configuration

 For more information on using the Xilinx Spartan-3E FPGA in this setup, see Xilinx datasheet DS312-2

Intel StrataFlash Memo ry (J3)

Open Drain POR

(>1ms Delay)

VCCO_1

VCCO_2

LDC0

LDC1

HDC

LDC2

A[23:0]

D[7:0]

M2

M1

M0

CSI_B

RDWR_B

TDI

TMS

TCK

TDO

HSWAP

CCLK

CSO_B

CE0

OE#

WE#

BYTE#

A[23:0]

D[7:0]

VCC

VCCQ

RP#

VPEN

STS

4.7K 4.7K

2.5V

Intel StrataFlash Memory (J3)

GND

3.3V
4.7K

330

BPI Mode

4.7K

0

1

0/1

3.3V

JTAG Header

VCCO_1

VCCO_2

D[7:0]

INIT_B

VCCAUX

USER I/Os

VCCINT

M2

M1

M0

CSI_B

RDWR_B

TDI

TMS

TCK

TDO

HSWAP

CCLK

CSO_B

PROG_B

DONE

Xilinx Spartan-3E

Xilinx Spartan-3E

1

1

0

Slave Parallel Mode

0

0

TDI

TMS

CCLK

CSI_B

TCK

TDO

CCLK

CSI_B

0

TMS

TCK
TDO

TDI

3.3V

3.3V

1.2V

1.2V

2.5V

Optional

3.3V Monitor

0
0

PROG_B

DONE

INIT_B

VCCAUX

USER I/Os

VCCINT

340

Optional

D[15:8]

CE1

CE2

GND

Figure 1 – Multiple bitstream and code/data storage in flash devices (B4980)

Figure 2 – A 2x Xilinx Spartan-3E FPGA to Intel StrataFlash memory (J3) connection (B4981)

C O N N E C T I V I T Y

low for at least 1 ms after the 3.3V
power supply reaches the minimum
operating threshold.

Reset
On J3 Memory, the RP# pin is the reset
input. In reset, the internal flash circuitry is
disabled and outputs are placed in a high-
impedance state. The RP# pin places a
flash device (such as J3 Memory) into asyn-
chronous page mode (read-array) when a
minimum low pulse (35 µs) is applied.

The following connection options are
available for the RP# pin:

• Connecting RP# to 3.3V. This connec-
tion means that the flash device (such
as J3 Memory) does not reset until
power is cycled. This connection is
suitable for applications where the
FPGA is programmed only on power
up and is not reprogrammed without
power cycling. This connection is also
applicable if you are certain that the
risk of putting the flash device into
non-read-array mode while the
PROG_B pin is toggled is minimal.

• Connecting RP# to System Reset.
When this connection is made, you
must ensure that the PROG_B pin is
not driven from low to high before
RP# goes high, so that the FPGA does
not start reading from the flash device
before it comes out of reset. For J3
Memory, this duration is 150 ns to
210 ns after RP# goes high, under typ-
ical operating voltages.

• Connecting RP# and PROG_B
together. When an FPGA reprogram is
issued, this connection automatically
resets the flash device to read-array
mode. The output of a voltage monitor
can be used to drive both inputs, but
only under the following conditions:

– The minimum reset pulse width for
the flash device (such as J3 Memory)
is met. The PROG_B pin on the
FPGA requires only 0.3 µs low pulse,
but J3 Memory requires 35 µs.

– The TPL delay, from the time the
PROG_B pin on the FPGA transi-

tions high until INIT_B transitions
high, exceeds the typical range of
150 ns to 210 ns (the R5 parameter
in the Intel StrataFlash Memory [J3]
datasheet). According to the Xilinx
datasheet, the TPL minimum is
approximately 2 ms.

HSWAP
To prevent inadvertent access to the flash
memory during power up of the FPGA –
for example, the flash memory is acciden-
tally put into any non-read-array mode –
the HSWAP pin can be set to 0. This set-
ting enables internal pull-up resistors that
pull LDC0 (CE#), LDC1 (OE#), and
HDC (WE#) to high. Special considera-
tion must be given to the LDC2 pin.

If the application requires the HSWAP
pin to be pulled high, then external pull-up
resistors are required on the LDC0, LDC1,
and HDC outputs. A pull-down resistor of
4.7K is required on the LDC2 (BYTE#) pin.

x8 Model-Only Operation
In BPI mode (M[2:0] = 0b010 or 0b011),
the FPGA powers up in x8 mode, and
drives the LDC2 pin (connected to the
BYTE# pin of the flash device) low
throughout the configuration period. If the
application does not require x16 mode, tie
J3 Memory’s BYTE# pin low and do not
connect the LDC2 output to J3 Memory.

Toggling Between x8 and x16 Modes
If the LDC2 pin is connected to the
BYTE# pin of the flash device, the FPGA
can drive the LDC2 pin high to switch the
flash device from x8 mode to x16 mode
after configuration.

When toggling between the byte (x8)
and word (x16) modes, the least significant
address location and mode switching delay
must be considered. On a J3 Memory
device the A0 address line selects the byte
location.

The switching latency between x8/x16
modes is 1000 ns (the R12 tFLQV/FHQV
parameter in the Intel datasheet) from the
time the LDC2 pin changes logic state
until valid data can be output from the
flash device. This latency must be taken
into consideration, together with the

HSWAP setting, because HSWAP con-
trols the ability to tri-state LDC2 upon
power up, in the following two scenarios:

• HSWAP is tied high (internal pull-ups
are disabled). Connect a 4.7K pull-
down resistor to LDC2. This pin is
pulled low upon power up and remains
low during configuration. J3 Memory
is in x8 mode when the FPGA starts to
load its configuration bitstream. LDC1
and LDC0 must have pull-up resistors
so that the flash device is not acciden-
tally selected or put into non-read-array
mode during power up.

• HSWAP is tied low. In this scenario,
the LDC2 pin is pulled high through
an internal pull-up resistor upon power
up and then driven low at the same
time as LDC0 (CE#), LDC1 (OE#).
The FPGA starts reading configuration
data in less than 1000 ns, a period
required for the flash device to switch
modes. Three workarounds exist:

– Workaround #1, as shown in Figure
1, requires a 340 ohm pull-down
resistor on the LDC2 output to
overcome the internal pull-up resis-
tor and ensure that the flash device
is in x8 mode when the FPGA
starts to read its configuration data.
The 340 ohm value is based on
Spartan-3 data and can be increased
as more characterization data on the
internal pull-up of the FPGA
becomes available. The downside to
this workaround is that a large out-
put buffer must be used to over-
come the strong pull-down resistor
when an application requires
switching the LDC2 pin high to use
the x16 mode.

– Workaround #2 takes advantage of
the fact that the FPGA requires an
initialization sequence before it
starts configuration. When the flash
is switching from x8 to x16 mode,
invalid data is present on the bus,
which prevents the FPGA from see-
ing this sequence until the flash
device completes its mode switch-
ing. If the FPGA device does not

74 Xcell Journal Third Quarter 2005

C O N N E C T I V I T Y

see the start sequence, it continues
to increment the address, step
through the remaining valid address-
es, and then wrap around to address
0 until it finds the right sequence.
This can result in a prolonged bit-
stream load time (the bitstream is
eventually loaded).

– Workaround #3 requires prefixing the
FPGA bitstream with as many as 16
bytes of 0xFF dummy data. This pre-
fix helps the FPGA device find its
start sequence when it reaches the
address for byte 17, at which time the
flash would have completed its mode
switching. This workaround involves
Xilinx modifying its bitstream genera-
tion code and slightly increases the
bitstream size. Contact Xilinx for the
availability of this workaround.

Other Design Considerations
• Addressing. The Spartan-3E FPGA can

address as much as 256 Mb of flash
memory. When populated, a lower
density flash device can optionally be
stuffed with a higher density flash
device. In this case, the unused address
pins on the lower density flash device
can be safely connected to their corre-
sponding address pins on the FPGA.
These unused pins are no-connects on
the flash device.

• ConfigRate setting. The initial access
time for J3 Memory ranges from 110
ns to 150 ns, depending on density.
Set the FPGA’s maximum CCLK con-
figuation rate (ConfigRate) setting
appropriately.

• Flash content protection. On J3
Memory, the VPEN input can be used
to protect the flash memory content.
When the VPEN input is driven below
Vpenlk (2.2V), the flash content can-
not be altered. If unused, this input can
be tied to 3.3V. Alternatively, it can be
connected to a pin on the FPGA, to
allow/disallow flash content alteration.

• Power supply decoupling. When the
flash device (such as J3 Memory) is
enabled, many internal conditions

change. Circuits are energized, charge
pumps are switched on, and internal
voltage nodes are ramped. Such inter-
nal activities produce transient signals.
To minimize these effects, a 0.1 uF
ceramic capacitor is required across
each VCC/VSS and VCCQ signal.
Place capacitors as close as possible to
the device connections.

• FPGA configuration pin re-use. Most
of the pins driving the flash device
(such as J3 Memory) can be used as
general-purpose I/Os. However, do
not reuse the following pins:

– LDC0: Flash chipset enable

– LDC2: Flash byte/word mode control

• Execute-In-Place (XIP). Intel offers a
suite of software that supports XIP,
where code is executed directly out of
the flash device (such as J3 Memory) to
reduce the external RAM requirement
and power consumption. Software
designs for a soft CPU core can use
such collateral. If the XIP usage model
is deployed for the CPU code and data,
then the VPEN input must be pulled
high. Also, memory blocks containing
flash configuration code and boot code
can be individually locked using a soft-
ware command to prevent accidental
programming or erasure.

Conclusion
The addition of a BPI configuration
mode to the Spartan-3E device enables
consolidation of FPGA bitstreams and
boot/application code into standard
NOR flash memory. As a result, you can
take advantage of the low-cost nature and
wide density ranges of both the Spartan-
3E FPGA and the Intel StrataFlash J3
NOR memory to cost-effectively target a
wider range of high-volume applications
not achievable with previous generation
Spartan FPGAs.

For more information about J3
Memory, visit www.intel.com/design/
flcomp/prodbref/298044.htm. The Xilinx
Spartan-3E FPGA Family Complete
Datasheet is available at http://direct.
xilinx.com/bvdocs/publications/ds312.pdf.

Third Quarter 2005 Xcell Journal 75

R

Let Xilinx help
you get your

message out to
thousands of

programmable
logic users
worldwide.

That’s right ... by advertising
your product or service in the

Xilinx Xcell Journal, you’ll reach
more than 70,000 engineers,
designers, and engineering

managers worldwide.

The Xilinx Xcell Journal is an
award-winning publication,

dedicated specifically
to helping programmable

logic users – and it works.

We offer affordable advertising
rates and a variety of advertisement

sizes to meet any budget!

Call today :
(800) 493-5551
or e-mail us at

xcelladsales@aol.com

Join the other leaders
in our industry and advertise

in the Xcell Journal!

Let Xilinx help
you get your

message out to
thousands of

programmable
logic users
worldwide.

That’s right ... by advertising
your product or service in the

Xilinx Xcell Journal, you’ll reach
more than 70,000 engineers,
designers, and engineering

managers worldwide.

The Xilinx Xcell Journal is an
award-winning publication,

dedicated specifically
to helping programmable

logic users – and it works.

We offer affordable advertising
rates and a variety of advertisement

sizes to meet any budget!

Call today :
(800) 493-5551
or e-mail us at

xcelladsales@aol.com

Join the other leaders
in our industry and advertise

in the Xcell Journal!

C O N N E C T I V I T Y

by David Naylor
Sr. Product Applications Engineer
Xilinx, Inc.
david.naylor@xilinx.com

Many of today’s telecom and networking
systems use high-bandwidth interfaces
based on low voltage differential signaling
(LVDS) or other differential I/O standards.
Differential I/O standards simplify system
design by improving system performance
and signal integrity.

Protocols based on I/Os such as SPI-4.2,
SFI, RapidIO, and HyperTransport are
central to leading-edge system design. To
take advantage of these technologies, you
have to work through multiple challenges
to ensure device interoperability and stan-
dards compliance.

Xilinx® provides Virtex™-4 develop-
ment boards as well as standards-compli-
ant intellectual property (IP) cores and
free reference designs for major system
interface protocols. This allows you to
focus on user application design and not
worry about interoperability and stan-
dards compliance.

With the Virtex-4 source-synchronous
interfaces tool kit, designing networking,
telecom, servers, and computing systems
has never been faster or easier.

The Virtex-4 ML450 source-synchronous
interfaces tool kit includes the following:

• Virtex-4 ML450 development board
(XC4VLX25FF668 FPGA)

• 5V/6.5 AC/DC power supply

• Country-specific power supply line cord

• RS232 serial cable, DB9-F to DB9-F

• Four clock module daughter boards

• Two sets of “blue ribbon” loopback
cables for LVDS testing

• Documentation and reference design
CD-ROM

Virtex-4 Source-Synchronous
Interfaces Tool Kit

76 Xcell Journal Third Quarter 2005

The Virtex-4 ML450 Source-Synchronous Interfaces Tool Kit
provides a complete development platform for designing and
verifying applications based on the Virtex-4 LX FPGA family.

C O N N E C T I V I T Y

The Virtex-4 ML450 Development Board
The main component in the Virtex-4
ML450 source-synchronous interfaces tool
kit is the ML450 development board
(Figure 1). Featuring a Virtex-4
XC4VLX25FF668 FPGA coupled to high-
speed connectors, this board supports the
development of high-speed interface
designs using several popular protocols.

The ML450 demonstration board is a
simple board providing several connector
interfaces to the FPGA. The board compris-
es basic support circuitry, including power
regulators, a serial RS232 connector, a small
graphics LCD, a few user push buttons and
LEDs, and a DDR-1 SDRAM. These sim-
ple peripherals allow a PC to communicate
with the FPGA and also provide basic input
and output indicators. Configuration is
enabled via a JTAG connector, or you can
use a System ACE™ CompactFlash card for
bitstream storage and loading.

We designed the board to demonstrate
the high-speed I/O capability of the Virtex-4
FPGA. Eighty differential channels are
pinned out to four Samtec connectors. Forty
pairs each are routed to two connectors on
either side of the FPGA, allowing you to des-
ignate “transmit” and “receive” interfaces.
Two “mini coax” flat cables are provided with
the kit, enabling loopback of high-speed data
between transmit and receive connectors.

In addition to these differential signals,
another 32 pairs are routed to a
HyperTransport Consortium DUT (device
under test)-compliant connector, allowing
for the development of an interface to other
HyperTransport-based boards.

The ML450 evaluation platform supports
a wide range of communications standards,
including SFI-4. Figure 2 shows the user
interface of an SFI-4 demo running on an
ML450 board. The user interface includes a
bit error rate tester (BERT) that measures the
integrity of the data received from 16 LVDS
transmitters. You can select from several
pseudo-random bit sequences to simulate
data, and error counters on the user interface
maintain a running count of all bit errors
that occur during transmission. The BERT
also keeps track of which channels are receiv-
ing errors to provide further troubleshooting
visibility in a multi-channel design.

eliminating the need for a cumbersome
bench-top pulse generator.

Board Features
The ML450 development board includes
the following:

• XC4VLX25FF668 FPGA

• Eight clock sources:

– 200 MHz and 250 MHz on-board
oscillators

– Two sets of SMA differential clock
input connectors

– Four Samtec clock module connectors

• One 64 x 128 pixel LCD

• One DB9-M RS232 port

• A System ACE CompactFlash configu-
ration controller that allows storing
and downloading of as many as eight
FPGA configuration image files

In terms of performance, the ML450
platform supports a 16-channel single data
rate design (SDR) running up to 700 MHz
(Figure 3) and a 16-channel double data
rate (DDR) design running up to 500
MHz (Figure 4). The transmission medi-
um of the 16 channels consists of two
Samtec connectors, a 12-inch ribbon cable,
and 10 inches of FR4.

The ML450 also provides the ability to
command the supply rails of the FPGA to
assume ±5% of their nominal values. This
feature provides a convenient way for you
to stress your design and identify marginal
behavior. The voltages are controlled
through the user interface by simply mov-
ing a slider button to the left or right. In
Figure 2, VccAux is raised to +5%, while
the other supplies remain nominal.

A small daughtercard that plugs onto
the board provides the high-speed clock
used by the SFI-4 design. This daughter-
card generates a programmable LVDS
clock between 200 MHz and 700 MHz,

Third Quarter 2005 Xcell Journal 77

Clock Generator

Oscillators
200 and
250 MHz

Differential
Clock Inputs
(2 Sets SMA)

Clock Module
(4 Locations)

RS-232
Port

LCD
Panel

User
Switches

User
LEDs

64 MByte
SDRAM

System ACE
Module

Mezzanine Board
Connector

HyperTransport
Connector

LVDS Receive
Connector

LVDS Transmit
Connector

Parallel Cable IV
JTAG Port

JTAG Port

Voltage Regulators

System 3.3V

System 2.6V

VCCAUX 2.5V

VCCO 2.5V

VCCINT 1.2V

Virtex-4
FPGA

XC4VLX25
(FF668)

Figure 1 – Virtex-4 ML450 networking interfaces development board

C O N N E C T I V I T Y

• Four LVDS Samtec connectors (a total
of 40 input channels and 40 output
channels)

• One HyperTransport connector
(HyperTransport Consortium
DUT connector-compliant)

• On-board power regulators
with ± 5% output margin test
capabilities

Clock Generation
The clock generation section of the
ML450 development board provides
all necessary clocks for the Virtex-4
FPGA. Eight clock sources are pro-
vided as follows:

• Epson EG2121CA 2.5V 250
MHz differential low-voltage pos-
itive emitter-coupled logic
(LVPECL) oscillator

• Epson EG2121CA 2.5V 200
MHz differential LVPECL
oscillator

• Two differential SMA clock
inputs

• Four Samtec user clock sockets

The differential SMA clock inputs
are connected to the global clock
inputs of the FPGA, accessing the
upper and lower halves. An on-board
200 MHz oscillator calibrates the I/O
delay, and an on-board 250 MHz
oscillator is provided for use with the
HyperTransport IP.

The four clock modules included
in the kit are:

• Type A: direct balanced differen-
tial SMA input

• Type B: Epson EG2121CA 2.5V
400 MHz differential LVPECL

• Type C: ICS programmable, 200
MHz to 700 MHz

• Type D: unbalanced, single-ended
transformer coupled into LVDS

Note that all clock module daugh-
ter board outputs are converted to
LVDS on the daughter boards.

SDRAM Memory
The ML450 development board
provides 64 MB of DDR-1 SDRAM
memory (Micron Semiconductor
MT46V32M16N-5B).

Liquid Crystal Display
The ML450 development board provides
an 8-bit interface to a 64 x 128 LCD
panel (DisplayTech Q64128E-FC-BC-
3LP, 64 x 128).

RS232 Port
The ML450 development board
provides a DB9-M connection for a
simple RS232 port. The board uses
the Maxim MAX3316 device to
drive the RD, TD, RTS, and CTS
signals. You must provide a UART
core internal to the FPGA to enable
serial communication.

System ACE Interface
In addition to a JTAG configura-
tion connector, the ML450 devel-
opment board provides a System
ACE interface to configure the
Virtex-4 FPGA. The interface also
gives software designers the ability
to run code (for soft-processor IP
within the FPGA) from removable
CompactFlash cards.

