
Embedded Control
used in a variety of

User's
Manual

ntrollers

ZS® Microcontrollers

User•s Manual

02195 UM95Z80010

Overview

Zilog•s Focus on Application-Specific Products
Helps You Maintain Your Technological Edge

The ZS® Microcontroller User's Manual consists
of the following:

• ZS® Architecture
Technical Description

• Zilog Software User's Guides
- asm ZS® Cross Assembler
- Zilog Universal Object File Utilities

• Zilog General Information
- General Terms and Conditions
- Zilog Sales Offices, Representatives,

and Distributors
- Zilog Literature Guide

Application notes and other information on Zilog specialty
software and documentation is available through the Zllog
Bulletin Board Service (ZBBSJ, which can be reached by calling
408-370·8024 (up to 28.8 baud supported, B-N·1 connections,
and ANSI/BBS terminal emulation setup recommended}.

UM95Z800103

© 1994, 1995 by Zilog, Inc. All rights reserved. No part of this document may be copied or
reproduced in any form or by any means without the prior written consent of Zilog, Inc. The
information in this document is subject to change without notice. Devices sold by Zilog, Inc. are
covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and
Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by
description, regarding the information set forth herein or regarding the freedom of the
described devices from intellectual property infringement. Zilog, Inc. makes no warranty of
merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that
may appear in this document. Zilog, Inc. makes no commitment to update or keep current the
information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or
systems unless a specific written agreement pertaining to such intended use is executed
between the customer and Zilog prior to use. Life support devices or systems are those which
are intended for surgical implantation into the body, or which sustains life whose failure to
perform, when properly used in accordance with instructions for use provided in the labeling,
can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com/zilog

ZILOG ZS® MICROCONTROLLERS

USER1S MANUAL

TABLE OF CONTENTS

I. za• MICROCONTROLLER TECHNICAL DESCRIPTION

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 1: DISCRETE zae PRODUCT OVERVIEW

Z8' MICROCONTROLI.ERS
USER's MANUAL

PAGE

1.1 ZS MCU Family Overview .. 1-1

CHAPTER 2: ADDRESS SPACE

2.1 Introduction ... 2-1
2.2 ZS® Standard Register File .. 2-1
2.3 ZS® Expanded Register File .. 2-5
2.4 ZS® Control and Peripheral Registers .. 2-8
2 .5 Program Memory ... 2-10
2.6 Z8® External Memory .. 2-11
2. 7 ZS® Stacks ... 2-12

CHAPTER 3: CLOCK

3.1 Clock ... 3-1
3.2 Clock Control ... 3-1
3.3 Oscillator Control ... 3-2
3.4 Oscillator Operation .. 3-3
3.5 LC Oscillator .. 3-7
3.6 RC Oscillator ... 3-8

CHAPTER 4: RESET-WATCH-DOG TIMER

4.1 Reset ... 4-1
4.2 /Reset Pin, Internal POR Operation .. 4-1
4.3 Watch-Dog Timer (WOT) ... 4-7
4.4 Power-On-Reset (POR) ... 4-8

CHAPTER 5: 1/0 PORTS

5.1 Introduction ... 5-1
5.2 Port O ... 5-2
5.3 Port 1 ... 5-5
5.4 Port 2 ... 5-9
5.5 Port3 ... 5-13
5.6 Port Handshake .. 5-19
5.7 1/0 Port Reset Conditions .. 5-23

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 5: 1/0 PORTS (CONTINUED)

zae MICROCONTROLLERS
USER'S MANUAi.

PAGE

5.8 Analog Comparators ... 5-25
5.9 Open-Drain Configuration ... 5-29
5.10 Low EMI Emission ... 5-29
5. 11 In put Protection ... 5-30
5.12. CMOS Z8® AUTO lATCHES ... 5-31

CHAPTER 6: CouNTERJ'TIMERS

6.1 Introduction ... 6-1
6.2 Prescalers and Counter{Timers ... 6-2
6.3 Counter!Timer Operation ... 6-3
6.4 Tour Modes .. 6-5
6.5 T1N Modes .. 6-7
6.6 Cascading Counter!Timers ... 6-11
6. 7 Reset Conditions ... 6-12

CHAPTER 7: INTERRUPTS

7.1 Introduction ... 7-1
7.2 Interrupt Sources ... 7-2
7.3 Interrupt Request (IRQ) Register Logic and Timing ... 7-4
7.4 Interrupt Initialization ... 7-5
7.5 IRQ Software Interrupt Generation ... 7-9
7.6 Vectored Processing ... 7-9
7. 7 Polled Processing ... 7-12
7.8 Reset Conditions ... 7-12

CHAPTER 8: POWER-DOWN MODES

8.1 Introduction ... 8-1
8.2 Halt Mode Operation ... 8-1
8.3 STOP Mode Operation .. 8-2
8.4 STOP-Mode Recovery Register (SMR) .. 8-3

CHAPTER 9: SERIAL VO
9 .1 UART Introduction ... 9-1
9.2 UART Bit-Rate Generation .. 9-2
9.3 UART Receiver Operation ... 9-4
9.4 Transmitter Operation .. 9-6
9.5 UART Reset Conditions ... 9-8
9.6 Serial Peripheral Interface (SPI) .. 9-9
9. 7 SPI Operation .. 9-1 O
9.8 SPI Compare ... 9-10
9.9 SPI Clock ... 9-10
9.10 Receive Character Available and Overrun ... 9-12

ii

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 10: EXTERNAL INTERFACE

'Z8' MICROCONTROWRS
USER'S MANUAi.

PAGE

10.1 Introduction ... 10-1
10.2 Pin Descriptions .. 10-2
10.3 External Addressing Configuration .. 10-3
10.4 External Stacks .. 10-4
10.5 Data Memory ... 10-4
10.6 Bus Operation ... 10-5
10.7 Extended Bus Timing .. 10-7
10.S Instruction Timing .. 10-9
10.9 ZS® RESET CONDITIONS .. 10-11

CHAPTER 11: ADDRESSING MODES

11.1 Introduction ... 11-1
11.2 ZS® REGISTER ADDRESSING (R) ... 11-2
11.3 ZS® INDIRECT REGISTER ADDRESSING (IR) .. 11-3
1.4 Z8® INDEXED ADDRESSING (X) ... 11-5
11.5 ZS® DIRECT ADDRESSING (DA) .. 11-6
11.6 ZS® RELATIVE ADDRESSING (RA) .. 11-7
11. 7 ZS® IMMEDIATE DATA ADDRESSING (IM) .. 11-8

CHAPTER 12: INSTRUCTION SET

12.1 ZS® FUNCTIONAL SUMMARY ... 12-1
12.2 Processor Flags .. 12-2
12.3 Condition Codes ... 12-4
12.4 Notation and Binary Encoding .. 12-5
12.5 ZS Instruction Summary .. 12-7
12.6 Instruction Descriptions and Formats .. 12-10

CHAPTER 13: Z1LOG EMULAToRs/SoFTWARE

13.1 ZILOG ZS® EMULATOR PRODUCTS .. 13-1
13.2 ZS CCP™ Emulator 'Quick Start" ... 13-2
13.3 ZS CCP™ Emulator Package Contents 13-3
13.4 ZS6CCPOOZEM Emulator .. 13-4
13.5 ZS6CCPOOZAC Emulator Kit ... 13-5
13.6 ZS6C1200ZEM Emulator ... 13-6
13.7 ZS6C5000ZEM Emulator ... 13-7
13. 8 Software .. 13-8
13.9 Accessing Register Memory ... 13-8
13.10 Accessing Program and External Data Memory .. 13-12
13.11 BIT Manipulations .. 13-13
13.11.1 Test Under Mask (TM) .. 13-14
13.11.2 Test Complement Under Mask .. 13-14
13.12 Stack Operations ... 13-15
13.13 Interrupts ... 13-16

iii

CHAPTER TITLE AND SUBSECTIONS

m' MICROCONTROLWIS
USER'S MANUAL

PAGE

13.14 Timer/Counter Functions ... 13-20
13.15 1/0 Functions ... 13-29
13. 16 Arithmetic Routines ... 13-37
13.17 Conclusion .. 13-42

CHAPTER 14: THIRD-PARTY SuPPoRT TooLS

14.1 Third-Party Support-Emulators/Programmers .. 14-1
14.2 Third-Party Support-Assemblers/C Compilers ... 14-1

iv

II. ZILOG zr SOFTWARE

ASM zae CROSS ASSEMBLER USER'S GUIDE

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 1: OVERVIEW

'ZS' MlcRocoNTROUERS
USEA'S MANUAL

PAGE

1.1 Introduction ... 1-1
1.2 Assembler Overview ... 1-2
1.3 Relocation and Linking .. 1-3

CHAPTER 2: ASSEMBLY LANGUAGE SYNTAX

2.1 Introduction ... 2-1
2.2 Symbolic Notation ... 2-1
2.3 Operations and Operands .. 2-6
2.4 Comments ... 2-6
2.5 Arithmetic Expressions .. 2-7
2.6 Expressions and Operators ... 2-7
2. 7 Constants .. 2-10
2.8 Location Counter ... 2-11

CHAPTER 3: PSEUDO-OPS

3.1 Introduction ... 3-1
3.2 Relocation Pseudo-Ops .. 3-1
3.3 Label Definition Pseudo-Ops .. 3-3
3.4 Module and Section Pseudo-Ops .. 3-6
3.5 General Data Definition Operation ... 3-8
3.6 Conditional Assembly Pseudo-Ops ... 3-12
3.7 Assembler Control Pseudo-Ops .. 3-13

CHAPTER 4: MACROS

4.1 General Description .. 4-1
4.2 MACRO or String MACRO .. 4-2
4.3 PROC or Procedure MACRO .. 4-3
4.4 Special MACRO Pseudo-Ops ... 4-4
4.5 Special MACRO Operators ... 4-6

CHAPTER 5: PROGRAM INVOCATION

5.1 Assembler Command Lines and Options .. 5-1
5.2 Listing Format ... 5-2
5.3 Program Termination ... 5-2

APPENDICES

Appendix A. Pseudo-Op Summary ... A-1
Appendix 8. Special Symbols ... B-1
Appendix C. ASCII Character Set ... C-1
Appendix D. Error Messages and Explanations ... D-1
Appendix E. Program Example ... E-1

v

't'2H.!16

ZILOG UNIVERSAL OBJECT FILE UTILITIES USER'S GUIDE

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 1: INTRODUCTION

ZS' MICROCONTROLLERS
USER'S MANUAL

PAGE

1.1 Overview ... 1-1
1.2 Utilities Description ... 1-2
1.3 Utility Invocation .. 1-6

CHAPTER 2: MCONV

2.1 Introduction ... 2-1
2.2 Command Syntax and Options ... 2-1

CHAPTER 3: MDUMP

3.1 Introduction ... 3-1
3.2 Command Syntax and Options ... 3-1
3.3 Display Formats and Examples .. 3-2

CHAPTER 4: MLIB
4.1 Introduction ... 4-1
4.2 Command Syntax and Options ... 4-1
4.3 Examples ... 4-2

CHAPTER 5: MLINK
5.1 Introduction ... 5-1
5.2 Command Line Syntax and Options .. 5-4
5.3 Constraints .. 5-13
5.4 Using MUNK: Some Examples ... 5-14

CHAPTER 6: MLIST
6.1 Introduction ... 6-1
6.2 Command Syntax and Options ... 6-1
6.3 USAGE, OUTPUT FORMAT AND EXAMPLES ... 6-1

CHAPTER 7: MLIST
7.1 Introduction ... 7-1
7.2 Command Syntax and Options ... 7-1
7.3 Operation .. 7-2
7.4 Using MLOAD: Some Examples .. 7-3

CHAPTER 8: MLORDER
8.1 Introduction .. , 8-1
8.2 Command Syntax and Options ... 8-1

CHAPTER 9: MMM

9.1 Introduction ... 9-1
9.2 Command Syntax and Options ... 9-1
9.3 Output Format and Examples ... 9-1

vi

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 10: PROTOCOL

ZP MICROCOHIROLLERS
USER's l.fANUAL

PAGE

10.1 Introduction ... 10-1
10.2 Command Syntax and Options ... 10-1
10.3 Using PROTOCOL: Some Examples .. 10-2

CHAPTER 11: OTHER PROGRAMS

11 . 1 MAR .. 11-1
11.2 M2A ... 11-1
11.3 MUIMAGE ... 11-2

APPENDICES

Appendix A. MUFOM File Format ... A-1
Appendix B. Tektronix Hex Format .. B-1
Appendix C. Intel Hex Format ... C-1
Appendix D. Error Messages .. D-1

Glossary ... G-1

Ill. ADDITIONAL INFORMATION

GENERAL TERMS AND CoNDmoNs .. T-1

ZILOG SALES OFFICES, REPRESENTATIVES, AND DISTRIBUTORS ... Z-1

ZILOG LITERATURE GUIDE .. L-1

vii

ZS® Mlcrocontroller II
Technical Description

ft'2i1 In.,

1.1 ZS MCU FAMILY OVERVIEW
The Zilog Z89 microcontroller product line continues to
expand with new product introductions. Zilog MCU prod­
ucts are targeted for cost-sensitive, high-volume applica­
tions including consumer, automotive, security, and HVAC.
It includes ROM-based products geared for high-volume
production (where software is stable) and one-time pro­
grammable (OTP) equivalents for prototyping as well as
volume production where time to market or code flexibility
is critical (Table 1-1). A variety of packaging options are
available including plastic DIP, SOIC, PLCC, and QFP.

1.1.1 Key Product Line Features

• General-Purpose Register (GPR) Fiie Architecture:
Every RAM register acts like an accumulator, speeding
instruction execution and maximizing coding efficiency.
Working register groups allow fast context switching.

• Flexible 1/0: 1/0 byte, nibble, and/or bit programmable
as inputs or outputs. Outputs are software
programmable as open-drain or push-pull on a port
basis. Inputs are Schmitt-triggered with auto latches
to hold unused inputs at a known voltage state.

