
Microprocessor Solutions for
Datacommunications and
Computer Peripheral Applications

User's
Manual

Z380™
Microprocessor

Unit

Userls Manual

Q3/94 DC 8297-03

PREFACE

Thank you for your interest in the Z380™ CPU (Central Processing Unit) and its associated
family of products. This Technical Manual describes programming and operation of the
Z380™ Superintegration™ Core CPU, which is found in the Z380 MPU (Microprocessor Pro­
cessing Unit), and future products built around Z380™ CPU core. For the external interface
and detailed descriptions of the on-chip peripherals for each Superintegration device,
please refer to individual product specifications.

This Technical manual consists of the following Sections:

1. Z380™ Architectural Overview
Chapter 1 is an introductory section covering the key features and
giving an overview of the architecture of the device.

2. Address Spaces
Chapter 2 explains the address spaces the Z380 CPU can handle.
Also, this chapter includes a brief description of the on-chip regis­
ters.

3. Native/Extended Mode, Word/Long Word Mode of Operation,
and Decoder Directives
This chapter provides a detailed explanation on the Z380's unique
features, operation modes, and the Decoder Directives.

4. Addressing Modes and Data Types
Chapter 4 describes the Addressing mode and data types which the
Z380 can handle.

5. Instruction Set
Chapter 5 contains an overview of the instruction set; as well as a
detailed instruction-by-instruction description in alphabetical order.

6. Interrupts and Traps
Chapter 6 explains the interrupts and traps features of the Z380.

7. Reset
Chapter 7 describes the Reset function.

8. Z380 Benchmark Appnote

9. Z380 Questions & Answers

Appendix A
Appendix A covers the Z380's instruction format.

Appendix B
Appendix B contains all Z380 instructions sorted in Alphabetical
Order.

Appendix C
Appendix C contains all Z380 instructions sorted in Numerical
Order.

Appendix D
The Tables in Appendix D lists all the Z380 instructions in instruction
affected by Native/Extended mode and Word/Long Word mode.

Appendix E
The Tables in Appendix E lists all the Z380 instructions in instruction
affected by DDIR 1M (Immediate Decoder Directives) mode.

Index
A to Z listing of Z380™ User's Manual key words and phrases.

Superintegration™ Products Guide
Description of product offerings by market niche.

Literature Guide
A complete list of Zilog's literature.

Zilog's Sales Offices Representatives & Distributors
A complete list of Zilog's Sales Offices, Representatives &
Distributors.

This manual assumes the reader has a basic knowledge of CPU
based system architectures and software development systems,
such as the use of the text editor, and invoking the assembler/
compiler. Also, knowledge ofthe Z80® CPU architecture is desirable.

Table of Contents

TABLE OF CONTENTS

Chapter 1 Z380'· Architectural Overview
1.1 Introduction ... 1-1
1.2 CPU Architecture ... 1-3

1.2.1 Modes of Operation .. 1-2
1.2.1.1 Native Mode and Extended Mode ... 1-3
1.2.1.2 Word or Long Word Mode ... 1-3

1.2.2 Address Spaces ... 1-3
1.2.3 DataTypes ... 1-4
1.2.4 Addressing Modes ... 1-4
1.2.5 Instruction Set ... 1-4
1.2.6 Exception Conditions .. 1-4

1.3 Benefits of the Architecture ... 1-5
1.3.1 High Throughput ... 1-5
1.3.2 Linear Memory Address Space .. 1-5
1.3.3 Enhanced Instruction Set with 16-Bit and 32-Bit Manipulation Capability 1-5
1.3.4 Faster Context Switching .. 1-6

1 .4 Summary ... 1-6

Chapter 2 Address Spaces
2.1 Introduction ... 2-1
2.2 CPU Register Space .. 2-1

2.2.1 Primary and Working Registers .. 2-3
2.2.2 Index Registers ... 2-3
2.2.3 Interrupt Register .. 2-3
2.2.4 Program Counter .. 2-3
2.2.5 R Register ... 2-3
2.2.6 Stack Pointer ... 2-3

2.3 CPU Control Register Space ... 2-4
2.4 Memory Address Space .. 2-5
2.5 External I/O Address Space .. 2-6
2.6 On-Chip I/O Address Space ... 2-6

Chapter 3 Native/Extended Mode, Word/Long Word Mode of Operations and Decoder Directives
3.1 Introduction ... 3-1
3.2 Decoder Directives .. 3-2
3.3 Native Mode and Extended Mode ... 3-2
3.4 Word and Long Word Mode of Operation ... 3-3

Chapter 4 Addressing Modes and Data Types

Z3BO"
USER'S MANUAL

4.1 Instruction .. 4-1
4.2 Addressing Mode Descriptions ... 4-1

4.2.1 Register (R, RX) .. 4-1
4.2.2 Immediate (1M) ... 4-1
4.2.3 Indirect Register (IR) .. 4-2
4.2.4 Direct Address (DA) ... 4-3
4.2.5 Indexed (X) ... 4-4
4.2.6 Program Counter Relative Mode (RA)
4.2.7 Stack Pointer Relative Mode (SR) .. .4-6

4.3 Data Types .. 4-S

Chapter 5 Instruction Set
5.1 Introduction ... 5-1
5.2 Processor Flags ... 5-2

5.2.1 Carry Flag (C) .. 5-3
5.2.2 Add/Subtract Flag (N) .. 5-3
5.2.3 Parity/Overflow (PN) .. 5-3
5.2.4 Half-Carry Flag (H) ... 5-3
5.2.5 Zero Flag (Z) .. 5-3
5.2.6 Sign Flag (S) .. 5-3
5.2.7 Condition Codes .. 5-3

5.3 Select Register .. 5-4
5.3.1 IV Bank Select (IVBANK) ... 5-4
5.3.2 IV or IV' Register Select (IV') .. 5-4
5.3.3 IX Bank Select (IXBANK) ... 5-4
5.3.4 IX or IX' Register Select (IX') .. 5-4
5.3.5 Main Bank Select (MAINBANK) ... 5-4
5.3.6 BC/DE/HL or BC'/DE'/HL' Register Select (AL T) ... 5-4
5.3.7 Extended Mode (XM) ... 5-4
5.3.S Long Word Mode (LW) .. 5-4
5.3.9 Interrupt Enable Flag (IEF) ... 5-5
5.3.10 Interrupt Mode (1M) .. 5-5
5.3.11 Lock (LCK) ... 5-5
5.3.12 AF or AF' Register Select (AF') .. 5-5

5.4 Instruction Execution and Exceptions ... 5.5
5.4.1 Instruction Execution and Interrupts .. 5-5
5.4.2 Instruction Execution and Trap .. 5-5

5.5 Instruction Set Functional Groups ... , 5-7
5.5.1 S-Bit Load/Exchange Group .. , 5-6
5.5.2 16-Bit and 32-Bit Load, Exchange, SWAP and PUSH/POP Group 5-7
5.5.3 Block Transfer and Search Group .. 5-S
5.5.4 S-Bit Arithmetic and Logical Group .. 5-9
5.5.5 16-Bit Arithmetic Operation .. 5-10
5.5.6 S-Bit Manipulation, Rotate and Shift Group .. 5-11
5.5.7 16-Bit Manipulation, Rotate and Shift Group ... 5-11
5.5.S Program Control Group .. 5-12
5.5.9 External Input/Output Instruction Group ... 5-13
5.5.10 Internal I/O Instruction Group ... 5-15
5.5.11 CPU Control Group -:-.. 5-16

ii

5.6
5.7

Z3BO~
USER'S MANUAL

5.5.12 Decoder Directives ... 5-17
Notation and Binary Encoding ... 5-17
Execution Time .. 5-18

Chapter 6 Interrupts and Traps
6.1 Introduction ... 6-1
6.2 Interrupts ... 6-2

6.2.1 Interrupt Priority Ranking .. 6-2
6.2.2 Interrupt Control .. 6-2

6.2.2.1 IEF1, IEF2 ... 6-3
6.2.2.2 I, I Extend .. 6-3
6.2.2.3 Interrupt Enable Register .. 6-3
6.2.2.4 Assigned Vectors Base Register ... 6-3
6.2.2.5 Trap and Break Register ... 6-4

6.3 Trap Interrupt ... 6-5
6.4 Nonmaskable Interrupt .. 6-5
6.5 Interrupt Response for Maskable Interrupt on /INTO ... 6-5

6.5.1 Interrupt Mode 0 Response for Maskable Interrupt /INTO ... 6-5
6.5.2 Interrupt Mode 1 Response for Maskable Interrupt /INTO .. 6-5
6.5.3 Interrupt Mode 2 Response for Maskable Interrupt /INTO ... 6-5
6.5.4 Interrupt Mode 3 Response for Maskable Interrupt /INTO ... 6-5

6.6 Assigned Interrupt Vectors Mode for Maskable Interrupts /INT3-/INT1 6-6
6.7 RETllnstruction ... 6-6

Chapter 7 Reset
7.1 Introduction ... 7-1

Z380'· Benchmark Appnote ... 8-1

Z380'· Questions and Answers .. 9-1

Appendix A
Z380™ CPU Instruction Formats ... A-1

Appendix B
Z380™ Instructions in Alphabetic Order ... B-1

Appendix C
Z380™ Instruction in Numeric Order ... C-1

Appendix D
Instructions Affected by Native/Extended Mode, and Long Word Mode .. D-1

Appendix E
Instructions Affected by DDIR 1M Instructions .. E-1

iii

Index

Z3BON

USER'S MANUAL

A through Z ... 1-1

Superintegration ™
Products Guide .. 8-1

Literature Guide
Ordering Information .. L-1

Zilog's Sales Offices Representatives & Distributors ... Z-1

iv

Chapter 1
Figure 1-1.

Chapter 2
Figure 2-1.
Figure 2-2.

Chapter 3
Figure 3-1.

Chapter 5
Figure 5-1.
Figure 5-2.

Chapter 6
Figure 6-1.
Figure 6-2.
Figure 6-3.

FIGURES

Z380m

USER'S MANUAL

Z380m CPU Register Architecture .. 1-2

Register File Organization (Z380m MPU) .. 2-2
Bit/Byte Ordering Conventions ... 2-5

Z380™ CPU Operation Modes ... 3-1

Flag Register .. 5-3
Select Register

Interrupt Enable Register .. 6-3
Assigned Vectors Base Register .. 6-3
Trap and Break Register ... 6-4

v

Chapter 2
Table 2.1

Chapter 5
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table 5-10.
Table 5-11.
Table 5-12.
Table 5-13.
Table 5-14.
Table 5-15.
Table 5-16.
Table 5-17.
Table 5-18.

Chapter 6
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.

Chapter 7
Table 7-1.

Appendix A

TABLES

Z380N

USER'S MANUAL

I/O Addressing Options ... 2-6

Condition Codes ... 5-1
8-Bit Load Group Instructions ... 5-1
8-Bit Load Group Allowed Source/Destination Combinations .. 5-1
16-Bit and 32-Bit load, Exchange, PUSH/POP Group Instructions .. 5-1
Supported Sours and Destination Combination for 16-Bit and 32-Bit Exchange Instructions. 5-1
Supported Source and Destination Combination for 16-Bit and 32-Bit Load Instructions 5-1
Supported Operand for PUSH/POP Instructions ... 5-2
Block Transfer and Search Group .. 5-2
Supported Source/Destination for 8-Bit Arithmetic and Logic Group 5-4
16-Bit Arithmetic Operation ... 5-4
Bit Set/Reset/Test, Rotate and Shift Group ... 5-4
16-Bit Rotate and Shift Group ... 5-5
Program Control Group Instructions ... 5-6
External I/O Group Instructions ... 5-14
Internal I/O Instruction Group .. 5-15
CPU Control Group ... 5-16
Decoder Directive Instructions .. 5-17
Execution Time .. 5-18

Interrupt Priority Ranking ... 6-1
Interrupt Flags and Registers .. 6-1
Operation Effects on IEF1 and IEF2 .. 6-1
Assigned Interrupt Vectors ... 6-1

Effect of a Reset on Z380'" CPU and Related I/O Registers .. 7-2

Table A-i. Format 1 Instructions Encodings ... A-2
Table A-2. Format 2 Instructions Encodings , ... A-2
Table A-3. Format 3 Instructions Encodings ... A-2
Table A-4. Format 4 Instructions Encodings ... A-2

Appendix E
Table E-1. Valid with DDIR IB in EM ... E-1
Table E-2. Valid with DDIR IB ... E-1
Table E-3. Valid with DDIR IB in LW ... E-1
Table E-4. Valid with DDIR IB ... E-2
Table E-5. Valid with DDIR IW in EM .. E-2
Table E-6. Valid with DDIR IW .. E-4
Table E-7. Valid with DDIR IW in LW .. E-5
Table E-8. Valid with DDIR IW .. E-5

vi

Z380™ Architectural Overview II

1.1 INTRODUCTION

The Z380 CPU incorporates advanced architectural fea­
tures that allow fast and efficient throughput and increased
memory addressing capabilities while maintaining Z80®
CPU and Z180® MPU object-code compatibility. The Z380
CPU core provides a continuing growth path for present
Z80- or Z180®-based designs and offers the following key
features:

l1li Full Static CMOS Design with Low Power Standby
Mode Support

Il!II DC to 18 MHz Operating Frequency @ 5 Volts Vee

f!II DC to 10 MHz Operating Frequency @ 33 Volts Vee

l1li Enhanced Instruction Set that Maintains Object-Code
Compatibility with Z80 and Z180 Microprocessors

.. 16-Bit (64K) or 32-Bit (4G) Linear Address Space

IiII 16-Bit Internal Data Bus

l1li Two Clock Cycle Instruction Execution (Minimum)

III Multiple On-Chip Register Files (Z380 MPU has Four
Banks)

III BC/DE/HL/IX/IY Registers are Augmented by 16-Bit
Extended Registers (BCz/DEz/HLz/IXz/IYz), PC/SP/I
Registers are Augmented by Extended Registers (PCz/
SPz/lz) for 32-Bit Addressing Capability.

• Newly Added IX' and IY' Registers with Extended
Registers (IXz'/IYz')

• Enhanced Interrupt Capabilities, Including 16-Bit
Vector

• Undefined Opcode Trap for Full Z380 CPU Instruction
Set

USER's MANUAL

CHAPTER 1
Z380™ ARCHITECTURAL OVERVIEW

The Z380 CPU, an enhanced version of the Z80 CPU,
retains the Z80 CPU instruction set to maintain complete
binary-code compatiblitywith presentZ80 and Z180 codes.
The basic addressing modes of the Z80 microprocessor
have been augmented with Stack Pointer Relative loads
and stores, 16-bit and 24-bit Indexed offsets, and in­
creased Indirect register addressing flexibility, with all of
the addressing modes allowing access to the entire 32-bit
address space. Significant additions have been made to
the instruction set iincorporating 16-bit arithmetic and logi­
cal operations, 16-bit I/O operations, multiply and divide,
a complete setof register-to-register loads and exchanges,
plus 32-bit load and exchange, and 32-bit arithmetic
operation for address calculation.

The basic register file of the Z80 microprocessor is ex­
panded to include alternate register versions of the IX and
IY registers. There are four sets of this basic Z80 micropro­
cessor register file present in the Z380 MPU, along with the
necessary resources to manage switching between the
different register sets. All of the register pairs and index
registers in the basic Z80 microprocessor register file are
expanded to 32 bits.

The Z380 CPU expands the basic 64 Kbyte Z80 and Z180
address space to a full 4 Gbyte (32-bit) address space.
This address space is linear and completely accessible to
the user program. The external I/O address space is
similarly expanded to a full 4 Gbyte (32-bit) range, and 16-
bit I/O, both simple and block move are included. A 256
byte-wide internal I/O space has been added. This space
will be used to access on-chip I/O resources on future
Superintegration implementation of this CPU core.

Figure 1-1 provides a detailed description of the basic
register architecture of the Z380 CPU with the size of the
register banks shown at four each, however, the Z380 CPU
architecture allows future expansion of up to 128 sets of
each.

1-1

II

1.1 INTRODUCTION (Continued)

4 Sets of Registers

A F

BCz B C

DEz D E

HLz H L

IXz IXU IXL

IYz IYU IYL

A' F'

BCz' B' C'

DEz' D' E'

HLz' H' L'

IXz' IXU' IXL'

IYz' IYU' IYL'

R

Iz

SPz SP

PCz PC

Figure 1-1. Z380'· CPU Register Architecture

1-2

Z3BON

USER'S MANUAL

1.2 CPU ARCHITECTURE

The Z380 CPU is a binary-compatible extension of the Z80
CPU and the Z180 CPU architecture. High throughput
rates are achieved by a high clock rate, high bus band­
width, and instruction fetch/execute overlap. Communi­
cating to the external world through an 8-bit or 16-bit data
bus, the Z380 CPU is a full 32-bit machine internally, with
a 32-bit ALU and 32-bit registers.

1.2.1 Modes of Operation

To maintain compatibility with the Z80/Z180 CPU while
having the capability to manipulate 4 Gbytes of memory
address range, the Z380 CPU has two bits in the Select
Register (SR) to control the modes of operation. One bit
controls the address manipulation mode: Native mode or
Extended mode; and the other bit controls the data ma­
nipulation mode: Word mode or Long Word mode. In
result, the Z380 CPU has four modes of operation. On
reset, the Z380 CPU is in Native/Word mode, which is
compatible to the Z80/Z180's operation mode. For details
on this subject, refer to Chapter 3, "Native/Extended Mode,
Word/Long Word Mode of Operation, and Decoder Direc­
tive Instructions."

1.2.1.1 Native Mode and Extended Mode
The Z380 CPU can operate in either Native or Extended
mode, as controlled by a bit in the Select Register (SR). In
Native mode (the Reset configuration), all address ma­
nipulations are performed modulo 65536 (216). In this
mode, the Program Counter (PC) only increments across
16 bits, all address manipulation instructions (increment,
decrement, add, subtract, indexed, stack relative, and PC
relative) only operate on 16 bits, and the Stack Pointer (SP)
only increments and decrements across 16 bits. The PC
high-order word is left at all zeros, as the high-order words
of the SP and the I register. Thus, Native mode is fully
compatible with the Z80 CPU's 64 Kbyte address mode. It
is still possible to address memory outside of 64 Kbyte
address space for data storage and retrieval in Native
mode, however, since direct addresses, indirect addresses,
and the high-order word of the SP, I, and the IX and IY
registers may be loaded with non-zero values. Executed
code and interrupt service routines must reside in the
lowest 64 Kbytes of the address space.

In Extended mode, however, all address manipulation
instructions operate on 32 bits, allowing access to the
entire 4 Gbyte address space of the Z380 CPU. In both
Native and Extended modes, the Z380 drives all 32 bits of
the address onto the external address bus; only the width
of the manipulated addresses distinguishes Native from
Extended mode. The Z380 CPU implements one instruc­
tion to allow switching from Native to Extended mode
(SETC XM); however, once in Extended mode, only Reset

Z380~
USER'S MANUAL

will return the Z380 CPU to Native mode. This restriction
applies because of the possibility of "misplacing" interrupt
service routines or vector tables during the transition from
Extended mode back to Native mode.

1.2.1.2 Word or Long Word Mode
In addition to Native and Extended mode, which are
specific to memory space addressing, the Z380 CPU can a
operate in either Word or Long Word mode specific to data
load and exchange operations. In Word mode (the Reset
configuration), all word load and exchange operations
manipulate 16-bit quantities. For example, only the low-
order words of the source and destination are exchanged
in an exchange operation, with the high-order words
unaffected.

In the Long Word mode, all 32 bits of the source and
destination are exchanged. The Z380 CPU implements
two instructions plus decoder directives to allow switching
between Word and Long Word mode; SETC LW (Set
Control Long Word) and RESC LW (Reset Control Long
Word) perform a global switch, while DDIR W, DDIR LW
and their variants are decoder directives that select a
particular mode only for the instruction that they precede.

Note that all word data arithmetic (as opposed to address
manipulation arithmetic), rotate, shift, and logical opera­
tions are always in 16-bit quantities. They are not con­
trolled by either the Native/Extended or Word/Long Word
selections. The exceptions to the 16-bit quantities are, of
course, those multiply and divide operations with 32-bit
products or dividends.

All word Input/Output operations are performed on 16-bit
values, regardless of Word/Long Word operation.

1.2.2 Address Spaces

Addressing spaces in the Z380 CPU include the CPU
register, the CPU control register, the memory address,
on-chip I/O address, and the external I/O address. The
CPU register space is a superset of the Z80 CPU register
set, and consists of all of the registers in the CPU register
file. These CPU registers are used for data and address
manipulation, and are an extension of the Z80 CPU register
set, with four sets of this extended Z80 CPU register set
present in the Z380 CPU. Access to these registers is
specified in the instruction, with the active register set
selected by bits in the Select Register (SR) in the CPU
control register space.

1-3

1.2.2 Address Spaces (Continued)

Each register set includes the primary registers A. F, B, C,
0, E, H, L, IX, and IY, as well as the alternate registers A',
F', B', C', D', E', H', L', IX', and IY'. Also, IX, IX', IY, and IY'
registers are accessible as two byte registers, each named
as IXU, IXL, IXU' IXL', IYU, IYL, IYU', and IYL'. These byte
registers can be paired B with C, D with E, H with L, B' with
C', D' with E', and H' with L' to form word registers, and
these word registers are extended to 32 bits with the "z"
extension to the register. This register extension is only
accessible when using the register as a 32-bit register (in
the Long Word mode) or when swapping between the
most-significant and least-significant word of a 32-bit
register using SWAP instructions. Whenever an instruction
refers to a word register, the implicit size is controlled by
Word or Long Word mode. Also included are the R, I, and
SP registers, as well as the PC.

The Select Register (SR) determines the operation of the
Z380 CPU. The contents of this register determine the CPU
operating mode, which register bank will be used, the
interrupt mode in effect, and so on.

TheZ380 CPU's memory address space is linear 4 Gbytes.
To keep compatibility with the Z80 CPU memory address­
ing model, it has two control bits to change its operation
modes-Native or Extended, Word or Long Word.

The Z380 CPU architecture also distinguishes between
the memory and I/O addressing space and, therefore,
requires specific I/O instructions. Furthermore, I/O ad­
dressing space is subdivided into the on-chip I/O address
space and the external I/O addressing space. External
I/O addressing space in the Z380 CPU is 32 bits long, and
internal I/O addressing space is 8-bits long. There are
separate sets of I/O instructions for each I/O addressing
space.

Some of the Internal I/O registers are used to control the
functionality of the device, such as to program/read status
of Trap, Assigned Vector Base address, enabling of inter­
rupts, and to get Chip version 10.

For details on this topic, refer to Chapter 2, "Address
Spaces."

1.2.3 Data Types

Many data types are supported by the Z380 CPU architec­
ture. The basic data type is the 8-bit byte, which is also the
basic addressable memory element. The architecture also
supports operations on bits, BCD (Binary Coded Decimal)
digits, words (16 bits or 32 bits), byte strings and word
strings. For details on this topic, refer to Section 4.3, "Data
Types."

1-4

1.2.4. Addressing Modes

Z3BON

USER'S MANUAL

Addressing modes are used by the Z380 CPU to calculate
the effective address of an operand needed for execution
of an instruction. Seven addressing modes are supported
by the Z380 CPU. Of these seven, one is an addition to the
Z80 CPU addressing modes (Stack Pointer Relative) and
the remaining six modes are either existing or extensions
to Z80 CPU addressing modes.

• Register
• Immediate
• Indirect Register
• Direct Address
• Indexed
• Program Counter Relative
II Stack Pointer Relative

All addressing modes are available on the 8-bit load,
arithmetic, and logical instructions; the 8-bit shift, rotate,
and bit manipulation instructions are limited to the regis­
ters and Indirect register addressing modes. The 16-bit
loads on the addressing registers support all addressing
modes except Index, while other 16-bit operations are
limited to the Register, Immediate, Indirect Register, In­
dex, Direct Address, and PC Relative addressing modes.

For details on this subject, refer to Chapter 4, "Addressing
Modes and Data Types."

1.2.5. Instruction Set

The Z380 CPU instruction set is an expansion of the Z80
instruction set; the enhancements include support for
additional addressing modes for the Z80 instructions as
well as the addition of new instructions. The Z380 CPU
instruction set provides a full complement of 8-bit, 16-bit,
and 32-bit operation, including multiplication and division.

For details on this subject, refer to Chapter 5, "Instruction
Set."

1.2.6 Exception Conditions

The Z380 CPU supports three types of exceptions (condi­
tions that alter the normal flow of program execution);
interrupts, traps, and resets.

Interrupts are asynchronous events typically triggered by
peripherals requiring attention. The Z380 CPU interrupt
structure has been significantly enhanced by increasing
the number of interrupt request lines and by adding an
efficient means for handling nested interrupts. The Z380
CPU has five interrupt lines. These are: Nonmaskable
Interrupt line (/NMI) and Maskable interrupt lines UINTO,
/INT1, /1 NT2 , and /INT3). Interrupt requests on /INT3-/INT1

~2iUJE

are handled by a newly added interrupt handing mode,
"Assigned Vectored Mode," which is a fixed vectored
interrupt mode similar in interrupt handling to the Z180's
interrupts from on-chip peripherals. For handling interrupt
requests on the /INTO line, there are four modes available:

• 8080 compatible (Mode 0), in which the interrupting
device provides the first instruction of the interrupt
routine.

• Dedicated interrupts (Mode 1), in which the CPU
jumps to a dedicated address when an interrupt
occurs.

• Vectored interrupt mode (Mode 2), in which the
interrupting peripheral device provides a vector into a
table of jump address.

• Enhanced vectored interrupt mode (Mode 3), wherein
the CPU expects 16-bitvector, instead of 8-bit interrupt
vectors in Mode 2.

1.3 BENEFITS OF THE ARCHITECTURE

The Z380 CPU architecture provides several significant
benefits, including increased program throughput achieved
by higher bus bandwidth (16-bit wide bus), reduction to
two clocks/basic machine cycle (vs four clocks/cycle on
the Z80 CPU), prefetch cue, access to the larger linear
addressing space, enhanced instructions/new address­
ing mode, data/address manipulation in 16/32 bits, and
faster contextswitching by utilizing multiple register banks.

1.3.1 High Throughput

Very high throughput rates can be achieved with the Z380
CPU, due to the basic machine cycle's reduction to two
clocks/cycle from four clocks/cycle on the Z80 CPU, fine
tuned four staged pipeline with prefetch cue. This well
designed pipeline and prefetch cue are both totally trans­
parent to the user, thus maximizing the efficiency of the
pipeline all the time. The Z380 CPU implemented onto the
Z380 MPU is configured with a 16-bit wide data bus, which
doubles the bus bandwidth. These architectural features
result in two clocks/instructions execution minimum, three
clocks/instruction on average. The high clock rates (up to
40 MHz) achievable with this processor. Make the overall
performance of the Z380 CPU more than ten times that of
the Z80.

1.3.2 Linear Memory Address Space

Z380 CPU architecture has 4 Gbytes of linear memory

Z3BON

USER'S MANUAL

The first three modes are compatible with Z80 interrupt
modes; the fourth mode provides more flexibility.

Traps are synchronous events that trigger a special CPU
response when an undefined instruction is executed. It
can be used to increase system reliability, or used as a
"software trap instruction."

Hardware resets occur when the /RESET line is activated
and override all other conditions. A /RESET causes certain a
CPU control registers to be initialized.

For details on this subject, refer to Chapter 6, "Interrupts
and Traps."

the technology improved overtime, applications started to
demand more complicated processing, multitasking, faster
processing, etc., with the high level language needed to
develop software. As a result, 64 Kbytes of memory ad­
dressing space is not enough for some Z80 CPU based
applications. In order to handle more than 64 Kbytes of
memory, theZ80 CPU requires a Memory Banking scheme,
or MMU (Memory Management Unit), like the Z180 MPU or
Z280 MPU. These provide the overhead to access more
than 64 Kbytes of memory.

The Z380 CPU architecture allows access to a full 4 Gbytes
(232) of memory addressing space as well as 4 Gbytes of
I/O addressing area, without using a Memory Banking
scheme, or MMU.

1.3.3. Enhanced Instruction Set with 16-Bit
and 32-Bit Manipulation Capability

The Z380 CPU instruction set is 100% upward compatible
to the Z80 CPU instruction set; that is all the Z80 instruc­
tions have been preserved at the binary level. New instruc­
tions added to the Z380 CPU include:

• Less restricted operand source/destination
combinations.

• More flexible register exchange instructions.

address space. The Z80 CPU architecture allows 64 • Stack Pointer Relative addressing mode.
Kbytes of memory addressing space. This was more than
sufficient when the Z80 CPU was first developed. But as

1-5

1.3.3. Enhanced Instruction Set with 16-Bit
and 32-Bit Manipulation Capability
(Continued)

• DDIR (Decoder Directive Instructions) to enhance
addressing capability to cover 4 Gbytes of memory
space, as well as data manipulation capability.

• Jump relative/Call relative instructions with 8-bit,
16-bit, or 24-bit displacement.

• Full complements of 16-bit arithmetic instructions.

• 32-bit manipulate instructions for address manipulation.

These new instructions help to compact the code, as well
as shorten the program's overall execution speed.

For details on this subject, refer to Chapter 5, "Instruction
Set."

1.3.4 Faster Context Switching

The Z380 CPU architecture allows multiple sets of register
banks for AF/AF', BC/DE/HL, BC'/DE'/HL', IX/IX', IY/IY'

1.4 SUMMARY

The Z380 CPU is a high-performance 16-bit Central Pro­
cessing Unit Superintegration'" core. Code-compatible
with the Z80 CPU, the Z380 CPU architecture has been
expanded to include features such as multiple register
banks, 4 Gbytes of linear memory addressing space, and
efficient handling of nested interrupts. The benefits of this

1-6

Z380~
USER'S MANUAL

register pairs (including each register's Extended portion).
When doing context switching, by exceptional condition
(trap or interrupts) or by subroutine/procedure calls, the
CPU has to save the contents of the registers currently in
use, along with the current CPU status.

Traditionally in the Z80 CPU architecture, this is done by
saving the contents of the register into memory, usually
using push/pop instructions or the auxiliary register file.
Register contents are then restored when the process is
finished.

With the Z380 CPU's multiple register banks, saving the
contents of the working register set currently in use is just
a matter of an instruction to change the field in the Select
Register, which allows fast context switching.

architecture, including high throughput rates, code den­
sity, and compiler efficiency, greatly enhance the power
and versatility of the Z380 CPU. Thus, the Z380 CPU
provides both a growth path for existing Z80-based de­
signs and a powerful processor for applications and the
products to be developed around this CPU core.

Address Spaces II
~ ,." ~" M

~ ':;"',
I, ,,,',
l ' ,$

~2iLCIE

2.1 INTRODUCTION

The Z380 CPU supports five address spaces correspond­
ing to the different types of locations that can be ad­
dressed and the method by which the logical addresses
are formed. These five address spaces are:

iii CPU Register Space. This consists of all the register
addresses in the CPU register file.

II CPU Control Register Space. This consists of the
Select Register (SR).

II Memory Address Space. This consists of the
addresses of all locations in the main memory.

2.2 CPU REGISTER SPACE

The Z380 register file is illustrated in Figure 2-1. Note that
this figure shows the configuration of the register on the
Z380CPU, and the number of the register files may vary on
future Superintegration devices. The Z380 CPU contains
abundant register resources. At any given time, the pro­
gram has immediate access to both primary and alternate
registers in the selected register set. Changing register
sets is a simple matter of an LDCTL instruction to program
the Select Register (SR).

The CPU register file is divided into five groups of registers
(an apostrophe indicates a register in the auxiliary regis­
ters).

II Four sets of Flag and Accumulator registers (F, A, F',
A')

II Four sets of Primary and Working registers (B, C, D, E,
H, L, B', C', D', E', H', L')

USER's MANUAL

CHAPTER 2
ADDRESS SPACES

II External 110 Address Space. This consists of all
external I/O ports addresses through which peripheral
devices are accessed.

• On-Chip 110 Address Space. This consists of all II
internal I/O port addresses through which peripheral
devices are accessed. Also, this addressing space
contains registers to control the functionality of the
device, giving status information.

II Four sets of Index registers (IX, IY, IX', IY')

II Stack Pointer (SP)

II Program Counter, Interrupt register, Refresh register
(PC, I, R)

Register addresses are either specified explicitly in the
instruction or are implied by the semantics of the instruc­
tion.

2-1

2.2 CPU REGISTER SPACE (Continued)

4 Sets of Registers

A F

BCz B C

DEz D E

HLz H L

IXz IXU IXL

IYz IYU IYL

A' F'

BCz' B' C'
DEz' D' E'

HLz' H' L'

IXz' IXU' IXL'

IYz' IYU' IYL'

R
Iz

SPz SP

PCz PC

Figure 2-1. Register File Organization (Z380 MPU)

2-2

Z3BON

USER'S MANUAL

2.2.1 Primary and Working Registers

The working register set is divided into two register files:
the primary file and the alternate file (designated by prime
('». Each file contains an 8-bit accumulator (A), a Flag
register (F), and six 8-bit general-purpose registers (B, C,
D, E, H, and L) with their Extended registers. Only one file
can be active at any given time, although data in the
inactive file can still be accessed by using EX R, R'
instructions for the byte-wide registers, EX RR, RR' instruc­
tions for register pairs (either in 16-bit or 32-bit wide
depending on the LW status). Exchange instructions allow
the programmer to excharige the active file with the inac­
tive file. The EX AF, AF', EXX, or EXALL instructions
changes the register files in use. Upon reset, the primary
register file in register set 0 is active. Changing register
sets is a simple matter of an LDCTL instruction to program
SR.

The accumulator is the destination register for 8-bit arith­
metic and logical operations. The six general-purpose
registers can be paired (BC, DE, and HL), and are ex­
tended to 32 bits by the extension to the register (with suffix
"z"; BCz/DEz/HLz), to form three 32-bit general-purpose
registers. The HL register serves as the 16-bit or 32-bit
accumulator for word operations. Access to the Extended
portion of the registers is possible using the SWAP instruc­
tion or word Load instructions in Long Word operation
mode.

The Flag register contains eight status flags. Four can be
individually used for control of program branching, two are
used to support decimal arithmetic, and two are reserved.
These flags are set or reset by various CPU operations. For
details on Flag operations, refer to Section 5.2, "Flag
Register."

2.2.2. Index Registers

The four index registers, IX, IX', IY, and IY', are extended
to 32 bits by the extension to the register (with suffix "z";
IXz/IYz), to form 32-bit index registers. To access the
Extended portion ofthe registers use the SWAP instruction
or word Load instructions in Long Word operation mode.
These Index registers hold a 32-bit base address that is
used in the I'ndex addressing mode.

Only one register of each can be active at any given time,
although data in the inactive file can still be accessed by
using EX IX, IX' and EX IY, IY' (either in 16-bit or 32-bit wide
depending on the LW bit status). Index registers can also
function as general-purpose registers with the upper and
lower bytes of the lower 16 bits being accessed individu­
ally. These byte registers are called IXU, IXU', IXL, and IXL'

Z3BOn

USER'S MANUAL

for the IX and IX' registers, and IYU, IYU', IYL, and IYL' for
the IY and IY' registers.

Selection of primary or auxiliary Index registers can be
made by EXXX, EXXY, or EXALL instructions, or program­
ming of SR. Upon reset, the primary registers in register set
o is active. Changing register sets is a simple matter of an
LDCTL instruction to program SR.

2.2.3. Interrupt Register

The Interrupt register (I) is used in interrupt modes 2 and
3 for /INTO to generate a 32-bit indirect address to an
interrupt service routine. The I register supplies the upper II
24 or 16 bits of the indirect address and the interrupting
peripheral supplies the lower eight or 16 bits. In Assigned
Vectors mode for /INT3-/INT1, the upper 16 bits of the
vector are supplied by the I register; bits 15-9 are supplied
from the Assigned Vector Base register, and bits 8-0 are
the aSSigned vector unique to each of /INT3-/INT1.

2.2.4. Program Counter

The Program Counter (PC) is used to sequence through
instructions in the currently executing program and to
generate relative addresses. The PC contains the 32-bit
address of the current instruction being fetched from
memory. In Native mode, the PC is effectively only 16 bits
long, since the upper word [PC31-PC16j of the PC is
forced to zero, and when carried from bit 15 to bit 16 (Lower
word [PC15-PCOj to Upper word [PC31-PC16]) are inhib­
ited in this mode. In Extended mode, the PC is allowed to
increment across all 32 bits.

2.2.5. R Register

The R register can be used as a general-purpose 8-bit
read/write register. The R register is not associated with
the refresh controller and its contents are changed only by
the user.

2.2.6. Stack Pointer

The Stack Pointer (SP) is used for saving information when
an interrupt or trap occurs and for supporting subroutine
calls and returns. Stack Pointer relative addressing allows
parameter passing using the SP. The SP is 16 bits wide, but
is extended by the SPz register to 32 bits wide.

2-3

2.2.6 Stack Pointer (Continued)

Increment/decrement of the Stack Pointer is affected by
modes of operation (Native or Extended). In Native mode,
the stack operates in modulo 216 , and in Extended mode,
it operates in modulo 232. For example, SP hoids0001 FFFEH,
and does the Word size Pop operation. After the operation,

2.3. CPU CONTROL REGISTER SPACE

The CPU control register space consists of the 32-bit
Select Register (SR). The SR may be accessed as a whole
or the upper three bytes of the SR may be accessed
individually as YSR, XSR, and DSR. In addition, these

2.4 MEMORY ADDRESS SPACE

The memory address space can be viewed as a string of
4 Gbytes numbered consecutively in ascending order.
The 8-bit byte is the basic addressable element in theZ380
MPU memory address space. However, there are other
addressable data elements: bits, 2-byte words, byte strings,
and 4-byte words.

The size of the data element being addressed depends on
the instruction being executed as well as the Word/Long
Word mode. A bit can be addressed by specifying a byte
and a bit within that byte. Bits are numbered from right to
left, with the least significant bit being 0, as illustrated in
Figure 2-2.

The address of a multiple-byte entity is the same as the
address of the byte with the lowest memory address in the
entity. Multiple-byte entities can be stored beginning with

2-4

Z380n

USER'S MANUAL

SP holds 0001 OOOOH in Native mode, and 00020000H in
Extended mode. In either case, SPz can be programmed
to set Stack frame. This is done by the Load- to-Stack
pointer instructions in Long Word mode.

upper three bytes can be loaded with the same byte value.
The SR may also be PUSHed and POPed and is cleared to
zeros on Reset. For details on this register, refer to Chapter
5.3, "Select Register."

either even or odd memory addresses. A word (either 2-
byte or 4-byte entity) is aligned if its address is even;
otherwise it is unaligned. Multiple bus transactions, which
may be required to access multiple-byte entities, can be
minimized if alignment is maintained.

The format of multiple-byte data types is also shown in
Figure 2-2. Note that when a word is stored in memory, the
least significant byte precedes the more significant byte of
the word, as in the Z80 CPU architecture. Also, the lower­
addressed byte is present on the upper byte of the external
data bus.

Bits within a byte:

I 7 I 6 I 5 I 4 132 0

16-bit word at address n:

Least Significant Byte Address n

Most Significant Byte Address n+1

32-bit word at address n:

07-0 (Least Significant Byte) Address n

015-8 Address n+1

023-16 Address n+2

031-24 (Most Significant Byte) Address n+3

Memory addresses:
Even address (AO=O) Odd address (AO=1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 2-2. Bit/Byte Ordering Conventions

Z3BO"
USER'S MANUAL

2-5

2.5. EXTERNAL I/O ADDRESS SPACE

External I/O address space is 4 Gbytes in size and External
I/O addresses are generated by I/O instructions except
those reserved for on-chip I/O address space accesses. It

Z3BON

USER'S MANUAL

can take a variety of forms, as shown in Table 2.1. An
external I/O read or write is always one transaction, regard­
less of the bus size and the type of I/O instruction.

Table 2-1. VO Addressing Options

1/0 Instruction A31-t24

IN A. (n) 00000000
IN dst,(C) BC31-B24
INA(W) dst,(mn) 00000000

OOIR IB INA(W) dst,(lmn) 00000000
OOIR IW INA(W) dst,(klmn) k
Block Input BC31-B24

OUT (n),A 00000000
OUT (C),dst BC31-B24
OUTA(W) (mn),dst 00000000

OOIR IB OUTA(W) (Imn),dst 00000000
OOIR IW OUTA(W) (klmn),dst k
Block Output BC31-B24

2.6. ON-CHIP 1/0 ADDRESS SPACE

The Z380 CPU has the on-chip I/O address space to
control on-chip peripheral functions of the Superintegra­
tion'" version of the devices. A portion of its interrupt
functions are also controlled by several on-chip registers,
which occupy an on-chip I/O address space. This on-chip
I/O address space can be accessed only with the following
reserved on-chip I/O instructions which are identical to the
Z180 original I/O instructions to access Page 0 I/O ad­
dressing area.

INO R,(n)
INO (n)
OUTO (n),R
TSTIO n

OTIM
OTIMR
OTOM
OTOMR

When one of these I/O instructions is executed, the Z380
MPU outputs the register address being accessed in a
pseudo-transaction of two BUSCLK cycles duration, with
the address signals A31-A8 at zero. In the pseudo-trans­
actions, all bus control signals are at their inactive state.

The following four registers are assigned to this address­
ing space as a part of the Z380 CPU core:

2-6

Address Bus
A23-A16 A15·A8 A7-AO

00000000 A7-AO n
BC23-B16 BC15-B8 BC7-BO
00000000 m n

I m n
I m n
BC23-B16 BC15-B8 . BC7-BO

00000000 A7-AO n
BC23-B16 BC15-B8 BC7-BO
00000000 m n

I m n
I m n
BC23-B16 BC15-B8 BC7-BO

Register Name

Interrupt Enable Register
Assigned Vector Base Register
Trap and Break Register
Chip Version 10 Register

Internal 1/0 Address

17H
18H
19H

OFFH

The Chip Version 10 register returns one byte data, which
indicates the version of the CPU, orthe specific implemen­
tation of the Z380 CPU based Superintegration device.
Currently, the value OOH is assigned to the Z380 MPU, and
other values are reserved.

For the other three registers, refer to Chapter 6, "Interrupts
and Traps."

Also, the Z380 MPU has registers to control chip selects,
refresh, waits, and I/O clock divide to Internal I/O address
OOH to 10H. For these registers, refer to the Z380 MPU
Product spe,?ification (OC-3003-01).

~!~ 2;1 11 ~ .. 'M'

MlDlltle IDlf O~erat!!Des asu!
Decoder Directives

r-------
i ~f~ , 1.;
'--'---

II

3.1 INTRODUCTION

The Z380'" CPU architecture allows access to 4 Gbytes
(232) of memory addressing space, and 4G locations of
I/O. It offers 16/32-bit manipulation capability while main­
taining object-code compatibility with the Z80 CPU. In
order to implement these capabilities and new instruction
sets, it has two modes of operation for address manipula­
tion (Native or Extended mode), two modes of operation for
data manipulation (Word or Long Word mode), and a
special set of new Decoder Directives.

On Reset, the Z380 CPU defaults in Native mode and Word
mode. In this condition, it behaves exactly the same as the
Z80 CPU, even though it has access to the entire 4 Gbytes
of memory for data access and 4G locations of I/O space,

Native

Word

Long Word

USER's MANUAL

CHAPTER 3
NATIVE EXTENDED MODE, WORD/LONG
WORD MODE OF OPERATIONS
AND DECODER DIRECTIONS

access to the newly added registers which includes Ex­
tended registers and register banks, and the capability of
executing all the Z380 instructions.

As described below, the Z380 CPU can be switched
between Word mode and Long Word mode during opera­
tion through the SETC LW and RESC LW instructions, or
Decoder Directives. The Native and Extended modes are
a key exception- it defaults up in Native mode, and can
be set to Extended mode by the instruction. On Iy Reset can II
return it to Native mode. Figure 3-1 illustrates the relation-
ship between these modes of operation.

Z380

Extended

zao Native Mode

Figure 3-1. Z380'· CPU Operation Modes

For the instructions which work with the DDIR instructions, refer to Appendix D and E.

3-1

3.2 DECODER DIRECTIVES

The Decoder Directive is not an instruction, but rather a
directive to the instruction decoder. The instruction de­
coder may be directed to fetch an additional byte or word
of immediate data or address with the instruction, as well
as tagging the instruction for execution in either Word or
Long Word mode. Since the Z80 CPU architecture's ad­
dressing convention in the memory is "least significant
byte first, followed by more significant bytes," it is possible
to have such instructions to direct the instruction decoder
to fetch additional byte(s) of address information or imme­
diate data to extend the instruction.

All eight combinations ofthe two options are supported, as
shown below. Instructions which do not support decoder
directives are assembled by the instruction decoder as if
the decoder directive were not present.

• DDIRW Word mode

• DDIR IB,W Immediate byte, Word mode

• DDIR IW,W Immediate Word, Word mode

• DDIR IB Immediate byte

• DDIR LW Long Word mode

• DDIR IB,LW Immediate byte, Long Word mode

• DDIR IW,LW Immediate Word, Long Word
mode

• DDIR IW Immediate Word

3.3 NATIVE MODE AND EXTENDED MODE

The Z380 CPU can operate in either Native or Extended
mode, as a way to manipulate addresses.

In Native mode (the Reset configuration), the Program
Counter only increments across 16 bits, and all stack Push
and Pop operations manipulate 16-bit quantities (two
bytes). Thus, Native mode is fully compatible with the Z80
CPU's 64 Kbyte address space and programming model.
The extended portion of the Program Counter (PC31-
PC15) is forced to 0 and program address location next to
OOOOFFFFH is OOOOOOOOH in this mode. This means in
Native mode, program have to reside within the first 64
Kbytes of the memory addressing space.

In Extended mode, however, the PC increments across all
32 bits and all stack Push and Pop operations manipulate
32-bit quantities. Thus, Extended mode allows access to
the entire 4 Gbyte address space. In both Native and
Extended modes, the Z380 CPU drives all 32 bits of the
address onto the external address bus; only the PC incre­
ments and stack operations distinguish Native from Ex­
tended mode.

3-2

Z380"
USER'S MANUAL

The IB decoder directive causes the decoder to fetch an
additional byte immediately after the existing immediate
data or direct address, and in front of any trailing opcode
bytes (with instructions starting with DD-CB or FD-CB, for
example).

Likewise, the IW decoder directive causes the decoder to
fetch an additional word immediately after the existing
immediate data or direct address, and in front of any
trailing opcode bytes.

Byte ordering within the instruction follows the usual con­
vention; least significant byte first, followed by more signifi­
cant bytes. More-significant immediate data or direct
address bytes not specified in the instruction are read as
all zeros by the processor.

The W decoder directive causes the instruction decoder to
tag the instruction for execution in Word mode. This is
useful while the Long Word (LW) bit in the Select Register
(SR) is set, but 16-bit data manipulation is required for this
instruction.

The LW decoder directive causes the instruction decoder
to tag the instruction for execution in Long Word mode.
This is useful while the LW bit in the SR is cleared, but 32-
bit data manipulation is required for this instruction.

Note that regardless of Native or Extended mode, a 32-bit
address is always used for the data access. Thus, for data
reference, the complete 4 Gbytes of memory area may be
accessed. For example:

LD BC, (HL)

uses the 32-bit address value stored in HL31-HLO (HLz
and HL) as a source location address. However, on Reset,
the HL31-HL 16 portion (HLz) initializes to OOH. Unless HLz
is modified to other than OOH, operation of this instruction
is identical to the one with the Z80 CPU. Modifying the
extended portion of the register is done either by using a
32-bit load instruction (in Long Word mode, or with DDIR
LW instructions), or using a 16-bit load instruction with
SWAP instructions.

The Z380 CPU implements one instruction to switch to
Extended mode from Native mode; SETC XM (set Ex­
tended mode) places the Z380 CPU in Extended mode.

Z3BO"
USER'S MANUAL

Once in Extended mode, only Reset can return it to Native
mode. On Reset, the Z380 is in Native mode. Refer to
Sections 4 and 5 for more examples.

3.4 WORD AND LONG WORD MODE OF OPERATION

The Z380 CPU can operate in either Word or Long Word
mode. In Word mode (the Reset configuration), ali word
operations manipulate 16-bit quantities, and are compat­
ible with the Z80 CPU 16-bit operations. In the Long Word
mode, ali word operations can manipulate 32-bit quanti­
ties. Note that the Native/Extended and Word/Long Word
selections are independent of one another, as Word/Long
Word pertains to data and operand address manipulation
only. The Z380 CPU implements two instructions and two
decoder directives to aliow switching between these two
modes; SETC LW (Set Long Word) and RESC LW (Reset
Long Word) perform a global switch, while DDIR LWand
DDIR Ware decoder directives that select a particular
mode only for the instruction that they precede.

Examples:

1. Effect of Word mode and Long Word mode

DDIRW
LD BC, (HL)

Loads BC15-BCO from the location (HL) and
(HL+ 1), and BCz (BC31-BC16) remains un­
changed.

DDIRLW
LD BC, (HL)

Loads BC31-BCO from the locations (HL) to (HL +3).

2. Immediate data load with DDIR instructions

DDIR IW,LW
LD HL,12345678H
Loads 12345678H into HL31-HLO.

DDIR IB,LW
LD HL,123456H

Loads 00123456H into HL31-HLO.
OOH is appended as the Most significant byte as
HL31-HL24.

DDIR LW
LD HL,1234H

Loads 00001234H into HL31-HLO.
OOOOH is appended as the HL31-HL 16 portion.

3-3

I

',~ " " \
... ': ,1 ... :.L "

l:
:L1;;:;,' >.~ 8. ,: ;

Addressing Modes and Data Types I
,-
: .. 1

i' , ' -,

4.1 INSTRUCTION

An instruction is a consecutive list of one or more bytes in
memory. Most instructions act upon some data; the term
operand refers to the data to be operated upon. For Z380'"
CPU instructions, operands can reside in CPU registers,
memory locations, or I/O ports (internal or external). The
method used to designate the location of the operands for

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the address­
ing modes for the Z380 CPU. Each description explains
how the operand's location is calculated, indicates which
address spaces can be accessed with that particular
addressing mode, and gives an example of an instruction
using that mode, illustrating the assembly language format
for the addressing modes.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction pro­
cesses data taken from one of the 8-bit registers A, B, C,
D, E, H, L, IXU, IXL, IYU, IYL, one of the 16-bit registers BC,
DE, HL, IX, IY, SP, or one of the special byte registers I or
R.

Storing data in a register allows shorter instructions and
faster execution that occur with instructions that access
memory.

Instruction
OPERATION REGISTER OPERAND

The operand value is the contents of the register.

The operand is always in the register address space. The
register length (byte or word) is specified by the instruction
opcode. In the case of Long Word register operation, it is
specified either through the SETC LW instruction or the
DDIR LW decoder directive.

USER'S MANUAL

CHAPTER 4
ADDRESSING MODES AND DATA TYPES

an instruction are called addressing modes. The Z380
CPU supports seven addressing modes; Register, Imme­
diate, Indirect Register, DirectAddress, Indexed, Program
Counter Relative Address, and Stack Pointer Relative. A
wide variety of data types can be accessed using these
addressing modes.

Example of R mode:
1. Load register in Word mode.

DDIR W ;Next instruction in Word mode
LD BC,HL ;l-oad the contents of HL into BC

Before instruction
execution 1234 5678 9ABC DEFO
After instruction
execution 1234 DEFO 9ABC DEFO

2. Load register in Long Word mode.
DDIR LW ;Next instruction in Long Word mode
LD BC,HL ;Load the contents of HL into BC

BCz BC HLz HL
Before instruction
execution 1234 5678 9ABC DEFO
After instruction
execution 9ABC DEFO 9ABC DEFO

4.2.2 Immediate (1M)

When the Immediate addressing mode is used, the data
processed is in the instruction.

The Immediate addressing mode is the only mode that
does not indicate a register or memory address as the
source operand.

4-1

4.2.2 Immediate (1M) (Continued)

Instruction
OPERATION
OPERAND

The operand value is in the instruction

Immediate mode is often used to initialize registers. Also,
this addressing mode is affected by the DDIR Immediate
Data Directives to expand the immediate value to 24 bits
or 32 bits.

Example of 1M mode:

1, Load immediate value into accumulator
LD A,55H ;Load hex 55 into the accumulator.

A
Before instruction execution 12
After instruction execution 55

4.2.3 Indirect Register (IR)

In Indirect Register addressing mode, the register speci­
fied in the instruction holds the address of the operand.

Memory or
Instruction
OPERATION REGISTER

Z3BO'"
USER'S MANUAL

2. Load 24-bit immediate value into HL
register
DDIR IB, LW

LD HL, 123456H

;next instruction is in Long Word
mode, with ;an additional
immediate data
;Ioad HLz, and HL with constant
123456H

This case, the Z380 CPU appends OOH as a MSB byte.

Before instruction execution
After instruction execution

HLz
0987
0012

HL
6543
3456

The data to be processed is in the location specified by the
BC, DE, or HL register (depending on the instruction) for
memory accesses, or C register for I/O.

Register
Address

I/O Port
OPERAND

The operand value is the contents of the location whose address is in the register.

Depending on the instruction, the operand specified by IR
mode is located in either the I/O address space (I/O
instruction) or memory address space (all other instruc­
tions).

Indirect Register mode can save space and reduce ex­
ecution time when consecutive locations are referenced or
one location is repeatedly accessed. This mode can also
be used to simulate more complex addressing modes,
since addresses can be computed before data is ac­
cessed.

The address in this mode is always treated as a 32-bit
mode. After reset, the contents of the extend registers
(registers with "z" suffix) are initialized as O's; hence, these
instructions will be executed just as for the Z80/Z180.

4-2

Example of IR mode:
1, Load accumulator from the contents of memory

pointed by (HL)
LD A, (HL) ;Load the accumulator with the data

;addressed by the contents of HL

A HLz,HL
Before instruction
execution OF 12345678
After instruction
execution OB 12345678

Memory location 12345678 OB

4.2.4 Direct Address (DA)

When Direct Address mode is used, the data processed is
at the location whose memory or I/O port address is in the
instruction.

Instruction
OPERATION
ADDRESS ~

Memory or
I/O Port
OPERAND

The operand value is the contents of the location whose
address is in the instruction.

Example of DA mode:

Z3BON

USER'S MANUAL

Depending on the instruction, the operand specified by
DA mode is either in the I/O address space (I/O instruction)
or memory address space (all other instructions).

This mode is also used by Jump and Call instructions to
specify the address of the next instruction to be executed.
(The address serves as an immediate value that is loaded
into the program counter.)

Also, DDIR Immediate Data Directives are used to expand
the direct address to 24 or 32 bits. Operand width is
affected by LW bit status for the load and exchange
instructions.

1. Load BC register from memory location 00005E22H in Word mode
LD BC, (SE22H) ;Load BC with the data in address

;0000SE22H

BC
Before instruction execution 1234
After instruction execution 0301

Memory location 0000SE22
0000SE23

01
03

2. Load BC register from memory location 12345E22H in Word mode
DDIR IW ;extend direct address by one word
LD BC, (1234SE22H) ;Load BC with the data in address

;1234SE22H

BC
Before instruction execution 1234
After instruction execution 0301

Memory location 1234SE22
12345E23

01
03

3. Load BC register from memory location 12345E22H in Long Word mode
DDIR IW,LW ;extend direct address by one word,

;and operation in Long Word
LD BC, (12345E22H) ;Load BC with the data in address

;12345E22H

Before instruction execution
After instruction execution

Memory location

BCz
1234
0705

BC
S678
0301

1234SE22
12345E23
12345E24
1234SE25

01
03
05
07

4·3

I

4.2.5 Indexed (X)

When the Indexed addressing mode is used, the data
processed is at the location whose address is the contents
of IX or IY in use, offset by an 8-bit signed displacement in
the instruction.

The Indexed address is computed by adding the 8-bit
two's complement signed displacement specified in the
instruction to the contents of the IX or IY register in use, also
specified by the instruction. Indexed addressing allows
random access to tables or other complex data structures
where the address of the base of the table is known, butthe
particular element index must be computed by the pro­
gram.

Instruction
OPERATION REGISTER-7
DISPLACEMENT

Example of X mode:

ADDRESS -7+

Z380~
USER'S MANUAL

The offset portion can be expanded to 16 or 24 bits,
instead of eight bits by using DDIR Immediate Data Direc­
tives (DDIR IB for 16-bit offset, DDIR IW for 24-bit offset).

Note that computation of the effective address is affected
by the operation mode (Native or Extended). In Native
mode, address computation is done in modulo 216, and in
Extended mode, address computation is done in modulo
232.

REGISTER
OPERAND

MEMORY

i

1. Load accumulator from location (IX-1) in Native mode
LD A, (IX-1) ;Load into the accumulator the

;contents of the memory location
;whose address is one less than
;the contents of IX
;Assume it is in Native mode

Before instruction execution
After instruction execution

A
01
23

IXz
0001
0001

lX
0000
0000

Memory location 0001FFFF 23

Address calculation: In Native mode, OFFH encoding in
the instruction is sign extended to a 16-bit value before the
address calculation, but calculation is done in modulo 216

and does not take into account the index register's
extended portion.

4-4

+
0000
EEEE
FFFF

2. Load accumulator from location (IX-1) in Extended mode
SETC XM ;Set Extended mode
LD A, (IX-1) ;Load into the accumulator the

;contents of the memory location
;whose address is one less than
;the contents of IX

Before instruction execution
After instruction execution

A
01
23

IXz
0001
0001

JX
0000
0000

Memory location OOOOFFFF 23

Address calculation: In Extended mode, OFFH encoding in
the instruction is sign extended to a 32-bit value before the
address calculation, but calculation is done in modulo 232

and takes into account the index register's extended
portion.

4.2.6 Program Counter Relative Mode (RA)

+
00010000
FFFFFFFF
OOOOFFFF

Z380"
USER'S MANUAL

The Program Counter Relative Addressing mode is used
by certain program control instructions to specify the
address of the next instruction to be executed (specifically,
the sum of the Program Counter value and the displace­
ment value is loaded into the Program Counter). Relative
addressing allows reference forward or backward from the
current Program Counter value; it is used for program
control instructions such as Jumps and Calls that access
constants in the memory.

Note that computation of the effective address is affected

As a displacement, an 8-bit, 16-bit, or 24-bit value can be
used. The address to be loaded into the Program Counter
is computed by adding the two's complement signed
displacement specified in the instruction to the current
Program Counter.

Also, in Native mode,

Instruction PC
OPERATION ADDRESS
DISPLACEMENT

Example of RA mode:

~+

-i

MEMORY
OPERAND

1. Jump relative in Native mode, 8-bit displacement

JR $-2 ;Jumps to the location
;(Current PC value) - 2
;'$' represents for current PC value
;This instruction jumps to itself.

by the mode of operation (Native or Extended). In Native 4
mode, address computation is done in modulo 216, and the
PC Extend (PC31-PC16) is forced to 0 and will not affect
this portion. In Extended mode, address computation is
done is modulo 232, and will affect the contents of PC
extend if there is a carry or borrow operation.

;since after the execution of this instruction,
;PC points to the next instruction.

4-5

4.2.6 Program Counter Relative Mode (RA) (Continued)

Before instruction execution
After instruction execution

PCz
0000
0000

PC
1000
OFFE

Address calculation: In Native mode, -2 is encoded as
OFEH in the instruction, and it is sign extended to a 16-bit
value before added to the Program Counter. Calculation is
done in modulo 216 and does not affect the Extended
portion of the Program Counter.

2. Jump relative in Extended mode, 16-bit displacement

+

SETC XM
JR $-5000H

;Put it in Extended mode of operation
;Jumps to the location
;(Current PC value) - 5000H
;$ stands for current PC value
;This instruction jumps to itself.

Before instruction execution
After instruction execution

PCz
1959
1958

PC
0807
B80B

Address calculation: Since this is a 4-byte instruction, the
PC value after fetch but before jump taking place is:

19590807
+ 00000004

1959080B

The displacement portion, -5000H, is sign extended to a
32-bit value before being added to the Program Counter.
Calculation is done in modulo 232 and affects the Extended
portion of the Program Counter.

1959080B
+ FFFFBOOO

1958B80B

4-6

1000
EEEE
FFFE

Z380~
USER'S MANUAL

4.2.7 Stack Pointer Relative Mode (SR)

For Stack Pointer Relative addressing mode, the data
processed is at the location whose address is the contents
of the Stack Pointer, offset by an 8-bit displacement in the
instruction.

The Stack Pointer Relative address is computed by adding
the 8-bit two's complement signed displacement speci­
fied in the instruction to the contents of the SP, also
specified by the instruction. Stack Pointer Relative ad­
dressing mode is used to specify data items to be found in
the stack, such as parameters passed to procedures.

Offset portion can be expanded to 16 or 24 bits by using
DDIR immediate instructions (DDIR IB for a 16-bit offset,
DDIR IW for a 24-bit offset).

Instruction
OPERATION
DISPLACEMENT

Example of SR mode:

SP
ADDRESS -I

--+

Z380"
USER'S MANUAL

Note that computation of the effective address is affected
by the operation mode (Native or Extended). In Native
mode, address computation is done in modulo 216, mean­
ing computation is done in 16-bit and does not affect upper
half of the SP portion for calculation (wrap around within the
16-bit). In Extended mode, address computation is done
in modulo 232.

Also, the size of the data transfer is affected by the LW
mode bit. In Word mode, transfer is done in 16 bits, and in
Long Word mode, transfer is done in 32 bits.

MEMORY
OPERAND

1. load HL from location (SP - 4) in Native mode, Word mode
LD HL, (SP-4) ;Load into the HL from the

;contents of the memory location
;whose address is four less than
;the contents of SP.
;Assume it is in Native/Word mode.

HLz HL SPz
Before instruction execution 1234 5678 07FF
After instruction execution EFCD AB89 07FF

Memory location 07FF7EFC 89
07FF7EFD AB

Address calculation: In Native mode, FCH (-4 in Decimal)
encoding in the instruction is sign extended to a 16-bit
value before the address calculation. Calculation is done
in modulo 216 and does not take into account the Stack
Pointer's extended portion.

SP
7FOO
7FOO

7FOO
+ EEEQ

7EFC

4-7

4.2.7 Stack Pointer Relative Mode (SR) (Continued)

2. Load HL from location (SP - 4) in Extended mode, Long Word mode
SETC XM ;In Extended mode
DDIR LW ;operate next instruction in Long Word mode
LD HL, (SP-4) ;Load into the HL from the

;contents of the memory location
;whose address is four less than
;the contents of SP,

Before instruction execution
After instruction execution

HLz HL SPz
1234 5678 07FF
EFCD AB89 07FF

SP
7FOO
7FOO

Memory location 07FF7EFC
07FF7EFD
07FF7EFE
07FF7EFF

89
AB
CD
EF

Address calculation: In Extended mode, FCH (-4 in Deci­
mal) encoding in the instruction is sign extended to a 32-
bit value before the address calculation, and calculation is
done in modulo 232,

+
07FF7FOO
FFFFFFFC
07FF7EFC

3. Load HL from location (SP + 10000H) in Extended mode, Long Word mode
SETC XM ;In Extended mode,
DDIR IW,LW ;operate next instruction in Long Word mode

;with a word immediate data,
LD HL, (SP+10000) ;Load into the HL from the

;contents of the memory location
;whose address is 10000H more than
;the contents of SP,

HLz HL SPz
Before instruction execution
After instruction execution

1234 5678 07FF
EFCD AB89 07FF

SP
7FOO
7FOO

Memory location 08007FOO
08007F01
08007F02
08007F03

89
AB
CD
EF

Address calculation: In Extended mode, 01 OOOOH encod­
ing in the instruction is sign extended to a 32-bit value
before the address calculation, and calculation is done in
modulo 232,

+

4-8

07FF7FOO
00010000
08007FOO

Z3BON

USER'S MANUAL

4.3 DATA TYPES

The Z380 CPU can operate on bits, binary-coded decimal
(BCD) digits (four bits), bytes (eight bits), words (16 bits or
32 bits), byte strings, and word strings. Bits in registers can
be set, cleared, and tested.

The basic data type is a byte, which is also the basic
accessible element in the register, memory, and I/O address
space. The 8-bit load, arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or memory. Bytes
can be treated as logical, signed numeric, or unsigned
numeric value.

Words are operated on in a similar manner by the word
load, arithmetic, logical, and shift and rotate instructions.

Operation on 2-byte words is also supported. Sixteen-bit
load and arithmetic instructions operate on words in
registers or memory; words can be treated as signed or
unsigned numeric values. I/O reads and writes can be
8-bit or 16-bit operations. Also, the Z380 CPU architecture
supports operation in Long Word mode to handle a 32-bit
address manipulation. For that purpose, 16-bit wide
registers originally on the Z80 have been expanded to 32
bits wide, along with the support of the arithmetic instruction
needed for a 32-bit address manipulation.

Bits are fully supported and addressed by number within
a byte (see Figure 2-2). Bits within byte registers or
memory locations can be tested, set, or cleared.

Z3BON

USER'S MANUAL

Operation on binary-coded decimal (BCD) digits are sup­
ported by Decimal Adjust Accumulator (DAA) and Rotate
Digit (RLD and RRD) instructions. BCD digits are stored in
byte registers or memory locations, two per byte. The DAA
instruction is used after a binary add ition or subtraction of
BCD numbers. Rotate Digit instructions are used to shift
BCD digit strings in memory.

Strings of up to 65536 (64K) bytes of Byte data or Word
data can be manipulated by the Z380 CPU's block move,
block search, and block I/O instructions. The block move
instructions allow strings of bytes/words in memory to be
moved from one location to another. Block search instruc­
tions provide for scanning strings of bytes/words in memory
to locate a particular value. Block I/O instructions allow
strings of bytes or words to be transferred between memory
and a peripheral device.

Arrays are supported by Indexed mode (with 8-bit, 16-bit,
or 24-bit displacement). Stack is supported by the Indexed
and the Stack Pointer Relative addressing modes, and by
special instructions such as Call, Return, Push, and Pop.

4-9

II

Instruction Set II

USER's MANUAL

CHAPTER 5
INSTRUCTION SET

5.1 INTRODUCTION

The Z380'" CPU instruction set is a superset ofthe Z80 CPU _ Program Control Group
and the Z180 MPU; the Z380 CPU is opcode compatible
with the Z80 CPU/Z180 MPU. Thus, a Z80/Z180 program _ Input and Output Operations for External I/O Space
can be executed on a Z380 CPU without modification. The
instruction set is divided into 12 groups by function: _ Input and Output Operations for Int!3rnall/O Space

_ 8-Bit Load/Exchange Group _ CPU Control Group

_ 16/32-Bit Load, Exchange, SWAP and Push/Pop Group _ Decoder Directives

_ Block Transfers, and Search Group This chapter describes the instruction setoftheZ380CPU.
Flags and condition codes are discussed in relation to the

_ 8-Bit Arithmetic and Logic Operations instruction set. Then, the interpretability of instructions and
trap are discussed. The last part of this chapter is a

_ 16/32-Bit Arithmetic Operations detailed description of each instruction, listed in alphabeti­
cal order by mnemonic. This section is intended as a

_ 8-Bit Bit Manipulation, Rotate and Shift Group reference for Z380 CPU programmers. The entry for each
instruction contains a complete description of the instruc-

_ 16-Bit Rotates and Shifts tion, including addressing modes, assembly language
mnemonics, and instruction opcode formats.

-------11 5.2 PROCESSOR FLAGS

The Flag register contains six bits of status information that
are set or cleared by CPU operations (Figure 5-1). Four of
these bits are testable (C, PN, Z, and S) for use with
conditional jump, call, or return instructions. Two flags are
not testable (H and N) and are used for binary-coded
decimal (BCD) arithmetic.

I s I z I x I H I x IPNI N I c I
7 6 5 4 321 0

Figure 5-1. Flag Register

The Flag register provides a link between sequentially
executed instructions, in that the result of executing one
instruction may alter the flags, and the resulting value of the
flags can be used to determine the operation of a subse­
quent instruction. The program control instructions, whose
operation depends on the state of the flags, are the Jump,
Jump Relative, subroutine Call, Call Relative, and subrou­
tine Return instructions; these instructions are referred to
as conditional instructions.

5-1

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the operation
being performed. For add instructions that generate a
carry and subtract instruction generating a borrow, the
Carry flag is setto 1 . The Carry flag is cleared to 0 by an add
that does not generate a carry or a subtract that generates
no borrow. This saved carry facilitates software routines for
extended precision arithmetic. The multiply instructions
use the Carry flag to signal information about the precision
of the result. Also, the Decimal Adjust Accumulator (DAA)
instruction leaves the Carry flag set to 1 if a carry occurs
when adding BCD quantities.

For rotate instructions, the Carry flag is used as a link
between the least significant and most significant bits for
any register or memory location. During shift instructions,
the Carry flag contains the last value shifted out of any
register or memory location. For logical instructions the
Carry flag is cleared. The Carry flag can also be set and
complemented with explicit instructions.

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BCD arithmetic. Since
the algorithm for correcting BCD operations is different for
addition and subtraction, this flag is used to record when
an add or subtract was last executed, allowing a subse­
quent Decimal Adjust Accumulator instruction to perform
correctly. See the discussion of the DAA instruction for
further information.

5.2.3 Parity/Overflow Flag (PN)

This flag is set to a particular state depending on the
operation being performed.

For signed arithmetic, this flag, when setto 1 , indicates that
the result of an operation on two's complement numbers
has exceeded the largest number, or less than the smallest
number, that can be represented using two's complement
notation. This overflow condition can be determined by
examining the sign bits of the operands and the result.

The PN flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The of bits
set to 1 in a byte are counted. If the total is odd, this flag is
reset indicates odd parity (P = 0). If the total is even, this
flag is set indicates even parity (P = 1).

During block search and block transfer instructions, the PI
V flag monitors the state of the Byte Count register (BC).
When decrementing the byte counter results in a zero
value, the flag is cleared to 0; otherwise the flag is set to 1.

5-2

Z3BO~
USER'S MANUAL

During Load Accumulator with I or R register instruction,
the PN flag is loaded with the IEF2 flag. For details on this
topic,.refer to Chapter 6, "Interrupts and Traps."

When a byte is inputted to a register from an I/O device
addressed by the C register, the flag is adjusted to indicate
the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to 0 depending
on the carry and borrow status between bits 3 and 4 of an
8-bit arithmetic operation and between bits 11 and 12 of a
16-bit arithmetic operation. This flag is used by the Deci­
mal Adjust Accumulator instruction to correct the result of
an addition or subtraction operation on packed BCD data.

5.2.5 Zero Flag (Z)

The Zero flag (Z) is set to 1 if the result generated by the
execution of certain instruction is a zero.

For arithmetic and logical operations, the Zero flag is set to
1 if the result is zero. If the result is not zero, the Zero flag
is cleared to O.

For block search instructions, the Zero flag is set to 1 if a
comparison is found between the value in the Accumulator
and the memory location pointed to by the contents of the
register pair HL.

When testing a bit in a register or memory location, the Zero
flag contains the complemented state of the tested bit (i.e.,
the Zero flag is set to 1 if the tested bit is a 0, and vice­
versa).

For block I/O instructions, if the result of decrements B is
zero, the Zero flag is set to 1; otherwise, it is cleared to O.
Also, for byte inputs to registers from I/O devices ad­
dressed by the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (5)

The Sign flag (S) stores the state of the most significant bit
of the result. When the Z380 CPU performs arithmetic
operation on signed numbers, binary two's complement
notation is used to represent and process numeric infor­
mation. A positive number is identified by a 0 in the most
significant bit. A negative number is identified by a 1 in the
most significant bit.

When inputting a byte from an I/O device addressed by the
C register to a CPU register, the Sign flag indicates either
positive (S = 0) or negative (S = 1) data.

Z3BO'"
USER'S MANUAL

5.2.7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags are used
to control the operation of the conditional instructions. The
operation of these instructions is a function of the state of
one of the flags. Special mnemonics called condition
codes are used to specify the flag setting to be tested
during execution of a conditional instruction; the condition
codes are encoded into a 3-bit field in the instruction
opcode itself.

Table 5-1 lists the condition code mnemonic, the flag
setting it represents, and the binary encoding for each
condition code.

Table 5-1, Condition codes

Condition Codes for Jump, Call, and Return Instructions
Mnemonic Meaning Flag Setting

NZ
Z
NC
C
NV
PO
V
PE
NS
P
S
M

'Abbreviated set

Not Zero'
Zero'
No Carry'
Carry'
No Overflow
Parity Odd
Overflow
Parity Even
No Sign
Plus
8ign
Minus

Z=O
Z=1
C=O
C = 1
V=O
V=O
V=1
V=1
8=0
8=0
8=1
8=1

Condition Codes for Jump Relative and Call Relative Instructions

Binary Code

000
001
010
011
100
100
101
101
110
110
111
111

Mnemonic Meaning Flag Setting Binary Code

NZ
Z
NC
C

Not Zero
Zero
No Carry
Carry

Z=O
Z=1
C=O
C = 1

100
101
110
111

5-3

5.3 SELECT REGISTER

The Select Register (SR) controls the register set selection
and the operating modes of the Z380 CPU. The reserved
bits in the SR are for future expansion; they will always read
as zeros and should be written with zeros for future

Z380'"
USER'S MANUAL

compatibility. Access to this register is done by using the
newly added LDCTL instruction. Also, some of the instruc­
tions like EXX, 1M p, and DI/EI change the bit(s). The SR
was shown in Figure 5-2.

YSR "1-- XSR .. I
Reserved (0) Reserved (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DSR .. I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Figure 5-2. Select Register

5.3.1. IV Bank Select (IVBANK)

This 2-bit field selects the register set to be used for the IY
and IY' registers. This field can be set independently of the
register set selection for the other Z380 CPU registers.
Reset selects Bank 0 for IY and IY'.

5.3.2. IV or IV' Register Select (IV')

This bit controls and reports whether IY or IY' is the
currently active register. IY is selected when this bit is
cleared, and IY' is selected when this bit is set. Reset
clears this bit, selecting IY.

5.3.3. IX Bank Select (IXBANK)

This 2-bit field selects the register set to be used for the IX
and IX' registers. This field can be set independently of the
register set selection for the other Z380 CPU registers.
Reset selects Bank 0 for IX and IX'.

5.3.4. IX or IX' Register Select (IX')

This bit controls and reports whether IX or IX' is the
currently active register. IX is selected when this bit is
cleared, and IX' is selected when this bit is set. Reset
clears this bit, selecting IX.

5-4

5.3.5. Main Bank Select (MAIN BANK)

This 2-bit field selects the register set to be used for the A,
F, BC, DE, HL, A', F', BC', DE', and HL' registers. This field
can be set independently of the register set selection for
the other Z380 CPU registers. Reset selects Bank 0 for
these registers.

