
www.xilinx.com/xcell

S O L U T I O N S F O R A P R O G R A M M A B L E W O R L D

ISSUE 90, FIRST QUARTER 2015

16nm UltraScale+ Devices
Yield 2-5X Performance/Watt
Advantage

60G Millimeter-Wave
Backhaul Link Poised
to Boost Cellular Capacity

A Double-Barreled Way
to Get the Most from
Your Zynq SoC

How to Port PetaLinux
Onto Your Xilinx FPGA

Solar Orbiter
Will Process Data
Onboard Using
Xilinx FPGAs 16

http://www.xilinx.com/xcell

How can Embedded Vision
Make Your System Smarter?

© Avnet, Inc. 2015. All rights reserved. AVNET is a registered trademark of Avnet, Inc.

Xilinx and Zynq are trademarks or registered trademarks of Xilinx, Inc.

Order your kit today at:
www.microzed.org/product/microzed-embedded-vision-kits

Explore the endless possibilities that embedded vision brings to your

next design with the MicroZed Embedded Vision Development Kit

http://www.microzed.org/product/microzed-embedded-vision-kits

Integrated Hardware and Software
Prototyping Solution

HAPS and ProtoCompiler accelerate software development,
HW/SW integration and system validation from individual IP blocks
to processor subsystems to complete SoCs.

� Integrated ProtoCompiler design automation software speeds
prototype bring-up by 3X

� Enhanced HapsTrak I/O connector technology and high-speed
time-domain multiplexing deliver the highest system performance

� Automated debug captures seconds of trace data for superior
debug visibility

� Scalable architecture supports up to 288 million ASIC gates to
match your design size

To learn more visit: www.synopsys.com/HAPS

http://www.synopsys.com/HAPS

L E T T E R F R O M T H E P U B L I S H E R

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3400
Phone: 408-559-7778
FAX: 408-879-4780
www.xilinx.com/xcell/

© 2015 Xilinx, Inc. All rights reserved. XILINX,
the Xilinx Logo, and other designated brands included
herein are trademarks of Xilinx, Inc. All other trade-
marks are the property of their respective owners.

The articles, information, and other materials included
in this issue are provided solely for the convenience of
our readers. Xilinx makes no warranties, express,
implied, statutory, or otherwise, and accepts no liability
with respect to any such articles, information, or other
materials or their use, and any use thereof is solely at
the risk of the user. Any person or entity using such
information in any way releases and waives any claim
it might have against Xilinx for any loss, damage, or
expense caused thereby.

PUBLISHER Mike Santarini
mike.santarini@xilinx.com
408-626-5981

EDITOR Jacqueline Damian

ART DIRECTOR Scott Blair

DESIGN/PRODUCTION Teie, Gelwicks & Associates
1-800-493-5551

ADVERTISING SALES Judy Gelwicks
1-800-493-5551
xcelladsales@aol.com

INTERNATIONAL Melissa Zhang, Asia Pacific
melissa.zhang@xilinx.com

Christelle Moraga, Europe/
Middle East/Africa
christelle.moraga@xilinx.com

Tomoko Suto, Japan
tomoko@xilinx.com

REPRINT ORDERS 1-800-493-5551

Xcell journal

www.xilinx.com/xcell/

Get Ready for More Innovations from Xilinx

Ever since Xilinx® began shipping the industry’s first All Programmable SoC back in
2011, users have been creating a vast array of innovative products across a growing
number of end markets. Automotive, industrial, scientific, wired and wireless com-

munications, aerospace, test and measurement, broadcast and consumer electronics—all
these markets have launched or will launch innovations driven with the Zynq® SoC. If you
have been reading Xcell Journal over the last few years or visiting the new Xcell Daily blog,
you’ve probably noticed the growing percentage of content related to the use of the device.
Certainly a common theme throughout all the Zynq SoC-related articles is the amazing sys-

tem performance the device achieves simply by integrating and interconnecting the ARM®

dual-core Cortex™-A9 MPCore processors and 7 series FPGA logic—all on a single device.
With more than 3,000 interconnects linking the processing system with the programmable
logic, the Zynq SoC achieves performance that a two-chip, ASSP/ASIC + FPGA simply can’t
manage. There are not enough external I/Os on the outside of any discrete FPGA and ASSP to
do the job. An added benefit of this integration is a reduction in power requirements (as well
as the BOM), since the two-chip-for-one-chip swap also means the system needs less power
circuitry. Over the last four years, the Zynq SoC has certainly proven worthy of all the
Innovation awards it has received from tier-one trade publications worldwide.
So it is with great excitement that here at Xcell Journal, we finally get to reveal the on-chip

details of the next-generation All Programmable SoC from Xilinx: the Zynq UltraScale+™
MPSoC, which is scheduled for shipment early next year. I encourage you to read the cover
story for details about the device and the rest of Xilinx’s newly unveiled 16nm UltraScale+
portfolio. Leveraging lessons learned from the original Zynq SoC, feedback from users and
insights into their product road maps, Xilinx has created an All Programmable MPSoC that
achieves exponentially higher levels of system integration and system performance/watt than
the remarkable first-generation Zynq SoC.
In fact, the cover story explains how all the devices—FPGAs, 3D ICs and MPSoCs—in

the new UltraScale+ portfolio attain at a minimum twice the performance per watt of pre-
ceding-generation systems, thanks to implementation in TSMC’s 16nm FFT+ process.
Additional performance/watt benefits accrue from a new, larger memory called UltraRAM
that Xilinx is implementing in most of these devices and from a new system-level intercon-
nect technology called SmartConnect.
By far the greatest performance/watt benefit can be achieved with the Zynq UltraScale+

MPSoC, which is a kitchen sink All Programmable SoC. It has a quad-core 64-bit APU, a
dual-core RPU, a graphics processor plus a host of peripherals, security features and power
management, all on one chip. Zynq MPSoC systems will be able to achieve 5x the perform-
ance/watt of 28nm Zynq SoC systems.
You have created some amazing systems with the Zynq SoC. I can’t wait to see what you

do with the Zynq UltraScale+ MPSoC. I hope that as Xilinx begins rolling out these remark-
able devices, you will continue to share your design experiences with your colleagues by
publishing articles in Xcell Journal.

Mike Santarini
Publisher

We dedicate this issue to Dan Teie, Xcell Journal’s longtime advertising
and creative director, who passed away in January. Dan was a sportsman,
an adventurer, a fighter, a gentleman and a great human being who had a
deep love for his family and friends and great passion for living life to its
fullest. We miss you, Dan.

n Five I-MOVIX X10 UHD (4K) cameras recorded Super Bowl XLIX in glorious ultra slow motion—FPGAs tackled the video

n 14-bit, 1.6Gsamples/sec PCIe/PXIe/USB/Micro-TCA Digitizer employs FPGA for custom signal processing at speed

n An Open Source Kickstarter SDN project based on Zynq? For $649? Wowzers!

n Zynq-based open-source programmable RF transceiver project

n Dave Jones’ EEVBlog reviews $149 Digilent Basys 3 Eval Board based on Xilinx Artix-7 FPGANational Instruments enhances
LabVIEW FPGA

http://forums.xilinx.com/t5/Xcell-Daily-Blog/Five-I-MOVIX-X10-UHD-4K-cameras-recorded-Super-Bowl-XLIX-in/ba-p/563904
http://forums.xilinx.com/t5/Xcell-Daily-Blog/14-bit-1-6Gsamples-sec-PCIe-PXIe-USB-Micro-TCA-Digitizer-employs/ba-p/563552
http://forums.xilinx.com/t5/Xcell-Daily-Blog/An-Open-Source-Kickstarter-SDN-project-based-on-Zynq-For-649/ba-p/563248
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Zynq-based-open-source-programmable-RF-transceiver-project/ba-p/562800
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Dave-Jones-EEVBlog-reviews-149-Digilent-Basys-3-Eval-Board-based/ba-p/562252
http://forums.xilinx.com/t5/Xcell-Daily-Blog/Dave-Jones-EEVBlog-reviews-149-Digilent-Basys-3-Eval-Board-based/ba-p/562252

C O N T E N T S

VIEWPOINTS

Letter from the Publisher

Get Ready for More Innovations
from Xilinx… 4

XCELLENCE BY DESIGN
APPLICATION FEATURES
Xcellence in Aerospace

Solar Orbiter Will Process Data
Onboard Using Xilinx FPGAs… 16

Xcellence in Wireless
Communications

60G Millimeter-Wave Backhaul Link Is
Poised to Boost Cellular Capacity… 22

Xcellence in Data Centers

MACsec IP Improves Data
Center Security… 28

Xcellence in Data Centers

Simplify Your ‘Hot’ Testing with
Xilinx’s Zynq SoC… 34

Cover Story

8 Xilinx 16nm UltraScale+
Devices Yield 2-5X
Performance/Watt
Advantage

34

16

22

F I R S T Q U A R T E R 2 0 1 5 , I S S U E 9 0

THE XILINX XPERIENCE FEATURES
Xplanation: FPGA 101

A Double-Barreled Way to Get
the Most from Your Zynq SoC… 38

Xplanation: FPGA 101

How to Port PetaLinux onto
Your Xilinx FPGA… 46

Xplanation: FPGA 101

Try Algorithm Refactoring to
Generate an Efficient Processing
Pipeline with Vivado HLS… 56

XTRA READING
Xpedite Latest and greatest from the
Xilinx Alliance Program partners… 64

Xclamations! Share your wit and
wisdom by supplying a caption for
our wild and wacky artwork… 66

46

56
38

Excellence in Magazine & Journal Writing
2010, 2011

Excellence in Magazine & Journal Design
2010, 2011, 2012

C O V E R S T O R Y

 8 Xcell Journal First Quarter 2015

Xilinx 16nm UltraScale+
Devices Yield 2-5X
Performance/Watt
Advantage
by Mike Santarini
Publisher, Xcell Journal
Xilinx, Inc.
mike.santarini@xilinx.com

mailto:mike.santarini@xilinx.com

C O V E R S T O R Y

 First Quarter 2015 Xcell Journal 9

Building on the Generation Ahead lead gained with its
28nm, 7 series All Programmable device family and its
first-to-market 20nm UltraScale™ portfolio, Xilinx® has
just unveiled its 16nm UltraScale+™ lineup. The device
portfolio will enable customers to build systems with
a 2X to 5X performance-per-watt advantage over com-
parable systems designed with Xilinx’s 28nm devices.
These performance/watt advantages rest on three main
pillars: device implementation in TSMC’s 16FF+ (16nm
FinFET Plus) process, Xilinx’s on-chip UltraRAM mem-
ory and an innovative system-level interconnect-optimi-
zation technology called SmartConnect.
 In addition, Xilinx has also unwrapped its sec-
ond-generation Zynq® All Programmable SoC. The Zynq
UltraScale Multiprocessing SoC (MPSoC) features on
a single device a quad-core 64-bit ARM® Cortex™-A53
application processor, a 32-bit ARM Cortex-R5 real-time
processer and an ARM Mali-400MP graphics processor,
along with 16nm FPGA logic (with UltraRAM), a host
of peripherals, security and reliability features, and an
innovative power control technology. The new Zynq Ul-
traScale+ MPSoC gives users what they need to create
systems with a 5X performance/watt advantage over
systems designed with the 28nm Zynq SoC.

FINFET EXPANDS ULTRASCALE PORTFOLIO
WITH EXTRA NODE OF VALUE
“With the 16nm UltraScale+ portfolio, we are cre-
ating an extra node of value ahead of what Moore’s
Law would traditionally afford users,” said Dave My-
ron, senior director of silicon product management
and marketing at Xilinx. “We are addressing a broad
range of next-generation applications, including LTE
Advanced and early 5G wireless, terabit wired com-

The combination of TSMC’s
16nm FinFET process
with Xilinx’s new UltraRAM
and SmartConnect
technologies enables Xilinx
to continue delivering
‘More than Moore’s Law’

value to the market. B

C O V E R S T O R Y

 10 Xcell Journal First Quarter 2015

munications, automotive advanced
driver-assistance systems and indus-
trial Internet-of-Things applications.
The UltraScale+ portfolio will enable
customers to create greater innovations
while staying ahead of the competition
in their respective markets.”
 With its UltraScale generation of
products, Xilinx is concurrently offer-
ing devices from two process nodes:
TSMC’s 20nm planar process (already
shipping) and now TSMC’s 16FF+ pro-
cess (which Xilinx plans to ship in the
fourth calendar quarter of 2015). Xilinx
will be offering 16nm UltraScale+ ver-
sions of its Virtex® FPGA and 3D IC fam-
ilies, its Kintex® FPGA family as well as
the new Zynq UltraScale+ MPSoCs.

Mark Moran, director of new product
introduction and solution marketing,
said that Xilinx decided to begin its Ul-
traScale rollout with 20nm in 2013, in-
stead of waiting for TSMC’s 16FF+ pro-
cess. That’s because in some application
spaces, it was imperative to have 20nm
devices—which are inherently higher in
performance and capacity than 28nm—
a year and a half sooner.

vices look almost identical,” said My-
ron. “So there is an additional benefit
of using the 16nm UltraScale+ devices,
because the improvements in perfor-
mance/watt make it easier to achieve
performance and power goals.”

Myron said that UltraScale+ FPGAs
and 3D ICs will afford more than a 2X
performance/watt advantage over 28nm,
7 series FPGAs. Meanwhile, Zynq Ul-
traScale+ MPSoCs, with their additional
integrated heterogeneous processing ca-
pabilities, will have more than a 5X sys-
tem performance/watt advantage over
comparable systems built with the 28nm
Zynq SoCs (Figure 1).

PERFORMANCE/WATT EDGE
FROM TSMC’S 16FF+ PROCESS
Based purely on the process migration
to 16nm FinFET, Xilinx has produced de-
vices that boast a 2X performance/watt
advantage over 28nm, 7 series devices.
“TSMC’s 16FF+ is an extremely efficient
process technology in that it virtually
eliminates transistor power leakage asso-
ciated with the preceding silicon process-
es implemented with planar transistors,”

“Our entire portfolio is designed with
market needs in mind,” said Moran. “The
capabilities of the devices in the 20nm
UltraScale architecture are better suited
to next-generation products of certain
markets and end applications that don’t
require that extra node of performance/
watt UltraScale+ offers. We built 20nm
FinFET knowing 16nm was close be-
hind. And so we implemented a lot of
architectural changes in 20nm that we
knew we could build on for 16nm to add
an extra level of performance and value
for markets that need it. We have cus-
tomers who are getting a head start and
developing on the 20nm devices we have
available today so that when 16nm Ultra-
Scale+ devices become available, they
can quickly port their designs and get
those designs to market sooner.”

Myron added that many of the Virtex
UltraScale+ devices will be pin-com-
patible with the 20nm Virtex Ultra-
Scale devices, making it easy to trade
up for designs that require the extra
performance/watt benefits.

“From a tools perspective, the 20nm
UltraScale and 16nm UltraScale+ de-

Figure 1 – Xilinx 16nm UltraScale+ FPGAs and Zynq UltraScale+ MPSoCs offer design teams an extra node of value.

C O V E R S T O R Y

 First Quarter 2015 Xcell Journal 11

said Myron. “In addition, we have worked
diligently with TSMC to refine Ultra-
Scale+ devices to take full advantage of
the new process technology. At a mini-
mum (just from the new process tech-
nology innovations), UltraScale+ designs
will see more than twice the perfor-
mance/watt improvement over designs
implemented in 28nm 7 series devices.”
 For a detailed description of Xilinx’s
20nm UltraScale architecture and the
advantages of FinFET over planar tran-
sistor processes, see the cover story in
Xcell Journal, issue 84.

In the UltraScale+ family, Xilinx
is also offering the industry’s first
3D-on-3D devices—its third-generation
stacked-silicon interconnect 3D ICs im-
plemented on TSMC’s 16FF+ 3D tran-
sistor technology.

The award-winning 7 series 3D ICs
surpassed the performance and capac-
ity limits of Moore’s Law by offering
multiple dice on a single integrated cir-
cuit, Myron said.

“With our homogeneous 3D IC, we
were able to smash the capacity limits
of Moore’s Law, offering a device that
was twice the capacity of what the larg-
est monolithic FPGA could produce
at 28nm,” said Myron. “Then, with our
first heterogeneous device, we were

able to mix FPGA dice with high-speed
transceiver dice and offer system per-
formance and bandwidth not possible
with a 28nm monolithic device. With Ul-
traScale+ 3D ICs, we’ll continue to offer
capacity and performance exceeding
the Moore’s Law trajectory.”

PERFORMANCE/WATT
ADVANTAGE FROM ULTRARAM
Myron said that many UltraScale+ de-
signs will gain an additional perfor-
mance/watt improvement vs. 28nm from
a new, large on-chip memory called Ul-
traRAM. Xilinx is adding the UltraRAM
to most of the UltraScale+ devices.

“Fundamentally, what we are seeing
is a growing chasm between the on-chip
memory you have, such as LUT RAM or
distributed RAM and Block RAM, and the
memory you have off-chip, such as DDR
or off-chip SRAM,” said Myron. “There
are so many processor-intensive applica-
tions that need different kinds of memo-
ry. Especially as you design larger, more
complex designs, there is a growing need
to have faster memory on-chip. Block
RAMs are too granular and there are too
few of them. And if you put memory off
the chip, it adds to power consumption,
complicates I/O and adds to BOM cost.”

These are the reasons Xilinx cre-

ated UltraRAM. “What we’ve done is
add another level of memory hierarchy
on-chip, along with the ability to easi-
ly implement large blocks of memory
into the design,” Myron said. “We have
made it easy for designers to place the
right size memory on-chip and the tim-
ing is guaranteed.”

LUT or distributed RAM allows de-
signers to add RAM in bit and kilobit
sizes, and BRAM lets them add memory
blocks in tens of megabits. UltraRAM
will allow those using UltraScale+ de-
vices to implement on-chip SRAM in
blocks counted in hundreds of megabits
(Figure 2). By doing so, designers will
be able to create higher-performance
and more power-efficient systems
that require less off-chip RAM (SRAM,
RLDRAM and TCAM). The result will
be a reduction in BOM costs. The larg-
est UltraScale+ device, the VU13P, will
have 432 Mbits of UltraRAM.

PERFORMANCE/WATT ADVANTAGE
FROM SMARTCONNECT
Another new technology, called SmartCon-
nect, brings additional performance/watt
improvements to UltraScale+ designs.

“SmartConnect is a co-optimization
of the tools and hardware and an intel-
ligent way to enable designs to be more

Figure 2 – UltraRAM closes the memory gap between on-chip and off-chip memory, allowing designers
to create higher-performance and lower-power systems with larger local memory blocks.

http://www.author.xilinx.com/publications/archives/xcell/Xcell84.pdf

C O V E R S T O R Y

 12 Xcell Journal First Quarter 2015

Figure 3 illustrates a real design that
has eight video-processing engines, all in-
terfacing with a processor and memory. “It
may be surprising that in a real- world de-
sign like this, the interconnect logic actu-
ally can consume almost half the design’s
total area. This not only impacts power
but limits frequency,” said Myron. “Smart-
Connect can automatically restructure the
interconnect blocks and decrease power
by 20 percent at the same performance.

