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TThis issue of the Xcell Journal features a very cohesive collection of articles about electronic 
system level (ESL) design. ESL is an umbrella term for tools and methods that allow designers
with software programming skills to easily implement their ideas in programmable hardware (like
FPGAs) without having to learn traditional hardware design techniques. The proliferation of these
tools will make it easier for designers to use programmable devices for algorithm acceleration,
high-performance computing, high-speed packet processing, and rapid prototyping.

In an effort to organize those vendors developing ESL products, in March 2006 Xilinx launched
the ESL Initiative, inviting companies such as Celoxica and Impulse Accelerated Technologies 
to optimize support for Xilinx® embedded, DSP, and logic platforms and to establish common
standards for ESL tool interoperability, among other goals. 

Xilinx also set its own standards for participation in the ESL Initiative. To qualify as a partner, a
company’s ESL methodologies must be at a higher level of abstraction than RTL. They must also
demonstrate a working flow for FPGAs and position their tools as an FPGA solution rather than
an ASIC solution that also happens to work with FPGAs. Participants were additionally invited to
write an article for this issue.

We also invited FPGA Journal Editor Kevin Morris to share his thoughts about ESL, and as you’ll
see he offers quite a interesting perspective. Depending on who you talk to, ESL is either all hype
or the real deal. At Xilinx, we’ve committed to this promising technology – working with a variety
of vendors (12 and growing) whose solutions are designed for a variety of applications. 

I invite you to learn more about ESL and particularly each company’s respective products by delving
further into this issue of the Xcell Journal, or by visiting www.xilinx.com/esl.
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by Steve Lass
Sr. Director, Software Marketing
Xilinx, Inc.
steve.lass@xilinx.com

FPGA business dynamics have been rather
consistent over the past decade. Price per gate
has continued to fall annually by an average
of 25%, while device densities have contin-
ued to climb by an average of 56%.
Concurrent with advances in silicon, design
methodologies have also continued to evolve.

In particular, a new paradigm known as
electronic system level (ESL) design is
promising to usher in a new era in FPGA
design. Although the term ESL is broad
and its definition subject to different inter-
pretations, here at Xilinx it refers to tools
and methodologies that raise design
abstraction to levels above the current
mainstream register transfer level (RTL)
language (Figure 1).
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Put another way, it is now possible for
you to capture designs in high-level lan-
guages (HLLs) such as ANSI C and imple-
ment them in an optimized manner on
FPGA hardware. These advances in soft-
ware methodologies – when combined
with the increasing affordability of FPGA
silicon – are helping to make programma-
ble logic the hardware platform of choice
for a wide and rapidly expanding set of tar-
get applications.

Defining the Problem
You might wonder what problem ESL is try-
ing to solve. Why is it needed? To answer
this, let’s consider the following three sce-
narios. First, many of today’s design prob-
lems originate as a software algorithm in C.
The traditional flow to hardware entails a
manual conversion of the C source to equiv-
alent HDL. ESL adds value by providing an
automatic conversion from HLL to RTL or
gates.  For those wishing to extract the most
performance, you can optionally hand-edit
the intermediate RTL.

Second, for both power and perform-
ance reasons, it is clear that traditional
processor architectures are no longer suffi-
cient to handle the computational com-
plexity of the current and future generation
of end applications. ESL is a logical solu-
tion that helps overcome the challenges of
processor bottlenecks by making an easy

Value Proposition for FPGAs
ESL technologies are a unique fit for pro-
grammable hardware. Together, ESL tools
and FPGAs enable a desktop-based devel-
opment environment that allows applica-
tions to target hardware using standard
software-development flows. You can
design, debug, and download applications
developed using HLLs to an FPGA board
much the same way that you can develop,
debug, and download code to a CPU board.

Additionally, with powerful 32-bit
embedded processors now a common fea-
ture in FPGAs, you can implement a com-
plete system – hardware and software – on
a single piece of silicon. Not only does this
provide a high level of component integra-
tion, but with the help of ESL tools, it is
now easy and convenient to dynamically
partition design algorithms between the
appropriate hardware (FPGA fabric) and
software (embedded CPU) resources on the
chip (Figure 2). 

ESL brings a productivity advantage to
both current FPGA hardware designers as
well as to a potentially large number of
software programmers. Hardware engi-
neers are using HLL-based methods for
rapid design prototyping and to better
manage the complexity of their designs.
Software developers, interested in accelerat-
ing their CPU bottlenecks, are using ESL

and automated path to hardware-based
acceleration possible. 

Third, as the types of appliances that
can now be deployed on FPGAs become
more sophisticated, traditional simulation
methods are often not fast enough. ESL
methodologies enable faster system simula-
tions, utilizing very high speed transaction-
based models that allow you to verify
functionality and perform hardware/soft-
ware trade-off analysis much earlier in the
design cycle. 
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Figure 2 – ESL facilitates dynamic hardware/software 
partitioning conveniently possible in FPGAs.

Figure 1 – Design methodologies are evolving to HLL-based system-level design.
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flows to export computationally critical
functions to programmable hardware.

ESL adds value by being able to
abstract away the low-level implementa-
tion details associated with hardware
design. By doing so, the tools simplify
hardware design to such an extent so as to
render the hardware practically “invisi-
ble” to designers. This helps expand the
reach of FPGAs from the traditional base

of hardware designers to a new and
potentially larger group of software
designers, who until now were exclusively
targeting their applications to processors.
As there are many more software develop-
ers in the world than hardware designers,
this equates to a large new opportunity
for FPGAs.

If you remain skeptical about the role
of HLLs in hardware design, you are not
alone. Your concerns might range from
compiler quality of results and tool ease-
of-use issues to the lack of language stan-
dardization and appropriate training on
these emerging technologies. The good
news is that ESL suppliers are aware of
these challenges and are making substan-
tial and sustained investments to advance

the state of the art. These efforts are begin-
ning to yield results, as evidenced by an
increasing level of interest from end users.
For instance, more than two-thirds of the
engineers in a Xilinx® survey expressed a
keen interest in learning about the capabil-
ities of ESL. Xilinx estimates that hun-
dreds of active design seats exist where ESL

methods are being used with FPGAs to
solve practical problems.  

You may also be wondering if ESL will
signal the end of current RTL-based design
methodologies. Although there is little
doubt that ESL should be regarded as a dis-
ruptive technology, ESL flows today are
positioned to complement, rather than
compete, with HDL methods. In fact, sev-
eral ESL tools write out RTL descriptions
that are synthesized to gate level using cur-
rent RTL synthesis. And there will always
be scenarios where design blocks may need
to be hand-coded in RTL for maximum
performance. By plugging into the existing
well-developed infrastructure, ESL can help
solve those design challenges not addressed
by current methodologies. 

Next Steps
If you are looking for a place to begin your
orientation on ESL and FPGAs, a good
place to start would be the ESL knowledge
center at www.xilinx.com/esl. In March
2006, Xilinx launched the ESL Initiative –
a collaborative alliance with the industry’s
leading tool providers to promote the value,
relevance, and benefits of ESL tools for
FPGAs (Table 1). The website aims to
empower you with knowledge and infor-
mation about what is available and how to
get started, including information on low-
cost evaluation platforms that bundle
FPGA boards with ESL software and
design examples.  

This issue of the Xcell Journal features a
range of articles on ESL and FPGAs written
by engineers at Xilinx as well as our ESL
partners. These articles are designed to give
you better insights into emerging ESL con-
cepts. You may find that some of these tech-
nologies do indeed present a better approach
to solving your design challenges. We hope
that some of you will feel inspired to take the
next step and become part of the growing
number of early adopters of this unique and
revolutionary new methodology. 
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Partner From HLL Xilinx CPU Description (Key Value)To FPGA Support

Bluespec � SystemVerilog-Like to FPGA (High QoR )

Binachip � � Processor Acceleration (Accelerates Binary Software Code in FPGA)

Celoxica � � Handel-C, SystemC to FPGA (High QoR)

Cebatech � ANSI C to FPGA (Time to Market)

Critical Blue � Co-Processor Synthesis (Accelerates Binary Software Code in FPGA)

Codetronix � � Multi-Threaded HLL for Hardware/Software Design (Time to Market)

Impulse � � Impulse-C to FPGA (Low Cost)

Mimosys � � PowerPC APU-Based Acceleration (Ease of Use)

Mitrion � Mitrion-C to FPGA (Supercomputing Applications)

Mirabilis � High-Speed Virtual Simulation 
(Perform Hardware/Software Trade-Off Analysis)

Nallatech � Dime-C to FPGA (High-Performance Computing Applications)

Poseidon � � MicroBlaze/PowerPC Acceleration 
(Analysis, Profiling, and C Synthesis)

SystemCrafter � SystemC to FPGA (Rapid Prototyping)

Teja � � Distributed Processing Using MicroBlaze/PowerPC 
(High-Speed Packet Processing)

ESL adds value by being able to abstract away the low-level implementation details
associated with hardware design. By doing so, the tools simplify hardware design to

such an extent so as to render the hardware practically “invisible” to designers.

Table 1 – Xilinx partners provide a wide spectrum of system-level design solutions.
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by Kevin Morris
Editor – FPGA Journal
Techfocus Media, Inc.
kevin@techfocusmedia.com

When the Xcell
Journal asked me to
write a viewpoint

on ESL, I thought, “Hey, why not?
They’ve got ‘Journal’ in their name and I
know all about ESL.” ESL is the design
methodology of the future. ESL will rev-
olutionize the electronics industry. ESL
will generate billions of dollars worth of
engineering productivity while the people
and companies that develop the technol-
ogy fight tooth and nail to capture infin-
itesimal percentages of that sum.

ESL (electronic system level [design])
brings with it a pretentious name and the
potential for manic marketing misrepresen-
tation. Although there are excellent ESL
products and efforts underway, the early
market is a good time for the buyer to
beware and for savvy design teams to
understand that they are likely to be exper-
imenting with cutting-edge, nascent tech-

nology. ESL is also currently an over-broad
term, encapsulating a number of interest-
ing but diverse tools and technologies.

In order to understand ESL, we need to
hack through the typical layers of market-
ing hype and confusion to get down to the
fundamentals. ESL is not about languages
or layers of abstraction. ESL is about pro-
ductivity. Electronic hardware design (this
is important because ESL is a hardware
designer’s term) is far too inefficient.
Forget the fact that we have boosted pro-
ductivity an order of magnitude or two
over the past 20 years because of technolo-
gy advances in electronic design automa-
tion. Moore’s Law is a much harsher
mistress than that. Do the math. In two
decades, the gate count of the average dig-
ital design platform has risen by a factor of
something like 2K. Even if EDA has man-
aged a 200x improvement in gates per dig-
ital designer day, they are falling behind at
a rate of more than 5x per decade. 

This effect was observed ad-infinitum in
practically every EDA PowerPoint presenta-
tion given in the 1990s. Logarithmic graphs
of gate counts were shown skyrocketing

upward exponentially while designer produc-
tivity lounged along linearly, leaving what the
EDA marketers proudly promoted as “The
Gap.” This gap (skillfully highlighted and
animated by black-belt marketing ninjas) was
their battle cry – their call to arms. Without
the help of their reasonably priced power
tools, you and your poor, helpless electronic
system design company would be gobbled up
by The Gap, digested by your competitors
who were, of course, immune to Moore’s Law
because of the protective superpower shield of
their benevolent EDA suppliers.

This decade, however, The Gap has gone
into public retirement. Not because it isn’t
still there – it is, growing as fast as ever. This
pause is because we found a killer-app use for
all of those un-designable gap gates, giving us
a temporary, one-time reprieve from the
doom of design tool deficiency. Our benefac-
tor? Programmability. It has been widely doc-
umented that devices like FPGAs pay a steep
price in transistor count for the privilege of
programmability. Estimates run as high as
10x for the average area penalty imposed by
programmable logic when compared with
custom ASIC technologies. Dedicate 90% of

Join the “Cool” ClubJoin the “Cool” Club
You’re not doing ESL yet? Loser!You’re not doing ESL yet? Loser!
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your logic fabric transistors to programma-
bility, throw in a heaping helping of RAM
for good measure, and you’ve chewed up
enough superfluous silicon to leave a man-
ageable design problem behind. 

By filling several process nodes worth of
new transistors with stuff you don’t have to
engineer, you’ve stayed on the productivity
pace without having to reinvent yourself.
Now, unfortunately, the bill is coming due
again. FPGAs have become as complex as
ASICs were not that long ago, and the delta
is diminishing. Design teams around the
world are discovering that designing mil-
lions of gates worth of actual FPGA logic
using conventional RTL methodologies
can be a huge task. 

In an ASIC, however, this deficiency in
design efficiency was masked by the mask.
The cost and effort required to generate
and verify ASIC mask sets far exceeded the
engineering expense of designing an ASIC
with RTL methodologies. Boosting the
productivity of the digital designer would
be a bonus for an ASIC company, but not
a game-changing process improvement.
Even if digital design time and cost went to
zero, cutting-edge ASIC development
would still be slow and expensive.

In FPGA design, there is no such prob-
lem to hide behind, however. Digital
design is paramount on the critical path of
most FPGA projects. Are you an FPGA
designer? Try this test. Look outside your
office door up and down the corridor. Do
you see a bunch of offices or cubes filled
with engineers using expensive design-for-
manufacturing (DFM) software, correcting
for optical proximity, talking about “rule
decks” and sweating bullets about the
prospect of their design going to “tapeout”?
Not there, are they? Now look in a mirror.
There is your company’s critical path.

With ESL the buzzword-du-jour in
design automation, everyone in the EDA
industry is maneuvering – trying to find a
way to claim that what they were already
doing is somehow ESL so they can be in the
“cool” club. As a result, everything from
bubble and block diagram editors to trans-
action-level simulation to almost-high-level
hardware synthesis has been branded “ESL”
and rushed to the show floor at the Design

processing or video compression algorithm
probably bears no resemblance to the native
design tongue of the engineer developing
packet-switching algorithms, for example.
As a result, we are likely to see two different
schools of thought in design description.
One group will continue to pursue general-
purpose specification techniques, while the
other charts a course of domain-specificity.

In the software world, there is ample
precedent for both ways of thinking. Even
though software applications encompass a
huge gamut from business to entertainment
to scientific, most software engineers man-
age to develop their applications using one
of the popular general-purpose languages
like C/C++ or Java. On the other hand,
some specialized application types such as
database manipulation and user interface
design have popularized the use of lan-
guages specific to those tasks. Software is a
good exemplar for us, because programmers
have been working at the algorithmic level
of abstraction for years. Hardware design is
only just now heading to that space.

The early ESL tools on the market now
address specific hot spots in design. Some
provide large-scale simulation of complex,
multi-module systems. Others offer domain-
specific synthesis to hardware from languages
like C/C++ or MATLAB’s M, aimed at
everything from accelerating software algo-
rithms and offloading embedded processors
to creating super-high-performance digital
signal processing engines for algorithms that
demand more than what conventional Von
Neumann processors can currently deliver.

These tools are available from a variety of
suppliers, ranging from FPGA vendors
themselves to major EDA companies to
high-energy startups banking on hitting it
big based on the upcoming discontinuity in
design methodology. You should be trying
them out now. If not, plan on being left
behind by more productive competitors over
the next five years. At the same time, you
should realize that today’s ESL technologies
are still in the formative stage. These are nas-
cent engineering tools with a long way to go
before they fulfill the ultimate promise of
ESL – a productivity leap in digital design
methodology that will ultimately allow us to
keep pace with Moore’s Law. 

Automation Conference, complete with
blinking lights, theme music, and special,
hush-hush secret sneak-preview demos
served with shots of espresso in exclusive
private suites.

FPGAs and ESL are a natural marriage.
If we believe our premise that ESL technol-
ogy delivers productivity – translating into
a substantial reduction in time to market –
we see a 100% alignment with FPGA’s key
value proposition. People need ESL tech-
niques to design FPGAs for the same reason
they turned to FPGAs in the first place –

they want their design done now. Second-
order values are aligned as well, as both
FPGA platforms and ESL tools deliver dra-
matically increased flexibility. When design
changes come along late in your product
development cycle, both technologies stand
ready to help you respond rapidly.

With all of this marketing and uncer-
tainty, how do you know if what you’re
doing is actually ESL? You certainly do not
want all of the other designers pointing and
laughing at engineering recess if you show
up on the playground with some lame tool
that isn’t the real thing. Although there is no
easy answer to that question, we can pro-
vide some general guidelines. First, if you
are describing your design in any language
in terms of the structure of the hardware,
what you are doing probably isn’t ESL.
Most folks agree that the path to productiv-
ity involves raising the abstraction layer.

If we are upping our level of abstraction,
how will the well-heeled hardware engineer
be describing his design circa 2010? Not in
RTL. Above that level of abstraction, how-
ever, a disquieting discontinuity occurs.
Design becomes domain-specific. The natu-
ral abstraction for describing a digital signal

FPGA platforms 

and ESL tools 

deliver dramatically 

increased flexibility.
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To complement our flagship publication Xcell Journal, we’ve recently 
launched three new technology magazines:

� Embedded Magazine, focusing on the use of embedded 
processors in Xilinx® programmable logic devices.

� DSP Magazine, focusing on the high-performance 
capabilities of our FPGA-based reconfigurable DSPs.

� I/O Magazine, focusing on the wide range of serial and 
parallel connectivity options available in Xilinx devices.

In addition to these new magazines, we’ve created a family of Solution Guides, 
designed to provide useful information on a wide range of hot topics such as 

Broadcast Engineering, Power Management, and Signal Integrity.
Others are planned throughout the year.

What’s New

Rwww.xilinx.com/xcell/



by Matt Aubury
Vice President, Engineering
Celoxica
matt.aubury@celoxica.com

The demand for high-performance imag-
ing systems continues to grow. In broadcast
and display applications, the worldwide
introduction of HDTV has driven data
rates higher and created a need to enhance
legacy standard definition (SD) content for
new displays. Simultaneously, rapid
changes in display technology include
novel 3D displays and new types of emis-
sive flat panels.

Concurrently, machine vision techniques
that were once confined to manufacturing
and biomedical applications are finding uses
in new fields. Automotive applications
include lane departure warning, drowsy
driver detection, and infrared sensor fusion.
Security systems currently in development
can automatically track people in closed-cir-
cuit TV images and analyze their move-
ments for certain patterns of behavior. In
homes, video-enabled robots will serve as
entertainment and labor-saving devices.
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Cost, processing power, and time to
market are critical issues for these new
applications. With flexible data paths,
high-performance arithmetic, and the abil-
ity to reconfigure on the fly, FPGAs are
increasingly seen as the preferred solution.
However, designers of reconfigurable imag-
ing systems face some big hurdles:

• Getting access to a rich library of
reusable IP blocks

• Integrating standard IP blocks with
customized IP

• Integrating the imaging part of the sys-
tem with analysis, control, and net-
working algorithms running on a CPU
such as a PowerPC™ or Xilinx®

MicroBlaze™ processor

In this article, I’ll introduce PixelStreams
from Celoxica, an open framework for video
processing that has applicability in both
broadcast and machine vision applications.
PixelStreams leverages the expressive power
of the Celoxica DK Design Suite to develop
efficient and high-performance FPGA-
based solutions in a fraction of the time of
traditional methods.

Filters and Streams
A PixelStreams application is built from a
network of filters connected together by
streams. Filters can generate streams (for
example, a sync generator), transform
streams (for example, a colorspace con-
verter), or absorb streams (for example,
video output).

Streams comprise flow control, data
transport, and high-level type information.
The data component in turn contains:

• An active flag (indicating that this pixel
is in the current region-of-interest)

• Optional pixel data (in 1-bit, 8-bit, or
signed 16-bit monochrome, 8-bit
YCbCr, or RGB color)

• An optional (x, y) coordinate

• Optional video sync pulses (horizontal
and vertical sync, blanking, and field
information for interlaced formats)

Combining all of these components
into a single entity gives you great flexibili-

The second domain imports the chan-
nel using extern and receives the stream
from it with a PxsReceive() filter:

// domain 2
extern chan X;
...
PxsReceive (&S1, &X); 

Custom Filters
PixelStreams comes “batteries included,”
with more than 140 filters, many of
which can perform multiple functions. A
sample of this range is shown in Table 1.
Every PixelStreams filter is provided with
complete source code. Creating custom
filters is often just a matter of modifying
one of the standard filters. New filters are
accessible from either the graphical editor
or from code.

ty. Filters can perform purely geometric
transforms by modifying only the coordi-
nates, or create image overlays just by mod-
ifying the pixel data.

Filters use the additional type infor-
mation that a stream provides in two
ways: to ensure that they are compatible
with the stream they are given (for exam-
ple, a sync generator cannot be attached
directly to a video output because it does
not contain any pixel data), and to auto-
matically parameterize themselves. Filters
are polymorphic; a single PxsConvert()
filter handles colorspace conversion
between each of the pixel data formats
(which includes 20 different operations).

Flow Control
Flow control is handled by a downstream
“valid” flag (indicating the validity of the
data component on a given clock cycle)
and an upstream “halt” signal. This com-
bination makes it easy to assemble multi-
rate designs, with pixel rates varying
(dynamically if necessary) from zero up to
the clock rate. Simple filters are still easy
to design. For example, a filter that mod-
ifies only the pixel components would use
a utility function to copy the remaining
components (valid, active, coordinates,
and sync pulses) from its inputs to out-
puts while passing the halt signal
upstream. More complex filters that need
to block typically require buffering at
their inputs, which is easily handled by
using the generic PxsFIFO() filter.

Sophisticated designs will require filter
networks in multiple clock domains.
These are easy to implement using the
DK Design Suite, which builds efficient
and reliable channels between clock
domains and sends and receives filters
that convert streams to channel commu-
nications. The first domain simply
declares the channel (in this case, by
building a short FIFO to maximize
throughput) and uses the PxsSend() filter
to transmit the stream:

// domain 1

chan X with { fifolength = 16 }; 

...

PxsSend (&S0, &X); 
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• Image analysis and connected component
(“blob”) labeling

• Image arithmetic and blending

• Clipping and region-of-interest

• Colorspace conversion and dithering

• Coordinate transforms, scaling, 
and warping

• Flow control, synchronization, multiplexing,
FIFOs, and cross-clock domain transport

• Convolutions, edge detection, and 
non-linear filtering

• Frame buffering and de-interlacing

• Color look-up-tables (LUTs)

• Grayscale morphology 

• Noise generators

• Video overlays, text and cursor 
generators, line plotter

• Sync generators for VGA, TV, HDTV

• Video I/O

Table 1 – An overview of the provided 
source-level IP



Concept to FPGA Hardware in 10 Minutes
Let’s take a simple HDTV application as an
example. We have an SD video stream that
we want to de-interlace, upscale, apply
gamma correction to, then dither and out-
put to an LCD.

We can assemble the blocks for this very
quickly using the PixelStreams graphical edi-
tor. The TV (SD) input undergoes color-
space conversion from YCbCr to RGB and
is stored in a frame buffer that implements
simple bob de-interlacing. Pixels are fetched
from the frame buffer, with the upscaling
achieved by modifying the lookup coordi-
nates. The output stream is gamma-correct-
ed using a color LUT, dithered, and output.
Assembling this network takes only a few
minutes. The editor uses heuristics to set the
stream parameters automatically. The final
design is shown in Figure 1.

One click generates code for this net-
work, with a corresponding project and
workspace, and launches the DK Design
Suite. The generated code is shown in
Figure 2. For this simple application each
filter is a single process running in a paral-
lel “par” block. More sophisticated designs
will have C-based sequential code running
in parallel to the filters.

One more click starts the build process
for our target platform (in this case,
Celoxica’s Virtex™-4 based RC340 imag-
ing board). The build process automatical-
ly runs ISE™ software place and route and
generates a bit file, taking about five min-
utes. One last click and the design is down-
loaded to the board over USB, as shown in
Figure 3.

As designs become more complex, it
becomes easier to code them directly rather
than use the graphical editor. This enables a
higher level of design abstraction, with the
ability to construct reusable hierarchies of
filters and add application control logic.

Simulation
Simulation is handled by the DK Design
Suite’s built-in cycle-based simulator and
utilizes its virtual platform technology to
show video input and output directly on
screen. Celoxica’s co-simulation manager
can simulate designs incorporating CPUs
and external RTL components.
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#define ClockRate 65000000
#include “pxs.hch”

void main (void)
{

/* Streams */
PXS_I_S (Stream0, PXS_RGB_U8);
PXS_I_S (Stream1, PXS_YCbCr_U8);
PXS_PV_S (Stream2, PXS_EMPTY);
PXS_PV_A (Stream3, PXS_EMPTY);
PXS_PV_A (Stream4, PXS_RGB_U8);
PXS_PV_S (Stream6, PXS_RGB_U8);
PXS_PV_A (Stream7, PXS_RGB_U8);
PXS_PV_S (Stream8, PXS_RGB_U8);

/* Filters */
par
{

PxsTVIn (&Stream1, 0, 0, ClockRate);
PxsConvert (&Stream1, &Stream0);
PxsPalPL2RAMFrameBufferDB (&Stream0, &Stream3, &Stream4, Width, PXS_BOB, 

PalPL2RAMCT(0), PalPL2RAMCT(1), ClockRate);
PxsVGASyncGen (&Stream2, Mode);
PxsScale (&Stream2, &Stream3, 704, 576, 1024, 768);
PxsStaticLUT (&Stream4, &Stream7, PxsLUT8Square);
PxsOrderedDither (&Stream8, &Stream6, 5);
PxsVGAOut (&Stream6, 0, 0, ClockRate);
PxsRegenerateCoord (&Stream7, &Stream8);

}
}

Figure 2 – Generated source code for example application

Figure 1 – Example application built using the PixelStreams graphical editor
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Synthesis
PixelStreams capitalizes on the strengths of
the DK Design Suite’s built-in synthesis to
achieve high-quality results on Xilinx
FPGAs. For example:

• When building long pipelines, it is com-
mon that certain components of streams
will not be modified. These will be effi-
ciently packed into SRL16 components.

• When doing convolutions or coordinate
transforms, MULT18 or DSP48 com-
ponents will be automatically targeted
(or if the coefficients are constant, effi-
cient constant multipliers are built).

• Line buffers and FIFOs will use either
distributed or pipelined block RAM
resources, which are automatically tiled.

• The data components of a stream are
always registered, to maximize the tim-
ing isolation between adjacent filters.

• DK’s register retiming can move logic
between the pipeline stages of a filter to
maximize clock rate (or minimize area).

In addition, DK can generate VHDL or
Verilog for use with third-party synthesis
tools such as XST or Synplicity and simu-
lation tools such as Aldec’s Active HDL or
Mentor Graphics’s ModelSim.

System Integration
A complete imaging system typically
comprises:

• A PixelStreams filter network, with
additional C-based control logic

• A MicroBlaze or PowerPC processor
managing control, user interface, or
high-level image interpretation functions

• VHDL or Verilog modules (possibly as
the top level)

To deal with CPU integration,
PixelStreams provides a simple “PxsBus” that
can be readily bridged to CPU buses such as
AMBA or OPB or controlled remotely (over
PCI or USB). This is purely a control bus,
allowing filters to be controlled by a CPU
(for adding menus or changing filter coeffi-
cients) or to provide real-time data back from

a filter to the controlling application (such as
the result of blob analysis).

To support integration with RTL flows,
PixelStreams offers a PxsExport() filter that
packages a filter network into a module
that can be instantiated from VHDL or
Verilog. Alternatively, an RTL module can
be instantiated within a PixelStreams top
level using PxsImport(). Used together,
pre-synthesized filter networks can be rap-
idly instantiated and reduce synthesis time.

Conclusion
Combining the two main elements of ESL
tools for Xilinx FPGAs – C- and model-
based design – PixelStreams offers a
uniquely powerful framework for imple-
menting a variety of imaging applications.
The provision of a wide range of standard
filters combined with features for integra-
tion into RTL flows and hardware/software
co-design makes it easy to add imaging fea-
tures to your system-level designs.

Future versions of PixelStreams will
extend both its flexibility as a framework
and the richness of the base library of IP.
We plan to add additional pixel formats
(such as Porter-Duff based RGBA) and
color depths and increase the available
performance by introducing streams that
transfer multiple pixels per clock cycle.
We also intend to introduce the ability to
easily transmit streams over other trans-
ports, such as USB, Ethernet, and high-
speed serial links, add more filters for
machine vision features such as corner
detection and tracking, and offer addi-
tional features for dynamically generating
user interfaces.

You can use PixelStreams to target any
prototyping or production board identified
for a project with the addition of simple
I/O filters. It can immediately target
Celoxica’s range of RC series platforms and
is fully compatible with the ESL Starter Kit
for Xilinx FPGAs.  For more information,
visit www.celoxica.com/xilinx, www.celoxica.
com/pxs, and www.celoxica.com/rc340. 

Future versions of PixelStreams will extend both its flexibility 
as a framework and the richness of the base library of IP. 

Figure 3 – Application running in hardware
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Language-based ESL tools for FPGAs have
proven themselves viable alternatives to tra-
ditional hardware design methods, bring-
ing FPGAs within the reach of software
application developers. By using software-
to-hardware compilation, software devel-
opers now have greater access to FPGAs as
computational resources.

What has often been overlooked by tra-
ditional hardware designers, however, is the
increased potential for design exploration,
iterative performance optimization, and
higher performance when ESL tools are
used in combination with traditional
FPGA design methods.

In this article, we’ll describe the role of
C-to-hardware ESL tools for iterative design
exploration and interactive optimization.
We’ll present techniques for evaluating alter-
native implementations of C-language accel-

erators in Xilinx® FPGAs and explore the
relative performance of fixed- and floating-
point FPGA algorithms.

