Embedded Control
used in a variety of

Z8° Microcontrollers

User's Manual

Q2/95 UM95280010

N 2iLa5

Overview

Zilog's Focus on Application-Specific Products
Helps You Maintain Your Technological Edge

The Z8® Microcontroller User's Manual consists
of the following:

o 2Z8%° Architecture
Technical Description

o Zilog Software User's Guides
- asm Z8%® Cross Assembler
- Zilog Universal Object File Utilities

e Zilog General Information
- General Terms and Conditions
- Zilog Sales Offices, Representatives,
and Distributors
- Zilog Literature Guide

Application notes and other information on Zilog specialty
software and documentation is available through the Zilog
Bulletin Board Service (ZBBS), which can be reached by calling
408-370-8024 (up to 28.8 baud supported, 8-N-1 connections,
and ANSI/BBS terminal emulation setup recommended).

© 1994, 1995 by Zilog, Inc. All rights reserved. No part of this document may be copied or
reproduced in any form or by any means without the prior written consent of Zilog, Inc. The
information in this document is subject to change without notice. Devices sold by Zilog, Inc. are
covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and
Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by
description, regarding the information set forth herein or regarding the freedom of the
described devices from intellectual property infringement. Zilog, Inc. makes no warranty of
merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that
may appear in this document. Zilog, Inc. makes no commitment to update or keep current the
information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or
systems unless a specific written agreement pertaining to such intended use is executed
between the customer and Zilog prior to use. Life support devices or systems are those which
are intended for surgical implantation into the body, or which sustains life whose failure to
perform, when properly used in accordance with instructions for use provided in the labeling,
can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000

Telex 910-338-7621

FAX 408 370-8056

Internet: http://www.zilog.com/zilog

UM95Z800103

D>
N
B

MICROCONTROLLERS
USER'S MANUAL

Z1LoG Z8® MICROCONTROLLERS
UseR's MANUAL

TABLE OF CONTENTS

1. Z8° MICROCONTROLLER TECHNICAL DESCRIPTION

CHAPTER TITLE AND SUBSECTIONS Pace

CuapteR 1: Discrete Z8%° Probuct OVERVIEW

1.1 Z8 MCU Family OVEIVIEWcoiiiieiiiire sttt ettt st et aseaa et nrenrans 1-1
CHAPTER 2: ADDRESS SPACE

P2 B 1111 (o To [UTe3 { o) OO PR 2-1
2.2 Z8% Standard REGISLEN Flec..cciiiiiieiiiiiiesies ettt et stae e srs e ea e st e e e sbvaesreeeers 21
2.3 Z8% Expanded RegiSter Filecoviiiiiiiireiieiiese et sene st st e e ve s rvae s sreeeneneans 2-5
2.4 Z8% Control and Peripheral REGISIEISccvvvuiiiiiiiieiieie et 2-8
2.5 Program MEMOTYcooiiiiiiitie sttt et e sb et ess b sb e s es e s eant e e sesebrees 2-10
2.6 Z8P EXIEINAI MEMOTY ..ivvviiiiiiieeiieee e et site st e sree e e siteestaeatbessreesaes e sbtessbeesrbessstesassessssnestennn 2-11
2.7 Z8® SEACKSuvvviiiiiiiie ittt e st e e et e e s e ebr e e et iab et e e e et te b e e e eea bbb et ae e e e beeee e e s natbareeeeeans 2-12
CuapTeR 3: CLoCK

BT CIOCK ettt e e e e e et e e e ebb e e e ettt a e e e ee bbb eeee e s b e b e ee sesabareeesiabebbaeeseeen e rrrereaeaan 3-1
B.2 ClOCK CONIIOL ...t et bt e e e b e e e e e abeee e s eabeneseeeseeetanreeesseens 3-1
3.3 OSCIHIAION CONION......eiiieiii ittt et s e e st e e s eeab e s eab s st beeessaabbsessanebeesns 3-2
3.4 OSCiIllator OPEIAtiONc.ccciiiiiiiieciiiiieiieie ettt ettt e eva e sraea e rreetbesbeabes e esbes b essesaeesens 3-3
BB LC OSCIHALON ...ttt et e e st e e e e st e b e e e ee et aeaesebtnbe et aeeseeearraneeas 3-7
KIS = (O O =To1]1 =1 (o TSRS OTRTO 3-8
CHAPTER 4: ReseT—WaTcH-Doa TiMER

o I T TR 4-1
4.2 [Reset Pin, Internal POR OPErationcccceievieeeieicece st eaivee s e svresaesresnns 4-1
4.3 Watch-Dog TimEE (WDT) ..ccuiiie ittt e se st ba e s te e ste et te s e bestae s steenaesvea e 4-7
4.4 POWEr-ON-RESEE (POR) ...c.evviiiiie ittt sttt et r e e v et este s et e 4-8
CHAPTER 5: I/O Ports

LT 11 (oo ¥ o3 (o] o EU U SRS RUSTRRTURORP 5-1
L2 o T 0 PO PP UPRRTPPR 5-2
L I o T A ISR RRRR PP 5-5
BUAPOM 2 ..ottt ettt e e e e b e e bt ettt e et a e et a e ee st eeeite e s ebaeeeenateeseareteen 5-9
LTS Y o ¢ B TP RPRP 5-13
5.6 POt HANASHEKEoocuvviiiiiiiiiiie ettt sttt ettt e s e e e seatr s e e s aeeeaane 5-19
5.7 1/O Port ReSet CONItIONSccivviiriiiie ittt stie st cetee e sa b sttt e e s be s s sae s s reseesanbsaesensaaeeees 5-23

Z8° MICROCONTROLLERS
@ 205 USER'S MANUAL

CHAPTER TITLE AND SUBSECTIONS PaGE

CHaPTER 5: I/O PoRts (CONTINUED)

5.8 ANAIOG COMPAALOTSutiiiiiiirinrieieie ettt ettt ettt ere e b ree bt sar e e teertas e arseesreeteensearenas 5-25
5.9 Open-Drain Configurationcccccvivirninnenenieieinneeeeene ettt 5-29
5.10 LOW EMIEMUSSION ..ottt sttt e te e te e v e et e e st ere e eteeeneeennas 5-29
.11 INPUL PrOECHION ...ttt s a e sb e e b e e e st s tb e enbe e breenanesnras 5-30
B5.12. CMOS Z8® AUTO LATCHESccveeutiiteieiecteeerestveseesaeseenteereeaeetseeseessestesstesstesanseeneesressteessesseans 5-31
CHAPTER 6: COUNTER/TIMERS

ST I (a1 170Te 0o i o] o RO OO OSSP SP PSR 6-1
6.2 Prescalers and COUNEI/TIMEIScooviviiiiiiiiiiiiie et sr e ee e sie et ste e s reebt e s e s neetaestraesavesavens 6-2
6.3 Counter/TIMEr OPEIatiONcviiiie ettt e st et sre s csbeeesbte s b e sabessaessabeesreeens 6-3
B4 T o MOGBS ...t s 6-5
B.5 T)u MOGES ..ot 6-7
6.6 Cascading COUNEITTIMETScccuiireeriiiiniirnie et ete e sse e see bt e sttt etnse st areensersareeneeses 6-11
6.7 RESEE CONAILIONSeoiiiriiiieiie et sttt st e et sttt e s e s e reestbe s st esn e eneaan 6-12
CHAPTER 7: INTERRUPTS

28 I (10T 107 1T o O O SRS S USROS 7-1
7.2 INEEITUDPE SOUICES ...ccuviieiiiitieie ettt teeve sttt et et e e e e st b e s sree s bt sebesseaesbbaesbentesseeanteenteesntessaeas 7-2
7.3 Interrupt Request (IRQ) Register Logic and TimMiNgccocvvvrireriecicienrsenrersiesieeescesneeennnns 7-4
7.4 Interrupt INIHAHZAIONcc.oeeeiieie e e 7-5
7.5 IRQ Software Interrupt GENErationcccovuieviciiiieeiiie et ettt ebe e e aes 7-9
7.6 VECtOred PrOCESSINGouveviiieiiiis ittt st eb e bt s et st saee b e 7-9
7.7 POIEA PrOCESSING ..viiivieitiieiieciie et esittesteesaneeesee st e ssbe s ae et e eabessseesssesbaeeateeessnbesreeassesseasnseans 7-12
7.8 RESEE CONGILIONS ..veiviveiiiiiiectiie ettt et ee et st e et st e st sbaeetaasane s e sbe s e rbeseeseeeeteeerneesaeeeees 7-12
CHAPTER 8: Power-Down MobpEes

B a1 (oo (Uo7 (7] o EOUUR OO TSRS SRR 8-1
8.2 Halt MOAE OPBIAtIONcceiriiiieiiiiie ettt st st ebeesbe s arbe s beeabeste e saereenas 8-1
8.3 STOP MO OPEIALIONcoiviiieitiiie et ettt ettt ere b e sbb e b e s ebeesaeeatesreeseesaeetes 8-2
8.4 STOP-Mode Recovery Register (SMR)ccccviviiiiiiiieriiiieereee e sre ettt eve e 8-3
CHAPTER 9: SeRiAL /O

9.1 UART INTOAUCHION ...ttt ettt sttt e s e b e s e s sbeastaesbsaesanesanens 9-1
9.2 UART Bit-Rate Generation ..ot s srae s s 9-2
9.3 UART ReCEIVEr OPEIAtIONoveviiireiiiirieiiieiieestintisit et ssvetsetsentenaseeessasssbesbe sesbesseesbesseesreanrenns 9-4
9.4 TranSMIttEr OPEIAtION ...c..vvvivierieriie ittt ettt e e see et e e e be e bae e este s saetesreeseesabessntesares 9-6
9.5 UART ReSEt CONAItIONSeociriiiiiiiiiictsicie ettt sv ettt s bttt eveesbenba e 9-8
9.6 Serial Peripheral INterface (SPI)covviiiii ittt e s 9-9
9.7 SPIHOPEIALION ...cccviiiieiecee sttt s e st sbe st eett e st e eaa e et e ere e st e st e eteeate s erneebesnsesaesntesreens 9-10
9.8 SPICOMPAIEeeiviiiiiiiicee ettt et ettt e ete et e reeteesteebeetbeete et seereereeneesateeaeesereesbesstnseesssasben 9-10
9.9 SPI ClOCK ...ttt ettt b s ee ettt sh s bbb be e been e ae e ereereereere bt ereees 9-10
9.10 Receive Character Available and OVEITUNccviieiieii e e 9-12

. Z8° MICROCONTROLLERS
D25 _Usen's Huwac

CHAPTER TITLE AND SUBSECTIONS PaGE
CHAPTER 10: ExTERNAL INTERFACE

L0 IR (] goTo [FTe711o] o TSP PRSPPI 10-1
T0.2 PiN DESCHPHONS L.oiiii ettt s be e sbee s e et baaesenbaesatreae s 10-2
10.3 External Addressing Configurationccccevviiiiiiiiiicee st 10-3
T0.4 EXEEINAL STACKS ..ottt ettt et ettt ettt e r e et e et e e ete e s ae e sabe s eaberebe e bbeseresenneeereeens 10-4
TO.5 DAEA MEIMIONY ..ottt e e e bt e e etb e e st e e e stee e e etbsbeeenraesenbeeens 10-4
10.6 BUS OPEBIALION . .oiiiiiiiie ettt sbe e e ebe e stb e e et a e s etbeeenae e steeeanaeas 10-5
10.7 Extended BUS TIMINGoiiiiiii ettt ettt s e st ab e s eana e seesanesens 10-7
10.8 INSTIUCHON TIMING 1.vei ittt ettt b e 109
10.9 Z8® RESET CONDITIONSuvvveettveireiassreisseitesateesasesessesssssssssassesesssssinssensessssssasenssssersesasseessessnns 10-11
CHapTeR 11: AppRessiNg MobpEs

L 4 (e To [V £ o o U OSSOSO UTUPRUPPRPPIN 11-1
11.2 Z8® ReGISTER ADDRESSING (R) .vviiiiiiiiiiiiiiiie ettt 11-2
11.3 Z8% INDIRECT REGISTER ADDRESSING (IR) ©.viiiviiiiciieccee e 11-3
1.4 Z8% INDEXED ADDRESSING (X) 1e.vvtiveirrieeesiereietreeteetatsittessesbesssatteesseessaeseesseenaeseessbeeabesstessesnneens 11-5
11.5 Z8® DIRECT ADDRESSING (DA) ...vviiviiie ittt ettt ettt v st tb e e e eteeeeeae e 11-6
11.6 Z8® RELATIVE ADDRESSING (RA) ...ttt ettt bbbt enveere e 11-7
11.7 Z8® IMMEDIATE DATA ADDRESSING (IM) ...c.iiiiiiiie ittt 11-8

CHAPTER 12: INSTRUCTION SET

12.1 Z8® FUNCTIONAL SUMMARYoiuiiitieiirioeeeieeansiettessasteeseseaeeeseasaeesae e e s etbeetsstteteeeeaeeeneenaesaeaneeeees 12-1
12,2 PrOCESSOr FIATS «.eiiiiiiie ittt ettt ettt e e et e et e e s erb e e e as e e e as b e streeeeesbeeeneneeenans 12-2
12.3 CONAILION COUBS ...ovuiiiiiiiie ettt sttt ettt sbe ettt ta b e ese e e st enbeessesaeas 12-4
12.4 Notation and Binary ENCOGING ...c..coviiiriiiiiiiiiiii ettt 12-5
12.5 Z8 INStrUCHION SUMMAIYoviiiiiiiiciie ettt ettt e et e e ste e e ete e e e eabe e e erreeeens 12-7
12.6 Instruction Descriptions and FOIMALSocioiiiiiirii e 12-10

CHAPTER 13: ZiLoG EMULATORS/SOFTWARE

13.1 ZILOG ZB® EMULATOR PRODUCTS ... vivvrevevveeteeresveesesesssesseassesaessuseessessessseenssssasesontesreessensesans 13-1
13.2 Z8 CCP™ Emulator "QUICK Start”ccceoieiiiiiiiiieeic st 13-2
13.3 Z8 CCP™ Emulator Package COMENEScccviviiriiiiiiiiceie ettt s, 13-3
13.4 ZBBCCPOOZEM EMUIBLON .. .ioviieiiie ittt et s v et sr it savebe s eaae et enbebeens ene 13-4
13.5 ZBECCPOOZAC EMUIALON Kitviivviviiiieiiiesiiesiriiiiitssitee e sre e et sae vt sraete e snaeavesaa v ennen 13-5
13.6 ZBBCT1200ZEM EMUIALOT ...oovivitiiiiiietisit ettt ettt sttt sbave e b b et sae s 13-6
13.7 ZBBCS5000ZEM EMUIALOLiiviiiiiiieieiieieis ittt e s sb e b b v re s 13-7
TBB SOMWANE ..o s et e st e bbb e b b e 13-8
13.9 Accessing REgiStEr MEMOTYccciiiiiiie ettt sttt e be s beerbe s sreeaesereeraeas 13-8
13.10 Accessing Program and External Data Memoryccecveiiiiiiiniiniiiice e 13-12
1311 BIT ManiPUIALIONSccviviiiiicice ettt sr e sr e erae s saae e s be s s ve e ebesabee e 13-13
13.11.1 TeSt UNAer Mask (TIM)coiiiiiieieiiiie ettt ettt ettt 13-14
13.11.2 Test Complement Under Maskcccccccivcriiiiiiiiiiie et 13-14
13,12 StACK OPEIAtIONS ...ttt eree st e ste et e e e ae s et e e ereeens 13-15
T ABINIEITUDES .ttt e e e s tb e e ts e e ste st e e e bbesbeesaaeanes 13-16

N 2IL05 i

CHAPTER TITLE AND SUBSECTIONS PaGE
13.14 TiMer/Counter FUNCHIONSccccviieiiiiiie ettt saae e e 13-20
BRI E 1O 3 oW Ta Vel (1o o 1= TP 13-29
13.16 ArithmeEtiC ROULINESc.vveiiiiiiee ettt e s eant b e e 13-37
1347 CONCIUSION ...t ettt e e e e ettt et e et e e et e e e e e e et e e e e sa st aesssessaeseeeseennns 13-42
CHAPTER 14: THIRD-PARTY SuppoRrT TooLs -

14.1 Third-Party Support—Emulators/Programmersccoevevuiinienineneneiiienne e seneiesesenes 14-1
14.2 Third-Party Support—Assemblers/C COMPIIErS..........ccccvviiiiverienieecce e 14-1

. Z8° MICROCONTROLLERS
N 2iL05 USER's MANUAL

Il. ZILOG Z8® SOFTWARE

AsM Z8® Cross AssemsLER UseR's GUIDE

CHAPTER TITLE AND SUBSECTIONS PaGE

CHAPTER 1: OVERVIEW

B I I (01 (o Yo (U3 £ [o T o NN PP OO RURRRPRRt 1-1
1.2 ASSEMDIET OVEIVIEWc.viviiie ittt ettt ae e e et e e s e et e e e e e ettt e s s abaaeeeseeeeeaarrneeas 1-2
1.3 Relocation and LINKINGoce oottt et sttt ase e sseesse e besnneaines 1-3
CHAPTER 2: AssemBLY LANGUAGE SYNTAX

b2 I [2110 To [To] 1 1] o IR USRS PRSPPIt 2-1
2.2 SYMDOHC NOTALION ..t e e e s s be et r e e ee s s sanbebsaeeeann e 2-1
2.3 Operations and OPEIANGAScooeiviiiiieiiee ettt sttt st eb e e e e sae e e 2-6
P N 07 1 010 01101 1IN OSSP URPUPRUUUPUPPIRt 2-6
2.5 ANthMETIC EXPIESSIONS ...eeiiiiie ittt sttt ettt et st sb e s b beab e eesabaee s nbrre e naeees 2-7
2.6 EXPressions and OPEIALOIScvviiiriiiierieeiiriiissre s estaeastreestresaneesaressseasesstnrassseassseeesnennens 2-7
2.7 CONSIANES .ovviivviiiiiiiiriit ettt te et e es et s et ettt teesee s e a b b e bbb bbareetesebeeeeeest e e b e b bbb baberberarrnrnnes 2-10
2.8 LOCAON COUNTETcovviiieie ettt e e ettt e e e e e e et r e e e e et b b e s e et be e e s st e s e e e e ensaanbeseeeeseins 2-11

CHAPTER 3: Pseupo-Ops

1 T I 11 (oo [T} 1 o) o K SO TS O SO RU PP TP 3-1
3.2 ReloCcation PSEUAO-OPSc..coviiiiieiiiiiciienie sttt sttt sttt st s e 3-1
3.3 Label Definition PSEUAO-OPS ...ocviiiiiiiiiet ettt ettt e et e st e e saae e e s esvaeaennes 3-3
3.4 Module and Section PSEUAO-OPScooueiiiiiiiiiiii ettt s 3-6
3.5 General Data Definition OPEratioNcc.coovviereeieieieeieeite et et e srreeeeee e eree e sraeeanreaens 3-8
3.6 Conditional Assembly PSEUAO-OPScoiriririieeiiieieniieiieie sttt enen 3-12
3.7 Assembler Control PSEUAO-OPScciiiiriir ittt e 3-13
CHAPTER 4: MACROS

4.1 GeNEral DESCHIPLON ...c.ecviieiiie ettt ettt et et sttt et ee et e et eree e e ereenes 4-1
4.2 MACRO 0r String MACRO ..ottt sttt sbe s 4-2
4.3 PROC or Procedure MACRO ..ottt ettt se et e e aeern et 4-3
4.4 Special MACRO PSEUAO-OPSccoviitiiiieiisiee et sie st se e sree e staesbeesbesas e seessnesbasstesssaensesnns 4-4
4.5 Special MACRO OPEIAIOISc.ei ittt et et e stae s rt st ettt e st e s sbbe e beenteaeeareeennas 4-6
CHAPTER 5: PROGRAM INVOCATION

5.1 Assembler Command Lines and OPLONScovviiiiieiiciei et 5-1
B.2 LISHNG FOIMAL ..ottt s sttt et ebaate e e s beesabeaebbeserveenens 5-2
5.3 Program TErMINALIONcccveiiiiiiiiii e eie ettt et e sr e ae e saae e eaesabe st e s ebbeesabesnbeaeasraenses 5-2
APPENDICES

Appendix A. PSEUAO-OP SUMIMAIYccciiiieiieee it eiie sttt e site e eereeeeteeeaere s e sttt etbeesaseeanneeans A-1
Appendix B. Special SYMDOIScoiiiiiiii e e e B-1
Appendix C. ASCI CharaCter Stcccvuiiiiiieieie ettt ettt er e C-1
Appendix D. Error Messages and EXplanationsccccceeoiiveriiniiiisee e e sevesenae e e D-1
Appendix E. Program EXGMPIEc..ooviiiiiiieiieere ettt s E-1

Z8° MICROCONTROLLERS
A 205 USER'S MANUAL

ZiLog UniversaL OsJect FiLe UtiLimies User's GUIDE

CHAPTER TITLE AND SUBSECTIONS PaGE

CHAPTER 1: INTRODUCTION

T OVEBIVIEBW .ttt ettt t e ettt e se e et e bt e ehe e e sh e e ke e eab e e ehe e eh bt ek en e enn e et e s 1-1
1.2 ULIlIIES DESCHIPHION ..vieiiiie ittt e et e et et e e sbe e nab e e nbb et e nnbeeebe e s 1-2
1.3 ULility INVOCAHION ...t 1-6
CHapTerR 2: MCONV

P I (1o To [Tl 1o] o HOU USSR 2-1
2.2 Command Syntax and OPLONScoeiieerriririirieriire e ettt eaean 2-1
CHapTer 3: MDUMP

I N [011 0o [V Tl 1o o KOOSO PSPPSR PP SROPTOP 3-1
3.2 Command Syntax and OPTONSceceeiireiie e iiie sttt eebe et e serestaeasebeerbesrnbesreesieen 3-1
3.3 Display Formats and EXamMPIEScccceviiiiiiiieiii ittt 3-2
CHAPTER 4: MLIB

o I 1 oTo [€ e} o] o OO PP PO PP PPPRPPRUPO 4.1
4.2 Command Syntax and OPLIONScccveriiiee ettt e stae st 4-1
4.3 EXAMPIES ...ieevieeieie ettt ettt ettt r e e e er e R e ab e sne e 4-2
CHaPTER 5: MLINK

LT I L1 0T [V} (o) o IR O ST SSPS 5-1
5.2 Command Line Syntax and OPtioNScoceoiiiiiiiieii e 5-4
5.3 CONSIIAINES ...vvi vttt ettt et e et e e ettt e e e ete e et teeebeeesseessae e bteestesesaseeaneeereeaataenssansseessssabeans 5-13
5.4 Using MLINK: SOmME EXAMPIESc..eoiieiiiiiie ettt e e 5-14
CHAPTER 6: MLIST

8.7 INETOAUCTION Lovtieic e e e e se e e e s e s st bbb et e e s bbb e neessanbee e e e serreennns 6-1
6.2 Command Syntax and OPLIONSc.cciiiiicriiieiiiieieie e sreeie st sreetb et srestessresaestesieens 6-1
6.3 USAGE, OUTPUT FORMAT AND EXAMPLESccuveiiiuieieititeeiieesctresssinteasnnvetessnnesseteeesnnsaessanessnnesnnnesans 6-1

CHAPTER 7: MLIST

8 I 1311 (oo (VT 1 o] o TR P T PO PRSP PO PP TP PRI 7-1
7.2 Command Syntax and OPHONScoiiiiririiiiiieit ittt et ss e see e 7-1
AT @] o1 =1 110] o T T OV P PP UPTUTPPPN 7-2
7.4 Using MLOAD: SOME EXaMPIBS ...covvviiiiiiiii e 7-3
CHapTER 8: MLORDER

8.1 INEOAUCHION <.ttt e nb e e eb e ebe b ereen s 8-1
8.2 Command Syntax and OPLONScouverirmirrieieer e 8-1
CHapTeER 9: MMM

1S I B a1 (o T [T o o HOO OO P O USSP PPV VSO PPPTUR PPN 9-1
9.2 Command Syntax and OPLIONSccvvviiieeiie ettt sreeees 9-1
9.3 Output Format and EXAMPIESccoeiiiiiiiiiciieit ettt e sb e se e e e enne 9-1

vi

Z8° MICROCONTROLLERS

(“Q 205 USER'S MANUAL
CHAPTER TITLE AND SUBSECTIONS PaGe
CuaprTer 10: PROTOCOL

B0 T I 11 (T [0 (o] o O U U PORURPURRRNE 10-1
10.2 Command Syntax and OPLONSccccevriiiiiiie et ese et sesr e re e st e s erae e ereeenene e 10-1
10.3 Using PROTOCOL: SOME EXAMPIES........iiiveieriireriiiiiresies e esieeiieesrsesstvesssessniessnesreeans 10-2
CHAPTER 11: OTHER PROGRAMS

T1UT IMAR e e e e a e e he et et e et b e ere e et e e as e braesrtrenrreens 11-1
T2 M2A ettt et et e et e e a et e she s e be e b et ateesareen 11-1
LB MUIMAGE ...ttt e s a b e b be e s ba e e e erbb e st bes e ebbeesesabessenaeens 11-2
APPENDICES

Appendix A. MUFOM File FOIMALocooiiiiiiiieriiiiiern e e e srs e eis st e st stne e erneennnas A1
Appendix B. TektroniX Hex FOIMAL..........cccoiviiiiri e B-1
Appendix C. Intel HEX FOMMALcccoriiiiiiiiiitie et e C-1
APPENTIX D. ErTOr MESSAGESo iviiuieieeie ittt sttt e st ee s b e sbee s ne e nave s D-1
GIOSSANY ...ttt ettt et ettt ekttt be e bt eh e bt ear et nb et et b e st e sabesreenbaens G-1
lll. ADDITIONAL INFORMATION

GeNeRAL Terms AND CONDITIONS T-1
ZiLo SaLes OFrices, REPRESENTATIVES, AND DISTRIBUTORS Z-1
ZiLoG LiTeErATURE GUIDE L-1

vii

N 2iLa5

28° Microcontroller
Technical Description

Zilog General [g

information Ll

N 2iLas

USER'S MANUAL

CHAPTER 1
DISCRETE Z8° PRODUCT OVERVIEW

1.1 Z8 MCU FAMILY OVERVIEW

The Zilog Z8® microcontroller product line continues to
expand with new product introductions. Zilog MCU prod-
ucts are targeted for cost-sensitive, high-volume applica-
tions including consumer, automotive, security, and HVAC.
It includes ROM-based products geared for high-volume
production (where software is stable) and one-time pro-
grammable (OTP) equivalents for prototyping as well as
volume production where time to market or code flexibility
is critical (Table 1-1). A variety of packaging options are
available including plastic DIP, SOIC, PLCC, and QFP.

A generalized Z8 MCU block diagram is shown in
Figure 1-1. The same on-chip peripherals are used across
the MCU product line with the primary differences being
the amount of ROM/RAM, number of I/O lines present, and
packaging/temperature ranges available. This allows
code written for one MCU device to be easily ported to
another family member.

1.1.1 Key Product Line Features

B General-Purpose Register (GPR) File Architecture:
EveryRAMregister acts like an accumulator, speeding
instruction execution and maximizing coding efficiency.
Working register groups allow fast context switching.

B Flexible VO: |/O byte, nibble, and/or bit programmable
as inputs or outputs. Outputs are software
programmable as open-drain or push-pull on a port
basis. Inputs are Schmitt-triggered with auto latches
to hold unused inputs at a known voltage state.

B Analog Inputs: Three input pins are software
programmable as digital or analog inputs. Wheninthe
analog mode, two comparator inputs are provided with
a common reference input. These inputs are ideal for
a variety of common functions, including threshold
level detection, analog-to-digital conversion, and short
circuit detection. Each analog input provides a unique
maskable interrupt input.

m Timer/Counter(T/C): The T/C consists of a
programmable 6-bit prescaler and 8-bit downcounter,
with maskable interrupt upon end-of-count. Software
controls T/C load/start/stop, countdown read (at any
time on the fly), and maskable end-of-count interrupt.
Special functions available include T, (external counter
input, external gate input, or external trigger input) and
Tour (external access to timer output or the internal
system clock.) These special functions allow accurate
hardware input pulse measurement and output
waveform generation.

B Interrupts: There are six vectored interrupt sources
with software-programmable enable and priority for
each of the six sources.

B Watch-Dog Timer (WDT): An internal WDT circuit is
included as a fail-safe mechanism so that if software
strays outside the bounds of normal operation, the
WDT will timeout and reset the MCU. To maximize
circuitrobustness and reliability, the default WDT clock
source is an internal RC circuit (isolated from the
device clock source).

B Auto Reset/Low-Voltage Protection: All family
devices have internal Power-On Reset. ROM devices
add low-voltage protection. Low-voltage protection
ensures the MCU is in a known state at all times (in
active RUN mode or RESET) without external hardware
(or a device reset pin).

m Low-EMI Operation: Mode is programmable via
software or as amask option. This new option provides
for reduced radiated emission via clock and output
drive circuitchanges.

B Low-Power: CMOS with two standby modes; STOP
and HALT.

B FullZ8Instruction Set: Forty-eight basicinstructions,
supported by six addressing modes with the ability to
operate on bits, nibbles, bytes, and words.

1-1

Z8° MICROCONTROLLERS

Output Input GND XTAL /AS /DS R/W /RESET
N Machine Timing and
Port3 N lL > Instruction Control
RESET
Counter/ pA— ALU
Timers (2) [N WDT, POR
FLAG il
Interrupt pA—
Prg. Memory
Control I\ 4096 x 8-Bit
Register
Analog Pointer ﬁ
Comparators K '_L:))
2) Register File Program
256 x 8-Bit Counter
Port3 Port0 Port 1
le} Address or /O Address/Data or I/O
(Bit Programmable) (Nibble Programmable) (Byte Programmable)

Figure 1-1. Z8® MCU Block Diagram

QD 205
1.1.2 Product Development Support

28° MICROCONTROLLERS

The Z8® MCU product line is fully supported with arange of
cross assemblers, C compilers, ICEBOX emulators, single
and gang OTP/EPROM programmers, and software simu-
lators.

The Z86CCPO0ZEM low-cost Z8 CCP™ real-time emula-
tor/programmer kit was designed specifically to support
all the products outlined in Table 1-1.

Table 1-1. Zilog General-Purpose Microcontroller Product Family u
PRODUCT ROM/ /0 T/IC AN INT WDT POR Vbo RC SPEED PIN
RAM IN (MH2) COUNT

Z86C03 512/60 14 1 2 6 F Y Y Y 8 18
786C03 512/60 14 1 2 6 F Y N Y 8 18
Z86C04 1K/124 14 2 2 6 F Y Y N 8 18
Z86E04 1K/124 14 2 2 6 F Y N N 8 18
Z86C06 1K/124 14 2 2 6 P Y Y Y 12 18
ZB86E06 1K/124 14 2 2 6 P Y N Y 12 18
Z86C08 2K/124 14 2 2 6 F Y Y N 12 18
Z86E08 2K/124 14 2 2 6 F Y N N 12 18
Z86C30 4K/236 24 2 2 6 P Y Y Y 12 28
Z86E30 4K/236 24 2 2 6 P Y N Y 12 28
Z86C31 2K/124 24 2 2 6 P Y Y Y 28
Z86E31 2K/124 24 2 2 6 P Y N Y 28
286C40 4K /236 32 2 2 6 P Y Y Y 12 40/44
Z86E40 4K/236 32 2 2 6 P Y N Y 12 40/44

Note: Z86Cxx signify ROM devices; Z86Exx signify EPROM devices; F = fixed; P = programmable.

The Z86CCPOOZEM kit comes with:

Z8 CCP Emulator/Programmer Module

18-pin Target Connection Cable

WINDOWS-based GUI Host Software

DOS-based ZASM LINKER/LOADER
Documentation: Z8BMOBJ Linker/Loader User’s Guide,
Z8 Cross Assembler User's Guide, Z8 Emulator GUI

User’s Guide, Discrete Z8 MCU Product Specifications
Databook, and Z8 MCU Technical Manual.

A Z8 CCP Emulator Accessory Kit (Z8BCCPO0ZAC) is also
available and provides an RS-232 cable and power cable
along with the 28- and 40- pin ZIF scckets and 28 and 40
pin target connector cables required to emulate/program
28/40 pin devices.

N 2iLa5

USER'S MANUAL

CHAPTER 2
ADDRESS SPACE

2.1 INTRODUCTION

Four address spaces are available for the Z8°®
microcontroller:

B The Z8 Standard Register File contains addresses for
peripheral, control, all general-purpose, and all 1/O
port registers. This is the default register file
specification.

B The Z8 Expanded Register File (ERF) contains

addresses for control and data registers for additional

peripherals/features.

M Z8 External Program Memory contains addresses for
all memory locations having executable code and/or

data.

W Z8 External Data Memory contains addresses for all
memory locations that hold data only, whether internal

or external.

2.2 Z8 STANDARD REGISTER FILE

The Z8 Standard Register File totals up to 256 consecutive
bytes (Registers). The register file consists of 4 1/O ports
(00H-03H), 236 General-Purpose Registers (04H-EFH),
and 16 control registers (FOH-FFH). Table 2-1 shows the
layout of the register file, including register names, loca-
tions, and identifiers.

Table 2-1. Z8 Standard Register File

Hex Register Register
Address Description Identifier
FF Stack Pointer Low Byte SPL
FE Stack Pointer High Byte SPH
FD Register Pointer RP
FC Program Control Flags FLAGS
FB Interrupt Mask Register IMR
FA Interrupt Request Register IRQ
F9 Interrupt Priority Register IPR
F8 Port 0-1 Mode Register POIM
F7 Port 3 Mode Register P3M
F6 Port 2 Mode Register P2M
F5 TO Prescaler PREO
F4 Timer/Counter 0 T0
F3 T1 Prescaler PRE1
F2 Timer/Counter 1 T
K Timer Mode TMR
FO Serial 1/0 Sio
EF R239
General-Purpose Registers (GPR) '
04 R4
03 Port3 P3
02 Port 2 P2
01 Port 1 P1
00 Port 0 PO

Note: Refer to the product specification to determine which

registers are available for use on any specific device.

2-1

N 2105

28° MICROCONTROLLERS

2.2 78 STANDARD REGISTER FILE (Continued)

Registers can be accessed as either 8-bit or 16-bit regis-
ters using Direct, Indirect, or Indexed Addressing. All 236
general-purpose registers can be referenced or modified
by any instruction that accesses an 8-bit register, without
the need for special instructions. Registers accessed as
16 bits are treated as even-odd register pairs (there are
118 valid pairs). In this case, the data’s Most Significant
Byte (MSB) is stored in the even numbered register, while
the Least Significant Byte (LSB) goes into the next higher
odd numbered register (Figure 2-1).

MSB LsSB

Rn Rn+1

n = Even Address

Figure 2-1. 16-Bit Register Addressing

By using a logical instruction and a mask, individual bits
within registers can be accessed for bit set, bit clear, bit
complement, or bit test operations. For example, the
instruction AND R15, MASK performs a bit clear operation.
Figure 2-2 shows this example.

|0|1 111
1|0|1|1 1

AND R15, DFH

OIO 0jol Ris

-

MASK

;Clear Bit 5 of Working Register 15

OIOI R15

IOI1|0 11010

Figure 2-2. Accessing Individual Bits (Example)

When instructions are executed, registers are read when
defined as sources and written when defined as destina-
tions. All General-Purpose Registers function as accumu-
lators, address pointers, index registers, stack areas, or
scratch pad memory.

2.2.1 General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the
device is powered up. The registers keep their last value
after any reset, as long as the reset occurs in the V
voltage-specified operating range. It will not keep its last
state from a V,, reset if V drops below 1.8v.

Note: Registers in Bank EO-EF may only be accessed
throughthe workingregister and indirectaddressing modes.
Direct access cannot be used because the 4-bit working
register address mode already uses the format [E | dst],
where dst represents the working register number from OH
to FH.

2.2.2 RAM Protect

The upper portion of the register file address space 80FH
to EFH (excluding the control registers) may be protected
from reading and writing. The RAM Protect bit option is
mask-programmable and is selected by the customer
when the ROM code is submitted. After the mask option is
selected, the user activates this feature from the internal
ROM code to turn offfon the RAM Protect by loading either
aOor 1intothe IMRregister, bit D6. A 1in D6 enables RAM
Protect. Only devices that use registers 80H to EFH offer
this feature.

2.2.3 Working Register Groups

Z8°% instructions can access 8-bit registers and register
pairs (16-bit words) using either 4-bit or 8-bit address
fields. 8-bit address fields refer to the actual address of the
register. For example, Register 58H is accessed by calling
upon its 8-bit binary equivalent, 01011000 (58H).

With 4-bit addressing, the register file is logically divided
into 16 Working Register Groups of 16 registers each, as
shown in Table 2-2. These 16 registers are known as
Working Registers. A Register Pointer (one of the control
registers, FDH) contains the base address of the active
Working Register Group. The high nibble of the Register
Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit
address of the Working Register is combined within the
upper four bits (high nibble) of the Register Pointer, thus
forming the 8-bit actual address. Figure 2-3 illustrates this
operation. Since working registers are typically specified
by short format instructions, there are fewer bytes of code
needed, which reduces execution time. In addition, when
processing interrupts or changing tasks, the Register
Pointer speeds context switching. A special Set Register
Pointer (SRP) instruction sets the contents of the Register
Pointer.

2-2

NS0

28° MICROCONTROLLERS

Table 2-2. Working Register Groups

Register Pointer Working Actual
(FDH) Register Group Registers

High Nibble (HEX) (HEX)
1111(B) F FO-FF
1110(B) E EO-EF
1101(B) D DO-DF
1100(B) C CO-CF
1011(B) B BO-BF
1010(B) A AO-AF
1001(B) 9 90-9F
1000(B) 8 80-8F
0111(B) 7 70-7F
0110(B) 6 60-6F
0101(B) 5 50-5F
0100(B) 4 40-4F
0011(B) 3 30-3F
0010(B) 2 20-2F
0001(B) 1 10-1F
0000(B) 0 00-0F

111]0]0] 0] 0| Register Pointer (FDH), Standard Register File

Ofj111j0]11]1]1]0] INCRS (Instruction, Short Format)

111]0]1]1]0] ActualRegister Address (76H)

Figure 2-3. Working Register Addressing Examples

2-3

Z8° MICROCONTROLLERS

:

I 7 16 15 r4 l B2 rﬂ ?nzesg’starPointar)

The upper nibble of the register file address
provided by the register pointer specifies
the active working-register group.

FF
Working Register Group F
FO
EF N
- H
80 :
7F
———
. 70
. 6F
.
'
] 60
. 5F
Jr—
[
' 50
. 4F
—— The lower nibble
' 40 glf th%d register
— 3F Specified Workin, e acdress
- ?H:Cgm A Gmupg ~ag—4— provided by the
' 30 instruction points
. oF to the specified
[— register.
H 20
] iF
o Working Register Group 1 Ri15to RO
. 10
L]
: oF Working Register Group 0 R15to Re
00 /O Ports R3to RO

Figure 2-4. Register Pointer

Note: The full register file is shown. Please refer to the selected device product specification for actual file size.

2.2.4 Error Conditions

Registers in the Z8® Standard Register File must be cor- &

rectly used because certain conditions produce inconsis-
tent results and should be avoided.

B Registers F3H and F5H-FAH are write-only registers. If
an attempt is made to read these registers, FFH

is returned. Reading any write-only register willreturn &

FFH.

B Whenregister FDH (Register Pointer) is read, the least
significant four bits (lower nibble) will indicate the

current Expanded Register File Bank. (Example: 0000 =

indicates the Standard Register File, while 1010
indicates Expanded Register File Bank A.)

B When Ports 0 and 1 are defined as address outputs,
registers 00OH and 01H will return 1s in each address
bit location when read.

Writing to bits that are defined as timer output, serial
output, or handshake output will have no effect.

The Z8 instruction DJNZ uses any general-purpose
working register as a counter.

Logical instructions such as OR and AND require that
the current contents of the operand be read. They
therefore will not function properly on write-only
registers.

The WDTMR register must be written within the first 64
internal system clocks (SCLK) of operation after a
reset.

24

Z8° MICROCONTROLLERS

A 2a5

2.3 Z8 EXPANDED REGISTER FILE

The standard register file of the Z8® has been expanded to
form 16 Expanded Register File (ERF) Banks (Figure 2-5).
Each ERF Bank consists of up to 256 registers (the same
amount as in the Standard Register File) that can then be

divided into 16 Working Register Groups. This expansion
allows for access to additional feature/peripheral control
and data registers.

EXPANDED REGISTER FILE
BANK (F)
REGISTER POINTER (F)OF WDTMR
InEnEnnn o esores
(F)op Reserved
N rons Fantar I o Pone™ oc Reserved
(F)oB SMR
(oA Reserved
(1] Reserved
508 Raserved
(9174 Reserved
(Fos Reservad
o5 Reserved
Z8 Register File o P—
:: (o3 Reserved
(F o2 Faserved
(Fot Reserved
(F) 00 PCON
EXPANDED REGISTER FILE
BANK (C)
{C)oF FRaserved
I (©oc Raserved
7 (C)0D Raserved
(©)oc Resorved
©o8 Raserved
(€)0A Fesorved
(C)09 Rasarved
©)08 Reserved
©o7 Resorved
)08 Reserved |
o ©os Rosorved
* (L] Resarved
(€03 Resarvad
©)e2 SCON |
©)o1 RXBUF
(C) 00 SCOMP
EXPANDED REGISTER FILE
BANK (0)

©L0F PR ‘

!ol OF GPR

(0)0D GPR
[0 8]

w05 R
008 R
0)03 P3 |
Toee 7|
01 3] |
o Po ‘

Figure 2-5. Expanded Register File Architecture

Note: The fully implemented register file is shown. Please refer to the specific product specification for actual register file architecture

implemented.

2-5

Q205

Z8° MICROCONTROLLERS

Currently, three out of the possible sixteen Z8® ERF Banks
have beenimplemented. ERF BankO0, alsoknown asthe Z8
Standard Register File, has all 256 bytes defined (Figure 2-
1). Only Working Register Group O (register addresses
00H to OFH) have been defined for ERF Bank C and ERF
BankF (Table 2-4). All other working register groupsin ERF
Banks C and F, as well as the remaining thirteen ERF
Banks, are not implemented. All are reserved for future
use.

When an ERF Bank is selected, register addresses 00H to
OFH access those sixteen ERF Bank registers - in effect
replacing the first sixteen locations of the Z8 Standard
Register File.

For example, if ERF Bank C is selected, the Z8 Standard
Registers 00H through OFH are no longer accessible.
Registers 00H through OFH are now the 16 registers from
ERF Bank C, Working Register Group 0. No other Z8
Standard Registers are effected since only Working Reg-
ister Group O is implemented in ERF Bank C.

Access to the ERF is accomplished through the Register
Pointer (FDH). The lower nibble of the Register Pointer
determines the ERF Bank while the upper nibble deter-
mines the Working Register Group within the register file
(Figure 2-6).

0111 1010
Working Expanded
Register Register
Group Bank
Selects ERF Bank A(H),

Working Register Group 7(H)

Figure 2-6. Register Pointer (FDH) Example

The value of the lower nibble in the Register Pointer (FDH)
corresponds to the ERF Bank identification. Table 2.3
shows the lower nibble value and the register file assigned
toit.

Table 2-3. ERF Bank Address

Register Pointer
(FDH)

Low Nibble Hex Register File
0000(B) 0 Z8® Standard Register File *
0001(B) 1 Expanded Register File Bank 1
0010(B) 2 Expanded Register File Bank 2
0011(B) 3 Expanded Register File Bank 3
0100(B) 4 Expanded Register File Bank 4
0101(B) 5 Expanded Register File Bank 5
0110(B) 6 Expanded Register File Bank 6
0111(B) 7 Expanded Register File Bank 7
1000(B) 8 Expanded Register File Bank 8
1001(B) 9 Expanded Register File Bank 9
1010(B) A Expanded Register File Bank A
1011(B) B Expanded Register File Bank B
1100(B) C Expanded Register File Bank C
1101(B) D Expanded Register File Bank D
1110(B) E Expanded Register File Bank E
1111(B) F Expanded Register File Bank F

Note: The Z8 Standard Register File is equivalent to Expanded
Register File Bank 0.

A= e

28° MICROCONTROLLERS

The upper nibble of the register pointer selects which
group of 16 bytes in the Register File, out of the full 256, will
be accessed as working registers.

For example:
(See Figure 2-4)
R253 RP = 00H ;ERF Bank 0, Working Reg. Group 0.
RO = Port 0 = OOH
R1=Port1=01H

R2 = Port 2 = 02H

R3 = Port 3 = 03H

R11 = GPR 0BH

R15 = GPR OFH

If:

R253 RP =0FH ;ERF Bank F, Working Reg. Group 0.
RO = PCON = 00H

R1 = Reserved = 01H

R2 = Reserved = 02H

R11 = SMR = OBH

R15 = WDTMR = OFH

If:

R253RP =FFH ;ERF Bank F, Working Reg. Group F.
00H = PCON

RO =SI0 O1H= Reserved
R1=TMR 02H= Reserved

R2=T1 OBH=SMR

R15=SPL OFH = WDTMR

Note that since enabling an ERF Bank (C or F) only
changes register addresses O0H to OFH, the working
register pointer can be used to access either the selected
ERF Bank (Bank C or F, Working Register Group 0) or the
Z8 Standard Register File (ERF Bank 0, Working Register
Groups 1 through F).

Note: When an ERF Bank other than Bank O is enabled, the first
16 bytes of the Z8 Standard Register File (1/O ports 0to 3, Groups
4to F) are no longer accessible (the selected ERF Bank, Regis-
ters OOH to OFH are accessed instead). It is important to re-
initialize the Register Pointer to enable ERF Bank 0 when these
registers are required for use.

The SPI register is mapped into ERF Bank C. Access is
easily done using the following example:

LD RP, #0CH ;Select ERF Bank C working
;register group O for access.

LD R2,#xx ;access SCON

LD R1, #xx ;access RXBUF

LD RP, #00H ;Select ERF Bank O so I/O ports

;are again accessible.

Table 2-4. Z8 Expanded Register File Bank Layout

Expanded
Register File
Bank ERF
F(H) PCON, SMR, WDT,
(O0H, 0BH, OFH),
Working Register Group 0
only implemented.
E(H) Not Implemented
(Reserved)
D(H) Not Implemented
(Reserved)
C(H) SPI Registers: SCOMP,
RXBUF,
SCON (00H, 01H, 02H),
Working Register Group O
only implemented.
B(H) Not Implemented
(Reserved)
A(H) Not Implemented
(Reserved)
9(H) Not Implemented
(Reserved)
8(H) Not Implemented
(Reserved)
7(H) Not Implemented
(Reserved)
6(H) Not Implemented
(Reserved)
5(H) Not Implemented
(Reserved)
4(H) Not Implemented
(Reserved)
3(H) Not Implemented
(Reserved)
2(H) Not Implemented
(Reserved)
1(H) Not Implemented
(Reserved)
O(H) Z8 Ports 0, 1, 2, 3,

and General-Purpose Registers
04H to EFH, and control registers
FOH to FFH.

Please refer to the specific product specification to deter-
mine the above registers are implemented.

2-7

N 2ILaB

—ma——

Z8° MICROCONTROLLERS

2.4 Z8 CONTROL AND PERIPHERAL
REGISTERS

2.4.1 Standard Z8 Registers

The standard Z8® control registers govern the operation of
the CPU. Any instruction which references the register file
canaccess these control registers. Available control regis-
ters are:

Interrupt Priority Register (IPR)
Interrupt Mask Register (IMR)
Interrupt Request Register (IRQ)
Program Control Flags (FLAGS)
Register Pointer (RP)

Stack Pointer High-Byte (SPH)
Stack Pointer Low-Byte (SPL)

The Z8 uses a 16-bit Program Counter (PC) to determine
the sequence of current programinstructions. The PCis not
anaddressable register.

Peripheral registers are used totransfer data, configure the
operating mode, and control the operation of the on-chip
peripherals. Any instruction that references the register file
can access the peripheral registers. The peripheral regis-
ters are:

Serial I/O (SIO)

Timer Mode (TMR)
Timer/Counter 0 (TO)
TO Prescaler (PREQ)
Timer/Counter 1 (T1)
T1 Prescaler (PRE1)
Port 0-1 Mode (PO1M)
Port 2 Mode (P2M)
Port 3 Mode (P3M)

In addition, the four port registers (PO-P3) are considered
to be peripheral registers.

2.4.2 Expanded Z8 Registers

The expanded Z8 control registers govern the operation of
additional features or peripherals. Any instruction which
references the register file can access these registers.

The ERF contains the control registers for WDT, Port
Control, Serial Peripheral Interface (SPl), and the SMR
functions. Figure 2-4 shows the layout of the Register
Banks in the ERF. Register Bank C in the ERF consists of
the registers for the SPI. Table 2-5 shows the registers
within ERF Bank C, Working Register Group O.

Table 2-5. Expanded Register File Register Bank C,

WR Group 0
Register Working
Register Function Register
F Reserved R15
E Reserved R14
D Reserved R13
C Reserved R12
B Reserved R11
A Reserved R10
9 Reserved R9
8 Reserved R8
7 Reserved R7
6 Reserved R6
5 Reserved R5
4 Reserved R4
3 Reserved R3
2 SPI Control (SCON) R2
1 SPI Tx/Rx Data (RxBuf) R1
0 SPI Compare (SCOMP) RO

Z8* MICROCONTROLLERS

AY= e o

Working Register Group 0 in ERF Bank O consists of the
registers for Z8 General-Purpose Registers and ports.

Table 2-6 shows the registers within this group.

Table 2-6. Expanded Register File Bank 0,

Working Register Group 0 in ERF Bank F consists of the
control registers for STOP mode, WDT, and port control.
Table 2-7 shows the registers within this group.

Table 2-7. Expanded Register File Bank F,

WR Group 0 WR Group 0

Register Working Register Working

Register Function Register Register Function Register
F General-Purpose Register R15 F WDTMR R15
E General-Purpose Register R14 E Reserved R14
D General-Purpose Register R13 D Reserved R13
C General-Purpose Register R12 C Reserved R12
B General-Purpose Register R11 B SMR R11
A General-Purpose Register R10 A Reserved R10
9 General-Purpose Register RS9 9 Reserved R9
8 General-Purpose Register R8 8 Reserved R8
7 General-Purpose Register R7 7 Reserved R7
6 General-Purpose Register R6 6 Reserved R6
5 General-Purpose Register R5 5 Reserved R5
4 General-Purpose Register R4 4 Reserved R4
3 Port 3 R3 3 Reserved R3
2 Port 2 R2 2 Reserved R2
1 Port 1 R1 1 Reserved R1
0 Port 0 RO 0 PCON RO

The functions and applications of the control and peripheral
registers are described in subsequent sections of this
manual.

2-9

N 205

Z8° MICROCONTROLLERS

2.5 PROGRAM MEMORY

The first 12 bytes of Program Memory are reserved for the
interrupt vectors (Figure 2-7). These locations contain six
16-bit vectors that correspond to the six available inter-
rupts. Address 12 up to the maximum ROM address
consists of on-chip mask-programmable ROM. See the
product data sheet for the exact program, data, register
memory size, and address range available. At addresses
outside the internal ROM, the Z8® executes external pro-
gram memory fetches through Port O and Port 1 in Ad-
dress/Data mode for devices with Port 0 and Port 1
featured. Otherwise, the program counter will continue to
execute NOPs up to address FFFFH, roll over to 0000H,
and continue to fetch executable code (Figure 2-7).

The internal program memory is one-time programmable
(OTP) or mask programmable dependent on the specific
device. A ROM protect feature prevents “dumping” of
the ROM contents by inhibiting execution of the LDC,
LDCI, LDE, and LDEI Instructions to Program Memory
in all modes. ROM look-up tables cannot be used with
this feature.

The ROM Protect option is mask-programmable, to be
selected by the customer when the ROM code is submit-
ted. For the OTP ROM, the ROM Protect option is an OTP
programming option.

65535 External
ROM and RAM
4096
4095
Location of On-Chip
First Byte of ROM
Instruction
Executed e
After RESET 12 [
1 IRQ5
10 IRQ5
9 IRQ4
8 IRQ4
Interrupt 7 IRQ3
Vector g IRQ3
(Lower Byte)
5 IRQ2
Ly
Interrupt A 1RQ2
Vector IRQ1
(Upper Byte)
2 IRQ1
1 IRQO
0 IRQO

Figure 2-7. Z8 Program Memory Map

2-10

N 205

Z8° MICROCONTROLLERS

2.6 Z8 EXTERNAL MEMORY

The Z8%, in some cases, has the capability to access
external program memory with the 16-bit Program Counter.
To access external program memory the Z8 offers multi-
plexed address/data lines (AD7-ADO) on Port 1 and ad-
dress lines (A15-A8) on Port 0. This feature only applies to
devices that offer Port 0 and Port 1. The maximum external
address is FFFF. This memory interface is supported by
the control lines /AS (Address Strobe), /DS (Data Strobe),
and R/W (Read/Write). The origin of the external program
memory starts after the last address of the internal ROM.
Figure 2-8 shows an example of external program memory
for the Z8.

2.6.1 External Data Memory (/DM)

The Z8, in some cases, can address up to 60 Kbytes of
external data memory beginning at location 4096. External
DataMemory may be included with, or separated from, the
external Program Memory space. /DM, an optional |/O
function that can be programmed to appear on pin P34, is
used to distinguish between data and program memory
space. The state of the /DM signal is controlled by the type
of instruction being executed. An LDC opcode references
Program (/DM inactive) Memory, and an LDE instruction
references Data (/DM active Low) Memory. The user must
configure Port 3 Mode Register (P3M) bits D3 and D4 for
this mode.

65535
External
Memory
4096
4095
Not Addressable
0

Figure 2-8. External Memory Map

Note: For additional information on using external memory, see Chapter 10 of this manual. For exact memory addressing options

available, see the device product specification.

2-11

Q205

Z8° MICROCONTROLLERS

2.7 Z8STACKS

Stack operations can occur in either the Z8%® Standard
Register File or external data memory. Under software
control, Port 0-1 Mode register (F8H) selects the stack
location. Only the General-Purpose Registers can be used
for the stack when the internal stack is selected.

Theregister pair FEH and FFH form the 16-bit Stack Pointer
(SP), that is used for all stack operations. The stack
address is stored with the MSB in FEH and LSB in FFH
(Figure 2-9).

FFH

LOWER Byte | Stack Pointer Low

FEH

UPPER Byte Stack Pointer High

Figure 2-9. Stack Pointer

The stack address is decremented prior to a PUSH opera-
tion and incremented after a POP operation. The stack
address always points to the data stored on the top of the
stack. The Z8® stack is areturn stack for CALL instructions
and interrupts, as well as a data stack.

During a CALL instruction, the contents of the PC are saved
on the stack. The PC is restored during a RETURN instruc-
tion. Interrupts cause the contents of the PC and Flag
registers to be saved on the stack. The IRET instruction
restores them (Figure 2-10).

When the Z8 is configured for an internal stack (using the
Z8 Standard Register File), register FFH serves as the
Stack Pointer. The value in FEH is ignored. FEH can be
used as a general-purpose register in this case only.

An overflow or underflow can occur when the stack ad-
dressis incremented or decremented during normal stack
operations. The programmer must prevent this occur-
rence or unpredictable operation will result.

. PCL
PCL PCH
Top of Stack == PCH Top of Stack == FLAGS
Stack Contents Stack Contents
After a Call After an
Instruction Interrupt Cycle

Figure 2-10. Stack Operations

2-12

N a2iLas

USER'S MANUAL

CHAPTER 3
CLOCK

3.1 CLOCK

The Z8® derives its timing from on-board clock circuitry
connected to pins XTAL1 and XTAL2. The clock circuitry
consists of an oscillator, a divide-by-two shaping circuit,
and a clock buffer. Figure 3-1 illustrates the clock circuitry.
The oscillator's inputis XTAL1 and its outputis XTAL2. The
clock can be driven by a crystal, a ceramic resonator, LC
clock, RC, or an external clock source.

3.1.1 Frequency Control
In some cases, the Z8 has an EPROM/OTP option or a

Mask ROM option bit to bypass the divide-by-two flip flop
in Figure 3-1. This feature is used in conjunction with the

low EMI option. When low EMI is selected, the device
output drive and oscillator drive is reduced to approxi-
mately 25 percent of the standard drive and the divide-by-
two flip flop is bypassed such that the XTAL clock fre-
quency is equal to the internal system clock frequency. In
this mode, the maximum frequency of the XTAL clock is 4
MHz. Please refer to specific product specification for
availability of options and output drive characteristics.

Internal
Clock

Buffer

xtaLt O
XTAL2 [}—

0osC |— +2

Figure 3-1. Z8 Clock Circuit

3.2 CLOCK CONTROL

In some cases, the Z8 offers software control of the internal
system clock via programming register bits. The bits are
located in the Stop-Mode Recovery Register in Expanded
Register File Bank F, Register OBH. This register selects

SMR (F) 0B

the clock divide value and determines the mode of Stop-
Mode Recovery (Figure 3-2). Please refer to the specific
product specification for availability of this feature/regis-
ter.

|o7] os] o] p4] D3| p2] b1} Do

* Default setting after RESET.

L—— SCLK/TCLK Divide by 16
0 OFF **
1 ON
Extemal Clock Divide Mode by 2

0 = SCLK/TCLK = XTAL/2*
1=SCLK/TCLK = XTAL

** Default setting after RESET and STOP-Mode Recovery.

Figure 3-2. Stop-Mode Recovery Register
(Write-Only Except D7, Which is Read-Only)

26 MICROCONTROLLERS

N 2105
3.2.1 SCLK/TCLK Divide-By-16 Select (D0)

This bit of the SMR controls a divide-by-16 prescalar of
SCLK/TCLK. The purpose of this control is to selectively
reduce device power consumption during normal proces-
sor execution (SCLK control) and/or HALT mode (where
TCLK sources counter/timers and interrupt logic).

3.2.2 External Clock Divide-By-Two (D1)

This bit can eliminate the oscillator divide-by-two circuitry.
When this bit is 0, SCLK (System Clock) and TCLK (Timer
Clock) are equalto the external clock frequency divided by
two. The SCLK/TCLK is equal to the external clock fre-
quency when this bitis set (D1 = 1). Using this bit, together
with D7 of PCON, further helps lower EMI (D7 (PCON) =0,
D1 (SMR) = 1). The default setting is 0. Maximum fre-
quencyis4MHzwithD1=1(Figure3-3).

o1 (SWR l

External O ock

Figure 3-3. External Clock Circuit

3.3 Oscillator Control

In some cases, the Z8® offers software control of the
oscillator to select low EMI drive or standard drive. The
selection is done by programming bit D7 of the Port
Configuration (PCON) register (Figure 3-4). The PCON
register is located in Expanded Register File Bank F,
Register O0H.

A 1 in bit D7 configures the oscillator with standard drive,
while a 0 configures the oscillator with Low EMI drive. This
only affects the drive capability of the oscillator and does
not affect the relationship of the XTAL clock frequency to
the internal system clock (SCLK).

PCON (FH) 00H
D7| D6 D5| D4 D3| D2] D1] DO

Low EMI Oscillator
0 Low EMI
1 Standard

Figure 3-4. Port configuration register (PCON
{Write-Only)

3-2

N aias

Z8° MICROCONTROLLERS

3.4 OSCILLATOR OPERATION

The Z8® uses a Pierce oscillator with an internal feedback
(Figure 3-5). The advantages of this circuit are low cost,
large output signal, low-power level in the crystal, stability
with respect to V. and temperature, and low impedances
(not disturbed by stray effects).

One draw back is the need for high gain in the amplifier to
compensate for feedback path losses. The oscillator am-
plifies its own noise at start-up until it settles at the fre-
quency that satisfies the gain/phase requirements Ax B =
1, where A =V /V, is the gain of the amplifier and B = V/V,
is the gain of the feedback element. The total phase shift
around the loop is forced to zero (360 degrees). SinceV,,
must be in phase with itself, the amplifier/inverter provides
180 degree phase shift and the feedback elementis forced
to provide the other 180 degrees of phase shift.

R, is a resistive component placed from output to input of
the amplifier. The purpose of this feedback is to bias the
amplifier in its linear region and to provide the start-up
transition.

Capacitor C, combined with the amplifier output resis-
tance provides a small phase shift. It will also provide some
attenuation of overtones.

Capacitor C, combined with the crystal resistance pro-
vides additional phase shift.

C, and C, can affect the start-up time if they increase
dramatically in size. As C, and C, increase, the start-up
time increases until the oscillator reaches a point where it
does not start up any more.

It is recommended for fast and reliable oscillator start-up
(over the manufacturing process range) that the load
capagcitors be sized as low as possible without resulting in
overtone operation.

r—————————- -
I z8 :
: | Vss
' =>° |
: V4 R| Vo :
|
. VWA .
—) = — - ———— .()_ o
XTAL1 XTAL2
[T

Figure 3-5. Pierce Oscillator with Internal Feedback Circuit

3-3

N 205

Z8° MICROCONTROLLERS

3.4.1 Layout

Traces connecting crystal, caps, and the Z8® oscillator
pins should be as short and wide as possible. This
reduces parasitic inductance and resistance. The compo-
nents (caps, crystal, resistors) should be placed as close
as possible to the oscillator pins of the Z8.

The traces from the oscillator pins of the IC and the ground
side of the lead caps should be guarded from all other
traces (clock, V.., address/data lines, system ground) to
reduce cross talk and noise injection. This is usually
accomplished by keeping other traces and system ground
trace planes away fromthe oscillator circuitand by placing
a Z8 device V¢ ground ring around the traces/compo-
nents. The ground side of the oscillator lead caps should
be connected to a single trace to the Z8 V, (GND) pin. It
should not be shared with any other system ground trace
or components except at the Z8 device Vg pin. Thisis to
prevent differential system ground noise injection into the
oscillator (Figure 3-6).

3.4.2 Indications of an Unreliable Design

There are two major indicators that are used in working
designs to determine their reliability over full lot and tem-
perature variations. They are:

Start-up Time. If start-up time is excessive, or varies widely
from unit to unit, there is probably a gain problem. C,/C,
needs to be reduced; the amplifier gain is not adequate at
frequency, or crystal Rs is too large.

Output Level. The signal at the amplifier output should
swing from ground to V.. This indicates there is adequate
gain in the amplifier. As the oscillator starts up, the signal
amplitude grows until clipping occurs, at which point the
loop gain is effectively reduced to unity and constant
oscillation is achieved. A signal of less than 2.5 volts peak-
to-peak is an indication that low gain may be a problem.
Either C, or C, should be made smaller or a low-resistance
crystal should be used.

3.4.3 Circuit Board Design Rules
The following circuit board design rules are suggested:

B To prevent induced noise the crystal and load
capacitors should be physically located as close to
the Z8® as possible.

B Signallines should notrun parallel tothe clockoscillator
inputs. In particular, the crystal input circuitry and the
internal system clock output should be separated as
much as possible.

B V. power lines should be separated from the clock
oscillator input circuitry.

B Resistivity between XTAL1 or XTAL2 and the other
pins should be greater than 10 Mohms.

Z8° MICROCONTROLLERS

—| XTAL 1
ci
 — Z8
i—-l XTAL 2
c2
Vss

Clock Generator Circuit

SignalsA B
1

(Paralliel Traces
Must Be Avoided)

signal C—————+ - -
I

A

i

Z8

Must Be Avoided

=% (Connection to System Ground

Signal Line
Layout Should

20 mm Avoid High
Lighted Areas

Board Design Example
(Top View)

Figure 3-6. Circuit Board Design Rules

3-5

0N 2ILaG

Z8° MICROCONTROLLERS

3.4.4 Crystals and Resonators

Crystals and ceramic resonators (Figure 3-7) should have
the following characteristics to ensure proper oscillator
operation:

Crystal Cut AT (crystal only)
Mode Parallel, Fundamental Mode
CrystelCapacitance <TpF
LoadCapacitance 10pF < CL < 220 pF,
15 typical
Resistance 100 ohms max

Depending on operation frequency, the oscillator may
require the addition of capacitors C, and C, (shown in
Figures 3-7). The capacitance values are dependentonthe
manufacturer’s crystal specifications.

Vss
XTAL2
Rp % Rp
Ar_Mh_.
HioH
'l: ci Tc2

Figure 3-7. Crystal/Ceramic Resonator Oscillator

z8
XTALA

Figure 3-8. LC Clock

In most cases, the R, is 0 Ohms and R_ is infinite. It is
determined and specified by the crystal/ceramic resona-
tormanufacturer. The R can beincreased to decrease the
amount of drive from the oscillator output to the crystal. It
can also be used as an adjustment to avoid clipping of the
oscillator signal to reduce noise. The R, can be used to
improve the start-up of the crystal/ceramic resonator. The
Z8 oscillator already has an internal shunt resistor in
parallel to the crystal/ceramic resonator.

—>o- xmau
z8

Vss
XTAL2

Figure 3-9. External Clock

3-6

Q205

28° MICROCONTROLLERS

It is recommended in Figures 3-7, 3-8, and 3-9 to connect
the load capacitor ground trace directly to the V (GND)
pin of the Z8®. This ensures that no system noise is injected
into the Z8 clock. This trace should not be shared with any
other components except at the V¢, pin of the Z8.

In some cases, the Z8 XTAL1 pin also functions as one of
the EPROM high-voltage mode programming pins or as a
special factory test pin. In this case, applying 2 V above
V. onthe XTAL1 pin will cause the device to enter one of
these modes. Since this pin accepts high voltages to enter
these respective modes, the standard input protection
diode to V. is not on XTAL1. It is recommended that in
applications where the Z8 is exposed to much system
noise, a diode from XTAL1 to V,, be used to prevent
accidental enabling of these modes. This diode will not
affect the crystal/ceramic resonator operation .

Please note that a parallel resonant crystal or resonator
data sheet will specify a load capacitor value that is the
series combination of C, and C,, including all parasitics
(PCB and holder).

3.5 LC OSCILLATOR.

The Z8 oscillator can use a LC network to generate a XTAL
clock (Figure 3-8).

The frequency stays stable over V., and temperature. The
oscillation frequency is determined by the equation:
1

Frequency = 2n(LCT)1/2

where L is the total inductance including parasitics and
C, is the total series capacitance including the parasitics.

Simple series capacitance is calculated using the following
equation:

A =1 +_1
¢, C, C,
lfiC,=C,

1 =2

CT C1
C,=2CT

Sample calculation of capacitance C, and C, for 5.83 MHz
frequency and inductance value of 27 uH:

5.83 (1076) = 1
2 [2.7 (109 C,] 1/2

CT=2760pf

Thus C, = 55.2 pfand C, = 55.2 pf.

Q205

Z8° MICROCONTROLLERS

3.6 RCOSCILLATOR

In some cases, the Z8® has a RC oscillator option. Please
refer to the specific product specification for availability.
The RC oscillator requires a resistor across XTAL1 and
XTAL2. An additional load capacitor is required from the
XTAL1 input to Vg pin (Figure 3-9).

L

Figure 3-9. RC Clock

3-8

N 2iLai5

USER'S MANUAL

CHAPTER 4
RESET—WATCH-D0G TIMER

4.1 RESET

This section describes the Z8% reset conditions, reset
timing, and register initialization procedures. Reset is
generated by Power-On Reset (POR), Reset Pin, Watch-
Dog Timer (WDT), and Stop-Mode Recovery.

A systemresetoverrides all other operating conditions and
puts the Z8 into a known state. To initialize the chip’s
internal logic, the /RESET input must be held Low for at
least 4 internal system clock periods. The control register
and ports are reset to their default conditions after a POR,
a reset from the /Reset pin, or Watch-Dog Timer timeout
while in RUN mode and HALT mode. The control registers

and ports are not reset to their default conditions after
Stop- Mode Recovery and WDT timeout while in STOP
mode.

While /RESET is Low, /AS is output at the internal clockrate,
/DS is forced Low, and R//W remains High. The program
counter is loaded with 000CH. I/O ports and control regis-
ters are configured to their default reset state.

Resetting the Z8 does not effect the contents of the
general-purpose registers.

4.2 /Reset Pin, Internal POR Operation

In some cases, the Z8 hardware /RESET pin initializes the
control and peripheral registers, as shown in Tables 4-1,
4-2, 4-3, and 4-4. Specific reset values are shown by 1 or
0, while bits whose states are unknown are indicated by the
letter U. The Tables 4-1, 4-2, 4-3, and 4-4 show the reset
conditions for the generic Z8.

Note: The register file reset state is device dependent. Please
refer to the selected device product specifications for register
availability and reset state.

N 2iLa5B 28° MICROCONTROLLERS

Table 4-1. Sample Control and Peripheral Register Reset Values (ERF Bank 0)

Register Register Bits
(HEX) Name 76543210 Comments
FO Serial 1/0 uUuuvuuuvuuuuu
F1 Timer Mode 00000O0O0O Counter/Timers Stopped
F2 Counter/Timer1 uuvuuuvuuuuu
F3 T1 Prescaler vUuuvuuvuvuuuoo Single-Pass Count Mode, External Clock Source
F4 Counter/Timer0 uuvuvuuuvuuuu
F5 TO Prescaler Uuvuuuuuuo Single-Pass Count Mode
F6 Port 2 Mode 11111111 All Inputs
F7 Port 3 Mode 0 000O0O0OCO Port 2 Open-Drain, P33-P30 Input, P37-P34 Output
F8 Port 0-1 Mode 01001101 Internal Stack, Normal Memory Timing
F9 Interrupt Priority Uuuuuuuu
FA Interrupt Request 0 000O0O0O0O All Interrupts Cleared
FB Interrupt Mask O UuUuuvuvuvvuu Interrupts Disabled
FC Flags uuuuvuuvuuy
FD Register Pointer 0000O0O0O0O
FE Stack Pointer (Highy U U U U U U UU
FF Stack Pointer (Low) Uuuvuuuuuu

Program execution starts 5 to 10 clock cycles after /RESET

has returned High. The initial instruction fetch is from

location 000CH. Figure 4-1 shows reset timing.

First Machine Cycle

™ l

one] L L LI [1
SCLK _I__— _I
reser \ [e i

= _/ N/ _/

/DS - | / \ i/

 —

T
RIW / :4— First Instruction Fetch

Figure 4-1. Reset Timing

42

N 2La5

Z8° MICROCONTROLLERS

After a reset, the first routine executed should be one that
initializes the control registers to the required system
configuration.

The /RESET pin is the input of a Schmitt-triggered circuit.
Resetting the Z8® will initialize port and control registers to
their default states. To form the internal reset line, the
output of the trigger is synchronized with the internal clock.
The clock must therefore be running for
/RESET to function. It requires 4 internal system clocks
after reset is detected for the Z8 to reset the internal
circuitry. An internal pull-up, combined with an external
capacitor of 1 uf, provides enough time to properly reset
the Z8 (Figure 4-2). In some cases, the Z8 has an internal
POR timer circuit that holds the Z8 in reset mode for a
duration (T, ;) before releasing the device out of reset. On
these Z8 devices, the internaily generated reset drives the
reset pin low for the POR time. Any devices driving the
reset line must be open-drained in order to avoid damage
from possible conflict during reset conditions. This reset
time allows the on-board clock oscillator to stabilize.

To avoid asynchronous and noisy reset problems, the Z8
is equipped with a reset filter of four external clocks
(4TpC). If the external reset signal is less than 4TpC in
duration, no reset occurs. On the fifth clock after the reset
is detected, an internal RST signal is latched and held for
an internal

+5V

Figure 4-2. Example of External Power-On Reset
Circuit

register count of 18 external clocks, or for the duration of

the external reset, whichever is longer. During the reset
cycle, /DS isheld active low while /AS cycles atarate of the
internal system clock. Program execution begins at loca-
tion 000CH, 5-10 TpC cycles after /RESET is released. For
the internal Power-On Reset, the reset output time is
specified as T,,. Please refer to specific product specifi-
cations for actual values.

Table 4-2. Sample Expanded Register File Bank 0 Reset Values

Register Register Bits
(HEX) Name 7 6543210 Comments
00 Port 0 uuuvuuvuuuuu Input mode, output set to push-pull
01 Port 1 Uuuuuuvuuu Input mode, output set to push-puli
02 Port 2 Uuvuuvuuvuuvuuuu Input mode, output set to push-pull
03 Port 3 1111UUUU Standard Digital input and output
04-EF General- uuvuuvuuuvuuuu Standard Digital input and output
Purpose
Registers
04-EF

4-3

Z8° MICROCONTROLLERS

Table 4-3. Sample Expanded Register File Bank C Reset Values

Register Register Bits
(HEX) Name 7 6543210 Comments
00 SPI Compare 0O 000O0O0O0O
(SCOMP)
01 Receive Buffer uuuvuuvuuuuu
(RxBUF)
02 SPI Control uuvuuuoooo
(SCON)
Table 4-4. Sample Expanded Register File Bank F Reset Values
Register Register Bits
(HEX) Name 7 6543210 Comments
00 Port Configuration 11111110 Comparator outputs disabled on Port 3
(PCON) Port 0 and 1 output is push-pull
Port 0, 1, 2, 3, and oscillator with standard output
drive
0B STOP-Mode Recovery 0 0 1 0 0 0 00 Clock divide by 16 off
(SMR) XTAL divide by 2
POR and / OR External Reset
Stop delay on
Stop recovery level is low, STOP flag is POR
OF Watch-Dog Timer

Mode
(WDTMR)

vuuuo1t1101

512 T,C for WDT time out, WDT runs during STOP
and HALT mode, on-board RC drives WDT

Z8° MICROCONTROLLERS

/RESET:

WDT Select

4 Clock

Filter

Clear
CLK

18 Clock RESET

Generator RESET

1 WDT TAP SELECT |

(WDTMR)
CK Source

Select
(WDTMR)

XTAL

vDD
2.6V REF

Stop Delay

RC
0osC.

2.6V Operating
Voltage Det.

12 ns Glitch Filter

256 TpC

POR

CK CLR

256 512 1024 4096
ToC TpC TpC TpC

WDT/POR Counter Chain

Select (SMR)

Figure 4-3. Example of Z8 Reset with /RESET Pin, WDT, SMR, and POR

Internal
RESET

45

28° MICROCONTROLLERS

WDT Select
(WDTMR)

CLK Source
Select
(WDTMR)

XTAL

Vee
2V REF

From Stop
Mode
Recovery
Source

WDT

Stop Delay
Select (SMR)

4 Clock
Filter * Clear 18Clock RESET o
CLK Generator *
> | WDT TAP SELECT |
>
> " 5msPOR 5ms 15ms 25ms 100ms
o WDT/POR Counter Chain
Internal X C
RC
OSC.
2V Operating
:D\bnage Det.

— —

12 ns Glitch Filter

Y

v

Figure 4-4. Example of Z8 Reset with WDT, SMR, and POR

Internal
RESET

46

Q25

Z8° MICROCONTROLLERS

4.3 Watch-Dog Timer (WDT)

The WDT is a retriggerable one-shot timer that resets the
Z82% if it reaches its terminal count. When operating in the
RUN or HALT modes, a WDT reset is functionally equiva-
lent to a hardware /POR reset. The WDT is initially enabled
by executing the WDT instruction and refreshed on subse-
quent executions of the WDT instruction. The WDT cannot
be disabled after it has been initially enabled. Permanently
enabled WDTs are always enabled and the WDT instruc-
tionis used to refresh it. The WDT circuit is driven by an on-
board RC oscillator or external oscillator from the XTAL1
pin. The POR clock source is selected with bit 4 of the
Watch-Dog Timer Mode register (WDTMR). Insome cases,
a Z8 that offers the WDT but does not have a WDTMR
register, has a fixed WDT timeout and uses the on board
RC oscillator as the only clock source. Please refer to
specific product specifications for selectability of timeout,
WDT during HALT and STOP modes, source of WDT clock,
and availability of the permanently-on WDT option.

Note: Execution of the WDT instruction affects the Z (zero), S
(sign), and V (overflow) flags.

WDTMR (F) OF

Jo7] o8] o] 04| v3| p2] 01] 0o}

—L WDTTAPt INTRCOSC XTALCLK
00 5 512TpC
o1* 15* 1024 TpC
10 25 2048 TpC
1" 100 8192 TpC
WDT During HALT
0 OFF
1 ON*

WDT During STOP

0 OFF

1 ON*

XTAL1/INT RC Select for WDT
0 On-Board RC *

1 XTAL

Reserved (Must be 0)

* Default setting after RESET
t Must be 01 for Z86C03

Figure 4-5. Example of Z8 Watch-Dog Timer Mode
Register (Write-Only)

Note: The WDTMR register is accessible only during the first 64
processor cycles from the execution of the first instruction after
Power-On Reset, Watch-Dog Reset or a Stop-Mode Recovery.
After this point, the register cannot be modified by any means,
intentional or otherwise. The WDTMR is a write-only register.

The WDTMR is located in Expanded Register File Bank F,
register OFH. The control bits are described as follows:

WDT Time Select (D1, D0). Bits 0 and 1 control a tap
circuit that determines the time-out period. Table 4-5
shows the different values that can be obtained. The
default value of D1 and DO are 0 and 1, respectively.

Table 4-5. Time-Out Period of the WDT

Typical

Time-Out of Time-Out of

D1 DO Internal RC OSC XTAL Clock

0 0 5 ms min 256TpC

0 1 15 ms min 512TpC

1 0 25 ms min 1024TpC

1 1 100 ms min 4096TpC
Notes:

TpC = XTAL clock cycle

The default on resetis, DO = 1 and D1 =0.

The values given are for V,;, = 5.0V.

See the device product specification for exact WDTMR time-out select
options available.

WDT During HALT (D2). This bit determines whether or
not the WDT is active during HALT mode. A 1 indicates
active during HALT. The defaultis 1. AWDT time out during
HALT mode will reset control register ports to their default
reset conditions.

WDT During STOP (D3). This bit determines whether or
not the WDT is active during STOP mode. Since XTAL
clock is stopped during STOP Mode, unless as specified
below, the on-board RC must be selected as the clock
source to the POR counter. A 1 indicates active during
STOP. The defaultis 1. If bits D3 and D4 are both setto 1,
the WDT only, is driven by the external clock during STOP
mode. This feature makes it possible to wake up from
STOP mode from an internal source. Please refer to spe-
cific product specifications for conditions of control and
port registers when the Z8 comes out of STOP mode. A
WDT time out during STOP mode will not reset all control
registers. The reset conditions of the ports from STOP
mode due to WDT time out is the same as if recovered
using any of the other STOP mode sources.

4-7

Z8° MICROCONTROLLERS

Q205

Clock Source for WDT (D4). This bit determines which
oscillator source is usedto clockthe internal POR and WDT
counter chain. If the bit is a 1, the internal RC oscillator is
bypassed and the POR and WDT clock source is driven
from the external pin, XTAL1. The default configuration of
this bit is 0, which selects the internal RC oscillator.

Bits 5, 6 and 7. These bits are reserved.

V. Voltage Comparator. An on-board voltage compara-
tor checks that V., is at the required level to insure correct
operation of the device. Reset is globally driven if V. is
below the specified voltage. This feature is available in
selectROM Z8®devices. See the device product specifica-
tion for feature availability and operating range.

4.4 POWER-ON-RESET (POR)

Atimer circuit clocked by a dedicated on-board RC oscilla-
tor is used for the Power-On Reset (POR) timer (T.4z)
function. The POR time allows V; and the oscillator circuit
to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one
of three conditions:

1. Power fail to Power OK status (cold start).
2. STOP-Mode Recovery (if bit 5 of SMR=1).
3. WDT timeout.

The POR time is specified as T,,,. On Z8 devices that
feature a Stop-Mode Recovery register (SMR), bit5 selects
whether the POR timer is used after Stop-Mode Recovery
or by-passed. If bit D5 = 1 then the POR timer is used. If bit
5 = 0 then the POR timer is by-passed. In this case, the
Stop-Mode Recovery source must be held in the recovery
state for 5 T,C or 5 crystal clocks to pass the reset signal
internally. This option is used when the clock is provided
with an RC/LC clock. See the device product specification
for timing details.

POR (cold start) will always reset the Z8 control and port
registers to their default condition. If a Z8 has a SMR
register, the warm start bit will be reset to a O to indicate
POR.

INT OSC XTALOSC
POR ! !
(Cold Start)
Delay Line 18 CLK Chip
Tpor Ms ResetFiter [Reset
P27
(Stop Mode)

Figure 4-6. Example of Z8 with Simple SMR and POR

4-8

0N 2iLa5

USER'S MANUAL

CHAPTER 5
/O PORTS

5.1 INTRODUCTION

The Z8® has up to 32 lines dedicated to input and output.
These lines are grouped into four 8-bit ports known as Port
0, Port 1, Port 2, and Port 3. Port O is nibble programmable
as input, output, or address. Port 1 is byte configurable as
input, output, or address/data. Port 2 is bit programmable
as either inputs or outputs, with or without handshake and

SPI. Port 3 can be programmed to provide timing, serial
and parallel input/output, or comparator input/output.

All ports have push-pull CMOS outputs. In addition, the
push-pull outputs of Port 2 can be turned off for open-drain
operation.

5.1.1 Mode Registers

Each port has an associated Mode Register that deter-
mines the port’s functions and allows dynamic change in
port functions during program execution. Port and Mode
Registers are mapped into the Standard Register File as
shown in Figure 5-1.

Register HEX Identifier
Port 0-1 Mode F8H PO1M
Port 3 Mode F7H P3M
Port 2 Mode F6H P2M
Port 3 03H P3
Port 2 02H P2
Port 1 01H Pt
Port 0 00H PO

Figure 5-1. /O Ports and Mode Registers

Because of their close association, Port and Mode Regis-
ters are treated like any other general-purpose register.
There are no special instructions for port manipulation. Any
instruction which addresses a register can address the
ports. Data can be directly accessed in the Port Register,
with no extra moves.

5.1.2 Input and Output Registers

Each bit of Ports 0, 1, and 2, have an input register, an
outputregister, associated buffer, and control logic. Since
there are separate input and output registers associated
with each port, writing to bits defined as inputs stores the
datainthe outputregister. This data cannotberead as long
as the bits are defined as inputs. However, if the bits are
reconfigured as outputs, the data stored in the output
register is reflected on the output pins and can then be
read. This mechanism allows the user to initialize the
outputs prior to driving their loads (Figure 5-2).

Since portinputs are asynchronous tothe Z8 internal clock,
aREAD operation could occur during an input transition. In
this case, the logic level might be uncertain (somewhere
between a logic 1 and 0). To eliminate this meta-stable
condition, the Z8 latches the input data two clock periods
prior to the execution of the current instruction. The input
register uses these two clock periods to stabilize to a
legitimate logic level before the instruction reads the data.

Note: The foliowing sections describe the generic function ofthe
Z8 ports. Any additional features of the ports such as SPI, C/T,
and Stop-Mode Recovery are covered in their own section.

Q205

Z8° MICROCONTROLLERS

5.2 Port 0

This section deals with only the |/O operation of Port 0. The
port's external memory interface operation is covered later

in this manual. Figure 5-2 shows a block diagram of Port
0. This diagram also applies to Ports 1 and 2.

(————s——N Portlo
\r /8\ / Lines

——— /DAV/RDY

—— RDY//DAV

A
K——— 4
N
Input Input
Register Buffer
Read
> E Internai
Port q Timing
8
Handshake
Selected .| Handshake
Write q Logic
Port
.
Output Al Output
I:) Register /| Buffer 8
Output .
En;’?ale
Internal
Bus
Figure 5-2. Ports 0, 1, 2 Generic Block Diagram

5-2

Q205

28° MICROCONTROLLERS

5.2.1 General /O Mode

Port 0 can be an 8-bit, bidirectional, CMOS or TTL compat-
ible I/0 port. These eight I/O lines can be configured under
software control as a nibble I/O port (PO3-P00 input/output
and P07-P04 input/output), or as an address port for
interfacing external memory. The input buffers can be
Schmitt-triggered, level shifted, or a single-trip point buffer
and can be nibble programmed. Either nibble output can

globally programmed as push-pull or open-drain. Low EMI
output buffers in some cases can be globally programmed
by the software, as an OTP program option, or as a ROM
mask option. In some, the Z8® has Auto Latches hardwired
to the inputs. Please refer to specific product specifica-
tions for exact input/output buffer type features that are
available (Figures 5-3a and 5-3b).

(=
(=

|

Port 0
(/0 or A15 - A8)

Handshake Controls
/DAVO and RDYO
(P32 and P35)

Open-Drain

OEN

Out

1.5 <a-» 2.3V Hysteresis

PAD

9
: Auto Latch
|
|

Figure 5-3a. Port 0 Configuration with Open-Drain Capability, Auto Latch, and Schmitt-Trigger

5-3

AT

Z8° MICROCONTROLLERS

OEN >

]

PAD

ouT

TTL Level Shifter

IN 1
N

Figure 5-3b. Port 0 Configuration with TTL Level Shifter

5-4

A 2305

Z8° MICROCONTROLLERS

5.2.2 Read/Write Operations

In the nibble 1/0 Mode, Port O is accessed as general-
purpose register PO (00H) with ERF Bank set to 0. The port
is written by specifying PO as an instruction's destination
register. Writing to the port causes data to be stored in the
port's output register.

The portis read by specifying PO as the source register of
an instruction. When an output nibble is read, data on the
external pins is returned. Under normal loading conditions
this is equivalent to reading the output register. However,
for Port 0 outputs defined as open-drain, the data returned
is the value forced on the output by the external system.
This may not be the same as the data in the output register.
Reading a nibble defined as input also returns data on the
external pins. However, input bits under handshake con-
trol return data latched into the input register via the input
strobe.

The Port 0-1 Mode resister bits D,D; and D,D, are used to
configure Port O nibbles. The lower nibble (P0,-PO,) can be
defined as inputs by setting bits D, to 0 and D, to 1, or as
outputs by setting both D, and D, to 0. Likewise, the upper
nibble (P0,-P0,) can be defined as inputs by setting bits D,
to0and D, to 1, or as outputs by setting both D,and D, to
0 (Figure 5-4).

5.2.3 Handshake Operation

When used as an |/0 port, Port O can be placed under
handshake control by programming the Port 3 Mode regis-
ter bit D, to 1. Inthis configuration, handshake control lines
are DAV, (P3,) and RDY, (P3,) when PortOis aninput port,
or RDY, (P3,) and DAV, (P3;) when Port 0 is an output port.
(See Figure 5-5.)

Handshake direction is determined by the configuration
(input or output) assigned to the Port O upper nibble, PO,-
PO,. The lower nibble must have the same 1/0 configuration
as the upper nibble to be under handshake control. Figure
5-3aillustrates the Port O upper and lower nibbles and the
associated handshake lines of Port 3.

5.3 Port 1

This section dealsonlywiththe l/0operation. The port's external
memory interface operation is discussed later in thismanual.
Figure 5-2 shows a block diagram of Port 1.

5.3.1 General I/O Mode

Port 1 can be an 8-bit, bidirectional, CMOS or TTL compat-
ible port with multiplexed Address (A7-AQ) and Data (D7-
DO) ports. These eight I/O lines can be byte programmed
as inputs or outputs or can be configured under software
control as an Address/Data port for interfacing to external
memory. The input buffers can be Schmitt-triggered, level-
shifted, or a single-point buffer. In some cases, the output
buffers can be globally programmed as either push-pulior
open-drain. Low-EMI output buffers can be globally pro-
grammed by software, as an OTP program option, or as a
ROM Mask Option. In some cases, the Z8% can have auto
latches hardwired to the inputs. Please refer to specific
product specifications for exact input/output buffer-type
features available (Figures 5-6a and 5-6b).

