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Get Ready for More Innovations from Xilinx

Ever since Xilinx® began shipping the industry’s first All Programmable SoC back in
2011, users have been creating a vast array of innovative products across a growing
number of end markets. Automotive, industrial, scientific, wired and wireless com-

munications, aerospace, test and measurement, broadcast and consumer electronics—all
these markets have launched or will launch innovations driven with the Zynq® SoC. If you
have been reading Xcell Journal over the last few years or visiting the new Xcell Daily blog,
you’ve probably noticed the growing percentage of content related to the use of the device. 
Certainly a common theme throughout all the Zynq SoC-related articles is the amazing sys-

tem performance the device achieves simply by integrating and interconnecting the ARM®

dual-core Cortex™-A9 MPCore processors and 7 series FPGA logic—all on a single device.
With more than 3,000 interconnects linking the processing system with the programmable
logic, the Zynq SoC achieves performance that a two-chip, ASSP/ASIC + FPGA simply can’t
manage. There are not enough external I/Os on the outside of any discrete FPGA and ASSP to
do the job. An added benefit of this integration is a reduction in power requirements (as well
as the BOM), since the two-chip-for-one-chip swap also means the system needs less power
circuitry. Over the last four years, the Zynq SoC has certainly proven worthy of all the
Innovation awards it has received from tier-one trade publications worldwide.
So it is with great excitement that here at Xcell Journal, we finally get to reveal the on-chip

details of the next-generation All Programmable SoC from Xilinx: the Zynq UltraScale+™
MPSoC, which is scheduled for shipment early next year. I encourage you to read the cover
story for details about the device and the rest of Xilinx’s newly unveiled 16nm UltraScale+
portfolio. Leveraging lessons learned from the original Zynq SoC, feedback from users and
insights into their product road maps, Xilinx has created an All Programmable MPSoC that
achieves exponentially higher levels of system integration and system performance/watt than
the remarkable first-generation Zynq SoC.
In fact, the cover story explains how all the devices—FPGAs, 3D ICs and MPSoCs—in

the new UltraScale+ portfolio attain at a minimum twice the performance per watt of pre-
ceding-generation systems, thanks to implementation in TSMC’s 16nm FFT+ process.
Additional performance/watt benefits accrue from a new, larger memory called UltraRAM
that Xilinx is implementing in most of these devices and from a new system-level intercon-
nect technology called SmartConnect. 
By far the greatest performance/watt benefit can be achieved with the Zynq UltraScale+

MPSoC, which is a kitchen sink All Programmable SoC. It has a quad-core 64-bit APU, a
dual-core RPU, a graphics processor plus a host of peripherals, security features and power
management, all on one chip. Zynq MPSoC systems will be able to achieve 5x the perform-
ance/watt of 28nm Zynq SoC systems. 
You have created some amazing systems with the Zynq SoC. I can’t wait to see what you

do with the Zynq UltraScale+ MPSoC. I hope that as Xilinx begins rolling out these remark-
able devices, you will continue to share your design experiences with your colleagues by
publishing articles in Xcell Journal. 

Mike Santarini
Publisher

We dedicate this issue to Dan Teie, Xcell Journal’s longtime advertising
and creative director, who passed away in January. Dan was a sportsman,
an adventurer, a fighter, a gentleman and a great human being who had a
deep love for his family and friends and great passion for living life to its
fullest. We miss you, Dan.
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Xilinx 16nm UltraScale+  
Devices Yield 2-5X 
Performance/Watt 
Advantage 
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Building on the Generation Ahead lead gained with its 
28nm, 7 series All Programmable device family and its 
first-to-market 20nm UltraScale™ portfolio, Xilinx® has 
just unveiled its 16nm UltraScale+™ lineup. The device 
portfolio will enable customers to build systems with 
a 2X to 5X performance-per-watt advantage over com-
parable systems designed with Xilinx’s 28nm devices. 
These performance/watt advantages rest on three main 
pillars: device implementation in TSMC’s 16FF+ (16nm 
FinFET Plus) process, Xilinx’s on-chip UltraRAM mem-
ory and an innovative system-level interconnect-optimi-
zation technology called SmartConnect. 
 In addition, Xilinx has also unwrapped its sec-
ond-generation Zynq® All Programmable SoC. The Zynq 
UltraScale Multiprocessing SoC (MPSoC) features on 
a single device a quad-core 64-bit ARM® Cortex™-A53 
application processor, a 32-bit ARM Cortex-R5 real-time 
processer and an ARM Mali-400MP graphics processor, 
along with 16nm FPGA logic (with UltraRAM), a host 
of peripherals, security and reliability features, and an 
innovative power control technology. The new Zynq Ul-
traScale+ MPSoC gives users what they need to create 
systems with a 5X performance/watt advantage over 
systems designed with the 28nm Zynq SoC.

FINFET EXPANDS ULTRASCALE PORTFOLIO 
WITH EXTRA NODE OF VALUE   
“With the 16nm UltraScale+ portfolio, we are cre-
ating an extra node of value ahead of what Moore’s 
Law would traditionally afford users,” said Dave My-
ron, senior director of silicon product management 
and marketing at Xilinx. “We are addressing a broad 
range of next-generation applications, including LTE 
Advanced and early 5G wireless, terabit wired com-

The combination of TSMC’s 
16nm FinFET process  
with Xilinx’s new UltraRAM 
and SmartConnect  
technologies enables Xilinx  
to continue delivering 
‘More than Moore’s Law’  

value to the market.  B
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munications, automotive advanced 
driver-assistance systems and indus-
trial Internet-of-Things applications. 
The UltraScale+ portfolio will enable 
customers to create greater innovations 
while staying ahead of the competition 
in their respective markets.”  
 With its UltraScale generation of 
products, Xilinx is concurrently offer-
ing devices from two process nodes: 
TSMC’s 20nm planar process (already 
shipping) and now TSMC’s 16FF+ pro-
cess (which Xilinx plans to ship in the 
fourth calendar quarter of 2015).  Xilinx 
will be offering 16nm UltraScale+ ver-
sions of its Virtex® FPGA and 3D IC fam-
ilies, its Kintex® FPGA family as well as 
the new Zynq UltraScale+ MPSoCs. 

Mark Moran, director of new product 
introduction and solution marketing, 
said that Xilinx decided to begin its Ul-
traScale rollout with 20nm in 2013, in-
stead of waiting for TSMC’s 16FF+ pro-
cess. That’s because in some application 
spaces, it was imperative to have 20nm 
devices—which are inherently higher in 
performance and capacity than 28nm—
a year and a half sooner. 

vices look almost identical,” said My-
ron. “So there is an additional benefit 
of using the 16nm UltraScale+ devices, 
because the improvements in perfor-
mance/watt make it easier to achieve 
performance and power goals.” 

Myron said that UltraScale+ FPGAs 
and 3D ICs will afford more than a 2X 
performance/watt advantage over 28nm, 
7 series FPGAs. Meanwhile, Zynq Ul-
traScale+ MPSoCs, with their additional 
integrated heterogeneous processing ca-
pabilities, will have more than a 5X sys-
tem performance/watt advantage over 
comparable systems built with the 28nm 
Zynq SoCs (Figure 1).

PERFORMANCE/WATT EDGE 
FROM TSMC’S 16FF+ PROCESS
Based purely on the process migration 
to 16nm FinFET, Xilinx has produced de-
vices that boast a 2X performance/watt 
advantage over 28nm, 7 series devices. 
“TSMC’s 16FF+ is an extremely efficient 
process technology in that it virtually 
eliminates transistor power leakage asso-
ciated with the preceding silicon process-
es implemented with planar transistors,” 

“Our entire portfolio is designed with 
market needs in mind,” said Moran. “The 
capabilities of the devices in the 20nm 
UltraScale architecture are better suited 
to next-generation products of certain 
markets and end applications that don’t 
require that extra node of performance/
watt UltraScale+ offers. We built 20nm 
FinFET knowing 16nm was close be-
hind. And so we implemented a lot of 
architectural changes in 20nm that we 
knew we could build on for 16nm to add 
an extra level of performance and value 
for markets that need it. We have cus-
tomers who are getting a head start and 
developing on the 20nm devices we have 
available today so that when 16nm Ultra- 
Scale+ devices become available, they 
can quickly port their designs and get 
those designs to market sooner.” 

Myron added that many of the Virtex 
UltraScale+ devices will be pin-com-
patible with the 20nm Virtex Ultra- 
Scale devices, making it easy to trade 
up for designs that require the extra 
performance/watt benefits. 

“From a tools perspective, the 20nm 
UltraScale and 16nm UltraScale+ de-

Figure 1 – Xilinx 16nm UltraScale+ FPGAs and Zynq UltraScale+ MPSoCs offer design teams an extra node of value.
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said Myron. “In addition, we have worked 
diligently with TSMC to refine Ultra- 
Scale+ devices to take full advantage of 
the new process technology. At a mini-
mum (just from the new process tech-
nology innovations), UltraScale+ designs 
will see more than twice the perfor-
mance/watt improvement over designs 
implemented in 28nm 7 series devices.” 
 For a detailed description of Xilinx’s 
20nm UltraScale architecture and the 
advantages of FinFET over planar tran-
sistor processes, see the cover story in 
Xcell Journal, issue 84.

In the UltraScale+ family, Xilinx 
is also offering the industry’s first 
3D-on-3D devices—its third-generation 
stacked-silicon interconnect 3D ICs im-
plemented on TSMC’s 16FF+ 3D tran-
sistor technology. 

The award-winning 7 series 3D ICs 
surpassed the performance and capac-
ity limits of Moore’s Law by offering 
multiple dice on a single integrated cir-
cuit, Myron said. 

“With our homogeneous 3D IC, we 
were able to smash the capacity limits 
of Moore’s Law, offering a device that 
was twice the capacity of what the larg-
est monolithic FPGA could produce 
at 28nm,” said Myron. “Then, with our 
first heterogeneous device, we were 

able to mix FPGA dice with high-speed 
transceiver dice and offer system per-
formance and bandwidth not possible 
with a 28nm monolithic device. With Ul-
traScale+ 3D ICs, we’ll continue to offer 
capacity and performance exceeding 
the Moore’s Law trajectory.”

PERFORMANCE/WATT 
ADVANTAGE FROM ULTRARAM  
Myron said that many UltraScale+ de-
signs will gain an additional perfor-
mance/watt improvement vs. 28nm from 
a new, large on-chip memory called Ul-
traRAM. Xilinx is adding the UltraRAM 
to most of the UltraScale+ devices.  

“Fundamentally, what we are seeing 
is a growing chasm between the on-chip 
memory you have, such as LUT RAM or 
distributed RAM and Block RAM, and the 
memory you have off-chip, such as DDR 
or off-chip SRAM,” said Myron. “There 
are so many processor-intensive applica-
tions that need different kinds of memo-
ry. Especially as you design larger, more 
complex designs, there is a growing need 
to have faster memory on-chip. Block 
RAMs are too granular and there are too 
few of them. And if you put memory off 
the chip, it adds to power consumption, 
complicates I/O and adds to BOM cost.”

These are the reasons Xilinx cre-

ated UltraRAM. “What we’ve done is 
add another level of memory hierarchy 
on-chip, along with the ability to easi-
ly implement large blocks of memory 
into the design,” Myron said. “We have 
made it easy for designers to place the 
right size memory on-chip and the tim-
ing is guaranteed.”

LUT or distributed RAM allows de-
signers to add RAM in bit and kilobit 
sizes, and BRAM lets them add memory 
blocks in tens of megabits. UltraRAM 
will allow those using UltraScale+ de-
vices to implement on-chip SRAM in 
blocks counted in hundreds of megabits 
(Figure 2). By doing so, designers will 
be able to create higher-performance 
and more power-efficient systems 
that require less off-chip RAM (SRAM, 
RLDRAM and TCAM). The result will 
be a reduction in BOM costs. The larg-
est UltraScale+ device, the VU13P, will 
have 432 Mbits of UltraRAM.

PERFORMANCE/WATT ADVANTAGE 
FROM SMARTCONNECT 
Another new technology, called SmartCon-
nect, brings additional performance/watt 
improvements to UltraScale+ designs. 

“SmartConnect is a co-optimization 
of the tools and hardware and an intel-
ligent way to enable designs to be more 

Figure 2 – UltraRAM closes the memory gap between on-chip and off-chip memory, allowing designers  
to create higher-performance and lower-power systems with larger local memory blocks.

http://www.author.xilinx.com/publications/archives/xcell/Xcell84.pdf
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Figure 3 illustrates a real design that 
has eight video-processing engines, all in-
terfacing with a processor and memory. “It 
may be surprising that in a real- world de-
sign like this, the interconnect logic actu-
ally can consume almost half the design’s 
total area. This not only impacts power 
but limits frequency,” said Myron. “Smart-
Connect can automatically restructure the 
interconnect blocks and decrease power 
by 20 percent at the same performance.

16NM ULTRASCALE FPGA 
BENCHMARK   
To illustrate the performance/watt ad-
vantage in an FPGA design scenario, 
a 48-port wireless CPRI compression 
and baseband hardware accelerator 
implemented in a 28nm Virtex-7 FPGA 
consumes 56 watts (Figure 4). The 
same design running at the same per-
formance but implemented in a 16nm 

easily implemented even as they are be-
coming more complex,” said Myron.

Traditionally as engineers cram 
more IP blocks into a design, the over-
head—in terms of power and area re-
quirements—increases. With SmartCon-
nect, Xilinx has added optimizations to 
the Vivado® Design Suite that will look 
at the entire design from a system level, 
Myron said. SmartConnect will come up 
with the most efficient interconnect to-
pologies to get the lowest area and high-
est performance, leveraging certain new 
enhancements to the AXI interconnect 
along with the 16nm UltraScale+ silicon. 

“The 16nm UltraScale+ devices 
will have greater efficiency at this 
higher protocol level, not just the 
routing level,” said Myron. “That 
means there is an additional net per-
formance/watt benefit on top of the 
16nm FinFET advantage.”

Virtex UltraScale+ FPGA consumes 27 
W, or 55 percent less, giving it a 2.1X 
performance/watt advantage. With the 
additional performance/watt advan-
tage from UltraRAM and SmartCon-
nect, the performance/watt advantage 
of the Virtex UltraScale+ version of the 
design jumps to better than 2.7X that 
of the 28nm Virtex-7 FPGA implemen-
tation, with 63 percent less power.
 Similarly, in an image-processing PCI 
module with a 15-W FPGA power bud-
get, a 28nm Virtex-7 yields performance 
of 525 operations per second. In compar-
ison, the same design implemented in 
16nm UltraScale yields 1,255 operations 
per second, a 2.4X performance/watt in-
crease. Adding the gains from UltraRAM 
and SmartConnect, the performance/
watt advantage of the Virtex UltraScale+ 
version jumps to over 3.6X that of the 
28nm Virtex-7 FPGA implementation.

Figure 3 – SmartConnect technology cuts the area of interconnect required by up to 20 percent,  
which in turn reduces power consumption by 20 percent at the same performance level.

SmartConnect will come up with the most  
efficient interconnect topologies to get  

the lowest area and highest performance. 



 First Quarter 2015  Xcell Journal  13

C O V E R  S T O R Y

ZYNQ ULTRASCALE MPSOC 
OFFERS PERFORMANCE/WATT 
ADVANTAGE OF OVER 5X  
While Xilinx could have implemented 
its second-generation All Programma-
ble SoC in TSMC’s 20nm process, the 
company chose to wait to implement 
the device in TSMC’s 16nm FinFET 
process. The heterogeneous multipro-
cessing feature set of the device, paired 
with the performance/watt advantages 
of the 16nm UltraScale architecture, 
make the 16nm Zynq UltraScale+ MP-
SoC an even more efficient central pro-
cessing system controller. The device 
delivers more than 5X the performance 
of the 28nm Zynq SoC.
 Last year, Xilinx unveiled its “Right 
Engines for the Right Tasks” use mod-
el for the UltraScale MPSoC architec-
ture but withheld details regarding 
which particular cores the Zynq Ul-

traScale+ MPSoC devices would have. 
The company is now unveiling the full 
feature set of the Zynq UltraScale+ 
MPSoC (Figure 5).

Certainly the biggest value-add of 
the original 28nm Zynq SoC was in in-
tegrating an ARM processing system 
and programmable logic on a single 
device. More than 3,000 intercon-
nects (running at a peak bandwidth 
of ~84 Gbps) link the Zynq SoC’s 
processing system and programma-
ble logic blocks. This tight connec-
tion between the PS and PL yields 
throughput and performance simply 
not possible with a two-chip system 
architecture consisting of an FPGA 
and a separate ASSP. 