Crossing the Abstraction Gap
Before ESL tools for FPGAs existed, it was
necessary to describe all aspects of an FPGA-
based application using relatively low-level
methods such as VHDL, Verilog, or even
schematics. These design methods are still
adequate, and in many cases preferable, for
traditional FPGA-based hardware applica-
tions. However, when using traditional
hardware design methods for creating com-
plex control or computationally intense
applications, a significant gap in abstraction
(Figure 1) can exist between the original
software algorithm and its corresponding
synthesizable hardware implementation, as
expressed in VHDL or Verilog. Crossing this
gap may require days or weeks of tedious
design conversion, making iterative design
methods difficult or impossible to manage.

Tools providing C compilation and
optimization for FPGAs can help software
and hardware developers cross this gap by
providing behavioral algorithm-level meth-
ods of design. Even for the most experi-
enced FPGA designers, the potential exists
for design improvements using such tools.

Although it may seem counterintuitive to
an experienced hardware engineer, using
higher level tools can actually result in high-
er performance applications because of the
dramatically increased potential for design
experimentation and rapid prototyping.

Iterative Optimization Is the Key
To understand how higher level tools can
actually result in higher performance
applications, let’s review the role of soft-
ware compilers for more traditional non-
FPGA processors.

Modern software compilers (for C, C++,
Java, and other languages) perform much
more than simple language-to-instruction
conversions. Modern processors, computing
platforms, and operating systems have a
diverse set of architectural characteristics, but
today’s compilers are built in such a way that
you can (to a great extent) ignore these many
architectural features. Advanced optimizing
compilers take advantage of low-level proces-
sor and platform features, resulting in faster,
more efficient applications.

Nonetheless, for the highest possible
performance, you must still make program-
ming decisions based on a general under-
standing of the target. Will threading an
application help or hurt performance?
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Evaluating Hardware Acceleration
Strategies Using C-to-Hardware Tools
Software-based methods enable iterative design and optimization for performance-critical applications.



Should various types of data be stored on
disk, maintained in heap memory, or
accessed from a local array? Is there a
library function available to perform a cer-
tain I/O task, or should you write a custom
driver? These questions, and others like
them, are a standard and expected part of
the application development process.

For embedded, real-time, and DSP
application developers there are even more
decisions to be made – and more dramatic
performance penalties for ignoring the real-
ities of the target hardware. For these plat-
forms, the ability to quickly experiment
with new algorithmic approaches is an

success; it is not yet possible to simply
ignore the nature of the target, nor is it
practical to consider legacy application
porting to be a simple recompilation of
existing source code. For hardware engi-
neers, it means that software-to-hardware
tools should be viewed as complements to –
not replacements for – traditional hardware
development methods. For both software
and hardware designers, the use of higher
level tools presents more opportunities for
increasing performance through experi-
mentation and fast prototyping.

Practically speaking, the initial results of
software-to-hardware compilation from C
language descriptions are not likely to equal
the performance of hand-coded VHDL, but
the turnaround time to get those first results
working may be an order of magnitude bet-
ter. Performance improvements can then
occur iteratively, through an analysis of how
the application is being compiled to the
hardware and through the experimentation
that C-language programming allows.

Graphical tools like those shown in Figure
2 can help provide initial estimates of algo-
rithm performance such as loop latencies and
pipeline throughput. Using such tools, you
can interactively change optimization
options or iteratively modify and recompile
C code to obtain higher performance. Such
design iterations may take only a matter of
minutes when using C, whereas the same
iterations may require hours or even days
when using VHDL or Verilog.

Analyzing Algorithms
To illustrate how design iteration and C-lan-
guage programming can help when proto-
typing algorithms, consider a DSP function
such as a fast Fourier transform (FFT) or an
image-processing function such as a filter
that must accept sample data on its inputs
and generate the resulting filtered values on
its outputs. By using C-to-hardware tools, we
can easily try a variety of different implemen-
tation strategies, including the use of differ-
ent pipeline depths, data widths, clock rates,
and numeric formats, to find a combination
of size (measured as FPGA slice count) and
speed (measured both as clock speed and data
throughput) that meets the specific require-
ments of a larger hardware/software system.

important enabler. It is the primary reason
that C programming has become an
important part of every embedded and
DSP programmer’s knowledge base.
Although most embedded and DSP pro-
grammers understand that higher perform-
ance is theoretically possible using
assembly language, few programmers wish
to use such a low level of abstraction when
designing complex applications.

What does all of this mean for FPGA
programmers? For software engineers con-
sidering FPGAs, it means that some
understanding of the features and con-
straints of FPGA platforms is critical to
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System Modeling
(typically using C)

Design Partitioning
(HW/SW hand-off)

Software Development
(embedded SW tools)

Hardware Development
(HDL tools)

Design Refinement
(SW and HW tools)

High-Level
Specification

Interfaces
Frozen

Software
Complete

Prototype
Complete

Product
Complete

The Abstraction Gap

Figure 1 – Crossing the abstraction gap: in system-level design, hardware 
development can be the bottleneck when creating a working prototype.

Figure 2 – A dataflow graph allows C programmers to analyze the generated hardware and 
perform explorative optimizations to balance trade-offs between size and speed. Illustrated in 
this graph is the final stage of a six-stage pipelined loop. This graph also helps C programmers

understand how sequential C statements are parallelized and optimized.



To demonstrate these ideas, we con-
ducted a series of tests with a 32-bit imple-
mentation of the FFT algorithm. The FFT
we chose includes a 32-bit FIFO input, a
32-bit FIFO output, and two clocks, allow-
ing the FFT to be clocked at a different rate
than the embedded processor with which it
communicates. The algorithm itself is
described using relatively straightforward,
hardware-independent C code. This imple-
mentation of the FFT uses a main loop
that performs the required butterfly opera-
tions on the incoming data to generate the
resulting filtered output.

Because this FFT algorithm is imple-
mented as a single inner loop representing
a radix-4 butterfly, we can use the auto-
matic pipelining capabilities of the Impulse
C compiler to try a variety of pipeline
strategies. Pipelining can introduce a high
degree of parallelism in the generated logic,
allowing us to achieve higher throughput at
the expense of additional hardware. This
pipeline itself may be implemented in a
variety of ways, depending on how fast we
wish to clock the FFT.

Another aspect to this algorithm (and
others like it) is that it can be implemented
using either fixed- or floating-point math.
For a high-end processor such as an Intel
Pentium or AMD Opteron, the choice of
floating point is obvious. But for an FPGA,
floating point may or may not make sense
given the lack of dedicated floating-point
units and the corresponding expense (in
terms of FPGA slice count) of generating
additional hardware.

Fortunately, the Impulse C tools allow
the use of either fixed- or floating-point
operations, and Xilinx tools are capable of
instantiating floating-point FPGA cores
from the generated logic. This makes per-
formance comparisons relatively easy. In
addition, the Impulse tools allow pipelin-
ing for loops to be selectively enabled, and
pipeline size and depth to be indirectly
controlled through a delay constraint.

Table 1 shows the results of two differ-
ent optimization and pipelining strategies
for the 32-bit FFT, for both the fixed- and
floating-point versions. We generated
results using the Impulse C version 2.10
tools in combination with Xilinx ISE™

software version 8.1, and targeting a Xilinx
Virtex™-4 LX-25 device. Many more
choices are actually possible during iterative
optimization, depending on the goals of the
algorithm and the clocking and size con-
straints of the overall system. In this case,
there is a clear benefit from enabling
pipelining in the generated logic. There is
also, as expected, a significant area penalty
for making use of floating-point operations
and a significant difference in performance
when pipelining is enabled.

Table 2 shows a similar test performed
using a 5x5 kernel image filter. This filter,
which has been described using two paral-
lel C-language processes, demonstrates
how a variety of different pipeline opti-
mization strategies (again specified using a
delay constraint provided by Impulse C)
can quickly evaluate size and speed trade-
offs for a complex algorithm. For all cases
shown, the image filter data rate (the rate
at which pixels are processed) is exactly one
half the clock rate.

For software applications targeting
FPGAs, the ability to exploit parallelism
(through instruction scheduling, pipelin-
ing, unrolling, and other automated or
manual techniques) is critical to achieving

quantifiable improvements over tradition-
al processors.

But parallelism is not the whole story;
data movement can actually become a more
significant bottleneck when using FPGAs.
For this reason, you must balance the accel-
eration of critical computations and inner-
code loops against the expense of moving
data between hardware and software.

Fortunately, modern tools for FPGA
compilation include various types of analy-
sis features that can help you more clearly
understand and respond to these issues. In
addition, the ability to rapidly prototype
alternative algorithms – perhaps using very
different approaches to data management
such as data streaming, message passing, or
shared memory – can help you more quick-
ly converge on a practical implementation.

Conclusion
With tools providing C-to-hardware compi-
lation and optimization for Xilinx FPGAs,
software and hardware developers can cross
the abstraction gap and create faster, more
efficient prototypes and end products. To
discover what C-to-hardware technologies
can do for you, visit www.xilinx.com/esl or
www.impulsec.com/xilinx. 
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FFT Pipelining Slices FFs LUTs Clock Total FFT
Data Type Enabled? Used Used Used Frequency Cycles

Fixed Point No 3,207 2,118 5,954 80 MHz 1,536

Fixed Point Yes 2,810 2,347 5,091 81 MHz 261

Floating Point No 10,917 7,298 20,153 88 MHz 10,496

Floating Point Yes 10,866 7,610 19,855 74 MHz 269

Stage Delay Slices FFs LUTs Clock Pipeline
Constraint Used Used Used Frequency Stages

300 1,360 1,331 2,186 60 MHz 5

200 1,377 1,602 2,209 85 MHz 7

150 1,579 2,049 2,246 99 MHz 9

100 1,795 2,470 2,392 118 MHz 11

75 2,305 3,334 2,469 139 MHz 15

Table 1 – 32-bit FFT optimization results for fixed- and floating-point versions, 
with and without pipelining enabled

Table 2 – 16-bit image filter optimization results for various pipelining and stage delay combinations
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Performance analysis and early architecture
exploration ensures that you will select the
right FPGA platform and achieve optimal
partitioning of the application onto the
fabric and software. This early exploration
is referred to as rapid visual prototyping.
Mirabilis Design’s VisualSim software sim-
ulates the FPGA and board using models
that are developed quickly using pre-built,
parameterized modeling libraries in a
graphical environment.

These library models resemble the ele-
ments available on Xilinx® FPGAs, includ-
ing PowerPC™, MicroBlaze™, and
PicoBlaze™ processors; CoreConnect;
DMA; interrupt controllers; DDR; block
RAM; LUTs; DSP48E; logic operators;
and fabric devices. The components are
connected to describe a given Xilinx Virtex
platform and simulated for different oper-
ating conditions such as traffic, user activi-
ty, and operating environment.

More than 200 standard analysis out-
puts include latency, utilization, through-
put, hit ratio, state activity, context

switching, power consumption, and
processor stalls. VisualSim accelerates
architecture exploration by reducing typ-
ical model development time from
months to days. 

I can illustrate the advantages of early
architecture exploration with an example
from one of our customers, who was expe-
riencing difficulty with a streaming media
processor implemented using a Virtex™-4
device. The design could not achieve the
required performance and was dropping
every third frame. Utilization at all of the
individual devices was below 50%. A visu-
al simulation that combined both the
peripheral and the FPGA identified that
the video frames were being transferred at
the same clock sync as the audio frames
along a shared internal bus.

As the project was in the final stages of
development, making architecture changes
to address the problem would have delayed
shipment by an additional six months.
Further refinement of the VisualSim
model found that by giving the audio
frames a higher priority, the design could
achieve the desired performance, as the
audio frames would also be available for
processing. The project schedule was
delayed by approximately 1.5 months.

If the architecture had been modeled
early in the design cycle, the design cycle
could have been reduced by 3 months,
eliminating the 1.5-month re-spin to get to
market approximately 5 months sooner.
Moreover, with a utilization of 50%, con-
trol processing could have been moved to
the same FGPA. This modification might
have saved one external processor, a DDR
controller, and one less memory board.

Rapid Visual Prototyping
Rapid visual prototyping can help you
make better partitioning decisions.
Evaluations with performance and archi-
tectural models can help eliminate clearly
inferior choices, point out major problem
areas, and evaluate hardware/software
trade-offs. Simulation is cheaper and faster
than building hardware prototypes and can
also help with software development,
debugging, testing, documentation, and
maintenance. Furthermore, early partner-
ship with customers using visual prototypes
improves feedback on design decisions,
reducing time to market and increasing the
likelihood of product success (Figure 1).

A design-level specification captures a
new or incremental approach to improve
system throughput, power, latency, utiliza-
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for FPGA Selection and System Design
Accelerating Architecture Exploration 
for FPGA Selection and System Design
You can create an optimized specification that achieves performance, 
reliability, and cost goals for use in production systems.
You can create an optimized specification that achieves performance, 
reliability, and cost goals for use in production systems.



tion, and cost; these improvements are typi-
cally referred to as price/power/performance
trade-offs. At each step in the evolution of a
design specification, well-intentioned modi-
fications or improvements may significantly
alter the system requirements. The time
required to evaluate a design modification
before or after the system design process has
started can vary dramatically, and a visual
prototype will reduce evaluation time.

To illustrate the use of the rapid visual
prototype, let’s consider a Layer 3 switch
implemented using a Virtex FPGA. The
Layer 3 switch is a non-blocking switch
and the primary consideration is to main-
tain total utilization across the switch.  

Current Situation
In product design, three factors are certain:
specifications change, non-deterministic
traffic creates performance uncertainty,
and Xilinx FPGAs get faster. Products
operate in environments where the pro-
cessing and resource consumption are a
function of the incoming data and user
operations. FPGA-based systems used for
production must meet quality, reliability,
and performance metrics to address cus-
tomer requirements. What is the optimal
distribution of tasks into hardware acceler-
ation and software on FPGAs and other

• Selecting functions requiring a 
co-processor

• Determining optimal interface speeds
and pins required

• Exploring block RAM allocation
schemes, cache and RAM speeds, 
off-chip buffering, and impact of
redundant operators

An analysis conducted using VisualSim
includes packet size versus latency, protocol
overhead versus effective bandwidth, and
resource utilization.

In reference to the Layer 3 example, your
decisions would include using:

• The on-chip PowerPC or external
processor for routing operations

• Encryption algorithms using the DSP
function blocks or fabric multipliers
and adders

• A dedicated MicroBlaze processor 
for traffic management or fabric

• PowerPC for control or proxy 
rules processing

• TCP offload using an external co-
processor or MicroBlaze processor

Can a set of parallel PicoBlaze processors
with external SDRAM support in-line spy-
ware detection? What will the performance
be when the packet size changes from 256
bytes to 1,512 bytes? How can you plan for
future applications such as mobile IP? 

You can extend the exploration to con-
sider the interfaces between the FPGA and
board peripherals, such as SDRAM. As the

board devices? How can you determine the
best FPGA platform to meet your product
requirements and attain the highest per-
formance at the lowest cost? 

Early Exploration Solution
VisualSim provides pre-built components
that are graphically instantiated to describe
hardware and software architectures. The
applications and use cases are described as
flow charts and simulated on the
VisualSim model of the architecture using
multiple traffic profiles. This approach
reduces the model construction burden
and allows you to focus on analysis and
interpretation of results. It also helps you
optimize product architectures by running
simulations with application profiles to
explore FPGA selection; hardware versus
software decisions; peripheral devices ver-
sus performance; and partitioning of
behavior on target architectures.  

Design Optimization
You can use architecture exploration
(Figure 2) to optimize every aspect of an
FPGA specification, including:

• Task distribution on MicroBlaze and
PowerPC processors

• Sizing the processors
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platform and peripheral using VisualSim
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Figure 1 – Translating a system concept into rapid visual prototyping
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PowerPC will be sharing the bus with the
MicroBlaze processor, the effective bus
throughput is a function of the number of
data requests and the size of the local block
RAM buffers. For example, you could
enhance the MicroBlaze processor with a
co-processor to do encryption at the bit
level in the data path. You could also
use the CoreConnect bus to connect
the peripheral SDRAM to the
PowerPC while the DDR2 is used for
the MicroBlaze processor. 

You can reuse the VisualSim archi-
tecture model for exploration of the
software design, identifying high-
resource consumption threads, balanc-
ing load across multiple MicroBlaze
processors, and splitting operations
into smaller threads. If a new software
task or thread has data-dependent priorities,
exploration of the priorities and task-arrival
time on the overall processing is a primary
modeling question. If you change the priori-
ty on a critical task, will this be sufficient to
improve throughput and reduce task latency?
In most cases, this will be true, but there may
be a relative time aspect to a critical task that
can reduce latencies on lower priority tasks
such that both benefit from the new ordering.
If peak processing is above 80% for a system
processing element, then the system may be
vulnerable to last-minute tasks added, or to
future growth of the system itself. 

Model Construction
System modeling of the Layer 3 switch
(Figure 3) starts by compiling the list of
functions (independent of implementa-
tion), expected processing time, resource
consumption, and system performance
metrics. The next step is to capture a flow
diagram in VisualSim using a graphical
block diagram editor (Figure 3). The flow
diagrams are UML diagrams annotated
with timing information. The functions in
the flow are represented as delays; timed
queues represent contention; and algo-
rithms handle the data movement. The
flow diagram comprises data processing,
control, and any dependencies.    

Data flow includes flow and traffic
management, encryption, compression,
routing, proxy rules, and TCP protocol

handling. The control path contains the
controller algorithm, branch decision
trees, and weighted polling policies.
VisualSim builds scenarios to simulate the
model and generate statistics. The scenar-
ios are multiple concurrent data flows
such as connection establishment (slow

path); in-line data transfer after setup of
secure channel (fast path); and protocol-
and data-specific operation sequences
based on data type identification. 

You can use this model of the timed
flow diagram for functional correctness and
validation of the flows. VisualSim uses ran-
dom traffic sequences to trigger the model.
The traffic sequences are defined data
structures in VisualSim; a traffic generator
emulates application-specific traffic. This
timed flow diagram selects the FPGA plat-
form and conducts the initial hardware and
software partitioning. The flow diagram
model defines the FPGA components and
peripheral hardware using the FPGA
Modeling Toolkit.

The functions of the flow diagram are
mapped to these architecture components.
For each function, VisualSim automatical-
ly collects the end-to-end delay and num-
ber of packets processed in a time period.
For the architecture, VisualSim plots the
average processing time, utilization, and

effective throughput (Figure 4).
These metrics are matched against
the requirements. Exploration of
the mapping and architecture is
possible by varying the link and
replacing the selected FPGA with
other FPGAs.

The outcome of this effort will
be selecting the right FPGA family,
correctly sizing the peripherals and
the right number of block RAMs,
DSP blocks, and MicroBlaze

processors. You can add overhead to the
models to capture growth requirements and
ensure adequate performance. 

Conclusion
Early architecture exploration ensures a
highly optimized product for quality, relia-
bility, performance, and cost. This provides
direction for implementation plans,
reduces the amount of tests you need to
conduct, and has the ability to shrink the
development cycle by almost 30%. 

VisualSim libraries of standard FPGA
components, flow charts defining the
behavior, traffic models, and pre-built
analysis probes ensure that system design
is no longer time consuming, difficult to
perform, and providing questionable
results. The reduction in system modeling
time and availability of standard compo-
nent models provides a single environ-
ment for designers to explore both
hardware and software architectures.  

For a free 21-day trial of the FPGA
Modeling Toolkit, including the MicroBlaze
and PowerPC models, register at
www.mirabi l i sde s i gn . com/webpage s /
evaluation/mdi_evaluation.htm. To learn
more about VisualSim, visit www.
mirabilisdesign.com, where there are mod-
els embedded in the HTML pages. You
can modify parameters and execute from
within your web browser without having
to download custom software. 

Figure 4 – Analysis output for the Layer 3
switch design

Figure 3 – Flow chart describing the application 
flow diagram in VisualSim
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With the advent of ever-larger FPGAs, both
software algorithm developers and hardware
designers need to be more productive.
Without an increase in abstraction level,
today’s complex software systems cannot be
realized, both because of a lack of resources
(time, money, developers) and an inability
to manage the complexity. Electronic sys-
tem level (ESL) design offers a solution
where an abstraction level higher than HDL
will result in higher productivity, higher
performance, and higher quality.

In this article, I’ll show you how to use
the high-level multi-threaded language
Mobius to quickly and efficiently imple-
ment embedded control systems on FPGAs.
In particular, I’ll demonstrate the imple-
mentation of a floating-point embedded
control system for a Xilinx® Virtex™-II
FPGA in a few lines of Mobius source code. 
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Mobius
Mobius is a tiny high-level multi-threaded
language and compiler designed for the
rapid development of hardware/software
embedded systems. A higher abstraction
level and ease of use lets you achieve
greater design productivity compared to
traditional approaches. At the same time
you are not compromising on quality of
results, since benchmarks show that
Mobius-generated circuits match the best
hand designs in terms of throughput and
resources for both compact and single-
cycle pipelined implementations. 

Developing embedded systems with
Mobius is much more like software develop-
ment using a high-level language than hard-
ware development using assembly-like
HDL. Mobius has a fast transaction-level
simulator so that the code/test/debugging
cycle is much faster than traditional HDL
iterations. The Mobius compiler translates
all test benches into HDL, so for a quick
verification simply compare the Mobius
simulation with the HDL simulation using
the same test vectors. The compiler-generat-
ed HDL is assembled from a set of Lego-like
primitives connected using handshaking
channels. As a result of handshaking, the cir-
cuit is robust and correct by construction.

Mobius lets software engineers create
efficient and robust hardware/software sys-
tems, while hardware engineers become
much more productive. With less than 200
lines of Mobius source, users have imple-
mented FIR filters, FFT transforms, JPEG
encoding, and DES and AES encryption,
as well as hardware/software systems with
PowerPC™ and MicroBlaze™ processors. 

Parallelism is the key to obtaining high
performance on FPGAs. Mobius enables
both compact sequential circuits, latency-
intolerant inelastic pipelined circuits, and
parallel latency-tolerant elastic pipelined cir-
cuits. Using the keywords “seq” and “par,”
the Mobius language allows basic blocks to
run in sequence or in parallel, respectively.
Parallel threads communicate with message
passing channels, where the keywords “?”

point and floating point. The low-latency
math libraries are supplied as Mobius source
code. The fixed point add, sub, and mul
operators are zero-cycle combinatorial func-
tions. The floating-point add and sub oper-
ators take four cycles, the mul operators take
two cycles, and the div operator is iterative-
dependent on the size of the operands.

Infinite Impulse Response Filter
As an example of an embedded control sys-
tem, let’s look at how you can use Mobius
to quickly implement an infinite impulse
response (IIR) filter. I will investigate sever-
al different architectures for throughput,
resources, and quantization using parame-
terized fixed- and floating-point math.

The IIR is commonly found in both
control systems and signal processing. A
discrete time proportional-integral-deriv-
ative (PID) controller and lead-lag con-
troller can be expressed as an IIR filter. In
addition, many common signal process-
ing filters such as Elliptic, Butterworth,
Chebychev, and Bessel are implemented
as IIR filters. Numerically, an IIR com-
prises an impulse transfer function H(z)
with q poles and p zeros: 

This can also be expressed as a difference
equation: 

The IIR has several possible implemen-
tations. The direct form I is often used by
fixed-point IIR filters because a larger sin-
gle adder can prevent saturation. The direct
form II is often used by floating-point IIR
filters because this uses fewer states and the
adders are not as sensitive to saturation.
The cascade canonical form has the lowest
quantization sensitivity, but at the cost of
additional resources. For example, if p = q
and p is even, then the direct form I and II
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and “!” are used to read and write over a
channel that waits until both the reader and
writer are ready before proceeding. Message
passing obviates the need for low-level locks,
mutexes, and semaphores. The Mobius
compiler also identifies common parallel
programming errors such as illegal parallel
read/write or write/write statements. 

The Mobius compiler generates synthe-
sizeable HDL using Xilinx-recommended
structures, letting the Xilinx synthesizer
efficiently infer circuits. For instance, vari-
ables are mapped to flip-flops and arrays
are mapped to block RAM. Because
Mobius is a front end to the Xilinx design
flow, Mobius supports all current Xilinx
targets, including the PowerPC and DSP
units found on the Virtex-II Pro, Virtex-4,
and Virtex-5 device families. The generated
HDL is readable and graphically docu-
mented, showing hierarchical control and
dataflow relationships. Application notes
show how to create hardware/software sys-
tems communicating over the on-chip
peripheral and Fast Simplex Link buses. 

Handshaking allows you to ignore low-
level timing, as handshaking determines
the control and dataflow. However, it is
very easy to understand the timing model
of Mobius-generated HDL. Every Mobius
signal has a request, acknowledge, and data
component where the req/ack bits are used
for handshaking. For a scalar variable
instantiated as a flip-flop, a read takes zero
cycles and a scalar write takes one cycle. An
assignment statement takes as many cycles
as the sum of its right-hand-side (RHS)
and left-hand-side (LHS) expressions. An
assignment with scalar RHS and LHS
expressions therefore takes one cycle to exe-
cute. Channel communications take an
unknown number of cycles (it waits until
both reader and write are ready). A sequen-
tial block of statements takes as many
cycles as the sum of its children, and a par-
allel block of statements takes the maxi-
mum number of cycles of its children. 

Mobius has native support for parame-
terized signed and unsigned integers, fixed
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implementations only require 2p + 1 con-
stant multipliers, while the cascade requires
5p/2 constant multipliers. 

Because of the many trade-offs, it is clear
that numerical experiments are necessary to
determine a suitable implementation.

IIR Implementation in Mobius
Let’s select a third-order IIR filter where b0
= 0, b1 = 0, b2 = 1, b3 = 0.5, a1 = -1, a2 =
0.01, and a3 = 0.12. The difference equation
can be easily written as the multi-threaded
Mobius program shown in Figure 1.

The Mobius source defines the IIR filter
as a procedure and a test bench to exercise
it. Inside iir(), a perpetual loop continuous-
ly reads a new reference value u, updates the
states x1, x2, x3, and then calculates and
writes the output. The IIR uses four (fixed-
or floating-point) adders and three (fixed-
or floating-point) multipliers. Note how the

values of all states are simultaneously updat-
ed. The test bench simply sends a constant
reference value to the filter input, reads the
filter output, and writes that resulting step
value to stdout. By separating the IIR filter
from the test bench, just the IIR filter can
be synthesized.

Fixed Point or Floating Point?
Floating-point math allows for large
dynamic range but typically requires con-
siderable resources. Using fixed point
instead can result in a much smaller and
faster design, but with trade-offs in stabili-
ty, precision, and range. 

Both fixed- and floating-point math
are fully integrated into the Mobius lan-
guage, making things easy for you to mix
and match various-sized fixed- and float-
ing-point operators. In the Mobius
source, the type “t” defines a parameter-

ized fixed- or floating-point size. By
changing this single definition, the com-
piler will automatically use the selected
parameterization of operands and math
operators in the entire application. For
instance, the signed fixed-point type defi-
nition sfixed(6,8) uses 14 bits, where 6
bits describe the whole number and 8 bits
the fraction. The floating-point type defi-
nition float(6,8) uses 15 bits, with 1 sign
bit, 6 exponent bits, and 8 mantissa bits. 
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procedure testbench();

type t = sfixed(6,8);  (* type t = float(8,24); *) 
var c1,c2:chan of t;
var y:t;

procedure iir(in cu:chan of t; out cy:chan of t);
const a2: t = 0.01;
const a3: t = 0.12;
const b3: t = 0.5;
var u,x1,x2,x3:t;
seq
x1:=0.0; x2:=0.0; x3:=0.0;
while true do
seq
cu ? u; (* read input *)
x1,x2,x3 := x2,x3, u-(t(a3*x1)+t(a2*x2)-x3); (* calc states *)
cy ! t(b3*x1)+x2; (* write output *)

end
end;

par (* testbench *)
iir(c1,c2); 
while true do seq c1 ! 1.0; c2 ? y; write(“ y=”,y) end (* get step response of filter *)

end;

y=0.000000
y=1.000000
y=2.500000
y=4.000000
y=5.492188
y=6.855469
y=8.031250
y=9.023438
y=9.832031
y=10.472656
y=10.964844
y=11.335938
y=11.609375
y=11.800781
y=11.933594
y=12.019531
y=12.078125
y=12.109375
y=12.121094
y=12.121094
y=12.117188
y=12.109375
y=12.097656
y=12.085938
y=12.074219
y=12.062500
y=12.054688
y=12.046875
y=12.042969
y=12.035156
y=12.031250
y=12.027344
y=12.027344
y=12.027344
y=12.027344
y=12.027344

Figure 1 – Mobius source code and test bench for IIR filter

Figure 2 – HDL simulation of step
response running test bench
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Parallel or Sequential Architecture?
Using parallel execution of multiple
threads, an FPGA can achieve tremendous
speedups over a sequential implementa-
tion. Using a pipelined architecture
requires more resources, while a sequential
implementation can share resources using
time-multiplexing. 

The iir() procedure computes all expres-
sions in a maximally parallel manner and
does not utilize any resource sharing. You
can also create alternate architectures that
use pipelined operators and statements for
higher speed, or use resource sharing for
smaller resources and slower performance. 

Mobius-Generated VHDL/Verilog
Using the Mobius compiler to generate
HDL from the Mobius source (Figure 1),
ModelSim (from Mentor Graphics) can
simulate the step response (Figure 2). 

I synthesized several Mobius implemen-
tations of the IIR filter for a variety of math
types and parameterizations (Table 1) using
Xilinx ISE™ software version 7.1i (service
pack 4) targeting a Virtex-II Pro XC2VP7
FPGA. The Xilinx ISE synthesizer effi-
ciently maps the HDL behavioral struc-
tures onto combinatorial logic and uses
dedicated hardware (for example, multipli-
ers) where appropriate. A constraint file
was not used. As you can see, the fixed-
point implementations are considerably
smaller and faster than the floating-point
implementations.