• Analog Inputs: Three input pins are software
programmable as digital or analog inputs. When in the
analog mode, two comparator inputs are provided with
a common reference input. These inputs are ideal for
a variety of common functions, including threshold
level detection, analog-to-digital conversion, and short
circuit detection. Each analog input provides a unique
maskable interrupt input.

• Tlmer/Counter(T/C): The T/C consists of a
programmable 6-bit prescaler and 8-bit down counter,
with maskable interrupt upon end-of-count. Software
controls TIC load/start/stop, countdown read (at any
time on the fly), and maskable end-of-count interrupt.
Special functions available include T1N (external counter
input, external gate input, or external trigger input) and
Tour (external access to timer output or the internal
system clock.) These special functions allow accurate
hardware input pulse measurement and output
waveform generation.

USER'S MANUAL

CHAPTER 1
DISCRETE Z8® PRODUCT OVERVIEW

A generalized ZB MCU block diagram is shown in
Figure 1-1. The same on-chip peripherals are used across
the MCU product line with the primary differences being
the amount of ROM/RAM, number of 1/0 lines present, and
packaging/temperature ranges available. This allows
code written for one MCU device to be easily ported to
another family member.

• Interrupts: There are six vectored interrupt sources
with software-programmable enable and priority for
each of the six sources.

• Watch-Dog Timer (WOT): An internal WOT circuit is
included as a fail-safe mechanism so that if software
strays outside the bounds of normal operation, the
WOT will timeout and reset the MCU. To maximize
circuit robustness and reliability, the default WOT clock
source is an internal RC circuit (isolated from the
device clock source).

• Auto Reset/Low-Voltage Protection: All family
devices have internal Power-On Reset. ROM devices
add low-voltage protection. Low-voltage protection
ensures the MCU is in a known state at all times (in
active RUN mode or RESET) without external hardware
(or a device reset pin).

• Low·EMI Operation: Mode is programmable via
software or as a mask option. This new option provides
for reduced radiated emission via clock and output
drive circuit changes.

• Low-Power: CMOS with two standby modes: STOP
and HALT.

• Full ZS Instruction Set: Forty-eight basic instructions,
supported by six addressing modes with the ability to
operate on bits, nibbles, bytes, and words.

1-1

II

<tl21LCE

1-2

Output Input

Counter/
Timers (2)

Interrupt
Control

Analog
Comparators

(2)

Port3

1/0
(Bit Programmable)

Vee

i
GND

i
ALU

FLAG

Register
Pointer

Register File
256X8·Bit

Porto

Address or 1/0
(Nibble Programmable)

ZS' MICROCONTAOLLERS

XTAL /AS IDS RINI /RESET

Machine Timing and
Instruction Control

RESET
WDT,POR

Prg. Memory
4096x8-Bit

Program
Counter

Port 1

Address/Data or 1/0
(Byte Programmable)

Figure 1·1. zae MCU Block Diagram

•21Ul6 '1J' MICROCONIROUSIS

1.1.2 Product Development Support

The Z8~ MCU product line is fully supported with a range of The Z86CCPOOZEM low-cost Z8 CCP™ real-time emula-
cross assemblers, C compilers, ICEBOX emulators, single tor/programmer kit was designed specifically to support
and gang OTP/EPROM programmers, and software simu- all the products outlined in Table 1-1.
la tors.

Table 1·1. Zilog General-Purpose Microcontroller Product Family

PRODUCT ROM/ l/O T/C AN INT WOT POR Vbo RC SPEED PIN
RAM IN (MHz) COUNT

Z86C03 512/60 14 2 6 F y y y 8 18

Z86C03 512/60 14 2 6 F y N y 8 18

Z86C04 11</124 14 2 2 6 F y y N 8 18

Z86E04 11</124 14 2 2 6 F y N N 8 18

Z86C06 1 K/124 14 2 2 6 p y y y 12 18

Z86E06 11</124 14 2 2 6 p y N y 12 18

Z86COS 21</124 14 2 2 6 F y y N 12 1S

Z86EOS 21</124 14 2 2 6 F y N N 12 18

ZS6C30 41</236 24 2 2 6 p y y y 12 28

Z86E30 41</236 24 2 2 6 p y N y 12 28

Z86C31 21</124 24 2 2 6 p y y y 8 28

Z86E31 21</124 24 2 2 6 p y N y 8 28

Z86C40 41</236 32 2 2 6 p y y y 12 40/44

Z86E40 41</236 32 2 2 6 p y N y 12 40/44

Note: Z86Cxx signify ROM devices; Z86Exx signify EPROM devices; F = fixed; P = programmable.

The Z86CCPOOZEM kit comes with:

• ZS CCP Emulator/Programmer Module

• 1 S-pin Target Connection Cable

• WINDOWS-based GUI Host Software

• DOS-based ZASM LINKER/LOADER

• Documentation: ZBMOBJ Linker/Loader User's Guide,
ZS Cross Assembler User's Guide, Z8 Emulator GUI
User's Guide, Discrete ZS MCU Product Specifications
Databook, and Z8 MCU Technical Manual.

A Z8 CCP Emulator Accessory Kit (Z8CCPOOZAC) is also
available and provides an RS-232 cable and power cable
along with the 28- and 40- pin ZIF sockets and 28 and 40
pin target connector cables required to emulate/program
28/40 pin devices.

1-3

II

~2iUD.,

2.1 INTRODUCTION

Four address spaces are available for the zse
microcontroller:

• The ZS Standard Register File contains addresses for
peripheral, control, all general-purpose, and all 1/0
port registers. This is the default register file
specification.

• The ZS Expanded Register File (ERF) contains

2.2 ZS STANDARD REGISTER FILE

The ZS Standard Register File totals up to 256 consecutive
bytes (Registers). The register file consists of 4 1/0 ports
(OOH-03H). 236 General-Purpose Registers (04H-EFH),
and 16 control registers (FOH-FFH). Table 2-1 shows the
layout of the register file, including register names, loca­
tions, and identifiers.

USER'S MANUAL

CHAPTER 2
ADDRESS SPACE

addresses for control and data registers for additional
peripherals/features.

• ZS External Program Memory contains addresses for
all memory locations having executable code and/or
data.

• ZS External Data Memory contains addresses for all
memory locations that hold data only, whether internal
or external.

Table 2·1. ZS Standard Register File

Hex
Address

FF
FE
FD
FC
FB
FA
F9
FB

F7
F6
F5
F4

F3
F2
Fl
FO

EF

04

03
02
01
00

Register
Description

Stack Pointer Low Byte
Stack Pointer High Byte
Register Pointer
Program Control Flags
Interrupt Mask Register
Interrupt Request Register
Interrupt Priority Register
Port 0-1 Mode Register

Port 3 Mode Register
Port 2 Mode Register
TO Prescaler
Timer/Counter O

T1 Prescaler
Timer/Counter 1
Timer Mode
Serial 1/0

General-Purpose Registers (GPR)

Port3
Port2
Port 1
Port O

Register
Identifier

SPL
SPH
RP
FLAGS
IMR
IRQ
IPR
POlM

P3M
P2M
PREO
TO

PREl
T1
TMR
SIO

R239

R4

P3
P2
Pl
PO

Note: Refer to the product specification to determine which
registers are available for use on any specific device.

2-1

El

'Z!' MICROCONTROLl.ERS

2.2 ZS STANDARD REGISTER FILE (Continued)

Registers can be accessed as either 8-bit or 16-bit regis­
ters using Direct, Indirect, or Indexed Addressing. All 236
general-purpose registers can be referenced or modified
by any instruction that accesses an 8-bit register, without
the need for special instructions. Registers accessed as
16 bits are treated as even-odd register pairs (there are
118 valid pairs). In this case, the data's Most Significant
Byte (MSB) is stored in the even numbered register, while
the Least Significant Byte (LSB) goes into the next higher
odd numbered register (Figure 2-1).

MSB LSB

Rn Rn+1

n = Even Address

Figure 2·1. 16·Blt Register Addressing

By using a logical instruction and a mask, individual bits
within registers can be accessed for bit set, bit clear, bit
complement, or bit test operations. For example, the
instruction AND R1 S, MASK performs a bit clear operation.
Figure 2-2 shows this example.

ANDR15, DFH ;Clear Bit 5 of Working Register 15

I 0 I 1 I 0 I 1 I 0 I 0 I 0 I 0 I R15

Figure 2·2. Accessing Individual Bits (Example)

When instructions are executed, registers are read when
defined as sources and written when defined as destina­
tions. All General-Purpose Registers function as accumu­
lators, address pointers, index registers, stack areas, or
scratch pad memory.

2-2

2.2.1 General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the
device is powered up. The registers keep their last value
after any reset, as long as the reset occurs in the Vee
voltage-specified operating range. It will not keep its last
state from a V Lv reset if V cc drops below 1.8v.

Note: Registers in Bank EO-EF may only be accessed
through the working register and indirectaddressing modes.
Direct access cannot be used because the 4-bit working
register address mode already uses the format [E I dst].
where dst represents the working register number from OH
to FH.

2.2.2 RAM Protect

The upper portion of the register file address space SOFH
to EFH (excluding the control registers) may be protected
from reading and writing. The RAM Protect bit option is
mask-programmable and is selected by the customer
when the ROM code is submitted. After the mask option is
selected, the user activates this feature from the internal
ROM code to turn off/on the RAM Protect by loading either
a 0 or 1 into the IMR register, bit D6. A 1 in D6 enables RAM
Protect. Only devices that use registers 80H to EFH offer
this feature.

2.2.3 Working Register Groups

ZS® instructions can access S-bit registers and register
pairs (16-bit words) using either 4-bit or 8-bit address
fields. 8-bitaddress fields refer to the actual address of the
register. For example, Register SSH is accessed by calling
upon its 8-bit binary equivalent, 01011000 (SSH).

With 4-bit addressing, the register file is logically divided
into 16 Working Register Groups of 16 registers each, as
shown in Table 2-2. These 16 registers are known as
Working Registers. A Register Pointer (one of the control
registers, FDH) contains the base address of the active
Working Register Group. The high nibble of the Register
Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit
address of the Working Register is combined within the
upper four bits (high nibble) of the Register Pointer, thus
forming the 8-bit actual address. Figure 2-3 illustrates this
operation. Since working registers are typically specified
by short format instructions, there are fewer bytes of code
needed, which reduces execution time. In addition, when
processing interrupts or changing tasks, the Register
Pointer speeds context switching. A special Set Register
Pointer (SRP) instruction sets the contents of the Register
Pointer.

ZS' MICROCONTROLLERS

Table 2·2. Working Register Groups

Register Pointer Working Actual
(FDH) Register Group Registers

High Nibble (HEX) (HEX)

II 1111(B) F FO-FF
1110(B) E EO-EF
1101(B) D DO-OF
1100(B) c CO-CF
1011 (B) B BO-BF

1010(B) A AO-AF
1001(B) 9 90-9F
1000(B) 8 80-BF
0111(B) 7 70-7F
0110(B) 6 60-6F

0101(B) 5 50-SF
0100(8) 4 40-4F
0011 (8) 3 30-3F
0010(8) 2 20-2F
0001(8) 1 10-1F
0000(8) 0 00-0F

I O I 1 I 1 I 1 I 0 I 0 I 0 I 0 I Register Pointer (FDH), Standard Register File

I 0 I 1 I 1 I 0 I 1 I 1 I 1 I 0 I INC R6 (Instruction, Short Format)

0 1 0 1 O Actual Register Address (76H)

Figure 2·3. Working Register Addressing Examples

2-3

1.8' MICROCONTROLLERS

I r7 r6 rs r4 I r3 r2 r1 rO I ~~ster Pointer)

The upper nibble of the register file address
provided by the register pointer specHies
the active working-register group.

:---~ :: I Working Register Group F

• EF I

:--- I
• 80
' 7F :---
• 70

. I

• 6F

60
SF .. __ .
50
4F

40
3F Specified Working -+-

The lower nibble
of the register
file address
provided by the
instruction points
to the specified
register.

30
Register Group

2F

20
IF

10
Working Register Group 1 1 R15toRO

OF
Working Register Group 0 R15to R4

R3toRO ~-----------------
00 VO Ports

Figure 2-4. Register Pointer

Note: The full register file is shown. Please refer to the selected device product specification for actual file size.

2.2.4 Error Conditions

Registers in the ZS® Standard Register File must be cor­
rectly used because certain conditions produce inconsis­
tent results and should be avoided.

• Registers F3H and F5H-F9H are write-only registers. If
an attempt is made to read these registers, FFH
is returned. Reading any write-only register will return
FFH.

• When register FDH (Register Pointer) is read, the least
significant four bits (lower nibble) will indicate the
current Expanded Register File Bank. (Example: 0000
indicates the Standard Register File, while 1010
indicates Expanded Register File Bank A.)

• When Ports 0 and 1 are defined as address outputs,
registers OOH and 01H will return 1s in each address
bit location when read.

2-4

• Writing to bits that are defined as timer output, serial
output, or handshake output will have no effect.

• The ZS instruction DJNZ uses any general-purpose
working register as a counter.

• Logical instructions such as OR and AND require that
the current contents of the operand be read. They
therefore will not function properly on write-only
registers.

• The WDTMR register must be written within the first 64
internal system clocks (SCLK) of operation after a
reset.

2.3 ZS EXPANDED REGISTER FILE

The standard register file of the ZB® has been expanded to
form 16 Expanded Register File (ERF) Banks (Figure 2-5).
Each ERF Bank consists of up to 256 registers (the same
amount as in the Standard Register File) that can then be

REGISTER POINTER

11 1 •I •I •I •I •I •I •I
Working Regis~ ~anded Register

Gro!!i.Pointer Gr°-!m_Pointer

Z8 Register File

FF
FO

'---t;I

ZS' MICROCONTROLLERS

divided into 16 Working Register Groups. This expansion
allows for access to additional feature/peripheral control
and data registers.