R:gister F8H
Port 0-1 Mode Register (P01M)
(Write-Only)

lozlos]l | | 1

|p1]po)

PO, - PO, MODE
PO, - P0- MODE OlePU'|3= 00
I otfrPUT= 00 INPUT = 01
INPUT = 01 Ag-Aqyp=1X

Figure 5-4. Port 0 VO Operation

Register F7H
Port 3 Mode Register (P3M)
(Write-Only)

L1111 Jo2] | |

0 P3, = INPUT I
P3g = QUTPUT

1P33 = DAVO,
P32 = RDYO/DAVO

Figure 5-5. Port 0 Handshake Operation

5-5

N 2iLa5 28° MICROCONTROLLERS

Port 1
(/0 orAD7 - ADO)

«g}—————— Handshake Controls
/DAV1 and RDY1
— (P33 and P34)

Z8

Open-Drain T

OEN L——_
o

i

PAD

Out

1.5 <a—p= 2 3V Hysteresis

~

Auto Latch

%

Figure 5-6a. Port 1 Configuration with Open-Drain Capability, Auto Latch, and Schmitt-Trigger

@ p—i | Na Z8° MICROCONTROLLERS

Port 1
(/O or AD7 - ADO)

-@}—— Handshake Controls
/DAV1 and RDY1
P (P33 and P34)

Z8

PAD

ouT
TTL Level Shifter -
IN <}

OEN Do }_4:
Dt

Figure 5-6b. Port 1 Configuration with TTL Level Shifter

A= e

Z8° MICROCONTROLLERS

5.3.2 Read/Write Operations

In byte input or byte output mode, the port is accessed as
General-Purpose Register P1 (01H). The port is written by
specifying P1 as an instruction's destination register. Writ-
ing to the port causes data to be stored in the port's output
register.

The port is read by specifying P1 as the source register of
an instruction. When an outputis read, data on the external
pins is returned. Under normal loading conditions, this is
equivalerit to reading the output register. However, if
Port 1 outputs are defined as open-drain, the datareturned
is the value forced on the output by the external system.
This may not be the same as the data in the outputregister.
When Port 1 is defined as an input, reading also returns
data on the external pins. However, inputs under hand-
shake control return data latched into the input register via
the input strobe.

Using the Port 0-1 Mode Register, Port 1 is configured as
an output port by setting bits D, and D, to 0, or as an input
portbysettingD,to0and D, to1(Figure5-8).

POIM
Port 0-1 Mode Register
(F8, Write-Only)

L1 Ioalps] I 1 1
I—P1-P1MODE
Byts

Ouiput
01 = eln
3 .GI h.lngd ADQ - AD
lence
&D gFl/WpAB A1, A12- A15

Figure 5-7. Port 1 /O Operation

5.3.3 Handshake Operations

When used as an 1/O port, Port 1 can be placed under
handshake control by programming the Port 3 Mode regis-
ter bits D, and D, bothto 1. Inthis configuration, handshake
control lines are DAV, (P3,) and RDY, (P3,) when Port 1 is
an input port, or RDY, (P3,) and DAV, (P3,) when Port 1 is
an output port. See Figures 5-6 and 5-8.

Handshake direction is determined by the configuration
(input and output) assigned to Port 1. For example, if Port
1 is an output port then handshake is defined as output.

R247 P3M
Port 3 Mode Register
(F7, Write-Only)

Ll 1 Joalos] 1T 1 1

_|: 00 P33 = Input P34 = Qutput
01 P33 = Input P34 =DM

10 P33 = loput P34=DM __
11 P33 = DAV1/RDY1 P34 = RDY1/DAV1

Figure 5-8. Handshake Operation

5-8

N 2005

Z8° MICROCONTROLLERS

5.4 PORT 2

Port 2is a general-purpose port. Figure 5-2 shows a block
diagram of Port 2. Each of its lines can be independently
programmed as input or output viathe Port 2 Mode Register
(F6H) as seen in Figure 5-9. A bit set to a 1 in P2M
configuresthe corresponding bitin Port 2 as an input, while
a bit set to 0 configures an output line.

Register F6H
Port2 Mode Regkster (P2M)
(Write-Only)
D7} D6| D5{D4] D3§ D2 |D1} DO
| Port2 Mode
0= Output
1=Input

Figure 5-9. Port 2 /O Mode Configuration

5.4.1 General Port I/0

Port 2 can be an 8-bit, bidirectional, CMOS- or TTL-
compatible I/O port. These eight I/O lines can be config-
ured under software control to be an input or output,
independently. Input buffers can be Schmitt-triggered,
level-shifted, or a single trip point buffer and may contain
Auto Latches. Bits programmed as outputs may be glo-
bally programmed as either push-pull or open-drain. Low-
EMI output buffers can be globally programmed by the
software, an OTP program option, or as a ROM mask
option. In addition, when the SPI is featured and enabled,
P20 functions as data-in (DI), and P27 functions as data-
out (DO). Please refer to specific product specifications
for exact input/output buffer type features available. See
Figures 5-10a through 5-10c.

5-9

N 21La5

Z8° MICROCONTROLLERS

Open-Drain l T
P21-P26 OE —D—— }—-t P21-p26
PAD
P21-P26 OUT > Q
1.5 > 2.3 Hysteresis @ Vg = 5.0V m
P21-P26 IN {}
rr———"—""~""">"""="=7 T
: : Auto Latch
: |
R=2 500K Q |
|

Figure 5-10a. Port 2 Configuration with Open-Drain Capability, Auto Latch, and Schmitt-Trigger

Open Drain
OEN > F i
PAD
ouT
TTL Leve Shifter
IN A

N

Figure 5-10b. Port 2 Configuration with TTL Level Shifter

5-10

_@ 2L Z8° MICROCONTROLLERS

Open-Drain 1
P20 OE JD_,_l >
SPIEN —1 220
PAD
P20 IN
or 4‘
SPIDI N I —
1 '
I : Auto Latch
| |
| |
Rz 500K Q
L |

0!:;'23‘: Standard L }4
SPIDO sP_A4 P27
P27 OE Standard [j PAD
SPlActive SPl / >_ﬁ7
SCON I

0 SPI DO Enable
l |D2L J 1 P27 OUT
*SPI must be enabled with DO.

P27 IN {}

Auto Latch

|

Figure 5-10c. Port 2 Configuration with Open-Drain Capability, Auto Latch, Schmitt-Trigger and SPI

5-11

Q2005

78° MICROCONTROLLERS

5.4.2 Read/Write Operations

Port 2is accessed as General-Purpose Register P2 (02H).
Port 2 is written by specifying P2 as an instruction’s
destination register. Writing to Port 2 causes data to be
stored in the output register of Port 2, and reflected
externally on any bit configured as an output. Regardless
of the bitinput/output configuration, Port 2is always written
and read as a byte-wide port.

Port 2 is read by specifying P2 as the source register of an
instruction. When an output bit is read, data on the external

pin is returned. Under normal loading conditions, this is
equivalent to reading the output register. However, if a bit
of Port 2 is defined as an open-drain output, the data
returned isthe value forced on the output pin by the external
system. This may not be the same as the data in the output
register. Reading input bits of Port 2 also returns data on
the external pins. However, inputs under handshake con-
trol return data latched into the input register via the input
strobe.

5.4.3 Handshake Operation

Port2 can be placed under handshake control by program-
ming bit 6 in the Port 3 Mode Register (Figure 5-11). In this
configuration, Port 3 lines P31 and P36 are used as the
handshake control lines /DAV2 and RDY2 for input hand-
shake, or RDY2 and /DAV2 for output handshake.

Register F7H
Port 3 Mode Register

(Write-Only)
[o7|ps|ps|p4 osfo2

D1

z

Handshake direction is determined by the configuration
(input or output) assigned to bit 7 of Port 2. Only those bits
with the same configuration as P27 will be under hand-
shake control. Figure 5-12 illustrates bit lines of Port 2 and
the associated handshake lines of Port 3.

T Port 2 Handshakin

0 P31 = Input (T,
1 P31 = /DAV2/AY2

P36 = Output
Pae = ROvaroRMT

Figure 5-11. Port 2 Handshake Configuration

P2q

— Port 2 (1/0)

:j_

P2,

Handshake Controls
/DAV2 and RDY2
(P31 and P3g)

Figure 5-12. Port 2 Handshaking

5-12

A 21La5

28° MICROCONTROLLERS

5.5 PORT3
5.5.1 General Port I/10

Port 3 differs structurally from Port 0, 1, and 2. Port 3 lines
are fixed as four inputs (P33-P30) and four outputs (P37-
P34) Port 3 does not have an input and output register for
eachbit. Instead, all the input lines have one inputregister,
and all the output lines have an output register. Port 3 can
be a CMOS- or TTL- compatible I/O port. Under software
control, the lines can be configured as special control lines
for handshake, comparator inputs, SPI control, external
memory status, or |/O lines for the on-board serial and timer
facilities. Figure 5-13 is a generic block diagram of Port 3.

Theinputs can be Schmitt-triggered, level-shifted, or single-
trip point buffered. In some cases, the Z8® may have auto
latches hardwired on certain Port 3 inputs and Low-EMI
capabilities onthe outputs. Please refer to specific product
specifications for exact input/output buffer type features.
Please refer to the section on counter/timers, Stop-Mode
Recovery, serial 1/0, comparators, and interrupts for more
information on the relationships of Port 3 to that feature.

Read
Port
mput fo 4 mput o Port
<:—_ Register K—*—] Buffer K—————— II.':r‘::;
P30-P33
To Interr:ﬁt Timer,
! Handshake Logic
or Serial I/O
Read
Port —
) ODutput)
ata
K‘ 2 Return (r-—
Buffer
Write
Port ~™]
L \] Output N OF::nut
—*—] Register 4 V] %m:f I> Lines
P34-P3;

From Timer,

Internal E Handshake Logic

Bus or Serial I/0

Figure 5-13. Port 3 Block Diagram

5-13

@ 205 Z8° MICROCONTROLLERS

| P30
g P31
g P32

28 |= P33 Port 3
b P34 (/O or Control)

pre—. P35
i P36
‘
Auto Latch
R = 500K Q
P30 ? o E&Dlaéam
R247 = P3M
1 =Analog
L Io] 1 o-Digra
DIG. £
P3‘1 (AN1) IRQ2, Ty, P31 Data Latch
’ +
AN.
P32 (AN2) I'—°_____, IRQO, P32 Data Latch
/ +
P33 (REF) i
L4
From Stop-Mode " o———————o IRQ1, P33 Data Latch
Recovery Source

Figure 5-14a. Port 3 Configuration with Comparator, Auto Latch, and Schmitt-Trigger

5-14

@ <2LaBL Z8° MICROCONTROLLERS

P34 OUT ——o\ P34

P31 Py o PAD

n 1
REF (P33)

P37 OUT ———\ P37
P32 >+ o PAD

REF (P33)

PCON mn
I JEOI 0 P34, P37 Standard Output
1 P34, P37 Comparator Output

Figure 5-14b. Port 3 Configuration with Comparator

5-15

@ 205 Z8° MICROCONTROLLERS

SKIN

VN

SPIEN
SPIMSTR P4
PAD
SPIEN ——e——— L
SK OUT ‘
P34 OUT ————o\ MUX —
P31 ‘—I_—_%‘, .
REF /]
ss \u'l
SPIEN
SPI MSTRD P35
PAD

P35 OUT ——-\‘ d

P32

REF

l POON I°°| 0 P34, P35 Standard Output
1 P34, P35 Comparator Output

Figure 5-14c. Port 3 Configuration with SPl and Comparator Outputs Using P34 and P35

5-16

Z8° MICROCONTROLLERS

PAD
Out D&

TTL Level Shifter Port 3 Output Configuration

e —

\l
R =500 KQ

PAD

Auto Latch

Port 3 Input Configuration

Figure 5-14d. Port 3 Configuration with TTL Level Shifter and Auto Latch

5-17

N 205

Z8° MICROCONTROLLERS

5.5.2 Read/Write Operations

Port 3 is accessed as a General-Purpose Register P3
(03H). Port 3 is written by specifying P3 as an instruction’s
destination register. However, Port 3 outputs cannot be
written to if they are used for special functions. When
writing to Port 3, data is stored in the output register.

Port 3 is read by specifying P3 as the source register of an
instruction. When reading from Port 3, the data returned is
both the data on the input pins and in the output register.

Register F7H
Port 3 Mode Register
(Write-Only)

i Del os]od]oo] o orf o]

[

5.5.3 Special Functions

Special functions for Port 3 are defined by programming the
Port 3 Mode Register. By writing Os in bit 6 through
bit 1, lines P37-P30 are configured as input/output pairs
(Figure 5-15). Table 5-1 shows available functions for
Port 3. The special functions indicated in the figure are
discussed in detail in their corresponding sections in this
manual.

Port 3 input lines P33-P30 always function as interrupt
requests regardless of the configuration specified in the
Port 3 Mode Register.

0 Port2 n-Drain
1Port2 ggseh Pull

0 P31, P32 Digital Mode
1 P31, P32 Analog Mode

0 P32 = Input P35 = Output

1 P32 = /DAV/RDY2 P35 = RDY//DAVO
00 P33 = Input P34 = Output
01 P33 = Input P34 =/D

10 P33 = Input P34 /DM

11 P33 = /DAV1/RDY1 P34 = RDY1//DAV1
0 P31 = Input P36 = Output

1 P32=/DAV2/RDY2 P36 = RDY2//DAV2

0 P30 = Input P37 = Output

1 P30 =Serial in P37 = Serial Out

0 Parity ON

1 Paﬂrig OFF

Figure 5-15. Port 3 Mode Register Configuration

5-18

Y= e

Z8° MICROCONTROLLERS

Table 5-1. Port 3 Line Functions

Function Line Signal
Inputs P30 Input

P31 Input

P32 Input

P33 Input
Outputs P34 Output

P35 Qutput

P36 Output

P37 Output
Port O Handshake Input P32 /DAVO/RDYO
Port 1 Handshake Input P33 /DAV1/RDY1
Port 2 Handshake Input P31 /DAV2/RDY2
Port 0 Handshake Output P35 RDYO//DAVO
Port 1 Handshake Output P34 RDY1//DAVA
Port 2 Handshake Output P36 RDY2//DAV2
Analog Comparator Input P31 AN1

P32 AN2

P33 REF
Analog Comparator Output P34 AN1-OUT

P35 AN2-OUT

P37 AN2-OUT
Interrupt Requests P30 IRQ3

P31 IRQ2

P32 IRQO

P33 IRQ1
Serial Input P20 DI
Serial Output P27 DO
SPI Slave Select P35 SS
SPI Clock P34 SK
Counter/Timer P31 T

P36 our
External Memory Status P34 /DM

5.6 PORT HANDSHAKE

When Ports 0, 1, and 2 are configured for handshake
operation, a pair of lines from Port 3 are used for hand-
shake controls. The handshake controls are interlocked to
properly time asynchronous data transfers between the
Z8® and a peripheral. One control line (/DAV) functions as
a strobe from the sender to indicate to the receiver that
data is available. The second control line (RDY) acknowl-
edges receipt of the sender’s data, and indicates when the
receiver is ready to accept another data transfer.

In the input mode, data is latched into the Port’s input
register by the first /DAV signal, and is protected from
being overwritten if additional pulses occur on the /DAY
line. This overwrite protection is maintained until the port
data is read. In the output mode, data written to the portis
not protected and can be overwritten by the Z8 during the
handshake sequence. To avoid losing data, the software
must not overwrite the port until the corresponding inter-
rupt request indicates that the external device has latched
the data.

The software can always read Port 3 output and input
handshake lines, but cannot write to the output handshake
line.

The following is the recommended setup sequence when
configuring a Port for handshake operation for the first time
after a reset:

m Load PO1M or P2M to configure the port for input/
output.

B Load P3 to set the Output Handshake bit
to a logic 1.

B LoadP3Mto selectthe Handshake Mode for the port.

Once a data transfer begins, the configuration of the
handshake lines should not be changed until the hand-
shake is completed.

Figures 5-16 and 5-17 show detailed operation for the
handshake sequence.

5-19

Z8° MICROCONTROLLERS

/DAV
(Input To Z8)

RDY
(Output From Z8)

Data On Port
(Input To Z8)

State 1.

State 2.

State 3.

State 4.
State 5.

-

(waom X X

Port 3 Ready output is High, indicating that the Z8 is ready to accept data.

The I/O device puts data on the port and then activates the /DAV input. This
causes the data to be latched into the port input register and generates an
interrupt request.

The Z8 forces the Ready (RDY) output Low, signaling to the I/O device
that the data has been latched.

The 1/O device returns the /DAV line High in response to the RDY going Low.

The 28® software must respond to the interrupt request and read the contents
of the port in order for the handshake sequence to be completed. The RDY line
goes High if and only if the port has not been read and /DAV is High. This returns
the interface to its initial state.

Figure 5-16. Z8 Input Handshake

5-20

Z8° MICROCONTROLLERS

RDY
(Output From Z8)

/DAV
(Output From Z8)

Data On Port
(Output From Z8)

State 1.
State 2.

State 3.

State 4.

State 5.

]
—— -

* Valid Data

RDY input is High indicating that the I/O device is ready to accept data.

The ZB® writes to the port register to initiate a data transfer. Writing the port
outputs new data and forces /DAV Low if and only if RDY is High.

The I/O device forces RDY Low after latching the data RDY Low causes an interrupt
request to be generated. The Z8 can write new data in response to RDY going
Low; however, the data is not output until State 5.

The /DAV output from the Z8 is driven High in response to RDY going Low.

The /DAV goes High, the I/O device is free to raise RDY High thus returning the
interface to its initial state.

Figure 5-17. Z8 Output Handshake

5-21

QD 2LaG

Z8° MICROCONTROLLERS

In applications requiring a strobed signal instead of the
interlocked handshake, the Z8® can satisfy this require-
ment as follows:

| Inthe Strobed Input mode, data can be latched in the
Port input register using the /DAV input. The data
transfer rate must allow enough time for the software to
read the Port before strobing in the next character. The
RDY output is ignored.

P2o-P2; ———N

B Inthe Strobed Output Mode, the RDY input should be
tied to the /DAV output.

Figures 5-18 and 5-19 illustrate the strobed handshake
connections.

—/
Vo]
z8 Device
P34 /DAV >
P3, j«B0Y.

Figure 5-18. Output Strobed Handshake on Port 2

P2¢-P2; \'_’
D e
78 evice
/DAV
P34 =

Figure 5-19. Input Strobed Handshake on Port 2

5-22

@ 2ild5 28° MICROCONTROLLERS

5.7 /O PORT RESET CONDITIONS
5.7.1 Full Reset

After a hardware reset, Watch-Dog Timer (WDT) reset,ora For the condition of the Ports after Stop-Mode Recovery,
Power-On Reset (POR), Port Mode Registers PO1M, P2M, please refer to specific device product specifications. In
and P3M are set as shown in Figures 5-20 through 5-22. some cases, the Z8® has the PO1M, P2M, and P3M control
Port 2 is configured for input operation on all bits and isset ~ register set back to the default condition after reset while
for open-drain (Figure 5-22). If push-pull outputs are de- others do not.

sired for Port 2 outputs, remember to configure them using

P3M. Please note that a WDT time-out from Stop-Mode Allspecial l/O functions of Port 3 are inactive, with P33-P30
Recovery does not do a full reset. Certainregistersthatare set as inputs and P37-P34 set as outputs (Figure 5-22).

not reset after Stop-Mode Recovery will not be reset. Note: Because the types and amounts of I/O vary greatly among

the Z8 family devices, the user is advised to review the selected
device's product specifications for the register default state after
reset.

Register F8H
Port 0-1 Mode Register (P01M)
(Write-Only)

Lol fofo] 1 fe]o]:]

L—— Poo- P03 Mode
00 = Output
01 = Input
1X=AB- A1

Stack Selection
0 = External
1 = Internal

P10 - P17 Mode

00 = Byte Output

01 = Byte Input

10 = Ad0 - Ad7

11 = High Impedance ADO - AD7, A8 - A1S5, /AS, /DS, /RIW

External Memory Timing
Normal = 0
Extended = 1

P04 - P07 Mode
Output = 00
Input = 01
A12-A15=1x

Figure 5-20. Port 0/1 Reset

5-23

@L 2Ll Z8° MICROCONTROLLERS

Register F6H
Port 2 Mode Register (P2M)
(Write-Only)
1111111111111
L Pot2Mode
0 = Output
1 = Input
Figure 5-21. Port 2 Reset
Register F7H
Port 3 Mode Register (P3M)
(Write-Only)

ojojojojojojojo

TTT T T _ o= Port 2 Open-Drain
1 = Port 2 Push-Pull
0 = P31, P32 Digital Mode

1= P31, P32 Analog Mode

0=P32=Input P35 = Output
1=P32=/DAV

00 P33 =Input P34 =Output

01 P33=Input P34=/DM

10 P33 =Input P34 =/DM

11 P33 =/DAV1/RDY1 P34 = RDY1//DAV1

0 P31=Input P36 = Output
P31 =/DAV2/RDY2 P36 = RDY2/DAV2

0 P30 =Input P37 = Output

1 P30=Serialin P37 = Serial Out
0 Parity Off

1 Parity On

Figure 5-22. Port 3 Mode Reset

5-24

A 2L05

Z8° MICROCONTROLLERS

5.8 ANALOG COMPARATORS

Select Z8® devices include two independent on-chip ana-
log comparators. See the device product specification for
feature availability and use. Port 3, Pins P31 and P32 each
have a comparator front end. The comparator reference
voltage, pin P33, is common to both comparators. In
Analog Mode, the P31 and P32 are the positive inputs to
the comparators and P33is the reference voltage supplied
to both comparators. In Digital Mode, pin P33 can be used
as a P33 register input or IRQ1 source. P34, P35, or P37
may output the comparator outputs by software-program-
ming the PCON Register bit DO to 1.

Register F7H
Port 3 Mode Register (P3M)
(Write-Only)

D1

5.8.1 Comparator Description

Twoon-board comparators can process analog signals on
P31 and P32 with reference to the voltage on P33. The
analog function is enabled by programming the Port 3
Mode Register (P3M bit 1). For interrupt functions during
analog mode, P31 and P32 can be programmable as
rising, falling, or both edge triggered interrupts (IRQ reg-
ister bits 6 and bit 7).

Note: P33 cannot generate an external interrupt while in this
mode. P33 can only generate interrupts in the Digital Mode.

Note: Port 3 inputs must be in digital mode if Port 3 is a Stop-
Mode Recovery source. The analog comparator is disabled in
STOP mode.

P31 can be used as T in Analog or Digital Modes, but it
must be referenced to P33, when in Analog Mode.

T 0= Digital Mode P31, P32, P33

1 = Analog Mode P31, P32, P33

Figure 5-23. Port 3 Input Analog Selection

ERF Bank F
Register 00H

Port Configuration Register (PCON)

(Write-Only)

Do

T 0 P34, P35, or P37 Standard Outputs

1 P34, P35, or P37 Comparator Outputs

Figure 5-24. Port 3 Comparator Output Selection

5-25

@ 2L 268° MICROCONTROLLERS

<— P30
g P31
| aff—— P32
z8 P Port 3

- P34 (/O or Control)

——-——». P35
_q P36
‘ - P37
Auto Latch
R = 500K Q
[N P30 Data
P30 > =4 Latch IRQ3
R247 = P3M
1 =Analog
| o] | o-pigital
DIG. £
P31 (AN1) IRQ2, Tyn, P31 Data Latch
’ +
AN,
P32 (AN2) L___.__. IRQO, P32 Data Latch
’ +
P33 (REF))
) \
From Stop-Mode No————— IRQ1, P33 Data Latch
Recovery Source

Figure 5-25. Port Configuration of Comparator Inputs on P31, P32, and P33

5-26

>
v
B

Z8° MICROCONTROLLERS

P34 OUT ————o\

P31 3 e
l_— y 3

REF (P33)

P37 OUT —\A
P32 +> W

REF (P33)
PCON

I IDO | 0 P34, P37 Standard Output
1 P34, P37 Comparator Output

Figure 5-26. Port 3 Configuration

P34

P37

PAD

PAD

5.8.2 Comparator Programming

Example of enabling analog comparator mode.
LD P3M, #XXXX XX1XB

Note:X=don'tcare.

Example of enabling analog comparator output.

LD RP, #%0FH ;Sets register pointer to
;working register group 0
;and Expanded Register
;File bank.

LD RO, #XXXX XXX1B ;Enables comparator
;outputs using PCOM
;Register programming.

5-27

N 2ILa5

Z28° MICROCONTROLLERS

5.8.3 COMPARATOR OPERATION

After enabling the Analog Comparator mode, P33 be-
comes a common reference input for both comparators.
The P33 (Ref) is hard wired to the reference inputs to both
comparators and cannot be separated. P31 and P32 are
always connected to the positive inputstothe comparators.
P31 isthe positive inputto comparator AN1while P32is the
positive inputto comparator AN2. The outputs to compara-
tors AN1and AN2 are AN1-out and AN2-out, respectively.

The comparator output reflects the relationship between
the positive input to the reference input.

Example: If the voltage on AN1 is higher than the voltage
on Refthen AN1-outwill be ata high state. If voltage on AN2
is lower than the voltage on Ref then AN2-out will be at a
Low state. Inthis example, when the Port 3register is read,
Bits D1 = 1 and D2 = 0. If the comparator outputs are
enabledtocome outon P34 and P37, then P34 =1and P37
=0. Please note that the previous data stored in P34 and
P37isnot disturbed. Once the comparator outputs are de-
selected the stored values in the P34 and P37 register bits
will be reflected on these pins again.

5.8.4 Interrupts

In the example from Section 5.8.3, P32 (AN2) will generate
aninterrupt based onthe result of the comparison being low
and the Interrupt Request Register (IRQ FAH) having bits
D7=0and D6=0. IfIRQD7=1 and D6=0 then both P31 and
P32 would generate interrupts.

5.8.5. Comparator Definitions
5.8.5.1.V

The usable voltage range for both positive inputs and the
reference input is called the common mode voltage range
(V). The comparator is not guaranteed to work if the
inputs are outside of the V., range.

5.8.5.2.V

ICR

OFFSET

The absolute value of the voltage between the positive
input and the reference input required to make the com-
parator output voltage switch is the input offset voltage
(Voffset). If AN1 is 3.000V and Ref is 3.001V when the
comparator output switches states then the Voffset = 1mV.

5.8.5.3.1,

For CMOS voltage comparator inputs, the input offset
current (1) is the leakage current of the CMOS input gate.

5.8.6. RUN Mode

P33 is not available as an interrupt input during Analog
Mode. P31 and P32 are valid interrupt inputs in conjunc-
tion with P33 (Ref) when in the Analog Mode.

P31 can still be used as T, when the analog mode is
selected. If comparator outputs are desired to be outputted
on the Port 3 outputs, please refer to specific products
specification for priority of muxing when other special
features are sharing those same Port 3 pins.

5.8.7. HALT Mode

The analog comparators are functional during HALT Mode
if the Analog Mode has been enabled. P31 and P32, in
conjunction with P33 (Ref) will be able to generate inter-
rupts. Only P33 cannot generate aninterrupt since the P33
input goes directly to the Ref input of the comparators and
is disconnected from the interrupt sensing circuits.

5.8.8. STOP Mode

The analog comparators are disabled during STOP Mode
so it does not use any current at that time. If P31, P32, or
P33 are used as a source for Stop-Mode Recovery, the Port
3 Digital Mode must be selected by setting bit D1=0in the
Port 3 Mode Register. Otherwise in STOP Mode, the P31,
P32, and P33 cannot be sensed. If the Analog Mode was
selected when entering STOP Mode, it will still be enabled
after a valid SMR triggered reset.

5-28

N 205

Z8°® MICROCONTROLLERS

5.9 OPEN-DRAIN CONFIGURATION

All Z8s can configure Port 2 to provide open-drain outputs
by programming the Port 3 Mode Register (P3M) bit DO=0.

Register F7H
Port 3 Mode Register
(Write Only)

|07] 6] 05| 04] 03] o2] 01| oo}

g F— Port 2 Configuration

0= pyll-Ups Open-Drain
1= PuII-Ug:Ac%ive

Figure 5-27. Port 2 Configuration

Other Z8s that have a Port Configuration Register (PCON)
that can configure Port 0 and Port 1 to provide open-drain
outputs. The PCON Register is located in Expanded
Register File (ERF) Bank F, Register OOH. See Figure 5-28.

PCON (FH) 00H
[o7] e[ps]o¢f o] 2] o1 oo]

I— Comparator Output Port 3
0 P34, P37 Standard Output*
1 P34, P37 Comparator Qutput
‘—————— 0 Port 1 Open Drain
1 Port 1 Push-pull Active*
Port 0 Open Drain
Port 0 Push-pull Active*
0 Low EMI

0 Port3 LowEMI
1 Port3 Standard®

Low EMI Oscillator
0 LowEMI
1 Standard*

* Default SettingAfter Reset

Figure 5-28. Port Configuration Register (PCON)
(Write-Only)

Port1Open-Drain(D1).Port 1 canbe configuredasopen-drainby
resettingthisbit(D1=0)orconfiguredaspush-pullactivebysettingthis
bit(D1=1). Thedefaultvalueis 1.

Port 0 Open Drain (D2). Port 0 can be configured as open-
drain by resetting this bit(D2=0) or configured as push-pull
active by setting this bit (D2=1). The default value is 1.

5.10 LOW EMI EMISSION

Some Z8s can be programmed to operate in a Low EMI
Emission Mode using the Port configuration register
(PCON). The PCON register allows the oscillator and all I/
O ports to be programmed in the Low-EMI Mode indepen-

dently. Other Z8s may offer a ROM Mask or OTP program-
ming option to configure the Z8 Ports and oscillator glo-
bally to a Low-EMI mode (where the XTAL frequency is set
equal to the internal system clock frequency.

Use of the Low EMI feature results in:

B The output pre-drivers slew rate reduced to 10 ns
(typical).

B Low EMI output drivers have resistance of 200 Ohms
(typical).

B Low EMI Oscillator.

B Alloutput drivers are approximately 25 percent of the
standard drive.

B Internal SCLK/TCLK = XTAL operation limited to a
maximum of 4 MHz - 250 ns cycle time, when Low EMI
Oscillator is selected and system clock (SCLK=XTAL,
SMR Reg. Bit D1=1).

For Z8s having the PCON register feature, the following bits
control the Low EMI options:

B Low EMI Port 0 (D3). Port 0 can be configured as a
Low EMI Port by resetting this bit (D3=0) or configured
as a Standard Port by setting this bit (D3=1). The
default value is 1.

m Low EMI Port 1 (D4). Port 1can be configured as a
Low EMI Port by resetting this bit (D4=0) or configured
as a Standard Port by setting this bit (D4=1). The
default value is 1.

B Low EMI Port 2 (D5). Port 2 can be configured as a
Low EMI Port by resetting this bit (D5=0) or configured
as a Standard Port by setting this bit (D5=1). The
default value is 1.

m Low EMI Port 3 (D6). Port 3 can be configured as a
Low EMI Port by resetting this bit (D6=0) or configured
as a Standard Port by setting this bit (D6=1). The
default value is 1.

B Low EMI OSC (D7). This bit of the PCON Register
controls the Low EMI oscillator. A 1 in this location
configures the oscillator with standard drive, while a0
configures the oscillator with low noise drive. The Low-
EMImode will reduce the drive of the oscillator (OSC).
The default value is 1. XTAL/2 mode is not effected by
this bit.

Note: The maximum external clock frequency is 4 MHz when
running in the Low EMI oscillator mode.

Please refer to the selected device product specification
for availability of the Low EMI feature and programming
options.

5-29

A= o

Z8° MICROCONTROLLERS

5.11 INPUT PROTECTION

All CMOS ROM Z8s have I/O pins with diode input protec-
tion. Thereisadiode fromthe I/O padtoV, . andtoV,. See
Figure 5-29A.

Vee

PAD

/\
/\

Vss

Figure 5-29a. Diode Input Protection

On CMOS OTP EPROM Z8's, the Port 3 inputs P31, P32,
P33 and the XTAL 1 pin have only the input protection
diode from pad to V. See Figure 5-29B.

PAD

Figure 5-29b. OTP Diode Input Protection

The high-side input protection diodes were removed on
these pins to allow the application of +12.5V during the
various OTP programming modes.

For better noise immunity in applications that are exposed
to system EMI, a clamping diode to V., from these pins
may be required to prevent entering the OTP programming
mode or to prevent high voltage from damaging these
pins.

5-30

A 2505

28° MICROCONTROLLERS

5.12. CMOS Z8 AUTO LATCHES

I/O port bits that are configurable as inputs are protected
against open circuit conditions using Auto Latches. An
Auto Latch is a circuit which, in the event of an open circuit
condition, latches the input at a valid CMOS level. This

inhibits the tendency of the input transistors to self-bias in
the forward active region, thus drawing excessive supply
current. A simplified schematic of the CMOS Z8 I/O circuit
is shown in Figure 5-30.

Open-Drain

,,Y | /] o
| —\k w Data Out
‘_ Data In

Vbp

H

—

Auto Latch

Py

G1

Figure 5-30. Simplified CMOS Z8 /O Circuit

The operation of the Auto Latch circuit is straight-forward.
Assume the input pad is latched at +5V (logic 1). The
inverter G1 inverts the bit, turning the P-channel FET ON
and the N-channel FET OFF. The output of the circuit is
effectively shorted to Vi, returning +5V to the input. If the
pad is then disconnected from the +5V source, the Auto
Latch will hold the input at the previous state. If the device
is powered up with the input floating, the state of the Auto
Latch will be at either supply, but which state is unpredict-
able.

There are four operating conditions which will activate the
Auto Latches. The first, which occurs when the input pin is
physically disconnected from any source, is the most
obvious. The second occurs when the input is connected
to the output of a device with tri-state capability.

The Auto Latch will also activate when the input voltage at
the pin is not within 200 microV or so of either supply rail.
In this case, the circuit will draw current, which is not
significant compared to the Icc operating current of the
device, but will increase |.., STOP Mode current of the
device dramatically.

cc2

The fourth condition occurs when the 1/O bit is configured
as anoutput. Referring to the output section of Figure 5-30,
there are two ways of tri-stating the port pin. The first is by
configuring the port as an input, which disables the /OE
signal turning both transistors off. The second can be
achieved in output mode by writing a “1” to the output port,
then activating the open drain mode. Both transistors are
again off, and the port bitis in a highimpedance state. The
Auto Latches then pull the input section toward V.

5-31

A= e

Z8* MICROCONTROLLERS

Auto Latch Model:

The Auto Latch’s equivalent circuit is shown in Figure 5-31.
When the input is high, the circuit consists of a resistance
Rp from V,, (the P-channel transistor in its ON state) and
a much greater resistance Rh to GND. Current lao flows
from V,, to the output. When the input is low, the circuit
may be modeled as a resistance Rp from GND (the N-
channel transistor in the ON state) and a much greater

Rp

l‘AO

PAD DataIn

Logic 1
Ry

FMAMW— §

resistance Rh to V,,. Current lao now flows from the input
toground. The Auto Latch is characterized with respect to
lao, so the equivalent resistance Rp is calculated accord-
ing to RP= (V,,-V,J/lao. The worst case equivalent resis-
tance Rp (min) may be calculated at the worst case input
voltage, Vi= Vih(min).

Ry

PAD DataIn

Logic 0
Rp

11A0

AW &

Figure 5-31. Auto Latch Equivalent Circuit

5-32

Q205

Z8° MICROCONTROLLERS

Design Considerations:

For circuits in which the Auto Latch is active, consideration
should be given to the loading constraints of the Auto
Latches. For example, with weak values of V,, close to Vih
(min) or Vil (max), pullup or pull-down resistances must be
calculated using Ref = R/Rp. For best case STOP mode
operation, the inputs should be within 200 mV of the supply
rails.

In output mode, if a port bit is forced into a tri-state
condition, the Auto Latches will force the pad to V. If
there is an external pulldown resistor on the pin, the voltage
atthe pin may not switch to GND due to the Auto Latch. As
shown in Figure 5-32, the equivalent resistance of the Auto
Latch and the external pulldown form a voltage divider,
and if the

external resistor is large, the voltage developed across it
will exceed Vil(max). For worst case:

Vilimax >V, [Rext/(Rext+Rp)]
Rext(max) = [(Vil(max)/V,)Rp1/[1-(Vil(max)/V,,)]

For Vi, = 5.0V and lao = 5 uA we have Vih(max) =0.8V:
Rext(max) (0.16/1M)/(1-0.16) = 190 K ohms.

Rp increases rapidly with V,;,, so increased V,, will relax
the requirement on Rext.

In summary, the CMOS Z8 Auto Latch inhibits excessive
current drain in Z8 devices by latching an open input to
either V,, or GND. The effect of the Auto Latch on the /O
characteristics of the device may be modeled by a current
lao and a resistor Rp, whose value is V/lao.

V|H (min.)

Figure 5-32. Effect of Pulldown Resistors on Auto Latches

5-33

N 2iLas

USER'S MANUAL

CHAPTER 6
COUNTER/TIMERS

6.1 INTRODUCTION

The Z8® provides up to two 8-bit counter/timers, TOand T1,
each driven by its own 6-bit prescaler, PREO and PRE1
(Figure 6-1). Both counter/timers are independent of the
processor insiruction sequence, that relieves software
from time-critical operations such as interval timing or
event counting. Some MCUs offer clock scaling using the
SMR register. See the device product specification for
clock available options. The following description is typi-
cal.

Each counter/timer operates in either Single-Pass or Con-
tinuous mode. Atthe end-of-count, counting either stopsor
the initial value is reloaded and counting continues. Under
software control, new values are loaded immediately or
when the end-of-count is reached. Software also controls
the counting mode, how a counter/timer is started or
stopped, and its use of 1/0 lines. Both the counter and
prescalerregisters can be altered while the counter/timer is
running.

0osCc
b —
D1 (SMR) ‘{ Internal Data Bus
" winy 10wy J[ey 7
+2
PREO TO TO
Initial Value Initial Value Current Value
>0 Register Register Register
P & 1§][
6-Bit 8-bit
16 -l +4 | Down - Down
Counter Counter = |RQ4
¢— Internal Y
v Clock 2 T
+ mm— ouT
External Clock Y P36
Clock
Logic 6-Bit 8-Bit -
| pown = Down IRQS
\ Counter Counter —l l
Internal Clock ﬂ TT
thed Clock PRE1 T1 T
Triggered Clock Initial Value Initial Value Current Value
Register Register Register
N
T,y P31 ~
IN Write | TT Write L T Read | U

Internal Data Bus

Figure 6-1. Counter/Timer Block Diagram

Q205

Z8° MICROCONTROLLERS

Counterftimers 0 and 1 are driven by a timer clock gener-
ated by dividing the internal clock by four. The divide-by-
four stage, the 6-bit prescaler, and the 8-bit counter/timer
form a synchronous 16-bit divide chain. Counter/timer 1
can alsobe driven by a external input (T,,) using P31. Port
3 line P36 can serve as a timer output (T, ;) through which
TO, T1, ortheinternal clock can be output. The timer output
will toggle at the end-of-count.

The counter/timer, prescaler, and associated mode regis-
ters are mapped into the register file as shown in Figure
6-2. This allows the software to treat the counter/timers as
general-purpose registers, and eliminates the need for
special instructions.

6.2 PRESCALERS AND COUNTER/TIMERS

The prescalers, PREQ (F5H) and PRE1 (F3H), each con-
sist of an 8-bit register and a 6-bit down-counter as shown
in Figure 6-1. The prescaler registers are write-only regis-
ters. Reading the prescalersreturns the value FFH. Figures
6-3 and 6-4 show the prescaler registers.

The six most significant bits (D2-D7) of PREO or PRE1 hold
the prescalers count modulo, a value from 1 to 64 decimal.
The prescaler registers also contain control bits that specify
TOand T1counting modes. These bits alsoindicate whether
the clocksource for T1 is internal or external. These control
bits will be discussed in detail throughout this chapter.

The counter/timer registers, TO (F4H) and T1 (F2H), each
consist of an 8-bit down-counter, a write-only register that
holds the initial count value, and a read-only register that
holds the current count value (Figure 6-1). The initial value
canrange from 1 to 256 decimal (01H,02H,..,00H). Figure
6-5 illustrates the counter/timer registers.

DEC HEX Identifiers
247 Port 3 Mode F7
245 To Prescaler F5
244 Timer/Counter0 F4
43 T1 Prescaler F3
242 Timer/Counter1 F2
241 Timer Mode F1

Figure 6-2. Counter/Timer Register Map

R245 PREO
Prescaler 0 Register
(%F5; Wite -Only)
1Pz 196 |5 fP4 |5 [P, [P |0 |

L Coun! Mode

0 Single Pass
T0 Modulo-n

Flaserved (Must be 0)

P ler Modulo
(R _oge 1-64 Decimal

Figure 6-3. Prescaler 0 Register

Register F8H
Port 0-1 Mode Reglster (PO1M)
(Write-Only)

ID7IDGI I I I ID1|DO|

—__ POg - P03 MODE

oUrPUT= 00

-[_ P otrpoo7 MODE INPUT = 01
INPUT o1 Ag-Aqq=1X

Figure 6-4. Prescaler 1 Register

R242 T1
Counter/Timer 1 Register
(%F2; Read/Write Only)

R244 TQ
Counter/Timer 0 Register
(%F4; Read/Write Only)

[°7 1% [0 0% [05 [0 J0; [0 |

Initial value when written
(Range 1-256 decimal, 01-00 HEX)
current value when read

Figure 6-5. Counter/ Timer 0 and 1 Registers

6-2

N 2105

Z8° MICROCONTROLLERS

6.3 COUNTER/TIMER OPERATION

Under software control, counter/timers are started and
stopped via the Timer Mode Register (TMR,F1H) bits D -D,
(Figure 6-6). Each counter/timer is associated with a Load
bit and an Enable Count bit.

6.3.1 Load and Enable Count Bits

Setting the Load bit (D, for TO and D, for T1) transfers the
initial value in the prescaler and the counter/timer registers
into their respective down-counters. The nextinternal clock
resets bits D and D, to 0, readying the Load bit for the next
load operation. New values may be loaded into the down-
counters at any time. If the counterftimer is running, it
continues to do so and starts the count over with the new
value. Therefore, the Load bit actually functions as a
software re-trigger.

R241 TMR
Timer Mode R
(% F1; R

ister
rite)

IPs o2 |P | 0o]

_E— = No Function
= Load To
= Disable T, Count

Enable 'rgCoum

nn
mo
g

isable T1 Count
nable T1 Count

Figure 6-6. Timer Mode Register

| M3 | M1 | M2

The counter timers remain at rest as long as the Enable
Count bits are 0. To enable counting, the Enable Count bit
(D, for TO and D, for T1) must be set to 1. Counting actually
starts when the Enable Count bit is written by an instruc-
tion. The first decrement occurs four internal clock periods
after the Enable Count bit has been set. If T1 is configured
to use an external clock, the first decrement begins on the
next clock period. The Load and Enable Count bits can be
set at the same time. For example, using the instruction:

OR TMR,#03H

sets both DOand D1 of the TMR. This loads the initial values
of PREO and TO into their respective counters and starts the
count after the M2T2 machine state after the operand is
fetched (Figure 6-7).

R243 PRE1
Prescaler 1 Register
(%F3; Write-Only)

R245 PREO

Prescaler 0 Register
(%FS5; Write-Only)

[%]

0=T1 Single Pass
1 =T.| Modulo-n

Figure 6-7. Starting The Count

Mn |

E B BEREREER R E R E

-r— First Decrement Occurs
Four Clock Periods Later

TMR is Written, Counter/Timer
is Loaded

#03H is Fetched

Figure 6-8. Counting Modes

6-3

Q2105

78° MICROCONTROLLERS

6.3.2 Prescaler Operations

During counting, the programmed clock source drives the
6-bit Prescaler Counter. The counter is counted down from
the value specified by bits of the corresponding Prescaler
Register, PREO (bit 7 to bit 2) or PRE1 (bit 7 to bit 2).
(Figures 6-3, 6-4). When the Prescaler Counter reaches its
end-of-count, the initial value is reloaded and counting
continues. The prescaler never actually reaches 0. For
example, if the prescaler is set to divide-by-three, the
count sequence is:

3-2-1-3-2-1-3-2-1-3...

Each time the prescaler reaches its end of counta carry is
generated, that allows the Counter/Timer to decrement by
one on the next timer clock input. When the Counter/Timer
andthe prescaler both reach the end-of-count, aninterrupt
request is generated (IRQ4 for TO, IRQ5 for T1). Depend-
ing on the counting mode selected, the Counter/Timer will
either come torestwith its value at 00OH (Single-Pass Mode)
or the initial value will be automatically reloaded and
counting will continue (Continuous Mode). The counting
modes are controlled by bit 0 of PREO and bit 0 of PRE1.
(Figure 6-8). A O, written to this bit configures the counter
for Single-pass counting mode, while a 1 written to this bit
configures the counter for Continuous mode.

The Counter/Timer can be stopped at any time by setting
the Enable Count bit to O, and restarted by setting it back
to 1. The Counter/Timer will continue its count value at the
time itwas stopped. The current value in the Counter/Timer
can be read at any time without affecting the counting
operation.

Note: The prescaler registers are write-only and cannot be read.

New initial values can be written to the prescaler or the
Counter/Timer registers at any time. These values will be
transferred to their respective down counters on the next
load operation. If the Counter/Timer mode is Continuous,
the next load occurs on the timer clock following an end-
of-count. New initial values should be written before the
desired load operation, since the prescalers always effec-
tively operate in Continuous count mode.

The time interval (i) until end-of-count, is given by the
equation:

i=tXpXv
in which:

t = four divided by the internal clock frequency.

The internal clock frequency defaults to the external clock
source (XTAL, ceramic resonator, and others) divided by
2. Some Z8® microcontrollers allow this divisor to be
changed via the Stop-Mode Recovery register. See the
product data sheet for available clock divisor options.

Note that t is equal to eight divided-by-XTAL frequency of
the external clock source for T1 (external clockmode only).

p = the prescaler value (1-63)for T and T,.
The minimum prescaler count of 1 is achieved by loading
000001xx. The maximum prescaler countof 63 is achieved
by loading 11111 1xx.

v=theCounter/Timervalue(1-256)
Minimum duration is achieved by loading 01H (1 prescaler
output count), maximum duration is achieved by loading
OO0H (256 prescaler outputs counts).

It should be apparent the prescaler and counter/timer are
true divide-by-n counters.

_@ p—i | Na Z8° MICROCONTROLLERS
6.4 T, Modes
The Timer Mode Register TMR (F1H) (Figure 6-9), isused ~ T1. Inorder for T, to function, P36 must be defined as an

in conjunction with the Port 3 Mode Register P3M (F7H) output line by setting P8M bit 5 to 0. Output is controlled by
(Figure 6-10) to configure P36 for T, ; operationfor TOand one of the counter/timers (TO or T1) or the internal clock.

Register F1H u
Timer Mode Register (TMR)
(Read/Write)

[o7fos] | fos] | |oo]

T 0 =No Function
1=Load TO
0 = Disable T1 Count

1 = Enable T1 Count

Mod
09¥‘ oot

- 1oU"

10 T1 Out
11 = Internal Clock Out

Figure 6-9. Timer Mode Register (T, Operation)

Register F7H
Port 3 Mode Register (P3M)
(Write-Only)

L1 Jos] T § I 1 |
-r——— = Input (Tyy) P36 = Outpu

1z oA, e = REest U™

Figure 6-10. Port 3 Mode Register (T, Operation)

6-5

Q205

Z8° MICROCONTROLLERS

The counter/timer to be output is selected by TMR bit 7 and
bit 6. TO is selected to drive the T, . line by setting bit) 7
to 0 and bit 6 to 1. Likewise, T1 is selected by setting bit 7
and bit 6 to 1 and 0, respectively. The counterftimer T, ;
mode is turned off by setting TMR bit and bit 6 both to O,
freeing P36 to be a data output line.

Tourisinitialized toalogic 1whenever the TMR Load bit (bit
0 for TO or bit 1 for T1) is set to 1. The T, ; configuration
timer load, and Timer Enable Count bits for the counter/
timer driving the T, pin can be set at the same time. For
example, using the instruction:

OR TMR,#43H
B Configures TO to drive the T, pin (P36).
B Sets the P36 Tout pin to a logic 1 level.
B Loads the initial PREO and TO levels into their

respective counters and starts the counter after the
M2T2 machine state after the operand is fetched.

At end-of-count, the interrupt request line (IRQ4 or IRQ5),
clocks a toggle flip-flop. The output of this flip-flop drives
the T, line, P36. In all cases, when the selected counter/
timer reaches its end-of-count, T, toggles to its opposite
state (Figure 6-11). If, for example, the counter/timer is in
Continuous Counting Mode, Tout will have a 50 percent
duty cycle output. This duty cycle can easily be controlled
by varying the initial values after each end-of-count.

The internal clock can be selected as output instead of TO
or T1 by setting TMR bit 7 and bit 6 both to 1. The internal
clock (XTAL frequency/2) is then directly output on P36
(Figure 6-12).

While programmed as T, ,;, P36 cannot be modified by a
write to port register P3. However, the Z8® software can
examine the P36 current output by reading the port regis-
ter.

IRQ4 TMR
(TO End-of-Count) D, -Dg = 01
~\O— +2 > P36 > TOUT
IRQ5 TMR
(T1 End-of-Count) D.-Dg =10

Figure 6-11. T0 and T1 Output Through T,

Internal
Clock

0sc > .o

-{L_.‘
i
TMRD, —) |
TMRD, —

P3; |—> Tour

Figure 6-12. Internal Clock Output Through T,

6-6

Q2005

Z8° MICROCONTROLLERS

6.5 T,, MODES

The Timer Mode Register TMR (F7H) (Figure 6-13) is
used in conjunction with the Prescaler Register PRE1
(F7H) (Figure 6-14) to configure P31 as T, T, is used in
conjunction with T1 in one of four modes:

B External Clock Input

W Gated Internal Clock

B Triggered Internal Clock

W Retriggerable Internal Clock

Note: The T, mode is restricted for use with timer 1 only. To

enable the T,, mode selected (via TMR bits 4- 5), bit 1 of PRE1
must be set to 1.

Register F1H

Timer Mode Register (TMR)

(Read/Write)

The counter/timer clock source must be configured for
external by setting the PRE1 Register bit 2 to 0. The Timer
Mode Register bit5 and bit 4 canthen be used to selectthe
desired T, operation.

ForT1to start counting as aresult of a T, input, the Enable
Count bit (bit 3in TMR) must be setto 1. When using T, as
an external clock or a gate input, the initial values must be
loaded into the down counters by setting the Load bit (bit
2in TMR)to a 1 before counting begins. In the descriptions
of T, that follow, it is assumed the programmer has
performed these operations. Initial values are automati-
cally loaded in Trigger and Retrigger modes so software
loading is unnecessary.

LI [fosioe] |

| 1

=

Ty Modes

08\‘= External Clock Input

01 = Gate Input

10 = Trigger Input 2Non-Retriggerable)
11 = Trigger Input (Retriggerable)

Figure 6-13. Timer Mode Register (T,, Operation)

Register F3H
Prescaler 1 Register (PRE1)
(Write-Only)

|o7] o6 | os] o4 | ps) o2] p1] oo

t—-— Clock Source

0 = T1 Internal
1 =T1 External

Figure 6-14. Prescaler 1 Register (T,, Operation)

@ p—d | K Z8° MICROCONTROLLERS

Itis suggested that P31 be configured as aninputlineby Each High-to-Low transition on T,, generates an interrupt

setting P3M Register bit5to 0, although T, isstill functional request IRQ2, regardless of the selected T,, mode or

if P31 is configured as a handshake input . the enabled/disabled state of T1. IRQ2 must therefore
be masked or enabled according to the needs of the
application.

6.5.1 External Clock Input Mode

TheT,, External Clock InputMode (TMR bit5 and bit4 both Note: See the product data sheet for the minimum allowed T,,
set to 0) supports counting of external events, where an external clock input period (T, T,).

event is considered to be a High-to-Low transition on T

(Figure 6-15).

TMR
Dg-D, =00
T
IN - .
clock —] P34 * D D » PRE1 | T |—>IRQS5
A A
ARIRE 1 ‘
Internal > IRQ2

Clock

Figure 6-15. External Clock Input Mode

6-8

A 2105

Z8° MICROCONTROLLERS

6.5.2 Gated Internal Clock Mode

The T,, Gated Internal Clock Mode (TMR bit 5 and bit 4 set
to 0 and 1 respectively) measures the duration of an
external event. In this mode, the T1 prescaler is driven by

the internal timer clock, gate by a High level on T, (Figure of-count.
6-16). T1 counts while T,, is High and stops counting while

Ny P3,

osc +2 » 8‘:;2”
TMR
Dg-D, = 01
+4 PRE1 T1 —> [RQ5
\' \"
D D — IRQ2

Figure 6-16. Gated Clock Input Mode

T, is Low. Interruptrequest IRQ2is generated on the High-
to-Low transition of T, signalling the end of the gate input.
Interrupt request IRQS is generated if T1 reaches its end-

Q2105

78° MICROCONTROLLERS

6.5.3 Triggered Input Mode

The T, Triggered Input Mode (TMR bits 5 and 4 are setto Enable bit is reset whenever T1 reaches its end-of-count.
1 and O respectively) causes T1 to start counting as the Further T, transitions will have no effect on T1 until soft-
result of an external event (Figure 6-17). T1 isthenloaded ~ ware sets the Enable Count bitagain. In Continuous mode,
and clocked by the internal timer clock following the first ~ once T1 is triggered counting continues until software
High-to-Low transition on the T, input. Subsequent T,, resets the Enable Count bit. Interrupt request IRQS5 is
transitions do not affect T1. In the Single-Pass Mode, the ~ generated when T1 reaches its end-of-count.

T
[\p—
Trigger

It

TMR
0osc +2 Icnmal Dy =1
+4
| Edge —] PRE1 ™ IRQS
— o
\4
P3, D -L
TMR
Dg-D, =11
— |RQ2

Figure 6-17. Triggered Clock Mode

6-10

N 205

2Z8° MICROCONTROLLERS

6.5.4 Retriggerable Input Mode

The T,, Retriggerable Input Mode (TMR bits 5 and 4 are
set to 1) causes T1 to load and start counting on every
occurrence of a High-to-Low transition on T, (Figure
6-17). Interrupt request IRQ5 will be generated if the
programmed time interval (determined by T1 prescaler
and counter/timer register initial values) has elapsed since
the last High-to-Low transition on T, In Single-Pass Mode,
the end-of-count resets the Enable Count bit. Subsequent

T, transitions will not cause T1 to load and start counting
until software sets the Enable Count bit again. In Con-
tinuous Mode, counting continues once T1 is triggered
until software resets the Enable Count bit. When enabled,
each High-to-Low T transition causes T1 to reload and
restart counting. Interrupt request IRQS is generated on
every end-of-count.

6.6 CASCADING COUNTER/TIMERS

For some applications, it may be necessary to measure a
time interval greater than a single counter/timer can mea-
sure. In this case, T, and T, can be used to cascade TO
and T1 as a single unit (Figure 6-18). TO should be
configured to operate in Continuous mode and to drive
Tour T Should be configured as an external clock input to
T1and wired backto T, ;. On every other TO end-of-count,

T,y UndergoesaHigh-to-L owtransitionthatcauses T1tocount.

T1 can operate in either Single-Pass or Continuous mode.
When the T1 end-of-count is reached, interrupt request
IRQS is generated. Interrupt requests IRQ2 (T, High-to-
Low transitions) and IRQ4 (TO end-of-count) are also
generated but are most likely of no importance in this
configuration and should be disabled.

osc —] PREO TO +2

PRE1 Tt —»IRQ5

Tout Tin

IRQ4

IRQ2

Figure 6-18. Cascaded Counter / Timers

6-11

A 2005

Z8° MICROCONTROLLERS

6.7 RESET CONDITIONS

Afterahardware reset, the counter/timers are disabled and
the contents of the counter/timer and prescaler registers
are undefined. However, the counting modes are config-
ured for Single-Pass and the T1 clock source is set for

R242 T1
Counter/Timer 1 Register
(%F2; Read/Write Only)

R244 TO
Counter/Timer 0 Register
(%F4; Read/Write Only)

fufufujufujufu]u]

|— Initial value when written
(Range 1-256 decimal, 01-00 HEX)
current value when read

Figure 6-19. Counter / Timer Reset

external. T is set for External Clock mode, and the T,
mode is off. Figures 6-19 through 6-22 show the binary
reset values of the Prescaler, Counter/Timer, and Timer
Mode registers.

R243 PRE1
Prescaler 1 Register
(%F3; Write-Only)

fujufulujululo]o]
LCountMode

0= T1 Single Pass
1 =T Modulo-n

P ler Modulo
SRange: 1-64 Decimal
1-00 HEX)

Figure 6-20. Prescaler 1 Register Reset

6-12

Q205

28° MICROCONTROLLERS

R245 PREO
Prescaler 0 Register
(%FS; Write Only)

(ulujufujujufulo]
-E— Count Mode

0=T, Single Pass
1=T8M ulo-n

Reserved (Must be 0)
P ler Modulo

'(Range: 1-64 Decimal
01-00 HEX)

Figure 6-21. Prescaler 0 Reset

R241 TMR
Timer Mode dﬁ/wlster
(% F1; Read/Write)

fofoJoJofoJoJojo]
—
T,

No Function

Load T0

-
nn

Disable T, Count
Enable Té’Count

-0

0 = No Function
1 = Load T1

Disable T1 Count
Enable T1 Count

-0

T\ Modes:
Extemal Clock Input = 00
Gate Input = 01

Trigger Input = 10
(Ngrgn-retriggerrable)

Trigger Input = 11
(Retgﬂggerable)

Touyt Modes:

Tout OFF =00
ToOUT=01
T,0UT=10

Intemnal Clock OUT = 11

Figure 6-22. Timer ModeRBegister Reset

6-13

N 2iLais

USER'S MANUAL

CHAPTER 7
INTERRUPTS

7.1 INTRODUCTION

The Z8® microcontroller allows six different interrupt levels
from a variety of sources; up to four external inputs, the on-
chip Counter/Timer(s), software, and serial I/O peripher-
als. These interrupts can be masked and their priorities set
by using the Interrupt Mask and the Interrupt Priority
Registers. All six interrupts can be globally disabled by
resetting the master Interrupt Enable, bit 7 in the Interrupt
Mask Register, with a Disable Interrupt (DI) instruction.
Interrupts are globally enabled by setting bit 7 with an
Enable Interrupt (El} instruction.

Register HEX Identifier
Interrupt Mask FBH IMR
Interrupt Request FAH IRQ
Interrupt Priority FOH IPR

Figure 7-1. Interrupt Control Registers

There are three interrupt control registers: the Interrupt
Request Register (IRQ), the Interrupt Mask register (IMR),
and the Interrupt Priority Register (IPR). Figure 7-1 shows
addresses andidentifiers for the interrupt control registers.
Figure 7-2 is a block diagram showing the Iinterrupt Mask
and Interrupt Priority logic.

The Z8 MCU family supports both vectored and polled
interrupthandling. Details on vectored and polled interrupts
canbefoundlaterinthischapter.

IRQ-IRQs
4
IRQ

IBERR

RN
IMR

Global
Interrupt
Enable

IPR

2

Priority Logic ¢

U

Vector Select

Interrupt
Request

Figure 7-2. Interrupt Block Diagram

Note: See the selected Z8 MCU's product specification for the
exact interrupt sources supported.

7-1

QZJU]S 28° MICROCONTROLLERS

7.2 Interrupt Sources

Table 7-1 presents the interrupt types, sources, and vectors available in the Z8® family of processors.

Table 7-1. Interrupt Types, Sources, and Vectors *

Name Sources Vector Location Comments
IRQ, Wo, IRQ,, Comparator 0,1 External (P3,), Edge Triggered; Internal
IRQ, DAV, IRQ, 2,3 External (P3,), Edge Triggered; Internal
IRQ, DAV,, IRQ,, TIN, Comparator 45 External (P3,), Edge Triggered,; Internal
IRQ, 6,7 External (P3;) or (P3,), Edge Triggered;
IRQ, . Internal
Serial In 6,7 Internal
RQ T, 8,9 Internal
4 Serial Out 8,9 Internal
IRQ, T, 10,11 Internal

7.2.1 External Interrupt Sources

External sources involve interrupt request lines IRQ0-IRQ3. IRQO, IRQ1, and IRQ2 can be generated by a transition on
the corresponding Port 3 pin (P32, P33, and P31 correspond to IRQO, IRQ1, and IRQ2, respectively). Figure 7-3 is a block
diagram for interrupt sources IRQQ, IRQ1, and IRQ2.

n=23,1
IMulipIeInput " s Q) Q D a4+ RO
P3, and Signal m=0,12
Conditionng
Circuity R
{
Clock
(Internal)

Figure 7-3. Interrupt Sources IRQ0-IRQ2 Block Diagram

Note: The interrupt sources and trigger conditions are device dependent. See the device product specification to determine available
sources (internal and external), triggering edge options, and exact programming details.

7-2

Q2Uas

Z8° MICROCONTROLLERS

When the Port 3 pin (P31, P32, or P33) transitions , the first
flip-flop is set. The next two flip-flops synchronize the
request to the internal clock and delay it by two internal
clock periods. The output of the last flip-flop (IRQO, IRQ1,
or IRQ2) goes to the corresponding Interrupt Request
Register.

IRQ3 can be generated from an external source only if
Serial In is not enabled. Otherwise, its source is internal.
The external request is generated by a negative edge
signal on P30 as shown in Figure 7-4. Again, the external

requestis synchronized and delayed before reaching IRQ3.
Some Z8® products replace P30 with P32 as the external
source for IRQ3. In this case, IRQ3 interrupt generation
follows the logic as illustrated in Figure 7-3.

Note: Although interrupts are edge triggered, minimum interrupt
request Low and High times must be observed for proper
operation. See the device product specification for exact timing
requirements on external interrupt requests (T, IL, T, IH).

P3Mg
P3p D Q D Q |
(IR IRQ3
Serial In) A A
Clock ~——e IRQs
IRQ3 External Source Internal
Source

I—> Serial Receiver

Figure 7-4. Interrupt Source IRQ3 Block Diagram

7.2.2 Internal Interrupt Sources

Internal sources involve interrupt requests IRQO, IRQ1, IRQ3, IRQ4, and IRQS. Internal sources are ORed with the external
sources, so either an internal or external source can trigger the interrupt. Internal interrupt sources and trigger conditions
are device dependent. See the device product specification to determine available sources, triggering edge options,

and exact programming details.

For more details on the internal interrupt sources, refer to the chapters describing the Counter/Timer, I/O ports, and Serial

1/O.

7-3

N 2105

Z8° MICROCONTROLLERS

7.3 INTERRUPT REQUEST (IRQ) REGISTER LOGIC AND TIMING

Figure 7-5 shows the logic diagram for the Interrupt Re-
quest (IRQ) Register. The leading edge of the request will
set the first flip-flop, that will remain set until interrupt
requests are sampled.

Requests are sampled internally during the last clock cycle
before an opcode fetch (Figure 7-6). External requests are
sampled two internal clocks earlier, due to the synchroniz-
ing flip-flops shown in Figures 7-3 and 7-4.

Atsample time the request s transferred to the second flip-
flop in Figure 7-5, that drives the interrupt mask and priority
logic. When an interrupt cycle occurs, this flip-flop will be
reset only for the highest priority level that is enabled.

The user has direct access to the second flip-flop by
reading and writing the IRQ Register. IRQ is read by
specifying it as the source register of an instruction and
written by specifying it as the destination register.

To Mask

R A [D—s 9p7 o)
Logic

Sample
R Clock

From
Priority
Logic

|-—R

Figure 7-5. IRQ Register Logic

|Mn|M1

M2|

T2 T1]T2]T3

T1

T2|T3

T3
T

I‘{

Interrupt Requests
Sampled Internally

External Interrupt

Requests Sampled

Figure 7-6. Interrupt Request Timing

7-4

N 205

28° MICROCONTROLLERS

7.4 INTERRUPT INITIALIZATION

After reset, all interrupts are disabled and must be initial-
ized before vectored or polled interrupt processing
can begin. The Interrupt Priority Register (IPR), Interrupt
Mask Register (IMR), and Interrupt Request Register (IRQ)
must be initialized, in that order, to start the interrupt
process. However, IPR need not be initialized for polled
processing.

f‘?g's“’{ ;?sgntya ister (IPR)
nterrup egister
(Write-Only)

D7) DGI DSI D4I DSI D2} D1} DO

T C T T

7.4.1 Interrupt Priority Register (IPR)
Initialization

IPR (Figure 7-7) is a write-only register that sets priorities
for the six levels of vectored interrupts in order to resolve
simultaneous interrupt requests. (There are 48 sequence
possibilities for interrupts.) The six interrupt levels IRQO-
IRQS5 are divided into three groups of two interrupt requests
each. One group contains IRQ3 and IRQ5. The second
group contains IRQO and IRQ2, while the third group
contains IRQ1 and IRQ4.

Priorities can be set both within and between groups as
shown in Tables 7-2 and 7-3. Bits 1, 2, and 5 define the
priority of the individual members within the three groups.
Bits 0, 3, and 4 are encoded to define six priority orders
between the three groups. Bits 6 and 7 are reserved.

Interrupt Group Priority
Bits Priority.

000 Reserved
001 C>A>B
010 A>B>C

o1 A>C>B
100 B>C>A
101 C>B>A
110 ~ B>A>C

1 Reserved

Group C (IRQ1 and IRQ4 Priority)
=IRQ1 > IRQ4
1=1RQ4 > IRQ1

Group B (IRQO and IRQ2 Priority)
=IRQ2 > IRQO
1=1RQO > IRQ2

Group A (IRQ3 and IRQ5 Priority)
=|RQ5 > IRQ3
1=I1RQ3 > IRQ5

Reserved (Must be 0)

Figure 7-7. Interrupt Priority Register

7-5

0N 2L

Z8° MICROCONTROLLERS

Table 7-2. Interrupt Priority

Table 7-3. Interrupt Group Priority

Priority Bit Pattern Group Priority
Group Bit Value Highest Lowest Bit4 Bit3 Bit0 High Medium Low

o] Bit 1 0 IRQ1 IRQ4 0 0 0 Not Used

1 IRQ4 IRQ1 0 0 1 C A B

- 0 1 0 A B C

B Bit 2 0 IRQ2 IRQO 0 1 1 A c B

1 IRQO IRQ2 1 0 o B ¢ A

A Bit5 0 IRQ5 IRQ3 } (1) (1) g i é

1 IRQ3 IRQ5

Q Q 1 1 1 Not Used

7.4.2 Interrupt Mask Register (IMR) Initialization

MR individually or globally enables or disables the six
interrupt requests (Figure 7-8). When bit O to bit 5 are set
to 1, the corresponding interrupt requests are enabled. Bit
7 is the master enable and must be set before any of the
individual interrupt requests can be recognized. Resetting
bit 7 globally disables all the interrupt requests. Bit 7 is set
and reset by the El and DI instructions. It is automatically
reset during an interrupt service routine and set following
the execution of an interrupt Return (IRET) instruction.

Register FBH
Interrupt Mask Register (IMR)
(Read/Write)

ID7I D6| DSI D4I D3| D2I D1| DOI

TTTT

Note: Bit 7 must be reset by the DI instruction before the
contents of the Interrupt Mask Register or the Interrupt
Priority Register are changed except:

B Immediately after a hardware reset.

B Immediately after executing aninterrupt service routine
and before IMR bit 7 has been set by any instruction.

T—— 0= Disables IRQ0
1 = Enables IRQO
0 = Disables IRQ1

1 = Enables IRQ1
0 = Disables IRQ2
1 = Enables IRQ2

0 = Disables IRQ3
1 = Enables IRQ3

0 = Disables IRQ4
1 = Enables IRQ4

0 = Disables IRQ5
1 = Enables IRQ5

0 = Disable RAM Protect
1 = Enable RAM Protect

0 = Disables Interrupts

1 = Enables Interrupts

Figure 7-8. Interrupt Mask Register

Note: The RAM Protect option is selected at ROM mask submission time or at EPROM program time. If not selected or not an available

option, this bit is reserved and must be 0.

7-6

QA 205

Z8° MICROCONTROLLERS

7.4.3 Interrupt Request (IRQ) Register Initialization

IRQ (Figure 7-9) is a read/write register that stores the
interrupt requests for both vectored and polled interrupts.
When an interrupt is made on any of the six levels, the
corresponding bit position in the register is setto 1. BitO to
bit 5 are assigned to interrupt requests IRQO to IRQ5,
respectively.

Whenever Power-On Reset (POR) is executed, the IRQ
resister is reset to OOH and disabled. Before the IRQ
register willacceptrequests, it must be enabled by execut-
ing an ENABLE INTERRUPTS (El) instruction.

Register FAH

Note: Setting the Global Interrupt Enable bitin the Interrupt Mask
Register (IMR, bit 7) will not enable the IRQ. Execution of the El
instructionisrequired(Figure 7-10).

For polled processing, IRQ must still be initialized by an El
instruction.

To properly initialize the IRQ register, the following code is
provided:

CLR
El
DI

IMR

Interrupt Request Register (IRQ)

(Read/Write)

D7 DGI DSI D4 D3I D2I D1

DOI

[=

0 = IRQO Reset
1 = IRQO Set
0 = IRQ1 Reset
1 =IRQ1 Set
0 = IRQ2 Reset
1 =1RQ2 Set
0 = IRQ3 Reset
1 = IRQ3 Set

0 = IRQ4 Reset
1 =1RQ4 Set

0 = IRQS5 Reset
1 =IRQ5 Set

Reserved /Int Edge Select

Figure 7-9. Interrupt Request Register

7-7

N 205

Z8° MICROCONTROLLERS

IMR is cleared before the IRQ enabling sequence toinsure
no unexpected interrupts occur when El is executed. This
code sequence should be executed prior to programming
the application required values for IPR and IMR.

Note: IRQ bits 6 and 7 are device dependent. When reserved,
the bits are not used and will return a 0 when read. When used as
the Interrupt Edge select bits, the configuration options are as
show in Table 7-4.

Table 7-4. IRQ Register Configuration

IRQ Interrupt Edge
D7 D6 P31 P32
0 0 F F
0 1 F R
1 0 R F
1 1 R/F R/F
Note:
F = Falling Edge
R = Rising Edge

El Instruction

Power-On Reset (POR)

The proper sequence for programming the interrupt edge
select bits is (assumes IPR and IMR have been previously
initialized):

DI ;Inhibit all interrupts
till input edges are
configured.
;Configure interrupt
edges as needed -

OR IRQ,#XX 000000B

do not disturb
IRQ 0-5.

El ;Re-enable inter-
rupts.

Interrupt Request Register
(IRQ, FAH)

Reset

Figure 7-10. IRQ Reset Functional Logic Diagram

7-8

Q2005

Z8° MICROCONTROLLERS

7.5 IRQ SOFTWARE INTERRUPT
GENERATION

IRQ can be used to generate software interrupts by speci-
fying IRQ as the destination of any instruction referencing
the Z8® Standard Register File. These Software Interrupts
(SWI) are controlled in the same manner as hardware
generated requests (in other words, the IPR and the IMR
control the priority and enabling of each SWI level).

To generate a SWI, the desired request bitin the IRQ is set
as follows:

OR IRQ, #NUMBER

where the immediate data, NUMBER, has a 1 in the bit
position corresponding to the level of the SW!I desired. For
example, if an SWI is desired on IRQ5, NUMBER would
have a 1in bit 5:

OR IRQ, #00100000B

With this instruction, if the interrupt system is globally
enabled, IRQ5 is enabled, and there are no higher priority
pending requests, control is transferred to the service
routine pointed to by the IRQ5 vector.

7.6 VECTORED PROCESSING

Each Z8 interrupt level has its own vector. When an
interrupt occurs, control passes to the service routine
pointed to by the interrupt's vector location in program
memory. The sequence of events for vectored interrupts is
as follows:

SP and STACK before an Interrupt

PUSH PC Low Byte on Stack

PUSH PC High Byte on Stack

PUSH FLAGS on Stack

Fetch High Byte of Vector

Fetch Low Byte of Vector

Branch to Service Routine specified by Vector

Figures 7-11 and 7-12 show the vectored interrupt opera-
tion.

SP and STACK after an Interrupt

y

SP Top of Stack

SP

PC LOW Byte

PC HIGH Byte

FLAGS

Figure 7-11. Effects of an Interrupt on the STACK

28° MICROCONTROLLERS

Program Memory
XXFFH
Interrupt
S —— «—}—— Service
Routine
000CH
— Vector Selected
i By Priority Logic
Interrupt
Vector Table
0000H /

Figure 7-12. Interrupt Vectoring

7-10

N 21La5

28° MICROCONTROLLERS

7.6.1 Vectored Interrupt Cycle Timing

The interrupt acknowledge cycle time is 24 internal clock
cycles andis shown in Figure 7-13. In addition, two internal
clock cycles are required for the synchronizing flip-flops.
The maximum interrupt recognition time is equal to the
number of clock cycles required for the longest executing
instruction present in the user program (assumes worst
case condition of interrupt sampling, Figure 7-6 , just prior
to the interrupt occurrence). To calculate the worst case
interrupt latency (maximum time required from interrupt
generation to fetch of the first instruction of the interrupt
service routine), sum these components:

Worst Case Interrupt Latency = 24 TpC (interrupt acknowl-
edge time) + # T.C of longest instruction present in the
user's application program + 2T,C (internal synchroniza-
tion time).

||
—_
-
S

=1
" /\@,
§ _D E
el ¢
g2l 1 oo |t
EI | I
3 J)éz
i n
:Jgi

g
E
=1 NRE

g
=100

U
=1

i
1
=1
[Je—oveose Omcarny

L7

ADO-AD7 N

i

Figure 7-13. Z8 Interrupt Acknowledge Timing

u
1
‘ADO-AD7 OUT E

7-11

N 2005

Z8® MICROCONTROLLERS

7.6.2 Nesting of Vectored Interrupts

Nesting of vectored interrupts allows higher priority re-
quests to interrupt a lower priority request. To initiate
vectored interrupt nesting, do the following during the
interrupt service routine:

W Push the old IMR on the stack.

B Load IMR with a new mask to disable lower priority
interrupts.

B Execute El instruction.

Proceed with interrupt processing.

After processing is complete, execute DI instruction.
Restore the IMR to its original value by returning the
previous mask from the stack.

Execute IRET.

Depending on the application, some simplification of the
above procedure may be possible.

7.7 POLLED PROCESSING

Polledinterrupt processing is supported by masking off the
IRQ levels to be polled. This is accomplished by clearing
the corresponding bits in the IMR.

Toinitiate polled processing, checkthe bits of interestinthe
IRQ using the Test Under Mask (TM) instruction. If the bit
is set, call or branch to the service routine. The service
routine services the request, resets its Request Bit in the
IRQ, and branchesor returns back to the main program. An
example of a polling routine is as follows:

™ IRQ, #MASKA ;Test for request

JR Z, NEXT ;Ifno request go to NEXT
CALL SERVICE ;If request is there, then
;service it
NEXT:
SERVICE: ;Process Request

AND IRQ, #MASKB
RET

;Clear Request Bit
;Return to next

In this example, if IRQ2 is being polled, MASKA will be
00000100B and MASKB will be 11111011B.

7.8 RESET CONDITIONS

Upon reset, all bits in IPR are undefined.

In IMR, bit 7 is 0 and bits 0-6 are undefined. The IRQ
register is reset and held in that state until an enable
interrupt (El) instruction is executed.

7-12

N 2iLa5

USER'S MANUAL

CHAPTER 8
POWER-DOWN MODES

8.1 INTRODUCTION

Inaddition to the standard RUN mode, the Z8® supports two Power-Down modes to minimize device current consumption.

The two modes supported are HALT and STOP.

8.2 HALT MODE OPERATION

The HALT mode suspends instruction execution and turns
off the internal CPU clock. The on-chip oscillator circuit
remains active so the internal clock continues to run and is
applied to the Counter/Timer(s) and interrupt logic.

To enter the HALT mode, it is necessary to first flush the
instruction pipeline to avoid suspending execution in mid-
instruction. To do this, the application program must ex-
ecute a NOP instruction (opcode = FFH) immediately
before the HALT instruction (opcode 7FH), that is,

FF NOP ;clear the instruction pipeline
7F HALT ;enter HALT mode

The HALT mode is exited by interrupts, either externally or
internally generated. Upon completion of the interrupt
service routine, the user program continues from the in-
struction after HALT.

The HALT mode may also be exited via a POR/RESET
activation or a Watch-Dog Timer (WDT) timeout. (See the
product data sheet for WDT availability). In this case,
program execution will restart at the reset restart address
OOOCH.

To further reduce power consumption in the HALT mode,
some Z8 family devices allow dynamic internal clock scal-
ing. Clock scaling may be accomplished on the fly by
reprogramming bit 0 and/or bit1 of the STOP-Mode Recov-
ery register (SMR). See Figure 8-1.

Note: Internal clock scaling directly effects Counter/Timer
operation— adjustment of the prescaler and downcounter
values may be required. To determine the actual HALT
mode current (I.,) value for the various optional modes
available, see the selected Z8® device's product specifi-
cation.

8-1

N 2L05

Z8° MICROCONTROLLERS

8.3 STOP MODE OPERATION

The STOP mode provides the lowest possible device
standby current. This instruction turns off the on-chip
oscillator and internal system clock.

To enter the STOP mode, it is necessary to first flush the
instruction pipeline to avoid suspending execution in mid-
instruction. To do this, the application program must
execute a NOP instruction (opcode=FFH) immediately
before the STOP instruction (opcode=6FH), that is,

FF NOP
6F STOP

;clear the instruction pipeline
;enter STOP mode

The STOP mode is exited by any one of the following
resets: Power-On Reset activation, WDT time out (if
available), or a STOP-Mode Recovery source. Upon reset
generation, the processor will always restart the applica-
tion program at address 000CH.

POR/RESET activation is present on all Z8 devices and is
implemented as a reset pin and/or an on-chip power on
reset circuit.

Some Z8 devices allow for the on-chip WDT to run in the
STOP mode. If so activated, the WDT timeout will generate
a reset some fixed time period after entering the STOP
mode.

Note: STOP-Mode Recovery by the WDT will increase the STOP
mode standby current (l..,). This is due to the WDT clock and
divider circuitry that is now enabled and running to support this
recovery mode. See the product data sheet for actual lcc2
values.

AllZ8 devices provide some form of dedicated STOP-Mode
Recovery (SMR) circuitry. Two SMR methods are imple-
mented — a single fixed input pin or a flexible, program-
mable setof inputs. The selected Z8 device product speci-
fication should be reviewed to determine the SMR options
available for use.

Note: For devices that support SPI, the slave mode compare
feature also serves as a SMR source.

In the simple case, a low level applied to input pin P27 will
trigger a SMR. To use this mode, pin P27 (1/O Port 2, bit 7)
must be configured as an input before the STOP mode is
entered. The low level on P27 must meet a minimum pulse
width T, - (See the product data sheet) to trigger the
device reset mode). Some Z8 devices provide multiple
SMR input sources. The desired SMR source is selected
via the SMR Register.

Note: Use of specialized SMR modes (P2.7 input or SMR
register based) or the WDT timeout (only when in the STOP
mode) provide a unique reset operation. Some control
registers are initialized differently for a SMR/WDT trig-
gered POR than a standard reset operation. See the
product specification (register file map) for exact details.

To determine the actual STOP mode current (1,) value for

the optional SMR modes available, see the selected Z8

device's product data sheet.

Note: The STOP mode current (I,) will be minimized when:

B V. is at the low end of the devices operating range.
WDT is off in the STOP mode.

n
B Output current sourcing is minimized.
]

Allinputs (digital and analog) are at the low or high rail
voltages.

8-2

@ 2ilan Z28° MICROCONTROLLERS

8.4 STOP-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of STOP-Mode Recovery (Figure 8-1). All bits are
Write-Only, except bit 7, that is Read-Only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and
reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5
controlsthe reset delay afterrecovery. Bits 2, 3, and 4, of the SMRregister, specify the source of the STOP-Mode Recovery

signal. Bits 0 and 1 control internal clock divider circuitry. The SMR is located in Bank F of the Expanded Register File
at address OBH.

SMR (FH) 0B
|D7| DSI D5| D4| D3| Dzl D1| DOI

L— scuiwreik Divide-by-16
0 OFF**
1 ON

External Clock Divide by 2
0 SCLK/TCLK =XTAL/2*
1 SCLK/TCLK =XTAL

————— STOP-Mode Recovery Source

000 POR Only and/or External Reset*
001 P30

010 P31

011 P32

100 P33

101 P27

110 P2NOR0-3

111 P2NOR 0-7

Stop Delay

0 OFF

1 ON*

Stop Recovery Level
0 Low"

1 High

Stop Flag (Read only)
0 POR*

1 Stop Recovery

* Default setting after RESET.
* * Default setting after RESET and STOP-Mode Recovery.

Figure 8-1. STOP-Mode Recovery Register
(Write-Only Except Bit D7, Which Is Read-Only)

Note: The SMR register is available in select Z8 MCU products. Refer to the device product specification to determine SMR options
available.

Q205

Z8° MICROCONTROLLERS

SCLK/TCLK Divide-by-16 Select (DO). This bit of the
SMR controls a divide-by-16 prescaler of SCLK/TCLK. The
purpose of this control is to selectively reduce device
power consumption during normal processor execution
(SCLK control) andfor HALT mode (where TCLK sources
counter/ftimers and interrupt logic).

External Clock Divide-by-Two (D1). This bit can elimi-
nate the oscillator divide-by-two circuitry. When this bit is
0, the System Clock (SCLK) and Timer Clock (TCLK) are
equal to the external clock frequency divided by two. The
SCLK/TCLK is equal to the external clock frequency when
this bit is set (D1=1). Using this bit together with D7 of
PCON helps further lower EMI (D7 (PCON) =0, D1 (SMR)
=1). The default setting is zero.

STOP-Mode Recovery Source (D2, D3, and D4). These
three bits of the SMR specify the wake-up source of the
STOPrecovery and(Table8-1andFigure8-2).

Table 8-1. STOP-Mode Recovery Source

SMR: 432 Operation
D4 D3 D2 Description of Action
0 0 0 POR and/or external reset recovery
0 0 1 P30 transition
0 1 0 P31 transition (not in Analog Mode)
0 1 1 P32 transition (not in Analog Mode)
1 0 0 P33 transition (not in Analog Mode)
1 0 1 P27 transition
1 1 0 Logical NOR of P20 through P23
1 1 1 Logical NOR of P20 through P27

STOP-Mode Recovery Delay Select (D5). Thisbit, if High,
enables the T, /RESET delay after Stop-Mode Recovery.
The default configuration of this bitis 1. If the “fast” wake up
is selected, the Stop-Mode Recovery source is kept active
for at least 5 TpC.

STOP-Mode Recovery Edge Select (D6). A 1 in this bit
position indicates that a high level on any one of the
recovery sources wakes the Z8® from STOP mode. A O
indicates low-level recovery. The default is 0 on POR
(Figure 8-2).

Cold or Warm Start (D7). This bit is set by the device upon
entering STOP mode. A Qin this bit (cold) indicates that the
device reset by POR/WDT RESET. A 1 in this bit (warm)
indicates that the device awakens by a SMR source.

8-4

@ 2iLals Z8° MICROCONTROLLERS

SMR D4 D3 D2
000

VDD SMR D3 D2 SMR D4 D3 D2 SMR D4 D3 D2 SMR D4 D3 D2 SMR D4 D3 D2

0 1 100 10 1 110 11 1
10
1 1 P20 P20

0

]
P32

P23 P27

To POR

D RESET
Stop Mode Recovery Edge

Select (SMR)

To P33 Data
T Latch and IRQ1
MUX >

P33 From Pads

Digital/Analog Mode
Select (P3M)

Figure 8-2. STOP-Mode Recovery Source

Note: If P31, P32, or P33 are to be used for a SMR source, the digital mode of operation must be selected prior to entering the STOP
Mode.

N 2iLa5

USER'S MANUAL

CHAPTER 9

SERIAL |/0

9.1 UART INTRODUCTION

Select Z8® microcontrollers contain an on-board full-du-
plex Universal Asynchronous Receiver/Transmitter (UART)
for data communications. The UART consists of a

Serial I/O Register (SIO) located at address FOH, and its

tworegisters, the receiver buffer and the transmitter buffer,
which are used in conjunction with Counter/Timer TO and
Port31/0 lines P30 (input) and P37 (output). Counter/Timer
TO provides the clock input for control of the data rates.

associated control logic (Figure 9-1). The SIO is actually

Internal Data Bus
L 7
ra
Read FOH
o
Stop
Transfer Bit Detect IRQ4
Buffer
Write FOH Mark
it -
Transmitter D_ Serial P
P3, —| Soral Receiver Char | Shift Register ou [P%
In Shift Register Detect |
Shift
(S>hlo|2 Clock
ota k Reset
n Pa . Pa
Bit Detect Chy + 16 2 :;v
Start
Clock +8 > IRQ3
Control N
TStop
Serial
1/0 Clock
(From T0)

Figure 9-1. UART Block Diagram

9-1

N 206

Z8° MICROCONTROLLERS

Configuration of the UART is controlled by the Port 3 Mode
Register (P3M) located at address F7H. The Z8® always
transmits eight bits between the start and stop bits (eight
Data Bits or seven Data Bits and one Parity Bit). Odd parity
generation and detection is supported.

The SIO Register and its associated Mode Control Regis-
ters are mapped into the Standard Z8 Register File as
shown in Table 9-1. The organization allows the software to
access the UART as general-purpose registers, eliminat-
ing the need for special instructions.

Table 9-1. UART Register Map

Register Hex
Name Identifier Address
Port 3 Mode P3M F7
TO Prescaler PREO F5
Timer/CounterQ TO F4
Timer Mode TMR F1
UART SIO FO

9.2 UART BIT-RATE GENERATION

When Port 3 Mode Register bit 6 is set to 1, the UART is
enabled and TO automatically becomes the bit rate gen-
erator (Figure 9-2). The end-of-count signal of TOno longer

Register F7H
(Write-Only)

| o7] os §os | b4 ps | o2 o1] oo

=

generates Interrupt Request IRQ4. Instead, the signal is
used as the input to the divide-by-16 counters (one each
for the receiver and the transmitter) that clock the data
stream.

0 = P30 Input and P37 Output
1= P30 Serial In and P37 Serial Out

Figure 9-2. Port 3 Mode Register (P3M) and
Bit-Rate Generation

The divide chain that generates the bit rate is shown in
Figure 9-3. The bit rate is given by the following equation:

Bit Rate = XTAL Frequency/(2x 4 x p xt x 16)

where p and t are the initial values in Prescaler0 and
Counter/TimerO, respectively. The final divide-by-16 is
required since TO runs at 16 times the bit rate in order to
synchronize on the incoming data.

fyrtaL —»] +=2 » 4 >

Bit Rate
Clock

= 16

PREO T0

Figure 9-3. Bit Rate Divide Chain

To configure the Z8 for a specific bit rate, appropriate
values as determined by the above equation must be
loaded into registers PREO

(F5H) and TO (F4H). PREQ also controls the counting mode
for TO and should therefore be set to the Continuous Mode
(DO = 1).

9-2

N 2La5

Z8° MICROCONTROLLERS

For example, given an input clock frequency (XTAL) of
11.9808 MHz and a selected bit rate of 1200 bits per
second, the equation is satisfied by p =39 and t = 2.
Counter/Timer TO should be set to 02H. With TO in Continu-
ous Mode, the value of PREO becomes 9DH (Figure 9-4).