LVDS Connectors
The ML450 development board
provides 40 channels of transmit
signals and 40 channels of receive
LVDS signals. These signals are
distributed across two Samtec
QSE-DP connectors for transmit-
ting and another two connectors
for receiving.

HyperTransport Connector
The ML450 development board pro-
vides 16 channels of transmit and
receive data, along with miscella-
neous control signals on the Samtec
QSE HyperTransport connector.

Conclusion
With the Virtex-4 source-synchro-
nous interfaces tool kit, designing
networking, telecom, servers, and
computing systems has never been
faster or easier.

For more information on the
demonstration board and the kit,
visit www.xilinx.com/ml450/.

78 Xcell Journal Third Quarter 2005

Figure 2 – BERT user interface

Figure 3 – 700 MHz SDR LVDS eye diagram

Figure 4 – 500 MHz DDR LVDS eye diagram

C O N N E C T I V I T Y

by Mark McLaughlin
Design Engineer, IP Solutions Division
Xilinx, Inc.
mark.mclaughlin@xilinx.com

Tom Fischaber
Staff Design Engineer, IP Solutions Division
Xilinx, Inc.
tom.fischaber@xilinx.com

Jeremy Goolsby
Staff Design Engineer, IP Solutions Division
Xilinx, Inc.
jeremy.goolsby@xilinx.com

In the last few years, the Optical
Internetworking Forum’s (OIF) system
packet interfaces (SPI) for 2.5 Gb/OC-48
(SPI-3) and 10 Gb/OC-192 (SPI-4.2) have
become the de-facto standards on all lead-
ing framer ASSPs. The SPI interfaces have
also permeated into the network processor’s
space, including next-generation processors
such as Intel’s IXP2800 and IXP2400.
Although these interface standards have
been widely adopted, they pose significant
design challenges to the system architect
under pressure to deliver a fully compliant
solution where time to market is para-
mount. Xilinx® Virtex™-4 architectures
provide an ideal platform for implement-
ing these multi-gigabit system packet inter-
face applications.

Bridging System
Packet Interfaces
Bridging System
Packet Interfaces

Third Quarter 2005 Xcell Journal 79

The London Bridge was not designed in a day, but your system packet interface bridging
applications can be – by leveraging a full suite of intellectual property and hardware platforms.
The London Bridge was not designed in a day, but your system packet interface bridging
applications can be – by leveraging a full suite of intellectual property and hardware platforms.

C O N N E C T I V I T Y

Virtex-4 devices, combined with the
portfolio of Xilinx pre-engineered IP solu-
tions, are enabling system designers to
build next-generation products faster than
ever. Often these products involve bridging
between multiple protocols, an application
perfectly suited for FPGAs.

Figure 1 illustrates two examples of
common bridging applications. The first
FPGA bridges four SPI-3 (PL3) interfaces
into a single SPI-4.2 interface, leveraging
existing framers while also enabling sup-
port for the popular Intel IXP2800 net-
work processor. The second FPGA bridges
the SPI-4.2 interface to a backplane using
the Virtex-4 embedded multi-gigabit trans-
ceivers. The Virtex-4 FX family supports a
wide range of backplane applications,
including PCI Express, XAUI, and Aurora.

To aid you in the development of your
bridging applications, Xilinx provides a suite
of application notes and reference designs.
Leveraging the demonstration boards pro-
vided by Xilinx and its partners, you can
complete these designs in hardware in a mat-
ter of hours or days, not weeks or months.
Available under “Application Notes” at
www.xilinx.com/support/library.htm, they
include:

• Gigabit System Reference Design
(XAPP 536)

• Gigabit Ethernet Aggregation to
SPI-4.2 with Optional GFP-F
Adaptation (XAPP 695)

• Mesh Fabric Reference Design
(XAPP 698)

• Gigabit Ethernet to Aurora Bridge
(XAPP 777)

• SPI-4.2 to Quad SPI-3 Bridge
(XAPP 525)

In this article, we’ll discuss the benefits
and utility of the SPI-4.2 to Quad SPI-3
Bridge, which demonstrates how to
bridge four SPI-3 cores to a single SPI-
4.2 core. This solution implements chan-
nelized buffering, arbitration, and flow
control using system packet interface pro-
tocols. Any system designer requiring this
logic can successfully utilize the examples
in this design.

conversion, arbitration, and flow-control
management.

For the dataflow from the SPI-3 to SPI-
4.2 interface, the bridge accumulates multi-
ple streams of data (as many as four different
SPI-3 interfaces) and generates a single out-

SPI-4.2 to Quad SPI-3 Bridge
The outline of the SPI-4.2 to Quad SPI-
3 bridge design is illustrated in Figure 2.
This design not only converts electrical
interfaces between SPI-3 and SPI-4.2, but
also includes data buffering and width

80 Xcell Journal Third Quarter 2005

OC-48 SONET

OC-48 SONET

OC-48 SONET

Data
Back-
plane

OC-48 SONET

Optics

DR
AM

SR
AM

TC
AM

ASSP
OC-48
Framer

Intel
IXP2800
Network

Processor

Intel
IXP2800
Network

Processor

Control
Plane

Processor

Data
Aggregation

Parallel to
Serial Protocol
Encapsulation

Routing Tables,
Queues, Buffer Memory

Optics

ASSP
OC-48
Framer

Optics ASSP
OC-48
Framer

Optics ASSP
OC-48
Framer

- PCI Express
- XAUI
- Ethernet
- Aurora

PCI 64/66

SPI-4.2
SPI-4.2

SPI-3

Receive

Data

Control/
Status

SPI-3 Core

Bank of 4 SPI-3 Cores

Bridge Reference Design

SPI-3 to SPI-4.2 Bridge

SPI-4.2 Core

FIFO

SPI-3 to SPI-4.2 Bridge

Transmit

FIFO

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Receive

SPI-3 Core

FIFO

Transmit

FIFO

Data

Control/
Status

Data

Control/
Status

Data
Sink

FIFO

Source

FIFO

Control/
Status

Data

Control/
Status

Data

Control/
Status

Receive

SPI-3 Core

FIFO

Transmit

FIFO

Receive

SPI-3 Core

FIFO

Transmit

FIFO

Figure 1 – Xilinx line-card example utilizing Virtex-4 FPGAs

Figure 2 – Quad SPI-3 to SPI-4.2 bridge block diagram

C O N N E C T I V I T Y

put stream of SPI-4.2 data. A programmable
amount of data is stored in each channel,
and flow control from the SPI-4.2 interface
determines the amount of data to transfer
on each channel. Simple round-robin arbi-
tration is implemented, but can easily be
enhanced to provide more complex algo-
rithms based on your system requirements.

In the SPI-4.2 to SPI-3 direction, the
bridge de-multiplexes a single SPI-4.2
interface into individual channels, generat-
ing four separate SPI-3 output streams. A
programmable amount of data is stored in
each channel, and flow control from the
SPI-3 interface determines the amount of
data to transfer on each channel.

The reference design provides all of the
required design files (in both VHDL and
Verilog) to implement the bridge logic
between the four SPI-3 cores and the SPI-
4.2 core. The design supports a suite of
parameters to customize the design based
on user requirements. These include:

• FIFO thresholds to determine flow-
control information

• Additional device/package information

• Static and dynamic alignment configu-
rations of the SPI-4.2 core

• Configurable FIFO depths

The suite of design files and documen-
tation provide a complete solution for
your SPI-4.2 to quad SPI-3 bridging
needs. You can find a detailed description
of this bridge, as well as supporting design
files, in application note XAPP 525, refer-
enced previously.

System designers creating bridging
applications outside of this SPI-3 to SPI-
4.2 application will also find this reference
design highly valuable. Per-channel data
buffering, arbitration, and flow control are
some examples of the features implement-
ed by this bridge. The channelized FIFOs
are created by the Xilinx FIFO Generator,
which supports a suite of features including
non-symmetric aspect ratios and first-word
fall-through (FWFT). Non-symmetric
aspect ratios enable easy width conversion
between different data widths, and FWFT
provides the ability to look ahead to the
next word available from the FIFO without

issuing a read operation. For more details
on the FIFO Generator, see “Never Design
Another FIFO,” also in this issue of the
Xcell Journal.

IP Core Solutions
The SPI-3 and SPI-4.2 cores require
high-speed I/O operation and tight tim-
ing to meet the OIF specifications. These
cores easily meet these requirements
through Virtex-4 ChipSync™ technolo-
gy, enabling the use of the embedded I/O
SERDES and dynamic phase alignment.
This greatly alleviates the design com-
plexities for SPI users, enabling them to
focus on their system requirements
instead of the SPI interfaces.

The SPI solutions are delivered
through the CORE Generator in standard
IP releases, and provide immediate simu-
lation capability at no cost. You can also
obtain a hardware evaluation license,
which enables the SPI cores to be down-
loaded into hardware for full system eval-
uation. The cores will timeout after a
couple of hours, enabling full hardware
evaluation in your application.

The suite of SPI IP includes the SPI-
4.2 for OC-192 applications and the SPI-
3 Link, SPI-3 PHY, and SPI-4.2 Lite for
OC-48 applications. The SPI-4.2 and
SPI-3 IP provide simple out-of-the-box
solutions for these complicated interface
protocols.

SPI-4.2 and SPI-4.2 Lite Cores
The Xilinx SPI-4.2 IP is a fully verified,
plug-in SPI-4.2 interface solution. It pro-
vides you with a wealth of configuration
options to tailor the core for your specific
design requirements, including the ability
to operate at data rates exceeding 1 Gbps
using dynamic phase alignment.

In addition to the SPI-4.2 full-rate
core, Xilinx also provides the SPI-4.2 Lite
core. The SPI-4.2 Lite IP leverages the
efficiency of the SPI-4.2 interface for
slower OC-48 applications. It is fully
compliant to the SPI-4.2 OIF specifica-
tion, except that it operates at a maximum
frequency of OC-96 (5 Gbps), but
requires less than 50% of the resources of
the full-rate SPI-4.2 core.

SPI-3 PHY and Link Cores
The Xilinx SPI-3 Link and PHY cores
provide complete solutions for your OC-
48 applications, and support a suite of
options to customize the cores to meet
your application needs. Both the SPI-3
Link and PHY cores support not only a
32-bit interface, but also 8- and 16-bit
interfaces for interfacing to a suite of
framers and network processors.
Previously available as fixed-point solu-
tions, the SPI-3 PHY and Link cores will
be released in ISE™ 7.1i IP Update 3,
available in Q3 2005.

Conclusion
Xilinx IP and reference designs provide
superior solutions for implementing
custom bridging solutions between pro-
tocols. You can use the XAPP525 bridge
design out of the box for SPI-4.2 to
quad SPI-3 bridging applications or for
any system that requires channelized
buffering, arbitration, and flow control
using system packet interface protocols.
In addition, the SPI cores provide fully
compliant, drop-in solutions for these
complicated interfaces. The SPI solu-
tions alleviate design challenges and
result in faster time to market for Xilinx
customers. The low cost and full feature
set of the Virtex-4 family, combined
with the suite of SPI IP and multi-
gigabit bridge designs, provide an
unbeatable combination.

Although we highlighted only the
SPI IP in this article, Xilinx has a wealth
of IP solutions for all of your connectiv-
ity and bridging needs. For more infor-
mation, please visit Connectivity
Central in the IP Lounge at www.
xilinx.com/products/design_resources/
conn_central/index.htm.

For more information regarding
the SPI-4.2 core and its benefits in the
Virtex-4 architecture, please refer to the
following article from a previous edition
of the Xcell Journal: www.xilinx.com/
pub l i ca t i on s / x c e l l on l in e / x c e l l_52 /
xc_v4spi52.htm. For more information
about the SPI-4.2 and SPI-3 IP solutions,
visit www.xilinx.com/ipcenter/posphyl4/
spi42_core.htm.

Third Quarter 2005 Xcell Journal 81

C O N N E C T I V I T Y

by Steve Sharp
Sr. Marketing Manager
Xilinx, Inc.
steve.sharp@xilinx.com

Panch Chandrasekaran
Connectivity Marketing Manager
Xilinx, Inc.
panch.chandrasekaran@xilinx.com

The problem of signal integrity is a lot like
trying to carry on a conversation at a
crowded trade show. If you and the person
you’re talking to are in a quiet corner of the
hall with some nice padded walls around
you and not too many other people nearby,
it isn’t a problem. Try the same conversa-
tion in the middle of the exhibit floor with
hundreds of people all around, noise from
neighboring exhibit booths, and no walls
to break up or absorb the sound, and
you’ve got a problem.

Back in the good old days of logic
design, we didn’t give much thought to sig-
nal integrity. We had 5V power supplies,
DIP packages with leads that actually went
through the board, and high-speed micro-
processors running at a heady 5 MHz.

If you paid a little attention to board
layout and put a decent ceramic bypass
capacitor next to each chip, you probably
didn’t have to worry about your signals.

Ones stayed ones and zeroes stayed zeroes.
Even 100 mV of noise on a signal wouldn’t
be enough to change its logic level.

Today, designers are caught between
design requirements for ever-increasing bit
rates, faster edge rates, higher clock speeds,
and technology advances that keep lowering
operating voltages, reducing package sizes
and ball pitch, and forcing more compo-
nents into a smaller amount of board area.

Signal Integrity Today
Take a look at present-day source-synchro-
nous interfaces. DDR and QDR memory
interface speeds are rapidly increasing,
with DDR2 speeds at more than 500
Mbps. The bit rates are getting faster and
the buses getting wider. With faster bit
rates comes faster edge rates, which now
can be just a few hundred picoseconds.

Faster is better, but there are a few hur-
dles to deal with. Parasitic inductance and
capacitance – which didn’t matter a whole
lot at lower speeds – are suddenly very
important. The resulting noise because of
the parasitics is a big concern. Today it is
common to have FPGAs with hundreds of
I/Os switching, causing high levels of simul-
taneous switching output noise (SSN). This
affects your system in many ways, especial-
ly causing jitter, which can reduce your tim-
ing margin or even cause system failure.

You cannot allow yourself to ignore
signal integrity and gamble that your sys-
tem will work as designed. You might be
forced to reduce the clock rate just to get
the system to work, or be forced into a
complete board re-design to correct signal
integrity issues.

What Kind of Integrity Do You Have?
Having good signal integrity usually means
controlling unwanted noise on logic sig-
nals. Noise usually falls into one of two
main domains:

• Level-related noise affects the logic
level of the signal. If the noise is large
enough, the signal may cross the
threshold from a desired logic state to
an undesired state and propagate into
other logic.

• Time-related noise, or jitter, affects
the position of a signal transition and
causes setup/hold windows for data
sampling to be violated, thereby
allowing incorrect data to be sampled
and propagated through the system.

The combination of level noise and jitter
combine to reduce signal margins in both
the voltage and time domains, effectively
reducing the “eye” or window in which good
data is available.

Managing Signal IntegrityManaging Signal Integrity

82 Xcell Journal Third Quarter 2005

Being heard above the noise.Being heard above the noise.

C O N N E C T I V I T Y

Controlling Noise
A well-designed package is critical to sig-
nal integrity. Noise can emanate from
many sources in a system. If the noise
source is on the board, there are some
potential solutions once you find out
where the problem is (probably after a
long and laborious debug process). If the
problem is in the package, you have little
or no choice but to change the design,
vendor, or parts. This is a time-con-
suming process that can affect prod-
uct revenue significantly. For this
reason, it is imperative to have a well-
designed low-inductance package.

When speeds were still fairly low,
short signal paths did not alter signal
characteristics. Today, with rise times
in the hundreds of picoseconds (even
if bit periods are a few nanoseconds),
the frequency components of signals
run into gigahertz, causing even very
short signal paths like package traces
to impact signals.

For every signal line, there is an asso-
ciated return path for the return cur-
rents. For single-ended signals, these
return paths are usually GND or VCC
reference planes. To maintain a 50 ohm
line, the returns should be in close
proximity to the signal.

Although PCB traces are less of a
concern, you must pay close attention
to vias. For large FPGAs the breakout
region – the area between the package
balls to the PCB – is extremely criti-
cal, as it comprises a dense concentra-
tion of signal vias.

SSN is generally observed as
“ground bounce” and can be caused by
two different phenomena.

First, noise because of via-field
crosstalk is a function of loop induc-
tance, which is a function of the proximity of
ground/power reference pin locations to the
signal pin. Signal pins farther away from a
reference pin are more susceptible to noise.

This problem is exacerbated when a
number of I/Os in the region switch
simultaneously. Proper distribution of
ground/power and signal pins in a package
is extremely critical – in other words, a
good pinout architecture.

optimal pin distribution through a tiled
pattern – a regular array of signal, ground,
and power pins called SparseChevron
pinout (Figure 2).

The signal-to-ground-to-power ratio of
the package is 8:1:1. Because both power
and ground are equally effective as return
current paths, the package effectively has a
signal-to-return ratio of 4:1. Also, the pins
are distributed so that every signal pin is

adjacent to a return pin, ensuring
that the return current loop is
kept to a minimum.

Additionally, the abundance of
return paths in any given area of
the package provides a low
impedance path for the return
currents. The pinout also confines
noise from an aggressor to a
smaller area so that the influence
of the aggressor drops rapidly
with distance. Because crosstalk
noise is cumulative, this results in
a lower total SSN.

Simplifying Signal Termination
On-chip termination (active ter-
mination) removes external com-
ponents and places termination
closest to where it matters (driver
or receiver).

To maintain the ideal 50 ohm
line impedance, it is normal
design practice to have termina-
tion resistors on each signal. For
hundreds of signal I/Os, this can
translate to many hundreds of
external termination resistors. The
physical challenges of placing the
resistors on the board and their
connections to the power and
ground planes are not trivial.

The Xilinx Controlled
Impedance Technology (XCITE) on-chip
active I/O termination used in Virtex
FPGAs solves many of the problems associ-
ated with signal termination. XCITE pro-
vides both parallel and serial equivalent
options for single and differential termina-
tion. Impedance is controlled using an
internal reference voltage and is available
on all I/O pins. This active termination
provides automatic temperature and volt-

Second, maintaining a clean power supply
to the FPGA is also critical to maintain
acceptable signal integrity. Noise margins are
reduced as VCC values drop down to 1.2V.

Furthermore, any noise in the power rail
translates to jitter at the output, shrinking
available timing margins. As noise depends on
package inductance and the number of simul-
taneously switching I/Os, optimal signaling
requires a good low-inductance package.

Tackling the SSN Challenge
One package that tackles the SSN challenge is
the Xilinx® Virtex™-4 FPGA package. Most
notably, the package enables better noise per-
formance on higher speed single-ended inter-
faces, which are more susceptible to noise
than differential interfaces such as LVDS.

The pinout architecture of the package is
responsible for roughly 80% of the total
noise. The Virtex-4 FPGA package achieves

Third Quarter 2005 Xcell Journal 83

SparseChevron Pinout

Grounds Powers Signals

Ground Bounce / Voltage Collapse

+ System Jitter = Reduced Signal
Integrity and Smaller Valid Data “Eye”

Figure 1 – How noise and jitter can affect an eye diagram.

