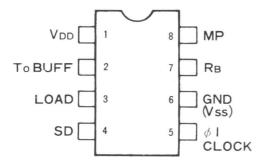
YAMAHA L S I

YM3014B

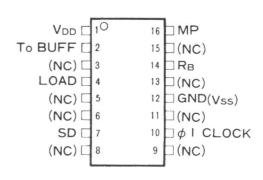
Serial Input Floating D/A Converter (DAC-SS)

OUTLINE


YM3014B: DAC-SS (hereinafter referred to as DAC) is a floating D/A converter with serial input for single channel. It can generate analog output (dynamic range 16 bits) having 10-bit mantissa section and 3-bit exponent section on the basis of input digital signal.

FEATURES

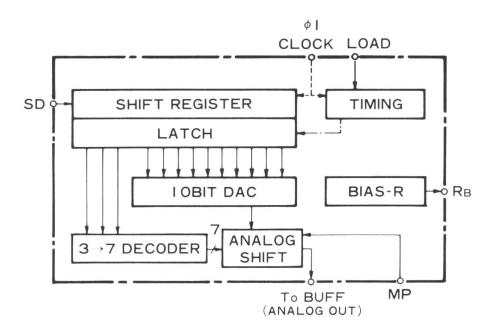
- An external buffer operational amplifier is provided to obtain analog output easily.
- A wide dynamic range with 16 bits.
- Sample holding circuit is unnecessary.
- It is possible to reduce noise and the distortion rate of high harmonic and to obtain good temperature characteristics.
- It is produced by the monolithic process with high precision thin film resistance and CMOS and contained in a 8 pin plastic DIL package.


TERMINAL DIAGRAM

YM3014B

(8pin DIP Top View)

● YM3014B-F


(16pin-SOP Top View)

YAMAHA CORPORATION:

YM3014B CATALOG CATALOG No.: LSI-2130143

1994. 3

BLOCK DIAGRAM

DESCRIPTION OF TERMINAL FUNCIOTNS

	NO. 16SOP	SYMBOL NAME	FUNCTIONS
1	1	VDD	Reference power sourch on the high potential side.
2	2	To BUFF	Analog output from DAC is input into a buffer operational amplifier.
3	4	LOAD	Generates in ternal signal to latch the serial data by use of trailing edge.
4	7	SD	Serial input of the converted digital siganl.
5	10	CLOCK	Clock $(\phi 1)$ to operate the shift register and timing generator.
6	12	Vss	Power source on the low potential side (GND).
7	14	RB	High precision $1/2$ VDD voltage generated inside of the unit is obtained at this terminal. It is added to 8 pin through the buffer operational amplifier.
8	16	MP	Exponential analog value is obtained by S signal with reference to potential given to MP. Normally it is biased to $1/2VDD$.

DESCRIPTION OF FUNCTIONS

1. Relationship between Digital Input Data and Analog Output Voltage

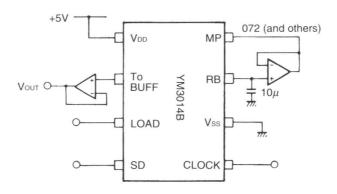
To perform one conversion at 16-bit time by YM3014B, the first 3-bit data among the 16-bit serial data is processed as invalid data in the DAC. The next 10 bit data (D_0 through D_9) is input into the 10-bit DAC section as the MSB data from the LSB to constitute the mantissa section of analog output. The remaining 3-bit data (S_0 through S_2) is input into the 2^{-N} analog shift section to constitute the exponent section of analog output.

For example, when the basic circuit is used, output voltage is as follows.

Vour =
$$1/2$$
 VDD + $1/4$ VDD (- $1 + D_9 + D_8 2^{-1} + \cdots + D_0 2^{-9} + 2^{-10})2^{-N}$
N = $S_2 2^2 + S_1 2^1 + S_0$
 $S_2 = S_1 = S_0 = 0$: not allowed.

That is, it has the maximum aplitude of $\pm 1/4$ VDD and the minimum amplitude of $\pm 1/4$ VDD 2^{-16} with 1/2VDD potential in the center.