Table 9-2 lists several commonly used bit rates and the
values of XTAL, p, and t required to derive them. This list
is presented for convenience and is not intended to be
exhaustive.

Table 9-2. Bit Rates

Bit 7,3728 7,9872 9,8304 11,0592 11,6736 11,9808 12,2880
Rate p t p t p t p t p t p t p t
19200 3 1 - - 4 1 - - - - - 5 1

[¢300) 3 2 - - 4 2 9 1 - - - - 5 2

480 3 4 13 1 4 4 9 2 1 1 - - 5 4

240 3 8 13 2 4 8 9 4 9 2 3 1 5 8

120 3 16 13 4 4 B 9 8) 4 D 2 5 ©

a0 3 2 3 8 4 22 9 1 19 8 3 4 5 2
0 3 & 3 16 4 & 9 2] Ld]] 8 5 &4
180 3 1B B3 2 4 138 9 & 19 2 :] 6 5 138
110 3 1B 3 1B 4 1B 5 157 4 A7 7 D 8 1»®
Register F5H
(Write-Only)

|o7] o6} os|ps]os]|p2]o1]oo}

-I-_-— %ount Mode

= T0 Single Pass
= TO Modulo-n

gRange 1-64 declmal 01H-00H)
Range: 1-64

Figure 8-4. Prescaler 0 Register (PREO) Bit-Rate Generation

8-3

N 2iLa5

Z8° MICROCONTROLLERS

The bit rate generator is started by setting the Timer Mode
Register (TMR) (F1H) bit 1 and bit 0 both to 1 (Figure 9-5).
This transfers the contents of the Prescaler 0 Register and

Register F1H
(Read/Write)

Counter/TimerO Register to their corresponding down
counters. In addition, counting is enabled so that UART
operations begin.

|p7]os]ps|oa|pa]o2]p1]oo]

T_ 0 = No Function

1=_Load TO

0 = Disable TO Count
1 = Enable TO Count

Figure 9-5. Timer Mode Register (TMR) Bit Rate Generation

9.3 UART RECEIVER OPERATION

The receiver consists of a receiver buffer (SIO Register
[FOH])), a serial-in, parallel-out shift register, parity check-
ing, and data synchronizing logic. The receiver block
diagram is shown as part of Figure 9-1.

9.3.1 Receiver Shift Register

Afterahardwareresetorafter acharacterhasbeenreceived, the
Receiver ShiftRegister is initialized to all 1sand the shiftclockis
stopped. Serial data, input through Port 3 bit O, is synchro-
nized to the internal clock by two D-type flip-flops before
being input to the Shift Register and the start bit detection
circuitry.

®R) j«—— Start Bit Transition Detected
RCVR

The start bit detection circuitry monitors the incoming data
stream, looking for a start bit (a High-to-Low input transi-
tion). When a start bit is detected, the shift clock logic
is enabled. The TO input is divided-by-16 and, when the
count equals eight, the divider outputs a shift clock. This
clock shifts the start bit into the Receiver Shift Register
at the center of the bit time. Before the shift actually occurs,
the input is rechecked to ensure that the start bit is valid. If
the detected start bit is false, the receiver is reset and
the process of looking for a start bit is repeated. If the
start bit is valid, the data is shifted into the Shift Register
every sixteen counts until a full character is assembled
(Figure 9-6).

Stop Bit

One or More __l

Data

Shift |

I

Clock

& Eight TO Counts Later Shifting Starts

RCVR

IRQ3

Shift Register Contents
Transferred to Receiver Buffer
and IRQ3 is Generated

Figure 9-6. Receiver Timing

9-4

N 205

Z8° MICROCONTROLLERS

After a full character has been assembledinthereceiver’s
buffer, SIO Register (FOH), Interrupt Request IRQ3 is
generated. The shift clock is stopped and the Shift Regis-
ter reset to all 1s. The start bit detection circuitry begins
monitoring the data input for the next start bit. This cycle
allows the receiver to synchronize on the center of the bit
time for each incoming character.

9.3.2 Overwrites

Although the receiver is single buffered, it is not protected
from being overwritten, so the software must read the SIO
Register (FOH) within one character time after the interrupt
request (IRQ3). The Z8 does not have a flag to indicate this
overrun condition. If polling is used, the IRQ3 bit in the
Interrupt Request Register must be reset by software.

9.3.3 Framing Errors

Framing error detection is not supported by the receiver
hardware, but by responding tothe interrupt request within
one character bittime, the software can test for a stop biton
P30. Port 3 bits are always readable, which facilitates break
detection. For example, if a null character is received,
testing P30 results in a 0 being read.

9.3.4 Parity

The data format supported by the receiver must have a start
bit, eight data bits, and at least one stop bit. If parity is on,
bit 7 of the data received will be replaced by a Parity Error
Flag. A parity error sets bit 7 to 1, otherwise, bit D7 is set
to 0. Figure 9-7 shows these data formats.

Received Data
(No Parity)

Isp|o, | 06| Ds | Ds s |0s |0y | Do]8T

_E——- Start Bit

Eight Data Bits

One Stop Bit

Received Data
(With Parity)

[splPiosfos]oufos[o.foifoofor]

-r— Start Bit

Seven Data Bits

Parity Error Flag

One Stop Bit

Figure 9-7. Receiver Data Formats

N 2La5

Z8° MICROCONTROLLERS

The Z8®hardware supports odd parity only, thatis enabled
by setting the Port 3 Mode Register bit 7 to 1 (Figure 9-8).

Register F7H
(Write-Only)

If even parity is required, the Parity Mode should be
disabled (P3M bit 7 set to 0), and software must calculate
the received data’s parity.

|o7]ps | ps|pa | D3] p2] o1] Do|

T

0 = Parity Off

1 = Parity On

Figure 9-8. Port 3 Mode Register (P3M) Parity

9.4 TRANSMITTER OPERATION

The transmitter consists of a transmitter buffer (SIO Regis-
ter [FOH]), a parity generator, and associated control

logic. The transmitter block diagram is shown as part of
Figure 9-1.

After a hardware reset or after a character has been
transmitted, the transmitter is forced to a marking state
(output always High) until a character is loaded into the
transmitter buffer, SIO Register (FOH). The transmitter is
loaded by specifying the SIO Register as the destination
register of any instruction.

TO's output drives a divide-by-16 counter that in turn
generates a shift clock every 16 counts. This counter is
reset when the transmitter buffer is written by an instruc-
tion. This reset synchronizes the shift clock to the software.
The transmitter then outputs one bit per shift clock, through
Port 3 bit 7, until a start bit, the character written to the
buffer, and two stop bits have been transmitted. After the
second stop bit has been transmitted, the output is again
forced to a marking state. Interrupt request IRQ4 is gener-
ated at this time to notify the processor that the transmitter
is ready to accept another character.

9.4.1 Overwrites

The user is not protected from overwriting the transmitter,
soitis up to the software to respond to IRQ4 appropriately.
If polling is used, the IRQ4 bit in the Interrupt Request
Register must be reset.

9.4.2 Parity

The data format supported by the transmitter has a start bit,
eight data bits, and at least two stop bits. If parity is on, bit
7 of the data transmitted will be replaced by an odd parity
bit. Figure 9-9 shows the transmitter data formats.

Parity is enabled by setting Port 3 Mode Register bit 7 to 1.
If even parity is required, the parity mode should be
disabled (P3M bit 7 reset to 0), and software must modify
the data to include even parity.

Since the transmitter can be overwritten, the user is able to
generate a break signal. This is done by writing null
characters to the transmitter buffer (SIO Register [FOH]) at
a rate that does not allow the stop bits to be output. Each
time the SIO Register is loaded, the divide-by-16 counter
is resynchronized and a new start bit is output followed by
data.

9-6

@ 2ilals Z8° MICROCONTROLLERS

Tfa"s"(‘i,":%g,%;ﬁ ISPISP|D7|°s|°5|D4l'33|D2|D‘|D°|STI

L Start Bit

Eight Data Bits
Two Stop Bits

fainw I B R DY DA A A A A A K |

T sanen
Seven Data Bits

Odd Parity
Two Stop Bit

Figure 9-9. Transmitter Data Formats

97

@ 2L Z8° MICROCONTROLLERS
9.5 UART RESET CONDITIONS

After a hardware reset, the SIO Register contents are undefined, and Serial Mode and parity are disabled. Figures 9-10
and 9-11 show the binary reset values of the SIO Register and its associated mode register P3M.

fufufujuju]ujulul]

I Serial Data (D = LSB)

Figure 9-10. SIO Register Reset

|o|o|o|o|o|o|o|o

0 Port 2 pull-ups open-drain
1 Port 2 pull-ups active
0P32=ln ut P35 =0

ut
1 P32= /D%VO/RDYO P35 = RDY0//DAVO

00 P33 = Input P34 = Output

O P33 = Input P34 = /DM

11 P33 =/DAV1/RDY1 P34 = RDY1/DAV1

0 P31 =Input (Tyy) P36 = Output (Toy)
1 P31 =/DAV2/RDY2 P36 = RDY2/DAV2

0 P30 = Input P37 = Output

1 P30 = Serial In P37 = Serial Out
0 Parity Off

1 Parity On

Figure 9-11. P3M Register Reset

N2La5

Z8° MICROCONTROLLERS

9.6 Serial Peripheral Interface (SPI)

Select Z8® microcontrollers incorporate a serial peripheral
interface (SPI) for communication with other
microcontrollers and peripherals. The SPI includes fea-
tures such as Stop-Mode Recovery, Master/Slave selec-
tion, and Compare mode. Table 9-3 contains the pin
configuration for the SPI feature whenitis enabled. The SPI
consists of four registers: SPI Control Register (SCON), SPI
Compare Register (SCOMP), SPI Receive/Buffer Register
(RxBUF), and SPI Shift Register. SCON is located in bank
(C) of the Expanded Register File at address 02.

Table 9-3. SPI Pin Configuration

Name Function Pin Location
DI Data-In P20
DO Data-Out P27
SS Slave Select P35
SK SPI Clock P34

The SPI Control Register (SCON) (Figure 9-12), is a read/
write register that controls Master/Slave selection, inter-
rupts, clock source and phase selection, and error flag. Bit
0 enables/disables the SPI with the default being SPI
disabled. A 1inthis location will enable the SPI, and a 0 will
disable the SP!. Bits 1 and 2 of the SCON register in Master
Mode select the clock rate. The user may choose whether
internal clock is divide-by-2, 4, 8, or 16. In Slave Mode, Bit
1 of this register flags the user if an overrun of the RxBUF
Register has occurred. The RxCharOverrun flag is only
reset by writing a 0 to this bit. In slave mode, bit 2 of the
Control Register disables the data-out I/O function. If a 1is
written to this bit, the data-out pin is released to its original
port configuration. If a 0 is written to this bit, the SPI shifts
outone bitfor each bit received. Bit 3 of the SCON Register
enables the compare feature of the SPI, with the default
being disabled. When the compare feature is enabled, a
comparison of the value in the SCOMP Register is made
with the value in the RxBUF Register. Bit 4 signals that a
receive character is available in the RxBUF Register.

SCON (C) 02
|o7] os] ps] p4] 03] 02} 1] o}

I— SPI Enable

0 Disable *

1 Enable
RxCharOverrun (S)

0 Reset

1 Overrun

CLK Divide (M)
00 TCLK/2
01 TCLK/4

10 TCLK/8
11 TCLK/16

DO SPI Port Enable (S)
0 SPI DO Port Enabled
1 DO Port to I/0

C E

0 Enable

1 Disable *
RxCharAvail

0 Reset

1 Char. Avail.
Clock Phase

0 Trans/Fall
.1 Trans/Rise

1 Timer 0 Output

Master Slave
0 Slave
1 Master

(S) Used with Bit D7 equal to O
(M) Used with Bit D7 equal to 1

* Default Setting After Reset.

Figure 9-12. SPI Control Register (SCON)

If the associated IRQ3 is enabled, an interrupt is gener-
ated. Bit 5 controls the clock phase of the SPI. A 1in bit5
allows for receiving data on the clock’s falling edge and
transmitting data on the clock’s rising edge. A O allows
receiving data on the clock’s rising edge and transmitting
onthe clock’s falling edge. The SPI clock source is defined
in bit 6. A 1 uses TimerO output for the SPI clock, and a 0
uses TCLK for clocking the SPI. Finally, bit 7 determines
whether the SP|is used as a Master or a Slave. A 1 puts the
SPlinto Master mode and a 0 puts the SPI into Slave mode.

N2L05

28° MICROCONTROLLERS

9.7 SPI Operation

The SPI is used in one of two modes: either as system
slave, or as system master. Several of the possible system
configurations are shown in Figure 9-13. In the slave mode,
data transfer starts when the slave select (SS) pin goes
active. Datais transferred into the slave’s SPI Shift Register
through the DI pin, which has the same address as the
RxBUF Register. After a byte of data has been received by
the SPI Shift Register, a Receive Character Available
(RCA/IRQ3) flag and interrupt is generated. The next byte
of data will be received at this time. The RxBUF Register
must be cleared, or a Receive Character Overrun
(RxCharOverrun) flag will be setin the SCON Register, and
the data in the RXBUF Register will be overwritten. When
the communication between the master and slave is com-
plete, the SS goes inactive.

Unless disconnected, for every bit that is transferred into
the slave through the DI pin, a bitis transferred out through
the DO pin on the opposite clock edge. During slave
operation, the SPI clock pin (SK) is an input. In master
mode, the CPU must first activate a SS through one of its
1/0 ports. Next, datais transferred through the master’s DO
pin one bit per master clock cycle. Loading data into the
shift register initiates the transfer. In master mode, the
master's clock will drive the slave’s clock. At the conclu-
sion of a transfer, a Receive Character Available (RCA/
IRQ3) flag and interrupt is generated. Before data is
transferred via the DO pin, the SPI Enable bit in the SCON
Register must be enabled.

9.8 SPI Compare

When the SPI Compare Enable bit, D3 of the SCON
Register is set to 1, the SPi Compare feature is enabled.
The compare feature is only valid for slave mode. A
compare transaction beginswhenthe (SS) line goes active.
Dataisreceived as if it were a normal transaction, but there
is no data transmitted to avoid bus contention with other
slave devices. When the compare byte isreceived, IRQ3 is
not generated. Instead, the data is compared with the
contents of the SCOMP Register. If the data does not
match, DO remains inactive and the slave ignores all data
until the (SS) signal is reset. If the data received matches
the data in the SCOMP register, then a SMR signal is
generated. DO is activated if itis not tri-stated by D2 in the
SCON Register, and dataisreceived the same as any other
SPI slave transaction.

When the SPI is activated as a slave, it operates in all
system modes: STOP, HALT, and RUN. Slaves' not com-
paring remain in their current mode, whereas slaves’
comparing wake from a STOP or HALT mode by means of
an SMR.

9.9 SPI Clock

The SPI clock maybe driven by three sources: TimerQ, a
division of the internal system clock, or the external master
when in slave mode. Bit D6 of the SCON Register controls
what source drives the SPi clock. A 0in bit D6 of the SCON
Register determines the division of the internal system
clock if this is used as the SPI clock source. Divide by 2, 4,
8, or 16 is chosen as the scaler.

0.“ 2ildls Z8° MICROCONTROLLERS

Standard Serial Setup

Master
g 2
> -

o
-

di A
A J_ \ \ | A
2% 8%|]|2%58° 2% 3B |a¥ 8
Slave Slave Slave Slave
Standard Parallel Setup
ss1]
8§52
& ss3
g ss4
sk
do
di je
A \ A y
2% 8| |8 %58F 2%8T||a88°
Slave Slave Slave Slave
Setup For Compare
58 “
% sk A
2 A
di » S
A Yy / A \

PR B A E8S||1g8 85
Slave Slave Slave Slave
(1) @ (255) (256)

Up to 256 slaves per SS line

Three Wire Compare Setup

ss —\
E s o'
2 4 \—
di —
A vy A \
2% 8°||8%58° A% 83||s%8°
Slave Slave Slave Slave

Multiple slaves may have the same address.

Figure 8-13. SPI System Configuration

9-11

N 235

Z8° MICROCONTROLLERS

9.10 Receive Character Available and
Overrun

When a complete data stream is received, an interrupt is
generated and the RxCharAvail bit in the SCON Register
is set. Bit4inthe SCON Register is for enabling or disabling
the RxCharAvail interrupt. The RxCharAvail bitis available
for interrupt polling purposes and is reset when the RxBUF
Register is read. RxCharAvail is generated in both master
and slave modes. While in slave mode, if the RxBUF is not

read before the next data stream is received and loaded
into the RxBUF Register, Receive Character Overrun
(RxCharOverrun) occurs. Since there is no need for clock
control in slave mode, bit D1 in the SPi Control Register is
used to log any RxCharOverrun (Figure 9-14 and Figure
9-15).

No Parameter Min Units
1 Dl to SK Setup 10 ns
2 SK to DO Valid 15 ns
3 SS to SK Setup .5 Tsk ns
4 SS to DO Valid 15 ns
5 SK to DI Hold Time 10 ns
Tsk -
—®
SS
DO
Q) —
DI

Figure 9-14. SPI Timing

9-12

Z8° MICROCONTROLLERS

i Je—> sk
L | .
Bit Counter SPI Compare Register (SCOMP) Czrcm’t?ol
SMR <— Jinterrupt “— O
Control
— — —
— SPI Shift Register

SPI Receive Buffer (RxBUF)

SPI Control SPI

__L_ Clock
AGa 1 I

TCLK SCLK+n

Figure 9-15. SPI Logic

9-13

@ 2“.“5 2Z3° MICROCONTROLLERS

Open-Drain

P20 OE __ID_ l——
SPIEN —f D P20

L
P20 IN
or &l
SPIDI N e 14
l Auto Latch
|
R a¢ 500K Q :
Open-Drain
P37 OUT Standard | Ly
SPIDO e SPL L/ f |‘V £z
D
P27OE . Standad | D
SPI Active P4
0 SPI DO Enabi
e
L o2l |35, our
*SPI must be enabled with DO.
P27 IN <l|
tT————"=""""""=7 m
: : Auto Latch
| |
: R 2z 500K Q J'

Figure 9-16. SPI Data In/Out Configuration

9-14

AN 2iLas Z8° MICROCONTROLLERS

SKIN é}
SPIEN
SPIMSTR P34
PAD
SPIEN z
P34 OUT ————o\ skout Mux —
P31 ‘—r—-bﬂ

REF A

ss \l:rl

SPIEN

SPIMSTR D P35
P35 OUT ——\ o

P32

PCON
Ii | DOI 0 P34, P35 Standard Output
1 P34, P35 Comparator Output

Figure 9-17. SPI Clock / SPI Slave Select Output Configuration

9-15

0N 2iLa5

USER'S MANUAL

CHAPTER 10
EXTERNAL INTERFACE

10.1 INTRODUCTION

The Z8® can be a microcontroller with 20 pins for external
memory interfacing. The external memory interface on the
Z8is generally for either RAM or ROM. This is only available
for devices featuring Port 0, Port 1, R//W, /DM, /AS, and

/DS. Please refer to specific product specifications for
availability of these features.

The Z8 has a multiplexed external memory interface. In the
multiplexed mode, eight pins from Port 1 form an Address/
Data Bus (AD7-ADO), eight pins from Port O form a High
Address Bus (A15-A8). Three additional pins provide the
Address Strobe, Data Strobe, and the Read/Write Signal.
Figure 10-1 shows the external interface pins of the Z8.

(Pott 1)AD7-ADO K"——'>

External

\/

Program/Data
Memory up to

64 Kbytes
Each

(Port0) AD15-AD8
z8

/AS

DS

RIW

/DM

Figure 10-1. Z8 External Interface Pins

10-1

N 2iLa5

Z8° MICROCONTROLLERS

10.2

PIN DESCRIPTIONS

The following sections briefly describe the pins associated
with the Z8® external memory interface.

10.2.1

10.2.2

10.23

10.2.4

10.2.5

IAS Address Strobe (output, active Low). Address
Strobe is pulsed Low once at the beginning of
each machine cycle. The rising edge of /AS indi-
cates the address, Read/Write (R//W), and Data
Memory (/DM) signals are valid for program or
data memory transfers. In some cases, the Z8
address strobe is pulsed low regardless of ac-
cessing external or internal memory. Please refer
to specific product specifications for /AS opera-
tion.

IDS Data Strobe (output, active Low). Data Strobe
provides the timing for data movement to or from
the Address/Data bus for each external memory
transfer. During a Write Cycle, data out is valid at
the leading edge of the /DS. During a Read Cycle,
data in must be valid prior to the trailing edge of the
/DS.

RI/W Read/Mrite (output). Read/Write determines
the direction of data transfer for memory transac-
tions. R//W is Low when writing to program or data
memory, and High for all other transactions.

/DM Data Memory (output). Data Memory pro-
vides a signal to separate External Program
Memory from External Data Memory. It is a pro-
grammable function on pin P34. Data memory is
active low for External Data Memory accesses
and high for External Program Memory accesses.

P07 - P01 High Address Lines A15 -A8 (Outputs
can be CMOS- or TTL- compatible. Please refer to
product specifications for actual type). A15-A8
provide the High Address lines for the memory
interface. Port O - 1 mode register must have bits
D7 =1and D1 = 1 to configure Port 0 as A15 - A8
(Figure 10-2).

10.2.6

10.2.7

10.2.8

P17 - P10 Address/Data Lines AD7 - ADO (inputs/
outputs, TTL-compatible). AD7-ADO is a multi-
plexed Address/Datamemory interface. The lower
eight Address lines (A7-AQ) are multiplexed with
Data lines (D7-D0). Port 0 - 1 mode register must
have bits D4 = 1 and D3 = 0 to configure Port 1 as
AD7 - ADO (Figure 10-2).

/RESET Reset (input, active Low). /RESET initial-
izesthe Z8. When /RESET is deactivated, program
execution begins from program location 000CH. If
held Low, /RESET acts as a register file protect
during power-down and power-up sequences. To
avoid asynchronous and noisy reset problems,
the Z8 is equipped with areset filter of four external
clocks (4T,C). If the external /RESET signal is less
than 4T,C in duration, no reset will occur. On the
fifth clock after the /RESET is detected, an internal
reset signal is latched and held for an internal
register count of 18 or more external clocks, or for
the duration of the external /RESET, whichever is
longer. Please refer to specific product specifica-
tions for length of reset delay time.

XTALA1, XTAL2. Crystall, Crystal2 (Oscillator in-
put and output). These pins connect a parallel-
resonant crystal, ceramic resonator, LC, RC net-
work, or external single-phase clock to the on-chip
oscillator input. Please refer to the device product
specifications for information on availability of RC
oscillator features.

10-2

P 205

Z8° MICROCONTROLLERS

10.3 EXTERNAL ADDRESSING CONFIGURATION

The minimum bus configuration uses Port 1 as a multi-
plexed address/data port (AD7 - ADO), allowing access to
256 bytes of external memory. In this configuration, the
eight low order bits (A0 - A7) are multiplexed with the data
(D7 - DO).

Register F8H (P01M)
Port 0-1 Mode Register (PO1M)
Write-Only)

Port 0 can be programmed to provide either four additional
address lines (A11- A8), which increases the addressable
memory to 4K bytes, or eight additional address lines (A15
- A8), which increases the addressable externalmemory up
to 64K bytes. It is required to add a NOP after configuring
Port 0 / Port 1 for external addressing before jumping to
external memory execution.

D7| D6| DSI D4| D3I D2] D1

DO

L po,-Po,Mode

007 Oul%ut
01 Input

X Ay 'AB

P,,-P

037 Bs}lg Output

01 Byte Input

10 AD. -AD0

1 Hign-lmpedance
A15-A8
AD7 - ADO
/AS /DS
RIW

PO, - P04 Mode
00 Output

01 Input

1X Ay5-Agn

Figure 10-2. External Address Configuration

10-3

A 2105

28° MICROCONTROLLERS

10.4 EXTERNAL STACKS

The Z8®architecture supports stack operations in either the
Z8 Standard Register File or External Data Memory. A
stack’s location is determined by bit 2 in the Port 0-1 Mode
Register (F8H). If bit 2 is set to 0, the stack is in External
Data Memory. (Figure 10-3).

The instruction used to change the stack selection bit
should not be immediately followed by the instructions RET

Reglster F8H (PO1M)
Port 0-1 Mode Register
(Write-Only)

or IRET, because this will cause indeterminate program
flow. After a /RESET, the internal stack is selected.

Please note that if Port O is configured as A15 - A8 and the
stackis selected as internal, any stack operation will cause
the contents in register FEH to be displayed on Port 0.

D1l;6|

D7]D6]D5|D4 DSl D2

T 78 Stack Selection
0 =External

1 =Internal

Figure 10-3. Z8 Stack Selection

10.5 DATA MEMORY

The two Z8 external memory spaces, data and program,
are addressed as two separate spaces of up to 64 Kbytes
each. External Program Memory and External Data Memory
are logically selected by the Data Memory select output
(/DM). /DM is made available on Port 3, bit 4 (P34) by
setting bit 4 and bit 3 in the Port 3 Mode Register (F7H) to
10 or 01 (Figure 10-4). /DM is active Low during the

ister F7H (P3M
ggrgt 3Mode R(eglst)er
(Write-Only)

D7 |D6 | D5 | D4 | D3 | D2 | D1 § DO

[S

execution of the LDE, LDEI instructions, and High for the
execution of program instructions. /DM is also active Low
during the execution of CALL, POP, PUSH, RET and IRET
instructions if the stack resides in External Data Memory.
After a /RESET, /DM is not selected.

Bits Configuration

P33=Input P34 = Output

=lnput P34=/DM
P33=Input P34=/DM
P33=/DAV1/RDY1 P34=RDY1//DAV1

Figure 10-4. Port 3 Data Memory Operation

10-4

Y= Te o

Z8° MICROCONTROLLERS

10.6 BUS OPERATION

Typical datatransfers betweenthe Z8® and External Memory
are illustrated in Figures 10-5 and 10-6. Machine cycles
can vary from six to 12 clock periods depending on the
operation being performed. The notations used to de-

‘scribe the basic timing periods of the Z8 are machine

cycles (Mn), timing states (Tn), and clock periods. All
timing references are made with respect to the output
signals /AS and /DS. The clock is shown for clarity only and
does not have a specific timing relationship with other

signals.
l¢————eme Machine Cycle ———e——pp
T T2 T3
Clock
A15-A8 X AB-A15 X
AD7-ADO X arno {0700 IN Ynef

AS \ / \

/DS \ /

RIW /

/DM X

X

f— ‘ Rea& Cycle ~——n—p|

Figure 10-5. External Instruction Fetch or Memiory Read Cycle

*Portinputs are strobed during T2, whichis two internal system clocks before the execution cycle of the currentinstruction.

10-5

Z8° MICROCONTROLLERS

| «¢——— Machine Cycle =——————————
T T2 T3
Clock I_
A15-A8 X A15-A8 X
AD7-ADO X a0 X D7-D0 OUT X

/AS \ /

N

/DS

RIW

n__/
-

/DM X

X

Write Cycle ——————p

Figure 10-6. External Memory Write Cycle

10.6.1 Address Strobe (/AS)

All transactions start with /AS driven Low and then raised
High by the Z8®. The rising edge of /AS indicates that R/W,
/DM (if used), and the address outputs are valid. The
address outputs (AD7-ADO), remain valid only duringMnT1
andtypically needtobelatched using /AS. Address outputs
(A15-A8) remain stable throughout the machine cycle,
regardless of the addressing mode.

10.6.2 Data Strobe (/DS)

The Z8 uses /DS to time the actual data transfer. For Write
operations (R//W = Low), a Low on /DS indicates that valid
data is on the AD7-ADO lines. For Read operations (RW =
High), the bus is placed in a high-impedance state before
driving /DS Low, so the addressed device can put its data
on the bus. The Z8 samples this data prior to raising /DS
High.

10-6

O 205

Z8° MICROCONTROLLERS

10.7 EXTENDED BUS TIMING

Some products can accommodate slow memory access

time by automatically inserting an additional software
controlled state time (Tx). This stretches the /DS timing by

two clock periods. Figures 10-7 and 10-8 illustrate ex-
tended external memory Read and Write cycles.

Clock I

A15-A8 X

AD7-ADO X

< Machine Cycle >
T1 T2 TX T3
A15-A8 X
A7-AO {0700 Ny—
X X
| Read Cycle ::

Figure 10-7. Extended External Instruction Fetch or Memory Read Cycle

*Portinputs are strobed during T2, which istwo internal system clocks before the execution cycle of the currentinstruction.

10-7

@ p— N Z8° MICROCONTROLLERS

Y

A

Machine Cycle

T T2 T T3

A15-A8 X A15-A8

AD7-ADO X a0 X D7-DO OUT

e
ik lenne

=: Write Cycle

Figure 10-8. Extended External Memory Write Cycle

Timing is extended by setting bit D5 in the Port 0-1 Mode Register (F8H) to 1 (Figure 10-9). After a /RESET, this bit is set
to 0.

Re glﬂer F8H (PO1M)
Port 0-1 Mode Register
(Write-Only)

D7 |D6 |D5 | D4 | D3 | D2 | D1 | DO

[External Memory Timing
0 =Normal
1 =Extended

Figure 10-9. Extended Bus Timing

10-8

O 2ILaB

78° MICROCONTROLLERS

10.8 INSTRUCTION TIMING

The High throughput of the Z8® is due , in part, to the use
of an instruction pipeline, in which the instruction fetch and
execution cycles are overlapped. During the execution of
the current instruction, the opcode of the next instruction is
fetched. Instruction pipelining isillustrated in Figure 10-10.

Hsuli |,

R 2
g
g|e
e
5
- 3 5
=)
B
§ i
-
gl

Instruction Cycle Timing (One-Byte Instructions)

M
T2
A15-A8

Figure 10-11.

|

1 o |

X

) G

/
}#——————— Feich 1stByte

* Port inputs are strobed during T2, which is two internal system clocks before the execution cycle of the

current instruction.

Figures 10-11 and 10-12 show typical instruction cycle
timing for instructions fetched from memory. For those
instructions that require execution time longer than that of
the overlapped fetch, or reference program or datamemory
as part of their execution, the pipe must be flushed.

Note: Figures 10-11 and 10-12 assume the XTAL/2 clock mode
is selected.

10-9

@ 2iLan Z8° MICROCONTROLLERS

* Port inputs are strobed during T2, which is two internal
system clocks before the execution cycle of the current
instruction.

8

T1

M2
]
A15-A8
Fetch 2nd Byte

. Instruction Cycle Timing (Two and Three Byte Instructions)

M1
T2
A15-A8

M3
[= [=
A15-A8
X wra0 Yoo Wy— 720 Yl oroony— A7-20 3—@—(:
Fet 13&%%’?&’1)_%

T

|4—— Fetch 1st Byte
Figure 10-11

Clock
A15-A8
AD7-ADO
IAS

/DS
RIW

10-10

N 2105

Z8° MICROCONTROLLERS

10.9 Z8 RESET CONDITIONS

After a hardware reset, extended timing is setto accommo-
date slow memory access during the configurationroutine,
/DM is inactive, the stack resides in the register file. Port 0,
1,and 2 are reset to input mode. Port 2is set to Open-Drain
Mode.

10-11

N 2iLas

USER'S MANUAL

GHAPTER 11
ADDRESSING MODES

11.1 INTRODUCTION
11.1.1 Z8 Addressing Modes

The Z8® microcontroller provides six addressing modes:

Register (R)

Indirect Register (IR)
Indexed (X)

Direct (D)

Relative (RA)
Immediate (IM)

With the exception of immediate data and condition codes,
all operands are expressed as register file, Program
Memory, or Data Memory addresses. Registers are ac-
cessed using 8-bit addresses in the range of O0H-FFH.
The Program Memory or Data Memory is accessed using
16-bit addresses (register pairs) in the range of 0000H-
FFFFH.

Working Registers are accessed using 4-bit addresses in
the range of 0-15 (OH-FH). The address of the register
being accessed is formed by the combination of the upper
four bits in the Register Pointer (R253) and the 4-bit
working register address supplied by the instruction.

Registers can be used in pairs to designate 16-bit values
or memory addresses. A Register Pair must be specified
as an even-numbered address inthe range of 0, 2, ..., 14
for Working Registers, or 4, 6,238 for actual registers.

In the following definitions of Z8 Addressing Modes, the
use of ‘register' can also imply register pair, working
register, or working register pair, depending on the con-
text.

Note: See the product data sheet for exact program, data, and
register memory types and address ranges available.

‘_23 2ilal5 Z8° MICROCONTROLLERS
11.2 Z8 REGISTER ADDRESSING (R)

In 8-bit Register Addressing mode, the operand valueis In the Register Addressing (Figure 11-1), the destination
equivalent to the contents of the specified register or and/or source address specified corresponds to the ac-

register pair. tual register in the register file.
Program Memory Register File
8-Bit Register
FileAddress —*} dst - »| Operand
oints to
One Operand One Register
Instruction s OpCode in the
(Example) Register
File

Figure 11-1. 8-Bit Register Addressing

In 4-bit Register Addressing (Figure 11-2), the destination = address is combined with the upper four bits of the
and/or source addresses point to the Working Register ~ Register Pointer to form the actual 8-bit address of the
within the current Working Register Group. This 4-bit affected register.

Register File
RP e
Poo_in_ts tc;
rigin o
Program Memory Wogrking
Register
Group
Operand
4'gggivscl’2:'sng - Ost src # > Operand
Points to
T\‘vo Opeirand thF? Working
NStruction wemeps) OpCode egisters
(Example) pC
gt

Figure 11-2. 4-Bit Register Addressing

11-2

Q2105

Z8° MICROCONTROLLERS

11.3 Z8 INDIRECT REGISTER ADDRESSING (IR)

In the Indirect Register Addressing Mode, the contents of ~ When accessing program memory or External Data
the specified register are equivalent to the address of the ~ Memory, register pairs or Working Register pairs are used

operand (Figures 11-3 and 11-4).

Depending upon the instruction selected, the specified
register contents points to a Register, Program Memory, or
an External Data Memory location.

to hold the 16-bit addresses.

Program Memory Register File
8-Bit Register]
File Address — dst Address = ==
Points to one
One Operand Register in
Instruction st OpCode Register File
(Example)
Vallue Usted In
nstruction seps
Execution Operand -

Figure 11-3. Indirect Register Addressing to Register File

Address of Operand

.~ Used By Instruction

Points to
Register of
Operand

11-3

N 2L L35 Z8° MICROCONTROLLERS

—

11.3 Z8 INDIRECT REGISTER ADDRESSING (IR) (Continued)

Register File
RP
Poirf\t\?v to I_k(i)rigin
= of Wo
Program Memory Register G?cg:up

Register

Pair LSB

. . Register

4-Bit Working ——pd dst sic - i

Register Address Points to Pair MSB
Instruction Example glor!;itng
— ister

References Either OpCode Pa;g(Even
Program Memory or Address)
ata Memory 16-Bit Address
__ Points to Program
Program or Data
or Data Memory Memory

Value Used In

Instruction "> Operand

Figure 11-4. Indirect Register Addressing to Program or Data Memory

11-4

Q2005

Z8° MICROCONTROLLERS

11.4 Z8 INDEXED ADDRESSING (X)

The Indexed Addressing Modeis used only by the Load (LD) address to obtain the address of the operand. Figure 11-
instruction. An indexed address consists of a register ad-

dress offset by the contents of a designated Working Reg-
ister (the Index). This offset is added to the register

Points to
a Working
Register

Program Memory
Address
Two Operand] dsV X
|nstrupcetion Src
OpCode

Addr :+: Offset

5 illustrates this addressing convention.

Register File
RP [e
Points to Origin
= of Working
Register Group
Offset

Operand =g

Figure 11-5. Indexed Register Addressing

Value Used In
Instruction

11-5

N 205

Z8° MICROCONTROLLERS

11.5 Z8 DIRECT ADDRESSING (DA)

The Direct Addressing mode, as shown in Figure 11-6,
specifies the address of the next instruction to be ex-
ecuted. Only the Conditional Jump (JP) and Call (CALL)
instructions use this addressing mode.

Program Memory

Program Memory
Address Used

Lower Addr. Byte

Upper Addr. Byte

OpCode

Figure 11-6. Direct Addressing

11-6

N 205

Z8° MICROCONTROLLERS

11.6 Z8 RELATIVE ADDRESSING (RA)

In the Relative Addressing mode, illustrated in Figure
11-7, the instruction specifies a two’s-complement signed
displacement in the range of —128 to +127. This is added
to the contents of the PC to obtain the address of the next

instruction to be executed. The PC (prior to the add)
consists of the address of the instruction following the
Jump Relative (JR) or Decrement and Jump if Non-Zero
(DJNZ) instruction. JR and DJNZ are the only instructions
which use this addressing mode.

Program Memory

Program Memory
Address Used

ue
Next OpCode +
Displacement
JR Of DINZ e=emps) OpCode

Figure 11-7. Relative Addressing

1-7

@ 2LA5L 2Z8° MICROCONTROLLERS

11.7 Z8 IMMEDIATE DATA ADDRESSING (IM)

Immediate data is considered an “addressing mode” for ~ as the source operand. The operand value used by the

the purposes of this discussion. It is the only addressing instruction is the value supplied in the operand field itself.

mode that does not indicate a register or memory address ~ Because an immediate operand is part of the instruction,
it is always located in the Program Memory address space
(Figure 11-8).

Program Memory

OpCode

Immediate Data

The Operand value
is in the instruction

Figure 11-8. Immediate Data Addressing

11-8

NSILas

USER'S MANUAL

CHAPTER 12
INSTRUCTION SET

12.1 Z8 FUNCTIONAL SUMMARY

Z8®instructions can be divided functionally into the follow-
ing eight groups:

Load

Bit Manipulation
Arithmetic

Block Transfer
Logical

Rotate and Shift
Program Control
CPU Control

The following summary shows the instructions belonging to
each group and the number of operands required for each.
The source operand is 'src,' the destination operand is
'dst,'and a condition code is 'cc.’'

Table 12-1. Load Instructions

Mnemonic Operands Instruction
AR dst Cear

D dstsrc Load

LoC dst,src LoadConstant
LDE dst,src LoadBxtemal
POP ot Pop

PUH T Push

Table 12-2. Arithmetic Instructions

Mriemonic Operands Instruction
ADC dst, src Add with Carry
ADD dst, src Add

CcP dst, src Compare

DA dst Decimal Adjust
DEC dst Decrement
DECW dst Decrement Word
INC dst Increment

INCW dst Increment Word
SBC dst, src Subtract with Carry
SuB dst, src Subtract

Table 12-3. Logical Instructions

Mnemonic Operands Instruction

AND dstsc Logical AND

am ot Complerment

R dstsc LogicalOR

XOR dstsic LogicalExclusiveOR

Table 12-4. Program Control Instructions

Mnemonic Operands Instruction

CALL st CallProcedure

DINZ dst,src DecrementandJump
Nor+Zero

IRET InterruptRetum

P cc,dst

R cc,dst JumpRelative

RET Retum

Table 12-5. Bit Manipulation Instructions

Mnemonic Operands Instruction

™™ dst,src TestComplement
UnderMask

™ dst,src TestUnderMask

AND dstsic BitClear

R dstsrc BitSet

XOR dst,src BitComplerment

Table 12-6. Block Transfer Instructions

Mnemonic Operands Instruction

LDCH dstsrc LoadConstant
Autoincrement

LDHE dst,src LoadExtemal
Autolncrement

12-1

A 2UaE

Z8® MICROCONTROLLERS

12.1 Z8 FUNCTIONAL SUMMARY (Continued)

Table 12-7. Rotate and Shift Instructions

Table 12-8. CPU Control Instructions

Mnemonic Operands Instruction

Mnemonic Operands Instruction

RL dst Rotate Left

RLC dst Rotate Left Through Carry
RR dst Rotate Right

RRC dst Rotate Right Through Carry
SRA dst Shift Right Arithmetic
SWAP dst Swap Nibbles

CCF Complement Carry Flag
DI Disable Interrupts

El Enable Interrupts

HALT Halt

NOP No Operation

RCF Reset Carry Flag

SCF Set Carry Flag

SRP Src Set Register Pointer
STOP Stop

WDH WDT Enable During HALT
wWDT WDT Enable or Refresh

12,2 PROCESSOR FLAGS

The Flag Register (FCH) informs the user of the current
status of the Z8. The flags and their bit positions in the Flag
Register are shown in Figure 12-1.

The Z8 Flag Register contains six bits of status information
which are setor cleared by CPU operations. Four of the bits
(C,V, Zand S) can be tested for use with conditional Jump
instructions. Two flags (H and D) cannot be tested and are
used for BCD arithmetic. The two remaining bits inthe Flag
Register (F1 and F2) are available to the user, but they

Register FCH (Flags)
Flag Register (Read/Write)

must be set or cleared by instructions and are not usable
with conditional Jumps.

As with bits in the other control registers, the Flag Register
bits can be set or reset by instructions; however, only those
instructions that do not affect the flags as an outcome of the
execution should be used (Load Immediate).

Note: The Watch-Dog Timer (WDT) instruction effects the Flags
accordingly: Z=1, S=0, V=0.

D7| De| D5] D4] D3| D2

D1] DO

—— —— — ——

-E— User Flag (F1)

User Flag (F2)
Half Carry Flag (H)

Decimal Adjust Flag (D)

Overflow Flag (V)

Sign Flag (S)

Zero Flag (2)

Carry Flag (C)

Figure 12-1. Z8 Flag Register

12-2

Qi

Z8° MICROCONTROLLERS

12.2.1 Carry Flag (C)

The Carry Flag is set to 1 whenever the result of an
arithmetic operation generates a ‘carry out of' or a ‘borrow
into' the high order bit 7. Otherwise, the Carry Flag is
cleared to 0.

Following Rotate and Shift instructions, the Carry Flag
contains the last value shifted out of the specified register.

Aninstruction can set, reset, or complementthe Carry Flag.

IRET changes the value of the Carry Flag when the Flag
Register saved in the Stack is restored.

12.2.2 Zero Flag (2)

For arithmetic and logical operations, the Zero Flagis setto
1if the result is zero. Otherwise, the Zero Flag is cleared
to 0.

If the result of testing bits in a register is 00H, the Zero Flag
is set to 1. Otherwise the Zero Flag is cleared to O.

If the result of a Rotate or Shift operation is 00H, the Zero
Flag is set to 1. Otherwise, the Zero Flag is cleared to 0.

IRET changes the value of the Zero Flag when the Flag
Register saved in the Stack is restored. The WDT Instruc-
tion sets the Zero Flagto a 1.

12.2.3 Sign Flag (S)

The Sign Flag stores the value of the most significant bit of
a result following an arithmetic, logical, Rotate, or Shift
operation.

When performing arithmetic operations on signed num-
bers, binary two's-complement notation is used to repre-
sent and process information. A positive number is identi-
fied by a 0 in the most significant bit position (bit 7);
therefore, the Sign Flag is also 0.

Anegative numberisidentified by a 1 inthe most significant
bit position (bit 7); therefore, the Sign Flag is also 1.

IRET changes the value of the Sign Flag when the Flag
Register saved in the Stack is restored.

12.2.4 Overflow Flag (V)

For signed arithmetic, Rotate, and Shift operations, the
Overflow Flag is set to 1 when the result is greater than the
maximum possible number (>127) or less than the mini-
mum possible number (<-128) that can be represented in
two’s-complement form. The Overflow Flag is set to 0 if no
overflow occurs.

Following logical operations the Overflow Flag is set to 0.

IRET changes the value of the Overflow Flag when the Flag
Register saved in the Stack is restored.

12.2.5 Decimal Adjust Flag (D)

The Decimal Adjust Flag is used for BCD arithmetic. Since
the algorithm for correcting BCD operations is different for
addition and subtraction, this flag specifies what type of
instruction was last executed so that the subsequent Deci-
mal Adjust (DA) operation can function properly. Normally,
the Decimal Adjust Flag cannot be used as atest condition.

After a subtraction, the Decimal Adjust Flag is set to 1.
Following an addition it is cleared to 0.

IRET changes the value of the Decimal Adjust Flag when
the Flag Register saved in the Stack is restored.

12.2.6 Half Carry Flag (H)

The Half Carry Flag is set to 1 whenever an addition
generates a “carry out of” bit 3 (Overflow) or a subtraction
generates a “borrow into” bit 3. The Half Carry Flag is used
by the Decimal Adjust (DA) instructionto convert the binary
result of a previous addition or subtraction into the correct
decimal (BCD) result. As in the case of the Decimal Adjust
Flag, the user does not normally access this flag.

IRET changes the value of the Half Carry Flag when the
Flag Register saved in the Stack is restored.

12-3

O 2La5

Z8° MICROCONTROLLERS

12.3 CONDITION CODES

The C, Z, S, and V Flags control the operation of the
‘Conditional' Jump instructions. Sixteen frequently useful

Condition codes andflag settings are summarizedin Tables

functions of the flag settings are encoded in a 4-bit field

called the condition code (cc), which forms bits 4-7 of the

conditional instructions.

12-9, 12-10, and 12-11. Notation for the flags and how they
are affected are as follows:

Table 12-10. Flag Settings Definitions

Symbol Definition
Table 12-9. Z8 Flag Definitions 0 Cleared to 0
Flag Description 1 Setto 1 , ,
* Set or cleared according to operation
C Carry Flag - Unaffected
z Zero Flag X Undefined
S Sign Flag
\" Overflow Flag
D Decimal Adjust Flag
H Half Carry Flag
Table 12-11. Condition Codes
Binary Mnemonic Definition Flag Settings
0000 F Always False -
1000 (blank) Always True -
0111 Cc Carry C=1
1111 NC No Carry C=0
0110 z Zero Z=1
1110 NZ Non-Zero Z=0
1101 PL Plus S=0
0101 1] Minus S=1
0100 ov Overflow V=1
1100 NOV No Overflow V=0
0110 EQ Equal Z=1
1110 NE Not Equal Z=0
1001 GE Greater Than or Equal (SXORV)=0
0001 LT Less Than (SXORV)=1
1010 GT Greater Than (ZOR(SXORV))=0
0010 LE Less Than or Equal (ZOR(SXORV)) =1
1111 UGE Unsigned Greater Than or Equal =
0111 ULT Unsigned Less Than C=1
1011 UGT Unsigned Greater Than (C=0ANDZ=0)=1
0011 ULE Unsigned Less Than or Equal (CORZ)=1

12-4

_@ 2iLan 28° MICROCONTROLLERS
12.4 NOTATION AND BINARY ENCODING

In the detailed instruction descriptions that make up the ~ ¢odes, address modes, and their notations are as follows

rest of this chapter, operands and status flags are repre- (Table 12-12):
sented by a notational shorthand. Operands, condition

Table 12-12. Notational Shorthand
Notation Address Mode Operand Range * u
cc Condition Code See condition codes
r Working Register Rn n=0-15
R Register Reg Reg. represents a number in the range of 00H to FFH
or
Working Register Rn n=0-15
RR Register Pair Reg EE% représents an even number in the range of 00H to
or
Working Register Pair RRp p=0,24,68, 10,12, 0r 14
Ir Indirect Working Register @Rn n=0-15
IR Indirect Register @Reg Reg. represents a number in the range of 00H to FFH
or
Indirect Working Register @Rn n=0-15
Irr Indirect Working Register Pair @RRp p=0,246,8,10,12,0r 14
IRR Indirect Register Pair @Reg E:Ei . represents an even number in the range O0H to
or
Working Register Pair @RRp p=0,24,6,8,10,12,0r 14
X Indexed Reg (Rn) Reg. represents a number in the range of 00H to FFH
andn=0-15
DA DirectAddress Addrs Addrs. represents a number in the range of 00H to FFH
RA Relative Address Addrs Addrs. represents a number in the range of +127 to-128
which is an offset relative to the address of the next
instruction
IM Immediate #Data Data is a number between O0H to FFH

* See the device product specification to determine the exact register file range available. The register file size varies by device type.

12-5

N 2LaB

Z8° MICROCONTROLLERS

12.4 NOTATION AND BINARY ENCODING (Continued)

Additional symbols used are:

Table 12-13. Additional Symbols

Symbol Definition

dst Destination Operand

src Source Operand

@ Indirect Address Prefix

SP Stack Pointer

PC Program Counter

FLAGS Flag Register (FCH)

RP Register Pointer (FDH)

IMR Interrupt Mask Register (FBH)
Immediate Operand Prefix
% Hexadecimal Number Prefix
H Hexadecimal Number Suffix
B Binary Number Suffix

OPC Opcode

Assignment of a value is indicated by the symbol “«". For
example,

dst « dst + src
indicates the source data is added to the destination data
and the result is stored in the destination location. The
notation 'addr(n)' is used to refer to bit 'n' of a given
location. For example,

dst(7)

refers to bit 7 of the destination operand.

12.4.1 Assembly Language Syntax

For proper instruction execution, Z8 assembly language
syntax requires 'dst, src' be specified, in that order. The
following instruction descriptions show the format of the
objectcode produced by the assembler. This binary format
should be followed by users who prefer manual program
coding or who intend to implement their own assembler.

Example: If the contents of registers 43H and 08H are
added and the result is stored in 43H, the assembly syntax
and resulting object code is:

ASM: ADD 43H, 08H
oBJ: 04 08 43

(ADD dst, src)
(OPC src, dst)

In general, whenever an instruction format requires an
8-bitregisteraddress, thataddress canspecify any register
location inthe range 0- 255 or aWorking Register RO-R15.
If, in the above example, register 08H is a Working Regis-
ter, the assembly syntax and resulting object code would
be:

ASM: ADD 43H, R8
OBJ: 04 E8 43

(ADD dst, src)
(OPC src, dst)

Note: See the device product specification to determine the exact
register file range available. The register file size varies by device
type.

12-6

@ 2iLdB Z8° MICROCONTROLLERS
12.5 Z8 INSTRUCTION SUMMARY

Instruction Address Opcode Flags Instruction Address Opcode Flags
and Operation Mode Byte (Hex)Affected and Operation Mode Byte (Hex) Affected
dst sre CZSVDH dst src CZSVDH
ADC dst, src t 1[] * % % k% 0 % INCW dst RR AO - ok ok ok - -
dstedst + src +C dste—dst + 1 IR A1
ADD dst, src t o 1 * % % % 0 % IRET BF % k %k k ok ok
dste-dst + src FLAGS«@SP;
PSP
AND dst, st 1 G I R A
dstedst AND src SP«SP + 2, and
CALL dst DA D6 - - - - - - IMR(@)e1
SP«SP - 2 and IRR D4 JP cc, dst DA) e e - - -
PCedst or if cc is true, c=0-F
@SPPC then PCe—dst IRR 30
CCF EF k- - - - -
JR cc, dst RA cB - - - - - -
CeNOT C if cc is true, then c=0-F
CLR dst R B0 - - - - - - PCePCrdst
dste=0 R B1 Range: +127 to —128
COM dst R 60 T % % 0 - - LD dst, src rIm rC LR
dst<NOT dst IR 61 dste-src ' R :g
r
CP dst, src t Al] k %k %k %k - - r=0-F
dst - src r X C7
DA dst R 40 * % % X - - f{, 237
dsteDA dst IR 41 Ir T F3
DEC dst R 00 <k ok k- - R R E4
dste—dst - 1 IR 01 R IR E5
R IM EB6
DECW dst R R 80 - ok ok ok - - IR IM E7
dstedst - 1 IR 81 IR R F5
DI 8F S LDC dst, src r hr C2
IMR(7)«0 dste=src Irr r D2
DJNZ r, dst RA rA - - - - - - LDCI dst, sric Ir Irr C3 - - - - - -
rer-1 r=0-F dste-src and It r D3
if r #0, then rer +1or
PC«PC +dst merr+1
Range: +127,
—128 LDE dst, src roIr 8 N
dste=src Irr r 92
El 9F S
IMR(7)¢1 LDEI dst, src r I C2 - - - - - -
dste-src and Irr v D2
HALT TF - - - - - - e r+lor
INC dst r s ¥ w w - e
dste—dst + 1 r=0-F NOP FF oo - - - -
R 20
IR 21 OR dst, src t 4] - % % 0 - -

dstedst OR src

12-7

A=)

B

W

Z8° MICROCONTROLLERS

12.5 INSTRUCTION SUMMARY (Continued)

Instruction Address Opcode Flags Instruction Address Opcode Flags
and Operation Mode Byte (Hex)Affected and Operation Mode Byte (Hex)Affected
dst src CZSVDH dst src CZSVDH
POP dst R 50 - - - - SUB dst, src t 20] * % %k sk 1 %
dst<@SP and IR 51 dste-dst - src
SP&SP + 1
ot SWAP dst R FO X % & X - -
PUSH sic R 70 - - - - - - |] IR F1
SP«SP - 1 and IR 71 (7 4ls O]
@SPesrc I
RCF CF 0 - - - -- TCM dst, src t 6 1 - % %0 - -
Ce0 (NOT dst)
RET NG ——— AND src
PC«@SP; TM dst, src t 711 - %k x 0 - -
SP«SP + 2 dst AND src
RL dst R 90 % %k %k % - - WDH 4F - XXX - -
—] IR 91
el 79 WDT 5F - XXX - -
RLC dst R 10 % % Kk K - - XOR dst, src 1 B[1] - % %0 - -
IR 11 dstedst
I N XOR src
RR dst R EOQ % % %k % - - t Theseinstructions have anidentical set of addressing modes, which are
IR E1 encoded for brevity. The first Opcode nibble is found in the instruction set
table above. The second nibble is expressed symbolically by a‘[]'inthis
table, andits value is found in the following table to the left of the applicable
RRC dst R Co Y % * % - - addressing mode pair.
IR C1 For example, the Opcode of an ADC instruction using the addressing
.-I modes r (destination) and Ir (source) is 13.
SBC dst, src t 3 * %k ok ok 1 %
dste—dst - src - C] Address Mode Lower
dst src Opcode Nibble
SCF DF 1 - - - - -
Ce1 r r [2
SRA dst R DO * % % 0 - - r Ir B3
IR D1
L R R 4]
SRP dst m 31 - - R IR)
RPesrc R M 6]
STOP 6F - - - -
IR IM 4|

12-8

0) 2ila Z8° MICROCONTROLLERS

12.5.1 OPCODE MAP

Lower Nibble (Hex)
1] 1 2 3 4 5 6 7 8 9 A B c D E F
6.5 6.5 6.5 6.5 10.5 10.5 105 10.5 6.5 6.5 [12/10.5]12/10.0] 6.5 |12.10.0] 6.5
0 DEC | DEC ADD | ADD | ADD | ADD | ADD | ADD LD LD DINZ | JR LD JP INC
R1 IR1 r1,r2 | r1,ir2] R2,R1]| IR2, R1] R1,IM] IR1,IM| r1,R2 | r2,R1| r1,RA | cc,RA| r1,IM | cc, DA 1
6.5 6.5 6.5 6.5 10.5 10.5 105 10.5
1 RLC | RLC ADC | ADC | ADC | ADC | ADC | ADC
R1 IR1 r1,r2 | r1,1r2| R2,R1| IR2, R1] R1,IM | IR1, IM
6.5 8.5 6.5 65 | 105 | 105] 105 | 105
2 INC INC SUB | SUB | SuB | suB | suB SuB
R1 IR1_| r1,r2] r1,Ir2| R2,R1] IR2, R1| R1,IM| IR1, IM
80 | 6.1 6.5 6.5 105 | 105 | 105 [105
3 JP | SRP | sBC | sBC | sBC | sBC | SBC | SBC
IRR1 | M r1,r2 | r1,1r2 | R2,R1| IR2, R1] R1,IM | IR1, IM
8.5 8.5 6.5 65 | 105 105 | 105 | 105 6.0
4 DA DA OR OR OR OR OR OR WDH
R1 IR1_ | r1,r2 | r1,ir2| R2,R1] IR2, R1] R1,IM| IR1, IM
105] 105 | 65 65 | 105 | 105 | 105 | 105 6.0
5 POP | POP | AND | AND | AND | AND | AND AND wDT
R1 IR1_| ri,r2 | r1,ir2| R2,R1|IR2,R1| R1, IM | IR1, IM
6.5 6.5 6.5 65 | 105 | 105 | 105 | 105 6.0
6 COM | COM | TCM | TCM | TCM | TCM | TCM TCM STOP
E R1 IR1_| r1,r2] r1,1r2| R2,R1]|IR2, R1| R1,IM | IR1, IM,
< 10/12.1) 12/14.1] 6.5 6.5 10.5 10.5 105 105 7.0
o 7 PUSH| PUSH| T™M ™ ™ ™ ™ ™ HALT
2 R2 IR2 | r1,r2 | r1,ir2| R2,R1]IR2,R1| R1,IM | IR1, M
E 05 | 105 | 120 | 180 64
5 8 |pecw|pecw| Lpe | LoEl i
§. RR1 | Rt {12 i, in2
6.5 6.5 12.0 18.0 &
9 | Rt | AL | LDE | LDEI El
R1 IR1_{r2 i1 J1r2 I
105 | 105 | 65 6.5 105 | 105 | 105 | 105 14.0
A INCW | INCW | cP cP CcP cP cP cP RET
RR1 IR1 | rt,r2 | r1,1r2 | R2, R1[IR2, R1} R1,IM] IR1, IM
8.5 6.5 6.5 6.5 105 | 105 | 105 | 105 16.0
B CLR | CLR | XOR | XOR | XOR | XOR | XOR | XOR IRET
R1 IR1 r,r2 | r1,1r2 | R2, R1] IR2, R} R1, IM| IR1, IM
6.5 6.5 120 | 180 105 65
c RRC | RRC | LDC | LDCI LD RCF
R1 IR1] r1, Irr2] i1, Irr2 r1,x,R2
65 6.5 120 | 180 | 200 200 | 105 65
D SRA | SRA LDC | LDCI | CALL* CALL| LD SCF
R1 IR | irrt, 2] irr1, 2] IRR1 DA _|r2xR1
6.5 6.5 65 105 | 105 | 105 | 105 65
E RR RR LD LD LD LD LD CCF
R1 IR1 r1,1R2 | R2, R1|IR2, R1{ R1, IM| IR1, IM
E 85 8.5 6.5 105 6.0
SWAP| SWAP LD LD NOP
Rl IRl Ir1, r2 R2, IR1 ' ' ' % ' ' '
Y ' g
2 3 2 3 1
Bytes per Instruction Legend:
Lower R= 8-l?it Address
Opcode r = 4-bit Address
. Nibble R1or r1 = Dst Address
Executllon l Pipeline R2 or r2 = Src Address
Cycles Cycles
Sequence:
Upper 10. Opcode, First Operand,
Opcode ——eA CP—3—— Mnemonic Second Operand
Nibble R, R2
\ Note: Blanks are reserved.
First Second *2-byte instruction appears as
Operand Operand a 3-byte instruction

12-9

N 2La5 280 MICROCONTROLLERS
12.6 INSTRUCTION DESCRIPTIONS AND FORMATS

ADC
ADD WITH CARRY
ADC
Add with Carry
ADC dst, src

Instruction Format:
OPC Address Mode
Cycles (Hex) dst src

6 12 r r

OPC dst | src 6 13 r Ir
10 14 R R

OPC sre dst 10 15 R R
10 16 R M

OopPC dst sre 10 17 R M

Operation: dst<—dst+src+C

The source operand, along with the setting of the Carry (C) Flag, is added to the destination
operand. Two’'s complement addition is performed. The sum is stored in the destination
operand. The contents of the source operand are not affected. In multiple precision
arithmetic, this instruction permits the carry from the addition of low order operands to be
carried into the addition of high order operands.

Flags: C: Setif there is a carry from the most significant bit of the result; cleared otherwise.

Z: Setif the result is zero; cleared otherwise.

S: Setif the result is negative; cleared otherwise.

V: Setif anarithmetic overflow occurs, thatis, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise.

D: Alwayscleared.

H: Setif there is a carry from the most significant bit of the low order four bits of the result;
cleared otherwise.

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E | dst

Example: If Working Register R3 contains 16H, the C Flag is set to 1, and Working Register R11
contains 20H, the statement:

ADC R3, R11
OpCode: 12 3B

leaves the value 37H in Working Register R3. The C, Z, S, V, D, and H Flags are all cleared.

12-10

AY= Te

28° MICROCONTROLLERS

ADC

ADD WITH CARRY

Example:

Example:

Example:

Example:

Example:

If Working Register R16 contains 16H, the C Flag is not set, Working Register R10 contains
20H, and Register 20H contains 11H, the statement:

ADC R16, @R10
OpCode: 13 FA

leaves the value 27H in Working Register R16.The C, Z, S, V, D, and H Flags are all cleared.
If Register 34H contains 2EH, the C Flag is set, and Register 12H contains 1BH, the
statement:

ADC 34H, 12H
OpCode: 14 12 34

leaves the value 4AH in Register 34H. The H Flag is set, and the C, Z, S, V, and D Flags are
cleared.

If Register 4BH contains 82H, the C Flag is set, Working Register R3 contains 10H, and
Register 10H contains 01H, the statement:

ADC 4BH, @R3
OpCode: 15 E3 4B

leaves the value 84H in Register 4BH. The S Flag is set, and the C, Z, V, D, and H Flags are
cleared.

If Register 6CH contains 2AH, and the C Flag is not set, the statement:

ADC 6CH, #03H
OpCode: 16 6C 03

leaves the value 2DH in Register 6CH. The C, Z, S, V, D, and H Flags are all cleared.

If Register D4H contains 5FH, Register 5FH contains 4CH, and the C Flag is set, the
statement:

ADC @D4H, #02H
OpCode: 17 D4 02

leaves the value 4FH in Register 5FH. The C, Z, S, V, D, and H Flags are all cleared.

12-11

@ p—d N a] Z8° MICROCONTROLLERS

ADD
ADD
ADD
Add
ADD dst, src

Instruction Format:
OPC Address Mode
Cycles (Hex) dst src

6 02 r r
OPC dst | src 6 03 r Ir

10 04 R R
OPC src dst 10 05 R R

10 06 R IM
oPC dst sre 10 o7 R M

Operation: dst <—dst + src

The source operand is added to the destination operand. Two’s complement addition is
performed. The sumis stored inthe destination operand. The contents of the source operand
are not affected.

Flags: C: Setif there is a carry from the most significant bit of the result; cleared otherwise.
Set if the result is zero; cleared otherwise.

Set if the result is negative; cleared otherwise.

Set if an arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise.

Always cleared.

Setif there is a carry from the most significant bit of the low order four bits of the result;
cleared otherwise.

Io <oN

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E Jsrcfj or | E | dst

Example: If Working Register R3 contains 16H and Working Register R11 contains 20H, the statement:

ADD R3, R11
OpCode: 02 3B

leaves the value 36H in Working Register R3. The C, Z, S, V, D, and H Flags are all cleared.

Example: If Working Register R16 contains 16H, Working Register R10 contains 20H, and Register
20H contains 11H, the statement:

ADD R16, @R10
OpCode: 03 FA

leaves the value 27H in Working Register R16. The C, Z, S, V, D, and HFlags are all cleared.

12-12

_@ p— N 28° MICROCONTROLLERS

ADD
ADD
Example: If Register 34H contains 2EH and Register 12H contains 1BH, the statement:
ADD 34H, 12H
OpCode: 04 12 34
leaves the value 49H in Register 34H. The H Flag is set, and the C, Z, S, V, and D Flags are
cleared.
Example: If Register 4BH contains 82H, Working Register R3 contains 10H, and Register 10H contains
01H, the statement:
ADD 3EH, @R3
OpCode: 05 E3 4B
leaves the value 83H in Register 4BH. The S Flag is set, and the C, Z, V, D, and H Flags are
cleared.
Example: If Register 6CH contains 2AH, the statement:
ADD 6CH, #03H
OpCode: 06 6C 03
leaves the value 2DH in Register 6CH. The C, Z, S, V, D, and H Flags are all cleared.
Example: If Register D4H contains 5FH and Register 5FH contains 4CH, the statement:

ADD @D4H, #02H
OpCode: 07 D4 02

leaves the value 4EH in Register 5FH. The C, Z, S, V, D, and H Flags are all cleared.

12-13

@ 2056 28° MICROCONTROLLERS

AND
LOGICAL AND
AND
Logical AND
AND dst, src

Instruction Format:
OPC Address Mode
Cycles (Hex) dst src

6 52 r r
OPC dst | src 6 53 r Ir
10 54 R R
OPC src dst 10 55 R R
10 56 R M
OPC dst sre 10 57 R IM

Operation: dst <—dst AND src

The source operand is logically ANDed with the destination operand. The AND operation
resultsin a 1 being stored whenever the corresponding bits in the two operands are both 1,
otherwise a 0 is stored. The result is stored in the destination operand. The contents of the
source bit are not affected.

Unaffected

Set if the result is zero; cleared otherwise

Set if the result of bit 7 is set; cleared otherwise
Always reset to 0

Unaffected

Unaffected

Flags:

TO<SONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or El.dst

Example: If Working Register R1 contains 34H (00111000B) and Working Register R14 contains 4DH
(10001101), the statement:

AND R1, R14
OpCode: 52 1E

leaves the value 04H (00001000) in Working Register R1. The Z, V, and S Flags are cleared.

Example: If Working Register R4 contains F9H (11111001B), Working Register R13 contains 7BH, and
Register 7BH contains 6AH (01101010B), the statement:

AND R4, @R13
OpCode: 53 4D

leavesthe value 68H(01101000B) in Working Register R4. The Z, V, and S Flags are cleared.

12-14

@ 2iLas5 28° MICROCONTROLLERS

AND
LOGICAL AND

Example: If Register 3AH contains the value F5H (11110101B) and Register 42H contains the value
0AH (00001010), the statement:

AND 3AH, 42H
OpCode: 54 42 3A

leaves the value 00H (00000000BY) in Register 3AH. The Z Flag is set, and the V and S Flags
are cleared.

Example: If Working Register RS contains FOH (11110000B), Register 46H contains 3AH, and Register
3AH contains 7FH (01111111B), the statement:

AND RS, @45H
OpCode: 55 45 E5

leaves the value 70H (01110000B) in Working Register R5. The Z, V, and S Flags are cleared.

Example: If Register 7AH contains the value F7H (11110111B), the statement:

AND 7AH, #FOH
OpCode: 56 7A FO

leaves the value FOH (11110000B) in Register 7AH. The S Flag is set, and the Zand V Flags
are cleared.

Example: If Working Register R3 contains the value 3EH and Register 3EH contains the value ECH
(11101100B), the statement:

AND @R3, #05H
OpCode: 57 E3 05

leaves the value 04H (00000100B) in Register 3EH. The Z, V, and S Flags are cleared.

12-15

6“ 2iLalL Z8° MICROCONTROLLERS

CALL
CALL PROCEDURE
CALL
Call Procedure
CALL dst

Instruction Format:
OPC Address Mode
dst

Cycles (Hex)
OPC dst 20 D6 DA
OPC dst 20 D4 IRR

Operation: SP<—S8P-2
@SP <— PC
PC <— dst

The Stack pointer is decremented by two, the current contents of the Program Counter (PC)
(address of the first instruction following the CALL instruction) are pushed onto the top of the
Stack, and the specified destination address is then loaded into the PC. The PC now points
to the first instruction of the procedure.

At the end of the procedure a RET (return) instruction can be used to return to the original
program flow. RET will pop the top of the Stack and replace the original value into the PC.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Note: Address mode IRR can be used to specify a 4-bit Working Register Pair. In this format, the
destination Working Register Pair operand is specified by adding 1110B (EH) to the high
nibble of the operand. For example, if Working Register Pair RR12 (CH) is the destination
operand, then ECH will be used as the destination operand in the OpCode.
E | dst
Example: Ifthe contents of the PC are 1A47H and the contents of the SP (Registers FEH and FFH) are
3002H, the statement:
CALL 3521H

OpCode: D6 35 21

causes the SP to be decremented to 3000H, 1A4AH (the address following the CALL
instruction) to be stored in external data memory 3000 and 3001H, and the PC to be loaded
with 3521H. The PC now points to the address of the first statement in the procedure to be
executed.

12-16

O 205

Z8° MICROCONTROLLERS

CALL
CALL PROCEDURE
Example: If the contents of the PC are 1A47H, the contents of the SP (Register FFH) are 72H, the

contents of Register A4H are 34H, and the contents of Register Pair 34H are 3521H, the
statement:

CALL @A4H
OpCode: D4 A4

causes the SP to be decremented to 70H, 1A4AH (the address following the CALL
instruction) to be stored in R70H and 71H, and the PC to be loaded with 3521H. The PC now
points to the address of the first statement in the procedure to be executed.

12-17

AN 2iLa5 Z8° MICROCONTROLLERS

CCF
COMPLEMENT CARRY FLAG
CCF
Complement Carry Flag
CCF
Instruction Format:
OPC
Cycles (Hex)
OPC 6 EF

Operation: C<—NOTC

The CFlagis complemented. If C =1, thenitis changedto C=0; or,if C=0, thenitischanged

toC=1.
Flags: Complemented
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

TOSONQO

Example: If the C Flag contains a 0, the statement:

CCF
OpCode: EF

will change the C FlagfromC=0to C = 1.

12-18

Q2105

Z8° MICROCONTROLLERS

CLR
CLEAR

CLR
CLEAR

CLR dst

Instruction Format:

Operation:

Flags:

Note:

Example:

OPC Address Mode

OPC

dst<—0

Cycles (Hex) dst
6 BO R
6 B1 IR

The destination operand is cleared to O0H.

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

ITO<SONO

Address modes R or IR can be used to specify a 4-bit Working Register. in this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then

ECH will be used as the destination operand in the OpCode.

If Working Register R6 contains AFH, the statement:

CLRR6
OpCode: BO E6

will leave the value O0H in Working Register R6.

E

dst

If Register ASH contains the value 23H, and Register 23H contains the value FCH, the

statement:

will leave the value OOH in Register 23H.

CLR @A5H

OpCode: B1 A5

12-19

@ 2ILa Z8° MICROCONTROLLERS

COM
COMPLEMENT
COM
Complement
COM dst

Instruction Format:

OPC Address Mode

Cycles (Hex) dst
oPC dst 6 60 R
6 61 IR

Operation: dst <— NOT dst

The contents of the destination operand are complemented (one’s complement). All 1 bits are
changed to 0, and all O bits are changed to 1.

Unaffected

Set if the result is zero; cleared otherwise.
Set if result bit 7 is set; cleared otherwise.
Always reset to 0.

Unaffected

Unaffected

Flags:

IOSONOG

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

Example: If Register 08H contains 24H (00100100B), the statement:

COM 08H
OpCode: 60 08

leaves the value DBH (11011011) in Register 08H. The S Flag is set, and the Z and V Flags
arecleared.

Example: If Register 08H contains 24H, and Register 24H contains FFH (11111111B), the statement:

COM @08H
OpCode: 6108

leaves the value 00H (CO000000B) in Register 24H. The Z Flag is set, and the V and S Flags
arecleared.

12-20

@ 2ilas Z8° MICROCONTROLLERS

CcP
COMPARE

CcP
Compare

CP dst, src

Instruction Format: u
OPC Address Mode

Cycles (Hex) dst src

6 A2 r r
OPC dst | src 6 A3 ‘ Ir
10 Ad R R
OPC sre dst 10 AS R IR
10 A6 R IM
OPC dst src 10 A7 R M

Operation: dst-src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected.

Cleared if there is a carry from the most significant bit of the result. Set otherwise
indicating a borrow.

Set if the result is zero; cleared otherwise.

Set if result bit 7 is set (negative); cleared otherwise.

Set if arithmetic overflow occurs; cleared otherwise.

Unaffected

Unaffected

IOo<seN O

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12 (CH) s the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E | dst

Example: If Working Register R3 contains 16H and Working Register R11 contains 20H, the statement:

CP R3, R11
OpCode: A2 3B

sets the C and S Flags, and the Z and V Flags are cleared.

Example: If Working Register R15 contains 16H, Working Register R10 contains 20H, and Register
20H contains 11H, the statement:

CP R16, @R10
OpCode: A3 FA

clearsthe C, Z, S, and V Flags.

12-21

Q205

Z8° MICROCONTROLLERS

Example:

Example:

Example:

Example:

cpP
COMPARE

If Register 34H contains 2EH and Register 12H contains 1BH, the statement:

CP 34H,12H
OpCode: A4 12 34

clears the C, Z, S, and V Flags.

If Register 4BH contains 82H, Working Register R3 contains 10H, and Register 10H contains
O1H, the statement:

CP 4BH, @R3
OpCode: A5 E3 4B

sets the S Flag, and clears the C, Z, and V Flags.

If Register 6CH contains 2AH, the statement:

CP 6CH, #2AH
OpCode: A6 6C 2A

sets the Z Flag, and the C, S, and V Flags are all cleared.

If Register D4H contains FCH, and Register 5FH contains FCH, the statement:

CP @D4H, 7FH
OpCode: A7 D4 FF

sets the V Flag, and the C, Z, and S Flags are all cleared.

12-22

@ 2L Z8° MICROCONTROLLERS

DA
DECIMAL ADJUST

DA
Decimal Adjust

DA dst

Instruction Format:
OPC Addrecs’:t Mode

Cycles (Hex)
oPC dst 8 40 R
8 41 IR

Operation: dst <— DA dst

The destination operand is adjusted to form two 4-bit BCD digits following a binary addition
or subtraction operation on BCD encoded bytes. For addition (ADD and ADC) or subtraction
(SUB and SBC), the following table indicates the operation performed.

Carry Bits 7-4 H Flag Bits 3-0 Number Carry
Instruction Before Value Before Value Added To After
DA (HEX) DA (HEX) Byte DA

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
0 09 0 0-9 00 0
suB 0 0-8 1 6-F FA 0
SBC 1 7-F 0 0-9 A0 1
1 6-F 1 6-F 9A 1

If the destination operand is not the result of a valid addition or subtraction of BCD digits, the
operation is undefined.

Set if there is a carry from the most significant bit; cleared otherwise (see table above).
Set if the result is zero; cleared otherwise.

Set if result bit 7 is set (negative); cleared otherwise.

Undefined

Unaffected

Unaffected

Flags:

IOSONO

12-23

N 2L05 280 MICROCONTROLLERS

DA
DECIMAL ADJUST

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

Example: If addition is performed using the BCD value 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location
using standard binary arithmetic.

0001 0101 = 15H
+ 0010 0111 = 27H
0011 1100 = 3CH

If the result of the addition is stored in Register 5FH, the statement:

DA 5FH
OpCode: 40 5F

adjusts this result so the correct BCD representation is obtained.

0011 1100 = 3CH
0000 0110 = Q6H
0100 0010 = 42H

Register 5F now contains the value 42H. The C, Z, and S Flags are cleared, and V is undefined.

Example: If addition is performed using the BCD value 15 and 27, the result should be 42. The sumis
incorrect, however, when the binary representations are added in the destination location
using standard binary arithmetic.

0001 0101 = 15H
+ 0010 0111 = 27H
0011 1100 = 3CH

If Register 45F contains the value 5FH, and the result of the addition is stored in Register 5FH,
the statement:

DA @45H
OpCode: 40 45

adjusts this result so the correct BCD representation is obtained.
0011 1100 = 3CH

0000 0110 = Q6H
0100 0010 = 42H

Register 5F now contains the value 42H. The C, Z, and S Flags are cleared, and V is
undefined.

12-24

_@;LCE Z8° MICROCONTROLLERS

DEC
DECREMENT

DEC
Decrement

DEC dst

Instruction Format:
OoPC Addre&s:tMode

Cycles (Hex)
6 00 R
OoPC dst 6 01 IR

Operation: dst <—dst- 1
The contents of the destination operand are decremented by one.

Unaffected

Set if the result is zero; cleared otherwise

Set if the result of bit 7 is set (negative); cleared otherwise
Set if arithmetic overflow occurs; cleared otherwise
Unaffected

Unaffected

Flags:

TOSONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For exampile, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

Example: If Working Register R10 contains 2A%, the statement:

DEC R10
OpCode: 00 EA

leaves the value 29H in Working Register R10. The Z, V, and S Flags are cleared.

Example: If Register B3H contains CBH, and Register CBH contains 01H, the statement:

DEC @B3H
OpCode: 01 B3

leaves the value OOH in Register CBH. The Z Flag is set, and the V and S Flags are cleared.

12-25

Q2Ias

Z8° MICROCONTROLLERS

DECW
DECREMENT WORD
DECW
Decrement Word
DECW dst

Instruction Format:

Operation:

Flags:

Note:

Example:

Example:

OPC Address Mode
dst

Cycles (Hex)
10 80 RR
oPC dst 10 81 IR
dst <—dst -1

The contents of the destination (which must be an even address) operand are decremented
by one. The destination operand can be a Register Pair or a Working Register Pair.

Unaffected

Set if the result is zero; cleared otherwise

Set if the result of bit 7 is set (negative); cleared otherwise
Set if arithmetic overflow occurs; cleared otherwise
Unaffected

Unaffected

TO<SONO

Address modes RRor IR can be used to specify a 4-bit Working Register Pair. In this format,
the destination Working Register Pair operand is specified by adding 1110B (EH) to the high
nibble of the operand. For example, if Working Register Pair R12 (CH) is the destination
operand, then ECH will be used as the destination operand in the OpCode.

E | dst

If Register Pair 30H and 31H contain the value 0AF2H, the statement:

DECW 30H
OpCode: 80 30

leaves the value OAF1H in Register Pair 30H and 31H. The Z, V, and S Flags are cleared.

If Working Register RO contains 30H and Register Pairs 30H and 31H contain the value
FAF3H, the statement:

DECW @RO
OpCode: 81 EO

leaves the value FAF2H in Register Pair 30H and 31H. The S Flag is set, and the Z and V
Flags are cleared.

12-26

QD 20La5

Z8° MICROCONTROLLERS

DI

DISABLE INTERRUPTS

DI

Disable Interrupts

Instruction Format:

OPC
Cycles (Hex)
OPC 6 8F

Operation: IMR (7) <—0

Bit 7 of Control Register FBH (the Interrupt Mask Register) is reset to 0. All interrupts are
disabled, although they remain “potentially” enabled. (For instance, the Global Interrupt

Enable is cleared, but not the individual interrupt level enables.)

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Example: If Control Register FBH contains 8AH (10001010) (interrupts IRQ1 and IRQ3 are enabled),
the statement:

sets Control Register FBH to 0AH (00001010B) and disables these interrupts.

12-27

N 205

Z8° MICROCONTROLLERS

DJNZ

DJNZ
DECREMENT AND JUMP IF NONZERO

Decrement and Jump if Non-zero

DJNZr, dst

Instruction Format:

Operation:

Flags:

Note:

Example:

OPC Address Mode
dst

Cycles (Hex)
12 if jump taken rA RA
r_|orc dst 10 ifjumpnottaken (r=0 toF)
r<—r-1;

Ifr<> 0, PC <—PC + dst

The specified Working Register being used as a counter is decremented. If the contents of
the specified Working Register are not zero after decrementing, then the relative address is
added to the Program Counter (PC) and control passes to the statement whose address is
now in the PC. The range of the relative address is +127 to —128. The original value of the
PC is the address of the instruction byte following the DJNZ statement. When the specified
Working Register counter reaches zero, control falls through to the statement following the
DJNZ instruction.

C: Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

ITO<SON

The Working Register being used as a counter must be one of the Registers from 04H to EFH.
Use of one of the I/O ports, control or peripheral registers will have undefined resuits.

DJNZ istypically used to control a “loop” of instructions. In this example, 12 bytes are moved
from one buffer area in the register file to another. The steps involved are:

B Load 12 into the counter (Working Register R6).

W Set up the loop to perform the moves.

B End the loop with DJNZ.

The assembly listing required for this routine is as follows:

LD R6, 12 ;Load Counter
LOOP: LD R9, @R6 ;Move one byte to
LD @R6, R9 ;new location
DJNZ R6, LOOP ;Decrement and Loop until
;counter =0

12-28

Q2305

Z8* MICROCONTROLLERS

El
ENABLE INTERRUPTS

Enable Interrupts

Instruction Format:

OPC
Cycles (Hex)
OPC 6 9F

Operation: IMR (7) <—0

Bit 7 of Control Register FBH (the Interrupt Mask Register) is set to 1. This allows potentially

enabled interrupts to become enabled.

Flags:

C
Z:
S:
V.
D

H:

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Example: If Control Register FBH contains 0AH (00001010) (interrupts IRQ1 and IRQ3 are selected),
the statement:

sets Control Register FBH to 8AH (10001010B) and enables IRQ1 and IRQ3.

12-29

N2L05

Z8° MICROCONTROLLERS

HALT
Halt

HALT

Instruction Format:

OPC
Cycles (Hex)
OPC 6 7F

HALT
HALT

Operation: The HALT instruction turns off the internal CPU clock, but not the XTAL oscillation. The
counter/timers and the external interrupts IRQ1, IRQ2, and IRQ3 remain active. The devices

are recovered by interrupts, either externally or internally generated.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Note: In order to enter HALT mode, it is necessary to first flush the instruction pipeline to avoid
suspending execution in mid-instruction. The user must execute a NOP immediately before
the execution of the HALT instruction.
Example: Assuming the Z8 is in normal operation, the statements:

place the Z8 into HALT mode.

OpCodes: FF 7F

12-30

A 2005

INC

INCREMENT

INC
Increment

INC dst

Instruction Format:

Operation:

Flags:

Note:

Example:

Example:

Example:

dst JOPC

OPC Address Mode
dst

OPC

dst<—dst + 1

The contents of the destination operand are incremented by one.

C: Unaffected
Z
S:
V:
D: Unaffected
H: Unaffected

Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Set if the result is zero; cleared otherwise.
Set if the result of bit 7 is set (negative); cleared otherwise.
Set if arithmetic overflow occurs; cleared otherwise.

E

dst

Cycles (Hex)
6 E r
6 20 R
6 21 IR

If Working Register R10 contains 2AH, the statement:
INC R10

If Register B3H contains CBH, the statement:

If Register B3H contains CBH and Register BCH contains FFH, the statement:

INC @B3H
OpCode: 21 B3

leaves the value OOH in Register CBH. The Z Flag is set, and the V and S Flags are cleared.

OpCode: AE
leaves the value 2BH in Working Register R10. The Z, V, and S Flags are cleared.

INC B3H

OpCode: 20 B3
leaves the value CCH in Register CBH. The S Flag is set, and the Z and V Flags are cleared.

12-31

N 2iL05 78° MICROCONTROLLERS

INCW
INCREMENT WORD
INCW
!ncrement Word
INCW dst

Instruction Format:
OPC Address Mode

Cycles (Hex) dst
OPC dst 10 A0 RR
10 Al IR

Operation: dst <—dst-1

The contents of the destination (which must be an even address) operand is decremented
by one. The destination operand can be a Register Pair or a Working Register Pair.

Unaffected

Set if the result is zero; cleared otherwise.

Set if the result of bit 7 is set (negative); cleared otherwise.
Set if arithmetic overflow occurs; cleared otherwise.
Unaffected

Unaffected

Flags:

IO<ONQ

Note: Address modes RR or IR can be used to specify a 4-bit Working Register Pair. In this format,
the destination Working Register Pair operand is specified by adding 1110B (EH) to the high
nibble of the operand. For example, if Working Register Pair R12 (CH) is the destination
operand, then ECH will be used as the destination operand in the OpCode.

E | dst

Example: If Register Pairs 30H and 31H contain the value 0AF2H, the statement:

INCW 30H
OpCode: A0 30

leaves the value OAF3H in Register Pair 30H and 31H. The Z, V, and S Flags are cleared.

Example: If Working Register RO contains 30H, and Register Pairs 30H and 31H contain the value
FAF3H, the statement:

INCW @RO
OpCode: A1 EO

leaves the value FAF4H in Register Pair 30H and 31H. The S Flag is set, and the Z and V
Flags are cleared.

12-32

N 25

Z8° MICROCONTROLLERS

IRET

INTERRUPT RETURN

IRET

Interrupt RETURN

IRET

Instruction Format:

OPC
Cycles (Hex)

OPC 16 BF

Operation: FLAGS <— @SP

SP <—SP + 1
PC <— @SP
SP<—SP+2
IMR (7) <— 1

Thisinstruction is issued atthe end of aninterrupt service routine. ltrestores the Flag Register
(Control Register FCH) and the PC. It also re-enables any interrupts that are potentially

enabled.
Flags: C: Restored to original setting before the interrupt occurred.
Z: Restored to original setting before the interrupt occurred.
S: Restored to original setting before the interrupt occurred.
V: Restored to original setting before the interrupt occurred.
D: Restored to original setting before the interrupt occurred.
H: Restored to original setting before the interrupt occurred.
Example: If Stack Pointer Low Register FFH currently contains the value 45H, Register 45H contains
the value O0H, Register 46H contains 6FH, and Register 47 Contains E4H, the statement:
IRET
OpCode: BF

restores the FLAG Register FCH with the value 00H, restores the PC with the value 6FE4H,
re-enables the interrupts, and sets the Stack Pointer Low to 48H. The next instruction to be
executed will be at location 6FE4H.

12-33

Q205

Z8° MICROCONTROLLERS

JP
JUMP

JP cc, dst

JP
JUMP

Instruction Format:

Operation:

Flags:

Note:

Example:

Example:

OPC Address Mode

Cycles (Hex) dst

e lorc dst 12 if jump taken ccD DA
10 ifnottaken cc=O0toF

OPC dst 8 30 IRR

If cc (condition code) is true, then PC <— dst

A conditional jump transfers Program Control to the destination address if the condition
specified by cc (condition code) is true. Otherwise, the instruction following the JP instruction
is executed. See Section 12.3 for a list of condition codes.

The unconditional jump simply replaces the contents of the Program Counter with the
contents of the register pair specified by the destination operand. Program Control then
passes to the instruction addressed by the PC.

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

TO<SONO

Address mode IRR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

If the Carry Flag is set, the statement:

JP C, 1520H
OpCode: 7D 15 20

replaces the contents of the Program Counter with 1520H and transfers program control to
that location. If the Carry Flag had not been set, control would have fallen through to the
statement following the JP instruction.

If Working Register Pair RR2 contains the value 3F45H, the statement:

JP @RR2
OpCode: 30 E2

replaces the contents of the PC with the value 3F45H and transfers program control to that
location.

12-34

A 21L05

Z8° MICROCONTROLLERS

JR
JUMP RELATIVE

JR
Jump Relative

JR cc, dst

Instruction Format:

OPC Address Mode

cc JOPC

dst

Operation: If ccis true, PC <— PC + dst

Cycles (Hex) dst
10 if jump taken ccB RA
12 ifjumpnottaken cc=0 toF

Ifthe condition specified by the “cc” is true, the relative addressis added to the PC and control
passes to the instruction located at the address specified by the PC (See Section 12.3 for a
list of condition codes). Otherwise, the instruction following the JR instruction is executed.
The range of the relative address is +127 to—128, and the original value of the PC is taken
to be the address of the first instruction byte following the JR instruction.

Flags: C: Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

TO<SON

Example: If the result of the last arithmetic operation executed is negative, the next four statements

(which occupy a total of seven bytes) are skipped with the statement:

JR M|, #9
OpCode: 5B 09

If the result was not negative, execution would have continued with the instruction following
the JR instruction.

Example: A short form of a jump —45 is:

JR #-45
OpCode: 8B D3

The condition code is “blank” in this case, and is assumed to be “always true.”

12-35

Q205

Z8° MICROCONTROLLERS

LD
Load

LD dst, src

LD
LOAD

Instruction Format:

OPC Address Mode
Cycles (Hex) dst src

dst JOPC src g 'rg : ':"1
src JoPC dst 6 r=:19to . R f
oPC dst | src s B roor
= =1=1 = & =& &
o J[=1[=1] & 2 &
OPC src dst 10 F5 IR R
OPC dst] X src 10 c7 r X
OPC src | X dst 10 D7 X r

* In this instance, only a full 8-bit register can be used.