EXPANDED REGISTER FILE
BANK(F)

(F)OF WDTMR

_!BOE ""'""""' (F)OO ""'"""" ..JEl..OC --..J!:l.08 SMA

(F)OA --(F)09 -_nos
(F)07 """"""

..fil.06
_ill05 -..fil.04 -(F)03 -(F)02 -(F)01 -(F)OO POON

jj(~-~ BANK(C)

-;<:10F -
(C)OC Rusrwd

..J:V (C) OD Resarvad

__!9_0C

.J9.0B -(C)M -(C)09 -(2L_06 """"'""]9_07 -
N~=

--OF
00 _Jf:)04 -{C)o.l """"'""

_Jf:)02 SCON

_Jf:)01 RXBUF

(C)OO SCOMP

EXRllNDED REGISTER FILE
BANK(O)

JiOF GPR

(Ql_OE GPR

~D GPR

..J!!LOC GPR

(Ql_OB GPR

_AOA GPR

_A09 GPR

1£1_06 GPR

~7 GPR

..Jm..06
GPR

~·
GPR

_A04 GPR

(0)03 P3

J!!)_02 P2

~·
P1

(0)00 Po

Figure 2-5. Expanded Register File Architecture

Note: The fully implemented register file is shown. Please refer to the specific product specification for actual register file architecture
implemented.

2-5

Currently, three out of the possible sixteen Z8<1t ERF Banks
have been implemented. ERF BankO, also known as the ZB
Standard Register File, has all 256 bytes defined (Figure 2-
1). Only Working Register Group 0 (register addresses
OOH to OFH) have been defined for ERF Bank C and ERF
Bank F (Table 2-4). All other working register groups in ERF
Banks C and F, as well as the remaining thirteen ERF
Banks, are not implemented. All are reserved for future
use.

When an ERF Bank is selected, register addresses OOH to
OFH access those sixteen ERF Bank registers - in effect
replacing the first sixteen locations of the ZB Standard
Register File.

For example, if ERF Bank C is selected, the Z8 Standard
Registers OOH through OFH are no longer accessible.
Registers OOH through OFH are now the 16 registers from
ERF Bank C. Working Register Group 0. No other ZB
Standard Registers are effected since only Working Reg­
ister Group 0 is implemented in ERF Bank C.

Access to the ERF is accomplished through the Register
Pointer (FDH). The lower nibble of the Register Pointer
determines the ERF Bank while the upper nibble deter-

Table2-3.

Register Pointer
(FDH)

Low Nibble Hex

OOOO(B) 0
0001(B) 1
0010(B) 2
OOll(B) 3
0100(B) 4

0101(B) 5
0110(B) 6
0111(B) 7
1000(B) 8

1001{B) 9
1010(B) A
1011(B) B
11 OO(B) c
1101(B) D
1110(B) E
1111(B) F

ZS' MICROCONTROLLERS

ERF Bank Address

Register File

za@ Standard Register File •
Expanded Register File Bank 1
Expanded Register File Bank 2
Expanded Register File Bank 3
Expanded Register File Bank 4

Expanded Register File Bank 5
Expanded Register File Bank 6
Expanded Register File Bank 7
Expanded Register File Bank 8

Expanded Register File Bank 9
Expanded Register File Bank A
Expanded Register File Bank B
Expanded Register File Bank C

Expanded Register File Bank D
Expanded Register File Bank E
Expanded Register File Bank F

mines the Working Register Group within the register file Note: The ZS Standard Register File is equivalent to Expanded
(Figure 2-6). Register File Bank 0.

0 1 1 1 1 0 1 0

Working Expanded
Register Register
Group Bank

Selects ERF Bank A(H),
Working Register Group 7(H)

Figure 2-6. Register Pointer (FDH) Example

The value of the lower nibble in the Register Pointer (FDH)
corresponds to the ERF Bank identification. Table 2.3
shows the lower nibble value and the register file assigned
to it.

2-6

The upper nibble of the register pointer selects which
group of 16 bytes in the Register File, out of the full 256, will
be accessed as working registers.

For example:
(See Figure 2-4)

R253 RP = OOH ;ERF Bank 0, Working Reg. Group 0.

If:

RO = Port 0 = OOH
R1 = Port 1 = 01 H
R2 = Port 2 = 02H
R3 = Port 3 = 03H
R11 =GPROBH
R15 = GPR OFH

R253 RP = OFH ;ERF Bank F, Working Reg. Group 0.

If:

RO = PCON = OOH
R1 = Reserved = 01 H
R2 = Reserved = 02H
R11 = SMR = OBH
R15 = WDTMR = OFH

R253 RP= FFH ;ERF Bank F, Working Reg. Group F.
OOH= PCON
RO = SIO 01 H= Reserved
R1 = TMR 02H= Reserved

R2 = T1 OBH= SMR

R15 = SPL OFH = WDTMR

Note that since enabling an ERF Bank (C or F) only
changes register addresses OOH to OFH, the working
register pointer can be used to access either the selected
ERF Bank (Bank C or F, Working Register Group 0) or the
ZB Standard Register File (ERF Bank 0, Working Register
Groups 1 through F).

Note: When an ERF Bank other than Banko is enabled, the first
16 bytes of the Z8 Standard Register File {1/0 ports 0 to 3, Groups
4 to F) are no longer accessible (the selected ERF Bank, Regis­
ters OOH to OFH are accessed instead}. It is important to re­
initialize the Register Pointer to enable ERF Bank 0 when these
registers are required for use.

The SPI register is mapped into ERF Bank C. Access is
easily done using the following example:

LD

LD
LD
LD

RP,#OCH

R2,#xx
R1, #xx
RP,#OOH

;Select ERF Bank C working
;register group 0 for access.
;access SCON
;access RXBUF
;Select ERF Bank 0 so 1/0 ports
;are again accessible.

Table 2-4. Z8 Expanded Register File Bank Layout

Expanded
Register File

Bank ERF

F(H)

E(H)

D(H)

C(H)

B(H)

A(H)

9(H)

PCON, SMR, WOT.,
(OOH, OBH, OFH),

Working Register Group 0
only implemented.

Not Implemented
(Reserved)

Not Implemented
(Reserved)

SPI Registers: SCOMP,
RXBUF,

SCON (OOH, 01H, 02H),
Working Register Group 0

only implemented.

Not Implemented
(Reserved)

Not Implemented
(Reserved)

Not Implemented
(Reserved)

B(H) Not Implemented
(Reserved)

7(H) Not Implemented
(Reserved)

6(H) Not Implemented
(Reserved)

5(H) Not Implemented
(Reserved)

4(H) Not Implemented
(Reserved)

3(H) Not Implemented
(Reserved)

2(H) Not Implemented
(Reserved)

1 (H) Not Implemented
(Reserved)

O(H) ZB Ports 0, 1, 2, 3,
and General-Purpose Registers

04H to EFH, and control registers
FOH toFFH.

Please refer to the specific product specification to deter­
mine the above registers are implemented.

2-7

II

2.4 Z8 CONTROL AND PERIPHERAL
REGISTERS

2.4.1 Standard Z8 Registers

The standard Z88 control registers govern the operation of
the CPU. Any instruction which references the register file
can access these control registers. Available control regis­
ters are:

• Interrupt Priority Register (IPR)
• Interrupt Mask Register (IMR)
• Interrupt Request Register (IRQ)
• Program Control Flags (FLAGS)
• Register Pointer (RP)
• Stack Pointer High-Byte (SPH)
• Stack Pointer Low-Byte (SPL)

The za uses a 16-bit Program Counter (PC) to determine
the sequence of current program instructions. The PC is not
an addressable register.

Peripheral registers are used to transfer data, configure the
operating mode, and control the operation of the on-chip
peripherals. Any instruction that references the register file
can access the peripheral registers. The peripheral regis­
ters are:

• Serial 1/0 (SIO)

• Timer Mode (TMR)

• Timer/Counter 0 (TO)

• TO Prescaler (PREO)

• Timer/Counter 1 (T1)

• T1 Prescaler (PRE1)

• Port 0-1 Mode (P01 M)

• Port 2 Mode (P2M)

• Port 3 Mode (P3M)

In addition, the four port registers (PO-P3) are considered
to be peripheral registers.

2-8

'a- MICROCONTROLWIS

2.4.2 Expanded Z8 Registers

The expanded ZB control registers govern the operation of
additional features or peripherals. Any instruction which
references the register file can access these registers.

The ERF contains the control registers for WOT, Port
Control, Serial Peripheral Interface (SPI), and the SMR
functions. Figure 2-4 shows the layout of the Register
Banks in the ERF. Register Bank C in the ERF consists of
the registers for the SPI. Table 2-5 shows the registers
within ERF Bank C, Working Register Group 0.

Table 2·5. Expanded Register Fiie Register Bank C,
WRGroupO

Register Working
Register Function Register

F Reserved R15
E Reserved R14
D Reserved R13
c Reserved R12

8 Reserved R11
A Reserved R10
9 Reserved R9
8 Reserved RB

7 Reserved R7
6 Reserved R6
5 Reserved R5
4 Reserved R4

3 Reserved R3
2 SPI Control (SCON) R2
1 SPI Tx/Rx Data (RxBuf) R1
0 SPI Compare ($COMP) RO

•21LC16
Working Register Group 0 in ERF Bank 0 consists of the
registers for ZS General-Purpose Registers and ports.
Table 2-6 shows the registers within this group.

Table 2-6. Expanded Register File Bank o,
WRGroupO

Register Working
Register Function Register

F General-Purpose Register R15
E General-Purpose Register R14
D General-Purpose Register R13
c General-Purpose Register R12

B General-Purpose Register R11
A General-Purpose Register R10
9 General-Purpose Register R9
s General-Purpose Register RS

7 General-Purpose Register R7
6 General-Purpose Register R6
5 General-Purpose Register RS
4 General-Purpose Register R4

3 Port3 R3
2 Port2 R2
1 Port 1 R1
0 Porto RO

7JI MICROCONlROl.t.ERS

Working Register Group 0 in ERF Bank F consists of the
control registers for STOP mode, WOT, and port control.
Table 2-7 shows the registers within this group.

Table 2·7. Expanded Register Fiie Bank F,
WRGroupO

Register Working
Register Function Register

F WDTMR R15
E Reserved R14
D Reserved R13
c Reserved R12

B SMR R11
A Reserved R10
9 Reserved R9
8 Reserved RB

7 Reserved R7
6 Reserved R6
5 Reserved R5
4 Reserved R4

3 Reserved R3
2 Reserved R2
1 Reserved R1
0 PCON RO

The functions and applications of the control and peripheral
registers are described in subsequent sections of this
manual.

2-9

II

2.5 PROGRAM MEMORY

The first 12 bytes of Program Memory are reserved for the
interrupt vectors (Figure 2-7). These locations contain six
16-bit vectors that correspond to the six available inter­
rupts. Address 12 up to the maximum ROM address
consists of on-chip mask-programmable ROM. See the
product data sheet for the exact program, data, register
memory size, and address range available. At addresses
outside the internal ROM, the ZBQll executes external pro­
gram memory fetches through Port 0 and Port 1 in Ad­
dress/Data mode for devices with Port 0 and Port 1
featured. Otherwise, the program counter will continue to
execute NOPs up to address FFFFH, roll over to OOOOH,
and continue to fetch executable code (Figure 2-7).

7J' MICROCONTROLilRS

The internal program memory is one-time programmable
(OTP) or mask programmable dependent on the specific
device. A ROM protect feature prevents "dumping" of
the ROM contents by Inhibiting execution of the LDC,
LDC/, LDE, and LDEI Instructions to Program Memory
In all modes. ROM look-up tables cannot be used with
this feature.

The ROM Protect option is mask-programmable, to be
selected by the customer when the ROM code is submit­
ted. For the OTP ROM, the ROM Protect option is an OTP
programming option.

65 535
External

2-10

6 409
40 95

Location of
First Byte of

Instruction
Executed

After RESET

Interrupt
Vector

(Lower Byte)

Interrupt
Vector

(Upper Byte)

............
12

11

10

9

8

7

6

5

...J--1
3

2

1

0

ROM and RAM

On-Chip
ROM "'- ----------
IRQ5

IRQ5

IRQ4

IRQ4

IRQ3

IRQ3

~ IRQ2

~ IRQ2

IRQ1

IRQ1

IRQO

IRQO

Figure 2-7. Z8 Program Memory Map

2.6 ZS EXTERNAL MEMORY

The ZS411, in some cases, has the capability to access
external program memory with the 16-bit Program Counter.
To access external program memory the ZS offers multi­
plexed address/data lines (AD7-ADO) on Port 1 and ad­
dress lines (A 15-AS) on Port 0. This feature only applies to
devices that offer Port 0 and Port 1 . The maximum external
address is FFFF. This memory interface is supported by
the control lines /AS (Address Strobe}, JDS (Data Strobe),
and RN/ (ReadNo/rite). The origin of the external program
memory starts after the last address of the internal ROM.
Figure 2-S shows an example of external program memory
for the ZS.

65535

'lJ' MICROCONTROLLERS

2.6.1 External Data Memory {/DM)

The ZS, in some cases, can address up to 60 Kbytes of
external data memory beginning at location 4096. External
Data Memory may be included with, or separated from, the
external Program Memory space. /OM, an optional 1/0
function that can be programmed to appear on pin P34, is
used to distinguish between data and program memory II
space. The state of the /OM signal is controlled by the type
of instruction being executed. An LDC opcode references
Program (/OM inactive) Memory, and an LOE instruction
references Data (/OM active Low) Memory. The user must
configure Port 3 Mode Register (P3M) bits 03 and 04 for
this mode.

External
Memory

4096
4095

0

Not Addressable

Figure 2·8. External Memory Map

Note: For additional information on using external memory, see Chapter 10 of this manual. For exact memory addressing options
available, see the device product specification.