An alternate architecture using pipelining
reduces the cycle time to 1 cycle for the fixed-
point and 18 cycles for the floating-point

implementations, with similar resources and
clock speeds.

You can also use an alternate architecture
with time-multiplexed resource sharing to
make the design smaller (but slower).
Sharing multipliers and adders in the larger
floating-point IIR design results in a design
needing only 1,000 slices and 4 multipliers
at 60 MHz, but the IIR now has a latency of
48 cycles. This is a resource reduction of 3x
and a throughput reduction of 2x.

Conclusion
In this article, I’ve shown how Mobius users
can achieve greater design productivity, as
exemplified by the rapid development of
several fixed- and floating-point IIR filters.
I’ve also shown how you can quickly design,
simulate, and synthesize several architectures
using compact, pipelined, and time-multi-
plexed resource sharing to quantitatively
investigate resources, throughput, and quan-
tization effects. 

The Mobius math libraries for fixed-
and floating-point math enable you to
quickly implement complex control and
signal-processing algorithms. The Mobius
source for the basic IIR filter is about 25
lines of code, whereas the generated HDL
is about 3,000-8,000 lines, depending on
whether fixed point or floating point is
generated. The increase in productivity
using Mobius instead of hand-coded
HDL is significant. 

Using Mobius allows you to rapidly
develop high-quality solutions. For more
information about using Mobius in your
next design, visit www.codetronix.com. 

sfixed(6,8) sfixed(8,24) float(6,8) float(8,24)

Resources 66 slices 287 slices 798 slices 2,770 slices
66 FFs 135 FFs 625 FFs 1,345 FFs
109 LUTs 517 LUTs 1,329 LUTs 4,958 LUTs
38 IOBs 74 IOBs 40 IOBs 76 IOBs
3 mult18 x 18s 12 mult18 x 18s 3 mult18 x 18s 12 mult18 x 18s

Clock 89 MHz 56 MHz 103 MHz 61 MHz

Cycles 2 2 26 26

Table 1 – Synthesis results of iir()
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Computationally intense real-time appli-
cations such as Voice over IP, video over IP,
3G and 4G wireless communications,
MP3 players, and JPEG and MPEG
encoding/decoding require an integrated
hardware/software platform for optimal
performance. Parts of the application run in
software on a general-purpose processor,
while other portions must run on applica-
tion-specific hardware to meet performance
requirements. This methodology, common-
ly known as hardware/software partitioning
or co-design, has caused an increasing num-
ber of software applications to be migrated
to system-on-a-chip (SOC) platforms.

FPGAs have emerged as the SOC plat-
form of choice, particularly in the fast-
paced world of embedded computing.
FPGAs enable rapid, cost-effective product
development cycles in an environment
where target markets are constantly shifting
and standards continuously evolving.
Several families of platform FPGAs are
available from Xilinx. Most of these offer
processing capabilities, a programmable
fabric, memory, peripheral devices, and
connectivity to bring data into and out of
the FPGA. They provide embedded appli-
cation developers with a basic hardware
platform on which to build end applica-
tions, with minimal amounts of time and
resources spent on hardware considerations.
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Source-to-Hardware Tools
Several tools on the market allow you to
translate high-level source descriptions in
C/C++ or MATLAB into VHDL or
Verilog. Most of these tools fall into the
category of “behavioral synthesis” tools and
are designed for hardware designers creat-
ing a hardware implementation for a com-
plete algorithm. These tools require you to
have some intrinsic knowledge of hardware
design and to use only a restricted subset of
the source language conducive to hardware
translation. In some cases they also require
you to learn new language constructs. This
creates a significant learning curve, which
further pushes out time to market.

More recently, some companies have
introduced tools for embedded application
developers. These tools promote a co-
design methodology and allow you to per-
form hardware/software partitioning.
However, they suffer from some of the
same limitations of behavioral synthesis
tools – you need to learn hardware-specific
constructs for the tool to generate opti-
mized hardware. This imposes a funda-
mental barrier for a tool targeted at
embedded application developers, who in
most cases are software engineers with no
or limited knowledge of hardware design.

Another basic requirement for tools
intended for application developers is that
they support applications developed in
multiple source languages. An embedded
application of even moderate complexity
will comprise parts written in C/C++ (call-
ing on a suite of library functions) and
other parts written in assembly language
(to optimize performance). DSP applica-
tions add another dimension of complexity
by including MATLAB source code in
addition to C/C++ and assembly language.
Clearly, any tool that does not support
multiple source languages will fall short.

A new unique approach to hardware/soft-
ware co-design is to start with the binary of
the embedded application. It not only over-

stant folding, constant propagation, dead
code elimination, and common sub-expres-
sion elimination. For example, consider
this simple snippet of pseudo code:

int a = 30;
int b = 9 – a / 5;
int c;

c = b * 4;
if (c > 10) {

c = c – 10;
}
return c * (60 / a);

Applying the compiler optimization
techniques discussed earlier, this pseudo
code can be reduced to:

return 4;

A co-design tool operating at the binary
level can leverage these compiler optimiza-
tions to further improve the accuracy of
hardware/software partitioning. Tools that
work at the source level must either per-
form these optimizations internally or leave
some area/performance on the table, result-
ing in a sub-optimal co-design.

Legacy Applications
For most popular processors such as
PowerPC™, ARM, and TI DSP, a host of
applications are already out in the field.
These applications would benefit from a
port to a faster FPGA platform with a co-
design implementation. In many of these
situations the source code is either not
available or is written in an obsolete lan-
guage. If the source code is available, the
original developers may no longer be asso-
ciated with the project or company; there-
fore the legacy knowledge does not exist. In
such scenarios a tool that works from the
binary can prove to be an invaluable asset.

Designing with BINACHIP-FPGA
The BINACHIP-FPGA tool is designed
for embedded application developers and

comes all of the previously mentioned issues
but also provides other significant benefits. A
new commercial tool called BINACHIP-
FPGA from Binachip, Inc. successfully uses
this approach.

Partitioning from Binaries
The executable code or binary compiled for
a specific processor platform is the least
common denominator representation of an
embedded application written in multiple
source languages. Combined with the
instruction set architecture of the proces-
sor, it provides a basis for extremely accu-
rate hardware/software partitioning at a
very fine grain level. The close-to-hardware
nature of binaries also allows for better
hardware/software partitioning decisions,
as illustrated in the following examples.

Bottlenecks Inside Library Functions
One obvious consideration for
hardware/software partitioning is computa-
tional complexity. Moving computationally
intense functions into hardware can result
in a significant performance improvement.
Any embedded application typically relies
on a suite of library functions for basic
mathematical operations such as floating-
point multiply/divide, sine, and cosine.
Some of these functions are fairly compute-
heavy and could be called millions of times
during the normal execution of an applica-
tion, resulting in a bottleneck.

Moving one or more of these functions
into hardware could easily provide a 10x-
50x speedup in execution time, depending
on their complexity and how often they are
called. Any co-design tool operating at the
source-code level will completely miss this
performance improvement opportunity.

Architecture-Independent 
Compiler Optimizations
Most C/C++ or other source language
compilers are very efficient at architecture-
independent optimizations such as con-
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allows them to leverage all of the features of
the FPGA platform, without having any
intrinsic knowledge of hardware design or
needing to learn a new source language.
The transformation performed by the tool
in going from pure software implementa-
tion to a co-design is conceptually illustrat-
ed in Figure 1.

An embedded application written in a
combination of C/C++, MATLAB, and
Java is compiled into a binary executable
for a target platform. The bottleneck is
identified based on profiling data or user
input (see the orange box in Figure 1). The
tool automatically generates hardware for
these functions, which is mapped into the

programmable fabric of the FPGA. All
hardware/software communication inter-
faces are also generated by the tool. Calls to
these functions are now computed in hard-
ware and control is returned to the software
when the computation is complete. The
tool then outputs a new executable that
runs seamlessly on the target platform.

BINACHIP-FPGA is also capable of
performing advanced optimizations such as
loop unrolling, which allows you to make
area/performance trade-offs. You can also
exploit fine-grain parallelism by using
advanced data scheduling techniques like
as-soon-as-possible (ASAP) or as-late-as-
possible (ALAP) scheduling.

Empowering Application Developers
BINACHIP-FPGA empowers embed-
ded application developers to create
advanced applications on FPGA plat-
forms with minimal intervention or
interaction with hardware designers.
Figure 2 shows a typical design flow for
the tool.

After the system architect has made a
decision on which platform to use, the
application developers start writing soft-
ware and go through the usual task of
compiling, debugging, and profiling the
code. BINACHIP-FPGA fits into the
flow once the application developers
have debugged the basic functionality.
After feeding the compiled application
and profiler data into the tool, you have
the option to manually guide the tool
and select which functions should be
mapped into the hardware. The tool
generates the hardware and reconstruct-
ed binary with appropriate calls to the
hardware.

You can then simulate the resulting
implementation in a hardware/software
co-design tool using the bit-true test
benches generated by BINACHIP-
FPGA. The RTL portion is mapped into
the FPGA fabric using Xilinx Synthesis
Technology (XST) and the ISE™ design
environment. The application is now
ready to run on the target platform.

Conclusion
Hardware/software co-design tools prom-
ise to empower embedded application
developers and enable the large-scale
deployment of platform FPGAs. To
deliver on that promise, these tools must
assume that users will have minimal or no
hardware design knowledge. You should
not be required to learn new language
constructs to use the tools effectively.

BINACHIP-FPGA is the first tool in
the market that uses a unique approach
to enable application developers to fully
leverage the FPGA platform and meet
their price, performance, and time-to-
market constraints.

For more information on hardware/soft-
ware co-design or BINACHIP-FPGA, visit
www.binachip.com.
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Figure 1 – Transforming a pure software implementation into a co-design

Figure 2 – Design flow using BINACHIP-FPGA
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High-performance DSP platforms, tradi-
tionally based on general-purpose DSP
processors running algorithms developed in
C, have been migrating towards the use of
an FPGA pre-processor or coprocessor.
Doing so can provide significant perform-
ance, power, and cost advantages (Figure 1). 

Even with these considerable advan-
tages, design teams accustomed to working
on processor-based systems may avoid
using FPGAs because they lack the hard-
ware skills necessary to use one as a
coprocessor. Unfamiliarity with traditional
hardware design methodologies such as
VHDL and Verilog limits or prevents the
use of an FPGA, oftentimes resulting in
more expensive and power-hungry designs.
A new group of emerging design tools
called ESL (electronic system level) promis-
es to address this methodology issue, allow-
ing processor-based developers to accelerate
their designs with programmable logic
while maintaining a common design
methodology for hardware and software. 
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Boosting Performance 
with FPGA Coprocessing
You can realize significant improvements in
the performance of a DSP system by taking
advantage of the flexibility of the FPGA
fabric for operations benefiting from paral-
lelism. Common examples include (but are
not limited to) FIR filtering, FFTs, digital
down conversion, and forward error cor-
rection (FEC) blocks.

Xilinx® Virtex™-4 and Virtex-5 archi-
tectures provide as many as 512 parallel
multipliers capable of running in excess of
500 MHz to provide a peak DSP perform-
ance of 256 GMACs. By offloading opera-
tions that require high-speed parallel
processing onto the FPGA and leaving
operations that require high-speed serial
processing on the DSP, the performance
and cost of the DSP system are optimized
while lowering system power requirements.

Lowering Cost with 
FPGA Embedded Processing
A DSP hardware system that includes an
FPGA coprocessor offers numerous imple-
mentation options for the operations con-
tained within the C algorithm, such as
partitioning the algorithm between the
DSP processor, the FPGA-configurable
logic blocks (CLBs), and the FPGA
embedded processor. The Virtex-4 device
offers two types of embedded processors:
the MicroBlaze™ soft-core processor,
often used for system control, and the
higher performance PowerPC™ hard-core
embedded processor. Parallel operations
partitioned into the FPGA fabric can be

C to Gates
When targeting an FPGA, the term “C to
gates” refers to a C-synthesis design flow
that creates one of two implementation
options – direct implementation onto the
FPGA fabric as a DSP module or the cre-
ation of a hardware accelerator for use with
the MicroBlaze or PowerPC 405 embedded
processor (Figure 2). 

When an operation lies directly in the
DSP datapath, the highest performance is
achieved by implementing an operation as a
DSP module. This involves synthesizing the
C code directly into RTL and then instanti-
ating the block into the DSP datapath. You
can perform this instantiation using tradi-
tional HDL design methodologies or
through system-level design tools such as
Xilinx System Generator for DSP. Through
direct instantiation, you can achieve the
highest performance with minimal overhead. 

The leading C-synthesis tools are capa-
ble of delivering performance approaching
that of hand-coded RTL – but achieving
this requires detailed knowledge of C-syn-
thesis tool operation and coding styles.
Code modifications and the addition of in-
line synthesis instructions for inserting par-
allelism and pipeline stages are typically
required to achieve the desired perform-
ance. Even with these modifications, how-

used directly in a DSP datapath or config-
ured as a hardware accelerator to one of
these embedded processors.

The challenge facing designers is how to
partition DSP system operations into the
available hardware resources in the most

efficient and cost-effective manner. How
best to use FPGA embedded processors is
not always obvious, but this hardware
resource can have the greatest impact on
lowering overall system cost. FPGA embed-
ded processors provide an opportunity to
consolidate all non-critical operations into
software running on the embedded proces-
sors, minimizing the total amount of hard-
ware resources required for the system.
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Figure 1 – DSP hardware platform

Figure 2 – C implementation options for a DSP hardware system
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ever, the productivity gains can be signifi-
cant. The C-system model remains the
golden source driving the design flow.

An alternative and often simpler
approach is to create a hardware accelerator
for one of the Xilinx embedded processors.
The processor remains the primary target
for the C routines, with the exception that
performance-critical operations are pushed
to the FPGA logic in the form of a hard-
ware accelerator. This provides a more soft-
ware-centric design methodology. However,
some performance is sacrificed with this

approach. C routines are synthesized to
RTL, similar to the DSP module approach,
except that the top-level entity is wrapped
with interface logic to allow it to connect to
one of the Xilinx embedded processor
buses. This creates a hardware accelerator
that can be imported into the Xilinx EDK
environment and called through a software-
friendly C function call.  

The performance requirements for
mapping C routines into hardware acceler-
ators are typically less aggressive. Here the
objective is to accelerate the performance

beyond that of pure software
while maintaining a software-
friendly design flow.
Although the coding tech-
niques and in-line synthesis
instructions are still available,
you can typically achieve
your desired performance
gains without their use. 

Design Methodology – 
The Barrier to Adoption
The effort and breadth of
skill required to correctly
partition and implement a
complex DSP system is for-
midable. In 2005, the mar-
ket research firm Forward
Concepts conducted a survey
to determine the most
important FPGA selection
criteria for DSP. The pub-
lished results, shown in

Figure 3, identify development tools as the
most important. 

The survey illustrates that the benefits
of a DSP hardware system utilizing an
FPGA coprocessor are well understood,
but that the current state of development
tools represents a significant barrier to
adoption for traditional DSP designers.

The Xilinx ESL Initiative
ESL design tools are pushing digital
design abstraction beyond RTL. A subset
of these tool vendors are specifically
focused on mapping system models devel-
oped in C/C++ into DSP hardware sys-
tems that include FPGAs and DSP
processors. Their vision is to make the
hardware platform transparent to the soft-
ware developer (Figure 4). 

Rather than attempting to solve one
piece of this methodology puzzle internal-
ly, this year Xilinx launched a partnership
program with key providers of ESL tools
called the ESL Initiative. The focus of this
partnership is to empower designers with
software programming skills to be able to
easily implement their ideas in program-
mable hardware without having to learn
traditional hardware design skills. This
program is designed to accelerate the
development and adoption of world-class
design methodologies through innovation
within the ESL community. 

Conclusion
When combined, the collective offerings
from Xilinx ESL partners offer a wide
spectrum of complementary solutions
that are optimized for a range of applica-
tions, platforms, and end users. Xilinx
too has focused its efforts on complemen-
tary technology. For example, AccelDSP
Synthesis provides a hardware path for
algorithms developed in floating-point
MATLAB, while System Generator for
DSP allows modules developed using
ESL designs to be easily combined with
Xilinx IP and embedded processors. The
quickest path to realizing a programmer-
friendly FPGA design flow is through a
motivated and innovative set of partners.

For more information about the ESL
Initiative, visit www.xilinx.com/esl. 
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by Jonathan Saul, Ph.D.
CEO
SystemCrafter
jon.saul@systemcrafter.com

C and C++ have been a popular starting
point for developing hardware and systems
for many years; the languages are widely
known, quick to write, and give an exe-
cutable specification, which allows for very
fast simulation. C or C++ versions of stan-
dard algorithms are widely available, so you
can easily reuse legacy and publicly available
code. For system-level design, C and C++
allow you to describe hardware and software
descriptions in a single framework.

Two drawbacks exist, however. First, C
and C++ do not support the description of
some important hardware concepts, such as
timing and concurrency. This has led to the
development of proprietary C-like lan-
guages, which aren’t popular because they
tie users to a single software supplier.
Second, you must manually translate C and
C++ to a hardware description language
such as VHDL or Verilog for hardware
implementation. This time-consuming step
requires hardware experts and often intro-
duces errors that are difficult to find.

The first problem has been solved by
the development of SystemC, which is now
a widely accepted industry standard that
adds hardware concepts to C++.

The second problem has been solved by
the development of tools like SystemCrafter
SC, which allows SystemC descriptions to
be automatically translated to VHDL.

In this article, I’ll explain how to use
SystemCrafter SC and SystemC by describ-
ing an implementation of the popular DES
encryption algorithm.  

SystemC
SystemC provides an industry-standard
means of modeling and verifying hardware
and systems using standard software compil-
ers. You can download all of the material
required to simulate SystemC using a stan-
dard C++ compiler, such as Microsoft Visual
C++ or GNU GCC, from the SystemC
website free of charge (www.systemc.org). 

SystemC comprises a set of class
libraries for C++ that describe hardware
constructs and concepts. This means that
you can develop cycle-accurate models of
hardware, software, and interfaces for sim-
ulation and debugging within your exist-
ing C++ development environment.

SystemC allows you to perform the ini-
tial design, debugging, and refinement
using the same test benches, which elimi-
nates translation errors and allows for fast,
easy verification.

And because SystemC uses standard
C++, the productivity benefits offered to
software engineers for years are now

available to hardware and system design-
ers. SystemC is more compact than
VHDL or Verilog; as a result, it is faster
to write and more maintainable and read-
able. It can be compiled quickly into an
executable specification.

SystemCrafter SC
SystemC was originally developed as a
system modeling and verification lan-
guage, yet it still requires manual transla-
tion to a hardware description language
to produce hardware.

SystemCrafter SC automates this process
by quickly synthesizing SystemC to RTL
VHDL. It will also generate a SystemC
description of the synthesized circuit, allow-
ing you to verify the synthesized code with
your existing test harness.

You can use SystemCrafter SC for: 

• Synthesizing SystemC to hardware 

• System-level design and co-design 

• Custom FPGA co-processing and
hardware acceleration

SystemCrafter SC gives you control of
the critical steps of scheduling (clock cycle
allocation) and allocation (hardware reuse).
Thus, the results are always predictable, con-
trollable, and will match your expectations.

SystemCrafter SC allows you to devel-
op, refine, debug, and synthesize hardware
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and systems within your existing C++ com-
piler’s development environment. You can
run fast, executable SystemC specifications
to verify your design. Your can also config-
ure the compiler so that SystemCrafter SC
will automatically run when you want to
generate hardware.

The DES Algorithm
The Data Encryption Standard (DES)
algorithm encodes data using a 64-bit key.
This same 64-bit key is required to decode
the data at the receiving end. It is a well-
proven, highly secure means of transmit-
ting sensitive data. DES is particularly
suitable for hardware implementation, as it
requires only simple operations such as bit
permutation (which is particularly expen-
sive in software), exclusive-OR, and table
look-up operations.

A DES implementation comprises two
stages. During the first stage, 16 interme-
diate values are pre-computed based on the
initial key. These 16 values are fixed for a
particular key value and can be reused for
many blocks of data. Calculation of the
key values involves repeated shifts and
reordering of bits. 

The second computation stage involves
16 iterations of a circuit using one of the
pre-computed key values. Encryption is
based on 64-bit blocks of data with 64 bits
of input data encoded for each group of 16
iterations, resulting in 64 bits of output
data. Each iteration involves permutations,
exclusive-OR operations, and the look-up
of eight 4-bit values in 8 look-up tables. 

Decryption works exactly the same way
as the second computation stage, but with
the 16 key values from the first stage used
in reverse order. 

For a full description of the DES algo-
rithm, go to http://csrc.nist.gov/publications/
fips/fips46-3/fips46-3.pdf.

Design Flow
The design flow using SystemC and
SystemCrafter is shown in Figure 1. An
important benefit of this design flow is
that you can carry out the development of
the initial SystemC description, partition-
ing, and system- and gate-level simulation
all in the same framework. The designer

are made as “custom build steps,” which
allows simulation and synthesis from with-
in the Visual C++ design environment. You
can also use the SystemCrafter GUI to
manage projects. 

Implementing look-up tables as
CoreGen modules shows how complex
third-party IP blocks are usable in a
SystemCrafter design. SystemCrafter treats
SystemC modules with missing method
definitions as black boxes, allowing you to
use IP blocks written in other languages.
For simulation, the designer wrote a model
of the look-up tables in SystemC for use
during simulation. 

Simulation and Synthesis
The SystemCrafter flow allows you to sim-
ulate the design at a number of levels. 

In the DES example, the designer wrote
a test harness, which fed standard DES test
patterns through the hardware engine and
displayed the results on the console. He
specified two configurations in Visual C++:
system level and gate level. 

The system-level configuration was first.
It compiles the original SystemC design to

implementing the DES algorithm used his
normal design environment, Microsoft’s
Visual C++. The target platform was the
ZestSC1, an FPGA board containing a
Xilinx® Spartan™-3 FPGA and some
SRAM communicating with a host PC
through a USB interface.  

Hardware/Software Partitioning
The first step is to write an initial system-
level description. It may be appropriate to
decide on hardware/software partitioning
at this point, or you can defer this deci-
sion until you have a working system-
level description. 

In the DES example, the hardware/soft-
ware partitioning decision was easy and
intuitive. The core of the algorithm
involves high-bandwidth computation
using operators unsuitable for software
implementation, and thus will be imple-
mented on the FPGA. 

As I stated previously, the designer
wrote a hardware description of the DES
core in SystemC using Microsoft’s Visual
C++ design environment. Pseudo code is
shown in Figure 2. Calls to SystemCrafter
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produce a simulation model at the behav-
ioral level. This model is an executable pro-
gram that can produce a fast behavioral-level
simulation of the DES engine. 

Once the behavioral model produced
the desired results, it was time for the gate-
level configuration. It automatically calls
SystemCrafter synthesis as part of the build
process, which produces two descriptions
of the synthesized circuit: a SystemC
description and a VHDL description. 

As part of the build process, the gate-
level SystemC description is compiled into
a gate-level simulation model, which can
produce a fast gate-level simulation of the
DES engine. This verifies that the synthesis
process is correct. 

The designer used Mentor Graphics’s
ModelSim to simulate the VHDL
description.

Implementation
The VHDL produced by SystemCrafter
is the core of the implementation.

Support modules supplied with the board
helped with the interface between the PC
and ZestSC1 FPGA board. A VHDL
module simplified the connection to the
USB bus. The designer wrote a small
piece of VHDL to connect the 16-bit
USB bus to the 64-bit DES input and
output ports. 

The complete DES project was then
compiled using standard Xilinx tools
(XST for the VHDL and CORE
Generator™ software for the ROMs, fol-
lowed by place and route) to generate an
FPGA configuration file. 

The device driver and C library con-
tained in the ZestSC1 support package
were integral in developing a simple GUI
that configures the board with the FPGA
configuration file. It then loads an image,
sends it to ZestSC1 over the USB bus for
encryption and then decryption, and dis-
plays the resulting images. 

Figure 3 shows a sample output from
the GUI.

Discussion
The DES application was written by a
VHDL expert who was new to SystemC.
The complete design, including both hard-
ware and software, went from concept to
final version in only three days, including a
number of explorations of different design
implementations. 

The SystemCrafter flow was flexible
enough so that the designer could use a
mixture of SystemC for the algorithmic
part of the design, CORE Generator
blocks for the look-up tables, and VHDL
for low-level interfacing. 

The flow allowed him to use his existing
Visual C++ design environment for code
development, simulation, and synthesis.
The SystemC description was more con-
cise than an equivalent VHDL design
would have been, and this level of descrip-
tion allowed the development to focus on
algorithmic issues. 

Conclusion
SystemCrafter SC offers a simple route from
system-level design down to Xilinx FPGAs.

It is suitable for programmers, scien-
tists, systems engineers, and hardware
engineers. It enables you to view develop-
ing hardware as a higher-level activity than
writing HDL and allows you to focus on
the algorithm rather than on the details of
the implementation. This can improve
time to market, reduce design risk, and
allow you to design complex systems with-
out learning HDLs or electronics. 

Both SystemCrafter SC and the DES
implementation, including working source
files and a more detailed description, are avail-
able as downloads from the SystemCrafter
website, www.systemcrafter.com. 
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loop forever
if KeySet = 1

DataInBusy = 1
K(0) = Permute(KeyIn)
loop for i = 1 to 16

K(i) = K(i-1) << shift amount
K(i) = Permute(K(i-1))

end loop
DataInBusy = 0

else if DataInWE = 1
DataInBusy = 1
D(0) = Permute(DataIn)
loop for i = 1 to 16

E = Permute(D(i-1))
A = E xor K(i)
S = LUT(A)
P = Permute(S)
D(i) = Concat(Range(D(i-1), 31, 0), P xor Range(D(i-1), 63, 32))

end loop
wait for DataOutBusy = 0
DataOut = D(16)
DataOutWE = 1 for one cycle
DataOutBusy = 0

end if
end loop

Figure 3 – DES image encryption GUI

Figure 2 – Pseudo code for the DES implementation



by Allan Cantle
President and Founder
Nallatech
a.cantle@nallatech.com

The high-performance computing (HPC)
markets have taken a serious interest in the
potential of FPGA computing to help solve
computationally intensive problems while
simultaneously saving space and reducing
power consumption. However, to date few
capable products and tools are tailored to
suit HPC industry requirements. 

In the last 15 years, the industry has also
moved away from customized, massively
parallel computing platforms (like those
offered by Cray and SGI) to clusters of
industry-standard servers. The majority of
HPC solutions today are based on this
clustered approach. 

To serve the HPC market, Nallatech
has introduced a family of scalable cluster-
optimized FPGA HPC products, allowing
you to either upgrade your existing HPC
cluster environments or build new clusters
with commercial-off-the-shelf FPGA com-
puting technology.

Third Quarter 2006 Xcell Journal 35

Scalable Cluster-Based FPGA 
HPC System Solutions
Scalable Cluster-Based FPGA 
HPC System Solutions
Nallatech introduces an HPC family of FPGA system solutions optimized for clustering,
with performance capability rising to multi-teraflops in a single 19-inch rack.
Nallatech introduces an HPC family of FPGA system solutions optimized for clustering,
with performance capability rising to multi-teraflops in a single 19-inch rack.



Nallatech has developed a tool flow that
also allows HPC users to continue to use a
standard C-based development environ-
ment to target FPGA technology. Once
familiar with this basic tool flow, you can
then learn more about FPGA computing,
leveraging more advanced features to fully
exploit the technology.

A Scalable FPGA HPC Computing Platform
The traditional approach to HPC comput-
ing comprises a large array of microproces-
sors connected together in a symmetrical
fashion using the highest bandwidth and
lowest latency communications infrastruc-
ture possible. This approach provides a
highly scalable structure that is relatively
easy to manage. 

Although easily scalable and manageable,
these regular computing structures are rarely
the best architecture to solve different algo-
rithmic problems. Algorithms have to be tai-
lored to fit the given computing platform.

With FPGAs, by contrast, you can build
a custom computer around any specific
algorithmic problem. This approach yields
significant benefits in performance, power,
and physical size and has been widely
adopted in the embedded computing com-
munity. However, embedded computers are
typically designed with one application in
mind – and therefore a custom computer is
crafted for each application. 

Nallatech’s FPGA HPC architectures
are designed to merge the best of both
worlds from the embedded and HPC
computing industries. Our FPGA HPC
architecture is symmetrical with regular
communications between FPGA proces-
sors, but also has an inherent infrastruc-
ture that allows you to handcraft custom
computing architectures around given
algorithmic problems. 

Recognizing the popularity of cluster-
ing, Nallatech selected and targeted the
architecture for IBM BladeCenter comput-
ing platforms. With this approach, you can
mix and match traditional microprocessor
blades and FPGA computing blades in a
proportion that suits the amount of code
targeted at the FPGA. 

Figure 1 shows the four basic types of
configurations possible with Nallatech’s

Creating Custom Virtual Processors
Nallatech’s approach to FPGA HPC com-
puting provides an extremely flexible archi-
tecture that enables you to create
exceptionally high-performance computing
solutions with a highly efficient use of
power and space. However, without the
appropriate development tools, using this
type of platform would be virtually impos-
sible. As mentioned previously, any physi-
cal instantiation of Nallatech’s FPGA

FPGA HPC computing platforms. The
wide scaling capability allows you to scale
the FPGA computing resource in a way
that is identical to standard cluster scaling.
The deep and wide scaling capability of
this architecture additionally permits scal-
ing to more complex custom computing
algorithms by treating multiple FPGAs as
a single, large FPGA.