Operation: dst <— src

Flags:

Note:

The contents of the source operand are loaded into the destination operand. The contents
of the source operand are not affected.

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

TOseNG

Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12(CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E | dst

12-36

@ 2L Z8° MICROCONTROLLERS

LD
LOAD

Example: The statement:

LD R15, #34H
OpCode: FC 34

loads the value 34H into Working Register R15.

Example: If Register 34H contains the value FCH, the statement:

LD R14, 34H
OpCode: F8 34

loads the value FCH into Working Register R15. The contents of Register 34H are not
affected.
Example: If Working Register R14 contains the value 45H, the statement:

LD 34H, R14
OpCode: E9 34

loads the value 45H into Register 34H. The contents of Working Register R14 are not
affected.

Example: If Working Register R12 contains the value 34H, and Register 34H contains the value FFH,
the statement:

LD R13, @R12
OpCode: E3 DC

loads the value FFH into Working Register R13. The contents of Working Register R12 and
Register R34 are not affected.

Example: If Working Register R13 contains the value 45H, and Working Register R12 contains the
value OOH the statement:

LD @R13, R12
OpCode: F3 DC

loads the value 00H into Register 45H. The contents of Working Register R12 and Working
Register R13 are not affected.

Example: If Register 45H contains the value CFH, the statement:

LD 34H, 45H
OpCode: E4 45 34

loads the value CFH into Register 34H. The contents of Register 45H are not affected.

12-37

A 205

Z8° MICROCONTROLLERS

Example:

Example:

Example:

Example:

Example:

Example:

LD
LOAD

If Register 45H contains the value CFH and Register CFH contains the value FFH, the
statement:

LD 34H, @45H
OpCode: E5 45 34

loads the value FFH into Register 34H. The contents of Register 46H and Register CFH are
not affected.

The statement:

LD 34H, #A4H
OpCode: E6 34 A4

loads the value A4H into Register 34H.

If Working Register R14 contains the value 7FH, the statement:

LD @R14, #FCH
OpCode: E7 EE FC

loads the value FCH into Register 7FH. The contents of Working Register R14 are not
affected.

If Register 34H contains the value CFH and Register 45H contains the value FFH, the
statement:

LD @34H, 45H
OpCode: F5 45 34

loads the value FFH into Register CFH. The contents of Register 34H and Register 45H are
not affected.

If Working Register RO contains the value 08H and Register 2CH (24H + 08H = 2CH) contains
the value 4FH, the statement:

LD R10, 24H(R0)
OpCode: C7 A0 24

loads Working Register R10 with the value 4FH. The contents of Working Register RO and
Register 2CH are not affected.

If Working Register RO contains the value 0BH and Working Register R10 contains 83H the
statement:

LD FOH(RO), R10
OpCode: D7 A0 FO

loads the value 83H into Register FBH (FOH + OBH = FBH). Since this is the Interrupt Mask
Register, the LOAD statement has the effect of enabling IRQ0 and IRQ1. The contents of
Working Registers RO and R10 are unaffected by the load.

12-38

Q2005

Z8° MICROCONTROLLERS

LDC

LOAD CONSTANT

LDC

Load Constant

LDC dst, src

Instruction Format:

Operation:

Flags:

Example:

Example:

OPC Address Mode
dst

Cycles (Hex) src
OPC dst | src 12 Cc2 r Irr
OoPC dst | src 12 D2 Irr r

dst <—src

This instruction is used toload a byte constant from program memory into a Working Register,
orvice versa. The address of the program memory location is specified by a Working Register
Pair. The contents of the source operand are not affected.

C: Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

ITO<ON

If Working Register Pair R6 and R7 contain the value 30A2H and program memory location
30A2H contains the value 22H, the statement:

LDC R2, @RR6
OpCode: C2 26

loads the value 22H into Working Register R2. The value of program memory location 30A2H
is unchanged by the load.

If Working Register R2 contains the value 22H, and Working Register Pair R6 and R7
contains the value 10A2H, the statement:

LDC @RR6, R2
OpCode: D2 26

loads the value 22H into program memory location 10A2H. The value of Working Register
R2 is unchanged by the load.

Note: This instruction format is valid only for MCUs which can address external program memory.

12-39

N 2ILa5 Z8° MICROCONTROLLERS

LDCI
LOAD CONSTANT AUTO-INCREMENT

LDCI
Load Constant Auto-increment

LDCI dst, src
Instruction Format:

OPC Address Mode
Cycles (Hex) src dst

OPC dst | src 18 Cc3 Ir Irr

OPC dst | src 18 D3 Irr Ir

Operation: dst <—src
r<—r+1
mr<—rr+1

Thisinstruction is used for block transfers of data between program memory and the Register
File. The address of the program memory location is specified by a Working Register Pair,
and the address of the Register File location is specified by Working Register. The contents
ofthe source location are loaded into the destination location. Both addresses in the Working
Registers are then incremented automatically. The contents of the source operand are not

affected.
Flags: C Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Example: If Working Register Pair R6-R7 contains 30A2H, program memory location 30A2H and
30A3H contain 22H and BCH respectively, and Working Register R2 contains 20H, the
statement:

LDCI @R2, @RR6
OpCode: C3 26

loads the value 22H into Register 20H. Working Register Pair RR6 is incremented to 30A3H
and Working Register R2 is incremented to 21H. A second

LDCI @R2, @RR6
OpCode: C3 26

loads the value BCH into Register 21H. Working Register Pair RR6 is incremented to 30A4H
and Working Register R2 is incremented to 22H.

Note: This instruction format is valid only for MCUs which can address external program memory.

12-40

@ 25 Z8° MICROCONTROLLERS

LDCI
LOAD CONSTANT AUTO-INCREMENT

Example: If Working Register R2 contains 20H, Register 20H contains 22H, Register 21H contains
BCH, and Working Register Pair R6-R7 contains 30A2H, the statement:

LDCI @RR6, @R2

OpCode: D3 26
loads the value 22H into program memory location 30A2H. Working Register R2 is
incremented to 21H and Working Register Pair R6-R7 is incremented to 30A3H. A second

LDCI @RR6, @R2
OpCode: D3 26

loads the value BCH into program memory location 30A3H. Working Register R2 is
incremented to 22H and Working Register Pair R6-R7 is incremented to 30A4H.

12-41

Y= Ve

Z8° MICROCONTROLLERS

LDE
LOAD EXTERNAL DATA
LDE
Load External Data
LDE dst, src

Instruction Format:

Operation:

Flags:

Example:

Example:

OPC Address Mode
Cycles (Hex) src dst

OPC dst | src 12 82 r Irr
OPC src | dst 12 92 lrr r
dst<—src

This instruction is used to load a byte from external data memory into a Working Register or
vice versa. The address of the external data memory location is specified by a Working
Register Pair. The contents of the source operand are not affected.

C: Unaffected

Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Working Register Pair R6 and R7 contain the value 40A2H and external data memory
location 40A2H contains the value 22H, the statement:

LDE R2, @RR6
OpCode: 82 26

loads the value 22H into Working Register R2. The value of external data memory location
40A2H is unchanged by the load.

If Working Register Pair R6 and R7 contain the value 404AH and Working Register R2
contains the value 22H, the statement:

LDE @RR6, R2
OpCode: 92 26

loads the value 22H into external data memory location 404AH

Note: This instruction format is valid only for MCUs which can address external data memory.

12-42

@ 2ildL Z8° MICROCONTROLLERS

LDEI
LOAD EXTERNAL DATA AUTO-INCREMENT

LDEI
Load External Data Auto-increment

LDEI dst, src

Instruction Format:

OPC Address Mode

Cycles (Hex) s dst
OPC dst | src 18 83 Ir Irr
OPC src | dst 18 93 Irr Ir

Operation: dst <—src
r<—r+1
mr<—rr+1

This instruction is used for block transfers of data between external data memory and the
Register File. The address of the external data memory location is specified by a Working
Register Pair, and the address of the Register File location is specified by aWorking Register.
The contents of the source location are loaded into the destination location. Both addresses
in the Working Registers are then incremented automatically. The contents of the source are

not affected.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Example: If Working Register Pair R6 and R7 contains 404AH, external data memory location 404AH
and 404BH contain ABH and C3H respectively, and Working Register R2 contains 22H, the
statement:
LDE! @R2, @RR6
OpCode: 83 26

loads the value ABH into Register 22H. Working Register Pair RR6 is incremented to 404BH
and Working Register R2 is incremented to 23H. A second

LDCI @R2, @RR6
OpCode: 83 26

loads the value C3H into Register 23H. Working Register Pair RR6 is incremented to 404CH
and Working Register R2 is incremented to 24H.

12-43

QZJLQB Z8° MICROCONTROLLERS

LDEI
LOAD EXTERNAL DATA AUTO-INCREMENT

Example: If Working Register R2 contains 22H, Register 22H contains ABH, Register 23H contains
C3H, and Working Register Pair R6 and R7 contains 404AH, the statement:

LDEI @RR6, @R2
OpCode: 93 26

loads the value ABH into external data memory location 404AH. Working Register R2 is
incremented to 23H and Working Register Pair RR6 is incremented to 404BH. A second

LDCI @RR6, @R2
OpCode: 93 26

loads the value C3H into external data memory location 404BH. Working Register R2 is
incremented to 24H and Working Register Pair RR6 is incremented to 404CH.

Note: This instruction format is valid only for MCUs which can address external data memory.

12-44

QLTS

Z8° MICROCONTROLLERS

NOP

NO OPERATION

NOP
No Operation

NOP

Instruction Format:

Operation:

Flags:

Cycles (Hex)

OPC

OPC

FF

No action is performed by this instruction. Itis typically used for timing delays or clearing the
pipeline.

TOSONO

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

12-45

@ 2L35 Z8° MICROCONTROLLERS

OR
LOGICAL OR

OR
Logical OR

OR dst, src
Instruction Format:

OPC Address Mode
Cycles (Hex) dst src

6 42 r r
OPC dst | src 6 43 r Ir

10 44 R R
OPC src dst 10 45 R R

10 46 R M
oPC dst sre 10 47 IR M

Operation: dst <—dst OR src

The source operand is logically ORed with the destination operand and the result is stored
in the destination operand. The contents of the source operand are not affected. The OR
operation results in a one bit being stored whenever either of the corresponding bits in the
two operands is a one. Otherwise, a zero bit is stored.

Unaffected

Set if the result is zero; cleared otherwise

Set if the result of bit 7 is set; cleared otherwise
Always reset to O

Unaffected

Unaffected

Flags:

IOSONQ

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B(EH) tothe high
nibble of the operand. Forexample, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E [dst

Example: If Working Register R1 contains 34H (00111000B) and Working Register R14 contains 4DH
(10001101), the statement:

ORR1,R14
OpCode: 42 1E

leaves the value BDH (10111101B) in Working Register R1. The S Flag is set, and the Z and
V Flags are cleared.

Example: If Working Register R4 contains FOH (11111001B), Working Register R13 contains 7BH, and
Register 7B contains 6AH (01101010B), the statement:

OR R4, @R13
OpCode: 43 4D

leaves the value FBH (11111011B) in Working Register R4. The S Flag is set, and the Zand
V Flags are cleared.

12-46

N 206 25° MCROCONTROLLERS

OR
LOGICAL OR

Example: If Register 3AH contains the value F5H (11110101B) and Register 42H contains the value
0AH (00001010), the statement:

OR 3AH, 42H
OpCode: 44 42 3A

leaves the value FFH (11111111B) in Register 3AH. The S Flag is set, and the Zand V Flags
arecleared.

Example: If Working Register RS contains 70H (01110000B), Register 45H contains 3AH, and Register
3AH contains 7FH (01111111B), the statement:

OR RS, @45H
OpCode: 45 45 ES

leaves the value 7FH (01111111B) in Working Register R5. The Z, V, and S Flags are
cleared.

Example: If Register 7AH contains the value F3H (11110111B), the statement:

OR 7AH, #FOH
OpCode: 46 7A FO

leaves the value F3H (11110111B) in Register 7AH. The S Flag is set, and the Zand V Flags
are cleared.

Example: If Working Register R3 contains the value 3EH and Register 3EH contains the value 0CH
(00001100B), the statement:

OR @R3, #05H
OpCode: 57 E3 05

leaves the value ODH (00001101B) in Register 3EH. The Z, V, and S Flags are cleared.

12-47

@ 23 Z8° MICROCONTROLLERS

POP
POP
POP
Pop
POP dst
Instruction Format: OPC Address Mode
Cycles (Hex) dst
OPC dst 0 50 R
10 51 IR

Operation: dst <— @SP
SP <—SP + 1

The contents of the location specified by the SP (Stack Pointer) are loaded into the
destination operand. The SP is then incremented automatically.

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Flags:

TOSONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

Example: Ifthe SP (Control Registers FEH and FFH) contains the value 70H and Register 70H contains
44H, the statement:

POP 34H
OpCode: 50 34

loads the value 44H into Register 34H. After the POP operation, the SP contains 71H. The
contents of Register 70 are not affected.

Example: If the SP (Control Registers FEH and FFH) contains the value 1000H, external data memory
location 1000H contains 55H, and Working Register R6 contains 22H, the statement:

POP @R6
OpCode: 51 E6

loads the value 55H into Register 22H. After the POP operation, the SP contains 1001H. The
contents of Working Register R6 are not affected.

12-48

D205 " 28 McocoTRoLERS

PUSH
PUSH

PUSH
Push

PUSH src

Instruction Format:
OPC Address Mode
dst

Cydles (Hex)
10 Internal Stack 70 R
OPC sic 12 External Stack
12 Intemal Stack 7 IR

14 External Stack

Operation: SP <— SP -1
@SP <— src

The contents of the SP (stack pointer) are decremented by one, then the contents of the
source operand are loaded into the location addressed by the decremented SP, thus adding
a new element to the stack.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H:
Unaffected
Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.
E | dst
Example: If the SP contains 1001H, the statement:
PUSH FCH
OpCode: 70 FC
stores the contents of Register FCH (the Flag Register) in location 1000H. After the PUSH
operation, the SP contains 1000H.
Example: If the SP contains 61H and Working Register R4 contains FCH, the statement:

PUSH @R4
OpCode: 71 E4

stores the contents of Register FCH (the Flag Register) in location 60H. After the PUSH
operation, the SP contains 60H.

12-49

Z8° MICROCONTROLLERS

RCF
Reset Carry Flag

RCF

Instruction Format:

OPC
Cycles (Hex)
OPC 6 CF

Operation: C<—0

The C Flag is reset to 0, regardless of its previous value.

Flags: o] Resetto O
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Example: If the C Flag is currently set, the statement:
resets the Carry Flag to O.

RCF
RESET CARRY FLAG

12-50

@ 235 Z8° MICROCONTROLLERS

RET
RETURN
RET
Return
- u
Instruction Format:
OPC
Cycles (Hex)
OPC 14 AF

Operation: PC <— @SP
SP <—SP + 2

This instruction is normally used to return from a procedure entered by a CALL instruction.
The contents of the location addressed by the SP are popped into the PC. The next statement
executed is the one addressed by the new contents of the PC. The stack pointer is also
incremented by two.

Flags: C: Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

ITO<soeN

Note: Each PUSH instruction executed within the subroutine should be countered with a POP
instruction in order to guarantee the SP is at the correct location when the RET instruction
is executed. Otherwise the wrong address will be loaded into the PC and the program will not
operate as desired.

Example: If SP contains 2000H, external data memory location 2000H contains 18H, and location
2001H contains B5H, the statement:

RET
OpCode: AF

leaves the value 2002H in the SP, and the PC contains 18B5H, the address of the next
instruction to be executed.

12-51

28° MICROCONTROLLERS

RL
ROTATE LEFT
RL
Rotate Left
RL dst

Instruction Format:

Operation:

Flags:

Note:

OPC

dst

C <—dst(7)

dst(0) <—dst(7)
dst(1) <—dst(0)
dst(2) <—dst(1)
dst(3) <—dst(2)
dst(4) <—dst(3)
dst(5) <—dst(4)
dst(6) <—dst(5)
dst(7) <—dst(6)

OPC Address Mode

Cycles (Hex) dst
6 90 R
6)] IR

The contents of the destination operand are rotated left by one bit position. The initial value
of bit 7 is moved to the bit 0 position and also into the Carry Flag.

[¢]

I0 <SONO

D7

D6

DS

D4

D3

D2]D1 DO‘-I

Set if the bit rotated from the most significant bit position was 1 (i.e., bit 7 was 1).
Set if the result is zero; cleared otherwise.

Set if the result in bit 7 is set; cleared otherwise.

Set if arithmetic overflow occurred (if the sign of the destination operand changed
during rotation); cleared otherwise.

Unaffected
Unaffected

Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-52

@ P e 28° MICROCONTROLLERS
RL
ROTATE LEFT
Example: If the contents of Register C6H are 88H (10001000By), the statement:
RL C6H
OpCode: 80 C6
leaves the value 11H (00010001B) in Register C6H. The C and V Flags are set, and the S
and Z Flags are cleared.
Example: If the contents of Register C6H are 88H, and the contents of Register 88H are 44H
(01000100B), the statement:
RL @C6H
OpCode: 81 C6

leaves the value 88H in Register 88H (10001000B). The S and V Flags are set, and the C
and Z Flags are cleared.

12-53

Z8° MICROCONTROLLERS

RLC
ROTATE LEFT THROUGH CARRY
RLC
Rotate Left Through Carry
RLC dst
Instruction Format: OPC Address Mode
Cyc|es (HGX) dst
6 10 R
OPC dst 6 1 R
Operation: C <—dst(7)
dst(0) <—C
dst(1) <—dst(0)
dst(2) <—dst(1)
dst(3) <—dst(2)
dst(4) <—dst(3)
dst(5) <—dst(4)
dst(6) <—dst(5)
dst(7) <—dst(6)
The contents of the destination operand along with the C Flag are rotated left by one bit
position. The initial value of bit 7 replaces the C Flag and the initial value of the C Flag replaces
bit 0.
D7 D6|D5]D4]D3|D2|D1}DO
Flags: C: Setif the bit rotated from the most significant bit position was 1 (i.e., bit 7 was 1).
Z: Setif the result is zero; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred (if the sign of the destination operand changed
during rotation); cleared otherwise.
D: Unaffected
H: Unaffected
Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the

destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

12-54

_OALZILCE‘-" 28° MICROCONTROLLERS

RLC
ROTATE LEFT THROUGH CARRY

Example: If the C Flag is reset and Register C6 contains 8F (10001111B), the statement:
RLC Cé6

OpCode: 10 C6
leaves Register C6 with the value 1EH (00011110B). The C and V Flags are set, and S and
Z Flags are cleared.

Example: If the C Flag is reset, Working Register R4 contains C6H, and Register C6 contains 8F
(10001111B), the statement:

RLC @R4
OpCode: 11 E4

leaves Register C6 with the value 1EH (00011110B). The C and V Flags are set, and S and
Z Flags are cleared.

12-85

Z8° MICROCONTROLLERS

RR
ROTATE RIGHT
RR
Rotate Right
RR dst
Instruction Format: OPC Address Mode
Cycles (Hex) dst
6 EO R
OPC dst 6 E1 R

Operation: C <—dst(0)
dst(0) <—dst(1)
dst(1) <—dst(2)
dst(2) <—dst(3)
dst(3) <—dst(4)
dst(4) <—dst(5)
dst(5) <— dst(6)
dst(6) <— dst(7)
dst(7) <—dst(0)

The contents of the destination operand are rotated to the right by one bit position. The initial
value of bit 0 is moved to bit 7 and also into the C Flag.

LD7DGDSD4D302D1DO ICI

Flags: C: Setif the bit rotated from the least significant bit position was 1 (i.e., bit 0 was 1).
Z: Setif the result is zero; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred (if the sign of the destination operand changed
during rotation); cleared otherwise.
D: Unaffected
H: Unaffected
Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the

destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

12-56

_‘S 235 Z8° MICROCONTROLLERS

RR
ROTATE RIGHT
Example: If the contents of Working Register R6 are 31H (00110001B), the statement:
RR R6
OpCode: EO E6
leaves the value 98H (10011000) in Working Register R6. The C, V, and S Flags are set, and
the ZFlag is cleared.
Example: If the contents of Register C6 are 31H and the contents of Register 31H are 7EH
(01111110B), the statement:
RR @C6

OpCode: E1 C6
leaves the value 4FH (00111111) in Register 31H. The C, Z, V, and S Flags are cleared.

12-57

@ p—d [N a : 28° MICROCONTROLLERS

RRC
ROTATE RIGHT THROUGH CARRY

RRC
Rotate Right Through Carry
RRC dst
Instruction Format: OPC Address Mode
Cycles (Hex) dst
6 co R
oPC dst 6 Cc1 IR

Operation: C <—dst(0)
dst(0) <— dst(1)
dst(1) <—dst(2)
dst(2) <—dst(3)
dst(3) <— dst(4)
dst(4) <—dst(5)
dst(5) <— dst(6)
dst(6) <— dst(7)
dst(7) <—C

The contents of the destination operand with the C Flag are rotated right by one bit position.
The initial value of bit O replaces the C Flag and the initial value of the C Flag replaces bit 7.

I*D7DSD$D4D3D2D1 Do C

Flags: Set if the bit rotated from the least significant bit position was 1 (i.e., bit O was 1).
Set if the result is zero; cleared otherwise.

Set if the result bit 7 is set; cleared otherwise.

Set if arithmetic overflow occurred (if the sign of the destination operand changed
during rotation); cleared otherwise.

Unaffected

Unaffected

IO <ONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-58

@ 2L a5 28° MICROCONTROLLERS

RRC
ROTATE RIGHT THROUGH CARRY

Example: If the contents of Register C6H are DDH (11011101B) and the C Flag is reset, the statement:
RRC C6H

OpCode: CO C6
leaves the value 6EH (01101110B) in register C6H. The C and V Flags are set, and the Zand
S Flags are cleared.

Example: If the contents of Register 2C are EDH, the contents of Register EDH is 0OH (00000000B),
and the C Flag is reset, the statement:

RRC @2CH
OpCode: C1 2C

leaves the value 01H (00000001B) in Register EDH. The C, Z, S, and V Flags are reset.

12-59

N 2iLa5 Z8® MICROCONTROLLERS

SBC
SUBTRACT WITH CARRY
SBC
Subtract With Carry
SBC dst, src

Instruction Format:
OPC Address Mode
Cycles (Hex) dst src

6 32 ' r

OPC dst | src 6 a3 ¢ "
10 34 R R

opC sre dst 10 35 R IR
10 3 R IM

ope dst sre 10 a7 R M

Operation: dst<—dst-src-C

The source operand, along with the setting of the C Flag, is subtracted from the destination
operand and the result is stored in the destination operand. The contents of the source
operand are not affected. Subtraction is performed by adding the two's complement of the
source operand to the destination operand. In multiple precision arithmetic, this instruction
permits the carry (borrow) from the subtraction of low order operands to be subtracted from
the subtraction of high order operands.

Flags: C: Cleared if there is a carry from the most significant bit of the result; set otherwise,
indicatinga “borrow.”

Set if the result is 0; cleared otherwise.

Set if arithmetic overflow occurred (if the operands were of opposite sign and the sign
of the result is the same as the sign of the source); reset otherwise.

Set if the result is negative; cleared otherwise.

Cleared if there is a carry from the most significant bit of the low order four bits of the
result; set otherwise indicating a “borrow.”

Always set to 1.

o T® <N

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E |Jsic] or | E | dst

Example: If Working Register R3 contains 16H, the C Flag is set to 1, and Working Register R11
contains 20H, the statement:

SBC R3, R11
OpCode: 32 3B

leaves the value F5H in Working Register R3. The C, S, and D Flags are set, and the Z, V,
and H Flags are all cleared.

12-60

N 2L05

Z8° MICROCONTROLLERS

SBC

SUBTRACT WITH CARRY

Example:

Example:

Example:

Example:

Example:

If Working Register R15 contains 16H, the C Flag is not set, Working Register R10 contains
20H, and Register 20H contains 11H, the statement:

SBC R16, @R10
OpCode: 33 FA

leaves the value O5H in Working Register R15. The D Flag is set,and the C, Z, S, V, and H
Flags are cleared.

If Register 34H contains 2EH, the C Flag is set, and Register 12H contains 1BH, the
statement:

SBC 34H, 12H
OpCode: 34 12 34

leaves the value 13H in Register 34H. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register 4BH contains 82H, the C Flag is set, Working Register R3 contains 10H, and
Register 10H contains 01H, the statement:

SBC 4BH, @R3
OpCode: 35 E3 4B

leaves the value 80H in Register 4BH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register 6CH contains 2AH, and the C Flag is not set, the statement:

SBC 6CH, #03H
OpCode: 36 6C 03

leaves the value 27H in Register 6CH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register D4H contains 5FH, Register 5FH contains 4CH, and the C Flag is set, the

. statement:

SBC @D4H, #02H
OpCode: 37 D4 02

leaves the value 4AH in Register 5FH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

12-61

QA 2La5

Z&'MW

SCF
Set Carry Flag
SRC
Instruction Format:
OPC
Cycles (Hex)
OPC 6 DF

Operation: C<—1

The C Flag is set to 1, regardless of its previous value.

Set to 1

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Flags:

IO<SONO

Example: If the C Flag is currently reset, the statement:

sets the Carry Flag to 1.

SCF
SET CARRY FLAG

12-62

N2La5 28° MICROCONTROLLERS

SRA
SHIFT RIGHT ARITHMETIC

SRA
Shift Right Arithmetic

SRA dst

Instruction Format:
OPC Addreggt Mode

Cycles (Hex)
OPC dst 6 Do R
6 DI IR

Operation: C <—dst(0)
dst(0) <—dst(1)
dst(1) <—dst(2)
dst(2) <—dst(3)
dst(3) <—dst(4)
dst(4) <—dst(5)
dst(5) <—dst(6)
dst(6) <— dst(7)
dst(7) <—dst(7)

An arithmetic shift right by one bit position is performed on the destination operand. Bit 0
replaces the C Flag. Bit 7 (the Sign bit) is unchanged and its value is shifted into bit 6.

ED7DSDSD41')3D2D1D0

Flags: Set if the bit rotated from the least significant bit position was 1 (i.e., bit 0 was 1).
Set if the result is zero; cleared otherwise.

Set if the result bit 7 is set; cleared otherwise.

Always reset to 0.

Unaffected

Unaffected

TOSONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format,
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-63

@ 205 Z6° MICROCONTROLLERS

SRA
SHIFT RIGHT ARITHMETIC

Example: If the contents of Working Register R6 are 31H (00110001B), the statement:

SRA R6
OpCode: DO E6

leaves the value 98H (00011000) in Working Register R6. The C Flag is set, and the Z, V,
and S Flags are cleared.

Example: IfRegister C6 contains the value DFH, and Register DFH contains the value B8H (10111000B),
the statement:
SRA @C6
OpCode: D1 C6

leaves the value DCH (11011100B) in Register DFH. The C, Z, and V Flags are reset, and
the S Flag is set.

12-64

_‘0_5 205 26° MICROCONTROLLERS

SRP
SET REGISTER POINTER
SRP
Set Register Pointer
SRP src
Instruction Format: u
OPC Address Mode
Cycles (Hex) dst
OoPC src 6 3 ™M

Operation: RP <—src

The specified value is loaded into the Register Pointer (RP) (Control Register FDH). Bits
7-4 determine the Working Register Group within the Z8 Standard Register File. These
Working Registers are selected when bits 3-0 are set to 0000B. When bits 3-0 are defined,
the Expanded Working Register Bank is specified. The contents of bits 7-4 are disregarded
when bits 3-0 are defined other than 0000B.

Register Pointer Working Actual
(FDH) Register Group Registers

Contents (Bin) (Hex) (Hex)
1111 0000 F FO-FF
1110 0000 E EO-EF
1101 0000 D DO-DF
1100 0000 Cc CO-CF
1011 0000 B BO-BF
1010 0000 A AO-AF
1001 0000 9 90-9F
1000 0000 8 80-8F
0111 0000 7 70-7F
0110 0000 6 60-6F
0101 0000 5 50-5F
0100 0000 4 20-4F
0011 0000 3 30-3F
0010 0000 2 20-2F
0001 0000 1 10-1F
0000 0000 0 00-0F

12-65

Z8° MICROCONTROLLERS

Example:

SRP
SET REGISTER POINTER
Register Pointer Working Working
(FDH) Register Group Registers
Contents (Hex) (Hex) (Dec)

xxxx 1111 F RO-R15
xxxx 1110 E RO-R15
xxxx 1101 D RO-R15
xxxx 1100 C RO-R15
xxxx 1011 B RO-R15
xxxx 1010 A RO-R15
xxxx 1001 9 RO-R15
xoxx 1000 8 RO-R15
xxxx 0111 7 RO-R15
xxxx 0110 6 RO-R15
xxxx 0101 5 RO-R15
xxxx 0100 4 RO-R15
xxxx 0011 3 RO-R15
xxxx 0010 2 RO-R15
xxxx 0001 1 RO-R15

C: Unaffected

Z: Unaffected

S: Unaffected

V: Unaffected

D: Unaffected

H: Unaffected

When an Expanded Register Bank is defined as the current Working Register, access to the

Z8 Standard Register File is possible through direct addressing.

The statement:
SRP FOH

OpCode: 70 FO

sets the Register Pointer to access Working Register Group F in the Z8 Standard Register
File. All references to Working Registers now affect this group of 16 registers. Registers FOH

to FFH can be accessed as Working Registers RO to R15

12-66

@ 235 Z8° MICROCONTROLLERS

SRP
SET REGISTER POINTER
Example: The statement:
SRP OFH
OpCode: 70 OF
sets the Register Pointer to access Expanded Register Bank F as the current Working
Registers. All references to Working Registers now affect this group of 16 registers. These
registers are now accessed as Working Registers RO to R15.
Example: Assume the RP currently addresses the Control and Peripheral Working Register Group and
the program has just entered an interrupt service routine. The statement:
SRP 70H

OpCode: 31 70

retains the contents of the Control and Peripheral Registers by setting the RP to 70H
(01110000B). Any reference to Working Registers in the interrupt routine will point to
registers 70H to 7FH.

12-67

@ 2LaB Z8° MICROCONTROLLERS

STOP
Stop
STOP
Instruction Format:
OPC
Cycles (Hex)
OPC 6 6F

Operation: This instruction turns off the internal system clock (SCLK) and external crystal (XTAL)
oscillation, and reduces the standby current. The STOP mode is terminated by a RESET
which causes the processor to restart the application program at address O00CH.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected
Note: In order to enter STOP mode, it is necessary to first flush the instruction pipeline to avoid
suspending execution in mid-instruction. The user must execute a NOP immediately before
the execution of the STOP instruction.
Example: The statements:
NOP
STOP

OpCodes: FF 6F
place the Z8 into STOP mode.

STOP
STOP

12-68

Q215

Z8° MICROCONTROLLERS

SuB

SUBTRACT

suB
Subtract

SUB dst, src

Instruction Format:

Operation:

Flags:

Note:

Example:

OPC Address Mode
Cycles (Hex) dst src

6 22 r r
OoPC dst | src 6 23 ' Ir
10 24 R R
OPC src dst 10 25 R R
10 2 R M
opc dst src 10 27 R M

dst <—dst-src

The source operand is subtracted from the destination operand and the resultis stored in the
destination operand. The contents of the source operand are not affected. Subtraction is
performed by adding the two’s complement of the source operand to the destination operand.

Cleared if there is a carry from the most significant bit of the result; set otherwise,
indicating a “borrow."

Set if the result is 0; cleared otherwise.

Set if arithmetic overflow occurred (if the operands were of opposite sign and the sign
of the result is the same as the sign of the source); reset otherwise.

Set if the result is negative; cleared otherwise.

Cleared if there is a carry from the most significant bit of the low order four bits of the
result; set otherwise indicating a “borrow."

Always set to 1.

O IT® SN O

Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E Jsrcj or | E | dst

If Working Register R3 contains 16H, and Working Register R11 contains 20H, the
statement:

SUB R3, R11
OpCode: 22 3B

leaves the value F6H in Working Register R3. The C, S, and D Flags are set, and the Z, V,
and H Flags are cleared.

12-69

@ 23 Z8° MICROCONTROLLERS

SuB
SUBTRACT

Example: If Working Register R15 contains 16H, Working Register R10 contains 20H, and Register
20H contains 11H, the statement:

SUB R16, @R10
OpCode: 23 FA

leaves the value 05H in Working Register R15. The D Flag is set, and the C, Z, S, V, and H
Flags are cleared.
Example: If Register 34H contains 2EH, and Register 12H contains 1BH, the statement:

SUB 34H, 12H
OpCode: 24 12 34

leaves the value 13H in Register 34H. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

Example: If Register 4BH contains 82H, Working Register R3 contains 10H, and Register 10H contains
01H, the statement:

SUB 4BH, @R3
OpCode: 25 E3 4B

leaves the value 81H in Register 4BH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.
Example: If Register 6CH contains 2AH, the statement:

SUB 6CH, #03H
OpCode: 26 6C 03

leaves the value 27H in Register 6CH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.
Example: If Register D4H contains 5FH, Register 5FH contains 4CH, the statement:

SUB @D4H, #02H
OpCode: 17 D4 02

leaves the value 4AH in Register 5FH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

12-70

@ 235 Z8° MICROCONTROLLERS

SWAP
SWAP NIBBLES

SWAP
Swap Nibbles

SWAP dst

Instruction Format:
OPC Address Mode

Cycles (Hex) dst
OPC dst 6 Fo R
6 F1 IR

Operation: dst(7-4) <—> dst(3-0)
The contents of the lower four bits and upper four bits of the destination operand are swapped.

Unaffected

Set if the result is zero; cleared otherwise.
Set if the result bit 7 is set; cleared otherwise.
Undefined

Unaffected

Unaffected

Flags:

IO<SONQO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format,
destination Working Register operand is specified by adding 1110B (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

E | dst

Example: If Register BCH contains B3H (10110011B), the statement:

SWAP B3H
OpCode: FO B3

will leave the value 3BH (00111011B) in Register BCH. The Z and S Flags are cleared.

Example: If Working Register R5 contains BCH and Register BCH contains B3H (10110011B), the
statement:

SWAP @R5H
OpCode: F1 E5

will leave the value 3BH (00111011B) in Register BCH. The Z and S Flags are cleared.

12-71

@ 2ILdBL 28° MICROCONTROLLERS

TCM
TEST COMPLEMENT UNDER MASK

TCM
Test Complement Under Mask

TCM dst, src

Instruction Format: OPC Address Mode

Cycles (Hex) dst src
OPC dst | src g §§ : II;—
OPC sic dst :8 2; : :;
OPC dst src :g gg :; :m

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logical 1 value. The bits
to be tested are specified by setting a 1 bit in the corresponding bit position in the source
operand (the mask). The TCM instruction complements the destination operand, and then
ANDs itwiththe source mask (operand). The Zero (Z) Flag can then be checked to determine
the result. If the Z Flag is set, then the tested bits were 1. When the TCM operation is
complete, the destination and source operands still contain their original values.

Unaffected

Set if the result is zero; cleared otherwise.
Set if the result bit 7 is set; cleared otherwise.
Always reset to 0.

Unaffected

Unaffected

Flags:

IO0O<ONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B(EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E | dst

Example: If Working Register R3 contains 45H (01000101B) and Working Register R7 contains the
value O1H (00000001B) (bit O is being tested if it is 1), the statement:

TCM R3, R7
OpCode: 62 37

will set the Z Flag indicating bit O in the destination operand is 1. The V and S Flags are
cleared.

12-72

N 2105

Z8° MICROCONTROLLERS

TCM

TEST COMPLEMENT UNDER MASK

Example:

Example:

Example:

Example:

Example:

If Working Register R14 contains the value F3H (11110011B), Working Register R5 contains
CBH, and Register CBH contains 88H (10001000B) (bit 7 and bit 4 are being tested if they
are 1), the statement:

TCM R14, @R5
OpCode: 63 E5

will reset the Z Flag, because bit 4 in the destination operand is nota 1. The V and S Flags
are also cleared.

If Register D4H contains the value 04H (000001000B), and Working Register RO contains
the value 80H (10000000B) (bit 7 is being tested if it is 1), the statement:

TCM D4H, RO
OpCode: 64 EO D4

will reset the Z Flag, because bit 7 in the destination operand is not a 1. The S Flag will be
set, and the V Flag will be cleared.

If Register DFH contains the value FFH (11111111B), Register 07H contains the value 1FH,
and Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit
0 are being tested if they are 1), the statement:

TCM DFH, @07H
OpCode: 65 07 DF

will setthe ZFlag indicating the tested bits in the destination operand are 1. The Sand V Flags
arecleared.

If Working Register R13 contains the value F1H (11110001B), the statement:

TCM R13, #02H
OpCode: 66 ED, 02

tests bit 1 of the destination operand for 1. The Z Flag will be set indicating bit 1 in the
destination operand was 1. The S and V Flags are cleared.

If Register 5DH contains AOH, and Register AOH contains OFH (00001 111B), the statement:

TCM 5D, #10H
OpCode: 67 5D 10

tests bit 4 of the Register AOH for 1. The Z Flag will be reset indicating bit 1 in the destination
operand was not 1. The S and V Flags are cleared.

12-73

@ 20 28° MICROCONTROLLERS

™
TEST UNDER MASK
™
Test Under Mask
TM dst, src

Instruction Format:

OPC Address Mode
Cycles (Hex) dst src

6 72 r r

OPC dst | src 6 73 ‘ I
- 10 74 R R

oPC sre dst 10 75 R IR
10 76 R IM

OPC dst src 10 77 IR M

Operation: dst AND src

This instruction tests selected bits in the destination operand for logical a 0 value. The bits
to be tested are specified by setting a 1 bit in the corresponding bit position in the source
operand (the mask). The TCM instruction ANDs the destination operand with the source
operand (the mask). The Zero (Z) Flag can then be checked to determine the result. If the Z
Flagis set, then the tested bits were 0. When the TCM operation is complete, the destination
and source operands still contain their original values.

Flags: C: Unaffected

Set if the result is zero; cleared otherwise.
Set if the result bit 7 is set; cleared otherwise.
Always reset to O.

Unaffected

Unaffected

TO<ON

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E | dst

Example: If Working Register R3 contains 456H (01000101B) and Working Register R7 contains the
value 01H (00000010B) (bit 1 is being tested if it is 0), the statement:

TM RS, R7
OpCode: 72 37

will set the Z Flag indicating bit 1 in the destination operand is 0. The V and S Flags are
cleared.

12-74

‘s 2L Z8° MICROCONTROLLERS

™
TEST UNDER MASK
Example: If Working Register R14 contains the value F3H (1111001 1B), Working Register R5 contains

CBH, and Register CBH contains 88H (10001000B) (bit 7 and bit 4 are being tested if they
are 0), the statement:

TM R14, @R5
OpCode: 73 E5

will reset the Z Flag, because bit 4 in the destination operand is not a 0. The S Flag will be
set, and the V Flag is cleared.

Example: If Register D4H contains the value 08H (00001000B), and Working Register RO contains the
value 04H (00001000B) (bit 3 is being tested if it is 0), the statement:

TM D4H, RO
OpCode: 74 EO D4

will set the Z Flag, because bit 3 in the destination operand is a 0. The S and V Flags will be
cleared.

Example: If Register DFH contains the value OOH (00000000B), Register 07H contains the value 1FH,
and Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit
0 are being tested if they are 0), the statement:

TM DFH, @07H
OpCode: 75 07 DF

will set the Z Flag indicating the tested bits in the destination operand are 0. The Sis set, and
the V Flag is cleared.
Example: If Working Register R13 contains the value F1H (11110001B), the statement:

TM R13, #02H
OpCode: 76 ED, 02

tests bit 1 of the destination operand for 0. The Z Flag will be set indicating bit 1 in the
destination operand was 0. The S and V Flags are cleared.

Example: If Register 5DH contains AOH, and Register AOH contains OFH (00001 111B), the statement:

TM 5D, #10H
OpCode: 77 5D 10

tests bit 4 of the Register AOH for 0. The Z Flag will be set indicating bit 1 in the destination
operand was 0. The S and V Flags are cleared.

12-75

A= Ve 28 Wenooomousss

WDH
WATCH-DOG TIMER ENABLE DURING HALT MODE

WDH
Watch-Dog Timer Enable During HALT Mode
WDH
Instruction Format: OPC
Cycles (Hex)
OPC 6 4F

Operation: When this instruction is executed it will enable the WDT (Watch-Dog Timer) during HALT
mode. If this instruction is not executed the WDT will stop when entering HALT mode. This
instruction does not clear the counter, it just makes it possible to have the WDT function
running during HALT mode. A WDH instruction executed without executing WDT (5FH) has

no effect.
Flags: C: Unaffected
Z: Undefined
S: Undefined
V: Undefined
D: Unaffected
H: Unaffected
Note: The WDH instruction should not be used following any instruction in which the condition of
the flags is important.
Example: If the WDT is enabled, the statement:
WDH
OpCode: 4F

will enable the WDT in HALT mode.
Note: Thisinstructionformatisvalidonlyforthe Z86C04/C07/C08and Z86E04/EQ7/E08.

12-76

09 2iLa 78° MICROCONTROLLERS

wDT
WATCH-DOG TIMER

WDT
Watch-Dog Timer

v u
Instruction Format: OPC

Cycles (Hex)

OPC 6 5F

Operation: The WDT (Watch-Dog Timer) is a retriggerable one shot timer that will reset the Z8 if it
reaches its terminal count. The WDT is initially enabled by executing the WDT instruction.
Each subsequentexecution of the WDT instruction refreshes the timer and prevents the WDT
from timing out.

Flags: C: Unaffected
Z: Undefined
S: Undefined
V: Undefined
D: Unaffected
H: Unaffected
Note: The WDT instruction should not be used following any instruction in which the condition of
the flags is important.
Example: If the WDT is enabled, the statement:
WDT
OpCode: 5F
refreshes the Watch-Dog Timer.
Example: The first execution of the statement:
wDT
OpCode: 5F

enables the Watch-Dog Timer.

12-77

@ 2iL(5 28° MICROCONTROLLERS

XOR
LOGICAL EXCLUSIVE OR
XOR
Logical Exclusive OR
XOR dst, src
Instruction Format: OPC Address Mode

Cycles (Hex) dst src

6 B2 r r
OPC dst | src 6 B3 p Ir

10 B4 R R
OPC src dst 10 BS R R

10 B6 R M
opc dst sre 10 B7 IR M

Operation: dst <— dst XOR src

The source operand is logically EXCLUSIVE ORed with the destination operand. The XOR
operationresultsina 1 being stored in the destination operand whenever the corresponding
bits in the two operands are different, otherwise a 0 is stored. The contents of the source
operand are not affected.

Unaffected

Set if the result is zero; cleared otherwise.

Set if the result of bit 7 is set; cleared otherwise.
Always reset to 0

Unaffected

Unaffected

Flags:

ITOSONO

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B (EH) tothe high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

E | src or E | dst

Example: If Working Register R1 contains 34H (00111000B) and Working Register R14 contains 4DH
(10001101B), the statement:

XOR R1, R14
OpCode: B2 1E

leaves the value BDH (10111101B) in Working Register R1. The Z, and V Flags are cleared,
and the S Flag is set.

12-78

Q_QEILGE 28° MICROCONTROLLERS

XOR
LOGICAL EXCLUSIVE OR
Example: If Working Register R4 contains F9H (11111001B), Working Register R13 contains 7BH, and
Register 7B contains 6AH (01101010B), the statement:
XOR R4, @R13
OpCode: B3 4D
leaves the value 93H (1001001 1B) in Working Register R4. The S Flag is set, and the Z, and
V Flags are cleared.
Example: If Register 3AH contains the value F5H (11110101B) and Register 42H contains the value
0AH (00001010B), the statement:
XOR 3AH, 42H
OpCode: B4 42 3A
leaves the value FFH (11111111B) in Register 3AH. The S Flag is set, and the Cand V Flags
are cleared.
Example: If Working Register RS contains FOH (11110000B), Register 46H contains 3AH, and Register
3A contains 7F (01111111B), the statement:
XOR RS, @45H
OpCode: B5 45 ES5
leaves the value 8FH (10001111B) in Working Register R5. The S Flag is set, and the C and
V Flags are cleared.
Example: If Register 7AH contains the value F7H (11110111B), the statement:
XOR 7AH, #FOH
OpCode: B6 7A FO
leaves the value 07H (00000111B) in Register 7AH. The Z, V and S Flags are cleared.
Example: If Working Register R3 contains the value 3EH and Register 3EH contains the value 6CH

(01101100B), the statement:

XOR @R3, #05H
OpCode: B7 E3 05

leaves the value 69H (01101001B) in Register 3EH. The Z, V, and S Flags are cleared.

12-79

D
N
s

Z8° MICROCONTROLLERS

N 2Las

USER'S MANUAL

CHAPTER 13
ZILOG EMULATORS/SOFTWARE

13.1 ZILOG Z8 EMULATOR PRODUCTS

Zilog provides a family of full-featured real-time in-circuit
emulators to support Z8® product development. In-circuit
emulation links your design to a PC to determine how the
microcontroller is functioning in your design. This greatly
simplifies system debug, reducing development time and
OTP device consumption. All emulators include OTP pro-
gramming, a user configurable WINDOWS interface, a
Zilog Z8° cross assembler and complete Z8® documenta-

tion. Product specifications for the following in-circuit

emulator kits are also provided:
W Z86CCPOOZEM / Z86CCPO0OZAC
B Z86C1200ZEM

W Z86C5000ZEM

131

@ 2ilan 28° MICROCONTROLLERS
13.228°CCP™ EMULATOR

QUICK START

@ Check Support Package Contents
(See Other Side)

Load Software
1. Select the "Run" command from the "File" menu, located under Microsoft Windows
"Program Manager".
a. Insert the disk labeled "Zilog ZASM Cross Assembler/Zilog MOBJ Object File Util."
in drive A (or drive B, if appro19riate.)
b. Type "a:\setup" and press ENTER. (Type "b:\setup" if drive B is used.)
c. Follow on-screen instructions.
d. Remove diskette and store in a safe place when done.

For more information on assembling source code, refer to Z8 CCP Emulator
User's Guide (Appendix C) and the Z8® Microcontrollers Technical Manual.

2. Select the "Run" command from the "File" menu, located under Microsoft
Windows "Program Manager".
a. Insert disk labeled "Z8 GUI S/W" in drive A (or drive B, if appropriate.)
b. Type "a:\setup" and press ENTER. (Type "b:\setup" if drive B is used.)
c. Follow on-screen instructions.
d. Remove diskette and store in a safe place when done.

Make Connections Your Power Emulation Cable

Power Supply, PC, and Your Design s

Refer to Z8® CCP™ 5
Emulator User's Manual %

OF 3 2O

COnn'ect to
Observe Electrical Safeguards Power Supply
(See Z8 CCP Emulator User's Manual) ‘
comia —LnFelFa]
Run Zilog ICEBOX GUI Software /a 1 z
1. Double click the Z8-ICE icon. |____D_S
Select the microcontroller and ROM size 100-Percent Compatible PC

2.

to be emulated in the Configuration Dialog Box.

3. Use the "File" menu to download sample files to
Z8 Code Memory.

4. Refer to Z8 CCP Emulator User's Manual,
"Chapter 3: Z8 Emulator Sample Session".

13-2

Q25

Z8° MICROCONTROLLERS

13.3 Z8°CCP™ EMULATOR
PACKAGE CONTENTS

SUPPORT PRODUCTS PACKAGE CONTENTS
The Zilog Z8® CCP™ Emulator Support Products Package contains the following items:

Hardware

Z8® CCP™ Emulator Board

18-Pin DIP-to-DIP Target Cable

Z86E08 18-Pin DIP OTP Device

Software

Z8% GUI S/W Diskette

Zilog ZASM Cross Assembler/MOBJ Object File Util. Diskette

Production Languages Corporation (PLC) Compass/Z8™ Diskette (Evaluation Version)

Description of Z8® GUI Diskette Include Files

z8cfg.o Configuration

z8ice.exe Executable

icehelp.hlp Help

meter.dll Installation library

readme Text file

setup.inf Installation information

setup.exe Windows install program

z8em_c12.0 On board software for Z86C12 Icebox
z8em_c27.0 On board software for Z86C27 Icebox
z8em_c50.0 On board software for Z86C50 Emulator
z8em_c62.0 On board software for Z86C62 Emulator
z8em_c65.0 On board software for Z89C65 Emulator
z8em_c67.0 On board software for ZB3C67 Emulator
z8em_c93.0 On board software for ZB6C93 Emulator
z8em_I7x.0 On board software for Z86L7X Emulator
z8em_ccp.o On board software for Z86CCP Emulator

Publications

Zilog Z8 CCP Emulator User's Manual
Z8 Microcontrollers Technical Manual
Discrete Z8 Microcontrollers Databook
Registration Card

Optional Accessory Kit

An optional accessory kit (P/N Z86CCPO0ZAC) available
from Zilog contains the following items:

28-Pin ZIF Socket

40-Pin ZIF Socket

Power Cable

28-Pin DIP-to-DIP Target Cable

40-Pin DIP-to-DIP Target Cable

13-3

N 205

Z8° MICROCONTROLLERS

13. 4 Z86CCPO0ZEM EMULATOR

PRODUCT SPECIFICATION

DEVICES SUPPORTED: Z86C03, Z86C04/E04, Z86C06, Z86C08/E08, Z86C09/19,
Z86EQ03/EQ6; wiTH Z8® CCP™ EMULATOR ACC. KIT (z8sccPzAac): Z86C30/E30, Z86C31/

E31, Z86C40/E40, 286730, Z86C32

DESCRIPTION

The Z86CCPO0ZEM is a member of Zilog's family of in-
circuit emulators. The Z8 CCP emulator provides emula-
tion and OTP programming support for Zilog's Consumer
Controller Processor (CCP™) microcontroller. The Emula-
tor provides all the essential MCU timing and 1/O circuitry
which simplifies user emulation of the prototype hardware/
software product.

The data entering, program debugging, and OTP pro-
gramming are performed by the monitor ROM and the Host
Package which communicates through RS-232C serial
interface with a fixed 19200 baud rate. The user program
can be downloaded directly from the host computer via an
RS-232C connector. The user code may then be executed
using various debugging commands in the monitor. The
Emulator can be connected to a serial port (COM 1, COM
2, COM3, COM4) of the host computer (386 or 486, IBM
compatible PC) and uses Graphical User Interface (GUI)
software.

SPECIFICATIONS

Emulation Specification
Maximum Emulation Speed: 8 MHz
Minimum Emulation Speed: 1 MHz
Power Requirements
+8VVdc @0.5A
Dimensions
Width: 7.0in.(17.7 cm)
Length: 9.0in. (22.9 cm)
Height: 0.9in. (2.3 cm)
Serlal Interface

RS-232C @ 19200 baud

KIT CONTENTS

Z8° CCP™ Emulator
CMOS Z86C9320VSC
RS-232C Interface
Reset Switch
20 MHz CMOS Z86C5020FSE ICE Chip
8K x 8 STATIC RAM (for Code Memory)
18-Pin DIP ZIF Programming Socket
18-Pin Target Connector Cable
Holes Available for 28/40-Pin ZIF Sockets
Sockets Available for 18/28/40-Pin Target Cables

Software (IBM PC Platform)

ZASM Cross-Assembler and MOBJ Object File Util.

Z8® GUI Emulator Software

Production Languages Corporation COMPASS/Z8
(Evaluation Version)

System Requirements

386 or 486, IBM Compatible PC

VGA Video Adapter (Color Monitor Recommended)
20 MHz, Minimum

4 Mbytes RAM

Microsoft Windows 3.0 or 3.1

Hard Disk Drive (1 Mbyte Free Space)

High Density (HD) Floppy Disk Drive (3.5-Inch)
RS-232 COM Port

Documentation

Registration Card

Product Information

Z8® CCP™ Emulator User's Manual
Discrete Z8 Databook

Z8° Microcontroller User's Manual

ORDERING INFORMATION

Part No: Z86CCPOOZEM

13-4

QD205
13.5 Z86CCP00ZAC EMULATOR KIT
PRODUCT SPECIFICATION

Z8° MICROCONTROLLERS

DESCRIPTION KIT CONTENTS

The Z86CCPOOZAC is the accessory kit for the 18 GGP Emulator Accessory Kit u
Z86CCPOOZEM. The kit contains all accessories to fully .

populate and operate all functions of the Z86CCPOOZEM. 28-Pin ZIF Socket

28-Pin Target Connector Cable
40-Pin ZIF Socket

40-Pin Target Connector Cable
RS-232 Cable

Power Cable

ORDERING INFORMATION

PartNo: Z86CCPOOZAC

13-5

Z8° MICROCONTROLLERS

N SILaG
13.6 Z86C1200ZEM EMULATOR

PRODUCT SPECIFICATION

DEVICES SUPPORTED: Z86117/717, Z86C04/E04, Z86C07/E07, Z86CG08/E0S,
286C11, Z86C20, Z86C21/E21, Z86E22, Z86E23, Z86C60, Z86C61/E61,

286C63/E63, Z86C65, Z86C91
DESCRIPTION

The Z86C1200ZEM Z8® Emulator is a member of Zilog's
ICEBOX™ product family of in-circuit emulators. The
Z86C1200ZEM provides emulation and OTP program-
ming support for Zilog's Z8 microcontrollers. The Emulator
provides all the essential MCU timing and 1/O circuitry
which simplifies user emulation of the prototype hardware/
software product. The data entering, program debugging,
and OTP programming are performed by the monitor ROM
and the Host Package which communicates through a RS-
232C serial interface with a fixed 19200 baud rate. The
user program can be downloaded directly from the host
computer through the RS-232C connector. The user code
may then be executed using various debugging com-
mands in the monitor. The Emulator can be connected to
a serial port (COM 1, COM 2, COM3, COM4) of the host
computer (386 or 486, IBM compatible PC) and uses
Graphical User Interface (GUI) software.

SPECIFICATIONS

Emulation Specification

Minimum Emulation Speed: 1 MHz
Maximum Emulation Speed: 16 MHz

Power Requirements
+5Vdc @05 A
Dimensions
Width: 6.25 in. (15.8 cm)
Length: 9.5 in. (24.1 cm)
Height: 2.5 in. (6.35 cm)
Serial Interface

RS-232C @ 19200 baud

KIT CONTENTS

286C12 Emulator

18° Emulation Base Board

CMOS Z86C9120PSC

8K X 8 EPROM (Programmed with Debug Monitor)
32K X 8 STATIC RAM
364K X 4 STATIC RAM
RS-232C Interface
Reset Switch

Z86C12 Emulation Daughter Board
16 MHz CMOS Z86C1216GSE ICE Chip
18/40-Pin ZIF OTP Sockets
40/60/80-Pin Target Connectors

Cahles/Pods

18-Pin DIP Emulation Cable

28-Pin DIP Emulation Cable

40-Pin DIP Emulation Cable

Power Cable with Banana Plugs
Power Cable with 1A Slow-Blow Fuse
DB 25 RS-232C Cable

Software (IBM®-PC Platform)

ZASM Cross-Assembler and MOBJ Obiject File Util.
Z8® GUI Emulator Software

Documentation

Emulator User's Manual

Z8° Cross-Assembler User's Guide

Universal Object File Utilities (MOBJ) User's Guide
Registration Card

Product Information

ORDERING INFORMATION

Part No: Z86C1200ZEM

13-6

_@ 2iLan Z8° MICROCONTROLLERS
13.7 Z86C5000ZEM EMULATOR
PRODUCT SPECIFICATION

DEVICES SUPPORTED: 286C03, 286C06, Z86C09/19, Z86C30/E30, Z86C31/E31,
286C40/E40, 286C89, Z86C90, Z86L06, 286129, Z86E03/E06, Z86C32, 286730 u

DESCRIPTION KIT CONTENTS

The Z86C5000ZEM (C50) Emulator is amember of Zilog's ~ 286G50 Emulator
ICEBOX™ product family of in-circuit emulators. The C50

Emulator provides emulation and OTP programming sup- Z8® Emulation Base Board

port for Zilog's CCP™ (Consumer Controller Processor) CMOS Z86C9120PSC

microcontrollers. The C50 Emulator provides all the es- 8K x 8 EPROM (Programmed with Debug Mtr.)

sential MCU timing and I/O circuitry which simplifies user 32K x 8 Static RAM

emulation of the prototype hardware/software product. 3 64K x4 Static RAMs

The Emulator can be connected to a serial port (COM 1, RS-232C Interface

COM 2, COM3, COM4) of the host computer (386 or 486, Reset Switch

IBM compatible PC) and uses Graphical User Interface Z86C50 Emulation Daughter Board

(GUI) software. 20 MHz CMOS Z86C5020GSE ICE Chip
2K x 8 Static RAM

SPECIFICATIONS 18/28/40-Pin ZIF OTP Sockets
6 HP-16500A Logic Analysis System

Emulation Specification Interface Connectors

40/60/80-Pin Target Connectors
Miinimum Emulation Speed: 1 MHz

Maximum Emulation Speed: 20 MHz Cables
Power Requirements 40-Pin DIP Emulation Cable
28-Pin DIP Emulation Cable
5VVvVdc @ 1.0 A 18-Pin DIP Emulation Cable
* de Power Cable with Banana Plugs
Width: 6.25 in. (15.8 cm) Software (IBM PC Platform)
Length: 9.5 in. (24.1
Hzri‘gght: 25 il:. ((6.35 é:rr:)) ZASM Cross-Assembler and MOBJ Object File Util.
Z8® GUI Emulator Software
Serial Interface
Documentation
RS-232C @ 19200 baud
au ICEBOX™ User's Manual
Z8 Cross-Assembler User’'s Guide
System Requirements Windows Host Interface User’s Guide (GUI)
Universal Object File Utilities (MOBJ) User's Guide
386 or 486, IBM Compatible PC Registration Card
VGA Video Adapter (Color Monitor Recommended)
20 MHz, Minimum ORDERING INFORMATION
4 Mbytes RAM
Microsoft Windows 3.0 or 3.1 Part No Z86C5000ZEM

Hard Disk Drive (1 Mbyte Free Space)
High Density (HD) Floppy Disk Drive (3.5-Inch)
RS-232 COM Port

137

13.8 SOFTWARE

13.8.1 INTRODUCTION

This section describes some of the important features of
the Z8®, with software examples that illustrate its power
and ease of use. It is divided into sections by topic; the
user need notread each section sequentially, butmay skip
around to the sections of current interest.

For feature availability and implementation details on a
particular Z8 device, see the product specification.

13.9 ACCESSING REGISTER MEMORY

The Z8 register space consists of /0 ports, control and
status registers, and general-purpose registers. The gen-
eral-purpose registers are RAM areas typically used for
accumulators, pointers, and stack area. This section
describes these registers and how they are used. Bit
manipulation and stack operations effecting the register
space are discussed in other sections of this manual.

13.9.1 Registers and Register Pairs

The Z8 supports 8-bit registers and 16-bit register pairs. A
register pair consists of a an even-numbered register
concatenated with the next higher numbered register (00
and 01, 02 and 03, ... FFH). A register pair must be
addressed by reference to the even-numbered register.

B FiHand F2H are not a valid register pairs.

B FOH and F1H are valid register pairs, addressed
by reference to FOH.

Register pairs may be incremented (INCW) and
decremented (DECW) and are useful as pointers for ac-
cessing program and external data memory.

Any instruction which can reference or modify an 8-bit
register can do so to any of the registers in the Z8,
regardless of the inherent nature of that register. Thus, I/
O ports, control, status, and general-purpose registers
may all be accessed and manipulated without the need for
special-purpose instructions. Similarly, instructions which
reference or modify a 16-bit register pair can do so to any
of the valid register pairs.

The only exceptions to this rule are as follows:

B TheDJNZ(decrementand jump if non-zero)instruction
may successfully operate on the general-purpose
working registers only.

B Allwrite-only control registers may be modified only by
such instructions as LOAD, POP, and CLEAR.
Instructions such as OR and AND require that the
-current contents of the operand be readable and
therefore will not function properly on the write-only
registers.

13.9.2 Register Pointer

Within the register addressing modes provided by the Z8®,
aregister may be specified by its full 8-bit address (O0H-
FFH) or by a short 4-bit address. In the latter case, the
register is viewed as one of the 16 working registers within
aworkingregister group. Such a groupmustbe aligned on
a 16-byte boundary and is addressed by Register Pointer
RP (FDH). As an example, assume the Register Pointer
contains 70, thus pointing to the working register group
from 70H to 7FH. The LD instruction may be used to
initialize register 76H to an immediate value in one of two
ways

LD 76,#01H !8-bit register address is given
by instruction (3 byte instruction)!

or

LD R6,#01H !4-bit working register address is

given by instruction; 4-bit work
ing register group address is
given by Register Pointer (2 byte
instruction)!

13-8

QD205

Z8° MICROCONTROLLERS

The address calculation for the latter case is illustrated in
Figure 13.1. Notice that 4-bit working-register addressing
offers code compactness and fast execution compared to
its 8-bit counterpart.

To modify the contents of the Register Pointer, the Z8
provides the instruction

SRP #value

Execution of this instruction will load the upper four bits of
the Register Pointer; the lower four bits are always set to

zero. Although a load instruction such as

LD RP, #value
could be used to perform the same function, SRP provides
execution speed (six vs. ten cycles) and code space (two
vs. three bytes) advantages over the LD instruction. The
instruction

SRP #70H

is used to set the Register Pointer for the previous example.

0 0 0 O 0 0 0 1

Register o111] 0000

Instruction

(LD R6, #1) 01 10
y

Register o111]o1 10

Figure 13-1. Address Calculation Using The Register Pointer

13.9.3 Context Switching

A typical function performed during an interrupt service
routine is context switching. Context switching refers to
the saving and subsequent restoring of the program
counter, status, and registers of the interrupted task.
During an interrupt machine cycle, the Z8® automatically
saves the Program Counter and status flags on the stack.
It is the responsibility of the interrupt service routine to
preserve the register space. The recommended meansto
this end is to allocate a specific portion of the register file
for use by the service routine. The service routine thus
preserves the register space of the interrupted task by
avoiding modification of registers not allocated as its own.
The most efficient scheme with which to implement this
function inthe Z8 is to allocate a working register group (or
portion thereof) to the interrupt service routine. In this way,
the preservation of the interrupted task’s registers is solely
a matter of saving the Register Pointer on entry to the
service routine, setting the Register Pointer to its own
working register group, and restoring the Register Pointer
prior to exiting the service routine. For example, assume
such a register allocation scheme has been implemented
in which the interrupt service routine for IRQ0 may access
only working register

Group 4 (registers 40H-4FH). The service routine for IRQO
should be headed by the code sequence:

PUSH RP Ipreserve Register Pointer of in
terrupted task!

SRP #40H laddress working register group
4!

Before exiting, the service routine should execute the
instruction

POP RP
to restore the Register Pointer to its entry value.

Itshould be noted that the technique described above need
not be restricted to interrupt service routines. Such a
technique might prove efficient for use by a subroutine
requiring intermediate registers to produce its outputs. In
this way, the calling task can assume that its environment
is intact upon return from the subroutine.

13-9

N 2La5

Z8° MICROCONTROLLERS

13.9.4 Addressing Mode

The Z8® provides three addressing modes for accessing
the register space: Direct Register, Indirect Register, and
Indexed.

13.9.5 Direct Register Addressing

This addressing mode is used when the target register
address is known at assembly time. Both long (8-bit)
register addressing and short (4-bit) working register ad-
dressing are supported in this mode. Most instructions
supporting this mode provide access to single 8-bit regis-
ters. For example:

LD FEH,#HI STACK

lload register FEH (SPH) with the upper 8-
bits of the label STACK!

AND 00H,MASK_REG

IAND register 0 with register named
MASK_REG!

OR 01H,R5
I0R register 1 with working register 5!
Increment word (INCW) and decrement word (DECW) are
the only two Z8 instructions which access 16-bit operands.
These instructions are illustrated below for the directregis-
ter addressing mode:
INCW RRO
lincrement working register pair RO, R
R1=R1+1
RO = RO + carry!
DECW 7EH
ldecrement working register pair 7EH,
7FH
7FH = 7FH - 1
7EH = 7EH - carry!
Note that the instruction
INCW RR5

will be flagged as an error by the assembler (RR5 not even-
numbered).

13.9.6 Indirect Register Addressing

In this addressing mode, the operand is pointed to by the

register whose 8-bit register address or 4-bit working
register address is given by the instruction. This mode is
used when the target register address is not known at
assembly time and must be calculated during program
execution. For example, assume registers 60H-7FH con-
tain a buffer for output to the serial line via repetitive calls
to procedure SERIAL_OUT. SERIAL_OUT expects work-
ing register 0 to hold the output character. The following
instructions illustrate the use of the indirect addressing
mode to accomplish this task:

LD R1,#20H
lworking register 1 is the byte counter
output 20H bytes!

LD R2,#60H
Iworking register 2 is the buffer pointer
register!

out_again:

LD RO,@R2
lloadintoworkingregister Othe byte pointed
to by working register 2!

INC R2 lincrement pointer!

CALL SERIAL_OUT
loutput the byte!
DJNZ Rf1,out_again
lloop till done!
Indirect addressing may also be used for accessing a 16-
bit register pair via the INCW and DECW instructions. For
example:

INCW @RO

lincrement the register pair whose ad
dress is contained in working register O!

DECW @7FH

ldecrement the register pair whose
address is contained in register 7FH!

The contents of registers RO and 7FH should be even
numbers for proper access; when referencing a register
pair, the least significant address bit is forced to the
appropriate value by the Z8. However, the register used to
point to the register pair need not be an even-numbered
register.

13-10

A 2105

Z8° MICROCONTROLLERS

Since the indirect addressing mode permits calculation of
a target address prior to the desired register access, this
mode may be used to simulate other, more complex
addressing modes. For example, the instruction

SUB 4,BASE(R5)

requiresthe indexed addressing mode whichis not directly
supported by the Z8®subtractinstruction. Thisinstructioncanbe
simulatedasfollows

LD R6,#BASE

!working register 6 has the base address!
ADD R6,R5

Icalculate the target address!
SUB 04H,@R6

Inow use indirect addressing to perform
the actual subtract!

Any available register or working register may be used in
place of R6 in the above example.

13.9.7 Indexed Addressing

The indexed addressing mode is supported by the load
instruction (LD) for the transference of bytes between a
working register and another register. The effective ad-
dress of the latter register is given by the instruction which
is offset by the contents of a designated working (index)
register. This addressing mode provides efficientmemory
usage when addressing consecutive bytes in a block of
register memory, such as a table or a buffer. The working
register used as the index in the effective address calcula-
tion can serve the additional role of counter to control a
loop’s duration.

For example, assume an ASCII character buffer exists in
register memory starting at address BUF for LENGTH
bytes. In order to determine the logical length of the
character string, the buffer should be scanned backward
until the first non-occurrence of a blank character. The
following code sequence may be used to accomplish this
task:

LD RO, #LENGTH
llength of buffer!

Istarting at buffer end, look for 1st non-
blank!

loop:
LD R1,BUF-1(R0)
CpP R1#'"
JR ne,found
Ifound non-blank!
DJINZ RO,loop
llook at next!
all_blanks: llength=0!
found
5instructions
12 bytes
6 cycles overhead

42 cycles per character tested

At labels “all_blanks” and “found,” RO contains the length
of the character string. These labels may refer to the same
location, but they are shown separately for an application
where special processing is required for a string of zero
length. To perform this task without indexed addressing
would require a code sequence such as:

LD R1,#BUF+LENGTH-1
LD RO, #LENGTH

Istarting at buffer end, look for 1st non-blank!
loop1:

CP @R1#'"'
JR ne,found1

Ifound non-blank!
DEC R1
Idec pointer!
DJNZ RO,loop1
lare we done?!
all_blanks1: llength = 0!
found1:
6 instructions
13 bytes
12 cycles overhead
38 cycles per character tested
The latter method requires one more byte of program

memorythanthe former, butisfaster by fourexecutioncycles per
character tested.

13-11

S 2iaE

Z8° MICROCONTROLLERS

As an alternative example, assume a buffer exists as
described above, butitis desired to scan this buffer forward
for the first occurrence of an ASCIl carriage return. The
following illustrates the code to do this:

LD RO,# - LENGTH
Istarting at buffer start, look for 1st car
riage return (= ODH)!

next:

LD r1,BUF + LENGTH(RO)

cP R1,#0DH
JR eq,cr
Ifoundit!
INC RO
lupdate counter/index!

JR nz,next

ltry again!
cr:

ADD RO #LENGTH

IR0 has length to CR!

7 instructions

16 bytes

6 cycles overhead

48 cycles per character tested

13.10 Accessing Program and External Data
Memory

In a single instruction, the Z8® can transfer a byte between
register memory and either program or external data
memory. Load Constant (LDC) and Load Constant and
Increment (LDCI) reference program memory; Load Exter-
nal (LDE) and Load External and Increment (LDEI) refer-
ence external data memory. These instructions require
that a working register pair contain the address of the byte
in either Program or External Data Memory to be accessed
by the instruction (indirect working register pair address-
ingmode). The register byte operand is specified by using
the direct working register addressing mode in LDC and
LDE or the indirect working register addressing mode in
LDCland LDE1. In addition to performing the designated
byte transfer, LDC! and LDEI automatically increment both
the indirect registers specified by the instruction. These
instructions are therefore efficient for performing block
moves between register and either program or external
datamemory. Since the indirect addressing mode is used
to specify the operand address within program or external

data memory, more complex addressing modes may be
simulated. For example, the instruction

LDC R3,BASE(R2)

requires the indexed addressing mode, where BASE is the
base address of a table in program memory and R2
contains the offset from table startto the desired table entry.
Thefollowing code sequence simulates this instruction with
the use of two additional registers (RO and R1 in this
example):

LD RO,#HI BASE
LD R1,#LO BASE

IRRO has table start address!
ADD R1,R2
ADC RO,#0

IRRO has table entry address!
LDC R3,@RR0O

IR3 has the table entry!

13.10.1 Configuring the Z8 for /0
Applications as Opposed to Memory
Intensive Applications

The Z8 offers a high degree of flexibility in memory and I/O
intensive applications. For devices with thirty-two port bits
provided, 16, 12, eight, or zero may be configured as
address bits to external memory. This allows for address-
ing of up to 64K bytes of external memory, which can be
expanded to 128K bytes if the Data Memory Select output
(DM) is used to distinguish between program and data
memory accesses. The following instructions illustrate the
code sequence required to configure the Z8 with 12 exter-
nal addressing lines and to enable the Data Memory Select
output:

LD PO1M,# 00010010B

Ibit 3-4 enable ADO-AD7;
bit 0-1 enable A8-A11!

LD P3M,# 00010010B
Ibit 3-4 enable DM!

The two bytes following the mode selection of Port O and
Port 1 should not reference external memory due to
pipelining of instructions within the Z8. Note that the load
instruction to P3M satisfies this requirement (providing that
it resides within the internal program memory).

13-12

A 21La5

Z8° MICROCONTROLLERS

13.10.2 LDC and LDE

Toillustrate the use of the Load Constant (LDC) and Load
External (LDE) instructions, assume there exists a hard-
ware configuration with external memory and DataMemory
Selectenabled.

13.10.3 Accessing Program and External
Data Memory

LDClinstruction provides an economical means of initializ-
ing consecutive registers from an initialization table in
program memory. The following code excerpt illustrates
this technique of initializing control registers F2H through
FFH from a 14-byte array (INIT_tab) in program memory:
SRP #00OH

LD R6,#H! INIT_tab
LD R7.#LO INIT_tab
LD R8,#F2H

11streg to be initialized!

13.10.4 LDEI

The LDEI instruction is useful for moving blocks of data
between external and register memory since auto-incre-
mentis performed on both indirectregisters designated by
the instruction. The following code excerpt illustrates a
register buffer being saved at address 40H through 60H
into external memory at address SAVE:

LD R10,#Hl SAVE
lexternalmemory!
LD R11,#LO SAVE
laddress!
LD R8,#40H

Istarting register!

sponding mask bit is a
logic 1.

Inumber of registers to save in

LD R9.#21H

LD R9,#0EH external data memory!
loop:
llength of register block!
loop: LDEI @RR10,@R8
LDCI @R8,@RR6 linitaregister!
lload aregister fromthe init table! DJNZ R9,loop
DJNZ R9,loop luntildone!
Icontinue till done! 6 instructions
)) 12 bytes
7 instructions 24 cycles overhead
14 bytes 30 cycles per register saved
30 cycles overhead
30 cycles per register initialized
13.11 BIT MANIPULATIONS
Support of the test and modification of an individual bitor ~ M Test Under Mask (TM)
group of bits is required by most software applications
suited tothe Z8 microcomputer. Initializing and modifying ® Test Complement Under Mask (TCM)
the Z8 control registers, polling interrupt requests, manipu-
lating portbits for control of or communicationwithattached B AND
devices, and manipulation of software flags for internal
control purposes are all examples of the heavy use of bit ® OR
manipulation functions. These examples illustrate the
needfor suchfunctionsinallareas of the Z8registerspace. ~ ® XOR
These functions are supported in the Z8 primarily by six ~® Complement (COM)

instructions:

13-13

N 25

Z8° MICROCONTROLLERS

These instructions may access any Z8® register, regard-
less of its inherent type (control, I/O, or general-purpose),
with the exception of the write-only control registers. Table
13-1 summarizes the function performed on the destina-
tion byte by each of the above instructions. All of these
instructions, with the exception of COM, require a mask
operand. The 'selected' bits referenced in Table 13-1 are
those bits in the destination operand for which the corre-

Table 13-1 Bit Manipulation Instruction Usage

Opcode Use

™ To test selected bits for logic O

TCM To test selected bits for logic 1

AND To reset all but selected bits to
logic 0

OR To set selected bits to logic 1

XOR To complement selected bits

COM To complement all bits

The instructions AND, OR, XOR, and COM have functions
common to today’s microcontrollers and therefore are not
described in depth here. However, examples of the use of
these instructions are laced throughout the remainder of
this chapter, thus giving an integrated view of their uses in
common functions. Since they are unique to the Z8, the
functions of Test under Mask and Test Complement under
Mask, are discussed in more detail next.

13.11.1 Test Under Mask (TM)

The Test under Mask instruction is used to test selected
bits for logic 0. The logical operation performed is

destination AND source.

Neither source nor destination operand is modified; the
FLAGS control register is the only register affected by this
instruction. The zero flag (Z) is set if all selected bits are
logic O; it is reset otherwise. Thus, if the selected destina-
tion bits are either all logic 1 or a combination of 1s and Os,
the zero flag would be cleared by this instruction. The sign
flag (S) is either set or reset to reflect the result of the AND
operation; the overflow flag (V) is always reset. All other
flags are unaffected. Table 13-2illustratesthe flag settings
which result from the TM instruction on a variety of source
and destination operand combinations. Note that a given
TM instruction will never result in both the Z and S flags
being set.

13.11.2 Test Complement Under Mask
The Test Complement under Mask instruction is used to
test selected bits for logic 1. The logical operation per-
formedis

(NOTdestination)ANDsource.

Table 13-2 Effects of the TM Instruction

Destination = Source Flags
(bnary) (bnary) Z8V
10001100 01110000 100
01111100 01110000 000
10001100 11110000 010
11111100 11110000 010
00011000 10100001 100
01000000 10100001 100

As in Test under Mask, the FLAGS control register is the
only register affected by this operation. The zero flag (Z)
is set if all selected destination bits are 1; it is reset
otherwise. The sign flag (S) is set or reset to reflect the
result of the AND operation; the overflow flag (V) is always
reset. Table 13-3 illustrates the flag settings which result
from the TCM instruction on a variety of source and
destination operand combinations. As with the TM instruc-
tion, a given TCM instruction will never result in both the Z
and S flags being set.

Table 13-3 Effects of the TCM Instruction

Destination = Source Flags
(binary) (binary) ZSYV
10001100 01110000 000
01111100 01110000 100
10001100 11110000 000
11111100 11110000 100
00011000 10100001 010
01000000 10100001 010

13-14

Q205

2Z8° MICROCONTROLLERS

13.12 Stack Operations

The Z8% stack resides within an area of data memory
(internal or external). The current address in the stack is
contained in the stack pointer, which decrements as bytes
are pushed onto the stack, and increments as bytes are
popped from it. The stack pointer occupies two control
register bytes (FEH and FFH) in the Z8 register space and
may be manipulated like any other register. The stack is

13.12.2 CALL

A subroutine call causes the current Program Counter (the
address of the byte following the CALL instruction) to be
pushedonto the stack. The Program Counter is loaded with
the address specified by the CALL instruction. This ad-
dress may be a direct address or an indirect register pair
reference. For example:

useful for subroutine calls, interrupt service routines, and LABEL 1 CALL 4F98H
parameter passing and saving. Figure 13-2 illustrates the
downward growth of a stack as bytes are pushed onto it. Idirect addressing: PC is
loaded with the hex value 4F98;
13.12.1 Internal as Opposed to External address LABEL 1+3is pushed
Stack onto the stack!
The location of the stack in data memory may be selected LABEL 2 CALL @RR4
to be either internal register memory or external data
memory. Bit 2 of control register PO1M (F8H) controls this lindirect addressing: PC is
selection. Register pair SPH (FEH), SPL (FFH) serves as loaded with the contents of
the stack pointer for an external stack. Register SPL is the working register pair R4, R5;
stack pointer for an internal stack. address LABEL 2+2is pushed
onto the stack!
In the latter configuration, SPH is available for use as a
general purpose register. The following illustrates a code LABEL 3 CALL @7EH
equence that initializes external stack operations:
seq : P lindirect addressing PC is
LD PO1M.#00H loaded with the contents of
’ register pair 7EH, 7FH;
Ibit 2: select external address LABEL 3+2 is pushed
stack! onto the stack!
LD SPH,#HI 'STACK
LD SPL#LO ;STACK
X SP—
x -1 SP— R1 R1
X -2 PC Low
X -3 sp—>] PC High
X -4
Initial Following Following
State Push R1 Call
Figure 13-2. Growth Of A Stack

13-15

N 205

2Z8° MICROCONTROLLERS

13.12.3 RET

The return (RET) instruction causes the top two bytes to be
popped fromthe stackand loaded into the Program Counter.
Typically, this is the last instruction of a subroutine and thus
restores the PC to the address following the CALL to that
subroutine.

13.12.4 Interrupt Machine Cycle

During an interrupt machine cycle, the PC followed by the
status flags is pushed onto the stack. A more detailed
discussion of interrupt processing is provided in sections
that follow.

13.125 IRET

The interrupt return (IRET) instruction causes the top byte
to be popped fromthe stack and loaded into the status flag
register, FLAGS (FCH); the nexttwo bytes are then popped
and loaded into the Program Counter. Inthis way, status is
restored and program execution continues where ithad left
off when the interrupt was recognized.

13.12.6 PUSH and POP

The PUSH and POP instructions allow the transfer of bytes
between the stack and register memory, thus providing
program access to the stack for saving and restoring
needed values and passing parameters to subroutines.

Execution of a PUSH instruction causes the stack pointer
to be decremented by 1, the operand byte is then loaded
into the location pointed to by the decremented stack
pointer. Execution of a POP instruction causes the byte
addressed by the stack pointer to be loaded into the
operand byte; the stack pointer isthen incremented by 1. In
both cases, the operand byte is designated by either a
directregisteraddress or anindirectregister reference. For
example:

PUSH R1 lindirect address: push working
register 1 onto the stack!

POP 05H ldirect address: pop the top
stack byte into register 5!

PUSH @R4 lindirect address: pop the top
stack byte into the byte
pointed to by working register 4!

PUSH @11H lindirect address: push onto

the stack the byte pointed to
by register 17!

13.13 Interrupts

The Z8% recognizes six different interrupts from internal
and external sources, including internal timer/counters,
serial I/0, and Port 3 lines. Interrupts may be individually
or globally enabled/disabled using the Interrupt Mask
Register IMR (FBH) and may be prioritized for simulta-
neous interrupt resolution using the Interrupt Priority
Register IPR (FOH). When enabled, interrupt request
processing automatically vectors to the designated ser-
vice routine. When disabled, an interrupt request may be
polled to determine when processing is needed.

13.13.1 Interrupt Initialization

Before the Z8 can recognize interrupts following RESET,
some initialization tasks must be performed. The initializa-
tionroutine should configure the Z8 interruptrequeststobe
enabled/disabled, as required by the target application and
assigned a priority (via IPR) for simultaneous enabled-
interrupt resolution. An interrupt request is enabled if the
corresponding bit in the IMR is set (=1) and interrupts are
globally enabled (bit 7 of IMR =1). Aninterrupt request is
disabled if the corresponding bitin the IMR is reset (=0) or
interrupts are globally disabled (bit 7 of IMR =0).

A RESET of the Z8 causes the contents of the Interrupt
Request Register IRQ (FAH) to be held to zero until the
execution of an El instruction. Interrupts that occur while
the Z8 is in this initial state will not be recognized since the

corresponding IRQ bit cannot be set. The El instruction is
specially decoded by the Z8 to enable the IRQ; simply
setting bit 7 of IMR is therefore not sufficient to enable
interrupt processing following RESET. However, subse-
quentto this initial El instruction, interrupts may be globally
enabled either by the instruction:

El lenableinterrupts!
or by a register manipulation instruction such as

OR IMR,#80H
To globally disable interrupts, execute the instruction

DI Idisable interrupts!
This will cause bit 7 of IMR to be reset.
Interrupts must be globally disabled prior to any modifica-
tion of the IMR, IPR or enabled bits of the IRQ (those
corresponding to enabled interruptrequests), unlessitcan
be guaranteed that an enabled interrupt will not occur
during the processing of such instructions. Since interrupts
represent the occurrence of events asynchronous to pro-

gram execution, it is highly unlikely that such a guarantee
can be made reliably.

13-16

N 205

Z8° MICROCONTROLLERS

13.13.2 Vectored Interrupt Processing

Enabled interrupt requests are processed in an automatic
vectored mode in which the interrupt service routine ad-
dress is retrieved from within the first 12 bytes of Program
Memory. When an enabled interruptrequestisrecognized
by the Z8, the Program Counter is pushed onto the stack
(low order 8 bits first, then high-order 8 bits) followed by the
FLAGS register (FCH). The corresponding interrupt re-
questbitisresetin IRQ, interrupts are globally disabled (bit
7 of IMR is reset), and an indirect jump is taken on the word
in location 2x, 2x + 1 (x = interrupt request number,0<x<5).
For example, if the bytes at addresses 0004H and 0005H
contain 05H and 78H respectively, the interrupt machine
cycle for IRQ2 will cause program execution to continue at
address 0578H.

When interrupts are sampled, more than one interrupt may
be pending. The Interrupt Priority Register (IPR) controls
the selection of the pending interrupt with highest priority.
While this interrupt is being serviced, a higher-priority

interrupt may occur. Such interrupts may be allowed
service within the current interrupt service routine (nested)
ormay be held until the current service routine is complete
(non-nested).

To allow nested interrupt processing, interrupts must be
selectively enabled upon entry to an interrupt service
routine. Typically, only higher-priority interrupts would be
allowed to nest within the current interrupt service. To do
this an interrupt routine must “know” which interrupts have
a higher priority than the current interrupt request. Selec-
tion of such nesting priorities is usually a reflection of the
priorities established in the Interrupt Priority Register (IPR).
Giventhis data, the firstinstructions executed inthe service
routine should be to save the current Interrupt Mask Reg-
ister , mask off all interrupts of lower and equal priority, and
globally enable interrupts (El). For example, assume that
service of interrupt requests 4 and 5 are nested within the
service of interrupt request 3. The following illustrates the
code required to enable IRQ4 and IRQ5:

Iservice routine for IRQ3!

linterrupts were globally disabled during the interruptmachine cycle -no
Dl is needed prior to modification of IMR!

Idisable all but IRQ4 & 5!

linterrupts are globally enabled now — must disable them prior to
modification of IMR!

CONSTANT
INT_MASK_3 = 00110000B
GLOBAL
IRQ3_service PROCEDURE ENTRY
PUSH IMR
AND IMR#INT_MASK_3
El
1.1 Iservice interrupt!
DI
POP IMR Irestore entry IMR!
IRET

END IRQ3_service

Note: IRQ4 and IRQ5 are enabled by the above sequence after IRQ3_service only if their respective IMR bits = 1 on entry to

IRQ3_service.

1317

@ 205 28 MICROCONTROLLERS

Note (Continued):
The service routine for an interrupt whose processing is to be completed without interruption should not allow interrupts

to be nested within it. Therefore, itneed not modify the IMR, since interrupts are disabled automatically during the interrupt
machine cycle.

The service routine for an enabled interrupt is typically concluded with an IRET instruction, which restores the FLAGS
register and Program Counter from the top of the stack and globally enables interrupts. Toreturn from aninterruptservice
routine without re-enabling interrupts, the following code sequence could be used:
FOP RAGS
IFLAGS=@SP!
RET IPC=@SP!

This accomplishes all the functions of IRET, except that IMR is not affected.

13-18

Q2105

Z8° MICROCONTROLLERS

13.13.3 Polled Interrupt Processing

Disabled interrupt requests may be processed in a polled
mode, in which the corresponding bits of the Interrupt
Request Register (IRQ) are examined by the software.
When an interrupt request bit is found to be a logic 1, the
interrupt should be processed by the appropriate service
routine. During such processing, the interrupt requestbitin
the IRQ must be cleared by the software in order for
subsequent interrupts on that line to be distinguished from

Ipollinterrupt inputs here!

TCM IRQ, #00010000B

JR NZ,TESTO

CALL IRQ4_service
TESTO TCM IRQ, #00000001B

JR NZ,TEST1

CALL IRQO_service
TESTH TCM IRQ, #00000010B

JR NZ, DONE

CALL IRQ1_service
DONE !...!
IRQ4_service PROCEDURE ENTRY

(.

AND IRQ, #11101111B

[

RET

END IRQ4_service

IRQO_service PROCEDURE ENTRY

..... IRQ, #11111110B

END IRQO_service

IRQ1_service PROCEDURE ENTRY

IRQ, #11111101B

the currentone. If more than one interrupt requestis to be
processed in a polled mode, polling should occur in the
order of established priorities. For example, assume that
IRQO, IRQ1, and IRQ4 are to be polled and that established
priorities are, from high to low, IRQ4, IRQO, IRQ1. An
instruction sequence like the following should be used to
poll and service the interrupts:

1IRQ4 need service?!
Ino!
lyes!

1IRQO need service?!

Ino!

1IRQ1 need service ?!
Ino!

Iclear IRQ4!

Iclear IRQO!

Iclear IRQ1!

13-19

N 2iLaB

28° MICROCONTROLLERS

13.14 Timer/Counter Functions

The Z8® provides two 8-bit timer/counters, TO and T1, that
are adaptable to a variety of application needs and thus
allow the software (and external hardware) to be relieved
of the bulk of such tasks. Included in the set of such uses
are:

Internal Delay Timer

Maintenance of a Time-Of-Day Clock

Watch-Dog Timer

External Event Counting

Variable Pulse Train Output
m Duration Measurement of External Event
B Automatic Delay Following External Event Detection

Each timer/counter is driven by its own 6-bit prescaler,
which is in turn driven by the internal Z8 clock divided by
four. ForT,, the internal clockmay be gated or triggered by
an external event or may be replaced by an external clock
input. Each timer/counter may operate in either single-
pass or continuous mode where, at end-of-count, either
counting stops or the counter reloads and continues count-
ing. The counter and prescaler registers may be altered
individually while the timer/counter is running; the software
controlswhether the new values are loaded immediately or
when end-of-count (EOC) is reached.