Now, with the 16nm UltraScale+ MP-
SoC, Xilinx has dramatically improved 
the performance between the process-
ing system and programmable logic, 

giving the device more than 6,000 in-
terconnects running at 500-Gbps peak 
bandwidth. “This makes the connection 
between the Zynq UltraScale+ MPSoC’s 
processing and logic systems 6X faster 
than what is possible with the 28nm 
Zynq SoC,” said Barrie Mullins, Xil-
inx’s director of All Programmable SoC 
product marketing and management. 
“It leaves two-chip ASSP-plus-FPGA ar-
chitectures that much further behind in 
terms of system performance.”

Mullins said that at the center of 
the Zynq UltraScale+ MPSoC is the 
64-bit, quad-core ARM Cortex-A53 
processor, which delivers better than 
double the performance of the 28nm 
Zynq SoC’s dual-Cortex-A9 processing 
system. The application processing 
system is capable of hardware virtu-
alization and asymmetric processing, 
and fully supports ARM’s TrustZone® 

Figure 4 – The 16nm UltraScale+ retains its impressive performance/watt advantage for those seeking to implement faster designs on the same 
power budget or those seeking drastic power reductions with the same performance.
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suite of security features.
Xilinx also gave the Zynq UltraScale+ 

MPSoC a dual-core, ARM Cortex-R5 
real-time processing subsystem that 
allows users to add deterministic op-
eration to their systems. The real-time 
processor ensures instantaneous sys-
tem responsiveness for applications re-
quiring the highest levels of throughput, 
safety and reliability. 

The Zynq UltraScale+ MPSoC also in-
cludes a number of dedicated graphics 
engines for further gains in processing 
performance. An ARM Mali™-400MP 
dedicated graphics acceleration core 
offloads graphics-intensive tasks 
from the main CPU. To complement 
the GPU, Xilinx added a hardened 
video codec core to the programma-
ble logic block for video compres-
sion/decompression supporting the 
H.265 video standard for 8Kx4K (15 
frames per second) and 4Kx2K (60 
fps). A DisplayPort source core al-
lows users to speed video data pack-

etization while eliminating the need 
for an external DisplayPort TX trans-
mitter chip in their systems.

The Zynq UltraScale+ MPSoC also 
features a number of on-chip memory 
enhancements. The largest devices in 
the product family will include Ultra- 
RAM in addition to Block RAM in the 
programmable logic. Meanwhile, the 
Zynq UltraScale+ MPSoC’s processing 
cores share L1 and L2 caches. 

The Zynq UltraScale+ MPSoC also 
features a wider, 72-bit DDR interface 
core with ECC (64 bits plus 8 bits for 
ECC). The interface boasts speeds of 
up to 2,400 Mbps for DDR4, with sup-
port for larger-memory-depth DRAM 
capacity of 32 Gbytes. 

A dedicated security unit on the 
Zynq UltraScale+ MPSoC enables mil-
itary-class security such as secure 
boot, key and vault management, and 
anti-tamper capabilities—all standard 
requirements for machine-to-machine 
communication and connected control 

applications. In addition, the Zynq Ul-
traScale+ MPSoC’s programmable logic 
system also includes integrated connec-
tivity blocks for 150G Interlaken, 100G 
Ethernet MAC and PCIe® Gen4. An on-
board Analog Mixed-Signal (AMS) core 
helps design teams test their systems 
with System Monitor.

With all these features, it is unlikely 
that any application would use every 
engine available in the MPSoC. There-
fore, Xilinx gave the Zynq UltraScale+ 
MPSoC an extremely flexible dedicat-
ed power-management unit (PMU). 
The core enables users to control 
power domains and islands (coarse 
and fine-grained) to power only those 
processing units the system is using. 
What’s more, design teams can pro-
gram the core for dynamic operation, 
ensuring the system runs only the fea-
tures needed to perform a given task 
and then powers down. The PMU also 
drives a multitude of safety and reli-
ability capabilities such as signal and 

Figure 5 – The 16nm Zynq UltraScale+ MPSoC features a rich set of processing engines that design teams can tailor  
for unmatched system performance, drastically increasing the value of their systems. 
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error detection and mitigation, safe-
state mode, and system isolation and 
protection. 

Myron said that thanks to all of these 
processing features added to the 16nm 
performance/watt features discussed 
above, designs built with the Zynq Ultra- 
Scale+ MPSoC will enjoy on average a 5X 
performance/watt advantage over designs 
implemented with the 28nm Zynq SoC.

16NM ZYNQ ULTRASCALE  
MPSOC BENCHMARK    
To illustrate the Zynq UltraScale+ MP-
SoC’s performance/watt advantage, 
let’s look at benchmarks for three of the 
many applications the device serves, 
color-coded to demonstrate the diversi-
ty of processing engines (Figure 6).
 To create a videoconferencing system 
that runs full 1080p video, designers 

used a Zynq SoC paired with a separate 
H.264 ASSP. With the advantages of the  
Zynq UltraScale+ MPSoC, designers can 
now implement a 4Kx2K UHD system 
in one Zynq UltraScale+ MPSoC with 
the same power budget and achieve 
5X the performance/watt savings of the 
two-chip system.

“In a public-safety radio application 
that required a Zynq SoC along with two 
ASSPs, you can now implement the en-
tire design in one Zynq UltraScale+ MP-
SoC with 47 percent less system power 
and 2.5X the performance of the previ-
ous configuration, yielding a 4.8X per-
formance/watt advantage,” said Sumit 
Shah, senior SoC product line manager.

Likewise, Shah said an automotive mul-
ticamera driver assist system previously 
implemented in two 28nm Zynq SoCs can 
shrink to one Zynq UltraScale+ MPSoC. 

The one-chip system delivers 2.5X the per-
formance of the two-chip design and con-
sumes 50 percent less power. This yields 
a net 5X performance/watt advantage over 
the previous implementation.

Early customer engagements are 
in process for all of the UltraScale+ 
families. Xilinx has scheduled first 
tapeouts and early-access release of 
the design tools for the second calen-
dar quarter of 2015. The company ex-
pects to begin shipping UltraScale+ 
devices to customers in the fourth 
calendar quarter of 2015. 

For more information on the 16nm 
UltraScale portfolio’s performance/
watt advantage, visit www.xilinx.
com/ultrascale. For further informa-
tion on the Zynq UltraScale+ MPSoC, 
visit www.xilinx.com/products/tech-
nology/ultrascale-mpsoc.html. 

Figure 6 – The Zynq UltraScale+ MPSoC’s extensive processing blocks, rich peripherals set and 16nm logic blocks enable design teams to create 
innovative systems with a 5X performance/watt advantage over designs using 28nm Zynq SoCs. 

http://www.xilinx.com/ultrascale
http://www.xilinx.com/ultrascale
http://www.xilinx.com/products/technology/ultrascale-mpsoc.html
http://www.xilinx.com/products/technology/ultrascale-mpsoc.html
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S
tate-of-the-art remote sensing in-
struments on spacecrafts deliver 
vast amounts of high-resolution 
image data. For classical Earth 
observation missions, scientists 

typically evaluate the collected data after 
reception on the ground. While deep-space 
missions also have to cope with high im-
aging data rates, the telemetry rate, on the 
other hand, is very limited. 

One demanding example is the Polari-
metric and Helioseismic Imager (PHI) in-
strument, which has been selected as part 
of the scientific payload for the European 
Space Agency’s Solar Orbiter mission, due 
to launch in 2017. The PHI instrument, de-
veloped mainly at the Max Planck Institute 
for Solar System Research (MPS) in Ger-
many, will provide maps of the continuum 
intensity, magnetic-field vector and line-
of-sight velocity in the solar photosphere. 

Because of the high amount of cap-
tured data and the limited downlink ca-
pability, extracting scientific parameters 
onboard the spacecraft will reduce the 
data volume dramatically. As a result, sci-
entists will be able to take a closer look 
into the solar photosphere.

To cope with these onboard processing 
demands, Xilinx® SRAM-based FPGAs 
with high gate counts offer an attractive 
solution. Our team at the Braunschweig 
University of Technology in Germany al-
ready has a history with Xilinx FPGAs 
in active space missions. We have used 
these devices for classical image-data 
compression in the processing units of 
the Venus Express Monitoring Camera 
(VMC) and the Dawn Framing Camera 
(DawnFC), both now in successful op-
eration for several years. For the Solar 
Orbiter PHI processing unit, we decided 
to use two space-grade Virtex®-4 FPGAs, 
which will be reconfigured during flight. 

Before going into the details of how 
the FPGAs will streamline data capture 
on this important mission, let’s take a 
closer look at the PHI itself and examine 
how it operates.

THE SOLAR ORBITER PHI  
The PHI instrument acquires sets of im-
ages from an active-pixel sensor. A fil-

Space-grade Virtex  
FPGAs will accelerate  
the acquisition of image  
data and enable in-flight  
processing on scientific  
space instruments.
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ter wheel in the optical path applies 
different wavelength and polarization 
settings to these images. By prepro-
cessing the captured image data (for 
example, dark- and flat-field correc-
tion) and performing a compute-inten-
sive inversion of the radiative trans-
form equation (RTE), it’s possible to 
calculate magnetic-field vectors from 
pixel data. Together with standard 
data compression, this approach will 
reduce the amount of data from 3.2 
Gbits to 100 Mbits per data set. This 
is a factor of 64 compared with the 
raw-data input 

dedicated controller for an image-sta-
bilization system will run simultane-
ously.

After the data acquisition, we recon-
figure the two Virtex-4 FPGAs with a 
preprocessing core and an RTE core 
(the orange boxes in Figure 1). The 
preprocessing core retrieves the previ-
ously stored data from the flash mem-
ory and performs dark- and flat-field 
correction, addition, multiplication and 
convolution of frames. Subsequently, 
the RTE core computes the inversion of 
the radiative transfer equation.

The FPGA design of the RTE inversion 

The processing flow of the PHI can 
be divided into two modes of operation 
(Figure 1). Changing between these 
two modes is perfectly applicable for 
in-flight reconfiguration of the Virtex  
FPGAs. Here’s how the process works.

During the acquisition phase (the 
reddish box at left in Figure 1), the 
detector provides images with a res-
olution of 2,048 x 2,048 pixels. The 
acquisition FPGA will accumulate a 
set of multiple images at different fil-
ter settings and directly store them in 
a large array of NAND flash memory. 
To reduce residual spacecraft jitter, a 

Figure 1 – Polarimetric and Helioseismic Imager (PHI) data-processing pipeline
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is a contribution of the Instituto de As-
trofísica de Andalucía in Granada, Spain. 
The design for the controller of the im-
age-stabilization system was developed 
at the University of Barcelona. 

ARCHITECTURE OF  
THE PHI PROCESSING UNIT  
Figure 2 shows the architecture of the 
data-processing unit. For communication 
to the spacecraft and the system control-
ler, we use a dedicated and highly reliable 
GR712 LEON3-FT processor ASIC running 
at a clock frequency of 50 MHz. The CPU 
has its own 2-Gbit SDRAM memory and 
is also connected to 1 Gbit of nonvolatile 
NOR flash memory that stores software 
and FPGA bitstream configuration files. 
For the image acquisition, image stabili-
zation, preprocessing and RTE inversion, 
we use two Virtex-4QV FPGAs. The possi-
bility of in-flight reconfiguration allows us 

Figure 3 – Qualification board with soldered daisychain device

to effectively utilize these two devices in a 
time-shared manner. This scheme reduces 
mass, volume and the power consumption 
of the platform, which are very important 
factors for deep-space missions. 
 A one-time-programmable radiation- 
hardened FPGA connects the LEON3 
system controller and the two Virtex-4 
devices. Furthermore, this same FPGA 
functions as a system supervisor. It pro-
vides I/O signals and interfaces to con-
trol parts of the hardware and the exter-
nal power supply, and to communicate 
with sensors and actuators. Two JTAG 
interfaces allow this FPGA to write and 
read back the configuration bitstreams 
of the two Virtex-4 devices.

To store the large amount of image 
data, we designed a memory board 
based on an array of NAND flash devic-
es with a total capacity of 4 Tbits. To ad-
dress this set of memories, located on a 

separate board, we developed a NAND 
flash controller that is also placed in the 
system-supervisor FPGA. To cope with 
the relatively slow data rate between 
the NAND flash array and the process-
ing FPGAs, the data acquisition and 
preprocessing rely on a fast, external 
buffer memory. A dedicated network 
connects the system-controller FPGA 
with the two Virtex-4 FPGAs off-chip 
and the NAND-flash memory controller 
with the processing cores on-chip.

DEALING WITH  
RADIATION EFFECTS 
The Xilinx Virtex-4QV is a radia-
tion-tolerant FPGA, which means 
that the device will not suffer physi-
cal damage through radiation effects. 
Nevertheless, bit upsets can occur 
and the design has to mitigate them. 
Radiation can affect SRAM-based  
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known as scrubbing. We optimized the 
scrubbing process by doing a read back 
on the bitstream and we reconfigure a 
certain configuration frame only when 
an upset is detected.

Radiation effects induced into the 
application layer will result in faults 
of the control logic, for example stuck 

state machines, or simply wrong values 
in the data path. We will mitigate the 
upsets on this layer by using triple-mod-
ular redundancy (TMR) and error detec-
tion and correction (EDAC) techniques. 

For a successful mitigation of up-
sets in the FPGA design, it’s crucial 
to create mechanisms to protect both 

Figure 4 – Bottom side of the PHI data-processing unit engineering model

FPGAs in two layers: the configura-
tion layer and the application layer. 

Bit upsets in the configuration lay-
er will mainly alter routing logic and 
combinational functions. One way to 
repair errors introduced into this layer 
is to overwrite the configuration SRAM 
in certain time intervals, a technique 
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the configuration layer and the ap-
plication layer. Integrating only one 
mitigation scheme alone, scrubbing 
or TMR, would not be sufficient.

ASSEMBLY QUALIFICATION  
FOR THE VIRTEX-4QV
Unlike commercial versions of Virtex-4 
FPGAs, which come in a flip-chip BGA 
package, the space-grade Virtex-4QV de-
vices are delivered in a ceramic package. 
Maintaining a compatible footprint, these 
devices are equipped with solder columns. 
When we decided to use Virtex-4QV parts 
in 2012, no qualified process manufacturer 
was available in Europe to assemble these 
CF1140 packages. For this reason we had 
to start a mission-specific package assem-
bly qualification.

For this purpose, we assembled 
three representative qualification 
boards with overall six CF1140 daisy-
chain devices (Figure 3). After dedicat-
ed shock and vibration tests, we start-
ed a thermal-cycling test with close 
monitoring of resistances of the daisy-
chain packages. Before and after each 
test step, optical and X-ray inspection 
of the devices proved that no critical 
physical damage had occurred. We are 
just finishing the qualification process 
by means of a destructive micro-sec-
tioning of one PCB.

CURRENT STATUS AND OUTLOOK 
After defining a basic architecture for 
our design including error mitigation 

and the qualification of the Virtex-4 as-
sembly, we started to work on a proto-
type of the data-processing unit based 
on commercial parts. This engineering 
model fits the final 20 x 20-cm shape of 
the electronic housing and is already in 
operation without major problems. It 
has a mass of 550 grams (without the 
NAND-flash memory board) and con-
sumes less than 15 watts. The bottom 
side of this model, equipped with the 
two Virtex FPGAs, is shown in Figure 4. 
Currently, we are focusing on finishing 
the qualification model of our board, 
equipped with qualified parts.
 In summary, the high gate count and 
the ability for in-flight reconfiguration of 
the Virtex-4 devices made it possible for 
us to develop a compact and high-per-
formance data-processing platform with 
reduced size, mass and power consump-
tion. The data flow of the acquisition and 
processing perfectly suits a system with 
two reconfigurable FPGAs. 

This system is a first step in bringing 
in-flight reconfiguration technology to 
deep-space missions. Electronics for 
the space industry are usually a couple 
of years behind commercial technol-
ogy. Today, the Xilinx Zynq®-7000 All 
Programmable SoC family integrates 
SRAM-based FPGA technology with 
multiple processor cores into a single 
system-on-chip. In coming years it will 
be of interest for us to see if these types 
of SoC solutions will also adapt to the 
space industry’s needs. 

A high gate count and the ability for  
in-flight reconfiguration of the Virtex-4  

devices made it possible for us to develop 
a compact and high-performance  

data-processing platform with reduced 
size, mass and power consumption. 
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T
he ever-increasing demand for data 
on the world’s cellular networks 
has operators searching for ways to 
increase the capacity 5,000-fold by 
2030 [1]. Getting there will require 

a 5x increase in channel performance, a 20x in-
crease in allocated spectrum and a 50x increase 
in the number of cell sites. 