Figure 2 – Xilinx SparseChevron pinout places
return pins adjacent to each signal pin.

C O N N E C T I V I T Y

age compensation; puts the termination
inside the buffer circuitry where it
belongs; and saves board space and cost
by eliminating hundreds of discrete resis-
tors. Figure 3 shows the simplified board
layout and signal trace paths using both
conventional and Xilinx XCITE DCI ter-
mination technology.

Power Plane Integrity
Power and ground planes are important to
maintaining signal integrity in FPGA
designs. To maintain the characteristic
impedance (Zo) across the frequency range
of interest, reference planes for single-ended
signals should be very low impedance.

Otherwise, the result is impedance dis-
continuities, causing jitter due to reflections.
In addition, noisy power and ground planes
affect circuit performance on the die, caus-
ing additional jitter. It is important to design
packages with continuous power and
ground planes to minimize impedance.

Typically, PCB designers use decoupling
capacitors to filter out noise and maintain a
clean power supply. For reducing high-fre-
quency noise, decoupling capacitors are
placed close to the noise source. Leading-
edge ASICs and FPGAs are equipped with
very low-inductance decoupling capacitors
within the package to aid cleaning the
power-supply noise.

Compensating for Signal Integrity Issues
Improving the signal integrity of your sys-
tem will enhance the data valid window (the
eye) of the high-frequency signals reaching
your FPGA I/O pins. However, this is only
half the battle. Even superior designs exhib-
it shrinking data valid windows, as shown in
the 533 Mbps DDR2 SDRAM example
shown in Figure 4. The input circuitry
needs the capability to capture the data by
centering the clock to the middle of the
shrinking data valid window.

Virtex-4 FPGAs have unique ChipSync™

technology built into every I/O block that
makes data capturing easier and more reli-
able. It includes a precision delay called
IDELAY that generates the tap delays neces-
sary to center data to the FPGA clock.
Memory strobe edge detection logic, includ-
ed in the I/O block, uses this precision delay
to detect the edges of the memory strobe
from which the pulse center can be calculat-
ed. Delaying the data by the number of
delay taps counted between the first and sec-
ond edges aligns the center of the data win-
dow with the edge of the FPGA clock
output. The tap delays generated by this
precision delay block allow alignment of the
data and clock to within 75 ps resolution.

ChipSync technology also simplifies the
design of differential parallel bus interfaces,
with embedded SERDES blocks that serial-
ize and de-serialize parallel interfaces to
match the data rate to the speed of the inter-
nal FPGA circuits. Additionally, this tech-
nology provides per-bit and per-channel
de-skew for increased design margins, sim-
plifying the design of interfaces such as SPI-
4.2, XSBI, and SFI-4, as well as RapidIO.

Conclusion
Signal integrity is a key issue in today’s high-
speed designs and will continue to be impor-
tant as more high-speed signals are squeezed
into smaller amounts of board space, pack-
ages get denser, and ball spacing shrinks.

Signal integrity issues can affect voltage
and time domains, combining to reduce the
window of available valid data in a system. If
the issues become large enough, systems may
not work at all or be extremely unreliable,
forcing long and costly system redesigns.

It might never be possible to completely
eliminate signal noise in a high-speed sys-
tem. But paying attention to several key
areas can minimize noise or adjust timing so
that system performance is not compro-
mised. These include using well-engineered,
low-inductance packages; using devices with
built-in power supply decoupling; using
active signal termination where necessary;
and choosing devices with the ability to
adjust the relationship between the data
valid window and the clock.

For more information, visit www.
xilinx.com/signalintegrity.

84 Xcell Journal Third Quarter 2005

XCITE Technology
Reduces Cost with Simplified PCB Routing

• Improved Signal Integrity through Easier Board Layout
– Reduces number of layers/vias that signal has to travel
– Puts termination right at the driver source

IC1 IC2

PCB

Resistor

IC1 IC2

PCB

No Resistor
XCITE Technology

Conventional

Data Valid Window (<1/3 ns)

Uncertainties

Phase Shift
Clock (DQS)

267 MHz

Data

533 Mbps

Example: 533 Mbps DDR2 SDRAM Memory Interface

Figure 4 – Data valid window for a 533 Mbps DDR2 SDRAM interface

Figure 3 – Xilinx XCITE technology reduces cost through simplified PCB routing.

C O N N E C T I V I T Y

Prove your design with high speed FPGA hard-
ware emulation plugged directly into your PCIe system.

Here are 4.5 million gates to emulate your ASIC and kill the RTL
bugs before you cut masks. This board will let you test your soft-
ware and increase your chances that the first spin will be the last.
The DN6000K10PCIe is packed with the features you need:

•1,4 and 8-lane versions

•Six VirtexII-Pro FPGAs (-2vp100s, the big ones)

•10 DDR (64Mx16) and 4 SSRAMs (2Mx36) external to the
FPGAs

•Expansion capability to customize your application

•Synplicity Certify® models for quick and easy partitioning

Like all our products, this new PCI Express bus board will help you
get your ASIC to market on time and in budget. Call The Dini Group
today-- PCIe is already here.

1010 Pearl Street, Suite 6 • La Jolla, CA 92037 • (858) 454-3419 • Email: sales@dinigroup.com
www.dinigroup.com

Prototype Your PCIe ASIC HERE

See us at DAC
Booth #1879

by Ross Nelson
Seamless FPGA Product Manager
Mentor Graphics Corporation
ross_nelson@mentor.com

You’ve probably been there: clever detective
work leads you to a small change in the
HDL for your embedded processor-based
design. Now you just have to run synthesis,
place and route, and darn ... you suddenly
realize it will be another day before you can
see the result.

Large devices allow you to stuff a whole
system into the FPGA, but debugging
these complex systems with limited visibil-
ity – and a one-day turnaround – can con-
sume weeks of your precious time.

Hardware/software co-verification has
been successfully applied to complex
ASIC designs for years. Now available to
FPGA designers, Seamless FPGA from
Mentor Graphics brings together the
debug productivity of both a logic simula-
tor and a software debugger. Seamless
FPGA co-verification enables you to
remove synthesis and place and route
from the design iteration loop, while
yielding performance gains 1,000 times
faster than logic simulation.

Shortening the Design Iteration Loop
Because development boards are readily
available, many FPGA designers incorpo-
rate them into the highly iterative design
loop. Unfortunately, the development
board brings major overhead to every
design iteration. This overhead comes in
the form of logic synthesis, followed by
place and route. Although necessary to
produce a final design, you can remove
these time-consuming steps from the high-
ly iterative design debug loop by targeting
simulation as the verification platform.

With simulation as the verification
engine, the only overhead between editing
the HDL and verification becomes a rela-
tively quick compile of your HDL. The
time you can save on your next embedded
FPGA is easy to calculate: How many
times did you run place and route on your
last FPGA design? And how long did place
and route consume your PC for each run?

It’s true that simulation runs slower
than the real-time speed of a development
board. Seamless FPGA provides some
innovative ways to dramatically increase
the rate at which your embedded software
simulates. The increase in a typical system
is several orders of magnitude.

Improving Hardware and Software Visibility
To debug your FPGA design, you need full
and clear visibility. You need to know what
is happening in the hardware and what the
software is doing. You need to be able to
change a register, or force a signal to a dif-
ferent state. Sometimes you need to be able
to stop time and take a closer look. The
more visibility you have, the more quickly
you can see the problem or prove you have
resolved the bug.

Hardware Visibility
Probing inside or even on the pins of your
FPGA is a challenge. The ChipScope™
Pro analyzer from Xilinx® helps with this,
but in a logic simulator (in addition to
viewing every signal) you can also change
their values. Working from your source
HDL, you can step through the code, view
variables, or stop time. For detailed, imme-
diate, and hassle-free visibility, it is hard to
beat logic simulation.

Software Visibility
Software visibility in logic simulation is
another item with which to contend.
Running the fully functional processor
model allows you to execute software, but

Hardware/Software Co-VerificationHardware/Software Co-Verification

86 Xcell Journal Third Quarter 2005

Gain full visibility into your software and hardware –
and achieve a faster design iteration loop in the process.

D E B U G G I N G

knowing what is in R3 of the processor is
almost impossible if you are given only
waveforms.

Co-verification provides an enhanced
processor model connected to a software
debugger. In the Mentor Graphics XRAY
debugger, you can view and change every-
thing from registers to memory, stack, and
variables. XRAY also provides a source code
view with symbolic debug. You can step
through code at the source or assembly
level and use breakpoints to halt execution
or run powerful macros.

If you are using the Accelerated
Technology Nucleus real-time operating
system (RTOS), you can view the status of
tasks, mailboxes, queues, pipes, signals,
events, semaphores, and the memory pool.

Much Faster Than Logic Simulation Alone
Running substantial amounts of software
on a standard processor model in logic sim-
ulation is not practical; the run times are
just too long. However, running this soft-
ware actually turns out to be one of the
most effective verification strategies avail-
able. The payoff for running diagnostics,
device drivers, board support package (BSP)
code, booting the RTOS, and running low-
level application code is huge. It is not sur-
prising that verifying hardware – by putting
it through its paces the way the software will
actually use it – is effective. Similarly, the
software is tested against the actual design
(including any external board-level compo-
nents that are included in the simulation)
before the board is actually built.

The challenge has always been to run
enough software to really boot the system
and do something interesting. Co-verifica-
tion is able to speed up the run time by tak-
ing advantage of one simple observation:
most of the simulation time is spent re-vali-
dating the same processor-to-memory path.
Although you need to test your memory sub-
system and try several dozen corner cases,
you don’t need to repeat those same tests over
again every time you fetch an instruction
from memory. Similarly, you need to verify
that the processor can push a value on the
stack and pop it off again with the correct
result, but repeating this test every time a
software function is called would be overkill.

logic simulation alone requires 12 hours
and 13 minutes. The same task with these
techniques employed accomplishes the task
in only six seconds – 7,330 times faster.

Using this technique, Seamless FPGA
maintains one coherent view of memory
contents through a back door into Xilinx
block RAM memory models or any other
memory device. So if your DMA controller
drops something into memory that the
processor later executes, it will still all work
together correctly. And if the processor
generates a large data packet and instructs
hardware to transmit it using DMA, there
are no data inconsistencies.

Identifying Processor Bus Bottlenecks
The performance of your FPGA platform
can be seriously impacted by the memory
structure of the design. What should be
located in cache versus block RAM or
external memory? Where are the bottle-
necks? Do other bus masters starve the
processor? Questions like these are impor-
tant, but getting the answers can be diffi-
cult without real data from your
hardware/software application.

Accesses to hardware peripherals always
generate bus cycles in the logic simulation,
but instruction fetches and stack operations
can typically be offloaded for faster execu-
tion. By allowing you to specify which bus
cycles are run in the logic simulator and
which are not, Seamless FPGA allows you to
make the performance tradeoff. And you
can change this specification at any time
during your simulation session. You can run
through reset with full cycle-accurate behav-
ior, and then switch off instruction fetches
and stack accesses to boot the RTOS.

Accessing memory through the logic sim-
ulator requires several hardware clock cycles.
Each clock cycle requires significant work in
the logic simulator as it drags along the heavy
weight of all the other logic in your FPGA.
Using a “back door” to directly access the
memory contents, instead of running the bus
cycle in the logic simulator, allows accesses to
occur many orders of magnitude faster.

The speedup is very significant. For
example, the following data is from a typi-
cal design configuration with a PowerPC™
running Nucleus on the Xilinx Virtex™-II
Pro FPGA. Booting the Nucleus RTOS in

Third Quarter 2005 Xcell Journal 87

Figure 1 – Seamless FPGA’s system profiler helps you tune performance by providing detailed data
on bus transactions and utilization, software function execution time, bus arbitration delay,

memory hot spots, and software code profiling.

D E B U G G I N G

Seamless FPGA gathers performance
data from the simulation and displays it
graphically in the system profiler (Figure
1), enabling you to identify:

• Which functions are consuming most
of the CPU time

• Unexpected lulls or bursts of activity

• Cache efficiency and memory hot
spots

• Code execution and duration at the
function level

• Bus utilization and bus master
contention

Ease of Use and Integration
Seamless FPGA is easy to use and set up.
Using the knowledge you have already
entered in Xilinx Platform Studio (XPS),
Seamless FPGA automatically configures
itself to co-verify your design. You may
already know how to use ModelSim, and
Seamless FPGA leaves the full functionali-
ty and user interface unchanged. The
XRAY software debugger uses many of the

same menu icons for operations like step,
step over, and run.

To set up Seamless FPGA, simply
choose File > Import from Xilinx Platform
Studio and specify your XPS project file.
The import process does all of the setup
steps and in about one minute proceeds to
invoke ModelSim and the XRAY debugger.

If you have two or more Xilinx proces-
sors in your design, you will have additional
software debugger windows, one for each
processor.

Once ModelSim and XRAY have been
invoked (Figure 2), you are ready to verify
your design. In ModelSim, enter any stimu-
lus commands needed – typically this is reset
and clock, plus any design-specific stimulus
– and then click “run.” In XRAY, click “go”
or “step” to start stepping through your
embedded code. By default, all bus cycles are
routed to the hardware simulation.

To increase software execution speed,
three icon selections are provided. These
icons are labeled “optimizations” because
they increase the rate of software execution
by directing Seamless FPGA to access

memory contents through a back door
without requiring the logic simulator to
run every bus cycle. The first button
directs all instruction fetch cycles to use
the back door. A second button allows
you to specify any number of address
ranges, which use the back door. When
accesses use the back door, you can either
choose to keep advancing the logic simu-
lation in lock step with the software or
remove that requirement.

The optimization settings can be
changed at any time on the fly during a
simulation session. This allows you to
quickly run to a certain point in your soft-
ware, and then enable all bus cycles for
detailed cycle-accurate verification.

Conclusion
With large FPGA designs employing
embedded processors, it’s not possible to
complete a design in a few weeks. These
designs are very sophisticated; unfortu-
nately, so are the bugs that you must track
down and resolve to produce an effective
system on schedule.

Software content in your FPGA can
bring lower system costs, higher config-
urability, and increased functionality. But
software doesn’t execute alone – it inter-
faces with hardware, and the
hardware/software interface often stretch-
es across disciplines and design teams.

Seamless FPGA bridges the hard-
ware/software gap with a productive soft-
ware and hardware debug environment
that provides the visibility to find bugs
and performance bottlenecks efficiently.
And once you have fixed them, you can
quickly turn the fix and verify it, without
having to wait for your PC to rumble
through place and route for hours on end.

Try Seamless FPGA on your design
today. For your free 30-day evaluation
copy, visit www.seamlessfpga.com. The
included example design and Quick
Start Guide will get you up and running
in no time. For more information,
e-mail seamless_fpga@mentor.com.

88 Xcell Journal Third Quarter 2005

Figure 2 – Seamless FPGA running the Nucleus RTOS on a Xilinx Virtex-II Pro PowerPC processor.
XRAY (lower left) provides symbolic software debug and RTOS task status. ModelSim (lower right)

enables full hardware debug and control. Seamless FPGA control panels (upper left) allow dynamic selec-
tion of bus cycles routed to ModelSim. The ModelSim HDL source window is also displayed (upper right).

... software doesn’t execute alone – it interfaces with hardware, and the
hardware/software interface often stretches across disciplines and design teams.

D E B U G G I N G

Now you can see inside your FPGA designs in a way that

will save days of development time.

The FPGA dynamic probe, when combined with an Agilent

16900 Series logic analysis system, allows you to access

different groups of signals to debug inside your FPGA—

without requiring design changes. You’ll increase visibility

into internal FPGA activity by gaining access up to 64

internal signals with each debug pin.

You’ll also be able to speed up system analysis with the

16900’s hosted power mode—which enables you and your

team to remotely access and operate the 16900 over the

network from your fastest PCs.

The intuitive user interface makes the 16900 easy to get up

and running. The touch-screen or mouse makes it simple to

use, with prices to fit your budget. Optional soft touch

connectorless probing solutions provide unprecedented

reliability, convenience and the smallest probing footprint

available. Contact Agilent Direct today to learn more.

U.S. 1-800-829-4444, Ad# 7909
Canada 1-877-894-4414, Ad# 7910
www.agilent.com/find/new16900
www.agilent.com/find/new16903quickquote

©Agilent Technologies, Inc. 2004
Windows is a U.S. registered trademark of Microsoft Corporation

• Increased visibility with FPGA dynamic probe
• Intuitive Windows

®
XP Pro user interface

• Accurate and reliable probing with soft touch connectorless probes
• 16900 Series logic analysis system prices starting at $21,000

Get a quick quote and/or FREE CD-ROM
with video demos showing how you can
reduce your development time.

X-ray vision for your designs
Agilent 16900 Series logic analysis system with FPGA dynamic probe

X-ray vision for your designs

by Aki Niimura
IP Supplier
Ponderosa Design
akineko@ponderosa-design.com

As larger Xilinx FPGAs become affordable
(thanks to advanced process technologies),
FPGA designers are now asked to create
systems with more complex functionalities.
By implementing these functionalities in
software, FPGA designers can achieve their
goals quickly and make their designs more
maintainable and reusable.

However, the available resources in
FPGAs are finite. Thus, the demand for
easy-to-use, resource-efficient compact
processors is always strong. Ponderosa
Design microsequencers were developed
with such demands in mind. In this article,
we’ll present our new microsequencer
products and new system debugging tools,
which enable microsequencers to be used
in a wider range of applications.

The scc-32
When we developed our first-generation
microsequencers, the main available
resources in FPGAs were 512-byte block
memories with a maximum 16-bit wide data
interface (and no multipliers). Now, Xilinx®

Spartan™-3 and Virtex™-4 devices pro-
vide quite a different landscape for FPGA
designers. Two kilobyte block memories
with a maximum 36-bit-wide data interface
and 18 x 18 bit multipliers have become
common resources that you can expect even
for cost-sensitive FPGA projects.

The scc-32/scc-16 Microsequencers
and AHBDBG System Debugger

90 Xcell Journal Third Quarter 2005

Ponderosa Design‘s new microsequencers and supporting tools make
developing scalable microsequencer-based designs more accessible.

D E B U G G I N G

We developed our newest microse-
quencer, the scc-32, to fully utilize such
resources, as well as to provide 32-bit data
handling capability. As the name implies,
the scc-32 is a 32-bit controller – but how
does it compare to the MicroBlaze™ soft-
core processor? The scc-32 is not designed
as a generic microcontroller like
MicroBlaze or Power PC™ processors.
Our microsequencers are designed to take
different roles and work with generic
microcontrollers instead.

Our microsequencers employ a stack
architecture, while today’s generic micro-
controllers employ a register-based archi-
tecture. Stack architecture is suitable for
custom processors for FPGAs because the
core is compact and resource-efficient (an
effective use of block RAM). The program
size is smaller because the instruction is one
byte long. Stack architecture doesn’t use
deep pipelining, resulting in a predictable
interrupt latency.

Contrary to common perceptions, sup-
porting 32-bit data types is not difficult,
nor does it consume a lot of resources in
the FPGA. Our microsequencers use stack
architecture, where the data size is irrele-
vant to each stack operation. When it
comes to FPGA resources, all 32-bit data is
stored in block RAM rather than registers.
However, the arithmetic logic unit (ALU)
must be a 32-bit ALU.