2. Operation in the DAC


Digital input data is taken into the shift register through SD terminal in synchronous with the clock rise. Latch signal is generated in the timing circuit by use of the trailing edge of LOAD. By this latch signal, the serial data of D_0 through D_9 and S_0 through S_2 is latched, which drives the 10-bit DAC section and the analog shift section, respectively, to start conversion.

Its analog output is obtained at the terminal "TO BUTT". It can be output through an adequate buffer operational amplifier.

3. Summary of Operation

- As shown in Fig. 3, Timing diagram, coincide the trailing edge of LOAD with the timing of the S₂ rear end of the SD signal. "H" time of LOAD requires more than one bit time.
- Conversion at the bit time other than 16 bits is possible by increasing or decreasing the invalid bit number part.

EXAMPLE OF BASIC CIRCUIT

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

ITEM	RATING	UNIT
Supply voltage	− 0.3 ~ + 15.0	V
High level input voltage	VDD + 0.3	V
Low level input voltage	Vss - 0.3	V
Ambient operating temperature	0 ~ 70	°C
Storage temperature	− 50 ~ + 125	°C

2. Recommended Operation Conditions

ITEM	SYMBOL	MIN.	STD.	MAX.	UNIT
Supply voltage	VDD	+4.75	5.0	10.0	V
	Vss	0	0	0	V
Input signal voltage	CLOCK				
	SD }	0	_	VDD	V
	LOAD				
Ambient operation temperature	Та	0	_	70	°C

3. D.C. Characteristics

ITEM	SYMBOL	MEASUREMENT CONDITIONS	MIN.	STD.	MAX.	UNIT
High level input voltage	VIH	V _{DD} = 5.0V	3.3	_	_	V
Low level input voltage	VIL	VDD= 5.0V	-	_	1.0	V
Input current	IIN	VDD= 10.0V	_	_	10 - 3	μΑ
Power current	IDD	VDD= 5.0V	_	-	6	mA
Input capacity	CIN		_	1—1	5	pF

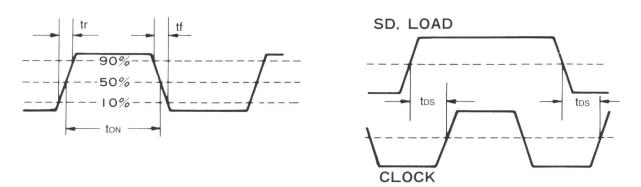
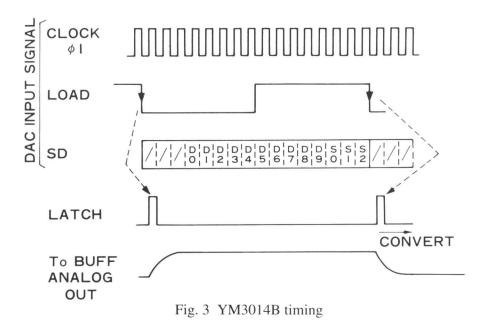
4. AC Characteristics

ITEM	SYMBOL	CONDITIONS	MIN.	STD.	MAX.	UNIT
• Clock						
Frequency	fc		0.65	2.0	3.2	MHz
High level time	ton		100			ns
Rise time	tr				50	ns
Breaking time	tf				50	ns
• Data		SD				
Set-up time	tDS	LOAD	100			
Rise time	tr				50	ns
Breaking time	tf				50	ns

5. DAC Characteristics

ITEM	SYMBOL	CONDITIONS	MIN.	STD.	MAX.	UNIT
Max. output amplitude	Vout			1/2 VDD		V
Resolution				16		Bit
Settling time	ts			2.0	4.0	μs
Total distortion rate of	THD1	V _{DD} = 5V, 110Hz				
high harmonic		level 0 dB		0.05	0.2	%
	THD6	- 36dB			0.2	%
Noise				- 92	- 80	dBm
Temperature characteristics		Out put voltage				
		Total distortion rate of		5		ppm/°C
		high hermonic				