Although the timer/counter prescaler registers (PREO and
PRE1) are write-only, there is a technique by which the
timer/counters may simulate a readable prescaler. This
capability is a requirement for high resolution measure-
ment of an event’s duration. The basic approach requires
thatone timer/counter be initialized with the desired counter
and prescaler values. The second timer/counter is initial-
ized with a counter equal to the prescaler of the first timer/
counter and a prescaler of 1. The second timer/counter
must be programmed for continuous mode. With both
timer/counters driven by the internal clock and started and
stopped simultaneously, they will run synchronous to one
another; thus, the value read from the second counter will
always be equivalent to the prescaler of the first.

13.14.1 Time/Count Interval Calculation
To determine the time interval (i) until EOC, the equation

i=txpxv

characterizes the relation between the prescaler (p),
counter (v), and clock input period (t); is given by

1/(XTAL/8)
(assumes internal clock set for XTAL divide by 2 mode)

where XTAL is the Z8 input clock frequency; p is in the
range 1-64; v is in the range 1-256. When programming
the prescaler and counter registers, the maximum load
value is truncated to six and eight bits, respectively, and is
therefore programmed as zero. For an input clock
frequencyof 8 MHz, the prescaler and counter register
values may be programmed to time an interval in the range

Tusx1x1<i<1us x 64 x 256
1us £i<£16.384 ms

To determine the count (c) until EOC for T, with external
clock input, the equation

cC=pXxVv
characterizes therelation betweenthe T, prescaler (p) and
the T, counter (v). The divide-by-8 on the input frequency
is bypassed in this mode. The count range is

1x1<c<64x256
1<c<16,384

13.14.2 T, Modes

Port 3, bit 6 (P36) may be configured as an output (T, ;)
which is dynamically controlled by one of the following

BT,

" T

B Internal Clock

When driven by Tjor T,, T, ; is reset to a logic 1 when the
corresponding load bit is set in timer control register TMR

(F1H) and toggles on EOC from the corresponding counter.

When T, is driven by the internal clock, that clock is
directly output on P36.

While programmed as T,,;, P36 is disabled from being
modified by awrite to port register 03H; however, its current
output may be examined by the Z8 software by a read to
port register O3H.

13-20 |

Q2005

28 MICROCONTROLLERS

13.14.3 T,, Modes

Port3, bit 1 (P31) may be configured as aninput (T,) which
is used in conjunction with T1 in one of four modes.

B External Clock Input

B Gate Input for Internal Clock

B Nonretriggerable Input for Internal Clock
B Retriggerable Input for Internal Clock

For the latter two modes, it should be noted that the
existence of a synchronizing circuit within the Z8® causes
a delay of two to three internal clock periods following an
external trigger before clocking of the counter actually
begins.

Each High-to-Low transition on T, will generate interrupt
request IRQ2, regardless of the selected T, mode or the
enabled/disabled state of T1. IRQ2 must therefore be
masked or enabled according to the needs of the applica-
tion.

The 'external clock input' T, mode supports the counting
of externalevents, where an eventis seen as a High-to-Low
transition on T,. Interrupt request IRQ5 is generated on
the nth occurrence (single-pass mode) or on every nth
occurrence {continuous mode) of that event.

The “gate input for internal clock” T,, mode provides for
duration measurement of an external event. In this mode,
the T1 prescaler is driven by the Z8 internal clock, gated by
aHigh levelon T, In other words, T1 will count while T,
is Highand stop counting while T, is Low. Interruptrequest
IRQ2 is generated on the High-to-Low transition on T,
Interruptrequest IRQ5 is generated on T1 EOC. Thismode
may be used when the width of a High-going pulse needs
tobemeasured. Inthismode, IRQ2is typically the interrupt
request of most importance, since it signals the end of the
pulse being measured. If IRQS is generated prior to IRQ2
in this mode, the pulse width on T, is too large for T1 to
measure in a single pass.

The “nonretriggerable input” T,, mode provides for auto
matic delay timing following an external event. In this
mode, T1 is loaded and clocked by the Z8 internal clock
following the first High-to-Low transition on T, after T1 is
enabled. T, transitions that occur after this point do not
affect T,. In single-pass mode, the enable bit is reset on
EQC; further T, transitions will not cause T, to load and
begin counting until the software sets the enable bit again.
In continuous mode, EOC does not modify the enable bit,
but the counter is reloaded and counting continues imme-
diately; IRQS is generated every EOC until software resets
the enable bit. This T, mode may be used, for example,
totime the line feed delay following end of line detection on
a printer or to delay data sampling for some length of time
following a sample strobe.

The “retriggerable input” T,, mode will load and clock T,
with the Z8 internal clock on every occurrence of a High-
to-Low transition on T,. T, will time-out and generate
interrupt request IRQ5 when the programmed time interval
(determined by T1 prescaler and load register values) has
elapsed since the last High-to-Low transition on T,,. In
single-pass mode, the enable bit is reset on EOC; further
T,y transitions will not cause T1 to load and begin counting
until the software sets the enable bit again. In continuous
mode, EOC does not modify the enable bit, butthe counter
is reloaded and counting continues immediately; IRQ5 is
generated at every EOC until the software resets the
enable bit. This T\, mode may provide such functions as
watch-dog timer (in other words, interrupt if conveyor belt
stopped or clock pulse missed), or keyboard time-out (in
other words., interrupt if no input in x ms).

13-21

QA 2La5

Z8° MICROCONTROLLERS

13.14.4 Examples

Several possible uses of the timer/counters are given in the
following four examples.

13.14.5 Time-Of-Day Clock
The following module illustrates the use of T1 for mainte-

nance of a time-of-day clock, which is kept in binary format
in terms of hours, minutes, seconds, and hundredths of a

second. Itis desired thatthe clock be updated once every
hundredth of a second; therefore, T1, is programmed in
continuous mode to interrupt 100 times a second. Al-
though T1 is used for this example, TO is equally suited for
the task.

The procedure for initializing the timer (TOD_INIT), the
interrupt service routine (TOD) which updates the clock,
and the interrupt vector forT1 end-of-count (IRQ_5) are
illustrated below (XTAL = 7.3728 MHz, XTAL/2 mode is
assumed):

Z8ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
1 TIMER1 MODULE
2 CONSTANT
3 HOUR= R12
4 MINUTE = R13
5 SECOND = R14
6 HUND = R15
7 $SECTION PROGRAM
8 GLOBAL
9 1IRQ5 interrupt vector!
10 $ABS 10
P 0000 OOOF 11 IRQ_5 ARRAY[1 WORD] = [TOD]
12
13 $REL
P 000C 14 TOD_INIT PROCEDURE
15 ENTRY
P 0000 E6 F3 93 16 LD PRE1,#10010011B
17 Ibit 2-7 prescaler = 36;
18 bit 1 internal clock;
19 bitO continuous mode!
P 0003 E6 F2 00 20 LD T1,#00H 1(256) time-out =
21 1/100 second!
P 0006 46 F1 0C 22 OR TMR,#0OCH lload, enable T1!
P 0009 8F 23 DI
P O00A 46 FB 20 24 OR IMR,#20H lenable T1 interrupt!
P 000D 9F 25 El
P OOOE AF 26 RET
P O00F 27 END TOD_INIT
28
P O0OF 29 TOD PROCEDURE
30 ENTRY
P QOOF 70 FD 31 PUSH RP
32 IWorking register file 10H to 1FH contains
33 the time of day clock!
P 00113110 34 SRP #10H
P 0013 FE 35 INC HUND 11 more .01 sec!
P 0014 A6 EF 64 36 CP HUND,#64H 'full second yet?!
P 0017 EB 13 37 JR NE,TOD_EXIT ljump if no!
P 0019 BO EF 38 CLR HUND
P 001B EE 39 INC SECOND 11 more second!
P 001C A6 EE 3C 40 CP SECOND,#3CH 1full minute yet?!
P 001F EB OB 41 JR NE,TOD_EXIT ljump if no!
P 0021 BO EE 42 CLR SECOND

13-22

N 205

Z8° MICROCONTROLLERS

P 0023 DE

P 0024 A6 ED 3C
P 0027 EB O3

P 0029 BO ED

P 002B CE

P 002C 50 FD
P 002E BF
P 002F

0 ERRORS

ASSEMBLY COMPLETE

TOD_INIT

7 instructions
15 bytes

16 us

INC MINUTE

cpP MINUTE,#3CH

JR NE, TOD_EXIT

CLR MINUTE

INC HOUR
TOD_EXIT:

POP RP
IRET

END TOD

END TIMER1

TOD
17 instructions
32 bytes

11 more minute!
Hull hour yet?!
ljump if no!

Irestore entry RPI

19.5 us (average) including interrupt response time

13-23

N 2005

Z8° MICROCONTROLLERS

13.14.6 Variable Frequency, Variable Pulse
Width Output

The following module illustrates one possible use of T .
Assume it is necessary to generate a pulse train with a 10
percent duty cycle, where the outputis repetitively high for
1.6 ms and then low for 14.4 ms. To do this, T, is
controlled by end-of-count from T1, although TO could
alternately be chosen. This examples makes use of the Z8
feature that allows a timer’s counter register to be modified
without disturbing the count in progress. In continuous
mode, the new value is loaded when T1 reaches EOC. T1
is first loaded and enabled with values to generate the
short interval. The counter register is then immediately
modified with the value to generate the long interval; this
value is loaded into the counter automatically on T1 EOC.
The prescaler selected value must be the same for both

long and short intervals. Note that the initial loading of the
T1 counter register is followed by setting the T1 load bit of
timer control register TMR (F1H); this action causes T, to
beresettoalogic 1 output. Each subsequent modification
of the T1 counter register does not affect the current T, ;
level, since the T1 load bitis NOT altered by the software.
The new value is loaded on EOC and T, ; will toggle at that
time. The T1 interrupt service routine should simply modify
the T1 counter register with the new value, alternating
between the long and short interval values.

In the example which follows, bit 0 of register 04H is used
as a software flag to indicate which value was loaded last.
This module illustrates the procedure for T1/T ; initializa-
tion (PULSE_INIT), the T1 interrupt service routine (PULSE),
and the interrupt vector forT1, EOC (IRQ_5). XTAL =8
MHz, XTAL/2 mode is assumed.

Z8ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
1 TIMER2 MODULE
2 $SECTION PROGRAM
3 GLOBAL
4 1IRQ5 interrupt vector!
5 ABS 10
P 0000 0017’ 6 IRQ_5 ARRAY[1 WORD] = [PULSE]
7
8 $REL
P 000C 9 PULSE_INIT PROCEDURE
10 ENTRY
P 000 E6 F3 03 11 LD PRE1,#00000011B
12 Ibit 2-7 prescaler= 64;
13 bit 1 internal clock;
14 bit 0 continuous mode!
P 0003 E6 F7 00 15 LD P3M,#00H Ibit 5: P36 = output (T,,;)!
P 0006 E6 F2 19 16 LD T1,#19H Ifor short interval!
P 0009 8F 17 DI
P O00A 46 FB 20 18 OR IMR,#00100000B lenable T1 interrupt!
P 000D E6 F1 8C 19 LD TMR,#10001100B
20 Ibit 6-7 Tout controlled
21 by T1;
22 bit 3 enable T1;
23 bit 2 load T1!
24 1Set long interval counter, to be loaded on T1 EOC!
P 0010 E6 F2 E1 25 LD T1,#0E1H
26 IClear alternating flag for PULSE!
P 0013 BO 04 27 CLR 04H 1=0 25 next;
28 =1 225 next!
P 0015 9F 29 El
P 0016 AF 30 RET

13-24

@ 2ila Z8° MICROCONTROLLERS

P 0017 31 END PULSE_INIT
32
33
P 0017 34 PULSE PROCEDURE
35 ENTRY
P 0017 E6 F2 E1 36 LD T1,#0E1H Inew load value!
P 001A B6 04 O1 37 XOR 04H#01H !which value next?!
P 001D 6B 03 38 JR Z,PULSE_EXIT Ishould be 225!
P O01F E6 F2 19 39 LD T1,#19H Ishould be 25!
40 PULSE_EXIT
P 0022 BF 41 IRET
P 0023 42 END PULSE
43 END TIMER2
0 ERRORS
ASSEMBLY COMPLETE
PULSE_INIT PULSE
10 instructions 5 instructions
23 bytes 12 bytes
23 us 25 us (average) including interrupt response time

13-25

O 205

Z8° MICROCONTROLLERS

13.14.7 Cascaded Timer/Counters

For some applications it may be necessary to measure a
greater time interval than a single timer/counter can mea-
sure (16.384 ms). In this case, T, and T, may be used
to cascade TO and T1 to function as a single unit. T,
programmed to toggle on TO end-of-count, should be
wired back to T, which is selected as the external clock
input for T1. With TO programmed for continuous mode,
Tour (and therefore T,) goes through a High-to-Low transi-
tion (causing T1to count) on every other TO EOC. Interrupt
request IRQ5 is generated when the programmed time
interval has elapsed. Interrupt requests IRQ2 (generated
on every T, High-to-Low transition) and IRQ4 (generated
onTOEOQC)are of noimportance in this application and are
therefore disabled.

To determine the time interval (i) until EOC, the equation
i=txp0OxvOx(2xplxvl-1)

characterizes the relation between the TO prescaler (p0)
and counter (v0), the T1 prescaler (p1) and counter (v1),
and the clock input period (t). Assuming XTAL =8MHz, the
measurable time interval range is:

Tusx1x1x(2x1-1)<is
1usx64x256x(2x64x256-1)
1us <i<536.854528 s

Figure 13-3 illustrates the interconnection between TOand
T1. The following module illustrates the procedure required
to initialize the timers for a 1.998 second delay interval

XTAL

+2

6-Bit TO
Prescaler

8-Bit TO
Counter

Tour (P3g) |

Tin (P34)

p———> To Interrupt Logic (IRQ4)

4

6-Bit T1
Prescaler

'

8-Bit T1
Counter

l———> To Interrupt Logic (IRQS5)

Figure 13-3. Cascaded Timer/Counters

13-26

QD205

Z8® MICROCONTROLLERS

Z8ASM 2.0

LOC 0OBJ CODE

P 0000

P 0000 E6 F3 28

P 0003 E6 F7 00
P 0006 E6 F2 64
P 0009 E6 F5 29

P 000C E6 F4 64
P OOOF 8F
P 0010 56 FB 2B

P 0013 46 FB 20

P 0016 9F
P 0017 E6 F1 4F

P 001A AF
P 001B

0 ERRORS

STMT SOURCE STATEMENT

O OWO~NOOTAWN =

ASSEMBLY COMPLETE

11 instructions
27 bytes
26.6 us

TIMER3 MODULE
GLOBAL
TIMER_16 PROCEDURE
ENTRY
LD PRE1,#00101000B
LD P3M,#00H
LD T1,#64H
LD PREQ,#00101001B
LD TO,#64H
DI
AND IMR,#00101011B
OR IMR,#00100000B
El
LD TMR,#01001111B
RET
END TIMER_16
END TIMERS3

Ibit 2-7 prescaler =
bit 1 external clock;

10;

bit 0 single-pass mode!
Ibit 5 let P36 be Tout!
IT1 counter register!

12
Ibit 2-7 prescaler =

10;

bit O continuous mode!
ITO counter register!

and IRQ4 (TO)!
lenable IRQ5 (T1)!

1bit6-7T,, ;controlled
by TO;

bit4-5T, modeisext.
clockinput;

bit 3 enable T1;
bit 2 load T1;

bit 1 enable T0;
bit 0 enable T0!

Idisable IRQ2 (Tin);

13-27

AY= e o}

Z8° MICROCONTROLLERS

13.14.8 Clock Monitor

T1and T, may be used to monitor a clock line (in a diskette
drive, for example) and generate an interrupt request
when a clock pulse is missed. To accomplish this, the
clock line to be monitored is wired to P3, (T). T, should be
programmed as a retriggerable inputto T,, such that each
falling edge on T, will cause T1 to reload and continue
counting. If T1 is programmed to time-out after an interval
of one-and-a-half times the clock period being monitored,
T1 will time-out and generate interrupt request IRQ5 only
if a clock pulse is missed.

The following module illustrates the procedure for initializ-
ing T1 and T, (MONITOR_INIT) to monitor a clock with a
period of 2us. XTAL = 8 MHz is assumed. Note that this
example selects single-pass rather than continuous mode
for T1. This is to prevent a continuous stream of IRQ5
interruptrequestsin the event that the monitored clockfails
completely. Rather, the interrupt service routine (CLK_ERR)
is left with the choice of whether or not to re-enable the
monitoring. Also shown is the T1 interrupt vector (IRQ_5).

Z8ASM 2.0
LOC 0OBJ CODE STMT SOURCE STATEMENT
1 TIMER4 MODULE
2 $SECTION PROGRAM
3 GLOBAL
4 HIRQ5 interrupt vector!
5 $ABS 10
P 0000 0015’ 6 IRQ_5 ARRAY[1 WORD] = [CLK_ERR]
7
8 $REL
P 000C 9 MONITOR_INITPROCEDURE
10 ENTRY
P 0000 E6 F3 04 11 LD PRE1,#00000100B
12 Ibit 2-7 prescaler =1;
13 bit 1 external clock;
14 bit 0 single-pass mode!
POOO3E6F700 15 LD PaVI#00H Ibit5letP36be T, !
POOOBE6F203 16 LD T1#0BH IT1loadregister,
7 =1.5*2usec!
P 0009 8F 18 DI
POOOAS6FB3B 19 AD IMR#00111011B IdisablelRQ2(T,)!
PO0O0OD46FB20 D R IMR#00100000B lenablelRQ5(T1)!
POO109F 2 B
22
P 0011 E6 F1 38 23 LD TMR,#00111000B
4 1bit4-5T, modeis
25 retrig. input;
26 bit 3 enable T1!
P 0014 AF 27 RET
P 0015 28 END MONITOR_INIT
29
30
P 0015 31 CLK_ERR PROCEDURE
32 ENTRY
33 L.t Ihandle the missed clock!
34
35 lif clock monitoring should continue...!

13-28

@ 2.4k Z8° MICROCONTROLLERS

P 0015 46 F1 08 36 OR TMR, #00001000B
37 Ibit 3: enable T1!

P 0018 BF 38 IRET

P 0019 39 END CLK_ERR
40 END TIMER4

0 ERRORS

ASSEMBLY COMPLETE

MONITOR_INIT CLK_ERR

9 instructions 2+ instructions

21 bytes 4+ bytes

21.5us 18.5 us+ including interrupt response time

13.15 1/O FUNCTIONS

The Z8® provides up to 32 I/O lines mapped into registers Table 13-4. Generic Z8 MCU Port 3

0-3 of the internal register file. Each nibble of Port 0 is Special Functions
individually programmable as input, output, or address/ FUNCTION BIT SIGNAL
data lines (A15-A12, A11-A8). Port 1 is programmable as —

a byte entity to provide input, output, or address/data lines P31 DAV2/RDY2
(AD7-ADO). The operating modes for the bits of Ports 0 BAV.

and 1 are seiected by control register PO1M (F8H). Selec- P32 E'L—\Y-O/RDYO
tion of I/O lines as address/data lines supports access to P32 DAV1/RDY1
external program and Data Memory. Each bit of Port 2 is Handshake P34 RDY1/DAV{
individually programmable as an input or an output bit. —
Port 2 bits programmed as outputs may also be pro- P35 RDYO/EﬂO
grammed (via bit 0 of P3M) to all have active pull-ups or all P36 RDY2/DAV2

be open-drain (active pull-ups inhibited). In Port 3, four

bits (P30-P33) are fixed as inputs, and four bits (P34-P37) P30 iRQ3
are fixed as outputs, but their functions are programmable. Interrupt P31 IRQ2
?gicial functions provided by Port 3 bits are listed in Table Request P32 IRQO
) P33 IRQ1

Note: |/O feature options are device dependent. Consult the Counter/ P31 T
selected Z8 device product specification for exact /O features . N
available. Timer P36 Tour

Data Memory

Select P34 DM

Status Out

P30 Serial In

Serial 1/0 P37 Serial Out

13-29

Q2005

Z8° MICROCONTROLLERS

13.15.1 Asynchronous Receiver/Transmitter
Operation

In some cases, full-duplex, serial asynchronous receiver/
transmitter operation is provided using P37 (output) and
P30 (input) in conjunction with control register SIO (FOH),
SIO is actually two registers: a receiver buffer and a
transmitter buffer. Counter/Timer TO provides the clock for
control of the bit rate.

The Z8® always receives and transmits eight bits between
start and stop bits. However, if parity is enabled, the eighth
bit (D7) is replaced by the odd-parity bit when transmitted
and a parity-error flag (= 1 if error) when received. Table
13-5 illustrates the state of the parity bit/parity error flag
during serial I/O with parity enabled.

Although the Z8 directly supports either odd parity or no
parity for serial /O operation, even parity may also be
provided with additional software support. To receive and
transmit with even parity, the Z8 should be configured for
serial /O with odd parity disabled. The Z8 software must
calculate parity and modify the eighth bit prior to the load
of a character into SIO and then modify a parity error flag
following the load of a character from SIO. All other
processing required for serial /O (in other words, buffer
management, error handling, and other processing) is the
same as that for odd parity operations.

Table 13-5. Serial VO With Odd Parity

Character Loaded Transmitted To Received From Transferred

Into SIO Serial Line Serial Line Character To SIO Note*
11000011 01000011 01000011 01000011 no error
11000011 01000011 01000111 11000111 error
01111000 11111000 11111000 01111000 no error
01111000 11111000 01111000 11111000 error

* Left most bit is D7
To configure the Z8 for Serial 1/O, it is necessary to:

W Enable P30 and P37 for serial I/O and select parity,
W Setup TO for the desired bit rate,

M Configure IRQ3 and IRQ4 for polled or automatic
interrupt mode,

W Load and enable TO.
To enable P30 and P37 for serial I/0, bit 6 of P3M (F7H) is
set. To enable odd parity, bit 7 of P3M is set; to disable it,
the bit is reset. For example, the instruction:
LD P3M,#40H
will enable serial I/0, but disable parity. The instruction:
LD P3M,#0COH
will enable serial /O, and enable odd parity.
Inthe following discussions, bit rate refers to all transmitted

bits, including start, stop, and parity (ifenabled). The serial
bit rate is given by the equation:

input clock frequency
bit rate = (2x4xTO prescaler x TO counter x 16)

The final divide-by-16 is incurred for serial communica-
tions, since in this mode TO runs at 16 times the bit rate in
order to synchronize the data stream. To configure the Z8
for a specific bit rate, appropriate values must first be
selected for TO prescaler and TO counter by the above
equation; these values are then programed into registers
TO (F4H) and PREO (F5H) respectively. Note that PREO
also controls the continuous vs. single-pass mode for TO;
continuous mode should be selected for serial I/0. For
example, given an input clock frequency of 7.3728 MHz
and a selected bitrate of 9600 bits per second, the equation
is satisfied by TO counter = 2 and prescaler = 3. The
following code sequence will configure the TO counter and
TO prescaler registers:

LD TO,#02H ITO counter = 2!

LD PREO,#00001101B
1bit2-7 prescaler=3; bit0
continuous mode!

Interruptrequest 3 (IRQ3) is generated whenever acharac-
ter istransferred into the receive buffer; interrupt request 4
(IRQ4) is generated whenever a character is transferred
out of the transmit buffer. Before accepting such interrupt
requests, the Interrupt Mask, Request, and Priority Regis-
ters (IMR, IRQ, and IPR) must be programmed to configure
the mode of interrupt response. The section on Interrupt
Processing provides a discussion of interrupt configura-
tions.

13-30

A= e cf

Z8° MICROCONTROLLERS

To load and enable TO, set bits 0 and 1 of the timer mode
register (TMR) via an instruction such as

OR TMR,#03H
This will cause the TO prescaler and counter registers
(PREO and TO) to be transferred to the TO prescaler and

counter. In addition, TO is enabled to count, and serial I/O
operations will commence.

Characters to be output to the serial line should be written
to serial 1/0 register SIO (FOH). IRQ4 will be generated
when all bits have been transferred out.

Characters input fromthe serial line may be read from SIO.
IRQ3 will be generated when a full character has been
transferred into SIO.

The following module illustrates the receipt of a character
and itsimmediate echo backto the serial line. Itis assumed
thatthe Z8®has been configured for serial /O as described
above, with IRQ3 (receive) enabled to interrupt, and IRQ4
(transmit) configured to be polled. The received character
is stored in a circular buffer in register memory from
address 42Hto 5FH. Register 41H contains the address of
the next available buffer position and should have been
initialized by some earlier routine to 42H.

Z8ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
1 SERIAL_IO MODULE
2 CONSTANT
3 next_addr = 41H
4 start = 42H
5 length = 1EH
6 $SECTION PROGRAM
7 GLOBAL
8 1IRQ3 vector!
9 $ABS 6
P 0006 000’ 10 IRQ_3 ARRAY [1 WORD] = [GET_CHARACTER]
11
12 $REL O
P 0000 13 GET_CHARACTER PROCEDURE ENTRY
14
15 ISerial I/O receive interrupt service!
16 IEcho received character and wait for
17 echocompletion!
P 0000 E4 FO FO 18 Id SIO,SI0 lecho!
19
20 1Save it in circular buffer!
P 0003 F5 FO 41 21 Id @next_addr,SIO !save in buffer!
P 0006 20 41 22 inc next_addr IPoint to next position!
P 0008 A6 41 60 23 cp next_addr #start+length
24 IWrap-around yet?!
P 000B EB 03 25 ir ne,echo_wait !No.!
P 000D E6 41 42 26 Id next_addr #start!Yes. Point to start!
27 INow, wait for echo complete!
28 echo_wait
P 0010 66 FA 10 29 tem IRQ,#10H ITransmitted yet?!
P 0013 EB FB 30 ir nz,echo_wait INot yet!
31
P 0015 56 FA EF 32 and IRQ#OEFH IClear IRQ4!

13-31

Q205

Z8° MICROCONTROLLERS

P 0018 BF 33 IRET
P 0019 34

35 END SERIAL_IO

0 ERRORS
ASSEMBLY COMPLETE

10 instructions
25 bytes

END GET_CHARACTER

IReturn from interrupt!

35.5 us + 5.5 us for each additional pass through the echo_wait loop, including interrupt response time

13.15.2 Automatic Bit-Rate Detection

In a typical system, where serial communication is re-
quired (in other words, a system with a terminal), the
desired bit rate is either user-selectable via a switch bank
or nonvariable and “hard-coded” in the software. As an
alternate method of bit-rate detection, it is possible to
automatically determine the bit rate of serial data received
by measuring the length of a start bit. The advantage of this
method is that it places no requirements on the hardware
design for this function and provides a convenient (auto-
matic) operator interface.

In the technique described here, the serial channel of the

Z8® is initialized to expect a bit rate of 19,200 bits per

second. The number of bits (n) received through Port pin

P30 for each bit transmitted is expressed by:
n=19,200/b

where b = transmission bit rate. For example, if the

transmission bit rate were 1200 bits per second, each
incoming bit would appear to the receiving serial line as
19,200/1200 or 16 bits.

The following example is capable of distinguishing be-
tween the bit rates shown in Table 13-6 and assumes an
input clock frequency of 7.3728 MHz, a TO prescaler of 3,
XTAL/2 mode, and serial /O enabled with parity disabled.
This example requires that a character with its low order bit
= 1(suchasacarriage return) be sentto the serial channel.
The start bit of this character can be measured by counting
the number of zero bits collected before the low order 1 bit.
The number of zero bits actually collected into data bits by
the serial channel is less than n (as given in the above
equation), due to the detection of start and stop bits.
Figure 13-4 illustrates the collection (at 19,200 bits per
second) of a zero bit transmitted to the Z8 at 1,200 bits per
second. Notice that only 13 of the 16 zero bits received are
collected as data bits.

13-32

_@ 205 28° MICROCONTROLLERS
Table 13-6. inputs to the Automatic Bit Rate Detection Algorithm
Number of Bits Received Number of Bits Collected
Bit Rate Per Bit Transmitted as Data Bits T, Counter
dec binary dec binary

19200 1 0 00000000 1 00000001
9600 2 1 00000001 2 00000010
4800 4 3 00000011 4 00000100
2400 8 7 00000111 8 00001000
1200 16 13 00001101 16 00010000
600 32 25 00011001 32 00100000
300 64 49 00110001 64 01000000
150 128 97 01100001 128 10000000

I ST|D0ID1|D2|D3|D4ID5|D6ID7ISPISTIDO|D1ID2ID3ID4 |-

Each Interval Shown = 1 Bit Time
At 19,200 Bits Per Second

je————— 1 Bit Time at 1,200 Bits Per Second ——————»|

ST =Start Bit Sp = Stop Bit Dn = Data Bitn

Figure 13-4. Collection of a Start Bit Transmitted at 19.2 KBps

13-33

N 2La5

Z8° MICROCONTROLLERS

Once the number of zero bits in the start bit has been
collected and counted, it remains to translate this count
into the appropriate TO counter value and program that
value into TO (F4H). The patterns shown in the two binary
columns of Table 13-6 are utilized in the algorithm for this
translation.

As a final step, if incoming data is to commence immedi-
ately, it is advisable to wait until the remainder of the
current 'elongated' character has been received, thus
‘flushing' the serial line. This can be accomplished either
via a software loop; or by programming T1 to generate

an interrupt request after the appropriate amount of time
has elapsed. Since a character is composed of eight bits
plus a minimum of one stop bit following the start bit, the
length of time to delay may be expressed as:

(9xn)b
where nand b are as defined above. The following module

illustrates a sample program for automatic bit rate detec-
tion.

Z8ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
1 BIT_RATE MODULE
2 EXTERNAL
3 DELAY PROCEDURE
4 GLOBAL
P 0000 5 main PROCEDURE
6 ENTRY
P 0000 8F 7 di IDisable interrupts!
P 0001 56 FB 77 8 and IMR #77H 1IRQ3 polled mode!
P 0004 56 FA F7 9 and IRQ#O0F7H IClear IRQ3!
P 0007 E6 F7 40 10 Id P3M,#40H IEnable serial I/O!
P O00A E6 F4 01 1 Id TO,#01H
p 000D E6 F5 OD 12 Id PREQ,#(3 SHL 2)+1 !bit rate = 19,200;
13 continuous count mode!
P 0010 BO EO 14 clr RO lInit. zero byte counter!
P 0012 E6 F1 03 15 Id TMR#03H ILoad and enable TO!
16
17 ICollect input bytes by counting the number of null
18 characters received. Stop when non-zero byte received!
19 collect:
PO01576 FAOS8 20 tm IRQ,#08H ICharacterreceived?!
P 0018 6B FB 21 ir Z,collect INot yet!
P 001A 18 FO 22 Id R1,SIO !Get the character!
P0O01C 56 FAF7 23 and IRQ#OF7H IClear interrupt request!
P 001F 1E 24 inc R1 ICompare to0...!
P 0020 1A 05 25 dinz R1,bitloop 1...(IN 3 bytes of code)!
P 0022 06 EO 08 26 add RO,#08H 1Update count of 0 bits!
P 0025 8B EE 27 ir collect
28 bitloop: 1Add in zero bits from low
29 end of 1st non-zero byte!
P 0027 EO E1 30 RR R1
P 0029 7B 03 31 ir c,count_done
P 002B OE 32 inc RO
P 002C 8B F9 33 ir bitloop
34
35 'R0 has number of zero bits collected!
36 ITranslate RO to the appropriate TO counter value!
37 count_done IR0 has count of zero bits!

13-34

A 21La5

78 MICROCONTROLLERS

P 002E 1C 07 38 Id R1,#07H
P 0030 2C 80 39 Id R2,#80H IR2 will have TO counter value!
P 0032 90 EO 40 RL RO
41
P 0034 90 EO 42 loop: RL RO
P 0036 7B 04 43 ir c,done
P 0038 EO E2 44 RR R2
P 003A 1A F8 45 djnz r1,loop
46
P 003C 29 F4 47 done Id TO,R2 ILoad value for detected
48 bitrate!
49 IDelay long enough to clear serial line of bit stream!
P 003E D6 0000* 50 call DELAY
51 IClear receive interrupt request!
P 0041 56 FAF7 52 and IRQ,#0F7H
53
P 0044 54 END main
55 END bit_rate
0 ERRORS
ASSEMBLY COMPLETE
30 instructions
68 bytes
Execution time is variable based on transmission bit rate.
13.15.3 Port Handshake

Each of Ports 0, 1 and 2 may be programmed to function
under input or output handshake control. Table 13-7 de-
fines the port bits used for handshaking and the mode bit
settings required to select handshaking. To input data
under handshake control, the Z8® should read the input
port when the DAV input goes Low (signifying that data is
available from the attached device). To output data under
handshake control, the Z8 should write the output port
when the RDY input goes Low (signifying that the previ-
ously output data has been accepted by the attached
device). Interrupt requests IRQO, IRQ1, and IRQ2 are
generated by the falling edge of the handshake signal
input to the Z8 for Port O, Port 1, and Port 2 respectively.
Port handshake operations may therefore be processed
under interrupt control.

Consider a system that requires communication of eight
parallel bits of data under handshake control fromthe Z8to
aperipheral device and that Port 2is selected as the output
port. The following assembly code illustrates the proper
sequence for initializing Port 2 for output handshake.

CLR P2M !Port2moderegisterall Port 2 bits
are outputs!
OR 03H,#40H

Iset DAV2 data not available!

LD P3M,#20H

IPort 3 mode register enable
Port 2 handshake!

LD 02H,DATA

loutput first data byte; DAV2 will
be cleared by the Z8 to indicate
data available to the peripheral
device!

Note that following the initialization of the output sequence,
the software outputs the first databyte withoutregard tothe
state ofthe RDY2input; the Z8 will automatically hold DAV2
High until the RDY2 input is High. The peripheral device
should force the Z8 RDY2input line Low after it has latched
the data in response to a Low on DAV2, The Lowon RDY2
will cause the Z8 to automatically force DAV2 High until the
next byte is output. Subsequent bytes should be outputin
response to interrupt request IRQ2 (caused by the High-
to-Low transition on RDY2) in either a polled or an enabled
interrupt mode.

13-35

Z8° MICROCONTROLLERS

Table 13-7. Port Handshake_ Selection

Port 0 Port 1 Port 2

Input handshake lines P32 = DAV P33 = DAV P31 = DAV
P35 = RDY P34 = RDY P36 = RDY

Output handshake lines P32 = RDY P33 = RDY P31 =RDY
P35 = DAV P34 = DAV P36 = DAV

To select input handshake set bit 6 & reset bit 7 of set bit 3 & reset bit 4 of set bit 7 of P2M
PO1M (program high PO1M (program byte as (program high bit
nibble as input) input) as input)

To select output handshake set bits 6, 7 of PO1M set bit 3, 4 of PO1M set bit 7 of P2M
(program high nibble (program byte as output) (program high bit
as output) as output)

To enable handshake set bit 5 of Port 3 (P3;); set bit 4 of Port 3 (P3,); set bit 6 of Port 3 (P3,);
set bit 2 of P3M set bits 3, 4 of P3M set bit 5 of P3M

13-36

@ 2iLa5 Z8° MICROCONTROLLERS
13.16 ARITHMETIC ROUTINES

This section gives examples of the arithmetic and rotate ~ The 16-bit number is viewed as a string of four nibbles and
instructions for use in multiplication, division, conversion, is processed one nibble at a time from left to right, begin-

and BCD arithmetic algorithms. ning with the high-order nibble of the lower memory ad-
dress. 30H is added to each nibble if itis in the range 0 to
13.16.1 Binary to Hex ASCII 9; otherwise 37H is added. In this way, 00H is converted

to30H, 1Hto 31H, ... OAHto 41H, ... OFH to 46H. Figure 13-
The following module illustrates the use of the ADD and 5 illustrates the conversion of RRO (contents = F2BEH) to
SWAP arithmetic instructions in the conversion of a 16-bit its hex ASCII equivalent; the destination buffer is pointed

binary number to its hexadecimal ASCII representation. to by RR4.
Bit D7 43 Do D7 43 Do
Lr 1= J1L=1°¢€]
Register RO R1
D7 43 Dp D7 43 Do Dy 43 Dp D7 43 Do
wm— [1 o][T = [+ 1= 11 ~°]

Figure 13-5. Conversion of (RR0) To Hex ASCII

Z8ASM 2.99 INTERNAL RELEASE
LOC OBJCODE STMT SOURCE STATEMENT

1 ARITH MODULE
2 GLOBAL
P 0000 3 BINASC PROCEDURE
4 !
5 Purpose = To convert a 16-bit binary
6 number to Hex ASCI!
7
8 Input= RRO = 16-bit binary number.
9 RR4 = pointer to destination
10 buffer in external memory.
11
12 Output= Resulting ASCII string (4 bytes)
13 in destination buffer.
14 RR4 incremented by 4 .
15 RO, R2, R6 destroyed.
16 b !
17 ENTRY
18
P 0000 6C 04 19 Id R6,#04H Inibble count!
P 0002 FO EO 20 again: SWAP RO llook at next nibble!
P 0004 28 EO 21 Id R2,R0
P 0006 56 E2 OF 22 and R2#0FH lisolate 4 bits!
23 Iconvert to ASCIl R2 + #30H if RO in range O
to9
24 else R2 + #37H (in range OA to OF)!

13-37

N 205

Z8° MICROCONTROLLERS

P 0009 06 E2 30 26 ADD R2#30H
P 000C A6 E2 3A 27 cp R2#3AH
P O0OOF 7B 03 28 ir ult,skip
P 001106 E2 07 29 ADD RS#07H
P 001492 24 30 skip: Ide @RR4,R2 Isave ASCII in buffer!
P 0016 AO E4 31 incw RR4 Ipoint to next
32 buffer position!
P 0018 A6 E6 03 33 cp R6,#03H Itime for second byte?!
P 001B EB 02 34 ir ne,same_byte Ino.!
P 001D 08 E1 35 Id RO,R1 12nd byte!
36 same_byte:
P 001F 6A E1 37 djnz R6,again
P 0021 AF 38 ret
P 0022 39 END BINASC

40 END ARITH

0 ERRORS

ASSEMBLY COMPLETE
16 instructions

34 bytes

120.5 us (average)

13.16.2 BCD Addition

The following module illustrates the use of the add with
carry (ADC) and decimal adjust (DA) instructions for the
addition of two unsigned BCD strings of equal length.
Within a BCD string, each nibble represents a decimal
digit (0-9). Two such digits are packed per byte with the
most

Bit D7 4 3 Dg D7

significant digit in bits 7-4. Bytes within a BCD string are
arranged in memory with the most significant digits stored
in the lowest memory location. Figure 13-6 illustrates the
representation of 5970 in a 6-digit BCD string, starting in
register 33H.

43 Dp D7 43 Do

Register %33

%34 %35

Figure 13-6. Unsigned BCD Representation

13-38

@ 2Las 28° MICROCONTROLLERS

ZBASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
ARITH MODULE

1
2 CONSTANT
3 BCD_SRC = R1
4 BCD_DST= RO
5 BCD_LEN = R2
6 GLOBAL
P 0000 7 BCADDPROCEDURE
8 !
9 Purpose = To add two paced BCD strings of
10 equallength.
11 dst <—dst + src
12
13 Input= RO = pointer to dst BCD string.
14 R1 = pointer to src BCD string.
15 R2 = byte count in BCD string
16 (digit count = (R2)*2).
17
18 Output = BCD string pointed to by RO is
19 the sum.
20 Carry FLAG = 1 if overflow.
21 RO, R1 as on entry.
22 R2=0
23 e * * !
24 ENTRY
25
P 0000 02 12 26 add BCD_SRC,BCD_LEN Istart at least...!
P 0002 02 02 27 add BCD_DST,BCD_LEN Isignificant digits!
P 0004 CF 28 rcf Icarry =0!
29 add_again:
P 0005 00 Ef 30 dec BCD_SRC Ipoint to next two
31 srcdigits!
P 0007 00 EO 32 dec BCD_DST Ipoint to next two
33 dstdigits!
P 0009 E3 31 34 Id R3,@BCD_SRC Iget src digits!
P 000B 13 30 35 ADC RS3,@BCD_DST ladd dstdigits!
P 000D 40 E3 36 DA R3 Idecimal adjust!
P OOOF F3 03 37 Id @BCD_DST,R3 Imove to dst!
P 0011 2A F2 38 dinz BCD_LEN,add_again lloop for next
39 digits!
P 0013 AF 40 ret lalldone!
41
P 0014 42 END BCADD
43 END ARITH
0 ERRORS

ASSEMBLY COMPLETE

11 instructions

20 bytes

Execution time is a function of the number of bytes (n) in input BCD string: 20 us + 12.5(n-1) us

13-39

N 205

Z8* MICROCONTROLLERS

13.16.3 Multiply

The following module illustrates an efficient algorithm for
the multiplication of two unsigned 8-bit values, resulting in
a 16-bit product. The algorithm repetitively shifts the multi-
plicand right (using RRC), with the low-order bit being
shifted out (into the carry flag). If a one is shifted out, the
multiplier is added to the high-order byte of the partial

product. As the high-order bits of the multiplicand are
vacated by the shift, the resulting partial-product bits are
rotated in. Thus, the multiplicand and the low byte of the
productoccupy the same byte, which saves register space,
code, and execution time.

Z8ASM 2.99 INTERNAL RELEASE
LOC OBJ CODE STMT SOURCE STATEMENT

1 ARITH MODULE

2 CONSTANT

3 MULTIPLIER =R1

4 PRODUCT_LO =R3

5 PRODUCT_HI = R2

6 COUNT = RO

7 GLOBAL
P 0000 8 MULT PROCEDURE

9!

10 Purpose = To perform an 8-bit by 8-bit unsigned

1" binary multiplication.

12

13 Input= R1 = multiplier

14 R3 = multiplicand

15

16 Output = RR2 = product

17 RO destroyed

18 !

19 ENTRY
P 0000 0C 09 20 Id COUNT,#09H 18 BITS + 1!
P 0002 BO E2 21 clr PRODUCT_HI HINIT HIGH RESULT BYTE!
P 0004 CF 22 RCF ICARRY =0!
P 0005 CO E2 23 LOOP: RRC PRODUCT_HI
P 0007 CO E3 24 RRC PRODUCT_LO
P 0009 FB 02 25 ir NC,NEXT
P 000B 02 21 26 ADD PRODUCT_HI,MULTIPLIER
P 000D 0A F6 27 NEXT: djnz COUNT,LOOP
P OOOF AF 28 ret
P 0010 29 END MULT

30 END ARITH

0 ERRORS

ASSEMBLY COMPLETE
9instructions

16 bytes

92.5 us (average)

13-40

Q2005

Z8° MICROCONTROLLERS

13.16.4 Divide

The following module illustrates an efficient algorithm for
the division of a 16-bit unsigned value by an 8-bit unsigned
value, resulting in an 8-bit unsigned quotient. The algo-
rithm repetitively shifts the dividend left (via RLC). If the
high-order bit shifted out is a one or if the resulting high-
order dividend byte is greater than or equal to the divisor,

the divisor is subtracted from the high byte of the dividend.
As the low-order bits of the dividend are vacated by the shift
left, the resulting partial-quotient bits are rotated in. Thus,
the quotient and the low byte of the dividend occupy the
same byte, which saves register space, code, and execu-
tion time.

Z8ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT
1 ARITH MODULE
2 CONSTANT
3 COUNT = RO
4 DIVISOR = R1
5 DIVIDEND_HI = R2
6 DIVIDEND_LO = R3
7 GLOBAL
P 0000 8 DIVIDE PROCEDURE
9 !
10 Purpose = To perform a 16-bit by 8-bit unsigned
1" binary division.
12
13 Input= R1 = 8-bit divisor
14 RR2 = 16-bit dividend
15
16 Output = R3 = 8-bit quotient
17 R2 = 8-bit remainder
18 Carry flag = 1 if overflow
19 = 0 if no overflow
20 ek dedk !
21 ENTRY
P 0000 OC 08 22 Id COUNT #08H ILOOP COUNTER!
23
24 ICHECK IF RESULT WILL FIT IN 8 BITS!
P 0002 A2 12 25 cp DIVISOR,DIVIDEND_HI
P 0004 BB 02 26 ir UGT,LOOP ICARRY = 0 (FOR RLC)!
27 IWON'T FIT. OVERFLOW!
P 0006 DF 28 SCF ICARRY = 1!
P 0007 AF 29 ret
30
31 LOOP IRESULT WILL FIT. GO AHEAD WITH DIVISION!
P 0008 10 E3 32 RLC DIVIDEND_LO IDIVIDEND * 2!
P 000A 10 E2 33 RLC DIVIDEND_HI
P 000C 7B 04 34 ir c,subt
P OOOE A2 12 35 cp DIVISOR,DIVIDEND_HI
P 0010 BB 03 36 jr UGT,next ICARRY = 0!
P 0012 22 21 37 subt: SUB DIVIDEND_HI,DIVISOR
P 0014 DF 38 SCF ITO BE SHIFTED INTO RESULT!
P 0015 0A F1 39 next: djnz COUNT,LOOP Ino flags affected!
40
4 IALL DONE!

13-41

ﬁZiLCIS 28° MICROCONTROLLERS

P 0017 10 E3 42 RLC DIVIDEND_LO

43 ICARRY= 0 no overflow!
P 0019 AF 44 ret
P 001A 45 END DIVIDE

46 END ARITH

0 ERRORS

ASSEMBLY COMPLETE
15 instructions

26 bytes

124.5 us (average)

13.17 Conclusion

This section has focused on ways in which the Z8® micro- greater advantage. The major features of the Z8 have
computer can easily yet effectively solve various applica- been described so that the user can continue to expand
tion problems. In particular, the many sample routines and explore the repertoire of uses for the Z8.

illustrated here should aid the user in applying the Z8 to

13-42

‘AQ ZiLGE USER'S MANUAL

CHAPTER 14
THIRD-PARTY SUPPORT TOOLS

In addition to Zilog tool offerings, an extensive list of third party suppliers offer a variety of software (XASM, C Compilers,
Simulators/Debuggers), hardware emulator, and OTP programmer (single and gang) products.

14.1 Third-Party Support—Emulators/ 14.2 Third-Party Support—Assemblers/C
Programmers Compilers

Data I/O (OTP Programmer) (800) 332-8246 2500AD Software (719) 395-8683
EmulationTechnologies (408) 982-0660 Avocer Systems (800) 448-8500
(OTP Socket Adapters)

ByteCraft (519) 888-6911
iSystems (49)8131-25085

Micro Computer Control (609) 466-1751
Logical Devices, Inc. (800) 331-7766
(OTP Programmer) Production Languages Corp. (817) 599-8363
Needham Electronics (916) 924-8037 Pseudo Corp. (503) 683-9173
(OTP Programmer)
Orion Instruments (408) 747-0440
Signum Systems (805) 371-4608
Systems General (408) 263-6667
(OTP Programmer)

14-1

N 2iLas

28° Microcontroller
Technical Description

Zilog 28° Software m

Zilog General
information

USER'S GUIDE

asm 28°

CR0OSS ASSEMBLER

Related Publicstions

IEEE Proposal P695 Microprocessor Universal Format for 0Object
Modules. IEEE Micro August 1983 Vol. 3 & 4 pp. 48B-66

Super8 Technical Manual, document number 03-8257-0X

Universal Object Files Utilities User's Guide, document
number 03-8236-0X

Z8 Microcomputer Technical Manual, document number 03-3047-0X

Trademark Acknowledgements

asmS8, cas, PLZ/ASM, Super8, System 8000, and Z8 are trademarks of Zilog Inc.
UNIX is a trademark of AT&T Bell Laboratories
VAX is a trademark of Digital Equipment Corporation

Zilog does not support the software mentioned in this publication, use at own risk.

©1985 by Zilog, Inc. All rights reserved. No part of this publica-
tion may be reproduced, storedin a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of Zilog.

The information contained herein is subject to change without
notice. Zilog assumes no responsibility for the use of any cir-
cuitry other than circuitry embadied in a Zilog product. No other
circuit patent licenses are implied.

All specifications (parameters) are subject to change without no-
tice. The applicable Zilog test documentation will specify which
parameters are tested.

. 28° MICROCONTROLLERS
LAl UseR's MaNUAL

I‘%

AsMm Z8® Cross AsseMBLER USeR's GUIDE
TABLE oF CONTENTS

CHAPTER TITLE AND SUBSECTIONS Pace

CHAPTER 1: OVERVIEW

B R L)oo (VT 1o] o U OO SRS 1-1
1.2 ASSEMDIET OVEIVIEWooviiiiiiiiiie ittt sttt ettt ettt et e e et ae et ee s etbeesbeeseeeesaeeanaeesnteaneeas 1-2
1.3 Relocation and LINKINGc.eeiiiiiiiiie i ss st e e e et e esbe e sebeesbeesaaesrnens 1-3
CHAPTER 2: AsSEMBLY LANGUAGE SYNTAX

b I (011 (o To (8o £ o] o [OOV O PSR 2-1
2.2 SYMDBONC NOTALIONoiiitiie i e srbe e e ssnbee e 2-1
2.3 0perations AN OPEIANGScouii ittt ettt bt be e e et tee st bt esbeaeseeeaees 2-6
2.4 COMIMENES ©.iitiee ettt ettt et e ettt e st bbeabe e e st et seae e e sbn e e sabete s ia bt eeesbbe e e aabeaentn e e ennnee e s nreeenrnis 26
2.5 AritMELIC EXPrESSIONS ..viiiviit ettt st ee e sre e saee e e st e e st e e e ssareabbraeesabnassabbeaeaees 2-7
2.6 EXPressions and OPEIatOrS........civeiiiiiiresee e site e stesbe st e et e bbb a e siesteesntesbesseesaeesre e 2-7
2.7 CONSTANTS ..oeiiiie ettt ettt ettt ettt e e et b e e et sh e e b e st bt b e e s b e e sb b e e e s b e ne e 2-10
2.8 LOCAHON COUNETeiiiiiiee sttt sttt ettt eb e st e e sh e e st be e e bt et sete e e e enn e arte s 2-11
CHAPTER 3: Pseupo-Ops

0 3 I (011 o To [o3 (1] o [T PP PP P P OPPUPPTITR 3-1
3.2 ReloCation PSEUAO-OPSc.viiiiieiiieeite ettt ettt ettt et ste et ate e et sae et esaeestaesbeebesareesrens 3-1
3.3 Label Definition PSEUAO-OPScooivieiiiriiiiii ettt e et e st ae e e e eea e sanae e e ennraens 3-3
3.4 Module and Section PSEUAO-OPScccoiiiiiiiieiesiece ettt sr e sebe e 3-6
3.5 General Data Definition OPerationcc.veeiiiiieiiiieiiee et eae s 3-8
3.6 Conditional Assembly PSEUAO-OPSc.cccvvuiiiiiiiiciiiiiie et st 3-12
3.7 Assembler Control PSEUAO-OPSoviiiiiiiiiiiie sttt ettt 3-13
CHAPTER 4: MacRros

4.1 General DESCHIPLIONcooiiiii ittt et re e st e esaee bt b b see e e e enee 4-1
4.2 MACRO 0OF StriNG MACRO ... et et b s 4-2
4.3 PROC or Procedure MACROooiiiiiiiiei ettt e ettt sbee bt naeanae 4-3
4.4 Special MACRO PSEUAO-OPSciiviriiiiieiiieee ettt sie et se e besn e s sresssesaesreeseeesaestaesraesaess 4-4
4.5 Special MACRO OPEIAIOISoiiiieiiriiecirerteeiiesieeesassteesese e smsseaenaassibessbaisesseneestaeessaessneeses 4-6
CHAPTER 5: PROGRAM INVOCATION

5.1 Assembler Command Lines and OPLONScccocviiiiiiiiiie e b e 5-1
B.2 LISHNG FOMMAL ..ot ettt et e e e s an e se e sbbaanb bt e e s nnbeeesrntaeenneeas 5-2
5.3 Program TEIMUNEALIONccuiiierir ittt e e s s e e s s ste e s sseess e sreaseeasbbeestraesraaesrnesnes 5-2
APPENDICES

Appendix A. PSeUAO-OP SUMMAIYcccoiiimiiiiiiaririieerires e esiaeste st esee e ssaenssasteessnressrassnreesnsees A-1
Appendix B. Special SYMDBOIScoiiiiiie e s B-1
Appendix C. ASCIH Character Set...........covuvuvveeeeeireieieeeeiee e e s C-1
Appendix D. Error Messages and EXplanationsc.cccoviiiiiiiir v D-1
Appendix E. Program EXamPIeccouiiiiiiiiii ittt E-1

N 2iL05

Z8° MICROCONTROLLERS
USER's MANUAL

Overview

CHAPTER 1
OVERVIEW

1.1 INTRODUCTION Zilog's Super8/Z8 Cross-Assembler (asmS8) takes a
source file containing assembly language statements and
translates it into a corresponding object file. It can
produce a listing contsining the source code, object
code, and comments. The assembler supports macros and
conditional assembly. It is written in C and runs on
the UNIX operating system. Figure 1-1 illustrates the
development path of a typical program.

EDITOR

ASSEMBLY

SOURCE FILE

{ LISTING }-—-— As;gmﬁ;ER

\

ABSOLUTE OR ABSOLUTE OR
RELOCATABLE —_—— RELOCATABLE
OBJECT MODULE OBJECT MODULE

N

MULTIPLE
OBJECT MODULES

SINGLE miink
OBJECT
MODULE LINKER

ABSOLUTE OR

RELOCATABLE
OBJECT MODULE)
; \

mioad
OOWNLOADER

DOWNLOADABLE
OBJECT MODULE

Figure 1-1, asmS8 Program Development Cycle

1-1

Overview

1.1 INTRODUCTION
(Continued)

1.2 ASSEMBLER
OVERVIEW

1.2.1 Assembler
Enhancements

1.2.2 Modules

The assembler can produce relocatable and absolute
object code. Object files can contain a mixture of
absolute and relocatable code. Object files then can
be linked with other object files and loaded into
memory.,

For a description of the architecture of the Super8
family of microcomputers, refer to the Super8 Technical
Manual. For 3 description of the architecture of the
Z8 family, refer to the Z8 Microcomputer Technical
Manual.

The asmS8 Cross-Assembler is a macro assembler, written
in €, that runs on the UNIX operating system for the
DEC VAX and VMS, IBM-PC, and Zilog System 8000. The
assembler produces output in a universal object code
format (refer to the Universal Object Files Utilities
User's Guide).

Providing more than compatibility with existing hard-
ware and software, the asmS8 assembler includes new
features not available in earlier assemblers. Integer
arithmetic on numbers up to 80 bits long is supported,
as is arbitrary integer arithmetic on external and
relocatable symbols. Additional expression opera-
tors are defined, and syntax rules for expressions and
operand delimiters have fewer restrictions.

The asmS8 assembler increases support for constants by
providing floating-point constants in addition to those
numbers supported in the C language. However,
floating-point arithmetic in assembly-time expressions
is not supported.

A program consists of one or more separately coded and
assembled modules. Modules are referred to as either
source modules or object modules.

A source module 1is made up of assembly language
statements, These statements are then translated by
the asmS8 assembler into an object module that can
either be separately executed by the Super8 (or Z8)
microprocessor, or linked with other object modules to
form a complete program. The user can also control the
operation of the assembler by including assembler
directives, or "pseudo-ops," in the source code.
Briefly, pseudo-ops resemble opcodes in form, but not
function (see Chapter 3).

Depending on the assembler directives used, addresses

within an object module or program can be absolute
(addresses in the source program correspond exactly to

1-2

Overview

1.3 RELOCATION AND
LINKING

logical memory addresses) or relocatable (addresses can
be assigned relative to a logical base address at a
later time). Object modules should be made relocat-
able whenever possible. This facilitates the ability
to link with other object modules and also provides the
ability to load object programs anywhere in memory.
Relocatable addressing also allows the creation of
libraries of commonly used procedures ({including math
or inmput/output routines) that can be linked selec-
tively into several programs as desired.

Relocation refers to the ability to bind a program

module and its data to a particular memory area after.

the assembly process. The output of the assembler is
an object module that contains enough information to
allow the linker to assign that module to a memory
area. Since many modules can be loaded together to
form a complete program, a need for inter-module
communication arises, For example, one module can
contain a call to a routine that was assembled as part
of another module and is located in some arbitrary part
of memory. Therefore, the assembler must provide
information in the object module that allows the linker
to link inter-module references.

There are several major advantages to using the
relocating assembler as compared to an absolute
assembler:

1) Assignment of modules to memory areas can be
handled by the linker rather than requiring the
programmer to assign fixed absolute locations via
the "ORG"™ pseudo-op; thus, modules can be relocated
without requiring reassembly.

2) If errors are found in one module, only that one
module needs to be reassembled and relinked with
the other modules, thus increasing software
productivity.

3) Programs can be structured into independent
modules, coded separately and assembled, even
though other modules may not yet exist.

4) Libraries of commonly used modules can be built and
then linked with programs without requiring
reassembly of the library module.

5) Communications between overlay segments can be
achieved through methods similar to normal
(non-overlay) inter-module references.

Unless otherwise specified, the output of the assembler

is in relocatable form. During program execution, the
instruction will be located at the memory location

1-3

Overview

1.3 RELOCATION AND
LINKING
(Cont inued)

1.3.1 Inter-Module
References

1.3.2 Sections

specified by the linker (assigned origin plus the
relative offset). Thus, a relocatable module has its
first instruction located at the memory location that
is the assigned origin of the module as determined by
the linker.

To achieve relocation, addresses are altered at linkage
time for both instructions that reference memory
locations and data values that serve as pointers to
memory locations. This process is transparent to the
programmer.

The asmS8 assembler supports two pseudo-ops (or pseudo
operation codes), GLOBAL and EXTERNAL, so that
instructions can refer to "names" (either data values
or entry points) in other assembled modules. GLOBAL
means that the listed names are defined in this module
and are available for use by other modules. EXTERNAL
means that the names are used in this module, but are
defined in another module where they are declared to be
global, The syntax requires one or more names to
follow either pseudo-op.

The GLOBAL name can be either absolute or relocatable.
A portion of the object module contains a list of both
the GLOBALs that are defined in the module, and the
EXTERNALs that the module references. One function of
the linker is to match all the EXTERNALs with the
appropriate GLOBALs so that every instruction will
reference the correct address during program execution.

A more thorough discussion of pseudo-ops is given in
Chapter 3.

Programs can be divided into sections that are mapped
into various areas of memory when linked or loaded for
execution. A single module can contain several
sections, each allocated to a different area in program
or data memory. Likewise, portions of a section can be
spread through several different modules and
automatically combined into 3 single area by the
linker.

Sections provide the programmer with complete control
over the memory mapping of a program without requiring
absolute addressing. A module can contain some
relocatable sections and some absolute sections, but 3
single section is either entirely absolute or entirely
relocatable. Section 3.4.2 describes section definition
in more detail.

Assembly Language Syntax

2.1 INTRODUCTION

2.2 SYMBOLIC NOTATION

CHAPTER 2
ASSEMBLY LANGUAGE SYNTAX

The basic component of an asmS8 program is the assembly
language statement. An assembly language statement can
be up to 128 characters in length and is terminated by
an end-of-line character. A statement can include four
fields:

e Statement labels

e An opcode

o Operands

e Comments

A typical asmS8 statement might look like:

LABEL1: LD R2,R5 ;comment

where LABEL1 is the statement label (signified by the
colon), LD is the opcode, R2 is the destination
operand, R5 is the source operand, and a comment is
indicated by a semicolon. For compatibility with
Zilog's 28000 assembler, comments can begin with //,
although this assembles slower.

All fields are optional; label and comment fields can
start in any column; the opcode and operands cannot
start in column 1. The statement can have zero or more
operands, depending on the opcode selected. The
following sections describe conventions that must be
observed in writing a program statement.

Symbolic identifiers can include opcodes, pseudo-ops,
special symbols, and labels. Legal identifiers can be
up to 127 characters in length, and consist of one or
more 3lphabetic characters, digits, or the characters:
comma (,), dollar sign ($), question mark (?), period
(.), at sign (8), or single quote mark ('). Upper and
lower case letters are considered unique, and all
characters are significant.

The only restriction on symbols is that they cannot
start with a digit or single quote mark ('). Since
some older programs can rely on having only the first
eight characters of a symbol being significant, a
global variable called $'SYMLEN is provided to limit
the number of significant characters in a symbol.
Appendix B describes global variables in more detail.

2-1

Assembly Language Syntax

2,2.1 Labels Any ststement that is referenced by another statement
must be labeled, and any statement can contain one or
more labels. A label is a symbolic identifier that can
represent:

An address (up to 16 bits)

An 1/0 port

A floating-point number

Other quantities with up to 80 bits of significance.

When a label is being defined, it can start in any
column when immediately followed by a colon (:). If a
colon is not used, the label must start in column 1.
More than one label can be defined on the same line,
for example:

LABEL1: LABEL2: ,.. LABELn: statement

A GLOBAL label can be declared by placing two colons
after the label on the line where it is defined (e.g.,
LABEL1::). An EXTERNAL label can be declared by two
pound signs that immedistely follow (e.g., LABELZ2##).
A tilde (~) as the first character of a label makes it
local to a block, as defined by the .BEGIN and .END
pseudo-ops.

A label definition preceded by a colon (:LABEL1) speci-
fies that the data type of the label will be the same
as the type generated by the rest of the statement.
These labels can be checked across module boundaries.

Labels for registers are given special treatment.
Indexing is the only valid operation. Table 2-1 lists
the 28 System and Control register names. Table 2-2
lists the Super8 system register names and Table 2-3
lists the Super8 Mode and Control register names.

The names of opcodes can be used freely as labels in
the same assembly language statements. The assembler
can recognize when a string is being used as an opcode
rather than as a label.

Assembly Language Syntax

Table 2-1. 78 System and Control Registers
Decimal Hexadecimal
Address Address Register name Identifier
255 FF Stack Pointer (bits 7-0) SPL
254 FE Stack Pointer (bits 15-8) SPH
253 FD Register Pointer RP
252 FC Program Control Flags FLAGS
251 FB Interrupt Mask Register IMR
250 FA Interrupt Request Register 1IRQ
249 F9 Interrupt Priority Register IPR
248 F8 Ports 0-1 Mode PO1M
247 F7 Port 3 Mode P3M
246 Fé6 Port 2 Mode P2M
245 FS TO Prescaler PREQ
244 Fé4 Timer/Counter 1 10
243 F3 T1 Prescaler PRE1
242 F2 Timer/Counter 1 T1
241 F1 Timer Mode T™MR
240 FO Serial 1/0 SIO
127-4 7F-04 General-purpose registers
3 03 Port 3 P3
2 02 Port 2 P2
1 01 Port 1 P1
0 00 Port O PO
Table 2-2. SuperB8 System Registers
Decimal Hexadecimal
Address Address Register name Identifier
222 DE System mode SYM
221 DD Interrupt Mask Register IMR
220 DC Interrupt Request Register IRQ
219 DB Instruction Pointer (Bits 7-0) IPL
218 DA Instruction Pointer (Bits 15-8) IPH
217 D9 Stack Pointer (Bits 7-0) SPL
216 D8 Stack Pointer (Bits 15-8) SPH
215 D7 Register Pointer 1 RP1
214 Dé Register Pointer O RPO
213 D5 Program Control Flags Flags
212 D4 Port 4 P4
n D3 Port 3 P3
210 D2 Port 2 P2
209 D1 Port 1 P1
208 DO Port O PO

Assembly Language Syntax

Table 2-3. Super8 Made and Control Registers
Decimal Hexadecimal Bank
Address Address Number Register Name Identifier

255 FF 0 Interrupt Priority IPR

1 Wake-up Mask WUMSK
254 FE 0] External Memory Timing EMT

1 Wake-Up Match WUMCH
253 FD 0 Port 2/38 Interrupt Pending P2BIP
252 FC 0 Port 2/3A Interrupt Pending P2AIP
251 P8 0 Port 2/3D Mode P20M

1 UART Mode B umMB
250 FA 0 Port 2/3C Mode P2CM

1 UART Mode A UMA
249 F9 0 Port 2/38 Mode P2BM

1 UART Baud Generator (bits 7-0) UBGL
248 F8 0 Port 2/3A Mode P2AM

1 UART Baud Generator (bits 15-8) UBGH
247 F7 1] Port 4 Open Drain P40D
246 Fé 0 Port 4 Direction P4D
245 F5 0 Handshake 1 Control H1C
244 Fa4 0 Handshake 0 Control HOC
241 F1 0 Port Mode PM

1 DMA Count (bits 7-0) DCL
240 FO 1] Port O Mode POM

1 DMA Count (bits 15-8) OCH
239 EF 0 UART Data u10
237 ED 0 UART Interrupt Enable UIE
236 EC 0 UART Receive Control URC
235 EB 0 UART Transmit Control utc
229 ES 0 CTR 1 Capture (bits 7-0) cicL

1 CIR 1 Time Constant (bits 7-0) C1TCL
228 E4 0 CTR 1 Cspture (bits 15-8) C1CH

1 CTR 1 Time Constant (bits 15-8) C1TCH
227 £3 0 CTR O Capture {(bits 7-0) coCL

1 CTR O Time Constant (bits 7-0) €oTCL
226 £E2 0 CTR O Capture (bits 15-8) COCH

1 CTR O Time Constant (bits 15-8) COTCH
225 E1 0 CTR 1 Control C1CT

1 CTR 1 Mode CIM
224 EO 0 CTR 0 Control cocT

1 CIR O Mode COM

Assembly Language Syntax

2,2.2 Condition Codes Condition codes are recognized only as operands of in-

structions that take them. For example, the statement
JR Z, Label
causes Z to be treated as the condition code for zero.
The condition codes and flag settings they represent
are listed in Table 2-4,
Table 2-4. 78 and Super8 Condition Codes

Binary Mnemonic Meaning Flags Set

0000 F Always False -

1000 T Always True -

0111 C Carry c=1

1M NC No Carry c=0

0110 z Zero =1

1110 NZ Not Zero =0

1101 PL Plus S=0

0101 MI Minus S=1

0100 av Overflow V=1

1100 NQoV No Overflow V=0

0110 EQ Equal Z=1

1110 NE Not Equal =0

1001 GE Greater than or equal (SXORV) =0

0001 LY Less than (S XOR V) = 1

1010 GT Greater than (ZOR (SXORV)) =0

0010 LE Less than or equal (Z OR (S XOR V)) = 1

1M UGE Unsigned greater than or equal C=0

0111 ULT Unsigned less than C=1

101 UGT Unsigned greater than (C=0ANDZ =0) =1

0011 ULE Unsigned less than or equal (COR Z) =1

Assembly Language Syntax

2.3 OPERATIONS AND
OPERANDS

2.4 COMMENTS

An operation is a mnemonic that represents an
instruction.

The assembler also supports a restricted mode that
handles only 78 instructions.

An operation in a program statement can be followed by
one or more operands, which are general expressions
separated by spaces or commas. Macro parameter lists
are the only exceptions since they require parameters
to be separated by commas only. Commas do not have the
same effect as spaces because two commas in a row
denote an omitted operand. A carriage return always
serves as a statement delimiter. No more than one
statement can be on single line, and a single statement
cannot span more than one line.

An operand in a program statement can be:
e Dats to be processed (immediate data)

e The designation of a location from which data is to
be tsken (source address)

e The designation of a location where data is to be
placed (destination address)

e The address of a program locstion to which program
control is to be passed

e A condition code, used to direct program flow

Although there are a number of valid combinations of
operands, there is one basic convention to remember:
the destination operand always precedes the source
operand(s). Refer to the specific instructions in the
appropriate (Super8 or 78) Technical Manual for valid
operand combinations, and for information about
addressing modes.

A comment is any string of characters following a
semicolon (;) or two slashes (//) in a statement line.
Comments have no functional effect on the assembly of a
program--they are used only for documentation.

Comments can start in any column of a 1line, and a

statement can consist of only a comment. Comments
terminate at the end of the line.

2-6

Assembly Language Syntax

2.5 ARITHMETIC
EXPRESSIONS

2.6 EXPRESSIONS
AND OPERATORS

The asmS8 assembler has a rich set of operators and
expressions to handle arithmetic operations. This
section first deals with specific formats for
arithmetic statements, then follows with a discussion
of constants and special symbols.

Arithmetic expressions can be as long as 80 bits, and
are examined from left to right. Precedence (order of
evaluation) is as follows:

o Operators and operands are accumulated. As soon as
an operator is found that has a precedence level
grester than or equal to the last operator
encountered, all lower-precedence operations up to
the new operator are performed.

e First prefix operations are performed, from right to
left (inside out), then postfix and infix operations
are performed from left to right.

e Operands (labels and subexpressions in parentheses)
are considered to be of precedence level O.

The operators and their precedence (order of evalu-
ation) are given in Table 2-5, The character "-" after
the precedence means that the operation is not present
in the Z8 assembler. The last column gives the PLZ/ASM
equivalent, if there is one.

Assembly Language Syntax

Table 2-5. Operstions and Precedence
Operator Function Precedence PLZ/ASM
operand
label 0 label
constant 1]
constant
(...) Grouping 0 (...)
prefix
a Register indirect 1 a
~ Declare local symbol 1
postfix
Declare external 1
prefix
AHB High byte 2-
LB Low byte 2-
Hw High word 2-
ALW Low word 2-
+ Unary plus 2 +
- Unary minus 2 -
AC 1's complement 2 LNOT
AB Binary-coded decimal 2
A BYTE Byte (8 bit) 2-
AWORD Word (16 bit) 2-
A LONG Long (32 bit) 2-
A QUAD Quad (64 bit) 2-
A QUINT Quint (80 bit) 2-
A ADDR Address (16 bit) 2-
AREV Byte reverse 2-
A FWD Forward reference 2-
AEXT External reference 2-
infix
** Exponentiation 3-
* Multiplication 4 *
/ Division 4 /
AMOD Modulo 4- MOD
AR Shift right 4 SHL
N> Shift left 4 SHR

Assembly Language Syntax

Table 2-5. Operations and Precedence (Continued)

Operator Function Precedence PLZ/ASM
+ Addition 5

- Subtraction 5 -
ACAT String concatenation 5-
A$ or A& Bitwise AND 6 LAND
A Bitwise OR 7 LOR
AX Bitwise exclusive OR 7 LXOR
=z Equal 8-

> Greater than 8-

< Less than 8-

= Greater than or equal B-

<= Less than or equal 8-
AUGT Unsigned > 8-
AULT Unsigned < 8-

O Not equal 8-
ASEQ Strings equal 8-
ASNE Strings not equal 8-

prefix

! Not-zero 9-

infix

&& Logical AND 9~

i Logical OR 10-

prefix

Immediate operand 1
#

postfix

adrf...] Indexing 11-

adr(...) Indexing 1" a()

Arithmetic is NOT DEFINED on floating-point values.

The result of a test is zero if false, and all ones if
true. For purposes of conditional assembly and logical
operations, non-zero is considered to be TRUE.

Parentheses can be used for grouping as well as to
alter the predecedence of evaluation.

Indexing (parentheses or square brackets) can be
applied to strings to extract a particular character,
or to addresses or offsets to denote indexed
addressing.

2-9

Assembly Language Syntax

The type operators (like ABYTE) can be wused to tell
the assembler that a forward or external reference will
fit in a given size,

The AFWD and AEXT operations return 1 if the value of
their operand is forward-referenced or external;
they otherwise return O.

There are no restrictions on the relocation modes of
integer operands, since the linker can support
arbitrary integer arithmetic on relocsatable and
external symbols. However, operations on strings
cannot be passed to the linker.

Some expression operators consist of multiple

characters. There are three main forms, as shown in
Table 2-6.

Table 2-6. Expression Operators

Form Example Description

?? <= Two punctuation characters

~? ~< "~" plus single punctuation character
~x “FS "A" plus any number of letters

id An identifier

No identifiers are used as expression operators in the
assembler as supplied. However, the user can define
them to achieve compastibility with PLZ/ASM and other
assemblers.

2,7 CONSTANTS A constant value is one that doesn't change throughout
the program, Constants can be expressed as numbers
(integer and floating-point), character sequences, or
as symbolic names representing a constant value.
Constants supported by the assembler include integers,
floating-point numbers, characters, and character
strings.

Integers start with a digit (leading =zero is
sufficient) and can contain a base indicator:

B Binary

D, Eore Decimal
Hor X Hexadecimal
0or Q Octal

2-10

Assembly Language Syntax

This is an extension that was made to allow C-style
constants. Base indicators and hexadecimal digits can
be in any mixture of upper and lower case. The default
value is decimal.

In addition, the PLZ base-tag convention is supported:

% Hexadecimal
%(8) Octal
%(2) Binary

Floating-point numbers start with a digit and contain a
decimal point. They can optionally contain the letter
E or e followed by an optional sign and an exponent.
Flosting-point numbers are always in base 10.

Characters and character strings are enclosed in single
or double quotes. If an escape character is defined,
C-type escape sequences are permitted. The escape
character is the value of the special symbol $'STRESC.
The characters permitted after the escape character and
their meanings are noted in Table 2-7.

Table 2-7. Escape Characters

Permitted
Characters

Meaning

T e 30

%dd
ddd

The string's quote character
Newline (line feed)

Carriage return

Form feed

Tab

Backspace

Single quote

Double quote

Backslash

(2 hex digits)--arbitrary character
(1-3 octal digits)--arbitrary character

2.8 LOCATION
COUNTER

The number base of the digits form of escape is given
by $'SBASE (default 8).

The symbols ($) or (.) refer to the current value of
the location counter (corresponding to the address
where the first byte genersted by the statement is
loaded). Either one of these symbols can be used as an
operand in any arithmetic expression (but their use
does not imply the use of PC-relative addressing). The
arithmetic expression is computed at assembly or link
time.

2-11

Assembly Language Pseudo-Ops

3.1 INTRODUCTION

3.2 RELOCATION
PSEUDO-0PS

CHAPTER 3
PSEUDO-0PS

The asmS8 assembler permits the use of pseudo-ops
(pseudo operation codes). These pseudo-ops do not
cause the assembler to generate object code, but rather
specify actions to be taken by the assembler. Pseudo-
ops use the same line format as standard instructions
(label, opcode, operands, comments). Pseudo-ops can
begin in any column except column 1. The pseudo-ops
permitted by the asmS8 assembler are grouped by func-
tion and are described in the following sections.
Table 3-1 lists the pseudo-op abbreviations and their
meanings.

Table 3-1. Pseudo-Op Description Abbreviations

Abbreviations Meaning

n Numeric expression

s String

sn String or numeric expression

d Decimal digit

p Actual parameter (see note 1)

f Formal psrameter (see note 2)

1 Optional label, more than one
Permitted

11 Required label, one only

? Optional

Notes for Table 3-1:

1. An actual parameter is a string enclosed by macro
quotes (normally {...}) or any sequence of
characters delimited by a comma, space (if $'BSEP
is set), end-of-line, or semicolon. (Refer to
$'MACBEG and $'MACEND in section 4.2,2).

2. A formal parameter is either a label or an actual

parameter that does not start with a character that
can denote a label.

The following pseudo-ops are used to specify the
relocation of code within memory.

3-1

Assembly Language Pseudo~Ops

3.2.1 Origin

General Form:
1 .ORG n
Description:

The .ORG pseudo-op sets the location counter to the
value of the expression n. In specifying where the
object code is located, the location counter serves the
same function for the assembler as the Program Counter
does for the CPU.

The location counter is set to the value of the expres-
sion, so that the next machine instruction or data item
will be located at the specified address. The expres-
sion must not contain any forward references, but can
be relocatable. The location counter is initially set
to zero, so if no .ORG statement precedes the first
instruction or data byte in a section, that byte will
be assembled at location zero (relative to the start of
the section}. Any label that is present will be assign-
ed the same value as the expression. A module can
contain any number of .ORG statements.

The mode of the expression in an ,0RG pseudo-op cannot
be external and depends on the relocatability of the
section. If a section is absolute, the .ORG pseudo-op
serves to assign an absolute address to both the loca-
tion counter and the 1label. In addition, any .ORG
statement will also set the starting address of an
absolute section when it immediately follows the
.SECTION statement.

In a relocatable section, the expression will be
treated as any offset relative to the origin of the
module. Thus the 1label on an .0ORG statement in a
relocatable module will have a relocatable mode. For
example, the effect of the statement

‘Label Opcode Operand
LAB: .ORG 100

within a relocatable section would be to set the loca-
tion counter to the beginning of the section plus 100,
assign the label LAB the value 100, and make that
label relocatable. A simply relocatable expression in
an .ORG can be used to change to another section.

Relocatable sections do not generally contain .ORG
statements, since the pseudo-op is wuseful only to
reserve space within the module (in a manner similar to
the .DEFS pseudo-op).

Assembly Language Pseudo-Ops

3.2.2 Phase

3.2.3 Dephase

3.3 LABEL DEFINITION
PSEUDO-0PS

Example:

START1: .ORG %10 ;Start section 1 at the hex
;address 10

General Form:
. PHASE n
Description:

The .PHASE pseudo-op assembles the code that follows to
execute starting at address n. Labels will be defined
as if an origin pseudo-op (.ORG) had been issued, but
the address into that code is not affected. This
pseudo-op is provided for pieces of code that are going
to be moved (for example, from ROM to RAM) before they
are executed.

Example:

.PHASE 500

General Form:
.DEPHASE
Description:

The .DEPHASE pseudo-op terminates the effect of a
preceding .PHASE pseudo-op.

Example:

.DEPHASE

Labels on instructions are automatically assigned the
current value of the location counter. The pseudo-ops
.EQU and .SET can be used to assign arbitrary values to
symbols. To facilitate inter-module communication,
certain symbols can be declared to be either .GLOBAL or
.EXTERNAL to a particular module. .EQU and .SET re-
quire that the expression have no forward references
(it can contain previously declared external symbols).

3-3

Assembly Language Pseudo-Ops

3.3.1 Equate

3.3.2 Set Re-definable
Label

General Form:

11 .EQU n
11 = n

Description:

The .EQU pseudo-op assigns the value of the expression
n to the symbol in the 1label field 11, The label
cannot be redefined in. this source program, The
expression can include a register or other addressing
mode.

Using symbolic names for constant values in place of
numbers enhances the readability of a program and tends:
to make the code self-documenting. For instance, the
symbol BUFLEN is a more descriptive name for a value
than just the number 72. Furthermore, if a value that
is used throughout a program needs to be changed, the
.EQU statement can simply be modified rather than
finding all occurrences of the number 72.

Example:

WO .EQU 2 sthe symbol TWO now has
33 value of 2

General Form:
11 .SET n
Description:

This pseudo-op assigns the value of the expression n to
the symbol in the label field 1l1. The label assignment
can be changed using a subsequent .SET pseudo-op. The
.SET pseudo-op is identical to the .EQU pseudo-op
except that the assigned label can appear in multiple
.SET pseudo-ops in the same program.

In general, use the .EQU for symbol definition since
the assembler will generate error messages for
multiply-defined symbols. This can indicate spelling
errors or some gther oversight by the user. .SET
should be reserved for special cases where the same
symbol is re-used (e.g., in conjunction with the
assembly of macros).

QU and .SET require that the expression have no
forward references (it can have external symbols
provided they have been declared previously).

Assembly Language Pseudo-Ops

3.3.3 Define
Arbitrary Symbol

3.3.4 Global

3.3.5 External

Example:

COND1 LSET 150 sset initial value to 150
COND1 .SET COND1 + 107 j;increment value by 100

General Form:

11 ,DEF 1

Description:

This pseudo-op defines the label 1l as an exact synonym
for the operand symbol 1. Neither the label nor the
operand needs to be an identifier; they may be
punctuation characters such as + . If the label is
non-alphabetic, it must be preceded by a colon.
Example:

AND .DEF A&

STORE .DEF LD

s LDEF A

General Form:

.GLOBAL 111,...1ln

Description:

These pseudo-ops specify that each of their operands
are symbols that are defined in the current module and
that the name and value of each operand is made
availsble to other modules that contain an LEXTERN
declaration for any symbol. There can be one or more
names separated by commas (or no names at all).

.GLOBAL pseudo-ops can occur anywhere within the source
text.

Example:

.GLOBAL ENTRYA, EXITA, ENTRYB, EXITB

General Form:

LEXTERN 111,...11n

Description:

This pseudo-op specifies that each of the operands are
symbols that are defined in some other module, but are
referenced in the current module. The syntax is the

same as .GLOBAL.

3-5

Assembly Language Pseudo-Ops

3.3.5 External
(Cont inued)

3.4 MODULE AND
SECTION
PSEUDO-0PS

3.4.1 Module
Definition

3.4.2 Section
Definition

LEXTERN pseudo-ops can occur anywhere within the source
text, The LEXTERN pseudo-op assigns each name an
external mode, which allows the name to be used in
arbitrary expressions elsewhere in the module, subject
to the rules for external expressions. If an EXTERN
and a .GLOBAL definition for the same label appear in
the same module, the .GLOBAL pseudo-op will take
precedence.

An external symbol can be assigned a value using either

a .SET or .EQU pseudo-op. An assigned value will be
the default value of a symbol if it is not resolved
when the object module is linked,

Example:

.EXTERN ENTRYA, EXITA, ENTRYB, EXITB

The following pseudo-ops are used to name the object
module, and to define specific areas of source code
that can be relocated separately.

General Form:
.MODULE p p?
Description:

This pseudo-op defines the name of the module, If
given, the second parameter becomes the target name in
the object module. Otherwise, the target name will be
"Z8" or "ZS8". The target name is a universal object
file format field name for use by other programs such
as a loader (see the Universal Object File Utilities
User's Guide).

There can be only one . MODULE statement in a module.
If no .MODULE statement is given, the module takes the
name of the source file with its extension (.s)
deleted.
Example:

MODULE Main j;Define main module
General Form:

1 .SECTION 11,...1n
1 .PSEC 11,...l1n

3-6

Assembly Lanquage Pseudo-Ops

Description:

These pseudo-ops start a section. The first parameter
is the name of the section, and can be null when
terminated by a comma. Any other parameters are the
universal object file attributes of the section (see
the Universal Object Files Utilities User's Guide).
When given, a statement label is defined as a pseudo-op
that will direct assembly output to that section.
Assembly can also be directed to the section by giving
another .SECTION command with the same section name.

The following section changing operations are
predefined:

Name Meaning

.DATA Data section
.CODE Code section
.BSS BSS section

.ABS Absolute section
.CSEC Common section

All of these direct assembly to 3 section with the same
name and appropriaste attributes. The default section
is a nameless and relocatable section; to return to the

default section, use a ,SECTION command with no
parameters.

The following operations enclose blocks of local
symbols:

Name Meaning

+BEGIN Begin local symbol block
Begin local symbol block

.END End local symbol block

} End local symbol block

Local symbols are defined with a tilde character " at
the beginning. .BEGIN and { are synonymous, 3s are
.END and }. Furthermore, blocks can be nested.

Example:

BEGIN
L1:
BEGIN
L1:
LEND
.END

3-7

Assembly Language Pseudo-Ops

3.4.2 Section
Definition
(Continued)

3.5 GENERAL DATA
DEFINITION
OPERATION

3.5.1 Data Definition

3.5.2 Sized Data
Definition

Note that a .END without a matching .BEGIN will mark
the end of the source program (see section 3.7.1).

Pseudo-ops are provided to define message, text,
character string, and data size.

General Form:
1 .00 snl,...,snN
or
1 .DD repeat-count(data)
Description:

This pseudo-op assembles a list of data items. Any
number of expressions or strings can be listed in s .DD
statement., Each item listed is stored in its natural
length: expressions involving addresses or forward
references are stored in 16-bit words, expressions with
values less than 256 are stored in one 8-bit byte, and
strings are stored "as is."

Strings that are not used as numbers (no arithmetic
operators are applied to them) are not affected by
special symbols $'STRLEN and $'STRORD. Operators like
BYTE can be used- to force an expression to an
appropriate length.

Example:

DATA: .DD ZED+100
.DD "This is a string"

General Form:

1 .BYTE nl,...,nn
.WORD nl,...,nn
LONG nl,...,nn
L.QUAD n1,...,nn
LJAUINT nt,...,mn
LEXTEND nl,...,0n

bt bt et et bt

Description:

These pseudo-ops define data of a specified size. Any
number of expressions can be listed provided each fits
within the specified data size. These pseudo-ops take
each operand and generate object code of the size
specified, locating the most significant byte at the

Assembly Language Pseudo-Ops

3.5.3 Define ASCII
String

3.5.4 Define ASCII
String with
Length

3.5.5 Define ASCII
String with

Flagged Last
Character

current value of the location counter, and the next
most significant byte at the next higher location.

The mode of the expression can be either absolute,
relocatable, or external. If present, a label will be
assigned the address of the first data item. String
arguments are always subject to the processing
specified by $'SnLEN and $'SnORD (i.e., converted to
numbers).

Example:

WORDS: .WORD 512,ABLE

General Form:

1 .ASCII sn1,...,snn

Description:

This pseudo-op defines message strings or byte data, A
parameter can be either an expression or a string. Any
number of parameters can be listed. An expression must

fit into a single byte area; strings are stored
completely.

Examples:
Label Opcode Operand
MSG: .ASCII 'HELLO THERE', x+1

General Form:

1 LJASCIL s81,...,8n

Description:

This pseudo-op defines strings, with each string
preceded by a byte containing its length. Parameters
can also be expressions, each of which is also stored
with a byte containing its length.

Example:
TXT: ASCIL °'OPEN','CLOSE’

General Form:

1 .ASCIC s1,...,sn

This pseudo-op defines character strings. The
high-order bit of the last character of each string is

set to one (1); the high-order bits of all other
characters in the string are set to zero (0).

3-9

Assembly Language Pseudo-Ops

3.3.5

3.5.6

3.5.7

3.5.8

Define ASCII
String with
Flagged Last
Character
(Continued)

Define Null-
Terminated ASCII
Strings

Reserve Space

General Reserve
Block

Example:

CHARS: .ASCIC 'ABCD','EFGH’'

General Form:

1 L.ASCIZ s1,...,sn

‘Description:

This pseudo-op defines character strings with an
additional zero (null) byte at the end of each string.
Example:

label: ASCIZ 'S1',S2

General Form:

1 .BLKB n Reserve a block of bytes

1 .BLKW n Reserve a block of words

1 .BLKL n Reserve a block of longwords

1 BLKQ n Reserve a block of quadwords

1 BLKX n Reserve a block of extended words
Description:

These pseudo-ops reserve space in differing word
lengths. The operand n specifies the number of words

to be reserved for data storage starting at the current
value of the location counter. Except for .BLKB, these
pseudo-ops are aligned on word boindaries. When
present, 3 label will be assigned the address of the
first byte reserved.

The expression can evaluate to any quantity; however,
the mode must be absolute and not have forward
references. Any symbol appearing in the expression
must have been defined before the assembler encounters
the expression.

Example:

label: .BLKW 5

General Form:

1 .BLOCK n, n?

3-10

Assembly Language Pseudo-Ops

3.5.9 Alignment

3.5.10 Even or 0dd
Alignment

Description:

This pseudo-op reserves n bytes of space in memory.
One operand (n) specifies the number of bytes to be
reserved for data storage starting at the current value
of the location counter. When provided, the second
operand is the alignment boundary for the block. Any
label will be assigned the address of the first
reserved byte.

The expression can evaluate to any quantity, but the
mode must be absolute and not have forward references.
Any symbol appearing in the expression must be defined
before the assembler encounters the expression.

This pseudo-op reserves storage by incrementing the
location counter by the value of the first expression.
Since no object code is generated into the storage
area, the contents of storage during initial program
execution are unpredictable.

Example:

STORE: .BLOCK 512

General Form:
LALIGN n?
Description:
This pseudo-op aligns the next item on a multiple of n

bytes. If the next statement is a .SECTION pseudo-op,
the start of the section is aligned. If the parameter

n is omitted, a word alignment default value of 2 is
assumed.
Example:

FORMAT: .ALIGN 4

General Form:

.EVEN
.0DD

Description:

These pseudo-ops align the next item on an even or odd
boundary.