A 7U IBM BladeCenter chassis with a
protruding Nallatech FPGA computing
blade is shown in Figure 2. You can mix
this FPGA blade with host processor
blades in configurations similar to those
detailed in Figure 1. Each blade is con-
figurable with between one and seven
FPGA processors providing the deep
scaling. Several blades installed into one
or more BladeCenter chassis provide the
wide scaling necessary for more complex
HPC applications. 

Floating-point implementations of
code in the fields of seismic processing and
computational fluid dynamics have
demonstrated performance improvements
more than 10 times that of standard
processors, while achieving power savings
well in excess of 20 times. 

Processor 

Narrow and Shallow    

FPGA Configuration 

 Narrow and Deep     

FPGA Configuration 

Wide and Shallow       
FPGA Configuration 

Wide and Deep      
FPGA Configuration 

Processor

Processor 

FPGA 

Processor 

Processor

Processor 

FPGA 

FPGA 

FPGA 

Processor

Processor

Processor

FPGA 

FPGA 

FPGA 

FPGA 

FPGA 

FPGA 

FPGA

FPGA

FPGA

FPGA

Processor

Processor

Processor

FPGA 

FPGA 

FPGA

FPGA

FPGA 

FPGA 

Figure 2 – IBM BladeCenter chassis with 
protruding Nallatech FPGA blade 

Figure 1 – Four types of processor-to-FPGA cluster configurations
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computing platform can effectively be
treated as either:

• A number of physical FPGA processors
that exist in the computer connected
together

• One massive FPGA processor combin-
ing multiple FPGAs and creating one
custom compute engine with these
processor chips

• Thousands of tiny processors with
many processors existing in each FPGA

Whenever a new design commences, it
is counterproductive to think of the prob-
lem in terms of the physical computing
architecture at hand. Instead, consider how
you can construct a custom computer to
solve the specific compute problem.
Effectively, you can develop a virtual
processor that is explicitly designed to solve
your specific algorithmic problem.

There are many ways to create a virtual
processor for FPGAs, including:

• Using standard language compilers to
FPGAs such as C and Fortran, pulling
together various computing library
functions available for the FPGA

• Using high-level algorithmic tools such
as Simulink from The MathWorks’s
together with Xilinx® System Generator

• Designing a dedicated processor from
low-level hardware languages such as
VHDL

Most HPC software engineers prefer the
language-based approach for obvious rea-
sons, so language-based compilers are now
maturing and becoming a viable approach
to creating virtual processors. 

As a high-performance FPGA comput-
ing systems provider, Nallatech has taken
an approach to try to support as many
compiler tools as possible. Today, you can
develop virtual processors using three
approaches:

• Nallatech’s DIME-C enabling compiler

• Impulse Technologies’s Impulse C
compiler

• Xilinx System Generator for The
MathWorks’s Simulink environment

Nallatech’s DIME-C compiler is purely
based on a subset of ANSI-C, with no
requirement for pragmas or other specific
actions. This means that you can design and
simulate code with the tools with which
you are familiar. Once the C code is func-
tioning correctly, you have the freedom to
compile directly through to a bitstream and
run the code on a chosen FPGA processor.
Nallatech tools provide all of the APIs nec-
essary to access the FPGA through simple
function calls from the host processor. 

Maximizing Data Throughput 
and Integrating Virtual Processors
In many cases, creating a virtual FPGA
processor using a language-based software
environment and implementing the result-
ing executable on the allocated FPGA
coprocessor can substantially improve the
performance of the chosen application. 

However, this approach does not neces-
sarily yield the most optimum implemen-
tation. You can often benefit from splitting
your algorithmic problem into several
independent processes. In these circum-
stances it is often worth it to create a virtu-
al processor for each process, as this will
allow you to decouple one processor from
the other and give you more architectural
implementation flexibility.

DIMEtalk allows you to effectively
place many virtual processors across the
FPGA computing resources in an HPC

platform while minimizing the communi-
cations overhead between processing ele-
ments. DIMEtalk also allows you to
effectively maximize the four levels of
memory hierarchy that Nallatech’s FPGA
HPC platforms provide. 

Figure 3 shows an example of a complex
compute engine implemented across multi-
ple FPGAs in the HPC platform. There are
several virtual processors constructed from
different compiler tools; these are connect-
ed together through the DIMEtalk packet-
switched communications network. 

Conclusion
FPGA computing is deliverable on familiar
cluster-based computing platforms; plus,
with an ANSI-standard C compiler, you
can achieve substantial performance gains.
Looking forward, FPGA technology will
likely advance HPC performance at a far
greater rate than traditional processor-
based technologies. For traditional software
engineers, compiler tools will also become
far more advanced and easy to use.  

Nallatech is providing a special bundle
of its entry-level HPC card with complete
enabling tools software and a DIME-C to
FPGA run time tool flow. Please visit
www.nallatech.com/hpc for more details or
to place an order.

For additional information, contact
Nallatech at hpc@nallatech.com or 
contact@nallatech.com. 
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The number of embedded processor archi-
tectures implemented in today’s image-pro-
cessing systems is growing. Designers value
the ability of processors to perform complex
decision and combinational processes more
efficiently than hardware logic. As a result,
these designers are moving to a processor-
based design that combines the advantages
of processors with the inherently fast pro-
cessing rates of hardware accelerators.

Image-processing applications are rich
with signal-processing requirements. FFTs,
FIR filtering, discrete cosine transforms
(DCT), and edge detection are all common
functions found in image-processing algo-
rithms. These functions are computationally

intensive and can severely impact the per-
formance of processor-based solutions.
You can design these functions in hardware
to elevate performance, but this requires a
large amount of manpower and expertise,
which may not be available in today’s
shrinking product design cycles. 

Designers seem to be caught between
the poor performance of processor-based
solutions and the long design times of dis-
crete hardware implementations. What
they need is a way to bridge the gap and
deliver a system solution that meets per-
formance requirements without having to
design discrete solutions with RTL. 

Triton System-Level Tools
Poseidon Design Systems offers a way out
of this dilemma. The Triton Tool Suite
greatly simplifies the process of creating
high-performance systems without the
time-consuming task of designing hardware
with RTL. The suite comprises two tools,
Tuner and Builder. Tuner is a SystemC sim-
ulation, analysis, and verification environ-

ment; Builder is a hardware accelerator gen-
eration tool. Triton tools support
PowerPC™ and Xilinx® MicroBlaze™
processor-based platforms.

Triton Tuner
Performing proper system analysis and
design is critical when assembling any
high-performance imaging system. For
example, you must evaluate many architec-
tural issues that can critically impact the
performance of the entire system. Because
these systems require complicated software
and hardware architectures, you must also
evaluate the performance of proposed
architectures early in the design process
rather than waiting for the working system
to meet your desired performance goals.

A number of factors determine system
performance beyond just the available
processor MIPS. Some of these factors are
proper cache management, shared-bus con-
gestion, and system topology. With
Poseidon’s Tuner product (Figure 1), you
can co-simulate your hardware and software
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Accelerate Image Applications 
with Poseidon ESL Tools
Triton system-level design tools simplify the creation of high-speed solutions for imaging applications.



systems in the SystemC environment using
transaction-level models (TLMs). You can
then evaluate system operation and per-
formance and make critical design decisions
to develop a robust, efficient solution.

Tuner uses transaction-level modeling
to provide the proper level of abstrac-
tion and fast simulation speeds. This
environment also provides data visu-
alization capability and event
coherency, giving you a powerful tool
in analyzing and verifying the per-
formance of your target architecture.
Tuner outputs data not just on
processor performance, but also on
cache performance, traffic congestion
on shared buses, and efficiency of the
memory hierarchy. Tuner links hard-
ware events such as cache misses to
the line of code and data accessed at
the time; you can gain insight into
the software profile and how effec-
tively the system architecture sup-
ports the software.

Triton Builder
Hardware/software partitioning also
impacts architectural decisions.
Determining what portions of the
algorithms need to be in hardware to
achieve your desired results is not a
simple task. In a traditional design
flow, a long process follows the parti-
tioning decision to build the hard-
ware and test the resultant system.
Changes at this point in the partition
are very costly and will greatly
impact the delivery schedule.

With Poseidon’s Builder tool
(Figure 2), you can quickly create a
hardware/software partition and then
evaluate the performance of the pro-
posed architecture. Builder allows
you to easily move critical portions of
the selected algorithm to a custom
hardware accelerator. Builder inputs
algorithms written in ANSI C and
creates a complete system solution.
No special programming methodolo-
gy or custom language is required.
The tool generates the RTL of the
accelerator, memory compiler
scripts, test bench, modified C algo-

created into Tuner and quickly evaluate
the performance of the selected partition
and resultant hardware. This provides you
with almost instantaneous feedback
about the effect of your partitioning deci-
sions. The Tuner simulation environment

displays system details that evaluation
board platforms cannot. This tight
loop enables you to quickly test dif-
ferent approaches and configurations,
making key trade-offs in performance,
power, and cost. 

Builder supports different architec-
tures to support different application
data requirements. For large data
requirements, Builder instantiates a
bus-based solution (Figure 3) (such as
the PowerPC PLB) based on direct
memory access (DMA) engines to rap-
idly move data into and out of the
hardware. For smaller data sets or lower
latency applications, Builder provides a
tightly coupled solution that interfaces
to the processor through the auxiliary
processor unit (PowerPC) or Fast
Simplex Link (MicroBlaze processor)
interfaces. For very large data require-
ments, Builder supports the Xilinx
multi-port memory controller
(MPMC). This provides for large exter-
nal fast memories to hold the data and
overcome bandwidth limitations on
existing processor buses. 

With all of these options, Builder
automates the process of programming
the interfaces, communicating with the
accelerator, and scheduling the data.
With these two tools you can make crit-
ical design trade-offs and quickly realize
a high-performance imaging system
that meets your design requirements.

Radix 4 FFT Example
Let’s look at a typical image-processing
application using a fast Fourier trans-
form. We chose an FFT for its popular-
ity and because most designers are
familiar with it. With Triton tools, you
can not only quickly implement com-
mon functions such as FFTs; you can
also implement the proprietary algo-
rithms companies develop to differen-
tiate their designs.

rithm, software drivers, and TLM of the
resultant accelerator hardware. Builder
generates all of the parts required to imple-
ment the accelerated solution.

To complete the design loop, you can
import the accelerator TLM that Builder
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The specific FFT algorithm in our
example is a Cooley-Tukey Radix 4 decima-
tion in frequency written in standard ANSI
C. The algorithm runs on a 300 MHz
PowerPC on a Virtex™-II platform. The
algorithm executes in 1.3 ms. This gives a
maximum frame rate of 769 frames per sec-
ond when 100% of the host processor is
dedicated to the FFT task. Processing the
selected algorithm in place makes efficient
use of the memory resources. The software
comprises five main processing for loops,
one for each pass of the FFT algorithm. 

The first task is to profile the FFT algo-
rithm to determine the best candidates for
moving to FPGA fabric. Tuner reads the
architectural description for the Xilinx
Platform Studio (XPS) and simulates the
algorithm. The five loops performing the
Radix 4 butterflies consume between 15%
and 23% of the cycles used in the entire
algorithm. These are all good candidates for
acceleration and C-to-RTL conversion into
dedicated FPGA logic.

Using Builder, you can determine how
much of the algorithm to move to hardware
to accelerate the application. If the design
needs a 50% improvement in processing
speed, it would be very inefficient to imple-
ment an entire FFT in hardware. In this
example, by selecting all five loops for par-
titioning, more than 99% of the processor
cycles were moved into the hardware accel-
erator. It would be just as easy if you
required less performance to select any
number of loops to match the desired accel-
eration of the system, thus saving space in
the fabric for other uses.

Along with the ability to partition loops
into hardware, Builder gives you the flexi-
bility to easily move functions into hard-
ware as well. With this flexibility, you have
the freedom to match the partition to the
requirements and structure of the specific
application.

Builder also provides a C-lint tool that
can help you determine which existing code
is synthesizable. If any non-synthesizable
structures exist within the algorithm, the

tool flags that section of code and reports
the condition that makes it unrealizable
into hardware. The tool also suggests
enhancements and modifications that
might be useful in implementing more effi-
cient algorithms in hardware.

The partitioning process is as simple as
selecting the loops or function that you
would like moved into the accelerator – the
tool performs the rest. If you wish, you can
control the optimizations and settings to
optimize the solution, making trade-offs to
best match the desired system.

Builder also takes care of integrating the
partitioned code back into software by gen-
erating a software driver. The tool deter-
mines the scheduling of the variables for
the resultant hardware and ensures that the
data will be available when the hardware
requires it. Builder determines memory
sizes and memory banking requirements to
efficiently process the data in the central
compute core. Builder then creates the
memory compilation script for the
LogiCORE™ system to build the opti-
mized memory structure.

The bus-based accelerator is appropriate
in this example because of the moderate
amount of data required. This solution has
its own DMA, which enables the accelera-
tor to access the data in system memory and
run autonomously to the processor. Builder
automatically schedules and programs the
accelerator to transfer data into it using the
DMA, and similarly transfer the results
back out into system memory.

Because of the tight integration with the
Tuner environment, you do not have to
guess the effect of the partitioning decisions
and architecture options created using
Builder. With each new option you can
quickly generate the TLM and simulate the
proposed solution using Tuner. This gives
you instant feedback as to how fast the
resultant solution is as well as how it inte-
grates into the existing system architecture.
When the software and hardware meet the
desired performance, you can automatically
generate the pcores for the hardware accel-

erator to import back into XPS. All of the
required files and scripts are generated,
allowing you to continue on with the exist-
ing design flow. 

By using this automated technology, you
can easily create and verify speedups of as
much as 16x. This pushes the maximum
frame rate of the FFT application to 12,000
frames per second for each channel of FFT
implemented, with the processor load
decreasing to less than 5%.

You can see with our FFT example the
ease of use of Triton ESL tools and how with
little effort you can generate high-perform-
ance systems. This example took only two
man weeks of effort and without any manu-
al modifications to the resultant system. If
you require additional processing capability,
it is a straightforward process to modify the
software to support a streaming architecture.
Creating concurrency between passes or cre-
ating multiple channels with separate accel-
erators, you can quickly achieve an overall
acceleration of 48x to 80x. 

Conclusion
The Triton Tool Suite is a powerful tool for
the development of image-processing archi-
tectures. The Triton Tool Suite enables you
to efficiently perform and verify architectur-
al development, hardware/software parti-
tioning, and the automated hardware
generation of key digital signal processing
algorithms. Tuner and Builder not only pro-
vide large savings in your design efforts; they
allow you to create more efficient high-per-
formance and scalable solutions. The tools
are highly automated, yet give you the flexi-
bility to optimize your solution and meet
your system design requirements. 

The system also automates the interface
between the Triton Tool Suite and the
Xilinx XPS system. This solution is opti-
mized for computationally intensive algo-
rithms found in audio, video, VoIP,
imaging, wireless, and security applications.
For more information, please visit our web-
site at www.poseidon-systems.com and request
a free 30-day evaluation. 
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Along with the ability to partition loops into hardware, Builder gives 
you the flexibility to easily move functions into hardware as well.
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The microprocessor has had more impact
on electronics and our society than any
other invention since the integrated circuit.
The CPU’s programmability using simple
sets of instructions makes the capabilities
of silicon available to a broad range of
applications. Thanks to the scalability of
silicon technologies, microprocessors have
continuously grown in performance for the
last 30 years. 

But what if your processor does not
have enough performance to power your
application? Adding more CPUs may not
fit power or cost budgets – and more than
likely won’t provide the needed acceleration
anyway. Adding custom hardware accelera-
tors as co-processors adds performance at
lower power. But unlike processors, custom
hardware is not easily programmable.
Hardware design requires special expertise,
months of design time, and costly NRE
development charges.
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Accelerating System Performance
Using ESL Design Tools and FPGAs
ESL design tools provide the keys for opening more applications to algorithm acceleration.



Enter the combination of high-per-
formance Xilinx® FPGAs and electronic
system-level (ESL) design tools, expressly
tuned for FPGA design. By taking advan-
tage of the parallelism of hardware, certain
algorithms can gain faster performance – at
lower clock speeds using less power – than
what is possible in serial processor opera-
tions. Xilinx FPGAs provide a reconfig-
urable option for hardware acceleration,
while the addition of ESL design flows
from Celoxica gives developers access to
these devices using a software design flow.
Software-based design flows are now able
to directly program Xilinx FPGA devices as
custom co-processors (see Figure 1). 

Will FPGA Acceleration 
Work for All Algorithms?
When a general-purpose CPU or DSP
alone can’t deliver the performance, several
options are available (Figure 2). However,
not all algorithms lend themselves well to
all types of acceleration. The first step in
the process is to determine whether the
application will benefit from the paral-
lelism of hardware. 

Amdahl’s law, developed by computer
architect Gene Amdahl in 1967, asserts a
pessimistic view of the acceleration possible

Using custom hardware accelerators, the
N in Amdahl’s equation becomes the speedup
multiplier for accelerated algorithms. In hard-
ware, this multiplier can be orders of magni-
tude higher; the power utilization and costs of
FPGA accelerators are generally much lower.
Still, Amdahl’s law would still seem to limit
the potential theoretical total acceleration
times. Fortunately, in practice Amdahl’s law
has proven too pessimistic; some suggest that
the proportional throughput of parallel hard-
ware increases with additional processing
power, making the serial portion smaller in
comparison. For certain systems, total acceler-
ations of one, two, or even three orders of
magnitude are possible. 

from parallelism. Specifically applied to
systems using multiple CPUs, Amdahl’s
law states that the acceleration possible is
limited to the proportion of the accelerat-
ing algorithm’s total processing time. If the
algorithm takes up p% of the total process-
ing time and is spread across N processors,
then the potential speedup can be written
as 1/[(1-p) + p/N]. For example, assuming
that 20% of an algorithm is spread across
four processors, the total processing time is
at best reduced to 85% of the original.
Given the additional cost and power
required by three extra processors, a mere
1.2x speedup may not provide a big
enough return. 
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Figure 1 – Software design flows directly program FPGAs. 
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What Portions of the 
Algorithm Should Go in the FPGA? 
To accelerate a software application using
FPGAs, you must partition the design
between those tasks that will remain on the
CPU and those that will run in hardware.
The first step in this process is to profile the
performance of the algorithm running
entirely on the CPU. 

You can gain some insight into where
the application spends most of its run time
using standard software profiling tools. The
profiler report points to the functions, or
even lines of code, that are performance
bottlenecks. Free profiling tools such as
gprof for the GNU development environ-
ment or Compuware’s DevPartner Profiler
for Visual Studio are readily available. 

You should analyze the application code
profile around areas of congestion to deter-
mine opportunities for acceleration. You
should also look for sub-processes that can
benefit from the parallelism of hardware. To
accelerate the system, you move portions of
your design into hardware connected to the
CPU, such as an FPGA situated on a PCI,
HyperTransport, or PCI Express interface
board. PowerPC™ or MicroBlaze™ embed-
ded processors provide another possible
approach, putting the reconfigurable fabric
and processor within the same device. 

It is important during the analysis
process not to overlook the issues of data
transfer and memory bandwidth. Without
careful consideration, data transfer over-
head can eat into gains made in processing
time. Often you may need to expand the
scope of the custom hardware implementa-
tion to minimize the amount of data to be
transferred to or from the FPGA. Processes
that expand data going into the accelerated
block (such as padding or windowing) or
processes that contract data coming out of
that block (such as down-sampling) should
all be included in the FPGA design to
reduce communication overhead. 

Where Is Parallelism in the Algorithm?
Hardware accelerates systems by turning
large serial software functions and perform-
ing them in parallel over many smaller
processes. This results in a highly opti-
mized, very specific set of hardware func-

tions. ESL tools are an important part of
this process, allowing you to insert paral-
lelism from software descriptions, using
FPGAs like custom co-processors. 

You can exploit parallelism at many lev-
els to move functionality from software into
custom hardware. Fine-grained parallelism
is achieved by executing many independent,
simple statements simultaneously (variable
assignments, incrementing counters, basic
arithmetic, and others). The pipelining of
sequentially dependent statements is anoth-
er form of fine-grain parallelism, accom-
plished by arranging individual stages in
parallel such that each stage feeds the input
of the next stage downstream.

For example, by pipelining the inside of
a code loop, including the loop control
logic, it may be possible to reduce itera-
tions to only one clock cycle. After priming
the pipeline with data, the loop could be
made to execute in the number of clock
cycles equal to the number of loop itera-
tions (plus the relatively modest latency).
This type of optimization often provides
the most benefits when accelerating an
algorithm in hardware. 

Coarse-grained parallelism can also pro-
vide acceleration. Larger independent sub-
processes like functions or large looped
blocks, which run sequentially on the
processor, can run simultaneously in cus-
tom hardware. Similarly, unrolling loops
either fully or partially can add parallelism.
In unrolling, the processing logic inside
loops is replicated multiple times so that
each instance works in parallel on different
data to reduce the number of loop itera-
tions. Pipelining large sequentially depend-
ent processes can further remove cycles at
the cost of some latency.

Another important form of coarse-
grained parallelism occurs when the soft-
ware and hardware operate in tandem. For
example, a system accelerated by transfer-
ring frames of data to custom hardware for
co-processing might be structured so that
while the hardware processes one frame,
the software is accomplishing any requisite
post-processing of the previous frame, or
pre-processing the next frame. This type of
coordination and efficiency is made possi-
ble by the common development environ-

ments for both the hardware and software
provided by ESL design. 

Parallelism can also optimize the memo-
ry bandwidth in a custom hardware accel-
erator. For example, the addition operator
for two vectors may be written as a loop,
which reads an element of each vector from
memory, adds the operands, and writes the
resulting sum vector to memory. Iterations
of this operation require three accesses to
memory, with each access taking at least
one cycle to accomplish.

Fortunately, modern Xilinx FPGAs
incorporate embedded memory features
that can help. By storing each of the three
vectors in a separate embedded memory
structure, you can fully pipeline the action
of the summing loop so that iterations take
only one cycle. This simple optimization is
one example of how you can maximize sys-
tem acceleration in hardware.

How Do Accelerators Handle Floating Point?
The use of floating-point mathematics is
often the most important issue to resolve
when creating custom hardware to accelerate
a software application. Many software appli-
cations make liberal use of the high-perform-
ance floating-point capabilities of modern
CPUs, whether the core algorithms require it
or not. Although floating-point arithmetic
operations can be implemented in PLD
hardware, they tend to require a lot of
resources. Generally, when facing floating-
point acceleration, it is best to either leave
those operations in the CPU portion of the
design or change those operations to fixed
point. Fortunately, you can implement many
algorithms effectively using fixed-point
mathematics, and there are pre-built floating-
point modules for those algorithms that must
implement floating point in hardware. 

A detailed description of the process for
converting floating-point to fixed-point
operations can be highly algorithm-
dependent, but in summary, the process
begins by analyzing the dynamic range of
the data going into the algorithm and
determining the minimum bit width possi-
ble to express that range in an integer form.
Given the width of the input data, you can
trace through the operations involved to
determine the bit growth of the data. 



For example, to sum the squares of two
8-bit numbers, the minimum width
required to express the result without loss of
information is 17 bits (the square of each
input requires 16 bits and the sum con-
tributes 1 more bit). By knowing the desired
precision of the output, simply work back-
wards through the operation of the algo-
rithm to deduce the internal bit widths. 

You can implement well-designed fixed-
point algorithms in FPGAs quite efficiently
because you can tailor the width of internal
data paths. Once you know the width of the
inputs, internal data paths, and outputs, the
conversion of data to fixed point is straight-
forward, leading to efficient implementation
on both the hardware and software sides. 

Occasionally, an application requires
more complex mathematical functions –
sin(), cos(), sqrt(), and others – on the hard-
ware side of the partition. For example,
these functions may operate on a discrete
set of operands or may be invoked inside of
loops, with an argument dependent on the
loop index. In these cases, the function can
usually be implemented in a modestly sized
lookup table that can often be placed in
embedded memories. Functions that take
arbitrary inputs can also be used in hard-
ware lookup tables with interpolation. If
you need more precision, you can try itera-
tive or convergent techniques at the cost of
more cycles. In these cases, the software
compilation tools should make good use of
existing FPGA resources. 

What Skills Are Required 
to Use FPGA Acceleration?
Fortunately, hardware design from ESL
tools has come a long way in the last few
years. It is now possible to use C-based
hardware languages to design the hardware
portions of the system. You can easily gen-
erate FPGA hardware from the original
software algorithms.

Design tools from Celoxica can compile
or synthesize C descriptions directly into
FPGA devices by generating an EDIF netlist
or RTL description. These tools commonly
provide software APIs to abstract away the
details of the hardware/CPU connection
from the application development. This
allows you to truly treat the FPGA as a co-

processor in the system and opens doors to
the use of FPGAs in many new areas such as
high-performance computing, financial
analysis, and life sciences. 

The languages used to compile software
descriptions to the FPGA are specifically
designed to both simplify the system design
process with a CPU and add the necessary
elements to generate quality hardware (see
Figure 3). Languages such as Handel-C
and SystemC provide a common code base
for developing both the hardware and soft-
ware portions of the system. Handel-C is
based on ANSI-C, while SystemC is a class
library of C++. 

Any process that compiles custom hard-
ware from software descriptions has to deal
with the following issues in either the lan-
guage or the tool: concurrency, data types,
timing, communication, and resource usage.
Software is written sequentially, but efficient
hardware must translate that code into par-
allel constructs (using potentially multiple
hardware clocks) and implement that code
using all of the proper hardware resources.

Both Handel-C and SystemC add sim-
ple constructs in the language to allow
expert users control over this process, while
maintaining a high level of abstraction for
representing algorithmic designs. Software
developers who understand the concepts of
parallelism inherent to hardware will find
these languages very familiar and can begin
designing accelerated systems using the
corresponding tools in the matter of weeks. 

How Much Acceleration Can I Achieve?
Table 1 gives a few examples of the acceler-
ation achieved in Celoxica customer proj-
ects. In another example, a CT (computed
tomography) reconstruction-by-filtered-
back-projection application takes in sets of
512 samples (a tomographic projection)
and filters that data first through an FFT. It
then applies the filter function to the fre-
quency sample and applies an inverse FFT.
These filtered samples are used to compute
their contribution to each of the pixels in
the 512 x 512 reconstructed image (this is
the back-projection process). The process is
repeated with the pixel values accumulated
from each of the 360 projections. The fully
reconstructed image is then displayed on a
computer screen and stored to disk.
Running on a Pentium 4 3.0 GHz com-
puter, the reconstruction takes about 3.6
seconds. For the purposes of this project,
the desired accelerated processing time tar-
get for reconstruction is 100 ms. 

Profiling the application showed that
93% of the CPU run time is spent in the
function that does the back projection,
making that function the main target for
acceleration. Analyzing the back-projection
code showed the bottleneck clearly. For
every pixel location in the final image, two
filtered samples are multiplied by coeffi-
cients, summed, and accumulated in the
pixel value. This function is invoked 360
times, and so the inner loop executes
around 73 million times, each time requir-
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Figure 3 – Adding hardware capabilities 
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ing 3 reads and 1 write to memory, 3 mul-
tiplies, and several additions.

Fortunately, the back-projection algo-
rithm lends itself well to parallel processing.
Although the code was written using floating
point, the integer nature of the input and
output data made a fixed-point implementa-
tion perfectly reasonable. Working together,
engineers from Celoxica and their customer
accelerated the application, running on a
standard PC, using a PCI add-in card with a
Xilinx Virtex™-II FPGA and six banks of
512,000 x 32 SRAM. A sensible first-order
partitioning of the application put the back-
projection execution in the PLD, including
the accumulation of the reconstructed image
pixels, leaving the filtering and all other tasks
running on the host processor.

The engineers designed a single instance
of the fixed-point back-projection algo-
rithm and validated it using the DK Design
Suite. An existing API simplified the data
transfer directly from the software applica-
tion to the Xilinx FPGA over the PCI bus.
They exploited fine-grained parallelism and
rearranged some of the arithmetic to maxi-
mize the performance of the algorithm in
hardware. The core unit was capable of pro-

cessing a single projection in about 3 ms
running at a 66 MHz clock rate. 

The fact that each projection could be
computed independently meant that multi-
ple back-projection cores could be running
concurrently. The engineers determined that
18 cores would be enough parallelism to
reach the performance goal comfortably.
The software would pass 18 sets of 512 sam-
ples to the FPGA, which would store them
in 18 individual dual-port RAMs. Both
ports of these RAMs were interfaced to each
back-projection core, allowing them to read
the two samples required in a single cycle.

The cores were synchronized and the 18
contributions were fed into a pipelined
adder tree. The final summed value was
accumulated with the previous pixel value
stored in one of the external SRAM banks.
The accumulated value is written into the
other SRAM bank and the two are read in
ping-pong fashion on subsequent passes.
With this architecture sample sets are trans-
ferred from software to hardware and the
reconstructed image is passed back once
when complete. The software was modified
so that while one set of data was being
processed in the FPGA, the next set was

being filtered by the host processor, further
minimizing design time. 

In the end, leveraging the features of
FPGAs and modern ESL tools and taking
advantage of the flexibilities provided by a
software-based design flow, the example
design was able to realize a 45x acceleration
for a real-world application.

Conclusion
Accelerating complex software algorithms
in programmable logic and integrating
them into a system that contains proces-
sors or DSPs has never been easier or more
affordable. Advanced FPGA architectures,
high-speed interconnect such as PCI
Express and HyperTransport, and the
maturity of C-based ESL design tools
reduce the design burden on developers
and open up new possibilities for the appli-
cation of FPGA technology. Balancing the
needs of power, performance, design time,
and cost is driving the FPGA into new
market applications.

For more information about ESL design
solutions for Xilinx FPGAs, low-cost starter
kits, and FPGA-based acceleration bench-
marks, visit www.celoxica.com/xilinx. 