16NM ULTRASCALE FPGA
BENCHMARK
To illustrate the performance/watt ad-
vantage in an FPGA design scenario,
a 48-port wireless CPRI compression
and baseband hardware accelerator
implemented in a 28nm Virtex-7 FPGA
consumes 56 watts (Figure 4). The
same design running at the same per-
formance but implemented in a 16nm

easily implemented even as they are be-
coming more complex,” said Myron.

Traditionally as engineers cram
more IP blocks into a design, the over-
head—in terms of power and area re-
quirements—increases. With SmartCon-
nect, Xilinx has added optimizations to
the Vivado® Design Suite that will look
at the entire design from a system level,
Myron said. SmartConnect will come up
with the most efficient interconnect to-
pologies to get the lowest area and high-
est performance, leveraging certain new
enhancements to the AXI interconnect
along with the 16nm UltraScale+ silicon.

“The 16nm UltraScale+ devices
will have greater efficiency at this
higher protocol level, not just the
routing level,” said Myron. “That
means there is an additional net per-
formance/watt benefit on top of the
16nm FinFET advantage.”

Virtex UltraScale+ FPGA consumes 27
W, or 55 percent less, giving it a 2.1X
performance/watt advantage. With the
additional performance/watt advan-
tage from UltraRAM and SmartCon-
nect, the performance/watt advantage
of the Virtex UltraScale+ version of the
design jumps to better than 2.7X that
of the 28nm Virtex-7 FPGA implemen-
tation, with 63 percent less power.
 Similarly, in an image-processing PCI
module with a 15-W FPGA power bud-
get, a 28nm Virtex-7 yields performance
of 525 operations per second. In compar-
ison, the same design implemented in
16nm UltraScale yields 1,255 operations
per second, a 2.4X performance/watt in-
crease. Adding the gains from UltraRAM
and SmartConnect, the performance/
watt advantage of the Virtex UltraScale+
version jumps to over 3.6X that of the
28nm Virtex-7 FPGA implementation.

Figure 3 – SmartConnect technology cuts the area of interconnect required by up to 20 percent,
which in turn reduces power consumption by 20 percent at the same performance level.

SmartConnect will come up with the most
efficient interconnect topologies to get

the lowest area and highest performance.

 First Quarter 2015 Xcell Journal 13

C O V E R S T O R Y

ZYNQ ULTRASCALE MPSOC
OFFERS PERFORMANCE/WATT
ADVANTAGE OF OVER 5X
While Xilinx could have implemented
its second-generation All Programma-
ble SoC in TSMC’s 20nm process, the
company chose to wait to implement
the device in TSMC’s 16nm FinFET
process. The heterogeneous multipro-
cessing feature set of the device, paired
with the performance/watt advantages
of the 16nm UltraScale architecture,
make the 16nm Zynq UltraScale+ MP-
SoC an even more efficient central pro-
cessing system controller. The device
delivers more than 5X the performance
of the 28nm Zynq SoC.
 Last year, Xilinx unveiled its “Right
Engines for the Right Tasks” use mod-
el for the UltraScale MPSoC architec-
ture but withheld details regarding
which particular cores the Zynq Ul-

traScale+ MPSoC devices would have.
The company is now unveiling the full
feature set of the Zynq UltraScale+
MPSoC (Figure 5).

Certainly the biggest value-add of
the original 28nm Zynq SoC was in in-
tegrating an ARM processing system
and programmable logic on a single
device. More than 3,000 intercon-
nects (running at a peak bandwidth
of ~84 Gbps) link the Zynq SoC’s
processing system and programma-
ble logic blocks. This tight connec-
tion between the PS and PL yields
throughput and performance simply
not possible with a two-chip system
architecture consisting of an FPGA
and a separate ASSP.

Now, with the 16nm UltraScale+ MP-
SoC, Xilinx has dramatically improved
the performance between the process-
ing system and programmable logic,

giving the device more than 6,000 in-
terconnects running at 500-Gbps peak
bandwidth. “This makes the connection
between the Zynq UltraScale+ MPSoC’s
processing and logic systems 6X faster
than what is possible with the 28nm
Zynq SoC,” said Barrie Mullins, Xil-
inx’s director of All Programmable SoC
product marketing and management.
“It leaves two-chip ASSP-plus-FPGA ar-
chitectures that much further behind in
terms of system performance.”

Mullins said that at the center of
the Zynq UltraScale+ MPSoC is the
64-bit, quad-core ARM Cortex-A53
processor, which delivers better than
double the performance of the 28nm
Zynq SoC’s dual-Cortex-A9 processing
system. The application processing
system is capable of hardware virtu-
alization and asymmetric processing,
and fully supports ARM’s TrustZone®

Figure 4 – The 16nm UltraScale+ retains its impressive performance/watt advantage for those seeking to implement faster designs on the same
power budget or those seeking drastic power reductions with the same performance.

C O V E R S T O R Y

 14 Xcell Journal First Quarter 20145

suite of security features.
Xilinx also gave the Zynq UltraScale+

MPSoC a dual-core, ARM Cortex-R5
real-time processing subsystem that
allows users to add deterministic op-
eration to their systems. The real-time
processor ensures instantaneous sys-
tem responsiveness for applications re-
quiring the highest levels of throughput,
safety and reliability.

The Zynq UltraScale+ MPSoC also in-
cludes a number of dedicated graphics
engines for further gains in processing
performance. An ARM Mali™-400MP
dedicated graphics acceleration core
offloads graphics-intensive tasks
from the main CPU. To complement
the GPU, Xilinx added a hardened
video codec core to the programma-
ble logic block for video compres-
sion/decompression supporting the
H.265 video standard for 8Kx4K (15
frames per second) and 4Kx2K (60
fps). A DisplayPort source core al-
lows users to speed video data pack-

etization while eliminating the need
for an external DisplayPort TX trans-
mitter chip in their systems.

The Zynq UltraScale+ MPSoC also
features a number of on-chip memory
enhancements. The largest devices in
the product family will include Ultra-
RAM in addition to Block RAM in the
programmable logic. Meanwhile, the
Zynq UltraScale+ MPSoC’s processing
cores share L1 and L2 caches.

The Zynq UltraScale+ MPSoC also
features a wider, 72-bit DDR interface
core with ECC (64 bits plus 8 bits for
ECC). The interface boasts speeds of
up to 2,400 Mbps for DDR4, with sup-
port for larger-memory-depth DRAM
capacity of 32 Gbytes.

A dedicated security unit on the
Zynq UltraScale+ MPSoC enables mil-
itary-class security such as secure
boot, key and vault management, and
anti-tamper capabilities—all standard
requirements for machine-to-machine
communication and connected control

applications. In addition, the Zynq Ul-
traScale+ MPSoC’s programmable logic
system also includes integrated connec-
tivity blocks for 150G Interlaken, 100G
Ethernet MAC and PCIe® Gen4. An on-
board Analog Mixed-Signal (AMS) core
helps design teams test their systems
with System Monitor.

With all these features, it is unlikely
that any application would use every
engine available in the MPSoC. There-
fore, Xilinx gave the Zynq UltraScale+
MPSoC an extremely flexible dedicat-
ed power-management unit (PMU).
The core enables users to control
power domains and islands (coarse
and fine-grained) to power only those
processing units the system is using.
What’s more, design teams can pro-
gram the core for dynamic operation,
ensuring the system runs only the fea-
tures needed to perform a given task
and then powers down. The PMU also
drives a multitude of safety and reli-
ability capabilities such as signal and

Figure 5 – The 16nm Zynq UltraScale+ MPSoC features a rich set of processing engines that design teams can tailor
for unmatched system performance, drastically increasing the value of their systems.

C O V E R S T O R Y

 First Quarter 2015 Xcell Journal 15

error detection and mitigation, safe-
state mode, and system isolation and
protection.

Myron said that thanks to all of these
processing features added to the 16nm
performance/watt features discussed
above, designs built with the Zynq Ultra-
Scale+ MPSoC will enjoy on average a 5X
performance/watt advantage over designs
implemented with the 28nm Zynq SoC.

16NM ZYNQ ULTRASCALE
MPSOC BENCHMARK
To illustrate the Zynq UltraScale+ MP-
SoC’s performance/watt advantage,
let’s look at benchmarks for three of the
many applications the device serves,
color-coded to demonstrate the diversi-
ty of processing engines (Figure 6).
 To create a videoconferencing system
that runs full 1080p video, designers

used a Zynq SoC paired with a separate
H.264 ASSP. With the advantages of the
Zynq UltraScale+ MPSoC, designers can
now implement a 4Kx2K UHD system
in one Zynq UltraScale+ MPSoC with
the same power budget and achieve
5X the performance/watt savings of the
two-chip system.

“In a public-safety radio application
that required a Zynq SoC along with two
ASSPs, you can now implement the en-
tire design in one Zynq UltraScale+ MP-
SoC with 47 percent less system power
and 2.5X the performance of the previ-
ous configuration, yielding a 4.8X per-
formance/watt advantage,” said Sumit
Shah, senior SoC product line manager.

Likewise, Shah said an automotive mul-
ticamera driver assist system previously
implemented in two 28nm Zynq SoCs can
shrink to one Zynq UltraScale+ MPSoC.

The one-chip system delivers 2.5X the per-
formance of the two-chip design and con-
sumes 50 percent less power. This yields
a net 5X performance/watt advantage over
the previous implementation.

Early customer engagements are
in process for all of the UltraScale+
families. Xilinx has scheduled first
tapeouts and early-access release of
the design tools for the second calen-
dar quarter of 2015. The company ex-
pects to begin shipping UltraScale+
devices to customers in the fourth
calendar quarter of 2015.

For more information on the 16nm
UltraScale portfolio’s performance/
watt advantage, visit www.xilinx.
com/ultrascale. For further informa-
tion on the Zynq UltraScale+ MPSoC,
visit www.xilinx.com/products/tech-
nology/ultrascale-mpsoc.html.

Figure 6 – The Zynq UltraScale+ MPSoC’s extensive processing blocks, rich peripherals set and 16nm logic blocks enable design teams to create
innovative systems with a 5X performance/watt advantage over designs using 28nm Zynq SoCs.

http://www.xilinx.com/ultrascale
http://www.xilinx.com/ultrascale
http://www.xilinx.com/products/technology/ultrascale-mpsoc.html
http://www.xilinx.com/products/technology/ultrascale-mpsoc.html

X C E L L E N C E I N A E R O S P A C E

 16 Xcell Journal First Quarter 2015

Solar Orbiter Will
Process Data Onboard
Using Xilinx FPGAs

by Tobias Lange
Design Engineer
Braunschweig University of Technology
(Germany), Institute of Computer and
Network Engineering (IDA)
tobias.lange@tu-bs.de

Holger Michel
Design Engineer
Braunschweig University of Technology, IDA

Björn Fiethe
Senior Engineer
Braunschweig University of Technology, IDA

Harald Michalik
Professor
Braunschweig University of Technology, IDA

X C E L L E N C E I N A E R O S P A C E

 First Quarter 2015 Xcell Journal 17

S
tate-of-the-art remote sensing in-
struments on spacecrafts deliver
vast amounts of high-resolution
image data. For classical Earth
observation missions, scientists

typically evaluate the collected data after
reception on the ground. While deep-space
missions also have to cope with high im-
aging data rates, the telemetry rate, on the
other hand, is very limited.

One demanding example is the Polari-
metric and Helioseismic Imager (PHI) in-
strument, which has been selected as part
of the scientific payload for the European
Space Agency’s Solar Orbiter mission, due
to launch in 2017. The PHI instrument, de-
veloped mainly at the Max Planck Institute
for Solar System Research (MPS) in Ger-
many, will provide maps of the continuum
intensity, magnetic-field vector and line-
of-sight velocity in the solar photosphere.

Because of the high amount of cap-
tured data and the limited downlink ca-
pability, extracting scientific parameters
onboard the spacecraft will reduce the
data volume dramatically. As a result, sci-
entists will be able to take a closer look
into the solar photosphere.

To cope with these onboard processing
demands, Xilinx® SRAM-based FPGAs
with high gate counts offer an attractive
solution. Our team at the Braunschweig
University of Technology in Germany al-
ready has a history with Xilinx FPGAs
in active space missions. We have used
these devices for classical image-data
compression in the processing units of
the Venus Express Monitoring Camera
(VMC) and the Dawn Framing Camera
(DawnFC), both now in successful op-
eration for several years. For the Solar
Orbiter PHI processing unit, we decided
to use two space-grade Virtex®-4 FPGAs,
which will be reconfigured during flight.

Before going into the details of how
the FPGAs will streamline data capture
on this important mission, let’s take a
closer look at the PHI itself and examine
how it operates.

THE SOLAR ORBITER PHI
The PHI instrument acquires sets of im-
ages from an active-pixel sensor. A fil-

Space-grade Virtex
FPGAs will accelerate
the acquisition of image
data and enable in-flight
processing on scientific
space instruments.

X C E L L E N C E I N A E R O S P A C E

 18 Xcell Journal First Quarter 2015

ter wheel in the optical path applies
different wavelength and polarization
settings to these images. By prepro-
cessing the captured image data (for
example, dark- and flat-field correc-
tion) and performing a compute-inten-
sive inversion of the radiative trans-
form equation (RTE), it’s possible to
calculate magnetic-field vectors from
pixel data. Together with standard
data compression, this approach will
reduce the amount of data from 3.2
Gbits to 100 Mbits per data set. This
is a factor of 64 compared with the
raw-data input

dedicated controller for an image-sta-
bilization system will run simultane-
ously.

After the data acquisition, we recon-
figure the two Virtex-4 FPGAs with a
preprocessing core and an RTE core
(the orange boxes in Figure 1). The
preprocessing core retrieves the previ-
ously stored data from the flash mem-
ory and performs dark- and flat-field
correction, addition, multiplication and
convolution of frames. Subsequently,
the RTE core computes the inversion of
the radiative transfer equation.

The FPGA design of the RTE inversion

The processing flow of the PHI can
be divided into two modes of operation
(Figure 1). Changing between these
two modes is perfectly applicable for
in-flight reconfiguration of the Virtex
FPGAs. Here’s how the process works.

During the acquisition phase (the
reddish box at left in Figure 1), the
detector provides images with a res-
olution of 2,048 x 2,048 pixels. The
acquisition FPGA will accumulate a
set of multiple images at different fil-
ter settings and directly store them in
a large array of NAND flash memory.
To reduce residual spacecraft jitter, a

Figure 1 – Polarimetric and Helioseismic Imager (PHI) data-processing pipeline

FPGA Con�guration:

FPGA Con�guration: Acquisition Processing

100 Mbit/setDetector
14 bit/px

10 fps

Online
Image

Accumulation

Storage
in Flash
Memory

Of ine
Preprocessing

Of ine
RTE

Inversion

Bit Depth
Reduction

&
Data

Compr.

Spacecraft590 Mbit/s 3.2 Gbit/min 3.2 Gbit/min
355 Mbit

3.2 Gbit/min

Figure 2 – Architecture of the PHI data-processing unit

Power
Supply

Spacecraft
SpW I/Fs ISS Sensors &

Actuators

Detectors
Cmd & HK

Fast Image
Memory Bu�er

JTAG

JTAG

Memory Bus Data

Data

Red Interface

Main Interface

LEON3-FT
Processor ASIC

(GR712)
System Controller

Radiation-Hardened
FPGA

Con�guration Controller,
System Supervisor,

NAND-Flash Controller

Main Memory

Con�guration
Memory

Nonvolatile
Image Data Storage

(Flash Memroy)

Image Stabilization

RTE Inversion

Data Acquisition
Detector

Image Data

Red Interface

Preprocessing

X C E L L E N C E I N A E R O S P A C E

 First Quarter 2015 Xcell Journal 19

is a contribution of the Instituto de As-
trofísica de Andalucía in Granada, Spain.
The design for the controller of the im-
age-stabilization system was developed
at the University of Barcelona.

ARCHITECTURE OF
THE PHI PROCESSING UNIT
Figure 2 shows the architecture of the
data-processing unit. For communication
to the spacecraft and the system control-
ler, we use a dedicated and highly reliable
GR712 LEON3-FT processor ASIC running
at a clock frequency of 50 MHz. The CPU
has its own 2-Gbit SDRAM memory and
is also connected to 1 Gbit of nonvolatile
NOR flash memory that stores software
and FPGA bitstream configuration files.
For the image acquisition, image stabili-
zation, preprocessing and RTE inversion,
we use two Virtex-4QV FPGAs. The possi-
bility of in-flight reconfiguration allows us

Figure 3 – Qualification board with soldered daisychain device

to effectively utilize these two devices in a
time-shared manner. This scheme reduces
mass, volume and the power consumption
of the platform, which are very important
factors for deep-space missions.
 A one-time-programmable radiation-
hardened FPGA connects the LEON3
system controller and the two Virtex-4
devices. Furthermore, this same FPGA
functions as a system supervisor. It pro-
vides I/O signals and interfaces to con-
trol parts of the hardware and the exter-
nal power supply, and to communicate
with sensors and actuators. Two JTAG
interfaces allow this FPGA to write and
read back the configuration bitstreams
of the two Virtex-4 devices.

To store the large amount of image
data, we designed a memory board
based on an array of NAND flash devic-
es with a total capacity of 4 Tbits. To ad-
dress this set of memories, located on a

separate board, we developed a NAND
flash controller that is also placed in the
system-supervisor FPGA. To cope with
the relatively slow data rate between
the NAND flash array and the process-
ing FPGAs, the data acquisition and
preprocessing rely on a fast, external
buffer memory. A dedicated network
connects the system-controller FPGA
with the two Virtex-4 FPGAs off-chip
and the NAND-flash memory controller
with the processing cores on-chip.

DEALING WITH
RADIATION EFFECTS
The Xilinx Virtex-4QV is a radia-
tion-tolerant FPGA, which means
that the device will not suffer physi-
cal damage through radiation effects.
Nevertheless, bit upsets can occur
and the design has to mitigate them.
Radiation can affect SRAM-based

X C E L L E N C E I N A E R O S P A C E

 20 Xcell Journal First Quarter 2015

known as scrubbing. We optimized the
scrubbing process by doing a read back
on the bitstream and we reconfigure a
certain configuration frame only when
an upset is detected.

Radiation effects induced into the
application layer will result in faults
of the control logic, for example stuck

state machines, or simply wrong values
in the data path. We will mitigate the
upsets on this layer by using triple-mod-
ular redundancy (TMR) and error detec-
tion and correction (EDAC) techniques.