5.3.6. BC/DE/HL or BC'/DE'/HL' Register
Select (AL T)

This bit controls and reports whether BC/DE/HLor BC'/DE'/
HL' is the currently active bank of registers. BC/DE/HL is
selected when this bit is cleared, and BC'/DE'/HL' is
selected when this bit is set. Reset clears this bit, selecting
BC/DE/HL.

5.3.7. Extended Mode (XM) .

This bit controls the Extended/Native mode selection for
the Z380 CPU. This bit is set by the SETC XM instruction.
This bit can not be reset by software, only by Reset. When
this bit is set, the Z380 CPU is in Extended mode. Reset
clears this bit, and the Z380 CPU is in Native mode.

5.3.S. Long Word Mode (LW)

This bit controls the Long WordNVord mode selection for
the Z380 CPU. This bit is set by the SETC LW instruction
and cleared by the RESC LW instruction. When this bit is
set, the Z380 CPU is in Long Word mode; when this bit is
cleared the Z380 CPU is in Word mode. Reset clears this
bit. Note that individual Word load and exchange instruc­
tions may be executed in either Word or Long Word mode
using the OOIR Wand OOIR LW decoder directives.

5.3.9. Interrupt Enable Flag (IEF)

This bit is the master Interrupt Enable for the Z380 CPU.
This bit is set by the EI instruction and cleared by the 01
instruction, or on acknowledgment of an interrupt request.
When this bit is set, interrupts are enabled; when this bit is
cleared, interrupts are disabled. Reset clears this bit.

5.3.10. Interrupt Mode (1M)

This 2-bit field controls the interrupt mode for the /INTO
interrupt request. These bits are controlled by the 1M
instructions (00 = 1M 0, 01 = 1M 1, 10 = 1M 2, 11 = 1M 3).
Reset clears both of these bits, selecting Interrupt Mode O.

5.3.11. Lock (LCK)

Z380~
USER'S MANUAL

This bit controls the Lock/Unlock status of the Z380 CPU.
This bit is set by the SETC LCK instruction and cleared by
the RESC LCK instruction. When this bit is set, no bus
requests will be accepted, providing exclusive access to
the bus bytheZ380CPU. When this bit is cleared, theZ380
CPU will grant bus requests in the normal fashion. Reset
clears this bit.

5.3.12. AF or AF' Register Select (AF')

This bit controls and reports whether AF or AF' is the
currently active pair of registers. AF is selected when this
bit is cleared, and AF' is selected when this bit is set. Reset
clears this bit, selecting AF.

5.4 INSTRUCTION EXECUTION AND EXCEPTIONS

Three types of exception conditions-interrupts, trap, and
Reset-can alter the normal flow of program execution.
Interrupts are asynchronous events generated by a device
external to the CPU; peripheral devices use interrupts to
request service from the CPU. Trap is a synchronous event
generated internally in the CPU by executing undefined
instructions. Reset is an asynchronous event generated by
outside circuits. It terminates all current activities and puts
the CPU into a known state. Interrupts and Traps are
discussed in detail in Chapter 6, and Reset is discussed in
detail in Chapter 7. This section examines the relationship
between instructions and the exception conditions.

5.4.1 Instruction Execution and Interrupts

When the CPU receives an interrupt request, and it is
enabled for interrupts of that class, the interrupt is normally
processed at the end of the current instruction. However,
the block transfer and search instructions are designed to
be interruptible so as to minimize the length of time it takes
the CPU to respond to an interrupt. If an interrupt request
is received during a block move, block search, or block
I/O instruction, the instruction is suspended after the
current iteration. The address of the instruction itself, rather
than the address of the following instruction, is saved on
the stack, so that the same instruction is executed again
when the interrupt handler executes an interrupt return

instruction. The contents of the repetition counter and the
registers that index into the block operands are such that,
after each iteration, when the instruction is reissued upon EJ
returning from an interrupt, the effect is the same as if the
instruction were not interrupted. This assumes, of course,
that the interrupt handler preserves the registers.

5.4.2 Instruction Execution and Trap

The Z380 MPU generates a Trap when an undefined
opcode is encountered. The action of the CPU in response
to Trap is to jump to address OOOOOOOOH with the status
bit(s) set. This response is similarto the Z180 MPU's action
on execution of an undefined instruction. The Trap is
enabled immediately after reset, and it is not maskable.
This feature can be used to increase software reliability or
to implement "extended" instructions. An undefined op­
code can be fetched from the instruction stream, or it can
be returned as a vector in an interrupt acknowledge
transaction in Interrupt mode O.

Since it jumps to address OOOOOOOOH, it is necessary to
have a Trap handling routine at the beginning of the
program if processing is to proceed. Otherwise, it behaves
just like a reset for the CPU. For a detailed description, refer
to Chapter 6.

5-5

5.5 INSTRUCTION SET FUNCTIONAL GROUPS

Z3BO"
USER'S MANUAL

This section presents an overview of the Z380 instruction
set, arranged by functional groups. (See Section 5.5 for an
explanation of the notation used in Tables 5-2 through 5-
11).

5.5.1 a-Bit Load/Exchange Group

An Exchange instruction is available for swapping the
contents of the accumulator with another register or with
memory, as well as between registers. Also, exchange
instructions are available which swap the contents of the
register in the primary register bank and auxiliary register
bank.

This group of instructions (Table 5-2) includes load instruc­
tions for transferring data between byte registers, transfer­
ring data between a byte register and memory, and load­
ing immediate data into byte register or memory. For the
supported source/destination combinations, refer to Table
5-3.

The instruction in this group does not affect the flags.

Table 5-2. 8-Bit Load Group Instructions

Instruction Name Format Note

Exchange with Accumulator EXA,r
EX A,(HL)

Exchange rand r' EX r,r' r=A, B, C, D, E, H or L
Load Accumulator LD A,src See Table 5-3

LD dst,A See Table 5-3
Load Immediate LD dst,n See Table 5-3

LD (HL),n See Table 5-3
Load Register (Byte) LD R,src See Table 5-3

LD R,(HL) See Table 5-3
LD dst,R See Table 5-3
LD (HL),R See Table 5-3

Table 5-3. 8-Bit Load Group Allowed Source/Destination Combinations

Source

Dis!. A B C D E H L IXH IXL IYH IYL n (nn) (BC) (DE) (HL) (IX+d) (IY+d)

A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
B ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
H ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
L ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
IXH ~ ~ ~ ~ ~ ~ ~ ~

IXL ~ ~ ~ ~ ~ ~ ~ ~
IYH ~ ~ ~ ~ ~ ~ ~ ~
IYL ~ ~ ~ ~ ~ ~ ~ ~
(BC) ~

(DE) ~
(HL) ~ ~ ~ ~ ~ ~ ~ ~
(nn) ~
(IX+d) ~ ~ ~ ~ ~ ~ ~ ~
(IY+d) ~ ~ ~ ~ ~ ~ ~ ~

Note: ..J are supported combinations.

5-6'

5.5.2 16-Bit and 32-Bit Load, Exchange,
SWAP, and PUSH/POP Group

This group of load, exchange, and PUSH/POP instructions
(Table 5-4) allows one or two words of data (two bytes
equal one word) to be transferred between registers and
memory.

The exchange instructions (Table 5-5) allow for switching
between the primary and alternate register files, exchang­
ing the contents of two register files, exchanging the
contents of an addressing register with the top word on the
stack. For possible combinations of the word exchange
instructions, refer to Table 5-5. The 16-bit and 32-bit loads
include transfer between registers and memory and imme­
diate loads of registers or memory. The Push and Pop
stack instructions are also included in this group. None of
these instructions affect the CPU flags, except for EX AF,
AF'.

Table 5-6 has the supported source/destination combina­
tion for the 16-bit and 32-bit load instructions. The transfer
size, 16-bit or 32-bit, is determined by the status of LW bit
in SR, or by DDIR Decoder Directives.

Z3BO'"
USER'S MANUAL

PUSH/POP instructions are used to save/restore the con­
tents of a register onto the stack. It can be used to
exchange data between procedures, save the current
register file on context switching, or manipulate data on the
stack, such as return addresses. Supported sources are
listed in Table 5-7.

Swap instructions allows swapping of the contents of the
Word wide register (BC, DE, HL, IX, or IY) with its Extended
portion. These instructions are useful to manipulate the
upper word of the register to be set in Word mode. For
example, when doing data accesses, other than
OOOOOOOOH-OOOOFFFFH address range, use this instruc­
tion to set "data frame" addresses.

This group of instructions is affected by the status of the LW
bit in SR (Select Register), and Decoder Directives which
specifies the operation mode in Word or Long Word.

Table 5·4. 16·Bit and 32·Bit Load, Exchange, PUSH/POP Group Instructions

Instruction Name

Exchange Word/Long Word Registers
Exchange Byte/Word Registers with Alternate Bank
Exchange Register Pair with Alternate Bank

Exchange Index Register with Alternate Bank

Exchange All Registers with Alternate Bank
Load Word/Long Word Registers

POP
PUSH
Swap Contents of D31-D16 and D15-DO

Table 5·5. Supported Source and Destination
Combination for 16·Bit and 32·Bit

Exchange Instructions

Source
Destination BC DE HL IX IV

BC ..j ..j ..j ..j
DE ..j ..j ..j
HL ..j ..j
IX ..j
(SP) ..j ..j ..j

Format Note

EX dst,src See Table 5-5
EXX
EX RR,RR' RR = AF, BC, DE, or HL

EXXX
EXXY
EXALL
LD dst,src See Table 5-6
LDW dst,src See Table 5-6
POP dst See Table 5-7
PUSH src . See Table 5-7
SWAP dst dst = BC, DE, HL, IX, or IY

Note: ..j are supported combinations. The exchange in­
structions which designate IY register as destination are
covered by the other combinations. These Exchange
Word instructions are affected by Long Word mode .

5-7

II

5.5.2 16-Bit and 32-Bit Load, Exchange,
SWAP and PUSH/POP Group (Continued)

Z380'"
USER'S MANUAL

Table 5·6. Supported Source and Destination Combination for 16-Bit and 32·Bit Load Instructions.

Source
Destination BC DE HL IX IV SP nn (nn) (BC) (DE) (HL) (IX+d) (IV+d) (SP+d)

BC L L L L L IL IL L L L IL IL IL
DE L L L L L IL IL L L L IL IL IL
HL L L L L L IL IL L L L IL IL IL
IX L L L L IL IL L L L IL IL
IY L L L L IL IL L L L IL IL
SP L L L IL IL
(BC) L L L L L ILW
(DE) L L L L L ILW
(HL) L L L L L ILW
(nn) IL IL IL IL IL IL
(IX+d) IL IL IL IL
(IY+d) IL IL IL IL
(SP+d) IL IL IL IL IL

Note: The column with the character(s) are the allowed mode, "I" means that the instruction is can be used with
source/destination combinations. The combination with OOIR Immediate instruction. Also, "W" means the instruc-
"L" means that the instruction is affected by Long Word tion uses the mnemonic of "LOW" instead of "LO".

Table 5·7. Supported Operand for PUSH/POP Instructions

AF BC DE HL IX IV SR nn

PUSH ..J ..J ..J ..J ..J ..J ..J ..J
POP ..J ..J ..J ..J ..J ..J ..J

Note: These PUSH/POP instructions are affected by Long Word mode of operations.

5.5.3 Block Transfer and Search Group

This group of instructions (Table 5-8) supports block
transfer and stri\lg search functions. Using these instruc­
tions, a block of up to 65536 bytes of byte, Word, or Long
Word data can be moved in memory, or a byte string can
be searched until a given value is found. All the operations
can proceed through the data in either direction. Further­
more, the operations can be repeated automatically while
decrementing a length counter until it reaches zero, or they
can operate on one storage unit per execution with the
length counter decremented by one and the source and
destination pointer register properly adjusted. The latter
form is useful for implementing more complex operations
in software by adding other instructions within a loop
containing the block instructions.

5-8

Various Z380 CPU registers are dedicated to specific
functions for these instructions-the BC register for a
counter, the OEz/OE and HLz/HL registers for memory
pointers, and the accumulator for holding the byte value
being sought. The repetitive forms of these instructions are
interruptible; this is essential since the repetition count can
be as high as 65536. The instruction can be interrupted
after any interaction, in which case the address of the
instruction itself, rather than next one, is saved on the
stack. The contents of the operand painter registers, as
well as the repetition counter, are such that the instruction
can simply be reissued after returning from the interrupt
without any visible difference in the instruction execution.

In case of Word or Long Word block transfer instructions,
the counter value held in the BC register is decremented
by two or four, depending on the LW bit status. Since
exiting from these instructions will be done when counter
value gets to 0, the count value stored in the BC registers

has to be an even number (DO = 0) in Word mode transfer,
and a multiple of four in Long Word mode (D1 and DO are
both 0). Also, in Word or Long Word Block transfer,
memory pointer values are recommended to be even
numbers so the number of the transactions will be mini­
mized.

Note that regardless of the Z380's operation mode, Native
or Extended, memory pointer increment/decrement will be
done in modulo 232. For example, if the operation is LDI and
HL31-HLO (HLz and HL) hold OOOOFFFF, after the opera­
tion the value in the HL31-HLO will be 0010000.

Table 5-S. Block Transfer and Search Group

Instruction Name Format

Compare and Decrement CPO
Compare, Decrement and Repeat CPDR
Compare and Increment CPI
Compare, Increment and Repeat CPIR
Load and Decrement LDD
Load, Decrement and Repeat LDDI
Load and Increment LDI
Load, Increment and Repeat LDIR
Load and Decrement in Word/Long Word LDDW
Load, Decrement and Repeat in Word/Long Word

LDDRW
Load and Increment in Word/Long Word LDIW
Load, Increment and Repeat in Word/Long Word

LDIRW

Z3BO"
USER'S MANUAL

5.5.4 a-bit Arithmetic and Logical Group

This group of instructions (Table 5-9) perform 8-bit arith­
metic and logical operations. The Add, Add with Carry,
Subtract, Subtract with Carry, AND, OR, Exclusive OR, and
Compare takes one input operand from the accumulator
and the other from a register, from immediate data in the
instruction itself, or from memory. For memory addressing
modes, follows are supported-Indirect Register, Indexed,
and Direct Address-except multiplies, which returns the
16-bit result to the same register by multiplying the upper
and lower bytes of one of the register pair (BC, DE, HL, or
SP).

The Increment and Decrement instructions operate on
data in a register or in memory; all memory addressing
modes are supported. These instructions operate only on
the accumulator-Decimal Adjust, Complement, and Ne­
gate. The final instruction in this group, Extend Sign, sets
the CPU flags according to the computed result.

The EXTS instruction extends the sign bit and leaves the
result in the HL register. If it is in Long Word mode, HLz
(HL31-HL 16) portion is also affected.

The TST instruction is a nondestructive AND instruction. It
ANDs "A" register and source, and changes flags accord­
ing to the result of operation. Both source and destination
values will be preserved.

Table 5-9. Supported Source/Destination for S-Bit Arithmetic and Logic Group

src/
Instruction Name Format dst A B C D E H L IXH IXL IVH IVL n (HL) (IX+d) (IV +x)

Add With Carry (Byte) ADC A,src src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
Add (Byte) ADD A,src src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
AND AND [A,lsrc src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
Compare (Byte) CP [A,lsrc src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J

Complement Accumulator CPL [Al dst --J
Decimal Adjust Accumulator DAA dst --J
Decrement (Byte) DEC dst dst --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
Extend Sign (Byte) EXTS [Al dst --J

Increment (Byte) INC dst dst --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
Multiply (Byte) MLTsrc Note 1
Negate Accumulator NEG [Al dst --J
OR OR [A,lsrc src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J

Subtract with Carry (Byte) SBC A,src src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
Subtract (Byte) SUB [A,lsrc src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J
Nondestructive Test TST dst src --J --J --J --J --J --J --J --J --J
Exclusive OR XOR [A,lsrc src --J --J --J --J --J --J --J --J --J --J --J --J --J --J --J

Note 1: dst = Be, DE, HL, or SP.

5-9

E

~2iUJE Z3BO"
USER'S MANUAL

5.5.5 16-Bit Arithmetic Operation

This group of instructions (Table 5-10) provide 16-bit or Direct Address addressing mode. The 32-bit result of a
arithmetic instructions. The Add, Add with Carry, Subtract, multiply is returned to the HLz and HL (HL31-HLO). The
Subtract with Carry, AND, OR, Exclusive OR, and Com- unsigned divide instruction takes a 16-bit dividend from
pare takes one input operand from an addressing register the HL register and a 16-bit divisor from a register, from the
and the other from a 16-bit register, or from the instruction instruction, or memory using the Indexed mode. The 16-bit
itself; the result is returned to the addressing register. The quotient is returned in the HL register and the 16-bit
16-bit Increment and Decrement instructions operate on reminder is returned to the HLz (HL31-HL 16). The Extend
data found in a register or in memory; the Indirect Register Sign instruction takes the contents of the HL register and
or Direct Address addressing mode can be used to delivers the 32-bit result to the HLz and HL registers. The
specify the memory operand. Negate HL instruction negates the contents of the HL

register.
The remaining 16-bit instructions provide general arith-
metic capability using the HL register as one of the input Exceptfor Increment, Decrement, and Extend Sign, all the
operands. The word Add, Subtract, Compare, and signed instructions in this group set the CPU flags to reflect the
and unsigned Multiply instructions take one input operand computed result.
from the HL register and the other from a 16-bit register,
from the instruction itself, or from memory using Indexed

Table 5·10. 16-Bit Arithmetic Operation

srcl
Instruction Name Format dst Be DE HL SP IX IV nn (nn) (IX+d) (IV+d)

Add With Carry (Word) ADC HL,src src -.j -.j -.j -.j
ADCW [HLj,src src -.j -.j -.j -.j -.j -.j -.j -.j

Add (Word) ADD HL,src src -.j -.j -.j -.j -.j X
ADD IX,src src -.j -.j -.j -.j X
ADD IY,src src -.j -.j -.j -.j X
ADDW [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j

Add to Stack Pointer ADD SP,nn src -.j X
AND Word ANDW [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j
Complement Accumulator CPLW [HLj dst -.j
Compare (Word) CPW [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j
Decrement (Word) DEC[Wj dst dst -.j -.j -.j -.j -.j -.j X
Divide Unsigned DIVUW [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j
Extend Sign (Word) EXTSW [HLj dst -.j
Increment (Word) INC[Wj dst dst -.j -.j -.j -.j -.j -.j X
Multiply Word Signed MUL T [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j
Multiply Word Unsigned MUL TUW [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j
Negate Accumulator NEGW [Aj dst -.j
OR Word ORW [HL,jsrc src -.j -.j -.j -.j -.j -.j -.j -.j
Subtract with Carry (Word) SBC HL,src src -.j -.j -.j -.j -.j

SBCW [HL],src src -.j -.j -.j -.j -.j -.j -.j -.j
Subtract (Word) SUB HL,(nn) src --J X

SUBW [HL,jsrc src -.j --J -.j --J --J --J --J --J
Subtract from Stack Pointer SUB SP,nn src --J X
Exclusive OR XORW [HL,jsrc src --J -.j -.j --J -.j -.j --J --J

Note: that the instructions with "X" at the rightmost column is affected by
Extended mode. These operate across all the 32 bits in Modulo 232 for
address calculation.

5-10

5.5.6 a-Bit Manipulation, Rotate and Shift
Group

Instructions in this group (Table 5-11) test, set, and reset
bits within bytes, and rotate and shift byte data one bit
position. Bits to be manipulated are specified by a field
within the instruction. Rotate can optionally concatenate
the Carry flag to the byte to be manipulated. Both left and
right shifting is supported. Right shifts can either shift 0 into
bit 7 (logical shifts), or can replicate the sign in bits 6 and
7 (arithmetic shifts). All these instructions, Set Bit and
Reset Bit, set the CPU flags according to the calculated
result; the operand can be a register or a memory location

Z380"
USER'S MANUAL

specified by the Indirect Register or Indexed addressing
mode.

The RLD and RRD instructions are provided for manipulat­
ing strings of BCD digits; these rotate 4-bit quantities in
memory specified by the Indirect Register. The low-order
four bits of the accumulator are used as a link between
rotation of successive bytes.

Table 5·11. Bit SetlResetlTest, Rotate and Shift Group

Instruction Name Format A B C D E H L (HL) (IX+d) (IY+d)

Bit Test BIT dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Reset Bit RES dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Rotate Left RL dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Rotate Left Accumulator RLA ~

Rotate Left Circular RLC dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Rotate Left Circular (Accumulator) RLCA ~
Rotate Left Digit RLD ~
Rotate Right RR dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Rotate Right Accumulator RRA ~
Rotate Right Circular RRC dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Rotate Right Circular (Accumulator) RRCA ~
Rotate Right Digit RRD ~

Set Bit SET dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Shift Left Arithmetic SLA dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Shift Right Arithmetic SRA dst ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Shift Right Logical SRL ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

5.5.7 16-Bit Manipulation, Rotate and Shift
Group

Instructions in this group (Table 5-12) rotate and shift word bit 15(logical shifts), orcan replicate the sign in bits 14and
data one bit position. Rotate can optionally concatenate 15 (arithmetic shifts). The operand can be a register pair or
the Carry flag to the word to be manipulated. Both left and memory location specified by the Indirect Register or
right shifting is supported. Right shifts can either shift 0 into Indexed addressing mode, as shown below.

Table 5·12. 16·Bit Rotate and Shift Group.

Destination
Instruction Name Format BC DE HL IX IY (HL) (HL) (IX+d) (IY+d)

Rotate Left Word RLW dst ~ ~ ~ ~ ~ ~ ~ ~ ~
Rotate Left Circular Word RLCW dst ~ ..J ..J ..J ~ ~ ..J ~ ~
Rotate Right Word RRW dst ..J ..J ..J ~ ..J ~ ..J ..J ..J
Rotate Right Circular Word RRCWdst ..J ..J ~ ~ ..J ..J ~ ..J ~
Shift Left Arithmetic Word SLAW dst ..J ..J ~ ~ ~ ~ ..J ~ ..J
Shift Right Arithmetic Word SRAW dst ..J ..J ~ ~ ..J ~ ..J ..J ..J
Shift Right Logical Word SRLW ..J ..J ~ ~ ..J ~ ..J ~ ~

5-11

5.5.8 Program Control Group

This group of instructions (Table 5-13) affect the Program
Counter (PC) and thereby control program flow. The CPU
registers and memory are not altered except for the Stack
Pointer and the Stack, which playa significant role in
procedures and interrupts. (An exception is Decrement
and Jump if Non-Zero [DJNZ], which uses a register as a
loop counter.) The flags are also preserved except for the
two instructions specifically designed to set and comple­
ment the Carry flag.

The Set/Reset Condition flag instructions can be used with
Conditional Jump, conditional Jump Relative, Conditional
Call, and Conditional Return instructions to control the
program flow.

The Jump and Jump Relative (JR) instructions provide a
conditional transfer of control to a new location if the
processor flags satisfy the condition specified in the in­
struction. Jump Relative, with an 8-bitoffset (JR e), is a two
byte instruction that jumps any instructions within the
range -126 to + 129 bytes from the location of this instruc­
tion. Most conditional jumps in programs are made to
locations only a few bytes away; the Jump Relative, with an
8-bit offset, exploits this fact to improve code compact­
ness and efficiency. Jump Relative, with a 16-bit offset (JR
[cc,]ee), is a four byte instruction that jumps any instruc­
tions within the range -32765 to +32770 bytes from the
location of this instruction, and Jump Relative, with a 24-bit
offset (JR [cc,] eee), is a five byte instruction that jumps any
instructions within the range -8388604 to +8388611 bytes
from the location of this instruction. By using these Jump
Relative instructions with 16-bit or 24-bit offsets allows to
write relocatable (or location independent) programs.

Call and Restart are used for calling subroutines; the
current contents of the PC are pushed onto the stack and
the effective address indicated by the instruction is loaded

mON

USER'S MANUAL

into the PC. The use of a procedure address stack in this
manner allows straightforward implementation of nested
and recursive procedures. Call, Jump, and Jump Relative
can be unconditional or based on the setting of a CPU flag.

Call Relative (CALR) instructions work just like ordinary
Call instructions, but with Relative address. An 8-bit, 16-
bit, or 24-bitoffsetvalue can be used, and that allows to call
procedure within the range of -126 to + 129 bytes (8-bit
offset;CALR [cc,]e), -32765 to +32770 bytes (16-bit offset;
CALR [cc,]ee), or -8388604 to +8388611 bytes (JR [cc,]
eee) are supported. These instructions are really useful to
program relocatable programs.

Jump is available with Indirect Register mode in addition
to Direct Address mode. It can be useful for implementing
complex control structures such as dispatch tables. When
using DirectAddress mode for aJump or Call, the operand
is used as an immediate value that is loaded into the PC to
specify the address of the next instruction to be executed.

The conditional Return instruction is a companion to the
call instruction; if the condition specified in the instruction
is satisfied, it loads the PC from the stack and pops the
stack.

A special instruction, Decrement and Jump if Non-Zero
(DJNZ), implements the control part of the basic Pascal
FOR loop which can be implemented in an instruction. It
supports 8-bit, 16-bit, and 24-bit displacement.

Note that Jump Relative, Call Relative, and DJNZ instruc­
tions use modulo 216 in Native mode, and 232 in Extended
mode for address calculation. So it is possible that the
Z380 CPU can jump to an unexpected address.

Table 5-13. Program Control Group Instructions

Instruction Name Format nn (PC+d) (HL) (IX) (IV)

Call CALL cC,dst -V
Complement Carry Flag CCF
Call Relative CALR cC,dst -V
Decrement and Jump if Non-zero DJNZ dst -V

Jump JP cC,dst
JP dst

Jump Relative JR cC,dst
Return RET cc
Restart RST p
Set Carry Flag SCF

5-12

5.5.9 External Input/Output Instruction
Group

This group of instructions (Table 5-14) are used for trans­
ferring a byte, a word, or string of bytes or words between
peripheral devices and the CPU registers or memory. Byte
I/O port addresses transfer bytes on 07-00 only. These 8-
bit peripherals in a 16-bit data bus environment must be
connected to data line 07-00. In an 8-bit data bus environ­
ment, word I/O instructions to external I/O peripherals
should not be used; however, on-chip peripherals which is
external to the CPU core and assigned as word I/O device
can still be accessed by word I/O instructions.

The instructions for transferring a single byte (IN, OUT) can
transfer data between any 8-bit CPU register or memory
address specified in the instruction and the peripheral port
specified by the contents of the C register. The IN instruc­
tion sets the CPU flags according to the input data;
however, special instructions restricted to using the CPU
accumulator and Direct Address mode and do not affect
the CPU flags. Another variant tests an input port specified
by the contents of the C register and sets the CPU flags
without modifying CPU registers or memory.

The instructionsfortransferring a single word (INW, OUTW)
can transfer data between the register pair and the periph­
eral port specified by the contents of the C register. For
Word I/O, the contents of B, 0, or H appear on 07-00 and

Z3BON

USER'S MANUAL

the contents of C, E, or L appear 015-07. These instruc­
tions do not affect the CPU flags.

Also, there are I/O instructions available which allow to
specify 16-bit absolute I/O address (with OOIR decoder
directives, a 24-bit or 32-bit address is specified) is avail­
able. These instructions do not affect the CPU flags.

The remaining instructions in this group form a powerful
and complete complement of instructions for transferring
blocks of data between I/O ports and memory. The opera­
tion of these instructions is very similar to that of the block
move instructions described earlier, with the exception
that one operand is always an I/O port whose address
remains unchanged while the address of the other oper­
and (a memory location) is incremented or decremented. In
Word mode of transfer, the counter (i.e., BC register) holds
the number of transfers, rather than number of bytes to
transfer in memory-to-memory word block transfer. Both
byte and word forms of these instructions are available.
The automatically repeating forms ofthese instructions are
interruptible, like memory-to-memory transfer.

The I/O addresses output on the address bus is de­
pendant on the I/O instruction, as listed in Table 2-1.

5-13

5.5.9 ExternallnputlOutput Instruction Group (Continued)

Z380N

USER'S MANUAL

Table 5-14. External 1/0 Group Instructions.

Instruction Name

Input
Input Accumulator
Input to Word-Wide Register
Input Byte from Absolute Address

Input Word from Absolute Address
Input and Decrement (Byte)
Input and Decrement (Word)
Input, Decrement, and Repeat (Byte)

Input, Decrement, and Repeat (Word)
Input and Increment (Byte)
Input and Increment (Word)
Input, Increment, and Repeat (Byte)

Input, Increment, and Repeat (Word)
Output
Output Accumulator
Output from Word-Wide Register

Output Byte from Absolute Address
Output Word from Absolute Address
Output and Decrement (Byte)
Output and Decrement (Word)

Output, Decrement, and Repeat (Byte)
Output, Decrement, and Repeat (Word)
Output and Increment (Byte)
Output and Increment (Word)
Output, Increment, and Repeat (Byte)
Output, Increment, and Repeat (Word)

5-14

Format

IN dst,(C)
IN A,(n)
INW dst,(C)
INAWA,(nn)

INAW HL,(nn)
IND
INDW
INDR

INDRW
INI
INIW
INIR

INIRW
OUT (C),src
OUT (n),A
OUTW (C), src

OUTAW (nn),A
OUTAW (nn),HL
OUTO
OUTOW

OTDR
OTDRW
OUTI
OTIW
OTIR
OTIRW

dst=A, B, C, D, E, H or L

dst=BC, DE or HL

src = A, B, C, D, E, H, L, or n

src = BC, DE, HL, or nn

5.5.10 Internal I/O Instruction Group

This group (Table 5-15) of instructions is used to access
on-chip I/O addressing space on the Z380 CPU. This
group consists of instructions for transferring a byte from/
to Internal I/O locations and the CPU registers or memory,
or a blocks of bytes from the memory to the same size of
Internal I/O locations for initialization purposes. These
instructions are originally assigned as newly added I/O
instructions on the Z180 MPU to access Page 0 I/O
addressing space. There is 256 Internal I/O locations, and
all of them are byte-wide. When one of these I/O instruc­
tions is executed, the Z380 MPU outputs the register
address being accessed in a pseudo transaction of two
BUSCLK durations cycle, with the address signals A31-A8
at O. In the pseudo transactions, all bus control signals are
at their inactive state.

The instructions for transferring a single byte (lNO, OUTO)
can transfer data between any 8-bit CPU register and the
Internal I/O address specified in the instruction. The INO
instruction sets the CPU flags according to the input data;
however, special instructions which do not have a destina-

Z3BON

USER'S MANUAL

tion in the instruction with Direct Address (INa (n)), do not
affect the CPU register, but alters flags accordingly. An­
other variant, the TSTIO instruction, does a logical AND to
the instruction operand with the internal I/O location speci­
fied by the C register and changes the CPU flags without
modifying CPU registers or memory.

The remaining instructions in this group form a powerful
and complete complement of instructions for transferring
blocks of data from memory to Internal I/O locations. The
operation of these instructions is very similar to that of the
block move instructions described earlier, with the excep­
tion that one operand is always an Internal I/O location
whose address also increments or decrements by one
automatically, Also, the address of the other operand (a
memory location) is incremented or decremented. Since
Internal I/O space is byte-wide, only byte forms of these
instructions are available. Automatically repeating forms
of these instructions are interruptible, like memory-to­
memory transfer.

Table 5·15. Internal 1/0 Instruction Group

Instruction Name

Input from Internal I/O Location
Input from Internal I/O Location(Nondestructive)
Test I/O
Output to Internal I/O Location
Output to Internal I/O and Decrement
Output to Internal I/O and Increment
Output to Internal I/O, Decrement and Repeat
Output to Internal I/O, Increment and Repeat

Format

INa dst,(n)
INa (n)
TSTIO n
OUTO (n),src
OTDM
OTIM
OTDMR
OTIMR

dst=A, B, C, 0, E, H or L

src=A, B, C, 0, E, H or L

Currently, the Z380 CPU core has the following registers as a part of the CPU core:

Register Name

Interrupt Enable Register
Assigned Vector Base Register
Trap Register
Chip Version 10 Register

Internal I/O address

16H
17H
18H
OFFH

Chip Version 10 register returns one byte data, which
indicates the version of the CPU, or the specific implemen­
tation of the Z380 CPU based Superintegration device.
Currently, the value OOH is assigned to the Z380 MPU, and
other values are reserved.

Also, the Z380 MPU has registers to control chip selects,
refresh, waits, and I/O clock divide to Internal I/O address
OOH to 10H. For these register, refer to Z380 MPU Product
specification.

For the other three registers, refer to Chapter 6, "Interrupt
and Trap."

5-15

5.5.11 CPU Control Group

The instructions in this group (Table 5-16) act upon the
CPU control and status registers or perform other functions
that do notfit into any ofthe other instruction groups. These
include two instructions used for returning from an inter­
rupt service routine. Return from Nonmaskable Interrupt
(RETN) and Return from Interrupt (RETI) are used to pop
the Program Counter from the stack and manipulate the
Interrupt Enable Flag (IEF1 and IEF2), or to signal a reset
to the Z80 peripherals family.

The Disable and Enable Interrupt instructions are used to
set/reset interrupt mask. Without a mask parameters, it
disables/enables maskable interrupt globally. With mask
data, it enables/disables interrupts selectively.

HALT and SLEEP instructions stop the CPU and waits for
an event to happen, or puts the system into the power save
mode.

Bank Test instructions reports which register file, primary
or alternate bank, is in use atthe time, and reflect the status

Z380"
USER'S MANUAL

into a flag register. For example, this instruction is useful to
implement the recursive program, which uses the alter­
nate bank to save a register for the first time, and saves
registers into memory thereafter.

Mode Test instructions reports the current mode of opera­
tion, Native/Extended, Word/Long Word, Locked or not.
This instruction can be used to switch procedures de­
pending on the mode of operation.

Load Accumulator from R or I Register instructions are
used to report current interrupt mask status. Load from/to
register instructions are used to initialize the I register.

Load Control register instructions are used to read/write
the Status Register, set/reset control bit instructions and to
set/reset the control bits in the SR.

The No Operation instruction does nothing, and can be
used as a filler, for debugging purposes, or for timing
adjustment.

Table 5-16. CPU Control Group

Instruction Name

Bank Test
Disable Interrupt
Enable Interrupt
HALT
Interrupt Mode Select
Load Accumulator from I or R Register
Load I or R Register from Accumulator
Load I Register from HL Register
Load HL Register from I Register
Load Control
Mode Test
No Operation
Return from Interrupt
Return from Nonmaskable Interrupt
Reset Control Bit
Set Control Bit
Sleep

5-16

Format

BTEST
DI [mask]
EI [mask]
HALT
IMp
LD A,src
LD dst,A
LD[W] HL,I
LD[W] HL,I
LDCTL dst,src
MTEST
NOP
RETI
RETN
RESC dst
SETC dst
SLP

dst=LCK, LW
dst=LCK, LW, XM

5.5.12 Decoder Directives

The Decoder Directives (Table 5-17) are a special instruc­
tions to expand the Z80 instruction set to handle the Z380's
4 Gbytes of linear memory addressing space. For details
on this instruction, refer to Chapter 3.

5.6 NOTATION AND BINARY ENCODING

The rest of this chapter consists of a detailed description
of the Z380 CPU instructions, arranged in alphabetical
order by mnemonic. This section describes the notational
conventions used in the instruction descriptions and the
binary encoding for register fields within the instruction's
operation codes (opcodes).

The description of each instruction begins on a new page.
The instruction mnemonic and name are printed in bold
letters althe top of each page to enable the reader to easily
locate a desired description. The assembly language
syntax is then given in a single generic form that covers all
the variants of the instruction, along with a list of applicable
addressing modes. This is followed by a description of the
operation performed by the instruction in "pseudo Pascal"
fashion, a detailed description, a listing of all the flags that
are affected by the instruction, and illustrations of the
opcodes for all variants of the instruction.

Symbols. The following symbols are used to describe the
instruction set.

n
nn
d
src
dst
SR
R

IR
RX

SP
(C)
cc
[]
()

An 8-bit constant
A 16-bit constant
An 8-bit offset. (two's complement)
Source of the instruction
Destination of the instruction
Select Register
Any register. In Word operation, any register pair.
Any 8-bit register (A, B, C, D, E, H, or L) for Byte
operation.
Indirect register
Indexed register (IX or IV) in Word operation, IXH,
IXL, IVH, or IVL for Byte operation.
Current Stack Pointer
I/O Port pointed by C register
Condition Code
Optional field
Indirect Address Pointer or Direct Address

Z3BO"
USER'S MANUAL

Table 5-17. Decoder Directive Instructions

DDIRW
DDIR IB,W
DDIR IW,W
DDIR IB
DDIR LW
DDIR IB,LW
DDIRIW,LW
DDIRIW

Word Mode
Immediate Byte, Word Mode
Immediate Word, Word Mode
Immediate Byte
Long Word Mode
Immediate Byte, Long Word Mode
Immediate Word, Long Word Mode
Immediate Word

Assignment of a value is indicated by the symbol "~". For
example, .

dst ~ dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location.

The symbol "H" indicates that the source and destination
is swapping. For example,

dst H src

indicates that the source data is swapped with the data in
the destination; after the operation, data at "src" is in the
"dst" location, and data in "dst " is in the "src" location.

The notation "dst (b)" is used to refer to bit "b" of a given n
location, "dst(m-n)" is used to refer to bit location m to n of •
the destination. For example,

HL(7) specifies bit 7 of the destination.
and
HL(23-16) specifies bit location 23 to 16 of the HL
register.

Flags. The F register contains the following flags followed
by symbols.

S Sign Flag
Z Zero Flag
H Half Carry Flag
PN Parity/Overflow Flag
N Add/Subtract Flag
C Carry Flag

5-17

Z3BON

USER'S MANUAL

5.6 NOTATION AND BINARY ENCODING (Continued)

Condition Codes. The following symbols describe the On the bottom of the each instruction, there are the field
condition codes. encodings, if applicable. For the cases which call out "per

convention," then use the following encoding:
Z Zero*
NZ Not Zero*
C Carry*
NC No Carry*
S Sign
NS No Sign
NV No Overflow
V Overflow
PE Parity Even
PO Parity Odd
P Positive
M Minus

*Abbreviated set

Field Encoding. For opcode binary format in the Tables,
use the following convention:

For example, to get the opcode format on the instruction
LD (IX+ 12h), C

First, find out the entry for "LD (XY +d),R". That entry has
a opcode format of

11 y11101 01110 -r-

5.7 EXECUTION TIME

Table 5-18 details the execution time for each instruction
encoding. All execution times are for instruction execution
only. Clock cycles required for fetch and decode are not
included because most of the time the clocks required for
these operations occur in parallel with execution of the
previous instruction(s).

r in the execution time column indicates a memory read
operation. The time required for a read operation is shown
in the Table 5-18 below.

w in the execution time column indicates a memory write
operation. The time required for a write operation is shown
in the Table 5-18 below.

5-18

r Reg
000 B
001 C
010 0
Q11 .E
100 H
101 L
111 A

To form the opcode, first, look for the "y" field value for IX
register, which is O.

Then find "r" field value for the C register, which is 001.
Replace "y" and "r" field with the value from the table,
replace "d" value with the real number. The results being:

76543210
11011101
01 110001
00010010

HEX
DO
71
21

i in the execution time column indicates an I{O read
operation. The time required for a read operation is shown
in the Table 5-18 below.

o in the execution time column indicates an I{O write
operation. The time required for a write operation is shown
in the Table 5-18 below.

All entries in the table below assume no wait states. The
number of wait states per operation must be added to
these numbers.

~2iUJE
Z3S0'"

USER'S MANUAL

Table 5-18. Execution Time

Operation Byte Word Word Long Long Long Long Long

Sequence B W B/B W/W W/B/B B/W/B B/B/W B/B/B/B
Memory Read 3-4 3-4 5-6 5-6 7-8 7-8 7-8 9-10
Memory Write 0-1 0-1 2-3 2-3 4-5 4-5 4-5 6-7
Internal I/O Read 3-4 N/A N/A N/A N/A N/A N/A N/A

Internal I/O Write 0-1 N/A N/A N/A N/A N/A N/A N/A
1 X External I/O Read 4-5 4-5 N/A N/A N/A N/A N/A N/A
1X External I/O Write 1-2 1-2 N/A N/A N/A N/A N/A N/A
2X External I/O Read 9-11 9-11 N/A N/A N/A N/A N/A N/A
2X External I/O Write 1-3 1-3 N/A N/A N/A N/A N/A N/A

4X External I/O Read 17-21 17-21 N/A N/A N/A N/A N/A N/A
4X External I/O Write 1-5 1-5 N/A N/A N/A N/A N/A N/A
6X External I/O Read 25-31 25-31 N/A N/A N/A N/A N/A N/A
6X External I/O Write 1-7 1-7 N/A N/A N/A N/A N/A N/A
8X External I/O Read 33-41 33-41 N/A N/A N/A N/A N/A N/A
8X External I/O Write 1-9 1-9 N/A N/A N/A N/A N/A N/A

Note: Units are in Clocks. "N/A" is not applicable for that particular transaction.

5-19

ADC
ADD WITH CARRY (BYTE)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

ADC A,src src = R, RX, 1M, IR, X

A f- A + src + C

The source operand together with the Carry flag is added to the accumulator and the sum
is stored in the accumulator. The contents of the source is unaffected. Two's complement
addition is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Syntax
ADCA,R
ADCA,RX
ADCA,n
ADCA,(HL)
ADC A,(XY +d)

Instruction Format
10001-r-
11y11101 1000110w
11001110 -n-
10001110
11y11101 10001110-d-

Execute
Time Note
2
2
2
2+r
4+r

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-20

Z38DN

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:

Z380"
USER'S MANUAL

ADC
ADD WITH CARRY (WORD)

ADC HL,src dst = HL
src = BC, DE, HL, SP

HL(1S-0) ~ HL(1S-0) + src(1S-0) + C

The source operand together with the Carry flag is added to the HL register and the sum is
stored in the HL register. The contents of the source are unaffected. Two's complement
addition is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign arid the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Syntax
ADC HL,R

Instruction Format
11101101 01rr1010

Execute
Time
2

Note

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-21

IJ

ADCW
ADD WITH CARRY (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

ADCW [HL,lsrc src = R, RX, 1M, X

HL(15-0) (- HL(15-0) + src(15-0) + C

The source operand together with the Carry flag is added to the HL register and the sum is
stored in the HL register. The contents of the source are unaffected. Two's complement
addition is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmeJic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Syntax
ADCW [HL,lR
ADCW [HL,lRX
ADCW [HL,lnn
ADCW [HL,](XY +d)

Instruction Format
11101101 100011rr
11y1110110001111
11101101 10001110 -n(low)- n(high)-
11y1110111001110-d-

Execute
Time
2
2
2
4+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-22

Z3BO'"
USER'S MANUAL

Note

~2iUJG

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

Z3BON

USER'S MANUAL

ADD
ADD (BYTE)

ADD A,src src = R, RX, 1M, IR, X

A f- A + src

The source operand is added to the accumulator and the sum is stored in the accumulator.
The contents of the source are unaffected. Two's complement addition is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Syntax
ADD A,R
ADD A,RX
ADD A,n
ADDA,(HL)
ADD A,(XY +d)

Instruction Format
10000-r-
11y11101 1000010w
11000110 -n-
10000110
11y11101 10000110 -d-

Execute
Time
2
2
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-23

ADD
ADD (WORD)

Operation:

Flags:

ADD dst,src

If (XM) then begin

dst = HL; src = BC, DE, HL, SP, DA
or

dst = IX; src = BC, DE, IX, SP
or

dst = IY; src = BC, DE, IY, SP

dst(31-0) (- dst(31-0) + src(31-0)
end
else begin
dst(15-0) (- dst(15-0) + src(15-0)
end

The source operand is added to the destination and the sum is stored in the destination. The
contents of the source are unaffected. Two's complement addition is performed. Note that
the length of the operand is controlled by the Extended/Native mode selection, which is
consistent with the manipulation of an address by the instruction.

S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Z380·
USER'S MANUAL

Addressing
Mode
R:

Syntax
ADD HL,R
ADDXY,R
ADD HL,(nn)

Instruction Format
00rr1001

Execute
Time
2

Note
X

RX: 11y11101 00rr1001
DA: 11101101 11000110 -n(low)- n(high)-

Field Encodings: rr: 00 for BC, 01 for DE, 10 for register to itself, 11 for SP
y: 0 for IX, 1 for IY

5-24

2
2+r

X
I,X

Operation:

Flags:

Addressing
Mode
1M:

Z3BO"
USER'S MANUAL

ADD
ADD TO STACK POINTER (WORD)

ADD SP,srcsrc = 1M

if (XM) then begin
SP(31-0) ~ SP(31-0) + src(31-0)
end

else begin
SP(15-0) ~ SP(15-0) + src(15-0)

end

The source operand is added to the SP register and the sum is stored in the SP register. This
has the effect of allocating or allocating space on the stack. Two's complement addition is
performed.

S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Syntax
ADD SP,nn

Instruction Format
11101101 10000010 -n(low)- -n(high)

Execute
Time Note
2 I, X

5-25

AD OW
ADD (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

ADDW [HL,lsrc src = R, RX, 1M, X

HL(15-0) f- HL(15-0) + src(15-0)

The source operand is added to the HL register and the sum is stored in the HL register. The
contents of the source are unaffected. Two's complement addition is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Syntax
ADDW[HL,lR
ADDW [HL,lRX
ADDW [HL,lnn
ADDW [HL,](XY +d)

Instruction Format
11101101 100001 rr
11y1110110000111
11101101 10000110 -n(low)- n(high)-
11y1110111000110-d-

Execute
Time
2
2
2
4+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-26

Z380~
USER'S MANUAL

Note

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

Z3BO"
USER'S MANUAL

AND
AND (BYTE)

AND [A,]src src = R, RX, 1M, IR, X

A ~ AAND src

A logical AND operation is performed between the corresponding bits of the source operand
and the accumulator and the result is stored in the accumulator. A 1 is stored wherever the
corresponding bits in the two operands are both 1 s; otherwise a 0 is stored. The contents
of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Syntal(
AND [A,]R
AND [A.]RX
AND [A.]n
AND [A.](HL)
AND [A.](XY +d)

Instruction Format
10100-r-
11y111011010010w
11100110 -n-
10100110
11y1110110100110-d-

Execute
Time
2
2
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-27

ANDW
AND (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

ANDW [HL,lsrc src = R, RX, 1M, X

HL(15-0) t- HL(15-0) AND src(15-0)

A logical AND operation is performed between the corresponding bits of the source operand
and the HL register and the result is stored in the HL register. A 1 is stored wherever the
corresponding bits in the two operands are both 1s; otherwise a 0 is stored. The contents
of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Syntax
ANDW [HL,lR
ANDW [HL,lRX
ANDW [HL,lnn
ANDW [HL,](XY +d)

Instruction Format
11101101101001rr
11y1110110100111
1110110110100110 n(low)- n(high)-
11y1110111100110-d-

Execute
Time
2
2
2
4+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-28

Z3BON

USER'S MANUAL

Note

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

Z3BON

USER'S MANUAL

BIT
BIT TEST

BIT b,dst dst = R, IR, X

Z f- NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is 0, otherwise the Zero flag is cleared to O. The contents of the destination
are unaffected. The bit to be tested is specified by a 3-bit field in the instruction; this field
contains the binary encoding for the bit number to be tested. The bit number b must be
between 0 and 7.

S: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
V: Unaffected
N: Cleared
C: Unaffected

Syntax
BITb,R
BIT b,(HL)
BIT b,(XY +d)

Instruction Format
11001011 01 bbb-r-
1100101101bbb110
11y1110111001011-d-01bbb110

Execute
Time Note
2
2+r
4+r

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-29

IJ

BTEST
BANK TEST

Operation:

BTEST

S f- SR(16)
Z f- SR(24)
V f- SR(O)
C f- SR(8)

The Alternate Register bits in the Select Register (SR) are transferred to the flags. This allows
the program to determine the state of the machine.

Flags: S: Set if the alternate bank IX is in use; cleared otherwise
Z: Set if the alternate bank IY is in use; cleared otherwise
H: Unaffected
V: Set if the alternate bank AF is in use; cleared otherwise
N: Unaffected
C: Set if the alternate bank of BC, DE and HL is in use; cleared otherwise

Addressing
Mode Syntax Instruction Format

11101101 11001111

Execute
Time

BTEST 2

5-30

Note

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
DA:

CALL [cc,ldst dst = DA

if (cc is TRUE) then begin
if (XM) then begin

SP f- SP-4
(SP) f- PC(7-0)
(SP+ 1) f- PC(15-8)
(SP+2) f- PC(23-16)
(SP+3) f- PC(31-24)
PC(31-0) f- dst(31-0)

else begin
SP f- SP- 2
(SP) f- PC(7-0)
(SP+1) f- PC(15-8)
PC(15-0) f- dst(15-0)
end

end

A conditional Call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an Unconditional
Call always transfers control to the destination address. The current contents of the Program
Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the
first instruction byte following the Call instruction. The destination address is then loaded
into the PC and points to the first instruction of the called procedure. At the end of a
procedure a Return instruction (RET) can be used to return to the original program.

Each of the Zero, Carry, Sign, and Overflow Flags can be individually tested and a call
performed conditionally on the setting of the flag.

The operand is not enclosed in parentheses with the CALL instruction.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
CALL CC,addr
CALLaddr

Instruction Format
11-cc100 -a(low)- -a(high)
11001101 -a(low)- -a(high)

Execute
Time
note
4+w

Note
I,X
I,X

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C,
100 for PO or NV, 101 for PE or V, 110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

Z3BO"
USER'S MANUAL

CALL
CALL

5-31

CALR
CALL RELATIVE

Operation:

CALR [cc,]dst

if (cc is true) then begin
dst

end

if (XM) then begin
SP
(SP)
(SP+1)
(SP+2)
(SP+3)
PC(31-0)
end

else begin
SP
(SP)
(SP+1)
PC(15-0)
end

dst = RA

f- SIGN EXTEND dst

f- SP-4
f- PC(7-0)
f- PC(15-8)
f- PC(23-16)
f- PC(31-24)
f- PC(31-0) + dst(31-0)

f- SP-2
f- PC(7-0)
f- PC(15-8)
f- PC(15-0) + dst(15-0)

A conditional Call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an unconditional
call always transfers control to the destination address. The current contents of the Program
Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the
first instruction byte following the Call instruction. The destination address is then loaded into
the PC and points to the first instruction of the called procedure. At the end of a procedure
a RETurn instruction is used to return to the original program. These instructions employ
either an 8-bit, 16-bit, or 24-bit signed, two's complement displacement from the PC to
permit calls within the range of -126 to + 129 bytes, -32,765 to +32,770 bytes or-8,388,604
to +8,388,611 bytes from the location of this instruction.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
.v: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mode Syntax Instruction Format Time
RA: CALR CC,addr 11101101 11-cc100 -disp- note

CALR addr 11101101 11001101 -disp- 4+w
CALR CC,addr 11011101 11-cc100 -d(low)- -d(high) note
CALR addr 11011101 11001101 -d(low)- -d(high) 4+w
CALR CC,addr 11111101 11-cc100 -d(low)- -d(mid)- -d(high) note
CALR addr 11111101 11001101 -d(low)- -d(mid) -d(high) 4+w

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

5-32

Z3BO"
USER'S MANUAL

Note
X
X
X
X
X
X

Operation:

Flags:

Addressing

CCF

C ~ NOTC

The Carry flag is inverted.

S: Unaffected
Z: Unaffected
H: The previous state of the Carry flag
V: Unaffected
N: Cleared

Z3BON

USER'S MANUAL

CCF
COMPLEMENT CARRY FLAG

C: Set if the Carry flag was clear before the operation; cleared otherwise

Mode Syntax Instruction Format
00111111

Execute
Time Note
2 CCF

5-33

E

CP
COMPARE (BYTE)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

CP [A,lsrc src = R, RX, 1M, IR, X

A- src

The source operand is compared with the accumulator and the flags are set accordingly.
The contents of the accumulator and the source are unaffected. Two's complement
subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Execute
Syntax Instruction Format Time Note
CP [A,lR 10111-r- 2
CP [A,lRX 11y111011011110w 2
CP [A,ln 11111110 -n- 2
CP [A,](HL) 10111110 2+r
CP [A,](XY +d) 11y1110110111110-d- 4+r

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-34

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

Z380N

USER'S MANUAL

CPW
COMPARE (WORD)

CPW [HL,lsrc

HL(15-0) - src(15-0)

src = R, RX, 1M, X

The source operand is compared with the HL register and the flags are set accordingly. The
contents of the HL register and the source are unaffected. Two's complement subtraction
is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
CPW [HL,lR
CPW [HL,lRX
CPW [HL,]nn
CPW [HL,](XY +d)

Instruction Format
11101101 101111 rr
11y1110110111111
11101101 10111110 -n(low)- n(high)-
11y1110111111110-d-

Execute
Time
2
2
2
4+r

Note

Field Encodings: rr:
y:

00 for BC, 01 for DE, 11 for HL
o for IX, 1 for IY

5-35

I

CPD
COMPARE AND DECREMENT (BYTE)

Operation:

Flags:

Addressing

CPD

A - (HL)
if (XM) then begin

HL(31-0) f- HL(31-0) - 1
end

else begin
HL(15-0) f- HL(15-0) - 1
end

BC(15-0) f- BC(15-0) - 1

This instruction is used for searching strings of byte data. The byte of data at the location
addressed by the HL register is compared with the contents of the accumulator and the Sign
and Zero flags are setto reflect the result of the comparison. The contents of the accumulator
and the memory bytes are unaffected. Two's complement subtraction is performed. Next
the HL register is decremented by one, thus moving the pointer to the previous element in
the string. The BC register, used as a counter, is then decremented by one.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the memory

byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110110101001

Execute
Time
3+r

Note
X CPD

5-36

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z380'"
USER'S MANUAL

CPDR
COMPARE, DECREMENT AND REPEAT (BYTE)

CPDR

Repeat until (BC=O OR match) begin
A - (HL)
if (XM) then begin

HL(31-0) f-- HL(31-0) - 1
end

else begin
HL(15-0)
end

BC(15-0)
end

HL(15-0) - 1

BC(15-0) - 1

This instruction is used for searching strings of byte data. The bytes of data starting at the
location addressed by the HL register are compared with the contents of the accumulator
until either an exact match is found or the string length is exhausted becuase the BC register
has decremented to zero. The Sign and Zero flags are set to reflect the result of the
comparison. The contents of the accumulator and the memory bytes are unaffected.Two's
complement subtraction is performed.

After each comparison, the HL register is decremented by one, thus moving the pOinter to
the previous element in the string.

The BC register, used as a counter, is then decremented byone.lfthe resultof decrementing
the BC register is not zero and no match has been found, the process is repeated. If the
contents of the BC register are zero at the start of this instruction, a string length of 65,536
is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value
at the start of this instruction is pushed onto the stack so that the instruction can be resumed.

S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating a match; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Syntax
CPDR

Instruction Format
1110110110111001

Execute
Time
(3+r)n

Note
X

5-37

E

CPI
COMPARE AND INCREMENT (BYTE)

Operation:

Flags:

Addressing
Mode

5-38

CPI

A - (HL)
if (XM) then begin

HL(31-0) f-- HL(31-0) + 1
end

else begin
HL(15-0) f-- HL(15-0) + 1
end

BC(15-0) f-- BC(15-0) - 1

This instruction is used for searching strings of byte data. The byte of data at the location
addressed by the HL register is compared with the contents of the accumulator and the Sign
and Zero flags are set to reflect the result of the comparison. The contents of the accumulator
and the memory bytes are unaffected. Two's complement subtraction is performed. Nextthe
HL register is incremented by one, thus moving the pointer to the next element in the string.
The BC register, used as a counter, is then decremented by one.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the memory
byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Syntax
CPI

Instruction Format
11101101 10100001

Execute
Time
3+r

Note
X

Z3BO"
USER'S MANUAL

*2iUJG

Operation:

Flags:

Addressing

Z3BON

USER'S MANUAL

CPIR
COMPARE, INCREMENT AND REPEAT (BYTE)

CPIR

Repeat until (BC=O OR match) begin
A - (HL)
if (XM) then begin

HL(31-0) ~ HL(31-0) + 1
end

else begin
HL(15-0)
end

BC(15-0)
end

HL(15-0) + 1

BC(15-0) - 1

This instruction is used for searching strings of byte data. The bytes of data starting at the
location addressed by the HL register are compared with the contents of the accumulator
until either an exact match is found or the string length is exhausted becuase the BC register
has decremented to zero. The Sign and Zero flags are set to reflect the result of the
comparison. The contents of the accumulator and the memory bytes are unaffected.
Two's complement subtraction is performed.

After each comparison, the HL register is incremented by one, thus moving the pointer to
the next element in the string. The BC register, used as a counter, is then decremented by
one. If the result of decrementing the BC register is not zero and no match has been found,
the process is repeated. If the contents of the BC register are zero at the start of this
instruction, a string length of 65,536 is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value
at the start of this instruction is pushed onto the stack so that the instruction can be resumed.

S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating a match; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110110110001

Execute
Time
(3+r)n

Note
X CPIR

5-39

CPL
COMPLEMENT ACCUMULATOR

CPL[A]

Operation: A +- NOT A

The contents of the accumulator are complemented (one's complement); all 1 s are changed
to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

Addressing
Mode Syntax

CPL[A]

5-40

Instruction Format
00101111

Execute
Time
2

Z3BO"
USER'S MANUAL

Note

Operation:

CPLW [HL]

HL(15-0) ~ NOT HL(15-0)

Z3BON

USER'S MANUAL

CPLW
COMPLEMENT HL REGISTER (WORD)

The contents of the HL register are complemented (ones complement); all1s are changed
to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

Addressing
Mode Syntax

CPLW [HL]
Instruction Format
1101110100101111

Execute
Time
2

Note

5-41

DAA
DECIMAL ADJUST ACCUMULATOR

Operation:

Operation

ADD
ADC
INC
(N=O)

SUB
SBC
DEC
NEG
(N=1)

Flags:

Addressing

DAA

A (- Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary, two's
complement addition or subtraction on two BCD-encoded bytes. The table below indicates
the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC, DEC,
NEG).

C Hex Value H Hex Value Number C H
Before Upper Digit Before Lower Digit Added After After
DAA (Bits 7-4) DAA (Bits 3-0) to Byte DAA DAA

o 0-9 0 0-9 00 0 0
o 0-8 0 A-F 06 0 1
o 0-9 1 0-3 06 0 0
o A-F 0 0-9 60 1 0
o 9-F 0 A-F 66 1 1
o A-F 1 0-3 66 1 0
1 0-2 0 0-9 60 1 0
1 0-2 0 A-F 66 1 1
1 0-3 1 0-3 66 1 0

o 0-9 0 0-9 00 0 0
o 0-8 1 6-F FA 0 1
1 7-F 0 0-9 AO 1 0
1 6-F 1 6-F 9A 1 1

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: See table above
P: Set if the parity of the result is even; cleared otherwise
N: Not affected
C: See table above

Mode Syntax Instruction Format
00100111

Execute
Time Note

DAA 3

5-42

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z380m

USER'S MANUAL

DDIR
DECODER DIRECTIVE

DDIR mode mode = Wor LW, IB or IW

None, decoder directive only

This is not an instruction, but rather a directive to the instruction decoder.

The instruction decoder may be directed to fetch an additional byte or word of immediate
data or address with the instruction, as well as tagging the instruction for execution in either
Word or Long Word mode. All eight combinations of the two options are supported, as shown
in the encoding below. Instructions which do not support decoder directives are assembled
by the instruction decoder as if the decoder directive were not present.

The IB decoder directive causes the decoder to fetch an additional byte immediately after
the existing immediate data or direct address, and in front of any trailing opcode bytes (with
instructions starting with DD-CB or FD-CB, for example).

Likewise, the IW decoder directive causes the decoder to fetch an additional word
immediately after the existing immediate data or direct address, and in front of any trailing
opcode bytes.

Byte ordering within the instruction follows the usual convention; least significant byte first,
followed by more significant bytes. More-significant immediate data or direct address bytes
not specified in the instruction are taken as all zeros by the processor.

The W decoder directive causes the instruction decoder to tag the instruction for execution
in Word mode. This is useful while the Long Word (LW) bit in the Select Register (SR) is set,
but 16-bit data manipulation is required for this instruction.

The LW decoder directive causes the instruction decoder to tag the instruction for execution
in Long Word mode. This is useful while the LW bit in the SR is cleared, but 32-bit data
manipulation is required for this instruction.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
DDIR mode

Instruction Format
11w11101 110000im

Execute
Time
o

Note

Field Encodings: wim: 000 W
001 IB,W
010 IW,W
011 IB

Word mode

100 LW
101 IB,LW
110 IW,LW
111 IW

Immediate byte, Word mode
Immediate word, Word mode
Immediate byte
Long Word mode
Immediate byte, Long Word mode
Immediate word, Long Word mode
Immediate word

5-43

DEC
DECREMENT (BYTE)

DEC dst dst = R, RX, IR, X

Operation: dst ~ dst-1

The destination operand is decremented by one and the result is stored in the destination.
Two's complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was BOH; cleared otherwise

Addressing
Mode
R:
RX:
IR:
X:

N: Set
C: Unaffected

Syntax
DECR
DECRX
DEC (HL)
DEC (XY+d)

Instruction Format
00-r-101
11y111010010w101
00110101
11y1110100110101-d-

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

Note: 2 for accumulator, 3 for any other register

5-44

Execute
Time
note
2
2+r+w
4+r+w

Note

Z380"
USER'S MANUAL

Z3BO"
USER'S MANUAL

DEC[W]
DECREMENT (WORD)

DEC[W] dstdst = R, RX

Operation: if (XM) then begin

Flags:

Addressing
Mode
R:
RX:

dst(31-0) f­

end
else begin

dst(15-0) f­

end

dst(31-0) - 1

dst(15-0) - 1

The destination operand is decremented by one and the result is stored in the destination.
Two's complement subtraction is performed. Note that the length of the operand is
controlled by the Extended/Native mode selection, which is consistent with the manipulation
of an address by the instruction.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
DEC[W] R
DEC[W] RX

Instruction Format
00rr1011
11y1110100101011

Execute
Time
2
2

Note
X
X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP
y: 0 for IX, 1 for IV

5-45

II

01
DISABLE INTERRUPTS

Operation:

Flags:

Addressing

DI [n]

if (n is present) then begin
for i=1 to 4 begin

if (n(i) = 1) then begin
IER(i-1) f- 0
end

end
if (n(O) = 1) then begin

SR(5) f- 0
end

end
else begin

SR(5)
end

o

If an argument is present, disable the selected interrupts by clearing the appropriate enable
bits in the Interrupt Enable Register, and then clear the Interrupt Enable Flag (IEF1) in the
Select Register (SR) if the least-significant bit of the argument is set, disabling maskable
interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 0, disabling maskable interrupts.

Note that during execution of this instruction the maskable interrupts are not sampled.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
11110011

Execute
Time Note

DI 2
DI n 11011101 11110011 -n- 2

5-46

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

Z380N

USER'S MANUAL

DIVUW
DIVIDE UNSIGNED (WORD)

DIVUW [HL,lsrc src = R, RX, 1M, X

HL(15-0) (- HL/ src
HL(31-16) (- remainder

The contents of the the HL register (dividend) are divided by the source operand (divisor)
and the quotient is stored in the lower word of the HL register; the remainder is stored in the
upper word of the HL register. The contents of the source are unaffected. Both operands are
treated as unsigned, binary integers. There are three possible outcomes of the DIVUW
instruction, depending on the division and the resulting quotient:

Case 1: If the quotient is less than 65536, then the quotient is left in the HL register, the
Overflow and Sign flags are cleared to 0, and the Zero flag is set according to the value of
the quotient.

Case 2: If the divisor is zero, the HL register is unchanged, the Zero and Overflow flags are
set to 1, and the Sign flag is cleared to O.

Case 3: If the quotient is greater than or equal to 65536, the HL register is unchanged, the
Overflow flag is set to 1, and the Sign and Zero flags are cleared to O.

S: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient is greater than or equal to 65536;

cleared otherwise
N: Unaffected
C: Unaffected

Syntax
DIVUW [HL,lR
DIVUW [HL,lRX
DIVUW [HL,lnn
DIVUW [HL,l(XY +d)

Instruction Format
11101101 11001011 101110rr
11101101110010111011110y
11101101 11001011 10111111 -n(low)- -n(high)
11y1110111001011-d-10111010

Execute
Time Note
20
20
20
22+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-47

DJNZ

Z3S0"
USER'S MANUAL

DECREMENT AND JUMP IF NON-ZERO

Operation:

Flags:

Addressing
Mode
RA:

DJNZ dst dst = RA

B ~ B-1
If (B <> 0) then begin

dst ~ SIGN EXTEND dst
if (XM) then begin

PC(31-0) ~ PC(31-0) + dst(31-0)
end

else begin
PC(15-0) ~ PC(15-0) + dst(15-0)
end

end

The B register is decremented by one. If the result is non-zero, then the destination address
is calculated and then loaded into the Program Counter (PC). Control then passes to the
instruction whose address is pointed to by the PC. When the B register reaches zero, control
falls through to the instruction following DJNZ. This instruction provides a simple method of
loop control.

The destination address is calculated using Relative addressing. The displacement in the
instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two's complement
displacement from the PC to permit jumps within a range of -126 to + 129 bytes, -32,765 to
+32,770 bytes, or -8,388,604 to +8,388,611 bytes from the location of this instruction.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
DJNZ addr
DJNZ addr
DJNZ addr

Instruction Format
00010000 -disp-

Execute
Time
note
note
note

Note
X

11011101 00010000 -d(low)- -d(high)
11111101 00010000 -d(low)- -d(mid)- -d(high)

X
X

Note: 3 if branch not taken, 4 if branch taken

5-48

Operation:

Flags:

Addressing
Mode

Z380"
USER'S MANUAL

EI
ENABLE INTERRUPTS

EI [n]

if (n is present) then begin
for i=1 to 4 begin

if (n(i) = 1) then begin
IER(i-1) ~

end
end

if (n(O) = 1) then begin
SR(5) ~

end
end

else begin
SR(5) ~

end

If an argument is present, enable the selected interrupts by setting the appropriate enable
bits in the Interrupt Enable Register, and then set the Interrupt Enable Flag (IEF1) in the
Select Register (SR) if the least-significant bit of the argument is set, enabling maskable
interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 1, enabling maskable interrupts.

Note that during the execution of this instruction and the following instruction, maskable
interrupts are not sampled.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
EI
EI n

Instruction Format
11111011
1101110111111011-n-

Execute
Time
2
2

Note

5-49

EX
EXCHANGE ACCUMULATOR/FLAG WITH ALTERNATE BANK

Operation:

EXAF,AF'

SR(O) t- NOT SR(O)

Bit 0 of the Select Register (SR), which controls the selection of primary or alternate bank
for the accumulator and flag register, is complemented, thus effectively exchanging the
accumulator and flag registers between the two banks.

Flags: S: Value in F'
Z: Value in F'
H: Value in F'
V: Value in F'
N: Value in F'
C: Value in F'

Addressing
Mode Syntax

EXAF,AF'

5-50

Instruction Format
00001000

Execute
Time
3

Note

Z380n

USER'S MANUAL

Operation:

Z3S0'"
USER'S MANUAL

EX
EXCHANGE ADDRESSING REGISTER WITH TOP OF STACK

EX (SP),dst dst = HL, IX, IY

if (LW) then begin
(SP+3) H dst(31-24)
(SP+2) H dst(23-16)
end

(SP+1)
(SP)

H dst(15-8)
H dst(7-0)

The contents of the destination register are exchanged with the top of the stack. In Long
Word mode this exchange is two words; otherwise it is one word.

Flags: S: Unaffected

Addressing
Mode
R:

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
EX (SP),HL
EX (SP),XY

Instruction Format
11100011
11y11101 11100011

Field Encodings: y: 0 for IX, 1 for IY

Execute
Time
3H+W
3H+W

Note
L
L

5-51

EX
EXCHANGE REGISTER (WORD)

Operation:

EX dst,src dst = R, RX
src = R, RX

if (LW) then begin
dst(31-0) ~ src(31-0)
end

else begin
dst(15-0) ~ src(15-0)
end

The contents of the destination are exchanged with the contents of the source.

Flags: S: Unaffected

Addressing
Mode
R:

RX:

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
EX BC,DE
EX BC,HL
EX DE,HL
EX R,RX
EX IX,IY

Instruction Format
11101101 00000101
11101101 00001101
11101011
11101101 00rry011
11101101 00101011

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-52

Execute
Time
3
3
3
3
3

Note
L
L
L
L
L

Z3BOn

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:

Z380"
USER'S MANUAL

EX
EXCHANGE REGISTER WITH ALTERNATE REGISTER (BYTE)

EX dst,src src = R

dst H src

The contents of the destination are exchanged with the contents of the source, where the
destination is a register in the primary bank and the source is the corresponding register in
the alternate bank

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
EXR,R'

Instruction Format
1100101100110-r-

Execute
Time
3

Note

Field Encoding: r: per convention

5-53

EX
EXCHANGE REGISTER WITH ALTERNATE REGISTER (WORD)

Operation:

EX dst,src src = R, RX

if (LW) then begin
dst(31-0) H

end
else begin

dst(15-0) H

end

src(31-0)

src(15-0)

The contents of the destination are exchanged with the contents of the source, where the
destination is a word register in the primary bank and the source is the corresponding word
register in the alternate bank.

Flags: S: Unaffected

Addressing
Mode
R:
RX:

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
EX R,R'
EX RX,RX'

Instruction Format
11101101 11001011 001100rr
11101101110010110011010y

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-54

Execute
Time
3
3

Note
L
L

Z380~
USER'S MANUAL

EXA,src

Operation: dst H src

src = R, IR

Z380N

USER'S MANUAL

EX
EXCHANGE WITH ACCUMULATOR

The contents of the accumulator are exchanged with the contents of the source.

Flags:

Addressing
Mode
R:
IR:

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
EXA,R
EX A,(HL)

Field Encodings: r: per convention

Instruction Format
1110110100-r-111
11101101 00110111

Execute
Time
3
3+r+w

Note

5-55

11

EXALL
EXCHANGE ALL REGISTERS WITH ALTERNATE BANK

Operation:

EXALL

SR(24) f- NOT SR(24)
SR(16) f- NOT SR(16)
SR(8) f- NOT SR(8)

Bits 8, 16, and 24 of the Select Register (SR), which control the selection of primary or
alternate bank for the BC, DE, HL, IX, and IV registers, are complemented, thus effectively
exchanging the BC, DE, HL, IX, and IV registers between the two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing
Mode Syntax

EXALL

5-56

Instruction Format
1110110111011001

Execute
Time
3

Note

Z3BON

USER'S MANUAL

Operation:

Flags:

AddreSSing

Z3BON

USER'S MANUAL

EXTS
EXTEND SIGN (BYTE)

EXTS [A]

L ~ A
if (A(7)=0) then begin

H
..

OOh
if (LW) then begin

HL(31-16) ~ OOOOh
end

end
else begin

H
..

FFh
if (LW) then begin

HL(31-16) ~ FFFFh
end

end

The contents of the accumulator, considered as a signed, two's complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands into longer signed operands.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
1110110101100101

Execute
Time Note

L EXTS [A] 3

5-57

EXTSW
EXTEND SIGN (WORD)

Operation:

Flags:

Addressing

EXTSW [HL]

If (HL(15)=0) then begin
HL(31-16) f- OOOOh
end

else begin
HL(31-16) f- FFFFh
end

The contents of the low word of the HL register, considered as a signed, two's complement
integer, are sign-extended to 32 bits in the HL register. This instruction is useful for
conversion of 16-bit signed operands into 32-bit signed operands.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
1110110101110101

Execute
Time Note

EXTSW [HL] 3

5-58

Z3BON

USER'S MANUAL

Z3BON

USER'S MANUAL

EXX
EXCHANGE REGISTERS WITH ALTERNATE BANK

Operation:

EXX

SR(8) f- NOT SR(8)

Bit 8 of the Select Register (SR), which controls the selection of primary or alternate bank
for the BC, DE, and HL registers, is complemented, thus effectively exchanging the BC, DE,
and HL registers between the two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing
Mode Syntax

EXX
Instruction Format
11011001

Execute
Time
3

Note

5-59

EXXX
EXCHANGE IX REGISTER WITH ALTERNATE BANK

Operation:

EXXX

SR(16) f- NOT SR(16)

Bit 16 of the Select Register (SR), which controls the selection of primary or alternate bank
for the IX register, is complemented, thus effectively exchanging the IX register between the
two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing
Mode Syntax

EXXX

5-60

Instruction Format
1101110111011001

Execute
Time
3

Note

Z380N

USER'S MANUAL

Z380m

USER'S MANUAL

EXXV
EXCHANGE IV REGISTER WITH ALTERNATE BANK

Operation:

EXXY

SR(24) f- NOT SR(24)

Bit 24 of the Select Register (SR). which controls the selection of primary or alternate bank
for the IY register. is complemented. thus effectively exchanging the IY register between the
two banks.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing
Mode Syntax

EXXY
Instruction Format
1111110111011001

Execute
Time
3

Note

5-61

HALT
HALT

Operation:

Flags:

Addressing

HALT

CPU Halts

The CPU operation is suspended until either an interrupt request or reset request is
received. This instruction is used to synchronize the CPU with external events, preserving
its state until an interrupt or reset request is accepted. After an interrupt is serviced, the
instruction following HALT is executed. While the CPU is halted, memory refresh cycles still
occur, and bus requests are honored. When this instruction is executed the signal/HALT
is asserted and rernains asserted until an interrupt or reset request is accepted.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
01110110

Execute
Time Note

HALT 2

5-62

Z3BO'"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z3BO~
USER'S MANUAL

1M
INTERRUPT MODE SELECT

1M P P = 0, 1, 2, 3

SR(4-3) f- P

The interrupt mode of operation is set to one of four modes. (See Chapter 6 for a description
of the various modes for responding to interrupts). The current interrupt mode can be read
from the Select Register (SR).