Many of these new cells will be placed indoors, 
where the majority of traffic originates, and fiber 
is the top choice to funnel the traffic back into the 
networks. But there are many outdoor locations 
where fiber is not available or is too expensive to 
connect, and for these situations wireless back-
haul is the most viable alternative. 

Unlicensed spectrum at 5 GHz is available and 
does not require a line-of-sight path. However, the 
bandwidth is limited and interference from other 
users of this spectrum is almost guaranteed due to 
heavy traffic and wide antenna patterns.

Communication links of 60 GHz are emerging 
as a leading contender to provide these back-
haul links for the many thousands of outdoor 
cells that will be required to meet the capacity 
demands. This spectrum is also unlicensed, but 
unlike frequencies below 6 GHz, it contains up 
to 9 GHz of available bandwidth. Moreover, the 
high frequency allows for very narrow and fo-
cused antenna patterns that are somewhat im-
mune to interference.

A complete 60-GHz two-way data communica-
tion link developed by Xilinx and Hittite Micro-
wave (now part of Analog Devices) demonstrates 
superior performance and the flexibility to meet 
the requirements of the small-cell backhaul mar-
ket (Figure 1). Xilinx developed the digital mo-
dem portion of the platform and Analog Devices, 
the millimeter-wave radio portion.

As depicted in Figure 1, two nodes are required 
to create this link. Each node contains a transmit-
ter (with a modulator) with its associated analog 
Tx chain and a receiver (with a demodulator) with 
its associated analog Rx chain. 

The modem card is integrated with analog and 
discrete devices. It contains oscillators (DPLL 
module) to ensure the accuracy of frequency syn-
thesis, and all the digital functions are executed in 
an FPGA or SoC. This single-carrier modem core 
supports modulations from QPSK to 256QAM in 
channel bandwidths up to 500 MHz, and achieves 
date rates as high as 3.5 Gbps. The modem also 
supports both frequency-division duplex (FDD) 
and time-division duplex (TDD) transmission 

A complete 60-GHz two-way 
data communication scheme 
based on Xilinx’s Zynq SoC 
offers the performance and 
flexibility to serve the 
small-cell backhaul market.
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schemes. Robust modem design tech-
niques reduce the phase noise impli-
cations of the local oscillators and 
powerful LDPC coding is included for 
improved performance and link budget.

MILLIMETER-WAVE MODEM  
The Xilinx millimeter-wave modem 
solution enables infrastructure ven-
dors to develop flexible, cost-opti-
mized and customizable links for their 
wireless backhaul networks. This solu-
tion is targeted at the Xilinx® Zynq®-
7000 All Programmable SoC or Kin-
tex®-7 FPGA devices, which are part 
of Xilinx’s “generation-ahead” 28-nano-
meter product family. 

Xilinx’s solution is fully adaptive, 
is low in power and small in footprint, 
and can be used to deploy indoor and 

solution complete with PHY, controller, 
system interfaces and packet processor 
is shown in Figure 2. However, based 
on the required architecture, you could 
insert, update or remove different mod-
ules. For instance, you might choose to 
implement an XPIC combiner so that 
you could use the modem in cross-po-
larization mode with another modem. 
The solution is implemented in the PL, 
where serdes and I/Os are used for var-
ious data path interfaces such as those 
between the modem and packet proces-
sor, the packet processor and memory, 
inter-modem or DAC/ADC. 

Some of the other important features 
of the Xilinx modem IP include automat-
ic hitless and errorless state switching 
through adaptive coding and modula-
tion (ACM) to keep the link operational; 

full outdoor point-to-point links as well 
as point-to-multipoint microwave links. 
Just as with its silicon, Xilinx’s road map 
for its millimeter-wave modem solution 
is very aggressive, and presents oper-
ators with the unique ability to deploy 
scalable and field-upgradable systems.

Figure 2 further details the digital 
modem as implemented on the Zynq 
SoC platform. Alongside the program-
mable logic (PL), the platform’s scalable 
processing system (PS) contains dual 
ARM® Cortex™-A9 cores with integrat-
ed memory controllers and multistan-
dard I/Os for peripherals. 

This system-on-chip (SoC) platform 
is highly flexible. Here, it is used to per-
form various data and control functions 
and to enable hardware acceleration. 
An integrated millimeter-wave modem 

Robust modem design techniques  
reduce the phase noise implications of  

the local oscillators. Powerful LDPC coding  
is included for improved performance  

and link budget.  

Figure 1 – High-level block diagram of the complete two-way communication link
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adaptive digital closed-loop predistortion 
(DPD) to improve RF power amplifier ef-
ficiency and linearity; synchronous Ether-
net (SyncE) to maintain clock synchroni-
zation; and Reed-Solomon or low-density 
parity check (LDPC) forward error cor-
rection (FEC). The FEC choice is based 
on the design requirements. LPDC FEC is 
the default choice for wireless backhaul 
applications, whereas Reed-Solomon 
FEC is preferred for low-latency applica-
tions such as front-haul. 

LDPC implementation is highly op-
timized and exploits FPGA parallelism 
for the computations done by the en-
coders and decoders. The result is no-
ticeable SNR gains. You can apply dif-
ferent levels of parallelism by varying 
the number of iterations of the LDPC 
core, thereby optimizing the size and 
power of the decoder. You can also 
model the solution based on channel 

Figure 2 – All Programmable SoC for wireless modem applications

bandwidth and throughput constraints. 
The Xilinx modem solution also 

comes with a powerful graphical user 
interface (GUI) for both display and 
debug, and is capable of high-level func-
tions such as channel bandwidth or 
modulation selection as well as low-lev-
el ones such as setting of hardware reg-
isters. To achieve 3.5-Gbps throughput 
for the solution shown in Figure 1, the 
modem IP runs at a 440-MHz clock rate. 
It uses five gigabit transceivers (GTs) 
for connectivity interfaces to support 
ADCs and DACs, and a few more GTs 
for 10GbE payloads or CPRI interfaces.

MILLIMETER-WAVE  
TRANSCEIVER CHIP SET   
In late 2014, Analog Devices released its 
second-generation silicon germanium 
(SiGe) 60-GHz chip set, significantly en-
hanced and optimized for the small-cell 

backhaul application. The HMC6300 
transmitter chip is a complete analog 
baseband-to-millimeter-wave upconvert-
er. An improved frequency synthesizer 
covers 57 to 66 GHz in 250-MHz steps with 
low phase noise and can support modula-
tions up to at least 64QAM. Output power 
has increased to roughly 16-dBm linear 
power, while an integrated power detec-
tor monitors the output power so as not 
to exceed the regulatory limits. 
 The transmitter chip offers either an-
alog or digital control of the IF and RF 
gains. Analog gain control is sometimes 
needed when using higher-order modula-
tions, since discrete gain changes can be 
mistaken for amplitude modulation, lead-
ing to bit errors. Digital gain control is sup-
ported using the built-in SPI interface.

For applications requiring even high-
er-order modulation in narrow chan-
nels, an external PLL/VCO with even 
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Figure 3 – HMC6300 60-GHz transmitter IC block diagram

Figure 4 – HMC6301 60-GHz receiver IC block diagram

lower phase noise can be injected into 
the transmitter, bypassing the internal 
synthesizer. Figure 3 shows a block dia-
gram of the HMC6300.

The transmitter supports up to 1.8 
GHz of bandwidth. An MSK modulator 
option enables low-cost data transmis-
sions up to 1.8 Gbps without the need 
for expensive and power-hungry DACs. 

Complementing this device is the 
HMC6301 receiver chip, likewise op-
timized to meet the demanding re-
quirements of small-cell backhaul. 
The receiver features a significant in-
crease in the input P1dB to -20 dBm 
and IIP3 to -9 dBm to handle short-
range links where the high gain of 

the dish antennas lead to high signal 
levels at the receiver input. 

Other features include a low, 6-dB 
noise figure at the maximum gain set-
tings; adjustable low-pass and high-pass 
baseband filters; the same new synthe-
sizers as found in the transmitter chip 
to support 64QAM modulation over the 
57- to 66-GHz band; and either analog or 
digital control of the IF and RF gains.

A block diagram of the HMC6301 re-
ceiver chip is shown in Figure 4. Note that 
the receiver also contains an AM detector 
to demodulate amplitude modulations 
such as on/off keying (OOK). Also, an FM 
discriminator demodulates simple FM or 
MSK modulations. This is in addition to the 

IQ demodulator that is used to recover the 
quadrature baseband outputs for QPSK 
and more-complex QAM modulations.

Both the HMC6300 transmitter and 
HMC6301 receiver will be available in a 4 x 
6-mm BGA-style wafer-level package. They 
will be designated the HMC6300BG46 and 
HMC6301BG46 and are scheduled for sam-
pling in early 2015. These surface-mount 
parts will enable the low-cost manufactur-
ing of the radio boards.

A block diagram of an example mil-
limeter-wave modem and radio system 
is shown in Figure 5. In addition to the 
FPGA, modem software and millime-
ter-wave chip set, the design also contains 
a number of other components. They in-
clude the AD9234 dual-channel 12-bit, 
1-Gsample/second ADC; the AD9144 
quad-channel 16-bit, up to 2.8-GSPS Tx-
DAC; and the HMC7044 ultralow-jitter 
clock synthesizer with support for the 
JESD204B serial data interface that is em-
ployed on both the ADC and the DAC ICs.

DEMONSTRATION PLATFORM  
Xilinx and Analog Devices have jointly cre-
ated a demonstration platform implemen-
tation featuring the FPGA- based modem 
on the Xilinx KC705 development board, 
an industry-standard FMC board contain-
ing ADCs, DACs and clock chip, and two 
radio module evaluation boards (Figure 
6). The demo platform includes a laptop 
for modem control and visual display, and 
a variable RF attenuator to replicate the 
path loss of a typical millimeter-wave link. 
The Xilinx KC705 development board fea-
tures the Kintex-7 XC7K325T-2FFG900C 
FPGA executing the WBM256 modem 
firmware IP. An industry-standard FMC 
mezzanine connector on the development 
board is used to connect to the baseband 
and millimeter-wave radio boards. 

The millimeter-wave modules snap 
onto the baseband board. The modules 
have MMPX connectors for the 60-GHz 
interfaces as well as SMA connectors for 
optional use of an external local oscillator.

This platform contains all the hard-
ware and software needed to demon-
strate point-to-point backhaul con-
nections of up to 1.1 Gbps in 250-MHz 
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channels for each direction of a frequen-
cy-division duplex connection.

MODULAR AND CUSTOMIZABLE  
FPGAs are increasingly being used in var-
ious wireless backhaul solutions, since 
the platforms based on them can be high-
ly modular and customizable, thereby 
reducing the total cost of ownership for 
the OEMs. Owing to significant power im-
provements in its 7 series FPGA/SoC fam-
ilies and high-performing wideband IP 
cores, Xilinx expects its millimeter-wave 
modem solution to be a front-runner 
for the small-cell backhaul application. 
Xilinx FPGAs and SoCs are suitable for 
high-speed and power-efficient designs, 
and its high-speed GTs can be used ef-
fectively for wideband communications 
and switching functions. Xilinx’s solution 
can be scaled to support multiple prod-
uct variations, from lower-end small-cell 
backhaul products operating at a few 

hundred megabits per second to 3.5 Gbps 
on the same hardware platform.
 For the radio portion, the transceiv-
ers have now been integrated into sili-
con-based ICs and packaged into sur-
face-mount parts, allowing for low-cost 
manufacturing. Analog Devices’ millime-
ter-wave chip set meets the wireless back-
haul needs of the small-cell deployments 
and provides market-leading performance 
in power, size, flexibility and functional-
ity. Analog Devices also provides indus-
try-best data converters and clock-man-
agement ICs that are critical components 
of this complete solution. Together, the 
two companies intend to drive the indus-
try adoption of this exciting technology. 

Reference
 1.  “Evolutionary and Disruptive Visions 

Towards Ultra High Capacity Net-
works,” IWPC, April 2014

An MSK modulator option enables low-cost 
data transmissions up to 1.8 Gbps 
without the need for expensive and 

power-hungry DACs. Figure 5 – Example reference design using Xilinx and Analog Devices ICs

Figure 6 – The demonstration platform in action
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C
loud storage and the outsourcing of IT 
services hold a number of attractions 
for IT managers, because these options 
can save costs and reduce the support 
burden. But one big disincentive about 

allowing sensitive data outside a company’s firewall 
is the concern about security. The hesitation is under-
standable, as information is one of the most valuable 
assets for many companies, whether it is accountan-
cy, customer or manufacturing-related data. 

But now equipment manufacturers can add perfor-
mance and raise the bar on security with a Xilinx®  
FPGA-based solution. A comprehensive securi-
ty subsystem from Algotronix, which meets the 
new Ethernet standard known as MACsec, uses a 
high-performance, low-latency and power-efficient 
intellectual-property (IP) core inside a Xilinx FPGA. 

An FPGA-based solution is much faster than one 
based in software. In addition, the dedicated hard-
ware offloads the system processor and frees it for 
other tasks, such as deep packet inspection. Alterna-
tively, the designer could use a lower-cost processor.

ENCRYPTION AND AUTHENTICATION  
An obvious tactic for protecting information is to en-
crypt data as it transits the network and moves around 
the data center. Encryption ensures that, should the 
data be intercepted by an unauthorized party sniffing 
the link, it cannot be read. Ideally, too, the data should 
be authenticated to ensure its integrity. Message au-
thentication is designed to detect where the original 
encrypted data has been altered, either by means of a 
transmission error or from being maliciously tampered 
with by an attacker seeking to gain an advantage. 

Ethernet transmission has grown to dominate com-
munications because it is both efficient and extendable 
to high-speed transmissions. The popularity of the Eth-
ernet standard has driven down costs, making it even 
more attractive, and this virtuous circle ensures the 
continuance of Ethernet as the Layer 2 technology of 
choice. However, up until a few years ago, the specifi-
cation did not include any encryption, leaving the job 
to technologies such as IPsec that operate in the upper 
layers of the communications protocol stack.  

Now, a new extension to Ethernet adds a raft of 
security measures, under the specification IEEE 
802.1AE. Specified a few years ago, this technology 
features an integrated security system that encrypts 
and authenticates messages while also detecting and 
defeating a range of attacks on the network. The 
specification is known as the Media Access Control 
Security standard, or more commonly as MACsec, 
and Algotronix set out several years ago to produce 

MACsec IP Improves 
Data Center Security  

Designers of data 
center equipment 
are incorporating
FPGA-based  
cores to provide  
high-performance,  
secure Ethernet links.
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IP cores that provide hardware-ac-
celerated encryption over a range of 
data rates. (Algotronix also supplies 
an intellectual-property core for IPsec 
that has a very similar interface to the 
MACsec product and would be a good 
choice in systems that need to support 
both standards.)  

A brief overview of the MACsec 
system will serve to illustrate the com-
prehensiveness of the specification, as 
well as give an insight into the com-
plexity of implementing it.

TRUSTED ENTITIES  
The concept of MACsec is that nodes 
on a network form a set of trusted en-
tities.  Each node can receive both en-
crypted and plaintext messages, and 
the system policy can dictate how each 
is handled. The core includes a bypass 
option for plaintext messages, which 
are not authenticated or verified. Unlike 
protocols such as IPsec, which operates 
at Layer 3/4 and is an end-to-end tech-
nology, MACsec decrypts and verifies 
each packet whenever a packet enters 
or leaves an Ethernet LAN. MACsec is 

3 security policies. Data centers can 
adopt MACsec to provide protection 
behind the firewall or use it on di-
rect links between data centers. The 
system administrator can authorize 
equipment to communicate in a se-
cure fashion. The equipment can de-
tect errors or misuse, such as attempt-
ed denial of service (DOS).

PRIME FOR PROGRAMMABILITY 
A customizable FPGA solution is ide-
al for MACsec, as the market is frag-
mented by differing requirements. 
Originally, MACsec was conceived as a 
technology to be applied to metropol-
itan-area networks, but it is now also 
finding use in data centers, which in-
creases the overall demand for an FP-
GA-based solution. 

It was a natural evolution for Algo-
tronix to develop a MACsec core, be-
cause we had already created a range of 
crypto engines called AES-GCM. These 
cores operate at 1G, 10G and 40G. We 
achieved that speed by pipelining, in-
creasing the clock speed and moving 
progressively from, say, Xilinx Artix® to 
Kintex® devices and then on to Virtex® 
FPGAs. We are adopting these tech-
niques to push the throughput to 100G 
on Virtex UltraScale™ devices.