For a successful mitigation of up-
sets in the FPGA design, it’s crucial
to create mechanisms to protect both

Figure 4 – Bottom side of the PHI data-processing unit engineering model

FPGAs in two layers: the configura-
tion layer and the application layer.

Bit upsets in the configuration lay-
er will mainly alter routing logic and
combinational functions. One way to
repair errors introduced into this layer
is to overwrite the configuration SRAM
in certain time intervals, a technique

 First Quarter 2015 Xcell Journal 21

X C E L L E N C E I N A E R O S P A C E

the configuration layer and the ap-
plication layer. Integrating only one
mitigation scheme alone, scrubbing
or TMR, would not be sufficient.

ASSEMBLY QUALIFICATION
FOR THE VIRTEX-4QV
Unlike commercial versions of Virtex-4
FPGAs, which come in a flip-chip BGA
package, the space-grade Virtex-4QV de-
vices are delivered in a ceramic package.
Maintaining a compatible footprint, these
devices are equipped with solder columns.
When we decided to use Virtex-4QV parts
in 2012, no qualified process manufacturer
was available in Europe to assemble these
CF1140 packages. For this reason we had
to start a mission-specific package assem-
bly qualification.

For this purpose, we assembled
three representative qualification
boards with overall six CF1140 daisy-
chain devices (Figure 3). After dedicat-
ed shock and vibration tests, we start-
ed a thermal-cycling test with close
monitoring of resistances of the daisy-
chain packages. Before and after each
test step, optical and X-ray inspection
of the devices proved that no critical
physical damage had occurred. We are
just finishing the qualification process
by means of a destructive micro-sec-
tioning of one PCB.

CURRENT STATUS AND OUTLOOK
After defining a basic architecture for
our design including error mitigation

and the qualification of the Virtex-4 as-
sembly, we started to work on a proto-
type of the data-processing unit based
on commercial parts. This engineering
model fits the final 20 x 20-cm shape of
the electronic housing and is already in
operation without major problems. It
has a mass of 550 grams (without the
NAND-flash memory board) and con-
sumes less than 15 watts. The bottom
side of this model, equipped with the
two Virtex FPGAs, is shown in Figure 4.
Currently, we are focusing on finishing
the qualification model of our board,
equipped with qualified parts.
 In summary, the high gate count and
the ability for in-flight reconfiguration of
the Virtex-4 devices made it possible for
us to develop a compact and high-per-
formance data-processing platform with
reduced size, mass and power consump-
tion. The data flow of the acquisition and
processing perfectly suits a system with
two reconfigurable FPGAs.

This system is a first step in bringing
in-flight reconfiguration technology to
deep-space missions. Electronics for
the space industry are usually a couple
of years behind commercial technol-
ogy. Today, the Xilinx Zynq®-7000 All
Programmable SoC family integrates
SRAM-based FPGA technology with
multiple processor cores into a single
system-on-chip. In coming years it will
be of interest for us to see if these types
of SoC solutions will also adapt to the
space industry’s needs.

A high gate count and the ability for
in-flight reconfiguration of the Virtex-4

devices made it possible for us to develop
a compact and high-performance

data-processing platform with reduced
size, mass and power consumption.

www.cesys.com

▶ Xilinx™ Spartan-6 FPGA
 XC6SLX45(150)-3FGG484I
▶ USB 3.0 Superspeed interface
 Cypress™ FX-3 controller
▶ On-board memory
 2 Gb DDR2 SDRAM

▶ Samtec™ Q-strip connectors
 191 (95 differential) user IO

EFM-01

EFM-02

▶ Xilinx™ Spartan-3E FPGA
 XC3S500E-4CPG132C
▶ USB 2.0 Highspeed interface
 Cypress™ FX-2 controller
▶ On-board memory

▶ Standard 0.1“ pin header
 50 user IO

Hardware • Software • HDL-Design

FPGA module with USB 3.0
interface. Ideal for Custom
Cameras & ImageProcessing.

Low-cost FPGA module for
general applications.

Boards & Modules

FPGA

http://www.cesys.com

X C E L L E N C E I N W I R E L E S S

 22 Xcell Journal First Quarter 2015

60G Millimeter-Wave
Backhaul Link Is
Poised to Boost
Cellular Capacity
by John Kilpatrick
Consulting Engineer
Analog Devices
John.Kilpatrick@analog.com

Robbie Shergill
Strategic Applications Manager
Analog Devices
Robbie.Shergill@analog.com

Manish Sinha
Product Marketing Manager
Xilinx, Inc.
manish.sinha@xilinx.com

X C E L L E N C E I N W I R E L E S S

 First Quarter 2015 Xcell Journal 23

T
he ever-increasing demand for data
on the world’s cellular networks
has operators searching for ways to
increase the capacity 5,000-fold by
2030 [1]. Getting there will require

a 5x increase in channel performance, a 20x in-
crease in allocated spectrum and a 50x increase
in the number of cell sites.

Many of these new cells will be placed indoors,
where the majority of traffic originates, and fiber
is the top choice to funnel the traffic back into the
networks. But there are many outdoor locations
where fiber is not available or is too expensive to
connect, and for these situations wireless back-
haul is the most viable alternative.

Unlicensed spectrum at 5 GHz is available and
does not require a line-of-sight path. However, the
bandwidth is limited and interference from other
users of this spectrum is almost guaranteed due to
heavy traffic and wide antenna patterns.

Communication links of 60 GHz are emerging
as a leading contender to provide these back-
haul links for the many thousands of outdoor
cells that will be required to meet the capacity
demands. This spectrum is also unlicensed, but
unlike frequencies below 6 GHz, it contains up
to 9 GHz of available bandwidth. Moreover, the
high frequency allows for very narrow and fo-
cused antenna patterns that are somewhat im-
mune to interference.

A complete 60-GHz two-way data communica-
tion link developed by Xilinx and Hittite Micro-
wave (now part of Analog Devices) demonstrates
superior performance and the flexibility to meet
the requirements of the small-cell backhaul mar-
ket (Figure 1). Xilinx developed the digital mo-
dem portion of the platform and Analog Devices,
the millimeter-wave radio portion.

As depicted in Figure 1, two nodes are required
to create this link. Each node contains a transmit-
ter (with a modulator) with its associated analog
Tx chain and a receiver (with a demodulator) with
its associated analog Rx chain.

The modem card is integrated with analog and
discrete devices. It contains oscillators (DPLL
module) to ensure the accuracy of frequency syn-
thesis, and all the digital functions are executed in
an FPGA or SoC. This single-carrier modem core
supports modulations from QPSK to 256QAM in
channel bandwidths up to 500 MHz, and achieves
date rates as high as 3.5 Gbps. The modem also
supports both frequency-division duplex (FDD)
and time-division duplex (TDD) transmission

A complete 60-GHz two-way
data communication scheme
based on Xilinx’s Zynq SoC
offers the performance and
flexibility to serve the
small-cell backhaul market.

X C E L L E N C E I N W I R E L E S S

 24 Xcell Journal First Quarter 2015

schemes. Robust modem design tech-
niques reduce the phase noise impli-
cations of the local oscillators and
powerful LDPC coding is included for
improved performance and link budget.

MILLIMETER-WAVE MODEM
The Xilinx millimeter-wave modem
solution enables infrastructure ven-
dors to develop flexible, cost-opti-
mized and customizable links for their
wireless backhaul networks. This solu-
tion is targeted at the Xilinx® Zynq®-
7000 All Programmable SoC or Kin-
tex®-7 FPGA devices, which are part
of Xilinx’s “generation-ahead” 28-nano-
meter product family.

Xilinx’s solution is fully adaptive,
is low in power and small in footprint,
and can be used to deploy indoor and

solution complete with PHY, controller,
system interfaces and packet processor
is shown in Figure 2. However, based
on the required architecture, you could
insert, update or remove different mod-
ules. For instance, you might choose to
implement an XPIC combiner so that
you could use the modem in cross-po-
larization mode with another modem.
The solution is implemented in the PL,
where serdes and I/Os are used for var-
ious data path interfaces such as those
between the modem and packet proces-
sor, the packet processor and memory,
inter-modem or DAC/ADC.

Some of the other important features
of the Xilinx modem IP include automat-
ic hitless and errorless state switching
through adaptive coding and modula-
tion (ACM) to keep the link operational;

full outdoor point-to-point links as well
as point-to-multipoint microwave links.
Just as with its silicon, Xilinx’s road map
for its millimeter-wave modem solution
is very aggressive, and presents oper-
ators with the unique ability to deploy
scalable and field-upgradable systems.

Figure 2 further details the digital
modem as implemented on the Zynq
SoC platform. Alongside the program-
mable logic (PL), the platform’s scalable
processing system (PS) contains dual
ARM® Cortex™-A9 cores with integrat-
ed memory controllers and multistan-
dard I/Os for peripherals.

This system-on-chip (SoC) platform
is highly flexible. Here, it is used to per-
form various data and control functions
and to enable hardware acceleration.
An integrated millimeter-wave modem

Robust modem design techniques
reduce the phase noise implications of

the local oscillators. Powerful LDPC coding
is included for improved performance

and link budget.

Figure 1 – High-level block diagram of the complete two-way communication link

X C E L L E N C E I N W I R E L E S S

 First Quarter 2015 Xcell Journal 25

adaptive digital closed-loop predistortion
(DPD) to improve RF power amplifier ef-
ficiency and linearity; synchronous Ether-
net (SyncE) to maintain clock synchroni-
zation; and Reed-Solomon or low-density
parity check (LDPC) forward error cor-
rection (FEC). The FEC choice is based
on the design requirements. LPDC FEC is
the default choice for wireless backhaul
applications, whereas Reed-Solomon
FEC is preferred for low-latency applica-
tions such as front-haul.

LDPC implementation is highly op-
timized and exploits FPGA parallelism
for the computations done by the en-
coders and decoders. The result is no-
ticeable SNR gains. You can apply dif-
ferent levels of parallelism by varying
the number of iterations of the LDPC
core, thereby optimizing the size and
power of the decoder. You can also
model the solution based on channel

Figure 2 – All Programmable SoC for wireless modem applications

bandwidth and throughput constraints.
The Xilinx modem solution also

comes with a powerful graphical user
interface (GUI) for both display and
debug, and is capable of high-level func-
tions such as channel bandwidth or
modulation selection as well as low-lev-
el ones such as setting of hardware reg-
isters. To achieve 3.5-Gbps throughput
for the solution shown in Figure 1, the
modem IP runs at a 440-MHz clock rate.
It uses five gigabit transceivers (GTs)
for connectivity interfaces to support
ADCs and DACs, and a few more GTs
for 10GbE payloads or CPRI interfaces.

MILLIMETER-WAVE
TRANSCEIVER CHIP SET
In late 2014, Analog Devices released its
second-generation silicon germanium
(SiGe) 60-GHz chip set, significantly en-
hanced and optimized for the small-cell

backhaul application. The HMC6300
transmitter chip is a complete analog
baseband-to-millimeter-wave upconvert-
er. An improved frequency synthesizer
covers 57 to 66 GHz in 250-MHz steps with
low phase noise and can support modula-
tions up to at least 64QAM. Output power
has increased to roughly 16-dBm linear
power, while an integrated power detec-
tor monitors the output power so as not
to exceed the regulatory limits.
 The transmitter chip offers either an-
alog or digital control of the IF and RF
gains. Analog gain control is sometimes
needed when using higher-order modula-
tions, since discrete gain changes can be
mistaken for amplitude modulation, lead-
ing to bit errors. Digital gain control is sup-
ported using the built-in SPI interface.

For applications requiring even high-
er-order modulation in narrow chan-
nels, an external PLL/VCO with even

X C E L L E N C E I N W I R E L E S S

 26 Xcell Journal First Quarter 2015

Figure 3 – HMC6300 60-GHz transmitter IC block diagram

Figure 4 – HMC6301 60-GHz receiver IC block diagram

lower phase noise can be injected into
the transmitter, bypassing the internal
synthesizer. Figure 3 shows a block dia-
gram of the HMC6300.

The transmitter supports up to 1.8
GHz of bandwidth. An MSK modulator
option enables low-cost data transmis-
sions up to 1.8 Gbps without the need
for expensive and power-hungry DACs.

Complementing this device is the
HMC6301 receiver chip, likewise op-
timized to meet the demanding re-
quirements of small-cell backhaul.
The receiver features a significant in-
crease in the input P1dB to -20 dBm
and IIP3 to -9 dBm to handle short-
range links where the high gain of

the dish antennas lead to high signal
levels at the receiver input.

Other features include a low, 6-dB
noise figure at the maximum gain set-
tings; adjustable low-pass and high-pass
baseband filters; the same new synthe-
sizers as found in the transmitter chip
to support 64QAM modulation over the
57- to 66-GHz band; and either analog or
digital control of the IF and RF gains.

A block diagram of the HMC6301 re-
ceiver chip is shown in Figure 4. Note that
the receiver also contains an AM detector
to demodulate amplitude modulations
such as on/off keying (OOK). Also, an FM
discriminator demodulates simple FM or
MSK modulations. This is in addition to the

IQ demodulator that is used to recover the
quadrature baseband outputs for QPSK
and more-complex QAM modulations.

Both the HMC6300 transmitter and
HMC6301 receiver will be available in a 4 x
6-mm BGA-style wafer-level package. They
will be designated the HMC6300BG46 and
HMC6301BG46 and are scheduled for sam-
pling in early 2015. These surface-mount
parts will enable the low-cost manufactur-
ing of the radio boards.

A block diagram of an example mil-
limeter-wave modem and radio system
is shown in Figure 5. In addition to the
FPGA, modem software and millime-
ter-wave chip set, the design also contains
a number of other components. They in-
clude the AD9234 dual-channel 12-bit,
1-Gsample/second ADC; the AD9144
quad-channel 16-bit, up to 2.8-GSPS Tx-
DAC; and the HMC7044 ultralow-jitter
clock synthesizer with support for the
JESD204B serial data interface that is em-
ployed on both the ADC and the DAC ICs.

DEMONSTRATION PLATFORM
Xilinx and Analog Devices have jointly cre-
ated a demonstration platform implemen-
tation featuring the FPGA- based modem
on the Xilinx KC705 development board,
an industry-standard FMC board contain-
ing ADCs, DACs and clock chip, and two
radio module evaluation boards (Figure
6). The demo platform includes a laptop
for modem control and visual display, and
a variable RF attenuator to replicate the
path loss of a typical millimeter-wave link.
The Xilinx KC705 development board fea-
tures the Kintex-7 XC7K325T-2FFG900C
FPGA executing the WBM256 modem
firmware IP. An industry-standard FMC
mezzanine connector on the development
board is used to connect to the baseband
and millimeter-wave radio boards.

The millimeter-wave modules snap
onto the baseband board. The modules
have MMPX connectors for the 60-GHz
interfaces as well as SMA connectors for
optional use of an external local oscillator.

This platform contains all the hard-
ware and software needed to demon-
strate point-to-point backhaul con-
nections of up to 1.1 Gbps in 250-MHz

X C E L L E N C E I N W I R E L E S S

channels for each direction of a frequen-
cy-division duplex connection.

MODULAR AND CUSTOMIZABLE
FPGAs are increasingly being used in var-
ious wireless backhaul solutions, since
the platforms based on them can be high-
ly modular and customizable, thereby
reducing the total cost of ownership for
the OEMs. Owing to significant power im-
provements in its 7 series FPGA/SoC fam-
ilies and high-performing wideband IP
cores, Xilinx expects its millimeter-wave
modem solution to be a front-runner
for the small-cell backhaul application.
Xilinx FPGAs and SoCs are suitable for
high-speed and power-efficient designs,
and its high-speed GTs can be used ef-
fectively for wideband communications
and switching functions. Xilinx’s solution
can be scaled to support multiple prod-
uct variations, from lower-end small-cell
backhaul products operating at a few

hundred megabits per second to 3.5 Gbps
on the same hardware platform.
 For the radio portion, the transceiv-
ers have now been integrated into sili-
con-based ICs and packaged into sur-
face-mount parts, allowing for low-cost
manufacturing. Analog Devices’ millime-
ter-wave chip set meets the wireless back-
haul needs of the small-cell deployments
and provides market-leading performance
in power, size, flexibility and functional-
ity. Analog Devices also provides indus-
try-best data converters and clock-man-
agement ICs that are critical components
of this complete solution. Together, the
two companies intend to drive the indus-
try adoption of this exciting technology.

Reference
 1. “Evolutionary and Disruptive Visions

Towards Ultra High Capacity Net-
works,” IWPC, April 2014

An MSK modulator option enables low-cost
data transmissions up to 1.8 Gbps
without the need for expensive and

power-hungry DACs. Figure 5 – Example reference design using Xilinx and Analog Devices ICs

Figure 6 – The demonstration platform in action

 First Quarter 2015 Xcell Journal 27

We speak FPGA.

Everything FPGA.

Design Center · FPGA Modules
Base Boards · IP Cores

Enclustra

Streaming,
made simple.

One tool for all FPGA communications.
Stream data from FPGA to host over USB 3.0,
PCIe, or Gigabit Ethernet – all with one
simple API.

FPGA MANAGER
IP Solution

4.

PCIe® Gen2
USB 3.0

Gigabit Ethernet

C/C++
C#/.NET

MATLAB®
LabVIEW™

FPGA

MARS ZX3
Zynq-7020 SoC Module

 � Xilinx Zynq-7020 SoC FPGA
 � Up to 1 GB DDR3L SDRAM
 � 16 MB quad SPI flash
 � 512 MB NAND flash
 � USB 2.0
 � Gigabit Ethernet
 � 85,120 LUT4-eq
 � 108 user I/Os
 � 3.3 V single supply
 � 67.6 × 30 mm SO-DIMM

3.

 � Xilinx Zynq-7030/35/45 SoC
 � 1 GB DDR3L SDRAM
 � 64 MB quad SPI flash
 � PCIe 2.0 ×8 endpoint1

 � 8 × 6.6/10.3125 Gbps MGT2

 � USB 2.0 Device
 � Gigabit & Dual Fast Ethernet
 � Up to 350,000 LUT4-eq
 � 174 user I/Os
 � 5-15 V single supply
 � 64 × 54 mm

1, 2: Zynq-7030 has 4 MGTs/PCIe lanes.

MERCURY ZX1
Zynq-7030/35/45 SoC Module

2.