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
1M P

Instruction Format
11101101010pp110

Execute
Time
4

Note

Field Encodings: pp: 00 for Mode 0, 01 for Mode 3, 10 for Mode 1, 11 for Mode 2

5-63

IN
INPUT (BYTE)

Operation:

Flags:

Addressing
Mode
R:

IN dst,(C)

dst f- (C)

dst = R

The byte of data from the selected peripheral is loaded into the destination register. During
the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Syntax
INR,(C)

Instruction Format
1110110101-r-000

Execute
Time
2+i

Note

Field Encodings: r: per convention

5-64

Z380m

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:

INW dst,(C) dst = R

dst(15-0) f- (C)

Z3BON

USER'S MANUAL

INW
INPUT (WORD)

The word of data from the selected peripheral is loaded into the destination register. During
the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

S: Set if the input data IS negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Syntax
INW R,(C)

Instruction Format
11011101 01 rrrOOO

Execute
Time
2+i

Note

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

5-65

IN
INPUT ACCUMULATOR

Operation:

Flags:

Addressing

IN A,(n)

A (- (n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low byte
of the address bus, the contents of the accumulator are placed on address lines A 15-A8,
and the high-order address lines are all zeros.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
11011011 -n-

Execute
Time
3+i

Note
IN A,(n)

5-66

Z380'"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
none:

Z380~
USER'S MANUAL

INO
INPUT (FROM PAGE 0)

INO dst,(n) dst= R

dst f- (n)

The byte of data from the selected on-chip peripheral is loaded into the destination register.
No external I/O transaction will be generated as a result of this instruction, although the
I/O address will appear on the address bus while this internal read is occurring. The

peripheral address is placed on the low byte of the address bus and zeros are placed on
all other address lines. When the second opcode byte is 30h no data is stored in a
destination; only the flags are updated.

S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Syntax
INOR,(n)
INO (n

Instruction Format
1110110100 -r- OOO-n-
1110110100110000 -n-

Execute
Time
3+i
3+i

Note

Field Encodings: r: per convention

5-67

INA
INPUT DIRECT FROM PORT ADDRESS (BYTE)

Operation:

Flags:

Addressing

INA A,(nn)

A (- (nn)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines as all
zeros.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
Execute
Time
3+i INA A,(nn) 11101101 11011011 -n(low)- -n(high)

5-68

Z3BON

USER'S MANUAL

Note
I

Operation:

Flags:

Addressing

Z380"
USER'S MANUAL

INAW
INPUT DIRECT FROM PORT ADDRESS (WORD)

INAW HL,(nn)

HL(15-0) ~ (nn)

The word of data from the selected peripheral is loaded into the HL register. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines as all
zeros.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
Execute
Time
3+i

Note
I INAW HL,(nn) 11111101 11011011 -n(low)- -n(high)

5-69

INC
INCREMENT (BYTE)

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

INC dst dst = R, RX, IR, X

dst f-- dst + 1

The destination operand is incremented by one and the sum is stored in the destination.
Two's complement addition is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise"
V: Set if arithmetic overflow occurs, that is, if the destination was 7FH; cleared otherwise
N: Cleared
C: Unaffected

Execute
Syntax Instruction Format Time Note
INCR 00-r-100 note
INCRX 11y111010010w100 2
INC (HL) 00110100 2+r+w
INC (XY+d) 11y1110100110100-d- 4+r+w

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

Note: 2 for accumulator, 3 for any other register

5-70

Z380"
USER'S MANUAL

~2iUJG

Operation:

Flags:

Addressing
Mode
R:
RX:

Z380~
USER'S MANUAL

INC[W]
INCREMENT (WORD)

INC[W] dst dst = R, RX

if (XM) then begin
dst(31-0) <
end

else begin
dst(15-0) f­

end

dst(31-0) + 1

dst(15-0) + 1

The destination operand is incremented by one and the sum is stored in the destination.
Two's complement addition is performed. Note that the length of the operand is controlled
by the Extended/Native mode selection, which is consistent with the manipulation of an
address by the instruction.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
INC[W] R
INC[W] RX

Instruction Format
00rr0011
11y11101 00100011

Execute
Time
2
2

Note
X
X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP
y: 0 for IX, 1 for IY

5-71

IND
INPUT AND DECREMENT (BYTE)

Operation:

Flags:

Addressing

IND

(HL) ~ (e)
B ~ B-1
HL ~ HL-1

This instruction is used for block input of strings of data. During the 110 transaction the 32-
bit Be register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A 15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then decremented by one, thus moving the pointer to the next
destination for the input.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
e: Unaffected

Mode Syntax Instruction Format
1110110110101010

Execute
Time
2+i+w IND

5-72

Z3BO"
USER'S MANUAL

Note

Operation:

Flags:

Addressing

Z380"
USER'S MANUAL

INDW
INPUT AND DECREMENT (WORD)

INDW

(HL)
BC(15-0)
HL

~ (DE)
~ BC(15-0)-1
~ HL-2

This instruction is used for block input of strings of data. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then decremented by two, thus moving the pointer to the next
destination for the input.

S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110111101010

Execute
Time
2+i+w

Note
INDW

5-73

INDR
INPUT, DECREMENT AND REPEAT (BYTE)

Operation:

Flags:

Addressing
Mode

5-74

INDR

repeat until (B=O) begin
(HL) f- (C)
B f- B-1
HL f- HL-1
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the
32-bit BC register is placed on the address bus. Note that the B register contains the loop
count for this instruction so that A 15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then decremented by one, thus moving the pointer to the next
destination for the input. If the result of decrementing the B register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of
the execution of this instruction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Syntax
INDR

Instruction Format
1110110110111010

Execute
Time
n X (2+i+w)

Note

Z380N

USER'S MANUAL

Operation:

Flags:

Addressing

Z3BO"
USER'S MANUAL

INDRW
INPUT, DECREMENT AND REPEAT (WORD)

INDRW

repeat until (BC=O) begin
(HL) ~ (DE)
BC(15-0) ~ BC(15-0)-1
HL ~ HL-2
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the
32-bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. First the word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
Then the BC register, used as a counter, is decremented by one. The HL register is then
decremented by two, thus moving the pointer to the next destination for the input. If the result
of decrementing the BC register is 0, the instruction is terminated, otherwise the sequence
is repeated. lithe BC register contains 0 at the start of the execution olthis instruction, 65536
bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110111111010

Execute
Time Note

INDRW n X (2+i+w)

5-75

INI
INPUT AND INCREMENT (BYTE)

Operation:

Flags:

Addressing

INI

(HL) (- (e)
B (- B-1
HL (- HL + 1

This instruction is used for block input of strings of data. During the I/O transaction the 32-
bit Be register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A 15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then incremented by one, thus moving the pointer to the next
destination for the input.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
e: Unaffected

Mode Syntax Instruction Format
11101101 10100010

Execute
Time
2+i+w

Note
INI

5-76

Z3S0'"
USER'S MANUAL

Operation:

Flags:

Addressing

Z380N

USER'S MANUAL

INIW
INPUT AND INCREMENT (WORD)

INIW

(HL)
BC(15-0)
HL

f- (DE)
f- BC(15-0) - 1
f- HL+2

This instruction is used for block input of strings of data.
During the I/O transaction the 32-bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then incremented by two, thus moving the pointer to the next
destination for the input.

S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110111100010

Execute
Time
2+i+w

Note
INIW

5-77

INIR
INPUT, INCREMENT AND REPEAT (BYTE)

Operation:

Flags:

Addressing
Mode

5-78

INIR

repeat until (B=O) begin
(HL) ~ (C)
B ~ B-1
HL ~ HL + 1
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the B register, used as a counter, is decremented by
one. The HL register is then incremented by one, thus moving the pointer to the next
destination for the input. If the result of decrementing the B register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of
the execution of this instruction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value atthe start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Syntax
INIR

Instruction Format
11101101- 10110010

Execute
Time
n X (2+i+w)

Note

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing

Z380"
USER'S MANUAL

INIRW
INPUT, INCREMENT AND REPEAT (WORD)

INIRW

repeat until (BC=O) begin
(HL) f- (DE)
BC(15-0) f- BC(15-0) - 1
HL f- HL + 2
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then incremented by two, thus moving the pointer to the next
destination for the input. If the result of decrementing the BC register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the BC register contains 0 at the start of
the execution of this instruction, 65536 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110111110010

Execute
Time Note

INIRW n X (2+i+w)

5-79

JP
JUMP

Operation:

Flags:

Addressing
Mode
IR:

DA:

JP [cc,jdst dst = IR, DA

if (cc is TRUE) then begin
if (XM) then begin

PC(31-0) ~

end
else begin

PC(15-0) ~

end
end

dst(31-0)

dst(15-0)

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an unconditional
jump always transfers control to the destination address. If the jump is taken, the Program
Counter (PC) is loaded with the destination address; otherwise the instruction following the
Jump instruction is executed.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.

When using DA mode with the JP instruction, the operand is not enclosed in parentheses.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
JP (HL)
JP(XY)
JP CC,addr
JP addr

Instruction Format
11101001
11y1110111101001
11-cc010 -a(low)- -a(high)
11000011 -a(low)- -a(high)

Execute
Time
2
2
2
2

Note
X
X
I, X
I, X

Field Encodings: y: 0 for IX, 1 for IY

5-80

cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO/NY, 101 for PEN, 110 for
PINS, 111 for M/S

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
RA:

Z380N

USER'S MANUAL

JR
JUMP RELATIVE

JR [cc,Jdst dst = RA

if (cc is TRUE) then begin
dst ~ SIGN EXTEND dst
if (XM) then begin

PC(31-0) ~ PC(31-0) + dst(31-0)
end

else begin
PC(15-0) ~ PC(15-0) + dst(15-0)
end

end

A conditional Jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code "cc" specified in the instruction; an unconditional
Jump always transfers control to the destination address. Either the Zero or Carry flag can
be tested for the conditional Jump. If the jump is taken, the Program Counter (PC) is loaded
with the destination address; otherwise the instruction following the Jump Relative instruc­
tion is executed.

The destination address is calculated using relative addressing. The displacement in the
instruction is added to the PC value for the instruction following the JR instruction, not the
value of the PC for the JR instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two's complement
displacement from the PC to permit jumps within a range of -126 to + 129 bytes, -32,765 to
+32,770 bytes, or -8,388,604 to +8,388,611 bytes from the location of this instruction.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
JR CC,addr
JR addr
JR CC,addr
JR addr
JR CC,addr
JR addr

Instruction Format
001ccOOO -disp-
00011000 -disp-
11011101 001 ccOOO -d(low)- -d(high)
11011101 00011000 -d(low)- -d(high)
11111101 001ccOOO -d(low)- -d(mid)- -d(high)
11111101 00011000 -d(low)- -d(mid)- -d(high)

Execute
Time
2
2
2
2
2
2

Note
X
X
X
X
X
X

Field Encodings: cc: 00 for NZ, 01 for Z, 10 for NC, 11 for C

5-81

LD
LOAD ACCUMULATOR

LD dst,src

Operation: dst f- src

dst = A
src = R, RX, 1M, IR, DA, X

or
dst = R, RX, IR, DA, X
src = A

The contents of the source are loaded into the destination.

Flags: s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Accunulator
Addressing
Mode
R:
RX:
1M:
IR:

DA:
X:

Syntax
LD A,R
LDA,RX
LDA,n
LD A,(HL)
LD A,(IR)
LD A,(nn)
LD A,(XY+d)

Load from Accunulator
Addressing
Mode
R:
RX:
IR:

DA:
X:

Syntax
LD Rd,A
LD RX,A
LD (HL),A
LD (IR),A
LD (nn),A
LD (XY+d),A

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

Instruction Format
01111-r-
11y111010111110w
00111110-n-
01111110
000a1010
00111010 -n(low)- -n(high)
11y1110101111110-d-

Instruction Format
01-r-111
11y111010110w111
01110111
000a0010
00110010 -n(low)- -n(high)
11y1110101110111-d-

w: 0 for high byte, 1 for low byte
a: 0 for BC, 1 for DE

5-82

Execute
Time
2
2
2
2+r
2+r
3+r
4+r

Execute
Time
2
2
3+w
3+w
4+w
5+w

Note

Note

Z3BO'"
USER'S MANUAL

LD dst,n dst = R, RX, IR, X

Operation: dst f-- n

The byte of immediate data is loaded into the destination.

Flags: S: Unaffected

Addressing
Mode
R:
RX:
IR:
X:

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
LD R,n
LD RX,n
LD (HL),n
LD (XY+d),n

Instruction Format
00-r-110 -n-
11y11101 0010w110 -n-
00110110-n-
11y11101 00110110 -d--n-

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

Z380m

USER'S MANUAL

LD
LOAD IMMEDIATE (BYTE)

Execute
Time
2
2
3+w
5+w

Note

5-83

LD
LOAD IMMEDIATE (WORD)

LD dst,nn dst = R, RX

Operation: if (LW) then begin
dst(31-0) (- nn
end

else begin
dst(15-0) (- nn
end

The word of immediate data is loaded into the destination.

Flags: S: Unaffected

Addressing
Mode
R:
RX:

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
LD R,nn
LD RX,nn

Instruction Format
00rr0001 -n(low)- -n(high)
11y11101 00100001 -n(low)- -n(high)

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: 0 for IX, 1 for IY

5-84

Execute
Time
2
2

Z3BO"
USER'S MANUAL

Note
I, L
I, L

LDW dst,nn dst = IR

Operation: if (LW) then begin
dst(31-0) ~ nn
end

else begin
dst(15-0) ~ nn

end

The word of immediate data is loaded into the destination.

Flags: S: Unaffected

Addressing
Mode
IR:

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
LDW (IR),nn

Instruction Format
11101101 00pp0110 -n(low)- -n(high)

Field Encodings: pp: 00 for BC, 01 for DE, 11 for HL

Z380N

USER'S MANUAL

LDW
LOAD IMMEDIATE (WORD)

Execute
Time
3+w

Note
I, L

5-85

LD
LOAD REGISTER (BYTE)

LD dst,src dst = R
src = R, RX, 1M, IR, X

or
dst = R, RX, IR, X
src = R

Operation: dst f- src

The contents of the source are loaded into the destination.

Flags: s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Register
Addressing
Mode
R:
RX:

1M:
IR:
X:

Syntax
LD Rd,Rs
LD Rd,RX
LD RXa,RXb
LD R,n
LD R,(HL)
LD R,(XY+d)

Load from Register
Addressing
Mode
RX:

IR:
X:

Syntax
LD RX,Rs
LD RXa,RXb
LD (HL),R
LD (XY+d),R

Field Encodings: r: per convention
rd: per convention
rs: per convention
y: 0 for IX, 1 for IY

Instruction Format
01-rd-rs
11y1110101-ra10w
11y11101 0110a10b
OO-r-110 -n-
01-r-110
11y1110101-r-110-d-

Instruction Format
11y11101 0110w-ra
11y11101 0110a10b
01110-r-
11y1110101110-r--d-

w: 0 for high byte, 1 for low byte

5-86

ra: per convention, for A, B, C, D, E only
a: destination, 0 for high byte, 1 for low byte
b: source, 0 for high byte, 1 for low byte

Execute
Time
2
2
2
2
5+w
7+w

Execute
Time
2
2
3+w
5+w

Note

Note

Z3BON

USER'S MANUAL

Operation:

LD[W] dst,src dst = R
src = R, RX, IR, DA, X, SR

or
dst = R, RX, IR, DA, X, SR
src = R

if (LW) then begin
dst(31-0) f- src(31-0)
end

else begin
dst(15-0) f- src(15-0)
end

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
c: Unaffected

Load into Register
Addressing
Mode Syntax Instruction Format
R: LD Rd,Rs 11rs1101 00rd0010
RX: LD R,RX 11y11101 OOrr1011
IR: LD R,(IR) 1101110100rr11ri

LD RX,(IR) 11y11101 00ri0011
DA: LD HL,(nn) 00101010 -n(low)- -n(high)

LD R,(nn) 11101101 01 ra 1011 -n(low)- -n(high)
LD RX,(nn) 11y11101 00101010 -n(low)- -n(high)

X: LD R,(XY+d) 11y1110111001011-d-00rr0011
LD IX,(IY+d) 1111110111001011-d-00100011
LD IY,(IX+d) 1101110111001011-d-00100011

SR: LD R,(SP+d) 1101110111001011-d-00rrOO01
LD RX,(SP+d) 11y1110111001011-d-00100001

Z380"
USER'S MANUAL

LD[W]
LOAD REGISTER (WORD)

Execute
Time Note
2 L
2 L
2+r L
2+r L
3+r L
3+r L
3+r L
4+r L
4+r L
4+r L
4+r L
4+r L

5-87

LD[W]
LOAD REGISTER (WORD)

Load from Register
Addressing
Mode Syntax Instruction Format
RX: LD RX,R 11y11101 OOrr0111

LD IX,IY 1101110100100111
LD IY,IX 1111110100100111

IR: LD (IR),RR 1111110100rr11ri
LD (lR),RX 11y11101 OOriOOO1

DA: LD (nn),HL 00100010 -n(low)- -n(high)
LD (nn),R 11101101 01 ra0011 -n(low)- -n(high)
LD (nn),RX 11 y111 01 00100010 -n(low)- -n(high)

X: LD (XY+d),R 11y11101 11001011 -d- 00rr1011
LD (IY+d),IX 1111110111001011 -d-00101011
LD (IX+d),IY 1101110111001011-d-00101011

SR: LD (SP+d),R 1101110111001011-d-00rr1001
LD (SP+d),XY 11y1110111001011-d-00101001

Field Encodings: rs: 01 for DE, 10 for BC, 11 for HL
rd: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-88

rr: 00 for BC, 01 for DE, 11 for HL
ri: 00 for BC, 01 for DE, 11 for HL
ra: 00 for BC, 01 for DE, 10 for HL

Execute
Time
2
2
2
3+w
3+w
4+w
4+w
4+w
5+w
5+w
5+w
5+w
5+w

Note
L
L
L
L
L
I, L
I, L
I, L
I, L
I, L
I, L
I, L
I, L

Z380~
USER'S MANUAL

Operation:

Flags:

LD dst,src dst = SP
src = R, RX, 1M, DA

or
dst = DA
src = SP

if (LW) then begin
dst(31-0) f--- src(31-0)
end

else begin
dst(15-0) f--- src(15-0)
end

The contents of the source are loaded into the destination.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Stack Pointer
Addressing
Mode
R:
RX:
1M:
DA:

Syntax
LD SP,HL
LD SP,RX
LD SP,nn
LD SP,(nn)

Instruction Format
11111001
11y1110111111001
00110001 -n(low)- -n(high)
11101101 01111011 -n(low)- -n(high)

Field Encodings: y: 0 for IX, 1 for IY

Load from Stack Pointer
Addressing
Mode
DA:

Syntax
LD (nn),SP

Instruction Format
11101101 01110011 -n(low)- -n(high)

Z3BO'"
USER'S MANUAL

LD
LOAD STACK POINTER

Execute
Time Note
2 L
2 L
2 I, L
3+r I, L

Execute
Time Note
4+w I, L

5-89

II

LD
LOAD FROM I OR R REGISTER (BYTE)

Operation:

Flags:

Addressing
Mode

5-90

LD dst,src

dst ~ src

dst = A
src = I, R

The contents of the source are loaded into the accumulator. The contents of the source are
not affected. The Sign and Zero flags are set according to the value of the data transferred;
the Overflow flag is set according to the state of the interrupt enable. Note that if an interrupt
occurs during execution of either of these instructions the Overflow flag reflects the prior
state of the interrupt enable. Also note that the R register does not contain the refresh
address and is not modified by refresh transactions.

S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared
V: Set when loading the accumulator if interrupts are enabled; cleared otherwise
N: Cleared
C: Unaffected

Syntax
LD A,I
LDA,R

Instruction Format
1110110101010111
11101101 01011111

Execute
Time
2
2

Note

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:

LD dst,src

dst f--- src

dst = I, R
src = A

Z3BON

USER'S MANUAL

LD
LOAD INTO I OR R REGISTER (BYTE)

The contents of the accumulator are loaded into the destination. Note that the R register does
not contain the refresh address and is not modified by refresh transactions.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
c: Unaffected

Syntax
LD I,A
LD R,A

Instruction Format
11101101 01000111
1110110101001111

Execute
Time
2
2

Note

5-91

LD[W]
LOAD I REGISTER (WORD)

Operation:

LO[W] dst,src

if (LW) then begin
dst(31-0) ~

end
else begin

dst(15-0) ~

end

dst = HL
src = I

OR
dst = I
src = HL

src(31-0)

src(15-0)

The contents of the source are loaded into the destination

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load from I Register
Addressing
Mode
R:

Syntax
LO[W] HL,I

Load into I Register
Addressing
Mode
R:

5-92

Syntax
LO[W] I,HL

Instruction Format
11011101 01010111

Instruction Format
11011101 01000111

Execute
Time
2

Execute
Time
2

Note
L

Note
L

Z3BO"
USER'S MANUAL

Z3BON

USER'S MANUAL

LDCTL
LOAD CONTROL REGISTER (BYTE)

Operation:

Flags:

LDCTL dst,src

if (dst = SR) then begin

dst = DSR, XSR, YSR
src = A, 1M

or
dst=A
src = DSR, XSR, YSR

or
dst = SR
src = A, 1M

SR(31-24) ~ src
SR(23-16) ~ src
SR(15-8) ~ src
end

else begin
dst ~ src
end

The contents of the source are loaded into the destination.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load into Control Register
Addressing
Mode
R:

1M:

Syntax
LDCTLSR,A
LDCTLRd,A
LDCTL SR,n
LDCTL Rd,n

Instruction Format
1101110111001000
11qq110111011000
11011101 11001010 -n-
11 qq1101 11011010 -n-

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

Load from Control Register
Addressing
Mode
R:

Syntax
LDCTLA,Rs

Instruction Format
11qq110111010000

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

Execute
Time
4
4
4
4

Execute
Time
2

Note

Note

5-93

LDCTL
LOAD FROM CONTROL REGISTER (WORD)

Operation:

LDCTL dst,src

if (LW) then begin
dst(31-0) f­

end
else begin

dst(15-0) f­

end

dst = HL
src = SR

src(31-0)

src(15-0)

The contents of the Select Register (SR) are loaded into the HL register.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load from Control Register
Addressing
Mode Syntax
R: LDCTL HL,SR

5-94

Instruction Format
11101101 11000000

Execute
Time
2

Note
L

Z380m

USER'S MANUAL

Operation:

Flags:

Z3BON

USER'S MANUAL

LDCTL
LOAD INTO CONTROL REGISTER (WORD)

LDCTL dst,src dst = SR
src = HL

if (LW) then begin
dst(31-16) f- HL(31-16)
end

else begin
dst(31-24) f- HL(15-8)
dst(23-16) f- HL(15-8)
end

dst(15-8) f- HL(15-8)
dst(O) f- HL(O)

The contents of the HL register are loaded into the Select Register (SR). If Long Word mode
is not in effect the upper byte of the HL register is copied into the three most significant bytes
of the select register. This instruction does not modify the mode bits in the SR. There are
dedicated instructions to modify the mode bits.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Load from Control Register
Addressing
Mode
R:

Syntax
LDCTL SR,HL

Instruction Format
1110110111001000

Execute
Time
4

Note
L

5-95

IJ

LDD
LOAD AND DECREMENT (BYTE)

Operation:

Flags:

Addressing

LDD

(DE)
DE
HL
BC(15-0)

~ (HL)
~ DE-1
~ HL-1
~ BC(15-0)-1

This instruction is used for block transfers of strings of data. The byte of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then decremented by one, thus moving the pointers to the
preceeding elements in the string. The BC register, used as a counter, is then decremented
by one.

S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Mode Syntax Instruction Format
1110110110101000

Execute
Time
3+r+w

Note
LDD

5-96

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing

Z380"
USER'S MANUAL

LDDW
LOAD AND DECREMENT (WORD)

LDDW

if (LW) then begin
(DE) f-- (HL)
(DE+1) f-- (HL+1)
(DE+2) f-- (HL+2)
(DE+3) f-- (HL+3)
DE f-- DE-4
HL f-- HL-4
BC(15-0) f-- BC(15-0) -4
end

else begin
(DE) f-- (HL)
(DE+1) f-- (HL+ 1)
DE f-- DE-2
HL f-- HL-2
BC(15-0) f-- BC(15-0) -2
end

This instruction is used for block transfers of words of data. The word of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then decremented by two or four, thus moving the pointers to
the preceeding words in the array. The BC register, used as a byte counter, is then
decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even,
transferring an even number of bytes, or the operation is undefined.

S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Mode Syntax Instruction Format
1110110111101000

Execute
Time
3H+W

Note
L LDDW

5-97

11

LDDR
LOAD, DECREMENT AND REPEAT (BYTE)

Operation:

Flags:

Addressing

LDDR

repeat until BC=O begin
(DE) ~ (HL)
DE ~ DE-1
HL ~ HL-1
BC(15-0) ~ BC(15-0)-1
end

This instruction is used for block transfers of strings of data. The bytes of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC register.
If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted,so that the instruction can be properly resumed.

s: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Mode Syntax Instruction Format
1110110110111000

Execute
Time Note

LDDR n X (3+r+w)

5-98

Z3BO"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z3BO~
USER'S MANUAL

LDDRW
LOAD, DECREMENT AND REPEAT (WORD)

LDDRW

repeat until (BC=O) begin
if (LW) then begin

(DE) f- (HL)
(DE+ 1) f- (HL+ 1)
(DE+2) f- (HL+2)
(DE+3) f- (HL+3)
DE f- DE-4
HL f- HL-4
BC(15-0) f- BC(15-0) - 4
end

else begin
(DE) f- (HL)
(DE+ 1) f- (HL+ 1)
DE f- DE-2
HL f- HL-2
BC(15-0) f- BC(15-0) - 2
end

end

This instruction is used for block transfers of strings of data. The words of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of words moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 words are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
painters ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted,so that the instruction can be properly resumed.

s: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Syntax
LDDRW

Instruction Format
1110110111111000

Execute
Time
nX(3+r+w)

Note
L

5-99

LDI
LOAD AND INCREMENT (BYTE)

Operation:

Flags:

Addressing

LDI

(DE)
DE
HL
BC(15-0)

~ (HL)
~ DE+ 1
~ HL+ 1
~ BC(15-0)-1

This instruction is used for block transfers of strings of data. The byte of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then incremented by one, thus moving the pointers to the next
elements in the string. The BC register, used as a counter, is then decremented by one.

S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Mode Syntax Instruction Format
1110110110100000

Execute
Time
3+r+w

Note
LDI

5-100

Z380N

USER'S MANUAL

~2iUJG

Operation:

Flags:

Addressing

Z3BO'
USER'S MANUAL

LDIW
LOAD AND INCREMENT (WORD)

LDIW

if (LW) then begin
(DE) f- (HL)
(DE+ 1) f- (HL+ 1)
(DE+2) f- (HL+2)
(DE+3) f- (HL+3)
DE f- OE +4
HL f- HL + 4
BC(15-0) f- BC(15-0) - 4
end

else begin
(DE) f- (HL)
(DE+ 1) f- (HL+ 1)
DE f- OE + 2
HL f- HL + 2
BC(15-0) f- BC(15-0) - 2
end

This instruction is used for block transfers of words of data. The word of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then incremented by two or four, thus moving the pointers to
the succeeding words in the array. The BC register, used as a byte counter, is then
decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even,
transferring an even number of bytes, or the operation is undefined.

S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise

.N: Cleared
C: Unaffected

Mode Syntax Instruction Format
11101101 11100000

Execute
Time
3H+W

Note
L LDIW

5-101

LDIR
LOAD, INCREMENT AND REPEAT (BYTE)

Operation:

Flags:

Addressing

LDIR

repeat until (BC=O) begin
(DE) ~ (HL)
DE ~ DE + 1
HL ~ HL + 1
BC(15-0) ~ BC(15-0)-1
end

This instruction is used for block transfers of strings of data. The bytes of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC register.
If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of incrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

s: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Mode Syntax Instruction Format
1110110110110000

Execute
Time
3H+W

Note
LDIR

5-102

Z380N

USER'S MANUAL

~2iUJG

Operation:

Flags:

Addressing
Mode

Z3BON

USER'S MANUAL

LDIRW
LOAD, INCREMENT AND REPEAT (WORD)

LDIRW

repeat until (BC=O) begin
if (LW) then begin

(DE) f- (HL)
(DE+ 1) f- (HL+ 1)
(DE+2) f- (HL+2)
(DE+3) f- (HL+3)
DE f- DE + 4
HL f- HL + 4
BC(15-0) f- BC(15-0) - 4
end

else begin
(DE) f- (HL)
(DE+ 1) f- (HL+ 1)
DE f- DE+ 2
HL f- HL + 2
BC(15-0) f- BC(15-0) - 2
end

end

This instruction is used for block transfers of strings of data. The words of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of words moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 words are
transferred. The effect of incrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is save before the interrupt request is
accepted,so that the instruction can be properly resumed.

s: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Syntax
LDIRW

Instruction Format
11101101 11110000

Execute
Time
(3+r+w)n

Note
L

5-103

MLT
MULTIPLY UNSIGNED (BYTE)

MLTR src = R

Operation: R(15-0) f- R(7-0) x R(15-8)

The contents of the upper byte of the source register are multiplied by the contents of the
lower byte of the source register and the product is stored in the source register. Both
operands. Both operands are treated as unsigned, binary integers.

Flags: s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing
Mode Syntax Instruction Format

1110110101rr1100 R: MLTR

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-104

Execute
Time
7

Note

Z380'"
USER'S MANUAL

Operation:

Flags:

Addressing

MTEST

S f- SR(7)
Z f- SR(6)
c f- SR(1)

Z380~
USER'S MANUAL

MTEST
MODE TEST

The three mode control bits in the Select Register (SR) are transferred to the flags. This
allows the program to determine the state of the machine.

S: Set if Extended mode is in effect; cleared otherwise
Z: Set if Long word mode is in effect; cleared otherwise
H: Unaffected
V: Unaffected
N: Unaffected
C: Set if Lock mode is in effect; cleared otherwise

Mode Syntax Instruction Format
1101110111001111

Execute
Time Note

MTEST 2

5-105

MULTW
MULTIPLY (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

MULTW [HL,lsrc src = R, RX, 1M, X

HL(31-0) ~ HL(15-0) x src(15-0)

The contents of the HL register are multiplied by the source operand and the product is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as signed, two's complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set to
indicate that the upper word of the HL register is required to represent the result; if the Carry
flag is cleared, the product can be correctly represented in 16 bits and the upper word of
the HL register merely holds sign-extension data.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is less than -32768 or greater than or equal to 32768; cleared

otherwise

Syntax
MULTW [HL,lR
MULTW [HL,jRX
MULTW [HL,lnn
MULTW [HL,l(XY+d)

Instruction Format
1110110111001011100100rr
11101101110010111001010y
11101101 11001011 10010111 -n(low)- -n(high)
11y1110111001011-d-10010010

Execute
Time
10
10
10
12+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-106

Z380N

USER'S MANUAL

Note

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

Z380~
USER'S MANUAL

MULTUW
MULTIPLY UNSIGNED (WORD)

MULTUW [HL,lsrc src = R, RX, 1M, X

HL(31-0) ~ HL(15-0) x src(15-0)

The contents of the HL register are multiplied by the source operand and the product is
stored in the HL register, The contents of the source are unaffected, Both operands are
treated as unsigned, binary integers,

The initial contents of the HL register are overwritten by the result. The Carry flag is set to
indicate that the upper word of the HL register is required to represent the result; if the Carry
flag is cleared, the product can be correctly represented in 16 bits and the upper word of
the HL register merely holds zero,

S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 65536; cleared otherwise

Syntax
MULTUW [HL,lR
MULTUW [HL,lRX
MULTUW [HL,Jnn
MULTUW [HL,l(XY +d)

Instruction Format
1110110111001011100110rr
11101101110010111001110y
11101101 11001011 10011111 -n(low)- -n(high)
11y11101 11001011 -d-10011010

Execute
Time
11
11
11
13+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-107

NEG

Z380N

USER'S MANUAL

NEGATE ACCUMULATOR

Operation:

Flags:

Addressing
Mode

5-1 ()@

NEG [AJ

A f- -A

The contents of the accumulator are negated, that is replaced by its two's complement
value. Note that BOh is replaced by itself, because in two's complement representation the
negative number with the greatest magnitude has no positive counterpart; for this case, the
Overflow flag is set to 1 .

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the content of the accumulator was BOh before the operation; cleared otherwise
N: Set
C: Set if the content of the accumulator was not DOh before the operation; cleared if the

content of the accumulator was DOh

Syntax
NEG [AJ

Instruction Format
1110110101000100

Execute
Time
2

Note

Operation:

Flags:

Addressing

Z3BON

USER'S MANUAL

NEGW
NEGATE HL REGISTER (WORD)

NEGW [HL]

HL(15-0) f- -HL(15-0)

The contents of the HL register are negated, that is replaced by its two's complement value.
Note that BOOOh is, replaced by itself, because in two's complement representation the
negative number with the greatest magnitude has no positive counterpart; for this case, the
Overflow flag is set to 1.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the content of the HL register was BOOOh before the operation; cleared otherwise
N: Set .
C: Set if the content of the HL register was not OOOOh before the operation; cleared if the

content of the HL register was OOOOh

Mode Syntax Instruction Format
1110110101010100

Execute
Time Note

NEGW[HL] 2

5-109

ft)2iUJG

NOP
NO OPERATION

NOP

Operation: None

No operation.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
c: Unaffected

Addressing
Mode Syntax

NOP

5-110

Instruction Format
00000000

Execute
Time
2

Note

Z3BO"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

Z380~
USER'S MANUAL

OR
OR (BYTE)

OR [A,lsrc src = R, RX, 1M, IR, X

A f- A OR src

A logical OR operation is performed between the corresponding bits of the source operand
and the accumulator and the result is stored in the accumulator. A 1 bit is stored wherever
either of the corresponding bits in the two operands is 1; otherwise a 0 bit is stored. The
contents of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Syntax
OR [A,lR
OR [A,lRX
OR [A,ln
OR [A,](HL)
OR [A.](XY +d)

Instruction Format
10110-r-
11y111011011010w
11110110-n-
10110110
11y11101 10110110 -d-

Execute
Time
2
2
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-111

ORW
OR (WORD)

Operation:

Flags:

ORW [HL,lsrc src = R, RX, 1M, X

HL(15-0) f- HL(15-0) OR src(15-0)

A logical OR operation is performed between the corresponding bits of the source operand
and the HLregister and the result is stored in the HL register. A 1 bit is stored wherever either
of the corresponding bits in the two operands is 1; otherwise a 0 bit is stored. The contents
of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Z3BO~
USER'S MANUAL

Addressing
Mode Syntax Instruction Format

11101101101101rr
11y1110110110111

Execute
Time Note

R:
RX:
1M:
X:

ORW [HL,lR
ORW [HL,lRX
ORW [HL,lnn
ORW [HL,](XY +d)

11101101 10110110 -n(low) -n(high)-
11y11101 11110110 -d-

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-112

2
2
2+r
4+r

Operation:

Flags:

Addressing
Mode

Z3BON

USER'S MANUAL

OTDM
OUTPUT DECREMENT MEMORY

OTOM

(C) f- (HL)
C f- C -1
B f- B-1
HL f- HL-1

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is decremented by one to select the next output
port. The B register, used as a counter, is then decremented by one. The HL register is then
decremented by one, thus moving the pointer to the next source for the output.

s: Set if the result of decrementing B is negative; cleared otherwise
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared

otherwise
P: Set if the result of the decrement of the B register is even; cleared otherwise
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie
C: Set if there is a borrow from the most significant bit during the decrement of the B

register; cleared otherwise

Syntax
OTOM

Instruction Format
1110110110001011

Execute
Time
2+r+o

Note

5-113

OTDMR
OUTPUT, DECREMENT MEMORY REPEAT

Operation:

Flags:

Addressing

OTDMR

repeat until (B=O) begin
(C) ~ (HL)
C ~ C-1
B ~ B-1
HL ~ HL-1
end

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is decremented by one to select the next output
port. The B register, used as a counter, is then decremented by one. The HL register is then
decremented by one, thus moving the pointer to the next source for the output. If the result
of decrementing the B register is 0, the instruction is terminated, otherwise the output
sequence is repeated. Note that if the B register contains 0 at the start of the execution of
this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Cleared
Z: Set
H: Cleared
P: Set
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise
C: Cleared

Mode Syntax Instruction Format
1110110110011011

Execute
Time
2+r+o

Note
OTDMR

5-114

Z3BO~
USER'S MANUAL

~2iUJG

Operation:

Flags:

Addressing
Mode

Z380N

USER'S MANUAL

OTDR
OUTPUT, DECREMENT AND REPEAT (BYTE)

OTDR

repeat until (B=O) begin
B f- B-1
(C) f- (HL)
HL f- HL-1
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the 32-
bit BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by one, thus moving the pointer to the next source for the
output. If the result of decrementing the B register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the B register contains 0 at the start of the execution
of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Syntax
OTDR

Instruction Format
1110110110111011

Execute
Time
2+r+o

Note

5-115

OTDRW
OUTPUT, DECREMENT AND REPEAT (WORD)

Operation:

Flags:

Addressing

OTDRW

repeat until (BC=O) begin
BC(15-0) f- BC(15-0)-1
(DE) f- (HL)
HL f- HL-2
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by two, thus moving the pointer to the next source for the
output. If the result of decrementing the BC register is 0, the instruction is terminated,
otherwise the sequence is repeated. Ifthe BC register contains 0 at the start of the execution
of this instruction, 65536 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
11101101 11111011

Execute
Time
2+r+o

Note
OTDRW

5-116

Z3S0"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z3BON

USER'S MANUAL

OTIM
OUTPUT INCREMENT MEMORY

OTIM

(e) fo- (HL)
e f0- e + 1
B f0- B-1
HL fo- HL + 1

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the e register.
The e register, holding the port address, is incremented by one to selectthe nextoutput'port.
The B register, used as a counter, is then decremented by one. The HL register is then
incremented by one, thus moving the pointer to the next source for the output.

S: Set if the result of decrementing B is negative; cleared otherwise
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared

otherwise
P: Set if the result of the decrement of the B register is even; cleared otherwise
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise
e: Set if there is a borrow from the most significant bit during the decrement of the B

register; cleared otherwise

Syntax
OTIM

Instruction Format
1110110110000011

Execute
Time
2+r+o

Note

5-117

OTIMR
OUTPUT, INCREMENT MEMORY REPEAT

Operation:

Flags:

Addressing

OTIMR

repeat until (B=O) begin
(C) (- (HL)
C (- C+1
B (- B-1
HL (- HL + 1
end

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is incremented by one to select the next output port.
The B register, used as a counter, is then decremented by one. The HL register is then
incremented by one, thus moving the pointer to the next source for the output. If the result
of decrementing the B register is 0, the instruction is terminated, otherwise the output
sequence is repeated. Note that if the B register contains 0 at the start of the execution of
this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Cleared
Z: Set
H: Cleared
P: Set
N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie
C: Cleared

Mode Syntax Instruction Format
1110110110010011

Execute
Time
2+r+o

Note
OTIMR

5-118

Z3BO"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z380N

USER'S MANUAL

OTIR
OUTPUT, INCREMENT AND REPEAT (BYTE)

OTIR

repeat until (B=O) begin
B (- B-1
(C) (- (HL)
HL (- HL + 1
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
Be register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by one, thus moving the pointer to the next source for the
output. If the result of decrementing the B register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the B register contains 0 at the start of the execution
of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Syntax
OTIR

Instruction Format
11101101 10110011

Execute
Time
2+r+o

Note

5-119

11

OTIRW
OUTPUT, INCREMENT AND REPEAT (WORD)

Operation:

Flags:

Addressing

OTIRW

repeat until (BC=O) begin
BC(15-0) f- BC(15-0) - 1
(DE) f- (HL)
HL f- HL + 2
end

This·instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by two, thus moving the pointer to the next source for the
output. If the result of decrementing the BC register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the BC register contains 0 at the start of the execution
of this instruction, 65536 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interru pt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
1110110111110011

Execute
Time
2+r+o

Note
OTIRW

5-120

Z380N

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
1M:

OUT (C),src src = R, 1M

(C) f-- src

Z3BON

USER'S MANUAL

OUT
OUTPUT (BYTE)

The byte of data from the source is loaded into the selected peripheral. During the I/O
transaction, the contents of the 32-bit BC register are placed on the address bus.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
OUT (C),R
OUT (C),n

Instruction Format
11101101 01 -r- 001
11101101 01110001 --n--

Execute
Time
3+0
3+0

Note

Field Encodings: r: per convention

5-121

OUTW
OUTPUT (WORD)

Operation:

Flags:

Addressing
Mode
R:
1M:

OUTW (C),src src = R, 1M

(C) (- src(15-0)

The word of data from the source is loaded into the selected peripheral. During the I/O
transaction, the contents of the 32-bit BC register are placed on the address bus.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
OUTW (C),R
OUTW (C),nn

Instruction Format
11011101 01 rrr 001
11111101 01111001 -n(low)- -n(high)

Execute
Time
2+0
2+0

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

5-122

Z3BON

USER'S MANUAL

Note

Operation:

Flags:

Addressing

Z380"
USER'S MANUAL

OUT
OUTPUT ACCUMULATOR

OUT (n),A

(n) f- A

The byte of data from the accumulator is loaded into the selected peripheral. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low byte
of the address bus, the contents of the accumulator are placed on address lines A(15-8),
and the high-order address lines are all zeros.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
c: Unaffected

Mode Syntax Instruction Format
11010011 -n-

Execute
Time
3+0

Note
OUT (n),A

5-123

OUTO
OUTPUT (TO PAGE 0)

Operation:

Flags:

Addressing
Mode
R:

aUTO (n),src src = R

(n) ~ src

The byte of data from the source register is loaded into the selected on-chip peripheral. No
external I/O transaction will be generated as a result of this instruction, although the I/O
address will appear on the address bus and the write data will appear on the data bus while
this internal write is occurring. The peripheral address is placed on the low byte of the
address bus and zeros are placed on all other address lines.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
aUTO (n),R

Instruction Format
11101101 00-r-001 -n-

Execute
Time Note

3+0

Field Encodings: r: per convention

o
5-124

Z380m

USER'S MANUAL

Operation:

Flags:

Addressing

Z380~
USER'S MANUAL

OUTA
OUTPUT DIRECT TO PORT ADDRESS (BYTE)

OUT (nn),A

(nn) f- A

The byte of data from the accumulator is loaded into the selected peripheral. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines are all
zeros.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Execute
Mode Syntax Instruction Format Time Note

I OUTA (nn),A 11101101 11010011 -n(low)- -n(high) 2+0

5-125

OUTAW
OUTPUT DIRECT TO PORT ADDRESS (WORD)

Operation:

Flags:

Addressing

OUT (nn),HL

(nn)(- HL(15-0)

The word of data from the HL register is loaded into the selected peripheral. During the
I/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines are all
zeros.

s: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Execute
Mode Syntax Instruction Format Time

OUTAW (nn),HL 11111101 11010011 -n(low)- -n(high) 2+0

5-126

Z380N

USER'S MANUAL

Note
I

Operation:

Flags:

Addressing

Z380~
USER'S MANUAL

OUTD
OUTPUT AND DECREMENT (BYTE)

aUTO

B f- B-1
(e) f- (HL)
HL f- HL-1

This instruction is used for block output of strings of data. During the I/O transaction the
32-bit Be register is placed on the address bus. Note that the B register contains the loop
count for this instruction so that A 15-A8 are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by one, thus moving the pointer to the next source for the
output.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
e: Unaffected

Mode Syntax Instruction Format
1110110110101011

Execute
Time
2+r+o

Note
OUTO

5-127

g~~~~T AND DECREMENT (WORD)

Operation:

Flags:

Addressing
Mode

5-128

OUTDW

BC(15-0)
(DE)
HL

~ BC(15-0) - 1
~ (HL)
~ HL-2

This instruction is used for block output of strings of data. During the 1/0 transaction the 32-
bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by two, thus moving the pointer to the next source for the
output.

S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Syntax
OUTDW

Instruction Format
11101101 11101011

Execute
Time
2+r+o

Note

Z380N

USER'S MANUAL

Operation:

Flags:

Addressing

Z3BO"
USER'S MANUAL

OUTI
OUTPUT AND INCREMENT (BYTE)

OUTI

B f- B-1
(e) f- (HL)
HL f- HL + 1

This instruction is used for block output of strings of data. During the I/O transaction the 32-
bit Be register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A 15-A8 are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheraf. The
HL register is then incremented by one, thus moving the pointer to the next source for the
output.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
e: Unaffected

Mode Syntax Instruction Format
1110110110100011

Execute
Time
2+r+o

Note
OUTI

5-129

II

OUTIW
OUTPUT AND INCREMENT (WORD)

Operation:

Flags:

Addressing

OUTIW

BC(15-0)
(DE)
HL

f- BC(15-0)-1
f- (HL)
f- HL + 2

This instruction is used for block output of strings of data. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by two, thus moving the pointer to the next source for the
output.

S: Unaffected
Z: Set if the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Mode Syntax Instruction Format
11101101 11100011

Execute
Time
2H+O OUTIW

5-130

Z380N

USER'S MANUAL

Note

Operation:

Flags:

Addressing

Z380g

USER'S MANUAL

POP
POP ACCUMULATOR

POP dst dst = AF

F f- (SP)
A f- (SP+1)
SP f- SP + 2
if (LW) then begin

SP f- SP + 2
end

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. For this
instruction, the Flag register is the least significant byte, followed by the Accumulator. The
SP is then incremented by two (by four in the Long Word mode). Note that in the Long Word
mode only one word is read from memory, although the SP is in fact incremented by four.

S: Loaded from (SP)
Z: Loaded from (SP)
H: Loaded from (SP)
V: Loaded from (SP)
N: Loaded from (SP)
c: Loaded from (SP)

Mode Syntax Instruction Format
11110001

Execute
Time
2+r

Note
L POPAF

5-131

POP
POP CONTROL REGISTER

Operation:

Flags:

Addressing
Mode

5-132

POP dst dst = SR

if (LW) then begin
dst(6-0) f- (SP)
dst(15-8) f- (SP+ 1)
dst(23-16) f- (SP+2)
dst(31-24) f- (SP+3)
SP f- SP + 4
end

else begin
dst(6-0) f- (SP)
dst(15-8) f- (SP+ 1)
dst(23-16) f- (SP+ 1)
dst(31-24) f- (SP+ 1)
SP f- SP + 2
end

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. The SP
is then incremented by two (by four in the Long Word mode). Note that when not in the Long
Word mode the most significant byte read from memory is also written to the two most
significant bytes of the SR. Also note that the XM bit is unaffected by this instruction.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
POPSR

Instruction Format
1110110111000001

Execute
Time
3+r

Note
L

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:

Z3BO'"
USER'S MANUAL

POP
POP REGISTER

POP dst dst = R, RX

if (LW) then begin
dst(7-0) f-- (SP)
dst(15-8) f-- (SP+ 1)
dst(23-16) f-- (SP+2)
dst(31-24) f-- (SP+3)
SP f-- SP + 4
end

else begin
dst(7-0) f-- (SP)
dst(15-8) f-- (SP+ 1)
SP f-- SP + 2
end

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. The SP
is then incremented by two (by four in the Long Word mode).

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
POP R
POPRX

Instruction Format
11rr0001
11y11101 11100001

Execute
Time
1+r
1+r

Note
L
L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: 0 for IX, 1 for IY

5-133

II

~2iUJE

PUSH
PUSH ACCUMULATOR

Operation:

Flags:

Addressing

PUSH src src = AF

if (LW) then begin
SP (- SP - 4
(SP) (- F
(SP+1) (- A
(SP+2) (- OOh
(SP+3) (- OOh
end

else begin
SP (- SP - 2
(SP) (- F
(SP+1) (- A
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. For this instruction, the Flag register is the least
significant byte, followed by the Accumulator. The other two bytes written in the Long Word
mode are all zeros. The Flag register and Accumulator are unaffected.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
11110101

Execute
Time
3+w

Note
L PUSHAF

5-134

Z3BO~
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z3BON

USER'S MANUAL

PUSH
PUSH CONTROL REGISTER

PUSH src src = SR

if (LW) then begin
SP ~ SP - 4
(SP) ~ src(7-0)
(SP+1) ~ src(15-8)
(SP+2) ~ src(23-16)
(SP+3) ~ src(31-24)
end

else begin
SP ~ SP - 2
(SP) ~ src(7-0)
(SP+1) ~ src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. The contents of the source are unaffected.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
PUSH SR

Instruction Format
11101101 11000101

Execute
Time
3+w

Note
L

5-135

PUSH
PUSH IMMEDIATE

Operation:

PUSH src src = 1M

if (LW) then begin
SP (- SP - 4
(SP) (- src(7-0)
(SP+ 1) (- src(15-8)
(SP+2) (- src(23-16)
(SP+3) (- src(31-24)
end

else begin
SP (- SP - 2
(SP) (- src(7-0)
(SP+1) (- src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing
Mode Syntax Instruction Format
1M: PUSH nn 11111101 11110101 -n(low)- -n(high)

5-136

Execute
Time
3+w

Z3BO"
USER'S MANUAL

Note
I, L

Operation:

Flags:

Addressing
Mode
R:
RX:

Z380~
USER'S MANUAL

PUSH
PUSH REGISTER

PUSH src src = R, RX

if (LW) then begin
SP f- SP - 4
(SP) f- src(7 -0)
(SP+ 1) f- src(15-8)
(SP+2) f- src(23-16)
(SP+3) f- src(31-24)
end

else begin
SP f- SP - 2
(SP) f- src(7-0)
(SP+1) f- src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. The contents of the source are unaffected.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
PUSH R
PUSH RX

Instruction Format
11rr0101
11y1110111100101

Execute
Time
3+w
3+w

Note
L
L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: 0 for IX, 1 for IY

5-137

RES
RESET BIT

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

RES b, dst dst = R, IR, X

dst(b) f- 0

The specified bit b within the destination operand is cleared to O. The other bits in the
destination are unaffected. The bit to be reset is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be cleared. The bit number b
must be between 0 and 7.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
RES b,R
RES b,(HL)
RES b,(XY+d)

Instruction Format
11001011 10bbb -r-
1100101110bbb110
11y11101 11001011 -d-10bbb110

Execute
Time
2
2+r
4+r

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-138

Z3BOn

USER'S MANUAL

Note

Operation:

Flags:

Addressing
Mode

Z3S0'"
USER'S MANUAL

RESC
RESET CONTROL BIT

RESC mode mode = LCK, LW

if (mode = LCK) then begin
SR(1) f- 0
end

else begin
SR(6) f- 0
end

When reseting Lock mode (LCK), the LCK bit (bit 1) in the Select Register (SR) is set to 0,
enabling external bus requests. Note that these requests cannot be granted until after the
instruction has been executed, and thatoneor more of the succeeding instructions may also
have been fetched for decoding before this instruction has been executed.

When reseting Long Word mode (LW), the LW bit (bit 6) in the SR is set to 0, selecting 16-
bit words. When using 16-bit words, all word load operations transfer 16 bits.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
RESC mode

Instruction Format
11 mm11 01 11111111

Execute
Time
4

Note

Field Encodings: mm: 01 for LW, 10 for LCK

5-139

RET
RETURN

Operation:

Flags:

Addressing

RET [cc]

if (cc is TRUE) then begin
if (XM) then begin

PC(7-0) f- (SP)
PC(15-8) f- (SP+1)
PC(23-16) f- (SP+2)
PC(31-24) f- (SP+3)
SP f- SP+4
end

else begin
PC(7-0) f- (SP)
PC(15-8) f- (SP+1)
SP f- SP+ 2
end

end

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry, Sign,
or Parity/Overflow flags is checked to see if its setting matches the condition code "cc"
encoded in the instruction; if the condition is not satisfied, the instruction following the Return
instruction is executed, otherwise a value is popped from the stack and loaded into the
Program Counter (PC), thereby specifying the location of the next instruction to be executed.
For an unconditional return, the return is always taken and a condition code is not specified.

This instruction is also used to return to a previously executing procedure at the end of a
procedure entered by an interrupt in the assigned vectors mode, if Z80 family peripherals
are used external to the Z380 MPU.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
11-ccOOO

Execute
Time
note

Note
X RETCC

RET 11001001

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C,

2+r

100 for PO/NV, 101 for PEN, 110 for PINS, 111 for M/S

Note: 2 if CC is false, 2+r if CC is true

5-140

X

Z3BO"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z380~
USER'S MANUAL

RETB
RETURN FROM BREAKPOINT

PC (31-0) ~ SPC (31-0)

This instruction is used to return to a previously executing procedure at the end of a
breakpoint. The contents of the Shadow Program Counter (SPC), which holds the address
of the next instruction of the previously executing procedure, are loaded into the Program
Counter (PC).

Note that maskable interrupts (if IEF1 is set) and non-maskable interrupt are enabled after
the instruction following RETB is executed.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax Instruction Format
RETB 11101101 01010101

Execute
Time
2

Note

5-141

RETI
RETURN FROM INTERRUPT

Operation:

Flags:

Addressing

RETI

if (XM) then begin
PC(7-0) f- (SP)
PC(15-8) f- (SP+1)
PC(23-16) f- (SP+2)
PC(31-24) f- (SP+3)
SP f- SP + 4
end

else begin
PC(7-0) f- (SP)
PC(15-8) f- (SP+1)
SP f- SP + 2
end

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by an interrupt. The contents of the location addressed by the Stack
Pointer (SP) are popped into the Program Counter (PC), thereby specifying the location of
the next instruction to be executed. A special sequence of bus transactions is performed
when this instruction is executed in order to control Z80 family peripherals; see the
description of the external interface for more details.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
1110110101001101

Execute
Time
2+r

Note
X RETI

5-142

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing

Z3BO'"
USER'S MANUAL

RETN
RETURN FROM NONMASKABLE INTERRUPT

RETN

if (XM) then begin
PC(7-0) f--- (SP)
PC(15-8) f--- (SP+1)
PC(23-16) f--- (SP+2)
PC(31-24) f--- (SP+3)
SP f--- SP + 4
end

else begin
PC(7-0) f--- (SP)
PC(15-8) f--- (SP+1)
SP f--- SP + 2
end

IEF1 f--- IEF2

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a nonmaskable interrupt. The contents of the location addressed by
the Stack Pointer (SP) are popped into the Program Counter (PC), thereby specifying the
location of the next instruction to be executed. The previous setting of the interrupt enable
bit is restored by execution of this instruction.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Execute
Mode Syntax Instruction Format

11101101 01000101
Time Note

X RETN 2+r

5-143

RL
ROTATE LEFT (BYTE)

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

RL dst dst = R, IR, X

tmp f- dst
dst(O) f- C
C f- dst(7)
dst(n+ 1) f- tmp(n) for n = 0 to 6

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated left one bit position. Bit 7 of the destination operand is moved to the Carry
flag and the Carry flag is moved to bit 0 of the destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Syntax
RLR
RL(HL)
RL (XY+d)

Instruction Format
11001011 00010-r-
1100101100010110
11y11101 11001011 -d- 00010110

Execute
Time
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-144

Z380N

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

Z3BO"
USER'S MANUAL

RLW
ROTATE LEFT (WORD)

RLW dst dst = R, RX, IR, X

tmp ~ dst
dst(O) ~ C
C ~ dst(15)
dst(n+1) ~ tmp(n) for n = 0 to 14

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated left one bit position. The most significant bit of the destination operand is
moved to the Carry flag and the Carry flag is moved to bit 0 of the destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from the most significant bit was a 1; cleared otherwise

Syntax
RLWR
RLWRX
RLW (HL)
RLW (XY+d)

Instruction Format
1110110111001011000100rr
11101101110010110001010y
111011011100101100010010
11y11101 11001011 -d-00010010

Execute
Time
2
2
2+r
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-145

RLA
ROTATE LEFT (ACCUMULATOR)

Operation:

Flags:

Addressing

RLA

tmp +- A
A(O) +- C
C +- A(?)
A(n+ 1) +- tmp(n) for n = 0 to 6

The contents of the accumulator are concatenated with the Carry flag and together they are
rotated left one bit position. Bit? of the accumulator is moved to the Carry flag and the Carry
flag is moved to bit 0 of the accumulator.

S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit? was a 1; cleared otherwise

Mode Syntax Instruction Format
00010111

Execute
Time Note

RLA 2

5-146

Z3BO'"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

Z3BO"
USER'S MANUAL

RLC
ROTATE LEFT CIRCULAR (BYTE)

RLC dst dst = R, IR, X

tmp ~ dst
C ~ dst(7)
dst(O) ~ tmp(7)
dst(n+1) ~ tmp(n) for n = 0 to 6

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Syntax
RLCR
RLC (HL)
RLC (XY+d)

Instruction Format
11001011 OOOOO-r-
11001011 00000110
11y11101 11001011 -d- 00000110

Execute
Time
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-147

RLCW
ROTATE LEFT CIRCULAR (WORD)

RLCW dst dst = R, RX, IR, X

Operation: tmp f- dst
C f- dst(15)
dst(O) f- tmp(15)
dst(n+ 1) f- tmp(n) for n = 0 to 14

The contents of the destination operand are rotated left one bit position. The most significant
bit of the destination operand is moved to the bit 0 position and also replaces the Carry flag.

Flags:

Addressing
Mode
R:
RX:
IR:
X:

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from the most significant bit was a 1; cleared otherwise

Syntax
RLCWR
RLCW RX
RLCW (HL)
RLCW (XY+d)

Instruction Format
11101101 11001011 OOOOOOrr
11101101 11001011 0000010y
111011011100101100000010
11y11101 11001011 -d- 00000010

Execute
Time
2
2
2+r
4+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-148

Note

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z380m

USER'S MANUAL

RLCA
ROTATE LEFT CIRCULAR (ACCUMULATOR)

RLCA

tmp f- A
C f- A(7)
A(O) f- tmp(7)
A(n+ 1) f- tmp(n) for n = 0 to 6

The contents of the accumulator are rotated left one bit position. Bit 7 of the accumulator is
moved to the bit 0 position and also replaces the Carry flag.

S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Syntax
RLCA

Instruction Format
00000111

Execute
Time
2

Note

5-149

IJ

RLD
ROTATE LEFT DIGIT

Operation:

Flags:

Addressing
Mode

5-150

RLD

tmp(3-0)
A(3-0)
dst(7-4)
dst(3-0)

~ A(3-0)
~ dst(7-4)
~ dst(3-0)
~ tmp(3-0)

The low digit of the accumulator is logically concatenated to the destination byte whose
memory address is in the HL register. The resulting three-digit quantity is rotated to the left
by one BCD digit (four bits). The lower digit of the source is moved to the upper digit of the
source; the upper digit of the source is moved to the lower digit of the accumulator, and the
lower digit of the accumulator is moved to the lower digit of the source. The upper digit of
the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used
to shift to the left a string of BCD digits, thus multiplying it by a power of ten. The accumulator
serves to transfer digits between successive bytes of the string. This is analogous to the use
of the Carry flag in multiple-precision shifting using the RL instruction.

S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Syntax
RLD

Instruction Format
11101101 01101111

Execute
Time
3+r

Note

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

Z3BO'"
USER'S MANUAL

RR
ROTATE RIGHT (BYTE)

RR dst dst = R, IR, X

tmp +- dst
dst(7) +- C
C +- dst(O)
dst(n) +- tmp(n+ 1) for n = 0 to 6

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated right one bit position. Bit 0 of the destination operand is moved to the Carry
flag and the Carry flag is moved to bit 7 of the destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Syntax
RRR
RR (HL)
RR (XY+d)

Instruction Format
11001011 00011-r-
1100101100011110
11y1110111001011 -d-00011110

Execute
Time
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-151

RRW
ROTATE RIGHT (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

RRW dst dst = R, RX, IR, X

tmp f- dst
C f- dst(O)
dst(15) f- C
dst(n) f- tmp(n+1) for n = 0 to 14

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated right one bit position. Bit 0 of the destination operand is moved to the Carry
flag and the Carry flag is moved to the most significant bit of the destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Syntax
RRWR
RRWRX
RRW(HL)
RRW(XY+d)

Instruction Format
1110110111001011000110rr
11101101110010110001110y
111011011100101100011010
11y11101 11001011 -d- 00011010

Execute
Time
2
2
2+r
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-152

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing

Z3BO~
USER'S MANUAL

RRA
ROTATE RIGHT (ACCUMULATOR)

RRA

tmp +-- A
A(7) +-- C
C +-- A(O)
A(n) +-- tmp(n+1) for n = 0 to 6

The contents of the accumulator are concatenated with the Carry flag and together they are
rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and the Carry
flag is moved to bit 7 of the accumulator.

s: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Mode Syntax Instruction Format
00011111

Execute
Time Note

RRA 2

5-153

RRC
ROTATE RIGHT CIRCULAR (BYTE)

Operation:

RRC dst dst = R, IR, X

tmp
C
dst(7)
dst(n)

f-- dst
f-- dst(O)
f-- tmp(O)
f-- tmp(n+ 1) for n = 0 to 6

The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise

Addressing
Mode
R:
IR:
X:

Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Syntax
RRCR
RRC (HL)
RRC (XY+d)

Instruction Format
11001011 00001-r-
11001011 00001110
11y1110111001011-d-00001110

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-154

Execute
Time
2
2+r
4+r

Note

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

Z3BO~
USER'S MANUAL

RRCW
ROTATE RIGHT CIRCULAR (WORD)

RRCWdst dst = R, RX, IR, X

tmp f- dst
C f- dst(O)
dst(15) f- tmp(O)
dst(n) f- tmp(n+ 1) for n = 0 to 14

The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the most significant bit position and also replaces the Carry
flag.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Syntax
RRCWR
RRCWRX
RRCW(HL)
RRCW (XY+d)

Instruction Format
1110110111001011000010rr
11101101110010110000110y
11101101 11001011 00001010
11y1110111001011-d-00001010

Execute
Time
2
2
2+r
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-155

RRCA
ROTATE RIGHT CIRCULAR (ACCUMULATOR)

Operation:

Flags:

Addressing

RRCA

tmp f- A
C f- A(O)
A(7) f- tmp(O)
A(n) f- tmp(n+1) for n = Oto 6

The contents of the accumulator are rotated right one bit position. Bit 0 of the accumulator
is moved to the bit 7 position and also replaces the Carry flag.

S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Mode Syntax Instruction Format
00001111

Execute
Time Note

RRCA 2

5-156

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

Z3BON

USER'S MANUAL

RRD
ROTATE RIGHT DIGIT

RRD

tmp(3-0) f- A(3-0)
A(3-0) f- dst(3-0)
dst(3-0) f- dst(7-4)
dst(7-4) f- tmp(3-0)

The low digit of the accumulator is logically concatenated to the destination byte whose
memory address is in the HL register. The resulting three-digit quantity is rotated to the right
by one BCD digit (four bits). The upper digit of the source is moved to the lower digit of the
source; the lower digit of the source is moved to the lower digit of the accumulator, and the
lower digit of the accumulator is moved to the upper digit of the source. The upper digit of
the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used
to shift to the right a string of BCD digits, thus dividing it by a power of ten. The accumulator
serves to transfer digits between successive bytes of the string. This is analogous to the use
of the Carry flag in multiple-precision shifting using the RR instruction.

S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Syntax
RRD

Instruction Format
1110110101100111

Execute
Time
3+r

Note

5-157

RST
RESTART

Operation:

RST address

if (XM) then begin
SP f-- SP - 4
(SP) f-- PC(7-0)
(SP+1) f-- PC(15-8)
(SP+2) f-- PC(23-16)
(SP+3) f-- PC(31-24)
end

else begin
SP f-- SP - 2
(SP) f-- PC(7-0)
(SP+ 1) f-- PC(15-8)
end

PC f-- address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table below.
The table also indicates the encoding of the address used in the instruction encoding. (The
address is in hexadecimal, the encoding in binary.)

Address
OOOOOOOOh
OOOOOOOBh
00000010h
0000001Bh
00000020h
0000002Bh
00000030h
0000003Bh

tencoding
000
001
010
011
100
101
110
111

Flags: S: Unaffected

Addressing
Mode

Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax Instruction Format
RST address 11-t-111

Field Encodings: 000 for OOh, 001 for 08h, 010 for 10h, 011 for 18h,
100 for 20h, 101 for 28h, 110 for 30h, 111 for 38h

5-158

Execute
Time
4+w

Note
X

Z380·
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

Z380"
USER'S MANUAL

SBC
SUBTRACT WITH CARRY (BYTE)

sse A,src src = R, RX, 1M, IR, X

A ~ A - src - e

The source operand together with the earry flag is subtracted from the accumulator and the
difference is stored in the accumulator. The contents of the source are unaffected. Two's
complement subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
e: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
sse A,R
sse A,RX
sse A,n
sse A,(HL)
sse A,(XY +d)

Instruction Format
10011-r-
11y11101 1001110w
11011110-n-
10011110
11y1110110011110-d-

Execute
Time
2
2
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-159

Operation:

Flags:

Addressing
Mode
R:

Z380·
USER'S MANUAL

SBC
SUBTRACT WITH CARRY (WORD)

SBC HL,src dst = HL
src = BC, DE, HL, SP

HL(15-0) ~ HL(15-0) - src(15-0) - C

The source operand together with the Carry flag is subtracted from the HL register and the
difference is stored in the HL register. The contents of the source are unaffected. Two's
complement subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
SBC HL,R

Instruction Format
1110110101rr0010

Execute
Time
2

Note

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-160

SBCW
SUBTRACT WITH CARRY (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

SBCW [HL,lsrc src = A, AX, 1M, X

HL(15-0) ~ HL(15-0) - src(15-0) - C

The source operand together with the Carry flag is subtracted from the HL register and the
difference is stored in the HL register. The contents of the source are unaffected. Two's
complement subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs an,d the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
SBCW[HL,lA
SBCW [HL,lAX
SBCW [HL,lnn
SBCW [HL,l(XY +d)

Instruction Format
11101101 100111 rr
11y11101 10011111
11101101 10011110 -n(low) -n(high)-
11y1110111011110-d-

Execute
Time
2
2
2
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

Z380m

USER'S MANUAL

5-161

II

SCF
SET CARRY FLAG

SCF

Operation: C f-

The Carry flag is set to 1.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set

Addressing
Mode Syntax Instruction Format

00110111 SCF

5-162

Execute
Time
2

Note

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

SET b, dst dst = R, IR, X

dst(b) f--

The specified bit b within the destination operand is set to 1. The other bits in the destination
are unaffected. The bit to be set is specified by a 3-bit field in the instruction; this field
contains the binary encoding for the bit number to be set. The bit number b must be between
o and 7.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
SET b,R
SET b,(HL)
SET b,(XY +d)

Instruction Format
11001011 11bbb -r-
1100101111bbb110
11y1110111001011-d-11bbb110

Execute
Time
2
2+r
4+r

Note

Field Encodings: r:
y:

per convention
o for IX, 1 for IY

Z380"
USER'S MANUAL

SET
SET BIT

5-163

SETC
SET CONTROL BIT

Operation:

Flags:

Addressing
Mode

SETC mode mode = LCK, LW, XM

if (mode = LCK) then begin
SR(1) (- 1
end

else if (mode = LW) then begin
SR(6) (- 1
end

else begin
SR(7) (- 1
end

When setting Lock mode (LCK), the LCK bit (bit 1) in the Select Register (SR) is set to 1,
disabling external bus requests. Note that bus requests are not disabled until after this
instruction has been executed, and that one or more of the succeeding instructions may also
have been fetched for decoding before this instruction has been executed.

When setting Long Word mode (LW), the LW bit (bit 6) in the SR is set to 1, selecting 32-bit
words. When using 32-bit words, all word load instructions transfer 32 bits.

When setting Extended mode (XM), the XM bit (bit 7) in the SR is set to 1 , selecting addresses
modulo 4,294,967,296 (32 bits) as opposed to addresses modulo 65536 (16 bits) in Native
mode. In Extended mode CALL and RETurn instructions save and restore 32 bit PC values
to and from the stack, and the PC pushed to the stack in response to an interrupt is 32 bits.
In Extended mode, address manipulation instructions such as INCrement, DECrement,
ADD, and Jump Relative (JR) employ 32-bit addresses. Note that it is not possible to exit
from Extended mode except via reset.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
SETC mode

Instruction Format
11mm110111110111

Execute
Time
4

Note

Field Encodings: mm: 01 for LW, 10 for LCK, 11 for XM

5-164

Z380~
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
IR:
X:

Z3BON

USER'S MANUAL

SLA
SHIFT LEFT ARITHMETIC (BYTE)

SLA dst dst = R, IR, X

tmp ~ dst
C ~ dst(7)
dst(O) ~ 0
dst(n+ 1) ~ tmp(n) for n = 0 to 6

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise

Syntax
SLAR
SLA(HL)
SLA (XY+d)

Instruction Format
11001011 00100-r-
11001011 00100110
11y1110111001011-d-00100110

Execute
Time
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-165

II

~2iUJG

SLAW
SHIFT LEFT ARITHMETIC (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

SLAW dst dst = R, RX, IR, X

tmp f- dst
dst(O) f- 0
C f- dst(15)
dst(n+ 1) f- tmp(n) for n = 0 to 14

The contents of the destination operand are shifted left one bit position. The most significant
bit of the destination operand is moved to the Carry flag and zero is shifted into bit 0 of the
destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from the most significant bit was a 1; cleared otherwise

Syntax
SLAWR
SLAWRX
SLAW (HL)
SLAW (XY+d)

Instruction Format
11101101 11001011 001000rr
11101101110010110010010y
11101101 11001011 00100010
11y11101 11001011 -d- 00100010

Execute
Time
2
2
2+r
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-166

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing

SLP

if (STBY not enabled) then
CPU Halts

else
Z380 enters Standby mode

With Standby mode disabled, this instruction is interpreted and executed as a HALT
instruction.

With Standby mode enabled, executing this instruction causes all device operation to stop,
thus minimizing power dissipation. The /STNBY signal is asserted to indicate this Standby
mode status. /STNBY remains asserted until an interrupt or reset request is accepted, which
causes the device to exit Standby mode. If the option is enabled, an external bus request
also causes the devcie to exit the Standby mode.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Mode Syntax Instruction Format
1110110101110110

Execute
Time Note

SLP 2

Z3BO'"
USER'S MANUAL

SLP
SLEEP

5-167

SRA
SHIFT RIGHT ARITHMETIC (BYTE)

Operation:

SRA dst dst = R, IR, X

tmp
C
dst(7)
dst(n)

(- dst
(- dst(O)
(- tmp(7)
(- tmp(n+1) for n = 0 to 6

The·contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

Flags: S: Set if the result is negative; cleared otherwise

Addressing
Mode
R:
IR:
X:

Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Syntax
SRAR
SRA (HL)
SRA(XY+d)

Instruction Format
11001011 00101-r-
1100101100101110
11y11101 11001011 -d-00101110

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-168

Execute
Time
2
2+r
4+r

Note

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

Z380N

USER'S MANUAL

SRAW
SHIFT RIGHT ARITHMETIC (WORD)

SRAW dst dst = R, RX, IR, X

tmp ~ dst
C ~ dst(O)
dst(15) ~ tmp(15)
dst(n) ~ tmp(n+ 1) for n = 0 to 14

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and the most significant bit remains
unchanged.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Syntax
SRAWR
SRAWRX
SRAW (HL)
SRAW (XY+d)

Instruction Format
11101101 11001011 001010rr
11101101110010110010110y
11101101 11001011 00101010
11y1110111001011-d-00101010

Execute
Time
2
2
2+r
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-169

SRL
SHIFT RIGHT LOGICAL (BYTE)

Operation:

SRL dst dst = R, IR, X

tmp
C

f- dst
f- dst(O)
f- 0 dst(7)

dst(n) f- tmp(n+1) for n = 0 to 6

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the destination.

Flags:

Addressing
Mode
R:
IR:
X:

S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Syntax
SRLR
SRL (HL)
SRL (XY+d)

Instruction Format
1100101100111-r-
1100101100111110
11y1110111001011-d-00111110

Field Encodings: r: per convention
y: 0 for IX, 1 for IY

5-170

Execute
Time
2
2+r
4+r

Note

Z3BON

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
IR:
X:

Z3BON

USER'S MANUAL

SRLW
SHIFT RIGHT LOGICAL (WORD)

SRLW dst dst = R, RX, IR, X

tmp (- dst
C (- dst(O)
dst(15) (- 0
dst(n) (- tmp(n+ 1) for n = 0 to 14

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into the most significant
bit of the destination.

S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Syntax
SRLWR
SRLWRX
SRLW (HL)
SRLW (XY+d)

Instruction Format
11101101 11001011 001110rr
11101101 11001011 0011110y
11101101 11001011 00111010
11y11101 11001011-d-00111010

Execute
Time
2
2
2+r
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-171

II

SUB
SUBTRACT (BYTE)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

SUB A,src src = R, RX, 1M, IR, X

A f-- A - src

The source operand is subtracted from the accumulator and the difference is stored in the
accumulator. The contents of the source are unaffected. Two's complement subtraction is
performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
SUBA,R
SUB A,RX
SUB A,n
SUB A,(HL)
SUB A,(XY +d)

Instruction Format
10010-r-
11y111011001010w
11010110-n-
10010110
11y1110110010110-d-

Execute
Time
2
2
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-172

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
DA:

Z380m

USER'S MANUAL

SUB
SUBTRACT (WORD)

SUB HL,src src = DA

if (XM) then begin
HL(31-0) ~ HL(31-0) - src(31-0)
end

else begin
HL(15-0) ~ HL(15-0) - src(15-0)
end

The source operand is subtracted from the HL register and the difference is stored in the
HL register. The contents of the source are unaffected. Two's complement subtraction is
performed. Note that the length of the operand is controlled by the Extended/Native !')lode
selection, which is consistent with the manipulation of an address by the instruction.

S: Unaffected
Z: Unaffected
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Unaffected
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax Instruction Format
SUB HL,(nn) 11101101 11010110 -n(low)- -n(high)

Execute
Time
2+r

Note
I,X

5-173

II

SUB
SUBTRACT FROM STACK POINTER (WORD)

Operation:

Flags:

Addressing
Mode
1M:

5-174

SUB SP,src src = 1M

if (XM) then begin
SP(31-0) f­

end
else begin

SP(15-0) f­

end

SP(31-0) - src(31-0)

SP(15-0) - src(15-0)

The source operand is subtracted from the SP register and the difference is stored in the SP
register. This has the effect of allocating or deal locating space on the stack. Two's
complement subtraction is performed.