2-11

(tl2JIJ:E

2.7 Z8 STACKS

Stack operations can occur in either the zs• Standard
Register File or external data memory. Under software
control, Port 0-1 Mode register (FSH) selects the stack
location. Only the General-Purpose Registers can be used
for the stack when the internal stack is selected.

The register pair FEH and FFH form the 16-bit Stack Pointer
(SP), that is used for all stack operations. The stack
address is stored with the MSB in FEH and LSB in FFH
(Figure 2-9).

FFH I LOWER.... I - Low

FEH I
- UPPER Byte

Stack Pointer High

Figure 2-9. Stack Pointer

PCL

'II MICROCONTROWRS

The stack address is decremented prior to a PUSH opera­
tion and incremented after a POP operation. The stack
address always points to the data stored on the top of the
stack. The zs• stack is a return stack for CALL instructions
and interrupts, as well as a data stack.

During a CALL instruction, the contents of the PC are saved
on the stack. The PC is restored during a RETURN instruc­
tion. Interrupts cause the contents of the PC and Flag
registers to be saved on the stack. The IRET instruction
restores them (Figure 2-10).

When the ZS is configured for an internal stack (using the
ZS Standard Register File), register FFH serves as the
Stack Pointer. The value in FEH is ignored. FEH can be
used as a general-purpose register in this case only.

An overflow or underflow can occur when the stack ad­
dress is incremented or decremented during normal stack
operations. The programmer must prevent this occur­
rence or unpredictable operation will result.

. .
PCL

PCH

Top of Stack - PCH Top of Stack - FLAGS

2-12

Stack Contents
After a Call
Instruction

Stack Contents
After an

Interrupt Cycle

Figure 2-10. Stack Operations

.2iUd:i

3.1 CLOCK

The ZS® derives its timing from on-board clock circuitry
connected to pins XTAL 1 and XT AL2. The clock circuitry
consists of an oscillator, a divide-by-two shaping circuit,
and a clock buffer. Figure 3-1 illustrates the clock circuitry.
The oscillator's input is XT AL 1 and its output is XTAL2. The
clock can be driven by a crystal, a ceramic resonator, LC
clock, RC, or an external clock source.

3.1.1 Frequency Control

In some cases, the ZS has an EPROM/OTP option or a
Mask ROM option bit to bypass the divide-by-two flip flop
in Figure 3-1 . This feature is used in conjunction with the

3.2 CLOCK CONTROL

In some cases, the ZS offers software control of the internal
system clock via programming register bits. The bits are
located in the Stop-Mode Recovery Register in Expanded
Register File Bank F, Register OBH. This register selects

SMR (F)OB

USER'S MANUAL

CHAPTER3
CLOCK

low EMI option. When low EMI is selected, the device
output drive and oscillator drive is reduced to approxi­
mately 25 percent of the standard drive and the divide-by­
two flip flop is bypassed such that the XTAL clock fre­
quency is equal to the internal system clock frequency. In
this mode, the maximum frequency of the XTAL clock is 4
MHz. Please refer to specific product specification for
availability of options and output drive characteristics.

XTAL1

XTAL2
osc +2

Buffer

Figure 3-1. ZS Clock Circuit

Internal
Clock

the clock divide value and determines the mode of Stop­
Mode Recovery (Figure 3-2). Please refer to the specific
product specification for availability of this feature/regis­
ter.

lml~lool~lool~l~lool
I SCLKITCLK Divide by 16

0 OFF""
1 ON
External Clock Divide Mode by 2
0 ~ SCLKITCLK = XTAL/2"
1 = SCLKITCLK = XTAL

• Default setting after RESET.
•• Default setting after RESET and STOP-Mode Recovery.

Figure 3·2. Stop-Mode Recovery Register
(Write-Only Except 07, Which is Read-Only)

3-1

El

~211.£16

3.2.1 SCLK/TCLK Divide-By-16 Select (DO)

This bit of the SMR controls a divide-by-16 prescalar of
SCLK!TCLK. The purpose of this control is to selectively
reduce device power consumption during normal proces­
sor execution (SCLK control) and/or HALT mode (where
TCLK sources counter/timers and interrupt logic).

3.2.2 External Clock Divide-By-Two (01)

This bit can eliminate the oscillator divide-by-two circuitry.
When this bit is 0, SCLK (System Clock) and TCLK (Timer
Clock) are equal to the external clock frequency divided by
two. The SCLK{TCLK is equal to the external clock fre­
quency when this bit is set (01 = 1). Using this bit, together
with 07 of PCON, further helps lower EMI (07 (PCON) = 0,
01 (SMR) = 1). The default setting is O. Maximum fre­
quencyis4MHzwith 01 = 1 (Figure3-3}.

00(~

Ext er nal a ock

Figure 3·3. External Clock Circuit

3-2

Z8" MICROCONTROLLERS

3.3 Oscillator Control

In some cases, the ZB® offers software control of the
oscillator to select low EMI drive or standard drive. The
selection is done by programming bit 07 of the Port
Configuration (PCON) register (Figure 3-4). The PCON
register is located in Expanded Register File Bank F,
Register OOH.

A 1 in bit 07 configures the oscillator with standard drive,
while a 0 configures the oscillator with Low EMI drive. This
only affects the drive capability of the oscillator and does
not affect the relationship of the XT AL clock frequency to
the internal system clock (SCLK).

PCON (FH) OOH

Low EMI Oscillator
0 LowEMI
1 Standard

Figure 3·4. Port configuration register (PCON
(Write-Only)

3.4 OSCILLATOR OPERATION

The Z89 uses a Pierce oscillator with an internal feedback
(Figure 3-5). The advantages of this circuit are low cost,
large output signal, low-power level in the crystal, stability
with respect to V cc and temperature, and low impedances
(not disturbed by stray effects).

One draw back is the need for high gain in the amplifier to
compensate for feedback path losses. The oscillator am­
plifies its own noise at start-up until it settles at the fre­
quency that satisfies the gain/phase requirements Ax B =
1, where A = V JV1 is the gain of the amplifier and B = V /V 0

is the gain of the feedback element. The total phase shift
around the loop is forced to zero (360 degrees). Since V1N

must be in phase with itself, the amplifier/inverter provides
180 degree phase shift and the feedback element is forced
to provide the other 180 degrees of phase shift.

R1 is a resistive component placed from output to input of
the amplifier. The purpose of this feedback is to bias the
amplifier in its linear region and to provide the start-up
transition.

Capacitor C2 combined with the amplifier output resis- I
tance provides a small phase shift. It will also provide some
attenuation of overtones.

Capacitor C1 combined with the crystal resistance pro­
vides additional phase shift.

c1 and c2 can affect the start-up time if they increase
dramatically in size. As C1 and C2 increase, the start-up
time increases until the oscillator reaches a point where it
does not start up any more.

It is recommended for fast and reliable oscillator start-up
(over the manufacturing process range) that the load
capacitors be sized as low as possible without resulting in
overtone operation.

r------------.
I Z8 I

: : Vss
I
I
I R1 Vo
I
I

Figure 3-5. Pierce Oscillator with Internal Feedback Circuit

3-3

3.4.1 Layout

Traces connecting crystal, caps, and the Z8411 oscillator
pins should be as short and wide as possible. This
reduces parasitic inductance and resistance. The compo­
nents (caps, crystal, resistors) should be placed as close
as possible to the oscillator pins of the ZB.

The traces from the oscillator pins of the IC and the ground
side of the lead caps should be guarded from all other
traces (clock, Vee• address/data lines, system ground) to
reduce cross talk and noise injection. This is usually
accomplished by keeping other traces and system ground
trace planes away from the oscillator circuit and by placing
a ZB device V55 ground ring around the traces/compo­
nents. The ground side of the oscillator lead caps should
be connected to a single trace to the ZB V58 (GND) pin. It
should not be shared with any other system ground trace
or components except at the Z8 device V58 pin. This is to
prevent differential system ground noise injection into the
oscillator (Figure 3-6).

3.4.2 Indications of an Unreliable Design

There are two major indicators that are used in working
designs to determine their reliability over full lot and tem­
perature variations. They are:

Start-up Time. If start-up time is excessive, or varies widely
from unit to unit, there is probably a gain problem. C/C2

needs to be reduced; the amplifier gain is not adequate at
frequency, or crystal Rs is too large.

3-4

ZS' MJCROCONTROLLERS

Output Level. The signal at the amplifier output should
swing from ground to V cc· This indicates there is adequate
gain in the amplifier. As the oscillator starts up, the signal
amplitude grows until clipping occurs, at which point the
loop gain is effectively reduced to unity and constant
oscillation is achieved. A signal of less than 2.5 volts peak­
to-peak is an indication that low gain may be a problem.
Either C1 or C2 should be made smaller or a low-resistance
crystal should be used.

3.4.3 Circuit Board Design Rules

The following circuit board design rules are suggested:

• To prevent induced noise the crystal and load
capacitors should be physically located as close to
the Z8411 as possible.

• Signal lines should not run parallel to the clock oscillator
inputs. In particular, the crystal input circuitry and the
internal system clock output should be separated as
much as possible.

• V cc power lines should be separated from the clock
oscillator input circuitry.

• Resistivity between XT AL 1 or XT AL2 and the other
pins should be greater than 10 Mohms.

XTAL 1

C1

Z8

XTAL2

C2

Clock Generator Circuit

SignalsA B

" (Parallel Traces
Must Be Avoided)

I
Signal C;--""'"T-.--t-

D
Z8

... -11·---~.&....<'"i 3

-=- "- (Connection to System Ground
Must Be Avoided)

Board Design Example
(1bp View)

Figure 3-6. Circuit Board Design Rules

II

3-5

3.4.4 Crystals and Resonators

Crystals and ceramic resonators (Figure 3-7) should have
the following characteristics to ensure proper oscillator
operation:

Crystal Cut
Mode
CrystalCapacitance
Load Capacitance

Resistance

AT (crystal only)
Parallel, Fundamental Mode
<7pF
10pF <CL< 220 pF,
15typical
100ohms max

Depending on operation frequency, the oscillator may
require the addition of capacitors c1 and c2 (shown in
Figures 3-7). The capacitance values are dependent on the
manufacturer's crystal specifications.

XTAL1

C1

ZB

D

Vss
XTAL2

Figure 3-7. Crystal/Ceramic Resonator Oscillator

C1

C2

Figure 3·8. LC Clock

3-6

zae MICROCONTROLLERS

In most cases, the R0 is 0 Ohms and RF is infinite. It is
determined and specified by the crystal/ceramic resona­
tor manufacturer. The R0 can be increased to decrease the
amount of drive from the oscillator output to the crystal. It
can also be used as an adjustment to avoid clipping of the
oscillator signal to reduce noise. The RF can be used to
improve the start-up of the crystal/ceramic resonator. The
Z8 oscillator already has an internal shunt resistor in
parallel to the crystal/ceramic resonator.

-!>o-1 XTAL 1

ZB

XTAL2

Figure 3-9. External Clock

It is recommended in Figures 3-7, 3-8, and 3-9 to connect
the load capacitor ground trace directly to the Vss (GND)
pin of the za@. This ensures that no system noise is injected
into the ZB clock. This trace should not be shared with any
other components except at the V ss pin of the ZS.

In some cases. the ZB XT AL 1 pin also functions as one of
the EPROM high-voltage mode programming pins or as a
special factory test pin. In this case, applying 2 V above
v on the XT AL 1 pin will cause the device to enter one of
ttf~se modes. Since this pin accepts high voltages to enter
these respective modes, the standard input protection
diode to V cc is not on XT AL 1. It is recommended that in
applications where the ZB is exposed to much system
noise, a diode from XTAL 1 to V00 be used to prevent
accidental enabling of these modes. This diode will not
affect the crystal/ceramic resonator operation .

Please note that a parallel resonant crystal or resonator
data sheet will specify a load capacitor value that is the
series combination of C1 and C2, including all parasitics
(PCB and holder).

Z8' MICROCONTROLLERS

3.5 LC OSCILLATOR.

The ZB oscillator can use a LC network to generate a XT AL
clock (Figure 3-8).

The frequency stays stable over V cc and temperature. The
oscillation frequency is determined by the equation:

1
Frequency= 2n(LCT)1/2

where Lis the total inductance including parasitics and
CT is the total series capacitance including the parasitics.

Simple series capacitance is calculated using the following
equation:

....L= 2
cT c1
C, =2CT

Sample calculation of capacitance C1 and C2 for 5.83 MHz
frequency and inductance value of 27 uH:

5.83 (10''6) =

CT= 27.6 pf

Thus C1 = 55.2 pf and C2 = 55.2 pf.

3-7

3.6 RC OSCILLATOR

In some cases, the Z89 has a RC oscillator option. Please
refer to the specific product specification for availability.
The RC oscillator requires a resistor across XT AL 1 and
XTAL2. An additional load capacitor is required from the
XTAL 1 input to V88 pin (Figure 3-9).

3-8

ZS' MICROCONTROLLERS

XTAL1

ZS

XTAL2

Figure 3-9. RC Clock

•2iua.,

4.1 RESET

This section describes the Z89 reset conditions, reset
timing, and register initialization procedures. Reset is
generated by Power-On Reset (POR), Reset Pin, Watch­
Dog Timer (WOT), and Stop-Mode Recovery.

A system reset overrides all other operating conditions and
puts the ZB into a known state. To initialize the chip's
internal logic, the /RESET input must be held Low for at
least 4 internal system clock periods. The control register
and ports are reset to their default conditions after a POR,
a reset from the /Reset pin, or Watch-Dog Timer timeout
while in RUN mode and HALT mode. The control registers

4.2 /Reset Pin, Internal POR Operation

In some cases, the ZB hardware /RESET pin initializes the
control and peripheral registers, as shown in Tables 4-1,
4-2, 4-3, and 4-4. Specific reset values are shown by 1 or
O, while bits whose states are unknown are indicated by the
letter U. The Tables 4-1, 4-2, 4-3, and 4-4 show the reset
conditions for the generic ZB.