 � Xilinx® Zynq-7015/30 SoC
 � 1 GB DDR3L SDRAM
 � 64 MB quad SPI flash
 � PCIe® 2.0 ×4 endpoint
 � 4 × 6.25/6.6 Gbps MGT
 � USB 2.0 Device
 � Gigabit Ethernet
 � Up to 125,000 LUT4-eq
 � 178 user I/Os
 � 5-15 V single supply
 � 56 × 54 mm

MERCURY ZX5
Zynq™-7015/30 SoC Module

1.

http://www.enclustra.com

X C E L L E N C E I N D AT A C E N T E R S

 28 Xcell Journal First Quarter 2015

MACsec IP Improves
Data Center Security

by Paul Dillien
Consultant
High Tech Marketing
paul@high-tech-marketing.co.uk

Tom Kean, PhD
Managing Director
Algotronix Ltd.
tom@algotronix.com

mailto:paul@high-tech-marketing.co.uk
mailto:tom@algotronix.com

X C E L L E N C E I N D A T A C E N T E R S

 First Quarter 2015 Xcell Journal 29

C
loud storage and the outsourcing of IT
services hold a number of attractions
for IT managers, because these options
can save costs and reduce the support
burden. But one big disincentive about

allowing sensitive data outside a company’s firewall
is the concern about security. The hesitation is under-
standable, as information is one of the most valuable
assets for many companies, whether it is accountan-
cy, customer or manufacturing-related data.

But now equipment manufacturers can add perfor-
mance and raise the bar on security with a Xilinx®
FPGA-based solution. A comprehensive securi-
ty subsystem from Algotronix, which meets the
new Ethernet standard known as MACsec, uses a
high-performance, low-latency and power-efficient
intellectual-property (IP) core inside a Xilinx FPGA.

An FPGA-based solution is much faster than one
based in software. In addition, the dedicated hard-
ware offloads the system processor and frees it for
other tasks, such as deep packet inspection. Alterna-
tively, the designer could use a lower-cost processor.

ENCRYPTION AND AUTHENTICATION
An obvious tactic for protecting information is to en-
crypt data as it transits the network and moves around
the data center. Encryption ensures that, should the
data be intercepted by an unauthorized party sniffing
the link, it cannot be read. Ideally, too, the data should
be authenticated to ensure its integrity. Message au-
thentication is designed to detect where the original
encrypted data has been altered, either by means of a
transmission error or from being maliciously tampered
with by an attacker seeking to gain an advantage.

Ethernet transmission has grown to dominate com-
munications because it is both efficient and extendable
to high-speed transmissions. The popularity of the Eth-
ernet standard has driven down costs, making it even
more attractive, and this virtuous circle ensures the
continuance of Ethernet as the Layer 2 technology of
choice. However, up until a few years ago, the specifi-
cation did not include any encryption, leaving the job
to technologies such as IPsec that operate in the upper
layers of the communications protocol stack.

Now, a new extension to Ethernet adds a raft of
security measures, under the specification IEEE
802.1AE. Specified a few years ago, this technology
features an integrated security system that encrypts
and authenticates messages while also detecting and
defeating a range of attacks on the network. The
specification is known as the Media Access Control
Security standard, or more commonly as MACsec,
and Algotronix set out several years ago to produce

MACsec IP Improves
Data Center Security

Designers of data
center equipment
are incorporating
FPGA-based
cores to provide
high-performance,
secure Ethernet links.

X C E L L E N C E I N D A T A C E N T E R S

 30 Xcell Journal First Quarter 2015

IP cores that provide hardware-ac-
celerated encryption over a range of
data rates. (Algotronix also supplies
an intellectual-property core for IPsec
that has a very similar interface to the
MACsec product and would be a good
choice in systems that need to support
both standards.)

A brief overview of the MACsec
system will serve to illustrate the com-
prehensiveness of the specification, as
well as give an insight into the com-
plexity of implementing it.

TRUSTED ENTITIES
The concept of MACsec is that nodes
on a network form a set of trusted en-
tities. Each node can receive both en-
crypted and plaintext messages, and
the system policy can dictate how each
is handled. The core includes a bypass
option for plaintext messages, which
are not authenticated or verified. Unlike
protocols such as IPsec, which operates
at Layer 3/4 and is an end-to-end tech-
nology, MACsec decrypts and verifies
each packet whenever a packet enters
or leaves an Ethernet LAN. MACsec is

3 security policies. Data centers can
adopt MACsec to provide protection
behind the firewall or use it on di-
rect links between data centers. The
system administrator can authorize
equipment to communicate in a se-
cure fashion. The equipment can de-
tect errors or misuse, such as attempt-
ed denial of service (DOS).

PRIME FOR PROGRAMMABILITY
A customizable FPGA solution is ide-
al for MACsec, as the market is frag-
mented by differing requirements.
Originally, MACsec was conceived as a
technology to be applied to metropol-
itan-area networks, but it is now also
finding use in data centers, which in-
creases the overall demand for an FP-
GA-based solution.

It was a natural evolution for Algo-
tronix to develop a MACsec core, be-
cause we had already created a range of
crypto engines called AES-GCM. These
cores operate at 1G, 10G and 40G. We
achieved that speed by pipelining, in-
creasing the clock speed and moving
progressively from, say, Xilinx Artix® to
Kintex® devices and then on to Virtex®
FPGAs. We are adopting these tech-
niques to push the throughput to 100G
on Virtex UltraScale™ devices.

The performance we can achieve
using an IP core in an FPGA is select-
able to support anywhere from Gigabit
Ethernet to 10 GbE (that is, the actu-
al throughput through the core under
worst-case conditions), with 40G and
100G versions planned. This is much
faster than a software-based system
could achieve. The cores are normal-
ly connected directly to the hardware
MAC, as shown in Figure 1, because
software on the embedded processor
on the FPGA chip can struggle to trans-
fer data fast enough to handle their
throughput. If the security functions are
implemented in hardware and addition-
ally, unencrypted keys are never avail-
able to software, then the system is less
vulnerable to common software-based
attacks such as Trojan horses and virus-
es. This makes it easier to analyze for

suitable for Ethernet topologies such as
star-connected or bus-based LANs, as
well as point-to-point systems.
 The MACsec specification uses what
are called Security Entities (SecY), an
approach in which each node or entity
has a unique key linked with its Ether-
net source address. We designed the 1G
variant of the core to support multiple vir-
tual SecYs. As a result, a single Ethernet
MAC can have multiple MACsec SecYs
associated with it for applications like
multiple-access LANs. MACsec typically
works in conjunction with IEEE 801.1X-
2010 or the Internet Key Exchange (IKE),
which provides the secure key distribu-
tion around the network.

The reason that data centers might
choose to use Layer 2 connectivity for
moving packets inside the center is to
achieve high speed with a minimum of
latency and overhead data in the packet.
By contrast, in communications using
secure Layer 3 technologies such as IP-
sec, the message has to be passed up the
stack for processing, with added latency.

A Layer 2 solution also eliminates
the complexities of creating Layer

Figure 1 – The MACsec IP core sits entirely within the FPGA for maximum security.

http://www.xilinx.com/products/intellectual-property/1-4PILR8.htm

X C E L L E N C E I N D A T A C E N T E R S

 First Quarter 2015 Xcell Journal 31

vulnerabilities than in a case where IT
professionals must consider the entire
software side of the system.

Another important consideration is
the dramatic power saving in systems
where FPGAs accelerate algorithms
such as cryptographic functions that
would otherwise be implemented in
software. FPGAs are dramatically more
power efficient than a software solution.

One useful attribute built into all Al-
gotronix encryption cores is the abili-
ty to implement crucial blocks, called
S-Boxes, in either Block RAM or in the
lookup tables (LUTs) of the FPGA fab-
ric. This option allows customers to
squeeze the design into the available re-
sources by trading off the two resource
types, for example using Block RAM
to implement the S-Boxes if the design
outside of the MACsec core did not use
BRAM heavily or LUTs if it did.

INS AND OUTS OF MACSEC
The MACsec system features the con-
cept of each source of data using differ-
ent encryption keys. When a message is
received, the receiver looks it up in a
list held in on-chip CAMs to determine
the correct key to use to decrypt the
packet. Each packet is also numbered
to ensure that repeated or replayed
packets can be detected and rejected, a
technique that defends against “man-in-
the-middle” attacks.

MACsec also collects statistics about
the number of packets that are reject-
ed and the reasons for rejection. Pro-
viding statistics to support detection
of attacks is a further layer of security
beyond the basic cryptographic privacy,
authentication and replay prevention,
allowing a system manager to proac-
tively respond to an attack in progress.

We took the approach of “wrapping”
the MACsec logic around the proven
AES-GCM core. That said, designing
an efficient and fast encryption core is
only part of the design challenge. The
MACsec specification is extensive and
includes many variables. For example,
the standard originally specified only
128-bit encryption keys. With 128-bit

keys, the data undergoes 10 transfor-
mations (known as rounds) to com-
plete the encryption process within
the core. The standard was later re-
vised to include an option for 256-bit
keys, which have 14 rounds of pro-
cessing through the encryption. This is
achieved by adding pipeline stages and
increasing the width of the memory
used for storing the keys.

MACsec is agnostic as to the Ether-
net traffic type, and it is transparent to
higher-layer protocols. With the intro-
duction of these cores, it’s easy to add
MACsec to systems to provide an addi-
tional layer of protection in a network.
Sites equipped with MACsec can still
communicate with other sites, but with-
out the extra security of MACsec.

Ethernet packets are fed to the
MACsec core from the media-access
controller (MAC). You can build a com-
pact and efficient solution using, say,
the 1G MACsec core in conjunction with
on-chip transceivers and a trimode Eth-
ernet MAC (TEMAC). Each of the pack-
ets contains the destination and address
of the source that initiated its trans-
mission. This standard is retained in a
MACsec system, but an important as-
pect is that in a multihop transmission,
the “source” will be the address of the
last equipment to forward the packet.
So, unlike IPsec—which can be consid-
ered an end-to-end scheme—MACsec
works on a hop-by-hop basis. For each
hop, MACsec requires that all encrypt-
ed data on the ingress is decrypted and
then re-encrypted with the unique key
assigned to that equipment for forward
transmission. The decrypted plaintext
allows the option for packet inspection
at each stage, as illustrated in Figure 2,
and can be used by traffic managers to
regulate the flow of data.

In the MACsec standard, the header
shown in Figure 3 includes an addition-
al field known as the MAC Security TAG
(SecTAG), which defines the EtherType
and flags whether the packet is encrypt-
ed or not. Authentication is achieved by
appending data to the end of the message
in a field called ICV. The ICV works with

the encryption key to authenticate the
frame, including the header and MACsec
tag, to ensure that not even the source or
destination address of the frame could
be manipulated. We implemented this
logic in the FPGA fabric to ensure that it
would have fast and predictable timing
to minimize any latency.

The MACsec core includes a lookup
table that is linked to each source ad-
dress. The table includes the key that
needs to be used to successfully decrypt
the message, and we designed this fea-
ture to be implemented efficiently in the
LUTs and Block RAM on the devices.
We exploited the flexibility of the FPGA
solution by designing the core with im-
plementation options such as a choice
between 128- and 256-bit keys and the
ability to vary the number of virtual
SecYs that the core supports.

Another useful feature of the new
standard is the collation of statistics by
MACsec at the packet level. The sys-
tem administrator can, for example,
see how many packets were rejected
because they were delayed, failed integ-
rity checks due to an invalid decryption
key or used the wrong key, and compare
those statistics with the number of cor-
rect packets transmitted.

The MACsec standard has a simpli-
fied option for point-to-point applica-
tions. This eliminates the need for a
CAM to determine the key from an ex-
plicit Secure Channel Identifier in the
packet and an option for point-to-mul-
tipoint operation. Our core also sup-
ports multiple virtual SecYs associated
with a single Ethernet so that differ-
ent keys can be used to encrypt data
transmitted from that MAC to different
destinations. The MACsec standard
defines this kind of configuration as
a multi-access local-area network,
since it is as if the destinations were
on different Ethernet LANs. This fea-
ture allows the system to partition the
receiving equipment by encrypting the
output with different keys.

A data center might use multiple
SecYs to create a virtual division so that
data from Customer A is partitioned

X C E L L E N C E I N D A T A C E N T E R S

MACsec offers for added reassurance
that their data is protected. Equipment
manufacturers have a choice of IP cores
that are available to cover the needs of

1- and 10-Gbit Ethernet throughputs.
The architectural design makes it easy
to achieve 10 Gbps in Kintex or Virtex
FPGA devices. The design supports both
jumbo frames and minimum-size pack-
ets with a key change on every packet.
This scenario represents the worst-case
situation for the system. The cores com-
ply with the full specification, and each
MACsec core can support a range of
popular FPGA families.

COMES WITH SOURCE CODE
Algotronix takes the unusual step of
supplying the HDL source code for ev-
ery core licensed. The main motivation
is to allow customer inspection so as to
prove that the code has no virus or Tro-
jan code incorporated, and that it can-
not be forced into unauthorized states
or operations. Having the source code
therefore reduces the cost and complex-
ity of a security audit for customers. In
addition, the source code speeds up the
design process, because engineers can
easily experiment with configuration
variables such as encrypt, decrypt or en-
crypt/decrypt and with key length, and
can see the state of signals within the

Figure 2 – The message is decrypted on the ingress port and encrypted on the egress port.

from that of Customer B by virtue of
a unique encryption key. Communica-
tions internally in a data center could,
if required, be organized to segregate
selected racks to provide virtual isola-
tion areas. This capability can address
data integrity and separation concerns
in data center and cloud applications.
Whether from an accidental wrong con-
nection or a malicious act (see Figure
4), the MACsec system will detect pack-
ets that are unauthenticated and the
system administrator can set the policy
to quarantine or delete them.

All data encryption and decryption
are performed at the port level. Apart
from the additional MACsec head-
er and small added latency, there is
no overhead or performance impact
when turning on port-level encryption.

Equipment vendors can use these
cores today to differentiate their sys-
tems by incorporating an encrypted
Ethernet Level 2 scheme compliant with
IEEE 802.1AE. Cloud-based users, who
may be mutually suspicious of other cus-
tomers, can benefit from the confiden-
tiality and data source authentication

Figure 3 – The MACsec frame structure includes a field known as the MAC Security TAG
(SecTAG), which defines the EtherType and flags whether the packet is encrypted.

 32 Xcell Journal First Quarter 2015

 First Quarter 2015 Xcell Journal 33

X C E L L E N C E I N D A T A C E N T E R S

core in their own simulations. You can
configure the cores for high throughput
by implementing a wide data path or for
minimum FPGA footprint by selecting a
narrow data width. Further benefits of
having source code are that it is easier
to understand the operation of the core;
that makes documenting and archiving
easier and quicker.
 An extensive verification testbench
is also included, allowing custom-
ers to confirm the correct operation
in tools such as ModelSim. The test-
bench includes a behavioral model of
MACsec and a self-checking version
of the MACsec IP core where the out-
puts of the synthesizable hardware
are checked against the behavioral
model. This self-checking design can
be instantiated in user simulations,
making it easy to test the core in the
context of the actual user design and

providing useful diagnostic messages
if it is driven incorrectly.

As there are so many options available
in the core, the precise resource count
will depend on your choice of parameters
such as data rate, key length and number
of SecYs selected, among others. How-
ever, the 10G MACsec core listed on the
Intellectual Property section of the Xilinx
website uses 6,638 slices, 20,916 LUTs
and 53 BRAM blocks. Contact Algotronix
for licensing options.

The combination of low-power Xilinx
FPGAs and the Algotronix MACsec core
offers a high-performance and low-la-
tency solution for equipment manufac-
turers to differentiate their products.
The security features allow data centers
to assure their customers of confiden-
tiality, while also enabling security ad-
ministrators the ability to detect and
defeat malicious acts.

Figure 4 – MACsec will reject packets that arrive via wrong connections,
either accidentally or maliciously. www.trenz-electronic.de

difference by design

Platform Features
• 4×5 cm compatible footprint
• up to 8 Gbit DDR3 SDRAM
• 256 Mbit SPI Flash
• Gigabit Ethernet
• USB option

All Programmable
FPGA and SoC modules

4
form x factor

5

Available SoMs:

Design Services
• Module customization
• Carrier board customization
• Custom project development

rugged for harsh environments
extended device life cycle

http://www.xilinx.com/products/intellectual-property/1-4PILR4.htm
http://www.xilinx.com/products/intellectual-property/1-4PILR4.htm
http://www.xilinx.com/products/intellectual-property/1-4PILR4.htm
http://www.trenz-electronic.de

X C E L L E N C E I N D AT A C E N T E R S

 34 Xcell Journal First Quarter 2015

Simplify Your
‘Hot’ Testing with
Xilinx’s Zynq SoC
by Lei Guan
Member of Technical Staff
Bell Laboratories, Alcatel Lucent Ireland
lei.guan@alcatel-lucent.com

X C E L L E N C E I N D A T A C E N T E R S

 First Quarter 2015 Xcell Journal 35

As the transmission speed of optical trans-
ceiver modules in data centers rises ever
higher, the temperature of each chassis in a
data center is also rising dramatically. The in-
crease in temperatures becomes compound-
ed when these modules are stacked on top of
one another in racks that are flanked by even
more racks of speedy but hot modules. This
compounded rise in temperature can cause
chips to exceed their thermal limits, creating
catastrophic chip failures that in turn could
adversely affect entire data center systems.
Thus, it’s imperative that engineers design-
ing optical transceiver modules take thermal
properties into account. Designers must zero
in on the heat sources and attempt to keep
them in check with effective cooling methods
at the module and even rack level.

To test the thermal properties of optical
modules, engineers traditionally had two
choices. They could use a complicated net-
work data generator to create high-speed
(10-Gbps) links and then test the thermal
properties of the optical modules; or they
could utilize a so-called “thermal-equiva-
lent” module with preset tunable voltage
and current to mimic the thermal situation
and evaluate the thermal properties with-
out using any real high-speed data.

Neither of these approaches is optimal.
The first approach is a costly operation
due to the need for a professional high-
speed network data generator, while the
second method is too abstract. A ther-
mal-equivalent module cannot fully reflect
the temperature variation driven by the
physical switching behavior.

But recently, my team at Bell Labora-
tories, Alcatel Lucent Ireland, radically
simplified this process by using a Xilinx®

Simplify Your
‘Hot’ Testing with
Xilinx’s Zynq SoC

Here’s a way to
streamline the
thermal testing of a
high-speed optical
transceiver module
by using the Zynq SoC
and Xilinx IP cores.

A

X C E L L E N C E I N D A T A C E N T E R S

 36 Xcell Journal First Quarter 2015

Zynq®-7000 All Programmable SoC
platform and Xilinx intellectual-prop-
erty (IP) cores to do the same job. Let’s
take a closer look at how we accom-
plished this simplification of testing.

PREDESIGN ANALYSIS
The fundamental requirement of this
type of thermal testing is to stimulate
the XFP optical transceiver continuous-
ly with 10-Gbps data while using an IR
camera to track and characterize the
temperature variation.