S: Unaffected
Z: Unaffected
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Unaffected
N: Set
c: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
SUB SP,nn

Instruction Format
11101101 10010010 -n(low)- -n(high)

Execute
Time
2

Note
I,X

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

· Z3BON

USER'S MANUAL

SUBW
SUBTRACT (WORD)

SUBW [HL,lsrc src = R, RX, 1M, X

HL(15-0) f- HL(15-0) - src(15-0)

The source operand is subtracted from the HL register and the difference is stored in the
HL register. The contents of the source are unaffected. Two's complement subtraction is
performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Syntax
SUBW [HL,lR
SUBW [HL,lRX
SUBW [HL,lnn
SUBW [HL,l(XY +d)

Instruction Format
11101101 100101 rr
11y1110110010111
11101101 10010110 -n(low)- n(high)-
11y1110111010110-d-

Execute
Time
2
2
2
2+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-175

11

SWAP
SWAP UPPER REGISTER WORD WITH LOWER REGISTER WORD

Operation:

Flags:

Addressing
Mode
R:
RX:

SWAP src src = R, RX

src(31-16) H src(1S-0)

The contents of the most significant word of the source are exchanged with the contents of
the least significant word of the source.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Syntax
SWAPR
SWAPRX

Instruction Format
11101101 00rr1110
11y11101 00111110

Execute
Time
2
2

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IV

5-176

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
1M:
IR:

Z380'"
USER'S MANUAL

TST
TEST (BYTE)

TST src src = R, 1M, IR

A AND src

A logical AND operation is performed between the corresponding bits of the source operand
and the accumulator. The contents of both the accumulator and the source are unaffected;
only the flags are modified as a result of this instruction.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Syntax
TSTR
TST n
TST (HL)

Instruction Format
1110110100-r-100
11101101 01100100 -n-
1110110100110100

Execute
Time
2
2
2+r

Note

Field Encodings: r: per convention

5-177

TSTIO
TEST 1/0 PORT

Operation:

Flags:

Addressing

TSTIO src src = 1M

(C)AND src

A logical AND operation is performed between the corresponding bits of the source and the
contents of the I/O location. The contents of both the I/O location and the source are
unaffected; only the flags are modified as a result of this instruction. No external I/O
transaction will be generated as a result of this instruction, although the I/O address will
appear on the adress bus while the internal read is occurring. The peripheral address in the
C register is placed on the low byte of the address bus and zeros are placed on all other
address lines.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Mode Syntax Instruction Format
11101101 01110100 -n-

Execute
Time
3+i

Note
TSTIO n

5-178

Z380"
USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
IR:
X:

Z380'"
USER'S MANUAL

XOR
EXCLUSIVE OR (BYTE)

XOR [A,lsrc src = R, RX, 1M, IR, X

A f-- A XOR src

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are different; otherwise a 0 bit
is stored. The contents of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Syntax
XOR [A,lR
XOR [A,lRX
XOR [A,ln
XOR [A,l(HL)
XOR [A,l(XY +d)

Instruction Format
10101-r-
11y11101 1010110w
11101110-n-
10101110
11y1110110101110-d-

Execute
Time
2
2
2
2+r
4+r

Note

Field Encodings: r: per convention
y: 0 for IX, 1 for IY
w: 0 for high byte, 1 for low byte

5-179

XORW
EXCLUSIVE OR (WORD)

Operation:

Flags:

Addressing
Mode
R:
RX:
1M:
X:

XORW [HL,lsrc src = R, RX, 1M, X

HL(15-0) f- HL(15-0) XOR src(15-0)

A logical EXCLUSIVE OR operatiori is performed between the corresponding bits of the
source operand and the HL register and the result is stored in the HL register. A 1 bit is stored
wherever the corresponding bits in the two operands are different; otherwise a 0 bit is stored.
The·contents of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared othe~wise
N: Cleared
C: Cleared

Syntax
XORW [HL,lR
XORW [HL,lRX
XORW [HL,lnn
XORW [HL,l(XY +d)

Instruction Format
11101101101011rr
11 y111 01 10101111
11101101 10101110 -n(low) -n(high)-
11y1110111101110-d-

Execute
Time
2
2
2
4+r

Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: 0 for IX, 1 for IY

5-180

Z380~
USER'S MANUAL

Interrupts and Traps I

6.1 INTRODUCTION

Exceptions are conditions that can alter the normal flow of
program execution, The Z380'" CPU supports three kinds
of exceptions; interrupts, traps, and resets.

Interrupts are asynchronous events generated bya device
external to the CPU; peripheral devices use interrupts to
request service from the CPU, Traps are synchronous
events generated internally in the CPU by a particular
condition that can occur during the attempted execution of
an instruction-in particular, when executing undefined
instructions. Thus, the difference between Traps and Inter­
rupts is their origin, A Trap condition is always reproduc­
ible by re-executing the program that created the Trap,
whereas an Interrupt is generally independent of the
currently executing task.

6.2 INTERRUPTS

Of the five external Interrupt inputs provided, one is as­
signed as a Nonmaskable Interrupt, /NMI. The remaining
inputs, /INT3-/INTO, are four asynchronous maskable In­
terrupt requests.

The Nonmaskable Interrupt; (NMI) is an Interrupt that
cannot be disabled (masked) by software, Typically NMI is
reserved for high priority external events that need imme­
diate attention, such as an imminent powerfailure, Maskable
Interrupts are Interrupts that can be disabled (masked)
through software by cleaning the appropriate bits in the
Interrupt Enable Register (IER) and IEF1 bit in the Select
Register (SR).

All of these four maskable Interrupt inputs (lINT3-/INTO)
are external input signals to the Z380 CPU core, The four
Interrupt enable bits in the Interrupt Enable Register deter­
mine (IER; Internal I/O address: 17H) which of the re­
quested Interrupts are accepted. Each Interrupt input has
a fixed priority, with /INTO as the highest and /INT3 as the
lowest.

The Enable Interrupt (EI) instruction is used to selectively
enable the maskable Interrupts (by setting the appropriate
bits in the IER register and IEF1 bit in the SR register) and

USER's MANUAL

CHAPTER 6
INTERRUPTS AND TRAPS

A hardware reset overrides all other conditions, including
Interrupts and Traps. It occurs when the /RESET line is
activated and causes certain CPU control registers to be
initialized, Resets are discussed in detail in Chapter 7,

The Z380 MPU's Interrupt and Trap structure provides
compatibility with the existing Z80 and Z180 MPU's with
the following exception-the undefined opcode Trap oc­
currence is with respect to the Z380 instruction set, and its
response is improved (vs the Z180) to make Trap handling
easier, The Z380 MPU also offers additional features to
enhance flexibility in system design,

the Disable Interrupt instruction is used to selectively
disable interrupts (by clearing appropriate bits in the IER,
and/or clearing IEF1 bit in the SR register). When an
Interrupt source has been disabled, the CPU ignores any
request from that source, Because maskable Interrupt
requests are not retained by the CPU, the request signal on
a maskable Interrupt line must be asserted until the CPU n, '

acknowledges the request.

When enabling Interrupts with the EI instruction, all
maskable Interrupts are automatically disabled (whether
previously enabled or not) for the duration of the execution
of the EI instruction and the instruction immediately follow-
ing,

Interrupts are always accepted between instructions. The
block move, block search, and block I/O instructions can
be interrupted after any iteration.

The Z380 CPU has four selectable modes for handling
externally generated Interrupts, using the 1M instruction,
The first three modes extend the Z80 CPU Interrupt Modes
to accommodate the Z380 CPU's additional Interrupt in­
puts in a compatible fashion, The fourth mode allows more
flexibility in interrupt handling.

6-1

6.2 INTERRUPTS (Continued)

In an Interrupt acknowledge transaction, address outputs
A31-A4 are driven to logic 1. One output among A3-AO is
driven to logic 0 to indicate the maskable interrupt request
being acknowledged. If /INTO is being acknowledged, A3-
A 1 are at logic 1 and AO is at logic O.

For the maskable Interrupt on /INTO input, Interrupt Modes
o through 3 are supported. Modes 0, 1, and 2 have the
same schemes as those in the Z80 and Z180 MPU's. Mode
3 is similar to mode 2, except that 16-bit Interrupt vectors
are expected from th'e I/O devices. Note that 8-bit and 16-
bit I/O devices can be intermixed in this mode by having
external pull-up resistors at the data bus signals D15-D8,
for example.

The external maskable Interrupt requests /INT3-/INT1 are
always handled in an assigned Interrupt vectors mode
regardless of the current Interrupt Mode (IM3-IMO) in
effect.

As discussed in the CPU Architecture section, the Z380
MPU can operate in either the Native or Extended mode.
In Native mode, pushing and popping of the stack to save
and retrieve interrupted PC values in Interrupt handling are
done in 16-bit sizes, and the Stack Pointer rolls over at the
64 Kbyte boundary. In Extended mode, the PC pushes and
pops are done in 32-bit sizes, and the Stack Pointer rolls
over at the 4 Gbyte memory space boundary. The Z380

6.2.2 Interrupt Control

The Z380 MPU's flags and registers associated with Inter­
rupt processing are listed in Table 6-2. As discussed in the
Chapter 1, "CPU Architecture," some of these registers

Z3BO"
USER'S MANUAL

MPU provides an Interrupt Register Extension, whose
contents are always output as the address bus Signals
A31-A 16 when fetching the starting addresses of service
routines from memory in Interrupt Modes 2, 3, and the
assigned vectors mode. In Native mode, such fetches are
automatically done in 16-bit sizes and in Extended mode,
in 32-bit sizes. These starting addresses should be even­
aligned in memory locations. That is, their least significant
bytes should have addresses with AO = O.

6.2.1 Interrupt Priority Ranking

The Z380 MPU assigns a fixed priority ranking to handle its
Interrupt sources, as shown in Table 6-1.

Table 6-1, Interrupt Priority Ranking

Priority Interrupt Sources

Highest Trap (undefined opcode)
/NMI
/INTO
/INT1
/INT2

Lowest /INT3

reside in the on-chip I/O address space, and can be
accessed only with reserved on-chip I/O instructions.

Table 6-2. Interrupt Flags and Registers

Names Mnemonics Access Methods

Interrupt Enable Flags
Interrupt Register
Interrupt Register Extension

Interrupt Enable Register

Assigned Vectors Base and Trap Register
Trap and Break Register

6-2

IEF1,IEF2
I
Iz

IER

AVBR
TRPBK

EI and DI Instructions
LD I,A and LD A,llnstructions
LD I,HL and LD HL,llnstructions
(Accessing both Iz and I)
On-chip I/O Instructions, Address 17H
EI and DI Instruction
On-Chip I/O Instructions, Address 18H
On-Chip I/O Instructions, Address 19H

6.2.2.1 IEF1, IEF2
IEF1 controls the overall enabling and disabling of all on­
chip peripheral and external maskable Interrupt requests.
If IEF1 is at logic 0, all such Interrupts are disabled. The
purpose of IEF2 is to correctly manage the occurrence of
/NMI. When /NMI is acknowledged, the state of IEF1 is
copied to IEF2 and then IEF1 is cleared to logic O. At the

Z380N

USER'S MANUAL

end of the /NMI interrupt service routine, execution of the
Return From Nonmaskable Interrupt instruction, RETN,
automatically copies the state of IEF2 back to IEF1. This is
a means to restore the Interrupt enable condition existing
before the occurrence of /NMI. Table 6-3 summarizes the
states of IEF1 and IEF2 resulting from various operations.

Table 6-3. Operation Effects on IEF1 and IEF2

Operation IEF1

/RESET 0
Trap 0
/NMI 0
RETN IEF2
/INT3-/INTO 0
RETI NC

IEF2

0
0
IEF1
NC
0
NC

Comments

Inhibits all interrupts except Trap and /NMI.
Disables interrupt nesting.
IEF1 value copied to IEF2, then IEF1 is cleared.
Returns from /NMI service routine.
Disables interrupt nesting.
Returns from Interrupt service routine, Z80 I/O device.

RET NC NC Returns from service routine, or returns from Interrupt service routine for a
non-Z80 I/O device.

EI 1 1
DI 0 0
LD A,I or LD R,I NC NC IEF2 value is copied to PN Flag.
LD HL,I or LD HL,R NC NC

(NC = No Change)

6.2.2.2 I, I Extend
The 8-bit Interrupt Register and the 16-bit Interrupt Regis­
ter Extension are cleared during reset.

6.2.2.3 Interrupt Enable Register
D7-D4 Reserved Read as 0, should write to as O.
D3-DO IE3-IEO (Interrupt Request Enable Flags)

These flags individually indicate if /INT3, /INT2, /INT1, or
/1 NTO is enabled. Note that these flags are conditioned with
the Enable and Disable Interrupt instructions (with argu­
ments) (See Figure 6.1).

IER: 00000017H
Read Only

7 o

IIE3 IIE2 IIEl I lEO I
--T0 __ O;;..........;O~~O_....;O;;..........;;O_.....;;..O _ 1 Reset Value

I L ,~"" .. '""~" • Requests

'--------------- Interrupt Requests
Enable

Figure 6-1. Interrupt Enable Register

6.2.2.4 Assigned Vectors Base Register
D7-D1 AB15-AB9 (Assigned Vectors Base). The Interrupt
Register Extension, Iz, together with AB 15-AB9, define the
base address of the assigned Interrupt vectors table in
memory space (See Figure 6-2).

DO Reserved. Read as 0, should write to as O.

AVBR: 00000018H
RIW
7 0

IAB1SlAB141AB131AB121ABll1AB101 AB91 .. I
o o o o o o o Reset Value

L Reserved
Program as 0
Read as 0 I '--------- Assigned Vectors
Base

Figure 6-2. Assigned Vectors Base Register

6-3

6.2.2.5 Trap and Break Register
07-02 Reserved. Some of these bits are reserved for
development support functions. Read as 0, should write to
as O.

01 TF (Trap on Instruction Fetch). TF goes active to logic
1 when an undefined opcode fetched in the instruction
stream is detected. TF can be reset under program control
bywriting it with a logic O. However, it cannot be written with
a logic 1.

00 TV (Trap on Interrupt Vector). TV goes active to logic 1
when an undefined opcode is returned as a vector in an
Interrupt acknowledge transaction in mode O. TV can be
reset under program control by writing it with a logic O.
However, it cannot be written with a logic 1 (See Figure
6-3).

6.3 TRAP INTERRUPT

The Z380 MPU generates a Trap when an undefined
opcode is encountered. The Trap is enabled immediately
after reset, and it is notmaskable. This feature can be used
to increase software reliability or to implement "extended"
instructions. An undefined opcode can be fetched from
the instruction stream, or it can be returned as a vector in
an Interrupt acknowledge transaction in Interrupt Mode O.
When a Trap occurs, the Z380 MPU operates as follows.

1. The TForTV bit in the Assigned Vectors Base and Trap
Register goes active, to indicate the source of the
undefined opcode.

2. If the undefined opcode was fetched from the instruc­
tion stream, the starting address of the Trap causing
the instruction is pushed onto the stack. (Note that the
starting address of decoder directive(s) preceding an
instruction encoding is considered the starting ad­
dress of the instruction.)

6-4

TRPBK: 0OOOOO19H
RfW
7

I .. I .. I .. I . .

o

Z380N

USER'S MANUAL

0 0 0 0;._"""'"-_-'--r-_--'O_--'-O_ 0 0 Reset Value

TLTrapon
Interrupt Vector

Trap on
Instruction Fetch

'---------- Reserved
Program as 0
Read as 0

Figure 6-3. Trap and Break Register

If the undefined opcode was a returned Interrupt vector,
the interrupted PC value is pushed onto the stack.

3. The states of IEF1 and IEF2 are cleared.

4. The Z380 MPU commences to fetch and execute
instructions from address OOOOOOOOH.

Note that instruction execution resumes at address 0,
similar to the occurrence of a reset. Testing the TF and TV
bits in the Assigned Vectors Base and Trap Register will
distinguish the two events. Even if Trap handling is not in
place, repeated restarts from address 0 is an indicator of
possible illegal instructions at system debugging.

6.4 NONMASKABLE INTERRUPT

The Nonmaskable Interrupt Input /NMI is edge sensitive,
with the Z3S0 MPU internally latching the occurrence of its
falling edge. When the latched version of /NMI is recog­
nized, the following operations are performed.

1. The Interrupted PC (Program Counter)value is pushed
onto the stack. The size of the PC value pushed onto
the stack depends on Native (one word) or Extended
mode (two words) in effect.

Z3BON

USER'S MANUAL

2. The state of IEF1 is copied to IEF2, then IEF1 is
cleared.

3. The Z3S0 MPU commences to fetch and execute
instructions from address 00000066H.

6.5 INTERRUPT RESPONSE FOR MASKABLE INTERRUPT ON IINTO

The transactions caused by the Maskable Interrupt on
/INTO are different depends on the Interrupt Mode in effect
at the time when the interrupt has been accepted, as
described below.

6.5.1 Interrupt Mode 0 Response for
Maskable Interrupt IINTO

This mode is similar to the SOSO CPU Interrupt response
mode. During the Interrupt acknowledge transaction, the
external I/O device being acknowledged is expected to
output a vector onto the upper portion of the data bus, 015-
OS. The Z3S0 MPU interprets the vector as an instruction
opcode. IEF1 and IEF2 are reset to logic 0, disabling all
further maskable interrupt requests. Note that unlike the
other interrupt responses, the PC is not automatically
pushed onto the stack. Typically, a Restart instruction
(RST) is used, since the Restart opcode is only one byte
long, meaning that the interrupting peripheral needs to
supply only one byte of information. Forthis case, it pushes
the interrupted PC (Program Counter) value onto the stack
and resumes execution at a fixed memory location. Alter­
natively, a 3-byte call to any location can be executed.

Note that a Trap occurs if an undefined opcode is supplied
by the I/O device as a vector.

6.5.2 Interrupt Mode 1 Response for
Maskable Interrupt IINTO

In Interrupt Mode 1, the Z3S0 CPU automatically executes
a Restart to a fixed location (0000003SH) when an interrupt
occurs. An Interrupt acknowledge transaction is gener­
ated, during which the data bus contents are ignored by
the Z3S0 MPU. The interrupted PC value is pushed onto the
stack. The size of the PC value pushed onto the stack is
depends on Native (one word) or Extended mode (two
words) in effect. The IEF1 and IEF2 are reset to logic 0 so
as to disable further maskable interrupt requests. Instruc­
tion fetching and execution restarts at memory location
0000003SH.

6.5.3 Interrupt Mode 2 Response for
Maskable Interrupt IINTO

Interrupt Mode 2 is a vectored Interrupt response mode,
wherein the interrupting device identifies the starting loca­
tion of service routine using an S-bit vector read by the CPU
during the Interrupt acknowledge cycle.

During the Interrupt acknowledge transaction, the external
I/O device being acknowledged is expected to output a
vector onto the upper portion of the data bus, 015-0S. The
interrupted PC value is pushed onto the stack and IEF1
and IEF2 are reset to logic 0 so as to disable further
maskable interrupt requests. The size of the PC value
pushed onto the stack is depends on Native (one word) or
Extended mode (two words) in effect. The Z3S0 MPU then
reads an entry from a table residing in memory and loads
it into the PC to resume execution. The address of the table
entry is composed of the I Extend (Iz) contents as A31-A 16,
the I Register contents as A 15-AS and the vector supplied
by the I/O device as A7-AO. Note that the table entry is
effectively the starting address of the interrupt service
routine designed for the I/O device being acknowledged,
and the table composing of starting addresses for all the
Interrupt Mode 2 service routines can be referred to as the
Interrupt Mode 2 vector table. Each table entry should be
word-sized iftheZ3S0 MPU is in the Native mode and Long
Word-sized if in the Extended mode, in either case even­
aligned (least significant byte with address AD = 0), mean­
ing 12S different vectors can be used in the Native mode,
and 64 different vectors can be used in Extended mode.

6.5.4 Interrupt Mode 3 Response for
Maskable Interrupt IINTO

Interrupt Mode 3 is similar to mode 2 except that a 16-bit
vector is expected to be placed on the data bus 015-00 by
the I/O device during the Interrupt acknowledge transac­
tion. The interrupted PC is pushed onto the stack. The size
of the PC value pushed onto the stack depends on the

6-5

6.5.4 Interrupt Mode 3 Response for
Maskable Interrupt IINTO (Continued)

Native (one word) or Extended mode (two words) in effect.
IEF1 and IEF2 are reset to logic 0 so as to disable further
maskable Interrupt requests. The starting address of the
service routine is fetched and loaded into the PC to resume
execution, from memory location with an address com­
posed of the I Extend contents as A31-A 16 and the vector
supplied by the I/O device as A 15-AO. Again the starting

Z3BO"
USER'S MANUAL

address of the service routine is word-sized if the Z380
MPU is in Native mode and Long Word-sized if in the
Extended mode, in either case even-aligned, meaning
32768 different vectors can be used in the Native mode,
and 16384 different vectors can be used in the Extended
mode.

6.6 ASSIGNED INTERRUPT VECTORS MODE FOR MASKABLE INTERRUPTS IINT3-/INT1

Regardless of the Interrupt Mode in effect, interrupts on
/INT3-/INT1 is always handled by the Assigned Interrupt
Mode. This mode is similar to the interrupt handling on the
Z180's/INT1 or /INT2Iine. When the Z380 MPU recognizes
one of the external maskable Interrupts /1 NT3-/1NT1 , it
generates an Interrupt acknowledge transaction which is
different than that for /INTO. The Interrupt acknowledge
transaction for /INT3-/INT1 has the I/O bus signal /INTACK
active, with /M1 /IORO, /IORO, and /IOWR inactive. The
interrupted PC value is pushed onto the stack. The size of
the PC value pushed onto the stack is depends on the
Native (one word) or Extended mode (two words) in effect.
IEF1 and IEF2 are resetto 10gicO, disabling furthermaskable
Interrupt requests. The starting address of an Interrupt
service routine is fetched from a table entry and loaded into
the PC to resume execution. The address of the table entry
is composed of the I Extend contents as A31-A 16, the AB
bitsoftheAssigned Vectors Base Register as A 15-A9, and

6.7 RETIINSTRUCTION

The Z80 family I/O devices are designed to monitor the
Return from Interrupt opcodes in the instruction stream
(RETI - EOH, 40H), signifying the end of the current
Interrupt service routine. When detected, the daisy chain
within and among the device(s) resolves and the appropri-

6-6

an assigned interrupt vector specific to the request being
recognized as A8-AO. The assigned vectors are defined in
Table 6-4. If the Z380 CPU is in Extended mode, all four
bytes of the data stored in the Assigned vector location will
be used as a new PC value. If the Z380 CPU is in Native
mode, only two bytes of data from the LS Byte will be used
as a new PC value.

Table 6-4. Assigned Interrupt Vectors

Interrupt
Source

/INT1
/INT2
/INT3

Assigned
Interrupt
Vector

OOH
04H
08H

ate Interrupt-under-service condition clears. The Z380
MPU "reproduces" the opcode fetch transactions on the
I/O bus when the RETI instruction is executed. Note thatthe
Z380 MPU outputs the RETI opcodes onto both portions of
the data bus (015-08 and 07-00) in the transactions.

Reset II

7.1 INTRODUCTION

The Z380 CPU is placed in a dormant state when the
/RESET input is asserted. All its operations are terminated,
including any interrupt, bus request, or bus transaction
that may be in progress. On the Z380 MPU, the 10CLK
goes Low on the next BUSCLK rising edge and enters into
the BUSCLK divided-by-eight mode. The address and
data buses are tri-stated, and the bus control signals are
driven to their inactive states. The effect of /RESET on the
Z380 CPU and related internal I/O registers is depicted in
Table 7-1.

The /RESET input may be asynchronous to BUSCLK,
though it is sampled internally at BUSCLK's falling edges.
For proper initialization of the Z380 CPU, V DO must be within
operating specifications and the CLK input must be stable
for more than five cycles with /RESET held Low.

The Z380 CPU proceeds to fetch the first instruction 3.5
BUSCLK cycles after /RESET is deasserted, provided
such deassertion meets the proper setup and hold times

USER's MANUAL

CHAPTER 1
RESET

with reference to the falling edge of BUSCLK. On the Z380
MPU implementation, with the proper setup and hold times
being met, 10CLK's first rising edge is 11.5 BUSCLK
cycles after the /RESET deassertion, preceded by a mini­
mum of four BUSCLK cycles when 10CLK is at Low.

Note that if /BREQ is active when /RESET is deasserted, the
Z380 MPU would relinquish the bus instead of fetching its
first instruction. 10CLK synchronization would still take
place as described before.

Requirements to reset the device, and the initial state after
reset might be different depending on the particular imple­
mentation of the Z380 CPU on the individual Superintegra­
tion version of the device. For /RESET effects and require­
ments, refer to the individual product specification.

7-1

II

Z3S0
USER'S MANUAL

Table 7-1. Effect of a Reset on Z380 CPU and Related 1/0 Registers

Register

Program Counter

Stack Pointer

I
R

Select Register

A and F Registers

Register Extensions

I/O Bus Control Register 0

Interrupt Enable Register

Assigned Vector Base Register

Trap and Break Register

7-2

Reset Value

00000000

00000000

000000
00

00000000

0000

00

01

00

00

Comments

PCz. PC

SPz, SP

Iz, I

Register Bank 0 Selected:
AF, Main Bank, IX, IY
Native Mode
Maskable Interrupts Disabled, in Mode 0
Bus Request Lock-Off

Register Banks 3-0:
A, F, A', F' Unaffected

Register Bank 0:
BCz, DEz, HLz, IYz,
BCz', DEz', HLz', IYz'
(All "non-extended" portions unaffected.)
Register Bank 3-1 Unaffected.

10CLK = BUSCLK/8

/INTO Enabled

, I) , ; .. < : <, , ~' ,.' ,

i ,;,,, ,~"' , ~)' '

i I
:;

1380™ Benchmark Appnote II

~2iU~tG
Z380™ BENCHMARKING

This application note compares the performance and program memory requirements among the new 16-bit
CPU from lilog l80380 and several competing processors, including the Intel 80186, 80960 and Motorola
68020 and CPU32.

INTRODUCTION
Zilog's new Z380'· Central Processing Unit is a high
performance CPU engine designed to meet today's appli­
cation requirements. The Z380 CPU incorporates ad­
vanced architectural features that allow fast and efficient
throughput and increased memory addressing capability
while maintaining Z80®/Z180® object code compatibility.

The Z380 CPU is an enhanced version of the Z80 CPU. The
Z80 instruction set has been retained, adding a full com­
pliment of 16-bitarithmetic and logical operations, multiply
and divide, a complete set of register-to-register loads and
exchanges, plus 32-bit load and exchange, and 32-bit
arithmetic operations for address calculations.

The addressing modes of the Z80 have been enhanced
with Stack pointer relative loads and stores, 16-bit and 24-
bit indexed offsets, and more flexible indirect register
addressing. All of the addressing modes allow access to
the entire 32-bit addressing space.

The register set of the Z80 microprocessor is expanded to
32 bits, and has been replicated four times to allow for fast
context switching among tasks in a dedicated control
environment.

The following are the key features of the Z380:

III Full static CMOS design with low power standby mode
support

Ii 32-bit internal data paths and ALU

II 16-bit (64K) or 32-bit (4G) linear addressing space

II 16-bit internal data bus

II Two clock cycle minimum instruction execution

.. Two clock cycle Memory bus

II Programmable I/O bus protocols and clock rates

III Four banks of 32-bit registers

III Enhanced interrupt capabilities, including 16-bit
vectors and four external Interrupt inputs

III Undefined opcode trap for full Z380 CPU fhstruction
set

The Z380 block diagram is shown in Figure 1. For a
detailed description of the Z380 please refer to the Z380
Technical Manual, DC #8297-00, and the Z380 Preliminary
Product Specification DC #6003-02 from Zilog.

8-1

II

~2il.CJE

INTRODUCTION (Continued)

..J lit:
w ..J lit:
~ ~

(,)
52 !II ..J

(,)
..J ..J ..J ::J
(,) (,) (,) m Q

Clock with
Standby Control

~
Chip Selects

and Walts
I+-

Refresh
Conrol

t

8-2

" C')
!II

!II (,)

~
..J !II !z ..J

I-(,) (,) Z
::i! !II (,)

> ::J ::J !II in m 0 lit: m !:i " CI w !: ::J
Z (,) Ib N ::i! m w ~ I- <I: ::i! .,.. in ~ a: C') .,.. w g Ie ~ ..J <I: Q ::i! ::i! m !!!

I
~ /" ~ " "

External Interface Logic

CPU

Data (16) I ,
Address (32) / ,

Figure 1. Z380 Functional Block Diagram

Iii " !II :E f2 w z !!:: E: 0::::

/
I

Interrupts

Z3BO" BENCHMARKS
ApPLICATION NOTE

...... --IEV

...... -+:...... VDD

_-.L- VSS

Z3BO'" BENCHMARKS
ApPLICATION NOTE

BENCHMARKS AMONG EMBEDDED PROCESSORS
In response to a recent microprocessor selection process
by a major customer, Zilog's Datacom Marketing group
compared the performance and program memory re­
quirements among the new Z80380 and several com pet-

METHOD

Benchmarking consisted of selecting four code fragments
judged to be typical of embedded applications, coding
the four fragments in assembly language for each of the
four processors, and calculating the execution time for
each fragment on each processor, at 16, 25, and 40 MHz
clock rates as applicable to each.

The results were then tabulated in a spreadsheet that first
normalized them to the figure for the 25 MHz 80380, and
then averaged the normalized values for memory code
size and execution time, as well as an overall "figure of
merit".

ASSUMPTIONS

Because execution time can be a complex matter for
today's pipelined processors, our benchmarks made sev­
eral assumptions that simplified performance evaluation.
The most presumptive was that the memory on all proces­
sors was fast enough that there would be NO WAIT
STATES. (In many cases this would mandate fast Static
RAM rather than larger, more economical Dynamic RAM,
which makes sense for some applications but not others.)

A second assumption was that all operands were ALIGNED
to the natural boundaries for their size: data accessed 16
bits at a time was located at an address that was a multiple
of two bytes, while data to be accessed 32 bits at a time
was located at an address that's a multiple of 4 bytes. This
characteristic can be guaranteed by many high-Ievel­
language compilers, and is questionable only for the
Block Move operations.

ing processors, including the Intel 80186 and 80960 and
the Motorola 68020 and CPU32. (The CPU32 is the heart
of the Motorola's 803xx series of integrated products.)

The code fragments were called "I/O Loop", "Signed Byte
Handling". "Multiply/Accumulate". and "Interrupt". Since
the execution time for I/O Loop is a function of the number
of times through the loop, and because it was felt to be the
most typical of user requirements, it was counted twice
toward the composite performance and merit figures,
once for a single iteration and once for efght times through
the loop. Finally, a fifth performance category was in­
cluded, the time required for memory-to-memory block
movement of data. This made six performance values that
were averaged with four program-size values for the over­
all Figure of Merit, an imbalance that "felt right" in terms of
the way we think many users view the value of an embed­
ded microprocessor.

For processors that include a cache (the 68020 and
80960), the timing was calculated such that the first ac­
cess to each instruction was a cache miss, and any
subsequent accesses were cache hits. In other words, we
assumed that these code fragments were not part of a
central loop, but were executed in response to specific
events that were sufficiently infrequency that the code was
superseded in the cache between events.

8-3

INSTRUCTION TIMING

Forthe 80186, we allowed Intel their stated timing assump­
tion "With a 16-Bit Bus Interface Unit, the 80186 has
sufficient bus performance to ensure that an adequate
number of pre-fetched bytes will reside in the queue most
of the time." (16-32 Bit Embedded Processors 1990, pp. 1-
50, 1-118). The following 80186 listings include a column
of the number of clocks for each instruction, taken directly
from the referenced data book.

Motorola's CPU32 User Manual includes several figures
for each instruction and addressing mode, which have to
be combined with each other and with those for the
following instruction, to determine execution times. The
symbols Cea, Hea, and Tea represent the total number of
clocks to fetch or calculate an Effective Address, and how
many of these represent Header clocks that can be
overlapped with subsequent operations, and Tail clocks
that can be overlapped with subsequent operations. Simi­
larly, the symbols Cop, Hop, and Top represent the total
number of clocks needed to execute the instruction, and
how many of these are Header clocks and Tail clocks. The
total was computed by the formula:

Cea - min (Tea, Hop) + Cop - min (Top, Hea [next
instruction])

For instructions containing two effective addresses the
formula is:
Cea 1 - min (Tea 1, Hea2) + Cea2 - min (Tea2, Hop) + Cop
- min (Top, Hea [next instruction])

Each following 680xO code fragment is followed by a
spreadsheet that performs these calculations for the
CPU32.

For the 68020, Motorola gives three timing figures for each
instruction. Best Case (BC) is the number of clocks the
instruction takes if it is in the cache and enjoys the
maximum possible degree of overlap with the preceding
and following instructions. Cache case (CC) is the number
of clocks is the instruction is in the cache but has no
overlap with other instructions. Worst case (WC) is when
the instruction is not in the cache and has no overlap with
other instructions.

The 68020 User Manual includes quite a few pages that
define these three timings for all the possible instruction
variants, but then notes that there is no way to use these

8-4

Z380~ BENCHMARKS
ApPLICATION NOTE

values to arrive at actual execution times! Since CC-BC is
the maximum possible instruction overlap, we decided to
count the first execution of an instruction as a cache miss
with an "average" amount of overlap:

first execution = WC - (CC-BC)/2
while subsequent executions of an instructions were
counted as a cache hit with an average amount of overlap:
subsequent execution = (CC+BC)/2

Each following 680xO code fragment is followed by a
spreadsheetthat performs these calculations for the 68020.

For the 80960, an actual clock-by-clock analysis of pro­
cessor activity was done, and is shown by a spreadsheet
that follows the listing of each 960 code fragment. In these
charts:

F represents a code fetch operation on the external bus,
F2 is the second fetch of a 2-word instruction on the
external bus,
CF is a Cache Fetch,
o is a Decode operation,
EA is an Effective Address calculation,
A on B stands for the Address cycle for a data word on the
external bus.
o on B stands for the Data cycle for a data word on the
external bus
W is an extra clock (wait state) the author decided would
be needed for a data write on the external bus,
X is any other kind of execution cycle, e.g., storing a value
in a register

It's probable that these charts don't sufficiently account for
limits on the number of instructions that can be pending in
similar states simultaneously, and that as a result we made
the 80960KA look slightly better than it should.

For the 80380, execution times were derived in two steps.
First we simply added up the execution times listed in the
User Manual, as for the 80186. Then the architect of the
380 analyzed the instruction flow, similarly to what was
done for the 960, and added a few extra clocks for pipeline
stalls and non-overlap between the Bus Interface Unit and
Execution Unit. Because of this, perceptive readers may
notice that the clocks shown for individual 80380 instruc­
tions don't always add up to the total execution figures.

DESCRIPTION OF THE CODE FRAGMENTS

I/O Loop

This code fragment reads received data, two bytes at a
time, from a 16C30 Universal Serial Controller (USC), and
stores the data in a memory buffer for each frame. The
USC is the successor to Zilog's popular SCC, and has a
32-byte FIFO capacity. First, each sequence sets up
whatever registers are needed to access the USC, the
memory buffer, and a current pointer into the buffer named
IIrxill,

At the start of each loop, the code reads the number of
bytes currently in the receive FIFO, from the MSbyte of a
USC register called RICR. It also reads a 16-bit status
register called RCSR.

IFthere are no bytes left in the FIFO, the code exits from the
fragment. If there is one byte in the RxFIFO, the code
checks the status to see if the byte is either the last one of
a frame, or is the byte at which a Receive Overrun condi­
tion occurred. If neither of these is the case, the code
leaves the byte in the RxFIFO for the future, and exits from
the fragment. Otherwise, or if there are two or more bytes
in the FIFO, the code:

1 . ensures that no interrupt can occur between the
following steps,

2. reads two bytes from the FIFO via the USC register
called RDR
(the USC will only provide one if there's only one in the
FIFO)

3. stores the data in memory at the address in the pointer

4. increments rxi by 2,
5. stores rxi back in memory, and
6. enables interrupts to occur again.

After these operations the code tests the status obtained
earlier from RCSR, and if the data just stored didn't
represent the end of a frame, it goes backtothe start of the
loop described above. The following code calls an end-of­
frame-handling subroutine called "_Handle_RxStatus"_ this
part of the fragment counts toward the code memory
required but not toward the execution time, because a
frame ends only once in many executions of the loop.

Signed Byte Handling

This code fragment originally came from a customer code
in the hard disk field. It examines three 8-bit variables in
memory called NORM, Q, and K2. Actually NORM can
range from -256 to +255 and is implemented as a 16-bit
variable. It computes an eight-bit result in any of six ways,

Z3BON BENCHMARKS
ApPLICATION NOTE

depending on the sign of NORM and how it compares to
that of Q, as described in the comments at the top of each
page of code.

First the code may access some or all or the three input
variables and/or set up registers to point to one or more of
them. Then it tests the sign of NORM, branching to the
second "half" of the code fragment if it's positive. In each
"half", the code compares NORM and Q and branches
around in a tree-structured fashion to compute the result
dictated by relative values of NORM and Q.

To evaluate the overall execution time of the fragment, we
computed the execution time for each of the six result
cases, and averaged them.

This may be the least clear code fragment as to its cosmic
purpose, but it is a reasonable example of the kind of
decision-tree processing that's typical of many I/O han­
dling and control systems.

Multiply/Accumulate

This code fragments is also taken from a customer code in
a hard-disk application. It uses four 16-bit input values in
memory, CURSEC, POSN_ERR, S_GRAT, and K_GRAT,
plus two memory tables of 16-bit values called S_ TABLE
and C_TABLE, each as large as the largest possible
values of CUR SEC. From these the code extracts S_ TABLE
(CURSEC) and saves the result in a memory variable
S_VALUE, and similarly extracts C_TABLE (CUSEC) and
saves it in K_VALUE. The code also multiplies each value
by POSN_ERR, scales/divides each result by 64, and adds
the results into memory variables S_ACCUM and K_ACCUM
respectively, Finally it calculates R_CP=
(S_VALUE*S_GRAT + K_VALUE*KGRAT) /32.

This code includes four 16x16 multiplications and 32-bit
scale/shift operations. For all the processors except the
CPU32, the fragment is coded to loop back once to
minimize memory requirements, by taking advantage of
the similarity of the computations for the "s" and "K" values.

Interrupt

These code fragments service a "receive status" interrupt
from a Zilog 16C30 Universal Serial Controller (USC). The II
actual code size and execution time are reduced from a I

full-blown ISR, by evaluating for the case of a "Receive
Overrun" event, and by isolating the details of handling an
End of Frame event in a separate subroutine. This is done

8-5

to emphasize the interrupt overhead for each processor,
including interrupt latency, interrupt processing, context
saving and restoring, and returning to the interrupted
process.

Each code fragment saves register values and any other
necessary contest info, then sets up a base address for the
USC, clears the Interrupt Pending (IP) for Receive Status
interrupts, and reads 16-bit status from the USC register
RCSR. Then, if the overrun status bit is set, it writes two
"command bytes" called "Enter Hunt Mode" and "Purge Rx"
to USC registers. (These operations count are counted
toward execution time.)

Next, if the status bit indicating the end of a frame is set, the
code calls a subroutine to handle this condition. Neither
the call nor the subroutine are counted toward execution
time.

Next the code reads and writes several USC register to
ready the device for future interrupts. Finally it restores the
context and returns to the interrupted program.

The 80960KA does more operations automatically in hard­
ware before and after the execution of the interrupt service

SUMMARY

The final chart below summarizes and combines the
memory requirements and execution times for each code
fragment on the various processors clock speeds. The
80186 doesn't come in 25 or 40 MHz versions, so only 16
MHz results are shown. The CPU32, 68020, and 80960KA
are shown for 16 and 25 MHz. The 80380 is shown for 16,
25, and 40 MHz clocking. In each case this includes the
highest clock speed shown in the latest literature we could
obtain for each processor family.

In all cases, the 80960KA has by far the largest code size,
but makes up for it by needing the fewest clocks to
execute. The 80186 has the smallest average code size,
but makes up for that by being the slowest device for all
cases except Block Move, for which it edged out the
CPU32 to escape the cellar.

The CPU32 proved exemplary at the Multiply/Accumulate
fragment, having the smallest code size and running
second to the 80960KA for the faster execution time (even
outperforming its 32-bit relative the 68020, due to its early­
exit Booth multiplier). In the other cases it tended to run
second-last to the 80960 in code size and to the 80186 in
execution time.

8-6

Z3BO" BENCHMARKS
ApPUCATlON NOTE

routine proper, than do the other processors. The time to
perform these operations were not specified in the Intel
literature available to us, so the time was estimated in the
first and last column of the execution chart, based on the
time to do similar functional under software control.

Block Move Sequences

The "block move" sequences for all the processors are
shown on one sheet. The 8096KA has no special instruc­
tion for this operation, but its Load and Store Quad Register
instruction each handle 16 bytes per execution. The CPU32
has no special instruction either, but its two-word prefetch
queue is capable of holding the two-instruction loop shown,
so that no instruction fetches are needed for the duration
of the block move, only data cycles. For 68020 we used the
average ofthe Best Case and Cache Case, i.e., a cache hit
with an "average" amount of instruction overlap.

Both the 80186 and 80380 have instructions intended for
this purpose. The evaluation for 380 assumes that the
global Longword (LW) control bit is set so that each
iteration includes two 16-bit reads and two 16-bit writes.

The 68020 had the same code sizes as the CPU32 and
improved on the CPU32's execution times, but perhaps
not by enough to overcome the higher system costs of a
32-bit bus and memory subsystem

The Zilog 80380 typically ran close to the 80186 in code
density and minimizing program size, as might be ex­
pected from an older architecture that was created when
memory was more expensive than today. Perhaps more
surprisingly, it finished second to the 80960KA in execu­
tion clocks most cases, and counting its faster clock rate
ran competitively to the 960KA in total execution time.

When looking at a the normalized program size and
execution time values in the summary table, remember
that smaller values are better, and that a value less than 1
means that processor/clock rate combination is better
than a 80380 at 25 MHz.

SUMMARY (Continued)

Of course there's something a little out of line about
including the 80960KA in this comparison, which
* costs far more than any of the other processors,
* entails added system-level expense because of its 32-bit
data path and required memory width (also true of the
68020), and
* requires special "block transfer" memory design tech­
niques

In fact, Intel has another member of its 80960 that is more
like the other processors herein, the 8096KA. This device
has a 16-bit data bus like the 80380 and 80186, and a more
compact package that lowers its cost into a more competi­
tive range. Unfortunately we were unable to obtain any
timing information for the 80960SA in the time frame
required for this benchmarking.

Z380N BENCHMARKS
ApPLICATION NOTE

However, we did find an Intel brochure that allows the
80960SA to participate in these results in a small way. It
showed a "Dhrystone" (fixed point) figure for the 80960SA
of 12145, compared to 19740 for the 960KA. Multiplying
the performance figures for the 960KA by 19740/12145
(smaller is better in our figures while larger is better for the
Dhrystone) yielded the results shown in the third-last and
last lines. For the last line that combines code size and
execution time into a final figure of Merit, only the execution
time values were scaled by Intel's Dhrystone results.

To wrap up, considering both code density and execution
time for these code fragments, the new Zilog 80380 blows
away other 16-bit processors including the 80960SA, and
comes out about equal to the much more expensive 32-bit
80960KA if skewed by one speed grade (25 MHz 380 vs.
16 MHz 960,40 MHz 380 vs. 25 MHz 960).

8-7

1/0 LOOP: 80186

; the following 80x86 code reads data from a Zilog 16C30 USC
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this version assumes that the USC is in I/O space

Bytes Clks
3 S MOV AX,wORD PTR DS:_rxi+2
2 2 MOV ES,AX
4 9 MOV DI,WORD PTR DS:_rxi

RxPoIl16UJp:
3 4' MOV DX,uscBase+RICR+ 1
1 S' IN AL,DX ; get hi byte of RICR
2 2' SHR AL,1 ; anything to do?
2 3' MOV DL,RCSR ; RICR hi byte to RDR word
1 S' IN AX,DX ; get status
2 4/13' JNZ RxPoll16U_hav ; around if not
2 4/13 JNC RxPoll16U_end ; go if more than one byte
2 3 TEST AL,12H ; rxBound or overrun?
2 4/13 JZ RxPoll16U_end ; ignore one byte if neither

RxPoIl16U_hav:
1 2' CLI
1 14' INSW ; store word in rx area
4 12' MOV WORD PTR DS:_rxi,DI ; store rxi
1 2' STI
2 3' TEST AL,10H ; rxBound?
2 13' JZ RxPo1l16U_lp ; around if not
2 MOV DL,CCR ; 16 or 32-bit
1 IN AL,DX ; RSBs in use?
2 MOV DL,RDR
2 TEST AL,OCOH
2 JNZ RxPoll16U_rsb ; go if so
2 MOV DL,RCSR

RxPoIl16U_rsb:
1 IN AX,DX ; read status again if no RSBs
2 AND AL,OFDH ; leave overrun to int level
1 PUSH AX ; argument is status
1 CLI
3 call near ptr _Handle_RxStatus
2 ADD SP,2
1 STI
2 JMP RxPoll16UJp ; and loop

RxPoIl16U_end:

61 60+S0N

8-8

Z380" BENCHMARKS
ApPLICATION NOTE

1/0 LOOP: 680XO

; the following 680xO code reads data from a USC
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this version assumes that rxi variable is in first 64 Kbytes

Bytes Clks (CPU32)

4 8 MOVE.L rxi,A 1
6 10 MOVE.L #uscBase+ICR,A2

RxPoll16UJp:
6 11 CMP.B #1,RICR-ICR(A2)
4 7 MOVE.W RCSR-ICR(A2),DO
2 4/10 BHI RxPoll16U_hav
2 4/10 BLO RxPoll16U_end
4 5 AND.B #$12,DO
2 4/10 BZ RxPoll16U_end

RxPoll16U_hav:
4 9 BCLR #7,(A2)
4 8 MOVEW RDR-ICR(A2),(A 1)+
4 8 MOVE.L Ai ,rxi
4 9 BSET #7,(A2)
4 5 AND.B #$10,DO
2 4/10 BZ RxPoll16UJp
2 MOVEQ #$CO,DO
4 AND.B CCR+1-ICR(A2),DO
2 BNZ RxPoll16U_rsb
4 MOVE.W RCSR-ICR(A2),DO
2 BRA RxPoll116U_call

RxPoll16U_rsb:
4 MOVEW RDR-ICR(A2), DO

RxPoll16U_call :
4 BCLR #1,DO
2 MOVEW DO,-(SP)
4 BCLR #7,(A2)
4 JSR _Handle_RxStatus
2 ADDQ #2,SP
4 BSET #7,(A2)
2 BRA RxPoll16UJp

RxPoll16U_end:

92 50+ 77*N clocks (CPU32)
56+48*N clocks (68020)

; address in rcv area
; address of ICR in USC

; <> 1 byte in RxFIFO?
; get status
; around if > 1 byte
; nothing to do if < 1 byte
; 1 byte: RxBound or overrun?
; ignore 1 byte if neither

; disable interrupts
; 2 serial bytes to Rx area
; store rx pointer
; re-enable ints
; RxBound?
; loop if not

; RSBs in use?
; around if so
; take status from RCSR if not

; take status from RDR

; disable interrupts
; call the RxBound subroutine

; enable interrupts
; and loop

Z380N BENCHMARKS
ApPLICATION NOTE

8-9

~2iUE
Z380N BENCHMARKS

ApPLICATION NOTE

1/0 LOOP: CPU32

Byles Clks Source Hop Top Cop LW Hea1 Tea1 Cea1 Hea2 Tea2 Cea2

4 8 "MOVE.L rxi,A1" 0 2 4 2 3 5
6 10 "MOVE.L #uscBase+ICR,A2" 2 4 8 2 3 5

18 subtotal: start
6 11 "lp: CMP.B #1 ,RICR-ICR(A2)" 0 3 5 0 3 5 3

4 7 "MOVEW RCSR-ISR(A2),Do" 0 0 2 0 1 3 5
2 10 BHI hav (taken) 2 -2 8 0 0 0 0

4 BHI hav (not taken) 2 0 4 0 0 0 0
2 10 BLO end (taken) 2 -2 8 0 0 0 0

4 BLO end (not taken) 2 0 4 0 0 0 0

4 5 "AND.B #$12,Do" 0 0 2 0 1 1 3
2 10 BZ end (taken) 2 -2 8 0 0 0 0

32 sUbtotal: exit
4 BZ end (not taken) 2 0 4 0 0 0 0

4 9 "hav: BCLR #7,(A2)" 1 2 8 0 1 1 3

4 8 "MOVE.W RDR-ICR(A2),(A1)+" 2 2 6 0 1 3 5
4 8 "MOVE.L A1 ,rxi" 1 5 7 2 1 1 3
4 9 "BSET #7,(A2)" 1 2 8 0 1 1 3
4 5 "AND.B #$10,DO" 0 0 2 0 1 1 3
2 10 BZ lp (taken) 2 -2 8 0 0 0 0

77 subtotal: loop

4 BZ Ip (not taken) 2 0 4 0 0 0 0
2 "MOVEQ #$CO,DO"
4 "AND.B CCR+1-ICR(A2),Do"
2 BNZ rsb
4 "MOVEW RCSR-ISR(A2),Do"
2 BRA call
4 "rsb: MOVE.W RDR-ICR(A2),Do"

4 "BCLR #1,Do"
2 "MOVEW Do,-(SP)"
4 "BCLR #7,(A2)"
4 JSR _Handle_RxStatus
2 "ADDQ #2,SP"
4 "BSET #7,(A2)"
2 BRA Ip

end:

92 5O+N*77 total

8-10

~2iUJG
Z3BON BENCHMARKS

ApPLICATION NOTE

1/0 LOOP: 68020

Bytes Source Be ee we 1st subs

4 "MOVE.L rxi,A1" 3 6 8 6.5 4.5
6 "MOVE.L #uscBase+ICR,A2" 0 5 6 3.5 2.5

subtotal: start 31
6 "Ip: CMP.B #1 ,RICR-ICR(A2)" 3 7 10 8 5
4 "MOVE.w RCSR-ISR(A2),DO" 3 7 9 7 5
2 BHI hay (taken) 3 6 9 7.5 4.5

BHI hay (not taken) 1 4 5 3.5 2.5
2 BlO end (taken) 3 6 9 7.5 4.5

BlO end (not taken) 1 4 5 3.5 2.5
4 "AND.S #$12,DO" 0 4 6 4 2
2 BZ end (taken) 3 6 9 7.5 4.5

subtotal: exit 24.8
BZ end (not taken) 1 4 5 3.5 2.5

4 "hav: BClR #7,(A2)" 7 8 9 8.5 7.5
4 "MOVE.w RDR-ICR(A2),(A 1)+" 6 8 11 10 7
4 "MOVE.L A 1 ,rxi" 5 6 9 8.5 5.5
4 "BSET #7,(A2)" 7 8 9 8.5 7.5
4 "AND.B #$10,DO" 0 4 6 4 2
2 BZ Ip (taken) 3 6 9 7.5 4.5

subtotal: loop 48.5

BZ Ip (not taken) 4 5 3.5 2.5
2 "MOVEa #$CO,DO"
4 "AND.B CCR+ 1-ICR(A2),DO"
2 BNZ rsb
4 "MOVE.w RCSR-ISR(A2),DO"
2 BRA call
4 "rsb: MOVE.W RDR-ICR(A2),DO"

4 "BClR #1 ,DO"
2 "MOVE.w DO,-(SP)"
4 "BClR #7,(A2)"
4 JSR _Hand le_RxStatus
2 "ADDQ #2,SP"
4 "SSET #7,(A2)"
2 BRA Ip

end:

92 total 56+48N

II

8-11

1/0 LOOP: 80380

; the following Z380 code reads data from a Zilog 16C30 USC,
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes that the global LW and XM bits are set
; and that the USC is in a 16-bit-addressed I/O space

Bytes Clks

3 2 LO OE,uscBase+ROR
1 2 LO B,O
3 8 LO HL,(rxi)

RxPoIl16UJp:
4 6* INA A,(uscBase+RICR+ 1)
2 2* SRL A
4 6* INA A,(uscBase+RCSR)
2 2/6* JR NZ,RxPoIl16U_hav
2 2/6 JR NC,RxPoIl16U_end
3 2 TST 12H
2 2/6 JR Z,RxPoIl16U_end

RxPoIl16U_hav:
1 2* 01
2 7* INIW
3 6* LO (rxi),HL
1 2* EI
3 2* TST 10H
2 6* JR Z,RxPoIl16UJp
2 LO C,CCR
2 IN A,(C)
1 LO C,E
3 TST OCOH
2 JR NZ,RxPoIl16U_rsb
2 LO C,RCSR

RxPoIl16U_rsb:
2 INW HL,(C)
2 RES 1,L
1 01
2 PUSH HL
3 CALL Handle_RxStatus
1 INC SP
1 'INC SP
1 EI
2 JR RxPoll16UJp
RxPoI116U_end:

65 41 +53N (corrected for pipeline stalls)

8-12

; 32-bit address in variable

; get hi byte of RICR
; byte count to word count
; get status, no CC change

; RxBound or overrun?

; 16 bits from ROR to buffer
; store address in buffer

; get status from ROR if RSBs
; RSBs in use?
; around if so
; get status from RCSR if not

; status word from RSB or RCSR
; leave overrun to int level

Z3BON BENCHMARKS
ApPLICATION NOTE

1/0 LOOP: 80960KA

Bytes

8
4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4

4

4
4
4
4
4

the following 80960KA code reads data from a Zilog 16C30 USC
this code is not warranted to be correct nor operative, and is
intended for performance benchmarking purposes only
this code assumes the rxi variable is in the first 4K bytes

Ida uscBase+ICR,r3 # address in USC
Id rxi,r4 # buffer address from variable
Idob (r3),r7 # get Isbyte of ICR
clrbit 7,r7,r8

RxPoIl16U_lp:
Idob RICR+1-ICR(r3),r5 # get hi byte of RICR
Idos RCSR-ICR(r3),r6 # get status
cmpo 1,r5
bg RxPoll16U_hav # around if more than 1 byte
bl RxPoll16U_end # nothing to do if no bytes
and Ox12,r6,r7 # 1 byte: EOF or overrun?
cmpobe 0,r7,RxPoIl16U_end # ignore 1 byte if not

RxPoIl16U_hav:
stob r8,(r3) # clear MIE, disable ints
Idos RDR-ICR(r3),r9 # get 16 bits from USC
stos r9,(r4) # store in memory
addo 2,r4 # increment address
st r4,rxi # save address
stob r7,(r3) # set MIE, enable ints
bbc 4,r6,RxPoIl16UJp # loop if not EOF
Idob CCR+ 1-ICR(r3),r9 # get CCR hi byte
bbs 7,r9,RxPoIl16U_rsb # RSB's in use?
bbs 6,r9,RxPoIl16U_rsb # around if so
Idos RCSR-ICR(r3),gO # take status from RCSR if not
b RxPoll116U_call

RxPoIl16U_rsb:
Idos RDR-ICR(r3),gO # take status from RDR if so

RxPoIl16U_call:
clrbit 2,gO # hide the overrun bit
stob r8,(r3) # clear MIE, disable ints
bal _Handle_RxStatus # call the RxBound subroutine
stob r7,(r3) # set MIE, enable ints
b RxPoll16UJp # and loop

RxPoIl16U_end:

120 55 + 24N (see spreadsheet)

Z380" BENCHMARKS
ApPLICATION NOTE

8-13

11

Ida lid Iidob clrbit Iidob lidos I cmpo
F I
F I
F I
F I
DIF21
EA F
X D of

EA D
AonBIEA
DonB
X F

F
F
D F

D F
EA D F

AonBI EA D
DonB

; X AonB
I X1 DonB
I X2 X I

AonB
DonB
X

X

,

I I

I

I I I
I I
I I

I I

47 clocks to start I
I CF I

I I D 'CF I
I lEA ID ICF
! I lEA D

AonB I
DonB

I X AonB I

I I Don IX

8-14

110 l.oop: 80960KA

bg bl and Icmpobe Istob lidos IstOS laddo 1st Istob Ibbc

F
F
F
D F
EA D F
X D F

D

F I
F
F I
D F I
EA D F I I

EA D ,F i I
AonB lEA iD I I

DonB I IX I I
w I

AonB
DonB I
X ! F

F
F
D F
EA D F

AonB EA D
DonB EA
W I X

I AonB
I DonB I

I i ; AonB
CF I I i i DonB
D CF I W I

D I
I

:
X ! I

Z3BON BENCHMARKS
ApPUCATION NOTE

: I IX I I
!

I
I I I
I I

I

2!l clocks per repeat
I CF I I

i I 0 CF
I I EA 10 ICF i
I I Aon lEA 10 ICF I 1

I DonS 10
I I Aon IX 1

I lOonS JX
I I

9 clocks to get out I I

1/0 Loop: B0960KA

CF I
D CF I
EA 10 CF ICF
AonlEA 0 '0
DonS EA IX
W I I

AonS
DonS I
X I

AonS
DonS
WI

I
I
I
!
I

I I

I
CF I I 1

0 !
I i

X I
I

I I I

CFI
0

CF
0

AonS CF
DonS 0
W X

AonS
DonS
W

I

Z380'" BENCHMARKS
ApPLICATION NOTE

F

8-15

SIGNED BYTE HANDLING: 80186

; the following 80186 code handles signed bytes.
; there are 3 signed byte variables in memory, 0, K2, and NORM.
; Actually NORM can range from -256 to +255, so we test the
; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
; The result is as follows
; if NORM < ° then

if NORM> -0 then result := NORM
else if NORM> 0 then result := -2*K2-NORM

; else result := 0 - K2
; else if NORM <= 0 then result := NORM

else if NORM <= -0 then result := 2*K2-NORM
; else result := K2 - 0
; Routines can leave the result wherever is most convenient.
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes

Bytes Clks

3 8 MOV AL,BYTE PTR 0 ; get variable
4 12 MOV HL,K2 ; address of variable
4 9 MOV BX,WORD PTR NORM ; get variable
2 3 OR BX,BX ; test if NORM positive
2 4/13 JS npos ; around if so
2 3 NEG AL ; -0
2 3 CMP AL,BL ; -O-NORM
3 4/13 JS rnorm ; go if -O-NORM<O, NORM>-O
2 3 NEG AL ;0
2 3 CMP AL,BL ; O-NORM
2 4/13 JS m2k2 ; go if O-NORM<O, NORM>O
2 10 SUB AL,(HL) ; 0 - K2
2 14 JMP SHORT next
2 12 m2k2: MOV AL,(HL) ; K2
2 3 NEG AL ; -K2
2 14 JMP SHORTdmn
2 2 rnorm: MOV AL,BL ; NORM
2 14 JMP SHORT next
2 3 npos: CMP AL,BL ; O-NORM
2 4/13 JS rnorm ; go if O-NORM>=O, NORM<=O
2 3 NEG AL ; -0
2 3 CMP AL,BL ; -O-NORM
2 4/13 JNS p2k2 ; go if -O-NORM>=O, NORM<=-O
2 3 ADD AL,(HL) ; K2- 0
2 14 JMP SHORT next
2 12 p2k2: MOV AL,(HL) ; K2
3 3 dmn: ADD AL,AL ; +- 2K2
2 3 SUB AL,BL ; +- 2K2 - NORM

next:

63 NORM (pos) 73
NORM (neg) 67
2*K2-NORM 85
-2*K2-NORM 96
K2-0 75
0-K2 76
average 78.67

8-16

Z380N BENCHMARKS
ApPLICATION NOTE

~2iUJG

SIGNED BYTE HANDLING: 680XO

; the following 680xO code handles signed bytes.
; there are 3 signed byte variables in memory, 0, K2, and NORM.
; Actually NORM can range from -256 to +255, so we test the
; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
; The result is as follows
; if NORM < 0 then

if NORM> -0 then result := NORM
else if NORM> 0 then result := -2*K2-NORM

; else result := 0 - K2
; else if NORM <= 0 then result := NORM

else if NORM <= -0 then result := 2*K2-NORM
, else result := K2 - 0
; Routines can leave the result wherever is most convenient.
; this code is not warranted to be correct nor operative, and
; is intended for performance benchmarking purposes only.
; this code assumes that all variables are in the first 64K
; bytes of memory

Bytes Clks (CPU32)

4 7 MOVE.B 0,00 ; get variable
4 7 MOVE.W NORM,01 ; get variable
2 4/10 BPL.S npos ; around if positive
2 2 NEG.B DO ; -0
2 2 CMP.B 01,00 ; -O-NORM
2 4/10 BMI.S rnorm ; go if -O-NORM<O, NORM>-O
2 2 NEG.B DO ;0
2 2 CMP.B 01,00 ; O-NORM
2 4/10 BMI.S m2k2 ; go if O-NORM<O, NORM>O
4 7 SUB.B K2,00 ; 0- K2
2 10 BRAS next
4 7 m2k2: MOVE.B K2,00 ; K2
2 2 NEG.B DO ; -K2
2 10 BRAS dmn
2 2 rnorm: MOVE.B 01,00 ; NORM
2 10 BRAS next
2 2 npos: CMP.B 01,00 ; O-NORM
2 4/10 BPL rnorm ; go if O-NORM>=O, NORM<=O
2 2 NEG.B DO ; -0
2 2 CMP.B 01,00 ; -O-NORM
2 4/10 BPL.S p2k2 ; go if -O-NORM>=O, NORM<=-O
4 7 AOO.B K2,00 ; K2- 0 '
2 10 BRAS next
4 7 p2k2: MOVE.B K2,00 ; K2
2 2dmn: AOO.B 00,00 ; +- 2K2
2 2 SUB.B 01,00 ; +- 2K2 - NORM

next:

64 CPU3268020
48 NORM (pos) 40
44 NORM (neg) 38
55 2*K2-NORM 48
63 -2*K2-NORM 56
55 K2-0 48
51 0-K2 46
52.67 average 45.92

Z3s0" BENCHMARKS
ApPLICATION NOTE

8-17

II

~2iu::a; Z380" BENCHMARKS
ApPLICATION NOTE

SIGNED BYTE HANDLING: CPU32

Byles Clks Source Hop Top Cop Hea1 Tea1 Cea1 Hea2 Tea2 Cea2

4 7 " move.b Q,DO" 0 0 2 1 3 5
4 7 " move.w NORM,D1" 0 0 2 1 3 5
2 10 bpl.s npos (taken) 2 -2 8 0 0 0

4 bpl,s npos (not taken) 2 0 4 0 0 0

2 2 neg.b DO 0 0 2 0 0 0
2 2 " cmp.b D1,DO" 0 0 2 0 0 0
2 10 bm i.s rnorm (taken) 2 -2 8 a a a

4 bmi.s rnorm (not taken) 2 a 4 a a a
2 2 neg.b DO 0 0 2 0 0 0

2 2 " cmp.b D1 ,DO" a 0 2 0 a 0
2 10 b.mi.s m2k2 (taken) 2 -2 8 a 0 0

4 bmi.s m2k2 (not taken) 2 a 4 a a a
4 7 " sUb.b k2,dO" a 0 2 1 3 5

2 10 bra.s next 2 -2 8 0 0 0
4 7 "m2k2: move.b K2,dO" 0 a 2 1 3 5
2 2 neg.b DO 0 0 2 a 0 0
2 10 bra.s dmn 2 -2 8 0 0 a
2 2 "rnorm: move.b 01 ,DO" 0 0 2 0 0 0

2 10 bra.s next 2 -2 8 a 0 a
2 2 "npos: cmp.b D1 ,DO" 0 0 2 0 0 0
2 10 bpi rnorm (taken) 2 -2 8 0 0 a

4 bpi rnorm (not taken) 2 a 4 0 a 0
2 2 neg.b DO 0 0 2 0 a 0

2 2 " cmp.b D1,DO" 0 0 2 0 0 0
2 10 bpl,s p2k2 (taken) 2 -2 8 0 0 a

4 bpl,s p2k2 (not taken) 2 0 4 0 0 0
4 7 " add.b K2,DO" 0 0 2 1 3 5
2 10 bra.s next 2 -2 8 0 0 0

4 7 "p2k2: move.b k2,dO" 0 0 2 1 3 5
2 2 "dmn: add.b dO,dO" 0 0 2 0 0 0
2 2 "sub.b d1,dO" 0 0 2 0 0 0

next:
64 48 NORM (pas)

44 NORM (neg)

55 2*K2-NORM
63 -2*K2-NORM
55 K2-Q
51 Q-K2
52.67 average

8-18

~2il..ClG
Z380~ BENCHMARKS

ApPLICATION NOTE

SIGNED BYTE HANDLING: 68020

Byles Clks Source BC CC WC

4 6.5 "move.b 0,00" 3 6 8
4 6.5 "move.w NORM,D1" 3 6 8
2 7.5 bpl,s npos (taken) 3 6 9

3.5 bpl,s npos (not taken) 1 4 5
2 2 neg.b DO 0 2 3

2 2 "cmp.b 01,00" 0 2 3
2 7.5 bmi.s rnorm (taken) 3 6 9

3.5 bmi.s rnorm (not taken) 1 4 5
2 2 neg.b DO 0 2 3
2 2 "cmp.b 01,00" 0 2 3
2 7.5 bmi.s m2k2 (taken) 3 6 9

3.5 bmi.s m2k2 (not taken) 1 4 5
4 7.5 "sub.b k2,dO" 3 6 9
2 7.5 bra.s next 3 6 9
4 6.5 "m2k2: move.b K2,dO" 3 6 8
2 2 neg.b DO 0 2 3

2 7.5 bra.s dmn 3 6 9
2 2 "rnorm: move.b 01,00" 0 2 3
2 7.5 bra.s next 3 6 9
2 2 "npos: cmp.b 01,00" 0 2 3
2 7.5 bpi rnorm (taken) 3 6 9

3.5 bpi rnorm (not taken) 1 4 5

2 2 neg.b DO 0 2 3
2 2 "cmp.b 01,00" 0 2 3
2 7.5 bpl,s p2k2 (taken) 3 6 9

3.5 bpl,s p2k2 (not taken) 1 4 5
4 7.5 "add.b K2,DO" 3 6 9

2 7.5 bra.s next 3 6 9
4 6.5 "p2k2: move.b k2,dO" 3 6 8
2 2 "dmn: add.b dO ,dO" 0 2 3
2 2 "sub.b d1,dO" 0 2 3

next:

64 39.5 NORM (pas)
37.5 NORM (neg)
48 2*K2-NORM
55.5 -2*K2-NORM
48.5 K2-0
46.5 0-K2
45.92 average

II

8-19

SIGNED BYTE HANDLING: 80380

; the following Z380 code handles signed bytes.
; there are 3 signed byte variables in memory, Q, K2, and NORM.
; Actually NORM can range from -256 to +255, so we test the
; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
; The result is as follows
; if NORM < ° then

if NORM> -Q then result := NORM
else if NORM> Q then result := -2*K2-NORM

; else result := Q - K2
; else if NORM <= Q then result := NORM

else if NORM <= -Q then result := 2*K2-NORM
; else result := K2 - Q
; Routines can leave the result wherever is most convenient.
; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes the global LW bit is cleared

Bytes Clks
3 6 LD A,(Q) ; get variable
4 2 LD HL,K2 ; address of variable
3 6 LD BC,(NORM) ; get variable
1 2 OR B,B ; test if NORM positive
2 2/6 JR Z,npos ; around if so
2 2 NEG A ; -Q
1 2 CP A,C ; -Q-NORM
3 2/6 JP S,rnorm ; go if -Q-NORM<O, NORM>-Q
2 2 NEG A ;Q
1 2 CP A,C ; Q-NORM
3 2/6 JP S,m2k2 ; go if Q-NORM<O, NORM>Q
1 6 SUB A,(HL) ; Q - K2
2 6 JR next
1 6m2k2: LD A,(HL) ; K2
2 2 NEG A ; -K2
2 6 JR dmn
1 2 rnorm: LD A,C ; NORM
2 6 JR next
1 2 npos: CP A,C ; Q-NORM
3 2/6 JP NS,rnorm ; go if Q-NORM>=O, NORM<=Q
2 2 NEG A ; -Q
1 2 CP A,C ; -Q-NORM
3 2/6 JP NS,p2k2 ; go if -Q-NORM>=O, NORM<=-Q
1 6 ADD A,(HL) ; K2-Q
2 6 JR next
1 6 p2k2: LD A,(HL) ; K2
1 2dmn: ADD A,A ; +- 2K2
1 2 SUB A,C ; +- 2K2 - NORM

next:

52 NORM (pos) 36
NORM (neg) 38
2*K2-NORM 46
-2*K2-NORM 50
K2-Q 44
Q-K2 42

average 42.67

8-20

Z3BO" BENCHMARKS
ApPUCATION NOTE

SIGNED BYTE HANDLING: 80960KA

the following 80960KA code handles signed bytes.
there are 3 signed byte variables in memory, 0, K2, and NORM.
Actually NORM can range from -256 to +255, so we test the
MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
The result is as follows
if NORM < 0 then
if NORM> -0 then result := NORM
else if NORM> 0 then result := -2*K2-NORM
else result := 0 - K2
else if NORM <= 0 then result := NORM
else if NORM <= -0 then result := 2*K2-NORM
else result := K2 - 0
Routines can leave the result wherever is most convenient.
this code is not warranted to be correct nor operative, and is
intended for performance benchmarking purposes only

Bytes ID

8 B Idib O,r4 # get variable
8 C Idis NORM,r3 # get variable
8 D Idib K2,r5 # get variable
4 E subi r4,D,r6 # make-O
4 F bbc 8,r3,npos # around if NORM non-negative
4 G cmpibgt r3,r6,next # result=NORM if NORM>-O
4 H cmpibgt r3,r4,m2k2 # go if NORM>O
4 I subi r5,r4,r3 # result = 0 - K2
4 J b next
4 K m2k2: sub r5,D,r5 #-K2
4 L p2k2: add r5,r5,r5
4 M sub r3,r5,r3
4 N b next
4 o npos: cmpible r3,r4,next # result=NORM if NORM<=O
4 P cmpible r3,r6,p2k2 # go if NORM<=-O
4 0 subi r4,r5,r3 # result = K2-0

next:

76 26 NORM (pos) see attached chart
26 NORM (neg)
36 2*K2-NORM
37 -2*K2-NORM
29 K2-0
30 0-K2
30.67 average

Z380" BENCHMARKS
ApPLICATION NOTE

8-21

II

Idib Iidis ildib subi bbc
1 F
2F
3F
41D/F2
5EA F
6 D/F21
7 AonB
8 DonBI
9X F

10 F
11 of

12 DIF21
131 F
14 D F

-15 AonB X D
16 DonB
17 X AonB
18 DonB X
191 X
201
211
221
231
241
251
261
191 X
201
211
221
231
241
251
261
27
281
291 L 1
301 I
31
321
331
34
35
36
37
19 X
20
211
221
231
241 I

251 I
261
271
281 I I

I

291 i i

8-22

Signed Byte Handling: 80960KA

cmplbgt cmPlbgt subi b sub ladd Isub Ib
common start

F begin case NORM (neg)
F
F
D F
X D F
X D F
X D
X end case NORM (neg)
F begin case -2*k2-norm
F
F
D F
X D F
X D F
X D

X
X

1 X I
X 1

F 1
F
F
D F :

X D F
X D F

X 1 D
end case -2*K2-NORM X X

F begin case Q-K2
F
F I I I

D F I
X D F I

X D F I I

X D 1 I
X I
X I

X 1 !

X i I

Z380" BENCHMARKS
ApPLICATION NOTE

cmplble Icmpible Isubi Inext

I
I

1

I I

Signed Byte Handling: 80960KA

301 1 I X X end case Q-K2
191 begin case NORM(pos)
201
211 1
221
231 1
241
251
261 end case NORM(pos)
19 begin case 2*K2-NORM
20
21
22
231
24
251
261
271
28 1
291
301 F
311 F
32J 1 F
331 D F
341 X D
35 X
36 end case 2*k2-NORM 1 X
19 begin case K2-Q
20
21
22
231
241 !

251 I 1
261 1 ! I
271 1 ! i
281 1 1 1
291 I end case K2-Q 1 I 1

F
F
F
D F
X D
X
X
X
F
F
F
D F
X D
X
X

X
X
X
X

F
D
X

F
F
F
D F
X D
X
X

X
X
X

Z380" BENCHMARKS
ApPUCATION NOTE

F
D F

F
D F

F
D

1

X I

8-23

II

MULTIPLY/ACCUMULATE: 80186

; this 80186 code performs a 16-bit multiply/accumulate:
; several 16-bit variables pre-exist in memory, including
; CURSEC, POSN_ERR, S_GRAT, and K-GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to
; the possible range of values of CURSEC .. 16-bit results
; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S_ACCUM and K_ACCUM:

; S_VALUE:= S_TABLE(CURSEC)
; K_VALUE:= C3ABLE(CURSEC)
; S_ACCUM:= Sy,CCUM + ((S_VALUE*POSN_ERR)/64)
; K_ACCUM:= K_ACCUM + ((K_VALUE*POSN_ERR)/64)
; R_CP:= (S_VALUE*S_GRAT + K_VALUE*K_GRAT) /32

; to optimize memory accessing, all routines may assume
; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K-GRAT,
; K_ACCUM are consecutive in memory in whatever order is
; optimal for their instruction set, while CURSEC. POSN_ERR,
; S_TABLE, and C_TABLE are at unrelated locations. R_CP
; can be in either place.

; the order in this version in S_VALUE, S_ACCUM, S_GRAT, K-VALUE,
; K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; this code assumes all the variables are in the DS segment

Bytes Clks

4
2
4
3

2
2
4
3
2
2
2
1
1
2
1
1
2

8-24

9
2
9
4=24

121p:
2
42
11
2
2
3
3
3
10
3
3
9

MOV
SHL
MOV
MOV

MOV
MOV
IMUL
'SHR
SHL
SHL
OR
INC
INC
ADD
INC
INC
MOV

SI,WORD PTR CURSEC
SI,1
AX,S_TABLE[Sll
BX,S_VALUE

[BXl,AX
BP,AX
AX,WORD PTR POSN_ERR
AX,6
DX,1
DX,1
AH,DL
BX
BX
WORD PTR [BXl,AX
BX
BX
AX, [BXl

; get S_VALUE from table
; start pointer into variables

; save VALUE
; save in register
; AX:=LS16, DX:=MS16
; divide LS16 by 64

; divide by 64

; get GRAT

Z380" BENCHMARKS
ApPLICATION NOTe

2 36 IMUL AX,BP
1 3 INC BX
1 3 INC BX
3 3=150 CMP BL,K_VALUE MOD 256

2 4/13 JNE kdone

2 2 MOV CX,DX
2 2 MOV DI,AX
4 9 MOV AX,C_TABLE[SI]
2 14=27 JMP Ip

2 3 kdone: ADD AX,DI
2 3 ADC DX,CX
3 10 SHR AX,5
3 8 SHL DX,3
2 3 OR AH,DL
3 9=36 MOV WORD PTR R_CP,AX

72 404(24+150+4+27+150+13+36)

; times VALUE

; around if K group done

; save MS16 of product
; save LS 16 of product
; get K_VALUE from table
; go back and do K group

Z3BON BENCHMARKS
ApPLICATION NOTE

; add S_VALUE*S_GRAT to K ...