The performance we can achieve 
using an IP core in an FPGA is select-
able to support anywhere from Gigabit 
Ethernet to 10 GbE (that is, the actu-
al throughput through the core under 
worst-case conditions), with 40G and 
100G versions planned. This is much 
faster than a software-based system 
could achieve. The cores are normal-
ly connected directly to the hardware 
MAC, as shown in Figure 1, because 
software on the embedded processor 
on the FPGA chip can struggle to trans-
fer data fast enough to handle their 
throughput. If the security functions are 
implemented in hardware and addition-
ally, unencrypted keys are never avail-
able to software, then the system is less 
vulnerable to common software-based 
attacks such as Trojan horses and virus-
es. This makes it easier to analyze for 

suitable for Ethernet topologies such as 
star-connected or bus-based LANs, as 
well as point-to-point systems. 
 The MACsec specification uses what 
are called Security Entities (SecY), an 
approach in which each node or entity 
has a unique key linked with its Ether-
net source address. We designed the 1G 
variant of the core to support multiple vir-
tual SecYs. As a result, a single Ethernet 
MAC can have multiple MACsec SecYs 
associated with it for applications like 
multiple-access LANs. MACsec typically 
works in conjunction with IEEE 801.1X-
2010 or the Internet Key Exchange (IKE), 
which provides the secure key distribu-
tion around the network.

The reason that data centers might 
choose to use Layer 2 connectivity for 
moving packets inside the center is to 
achieve high speed with a minimum of 
latency and overhead data in the packet. 
By contrast, in communications using 
secure Layer 3 technologies such as IP-
sec, the message has to be passed up the 
stack for processing, with added latency. 

A Layer 2 solution also eliminates 
the complexities of creating Layer 

Figure 1 – The MACsec IP core sits entirely within the FPGA for maximum security.

http://www.xilinx.com/products/intellectual-property/1-4PILR8.htm
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vulnerabilities than in a case where IT 
professionals must consider the entire 
software side of the system.  

Another important consideration is 
the dramatic power saving in systems 
where FPGAs accelerate algorithms 
such as cryptographic functions that 
would otherwise be implemented in 
software. FPGAs are dramatically more 
power efficient than a software solution.

One useful attribute built into all Al-
gotronix encryption cores is the abili-
ty to implement crucial blocks, called 
S-Boxes, in either Block RAM or in the 
lookup tables (LUTs) of the FPGA fab-
ric. This option allows customers to 
squeeze the design into the available re-
sources by trading off the two resource 
types, for example using Block RAM 
to implement the S-Boxes if the design 
outside of the MACsec core did not use 
BRAM heavily or LUTs if it did.

INS AND OUTS OF MACSEC 
The MACsec system features the con-
cept of each source of data using differ-
ent encryption keys. When a message is 
received, the receiver looks it up in a 
list held in on-chip CAMs to determine 
the correct key to use to decrypt the 
packet. Each packet is also numbered 
to ensure that repeated or replayed 
packets can be detected and rejected, a 
technique that defends against “man-in-
the-middle” attacks.

MACsec also collects statistics about 
the number of packets that are reject-
ed and the reasons for rejection. Pro-
viding statistics to support detection 
of attacks is a further layer of security 
beyond the basic cryptographic privacy, 
authentication and replay prevention, 
allowing a system manager to proac-
tively respond to an attack in progress.

We took the approach of “wrapping” 
the MACsec logic around the proven 
AES-GCM core. That said, designing 
an efficient and fast encryption core is 
only part of the design challenge. The 
MACsec specification is extensive and 
includes many variables. For example, 
the standard originally specified only 
128-bit encryption keys. With 128-bit 

keys, the data undergoes 10 transfor-
mations (known as rounds) to com-
plete the encryption process within 
the core. The standard was later re-
vised to include an option for 256-bit 
keys, which have 14 rounds of pro-
cessing through the encryption. This is 
achieved by adding pipeline stages and 
increasing the width of the memory 
used for storing the keys. 

MACsec is agnostic as to the Ether-
net traffic type, and it is transparent to 
higher-layer protocols. With the intro-
duction of these cores, it’s easy to add 
MACsec to systems to provide an addi-
tional layer of protection in a network. 
Sites equipped with MACsec can still 
communicate with other sites, but with-
out the extra security of MACsec.

Ethernet packets are fed to the 
MACsec core from the media-access 
controller (MAC).  You can build a com-
pact and efficient solution using, say, 
the 1G MACsec core in conjunction with 
on-chip transceivers and a trimode Eth-
ernet MAC (TEMAC). Each of the pack-
ets contains the destination and address 
of the source that initiated its trans-
mission. This standard is retained in a 
MACsec system, but an important as-
pect is that in a multihop transmission, 
the “source” will be the address of the 
last equipment to forward the packet. 
So, unlike IPsec—which can be consid-
ered an end-to-end scheme—MACsec 
works on a hop-by-hop basis. For each 
hop, MACsec requires that all encrypt-
ed data on the ingress is decrypted and 
then re-encrypted with the unique key 
assigned to that equipment for forward 
transmission. The decrypted plaintext 
allows the option for packet inspection 
at each stage, as illustrated in Figure 2, 
and can be used by traffic managers to 
regulate the flow of data.

In the MACsec standard, the header 
shown in Figure 3 includes an addition-
al  field known as the MAC Security TAG 
(SecTAG), which defines the EtherType 
and flags whether the packet is encrypt-
ed or not. Authentication is achieved by 
appending data to the end of the message 
in a field called ICV. The ICV works with 

the encryption key to authenticate the 
frame, including the header and MACsec 
tag, to ensure that not even the source or 
destination address of the frame could 
be manipulated. We implemented this 
logic in the FPGA fabric to ensure that it 
would have fast and predictable timing 
to minimize any latency.

The MACsec core includes a lookup 
table that is linked to each source ad-
dress.  The table includes the key that 
needs to be used to successfully decrypt 
the message, and we designed this fea-
ture to be implemented efficiently in the 
LUTs and Block RAM on the devices. 
We exploited the flexibility of the FPGA 
solution by designing the core with im-
plementation options such as a choice 
between 128- and 256-bit keys and the 
ability to vary the number of virtual  
SecYs that the core supports.

Another useful feature of the new 
standard is the collation of statistics by 
MACsec at the packet level. The sys-
tem administrator can, for example, 
see how many packets were rejected 
because they were delayed, failed integ-
rity checks due to an invalid decryption 
key or used the wrong key, and compare 
those statistics with the number of cor-
rect packets transmitted.  

The MACsec standard has a simpli-
fied option for point-to-point applica-
tions. This eliminates the need for a 
CAM to determine the key from an ex-
plicit Secure Channel Identifier in the 
packet and an option for point-to-mul-
tipoint operation. Our core also sup-
ports multiple virtual SecYs associated 
with a single Ethernet so that differ-
ent keys can be used to encrypt data 
transmitted from that MAC to different 
destinations. The MACsec standard 
defines this kind of configuration as 
a multi-access local-area network, 
since it is as if the destinations were 
on different Ethernet LANs. This fea-
ture allows the system to partition the 
receiving equipment by encrypting the 
output with different keys.  

A data center might use multiple  
SecYs to create a virtual division so that 
data from Customer A is partitioned 
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MACsec offers for added reassurance 
that their data is protected. Equipment 
manufacturers have a choice of IP cores 
that are available to cover the needs of 

1- and 10-Gbit Ethernet throughputs. 
The architectural design makes it easy 
to achieve 10 Gbps in Kintex or Virtex 
FPGA devices. The design supports both 
jumbo frames and minimum-size pack-
ets with a key change on every packet. 
This scenario represents the worst-case 
situation for the system. The cores com-
ply with the full specification, and each 
MACsec core can support a range of 
popular FPGA families.

COMES WITH SOURCE CODE 
Algotronix takes the unusual step of 
supplying the HDL source code for ev-
ery core licensed. The main motivation 
is to allow customer inspection so as to 
prove that the code has no virus or Tro-
jan code incorporated, and that it can-
not be forced into unauthorized states 
or operations. Having the source code 
therefore reduces the cost and complex-
ity of a security audit for customers. In 
addition, the source code speeds up the 
design process, because engineers can 
easily experiment with configuration 
variables such as encrypt, decrypt or en-
crypt/decrypt and with key length, and 
can see the state of signals within the 

Figure 2 – The message is decrypted on the ingress port and encrypted on the egress port. 

from that of Customer B by virtue of 
a unique encryption key. Communica-
tions internally in a data center could, 
if required, be organized to segregate 
selected racks to provide virtual isola-
tion areas. This capability can address 
data integrity and separation concerns 
in data center and cloud applications. 
Whether from an accidental wrong con-
nection or a malicious act (see Figure 
4), the MACsec system will detect pack-
ets that are unauthenticated and the 
system administrator can set the policy 
to quarantine or delete them.

All data encryption and decryption 
are performed at the port level. Apart 
from the additional MACsec head-
er and small added latency, there is 
no overhead or performance impact 
when turning on port-level encryption.

Equipment vendors can use these 
cores today to differentiate their sys-
tems by incorporating an encrypted 
Ethernet Level 2 scheme compliant with 
IEEE 802.1AE. Cloud-based users, who 
may be mutually suspicious of other cus-
tomers, can benefit from the confiden-
tiality and data source authentication 

Figure 3 – The MACsec frame structure includes a field known as the MAC Security TAG 
(SecTAG), which defines the EtherType and flags whether the packet is encrypted.
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core in their own simulations. You can 
configure the cores for high throughput 
by implementing a wide data path or for 
minimum FPGA footprint by selecting a 
narrow data width. Further benefits of 
having source code are that it is easier 
to understand the operation of the core; 
that makes documenting and archiving 
easier and quicker.
 An extensive verification testbench 
is also included, allowing custom-
ers to confirm the correct operation 
in tools such as ModelSim. The test-
bench includes a behavioral model of 
MACsec and a self-checking version 
of the MACsec IP core where the out-
puts of the synthesizable hardware 
are checked against the behavioral 
model. This self-checking design can 
be instantiated in user simulations, 
making it easy to test the core in the 
context of the actual user design and 

providing useful diagnostic messages 
if it is driven incorrectly. 

As there are so many options available 
in the core, the precise resource count 
will depend on your choice of parameters 
such as data rate, key length and number 
of SecYs selected, among others. How-
ever, the 10G MACsec core listed on the 
Intellectual Property section of the Xilinx 
website uses 6,638 slices, 20,916 LUTs 
and 53 BRAM blocks. Contact Algotronix 
for licensing options.

The combination of low-power Xilinx 
FPGAs and the Algotronix MACsec core 
offers a high-performance and low-la-
tency solution for equipment manufac-
turers to differentiate their products. 
The security features allow data centers 
to assure their customers of confiden-
tiality, while also enabling security ad-
ministrators the ability to detect and 
defeat malicious acts. 

Figure 4 –  MACsec will reject packets that arrive via wrong connections, 
either accidentally or maliciously. www.trenz-electronic.de
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As the transmission speed of optical trans-
ceiver modules in data centers rises ever 
higher, the temperature of each chassis in a 
data center is also rising dramatically. The in-
crease in temperatures becomes compound-
ed when these modules are stacked on top of 
one another in racks that are flanked by even 
more racks of speedy but hot modules. This 
compounded rise in temperature can cause 
chips to exceed their thermal limits, creating 
catastrophic chip failures that in turn could 
adversely affect entire data center systems. 
Thus, it’s imperative that engineers design-
ing optical transceiver modules take thermal 
properties into account. Designers must zero 
in on the heat sources and attempt to keep 
them in check with effective cooling methods 
at the module and even rack level. 

To test the thermal properties of optical 
modules, engineers traditionally had two 
choices. They could use a complicated net-
work data generator to create high-speed 
(10-Gbps) links and then test the thermal 
properties of the optical modules; or they 
could utilize a so-called “thermal-equiva-
lent” module with preset tunable voltage 
and current to mimic the thermal situation 
and evaluate the thermal properties with-
out using any real high-speed data. 

Neither of these approaches is optimal. 
The first approach is a costly operation 
due to the need for a professional high-
speed network data generator, while the 
second method is too abstract. A ther-
mal-equivalent module cannot fully reflect 
the temperature variation driven by the 
physical switching behavior.  

But recently, my team at Bell Labora-
tories, Alcatel Lucent Ireland, radically 
simplified this process by using a Xilinx® 

Simplify Your  
‘Hot’ Testing with 
Xilinx’s Zynq SoC   

Here’s a way to 
streamline the  
thermal testing of a 
high-speed optical 
transceiver module  
by using the Zynq SoC 
and Xilinx IP cores.

A
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Zynq®-7000 All Programmable SoC 
platform and Xilinx intellectual-prop-
erty (IP) cores to do the same job. Let’s 
take a closer look at how we accom-
plished this simplification of testing. 

PREDESIGN ANALYSIS  
The fundamental requirement of this 
type of thermal testing is to stimulate 
the XFP optical transceiver continuous-
ly with 10-Gbps data while using an IR 
camera to track and characterize the 
temperature variation. 

I picked the Xilinx ZC706 evaluation 
board as the development host, because 
the GTX transceivers on the main device, 
the Zynq-7000 SoC XC7Z045 (speed grade 
-2), can easily achieve single-line 10-Gbps 
data transmission. The Zynq SoC device 
contains a processing system (PS) built 
around an ARM® core and a Kintex®-7 

you can significantly reduce your design 
cycle by using as many Xilinx cores as 
possible. In this design, I kept the same 
strategy and started from the Integrated 
Bit Error Ratio (IBERT) core, which you 
can utilize to perform pattern genera-
tion and verification to evaluate the GTX 
transceivers on the Zynq SoC. Then, in or-
der to properly route the design, I created 
a phase-aligned clock-distribution unit 
based on the Mixed-Mode Clock Manager 
(MMCM) core for simultaneously clock-
ing both of the GTX transceivers on the 
FPGA fabric and the optical transceiver 
on the XFP evaluation board. Figure 1 
shows the system diagram. 
 For this design project, I used Xil-
inx’s older ISE® Design Suite tools and 
did the work in three steps. 

Step one involved creating an IBERT 
core with the CORE Generator™ tool. 

FPGA programmable logic (PL) fab-
ric. Initially, resources at the PL die are 
enough for handling the 10-Gbps duplex 
data transmission. Then we can use the 
PS to generate particular user data pat-
terns if they are required in the future.

Our thermal group provided a Fini-
sar XFP evaluation board as the optical 
transceiver housing. This FDB-1022 eval-
uation board is a powerful host for eval-
uating the state-of-the-art 10-Gbps XFP 
optical transceivers. SMA connectors are 
provided for differential data inputs and 
outputs. The board can be configured to 
allow a direct connection of a 1/64 clock 
(that is, 156.25 MHz = 10 GHz/64) via SMA 
connectors for clocking the module.

SYSTEM DESIGN  
I’ve found over the course of my seven 
years of doing FPGA development that 

I picked the Xilinx ZC706 evaluation board because 
the GTX transceivers on the main device can easily 

achieve single-line 10-Gbps data transmission.

Figure 1 – Block diagram of the proposed system with a connection example
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Here are some of the key settings for 
this IBERT 7 series GTX (ChipScope™ 
Pro) IBERT core. In my design, the 
IBERT system clocking comes from 
an external clock source on the 
board—a 200-MHz differential clock 
with P pin location = H9 and 
N pin location = G9. The GTX 
clocking mode is independent for 
QUAD 111, and I set the line rate to 
Max Rate = 10Gbps. I set the ref-
erence clock for the GTX to Ref-

clk = 156.25 MHz and the Refclk 
source = MGTREFCLK1 111.

In step two, I created an MMCM core 
with the CORE Generator. It was impera-
tive to get the tool’s Clocking Wizard set-
tings correct. To do this, I set the clock 
features as frequency synthesis 
and phase alignment. The input 
clock has to be the same system clock 
on the board (200 MHz). And I set the 
targeting derivative clock to 156.25 MHz 
with 50 percent duty cycle. I used two ex-

tra signals, RESET and LOCKED, for con-
trolling and indicating the MMCM core. 

The third step was to assemble 
everything with Xilinx’s tools. For 
this project, I used the ISE Design 
Suite 14.4.  At some point later on, I 
am planning to switch to the Vivado® 
Design Suite in order to maximize the 
performance of the chip.

I first created a new project in ISE, 
then moved the IBERT core folders 
(example_ibert_gtx.vhd, ib-
ert_gtx_top.ucf, ibert_core.
ngc and icon_zynq.ngc) to the ISE 
project. Next, I added mmcm_core.
vhd from the MMCM core folder (step 
2) to the ISE project. I then used ex-
ample_ibert_gtx.vhd as the top 
module, instantiated the mmcm_core 
and added three new signals (CLK_
OUTPUT_P, CLK_OUTPUT_N and 
LED_REFCLK)to the design and made 
corresponding pin assignments in the 
ibert_gtx_top.ucf.