Application Hardware Co-Processor Software Only

Hough and Inverse Hough Processing 2 sec of Processing Time @ 20 MHz 12 Minutes Processing Time
370x Faster Pentium 4 – 3 GHz

AES 1 MB Data Processing/Cryptography Rate
Encryption 424 ms / 19.7 MBps 5,558 ms / 1.51 MBps
Decryption 424 ms / 19.7 MBps 5,562 ms / 1.51 MBps

13x Faster

Smith-Waterman
ssearch34 from FASTA 100 sec FPGA processing 6461 sec Processing Time

64x Faster Opteron

Multi-Dimensional Hypercube Search 1.06 sec FPGA @ 140 MHz Virtex-II Device 119.5 sec
113x Faster Opteron – 2.2 GHz

Callable Monte-Carlo Analysis
64,000 Paths 10 sec of Processing @ 200 MHz FPGA System 100 sec Processing Time

10x Faster Opteron – 2.4 GHz

BJM Financial Analysis
5 Million Paths 242 sec of Processing @ 61 MHz FPGA System 6300 sec Processing Time

26x Faster Pentium 4 – 1.5 GHz

Mersenne Twister Random Number Generation 319M 32-bit Integers/sec 101M 32-bit Integers/sec
3x Faster Opteron – 2.2 GHz

(Bus Bandwidth BW Limited – 
Processing ~ 10-20x Ratio)

Table 1 – Augmenting processor performance
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Rumors of the possibility of translating the
results of a high-level language such as C
directly into RTL have abounded for the
last few years. CebaTech, a C-based tech-
nology company, has turned rumors into
reality with the introduction of an untimed
C-to-RTL compiler, the central element in
an advanced system-level design flow.

Operating in stealth mode for several
years, the company developed its C-to-
RTL compiler for use with IP development
in TCP/IP networking. The nature of
TCP/IP networking code, combined with
CebaTech’s desire to have a complete sys-
tem-level design tool, dictated that the
compiler handle both very large and very
complex code bases. The CebaTech flow is
a software-centric approach to FPGA and
ASIC design and implementation, allowing
hardware designers to describe system
architectures and software engineers to
implement and verify these architectures in
a pure software environment with tradi-
tional software tools.
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The challenge facing a team of system
architects is to make the best design trade-
off decisions so that the marketing require-
ments document (MRD) has been
converted to the detailed specification for a
balanced product. Only a balanced product
is likely to find market acceptance, where
careful consideration has been given to
both innovative features and power-effi-
cient usage of silicon. Until recently, a lack
of suitable tools has hampered this all-
important early decision-making. 

The CebaTech flow allows architectur-
al design at a high level of abstraction,
namely untimed C. From this perspec-
tive, you can make design trade-offs in
speed, area, and power of the end product
up-front in C, where design issues are
most easily addressed. The resulting
“optimized” C-based design has a much
higher likelihood of being competitive in
the marketplace, thanks to the energy
expended in honing it to an edge above
and beyond the MRD. 

A product with the correct cost/per-
formance balance is what EDA strives to
achieve. The eventual market price of a
product is dictated by factors in the fea-
tures and efficiency dimensions. 

A Software-Oriented ESL Approach
Aside from striking the right balance
between features and silicon efficiency,
engineering teams must also grapple with
verification of the chip design. Verification
is by far the biggest component of product
development costs because verification pro-
ductivity has not grown at the same rate as
chip capacity and performance. This issue
has been acute for many years: the feasibil-
ity of integrating new features has not been
matched by the designer’s/architect’s ability
to guarantee correct implementation.

As represented by Figure 1, CebaTech
aims to harness the convergence of three
technological trends. First is the growing
momentum of the open-source movement,
wherein system-level specifications result
from the collective intelligence of the glob-
al development community. Secondly,
while these “golden” standards are freely
available, successful implementation in sil-
icon depends on domain-specific design

methodology has yielded ground to virtual
system prototyping (VSP) platforms, asser-
tion-based verification, and equivalence-
checking methods. Nonetheless, the cost of
design continues to grow.

CebaTech bypasses a bottom-up
approach by using a direct top-down com-
pilation from the original C source code
base. The pervasiveness of C, especially for
systems software, was a major considera-
tion. C’s efficiency and intuitiveness for
capturing hardware design benchmarks has
achieved an overall improvement of at least
10x in manpower requirements as well as at
least a 5x order-of-magnitude improve-
ment in real-time verification.

The real benefit of compiling from the
original C source code becomes apparent
during the verification phase. CebaTech’s

belief is that the entire SoC ought to be
coded in C and run as software in a native C
environment, where running tool-generated
cycle-accurate C will precisely represent the
behavior of the generated RTL running in
an HDL simulator. The architecture of the
compiled RTL is congruent to the C source
and you can achieve extensive functional
verification in the C environment.

As shown in Figure 2, the CebaTech
compiler generates a cycle-accurate C
model in addition to synthesizable RTL.
The functional correctness of the compiler-
generated RTL can be shown using formal
tools that prove equivalency with the cycle-

expertise. Finally, the cost of product devel-
opment must be kept in check through
increasing use of the latest system-level
tools. Although the toolflow pioneered by

CebaTech has already proven its merit in IP
networking, it is applicable to other emerg-
ing market sectors 

CebaTech’s approach is a logical step in
the evolution of the EDA industry, especial-
ly given the current bottleneck in verifica-
tion. For the most part, complex
system-on-a-chip (SoC) products are still
developed in the traditional bottom-up
way. Developers learned to use hardware
description languages and write test bench-
es, and eventually came to rely on FPGA-
based prototyping systems and
development environments for embedded
cores. In recent years, traditional simulation
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C Module Cycle-Accurate C Model

C2R Compiler

RTL Simulation Environment

Memory and FPU Resources RTL for Synthesis

FPGA Design Environment

Figure 1 – The evolution and eventual 
convergence into CebaTech’s technology and
methodology of C-based products that take 

“software to silicon” efficiently.

Figure 2 – The C2R compiler from CebaTech allows untimed ANSI C code 
bases to be rapidly implemented using an FPGA approach.



accurate C, which in turn has
been validated in the pure C
software environment. The
compiler is able to map arrays
and other C data structures
onto on-chip or external mem-
ory resources. It has the struc-
ture of a typical software
compiler, complete with linker.
Thus, it can quickly compile
designs ranging from small test
cases to truly enormous soft-
ware systems, making it feasi-
ble for a small team of
engineers to implement full
hardware offload for a system
as complex as the OpenBSD
TCP/IP stack. There are enormous time-
to-market and die-size advantages to this
methodology.

A Real-World FPGA Example
The CebaTech flow is unbounded by
design size. It can address designs from
small (several hundred lines of C code) to
immense (45,000 lines or more, as is the
case with TCP/IP). To give you an overview
of an implementation with the CebaTech
compiler, let’s look at an FPGA conversion
of a C-based compression algorithm.
Although quite modest in the amount of
code, this example demonstrates the power
and uniqueness of the CebaTech flow for
architecture exploration/design trade-offs
with respect to area and performance. It
highlights the narrowing of the verification
gap and provides an excellent vehicle with
which to demonstrate CebaTech’s software-
to-silicon methodology.

To illustrate the extent to which the
CebaTech flow utilizes pure C source lan-
guage constructs to describe system archi-
tecture, we developed and compiled six
incremental versions of the compression
code. All versions function identically
when compiled and run natively on a com-
puter system; however, each successive ver-
sion improves the performance and
synthesis results of the generated RTL,
using a small number of source code
changes for each step. (Further refinement
beyond the architectures explored in this
article is also possible.)

We can summarize the six versions of
the compression source code as:

• Original restructuring of the source
code. The bulk of the program is put
into a “process” that can be directly
compiled into an RTL module. This
initial restructuring does not try for
any optimization, and is indicated as
Revision 1 in Table 1.

• A first cut at optimization where cer-
tain critical functions are placed into
separate modules. This prevents them
from in-line expansion and yields a
baseline architecture, shown as
Revision 2 in Table 1. Regrouping the
functions into two parallel processes is
shown as Revision 3. The area-opti-
mized implementation yields a tripling
of clock frequency and the number of
clock cycles decreases from 56 to 33.
Revision 4 involves functions that are
common to different callers. 

• Flagging these functions as shared
results in a quick area reduction.
Various other common optimizations –
notably loop unrolling – occur during
Revision 5. A process-splitting opera-
tion allowed three simultaneous access-
es to what was previously a single
ROM. This step brought the clock
cycles from 33 down to 12.

• The final iteration in this example,
shown as Revision 6, is an example of
a vendor-specific optimization. The
Xilinx® Virtex™-II family makes both

distributed and block on-chip RAM
available. Using the latter implementa-
tion allows storage utilization to drop
by almost 50%.

For all of these C-based design instances,
we synthesized the resulting Verilog RTL
netlist using Xilinx ISE™ software v8.1
against a Virtex-4 XC4VLX25-12 FPGA. 

For this C-based design flow, we
expended less than one week to understand
the compression code base, create the test
benches used for RTL simulation, perform
the six design explorations, and synthesize
and verify the results. You can see that the
CebaTech approach enables much speedier
product development and delivery with the
best price/performance balance. 

Conclusion
CebaTech has been using a compiler-driv-
en ESL flow to achieve rapid prototyping
of leading-edge networking products for
several years. The compiler was forged in
the crucible of high-performance SoC
development, but is now available to
other forward-looking development teams
who need to quickly develop and deliver
novel SoCs that strike the right balance
between price and performance.

To learn more about CebaTech’s ESL
flow, visit www.cebatech.com and register
to download our compiler white paper.
Alternatively, you can call (732) 440-
1280 to learn how to apply our flow to
your current SoC design and verification
challenges. 
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Xilinx XC4V – Resource Utilization (%) Fmax (MHz)

Architecture Revision Details Slices Slice Flops LUTs SelectRAM # ROM Clocks Area Speed

1 – Baseline Architecture 1 146

2 – Eliminate Redundant Functions 89 24 68 18 1 56 12 58

3 – Define Parallel Processes 44 14 33 18 1 33 40 69

4 – Optimize Any Shared Functions 20 8 17 18 1 33 35 57

5 – ROM and FIFO Improvements 20 9 18 18 3 12 36 52

6 – Utilize Block SelectRAM 20 9 18 10 3 12 36 52

Table 1 – The results of exploring six versions of compression source code
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Ever-increasing computing performance is
the main development driver in the world of
supercomputing. Researchers have long
looked at using FPGAs for co-processors as
a promising way to accelerate critical appli-
cations. FPGA supercomputing is now gen-
erating more interest than ever, with major
system vendors offering general-purpose
computers equipped with the largest Xilinx®

Virtex™-4 FPGAs, thus making the tech-
nology accessible to a wider audience.

There are compelling reasons to give seri-
ous consideration to FPGA supercomputing,
especially given the significant performance
benefits you can achieve from using FPGAs
to accelerate applications. Typical applica-
tions can be accelerated 10-100x compared
to CPUs, making FPGAs very attractive
from a price/performance perspective.

What is even more important is that
FPGAs use only a fraction of the power per
computation compared to CPUs. Increased
computing power with traditional clusters
requires more and more electrical power.
Today, the cooling problems in large com-
puting centers have become major obsta-
cles to increased computing performance.
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understanding. This requires the program
to evolve over its life cycle. In contrast,
circuit designs are usually created once
and then used without changes for the
life span of the target application.

The good news is that in a supercomput-
er, the FPGA is there to perform comput-
ing. This allows you to create software
development methods for FPGAs that cir-
cumvent the complexity and methodology
of general hardware design.

The Mitrion Virtual Processor
The key to running software in FPGAs is to
put a processor in the FPGA. This allows you
to program the processor instead of designing
an electronic circuit to place in the FPGA. To
obtain high performance in an FPGA, the cir-
cuitry of the processor design is adapted to
make efficient use of the resources on the
FPGA for the program that it will run. The
result is a configuration file for the FPGA,
which will turn it into a co-processor running
your software algorithm. This approach
allows you as a software developer to focus on
writing the application instead of getting
involved in circuit design. The circuit design
process has already been taken care of with the
Mitrion Virtual Processor from Mitrionics.

A Novel Processor Architecture
How do you get good performance from a
processor on an FPGA when typical FPGA
clock speeds are about 10 times slower than
the fastest CPUs? Plus, the FPGA requires
and consumes a certain amount of overhead
for its reconfigurability. This means that it
has a 10-100x less efficient use of available
chip area compared to a CPU. Still, to per-
form computations 10-100x faster than a
CPU, we need to put a massively parallel
processor onto the FPGA. This processor
should also take advantage of the FPGA’s
reconfigurability to be fully adapted to the
program that it will run. Unfortunately, this
is something that the von Neumann proces-
sor architecture used in traditional CPUs
cannot provide.

To overcome the limitations of today’s
CPU architecture, the Mitrion Virtual
Processor uses a novel processor architecture
that resembles a cluster-on-a-chip. 

well as computing co-processors in comput-
ers, provided that you have loaded the prop-
er circuit design. Traditional development
methods for FPGAs are focused on the hard-
ware design aspects, which are very different
from software development (see Table 1).

FPGAs in Supercomputers 
Enable a New Paradigm
Putting FPGAs in computers to accelerate
supercomputing applications changes the
playing field and rules dramatically.
Traditional hardware design methods are
no longer applicable for several reasons:

• Supercomputer programmers are typical-
ly software developers and researchers
who would prefer to spend their time on
research projects rather than acquiring
the expertise to design electronic circuits. 

• The sheer complexity of the designs
required to compute real-world super-
computing problems is prohibitive and
usually not viable.

• Hardware design methods are targeted
at projects where a single circuit design
is used in a large number of chips.
With FPGA supercomputers, each
chip will be configured with many 
different circuit designs. Thus, the
number of different circuit designs 
will be greatly multiplied.

• Hardware design tools and methods
focus on optimizing the size and cost
of the final implementation device.
This is significantly less important in a
supercomputer because the investment
in the FPGA has already occurred.

• Programs run in supercomputers are
often research tasks that continuously
change as the researcher gains deeper

Plus, the development of FPGA devices
is still keeping up with Moore’s law. In prac-
tice, this means that the performance of
FPGA-based systems could continue to
double every 18 months, while CPUs are
struggling to deliver increased performance.

FPGAs as Supercomputing Co-Processors
FPGAs are highly flexible general-purpose
electronic components. Thus, you must
consider their particular properties when
using them to accelerate applications in a
supercomputer.

Compared to a CPU, FPGAs are Slow
It may seem like a contradiction to claim that
FPGAs are slow when they can offer such
great performance benefits over CPUs. But
the clock speed of an FPGA is about 1/10th
of a CPU. This means that the FPGA has to
perform many more operations in parallel
per clock cycle if it is to outperform a CPU. 

FPGAs are Not Programmable 
(From a Software Developer’s Perspective)
Software developers taking their first steps
in FPGA supercomputing are always sur-
prised to find out that the P for program-
mable in the acronym FPGA means “you
can load a circuit design.” Without such a
circuit design, an FPGA does nothing – it
is just a set of electronic building blocks
waiting to be connected to each other.

Creating a circuit design to solve a
computational problem is not “program-
ming” from a software developer’s point
of view, but rather a task for an experi-
enced electrical engineer.

FPGAs Require Hardware Design
With their general-purpose electronic com-
ponents, FPGAs are usable in any electronic
hardware design. That is why they work so

Hardware Design Software Development

Driven by Design Cycle Driven by the Code-Base Life Cycle

Main Concern: Device Cost (Size, Speed) Main Concern: Development Cost and Maintenance

Precise Control of Electrical Signals Abstract Description of Algorithm

Table 1 – Hardware/software development comparison
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Normal computer clusters comprise a
number of compute nodes (often standard
PCs) connected in a fixed network. The
basic limitation of such a cluster is the net-
work latency, ranging from many thou-
sands up to millions of clock cycles,
depending on the quality of the network.
This means that each node has to run a
large block of code to ensure that it has suf-
ficient work to do while waiting for a
response to a message. Lower latency in the
network will enable each node to do less
work between communications.

In the architecture of the Mitrion
Virtual Processor, the entire cluster is on
the same FPGA device. The network is
fully adapted in accordance with the pro-
gram requirements, creating an ad-hoc,
disjunct network with simple point-to-
point connections where possible,
switched only where required. This allows
the network to have a guaranteed latency
of a single clock cycle.

The single clock cycle latency network is
the key feature of the Mitrion Virtual
Processor architecture. With a single-cycle
latency network, it becomes possible for
the nodes to communicate on every clock
cycle. Thus, the nodes can run a block of
code comprising only a single instruction.
In a node that runs only one instruction,
the instruction scheduling infrastructure of
the node is no longer necessary, leaving

only the arithmetic unit for that specific
instruction. The node can also be fully
adapted to the program.

The effect of this full adaptation of the
cluster in accordance with the program is
that the problem of instruction scheduling
has been transformed into a problem of
data-packet switching. For any dynamic
part of the program, the network must
dynamically switch the data to the correct
node. But packet switching, being a net-
work problem, is inherently parallelizable.
This is in contrast to the inherently sequen-
tial problem of instruction scheduling in a
von Neumann architecture.

This leaves us with a processor architecture
that is parallel at the level of single instruc-
tions and fully adapted to the program.

Mitrion-C
To access all of the parallelism available
from (and required by) the Mitrion Virtual
Processor, you will need a fully parallel pro-
gramming language. It is simply not suffi-
cient to rely on vector parallel extensions or
parallel instructions.

We designed the Mitrion-C program-
ming language to make it easy for program-
mers to write parallel software that makes
the best use of the Mitrion Virtual Processor.
Mitrion-C has an easy-to-learn C-family
syntax, but the focus is on describing data
dependencies rather than order of execution.

The syntax of Mitrion-C is designed to
help you achieve high performance in a
parallel machine, just like ANSI C is
designed to achieve high performance in a
sequential machine. Thus the Mitrion-C
compiler extracts all of the parallelism of
the algorithm being developed. We should
note, though, that Mitrion-C is purely a
software programming language; no ele-
ments of hardware design exist.

The Mitrion Platform
Together with Mitrion-C and the Mitrion
Virtual Processor, the Mitrion Software
Development Kit (SDK) completes the
Mitrion Platform (see Figure 1). The
Mitrion SDK comprises:

• A Mitrion-C compiler for the Mitrion
Virtual Processor

• A graphical simulator and debugger
that allows you to test and evaluate
Mitrion-C applications without having
to run them in actual FPGA hardware

• A processor configuration unit that
adapts a Mitrion Virtual Processor to
the compiled Mitrion-C code

The Mitrion Platform is tightly coupled
to Xilinx ISE™ Foundation™ software for
synthesis and place and route, targeting
Xilinx Virtex-II and Virtex-4 devices. It fea-
tures a diagnostic utility that analyzes the
output from these applications and can
report any problems it encounters in a for-
mat that does not require you to have
FPGA design skills.

Conclusion
The novel, massively parallel processor archi-
tecture of the Mitrion Virtual Processor to
run software in an FPGA is a unique solu-
tion. It is a solution readily available on the
market today that addresses the major obsta-
cles to the widespread adoption of FPGAs as
a means to accelerate supercomputing appli-
cations. With the Mitrion Virtual Processor,
you will not need hardware design skills to
make software run in FPGAs.

For more information about the
Mitrion Virtual Processor and the Mitrion
Platform, visit www.mitrionics.com or e-
mail info@mitrionics.com
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{
    foreach  (landmark in <0..LMS>)
      {
              int:48 dx – px[landmark] – x;
              int:48 dy – py[landmark] – y;
              int:48 r2 – dx*dx + dy*dy;

              int:48 ext – if(r2 –– 0)
          0
              else
          log(r2 * r2;
      } ext;

      distx – foreach (e in ext by i)
      {

       

Figure 1 – The Mitrion Platform
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What do you do when the CPU in a board-
level system cannot cope with the software
upgrades that the next-generation product
inevitably requires? You can increase the
clock speed, but when – not if – that
approach runs out of steam, you must
design in a faster CPU, or worse, an addi-
tional CPU. Worse yet, you could add
another CPU board if the end product’s
form factor and cost target allow it. 

In this article, we’ll discuss some of the
pros and cons of these approaches and

describe a programmable coprocessor
solution that leverages an on-board
Xilinx® FPGA to turbocharge the existing
CPU and deliver the pros with none of
the cons. You do not need processor
design expertise, nor will you have to
redevelop the software. Moreover, if the
board already deploys an FPGA with suf-
ficient spare capacity, the incremental sili-
con cost of the solution is zero.

The Brute Force Approach
Deploying faster or additional CPUs is an
approach that is scalable as long as the soft-
ware content growth remains relatively lin-
ear. However, software content growth is
now exponential. A faster CPU might
solve the problem temporarily, but it will
soon be overwhelmed, necessitating a mul-
tiprocessor solution.

Many products cannot bear the redesign
and additional silicon costs of a multiproces-

sor solution. Design teams do not often have
the time to implement such a solution, and
most teams certainly do not have the
resources to re-architect the whole multi-
processor ensemble every time the software
content exceeds the hardware’s capacity to
process it. It is more than just a hardware
development problem – it is a major software
partition and development problem.

When a methodology breaks, you must
re-examine the fundamentals. Why can’t a
general-purpose (GP) CPU deliver more
processing power? The answer is that most
such CPUs offer a compromise between
control functions and the parallel process-
ing capability required by computationally
intensive software. That capability is limit-
ed by a lack of both instruction-level paral-
lelism and parallel processing resources.

When you deploy an additional general-
purpose CPU to assist in the execution of,
for example, a 20,000-line MPEG4 algo-
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rithm, you add only limited parallel pro-
cessing capability, along with unnecessary
control logic, all wrapped up in a package
that consumes valuable board space. It is an
expensive, brute force approach that
requires the multiprocessor partitioning of
software that has generally been developed
for only one processor; software redevelop-
ment where the additional CPU’s instruc-
tion set differs from that of the original
CPU; the development of complex caching
schemes; and the development of multi-
processor communication protocols – a
problem exacerbated by the use of hetero-
geneous real-time operating systems.

However, even this may not deliver the
requisite results. A major Japanese compa-
ny recently published data that illustrates
this point. The company partitioned soft-
ware developed on one CPU for execution
on four CPUs and achieved a maximum
acceleration of only 2.83x. A less-than-
optimal partition may have failed to utilize
the additional parallel processing resources
as efficiently as possible, but communica-
tions overhead surely played a role as well.
In other words, maximizing CPU per-
formance does not necessarily maximize
system performance.

The Cascade Coprocessor Synthesis Solution
You can circumvent these problems by
synthesizing an FPGA-implemented pro-
grammable coprocessor that, acting as an
extension of the CPU, supplies the missing
parallel processing capability. It increases
both instruction-level parallelism and par-
allel processing resources. A mainstream
engineer can design it in a matter of days
without having any processor design
expertise; CriticalBlue’s Cascade synthesiz-
er automatically architects and implements
the coprocessor.

Moreover, Cascade optimizes cache
architecture and communications over-
head to prevent performance from being
“lost in traffic.” In other words, it boosts
not only CPU performance but overall
system performance.

The FPGA coprocessor accelerates soft-
ware offloaded from the main CPU as-is,
so no software partitioning and redevelop-
ment are required, although you can also

mized for that software – all with software
developed for single processor operation.
Adding multiple coprocessors can be more
effective, less costly, and less time consum-
ing than deploying multiple processors.

How Does It Work?
First, you should determine which software
routines must be offloaded from the CPU.
Cascade analyzes the profiling results of the
application software running on the CPU to
identify cycle-hungry candidates (Figure 1).

Cascade then automatically analyzes
the instruction code – including both
control and data dependencies – and maps
the selected tasks onto multiple coproces-
sor architecture candidates that comply
with user-defined clock rate and gate
count specifications. For each candidate,
the tool provides estimates of perform-
ance, gate count, and coprocessor/CPU
communication overhead. You then select
the optimum architecture.

co-optimize software and hardware.
Cascade thus supports both full legacy soft-
ware reuse and new software deployment.
The former is especially important if you
have inherited the legacy software and do
not necessarily know how it works.

Unlike fixed-function hardware, a
Cascade FPGA coprocessor is not restricted
to executing only one algorithm, or part
thereof. Cascade can synthesize an FPGA
coprocessor that executes two or more dis-
parate algorithms, often with only margin-
ally greater gate counts than a coprocessor
optimized to execute only one. 

A Cascade FPGA coprocessor is repro-
grammable. Although it is optimized to
boost the execution of particular algo-
rithms, it will execute other algorithms, too.

Adding a Cascade FPGA coprocessor
circumvents the problems of adding a
CPU. As you add additional software to
the system, it can run on an existing FPGA
coprocessor or you can add a new one opti-
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Cascade generates an instruction- and
bit-accurate C model of the selected
coprocessor architecture for use in per-
formance analysis. Cascade uses the C
model together with the CPU’s instruction
set simulator (ISS) and the stimuli derived
from the original software to profile per-
formance, as well as analyze memory
access activity and instruction execution
traces. The analysis also identifies the
instruction and cache “misses” that cause
so many performance surprises at system
integration. Because Cascade can generate
coprocessor architectures so quickly, you
can perform multiple “what if ” analyses
quite rapidly. The model is also used to
validate the coprocessor within standard C
or SystemC simulation environments.

In the next step, Cascade generates the
coprocessor hardware in synthesizable
RTL code, which you verify using the
same stimuli and expected responses as
those used by the CPU. The tool gener-
ates the coprocessor/CPU communica-
tions circuitry. It also simultaneously
generates coprocessor microcode, modify-
ing the original executable code so that
function calls are automatically directed
to a communications library. The library
manages coprocessor handoff and com-
municates parameters and results between
the CPU and the coprocessor. Cascade
generates microcode independently of the
coprocessor hardware, allowing new
microcode to be targeted at an existing
coprocessor design. 

The Cascade tool provides interactive fea-
tures if you wish to achieve even higher per-
formance. For instance, it enables you to
manually optimize code, co-optimize code
and hardware, and deploy custom functional
hardware units to achieve greater processing
performance. You can explore these manual
options in a “what-if” fashion to determine
the optimal configuration.

What Are The Results?
The results for single and multiple algorithm
execution are shown in Table 1. Executing a
single real-time image processing algorithm
as-is was 5x faster than on the CPU. Software
code optimization and a custom functional
unit increased that to 15x.

In the case of multiple algorithms, a
coprocessor synthesized for SHA-1, a
secure hash algorithm for cryptography
applications, achieved a boost of 5x. A sep-
arate coprocessor with a custom functional
unit synthesized for MD5, another hash
algorithm, achieved 10x. A coprocessor
optimized for both achieved 6.4x – using
only 8% more gates than either of the two
single coprocessors.

The power of reprogrammability is
demonstrated in Table 2. One of our cus-
tomers synthesized a coprocessor to exe-
cute an MP3 decoder algorithm,
achieving a 2.13x boost despite using
unoptimized code. The designer then
generated a coprocessor to execute an
MPEG1 Layer 2 encoder algorithm, also
with no code optimization, achieving a
1.62x boost. When each algorithm was
executed on the other’s coprocessor, they
achieved boosts of 1.18x and 1.19x,
respectively. Code optimization would
have improved this performance further,
and custom functional units to execute
serial operations even more.

How Can You Implement It?
You can implement Cascade FPGA
coprocessors in multiple Xilinx families:
Virtex™-II, Virtex-II Pro/Pro X,
Spartan™-3/3E/3L, and Virtex-4 FPGAs.

Cascade’s synthesizable RTL output
works with Synopsys, Synplicity, and
Xilinx synthesis tools and is fully inte-
grated into the Xilinx ISE™ tool flow,
while the verification approach works
with the Xilinx ISE tool flow and Mentor
Graphics’s ModelSim XE/PE. 

Cascade can target any Xilinx-popu-
lated board without translation or modi-
fication – no family-specific design kit is
required.

Conclusion 
If you want to boost the processing power
of your design without deploying new or
improved microprocessors, and if 
you want to use software without reparti-
tioning and redevelopment, contact
CriticalBlue at info@criticalblue.com. We
can tell you how to do it – without having
to become a processor designer. 

54 Xcell Journal      Third Quarter 2006

Application Single Algorithm Multiple Algorithms
Algorithm Real-Time Image Processing SHA-1 MD5 SHA-1 + MD5
Lines of Original Code ~200 150 700 850
Code Modified? No Yes No Yes Same as MD5
Custom Functional Unit? No Yes No Yes Same as MD5
Boost vs. CPU 5x 15x 5x 10x 6.4x
Effort (in Days) 1 3 1 5 1 More Day

Application Reprogrammability
Algorithm MP3 Decoder MPEG1 Layer 2 Encoder
Lines of Original Code ~9,700 ~16,700
Code Modified? No No
Custom Functional Unit? No No
Boost vs. CPU on its Own Dedicated Coprocessor 2.13x 1.62x
Boost vs. CPU on the Other’s Coprocessor 1.18x 1.19x
Effort (in days) 2 1

Table 1 – Single and multiple algorithm execution 

Table 2 – Coprocessor reprogrammability with as-is code re-use
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One of the key preferences of a typical
embedded designer is stability in the hard-
ware platforms on which they program;
poorly defined hardware results in recoding
hassles more often than not. But a com-
pletely firm, fixed hardware platform also
comes with a set of constraints that pro-
grammers must live with. These constraints
– whether simply design decisions or out-
right bugs – can force inelegant coding
workarounds or rework that can be cumber-
some and time-consuming to implement.

By combining an FPGA platform with a
well-defined multicore methodology, you
can implement high-performance packet
processing applications in a manner that

gives software engineers some control over
the structure of the computing platform,
potentially saving weeks or months of cod-
ing time and reducing the risk of delays.

Much of the hardware design process
goes into defining a board. Elements such
as the type of memory, bus protocol, and
I/O are defined up front. If a fixed proces-
sor is used, then that is also defined early
on. But for gigabit performance on packet
processing algorithms, for example, a sin-
gle processor typically won’t cut it, and
multiple processors are necessary.