I picked the Xilinx ZC706 evaluation
board as the development host, because
the GTX transceivers on the main device,
the Zynq-7000 SoC XC7Z045 (speed grade
-2), can easily achieve single-line 10-Gbps
data transmission. The Zynq SoC device
contains a processing system (PS) built
around an ARM® core and a Kintex®-7

you can significantly reduce your design
cycle by using as many Xilinx cores as
possible. In this design, I kept the same
strategy and started from the Integrated
Bit Error Ratio (IBERT) core, which you
can utilize to perform pattern genera-
tion and verification to evaluate the GTX
transceivers on the Zynq SoC. Then, in or-
der to properly route the design, I created
a phase-aligned clock-distribution unit
based on the Mixed-Mode Clock Manager
(MMCM) core for simultaneously clock-
ing both of the GTX transceivers on the
FPGA fabric and the optical transceiver
on the XFP evaluation board. Figure 1
shows the system diagram.
 For this design project, I used Xil-
inx’s older ISE® Design Suite tools and
did the work in three steps.

Step one involved creating an IBERT
core with the CORE Generator™ tool.

FPGA programmable logic (PL) fab-
ric. Initially, resources at the PL die are
enough for handling the 10-Gbps duplex
data transmission. Then we can use the
PS to generate particular user data pat-
terns if they are required in the future.

Our thermal group provided a Fini-
sar XFP evaluation board as the optical
transceiver housing. This FDB-1022 eval-
uation board is a powerful host for eval-
uating the state-of-the-art 10-Gbps XFP
optical transceivers. SMA connectors are
provided for differential data inputs and
outputs. The board can be configured to
allow a direct connection of a 1/64 clock
(that is, 156.25 MHz = 10 GHz/64) via SMA
connectors for clocking the module.

SYSTEM DESIGN
I’ve found over the course of my seven
years of doing FPGA development that

I picked the Xilinx ZC706 evaluation board because
the GTX transceivers on the main device can easily

achieve single-line 10-Gbps data transmission.

Figure 1 – Block diagram of the proposed system with a connection example

X C E L L E N C E I N D A T A C E N T E R S

 First Quarter 2015 Xcell Journal 37

Here are some of the key settings for
this IBERT 7 series GTX (ChipScope™
Pro) IBERT core. In my design, the
IBERT system clocking comes from
an external clock source on the
board—a 200-MHz differential clock
with P pin location = H9 and
N pin location = G9. The GTX
clocking mode is independent for
QUAD 111, and I set the line rate to
Max Rate = 10Gbps. I set the ref-
erence clock for the GTX to Ref-

clk = 156.25 MHz and the Refclk
source = MGTREFCLK1 111.

In step two, I created an MMCM core
with the CORE Generator. It was impera-
tive to get the tool’s Clocking Wizard set-
tings correct. To do this, I set the clock
features as frequency synthesis
and phase alignment. The input
clock has to be the same system clock
on the board (200 MHz). And I set the
targeting derivative clock to 156.25 MHz
with 50 percent duty cycle. I used two ex-

tra signals, RESET and LOCKED, for con-
trolling and indicating the MMCM core.

The third step was to assemble
everything with Xilinx’s tools. For
this project, I used the ISE Design
Suite 14.4. At some point later on, I
am planning to switch to the Vivado®
Design Suite in order to maximize the
performance of the chip.

I first created a new project in ISE,
then moved the IBERT core folders
(example_ibert_gtx.vhd, ib-
ert_gtx_top.ucf, ibert_core.
ngc and icon_zynq.ngc) to the ISE
project. Next, I added mmcm_core.
vhd from the MMCM core folder (step
2) to the ISE project. I then used ex-
ample_ibert_gtx.vhd as the top
module, instantiated the mmcm_core
and added three new signals (CLK_
OUTPUT_P, CLK_OUTPUT_N and
LED_REFCLK)to the design and made
corresponding pin assignments in the
ibert_gtx_top.ucf.

SYSTEM TEST
After generating the .bit file, the FPGA
design was ready for stimulating the XFP
optical transceiver with a 10-Gbps link.
I connected the two boards (as shown
in Figure 1), then opened a ChipScope
Pro analyzer and configured the device
with the newly built .bit file. Next, I dou-
ble-clicked the IBERT console, causing
a new graphical user interface to pop up
(as shown in Figure 2). With this screen,
we can thoroughly evaluate the thermal
performance of the optical transceiver
by tuning the predefined data patterns,
such as Clk 2x (1010….), and pseudo-
random binary sequences (PRBS).

By using Xilinx cores, together with
the ZC706 evaluation board, it’s easy to
build a test platform for evaluating high-
speed optical transceivers. In this design,
we illustrated the evaluation of a single
XFP module. However, you can straight-
forwardly apply the design methodology
to quickly build a logic core for testing
multiple optical transceiver modules.

For more information, please
contact the author at lei.guan@al-
catel-lucent.com.

Figure 2 – Snapshot of the ChipScope Pro screen

example_ibert_gtx.vhd
ibert_gtx_top.ucf
ibert_gtx_top.ucf
ibert_core.ngc
ibert_core.ngc
icon_zynq.ngc
mmcm_core.vhd
mmcm_core.vhd
example_ibert_gtx.vhd
example_ibert_gtx.vhd
ibert_gtx_top.ucf
lei.guan
alcatel-lucent.com
alcatel-lucent.com

X P L A N AT I O N : F P G A 1 0 1

 38 Xcell Journal First Quarter 2015

A Double-Barreled Way
to Get the Most from
Your Zynq SoC

Using both of the ARM A9 cores on Xilinx’s
Zynq SoC can significantly increase the

performance of your system.

by Adam P. Taylor
Chief Engineer, Electrical Systems
e2v
aptaylor@theiet.org

X P L A N A N T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 39

O
ne of the many benefits
of Xilinx®’s Zynq®-7000
All Programmable SoC is
that it is has two ARM®
Cortex™-A9 processors
onboard. However, many

bare-metal applications and simpler op-
erating systems use only one of the two
ARM cores in the Zynq SoC’s processing
system (PS), a design choice that can po-
tentially limit system performance.
 Depending upon the application in de-
velopment, there could, however, be a need
to have both processors running bare-met-
al applications, or to run different operat-
ing systems on each of the processors. For
instance, one side could be performing
critical calculations and hence running a
bare-metal/RTOS application while the sec-
ond processor is providing HMI and com-
munications using Linux.

WHAT IS MULTIPROCESSING?
Either of those scenarios is an example of
multiprocessing. Briefly defined, multipro-
cessing is the use of more than one pro-
cessor within a system. A multiprocessing
architecture can allow the execution of
multiple instructions at a time, though it
does not necessarily have to.
 There are two kinds of multicore pro-
cessing: symmetric and asymmetric.

Symmetric multiprocessing makes it
possible to run a number of software tasks
concurrently by distributing the load across
a number of cores. Asymmetric multipro-
cessing (AMP) uses specialized processors
or applications execution on identical pro-
cessors for specific applications or tasks.

Using both of the cores on the Zynq
SoC with bare metal or different operat-
ing systems is, by definition, an example
of asymmetric multiprocessing. AMP on
the Zynq SoC can involve any of the fol-
lowing combinations:

• Different operating systems on
Core 0 and Core 1

• Operating system on Core 0, bare
metal on Core 1 (or vice versa)

• Bare metal on both cores executing
different programs

When you decide upon the need
to create an AMP system on the Zynq
SoC, you must consider the fact that
the ARM processor cores contain a
mixture of both private and shared
resources that must be correctly ad-
dressed. Both processors have private
L1 instruction and data caches, timers,
watchdogs and interrupt controllers
(with both shared and private inter-
rupts). A number of shared resources
also exist, of which common exam-
ples include I/O peripherals, on-chip
memory, the interrupt controller dis-
tributor, L2 cache and system memory
located within the DDR memory (see
Figure 1). These private and shared re-
sources require careful management.

Each PS core has its own interrupt
controller and is capable of interrupting
itself, with one or both cores using soft-
ware interrupts. These interrupts are dis-
tributed by means of ARM’s Distributed
Interrupt Controller technology.

As the program being executed for
each core will be located within the
DDR memory, you must take great
care to ensure that you have correctly
segmented these applications.

GETTING AMPED UP
The key aspect required to get AMP
up and running on the Zynq SoC is a
boot loader that will look for a second
executable file after loading the first
application into memory. Xilinx help-
fully provides an application note and
source code in XAPP1079. This docu-
ment comes with a modified first-stage
boot loader (FSBL) and modified stand-
alone OS, which you can use to create
an AMP system.
 The first thing to do is to down-
load the ZIP file that comes with this
application note before extracting
the two elements—FSBL and OS—
to your desired working directory.
Then, you must rename the folder
called SRC “design.” Now, it’s im-
portant to make sure the software
development kit (SDK) is aware of
the existence of these new files con-
taining both a modified FSBL and a

http://www.xilinx.com/support/documentation/application_notes/xapp1079-amp-bare-metal-cortex-a9.pdf

X P L A N A N T I O N : F P G A 1 0 1

 40 Xcell Journal First Quarter 2015

modified standalone OS. Therefore,
the next step is to update your SDK
repository such that it is aware of
their existence.

This is straightforward to achieve.
Within SDK under the Xilinx tools
menu, select “repositories” and then
“new,” navigating to the directory
location <your working directory>\
app1079\design\work\sdk_repo as
shown in Figure 2.

• From either core via the snoop con-
trol unit (SCU)

• From the programmable logic using
 the AXI Accelerator Coherency Port
 (ACP) via the SCU

• From the programmable logic using
the High-Performance AXI port via the
on-chip memory (OCM) interconnect

• From the central interconnect, again
 via the OCM

COMMUNICATING
BETWEEN PROCESSORS
Before creating the applications
for your AMP design, you will
need to consider how the appli-
cations will communicate (if they
need to). The simplest method is
to use the on-chip memory. The
Zynq SoC has 256 kbytes of on-
chip SRAM that can be accessed
from one of four sources:

Zynq-7000 AP SoC

Processing System
Application Processor Unit

High-Performance Ports

Notes;
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32bit/64bit, AXI 64bit, AXI 32bit, APB 32bit, Custom

Programmable Logic

EMIO General-Purpose
Ports

DMA
Sync

IRQXADC
12 bit ADC

Config
AES/
SHA

SelectIO
Resources

ACP

DAP

DevC

CoreSight
Components

Memory
Interfaces

IRQ

OCM
Interconnect

256K
SRAM

512 KB L2 Cache & Controller

Snoop Controller, AWDT, TimerGIC

32 KB
I-Cache

32 KB
D-Cache

MMU
ARM Cortex-A9

CPU

FPU and NEON Engine

32 KB
I-Cache

32 KB
D-Cache

MMU
ARM Cortex-A9

CPU

FPU and NEON Engine
SWDT

TTC

System
Level

Control
Regs

DMA 8
Channel

ResetClock
Generation

I/O
Peripherals

SRAW
NOR

ONFI 1.0
NAND
Q-SPI
CTRL

2x USB

2x GigE

2x SD

M
IO

Memory
Interfaces

USB

USB

GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART
UART
CAN
CAN
I2C
I2C
SPI
SPI

Central
Interconnect

DDR2/3. 3L
LPDDR2

Controller

Programmable Logic to Memory
Interconnect

Figure 1 – The Zynq SoC processing system, showing private and shared resources

Using software interrupts is not too
different from using hardware interrupts

except, of course, in how you trigger them.

X P L A N A N T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 41

 With these different sources that
can read and write the on-chip mem-
ory, it is especially important to un-
derstand the operation of the OCM in
detail before using it.

Since there are multiple sources ac-
cessing the OCM, it is only sensible that
you define a form of arbitration and pri-
ority. As the lowest latency is required
by the snoop control unit, which is either
a processor core or an AXI ACP inter-
face, an SCU read from these sources
has the highest priority followed by the
SCU write and then the OCM intercon-
nect read and write. The user can invert
the priority between the SCU write and
the OCM interconnect access by setting
the SCU write priority low in the on-chip
memory control register.

The OCM itself is organized as 128-bit
words, split into four 64-kbyte regions
at different locations within the PS ad-
dress space. The initial configuration
has the first three 64-kbyte blocks ar-
ranged at the start of the address space

Figure 2 — Adding your new files to the repository

and the last 64-kbyte block toward the
end of the address space (Figure 5).

SIMPLE ON-CHIP MEMORY EXAMPLE
You can access the OCM using Xilinx
I/O functions to read and write to and
from the selected memory address.
These functions, which are contained
within Xil_IO.h, allow for storing and
accessing 8-, 16- or 32-bit char, short
or int within the CPU address space.
Using these functions just requires
the address you wish to access and
the value you wish to store there. If it
is a write, for example,

 A better way to use this technique to
ensure the addresses are both targeting
the same location within the on-chip
memory, especially if different people are
working on the different core programs,
is to have a common header file. This

file will contain macro definitions of
the address of interest for that particu-
lar transfer, for instance:

An alternative approach is for both

programs to access the memory location
using a pointer. You can do this by defin-
ing the pointer, which points to a constant
address, normally in C, using a macro:

Again, you could also use another
macro definition for the address to
ensure that the address is common to
both application programs. This ap-
proach does not then require the use
of the Xilinx I/O libraries and instead
allows simple access via the pointer.

INTERPROCESSOR INTERRUPTS
The Zynq SoC has 16 software-generated
interrupts for each core. As noted above,
each can interrupt itself, the other core
or both cores. Using software interrupts
is not too different from using hardware
interrupts except, of course, in how you
trigger them. The use of software in-
terrupts frees the receiving application
from having to poll an expected memory
location for an updated value.
 Within both cores, you need to con-
figure the Generic Interrupt Controller
just as you would for any hardware
interrupt. See Xcell Journal issue 87,
“How to Use Interrupts on the Zynq
SoC,” for further information.

You can then trigger a software
interrupt in the updating core using
the XScuGic_SoftwareIntr function
provided within xscugic.h. This com-
mand will issue a software interrupt
to the identified core, which can then
take the appropriate action:

Xil_Out8(0xFFFF0000,0x55);

read_char = Xil_In8(0xFFFF0000);

#define LED_PAT 0xFFFF0000

#define LED_OP (*(volatile
 unsigned int *)(0xFFFF0000))

XScuGic_SoftwareIntr(<GIC

Instance Ptr>, <SW Interrupt

ID>, <CPU Mask>)

http://www.xilinx.com/support/documentation/xcell_articles/how-to-use-interrupts-on-zynqsoc.pdf

http://www.xilinx.com/support/documentation/xcell_articles/how-to-use-interrupts-on-zynqsoc.pdf

http://www.xilinx.com/support/documentation/xcell_articles/how-to-use-interrupts-on-zynqsoc.pdf

X P L A N A N T I O N : F P G A 1 0 1

 42 Xcell Journal First Quarter 2015

ing a normal FSBL. However, this time
you will be selecting the “Zynq FSBL for
AMP” template as shown in Figure 3.

Following the creation of the AMP
FSBL, you will next create the applica-
tion for the first core. Be sure to select
Core 0 and your preferred operating
system, and allow it to create its own
BSP, as shown in Figure 4.

Having created the application,
you need to correctly define the loca-
tion, with DDR memory, from which
it will execute. To do this, edit the
linker script as in Figure 5 to show

CREATING THE APPLICATIONS
Having added in the repositories, the
next stage is to generate three crucial
pieces of the AMP solution: the AMP
first-stage boot loader, the Core 0 appli-
cation and the Core 1 application. For
each of these items, you will have to gen-
erate a different board support package.

The first thing you need to do is to
create a new FSBL with the SDK. Se-
lecting “file new application project” en-
ables you to create a FSBL project that
supports AMP. This is no different than
the process you would follow in creat-

the DDR base address and size. This
is important, because if you do not
correctly segment the DDR memory
for Core 0 and Core 1 applications,
you run the risk of one inadvertently
corrupting the other.

Having done this segmentation, you
can now write the application you wish
to execute on Core 0, as this is the core
that is in charge within the AMP system.
Core 0 must start the execution of the
Core 1 application. You need to include
the section of code seen in Figure 6
within the application. This code dis-

You must correctly segment the DDR
memory for Core 0 and Core 1 applications
or run the risk of one corrupting the other.

 Figure 3 – Selecting the first-stage boot loader for the AMP design

 First Quarter 2015 Xcell Journal 43

X P L A N A N T I O N : F P G A 1 0 1

ables the cache on the on-chip memory
and writes the start address of the Core
1 program to an address that Core 1 will
access. Once Core 0 executes the Set
Event (SEV) command, Core 1 will start
executing its program.

The next step is to create a BSP for
Core 1. It’s important to use the modi-
fied standalone OS (standalone_amp, as
shown in Figure 7), which prevents reini-
tialization of the PS snoop control unit. As
such, do not allow automatic generation

of the BSP while you create the project,
as you did for Core 0. Be sure to select
Core 1 in the CPU selection options.

Now that you have created the BSP
for Core 1, you need to modify the set-
tings of the BSP before you can prog-
ress to creating the application you
want to run upon Core 1. Doing so is
very simple and requires the addition
of an extra compiler flag of –DUSE_
AMP=1 to the configuration for the
drivers section of the BSP.

With this step completed, you are free
to create the application for Core 1. Be
sure to select Core 1 as the processor
and use the BSP you just created. Again,
having created the new application, you
need to once more define the correct
memory locations within the DDR mem-
ory from which the Core 1 program will
execute. This is achieved by editing the
linker script for the application for Core
1 as you did previously. As with the first
core, within this application you must
likewise disable the cache on the on-
chip memory, which you can use to com-
municate between the two processors.

PUTTING IT ALL TOGETHER
Once you have completed creation of
your applications and built the projects,
you should now be in possession of the
following components:

 • AMP FSBL ELF

 • Core 0 ELF

 • CORE 1 ELF

 • BIT file defining the configuration
of the Zynq device upon which you
wish to implement AMP

 Figure 4 – Creating the application and BSP for Core 0

Figure 5 – Core 0 DDR location and size

X P L A N A N T I O N : F P G A 1 0 1

 44 Xcell Journal First Quarter 2015

 To enable the Zynq SoC to boot from
your selected configuration memory, you
will need a .bin file. To create it, you will
also need a BIF file, which defines the
files to be used to create this BIN file and
the order in which they go. Rather than
use the “create Zynq” boot image within
the SDK, you will be using an ISE® De-
sign Suite command prompt and BAT file
provided as part of XAPP1079 under the
downloaded directory\design\work\boot-
gen. This directory contains a BIF file and
a cpu1_bootvec.bin, which is used as part
of the modified FSBL to stop it looking
for more applications to load.

To generate the BIN file, you need to
copy the three generated ELF files to
the bootgen directory and edit the BIF
file to ensure the ELF names within it
are correct, as shown in Figure 8.

Now you can open an ISE command
prompt and navigate to the bootgen di-
rectory. There, you should run the cre-
ateboot.bat. This step will create the
boot.bin file as shown in Figure 9.