SYSTEM TEST 
After generating the .bit file, the FPGA 
design was ready for stimulating the XFP 
optical transceiver with a 10-Gbps link. 
I connected the two boards (as shown 
in Figure 1), then opened a ChipScope 
Pro analyzer and configured the device 
with the newly built .bit file. Next, I dou-
ble-clicked the IBERT console, causing 
a new graphical user interface to pop up 
(as shown in Figure 2). With this screen, 
we can thoroughly evaluate the thermal 
performance of the optical transceiver 
by tuning the predefined data patterns, 
such as Clk 2x (1010….), and pseudo-
random binary sequences (PRBS). 

By using Xilinx cores, together with 
the ZC706 evaluation board, it’s easy to 
build a test platform for evaluating high-
speed optical transceivers. In this design, 
we illustrated the evaluation of a single 
XFP module. However, you can straight-
forwardly apply the design methodology 
to quickly build a logic core for testing 
multiple optical transceiver modules. 

For more information, please 
contact the author at lei.guan@al-
catel-lucent.com.  

Figure 2 – Snapshot of the ChipScope Pro screen
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A Double-Barreled Way 
to Get the Most from 
Your Zynq SoC

Using both of the ARM A9 cores on Xilinx’s 
Zynq SoC can significantly increase the 

performance of your system.    

by Adam P. Taylor 
Chief Engineer, Electrical Systems 
e2v 
aptaylor@theiet.org 
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O
ne of the many benefits 
of Xilinx®’s Zynq®-7000 
All Programmable SoC is 
that it is has two ARM® 
Cortex™-A9 processors 
onboard. However, many 

bare-metal applications and simpler op-
erating systems use only one of the two 
ARM cores in the Zynq SoC’s processing 
system (PS), a design choice that can po-
tentially limit system performance. 
 Depending upon the application in de-
velopment, there could, however, be a need 
to have both processors running bare-met-
al applications, or to run different operat-
ing systems on each of the processors. For 
instance, one side could be performing 
critical calculations and hence running a 
bare-metal/RTOS application while the sec-
ond processor is providing HMI and com-
munications using Linux.

WHAT IS MULTIPROCESSING? 
Either of those scenarios is an example of 
multiprocessing. Briefly defined, multipro-
cessing is the use of more than one pro-
cessor within a system. A multiprocessing 
architecture can allow the execution of 
multiple instructions at a time, though it 
does not necessarily have to. 
 There are two kinds of multicore pro-
cessing: symmetric and asymmetric. 

Symmetric multiprocessing makes it 
possible to run a number of software tasks 
concurrently by distributing the load across 
a number of cores. Asymmetric multipro-
cessing (AMP) uses specialized processors 
or applications execution on identical pro-
cessors for specific applications or tasks.

Using both of the cores on the Zynq 
SoC with bare metal or different operat-
ing systems is, by definition, an example 
of asymmetric multiprocessing. AMP on 
the Zynq SoC can involve any of the fol-
lowing combinations:

•  Different operating systems on  
Core 0 and Core 1

•  Operating system on Core 0, bare 
metal on Core 1 (or vice versa) 

•  Bare metal on both cores executing 
different programs

When you decide upon the need 
to create an AMP system on the Zynq 
SoC, you must consider the fact that 
the ARM processor cores contain a 
mixture of both private and shared 
resources that must be correctly ad-
dressed. Both processors have private 
L1 instruction and data caches, timers, 
watchdogs and interrupt controllers 
(with both shared and private inter-
rupts). A number of shared resources 
also exist, of which common exam-
ples include I/O peripherals, on-chip 
memory, the interrupt controller dis-
tributor, L2 cache and system memory 
located within the DDR memory (see 
Figure 1). These private and shared re-
sources require careful management.

Each PS core has its own interrupt 
controller and is capable of interrupting 
itself, with one or both cores using soft-
ware interrupts. These interrupts are dis-
tributed by means of ARM’s Distributed 
Interrupt Controller technology.

As the program being executed for 
each core will be located within the 
DDR memory, you must take great 
care to ensure that you have correctly 
segmented these applications. 

GETTING AMPED UP     
The key aspect required to get AMP 
up and running on the Zynq SoC is a 
boot loader that will look for a second 
executable file after loading the first 
application into memory. Xilinx help-
fully provides an application note and 
source code in XAPP1079. This docu-
ment comes with a modified first-stage 
boot loader (FSBL) and modified stand-
alone OS, which you can use to create 
an AMP system. 
 The first thing to do is to down-
load the ZIP file that comes with this 
application note before extracting 
the two elements—FSBL and OS—
to your desired working directory. 
Then, you must rename the folder 
called SRC “design.” Now, it’s im-
portant to make sure the software 
development kit (SDK) is aware of 
the existence of these new files con-
taining both a modified FSBL and a 

http://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-bare-metal-cortex-a9.pdf
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modified standalone OS. Therefore, 
the next step is to update your SDK 
repository such that it is aware of 
their existence. 

This is straightforward to achieve. 
Within SDK under the Xilinx tools 
menu, select “repositories” and then 
“new,” navigating to the directory 
location <your working directory>\
app1079\design\work\sdk_repo as 
shown in Figure 2. 

•  From either core via the snoop con-
trol unit (SCU)

• From the programmable logic using  
 the AXI Accelerator Coherency Port  
 (ACP) via the SCU

•  From the programmable logic using  
the High-Performance AXI port via the 
on-chip memory (OCM) interconnect 

• From the central interconnect, again  
 via the OCM

COMMUNICATING  
BETWEEN PROCESSORS  
Before creating the applications 
for your AMP design, you will 
need to consider how the appli-
cations will communicate (if they 
need to). The simplest method is 
to use the on-chip memory. The 
Zynq SoC has 256 kbytes of on-
chip SRAM that can be accessed 
from one of four sources:

Zynq-7000 AP SoC

Processing System
Application Processor Unit

High-Performance Ports

Notes;
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32bit/64bit, AXI 64bit, AXI 32bit, APB 32bit, Custom
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Figure 1 – The Zynq SoC processing system, showing private and shared resources 

Using software interrupts is not too  
different from using hardware interrupts  

except, of course, in how you trigger them.  



X P L A N A N T I O N :  F P G A  1 0 1

 First Quarter 2015  Xcell Journal  41

 With these different sources that 
can read and write the on-chip mem-
ory, it is especially important to un-
derstand the operation of the OCM in 
detail before using it. 

Since there are multiple sources ac-
cessing the OCM, it is only sensible that 
you define a form of arbitration and pri-
ority. As the lowest latency is required 
by the snoop control unit, which is either 
a processor core or an AXI ACP inter-
face, an SCU read from these sources 
has the highest priority followed by the 
SCU write and then the OCM intercon-
nect read and write. The user can invert 
the priority between the SCU write and 
the OCM interconnect access by setting 
the SCU write priority low in the on-chip 
memory control register. 

The OCM itself is organized as 128-bit 
words, split into four 64-kbyte regions 
at different locations within the PS ad-
dress space. The initial configuration 
has the first three 64-kbyte blocks ar-
ranged at the start of the address space 

Figure 2 — Adding your new files to the repository

and the last 64-kbyte block toward the 
end of the address space (Figure 5).

SIMPLE ON-CHIP MEMORY EXAMPLE 
You can access the OCM using Xilinx 
I/O functions to read and write to and 
from the selected memory address. 
These functions, which are contained 
within Xil_IO.h, allow for storing and 
accessing 8-, 16- or 32-bit char, short 
or int within the CPU address space. 
Using these functions just requires 
the address you wish to access and 
the value you wish to store there. If it 
is a write, for example,

 A better way to use this technique to 
ensure the addresses are both targeting 
the same location within the on-chip 
memory, especially if different people are 
working on the different core programs, 
is to have a common header file. This 

file will contain macro definitions of 
the address of interest for that particu-
lar transfer, for instance: 

 
An alternative approach is for both 

programs to access the memory location 
using a pointer. You can do this by defin-
ing the pointer, which points to a constant 
address, normally in C, using a macro:  

Again, you could also use another 
macro definition for the address to 
ensure that the address is common to 
both application programs. This ap-
proach does not then require the use 
of the Xilinx I/O libraries and instead 
allows simple access via the pointer.

INTERPROCESSOR INTERRUPTS 
The Zynq SoC has 16 software-generated 
interrupts for each core. As noted above, 
each can interrupt itself, the other core 
or both cores. Using software interrupts 
is not too different from using hardware 
interrupts except, of course, in how you 
trigger them. The use of software in-
terrupts frees the receiving application 
from having to poll an expected memory 
location for an updated value.
 Within both cores, you need to con-
figure the Generic Interrupt Controller 
just as you would for any hardware 
interrupt. See Xcell Journal issue 87, 
“How to Use Interrupts on the Zynq 
SoC,” for further information.

You can then trigger a software 
interrupt in the updating core using 
the XScuGic_SoftwareIntr function 
provided within xscugic.h. This com-
mand will issue a software interrupt 
to the identified core, which can then 
take the appropriate action:

Xil_Out8(0xFFFF0000,0x55);

read_char = Xil_In8(0xFFFF0000);

#define LED_PAT 0xFFFF0000

#define LED_OP (*(volatile 
 unsigned int *)(0xFFFF0000))

XScuGic_SoftwareIntr(<GIC  

Instance Ptr>, <SW Interrupt 

ID>, <CPU Mask>)

http://www.xilinx.com/support/documentation/xcell_articles/how-to-use-interrupts-on-zynqsoc.pdf

http://www.xilinx.com/support/documentation/xcell_articles/how-to-use-interrupts-on-zynqsoc.pdf

http://www.xilinx.com/support/documentation/xcell_articles/how-to-use-interrupts-on-zynqsoc.pdf
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ing a normal FSBL. However, this time 
you will be selecting the “Zynq FSBL for 
AMP” template as shown in Figure 3.

Following the creation of the AMP 
FSBL, you will next create the applica-
tion for the first core. Be sure to select 
Core 0 and your preferred operating 
system, and allow it to create its own 
BSP, as shown in Figure 4.

Having created the application, 
you need to correctly define the loca-
tion, with DDR memory, from which 
it will execute. To do this, edit the 
linker script as in Figure 5 to show 

CREATING THE APPLICATIONS 
Having added in the repositories, the 
next stage is to generate three crucial 
pieces of the AMP solution: the AMP 
first-stage boot loader, the Core 0 appli-
cation and the Core 1 application. For 
each of these items, you will have to gen-
erate a different board support package.

The first thing you need to do is to 
create a new FSBL with the SDK. Se-
lecting “file new application project” en-
ables you to create a FSBL project that 
supports AMP. This is no different than 
the process you would follow in creat-

the DDR base address and size. This 
is important, because if you do not 
correctly segment the DDR memory 
for Core 0 and Core 1 applications, 
you run the risk of one inadvertently 
corrupting the other. 

Having done this segmentation, you 
can now write the application you wish 
to execute on Core 0, as this is the core 
that is in charge within the AMP system. 
Core 0 must start the execution of the 
Core 1 application. You need to include 
the section of code seen in Figure 6 
within the application. This code dis-

You must correctly segment the DDR  
memory for Core 0 and Core 1 applications 
or run the risk of one corrupting the other.

 Figure 3 – Selecting the first-stage boot loader for the AMP design
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ables the cache on the on-chip memory 
and writes the start address of the Core 
1 program to an address that Core 1 will 
access. Once Core 0 executes the Set 
Event (SEV) command, Core 1 will start 
executing its program.

The next step is to create a BSP for 
Core 1. It’s important to use the modi-
fied standalone OS (standalone_amp, as 
shown in Figure 7), which prevents reini-
tialization of the PS snoop control unit. As 
such, do not allow automatic generation 

of the BSP while you create the project, 
as you did for Core 0. Be sure to select 
Core 1 in the CPU selection options.

Now that you have created the BSP 
for Core 1, you need to modify the set-
tings of the BSP before you can prog-
ress to creating the application you 
want to run upon Core 1. Doing so is 
very simple and requires the addition 
of an extra compiler flag of –DUSE_
AMP=1 to the configuration for the 
drivers section of the BSP. 

With this step completed, you are free 
to create the application for Core 1. Be 
sure to select Core 1 as the processor 
and use the BSP you just created. Again, 
having created the new application, you 
need to once more define the correct 
memory locations within the DDR mem-
ory from which the Core 1 program will 
execute. This is achieved by editing the 
linker script for the application for Core 
1 as you did previously. As with the first 
core, within this application you must 
likewise disable the cache on the on-
chip memory, which you can use to com-
municate between the two processors.

PUTTING IT ALL TOGETHER 
Once you have completed creation of 
your applications and built the projects, 
you should now be in possession of the 
following components:

 • AMP FSBL ELF 

 • Core 0 ELF 

 • CORE 1 ELF 

 •  BIT file defining the configuration 
of the Zynq device upon which you 
wish to implement AMP 

 

 Figure 4 – Creating the application and BSP for Core 0

Figure 5 – Core 0 DDR location and size
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 To enable the Zynq SoC to boot from 
your selected configuration memory, you 
will need a .bin file. To create it, you will 
also need a BIF file, which defines the 
files to be used to create this BIN file and 
the order in which they go. Rather than 
use the “create Zynq” boot image within 
the SDK, you will be using an ISE®  De-
sign Suite command prompt and BAT file 
provided as part of XAPP1079 under the 
downloaded directory\design\work\boot-
gen. This directory contains a BIF file and 
a cpu1_bootvec.bin, which is used as part 
of the modified FSBL to stop it looking 
for more applications to load. 

To generate the BIN file, you need to 
copy the three generated ELF files to 
the bootgen directory and edit the BIF 
file to ensure the ELF names within it 
are correct, as shown in Figure 8.

Now you can open an ISE command 
prompt and navigate to the bootgen di-
rectory. There, you should run the cre-
ateboot.bat. This step will create the 
boot.bin file as shown in Figure 9.

#include <stdio.h>
#include “xil_io.h”
#include ”xil_mmu.h”
#include “xil_exception.h”|
#include “xpseudo_asm.h>”
#include “xscugic.h>

#define sev() _asm_(”sev”)
#define CPU1STARTADR 0xfffffff0
#define COMM_VAL  (*(volatile unsigned long *)(0xFFFF0000))

int main()
{

 //Disable cache on OCM
 Xil_SetT1bAttributes(0FFFF0000,0x14de2);      // s=b1 TEX=b100 AP=bll, Domain=bllll, C=b0, B=b0
 Xil_Out32(CPU1STARTADR, 0x00200000);
 dmb(); //waits until write has finished
 sev();

Figure 6 – Coding to disable cache on the on-chip memory

Figure 7 – Creating the BSP for Core 1

Creating an asymmetric multiprocessing  
application on the Zynq SoC can be a very  
simple matter using the tools available.
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You can then download this file into 
the nonvolatile memory on your Zynq 
SoC. Booting the device will result in 
both cores starting and executing their 
respective programs.

Creating an asymmetric multiprocessing 
application on the Zynq SoC can be a very 
simple matter using the tools available. It’s 
easy to achieve communication between 
the two cores using the on-chip memory or 
even a segmented DDR area. 

the_ROM_image
{

 [bootloader] amp_fsbl.elf
    download.bit
      amp_cpu0.elf
      app_cpu1.elf

  //write start vector address 0xFFFFFFF0 with 0xFFFFFFF00
  //This load address triggers fsbl to continue
  [load = 0xFFFFFFF0] cpu1_bootvec.bin
}

Figure 8 – Modifying the BIF file

Figure 9 –The creation of the boot.bin file that will run on the Zynq SoC
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F
PGAs have come a long way from their humble 
beginnings as glue logic. The logic capacity and 
flexibility of today’s FPGAs have catapulted 
them into a central position in embedded de-
signs. Today, a complete system fits on a single 
programmable chip, an architecture that facil-

itates hardware/software co-design and integrates hardware 
with software applications. 
 These kinds of FPGA-based embedded designs need a robust 
operating system. PetaLinux has emerged as a favorite among 
embedded designers. It is available free of cost as open source 
and also supports various processor architectures, such as the 
Xilinx® MicroBlaze® CPU as well as ARM® processors. In order to 
port PetaLinux onto a particular FPGA, the kernel source code, 
boot loader, device tree and root file system must be customized, 
configured and built for the targeted platform. 

For a design project here at PES University and C-DOT, our team 
set out to port PetaLinux and run several PetaLinux user applica-
tions on Xilinx’s KC705 evaluation board, which features a Kintex®-7 
XC7K325T FPGA. It turned out to be a fairly straightforward process.