The best way to build a processing fab-
ric depends on the software being run. By
using an FPGA to host the processing,
you can defer making specific decisions
on the exact implementation until you
know more about the needs of the code.
The new Teja FP platform provides a
methodology and multicore infrastruc-

ture on Xilinx® Virtex™-4 FPGAs, allow-
ing you to decide on the exact configura-
tion of the multicore fabric after the code
has been written.

When Software Engineers Design Hardware
Hardware and software design are two fun-
damentally different beasts. No matter how
much hardware design languages are made
to look like software, it is still hardware
design. It is the definition of structure, and
processes ultimately get instantiated as
structure. However, it is clear that software
engineers are designing more and more sys-
tem functionality using C programming
skills; tools now make it possible for this
functionality to target software or hardware.

The software approach is much more
process-oriented. It is the “how to do it”
more than the “what to build” because tra-
ditionally there has been nothing to build –
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for Software
Tune Multicore Hardware 
for Software Teja FP and Xilinx FPGAs give you more 

control over hardware configuration.
Teja FP and Xilinx FPGAs give you more 
control over hardware configuration.



the hardware was already built. A truly
software-based design approach includes
key functionality that is not built into the
structure but is executed by the structure in
a deployed system. The benefit of software-
based functionality is flexibility: you can
make changes quickly and easily up until
and even after the system has shipped.
FPGAs can also be changed in the
field, but software design turns can
be handled much more quickly
than hardware builds.

Because hardware and software
design are distinct, designers of one
or the other will think differently. A
hardware engineer will not become
a software engineer just by chang-
ing the syntax of the language.
Conversely, a software engineer will
not become a hardware engineer
simply by disguising the hardware
design to resemble software. So
allowing a software engineer to par-
ticipate in the design of a process-
ing fabric cannot be done blithely.
In addition, turning a hardware-
oriented design over to a software
engineer is not likely to be met with
cheers by hardware designers, soft-
ware designers, or project man-
agers. Hardware decisions made by
software engineers must be possible
using a methodology that resonates
with a software engineer in a lan-
guage familiar to the software engineer.

The key topology of the processing fab-
ric for a multicore packet processing engine
is the parallel pipeline, shown in Figure 1.
Such an engine comprises an array of
processors, along with possible hardware
accelerators. Solving the problem means
asking the following questions:

• How many processors do I need?

• How should they be arranged?

• How much code and local data store
does each processor require?

• What parts of the code need hardware
acceleration?

Let’s take these questions case by case
and assemble a methodology that works for
software engineers.

intuitively. There’s no need to figure out
where the exact cycle midway point is.

Let’s say that with six processors you will
have a two-stage pipeline. Now you need to
figure out how many processors go in each
stage; you can do this by profiling the cycle
counts of each of the partitions and divid-
ing again by the cycle budget. So if the first

partition took 380 cycles, it will
require 4 processors; that leaves
140 cycles for the second stage,
which will require 2 processors.
(The cycle counts of the two parti-
tions won’t actually add neatly to
the cycle count of the unparti-
tioned program, but it is close
enough for our purposes.) So this
two-stage pipeline will have four
processors in the first stage and two
in the second stage. By using Xilinx
MicroBlaze™ soft cores, you can
instantiate any such pipeline given
sufficient logic resources.

By contrast, a fixed pipeline
structure would have a pre-deter-
mined number of processors in
each stage. This would mandate a
specific partition, which can take a
fair bit of time to implement.
Instead, the pipeline is made to
order and can be irregular, with a
different number of processors in
each stage. So it doesn’t really mat-
ter where the partition occurs. The

hardware will be designed around the par-
titioning decision instead of vice versa.

The question of how a software engi-
neer can implement this is key. Teja has
assembled a set of APIs and a processing
tool that allows the definition of the hard-
ware platform in ANSI C; the tool exe-
cutes that program to create the processing
platform definition in a manner that the
Xilinx embedded tools can process. This
set of APIs is very rich and can be manip-
ulated at a very low hardware level, but
most software engineers will not want to
do this. Thus, Teja has put together a “typ-
ical” pipeline definition in a parameterized
fashion. All that is required to implement
the pipeline in the example is to modify
the two simple #define statements in a
configuration header file.

Processor Count and Configuration
The number of processors required is more
or less a simple arithmetic calculation based
on the cycle budget and the number of
cycles required to execute code. The cycle
budget is a key parameter for applications
when you have a limited amount of time to
do the work. With packet processing, for

example, the packets keep coming, so you
only have so many cycles to finish your
work before the next packet arrives. If your
code takes longer than that, you need to
add more processors. For example, if the
cycle budget is 100 cycles and the code
requires 520 cycles, then you need 6
processors (520 divided by 100 and round-
ed up). You can fine-tune this, but it works
for budgetary purposes. The cycle count is
determined by profiling, which you can
perform using Teja’s tools.

The next question is how to arrange the
processors. The simplest way to handle this
is to decide if you want to partition your
code to create a pipeline. A pipeline uses
less resources but adds latency. If you want
to partition your code, then pick an obvi-
ous place – something natural that works

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

MicroBlaze

Private
Block RAM

Offload(s)
(Optional)

Figure 1 – A parallel pipeline where each engine comprises a
MicroBlaze processor, private memory, and optional offloads.
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The following statements define a two-
stage pipeline, with four engines in the first
stage and two in the second stage:

#define PIPELINE_LENGTH 2

#define PIPELINE_CONFIG {4,2};

From this and the predefined configura-
tion program, the TejaCC program can
build the pipeline. Of course, if for what-
ever reason the pipeline configuration
changes along the way, similar edits can
easily take care of those changes.

Memory
The third question is about the amount of
memory required. In a typical system, you
are allocated a fixed amount of code and
data store. If you miss that target, a signifi-
cant amount of work can go into squeezing
things in. With FPGAs, however, as long as
the amount of memory needed is within
the scope of what’s available in the chip, it
is possible to allocate a tailored memory
size to each processor. More typically, all
would have the same size (since there is a
2K minimum allocation block, limiting the
amount of fine tuning possible). Code
compilation provides the size required, and
the configuration header file can be further
edited with the following statements,
which in this example allocates 8 KB of
memory for both code and data store:

#define CPE_CODE_MEM_SIZE_KB 8

#define CPE_DATA_MEM_SIZE_KB 8

Offloads for Acceleration
The fourth question deals with the creation
of hardware accelerators. There may be parts
of the code that take too many cycles. Those
cycles translate into more processors, and a
hardware accelerator can eliminate some of
those processors. As long as the hardware
accelerator uses fewer gates than the proces-
sors it is replacing, this will reduce the size of
the overall implementation.

Teja has a utility for creating such
accelerators, or offloads, directly from
code. By annotating the program, the util-
ity will create:

• Logic that implements the code

• A system interface that allows the
accelerator to plug into the processor
infrastructure

• An invocation prototype that replaces
the original code in the program

• A test bench for validating the offload
before integrating it into the system

Once an offload is created, the cycle
count is reduced, so you will have to re-
evaluate the processor arrangement. But
because it is so easy to redefine the
pipeline structure, this is a very straight-
forward task.

A Straightforward Methodology
Putting all of this together yields the
process shown in Figure 2. You can
define offloads up-front (for obvious
tasks) or after the pipeline has been con-
figured (if the existing code uses too
many processors).

The controls in the hands of the soft-
ware engineer are parameters that are nat-
ural or straightforward for a software
engineer and expressed in a natural soft-
ware language – ANSI C. All of the details
of instantiating hardware are handled by
the TejaCC program, which generates a
project for the Xilinx Embedded
Development Kit (EDK). EDK takes care
of the rest of the work of compiling/syn-
thesis/placing/routing and generating bit-
streams and code images.

In this manner, hardware engineers
can design the boards, but by using
FPGAs they can leave critical portions of
the hardware configuration to the soft-
ware designer for final implementation.
This methodology also lends itself well to
handling last-minute board changes (for
example, if the memory type or arrange-
ment changes for performance reasons).
Because the Teja tool creates the FPGA
hardware definition, including memory
controllers and other peripherals, board
changes can be easily accommodated.
The net result is that the hardware target
can be adapted to the software so that the
software designer doesn’t have to spend
lots of time coding around a fixed hard-
ware configuration. 

The Teja FP environment and infra-
structure make all of this possible by taking
advantage of the flexible Virtex-4 FPGA
and the MicroBlaze core. Armed with this,
you can shave weeks and even months off
of the development cycle. 

Teja also provides high-level applica-
tions; these applications can act as starting
points for launching a project and reduc-
ing the amount of work required. By com-
bining a time-saving flexible methodology
with pre-defined applications, creators of
networking equipment can complete their
designs much more quickly.

For more information on Teja FP, 
contact bmoyer@teja.com. 

Determine Cycle
Budget

Identify Offload(s)
(Optional)

Profile Code

Calculate Number
of Processors

Partition Code

Identify Offload(s)
(Optional)

Profile Partition
Code

Configure Pipeline

Figure 2 – Process for configuring 
a parallel pipeline
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Let’s say that you have been tasked to
ensure that your company has an H.264
solution that supports high-definition
video decoding at 30 frames per second.
You are not a video expert. What do you
do? You could get on the Internet and per-
form a Web search for H.264; before you
know it, you’ll have the source code and be
on your way. 

You managed to compile the code and
get it running on the target, but it decodes
at a whopping two frames per second.
Now what? After sifting through pages and
pages of profiling data, you find some
hotspots, but you are not sure which parts
to focus on to maximize the acceleration
and you do not have enough time to try to
optimize them all.

Many of us have found ourselves in this
situation at one time or another. Maybe
you have even delivered a solution, but not
without a lot of sweat and tears.

Mimosys Clarity
The Mimosys Clarity software tool automat-
ically identifies candidate hardware accelera-
tors directly from application C source code,
guided by the execution profile of the appli-
cation. It also takes a set of constraints on the
number of I/O parameters available to the
accelerator and a model of the execution
costs for operations on the PowerPC™ and
in Xilinx® FPGA fabric.
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Clarity’s approach to profiling is unique
in that the execution profiling information is
visually presented in the tool as annotations
to basic blocks of control flow graphs
(CFGs), as shown in Figure 1. The nodes of
a control flow graph represent the basic
blocks of the C source code, where a basic
block is any sequence of C expressions with-
out conditions. The edges of a CFG repre-
sent an execution path between basic blocks,
where a specific path is followed (or taken) if
a particular condition is true or false.

Because each basic block is a sequence
of expressions, it can be represented by a
data flow graph (DFG), the nodes of which
are operations (+, -, *, /) and the edges val-
ues (Figure 2). In the vast majority of cases,
this information is not automatically creat-
ed or visualized. Furthermore, this visuali-
zation, if done at all, is typically static and
thus unable to retain one of the most
important aspects: the correspondence
between the graphs and the source code
from which they came.

provides little or no benefit, it indicates that
you need to rework the application source
code to expose improved acceleration
opportunities. Furthermore, the automatic
identification algorithm takes both local
(DFG) and global (execution profile) infor-
mation into account, thus providing unique
insight into where to focus your efforts in
optimizing an application.

In the iterative process of optimizing
an application, the identification algo-
rithm will discover a set of accelerators
that will satisfy your requirements.
However, the task remains to realize them
on the Virtex-4 FX platform. You must
perform two important steps to achieve
this: first, create an HDL definition of the
accelerators that includes the necessary
logic to interface the PowerPC APU port
with the accelerator itself. You must assign
the new accelerators unique identifiers

(instructions) so that the PowerPC can be
instructed to activate the accelerator by
the software application.

The second step is to modify the original
application source code to use the new
instructions, thus achieving the execution
speedup offered by the new hardware accel-
erators. In a normal design flow both of
these steps are manual, although in some
ESL design flows you can describe the hard-
ware accelerators using C/C++/SystemC or
a derivative programming language. But the
software integration step is always manual.

Realizing the Accelerators
Clarity automates the entire process of cre-
ating accelerators for Virtex-4 FX FPGAs,
including software integration. This is
achieved when you commit the newly dis-

This unique approach of visually repre-
senting profiling information in CFGs and
DFGs, along with the aforementioned cor-
respondence, helps you quickly hone in on
and understand the most computationally
intensive parts of the application, as all of
the views are always synchronized.

Once you have gathered the application
profiling information, you can invoke the
automatic accelerator identification search
algorithm. This algorithm identifies a set of
optimal hardware accelerators that provide
the best execution speedup of the applica-
tion given the constraints.

An important constraint on accelerators
is the number of available data inputs and
the number of data outputs, which in the
current Virtex™-4 FX device is fixed by
the PowerPC to two inputs and one out-
put. Figure 3 shows the results from two
invocations of the accelerator search algo-

rithm. The upper table uses a constraint of
two inputs and one output, with the lower
using a constraint of four inputs and one
output for the application ADPCM (adap-
tive differential pulse code modulation).

Clearly, the number of I/Os has a signif-
icant impact on the acceleration achieved. In
order to realize the higher acceleration while
overcoming the hard constraints imposed by
the PowerPC, you can use pipelining tech-
niques at the cost of increasing design com-
plexity. Clarity automatically pipelines
accelerators, giving access to the higher per-
formance with no extra work for you.

The identified hardware accelerators are
optimal; no DFG of the application consid-
ered by Clarity contains a sub-graph with
better estimated performance. As a conse-
quence, if the set of accelerators discovered
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Figure 3 – Instructions found with a constraint of 2-1 (top) 
and 4-1 (bottom), with corresponding performance increases.

Figure 2 – Data flow graph (DFG); each
node represents a single operation.

Figure 1 – Control flow graph (CFG); 
each node represents a basic block (DFG).



covered accelerators to the Xilinx platform.
The commit stage is fully automatic and
comprises three parts: 

• Modifying the original application
source code to use the newly generated
accelerators. The source code of the
application is modified so that the
parts to be implemented in the FPGA
are removed and replaced by calls cor-
responding to the new hardware accel-
erators. Figure 4 shows a snippet of
code from the ADPCM application, in
which the removed source code is com-
mented out and replaced with a call to
the macro Instr_1. This macro con-
tains the special PowerPC instruction
used to activate the hardware accelera-
tor corresponding to the Instr_1 that
Clarity discovered and you selected. 

• Generating RTL for each accelerator
along with the necessary logic to inter-
face the Xilinx PowerPC APU and the
accelerator data path. Each accelerator is
implemented in VHDL as an execution
data path along with the required
PowerPC interfacing logic. The data
path is translated directly from the C
source code and is thus correct by con-
struction. This translation is possible
because the data path implements a pure
data flow with limited control, avoiding
the issues of high-level synthesis. As
described above, if the I/O constraints
specified for the search exceed those of

the PowerPC architecture, the data path
will automatically be split into stages and
pipelined to fit these constraints.

• Creating a Xilinx Platform Studio (XPS)
project containing the RTL implementa-
tions and modified application source
code. To provide confidence in the cor-
rectness and synthesized result of the
HDL accelerators, you can have a test
bench created automatically for each
accelerator along with the necessary 
simulation and synthesis scripts. You 
can invoke an HDL simulator such as
ModelSim from within Clarity to com-
pare the functionality of the original C
code with the HDL code of the accelera-
tor replacing it. The generated synthesis
script enables you to perform synthesis
on each accelerator in the target technol-
ogy and obtain information on the criti-
cal path and area. Furthermore, this
verification test bench provides a frame-
work to ensure the correctness of identi-
fied accelerators that may be subsequently
modified by a design engineer.

Hardware Design for Software Engineers
The challenge of identifying hardware
accelerators for an application is formida-
ble, especially if expert domain knowledge
is required but unavailable. This challenge
is made more acute by the difficulties in
realizing these accelerators as coprocessors,
requiring new interfaces and software inte-

gration to manipulate them. By providing
a standardized interface, the Virtex-4 FX
PowerPC enables new automation tech-
nologies that address both identification
and realization of accelerators.
Furthermore, Clarity can automatically
circumvent the apparent I/O limitations
of the PowerPC APU. 

In particular, Clarity offers a unique
solution to this challenge through an inno-
vative combination of automation and visu-
alization techniques (see Figure 5). Working
at the level of the C programming language,
you can visualize all aspects of the control
flow, data flow, and execution behavior of
an application. A unique hardware accelera-
tor identification technology automatically
discovers and creates application-specific
hardware accelerators targeted to the Xilinx
Virtex-4 FX device. Fully automatic HDL
generation, application software integra-
tion, and test bench generation mean that
you are freed from any concerns about how
to realize application acceleration in hard-
ware, thus empowering you to focus on
your product differentiation.

So finding the H.264 source code on the
Web was not such a bad idea. You created
some useful accelerators and implemented
them on the Virtex-4 FX device before lunch
time, leaving the afternoon free to explore
some different solutions just for fun.

For more information about Clarity,
please e-mail enquiries@mimosys.com or
visit www.mimosys.com/xilinx. 
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Figure 5 – Mimosys Clarity flow; from the application source code and some constraints, 
you can generate a complete Xilinx Platform Studio project with accelerators.

Figure 4 – Modified application; the code moved into the hard-
ware accelerator has been commented out and replaced with a

call to the accelerator. The code is from ADPCM.
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FPGA design sizes and complexity are now
in the stratosphere. An increasing number
of designers are struggling to meet their
design goals in a reasonable amount of time. 

Xilinx introduced PlanAhead™ soft-
ware as a means to combat lengthening
design closure times. The PlanAhead hierar-
chical design and analysis tool helps you
quickly comprehend, modify, and improve
your designs. Earlier PlanAhead versions
(7.1 and earlier) were used to improve per-
formance of the design through floorplan-
ning. The software does encapsulate Xilinx®

ISE™ back-end tools to complete the
EDIF/NGC-to-bitstream flow. However,
earlier versions left the complex job of
design closure through place and route
options to the user.
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PlanAhead 8.1 design tools introduce
ExploreAhead, which simplifies the tedious
task of wading through myriad place and
route options to obtain the best achievable
QoR for a given floorplan. ExploreAhead
also enables an effective use of multi-core
CPU machines to speedup the design con-
vergence process.

ExploreAhead is an implementation
exploration tool. It manages multiple

implementation runs of your design
through the NGDBuild, map, and place
and route steps. ExploreAhead allows you
to create, save, and share place and route
options as “recipes” or “strategies.” With
ExploreAhead, you can order multiple
implementation runs based on the strate-
gies you defined or on the predefined
strategies shipped as factory defaults. These
runs can be parallelized to take advantage
of multi-core CPU machines. 

ExploreAhead manages reports and statis-
tics on the runs, allowing you to pick the best
implementation for your design. Figure 1
shows an illustration of ExploreAhead. 

Strategy
A “strategy” is defined as a set of place and
route options. This is a recipe that you can
use to implement a single place and route
run. Strategies are defined by ISE release
and encapsulate command-line options for
each of the implementation tools:
NGDBuild, map, and place and route.

Using strategies is a very powerful con-
cept that makes ad hoc management of
your place and route options a seamless
task. ExploreAhead ships with a set of

Expert users are encouraged to craft
strategies suitable for their designs. User-
defined strategies are stored under
$HOME/.hdi/strategies for Unix users and
C:\documents and settings\$HOME\appli-
cation data\hdi\strategies for Microsoft
Windows users. These are simply XML files
for teams of users to share. Design groups
wanting to create group-wide custom strate-
gies accessible to anyone using PlanAhead
software can copy user-defined strategies to
the <InstallDir>/strategies directory. 

Run
ExploreAhead introduces the concept of a
“run” object. Once launched, the run will
work through the back-end tools to imple-
ment the design. Each run is associated
with a set of place and route options or a
defined strategy. ExploreAhead gives you
the capability to launch multiple imple-
mentation runs simultaneously. 

Launching an ExploreAhead run is a
two-step process. The first step involves
queuing up the run with different strate-
gies. The second step will actually launch
the place and route tools on each of the
runs. The two dialog boxes in Figure 3
show the two steps.

Once you have interacted with the
“Run ExploreAhead” dialog box and gener-

ated the required set of runs, a
summary table of runs appears in
the PlanAhead console window.
Figure 1 displays one such table of
runs. Each of the runs is selectable.
Selecting a run will display the
properties of this run in the
PlanAhead properties window.
Selecting one or many runs and
hitting the launch button will
bring up the launch dialog box.
Here ExploreAhead will allow you

to start multiple place and route runs
simultaneously on a multi-core CPU
machine. ExploreAhead will push all of the
requested place and route runs into a queue

predefined strategies. Xilinx has tested
these predefined strategies and found
them to be some of the most effective
techniques to get better performance on
designs. These factory-default strategies
are prioritized by their effectiveness.
Predefined strategies eliminate the need
for you to learn new options each time a
new version of ISE software is released to
achieve the best QoR. 

ExploreAhead also introduces an easy-
to-use strategies editor for you to create
your own favorite strategy. Figure 2 shows
the strategies editor.
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With ExploreAhead, you can order multiple implementation runs based on the 
strategies you defined or on the predefined strategies shipped as factory defaults. 

These runs can be parallelized to take advantage of multi-core CPU machines. 

Figure 1 – Multiple implementation runs with varying strategies

Figure 2 – Strategies editor

Figure 3 – Run ExploreAhead 
and Launch Runs dialog boxes



and will then launch runs from this queue
when CPU resources become available.

Monitor
ExploreAhead has an easy-to-use interface
to monitor ongoing runs. The “summary
runs” table in the console window helps you
quickly browse through the relevant charac-
teristics of a run: the CPU time implica-
tions of a strategy, percent completion,
timing results, and description of the strat-
egy employed. In addition to the summary
results table, there is also a live “run moni-
tor” that displays all console messages gen-

erated by place and route tools. You can
simply select a run and tab over to the mon-
itor tab of the property dialog box to engage
the console messages. Figure 4 shows the
properties dialog box for a single run. 

Reports
The reports tab in the “Run
Properties” dialog box shown in
Figure 4 lists all of the potential
reports that could be produced
during an implementation run.
These reports are grayed out at
the start of the run and become
available for browsing as the run
proceeds through the various
back-end steps. Simply double-
click on each of the available
reports to add it to the desktop
browser. 

Results
Once the ExploreAhead runs are
complete and you have all of the
reports for all of their runs at
your disposal, you can then
decide to import the results into

PlanAhead software for further investiga-
tion. After selecting a run, you can then
right-click to import the run, which will
also allow you to import placement and
timing results into PlanAhead design
tools. Figure 5 shows the import run dia-
log box. 

Project
PlanAhead 8.1 software introduces the
PlanAhead project repository. The PlanAhead
project will save your ExploreAhead run
information. ExploreAhead acknowledges
that some of the place and route runs can take
a significant amount of run time. If you
launch a large number of runs, this can also
add to your total completion time. As such,
PlanAhead software allows you to exit the
program, allowing the place and route runs to
continue on your machine. You can then
launch PlanAhead design tools at a later time;
it will re-open the project, re-engage the mon-
itors, and open the summary run tables the
report files. This powerful feature allows you
to free up a PlanAhead license during place
and route runs. 

ExploreAhead Design Flow
You can employ floorplanning – a key
enabling methodology – within the
PlanAhead framework in conjunction
with ExploreAhead to get the best-in-class

QoR. You can use ExploreAhead on a
floorplanned design or on a single
Pblock. You can then piece the design
together using a combination of floor-
planning, a block-based implementation
approach, and incremental design tech-
niques. ExploreAhead, however, makes
no assumptions as to the need to floor-
plan a design. The basic ExploreAhead
design flow, shown in Figure 6, requires
no floorplanning.

Conclusion
ExploreAhead expands the PlanAhead
portfolio to include QoR optimization in
the implementation tools. ExploreAhead
brings together several key technologies to
make PlanAhead design tools an extremely
productive environment for interactive
design exploration and closure. The com-
bination of multiple what-if floorplans and
what-if ExploreAhead runs on each of
these floorplans expands the search space
of possibilities enormously.

ExploreAhead enables you to search
through this large space effectively to pick
the most optimal implementation solution
for your design. 
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Figure 4 – Selected run properties: general, 
place and route options, live monitor, reports

Figure 5 – Import Run dialog box
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flow diagram
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by Jay Gould
Product Marketing Manager
Xilinx, Inc.
jay.gould@xilinx.com

Which do you want in your next embedded
project: flexible system elements so that you
can easily customize your specific design, or
extra performance headroom in case you
need more horsepower in the development
cycle? Why put yourself under undue devel-
opment pressure and settle for one or the
other? Soft processing and customizable IP
offer the best of both worlds, integrating the
concepts of custom design and co-processing
performance acceleration.

Discrete processors offer a fixed selec-
tion of peripherals and some kind of per-
formance ceiling capped by clocking
frequency. Embedded FPGAs offer plat-
forms upon which you can create a system

with a myriad of multiple customizable
processor cores, flexible peripherals, and
even co-processing offload engines. You
now have the power to design an uncom-
promised custom processing system to sat-
isfy the most aggressive project
requirements and punch a hole in that per-
formance ceiling, while maximizing sys-
tem performance by implementing
accelerated software instructions in the
FPGA hardware. With FPGA fabric accel-
eration, the sky’s the limit.

Flexibility
In addition to the high-performance
PowerPC™ hard-processing core avail-
able in Xilinx® Virtex™ Platform FPGAs
and the small footprint PicoBlaze™
microcontroller core programmed with
assembly language, Xilinx offers you the
choice of designing with a customizable

general-purpose 32-bit RISC processor.
The MicroBlaze™ soft processor is highly
flexible because it can be built out of the
logic gates of any of the Virtex or
Spartan™ families, and you can customize
the processing IP peripherals to meet your
exact requirements. 

With customizable cores and IP, you
create just the system elements you need
without wasting silicon resources. When
you build a processing system in a pro-
grammable device like an FPGA, you will
not waste unused resources in a discrete
device, nor will you run out of limited
peripherals if you require more than what
are offered (say your design requires three
UARTs and your discrete device offers
only one or two). Additionally, you are not
trapped by your initial architecture
assumptions; instead, you can continue to
dramatically modify and tune your system
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architecture and adapt to changes in newly
required features or changing standards.

One FIR filter design example from the
workshop materials for the 2006
Embedded System Conference had a
MicroBlaze system configured with an
optional internal IEEE 754-compliant
floating-point unit (FPU), which facilitates
a significant performance increase over soft-
ware-only execution on the processor core.
By including optional MicroBlaze compo-
nents, you can quickly improve the per-
formance of your application.

A side benefit of these optional internal
components is that they are fully supported
by the MicroBlaze C compiler, so source-
code changes are unnecessary. In the FIR
filter design example, including the FPU
and recompiling the design meant immedi-
ate performance improvements, as calls to
external C library floating-point functions
are automatically replaced with instructions
to use the new FPU. 

Utilizing specialized hardware-processing
components improves processor performance
by reducing the number of cycles required to
complete certain tasks by orders of magni-
tude over software recoding methods. The
simple block diagram in Figure 1 represents a
MicroBlaze processing system with an inter-
nal FPU IP core, local memory, and choice of
other IP peripherals such as a UART or a
JTAG debugging port. Because the system is
customizable, we could very well have imple-
mented multiple UARTs or other IP periph-
eral cores from the Xilinx processor IP
catalog, including a DMA controller, IIC,
CAN, or DDR memory interface.

formance improvement of 48x with no
changes to the C source file.

In a second example, we’ll build on an
additional design module, implementing an
IDCT engine for an MP3 decoder applica-
tion that will accelerate the application mod-
ule by more than an order of magnitude.

You can easily create both processor
platform examples referenced here with a
development kit like the one depicted in
Figure 2. The Integrated Hardware/Software
Development Kit includes a Virtex-4 refer-
ence board that directly supports both
PowerPC and MicroBlaze processor designs.
The kit also includes all of the compiler and
FPGA design tools required, as well as an IP
catalog and pre-verified reference designs.

With the addition of a JTAG probe and
system cables, the kit allows you to have a
working system up and running right out of
the box before you start editing and debug-
ging your own design changes.
Development kits for various devices and
boards are available from Xilinx, our distrib-
utors, and third-party embedded partners.

Locate Bottlenecks 
and Implement Co-Processing
The MicroBlaze processor, one of EDN’s
Hot 100 Products of 2005, utilizes the IEC
(International Engineering Consortium)

The IP catalog provides a wide variety
of other processing IP (bridges, arbiters,
interrupt controllers, GPIO, timers, and
memory controllers) as well as customiza-
tion options for each IP core (baud rates
and parity bits, for example) to optimize
elements for feature, performance, and
size/cost. Additionally, you can configure
the processing cores with respect to clock
frequency, debugging modules, local mem-
ory size, cache, and other options. By mere-
ly turning on the FPU core option, here at
Xilinx we built a MicroBlaze system that
optimized the aforementioned FIR imple-
mentation from 8.5 million CPU cycles to
only 177,000 CPU cycles, enabling a per-
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award-winning Xilinx Platform Studio
(XPS) embedded tool suite for implement-
ing the hardware/IP configuring and soft-
ware development. XPS is included in our
pre-configured Embedded Development
Kits and is the integrated development
environment (IDE) used for creating the
system. If you have a common reference
board or create your own board description
file, then XPS can drive a design wizard to
quickly configure your initial system. 

Reduce errors and learning curves with
intelligent tools so that you can focus your
design time on adding value in the end appli-
cation. After creating the basic configuration,
you can spend your time iterating on the IP
to customize your specific system and then
develop your software applications. 

XPS provides a powerful software devel-
opment IDE based on the Eclipse frame-
work for you power coders. This
environment is ideal for developing,
debugging, and profiling code to identify
the performance bottlenecks that hide in
otherwise invisible code execution. These
inefficiencies in the code are often what
makes a design miss its performance
requirement goals, but they are hard to
detect and often even harder to optimize. 