; divide by 32

8-25

II

MULTIPLY/ACCUMULATE: 680XO

; this 680xO code performs a 16-bit multiply/accumulate:
; several 16-bit variables pre-exist in memory, including
; CURSEC, POSN_ERR, S_GRAT, and K-GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to
; the possible range of values of CURSEC. 16-bit results
; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S-ACCUM and K_ACCUM:

; S_VALUE:= S_TABLE(CURSEC)
; K_VALUE:= C_TABLE(CURSEC)
; S-ACCUM := S_ACCUM + «S_VALUE*POSN_ERR)/64)
; K_ACCUM:= K_ACCUM + «K_VALUE*POSN_ERR)/64)
; R_CP:= (S_VALUE*S_GRAT + K_VALUE*K_GRAT) 132

; to optimize memory accessing, all routines may assume
; that variables S_VALUE, S_GRAT, S-ACCUM, K_VALUE, K_GRAT,
; K_ACCUM are consecutive in memory in whatever order is
; optimal for their instruction set, while CURSEC. POSN_ERR,
; S_TABLE, and C_TABLE are at unrelated locations. R_CP
; can be in either place.

; the order in this version is S_VALUE, S_ACCUM, S_GRAT,
; K_VALUE, K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; the size/clocks figures assume all data is in the first
; 64K bytes

Bytes Clks (CPU32)

4 7 MOVE.W CURSEC,OO
6 10 MOVEW S_TABLE(00W*2),01 ; get S_VALUE from table
4 5 LEA S_VALUE,AO ; start pointer into variables
2 5 MOVE.W 01,(AO)+ ; store S_VALUE
2 2 MOVE.W 01,02 ; copy it
4 31 MULSW POSN_ERR,01
2 6 ASR.L #6,01 ; divide by 64
2 7 AOOW 01,(AO)+ ; add into accumulator
2 29 MULSW (AO)+,02 ; S_GRAT*S_VALUE
6 10 MOVEW C_TABLE(00W*2) , 01 ; get K_VALUE from table
2 5 MOVE.W 01,(AO)+ ; store K_VALUE
2 2 MOVEW 01,00 ; copy it
4 31 MULSW POSN_ERR,01
2 6 ASR.L #6,01 ; divide by 64
2 7 AOOW 01,(AO)+ ; add into accumulator
2 29 MULS.W (AO)+,OO ; K_GRAT*K_VALUE

Z380" BENCHMARKS
ApPLICATION NOTE

2 2 AOO.L 02,00 ; S_GRAT*S_VALUE + K_GRAT*K_VALUE
2 6 ASR.L #5,00 ; 132
2 4 MOVEW OO,(AO)+ ; save that in R_CP

54 204 clocks (CPU32)
212 clocks (68020)

8-26

~2iUJE
Z380" BENCHMARKS

ApPUCATION NOTE

MUL TIPLY/ACCUMULATE: CPU32

Bytes Clks Source Hop Top Cop Hea1 Tea1 Cea1

4 7 "MOVE.w CURSEC,DO" 0 0 2 1 3 5
6 10 "MOVE.w S_TABLE(DO.w*2),D1" 0 0 2 2 2 8
4 5 "LEA S_VALUE,AO" 0 0 2 1 1 3
2 5 "MOVE.W D1,(AO)+" 1 1 5 0 0 0
2 2 "MOVE.W D1,D2" 0 0 2 0 0 0
4 31 "MULS.w POSN_ERR,D1" 0 0 26 1 3 5

2 6 "ASR.L #6,D1" 4 0 6 0 0 0
2 7 "ADD.w D1 ,(AO)+" 0 3 5 1 1 3
2 29 "MULS.w (AO)+,D2" 0 0 26 1 1 3
6 10 "MOVE.W C3ABLE(DO.w*2),D1" 0 0 2 2 2 8
2 5 "MOVE.W D1,(AO)+" 1 1 5 0 0 0
2 2 "MOVE.L D1,DO" 0 0 2 0 0 .0

4 31 "MULS.W POSN_ERR,D1" 0 0 26 1 3 5
2 6 "ASR.L #6,D1" 4 0 6 0 0 0
2 7 "ADD.w D1,(AO)+" 0 3 5 1 1 3
2 29 "MULS.W (AO)+,DO" 0 0 26 1 1 3

2 2 "ADD.L D2,DO" 0 0 2 0 0 0
2 6 "ASR.L #5,DO" 4 0 6 0 0 0
2 4 "MOVE.w DO,(AO)+" 1 1 5 0 0 0

54 204 -

8-27

~2iu:a;
Z380" BENCHMARKS

ApPLICATION NOTE

MUl TIPl Y/ACCUMUlATE: 68020

Bytes Clks Source BC CC WC

4 6.5 "MOVEW CURSEC,OO" 3 6 8
6 9.5 "MOVEW S3ABLE(00W*2),01" 4 9 12
4 6.5 "LEA S_VALUE,AO" 3· 6 8
2 5 "MOVEW 01,(AO)+" 4 4 5
2 2 "MOVEW 01,02" 0 2 3

4 32.5 "MULS.W POSN_ERR,01" 28 31 34
2 4.5 "ASR.L #6,01" 3 6 6
2 9.5 "AOO.W 01,(AO)+" 7 8 10
2 31 "MULS.W (AO)+,02" 29 31 32
6 9.5 "MOVE.W C_TABLE(00W*2),01" 4 9 12

2 5 "MOVE.W 01,(AO)+" 4 4 5
2 2 "MOVE.L 01,00" 0 2 3
4 32.5 "MULS.W POSN_ERR,01" 28 31 34
2 4.5 "ASR.L #6,01" 3 6 6
2 9.5 "AOOW 01 ,(AO)+" 7 8 10

2 31 "MULSW (AO)+,OO" 29 31 32
2 2 "AOO.L 02,00" 0 2 3
2 4.5 "ASR.L #5,00" 3 6 6
2 5 "MOVEW OO,(AO)+" 4 4 5

54 212.5

8-28

MULTIPLY/ACCUMULATE: 80380

; this 80380 code performs a 16-bit multiply/accumulate:
; several 16-bit variables pre-exist in memory, including
; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to
; the possible range of values of CURSEC. 16-bit results
; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S_ACCUM and K_ACCUM:

; S_VALUE:= S3ABLE(CURSEC)
; K_VALUE:= C_TABLE(CURSEC)
; S_ACCUM:= S_ACCUM + ((S_VALUE*POSN_ERR)/64)
; K_ACCUM:= K_ACCUM + ((K_VALUE*POSN_ERR)/64)
; R_CP:= (S_VALUE*S_GRAT + K_VALUE*K_GRAT) /32

; to optimize memory accessing, all routines may assume
; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
; K_ACCUM are consecutive in memory in whatever order is
; optimal for their instruction set, while CURSEC. POSN_ERR,
; S_TABLE, and C_TABLE are at unrelated locations. R_CP
; can be in either place.

; the order in this version in S_VALUE, S_ACCUM, S_GRAT, K_VALUE,
; K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes that the global LW and XM bits are cleared.

Bytes Clks

4 6 LD
2 2 ADD
2 2 DDIR
5 8 LD
2 2 DDIR
5 8 LD
3 2=35 LD
2 31p: LD
2 2 LD
4 6 LD
3 10 MULTW
2 2 DDIR
1 2 ADD
2 2 DDIR
1 2 ADD
1 2 LD
2 2 SWAP
1 2 LD
1 2 LD
1 2 INC
1 2 INC
2 6 LD
1 2 ADD
2 3 LD

IX,(CURSEC)
IX,IX
IB
HL,(IX+S_TABLE)
IB
IY,(IX+C_ TABLE)
DE,S_VALUE
(DE),HL
IX,HL
BC,(POSN_ERR)
HL,BC
LW
HL,HL
LW
HL,HL
A,H
HL
H,L
L,A
DE
DE
BC,(DE)
HL,BC
(DE),HL

; get S_VALUE from table

; get K_VALUE from table
; start pointer into variables
; save VALUE in memory
; save in reg

; VALUE * POSN_ERR (16x16=32)

; 16 bit product/64

; get accum
; add
; save accum

Z3BO" BENCHMARKS
ApPLICATION NOTE

8-29

II

~2iUJE
Z3BON BENCHMARKS

ApPLICATION NOTE

MULTIPLY/ACCUMULATE: 80380 (Continued)

Bytes Clks
1 2 INC DE
1 2 INC DE
2 6 LD HL,(DE) ; get GRAT
1 2 INC DE
1 2 INC DE
2 2 LD BC,IX ; retrieve value
3 10 MULTW BC ; GRAT*VALUE
2 2 LD A,K_VALUE MOD 256
1 2 CP A,E
2 2/6=89 JR NZ,kdone ; around if K group done

2 2 DDIR LW
2 3 EX HL,IY ; HL:=K_VALUE, IY:=S_VALUE*S_GRAT

2 6=11 JR Ip ; and go do K group

2 2 kdone: DDIR LW
2 2 ADD HL,IY ; S_VALUE*S_GRAT + K_VALUE*K_GRAT
2 2 DDIR LW
1 2 ADD HL,HL
2 2 DDIR LW
1 2 ADD HL,HL
2 2 DDIR LW
1 2 ADD HL,HL ; 32-bit left shift 3
1 2 LD A,H
2 2 SWAP HL
1 2 LD H,L
1 2 LD L,A ; sum div 32
3 6=30 LD (R_CP),HL ; save that

95 254(35+89+11+89+30)

8-30

MUL TIPL Y/ACCUMULATE: 80960KA

Bytes

8
8
8
8
4
4
4
4
4
4
4
4
4
4
4
8
4
4

this 80960 code performs a 16-bit multiply/accumulate:
several 16-bit variables pre-exist in memory, including
CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
two tables S_TABLE and C_TABLE are of a size equal to
the possible range of values of CURSEC. 16-bit results
of this calculation in memory include S_VALUE, K_VALUE,
R_CP, and two accumulators S_ACCUM and K_ACCUM:

S_VALUE := S_TABLE(CURSEC)
K_VALUE:= C_TABLE(CURSEC)
S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
K_ACCUM:= K_ACCUM + ((K_VALUE*POSN_ERR)/64)
R_CP:= (S_VALUE*S_GRAT + K_VALUE*K_GRAT) /32

to optimize memory accessing, all routines may assume
that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
K_ACCUM are consecutive in memory in whatever order is
optimal for their instruction set, while CURSEC. POSN_ERR,
S_TABLE, and C_TABLE are at unrelated locations. R_CP
can be in either place.

the order in this version is S_VALUE, S_ACCUM, S_GRAT,
K_VALUE, K_ACCUM, K_GRAT, R_CP.

this code is not warranted to be correct nor operative, and is
intended for performance benchmarking purposes only

ID

B Idos CURSEC,r3 # get variables
C Idis POSN_ERR,r4
D Idis S_TABLE[r3*2],r5 # get S_VALUE from table
E Ida S_VALUE,r6 # start pointer into variables
F mov r6,r12 # copy that
G Ip: muli r4,r5,r7 # S_VALUE*POSN_ERR
H stis r5,0(r6) # save S_VALUE
I Idis 2(r6),r8 # getaccum
J Idis 4(r6),r9 # getS_GRAT
K shri 6,r7,r7 # divide by 64
L addi r7,r8,r8 # accumulate
M muli r5,r9,r9 # S_VALUE*S_GRAT
N stis r8,2(r6) # save accum
0 cmpibne r6,r12,kdone
P addi 6,r6
Q Idis C_TABLE[r3*2],r5 # get K_VALUE from table
R mov r9,r13
S b Ip

Z3BO" BENCHMARKS
ApPLICATION NOTE

4 T kdone: addi r13,r9,r9 #S_VALUE*S_GRAT + K_VALUE*K_GRAT
4 U shri 5,r9,r9 # divide by 32
4 V stis r9,6(r6) # save in R_CP

104 92 (see chart)

8-31

E1

Multiply/Accumulate: 80960KA

Idos ildis Iidis Iida Imovlmuli Istis Iidis Iidis Ishri iaddi Imuli Islis Icmplbne laddi Iidis Imov b
1 F I
2F I
3 F I
4 F2ID
SEA F
6 F2ID
7 AonS EA I
8 DonS
9X F

10 F
11 F i

12 F2IO
131 EA F
14 F2IO
151 AonS EA
16 DonS X
17 X AonS
181 DonS
191 X F I 1 I

201 , F 1 I I I I
211 I F 1 1
221 D F I multiply time based on typ 16 bit data I
231 X 0 F I
241 X 0 F I
251 X EA 0 1
261 X Aon EA
271 X DonS
281 X W
29 X F
30 X F I
31 I X F I
321 I X I D F I I I I I
331 I I X ,

10 IF : 1
341 ! I X I EA ID F i I
351 I X I IAonS I I 0 I I

I

361 I IX I DonS i I
371 I I X i X AonS I I I
381 I I X lOonS
391 I I IX X X IF
401 X X F
411 X X iF
421 I X iD IF
43 I I X :EA ID F
44 I I I X i IX 0 F I

45 I I X Aon IX D
46 I X :Don IX
47 1 1 1 X IW IX X I
481 , I I X I F2
49 i I X F2
501 I I I X F2
511 I I I IX EA F I
521 , I 1 X D IF

531 I ! X IX 0
541 I I ! I I I AonS 'X
551 i i CF I DonS i
561 I I I D CF I I I I I X !

8-32

Z380N BENCHMARKS
ApPLICATION NOTE

addi Ishri stis

1

I
I 1

I 1
I

I

F
I

I
I

571 I X
561 X
59 X
60 X
61 X
62 X
63 X
64 X
65 X
66 X
67 X
66 X
69 X
70 X
7t X
72
73
74
75
76
77
78
79
60
81
82
83
84
85
86
87
88 I
69
901 I
911 I
921 I

MuHiply/Accumulale: 60960KA

0 ICF
EA ID CF
AonB D CF
DonB 0 CF
W D CF

AonB D
DonB
X AonB

DonB
X

X X
X X

X X
X
X
X CF
X D ICF
X EA D
X Aon X
X Don X
X W X
X X
X X
X
X

I I I
1 I I

I
I , I I I I

I

CF
0
X

I

!
: I

Z38D'" BENCHMARKS
ApPLICATION NOTE

F
D F
X
X
X AonB

DonB
IW

8-33

II

INTERRUPT: 80186

; This 80186 code handles Rx Status interrupts from a 16C30.
; It is evaluated for an overrun condition, so that End Of
; Frame processing, which is handled by a separate subroutine,
; doesn't count toward the totals.

; It is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
; and that the hardware includes byte/word addressing
; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks

55 (interrupt latency per intel186 Hardware Ref Man p.9-22)
rxStlnt:
; save registers

36 PUSHA
; begin handling the interrupt

4 13 MOV AX,uscBase/16
2 2 MOV ES,AX ; address of USC to ES
5 14 MOV BYTE PTR ES:DCCR,clrIP+RS_IP ; clear IP
4 11 MOV AX,ES:RCSR ; get status
2 3 TEST AL,rxOver
2 4 JZ noOver ; around if no overrun

; handle Rx overrun
5 14 MOV BYTE PTR ES:RCSR+ 1 ,EnterHuntMode ; force Hunt
5 18 OR BYTE PTR ES:CCAR+ 1 ,PurgeRx ; purge Rx command

; handle RxBound (end of frame)
2 3 noOver:TEST AL,rxBound
2 13 JZ noEOF
3 CALL NEAR PTR procEOF

; clear interrupt hardware
2 3 noEOF: AND AL,OF6H
4 11 MOV BYTE PTR ES:RCSR,AL ; unlatch status bits we saw
4 10 MOV AL,ES:RICR ; get IA bits
5 14 MOV BYTE PTR ES:RICR,O ; clear them
4 11 MOV ES:RICR,AL ; rearm them
5 14 MOV BYTE PTR ES:DCCR+1,clrIUS+RS_IUS ; clear IUS

; restore registers, dismiss interrupt and return
51 POPA
28 IRET

63 328

8-34

Z3BO" BENCHMARKS
ApPLICATION NOTE

~2iUJE

INTERRUPT: 680XO

; This 680xO code handles Rx Status interrupts from a 16C30.
; It is evaluated for an overrun condition, so that End Of
; Frame processing, which is handled by a separate subroutine,
; doesn't count toward the totals.
; It is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
; and that the hardware includes byte/word addressing
; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks (CPU32)

32 interrupt (per CPU32 ref man p.8-27)
rxStlnt:
; save registers

4 73 MOVEM.L AO-6/DO-7,-(SP) ; could save less, but we don't
; begin handling the interrupt know what procEOF does ...

6 7 LEA uscBase,AO
6 10 MOVE.B #clrIP+RSJP,DCCR(AO) ; clear IP
4 7 MOVE.W RCSR(AO),DO; get status
4 4 BTST #rxOv,DO ; test overflow
2 4 BEQ noOver ; around if not

; handle Rx overrun
6 10 MOVE.B #EnterHuntMode,RCSR+1(AO); force Rx into Hunt
6 12 OR.B #PurgeRx,CCAR+1(AO); issue purge Rx command

; handle RxBound (end of frame)
4 4 BTST #rxBnd,DO
2 10 BZ noEOF ; around if no End of Frame
4 BSR procEOF ; call subr if so

; clear interrupt hardware
4 5 noEOF: AND.B #$F6,DO ; mask status
4 6 MOVE.B DO,RCSR(AO) ; unlatch status bits we saw
4 7 MOVE.B RICR(AO),DO ; save arm bits
4 6 CLR.B RICR(AO) ; disarm all
4 6 MOVE.B DO,RICR(AO) ; rearm
6 10 MOVE.B #clrIUS+RS_IUS,DCCR+ 1 (AO)

; restore regs, dismiss interrupt and return
4 74 MOVEM.L (SP)+,A0-6/DO-7
2 26 RTE

80 313 clocks (CPU32)
288 clocks (68020)

Z3BO" BENCHMARKS
ApPLICATION NOTE

8-35

E1

~2iu:a;
Z3BO" BENCHMARKS

ApPUCATION NOTE

INTERRUPT: 68020

Bytes elks Source Be cc we

48 interrupt 41 41 48
4 55.5 "MOVEM.L AO-6/DO-7,-(SP)" 52 55 57
6 6.5 "LEA uscSase,AO" 3 6 8
6 5 "MOVE.B #clrIP+RSJP,DCCR(AO)" 3 7 7
4 7 "MOVE.W RCSR(AO),DO" 3 7 9
4 3.5 "BTST #rxOv,DO" 1 4 5
2 3.5 BEQ noOver (not taken) 1 4 5
6 5 "MOVE.B #EnterHuntMode,RCSR+1(AO)" 3 7 7
6 11.5 "OR:B #PurgeRx,CCAR+ 1 (AO)" 6 9 13
4 3.5 "BTST #rxBnd,DO" 1 4 5
2 7.5 BZ noEOF (taken) 3 6 9
4 BSR procEOF
4 4 "AND.B #$F6,DO" 0 4 6
4 6 "MOVE.B DO,RCSR(AO)" 3 5 7
4 7 "MOVE.S RICR(AO),DO" 3 7 9
4 8.5 CLR.B RICR(AO) 5 6 9
4 6 "MOVE.S DO,RICR(AO)" 3 5 7
6 5 "MOVE.B #clrIUS+RSJUS,DCCR+1(AO)" 3 7 7
4 71 "MOVEM.L (SP)+,A0-6/DO-7" 70 70 71
2 23.5 RTE 20 21 24

80 287.5

8-36

INTERRUPT: 80380

; This 380 code handles Rx Status interrupts from a 16C30.
; It is evaluated for an overrun condition, so that End Of
; Frame processing, which is handled by a separate subroutine,
; doesn't count toward the totals.
; It is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
and that the hardware includes byte/word addressing

; hardware (i.e., an environment like the I USC/AT Starter Kit)

Bytes Clks

2
2
3

18 (interrupt time)
rxStlnl:
; save registers

2 DDIR LW
6 PUSH SR
4 LDCTL SR, intBank

; begin handling the interrupt
2 2 DDIR IB

; save old control settings
; one reg bank dedicated
; for unnested interrupts

5 4 LD IX,uscBase ; set 24-bit address of USC
4 6 LD (IX+DCCR),clrIP+RS_IP ; clear IP bit
4 7 LD BC,(IX+RCSR); get status
2 2 BIT rxOv,C
2 2/6 JR Z,noOver ; around if no overflow flag

; handle Rx overrun
4 6 LD (IX+RCSR+ 1),EnterHuntMode ; force Rx hunt mode
3 7 LD A,(IX+CCAR+1)
2 2 OR A,PurgeRx
3 6 LD (IX+CCAR+ 1),A; issue purge Rx command

; handle RxBound (End of Frame)
2 2/6 noO~er:BIT rxBd,C
3 2 CALL NZ,procEOF ; call End of Frame procedure

; clear interrupt hardware
2 2 AND C,OF6H
3 6 LD (IX+RCSR),C; unlatch status bits we saw
3 7 LD A,(IX+RICR) ; get IA bits
4 6 LD (IX+RICR),O ; drop IA bits
3 6 LD (IX+RICR),A ; rearm them
4 6 LD (IX+DCCR+1),clrIUS+RS_IUS; clear IUS

; restore registers, dismiss interrupt and return
2 2 DDIR LW
2 8 POP SR
2 8 RETI

66 133

Z3BON BENCHMARKS
ApPLICATION NOTE

8-37

INTERRUPT: 80960KA

; This 80960KA code handles Ax Status interrupts from a 16C30.
; It is evaluated for an overrun condition, so that End Of
; Frame processing, which is handled by a separate subroutine,
; doesn't count toward the totals.
; It is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; It assumes the hardware includes byte/word addressing
hardware (like the IUSC/AT Starter Kit)

Bytes 10

B # interrupt (est per description pp.8-5,6, 80960KA prog ref man)
add 24 more (total 61 if new local register set not avail)
rxStlnt:
save registers not applicable
begin handling the interrupt

8 C Ida uscBase,r3 # set address of USC
4 D Ida clrIP+AS_IP,r4
4 E stob r4,DCCA(r3) # clear IP
4 F Idos ACSA(r3),r5 # get status
4 G bbc rxOv,r5,noOver # around if no overrun

handle Ax overrun
4 H Ida EnterHuntMode,r4
4 I stob r4,ACSA+ 1 (r3) # force Rx into Hunt Mode
4 J Idob CCAA+ 1 (r3),r4
4 K Ida PurgeAx,r6
4 L or r6,r4,r4
4 M stob r4,CCAA+1(r3) # issue Purge Ax command

handle RxBound (end of frame)
4 N noOver: bbc rxBnd,r5,noEOF# around if no AxBound
4 0 call procEOF # handle the End of Frame

clear interrupt hardware
4 P noEOF: andnot 9,r5,r5 # mask status
4 Q stob r5,ACSA(r3) # unlatch status bit we saw
4 R Idob AICA(r3),r4 # save arm bits
4 S mov O,O,r5 # make a zero
4 T stob r5,AICA(r3) # clear the arm bits
4 U stob r4,AICA(r3) # rearm
4 V Ida clrIUSC+RSJUS.r6
4 W stob r6,OCCA+ 1 (r3) # clear IUS

dismiss interrupt and return
4 X ret

Y (plus hardware end-of-interrupt sequence)

92 123 clocks (per attached chart)

8-38

Z3BO" BENCHMARKS
ApPLICATION NOTE

Interrupt: B0960KA

71 I W x
721 I x F
73 F
74 F
75 D F
76 EA D F
n x D
78 1 AonS X EA
79 . DonS
60 W
81 AonSI
82 DonS
83 X AonS
84 DonS
85 W
86
87
88
89
90 1
91
92
93
941
95 1 ,
961 1
97
98
99

100 ,
101
102
103
104 restore anthmetlC controls from Int record
lOS
106
107 1 restore process controls from Int record
loa
109 I
110 I I copy resumptlOll record
1111 1
112 I

113 i 1
1141
115 1
1161
117
1181 deIIlloc stacI< frame. remove mll!t1\Jpt record
1191 I 1 1
1201 , 1
1211 1
122 I sWItch back to former stack
1231 1 1 1 1

F
D
EA 1

F
F
F
D F
EA D
X EA

AonS
DonS
w

AonS
DonS
W

1

1
I

L

1
I

1

Z380N BENCHMARKS
ApPLICATION NOTE

F
D F

X
X
X
X
X
X
X

A
A
A
P
P
P
R
R
R
R
R
R
R
R
IS

IS

IS

IS

os
1 los

8-39

II

BLOCK MOVE CALCULATIONS

80960KA
Ip16: Idq (r3),r8 # 7 clocks

subi 16,r5,r5 # 1
stq r8,(r4) # 5
addi 16,r3,r3 # 1
addi 16,r4,r4 # 1
cmpibge 16,r5,lp16 # 5

20 clocks/16 bytes = 1.25 clocks/byte

CPU32: Hop Top Cop Hea1 Tea1 Cea1 Hea2
Ip: MOVE.L (AO)+,(A1)+ 2 4 8 1 0 2 1

DBRA DO,LP 6 0 10
; total = Cea1-MIN(Tea1 ,Hea2)+Cea2-MIN(Tea2,Hop)+Cop-MIN(Top,H??[nextJ)

2 - 0 + 3 - 1 +8 - 4 = 8
o 0 0 0 +10- 1 =9

17
17/4 bytes = 4.25 clocks/byte

68020: BC CC subs
Ip: MOVE.L (AO)+,(A1)+ 7 7 7

DBRA DO,LP 3 6 4.5

11.5
11.5/4 bytes = 2.875 clocks/byte

80380:
LDIRW 3+5+3= 11 clocks/4 bytes = 2.75 clocks/byte

80186:
MOVSW 8 clocks/2 bytes = 4 clocks/byte

8-40

Z380'" BENCHMARKS
ApPLICATION NOTE

Tea2 Cea2
1 3

~2iUJG

Summary of Benchmar1<s

Normalized to ;25MHz 80380

Proe 180186 CPU32 CPU32 68020 68020 Z380
eloek rate, MHz 16 16 25 16 25 16
elk period, nS 62.5 62.5 40 62.5 40 62.5

VO Loop (bytes) 61 92 92 92 92 65
Bytes, Z380=1 0.94 1.42 1.42 1.42 1.42 1.00
VO coop (formula) 60+80*N 50+77"N 50+77*N 56+48N 56+48N 41+53*N
1/0 Loop (elks@ N=l) 140 127 127 104 104 94
VO Loop (nS @ N=l) 8750 7938 5080 6500 4160 5875
nS, N=l, 25MHz Z380=1 2.33 2.11 1.35 1.73 1.11 1.56
1/0 Loop (elks @ N=8) 700 666 666 4401 440 465
1/0 Loop (nS @ N=8) 43750 41625 26640 27500 17600 29063
nS, N=8, 25MHz Z380=1 2.35 2.24 1.43 1.48 0.951 1.56

signed bytes (bytes) 63 64 64 64 64 52
bytes, Z380=1 1.21 1.23 1.23 1.23 123 1.00
signed bytes (elks) 79 53 53 46 46 43
signed bytes (nS) 4917 3292 2107 2875 1840 2667
nS, 25MHz Z380=1 2.88 1.93 1.23 1.68 1.08 1.56

multip/y/aeeum (bytes) 72 54 54 54 54 95
bytes (Z380=1) 0.76 0.57 0.57 0.57 0.57 1.00
multip/y/aecum (elks) 404 204 204 212 212 254
multip/y/aeeum (nS) 25250 12750 8160 13250 84801 15875
nS, 25M Hz Z380=1 2.49 1.25 0.80 1.30 0.83 1.56

interrupt (bytes) 63 80 80 80 80 66
bytes (Z380=1) 0.95 1.21 1.21 1.21 1.21 1.00
interrupt (elks) 328 313 313 288 288 133
interrupt (nS) 20500 19563 12520 18000 11520 8313
nS, 25MHz Z380=1 3.85 3.68 2.35 3.38 2.17 1.56

Block move, elkslbyte 4.00 4.25 4.25 2.875 2.875 2.75
Block move, nSlbyte 250 266 170 180 115 172
nS, 25MHz Z380=1 2.27 2.41 1.55 1.63 1.05 1.56

Bytes, ave of Z380=1 0.97 1.11 1.11 1.11 1.11 1.00
nS, ave of 25 MHz Z380=1 2.70 2.27 1.45 1.87 1.20 1.56
est for 80960SA *
ave of aN 25MHz Z380=1 2.00 1.81 1.31 1.56 1.16 1.34
est for 80960SA *

* 80960SA times estimated p_er intel's Dhrystone figures: 19740 for KA. 12145 for SA

Z380 Z380
25 40
40 25

65 65
1.00 1.00

41+53*N 41+53*N
94 94

3760 2350
1.00 0.63
465 465

18600 11625
1.00 0.63

52 52
1.00 1.00

43 43
1707 1067
1.00 0.63

95 95
1.00 1.00
254 254

10160 6350
1.00 0.63

66 66
1.00 1.00
133 133

5320 3325
1.00 0.63

2.75 2.75
110 69

1.00 0.63

1.00 1.00
1.00 0.63

1.00 0.78

Z3BON BENCHMARKS
ApPLICATION NOTE

80960KA 80960KA
16 25

62.5 40

120 120
1.85 1.85

56+24*N 56+24*N
80 80

5000 3200
1.33 0.85
248 248

15500 9920
0.83 0.53

76 76
1.46 1.46

31 31
1917 1227
1.12 0.72

104 104
1.09 1.09

92 92
5750 3680
0.57 0.36

92 92
1.39 1.39
123 123

7688 4920
1.45 0.92

1.25 1.25
78 50

0.71 0.45

1.45 1.45
1.00 0.64
1.63 1.04
1.18 0.96
1.56 1.20

8-41

II

~!~~=I "l' c;;.., '" I 0.,

r ---_ .. -
I "']-,
. .I

I~-"-
L __

Z380™ Questions & Answers II

~2.iU])?

GENERAL OVERVIEW

Q: What is currently assigned as the value in the Chip 10
version register?

A: Currently the value OOH is assigned to the Z380 MPU,
and other values are reserved. Note that the internal
I/O address for this register is OFFH.

Q: Can data be accessed in the memory space beyond
the 64K boundary in Native mode?

A: Yes. The Z380 in Native/Word mode behaves exactly
like the Z80, but has access to the entire 4 Gbytes of
memory for data and 4G locations of I/O space be­
cause the upper 16 bits of all CPU registers (except
the PC) are still accessable to the software using new
Z380 instructions. Note that the program must reside
within the first 64K of memory because the upper word
of the PC is not accessable in Native mode and is
always all zeros in this mode.

Q: Z380 is binary code compatible with which processor?
A: The Z80 and Z180. Please note that the Z380 is not

binary code compatible with the Z280.

Q: What are the two modes that Z380 can operate in?
A: The Z380 can operate in Native mode or Extended

mode. In Native mode all of the address manipulations
operate on 16-bit quantities whereas in Extended
mode all of the address manipulations operate on 32-
bit quantities.

Q: What are the specifics of the Z380 PC in Extended
mode?

A: In extended mode the PC increments across all 32 bits
since the entire 4G Byte of addressing capability is in
use.

USER'S MANUAL

Z380™
QUESTIONS AND ANSWERS

Q: How would one determine during a memory read,
whether or not the cycle is instruction fetch or data?

A: There is a Fetch signal available in the PGA version
that goes active during an instruction fetch.

Q: What are the Interrupt acknowledge and I/O transac­
tions timings relative to?

A: All of the Interrupt Acknowledge and I/O transactions
are in reference to the I/O clock which is a program
controlled divided-down version of the BUSCLK.

Q: How can the Z380 return from Extended to Native
mode of operation?

A: Hardware Reset is the ONLY way that one can go back
to Native mode.

Q: Is the Z380 an Intel based architecture or Motorola
based?

A: The Z380, being compatible with the original Z80, is
Intel based. Intel based means the memory organiza­
tion is the "LSbyte first followed by MSbytes" whereas
the Motorola architecture has "MSbyte first followed by
LSbytes".

9-1

II

MEMORY CHIP SELECTS AND WAIT STATE
GENERATORS

Q: How many wait states can be inserted using the on­
chip Wait State Generator on Z380?

A: Up to 14 Wait states can be inserted in each of 6
different memory areas. There is one wait state gen­
erator for each of the six Chip Select signals for
addressing Lower, Upper and Midrange memory sec­
tions.

9-2

2380"
USER'S MANUAL

Q: How would a user disable the memory chip selects
and their associated wait state Generators?

A: These can be enabled or disabled by writing a single
register, the Memory Selects Master Enable Register
(MSMER) at internal I/O address 00000010H.

Q: How are the Chip Select signals resolved if the memory
areas are programmed to overlap?

A: The /LMCS signal takes precedence over the /UMCS
signal, which in turn takes precedence over the
/MCS3-/MCSO signals.

RESET

Q: What is the effect of the reset on the Z380?
A: Reset will cause the address and data lines to float. All

of the control lines will go to the inactive state.

Q: What is the status of the memory chip select signals
during Reset?

A: They are all tri-stated, since the Address bus is tri­
stated.

Q: Will reset affect all of the registers on Z380?
A: Not all of the registers are effected by Reset. CPU

registers are not affected by Reset. Please refer to
Product spec DC#6003-02 page 102 for the effect of
Reset on Z380 CPU and related I{O registers.

Q: How long do one need to have the {RESET line active
for proper operation?

A: The {RESET line must be kept Low for a minimum of 10
BUSCLK cycles. The {RESET signal does not need to
be synchronized to BUSCLK.

Q: When is the {RESET signal be internally by the CPU?
A: The {RESET input signal may be asynchronous to

BUSCLK, though it is sampled internally by the falling
edge of BUSCLK. For proper initialization of the MPU
V DD must be within operating specification and BUSCLK
must be stable for more than 10 cycles with {RESET
held low.

Q: Does the {RESET input include a Schmitt-trigger buffer?
A: Yes. The {RESET input on Z380 includes a Schmitt­

trigger buffer to facilitate power-on reset generation
through a simple RC network.

Z3BON

USER'S MANUAL

Q: How are the devices external to the Z380 MPU that are
clocked by 10CLK affected by {RESET pulse width?

A: This depends on the specific device, but in general
they will require a {RESET pulse width that spans
severallOCLK cycles for proper initialization.

Q: How many BUSCLK cycles after the deassertion of
{RESET will the Z380 proceed to fetch the first instruc­
tion?

A: The first memory read, for an instruction fetch, will start
3.5 BUSCLK cycles after the deassertion of {RESET,
providing that the proper setup and hold times are met
with respect to the BUSCLK falling edge.

Q: When is the first 10CLK rising edge after deassertion
of {RESET signal?

A: The first rising edge of 10CLK occurs 11.5 BUSCLK
cycles after the deassertion of {RESET, providing that
the proper setup and hold times are met with respect
to the BUSCLK falling edge. This first rising edge on
10CLK is proceeded by a minimum of 4 BUSCLK
cycles where 10CLK is Low.

Q: What happens if the {BREQ signal is active when
{RESET is deasserted?

A: In this case the Z380 will relinquish the bus instead of
fetching the first instruction, but the 10CLK synchroni­
zation will still take place as it normally does.

9-3

11

REFRESH TRANSACTIONS

Q: What will happen if the Z380 cannot provide refresh
transactions when it relinquishes the system bus,
because of a bus request via /BREQ?

A: The number of missed refresh requests are accumu­
lated in a counter and when the Z380 regains the
system bus, the missed refresh transactions will be
performed.

Q: What is the maximum number of missed Refresh
requests that can be counted?

A: The maximum number of missed refresh requests that
can be accumulated is 255. Any missed refresh re­
quests over this maximum will be lost.

9-4

Z380m

USER'S MANUAL

Q: Can you disable the refresh function on the Z380?
A: Yes. Unlike the Z80, with the Z380 you can disable the

whole refresh mechanism. This is controlled by a bit in
Refresh Register 2 (RFSHR2) at internal I/O address
00000015H. Note that the refresh mechanism is dis­
abled by hardware Reset.

Q: How would the user defines the interval between the
Refresh requests to the External interface logic?

A: The interval is controlled by the Refresh Register 0
(RFSHRO) at internal I/O address 00000013H. A value
"n" in this register will specify request intervals to be 4n
BUSCLK periods. If this register is programmed with
all zeros the period will be 1024 BUSCLK periods.
Note that small values of "n" will result in the refresh
mechanism taking substantial portions of the bus
bandwidth, and if wait states are used, a small enough
value for "n" will lock up the Z380 because requests
will be coming faster than they are occurring on the
bus.

POWER DOWN MODE

Q: What are the status of the output drivers when the CPU
is in power down situation?

A: When the Z380 is without the power the output drivers
appear to be in a high impedance state.

Q: How many ways are available to exit the Standby
mode?

A: One can exit standby mode by: /BREQ, /RESET, /NMI,
or /INTO-3. Note that /BREQ can be disabled as a
Standby mode exit condition with a bit in the Standby
Mode Control Register (SMCR) at internal I/O address
00000016H. Also, /INTO-3 will only cause an exit from
the Standby mode if interrupts were globally enabled
(with the IEF1 flag) when the Standby mode was
entered.

Z3BOn

USER'S MANUAL

Q: How could a user select the warm-up time appropriate
for the crystal being used?

A: The WM2-WMO bits in the Standby Mode Control
Register (SMeR) at internal I/O address 00000016H
control the warm-up time for the crystal oscillator when
exiting the Standby mode.

Q: If the Standby mode option is not enabled, how does
the Z380 interpret the SLP (Sleep) instruction?

A: In this case the SLP instruction is interpreted and
executed identically to the HALT instruction, stopping
the Z380 from further instruction execution.

Q: In the above case what would happen to /HAL T signal?
A: In this case the /HAL T signal goes to active (Low) to

indicate that the Z380 is in the Halt state.

9-5

II

MEMORY INTERFACING

Q: What is the function of the /MSIZE signal?
A: This is an input from addressed memory location

indicating whether the memory is byte-wide (Low) or
word-wide (High).

Q: Ouring bus cycles where /MSIZE is Low (indicating a
byte-wide bus) are the /BHEN and /BLEN signals
valid?

A: If /MSIZE is Low during a transaction, /BHEN and
/BLEN no longer have any meaning. For byte-wide
memories, the /BHEN and /BLEN Signals should be
combined into a single enable, if necessary.

Q: How will the data being transferred if /MSIZE is low?
A: The addressed memory should be connected to 015-

08, and an additional memory transaction will auto­
matically be generated to complete a word size data
transfer.

Q: Which portion of the data bus does the Z380 write or
read with /BHEN Low?

A: /BHEN Low indicates that 015-08 is being used to
transfer data.

Q: Which portion of the data bus does the Z380 write or
read with /BLEN Low?

A: /BLEN Low indicates that 07-00 is being used to
transfer data.

Q: How would the interface be designed for a byte-wide
memory module?

A: Attach the memory module to 015-08. The memory
module should assert /MSIZE Low during the memory
transaction when it is accessed. The Z380 will gener­
ate an additional transaction to complete the word
read or write.

Q: Why isthe dataon the data bus called "byte swapped"?
A: On the data bus, the lower significant byte of an "even

aligned" word is placed on 015-08, and the higher
significant byte is placed on 07-00.

9-6

Z380'"
USER'S MANUAL

Q: What does an "even aligned" word mean?
A: This means that the lower significant byte has an

"even" address (AO=O), and its higher significant byte
has the next higher address (AO=1).

Q: How would the interface be designed for a word-wide
memory module?

A: Attach the "even" addressed byte of a word-wide
memory to 015-08. Attach the "Odd" addressed byte
of a word-wide memory to 07-00.

Q: Oescribe the memory access to byte-wide module.
A:

JBHEN JBlEN AO 015·08 07·00

Byte Read (Even) 0 1 0 Byte Ignore
Read (Odd) 1 0 1 Byte Ignore
Write (Odd) 0 1 0 Byte Byte
Write (Even) 1 0 1 Byte Byte

Q: Oescribe the memory access to a word-wide module.
A:

(Aligned) JBHEN JBlEN AO 015·08 07·00

Word Read 0 0 0 LSByte MSByte
Write 0 0 0 LSByte MSByte

JBHEN JBlEN AO 015·08 07·00

Byte Read (Even) 0 1 0 Byte Ignore
Read (Odd) 1 0 1 Ignore Byte
Write (Odd) 0 1 0 Byte Byte
Write (Even) 1 0 1 Byte Byte

INTERRUPT SECTION

Q: What is the state of the IEF1 and IEF2 flags after
execution of the DI (Disable Interrupt) instruction for
the Z380?

A: Both IEF1 and IEF2are settozero by the DI instruction.

Q: What are the specifics of /INTO Mode 3 for the Z380?
A: Mode 3 is similar to Mode 2 (as in the Z180 or Z80)

except that a 16-bit interrupt vector is expected from
the peripherals.

Q: How can the user take advantage of INTO mode 3 with
8-bit I/O devices?

A: All of the upper 8 bits of the data bus need to be pulled
either High or Low with external resistors.

Q: How many clocks are required for the Interrupt se­
quence in Interrupt mode 2 on the Z380?

A: With no wait states and a 1X I/O bus, the time from
/INTO assertion to the start of first service routine
instruction fetch (Interrupt Mode 2) is 18 clocks.

Z3BO"
USER'S MANUAL

Q: Is there a problem with interrupt vectors in Extended
mode?

A: In Extended mode the Interrupt Vector in Interrupt
Mode 2 has the two least significant bits both "0". This
can cause a problem when connecting to Z80/Z8500
peripherals if the vector includes status from those
devices. This is because most of these devices modify
the vector starting with the bit just after the least­
significant bit. Thus in certain cases this bit may be
returned as a "1" from the interrupting device.

Q: How would the user access the Iz register (the Inter­
rupt Register Extension)?

A: The LD I,HL and LD HL,I instructions (in Long Word
mode) will transfer 32 bits to or from the I register.

9-7

AppendixA iii

Four formats are used to generate the machine language
bit encoding for the Z380 CPU instructions. Also, the Z380
CPU has eight Decoder Directives which work as a special
escape sequence to the certain instructions, to expand its
capability as explained in Chapter 3.

The bit encoding of the Z380 CPU instructions are parti­
tioned into bytes. Every instructions encoding contains
one byte dedicated to specifying the type of operation to
be performed; this byte is referred to as the instruction's
operation code, or opcode. Besides specifying a particu­
lar operation, opcode typically include bit encoding speci­
fying the operand addressing mode for the instruction and
identifying any general purpose registers used by the
instruction. Along with the opcode, instruction encoding
may include bytes that contain an address, displacement,
and/or immediate value used by the instruction, and spe­
cial bytes called "escape codes" that determine the mean­
ing of the opcode itself.

By themselves, one byte opcode would allow the encoding
of only 256 unique instructions. Therefore, special "es­
cape codes" that precede the opcode in the instruction
encoding are used to expand the number of possible
instructions. There are two types of escape codes; ad­
dressing mode and opcode. Escape codes for the Z80
original instructions are one bytes in length, and the
escape codes used to expand the Z380 instructions are
one or two bytes in length.

These instruction formats are differentiated by the opcode
escape value used. Format 1 is for instructions without an
opcode escape byte(s), Format 2 is for instructions with an
opcode escape byte. Format 3 is for instructions whose
opcode escape byte has the value OCBH, and Format 4 is
for instructions whose escape bytes are OED, followed by
OCBH.

USER's MANUAL

ApPENDIX A
Z380™ CPU INSTRUCTION FORMATS

For the opcode escape byte, the Z380 CPU uses ODDH
and OFDH as well, which on the Z80 CPU, these are used
only as an address escape byte.

In Format 2 and 4, the opcode escape byte immediately
precedes the opcode byte itself.

In Format 3, a 1-byte displacement may be between the
opcode escape byte and opcode itself. Opcode escape
bytes are used to distinguish between two different in­
structions with the same opcode bytes, thereby allowing
more than 256 unique instructions. For example, the 01 H
opcode, when alone, specifies a form of a Load Register
Word instruction; when proceeded byOCBH escape code,
the opcode 01 H specifies a Rotate Left Circular instruc­
tion.

Format 3 instructions with DDIR Immediate data Decoder
Directives, 1 to 3 bytes of displacement is between the
opcode escape byte and opcode itself.

Format 4 instructions are proceeded by OEDH, OCBH, and
a opcode. Optionally, with immediate word field follows.

Addressing mode escape codes are used to determine
the type of encoding for the addressing mode field within
an instruction's opcode, and can be used in instructions
with and without opcode escape value. An addressing
mode escape byte can have the value of ODDH or OFDH.
The addressing mode escape byte, if present, is always
the first byte of the instruction's machine code, and is
immediately followed by either the opcode (Format 1), or
the opcode escape byte (Format 2 and 3). For example,
the 46H opcode, when alone, specifies a Load B register
from memory location pointed by (HL) register; when
proceeded by the ODDH escape byte, the opcode 46H
specifies a Load B register from the memory location
pointed by (IX+d).

A-1

Z380~
USER'S MANUAL

The four instruction formats are shown in Tables A-1
through A-4. Within each format, several different configu­
rations are possible, depending on whether the instruction
involves addressing mode escape bytes, addresses, dis­
placements, or immediate data. In Table A-1 through A-4,

the symbol "Aesc" is used to indicate the presence of an
addressing mode escape byte, "O.esc" is used to indicate
the presence of an opcode escape byte, "disp." is an
abbreviation for displacement and "addr." is an abbrevia­
tion for address.

Aesc
Aesc
Aesc
Aesc

Table A-1. Format 1 Instructions Encodings

Instruction Format

Opcode
Opcode
Opcode
Opcode
Opcode
Opcode
Opcode
Opcode

2-byte Address
1-byte Displacement
Immediate
2-byte Address
1-byte Displacement
Immediate
1-byte Displacement Immediate

Assembly

LDA,C
LD A,(addr)
DJNZ addr
LD E,n
LD IX,(addr)
LD A, (IX+d)
LD IX,nn
LD (IY+d),n

Nole: "A.esc" is an addressing mode escape byte, and either ODDH or OFDH.

Table A-2. Format 2 Instructions Encodings

Instruction Format Assembly

Opcode LDA,C
O.esc Opcode Immediate (1 byte) TST n
O.esc Opcode Immediate (2 bytes) LD (BC),nn
O.esc Opcode Address (2 bytes) LD BC,(addr)
O.esc Opcode Displacement (1 byte) CALR e
O.esc Opcode Displacement (2 bytes) JR ee
O.esc Opcode Displacement (3 bytes) JR eee

Nole: "O.esc" is an opcode escape byte, and either ODDH, OEDH or OFDH.

Aesc
CB
CB

Table A-3. Format 3 Instruction Encoding

Opcode
1 Byte Displacement Opcode

RLC (HL)
RLC (IX+d)

Nole: "A.esc" is an addressing mode escape byte, and either ODDH or OFDH.

ED
ED

A-2

CB
CB

Table A-4. Format 4 Instruction Encoding

Opcode
Opcode Immediate

RRCWBC
MULTW nn

Hexadecimal

79
3A addr (L) addr (H)
10 disp
1 En
DD 2A addr (L) addr (H)
DO 7E disp
DO 21 n(L) n(H)
FD 36 d n

Hexadecimal

79
ED 64 n
ED 06 n(L) n(H)
ED 4B addr (L) addr (H)
EDCD e
DO 18 d(L) d(H)
FD 18 d(L) d(M) d(H)

CB06
DO CB d 06

ED CB 08
ED CB 97 n(L) n(H)

Appendix B

".
" j

" .
!

~2iU ... U;

This Appendix contains a quick reference guide when
programming.

It has the Z380 instructions sorted by alphabetic order.

The column "Mode" indicates whether the instruction is
affected by DDIR immediate Decoder Directives, Extended
mode or Native mode of operation, and Word or Long Word

USER'S MANUAL

ApPENDIX B
Z380™ INSTRUCTIONS IN
ALPHABETIC ORDER

mode of operation; "I" means the instruction can be used ~
with DDIR 1M to expand its immediate constant, "X" means ...
that the operation of the instruction is affected by the XM
status bit, and "L" means that the instruction is affected by
LWstatus bit, or can be used with DDIR LWor DDIRW. The
Native/Extended modes, Word/Long Word modes and
Decoder Directives are discussed in Chapter 3 in this
manual.

B-1

~2iu:a:; Z3BO'"
USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

ADC A,(HL) 8E ADD HL,SP X 39
ADC A,(IX+12H) DD 8E 12 ADD IX,BC X DD 09
ADC A,(IY+12H) FD 8E 12 ADD IX,DE X DD 19
ADC A,A 8F ADD IX,IX X DD 29
ADC A,B 88 ADD IX,SP X DD 39
ADC A,C 89 ADD IY,BC X FD 09
ADC A,D 8A ADD IY,DE X FD 19
ADC A,E 8B ADD IY,IY X FD 29
ADC A,H 8C ADD IY,SP X FD 39
ADC A,IXL DD 8D ADD SP,1234H X ED 82 34 12
ADC A,IXU DD 8C ADDW (IX+12H) DD C6 12
ADC A,IYL FD 8D ADDW (IY+12H) FD C6 12
ADC A,IYU FD 8C ADDW 1234H ED 86 34 12
ADC A,L 8D ADDW BC ED 84
ADC HL,BC ED 4A ADDW DE ED 85
ADC HL,DE ED 5A ADDW HL ED 87
ADC HL,HL ED 6A ADDW HL,(IX+ 12H) DD C6 12
ADC HL,SP ED 7A ADDW HL,(IY+12H) FD C6 12
ADCW (IX+12H) DD CE 12 ADDW HL,1234H ED 86 34 12
ADCW (IY+12H) FD CE 12 ADDW HL,BC ED 84
ADCW 1234H ED 8E 34 12 ADDW HL,DE ED 85
ADCW BC ED 8C ADDW HL,HL ED 87
ADCW DE ED 8D ADDW HL,IX DD 87
ADCW HL ED 8F ADDW HL,IY FD 87
ADCW HL,(IX+ 12H) DD CE 12 ADDW IX DD 87
ADCW HL,(IY + 12H) FD CE 12 ADDW IY FD 87
ADCW HL,1234H ED 8E 34 12 AND (HL) A6
ADCW HL,BC ED 8C AND (IX+12H) DD A6 12
ADCW HL,DE ED 8D AND (IY+12H) FD A6 12
ADCW HL,HL ED 8F AND 12H E6 12
ADCW HL,IX DD 8F AND A A7
ADCW HL,IY FD 8F AND A,(HL) A6
ADCW IX DD 8F AND A,(IX+12H) DD A6 12
ADCW IY FD 8F AND A,(IY+12H) FD A6 12
ADD A,(HL) 86 AND A,12H E6 12
ADD A,(IX+12H) DD 86 12 AND A,A A7
ADD A,(IY+12H) FD 86 12 AND A,B AO
ADD A,12H C6 12 AND A,C A1
ADD A,12H CE 12 AND A,D A2
ADD A,A 87 AND A,E A3
ADD A,B 80 AND A,H A4
ADD A,C 81 AND A,IXL DD A5
ADD A,D 82 AND A,IXU DD A4
ADD A,E 83 AND A,IYL FD A5
ADD A,H 84 AND A,IYU FD A4
ADD A,IXL DD 85 AND A,L A5
ADD A,IXU DD 84 AND B AO
ADD A,IYL FD 85 AND C A1
ADD A,IYU FD 84 AND D A2
ADD A,L 85 AND E A3
ADD HL,(1234H) X ED C6 34 12 AND H A4
ADD HL,BC X 09 AND IXL DD A5
ADD HL,DE X 19 AND IXU DD A4
ADD HL,HL X 29 AND IYL FD A5

8-2

~2iUJE
Z380N

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

AND IYU FD A4 BIT 3,D CB 5A
AND L A5 BIT 3,E CB 5B
ANDW (IX+12H) DD E6 12 BIT 3,H CB 5C
ANDW (IY+12H) FD E6 12 BIT 3,L CB 5D
ANDW 1234H ED A6 34 12 BIT 4,(HL) CB 66
ANDW BC ED A4 BIT 4,(IX+12H) DD CB 12 66
ANDW DE ED A5 BIT 4,(IY+12H) FD CB 12 66
ANDW HL ED A7 BIT 4,A CB 67

I ANDW HL,(IX+ 12H) DD E6 12 BIT 4,B CB 60
ANDW HL,(IY+12H) FD E6 12 BIT 4,C CB 61
ANDW HL,1234H ED A6 34 12 BIT 4,D CB 62
ANDW HL,BC ED A4 BIT 4,E CB 63
ANDW HL,DE ED A5 BIT 4,H CB 64
ANDW HL,HL ED A7 BIT 4,L CB 65
ANDW HL,IX DD A7 BIT 5,(HL) CB 6E
ANDW HL,IY FD A7 BIT 5,(IX+12H) DD CB 12 6E
ANDW IX DD A7 BIT 5,(IY+12H) FD CB 12 6E
ANDW IY FD A7 BIT 5,A CB 6F
BIT O,(HL) CB 46 BIT 5,B CB 68
BIT 0,(IX+12H) DD CB 12 46 BIT 5,C CB 69
BIT 0,(IY+12H) FD CB 12 46 BIT 5,D CB 6A
BIT O,A CB 47 BIT 5,E CB 6B
BIT O,B CB 40 BIT 5,H CB 6C
BIT O,C CB 41 BIT 5,L CB 6D
BIT O,D CB 42 BIT 6,(HL) CB 76
BIT O,E CB 43 BIT 6,(IX+12H) DD CB 12 76
BIT O,H CB 44 BIT 6,(IY+12H) FD CB 12 76
BIT O,L CB 45 BIT 6,A CB 77
BIT 1,(HL) CB 4E BIT 6,B CB 70
BIT 1,(IX+12H) DD CB 12 4E BIT 6,C CB 71
BIT 1,(IY+12H) FD CB 12 4E BIT 6,D CB 72
BIT 1,A CB 4F BIT 6,E CB 73
BIT 1,B CB 48 BIT 6,H CB 74
BIT 1,C CB 49 BIT 6,L CB 75
BIT 1,0 CB 4A BIT 7,(HL) CB 7E
BIT 1,E CB 4B BIT 7,(IX+12H) DD CB 12 7E
BIT 1,H CB 4C BIT 7,(IY+12H) FD CB 12 7E
BIT 1,L CB 4D BIT 7,A CB 7F
BIT 2,(HL) CB 56 BIT 7,B CB 78
BIT 2,(IX+12H) DO CB 12 56 BIT 7,C CB 79
BIT 2,(IY+12H) FD CB 12 56 BIT 7,D CB 7A
BIT 2,A CB 57 BIT 7,E CB 7B
BIT 2,B CB 50 BIT 7,H CB 7C
BIT 2,C CB 51 BIT 7,L CB 7D
BIT 2,0 CB 52 BTEST ED CF
BIT 2,E CB 53 CALL 1234H X CD 34 12
BIT 2,H CB 54 CALL C,1234H X DC 34 12
BIT 2,L CB 55 CALL M,1234H X FC 34 12
BIT 3,(HL) CB 5E CALL NC,1234H X D4 34 12
BIT 3,(IX+12H) OD CB 12 5E CALL NZ,1234H X C4 34 12
BIT 3,(IY+12H) FO CB 12 5E CALL P,1234H X F4 34 12
BIT 3,A CB 5F CALL PE,1234H X EC 34 12
BIT 3,B CB 58 CALL V, 1234H X EC 34 12
BIT 3,C CB 59 CALL PO,1234H X E4 34 12

B-3

~2iUJG
Z380~

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

CALL NV,1234H X E4 34 12 CP H BC
CALL Z,1234H X CC 34 12 CPW HL,IX DD BF
CALR 123456H X FD CD 56 34 12 CPW IX DD BF
CALR 1234H X DD CD 34 12 CP IXL DD BD
CALR 12H X ED CD 12 CP IXU DD BC
CALR C,123456H X FD DC 56 34 12 CP IYL FD BD
CALR C,1234H X DD DC 34 12 CP IYU FD BC
CALR C,12H X ED DC 12 CP L BD
CALR M,123456H X FD FC CPD X ED A9
CALR M,1234H X DD FC 34 12 CPDR X ED B9
CALR M,12H X ED FC 12 CPI X ED Ai
CALR NC,123456H X FD D4 56 34 12 CPIR X ED B1
CALR NC,1234H X DD D4 34 12 CPL A 2F
CALR NC,12H X ED D4 12 CPL 2F
CALR NZ,123456H X FD C4 56 34 12 CPLW HL DD 2F
CALR NZ,1234H X DD C4 34 12 CPLW DD 2F
CALR NZ,12H X ED C4 12 CPW (IX+12H) DD FE 12
CALR P,123456H X FD F4 56 34 12 CPW (IY+12H) FD FE 12
CALR P,1234H X DD F4 34 12 CPW 1234H ED BE 34 12
CALR P,12H X ED F4 12 CPW BC ED BC
CALR PE,123456H X FD EC 56 34 12 CPW DE ED BD
CALR PE,1234H X DD EC 34 12 CPW HL ED BF
CALR PE,12H X ED EC 12 CPW HL,(IX+12H) I DD FE 12
CALR PO,123456H X FD E4 56 34 12 CPW HL,(IY+12H) I FD FE 12
CALR PO,1234H X DD E4 34 12 CPW HL,1234H ED BE 34 12
CALR PO,12H X ED E4 12 CPW HL,BC ED BC
CALR Z,123456H X FD CC 56 34 12 CPW HL,DE ED BD
CALR Z,1234H X DD CC 34 12 CPW HL,HL ED BF
CALR Z,12H X ED CC 12 CPW HL,IY FD BF
CCF 3F CPW IY FD BF
CP (HL) BE DAA 27
CP (IX+12H) DD BE 12 DDIR IB DD C3
CP (IY+12H) FD BE 12 DDIR IB,LW FD C1
CP 12H FE 12 DDIR IB,W DD C1
CP A BF DDIR IW FD C3
CP A,(HL) BE DDIR IW,LW FD C2
CP A,(IX+12H) DD BE 12 DDIR IW,W DD C2
CP A,(IY+12H) FD BE 12 DDIR LW FD CO
CP A,12H FE 12 DDIR W DD CO
CP A,A BF DEC (HL) 35
CP A,B B8 DEC (IX+12H) DD 35 12
CP A,C B9 DEC (IY+12H) FD 35 12
CP A,D BA DEC A 3D
CP A,E BB DEC B 05
CP A,H BC DEC BC X OB
CP A,IXL DD BD DEC C OD
CP A,IXU DD BC DEC D 15
CP A,IYL FD BD DEC DE X 1B
CP A,IYU FD BC DEC E 10
CP A,L BD DEC H 25
CP B B8 DEC HL X 2B
CP C B9 DEC IX X DD 2B
CP 0 BA DEC IXL DD 2D
CP E BB DEC IXU DD 25

8-4

ft)2iUJG Z3BO"
USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

DEC IY X FD 2B EX BC,BC' L ED CB 30
DEC IYL FD 2D EX BC,DE L ED 05
DEC IYU FD 25 EX BC,HL L ED OD
DEC L 2D EX BC,IX L ED 03
DEC SP X 3B EX BC,IY L ED OB
DECW BC X OB EX C,C' CB 31
DECW DE X 1B EX D,D' CB 32
DECW HL X 2B EX DE,DE' L ED CB 31

III DECW IX X DD 2B EX DE,HL L EB
DECW IY X FD 2B EX DE,IX L ED 13
DECW SP X 3B EX DE,IY L ED 1B
DI 1FH DD F3 1F EX E,E' CB 33
DI F3 EX H,H' CB 34
DIVUW (IX+12H) DD CB 12 BA EX HL,HL' L ED CB 33
DIVUW (IY+12H) FD CB 12 BA EX HL,IX L ED 33
DIVUW 1234H ED CB BF EX HL,IY L ED 3B
DIVUW BC ED CB B8 EX IX,IX' ED CB 34
DIVUW DE ED CB B9 EX IX,IY L ED 2B
DIVUW HL ED CB BB EX IY,IY' L ED CB 35
DIVUW HL,(IX+12H) I DD CB 12 BA EX L,L' CB 35
DIVUW HL,(IY+12H) I FD CB 12 BA EXALL ED D9
DIVUW HL,1234H ED CB BF EXTS A L ED 65
DIVUW HL,BC ED CB B8 EXTS L ED 65
DIVUW HL,DE ED CB B9 EXTSW HL ED 75
DIVUW HL,HL ED CB BB EXTSW ED 75
DIVUW HL,IX ED CB BC EXX D9
DIVUW HL,IY ED CB BD EXXX DD D9
DIVUW IX ED CB BC EXXY FD D9
DIVUW IY ED CB BD HALT 76
DJNZ 123456H X FD 10 56 34 12 1M 0 ED 46
DJNZ 1234H X DD 10 34 12 1M 1 ED 56
DJNZ 12H X 10 12 1M 2 ED 5E
EI 1FH DD FB 1F 1M 3 ED 4E
EI FB IN A,(12H) DB 12
escape CB IN A,(C) ED 78
escape DD IN B,(C) ED 40
escape ED IN C,(C) ED 48
escape FD IN D,(C) ED 50
escape ED CB IN E,(C) ED 58
escape DD CB IN H,(C) ED 60
escape FD CB IN L,(C) ED 68
EX (SP),HL L E3 INO (12H) ED 30 12
EX (SP),IX L DD E3 INO A,(12H) ED 38 12
EX (SP),IY L FD E3 INO B,(12H) ED 00 12
EX A,(HL) ED 37 INO C,(12H) ED 08 12
EX A,A ED 3F INO D,(12H) ED 10 12
EX A,A' CB 37 INO E,(12H) ED 18 12
EX A,B ED 07 INO H,(12H) ED 20 12
EX A,C ED OF INO L,(12H) ED 28 12
EX A,D ED 17 INA A,(1234H) ED DB 34 12
EX A,E ED 1F INAW HL,(1234H) FD DB 34 12
EX A,H ED 27 INC (HL) 34
EX A,L ED 2F INC (lX+12H) DO 34 12
EX AF,AF' 08 INC (IY+12H) FD 34 12
EX B,B' CB 30 INC A 3C

8-5

~2iUJE Z380N

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

INC B 04 JR C,12H X 38 12
INC BC X 03 JR NC,123456H X FD 30 56 34 12
INC C OC JR NC,1234H X DD 30 34 12
INC D 14 JR NC,12H X 30 12
INC DE X 13 JR NZ,123456H X FD 20 56 34 12
INC E 1C JR NZ,1234H X DD 20 34 12
INC H 24 JR NZ,12H X 20 12
INC HL X 23 JR NZ,12H X 20 12
INC IX X DD 23 JR Z,123456H X FD 28 56 34 12
INC IXL DD 2C JR Z,1234H X DD 28 34 12
INC IXU DD 24 JR Z,12H X 28 12
INC IY X FD 23 LD (1234H),A 32 34 12
INC IYL FD 2C LD (1234H),BC L ED 43 34 12
INC IYU FD 24 LD (1234H),DE L ED 53 34 12
INC L 2C LD (1234H),HL L 22 34 12
INC SP X 33 LD (1234H),HL L ED 63 34 12
INCW BC X 03 LD (1234H),IX L DD 22 34 12
INCW DE X 13 LD (1234H),IY L FD 22 34 12
INCW HL X 23 LD (1234H),SP L ED 73 34 12
INCW IX X DD 23 LD (BC),A 02
INCW IY X FD 23 LD (BC),BC L FD OC
INCW SP X 33 LD (BC),DE L FD 1C
IND ED AA LD (BC),HL L FD 3C
INDR ED BA LD (BC),IX L DD 01
INDRW ED FA LD (BC),IY L FD 01
INDW ED EA LD (DE),A 12
INI ED A2 LD (DE),BC L FD OD
INIR ED B2 LD (DE),DE L FD 10
INIRW ED F2 LD (DE),HL L FD 3D
INIW ED E2 LD (DE),IX L DD 11
INW BC,(C) DD 40 LD (DE),IY L FD 11
INW DE,(C) DD 50 LD (HL),12H 36 12
INW HL,(C) DD 78 LD (HL),A 77
JP (HL) X E9 LD (HL),B 70
JP (IX) X DD E9 LD (HL),BC L FD OF
JP (IY) X FD E9 LD (HL),C 71
JP 1234H X C3 34 12 LD (HL),D 72
JP C,1234H X DA 34 12 LD (HL),DE L FD 1F
JP M,1234H X FA 34 12 LD (HL),E 73
JP NC,1234H X D2 34 12 LD (HL),H 74
JP NZ,1234H X C2 34 12 LD (HL),HL L FD 3F
JP NS,1234H X F2 34 12 LD (HL),IX L DD 31
JP NV,1234H X E2 34 12 LD (HL),IY L FD 31
JP P,1234H X F2 34 12 LD (HL),L 75
JP PE,1234H X EA 34 12 LD (IX+12H),34H DD 36 12 34
JP PO,1234H X E2 34 12 LD (IX+12H),A DD 77 12
JP S,1234H X FA 34 12 LD (IX+12H),B DD 70 12
JP V,1234H X E2 34 12 LD (IX+12H),BC L DD CB 12 OB
JP Z,1234H X CA 34 12 LD (IX+12H),C DD 71 12
JR 123456H X FD 18 56 34 12 LD (IX+12H),D DD 72 12
JR 1234H X DD 18 34 12 LD (IX+ 12H),E DD 73 12
JR 12H X 18 12 LD (IX+12H),DE L DD CB 12 1B
JR C,123456H X FD 38 56 34 12 LD (IX+12H),H DD 74 12
JR C,1234H X DD 38 34 12 LD (IX+ 12H),HL L DD CB 12 3B

8-6

~2il.ClG
Z3BO~

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

LD (IX+ 12H), IY L DO CB 12 2B LD BC,(1234H) L ED 4B 34 12
LD (IX+12H),L DO 75 12 LD BC,(BC) L DO OC
LD (IY+12H),34H FD 36 34 12 LD BC,(DE) L DO 00
LD (IY+12H),A FD 77 12 LD BC,(HL) L DO OF
LD (IY+12H),B FD 70 12 LD BC,(IX+ 12H) L DO CB 12 03
LD (IY+12H),BC L FD CB 12 OB LD BC,(IY+12H) L FD CB 12 03
LD (IY+12H),C FD 71 12 LD BC,(SP+ 12H) L DO CB 12 01
LD (IY+12H),D FD 72 12 LD BC,1234H L 01 34 12

II LD (IY + 12H), DE FD CB 12 1B LD BC,BC L ED 02
LD (IY+12H),E L FD 73 12 LD BC,DE L DO 02
LD (IY+12H),H FD 74 12 LD BC,HL L FD 02
LD (IY+12H),HL L FD CB 12 3B LD BC,IX L DO OB
LD (IY + 12H), IX L FD CB 12 2B LD BC,IY L FD OB
LD (IY+12H),L FD 75 12 LD C,(HL) 4E
LD (SP+ 12H),BC L DO CB 12 09 LD C,(IX+12H) DO 4E 12
LD (SP+12H),DE L DO CB 12 19 LD C,(IY+12H) FD 4E 12
LD (SP+ 12H),HL L DO CB 12 39 LD C,12H OE 12
LD (SP+12H),IX L DO CB 12 29 LD C,A 4F
LD (SP+ 12H), IY L FD CB 12 29 LD C,B 48
LD A,(1234H) 3A 34 12 LD C,C 49
LD A,(BC) OA LD C,D 4A
LD A,(DE) 1A LD C,E 4B
LD A,(HL) 7E LD C,H 4C
LD A,(IX+12H) DO 7E 12 LD C,IXL DO 40
LD A,(IY+12H) FD 7E 12 LD C,IXU DO 4C
LD A,12H 3E 12 LD C,IYL FD 40
LD A,A 7F LD C,IYU FD 4C
LD A,B 78 LD C,L 40
LD A,C 79 LD D,(HL) 56
LD A,D 7A LD D,(IX+12H) DO 56 12
LD A,E 7B LD D,(IY+12H) FD 56 12
LD A,H 7C LD D,12H 16 12
LD A,I ED 57 LD D,A 57
LD A,IXL DO 70 LD D,B 50
LD A,IXU DO 7C LD D,C 51
LD A,IYL FD 70 LD 0,0 52
LD A,IYU FD 7C LD D,E 53
LD A,L 70 LD D,H 54
LD A,R ED 5F LD D,IXL DO 55
LD B,(HL) 46 LD D,IXU DO 54
LD B,(IX+12H) DO 46 12 LD D,IYL FD 55
LD B,(IY+12H) FD 46 12 LD D,IYU FD 54
LD B,12H 06 12 LD D,L 55
LD B,A 47 LD DE,(1234H) L ED 5B 34 12
LD B,B 40 LD DE,(BC) L DO 1C
LD B,C 41 LD DE,(DE) L DO 10
LD B,D 42 LD DE,(HL) L DO 1F
LD B,E 43 LD DE,(IX+ 12H) L DO CB 12 13
LD B,H 44 LD DE,(IY+12H) L FD CB 12 13
LD B,IXL DO 45 LD DE,(SP+ 12H) L DO CB 12 11
LD B,IXU DO 44 LD DE,1234H L 11 34 12
LD B,IYL FD 45 LD DE,BC L ED 12
LD B,IYU FD 44 LD DE,DE L DO 12
LD B,L 45 LD DE,HL L FD 12

8-7

~2iUJE Z380N

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

LD DE,IX L DO 1B LD IX,HL L DO 37
LD DE,IY L FD 1B LD IX,IY L DO 27
LD E,(HL) 5E LD IXL,12H DO 2E 12
LD E,(IX+ 12H) DO 5E 12 LD IXL,A DO 6F
LD E,(IY+12H) FD 5E 12 LD IXL,B DO 68
LD E,12H 1 E 12 LD IXL,C DO 69
LD E,A 5F LD IXL,D DO 6A
LD E,B 58 LD IXL,E DO 6B
LD E,C 59 LD IXL,IXL DO 60
LD E,D 5A LD IXL,IXU DD 6C
LD E,E 5B LD IXU,12H DO 26 12
LD E,H 5C LD IXU,A DD 67
LD E,L 5D LD IXU,B DO 60
LD E,IXL DO 50 LD IXU,C DD 61
LD E,IYU FD 5C LD IXU,D DO 62
LD E,IYL DO 50 LD IXU,E DO 63
LD E,IYU FD 50 LD IXU,IXL DO 65
LD H,(HL) 66 LD IXU,IXU DO 64
LD H,(IX+12H) DD 66 12 LD IY,(1234H) L FD 2A 34 12
LD H,(IY+12H) FD 66 12 LD IY,(BC) L FD 03
LD H,12H 26 12 LD IY,(DE) L FD 13
LD H,A 67 LD IY,(HL) L FD 33
LD H,B 60 LD IY,(IX+12H) L DD CB 12 23
LD H,C 61 LD IY,(SP+ 12H) L FD CB 12 21
LD H,D 62 LD IY,1234H L FD 21 34 12
LD H,E 63 LD IY,BC L FD 07
LD H,H 64 LD IY,DE L FD 17
LD H,L 65 LD IY,HL L FD 37
LD HL,(1234H) L 2A 34 12 LD IY,IX L FD 27
LD HL,(1234H) L ED 6B 34 12 LD IYL,12H FD 2E 12
LD HL,(BC) L DD 3C LD IYL,A FD 6F
LD HL,(DE) L DO 3D LD IYL,B FD 68
LD HL,(HL) L DD 3F LD IYL,C FD 69
LD HL,(IX+ 12H) L 'DDCB 12 33 LD IYL,D FD 6A
LD HL,(IY+12H) L FD CB 12 33 LD IYL,E FD 6B
LD HL,(SP+12H) L DD CB 12 31 LD IYL,IYL FD 6D
LD HL,1234H L 21 34 12 LD IYL,IYU FD 6C
LD HL,BC L ED 32 LD IYU,12H FD 26 12
LD HL,DE L DD 32 LD IYU,A FD 67
LD HL,HL L FD 32 LD IYU,B FD 60
LD HL,I L DO 57 LD IYU,C FD 61
LD HL,IX L DO 3B LD IYU,D FD 62
LD HL,IY L FD 3B LD IYU,E FD 63
LD I,A ED 47 LD IYU,IYL FD 65
LD I,HL L DD 47 LD IYU,IYU FD 64
LD IX,(1234H) L DO 2A 34 12 LD L,(HL) 6E
LD IX,(BC) L DO 03 LD L,(IX+12H) DO 6E 12
LD IX, (DE) L DO 13 LD L,(IY + 12H) FD 6E 12
LD IX,(HL) L DO 33 LD L,12H 2E 12
LD IX,(IY + 12H) L FD CB 12 23 LD L,A 6F
LD IX,(SP+12H) L DD CB 12 21 LD L,B 68
LD IX,1234H L DD 21 34 12 LD L,C 69
LD IX,BC L DD 07 LD L,D 6A
LD IX,DE L DO 17 LD L,E 6B

B-8

ft'2iU:U; Z380"
USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

LD L,H 6C MULTW (IX+12H) DD CB 12 92
LD L,L 6D MULTW (IY+12H) FD CB 12 92
LD R,A ED 4F MULTW 1234H ED CB 97 34 12
LD SP,(1234H) L ED 7B 34 12 MULTW BC ED CB 90
LD SP,1234H L 31 34 12 MULTW DE ED CB 91
LD SP,HL L F9 MULTW HL ED CB 93
LD SP,IX L DD F9 MULTW HL,(IX+12H) I DD CB 12 92
LD SP,IY L FD F9 MULTW HL,(IY+12H) I FD CB 12 92