The scc-32 uses unified memory archi-
tecture (UMA). It needs three logically
independent memories (data stack, pro-
gram stack, and register file) in addition to
a program memory. With UMA, three log-
ically independent memories are unified
into a single memory. One block RAM
(38-bit wide, 512-word deep) can hold a
32-level-deep data stack, a 16-level-deep
program stack, 144 global registers, and 24
auto registers per function call.

The scc-32 has a 16-bit program space,
64 KB, while our previous generation has an

footprint, which is close to the one that the
first-generation microsequencer delivered
(see Table 1). For example, even with the
smallest Spartan-3 FPGA (the XC3S50),
the scc-16 “hello” project only consumes
53% of the device, leaving ample space for
other logic to be implemented.

Supporting a 32-Bit System Bus
A common practice is to use a system bus to
create a larger system using bus-compliant
modules. We originally designed our
microsequencers for stand-alone use, but in
some situations, you may want to connect a
microsequencer to a system bus. For exam-
ple, a microcontroller can download a pro-
gram to a microsequencer on the fly so that
the block can be used as a reconfigurable
functional block. A microsequencer can
also share a resource with other controllers.

The Advanced Microcontroller Bus
Architecture (AMBA) high-performance
bus (AHB bus) from ARM Ltd. is a system
bus similar to the CoreConnect used with
MicroBlaze and PowerPC processors. We
use 32-bit AHB bus, which results in a 32-

bit address space (4 GB). To inter-
face to the AHB bus, we
developed two wrapper modules,
ahb32wrap (AHB master) and
scc32ahb/scc16ahb (AHB slave).
For the AHB master, macros are
provided to access the 32-bit
address space, as the scc-32 native
instructions cannot access 32-bit
address space directly.

The following code excerpts demon-
strate how accessing the AHB bus is coded
in the “SC” program. The SC language is a
proprietary high-level language specifically
for the SCC-II microsequencer family.

ahbwrite(DMAC_CTRL, 0x00000101);
ahb_status = ahbread(DMAC_STAT);

With the wrappers, the microse-
quencer’s internal signals as well as the

11- or 13-bit program space. A larger pro-
gram space means that a large amount of
data (such as coefficient tables or message
strings) can be included in a program. As our
microsequencers have instructions to read
from/write to program memory, program
memory space can be used as an extra storage
or data space to share with another process.

One important architectural change we
observed from older Xilinx FPGAs to newer
Xilinx FPGA families is the absence of
internal tri-state buffer (TBUF) resources.
Our older microsequencers utilize TBUFs
to construct multiplexers with a large num-
ber of inputs. As they are no longer avail-
able in newer Xilinx FPGA families, the
scc-32 is designed without internal TBUFs
and optimized to minimize the complexity
of such data multiplexers.

The scc-16
Our first-generation microsequencers were
16-bit controllers. They had a much tighter
programming model; for example, the scc-
IIs, one of our first microsequencers, had a
2 KB program size limit, five-level function

call, eight global registers, and eight auto
registers per function call. Not all applica-
tions require 32-bit data types, but you
may want to use a newer programming
model like the scc-32.

The scc-16 microsequencer uses an
identical architecture and instruction set to
the scc-32 (some instructions are dropped
because there is no need to support 32-bit
data types). The scc-16 provides a smaller

Third Quarter 2005 Xcell Journal 91

fop LU BRAM TBUF FPGA

scc-32 50MHz 1236 2 SP3

scc-16 50MHz 845 2 SP3

scc-IIs 25MHz 801 1 SP3

scc-IIs 25MHz 596 1 273 SP2

The program size is smaller because the instruction is one
byte long. Stack architecture doesn’t use deep pipelining,

resulting in a predictable interrupt latency.

Table1 – “Hello” project (core + UART)

D E B U G G I N G

entire program memory are exposed to the
AHB bus. To facilitate the development of
a system with the AHB bus, we developed
a new debugging tool in addition to our
original stand-alone JTAG debugger.

The AHBDBG
The AHBDBG is a debugging tool for sys-
tems with the AHB bus (Figure 1). It pro-
vides a wide range of features to debug an
AHB bus-based system, while our original

JTAG debugger only provides those fea-
tures necessary to try a program with an
FPGA on the board.

The AHBDBG communicates with a
small AHB master – the jtag2ahb module –
through a JTAG interface to generate AHB
bus accesses. In addition to obvious features
such as bus read/write/dump, two impor-
tant features are worth mentioning. The first
feature is the AHB-based logic analyzer
(Figure 2). You may think this is yet anoth-
er ChipScope™ analyzer, but the logic ana-
lyzer available with the AHBDBG is quite
different. First, it must be explicitly instanti-
ated. Because of this, you can provide your
trigger signal if you need a complex trigger
condition. Second, it only saves signals

when they change (recording events). This is
really necessary to capture bus activities,
which may last for many cycles. The tool
also allows you to compress much further by
sacrificing timing relationship accuracy.

With the optional compression mode
turned on, if the timing period between
event A and event B exceeds the 16-bit
cycle counter, it is truncated to the maxi-
mum of the cycle counter. Otherwise, a
null event (an event containing no value
change information but a time stamp), is
generated to guarantee the timing accuracy.

There are four types of AHB-based logic
analyzers: 16 bits wide, 32 bits wide, 64 bits
wide, and 128 bits wide. You can configure
the depth of the logic analyzer trace memo-
ry. A 32-bit-wide logic analyzer is sufficient
for microsequencer debug, whereas a 64-
bit-wide logic analyzer is probably sufficient
for AHB bus monitoring (Table 2). The
captured events are uploaded to the host
side; the AHBDBG produces a VCD dump
file so that you can use a simulation wave-
form viewer to see the waveform. The sig-
nals can be bundled to a set of wires and
buses with meaningful signal names using a
helper tool, vcdwizard.

The second unique feature is the remote
access feature. The AHBDBG can be a
gateway to your hardware system. When
the remote access feature is turned on, it
will listen to the network (specified TCP

port) and translate a network message to
an AHB bus access. This feature allows
you to exercise the FPGA hardware using
programs such as Python, Perl, or C++.

We provided this feature because our
users asked us to include specific features
for their projects, and the remote access fea-
ture provides a generic way to provide proj-
ect-specific features. We later found that
the remote access feature could be used in
other situations beyond its original intent.
For example, you could do system proto-
typing using a remote program before
developing a real embedded program.

The AHBDBG has a layered software
design; the bottom layer is a layer to talk
to a physical device. Currently, it sup-
ports Parallel Cable III through a printer
port or Ethernet Pod (proprietary to
Ponderosa Design). However, it can also
support any device that can mimic a
printer port interface.

In addition to the devices mentioned
previously, a virtual device “sim” is also
supported. As the name implies, the “sim”
device is a virtual device for Verilog simula-
tion, which the AHBDBG can “control.”
Any commands given to the AHBDBG are
ultimately converted to AHB accesses in a
simulation. We found this scheme very
helpful, as it provides an intuitive way to
run Verilog simulation. The current
scheme uses Unix IPC (Inter-Process

92 Xcell Journal Third Quarter 2005

scc-32
core

RS232

scc-32
core

JTAGDBG

JTAG

RS232

scc-32
core

jtag2ahb

JTAG

RS232

scc-32
core

jtag2ahb

LA32

JTAG

RS232

scc-32
core

AHB

jtag2ahb

LA64

JTAG

RS232

UART UART UART UART UART

Standalone

1236 LUTs

2 BRAMs

17%

JTAG Debugger

1367 LUTs

2 BRAMs

19%

AHBDBG

1729 LUTs

2 BRAMs

24%

AHBDBG + 32-bit LA

2085 LUTs

4 BRAMs

29%

AHBDBG + 64-bit LA

2437 LUTs

6 BRAMs

33% of XC3S400

AHB AHB

Figure 1 – AHBDBG screen shot

Figure 2 – AHBDBG with logic analyzer page

Table 2 – The scc-32 core size with various debugging options

D E B U G G I N G

Communications) and Verilog PLI, so it is
not a universal solution for everyone.
However, many simulators provide a spe-
cial hook so that controlling Verilog simu-
lation from the AHBDBG is possible even
where Unix IPC is not available.

The AHBWIZARD
When constructing a larger system with
the AHB bus, we realized that creating a
top-level file that holds all AHB sub-
modules and arranging bus multiplexers
is tedious, time-consuming, and error-
prone. Moreover, you need to constantly
maintain the file as new AHB modules
are added or subtracted from the system.

We developed the AHBWIZARD to
automate the process such that you can
rearrange your AHB system without
rewriting the top-level file. For example,
you may want to have a logic analyzer
module to debug the system, but you
don’t want to have such modules in the
production FPGA design.

The AHBWIZARD separates the
AHB library (definition files) and the
tool itself (GUI) such that you can add a
new AHB module definition file or mod-
ify how codes are generated (such as sig-
nal naming conventions). At start-up, the
AHBWIZARD scans the library directo-
ry, enumerates the modules available,
and displays them in the window. You
can just drag-and-drop the modules you
want to add (Figure 3).

A custom property sheet pops up to

specify property information about the
module, such as address decoding or AHB
master priority, which is in turn used in the
module’s code generation. Glue modules
such as AHB slave to master multiplexer
are automatically generated accordingly.

If the generated top-level file is not
complete, you can use an optional
“touch-up” module to add or modify the
generated top-level file. A helper tool

(touchupwizard) generates the touch-up
module (Figure 4).

We provide several commonly used
AHB modules for use with the AHBWIZ-
ARD, in addition to our AHB-ready
microsequencer modules.

Multiprocessors in FPGAs
As the footprints of our microsequencers are
small, you could use more than one microse-
quencer in a FPGA. Although you can assign
a different program to each microsequencer,
you can also assign the same program to
multiple microsequencers. We think that
such a configuration – which we call SIMD
(single-instruction-stream, multiple-data-
stream) configuration – could be very bene-
ficial for certain types of applications.

When controlling a robot, for example,
the left and right sides probably require the
same control flow. With two microse-
quencers sharing one program memory,
the program only needs to deal with one
side, resulting in a simpler program.
Additionally, you can use a portion of the
program memory for processor communi-
cation, as our microsequencers can write to
a program memory.

Of course, the required number of block
RAMs is half the required number of block
RAMs for two separate microsequencers,
such that a larger program can be crammed
into an FPGA. You can achieve such a
scheme with minor core modifications
because the block RAM in an FPGA is
dual-port memory, allowing two microse-
quencers to access the program memory
without disturbing another (Figure 5).

Multiprocessors in FPGAs is an interest-
ing developing field. As the AHBDBG
accesses the microsequencer through the
AHB bus, any number of microsequencers
can be supported.

Conclusion
The ideas presented here are used in ASIC
design processes, so we are glad to bring
these advanced design methodologies to
FPGAs. However, this cannot be done
without the newest Xilinx FPGA families.

For more information, visit www.
ponderosa-design.com, or e-mail info@
ponderosa-design.com.

Third Quarter 2005 Xcell Journal 93

prog.
memory

scc-32 scc-32

AHB interface

32-bit

ALU

32-bit

ALU

PU0 PU1

PU0

I/O

PU1

I/O

intr0

intr0

Figure 3 – AHBWIZARD screen shot

Figure 4 – AHBWIZARD with touch-up
wizard screen shot

Figure 5 – Multiprocessor scheme with the scc-32

D E B U G G I N G

by Steven Elzinga
Senior Product Applications Engineer
Xilinx, Inc.
steven.elzinga@xilinx.com

Synplicity’s Synplify Pro software is a pow-
erful synthesis tool that allows you to max-
imize Xilinx® Spartan™-3 resources. If
you are using the Xilinx ISE™ tool suite to
identify the critical paths, you can easily
perform timing closure with Synplify’s con-
straint entry capabilities.

Synplify also has many synthesis direc-
tives to aid in the timing closure of your
design. Using the capabilities of the
Synplify Pro tool, you can achieve the best
performance for Spartan-3 devices.

Setup
Our test case used Synplify Pro software
(version 7.7.1) and Xilinx ISE software
(version 6.3i) targeting a Spartan-3
XC3S50TQ144-4 FPGA. We used the
default settings for the first synthesis and
implementation run, as well as Synplify’s
various synthesis options and its con-
straint editor, SCOPE.

Timing Closure with
Synplify Pro Software
Timing Closure with
Synplify Pro Software

94 Xcell Journal Third Quarter 2005

Get more bang for your buck when performing timing closure.Get more bang for your buck when performing timing closure.

D E B U G G I N G

Because we cannot access SCOPE with-
in ISE software, we created separate
Synplify and ISE projects. By using the
same project directories for both the
Synplify Pro project and the ISE project,
the newly created EDIF and NCF files can
be immediately available to the ISE tool.
The NCF, which has the same syntax as a
UCF, is made automatically from the con-
straints entered through the Synplify tool.

To make sure that the NCF gets used,
we selected the Synplify Pro implementa-
tion option “Write Vendor Constraint File”
on the implementation results tab. The
NCF file has to have the same name as the
EDIF file so that ISE software will auto-
matically use it.

Modifying Default Settings
Running the design through the Synplify
tool with the default settings gave a report
with an estimated frequency of 163 MHz
and an actual frequency after implementa-
tion of 115 MHz. The design was auto-
constrained by Synplify Pro software to
191 MHz, which resulted in a 191 MHz
period constraint in the NCF. We arbitrar-
ily set a design goal of 190 MHz – so now
we need to improve by 75 MHz.

This design has case statements that we
can interpret as finite state machines. The
FSM Explorer option is turned on, which
explores different encoding styles for the
state machines and decides on the best
implementation. The retiming option
allows the synthesis tool to move registers
through asynchronous logic so that a more
evenly distributed delay is achieved between
registers. Selecting both of these synthesis
options increased the synthesis-estimated
speed of the design to 217.7 MHz.

In the majority of designs, over-
constraining causes detrimental results.

Without having specified
a synthesis period con-
straint, the Synplify Pro
tool auto-constrained the
design to 267 MHz after
the FSM Explorer and
retiming options were
selected. As this con-
straint is much greater
than the estimated

results, we used a constraint of 218 MHz in
SCOPE (Figure 1).

Once the SDC file was created, we
added it to the project. With the constraint
now added, Synplify Pro software reports a
speed of 219.2 MHz. A constraint of 220
MHz gives the same estimated result –
219.2 MHz.

Analysis
With the default settings in ISE software,
we achieved a result of 164 MHz. This
result is based off the period constraint that
Synplify software passed into the NCF.
Setting the PAR effort level to high gives a
result of 166.7 MHz. Inspecting the report
from Timing Analyzer, we see a common
critical path through an instance called “s_”:

Third Quarter 2005 Xcell Journal 95

==
Timing constraint: TS_CLK = PERIOD TIMEGRP “CLK” 4.545 nS HIGH 50.000000 % ;

1669 items analyzed, 43 timing errors detected. (43 setup errors, 0 hold errors)
Minimum period is 6.000ns.

—————————————————————————————————————-—————————————————-
Slack: -1.455ns (requirement – (data path – clock path skew +
uncertainty))

:
:

Location Delay type Delay(ns) Physical Resource
Logical Resource(s)

—————————————————————————————————————- ————————————————-
SLICE_X21Y27.YQ Tcko 0.720 s_.SYND2_inv[1]

s_/inv_/y_259_0_dreg[1]
SLICE_X15Y15.G3 net (fanout=5) 1.731 s_.SYND2_inv[1]
SLICE_X15Y15.Y Tilo 0.550 N_423

s_/mult_/z_1_0[1]
SLICE_X15Y15.F4 net (fanout=1) 0.015 s_/mult_/z_1_0[1]/O
SLICE_X15Y15.X Tilo 0.550 N_423

g0_i_x2_1_0
SLICE_X12Y16.F2 net (fanout=1) 0.552 N_423
SLICE_X12Y16.X Tilo 0.608 s_.DATA_OUT_ret_72

g0_0_x2_0_2
SLICE_X12Y13.BY net (fanout=1) 1.014 s_.mult_out[1]
SLICE_X12Y13.CLK Tdick 0.260 s_/LOC2__ret

s_/LOC2__ret
—————————————————————————————————————- ————————————————-
Total 6.000ns (2.688ns logic, 3.312ns route)

Figure 2 – Connectivity of “s_”

Figure 1 – Period constraint in Synplify Pro software

D E B U G G I N G

Floorplanner
With the help of Xilinx Floorplanner, we
can determine the connectivity of “s_”. In
Figure 2, “s_” is selected (yellow). The
black lines represent its connectivity in
relation to the other parts of the design.

This instance is spread out, so an area
group constraint is necessary. Instead of
entering the area group constraint into a
UCF, we entered the constraint SCOPE,
which allows the Synplify tool to make
timing decisions based off the physical
placement of the logic. In fact, we achieved
worse results when we entered the con-
straints directly into a UCF file (bypassing
the synthesis tool).

Area Groups
You can enter the area group constraint
through SCOPE by selecting the attributes
tab. Each cell in SCOPE has a pull-down
menu with only the correct values avail-
able. As shown in Figure 3, the “s_”
instance is found and the xc_area_group
constraint is selected.

After several iterations, we found a good
area group constraint that worked well with
ISE software, producing a minimum period
of 187 MHz. We continued this iterative
process, trying area groups on different
instances as well as trying different PAR cost
tables (a PAR cost table gives a different start-
ing point for the place and route process).

Ultimately, we placed area group con-
straints on two instances inside of “s_” and

used a PAR cost table setting of 8 to get the
final minimum period of 189 MHz, close
to the arbitrary goal of 190 MHz and a sig-
nificant improvement over the uncon-
strained design speed of 115 MHz.

As a final confession, we used the NCF

period constraint of 220 MHz. Using the
actual constraint of 190 MHz decreased
design performance after implementation
from 189 MHz to 180 MHz. This is

not normal behavior from PAR. Over-
constraining in PAR can have the same
detrimental results as over-constraining
in synthesis, so a design with a positive
effect of an over-constrained period in
PAR represents a corner case.

Conclusion
Our design was small and easily fit in the
smallest Spartan-3 device. However,
using the same methodologies outlined in
this article, a significantly larger design
can meet timing using Synplify Pro’s con-
straints and switches and passing those
constraints to ISE software.

Using the switches in Synplify
Pro software, SCOPE, and Xilinx
Floorplanner, our design met the arbi-
trary goal and a significant timing clo-
sure on a Spartan-3 design.

For more information, visit www.
synplicity.com/products/synplifypro/index.htm
l and www.xilinx.com/spartan3.

96 Xcell Journal Third Quarter 2005

Using the actual constraint of 190 MHz decreased design
performance after implementation from 189 MHz to 180 MHz.

Figure 3 – Area group constraint

Get the latest Virtex news
delivered to your desktop
Get the latest Virtex news
delivered to your desktop

Subscribe Now!
www.xilinx.com/virtex4

Subscribe Now!
www.xilinx.com/virtex4

R

D E B U G G I N G

by Joel Woodward
Senior Product Manager
Agilent Technologies
joel_woodward@agilent.com

Digital designers have long reached for an
oscilloscope for debug. As FPGAs have
become the centerpiece of digital design, the
need to quickly debug systems that include
programmable logic is stronger than ever.
However, traditional oscilloscope technology
has not kept up with the functional debug of
FPGAs. A new breed of oscilloscopes known
as mixed-signal oscilloscopes (or MSOs for

short) delivers vital capabilities if you are
developing systems with FPGAs.