Using techniques like “in-lining code” to
reduce the overhead of excessive function
calls, you can improve application perform-
ance 1%~5%. But with programmable plat-
forms, more powerful design techniques now
exist that can yield performance improve-
ments by an order or two in magnitude. 

Figure 3 shows a montage of Platform
Studio views for performance analysis. XPS
displays profiling information in a variety
of forms so that you can identify trends or
individual offending routines that spike on
performance charts. Bar graphs, pie charts,
and metric tables make it easy to locate and
identify function and program inefficien-
cies so that you can take action to improve
those routines that leverage the most bene-
fit for total system performance. 

Soft-Processor Cores with Their Own IP Blocks
For the MP3 decode example that I
described earlier, we built a custom system
(Figure 4), starting with the instantiation of
multiple MicroBlaze processors. Because the

MicroBlaze processor is a soft-core processor,
we can easily build a system with more than
one processor and balance the performance
loading to yield an optimal system.

In Figure 4 you can clearly see the top
MicroBlaze block with its own bus and
peripheral set separate from the bottom
MicroBlaze block and its own, different
peripheral set. The top section of the
design runs embedded Linux as an OS
with full file system support, enabling
access to MP3 bitstreams from a network.
We offloaded the decoding and playing of

these bitstreams to a second MicroBlaze
processor design, where we added tightly
coupled processor offload engines for the
DCT/IMDCT (forward and inverse mod-
ified discrete cosine transform) functions
and two high-precision MAC units. 

The IMDCT block covers data com-
pression and decompression to reduce
transmission-line execution time.
DCT/IMDCT are two of the most compu-
tationally intense functions in compression
applications, so moving this whole function
to its own co-processing block greatly
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improves overall system performance.
Whereas we implemented an internal FPU
in the earlier FIR filter example, the MP3
example has implemented MicroBlaze cus-
tomizations and added external dedicated
hardware within the FPGA. 

Co-Processing + 
Customizable IP = Performance
By offloading computationally intense soft-
ware functions to co-processing “hard
instructions,” you can develop an optimal
balance for maximizing system perform-
ance. Figure 4 also shows a number of IP
peripherals for the Linux file system mod-
ule, including UART, Ethernet MAC, and
many other memory controller options.
The coder/decoder application block, by
comparison, uses different IP customizable
for different system capabilities.

The second MicroBlaze soft core is slaved
to the first MicroBlaze processor and acts as
a task engine decoding the MP3 bitstream.
The decoder algorithm with the addition of
specific IP cores is connected directly in the
FPGA fabric hardware resources through a
Xilinx Fast Simplex Link (FSL) connection
interface. This co-processing design tech-
nique takes advantage of the parallel and
high-speed nature of FPGA hardware com-
pared to the slower, sequential execution of
instructions of a stand-alone processor.

Direct linkage to the high-performance
FPGA fabric introduces fast multiply accu-
mulate modules (LL_SH MAC1 and
LL_SH MAC2 on Figure 4) to comple-
ment dedicated IP for the DCT and
IMDCT blocks. The long-long MAC
modules provide higher precision while
offloading the processing unit. You will
also notice high-speed FSL links utilized
for the AC97 controller core to interface to
an external AC 97 codec, allowing the
implementation of CD-quality audio
input/output for the MP3 player. 

The co-processing system depicted in
Figure 4 results in a cumulative 41x per-
formance acceleration over the original
software application with the additive series
of component boosts. Comparing a pure
“software-only” implementation (see the
top horizontal bar as illustrated in Figure 5)
to each subsequent stage of the hardware
instruction instantiations, you can see how
the performance improvements add up.
Moving software into the IMDCT alone
yields a 1.5x improvement, while adding
the DCT as a hardware instruction moves
it up to 1.7x. Another larger improvement
is realized by implementing a long-long
multiply accumulate to reach 8.2x.

Implementing all of the software mod-
ules in hardware through co-processing
techniques, the total end result rolls up to

yield an amazing 41x improvement – with
the added benefit of reducing the applica-
tion code size. Because we removed multi-
ple functions requiring a large number of
instructions and replaced them with a single
instruction to read or write the FSL port,
we have far fewer instructions and thus
achieved some code compaction. In the
MP3 application section, for example, we
saw a 20% reduction in the code footprint.

Best of all, design changes through
intelligent tools like Platform Studio are
easy, quick, and can still be implemented
well into the product development cycle.
Software-only methods of performance
improvement are time-consuming and usu-
ally have a limited return on investment.
Balancing the partition of software applica-
tion, hardware implementation, and co-
processing in a programmable platform,
you can attain much more optimal results. 

Conclusion
Based on the examples described in this
article, we were able to easily customize a
full embedded processing system, edit the
IP for the optimal balance of
feature/size/cost, and additionally squeeze
out huge performance gains where none
appeared possible. The Virtex-4 and
Spartan-3 device families offer flexible
soft-processor solution options that can be
designed and refined late into the develop-
ment cycle. The award-winning MicoBlaze
soft-processor core combined with the
award-winning Platform Studio tool suite
provides a powerful combination to kick-
start your embedded designs. 

Co-processing techniques, such as imple-
menting computationally intense software
algorithms as high-performance FPGA
hardware instructions, allow you to acceler-
ate your performance of modules by 2x,
10x, or as much as 40x+ in our common
industry example. Imagine what it can do
for your next design – think about the head
room and flexibility available for your design
late in the development cycle, or being able
to proactively plan improvements to the
next generation of your product.

For more information on Xilinx
embedded processing solutions, visit
www.xilinx.com/processor. 
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Figure 5 – Co-Processing acceleration results
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Have you ever worked on an embedded
processing project where your team invest-
ed an exorbitant amount of test time only
to find out at the end of the project that
your product had a series of intermittent
and hard-to-find bugs? You used your soft-
ware debugger throughout the develop-
ment process and spent man-weeks
stepping through the code in your lab, yet
when your software passed integration test-
ing you were stunned to find that your QA
team (or worse yet, a customer) discovered
serious system flaws.

Some embedded bugs are harder to find
than others and require advanced detection
methods. Testing small units of code in

your office or lab does not fully exercise
your embedded product the same way as
when it is fully assembled and deployed in
real-time conditions. Add other modules
from other engineers and your simple unit
tests may still pass for hours at a time.
Often bugs will not reveal themselves until
you run the code for much longer periods
of time or with more complex interactions
with other code modules.

So how do you know if you are really
testing all your code? Is it possible that a
colleague’s software may be overwriting a
variable or memory address utilized in
your module?

The more complex your embedded
products become, the more sophisticated
your development and debugging tools
must scale. Often “test time” is equated
with “good testing” practices: the longer
you run tests, the better you must be exer-
cising the code. But this is often mislead-
ing for a number of reasons. Stubbing
code and testing a module in a stand-
alone method will miss many of the inter-
action mistakes of the rest of the final

system. Running dozens or hundreds of
“use cases” may seem powerful, but may
create a false sense of security if you don’t
actually track metrics like code “coverage,”
where you pay more attention to exercising
all of the code instead of repeatedly testing
a smaller subset. 

Standard software debuggers are a useful
and much-needed tool in the embedded
development process, especially in the early
stages of starting, stepping, and stopping
your way though brand-new code units.
Once you have significant code applications
developed, testing the system as a whole
becomes much more representative of an
end-user product, with all of the interac-
tions of a real-time embedded system.
However, even a good software debugger
may not improve your chances of finding
an intermittent, seldom-occurring bug.
Serious code interaction – made more com-
plex with asynchronous interrupts of real-
world embedded devices – mandates the
use of proper tools to observe the entire sys-
tem, creating a more robust validation envi-
ronment in which to find the sneakier bugs.
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Trace Your Code Execution
Once your code goes awry, locks up your
system, core dumps, or does something
seriously unexpected, it is time to improve
the visibility of exactly what your software
was doing before the flaw. Often the symp-
tom of the failure is not clearly tied to the
cause at all. Some debuggers or target tools
running on the embedded device will die
with a fatal system flaw, so they cannot be
used to track that flaw. In these cases, you
can use a separate and external tool with its
own connections and hardware memory to
provide an excellent view of system execu-
tion all the way up to a complete failure.
“Trace” tools, often associated with JTAG
probes or ICEs (in-circuit emulators), can
display an abundance of useful informa-
tion for looking at software instructions
executed, lines of code executed, and even
performance profiling.

Capturing software execution with a
trace probe allows more debugging capabil-
ity than just examining a section of code.
An intelligent trace tool provides a wide
variety of trace and event filters, as well as
trigger and capture conditions. One of the
most useful situations for trace techniques
is to identify defects that cause target crash-
es on a random, unpredictable basis.

Connecting a probe (Figure 1) like
Wind River ICE with the integrated
Wind River Trace tool introduces a
method by which you can configure trace
to run until the target crashes. By trigger-
ing on “no trigger,” the trace will contin-
ue to capture in a circular buffer of
memory in the probe until the system
crashes. You may have unsuccessfully tried
to manually find a randomly occurring
defect with your software debugger, but
with a smart trace tool, you can now run
the full battery of system tests and walk
away to let the trace run. When that inter-
mittent event finally occurs again, crash-
ing the target, the tool will capture and
upload the data for your examination. 

The execution trace will show a deep
history of software instructions executed
on your system leading up to the fatal flaw,
providing much more insight into what the
system was doing and allowing you to find
and fix the bug faster. Often these prob-

information is next accessed.
With advanced tools like Wind River

Trace, you can capture the actual instruc-
tion and data information that was execut-
ed on the target before the event occurred.
Using this information, you can back up
through the executed code and identify
what events happened before the crash,
identifying the root cause of the problem
(see Figure 2). In addition to a chronologi-
cally accurate instruction sequence, when
used on a PowerPC™ embedded platform
like Xilinx® Virtex™-II Pro or Virtex-4
devices, the Wind River Trace execution
information also includes specific time-
stamp metrics. Coincidentally, the Wind
River ICE actually implements Xilinx
Virtex-II Pro FPGA devices in the probe
hardware itself.

Coverage Analysis and Performance Profiling
Because the trace tool and probe are able to
provide a history of the software execution,
they can tell you exactly where you have
been – and what code you have missed.
You miss 100% of the bugs that you don’t
look for, so collecting coverage analysis

lems are not easily found by post-mortem
debugging through register and memory
accesses. Embedded systems commonly
crash when a function is overwriting a vari-
able that should not be accessed/written, or
when memory is corrupted by executable
code being overwritten by another routine.
It is difficult to diagnose these types of
problems when no information exists on
what actions led up to an event, and the
crash of the system may not actually take
place until much later when the corrupted
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metrics is important to your testing strate-
gy. As code execution is almost invisible
without an accurate trace tool, it is com-
mon for entire blocks or modules of code
to go unexecuted during test routines or
redundant user-case suites. Testing the
same function 10 times over may make
sense in many cases, but missing a different

function altogether means that you will not
find those bugs in your lab – your customer
will find them in the field. 

Coverage metrics showing which func-
tions are not executed are useful for writing
new, additional tests or identifying unused
“dead” code, perhaps leftover from a previ-
ous legacy project. Because many designs
are re-ports or updates of previous prod-
ucts, many old software routines become
unnecessary in a new design, but the lega-
cy code may be overlooked and not
removed. In applications where code size is
critical, removing dead code reduces both
waste as well as risk; nobody wants to wan-
der into an obsolete software routine that
may not even interact properly with a
newer version of hardware. 

In safety-critical applications like avion-
ics, medical, automotive, or defense/aero-

space, higher than normal software testing
standards may be mandated. Certainly the
software running the ABS brakes in your
car, a medical device, or an aircraft control
system should be tested to a higher degree
than a software game or other non-life-
threatening application. In these life-criti-
cal applications code must be executed and

tested (covered) down into every function
of software instructions, and that execution
may need to be documented to a formal,
higher level governing body.

In many cases code coverage can also be
used to analyze errant behavior and the
unexpected execution of specific branches
or paths. Erratic performance, failure to
complete a task, or not executing a routine
in a repeatable fashion may be just as inap-
propriate in some applications as a fatal
crash or other defect. By tracing function
entries and exits, comprehensive data is
collected on software operations and you
can throw away the highlighter and pro-
gram listing (Figure 3).

Because performance is always a con-
cern in modern embedded applications,
having an accurate way to measure execu-
tion times is paramount. The capabilities

built into probes and trace tools allow you
to look at the data in a performance view in
addition to the go/no-go code coverage
view. By identifying bottlenecks in software
execution, you can identify routines that
fail to meet critical timing specifications or
optimize routines for better performance.
With the time-stamp information in
Virtex-II Pro and Virtex-4 devices, you can
also use trace tools to determine how long a
software function or a particular section of
code took to run.

Whether you are trying to find rou-
tines that could use some optimization
recoding (perhaps in-lining code blocks
rather than accruing overhead by repeat-
edly calling a separate function) or identi-
fying a timing flaw in a time-critical
routine, performance-metric tools are
required to collect multiple measure-
ments. Settling for a couple passes of a
routine with a manual debugger is not
sufficient for validating timing specs on
important code blocks. Additionally, if a
real-time system is running an embedded
operating system, verifying the capability
of the interrupt service routines (ISRs) is
essential to determine how quickly the
system responds to interrupts and how
much time it spends handling them.

Conclusion
If critical performance measurements or
code coverage are required before your
embedded product can ship, then you need
to used specialized tools to capture and log
appropriate metrics. Accurate system trace
metrics are a must if you have ever been
challenged by a seemingly random, hard-
to-reproduce bug that your customers seem
to experience regularly but that you cannot
duplicate in your office.

Utilizing an accurate hardware probe
like Wind River Trace with a powerful
trace/coverage/performance tool suite will
provide you with the data you require.
Stop guessing about what is really going
on and gain new visibility into your
embedded applications. 

For more information about Wind
River Trace and other products, visit
www.windriver.com/products/development_
suite/wind_river_trace/. 
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Now you can see inside your FPGA designs in a way that

will save days of development time.  

The FPGA dynamic probe, when combined with an Agilent

Windows-based logic analyzer, allows you to access 

different groups of signals inside your FPGA for debug—

without requiring design changes. You’ll increase visibility

into internal FPGA activity by gaining access up to 64 
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by Patrick Carrier
Technical Marketing Engineer
Mentor Graphics Corporation
patrick_carrier@mentor.com

With the emergence of multi-gigabit-per-
second SERDES bus architectures such as
PCI Express, Xilinx® RocketIO™ tech-
nology has become a vital part of FPGA
designs. But accompanying these faster
buses is a resurgence of an old design prob-
lem: crosstalk. The source of concern is
similar to what occurs in buses like PCI
and PCI-X: a large number of signals all
need to go to the same place, from the
FPGA to a connector or to another chip.

The bad news is that PCI Express edge
rates are much faster than PCI and PCI-X.
The fastest edges can be on the order of 50
ps, which equates to around a third of an
inch on a printed circuit board. This
equates to more crosstalk for a given
amount of parallelism, which can be quite
large for typical PCI Express link lengths.

The good news is that because PCI
Express links comprise unidirectional differ-
ential pairs, you only need to control
crosstalk at the receiver. This characteristic
of PCI Express has actually led to two theo-
ries on how to implement board routing:
interleaving TX and RX pairs or keeping
like pairs together. There is no one correct
answer to this design question; the answer
depends on the characteristics of the design.

FEXT, NEXT, and Interleaving
In order to determine the best method for
routing adjacent PCI Express differential
pairs, you should understand the nature
of both forward and reverse crosstalk.
Both types of crosstalk are caused by cou-
pling between traces; that coupling
includes mutual inductance as well as
mutual capacitance.

In forward crosstalk, also referred to as
far-end crosstalk or FEXT, coupled energy
propagates onto the “victim” signal in the
same direction as the “aggressor” signal. As
such, the FEXT pulse has an edge equiva-
lent in length to the aggressor signal and
continues growing in amplitude as the sig-
nals propagate down the line. The ampli-
tude of FEXT is thus determined by the
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length of parallelism between adjacent
traces and the amount of coupling, as well as
the balance between the inductive and
capacitive components of coupling.

In reverse crosstalk, also known as near-
end crosstalk or NEXT, the coupled energy
propagates in the opposite direction of the
aggressor signal. As such, its amplitude is
also length-dependent, but saturates for any
coupled length greater than the signal edge
rate. In NEXT, the inductive and capacitive
coupling are additive.

Figure 1 shows examples of these two types
of crosstalk in the Mentor Graphics
HyperLynx oscilloscope. Notice how the for-
ward crosstalk (shown in light blue) is a large
spike whose leading edge has an edge rate
equivalent to that of the aggressor signal (in
this case 100 ps). The reverse crosstalk (shown
in yellow) is much smaller in amplitude, with
a width equal to twice the total line length (in
this case, 5 inches or 712 ps). The topology
used to generate these waveforms in
HyperLynx LineSim is depicted in Figure 2.

You can reduce the coupling between
traces most effectively by increasing the spac-
ing between them. Because PCI Express com-
prises unidirectional differential pairs, you can
further control crosstalk by altering the
aggressors’ direction to allow for only reverse
crosstalk or only forward crosstalk.

For trace configurations where the forward
crosstalk exceeds the reverse crosstalk, the pre-
ferred method of routing differential pairs
would be to interleave them. If a TX signal is
placed adjacent to an RX signal, the forward
crosstalk created by that signal will go towards
the transmitter of the RX signal, where it is
not of concern. The reverse crosstalk created
by the TX signal will go towards the receiver
of the RX signal.

Conversely, if the reverse crosstalk exceeds
the forward crosstalk, non-interleaved routing
would be preferable; all forward crosstalk
would be directed towards the victims’
receivers instead of the reverse crosstalk.

Microstrip and Stripline Crosstalk Analysis
To determine when each method of routing is
appropriate, let’s examine both inner and
outer layer routing in simulation with a topol-
ogy similar to that shown in Figure 2. In the
first example, a set of three microstrip differ-

make a general rule that PCI Express pairs
should be routed as interleaved when being
routed on microstrip.

In the second example, three stripline
(inner-layer) differential pairs, with 4-mil
wide copper traces 2 mils thick separated by
5.0 mils, in a dual-stripline configuration
with dielectric heights of 4, 20, and 4 mils,
all modeled with an Er = 3.5, have their
spacing and lengths varied in simulation to
obtain the information shown in Table 2.

ential pairs, with 5-mil wide copper traces 2
mils thick separated by 5.7 mils, sitting on
a 5-mil dielectric with an Er = 4, covered
with a 0.5-mil solder mask with an Er = 3.3,
have their spacing and lengths varied in
simulation to obtain the information
shown in Table 1.

In microstrip routing, far-end crosstalk
dominates, except in the very rare case of
super-short routing and super-tight spac-
ing. As such, it would be reasonable to
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Figure 1 – Forward and reverse crosstalk

Figure 2 – Topology used for crosstalk analysis



Notice that the far-end crosstalk is 0
mV. This is because of the balance that
exists between the counteracting capaci-
tive and inductive couplings on the
homogenous stripline. This might lead
you to believe that non-interleaved rout-
ing should always be used on the
stripline. However, that would be an
erroneous assumption. Homogenous
stripline rarely exists on a real printed cir-
cuit board. There are differences in
dielectric constants between cores and
prepregs, the two types of dielectrics that
make up a stripline. Furthermore, there
are resin-rich areas localized to the traces
that alter the dielectic constant around
the traces. To properly determine
whether or not to interleave stripline
traces, you must appropriately model the
dielectric constants.

The third example uses the same dual
stripline trace configuration, except that
the two 4-mil dielectrics are assigned an Er
= 3.5, the 20-mil dielectric an Er = 4.5, and
the thin layer of dielectric on the signal
layer is given an Er = 3.2. Differential pair
spacings and lengths are varied to produce
the results shown in Table 3.

From this data, it is evident that on
longer buses, or buses with longer amounts
of parallelism, you should use interleaved
routing because far-end crosstalk domi-
nates. Near-end crosstalk dominates for
shorter routes with tighter spacings. The
point at which the far-end crosstalk exceeds
the near-end crosstalk varies based on
length, spacing, and trace configuration.
That crossover point is what you should
use to determine whether or not to inter-
leave TX and RX differential pairs.

Conclusion
Clearly, the majority of board routing imple-
mentations for PCI Express and similar
RocketIO implementations requires that you
interleave TX and RX differential pairs in the
layout. This is certainly true for microstrip,
where forward crosstalk dominates. It is also
true for stripline, with the exception of
tighter spacing with shorter lengths. That is
because forward crosstalk is non-zero in an
actual stripline, and will in many cases
exceed reverse crosstalk.  Simulation, with
proper modeling of the stripline dielectrics,
reveals this phenomenon, while pinpointing
the trace configuration where the FEXT will
exceed the NEXT and indicate whether or
not to interleave.

To learn more about designing with
RocketIO technology, visit www.xilinx.com/
serialdesign and www.mentor.com/highspeed. 
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1H 2H 3H 5H

1 in. NEXT = 75 mV, FEXT = 25 mV NEXT = 27.9 mV, FEXT = 18 mV NEXT = 12.7 mV, FEXT = 12 mV NEXT = 3.7 mV, FEXT = 5.4 mV
2 in. NEXT = 75 mV, FEXT = 47 mV NEXT = 27.9 mV, FEXT = 37.8 mV NEXT = 12.7 mV, FEXT = 24 mV NEXT = 3.7 mV, FEXT = 10.5 mV
5 in. NEXT = 75 mV, FEXT = 125 mV NEXT = 27.9 mV, FEXT = 94 mV NEXT = 12.7 mV, FEXT = 62 mV NEXT = 3.7 mV, FEXT = 26 mV

10 in. NEXT = 75 mV, FEXT = 255 mV NEXT = 27.9 mV, FEXT = 192 mV NEXT = 12.7 mV, FEXT = 126 mV NEXT = 3.7 mV, FEXT = 53 mV
20 in. NEXT = 75 mV, FEXT = 508 mV NEXT = 27.9 mV, FEXT = 381 mV NEXT = 12.7 mV, FEXT = 254 mV NEXT = 3.7 mV, FEXT = 105 mV
30 in. NEXT = 75 mV, FEXT = 625 mV NEXT = 27.9 mV, FEXT = 555 mV NEXT = 12.7 mV, FEXT = 379 mV NEXT = 3.7 mV, FEXT = 158 mV

1H 2H 3H 5H

1 in. NEXT = 72.1 mV, FEXT = 0 mV NEXT = 29.9 mV, FEXT = 0 mV NEXT = 14.5 mV, FEXT = 0 mV NEXT = 4.5 mV, FEXT = 0 mV
2 in. NEXT = 72.1 mV, FEXT = 0 mV NEXT = 29.9 mV, FEXT = 0 mV NEXT = 14.5 mV, FEXT = 0 mV NEXT = 4.5 mV, FEXT = 0 mV
5 in. NEXT = 72.1 mV, FEXT = 0 mV NEXT = 29.9 mV, FEXT = 0 mV NEXT = 14.5 mV, FEXT = 0 mV NEXT = 4.5 mV, FEXT = 0 mV

10 in. NEXT = 72.1 mV, FEXT = 0 mV NEXT = 29.9 mV, FEXT = 0 mV NEXT = 14.5 mV, FEXT = 0 mV NEXT = 4.5 mV, FEXT = 0 mV
20 in. NEXT = 72.1 mV, FEXT = 0 mV NEXT = 29.9 mV, FEXT = 0 mV NEXT = 14.5 mV, FEXT = 0 mV NEXT = 4.5 mV, FEXT = 0 mV
30 in. NEXT = 72.1 mV, FEXT = 0 mV NEXT = 29.9 mV, FEXT = 0 mV NEXT = 14.5 mV, FEXT = 0 mV NEXT = 4.5 mV, FEXT = 0 mV

1H 2H 3H 5H

1 in. NEXT = 78.4 mV, FEXT = 5.2 mV NEXT = 34 mV, FEXT = 5.2 mV NEXT = 17.2 mV, FEXT = 3.5 mV NEXT = 5.6 mV, FEXT = 3.6 mV
2 in. NEXT = 78.4 mV, FEXT = 9.5 mV NEXT = 34 mV, FEXT = 10.1 mV NEXT = 17.2 mV, FEXT = 7 mV NEXT = 5.6 mV, FEXT = 3.6 mV
5 in. NEXT = 78.4 mV, FEXT = 18.2 mV NEXT = 34 mV, FEXT = 21.5 mV NEXT = 17.2 mV, FEXT = 17.4 mV NEXT = 5.6 mV, FEXT = 10.8 mV

10 in. NEXT = 78.4 mV, FEXT = 34.8 mV NEXT = 34 mV, FEXT = 42.8 mV NEXT = 17.2 mV, FEXT = 34.6 mV NEXT = 5.6 mV, FEXT = 19.7 mV
20 in. NEXT = 78.4 mV, FEXT = 67.1 mV NEXT = 34 mV, FEXT = 82.1 mV NEXT = 17.2 mV, FEXT = 70.5 mV NEXT = 5.6 mV, FEXT = 39.2 mV
30 in. NEXT = 78.4 mV, FEXT = 101.4 mV NEXT = 34 mV, FEXT = 124.8 mV NEXT = 17.2 mV, FEXT = 104 mV NEXT = 5.6 mV, FEXT = 58.6 mV

Table 1 – Crosstalk in terms of differential pair spacing versus trace length for a microstrip configuration

Table 2 – Crosstalk in terms of differential pair spacing versus trace length for a homogenous stripline configuration

Table 3 – Crosstalk in terms of differential pair spacing versus trace length for a realistic stripline configuration
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The past decade has witnessed an explosive
growth of data from fields in the biology
domain, including genome sequencing and
expression projects, proteomics, protein
structure determination, and cellular regu-
latory mechanisms, as well as biomedical
specialties that focus on the digitization and
integration of patient information, test, and
image records. Bioinformatics refers to the
storage, analysis, and simulation of biologi-
cal information and the prediction of exper-
imental outcomes.

To address the computing and data man-
agement needs in bioinformatics, the tradi-
tional approach has been to use clusters of
low-cost workstations capable of delivering
gigaflops of computing power. However,
microprocessors have general-purpose com-
puting architectures, and are not necessarily
well suited to deliver the teraflops of high-
performance capability required for compute
or data-intensive applications. The recent
availability of off-the-shelf high-performance
FPGAs – such as Xilinx® Virtex™-II Pro
devices with on-board high capacity memo-
ry banks – has changed the computing para-
digm by enabling high-speed processing and
high-bandwidth memory access.

Nallatech offers multi-FPGA comput-
ing cards containing between one and
seven Virtex FPGAs per card. Several such
cards are plugged into the PCI slots of a
desktop workstation and networked using
Nallatech’s DIMEtalk networking software,
greatly increasing the available computing
capability. This is our concept of a hybrid
computing platform. The hybrid platform
comprises several workstations in a cluster
that you can integrate with Nallatech
multi-FPGA cards to construct a high-per-
formance computing system.

Grid Computing
Grid computing is a form of distributed
computing that employs geographically
distributed and interconnected computing
sites for high-performance computing and
resource sharing. It promotes the establish-
ment of so-called virtual organizations –
teams of people from different organiza-
tions working together on a common goal,
sharing computing resources and possibly
experiment equipment.

devices), the BenBlue-II can provide
more than 200,000 logic cells on a
single module.

• Multi-FPGA management – DIMEtalk
To manage the large silicon resource
pool provided by the hardware, the
Nallatech DIMEtalk tool accelerates
the design flow for creating a reconfig-
urable data network by providing a
communications channel between
FPGAs and the host user environment. 

• FUSE Tcl/Tk control and C++ APIs
Nallatech’s FUSE is a reconfigurable
operating system that allows flexible
and scalable control of the FPGA net-
work directly from applications using
the C++ development API, which is
complemented by a Tcl/Tk toolset for
scripting base control. 

DNA Microarray Design – A Case Study
Our goal was to accelerate the Smith-
Waterman implementation in the
EMBOSS suite of publicly available bioin-
formatics code. The Smith-Waterman algo-
rithm is widely used to screen gene
databases for sequence similarity, with
many different applications in bioinfor-
matics research. Smith-Waterman is specif-
ically used in situations where faster
heuristic methods fail to detect some
potentially meaningful sequence hits.

Dr. Cynthia Gibas of the Bioinformatics
Center at UNC Charlotte currently uses
water.c, the Smith-Waterman implementa-
tion in the open-source EMBOSS software,
as a part of a DNA microarray design work
flow. The biology goal is to select the opti-
mal probe sequences to be printed on a
DNA microarray, which will then be used in
the lab to detect individual gene transcripts
in a target mixture with high specificity.

Hardware/Software Partitioning 
The EMBOSS implementation of the
Smith-Waterman (water.c) is an extensive
C program comprising more than 400
functions. A partitioning strategy is
required to identify the functions that need
to be implemented on the FPGA and those
that remain in software (and run on the
processor). The partition is done by profil-

In recent years, grid computing has
become increasingly popular for tackling
difficult bioinformatics problems. The rise
of “bio-grids” (such as the NIH Cancer
Biomedical Informatics Grid and Swiss
Biogrid) is driven by the increasingly
enormous datasets and computational
complexity of the algorithms involved.
Computational grids allow researchers to
develop a bioinformatics workflow locally
and then use the grid to identify and exe-
cute tasks seamlessly across diverse com-
puting platforms.

To integrate the computing power of
FPGA-based hybrid computing platforms
with the existing computing infrastructure
used by the bioinformatics community, we
have grid-enabled the hybrid platform
using the open-source Globus Toolkit.
Thus, the hybrid platform and the associat-
ed software are available as a grid resource
so that bioinformatics applications can be
run over the grid. The hybrid platform par-
titions the tasks to be run on processors and
FPGAs and uses application program inter-
faces (APIs) to transfer data to and from the
FPGAs for accelerated computation.
Bioinformaticians can now take advantage
of the computing power of our FPGA
hybrid computing platform in a transpar-
ent fashion.