6. Timind Diagram

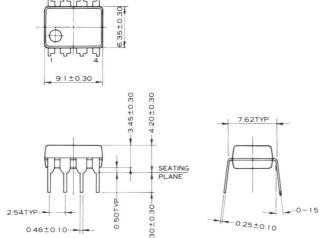
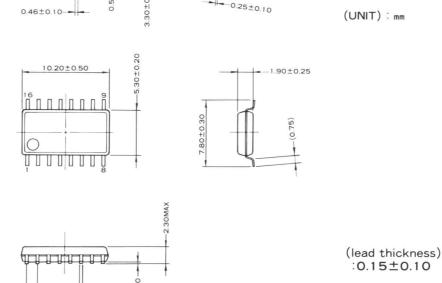
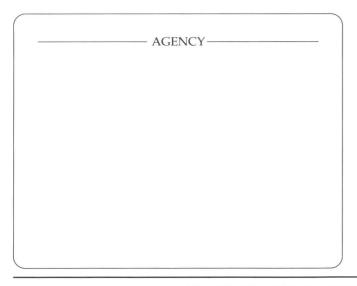

Fig. 1 Data timing

Fig. 2 Input data clock timing



OUTER DIMENSION DRAWING

YM3014B



YM3014B-F

The specifications of this product are subject to improvement changes without prior notice.

P-1.27TYP

YAMAHA CORPORATION-YAMAHA CORPORATION

Address inquiries to:

Address inquiries to:

Semi-conductor Sales Department

Head Office

203, Matsunokijima, Toyooka-mura, Iwata-gun, Shizuoka-ken, 438-01

Electronic Equipment business section

Tel. 0539-62-4918

Fax. 0539-62-50 Fax. 0539-62-5054

(UNIT):mm

■ Tokyo Office 2-17-11, Takanawa, Minato-ku,

■ Osaka Office

■ U.S.A. Office

YAMAHA Systems Technology. 100 Century Center Court, San Jose, CA95112 Tel. 408-467-2300 Fax. 408-437-8791

IMPORTANT NOTICE

- 1. Yamaha reserves the right to make changes to its Products and to this document without notice. The information contained in this document has been carefully checked and is believed to be reliable. However, Yamaha assumes no responsibilities for inaccuracies and makes no commitment to update or to keep current the information contained in this document.
- 2. These Yamaha Products are designed only for commercial and normal industrial applications, and are not suitable for other uses, such as medical life support equipment, nuclear facilities, critical care equipment or any other application the failure of which could lead to death, personal injury or environmental or property damage. Use of the Products in any such application is at the customer's sole risk and expense.
- 3. YAMAHA ASSUMES NO LIABILITY FOR INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OR INJURY THAT MAY RESULT FROM MISAPPLICATION OR IMPROPER USE OR OPERATION OF THE PRODUCTS.
- 4. YAMAHA MAKES NO WARRANTY OR REPRESENTATION THAT THE PRODUCTS ARE SUBJECT TO INTELLECTUAL PROPERTY LICENSE FROM YAMAHA OR ANYTHIRD PARTY, AND YAMAHA MAKES NO WARRANTY OR REPRESENTATION OF NON-INFRINGEMENT WITH RESPECT TO THE PRODUCTS. YAMAHA SPECIFICALLY EXCLUDES ANY LIABILITY TO THE CUSTOMER OR ANY THIRD PARTY ARISING FROM OR RELATED TO THE PRODUCTS' INFRINGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS, INCLUDING THE PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET RIGHTS OF ANY THIRD PARTY.
- 5. EXAMPLES OF USE DESCRIBED HEREIN ARE MERELY TO INDICATE THE CHARACTERISTICS AND PERFORMANCE OF YAMAHA PRODUCTS. YAMAHA ASSUMES NO RESPONSIBILITY FOR ANY INTELLECTUAL PROPERTY CLAIMS OR OTHER PROBLEMS THAT MAY RESULT FROM APPLICATIONS BASED ON THE EXAMPLES DESCRIBED HEREIN. YAMAHA MAKES NO WARRANTY WITH RESPECT TO THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE AND TITLE.