Like traditional oscilloscopes, MSOs
offer the same rich feature set for taking
parametric measurements to measure signal
integrity, jitter, and signal characterization.
You can choose between versions that have
either two or four analog input channels.
MSOs come in a variety of bandwidths
ranging from 300 MHz to 1 GHz band-
width; these capabilities are important for
checking signal parametrics. For example,
you can readily change I/O standards and
drive strengths using Xilinx® FPGA Editor

and measure the real-world I/O characteris-
tics using an MSO’s scope channels.

The major difference between MSOs
and traditional DSOs (digital storage oscil-
loscopes) is the addition of 16 digital asyn-
chronous sampling channels on the MSO.
Plus, you can choose how fast these digital
channels sample. The digital channels offer
deep memory storage independent of the
analog channel memory storage. You can
employ the capabilities of the digital chan-
nels in a number of different ways that are
particularly valuable for developing systems
that incorporate FPGAs.

Speed FPGA Debug with
Mixed-Signal Oscilloscopes

98 Xcell Journal Third Quarter 2005

You can make internal measurements using Agilent scopes and the Xilinx ChipScope Pro analyzer.

D E B U G G I N G

Bus Triggering and Display
Traditional oscilloscopes provide digital
triggering capabilities that allow them to
trigger on patterns across analog channels.
With a four-channel oscilloscope, you can
trigger on a single pattern that is as wide as
four signals.

Debug often requires looking at buses
using a specific event as the trigger condi-
tion. Using an MSO’s digital channels, you
can trigger on a digital pattern as wide as
16 signals. This can be a powerful capabil-
ity if you need to look at a state machine,
an embedded microcontroller, or a data
bus. In addition, you can also trig-
ger and capture measurements
across all four analog channels,
extending the trigger width up to
20 signals, as shown in Figure 1.

Correlating Analog and
Digital Measurements
Although you can use the digital
channels to make strictly digital
measurements, their capabilities
are best employed for looking at
problems that are both functional
and parametric in nature – for
example, triggering on a digital bus
and having this trigger condition
arm the scope measurement.

At Agilent, one of our design
teams experienced an infrequent
software glitch on an embedded
product under development. This
anomaly manifested itself very infre-
quently – about once a week. The soft-
ware team developed diagnostics that
caused the problem to happen on a more
frequent basis. With this diagnostic soft-
ware, they found that the problem
occurred during read cycles on a PCI bus
embedded in an FPGA.

The team routed PCI status signal out
to pins and connected the MSO’s digital
channels to these signals. Engineers quick-
ly set up the MSO digital trigger on a PCI
read cycle and then set the MSO scope
channels to acquire when the MSO digital
channels recorded a PCI bus read cycle.

With the ability to trigger on a specific
bus cycle, the team was quickly able to
resolve the problem. They found a clock

debug core in their FPGA designs. The
debug core, known as ATC2, provides an
easy way to route signals to pins, enables a
faster setup of the MSO, and allows you to
quickly measure new groups of internal sig-
nals. This capability extends the reach of the
16 digital channels into the FPGA design.

Let’s look at a simple communication
system to illustrate the value of an MSO’s
digital channels for FPGA debug. A state
machine drives the process of sending out
packets of 16-bit data along with a transac-
tion ID. Parallel data is serialized, sent on a
serial channel, de-serialized, and brought

into a monitor. A second state
machine at the monitor drives the
process of receiving the packets
and strips off the data and transac-
tion IDs so that the packets can be
pulled off to external memory.
This state machine also generates
acknowledge IDs that are fed back
to the transmit side to communi-
cate that data was received. The
design originally dedicated 16 pins
for a debug port.

Using the ChipScope Pro core
inserter, you can parameterize an
ATC2 core. A benefit of the core
inserter is that you need not mod-
ify the original HDL design, as
core insertion occurs post-synthe-
sis and before place and route.
You would simply specify, using
the core inserter, which internal

signals to group together as an active signal
bank. Place and route uses the original
user constraint file, so no additional work
is required.

The core inserter also produces a small
file that contains the specified signal names
and groups. This file, known as a .cdc, is
read by the FPGA Dynamic Probe applica-
tion running on the MSO. When changing
which signal group is presented to the
MSO, the instrument automatically uses
this signal naming file to correctly update
signal names on the display. As opposed to
the route-out approach, which can take
hours to bring new signals to pins, the
FPGA Dynamic Probe allows you to access
a new group of internal signals in about
one second.

with a too-slow rise time that impacted pri-
marily read cycles. The team modified the
design and downloaded a new configuration
file into the FPGA. The combination of
reprogrammable FPGAs and MSO meas-
urements allowed the design team to fix the
problem and ship the product on schedule.

Extensive Internal Visibility
To access internal signals, you might typical-
ly use the route-out approach to bring sig-
nals to pins that can be probed using an
oscilloscope. Using traditional oscilloscopes,
you would have access to either two or four

signals at a time. This narrow signal visibility
can complicate debug, as a number of prob-
lems require simultaneous visibility across a
higher number of signals. To access new sig-
nals, you must change the design, re-synthe-
size, and run a new place and route to make
your signals accessible to the oscilloscope.
This process can take hours.

With the digital channels of an MSO,
you have visibility of as many as 16 internal
FPGA signals at a time. The power of the
MSO’s digital channels can be further
extended when combined with on-chip
technologies such as the Xilinx
ChipScope™ Pro tool and Agilent FPGA
Dynamic Probe.

The ChipScope Pro analyzer allows
design teams to incorporate an Agilent

Third Quarter 2005 Xcell Journal 99

Figure 1 – In addition to scope channels, mixed-signal oscilloscopes
provide 16 digital channels. This gives you the ability to trigger
and display as many as 20 signals simultaneously. The width of

the digital channels is particularly well suited for measuring
signals internal to Xilinx FPGAs.

D E B U G G I N G

For fast debug, the design team needed
visibility into four sections of the design.
The designer thus created a core with four
signal banks to give access to 64 signals, 16
at a time, over the 16-pin debug port (as
shown in Figure 2). ATC2 cores can
be parameterized to have as many as
64 signal banks, providing access to
1,024 internal signals with the
MSO’s 16 digital channels.

Timing Cores
You can configure ATC2 cores as
either timing (asynchronous) or state
(synchronous) cores; both types of
cores are supported with the MSO.
The core inserter injects a core into a
design post-synthesis and before
place and route. If you specified a
timing core, the place and route
tools do not put any flops between
the signal being probed and the out-
put pin; the routing of the signal to
pin for measurement is treated as a
false path. This allows the place and
route tools to ignore any speed con-
straints associated with routing a
specific signal to a pin.

The timing core does include a
JTAG controller, but the controller
typically runs very slowly (<5
MHz), as it is only used for small
information exchanges such as
selecting a new signal bank. Timing
cores can be effective, as they allow
you to look at signals across multiple
clock domains or at anomalies that
have a duration of less than one
clock cycle. The primary trade-off
associated with timing cores is that
skew will exist between signal paths.

State Cores
Traditional oscilloscopes as well as
MSOs provide asynchronous acquisi-
tion. Samples are stored using an
adjustable clock reference internal to the
scope. This can make it difficult to accurate-
ly capture and decipher synchronous events
as the instrument captures invalid transi-
tions between clock cycles.

A more effective way to capture synchro-
nous information on a single clock domain

is to parameterize the ATC2 core as a state
core. A state core will have minimal impact
on design timing because of its pipelined
architecture. A total of four flops are placed
between the signal being probed and an

output pad (Figure 3). The design tools
place the first flop as close as possible to the
signal being probed. The additional three
stages of pipelining allow the signal three
clock cycles before reaching the output pad.
The pipelined architecture of the ATC2
core allows the place and route tools to have

a much greater probability of meeting the
original timing goals of the design.

As the core is synchronous, the place
and route tools eliminate skew between
signal paths. The primary trade-off with a

state core is that it works with a
single time domain. Using the
state core approach, you can meas-
ure across clock domains by insert-
ing multiple state cores. The MSO
can access multiple ATC2 cores,
one at a time, in a single FPGA or
distributed across multiple FPGAs
on a single scan chain.

The MSO’s digital channels
provide exclusively asynchronous
acquisition. For FPGA debug, a
method exists for allowing the
MSO to display synchronous
measurements, even though the
initial acquisition occurs asynchro-
nously. The ATC2 state core out-
puts a clock signal and signal states
synchronous with the clock. The
MSO’s digital channels acquire this
pre-formatted state information.
Then the MSO post-processes this
measurement using a state display
feature that allows you to specify
one signal as the clock. The MSO
filters out to all transitions between
valid states. This makes it possible
to make synchronous measure-
ments internal to the FPGA.

Conclusion
The reprogrammable nature of
FPGA technology makes rapid itera-
tive real-world debug a great com-
panion to simulation. As FPGAs
become even more sophisticated, the
need for efficient internal visibility
increases. Mixed-signal oscilloscopes
provide unique measurement capa-
bilities that align with the needs of
those designing systems that incor-

porate FPGAs. Applications that help you
exploit the digital measurement capabilities
of MSOs are a catalyst for shorter develop-
ment cycles and higher quality designs.

For more information about the FPGA
Dynamic Probe for Agilent MSOs, visit
www.agilent.com/find/msoFPGA.

100 Xcell Journal Third Quarter 2005

Figure 2 – ATC2 cores, inserted using the ChipScope Pro tool,
allow you to quickly switch which signals are connected to pins for
measurement. Each ATC2 core can be parameterized with as little

as one signal bank or as many as 64 signal banks.

Figure 3 – A pipelined architecture uses four stages to route
a signal to the debug port using the FPGA Dynamic Probe.

This automated approach gives the place and route tool flexibility
to meet timing requirements because the router can use timing

solely within the ATC2 core to move across the chips.

D E B U G G I N G

by Paula Ungs
Sr. Marketing Manager
Xilinx, Inc.
paula.ungs@xilinx.com

Many challenges are associated with
designing products that are not only safer
for the environment but meet the legisla-
tive and OEM requirements that are being
adopted around the world. To ensure suc-
cess, you must understand the global
requirements and deadlines for the removal
of hazardous substances from electronic
products. At a more practical level, you
must understand how Pb-free devices
impact board design. Xilinx® understands
these challenges and offers a strategy to ease
the transition to Pb-free and environmen-
tally friendly products.

Global Environmental Requirements
To develop products that can be shipped
globally, you must comply with global
requirements and deadlines for the
removal of Pb and other hazardous sub-
stances from electronic products. As
shown in Figure 1, the most eminent
requirement is the European Union (EU)
directive for the restriction of the use of
certain hazardous substances (RoHS). This

directive bans shipments of electronic
products into the EU after July 1, 2006
that do not comply with the directive’s
restriction on Pb, mercury, cadmium,
hexavalent chromium, PBB, and PBDE
flame retardants.

Japan recognizes RoHS and also
enforces their own green initiatives, driven
by recycling/reuse laws in their country.
China recently announced plans to adopt
legislation that will be more strict than the
RoHS legislation – banning, rather than
restricting, the named substances by the
same July 1, 2006 timeframe. Individual
states in the U.S. are also considering bans
on the same list of materials – and poten-
tially others.

Pb-Free in Board Designs
How do Pb-free solutions impact board
designs? As a rule of thumb, Pb is distrib-
uted in electronics in the solder (75%),
board (20%), and components (5%), so
you must understand the implications to
the overall solution. “Green” components
in the industry feature new material sets
that require changes to solder materials
and processes, which in turn affect board
selection. The good news is that most Pb-
free packages have the same form, fit, and

function as standard packages; no special
board layout considerations are required
from the component side.

Pb-free lead-frame packages (for exam-
ple, PQG and TQG) that use matte tin
plating on the leads are of little concern,
since they are considered “backward com-
patible” to traditional SnPb manufacturing
processes. However, many Pb-free BGA
package solutions in the industry use a
SnAgCu solder ball material that is not
backward compatible with traditional
manufacturing processes. The SnAgCu
material requires higher peak reflow tem-
peratures than those specified for standard
packages. This situation makes it difficult
for designers to mix Pb-free and standard
components on the same board. So the
decision must be made up-front as to
whether the board will be Pb-free or not.

The BOM for Green Products
Crafting the bill of material (BOM) can be
difficult when designing Pb-free solutions.
Pb-free devices cannot always be mixed
with standard devices on the same board
because of differences in the manufacturing
process. Therefore, you need to know if a
given device is Pb-free or standard when
including it in a board design. What makes

Designer Challenges
for Pb-Free and
Green Products

Designer Challenges
for Pb-Free and
Green Products

Third Quarter 2005 Xcell Journal 101

Ease the transition to green solutions with Xilinx Pb-free products.

this complex is that some companies in the
industry are simply “converting” standard
devices to Pb-free. And because the part
number does not change in this scenario,
the part type cannot be easily identified.

And what about the BOM cost? Many
designers are challenged to create cost-
effective solutions that can compete in a
tough market. Many component compa-
nies in the industry are applying cost
adders to Pb-free versions of their products
to offset the higher costs they may be expe-
riencing. What was already a difficult con-
straint is now exacerbated by unexpected
higher costs.

Availability and Reliability
As a designer, you surely want to know that
the parts designed onto a board are avail-
able and reliable. You should feel comfort-
able that the parts you have selected will be
available when the board is prototyped or
built in production. Component manufac-
turers in the industry are getting up to
speed with green products at different
rates, so the simultaneous availability of
components is hard to predict.

You will also want to make sure that
Pb-free parts are high-quality, reliable
devices. Because material sets have
changed, it is imperative that the new
devices are fully qualified and that the
packages can withstand the higher reflow
temperatures now required.

fully RoHS compliant, and in most cases
are available at no additional cost over stan-
dard products (see Table 1).

To simplify Pb-free part identification,
Xilinx instituted a special part number
(Figure 2). You can easily designate and
identify Pb-free products, thus saving time
and effort. Furthermore, Xilinx adopted a
“dual-line” strategy, which makes both stan-
dard and Pb-free products available in par-
allel so that companies can transition at
their own pace.

Conclusion
When designing with Xilinx Pb-free prod-
ucts, you can be assured that all products
are qualified and as highly reliable as stan-
dard products. Package materials were
enhanced to withstand the thermal stress
from higher reflow temperatures associated
with new Pb-free materials.

For more information regarding
quality and reliability, read the Device
Reliability Report on the Xilinx website,
www.xilinx.com/quality. For more informa-
tion about Xilinx Pb-free products, visit
www.xilinx.com/pbfree.

The Transition to Pb-Free
To ensure that you can easily develop solu-
tions that support green requirements,
Xilinx is committed to providing RoHS-
compliant products to the market ahead of
all directives. Xilinx also stays active in
industry consortia to ensure advanced
knowledge of any new environmental legis-
lation that may affect electronic products.
Xilinx green components will comply with
all global requirements.

Pb-free packages from Xilinx have the
same form, fit, and function as standard
packages. Xilinx and its suppliers have care-
fully selected material sets for Pb-free com-
ponents; these material sets are among the
most commonly used in the industry.
Xilinx Pb-free packages use matte tin plat-
ing for lead-frame packages and SnAgCu
solder balls for BGA and flip-chip pack-
ages. All Pb-free packages from Xilinx are

102 Xcell Journal Third Quarter 2005

RoHS Enhanced Change Compatible
Package Type Pb-Free Materials Compliant? for Higher to Form, Fit, w/SnPb

Temps? Function? Solder?

Lead Frame 100% Matte Tin Yes Yes No Yes
Plating on Leads

BGA and Tin-Silver-Copper Yes Yes No Not
Flip-Chip (Sn4Ag 0.5 Cu) Recommended

Solder Balls

Lead (Pb) has long beenLead (Pb) has long been
recognized as a harmfulrecognized as a harmful
environmental pollutant.environmental pollutant.

The use of Pb in electronicThe use of Pb in electronic
products is an increasingly visibleproducts is an increasingly visible

environmental and politicalenvironmental and political
concernconcern.

* RoHS = Restrictions on the use of Hazardous Substances

Legislation/OEM Initiatives
Europe
EU directive RoHS* restricts use of Pb and five other
hazardous substances from electronic products put on
the market after July 1, 2006
Japan
Electronic recycling laws oblige manufacturers to eliminate
or recover waste products containing Pb
China
Announced plans to adopt legislation more strict than RoHS
banning Pb and other substances after July 1, 2006
United States
Laws banning or restricting the use of Pb are already in
place for many products

Pb-Free and RoHS Drivers
Environmental Concerns

Table 1 – Xilinx Pb-free package information

Figure 2 – Xilinx Pb-free part numbers
include an additional “G” character.

Figure 1 – Environmental concerns drive global legislation.

by Jonathan Trotter
Titanium Business Development Manager
Xilinx, Inc.
jonathan.trotter@xilinx.com

FPGAs were once used in smaller, simpler
applications. A small team could create
designs that reached desired performance
levels with some HDL knowledge and
minimal FPGA fabric experience. With
larger densities, ever-increasing features,
and threatening competition, new design
techniques are necessary to predictably
achieve maximum device performance and
shorten development time.

You can apply some of these new design
techniques by using constraints within
Xilinx® ISE™ software, entering con-
straints using several tools (or manually with
a text file). These older methods work, but
the chance of making a mistake is high.
Each time you make a modification using
these traditional tools, you are forced to wait
for another place and route (PAR) run. In
the end you might find out that the changes
were ineffective, and now you are stuck in an
endless loop trying to close on timing.

A Shortcut to Effective
Hierarchical Designs

Third Quarter 2005 Xcell Journal 103

The PlanAhead QuickStart! service enables you to rapidly obtain
optimal FPGA performance with minimal device utilization.

With enough effort and iterations, you
will eventually have an idea of what it takes
to achieve timing closure. But how much
time will you need – and how many itera-
tions will be required – before you get the
design and constraints to converge on tim-
ing? Is it a matter of refining the constraints,
placement, or changing the RTL structure?

When using a flat methodology to make
even minor changes to a given logic block,
you must redo PAR for the entire design.
This adds up to a significant amount of
wasted time, as 50 or more PAR iterations
– at 8 or more hours apiece – are common
with today’s larger FPGA netlists.

The PlanAhead QuickStart! service
delivers individualized service that includes
a QuickStart! application engineer at your
site for a week. This Xilinx expert will train
design teams on the PlanAhead™ hierar-
chical design environment, which allows
designers to create block-based incremental
designs, run timing analysis, reduce PAR
times, create reusable modules, and group
fabric for optimal routing and consistent
results. After a two-day training course on
PlanAhead design tools, the QuickStart!
engineer will then provide support and
consultation customized specifically to
address your design requirements.