II LDCTL A,DSR ED DO MULTW HL,1234H ED CB 97 34 12
LDCTL A,XSR DD DO MULTW HL,BC ED CB 90
LDCTL A,YSR FD DO MULTW HL,DE ED CB 91
LDCTL DSR,01H ED DA 01 MULTW HL,HL ED CB 93
LDCTL DSR,A ED D8 MULTW HL,IX ED CB 94
LDCTL HL,SR L ED CO MULTW HL,IY ED CB 95
LDCTL SR,01H DD CA 01 MULTW IX ED CB 94
LDCTL SR,A DD C8 MULTW IY ED CB 95
LDCTL SR,HL L ED C8 NEG A ED 44
LDCTL XSR,01H DD DA 01 NEG ED 44
LDCTL XSR,A DD D8 NEGW HL ED 54
LDCTL YSR,01H FD DA 01 NEGW ED 54
LDCTL YSR,A FD D8 NOP 00
LDD ED A8 OR (HL) B6
LDDR ED B8 OR (IX+ 12H) DD B6 12
LDDRW L ED F8 OR (IY+12H) FD B6 12
LDDW L ED E8 OR 12H F6 12
LDI ED AO OR A B7
LDIR ED BO OR A,(HL) B6
LDIRW L ED FO OR A,(IX+12H) DD B6 12
LDIW L ED EO OR A,(IY+12H) FD B6 12
LDW (BC),1234H I L ED 06 34 12 OR A,12H F6 12
LDW (DE),1234H I L ED 16 34 12 OR A,A B7
LDW (HL),1234H I L ED 36 34 12 OR A,B BO
LDW HL,I L DD 57 OR A,C B1
LDW I,HL L DD 47 OR A,D B2
MLT BC ED 4C OR A,E B3
MLT DE ED 5C OR A,H B4
MLT HL ED 6C OR A,IXL DD B5
MLT SP ED 7C OR A,IXU DD B4
MTEST DD CF OR A,IYL FD B5
MULTUW (IX+12H) DD CB 12 9A OR A,IYU FD B4
MULTUW (IY+12H) FD CB 12 9A OR A,L B5
MULTUW 1234H ED CB 9F OR B BO
MULTUW BC ED CB 98 OR C B1
MULTUW DE ED CB 99 OR D B2
MULTUW HL ED CB 9B OR E B3
MUL TUW HL,(IX+ 12H) I DD CB 12 9A OR H B4
MUL TUW HL,(IY + 12H) I FD CB 12 9A OR IXL DD B5
MUL TUW HL,1234H ED CB 9F OR IXU DD B4
MULTUW HL,BC ED CB 98 OR IYL FD B5
MULTUW HL,DE ED CB 99 OR IYU FD B4
MULTUW HL,HL ED CB 9B OR L 85
MULTUW HL,IX ED CB 9C ORW (IX+12H) DD F6 12
MULTUW HL,IY ED CB 9D ORW (IY+12H) FD F6 12
MULTUW IX ED CB 9C ORW 1234H ED B6 34 12
MULTUW IY ED CB 9D ORW BC ED B4

B-9

~2il.1lG Z380"
USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

ORW DE ED B5 PUSH AF L F5
ORW HL ED B7 PUSH BC L C5
ORW HL,(IX+ 12H) DD F6 12 PUSH DE L D5
ORW HL,(IY + 12H) FD F6 12 PUSH HL L E5
ORW HL,1234H ED B6 34 12 PUSH IX L DD E5
ORW HL,BC ED B4 PUSH IY L FD E5
ORW HL,DE ED B5 PUSH SR L ED C5
ORW HL,HL ED B7 RES O,(HL) CB 86
ORW HL,IX DD B7 RES 0,(IX+12H) DD CB 12 86
ORW HL,IY FD B7 RES 0,(IY+12H) FD CB 12 86
ORW IX DD B7 RES O,A CB 87
ORW IY FD B7 RES O,B CB 80
OTOM ED 8B RES O,C CB 81
OTOMR ED 9B RES O,D CB 82
OTOR ED BB RES O,E CB 83
OTORW ED FB RES O,H CB 84
OTIM ED 83 RES O,L CB 85
OTIMR ED 93 RES 1,(HL) CB 8E
OTIR ED B3 RES 1,(IX+12H) DD CB 12 8E
OTIRW ED F3 RES 1 ,(IY + 12H) FD CB 12 8E
OUT (12H),A D3 12 RES 1,A CB 8F
OUT (C),12H ED 71 12 RES 1,B CB 88
OUT (C),A ED 79 RES 1,C CB 89
OUT (C),B ED 41 RES 1,D CB 8A
OUT (C),C ED 49 RES 1,E CB 8B
OUT (C),D ED 51 RES 1,H CB 8C
OUT (C),E ED 59 RES 1,L CB 8D
OUT (C),H ED 61 RES 2,(HL) CB 96
OUT (C),L ED 69 RES 2,(IX+12H) DD CB 12 96
OUTO (12H),A ED 39 12 RES 2,(IY + 12H) FD CB 12 96
OUTO (12H),B ED 01 12 RES 2,A CB 97
OUTO (12H),C ED 09 12 RES 2,B CB 90
OUTO (12H),D ED 11 12 RES 2,C CB 91
OUTO (12H),E ED 19 12 RES 2,D CB 92
OUTO (12H),H ED 21 12 RES 2,E CB 93
OUTO (12H),L ED 29 12 RES 2,H CB 94
OUTA (1234H),A ED D3 34 12 RES 2,L CB 95
OUTAW (1234H),HL FD D3 34 12 RES 3,(HL) CB 9E
OUTO ED AB RES 3,(IX+12H) DD CB 12 9E
OUTOW ED EB RES 3,(IY + 12H) FD CB 12 9E
OUTI ED A3 RES 3,A CB 9F
OUTIW ED E3 RES 3,B CB 98
OUTW (C),1234H FD 79 34 12 RES 3,C CB 99
OUTW (C),BC DD 41 RES 3,D CB 9A
OUTW (C),DE DD 51 RES 3,E CB 9B
OUTW (C),HL DD 79 RES 3,H CB 9C
POP AF L F1 RES 3,L CB 9D
POP BC L C1 RES 4,(HL) CB A6
POP DE L D1 RES 4,(IX+12H) DD CB 12 A6
POP HL L E1 RES 4,(IY+12H) FD CB 12 A6
POP IX L DD E1 RES 4,A CB A7
POP IY L FD E1 RES 4,B CB AO
POP SR L ED C1 RES 4,C CB A1
PUSH 1234H L FD F5 34 12 RES 4,D CB A2

B-10

~2iu:a:;
Z3BO"

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

RES 4,E CB A3 RL A CB 17
RES 4,H CB A4 RL B CB 10
RES 4,L CB A5 RL C CB 11
RES 5,(HL) CB AE RL D CB 12
RES 5,(IX+12H) DD CB 12 AE RL E CB 13
RES 5,(IY+ 12H) FD CB 12 AE RL H CB 14
RES 5,A CB AF RL L CB 15
RES 5,B CB A8 RLA 17

II RES 5,C CB A9 RLC (HL) CB 06
RES 5,D CB AA RLC (IX+12H) DD CB 12 06
RES 5,E CB AB RLC (IY+12H) FD CB 12 06
RES 5,H CB AC RLC A CB 07
RES 5,L CB AD RLC B CB 00
RES 6,(HL) CB B6 RLC C CB 01
RES 6,(IX+12H) DD CB 12 86 RLC D CB 02
RES 6,(IY+12H) FD CB 12 B6 RLC E CB 03
RES 6,A CB B7 RLC H CB 04
RES 6,B CB BO RLC L CB 05
RES 6,C CB B1 RLCA 07
RES 6,D CB B2 RLCW (HL) ED CB 02
RES 6,E CB B3 RLCW (IX+12H) DD CB 12 02
RES 6,H CB B4 RLCW (IY+12H) FD CB 12 02
RES 6,L CB B5 RLCW BC ED CB 00
RES 7,(HL) CB BE RLCW DE ED CB 01
RES 7,(IX+12H) DD CB 12 BE RLCW HL ED CB 03
RES 7,(IY+12H) FD CB 12 BE RLCW IX ED CB 04
RES 7,A CB BF RLCW IY ED CB 05
RES 7,B CB B8 RLD ED 6F
RES 7,C CB B9 RLW (HL) ED CB 12
RES 7,D CB BA RLW (IX+12H) DD CB 12 12
RES 7,E CB BB RLW (IY+12H) FD CB 12 12
RES 7,H CB BC RLW BC ED CB 10
RES 7,L CB BD RLW DE ED CB 11
RESC LCK ED FF RLW HL ED CB 13
RESC LW DD FF RLW IX ED CB 14
reserved ED 55 RLW IY ED CB 15
RET C X D8 RR (HL) CB 1E
RET M X F8 RR (IX+12H) DD CB 12 1E
RET NC X DO RR (IY+12H) FD CB 12 1E
RET NS X FO RR A CB 1F
RET NV X EO RR B CB 18
RET NZ X CO RR C CB 19
RET P X FO RR D CB 1A
RET PE X E8 RR E C8 1B
RET PO X EO RR H CB 1C
RET S X F8 RR L C8 10
RET V X E8 RRA 1F
RET Z X C8 RRC (HL) CB OE
RET X C9 RRC (IX+12H) DD CB 12 OE
RETI X ED 4D RRC (IY+12H) FD CB 12 OE
RETN X ED 45 RRC A CB OF
RL (HL) CB 16 RRC B CB 08
RL (IX+12H) DD CB 12 16 RRC C CB 09
RL (IY+12H) FD CB 12 16 RRC D CB OA

RRC E CB OB

B-11

~2iUJE
Z380~

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

RRC H CB OC SBCW HL,(IY + 12H) FD DE 12
RRC L CB OD SBCW HL,1234H ED 9E 34 12
RRCA OF SBCW HL,BC ED 9C
RRCW (HL) ED CB OA SBCW HL,DE ED 9D
RRCW (IX+ 12H) DD CB 12 OA SBCW HL,HL ED 9F
RRCW (IY+12H) FD CB 12 OA SBCW HL,IX DD 9F
RRCW BC ED CB 08 SBCW HL,IY FD 9F
RRCW DE ED CB 09 SBCW IX DD 9F
RRCW HL ED CB OB SBCW IY FD 9F
RRCW IX ED CB OC SCF 37
RRCW IY ED CB OD SET O,(HL) CB C6
RRD ED 67 SET O,(IX+12H) DD CB 12 C6
RRW (HL) ED CB 1A SET O,(IY+12H) FD CB 12 C6
RRW (IX+12H) DD CB 12 1A SET O,A CB C7
RRW (IY+12H) FD CB 12 1A SET O,B CB CO
RRW BC ED CB 18 SET O,C CB C1
RRW DE ED CB 19 SET O,D CB C2
RRW HL ED CB 1B SET O,E CB C3
RRW IX ED CB 1C SET O,H CB C4
RRW IY ED CB 10 SET O,L CB C5
RST OOH X C7 SET 1,(HL) CB CE
RST 08H X CF SET 1,(IX+ 12H) DD CB 12 CE
RST 10H X D7 SET 1,(IY + 12H) FD CB 12 CE
RST 18H X DF SET 1,A CB CF
RST 20H X E7 SET 1,B CB C8
RST 28H X EF SET 1,C CB C9
RST 30H X F7 SET 1,D CB CA
RST 38H X FF SET 1,E CB CB
SBC A,(HL) 9E SET 1,H CB CC
SBC A,(IX+12H) DD 9E 12 SET 1,L CB CD
SBC A,(IY+12H) FD 9E 12 SET 2,(HL) CB D6
SBC A,12H DE 12 SET 2,(IX+12H) DD CB 12 D6
SBC A,A 9F SET 2,(IY+12H) FD CB 12 D6
SBC A,B 98 SET 2,A CB D7
SBC A,C 99 SET 2,B CB DO
SBC A,D 9A SET 2,C CB D1
SBC A,E 9B SET 2,D CB D2
SBC A,H 9C SET 2,E CB D3
SBC A,IXL DD 9D SET 2,H CB D4
SBC A,IXU DD 9C SET 2,L CB D5
SBC A,IYL FD 9D SET 3,(HL) CB DE
SBC A,IYU FD 9C SET 3,(IX+ 12H) DD CB 12 DE
SBC A,L 9D SET 3,(IY+12H) FD CB 12 DE
SBC HL,BC ED 42 SET 3,A CB DF
SBC HL,DE ED 52 SET 3,B CB D8
SBC HL,HL ED 62 SET 3,C CB D9
SBC HL,SP ED 72 SET 3,D CB DA
SBCW (IX+12H) DD DE 12 SET 3,E CB DB
SBCW (IY + 12H) FD DE 12 SET 3,H CB DC
SBCW 1234H ED 9E 34 12 SET 3,L CB DD
SBCW BC ED 9C SET 4,(HL) CB E6
SBCW DE ED 9D SET 4,(IX+12H) DD CB 12 E6
SBCW HL ED 9F SET 4,(IY+12H) FD CB 12 E6
SBCW HL,(IX+12H) DD DE 12 SET 4,A CB E7

B-12

~2iL.CJG Z3BO"
USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

SET 4,B CB EO SLAW HL ED CB 23
SET 4,C CB E1 SLAW IX ED CB 24
SET 4,D CB E2 SLAW IY ED CB 25
SET 4,E CB E3 SLP ED 76
SET 4,H CB E4 SRA (HL) CB 2E
SET 4,L CB E5 SRA (IX+12H) DD CB 12 2E
SET 5,(HL) CB EE SRA (lY+12H) FD CB 12 2E
SET 5,(IX+12H) DD CB 12 EE SRA A CB 2F

II SET 5,(IY+12H) FD CB 12 EE SRA B CB 28
SET 5,A CB EF SRA C CB 29
SET 5,B CB E8 SRA D CB 2A
SET 5,C CB E9 SRA E CB 2B
SET 5,D CB EA SRA H CB 2C
SET 5,E CB EB SRA L CB 2D
SET 5,H CB EC SRAW (HL) ED CB 2A
SET 5,L CB ED SRAW (IX+12H) DD CB 12 2A
SET 6,(HL) CB F6 SRAW (lY+12H) FD CB 12 2A
SET 6,(IX+12H) DD CB 12 F6 SRAW BC ED CB 28
SET 6,(IY+12H) FD CB 12 F6 SRAW DE ED CB 29
SET 6,A CB F7 SRAW HL ED CB 2B
SET 6,B CB FO SRAW IX ED CB 2C
SET 6,C CB F1 SRAW IY ED CB 2D
SET 6,D CB F2 SRL (HL) CB 3E
SET 6,E CB F3 SRL (IX+12H) DD CB 12 3E
SET 6,H CB F4 SRL (IY+ 12H) FD CB 12 3E
SET 6,L CB F5 SRL A CB 3F
SET 7,(HL) CB FE SRL B CB 38
SET 7,(IX+12H) DD CB 12 FE SRL C CB 39
SET 7,(IY+12H) FD CB 12 FE SRL D CB 3A
SET 7,A CB FF SRL E CB 3B
SET 7,B CB F8 SRL H CB 3C
SET 7,C CB F9 SRL L CB 3D
SET 7,D CB FA SRLW (HL) ED CB 3A
SET 7,E CB FB SRLW (lX+12H) DD CB 12 3A
SET 7,H CB FC SRLW (IY+12H) FD CB 12 3A
SET 7,L CB FD SRLW BC ED CB 38
SETC LCK ED F7 SRLW DE ED CB 39
SETC LW DD F7 SRLW HL ED CB 3B
SETC XM FD F7 SRLW IX ED CB 3C
SLA (HL) CB 26 SRLW IY ED CB 3D
SLA (IX+12H) DD CB 12 26 SUB A,(HL) 96
SLA (IY+12H) FD CB 12 26 SUB A,12H D6 12
SLA A CB 27 SUB A,A 97
SLA B CB 20 SUB A,(IX+12H) DD 96 12
SLA C CB 21 SUB A,(IY+12H) FD 96 12
SLA D CB 22 SUB 12H D6 12
SLA E CB 23 SUB A,B 90
SLA H CB 24 SUB A,C 91
SLA L CB 25 SUB A,D 92
SLAW (HL) ED CB 22 SUB A,E 93
SLAW (IX+12H) DD CB 12 22 SUB A,H 94
SLAW (IY+12H) FD CB 12 22 SUB A,IXL DD 95
SLAW BC ED CB 20 SUB A,IXU DD 94
SLAW DE ED CB 21 SUB A,IYL FD 95

B-13

~2iUJG Z3BON

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code

SUB A,IYU FD 94 XOR A,IYL FD AD
SUB A,L 95 SUB XOR A,IYU FD AC
HL,(1234H) X ED D6 34 12 XOR A,L AD
SUB SP,1234H X ED 92 34 12 XOR B AS
SUBW (IX+12H) DD D6 12 XOR C A9
SUBW (IY+12H) FD D6 12 XOR D AA
SUBW 1234H ED 96 34 12 XOR E AB
SUBW BC ED 94 XOR H AC
SUBW DE ED 95 XOR IXL DD AD
SUBW HL ED 97 XOR IXU DD AC
SUBW HL,(IX+ 12H) I DD D6 12 XOR IYL FD AD
SUBW HL,(IY + 12H) I FD D6 12 XOR IYU FD AC
SUBW HL,1234H ED 96 34 12 XOR L AD
SUBW HL,BC ED 94 XORW (IX+12H) DD EE 12
SUBW HL,DE ED 95 XORW (IY+12H) FD EE 12
SUBW HL,HL ED 97 XORW 1234H ED AE 34 12
SUBW HL,IX DD 97 XORW BC ED AC
SUBW HL,IY FD 97 XORW DE ED AD
SUBW IX DD 97 XORW HL ED AF
SUBW IY FD 97 XORW HL,(IX+ 12H) I DD EE 12
SWAP BC ED OE XORW HL,(IY+12H) I FD EE 12
SWAP DE ED 1E XORW HL,1234H ED AE 34 12
SWAP HL ED 3E XORW HL,BC ED AC
SWAP IX DD 3E XORW HL,DE ED AD
SWAP IY FD 3E XORW HL,HL ED AF
TST (HL) ED 34 XORW HL,IX DD AF
TST 12H ED 64 12 XORW HL,IY FD AF
TST A ED 3C XORW IX DD AF
TST B ED 04 XORW IY FD AF
TST C ED OC
TST D ED 14
TST E ED 1C
TST H ED 24
TST L ED 2C
TSTIO 12H ED 74 12
XOR (HL) AE
XOR (IX+12H) DD AE 12
XOR (IY+12H) FD AE 12
XOR 12H EE 12
XOR A AF
XOR A,(HL) AE
XOR A,(IX+12H) DD AE 12
XOR A,(IY+12H) FD AE 12
XOR A,12H EE 12
XOR A,A AF
XOR A,B AS
XOR A,C A9
XOR A,D AA
XOR A,E AB
XOR A,H AC
XOR A,IXL DD AD
XOR A,IXU DD AC

8-14

"\' ,

" i,' l ~. ,.

Appendix C II

I:

The following Appendix has the Z380 instructions sorted
by numeric order.

The column "Mode" indicates whether the instruction is
affected by DDIR immediate Decoder Directives, Extended
mode or Native mode of operation, and Word or Long Word
Mode of operation; "I" means the instruction can be used
with DDIR 1M to expand its immediate constant, "X" means

USER's MANUAL

ApPENDIX C
Z380™ INSTRUCTION IN NUMERIC ORDER

that the operation of the instruction is affected by the XM
status bit, and "L" means that the instruction is affected by
LW status bit, or can be used with DDIR LWor DDIRW. The
Native/Extended modes, Word/Long Word modes and
Decoder Directives are discussed in Chapter 3 in this

manual. II

C-1

~2il.!lG Z3BO"
USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

00 NOP 2F CPL
01 34 12 LD BC,1234H L 30 12 JR NC,12H X
02 LD (BC),A 31 34 12 LD SP,1234H L
03 INC BC X 32 34 12 LD (1234H),A
03 INCW BC X 33 INC SP X
04 INC B 33 INCW SP X
05 DEC B 34 INC (HL)
06 12 LD B,12H 35 DEC (HL)
07 RLCA 36 12 LD (HL),12H
08 EX AF,AF' 37 SCF
09 ADD HL,BC X 38 12 JR C,12H X
OA LD A,(BC) 39 ADD HL,SP X
OB DEC BC X 3A 34 12 LD A,(1234H)
OB DECW BC X 3B DEC SP X
OC INC C 3B DECW SP X
OD DEC C 3C INC A
OE 12 LD C,12H 3D DEC A
OF RRCA 3E 12 LD A,12H
10 12 DJNZ 12H X 3F CCF
11 34 12 LD DE,1234H L 40 LD B,B
12 LD (DE),A 41 LD B,C
13 INC DE X 42 LD B,D
13 INCW DE X 43 LD B,E
14 INC D 44 LD B,H
15 DEC D 45 LD B,L
16 12 LD D,12H 46 LD B,(HL)
17 RLA 47 LD B,A
18 12 JR 12H X 48 LD C,B
19 ADD HL,DE X 49 LD C,C
1A LD A,(DE) 4A LD C,D
1B DEC DE X 4B LD C,E
1B DECW DE X 4C LD C,H
1C INC E 4D LD C,L
10 DEC E 4E LD C,(HL)
1E 12 LD E,12H 4F LD C,A
iF RRA 50 LD D,B
20 12 JR NZ,12H X 51 LD D,C
21 34 12 LD HL,1234H L 52 LD D,D
22 34 12 LD (1234H),HL L 53 LD D,E
23 INC HL X 54 LD D,H
23 INCW HL X 55 LD D,L
24 INC H 56 LD D,(HL)
25 DEC H 57 LD D,A
26 12 LD H,12H 58 LD E,B
27 DAA 59 LD E,C
28 12 JR Z,12H X 5A LD E,D
29 ADD HL,HL X 5B LD E,E
2A 34 12 LD HL,(1234H) L 5C LD E,H
2B DEC HL X 5D LD E,L
2B DECW HL X 5E LD E,(HL)
2C INC L 5F LD E,A
2D DEC L 60 LD H,B
2E 12 LD L,12H 61 LD H,C
2F CPL A 62 LD H,D

C-2

~2iu:a;
Z3BO"

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

63 LD H,E 99 SBC A,C
64 LD H,H 9A SBC A,D
65 LD H,L 9B SBC A,E
66 LD H,(HL) 9C SBC A,H
67 LD H,A 9D SBC A,L
68 LD L,B 9E SBC A,(HL)
69 LD L,C 9F SBC A,A
6A LD L,D AO AND A,B
6B LD L,E AO AND B
6C LD L,H A1 AND A,C
6D LD L,L A1 AND C
6E LD L,(HL) A2 AND A,D
6F LD L,A A2 AND D
70 LD (HL),B A3 AND A,E

II 71 LD (HL),C A3 AND E
72 LD (HL),D A4 AND A,H
73 LD (HL),E A4 AND H
74 LD (HL),H A5 AND A,L
75 LD (HL),L A5 AND L
76 HALT A6 AND (HL)
77 LD (HL),A A6 AND A,(HL)
78 LD A,B A7 AND A
79 LD A,C A7 AND A,A
7A LD A,D A8 XOR A,B
7B LD A,E A8 XOR B
7C LD A,H A9 XOR A,C
7D LD A,L A9 XOR C
7E LD A,(HL) AA XOR A,D
7F LD A,A AA XOR D
80 ADD A,B AB XOR A,E
81 ADD A,C AB XOR E
82 ADD A,D AC XOR A,H
83 ADD A,E AC XOR H
84 ADD A,H AD XOR A,L
85 ADD A,L AD XOR L
86 ADD A,(HL) AE XOR (HL)
87 ADD A,A AE XOR A,(HL)
88 ADC A,B AF XOR A
89 ADC A,C AF XOR A,A
8A ADC A,D BO OR A,B
8B ADC A,E BO OR B
8C ADC A,H B1 OR A,C
8D ADC A,L B1 OR C
8E ADC A,(HL) B2 OR A,D
8F ADC A,A B2 OR D
90 SUB A,B B3 OR A,E
91 SUB A,C B3 OR E
92 SUB A,D B4 OR A,H
93 SUB A,E B4 OR H
94 SUB A,H B5 OR A,L
95 SUB A,L B5 OR L
96 SUB A,(HL) B6 OR (HL)
97 SUB A,A B6 OR A,(HL)
98 SBC A,B B7 OR A

C-3

~2iu::a; Z3BO"
USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

B7 OR A,A CB 1A RR D
B8 CP A,B CB 1B RR E
B8 CP B CB 1C RR H
B9 CP A,C CB 10 RR L
B9 CP C CB 1E RR (HL)
BA CP A,D CB 1F RR A
BA CP D CB 20 SLA B
BB CP A,E CB 21 SLA C
BB CP E CB 22 SLA D
BC CP A,H CB 23 SLA E
BC CP H CB 24 SLA H
BD CP A,L CB 25 SLA L
BD CP L CB 26 SLA (HL)
BE CP (HL) CB 27 SLA A
BE CP A,(HL) CB 28 SRA B
BF CP A CB 29 SRA C
BF CP A,A CB 2A SRA D
CO RET NZ X CB 2B SRA E
C1 POP BC L CB 2C SRA H
C234 12 JP NZ,1234H X CB 2D SRA L
C334 12 JP 1234H X CB 2E SRA (HL)
C434 12 CALL NZ,1234H X CB 2F SRA A
C5 PUSH BC L CB 30 EX B,B'
C6 12 ADD A,12H CB 31 EX C,C'
C7 RST DOH X CB 32 EX D,D'
C8 RET Z X CB 33 EX E,E'
C9 RET X CB 34 EX H,H'
CA 34 12 JP Z,1234H X CB 35 EX L,L'
CB 00 RLC B CB 37 EX A,A'
CB 01 RLC C CB 38 SRL B
CB 02 RLC D CB 39 SRL C
CB 03 RLC E CB 3A SRL D
CB 04 RLC H CB 3B SRL E
CB 05 RLC L CB 3C SRL H
CB 06 RLC (HL) CB 3D SRL L
CB 07 RLC A CB 3E SRL (HL)
CB 08 RRC B CB 3F SRL A
CB 09 RRC C CB 40 BIT O,B
CB OA RRC D CB 41 BIT O,C
CB DB RRC E CB 42 BIT O,D
CB DC RRC H CB 43 BIT O,E
CB OD RRC L CB 44 BIT O,H
CB DE RRC (HL) CB 45 BIT O,L
CB OF RRC A CB 46 BIT O,(HL)
CB 10 RL B CB 47 BIT O,A
CB 11 RL C CB 48 BIT 1,B
CB 12 RL D CB 49 BIT 1,C
CB 13 RL E CB 4A BIT 1,D
CB 14 RL H CB 4B BIT 1,E
CB 15 RL L CB 4C BIT 1,H
CB 16 RL (HL) CB 4D BIT 1,L
CB 17 RL A CB 4E BIT 1,(HL)
CB 18 RR B CB 4F BIT 1,A
CB 19 RR C CB 50 BIT 2,B

C-4

~2iUJG
Z380~

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

CB 51 BIT 2,C CB 87 RES O,A
CB 52 BIT 2,0 CB 88 RES 1,B
CB 53 BIT 2,E CB 89 RES 1,C
CB 54 BIT 2,H CB 8A RES 1,0
CB 55 BIT 2,L CB 8B RES 1,E
CB 56 BIT 2,(HL) CB 8C RES 1,H
CB 57 BIT 2,A CB 80 RES 1,L
CB 58 BIT 3,B CB 8E RES 1,(HL)
CB 59 BIT 3,C CB 8F RES 1,A
CB 5A BIT 3,0 CB 90 RES 2,B
CB 5B BIT 3,E CB 91 RES 2,C
CB 5C BIT 3,H CB 92 RES 2,0
CB 50 BIT 3,L CB 93 RES 2,E
CB 5E BIT 3,(HL) CB 94 RES 2,H
CB 5F BIT 3,A CB 95 RES 2,L
CB 60 BIT 4,B CB 96 RES 2,(HL)
CB 61 BIT 4,C CB 97 RES 2,A
CB 62 BIT 4,0 CB 98 RES 3,B
CB 63 BIT 4,E CB 99 RES 3,C
CB 64 BIT 4,H CB 9A RES 3,0
CB 65 BIT 4,L CB 9B RES 3,E
CB 66 BIT 4,(HL) CB 9C RES 3,H
CB 67 BIT 4,A CB 90 RES 3,L
CB 68 BIT 5,B CB 9E RES 3,(HL)
CB 69 BIT 5,C CB 9F RES 3,A
CB 6A BIT 5,0 CB AD RES 4,B
CB 6B BIT 5,E CB Ai RES 4,C
CB 6C BIT 5,H CB A2 RES 4,0
CB 60 BIT 5,L CB A3 RES 4,E
CB 6E BIT 5,(HL) CB A4 RES 4,H
CB 6F BIT 5,A CB A5 RES 4,L
CB 70 BIT 6,B CB A6 RES 4,(HL)
CB 71 BIT 6,C CB A7 RES 4,A
CB 72 BIT 6,0 CB A8 RES 5,B
CB 73 BIT 6,E CB A9 RES 5,C
CB 74 BIT 6,H CB AA RES 5,0
CB 75 BIT 6,L CB AB RES 5,E
CB 76 BIT 6,(HL) CB AC RES 5,H
CB 77 BIT 6,A CB AO RES 5,L
CB 78 BIT 7,B CB AE RES 5,(HL)
CB 79 BIT 7,C CB AF RES 5,A
CB 7A BIT 7,0 CB BO RES 6,B
CB 7B BIT 7,E CB B1 RES 6,C
CB 7C BIT 7,H CB B2 RES 6,0
CB 70 BIT 7,L CB B3 RES 6,E
CB 7E BIT 7,(HL) CB B4 RES 6,H
CB 7F BIT 7,A CB B5 RES 6,L
CB 80 RES O,B CB B6 RES 6,(HL)
CB 81 RES O,C CB B7 RES 6,A
CB 82 RES 0,0 CB B8 RES 7,B
CB 83 RES O,E CB B9 RES 7,C
CB 84 RES O,H CB BA RES 7,0
CB 85 RES O,L CB BB RES 7,E
CB 86 RES O,(HL) CB BC RES 7,H

C-5

~2il.!lG Z380N

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

CB BD RES 7,L CB F3 SET 6,E
CB BE RES 7,(HL) CB F4 SET 6,H
CB BF RES 7,A CB F5 SET 6,L
CB CO SET O,B CB F6 SET 6,(HL)
CB C1 SET O,C CB F7 SET 6,A
CB C2 SET O,D CB F8 SET 7,B
CB C3 SET O,E CB F9 SET 7,C
CB C4 SET O,H CB FA SET 7,D
CB C5 SET O,L CB FB SET 7,E
CB C6 SET O,(HL) CB FC SET 7,H
CB C7 SET O,A CB FD SET 7,L
CB C8 SET 1,B CB FE SET 7,(HL)
CB C9 SET 1,C CB FF SET 7,A
CB CA SET 1,D CC 34 12 CALL Z,1234H X
CB CB SET 1,E CD 34 12 CALL 1234H X
CB CC SET 1,H CE 12 ADD A,12H
CB CD SET 1,L CF RST 08H X
CB CE SET 1,(HL) DO RET NC X
CB CF SET 1,A D1 POP DE L
CB DO SET 2,B D2 34 12 JP NC,1234H X
CB D1 SET 2,C D3 12 OUT (12H),A
CB D2 SET 2,D D4 34 12 CALL NC,1234H X
CB D3 SET 2,E D5 PUSH DE L
CB D4 SET 2,H D6 12 SUB 12H
CB D5 SET 2,L D6 12 SUB A,12H
CB D6 SET 2,(HL) D7 RST 10H X
CB D7 SET 2,A D8 RET C X
CB D8 SET 3,B D9 EXX
CB D9 SET 3,C DA 34 12 JP C,1234H X
CB DA SET 3,D DB 12 IN A,(12H)
CB DB SET 3,E DC 34 12 CALL C,1234H X
CB DC SET 3,H DD 01 LD (BC),IX L
CB DD SET 3,L DD 02 LD BC,DE L
CB DE SET 3,(HL) DD 03 LD IX,(BC) L
CB DF SET 3,A DD 07 LD IX,BC L
CB EO SET 4,B DD 09 ADD IX,BC X
CB E1 SET 4,C DD OB LD BC,IX L
CB E2 SET 4,D DD OC LD BC,(BC) L
CB E3 SET 4,E DD OD LD BC,(DE) L
CB E4 SET 4,H DD OF LD BC,(HL) L
CB E5 SET 4,L DD 10 34 12 DJNZ 1234H X
CB E6 SET 4,(HL) DD 11 LD (DE),IX L
CB E7 SET 4,A DD 12 LD DE,DE L
CB E8 SET 5,B DD 13 LD IX,(DE) L
CB E9 SET 5,C DD 17 LD IX, DE L
CB EA SET 5,D DD 18 34 12 JR 1234H X
CB EB SET 5,E DD 19 ADD IX,DE X
CB EC SET 5,H DD 1B LD DE,IX L
CB ED SET 5,L DD 1C LD DE,(BC) L
CB EE SET 5,(HL) DD 1D LD DE,(DE) L
CB EF SET 5,A DD 1F LD DE,(HL) L
CB FO SET 6,B DD 20 34 12 JR NZ,1234H X
CB F1 SET 6,C DD 21 34 12 LD IX,1234H L
CB F2 SET 6,D DD 22 34 12 LD (1234H),IX L

C-6

~2il1lG
Z3BON

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

DD 23 INC IX X DD 63 LD IXU,E
DD 23 INCW IX X DD 64 LD IXU,IXU
DD 24 INC IXU DD 65 LD IXU,IXL
DD 25 DEC IXU DD 66 12 LD H,(IX+12H)
DD 26 12 LD IXU,12H DD 67 LD IXU,A
DD 27 LD IX,IY L DD 68 LD IXL,B
DD 28 34 12 JR Z,1234H X DD 69 LD IXL,C
DD 29 ADD IX,IX X DD 6A LD IXL,D
DD 2A 34 12 LD IX,(1234H) L DD 6B LD IXL,E
DD 2B DEC IX X DD 6C LD IXL,IXU
DD 2B DECW IX X DD 6D LD IXL,IXL
DD 2C INC IXL DD 6E 12 LD L,(IX+12H)
DD 2D DEC IXL DD 6F LD IXL,A
DD 2E 12 LD IXL,12H DD 70 12 LD (IX+12H),B
DD 2F CPLW HL DD 71 12 LD (IX+12H),C
DD 2F CPLW DD 72 12 LD (IX+12H),D
DD 30 34 12 JR NC,1234H X DD 73 12 LD (IX+12H),E
DD 31 LD (HL),IX L DD 74 12 LD (IX+12H),H
DD 32 LD HL,DE L DD 75 12 LD (IX+12H),L
DD 33 LD IX,(HL) L DD 77 12 LD (IX+12H),A
DD 34 12 INC (IX+12H) DD 78 INW HL,(C)
DD 35 12 DEC (IX+12H) DD 79 OUTW (C),HL
DD 36 12 34 LD (IX+ 12H),34H DD 7C LD A,IXU
DD 37 LD IX,HL L DD 7D LD A,IXL
DD 38 34 12 JR C,1234H X DD 7E 12 LD A,(IX+12H)
DD 39 ADD IX,SP X DD 84 ADD A,IXU
DD 3B LD HL,IX L DD 85 ADD A,IXL
DD 3C LD HL,(BC) L DD 86 12 ADD A,(IX+12H)
DD 3D LD HL,(DE) L DD 87 ADDW HL,IX
DD 3E SWAP IX DD 87 ADDW IX
DD 3F LD HL,(HL) L DD 8C ADC A,IXU
DD 40 INW BC,(C) DD 8D ADC A,IXL
DD 41 OUTW (C),BC DD 8E 12 ADC A,(IX+12H)
DD 44 LD B,IXU DD 8F ADCW HL,IX
DD 45 LD B,IXL DD 8F ADCW IX
DD 46 12 LD B,(IX+12H) DD 94 SUB A,IXU
DD 47 LD I,HL L DD 95 SUB A,IXL
DD 47 LDW I,HL L DD 96 12 SUB A,(IX+12H)
DD 4C LD C,IXU DD 97 SUBW HL,IX
DD 4D LD C,IXL DD 97 SUBW IX
DD 4E 12 LD C,(IX+12H) DD 9C SBC A,IXU
DD 50 INW DE,(C) DD 9D SBC A,IXL
DD 51 OUTW (C),DE DD 9E 12 SBC A,(IX+12H)
DD 54 LD D,IXU DD 9F SBCW HL,IX
DD 55 LD D,IXL DD 9F SBCW IX
DD 56 12 LD D,(IX+12H) DD A4 AND A,IXU
DD 57 LD HL,I L DD A4 AND IXU
DD 57 LDW HL,I L DD A5 AND A,IXL
DD 5D LD E,IXL DD A5 AND IXL
DD 5D LD E,IYL DD A6 12 AND (IX+12H)
DD 5E 12 LD E,(IX+12H) DD A6 12 AND A,(IX+12H)
DD 60 LD IXU,B DD A7 ANDW HL,IX
DD 61 LD IXU,C DD A7 ANDW IX
DD 62 LD IXU,D DD AC XOR A,IXU

C-7

~2il.!JG Z380N

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

DDAC XOR IXU DO CB 12 2B LD (IX+12H),IY L
DO AD XOR A,IXL DO CB 12 2E SRA (IX+12H)
DO AD XOR IXL DO CB 12 31 LD HL,(SP+ 12H) L
DO AE 12 XOR (IX+12H) DO CB 1233 LD HL,(IX+ 12H) L
DO AE 12 XOR A,(IX+12H) DO CB 1239 LD (SP+ 12H),HL L
DO AF XORW HL,IX DO CB 12 3A SRLW (IX+12H)
DO AF XORW IX DO CB 12 3B LD (IX+ 12H),HL L
DO B4 OR A,IXU DO CB 12 3E SRL (IX+12H)
DO B4 OR IXU DO CB 1246 BIT 0,(IX+12H)
DO B5 OR A,IXL DO CB 12 4E BIT 1,(IX+12H)
DO B5 OR IXL DO CB 1256 BIT 2,(IX+12H)
DO B6 12 OR (IX+12H) DO CB 12 5E BIT 3,(IX+12H)
DO B6 12 OR A,(IX+12H) DDCB1266 BIT 4,(IX+12H)
DO B7 ORW HL,IX DO CB 12 6E BIT 5,(IX+12H)
DO B7 ORW IX DO CB 12 76 BIT 6,(IX+12H)
DO BC CP A,IXU DO CB 12 7E BIT 7,(IX+12H)
DO BC CP IXU DO CB 12 86 RES 0,(IX+12H)
DO BD CP A,IXL DO CB 12 8E RES 1,(IX+12H)
DO BD CP IXL DD CB 12 92 MULTW (IX+12H)
DD BE 12 CP (IX+12H) DD CB 12 92 MULTW HL,(IX+ 12H)
DD BE 12 CP A,(IX+12H) DD CB 12 96 RES 2,(IX+12H)
DD BF CPW HL,IX DD CB 12 9A MULTUW (IX+12H)
DD BF CPW IX DD CB 12 9A MUL TUW HL,(IX+ 12H)
DD CO DDIR W DD CB 12 9E RES 3,(IX+12H)
DD C1 DDIR IB,W DD CB 12 A6 RES 4,(IX+ 12H)
DD C2 DDIR IW,W DD CB 12 AE RES 5,(IX+12H)
DD C3 DDIR IB DD CB 12 B6 RES 6,(IX+12H)
DD C4 34 12 CALR NZ,1234H X DD CB 12 BA DIVUW (IX+12H)
DO C6 12 ADDW (IX+12H) DD CB 12 BA DIVUW HL,(IX+ 12H)
DD C6 12 ADDW HL,(IX+ 12H) DD CB 12 BE RES 7,(IX+12H)
DD C8 LDCTL SR,A DD CB 12 C6 SET 0,(IX+12H)
DO CA 01 LDCTL SR,01H DD CB 12 CE SET 1,(IX+12H)
DO CB 12 01 LD BC,(SP+ 12H) L DD CB 12 D6 SET 2,(IX+12H)
DD CB 1202 RLCW (IX+12H) DD CB 12 DE SET 3,(IX+12H)
DD CB 1203 LD BC,(IX+12H) L DD CB 12 E6 SET 4,(IX+12H)
DD CB 12 06 RLC (IX+12H) DD CB 12 EE SET 5,(IX+12H)
DD CB 12 09 LD (SP+12H),BC L DD CB 12 F6 SET 6,(IX+12H)
DD CB 12 OA RRCW (IX+12H) DD CB 12 FE SET 7,(IX+12H)
DD CB 12 OB LD (IX+12H),BC L DD CC 34 12 CALR Z,1234H X
DD CB 12 OE RRC (IX+12H) DD CD 34 12 CALR 1234H X
DD CB 12 11 LD DE,(SP+ 12H) L DD CE 12 ADCW (IX+12H)
DD CB 12 12 RLW (IX+12H) DO CE 12 ADCW HL,(IX+ 12H)
DD CB 12 13 LD DE,(IX+ 12H) L DD CF MTEST
DD CB 12 16 RL (IX+12H) DD DO LDCTL A,XSR
DD CB 12 19 LD (SP+ 12H),DE L DD D4 34 12 CALR NC,1234H X
DDCB121A RRW (IX+12H) DO D6 12 SUBW (IX+12H)
DD CB 12 1B LD (IX+12H),DE L DD 06 12 SUBW HL,(IX+12H)
DD CB 12 1E RR (IX+12H) DD D8 LDCTL XSR,A
DD CB 12 21 LD IX,(SP+ 12H) L DO D9 EXXX
DO CB 12 22 SLAW (IX+12H) DO DA 01 LDCTL XSR,01H
DD CB 12 23 LD IY,(IX+12H) L DO DC 34 12 CALR C,1234H X
DD CB 12 26 SLA (IX+12H) DO DE 12 SBCW (IX+12H)
DO CB 12 29 LD (SP+ 12H), IX L DD DE 12 SBCW HL,(IX+ 12H)
DD CB 12 2A SRAW (IX+12H) DO E1 POP IX L

C-8

~2iUJE
Z3S0"

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

DO E3 EX (SP),IX L ED OF EX A,C
DO E4 34 12 CALR PO,1234H X ED 10 12 INO D,(12H)
DO E5 PUSH IX L ED 11 12 OUTO (12H),D
DO E6 12 ANDW (IX+12H) ED 12 LD DE,BC L
DO E6 12 ANDW HL,(IX+ 12H) ED 13 EX DE,IX L
DO E9 JP (IX) X ED 14 TST 0
DO EC 34 12 CALR PE,1234H X ED 16 34 12 LOW (DE),1234H L
DO EE 12 XORW (IX+12H) ED 17 EX A,D
DO EE 12 XORW HL,(IX+ 12H) ED 18 12 INO E,(12H)
DO F3 1F 01 1FH ED 19 12 OUTO (12H),E
DO F4 34 12 CALR P,1234H X ED 1B EX DE,IY L
DO F6 12 ORW (IX+12H) ED 1C TST E
DO F6 12 ORW HL,(IX+ 12H) ED 1E SWAP DE
DO F7 SETC LW ED 1F EX A,E
DO F9 LD SP,IX L ED 20 12 INO H,(12H)
DO FB 1F EI 1FH ED 21 12 OUTO (12H),H
DO FC 34 12 CALR M,1234H X ED 24 TST H
DO FE 12 CPW (IX+12H) ED 27 EX A,H
DO FE 12 CPW HL,(IX+ 12H) ED 28 12 INO L,(12H)
DO FF RESC LW ED 29 12 OUTO (12H),L
DE 12 SBC A,12H ED 2B EX IX,IY L
OF RST 18H X ED 2C TST L
EO RET NV X ED 2F EX A,L
EO RET PO X ED 30 12 INO (12H)
E1 POP HL L ED 32 LD HL,BC L
E2 34 12 JP NV,1234H X ED 33 EX HL,IX L
E2 34 12 JP PO,1234H X ED 34 TST (HL)
E3 EX (SP),HL L ED 36 34 12 LOW (HL),1234H L
E4 34 12 CALL NV,1234H X ED 37 EX A,(HL)
E4 34 12 CALL PO,1234H X ED 38 12 INO A,(12H)
E5 PUSH HL L ED 39 12 OUTO (12H),A
E6 12 AND 12H ED 3B EX HL,IY L
E6 12 AND A,12H ED 3C TST A
E7 RST 20H X ED 3E SWAP HL
E8 RET PE X ED 3F EX A,A
E8 RET V X ED 40 IN B,(C)
E9 JP (HL) X ED 41 OUT (C),B
EA 34 12 JP PE,1234H X ED 42 SBC HL,BC
EA 34 12 JP V,1234H X ED 43 34 12 LD (1234H),BC L
EB EX DE,HL L ED 44 NEG A
EC 34 12 CALL V, 1234H X ED 44 NEG
EC 34 12 CALL PE,1234H X ED 45 RETN X
ED 00 12 INO B,(12H) ED 46 1M 0
ED 01 12 OUTO (12H),B ED 47 LD I,A
ED 02 LD BC,BC L ED 48 IN C,(C)
ED 03 EX BC,IX L ED 49 OUT (C),C
ED 04 TST B ED 4A ADC HL,BC
ED 05 EX BC,DE L ED 4B 34 12 LD BC,(1234H) L
ED 06 34 12 LOW (BC),1234H L ED 4C MLT BC
ED 07 EX A,B ED 40 RETI X
ED 08 12 INO C,(12H) ED 4E 1M 3
ED 09 12 OUTO (12H),C ED 4F LD R,A
ED OB EX BC,IY L ED 50 IN D,(C)
ED OC TST C ED 51 OUT (C),D
ED 00 EX BC,HL L
ED OE SWAP BC

C-9

~2iu:a;
Z380~

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

ED 52 SBC HL,DE ED 8D ADCW HL,DE
ED 53 34 12 LD (1234H),DE L ED 8E 34 12 ADCW 1234H
ED 54 NEGW HL ED 8E 34 12 ADCW HL,1234H
ED 54 NEGW ED 8F ADCW HL
ED 55 reserved ED 8F ADCW HL,HL
ED 56 1M 1 ED 92 34 12 SUB SP,1234H X
ED 57 LD A,I ED 93 OTIMR
ED 58 IN E,(C) ED 94 SUBW BC
ED 59 OUT (C),E ED 94 SUBW HL,BC
ED 5A ADC HL,DE ED 95 SUBW DE
ED 5B 34 12 LD DE,(1234H) L ED 95 SUBW HL,DE
ED 5C MLT DE ED 96 34 12 SUBW 1234H
ED 5E 1M 2 ED 96 34 12 SUBW HL,1234H
ED 5F LD A,R ED 97 SUBW HL
ED 60 IN H,(C) ED 97 SUBW HL,HL
ED 61 OUT (C),H ED 9B OTOMR
ED 62 SBC HL,HL ED 9C SBCW BC
ED 63 34 12 LD (1234H),HL L ED 9C SBCW HL,BC
ED 64 12 TST 12H ED 9D SBCW DE
ED 65 EXTS A L ED 9D SBCW HL,DE
ED 65 EXTS L ED 9E 34 12 SBCW 1234H
ED 67 RRD ED 9E 34 12 SBCW HL,1234H
ED 68 IN L,(C) ED 9F SBCW HL
ED 69 OUT (C),L ED 9F SBCW HL,HL
ED 6A ADC HL,HL ED AO LDI
ED 6B 34 12 LD HL,(1234H) L ED A1 CPI X
ED 6C MLT HL ED A2 INI
ED 6F RLD ED A3 OUTI
ED 71 12 OUT (C),12H ED A4 ANDW BC
ED 72 SBC HL,SP ED A4 ANDW HL,BC
ED 73 34 12 LD (1234H),SP L ED A5 ANDW DE
ED 74 12 TSTIO 12H ED A5 ANDW HL,DE
ED 75 EXTSW HL ED A6 34 12 ANDW 1234H
ED 75 EXTSW ED A6 34 12 ANDW HL,1234H
ED 76 SLP ED A7 ANDW HL
ED 78 IN A,(C) ED A7 ANDW HL,HL
ED 79 OUT (C),A ED A8 LDD
ED 7A ADC HL,SP ED A9 CPO X
ED 7B 34 12 LD SP,(1234H) L ED AA IND
ED 7C MLT SP ED AB OUTO
ED 82 34 12 ADD SP,1234H X ED AC XORW BC
ED 83 OTIM ED AC XORW HL,BC
ED 84 ADDW BC ED AD XORW DE
ED 84 ADDW HL,BC ED AD XORW HL,DE
ED 85 ADDW DE ED AE 34 12 XORW 1234H
ED 85 ADDW HL,DE ED AE 34 12 XORW HL,1234H
ED 86 34 12 ADDW 1234H ED AF XORW HL
ED 86 34 12 ADDW HL,1234H ED AF XORW HL,HL
ED 87 ADDW HL ED BO LDIR
ED 87 ADDW HL,HL ED B1 CPIR X
ED 8B OTOM ED B2 INIR
ED 8C ADCW BC ED B3 OTIR
ED 8C ADCW HL,BC ED B4 ORW BC
ED 8D ADCW DE ED B4 ORW HL,BC

C-10

~2il..CG
Z380m

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

ED B5 ORW DE ED CB 28 SRAW BC
ED B5 ORW HL,DE ED CB 29 SRAW DE
ED B6 34 12 ORW 1234H ED CB 2A SRAW (HL)
ED B6 34 12 ORW HL,1234H ED CB 2B SRAW HL
ED B7 ORW HL ED CB 2C SRAW IX
ED B7 ORW HL,HL ED CB 2D SRAW IY
ED B8 LDDR ED CB 30 EX BC,BC' L
ED B9 CPDR X ED CB 31 EX DE,DE' L
ED BA IN DR ED CB 33 EX HL,HL' L
ED BB OTDR ED CB 34 EX IX,IX'
ED BC CPW BC ED CB 35 EX IY,IY' L
ED BC CPW HL,BC ED CB 38 SRLW BC
ED BD CPW DE ED CB 39 SRLW DE
ED BD CPW HL,DE ED CB 3A SRLW (HL)
ED BE 34 12 CPW 1234H ED CB 3B SRLW HL
ED BE 34 12 CPW HL,1234H ED CB 3C SRLW IX
ED BF CPW HL ED CB 3D SRLW IY
ED BF CPW HL,HL ED CB 90 MULTWBC
ED CO LDCTL HL,SR L ED CB 90 MULTWHL,BC
ED C1 POP SR L ED CB 91 MULTWDE
ED C4 12 CALR NZ,12H X ED CB 91 MULTW HL,DE
ED C5 PUSH SR L ED CB 93 MULTWHL
ED C6 34 12 ADD HL,(1234H) X ED CB 93 MULTWHL,HL
ED C8 LDCTL SR,HL L ED CB 94 MULTWHL,IX
ED CB 00 RLCW BC ED CB 94 MULTW IX
ED CB 01 RLCW DE ED CB 95 MULTWHL,IY
ED CB 02 RLCW (HL) ED CB 95 MULTWIY
ED CB 03 RLCW HL ED CB 97 34 12 MULTW 1234H
ED CB 04 RLCW IX ED CB 97 34 12 MULTW HL,1234H
ED CB 05 RLCW IY ED CB 98 MULTUW BC
ED CB 08 RRCW BC ED CB 98 MULTUW HL,BC
ED CB 09 RRCW DE ED CB 99 MULTUW DE
ED CB OA RRCW (HL) ED CB 99 MULTUW HL,DE
ED CB OB RRCW HL ED CB 9B MULTUW HL
ED CB OC RRCW IX ED CB 9B MULTUW HL,HL
ED CB 00 RRCW IY ED CB 9C MULTUW HL,IX
ED CB 10 RLW BC ED CB 9C MULTUW IX
ED CB 11 RLW OE ED CB 90 MULTUW HL,IY
ED CB 12 RLW (HL) ED CB 90 MULTUW IY
ED CB 13 RLW HL ED CB 9F MULTUW 1234H
ED CB 14 RLW IX ED CB 9F MULTUW HL,1234H
ED CB 15 RLW IY ED CB B8 OIVUW BC
ED CB 18 RRW BC ED CB B8 OIVUW HL,BC
ED CB 19 RRW OE ED CB B9 OIVUW DE
ED CB 1A RRW (HL) ED CB B9 DIVUW HL,DE
ED CB 18 RRW HL ED CB BB DIVUW HL
ED CB 1C RRW IX ED CB BB DIVUW HL,HL
ED CB 10 RRW IY
ED CB 20 SLAW BC
ED CB 21 SLAW DE
ED CB 22 SLAW (HL)
ED CB 23 SLAW HL
ED CB 24 SLAW IX
ED CB 25 SLAW IY

C-11

~2iUJE Z380'"
USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

ED CB BC DIVUW HL,IX FA 34 12 JP S,1234H X
ED CB BC DIVUW IX FB EI
ED CB BD DIVUW HL,IY FC 34 12 CALL S, M,1234H X
ED CB BD DIVUW IY FD 01 LD (BC),IY L
ED CB BF DIVUW 1234H FD 02 LD BC,HL L
ED CB BF DIVUW HL,1234H FD 03 LD IY,(BC) L
ED CC 12 CALR Z,12H X FD 07 LD IY,BC L
ED CD 12 CALR 12H X FD 09 ADD IY,BC X
ED CF BTEST FD OB LD BC,IY L
ED DO LDCTL A,DSR FD OC LD (BC),BC L
ED 03 34 12 OUTA (1234H),A FD 00 LD (DE),BC L
ED 04 12 CALR NC,12H X FD OF LD (HL),BC L
ED 06 34 12 SUB HL,(1234H) X FD 10 5634 12 DJNZ 123456H X
ED 08 LDCTL DSR,A FD 11 LD (DE),IY L
ED 09 EXALL FD 12 LD DE,HL L
ED DA 01 LDCTL DSR,01H FD 13 LD IY,(DE) L
ED DB 34 12 INA A,(1234H) FD 17 LD IY,DE L
ED DC 12 CALR C,12H X FD 18 5634 12 JR 123456H X
ED EO LDIW L FD 19 ADD IY,DE X
ED E2 INIW FD 1B LD DE,IY L
ED E3 OUTIW FD 1C LD (BC),DE L
ED E4 12 CALR PO,12H X FD 10 LD (DE),DE L
ED E8 LDDW L FD 1F LD (HL),DE L
ED EA INDW FD 20 5634 12 JR NZ,123456H X
ED EB OUTDW FD 21 34 12 LD IY,1234H L
ED EC 12 CALR PE,12H X FD 22 34 12 LD (1234H),IY L
ED FO LDIRW L FD 23 INC IY X
ED F2 INIRW FD 23 INCW IY X
ED F3 OTIRW FD 24 INC IYU
ED F4 12 CALR P,12H X FD 25 DEC IYU
ED F7 SETC LCK FD 27 LD IY,IX L
ED F8 LDDRW L FD 28 5634 12 JR Z,123456H X
ED FA INDRW FD 29 ADD IY,IY X
ED FB OTDRW FD 2A 34 12 LD IY,(1234H) L
ED FC 12 CALR M,12H X FD 2B DEC IY X
ED FF RESC LCK FD 2B DECW IY X
EE 12 XOR 12H FD 2C INC IYL
EE 12 XOR A,12H FD 20 DEC IYL
EF RST 28H X FD 2E 12 LD IYL,12H
FO RET NS X FD 30 5634 12 JR NC,123456H X
FO RET P X FD 31 LD (HL),IY L
F1 POP AF L FD 32 LD HL,HL L
F2 34 12 JP NS,1234H X FD 33 LD IY,(HL) L
F2 34 12 JP P,1234H X FD 34 12 INC (IY + 12H)
F3 01 FD 35 12 DEC (IY + 12H)
F4 34 12 CALL NS P,1234H X FD 36 34 12 LD (IY + 12H),34H
F5 PUSH AF L FD 36 12 LD IYU,12H
F6 12 OR 12H FD 37 LD IY,HL L
F6 12 OR A,12H FD 38 5634 12 JR C,123456H X
F7 RST 30H X FD 39 ADD IY,SP X
F8 RET M X FD 3B LD HL,IY L
F8 RET S X FD 3C LD (BC),HL L
F9 LD SP,HL L FD 3D LD (DE),HL L
FA 34 12 JP M,1234H X FD 3E SWAP IY

C-12

~2il.ClG
Z3BO'"

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

FD 3F LD (HL),HL L FD 97 SUBW IY
FD 44 LD B,IYU FD 9C SBC A,IYU
FD 45 LD B,IYL FD 9D SBC A,IYL
FD 46 12 LD B,(IY+12H) FD 9E 12 SBC A,(IY+12H)
FD 4C LD C,IYU FD 9F SBCW HL,IY
FD 4D LD C,IYL FD 9F SBCW IY
FD 4E 12 LD C,(IY+12H) FD A4 AND A,IYU
FD 54 LD D,IYU FD A4 AND IYU
FD 55 LD D,IYL FD A5 AND A,IYL
FD 56 12 LD D,(IY+12H) FD A5 AND IYL
FD 5C LD E,IYU FD A6 12 AND (IY+12H)
FD 5D LD E,IYL FD A6 12 AND A,(IY+12H)
FD 5E 12 LD E,(IY+12H) FD A7 ANDW HL,IY
FD 60 LD IYU,B FD A7 ANDW IY

II FD 61 LD IYU,C FD AC XOR A,IYU
FD 62 LD IYU,D FD AC XOR IYU
FD 63 LD IYU,E FD AD XOR A,IYL
FD 64 LD IYU,IYU FD AD XOR IYL
FD 65 LD IYU,IYL FD AE 12 XOR (IY+12H)
FD 66 12 LD H,(IY+12H) FD AE 12 XOR A,(IY+12H)
FD 67 LD IYU,A FD AF XORW HL,IY
FD 68 LD IYL,B FD AF XORW IY
FD 69 LD IYL,C FD B4 OR A,IYU
FD 6A LD IYL,D FD B4 OR IYU
FD 6B LD IYL,E FD B5 OR A,IYL
FD 6C LD IYL,IYU FD B5 OR IYL
FD 6D LD IYL,IYL FD B6 12 OR (IY+12H)
FD 6E 12 LD L,(lY+12H) FD B6 12 OR A,(IY+12H)
FD 6F LD IYL,A FD B7 ORW HL,IY
FD 70 12 LD (IY+12H),B FD B7 ORW IY
FD 71 12 LD (IY+12H),C FD BC CP A,IYU
FD 72 12 LD (IY+12H),D FD BC CP IYU
FD 73 12 LD (IY+12H),E L FD BD CP A,IYL
FD 74 12 LD (IY+12H),H FD BD CP IYL
FD 75 12 LD (IY+12H),L FD BE 12 CP (IY+12H)
FD 77 12 LD (IY+12H),A FD BE 12 CP A,(IY+12H)
FD 79 34 12 OUTW (C),1234H FD BF CPW HL,IY
FD 7C LD A,IYU FD SF CPW IY
FD 7D LD A,IYL FD CO DDIR LW
FD 7E 12 LD A,(IY+12H) FD C1 DDIR IS,LW
FD 84 ADD A,IYU FD C2 DDIR IW,LW
FD 85 ADD A,IYL FD C3 DDIR IW
FD 86 12 ADD A,(IY+12H) FD C4 5634 12 CALR NZ,123456H X
FD 87 ADDW HL,IY FD C6 12 ADDW (IY+12H)
FD 87 ADDW IY FD C6 12 ADDW HL,(IY + 12H)
FD 8C ADC A,IYU FD CB 1202 RLCW (IY+12H)
FD 8D ADC A,IYL FD CB 12 03 LD BC,(IY + 12H) L
FD 8E 12 ADC A,(IY+12H) FD CB 12 06 RLC (IY+12H)
FD 8F ADCW HL,IY FD CB 12 OA RRCW (IY+12H)
FD 8F ADCW IY FD CB 12 OB LD (IY + 12H), BC L
FD 94 SUB A,IYU FD CB 12 OE RRC (IY+12H)
FD 95 SUB A,IYL FD CB 12 12 RLW (IY+12H)
FD 96 12 SUB A,(IY+12H) FD CB 12 13 LD DE,(IY+12H) L
FD 97 SUBW HL,IY FD CB 12 16 RL (IY+12H)

C-13

~2iUJE
Z380~

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode

FD CB 12 1A RRW (IY + 12H) FD 08 LDCTL YSR,A
FD CB 12 1B LD (IY + 12H), DE FD 09 EXXY
FD CB 12 1E RR (IY + 12H) FD DA 01 LDCTL YSR,01H
FD CB 12 21 LD IY,(SP+ 12H) L FD DB 34 12 INAW HL,(1234H)
FD CB 12 22 SLAW (IY + 12H) FD DC 5634 12 CALR C,123456H X
FD CB 12 23 LD IX,(IY + 12H) L FD DE 12 SBCW (IY + 12H)
FD CB 12 26 SLA (IY + 12H) FD DE 12 SBCW HL,(IY + 12H)
FD CB 12 29 LD (SP+ 12H),IY L FD E1 POP IY L
FD CB 12 2A SRAW (IY + 12H) FD E3 EX (SP),IY L
FD CB 12 2B LD (IY+12H),IX L FD E4 5634 12 CALR PO,123456H X
FD CB 12 2E SRA (IY+12H) FD E5 PUSH IY L
FD CB 12 33 LD HL,(IY+12H) L FD E6 12 ANDW (IY + 12H)
FD CB 12 3A SRLW (IY+12H) FD E6 12 ANDW HL,(IY + 12H)
FD CB 12 3B LD (IY+12H),HL L FD E9 JP (IY) X
FD CB 12 3E SRL (IY+12H) FD EC 56 34 12 CALR PE,123456H X
FD CB 12 46 BIT O,(lY + 12H) FD EE 12 XORW (IY+12H)
FD CB 12 4E BIT 1,(IY+12H) FD EE 12 XORW HL,(IY+12H)
FD CB 12 56 BIT 2,(IY+12H) FD F4 5634 12 CALR P,123456H X
FD CB 12 5E BIT 3,(IY + 12H) FD F5 34 12 PUSH 1234H L
FD CB 12 66 BIT 4,(IY+12H) FD F6 12 ORW (IY+12H)
FD CB 12 6E BIT 5,(IY+12H) FD F6 12 ORW HL,(IY + 12H)
FD CB 12 76 BIT 6,(IY+12H) FD F7 SETC XM
FD CB 12 7E BIT 7,(IY+12H) FD F9 LD SP,IY L
FD CB 12 86 RES O,(lY + 12H) FD FC CALR M,123456H X
FD CB 12 8E RES 1,(IY+12H) FD FE 12 CPW (IY+12H)
FD CB 12 92 MULTW (IY+12H) FD FE 12 CPW HL,(IY + 12H)
FD CB 12 92 MULTW HL,(IY + 12H) FE 12 CP 12H
FD CB 12 96 RES 2,(IY+ 12H) FE 12 CP A,12H
FD CB 12 9A MUL TUW (IY + 12H) FF RST 38H X
FD CB 12 9A MULTUW HL,(IY + 12H)
FD CB 12 9E RES 3,(IY + 12H)
FD CB 12 A6 RES 4,(IY + 12H)
FD CB 12 AE RES 5,(IY + 12H)
FD CB 12 B6 RES 6,(IY + 12H)
FD CB 12 BA DIVUW (IY + 12H)
FD CB 12 BA DIVUW HL,(IY + 12H)
FD CB 12 BE RES 7,(IY + 12H)
FD CB 12 C6 SET 0,(IY+12H)
FD CB 12 CE SET 1 ,(IY + 12H)
FD CB 12 D6 SET 2,(IY + 12H)
FD CB 12 DE SET 3,(IY + 12H)
FD CB 12 E6 SET 4,(IY + 12H)
FD CB 12 EE SET 5,(IY+12H)
FD CB 12 F6 SET 6,(IY+12H)
FD CB 12 FE SET 7,(IY + 12H)
FD CC 5634 12 CALR Z,123456H X
FD CD 5634 12 CALR 123456H X
FD CE 12 ADCW (IY + 12H)
FD CE 12 ADCW HL,(IY+12H)
FD DO LDCTL A,YSR
FD D3 34 12 OUTAW (1234H),HL
FD D4 56 34 12 CALR NC,123456H X
FD D6 12 SUBW (IY+12H)
FD 06 12 SUBW HL,(IY + 12H)