USER'S MANUAL

CHAPTER4
RESET-WATCH-DOG TIMER

and ports are not reset to their default conditions after
Stop- Mode Recovery and WOT timeout while in STOP
mode.

While /RESET is Low, /AS is output at the internal clock rate,
/DS is forced Low, and R//W remains High. The program
counter is loaded with OOOCH. 1/0 ports and control regis­
ters are configured to their default reset state.

Resetting the ZB does not effect the contents of the
general-purpose registers.

Note: The register file reset state is device dependent. Please
refer to the selected device product specifications for register
availability and reset state.

4-1

II

ft'2iLCl6 .. MICROCONTROLLERS

Table 4-1. Sample Control and Peripheral Register Reset Values (ERF Bank 0)

Register Register
(HEX) Name

FO Serial 1/0

F1 Timer Mode

F2 Counter{Timer1

F3 T1 Prescaler

F4 Counter/TimerO

F5 TO Prescaler

F6 Port 2 Mode

F7 Port3 Mode

F8 Port 0-1 Mode

F9 Interrupt Priority

FA Interrupt Request

FB Interrupt Mask

Bits
76543210

uuuuuuuu
00000000

uuuuuuuu
uuuuuuoo
uuuuuuuu
uuuuuuuo

1 1

00000000

0 0 0 0 1

uuuuuuuu
00000000

ouuuuuuu
FC Flags U U U U U U U U

FD Register Pointer 0 0 0 0 0 0 0 0

FE Stack Pointer (High) U U U U U U U U

FF Stack Pointer (Low) U U U U U U U U

Program execution starts 5 to 1 O clock cycles after /RESET
has returned High. The initial instruction fetch is from
location COOCH. Figure 4-1 shows reset timing.

Clock

SCLK

/RESET

/AS

IDS

R//W

Comments

Counter/Timers Stopped

Single-Pass Count Mode, External Clock Source

Single-Pass Count Mode

All Inputs

Port 2 Open-Drain, P33-P30 Input, P37-P34 Output

Internal Stack, Normal Memory Timing

All Interrupts Cleared

Interrupts Disabled

First Machine Cycle

I
14-- First Instruction Fetch
I
I

Figure 4-1. Reset Timing

4-2

After a reset, the first routine executed should be one that
initializes the control registers to the required system
configuration.

The /RESET pin is the input of a Schmitt-triggered circuit.
Resetting the zs~will initialize port and control registers to
their default states. To form the internal reset line, the
output of the trigger is synchronized with the internal clock.
The clock must therefore be running for
/RESET to function. It requires 4 internal system clocks
after reset is detected for the ZS to reset the internal
circuitry. An internal pull-up, combined with an external
capacitor of 1 uf, provides enough time to properly reset
the ZS (Figure 4-2). In some cases, the ZS has an internal
POR timer circuit that holds the ZS in reset mode for a
duration (T POR) before releasing the device out of reset. On
these ZS devices, the internally generated reset drives the
reset pin low for the POR time. Any devices driving the
reset line must be open-drained in order to avoid damage
from possible conflict during reset conditions. This reset
time allows the on-board clock oscillator to stabilize.

To avoid asynchronous and noisy reset problems, the ZS
is equipped with a reset filter of four external clocks
(4TpC). If the external reset signal is less than 4TpC in
duration, no reset occurs. On the fifth clock after the reset
is detected, an internal AST signal is latched and held for
an internal

/Reset

I 1µF
10V

'lJ' MICROCONTROUERS

+SV

100kn

Figure 4-2. Example of External Power-On Reset
CircuH

register count of 1 S external clocks, or for the duration of
the external reset, whichever is longer. During the reset
cycle, IDS is held active low while /AS cycles at a rate of the
internal system clock. Program execution begins at loca­
tion OOOCH, 5-10 TpC cycles after /RESET is released. For
the internal Power-On Reset, the reset output time is
specified as T POR' Please refer to specific product specifi­
cations for actual values.

Table 4-2. Sample Expanded Register File Banko Reset Values

Register Register Bits
(HEX) Name 7 6543210 Comments

00 Port 0 u uuuuuuu Input mode, output set to push-pull

01 Port 1 u uuuuuuu Input mode, output set to push-pull

02 Port2 u uuuuuuu Input mode, output set to push-pull

03 Port 3 1 1 1 u u u u Standard Digital input and output

04-EF General- u uuuuuuu Standard Digital input and output
Purpose
Registers
04-EF

4-3

II

Register
(HEX)

00

01

02

Register
(HEX)

00

OB

OF

4-4

1.8' MICROCONTROLLERS

Table 4-3. Sample Expanded Register File Bank C Reset Values

Register Bits
Name 7 6 5 4 3 2 1 0 Comments

SPI Compare 0 0 0 0 0 0 0 0
(SCOMP)

Receive Buffer u uuuuuuu
(RxBUF)

SPI Control uuuuoooo
(SCON)

Table 4-4. Sample Expanded Register Fiie Bank F Reset Values

Register
Name

Port Configuration
(PCON)

STOP-Mode Recovery
(SMR)

Watch-Dog Timer
Mode
(WDTMR)

Bits
7 6 5 4 3 2 1 0

1 1 1 1 0

00100000

UUU01101

Comments

Comparator outputs disabled on Port 3
Port 0 and 1 output is push-pull
Port 0, 1, 2, 3, and oscillator with standard output
drive

Clock divide by 16 off
XTAL divide by 2
POR and I OR External Reset
Stop delay on
Stop recovery level is low, STOP flag is POR

512 TPC for WDT time out. WDT runs during STOP
and HALT mode, on-board RC drives WDT

WDTSelecl -----J..-----l.-r---"iimi!~~~'E'(\!j!"I (WOTMR) WOT "Dl.P SELECT

CKSouroe Select _____ ..., __

(WOTMR)

XTAL -----..i...--11
RC
osc.

2.6V Operating
VOO +)lt>llage Del.

2.6V REF.

WOT ______ __.

~RTpC

CK CLR

Stop Delay ___________ ...

Select (SMR)

256 512 1024 4096
TpC TpC TpC TpC
WOT/POR Counter Chain

Figure 4·3. Example of Z8 Reset with /RESET Pin, WDT, SMR, and POR

1J' MICROCONTROl.LERS

lntemal
RESET

4-5

tt'ZH.m
4Clock
Filter* t-----tClear

.-----tCLK

WOT Select
(WDTMR)

CLKSource
Select

(WOTMR)

XTAL

Internal
RC

osc.

2VOperaUng
Vee ~\bHage Del.

2VREF >-V
From Stop

Mode
Recovery

Source 12 ns Glitch Filter

WOT >--------'
StopOelay

Select (SMR)

SmsPOR
CLK

CLR

18 Clock RESET
Generator* RESET

WOT TAP SELECT

5ms 15ms 25ms 100ms

WOT/POR Counter Chain

Figure 4-4. Example of Z8 Reset with WDT, SMR, and POR

4-6

'1J' lllCROCONTllOLLERS

Internal
RESET

4.3 Watch-Dog Timer (WOT)

The WOT is a retriggerable one-shot timer that resets the
Z84t if it reaches its terminal count. When operating in the
RUN or HALT modes, a WOT reset is functionally equiva­
lent to a hardware /POR reset. The WOT is initially enabled
by executing the WOT instruction and refreshed on subse­
quent executions of the WOT instruction. The WOT cannot
be disabled after it has been initially enabled. Permanently
enabled WDTs are always enabled and the WOT instruc­
tion is used to refresh it. The WOT circuit is driven by an on­
board RC oscillator or external oscillator from the XTAL 1
pin. The POR clock source is selected with bit 4 of the
Watch-Dog Timer Mode register (WDTMR). In some cases,
a ZS that offers the WOT but does not have a WDTMR
register, has a fixed WOT timeout and uses the on board
RC oscillator as the only clock source. Please refer to
specific product specifications for selectability of timeout,
WOT during HALT and STOP modes, source of WOT clock,
and availability of the permanently-on WOT option.

Note: Execution of the WOT Instruction affects the Z (zero), S
(sign), and V (overflow) flags.

WOTMR (F)OF

1~1001~1~1001~1~1001

~ I ~- m .. ,., -= 00 5 512TpC
01• 15' 1024 TpC
10 25 2048 TpC
11 100 8192 TpC

WOT During HALT
0 OFF
1 ON*

..._ ____ WOT During STOP
0 OFF
1 ON*

...______ XTAL 1nNT RC Select for WOT

0 On-Board RC •
1 XTAL

'--------- Reserved (Must be 0)

• Default setting after RESET
t Must be 01 for Z88C03

Figure 4·5. Example of ZS Watch-Dog Timer Mode
Register (Write-Only)

Note: The WDTMR register is accessible only during the first 64
processor cycles from the execution of the first instruction after
Power-On Reset, Watch-Dog Reset or a Stop-Mode Recovery.
After this point, the register cannot be modified by any means,
intentional or otherwise. The WDTMR is a write-only register.

11' MICROCONTROUERS

The WDTMR is located in Expanded Register File Bank F,
register OFH. The control bits are described as follows:

WOT Time Select (01, DO). Bits 0 and 1 control a tap
circuit that determines the time-out period. Table 4-5 II
shows the different values that can be obtained. The
default value of 01 and DO are 0 and 1, respectively.

Table 4-5. Time-Out Period of the WOT

Typical
Time-Out of Time-Out of
01 DO Internal RC OSC XTALClock

0 0 5ms min
0 1 15 ms min
1 0 25msmin
1 1 100msmin

Notes:
TpC = XTAL clock cycle
The default on reset is, DO = 1 and 01 = 0.
The values given are for Vee= 5.0V.

256TpC
512TpC
1024TpC
4096TpC

See the device product specification for exact WDTMR time-out select
options available.

WOT During HALT (02). This bit determines whether or
not the WOT is active during HALT mode. A 1 indicates
active during HALT. The default is 1. A WDTtime out during
HALT mode will reset control register ports to their default
reset conditions .

WOT During STOP (03). This bit determines whether or
not the WOT is active during STOP mode. Since XT AL
clock is stopped during STOP Mode, unless as specified
below, the on-board RC must be selected as the clock
source to the POR counter. A 1 indicates active during
STOP. The default is 1. If bits 03 and 04 are both set to 1,
the WOT only, is driven by the external clock during STOP
mode. This feature makes it possible to wake up from
STOP mode from an internal source. Please refer to spe­
cific product specifications for conditions of control and
port registers when the ZB comes out of STOP mode. A
WOT time out during STOP mode will not reset all control
registers. The reset conditions of the ports from STOP
mode due to WOT time out is the same as if recovered
using any of the other STOP mode sources.

4-7

Clock Source for WOT (04). This bit determines which
oscillator source is used to clock the internal POR and WOT
counter chain. If the bit is a 1, the internal RC oscillator is
bypassed and the POR and WOT clock source is driven
from the external pin, XT AL 1. The default configuration of
this bit is o, which selects the internal RC oscillator.

Bits 5, 6 and 7. These bits are reserved.

4.4 POWER-ON·RESET (POR)

A timer circuit clocked by a dedicated on-board RC oscilla­
tor is used for the Power-On Reset (POR) timer (T POR)
function. The POR time allows V cc and the oscillator circuit
to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one
of three conditions:

1. Power fail to Power OK status (cold start).
2. STOP-Mode Recovery (if bit 5 of SMR=1).
3. WOT timeout.

Z8' MICROCONlROLLERS

V cc Voltage Comparator. An on-board voltage compara­
tor checks that V cc is at the required level to insure correct
operation of the device. Reset is globally driven if V cc is
below the specified voltage. This feature is available in
select ROM Z89 devices. See the device product specifica­
tion for feature availability and operating range.

The POR time is specified as T POR' On ZS devices that
feature a Stop-Mode Recovery register (SMR), bit5 selects
whether the POR timer is used after Stop-Mode Recovery
or by-passed. If bit 05 = 1 then the POR timer is used. If bit
5 = 0 then the POR timer is by-passed. In this case, the
Stop-Mode Recovery source must be held in the recovery
state for 5 T PC or 5 crystal clocks to pass the reset signal
internally. This option is used when the clock is provided
with an RC/LC clock. See the device product specification
for timing details.

POR (cold start) will always reset the ZS control and port
registers to their default condition. If a ZS has a SMR
register, the warm start bit will be reset to a 0 to indicate
POR.

INTOSC XTALOSC

4-8

POR
(Cold Start)

P27
(Stop Mode)

DelayUne
TPORms

18CLK
Reset Filter

Figure 4-6. Example of Z8 with Simple SMR and POR

Chip
Reset

5.1 INTRODUCTION

The ZS8 has up to 32 lines dedicated to input and output.
These lines are grouped into four S-bit ports known as Port
0, Port 1, Port 2, and Port 3. Port 0 is nibble programmable
as input, output, or address. Port 1 is byte configurable as
input, output, or address/data. Port 2 is bit programmable
as either inputs or outputs, with or without handshake and

5.1.1 Mode Registers

Each port has an associated Mode Register that deter­
mines the port's functions and allows dynamic change in
port functions during program execution. Port and Mode
Registers are mapped into the Standard Register File as
shown in Figure 5-1.

Register HEX Identifier

Port 0-1 Mode FSH P01M

Port3 Mode F7H P3M

Port2 Mode F6H P2M

Port3 03H P3

Port2 02H P2
Port 1 01H P1
Porto OOH PO

Figure 5-1. UO Ports and Mode Registers

Because of their close association, Port and Mode Regis­
ters are treated like any other general-purpose register.
There are no special instructions for port manipulation. Any
instruction which addresses a register can address the
ports. Data can be directly accessed in the Port Register,
with no extra moves.

USER'S MANUAL

CHAPTER 5
1/0 PORTS

SPI. Port 3 can be programmed to provide timing, serial
and parallel input/output, or comparator input/output.

All ports have push-pull CMOS outputs. In addition, the
push-pull outputs of Port 2 can be turned off for open-drain
operation.