WHY CHOOSE PETALINUX? 
Before going into the details of how we did it, it’s worth taking a mo-
ment to consider the various OS options available for FPGA-based 
embedded systems. PetaLinux is one of the most commonly used 
OSes on FPGAs, along with μClinux and Xilkernel. μClinux is a 
Linux distribution or ported Linux OS that includes a small Linux 
kernel and is designed for a processor that does not have a memo-
ry-management unit (MMU) [1]. μClinux comes with libraries, appli-
cations and tool chains. Xilkernel, for its part, is a small, robust and 
modular kernel that allows a higher degree of customization than 
μClinux, enabling users to tailor the kernel to optimize their design 
in terms of size and functionality [2].   

PetaLinux, meanwhile, is a complete Linux distribution and 
development environment targeting FPGA-based system-on-chip 
(SoC) designs. PetaLinux consists of preconfigured binary bootable 
images; fully customizable Linux for Xilinx devices; and an accom-
panying PetaLinux software development kit (SDK) [3] that includes 
tools and utilities to automate complex tasks across configuration, 
build and deployment. The PetaLinux development package, avail-
able free of cost and downloadable from Xilinx, includes hardware 
reference projects designed for various Xilinx FPGA development 
kits. Also included are a kernel configuration utility for Xilinx 
FPGAs, software tools such as a cross-compiler, a hardware design 
creation tool and many more design aids. 

It has been reported that Xilkernel performs better than μClinux 
[4] and that PetaLinux outperforms Xilkernel [5]. For that reason, 
we chose PetaLinux for our project, especially since the packages 
were readily available for our Xilinx target board. Another advan-
tage of porting PetaLinux is that the user can have the facility of 
remote programming. That means you can load the FPGA target 
board with a new configuration file (or bitstream file) through Tel-
net using remote access.

It’s a straightforward 
matter to install this 
robust operating system 
on your targeted FPGA 
platform for embedded 

design projects.   
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BEGINNING THE INSTALLATION 
Let’s take a detailed look at how our team installed PetaLi-
nux. For the first step, we downloaded the PetaLinux pack-
age 12.12 and the board support package (BSP) for the Kin-
tex-7 target board. We ran the PetaLinux SDK installer and 
installed the same into the /opt/Petalinux-v12.12-final direc-
tory using the following commands in the console: 

  
We then copied and pasted the PetaLinux SDK license ob-

tained from the Xilinx website into the .xilinx and .Petalogix 
folders. Next, we set the SDK working environment by sourc-
ing the appropriate settings using the following commands:

In order to verify whether the working environment was 
set or not, we used the following command:

If the environment is set properly, the path where PetaLi-
nux is installed will be displayed. In our case, the path where  
PetaLinux was installed was /opt/PetaLinux-v12.12-final.

Our next task was to install the BSP, which includes the 
necessary design files, configuration files and prebuilt hard-
ware and software packages that are already tested and read-
ily available for downloading onto the target board. Packages 
are also available for booting in the Quick Emulator (QEMU) 
system simulation environment. In order to install the BSP, 
we created a folder named “bsp” in the path /opt and copied 
the ZIP file of the KC705 BSP using the following commands:

There are two approaches to creating and configuring a 
software platform for building a PetaLinux system custom-
ized to a new hardware platform. One method is to use Peta-
Linux commands in their corresponding path locations using 
a Linux terminal, as shown in Figure 1. The second approach 
is to use a GUI with a pulldown menu, as shown in Figure 2. 
You can use either of these approaches to select the platform, 
configure the Linux kernel, configure the user application 
and build images. The PetaLinux console is available once the 
OS is installed, whereas the GUI is available after installing 
the PetaLinux SDK plug-in. Once you’ve installed the plug-
in, you can set the configurations using the PetaLinux GUI 
found in the PetaLinux Eclipse SDK (Figure 2). The GUI has 
features such as user application and library development as 
well as debugging, building and configuring PetaLinux and 
the hardware platform.

BUILDING THE HARDWARE  
We used the Kintex-7 FPGA-based KC705 evaluation board 
for our project. The hardware interfaces required for the 
design included an RS232 interface to monitor the output, a 
JTAG interface to program the FPGA and an Ethernet inter-
face for remote programming. Besides the PetaLinux SDK, 
other software required for the proposed design included Xil-
inx Platform Studio (XPS) [6,7] and the Xilinx Software De-
velopment Kit (SDK) [7]. 

There are two approaches to creating a  
software platform for building a PetaLinux 
system: PetaLinux commands on a Linux  
terminal or a GUI with a pulldown menu.  

Figure 1 – Snapshot of a Linux terminal window for user settings

@ cd /opt

@ cd /opt/PetaLinux-v12.12-final-full.tar.gz

@ tar zxf  PetaLinux-v12.12-final-full.tar.gz

@ cd /opt/PetaLinux-v12.12-final                                                              

@ source settings.sh

@ echo $PETALINUX 

@ cd  /opt/PetaLinux-v12.12-final-full

@ source settings.sh

@ source /opt/Xilinx/14.4/ISE_DS/settings32.sh

@ PetaLinux-install-bsp /bsp/Xilinx-KC705   

  -v12.12-final.bsp

PetaLinux-v12.12-final-full.tar.gz
PetaLinux-v12.12-final-full.tar.gz
settings.sh
settings.sh
14.4/ISE_DS/settings32.sh
final.bsp
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 For the hardware portion of the embedded design, our 
first task was to design a MicroBlaze processor-based hard-
ware platform using the Base System Builder (BSB) in XPS. 
The BSB allows you to select a set of peripherals available 
on the target board. You can add or remove the peripherals 
based on the demands of the application. The set of cores or 
peripherals employed for our proposed application includ-

Figure 2 – Snapshot of PetaLinux SDK menu for user settings

ed an external memory controller with 8 Mbytes of memo-
ry, a timer enabled with interrupts, an RS232 UART with a 
baud rate of 115,200 bps, Ethernet, nonvolatile memory and 
LEDs. Once we made our selections, we obtained the hard-
ware peripherals along with their bus interfaces (Figure 3). 
For designs based on the MicroBlaze processor, PetaLinux 
requires an MMU-enabled CPU. Hence, we selected low-end 

Figure 3 – Hardware configuration of the FPGA
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hardware and boot application. The output of the SDK is fs-
boot.elf. A data-to-memory converter command data2mem 
is available that merges system.bit, system_bd.bmm and fs-
boot.elf into a single bitstream file called download.bit, which 
serves as the final FPGA bitstream. 

At this point we had the hardware design completed, which 
among other things included a MicroBlaze core with the Peta- 
Linux OS running on it. We could now use the first-stage boot 
loader application to bring up the kernel.

BUILDING THE SOFTWARE   
Once our hardware platform was built, we created a custom-
ized PetaLinux software platform targeted to the hardware 
using the following commands:  

where –c <cpu-arch> is the supported CPU type (here, the Mi-
croBlaze processor), –v <vendor> is the vendor name (here, Xil-
inx) and –p <platform> is the product name (here, the KC705). 
The configuration files of the software platform are generated in 
the directory where PetaLinux is installed, namely /opt/PetaLi-
nuxv12.12/software/ PetaLinux-dist/vendors/Xilinx/ KC705.

Linux with an MMU by double-clicking on the microblaze_0 
instance in the XPS window.

Next, we converted the hardware configuration into a 
bitstream using a three-step conversion process. First, we 
used XPS to generate a netlist that represented the em-
bedded hardware platform. Second, we mapped the design 
into FPGA logic. Finally, we converted the implemented 
design into a bitstream that could be downloaded onto the 
FPGA. The final output of XPS was system.bit and sys-
tem_bd.bmm files.

Once we had generated the bitstream, we exported the 
hardware platform description to the SDK so as to observe the 
targeted hardware platform in the SDK. The exported system.
xml file consisted of information the SDK required to write 
application software and debug it on the targeted hardware 
platform. Our next task was to add a PetaLinux repository in 
the SDK using Xilinx Tools → Repository → New and then se-
lect the path where PetaLinux was installed. In our case, the 
path was $PetaLinux/Hardware/edk_user_repository. 

Next, we created a PetaLinux BSP using File → Board 
support package →  PetaLinux. We configured the PetaLinux 
BSP by selecting necessary drivers based on the application 
required. Then we built the BSP and created and configured 
the first-stage boot loader application (fs-boot) to bring up 
the kernel. The BSP establishes interaction between the 

At this point we had the hardware design 
completed. We could now use the first-stage 

boot loader to bring up the kernel. 

Figure 4 – The kernel configuration menu

$ cd/opt/PetaLinuxv12.12

$  PetaLinux-new-platform –c <CPU-ARCH> –v 

  <VENDOR> –p <PLATFORM>
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To customize the software platform template to match 
the hardware, we merged the existing platform configu-
ration with the kernel configuration using the command 
PetaLinux-copy-autoconfig. This command generates the 
hardware configuration files Xilinx-KC705.dts, xparame-
ters.h and config.mk.

We configured the Linux kernel by opening the kernel 
configuration menu using the GUI (PetaLinux SDK → Kernel 
Configuration). You can also do it using the following com-
mands in the Linux terminal:

We enabled the drivers for the application in the kernel 
configuration pop-up window (shown in Figure 4). In order 
to access devices through the user-space input/output (UIO) 
interface for the proposed work, we enabled the UIO driver 
in the kernel configuration menu.

After configuring the kernel, we designed some applica-
tions. PetaLinux provides user application templates for C 
and C++ programming [8]. These templates include appli-
cation source code and Makefiles, so it was easy to con-
figure and compile applications for the targeted chip and 
install them into the root file system. You can create a new 
PetaLinux user application either by using the GUI (File 
→ PetaLinux New Application) or by typing the following 
commands into the Linux terminal:

We then provided a file name to the user application. In our 
case, we created gpio-dev-mem-test and gpio-uio-test user 
applications and modified the template source code based on 
the application requirements. 

Next, we built the PetaLinux system image by using the 
GUI (as shown in Figure 2). You can also do it by using the 
make command in the Linux terminal, as follows:

Now the software platform with OS and customized user 
application is ready to be used, along with the hardware de-
sign we’ve already discussed.

TESTING PETALINUX RUNNING ON THE DEVICE    
Here’s how PetaLinux boots up. The MicroBlaze proces-
sor executes the code residing in Block RAM. The first-
stage boot loader (fs-boot) will initialize basic hardware, 
execute fs-boot.elf and search for the the Universal Boot-
loader, or U-Boot, address in a flash partition, as the ad-

dress of U-Boot is specified while configuring fs-boot. 
The fs-boot will then fetch the U-boot image from the 
U-Boot partition in flash, send it to the device’s DDR3 
memory and run the kernel. Once you have built all the 
images required for booting, you can test them on hard-
ware via JTAG, Ethernet or the Quick Emulator. QEMU is 
an emulator and a virtual machine that allows you to run 
the PetaLinux OS [9]. Let’s look at booting methods for 
all three solutions.  
 JTAG is the traditional method for programming and 
testing FPGA designs. To program the FPGA using the 
JTAG, we used the pulldown menu “Xilinx Tool → Program 
the FPGA” and downloaded the download.bit file that we 
generated earlier. Then we downloaded the image onto the 
board using the GUI (PetaLinux SDK → BOOT JTAG [Li-
nux]), as shown in Figure 2. You can also use the following 
commands in the Linux terminal: 

 Alternatively, you can perform an indirect kernel boot 
using U-Boot to boot PetaLinux. The system is first boot-
strapped by downloading U-Boot via the JTAG interface 
using either the GUI (PetaLinux SDK → BOOT JTAG 
[U-Boot]) or the following commands:

 Figure 6 shows a snapshot of the U-Boot console.
 It’s worth noting that the FPGA board is connected to the 
Ethernet interface. You must select the Ethernet interface in 
the hardware resources part of the XPS. Once U-Boot boots, 
check whether the IP address of the server and host are the 
same. If they are not, set the IP of the host using the following 
commands in the U-Boot terminal:

Now the server (PC) as well as the host (KC705 board) 
have the same IP address. Run the netboot command from 
the server to download the PetaLinux image and boot:

After running netboot, you should see the PetaLinux con-
sole, as seen in Figure 5.

$ cd /opt/PetaLinux_v12.12

$  PetaLinux-config-kernel 

$ cd /opt/PetaLinux_v12.12

$  PetaLinux-config-apps 

$ cd $PETALINUX/software/ PetaLinux-dist

$ make

$ cd/opt/PetaLinux_v12.12/software/ 

 PetaLinux-dist

$  PetaLinux-jtag-boot -i images/image.elf

$ cd $PETALINUX/software/ PetaLinux-dist

$  PetaLinux-jtag-boot -i images/u-boot.elf

u-boot>print serverip // prints 192.168.25.45(server ip)

u-boot>print ipaddr   // prints IP address  

of the board as  // 192.168.25.68

u-boot>set serverip <HOST IP> // Host IP 192.168.25.68

u-boot>set serverip 192.168.25.68

u-boot> run netboot 

PetaLinux_v12.12/software
image.elf
u-boot.elf
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Last but not least, you can perform kernel boot by means 
of QEMU by using either the GUI (PetaLinux SDK → BOOT 
QEMU [Linux]) or the following commands:

Using this fast method produces the screen shown in 
Figure 7.

TESTING APPLICATIONS RUNNING ON THE DESIGN   
Once the booting of PetaLinux is tested, the next task 
is to test the user application designed for  PetaLinux. 
The MicroBlaze processor looks at the hardware pe-
ripherals on the Kintex-7 FPGA board as a set of memo-
ry registers. Each register has its own base address and 

Figure 6 – Indirect kernel boot via Universal Bootloader (U-Boot)

end address. In order to access any peripheral, the user 
must know its base and end addresses. You will find de-
tails about the addresses in the device tree source (*.dts) 
file. For our design, we developed and tested four ap-
plications: Accessing DDR3; Accessing GPIO Using 
/dev/mem; Accessing GPIO Using UIO; and File Transfer.  

1. Accessing DDR3
We used the PetaLinux application titled DDR3-test.c to 
access the DDR3 memory. The application is designed 
to write data to and read data from a DDR3 memory 
location. DDR3 is a dual-in-line memory module that 
provides SDRAM for storing user code and data. As 
mentioned earlier, the user should know the start and 
end addresses of DDR3 memory—0xC0000000 and 
0xC7FFFFFF respectively. The memory size is 512 
Mbytes. The Linux kernel resides in the initial memory 
locations of DDR3 memory. Hence, the writing location 
for DDR3 memory is selected in such a way that the Li-
nux kernel is not corrupted. The command we used to 
write data to DDR3 memory was

where DDR3-test is the application name, –g is the DDR3 
memory physical address, –o is output and 15 is the value 
expected to be written on the DDR3 memory at the location 
0xc7000000. To test whether the value is written at the ex-
pected location, we used the following command to read data 
from DDR3 memory:

$ cd $ PETALINUX/software/ PetaLinux-dist

$  PetaLinux-qemu-boot -i images/image.elf

Figure 7 – Running PetaLinux through QEMU

#DDR3-test –g 0xc7000000 –o 15 

#DDR3-test –g 0xc7000000 –iFigure 5 – Snapshot of  PetaLinux console confirming  
that the OS has booted

$ cd $ PETALINUX/software/ PetaLinux-dist

$ PetaLinux-qemu-boot -i images/image.elf

image.elf


ing a parameter called “Compatibility,” we set the LEDs’ 
GPIO to be controlled as the UIO device, instead of the 
normal GPIO device. We also changed the label of the 
device from gpio@40000000 to leds@40000000.

We then rebuilt PetaLinux and tested the GPIO access us-
ing UIO. We obtained details about the information of UIO 
modules loaded using

The name of the UIO and its address are found in /sys/
class/uio/uioX. We used the following command to access 
GPIO LED through the UIO driver:

Here, gpio-uio-test is the application name, –d is the 
device path, –o is the output and 255 is the value passed 
out to GPIO through UIO. The results were verified by the 
LEDs glowing based on the data written on GPIO lines us-
ing the above command.   

4. File Transfer Application
For our last test, we transferred a file from a server to a 
client, where the server is the host PC and the client is 
the KC705 board. For this test, we connected the server 
and client through an Ethernet cable. We used the Triv-
ial File Transfer Protocol (TFTP), which is well known 
for its simplicity and is generally used for automated 
transfer of configuration or boot files. In order to test 
the file transfer from server to client using TFTP, we 
created a file called test in the server PC at /tftpboot. 
We used the following commands to write “Hello World” 
in the file and to view the contents in the same file (as 
shown in Figure 8): 
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 The value 15 was observed in the terminal, which con-
firms the DDR3 memory read and write operations were 
operating perfectly.  