3-11

Assembly Language Pseudo-Ops

3.6 CONDITIONAL
ASSEMBLY
PSEUDO-0PS

Conditional assembly permits the programmer to inhibit
or enable the assembly of defined portions of the
source code depending on the presence of a pre-
determined condition.

General Form:

e Start Conditional Block
JAF n

o Separate True and False Conditional Blocks
.ELSE

e End Conditional Block
LENDIF

Description:

.IF defines the start of the conditional code block and
tests for the true (non-zero) or false (zero) state of
the expression n. .ELSE separates the code that is
assembled if the expression is true from the code that
is assembled if the condition is false (.ELSE is
optional). .ENDIF defines the end of the conditional
code block. Conditional blocks can be nested up to 80

deep.

The mode of the expression can be either relocatable or
absolute. Forward or external expressions generate a
warning, and are always considered to be true,

Notice that the definition of symbols within a
conditional assembly block can be inhibited, and thus
references to these symbols elsewhere in the module can
cause undefined symbol errors. In particular, the
label on an .ELSE pseudo-op is part of the true block,
and will not be defined if the assembly is inhibited on
that portion of the program.

Conditional assembly is particularly useful when a
program needs to contain similar code sequences for
slightly different applications. Rather than generating
3 multitude of pqurams to handle these situations, the

‘application-dependent sections of code can be enclosed

by the conditional pseudo-ops within a single program.
Thus, the user generates different object modules from
subsequent assemblies of the same source by changing
the values of several symbols used to control the
conditional assembly.

Another common use of conditional assembly is in
conjunction with macros to control generation of code
dependent on the value of parameters (see Chapter 4).

Assembly Language Pseudo-Ops

3.7 ASSEMBLER CONTROL
PSEUDO-0PS

3.7.1 End Program

3.7.2 Include

Example:
IF FLAG

. ;assembled if FLAG non-zero

. sassembled if FLAG equals zero

.ENDIF

Pseudo-ops are provided to: control the format of
printed listings, control the information presented on
the listings, control the printing of errors or warning
messages, and to establish the compatibility mode of
the assembler.

General Form:

1 .,END n?

Description:

This pseudo-op specifies the end of source code. Any
expression is taken as the starting address of the
program, The .END pseudo-op signifies the end of the
source program, and thus any subsequent text will be
ignored and will not appear in a listing.

Any label will be assigned the current value of the
location counter. Operands are ignored. If a source
program does not contain an .END pseudo-op, then the
end-of-file mark in the assembler command line will
signify the end of the program.

Examples:

EXIT: .END j;end of module

.END START

General Form:

.INCLUDE »p

Description:

This pseudo-op includes the source file identified by
the parameter (p) into the source stream immediately
following this statement. The wusual use of this

statement is to include items such as files of macro
definitions, lists of ,EXTERNAL declarations, lists of

3-13

Assembly Language Pseudo-Ops

3.7.2 Include
(Continued)

3.7.3 Page Title

3.7.4 Page Subtitle

.EQU statements, or commonly used subroutines into the
source stream. However, this pseudo-op can be used
anywhere in a program. The file name given must follow
the normal convention for specifying source file names.
. INCLUDE pseudo-ops can be used in files specified in a
preceding .INCLUDE pseudo-op. These pseudo-ops can be
nested to a depth of four deep. If the .INCLUDE
pseudo-op appears within a macro definition, the file
will be included every time the macro is expanded,
. INCLUDE pseudo-ops can be used in conditionals.
Example:

.INCLUDE FILE1

General Form:X

LTITLE p1,...pn

Description:

This pseudo-op causes the string specified in
parameters to be printed at the top of each page of the
listing.

Example:

.TITLE Program for Interest Calculation

General Form:

.SUBTTL p1,...pn

Description:

This pseudo-op prints strings specified in parameters
on the second line of following pages in the listing.
The subtitle on the first page of the listing will be
the name of the source file. An outer layer of quotes
will be ignored.

Example:

.SUBTTL Created by P. Jones

Assembly Language Pseudo-Ops

3.7.5 Listing Control

General Form:
e Control Listing
LIST p
e Control Warning Listing
JMWLIST p
e Control Conditionel Listing
L.CLIST »p
® Control Macro Listing
MLIST p
e Control Macro Object Listing
XLIST p
Description:
These pseudo-ops cause an output listing file to be
generated according to the pseudo-op(s) used and the

parameter given.

The parameters given for each of the listing control
pseudo-ops can be any one of the following symbols:

Value Meaning
ON Include in listing file.
OFF Do not include in listing file.
PUSH Save current value of pseudo-op control

status in appropriate variable.

POP Restore saved value of pseudo-op control
status from appropriate variable,

The variables $'LIST, $'WLIST, $'CLIST, $'MLIST, and
$'XLIST are used as 80-bit pushdown stacks to store and
recover the current state of the parameter given in
their respective list control pseudo-op. The parameter
state value is stored in the low-order bits of the
variable.

Pseudo-op .LIST with p=ON enables a listing file of the

source to be generated. When P=0FF, ,LIST prevents a
listing file from being generated.

3-15

Assembly Language Pseudo-Ops

3.7.5 Listing Control
(Cont inued)

3.7.6 List Error
Message

3.7.7 List Warning
Message

Pseudo-op .WLIST with p=ON enables warning messages to
be included in the listing file. When p=0fF, .WLIST
prevents warning messages from being included in the
listing file.

Pseudo-op .CLIST with p=0ON enables those portions of
the source file that are conditionally skipped to be
included in the listing file. When p=0FF, .CLIST
prevents those "conditionally skipped" portions of the
source file from being included in the listing file.
Pseudo-op .MLIST with p=ON enables the expansion of
macros to be included in the listing file. When
p=0FF, .MLIST prevents macro expansions from being
included in the listing file.

Pseudo-op .XLIST with p=ON ensbles the listing of
binary object code to be included in the listing file.
When p=0FF, .XLIST prevents these extra binary object
lines from being included in the listing file.

The default value for all listing control listings is
p=0ON.

Example:
.LIST ON

General Form:

.ERROR s

Description:

This pseudo-op causes the message given in string (s)
to be generated and sent to the terminal and the
listing.

Example:

.ERROR 'SYNTAX ERROR'

General Form:

JMWARN s

Description:

This pseudo-op causes the warning message given in
string (s) to be generasted and sent to the standard
output.

Example:

.WARN 'POSSIBLE PROBLEM HERE'

3-16

Assembly Language Pseudo-Ops

3.7.8 Start New Page

3.7.9 Search Library

3.7.10 Object File
Comment

General Form

PAGE n

Description:

This pseudo-op causes the listing to be paginated. The
page size is set at the value given in n, If n is
zero, the assembler will not paginate the 1listing.
Page size is given in number of lines per page.

The default action is not to paginate the listing,
since system utilities can be used for that purpose.
.PAGE with no operand simply starts a new page in the
listing, and is equivalent to a line containing a form
feed.

Example:

.PAGE 66 ;set page size to 66 lines

General Form:

1 L(LIBRARY p 11,...1n?

Description:

This pseudo-op puts a directive into the object file
that instructs the linker to search a given library
file (the first parameter) for the definitions of
external symbols. If 1labels are given in the
parameter(s), the library is searched only for those
external labels.

Example:

.LIBRARY clib.s Subr1, Subr2, Subr3

.LIBRARY xyzlib

General Form

.OCOMMENT n? s

Description:

This pseudo-op enters the text given in string (s) inteo
the object file listing as a comment. Any value given
for n is used as the "comment level” value. Comments
below a link-time settable level will appear in load
maps.

Example:

.OCOMMENT 3,'tables start here'

3-17

Macros

4.1

GENERAL
DESCRIPTION

CHAPTER 4
MACROS

Macros provide a means for users to define their own
opcodes or to redefine existing opcodes. A macro is a
portion of a program invoked by its name. It begins
and ends with pseudo-ops, and can contain any assembler
constructs, including pseudo-ops and macros. Two types
of macros can be used in asmS8 programs: MACROs and
PROCs.

MACROs are the familiar string substitution macros used
in other assemblers. Parameter strings provided in the
macro's invocation are substituted in the body of the
macro. MACRO parameters must be separated by commas,
and can contain blanks.

PROCs are call-by-value, procedure-type macros. The
parameters provided in the invocation statement are
expressions, and their values are substituted into the
body of the macro. As with ordinary opcodes, PROC
parameters can contain blanks either before or after
operators. Likewise, commas between expressions are
optional.

In general, a macro definition consists of the block of
code beginning with a "start" pseudo-op and ending with
an "end" pseudo-op. The statement containing the start
pseudo-op requires a label, It serves as the name of
the macro, and is used to invoke it. Each statement
between the start and end statements is stored in the
assembler's symbol table as the definition of the
macro. These statements can include macro invocations
and definitions. In addition, recursion is allowed.

The statements of the macro body are not assembled at
definition time. As a result, they do not define
labels, generate code, or cause errors until the macro
is invoked. Macros must be defined before they are
invoked.

A macro is invoked by using its name as an opcode st
any point after the definition. Every macro definition
has an implicit parameter named #3$YM. This can be
referenced by the user in the macro body, but should
not explicitly appear in the .MACRO statement.

Macros

4.1 GENERAL
DESCRIPTION
(Continued)

4,2 WMACRO OR
STRING MACRO

4.2.1 MACRO Definition

4.2.2 MACRO Special
Symbols

At expansion time, each occurrence of #$YM in the
definition is replaced by a string representing a 4-
digit hexadecimal constant. This string is constant
over a given macro expansion. However, it increases by
one for each macro invocation to avoid multiple
definition errors. This provides unique labels for
different expansions of the same parameter.

MACRO is the string substitution macro.

The general form of a MACRO definition is:

11 .MACRO f1,...,fn j;start MACRO pseudo-op.

. (statements that form body of MACRO)
.ENDM send MACRO pseudo-op.

The required lasbel serves as the name of the MACRO, to
be used on invocation. A formal parameter (f1,...,fn)
can be either a label or a string of any characters
except blanks, commas, or semicolons. Furthermore,
parameters must start with a character that cannot
start a label. Formal parameters that are labels are
recognized in the macro body anywhere a label would be
recognized (i.e., labels or opcodes). Parasmeters that
are not labels are recognized anywhere (e.g., within
labels, strings, or comments).

Parameters are scanned left to right for a match, so
the user is cautioned not to use parameter names that
are prefix substrings of later parameter names. Formal
parameters are not entered in the symbol table.

MACROs can contain any statements including MACRO
definitions and invocations, other assembler
directives, and conditional assembly. The pseudo-ops
.MACRO and .ENDM specify the beginning and end of a
MACRO, respectively.

The following special symbols are defined for use with
MACROs.

They can be reassigned using .SET pseudo-ops, and can
be used as operands anywhere a label could be used.

$'"MACEVAL ‘%!

Used to replace an expression, used as a3 macro para-
meter, with its value.

4-2

Macros

4.2.3 MACRO Invocation
and Expansion

4.2.4 MACRO Example

4.3 PROC OR PROCEDURE
MACRO

4.3.1 PROC Definition

$'MACQUOTE '

Used to include the following character in a macro
parameter, despite any special meaning it may have.

$ 'MACBEG o
$'MACEND v

Beginning and ending macro parameter delimiters. If
different, they must be properly nested, or they could
cause an escape with $'MACQUOTE.

A MACRO is invoked when its name is used as the
opcode. The rest of the line is made up of "actual
parameters"--strings of characters separated by
commas, possibly enclosed in quotes (normally
{...}). Quoted parameters can include commas as well.

The actual parameters on the invoking line replace the
corresponding formal patrameters from the defining line
wherever they occur in the body of the macro. If
legal, a formal parameter is replaced wherever it
occurs as an identifier. If a formal parameter is not
a legal identifier, it is matched as a string and is
replaced wherever it occurs. The statement is
assembled after these substitutions, and the resultant

code placed in the program in place of the invoking
statement.

Assuming that the 1label UPDATE has already been
defined, the .MACRO invocation

START UPDATE 46,99,current

substitutes the sactual parameter strings 46, 99, and
"current" for the first, second, and third formal
parameters within the body of the MACRO named UPDATE.

The procedure (or .PROC) macro is a call-by-value
macro. The major difference between a .MACRO and a
.PROC is that the parameters of the procedure-type
macro are expressions that are evaluated before the
.PROC is expanded.

The general form of a PROC definition is:
11 .PROC 11,...,1n j;start PROC pseudo-op

. (statements that form body of PRGC)

.ENDP send PROC pseudo-op

Macros

4.3.1 PROC Definition
(Continued)

4.,3.2 PROC Invocation
and Expansion

4,3,3 PROC Example

4.4 SPECIAL MACRO
PSEUDO-0PS

4.4.1 Exit Macro

The required label is the name of the .PROC and is used
to invoke it. The pseudo-ops .PROC and .ENDP specify
the beginning and end of a PROC-type macro. The formal
parameters are labels that are recognized only when
they are used in expressions or as statement 1labels.
PROCs can contain any statements including macro
definitions and invocations, assembler commands, and
conditional assembly.

When a PROC is invoked, the expression parameters are
evaluated and substituted into the body of the PROC as
values, Then the PROC is assembled normally and its
code is inserted into the program in place of the
invocation statement.

For example, assume the following PROC definition:
ESTIMATE .PROC total,average
. (body of PROC)
JENDP
Using this invocation:
ESTIMATE sum+12,sum+12/num

would substitute the value of sum+12 for the formal
parameter "total", and the value of sum+12/num for
"average" in the ESTIMATE PROC. These values would
then be used by the assembler in assembling the PROC in
the program stream.

Several special pseudo-ops are provided for use within
MACROs. These pseudo-ops can stop macro expansions,
define labels for each macro invocation, or provide
looping capabilities.,

General Form:

LEXITM n?

Description:

This pseudo-op stops the expansion of a macro. It can
be used in all forms of a macro (MACRO or PROC) to

force an early termination of the MACRO's expansion.
The exit can be made on a conditional basis.

Macros

4.4.2 Define Local
Symbols

4.4.,3 Repeat

4.4.4 Repeat On
Parameter List

General Form:
JLOCAL 11,...,1n
Description:

This pseudo-op defines local symbols within a macro.
Each symbol given in the list with this pseudo-op is
replaced in the expansion of the MACRO by the symbol
", XXXX" where XXXX represents a hexadecimal number
unique for each local symbol in each invocation of the
macro. When used, the .LOCAL pseudo-op must
immediately follow the defining MACRO or PROC
statement.

Example:

POWER: .MACRO x
.LOCAL two,three j;two and three will be assigned
53 unique symbol for each
;invocation of the macro.

General Form:

REPT n

.ENDM
Description:

The block of statements between .REPT and .ENDM is
repeated n times. The value of n must be absolute and
not include forward references.

Example:

.REPT 4

.ENDM

General Form:

JIRP f,s

.ENDM

4-5

Macros

4.4.4 Repeat On
Parameter List
(Continued)

4.4.5 Repeat On
Character String

4.5 SPECIAL MACRO
OPERATORS

4.5.1 '%* Operator

Description:

The quotes are stripped from the string, and the block
of statements between .IRP and .ENDM is repeated, with
each parameter in the string s replacing the formal
parameter f in the expansion of the contained
statement.

Example:

.IRP X, "4,8" ;first 4, then 8, is substituted for
seach occurrence of X from here to the
send of the macro.

.ENDM

General Form:
.IRPC f,s

.ENDM
Description:

The block of statements between ,IRPC and .ENDM is
repeated, with each character in s replacing the formal
parameter f in the contained statements.

Example:

LJIRPC X, "1234567" ;the characters 1
sthrough 7 are substituted
sfor the seven iterations of this
smacro.

ENDM

The following sections discuss operators and symbols
that are useful mainly within macro definitions or
invocstions. These symbols are %, !, { }, /DEF, and
ANUL. Note that the single-character operators can be
redefined by changing the value of the corresponding
special symbols.

The symbol % in front of a label in a macro parameter
causes the numeric value of the expression to be
converted to a decimal ASCII string and incorporated
into the parameter, The symbol % will be recognized
within a symbol to construct new symbols. The label's
value must be absolute, and may not contain a forward
reference,

4-6

Macros

4.5.2 '!' Operator

4.5.3 {...}

4.5.4 N\DEF 1

4,5.5 ANUL

The special symbol $MACEVAL can be used to change the
character used for this function from its initial
default of "%".

The character ! in front of a character in a macro
parameter makes that character part of the parameter,
even if the character is normslly treated specially
(e.q., , comma, etc.). The special symbol $MACQUOTE
can be used to change the character used for this
function from its initial default of "!",

A macro parameter enclosed in braces will have an outer
layer of braces eliminated. The beginning and ending
braces are the value of $'MACBEG and $'MACEND,
respectively, but can be changed.

Beginning and ending braces must be properly nested.
If the beginning and ending characters are the same,
they cannot be nested. However, the character itself
may be entered by either doubling it (e.g., ") or
preceding it with '1'.

ADEF followed by a symbol expands to a non-zero value
if the symbol has been defined (previous to the current
line) or 0 if the symbol has not been defined.

ANUL expands to a non-zero value if it is the last
token on a line (not counting a comment), or O
otherwise. The rest of the line is ignored.

4-7

Program Invocation

5.1 ASSEMBLER COMMAND
LINES AND OPTIONS

CHAPTER 5
PROGRAM INVOCATION

The asmS8 assembler accepts various command line
options for assembly, creates a listing, and creates
an object file in a universal file format suitable for
use by such utilities as a loader (see the Universal
Object File Utilities User's Guide).
The assembler is invoked as follows:

asmS8 [option . . .] file

Valid assembler dptions are listed in Table 5-1.

Table 5-1. Assembler Options

Option Meaning

-d Reserved

-en Stop after n errors

-1 Produce listing for files in file.1

-0 objfile Specify object file name other than a.out

-~ab Produce object in binary form

-oc Produce object in character form

-on Produce object with file and line number in
comment level 1

-o0s Produce object with source lines in comment
level 2

-ow Produce object with user-generated warnings
in comment level 2

-p Produce listing on standard output

-T Restrict to Z8 instruction set

-s symfile Get assembler's symbol table initialization
from symfile

-u Treat undefined symbols as externals

-w Don't list warnings

Produce cross-reference on file.x

If the -1 option is given and the source filename ends
in ".s", the listing is produced in filename.l. If the
-s flag is not used, the assembler will obtain its
symbols from a file on /z/bin/asm* whose name was
used to invoke the assembler. Normally, this is
/z/bin/lib/asm/asmS8**, The symbol file is an
ordinary ASCII source file, and can contain any
constructs that do not generate object code. This is
used to create custom versions of the assembler.

* for VAX/UNIX it is /usr/local/bin/asm
** for VAX/UNIX it is :/usr/local/bin/asm/asmS8

5-1

Program Invocation

5.2 LISTING FORMAT

5.3 PROGRAM
TERMINATION

The assembler produces a listing of the source program,
along with generated object code, The various fields
in the listing formst are the heading, the location
counter (LOC), the object code (0B8] CODE), the state-
ment number (LINE#), and the source statement
(SOURCE). They contain the following:

® The heading is on the first page of the listing and
contains the date, time, year, file name, and page
number, as well as the column headings LOC, 0BJ
CODE, LINE#, and SOURCE.

o LOC contains the value of the location counter for
statements.

e 0BJ CODE contains the generated object code. If
a statement does not generate object code, this
field is blank. Relocatable values are represented
as Rsss+nnnnnnnn where ssss is the section number
and nnnnnnnn is the offset within the section,
Externals are noted by the letter x, with a3 capital
X representing the first byte. An asterisk (¥)
notes other link-time expressions that are not
simply relocatable.

e LINE# contains the sequence number of each line of
the source, starting at 1.

® SOURCE contains the source code inciuding labels,
opcodes, operands, and comments.

Appendix £ shows a sample listing.

The assembler returns an error code of O if the program
has no errors. Otherwise, the assembler returns an
error code of 1 and error messages will appear in the
listing, These error messages will also be sent to the
terminal with the relevant file and line numbers. If
possible, an object file will be created even if errors
are present. Appendix D lists the error messages and
their explanations.

Appendix A

APPENDIX A
PSEUDO-0P SUMMARY

The following abbreviations apply to the pseudo-op

summary :
n Numeric expression
s String
sn String or numeric expression
d Decimal digit
p Actual parameter
f Formal parameter
1 Label (optional, more than one allowed)
11 Label (required, only one allowed)
eee May be repeated
? Optional
[...] Not exactly equivalent (either form acceptable)
Label Pseudo-Op Operand Meaning
Relocation Operations IJ[III
1 .ORG n Origin
.PHASE n Phase
.DEPHASE Dephase
Section Operstions
MODULE p p? Module name
1 .SECTION 1... Define a3 section

Label Definition Opersations

11 EQU n Equate

11 .SET n Define a label
.GLOBAL 11 ... Global symbols
LEXTERNAL 11 ... External symbols

Data Definition Operations

1 .DD sn ... Define data

1 .BYTE n ... Define byte data

1 .WORD n ... Define word data

1 .LONG n Define longword data

1 . QUAD n ... Define quadword data

1 +QUINT n ... Define 5-byte (extended) data

1 EXTEND n ... Define extended data

1 .ASCII sn ... Define ASCII string

1 .ASCIL S ee. Define ASCII string with length

A-1

Appendix A

Label Pseudo-Op Operand

Meaning

Data Definition Operations — (Continued)

1 LASCIC S oo
1 .ASCiz S eee

Define ASCII string with
flagged last character

Define null-terminated
ASCII string

Reserve Space Operations

1 .BLOCK n n?
1 .BLKB n
1 .BLKW n
1 .BLKL n
1 .BLKQ n
1 .BLKX n

Reserve a block with optional
alignment

Reserve a block of bytes
Reserve a block of words
Reserve a block of longwords
Reserve a block of quadwords
Reserve a block of extended data

Conditional Assembly

JIF n
LELSE n
.ENDIF n

Start conditional block
False branch of conditional
End conditional block

Assembler Control Operations

.END n? End program
. INCLUDE p’ Include a source file
LTITLE P oeve Listing title
.SUBTTL P oeee Subtitle
.LIST p Control listing
SWLIST P Control conditional listing
+MLIST p Control macro listing
- XLIST p Control macro object listing
.ERROR s List an error message
<WARN s List a warning message
.PAGE n? Start a new page
.L IBRARY p 1?7 ... Library search
.OCOMMENT n? s Object comment

Macro Operations

11 .MACRO foeee Define macro
.ENDM End MACRO definition

11 .PROC l... Define a procedure
.ENDP End PROC definition
LEXITM n? End macro expansion
.LOCAL 1... Define macro labels
.REPT n Repeat.
.IRP fs Repeat on parameter list
.IRPC fs Repeat on character string
.ENDM End repeated block

A-2

Appendix B

APPENDIX B
SPECIAL SYMBOLS

The following special symbols are defined. They can be
reassigned using .SET pseudo-ops, and can be used as
operands anywhere a label could be used. If needed,
additional special symbols will be defined later.

Initial
Symbol Value Meaning
$'LIST 1 Controls the whole listing
$'WLIST 1 Controls the warning listing
$rCLIST 1 Controls listing of false conditional
$'MLIST 1 Controls macro expansion listing
$'XLIST 1 Controls listing of object code that does

not fit on original source line

These special symbols are used for control of the
listing. If the low-order bit is 1, the corresponding
item is listed, If the low-order bit is 0, the item is
not listed.

$'LIST controls the listing as a whole, $'WLIST
controls the listing of warning messages, $'CLIST the
listing of false conditionals, $'MLIST the listing of
macro expansions, and $'XLIST the listing of object
code that does not fit on the original source line.

Default
Value
$'SYMLEN 127
The maximum number of significant characters in a
symbol,
$'UCASE 0

Treat all letters as uppercase.

$'STRESC "\

The string-escape character. The meaning of the
following character is given in the table in section
3.3.2 (constants).

Appendix B

$'SILEN 10
$'S10RD ™!
$'S2LEN 10
$'S20RD W

The length and byte-order ('M' = most significant
byte first, 'L' = least significant byte first) of
strings surrounded by single and double quotes
respectively. In the byte-order parameters, only
the least-significant bit is actually looked at. Thus,
0 and 1 can be used instead of 'L' and 'M',
respectively.

$'SxLEN and $'SxORD are provided because previous
78000 assemblers have evaluated byte order differently
when using strings as numbers.

$'BASE 10
$'ZBASE 10
$'SBASE 8

The input default number base for numbers that start
with non-zero digits, numbers that start with zero, and
string escape sequences respectively. Setting $'ZBASE
to 8 gives the C convention for octal numbers. Terms
like $'BASE must be in the range 2 to 16.

$'ADRLEN 2

The length in bytes of an address. The value for
$'ADRLEN is 2,

$'ADRORD ™!

The byte-order of an address. $'ADRORD is normally
left as 'M'; this can be changed if the assembler is
being used to produce non-Z80,000 code.

$'ADRTYPE 1]

This indicates the current addressing type: 0 =
linear, 1 = segmented, 2 = compact (nonsegmented).

$'ALIGN 1

The aligmment boundary for instructions and data with
length >= 1 byte.

B-2

Appendix B

$'EPUID 0

The current EPU Identifier. Unused.

$'28 0 (1 if -r option)

When set to 1, the Super8 instruction set is accepted.
When cleared to 0 (explicitly or with an option), the
28 instruction set is accepted.

$'0PCOPT]

1f the value is not zero and an opcode is missing on a

line containing expressions, the opcode .DD (arbitrary-
length data) will be assumed.

B-3

Appendix C

APPENDIX C
ASCII CHARACTER SET

Nuwmeric
Graphic Decimal Hex Comments
0 0 Null
1 1 Start of heading
2 2 Start of text
3 3 End of text
4 4 End of transmission
5 5 Enquiry
6 6 Acknowledge
7 7 Bell
8 8 Backspace
9 9 Horizontal tabulation
10 A Line feed
11 B Vertical tabulation
12 C Form feed
13 D Carriage return
14 E Shift out
15 F Shift in
16 10 Data link escape
17 1" Device control 1
18 12 Device control 2
19 13 Device control 3
20 14 Device control 4
21 15 Negative acknowledge
22 16 Synchronous idle
23 17 End of block
24 18 Cancel
25 19 End of medium
26 1A Substitute
27 18 Escape
28 1c File separator
29 10 Group separator
30 1E Record separator
31 1F Unit separator
32 20 Space '
! 33 21 Exclamation point
" 34 22 Quotation mark
35 23 Number sign
$ 36 24 Dollar sign
% 37 25 Percent sign
& 38 26 Ampersand
' 39 27 Apostrophe
(40 28 Opening parenthesis
) 41 29 Closing parenthesis
* 42 2A Asterisk
+ 43 2B Plus
, 44 2C Comma

Appendix C

ASCII Character

Set Numeric

(Continued) Graphic Decimal Hex Comments
- 45 20 Hyphen (minus)
. 46 2E Period (decimal point)
/ 47 2F Slant
0 48 30 Zero
1 49 31 One
2 50 32 Two
3 51 33 Three
4 52 34 Four
5 53 35 Five
6 54 36 Six
7 55 37 Seven
8 56 38 Eight
9 57 39 Nine
: 58 3A Colon
3 59 38 Semicolon
< 60 3C Less than
= 61 3D Equals
> 62 3E Greater than
? 63 3F Question mark
a 64 40 Commercial at
A 65 41 Uppercase A
B 66 42 Uppercase B
[67 43 Uppercase C
D 68 44 Uppercase D
E 69 45 Uppercase E
F 70 46 Uppercase F
G 71 47 Uppercase G
H 72 48 Uppercase H
1 73 49 Uppercase I
J 74 4A Uppercase J
K 75 4B Uppercase K
L 76 4c Uppercase L
M 77 4D Uppercase M
N 78 4E Uppercase N
o 79 4F Uppercase 0
P 80 50 Uppercase P
Q 81 51 Uppercase Q
R 82 52 Uppercase R
S 83 53 Uppercase S
T 84 54 Uppercase T
u 85 55 Uppercase U
v 86 56 Uppercase V
W 87 57 Uppercase W
X as 58 Uppercase X
Y 89 59 Uppercase Y
z 90 5A Uppercase Z
[91 58 Opening bracket
\ 92 5C Reverse slant
] 93 50 Closing bracket
A 94 5€ Circumflex
— 95 SF Underscore
N 96 60 Grave accent

Appendix C

ASCII Character

Set Numeric

(Continued) Graphic Decimal Hex Comments
a 97 61 Lowercase a
b 98 62 Lowercase b
c 99 63 Lowercase ¢
d 100 64 Lowercase d
e 101 65 Lowercase e
f 102 66 Lowercase f
g 103 67 Lowercase g
h 104 68 Lowercase h
i 105 69 Lowercase i
J 106 6A Lowercase j
k 107 68 Lowercase k
1 108 6C Lowercase 1
m 109 6D Lowercase m
n 110 6E Lowercase n
o M 6F Lowercase o
p 12 70 Lowercase p
q 113 71 Lowercase q
r 114 72 Lowercase r
s 115 73 Lowercase s
t 116 74 Lowercase t
u 117 75 Lowercase u
v 118 76 Lowercase v
w 119 77 Lowercase w
X 120 78 Lowercase x
y 121 79 Lowercase y
z 122 7A Lowercase 2z
{ 123 78 Opening (left) brace
| 124 7c Vertical line
} 125 0 Closing (right) brace
~ 126 /2 Tilde

127 7€ Delete

Appendix D

APPENDIX D
ERROR MESSAGES AND EXPLANATIONS

ENDIF (end conditional) expected

.IF was seen but not followed by a matching .ENDIF.
ENDM (end macro definition) expected

End of file was reached while still inside a macro definition.
can't set read-only symbol

An attempt was made to set a special symbol such as $'PASS, that cannot be
redefined.

extended instruction set not allowed
An attempt was made to use a Super8 instruction or addressing mode not
available on the 28 CPU while the -r option or $' Z8 flag is in
effect.

extra parameters (ignored)

A pseudo-op was passed more parameters than it requires. The extra
parameters will be ignored.

extra right parenthesis (ignored)

A right parenthesis was seen without a matching left parenthesis. It is
ignored.

forward reference not allowed here

An expression in an IF, COND, EQU, or SET contains a forward reference
(a label that has not been defined earlier in the program).

label required
A pseudo-op such as EQU or SET, which require a label, does not have one.
line too long (truncated)

The source file or a macro expansion contains a line longer than 512
characters.

link-time expression not allowed here

An expression that cannot be evaluated by the assembler has been used in a
context where the assembler needs to know its value.

D-1

Appendix D

missing parameter
A pseudo-op has been given fewer parameters than it requires.
missing right parenthesis (assumed)
The end of an expression was encountered without finding a right
parenthesis to match a left parenthesis already seen. The assembler
will evaluate the expression as if the missing parenthesis had been at
the end of the expression.

Multiple definition

A symbol has been used as a label, defined by an EQU, or defined as a
macro more than once.

no input file
The assembler cannot open the specified input file.
operand expected (0 assumed)

A binary expression operator (such as +) was not followed by an operand.
A zero operand is assumed.

operation not defined on register
An expression operator (such as *) has been spplied to a register value for
which it is not valid. The only expression operators that can be applied
to registers are indexing and indirection.

parser stack overflow
The assembler received an expression too complex for it to handle.

phase error—passes out of sync.

Something happened differently on passes 1 and 2 of the assembler. This
can occur if an opcode or pseudo-op is used and later redefined as a macro.

storage allocation failed

The assembler ran out of storage as a result of a combination of symbol
table, macro definitions, and macro invocations.

syntax error

A source statement contains a syntactic error, usually in an expression,
which cannot be otherwise classified.

Appendix D

undefined addressing wmode expression

‘An expression represents an addressing mode not available on the Super8 and
28 CPU, such as (HL + A).

undefined character
A character appears in the input that the assembler does not understand.
undefined symbol

A symbol has been used that is never defined. The value 0 will normally
be used.

value out of range

An expression does not fit in the specified size of field (for example,
an address in a .BYTE statement).

wrong operand type for this operation

An opcode has been given an operand with an addressing mode that does not
apply to it.

Appendix £

asmS8 version 1.0 t.z8inst

LoC 0BJ LINZ# --- SOURCE ---
‘00000000 1235 1 adc r3,r5
00000002 1335 2 adc r3,@r5
00000004 1440e3 3 adc r3,64
00000007 14e520 4 adc 32,15
- 0000000a 144020 5 adc 32,64
0000000d 1540e3 6 adc r3,064
00000010 15e520 7 ade 32,@r5
00000013 154020 8 ade 32,664
9

00000016 16340 ade r3,#64
00000019 162040 10 ade 32,#64
0000001c 172040 11 ade @32,#64
0000001f 17e340 12 adc @r3,#64

13
00000022 0235 14 add r3,r5
00000024 0335 15 add r3,@r5
00000026 0440e3 16 add r3,64
00000029 04e520 17 add 32,r5
0000002¢ 044020 18 add 32,64
0000002f 0540e3 19 add r3,@64
00000032 05e520 20 add 32,@r5
00000035 054020 21 add 32,@64
00000038 06e340 22 add r3,#64
0000003b 062040 23 add 32,#64
0000003e 072040 24 add @32,#64
00000041 07340 25 add @r3,#64

26
00000044 5235 27 and r3,r5
00000046 5335 28 and r3,@rs
00000048 5440e3 29 and 3,64
0000004b 54e520 30 and 32,r5
0000004e 544020 31 and 32,64
00000051 5540e3 32 and r3,@64
00000054 55e520 33 and 32,@r5
00000057 554020 34 and 32,064
0000005a 56e340 35 and r3,#64
00000054 562040 36 and 32,#64
00000060 572040 37 and @32,#64
00000063 57340 38 and @r3,#64

39
00000066 d4e2 40 call @rr2
00000068 d420 41 call @32
0000006a 460040 42 call 64

43
0000006d ef 44 cef

45
0000006e bOe3 46 clr r3
00000070 b020 47 clr 32
00000072 ble3 48 clr @r3
00000074 b120 49 clr @32

50
00000076 60e3 51 com r3
00000078 6020 52 com 32

Appendix

0000007a
0000007¢

0000007e
00000080
00000082
00000085
00000088
0000008b
0000008e
00000091
00000094
00000097
0000009a

00000094
0000009 £
000000al
000000a3

000000a5
000000a7
000000a9
000000ab

000000ad
000000af
000000 b1
00000013

000000b5
000000b6
00000018

00000019
000000ba
000000bc
000000be

000000c0
000000c2
000000c4
000000¢6

000000c8

000000c9
000000cc
000000c¢t
00000041

00000043
000000d5

61le3
6120

a235

a335

a440e3
abe520
a44020
a540e3
a5e520
a54020
a62340
a72040
ae340

40e3
4020
41e3
4120

00e3
0020
Ole3
0120

80e2
8020
8le3
8120

8f
3afe
9f

3e

2020
21e3
2120

ale2
a020
ale3
al20

bf

840400
ed0400
30e2
3020

8bfe
ebfe

com
com

cp
cp
cp
cp
cp
cp
<cp
cp
cp
cp
cp

da
da
da
da

dec
dec
dec
dec

decw
decw
decw
decw

di
djinz
ei

inc
inc
inc
inc

incw
incw
incw
incw

iret
jp
jp
ip
Jep
jr
jr

€r3
@32

r3,rs5
r3,@r5
r3,64
32,15
32,64
r3,@64
32,8r5
32,@64
r3,#64
@32, #64
@r3,#64

r3
32
@r3
@32

r3
32
@r3
@32

rr2
32

@r3
@32

r3,$

r3

@r3
@32

rr2

@r3
@32

1024
nz,1024
@rr2
@32

nz,$

Appendix E

00000047

00000049
000000db
000000dd

0000004 £
000000el

000000e3

000000e6
000000e8
000000eb
000000ee

000000£1
000000£3
000000£6
000000£9

000000fc
000000fe
00000101
00000104

00000107
0000010a

00000104
000Q010£

00000111
00000113

00000115
00000117

00000119
0000011b

00000114d

0000011e
00000120
00000122
00000125
00000128
0000012b
0000012e
00000131
00000134
00000137
0000013a

3¢c40

38e5
3840
5920

e335
£335

e44020

e335

e540e3
e5e520
e54020

3c40

e62040
e7e340
d62040

£335

£540e3
£5e520
£54020

¢73540
d75340

c234
d252

c334
d352

8234
9252

9352
8334

f£

4235

4335

4440e3
44e520
444020
4540e3
45e520
454020
46e340
462040
472040

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155
156
157
158
159
160
161
162

1d

4
1d
1d

14
1d

14

1lde
1ldc

ldci
1ldci

lde
lde

ldei
1dei

nop

or
or
or
or
or
or
or
or
or
or
or

E-3

r3,%#64

r3,r5
r3,64
32,5

r3,0r5
@r3,r5

32,64

r3,@r5
3,@64
32,85
32,864

r3,#64
32,#64
@r3, #64
@32, #64

@r3,r5
@r3,64
@32,r5
032,64

r3,64(x5)
64(r3),r5

r3,8rr4
@rr2,r5

@r3,@rr4
@rr2,@r5

r3,@rr4
@rr2,r5

@rr2,@r5S
@r3,@rr4

3,15
r3,@r5
r3,64
32,15
32,64
13,864
32,@r5
32,864
r3,#64
32,464
@32,#64

Appendix E
0000013d 47e340 163 or @r3, #64
164
00000140 50e3 165 pop r3
00000142 5020 166 pop 32
00000144 51e3 167 pop @r3
00000146 5120 168 pop @32
169
00000148 70e3 170 push r3
0000014a 7020 171 push 32
0000014c 71e3 172 push @r3
0000014e 7120 173 push @32
174
00000150 cf 175 rcf
176
00000151 af 177 ret
178
00000152 90e3 179 rl r3
00000154 9020 180 rl 32
00000156 91e3 181 rl @r3
00000158 9120 182 rl @32
183
0000015a 10e3 184 rlc r3
0000015¢ 1020 185 rlec 32
0000015e 1le3 186 rle @r3
00000160 1120 187 rlc @32
188
00000162 e0e3 189 rr r3
00000164 €020 190 rr 32
00000166 ele3 191 rr @r3
00000168 el20 192 rr @32
193
0000016a cOe3 194 rrec r3
0000016¢ c020 195 rrc 32
0000016e cle3 196 rre @r3
00000170 ¢120 197 rrc @32
198
00000172 3235 199 sbc r3,r5
00000174 3335 200 sbe r3,@r5
00000176 3440e3 201 sbc r3,64
00000179 34e520 202 sbc 32,15
0000017c 344020 203 sbe 32,64
0000017f 3540e3 204 sbe 3,064
00000182 35e520 205 sbe 32,8x5
00000185 354020 206 sbc 32,@64
00000188 36e340 207 sbe r3,#64
0000018b 362040 208 sbc 32, #64
0000018e 372040 209 sbe @32,#64
00000191 37e340 210 sbe @r3,#64
211
00000194 df 212 scf
213
00000195 d0e3 214 sra r3
00000197 d020 215 sra 32
00000199 dle3 216 sra @r3
0000019b 4120 217 sra @32

Appendix E

00000194

0000019%
000001al
000001a3
000001a6
000001a9
000001ac
000001af
000001 b2
000001b5
000001 b8
000001bb
000001 be

000001 c1
000001¢3
000001c5
000001c7

000001 c9
000001cb
000001 cd
00000140
000001 d3
000001d6
00000149
000001dc
000001d£
0000012
000001e5
0000018

000001eb
000001ed

000001ef
000001£2
000001£5
00000118

000001£fb-

000001 fe
00000201
00000204
00000207
00000202

00000204
0000020¢
00000211
00000214
00000217
0000021a
0000021d

3170

2235

2335

2440e3
24e520
244020
2540e3
25e520
254020
26e340
262040
272040
27e340

fO0e3
£020
fle3
£120

6235

6335

6440e3
64e520
644020
6540e3
65e520
654020
65e340
662040
672040
67340

7235
7335

7440e3
74e520
744020
7540e3
75e520

754020

76e340
762040
772040
77e340

235

b335

b440e3
b4 e520
b44020
b540e3
b5e520

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262

264
265
266
267
263
269
270
271
272

srp

sub
sub
sub
sub
sub
sub
sub
sub
sub
sub
sub
sub

swap
swap
swap
swap

tcm
tcm
tcm
tcm
tem
tcem
tcm
tem
tem
tcm
tem
tcm

tm

tm
tm
ta
tm
tn
tm
tm
tm
tm
tm

Xor
Xor
Xor
Xor
Xor
Xor
Xor

E-5

#70h

3,5
r3,8r5
r3,64
32,r5
32,64
r3,@64
32,@r5
32,064
r3,#64
32, #64
@32,#64
@r3,#64

r3
32
@r3
@32

r3,r5
r3,@r5
r3,64
32,5
32,64
r3,064
32,@r5
32,064
r3,#64
32,#64
@32,#64
@r3,#64

r3,r5
r3,@r5

r3,64
32,x5
32,64
3,864
32,@r5
32,064
t3,#64
32,64
@32,#64
@r3,#64

r3,r5
£3,8x5
r3,64
32,r5
32,64
r3,@64
32,@r5

Appendix E
00000220 b54020 273 xor 32,@64
00000223 bb5e340 274 xor r3,#64
00000226 bH62040 275 xor 32,#64
00000229 b72040 276 xor @32, #64
0000022¢ b7e340 277 xor @r3, #64

278

279

280 ;defined register names

281
0000022f 38ff 282 id r3,spl
00000231 38fe 283 1d r3,sph
00000233 38f£d 284 14 r3,rp
00000235 38fc 285 1d r3,flags
00000237 38fb 236 14 r3,imr
00000239 38fa 287 1d r3,irq
0000023b 38£9 288 1d r3,ipr
000002343 38£8 289 1d r3,p0lm
0000023f 38£7 290 14 r3,p3n
00000241 38f£6 291 1d r3,p2m
00000243 38f5 292 1d 3, prel:
00000245 38f4 293 1d r3,t0
00000247 38£3 294 14 r3,prel
00000249 38£2 295 1d r3,tl
0000024b 38f1 296 1d 3, tar
0000024d 38£0 297 14 r3,sio
0000024f 3803 298 14 r3,p3
00000251 3802 299 1d r3,p2
00000253 3801 300 1d r3,pl
00000255 3800 301 1d r3,p0

302

303

304 ;defined register names

305
00000257 38ff% 306 1d r3,SPL
00000259 38fe 307 1d r3,SPH
0000025b 38f£d 308 1d r3,RP
0000025d 38fc 309 1d r3,FLAGS
0000025f 38fb 310 1d r3, IMR
00000261 38fa 311 1d r3,IRQ
00000263 38£9 312 1d r3,IPR
00000265 38£8 313 1d r3,PO1M
00000267 38f7 314 1d r3,P3M
00000269 38£6 315 1d r3,P2M
0000026b 38£5 316 1d r3,PREO
00000264 38f£4 317 1d r3,T0
0000026f 38£3 318 id r3,PREL
00000271 38f2 319 1d r3,T1
00000273 38f1 320 1d 3, TMR
00000275 38f0 321 1d r3,SsI0
00000277 3803 322 1d r3,P3
00000279 3802 323 1d r3,p2
0000027b 3801 324 1d r3,Pl
00000274 3800 325 1d r3,P0

326

327 ;test for condition codes

Appendix E

0000027¢

00000282
00000285
00000288
0000028b

0000028
00000291

00000294
00000297
0000029a
00000294

00000220
000002a3

000002a6
000002a9

000002ac
000002af
000002b2
000002b5

040080

640080
ed0080
640080
ed0080

740080
£40080

ad0080
140080
940080
240080

ddooso
540080

cd0080
440080

bd0080
740080
£d40080
340080

328
329
330
331
332
333
334
335
336

338
339
340
341
342
343
344

345 .

346
347
348
349
350
351
352
353
354

jp
jp
jp
jp
jp

jp
jp

e
jp

ip

£E-7

£,128

z,128

nz,128
eq,128
ne,128

c,128
nc,128

gt,128
1t,128
ge,128
le,128

pl,128
mi,128

nov,128
ov,128

ugt,128
ult,128
uge,128
ule,128

Appendix

£

asmS8 version 1.0

LoC

00000000
00000002
00000004
00000007
0000000a
00000004
00000010
00000013
00000016
00000019

0000001 ¢
0000001e
00000020
00000023
00000026
00000029
0000002¢
0000002 £
00000032
00000035

00000038
0000003a
0000003¢
0000003f
00000042
00000045
00000048
0000004b
0000004e
00000051

00000054
00000057
0000005a
0000005d

00000060
00000063

00000066
00000068
0000006 2

0000006¢
0000006£

0oBJ

1235

1335

1440¢3
14¢520
144020
1540¢3
15¢520
154020
16c340
162040

0235

0335

0440c3
04¢520
044020
0540¢3
05¢520
054020
06c340
062040

5235

5335

5440c3
54¢520
544020
5540¢3
55¢520
554020
56340
562040

673ecS
67340
675fc3
675£20

173ec5
173e40

573e
773e
773f

073ecS5
073e40

t.s8inst
LINE# --- SOURCE —--

1 ;refereunce test
2

3

4 adc

5 ade
[ade
7 ade
8 adc
9 adc
10 adc
11 ade
12 ade
13 adc
14

15 add
16 add
17 add
18 add
19 add
20 add
21 add
22 add
23 add
24 add
25
26 and
27 and
28 and
29 and
30 and
31 and
32 and
33 and
34 and
35 and
36
37 band
38 band
39 band
40 band
41
42 bep
43 bep
44
45 bite
46
47 bitr
48

49 bits
50

51 bor
52 bor

E-8

source for Super8 instructin set.

r3,r5
r3,@r5
r3,64
32,15
32,64
r3,C64
32,6r5
32,@64
r3,#64
32,464

r3,r5
r3,@r5
r3,64
32,5
32,64
r3,@64
32,@r5
32,064
r3,#64
32, #64

r3,r5
r3,@r5
r3,64
32,15
32,64
r3,@64
32,@r5
32,864
r3,#64
32,464

r3,r5,#7
r3,64,#7
r3,#7,r5
32,#7,15

r3,r5,#7
r3,64,#7

r3,#7
r3,#7
r3,#7

r3,r5,#7
r3,64,#7

Appendix E

00000072
00000075

00000078
0000007b

0000007e
00000081
00000084
00000087

0000008a
0000008¢
-0000008e
00000090

00000093

00000094
00000096
00000098
0000009a

0000009¢
0000009e
000000a0
000000a2

000000a4
000000236
00000028
000000ab
000000ae
000000b1
000000b4
000000b7
000000ba

000000bd

0000000

000000c3‘

000000¢5
000000c7
000000c9

000000cb
000000cd
000000cf
00000041

00000043
00000045
00000047

075f£c3
075f2¢C

375efd
375££d

273ec5
273e40
275fc3
275£20

4420
fb4c2
£420
£60040

ef

b0e3
b020
ble3
b120

60c3
6020
61c3
6120

a235

a335

a440c3
abe520
a44020
a540c3
a5¢520
a54020
abc340

d253fd
c253fd

40c¢3
4020
41c3
4120

00c3
0020
0le3
0120

80c2
8020
8lc3

bor
bor

btjrf
bt jrt

bxor
bxor
bxor
bxor

call
call
call
call

ccf

clr
clr
clr
clr

com
com
com
com

cp
cp
cp
cp
cp
cp
cp
cp
cp

cpijne
cpije

da
da
da
da

dec
dec
dec
dec

decw
decw
decw

r3,#7,r5
32,#7,15

$,r5,i#7
$,r5,#7

r3,r5,#7
£3,64,#7
r3,#7,15
32,#7,15

#32
@rr2
@32
64

r3
32
@r3
@32

r3
32
@r3
@32

r3,r5
r3,@r5
r3,64
32,15
32,64
3,864
32,@r5
32,064
r3,#64

r3,@r5,$
r3,@r5,$

r3
32
@r3
@32

r3
32
@r3
@32

rr2
32
@r3

Appendix E
00000049 8120 108 decw @32
109
000000db 8f 110 di
111
000000dc 94c5¢c2 112 div rr2,r5
000000df 9440c2 113 div rr2,64
000000e2 94¢520 114 div 32,15
000000e5 944020 115 div 32,64
000000e8 95c¢5¢2 116 div rr2,@r5
000000eb 9540c2 117 div rr2,@64
000000ee 95¢520 118 div 32,815
000000£1 954020 119 div 32,@64
000000£4 9640c2 120 div rr2,#64
000000£7 964020 121 div 32,#64
122
000000fa 3afe 123 djnz 13,$
124
000000fc 9f 125 ei
126
000000£fd 1f 127 enter
128
000000fe 2f 129 exit
130
000000£ff 3e 131 inc 3
00000100 2020 132 inc 32
00000102 21c3 133 inc €r3
00000104 2120 134 inc @32
135
00000106 al0c2 136 incw rr2
00000108 - a020 137 incw 32
0000010a alc3 138 inew @3
0000010¢ al20 139 incw @32
140
0000010e bf 141 iret
142
0000010f 840400 143 ip 1024
00000112 ed0400 144 ip nz,1024
00000115 30c2 145 jp @rr2
00000117 3020 146 jp @32
147
00000119 8bfe 148 jr $
0000011b ebfe 149 jr nz,$
150
0000011d 3c40 151 14 r3,#64
152
0000011f 38c5 153 14 r3,r5
00000121 3840 154 1d 3,64
00000123 5920 155 1d 32,15
156
00000125 735 157 1d r3,@r5
00000127 4735 158 1d @r3,r5
159
00000129 e44020 160 1d 32,64
161
0000012¢ ¢735 162 1d r3,8r5

E-10

Appendix E

0000012e
00000131
00000134

00000137
00000139
0000013¢c
0000013f

00000142
00000144
00000147
0000014a

00000144
00000150

00000153
00000156
00000159
0000015¢

0000015¢
00000163
00000166
0000016a
00000164
00000171
00000175
00000177

00000179
0000017b
00000174
0000017f

00000181
00000185
00000188
0000018¢
0000018f
00000193
00000197
00000199

0000019b
00000194
0000019¢
000001al

000001a3
000001a6
000001a9
000001lac

e540¢3
e5¢520
54020

3¢c40

62040
d6c340
d62040

d735

£540¢3
£5¢520
£54020

873540
975340

473ec5
473e40
475fc3
475£20

a7340004
e73440
b7520004
£75240
b7500020
a7500040
c334
d352

e234
e334
£252
£352

a7350004
e73540
17530004
£75340
17510020
a7510040
c335
d353

e235
e335
£253
£353

chchec2
c440c2
c4ch20
c44020

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201 -

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

1db
1db
1db
1db

1dc
1ldc
ldc
lde
ldc
ldc
ldc
1ldc

ldcd
ldci
1depd
ldepi

1de
lde
lde
1lde
1lde
lde
lde
lde

lded
ldei

ldepd
ldepi

ldw
ldw
1ldw
ldw

3,064
32,@r5
32,@64

r3,#64
32,#64
@r3,#64
@32, #64

@r3,r5
@r3,64
@32,r5
@32,64

r3,64(r5)
64(x3),r5

r3,r5,#7
r3,64,#7
r3,#7,r5
32,#7,r5

r3,1024(rrh)
r3,64(rrd)
1024(xr2),r5
64(rr2),r5
32,15

r5,64
r3,Crr4
@rr2,r5

r3,@rré
r3,Crr4
@rr2,r5
@rr2,r5

r3,1024(rréd)
r3,64(rré4)
1024(rr2),r5
64(rr2),r5
32,15

r5,64
r3,8rr4
@rr2,r5

r3,@rr4
r3,Crré4
@rr2,r5
@rr2,15

rr2,rré
rr2,64
32,rr4
32,64

Appendix E

00000Laf c5che2 218 ldw rr2,@r4
000001b2 c540¢c2 219 1dw rr2,@64
000001b5 c5c420 220 ldw 32,@r4
000001b8 54020 221 ldw 32,@64
222
000001bb c6¢20400 223 1ldw rr2,#1024
000001bf 6200400 224 1dw 32,#1024
225
000001c3 84c5¢2 226 mult rr2,r5
000001c6 8440c2 227 mult rr2,64
000001c9 84c520 228 mult 32,15
000001cc 844020 229 mult 32,64
000001cf 85¢5¢2 230 mult rr2,@r5
00000142 8540¢2 231 mult rr2,@64
00000145 85¢520 232 mult 32,@x5
00000148 854020 233 mult 32,064
000001db 86402 234 mult rr2,#64
000001de 864020 235 mult 32,#64
236
000001el Of 237 next
238
000001le2 £f 239 nop
240
000001e3 4235 241 or r3,r5
000001e5 4335 242 or r3,@x5
000001e7 4440c3 243 or r3,64
00000lea 44¢520 244 or 32,r5
000001ed 444020 245 or 32,64
000001£0 4540¢3 246 ot r3,@64
000001£3 45¢520 247 or 32,@r5
000001£6 454020 248 or 32,064
000001£9 46¢340 249 or 3, #64
000001fc 462040 250 or 32,#64
251
000001ff 50c3 252 pop r3
00000201 5020 253 pop 32
00000203 51c3 254 pop @r3
00000205 5120 255 pop @32
256
00000207 92c¢5¢3 257 popud r3,@r5
0000020a 9240c3 258 popud 1r3,@64
0000020d 92¢520 259 popud 32,@r5
00000210 924020 260 popud 32,@64
261
00000213 93c¢5c3 262 popui r3,@r5
00000216 9340c3 263 popui 1r3,@64
00000219 93¢520 264 popui 32,@r5
0000021¢ 934020 265 popui 32,@64
266
0000021f 70¢3 267 push r3
00000221 7020 268 push 32
00000223 71¢3 269 push @r3
00000225 7120 270 push @32
271
00000227 82c3c5 272 pushud @r3,r5

Appendix E

00000222 82¢340
00000224 8220c5
00000230 822040

00000233 83c3c5
00000236 83c340
00000239 8320c5
0000023c 832040

0000023f cf
00000240 d5a5
00000242 af

00000243 90c3
00000245 9020
00000247 91c3
00000249 9120

0000024b 10c3
00000244 1020
0000024f 11¢3
00000251 1120

00000253 e0c3
00000255 020
00000257 elc3
00000259 €120

0000025b cOc3
00000254 <020
0000025f cle3
00000261 c120

00000263 4f
00000264 5f

00000265 3235

00000267 3335

00000269 3440c¢3
0000026c 34¢520
0000026f 344020
00000272 3540c3
00000275 35¢520
00000278 354020
00000271 36¢340
0000027e 362040

00000281 df
00000282 d0c3

00000284 4020
00000286 dle3

pushud
pushud
pushud

pushui
pushui
pushui
pushui

rcf
rdr
ret

rl
rl
rl
rl

rlc
rlc
rlc
rlc

Ir
rr
rr
133

rrc
rre
rrc
rre

sb0
sbl

sbe
sbc
sbc
sbe
sbe
sbe
sbe
sbe
sbe
sbe

scf
sra

sra
sra

@r3,64
@32,r5
@32,64

@r3,r5
@3, 64
@2,r5
@32,64

#0a5h

r3

@r3
@32

r3
32
@r3
@32

r3
32
@r3
@32

r3
32
er3
@32

r3,r5
r3,@r5
r3,64
32,15
32,64
r3,@64
32,@r5
32,064
r3,#64
32,#64

r3
32
@r3

Appendix E
00000288 d120 328 sra @32
329
0000028a 3180 330 srp #128
0000028¢ 3131 331 srpl #128
0000028e 3182 332 srp0 #128
333
00000290 2235 334 sub r3,r5
00000292 2335 335 sub r3,@r5
00000294 2440¢3 336 sub r3,64
00000297 24¢520 337 sub 32,r5
0000029a 244020 338 sub 32,64
0000029d 2540¢3 339 sub 3,064
00000220 25¢520 340 sub 32,@r5
000002a3 254020 341 sub 32,@64
000002a6 26c340 342 sub r3,#64
00000229 262040 343 sub 32,#64
344
000002ac f0c3 345 swap r3
000002ae £020 346 swap 32
000002b0 f1c3 347 swap @r3
000002b2 £120 348 swap @32
349
000002b4 6235 350 tem r3,r5
000002b6 6335 351 tem r3,8r5
000002b8 6440c3 352 tem 3,64
000002bb 64c520 353 tem 32,r5
000002be 644020 354 tem 32,64
000002cl 6540c3 355 tcm 3,064
000002c4 65¢520 356 tem 32,8r5
000002¢7 654020 357 tem 32,064
000002ca 66¢340 358 tem 3,#64
000002cd 662040 359 tem 32,#64
360
00000240 7235 361 tm r3,r5
00000242 7335 362 tm r3,@r5
363
000002d4 7440c¢3 364 tm r3,64
00000247 74¢520 365 tm 32,r5
000002da 744020 366 tm 32,64
000002dd 7540c3 367 tm r3,@64
000002e0 75¢520 368 tm 32,8r5
000002e3 754020 369 tm 32,@64
000002e6 76c340 370 tm r3,#64
000002e9 762040 371 tm 32,#64
’ 372
000002ec b235 373 *or r3,r5
000002ee b335 374 xor r3,8r5
000002£0 b440c3 375 Xor 13,64
000002£3 b4c520 376 xor 32,r5
000002 £6 b44020 377 xor 32,64
000002£9 b540¢3 378 xor 3,864
000002fc b5¢520 379 Xor 32,8r5
000002£f 54020 380 xor 32,@64
00000302 b6c340 381 xor r3,%64
00000305 b62040 382 xor 32,#64

£-14

Appendix E

383
00000308 3f 384 wfi

385

386 ;defined register names

387
00000309 38de 388 1d r3,sym
0000030b 38dd 389 1d r3,iar
00000304 38dec 390 1d r3,irr
0000030f c4dac2 391 1dw rr2,ip
00000312 38db 392 1d r3,ipl
00000314 38da 393 1d £3,iph
00000316 c4d8c2 394 ldw rr2,sp
00000319 3849 395 1d r3,spl
0000031b 3848 396 1d r3,sph
0000031d 38d7 397 1d r3,rpl
0000031f 38d6 398 1d r3,rp0
00000321 3845 399 1d r3,flags
00000323 3844 400 1d r3,ph
00000325 3843 401 1d r3,p3
00000327 3842 402 1d r3,p2
00000329 38dl 403 14 r3,pl
0000032b 38d0 404 1d 3,p0

405

406 ; Bank O Special Registers

407
00000324 38ff 408 1d r3,ipr
0000032f 38fe 409 1d r3,emt
00000331 38fd 410 1d r3,p2bip
00000333 38fc 411 1d r3,paip
00000335 38fb 412 1d r3,p2dm
00000337 38fa 413 1d r3,p2cm
00000339 38f9 414 1d r3,p2bm
0000033b 38£8 415 1d r3,p2am
00000334 38f7 416 1d r3,phod
0000033f 38£6 417 1d r3,p4d
00000341 38f£5 418 1d r3,hlc
00000343 38f4 419 1d r3,h0c
00000345 38f1 420 1d r3,pm
00000347 38d1 421 1d r3,pl
00000349 38f0 422 14 r3,pOm
0000034b 38ed 423 1d r3,uie
0000034d 38ec 424 1d r3,urc
0000034f 38eb 425 14 r3,ute
00000351 38ea 426 1d 3,sio
00000353 38e9 427 1d r3,sie
00000355 38e8 428 1d r3,sreb
00000357 38e7 429 1d r3,srca
00000359 38e6 430 1d r3,ste
0000035b chekc2 431 ldw rr2,cle
0000035e 38e5 432 1d r3,clel
00000360 38e4 433 1d r3,clch
00000362 c4e2c2 434 1ldw rr2,c0c
00000365 38e3 435 1d r3,clcl
00000367 38e4 436 1d r3,clch °
00000369 38el 437 1d r3,clet

Appendix E

0000036b 38e0 438 1d r3,clct

439

440 ; Bank 1 Special Registers

441
0000036d 38ff 442 1d r3,wumsk
0000036f 38fe 443 1d r3,wumch
00000371 38fb 444 1d r3, umb
00000373 38fa 445 1d r3,uma
00000375 c4£8c2 446 ldw rr2,ubg
00000378 38£9 447 1d r3,ubgl
0000037a 38£8 448 1d t3,ubgh
0000037¢c c4£0c2 449 ldw rr2,dec
0000037f 38f1 450 1d r3,del
00000381 38£0 451 14 r3,dch
00000383 cheec2 452 ldw rr2,syn
00000386 38ef 453 1d r3,synh
00000388 38ee 454 14d r3,synl
0000038a 38ed 455 1d r3,smd
0000038c¢ 38ec 456 1d 3, smc
0000038e 38eb 457 1d r3,smb
00000390 38ea 458 1d r3,sma
00000392 c4e8c2 459 1dw rr2,sbg
00000395 38e9 460 1d r3,sbgl
00000397 38e8 461 1d r3,sbgh
00000399 c4ekbc2 462 ldw rr2,clte
0000039¢ 38e5 463 1d r3,cltel
0000039e 38e4 464 14 r3,cltch
000003a0 cbe2c2 465 ldw rr2,c0tc
000003a3 38e3 466 1d r3,cOtel
000003a5 33e2 467 14 r3,c0tch
000003a7 38el 468 1d r3,clm
00000329 38e0 469 1d r3,cOm

470

471 ;upper case test
000003ab 38de 472 1d r3,ST™
000003ad 38dd 473 14 r3,IMR
000003af 38dc 474 1d r3,IRR
000003bl c4dac2 475 ldw rr2,IP
000003 b4 38db 476 1d r3,IPL
000003b6 38da 477 1d r3,IPH
000003b8 c4d8c2 478 ldw rr2,SP
000003bb 3849 479 1d r3,SPL
000003bd 3848 480 1d r3,SPH
000003bf 38d7 481 1d r3,RP1
000003cl 3846 482 14 r3,RPO
000003¢3 3845 483 1d r3,FLAGS
000003c5 38d4 484 1d r3,P4
000003c7 3843 485 1d r3,P3
000003c9 3842 486 1d r3,P2
000003cb 3841 487 1d 3,Pl
000003cd 3840 488 1d r3,P0

‘ 489

490 ; Bank O Special Registers

491
000003cf 38ff 492 1d r3,IPR

Appendix E

00000341
00000343
000003d5
00000347
00000349
000003db
000003dd
000003df
000003el
000003e3
000003e5
000003e7
000003e9
000003eb
000003ed
000003ef
000003£1
00000313
000003£5
000003£7
000003£9
000003£b
000003fd
00000400
00000402
00000404
00000407
00000409
0000040b
00000404

0000040f
00000411
00000413
00000415
00000417
0000041a
0000041¢
0000041e .
00000421
00000423
00000425
00000428
000004 2a
0000042¢
000004 2e
00000430
00000432
00000434
00000437
00000439
0000043b
0000043e

38fe
38fd
38fc
38fb
38fa
3859
38£8
38f£7
38£6
38£5
38f4
38£1
3841
38£0
38ed
38ec
38eb
38ea
38e9
38e8
38e7
38e6
chebe2
38e5
38e4
cbe2c2
38e3
38e2
38el
38e0

38ff
38fe
38fb
38fa
c4f8c2
38f£9
38£8
c4£0c2
38f1
38f£0
cheec?
38ef
38ee
38ed
38ec
38eb
38ea
cheB8c2
38e9
38e8
chebc2
38e5

493

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

r3,EMT
r3,P2BIP
r3,P2A1P
r3,P2DM
r3,P2CM
r3,P2BM
r3,P2AM
r3,P40D
r3,P4D
r3,H1C
r3,H0C
r3,PM
r3,Pl
r3,POM
r3,UIE
r3,URC
r3,UTC
r3,SI0
r3,SIE
r3,SRCB
r3,SRCA
r3,STC
rr2,ClC
r3,ClCL
r3,ClCH
rr2,C0C
r3,CcOCL
r3,COCH
r3,C1CT
r3,CcOCT

; Bank 1 Special Registers

r3,WOMSK
r3 ,WUMCH
r3,UMB
r3,UMA
rr2,UBG
r3,UBGL
r3,UBGH
rr2,DC
r3,DCL
r3,DCH
rr2,SYN
r3,SYNH
r3,SYNL
r3,SMD
r3,sMC
r3,SMB
r3,SMA
rr2,SBG
r3,SBGL
r3, SBGH
rr2,ClTC
r3,CLTCL

Appendix E

00000440 38e4 548 1d r3,C1TCH

00000442 che2c2 549 1ldw rr2,COTC

00000445 38e3 550 14 r3,COTCL

00000447 38e2 551 id r3,COTCH

00000449 38el 552 1d r3,ClM

0000044b 38e0 553 1d r3,C0M
554
555 ;test for condition codes
556

0000044d 040080 557 ip £,128
558

00000450 640080 559 jp z,128

00000453 ed0080 560 jp nz,128

00000456 640080 561 p eq,128

00000459 ed0080 562 jp ne, 128
563

0000045¢ 740080 564 ip c,128

0000045f £40080 565 jp nc,128
566

00000462 ad0080 567 jp gt,128

00000465 140080 568 ip 1t,128

00000468 9d0080 569 ip ge,128

0000046b 2d0080 570 ip le,128
571

0000046e dd0080 572 ip pl,128

00000471 5d0080 573 ip ni,128
574

00000474 <cd0080 575 jp nov,128

00000477 4d0080 576 jp ov,128
577

0000047a bd0080 578 ip ugt,128

0000047d 7d0080 579 ip ult,128

00000480 £40080 580 ip uge,128

00000483 330080 581 ip ule,128
582

E-18

USER'S GUIDE

ZILOG

UNIVERSAL
OBJECT
FILE UTILITIES

Related Documents

Kernighan, Brian W. ana Ritchie, Dennis M. Ihe C Pragramming
Langugage. Englewood Cliffs, NJ: Prentice-Hzll, 1578,

IEEE Standard 695-1985. "The Microprocessor Universal
Format for Object Modules.”

Trademark Acknosledgements

UNIX is a trademark of ATST Bell Laboratories, 1lZilog 1is
licensed by ATR&T Technologies, Inc.

Copyright 1985, 1986 by 2ilog, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog.

The information <contained herein is subject to change
without notice. Zilog assumes no responsibility for thae use
of any circuitry other than circuitry embodied in @& Zilog
producte No other circuit patent licenses are implied.

All specifications (parameters) are subject to change
without notice. The applicable lilog test documentation will
specify uhich parameters are tested.

Zilog does not support the software mentioned in this publication, use at own risk.

Zilo3y Cbject File Utilities

N 2iLa5 s M
ZiLocg UniversaL OsuecT FiLe UTiLimies User's GuIDE
TaBLE oF CONTENTS
CHAPTER TITLE AND SUBSECTIONS PacE

CHAPTER 1: INTRODUCTION

T OVEIVIEW .oooviiiiiies ettt ettt e e e rre e b e e r ekt b bt e es b e sh bt ehe e e st e sbe e s sbe e sabe e nbeenteesabeens 1-1
1.2 ULIlItIES DESCIIPTION ...oeeiieeeieie ettt ettt et et e st et e netr et e e e etbee e neeeeens 1-2
1.3 ULlity INVOCALION ...t 1-6
CHapTER 2: MCONV

2.1 INETOAUCHION ...ttt r e s et s bbb e sh e s b e bbb e s en et e eseneenes 2-1
2.2 Command Syntax and OPLONSciviviieiertriie et riiesie ettt rae e e e sanas 2-1
CHapTeER 3: MDUMP

BT INITOAUCTION ...oeieeei ettt sbe e s et st s b e e b e sebbeabr e e e enateennaeeane 3-1
3.2 Command Syntax and OPLONSccccoiuiirriiiii e e e 3-1
3.3 Display Formats and EXamMPIEScccoviiiiiiiiiieie et e e 3-2

CHAPTER 4: MLIB

o B 1010 Yo [0 (o1 oo FER U ST PR PP EURUPISSP 4-1
4.2 Command Syntax @nd OPLIONSccccvrrirerrieirii ettt et er s s 4-1
BB EXAMPIESveieieieeiee ettt et e b e et st r e e b e er e e be e raneenteereeee e 4-2
CHaPTER 5: MLINK

LT [(170 Yo (V703 i o] IR PO PP UORRTOUOTPPPN 5-1
5.2 Command Line Syntax and OPHONSccoviieriiiiiiiier e e 5-4
B.3 CONSIIAINTS ..ovvvvveeiiiii it e ettt ettt e set e ettt e e etbe e setbbe s eeereesebbeesbbe e e s ateeeabseeessbaeansbbeesnrareesenraneans 5-13
5.4 Using MLINK: SOME EXAMPIESooviririieiiienieniiniie st ssensenes e s sre s 5-14
CHAPTER 6: MLIST

ST B 111 (oo [V1e] (o) o NPT U O OUPPRUR 6-1
6.2 Command Syntax and OPHIONS ..o e 6-1
6.3 USAGE, OUTPUT FORMAT AND EXAMPLESuvvvtiiiiniiieniieeeeeeeeeeeeiiisnnsnsivsssenesseessesseseesnssenssenaasassaes 6-1

CHAPTER 7: MLIST

4% B L1 oo [FTe2 1o] o IR PP O OTO PO ORI 7-1
7.2 Command Syntax and Optlons ... 7-1
4t T @] 011 -1 (1o o OO O PP SROTRR VU PPUPUPTRUON 7-2
7.4 Using MLOAD: SOME EXAMPIEScc.eviriiiiiiiiinice ittt 7-3
Cxarter 8: MLORDER

8.1 INTOAUCTION ... ettt e s 8-1
8.2 Command Syntax and OPLIONSc.oeiiiiiiiiiee ettt 8-1

Z8° MICROCONTROLLERS
N 2iLa5 USER'S MANUAL

CHAPTER TITLE AND SUBSECTIONS PAGE

CHAPTER 9: MMM

9.1 INEFOAUCTION ..ottt et sb e e et e sb bbb e sbbe e s aneenaeenbeenns 9-1
9.2 Command Syntax and OPONScccouiriiiiiiiie et ee e sre et ereesteasaestaesaearseneas 9-1
9.3 Output Format and EXamMPIESceiiiiiiiiiiiin e e e s 9-1
CHapTER 10: PROTOCOL

10,1 INTTOAUCHION .. et sttt e e et e e e e sbe e saee s baesnteenaeesrneea 10-1
10.2 Command Syntax and OPLIONSccccoveriiiiiieririee ettt e 10-1
10.3 Using PROTOCOL: SOME EXAMPIES......cceeciiieiiiirieiiiciesressieevesieestae e eereeveeiresbeeraesvesreeas 10-2
CHapTER 11: OTHER PROGRAMS

B 0 T USRI 111
TT.2M2A ettt ettt et aae et ae e rt e st teebeeatenreeaeeae s 11-1
TT.BMUIMAGE ..ottt sttt sttt b st e bt e satesteebs e steentesaeste e st aessesnsansanneens 11-2
APPENDICES

Appendix A. MUFOM Fil FOMMALoocviiiiiiriiiirenieses it ssreseaeseessae e sreseesraesaesneesressaes A-1
Appendix B. TEKIroniX HEX FOIMAL........ccccuriiieiiiiiiiniin e sireesiae s srieesetesenesnressneesressenes e B-1
Appendix C. Intel HEX FOMMAL........ccoiiiiiiiiieeieiese et sre s e ans C-1
ApPeNndiX D. EIrOr MESSAgEScceiiiiieiieiii ettt e st ss ettt be s sree s D-1
LC 10T T T 1 O OO G-1

Chapter 1
INTRODUCTION

1.1. OVERVIEW
1«11 Product Overvies

The Universal Objact File Utilities are part of lilog’s
MUFCM-output cross-software family. The utilities allow the
programmer to combine, display, and 1load machine-language
object modules. The wutilities are universal because they
can process object modules produced by any of Zilog’s
MUFOM=-outbut cross-assemblers.

MUFCM is an acronym for Microprocessor Universal Format for
Object Modules. MUFOM was developed by the IEZE as a format
for representing machine~language object modules for any
microprocessor, By wusing the MUFOM object format, lZilog
supports all its assemblers (and compilers) using only one
set of programs, the Universal Object file Utilitiese.

1¢1<2. Manual Overvies

This manual provides the following information:

o A brief description of the program’s features,

o A complete definition of the command line syntax,

o A complete definition of the utilities’ functions.

o Tutorials for the more complex portions of the wutili-
ties.

o A complete dafinition of the input file format.

o A complete definition of the output file foruat.

Section 1.2 briefly cescribes the utilities and their uses,
and Section 1.3 describes how to invoke the utilities and
the general command line syntax.

Chapters 2 through 10 cdiscuss each utility in turn. within
g@ach chapter commnand syntax, feature descriptions, and exam-
ples are provided. Chapter 11 describes three special-
purposs programs which are 2lso supplied with the utilities.

Appendix A provides # discussion of ard specifications for

1-1 lilog Object File Utilities

INTRCDUCTICN Chapter 1 INTRODUCTION

the MUFOM objact file format. Appendices B and (discuss ths
Tektronix Hex format and Intel Hex format, respectively.
Appendix D lists the error messages.

Appendix € is the glossary. You do not naed to wundarstand
the MUFCM object~file format to use these utilities. There
are, howevers, a number of terms used when discussing MUFOM
products that you should wunderstand. These terms 2re
defined in Appendix Z. It is suggested that you familiarize
yourself with these terms before continuing with the rest of
this User’s Guide.

1.2. UTILITIES OESCRIPTION

This section presents a brief description of each utility
and 1its usage. Figure 1-1 shows how the utilities fit into
the software development process.

121« mconv

mgony is an object format converter. It converts objact
modules from MUFOM ASCII format to MUFOM binary format and
vice versa.

1.2.2. ndump

adymg is the object code dumper. It displays information
about an obJject mocdule, its sections, and its load data in
human-readable form.

1«2.3. mlib

8lib is the object-code 1library maintenance wutility. It
allows object files to be combined into libraries uwhich can
be automatically searched by mlink.

1e2ebe mlink

mlink is 2 relocating linkar. It accepts an arbitrary
number of input files (limited only by available memory).,
resolves external references betuween files, combines file
sections, and locates sections at absolute addresses. glink
also generates relocatable output moculas which can be re-
linked later.

Zilog Object File Utilitias 1=2

INTRODUCTION Chapter 1 INTROODUCTION

1e2.5. mlist

2list is the objact code 1lister. It reconstructs an
essembler—-like 1listing from an object module, using special
comments which are optionally inserted in the object module
by the assembler.

1e2e6e mload

mlazd is a download format converter that translates MUFOM-
format object modules into a form suitable for transmission
(downloading) to development modules, emulators, or PRQOM
programmers. The output formats suoported are Tekitronix
Hexs, Intel Hex, and a simplified form of MUFOM. ml2ad is
intended to be used with grotocol or a similar communication
program,

1.2.7. mnmlorder

Ix mlorder examines a set of object files to determine the
optimum ordering for them in 2 library file, which can then
be constructed using pglib.

1.2.8. nnm

opm is the objact module symbol lister. It displays infor-
mation about the symbois within an object module.

1.2.9. protocol

protocol is a communication utility for transmitting files
(typically 1load modules generatad by mload) from a2 develop-
ment host system to a target system (downloading) or vice
versa (uploading). It supports a variety of handshakes to
provide relizble transmission.

1.2.10. Other Progranms

Three other programs are supplied with the Object File Util~-
itiess they ars intendad for rather specialized purposes and
will not be needed by most users.

1<2.10.1. mar

mac is an older versior of plibs, producing an grchiyg file
wvhich is compatible with the previous release of plirke.

1=3 lilog Cbject File Utilities

INTRCOUCTION Chapter 1 INTROOUCTION

1.2.10.2. m2a

p2a converts MUFOM files to g.gut form, the object fila for-
mat used on Zilog‘s SB8000 microcomputers. This is provided
for users of Zilog’s EMS=-8Q300 emulators, which use that for-
mat for downloading.

1¢2¢10.3. .u’..".oc

DmuUinage.¢ is a MUFCM loader provided in gourgg form for user
customization,

&~

Zilog Object File Utilities 1=

INTRODUCTION Chapter 1 INTROJUCTION

Figure 1-1. The Universal Object File Utilities in tha
Software Development Process

1-5 Z2ilog Cbject File Utilitiaes

INTROOUCTION Chapter 1 INTROJUCTICN

1¢3. UTILITY INVOCATION

This section describes the invocation of the orjact file
utilities. The syrtactic notations used in this section and
throughout the rest of the manual are described below.

1.3.1. Syntactic Notation.

fitem]
Square brackets indicate that the item is optional.

item1 | item2
A vertical bar incgicates that either of the two items
can be provided.

item ecee
Three periods indicate that there can be one or more
occurrences of tha praeceding itam.

item +
An asterisk indicates that there can be 2zero or more
occurrences of the preceding item.

N stands for a cecimal number.

H stands for a hexadecimal number.

1¢3.2. Command Invocation

Each utility is a2 separate program, invoked by wusing its
name as a commancd. Thes command name is followed by zero or
more "arguments” separated by spaces; command arzumants wmay
be filenames, numbers, or so-called "options”,

Command line syntax follows the UNIX* convention in which &
‘=’ sign followed by a one-character option identifisr (with
no intervening spaces) is parsed as &n option (e.gesr =0).
Cotions can appear in any order. Case is not significant in
option identifiers, they may be uppercasa or louwercase
latters.

Some options may be followeda by a number or filename. A
space 1is gptignal between the option letter and the number
or filename, and regyicgd following it.

* UNIX is a trademark of AT % T B8ell Laboratorias;
Zilog is licenced by ATET Technologies, Inc.

lilo3 Cbject File utilities 1-¢

INTRODUCTICN Chapter 1 INTROQUCTION

Cption characters may be concatenated (e.g.r, two options,
such as <+=a &nda <-b, can be written as =-ab), provided tha
first option (-3 in this example) does not expect to be fol-
lowed by a number or filename.

For example, the command

mlink =i f00.0 =o0foo =-rz
illustrates most of these principles: Tha =i and =0 options
are each followaed by a fileoname (foo.o for =i, foo for =o.

The two single-character options =r and =z are combined as
-rZ.

1=7 2iloy Object File Utilities

Chapter 2
MCONV

2.1« INTRODUCTION

The mgopy utility is a filter that converts an object module
from one format to another. MUFOM objact files can be in
either ASCII character or binary forme. Cbject modules 1in
binary form save spacer while character form allows easy
examination and reading by the user, and is more useful for
downloading over serial links.

2.2 COMMAND SYNTAX AND OPTIONS

The mgopy conversion utility is invoked by the follouwing
commands

mconv [options] [filel

If no input file is specified, standard input is converted.

The command—line options are:
-b Convert the source to binary form,

-c Convetrt the source to characior form; this is the
default option.

-1 Retain local symbols in the output. If this option is
not supplied, only global and external symbols will be
list.d-

-k N Roetain MUFOM comments up to level N in the output.

-0 file

Direct output to the given file rather than to standard
output,

2=1 Zilog Object File Utilities

Chapter 3
MOUMP

3ot INTRODUCTION

The mdyge utility is used to display MUFOM osbject code in a
user=friendly format. It accepts MUFOM objact modulas as
input and can output four items of information: the object

mocdule header, the section tabla, the link map, and the load
data.

3.2. COMMAND SYNTAX AND OPTIONS
The command syntax for this utility is as follouws:
mdump Coptions] [filel
If no file is specifieds then the standard input will be
dumped.

The command~=line options are:

-h Display the header information.
-1 Display the load data.

-m Display the link map.

-s Display the section table.

If none of -h, -1, -m, or -s is given, all information is
displayed.

-0 file
Direct output to the given file instead of standard
output.

-k N
Print the MUFOM comments within the object mocdule with
8 loevel less thanm or egual to N. Sev Appendix A for a
discussion of MUFCM comments.

3-1 Ziloz Chbject File Utilities

MOUMP Chapter 3 MDUMP

3.3. DOISPLAY FORMATS AND EXAMPLES

This section describes the formats of the four items of
information in mdyme’s output. They may ba individuzlly
selected for display by command-line options; by default all
four itams are output.

3.3.1. The Header
The first part of gdymp’s output is & hesader containing gen-

eral information about the module. The header information
includes:

o Module name

o Target processor

° Character/8inary format

o Address length and byte order

o Creation date and time

] Absolute/Relocatable

[} Entry point

) Program size (in hex and decimal)

AR typical module header is shown bhelow:

Module: test,;, target Z80K; character form.
Address length &4 bytes;, MS8 first.
Created 1986/04/02 09:35:38.
gntry point = 00000C01.

Total size = 958 (3672); absolute.

3.3.2. The Section Table

Following the header, mdump lists a table of all the sec-
tions in the object module, as shown in the two examples
below. Note that some fields may be blank if no values have
been set for them. In particular, the LOCATION field is
blank for relocatzble sections,

lilog Object File Utilities 3=-2

MOUMP Chapter 3 MOUMP

SECN LOCATION ==SIZE== ==ALIGN~ ==PAGE== NAME:ATTS

0 00000d4& 009200002 H

1 00000G14 0000G002 secl1_name:
2 C0000C0a 00000002 sec2:XP

k 000000G2 00000004 sec3:

4 000C00Cc C000000Cc code:X

5 00C00006 00000002 data:

6 00C00C1G 000C0002 bss:3Cw

7 00001000 00000014 00000002 abs:A

8 00000C0z 000C0002 comm:M

SECN LOCATION ==SIZE== --ALIGN= ==PAGE-=- NAME:ATTS
00000000 00000166 00000002 COC1C000 sllfoo:zANSW
00005000 0000092e libcodezANSX
00005000 CO0000C60 00C00002 00010000 code:ANSX
00005060 000000¢0 00000002 00000000 Ccommon:ABNSH

WO

The SECN column displays the section number. Cach section
has a number associated with it that differentiates it from
the other sections in the object module. The LOCATION
column displays starting address (lower boundary) of the
section. If the section is relocatable then the LOCATION
column’s entry will be blank. The SIZE column shows the
size in hexadecimal of the section. The ALIGN and PAGE
columns show the alignment boundary and page size of the
section, if defined.

The NAME:ATTS column shouws the nzme and attributes of the
section, separated by a colon. See Section 5.2.2.4 in the
chapter on plipk for a discussion of section attributes and
their meanings.

3.3.3. The Link Map

Object modules that are output by the linker, plipks contain
information about the files and sections that were linked
together to form them. This information is called the Lirk

Mzp, and is identical to that displayed by the =v option of
nlink.

If no link map is present, mgump displays the message

No link map information.

3-3 Zilog ObJject File Utilities

MoUMP Chapter 3 MOUMP

An example of a link map is shown below:

LINK MAP: Input Sections
FILE test.o created 1986703724 09:4C:3¢
1 L=00000006 $=00000d4a test.or:ANSW
S L=00000a7e S=0C3C0014 test.orseci_name:ANSW
4 L=00000a74 $=00000002 test.orsecc:APSX
6 L=00000d94 $=00000002 test.orsec3:ANSW
3 L=00000d68& $5=0000000c test.orcode:ANSX
0 L=0000000C s$=0000000¢ test.orcata:ANSKW
a L=000010bc $S=0000001C test.o,bss:ABCNW
7 L=000C1000 $=30000014 test.orabs:ANSW
8 L=00001014 5=00000002 test.orcomm:AMNW
tXXXeO created 1985/10/31 14:53:08
2 L=00000d5C $5=00000910 txxx.0r:ANSH
8 L=00001614 S=00000054 txxx.orcomm:AMNW

FILE

-0 ONOWVIHEWN-O

Note that the link map includes the name and creation date
of each tila that wes linked; if the file came from a
iibrary, the 1library name follows the filename in
parentheses.

The line for aach input file is followed by 2 line for each
section that <the file contains;, the first two columns are
the input and output section numbers, respectively.

For relocatable sections, "L=" is replaced by "R=", and tha

associated location is the offset of the input section
within the (possibly larger) output section.

3.3.4. The Load Data

The Load Data is the data and code that will actually be
loadad into the tazrget machine’s memory.

The data is displayed in the format shown below:

Section number

address: =====-==object code-===~--- JASCII equivalent]
addroess: =-=-=-==-gbject code~======-- |ASCII equivalent]|
etc.

The load data is broken up into lines for display, each of
which can show up to sixteen bytes of data. The display
lines are aligned on modulo-16 byte boundaries with the
address being the address of <the first byte actually
displayed. If the section is relocatable then the address
is relative to the beginning of the section., If the section
is absolute, then the address is the actual position in

Zilog Cbject File Utilities 3=-4

MOuMP Chapter 3 MDUMP

memory.

Zxemple:

J00J02000 5o 08 ST 54 &1 7@ a1l 6d a1 5c 8d c4 S5e Je 50 16 1A 27T = =\
C0000010 83 22 Se 08 SO 4a ab cO Ob CGc 0OC OC Se C2 50 3¢ | "~ PJ
OCCC002C 20 eC Ca dU 5e 0o 5C 3¢ Oc e4 5¢ 0e 5C 34 83 22 | A P A
00000030 5e¢ 08 50 4z &9 e0 a% d0 5e¢ 08 53 16 20 e2 b1 20 4 °J 4
00020043 20 d8 b1 0C &3 02 5e 08 5C 4a 5¢ f1 0c 02 CO CO { A PN
JCJJ0C653 a9 5 9e 08 ab f5 5¢ f9 Oc 02 2J 00 5¢ 08 50 04 J \

3.3.5. Disjoint Sections

It is important to note that the MUFCM format allows the
object <code for a section to be broken up into physiceally
disjoint pieces. If pieces of sections are distributed ran-
aomly throughout the object module, mdump will not be able
to displeay each section contiguously.

Instead, mdump will display the pieces of the sections

as it receives them from the input file. The example belouw
shous the load date of & module with tuwo sections, each
split into two pieces.

Section O

000C0C00 61 62 63 €4 |abecd
Section 1

00300000 30 32 33 34 235 102345
Section O

0C000004 65 66 67 68 | efgh
Section 1

39000005 36 27 38 39 | 5786

Sections can also contain gaps (cruseda by assembler state-
ments that reserve space without initializing it). Short
3aps are reprosented by "eseeee.” within a single line; 1long

gaps by "eeea” in the address field, 2s shoun below:

00000000 01 C2 C3 secaesececes 04 05 U6

0C0CCO06e 08 0%

3.3.6« Displaying Relocation Information

within MUFOM relocatezble object codas raferences to
unresolved external symbols and to locations in relocatable
sections are represented &s expressions. The formats usea

(VY]
1)
W

liloyg Cbject File Utilities

MOUMP Chapter 3 MIUMP

for displaying expressions 2re shouwr belou:

Rnntoffset relocatable address
Xnn+toffset external refsrance
I 2322323232 other expressions

The expressions are padded with periods to occupy the
appropriate amount of space (three columns per byte). 1If
there is insufficidnt space for the whole expression, it is
abbreviated to its first letter and paddea with periods.
The following example illustrates all three formats.

00000000 R1*123‘.... xo+1234ﬂ... *.'..'..I..

If necessary, more detail about an expression can be
obtzined by running mlisi, which can expand expraessions com-
pletely.

7iloa Obhiact File Utilities 3-6

Chapter 4
MLIS

4.1. INTRODUCTION

The mlib wutility 1is wused for creating and msintaining
libraries of objact modules for use with mlipk. Libraries
are stored in a form that permits efficient searching and
linking of the modules they contazin.

4.2. COMMAND SYNTAX AND OPTIONS

The plih conversion utility is invoked by the followirg com=-
mand:

mlib key 1lfile [namel...
Key is one character from the set "drtaxf" optionally fol-
lowed by "v". l1file is the library file; the names are the
constituent files in ths library.