5.1.2 Input and Output Register$

Each bit of Ports 0, 1, and 2, have an input register, an
output register, associated buffer, and control logic. Since
there are separate input and output registers associated
with each port, writing to bits defined as inputs stores the
data in the output register. This data cannot be read as long
as the bits are defined as inputs. However, if the bits are
reconfigured as outputs, the data stored in the output
register is reflected on the output pins and can then be
read. This mechanism allows the user to initialize the
outputs prior to driving their loads (Figure 5-2).

Since port inputs are asynchronous to the ZS internal clock,
a READ operation could occur during an input transition. In
this case, the logic level might be uncertain (somewhere
between a logic 1 and 0). To eliminate this meta-stable
condition, the ZS latches the input data two clock periods
prior to the execution of the current instruction. The input
register uses these two clock periods to stabilize to a
legitimate logic level before the instruction reads the data.

Note: The following sections describe the generic function of the
Z8 ports. Any additional features of the ports such as SPI, err.
and Stop-Mode Recovery are covered in their own section.

5-1

II

5.2 Porto

This section deals with only the 1/0 operation of Port 0. The
port's external memory interface operation is covered later

A. A
8 _8

" ...
Input

Register

D' MICROCONTROll.ERS

in this manual. Figure 5-2 shows a block diagram of Port
0. This diagram also applies to Ports 1 and 2.

A.

"
lni:>ut
Stiffer

-'.)
~ ;... .. Portl/O

Lines

Read....,....
Ec8

i----,
1--+- Internal Port TI ming

5-2

8

Write

Internal
Bus

Port

a

4

.A

J_ Handshake
1-----i t Selected

Handshake
DAV/ADY

~ Logic
~R 1--- DYi/DAV

Output _ ... O,.ut
Register ~ __) B er ~

O~ut
En le ---I

Figure S-2. Ports 0, 1, 2 Generic Block Diagram

5.2.1 General 1/0 Mode

Port 0 can be an 8-bit, bidirectional, CMOS or TTL compat­
ible 1/0 port. These eight 1/0 lines can be configured under
software control as a nibble 1/0 port (P03-POO input/output
and P07-P04 input/output), or as an address port for
interfacing external memory. The input buffers can be
Schmitt-triggered, level shifted, or a single-trip point buffer
and can be nibble programmed. Either nibble output can
be

Z8

0 n-Drain

OEN

Out

1.5 - 2.3V Hysteresis

1J' MICROCONTROLLERS

globally programmed as push-pull or open-drain. Low EMI
output buffers in some cases can be globally programmed
by the software, as an OTP program option, or as a ROM
mask option. In some, the za• has Auto Latches hardwired
to the inputs. Please refer to specific product specifica­
tions for exact input/output buffer type features that are
available (Figures 5-3a and 5-3b).

Porto

(VOorA15-A8)

Handshake Controls
/D/IWO and RDYO
(P32 and P35)

PAD

r ----------- -,
: : Auto latch

I I
I R~500kn I L _____________ _J

Figure 5-38. Port O Configuration with Open-Drain Capablllty, Auto Latch, and Schmitt· Trigger

5-3

II

ZB' MICROCONTROUERS

OEN

PAD

OUT

TTL Level Shifter

IN

Figure 5-3b. Port 0 Configuration with TTL Level Shifter

5-4

5.2.2 Read/Write Operations

In the nibble 1/0 Mode, Port 0 is accessed as general­
purpose register PO (OOH) with ERF Bank set to 0. The port
is written by specifying PO as an instruction's destination
register. Writing to the port causes data to be stored in the
port's output register.

The port is read by specifying PO as the source register of
an instruction. When an output nibble is read, data on the
external pins is returned. Under normal loading conditions
this is equivalent to reading the output register. However,
for Port 0 outputs defined as open-drain, the data returned
is the value forced on the output by the external system.
This may not be the same as the data in the output register.
Reading a nibble defined as input also returns data on the
external pins. However, input bits under handshake con­
trol return data latched into the input register via the input
strobe.

The Port 0-1 Mode resister bits D,00 and Dp6 are used to
configure Port 0 nibbles. The lower nibble (P00-P03) can be
defined as inputs by setting bits D1 to 0 and D0 to 1, or as
outputs by setting both D1 and D0 to 0. Likewise, the upper
nibble (PO 4-P07) can be defined as inputs by setting bits D7

to 0 and D6 to 1, or as outputs by setting both D8 and D7 to
o (Figure 5-4).

5.2.3 Handshake Operation

When used as an 1/0 port, Port 0 can be placed under
handshake control by programming the Port3 Mode regis­
ter bit D2 to 1. In this configuration, handshake control lines
are DAV0 (P32) and ADY0 (P35) when Port Dis an input port,
or ROY 0 (P32) and DAV 0 (P35) when Port 0 is an output port.
(See Figure 5-5.)

Handshake direction is determined by the configuration
(input or output) assigned to the Port 0 upper nibble, P04-

POr The lower nibble must have the same 1/0 configuration
as the upper nibble to be under handshake control. Figure
5-3a illustrates the Port 0 upper and lower nibbles and the
associated handshake lines of Port 3.

5.3Port1

Thissectiondealsonlywiththe l/Ooperation. The port's external
memory interface operation is discussed later in this manual.
Figure 5-2 shows a block diagram of Port 1.

5.3.1 General UO Mode

Port 1 can be an 8-bit, bidirectional, CMOS or TTL compat­
ible port with multiplexed Address (A7-AO) and Data (07-
00) ports. These eight 1/0 lines can be byte programmed
as inputs or outputs or can be configured under software
control as an Address/Data port for interfacing to external
memory. The input buffers can be Schmitt-triggered, level­
shifted, or a single-point buffer. In some cases, the output
buffers can be globally programmed as either push-pull or
open-drain. Low-EMI output buffers can be globally pro­
grammed by software, as an OTP program option, or as a
ROM Mask Option. In some cases, the za• can have auto
latches hardwired to the inputs. Please refer to specific
product specifications for exact input/output buffer-type
features available (Figures 5-6aand 5-6b).

Register F8H
Port 0-1 Mode Register (P01M)

(Write-Only)

lD1losl l01lool
l ---c_ P9a...- PO MODE

P94..- PQ,. MODE 0UTPUl3= 00
OUTPUT= 00 INPUT= 01
INPUT=01 A9-A11 =1X
A12-A15=1X

Figure 5-4. Port O 110 Operation

Register F7H
Port 3 Mode Register (P3M)

(Write-Only)

0 P32 =INPUT _J
1~~5~~~YO
P3~ = RDYQ AVO

Figure 5-5. Port o Handshake Operation

5-5

II

5-6

Open-Drain

OEN

Out

In

ZS

...

1.5 2.3V Hysteresis

Port 1
(1/0 or AD7 -ADO)

Handshake Controls
/DAV1 and RDY1
(P33 and P34)

r ----------- I

'II' MICROCONTROLLERS

PAD

: : Auto Latch

I I
I R~500kn I L _____________ .J

Figure 5-68. Port 1 Configuration with Open-Drain Capablllty, Auto Latch, and Schmitt-Trigger

za

...

OEN------1

Port 1
(VO or AD7 -ADO)

Handshake Controls
/DAV1 and RDY1
(P33 and P34)

OUT ~--------,.._ ___ __,

TTL Level Shifter

Figure 5-&b. Port 1 Configuration with TTL Level Shifter

ZS' MICROCONTROLLERS

El

PAD

5-7

5.3.2 Read/Write Operations

In byte input or byte output mode, the port is accessed as
General-Purpose Register P1 (01 H). The port is written by
specifying P1 as an instruction's destination register. Writ­
ing to the port causes data to be stored in the port's output
register.

The port is read by specifying P1 as the source register of
an instruction. When an output is read, data on the external
pins is returneq. Under normal loading conditions, this is
equivalent to reading the output register. However, if
Port 1 outputs are defined as open-drain, the data returned
is the value forced on the output by the external system.
This may not be the same as the data in the output register.
When Port 1 is defined as an input, reading also returns
data on the external pins. However, inputs under hand­
shake control return data latched into the input register via
the input strobe.

Using the Port 0-1 Mode Register, Port 1 is configured as
an output port by setting bits D 4 and 03 to 0, or as an input
portbysetti1gD4toOandD3to1 (Figure5-8).

5-8

A248P01M
Port ().1 Mode Register

(F8, Write-Only)

P1o - P1s MODE
00 = Bytf' Output
01 = Byte Input
10=ADo-AD7
1L=...l:llg'1Jmpadenca ADO· AD7,
AS", OS, RIW, A8 ·A11, A12 ·A15

Figure 5-7. Port 1 VO Operation

ZS' MICROCOHTROUEAS

5.3.3 Handshake Operations

When used as an 1/0 port, Port 1 can be placed under
handshake control by programming the Port 3 Mode regis­
ter bits D 4 and 03 both to 1. In this configuration, handshake
control lines are DAV1 (P33) and RDY1 (P34) when Port 1 is
an input port, or RDY1 (P33) and DAV1 (P34) when Port 1 is
an output port. See Figures 5-6 and 5-8.

Handshake direction is determined by the configuration
(input and output) assigned to Port 1. For example, if Port
1 is an output port then handshake is defined as output.

R247P3M
Port 3 Mode Register

(F7, Write-Only)

I I 104103 I I I I
---c... 00 P33 = Input P34 =Output

01 P33 = Input P34 = OM
10 P33 • lllmlt P34 = OM _
11 P33 = DAV1/RDY1 P34 = RDY1/DAV1

Figure 5-8. Handshake Operation

5.4 PORT2

Port 2 is a general-purpose port. Figure 5-2 shows a block
diagram of Port 2. Each of its lines can be independently
programmed as input or output via the Port 2 Mode Register
(F6H) as seen in Figure 5-9. A bit set to a 1 in P2M
configures the corresponding bit in Port2 as an input, while
a bit set to o configures an output line.

Register F6H
Port2 Mode Register (P2M)
(Write-01 ly)

Port2 Mode
0= Output
1 =Input

Figure 5-9. Port 2 1/0 Mode Configuration

ZS' MICROCONTROLJ.£RS

5.4.1 General Port 1/0

Port 2 can be an 8-bit, bidirectional, CMOS- or TIL­
compatible 1/0 port. These eight 1/0 lines can be config-
ured under software control to be an input or output,
independently. Input buffers can be Schmitt-triggered,
level-shifted, or a single trip point buffer and may contain I
Auto Latches. Bits programmed as outputs may be glo-
bally programmed as either push-pull or open-drain. Low-
EMI output buffers can be globally programmed by the
software, an OTP program option, or as a ROM mask
option. In addition, when the SPI is featured and enabled,
P20 functions as data-in (DI), and P27 functions as data-
out (DO). Please refer to specific product specifications
for exact input/output buffer type features available. See
Figures 5-10a through 5-10c.

5-9

5-10

Open-Drain-------~

P21-P26 OE -----1

P21-P26 OUT----------f

1.5-2.3 Hysteresis @ V00 = 5.0V

P21-P26 IN ---c;;."=--------------'
r ----------- -,

'1J'I lllCROCONTROLLEAS

P21-P26

PAD

: : Auto Latch

I I
I R~500KQ I L _____________ J

Figure S-10a. Port 2 Configuration with Open-Drain C&pability, Auto Latch, and Schmitt· Trigger

Open Drain --------..

OEN -"'""""""""""-t ;fJ---;::===I
PAD

OUT ------------.... ----__,

TTL Level Shi lier

~ -----~ 1---------------------------... -
Figure S-10b. Port 2 Configuration with TTL Level Shifter

U' MICROCONTROLLERS

Open-Drain

P200E

SPI EN

P201N

P20

PAD

or ------< . .r::rt----------------e--'
SPI DI

Open-Drain

P270UT
Standard

SPI
SPIDO -----~~

P270E Standard

SPI Active _____ S_P_l-a t
SCON _

r ----------- I
I I
I I
I I
I R~ SOOKO I L _____________ J

0 SPI DO Enable
1 P270UT
*SPI must be enabled with DO.

r ----------- I

Auto Latch

P27

PAD

l l Auto Latch

I I
I R~ 500KQ I L _____________ J

Figure 5·10c. Port 2 Configuration with Open-Drain Capability, Auto Latch, Schmitt-Trigger and SPI

5-11

5.4.2 Read/Write Operations

Port 2 is accessed as General-Purpose Register P2 (02H).
Port 2 is written by specifying P2 as an instruction's
destination register. Writing to Port 2 causes data to be
stored in the output register of Port 2, and reflected
externally on any bit configured as an output. Regardless
of the bit inpuVoutput configuration, Port 2 is always written
and read as a byte-wide port.

Port 2 is read by specifying P2 as the source register of an
instruction. When an output bit is read, data on the external

5.4.3 Handshake Operation

Port 2 can be placed under handshake control by program­
ming bit 6 in the Port 3 Mode Register (Figure 5-11). In this
configuration, Port 3 lines P31 and P36 are used as the
handshake control lines /DAV2 and RDY2 for input hand­
shake, or RDY2 and /DAV2 for output handshake.

Register F7H
Port 3 Mode Register
(Write-Only)

ZS' MICROCONTROLLERS

pin is returned. Under normal loading conditions, this is
equivalent to reading the output register. However, if a bit
of Port 2 is defined as an open-drain output, the data
returned is the value forced on the output pin by the external
system. This may not be the same as the data In the output
register. Reading input bits of Port 2 also returns data on
the external pins. However, inputs under handshake con­
trol return data latched into the input register via the input
strobe.

Handshake direction is determined by the configuration
(input or output) assigned to bit 7 of Port 2. Only those bits
with the same configuration as P27 will be under hand­
shake control. Figure 5-12 illustrates bit lines of Port 2 and
the associated handshake lines of Port 3.