2. Accessing GPIO Using /dev/mem
For our next application test, we used a PetaLinux applica-
tion titled gpio-dev-mem-test.c to access general-purpose 
I/O (GPIO). The application is designed to control an 8-bit 
discrete output and test that output by connecting LEDs on-
board to the GPIO. In order to access any device from the 
user space, open /dev/mem and then use mmap() to map the 
device to memory. The start and end addresses of the LED 
GPIO we used are 0x40000000 and 0x4fffffff, respectively.

The GPIO peripheral has two registers: a data regis-
ter (GPIO_DATA) and a direction register (GPIO_TRI_
OFFSET). In order to read the status of the GPIO, we 
set the direction bit to 1 (i.e., GPIO_TRI_OFFSET=1) 
and read the data from the data register. To write data 
to GPIO, set the bit to 0 and write the value to the data 
register. Data is written on GPIO using the following 
command on the PetaLinux terminal:

where gpio-dev-mem-test is the application name, –g 
is the GPIO physical address, –o is output and 255 is 
the value transmitted from GPIO, which is connected 
to LEDs. The results of the test were verified when the 
LEDs lit up as programmed.   

3. Accessing GPIO Using UIO
An alternative way of accessing GPIO is via the user-
space input/output. We used a PetaLinux application ti-
tled gpio-uio-test.c to access the GPIO using UIO. The 
application is designed to control an 8-bit discrete out-
put and is tested by connecting LEDs onboard to the 
GPIO. A UIO device is represented as /dev/uioX  in the 
file system. In order to access GPIO through UIO, we 
opened /dev/uioX or sys/class/uio/ui0 and then used the 
mmap() call. We configured the kernel to support UIO 
and enabled the UIO framework in the kernel. Then, us-

#gpio-dev-mem-test –g 0x40000000 –o 255

The application is designed to control an
8-bit discrete output and is tested by 
connecting LEDs onboard to the GPIO.   

# ls /sys/class/uio/

 uio0 uio1 uio2

@ echo “Hello World” > /tftpboot/test

@ more /tftpboot/test

# cd “/sys/class/uio/uioX

# gpio-uio-test -d /dev/uio1 -o 255
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To receive this file from the server, we typed the follow-
ing get command (-g) in the PetaLinux terminal window 
that was running as the client on the KC705 board:

A new file was created with the filename “test” in the cli-
ent (as shown in Figure 9). We can view the contents of this 
file using the more command, as seen in Figure 9. 

Similarly, transferring a file from the client to the server 
is done by creating a file called test1 with the content “Pet-
aLinux OS” in the client machine. To transmit the file from 
the client to the server, use the following “put” command 
(-p) in the PetaLinux terminal running from the client (as 
shown in Figure 10): 

A blank test1 file is created in the server. Its contents are 
read after the file transfer operation, and the contents are 
verified as shown in Figure 11.

Implementing an embedded system and running PetaLi-
nux on an FPGA were pretty straightforward operations. 
Next, we plan to implement a design using remote program-
ming where the boot files are transferred via Ethernet and 
the client is capable of running a new application. 
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# tftp -r test1 -p 192.168.25.68

Figure 10 – Snapshot for file transmission from client to server

Figure 11 – Snapshot of file reception in the server

Figure 9 – Snapshot for file reception in the client

Figure 8 – Snapshot of file creation in the server

# tftp -r test -g 192.168.25.68 

# ls –a
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When you are wrestling with a computa-
tion kernel with regular memory access 
patterns and easily extractable parallel-
ism between loop iterations, the Vivado® 

Design Suite high-level synthesis (HLS) 
tool can be a great resource for creating 
high-performance accelerators. By adding 
a few pragmas to a high-level algorithmic 
description in C, you can quickly imple-
ment a high-throughput processing engine 
on your Xilinx® FPGA. In combination 
with DMA mechanisms that are managed 
by software, the result is an orders-of-mag-
nitude speed-up when compared against 
general-purpose processors. 
 However, real-life applications often 
contain complex memory accesses that 
are not as easy to deal with, especially if we 
venture out of the realms of scientific com-
puting and signal-processing algorithms. 
We have devised a simple technique that 
you can use in some of these situations to 
produce efficient processing pipelines. But 
before we go into the details, let’s first take 
a look at how Vivado HLS works and more 
importantly, when it doesn’t.

HOW DO THE HLS TOOLS WORK? 
High-level synthesis attempts to capture 
parallelism in the control data flow graph 
(CDFG) described by high-level languages. 
Compute operations and memory access-
es are allocated and scheduled according 
to the dependency constraints between 
them and the resource constraints of the 
target platform. Activation of a particular 
operation in the circuit is associated with 
a certain clock cycle, while  a central con-
troller that’s synthesized alongside the 
data path orchestrates the execution of the 
entire CDFG.  

A simple flow that refactors 
high-level algorithmic 
descriptions makes it 
possible to generate a more  
efficient processing pipeline 
using high-level synthesis.

W
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 As the scheduling is done statically, 
the run-time behavior of the accelera-
tor is rather simple. Different parts of 
the generated circuit run in lockstep 
with each other; no dynamic dependen-
cy-checking mechanisms such as those 
present in high-performance CPUs are 
needed. In the function shown in Figure 
1(a), for instance, the loop index addi-
tion and the load of curInd can be paral-
lelized. Also, the next iteration can start 
before the current iteration finishes. 

Meanwhile, because the floating-point 
multiply always uses the result of mul-

in significant performance degradation. 
This is not an issue when the memory 
access pattern is known a priori, such 
that the data can be moved on-chip 
before it is needed, or if the data set is 
small enough to be entirely buffered on 
the FPGA. However, for many interest-
ing algorithms, the data access depends 
on the result of computation and the 
memory footprint requires the use of 
off-chip RAM. Now, naively applying 
HLS on the kernel would create a data 
path with a lot of instruction-level paral-
lelism. But when it’s activated, it would 

tiply from the previous iteration, the 
shortest interval in which we can start a 
new iteration is limited by the latency of 
the floating-point multiplier. The execu-
tion schedule of this function is shown 
in Figure 2(a). 

WHEN IS THIS  
APPROACH SUBOPTIMAL?  
The problem with this approach is that 
the entire data flow graph is running on 
a rigid schedule. Stalls introduced by 
off-chip communication propagate to 
the entire processing engine, resulting 

Naively applying HLS on the kernel  
would create a data path with a lot of  

instruction-level parallelism. But when it’s  
activated, it would need to stop frequently 

while waiting for data to be brought in.  

float foo (float* x, float* product, Int* Ind)
{
   float curProd = I.0;
   for(Int I=0; I<N; I++)
   {
       Int curInd = Ind[I];
       float curNum = x[curInd];
      curProd = curProd * curNum;
       product[I] = curProd;
   }
   return curProd;
}

index addition

curInd Fetch

curNum Fetch

FP Multiply

Product Store

Figure 1 – An example design: (a)  A function containing irregular memory access pattern; (b) pipeline structure from a possible refactoring



X P L A N A N T I O N :  F P G A  1 0 1

 First Quarter 2015  Xcell Journal  59

need to stop frequently while waiting 
for data to be brought in. 
 Figure 2(b) shows the execution of 
the generated hardware module for 
our example function when the data 
set is too large and needs to be dynam-
ically fetched into the on-chip cache. 
Note how the slowdown reflects the 
combination of all cache miss laten-
cies. This does not have to be the case, 
though, since there are parts of the 
computation graph whose progress 
does not need the memory data to be 
immediately available. These sections 
should be able to move forward. This 
extra bit of freedom in the execution 
schedule can potentially have a signif-
icant effect, as we shall see.

Figure 2 – Execution schedule in different scenarios: (a) when all data is buffered on-chip;  
(b) with data fetched dynamically; and (c) with decoupled operations

MAKING A CASE FOR  
REFACTORING/DECOUPLING  
Let’s look at the example function we 
had earlier. Imagine if the execution of 
floating-point multiplies and the data ac-
cesses are not all tied together by a uni-
fied schedule. While one load operator is 
waiting for data to come back, the other 
load operator can initiate new memory 
requests and the multiplier’s execution 
also moves forward. To achieve this, 
there should be one module responsible 
for each memory access, running on its 
own schedule. Also, the multiplier unit 
should be executing asynchronously 
with all the memory operations.
 The data dependencies between the 
different modules are communicated 

through hardware FIFOs. For our ex-
ample, a possible refactoring is shown 
in Figure 1(b). The hardware queues 
used for communication between 
stages can buffer data already fetched 
but not yet used. When the memo-
ry access parts are stalling for cache 
misses, the backlog of data already 
produced so far can continue supply-
ing the multiplier unit. Over a long pe-
riod of time, the stalls introduced can 
be shadowed by the long latency of 
the floating-point multiplication. 

Figure 2(c) shows the execution 
schedule when this decoupled pro-
cessing pipeline is used. The laten-
cies through the FIFOs are not taken 
into consideration here, but the effect 

float foo (float* x, float* product, Int* Ind)
{
   float curProd = I.0;
   for(Int I=0; I<N; I++)
   {
       Int curind = Ind[I];
       float curNum = x[curind];
       curProd = curProd * curNum;
       product[I] = curProd;
   }
   return curProd;
}

index addition

curind Fetch

curNum Fetch

FP Multiply

Product Store

iteration1 iteration2 iteration3 iteration1 iteration2 iteration3

(a)    (b)    (c)
All data buffered on-chip Decoupled operationsData fetched dynamicallytime
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should be minimal if there are a large 
number of iterations. 

HOW DO WE REFACTOR? 
To generate the pipeline of decoupled 
processing modules, you first need to 
cluster the instructions in the original 
CDFG to form subgraphs. To maximize 
the performance of the resulting imple-
mentation, the clustering method must 
address a few requirements. 

First, as we have seen earlier, the 
Vivado HLS tools use software pipelin-
ing to initiate new iterations before pre-
vious ones are completed. The latency 
of the longest circular dependence in 
the CDFG dictates the minimum interval 
with which a new iteration can be initiat-
ed, which ultimately bounds the overall 
throughput an accelerator can achieve. 
It is therefore crucial that these depen-
dency cycles do not traverse multiple 
subgraphs, as the FIFOs used for com-
munication between modules always 
add latency. 

Second, it is beneficial to separate 
memory operations from dependency cy-
cles involving long-latency compute, so 
that cache misses can be “shadowed” by 
the slow rate of data consumption. Here, 
“long latency” means the operation takes 
more than one cycle and for our purpose, 
the Vivado HLS schedule is used to ob-
tain this metric. So for instance, a mul-
tiply would be a long-latency operation 
while an integer addition is not. 

Lastly, to localize the effects of stalls 
introduced by cache misses, you will 
also want to minimize the number of 
memory operations in each subgraph, 
especially when they address different 
parts of the memory space.

It’s easy to satisfy the first require-
ment—keeping dependency cycles 
from traversing multiple subgraphs—by 
finding strongly connected components 
(SCCs) in the original data flow graph 
and collapsing them into nodes before 
separating them into different clusters. 
As a result of this process, we wind 
up with a directed acyclic graph, with 
some nodes being simple instructions 
and others being a set of operations de-
pendent on each other. 

To satisfy the second and third require-
ments—separating memory operations 
and localizing the effects of stalls—we 
can perform a topological sort of these 
nodes and then divide them up. The sim-
plest way to do the division is to draw a 
“boundary” after every memory opera-
tion or long-latency SCC node. Figure 3 
shows how to apply this approach to our 
motivating example. The correspondence 
between this clustering and the pipeline 
structure in Figure 1 should be appar-
ent. Each of these subgraphs is a new C 
function that can be pushed through HLS 
independently. These subgraphs will be 
executing out of step with one another. 

We built a simple source-to-source 
transformation tool to perform this re-

factoring. We used Xilinx IP cores for 
the FIFOs connecting individual mod-
ules generated. There is certainly more 
than one way to refactor a given com-
putation kernel, and the design space 
exploration is still in progress. 

PIPELINED MEMORY ACCESSES 
Having an initial implementation of a de-
coupled processing pipeline, there are 
optimizations we can perform to improve 
its efficiency. As we have seen, when a C 
function is mapped using HLS, the memo-
ry reads are blocking. This is still the case 
for the individual stages in our pipeline. 
For instance, the module responsible for 
loading x[curInd] may be stalling while 
waiting for the data even though the next 
curInd is already available and there is 
enough space in the FIFO downstream.  

To fix this problem, we can make a 
transformation to pipeline the memory 
accesses. Instead of performing a sim-
ple memory load in the C function for 
that particular stage, we replace the 
load with a push of addresses to a new 
FIFO. Then, a new hardware module is 
instantiated separately to read address-
es off the address FIFO and send them 
to the memory subsystem. The data 
coming back is directly pushed onto 
the downstream FIFO. Effectively, the 
memory access is now pipelined. 

The push operation for the addresses 
can be represented by a memory store to 
a FIFO interface in Vivado HLS, but the 

Figure 3 – Refactoring into subgraphs

float foo (float* x, float* product, Int* Ind)
{
   float curProd = I.0;
   for(Int I=0; I<N; I++)
   {
       Int curind = Ind[I];
       float curNum = x[curind];
       curProd = curProd * curNum;
       product[I] = curProd;
   }
   return curProd;
}

index addition

curind Fetch

curNum Fetch

FP Multiply

Product Store

(a)    (b)    (c)
time

1 + Load Mem
ind[i]

Load Mem
X[curInd]

Store Mem
Product[i]

Subgraph Boundaries
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Figure 4 – The knapsack problem

hardware module monitoring the down-
stream FIFO and firing off the memory 
request is implemented with Verilog. 
This is because the outgoing addresses 
and response data are not bundled to-
gether in a memory interface synthesiz-
able by Vivado HLS. However, this is a 
simple module that gets reused many 
times across different benchmarks, and 
thus the design effort is amortized. 

DUPLICATION OR 
COMMUNICATION? 
The FIFOs introduced to move data 
between stages represent significant 
overhead in refactoring the kernel and 
generating the decoupled processing 
pipeline. It is often beneficial to eliminate 
some of these FIFOs by duplicating a 
few computation instructions, as even a 

minimal-depth FIFO can cost a nontrivial 
amount of FPGA resources.  

In general, in searching for the abso-
lute best design point in this trade-off, 
you can apply cost-modeling and formal 
optimization techniques. But in most 
benchmarks, just duplicating the simple 
loop counters for every one of its users 
can save a lot of area, and that’s what 
we have done. In the motivating exam-
ple, this optimization involves duplicat-
ing the integer adder for i, so the store 
to Product[i] does not need to get its in-
dex from another module. 

BURST-MEMORY ACCESS 
A third optimization is burst-memory 
access. To make more efficient use of 
the memory bandwidth, it is desirable 
to have one memory transaction car-

rying multiple words of data. The AXI 
bus protocol allows you to specify burst 
length, and with small modifications to 
the decoupled C functions and the pipe-
lined memory access module, we can 
take advantage of this capability.  

In addition to generating addresses, 
each memory operator in decoupled C 
functions also computes a burst length 
when a contiguous chunk of memory 
is accessed. The duplication of loop 
counters also helps in the generation of 
burst access, as the number of words 
accessed can be determined locally 
within each decoupled function. 

EXPERIMENTAL EVALUATION 
We did a few case studies applying the de-
scribed approach. To evaluate the benefit 
of the method, we compare the decoupled 
processing pipelines (DPPs) generated 
using our approach with the accelera-
tors generated by naively applying HLS 
(Naïve). When invoking Vivado HLS for 
the Naïve/DPP implementations, we set 
the target clock frequency to 150 MHz and 
used the highest achievable clock rates af-
ter place-and-route. Also, we tried various 
mechanisms for the interaction between 
accelerators and the memory subsystem. 
ACP and HP ports are used, and for each, 
we also instantiated a 64-kbyte cache on 
the reconfigurable array.  

The physical device we used for 
the experiments was the Zynq®-7000 

for (w = 1; w <= W; w++) {
  int option1 = opt[n-1][ w];
  int option2 = -999999;
  int opt_without = opt[n-1][ w-cur_weight];
  if (cur_weight <= w)
     option2 = cur_profit + opt_without;
     opt[n][w] = option1> option2? option1:option2;
     sol [n][ w] = option2> oprion1? 1:0;
}

Figure 5 – Run-time comparison for knapsack problem 
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XC7Z020 All Programmable SoC from 
Xilinx, installed on the ZedBoard evalu-
ation platform. We also ran the software 
version of the applications on the ARM® 
processor on the Zynq SoC and used its 
performance as the baseline for our ex-
periments. All the accelerators generat-
ed are self-contained; they do not need 
any DMA mechanism to move data in 
and out of the reconfigurable fabric. 