C-14


~~~2i1 "l" ~ IJ, 
/ ' 

Appendix 0 iii 

,~ 

I 





This Appendix has two sets of tables. Each table is a 
subset of the Table in the Appendix B. The Table D-1 has 
the instructions which works differently in the Native and 

USER's MANUAL 

ApPENDIX D 
INSTRUCTIONS AFFECTED BY NORMAU 
EXTENDED MODE, AND LONG WORD MODE 

Extended mode of operation, and the Table D-2 has the 
instructions which works differently in Word/Long Word 
mode of operation. 

0-1 

iii 



~2il.1lE Z3BON 

USER'S MANUAL 

Table 0-1. Instructions operating differently in 
Native or Extended mode of operation. 

Source Code Object Code Source Code Object Code 

ADD HL,BC 09 DECW DE 1B 
ADD HL,DE 19 DECW HL 2B 
ADD HL,HL 29 DECW IX DD 2B 
ADD HL.SP 39 DECW IY FD 2B 
ADD IX,BC DD 09 DECW SP 3B 
ADD IX, DE DD 19 DJNZ 123456H FD 10 56 34 12 
ADD IX,IX DD 29 DJNZ 1234H DD 10 34 12 
ADD IX,SP DD 39 DJNZ 12H 10 12 
ADD IY,BC FD 09 INC BC 03 
ADD IY,DE FD 19 INC DE 13 
ADD IY,IY FD 29 INC HL 23 
ADD IY,SP FD 39 INC IX DD 23 
CALR 123456H FD CD 56 34 12 INC IY FD 23 
CALR 1234H DD CD 34 12 INC SP 33 
CALR 12H ED CD 12 INCW BC 03 
CALR C,123456H FD DC 56 34 12 INCW DE 13 
CALR C,1234H DD DC 34 12 INCW HL 23 
CALR C,12H ED DC 12 INCW IX DD 23 
CALR M,123456H FD FC INCW IY FD 23 
CALR M.1234H DD FC 34 12 INCW SP 33 
CALR M,12H ED FC 12 JP (HL) E9 
CALR NC,123456H FD D4 56 34 12 JP (IX) DD E9 
CALR NC.1234H DD D4 34 12 JP (IY) FD E9 
CALR NC,12H ED D4 12 JR 123456H FD 18 
CALR NZ,123456H FD C4 56 34 12 JR 1234H DD 18 34 12 
CALR NZ,1234H DD C4 34 12 JR 12H 18 12 
CALR NZ,12H ED C4 12 JR C,123456H FD 38 56 34 12 
CALR P,123456H FD F4 56 34 12 JR C,1234H DD 38 34 12 
CALR P,1234H DD F4 34 12 JR C,12H 38 12 
CALR P,12H ED F4 12 JR NC,123456H FD 30 56 34 12 
CALR PE,123456H FD EC 56 34 12 JR NC,1234H DD 30 34 12 
CALR PE,1234H DD EC 34 12 JR NZ,123456H FD 20 56 34 12 
CALR PE,12H ED EC 12 JR NZ,1234H DD 20 34 12 
CALR PO,123456H FD E4 56 34 12 JR NZ,12H 20 12 
CALR PO,1234H DD E4 34 12 JR Z,123456H FD 28 56 34 12 
CALR PO,12H ED E4 12 JR Z,1234H DD 28 34 12 
CALR Z,123456H FD CC 56 34 12 JR Z,12H 28 12 
CALR Z,1234H DD CC 34 12 RET C D8 
CALR Z,12H ED CC 12 RET M F8 
CPD ED A9 RET NC DO 
CPDR ED B9 RET NS FO 
CPI ED Ai RET NV EO 
CPIR ED B1 RET NZ CO 
DEC BC OB RET P FO 
DEC DE 1B RET PE E8 
DEC HL 2B RET PO EO 
DEC IX DD 2B RET S F8 
DEC IY FD 2B RET V E8 
DEC SP 3B RET Z C8 
DECW BC OB RET C9 

RETI ED 4D 

D-2 



~2il.ClG 
Z380~ 

USER'S MANUAL 

Source Code Object Code 

RETN ED 45 
RST OOH C7 
RST OSH CF 
RST 10H D7 
RST 1SH DF 
RST 20H E7 
RST 2SH EF 
RST 30H F7 
RST 3SH FF 

Table 0-2. Instructions operates different in Long 
Word Modes. 

Source Code Object Code Source Code Object Code 

EX (SP),HL E3 LD BC,DE DD 02 
EX (SP),IX DD E3 LD BC,HL FD 02 
EX (SP),IY FD E3 LD BC,IX DD OB 
EX BC,BC' ED CB 30 LD BC,IY FD OB 
EX BC,DE ED 05 LD DE,(BC) DD 1C II EX BC,HL ED OD LD DE, (DE) DD 10 
EX BC,IX ED 03 LD DE,(HL) DD 1F 
EX BC,IY ED OB LD DE,BC ED 12 
EX DE,DE' ED CB 31 LD DE,DE DD 12 
EX DE,HL EB LD DE,HL FD 12 
EX DE,IX ED 13 LD DE,IX DD 1B 
EX DE,IY ED 1B LD DE,IY FD 1B 
EX HL,HL' ED CB 33 LD HL,(BC) DD 3C 
EX HL,IX ED 33 LD HL,(DE) DD 3D 
EX HL,IY ED 3B LD HL,(HL) DD 3F 
EX IX,IX' ED CB 34 LD HL,BC ED 32 
EX IX,IY ED 2B LD HL,DE DD 32 
EX IY,IY' ED CB 35 LD HL,HL FD 32 
EXTS A ED 65 LD HL,I DD 57 
EXTS ED 65 LD HL,IX DD 3B 
LD (BC),BC FD OC LD HL,IY FD 3B 
LD (BC),DE FD 1C LD I,HL DD 47 
LD (BC),HL FD 3C LD IX,(BC) DD 03 
LD (BC),IX DD 01 LD IX,(DE) DD 13 
LD (BC),IY FD 01 LD IX,(HL) DD 33 
LD (DE),BC FD OD LD IX,BC DD 07 
LD (DE),DE FD 10 LD IX,DE DD 17 
LD (DE),HL FD 3D LD IX,HL DD 37 
LD (DE),IX DD 11 LD IX,IY DD 27 
LD (DE),IY FD 11 LD IY,(BC) FD 03 
LD (HL),BC FD OF LD IY,(DE) FD 13 
LD (HL),DE FD 1F LD IY,(HL) FD 33 
LD (HL),HL FD 3F LD IY,BC FD 07 
LD (HL),IX DD 31 LD IY,DE FD 17 
LD (HL),IY FD 31 LD IY,HL FD 37 
LD BC,(BC) DD OC LD IY,IX FD 27 
LD BC,(DE) DD OD LD SP,HL F9 
LD BC,(HL) DD OF LD SP,IX DD F9 
LD BC,BC ED 02 LD SP,IY FD F9 

D-3 



~2iUJG Z3BO" 
USER'S MANUAL 

Source Code Object Code 

LDCTL HL,SR ED CO 
LDCTL SR,HL ED C8 
LDDRW ED F8 
LDDW ED E8 
LDIRW ED FO 
LDIW ED EO 
LDW HL,I DD 57 
LDW I,HL DD 47 
POP AF F1 
POP BC C1 
POP DE D1 
POP HL E1 
POP IX DD E1 
POP IY FD E1 
POP SR ED C1 
PUSH AF F5 
PUSH BC C5 
PUSH DE D5 
PUSH HL E5 
PUSH IX DD E5 
PUSH IY FD E5 
PUSH SR ED C5 

D-4 



Appendix E II 





~2ilLJ:; USER's MANUAL 

ApPENDIX E 
INSTRUCTIONS AFFECTED BY 
DDIR 1M INSTRUCTIONS 

This Appendix has instructions which can be used with the Table E·2. Valid with DDIR lB. XM bit status does not 
Decoder Directive(s) Extend Immediate. There are eight affect the operation. Transfer size determined by LW 
tables (E1-ES) which are the subset of the Table A, sorted bit. (Either with DDIR IB, DDIR IB,LW or DDIR IB,W) 
by the category of the instruction. 

LD (123456H), BC ED 43 56 34 12 

Note that the instructions listed here does not have the LD (123456H),DE ED 53 56 34 12 

DDIR Decoder Directive in front of the instructions listed LD (123456H),HL 22 56 34 12 

below, and notation used here may be different by the LD (123456H),HL ED 63 56 34 12 

assembler to be used. LD (123456H),IX DO 22 56 34 12 
LD (123456H),IY FD 22 56 34 12 

Table E·1. Valid with DDIR IB in Extended mode. LW LD (123456H),SP ED 73 56 34 12 

bit status does not affect the operation LD (IX+ 1234H),BC DO CB 34 12 OB 
LD (IX+1234H),DE DO CB 34 12 1B 

ADD HL,(123456H) ED C6 56 34 12 LD (IX+ 1234H),HL DO CB 34 12 3B 
ADD SP,123456H ED 82 56 34 12 LD (IX+ 1234H),IY DD CB 34 12 2B 
CALL 123456H CD 56 34 12 LD (IY+1234H),BC FD CB 34 12 OB 
CALL C,123456H DC 56 34 12 LD (IY+1234H),E FD 73 34 12 
CALL M,123456H FC 56 34 12 LD (IY + 1234H),HL FD CB 34 12 3B 

1:1 CALL NC,123456H 04 56 34 12 LD (IY+1234H),IX FD CB 34 12 2B 
CALL NZ,123456H C4 56 34 12 LD (SP+ 1234H),BC DO CB 34 12 09 
CALL P,123456H F4 56 34 12 LD (SP+ 1234H),DE DO CB 34 12 19 
CALL PE,123456H EC 56 34 12 LD (SP+ 1234H),HL DO CB 34 12 39 
CALL PO,123456H E4 56 34 12 LD (SP+ 1234H), IX DD CB 34 12 29 
CALL Z,123456H CC 56 34 12 LD (SP+ 1234H),IY FD CB 34 12 29 
JP 123456H C3 56 34 12 LD BC,( 123456H) ED 4B 56 34 12 
JP C,123456H DA 56 34 12 LD BC, (IX + 1234H) DO CB 34 12 03 
JP M,123456H FA 56 34 12 LD BC,(IY + 1234H) FD CB 34 12 03 
JP NC,123456H 02 56 34 12 LD BC,(SP+ 1234H) DO CB 34 12 01 
JP NS,123456H F2 56 34 12 LD DE,(123456H) ED 5B 56 34 12 
JP NV,123456H E2 56 34 12 LD DE,(IX+ 1234H) DO CB 34 12 13 
JP NZ,123456H C2 56 34 12 LD DE,(IY+1234H) FD CB 34 12 13 
JP P,123456H F2 56 34 12 LD DE,(SP+ 1234H) DO CB 34 12 11 
JP PE,123456H EA 56 34 12 LD HL,(123456H) 2A 56 34 12 
JP PO,123456H E2 56 34 12 LD HL,(123456H) ED 6B 56 34 12 
JP S,123456H FA 56 34 12 LD HL,(IX+ 1234H) DO CB 34 12 33 
JP V,123456H EA 56 34 12 LD HL,(IY + 1234H) FD CB 34 12 33 
JP Z,123456H CA 56 34 12 LD HL,(SP+ 1234H) DD CB 34 12 31 
SUB HL,(123456H) ED 06 56 34 12 LD IX, (123456H) DD 2A 56 34 12 
SUB SP,123456H ED 92 56 34 12 LD IX,(IY + 1234H) FD CB 34 12 23 

LD IX,(SP+ 1234H) DO CB 34 12 21 
LD IY,(123456H) FD 2A 56 34 12 
LD IY,(IX+ 1234H) DD CB 34 12 23 
LD IY,(SP+ 1234H) FD CB 34 12 21 
LD SP,(123456H) ED 7B 56 34 12 
LOW (BC),123456H ED 06 56 34 12 
LOW (DE),123456H ED 16 56 34 12 
LOW (HL),123456H ED 36 56 34 12 

E-1 



~2iLm Z380N 

USER'S MANUAL 

Table E·3. Valid with DDiR IB in Long Word mode. 
CPW (IX+1234H) DD FE 34 12 

XM bit status does not affect the operation. (Either 
with DDIR IB,LW or DDIR IB with LW bit set.) 

CPW (IY+1234H) FD FE 34 12 
CPW HL,(IX+ 1234H) DD FE 34 12 

LD BC,123456H 01 56 34 12 CPW HL,(IY + 1234H) FD FE 34 12 

LD DE,123456H 11 56 34 12 DEC (IX+1234H) DD 35 34 12 

LD HL,123456H 21 56 34 12 DEC (IY+1234H) FD 35 34 12 

LD IX,123456H DD 21 56 34 12 DIVUW (IX+1234H) DD CB 34 12 BA 

LD IY,123456H FD 21 56 34 12 DIVUW (IY+1234H) FD CB 34 12 BA 

LD SP,123456H 31 56 34 12 DIVUW HL,(IX+ 1234H) DD CB 34 12 BA 

PUSH 123456H FD F5 56 34 12 DIVUW HL,(IY + 1234H) FD CB 34 12 BA 
INA A, (123456H) ED DB 34 12 

Table E·4. Valid with DDIR lB. XM bit nor LW bit 
INAW HL,(123456H) FD DB 34 12 

status do not affect the operation 
INC (IX+1234H) DD 34 12 
INC (IY+1234H) FD 34 12 

ADC A,(IX+1234H) DD 8E 34 12 LD (123456H),A 32 56 34 12 

ADC A,( IY + 1234H) FD 8E 34 12 LD (IX+1234H),56H DD 36 34 12 56 

ADCW (IX+1234H) DD CE 34 12 LD (IX+ 1234H),A DD 77 34 12 

ADCW (IY+1234H) FD CE 34 12 LD (IX+ 1234H),B DD 70 34 12 

ADCW HL,(IX+1234H) DD CE 34 12 LD (IX+ 1234H),C DD 71 34 12 

ADCW HL, (IY + 1234H) FD CE 34 12 LD (IX+1234H),D DD 72 34 12 

ADD A,(lX+1234H) DD 86 34 12 LD (IX+1234H),E DD 73 34 12 

ADD A,(IY+1234H) FD 86 34 12 LD (IX+1234H),H DD 74 34 12 

ADDW (IX+1234H) DD C6 34 12 LD (IX+1234H),L DD 75 34 12 

ADDW (IY+1234H) FD C6 34 12 LD (IY+1234H),56H FD 36 34 12 56 

ADDW HL,(IX+ 1234H) DD C6 34 12 LD (IY+1234H),A FD 77 34 12 

ADDW HL,(IY+1234H) FD C6 34 12 LD (IY+1234H),B FD 70 34 12 

AND (IX+1234H) DD A6 34 12 LD (IY+1234H),C FD 71 34 12 

AND (IY+1234H) FD A6 34 12 LD (IY+1234H),D FD 72 34 12 

AND A,(IX+ 1234H) DD A6 34 12 LD (IY+1234H),DE FD CB 34 12 1B 

AND A,(IY+1234H) FD A6 34 12 LD (IY+1234H),H FD 74 34 12 

ANDW (IX+1234H) DD E6 34 12 LD (IY+1234H),L FD 75 34 12 

ANDW (IY+1234H) FD E6 34 12 LD A,(1234H) 3A 34 34 12 

ANDW HL,(IX+ 1234H) DD E6 34 12 LD A,(IX+ 1234H) DD 7E 34 12 

ANDW HL,(IY + 1234H) FD E6 34 12 LD A,(IY+1234H) FD 7E 34 12 

BIT O,(IX+ 1234H) DD CB 34 12 46 LD B,(IX+ 1234H) DD 46 34 12 

BIT O,(IY + 1234H) FD CB 34 12 46 LD B,(IY+1234H) FD 46 34 12 

BIT 1 ,(IX+ 1234H) DD CB 34 12 4E LD C,(IX+ 1234H) DD 4E 34 12 

BIT 1 ,(IY + 1234H) FD CB 34 12 4E LD C,(IY+1234H) FD 4E 34 12 

BIT 2,(IX+ 1234H) DD CB 34 12 56 LD D,(IX+ 1234H) DD 56 34 12 

BIT 2,(IY + 1234H) FD CB 34 12 56 LD D,(IY+1234H) FD 56 34 12 

BIT 3,(IX+ 1234H) DD CB 34 12 5E LD E,(IX+1234H) DD 5E 34 12 

BIT 3,(IY+1234H) FD CB 34 12 5E LD E,(IY+1234H) FD 5E 34 12 

BIT 4,(IX+ 1234H) DD CB 34 12 66 LD H,(IX+ 1234H) DD 66 34 12 

BIT 4,(IY+1234H) FD CB 34 12 66 LD H,(IY+1234H) FD 66 34 12 

BIT 5,(IX+ 1234H) DD CB 34 12 6E LD L,(IX+ 1234H) DD 6E 34 12 

BIT 5,(IY + 1234H) FD CB 34 12 6E LD L,(IY+1234H) FD 6E 34 12 

BIT 6,(IX+ 1234H) DD CB 34 12 76 MUL TUW (IX+ 1234H) DD CB 34 12 9A 

BIT 6,(IY+1234H) FD CB 34 12 76 MUL TUW (IY + 1234H) FD CB 34 12 9A 

BIT 7,(IX+ 1234H) DD CB 34 12 7E MUL TUW HL,(IX+ 1234H) DD CB 34 12 9A 

BIT 7,(IY + 1234H) FD CB 34 12 7E MULTUW HL,(IY+1234H) FD CB 34 12 9A 

CP (IX+1234H) DD BE 34 12 MULTW (IX+1234H) DD CB 34 12 92 

CP (IY+1234H) FD BE 34 12 MULTW (IY+1234H) FD CB 34 12 92 

CP A,(IX+ 1234H) DD BE 34 12 MUL TW HL,(IX+ 1234H) DD CB 34 12 92 

CP A,(IY + 1234H) FD BE 34 12 MULTW HL,(IY+1234H) FD CB 34 12 92 
OR (IX+1234H) DD B6 34 12 

E·2 



ft)2iLCE Z380m 

USER'S MANUAL 

OR (IY+1234H) FD B6 34 12 
SET 5,(IX+ 1234H) DO CB 34 12 EE 

OR A,(IX+1234H) DO B6 34 12 
SET 5,(IY + 1234H) FO CB 34 12 EE 

OR A,(IY+1234H) FD B6 34 12 
SET 6,(IX+ 1234H) DO CB 34 12 F6 

ORW (IX+1234H) DO F6 34 12 
SET 6,(IY + 1234H) FO CB 34 12 F6 

ORW (IY+1234H) FD F6 34 12 
SET 7,(IX+1234H) DO CB 34 12 FE 

ORW HL,(IX+ 1234H) DO F6 34 12 
SET 7,(IY+1234H) FO CB 34 12 FE 

ORW HL,(IY + 1234H) FD F6 34 12 
SLA (IX+1234H) DO CB 34 12 26 

o UTA (123456H),A ED 03 56 34 12 
SLA (IY+1234H) FO CB 34 12 26 

OUTAW (123456H),HL FD 03 56 34 12 
SLAW (IX+1234H) DO CB 34 12 22 

RES O,(IX+ 1234H) OD CB 34 12 86 
SLAW (IY+1234H) FO CB 34 12 22 

RES O,(IY + 1234H) FD CB 34 12 86 SRA (IX+1234H) DO CB 34 12 2E 

RES 1 ,(IX+ 1234H) DO CB 34 12 8E 
SRA (IY+1234H) FO CB 34 12 2E 

RES 1 ,(lY + 1234H) FD CB 34 12 8E 
SRAW (IX+1234H) DO CB 34 12 2A 

RES 2,(lX+ 1234H) DO CB 34 12 96 
SRAW (IY+1234H) FO CB 34 12 2A 

RES 2,(IY + 1234H) FD CB 34 12 96 
SRL (IX+1234H) DO CB 34 12 3E 

RES 3,(IX+1234H) OD CB 34 12 9E 
SRL (IY+1234H) FO CB 34 12 3E 

RES 3,(IY + 1234H) FD CB 34 12 9E 
SRLW (IX+1234H) DO CB 34 12 3A 

RES 4,(lX+ 1234H) OD CB 34 12 A6 
SRLW (IY+1234H) FO CB 34 12 3A 

RES 4,(IY+1234H) FO CB 34 12 A6 
SUB A,(IX+1234H) DO 96 34 12 

RES 5,(IX+ 1234H) OD CB 34 12 AE 
SUB A,(IY + 1234H) FO 96 34 12 

RES 5,(IY+1234H) FO CB 34 12 AE 
SUBW HL,(IX+ 1234H) DO 06 34 12 

RES 6,(IX+ 1234H) OD CB 34 12 B6 
SUBW HL,(IY + 1234H) FO 06 34 12 

RES 6,(IY+1234H) FO CB 34 12 B6 XOR (IX+1234H) DO AE 34 12 

RES 7,(IX+ 1234H) OD CB 34 12 BE 
XOR (IY+1234H) FO AE 34 12 

RES 7,(IY+1234H) FO CB 34 12 BE 
XOR A,(IX+1234H) DO AE 34 12 

RL (IX+1234H) OD CB 34 12 16 
XOR A,(lY + 1234H) FO AE 34 12 

RL (IY+1234H) FO CB 34 12 16 
XORW (IX+1234H) DO EE 34 12 

RLC (IX+1234H) DO CB 34 12 06 
XORW (IY+1234H) FO EE 34 12 

II RLC (IY+1234H) FD CB 34 12 06 
XORW HL,(IX+ 1234H) DO EE 34 12 

RLCW (IX+1234H) DO CB 34 12 02 
XORW HL,(IY + 1234H) FO EE 34 12 

RLCW (IY+1234H) FD CB 34 12 02 
RLW (IX+1234H) DO CB 34 12 12 
RLW (IY+1234H) FD CB 34 12 12 
RR (IX+1234H) DO CB 34 12 1E 
RR (IY+1234H) FD CB 34 12 1E 
RRC (IX+1234H) DO CB 34 12 OE 
RRC (IY+1234H) FD CB 34 12 OE 
RRCW (IX+1234H) DO CB 34 12 OA 
RRCW (IY+1234H) FD CB 34 12 OA 
RRW (IX+1234H) DO CB 34 12 1A 
RRW (IY+1234H) FD CB 34 12 1A 
SBC A,(IX+ 1234H) OD 9E 34 12 
SBC A,(IY + 1234H) FD 9E 34 12 
SBCW (IX+1234H) DO DE 34 12 
SBCW (IY+1234H) FD DE 34 12 
SET O,(IX+ 1234H) DO CB 34 12 C6 
SET O,(IY + 1234H) FD CB 34 12 C6 
SET 1 ,(IX+ 1234H) DO CB 34 12 CE 
SET 1 ,(IY + 1234H) FD CB 34 12 CE 
SET 2,(lX+ 1234H) DO CB 34 12 06 
SET 2,(lY + 1234H) FD CB 34 12 06 
SET 3,(IX+ 1234H) DO CB 34 12 DE 
SET 3,(IY + 1234H) FD CB 34 12 DE 
SET 4,(IX+1234H) DO CB 34 12 E6 
SET 4,(IY + 1234H) FD CB 34 12 E6 

E-3 



~2il.JJE 
Z380~ 

USER'S MANUAL 

Table E-S. Valid with DDIR IW in Exteded mode. LW Table E-S. Valid with DDIR IW. XM bit status does 
bit status does not affect the operation not affect the operation. Transfer size 

ADD HL,(12345678H) ED C6 78 56 34 12 
determined by LW bit 

ADD SP,12345678H ED 82 78 56 34 12 LD (12345678H),BC ED 43 78 56 34 12 
CALL 12345678H CD 78 56 34 12 LD ( 12345678H),DE ED 53 78 56 34 12 
CALL C,12345678H DC 78 56 34 12 LD (12345678H),HL 22 78 56 34 12 
CALL M,12345678H FC 78 56 34 12 LD (12345678H),HL ED 63 78 56 34 12 
CALL NC,12345678H D4 78 56 34 12 LD (12345678H),IX DD 22 78 56 34 12 
CALL NZ,12345678H C4 78 56 34 12 LD (12345678H),IY FD 22 78 56 34 12 
CALL P,12345678H F4 78 56 34 12 LD (12345678H),SP ED 73 78 56 34 12 
CALL PE,12345678H EC 78 56 34 12 LD (IX+ 123456H),BC DD CB 56 34 12 OB 
CALL PO,12345678H E4 78 56 34 12 LD (IX+123456H),DE DD CB 56 34 12 1B 
CALL Z,12345678H CC 78 56 34 12 LD (IX+ 123456H),HL DD CB 56 34 12 3B 
JP 12345678H C3 78 56 34 12 LD (IX+ 123456H),IY DD CB 56 34 12 2B 
JP C,12345678H DA 78 56 34 12 LD (IY + 123456H),BC FD CB 56 34 12 OB 
JP M,12345678H FA 78 56 34 12 LD (IY+123456H),E FD 73 56 34 12 
JP NC,12345678H D2 78 56 34 12 LD (IY+123456H),HL FD CB 56 34 12 3B 
JP NS,12345678H F2 78 56 34 12 LD (IY + 123456H), IX FD CB 56 34 12 2B 
JP NV,12345678H E2 78 56 34 12 LD (SP+ 123456H),BC DD CB 56 34 12 09 
JP NZ,12345678H C2 78 56 34 12 LD (SP+ 123456H), DE DD CB 56 34 12 19 
JP P,12345678H F2 78 56 34 12 LD (SP+123456H),HL DD CB 56 34 12 39 
JP PE,12345678H EA 78 56 34 12 LD (SP+ 123456H),IX DD CB 56 34 12 29 
JP PO,12345678H E2 78 56 34 12 LD (SP+ 123456H), IY FD CB 56 34 12 29 
JP S,12345678H FA 78 56 34 12 LD BC,(12345678H) ED 4B 78 56 34 12 
JP V,12345678H EA 78 56 34 12 LD BC,(IX+ 123456H) DD CB 34 12 03 
JP Z,12345678H CA 78 56 34 12 LD BC,(IY + 123456H) FD CB 34 12 03 
SUB HL,(12345678H) ED D6 78 56 34 12 LD BC,(SP+ 123456H) DD CB 34 12 01 
SUB SP,12345678H ED 92 78 56 34 12 LD DE,(12345678H) ED 5B 78 56 34 12 

LD DE,(IX+ 123456H) DD CB 56 34 12 13 
LD DE,(IY + 123456H) FD CB 56 34 12 13 
LD DE,(SP+ 123456H) DD CB 56 34 12 11 
LD HL,(12345678H) 2A 78 56 34 12 
LD HL,(12345678H) ED 6B 78 56 34 12 
LD HL,(IX+ 123456H) DD CB 56 34 12 33 
LD HL,(IY + 123456H) FD CB 56 34 12 33 
LD HL,(SP+ 123456H) DD CB 56 34 12 31 
LD IX,( 12345678H) DD 2A 78 56 34 12 
LD IX, (IY + 123456H) FD CB 56 34 12 23 
LD IX,(SP+ 123456H) DD CB 56 34 12 21 
LD IY,(12345678H) FD 2A 78 56 34 12 
LD IY,(IX+ 123456H) DD CB 56 34 12 23 
LD IY,(SP+ 123456H) FD CB 56 34 12 21 
LD SP,(12345678H) ED 7B 78 56 34 12 
LDW (BC),12345678H ED 06 78 56 34 12 
LDW (DE),12345678H ED 16 78 56 34 12 
LDW (HL),12345678H ED 36 78 56 34 12 

E-4 



~2il..!lG Z380n 

USER'S MANUAL 

Table E·7. Valid with DDIR IW in Long Word mode. 
CPW HL,(IX+ 123456H) DO FE 5634 12 

XM bit status does not affect the operation. (Either 
with DDIR IW,LW or DDIR IW with LW bit set.) 

CPW HL,(IY + 123456H) FO FE 5634 12 
DEC (IX+ 123456H) DO 35,5634 12 

LD BC,12345678H 01 78 56 34 12 DEC (IY + 123456H) FO 35 56 34 12 

LD DE,12345678H 11 78 56 34 12 DIVUW (IX+ 123456H) DO CB5634 12 BA 

LD HL,12345678H 21 78 56 34 12 DIVUW (IY + 123456H) FO CB5634 12 BA 

LD IX,12345678H DD 21 78 56 34 12 DIVUW HL,(IX+ 123456H) DO CB5634 12 BA 

LD IY,12345678H FD 21 78 56 34 12 DIVUW HL,(IY + 123456H) FO CB5634 12 BA 

LD SP,12345678H 31 78 56 34 12 INA A,(123456H) EO DB5634 12 

PUSH 12345678H FD F5 78 56 34 12 INAW HL,(123456H) FO DB5634 12 
INC (IX+123456H) DO 56 34 12 

Table E·8. Valid with DDiR IW. XM bit nor LW bit 
INC (IY + 123456H) FO 56 34 12 

status do not affect the operation 
LD ( 12345678H),A 32 78 56 34 12 
LD (IX+ 123456H),56H DO 36 56 34 12 56 

ADC A, (IX + 123456H) DD 8E 56 34 12 LD (IX+ 123456H),A DO 77 56 34 12 

ADC A,(IY + 123456H) FD 8E 56 34 12 LD (IX+123456H),B DO 70 56 34 12 

ADCW (IX+ 123456H) DD CE 56 34 12 LD (IX+ 123456H),C DO 71 56 34 12 

ADCW (IY + 123456H) FD CE 56 34 12 LD (IX+123456H),0 DO 72 56 34 12 

ADCW HL,(IX+ 123456H) DD CE 56 34 12 LD (IX+123456H),E DO 73 56 34 12 

ADCW HL,(IY + 123456H) FD CE 56 34 12 LD (IX + 123456H), H DO 74 56 34 12 

ADD A,(IX+ 123456H) DD 86 56 34 12 LD (IX+123456H),L DO 75 56 34 12 

ADD A,(IY + 123456H) FD 86 56 34 12 LD (IY + 123456H), 78H FO 36 56 34 12 78 

ADDW (IX+ 123456H) DD C6 56 34 12 LD (IY + 123456H),A FO 77 56 34 12 

ADDW (IY + 123456H) FD C6 56 34 12 LD (IY + 123456H),B FO 70 56 34 12 

ADDW HL,(IX+ 123456H) DO C6 56 34 12 LD (IY + 123456H),C FO 71 56 34 12 

AODW HL,(IY + 123456H) FD C6 56 34 12 LD (IY+123456H),D FO 725634 12 

AND (IX+123456H) DD A6 56 34 12 LO (IY + 123456H),DE FO CB5634 12 1 B 

AND (IY+123456H) FD A6 56 34 12 LD (IY + 123456H),H FO 745634 12 II AND A,(IX+ 123456H) DD A6 56 34 12 LD (IY + 123456H),L FO 75 56 34 12 

AND A,(IY + 123456H) FD A6 56 34 12 LD A, (12345678H) 3A 78 5634 12 

ANDW (IX+123456H) DD E6 56 34 12 LD A,(IX+ 123456H) DO 7E 5634 12 

ANDW (IY+123456H) FD E6 56 34 12 LD A,(lY + 123456H) FO 7E 56 34 12 

ANDW HL,(IX+ 123456H) DD E6 56 34 12 LD B,(IX+ 123456H) DO 465634 12 

ANOW HL,(IY + 123456H) FD E6 56 34 12 LD B,(IY + 123456H) FO 465634 12 

BIT O,(IX+ 123456H) DD CB 56 34 12 46 LD C,(IX+ 123456H) DO 4E 56 34 12 

BIT O,(IY + 123456H) FD CB 56 34 12 46 LD C,(IY + 123456H) FD 4E 56 34 12 

BIT 1 ,(IX+ 123456H) OD CB 56 34 12 4E LD D,(IX+ 123456H) DO 56 56 34 12 

BIT 1 ,(IY + 123456H) FD CB 56 34 12 4E LO O,(IY + 123456H) FD 565634 12 

BIT 2,(IX+ 123456H) DD CB 56 34 12 56 LD E,(IX+ 123456H) DO 5E 56 34 12 

BIT 2,(IY + 123456H) FD CB 56 34 12 56 LD E,(IY + 123456H) FD 5E 5634 12 

BIT 3,(IX+ 123456H) DD CB 56 34 12 5E LD H,(IX+ 123456H) DO 66 56 34 12 

BIT 3,(IY + 123456H) FD CB 56 34 12 5E LO H,(IY + 123456H) FO 66 56 34 12 

BIT 4,(IX+ 123456H) OD CB 56 34 12 66 LD L,(IX+ 123456H) DO 6E 5634 12 

BIT 4,(IY + 123456H) FD CB 56 34 12 66 LD L,(IY + 123456H) FO 6E 5634 12 

BIT 5,(IX+ 123456H) DD CB 56 34 12 6E MULTUW (IX+123456H) DO CB5634 129A 

BIT 5,(IY + 123456H) FD CB 56 34 12 6E MULTUW (IY+123456H) FO CB5634 129A 

BIT 6,(IX+ 123456H) DD CB 56 34 12 76 MUL TUW HL,(IX+ 123456H) DO CB56 34 129A 

BIT 6,(IY + 123456H) FD CB 56 34 12 76 MULTUW HL,(IY+123456H) FO CB5634 129A 

BIT 7,(IX+ 123456H) DD CB 56 34 12 7E MULTW (IX+ 123456H) DO CB5634 1292 

BIT 7,(IY + 123456H) FD CB 56 34 12 7E MULTW (IY + 123456H) FO CB5634 12 92 

CP (IX+ 123456H) DD BE 56 34 12 MULTW HL,(lX+ 123456H) DO CB5634 12 92 

CP (IY + 123456H) FD BE 56 34 12 MULTW HL,(IY + 123456H) FO CB5634 12 92 

CP A,(IX+ 123456H) DD BE 56 34 12 OR (IX + 123456H) DO B65634 12 

CP A,(IY + 123456H) FD BE 56 34 12 OR (IY + 123456H) FO B65634 12 

CPW (IX+ 123456H) DD FE 56 34 12 
CPW (IY + 123456H) FD FE 56 34 12 

E·5 



~2iUJE Z3S0" 
USER'S MANUAL 

OR A,(IX+ 123456H) DD B65634 12 SET 4,(IY + 123456H) FD CB5634 12 E6 
OR A,(IY + 123456H) FD B6 5634 12 SET 5,(IX+ 123456H) DD CB5634 12 EE 
ORW (IX+ 123456H) DD F6 56 34 12 SET 5,(IY + 123456H) FD CB5634 12 EE 
ORW (IY + 123456H) FD F6 56 34 12 SET 6,(IX+ 123456H) DD CB5634 12 F6 
ORW HL,(IX+ 123456H) DD F6 56 34 12 SET 6,(IY + 123456H) FD CB5634 12 F6 
ORW HL,(IY + 123456H) FD F6 56 34 12 SET 7,( IX+ 123456H) DD CB5634 12 FE 
OUTA (12345678H),A ED D378 56 34 12 SET 7,(IY + 123456H) FD CB5634 12 FE 
OUTAW (12345678H),HL FD D378 56 34 12 SLA (IX+ 123456H) DD CB5634 12 26 
RES O,(IX+ 123456H) DD CB5634 12 86 SLA (IY + 123456H) FD CB5634 12 26 
RES O,(IY + 123456H) FD CB56 34 12 86 SLAW (IX + 123456H) DD CB5634 12 22 
RES 1 ,(IX+ 123456H) DD CB5634 128E SLAW (IY + 123456H) FD CB5634 12 22 
RES 1,( IY + 123456H) FD CB5634 128E SRA (IX+123456H) DD CB5634 12 2E 
RES 2,(IX+ 123456H) DD CB 5634 12 96 SRA (IY + 123456H) FD CB5634 12 2E 
RES 2,(IY + 123456H) FD CB5634 1296 SRAW (IX+ 123456H) DD CB5634 122A 
RES 3,(IX+ 123456H) DD CB5634 129E SRAW (IY + 123456H) FD CB5634 122A 
RES 3,(IY + 123456H) FD CB5634 129E SRL (IX+ 123456H) DD CB5634 123E 
RES 4,(IX+ 123456H) DD CB5634 12 A6 SRL (IY + 123456H) FD CB5634 123E 
RES 4,(IY + 123456H) FD CB5634 12 A6 SRLW (IX+ 123456H) DD CB5634 123A 
RES 5,(IX+ 123456H) DD CB5634 12 AE SRLW (IY + 123456H) FD CB5634 123A 
RES 5,(IY + 123456H) FD CB5634 12 AE SUB A,(IX+123456H) DD 965634 12 
RES 6,(IX+ 123456H) DD CB5634 12 B6 SUB A,(IY + 123456H) FD 96 56 34 12 
RES 6,(IY + 123456H) FD CB5634 12 B6 SUBW HL, (IX+ 123456H) DD D65634 12 
RES 7,(IX+ 123456H) DD CB5634 12 BE SUBW HL, (IY + 123456H) FD D65634 12 
RES 7,(IY + 123456H) FD CB5634 12 BE XOR (IX+ 123456H) DD AE 5634 12 
RL (IX + 123456H) DD CB5634 12 16 XOR (IY + 123456H) FD AE 5634 12 
RL (IY + 123456H) FD CB5634 12 16 XOR A,(IX+ 123456H) DD AE 5634 12 
RLC (IX+ 123456H) DO CB5634 1206 XOR A,(IY + 123456H) FD AE 5634 12 
RLC (IY + 123456H) FD CB5634 1206 XORW (IX+123456H) DD EE 5634 12 
RLCW (IX+ 123456H) DO CB5634 1202 XORW (IY + 123456H) FD EE 5634 12 
RLCW (IY + 123456H) FD CB5634 1202 XORW HL,(IX+ 123456H) DD EE 5634 12 
RLW (IX+ 123456H) DO CB5634 12 12 XORW HL,(IY + 123456H) FD EE 5634 12 
RLW (IY + 123456H) FD CB5634 12 12 
RR (IX+ 123456H) DD CB5634 12 1E 
RR (IY + 123456H) FD CB5634 12 1E 
RRC (IX+ 123456H) DO CB5634 120E 
RRC (IY+123456H) FD CB5634 120E 
RRCW (IX+123456H) DD CB5634 120A 
RRCW (IY + 123456H) FD CB5634 120A 
RRW (IX + 123456H) DO CB5634 12 1A 
RRW (IY + 123456H) FD CB5634 12 1A 
SBC A,(IX+ 123456H) DO 9E 5634 12 
SBC A,(IY + 123456H) FD 9E 5634 12 
SBCW (IX + 123456H) DD DE5634 12 
SBCW (IY + 123456H) FD DE5634 12 
SET O,(IX+ 12$456H) DD CB5634 12 C6 
SET O,(IY + 123456H) FD CB5634 12 C6 
SET 1 ,(IX+ 123456H) DO CB5634 12 CE 
SET 1 ,(IY + 123456H) FD CB5634 12 CE 
SET 2,(IX+ 123456H) DD CB5634 12 06 
SET 2,(IY + 123456H) FD CB5634 12 06 
SET 3,(IX+ 123456H) DD CB5634 12 DE 
SET 3,(IY + 123456H) FD CB5634 12 DE 
SET 4,(IX+ 123456H) DD CB5634 12 E6 

E-6 



i 

1.2;1 (0, 

Index I 





USER's MANUAL 

INDEX 
Symbols c 

/INT3-/INTO ............................................................... 6-1 Call and Restart...................................................... 5-12 
/NMI ........................................................................... 6-1 Call Relative .................................................... 5-1, 5-12 
/RESET ...................................................................... 1-5 Call Relative ............................................................. 5-32 
8-Bit Load/Exchange Group..................................... 5-6 Call, Return, Push, and Pop .................................... 4-10 
8080 compatible (Mode 0) .... .................. ............ ..... 1-5 Carry flag .................................................................. 5-2 

A 
Carry or borrow operation ......................................... 4-6 
Chip Version ID Register .................................. 2-6,5-15 

ADC Add with Carry (Word) ................................... 5-21 
Add (Byte) ................................................................. 5-23 
Add (Word) ............................................................... 5-24 
Add to Stack Pointer (Word) ..................................... 5-25 
Add/Subtract flag .................. ............ ................ ....... 5-2 
Address manipulation ...... .......... ...... .......... ........ ...... 3-1 
Address space ......................................................... 1-1 
Addressing mode..................................................... A-1 
Addressing mode escape byte.... .................... ........ A-1 
Addressing mode escape bytes, addresses .......... A-2 
Addressing Modes ........ .................. ................... 1-4,4-1 
AF or AF' Register Select ................ ............ ............. 5-5 
AND (Byte) ............................................................... 5-27 
AND (Word) .............................................................. 5-28 
Arithmetic and Logical Group .................................. 5-9 
Arithmetic Operation .............................................. 5-10 
Assembly language format ........ ........ .................. ..... 4-1 
Assigned Vector Base Register ................. 5-15,6-3,6-6 

Compare (Byte) ........................................................ 5-34 
Compare (Word) ...................................................... 5-35 
Compare and Decrement (Byte) .............................. 5-36 
Compare and Increment (Byte) ................................ 5-38 
Compare, Decrement and Repeat (Byte) ................ 5-37 
Compare, Increment and Repeat (Byte) .................. 5-39 
Complement Accumulator ....................................... 5-40 
Complement Carry flag ............................................ 5-33 
Complement HL Register (Word) ............................. 5-41 
Condition Codes .... ............ .................. .................... 5-3 
Conditional instructions.... ...... ............ ........ .............. 5-1 
Conditional Return instruction .... ...... ............ .......... 5-12 
Context Switching ............ ................ .................. 1-5,1-6 
CPU Control Group.. .................... .................. ........ 5-16 
CPU Control Register Space .................................... 2-1 
CPU Register Space .......... ~ ................................... 2-1 I 

Assigned Vectors Base............................................ 6-4 Data frame ............................................................... 5-7 

B 
Data manipulation .... ............ .................. .................. 3-1 
Data Types ....................................................... 4-1,4-10 

Bank Test .................................................................. 5-30 
Bank Test instructions ............................................ 5-16 
BC/DE/HL or BC'/DE'/HL' Register Select................ 5-4 
Binary-coded decimal...... .................. ............... 4-10,5-1 
Bit Test ...................................................................... 5-29 
Block I/O ................. .................................................. 5-5 
Block move ................ ........................ ...................... 5-5 
Block move, block search, and block I/O instruction 6-1 
Block search ..................................................... 5-2, 5-5 
Block Transfer and Search Group...... ................ 5-1,5-8 
Block transfer .................................................... 5-2, 5-8 
Bus bandwidth ......................................................... 1-5 
Byte ordering....................... ............................. ........ 3-2 
Byte strings .... ........ ........ .............. .................... ....... 4-10 

DDIR .......................................................................... 3-1 
DDIR IB Immediate Byte .......................................... 3-2 
DDIR IB,LW Immediate Byte, Long Word Mode ...... 3-2 
DDIR IB,W Immediate Byte, Word Mode ................. 3-2 
DDIR IW,LW Immediate Word, Long Word Mode .... 3-2 
DDIR IW,W Immediate Word, Word Mode ............... 3-2 
DDIR LW ................................................................... 1-3 
DDIR LW Long Word Mode ...................................... 3-2 
DDIR W ..................................................................... 1-3 
DDIR W Word Mode ...... ...................... ...... ............... 3-2 
Decimal Adjust Accumulator .................... 4-10,5-2,5-42 
Decoder Directive ......................... 3- 2, 5-17, 5-43, A-1 
Decrement (Byte) ..................................................... 5-44 
Decrement (Word) .................................................... 5-45 

1-1 



Decrement and Jump if Non-Zero.......................... 5-12 
Decrement and Jump if Non-Zero ............................ 5-48 
Dedicated interrupts (Mode 1) ............................ ..... 1-5 
DIR IW Immediate Word .......... ................................. 3-2 
Direct Address ................ ........................... 1-4, 4-1, 4-3 
Disable and Enable Interrupt ................................. 5-16 
Disable Interrupt instruction ...................... ............... 6-1 
Disable Interrupts ..................................................... 5-46 
Displacement............................................................ 4-6 
Divide Unsigned (Word) ........................................... 5-47 

E 

Enable Interrupt.... .................................... ....... 5-49, 6-1 
Enhanced vectored interrupt mode (Mode 3) .......... 1-5 
Escape codes .......................................................... A-1 
Example of 1M mode................................................. 4-2 
Example of R mode................................................... 4-1 
Example of RA mode ................................................ 4-6 
Example of SR mode ................................................. 4-8 
Exception Conditions............................ ................... 1-4 
Exchange Accumulator/Flag with Alternate Bank .... 5-50 
Exchange Addressing Register with Top of Stack ... 5-51 
Exchange All Registers with Alternate Bank ............ 5-56 
Exchange instruction.......................................... 2-3,5-6 
Exchange IX Register with Alternate Bank ............... 5-60 
Exchange IY Register with Alternate Bank ............... 5-61 
Exchange Register (Word) ....................................... 5-52 
Exchange Register with Alternate Register (Byte) ... 5-53 
Exchange Register with Alternate Register (Word) .. 5-54 
Exchange Registers with Alternate Bank ................. 5-59 
Exchange with Accumulator ..................................... 5-55 
Exclusive OR (Byte) ............................................... 5-178 
Exclusive OR (Word) .............................................. 5-179 
EXECUTION TIME .................................................. 5-18 
Extend Sign (Byte) ................................................... 5-57 
Extend Sign (Word) .................................................. 5-58 
Extended Mode.............................................. .......... 5-4 
Extended Registers ........................................... 1-1, 3-1 
EXTERNAL I/O ADDRESS SPACE ..................... 2-1, 2-6 
External Input/Output Instruction Group .... ............ 5-13 
EXTS instruction.......... ............................................. 5-9 

F 

F register .... .......................................... ...... ............. 5-17 
Fetching.................................................................... 6-2 
Flag and Accumulator registers.......... ..................... 2-1 
Flag register .................................. .................... 2-3, 5-1 
Format 1 ........................................ ........................... A-1 
Format 2 ................................................................... A-1 
Format 3 ................................................................... A-1 
Format 4 .......... ........ ................................................. A-1 

1-2 

H 

Z380'" 
USER'S MANUAL 

Half-Carry flag .... ...................................................... 5-2 
HALT and Sleep instructions.................................. 5-16 
Halt ............................................................................ 5-62 
Hardware reset overrides......................................... 6-1 

I Extend ..................................................................... 6-3 
I/O addressing space ........ ...................................... 1-4 
I/O instructions......................................................... 1-4 
IB decoder directive .............. .......... ......................... 3-2 
IEF1, IEF2 .................................................... .............. 6-3 
Immediate ................................................................. 1-4 
Immediate addressing mode.................................... 4-2 
Increment (Byte) ....................................................... 5-70 
Increment (Word) ..................................................... 5-71 
Increment and Decrement instructions .... ................ 5-9 
Index Registers .......... ........................ ...................... 2-3 
Index registers .................. .......... ................ ...... 1-1, 2-1 
Indexed.............................................................. 1-4,4-1 
Indexed address................ ....................................... 4-5 
Indirect Register........................................... 1-4,4-1,4-3 
Indirect Register mode .......... ............ ........................ 4-3 
Input (Byte) ............................................................... 5-64 
Input (from Page 0) .................................................. 5-67 
Input (Word) ............................................................. 5-65 
Input Accumulator .................................................... 5-66 
Input and Decrement (Byte) ..................................... 5-72 
Input and Decrement (Word) ................................... 5-73 
Input and Increment (Byte) ...................................... 5-76 
Input and Increment (Word) ..................................... 5-77 
Input Direct from Port Address (Byte) ...................... 5-68 
Input Direct from Port Address (Word) ..................... 5-69 
Input, Decrement and Repeat (Byte) ....................... 5-74 
Input, Decrement and Repeat (Word) ...................... 5-75 
Input, Increment and Repeat (Byte) ......................... 5-78 
Input, Increment and Repeat (Word) ....................... 5-79 
INSTRUCTION EXECUTION AND EXCEPTIONS ..... 5-5 
INSTRUCTION SET FUNCTIONAL GROUPS .... ....... 5-6 
Instruction decoder.................................................. 3-2 
Instruction Execution and Interrupts .... .................... 5-5 
Instruction Execution and Trap .... .................. .......... 5-5 
Instruction fetch/execute .... .................. ............ ........ 1-3 
Instruction mnemonic .... .............................. ........... 5-17 
Internal Data Bus ...................................................... 1-1 
Internal I/O Instruction Group .... .................. ........... 5-15 
I nternal I/O locations .............................................. 5-15 
Interrupt acknowledge transaction........................... 6-2 
Interrupt Control.... ........................ ........................... 6-2 
Interrupt Enable Flag ............ .......... ...... ............ ........ 5-5 
Interrupt Enable Register ..................... 2-6,5-15,6-1,6-3 
Interrupt Flags and Registers................................... 6-2 
Interrupt Mode ............................. ............................. 5-5 
Interrupt Mode Select.. ............................................. 5-63 



Interrupt mode ....................................... 6-1,6-2, 6-3, 6-5 
Interrupt Priority Ranking.... ...................................... 6-2 
Interrupt Register ................ ...... .................. ............. 2-3 
Interrupt Register Extension .... ........................ ......... 6-2 
Interrupt service routines ......................................... 1-3 
Interrupt Vectors Mode .......... ........................ .......... 6-6 
I nterru pt vectors................ .................. ..................... 6-2 
interrupt return instruction........................ ................ 5-5 
I nterru pts .......... ............ ............................................. 6-1 
Interrupts, traps, and resets ................ ............... 1-4,6-1 
IW decoder directive ................................................ 3-2 
IX Bank Select...... .................................................... 5-4 
IX or IX' Register SelecL.............. ............................ 5-4 
IY Bank Select .............................................. ............ 5-4 
IYor IY' Register Select ............................................ 5-4 

J 

JP .............................................................................. 5-80 
Jump................................................................ 5-1,5-80 
Jump and Call instructions ........................................ 4-3 
Jump Relative........................................ .......... 5-1, 5-81 

L 

Linear Memory Address Space .......... ........ .............. 1-5 
Load Accumulator .................................................... 5-82 
Load Accumulator from R or I register .......... ......... 5-16 
Load and Decrement (Byte) ..................................... 5-96 
Load and Decrement (Word) ................................... 5-97 
Load and Increment (Byte) .................................... 5-100 
Load and Increment (Word) ................................... 5-101 
Load B register.... .................................... ................. A-1 
Load Control Register (Byte) .................................... 5-93 
Load from Control Register (Word) .......................... 5-94 
Load from lor R Register (Byte) ............................... 5-90 
Load I Register (Word) ............................................. 5-92 
Load Immediate (Byte) ............................................. 5-83 
Load Immediate (Word) ........................................... 5-84 
Load into Control Register (Word) ............................ 5-95 
Load into I or R Register (Byte) ................................ 5-91 
Load Register (Byte) ................................................ 5-86 
Load Register (Word) ................................ 5-87,5-88, A-1 
Load Stack Pointer ................................................... 5-89 
Load, Decrement and Repeat (Byte) ....................... 5-98 
Load, Decrement and Repeat (Word) ...................... 5-99 
Load, Exchange, SWAP and Push/Pop Group ......... 5-1 
Load, Exchange, SWAP, and PUSH/POP Group ..... 5-7 
Load, Increment and Repeat (Byte) ....................... 5-102 
Load, Increment and Repeat (Word) ..................... 5-103 
load, arithmetic, logical, shift, and rotate ................ 4-10 
Load/Exchange Group ........................................ ..... 5-1 
Lock .......................................................................... 5-5 
Lock/Unlock status .......... .................. ...... ................. 5-5 
Logical, signed numeric, or unsigned ..................... 4-10 
Long Word Mode ..................................................... 5-5 
LW decoder directive ............................ ................... 3-2 

M 

Z380~ 
USER'S MANUAL 

Machine language bit .............................................. A-1 
Main Bank Select ..................................................... 5-4 
Maskable Interrupt ................................................... 6-5 
Memory Address Space ........................ .................. 2-1 
Memory Banking scheme ........................................ 1-5 
memory addressing modes .... ................................. 5-9 
Mode Test ............................................................... 5-105 
Mode Test instructions .................................. ........ 5-16 
Multiple register banks ............................................. 1-5 
Multiply (Word) ....................................................... 5-106 
Multiply Unsigned (Byte) ........................................ 5-104 
Multiply Unsigned (Word) ...................................... 5-107 

N 

NATIVE MODE AND EXTENDED MODE .................. 3-2 
Native or Extended mode ........................................ 6-2 
Native/Extended ......................................... .............. 1-3 
Negate Accumulator .............................................. 5-108 
Negate HL instruction .......... ............ ...................... 5-10 
Negate HL Register (Word) .................................... 5-109 
No Operation .......................................................... 5-110 
No Operation instruction ........................................ 5-16 
NONMASKABLE INTERRUPT ................ .................. 6-5 
Nonmaskable Interrupt (NMI) ................................... 6-1 

o 
Object-code compatibility............................ ............ 1-1 
ON-CHIP I/O ADDRESS SPACE ............................... 2-6 
On-Chip I/O Address Space ................ ...... .............. 2-1 
On-Chip Register Files ...... ................ .................. ..... 1-1 
Opcode Trap .......... ...... ................ ............................ 1-1 
Operand ..................................................................... 4-1 II 
OR (Byte) ................................................................ 5-111 
OR(Word) ............................................................... 5-112 
Output (Byte) .......................................................... 5-121 
Output (to Page 0) .................................................. 5-124 
Output (Word) ........................................................ 5-122 
Output Accumulator ............................................... 5-123 
Output and Decrement (Byte) ................................ 5-127 
Output and Decrement (Word) ............................... 5-128 
Output and Increment (Byte) .................................. 5-129 
Output and Increment (Word) ................................ 5-130 
Output Decrement Memory .................................... 5-113 
Output Direct to Port Address (Byte) ..................... 5-125 
Output Direct to Port Address (Word) .................... 5-126 
Output Increment Memory ..................................... 5-117 
Output, Decrement and Repeat (Byte) .................. 5-115 
Output, Decrement and Repeat (Word) ................. 5-116 
Output, Decrement Memory Repeat ...................... 5-114 
Output, Increment and Repeat (Byte) .................... 5-119 
Output, Increment and Repeat (Word) ................... 5-120 
Outpul, Increment Memory Repeat.. ...................... 5-118 

1-3 



p 

Parity/Overflow Flag ......... ...... ....... ....... ............ ........ 5-2 
Pascal FOR loop .................................................... 5-12 
Pop Accumulator .................................................... 5-131 
Pop Control Register .............................................. 5-132 
Pop operation........................................................... 2-4 
Pop Register ........................................................... 5-133 
POPed ....................................................................... 2-4 
Primary and Working registers ................................. 2-1 
PROCESSOR FLAGS .... .......................... ................. 5-1 
Program Control Group .......................................... 5-12 
Program Counter..... ................................................. 2-3 
Program Counter Relative ........................................ 1-4 
Program Counter Relative Address............ ............... 4-1 
Program Counter, Interrupt register, Refresh ........... 2-1 
Pseudo Pascal ........................................................ 5-17 
Push Accumulator .................................................. 5-134 
Push and Pop operations.. ............ ..... .......... ............ 3-2 
Push Control Register ............................................ 5-135 
Push Immediate ..................................................... 5-136 
Push Register ......................................................... 5-137 
PUSH/POP instructions ............................................ 5-7 
PUSHed .................................................................... 2-4 

R 

Register (R, RX) ......................................................... 4-1 
Register ..................................................................... 1-4 
Register file.... ................... ................... .................... 1-1 
Register pairs ........... ...... .................... ........... ...... ..... 1-1 
Register, Immediate .................................................. 4-1 
Relative Addressing mode ...... ..... ..... ........ ........... ..... 4-6 
RESC LCK ...... ........... ....... ................................ ......... 5-5 
RESC LW (Reset Long Word)... ....... ......................... 3-3 
RESC LW ................................................................... 1-3 
RESC LW instruction........................ ...... ........... ....... 5-5 
Reserved on-Chip I/O instructions .......... ........ .......... 2-6 
Reset Bit .................................................................. 5-138 
Reset Control Bit .................................................... 5-139 
Reset Control Long Word......................................... 1-3 
Restart ..................................................................... 5-157 
Restart instruction ....... ................ .................... ......... 6-5 
RETI INSTRUCTION.. ....... .................. ........ .............. 6-6 
Return ...................................................................... 5-140 
Return From Nonmaskable Interrupt ........................ 6-3 
Return from Interrupt .............................................. 5-141 
Return from Interrupt ........... ...... ............ ........... ........ 6-6 
Return from Nonmaskable Interrupt ....................... 5-142 
Rotate and Shift Group .......... ................... ....... ....... 5-11 
Rotate Digit .... .................. ........ .......... ......... ..... ....... 4-10 
Rotate instructions................... ................. ................ 5-2 
Rotate Left (Accumulator) ...................................... 5-145 
Rotate Left (Byte) ................................................... 5-143 
Rotate Left (Word) .................................................. 5-144 
Rotate Left Circular (Accumulator) ......................... 5-148 

1-4 

Z380" 
USER'S MANUAL 

Rotate Left Circular (Byte) ...................................... 5-146 
Rotate Left Circular (Word) .................................... 5-147 
Rotate Left Circular .................................................. A-1 
Rotate Left Digit.. .................................................... 5-149 
Rotate Right (Accumulator) .................................... 5-152 
Rotate Right (Byte) ................................................. 5-150 
Rotate Right (Word) ................................................ 5-151 
Rotate Right Circular (Accumulator) ...................... 5-155 
Rotate Right Circular (Byte) ................................... 5-153 
Rotate Right Circular (Word) .................................. 5-154 
Rotate Right Digit ................................................... 5-156 
Save/restore ............................................................. 5-7 
Saved carry.............................................................. 5-2 
Select Register (SR) .... ....... ................. ..................... 2-1 
Select Register....... ....... ......... ........... ...... .......... 5-4, 6-1 
Set Bit ...................................................................... 5-162 
Set Bit and Reset Bit ....... ............. .......... ................ 5-11 
Set Carry flag ......................................................... 5-161 
Set Control Bit ........................................................ 5-163 
Set Control Long Word............................................. 1-3 
Set/Reset Condition flag .. ......... ..... ..... .......... .......... 5-12 
SETC LCK .............................. ..... .............................. 5-5 
SETC LW (Set Long Word) .... ................ ....... ............ 3-3 
SETC LW ................................................................... 1-3 
SETC LW instruction.. ............... ...................... .......... 5-5 
SETC XM instruction ..... .................................... ........ 5-4 
Shift Left Arithmetic (Byte) ...................................... 5-164 
Shift Left Arithmetic (Word) .................................... 5-165 
Shift Right Arithmetic (Byte) ................................... 5-167 
Shift Right Arithmetic (Word) .................................. 5-168 
Shift Right Logical (Byte) ........................................ 5-169 
Shift Right Logical (Word) ...................................... 5-170 
Sign flag... ................................................................. 5-2 
Sleep ....................................................................... 5-166 
Source/destination combination ............................... 5-7 
Stack Pointer (SP) .................................................... 2-1 
Stack Pointer Relative ................................ 1-4, 1-5,4-1 
Stack Pointer Relative addressing mode .................. 4-7 
Standby Mode .......................................................... 1-1 
String search ............................................................ 5-8 
Subroutine Call ......................................................... 5-1 
Subroutine Return . ................ ................ ............. ...... 5-1 
Subtract (Byte) ....................................................... 5-171 
Subtract (Word) ........................................... 5-172, 5-174 
Subtract from Stack Pointer (Word) ........................ 5-173 
Subtract With Carry (Word) .................................... 5-159 
Subtract with Carry (Byte) ...................................... 5-158 
SWAP ........................................................................ 1-4 
Swap instruction ....................................................... 5-7 
Swap Upper Register Word with Lower Register ... 5-175 



T 

Test (Byte) ............................................................... 5-176 
Test I/O Port ........................................................... 5-177 
TRAP INTERRUPT .................................................... 6-4 
Trap and Break Register ................................... 2-6,6-4 
Trap handling routine ............................................... 5-5 
Trap on Instruction Fetch ......................................... 6-4 
Trap on Interrupt Vector ........................................... 6-4 
Trap Register ................................................... 5-15,6-4 
TST instruction .......................................................... 5-9 
TSTIO instruction .................................................... 5-15 

u 
Ump relative/Call relative ......................................... 1-6 
Unsigned divide instruction .................................... 5-10 

v 

Z380~ 
USER'S MANUAL 

Vectored interrupt mode (Mode 2) ........................... 1-5 

W 

W decoder directive ................................................. 3-2 
Word or Long Word block transfer ........................... 5-8 
Word strings ............................................................ 4-10 
Word/Long Word ...................................................... 1-3 

Z 

Zero byte input ......................................................... 5-2 
Zero flag .................................................................... 5-2 

1-5 

II 





r-'- -- . 

: r~' 
: ' 

Superintegration™ n 
Products Guide -





BLOCK 
DIAGRAM 

PART NUMBER 

DESCRIPTION 

PRDCESS/SPEEO 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

ROM 
UART : 
8611 : CPU 

COUNTER! I RAM 
TIMERS 
PO I Pll P2jP3 

Z86OOJZ8611 

Z8~ NMOS (CCPj 
Z8600 = 2K ROM 
Z8611 = 4K ROM 

NMOS: 8,12 MHz 

• 2K/4KROM 
• 128 Bytes RAM 
• 22/321/0 Lines 
• On-Chip Oscillator 
• Two Counter/Timers 
• Six Vectored, Priority Interrupts 
• UART (Z8611 Only) 

28-Pin DIP 
4O-Pin DIP 
44-Pin PLCC 

Z86C1200ZEM - Emulator 
Z0860000ZCO - Evaluation Board 
Z0860000ZDP - Adaptor Kit 

ROM 
CPU 

P2 

Z86C30JE30JC31JE31 

Z8~ Consumer Conlroller Processor (CCPN) 
Z86C30 = 28-Pin, 4K ROM 
Z86C31 = 28-Pin, 2K ROM 
Z86C40 = 40-Pin, 4K ROM 
Z86E30, Z86E31, Z86E40 = OTP Version 

CMOS: 12 MHz 

• 4K ROM/236 RAM 
• Two Standby Modes 
• Two Counter/Timers 
• ROM/RAM Protect 
• Four Ports (Z86C40/E40) 
• Three Ports (Z86C30/E30/C31/E31) 
• Low-Voltage Protection 
• Two Analog Comparators 
• Low-EM I Option 
• Watch-Dog Timer (WDn 
• Auto Power-On Reset 
• Low-Power Option 

28-Pin DIP 
40-Pin DIP 
44-Pin PLCC, QFP 

Z86CCPOOZEM - Emulator 
Z86CCPOOZAC - Emulator 
Z86C5000ZEM - Emulator 
Z86E3000ZDP - Adaptor Kit 
Z86E4000ZDP - Program Adaptor Kit 

Z8 DSP 
24K 4K . 

ROM I ROM 
AID D/A i 

31 or 47 DIGITAL 110 

Z89C65JZ89C66 

Telephone Answering Conlroller 
Z89C66 = ROMLess with 31 I/O Pins 

CMOS: 20 MHz 

• 24K ROM (Z89C65 Only) 
• 16-Bit DSP 
• 4KWord ROM 
• 8-Bit ND with Automatic 

Gain Control (AGC) 
• DTMF Macro Available 
• LPC Macro Available 
• 10-Bit PWM D/A 
• Other DSP Software Options Available 
• 47 I/O Pins (Z89C65 Only) 

58-Pin PLCC 

Z89C6501 ZEM - Emulator 
Z89C6500ZDB - Emulator 

Z8 DSP 
24K 6K 
ROM ROM 
AID D/A 

31 or 47 DIGITAL 1/0 

Z89165JZ89166 

Low-Cosl DTAD Conlroller 
Z89166 = ROMLess wilh 31 I/O Pins 

CMOS: 20 MHz 

• 24K ROM (Z89165 Only) 
• 16-Bil DSP 
• 6K Word DSP ROM 
• 8-Bit ND with Automatic 

Gain Control (AGC) 
• DTMF Macro Available 
• LPC Macro Available 
• 10-Bit PWM D/A 
• Other DSP Software Options Available 
• 471/0 Pins (Z89165 Only) 

68-Pin PLCC 
80-Pin QFP 

Z89C6501ZEM - Emulator 
Z89C6500ZDB - Emulator 
Z8916500ZCO - Evaluation Board 

~ , , 

II 



en 
rU 

BLOCK 
DIAGRAM 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

ZS DSP 
24K132K 6KROM 

ROM 
RAM PORT CODEC INTF. 

RAM I REFRESH PWM 

27 or 43 DIGITAL VO 

Z89C67a!9C6SaB9C69 

Tele8hone Answering Controller 
Z89 67 = 24 Kbytes of Program ROM 
Z89C68 = ROMLess with 271/0 Pins 
Z89C69 = 32 Kbytes of Program ROM 

CMOS: 20 MHz 

• 16-Bit DSP 
• 6KWordROM 
• DTMF Macro Available 
• LPC Macro Available 
• 10-Bit PWM D/A 
• Other DSP Software Options Available 
• ARAM/DRAM/ROM Controller and Interface 
• Dual CODEC Interface 
• 43 I/O (Z89C67 Only) 

84-Pin PLCC 

Z89C5900ZEM - Emulator 
Z89C6700ZEM - Emulator 
Z89C6700ZDB - Emulator 
Z8916902ZCO - Evaluation Board 

ZS DSP 

24KROM SKROM 

RAM PORT CODEC INTF. 
RAM CODEC INTF. REFRESH 

27 or 43 DIGITAL VO 
-

Z89167aB9168 

Enhanced Tel~hone Answering Controller 
Z89168 = RO Less with 271/0 Pins 

I CMOS: 24 MHz 

• 24K ROM (Z89167 Only) 
• 16-Bit DSP 
• 8KWordROM 
• DTMF Macro Available 
• LPC Macro Available 
• 10-Bit PWM D/A 
• Other DSP Software Options Available 
• ARAM/DRAM/ROM 
• Dual CODEC Interface 
• 431/0 (Z89167 Only) 

84-Pin PLCC 
100-Pin OFP 

Z89C5900ZEM - Emulator 
Z89C6700ZEM - Emulator 
Z89C6700ZDB - Emulator 
Z8916902ZCO - Evaluation Board 

ZS DSP 

32K ROM SK ROM 

RAM PORT CODEC INTF. 
RAM 

REFRESH CODEC INTF. 

27 or 43 DIGITAL 1/0 

Z89169 

Enhanced Telephone 
Answering Controller 

CMOS: 24 MHz 

• 32KROM 
• 16-BitDSP 
• 8KWordROM 
• DTMF Macro Available 
• LPC Macro Available 
• 10-Bit PWM D/A 
• Other DSP Software Options Available 
• ARAM/DRAM/ROM 
• Dual CODEC Interface 
• 431/0 

84-Pin PLCC 
100-Pin OFP 

Z89C5900ZEM - Emulator 
Z89C6700ZEM -Emulator 
Z89C6700ZDB - Emulator 
Z8916902ZCO - Evaluation Board 



00 

PART NUMBER I Z86C27/127/97/47/E47 Z86227 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

Digital Television Controller I Standard DTC' 
(DTC-) Television, VCRs, and Reduced ROM, RAM, 
Cable for Greater Economy 
Z86E47 = oTP Version 

CMOS: 4 MHz 

III 8K/16K/oTP ROM 
III 256 Byte RAM 
III 160x7 -Bit Video RAM 
III On-Screen Display 

(oSD) Video Controller 
• Programmable 

- Color 
- Size 
- Position Attributes 

.. 13 PWMs for D/A Conversion 
III 128-Character Set 
• 4Kx6-Bit Char. Gen. ROM 
II Watch-Dog Timer (WDT) 
• Low-Voltage Protection 
II Five Ports/36 Pins 
• Two Standby Modes 
II Low-EMI Mode 

64-Pin DIP 

Z86C2700ZCO - Evaluation 
Z86C2700ZDB - Emulator 
Z86C2700ZEM - Emu lator 

CMOS:4MHz 

Il!iI 6K ROM, 256 Byte RAM 
II 12Ox7-Bit Video RAM 
III oSD On-Board Programmable 

- Color 
- Size 
- Position Attributes 

II 7PWMs 
• 96 Character Set 
II 3Kx6-Bit Char. Gen. ROM 
II WatCh-Dog Timer (WDT) 
• Low-Voltage Protection 
II Th ree Ports/20 Pi ns 
II Two Standby Modes 
III Low-EMI Mode 

40-Pin DIP 

Z86C2700ZDB - Emulator 
Z86C2702ZEM - Emu lator 
Z86C2700ZCO - Evaluation Board 

CHAR ROM 

COMMAND 
INTERPRETER 

ANALOG 
SYNC/DATA I OSD 

SLICER CTRL 

Z86128/Z8&228/Z86129 

Z86128/228 = Line 21 Closed 
Caption Controller (l21 C·) 
Z86129/228 = Line 21 Closed 
Caption and EDS Controller 

CMOS: 12 MHz 

II Conforms to FCC Line 21 
Format 

II Parallel or Serial Modes 
II Stand-Alone Operation 
• On-Board Data Sync and 

Slicer 
II On-Board Character Generator 

- Color 
- Blinking 
- Italic 
- Underline 
- Extended Data Services 

18-Pin DIP 

Support Documentation 
Provided with the device 

1K16K ROM 
Z8 CPU 

WDT 124 RAM 
P2 P3 

Z86L06!Z86L29 

Z86L06 = Low-Voltage CMOS 
Consumer Controller Processor 
Z86l29 = 6K Infrared Remote 
Controller 

Low-Voltage CMOS: 8 MHz 

II 1KRoMand6KRoM 
II Watch-Dog Timer (WDT) 
II Two Analog Comparators with 

Output Option 
II Two Standby Modes 
• Two Counter/Timers 
II Auto Power-On Reset 
• 2V Operation 
• RC Oscillator Option 
• Low-Noise Option 
II Low-Voltage Protection 
II High-Current Drivers (2, 4) 

18-Pin DtP 
18-Pin SolC 

Z86C5000ZEM - Emulator 

2K18K116K ROM 
Z8CPU 

WDT 128,256, 
768 RAM 

Z86L70mm!73n4 
75n&mn8 

Zilog Infrared Remote Controllers 
(ZIRC') for IR Remote/Battery Operated 
Applications Ranging in ROM: L7D=2K, 
L71 =8K,L72& 78= 16K,L73&7 4=32K, 
L75=4K,L76=12K,L77=24K 

Low-Voltage CMOS: 8 MHz 

• Watch-Dog Timer (WDT) 
II Two Analog Comparators 

with Output Option 
• Two Standby Modes 
• Two Enhanced Counter/Timers 

- Auto Pulse 
- Reception/Generation 

• Auto Power-On Reset 
• 2V Operation 
• RC Oscillator Option 
II Low-Voltage Protection 
• High-Current Drivers 

- Three OTP Versions 
Available 
- Z86E72/73/7 4 

Z86L71=20-Pin DIP/SoIC 
Z86L70/L75= 18-Pin DIP, SolC 
Z86L72/L76/L77=40,44-Pin DIP, 

PLCC,OFP 
Z86L74=64/68-Pin 

Z86L7200TSC - Emulator 
Z86L7100ZEM - Emulator 
Z86L7100ZDB - Emulator 

w ' , 



en 
~ 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

4KROM 
CPU 

P2 

Z8&C40/l86E40 

Z8fJ Consumer Controller 
Processor (CCPj 
Z86E40 = OTP Version 

CMOS: 12 MHz 

• 4K ROM, 236 RAM 
• Two Standby Modes 
• Two Counter/Timers 
• ROM Protect 
• RAM Protect 
• FourPorts 
• low-Voltage Protection 
• Two Analog Comparators 
• low-EMI Mode 
• Watch-Dog Timer (WDT) 
• Auto Power-On Reset 
• low-Power Option 

4O-Pin DIP 
44-Pin PlCC 

Z86C5000ZEM - Emulator 
Z86CCPOOZEM - Emulator 
Z86E4000ZDP - Adaptor Kit 
Z86E4000ZDV - Adaptor Kit 

Z86C61/l86C62 

Z8fJ MCU with Expanded lIDs 

CMOS: 16, 20 MHz 

• 16K ROM 
• Full-Duplex UART 
• Two Standby Modes 

(STOP and HALT) 
• Two Counter/Timers 
• ROM Protect Option 
• RAM Protect Option 
• Pin Compatible to Z86C21 
• Z86C61 = Four Ports 
• Z86C62 = Seven Ports 

Z86C61 = 40-Pin DIP 
Z86C61 = 44-Pin PLCC,QFP 
Z86C62 = 58-Pin PLCC 

Z86C5000ZEM - Emulator 
Z86CCPOOZEM - Emulator 

12K116K124K ROM 
DSPCORE 
RAM 12C 
OSDCCD 

PWM 1 WDT 12 PORTS 

ZB9300Jll2J04J116/14 

Advanced TV Controller with 
Closed Caption Decoder (CCD), 
StarSight*, OSD for TV, VCR, 
Cable, Satell ite 
Z89301 = OTP Version 

CMOS: 12 MHz 

• StarSight Capability 
• Closed-Captioning 
• DSP12MHz 
• 16-Bit, 512 Byte (Z89314) 
• 640 Byte RAM 
• 12KJ16KJ24K ROM 
• Programmable OSD 
• 12C*,7 PWM 
• 3-Channel ADC 
• Watch-Dog Timer (WDT) 
• TwoPorts 
• 32kHz,XTAl 
• Low-Power Mode 
*Not Available on Z89314 

40-Pin SDIP 

Z8930900ZEM - Emulator 
Z8930900TSC - Emulator 
Z893090nSC - Emulator 

12K116K124K ROM 
DSP CORE 
RAM 12C 
OSDCCD 

PWM !WDl!2 PORTS 

ZB9301JD3/D5J117/13 

Advanced TV Controller with CCD 
StarSight, for TV, VCR, Cable, 
Satellite 
Z89301 = OTP Version 

CMOS: 12 MHz 

• StarSight Capability 
• Closed-Captioning 
• DSP12MHz 
• 16-Bit, 640 Byte RAM 
• 12KJ16KJ24K ROM 
• Programmable OSD 
• 12C,9PWM 
• 4-Channel ADC 
• Watch-Dog Timer (WDT) 
• Two Ports 
• 32kHz,XTAL 
• Low-Power Mode 

52-PinSDIP 

Z8930900ZEM - Emulator 
Z8930900TSC - Emulator 
Z893090nSC - Emulator 

32K 
OlP 

Z89331JZ8933& 

Advanced TV Controller with 
CCD StarSight, OSD for TV, 
VCR, Cable, Satellite 
Z89301 = OTP Version 

CMOS: 12 MHz 

• StarSight Capability 
• Closed-Captioning 
• DSP12MHz 
• 16-Bit, 640 Byte RAM 
• 12KJ16KJ24K ROM 
• Programmable OSD 
• f2C,7PWM 
• 5-Channel ADC 
• Watch-Dog Timer (WDT) 
• Two Ports 
• 32 kHz, XTAL 
• Low-Power Mode 

42-Pin SDIP 

Z8930900ZEM - Emulator 
Z8930900TSC - Emulator 
Z893090nSC - Emulator 

-- -------



(J) 

PART NUMBER I Z86C03 

512 Byte ROM 

ZSGDCPU 

WOT 64RAM 

P2 P3 

DESCRIPTION Consumer Controller Processor (CCP-) 
with 512 Byte ROM 

PROCESS/SPEED I CMOS: 8 MHz 

FEATURES • 512 Byte ROM 
• 64 Byte RAM 
• Two Standby Modes 
• One Counter/Timer 
• ROM Protect 
• Two Analog Comparator 
• Auto Power-On Reset 
• low-Voltage Protection 

• 141/0 
• RC Oscillator Option 
• low-Noise Option 

PACKAGE I 18-Pin DIP 
18-Pin SolC 

SUPPORT Z86CCPOOZEM - Emulator 
PRODUCTS Z86CCPOOZAC - Emulator 

lKROM 

Z~CPU 

WOT 1 ill, 
PO 1 P2 

Z86C04JZ86ED4 

ZB6C04 = B-Bit low Cost 1 Kbyte ROM MCU 
ZB6E04 = oTP Versi on 

CMOS: 8 MHz 

• 1 Kbyte ROM 
• 128 Byte RAM 
• Two Standby Modes 
• Two Counter/Timer 
• ROM Protect 
• Two Analog Comparator 
• Auto Power-On Reset 
• low-Voltage Protection (ROM Only) 
• 141/0 
• low-Noise Option 

1B-Pin DIP 
1B-Pin SOIC 

Z86C0800ZCO - Evaluation Board 
ZB6COBOOZDP - Adaptor Kit 
ZB6C1200ZEM - Emulalor 
ZB6C1200ZPD - Adaptor Kit 
Z86CCPOOZEM - Emulator 
Z86CCPOOZAC - Emulator 

Z!JO>cpu 

WDT 

SPI 

128 
RAM 

P2 I P3 

Z86C06 

Consumer Controller Processor (CCP") 
with 1 Kbyte ROM 

CMOS: 12MHz 

• 1 Kbyte ROM 
• 128-Byte RAM 
• Two Standby Modes 
• Two Counter/Timer 
• ROM Protect 
• Two Analog Comparalor 
• Auto Power-On Reset 
• low-Voltage Protection (ROM Only) 
• 141/0 
• RC Oscillator Option 
• Serial Peripheral Interface (SPI) 

18-Pin DIP 
18-Pin SOIC 

Z86E0600ZDP - Adaptor Kit 
Z86C5000ZEM - Emulator 
Z86C5000ZDP - Adaptor Kit 
Z86CCPOOZEM - Emulalor 
ZB6CCPOOZAC - Emulator 

en • , 

II 



en 
I en 

DIAGRAM 

PART NUMBER 

DESCMPTlON 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SuPPORT 
PRODUCTS 

--, 
2KROM 
Z8'3CPU 

wor 128 
RAM 

PO P2 

Z86C08JZ86E08 

Z86C08 = Z8D MCU with 2 Kbyte ROM 
Z86E08 = OTP Version 

CMOS: 12 MHz 

• 2KbyteROM 
• 128 Byte RAM 
• Two Slandby Modes 
• Two Countermmer 
• ROM Protect 
• Two Analog Comparalors 
• Auto Power-On Reset 
• Low-Vollage Protection (ROM Only) 
• 141/0 
• Low-Noise Option 

18-Pin DIP 
18-Pin SOIC 

Z86C08O!lZCO - Evaluation Board 
Z86COSOOZDP - Adaptor Kit 
Z86C1200ZEM - Emulator 
Z86C1200ZDP - Adaptor Kit 
Z86CCPOOZEM - Emulator 
Z86CCPOOZAC - Emulator 

zaecPU 
236 wor I RAM 

PO P3 

P2 

Z86C30JZ86E30 

Z86C30 = ZSOJ (CCP-) with 4 Kbyte ROM 
Z86E30 = OTP Version 

CMOS: 12 MHz 

• 4KbyteROM 
• 236 Byte RAM 
• Two Standby Modes 
• Two Countermmer 
• ROM Protect 
• Two Analog Comparators 
• Auto Power-On Reset 
• Low-Vollage Protection (ROM Only) 
• 241/0 
• RC Oscillator Option 
• Low-Noise Option 

28-Pin DIP 

Z86E3000ZDP - Adaptor Kit 
Z86C5000ZEM - Emulator 
Z86C5000ZPD - Emulalor Pod 
Z86CCPOOZEM - Emulator 
Z86CCPOOZAC - Emulator 

zaecPu 
128 wor I RAM 

PO P3 

P2 

Z86C31JZ86E31 

Z86C31 = 8-Bit MCU with 2 Kbyte ROM 
Z86E31 = OTP Version 

CMOS: 8 MHz 

• 2KbyteROM 
• 128 Byte RAM 
• Two Slandby Modes 
• Two Countermmer 
• ROM Protect 
• Two Analog Comparators 
• Auto Power-On Reset 
• Low-Vollage Protection (ROM Only) 
• 241/0 
• RC Oscillator Option 
• Low-Noise Option 

28-Pin DIP 
28-Pin PLCC 

Z86E3000ZDP - Adaplor Kit 
Z86C5000ZEM - Emulator 
Z86C5000ZPD - Emulator Pod 
Z86CCPOOZEM - Emulator 
Z86CCPOOZAC - Emulator 



en 
..:... 

BLOCK 
DIAGRAM 

PART NUMBER I Z86321 

Bus I DAC 
IJF IJF 
Sample Rate 

Generator 
Sound Blaster 
Command Set 

Interpreter 

MIDI 
Intertace 

DESCRIPTION I 8-Bit Digital Audio Processor 

PROCESS/SPEED I CMOS: 12 MHz 

FEATURES iii Sound BlasterN Compatible 
iii ADPCM Decompression 
EJ 8-Bit DAC Interface 
El Successive Approximation ADC 

Algoritant 
I!!I MIDI Interface 

PACKAGE I 40-Pin DIP 
M-Pin PLCC 

SUPPORT Support Documentation 
PRODUCTS Provided with Device 

II 

DSP 

512 RAMI4K ROM 

16-BITMAC 

Z89320 

Peripherals 
Interface 

16-Bit Digital Signal Processor 

CMOS: 10 MHz 

[J 16-Bit Multiply/Accumulate 
I'iI lOOns 
[J 512 Word RAM 
[J 4K Word RAM 
III Peripherals Interface Bus 
I!l 74 Instruction Set 

40-Pin DIP 
M-Pin PLCC 

Z89COOOOZEM - Emulator 

DSP 
512 RAMI4K ROM 

16-BITMAC 

Peripherals Codec 
Interface IfF 

Z89321/l89371 

16-Bit Digital Signal Processor 
Z89371 = OTP Version 

CMOS: 20 MHz 

m 16-Bit Multiply/Accumulate 
III 50 J.6 
iii 512 Word RAM 
IJ 4K Word ROM 
iii Peripherals Interface Bus 
LiI CODEC Interface 

40-Pin DIP 
M-Pin PLCC 

Z8937100ZEM - Emulator 

ISABus IIF 
DMA Interface 
Logic Logic 

Interrupt Control 
Logic Logic 

Registers 

Z5380 

Small Computer System Interface (SCSI) 

Clock: 1.5 Mb/s 

• Compatible 5380 Pin-out 

• CMOS 
• Asynchronous IIF Supports 1.5 Mb/s 
• 48 rnA Drivers 
• Arbitration Support 
• Support Normal or Block Mode DMA 

40-Pin DIP 
M-Pin PLCC 

Support Documentation 
Provided with Device 

SoundBlastcr"" is a Trademark of Creative labs, Inc. 



CIJ 
00 

ISABus IfF 
DMA Interiace 
Logic Logic 

Interrupt Control 
Logic Logic 

__ Registers 

PART NUMBER I Z53CBO 

DESCRIPTION I SCSI Adaptor 

SPEED MHz I Clock: 3 Mb/s 

FEATURES I II ANSI X3, 131-1986 Standard 
II DMA or Programmed I/O Data Transfers 
II Asynchronous Interface Support 
II 3Mb/s 
II ISABus ifF 
II Glitch Eater 

PACKAGE I 40-Pin DIP 
44-Pin PLCC 

SUPPORT I Support Documentation 
PRODUCTS Provided with Device 

I HostllF 
---, 

Command ROM 
SRAM Control Control IfF 
Zero Crossing 

Detector Parameter Waveform 

Amplitu.de Transfer ~ Data Acquisition Data Input 

Processing Control Bank 

Z89341/Z89342 

Wave Synthesis Chip Set 

CMOS: 36 MHz 

II 4-Channel 
II 16-BitLinear 
III PCM Sound Generator 
III Sampling Rates 20 kHz to 44.1 kHz 
II Support 16-,18-, and 20-BitDAC 
II Audio Bandwidth 0 Hz to 20,000 Hz 
III Direct Interface with PC ISA Bus 
II Direct Support 4Mx16 ROM 

8Hin PLCC 

Support Documentation 
Provided with Device 

MCA 

Modulator 
Dffl 
Encoder 
[j,jf 

Demodulator 

Matched 

Z2OOO* 

Spread Spectrum 
Burst Processor 

CMOS: 45 MHz 
Clock: 2.048 Mb/s 

!!!!!.... 
Down 

Converter 

II Operates up to 11.1264 Mchips 
Second in Transmit and Receive 
Modes 

II Maximum Data Rate of 2.048 Mbps 
in Conformance with FCC Regulations 

II Supports Differentially Encoded 
BPSK or OPSK Modulation 

II Full-or Half-Duplex Operation for 
FDD or TDD Implementations 

II Two Independent PN Sequences 
II Power Management Features 

100-Pin VOFP 

Z020oo00ZCO - Evaluation Board 

FSK 

ReceMI coo 
I Modu~toTl3IIsm. & 

ADC's fSK Buffer OSP D~'S Demodutilw I Coca 

Z87000 

T_ 
eon"", 
Log~ 

Cordless Phone 
Transceiver/Controller 

CMOS: 16.384 MHz 

II Supports 900 MHz Spread 
Spectrum Cordless Phone 
Design 

II Adaptive Frequency Hopping 
II Transmit Power Control 
II Bus Interface to ADPCM 

Processor 
II 12K Words of RAM for 

Transceiver and Phone 
Control Software 

II 32 Pins of Program I/O 
II ROM Code, OTP and ICEBOX.­

Version to be Available 03/94 

84-Pin PLCC 

Z870oo0ZEM - Emu lator 

·Z2000 15 sokl under hc.c:nlC from Stanford T dc:wnunumcatlOll$, Inc,:. ASIC and Custom Produca Dlvulon 



BLOCK 
DIAGRAM 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

4KROM 

Z88 CPU I RAM 

Counterffimers 

WOT 

POlp1j P2 I P3 

Z8615 

Keyboard MCU 

NMOS: 4, 5 MHz 

• 4KROM 
• 124-Byte RAM 
• 321/0 Lines 
• Two Counter/Timers 
• Watch-Dog Timer (WDn 
• RC Oscillator 
• Dedicated Row Column Pins 
• Dala/Clock Pins 
• Direct Connect lED Pins 

4O-Pin DIP 
44-Pin PlCC 

Z0861500ZCO - Evaluation Board 
ZB6C1200ZEM -Emulator 
Z0861500ZDP - Adaptor Kit 

214KROM 

ZS8CPU I RAM 
Counterffimers 

POlpllP2lp3 

Z8614/Z86D2 

ZB602 = 2K ROM Keyboard MCU 
ZB614 = 4K ROM Keyboard MCU 

NMOS: 4 MHz 

• 4KROM 
• 124 Byte RAM 
• 321/0 Lines 
• Two Counter/Timers 
• Dedicated Row Column Pins 

40-Pin DIP 
44-Pin PlCC 

Z0860200ZCO - Evaluation Board 
ZB6C1200ZEM - Emulator 
Z0860200ZDP - Adaptor Kit 
ZB6C1200ZPD - Emulator Pod 

Z86E23 

8KOTPIROM 

Z8@CPU I RAM 

Countermmer 
POlp11p21p3 

Keyboard OTP MCU 

CMOS: 4 MHz 

• BKROM 
• 256 Byte RAM 
• 32 1/0 Lines 
• Two Counter/Timers 
• Dedicated Row Column Pins 

40-Pin DIP 
44-Pin PlCC 

Z0860200ZCO - Evaluation Board 
ZB6C1200ZEM - Emulator 
Z0860200ZDP - Adaptor Kit 

Z86C17 

MouseMCU 

2KROM 

ZS8CPU I RAM 

Countermmer 
WDT 

POlp21p3 

CMOS: 4 MHz 

• 2KROM 
• 124 Byte RAM 
• 141/0 Lines 
• Two Counter/Timers 
• Dedicated Opto-Transistor Pins 
• Integrated Pull-up Resistors 
• Power-Down Modes 
• Power-On Reset (POR) 
• Watch-Dog Timer (WDT) 

lB-Pin DIP 
lB-Pin SOIC 

ZB6C1200ZEM - Emulator 

00 • 
~. 

II 



cp 
..... 
o 

BLOCK 
DIAGRAM 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEAtuRES 

PACKAGE 

SUPPORT 
PRODUCTS 

2KROM 

lH8CPU I RAM 
Countermmer 

WDT 
Comparators , 

POlp21p31 

Z86C08IZ8&C07IZ8&ED8 

Pointing Device ZSe MCU 
ZS6E08 = OIP Version 

CMOS: 4,S,12 MHz 

•• 2KROM 
• 124 Byte RAM 
• 14 VO Lines 
• Two Counter/Timers 
• Power-Down Modes 
• Two Comparators 
• Power-On Reset (POR) 
• Watch-Dog Timer (WDT) 
• Auto latch (ZS6C07 Only) 

1S-Pin DIP 
1S-Pin SOIC 

ZS6C1200ZEM - Emulator 

IKROM 

zeecpul RAM 
Countermmer 

WDT 
Comparators 

POIP2lp3 

I Z86C04IZ8&E04 

Discrete MCU 
ZS6E04 = OIP Version 

CMOS: 4 MHz 

• 1KROM 
• 124 Byte RAM 
• 14 1/0 Lines 
• Two Counter/Timers 
• Power-Down Modes 
• Two Comparators 
• Power-On Reset (POR) 
• Watch-Dog Timer (WDI) 

1S-Pin DIP 
1S-Pin SOIC 

ZS6C1200ZEM - Emulator 
ZS6CCPOOZEM - Emulator 

4KROM 4KROM 
OSP I RAM Z88MCUI RAM 
Countermmer Countermmer ! 

Codec Interface WDT 

16-Bn I DATA 
MAC 110 

Comparators 
POIP2IP3 

Z89321/Z89371 I Z86C3DIZ8&E30 

16-Bit Digital S~nal Processor zseMCU 
ZS9371 = OIP ersion ZS6E30 = OIP Version 

CMOS: 15,20 MHz CMOS: 8, 12 MHz 

• 4KWordROM • 4KWordROM 
• 512WordRAM • 256 Byte RAM 
• 16 Bit I/O Bus • 24 VO Lines 
• Two Counter/Timers • 2 Counter/Timers 
• CODEC Interface • Power-Down Mode 
• 50/75 ns Cycle limer • Two Comparators 
• 4K OTP ROM (ZS9371 Only) • Power-On Reset (POR) 

• Watch-Dog Timer (WDT) 

40-Pin DIP 2S-Pin DIP 
44-Pin PLCC 2S-Pin SOIC 

ZS937100ZEM - Emulator ZS6C5000ZEM - Emulator 
ZS937100ISC - Emulator 



84CDD 
CPU 0 

S 
Power C 
Down 

PART NUMBER I Z84C01 

DESCRIPTION I za~ CPU with Clock Generator/Clock 

PROCESS/SPEED I CMOS: 10 MHz 

FEATURES I II Clock Generator/Controller 
II Four Power Down Modes 

PACKAGE I 44-Pin OFP 
44-Pin PLCC 

SUPPORT I Z84C9000ZCO - Evaluation Board 

PRODUCTS 

en , 

Z84C90 

Killer I/O (Three Z8~ Peripherals) 

CMOS: 8, 10, 12 MHz 

II SeriallnpuVOutput (SIO) 
II Counter/Timer Circuit (CTC) 
II Plus Eight I/O Lines 
iii Three 8-Bit Ports 

8Hin PLCC 
80-Pin OFP 

Z84C9000ZCO - Evaluation Board 

CTC I CGC 

SID I war 

zao CPU 

Z84013/Z84C13 

Intelligent Peripheral Controller 

Z84013 = CMOS: 6, 10 MHz 
Z84C13 = CMOS: 6,10 MHz 

III SeriallnpuVOutput (SIO) 
II Counter/Timer Circuit (CTC) 
• Watch-Dog Timer (WDT) 
• Clock Generator Circuit (CGC) 
.. Wait State Generator (WSG) 
II Power-On Reset (POR) 
.. Two Chip Selects 
.. Evaluation Mode 

8Hin PLCC 

Z84C1500ZCO - Evaluation Board 

PIO CGC 

I- WDT 
SID CTC 

zao CPU 

Z84015/Z84C15 

Enhanced Intelligent Peripheral 

Z84015 = CMOS: 6, 10 MHz 
Z84C15 = CMOS: 16 MHz 

• SeriallnpuVOutput (SIO) 
• Counter/Timer Circuit (CTC) 
• Watch-Dog Timer (WDT) 
• Clock Generator Circuit (eGC) 
• Four Power-Down Modes 
• Power-On Reset 
• Two Chip Selects 
• 32-Bit CRC 
• Wait State Generator (WSG) 
• Evaluation Mode 

100-Pin OFP 
100-Pin VOFP 

Z84C1500ZCO - Evaluation Board 

:::::: . . 

II 



en 
I ...... 

I\) 

PART NUMBER 

DESCmPTlON 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

ClSer 

MMUI OSC 

Z80180/Z8S180/Z8L18D 

High-Performance Z81J8 CPU 
with Peripherals 
Z8S180 = Static Version 
Z8L180 = Low-Voltage Version 

Z80180 = CMOS: 6, 8, 10, MHz 
Z8S180 = CMOS: 16 MHz 
Z8L180 = CMOS: 20, 33 MHz 

• Enhanced Z81J8 CPU 
• 1 MbyteMMU 
• 2DMAs 
• 2 UARTs with Baud Rate Generators 
• C/Seriall/O Port Oscillator 
• Z8S180 Includes; 

- Power-Down 
- Programmable EMI 
- Divide-By-One 
- Clock Option 
- 3.3V and 5V Version 

64-Pin DIP 
68-Pin PLCC 
BO-Pin OFP 

Z8S18000ZCO - Evaluation Board 
ZEPMIPOOOOl - EPM- Manual 

Z80181 

Smart Access Controller 

CMOS: 10, 12 MHz 

• Complete Z180· plus SCC/2 
Counter/Timer Circuit 

• 161/0 Lines 
• Emulation Mode 

100-Pin OFP 

Z8018100ZCO - Evaluation Board 
Z8018100ZDP - Adaptor Kit 
Z8018101ZCO' - Evaluation Board 
• Includes LLAP software that can be 
licensed (Z801 81 ZA6l 
ZEPMIPOOOO1- EPM Manual 

241/0 

85230 16550 
ESCC MIMIC 
(2CH) 

S180 
- --

Z80182JZ8L 182 

Zilog Intelligent Peripheral (ZIP-) 
Z8L 182 = Low-Voltage Version 

Z80182 = CMOS: 16, 33 MHz 
Z8L 182 = CMOS: 20 MHz 

• Static Version of Z180· plus ESCC 
(2 Channels of Z85230 with 32-Bit 
CRC Not Available for 16 MHz) 

• 16550 MIMIC 
• 24 Parallel I/O 
• Emulation Mode 
• 3.3V and 5V Version 

100-Pin OFP 
100-Pin VOFP 

Z8018200ZCO - Evaluation Board 
ZEPMIPOOOO2 - EPM- Manual 

Clock wi 
Standbr 
Contra 

Refresh 16-Bit 
Control 

Chip Selects 
and Wait 

Z8038D/Z81.380 

Z380- Microprocessor 
Z8L380 = Low-Voltage Z380 

CPU 

Z8L380 = CMOS: 10 MHz 
Z80380 = CMOS: 16, 18 MHz 

• 16/32-BitMPU 
• Internal 32-Bit Datapaths and ALU 
• 2 Clocks/Cycle Instruction Execution 

up to 4 Gbytes of Linear Addressing 
• Enhanced Instruction Set 
• 4 Banks of On-Chip Register Files 
• Object-Code Compatible with Z80/Z180 

Microprocessors up to 6 Programmable 
Memory Chip Selects 

• 3.3Vand 5V Version 

100-Pin OFP 

Z8038000ZCO - Evaluation Board 
ZEPMIPOOOO3 - EPM- Manual 



(J) 

BLOCK 
DIAGRAM 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

DSP 
512 RAM 14K ROM 

16-BIT MAC 
DATA RAM 
I/O I/O 

Z89COO 

16-Bit Digital Signal Processor 

CMOS: 10, 15 MHz 

l1li 16-Bit Multiply/Accumulate 
Ill! 75 ns 
II Two Data RAMs (256 Words each) 
1/1 4KWord ROM 
1m 64Kx16 Ext. ROM 
f! 16-Bit I/O Port 
El 74 Instructions 
iii Most Single Cycle 
Ell Two Conditional Branch Inputs, 

Two User Outputs 
I'li library of Macros 
II Zero Overhead Pointers 

58-Pin PLCC 
60-Pin VOFP 

Z89COOOOZEM - Emulator 
Z89COOOOZCC - Emulator 

Z8 DSP 

24K 4KWORD 
ROM ROM 

256 BYTES 512 WORD 
RAM RAM 
8-B~ lO-Bit 
NO D/A 

-

Z89120 

Zilog Modem/Fax Controller 

CMOS: 20 MHz 

fill Z8® with 24 Kbyte ROM 
13 16-BitDSP with 4K Word ROM 
III 8-BitND 
[J 10-BitD/A (PWM) 
D library of Macros 
D 471/0 Pins 
[] Two Comparators Independent Z8® 

and DSP Operations Power-Down 
Mode 

58-Pin PLCC 

Z89C6501 ZEM - Emulator 
Z89C6500ZDP - Emulator 

Z8 DSP 

ROMLess 4KWORD 
ROM 

256 BYTES 512 WORD 
RAM RAM 
8-B~ lO-Bn 
ND D/A 

Z89920 

Zilog Modem/Fax Controller 

CMOS: 20 MHz 

iii Z8 with 64K External Memory 
iii DSP with 4K Word ROM 
III 8-BitND 
Ii'! 10-BitD/A 
El Library of Macros 
B 471/0 Pins 
B Two Comparators Independent Z~ 

and DSP Operations Power-Down 
Mode 

58-Pin PLCC 

Z89C6501 ZEM - Emulator 
Z89C6500ZDB - Emulator 

Mdres,;/rndOW p 
Decoder Decoder E 

p R 
C B Iiv,Conlig IB 
MU Reg.le~ pU 
Cs HS 
I pW~~~s E 
A R 

Attnbule Memory t 
(256 Byles) 

Z86017 

PCMCIA Interface Adaptor 

CMOS: 20 MHz 

II 256 Bytes of Attribute Memory 
• Five Configuration Registers 
• EEPROM Sequencer or SPllnterface 
• PCMCIA to I/O, Memory or Both 
• PCMCIA to ATNJDE 
• ATNIDE to ATNJDE 
• 3.0V to 5.5V Operation 
• 8- or 16-Bit Peripheral Support 

1 DO-Pin VOFP 

Z860l700ZCO - Evaluation Board 

il' # 1 "' J I 



en 
I ...... 
~ 

PIO CGC 

WDT 
SID CTC 

zao CPU 

PART NUMBER I Z84C15JZ84015 

DESCRIPTION I Enhanced Intelligent 
Peripheral Controller 

PROCESS/SPEED I Z84015 = CMOS: 6, 10 MHz 
Z84C15 = CMOS: 16 MHz 

FEATURES I III Z81J® CPU, SeriallnpuVOutput (SIO) 
II Counter/Timer Circuit (CTC) 
III Watch-Dog Timer (WDn 
III Clock Generator Circuit (CGC) 
.. Four Power-Down Modes 
Z84C15 Enhancements Include: 

III Power -On Reset 
III Two Chip Selects 
III 32-BitCRC 
III Wait State Generator (WSG) 
.. Evaluation Mode 

PACKAGE 1100-Pin OFP 
1 OO-Pin VOFP 

SUPPORT I Z84C1500ZCO - Evaluation Board 

PRODUCTS 

2DMA 

zao 12 UART 
CPU 2 CIT 

ClSer 

MMUI OSC 

Z80180/ZSS180/ZSL 180 

High-Performance Z81J® CPU 
with Peripherals 
Z8S180 = Static Version 
Z8L 180 = Low-Voltage Version 

Z80180 = CMOS: 6, 8, 10, MHz 
Z8S180 = CMOS: 16 MHz 
Z8L180 = CMOS: 20, 33 MHz 

iii Enhanced ZBIJ® CPU 
.. 1 MbyteMMU 
II 2 DMAs 
.. 2 UARTs with Baud Rate Generators 
.. CISeriaillO Port Oscillator 
II Z8S180 Includes; 

- Power Down 
- Programmable EMI 
- Divide-By-One 
- Clock Option 
- 3.3V and 5V Version 

64-Pin DIP 
68-Pin PLCC 
80-Pin OFP 

Z8S18000ZCO - Evaluation Board 
ZEPMIPOOOO1- EPM" Manual 

24110 

ESCC 16550 
(2CH) MIMIC 

S180 

Z80182JZ8L1B2 

Zilog Intelligent Peripheral (ZIPN) 
Z8L 182 = Low-Voltage Version 

Z80182 = CMOS: 16, 18, 33 MHz 
Z8L182 = CMOS: 20 MHz 

III Static Version of Z180" plus ESCC 
(Two Channels of Z85230 with 
32-Bit CRC Not Available 
for 16 MHz) 

III 16550 MIMIC 
.. 24 Parallel I/O 
III Emulation Mode 
III 3.3V and 5V Version 

100-Pin OFP 
100-Pin VOFP 

Z8018200ZCO - Evaluation Board 
ZEPMIPOOOO2 - EPM" Manual 

Z85230 

FIFO I FIFO 

85C30 
SCC 

(2 CH) 

Enhanced Serial 
Communication Controller 

CMOS: 8, 10,16, 20 MHz 

III Full Dual-Channel 
III SCC Plus Deeper FIFOs: 

- 4 Bytes on Transceivers 
- 8 Bytes on Receivers 

• DPLL Counter Per Channel 
II Software Compatible to SCC 

40-Pin DIP 
44-Pin PLCC 

Z8S18000ZCO - Evaluation Board 
Z8038000ZCO - Evaluation Board 
Z8523000ZCO - Evaluation Board 
Z8018600ZCO - Evaluation Board 
ZEPMDCOO002 - EPM" Manual 



en , 

PART NUMBER 

DEscmPTION 

PROCESS/SPEED 

FEAmRES 

PACKAGE 

SUPPORT 
PRODUCTS 

c:J 
l803O/Z80C30 
Z8530/Z85C30 

Serial Communication Controller 
Z8030/Z80C30 = Multiplexed Bus 
Z8530/Z85C30 = Non-Multiplexed Bus 

Z8030/Z8530 = NMOS: 4, 6, 8 MHz 
Z80C30/Z85C30 = CMOS: 8,to 16 MHz 
Clock: 2, 2.5, 4 Mb/s 

I!!I Two Independent Full-Duplex 
Channels 

fa Enhanced DMA Support: 
Eil 1Ox19 Status FIFO 
III 14-Bit Byte Counter 
[J NRZ/NRZI/FM Encoding Modes 

40-Pin DIP 
44-Pin CERDIP 
44-Pin PLCC 

Z8018600ZCO - Evaluation Board 
Z8523000ZCO - Evaluation Board 
Z8018100ZCO - Evaluation Board 
ZEPMDOOOOO2 - EPMw Manual 

FIFO I FIFO 

85C30 
SCC 

(2 CHI 

ZB523D/Z80230 
ZB5233 

Z16C35 

Enhanced Serial Communication Controller I Integrated Serial 
Z8230/Z80230 = Dual Channel Communication Controller 
Z85233 = Single Channel 

CMOS: 10, 1620MHz 
Clock: 2.5, 4.0, 5.0 Mb/s 

Ja Full Dual-Channel SCC Plus Deeper 
FIFOs: 
- 4 Bytes on Transmitters 
- 8 Bytes on Receivers 

EI DPLL Counter Per Channel 
I:l Software Compatible to SCC 

40-Pin DIP 
44-Pin PLCC 
44-Pin OFP (Z85233 Only) 

Z8018600ZCO - Evaluation Board 
Z8S18000ZCO - Evaluation Board 
Z8038000ZCO - Evaluation Board 
Z8523000ZCO - Evaluation Board 
ZEPMDCOOO02 - EPMw Manual 

CMOS: 10, 16 MHz 
Clock: 2.5, 4.0 Mb/s 

Ii3 Full Dual-Channel SCC 
EiI Four DMA Controllers 
iii Bus Interface Unit 

68-Pin PLCC 

Z8018600ZCO - Evaluation Board 

ZB5CBO 

85C30 
SCC 

53C80 
SCSI 

SCSCI Serial Communication 
and Small Computer Interface 

CMOS: 10, 16 MHz 
Clock: 2.5 Mb/s 

II Two Independent Full-Duplex Channels 
II Direct SCSI Bus Interface 
II Supports SCSI ANSI-X3.131-1986 

Standard 

58-Pin PLCC 
100-Pin VOFP 

ZEPMDOO002 - EPM- Manual 

m , ' • 



C{> .... 
m 

BLOCK 
DIAGRAM 

PART NUMBER I Z80181 

DESCRIPTION I Smart Access Controller 

PROCESS/SPEED I CMOS: 10, 12 MHz 

241/0 

85230 16550 1 

ESCC MIMICI 
(2CH) 

S180 J 

Z80182/Z8L182 

Zilog Intelligent Peripheral (ZIP-) 
Z80l182 = low-Voltage Version 

Z80182 = CMOS: 16,18, 33 MHz 
Z8l182 = CMOS: 20 MHz 

FEATURES I I'iI Complete Z180- plus SCC!2CTC 1111 Complete Static Version of Z180· plus 
III 161/0 Lines ESCC (2 Channels of Z85230 
iii Emulation Mode with 32-Bit CRC not Available for 

16 MHz) 
Ilil 16550 MIMIC 
I!iI 24 Parallel I/O 
III Emulation Mode 
III 3.3V and 5V Version 

PACKAGE 10o-Pin OFP 100-Pin OFP 
10o-Pin VOFP 

SUPPORT Z8018lOOZCO - Evaluation Board Z80182ooZCO - Evaluation Board 
PRODUCTS Z80l8looZDP - Adaptor Kit ZEPMIPOoo02 - EPM- Manual 

Z8018101ZCO' - Evaluation Board 
ZEPMIPOOOOl - EPM- Manual 
• Includes lLAP software that can be 
licensed (Z80181 ZA6) 

c:J 
Z16C30 

Universal Serial Controller (USC®) 

CMOS: 10 MHz 
CPU Bus 10 Mb/s 

III Two Dual-Channel 32-Byte Receive 
and Transmit FIFOs 

III 16-Bit Bus BiW:18.2 Mb/s 
III Two BRGs Per Channel 
• Flexible 8/16-Bit Bus Interface 
.. 12 Serial Protocols 
• Eight Data Encoding Bits 

I 68-Pin PlCC 

I Z16C3001ZCO - Evaluation Board 
Z80l86ooZCO - Evaluation Board 
ZEPMDCooOOl - EPM- Manual 

USC/2 

DMA IDMA 

Z16C32 

Integrated Universal 
Serial Controller 

CMOS: 20 MHz 
DMA Clock 20 Mb/s 

• Single-Channel (Half of USC) 
plus two DMA Controllers 

• Array Chained and Linked-List Modes 
with Ring Buffer Support 

I 68-Pin PlCC 

I Z16C3200ZCO - Evaluation Board 
Z80186OOZCO - Evaluation Board 
ZEPMDCOOOOl - USC® EPMN Manual 



BLOCK 
DIAGRAM 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

UART 

Z86C91/Z8691 

ROMLess ZBQ! 

ZB6C91 = CMOS: 16 MHz 
ZB691 = NMOS: 12 MHz 

II Full-Duplex UART 
III Two Standby Modes 

(STOP and HALT) 
II 2xB Bit 
• Counter/Timer 

40-Pin DIP 
44-Pin PLCC 
44-Pin QFP 

ZOB60000ZCO - Evaluation Board 
ZB6COOOOZUSP064 - Signum Emulator 
ZB6C1200ZPD - Signum Emulator Pod 

~. m 

8K PROMI UART 

CPU 
256 RAM 

POlp11p21p3 

Z86E21/Z86C21 

ZB6E21 = BK OTP 
ZB6C21 = BK ROM 

CMOS: 12, 16 MHz 

D 256 Byte RAM 
IE Full-Duplex UART 
Ii!l Two Standby Modes 

(STOP and HALT) 
8 Two Counter/Timers 
iii ROM Protect Option 
m RAM Protect Option 
El Low-EMI Option 

40-Pin DIP 
44-Pin PLCC 
44-Pin QFP 

ZOB60000ZCO - Evaluation Board 
ZB6COOOOZUSP064 - Signum Emulator 
ZB6C1200ZPD - Signum Emulator Pod 

L • 

DSP 

512 RAM 14K ROM 
16-BIT MAC 

DATA RAM 
I/O I/O 

Z89COO 

16-Bit Digital Signal Processor 

CMOS: 10, 15 MHz 

o 16-Bit Multiply/Accumulate 
fJ 75 ns 
Ii Two Data RAMs (256 Words Each) 
iii 4KWord ROM 
III 64Kx16 Ext. ROM 
El 16-Bit I/O Port 
B 74 Instructions 
El Most Single Cycle 
['l Two Conditional Branch Inputs, 

Two User Outputs 
El Library of Macros 
lEI Zero Overhead Pointers 

58-Pin PLCC 

ZB9COOZEM - Emulator 

Z86C93 

ROMLess Enhanced Z~ MulVDiv 

CMOS: 20, 25, 33 MHz 

• 16x16 Multiply 17 Clocks 
• 32x16 Divide 20 Clocks 
• Full-Duplex UART 
• Two Standby Modes (STOP and HALT) 
• Three 16-Bit Counter/Timers 

40-Pin DIP 
44-Pin PLCC 
44-Pin QFP 

ZOB60000ZCO - Evaluation Board 
ZB6COOOOZUSP064 - Signum Emulator 
ZB6COOOl ZUSP064 - Signum Emulator 
ZB6C9300ZPD - Signum Emulator Pod 
ZB6C9301 ZPD - Signum Emulator Pod 

, 



CJ) 
I ...... 

(Xl 

PART NUMBER 

DESCRIPTION 

PROCESS/SPEED 

FEATURES 

PACKAGE 

SUPPORT 
PRODUCTS 

MULT DIV UART 
CPU DSP 
DAC PWM 
ADC SPI 

P2 

Z86C95 

ROM Less Enhanced Z8~ wilh DSP 

CMOS: 24, 33 MHz 

I .. Eight Channel 
• 8-BitADC 
• 8-BitDAC 
.. 16-Bit Multiply/Divide 
II Full-Duplex UART 
.. Serial Peripheral Interface (SPI) 
iii Three Standby Modes 

(STOP/HALT/PAUSE) 
.. Pulse Width Modulator (PWM) 
II 3x16-BitTimer 
• 16-Bit DSP Slave Processor 
• B3 ns Multiply/Accumulate 

I SO-Pin QFP 
B4-Pin PLCC 
1Oo-Pin VQFP 

Z86C9S00ZCO - Evaluation Board 
Z86C9S00ZUSP064 - Signum Emulator 
Z86C9S01 ZUSP064 - Signum Emulator 
Z86C9S00ZPD - Signum Emulator POD 
Z86C9S01 ZPD - Signum Emulator POD 
Z86ZIAOOZCO - Evaluation Board 

88-BIT 1 SRAMI 
R-S DRAM 
ECC CTRL 

MCU ATIDE DISK HOST INTER- INTER- INTER-
FACE FACE FACE 

MULTIDlVIUART 
CPU OSC 

464 RAM CLOCK 
Search Merge 

~3IA15-AO 

Z86018 I Z86193 I Z86295 

Zilog Datapath Controller I ROMLess Enhanced Z~ Multioly/Divide I ROM Less Enhanced Z8~ DSP Servo Timer 

CMOS: 40 MHz I CMOS: 40 MHz CMOS: 40 MHz 

• Full-Track Read • 16x16 Multiply 17 Clocks • Eight Channel 
• Automatic Data Transfer (Point & Go~) • 32x16 Divide 38 Clocks • 8-BitADC 
• B8-Bit Reed Solomon ECC 'On The Fly' • Full-Duplex UART • 8-BitDAC 
• Full AT/IDE Bus Interface • Two Standby Modes (STOP & HALn • Serial Peripheral Interface (SPI) 
• 54 Kbytes SRAM Buffer • Three 16-Bit Counter/Timers • Pulse Width Modulator (PWM) 
• 1 Mbytes DRAM Buffer • SEARCH Machine • Three 16-Bit Counter/Timer 
iii Split Data Field Support • MERGE Machine • Full-Duplex UART 
• JointTest Action Group (JTAG) • Bus Request Mode • 16-Bit Z8~ Multiply/Divide 

Boundary Scan Option • Evaluation Mode • Full 16-Bit DSP 
• 8 Kbytes Buffer RAM Reserved for MCU • Programmable Servo Timer 

• Z8~ - DSP Mail Box 

I 100-Pin VQFP I 54-Pin VQFP 110O-Pin VQFP 
144-Pin QFP 

I Z86C9900ZCO - Evaluation Board I Z8619200ZME - Emulator I Z86ZIA01ZCO - Evaluation Board 
Z8619300ZCO - Evaluation Board 



P 
P _vvvv·'I_ .. ··v. ~ 
C B FIVe Config. I B 
~ U Registers ~ ~ 
I S Peripheral Bus E 
A 1IF(8-Bn) R 

PART NUMBER I Z86016 

Attribute Memory At 
(256 Bytes) 

DESCRIPTION B-Bit PCMCIA 
Interlace Adaptor 

PROCESS/SPEED I CMOS: 20 MHz 

FEATURES • Z86017 with 8-Bit 
Peripheral Bus Only 

PACKAGE 48-Pin VOFP 
54-Pin VOFP 

SUPPORT Z8601600ZCO - Evaluation Board 
PRODUCTS (Available 0494) 

~, 1m 

P 
P __ v.v'!"_ •• v. ~ 

~ B Ave Config. ~ ~ 
C U Registers H S 
I S Peripheral Bus E 
A IIF (16-Btt) R 

Z86017 

Attribute Memory At 
(256 Bytes) 

PCMCIA Interlace Adaptor 

CMOS: 20 MHz 

• 256 Bytes of Attribute Memory 
• Five Configuration Registers 
• EEPROM Sequencer or SPI 

lnterlace 
• PCMCIA to 110, Memory or Both 
• PCMCIA to ATMDE 
• ATMDE to ATMDE 
• 3.0V to 5.5V Operation 
• 8- or 16-Bit Peripheral Support 

1 Oo-Pin VOFP 

Z8601700ZCO -Evaluation Board 

P 
p _vvvv., I-vv,.v, ~ 

~ a Five Config. pi ~ 
C U Registers H S 
I S Peripheral Bus E 
A IIF (16-0tt) R 

Z86M17 

Attribute Memory At 
(256 Bytes) 

PCMCIA Interlace Adaptor 

CMOS: 20 MHz 

• Mirror Image Pin-Out of Z86017 for 
Opposite PCB - Surface layout 

10o-Pin VOFP 

Z8601700ZCO - Evaluation Board 

Z86020 

2 DMA 12126 Byte E 
Channe~1 FlfOs L R 

PCI Configuration a ~ 3 
Registers C H S 

6110 A E 
Map Ranoes L R 

Artlttration Logic t 
Programmable 

InterruotController 

PCI/Mullifunction Bridge 

CMOS: 33 MHz 

• 256 Bytes of Configuration Memory 
• 54 PCI Configuration Registers 
• Eight Programmable Memory or I/O Map 

Ranges with Independent Timing Control 
• 128 Byte FIFO's 
• Two Full Featured DMA Channels 
• PCllnitiator/Target Operations 
• On-Chip Peripheral Bus Arbitration 

16o-Pin OFP 

Available 0494 

, 





I '''''~=I J I'}If c;.,.. I 0., 
1& 

Literature Guide II 





LITERATURE GUIDE 
I 

Z8GD MICROCONTROLLERS • CONSUMER FAMILY OF PRODUCTS 
Databooks By Market Niche 

ZS- Mlcrocontrollers Databook 
: Product Specifications 

Z86C07 CMOS Z8 8-Bit Microcontrolier 
Z86C08 CMOS Z8 8-Bit Microcontrolier 
Z86E08 CMOS Z8 8-Bit OTP Microcontrolier 
Z86C11 CMOS Z8 Microcontrolier 
Z86C12 CMOS Z8ln-Circuit Microcontrolier Emulator 
Z86C21 8K ROM Z8 CMOS Microcontrolier 
Z86E21 CMOS Z8 8K OTP Microcontrolier 
Z86C61/62/96 CMOS Z8 Microcontrolier 
Z86C63/64 32K ROM Z8 CMOS Microcontroller 
Z86C91 CMOS Z8 ROMless Microcontrolier 
Z86C93 CMOS Z8 Multiply/Divide Microcontrolier 

Support Product Specifications 
Z0860000ZCO Development Kit 
Z86C0800ZCO Applications Board 
Z86C0800ZDP Adaptor Board 
Z86E21 OOZDF Adaptor Kit 
Z86E21 OOZDP Adaptor Kit 
Z86E2100ZDV Adaptor Kit 
Z86E2100ZDV Adaptor Kit 
Z86E2101ZDF Conversion Kit 
Z86E2101ZDV Conversion Kit 
Z86C6100TSC Z86C61/63 MCU OTP Emulation Board 
Z86C6200ZEM In-Circuit Emulator 
Z86C1200ZEM Z8® In-Circuit Emulator -C12 
Z8® S Series Emulators, Base Units and Pods 

Additional Information 
Zilog's Superintegration'" Products Guide 
Literature Guide 
Third Party Support Vendors 
Zilog's Sales Offices, Representatives and Distributors 

Infrared Remote (IR) Controllers Oatabook 
ProductSpeciflcaffons 

Z86L06 Low Voltage CMOS Consumer Controlier Processor (Preliminary) 
Z86L29 6K Infrared (lR) Remote (ZIRC"') Controlier (Advance Information) 
Z86L70/L71/L72/L75/L76 Zilog [R (ZIRC"') CCP'" Controller Family (Preliminary) 
Z86E72/E73/E74 Zilog IR (ZIRC"') CCP'" Controlier Family (Prelimmary) 

Application Note 
Beyond the 3 Volt Limit 

Support Product Specifications 
Z86L7100ZDB Emulator Board 
Z86L7100ZEM ICEBOX'" In-Circuit Emulator Board 

Additlonallnfo;mation 
Zilog's Superintegration'" Products Guide 
Literature Ordering Guide 
Zilog's Sales Offices, Representatives and Distributors 

Part No Unit Cost 

DC·830S·02 $5.00 

DC·S301·04 $5.00 

L-1 

II 



LITERATURE GUIDE! 
Z8~ MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS _______________________________________________________________ 1 

Databooks By Market Niche 

Discrete Z8~ Microcontrollers 
ProductSpecificaYons 

Z86C03/C06 CMOS Z8® 8-Bit Microcontroller 
Z86E03/E06 CMOS Z8® 8-Bit OTP Microcontroller 
Z86C04/C08 CMOS Z8® 8-Bit Low Cost 1 K/2K ROM Microcontroller 
Z86E04/E08 CMOS Z8® OTP Microcontroller 
Z86C07 CMOS Z8® 8-Bit Microcontroller 
Z86E07 CMOS Z8® 8-Bit OTP Microcontroller 
Z86C30 and Z86C31 CMOS Z8® 8-Bit Microcontroller 
Z86E30 and Z86E31 CMOS Z8® 8-Bit OTP Microcontroller 
Z86C40 CMOS Z8® 8-Bit CCP'" Microcontroller 
Z86E40 CMOS Z8® OTP CCP'" Microcontroller 

Support Product Specifications and Third Party Vendors 
Z86C0800ZCO Applications Board 
Z86C0800ZDP Adaptor Board 
Z86E0600ZDP Conversion Kit 
Z86E3000ZDP Adaptor Kit 
Z86E4000ZDF Adaptor Kit 
Z86E4000ZDP Adaptor Kit 
Z86E4000ZDV Adaptor Kit 
Z86E4001ZDF Conversion Kit 
Z86E4001ZDV Conversion Kit 
Z86CCPOOZAC Emulator Accessory Kit 
Z86CCPOOZEM In-Circuit Emulator 

Additional Information 
Zilog's Superintegration'" Products Guide 
Literature Guide and Ordering Information 
Zilog's Sales Offices, Representatives and Distributors 

Digital Television Controllers 
Product Specifications 

Z89300 Series Digital Television Controller 
Z86C27/97 CMOS Z8®DiQital Signal Processor 
Z86C47/E47 CMOS Z8®Dlgital Signal Processor 
Z86127 Low Cost Digital Television Controller 
Z86128/228 Line 21 Closed-Caption Controller (L21C'") 
Z8622740-Pin Low Cost (4LDTC'") Digital Television Controller 

Support Product Specifications 
Z86C2700ZCO Application Kit 
Z86C2700ZDB Emulation Board 
Z86C2702ZEM In-Circuit Emulator 

Additional Information 

L-2 

Zilog's Superintegration'" Products Guide 
Literature Guide and Ordering Information 
Zilog's Sales Offices, Representatives and Distributors 

Part No Unit Cost 

DC 8318-01 $5.00 I 

DC-8308-01 $5.00 



LITERATURE GUIDE 
Z81P) MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS 
Databooks By Market Niche 

Telephone Answering Device Databook 
Product Specifications 

Z89C65, Z89C66 (ROM less) Dual Processor T.A.M. Controller (Preliminary) 
Z89C67, Z89C68/C69 (ROM less) Dual Processor Tapeless T.A.M. Controller (Preliminary) 

Development Guides 
Z89C65 Software Development Guide 
Z89C67/C69 Software Development Guide 

Technical Notes 
Using Samsung KT8554 Codec on the ZTAD Development Board 
Z89C67/C69 Design Guidelines 
Z89C67/C69 ARAM Bit-Rate Measurements 
Z89C67 Codec Interfacing (Preliminary) 
Controlling the Out -5V and Codec Clock Signals for Low-Power Halt Mode 

Support Product Specifications 
Z89C5900ZEM Emulation Module 
Z89C6500ZDB Emulation Board 
Z89C6501ZEM ICEBOX'" In-Circuit Emulator 
Z89C6700ZDB Emulator Board 
Z89C6700ZEM ICEBOX'" Emulator Board 

Additional Information 
Zilog's Superintegration'" Products Guide 
Literature Ordering Guide 
Zilog's Sales Offices, Representatives and Distributors 

Part No Unit Cost 

DC-8300-02 $5.00 

L-3 

II 



LITERATURE GUIDE 
Z8aD MICROCONTROLLERS - PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS 

Databooks By Market Niche 

Digital Signal Processor Databook 
Product Specifications 

Z89321/37116-Bit Digital Signal Processor (Preliminary) 
Z89COO 16-Bit Digital Signal Processor (Preliminary) 
Z89320 16-Bit Digital Signal Processor (Preliminary) 
Z86C95 Z8® Digital Signal Processor (Preliminary) 
Z89120, Z89920 (ROM less) 16-Bit Mixed Signal Processor (Preliminary) 
Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor (Preliminary) 

Application Note 
Using the Z89371/321 CODEC Interface 
Z89371 Inter Processor Communication 
Understanding Q15 Two's Complement Fractional Multiplication (Z89COO DSP) 

Support Product Specifications 
Z8937100ZEM In-Circuit Emulator -COO 
Z8937100TSC Emulation Module 
Z89COOOOZAS Z89COO Assembler, Linker and Librarian 
Z89COOOOZCC Z89COO C Cross Compiler 
Z89COOOOZEM In-Circuit Emulator -COO 
Z89COOOOZHP Logic Analyzer Adaptor Board 
Z89COOOOZSD Z89COO Simulator/Debugger 
Z89COOOOZTR Z89COO Translator 

Additional Information 

l-4 

Zilog's Superintegration lM Products Guide 
Literature Guide and Third Party Support 
Zilog's Sales Offices, Representatives and Distributors 

Part No 

DC-8299-04 

Unit Cost I 

$5.00 I 



LITERATURE GUIDE 
~8fJ MICROCONTROLLERS • PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS 
)atabooks By Market Niche 

(eyboardIMouseJPointing Devices Databook 
Product Specifications 

Z8602 NMOS Z8® 8-Bit Keyboard Controller 
Z8614 NMOS Z8® 8-Bit Keyboard Controller 
Z8615 NMOS Z8® 8-Bit Keyboard Controller 
Z86E23 Z8® 8-Bit Keyboard Controller with 8K OTP 
Z86C04 CMOS Z8® 8-Bit Microcontroller 
Z86C08 CMOS Z8® 8-Bit Microcontroller 
Z88C17 CMOS Z8® 8-Bit Microcontroller 

Additional Information 
Zilog's Superintegrationlll Products Guide 
Literature Guide 

'C Audio Databook 
ProductSpeciHcaUons 

Z86321 Digital Audio Processor (Preliminary) 
Z89320 16-Bit Digital Signal Processor (Preliminary) 
Z89321/37116-Bit Digital Signal Processor (Preliminary) 
Z8933116-Bit PC ISA Bus Interface (Advance Information) 
Z89341/42/43 Wave Synthesis Chip Set (Advance Information) 
Z5380 Small Computer System Interface 

Additionallnformalion 
Zilog's Superintegrationlll Products Guide 
Literature Guide 

Part No Unit Cost 

DC-8304-00 $5.00 

DC-8317-00 $5.00 

L-S 

II 



LITERATURE GUIDE 
ZSI) MICROCONTROLLERS - PERIPHERALS MEMORY FAMILY OF PRODUCTS 

Databooks By Market Niche 

Mass Storage Solutions 
Product Specifications 

Z86C21 8K ROM Z8 CMOS Microcontroller 
Z86E21 CMOS Z8 8K OTP Microcontroller 
Z86C91 CMOS Z8 ROMless Microcontroller 
Z86C93 CMOS Z8 Multiply/Divide Microcontroller 
Z86C95 Z8 Digital Signal Processor 
Z86018 Data Path Controller 
Z89COO 16-Bit Digital Signal Processor 

Application Note 
Understanding Q15 Two's Complement Fractional Multiplication (Z89COO DSP) 

Support Product Specifications 
Z8060000ZCO Development Kit 
Z86C1200ZEM In-Circuit Emulator 
Z86E2100ZDF Adaptor Kit 
Z86E2100ZDP Adaptor Kit 
Z86E21 OOZDV Adaptor Kit 
Z86E2101ZDF Conversion Kit 
Z86E2101ZDV Conversion Kit 
Z86C9300ZEM ICEBOX'" Emulator 
Z86C9500ZCO Evaluation Board 
Z8® S Series Emulators, Base Units and Pods 
Z89COOOOZAS Z89COO Assembler, Linker and Librarian 
Z89COOOOZCC Z89COO C Cross Compiler 
Z89COOOOZEM In-Circuit Emulator -COO 
Z89COOOOZSD Z89COO Simulator/Debugger 
ZPCMCIAOZDP PCMCIA Extender Card 

Additional Information 

L-6 

Zilog's Superintegration'" Products Guide 
Zilog's Literature Guide 
Zilog's Sales Offices, Representatives and Distributors 

Part No 

DC-8303-01 

Unit Cost 

$5.00 



LITERATURE GUIDE 
IZ8~ MICROCONTROLLERS LITERATURE (Continued) 

I Technical Manuals and Users Guides 

! Z8® Microcontroliers Technical Manual 
Z86018 Preliminary User's Manual 
Digital TV Controller User's Manual 
Z89COO 16-Bit Digital Signal Processor User's Manual/DSP Software Manual 
Z86C9516-Bit Digital Signal Processor User Manual 

I Z86017 PCMCIA Adaptor Chip User's Manual and Databook 
I PLC Z89COO Cross Development Tools Brochure 

Part No. Unit Cost 

DC-8291-02 5.00 
DC-8296-00 N/C 
DC-8284-01 5.00 
DC-8294-02 5.00 
DC-8595-00 5.00 
DC-8298-03 5.00 
DC-5538-01 N/C 

1-----------------------------------------------------------
I Z8~ Application Notes 

The Z8 MCU Dual Analog Comparator 
1 Z8 AJ)plications for I/O Port Expansions 
I 

Z86E21 Z8 Low Cost Thermal Printer 
Zilog FamilY On-Chip Oscillator Design 

I Using the Zllog Z86C06 SPI Bus 
Interfacing LCDs to the Z8 
X-10 Compatible Infrared OR) Remote Control 
Z86C17 In-Mouse Applications 
Z86C40/E40 MCU Applications Evaluation Board 
Z86C08/C17 Controls A Scrolling LED Message Display 
Z86C95 Hard Disk Controlier Flash EPROM Interface 
Three Z8® Applications Notes: TimekeeRing with Z8; DTMF Tone Generation; 

Serial Communication Using the CCP Software UART 

Part No Unit Cost 

DC-2516-01 N/C 
DC-2539-01 N/C 
DC-2541-01 N/C 
DC-2496-01 N/C 
DC-2584-01 N/C 
DC-2592-01 N/C 
DC-2591-01 N/C 
DC-3001-01 N/C 
DC-2604-01 N/C 
DC-2605-01 N/C 
DC-2639-01 N/C 
DC-2645-01 N/C 

L-7 

a 



LITERATURE GUIDEI 
Z80~1Z8000~ DATACOMMUNICATIONS FAMILY OF PRODUCTS 

Databooks By Market Niche 

High-Speed Serial Communication Controllers 
Product Specifications 

Z16C30 CMOS Universal Serial Controller (USCtM) (Preliminary) 
Z16C32 Integrated Universal Serial Controller (lUSCtM) (Preliminary) 

Application Notes 
Using the Z16C30 Universal Serial Controller with MIL-STD-1553B 
Design a Serial Board to Handle Multiple Protocols 
DatacommunicationslUSCtM/MUSCtM Time Slot Assigner 

Support Products 
Z16C3001ZCO Evaluation Board Product Specification 
Z8018600ZCO Evaluation Board Product Specification 

Additional Information 
Zilog's SuperintegrationtM Products Guide 
Literature Guide 
Third Party Support Vendors 

Serial Communication Controllers 
Product Specifications 

Z8030/Z8530 Z-Bus® SCC Serial Communication Controller 
Z80C30/Z85C30 CMOS Z-Bus® SCC Serial Communication Controller 
Z80230 Z-Bus® ESCCtM Enhanced Serial Communication Controller (Preliminary) 
Z85230 ESCCtM Enhanced Serial Communication Controller 
Z85233 EMSCC tM Enhanced Mono Serial Communication Controller 
Z85C80 SCSCltM Serial Communications and Small Computer Interface 
Z16C35/Z85C35 CMOS ISCCtM Integrated Serial Communications Controller 

Application Notes 
Interfacing Z8500 Peripherals to the 68000 
SCC in Binary Synchronous Communications 
Zilog SCC Z8030/Z8530 Questions and Answers 
Integrating Serial Data and SCSI Peripheral Control on One Chip 
Zilog ISCCtM Controller Questions and Answers 
Boost Your System Performance Using the Zilog ESCCTM 
Zilog ESCC tM Controller Questions and Answers 
The Zilog Datacom Family with the 80186 CPU 
On-Chip Oscillator Design 

Support Products 
Z8S18000ZCO Evaluation Board Product Specification 
Z8523000ZCO Evaluation Board Product Specification 
Z8018600ZCO Evaluation Board Product Specification 
ZEPMDC00002 Electronic Programmer's Manual Software 

Additional Information 

L-8 

Zilog's SuperintegrationtM Products Guide 
Literature Guide 

Part No Unit Cost I 

DC-8314-00 5.00 

DC-8316-00 5.00 



I 

I~~~~~~~~~~~~~~~~ 

.2iUJ1., LITERATURE GUIDE 
ZSOil/zSOOOil DATACOMMUNICATIONS FAMILY OF PRODUCTS 
Databooks 

Z80 Family Databook 
Discrete l8r Family 

Z8400/COO NMOS/CMOS Z80® CPU Product Specification 
Z841 O/C1 0 NMOS/CMOS Z80 DMA Product Specification 
Z8420/C20 NMOS/CMOS Z80 PIO Product Specification 
Z8430/C30 NMOS/CMOS Z80 CTC Product Specification 
Z8440/C40 NMOS/CMOS Z80 SIO Product Specification 

Embedded Control/ets 
Z84C01 Z80 CPU with CGC Product Specification 
Z8470 Z80 DART Product Specification 
Z84C90 CMOS Z80 KIOIII Product Specification 
Z84013/015 Z84C13/C15IPC/EIPC Product Specification 

Application Notes and Technical Articles 
Z80® Family Interrupt Structure 
Using the Z8Q® SIO with SDLC 
Using the Z8Q® SIO in Asynchronous Communications 
Binary Synchronous Communication Using the Z8Q® SIO 
Serial Communication with the Z80A DART 
Interfacing Z8Q®CPUs to the Z8500 Peripheral Family 
Timing in an Interrupt-Based System with the Z80® CTC 
A Z80-Based System Using the DMA with the SIO 
Using the Z84C11/C13/C15 in Place of the Z84011/013/015 
On-Chip Oscillator Design 
A Fast Z8Q® Embedded Controller 
Z8Q® Questions and Answers 

Additional Information 
Zilog's Superintegrationlll Products Guide 
Literature Guide 
Third Party Support Vendors 
Zilog's Sales Offices, Representatives and Distributors 

Part No Unit Cost 

DC-8321-00 5.00 

L-9 

a 