Note that a "key" is not an "option”’; it has no leading "-"
character. The meanings of the key characters are:

d Delets the named files from the library file.
r Replace the named files in the library file.
q Quickly append the named files <to the end of the

library file, without checking whether they ars already
in the library.

t Print a table of contents of the library file. If no
names are given, all files in the library ars tabled.

x Extract the named files from the iibrary. If no names
are given, all files in the library ara extracted. The
library file itself is not altered. The extracted

files are put into the current working directorye.

v Verbose. Gives more information .about what mlib is
doing. With 3§ this includes & listing of the symbols
in each modula as well as the names of the moculses.

f The first and only "name’” in the command line is the
name of a file which contains the list of filenames.

4=1 Zilog Cbject File Utilities

MLIB Chapter 4 MLIB

4e3. EXAMPLES

Yo combine several files (say, “filel.0", "fileZ2.0" and
"file3.0") into a librery, use the command:

mlib q foo.lib filel.0 file2.0 file3.o0
If one of the files is modified, it can be replaced with the
commands:

mlib r foo.lib filel.o

To 2dd another file to the library., use

mlib q foo.lib file4.o

To find out what is in the library, use

alib t foo.lib

To break the library into separazte files, use the command
mlib x foo.lib

Note that the library file is unaffected by this operation.
A single file can be extracted with the command

mlib x foo.lib file2.o
If a filename containing a2 list of files, say "bar", has
been prepared (for example as the output of glorder), we can

use it to create 2 library with the command

mlib gf bar.lib bar

Zilog Object File Utilities 4=2

Chapter 5
MLINK

Se1« INTROOUCTION

The mlipk utility is used to assign absolute addresses to
relocatable sections in MUFCM input modules, and to combine
(link) two or more separate object modules into one mocule.
Linking allows programs to be developed as groups of
smaller, oasier-to—manage modules that can then be combined
to form a single object module. All of a program’s modules
can be merged &t one time or they can be combined into sub-
modules (sometimes called pre-links) which can themselves be
combined in a subsequent mlipk run.

Selele Modules And Sections

Iin order to understand the linking process, it is useful to
understand the way in which MUFOM files are constructed.
(The following discussion is a shortened version of that
found in Sections A.2 and A.3 of the Appendix on MUFOM. See
the Appendix for more detail.) MUFOM object files are
agivided into sections each of which is destined to be loaded
into a separate area of memory. £ach saction has & pane, @
size, attributes, and (if not relocatable) a logation. Each
section also has & gegciion puamber which is used to refer to
it internally. In Zilog’s implementation these section
numbers correspond to the order of the sections in the sec-
tion table. (See Section A.2 in the Appendix on MUFQOM for a
discussion of the various section attributes and their mean-
ings.)

It is important to note that the name of a section may be

null (in which case the section is referred to as
"unnamed™), and that the names of sections pged pgt be
ypigue. Thus, & file may contain several sections named

“czode". The advantage of this is that the linker can relo-
cate such sections separately; thus on & 28001 not 3l1
"code" sections have to be in the same segment.

Sections can be referenced in the 1linker by either their
nane, their attributes, or the name of the file from which
they zteme.

MUFOM object files as implemented at lilog are divided into
threa regions: a gection table giving all information about
the file’s sections except their actual contents, a symbel
$t2ble which defines the N, I, and X variables which

5-1 Zilog Object File Utilities

MLINK Chapter 5 MLINK

represent local, internazl, and external symbols respec-
tively, and finally the loag datar the LD and LR commands
which define tha actual contents of the sections. These
regions are delimited by special MUFOM comment commands/
separating them in this way makes the linker and other util-~
ities run faster.

As implemented at Zilogs the N, I, and X variables of any
object file are allocated contiguously starting from NO, IO,
and X0. The variable indexas do pggtr however, necessarily
correspond to the order of <the varizbles in the symbol
table. It is only guaranteed that there will be no gaps in
the numberinge.

MUFOM permits comments (CO commands) in object files’
lilog’s assemblers use level C comments for aerror messagess,
level 1 comments for compiler-supplied debugging informa-
tion, level Z comments for assembler source lines, and lavel
3 for assembler line numbers anda formatting information.
This permits debuggers and other utilities (such as mlist)
to reconstruct the source from the object file.

The comments that introduce the sectién table, symbol table,
and section contents have 1levels 100Chex), 101, znd 102
respectively.

$.1<2. The Link Process

The command arguments are parsed from left to right. cach
argument is essentially a command to the linker.

The linker maintains tuwo lists of sections: the Inout List
and the Output List. The =i file.es command=~line argument
gets sections from input files and puts them into the Input
List. As each file is input, its section table is processed
to construct entries on the Input List, and its symbol table
is processed to resolve external references.

The =8 command=line argument selaects sections from the Input
List and puts them into the OQutput List at the Current Loca~
tion. As oach section is selected it is assigned a starting
location, &and the Current Location is incremented by the
length of the sectionw,

* Tgings are actually a 1little more complicated,
assignment of location is deferred until either a =n or

-0 option is encountered. This is done to 2llow the =y
option to "unselect” sactions. Also, if an absolute
section is encountered, the Current Location for the

next soection will be the 1location of the absolute
section plus its size.

Zilog Object File Utilities 5=2

ML INK Chapter S MLINK

The =0 file command~line argument appends the sections in
the Output List to a file. The output list is then cleared.
when the code or data contained in & section is output to a
filer the values of external or relocatable references and
link=-time expressions zre substituted.

All other arguments operate on the Output List or tha Symbol
Table.

After the command line is parsed, the linker makes two
passes ovor the input files. In the first pass, the symbol
and section information in each input file is read and pro-
cassod, and an Output List is constructed for each output
file. With each =0 argument, locations are assigned ¢to
relocatable sections.

At the end of the first pass, any remaining sections &re put
on the Output List of the last file mentioned, locations are
assignad to common symbols, and still-undefined externals
are identified.

In the second pass the output files are written. For each
output file, symbols and program data are copied from the
input files. Link-time expressions (including relocation)
and external references are replaced by their values during
the copying process.

5=3 2ilog Cbject File Utilities

ML INK Chapter 5 MLINK

5.2. COMMAND LINE SYNTAX AND OPTIONS
The command~line options for mlink are given below in Table
5-1. More complete discussions of each option are given in
the following sections.
The command line is processed from left to right;, each
option with its sub-arguments is essentially a comwnand to
the linker. Unlike most of the other utilities, the order
of the command=-line arguments is significant in plipk.
Table 5-1. mlink Options Summary

Option Description

Input and Cutput File Cptions

=i (ifilelx specify input files
-0 [ofiled [isectionl* specify output file

Section Options

-s [isectionl»* select input sections

-n losection] name and combine sections
-sddress set location for next section
-t address set top loc. for nrevious sect.
-r relocatable sections follow

-m N mark loc./return to mark

-u {isectionl=x unselect sections

Cutput File Cptions

-b binary format output
-c character format output
-k N keep comments in output

Symbol Cptions

-1 discard local symbols

-d define C comnon symbols
-x [sym_opl* process external symbols
-g [sym_opl» process global symbols
-e [valual specify entry point

Other Cptions

-p proceed even if errors
-v ON3J set varbosity leval
-w sSUppPress warnings

-2 28030 segments

-f file command file input

lZilog Objact File utilities 5-4

MLINK Chapter 5 MLINK

5¢2.1« Input and Output File Options

The Input and Qutput options specify the input and output
files for the link operation. If no output files are speci-
fied, output goes by default to "m.out". Note that more
than one output file can be spacified.

If no input files are specified, plipk will generate an out-
put file containing no load data. This car be useful if the
symbol options are used to definre symbols. Also, the sec-
tion options can be wused to crezte empty sections with
specified names, attributes, and locations,

5.2.1.1. File Option Syntax

file_opt 232 =i [ifilel*

] =o [ofile) [isaectionl*

= object_filename | archive_filename
= object_filename

Se2.1.2. File Option Descriptions

=i {ifilelx
Input the specified files, putting their sections into
the Input List. As each file is processed, its sec-
tions are placed into the Input List in numerical
order.,

A =4 is assumed at the beginning of the command, so the
following are eguivalent:

mlink -i filel.o
mlink filel.o

It a library file is specified, it is searched for
modules containing global symbols that match undefined
externals currently in the Symbol Table. If any such
modules are found, they are added to the Input iList.

It searching a library czuses any new externals to be
a2dded to the symbol table, it is searched agsin.

-0 [ofile] [isectionix
Appends the Output List to the given file. If no file
is given, the sections in the Output List &are throun
awvay (but space is still a2llocated for them). Note that
more than one output file <can be specified; this

5=5 Zilog Object File Utilities

MLINK Chapter 5 MLINK

feature can be used for loading into different segments
or PRCOMs, or for constructing overlays.

If section specifiers are given, only those specified
sections (in addition to the sections in the file’s
Qutput List) ars included in the output file’s section
table. Filenames in the section specifiers refer to
ouloyt files. This feature is wused to ensure that
overlays do not reference sections in mutually
exclusive overlays.

5«2e1«3. Automatic Section Combining

Some section attributes specify that sactions are to ta com-
bined automatically 1in various wayse. (See Section A.2.Z2 for
the cdiscussion of Overlap attributes and their effects.)
Such sections are combined when they are first encounterad
in =1 (input) file lists, and only the sections in the
current Input List are looked at to find sections to combins
withe Thus, if a =1 option comes after some sections have
been selected with a <=3 option, the sections that have
already been selacted will pgot be combined with, even if
their names and attributes match those of some new sections.
This provides a weay to override the automatic section-
combining mechanism.

5.2.2. Section Options

The section options allow you to specify explicitly how the
sactions input object modules are selected and positioned in
the output modules. Sections in the input modules are kept
in an internal structure called the Input List until
selected by a =g (select) option. They 2re then movaed to
the Cutput List. Sections on the Qutput List are moved into
an output file when a =0 (output) option 1is encountered.

lilog Object File Utilities 5=¢

MLINK

5.2.2

S.2.2

-s [i

-n (o

-addr

Chapter 5 MLINK

«le Section Option Syntax

sec_opt 2:= =s [isectionlx*

| =n [osection]

} =—address

| =t address

] =r

j =-m N

] =u (isectionlx
address 2= digit Chexdigitls
isection 23 [filenamerllsec_namaell:att_matchl
osection 1:= [sec_namell:zttributes)
att_match ::= [att_term] [+att_terml=
att_group ::= [letter | -letterl...
sec_name 1:= symbol | +
attributes ::= letterw

o2« Section Option Descriptions

sectionl»

Select sections from the Input List and put them into
the Cutput List. They will be located starting at the
Current Location, which is initially 2zero. Sections
matching the first "isection” in the select list will
be put into the output list first;, sections that match
the same "isection" will stay in the same order that
they had in the Input List. The section selectors are
described in more detail below.

If no sections are specified the entire Input List is
selacted, except for Postpone sections (sections with
the "P" attribute.) If Postpone sections are selected
in other cases, they are placed after all the other
sections in the same selection.

sectionl

Combines 211 the sections currently in the Output List
and gives them the given name (and attributes, if
specified). If no section or ":attributes” is speci-
fied, the combined section is unnamed. If no attri-
butes 2re specified, the new section has the default
attributes (:WSN). No attributes are inherited from
any of the constituent sections,

ess
Sets the Current Location to the givan address.

lilog Object File Utilities

MLINK Chapter 5 MLINK

-t sddress
Adjusts the base address of the last saction in the
Cutput List (i.e.r the last section selected before the
=t option) so that its top comes as close as possible
to <the given address without violating its alignment

constraint.
-p)
Any sactions selected after the =r argument will be
relocatable (until the next ~address or =t argument).
-m N

It this is the first time the given mark number is
encountered, set that mark to the Current Location.
Otherwise, sot the Current Location to the value of the
given mark. This argument is used for aligning over-
lays.

-y [section]l+
"Unselect" the given sections, moving them from the
output 1list back into the input list. This can be
used, for example, to select "all but"” a given section,
or to construct a "Postpone" section which will be out-
put later.

5¢.202.3. Section Selectors

A section selector as used in the =s option has three com-
ponents: a filename, & section name, and an attribute-nmatch
specifier. Any of these may be omitteds in which case all
sections matching the other components are selected (the
limiting case is =8 with no section selectors, which selects
21l sections in the Input List).

The format of &8 section selector is
filename,secnamezattributes

Note that po spsces aCs pernmiitsd between the fields. Note
also that the filename must not contain 2 comma (this is
permitted only in UNIX, and is rare in any case).

File Name
The file name component of a section selector refers to
the input file from which the section came. It is ter-
minated by a comma.

Section Name
The section name component of 2 section refers to tha
name of the section as given in a MUFOM ‘ST’ command in

2ilog Object File Utilities S-8

MLINK Chapter £ MLINK

the input module from which it came. Sections can be
un=-named; such sections can be selected explicitly by
using ‘+° as the section name component of a section
selector.

Attribute Match
The attribute-match component of 2 section refers to
the attributes as given in a MUFOM ‘ST’ command in the
input module from which it came. Because sections have
more than one attribute, the attribute-match component
can be rather complicated.

The attribute-match component of a section selec~
tor starts with & colon, and consists of zero or
more "terms"” separated by “+° signs. A section
matches the attribute-match if it matches gny 9one
of the fields. Thus, “+° has the meaning of "log-
ical OR”-

A term in an attribute-match consists of one or
more lettars (case is not significant), each
optionally preceded by a ‘=’ sign, If a letter is
non~nejated in 2 term, the corresponding attribute
pust be oresent in a section in order for it to
match. If a letter 1is negated in a term, the
corresponding attribute pust Dol Le pressent in a
section in order for it to match. Thus, letters
(attributes) in & term are connected by "logical

AND", and ‘“~° has the meaning of “logical NOT".

Note that the attributes matched by a term may be
a2 subsgt of the attributes which a2 section actu-
ally has.

See Section A.2 in the Appendix on MUFOM for a discussion of
the various section attributes and their meanings.

5¢2¢.2.4, Default Selection

At the end of the link, any sections still in the Input List
are selected, and the Qutput List is appended to the output
list of the last file mentioned in a =0 argument (as if the
=0 argument had been moved to the end of the command). If
no =0 argument is given, the default filename is p.lpk.

The sections are selected in the sequence: cocde (X attri-
bute), read-only data (R attribute), other non-8S5 data, C
common and B8SS (3 attribute). The default behavior is thus
equivalent to

5=9 2ilog Object File Utilities

MLINK Chapter 5 MLINK
mlink =0 m.lnk <actual arguments> =-s :X :R :=8 =d =-s :8

5.2.3. Output File Options

The following arguments apply to the next output. file, or to

the last output file if they follow ths last =o grgument.

Se2e3e1. Output File Option Syntax

ofile_opt 1:= =b

S«2¢3.2. Output File Option Descriptions

The following options apply to the output file specified by
the next =0 arguments, or if they follow the last =0 argu-
ment, to the last output file specified.

-b

Put out the next output file in binary form.
had

Put out the next output file in character form.
-k

In the next output file, keep comments up to and
including level N. Yo retain source information for
use with glists use =k3.

5e.2.4. Symbol Options
The symbol options operate on the symbol table which is gen-
erated in the linking process. They allow new symbols to be

defined, or sets of symbols to be excluded from the output
symbol table.

Se.2.4.1. Symbol Option Syntax

Zilog Object Ffile Utilities 5-10

MLINK

Chapter 5 MLINK

1= ~1

| =d

{ =x [sym_oplx*
| =g Csym_opix
| =& (valueld

symbol s:= letterlletter|digitix
value t:= (symbol | address]
sym_op ::= symbol

+ symbol

+ symbol = {valuel
+ symbol length

Se2e4e2. Symbol Option Descriptions

-1

-x (s

-g (s

Do not put local symbols in the next output file.

Cefine a section for any common symbols encountered up
to this point, and select it into the Output List.
Common symbols are used by the C(compiler and other
compilers to hold un—-initialized data. The common sec-
tion defined has the name "Ccommon” and the attributes
"BNSW".

ym_opl*

ym_opl%

Process external or global symbols., with no sym_op’s
givens, the default operation is to strip the symbols
from all output files. “Stripped"” symbols are not
actually removed from the internal symbol table, but
are marked so that they will not be output. The opera-
tions are:

symbol
Strip a particular symbol.

+ symbol
Add a particular symbol. Externals are added as
undefined, globals as zero.

+ symbol = (valuel
Add 2 symbol with the given value. If the valua
is omitted, the Current Location is used. In the
-x argument, a Weak ctxternal is constructed. A
Weak External is an external symbol uhich receives
the given v&lue as a default if no corresponcing

Zilog Objact File Utilities

ML INK Chapter S MLINK

global symbol is defined in tha link.

+ symbol length
Add a C-type Common symbol with the given length.
Used in the =x argument only.

-e (valuel
Set the Entry Point to the given value (symbol or
address). I¥f no value is given, the def&sult is the
Current Location. If no =e argumant is given, the
default is the entry point of the first input file that
has one. If no input file has an entry point, it is up
to the loader or oporating system to define one.

Se2¢5. Other Options

The following argumaents are non-positionzl, and apply to the
entire link operation.

5¢245.1. Other Option Syntax

other_opt 3:

| =-v [numberl
| =-w

| -z

| -f file

5.2.5.2. Other Option Descriptions

=vinl
"Verbose": print information on Standard Error about
what the linker is doing. The optional number selects
different levels of information:

1 (default) Output a link map on Standard Error at
the end of pass 1.

2 Output the name of each input and output file as
it is openad.

3 Qutput information about each section as it is
defined or selected.

&4 OQutput more information about input file format
errors,

-0
Proceed in spite of errors.

2iloy Cbject File Utilities 5=12

MLINK Chapter 5 ML INK

-y
Suppress warnring messages.

-2z
Perform 128001-type sogmented address arithmetic. With
this option in effect, the next address after 100FFFF
hex is 2000000, in other words bits 16-23 are not part
of the address.

-f file

Take arguments from 2 file. Neuwlines in the file are
treated as spaces. The file is effectively inserted
into the command line in place of the =f argumant. The
file can contain comments starting with a semicolon
(";") character and terminatad by end of line.

5«3. CONSTRAINTS
All of mlipk®s tables ere dynamically allocated, so that the
number of symbols, sections, and files that can be handled
depends mainly on the amount of memory available. In addi-
tion, 2ilog’s implementation of MUFOM imposes the following
limits:

Symbol and Section Names: 127 characters.

Sections: 65536.

Local Symbols: 65536,

Global and Externsal Symbols: 65536 total.

5-13 lilog Object File Utilities

MLINK Chanter 5 MLINK

Sebe USING mlink: SOME EXAMPLES

This section describes ¢the wusage of the glipk utility
through several examples.

5.6.1c The Sample Input Files

For the purposes of most of the following axamples, we will
use two input files called "filel.0" and "file2.0" with a
structure similar to that produced by the C compiler. Zach
has three sactions, called "code”, "data", and "bss".
("bss" stands for "Block Started by Symbol", and is used for
uninitialized data that is cleared to zero when the program
is started.)

In adauition, we will assume that "filel.o" contains a sec-
tion called "rom" containing read-only data, that "fileZ.o"
has an additional section called "stack" for the program’s
stacks, and that both files <contain some gommen symbols.
(Common symbols are external symbols which are allocatsd in
& BSS section if no corresponding global symbol is defined.
They are used by C for uninitialized variables.)

The sections of the sample input files are shown below in
tabular form (prepared by mggdump), and graphically in Figure
5-1 -

filel:
SECN LCCATION ==SIZg== =<ALIGN=- -=-PAGE=-- NAME:ATTS
0 00000242 00000002 coda:X
1 C0000231 06000002 rom:R
2 00000232 $0C000C2 data:
3 c0000zCC £0000002 bss:BCW
file2:
SECN LCCATION --SI2E=-- ==ALIGN- ==PAGE=-- NAME:ATTS
0 GCC00242 00C0C0C2 code:X
1 00000234 00000002 data:
2 C0000200 00000002 bss:3Cw
3 00002000 0C0000C2 stack:3P

lilog Cbject File Utilities 5=14

MLINK Chapter 5 MLINK

filel.0:

Armmcc e me—n- cmeccscecaek
| filel.o0r,code:X |
B e ittt +
| filel.o,rom:R |
R -4
| filel.ordata:w |
R DL S et +
| filel.osbss:w3C]

- - - - -

file2.o:

B T T Y repup -

{ file2.0s,code:X |
P L ceeccrrrecen-- +

i fila2.ordata:zw |

feemcccs s ——— ——————

| file2.o0,bss:WBC |

B T T R

{ file2.0,stack:wWBP |

A mmmcccccecrceccce e amee--f

Figure 5-1. ¢&xample Input Files

S5.4.2. Default Section Ordering

The simplest thing to do with our two sample files is to let
the 1lirker salect sections in their default ordering, and

locate them consecutively starting at zero. The linker’s
defaults are designed to "“do the right thing" for C compiler
output running in &n environment like UNIX=%, Thus, code

(sections marked gexecutable with the "X" attribute) is
placed starting at address zero, followed by read-only data
("R" @attribcute), read-urite initialized data ("w" attri-
pute), 355 ("W" and "8"” attributes), and stack ("W", "B",
“p" attributes). The command for doing this is

mlink =i filet.o file2.0 ~o ex1

where ex? is the name of the file which will receive the
linker’s output. Note that the =4 option flag is not
required, since it comes at the beginning of the command,
ang that if the =0 linked.out option is omittec the output
file will be called "m.lnk".

The resulting file’s structure is shown below and in Figure
5-2.

Note that tha two B85S sections have been combined asutomati-

cally, because they have the "C" attribute. Sections with
this attribute 2re automatically combined if thair names and

5-15 Zilog Object File Utilities

MLINK Chapter § MLINK

other 2attributes are the same. Also note that the section
"“Ccommon™ has been created to hold the gommen symbols, and
that the linker has filled in the default section attributes
"W ("uritable”), "N" ("nouw"., the inverse of "PY) and '"S§"
("separate”™, the inverse of "C") wherever appropriate.
Since the linker has given each section a location, they
have 21so acquired the "A" ("absolute”) attribute as wall.

mlink =i filel.0 file2.o0 =0 ax1 =-v

mlink ve 2.1 == Zilog MUFOM linking utility
MAP: ISecn CSecn Location Size IFilesName:Atts
Output file ex1:
0 0 L=00C00000 S=00000242 filel.os,codesANSX
0 1 L=00000242 $=0J000242 file2.0s,c0de:ANSX
1 2 L=00000484 5200000231 filel.osrom:ANRS
2 3 L=000006bs6 S=00000232 filel.ordata:ANSH
1 4 L=000008e8 5=00000236 file2.0,data:ANSH
- S L=00000b1c $S=G0000032 ,Ccommon:ABNSW
- 6 L=00000b4e $=03000400 ,bss:ABCNNW
3 7?7 L=0C000f4e $=00002000 file2.o0rstack:ABPSW
Input files:
0 0 L=00003000 $=00000242 filetl.orcodesANSX
1 2 L=00000484 $S=C0000231 filet.o,rom:ANRS
2 3 L=000006b6 S=C0000232 filel.ordatasANSH
3 é L=C0000b4e 5S=C00C02C0O filel.o,bss:ABCNW
(4] 1 L=00000242 5=00000242 file2.0,code:ANSX
1 4 L=000008e8 S=00000234 filecd.ordata:ANSW
2 é L=000C0d4e 5S=CC0002C0 fila2.0,bss:ABCNN
3 7 L=00000f4e S=C0002CC0 file2.0,stack:ABPSW

Zilog Cbject File Utilities

5-16

MLINK Chapter 5 MLINK

file aex1:

B T L T N T, 3

i filel.oscode:X {

B T L Ty

| file2.0,codezX 1

P S S Py

| filel.o,rom:R |

$rcccccccccccccaccncccead

} filet.ordata:i |
L it _———— -+
| file2.0s,data:w |
D ettt
] Ccommon:WB |
¢remccac s ccccccccncccaad
| bss:W3C |
{ filel.o,bss:wWBC |
i file2.0,bss:%W3C |
B L L T T T P Y
| file2.0,stack:WBP |

ke rcanrcccrcencncanceccae me)

Figure 5-2. Default Selection Ordering

The =v command=line option of mlipk was used to generate the
link map above; note that its format is slightly different

from the information displayed by gdymg. More information
about what glipk is doing can be displayed with the =v3

option, as shouwn below:

5=17 Zilog Cbject File Utilities

MLINK

mlink

Chapter S

=i filel.0 file2.0 =0 ex1 =v3

MLINK

mlirk ve 2.1 == Zilog MUFOM linking utility

Input file “filel.0’
0 - R=00600000
1 - R=00000000
2 - R=C0000000
3 = R=00000000
Input file “file2.0°
0 - R=00000600
1 = R=00000020
2 - R=00000200
3 - R=0C000C00
Select :X
0 - R=C0C00000
¢ - R=00000000
Select :R
1 - R=00000000
Select :-B
2 - R=00c0000C
1 - R=00000000
Select
- = R=00000000
3 - R=00000000
MAP: ISecn OSecn Location
Output file ex1:
0 0 L=00000000
0 1 L=09000242
1 2 L=00000484
2 3 L=000006b6
1 4 L=000008e8
- 5 L=00000b1c¢c
- 6 L=00000b4e
3 7 L=00000f40
input files:
0 0 L=0000C00C
1 2 L=00000484
2 3 L=000006b6
3 é L=C00000b4e
0 1 £=00000242
1 4 L=000008e8
2 6 L=09000d4e
3 7 L=C0000f4e
Output file ‘ex1’

== Input file “filetl.0’
== Input file “file2.0°

Zilog Cbhject File Utilities

$=00000242
§$=00009231
$=00000232
§=00000200

§=00000242
$=00000234
$=C00000200
$=00C02C00C

$=00000242
$=00000242

$=C0C000231

$=00000232
$=00000234

$=00000400
$=CC002000

Size

$=00000242
$§=00000242
§=00000231
$=00000232
$=00C00234
$=C0000C32
$=0000040C
$+00002600

$=00000C242
§=00000231
§=00000232
$=00000200
$=00000242
$=00000234
$=00000200
$=00002006¢C

filel.osrcode:NSX
filel.osrom:NRS

filel.ordataz:NSW
filel.0,bss:B8CNu

file2.0scode:NSX
filel2.0,datasNSW
file2.0/,bss:BCNM
file2.0,stack:3PSW

filel.0r,cocasNSX
file2.0,code:NSX

filet1.0,rom:NRS

fileleordatasNsSu
file2.0,data:NSW

rbss:BONW
file2.0r,stack:3PSW

IFilesName:Atts

filet.o0rcode:ANSX
file2.oscodesANSX
filel.0,rom:ANRS
filel.ordataz:ANSW
file2.0r,datzsANSW
sCcommon:z ABNSW
+bss:ABCNW
file2.0,stack:ABPSW

filel.2/,code:ANSX
filel.0,rom:ANRS
filel.ordatazANSW
filel.osbss:ABCNU
file2.0rcodesANSX
file2.0,data:ANSW
file2.0,bsssABCNW
file2.0s,stack:ABPSW

5-18

MLINK

5.4.3.

Sometimes it is necessary to put the sections of the
than plink’s default ordering.
(This is usually done in order to specify the

file in some

the

different modules

their name, their attributes, or their file

any combination of

The first example in this series

name, since the command line for doing this is somewhat
simpler. For example, suppose you want the data sections to
come first, followed by ROM, and then code, 8S5S, and stack
in their usual order. The command for this and the result-
ing map are shown below.
mlink =i filel.o0 fila2.0 =-s data rom =o exZ2 =-v
mlink ve 2.1 == Zilog MUFOM linking utility
MAP: I3ecn OSecn Location Size IFilesName:Atts
Output file ex2:

2 0 L=C0000000 s=0C000232 filel.ordata:ANSW

1 1 L=00000232 $S=00000234 filel2.ordata:ANSW

1 2 L=00000466 $5=30000231 filel1.0,rom:ANRS

0 3 L=00000698 $=00000242 filel1.o0,code:ANSX

0 4 L=0CC008da $=00000242 file2.0rcode:sANSX

- S L=00000b1c $=00000032 ,Ccommon:ABNSW

- 6 L=00C00b4e S=00000400 ,bss:ABCNW

3 7 L=00000f4e S=C0002000 file2.o,stack:ABPSK

Input filas:

g 3 L=00000698 $=CC000242 filel.0,code:sANSX

1 2 L=00000466 S=C0000231 filel.o0,rom:ANRS

2 Q0 L=00000000 5=00000232 filel.o,data:ANSW

3 6 L=C000Cbée S=0C0002CC filel.o0o,bss;ABCNW

0 4 L=000098da 5=30000242 filel.0,coda:ANSX

1 1 L=00C00232 $=CCC00234 filel.osdata:ANSH

2 6 L=C0C0Cd4e S=CCCO0200 file2.0,bss:ABCNW

3 7 L=00000f4e S5=00002000 filel.o0,stack:ABPSHK

=19

W

order

Chapter 5

o)

these.

other

Selecting Sections by Name

will

ML INK

addrasses

sections, as we will see in later examples, but is also
usaful for constructing large tables from

data 1in

of origin,

salect sections

Ziloy Object File Utilities

output

several
Sections can be selected according to

MLINK Chapter 5 MLINK

file ex2:

PR T L L T P P R L L 3

| filel.o,data:ziw |

B L N

| file2.0,data: W |

L Uy g S

| fileleosromzR |

B L L L Y

| filel.orcode:X |

R §

i fila2.oscoda:X |

T b e L L T Ty

| Ccommon:kB {

+ - -——+
| bss:wW3Cl |
{ filel.0,bss:wdC |
i file2.0,bss:UW3C |

U U S R S S Y

| file2.0,stack:WBP |

e e e T

Figure 5-3. Selecting Sections by Name

Sebebo Selecting Sections by File

Selecting sections according to their file of origin 1is
equally simple. The syntax for a filename selector is the
filename followeo by a comma, as in the following example
where we sSelect 2all the sections in "filal1.0”" followed by
all the sections in "file2.0".

lilog Object File Utilities 5=2C

MLINK Chapter 5 MLINK

mlink =1 filel.o filel.o =s filel.0, file2.0, =0 ex3 =v
mlink ve 2.1 == Ziloy MUFOM linking utility
MAP: ISecn CSecn Location Size IFilesName:Atts

Cutput file ex3:
J L=00000000 $=00000242 filel.0rco0ae:ANSX
L=000C0242 35=CC000231 filel.orrom:ANRS
L=CC00G474 S=C0C0C232 filel.ordatazANSh
L=000036a6 $=00000242 file2.0rcoue:ANSX
L=00C008s8 S$=C0C00234 file2.0,d2ta:ANSW
L=0C0COb1c S=CC002CCC filel.orstack:ABPSW
L=00002t1¢c $=00000032 ,Ccommon:ASNSK
L=00C02b%e 35=CCO000400 ,bss:ABCNW

I Ww=20mMm -
NOWVME NSO

Input files:

L=00003000 S=00000242 filel.orcode:ANSX
L=00000242 $S=C0000231 filet.orrom:ANRS
L=000C0474 S5=00000232 filel1.0,dat&:ANSNK
L=00002b&as S=00000200 fileleorbsssABCNNW
L=0CC006a6 S=0C000242 filel.ortoda:ANSX
L=000008e8& $=C0000234 file2.0rcdata:ANSW
L=C0C02d4e S$S=C00C0200 filel.orbsssABCNH
L=00000b1c S$=00002C00C file2.0rstack:ABPSW

WSO WN
VNS UNN=O

file ex3:
P R L L L T TR *
i filel.orcode: X |
P P ——— -
i filel.orrom:R)
B e ——————— +
} filet.ordata:zw |
D e L —————y
| file2.0r,code:X |
S O S e ppSpup ———
| tile2.0,data:zw [}
Py S Sy Uy Sy, +
} file2.0,stazk:wdP |
e T TR +
| Ccommon:Wd |
D e +
| bss:W3C |
| filal.orbss:NBC |
i file2.0,bss:W3C |

P et cmaeoencs *

Figure S5S-4. Selecting Sections by File

Note, however, that the combined B8SS section and the Ccommon
section still come at the end of this link. This is because

5-21 2ilo29 Cbject File Utilities

MLINK Chapter S ML INK

the 35S sections are combined automatically and the Ccommon
section is generated automatically; automatically-ganerated
sections do not have a3 file of origin. Also, note that the
“stack"” section is selected along with the rest of file2.0’s
sactions, which may not be desirable.

You can make sure that the stack is postponed until the end
of the link in one of two ways: not selecting it by combin-
ing filename and attribute selection, or yp-select it with
the <=u argument. Commands using these two techriguas are
shown below:

mlirk =i filel.o file2.0 -s filel.o, file2.0,:-P =0 ex3
mlink =i filel.0 file2.0 =-s filel.o, file2.0, =~u stack =o ex3

Se4.5. Separate =i Arguments

In order to circumvent these effects, if desired.,
select the sections from "tilet.o" Dbafore you -ioout
“file2.0". Note that in this case you can use =8 with no
arguments to select everything in tha input list axcept

you can

"postpone” sections. The second =8 selects all of

sections
attribute.

except

"stack”,

which
Also note the use of =d to

has

define a

Ccommon section for file1’s common symbols.

mlink =i filel.0o =-s =d ~i filel.0 ~s -~o

MAP:

Qutput file exé4:

W IS0t WNV=2O
NN M W= 0

Input files:

-

WN=220OWwWN
NONO VWM = O

ISecn OSecn

Location

L=000C0030
L=00000242
L=C0000474
L=00000626
L=000008a6
L=000008ba
L=0000Cafc
L=00000d30
L=00000¢30
L=00000f44

L=00003000
L=00000242
L=00003474
L=00C0Csaé
L=00G0C8ha
L=00000=afc
L=60CC0d30
L=CCCC0f4s

Zilog Object

Size

§=00000242
5=C000Cz31
§=00000232
$=00000200
§=C0C00014
$=00000¢c42
§=00000234
$=0600C200
$=C030031¢4
§=00002000

$=009Q90242
§=C00000231
§=C0000232
$§=C0000200
s=CC000242
$=00000234
§=00000200
$=C0002C00

File Utilities

axbd =v

IFile,Name:Atts

filel.0rscode:ANSX
filel.orrom:ANRS
filet.ordatasANSHK
fileleorbss:ABCNW
sCcommon: ABNS W

file2.orcode:ANSX
fileZ.osraata:ANSW
file2.0srHsstABCNW
+sCcommonzABNSW

file2.0ss3tack:ABPSW

filet.orscoca:ANSX
filel.0,rom:ANRS

filel.orcdata:ANSW
filel.o/bss:ABCNW
file2.0,code:ANSX
file2.0,cdata:ANSW
filed.osbss:ABCNW

file2.0sstack:A3PSWK

file2.0's
tha "P" ("postpona")
separate

MLINK Chapter 5 MLINK

file exé4:

| filel.orrom:R]

e cncc e n e cm e ——

| filet.ordata:h |
D Lt L P L DL TS PP
| filet.orbss:w3C I
L 4
| Ccommon:«3 |
s 4
} file2.0rcode:X 1
D e 4
| file2.0,data:w |
B D 4
| Ccommon:W3]
D e 4
| fileZ.o,bss:W8C }

[R

| file2.0rstack:wW3P |

Figure 5-5. Saeparata =i Arguments

5¢4.6. Selecting Sections by Attribute

It is frequently more convenient to select sections by their
attributes than by their namaes or files of origin. In other
cases it may be pegessacyr as when preparing & general-
purpose command procedure in which the namas of the input
files might not be known. (For example, the 1linker’s
default selection is done by attribute.)

Section attributes can ba combined for selection in several
different ways. You may want to select a2ll sections that
have a given sat of attributes, all sections -that do pai
have @& particular attribute, or @all sections that have
gither of two or more attributes or combinzizans of attri-
butes. Loosely speaking, "not” is represented by preceding
an attribute by a "-" sign, and "either" (logical "or") is
represented by separating two groups of attributes by a "+"
sign. The attributes thamselves are rapresented by upper-
case or lowercase letters (See Section A.Z for specific
information about the attributes and their meanings).
Attributes in & selection are preceded by a colon (":").,
which a2lso separztes them from the section name, if any.

For exampler you might want to put writable but non-BSS data

first, followed by read-only data, then code, then 35S znda
stacke The command to do this 1s showun below. Note that

5=23 Zilog Chject Fila Utilitiss

MLINK

the 35S and stack are selectad =zt the ond by default, ard so
need not be mentioned explicitly.
and "code"
could have raplaced ":R :X" with efither " :R+X"

care what order
mlink =i filel.o f
MAP: ISecn CSecn

Output file ex5S:

Wil 1OO0<2an
NOWVMSH WSO

Input files:

WN-OWN=O
NO=SLFro0oONW

fila o

Figure 5-6.

Zilog Cbject File Utilities

Chapter 5

the "rom"

ile2.0 -s

Location

L=00000000
£=00000232
L=CCC004566
L=C00C0698
L=0CC0C8da
L=00000b1c
L=00000b4e
L=C0000f4e

L=00000698
L=0000046¢
L=00020000
L=CCC0Cbée
L=0007%0&da
L=00000232
L=CCC00Cdse
L=00000f4e

x5

B R L L T P Y

tW=B8 3R

Note

Size

$=00000232
§=00000e234
§=00000231
§=0Q000242
$=0000C242
$=00C00032
§=00000400
$=000020CC

$=00000242
$=0000C231
$=00000232
§=C000C20C
$=0Q000242
$=C0000z234
§=00000200
$=00002000

MLINK

that 1f you dicg

sections came in, you

or ":-H".

X =0 ex5 =v

IFile,Nomez:Atts

filel.0rdatasANSH
fileZesosdatas ANSW
filet.0rrom:ANRS
filel.oscocias ANSX
fileZ2.0srcodasANSX
sCcommon: ABNSW
sbss:ABCNW

fils2.0ss5tack:ABPSW

filel.orcoda:ANSX
filel.0srom:ANRS
filel.oscdatz:ANSHK
filet.orbss:ABCNW
file2.0rcod@sANSX
filel.0,uata: ANSW
file2.0s,bsssABCNW

filald.osstack:ABPSH

Selecting Sections by Attribute

ML INK Chapter 5 MLINK
Sebe7. Locating Sections at Specific Addresses
A common problem that occurs in cross-software developmant

is when the target system has both PRCM and RAM, and it is
necessary to put the program in PRCM and the data in RAM,
The =address option specifies the base address of the naxt

section to be selected, so it is used in conjunction wuwith
selection to control the addresses of sections.
Another thing most users want to do is to locate the stack

as high in memory as possible; this can be done with the =t
address option to specify the 3gp address of the last sec-
tion to be selectad. Tha exe#mple below shows both of these
section=locating techniques. (Note that we are grouping
some "uwritable” cata uwith "read-only" dats and code in what
is prasumably the PROM area; this is a common techrique 1in
languages like C which allow no distinction between writable
and read-only dzta. In such cases, tzbles and so on that
need to bae in PROM are grouped into a single file, such as
tilet.o0 in this example.)

(In the example below, the command follows the UNIX* conven-
tion in which a backslash (\) character is used to continus
a long command on another line.)

mlink =i filel.0 file2.0 =0 =-s :X :R filel.o.,data \
=4C00 =s :W~P =d -s :P =t CFFFF =0 ex6 =v

MAP: ISecn OSecn Location Size IFilesName:Atts

OQutput file exé:

w

Input files:

=25

Wil=21v=200

WN20WLN=0

NO VIS W=D

N&EVRASrWND

L=00000000
L=00000242
L=C0C00434
L=000C06b6
L=00004000
L=00004400
L=C00C4634
L=0000cdffe

L=00CCOCQ0
L=00000484
L=C0C006bS
L=C0CC4000
L=00000242
L=00004400
£=00004230
L=C0G0dffe

l1ilog Chject

$=00000242
$=00003242
§=00000231
§=00000232
§=00300400
$=000006c34
§=€0000C32
$=00002000

§=00000242
§$=03009:231
$=00000232
§=CCC00200
§=C0000z42
$=00000234
$=00009209
§=CC002000

filel.orcode:sANSX
file2eosrcodes ANSX
filel.orrom:ANRS
filel.ordata: ANSW
rbss:ABCNW
file2.0r,cdata: ANSK
sCcommon: ABNSHW

file2.orstack:ABPSW

filetl.orcocde:ANSX
filet.orrom:ANRS
filel.ordatazANSW
filel.osbss:ABCNW
file2.0rcoda:ANSX
file2.0,data: ANSW
file2.0rbss:ABCNW

file2.orstack:ARPSW

File Utilities

MLINK Chapter 5 MLINK

file ex6:

0Qo0 Ammmm e e ———— bl]
| filel.o,code:X |
R D ik
| file2.0rcode:X i
P L P P T I T P T Ty g
| filet.osrom:R |
LR ettt
} filel.o,dats:w i
B e e Y
4000 jeermc e e cc e cnant
| bss:wBC }
R e §
| filel.osdata:k i
L T e 4
| Ccommon:W8 |
B Lt T et 4
DFFE LT EE T ceecccmecccos

{ filel2.osrstack:kBP |

FFFF PR U Y

Figure 5-7. Locating Sections at Specific Addresses

S<4.8. Naming and Combining Sections

It is usually not necessary to combine or rename sections in
order to affect their location or order, but naming and com-
bining can be useful if the output of the linker is a2 relo-
catable file which is going to be used as input to a subse-
quent link. For exampla, you may want to construct a
library module containing the <c¢ode and data from several
sub-modules. In this case it may be desirable to have only
a single combined code section, a single date section, and
s0 on. An example of this is shoun below. Note the use of
-r to keep the resulting output file ralocatzbls. Nota that
ve are specifying attributes as well as section names, and
that neither the names nor the attributes of the combined
sections have to be the same as those of the input sactions.

Zilog Object File Utilities 5=26

MLINK

Chepter 5

MLINK

mlink =i filel.0 fil@l.0 -r =s code =n code:X \
-s data =-n data:w =s rom -n rom:R =0 ex7 =-v

MAP: ISecn (0Secn

Output file ex7:

VIS W= O

[I I I N |

Input files:

WNAOWN-=2O
NP =2088~~N0O

file o

Location

R=00030090
R=0000000C
R=C0C0000C
R=C0000030
R=C0000020
R=00000000

R=00C00000
R=00CC0000
&k=00000000
R=000006000
R=00000242
R=00000232
R=00000200
R=00000000

codesX

Size

$=0000048¢4
$=00000466
$=€C000231
$=00000032
$§=C0000400
$=00002000

§=00000242
$=€0000231
$=00000232
§=00000200
$=00000242
$=CC000c34
$=C00C0200
$§=000020090

filel.0,codezX
file2.0s,code:X

rom:R

filel.orrom:K

data:w

5=-27

Figure 5-8.

| filel.ordatazi
| file2.o,data:w

P

| Ccommon:W8

B L L L P ——
{ bss:W3C

| filel.o,bss:wWBC

i file2.0,bss:WBC

*
} file2.orstack:sWsP
R - - " w o ww — - - --

IFile/Name:Atts

rcodesNSX
srdata:NSW

srrom:NRS
+sCcommon:BNSW
+bss:8CNW
filel2.0rstack:BPSW

filel.0scoci@:sNSX
filel.osrom:NRS
filetl.o,data:N3W
filel.o,bss:BCNW
file2.0,coc@:NSX
file2.0,d2ta:NSWw
filel2.0,bss:BCNW
file2.0,stack:8PSW

Naming and Combinring Sections

lilog Cbject File Utilities

MLINK Chapter 5 MLINK

5.4.9. Overlays

In small systems it is sometimes necessary to break programs
up into nieces that "overlsy"” or lozo on top of onae another.
A clever loading program that understands about sections
could select the sections belonging to overlays out of an
abject file containing the whole orogram, but more often it
is necessary to put overlays in a separate file. This can
be done in a single linking step by specifying multiple out-
put files.

A related problem is making sure that the sections that are
supposed to overlay one another start 2t the same address.
This can be done easily if we want to specify ths address
exactly, but more often the overlaid sections are locataed
relative to other sections, whose size we don‘t care to keep
track of. The =m (mark) option is useful here.

The techniques used for making overlays are shown below. We
assume that the code and data in file2.0 3re needed only
part of the time, and can overlay filel.0’s data section,
which we therefore locate afigc the (common and 855 sec-
tions. We locate the stack at the high end of memory wusing
the <=t option. It doesn’t matter which overlay file the
stack goes with becauser being & BSS section, no date |is
actually loaded into it.

l2ilog Object File Utilities 5=-28

MLINK

mliink =i filel.o file2.0 =-s filel.orcode

Chapter S

Size

§=00000242
§=00CC0231
$=C03003430
$=CC00CC3e
§=00C0C232

$=00000242
5=00000234
$=00002000

$=C0000242
$=C03000231
§=0G0000c32
$=0C000200
$=3J000z242
$=0C00C234
$=00000200

-m1 -s filel.o,data o ex& \
“m1 =s X :W-B
MAP: ISecn 0Secn Location

Qutput file ex&:
0 C L=C0G000CC
1 1 L=00CC0242
- 2 L=00000474
- 3 L=0CC00874
2 4 L=C0CC008a¢

Qutput file ex8a:
o 5 L=CCCCC8aé
1 6 L=00CCCoe8
3 ? L=0000dffe

Input filas:
0 0 L=0GLC00COo
1 1 L=3030J242
2 4 L=C0C008as
3 2 L=CCCO0474
0 5 L=00C008s6
1 6 L=C0C0Cae8
2 2 L=00000674
3 7 L=0000dffa

§=0C002000

MLINK

tR =s :18=P =d \

P =t OFffff -0 ex8a =-v

IFile,Name:Atts

filel.orcod@sANSX
filel.or,rom:ANRS
rbsstA3CNW
+Ccommon: ABNSW
filel.ordata:ANSW

file2.o0r,code:ANSX
fileZ.orcdata:ANSNK
file2.0rsstack:ABPSW

filel.orcode:ANSX
filel.orrom:ANRS
filel.ordatasANSW
filel.0,bss:ABCNW
file2.0rcoda:ANSX
fileZ.ordata:ANSW
file2.orbss:ABCNW
filed.orstack:ABPSW

lilog Object File Utilitiss

MLINK Chapter 5 MLINK

file ox8:

G000 #=-----ecececeescacesoaas

| filel.oscoda:X |

e e ccccc e n e n e —-d

{ filet.orrom:R |

B LT

| bss:w3C]

T L T Lk 3

| Ccommon:W8 |

08A6 #me=m=memmmmememcem—eeeeod

{ filel.ordata:w |

e ceccecccrc e c s e e ek

file oex8z:

0846 #===cmemeccmccm—ce—eooaoy

{ file2.0rcode:X |

e e |

{ file2.0,datazi |

B L L L e T T P 3

DFFE peemcemcccccce e ccenaaan}

| file2.0,st2ck:WBP |

FFFF B L T]

Figure 5-9. Qverlays

S.4.10. Discarding Sections

It is csometimes useful to produce an object file <containing
only some of the sections of the input files. This is an
alternative way of producing overlays; it is used more often
if one input fila contains an operating system and another
an application that runs under it. The @application will
need to knouw the addresses of routines in the operating sys-
tems but can assume that the operating system will @already
be in memory,

Sections are discardea by giving a =0 option with no

filename. This is shown in the example below, in vhich all
the sections in filel.o are discarded.

Iilog Chject File Utilities 5=3C

MLINK

Chap

mlink =i filel.o =-s =d =-o -i

MAP: ISecn CSecn Location
Discerdoed:

0 0 L=00000000

1 1 L=00000242

2 2 L=00000474

3 3 L=000C06as

- 4 L=0000CE&a%

(¥]}

Qutput file ex9:

o

[V I N

Input files:

WN-=>20WN 20

file

Figure 5-10.

-31

S L=CCCCC8ba
6 L=30000s&fc
7 L=00CC0d30
8 L=000C0f30

¥ L=00500f44
0 L=C00C0000
1 L=02000242
2 L=CCC00474
3 L=C0C00sa6
S L=000008ba
6 L=00C0%afc
7 L=00000d30
 L=C0000f44
ex9:
‘ file2.0,
| file2.0/
| file2.0,
| Ccommon:W3
i file2.0,

ter 5

file2.0 ~s

Size

S=C0000242
§=00C0C231
§=60000232
§=00000200
$§=00000014

§=C000GC242
§=003000234
$=£00002C0
$=00CCJ014
§=00302009

§=C0C00242
§=00000231
§=00000232
§=C0000C2G0
§=00000¢c42
$=CC00C234
$§=00000200
§=00002000

ML INK

-0 ex9 -v

IFilesName:Atts

filel.osrcode s ANSX
filel.orrom:ANRS
filel.ordatas ANSHK
filel.osrbss:ABCNKW
sCcommon: ABNSK

file2.osrcode: ANSX
file2.osrdata:ANSW
file2.0,bss:ABCNNW
sCconmon:ABNSW

fileZ2.0sstack:ABPSW

filel.oscode:ANSX
filel.o0,rom:ANRS
filel.osdata:ANSW
filel.o,bss:A3CNW
file2.orcode:ANSX
file2.osdata: ANSK
file2.0,bss:ABCNW

file2.o0s,stack:ABPSK

Discarding Sections

Zilog CObject File Utilities

Chapter 6
MLIST

6e1e INTRODUCTION

The mlist utility uses spacial comments that the assambler
can optionzlly insert into an object file (with the —-oson
tssembler option) to <construct an assemblar-like listing
file from a MUFOM object module.

6.2. COMMAND SYNTAX AND OPTIONS
The command syntax for this utility is as follouws:
mlist [-o filel [~s | =1 | =-x] [filel
The file and options may appedr in any order. If no file is
given, standard input is used.
The command=~line options are:
-0 file
output file name (If not specified, output is to stan-
dard output.)
-5 short format (**x°s insteac of expressions)

-1 long format (single long line for overflow of object
coda)

-x exclude object code that <doesn’t <fit on the source
line.

6.3. USAGE, OUTPUT FORMAT AND EXAMPLES

The input file shoulu be genarated by running the assembler
with the <os =on options, 1to get sourcae code and line
nuabers into the object filea. Most object-file wutilities
can be made to preserve comments with the =k option; ths
comments used by mlisi are in levels 2 ana 3, so the =k3
option should be wused. In particulsr, keeping comments
through mlink means that a2n assembler-like 1listing can be
generated from a fully linked and relocated load mocule.

A full explanation of the MUFOM variables used in tha
expressions displayed 1n the object-code <column of the

6-1 liloy Object File Utilities

MLIST Chapter 6 MLIST
listing can be found in Appendix A. The more common expres-
sions ara:

Xnnan external
Rnnntoffset relocatable in ssction nnn

Apart from addition, reprasented by an infix “+" sign,
operations in expressions are listed as

operation(operand,operandess)
aven for operations such as "=x" for multiplication. The
entire expression 1is enclosed in an additional set of
parenthases.
The following examples show 2 shart assembly=-language pro-
gram with dits assembier listing, and pglisi-generated list-
ings in the various available formats.

2sm80k —oson =oc foo.s =0 foo.0 =p

2sm8dk varsion 2.1a

Mon Apr 28 09:41:34 1986 foo
LoOC 03J LINEF === SOURCE ===

1 «extern xxx
00006000 6121803 cNusnawuw 2 1d r1, rr2{foo1llr3]
0CO00008 1402%xxxttnenx 3 fool: 1ldl rr2, #xxx + footl
0000000Ge 4 «blkb 1000h
0200C100e ROOO400C00008, %% S .dd fool, xxx * 100,

00001013 %ksxkngasnsriasx

mlist foo.o

mlist ve 2.1 == 2ilog MUFOM listing utility

CCCOGOCOo eextarn xxx
CCO00000 6121803c(R0O+8) 1d r1, rr2lfoo1llr3l
J0000008 1402(X0+R0+E) fool: 1d1 rrcs Bxxx + foo1l

CG0CC00e «blkb 103Ch
JC000100e (RO+8)(*x(X0,54))
0C001C16 (2INS(G,RC*+E,3,

C0C01C16 41))

(V.20 N VNN I

2ilog Object File Utilities é=2

fool A«

«ad fools, xxx * 1CC, fool A«

MLIST Chapter 6 MLIST

mlist foo.0 =S

mlist ve 2.1 == Zilog MUFOM listing utility

000€0000G 1 oXxXtern xxx

OCOCOCO0 61218C3casrknkrn 2 1d rt, rr2lfoo11lr3]
33000008 1402xx%rknkx 3 foo1l: 1dl rr2, Fxxx ¢+ foo1l
0G000C0e 4 «blkb 1000h

OCOC10Ce *rxtkhktkhkhkknns 5 .dd fool1, xxx * 100, foaol ~

00001016 *xxxksxx

mlist foo0.0 =x

mlist ve 2.1 == Zilog MUFOM listing utility

00c00C000 1 .extern xxx

00000000 6121803c(RO+8) 2 id r1s, rr2lfool1ller3]
00C00008 1402(x0+R0+3) 3 foo01: ldl rr2s, #xxx + fool
0000C00e 4 «blkb 1030h

0000100e (RO+8)(x(Xx0,¢4)) S .dd fool, xxx * 100, footl 4

mlist foo.o -1 m

mlist ve 2.1 == Zilog MUFOM listing utility

20000000 1 eextern xxx

000C0G00 6121833c(RO+8) r4 ld r1, rr2lfoo13[r2]
00000008 1402(XC+R0O+8) 3 fool: idl rré, Exxx ¢+ foo1l
0000C0Ce 4 «blkb 1C00n

00001000 (RO+8)(*x(X0,64)) 5 .ad foo1, xxx * 100, fo01 *

00601016 (SINS(O,RU+3,3,4%))

é6-3 Zilog Object File Utilities

Chapter 7
MLCAZ

71« INTRODUCTION

The plgag utility is a format conversion progran uwhich
translates MUFCM files 1into one of three formats suitable
for moving an object module from & host system to a target
system. Thae thrae output formats are Taktronix and Intel Mex
formats, and a simplified version of MUFOM. mloag¢ is usually
used in conjunction with protogcel, which sends the resulting
outout to a target systam wusing the Tektronix or other
handshaking protocol.

In addition to simply converting formats, 2load has several
options which &are useful in burring PROMs and in download-~
irg.
7.2. COMMAND SYNTAX AND OPTIONS
The command syntax for this utility is as follows:
mload Loptions]) [filel

If no filaname is given, the standerd input will be con-
vertede.
The command-line options are:
-o file

Output file name (if not specified, output is to stan-

dard output).

-2 MUFOM absolute download subset (default)

=i This option specifiaes the output to be in Intal Hax
format, as defined in Appendix C.

-t This option specifies the output to be in Tektronix Hex
format, as definec¢ in Appendix 8.

(The following are useful for burning PRCMs.)

=N Qutput avery Nth byte. Divide input addresses by N to
get output addresses.

7-1 Zilog Object File Utilities

MLOAD Chapter 7 MLOAD

2 Start a2t (input) address e
=H OQutput H bytese.

(The following options are useful for downloading, and espe-
cially for mapping code into & specific segmnent.)

+H Add offset of H to every Quiput address.

-p (PROM) Subtract gtart from every jpput address (beforae
the division specified by ~N option). This starts out-
put addresses at zaero for burning a PROM.

-2 Map 28001-type segmented addressas into 24-bit linear
addressese. The 7-bit segment number in bits 24-3C of
the input address is placed in bits 16-22 of the output
address. Thus., the 2860C address 120C1234%
(<<1208>>1234h in assembler notation) is mapped into the
output address 121234.

(The following apply only to MUFOM or Intel download for-
mats.)

-9 Cutput global symbols.
-1 Output local symbols.

-k Keep comments of level N or lower (MUFCM only).
(default: N = 255)

-s Cutput section information (MUFCM only).

7.3. OPERATION

Te3.1. mload Input

The input to mlo2d is a single MUFCM format object module.
If the input objact module is relocatable (j.g., there are
symbols for adcdress references for which no values have been
associated), then glgad will produce an error message but
will proceed with the translation, relocating every saction
starting at zero.

7.3.2. mload Address Translation

The parameters that azffect gloagd’s address translation are:

S the specifieo starting address (&S option).

lilog Object File Utilities 7=-2

MLOAD Chapter 7 MLOAD

L The number of bytes to be output (=L option).

T the specified offset (+7 option). The =p option sets T
= -5,

N the number of separats PROMS being burned (=N option).

Given an input address A, this will be translated to an out-
put address A/N = T. Cnly datas with 2ddresses between S and
S + N+L will be loaded.

7.3.3. Output Format Limitations

It should be noted that all symbolic information is lost
when MUFCM is translated into Intel or Tektronix Hex. In
addition, MUFOM sections have no counterpart in Intel or
Tektronix format, i.e., all sections in the MUFOM file will
become one contiguous set of records when translated.

Intel Hex format 1limits addresses to 16 bits without
extended addressing, and 20 bits with extended addressing.
Tektronix Hex format limits addresses to 16 bits. Thus,
large programs may have to be downloaded in several pieces.

7.4. USING mload: SOME EXAMPLES

Tha following examples show how 3lg3d workse. The first few
examples sssume the following input module called "tload.o":

7-3 lilog Cbject File Utilities

MLOAD

Tebole

Chapter 7

MB3Z83K,05tload.

AD03,C4rM.

DT19860505094554.

Co01C0,15==-= Section Table -=--.
ST00,A,03abs.

SACO,C2.

ASSOC,0111.

ASLOG,CO0.

STC1,A,X,C&code.

SAC1,02.
ASSC1,2FQ020C¢,2F0Q20CC -
ASLO1,2F002020.

C00181,14=-=- Symbol Table =--.
A3G,2FC020GC.

NNJ1,03fo0.

ASNC1,C101.

NIOO,0OSstart.

ASIO00,2F002C00.

€C00132,18~~= Program Sections =---,
$800.
LROO01020304C506070809CA0B0CODOEDF.
ASPD0,0101.
LR0102030405C6C708090A0BOCCDCEGF1C.
$801.

LRSEC8AF002000C.

ME,

MUFOM Download Formats

The following three exzmplaes show the use of mlgad

duce
inge.

Zilog Object File Utilitises

MLCAD

to pro-

2bsolute MUFOM output in a form suitable for download-

MLOAD Chapter 7

Command:
mload tload.o =o load.o
Qutput: loada.o (absolute MUFOM)

MB280K,05tload.

ADGSIG‘I".

ASP0J,00.
LRC00102030405060708C090ACBOCCOCECF.
ASP230,0101.
LR0102030405060708090A08CCODCEQF10.
ASP0J,2F00200C0.

LRSE0BAF002CCC.

ASG,2F002000.

ME.

Command:
mload tload.o =6 load.o -s
Output: load.o (MUFOM with sections)

MB280K,05tload.

ADC8,04 M.

€00100,15-=- Section Table =-=~-.
ST00,A,C3abs.,

SAQJ,02.

AS$S00,0111.

ASLO0,00.

STC1,A,2,04code.

SA011020

ASSO1 1060

ASLO1,2F002000.

€00101,14=== Symbol Table ---.
€C00102,18==~ Program Sections ===,
$300.

ASPOOIOOD
LRO00102030405Q060708090AC3CCCO0Z0F.
ASP00,0101.
LR0102030405060708090A330CODCEOF1C.
5801.

ASPD0,2F002000.

LR5EQ8AFGG20GC0.

ASG,2F002000.

ME,

Zilog Cbject File Utilities

MLOAD

MLOAD

Chapter 7

Command:

Output: load.o (MUFCM with sections and symbols)

Tebe2.

mload tload.o =o load.o =-slg

MBZ8CK,05tload.

ADOE, Q4 M.

€00100,15~~-- Se¢ction Table ~---,
ST00,A,032bs.

SAOOIOZ-

AS500,0111.

ASL00,00.

STO01,A,A,04c0ode.

SAQ01,02.

ASS01.,06.

ASL01,2F002000.

€00191,14==-= Symbol Table =---.
NNC1,03f00.

NI00,0S5start.

ASI00,2FC020CC.

C00102,1&~== Program Sections =--,
$800.

ASP00,00.
LR0O001020304C5C60708090AC80COD0OEDF.
ASP00,0101.
LRO102030405G6G708090A0B0C0OD0EDF10.
$801.

ASPOG,2F0020C0.

LRSEDQ8AF002300.

ASG,2F002000.

MEa

Yranslating from MUFON to Intel Mex

MLOAD

Suppose that you want to translzte an object module that is

formatted in MUFOM into Intel Hex records.

example shows how this would be performed:

Zilog Chject File Utilities

The follouwing

MLOAD Chapter 7 MLCAD

Command:
mload ~-i tload.o ~o load.o
Output: load.o (Intel rex)

mload ve 2.1 == Zilog MUFOM load formatting utility
:100000C000010203040506C7C8090A0B0C0ODOEDF78
:100101000102030405062708390A080C0DJEDF1066
:062000005E08AF002000A5

: 0020000300

:00000001FF

The =4 option specifies that the input be translated into
Intel hex records. link.0o is the input file. =0 loadeo
specifies that output joes into the file callad load.o.

Note that the addresses in the output have been truncated to
16 bits,

7eb4<3. Translating from MUFOM to Tektronix Hex

The method shown for translating object modules from MUFOM

format to Intel Hex in the previous section is the same
method used for translating Tektronix format. Instead of

the =i option (output = Intel), the =t option is usad to
indicate that the output will be Tektronix format.

The following example shows thke translation of a file ¢to
Tektronix Hex with output on Standard Qutput,

Command:
mload =t tload.o

Cutput (Standard Output)
mload ve 2.1 == Zilog MUFOM load formatting utility
/06001001000102C30405C6C708090ACBOCOD0ECF?S
/2101100301020304050607C8090A0B0C3D0E0F1079

/200006085E08AF00200036
/20000002

Nota that the addresses in the output have been truncated to
16 bitse.

7=-7 lilog Object File Utilities

MLOAD Chapter 7 MLOAD

7-b.4. Downloading to a PROM Programmer

Downloading & program or segment thereof to a PRCM program-
mer 1is straightforuard. First, generete @2 file of the
proper format, i.e., Intal or Tektronix Hex. 3econd, attach
the programmer to your terminal’s auxiliary port. Third.,
g2y (UNIX#*) or tyas (DOS) the file while capturiny the data
on the programmer. Last, burn the PROM, This methocd has
been used successfully with Data I/C Programmers and AOM 31
terminals,

A second method can be used if tha PROM programmer is
attached to a second serial port. In this case, tha output
of mload can be sent to this port instezd of to a file. If
the PROM programmer requires a handshake, protecal can be
used (see Section 10.3.3 in the chapter on protogel.)

Te4.5. Programming Multiple PROMs

When a program is too big to fit into a single PROM, it 1is
necessary to perform several loads. The following example
shous how to do this.

Suppose you have a file, “file1" which is to be translated
into two Tektronix-format files “"promi"™ and "prom2" with
starting addresses 0000 and 1000 <(hex) respectively. You
can do this with the tuo commands

mload ~p file1l -o prom1
mload =p filel =o prom2 31CCO

The 81000 option in the second command specifies that output
starts with adaress 1000 (hex). The =p option specifies
that the physical addresses in the output files start with
200G,

Tebeb. Programming PROMs for a 16-bit Processor

when developing software for 16-bit processors such as the
280C0, it 1is necessary to program odd and even locations
into separate PRCMs. The following example shows houw to do
this:

Given 2 file "file1" which you want to separate into two
Intel-format files, “promd" and "prom1" respectively, you
use the two commancs:

mload =2 =p filel =-o proml
mload =2 =-p filatl =-o promt &1

Zilog Cbject File Utilities 7-8

MLOAD Chapter 7 MLOAD

The =2 option specifies that two PRQOMs are being prcgrammed.,
so that only evary other byte is to be loaded. The =p
option snecifies that addresses in the PROM output file
start with O. The 81 option in the second command specifies
that output to fila “prom1"” starts with adaeress 1 in the
input file.

Note that for 32-bit processors, =4 can b2 usaed to produce
four PRCMs.

Tehe?. Translating Logical to Physical Addresses

Whan cieveloping softuare for systems that incorporate memory
mapping, it is sometimes necessary to load software =t a
different address (physical address) from the address at
which it is intendad to run (logical addrass). The follow-
ing example shows hou to perform this translationrn using the
+offset option:

Given a file "file1" containing a program linked starting at
logical location 0, you want to load the program into physi-
cal segment 1 on a 28001. The 28001 CPU places the start of
segment 1 at 0100C0CO(hex); the target system’s memory
places it at 010300(hex). Use the command:

mload filet1 -z +01J0000090

The output of this command is another MUFOM file on standard
output. The =2 option specifies that 32-bit 28001 logical
addresses are mapped into Z4-bit physical addresses by
"squeezing out" the second byte. The +01000000 option
specifies that 01000000 is =zdded to logical load addresses
in the input file (bgforg the translation implied by the =2
option.

Note that only the addresses at which data are to be lgoaded

are mapped. Addresses in the program, and the values of
symbols, are unchanged.

7=9 lilog Cbject File Utilities

Chapter 8
MLORDER

8.1. INTRODUCTION

The mlorder utility takes a list of MUFOM modules and com=-
putes the optimum order for putting thess modules into 2
library. "Optimum order"” is the order that allows all
required modules to be found in a single pass through the
library;, thus, 2ll modules in the library that reference a
symbol appear in front of the module that defimnes it.

It is not aluways possible to find such an optimum order’
miorder will inform you if this is the case, with the mes-~
sage:

cycle in data:

followad by 3 list of the modules that contain a circular
saries of raferences.

The output file generated by plorger is in 2 form that can
be used by mlib to generate a library.

8.2. COMMAND SYNTAX AND OPTIONS

The mlorder conversion utility is invoked by the following
command:

mlorder [~r] [filel...

The command—line options are:

-r If the =¢ option is given, the standard output is a
list of pzirs of object file names, meaning that the
first file of the pair refers to aexternal identifiers
defined in the secona. The output may be processed by
tsery to find an ordering suitable for one-pass &ccess
by mlipk.

Alternatively, the proper ordering may be 3Jenerated
directly by mnlerder by not giving the =r option. In
this casa the output is & fila suitable for diract
input to plib witk the f option.

3-1 lilog Object File Utilities

Chapter 9
MNM

9«1« INTRODUCTION
The gpm utility prints the symbol table name 1list for a
given file in any of several formats.
9«2 COMMAND SYNTAX AND OPTIONS
The command syntax for this utility is as follous:
mnm Coptions] [file]

If no file is given, stendard input is used.

The command-line options are:
-1 Include local symbols in the listing. m
-n Liet symbols in numerical order.

-u List symbols unsorted, that is, in the order they
eppear in the object file.

-m List symbols with link map information.

-s Swapped format, with name first on the line.

-s N
Svapped format with name first znd truncated to N char-
acters,

-0 file
Direct output to the given file instead of standard
output.

9+3. OUTPUT FORMAT AND EXAMPLES

gny displays the symbols defined in the given file in any of
several formats. Options are provided to display

9-1 lilog CObject File Utilities

MNM Chapter 9 MNM

o only global and extarnal symbols (the default) or local
symbols as well.

o symbols in alphabetical order, in numerical order by
address, or in their order of definition.

o with or without link map informatione.

o in a short form suitable for wuse with symbolic
debuggers, emulators, or other utilities.

9«3.1. Default Name List Format

The default format of the symbol name list is shown in the
example below. The list has 2 line entry for each symbol.
The first column shows the value of the symbol. This is a
hexadecimal number for absolute symbols, or an expression
involving an R-variable (relocatable section origin) or X-
variable <(external symbol). More complex expressions are
listed as "<expression.>".

The second column contains "X" for extarnazl syabols, "I" for
global (internal) symbols, and "N" for local symbols.

The third column contains the name of the symbol.

mnm =1 foo.0

mam Ve 2.1 == Zilo9 MUFOM namelist utility

00001002+x0000 N expr1
<Expression.> N expr2
C000000C+Xx00GC0 X ext1
00000000+x00C1 X ext2
00000004+R0O0OCOC I glb1
00001002 I glb2
0000012345678%abecdef I glb3
00000005+R0000 N loc1
00000002+R0000 N loc2

Note that the above example uwas prepared with the "-1"
option to list local symbols.

9<3.2. Name List with Map Information

The =m option can be used to list symbols with information
derived from +the section table, 2nd from the link map in
modules output by glipke The fourth column contains the
file of origin for the symbol, with 2 library name in
parentheses if the symbol came from a2 library. The fifth

Zilog Object File Utilities 9=2

MNM

Chapter 9

MNM

column contains the name of the section in which tha symbol
resides, and its attributes. This column contains "7:" if

the section cannot be determined. (The space between
columns has bean decreosad a little in the example balow to

make it fit within the margins in this manual.)

anm =-m foo.0

mAm ve 2.1 == Zilog MUFOM namelist utility

00005714 I __align doprtz.o(foos.lib), libcode:ANS)
00005256 I __doprtz doprtz.o(foo.lib), libcode:ANS)
00005086 1 __iob strlen.o{foo.lib), libcode:ANS)
00005786 I __prtint doprtz.o{foo.lib), libcode:AND)
000058b2 I __xputc doprtz.o(foo.lib), libcode:ANS)
00005500 I _atoi atoi.o{foo.1lib), libcodesANSX
00005200 I _printf printz.o(foo.lib), libcode:ANS)
0000C0Ca I _putc foo.0r alifoo:ANSH

003058fa I _strlen strlen.o(foo.lib), libcode:ANS)
00005026 I _strncmp strncmp.o(foo.lib), libcode:ANS
00000000 I fool foo.0, 3l11f0O0sANSW

00000002 I foo? f00.,0s allfoo:ANSHK

00000C04 I fool foo.0or allfoo:ANSHW

000067 ab I gru strlen.o(foo0.libl), ?:

0C004567 I zoo strlen.o(foo.lib), ?:

00005026 I zorch strlen.o(foo.lib), libcode:ANS)
00001234 1 zork strien.o(foo.lib), ?:

00001234 I zorn strlen.o(foo.1ib), ?:

00005678 I zot strlen.o(foo.1lib), libcode:sANS)
9¢3.3. Swapped Name List Format

In order to interface to some symbolic debuggers, it is pos-

sible
line.
given n

umber of characterse.

anm =-s8 f00.0

mnm ve 2.1

-=- 2ilog MUFCM namelist utility

ext1l X 00000000+x03000

ext2 X 0000000C+x0Q001

31b1 I 00C00004+R0O00C

glb2 1 00Cc1002

gib3 I 0000C12345678%abcdef

lilog Object File Utilities

to get a "swapped" listing with the name first on the
It is also possible to truncate the name field
This is dore with the =s or =-s
N option, as in the example below.

to 2

Chapter 10
PROTOCCL

10.1. INTRODUCTION

The protocel utility is the wupload/download communication
handshake program. It supports a variety of different
file~transfer protocols commonly used on PROM programmers
and developmaent systems. It is normally used in conjunction
with mload to download modules into a target system.

10.2. COMMAND SYNTAX AND OPTIONS
The command syntax for this utility is as follows:

protocol (options] [fileld

A maximum of one file may be specified; if no file is speci-
fied the standard input is used for downloading, standard
output for uploading. Order of command 1line arguments is
not significant.

The command=line options are:

-d device
download device name. (If no =d option is ziven or no
device is specified, the terminal is used.)

-u (devicel
upload device name. (If no device is specified, the
terminal is used.)

-f file
take command arguments from the specified file. Argu-
ments in the file may be separated by whitespace or
nevlines; comments start with a semicolon and end with
newline.

-
®
SUpPPress error messages.

-s string

setup string sent to upload/download device. Multiple
«g options are permitted; the strings are concatenzted.

1C-1 Zilog Object File Utilities

PRCTOCCL Chapter 10 PROTCCCL

-p protocol
specifies protocol. (Dafault Tektronix.)

The protocol is matched with @ list of protocol names.
Case is ignored, and abbreviation is allowed.
Presontly, the only protocol defined is "Tektronix".

Protocol may also be 2 1l1list of items of the form
"variable=svalue”. Values are numeric; hex if they start
with "0", decimal otherwise. Variables are one of the
following:

ack
acknouwledgement character.

nak
negative acknowledgement character.
abort
sbort character.
linedelay
delay (in milliseconds) after sending sach line.
chardelay
delay (in milliseconds) after sending each charac-
ter.
prompt
prompt character.
retry
number of times to retry anr incorrectly-received
recorde.
timeout

timeout in seconds.

10.3. USING protocol: SOME EXAMPLES

10.3.1. Downloading to a I8 or 28000 Development Module

To download an object module to a target system such as &
Zilog 28 or 18C0C development modula, the following pro-
cedure is used:

(1) In Unix, create an alias with the command

alias LCAD ‘protocol =-t’

In other operating systems, crezte a command file with

lilog Cbject File Utilities 1C=2

PROTOCCL Chapter 10 PRCTOCCL

the same effect. Note that the filename argument to
the LOAD commanu is appended after the "-t" option. It
you want to specify MUFOM object modules rather than
Tektronix hex, your alias or command file will need to
run them through gplgag first; this can ba done with
alias LCAD “mload -t » | protocol -t’

(On operating systems other than Unix, this will take
two commands, with pgload creating # temporary inter-
mediate file.)

{2) While running in the development module’s monitor, exe-
cute the command:

LOAD <filename>

The development module sends the host the command:

LOAD <filename>
which the host interprets as

protocol =t filename
which performs the Tektronix handshake protocol with the
development module.
10.3.2. Uploading trom a I8 or 28000 Development Module
The procedure to uploacd from the 28 or 2800C development
module is slightly more complicated than the procedure used
to download. The user must knouw the starting and ending
addresses of <the imaga to be uploaded before proceding.
oiven that, the following procedure must be followed:

(1) Alias "SENDY to “protocol =-u =-t%,

(2) while running in the development module’s monitor, exe-
cute the command:

SEND <filename> <start-addr> <end=-addr>

The development module sends the host the command:
LCAD <filename>
which the host interprets as

protocol =u -t filename

1C-3 Zilog Cbject File Utilities

PROTOCCL Chapter 10 PROTOCOL

This invokes pgreotecel, which performs the Tektronix
handshake protocol with the development module. The result-
ing file is in Tektronix Hex format, suitable for download-
ing again.

NOTE that "protocol =t =-u filename” is dincorrect: this
causes protocol to interpret the given filename &s the dev~
ice to upload from, with odd results.

10.3.3. Downloading to a PROM Programmer

Some PROM programmers do not require a download protocol’
they simply have & file copied directly to them, as
described in <the chapter on gload. Others (e.g.r the
DATA/IO model 21) require more elaborate treatment as
described below.

It is most convenient, if a device requires a complex doun-
load protocol, to make a command file. For downloading to a
DATA/IO model 29 attached to device "/dev/ttyé4", this file
(call it "dataio”) should contain:

-d /dev/ttyé
-s \C\[B6A\rI\r
-p prompt=03E

In order to download a file, for example "foo", use the com-
mand

protocol -f dataio foo

For uploading from the DATA/IO, <the corresponding command
file should contain:

-s \[\(86A\r2000;\r1CM\rO\r
-y /dev/ttyé
~-p prompt=03¢E

Naturally, other PROM programmers and emulators will have
different protocols; you will need to consult your manuzl
for details, and will probably have to experiment as well.

lilog Object File Utilities 13-4

Chapter 11
OTHER PRCGRAMS

The following programs are supplied with the Object File
Utilities for specializad purposas:

mar
m2a
muimage.c

They are described belouw.

11.1. MAR

The mar utility is an older version of mlik. It produces a
so~¢called "archive" file which is compatible with older ver-
sions of mlink, as well as the library files of the Berkeley
version of the UNIX* operating system. Archive files have
the advantage of being able to contair any kind of file (not
just MUFOM object filas), and the diszdvanrtage of not allow-
ing the linker to access them randomly.

The command line of mar is identical to that of alip (see
Chapter 4).

11.2. M2A

The 923 utility converts MUFOM object files to a form called
@.0uts which is the format used in Zilog“’s S800C microcom-
puters. This format is primarily wusefui for downloading
into Zilog’s EMS-800C emulator for the 23000 microprocessore.

11.2.1. Command Syntax And Options

The pga conversion utility is invoked by the following com-
mand:

m2a L =i | =0 J [-s seg] inputfile outputfile
The command=line options are:
-i Put instructions and data in separate address spaces.

-0 Convert an ovaerizy file.

11-1 lilog Chject File Utilities

OTHER PROGRAMS Chapter 11 OTHER PROGRAMS

-s H is the segment number (ir hexadecimal) in which the
stack is to reside.

The input file must be absolute, j.g. the output of
mlink or gload. Many features of MUFOM cannot be con-
verted to 23.9uts these include arbitrary exprassions
involving relocatable or external symbols, and sections
othar than code, data, and BSS.

11.3. MUIMAGE.C

The guimagges program is the C-languzge source for a pro-
gram, It converts @a MUFOM character form object file on
Standard Input to an absolute binary image file on its Stan-
dard Qutput, whila producing & hexadecimal listing on Stan-
dard Error (the terminal). This program is not very wusaful
by itself, but is supplied in source form so that you can
construct a customized loader for whatever target system you
are wusinge. puipsage is designed to work on the output of
mlozd-, and understands only absolute modules in character
form,

11.3.1. Command Syntax

The gyimags conversion program is invoked by the following
command:

muimage [inputfilel > outputfile

If no input file is specified, Standard Input is used,

Zilog Cbject File Utilities 11=2

Appendix A
MUFOM FILE FORMAT

A.1. THE MUFOM STANDARD

The MUFOM format, as implementad by the Zilog <cross-
softwuare products, follows the format specified in the IEEE
standard JEEE 6%5-1283, "The Micronrocessor Universal Format
for Object Modules.” The standard specifias only the gharag:
tgr form for object files; the hjigary form of MUFOM files
follows the suggested format in Adppendix 8 of the standard.

Section A.2 discusses the concepts of modules ang sections,
and the various section attributes and their meanings. Sec-
tion A.3 discusses the way MUFOM handles symbols, and the
use of MUFOM varisbles. Section A.4 discusses tha local
usage of IEEE Standard 695 by the Zilog cross=-softuare.,
including implementation restrictions. Section A5
discusses local extensions to the standard that have been
added to implement efficient library search. Section A.6é
contains an example of a MUFOM object module and an explana-
tion of its constituent commands.

A.2. MODULES AND SECTIONS

MUFOM object modules (object files) zre divided into ggg=
tiopns each of uwhich is destined to be loaded into a separate
area of memory. Each section has a pamer a 3sizer atici:
puies, and (if not relocatable) a locatiop. Each section
also has a g@gtion nupber which d1is wused to refer to it
internally. In Zilog’s implementation these section numbers
correspond to the order of the sections in the section
table. Section numbers are limited to 16 bits. The name
and attributes of a section are specified in a MUFOM "ST"
(Section Type) command;, the size and location are MUFOM S~
and L-variables respectively.

It is important to note that the name of & section may be
null {(in which case the section is referred to as
"unnamed”), and that the names of sections pged Dnot be
ypiogug. Thus, a file may contain severa2l sections named
"coda”. The advantage of this is that the linker can relo-
cate such sections separately. Therefore, on a 28001 all
"code" sections ¢do not have to be in the same segment.

Sections may also have an 3alignmgnt and page size- The
location (lower bound) of a section is restricted to be a3
multiple of its alignment, and the section may not <cross a
boundary which 1is & multipls of ite page size. The page

L=1 Zilog Object Fila Utilities

MUFOM FILE FORMAT Appendix A MUFGM FILE FCRMAT

size is used to implement address—space and segment-size
limits. The alignment and page size of a section are speci-
fied by the MUFOM "SAY (Section Alignment) command.

The following is a description of the various section attri-
butes and their meanings. This includes the way they affect
the link process, and their eventual use in a target system.
gach attribute is represented by a letter (lowercase or
uppercasa).

Ae2.1. Access Attributes.

The 2access attributes specify how sections are used
(accessad) in the target system. They are used during the
link process to select groups of sections that ara to be
located together,

W (Kriteable)
This is the default access attribute.

R (Read=-only)
This attribute is used for data that is intended
to go into ROM,

8 (38SS)
This attribute is used for dats that is initial-
ized to zero whan 2a program is started. (BSS
stands for "8lock 3tarted by Symbol".)

X (Executable)
This attribute is used for code sections.

I (Zero page)
This attribute is wused for sections that are
accessed via a processor-dependent short address-
ing moder such as the I8 on-chip registers.

A (Absolute)
Sections with this attribute have beéeen located ot
an absolute addrass.

Ae2e2. Overlap Attributes.

The overlap attributes specify how sections with ths same
name and same accass attributes are to be handled. Sections
can be unnamed; all unnamed sections are treated as if they
have the same name. The overlap attributes are mutually
exclusive and a section may have only gpg of them.

Zilog Object File Utilities A=2

MUFOM FILE FORMAT Appendix A MUFCM FILE FCRMAT

S (Separate)
All sections with +this attribute will be kept
soparate when located in the output file. This is
the default overlap attribute.

C (Concatenate)
Concatenate (combine into & single contiguous
chunk) all sections with the same name and attri-
butes. This attribute performs the equivalent of
the lirker’s =n command line option.

£ (Equal Length)
Overlap all sections with the same name and attri-
butes; the size of the resulting section is the
size of its componants. Produce an error message
if they have different sizes.

M (Maximum Length)
Overlap all sections with the same name and attri-
butes; the size of the resulting section is the
size of its largest component.

U (Unigque Names)
Only one section with the same name and attributes
is permitted.

Ae2«3. Allocation Attributes.

The two allocation attributes determina the order in ahich
sections are selected.

N (Now)
Selected sections with the "n" attribute will be
merged before all sections with the "p" attribute.
This is the default allocation attribute.

P (Postpone)
Selected sections with the "p"” attribute will be
merged after all sections with the "n" attribute.
When sections are selected via slink’s -3
command~line argument, any “postpone” sections
seleocted are placed after any "nouw" sactions
selected by the same sub-argument. Thus,

-s code data

selects first the sactions with name "code" and
attributes that include "n", then sections with
name "“code” and attribute "p", then sections with
name "data" ana attribute "n", and finally sec-
tions with name "datz" and attribute "p".

A-3 Zilog Cbject File Utilities

MUFOM FILE FCRMATY Appendix A MUFOM FILE FORMAT

A.3. SYMBOLS AND VARIABLES

MUFOM modules &ssocizte numerical values with constructs
called yariabiess which are represented as a letter in the
set 6=~ followed by a hexadecimal nuaber, the jindex. In
Zilog’s representation, variable indices are restricted to
16 bits. (Avoiding the letters A-F as variable identifiers
means that variables can always be distinguished from hexa-
decimal numbars.)

Values are assignad to variables with the MUFOM "AS"
(Assign) command.

A.3.1. Section Variables

Some of the varizbles in a MUFOM module are associated with
sections, and their index is the same as the corresponding
section number. These variables, and their meanings, are:

S Size of the corresponding section.

L Location of the corresponding section. The L-
variable is present only for absolute sections.

R "Relocation base”™ for the section. In absolute
sections this is initialized to the section’s
location; in relocatable sections it represents
the address at which the section will eventually
be loc&tede.

P "Program Counter™ for the section. In the load
data of the module, the P-variable represents the
next location at which code will pe loaded. Space
can be reserved within 3 section by @ssigning to
the P—=variable.

Ae3.2. Symbol Variables

Other variables in a MUFOM module are associated with sym-
bols. The value assigned to the variable is the value of
the corresponding assembly-language symbol.

The symbol variables are:

N N-variables are associated with Jeogcal symbols
(names). It is possible to have more than one N-
variable in a module with the same names this
occurs when two modules containing local symbols
with the same name are¢ linked together.

Zilog Cbject File Utilities A=4

MUFCM FILE FORMAT Appandix A MUFOM FILE FORMAT

I~-variables are associated with glgbhal Internal)
symbols. These are symbols defined within a2
module that can be referred to in other mocules
that are linked witn it.

>

X X-variables 2re associated with gxterpal refer-
ences to global symbols in otnar modules. X-
variables are never assignea values.

As implementec &t Zilog, the N, I, and X variables of
2ny object mocdule are allocatad contiguously starting
from NC, 10, ano XG. The variable indices do potr houw-
ever, necessarily correspond to the order of the vari-
zbles in the symbol table. It is only guaranteed that
there will be no gaps in ths numbaring.

A.3.3. Other Variables

Finally, there are tuo other kinds of variebles in MUFOM
modules:

G There is at most one G-variable in a2 MUFCM module’;
its value 1is the gpicy peipt or starting address
of the program.

W W-variables are "working registers”. W0 is used
as temporary storags for range-checking. Tha
other W-variables are used by the assembler to
hold the wvelues of forward refergngass that is,
symbols that are used befors they are definesd.

A.bh. LOCAL USAGE

Acbo1. Conments

There are two special local ussges for comments, Comment
levels C-3 are used for specific kinds of debugging and link
mao information. Comment levels 100(hex)-102 are wused for
separating the object file into regions containing different
kinc¢is of information.

Acbetele Intormation Comments

Information comments contain error messagess, source codes
and link map information. They allouw symbolic debuggers ancd
other programs (including gdympr MA@, and g@lisy) to display
more information than would otherwise bae present in the
object file.

A=-35 Zilog Object File Utilities

MUFCM FILE FORMAT dppendix A MUFOM FILE FCRMAT

0 Comment level J is used for error messzges.
1 Comment lavel 1 contzins comments of the following
forms:

sFILE Innnn Annnn Dnrnnnnnnnnnn filename(library)
Input file information. I, N, and D precede
the I-variable origin, N-variable origin, and
creation date respectively.

:SECT isecn osecn L=nnnnnnnn S=nnnnrnnn ifilersecname:atts

Link map information on input sections.

filename: line-number
Compiler filename and line number from .FILE
and LINE essembler statementse.

2 Comment level 2 contains assembler source lines.

3 Commont level 3 contains assembler listing format
information, in comments of the form:

filename: linenumber
Assombler source file and line number,

:PAGE
marks a2 new listing page.

Aebete2. Object File Regions

Three special comments divide the object file into regions,
as shown in Figure A~1. The regior before the first such
comment is the file header, containing the M8, AD, and 0T
commands.,

1C0 A comment of level 10C(Chex) introduces the section
teable, containing 3T, SA, ASL, and ASS commands
and the input file and link map comments,

101 A comment of level 101(hex) introduces the symbol
table, <containing NI, NX, NN, A3I, ASN, ASG, WX,
AT, LI, LXs, RI, and TY commands.

102 A comment of level 1C2(hex) introduces the load
data region, conteining ASW, S8, ASP, LD, LR, IR,
and RE commands and comments contsining error mes<
sages, assembler source, and so on,

Splitting object files into these regions makes the lirker
and other wutilities more efficient by marking parts of the
file that do not neeau to pe processed.

Zilog Cbject File Utilities A-$

MUFOM FILE FORMAT Appendix A MUFCM FILE FORMAT

| Module Haader |

—-—-- - - -~

| Symbol Table |
i |
| |
| Program Section }
l H
i Module End |

Figure A-1. Cbject Module Regions

Aeb.2. Expressions

The MUFOM standarc permits the use of expressions of great
generality in many places in the object files. what the
linker and other utilities will gggepet is-, in general, more
restricted; and what the assembler, linker, and other utili-
ties will emit is more restricted still.

In this section, codes are used to indicate the kinds of
expressions that are acceptable. Except whan 9only
hexnumbers are permitted, 2all functions are allowed. The
codes are: :

Hnn any hexnumber of at most nn bits.
R R-variables.
W W=varizblas.
X X=variables.

As a rule, other varizbles 2re not used in expressions, =all
utilities expand tham into equivalent sxpressions involving

A=7 lilog Cbject File Utilitias

MUFCM FILE FORMAT Appendix A MUFQOM FILE FCRMAT

R, W, 2nd X variables. W0D is used purely as a temporary
for limit checking; other W variables are useu by the assem-
blers for forward references.

Indices All variable indices and section numbers
are H16’s.

Addresses All addrassaes are limited to 32 bits (H3Z

RWX) .