Benefits of Floorplanning
Two important but opposing features of a
great design are obtaining maximum speed
and minimal device utilization. A design
with a highly optimized HDL netlist can still
fail to meet timing with non-optimal logic
placement. Each time a design undergoes
PAR, the internal logic can move or shift
because placement is not predictable. As a
result, performance can change dramatically
with each PAR run. Synchronous elements
placed in a scattered fashion can slow timing
because of routing delays, but these can be
dramatically reduced – and device utilization

connectivity, and logical and physical hier-
archy, enabling design teams to quickly
inspect and rectify problem areas. They can
also create and manipulate physical hierar-
chy independently from logical hierarchy.
The tool is powerful and allows designers
to simultaneously plan and analyze multi-
ple physical implementations.

Benefits of PlanAhead QuickStart!
ASIC designers have been taking full advan-
tage of hierarchical design methods for years.
Now it’s time for FPGA designers to learn
how to use the PlanAhead environment and
follow new design techniques and require-
ments. The QuickStart! engineer will provide
a two-day Designing with PlanAhead course,
followed by three days of on-site customized
support and consultation. The engineer will
be familiar with PlanAhead fundamentals, as
well as other design aspects that may need
consideration. After a week of dedicated sup-
port, your team will be familiar with funda-
mentals of modular and block-based design,
working at an expert level with the
PlanAhead hierarchical design environment.

Conclusion
Many designers are comfortable with a
push-button flow, which is defined by sim-
ply writing and synthesizing HDL and
using Xilinx implementation tools without
special options or design constraints. Most
design teams can obtain desired results
with this flow. But for designers creating
powerful applications, floorplanning and
hierarchical block-based design techniques
are essential. The PlanAhead hierarchical
design environment allows you to design
with a new powerful methodology. The
PlanAhead QuickStart! service enables you
to reap the benefits in only a week. To find
out more about PlanAhead QuickStart!,
contact your Xilinx representative or visit
www.xilinx.com/paq.

minimized – by closely grouping the related
logic. Timing-driven floorplanning helps you
reach the highest speeds while using a mini-
mal amount of FPGA fabric, saving more
fabric for extra features and options.

Benefits of Hierarchical Design
The PlanAhead QuickStart! service rapidly
enables design teams to utilize a hierarchi-
cal design methodology and increase design
performance. This methodology enables
the design to be broken up into separate
hierarchical blocks or modules. Once PAR
is locked in for each block, placement and
routing between the blocks is performed.
The less routing delay between the internal
sub-modules of a block and between
blocks, the more predictable timing closure
is for the overall design.

Each separate block can undergo PAR
by different team members. They will also
have the control to make changes to their
blocks independently of their teammates.
Instead of making changes to the design as
a whole, individual team members can
make small incremental changes to por-
tions of the design. This approach increas-
es productivity because it reduces the total
number of time-consuming PAR runs. The
modular design flow also reduces the time
needed for each PAR run. Isolating the
problem to specific block(s) eliminates the
extra PAR iterations usually required when
working with a flat methodology.

PlanAhead Design Tools
Historically, it was difficult to follow hier-
archical design methodologies with older
FPGA design tools. Several software appli-
cations or design tools were needed at vari-
ous stages in the design implementation.
The hierarchical design planning capability
of PlanAhead design tools includes an
advanced user interface, making it easy to
use. Multiple views highlight the resources,

104 Xcell Journal Third Quarter 2005

ASIC designers have been taking full advantage of hierarchical
design methods for years. Now it’s time for FPGA designers
to learn how to use the PlanAhead environment and follow

new design techniques and requirements.

by Rhett Whatcott
Senior Engineer/Course Developer
Xilinx, Inc.
rhett.whatcott@xilinx.com

Every designer ultimately needs to finish
their design on time and on budget while
meeting performance requirements.
Xilinx® courses provide you with the nec-
essary knowledge to deliver your projects
predictably and within budget.

Xilinx Education Services provide six cur-
riculum paths that focus on a specific area of
design specialization: Languages, FPGA
Design, PCI Design, DSP Design, High-
Speed Design, and Embedded Design. In
this article, we’ll explore the FPGA Design
path and show how each course builds on

itself, from fundamentals to achieving high-
performance design objectives.

For example, our FPGA series of cours-
es offers you a successful step-by-step tim-
ing closure strategy. In addition to
increasing performance, this has the added
benefit of reducing power because of less
routing. All of our logic courses offer you
best practices, tips, and techniques for uti-
lizing Xilinx ISE™ software, cores, and
architectural features. The following
course descriptions describe some specific
design challenges that you will tackle.

Fundamentals of FPGA Design Course
Fundamentals of FPGA Design covers basic
hardware and software features, coding tips,
design performance, and reliability.

Does your in-circuit functionality
change from one implementation to the
next? Are you struggling with reliability
issues? Through concise asynchronous
and equivalent synchronous design exam-
ples, this course will show you how to
avoid circuit reliability pitfalls and
replace them with reliable synchronous
circuits. Synchronous design techniques
provide reliability, structure, and lay the
foundation for increasing performance.

Do you struggle with creating early
pin constraints for your FPGA? Using
PACE (the Pinout Area and Constraint
Editor) for creating pin constraints, you
can take advantage of the FPGA fabric
rather than creating a bottleneck in
performance.

Xilinx Education Services:
Knowledge Creates Performance
Xilinx Education Services:
Knowledge Creates Performance

Third Quarter 2005 Xcell Journal 105

FPGA design courses provide the necessary strategies
and techniques to increase performance.

FPGA design courses provide the necessary strategies
and techniques to increase performance.

Wouldn’t it be nice to have complex
cores already created and optimized for
Xilinx FPGAs? You will use the Xilinx
Architecture Wizard to optimize cores for
instantiation.

You will learn to:

• Use Xilinx ISE Project Navigator to
implement an FPGA design

• Read suitable reports to determine
whether design goals were met

• Assign pin locations with PACE to
enhance performance

• Configure a clocking scheme with the
Architecture Wizard software

• Use the Constraints Editor to create
global timing constraints, which drive
performance

• Specify software options that can boost
performance

• Use synchronous design techniques
to create reliable designs and improve
performance

The Fundamentals of FPGA Design
course provides the necessary foundation to
begin using Xilinx FPGAs, create reliable
designs, improve area, and increase per-
formance. The prerequisites for this course
are basic logic/digital design knowledge
and basic VHDL or Verilog knowledge.

Designing for Performance Course
Are you having trouble meeting your per-
formance goals? Do you find that changing
software options doesn’t help – or makes
matters worse? In the Designing for
Performance course, we will teach you a sim-
ple timing closure flow (see Figure 1), as well
as which options to use and what to expect.

For example, say that you need to
increase your performance by 25%. What
should you do? Using the techniques taught
in this course, you can take a design that can
barely achieve 125 MHz performance and
by the end of the course increase perform-
ance to 200 MHz – an increase of 38%.

Are you having trouble synchronizing
an incoming signal? Do you need to cross
data from one clock domain to another? In

106 Xcell Journal Third Quarter 2005

Drive Your Synthesis Tool

Apply Global Xilinx Constraints

1

Increase Place & Route Effort Level

Apply Multi-Cycle and False Path Constraints

2

4

7

6

Use Proper Coding Techniques

Implement

Meets
Timing?

Rewrite code to
improve speed

Done

Implement

Meets
Timing?

Increase
Place & Route
Effort LevelDone

Implement

Meets
Timing?

All Multi-Cycle and False
Paths Not Identified

Done

Specify Pin Constraints3

Yes

Yes

Yes

No

No

No

No

No

No

Reasonable Performance Objectives No5

Review Critical Paths in the Code8

Apply Critical Path Constraints in Synthesis

Implement with MAP-Timing Options
or

Run Multi-Pass Place & Route

Floorplan

Start Over/Rewrite Code

9

10

11

Implement

Meets
Timing?

All Critical Paths
Not IdentifiedDone

Finish Routing Placements

Meets
Timing?

Floorplan Helped But
Did Not Meet Timing

Done

Implement

Meets
Timing?

Floorplan
Hindered TimingDone

Yes

Yes

Yes

No

No

No

No

No

4a

4b

6a

6c

6b

7a

7c

7b

9a

9c

9b

11a 11b

11d

11c

10a

10b

Figure 1 – Timing closure flow chart

this course, we will further explore syn-
chronous design techniques, teaching you
how to pipeline, duplicate high-load sig-
nals, and use synchronization circuits.

Do you find that your synthesis soft-
ware settings do not always accomplish
what you would like? Are you not certain
what each option does? Utilizing synthesis
settings, you can increase the lab design’s
performance by as much as 20%.

Does your design have multi-cycle and
false paths? By correctly constraining the
lab design with multi-cycle and false path
constraints (see Figure 2), you will find that

the design runs 20% faster than originally
noted. Correctly constrained, your design
may benefit by even greater amounts.

How do you find failing timing con-
straints – and how do you fix them?
Understanding how to use the information
provided by Xilinx Timing Analyzer is the
central catalyst to increase the course’s lab
design performance by 38%.

How do you use the myriad of imple-
mentation settings to improve results? Do
you need to increase your performance by
2%, 10%, or more? You will identify which
advanced implementation options provide

the most benefit for each situation.
You will learn to:

• Write HDL code to efficiently target
Virtex™-II-based device resources

• Create customized and optimized
cores in CORE Generator™ software

• Use Timing Analyzer to pinpoint tim-
ing errors and identify a strategy to
improve performance

• Use design/coding techniques and
software options to achieve timing clo-
sure

• Correctly and completely constrain
your design with global and path-spe-
cific timing constraints in the Xilinx
Constraints Editor

• Improve design performance and
manage software runtime by using the
optimal software settings

The knowledge obtained from the first
two courses in this track will provide you
with the necessary knowledge to tackle

Third Quarter 2005 Xcell Journal 107

Top
Level

Top
Level

A B C

A B C

A

B

C

A

B

C

B1 B2 C1

B1 B2 C1 C1

A
B

C

Translate

Map

Place & Route

Floorplanned UCF

Guide File
Previously Map NCD

Guide File
Previously PAR NCD

Make your changes incrementally; one
module at a time.

- Resynthesize only the block that has changed

Create Incremental Blocks

Synthesize

Floorplan AREA

Constraints

Implement

1

2

4

Incremental Synthesis

Incremental Implementation
6

3

Partition boundaries to match the blocks that you would like to
preserve.

Do not allow the synthesis tool to optimize across these boundaries.

- Individual netlists for each incremental block

- Create two to eight blocks, and each block will require
floorplanning

Synthesize each block.

- Write out individual
netlist for each block

- For block netlists, disable
I/O insertion

- Apply: do not insert clock
 buffer

Use Floorplanner (or
PACE) to layout area
constraints for each of the

preserved blocks.

- Use non-overlapping
constraints

Implement the design until timing objectives are met.

- Use floorplan information in the UCF

- May require several implementation iterations with a high level

- Use incremental design techniques to maintain these good results

5

Reimplement using guide files.

- As a guide, apply the previous map.ncd
 and par.ncd files

- All blocks without modification will
 maintain previous placement and routing

- Once all of the unchanged logic is
 placed and routed, the new logic
 will be placed and routed

Figure 3 – Incremental design techniques/design flow

Control
Registers

Status
Registers

BIDIR_PAD(7.0)

BIDIR
BIDIR_BUS(7:0)

Control_Enable Status_Enable

False Paths

Figure 2 – False paths through bi-directional pad

your most pressing design needs. You will
learn techniques that may allow you to use
a slower speed grade device or fit your
design into a smaller device – ultimately
saving you money. As you master the tools
and design methodologies taught in
Designing for Performance, you will be
able to create your design faster, with
increased performance, shortening your
development time and therefore costs.

Prerequisites for this course include
Fundamentals of FPGA Design and basic
VHDL or Verilog knowledge.

Designing with the Virtex-4 Family Course
At this point, you have taken
Fundamentals of FPGA Design and
Designing for Performance, but you want
to design into the latest and greatest device,
the Virtex-4 FPGA. The next course,
Designing with the Virtex-4 Family, has an
emphasis on teaching you to obtain the
highest possible performance (up to 500
MHz internally) and reduce power con-
sumption. This course covers a myriad of
new and enhanced capabilities of the
Virtex-4 FPGA fabric, with a major
emphasis on lab exercises.

How do you utilize the new DSP48
resource for arithmetic operations? How do
you utilize it for DSP applications? In lab
exercises, you will use the DSP48 for DSP
and arithmetic applications requiring 500
MHz operation. Did you know that you
can also use this resource to implement
logic resources such as a 6:1 multiplexer?
We will give you the necessary information
to take advantage of this dynamic, high-
performance, and low-power resource.

How would you design a clocking
scheme with ten global clocks and six region-
al clocks? In lab exercises, you will use the
new Xesium clocking resources (see Figure 5)
to design a complex clocking scheme in
Virtex-4 devices. This includes utilizing the
enhanced DCM, new phase-matched clock
divider (PMCD), enhanced global clock
buffers (BUFGCTRL), and new regional
clocking resources (BUFIO and BUFR).

Have you heard about the block RAM
performance enhancements and dedicated
FIFO resources? You will create a 500 MHz
block RAM core employing the new

optional output register. You will also cre-
ate a core utilizing the new dedicated
FIFO16 resources.

Do you need to design a source-syn-
chronous interface? The new Virtex-4 IOB
tile includes ISERDES and OSERDES
resources. You will examine the use of the
new Xesium clocking resources and the
ISERDES/OSERDES resources for creat-
ing your own source-synchronous inter-
face. You will also learn about the available
automated tools, ChipSync wizard, and
memory interface generator (MIG) for cre-
ating source-synchronous interfaces.

You will learn to:

• Utilize the Xesium global (32) and
regional (2 per region) clock networks

• Dynamically reconfigure the DCM’s
frequency synthesized output (CLKFX)
and fine phase shift (DPS)

• Create phase-matched divided clocks
using the new PMCD

• Create customized source-synchronous
interface cores with the ChipSync wizard
or memory interface generator (MIG)

• Increase the performance of your
memory resources using the new
Virtex-4 block RAM and FIFO16

• Increase performance and reduce
power of your arithmetic and DSP cir-
cuits utilizing the DSP48 resource

We are positive that this course will
provide the knowledge you need to take
full advantage of the performance and
power savings offered by the new Virtex-4
FPGA family. The prerequisites for this
course include Fundamentals of FPGA
Design and Designing for Performance, in
addition to intermediate VHDL or
Verilog knowledge.

108 Xcell Journal Third Quarter 2005

Introduction
to VHDL

3 Days ILT

Designing with
PlanAhead

2 Days ILT

Fundametals
of FPGA Design

3 Sessions LEL
1 Day ILT

Designing for
Performance

6 Sessions LEL
2 Days ILT

Advanced FPGA
Implementation

6 Sessions LEL
2 Days ILT

Designing
with the
Virtex-4 Family

2 Days ILT

TMR Tool

1 Day ILT

Introduction
to Verilog

3 Days ILT

* Choose one in this group

* Recommended courses: choose one or both

* Recommended course

Curriculum Path
Recommended Course

Figure 4 – Curriculum path for FPGA design courses

Advanced FPGA Implementation Course
Building on the knowledge of the three
previous courses, Advanced FPGA
Implementation tackles the most sophisti-
cated aspects of the ISE tool suite and
Xilinx hardware. This course covers varying
topics to help you achieve better results,
make changes faster, and maintain your
results. Lab exercises are 50% of class time,
increasing your knowledge and skills
through experimentation.

After each small design change, do you
get frustrated when you have to complete-
ly re-implement a design? Do synthesis
and implementation take too long? Do
your timing results change? In lab exercis-
es, you will use incremental design tech-
niques (see Figure 3) for an incremental
design change, preserving your previous
timing results. This can reduce your itera-
tive synthesis and implementation run
time by as much as 50%.

Are you ready to create an implementa-
tion layout? You will use Floorplanner or
PACE to create a design layout to increase
the performance of your design.
Additionally, these tools are used for designs
employing incremental design techniques.

Do you have a design that uses more
than eight clocks? In Virtex-II-based
devices, many clocking features are avail-
able, but you must also consider their
effects. In lab exercises, you will use a sim-
ple step-by-step strategy to design a com-

plex multiple-clock clocking scheme in a
Virtex-II device, taking advantage of all of
the features available. The Virtex-4 clock-
ing resources are also introduced.

Are you having trouble meeting timing
on a particular path in your design? You
will identify when and how to create a rela-
tionally placed macro (RPM) for problem-
atic timing paths in your design. An RPM
ensures predictable performance results for
each included element. In the lab exercise,
you will use an RPM to meet performance
objectives for a critical path.

Do you prefer to use scripts rather than
GUIs? With the techniques, strategies, and
options covered, you will learn the most
effective switches for improving perform-
ance. You will also use the settings and
options in the scripting lab to greatly
improve the performance of the design.

You will learn to:

• Create and edit timing and placement
constraints to increase performance

• Build RPMs to improve performance
on critical paths and achieve pre-
dictable timing results on complex
functions

• Implement efficient clocking schemes
for Virtex-II and Spartan™-3 FPGAs

• Use incremental design techniques to
shorten the design cycle and maintain
performance results

• Quickly modify implemented designs
in FPGA Editor for more efficient in-
circuit testing

• Use scripts and software options to
increase performance and reduce area

• Use a systematic timing closure strategy
to achieve optimum performance

With this course, our intent is to arm
experienced designers with the necessary
techniques, options, and strategies for
obtaining breakthrough performance.
Once you have achieved your performance
objectives, we’ll also teach you how to retain
performance from one iteration to the next.

Your design goals equate to our teaching
objectives. Only the most qualified and
experienced instructors and design engineers
qualify to teach this class. Instructors tailor
the instruction and discussion within the
framework of the class to help you achieve
your personal learning objectives. This
course requires Fundamentals of FPGA
Design and Designing for Performance as
prerequisites. An intermediate knowledge of
Verilog or VHDL is strongly recommended,
as is at least six months of design experience
with Xilinx FPGAs.

Conclusion
Our goal is to help you achieve your
design goals in the shortest possible time.
To do that, we believe we have created the
most comprehensive set of courses in the
industry to accommodate your complex
designs and goals. You can spend days and
even weeks trying to accomplish your
goals without really learning to quickly,
correctly, and strategically use the software
and hardware. Rather than waste your
time and money, come and learn how the
pros do it.

For a comprehensive list of training
courses available worldwide or to take a
skills assessment to find out what courses
you need, go to http://xilinx.com/
education, or click on the “Education”
link from the support website (the cur-
riculum path for FPGA Design is shown
in Figure 4). We truly believe in what we
do and what we can help you to do with
Xilinx devices.

• 500MHz DCM and PMCD

 • Flexible clock generation

 • Precise phase control

• High-speed differential clocks

Xesium Global Clocking

ChipSync Source Synchronous

RocketIO High-Speed Serial

• Precise delay line bit alignment

• SERDES with word alignment

• High-speed differential clocks

• >10 Gbps bandwidth with PLL

Figure 5 – Xesium clocking resources

Third Quarter 2005 Xcell Journal 109

Pb-Free
RoHS Compliant

www.xilinx.com/pbfree

 Xilinx delivers a broad range of Pb-Free and RoHS-compliant
 devices in the industry’s most advanced, high-performance
packaging. In fact, Xilinx has already shipped over 5.8 million earth-friendly
devices–more than any other supplier.

With global programs for recycling, waste reduction, and energy management,
we are proud to support our customers, and our environment. For more
information visit www.xilinx.com/pbfree.