#include <stdio.h>
#include “xil_io.h”
#include ”xil_mmu.h”
#include “xil_exception.h”|
#include “xpseudo_asm.h>”
#include “xscugic.h>

#define sev() _asm_(”sev”)
#define CPU1STARTADR 0xfffffff0
#define COMM_VAL (*(volatile unsigned long *)(0xFFFF0000))

int main()
{

 //Disable cache on OCM
 Xil_SetT1bAttributes(0FFFF0000,0x14de2); // s=b1 TEX=b100 AP=bll, Domain=bllll, C=b0, B=b0
 Xil_Out32(CPU1STARTADR, 0x00200000);
 dmb(); //waits until write has finished
 sev();

Figure 6 – Coding to disable cache on the on-chip memory

Figure 7 – Creating the BSP for Core 1

Creating an asymmetric multiprocessing
application on the Zynq SoC can be a very
simple matter using the tools available.

X P L A N A N T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 45

You can then download this file into
the nonvolatile memory on your Zynq
SoC. Booting the device will result in
both cores starting and executing their
respective programs.

Creating an asymmetric multiprocessing
application on the Zynq SoC can be a very
simple matter using the tools available. It’s
easy to achieve communication between
the two cores using the on-chip memory or
even a segmented DDR area.

the_ROM_image
{

 [bootloader] amp_fsbl.elf
 download.bit
 amp_cpu0.elf
 app_cpu1.elf

 //write start vector address 0xFFFFFFF0 with 0xFFFFFFF00
 //This load address triggers fsbl to continue
 [load = 0xFFFFFFF0] cpu1_bootvec.bin
}

Figure 8 – Modifying the BIF file

Figure 9 –The creation of the boot.bin file that will run on the Zynq SoC

 Debugging Xilinx's
 ZynqTM -7000 family
 with ARM® CoreSightTM

► RTOS support, including Linux

 kernel and process debugging

► SMP/AMP multicore Cortex®- A9

 MPCoreTMs debugging

► Up to 4 GByte realtime trace

 including PTM/ITM

► Profiling, performance and

 statistical analysis of ZynqTM's

 multicore Cortex®-A9 MPCoreTM

http://www.lauterbach.com

X P L A N AT I O N : F P G A 1 0 1

 46 Xcell Journal First Quarter 2015

How to Port
PetaLinux Onto
Your Xilinx FPGA
by Sweta
Postgraduate Student, Department of Telecommunication
PES Institute of Technology, Bangalore, India
sweta.v.walikar@gmail.com

Srikanth Chintala
Research Engineer, Satellite and Wireless Group
Centre for Development of Telematics (C-DOT), Bangalore, India
chintala@cdot.in

Manikandan J
Professor and Domain Head, Signal Processing Domain
Department of Electronics and Communication (EC) and
Professor, Crucible of Research and Innovation (CORI)
PES University, Bangalore, India
manikandanj@pes.edu

mailto:sweta.v.walikar@gmail.com
mailto:chintala@cdot.in
mailto:manikandanj@pes.edu

X P L A N A T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 47

F
PGAs have come a long way from their humble
beginnings as glue logic. The logic capacity and
flexibility of today’s FPGAs have catapulted
them into a central position in embedded de-
signs. Today, a complete system fits on a single
programmable chip, an architecture that facil-

itates hardware/software co-design and integrates hardware
with software applications.
 These kinds of FPGA-based embedded designs need a robust
operating system. PetaLinux has emerged as a favorite among
embedded designers. It is available free of cost as open source
and also supports various processor architectures, such as the
Xilinx® MicroBlaze® CPU as well as ARM® processors. In order to
port PetaLinux onto a particular FPGA, the kernel source code,
boot loader, device tree and root file system must be customized,
configured and built for the targeted platform.

For a design project here at PES University and C-DOT, our team
set out to port PetaLinux and run several PetaLinux user applica-
tions on Xilinx’s KC705 evaluation board, which features a Kintex®-7
XC7K325T FPGA. It turned out to be a fairly straightforward process.

WHY CHOOSE PETALINUX?
Before going into the details of how we did it, it’s worth taking a mo-
ment to consider the various OS options available for FPGA-based
embedded systems. PetaLinux is one of the most commonly used
OSes on FPGAs, along with μClinux and Xilkernel. μClinux is a
Linux distribution or ported Linux OS that includes a small Linux
kernel and is designed for a processor that does not have a memo-
ry-management unit (MMU) [1]. μClinux comes with libraries, appli-
cations and tool chains. Xilkernel, for its part, is a small, robust and
modular kernel that allows a higher degree of customization than
μClinux, enabling users to tailor the kernel to optimize their design
in terms of size and functionality [2].

PetaLinux, meanwhile, is a complete Linux distribution and
development environment targeting FPGA-based system-on-chip
(SoC) designs. PetaLinux consists of preconfigured binary bootable
images; fully customizable Linux for Xilinx devices; and an accom-
panying PetaLinux software development kit (SDK) [3] that includes
tools and utilities to automate complex tasks across configuration,
build and deployment. The PetaLinux development package, avail-
able free of cost and downloadable from Xilinx, includes hardware
reference projects designed for various Xilinx FPGA development
kits. Also included are a kernel configuration utility for Xilinx
FPGAs, software tools such as a cross-compiler, a hardware design
creation tool and many more design aids.

It has been reported that Xilkernel performs better than μClinux
[4] and that PetaLinux outperforms Xilkernel [5]. For that reason,
we chose PetaLinux for our project, especially since the packages
were readily available for our Xilinx target board. Another advan-
tage of porting PetaLinux is that the user can have the facility of
remote programming. That means you can load the FPGA target
board with a new configuration file (or bitstream file) through Tel-
net using remote access.

It’s a straightforward
matter to install this
robust operating system
on your targeted FPGA
platform for embedded

design projects.

X P L A N A T I O N : F P G A 1 0 1

 48 Xcell Journal First Quarter 2015

BEGINNING THE INSTALLATION
Let’s take a detailed look at how our team installed PetaLi-
nux. For the first step, we downloaded the PetaLinux pack-
age 12.12 and the board support package (BSP) for the Kin-
tex-7 target board. We ran the PetaLinux SDK installer and
installed the same into the /opt/Petalinux-v12.12-final direc-
tory using the following commands in the console:

We then copied and pasted the PetaLinux SDK license ob-

tained from the Xilinx website into the .xilinx and .Petalogix
folders. Next, we set the SDK working environment by sourc-
ing the appropriate settings using the following commands:

In order to verify whether the working environment was
set or not, we used the following command:

If the environment is set properly, the path where PetaLi-
nux is installed will be displayed. In our case, the path where
PetaLinux was installed was /opt/PetaLinux-v12.12-final.

Our next task was to install the BSP, which includes the
necessary design files, configuration files and prebuilt hard-
ware and software packages that are already tested and read-
ily available for downloading onto the target board. Packages
are also available for booting in the Quick Emulator (QEMU)
system simulation environment. In order to install the BSP,
we created a folder named “bsp” in the path /opt and copied
the ZIP file of the KC705 BSP using the following commands:

There are two approaches to creating and configuring a
software platform for building a PetaLinux system custom-
ized to a new hardware platform. One method is to use Peta-
Linux commands in their corresponding path locations using
a Linux terminal, as shown in Figure 1. The second approach
is to use a GUI with a pulldown menu, as shown in Figure 2.
You can use either of these approaches to select the platform,
configure the Linux kernel, configure the user application
and build images. The PetaLinux console is available once the
OS is installed, whereas the GUI is available after installing
the PetaLinux SDK plug-in. Once you’ve installed the plug-
in, you can set the configurations using the PetaLinux GUI
found in the PetaLinux Eclipse SDK (Figure 2). The GUI has
features such as user application and library development as
well as debugging, building and configuring PetaLinux and
the hardware platform.

BUILDING THE HARDWARE
We used the Kintex-7 FPGA-based KC705 evaluation board
for our project. The hardware interfaces required for the
design included an RS232 interface to monitor the output, a
JTAG interface to program the FPGA and an Ethernet inter-
face for remote programming. Besides the PetaLinux SDK,
other software required for the proposed design included Xil-
inx Platform Studio (XPS) [6,7] and the Xilinx Software De-
velopment Kit (SDK) [7].

There are two approaches to creating a
software platform for building a PetaLinux
system: PetaLinux commands on a Linux
terminal or a GUI with a pulldown menu.

Figure 1 – Snapshot of a Linux terminal window for user settings

@ cd /opt

@ cd /opt/PetaLinux-v12.12-final-full.tar.gz

@ tar zxf PetaLinux-v12.12-final-full.tar.gz

@ cd /opt/PetaLinux-v12.12-final

@ source settings.sh

@ echo $PETALINUX

@ cd /opt/PetaLinux-v12.12-final-full

@ source settings.sh

@ source /opt/Xilinx/14.4/ISE_DS/settings32.sh

@ PetaLinux-install-bsp /bsp/Xilinx-KC705

 -v12.12-final.bsp

PetaLinux-v12.12-final-full.tar.gz
PetaLinux-v12.12-final-full.tar.gz
settings.sh
settings.sh
14.4/ISE_DS/settings32.sh
final.bsp

X P L A N A T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 49

 For the hardware portion of the embedded design, our
first task was to design a MicroBlaze processor-based hard-
ware platform using the Base System Builder (BSB) in XPS.
The BSB allows you to select a set of peripherals available
on the target board. You can add or remove the peripherals
based on the demands of the application. The set of cores or
peripherals employed for our proposed application includ-

Figure 2 – Snapshot of PetaLinux SDK menu for user settings

ed an external memory controller with 8 Mbytes of memo-
ry, a timer enabled with interrupts, an RS232 UART with a
baud rate of 115,200 bps, Ethernet, nonvolatile memory and
LEDs. Once we made our selections, we obtained the hard-
ware peripherals along with their bus interfaces (Figure 3).
For designs based on the MicroBlaze processor, PetaLinux
requires an MMU-enabled CPU. Hence, we selected low-end

Figure 3 – Hardware configuration of the FPGA

X P L A N A T I O N : F P G A 1 0 1

 50 Xcell Journal First Quarter 2015

hardware and boot application. The output of the SDK is fs-
boot.elf. A data-to-memory converter command data2mem
is available that merges system.bit, system_bd.bmm and fs-
boot.elf into a single bitstream file called download.bit, which
serves as the final FPGA bitstream.

At this point we had the hardware design completed, which
among other things included a MicroBlaze core with the Peta-
Linux OS running on it. We could now use the first-stage boot
loader application to bring up the kernel.

BUILDING THE SOFTWARE
Once our hardware platform was built, we created a custom-
ized PetaLinux software platform targeted to the hardware
using the following commands:

where –c <cpu-arch> is the supported CPU type (here, the Mi-
croBlaze processor), –v <vendor> is the vendor name (here, Xil-
inx) and –p <platform> is the product name (here, the KC705).
The configuration files of the software platform are generated in
the directory where PetaLinux is installed, namely /opt/PetaLi-
nuxv12.12/software/ PetaLinux-dist/vendors/Xilinx/ KC705.

Linux with an MMU by double-clicking on the microblaze_0
instance in the XPS window.

Next, we converted the hardware configuration into a
bitstream using a three-step conversion process. First, we
used XPS to generate a netlist that represented the em-
bedded hardware platform. Second, we mapped the design
into FPGA logic. Finally, we converted the implemented
design into a bitstream that could be downloaded onto the
FPGA. The final output of XPS was system.bit and sys-
tem_bd.bmm files.

Once we had generated the bitstream, we exported the
hardware platform description to the SDK so as to observe the
targeted hardware platform in the SDK. The exported system.
xml file consisted of information the SDK required to write
application software and debug it on the targeted hardware
platform. Our next task was to add a PetaLinux repository in
the SDK using Xilinx Tools → Repository → New and then se-
lect the path where PetaLinux was installed. In our case, the
path was $PetaLinux/Hardware/edk_user_repository.

Next, we created a PetaLinux BSP using File → Board
support package → PetaLinux. We configured the PetaLinux
BSP by selecting necessary drivers based on the application
required. Then we built the BSP and created and configured
the first-stage boot loader application (fs-boot) to bring up
the kernel. The BSP establishes interaction between the

At this point we had the hardware design
completed. We could now use the first-stage

boot loader to bring up the kernel.

Figure 4 – The kernel configuration menu

$ cd/opt/PetaLinuxv12.12

$ PetaLinux-new-platform –c <CPU-ARCH> –v

 <VENDOR> –p <PLATFORM>

 First Quarter 2015 Xcell Journal 51

X P L A N A T I O N : F P G A 1 0 1

To customize the software platform template to match
the hardware, we merged the existing platform configu-
ration with the kernel configuration using the command
PetaLinux-copy-autoconfig. This command generates the
hardware configuration files Xilinx-KC705.dts, xparame-
ters.h and config.mk.

We configured the Linux kernel by opening the kernel
configuration menu using the GUI (PetaLinux SDK → Kernel
Configuration). You can also do it using the following com-
mands in the Linux terminal:

We enabled the drivers for the application in the kernel
configuration pop-up window (shown in Figure 4). In order
to access devices through the user-space input/output (UIO)
interface for the proposed work, we enabled the UIO driver
in the kernel configuration menu.

After configuring the kernel, we designed some applica-
tions. PetaLinux provides user application templates for C
and C++ programming [8]. These templates include appli-
cation source code and Makefiles, so it was easy to con-
figure and compile applications for the targeted chip and
install them into the root file system. You can create a new
PetaLinux user application either by using the GUI (File
→ PetaLinux New Application) or by typing the following
commands into the Linux terminal:

We then provided a file name to the user application. In our
case, we created gpio-dev-mem-test and gpio-uio-test user
applications and modified the template source code based on
the application requirements.

Next, we built the PetaLinux system image by using the
GUI (as shown in Figure 2). You can also do it by using the
make command in the Linux terminal, as follows:

Now the software platform with OS and customized user
application is ready to be used, along with the hardware de-
sign we’ve already discussed.

TESTING PETALINUX RUNNING ON THE DEVICE
Here’s how PetaLinux boots up. The MicroBlaze proces-
sor executes the code residing in Block RAM. The first-
stage boot loader (fs-boot) will initialize basic hardware,
execute fs-boot.elf and search for the the Universal Boot-
loader, or U-Boot, address in a flash partition, as the ad-

dress of U-Boot is specified while configuring fs-boot.
The fs-boot will then fetch the U-boot image from the
U-Boot partition in flash, send it to the device’s DDR3
memory and run the kernel. Once you have built all the
images required for booting, you can test them on hard-
ware via JTAG, Ethernet or the Quick Emulator. QEMU is
an emulator and a virtual machine that allows you to run
the PetaLinux OS [9]. Let’s look at booting methods for
all three solutions.
 JTAG is the traditional method for programming and
testing FPGA designs. To program the FPGA using the
JTAG, we used the pulldown menu “Xilinx Tool → Program
the FPGA” and downloaded the download.bit file that we
generated earlier. Then we downloaded the image onto the
board using the GUI (PetaLinux SDK → BOOT JTAG [Li-
nux]), as shown in Figure 2. You can also use the following
commands in the Linux terminal:

 Alternatively, you can perform an indirect kernel boot
using U-Boot to boot PetaLinux. The system is first boot-
strapped by downloading U-Boot via the JTAG interface
using either the GUI (PetaLinux SDK → BOOT JTAG
[U-Boot]) or the following commands:

 Figure 6 shows a snapshot of the U-Boot console.
 It’s worth noting that the FPGA board is connected to the
Ethernet interface. You must select the Ethernet interface in
the hardware resources part of the XPS. Once U-Boot boots,
check whether the IP address of the server and host are the
same. If they are not, set the IP of the host using the following
commands in the U-Boot terminal:

Now the server (PC) as well as the host (KC705 board)
have the same IP address. Run the netboot command from
the server to download the PetaLinux image and boot:

After running netboot, you should see the PetaLinux con-
sole, as seen in Figure 5.

$ cd /opt/PetaLinux_v12.12

$ PetaLinux-config-kernel

$ cd /opt/PetaLinux_v12.12

$ PetaLinux-config-apps

$ cd $PETALINUX/software/ PetaLinux-dist

$ make

$ cd/opt/PetaLinux_v12.12/software/

 PetaLinux-dist

$ PetaLinux-jtag-boot -i images/image.elf

$ cd $PETALINUX/software/ PetaLinux-dist

$ PetaLinux-jtag-boot -i images/u-boot.elf

u-boot>print serverip // prints 192.168.25.45(server ip)

u-boot>print ipaddr // prints IP address

of the board as // 192.168.25.68

u-boot>set serverip <HOST IP> // Host IP 192.168.25.68

u-boot>set serverip 192.168.25.68

u-boot> run netboot

PetaLinux_v12.12/software
image.elf
u-boot.elf

X P L A N A T I O N : F P G A 1 0 1

 52 Xcell Journal First Quarter 2015

Last but not least, you can perform kernel boot by means
of QEMU by using either the GUI (PetaLinux SDK → BOOT
QEMU [Linux]) or the following commands:

Using this fast method produces the screen shown in
Figure 7.

TESTING APPLICATIONS RUNNING ON THE DESIGN
Once the booting of PetaLinux is tested, the next task
is to test the user application designed for PetaLinux.
The MicroBlaze processor looks at the hardware pe-
ripherals on the Kintex-7 FPGA board as a set of memo-
ry registers. Each register has its own base address and

Figure 6 – Indirect kernel boot via Universal Bootloader (U-Boot)

end address. In order to access any peripheral, the user
must know its base and end addresses. You will find de-
tails about the addresses in the device tree source (*.dts)
file. For our design, we developed and tested four ap-
plications: Accessing DDR3; Accessing GPIO Using
/dev/mem; Accessing GPIO Using UIO; and File Transfer.

1. Accessing DDR3
We used the PetaLinux application titled DDR3-test.c to
access the DDR3 memory. The application is designed
to write data to and read data from a DDR3 memory
location. DDR3 is a dual-in-line memory module that
provides SDRAM for storing user code and data. As
mentioned earlier, the user should know the start and
end addresses of DDR3 memory—0xC0000000 and
0xC7FFFFFF respectively. The memory size is 512
Mbytes. The Linux kernel resides in the initial memory
locations of DDR3 memory. Hence, the writing location
for DDR3 memory is selected in such a way that the Li-
nux kernel is not corrupted. The command we used to
write data to DDR3 memory was

where DDR3-test is the application name, –g is the DDR3
memory physical address, –o is output and 15 is the value
expected to be written on the DDR3 memory at the location
0xc7000000. To test whether the value is written at the ex-
pected location, we used the following command to read data
from DDR3 memory:

$ cd $ PETALINUX/software/ PetaLinux-dist

$ PetaLinux-qemu-boot -i images/image.elf

Figure 7 – Running PetaLinux through QEMU

#DDR3-test –g 0xc7000000 –o 15

#DDR3-test –g 0xc7000000 –iFigure 5 – Snapshot of PetaLinux console confirming
that the OS has booted

$ cd $ PETALINUX/software/ PetaLinux-dist

$ PetaLinux-qemu-boot -i images/image.elf

image.elf

ing a parameter called “Compatibility,” we set the LEDs’
GPIO to be controlled as the UIO device, instead of the
normal GPIO device. We also changed the label of the
device from gpio@40000000 to leds@40000000.