~~~~~~~~~~~~~I 
LITERATURE GUIDE 1

Z80eJZ8000e DATACOMMUNICATIONS FAMILY OF PRODUCTS
Databooks

Z180lN Microprocessors and Peripherals Databook
ProductSpecificaHons

Z80180/Z8S180/Z8L 180 Z180'" Microprocessor
Z80181 Z181'" Smart Access Controller (SAC'")
Z80182/Z8L 182 Zilog Intelligent Peripheral Controller (ZIP1II)

Application Notes and Technica/ Artic/es
Z1801ll Questions and Answers
Z1801ll/SCC Serial Communication Controller Interface at 10 MHz
Interfacing Memory and I/O to the 20 MHz Z8S180 System
Break Detection on the Z80180 and Z181'"
Z182 Programming the MIMIC Autoecho ECHOZ182 Sample Code
Local Talk Link Access Protocol Using the Z80181

Support Products
Z8S18000ZCO Evaluation Board
Z8018100ZCO Evaluation Board
Z8018101ZCO Evaluation Board
Z8018101ZA6 Driver Software
Z8018100ZDP Adaptor Board
Z8018200ZCO Evaluation Board
Z8()® and Z80180 Hardware and Software Support
Third Party Support Vendors

Additiona//nformation

L-10

Zilog's Superintegration'" Products Guide
Literature Guide
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DC-8322-00 5.00

I

LITERATURE GUIDE
zao~/ZaoooQD DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks and User's Manuals

zaooo Family of Products
18000 Family Databook

Zilog's Z8000 Family Architecture
Z8001/Z8002 Z8000 CPU Product Specification
Z8016 Z8000 Z-DTC Product Specification
Z8036 Z8000 Z-CIO Product Specification
Z8536 CIO Counter/Timer and Parallel I/O Unit Product Specification
Z8038/Z8538 FlO FIFO InpuVOutput Interface Unit Product Specification
Z8060/Z8560 FIFO Buffer Unit
Z8581 Clock Generator and Controller Product Specification

User's Manuals
Z8000 CPU Central Processing Unit User's Manual
Z8010 Memory Management Unit (MMU) User's Manual
Z8036 Z-CI0/Z8536 CIO Counter/Timer and ParallellnpuVOutput User's Manual
Z8038 Z8000 Z-FIO FIFO InpuVOutput Interface User's Manual
Z8000 Application Notes and Military Products

Application Notes
Using SCC with Z8000 in SDLC Protocol
SCC in Binary Synchronous Communication
Zilog's Military Products Overview

Additional Information
Zilog's Superintegration" Products Guide
Literature Guide
Zilog's Sales Offices, Representatives and Distributors

l80 Family Technical Manual
180180 Z180 MPU Microprocessor Unit Technical Manual
l280 MPU Microprocessor Unit Technical Manual
l380" Preliminary Product SpeCification
l380" User's Manual
lNW2000 User's Manual for PC WAN Adaptor Board Development Kit

3CC Serial Communication Controller User's Manual
-ligh-Speed SCC, Z16C30 USC User's Manual
-ligh-Speed SCC, Z16C321USC User's Manual
l16C351SCC Integrated Serial Communication Controller Technical Manual
l16C351SCC Integrated Serial Communication Controller Addendum

Part No Unit Cost

DC-8319-00 5.00

DC-8309-00 5.00
DC-8276-04 5.00
DC-8224-03 5.00
DC-6003-03 N/C
DC-8297-03 5.00
DC-8315-00 N/C

DC-8293-02 5.00
DC-8280-04 5.00
DC-8292-02 5.00
DC-8286-01 5.00

DC-8286-01A N/C

L-11

..

LITERATURE GUIDEI
_M_IL_IT_A_R_Y_C_O_M __ PO~N_EN_T_S __ FA_M_I_L_Y _______________________________________ 1

Military Product Specifications Part No Unit Cost I

Z868i ROM less Microcomputer DC-2392-02 N/C I
Z800i/8002 Military Z8000 CPU Central Processing Unit DC-2342-03 N/C I

Z858i Military CGC Clock Generator and Controller DC-2346-0i N/C
Z8030 Military Z8000 Z-SCC Serial Communications Controller DC-2388-02 N/C
Z8530 Military SCC Serial Communications Controller DC-2397-02 N/C
Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel I/O DC-2389-0i N/C
Z8038/8538 Military FlO FIFO Input/Output Interface Unit DC-2463-02 N/C
Z8536 Military CIO Counter/Timer Controller and Parallel I/O DC-2396-0i N/C
Z8400 Military Z80 CPU Central Processing Unit DC-235i-02 N/C
Z8420 Military PIO Parallel Input/Output Controller DC-2384-02 N/C
Z8430 Military CTC Counter/Timer Circuit DC-2385-0i N/C
Z8440/i/2/4 Z80 SIO Serial Input/Output Controller DC-2386-02 N/C
Z80C30/85C30 Military CMOS SCC Serial Communications Controller DC-2478-02 N/C
Z84COO CMOS Z80 CPU Central Processing Unit DC-244i-02 N/C
Z84C20 CMOS Z80 PIO Parallel Input/Output DC-2384-02 N/C
Z84C30 CMOS Z80 CTC Counter/Timer Circuit DC-248i-0i N/C
Z84C40/i/2/4 CMOS Z80 SIO Serial Input/Output DC-2482-0i N/C
Zi6C30 CMOS USC Universal Serial Controller (Preliminary) DC-253i-0i N/C
Z80i80 Zi80 MPU Microprocessor Unit DC-2538-0i N/C
Z84C90 CMOS KIO Serial/Parallel/Counter Timer (Preliminary) DC-2502-00 N/C
Z85230 ESCC Enhanced Serial Communication Controller DC-2595-00 N/C

L-12

LITERATURE GUIDE
I GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides Part No Unit Cost

Superintegration Master Selection Guide 1994-1995
Superintegration Products Guide
Quality and Reliability Report
ZIN" 3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet
ZIA ZIAOOZCO Disk Drive Development Kit Datasheet
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet
Zilog Infrared (lR) Controllers - ZIRC" Datasheet
Zilog V. Fast Modem Controller Solutions
Zilog Digital Signal Processing - Z89320 Datasheet
Zilog Keyboard Controllers Datasheet
Z380" - Next Generation Z80®/Z180" Datasheet
Fault Tolerant Z8® Microcontroller Datasheet
32K ROM Z8® Microcontrollers Datasheet
Zilog Datacommunications Brochure
Z89300 DTC Controller Family Brochure
Zilog Digital Signal Processing Brochure
Zilog ASSPs - Partnering With You Product Brochure
Zilog Wireless Products Datasheet
Zilog Z8604 Cost Efficient Datasheet
Zilog Chip Carrier Device Packaging Datasheet
Zilog Database of IR Codes Datasheet
Zilog PCMCIA Adaptor Chip Z86017 Datasheet
Zilog TelevisionNideo Controllers Datasheet
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet
Zilog Z87000 Z-Phone Datasheet
Zilog 1993 Annual Report
Zilog 1994 First Quarter Financial Report

DC-5634-00 N/C
DC-5676-00 N/C
DC-8329-00 N/C
DC-5556-01 N/C
DC-5593-01 N/C
DC-5560-01 N/C
DC-5558-01 N/C
DC-5525-02 N/C
DC-5547-01 N/C
DC-5600-01 N/C
DC-5580-02 N/C
DC-5603-01 N/C
DC-5601-01 N/C
DC-5519-00 N/C
DC-5608-01 N/C
DC-5536-02 N/C
DC-5553-01 N/C
DC-5630-00 N/C
DC-5662-00 N/C
DC-5672-00 N/C
DC-5631-00 N/C
DC-5585-01 N/C
DC-5567-01 N/C
DC-5561-02 N/C
DC-5632-00 D/C
DC-1993-AR N/C
DC-1994-Q1 N/C

L-13

a

ORDERING
INFORMATION

Complete the attached literature order form. Be
sure to enclose the proper payment or supply a
purchase order. Please reference specific order
requirements.

NAME

COMPANY

ADDRESS

CITY

PART NUMBER

-

-

r

Mail To:

~2il..!lG
210 E. HACIENDA AVE. MIS C1-0
CAMPBELL, CA 95008-6600

Phone: (408)370-8016
Fax: (408)370-8056

LITERATURE GUIDE
MINIMUM ORDER
REQUIREMENTS

Orders under$300.00 must be prepaid bycheck,
money order or credit card. Canadian and for­
eign orders must be accompanied by a cashier's
check in U.S. dollars, drawn on a correspondent
U.S. bank only.
Orders over $300.00 may be submitted with a
Purchase Order.

PLEASE PRINT OR TYPE

I STATE IZIP

DOCUMENT TITLE

Credit Card or Purchase Order #

SHIPMENT

Orders will be shipped afteryourcheck is cashed
or credit is checked via the most economical
method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

PHONE () -
Method of Payment (Check One)

o Check o Money Order

Credit Card 0 VISA 0 MlC 0 P.O. (over $300.00)

COUNTRY

UNIT COST QTY. TOTAL

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

$ $

SUBTOTAL

Expiration Date ADD APPLICABLE SALES TAX (CA ONLY)

Signature ADD 10% SHIPPING AND HANDLING

TOTAL

Zilog1s Sales Offices I:J
Representatives iii

& Distributors

ZILOG DOMESTIC SALES OFFICES
AND TECHNICAL CENTERS

CALIFORNIA
Agoura .. 818-707-2160
Campbell .. 408-370-8120
Irvine .. 714-453-9701
San Diego .. 619-658-0391

COLORADO
Boulder ... 303-494-2905

INTERNATIONAL SALES OFFICES

CANADA
Toronto ... 905-850-2377

CHINA
Shenzhen ... 86-755-2236089
Shanghai .. 86-21-4370050, x5204

86-21-4331020

GERMANY
FLORIDA Munich ... 49-8967-2045
Clearwater .. 813-725-8400 Sommerda .. 49-3634-23906

GEORGIA JAPAN
Duluth ... 404-931-4022 Tokyo ... 81-3-3587-0528

ILLINOIS HONG KONG
Schaumburg ... 708-517-8080 Kowloon .. 852-7238979

MINNESOTA KOREA
Minneapolis .. 612-944-0737 Seoul ... 82-2-577-3272

NEW HAMPSHIRE SINGAPORE
Nashua ... 603-888-8590 Singapore .. 65-2357155

OHIO TAIWAN
Independence .. 216-447-1480 Taipei .. 886-2-741-3125

OREGON UNITED KINGDOM
Portland .. 503-274-6250 Maidenhead .. 44-628-392-00

PENNSYLVANIA
Horsham ... 215-784-0805

TEXAS
Austin ... 512-343-8976
Dallas ... 214-987-9987

© 1994 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means without
the prior written consent of Zilog, Inc. The information in this
document is subjecttochangewithout notice. Devices sold by Zilog,
Inc. are covered by warranty and patent indemnification provisions
appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog,
Inc. makes no warranty, express, statutory, implied or by descrip­
tion, regarding the information set forth herein or regarding the
freedom olthe described devices from intellectual property infringe­
ment. Zilog, Inc. makes no warranty of merchantability or fitness for
any purpose. Zilog, Inc. shall not be responsible for any errors that
may appear in this document. Zilog, Inc. makes no commitment to
update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in
life support devices or systems unless a specific written agreement
pertaining to such intended use is executed between the customer
and Zilog prior to use. Life support devices or systems are those
which are intended for surgical implantation into the body, or which
sustains life whose failure to perform, when properly used in accor­
dance with instructions for use provided in the labeling. can be
reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056

Z-1

II

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S., CANADIAN & PUERTO RICAN
REPRESENTATIVES

ARIZONA
Scottsdale
Thom Luke Sales, Inc (602) 451-5400

CALIFORNIA
Santa Clara
Phase II Technical Sales (408) 980-0414
Irvine
Infinity Sales .. (714) 833-0300

COLORADO
Englewood
Thorson Rocky Mountain (303) 773-6300

CONNECTICUT
Wallingford
Advanced Technical Sales (508) 664-0888

FLORIDA
Altamonte Springs
Semtronic Associates, Inc (407) 831-8233
Clearwater
Semtronic Associates, Inc (813) 461-4675
Fort Lauderdale
Semtronic Associates, Inc (305) 731-2484

ILLINOIS
Hoffman Estates
Victory Sales, Inc (708) 490-0300

IOWA
Cedar Rapids
Advanced Technical Sales (319) 393-8280

KANSAS
Olathe
Advanced Technical Sales (913) 782-8702

MARYLAND
Pasadena
Electronic Engineering & Sales (410) 255-9686

MASSACHUSETTS
North Reading
Advanced Technical Sales (508) 664-0888

Z-2

MICHIGAN
Novi
Rathsburg Associates, Inc (810) 615-4000

MINNESOTA
Minneapolis
Professional Sales for Industry (612) 944-8545

MISSOURI
Bridgeton
Advanced Technical Sales (314) 291-5003

NEW JERSEY
Cherry Hill
Tritek ... (609) 667-0200

NEW MEXICO
Albuquerque
Quatra & Associates (505) 296-6781

NEW YORK
Fairport
L-Mar Associates, Inc (716) 425-9100

OHIO
Centerville
Q-Mark, Inc ... (513) 438-1129
Independence
Rathsburg Associates, Inc (216) 447-8825

OKLAHOMA
Tulsa
Nova Marketing, Inc (918) 660-5105

OREGON
Portland
Phase II Technical Sales (503) 643-6455

TEXAS
Austin
Nova Marketing, Inc (512) 343-2321
Dallas
Nova Marketing, Inc (214) 265-4630
Houston
Nova Marketing, Inc (713) 240-6082

SALES REPRESENTATIVES AND DISTRIBUTORS

u.s., CANADIAN & PUERTO RICAN
REPRESENTATIVES

UTAH
Salt Lake City
Thorson Rocky Mountain (801) 942-1683

WASHINGTON
Klr/cJand
Phase II Technical Sales (206) 823-3874

WISCONSIN
Brookfield
Victory Sales, Inc (414) 789-5770

CANADA
British Columbia
BBD Electronics, Inc (604) 465-4907
Ontario
BBD Electronics, Inc (905) 821-7800
Ottawa
BBD Electronics, Inc (613) 764-1752
Quebec
BBD Electronics, Inc (514) 697-0801

PUERTO RICO
SanJuan
Semtronic Associates, Inc (809) 766-0700

SOUTH AMERICAN REPRESENTATIVES

ARGENTINA
Buenos Aires
Parallax Sales & Distribution (1) 372-7140

BRAZIL
Sao Paulo
Parallax Sales & Distribution (11) 535-1755

Z-3

II

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

NATIONWIDE
Newark Electronics 1-800-367-3573

ALABAMA
Hamilton Hallmark Electronics
Inside Alabama ... 800-572-7236
Outside Alabama 800-633-2918
Huntsville
Arro,,! Electronics : (205) 837-6955
Hamilton Hallmark Electronics (205) 837-8700

ARIZONA
Hamilton Hallmark Electronics
Inside Arizona ... 800-352-8489
Outside Arizona .. 800-528-8471

Phoenix
Hamilton Hallmark Electronics (602) 437-1200
Tempe
Anthem Electronics (602) 966-6600
Arrow Electronics (602) 431-0030

CALIFORNIA
Calabasas
Arrow Electronics (818) 880-9686
Chatsworth
Anthem Electronics (818) 700-1000
Costa Mesa
Hamilton Hallmark Electronics (714) 641-4100
Hayward
Arrow Electronics (510) 487-8416
Irvine
Anthem Electronics (714) 768-4444
Arrow Electronics (714) 587-0404
Rocklin
Anth~m Electronics : (916) 624-9744
Hamilton Hallmark ElectroniCs (916) 624-9781
San Diego
Anthem Electronics ~619~ 453-9005
Arro,,! Electronics : 619 565-4800
Hamilton Hallmark Electronics 619 277-6136
San Jose
Anthem Electronics ~408~ 453-1200
Arro,,! Electronics : 408 441-9700
Hamilton Hallmark Electronics................ 408 435-3500
Woodland Hills
Hamilton Hallmark Electronics (818) 594-0404

Z-4

COLORADO
Colorado Springs
Hamilton Hallmark Electronics (719) 637-0055
Englewood
Anthem Electronics ~303~ 790-4500
Arro,,! Electronics : 303 799-0258
Hamilton Hallmark Electronics 303 790-1662

CONNECTICUT
Cheshire
Hamilton Hallmark Electronics (203) 271-2844
Wallingford
Arrow Electronics (203) 265-7741
Waterbury
Anthem Electronics (203) 596-3200

FLORIDA
Deerfield Beach
Arrow Electronics (305) 429-8200
Lake Mary
Arrow Electronics (407) 333-9300
Largo
Hamilton Hallmark Electronics (813) 541-7440

(800) 282-9350
Fort Lauderdale
Hamilton Hallmark Electronics (305) 484-5482
Winter Park
Hamilton Hallmark Electronics (407) 657-3300

GEORGIA
Duluth
Arro,,! Electronics : ~404~ 497-1300
Hamilton Hallmark ElectrOnics 404 623-5475

404 623-4400
ILLINOIS

Bensonville
Hamilton Hallmark Electronics (708) 860-7780
Itasca
Arrow Electronics (708) 250-0500
Schaumburg
Anthem Electronics (708) 884-0200

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

INDIANA
Indianapolis
Arro",! Electronics ,' ~317~ 299-2071
Hamilton Hallmark Electronics 317 872-8875

800 829-0146
IOWA

Cedar Rapids
Arrow Electronics (319) 395-7230

KANSAS
Lenexa
Arro",! Electronics ,' ~913~ 541-9542
Hamilton Hallmark Electronics 913 888-4747

800 332-4375

KENTUCKY
Lexington
Hamilton Hallmark Electronics (800) 235-6039

(800) 525-0069
MARYLAND

Columbia
Anthem Electronics ~410~ 995-6640
Arro",! Electronics ,' 410 596-7000
Hamilton Hallmark Electronics 410 988-9800

MASSACHUSETTS
Peabody
Hamilton Hallmark Electronics (508) 532-9808
Wilmington
Anthem Electronics (508) 657-5170
Arrow Electronics (508) 658-0900

MICHIGAN
Livonia
Arrow Electronics (313) 462-2290
Nori
Hamilton Hallmark Electronics (313) 347-4271
Plymouth
Hamilton Hallmark Electronics (313) 416-5800

(800) 767-9654

MINNESOTA
Bloomington
Hamilton Hallmark Electronics (612) 881-2600
Eden Prairie
Anthem Electronics (612) 944-5454
Arrow Electronics (612) 941-5280

MISSOURI
Earth City
Hamilton Hallmark Electronics (314) 291-5350
St. Louis
Arrow Electronics (314) 567-6888

NEVADA
Sparks
Arrow Electronics (702) 331-5000

NEW JERSEY
Cherry Hill
Hamilton Hallmark Electronics (609) 235-1900
Marlton
Arrow Electronics (609) 596-8000
Pinebrook
Anthem Electronics (201) 227-7960
Arrow Electronics (201) 227-7880
Parsippany
Hamilton Hallmark Electronics (201) 575-4415

NEW YORK
Commack
Anthem Electronics (516) 864-6600
Hauppauge
Arro",! Electronics ,' (516) 231-2500
Hamilton Hallmark Electronics (516) 737-0600
Melville
Arrow Electronics (516) 391-1300
Rochester
Arro",! Electronics ,' (716) 427-0300
Hamilton Hallmark Electronics (716) 475-9130
Ronkonkoma
Hamilton Hallmark Electronics (516) 737-0600

NORTH CAROLINA
Raleigh
Arro",! Electronics ,' (919) 876-3132
Hamilton Hallmark Electronics (919) 872-0712

Z-5

II

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

OHIO
Centerville
Arrow Electronics (513) 435-5563
Dayton
Hamilton Hallmark Electronics (513) 439-6735
(800) 423-4688
Solon
Arroy! Electronics : (216) 248-3990
Hamilton Hallmark Electronics (216) 498-1100
Worthington
Hamilton Hallmark Electronics (614) 888-3313

OKLAHOMA
Tulsa
Arroy! Electronics : (918) 252-7537
Hamilton Hallmark Electronics (918) 254-6110

OREGON
Beaverton
ALMAC/Arrow Electronics {503~ 629-8090
Anth!lm Electronics : 503 643-1114
Hamilton Hallmark Electronics 503 526-6200

PENNSYLVANIA
Horsham
Anthem Electronics (215) 443-5150
Pittsburgh
Arrow Electronics (412) 963-6807

TEXAS
Austin
Arroy! Electronics : (512) 835-4180
Hamilton Hallmark Electronics (512) 258-8848
carrollton
Arrow Electronics (214) 380-6464
Dal/as
Hamilton Hallmark Electronics (214) 553-4300
Houston
Arroy! Electronics : (713) 530-4700
Hamilton Hallmark ElectroniCs (713) 781-6100
Richardson
Anthem Electronics (214) 238-7100
San Antonio
Hamilton Hallmark Electronics (210) 828-2246

UTAH
Salt Lake City
Anthem Electronics {801~ 973-8555
Arroy! Electronics : 801 973-6913
Hamilton Hallmark ElectrOnics 801 266-2022

Z-6

WASHINGTON
Bellevue
ALMAC/Arrow Electronics (206) 643-9992
Bothell
Anthem Electronics (206) 483-1700
Redmond
Hamilton Hallmark Electronics (206) 881-6697
Spokane
ALMAC/Arrow Electronics (509) 924-9500

WISCONSIN
Brookfield
Arrow Electronics (414) 792-0150
New Berlin
Hamilton Hallmark Electronics (414) 797-7844

CANADA
Alberta
Future Electron!cs (403) 250-5550
Future ElectroniCs (403) 438-2858

British Columbia
Arrow Electroni~s {604~ 421-2333
Future ElectrOnics 604 294-1166
Hamilton Hallmark Electronics 604 420-4101

Manitoba
Future Electronics (204) 786-7711

Ontario
Arrow Electronics 613 226-6903
Arrow Electronics 905 670-7769
Future Electronics 905 612-9200
Future Electronics 613 820-8313
Hamilton Hallmark Electronics 416 564-6060
Hamilton Hallmark Electronics 613 226-1700

Quebec
Arrow Electroni~s {514~ 421-7411
Future ElectroniCs 514 694-7710
Hamilton Hallmark Electronics 514 335-1000

SALES REPRESENTATIVES AND DISTRIBUTORS
I

CENTRAL AND SOUTH AMERICA

MEXICO BRAZIL
Semiconductores Sao Paulo
Profesionales ... 525-524-6123 Nishicom ... 011-55-11-535-1755
Proyeccion Electronica 525-264-7482

ARGENTINA
Buenos Aires
YEL SRL ... 011-541-440-1532

ASIA-PACIFIC

AUSTRALIA
R&D Electronics 61-3-558-0444
GEC Electronics Division 61-2-638-1888

CHINA
Beijing
Lestina International Ltd 86-1-849-8888

Rm.20469
China Electronics Appliance Corp 86-755-335-4214
TLG Electronics, Ltd 85-2-388-7613

GuangZhou
Lestina International Ltd 86-20-885-0613

86-20-886-1615

HONG KONG
Lestina International Ltd 852-735-1736
Electrocon Products Ltd 852-481-6022

INDIA
Bangalore
Zenith Technologies Pvt. Ltd 91-812-586782
Bombay
Zenith Technologies Pvt. Ltd 91-22-4947457

INDONESIA
Jakarta
Cinergi Asiamaju 62-21-7982762

JAPAN
Tokyo
Teksel Co., Ltd 81-3-5467-9000
Internix Incorporated 81-3-3369-1101
Kanematsu Elec. Components Corp 81-3-3779-7811
Osaka
Teksel Co., Ltd .. 81-6368-9000

KOREA
ENC-Korea ... 822-523-2220

MALAYSIA
Eltee Electronics Ltd 60-3-7038498

NEW ZEALAND
GEC Electronics Division 64-25-971057

PHILIPPINES
Alexan Commercial 63-2-402223

SINGAPORE
Eltee Electronics Ltd 65-2830888

TAIWAN (ROC)
Acer Sertek, Inc 886-2-501-0055
Orchard Electronics Co 886-2-504-7083
Promate Electronics Co. Ltd 886-2-659-0303

THAILAND
Eltee Electronics Ltd 66-2-538-4600

Z-7

II

SALES REPRESENTATIVES AND DISTRIBUTORS

EUROPE

AUSTRIA
Vienna
EBV Elektronik GMBH 0043-1-8941774
Avnet/Electronic 2000 0043-1-9112847

BELGIUM
Antwerp
o & 0 Electronics PVBA 32-3-8277934
Zaventem
EBV Elektronik ... 322-7160010

DENMARK
Brondby
Ditz Schweitzer AS 4542-453044
Lynge
Rep Delco .. 45-35-821200

ENGLAND
Berkshire
Future Electronics 44-753-687000
Gothic Crellon ... 44-734-787848
Macro Marketing 44-628-604383
Lancashire
Complementary Technologies Ltd 44-942-274731

FINLAND
Espoo
OY SW Instruments AB 358-0-522-122

FRANCE
Cedex
A2M ... 331-46232425
Champs sur Marne
EBV Elektronik ... 331-64688600
Massy
Reptronic SA ... 331-60139300

Z-8

GERMANY
Berlin
EBV Elektronik GMBH 030-3421041
Avnet/Electronic 2000 030-2110761
Burgwedel
EBV Elektronik GMBH 05139-80870
Dortmund
Future GMBH .. 02305-42051
Duesseldorf
Avnet/Electronic 2000 0211-92003-0
Thesys/AE .. 0211-53602-0
Erfurt
Thesys ... 0361-4278100
Frankfurt
EBV Elektronik GMBH 069-785037
Avnet/Electronic 2000 069-973840
Future GMBH .. 06126-54020
Thesys/AE ... 06434-5041
Hamburg
Avnet/Electronic 2000 040-64557021
Leonberg
EBV Elektronik GMBH 07152-30090
Muenchen
Avnet/Electronic 2000 089-4511004
EBV Elektronik GMBH 089-456100
Future GMBH .. 089-9571950
Nuernberg
Avnet/Electronic 2000 0911-9951610
Neuss
EBV Elektronik GMBH 02131-96770
Stuttgart
Avnet/Electronic 2000 07156-356190
Future GMBH .. 0711-830830
Thesys/AE ... 0711-9889100
Weissbach
EBV Elektronik GMBH 036-426486

SALES REPRESENTATIVES AND DISTRIBUTORS

ISRAEL
RDT ... 972-36450707

I ITALY
I Milano

De Mico S.P.A. 0039-295-343600
EBV Elektronik 0039-2-66017111
Firenze
EBV Elektronik 0039-55-350792
Roma
EBV Elektronik 0039-6-2253367
Modena
EBV Elektronik 0039-59-344752
Napoli
EBV Elektron ik 0039-81-2395540
Torino
EBV Elektronik 0039-11-2161531
Vicenza
EBV Elektronik 0039-444-572366

NETHERLANDS
EBV Elektron ik ... 313-46562353

NORWAY
Bexab Norge ... 47-63833800

POLAND
Warsaw
Gamma Ltd ... 004822-330853

PORTUGAL
Amadora
Amitron-Arrow 0035-1-4714806

RUSSIA
Woronesh
Thesys/lntertechna 0732593697
Vyborg
Gamma Ltd ... 081278-31509
St. Petersburg
Gamma Ltd ... 0812-5131402

SPAIN
Barcelona
Amitron-Arrow S.A. 0034-3-4907494
Madrid
Amitron-Arrow S.A. 0034-1-3043040

SWEDEN
Bexab Sweden AB 46-8-630-8800

SWITZERLAND
Dietikon
EBV Elektronik GMBH 0041-1-7401090
Lausanne
EBV Elektronik AG 0041-21-3112804
Regensdorf
Eurodis AG ... 0041-1-8433111

UKRAINE
Kiev
Thesys/Mikropribor 04434-9533

Z-9

II

Q3194

Zi/og , Inc.
210 Eas/ Hacienda Ave.
Campbell, CA 95008-6600
408-370-8000