Hybrid Computing Platform
The different FPGA related components in
the hybrid platform are:

• High-capacity motherboard – BenNUEY
The Nallatech BenNUEY mother-
board features a Xilinx Virtex-II Pro
FPGA and module sites for as many
as six additional FPGAs. The
PCI/control and low-level drivers
abstract the PCI interfacing, resulting
in a simplified design process for
designs/applications. 

• Virtex-II expansion module – BenBlue-II
The Nallatech BenBlue-II DIME-II
module provides a substantial logic
resource ideal for implementing appli-
cations that have a large number of
processing elements. Through support
for as many as two on-board Xilinx
Virtex-II Pro FPGAs (XC2VP100
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ing the execution characteristics of the
code. First, the legacy C code in the water.c
file is profiled using the Linux gprof tool.
Profiling tells us where a given code spends
time during execution, as well as different
functional dependencies. 

Table 1 shows the results of profiling in
terms of the execution times of the top five
functions executed by the code, listed in
decreasing order of execution time. Note
that one function, embAlignPathCalcSW,
accounts for 83% of the total amount of
program execution time. The
embAlignPathCalcSW function uses the
Smith-Waterman-based local alignment
algorithm to create a “path matrix” con-
taining local alignment scores of compar-
ing probe and database sequences at
different matrix locations, and a compass
variable to show which partial result is used
to compute the score at a certain location. 

Once the code profiling is done, the com-
putationally intense embAlignPathCalcSW
call is mapped to the FPGA network using
VHDL, while the rest of the code is run on
the processor. Calls to the computationally
intense embAlignPathCalcSW function in
the C code of the water.c file are then
replaced with corresponding application
program interface (API) calls to the FPGA
network. These APIs transfer data between
the FPGA network and the processor, such
that the calculation of the scores in the
path matrix is done inside the FPGA net-
work. All other parts of the code, including
backtracking, are executed on the processor

in software. A flow diagram of these steps is
shown in Figure 1.

Hardware Implementation
When comparing a target sequence (T)
from a database with a probe sequence (P),
the scores and the compass values of the
path matrix in the embAlignPathCalcSW
function are calculated using a systolic
array of basic processing elements (PEs).

Figure 2 shows the systolic array imple-
mentation of the path matrix algorithm for
Smith-Waterman with three PEs. Each PE
passes the score and compass values it cal-
culates to the successive PE, which in turn
uses these values to calculate its path and
compass values. At each clock cycle the
path and the compass values are stored in
the block RAM. At the end of the compu-
tation, each block RAM has the correspon-
ding row of the path matrix stored in it. 

The output of the computationally inten-
sive function involves huge amounts of data
transfer (the order of probe length times the
target length). As a result, the improvements
achieved in computing performance are
compromised by communication latency. To
decrease communication latency, two addi-
tional functions (embAlignScoreCalcSW
and embAlignWalkSWMatrix) were moved
to the FPGA from software. These functions
do the backtracking and calculate the score
and alignment sequence for the given probe
and target. The functions operate on the path
matrix and calculate the maximum path
value. Then, starting at the location of the
maximum path value, the functions back-
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Each sample counts as 0.01 seconds.

Percentage Cumulative Self Time Function ms/call ms/call Name of Function
Time  Time (sec)  (sec)  Calls (self) (self)

83.32  178.94  178.94  32768   5.46   5.65    embAlignPathCalcSW

5.12  189.94  11.00  32768   0.34   0.35    embAlignWalkSWMatrix

4.62  199.87   9.93  32768   0.30   0.30    embAlignScoreSWMatrix

2.92  206.13   6.26 2719612928   0.00   0.00   ajSeqCvtK

1.86  210.13   4.00 53936723   0.00   0.00    match

Profile the Smith-Waterman Algorithm (C/C++)

Design the Most Computational Function/FPGA Network (VHDL)

Utilize API to Merge Smith-Waterman Algorithm (C/C++)
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Figure 2 – Systolic array of three PEs for the path matrix calculation

Figure 1 – Design flow for accelerating water.c on the FPGA-processor hybrid computer

Table 1 – Profiling results of the EMBOSS Smith-Waterman implementation
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track through the path values in the path
matrix based on the compass values to deter-
mine the best alignment. The output of the
FPGA is now the score and the alignment
sequence, which is only about the size of the
probe sequence, thus greatly reducing com-
munication latency.

Grid-Enabling the Hybrid Computing Platform
The first step to grid-enable our resource was
to install the components of the grid software
utility package called Globus Toolkit 4.0
(GT4). The GT4 is an open-source reference
implementation of key grid protocols. The
toolkit includes software for security, infor-
mation infrastructure, resource manage-
ment, data management, communication,
fault detection, and portability.

The core of GT4, the open grid serv-
ices architecture (OGSA), is an integra-
tion of grid technologies and Web service
technologies. Above the OGSA, the job
submission and control is performed by
the grid resource allocation and manage-
ment (GRAM). GRAM provides a single
interface for requesting and using remote
system resources for the execution of
“jobs.” The Globus security interface
enables the authentication and authoriza-
tion of users and groups in the grid
through the exchange of signed certifi-
cates. Certificates are created and main-
tained by a tool called SimpleCA in GT4. 

Installation and Integration with 
the UNC-Charlotte VisualGrid
To test our installation in a real grid, we
took advantage of a new grid project called
VisualGrid, a collaborative project between
UNC-Charlotte, UNC-Asheville, and the
Environmental Protection Agency. The
FPGA-based hybrid computing platform is
added as a client to VisualGrid through the
master CA server. 

Results
We implemented a prototype acceleration
task comparing a 40-nucleotide probe
sequence with target database sizes of as
many as 1,048,576 targets of an approximate
length of 850 nucleotides both in software
(processor) and an FPGA hybrid computing
platform. The probe sequence and the target

database reside in the main memory of the
host computer (dual Opteron-based Sun
Java W1100z workstation).

For each call to the embAlign-
PathCalcSW, embAlignScoreCalcSW, and
embAlignWalkSWMatrix functions from
water.c, a 32-bit probe and target combina-
tion is sent over the PCI interface to the PCI
FIFO on the Nallatech BenNUEY mother-
board at a rate of 33 MHz. From the PCI
FIFO, the data is transferred to a 32-bit,
512-word-long input FIFO on the Virtex-II

Pro FPGA of the BenNUEY motherboard.
The systolic array reads the data from this
FIFO. The 40-processing-element-deep sys-
tolic array operates at 40 MHz.

After the systolic array completes pro-
cessing on a single string, the output val-
ues from the block RAM are used to
calculate the alignment. The alignment
results are then written back to a different
block RAM. Finally, the host processor
reads the output alignment string from
the block RAM over the PCI interface.

The hybrid computing platform was
accessed through the VisualGrid with jobs
submitted through the UNC-Charlotte
VisualGrid Portal. The EMBOSS water.c
program ran in software on the worksta-
tion and separately on the FPGA-based
hybrid computing platform. Figure 3
shows the comparison between the run

times of the two implementations. For
small databases, the processing times of
the processor and the hybrid computing
platforms are comparable. However, as
databases get larger, the processor com-
puting time rises exponentially, while the
hybrid computing platform shows a linear
increase. For a database size of 1,048,576
strings, the hybrid computing platform is
44 times faster than execution on a
processor. Such large databases are com-
mon in bioinformatics applications.

Conclusion
We have demonstrated the computing
potential of a grid-enabled hybrid com-
puting platform for sequence-matching
applications in bioinformatics. A careful
partitioning of the computing task
between the processor and the FPGAs on
the hybrid platform circumvented the
potential I/O bottleneck associated with
large bioinformatics databases. The abili-
ty to submit jobs over the grids enables
ready integration and use of the hybrid
computing platforms in bioinformatics
grids. We are currently involved in inte-
grating the hybrid computing platform
on the large inter-university SURAGrid
(www.sura.org/SURAgrid). 

This research was partly funded by NSF Award
Number 0453916, and by Nallatech Ltd.
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Innovative Integration (II) Inc. has devel-
oped a powerful solution for multi-chan-
nel software-defined radio (SDR). The II
digital radio receiver (DRR) has a wide-
bandwidth IF front-end digitizer integrat-
ed with Xilinx® Virtex™-II Pro FPGAs.
This configuration allows you to realize
the full flexibility of scalable programma-
ble design with high-performance signal
processing hardware.
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for a software-defined radio receiver system.
Innovative Integration utilizes Virtex-II Pro FPGAs 
for a software-defined radio receiver system.



You can customize and optimize the II
DRR for multiple applications using the II
SDR reference design. The reference design
incorporates a MATLAB Simulink envi-
ronment with Xilinx System Generator for
DSP. In the System Generator tool, data is
bit- and cycle-true and reflects the per-
formance of the real system. You can easily
modify the characteristics of the system by
changing the parameters in the blocksets.
You can then verify the blocksets in real-
time simulations. Four Texas Instruments

(TI) 1 GHz TMS320C6416 DSPs supply
ample calculating power for advanced
operations such as signal encoding, decod-
ing, and compression.

Anatomy of a Digital Down Converter
In the II DRR system, a digital down
converter (DDC) decimates the RF to IF
signal, providing signal compensation
and shaping. The DDC comprises a cas-
caded integrator-comb (CIC) filter, a
compensation filter (CFIR), and a pro-
grammable filter (PFIR).

The CIC filter is useful to realize large
sample rate changes in digital systems. A
CIC filter is a “multiplier-less” structure
that comprises only adders, subtractors,
and registers, which facilitates hardware
implementation. The compensation filter
flattens the passband frequency response.
The programmable low-pass filter lowers

When the specified filter is simulated,
the passband ripple is within -0.8 dB, as
shown in Figure 3a. Likewise, the magni-
tude is down to -40 dB at 0.544 MHz and
below -90 dB after 1.365 MHz, as shown
in Figure 3b.

The channel filter design verified in the
simulation is bit- and cycle-true – so the
DDC design matches the theoretical
expected response shown in Figure 2.

the magnitude of the ripples produced by
the CIC filter.

Figure 1 shows the entire SDR signal
processing for the DDC. The channel fil-
tering is built in the MATLAB Simulink
environment using the SDR blockset. The
input signal is tuned to the target frequen-
cy using a mixer and a direct digital syn-
thesizer (DDS). The signal then flows
through the CIC, CFIR, and PFIR.

You can implement the SDR directly in
hardware by using the Xilinx System

Generator tool to generate the signal pro-
cessing logic that is fit into the Virtex-II
Pro FPGA using Xilinx ISE™ software.
The whole system can be designed and
downloaded to hardware in hours, which
effectively shortens time to market.

Designing Channel Filters
Using MATLAB’s Filter Design and
Analysis tool (FDATool) and Innovative’s
FrameWork Logic software, you can easily
design and optimize your desired filters.

Consider a GSM system where the filter
specification is:

Fs/2=32.5 MHz, Fpass=0.49 MHz,
Fstop1=0.542 MHz, Fstop2=1.35 MHz

The sampling frequency is 130 MHz and
the decimation factor is 120. Figure 2
shows the theoretical system response from
0 Hz to 65 MHz.
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Figure 1 – Simulink block diagram of DDC using Xilinx System Generator software

Figure 2 – Theoretical frequency response of 
DDC of R = 120 from FDATool program

Figure 3(a) – Frequency response at 
the corner of Fpass = 0.490 MHz

Figure 3(b) – Frequency response
within 0.5 MHz

Using MATLAB’s Filter Design and Analysis tool (FDATool) 
and Innovative’s FrameWork Logic software, you can easily 

design and optimize your desired filters.



II DRR Implemented in Hardware
The II DRR system comprises one Quadia
DSP card and two ultra-wideband (UWB)
PMC I/O modules that can perform digital
down conversions and channel filtering on
40 channels simultaneously. The high-
speed, front-end signal processing for the
DRR is implemented in Virtex-II Pro
XC2VP40 FPGAs on the Quadia card and
UWB modules, as shown in Figures 4 and 5. 

The Quadia card has four TI 1 GHz
TMS320C6416 DSPs that are used for
baseband processing. The DRR has 40
independently tuned channels that deliver
captured in-phase and quadrature (IQ)
data to the DSPs. The FPGAs implement
16 MB data queues for each channel with
flow control to the DSPs. This configura-
tion allows the DRR to efficiently process
the large data rates of the DRR system. 

The II DRR system was tested to show
channel filter response, system frequency
response, and signal quality – and demon-
strated excellent results. The results closely
matched the theoretical performance pre-
dicted by the MATLAB simulations. Each
output channel has a tuning resolution of
10 kHz and a noise floor of around -90 dB.
The system dynamic range was shown to
be greater than 80 dB.

Customize Your Applications
More than 40 percent of the Virtex-II Pro
logic blocks and four high-throughput

DSP chips are available for your custom
applications. The software provided for the
II DRR system supports the complete con-
figuration of your system. The software
also supports using the DSPs on the
Quadia board for channel baseband pro-
cessing. 

The DRR system supports either a sin-
gle pair of DSPs or a full configuration
with four DSPs and two UWB modules. It
also supports logic and DSP program
downloads to all of the devices in the sys-
tem through a host PCI. This allows
dynamic reconfiguration of the system for
multi-protocol applications. 

C++ development libraries on both the
host and target DSPs are provided to per-
form hardware and data-flow management.
Most system operations – including data
transfer from target to host, loading system

logic, and DSP common object file format
(COFF) file downloading – can be per-
formed with a single function call using
Innovative’s Malibu host library. DSP func-
tions, including device drivers for the DRR
interface and controls, are included in
Innovative’s Pismo library and run under
TI’s DSP/BIOS RTOS. 

An advantage of the Malibu library is
that the code to control the baseboards is
standard C++ code, and the library is
portable between different compilers. The
Malibu library supports Borland C++
Builder 6 and Microsoft Visual Studio 2003. 

The configuration software allows the
setup of each channel on the DRR. You can
configure each channel to have its own A/D
input, tuning frequency, gain, and spectral
inversion. Tuning frequencies are saved rel-
ative to a base frequency. This base fre-
quency can be measured in calibration and
loaded into the program to allow selection
of precise tuning frequencies. All configura-
tions and settings may be saved and
reloaded for convenience.

Once the configuration is set, you can
download selected target programs to the
designated DSPs. A global trigger to the
system for all channels begins data flow in
the system. The DSPs continuously
process data from the DRR and deliver
the data to the host. 

Conclusion
Innovative Integration’s digital radio receiv-
er system is a practical multi-channel SDR
application that takes you step-by-step
from requirements to implementation.
Using MATLAB Simulink DSP tools to
define specific digital signal processing, you
can directly – and quickly – implement
your SDR model into Xilinx Virtex-II Pro
FPGAs and TI DSPs using Xilinx System
Generator and ISE software. The final
hardware is realized on Quadia DSP cards
and UWB PMC modules using
Innovative’s comprehensive FrameWork
Logic system and DSP software support.

Everything you need to produce a
working SDR application based on the II
DRR system model is available through
the Innovative Integration website at
www.innovative-dsp.com. 
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Figure 4 – Quadia DSP/FPGA 
card with dual Xilinx FPGAs 

and four TI DSPs 

Figure 5 – UWB PMC module with dual 250 MSPS A/Ds



Now, There’s A Flow You Could Get Used To.
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United Parcel Service and FedEx are
arguably two of the most sophisticated
package delivery services in the world, but
they still do not build their own trucks.
They know that their strategic advantage
lies in figuring out how to move packages
around the world efficiently.

Take a lesson from these two successful
companies – let the new Xilinx® Packet
Queue LogiCORE™ IP be the delivery
vehicle for your packets so that you can
focus on your strategic advantage instead of
wasting time and money on the mechanics
of packet buffering. 

Packet Queue joins FIFO Generator and
Block Memory Generator in an impressive

portfolio of Xilinx no-cost memory cores.
Packet Queue buffers packetized data, mul-
tiplexes one or more channels together, pro-
vides advanced features such as
retransmission, discarding of unwanted or
corrupted packets, and includes interfaces
for complete scheduling control.

Using Xilinx CORE Generator™ soft-
ware (as shown in Figure 1), you can con-
figure and generate an optimized,
pre-engineered solution to your protocol
bridging, aggregation, or packet-buffering
application. And because Packet Queue
provides an optimized and supported
solution at no cost, you will realize real
savings in terms of NRE and time to mar-
ket. In this article, we’ll highlight Packet
Queue’s features and show how it can
enhance two sample networking designs.

Channelized Data Transfer
Seldom does the output from a system
look identical to the input. This is partic-
ularly the case in networking applica-
tions, where data is often encapsulated
and re-encapsulated in different protocols

as it travels through the network. Packet
Queue is particularly suited for these
systems. It supports as many as 32 input
channels, transparently performing data-
width conversion while simultaneously
migrating data from each independent
input clock domain to the output clock
domain. Packet Queue’s sideband data
feature is also extremely versatile,
enabling unusual data widths and addi-
tional control or status signaling.

Shared Memory Architecture
Packet Queue reduces your design cost,
not only as a no-cost core but also by
reducing FPGA resources versus tradi-
tional implementations. Packet buffer-
ing memory is segmented and allocated
to packets dynamically as they are writ-
ten to the core. This enables sharing of
memory between data from all channels.
You can therefore configure the overall
size of the core to represent the peak
requirements of the system, as opposed
to the sum of the peak requirements of
each channel.

88 Xcell Journal      Third Quarter 2006

Eliminate Packet Buffering BusyworkEliminate Packet Buffering Busywork
The Packet Queue IP core simplifies packet buffering and 
aggregation, letting you focus on high-level system design.
The Packet Queue IP core simplifies packet buffering and 
aggregation, letting you focus on high-level system design.



Overall memory needs will vary greatly
from design to design. Packet Queue
enables you to pick the solution that is
right for your system’s specifications, result-
ing in memory savings that translate direct-
ly to a lower unit cost for you.

Retransmit and Discard
If your application requires the ability to
recover from receiving corrupted packets
or to resend packets corrupted during
transmission, Packet Queue provides sim-
ple yet powerful options. Packet Queue’s
input logic supports the discard of an
incoming packet at any point before pack-
et completion by asserting a single signal.
This functionality can also be used to dis-
card unwanted packets, such as those with
invalid cyclic redundancy checks (CRCs).
Similarly, you can interrupt a packet being
transmitted with a single signal, enabling
retransmission at a later time. Together,
these two simple yet powerful features
allow Packet Queue to easily interface
with unreliable links.

Complete Scheduling Control
The most powerful feature of Packet Queue
isn’t something included in the core – it’s
something not included in the core. As a
designer of a networking system, your com-
petitive advantage lies in your scheduling
algorithms. Packet Queue provides status
and control ports for directing multiplexing

Aggregation Example
Our first example application is that of an
Ethernet bridge, between ten 1-Gb ports
and a single 10-Gb port, as shown in Figure
2. Packet Queue can assist you with aggre-
gation. Several of its features come into
play here:

• Multiple channels – this configuration
uses 10 of Packet Queue’s 32 available
input channels. You can also configure
more input ports for oversubscription
of the 10-Gb link.

• Clock conversion – the Xilinx 1-Gb
Ethernet MAC LogiCORE solution
(GEMAC) provides data at a frequency
of 125 MHz. The Xilinx 10-Gb
Ethernet MAC LogiCORE solution
(10GEMAC) expects data at 156.25
MHz. Packet Queue seamlessly resyn-
chronizes data from one clock domain to
the other, allowing each input GEMAC
core to exist in its own clock domain.

• Width conversion – the GEMAC core
provides 8-bit data, while the
10GEMAC core expects 64-bit data.

between data channels, letting you decide
how to transfer data based on the require-
ments of your system – whether that means
round robin, weighted round robin, fixed
priority, or anything else you can design.
For example, you can choose to give priori-
ty to channels that require a higher quality
of service (QoS) to reduce queuing latency.
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ControlControlControl

Figure 1 – Packet Queue GUI showing potential configuration for Ethernet example.

Figure 2 – Packet Queue aggregation of 10 Ethernet channels



Packet Queue automatically converts
between the different widths.

• Scheduling control – Packet Queue’s
versatile scheduling interfaces enable
you to implement any algorithm you
desire to control data flow through the
core. A simple system might use a
round-robin scheme, while a more
complex implementation could include
QoS, giving priority to particular ports
based on the type of data expected.

• Shared memory architecture – the
dynamic memory allocation used by
Packet Queue is particularly suited to
Ethernet because it supports variable
frame sizes, including jumbo frames.
Because memory is shared between
channels, the total memory needed is
reduced, while still handling bursty
data. Simply determine the peak out-
standing data and apply it to the
shared memory size instead of the size
of each channel. For example, the core
as configured in the GUI shown in
Figure 1 supports as many as three
stored jumbo frames at any given time,
in addition to smaller standard frames.

Buffering Example
Our second example application, shown in
Figure 3, uses Packet Queue to provide

transmit buffering and retry capabilities for
the Xilinx Serial RapidIO LogiCORE solu-
tion (SRIO). The RapidIO protocol allows
for as many as 31 outstanding (unacknowl-
edged) packets, with the possibility of
retransmitting any or all of the outstanding
packets. Packet Queue is ideally suited to
provide this amount of buffering, as well as
providing other features to make the inte-
gration as simple and seamless as possible.
These features include:

• LocalLink Interfaces – both Packet
Queue and SRIO use the Xilinx
LocalLink standard for their data inter-
faces. This enables you to connect the
two cores’ data interfaces together
without any glue logic. No glue logic
means faster development and less time
spent debugging.

• Retransmit packets – Packet Queue’s
retransmit capability meshes quite well
with the requirements of RapidIO. The
SRIO core provides two interfaces
through which packet retransmit
requests are made. When there is a prob-
lem with the packet currently on the
transmit interface, SRIO asserts its “dis-
continue” signal and the packet is
retransmitted by the Packet Queue with-
out any further intervention by your
control logic. When retransmission of

more than one packet is required, your
control logic then translates the request
for all of the failed packets currently
located in the Packet Queue and sched-
ules them for resend as normal. Following
packet acknowledgment, your logic then
instructs Packet Queue to free the memo-
ry that was allocated.

• Sideband data and channelization –
RapidIO optionally allows packets with
different priorities. Packet Queue sup-
ports this in either of two ways, giving
you the flexibility to pick the implemen-
tation that best suits your system
requirements. A simpler way is to con-
figure the core with a single bit of side-
band data that is mapped to the SRIO
core’s critical request input. Doing so
causes the critical request flag to pass
through the Packet Queue along with
the associated packet.

The more complex (but more power-
ful) method for implementing priorities
is to use multiple Packet Queue chan-
nels, with prioritized and critical request
packets written to separate channels.
This strategy allows higher priority pack-
ets to pass lower priority packets in the
Packet Queue, but requires you to
implement more complex scheduling
and retransmit control logic.

Conclusion
The Xilinx Packet Queue LogiCORE IP is a
simple yet powerful solution for protocol
bridging, aggregation, and packet buffering
systems. In addition to the examples we’ve dis-
cussed, Packet Queue is great for bridging
SPI-3 to SPI-4.2, SPI-4.2 to XAUI, PCI to
PCI Express, and countless other protocol
combinations. As networking protocols multi-
ply and networks carry more diverse types of
data, the need for these types of systems will
only grow. Packet Queue provides a cost-effec-
tive solution for your designs and lets you
deliver your product to your customers earlier.

For more information about the Packet
Queue, visit www.xilinx.com/systemio/
packet_queue. Feedback and suggestions for
new features are always welcome. To con-
tact the Packet Queue team, e-mail pack-
et_queue@xilinx.com. 
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Figure 3 – Serial RapidIO transmit buffering with optional priority reordering
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New High Speed ASIC Prototyping Engine - Now shipping!
• Logic prototyping system with 2-16 Xilinx Virtex™-4 FPGAs

- 14 LX100/160/200 and 2 FX60/100
- Nearly 24M ASIC gates (LSI measure - not inflated)

• FPGA interconnect is single-ended or LVDS (350MHz & 700mbit/s)
• Synplicity Certify™ models for partitioning assistance
• 4 separate DDR2 SODIMMs (200MHz)

- 64-bit data width, 200MHz (400mbit/s), 4GB/each
- Optional modules: Mictor, SSRAM, RLDRAM, FLASH

• Multi-gigabit serial I/O interfaces via XFP, SFP, and SMAs
• Flexible customization via daughter cards

- 1200 I/O pins, LVDS capable, 350MHz
• Fast and Painless FPGA configuration via Compact FLASH, or USB
• Full support for embedded logic analyzers via JTAG interface: 

ChipScope™, Identify™
The DINI Group
1010 Pearl Street, Suite 6
La Jolla, CA 92037   
(858) 454-3419
www.dinigroup.com

16 Virtex-4 FPGAs
24 million ASIC gates

Try our other

Virtex-4 products

DN8000k10



Instant 10A
Power Supply

Complete, Quick & Ready.

, LTC, LT, LTM and PolyPhase are registered trademarks and 
µModule is a trademark of Linear Technology Corporation. All 
other trademarks are the property of their respective owners.

The LTM®4600 is a complete 10A switchmode step-down power supply with a built-in inductor, supporting power components 
and compensation circuitry. With high integration and synchronous current mode operation, this DC/DC µModuleTM delivers 
high power at high efficiency in a tiny, low profile surface mount package. Supported by Linear Technology’s rigorous testing 
and high reliability processes, the LTM4600 simplifies the design and layout of your next power supply.

Ultrafast Transient Response
2% ³VOUT with a 5A Step

VIN = 12V, VOUT = 1.5V, 0A to 5A Load Step
(COUT = 3 x 22µF CERAMICS, 470µF POS CAP)

• 15mm x 15mm x 2.8mm LGA with
15°C/W JA

• Pb-Free (e4), RoHS Compliant
• Only CBULK Required
• Standard and High Voltage:

LTM4600EV: 4.5V VIN 20V
LTM4600HVEV: 4.5V VIN 28V

• 0.6V VOUT 5V
• IOUT: 10A DC, 14A Peak
• Parallel Two µModules for

20A Output

Features

Nu Horizons Electronics Corp.

Tel: 1-888-747-NUHO

www.nuhorizons.com/linear

Information 

FREE
LTM4600
µModule Board
�������	
���
���������



High
VELOCITY

L E A R N I N G

Nu Horizons Electronics Corp. is proud to present our newest education 
and training program - XpressTrack - which offers engineers the 

opportunity to participate in technical seminars conducted around the 
country by experts focused on the latest technologies from Xilinx.  This 

program provides higher velocity learning to help minimize start-up time 
to quickly begin your design process utilizing the latest development tools, 

software and products from both Nu Horizons and Xilinx.

For a complete list of course offerings, or to 
register for a seminar near you, please visit:

www.nuhorizons.com/xpresstrack

Courses Available

Optimizing MicroBlaze Soft 
Processor Systems

• 4 hour class
• Covers building a complete

customized MicroBlaze soft 
processor system

Video/Imaging Algorithms in 
FPGAs

• 1 day class
• Verify designs onto actual

hardware using Ethernet-
based hardware-in-the-loop 
co-simulation.

Introduction to Embedded 
PowerPC and Co-Processor Code 
Accelerators

• 4 hour class
• Covers how to build a high

performance embedded 
PowerPC system

Xilinx Spotlight: Virtex 5 
Architectural Overview

• Learn about the new 65 nm family 
of FPGAs from Xilinx 

• Understand how the new 
ExpressFabric will improve logic 
utilization

Fundamentals of FPGA
• 1 day class
• Covers ISE 8.1 features

ISE Design Entry
• 1 day class
• Covers XST, ECS, StateCAD

and ISE simulator

Fundamentals of CPLD Design
• 1 day class
• Covers CPLD basics and

interpreting reports for 
optimum performance

Design Techniques for Low Cost
• 1 day class
• Covers developing low cost

products particularly in high 
volume markets

VHDL for Design Engineers
• 1 day class
• CoversVHDL language and

implementation for FPGAs & 
CPLDs



The Programmable Logic CompanySM

www.xilinx.com/virtex5

Achieve highest system speed 
and better design margin with
the world’s first 65nm FPGAs.

Virtex™-5 FPGAs feature ExpressFabric™ technology on 65nm triple-oxide 

process. This new fabric offers the industry’s first LUT with six independent 

inputs for fewer logic levels, and advanced diagonal interconnect to enable 

the shortest, fastest routing. Now you can achieve 30% higher 

performance, while reducing dynamic power by 35% and area by 45%

compared to previous generations. 

Design systems faster than ever before

Shipping now, Virtex-5 LX is the first of four platforms optimized for 

logic, DSP, processing, and serial. The LX platform offers 330,000 logic 

cells and 1,200 user I/Os, plus hardened 550 MHz IP blocks. Build deeper 

FIFOs with 36 Kbit block RAMs. Achieve 1.25 Gbps on all I/Os without 

restrictions, and make reliable memory interfacing easier with enhanced

ChipSync™ technology. Solve SI challenges and simplify PCB layout with our

sparse chevron packaging. And enable greater DSP precision and dynamic 

range with 550 MHz, 25x18 MACs. 

Visit www.xilinx.com/virtex5, view the TechOnline webcast, and give 

your next design the ultimate in performance. 

The Ultimate System Integration Platform

Ultimate Performance…
Pe

rf
o

rm
an

ce

Logic
Fabric

Performance

On-chip
RAM

550 MHz

DSP
32-Tap Filter

550 MHz

I/O LVDS
Bandwidth
750 Gbps

I/O Memory
Bandwidth
384 Gbps

Virtex-5 FPGAs Virtex-4 FPGAs Nearest Competitor

Numbers show comparision with nearest competitor
Based on competitor’s published datasheet numbers

1.4 x

1.3 x 1.6 x

2.4 x

4.4 x

Industry’s 
fastest 
90nm FPGA 
benchmark

©2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners. PN 0010956
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