We then rebuilt PetaLinux and tested the GPIO access us-
ing UIO. We obtained details about the information of UIO
modules loaded using

The name of the UIO and its address are found in /sys/
class/uio/uioX. We used the following command to access
GPIO LED through the UIO driver:

Here, gpio-uio-test is the application name, –d is the
device path, –o is the output and 255 is the value passed
out to GPIO through UIO. The results were verified by the
LEDs glowing based on the data written on GPIO lines us-
ing the above command.

4. File Transfer Application
For our last test, we transferred a file from a server to a
client, where the server is the host PC and the client is
the KC705 board. For this test, we connected the server
and client through an Ethernet cable. We used the Triv-
ial File Transfer Protocol (TFTP), which is well known
for its simplicity and is generally used for automated
transfer of configuration or boot files. In order to test
the file transfer from server to client using TFTP, we
created a file called test in the server PC at /tftpboot.
We used the following commands to write “Hello World”
in the file and to view the contents in the same file (as
shown in Figure 8):

X P L A N A T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 53

 The value 15 was observed in the terminal, which con-
firms the DDR3 memory read and write operations were
operating perfectly.

2. Accessing GPIO Using /dev/mem
For our next application test, we used a PetaLinux applica-
tion titled gpio-dev-mem-test.c to access general-purpose
I/O (GPIO). The application is designed to control an 8-bit
discrete output and test that output by connecting LEDs on-
board to the GPIO. In order to access any device from the
user space, open /dev/mem and then use mmap() to map the
device to memory. The start and end addresses of the LED
GPIO we used are 0x40000000 and 0x4fffffff, respectively.

The GPIO peripheral has two registers: a data regis-
ter (GPIO_DATA) and a direction register (GPIO_TRI_
OFFSET). In order to read the status of the GPIO, we
set the direction bit to 1 (i.e., GPIO_TRI_OFFSET=1)
and read the data from the data register. To write data
to GPIO, set the bit to 0 and write the value to the data
register. Data is written on GPIO using the following
command on the PetaLinux terminal:

where gpio-dev-mem-test is the application name, –g
is the GPIO physical address, –o is output and 255 is
the value transmitted from GPIO, which is connected
to LEDs. The results of the test were verified when the
LEDs lit up as programmed.

3. Accessing GPIO Using UIO
An alternative way of accessing GPIO is via the user-
space input/output. We used a PetaLinux application ti-
tled gpio-uio-test.c to access the GPIO using UIO. The
application is designed to control an 8-bit discrete out-
put and is tested by connecting LEDs onboard to the
GPIO. A UIO device is represented as /dev/uioX in the
file system. In order to access GPIO through UIO, we
opened /dev/uioX or sys/class/uio/ui0 and then used the
mmap() call. We configured the kernel to support UIO
and enabled the UIO framework in the kernel. Then, us-

#gpio-dev-mem-test –g 0x40000000 –o 255

The application is designed to control an
8-bit discrete output and is tested by
connecting LEDs onboard to the GPIO.

ls /sys/class/uio/

 uio0 uio1 uio2

@ echo “Hello World” > /tftpboot/test

@ more /tftpboot/test

cd “/sys/class/uio/uioX

gpio-uio-test -d /dev/uio1 -o 255

X P L A N A T I O N : F P G A 1 0 1

 54 Xcell Journal First Quarter 2015

To receive this file from the server, we typed the follow-
ing get command (-g) in the PetaLinux terminal window
that was running as the client on the KC705 board:

A new file was created with the filename “test” in the cli-
ent (as shown in Figure 9). We can view the contents of this
file using the more command, as seen in Figure 9.

Similarly, transferring a file from the client to the server
is done by creating a file called test1 with the content “Pet-
aLinux OS” in the client machine. To transmit the file from
the client to the server, use the following “put” command
(-p) in the PetaLinux terminal running from the client (as
shown in Figure 10):

A blank test1 file is created in the server. Its contents are
read after the file transfer operation, and the contents are
verified as shown in Figure 11.

Implementing an embedded system and running PetaLi-
nux on an FPGA were pretty straightforward operations.
Next, we plan to implement a design using remote program-
ming where the boot files are transferred via Ethernet and
the client is capable of running a new application.

REFERENCES
1. Kynan Fraser, “MicroBlaze Running uClinux,” Advanced Com-

puter Architecture from http://www.cse.unsw.edu.au/~cs4211

2. Xilkernel from Xilinx Inc., Version 3.0, December 2006

3. PetaLinux SDK User Guide from Xilinx Inc., UG976, April 2013

4. Gokhan Ugurel and Cuneyt F. Bazlamacci, “Context Switching
 Time and Memory Footprint Comparison of Xilkernel and μC/
 OS-II on MicroBlaze,” 7th International Conference on Electrical
 and Electronics Engineering, December 2011, Bursa, Turkey,
 pp.52-55

5. Chenxin Zhang, Kleves Lamaj, Monthadar Al Jaberi and Praveen
Mayakar, “Damn Small Network Attached Storage (NAS),”
Project Report, Advanced Embedded Systems Course, Lunds
Tekniska Hogskola, November 2008

6. Platform Studio User Guide from Xilinx Inc., UG113, Version 1.0,
 March 2004

7. “EDK Concepts, Tools and Techniques: A Hands-On Guide to Ef-
fective Embedded System Design,” Xilinx Inc., UG683, Version
14.1, April 2012

8. PetaLinux Application Development Guide from Xilinx Inc.,
 UG981, April 2013

9. PetaLinux QEMU Simulation Guide from Xilinx Inc., UG982, No-
vember 2013

tftp -r test1 -p 192.168.25.68

Figure 10 – Snapshot for file transmission from client to server

Figure 11 – Snapshot of file reception in the server

Figure 9 – Snapshot for file reception in the client

Figure 8 – Snapshot of file creation in the server

tftp -r test -g 192.168.25.68

ls –a

Hit your marketing target by advertising your product or service in the Xilinx Xcell Journal,
you’ll reach thousands of engineers, designers, and engineering managers worldwide!

The Xilinx Xcell Journal is an award-winning publication, dedicated
specifically to helping programmable logic users – and it works.

We offer affordable advertising rates and a variety
of advertisement sizes to meet any budget!

Call today :
(800) 493-5551
or e-mail us at
xcelladsales@aol.com

Join the other leaders in our industry
and advertise in the Xcell Journal!

Let Xcell Publications help you get
your message out to thousands of

programmable logic users.

Get on Target

www.xilinx.com/xcell/

mailto:xcelladsales@aol.com
http://www.xilinx.com/xcell/

X P L A N AT I O N : F P G A 1 0 1

 56 Xcell Journal First Quarter 2015

Try Algorithm Refactoring
to Generate an Efficient
Processing Pipeline with
Vivado HLS
by Shaoyi Cheng
PhD Candidate
University of California, Berkeley
sh_cheng@berkeley.edu

X P L A N A N T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 57

When you are wrestling with a computa-
tion kernel with regular memory access
patterns and easily extractable parallel-
ism between loop iterations, the Vivado®

Design Suite high-level synthesis (HLS)
tool can be a great resource for creating
high-performance accelerators. By adding
a few pragmas to a high-level algorithmic
description in C, you can quickly imple-
ment a high-throughput processing engine
on your Xilinx® FPGA. In combination
with DMA mechanisms that are managed
by software, the result is an orders-of-mag-
nitude speed-up when compared against
general-purpose processors.
 However, real-life applications often
contain complex memory accesses that
are not as easy to deal with, especially if we
venture out of the realms of scientific com-
puting and signal-processing algorithms.
We have devised a simple technique that
you can use in some of these situations to
produce efficient processing pipelines. But
before we go into the details, let’s first take
a look at how Vivado HLS works and more
importantly, when it doesn’t.

HOW DO THE HLS TOOLS WORK?
High-level synthesis attempts to capture
parallelism in the control data flow graph
(CDFG) described by high-level languages.
Compute operations and memory access-
es are allocated and scheduled according
to the dependency constraints between
them and the resource constraints of the
target platform. Activation of a particular
operation in the circuit is associated with
a certain clock cycle, while a central con-
troller that’s synthesized alongside the
data path orchestrates the execution of the
entire CDFG.

A simple flow that refactors
high-level algorithmic
descriptions makes it
possible to generate a more
efficient processing pipeline
using high-level synthesis.

W

X P L A N A N T I O N : F P G A 1 0 1

 58 Xcell Journal First Quarter 2015

 As the scheduling is done statically,
the run-time behavior of the accelera-
tor is rather simple. Different parts of
the generated circuit run in lockstep
with each other; no dynamic dependen-
cy-checking mechanisms such as those
present in high-performance CPUs are
needed. In the function shown in Figure
1(a), for instance, the loop index addi-
tion and the load of curInd can be paral-
lelized. Also, the next iteration can start
before the current iteration finishes.

Meanwhile, because the floating-point
multiply always uses the result of mul-

in significant performance degradation.
This is not an issue when the memory
access pattern is known a priori, such
that the data can be moved on-chip
before it is needed, or if the data set is
small enough to be entirely buffered on
the FPGA. However, for many interest-
ing algorithms, the data access depends
on the result of computation and the
memory footprint requires the use of
off-chip RAM. Now, naively applying
HLS on the kernel would create a data
path with a lot of instruction-level paral-
lelism. But when it’s activated, it would

tiply from the previous iteration, the
shortest interval in which we can start a
new iteration is limited by the latency of
the floating-point multiplier. The execu-
tion schedule of this function is shown
in Figure 2(a).

WHEN IS THIS
APPROACH SUBOPTIMAL?
The problem with this approach is that
the entire data flow graph is running on
a rigid schedule. Stalls introduced by
off-chip communication propagate to
the entire processing engine, resulting

Naively applying HLS on the kernel
would create a data path with a lot of

instruction-level parallelism. But when it’s
activated, it would need to stop frequently

while waiting for data to be brought in.

float foo (float* x, float* product, Int* Ind)
{
 float curProd = I.0;
 for(Int I=0; I<N; I++)
 {
 Int curInd = Ind[I];
 float curNum = x[curInd];
 curProd = curProd * curNum;
 product[I] = curProd;
 }
 return curProd;
}

index addition

curInd Fetch

curNum Fetch

FP Multiply

Product Store

Figure 1 – An example design: (a) A function containing irregular memory access pattern; (b) pipeline structure from a possible refactoring

X P L A N A N T I O N : F P G A 1 0 1

 First Quarter 2015 Xcell Journal 59

need to stop frequently while waiting
for data to be brought in.
 Figure 2(b) shows the execution of
the generated hardware module for
our example function when the data
set is too large and needs to be dynam-
ically fetched into the on-chip cache.
Note how the slowdown reflects the
combination of all cache miss laten-
cies. This does not have to be the case,
though, since there are parts of the
computation graph whose progress
does not need the memory data to be
immediately available. These sections
should be able to move forward. This
extra bit of freedom in the execution
schedule can potentially have a signif-
icant effect, as we shall see.

Figure 2 – Execution schedule in different scenarios: (a) when all data is buffered on-chip;
(b) with data fetched dynamically; and (c) with decoupled operations

MAKING A CASE FOR
REFACTORING/DECOUPLING
Let’s look at the example function we
had earlier. Imagine if the execution of
floating-point multiplies and the data ac-
cesses are not all tied together by a uni-
fied schedule. While one load operator is
waiting for data to come back, the other
load operator can initiate new memory
requests and the multiplier’s execution
also moves forward. To achieve this,
there should be one module responsible
for each memory access, running on its
own schedule. Also, the multiplier unit
should be executing asynchronously
with all the memory operations.
 The data dependencies between the
different modules are communicated

through hardware FIFOs. For our ex-
ample, a possible refactoring is shown
in Figure 1(b). The hardware queues
used for communication between
stages can buffer data already fetched
but not yet used. When the memo-
ry access parts are stalling for cache
misses, the backlog of data already
produced so far can continue supply-
ing the multiplier unit. Over a long pe-
riod of time, the stalls introduced can
be shadowed by the long latency of
the floating-point multiplication.

Figure 2(c) shows the execution
schedule when this decoupled pro-
cessing pipeline is used. The laten-
cies through the FIFOs are not taken
into consideration here, but the effect

float foo (float* x, float* product, Int* Ind)
{
 float curProd = I.0;
 for(Int I=0; I<N; I++)
 {
 Int curind = Ind[I];
 float curNum = x[curind];
 curProd = curProd * curNum;
 product[I] = curProd;
 }
 return curProd;
}

index addition

curind Fetch

curNum Fetch

FP Multiply

Product Store

iteration1 iteration2 iteration3 iteration1 iteration2 iteration3

(a) (b) (c)
All data buffered on-chip Decoupled operationsData fetched dynamicallytime

load add

load

FP
Multiply

store

load add

load

FP
Multiply

store

load add

load

FP
Multiply

store

load add

load

FP
Multiply

store

Datapath
stalls

Cache
miss

add

add

add load

load

load

load add

load

store

FP
Multiply

load add

load

FP
Multiply

store

load

load

load
FP

Multiply

FP
Multiply

FP
Multiply

store

store

store

X P L A N A N T I O N : F P G A 1 0 1

 60 Xcell Journal First Quarter 2015

should be minimal if there are a large
number of iterations.

HOW DO WE REFACTOR?
To generate the pipeline of decoupled
processing modules, you first need to
cluster the instructions in the original
CDFG to form subgraphs. To maximize
the performance of the resulting imple-
mentation, the clustering method must
address a few requirements.

First, as we have seen earlier, the
Vivado HLS tools use software pipelin-
ing to initiate new iterations before pre-
vious ones are completed. The latency
of the longest circular dependence in
the CDFG dictates the minimum interval
with which a new iteration can be initiat-
ed, which ultimately bounds the overall
throughput an accelerator can achieve.
It is therefore crucial that these depen-
dency cycles do not traverse multiple
subgraphs, as the FIFOs used for com-
munication between modules always
add latency.

Second, it is beneficial to separate
memory operations from dependency cy-
cles involving long-latency compute, so
that cache misses can be “shadowed” by
the slow rate of data consumption. Here,
“long latency” means the operation takes
more than one cycle and for our purpose,
the Vivado HLS schedule is used to ob-
tain this metric. So for instance, a mul-
tiply would be a long-latency operation
while an integer addition is not.

Lastly, to localize the effects of stalls
introduced by cache misses, you will
also want to minimize the number of
memory operations in each subgraph,
especially when they address different
parts of the memory space.

It’s easy to satisfy the first require-
ment—keeping dependency cycles
from traversing multiple subgraphs—by
finding strongly connected components
(SCCs) in the original data flow graph
and collapsing them into nodes before
separating them into different clusters.
As a result of this process, we wind
up with a directed acyclic graph, with
some nodes being simple instructions
and others being a set of operations de-
pendent on each other.

To satisfy the second and third require-
ments—separating memory operations
and localizing the effects of stalls—we
can perform a topological sort of these
nodes and then divide them up. The sim-
plest way to do the division is to draw a
“boundary” after every memory opera-
tion or long-latency SCC node. Figure 3
shows how to apply this approach to our
motivating example. The correspondence
between this clustering and the pipeline
structure in Figure 1 should be appar-
ent. Each of these subgraphs is a new C
function that can be pushed through HLS
independently. These subgraphs will be
executing out of step with one another.

We built a simple source-to-source
transformation tool to perform this re-

factoring. We used Xilinx IP cores for
the FIFOs connecting individual mod-
ules generated. There is certainly more
than one way to refactor a given com-
putation kernel, and the design space
exploration is still in progress.

PIPELINED MEMORY ACCESSES
Having an initial implementation of a de-
coupled processing pipeline, there are
optimizations we can perform to improve
its efficiency. As we have seen, when a C
function is mapped using HLS, the memo-
ry reads are blocking. This is still the case
for the individual stages in our pipeline.
For instance, the module responsible for
loading x[curInd] may be stalling while
waiting for the data even though the next
curInd is already available and there is
enough space in the FIFO downstream.

To fix this problem, we can make a
transformation to pipeline the memory
accesses. Instead of performing a sim-
ple memory load in the C function for
that particular stage, we replace the
load with a push of addresses to a new
FIFO. Then, a new hardware module is
instantiated separately to read address-
es off the address FIFO and send them
to the memory subsystem. The data
coming back is directly pushed onto
the downstream FIFO. Effectively, the
memory access is now pipelined.

The push operation for the addresses
can be represented by a memory store to
a FIFO interface in Vivado HLS, but the

Figure 3 – Refactoring into subgraphs

float foo (float* x, float* product, Int* Ind)
{
 float curProd = I.0;
 for(Int I=0; I<N; I++)
 {
 Int curind = Ind[I];
 float curNum = x[curind];
 curProd = curProd * curNum;
 product[I] = curProd;
 }
 return curProd;
}

index addition

curind Fetch

curNum Fetch

FP Multiply

Product Store

(a) (b) (c)
time

1 + Load Mem
ind[i]

Load Mem
X[curInd]

Store Mem
Product[i]

Subgraph Boundaries

 First Quarter 2015 Xcell Journal 61

X P L A N A N T I O N : F P G A 1 0 1

Figure 4 – The knapsack problem

hardware module monitoring the down-
stream FIFO and firing off the memory
request is implemented with Verilog.
This is because the outgoing addresses
and response data are not bundled to-
gether in a memory interface synthesiz-
able by Vivado HLS. However, this is a
simple module that gets reused many
times across different benchmarks, and
thus the design effort is amortized.

DUPLICATION OR
COMMUNICATION?
The FIFOs introduced to move data
between stages represent significant
overhead in refactoring the kernel and
generating the decoupled processing
pipeline. It is often beneficial to eliminate
some of these FIFOs by duplicating a
few computation instructions, as even a

minimal-depth FIFO can cost a nontrivial
amount of FPGA resources.

In general, in searching for the abso-
lute best design point in this trade-off,
you can apply cost-modeling and formal
optimization techniques. But in most
benchmarks, just duplicating the simple
loop counters for every one of its users
can save a lot of area, and that’s what
we have done. In the motivating exam-
ple, this optimization involves duplicat-
ing the integer adder for i, so the store
to Product[i] does not need to get its in-
dex from another module.

BURST-MEMORY ACCESS
A third optimization is burst-memory
access. To make more efficient use of
the memory bandwidth, it is desirable
to have one memory transaction car-

rying multiple words of data. The AXI
bus protocol allows you to specify burst
length, and with small modifications to
the decoupled C functions and the pipe-
lined memory access module, we can
take advantage of this capability.

In addition to generating addresses,
each memory operator in decoupled C
functions also computes a burst length
when a contiguous chunk of memory
is accessed. The duplication of loop
counters also helps in the generation of
burst access, as the number of words
accessed can be determined locally
within each decoupled function.