X
il

in
x
 V

ir
te

x
-4

™
FP

G
A

s
w

w
w

.x
il

in
x

.c
o

m
/d

e
v

ic
e

s/

Third Quarter 2005 Xcell Journal 111

Ea
sy

Pa
th

™
 C

os
t

Re
du

ct
io

n
So

lu
ti

on
s4

—
XC

E4
VL

X2
5

XC
E4

VL
X4

0
XC

E4
VL

X6
0

XC
E4

VL
X8

0
XC

E4
VL

X1
00

XC
E4

VL
X1

60
XC

E4
VL

X2
00

XC
E4

VS
X2

5
XC

E4
VS

X3
5

XC
E4

VS
X5

5
—

XC
E4

VF
X2

0
XC

E4
VF

X4
0

XC
E4

VF
X6

0
XC

E4
VF

X1
00

XC
E4

VF
X1

40

XC
4V

FX
12

XC
4V

FX
20

XC
4V

FX
40

XC
4V

FX
60

XC
4V

FX
10

0
XC

4V
FX

14
0

64
 x

 2
4

64
 x

 3
6

96
 x

 5
2

12
8

x
52

16
0

x
68

19
2

x
84

10
,9

44
17

,0
88

37
,2

48
50

,5
60

84
,3

52
12

6,
33

6

5,
47

2
8,

54
4

18
,6

24
25

,2
80

42
,1

76
63

,1
68

12
,3

12
19

,2
24

41
,9

04
56

,8
80

94
,8

96
14

2,
12

8

87
,5

52
13

6,
70

4
29

7,
98

4
40

4,
48

0
67

4,
81

6
1,

01
0,

68
8

36
68

14
4

23
2

37
6

55
2

64
8

1,
22

4
2,

59
2

4,
17

6
6,

76
8

9,
93

6

XC
4V

SX
25

XC
4V

SX
35

XC
4V

SX
55

64
 x

 4
0

96
 x

 4
0

12
8

x
48

20
,4

80
30

,7
20

49
,1

52

10
,2

40
15

,3
60

24
,5

76

23
,0

40
34

,5
60

55
,2

96

16
3,

84
0

24
5,

76
0

39
3,

21
6

19
2

32
0

2,
30

4
3,

45
6

5,
76

0

12
8

XC
4V

LX
15

XC
4V

LX
25

XC
4V

LX
40

XC
4V

LX
60

Vi
rt

ex
-4

 L
X

(L
og

ic
)

XC
4V

LX
80

XC
4V

LX
10

0
XC

4V
LX

16
0

XC
4V

LX
20

0

64
 x

 2
4

96
 x

 2
8

12
8

x
36

12
8

x
52

16
0

x
56

19
2

x
64

19
2

x
88

19
2

x
11

6
CL

B
A

rr
ay

 (R
ow

 x
 C

ol
um

n)

12
,2

88
21

,5
04

36
,8

64
53

,2
48

71
,6

80
98

,3
04

13
5,

16
8

17
8,

17
6

CL
B

Fl
ip

 F
lo

ps

CL
B

Re
so

ur
ce

s
6,

14
4

10
,7

52
18

,4
32

26
,6

24
35

,8
40

49
,1

52
67

,5
84

89
,0

88
Sl

ic
es

13
,8

24
24

,1
92

41
,4

72
59

,9
04

80
,6

40
11

0,
59

2
15

2,
06

4
20

0,
44

8
Lo

gi
c

Ce
lls

M
em

or
y

Re
so

ur
ce

s

Cl
oc

k
Re

so
ur

ce
s

I/O
 R

es
ou

rc
es

Em
be

dd
ed

H

ar
d

IP
Re

so
ur

ce
s

Po
w

er
PC

™
 P

ro
ce

ss
or

 B
lo

ck
s

10
/1

00
/1

00
0

Et
he

rn
et

 M
AC

 B
lo

ck
s

Ro
ck

et
IO

™
 S

er
ia

l T
ra

ns
ce

iv
er

s

Vi
rt

ex
-4

 F
X

(E
m

be
dd

ed
 P

ro
ce

ss
in

g
&

 S
er

ia
l C

on
ne

ct
iv

it
y)

Vi
rt

ex
-4

 S
X

(S
ig

na
l P

ro
ce

ss
in

g)

98
,3

04
17

2,
03

2
29

4,
91

2
42

5,
98

4
57

3,
44

0
78

6,
43

2
1,

08
1,

34
4

1,
42

5,
40

8
M

ax
. D

is
tr

ib
ut

ed
 R

A
M

 B
it

s

48
72

96
16

0
20

0
24

0
28

8
33

6
Bl

oc
k

RA
M

/F
IF

O
 w

/E
CC

 (1
8

kb
it

s
ea

ch
)

86
4

1,
29

6
1,

72
8

2,
88

0
3,

60
0

4,
32

0
5,

18
4

6,
04

8

4
4

8
12

12
20

4
8

8
4

8
8

8
12

12
12

12

0
0

4
8

8
8

0
4

4
0

4
4

4
8

8
8

8

32
0

32
0

44
8

57
6

76
8

89
6

32
0

44
8

64
0

32
0

44
8

64
0

64
0

76
8

96
0

96
0

96
0

9
9

11
13

15
17

9
11

13
9

11
13

13
15

17
17

17

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

16
0

16
0

22
4

28
8

38
4

44
8

16
0

22
4

32
0

16
0

22
4

32
0

32
0

38
4

48
0

48
0

48
0

32
32

48
12

8
16

0
19

2
12

8
19

2
51

2
32

48
64

64
80

96
96

96

1
1

2
2

2
2

—
—

—
—

—
—

—
—

—
—

—

2
2

4
4

4
4

—
—

—
—

—
—

—
—

—
—

—

0
8

12
16

20
24

—
—

—
—

—
—

—
—

—
—

—

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1,

 -1
2

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0,

 -1
1

-1
0

4,
76

5,
56

8
7,

24
2,

62
4

13
,5

50
,7

20
21

,0
02

,8
80

33
,0

65
,4

08
47

,8
56

,8
96

13
,7

00
,2

88
22

,7
45

,2
16

4,
76

5,
56

8
7,

81
9,

90
4

12
,2

59
,7

12
17

,7
17

,6
32

23
,2

91
,0

08
30

,7
11

,6
80

40
,3

47
,0

08
51

,3
67

,8
08

9,
14

7,
64

8

To
ta

l B
lo

ck
 R

A
M

 (k
bi

ts
)

D
ig

it
al

 C
lo

ck
 M

an
ag

er
s

(D
CM

)

Ph
as

e-
m

at
ch

ed
 C

lo
ck

 D
iv

id
er

s
(P

M
CD

)

M
ax

 S
el

ec
t

I/O
™

To
ta

l I
/O

 B
an

ks

D
ig

it
al

ly
 C

on
tr

ol
le

d
Im

pe
de

nc
e

M
ax

 D
iff

er
en

ti
al

 I/
O

 P
ai

rs

I/O
 S

ta
nd

ar
ds

Xt
re

m
eD

SP
™

 S
lic

es

D
SP

 R
es

ou
rc

es

Sp
ee

d
G

ra
de

s

Co
m

m
er

ci
al

 (s
lo

w
es

t
to

 fa
st

es
t)

In
du

st
ri

al
 (s

lo
w

es
t

to
 fa

st
es

t)

Co
nf

ig
ur

at
io

n
M

em
or

y
Bi

ts

LD
T-

25
, L

VD
S-

25
, L

VD
SE

XT
-2

5,
 B

LV
DS

-2
5,

 U
LV

DS
-2

5,
 L

VP
EC

L-
25

, L
VC

M
O

S2
5,

 L
VC

M
O

S1
8,

 L
VC

M
O

S1
5,

 P
CI

33
, L

VT
TL

, L
VC

M
O

S3
3,

 P
CI

-X
, P

CI
66

, G
TL

, G
TL

+
, H

ST
L

I (
1.

5V
,1

.8
V)

, H
ST

L
II

(1
.5

V,
1.

8V
),

HS
TL

 II
I (

1.
5V

,1
.8

V)
, H

ST
L

IV
 (1

.5
V,

1.
8V

),
SS

TL
2I

, S
ST

L2
II,

 S
ST

L1
8

I,
SS

TL
18

 II

4V
FX

12
4V

FX
20

4V
FX

40
4V

FX
60

4V
FX

10
0

4V
FX

14
0

24
0

32
0

4V
SX

25
4V

SX
35

4V
SX

55

32
0

44
8

4V
LX

15
4V

LX
25

4V
LX

40
4V

LX
60

4V
LX

80
4V

LX
10

0
4V

LX
16

0
4V

LX
20

0

24
0

24
0

SF
36

3
17

 x
 1

7
m

m
—

24
0

Pa
ck

ag
e

1
A

re
a

M
G

T2
Pi

ns

32
0

44
8

44
8

44
8

FF
66

8
27

 x
 2

7
m

m

—
44

8

64
0

64
0

64
0

76
8

76
8

76
8

FF
11

48
35

 x
 3

5
m

m

—
76

8

96
0

96
0

96
0

FF
15

13
40

 x
 4

0
m

m

—
96

0

32
0

(8
)3

35
2

(1
2)

3
35

2
(1

2)
3

FF
67

2
27

 x
 2

7
m

m

12
35

2

44
8

(1
2)

3
57

6
(1

6)
3

57
6

(2
0)

3
FF

11
52

35
 x

 3
5

m
m

20

57
6

76
8

(2
0)

3
76

8
(2

4)
3

FF
15

17
40

 x
 4

0
m

m

24
76

8

89
6

(2
4)

3
FF

17
60

42
.5

 x
 4

2.
5

m
m

24

89
6

N
ot

es
: 1

. S
FA

 P
ac

ka
ge

s
(S

F)
: f

lip
-c

hi
p

fin
e-

pi
tc

h
BG

A
(0

.8
0

m
m

 b
al

l s
pa

ci
ng

).

 F

FA
 P

ac
ka

ge
s

(F
F)

: f
lip

-c
hi

p
fin

e-
pi

tc
h

BG
A

(1
.0

0
m

m
 b

al
l s

pa
ci

ng
).

Al
l V

irt
ex

-4
 L

X
an

d
Vi

rt
ex

-4
 S

X
de

vi
ce

s
av

ai
la

bl
e

in
 th

e
sa

m
e

pa
ck

ag
e

ar
e

fo
ot

pr
in

t-
co

m
pa

tib
le

.

2.
 M

G
T:

Ro
ck

et
IO

 M
ul

ti-
G

ig
ab

it
Tr

an
sc

ei
ve

rs
.

3.
 N

um
be

r o
f a

va
ila

bl
e

Ro
ck

et
IO

 M
ut

i-G
ig

ab
it

Tr
an

sc
ei

ve
rs

.

4.

 E
as

yP
at

h
so

lu
tio

ns
 p

ro
vi

de
 c

on
ve

rs
io

n-
fre

e
pa

th
 fo

r v
ol

um
e

pr
od

uc
tio

n.

Pb

-fr
ee

 s
ol

ut
io

ns
 a

re
 a

va
ila

bl
e.

 F
or

 m
or

e
in

fo
rm

at
io

n
ab

ou
t P

b-
fre

e
so

lu
tio

ns
, v

is
it

w
w

w
.x

ili
nx

.c
om

/p
bf

re
e.

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix

Im
po

rt
an

t:
Ve

ri
fy

 a
ll

da
ta

 in
 t

hi
s

do
cu

m
en

t
w

it
h

th
e

de
vi

ce
 d

at
a

sh
ee

ts
 f

ou
nd

 a
t

ht
tp

://
w

w
w

.x
ili

nx
.c

om
/p

ar
ti

nf
o/

da
ta

bo
ok

.h
tm

X
il

in
x
 S

p
a
rt

a
n

™
-3

 F
P
G

A
s

w
w

w
.x

il
in

x
.c

o
m

/d
e

v
ic

e
s/

112 Xcell Journal Third Quarter 2005

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix
P
a
ck

a
g

e
 O

p
ti

o
n

s
a
n

d
 U

se
rI

/O
1

CL
B

Re
so

ur
ce

s
M

em
or

y
Re

so
ur

ce
s

CL
K

Re
so

ur
ce

s
D

SP
I/O

 F
ea

tu
re

s
Sp

ee
d

PR
O

M

System Gates (see note 1)

CLB Array (Row x Col)

XC
3S

50
50

K
16

 x
 1

2

Number of Slices

76
8

Equivalent Logic Cells

1,
72

8

CLB Flip-Flops

1,
53

6

Max. Distributed RAM Bits

12
K

Block RAM

4

Block RAM (bits)

72
K

Dedicated Multipliers
4

DCM Frequency (min/max)

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

24
/2

80

DCMs

2

Digitally Controlled Impedance

Number of Differential I/O Pairs

Maximum I/O

I/O Standards

Commercial Speed Grades
(slowest to fastest)

YE
S

56
12

4
Si

ng
le

-e
nd

ed
LV

TT
L,

 LV
CM

O
S3

.3
/2

.5
/1

.8
/

1.
5/

1.
2,

 P
CI

 3
.3

V
–

32
/6

4-
bi

t
33

M
Hz

, S
ST

L2
 C

la
ss

 I
&

 II
,

SS
TL

18
 C

la
ss

 I,
 H

ST
L

Cl
as

s
I,

III
, H

ST
L1

.8
 C

la
ss

 I,
 II

 &
 II

I,
G

TL
, G

TL
+

Di
ffe

re
nt

ia
l

LV
DS

2.
5,

 B
us

 LV
DS

2.
5,

Ul
tra

 LV
DS

2.
5,

 LV
DS

_e
xt

2.
5,

RS
DS

, L
DT

2.
5,

 LV
PE

CL

Si
ng

le
-e

nd
ed

LV
TT

L,
 LV

CM
O

S3
.3

/2
.5

/1
.8

/
1.

5/
1.

2,
 P

CI
 3

.3
V

–
32

/6
4-

bi
t

33
/6

6M
Hz

, P
CI

-X
 1

00
M

Hz
,

SS
TL

 I
1.

8/
2.

5,
 H

ST
L

I 1
.8

,
HS

TL
 II

I 1
.8

Di
ffe

re
nt

ia
l

LV
DS

2.
5,

 B
us

 LV
DS

2.
5,

m

in
i-L

VD
S,

RS
DS

, L
VP

EC
L

-4
 -5

Industrial Speed Grades
(slowest to fastest)

-4

Configuration Memory (Bits)

EasyPath

.4
M

XC
3S

20
0

20
0K

24

 x
 2

0
1,

92
0

4,
32

0
3,

84
0

30
K

12
21

6K
12

4
YE

S
76

17
3

-4
 -5

-4
1.

0M

XC
3S

40
0

40
0K

32

 x
 2

8
3,

58
4

8,
06

4
7,

16
8

56
K

16
28

8K
16

4
YE

S
11

6
26

4
-4

 -5
-4

1.
7M

XC
3S

10
00

10

00
K

48
 x

 4
0

7,
68

0
17

,2
80

15
,3

60
12

0K
24

43
2K

24
4

YE
S

17
5

39
1

-4
 -5

-4
3.

2M

XC
3S

15
00

15

00
K

64
 x

 5
2

13
,3

12
29

,9
52

26
,6

24
20

8K
32

57
6K

32
4

YE
S

22
1

48
7

-4
 -5

-4
5.

2M

XC
3S

20
00

20

00
K

80
 x

 6
4

20
,4

80
46

,0
80

40
,9

60
32

0K
40

72
0K

40
4

YE
S

27
0

56
5

-4
 -5

-4
7.

7M

XC
3S

40
00

XC
3S

10
00

L

XC
3S

15
00

L

XC
3S

40
00

L
40

00
K

96
 x

 7
2

27
,6

48
62

,2
08

55
,2

96
43

2K
96

1,
72

8K
96

4
YE

S
31

2
71

2
-4

 -5
-4

11
.3

M

XC
3S

50
00

50

00
K

10
4

x
80

33
,2

80
74

,8
80

66
,5

60
52

0K
10

4
1,

87
2K

10
4

4
YE

S
34

4
78

4
-4

 -5
-4

13
.3

M

N
ot

e:

1.
 S

ys
te

m
 G

at
es

 in
cl

ud
e

20
-3

0%
 o

f C
LB

s
us

ed
 a

s
RA

M
s.

2.

 S
pa

rta
n-

3L
 d

ev
ic

es
 o

ffe
r r

ed
uc

ed
 q

ui
es

ce
nt

 p
ow

er
 c

on
su

m
pt

io
n.

 P
ac

ka
ge

 o
ffe

rin
gs

 m
ay

 v
ar

y
sli

gh
tly

 fr
om

 th
os

e
of

fe
re

d
in

 th
e

Sp
ar

ta
n-

3
fa

m
ily

.
Se

e
Pa

ck
ag

e
Se

le
ct

io
n

M
at

rix
 fo

r d
et

ai
ls.

Sp
ar

ta
n-

3
an

d
Sp

ar
ta

n-
3L

 F
am

ili
es

 –
 1

.2
 V

ol
t

(s
ee

 n
ot

e
2)

XC
3S

10
0E

10
0K

16
 x

 2
2

2,
16

0
19

20
4

72
K

4
5/

32
6

2
N

O
10

8
0.

6M

XC
3S

25
0E

25
0K

26

 x
 3

4
5,

50
8

48
96

12
21

6K
12

5/
32

6
4

N
O

17
2

1.
4M

XC
3S

50
0E

50

0K

34
 x

 4
6

10
,4

76
93

12
20

36
0K

20
5/

32
6

4
N

O
23

2
2.

3M

XC
3S

12
00

E
12

00
K

46
 x

 6
0

19
,5

12
17

34
4

28
50

4K
28

5/
32

6
8

N
O

30
4

3.
8M

XC
3S

16
00

E
16

00
K

58
 x

 7
6

33
,1

92

96
0

24
48

46
56

86
72

14
75

2
29

50
4

15
K

38
K

73
K

13
6K

23
1K

36
64

8K
36

5/
32

6
8

N
O

37
6

40 68 92 12
4

15
6

5.
9M

-4
 -5

-4
 -5

-4
 -5

-4
 -5

-4
 -5

-4 -4 -4 -4 -4

Sp
ar

ta
n-

3E
 F

am
ily

 –
 1

.2
 V

ol
t

✔ ✔✔ ✔

Im
po

rt
an

t:
Ve

ri
fy

 a
ll

da
ta

 in
 t

hi
s

do
cu

m
en

t
w

it
h

th
e

de
vi

ce
 d

at
a

sh
ee

ts
 f

ou
nd

 a
t

ht
tp

://
w

w
w

.x
ili

nx
.c

om
/p

ar
ti

nf
o/

da
ta

bo
ok

.h
tm

FP
G

A
 a

nd
 C

P
L

D
 D

ev
ic

es
w

w
w

.x
ili

nx
.c

om
/d

ev
ic

es
/

C
on

fi
gu

ra
ti

on
 a

nd
 S

to
ra

ge
 S

ys
te

m
s

w
w

w
.x

ili
nx

.c
om

/c
on

fig
so

ln
s/

Pa
ck

ag
in

g
w

w
w

.x
ili

nx
.c

om
/p

ac
ka

gi
ng

/

So
ft

w
ar

e
w

w
w

.x
ili

nx
.c

om
/is

e/

D
ev

el
op

m
en

t
R

ef
er

en
ce

 B
oa

rd
s

w
w

w
.x

ili
nx

.c
om

/b
oa

rd
_s

ea
rc

h/

IP
 R

ef
er

en
ce

w
w

w
.x

ili
nx

.c
om

/ip
ce

nt
er

/

G
lo

ba
l S

er
vi

ce
s

w
w

w
.x

ili
nx

.c
om

/su
pp

or
t/g

sd
/

Fo
r t

he
 la

te
st

 in
fo

rm
at

io
n

an
d

pr
od

uc
t s

pe
cif

ica
tio

ns
 o

n
al

l X
ilin

x
pr

od
uc

ts
, p

lea
se

 v
isi

t t
he

 fo
llo

w
ing

 li
nk

s:

N
ot

es
:

1.
 N

um
be

rs
 in

 ta
bl

e
in

di
ca

te
 m

ax
im

um
 n

um
be

r o
f u

se
r I

/O
s.