CASE STUDY 1:  
KNAPSACK PROBLEM 
The knapsack problem is a well-known 
combinatorial problem that can be solved 
using dynamic programming. The skele-
ton of the kernel is shown in Figure 4. In 
particular, the variables in boldface type 
are all read from memory during run-time. 
Therefore, the exact locations from which 
the variable opt_without is loaded are not 
known a priori. When w and n are large, 
we are unable to buffer the entire opt array 
on-chip. We can only let the computation 
engine fetch the needed portion of it.  

Figure 5 shows the run-time comparison 
between the accelerators generated using 
our approach (DPP) and the accelerator 
generated by naively pushing the function 
through HLS (Naïve). The chart also shows 
the performance of running the function 
on an ARM processor. We fix n (number of 
items) at 40, and vary w (total weight of the 
knapsack) from 100 to 3,200.

It is clear from the comparison that 
naively mapping the software kernel us-

ing Vivado HLS generates an accelerator 
with performance much slower than the 
baseline. The superscalar, out-of-order 
ARM core on the Zynq SoC is capable of 
exploiting instruction-level parallelism to 
a good extent and also has a high-perfor-
mance on-chip cache. The additional par-
allelism extracted by the Vivado HLS tool 
is evidently not enough to compensate for 
the clock frequency advantage the hard 
processor core has over the programma-
ble logic and the longer data access laten-
cy from the reconfigurable array. 

When the kernel is decoupled into 
multiple processing stages, however, the 
performance is much better than that of 

the ARM processor (~4.5x). Also, the dif-
ference among various memory access 
mechanisms when DPP is used is rather 
small—the sensitivity to memory access 
latency is a lot better with our approach. 

CASE STUDY 2: SPARSE MATRIX 
VECTOR MULTIPLY 
Sparse matrix vector (SpMV) multiply 
is a computation kernel that has been 
studied, transformed and benchmarked 
many different ways in various research 
projects. Our purpose here is not to 
produce the best-performing SpMV 
multiply using special data-structure 
and memory-allocation schemes. Rath-
er, we want to see—given the most ba-
sic algorithm description—how much 
benefit a refactoring pass can provide 
when using Vivado HLS.  

As shown in Figure 6, for our ex-
periment the sparse matrix is stored in 
compressed sparse row (CSR) format. 
Loads from an index array are per-
formed before numbers can be fetched 
for the actual floating-point multiply. 
Again, the control flow and memory lo-
cations accessed depend on values only 
known during run-time. 

For the run-time comparison shown 
in Figure 7, the matrix is populated with 
an average density of 1/16, and the di-
mension is varied between 32 and 2,048. 

Figure 7 – Run-time comparison for sparse matrix vector multiply

Figure 6 – Sparse matrix vector multiply

for(s =0; s<dim; s++) 
{
   int kend = ptr[s];
   int k;
   float curY = y[s];
   for(k = kbegin; k<kend; k++){
      int curlnd = indArray[k];
      curY = curY +valArray[k] * xvec[curlnd];
     }
     Y[s] = curY;
     kbegin = kend;
}
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Here, the naïve mapping again lags 
the software version in performance. 
The decoupled processing pipeline 
generated with our approach has about 
the same performance as the baseline 
when no on-FPGA cache is used. 

With a 64-kbyte cache instantiated 
on the reconfigurable array, the perfor-
mance of DPP is close to double that of 
the baseline. The addition of caches has 
a more pronounced effect on the per-
formance of the DPP compared with 
the previous benchmark. 

CASE STUDY 3:  
FLOYD-WARSHALL ALGORITHM 
Floyd-Warshall is a graph algorithm that’s 
used to find the pairwise shortest path be-
tween any pair of vertices. The memory 
access pattern is simpler than in previous 
benchmarks. Thus, there may be a way to 
devise a DMA-plus-accelerator setup to 
have a good overlap of computation and 
off-chip communication. Our approach 
tries to achieve this overlapping automat-
ically, but we have not done the study to 
show the gap between the absolute opti-
mal and what we have obtained here. 

We do have, however, a comparison 
of run-time just as with the previous 
benchmarks. Here, we vary the size of 
our graph from 40 nodes to 160 nodes. 
Each node has on average 1/3 of all 
nodes as its neighbors. 

Our results are very similar to those 
in the knapsack problem. The decou-

pled processing pipelines achieved per-
formance about 3x that of the software 
baseline, which has more than twice the 
throughput of any naïve mappings. The 
effect on FPGA cache is also small when 
DPPs are used, demonstrating their toler-
ance toward memory access latency.

Our simple technique creates pro-
cessing pipelines that can make bet-
ter use of memory bandwidth and 
have better tolerance toward mem-
ory latency, thus improving Vivado 
HLS performance. The described 
method decouples memory accesses 
and long dependence cycles in the 
control data flow graph, such that 
cache misses do not stall the other 
parts of the accelerator. 

Figure 9 – Run-time comparison for Floyd-Warshall algorithm

Figure 8 – The Floyd-Warshall algorithm

for(k=0; k<V; k++) 
    for(i=0; i<V; i++)
     if(i!=k) {
        int dik = dis[i][k];
        for(j=0; j<V; j++)
          if(j!=k) {
            int dkj =  dist[k][j];
            int dij =  dist[i][j];
            if(dik +  dkj < dij )
              dist[i][j] = dik + dkj;
          }
      }

www.opalkelly.com
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Latest and Greatest 
from the Xilinx Alliance 
Program Partners

T
he Xilinx® Alliance Program is a worldwide ecosystem of qualified com-

panies that collaborate with Xilinx to further the development of All Pro-

grammable technologies. Xilinx has built this ecosystem, leveraging open 

platforms and standards, to meet customer needs and is committed to its 

long-term success. Alliance members—including IP providers, EDA vendors, embedded 

software providers, system integrators and hardware suppliers—help accelerate your 

design productivity while minimizing risk. Here are some highlights.

XPEDITE

LINUX-BASED MULTICORE 
FRAMEWORK FOR ZYNQ  
ULTRASCALE+ MPSOC

Given that the upcoming Zynq® Ultra- 
Scale+™ MPSoC from Xilinx is char-
acterized by increased levels of capa-
bility, performance and complexity, 
application developers will need new 
and improved software development 
paradigms to efficiently manage and 
leverage the heterogeneous processing 
power offered by this device. 

The Mentor Embedded Multicore 
Framework from Mentor Graphics 
provides an enabling infrastructure 
to manage the life cycle of compute 
resources and interprocessor com-

Xpedite highlights the latest technology updates 
from the Xilinx Alliance partner ecosystem.

munications in heterogeneous multi-
processing environments. The initial 
integration of the Mentor portfolio 
showcases SMP Linux running on the 
quad ARM® Cortex™-A53 cores man-
aging the life cycle and communica-
tions. The Nucleus RTOS runs on the 
ARM Cortex-R5 core using the Mentor 
Embedded Multicore Framework. 

Mentor’s Sourcery Codebench tools 
provide an integrated development en-
vironment for designing asymmetric 
multiprocessing (AMP) systems. Devel-
opers face unique challenges while de-
bugging/profiling heterogeneous soft-
ware contexts on heterogeneous cores. 
Mentor’s embedded development tools 
hide these complexities from users and 

provide deep insight into the system 
run-time. Offerings include:

 
•  Tools for resource partitioning 

in AMP systems (available later 
this year)

•  Tools for building and packaging 
remote firmware/applications

•  IDE for debugging each individual 
software context present in the 
AMP system

• Ability to profile each OS/applica-
 tion context and analyze data in a  

 unified time reference

For more information, visit http://
www.mentor.com/embedded-software/.

http://www.mentor.com/embedded-software/
http://www.mentor.com/embedded-software/
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MATHWORKS EXPANDS 
SUPPORT FOR ZYNQ-7000 
ALL PROGRAMMABLE SOCS 

Xilinx Alliance Program member 
MathWorks has expanded support for 
Xilinx’s Zynq-7000 All Programmable 
SoCs in Release 2014b. This newest 
release of MATLAB® and Simulink® 
allows engineers and scientists us-
ing model-based design to accelerate 
their time-to-production with a higher 
degree of confidence, all within a sin-
gle tool environment. 

MathWorks and Xilinx have close-
ly collaborated on joint technical de-
velopment to bring this novel guided 
workflow to the market. The workflow 
allows customers to develop and sim-
ulate algorithms that can be validated 
quickly and deployed onto the Zynq 
SoC, leveraging automatically generat-
ed C and HDL code. This methodology 
leverages the Zynq SoC’s dual-core ARM 
Cortex-A9 processors coupled with a 
powerful programmable logic fabric to 
enable engineers and scientists to de-
sign and implement algorithms on a sin-
gle chip that consumes less space and 
power in the end system. 

In addition to existing support for 
the Xilinx ISE® Design Suite and the 
Zynq Intelligent Drives Kit, the extend-
ed support in this latest release pro-
vides integration with the Xilinx Viva-
do® Design Suite and the Zynq SDR 
development platforms. As a result, 
engineers and scientists can prototype 
quickly on a hardware development 
platform and then incorporate the gen-
erated C and HDL code into produc-
tion environments through the use of 
the Vivado Design Suite. 

The expanded support for Xilinx 
SoCs is available immediately in 
MATLAB Release 2014b. 

In addition, MathWorks also offers 
a two-day training class to help en-
gineers get up and running quickly 
on this technology. For more infor-
mation, visit the Release 2014b high-
lights page.

INTELLIPROP RELEASES 
NVME IP CORES FOR  
XILINX 7 SERIES AND  
ULTRASCALE FPGAS 

Alliance member IntelliProp has col-
laborated with Xilinx to provide indus-
try-standard NVMe host-interface and 
device-interface IP cores. IntelliProp’s 
NVMe Host (IPC-NV164-HI) and NVMe 
Device (IPC-NV163-DT) cores make it 
possible to communicate with PCIe®-
based storage designs implemented 
onto Xilinx FPGAs. IntelliProp’s NVMe 
IP cores comply fully with the Nonvola-
tile Memory Express industry specifica-
tion. They feature an application layer 
with a processor interface to provide 
register and memory access. The cores 
support attachment to the system bus, 
providing seamless IP access and ease 
of integration with any system design. 
They utilize the power of the hard PCIe 
block made available in Xilinx 7 series 
and UltraScale FPGAs and are support-
ed in Verilog and VHDL. 

IntelliProp’s NVMe cores can be in-
tegrated onto 7 series and UltraScale 
FPGAs to provide an industry-compli-
ant PCIe Gen1, Gen2 or Gen3 interface. 
The NVMe Host IP core is designed to 
be integrated with an NVMe-compli-
ant host application to interface with 
an NVMe drive, posting commands to 
system memory queues and interacting 
with the endpoint device’s register sets. 
The NVMe Device IP core provides an 
NVMe-compliant device application to 
process host commands and perform 
PCIe data management. Both IP cores 
are designed to allow for efficient data 
movement between host system memo-
ry and PCIe connected devices.

User applications can be created 
using the Vivado Design Suite and are 
packaged for IP Integrator with refer-
ence designs for rapid development. 
IntelliProp’s IP cores are competitively 
priced and available to order immedi-
ately. Product details and ordering op-
tions are available at http://www.intel-
liprop.com/ or info@intelliprop.com.

TOPIC SPEEDS EMBEDDED 
DEVELOPMENT THROUGH 
ONLINE SHOPPING

Xilinx premier partner Topic Em-
bedded Solutions has opened an 
online store for high-quality embed-
ded solutions. The company offers a 
completely modular portfolio of in-
tegrated solutions designed to dras-
tically reduce development cycles. 

To start, the Zynq SoC-based 
Miami SoM modules are industrial 
graded, ready to program and de-
sign-in. They come standard with a 
full, fast-boot mainline Linux board 
support package. The BSP is updat-
ed continuously and is available on-
line to ensure customers stay cur-
rent with the latest Linux software 
developments.  

A full line of Florida Carrier 
Boards is available for complete 
system integration with Topic’s 
SoMs. Specialized versions for med-
ical and general use provide exten-
sive off-the-shelf capabilities for 
development, prototyping and even 
production. Full schematics and 
layout of the carrier board comes 
standard with a purchase to ensure 
fast and successful integration. 

Topic has also just released a 
new PCIe version of Florida that 
is ideal for data acceleration pur-
poses such as video, signal or high-
speed data processing.

A growing range of fully inte-
grated development kits can sim-
plify research, prototyping and fast 
engineering. These kits include 
touchscreens, application-specific 
I/O, all relevant cables and refer-
ence designs. 

Find Topic Embedded Products 
at Embedded World in Nuremburg, 
Germany, in Hall 1, stand No. 1-136, 
on the Xilinx stand, through one of 
Topic’s worldwide distribution part-
ners or on the Topic online store at 
www.topicproducts.com.  

http://www.mathworks.com/hardware-support/zynq.html
http://www.mathworks.com/hardware-support/zynq.html
http://www.mathworks.com/hardware-support/zynq-motor-control.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.mathworks.com/hardware-support/zynq-sdr.html
http://www.mathworks.com/zynq-training
http://www.mathworks.com/products/new_products/latest_features.html
http://www.mathworks.com/products/new_products/latest_features.html
http://www.intelliprop.com/ or info@intelliprop.com
http://www.intelliprop.com/ or info@intelliprop.com
http://www.topicembeddedproducts.com/
http://www.topicembeddedproducts.com/products/system-on-modules/
http://www.topicembeddedproducts.com/products/boards-kits/
http://www.topicembeddedproducts.com/products/boards-kits/
http://topicembeddedproducts.com/products/boards-kits/development-kit/
www.topicproducts.com


Xpress Yourself 
in Our Caption Contest

Everyone loves emoticons, but you wouldn’t want to look like one. The 
individual leading this workshop seems to have taken the suggestion to 
“put on a happy face” a little too far. But don’t worry, be happy—just 

write an engineering- or technology-related caption for our smiley-face cartoon 
and you could be the lucky winner of this issue’s caption contest. The image 
might inspire a caption like “Max just came back from that Power of Positive 
Thinking executive retreat. Do you think he’s been brainwashed?” 

Send your entries to xcell@xilinx.com. Include your name, job title, com-
pany affiliation and location, and indicate that you have read the contest 
rules at www.xilinx.com/xcellcontest. After due deliberation, we will print 
the submissions we like the best in the next issue of Xcell Journal. The 
winner will receive a Digilent Zynq Zybo board, featuring the Xilinx® Zynq®-
7000 All Programmable SoC (http://www.xilinx.com/products/boards-and-
kits/1-4AZFTE.htm). Two runners-up will gain notoriety, fame and a cool, 
Xilinx-branded gift from our swag closet. 

The contest begins at 12:01 a.m. Pacific Time on Feb. 23, 2015. All entries must 
be received by the sponsor by 5 p.m. PT on April 2, 2015.

Now, that’s something to smile about!

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original. Contest begins on on April 2, 
2015. Entries must be received by 5:00 pm Pacific Time (PT) Feb. 23, 2015. Official rules are available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

DR. JAMES C. MALONEY,  faculty 
member in the Electrical Engineering 
and Fuel Cell Engineering Technology 

and Information Technologies  
Division of Stark State College 

(North Canton, Ohio), won a shiny 
new Digilent Zynq Zybo board with 

this caption for the rodent-in-a-maze 
cartoon in Issue 89 of Xcell Journal:

“Who moved my cheese?”

Congratulations as well to  
our two runners-up:

 “Gary missed the mark when his 
boss told him to implement a  

‘genetic’ place-and-route algorithm.”

 — Michael Costanzo, electrical  
engineer, Brookhaven National  
Laboratory, Collider-Accelerator  

Department, Upton, NY

 
“This is what we ordered from 

Mouser Electronics?”

— Chris Lee, hardware engineer,  
Cisco Systems, San Jose, Calif.

XCLAMATIONS!
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http://xcell@xilinx.com
http://www.xilinx.com/xcellcontest
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm
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Synplify Premier 
Achieve Best Quality of Results and Maximum

Performance for Your FPGA Design

FPGAs keep getting bigger, but your schedule is not. There is no 

time to waste on numerous design iterations and long tool runtimes. 

Use the hierarchical and incremental techniques available in 

Synopsys’ Synplify® software to bring in your schedule and meet 

aggressive performance and area goals.

u Unmatched quality of results

u  Fastest turnaround time

u Fast and easy debug

u Results preservation from one run to the next

To learn more about how Synopsys FPGA design tools accelerate 

time to market, visit www.synopsys.com/fpga

To learn more about how Synopsys FPGA design tools accelerate 

time to market, visit www.synopsys.com/fpga

To learn more about how Synopsys FPGA design tools accelerate 

time to market, visit www.synopsys.com/fpga

http://www.synopsys.com/fpga
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