EXPERIMENTAL EVALUATION
We did a few case studies applying the de-
scribed approach. To evaluate the benefit
of the method, we compare the decoupled
processing pipelines (DPPs) generated
using our approach with the accelera-
tors generated by naively applying HLS
(Naïve). When invoking Vivado HLS for
the Naïve/DPP implementations, we set
the target clock frequency to 150 MHz and
used the highest achievable clock rates af-
ter place-and-route. Also, we tried various
mechanisms for the interaction between
accelerators and the memory subsystem.
ACP and HP ports are used, and for each,
we also instantiated a 64-kbyte cache on
the reconfigurable array.

The physical device we used for
the experiments was the Zynq®-7000

for (w = 1; w <= W; w++) {
 int option1 = opt[n-1][w];
 int option2 = -999999;
 int opt_without = opt[n-1][w-cur_weight];
 if (cur_weight <= w)
 option2 = cur_profit + opt_without;
 opt[n][w] = option1> option2? option1:option2;
 sol [n][w] = option2> oprion1? 1:0;
}

Figure 5 – Run-time comparison for knapsack problem

X P L A N A N T I O N : F P G A 1 0 1

 62 Xcell Journal First Quarter 2015

XC7Z020 All Programmable SoC from
Xilinx, installed on the ZedBoard evalu-
ation platform. We also ran the software
version of the applications on the ARM®
processor on the Zynq SoC and used its
performance as the baseline for our ex-
periments. All the accelerators generat-
ed are self-contained; they do not need
any DMA mechanism to move data in
and out of the reconfigurable fabric.

CASE STUDY 1:
KNAPSACK PROBLEM
The knapsack problem is a well-known
combinatorial problem that can be solved
using dynamic programming. The skele-
ton of the kernel is shown in Figure 4. In
particular, the variables in boldface type
are all read from memory during run-time.
Therefore, the exact locations from which
the variable opt_without is loaded are not
known a priori. When w and n are large,
we are unable to buffer the entire opt array
on-chip. We can only let the computation
engine fetch the needed portion of it.

Figure 5 shows the run-time comparison
between the accelerators generated using
our approach (DPP) and the accelerator
generated by naively pushing the function
through HLS (Naïve). The chart also shows
the performance of running the function
on an ARM processor. We fix n (number of
items) at 40, and vary w (total weight of the
knapsack) from 100 to 3,200.

It is clear from the comparison that
naively mapping the software kernel us-

ing Vivado HLS generates an accelerator
with performance much slower than the
baseline. The superscalar, out-of-order
ARM core on the Zynq SoC is capable of
exploiting instruction-level parallelism to
a good extent and also has a high-perfor-
mance on-chip cache. The additional par-
allelism extracted by the Vivado HLS tool
is evidently not enough to compensate for
the clock frequency advantage the hard
processor core has over the programma-
ble logic and the longer data access laten-
cy from the reconfigurable array.

When the kernel is decoupled into
multiple processing stages, however, the
performance is much better than that of

the ARM processor (~4.5x). Also, the dif-
ference among various memory access
mechanisms when DPP is used is rather
small—the sensitivity to memory access
latency is a lot better with our approach.

CASE STUDY 2: SPARSE MATRIX
VECTOR MULTIPLY
Sparse matrix vector (SpMV) multiply
is a computation kernel that has been
studied, transformed and benchmarked
many different ways in various research
projects. Our purpose here is not to
produce the best-performing SpMV
multiply using special data-structure
and memory-allocation schemes. Rath-
er, we want to see—given the most ba-
sic algorithm description—how much
benefit a refactoring pass can provide
when using Vivado HLS.

As shown in Figure 6, for our ex-
periment the sparse matrix is stored in
compressed sparse row (CSR) format.
Loads from an index array are per-
formed before numbers can be fetched
for the actual floating-point multiply.
Again, the control flow and memory lo-
cations accessed depend on values only
known during run-time.

For the run-time comparison shown
in Figure 7, the matrix is populated with
an average density of 1/16, and the di-
mension is varied between 32 and 2,048.

Figure 7 – Run-time comparison for sparse matrix vector multiply

Figure 6 – Sparse matrix vector multiply

for(s =0; s<dim; s++)
{
 int kend = ptr[s];
 int k;
 float curY = y[s];
 for(k = kbegin; k<kend; k++){
 int curlnd = indArray[k];
 curY = curY +valArray[k] * xvec[curlnd];
 }
 Y[s] = curY;
 kbegin = kend;
}

 First Quarter 2015 Xcell Journal 63

X P L A N A N T I O N : F P G A 1 0 1

Here, the naïve mapping again lags
the software version in performance.
The decoupled processing pipeline
generated with our approach has about
the same performance as the baseline
when no on-FPGA cache is used.

With a 64-kbyte cache instantiated
on the reconfigurable array, the perfor-
mance of DPP is close to double that of
the baseline. The addition of caches has
a more pronounced effect on the per-
formance of the DPP compared with
the previous benchmark.

CASE STUDY 3:
FLOYD-WARSHALL ALGORITHM
Floyd-Warshall is a graph algorithm that’s
used to find the pairwise shortest path be-
tween any pair of vertices. The memory
access pattern is simpler than in previous
benchmarks. Thus, there may be a way to
devise a DMA-plus-accelerator setup to
have a good overlap of computation and
off-chip communication. Our approach
tries to achieve this overlapping automat-
ically, but we have not done the study to
show the gap between the absolute opti-
mal and what we have obtained here.

We do have, however, a comparison
of run-time just as with the previous
benchmarks. Here, we vary the size of
our graph from 40 nodes to 160 nodes.
Each node has on average 1/3 of all
nodes as its neighbors.

Our results are very similar to those
in the knapsack problem. The decou-

pled processing pipelines achieved per-
formance about 3x that of the software
baseline, which has more than twice the
throughput of any naïve mappings. The
effect on FPGA cache is also small when
DPPs are used, demonstrating their toler-
ance toward memory access latency.

Our simple technique creates pro-
cessing pipelines that can make bet-
ter use of memory bandwidth and
have better tolerance toward mem-
ory latency, thus improving Vivado
HLS performance. The described
method decouples memory accesses
and long dependence cycles in the
control data flow graph, such that
cache misses do not stall the other
parts of the accelerator.

Figure 9 – Run-time comparison for Floyd-Warshall algorithm

Figure 8 – The Floyd-Warshall algorithm

for(k=0; k<V; k++)
 for(i=0; i<V; i++)
 if(i!=k) {
 int dik = dis[i][k];
 for(j=0; j<V; j++)
 if(j!=k) {
 int dkj = dist[k][j];
 int dij = dist[i][j];
 if(dik + dkj < dij)
 dist[i][j] = dik + dkj;
 }
 }

www.opalkelly.com

 64 Xcell Journal First Quarter 2015

Latest and Greatest
from the Xilinx Alliance
Program Partners

T
he Xilinx® Alliance Program is a worldwide ecosystem of qualified com-

panies that collaborate with Xilinx to further the development of All Pro-

grammable technologies. Xilinx has built this ecosystem, leveraging open

platforms and standards, to meet customer needs and is committed to its

long-term success. Alliance members—including IP providers, EDA vendors, embedded

software providers, system integrators and hardware suppliers—help accelerate your

design productivity while minimizing risk. Here are some highlights.

XPEDITE

LINUX-BASED MULTICORE
FRAMEWORK FOR ZYNQ
ULTRASCALE+ MPSOC

Given that the upcoming Zynq® Ultra-
Scale+™ MPSoC from Xilinx is char-
acterized by increased levels of capa-
bility, performance and complexity,
application developers will need new
and improved software development
paradigms to efficiently manage and
leverage the heterogeneous processing
power offered by this device.

The Mentor Embedded Multicore
Framework from Mentor Graphics
provides an enabling infrastructure
to manage the life cycle of compute
resources and interprocessor com-

Xpedite highlights the latest technology updates
from the Xilinx Alliance partner ecosystem.

munications in heterogeneous multi-
processing environments. The initial
integration of the Mentor portfolio
showcases SMP Linux running on the
quad ARM® Cortex™-A53 cores man-
aging the life cycle and communica-
tions. The Nucleus RTOS runs on the
ARM Cortex-R5 core using the Mentor
Embedded Multicore Framework.

Mentor’s Sourcery Codebench tools
provide an integrated development en-
vironment for designing asymmetric
multiprocessing (AMP) systems. Devel-
opers face unique challenges while de-
bugging/profiling heterogeneous soft-
ware contexts on heterogeneous cores.
Mentor’s embedded development tools
hide these complexities from users and

provide deep insight into the system
run-time. Offerings include:

• Tools for resource partitioning

in AMP systems (available later
this year)

• Tools for building and packaging
remote firmware/applications

• IDE for debugging each individual
software context present in the
AMP system

• Ability to profile each OS/applica-
 tion context and analyze data in a

 unified time reference

For more information, visit http://
www.mentor.com/embedded-software/.

http://www.mentor.com/embedded-software/
http://www.mentor.com/embedded-software/

 First Quarter 2015 Xcell Journal 65

MATHWORKS EXPANDS
SUPPORT FOR ZYNQ-7000
ALL PROGRAMMABLE SOCS

Xilinx Alliance Program member
MathWorks has expanded support for
Xilinx’s Zynq-7000 All Programmable
SoCs in Release 2014b. This newest
release of MATLAB® and Simulink®
allows engineers and scientists us-
ing model-based design to accelerate
their time-to-production with a higher
degree of confidence, all within a sin-
gle tool environment.

MathWorks and Xilinx have close-
ly collaborated on joint technical de-
velopment to bring this novel guided
workflow to the market. The workflow
allows customers to develop and sim-
ulate algorithms that can be validated
quickly and deployed onto the Zynq
SoC, leveraging automatically generat-
ed C and HDL code. This methodology
leverages the Zynq SoC’s dual-core ARM
Cortex-A9 processors coupled with a
powerful programmable logic fabric to
enable engineers and scientists to de-
sign and implement algorithms on a sin-
gle chip that consumes less space and
power in the end system.

In addition to existing support for
the Xilinx ISE® Design Suite and the
Zynq Intelligent Drives Kit, the extend-
ed support in this latest release pro-
vides integration with the Xilinx Viva-
do® Design Suite and the Zynq SDR
development platforms. As a result,
engineers and scientists can prototype
quickly on a hardware development
platform and then incorporate the gen-
erated C and HDL code into produc-
tion environments through the use of
the Vivado Design Suite.

The expanded support for Xilinx
SoCs is available immediately in
MATLAB Release 2014b.

In addition, MathWorks also offers
a two-day training class to help en-
gineers get up and running quickly
on this technology. For more infor-
mation, visit the Release 2014b high-
lights page.

INTELLIPROP RELEASES
NVME IP CORES FOR
XILINX 7 SERIES AND
ULTRASCALE FPGAS

Alliance member IntelliProp has col-
laborated with Xilinx to provide indus-
try-standard NVMe host-interface and
device-interface IP cores. IntelliProp’s
NVMe Host (IPC-NV164-HI) and NVMe
Device (IPC-NV163-DT) cores make it
possible to communicate with PCIe®-
based storage designs implemented
onto Xilinx FPGAs. IntelliProp’s NVMe
IP cores comply fully with the Nonvola-
tile Memory Express industry specifica-
tion. They feature an application layer
with a processor interface to provide
register and memory access. The cores
support attachment to the system bus,
providing seamless IP access and ease
of integration with any system design.
They utilize the power of the hard PCIe
block made available in Xilinx 7 series
and UltraScale FPGAs and are support-
ed in Verilog and VHDL.

IntelliProp’s NVMe cores can be in-
tegrated onto 7 series and UltraScale
FPGAs to provide an industry-compli-
ant PCIe Gen1, Gen2 or Gen3 interface.
The NVMe Host IP core is designed to
be integrated with an NVMe-compli-
ant host application to interface with
an NVMe drive, posting commands to
system memory queues and interacting
with the endpoint device’s register sets.
The NVMe Device IP core provides an
NVMe-compliant device application to
process host commands and perform
PCIe data management. Both IP cores
are designed to allow for efficient data
movement between host system memo-
ry and PCIe connected devices.

User applications can be created
using the Vivado Design Suite and are
packaged for IP Integrator with refer-
ence designs for rapid development.
IntelliProp’s IP cores are competitively
priced and available to order immedi-
ately. Product details and ordering op-
tions are available at http://www.intel-
liprop.com/ or info@intelliprop.com.

TOPIC SPEEDS EMBEDDED
DEVELOPMENT THROUGH
ONLINE SHOPPING

Xilinx premier partner Topic Em-
bedded Solutions has opened an
online store for high-quality embed-
ded solutions. The company offers a
completely modular portfolio of in-
tegrated solutions designed to dras-
tically reduce development cycles.

To start, the Zynq SoC-based
Miami SoM modules are industrial
graded, ready to program and de-
sign-in. They come standard with a
full, fast-boot mainline Linux board
support package. The BSP is updat-
ed continuously and is available on-
line to ensure customers stay cur-
rent with the latest Linux software
developments.

A full line of Florida Carrier
Boards is available for complete
system integration with Topic’s
SoMs. Specialized versions for med-
ical and general use provide exten-
sive off-the-shelf capabilities for
development, prototyping and even
production. Full schematics and
layout of the carrier board comes
standard with a purchase to ensure
fast and successful integration.

Topic has also just released a
new PCIe version of Florida that
is ideal for data acceleration pur-
poses such as video, signal or high-
speed data processing.

A growing range of fully inte-
grated development kits can sim-
plify research, prototyping and fast
engineering. These kits include
touchscreens, application-specific
I/O, all relevant cables and refer-
ence designs.

Find Topic Embedded Products
at Embedded World in Nuremburg,
Germany, in Hall 1, stand No. 1-136,
on the Xilinx stand, through one of
Topic’s worldwide distribution part-
ners or on the Topic online store at
www.topicproducts.com.

http://www.mathworks.com/hardware-support/zynq.html
http://www.mathworks.com/hardware-support/zynq.html
http://www.mathworks.com/hardware-support/zynq-motor-control.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.mathworks.com/hardware-support/zynq-sdr.html
http://www.mathworks.com/zynq-training
http://www.mathworks.com/products/new_products/latest_features.html
http://www.mathworks.com/products/new_products/latest_features.html
http://www.intelliprop.com/ or info@intelliprop.com
http://www.intelliprop.com/ or info@intelliprop.com
http://www.topicembeddedproducts.com/
http://www.topicembeddedproducts.com/products/system-on-modules/
http://www.topicembeddedproducts.com/products/boards-kits/
http://www.topicembeddedproducts.com/products/boards-kits/
http://topicembeddedproducts.com/products/boards-kits/development-kit/
www.topicproducts.com

Xpress Yourself
in Our Caption Contest

Everyone loves emoticons, but you wouldn’t want to look like one. The
individual leading this workshop seems to have taken the suggestion to
“put on a happy face” a little too far. But don’t worry, be happy—just

write an engineering- or technology-related caption for our smiley-face cartoon
and you could be the lucky winner of this issue’s caption contest. The image
might inspire a caption like “Max just came back from that Power of Positive
Thinking executive retreat. Do you think he’s been brainwashed?”

Send your entries to xcell@xilinx.com. Include your name, job title, com-
pany affiliation and location, and indicate that you have read the contest
rules at www.xilinx.com/xcellcontest. After due deliberation, we will print
the submissions we like the best in the next issue of Xcell Journal. The
winner will receive a Digilent Zynq Zybo board, featuring the Xilinx® Zynq®-
7000 All Programmable SoC (http://www.xilinx.com/products/boards-and-
kits/1-4AZFTE.htm). Two runners-up will gain notoriety, fame and a cool,
Xilinx-branded gift from our swag closet.

The contest begins at 12:01 a.m. Pacific Time on Feb. 23, 2015. All entries must
be received by the sponsor by 5 p.m. PT on April 2, 2015.

Now, that’s something to smile about!

NO PURCHASE NECESSARY. You must be 18 or older and a resident of the fifty United States, the District of Columbia, or Canada (excluding Quebec) to enter. Entries must be entirely original. Contest begins on on April 2,
2015. Entries must be received by 5:00 pm Pacific Time (PT) Feb. 23, 2015. Official rules are available online at www.xilinx.com/xcellcontest. Sponsored by Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124.

DR. JAMES C. MALONEY, faculty
member in the Electrical Engineering
and Fuel Cell Engineering Technology

and Information Technologies
Division of Stark State College

(North Canton, Ohio), won a shiny
new Digilent Zynq Zybo board with

this caption for the rodent-in-a-maze
cartoon in Issue 89 of Xcell Journal:

“Who moved my cheese?”

Congratulations as well to
our two runners-up:

 “Gary missed the mark when his
boss told him to implement a

‘genetic’ place-and-route algorithm.”

 — Michael Costanzo, electrical
engineer, Brookhaven National
Laboratory, Collider-Accelerator

Department, Upton, NY

“This is what we ordered from

Mouser Electronics?”

— Chris Lee, hardware engineer,
Cisco Systems, San Jose, Calif.

XCLAMATIONS!
D

A
N

IE
L

G
U

ID
ER

A

 66 Xcell Journal First Quarter 2015

http://xcell@xilinx.com
http://www.xilinx.com/xcellcontest
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm
http://www.xilinx.com/products/boards-and-kits/1-4AZFTE.htm
http://www.xilinx.com/xcellcontest

Synplify Premier
Achieve Best Quality of Results and Maximum

Performance for Your FPGA Design

FPGAs keep getting bigger, but your schedule is not. There is no

time to waste on numerous design iterations and long tool runtimes.

Use the hierarchical and incremental techniques available in

Synopsys’ Synplify® software to bring in your schedule and meet

aggressive performance and area goals.

u Unmatched quality of results

u Fastest turnaround time

u Fast and easy debug

u Results preservation from one run to the next

To learn more about how Synopsys FPGA design tools accelerate

time to market, visit www.synopsys.com/fpga

To learn more about how Synopsys FPGA design tools accelerate

time to market, visit www.synopsys.com/fpga

To learn more about how Synopsys FPGA design tools accelerate

time to market, visit www.synopsys.com/fpga

http://www.synopsys.com/fpga

http://www.xilinx.com/ultrafast

	p01_90-cover
	p02_avnet_ad
	p03_synopsys_ad_haps
	p04_90_Col_LP
	p05_90_xcelldailyad
	p06-07_90-TOC_03
	p08-15_90_Cover Story
	p16-21_90_XiAerospac
	p22-27_90_XiWireless
	p28-33_90_XiDataCenter
	p34-37_90_XiDataguan
	p38-45_90-FPGA101_taylor
	p46-54_90-FPGA101_pentalinux
	p55_90_Xcell advertising
	p56-63_90-FPGA101-cheng
	p64-65_90_Xpedite
	p66_90-xclamations
	p67_90-synopsysad2
	p68_90_xlx_ad