T Port 2 Handshaking
o P31 = Input ITJrii> P36 = Output (T .our>

5-12

1 P31 = /DAV2/RDY2 P36 = RDY2//DAV2

Figure 5-11. Port 2 Handshake Configuration

P2o

}

Port2 (1/0)

Handshake Controls
/DAV2 and RDY2

(P31 and P36)

Figure 5-12. Port 2 Handshaking

5.5 PORT3

5.5.1 General Port VO

Port 3 differs structurally from Port O, 1, and 2. Port 3 lines
are fixed as four inputs (P33-P30) and four outputs (P37-
P34) Port 3 does not have an input and output register for
each bit. Instead, all the input lines have one input register,
and all the output lines have an output register. Port 3 can
be a CMOS- or TTL- compatible 1/0 port. Under software
control, the lines can be configured as special control lines
for handshake, comparator inputs, SPI control, external
memory status, or 1/0 lines for the on-board serial and timer
facilities. Figure 5-13 is a generic block diagram of Port 3.

Read
Port

Write
Port

Input
Register,--._

Read
Port

Output
Data

Return
Buffer

The inputs can be Schmitt-triggered, level-shifted, or single­
trip point buffered. In some cases, the zae may have auto
latches hardwired on certain Port 3 inputs and Low-EMI I
capabilities on the outputs. Please refer to specific product
specifications for exact input/output buffer type features.
Please refer to the section on counter/timers, Stop-Mode
Recovery, serial 1/0, comparators, and interrupts for more
information on the relationships of Port 3 to that feature.

Input
Buffer

Output
Buffer

Port
Input
Lines

P3o-P3s

Port
Output
Lines

P34-P3-,

Internal
Bus

From Timer,
Handshake Logic

or Serial 110

Figure 5-13. Port 3 Block Diagram

5-13

5-14

P31 (AN1)

P32 (AN2)

P33 (REF)

...... t----P30

..... t----P31

..... i----P32

..... t----P33

t----11~ P34

t----tl~P35

t----11~ P36

t----tl~P37

Port 3
(110 or Control)

--------------------------, I I
I I

I I
I R~500K'2 I
L--------------------------

A247= P3M
1 =Analog
0 =Digital

IRQ2, TIN• P31 Data Latch

From Stop-·~M:od:;:e:--------0..... _____ _

Recovery Source 0
IRQ1, P33 Data Latch

,

zae MICROCONTROLLERS

P30 Data
Latch IRQ3

Figure 5-14a. Port 3 Configuration with Comparator, Auto Latch, and Schmitt-Trigger

zse MICROCONTROLLERS

P340UT---d P34

P31~ IV ~.

PAD

REF (P33) El

P370UT---a P37

P32--r=t>--
PAD

REF (P33)

PCON
0 P34, P37 Standard Output
1 P34, P37 Comparator Output

DO

Figure 5·14b. Port 3 Configuration with Comparator

5-15

ZB' MICROCOHTROlilRS

Figure 5·14c. Port 3 Configuration with SPI and Comparator Outputs Using P34 and P35

5-16

• Out

PAD

1TL Leval Shift• PCl't 3 Output Cllnl ~ration PAD

-'" --c<J....___,._r~-------------::;----=r·-1 _ 9
I !
-------------------------~ Port 3 Input Corllg1r11Uon

Figure 5-14d. Port 3 Configuration wHh TTL Level Shifter and Auto Latch

5-17

5.5.2 Read/Write Operations

Port 3 is accessed as a General-Purpose Register P3
(03H). Port 3 is written by specifying P3 as an instruction's
destination register. However, Port 3 outputs cannot be
written to if they are used for special functions. When
writing to Port 3, data is stored in the output register.

Port 3 is read by specifying P3 as the source register of an
instruction. When reading from Port 3, the data returned is
both the data on the input pins and in the output register.

zae MICROCONTROLL.ERS

5.5.3 Special Functions

Special functions for Port 3 are defined by programming the
Port 3 Mode Register. By writing Os in bit 6 through
bit 1, lines P37-P30 are configured as input/output pairs
(Figure 5-15). Table 5-1 shows available functions for
Port 3. The special functions indicated in the figure are
discussed in detail in their corresponding sections in this
manual.

Port 3 input lines P33-P30 always function as interrupt
requests regardless of the configuration specified in the
Port 3 Mode Register.

O Port 2 Open-Drain
1 Port 2 Push-Pull

0 P31, P32 Digital Mode
1 P31, P32 Analog Mode

0 P32 = Input P35 = Output
1 P32 = /DAV/RDY2 P35 = RDY//DAVO

00 P33 = Input P34 = Output
01 P33 = Input P34 =/OM
10 P33 =Input P34 =/OM
11 P33 = /DAV1 /RDY1 P34 = RDY1 //DAV1

0 P31 = Input P36 = Output
1 P32 = /DAV2/RDY2 P36 = ROY2//DAV2

0 P30 = Input P37 = Output
1 P30 = Serial In P37 = Serial Out

OParityON
1 Parity OFF

Figure 5·15. Port 3 Mode Register Configuration

5-18

.2il..Cl6
Table 5·1. Port 3 Line Functions

Function Line Signal

Inputs P30 Input
P31 Input
P32 Input
P33 Input

Outputs P34 Output
P35 Output
P36 Output
P37 Output

Port 0 Handshake Input P32 /DAVO/RDYO
Port 1 Handshake Input P33 /DAV1/RDY1
Port 2 Handshake Input P31 /DAV2/RDY2

Port 0 Handshake Output P35 RDYO//DAVO
Port 1 Handshake Output P34 RDY1//DAV1
Port 2 Handshake Output P36 RDY2//DAV2

Analog Comparator Input P31 AN1
P32 AN2
P33 REF

Analog Comparator Output P34 AN1-0UT
P35 AN2-0UT
P37 AN2-0UT

Interrupt Requests P30 IRQ3
P31 IRQ2
P32 IRQO
P33 IRQ1

Serial Input P20 DI

Serial Output P27 DO

SPI Slave Select P35 SS
SPI Clock P34 SK

Counter/Timer P31 T,N
P36 TOUT

External Memory Status P34 /OM

ZS' MICROCOHTROLLERS

5.6 PORT HANDSHAKE

When Ports 0, 1, and 2 are configured for handshake
operation, a pair of lines from Port 3 are used for hand­
shake controls. The handshake controls are interlocked to
properly time asynchronous data transfers between the
za@ and a peripheral. One control line (/DAV) functions as
a strobe from the sender to indicate to the receiver that
data is available. The second control line (ROY) acknowl­
edges receipt of the sender's data, and indicates when the
receiver is ready to accept another data transfer.

In the input mode, data is latched into the Port's input
register by the first /DAV signal, and is protected from
being overwritten if additional pulses occur on the /DAV
line. This overwrite protection is maintained until the port
data is read. In the output mode, data written to the port is
not protected and can be overwritten by the ZB during the
handshake sequence. To avoid losing data, the software
must not overwrite the port until the corresponding inter­
rupt request indicates that the external device has latched
the data.

The software can always read Port 3 output and input
handshake lines, but cannot write to the output handshake
line.

The following is the recommended setup sequence when
configuring a Port for handshake operation for the first time
after a reset:

• Load P01 M or P2M to configure the port for input/
output.

• Load P3 to set the Output Handshake bit
to a logic 1.

• Load P3M to select the Handshake Mode for the port.

Once a data transfer begins, the configuration of the
handshake lines should not be changed until the hand­
shake is completed.

Figures 5-16 and 5-17 show detailed operation for the
handshake sequence.

5-19

•

5-20

zse MICROCONTROLLERS

/DAV
(Input To ZB)

ROY
(Output From ZB)

Data On Port

2

(Input To ZB) Valid Data

3 4

State 1. Port 3 Ready output is High, indicating that the ZB is ready to accept data.

State 2. The 1/0 device puts data on the port and then activates the /DAV input. This
causes the data to be latched into the port input register and generates an
interrupt request.

State 3. The ZB forces the Ready (ROY) output Low, signaling to the 1/0 device
that the data has been latched.

State 4. The 1/0 device returns the /DAV line High in response to the ROY going Low.

5

State 5. The zs® software must respond to the interrupt request and read the contents
of the port in order for the handshake sequence to be completed. The ROY line
goes High if and only if the port has not been read and /DAV is High. This returns
the interface to its initial state.

Figure 5-16. ZS Input Handshake

ft' 2JUJ6 ZS- MICROCONTROLl.ERS

2 3 4

ROY
(Output From Z8)

/DAV
(Output From Z8)

Data On Port
(Output From Z8) Valid Data

State 1. ROY input is High indicating that the 1/0 device is ready to accept data.

State 2. The za® writes to the port register to initiate a data transfer. Writing the port
outputs new data and forces /DAV Low if and only if ROY is High.

5

State 3. The 1/0 device forces ROY Low after latching the data ROY Low causes an interrupt
request to be generated. The ZS can write new data in response to ROY going
Low; however, the data is not output until State 5.

State 4. The /DAV output from the ZS is driven High in response to ROY going Low.

State 5. The /DAV goes High, the 1/0 device is free to raise ROY High thus returning the
interface to its initial state.

Figure 5·17. ZS Output Handshake

5-21

II

In applications requiring a strobed signal instead of the
interlocked handshake, the za• can satisfy this require­
ment as follows:

• In the Strobed Input mode, data can be latched in the
Port input register using the /DAV input. The data
transfer rate must allow enough time for the software to
read the Port before strobing in the next character. The
ROY output is ignored.

P2o-P27

ZS

P3e
/DAV~

RDvJ P31

'ZS" MICROCONTROWRS

• In the Strobed Output Mode, the ROY input should be
tied to the /DAV output.

Figures 5-18 and 5-19 illustrate the strobed handshake
con.nections.

.A

"'Y'

1/0
Device

Figure 5-18. Output Strobed Handshake on Port 2

P2o·P21
A_

'I

1/0

ZS
Device

P31
.._/DAV
~

Figure 5·19. Input Strobed Handshake on Port 2

5-22

5.7 1/0 PORT RESET CONDITIONS

5. 7 .1 Full Reset

ZS- MICROCONTROLLERS

After a hardware reset, Watch-Dog Timer (WDT) reset, or a
Power-On Reset (POR), Port Mode Registers P01M, P2M,
and P3M are set as shown in Figures 5-20 through 5-22.
Port 2 is configured for input operation on all bits and is set
for open-drain (Figure 5-22). If push-pull outputs are de­
sired for Port 2 outputs, remember to configure them using
P3M. Please note that a WDT time-out from Stop-Mode
Recovery does not do a full reset. Certain registers that are
not reset after Stop-Mode Recovery will not be reset.

For the condition of the Ports after Stop-Mode Recovery,
please refer to specific device product specifications. In
some cases, the ZBllD has the P01 M, P2M, and P3M control
register set back to the default condition after reset while
others do not.

All special 1/0 functions of Port 3 are inactive, with P33-P30
set as inputs and P37-P34 set as outputs (Figure 5-22).

Note: Because the types and amounts of 1/0 vary greatly among
the ZS family devices, the user is advised to review the selected
device's product specifications for the register default state after
reset.

Register F8H
Port 0· 1 Mode Register (P01 M)
(Write-Only)

POO - P03 Mode
00 =Output
01 =Input
1X = A8 • A11

Stack Selection
O =External
1 =Internal

P10 • P17 Mode
00 = Byte Output
01 =Byte Input
10 =AdO ·Ad7
11 = High Impedance ADO· AD7, AB • A15, /AS, /OS, /RIW

External Memory Timing
Normal=O
Extended= 1

P04 • P07 Mode
Output= 00
Input= 01
A12-A15= 1x

Figure 5-20. Port 0/1 Reset

5-23

5-24

Register F6H
Port 2 Mode Register (P2M)
(Write-Only)

Port 2 Mode
o =Output
1 =Input

ZS' MICROCONTROLLERS

Figure 5-21. Port 2 Reset

Register F7H
Port 3 Mode Register (P3M)
(Write-Only)

o = Port 2 Open-Drain
1 = Port 2 Push-Pull

0 = P31, P32 Digital Mode
1 = P31, P32Analog Mode

0 = P32 = Input P35 = Output
1 = P32 =/DAV

00 P33 = Input P34 = Output
01 P33 = Input P34 =/OM
10 P33 =Input P34 =/OM
11 P33 = /DAV1/RDY1 P34 = RDY1//DAV1

O P31 = Input P36 =Output
1 P31 = /DAV2/RDY2 P36 = RDY2//DAV2

o P30 = Input P37 = Output
1 P30 =Serial In P37 = Serial Out

O Parity Off
1 Parity On

Figure 5-22. Port 3 Mode Reset

5.8 ANALOG COMPARATORS

Select za@ devices include two independent on-chip ana­
log comparators. See the device product specification for
feature availability and use. Port 3, Pins P31 and P32 each
have a comparator front end. The comparator reference
voltage, pin P33, is common to both comparators. In
Analog Mode, the P31 and P32 are the positive inputs to
the comparators and P33 is the reference voltage supplied
to both comparators. In Digital Mode, pin P33 can be used
as a P33 register input or IRQ1 source. P34, P35, or P37
may output the comparator outputs by software-program­
ming the PCON Register bit DO to 1.

RegisterF?H
Port 3 Mode Register (P3M)
(Write-Oily)

I I I I I I I 01 I

ZS' MICROCOKTROLLERS

5.8.1 Comparator Description

Two on-board comparators can process analog signals on
P31 and P32 with reference to the voltage on P33. The
analog function is enabled by programming the Port 3
Mode Register (P3M bit 1). For interrupt functions during
analog mode, P31 and P32 can be programmable as
rising, falling, or both edge triggered interrupts (IRQ reg­
ister bits 6 and bit 7).

Note: P33 cannot generate an external interrupt while in this
mode. P33 can only generate interrupts in the Digital Mode.

Note: Port 3 inputs must be in digital mode if Port 3 Is a Stop­
Mode Recovery source. The analog comparator is disabled in
STOP mode.

P31 can be used as T1N in Analog or Digital Modes, but it
must be referenced to P33, when in Analog Mode.