2.
 A

re
a

di
m

en
sio

ns
 fo

r l
ea

d-
fra

m
e

pr
od

uc
ts

 a
re

 in
clu

siv
e

of
 th

e
le

ad
s.

Pb
-fr

ee
 s

ol
ut

io
ns

 a
re

 a
va

ila
bl

e.
 F

or
 m

or
e

in
fo

rm
at

io
n

ab
ou

t P
b-

fre
e

so
lu

tio
ns

 v
is

it
w

w
w

.x
ili

nx
.c

om
/p

bf
re

e.

XC3S100E

XC3S250E

XC3S500E

XC3S1200E

XC3S1600E

Ar
ea

2
Pi

ns
I/O

’s
10

8
17

2
23

2
30

4
37

6

30
.6

 x
 3

0.
6

m
m

20
8

16
.0

 x
 1

6.
0

m
m

10
0

22
.0

 x
 2

2.
0

m
m

14
4

PQ
FP

 P
ac

ka
ge

s
(P

Q
) –

 w
ire

-b
on

d
pl

as
tic

 Q
FP

 (0
.5

 m
m

 le
ad

 s
pa

ci
ng

)

VQ
FP

 P
ac

ka
ge

s
(V

Q
) –

 v
er

y
th

in
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

TQ
FP

 P
ac

ka
ge

s
(T

Q
) –

 th
in

 Q
FP

 (0
.5

 m
m

 le
ad

 s
pa

ci
ng

)

31
 x

 3
1

m
m

90
0

35
 x

 3
5

m
m

11
56

17
 x

 1
7

m
m

25
6

23
 x

 2
3

m
m

45
6

23
 x

 2
3

m
m

48
4

27
 x

 2
7

m
m

67
6

19
 x

 1
9

m
m

32
0

21
 x

 2
1

m
m

40
0

FG
A

Pa
ck

ag
es

 (F
T)

 –
 w

ire
-b

on
d

fin
e-

pi
tc

h
th

in
 B

G
A

(1
.0

 m
m

 b
al

l s
pa

ci
ng

)

FG
A

Pa
ck

ag
es

 (F
G

) –
 w

ire
-b

on
d

fin
e-

pi
tc

h
BG

A
(1

.0
 m

m
 b

al
l s

pa
ci

ng
)

Sp
ar

ta
n-

3E
 (1

.2
V)

XC3S50

XC3S200

XC3S400

XC3S1000

XC3S1500

XC3S2000

XC3S4000

I/O
’s

12
4

17
3

26
4

39
1

48
7

56
5

71
2

78
4XC3S5000

63
66

66

10
8

10
8

15
8

15
8

19
0

25
0

25
0

17
2

19
0

23
2

30
4

30
4

63

97

12
4

14
1

14
1

97 89
92

92

97

56
5

63
3

63
3

71
2

78
4

26
4

33
3

39
1

48
7

48
9

48
9

17
3

17
3

17
3

33
3

33
3

22
1

22
1

22
1

Sp
ar

ta
n-

3
(1

.2
V)

37
6

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
P)

 –
 w

ire
-b

on
d

ch
ip

-s
ca

le
 B

G
A

(0
.5

 m
m

 b
al

l s
pa

ci
ng

)

8
x

8
m

m
13

2

X
il

in
x
 C

P
LD

w
w

w
.x

il
in

x
.c

o
m

/d
e

v
ic

e
s/

Third Quarter 2005 Xcell Journal 113

XC
R3

03
2X

L
75

0
32

XC
R3

06
4X

L
1,

50
0

64

XC
R3

12
8X

L
3,

00
0

12
8

XC
R3

25
6X

L
6,

00
0

25
6

XC
R3

38
4X

L
9,

00
0

38
4

XC
R3

51
2X

L
12

,0
00

51
2

48 48 48 48 48

36
5

-5
 -7

 -1
0

 -7
 -1

0
4

16

68
6

-6
 -7

 -1
0

 -7
 -1

0
4

16

10
8

6
-6

 -7
 -1

0
 -7

 -1
0

4
16

16
4

7.
5

-7
 -1

0
-1

2
-1

0
-1

2
4

16

22
0

7.
5

-7
 -1

0
-1

2
-1

0
-1

2
4

16

3.
3/

5

3.
3/

5

3.
3/

5

3.
3/

5

3.
3/

5

3.
3/

5

 3
.3

 3
.3

 3
.3

 3
.3

 3
.3

 3
.3

26
0

7.
5

-7
 -1

0
-1

2
-1

0
-1

2
4

16

XC
2C

32
A

75
0

32

XC
2C

64
A

1,
50

0
64

XC
2C

12
8

3,
00

0
12

8

XC
2C

25
6

6,
00

0
25

6

XC
2C

38
4

9,
00

0
38

4

XC
2C

51
2

12
,0

00
51

2

40 40 40 40 40 40

System Gates

Macrocells

Product Terms per Macrocell

1.
5/

1.
8/

2.
5/

3.
3

Input Voltage Compatible

1.
5/

1.
8/

2.
5/

3.
3

33

Output Voltage Compatible

Maximum I/O

2
3.

8

I/O Banking

Min. Pin-to-pin Logic Delay (ns)

-4
 -6

-6

Commercial Speed Grades
(fastest to slowest)

Industrial Speed Grades
(fastest to slowest)

3Global Clocks

17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

64
2

4.
6

-5
 -7

-7
3

17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

10
0

2
5.

7
-6

 -7
-7

3
17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

18
4

2
5.

7
-6

 -7
-7

3
17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

24
0

4
7.

1
-7

 -1
0

-1
0

3
17

1.
5/

1.
8/

2.
5/

3.
3

1.
5/

1.
8/

2.
5/

3.
3

27
0

4
7.

1
-7

 -1
0

-1
0

3
17Product Term Clocks per

Function Block

Co
ol

Ru
nn

er
-II

 F
am

ily
 –

 1
.8

 V
ol

t

Co
ol

Ru
nn

er
 X

PL
A

3
Fa

m
ily

 –
 3

.3
 V

ol
t

-1
0

-1
0

-1
0

-1
2

-1
2

-1
2-6

IQ Speed Grade

-7 -7 -7 -1
0

-1
0

I/O
Fe

at
ur

es
Sp

ee
d

Cl
oc

ki
ng

48

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix
 –

 C
o

o
lR

u
n

n
e
r™

S
e
ri

e
s

P
a
ck

a
g

e
 O

p
ti

o
n

s
a
n

d
 U

se
r

I/
O

*
JT

AG
 p

in
s

an
d

po
rt

 e
na

bl
e

ar
e

no
t p

in
 c

om
pa

tib
le

 in
 th

is
 p

ac
ka

ge
 fo

r t
hi

s
m

em
be

r o
f t

he
 fa

m
ily

.

N
ot

e
1:

 A
re

a
di

m
en

si
on

s
fo

r l
ea

d-
fra

m
e

pr
od

uc
ts

 a
re

 in
cl

us
iv

e
of

 th
e

le
ad

s.

XC2C512

XCR3032XL

XCR3064XL

XCR3128XL

XCR3256XL

XCR3384XL

XCR3512XL

A
re

a1
Pi

ns

 5
 x

 5
 m

m
32

XC2C32A

XC2C64A

XC2C128

XC2C256

XC2C384

XC2C512

30
.6

 x
 3

0.
6

m
m

20
8

12
.0

 x
 1

2.
0

m
m

44

21

 7
 x

 7
 m

m
48

37

16
.0

 x
 1

6.
0

m
m

10
0

11
8*

22
.0

 x
 2

2.
0

m
m

14
4

48
6

x
6

m
m

56
33

45

8
x

8
m

m
13

2
10

0
10

6

40
36

7
x

7
m

m
48

10
8

12
 x

 1
2

m
m

14
4

16
4

16
 x

 1
6

m
m

28
0

21
2

16
4

21
2

17
 x

 1
7

m
m

25
6

18
4

21
2

21
2

26
0

22
0

23
 x

 2
3

m
m

32
4

24
0

27
0

17
3

17
3

17
3

18
0

16
4

17
2

33
33

36
36

68
84

64
80

80

10
8

12
0

10
0

11
8

11
8

PQ
FP

 P
ac

ka
ge

s
(P

Q
) –

 w
ir

e-
bo

nd
 p

la
st

ic
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

VQ
FP

 P
ac

ka
ge

s
(V

Q
) –

 v
er

y
th

in
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

TQ
FP

 P
ac

ka
ge

s
(T

Q
) –

 t
hi

n
Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

FG
A

 P
ac

ka
ge

s
(F

T)
 –

 w
ir

e-
bo

nd
 fi

ne
-p

it
ch

 t
hi

n
BG

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

FB
G

A
 P

ac
ka

ge
s

(F
G

) –
 w

ir
e-

bo
nd

 fi
ne

-li
ne

 B
G

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
S)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.8

 m
m

 b
al

l s
pa

ci
ng

)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
P)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.5

 m
m

 b
al

l s
pa

ci
ng

)

Co
ol

Ru
nn

er
 X

PL
A

3
Co

ol
Ru

nn
er

-II

Q
FN

 P
ac

ka
ge

s
(Q

FG
) –

 q
ua

d
fla

t
no

-le
ad

 (0
.5

 m
m

 le
ad

 s
pa

ci
ng

)

36
36

17
.5

 x
 1

7.
5

m
m

44
33

33

PL
CC

 P
ac

ka
ge

s
(P

C)
 –

 w
ir

e-
bo

nd
 p

la
st

ic
 c

hi
p

ca
rr

ie
r

(1
.2

7
m

m
 le

ad
 s

pa
ci

ng
)

X
il

in
x
 C

P
LD

w
w

w
.x

il
in

x
.c

o
m

/d
e

v
ic

e
s/

114 Xcell Journal Third Quarter 2005

P
ro

d
u

ct
 S

e
le

ct
io

n
 M

a
tr

ix
 –

 9
5
0
0
 S

e
ri

e
s

P
a
ck

a
g

e
 O

p
ti

o
n

s
a
n

d
 U

se
r

I/
O

XC9536XV

XC9572XV

XC95144XV

XC95288XV

34
34

XC9536XL

XC9572XL

XC95144XL

XC95288XL

34
34

34
34

81
81

11
7

11
7

11
7

11
7

38
36

38
36

11
7

11
7

19
2

19
2

19
2

19
2

19
2

72

34

52
36

72

N
ot

e
1:

 A
re

a
di

m
en

si
on

s
fo

r l
ea

d-
fra

m
e

pr
od

uc
ts

 a
re

 in
cl

us
iv

e
of

 th
e

le
ad

s.

A
re

a1
Pi

ns

17
.5

 x
 1

7.
5

m
m

44

23
.3

 x
 1

7.
2

m
m

10
0

12
.0

 x
 1

2.
0

m
m

44

12
.0

 x
 1

2.
0

m
m

64

16
.0

 x
 1

6.
0

m
m

10
0

22
.0

 x
 2

2.
0

m
m

14
4

7
x

7
m

m
48

12
 x

 1
2

m
m

14
4

16
 x

 1
6

m
m

28
0

27
 x

 2
7

m
m

25
6

17
 x

 1
7

m
m

25
6

XC9536

XC9572

XC95108

XC95144

34
34 72

81
81

81
81

34

XC95216

XC95288

30
.2

 x
 3

0.
2

m
m

84
69

69

31
.2

 x
 3

1.
2

m
m

16
0

10
8

13
3

13
3

16
8

16
8

30
.6

 x
 3

0.
6

m
m

20
8

16
6

16
8

35
.0

 x
 3

5.
0

m
m

35
2

16
6

19
2

FB
G

A
 P

ac
ka

ge
s

(F
G

) –
 w

ir
e-

bo
nd

 F
in

e-
lin

e
BG

A
 (1

.0
 m

m
 b

al
l s

pa
ci

ng
)

BG
A

 P
ac

ka
ge

s
(B

G
) –

 w
ir

e-
bo

nd
 s

ta
nd

ar
d

BG
A

 (1
.2

7
m

m
 b

al
l s

pa
ci

ng
)

34
34XC

95
00

XC
95

00
XL

XC
95

00
XV

72

TQ
FP

 P
ac

ka
ge

s
(T

Q
) –

 t
hi

n
Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

VQ
FP

 P
ac

ka
ge

s
(V

Q
) –

 v
er

y
th

in
 T

Q
FP

 (0
.5

 m
m

 le
ad

 s
pa

ci
ng

)

PQ
FP

 P
ac

ka
ge

s
(P

Q
) –

 w
ir

e-
bo

nd
 p

la
st

ic
 Q

FP
 (0

.5
 m

m
 le

ad
 s

pa
ci

ng
)

PL
CC

 P
ac

ka
ge

s
(P

C)
 –

 w
ir

e-
bo

nd
 p

la
st

ic
 c

hi
p

ca
rr

ie
r

(1
.2

7
m

m
 le

ad
 s

pa
ci

ng
)

Ch
ip

 S
ca

le
 P

ac
ka

ge
s

(C
S)

 –
 w

ir
e-

bo
nd

 c
hi

p-
sc

al
e

BG
A

 (0
.8

 m
m

 b
al

l s
pa

ci
ng

)

System Gates

Macrocells

Product Terms per Macrocell

Input Voltage Compatible

Output Voltage Compatible

Maximum I/O

I/O Banking

Min. Pin-to-pin Logic Delay (ns)

Commercial Speed Grades
(fastest to slowest)

Industrial Speed Grades
(fastest to slowest)

Global Clocks

Product Term Clocks per
Function Block

IQ Speed Grade

I/O
Fe

at
ur

es
Sp

ee
d

Cl
oc

ki
ng

XC
95

36
80

0
36

XC
95

72
1,

60
0

72

XC
95

10
8

2,
40

0
10

8

XC
95

14
4

3,
20

0
14

4

90 90 90 90

36
10

 -7
 -1

0
-1

5
3

18

72
10

-1
0

-1
5

3
18

10
8

10
-7

 -1
0

-1
5

-2
0

3
18

13
3

10

-5
 -6

 -1
0

-1
5

-7
 -1

0
-1

5

-7
 -1

0
-1

5
-2

0

-7
 -1

0
-1

5
-1

0
-1

5

-1
5

-1
5

N
A

N
A

3
18

5 5 5

5
5

5 5 5

XC
95

21
6

4,
80

0
21

6
90

16
6

10
-1

0
-1

5
-2

0
-1

0
-1

5
-2

0
N

A
3

18
5

5

XC
95

28
8

6,
40

0

Pb
-fr

ee
 s

ol
ut

io
ns

 a
re

 a
va

ila
bl

e.
 F

or
 m

or
e

in
fo

rm
at

io
n

ab
ou

t P
b-

fre
e

so
lu

tio
ns

 v
is

it
w

w
w

.x
ili

nx
.c

om
/p

bf
re

e

28
8

90
19

2
10

-1
0

-1
5

-2
0

-1
5

-2
0

N
A

3
18

5
5

XC
95

00
 F

am
ily

 –
 5

 V
ol

t

XC
95

36
XL

80
0

36

XC
95

72
XL

1,
60

0
72

XC
95

14
4X

L
3,

20
0

14
4

XC
95

28
8X

L
6,

40
0

28
8

90 90 90 90

36
5

 -7
 -1

0
3

18

72
5

-7
 -1

0
3

18

11
7

5
-7

 -1
0

3
18

19
2

6

-5
 -7

 -1
0

-5
 -7

 -1
0

-5
 -7

 -1
0

-6
 -7

 -1
0

-7
 -1

0

-1
0

-1
0

N
A

N
A

3
18

2.
5/

3.
3/

5

2.
5/

3.
3/

5

2.
5/

3.
3/

5

2.
5/

3.
3/

5

2.
5/

3.
3

 2
.5

/3
.3

2.
5/

3.
3

 2
.5

/3
.3

XC
95

00
XL

 F
am

ily
 –

 3
.3

 V
ol

t

XC
95

36
XV

80
0

36

XC
95

72
XV

1,
60

0
72

XC
95

14
4X

V
3,

20
0

14
4

XC
95

28
8X

V
6,

40
0

28
8

90 90 90 90

36
5

-7

3
18

72
5

-7

3
18

11
7

5
-7

3

18

19
2

6

1 1 2 4

-5
 -7

-5
 -7

-5
 -7

-6
 -7

 -1
0

-7
 -1

0

N
A

N
A

N
A

N
A

3
18

2.
5/

3.
3

2.
5/

3.
3

2.
5/

3.
3

2.
5/

3.
3

1.
8/

2.
5/

3.
3

 1
.8

/2
.5

/3
.3

1.
8/

2.
5/

3.
3

1.
8/

2.
5/

3.
3

XC
95

00
XV

 F
am

ily
 –

 2
.5

 V
ol

t

Best Signal Integrity:
7x Less SSO Noise

Virtex-4 FPGAs deliver the industry’s best signal integrity, allowing you to
pre-empt board issues at the chip level, for high-speed designs such as memory
interfaces. Featuring a unique SparseChevron™ pin out pattern, the Virtex-4 family
provides the highest ratio of VCCO/GND pin pairs to user I/O pins available in any
FPGA. By strategically positioning one hard power pin and one hard ground pin
adjacent to every user I/O on the device, we’ve reduced signal path inductance
and SSO noise to levels far below what you can attain with a virtual ground or
soft ground architecture.

The Industry’s Highest Signal Integrity,
Proven By Industry Experts
Incorporating continuous power and ground planes, plus integrated bypass
capacitors, we’re eliminating power-supply noise at its source. In addition, we
provide on-chip termination resistors to control signal ringing. The lab tests
speak for themselves. As measured by signal integrity expert Dr. Howard Johnson,
no competing FPGA comes close to achieving the low-noise benchmarks of
Virtex-4 devices.

Visit www.xilinx.com/virtex4/sipi today, and choose the right high-performance
FPGA before things get noisy.

The Programmable Logic CompanySM

Design Example: 1.5 volt LVCMOS 4mA, I/O, 100 aggressors shown.

Dr. Howard Johnson, author of High-Speed Digital Design,

frequently conducts technical workshops for digital engineers

at Oxford University and other sites worldwide.

Visit www.sigcon.com to register.

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

PN 0010866