Numbers Numbers up to 8C bits (H28J) are permitted
in assignments and LR commands.

SA Section Alignment: H32, Page Size: H3Z2.

co Comment level: H16.

AS(L,S) M32,.

AS(G,1,N) H8C RXe.

AS(R,P) H32 R.

ASW H80 RWX.

LR H80 RwX.

IR zglocation Base: H8C RWX, Number Of Bits:
RE H32.

wX H80 RWX.

Aebe3. Command Order

There are some local restrictions on the ordaring of MUFOM
commands. Observing thaese restrictions makes it possible to
avoid retaining information that will not be needed later.

A.4.3.1. Section Information
All <the information for a single section is grouped
together, with the ST command first, followed by the SA, ASL

and ASS commands in any order. The ASS command must be
present, and the section size must b9 & hexnumber.

lilog Cbject File Utilities A-8

MUFOM FILE FORMAT Aopandix A MUFOM FILE FORMAT

Acb.3.2. Variable Information

All +the information for a single variable is groupeda
together, with the Nv command first,

An NI, or NN command is always followed immediately by the
corresponding AT command (if any) ana ASI or ASN command.

An NX .command 1is @&lways followed immeciately by the
corrasponding AT and kX commanas, if any.

A-variables must be assigned to before they are referenced.

R-variables are assigned implicitly. No existing wutilities
jenerate ASR commands.

A.5. LIBRARY EXTENSIONS

The following commands have been 2added for meintaining
libraries. A library file consists of a library header, the
modules in the library, and a Jlibrary mape. The Jlibrary
beadgr consists of an LB command, an optional 3T command,
and an LE command. The library map is at the end of the
file, and consists of 2 series of LM commands followed by an
LE commnand. The library extension commands are always in
character form. Modules contained in a library may either
be in character form or binary form.

"," 1lib_name "."

L3 map_position
Library Begin: the first command in @& library.
The hexnumber gmap_pesitiop is the position in the
file of the library map, which consists of LM com-
mands followed by an LE command.

The LB command may be followad Dby a DT command
with the date the 1library was created or last
modified. This is followed by an LE, the MUFCM
modules <contained in the library, and the library
MmapPe.

LE ".”
Library End: marks the end of the 'library header

and the library map.

LM position "," size "," m_name ("," I_namel)x (","
"xl' (ll’" x-nem’)*) ll."

A=9 Zilog Chject File Utilities

MUFOM FILE FORMAT Appendix A MUFOM FILE FCRMAT

Library Module: indicates the position in the
library of 2 module, its sizas in bytes, its name,
the names of the symbols (I-variables) it defines,
and the names of the external symbols (X~
variablas) it references.

Aeb. EXAMPLE: Iilog MUFOM Module
Figure A=2 shows an actual character=-form MUFOM module pro-
duced by a lilog MUFOM Cross—-assemblar. Line numbers have

been 2dded in parentheses along the right margin for refer-
eNCe puUrposes.

2ilog Cbhbject File Utilities A-13

MUFCM FILE FORMAT Appendix A MUFOM FILE

M82800,061ink.0.
97119350522102255.

ADO&IOZIL.

€C00100,17=--~ Section Tabla =-=---,
STCO0,X,A,Cécodea

AS1L00,00.

ASSCC,31.

STC1,W,A,04data.

‘SLG1’310

ASS01,0C.

57102,8,W,CrA,06COMMON.

ASLO2,30.

AS$502,10.

€00101,16~==~ Symbol Table =<---,
NNC1,Cé8bc_store.

LSNC1,21.

NNC2,0Sbcshl.

ASNC2,28.

N100,03div.

A5100,00.

NI101,09dvd_store.

ASIC1133.

NNO3,04divl.

ASNG3I09.

NNC‘IC‘diVZ-

‘SNO‘I18-

NIO2,09mpy_store.

ASIOZISD.

ATIC2,00,00,10,02.

‘SGIOOO

€C00102,1A==== Progrem Sectionsg ==---,
$800.

ASPCO,CO.
LREBCS444D2100C03E1C87C813C812CB15CB814CD280CDA18BCC
ED421C3DC20900C1E8223300223000CY9E587E042223100¢51C9.
$801.

ASPO1,31.
LR0000000000CC000000C0000C.

$B02.

lSP02'3D.

CCFF,20B8S8S (uninitislized data) section.
ME.

Figure A=2. MUFCM Module
Lines (1) = (3) define the module header. The module
is standard across all Zilog MUFOM object modules.
MB = Module 3egin
o Defines the start of a MUFCM object module.

o Defines the target procassor type (optional).
o ODefines the object module’s name (optional).

A=11 lilog Cbject File Utilities

FCRMAT

1)

(2)

3

(4)

5)

(6)

7)

(8)

(9)
(10>
(1N
12)
13)
(14)
(15)
(16)
“7
18)
(19)
(20)
(21
(22)
(23>
(24)
(25)
(26)
2?7
28
(29)
(30)
31
(32)
33
(34)
(35>
(36)
37)
(38)
(39)
(40)
(41)
(42)

header

MUFOM FILE FORMAT Appendix A MUFOM FILE FORMAT

DT = Date
o Defines the object module’s creation time and date.

AD - Address Descriptor
a Defines the number of bits per Minimum Addressable
Unit (MAU).
o Defines the maximum size of the target processor’s
address space in MAUs (optional).
o Defines the order of the address’s MAUs within the
object zode.

Line (4) = MUFOM comment commands are wused in the Zilog
MUFOM implementation to delimit the different parts of the
object module. Line (4) delimits the start of the Section
Table. Commants are prefixed by the MUFCM (0 command.

Lines (5) = (13) are the section table. Zach section within
an object module will have a set of description commands in
this table. MUFQOM commands that are wused in the section
table region of the mocule are

ST = Section Type. For a given section, defines
o Section type attributes (optional)
o Section name (optional)

SA - Section Alijnment. For a given section, defines
o Section alignment (given in MAUs) (optional)
o Maximum section size (optional)

AS - Assignment
o Assigns values to section variables
S = section sizae
L = location of section’s lower boundary (optional)

Line (14) - The start of the symbol table.

Lines (15) = (30) - The symbol table contains declarations
for all of the global, external, and local symbols within
the object module. Assignmaeant of absolute values or expres-
sions to symbols, definition of symbol type, and definition
of symbol attributes zre kept here. The module’s entry
point, if any, is also specified here. MUFOM commands used
in the symbol table raegion of the object file are

NI = Name Internal (Global) Symbol
o Declares an external symbol, a table entry number,
2 name length count, and gives its name.

NX = Name External Symbol
o OQeclares an external symbol, a table entry number,
& name length count, and gives its nama.

NN - Name Local Symbol
o Declares a local symbol, a table entry number, a

Iilog Chject File Utilities A=12

MUFOM FILE FORMAY Appendix A MUFOM FILE FCRMAT

name length count, and gives its name.

AT = Symbol Attribute. U[efines for a given symbol

Type table entry

Lexical level (optional)

Size (used for common symbols) (optional)

Alignment (used for processors where variables must
be aligned on spacific addresses) (optional)

0 000

AS - Assignment.
9 Assigns a value or expression to 2 symbol.

IY = Type. Defines a typa table entry.

WX = Weak External.
o Defines a given symbol as a weak extaernalsx.
o Provides a default value or expression to be
assigned if the symbol is not resolved.

Line (31) The MUFOM comment used to delimit the start of the
program portion of the object module.

Lines (32) = (41) The code, or load datar portion of the
object module is kept in this region. The heading "Program
Sections” refers to the MUFCM sections which are tha logical
divisions of the program. MUFOM commands used within this
region to define the code are

SB - Section Begin
o Declares that the following code belongs to the
specified section.

L0 - Load.
o Contains object code.

LR = Load Relocate.
o Contains code and relocation expressions,

IR - Initialize Relocation Base
o Assigns a value to 2 relocation letter.

RE = Replicate.
o Repeat the immediately following LK expression a
specified number of times.

AS - Assignment
o Assigns a value or an expression to 2 section’s P
(load pointer) variable.

* A weazk extarnal wili be resolved with a global
definition if one is present’/ otheruise it receives the
default value specified in the WX command.

A=13 Zilog Object File Utilities

MUFOM FILE FORMAT . MRppenaix A MUFOM FILZz FORMAT

Line (42) The end of 2 MUFOM object Module is delimited by
the ME Command.

Zilog Object File Utilities A=14

Appendix 8
TEKTRONIX HEX FORMAT

B.1o RECORD FORMAT

kecord Format

field name: | SR ADDK RL €S1 *««xDATA*xxax (S2 =ND |
field size: i1 ‘e 2 2 0=-255 2 1 |

Figure B8-1., Tektronix Hex Record Format

SR-=5tart Record Field (frame 0)
The ASCII slash character (/) is wused to signal the
start of a record.

ADDR--Locad Address Field (frames 1 to &)
The starting location in memory to/from which dats will
be loaded/szved.

RL==-Record Length Field (frames 5 and 6)
Tha number of data bytes in the record is represented
by two ASCII hexadecimal digits.

CS1=-=-First Checksum Field (frames 7 and 8)
This checksum is the 8-bit sum of the six hexadecimal
digits that make up the load address &and record length.

DATA--Data Field (frames 9 to 9 + (RL » 2) =-1)
€Each pair of frames in the data field represents a data
byte, where each frame contains the ASCII representa-
tion of a 4=-bit value.

CS2==Second Chacksum Fisld (frames (9 + (RL * 2)) and (9 ¢+
(RL = 2)) + 1)
This checksum is the sum of the 4-bit hexadecimal
values of the digits in the data fielda, modulo 256.

3-1 Zilog Object File Utilitises

TEKTRONIX HZIX FORMAT Appendix 3 TEKTRONIX HEX FORMAT

END~=End of Recorda Field (frame (9 + (RL * 2)) + 2)
The ASCII code for a carriage return is used to signal
the end of a record.

8.2. END-OF-FILE RECORD FORMAT

The end~of-file record has a record length of 0, the address
field containing the oentry point address, and no data or
second checksume.

Example B~=1: /4FO0C013<CR>

Be3e ABORT RECORD FORMAT

The download operation can be aborted by the host system
sending an abort record, consisting of two slashes followed
by 2n error message and carriage return.

Example B8~2: //PROGRAM ABORTED <CR>

B.b. HANDSHAKING FOR DOWNLOAD/UPLOAD

mload and msend use the Tektronix handshaking protocol, by
default, for each format. Since there is no handshaking
usaed in conjunction with the Intel Hex format, the -h option
must be used to turn it off whenever the ~-i option is speci-
fied. The handshaking protocol consists of three signals:

o "0" No error o uyr S8ad record; retransmit o rngn
Abort

These signals are sent by the target to the host when down-
loading and vice versa when uploading.

It is recommended that handshaking always be usad to prevent
erroneous (cata trgnsmission.

~n

Zilog Cbjesct File Utilities 3~

Appencdix
INTEL HEX FORMAT

Ce1. RECORD FORMAT

Record Format

field name: | SR RL ADDR RT **x*xDATAx**x (S |
field size: | 1 2 4 2 0-255 3 |

Figure C-1., 1Intel Hex Record Format

SR==Start Record Field (frame 0)
The ASCII character colon (:) is wused to signal the
start of & record.

RL--Record Length Field (frames 1 and 2)
The number of data bytes in the record is representea
by two ASCII hexadecimal digits.

ADDR--Load Address Field (frames 3 to 6)
Four ASCII hexadecimal digits representing zeros or the
address to/from which data will be loaded/saved.

RT==Record Type Field (frames 7 and 8)
The ASCII hexadecimal digits in this field specify one
of the record types shown in Table C-1:

Table C-1. 1Intel Hex Record Types

Record
Type Description
00 Dzta Record
01 gnd-of-File Kecord
02 Extended Address Record
03 Start Address Racord (entry point)

The address specified by the Extanded Address Record 1is
left-shifted four bits (representing the four most signifi-
cant bits in a 20-bit zddress), and added to all subsequent

c-1 lilog Cbject File Utilities

INTEL HEX FCRMAT Appenauix C INTEL HEX FORMAT

type 00 (Data Record) addresses.

DATA~-Data Field
gach pair of frames in the data field represents a data
byte, where each frame contains the ASCII representa-
tion of 2 4=bit velue.

CS==Checksum Field
This field contains the ASCII representation of the
two’s complement of the sum of the data bytes (each
pair of data field frames converted to one binary
byte), modulo 256.

iilog Cbject File Utilities c=-2

Appendix 2
ERROR MESSAGES

Defe INTRODUCTION

tach utility describes errors with clearly stated error mes-
$2geSe. There are three types of errors that can occur:
process orrors, input format errors, and internzl errors,
The action taken due to an error depends on the severity of
the error and the utility being executed. Most errors do
not interrupt object module processing.

Detele Process Errors

Process errors occur cdue to either incorrect command ucage,
or otherwise=-correct command usage on inappropriate data
(for example, attempting to load a relocatable file)d.

Process errors can occur

o While attempting to interpret the command line used to
invoke the utility.

o During the procsssing of object modules.

D.2. COMMON ERRORS

The following errors are common to most or all of the utili-
ties:

De2.1« Command Line Errors

The common commznd line errors are

=<letter> argument filename missing

=<lettor> argument number missing

garbage after numeric argument: ~<letter>

unrecognized command-line argument =-<letter>

=-<letter> argument inconsistent with previous arguments
extra output filerame ignored

-1 liloz Cbject File Utilities

ZRROR MESSAGES Appenraix 3 ERRCR MESSAGES

De2<2. Other Errors

OPEN error on file <file name>
can’t handle libraries
division by zero

no free storage left

value out of range

An OPEN error means either that a specified input file does
not exist or is protecteu agzinst reading, or that a speci-
fied output file is protected against writing.

"No free storage ieft" means that there are too many sym-
bols, sections, or filas in the input.

The "division by zero" and "value out of range" errors
represent errors in assembly-language code which could not
be detected by the assembler because they involved relocat-
able or external symbols.

De3s COMMAND=-SPECIFIC ERRORS
B.3.1« mlib Errors
The errors unique to glibh are

unknown option ‘<letter>”

Can not road ‘<filename>”’

Must have exactly one of “drqrr,t,x”

No archive file specified

Only one option allowed in “dsqrr,t,x”
archive file ‘<filename>’ not found
missing argument for “f° options
aultiple “<letter>’ options

3uildiM = ‘<filsname>’ Not archive format
SuildlM - Out of memory

3uildlM = no matching LE

CreatMlib - Can not create “<filename>”
Out of memory

WritaAll - Can not create “<filename>’
WriteAll - Can not open ‘<filenamad>’
can’t handle libraries

q_mlib = Cut of memory

x_mlib = Can not create ‘<filenamed>”’

lilog CObject File Utilities D=2

ZRROR MESSAGES Appendix D ERRCR MESSAGES

De3s2. mlink Errors
The errors unigus to glipk cre

- without attribute i1n select string <argd>
-“m not implemented in relocatable link
-t argument adaress missing
-<symbol> =value with no symbol
-<symbol> langth with no symbol
-t cannot relocate absolute section
-t with no sections selected
+symbol: symbol missing
=value: value missing
E section attribute: sections must have same size
U section attribute: sections must be unique
attempting to merge
absolute section <section descriptor>
with reloc. section <section descriptor>
entry point <symbol> undefined
file <filename> has different address order
illegal character in select string <arg>
multiply-defined global symbol <symbol>
nested =f files not allouwed
output file <filename> is also an input file
symbol <symbol> not absolute
undefined axternal <symbol>

De3.3. mlink Warnings

The only utility that generates uwarnings, as opposed to
errors, is mligke warnings represent unusual conditions
thet may, nevertheless, be what you intended to produce.
The =® option to pliok suppresses these warring messagas.

address space overflow at <address>
attempting to load into 35S section at <address>
no section information for section <number>
no section information in input file <filenzme>
null select: <arg>
null unselect: <arg>
section overlap
<sg9ction descriptor>
<section descriptor>
symbol <symbol> redefined by =g argument

The "section overlap"” error, in particular, can occur when
making files with separate address spaces for instruction
and data. The "no section information” errors occur when
linking files generated as output from glgad without the <-s
option.

6-3 lilog Cbject Filaea Utilitias

ERROR MESSAGES dppencix O ERROR MESSAGES

De3ebe mlist Errors

There ara no arrors actually unigue to plists but oerrors
included as 1level=-C commants by the &ssembler are included
in the listing.

De3.5« mload Errors
Tha errors unique to 3load are

section <name> is relocatzble

De3.6. alorder Errors
The errors unique to glorder are

<symbol> multiply defined in <filename> and <filename>
cannot open <filename>

cycls in data:

extern overflouw

module overflow

out of memory

symbol space overflow

text spaca overflow

De3.7. protocol Errors
The errors unique to proiosel are

t00 many files

write record error

write first ‘G’ error

cannot open <filename>
conflict -d & -u options
duplicate -<letter> options
invalid =r option = <string>
invalid -t option - <string>
no file specified

unknown handshaking code <number> from Remote
unrecognized option <string>

De.é. INPUT FILE FORMAT ERRORS

Input File Format Errors are primarily associated with the
parsing and execution of MUFOM commands (as opposed to util-
ity program command lines) within a MUFOM object file.
These errors are displayed in ons of two formats:

lilog Object File Utilities D=4

ZRRCR MESSAGES Appendix D ERROR MESSAGES

input file format error: MCEZ at line 9 of foo.0
or

input file format error: MCE at line 9 of foo.0
MCE: missing command=-enrd period
byte Oxa of the MUFOM command:
NNC1/,xxxs?204f001.

Tha second, more descriptive format is obtainable via thke =~
vb option in nmlipk. If the input file is in binary form,
the line number is replaced by an offset in characters from
the beginning of the file.

It is generally impossible to get format errors unless =3
MUFCM file has bean garbled, or genersatad incorrectly. This
usually is caused by a bug in one of the wutilities, and
shoulcd be called to the attention of your lilog representa-
tive.

2-5 2ilog Object File Utilities

ERRCR MESSAGES Appendix D ERROR MESSAGES

Table 0-1. Input File Format Errors.

2HD: 2 hex digits required

ADR: address > 32 bits

ARG: not enough arguments for function
ASG: multiple assignments to G-variables (entry points)
ASl: variable index of ASI does not match previous NI
ASL: ASL command before or without ST

ASS: ASS command before or without ST

ASX: assignment to X=-variable is illagal
CMD: command expected/undefined commnand
€0F: unexpectaed end-of-file in <filename>
EXP: expressions not permitted in dounload
EXU: expression stack underflow

IAF: invalid archive format

IAH: invalid archive header

ILF: invalid library format

LI8: library command inside module

MAU: can’t handle MAU length other than 8 bits
MCE: missing command-end period

MCP: missing comma or period

MCS: missing command start

MEX: missing expression

MMB: M3 command missing

MRO: missing relocation offset

MRP: missing)’

MSA: SA commend with no expressions

M3T: no ST for section <number>

N1é6: number > 16 bits

N32: number > 32 bits

NEQ: number > 80 bits

NAN: not a number

NNR: not a number or R-variable

STL: string > 127 charactars long

TYU: unexpected TY-component

TYV: N=veriable or T-number expected

UAT: AT command does not apply to previous varizable
UEX: unknowun/invalid item in expression
UFN: unknown operator/function

ULD: invalid load item

USA: SA command before or without ST

UXP: unexpected referance to P-variable
VAR: undefined variable

XEX: too many expressions

XMB: M3 command not at beginning of file
XRP: unexpected °)°

D.S5. INTERNAL ERRORS

Internal errors generally indicate a bug in one of the util-
ities’ they represent conditions that should not occur, and

lilog Cbject File Utilities D-¢

ZRRCR MESSAGES Appendgix D ERROR MESSAGES

should be called to the attention of your Zilog representa-
tive.

READ error on file <filenamed>
<upload/dounload> read error
write error
core dumpea

Thre "core dumped” error is a host operating system error
which usually means that something drastic is wrong with the
program, but it can also occur if a program runs out of free
storage and fails to detect the fact.

-7 Zilog Object File Utilitisas

GLOSSARY

absolute code: Code whose position within memory has baeen
defined and whose 2ddress referencas have been assigned
velues relative to the code’s position.

absolute loader: A process which can load one or more sec-
tions of absolute <code only at the locations specified by
the sections,

checksums A semi-rancdom function of 2 file’s contents. If a
file 1is copied and the checksum of the copy is different
from that of the originel, there has been an error in copy-
ing.

code: A& program or segment thereof uhich has been encodaed in
a language useable by a processor. Often used loosely as a
synonym for "“load data". See Object Code, Source Code.

command: Control information for a3 linker or lo2der. It is
to be distinguished from Load Data,

external reference: The usage, within 2 module, of 8 syabol
which 1is defined outsida that module. An imported global
definition,

file:s A MUFOM object file is a structure dafined by the host
opesrating system containing one or more MUFOM object
mocules. Files containing more than one module are con-
sidered to be libraries.

olobal definition: The definition within a module, of a sym-
bol which may be used outside that module.

identifier: A string of characters uhich uniqualy represents
a defined entity such as a symbol, option or command.

library: A sot of two or more object modules.

linker: A program that combines object modules into 2 single
object module satisfying links between the object modules.

load data: Data (including machine instructions) <to be
loaded into a procassor’s memory.

load pointer: A pointer for » section which is dynamically
mzintained by the loader. It indicatas where the next item
of the code is to be loaded. It is initialized to a start-
ing load address.

6-1 lilog Object File Utilities

5LOSSARY GLOSSARY SLGSSARY

local symbol: A symbol which is accessible only within a
single module.

machine code: Code that is directly wunderstandable by a
processor’s hardware. Since digital processors are binary in
nature, machine code consists of binsry numbers. See Object
Code.

module: A program or portion thereof, usually in the form of
a separate file. See Object Module, Source Modulas.

object code: Code (Load Data) contained in an Object Module.

object format: The language in which Object Modules are
specified.

object module: A MUFOM object module is 2 set of sections of
absolute or relocatsble machina code, together with ancil-
lary commands. 39e Module, Source Module.

prelink: A link session that precedes one or morse other link
sessions over the same object code.

program: An algorithm and associated data. A series of
operations to be performed over some given data.

process: A program executed by a processor.

relocatable code: Code that consists of machine <code ang
relocation commands. Relocation commands allouw address
references within the machine code to be reevaluated if the
machine code is repositionad in memory. Relocatable code is
to kbe distinguished from absolute code.

section: A part of 2a oprogram with ancillary information
(commands) which becomes a segmant when loaded.

segment: A contiguous region in memory with arbitrary boun-
garies which may contain machine code.

source code: A program in some human-readable programming
language. Source code is translated into Cbject Code by a
compiler or assaembler.

source module: A Module containing Source Code.

symbol: A label or name that represents & numeric value.

symbol resolution: The process of raplacing an external
reference with its globally definad value.

Zilog Cbject File Utilities G=2

N 2iLa5

Z8° Microcontroller
Technical Description

Zilog 28° Software

Zilog General
Information

N 2iLa5

General Terms and Conditions of Sale

ORDERING PRODUCTS

Orders placed for Zilog components should include the component part number as shown in the example below.
The part number consists of a “Z” prefix, followed by a five-digit part number, two-digit numerical speed designator,
alpha package designator, alpha operating temperature range designator, and an environmental flow designator

(e.g., Z8032008VSC or Z0840006VEC).

ORDERING CODES
PACKAGE

IC PACKAGE CODES

A = VQFP (Very Small QFP)

C = Ceramic Side Brazed

D = Cerdip

E = Ceramic Window

F = Plastic Quad Flat Pack

G = Ceramic PGA (Pin Grid Array)

H = SSOP (Slim Small Outline Package)
| = PCB Chip Carrier

K = Cerdip Window

L = Ceramic LCC (Leadless Chip Carrier)
P = Plastic DIP

S = SOIC (Small Outline Integrated Circuit)

V = Plastic Leaded Chip Carrier

SUPPORT TOOL PACKAGE CODES

T = Emulation Module
Z = Support Tools

ENVIRONMENTAL

PREFERRED
C = Plastic Standard
E = Hermetic Standard

LONGER LEAD TIME
A = Hermetic Stressed
B = 883 Class B Military
D = Plastic Stressed

TEMPERATURE

PREFERRED
Standard: S = 0°C to +70°C

LONGER LEAD TIME

Extended: E =-40°C to +100°C

(~40°C to +105°C for Consumer Products)
Military: M =-55°C to +125°C

EXAMPLE

Z84C0010PEC is a CMOS 8400, 10 MHz, Plastic,
—40°C to +100°C, Plastic Standard Flow.

Z 84C00 10 P E C XXXX

L Special Lot Number
(Optional)
Environmental Flow

Temperature
Package

Speed

Product Number
Zilog Prefix

NZSiLAS general Terms and Conditions of Sale

1. Terms: Net 30 days

2. Order/Shipment Minimums:
A. Commercial Standard Product
- $500 per order
- $250 per line item and/or shipment release
- 100 piece minimum quantity/line item per release in multiples of tube, tray, or reel count
B. Custom ROM Products
- 10,000 unit order minimum for 18-, 28-, or 40-pin devices
- One-half of the units to be scheduled within ninety (90) days
- $3,000 mask charge for each new ROM

C. Non-Standard Product

- Windowed Products

- Systems 100 piece minimum waived

- Development Boards $250 line item minimum still applies
- Emulators

- Software

D. Tape and Reel

- 44-lead PLCC 500 units per reel minimum
- 68-lead PLCC 250 units per reel minimum

E. Trays

44-lead QFP = 96 pieces per tray.
80-lead QFP = 50 pieces per tray.
100-lead QFP = 50 pieces per tray.
48-lead VQFP = 60 pieces per tray.
100-lead VQFP = 90 pieces per tray.

F. Technical Publications

- $100 per order or shipment release

T-2

@ 2ILCOS general Terms and Conditions of Sale

3. Cancellation, Reschedule, and Failure to Release

If buyer cancels shipment of any purchase order or a portion of any purchase order or reschedules without prior
agreement by Zilog, any purchase order or a portion of any purchase order, the following charges may, at Zilog's
option, be assessed and invoiced by Zilog:

*Notice Received Prior to
Product Type Acknowledgment Shipping Date Cancellation Reschedule Charges

Commercial 0 - 30 Days No cancellations allowed.
100 per cent Invoice charges apply.

Military 0 - 90 Days No cancellations allowed.
100 per cent invoice charges apply.

ROM* 0 - 90 Days No cancellations allowed.
100 per cent Invoice charges apply.

Remote Control End Products 0 - 90 Days No cancellations allowed.
100 per cent Invoice charges apply.

Note:
* Notice shall be calculated from the customer request date.

ROM Code Variations

Because ROM Coded Products are custom products made specifically for Buyer, Buyer agrees that Zilog may ship
a quantity of such ROM Coded Products which is five percent (6%) more or less than the quantity ordered and
that such variation will be accepted as delivery in full and paid for by Buyer.

Zilog price quotations and acknowledgments are dependent upon quality and schedule. If the Buyer does not
release the full quantity quoted and acknowledged within the time frame stated on the quotation, Seller reserves
the right to either invoice the full quantity quoted and acknowledged within the time frame stated on the quotation
or to invoice for a higher price in accord with Seller's price schedule for the lower quantity actually released by
Buyer.

4. Product Availability

Product availability is a function of a constantly changing market and manufacturing conditions, therefore Zilog
cannot guarantee availability. Please contact your local Zilog sales office or sales representative for current
product availability information.

Information for products not listed in this selection guide can be obtained from your local Zilog sales office, or sales
representative. The point of delivery will be determined by the Zilog sales order acknowledgment.

5. Cost Adders

Special processing of both commercial and military products to the customer’s specifications (non-Zilog standard)
is available in the following circumstances on most Zilog products: top mark, packing instructions, shipping
instructions, one lot date code per shipment, stepping qualification, and certificate of conformance (C of C). Read
Only Memory (ROM) mask charges are required for ROM coded products. For information regarding charges and
possible delays which special processing may have on delivery dates, contact your local Zilog sales office or sales
representative. All prices quoted apply to orders placed worldwide, excluding VAT, tax, freight, duties, and
exchange rate variations.

N 2iLI5 general Terms and Conditions of Sale

Special Services and Prices

Military Grade Components - The following cost adders should be used if standard military specifications are not
adequate for a given requirement:

Condition Charge
Generic Data
1. Group “A” - Sample Electrical Test, per generic part type $100.00
2. Group “B” - Assembly Construction Test, per generic part type $100.00
3. Group “C” - 12 week results on JAN product/Die Life Test -

52 week results on non-JAN product $100.00
4. Group “D” - 26 week results on JAN product/Package Life Test -

52 week results on non-JAN product $100.00
5. Generic Data Pack - Includes Groups A, B, C, D data $300.00
Customer Specific Data
1. Group “A” - done on customer parts $100.00
2. Group “B” - done on customer parts $600.00

3. Group “C” - done on customer parts (per device type).
Delivery increased eight weeks. $1200.00

4. Group “D” - done on customer production lot, excludes
destructive test part cost of 50 parts at customer’s price.
Delivery increased three weeks. $2500.00

Additional Requirements

1. Particle Noise Detection (PIND) testing $250.00 minimum
Minimum charge per line item, per part, per order. or 25.00 per unit
Lot acceptance will conform to 883 Rev. C method 2020.5
allowing up to 25% lot defective maximum, pass on 1% PDA.

2. X-ray screening per Mil Std 883C $500.00 minimum
or 5.00 per unit

3. Lead finish other than solder dipped Contact Factory

4. Special top marking requirements $250.00 minimum
or 2.50 per unit

T-4

N2iLI5 General Terms and Conditions of Sale

Special Services and Prices

The final character in the DESC drawing number (“X”) refers to the type of lead finish the parts must have. An
“X” indicates that any lead finish (Solder = “A,” Tin Plate = “B,” Gold Plate = “C") is acceptable. It is the standard policy
of Zilog to only offer the “A” lead finish which is solder dipped (ex. 5962-8551802QA).

Notes: In general, if special processing is required and is not listed above, it is not available. However, call
your local Zilog sales office to discuss requirements as necessary.

Condition Charge
Initial customer qualification of products in place of Zilog Customer pays for
qualification report. qualification sample

Customer Change Notification

1. Notification to customer of product tooling revision 0.10 per unit
2. Notification to customer of process change 0.10 per unit
3. Customer approval of process tooling revision 0.30 per unit
4, Customer approval of process change 0.20 per unit

Special customer top mark & special customer logo

(case by case basis for some requests) 0.10 per unit
Special customer burn-in in place of Zilog standard 0.50 per unit
Special customer final test 0.50 per unit
Final test data recording 1.00 per unit
Test data recording before and after burn-in 2.00 per unit
Special shipping containers Cost plus 15%
Special shipping container marking in place of Zilog standard 0.05 per unit
Special safety stock in place of Zilog standard 0.20 per unit m
Special shipping routine to point-of-title transfer in place of Zilog standard 0.10 per unit
Date code requirement in place of Zilog standard 0.05 per unit
Certificate of Origin with shipment 20.00 per shipper
Certificate of Conformance 5.00 per shipper

T-5

N2iLAI5 general Terms and Conditions of Sale

Special Services and Prices

Condition Charge
Tape and Reel (where available)
- 44-lead PLCC 500 units per reel minimum 0.10 per unit
- 68-lead PLCC 250 units per reel minimum 0.20 per unit
Special tube stoppers - rubber plugs 0.05 per unit

Special 100% full functional final test at hot
temperature before burn-in 0.05 per unit

Special die orientation - die bonded upside down and
rotated 90 degrees from JEDEC standards 0.10 per unit

Special back mark instruction 0.10 per unit

Special shipping box - parts to be shipped in a box lined

with conductive material or static shielding bags 0.05 per unit

“Dry Pack” of PLCCs in place of normal 0.30 per unit

Special tube orientation indicator mark 0.05 per unit

Parts requiring retest 10.00 per military unit,
0.30 per commercial unit

Programming Z8/OTP 500.00 minimum per order

Failure Analysis 200.00-600.00 for military,

depending on test requirements

100.00-400.00 for commercial,
depending on test requirements

Single date code per shipment/line item 500.00 minimum or 5.00 per unit

NS2ILALS general Terms and Conditions of Sale

Shipping Requirements for Plastic Packaging

Trays:

A 100 VQFP: 90ftray 450/bag
48 VQFP: 60ftray 600/bag
64 VQFP: 160ftray 800/bag

F 100 QFP: 66/tray 660/bag
132 QFP: 36/tray 360/bag
144 QFP: 24/tray 240/bag
80 QFP: 66/tray 660/bag
44 QFP: 96/tray 960/bag

H 20 SSOP: 68ftray

| 20 PCB Chip Carrier (C3) (not shipping yet): 40/rail
28 PCB Chip Carrier (C3) (notshipping yet): 40/rail
44 PCB Chip Carrier (C3) (Not shipping yet): 30/rail

P 18 Plastic DIP: 20 units/rail
20 PlasticDIP: 20 units/rail
28 PlasticDIP: 15 units/rail
40 PlasticDIP: 10 units/rail
48 Plastic DIP: 10 units/rail
52 PlasticDIP: 10 units/rail
64 PlasticDIP: 10 units/rail

S 18 SOIC 40 units/rail 1000/bag
20 SoOlC: 38 units/rail 950/bag
28 SOIC: 27 units/rail 1080/bag

\ 44 PLCC: 25 units/rail 500/bag
68 PLCC: 20 units/rail 400/bag
84 PLCC: 15 units/rail 225/bag

Tape and Reel:

S 18 SOIC: 2,000/reel
20 SOIC: 2,000/reel

v 44 PLCC: 500/reel
68 PLCC: 250/reel
84 PLCC: 250/reel

T-7

ZILOG DOMESTIC SALES OFFICES
AND TECHNICAL CENTERS

CALIFORNIA

AGOUTE .o
Campbell ..
Irving ..o .
San Diego

COLORADO
BOUIAENcveieiie e 303-494-2905

FLORIDA
Clearwatercooveeeeiiiieecee e 813-725-8400

GEORGIA
DUIUth . 404-931-4022

ILLINOIS
Schaumburg ... 708-517-8080

MINNESOTA
MInNeapoliSc.eoeevieieeece e 612-944-0737

NEW HAMPSHIRE
Nashua ... 603-888-8590

OHIO
INAEPENENCEc.coveieeiieicrreree e 216-447-1480

OREGON
Portland ... 503-274-6250

PENNSYLVANIA
HOrshamcccoovieviieiee et 215-784-0805

TEXAS
AUSEIN o 512-343-8976
Dallas ..o 214-987-9987

© 1995 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means without
the prior written consent of Zilog, Inc. The information in this
documentis subjecttochange without notice. Devices sold by Zilog,
Inc. are covered by warranty and patent indemnification provisions
appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog,
Inc. makes no warranty, express, statutory, implied or by descrip-
tion, regarding the information set forth herein or regarding the
freedom of the described devices from intellectual property infringe-
ment. Zilog, Inc. makes no warranty of merchantability or fitness for
any purpose. Zilog, Inc. shall not be responsible for any errors that
may appear in this document. Zilog, Inc. makes no commitment to
update or keep current the information contained in this document.

INTERNATIONAL SALES OFFICES

CANADA

TOTONEO ..t e e 905-850-2377

CHINA

Shenzhenccocoeeiiiiiiiieeee 86-755-2220869
86-755-2220873

Shanghaic.cocevviieiinn, 86-21-415-0691
86-21-415-8158

Rm. 5204

GERMANY

MUNICH oo 49-8967-2045

SOMMErda......ccccovvviviiiiiiiiiieie e 49-3634-23906

JAPAN

TOKYO ..ottt e 81-3-5272-0230

HONG KONG

KOWIOON ..ot 85-2-2723-8979

KOREA

SEOU ..., 82-2-577-3272

SINGAPORE

SINGAPOTE ...ccvviii ettt 65-2357155

TAIWAN

L= o = 886-2-741-3125

UNITED KINGDOM

Maidenheadcccooceeviiiiiiiienie e 44-628-392-00

Zilog's products are not authorized for use as critical componentsin
life support devices or systems unless a specific written agreement
pertaining to such intended use is executed between the customer
and Zilog prior to use. Life support devices or systems are those
which are intended for surgical implantation into the body, or which
sustains life whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000

Telex 910-338-7621

FAX 408 370-8056

Internet: http://www.zilog.com/zilog

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S., CANADIAN & PUERTO RICAN
REPRESENTATIVES

ALABAMA

Huntsville
Alabama Bits, INC.......cccoeeevvinenineneninn (205) 534-4020

ARIZONA

Scottsdale
Thom Luke Sales, InC.......cccoovvviiineninns (602) 451-5400

CALIFORNIA
Irvine
Infinity SalEScco e (714) 833-0300
Santa Clara
Phase |l Technical Salescccccoeneeeee (408) 980-0414
San Diego
AQABIM oo (619) 729-9216

COLORADO

Englewood
Thorson Rocky Mountainccovecevveneee (303) 773-6300

CONNECTICUT

Wallingford
Advanced Technical Sales (508) 664-0888

FLORIDA

Altamonte Springs
Semtronic Associates, InC.ccecvennens (407) 831-8233

Clearwater
Semtronic Associates, Inc.c.cc..... (813) 461-4675

Fort Lauderdale
Semtronic Associates, Inc.c.cccceeeenne (305) 731-2484

GEORGIA

Norcross
BITS o (404) 564-5599

ILLINOIS

Hoffman Estates
Victory Sales, INC. ...covvvevrvvereereereee e (708) 490-0300

IOWA

Cedar Rapids
Advanced Technical Sales (319) 393-8280

KANSAS

Olathe
Advanced Technical Salesccccueu. (913) 782-8702

MARYLAND

Pasadena)
Electronic Engineering & Sales............... (410) 255-9686

MASSACHUSETTS

North Reading
Advanced Technical Sales (508) 664-0888

MICHIGAN

Novi
Rathsburg Associates, InC..........c.ccceeeene. (810) 615-4000

MINNESOTA

Minneapolis
Professional Sales for Industry (612) 944-8545

MISSOURI

Bridgeton
Advanced Technical Salesc.c..... (314) 291-5003

NORTH CAROLINA
Huntsville
BITS oo (205) 881-2900
Raleigh
BITS oo st (919) 676-1880

NEW JERSEY

Cherry Hill
THEK oo e (609) 667-0200

NEW MEXICO

Albuquerque
Quatra & AsSOCIatescecerecvinnninens (505) 296-6781

NEW YORK
Fairport
L-Mar Associates, InC.c.coceoveviniinencene (716) 425-9100

OHIO

Independence
Rathsburg Associates, Inc.c.cc.cccoc.. (216) 447-8825

Z-2

SALES REPRESENTATIVES AND DISTRIBUTORS

OKLAHOMA

Tulsa
Nova Marketing, INC.ccccooveeievnreeieene (918) 660-5105

OREGON

Portland
Phase Il Technical Sales.......................... (5083) 643-6455

TEXAS
Austin
Nova Marketing, INC.cccceevveriiicninnnne (512) 343-2321
Dallas
Nova Marketing, InC.ccccovvvvinicinces (214) 265-4630
Houston
Nova Marketing, InC.cc.ooeiiiiinicne (713) 240-6082

UTAH

Salt Lake City
Thorson Rocky Mountaincccoceoeenne (801) 264-9665

WASHINGTON

Kirkland
Phase |l Technical Salesc...cceeenee. (206) 821-8313

WISCONSIN
Brookfield
Victory Sales, INC. ..coovovveeviviiiieicee (414) 789-5770

CANADA
British Columbia
J-Squared Technologies, Inc. (604) 473-4666
Ontario
J-Squared Technologies, Inc. (905) 672-2030
Ottawa
J-Squared Technologies, Inc. (613) 592-9540
Quebec
J-Squared Technologies, Inc. (514) 694-8330

PUERTO RICO

Rio Piedras
Semtronic Associates, INC.cccceenee. (809) 766-0700

Z-3

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

NATIONWIDE
Newark EIectronicscccceeieevieennns 1-800-367-3573
Zeus Electronicsccocevvveeveveiinin e 1-800-524-4735
ALABAMA
Birmingham
Newark Electronicsc.ccccevenevercnene (205) 979-7003
Huntsville
Anthem Electronics ... 205) 890-0302
Arrow Electronics §205$ 837-6955
Newark Electronics ... 205) 837-9091
Mobile
Newark Electronicsccccecveeieirennn. (205) 471-6500
ARKANSAS
Little Rock
Newark Electronicsc.cccccvvvercicennenne (501) 225-8130
ARIZONA
Phoenix
Anthem Electronicscccoceveiiiceeee. §602§ 966-6600
Arrow Electronics 602) 431-0030
Newark Electronicsccoovveeiieninnnne 602) 864-9905
Tempe
Anthem Electronicsccceeevevninne (602) 966-6600
Arrow Electronics %602; 431-0030
Newark Electronics 602) 966-6340
CALIFORNIA
Arcadia
Newark Electronicsccccceveevenciencne (818) 445-1420
Calabasas
Arrow EIectronicsc.coveeennencenneene (818) 880-9686
Chatsworth
Anthem Electronicscoccvvvceeniiinene. (818) 775-1333
Chula Vista
Newark Electronicsccceovveerrieninne (619) 691-0141
Fremont
Arrow Electronicsccocovevvvivniinininnnn (510) 490-9477
Garden Grove
Newark Electronicsccocvvvecenennenn (714) 893-4909
Hayward
Arrow EleCtronicscevvevvreervnnienrenens (510) 487-8416
Irvine
Anthem Electronics . §714§ 768-4444
Arrow Electronics . (714) 587-0404
Zeus Electronicsccceeeevveeveciiiciens 714) 581-4622

Palo Alto

Newark Electronicsccccocevvverrinennnee (415) 812-6300

Riverside

Newark Electronicsccccccceeevieeviecneen. (909) 784-1101

Sacramento

Anthem Electronicsccceeveveviiennns 5916; 624-9744

Newark Electronicscccccvvvevvieniennn 916) 565-1760

San Diego

Anthem Electronics ... 619§ 453-9005

Arrow Electronics (619) 565-4800

Newark Electronics ... 619) 453-8211

San Jose

Anthem Electronicscccoceveieennnann. %408% 453-1200

Arrow Electronics 408) 441-9700

Zeus Electronics 408) 629-4789

Santa Clara

Newark EIectronicscccoevvereevcnennne (408) 988-7300

Santa Fe Springs

Newark EIeCtronicsccccocevvevieniennnnene (310) 929-9722

Ventura

Newark Electronicsc...ccevvecinrnccennn (805) 644-2265

West Hills

Newark EIeCtronicsc.ccocceeevvecvencnnens (818) 888-3718
COLORADO

Denver

Newark Electronicscccooiiiccnne. (303) 373-4540

Englewood

Anthem Electronicsc.cocoevvienne §303; 790-4500

Arrow Electronicscccceveevievieiie e 303) 799-0258
CONNECTICUT

Bloomfield

Newark Electronicsccccoevvvvvvivnivennns (203) 243-1731

Norwalk

Zeus EleCtronicscccvvveniiciiennccn (203) 852-5411

Wallingford

Arrow EIectronicsccoeevvvvvinene (203) 265-7741

Waterbury

Anthem Electronicsccceciieiicnnne (203) 575-1575

Z-4

SALES REPRESENTATIVES AND DISTRIBUTORS

FLORIDA
Altamonte Springs
Anthem EIeCtronicsccoeeeeevvrvriennnne. (407) 831-0007
Clearwater
Anthem EIectronicsc..ccccocevvnerennnne, %gag; ggg-gggg
Fort Lauderdale
Anthem Electronicsc.coccvviveverinene. (305) 484-0990
Deerfield Beach
Arrow Electronicsccecveveiviiincinnnne. (305) 429-8200
Jacksonville
Newark Electronicscccoevvevccnennnne (904) 399-5041
Orlando
Newark Electronicscccoovevvieennennns (407) 896-8350
Plantation
Newark Electronicscccovecceeninennne. (305) 424-4400
Tampa
Newark Electronicsccccceevvvveinennns (813) 287-1578
Lake Mary
Arrow EIectronicscccveveeiniiniriienn. §407; 333-9300
Zeus EIectronicsoceeceeevieneieieecnne 407) 333-3055
GEORGIA
Duluth
Anthem Electronicsc.cccceevenienenne. 48188§ 28:13 gggg
Arrow EIectronicsc.ccocveeeiiiencenn, 404) 497-1300
Norcross
Newark Electronicscccccvevvevvvennnnne. (404) 448-1300
IDAHO
Boise
Newark Electronicsc.ccocevveveiinenns (208) 342-4311
ILLINOIS
Addison
Newark Electronicscccoeevevvninnnenns (708) 495-7740
Arlington Heights
Newark Electronicsc.ccocevverervnennnne (708) 956-3270
Itasca
Arrow Electronics . 708; 250-0500
Zeus Electronics (708) 595-9730
Rockford
Newark Electronicscccccovveveninennnns (815) 229-0225
Schaumberg
Anthem Electronicscccocvvcvvirrnnnnene 708) 884-0200
Newark Electronicscccoccvvecienenne 708) 310-8980
Springfield
Newark Electronicscccoevvvvvrinnennnn (217) 787-9972
Willowbrook
Newark Electronicsc.ccecvivvvivinienns ggg; ggg-ggg

INDIANA

Ft. Wayne

Newark Electronicscccccecvverivininnnnen (219) 484-0766

Indianopolis

Arrow EIectronics ..o §317§ 299-2071

Newark Electronicsccovevvereeiecvennnns 317) 2569-0085

317) 884-0047

IOWA

Bettendorf

Newark Electronicscocoevvevvivivnenne. (319) 359-3711

Cedar Rapids

Arrow Electronicsoccevvvieciiinciencns 231 9; 395-7230

Newark Electronicsc.ccceovviierernnnne 319) 393-3800

West Des Moines

Newark EIectronicsc.ccocveeveneeennnen. (515) 222-0700
KANSAS

Lenexa

Anthem Electronicscoeoveeieniieinee. £91 3§ 599-1528

Arrow EIectronicsccceveveniviieienene. 913) 541-8542

Overland Park

Newark Electronicsccccoeeevrvieennens (913) 677-0727
KENTUCKY

Louisville

Newark Electronicsccccevevveevveennne (502) 423-0280
LOUISIANA

Metarie

Newark Electronicsccocovueeicvencennns (504) 838-9771
MARYLAND

Columbia

Anthem Electronics ..o 2410; 995-6640

Arrow EIeCtronicsoccovvvinniinecrenennns 410) 596-7800

Hanover

Newark Electronicscccvevvvivevncenen. (410) 712-6922
MASSACHUSETTS

North Reading

Advanced Technical Salesc........ (508) 664-0888

Marlborough

Newark Electronicsccocecveeiviienenns (508) 229-2200

Methuen

Newark Electronicsccoovevrvcreinene (508) 683-0913

Wilmington

Anthem EIectronicsccccceeevvrveerennennn. 508) 657-5170

Arrow Electronics ;508§ 658-0900

Zeus Electronics 508) 658-4776

Woburn

Newark Electronicsccoueevericneenennn. (617) 935-8350

Z-5

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS
MICHIGAN

Grand Rapids

Newark EIeCtronicsccoevcviiviiiennen, (616) 954-6700

Livonia

Anthem EleCtronicscocevverervvireenne §313§ 347-4090

800) 359-3526

Arrow Electronicsccocoevceneccninenn, 313) 462-2290

Oak Park

Newark EICtronicsccoceevvererenenennnn. 2810; 967-0600

810) 968-2950

Plymouth

Arrow EIECEronicscceeveeiiiiiiienn, (313) 462-2290

Saginaw

Newark ElectroniCscccovevviiiinns (517) 799-0480
MINNESOTA

Eden Prairie

Anthem Electronics ... 261 23 946-4826

Arrow EIectronics ..o, 612) 941-5280

Minneapolis

Newark Electronicsc.ccoovevivininiinnne (612) 331-6350

St. Paul

Newark EIectronicscccocevvevveiniennen. (612) 631-2683
MISSISSIPPI

Ridgeland

Newark Electronicsc.cccceevnniiinnns (601) 956-3834
MISSOURI

Maryland Heights

Newark EIeCtronicsccceeevvvvcvircennn, (314) 298-2505

St. Louis

Arrow Electronicsccoveviiiviiiiennnn, (314) 567-6888

MONTANA

Helena
Newark Electronicsccccevirieinciene (406) 443-6192

NEBRASKA

Omaha
Newark Electronicscccccceeieiee (402) 592-2423

NEVADA
Las Vegas
Newark Electronicscccocovvevvnenenne (702) 597-0330
Reno
Newark Electronicscccoevvvcrcnencne (702) 322-6090
Sparks
Arrow Electronicsccccoevrvreerenrenenen. (702) 331-5000

NEW HAMPSHIRE

Nashua
Newark Electronicsccceceeveveviennnenne. (603) 888-5790

NEW JERSEY
East Brunswick
Newark Electronicsccocevuvveineiene (908) 937-6600
Mariton
Arrow EIectronicsccoceeverieiiiiiiis (609) 596-8000
Pinebrook
Anthem Electronics é201; 227-7960

Arrow Electronics 201) 227-7880
Union
Newark Electronicsccccoeveeiiveivienne. (908) 851-2290

SALES REPRESENTATIVES AND DISTRIBUTORS

NEW MEXICO
Albuquerque
Newark EIectronicsc.ccceeveveceereeenee (505) 828-1878
NEW YORK
Bohemia
Newark Electronicsc.coevvevevecncnn (516) 567-4200
Brookhaven
Arrow Electronicsccceeevvevveevrenerennnns (516) 924-9400
Cheektowaga
Newark Electronicsccocvvieiieiinnenne (716) 862-9700
Commack
Anthem Electronicsc.oceeveveiecennnnne (516) 864-6600
Hauppauge
Arrow Electronicscooevvvevinneeeniinnne (516) 231-1000
Latham
Newark EIectronicscccccevvnvvreneinns (518) 783-0983
Liverpool
Newark Electronicscoevennecenennae (315) 457-4873
Long Island
Anthem Electronicscccceceneveeccennnnnne (516) 864-6600
Melville
Arrow Electronicsccccvevnivieniicien (516) 391-1300
Rochester
Arrow Electronicsccoceevveereveneneeanens (716) 427-0300
Pittsford
Newark EIeCtronicscccevverivccinnnnee (716) 381-4244
Port Chester
Zeus EleCtronicsccoevvnicnnnneinns (914) 937-7400
Wappingers Falls
Newark Electronicsc.cccccvveivervnenns (914) 298-2810
NORTH CAROLINA
Charlotte
Newark Electronicsc.cocevvveveccnnen (704) 535-5650
Greensboro
Newark EIectronicsc.coeevvvievvrvenrennnns (910) 294-2142
Raleigh
Anthem Electronicsccccecevvveerernennn, 919) 782-3550
800) 359-3532
Arrow Electronicsoceevvevincneriinnns 919) 876-3132
Newark Electronicsccovevverineceinnen §91 9) 781-7677

OHIO

Centerville

Arrow Electronicsocvevveveiineneennens (513) 435-5563

Cincinnati

Newark EIectroniCscccevvrvvvnireneannne (613) 772-8181

Cleveland

Newark Electronicsccoceeevveevriiens (216) 391-9330

Columbus

Newark EIectronicsccccoverererecrecnene (614) 326-0352

Dayton

Newark Electronicscccocceevevveveennnn. (513) 294-8980

Solon

Arrow Electronicsccoeveveeeneennenne. (216) 248-3990

Toledo

Newark EIeCtroniCscoceveieciiennieens (419) 866-0404

Youngstown

Newark Electronicsccoooeeeceevrneenne (216) 793-6134
OKLAHOMA

Oklahoma City

Newark Electronicscccevercrennnienn. (405) 843-3301

Tulsa

Arrow Electronics 591 8; 252-7537

Newark Electronics 918) 252-5070
OREGON

Beaverton

ALMAC/Arrow Electronics...........c.ccu.e... 5503; 629-8090

Anthem Electronicsc.ccoccvcenvinnnene. 503) 643-1114

Portland

Newark Electronicsccocevierivernecenne (503) 297-1984
PENNSYLVANIA

Allentown

Newark Electronicsccccoveiniccnnns (610) 434-7171

Fort Washington

Newark Electronicscccccceevevvcnnnnens (215) 654-1434

Horsham

Anthem Electronicsccceeceevercrnnnee. (215) 443-5150

Pittsburgh

Arrow EIeCtronicsooveueeiiniinniieenes 5412; 856-9490

Newark Electronicsccccovenncniieens 412) 788-4790

z-7

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

SOUTH CAROLINA

Greenville

Newark Electronicsccoceveiicincnnnns (803) 288-9610
TENNESSEE

Brentwood

Newark Electronicscc.cceevevvvnevrenne (615) 371-1341

Knoxville

Newark Electronicscccccvvevererercnenn (615) 588-6493

Memphis

Arrow EleCtronics ..o, 39013 367-0540

Newark Electronicscccceveververncnnnne 901) 396-7970
TEXAS

Austin

Anthem EIectronicscoocvvevnecvenneene. §51 2; 388-0049

Arrow Electronics (512) 835-4180

Newark Electronics 512) 338-0287

Carrollton

Arrow Electronicscccveeverinnerenennne 2214 380-9049

Zeus Electronicsccccocevevvniiiiniiiiinan, 214) 380-4330

Corpus Christi

Newark Electronicsccccceniiiccennins (512) 857-5621

Dallas

Newark Electronicscccccoveviniennine (214) 458-2528

El Paso

Newark Electronicscccooovvenvrncrnenn (915) 772-6367

Houston

Arrow EIeCtronicscooveveiviincrinieninins é713; 647-6868

Newark Electronicscccevvvenviiennnne 713) 894-9334

Richardson

Anthem Electronicsccccevivcreiiinns (214) 238-7100

San Antonio

Newark Electronicscccccoceeviniiicnins (210) 734-7960
UTAH

Salt Lake City

Anthem Electronicsccccoceveevieenenes 801) 973-8555

Arrow Electronics §SO1§ 973-6913

Newark Electronics 801) 261-5660
VIRGINIA

Herndon

Newark Electronicsccoceveeivcieiiininninns (703) 707-9010

Richmond

Newark Electronicsccccocevenininenneene (804) 282-5671

Roanoke

Newark Electronicsc.cceeceierevinuinnene (703) 772-6821

WASHINGTON
Bellevue
ALMAC/Arrow Electronics (206) 643-9992
Newark Electronics (206) 641-9800
Bothell
Anthem Electronicsccoivivieieininnns (206) 483-1700
Spokane
ALMAC/Arrow Electronicscccvereenen. 509) 924-9500
Newark Electronicscccovvvieeiennnnn. 509) 327-1935
WEST VIRGINIA
Charleston
Newark Electronicscccovevmneineenine (304) 345-3086
WISCONSIN
Brookfield
Arrow Electronicsc..cccveeveeinvennceeenens (414) 792-0150
Green Bay
Newark Electronicsc.ccccevvcienienaene (414) 494-1400
Madison
Newark EIectronicscccevvvvivnvreneninene (608) 221-4738
Milwaukee
Newark Electronicscccevvvvvvinneennnen (414) 453-9100
CANADA
Alberta
Future Electronicsccccceevvveieeviieennens §403; 250-5550
Future EIECtronicsc.ccceoevveeveervennennens 403) 438-2858
British Columbia
Arrow EIectronicsccccevevinvieivineeinnnns §604; 421-2333
Future Electronicscccoeevvveevecrneennns 604) 294-1166
Manitoba
Future EleCtronicsccccocevvvncnenicenenne (204) 944-1446
Montreal
Arrow Electronicscccveevvivecen e 514) 421-7411
Future EIECtronicscccccvevvvviviivevenenneens 514) 694-7710
Ontario
Arrow Electronicscccocevvvveevevviee e 613) 226-6903

.... (905) 670-7769
.... (905) 612-9200
.... (613) 820-8313
.. (519) 685-4280
905) 670-2888

Arrow Electronics
Future Electronics ...
Future Electronics
Newark Electronics
Newark Electronics

Toronto

Arrow Electronicscccccovvvvienrensvnennnn (416) 670-2010
Quebec

Arrow Electronicsccccceceevecvevienrevennnns 418) 871-7500
Future Electronics (418) 877-6666
Newark Electronics 514) 738-4488

SALES REPRESENTATIVES AND DISTRIBUTORS

CENTRAL AND SOUTH AMERICA

MIéXICO 4 BRAZIL
emiconductores Sao Paulo
Profesionales.............cooooviiiniiiiniiiinnns 525-524-6123 Nishicom ... 011-55-11-535-1755
Graftec 011-572-2727
ARGENTINA DSD Microtechnology Distributors... 305-563-8665
Buenos Aires
YELSRL oo 011-541-440-1532
ASIA-PACIFIC
AUSTRALIA KOREA
R&D EIeCtronicscccoveverenieniieneeee. 61-3-558-0444 ENC-KOreaccoooeveiieeeiicciicince 822-523-2220
GEC Electronics Divisionc.cccoceceee. 61-2-638-1888 MEMEC, Ltd. ..o 822-518-8181
CHINA MALAYSIA
Beijing Kuala Lumpor 60-3-703-8498
China Electronics Appliance Corp. 86-755-335-4214 "enang L.T. Electronics Ltd. - 60-4-656-2805
TLG Electronics, Ltd.ccoovvvriieiienns 85-2-388-7613
NEW ZEALAND
HONG KONGP ; » GEC Electronics Divisionc...ccccc..... 64-9-526-0107
Electrocon Products, Ltd.c..c.cceeeeeeees 86-2-481-6022
Components Agent, Ltd. . 85-2-487-8826 - PHILIPPINES)
Maxisum, Ltd..... . 85-2-410-2780 Alexan Commercialccoeeceivivnrenn. 63-2-241-9493
MEMEC, Ltd. 85-2-410-2777 Cinergi Tech & Devices (Phils), Inc. 63-2-817-9519
INDIA SIEIGAPORE
inergi Technology & Devices Pte. Ltd. 65-778-9331
pangalore 91.80-556.6761 ’\E/{Eaﬁglecl_trgnics S 65-285-08%8
Zenith Technoiogies Pt Lid 7 9180-656-6762 O M 5222:496
Bombay
Zenith Technologies Pvt. Ltd. 91-22-494-7457 Tﬂgfgé:?;ﬁ)nc. 886-2-501-0055
Maxva|e..... .. 91-22-830-0959 Asec Int'l. Corporation e 886-2-786-6677
New Delhi MEMEC, Ltd. ..cvooeier e 886-2-760-2028
Maxvale (S) Pte. Ltd.ccooecviniennns 91-11-622-5122 Promate Electronics Co. Ltd. 886-2-659-0303
INDONESIA THAILAND
Jakarta Eltee Electronics Ltd.c.cceooveiiiniennns 66-2-933-7565
Cinergi ASiamajUoooevevieniiiieiieieens 62-21-7982762
JAPAN
Tokyo

Teksel Co., Ltd. 81-3-5467-9000
Internix Incorporated 81-3-3369-1105
Kanematsu Elec. Components Corp. 81-3-3779-7811
Osaka

Teksel Co., Ltd. ..o 81-6368-9000

SALES REPRESENTATIVES AND DISTRIBUTORS

EUROPE
AUSTRIA

Vienna

EBV Elektronik GMBHc..cccccoveneee 43-222-8941-774

Avnet/Electronic 2000ccccoeveeevnnnns 0043-1-9112847
BELGIUM

Antwerp

D & D Electronics PVBA..........c.ccvveeevivnenen 32-3-8277934

Zaventem

EBV Elektronikccocevevervennveenenenceene, 322-7209936
DENMARK

Brondby

Ditz Schweitzer ASccocoveeeeeererecie e, 4542-453044

Lynge

Rep DelCO ..o e 45-35-821200
ENGLAND

Berkshire

Future Electronicsccccvvevvvervveenecennenn 44-753-521193

Gothic Crellon 44-734-787848

Macro Marketing 44-628-604383

Kent

Arrow Electronicscccovvvvvinieniecnneenen, 44-732-74039

Lancashire

Complementary Technologies Ltd. 44-942-274731
FINLAND

Espoo

Yleiselektroniikka..........cccovvieneecnnreiiiennes 358-0-452-621
FRANCE

Cedex

A2M ..ottt 331-395-49-113

CCl Electroniqueccccovevvvecnirenerennnne 331-46744700

Champs sur Marne

EBV ElektroniKccoovvecveviiviiiiiiiniennnns 331-646-88600

Massy

Reptronic SA ... 331-60139300

GERMANY
Berlin
EBV Elektronik GMBHccoccveevrennnnnn. 030-3421041
Avnet/Electronic 2000cccevevveiiienienn. 030-2110761
Burgwedel
EBV Elektronik GMBHcccccoevvvnninnnnne 05139-80870
Camberg
ThESYS AJE ..oveveeeeieeeceereeer e esen 49-6434-5041
Castrop
Future GMBHcooveiiiceees 02305-42051
Dortmund
Future GMBHc.oovveeeeiee e, 02305-42051
Duesseldorf
Avnet/Electronic 2000 . ..0211-9200385
Thesys/AE0211-536020
Erfurt
TRESYS ...evivve e 0361-4278100
Erkrath
Avnet/Electronic 2000ccceceevvrcrernnnnen. 211-92003-85
Frankfurt
EBV Elektronik GMBHccoeeeviinennnnne. 069-785037
Avnet/Electronic 2000069-9738041
Future GMBH06121-54020
TRESYS/AE ..o 06434-5041
Gerlingen
Avnet/Electronic 2000cccceevevverennenns 7166-356190
Hamburg
Avnet/Electronic 2000ccoccvirvviicnnnnns 040-64557021
Leonberg
EBV Elektronik GMBHcccoceoveveieienenne. 07152-30090
Muenchen
Avnet/Electronic 2000ccccccevevvireiennnnne. 089-4511004
EBV Elektronik GMBHccocovvviviirerinene 089-456100
Future GMBHccooviieineeecerecnerre v 089-957270
ThESYS AJE ... 89-99355866
Nuernberg
Avnet/Electronic 2000ccoeveeerueerenna. 0911-9951610
Neuss
EBV Elektronik GMBHcccccoovevecvennneee. 02131-96770
Quickborn
Future GMBH ..o, 4106-71022
Rauxel
Future GMBH ..., 02305-42051
Stuttgart
Avnet/Electronic 2000ccccecerirneennnen. 07156-356190
Future GMBH0711-830380
Thesys/AE 0711-9889100
Weissbach
EBV Elektronik GMBHcccccoevcveeeriennee, 036-426486

Z-10

SALES REPRESENTATIVES AND DISTRIBUTORS

ISRAEL

BT e 972-35483137
ITALY

Milano

Avnet EMG S.R.L. ...cocoevvviiiiiciieen 0039-295-343600

EBV Elektronik ... 0039-2-66017111

Silver Staroooeeve e 02-66-125-1

Firenze

EBV Elektronikcccocveeieviieieeeenee, 0039-55-350792

Roma

EBV Elektronikccccevevveeriiniereenenn 0039-6-2253367

Modena

EBV ElektroniK.......c.cccoevvevvrireeneieennns 0039-59-344752

Napoli

EBV Elektronik.......cc.ccoceeveveveveiniieennn, 0039-81-2395540

Torino

EBV ElektroniKcccoovvveeeeciiieiieeene 0039-11-2161531
NETHERLANDS

EBV EleKtroniKcccoeeveeereeiiii e 313-465-2353
NORWAY

Bexab NOrgecccoceevniiiniiiciiciiniiiens 47-63833800
POLAND

Warsaw

Gamma Ltd.coceviecieieieeeee 004822-330853
PORTUGAL

Amadora

AMItroN-ArrOW.c.ccoverviireniieiieeireennne 0035-1-4714806

RUSSIA
Woronesh
Thesys/Intechna.........cccocvierviineeieiininnn, 0732553697
Vyborg
Gamma Ltd.cocooeeieiece s 81278-31509
St. Petersburg
Gamma Ltd. ..o 812-5311402

SPAIN
Barcelona
Amitron-Arrow S.A.ccocvivieie e 0034-3-4907494
Madrid
AMiItron-Arrow S.A.ccoooviiienin e 0034-1-3043040

SWEDEN
Bexab Sweden AB
Rep Delco Sweden AB

46-8-63088-00
46-8-63086-00

SWITZERLAND
Dietikon
EBV Elektronik GMBHcc.c.covveeeen. 0041-1-7401090

Lausanne
EBV Elektronik AG........cceevveeeeiienianns 0041-21-3112804

Regensdorf
Eurodis AGcocovveenvienernieiciriienen 0041-1-8433111

UKRAINE

Kiev
Thesys/MIKropriborcccovicieniiinniens 44-434-9533

Z-11

N 2iLa5 LITERATURE GUIDE

Z8° MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche Part No Unit Cost

Z8° Microcontrollers Databook DC-8305-03 $5.00
Product Specifications
786B07 CMOS Z8 8-Bit MCU for Battery Charging and Monitoring
286C05/C07 CMOS Z8 8-Bit Microcontroller
Z86E07 CMOS Z8 8-Bit OTP Microcontroller
786C11 CMOS Z8 Microcontroller
786C12 CMOS Z8 In-Circuit Microcontroller Emulator
786C21 8K ROM Z8 CMOS Microcontroller
Z86E21 CMOS Z8 8K OTP Microcontroller
786C61/62/96 CMOS Z8 Microcontrollers
786E61/63 16K/32K EPROM CMOS Z8 Microcontrollers
786C63/64 32K ROM Z8 CMOS Microcontrollers
£86C91 CMOS Z8 ROMIess Microcontroller
£86C93 CMOS Z8 Multiply/Divide Microcontroller
786117/717 Z8 8-Bit CMOS OTP/ROM Microcontrollers

Application Notes
On-Chip Oscillator Design
Designing a Low-Cost Thermal Printer

Support Product Specifications
Z0860000ZC0 Evaluation Board
786C1200ZEM Emulator
Z86E0700ZDP Adaptor Kit
786E2100ZDF Adaptor Kit
Z86E2100ZDP Adaptor Kit
Z86E2100ZDV Adaptor Kit
Z86E2101ZDP Adaptor Kit
786E2101ZDV Adaptor Kit
786C6100TSC Emulator
786C6200ZEM Emulator
786C9300ZEM Emulator
Z8 S Series Emulators, Base Units and Pods

Additional Information
Zilog's Superintegration™ Products Guide
General Terms and Conditions of Sale
Zilog's Sales Offices, Representatives and Distributors
Literature Guide & Third Party Support Vendors

N 2iLa5 LITERATURE GUIDE

Z8° MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS

Databooks By Market Niche Part No Unit Cost
Infrared Remote (IR) Controllers Databook DC-8301-04 $5.00
Product Specifications

Z86L03/L06 Low Voltage CMOS Consumer Controller Processor
786129 6K Infrared (IR? Remote (ZIRC™) Controller
Z86L70/L71/L72/L75/L76 Zilog IR SZIRC") CCP™ Controller Family
286L73/74/77 24/32K ROM Infrared Remote Controller (ZIRC™)
ZBBET2/ET3/ET4/77 Zilog IR (ZIRG™) CCP™ Controller Family
286C72/76 Zilog Infrared Remote Controller Family (ZIRC™

Z86L78 16K, 20-Pin Zilog Infrared Remote Controller (ZIRC™)

Application Note
Beyond the 3 Volt Limit
X-10 Compatible Infrared Remote Control

Support Product Specifications
86C50000ZEM Emulator
Z86L.7100ZDB Emulator Board
Z86L.7100ZEM ICEBOX™ In-Circuit Emulator Board

Additional Information
Zilog's Superintegration™ Products Guide
Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

L-2

N 2iLa5 LITERATURE GUIDE

Z8® MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche Part No Unit Cost

Discrete Z8® Microcontrollers DC 8318-02 $5.00
Product Specifications

786C03/C06 CMOS Z8® 8-Bit Consumer Controller Processors
Z86E03/E06 CMOS Z8°® 8-Bit OTP Consumer Controller Processors
786C04/C08 CMOS Z8°® 8-Bit Low Cost 1K/2K ROM Microcontrollers
Z86E04/E08 CMOS Z8°® 8-Bit OTP Microcontrollers
786C07 CMOS Z8® 8-Bit Microcontroller
Z86E07 CMOS 282 8-Bit OTP Microcontroller
786C30/C31 CMOS Z8® 8-Bit Consumer Controller Processors
Z86E30/E31 CMOS Z8® 8-Bit OTP Consumer Controller Processors
286C40 CMOS Z8® 4K ROM Consumer Controller Processor
Z86E40 CMOS Z8® 8-Bit OTP Consumer Controller Processor

Z8® Microcontrollers Application Notes
Timekeeping with the Z8®
Using The Zilog Z86C06 SPI Bus
DTMF Tone Generation Using the Z8® CCP™
Serial Communications Using the Z8% CCP™ Software UART
The Versatile Z86C08: Three Key Features of this Z8® MCU
The Z86C08 Controls a Scrolling LED Message Display
Interfacing LCDs to the Z8® Microcontroller

Support Product Specifications and Third-Party Vendors
786C0800ZC0 Evaluation Board
786C0800ZDP Adaptor Kit
Z86C1200ZEM Emulator
Z86E0600ZDP Adaptor Kit
Z86E0700ZDP Adaptor Kit
Z86E3000ZDP Adaptor Kit
786E4000ZDF Adaptor Kit
Z86E4000ZDP Adaptor Kit
Z86E4000ZDV Adaptor Kit
Z86E4001ZDF Adaptor Kit
Z86E4001ZDV Adaptor Kit
Z86CCPO0ZEM Emualtor
Z86CCPO0ZAC Emulator Kit
78®S Series Emulators, Base Units and Pods
Third-Party Support Vendors

Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

N 2iLa5 LITERATURE GUIDE

Z8® MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS

Databooks By Market Niche Part No

Unit Cost

Digital Television Controllers DC-8308-01

Product Specifications
189300 Series Digital Television Controller
286C27/97 CMOS 78®Digital Signal Processor
Z86C47/E47 CMOS 78® Digital Signal Processor
186127 Low Cost Digital Television Controller
786128/228 Line 21 Closed-Caption Controller (L21C™)
186227 40-Pin Low Cost (4LDTC™) Digital Television Controller
Support Product Specifications
£86G2700ZC0 Application Kit
286G2700ZDB Emulation Board
786C2702ZEM In-Circuit Emulator
Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

$5.00

Telephone Answering Device Databook DC-8300-03
Product Specifications
789165/166 (ROMIless) Low-Cost DTAD Controller (Preliminary)
789167/169 789168 (ROMless) Enhanced Dual Processor Tapeless TAM Controller (Preliminary)
Development Guides
789165 Software Developer's Manual
189167/169 Software Developer's Manual
Technical Notes
189165/167/169 Design Guidelines
£89167/169 Codec Interfacing Preliminary
Controliing the Out -5V and Codec Clock Signals for Low-Power Halt Mode
789165/166 Input A/D and Electronic Hybrid
789C67/C69/167/169 Low-Power Halt Mode Sequence
Samsung KT8554 Codec
Watch-Dog Timer For TAD Applications
Zilog LPC Words Listing
Support Product Specifications
£89C5900ZEM Emulation Module
789C6500ZDB Emulation Board
289C6501ZEM ICEBOX™ In-Circuit Emulator
289C6700ZDB Emulator Board
289C6700ZEM ICEBOX™ Emulator Board
Additional Information
Zilog's Superintegration™ Products Guide
Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

$5.00

L-4

N 2iLas LITERATURE GUIDE

Z8° MICROCONTROLLERS - PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS

Databooks By Market Niche Part No Unit Cost
Digital Signal Processors Databook DB95DSP0105 $5.00
Product Specification
189321/371/391 16-Bit Digital Signal Processor
Application Notes

Using the 89321/371/391 CODEC Interface

789321/371/391 Interprocessor Communication
Support Product Specification

28937100ZEM ICEBOX™ In-Circuit Emulator -371
Additional information

General Terms and Conditions of Sale

Zilog's Sales Offices, Representatives and Distributors

Literature Guide and Ordering Information

Keyboard/Mouse/Pointing Devices Databook DC-8304-01 $5.00

Product Specifications
78602/14 NMOS 78® 8-Bit Keyboard Controller
78615 NMOS Z8° 8-Bit Keyboard Controller
286G15 CMOS Z8® 8-Bit MCU Keyboard Controller
786E23 78% 8-Bit Keyboard Controller with 8K OTP
786C04/C08 CMOS 28 8-Bit Microcontroller
286E08 CMOS Z8® 8-Bit Microcontroller
788C17 CMOS Z8® 8-Bit Microcontroller
786C117/717 28® 8-Bit Microcontroller
786217 78® 8-Bit Microcontroller

Application Notes
28602 Keyboard
286C17 In-Mouse Applications

Support Product Specifications and Third Party Support
20860200ZC0 Evaluation Board
70860200ZDP Ada?tor Kit
786C0800ZC0 Evaluation Board
286C0800ZDP Adaptor Kit
286C1200ZEM Emulator
786E2300ZDP Adaptor Kit
786E2301ZDP Adaptor Kit
Z86E2300ZDV Adaptor Kit
Z86E2301ZDV Adaptor Kit

Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

L-5

PA2La5 LITERATURE GUIDE

Z8° MICROCONTROLLERS - PERIPHERALS MEMORY FAMILY OF PRODUCTS
Databooks By Market Niche Part No Unit Cost

Mass Storage Solutions DC-8303-01 $5.00

Product Specifications
786C21 8K ROM Z8 CMOS Microcontroller
Z86E21 CMOS Z8 8K QTP Microcontroller
786C91 CMOS Z8 ROMIess Microcontroller
286093 CMOS Z8 Multiply/Divide Microcontroller
786095 Z8 Digital Signal Processor
286018 Data Path Controller
Z89C00 16-Bit Digital Signal Processor
Application Note
Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP)
Support Product Specifications
£8060000ZCO Development Kit
Z86C1200ZEM In-Circuit Emulator
Z86E2100ZDF Adaptor Kit
Z86E2100ZDP Adaptor Kit
Z86E2100ZDV Adaptor Kit
Z86E2101ZDF Conversion Kit
£86E2101ZDV Conversion Kit
Z86C9300ZEM ICEBOX™ Emulator
Z86C9500ZC0 Evaluation Board
78§ Series Emulators, Base Units and Pods
Z89C0000ZAS 789C00 Assembler, Linker and Librarian
789C0000ZCC Z89C00 C Cross Compiler
789C0000ZEM In-Circuit Emulator -G00
789C0000ZSD Z89C00 Simulator/Debugger
ZPCMCIAOZDP PCMCIA Extender Card
Additional Information
Zilog's Superintegration™ Products Guide
Zilog's Literature Guide
Zilog's Sales Offices, Representatives and Distributors

L-6

N 2iLa5

LITERATURE GUIDE

Z8 Technical Manuals and Users Guides Part No. Unit Cost
28® Micracontrollers User's Manual UM952800103 5.00
786018 Preliminary User's Manual DC-8296-00 N/C
Digital TV Controller User's Manual DC-8284-01 5.00
Z89C00 16-Bit Digital Signal Processor User's Manual/DSP Software Manual DC-8294-02 5.00
786C95 16-Bit Digital Signal Processor User Manual DC-8595-02 5.00
286017 PCMCIA Adaptor Chip User's Manual and Databook DC-8298-03 5.00
PLC Z89C00 Cross Development Tools Brochure DC-5538-01 N/C
Z8® Application Notes Part No Unit Cost
The Z8 MCU Dual Analog Comparator DC-2516-01 N/C
Z8 Applications for 1/0 Port Expansions DC-2539-01 N/C
786E21 Z8 Low Cost Thermal Printer DC-2541-01 N/C
Zilog Family On-Chip Oscillator Design DC-2496-01 N/C
Using the Zilog Z86C06 SPI Bus DC-2584-01 N/C
Interfacing LCDs to the Z8 DC-2592-01 N/C
X-10 Compatible Infrared (IR) Remote Control DC-2591-01 N/C
Z86C17 In-Mouse Applications DC-3001-01 N/C
786C40/E40 MCU Applications Evaluation Board DC-2604-01 N/C
786C08/C17 Controls A Scrolling LED Message Display DC-2605-01 N/C
786C95 Hard Disk Controller Flash EPROM Interface DC-2639-01 N/C
Three Z8® Applications Notes: Timekeeping with Z8; DTMF Tone Generation; DC-2645-01 N/C

Serial Communication Using the CCP Software UART

L-7

N 2iLa5 LITERATURE GUIDE

Z80%/28000° DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks By Market Niche Part No

Unit Cost

High-Speed Serial Communication Controllers DC-8314-01
Product Specifications
216C30 CMOS Universal Serial Controller (USC™) (Preliminary)
716C32 Integrated Universal Serial Controller IUSC™) (Preliminary)
Application Notes
Using the Z16C30 Universal Serial Controller with MIL-STD-1553B
Design a Serial Board to Handle Multiple Protocols
Datacommunications IUSC™/MUSC™ Time Slot Assigner
Support Products and Third Parly Vendor Support
Z16C3001ZC0 Evaluation Board Product Specification
216C3200ZC0 Evaluation Board Product Specification
28018600ZCO0 Evaluation Board Product Specification
ZEPMDC00001 EPM™ Electronic Programmer's Manual Product Specification
Third Party Vendors
Additional Information
Zilog's Superintegration™ Products Guide
General Terms and Conditions of Sale
Sales Offices, Representatives and Distributors
Literature Guide

5.00

Serial Communication Controllers DC-8316-01
Product Specifications
78030/28530 Z-Bus® SCC Serial Communication Controlier
780C30/285C30 CMOS Z-Bus® SCC Serial Communication Controller
780230 Z-Bus® ESCC™ Enhanced Serial Communication Controller (Preliminary)
785230 ESCC™ Enhanced Serial Communication Controller
285233 EMSCC™ Enhanced Mono Serial Communication Controller
285C80 SCSCI™ Serial Communications and Small Computer Interface
216C35/285C35 CMOS ISCC™ Integrated Serial Communications Controller
Application Notes
Interfacing Z8500 Peripherals to the 68000
SCC in Binary Synchronous Communications
Zilog SCC Z8030/28530 Questions and Answers
Integrating Serial Data and SCSI Peripheral Control on One Chip
Zilog ISCC™ Controller Questions and Answers
Boost Your System Performance Using the Zilog ESCC™
Zilog ESCC™ Controller Questions and Answers
The Zilog Datacom Family with the 80186 CPU
0On-Chip Oscillator Design
Support Products
78518000ZCO0 Evaluation Board Product Specification
78523000ZC0 Evaluation Board Product Specification
£8018600ZCO Evaluation Board Product Specification
ZEPMDC00002 Electronic Programmer's Manual Software
Additional Information
Zilog's Superintegration™ Products Guide
Sales Offices, Representatives and Distributors
Literature Guide

5.00

L-8

N 2iLa5 LITERATURE GUIDE

Z80%/Z8000° DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks Part No Unit Cost
Z80 Family Datahook DC-8321-00 5.00
Discrete Z80® Family

78400/C00 NMOS/CMOS Z80® CPU Product Specification

28410/C10 NMOS/CMOS Z80 DMA Product Specification

78420/C20 NMOS/CMOS Z80 PIO Product Specification

78430/C30 NMOS/CMOS 280 CTC Product Specification

78440/C40 NMOS/CMOS 280 SIO Product Specification
Embedded Controllers

784C01 Z80 CPU with CGC Product Specification

28470 780 DART Product Specification

78490 CMOS Z80 KI0™ Product Specification

784013/015 Z84C13/C15 IPC/EIPC Product Specification
Application Notes and Technical Articles

280® Family Interrupt Structure

Using the Z80® SI0 with SDLC

Using the Z80® SIO in Asynchronous Communications

Binary Synchronous Communication Using the Z80% SI0

Serial Communication with the Z80A DART

Interfacing Z80® CPUs to the Z8500 Peripheral Family

Timing in an Interrupt-Based System with the Z80® CTC

A 780-Based System Using the DMA with the SIO

Using the Z84C11/C13/C15 in Place of the Z84011/013/015

On-Chip Oscillator Design

A Fast Z80® Embedded Controller

Z80® Questions and Answers
Additional Information

Zilog's Superintegration™ Products Guide

Literature Guide

Third Party Support Vendors

Zilog's Sales Offices, Representatives and Distributors

N 2iLa5 LITERATURE GUIDE

Z80%28000° DATACOMMUNICATIONS FAMILY OF PRODUCTS
Databooks Part No Unit Cost

Z180™ Microprocessors and Peripherals Databook DC-8322-01 5.00

Product Specifications

780180/285180/28L180 Z180™ Microprocessor

780181 Z181™ Smart Access Controller (SAC™)

780182/281182 Zilog Intelligent Peripheral Controller (ZIP™)
Application Notes and Technical Articles

7180™ Questions and Answers

7180™/SCC Serial Communication Controller Interface at 10 MHz

Interfacing Memory and 1/0 to the 20 MHz 285180 System

Break Detection on the 280180 and Z181™

Local Talk Link Access Protocol Using the 280181

7182 Programming the MIMIC Autoecho ECH0Z182 Sample Code

High Performance PC Communication Port Using the 2182

Improving Memory Access Timing in 2182 Applications
Support Products

78518000ZC0 Evaluation Board

78018100ZCO Evaluation Board

28018101ZC0 Evaluation Board

78018101ZA6 Driver Software

28018100ZDP Adaptor Kit

78018200ZC0 Evaluation Board

ZEPMIP00001 EPM™ Electronic Programmer's Manual

ZEPMIP00002 EPM Electronic Programmer's Manual

780@ and 780180 Hardware and Software Support
Additional Information

Zilog's Superintegration™ Products Guide

Literature Guide

Zilog's Sales Offices, Representatives and Distributors

L-10

N 2L LITERATURE GUIDE

Z280%Z8000° DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks and User's Manuals Part No

Unit Cost

Z8000 Family of Products DC-8319-00
Z8000 Family Databook
Zilog's Z8000 Family Architecture
78001/28002 Z8000 GPU Product Specification
28016 Z8000 Z-DTC Product Specification
78036 78000 Z-CI0 Product Specification
28536 CI0 Counter/Timer and Parallel 1/0 Unit Product Specification
78038/Z8538 FI0 FIFQ Input/Output Interface Unit Product Specification
78060/28560 FIFO Buffer Unit
28581 Clock Generator and Controller Product Specification
User's Manuals
78000 CPU Central Processing Unit User's Manual
78010 Memory Management Unit (MMU) User's Manual
78036 Z-C10/28536 CIO Counter/Timer and Parallel Input/Output User's Manual
78038 Z8000 Z-FIQ FIFQ Input/Output Interface User's Manual
28000 Application Notes and Military Products
Application Notes
Using SCC with Z8000 in SDLC Protocol
SCC in Binary Synchronous Gommunication
Zilog's Military Products Overview
Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide
Zilog's Sales Offices, Representatives and Distributors

5.00

Z80 Family Microprocessor Family User's Manual DC-8309-01
User's Manuals
280 Central Processing Unit (CPU)
280 Counter Timer Channels (CTC)
280 Direct Memory Access (DMA)
780 Paralle! Input/Output (PI0)
280 Serial Input/Output (SIO0)
Additional Information
Zilog's Superintegration™ Products Guide
Zilog's Sales Offices, Representatives and Distributors
Literature Guide

L-11

N 2iLa5 LITERATURE GUIDE

Databooks and User's Manuals Part No Unit Cost
780180 2180 MPU Microprocessor Unit Technical Manual DC-8276-04 5.00
2280 MPU Microprocessor Unit Technical Manual DC-8224-03 5.00
7380™ Product Specification DC-6003-03 N/C
7380™ User's Manual PS953800104 5.00
72000 Spread-Spectrum Transceiver Advance Information Product Specification DC-6021-00 N/C
ZNW2000 PC WAN Adapter Board Development Kit User's Manual UM95Z800101 N/C
SCC Serial Communication Controller User's Manual DC-8293-02 5.00
High-Speed SCC, Z16C30/216C32 User's Manual DC-8350-00 5.00

MILITARY COMPONENTS FAMILY

Military Product Specifications Part No Unit Cost
78681 ROMless Microcomputer DC-2392-02 N/C
78001/8002 Military Z8000 CPU Central Processing Unit DC-2342-03 N/C
78581 Military CGC Clock Generator and Controller DC-2346-01 N/C
28030 Military Z8000 Z-SCC Serial Communications Controller DC-2388-02 N/C
78530 Military SCC Serial Communications Controller DC-2397-02 N/C
78036 Military Z8000 Z-C10 Counter/Timer Controller and Parallel I/0 DC-2389-01 N/C
78038/8538 Military FIO FIFQ Input/Output Interface Unit DC-2463-02 N/C
78536 Military CIO Counter/Timer Controller and Parallel I/0 DC-2396-01 N/C
78400 Military Z80 CPU Central Processing Unit DC-2351-02 N/C
78420 Military PIO Parallel Input/Output Controller DC-2384-02 N/C
78430 Military CTC Counter/Timer Circuit DC-2385-01 N/C
78440/1/2/4 780 SI0 Serial Input/Output Controller DC-2386-02 N/C
780C30/85C30 Military CMQOS SCC Serial Communications Controller DC-2478-02 N/C
284C00 CMOS Z80 CPU Central Processing Unit DC-2441-02 N/C
784020 CMOS Z80 PIO Paralle! Input/Qutput DC-2384-02 N/C
284C30 CMOS 80 CTC Counter/Timer Circuit DC-2481-01 N/C
784C40/1/2/4 CMOS Z80 SIO Serial Input/Qutput DC-2482-01 N/C
716C30 CMOS USC Universal Serial Controller (Preliminary) DC-2531-01 N/C
780180 2180 MPU Microprocessor Unit DC-2538-01 N/C
284C90 CMOS KIO Serial/Parallel/Counter Timer (Preliminary) DC-2502-00 N/C
185230 ESCC Enhanced Serial Communication Controller DC-2595-00 N/C

L-12

N 2Las

LITERATURE GUIDE

GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides Part No Unit Cost
Superintegration Master Selection Guide 1994-1995 DC-5634-01 N/C
Superintegration Products Guide DC-5676-00 N/C
Quality and Reliability Report DC-8329-01 N/C
ZIA™ 3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet DC-5556-01 N/C
ZIA ZIA00ZCO Disk Drive Development Kit Datasheet DC-5593-01 N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet DC-5560-01 N/C
Zilog Infrared (IR) Controllers - ZIRC™ Datasheet DC-5558-01 N/C
Zilog V. Fast Modem Controller Solutions DC-5525-02 N/C
Zilog Digital Signal Processing - Z89320 Datasheet DC-5547-01 N/C
Zilog Keyboard Controllers Datasheet DC-5600-01 N/C
7380™ - Next Generation Z80®/2180™ Datasheet DC-5580-02 N/C
Fault Tolerant Z8® Microcontroller Datasheet DC-5603-01 N/C
32K ROM Z8® Microcontrollers Datasheet DC-5601-01 N/C
Zilog Datacommunications Brochure DC-5519-00 N/C
789300 DTC Controller Family Brochure DC-5608-01 N/C
Zilog Digital Signal Processing Brochure DC-5536-02 N/C
Zilog ASSPs - Partnering With You Product Brochure DC-5553-01 N/C
Zilog Wireless Products Datasheet DC-5630-00 N/C
Zilog 28604 Cost Efficient Datasheet DC-5662-00 N/C
Zilog Chip Carrier Device Packaging Datasheet DC-5672-00 N/C
Zilog Database of IR Codes Datasheet DC-5631-00 N/C
Zilog PCMCIA Adapter Chip Z86017 Datasheet DC-5585-01 N/C
Zilog Television/Video Controllers Datasheet DC-5567-01 N/C
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet DC-5561-02 N/C
Zilog 87000 Z-Phone Datasheet DC-5632-00 D/C
Zilog 1993 Annual Report DC-1993-AR N/C
Zilog 1994 Annual Report DC-1994-AR N/C

L-13