T 0 = Digital Mode P31, P32, P33
1 =Analog Mode P31, P32, P33

Figure 5-23. Port 3 Input Analog Selection

ERFBank F
Register OOH
Port Configuration Register (PCON)
(Write-Only)

'"""C_ O P34, P35, or P37 Standard Outputs
1 P34, P35, or P37 Comparator Outputs

Figure 5-24. Port 3 Comparator Output Selection

5-25

II

5-26

P30

P31

P32

P33 Porta

P34 (1/0 or Control)

P35

P36

P37

i-------------------------, I I Auto Latch

I I I R•SOOKn 1

~-------------------------J
R247=P3M

-----.DIG.~
1 .. Analog
0= Digital

P31 (AN1) -~-----• IRQ2, TIN• P31 Data Latch

P32(AN2)

P33(REF)

From Stop-·~M:ode:--------....;,..,_ _____ IRQ1, P33 Data Laich

Recovery SOUR:& •
;

'lJ' MICROCOHTROLLERS

P30Data
Latch IRQ3

Figure 5-25. Port Configuration of Comparator Inputs on P31, P32, and P33

P34 our----.~

P31~ r-v -+
REF(P33)

P370UT---...

P32~
REF(P33)

PCON
D 0 P34, P37 Standard Output

...._ ________ 0.... 1 P34, P37 Comparator Output

Figure 5-26. Port 3 Configuration

5.8.2 Comparator Programming

Example of enabling analog comparator mode.

LO P3M, #XX.XX XX1XB

Note:X= don't care.

Example of enabling analog comparator output.

LORP, #%0FH ;Sets register pointer to
;working register group 0
;and Expanded Register
;File bank.

LO RO, #XX.XX XXX1 B ;Enables comparator
;outputs using PCOM
;Register programming.

D' MICROCONTROLL!RS

P34

PAD II

P37

PAD

5-27

5.8.3 COMPARATOR OPERATION

After enabling the Analog Comparator mode, P33 be­
comes a common reference input for both comparators.
The P33 (Ref) is hard wired to the reference inputs to both
comparators and cannot be separated. P31 and P32 are
always connected to the positive inputs to the comparators.
P31 is the positive input to comparator AN1 while P32 is the
positive input to comparator AN2. The outputs to compara­
tors AN 1 and AN2 are AN 1-out and AN2-out, respectively.

The comparator output reflects the relationship between
the positive input to the reference input.

Example: If the voltage on AN1 is higher than the voltage
on RefthenAN1-outwill beatahigh state. lfvoltageonAN2
is lower than the voltage on Ref then AN2-out will be at a
Low state. In this example, when the Port 3 register is read,
Bits 01 = 1 and 02 = 0. If the comparator outputs are
enabled to come out on P34 and P37, then P34 = 1 and P37
= 0. Please note that the previous data stored in P34 and
P37 is not disturbed. Once the comparator outputs are de­
selected the stored values in the P34 and P37 register bits
will be reflected on these pins again.

5.8.4 Interrupts

In the example from Section 5.8.3, P32 (AN2) will generate
an interrupt based on the result of the comparison being low
and the Interrupt Request Register (IRQ FAH) having bits
D7=0and 06=0. If IRQD7=1 and D6=0thenbothP31 and
P32 would generate interrupts.

5.8.5. Comparator Definitions

5.8.5.1. V ICR

The usable voltage range for both positive inputs and the
reference input is called the common mode voltage range
(V1cR). The comparator is not guaranteed to work if the
inputs are outside of the V1cR range.

5.8.5.2. V OFFSET

The absolute value of the voltage between the positive
input and the reference input required to make the com­
parator output voltage switch is the input offset voltage
(Voffset). If AN1 is 3.000V and Ref is 3.001V when the
comparator output switches states then the Voffset = 1 mV.

5.8.5.3. llO

For CMOS voltage comparator inputs, the input offset
current (110) is the leakage current of the CMOS input gate.

5-28

Z8' MICROCONTROLLERS

5.8.6. RUN Mode

P33 is not available as an interrupt input during Analog
Mode. P31 and P32 are valid interrupt inputs in conjunc­
tion with P33 (Ref) when in the Analog Mode.

P31 can still be used as T1N when the analog mode is
selected. If comparator outputs are desired to be outputted
on the Port 3 outputs, please refer to specific products
specification for priority of muxing when other special
features are sharing those same Port 3 pins.

5.8. 7. HALT Mode

The analog comparators are functional during HALT Mode
if the Analog Mode has been enabled. P31 and P32, in
conjunction with P33 (Ref) will be able to generate inter­
rupts. Only P33 cannot generate an interrupt since the P33
input goes directly to the Ref input of the comparators and
is disconnected from the interrupt sensing circuits.

5.8.8. STOP Mode

The analog comparators are disabled during STOP Mode
so it does not use any current at that time. If P31, P32, or
P33 are used as a source for Stop-Mode Recovery, the Port
3 Digital Mode must be selected by setting bit 01 =0 in the
Port 3 Mode Register. Otherwise in STOP Mode, the P31,
P32, and P33 cannot be sensed. If the Analog Mode was
selected when entering STOP Mode, it will still be enabled
after a valid SMR triggered reset.

5.9 OPEN-DRAIN CONFIGURATION

All Z8s can configure Port 2 to provide open-drain outputs
by programming the Port 3 Mode Register (P3M) bit DO=O.

Register F7H
Port 3 Mode Register
(Write Only)

lo1losloslo4loalo2lo1lool
--c._ Port 2 Configuration

0 = Pull-Ups Open-Drain
1 = Pull-Ups Active

Figure 5·27. Port 2 Configuration

Other Z8s that have a Port Configuration Register (PCON)
that can configure Port 0 and Port 1 to provide open-drain
outputs. The PCON Register is located in Expanded
Register File (ERF) Bank F, Register OOH. See Figure 5-28.

PCON (FH) OOH

jmj~j~j~joojooj~jooj

~
L ComparatorOUlpUIPort3

0 P34. PS7 Standard Output'
1 P34. PS7Co-Ootput

0 Port 1 Open Drain

1 Port 1 h-pull -·
0 Port 0 Open Drain
1 Port 0 Puall-pu!IActlve•

0 Port 0 Low EMI
1 Port 0 Slanda.r

...._ ____ 0 Port1 LI>wEMI

1 Port 1 Standard"
.___ _____ 0 Port2 LowEMI

1 Port2Standanr

'-------- 0 Port3 LowEMI
1 Port3Slandanr

Low EMI Oodll-
0 LawEMI

• Default SettlngAlter Re8111 1 Standanl'

Figure 5-28. Port Configuration Register (PCON)
(Write-Only)

Port1 Open-Drain(D1).Port1 canbeconfiguredasopen-drainby
resettingthisbit(D1 =O)oroonliguredaspush-pullactivebysettinglhis
bit(D1=1).Thedefaultvalueis1.

Port 0 Open Drain (02). Port 0 can be configured as open­
drain by resetting this bit(D2=0) or configured as push-pull
active by setting this bit (D2= 1). The default value is 1.

5.10 LOW EMI EMISSION

Some Z8s can be programmed to operate in a Low EMI
Emission Mode using the Port configuration register
(PCON). The PCON register allows the oscillator and all I/
O ports to be programmed in the Low-EM I Mode indepen-

.,, MICROCONTROUERS

dently. Other Z8s may offer a ROM Mask or OTP program­
ming option to configure the ZS Ports and oscillator glo­
bally to a Low-EM I mode (where the XT AL frequency is set
equal to the internal system clock frequency.

Use of the Low EMI feature results in:

• The output pre-drivers slew rate reduced to 10 ns
(typical).

• Low EMI output drivers have resistance of 200 Ohms
(typical).

• Low EMI Oscillator.
• All output drivers are approximately 25 percent of the

standard drive.
• Internal SCLK/TCLK = XTAL operation limited to a

maximum of 4 MHz - 250 ns cycle time, when Low EMI
Oscillator is selected and system clock (SCLK=XT AL,
SMR Reg. Bit 01=1).

For Z8s having the PCON register feature, the following bits
control the Low EMI options:

• Low EMI Port O (03). Port O can be configured as a
Low EMI Port by resetting this bit (D3=0) or configured
as a Standard Port by setting this bit (D3=1). The
default value is 1.

• Low EMI Port 1 (04). Port 1 can be configured as a
Low EMI Port by resetting this bit (D4=0) or configured
as a Standard Port by setting this bit (D4=1). The
default value is 1 .

• Low EMI Port 2 (05). Port 2 can be configured as a
Low EMI Port by resetting this bit (D5=0) or configured
as a Standard Port by setting this bit (D5=1). The
default value is 1.

• Low EMI Port 3 (06). Port 3 can be configured as a
Low EMI Port by resetting this bit (D6=0) or configured
as a Standard Port by setting this bit (D6=1). The
default value is 1.

• Low EMI OSC (07). This bit of the PCON Register
controls the Low EMI oscillator. A 1 in this location
configures the oscillator with standard drive, while a O
configures the oscillator with low noise drive. The Low­
EMI mode will reduce the drive of the oscillator (OSC).
The default value is 1. XTAU2 mode is not effected by
this bit.

Note: The maximum external clock frequency is 4 MHz when
running in the Low EMI oscillator mode.

Please refer to the selected device product specification
for availability of the Low EMI feature and programming
options.

5-29

II

5.11 INPUT PROTECTION

All CMOS ROM Z8s have 1/0 pins with diode input protec­
tion. There is a diode from the 1/0 pad to V cc and to V ss· See
Figure 5-29A.

PAD

Figure 5-29a. Diode Input Protection

5-30

U' MICROCOHTROUERS

On CMOS OTP EPROM Z8's, the Port 3 inputs P31, P32,
P33 and the XTAL 1 pin have only the input protection
diode from pad to V ss· See Figure 5-298.

PAD

Figure 5-29b. OTP Diode Input Protection

The high-side input protection diodes were removed on
these pins to allow the application of +12.5V during the
various OTP programming modes.

For better noise immunity in applications that are exposed
to system EMI, a clamping diode to V00 from these pins
may be required to prevent entering the OTP programming
mode or to prevent high voltage from damaging these
pins.

5.12. CMOS ZS AUTO LATCHES

1/0 port bits that are configurable as inputs are protected
against open circuit conditions using Auto Latches. An
Auto Latch is a circuit which, in the event of an open circuit
condition, latches the input at a valid CMOS level. This

vDD

inhibits the tendency of the input transistors to self-bias in
the forward active region, thus drawing excessive supply
current. A simplified schematic of the CMOS Z8 l/O circuit
is shown in Figure 5-30.

Open-Drain

OE

Data Out

Data In

Figure 5-30. Simplified CMOS Z8 VO Circuit

The operation of the Auto Latch circuit is straight-forward.
Assume the input pad is latched at +5V (logic 1). The
inverter G1 inverts the bit, turning the P-channel FET ON
and the N-channel FET OFF. The output of the circuit is
effectively shorted to V 00, returning +5V to the input. If the
pad is then disconnected from the +5V source, the Auto
Latch will hold the input at the previous state. If the device
is powered up with the input floating, the state of the Auto
Latch will be at either supply, but which state is unpredict­
able.

There are four operating conditions which will activate the
Auto Latches. The first, which occurs when the input pin is
physically disconnected from any source, is the most
obvious. The second occurs when the input is connected
to the output of a device with tri-state capability.

The Auto Latch will also activate when the input voltage at
the pin is not within 200 microV or so of either supply rail.
In this case, the circuit will draw current, which is not
significant compared to the Ice operating current of the
device, but will increase lcc2 STOP Mode current of the
device dramatically.

The fourth condition occurs when the 1/0 bit is configured
as an output. Referring to the output section of Figure 5-30,
there are two ways of tri-stating the port pin. The first is by
configuring the port as an input, which disables the /OE
signal turning both transistors off. The second can be
achieved in output mode by writing a "1" to the output port,
then activating the open drain mode. Both transistors are
again off, and the port bit is in a high impedance state. The
Auto Latches then pull the input section toward V00.

5-31

II

Auto Latch Model:

The Auto Latch's equivalent circuit is shown in Figure 5-31.
When the input is high, the circuit consists of a resistance
Rp from V00 (the P-channel transistor in its ON state) and
a much greater resistance Rh to GND. Current lao flows
from V00 to the output. When the input is low, the circuit
may be modeled as a resistance Rp from GND (the N­
channel transistor in the ON state) and a much greater

Voo

y
Rp

Data In

Logic 1

resistance Rh to V 00• Current lao now flows from the input
to ground. The Auto Latch is characterized with respectto
lao, so the equivalent resistance Rp is calculated accord­
ing to RP= (V00-V1N)/lao. The worst case equivalent resis­
tance Rp (min) may be calculated at the worst case input
voltage, Vi= Vih(min).

VDo

y

Data In

LogicO

Figure 5-31. Auto Latch Equivalent Circuit

5-32

Design Considerations:

For circuits in which the Auto Latch is active, consideration
should be given to the loading constraints of the Auto
Latches. For example, with weak values of V,N' close to Vih
(min) or Vil (max), pullup or pull-down resistances must be
calculated using Ref = R/Rp. For best case STOP mode
operation, the inputs should be within 200 mV of the supply
rails.

In output mode, if a port bit is forced into a tri-state
condition, the Auto Latches will force the pad to VDD" If
there is an external pulldown resistor on the pin, the voltage
at the pin may not switch to GND due to the Auto Latch. As
shown in Figure 5-32, the equivalent resistance of the Auto
Latch and the external pulldown form a voltage divider,
and if the

y

'1J' MICROCONTROLLERS

external resistor is large, the voltage developed across it
will exceed Vil(max). For worst case:

Vil(max > VDD [Rext/(Rext+Rp)]
Rext(max) = ((Vil(max)NDD)Rp]/[1-(Vil(max)NDD)]

For VDD = 5.0V and lao = 5 uA we have Vih(max) =0.BV:
Rext(max) = (0.16/1M)/(1-0.16) = 190 K ohms.

Rp increases rapidly with V DD' so increased V DD will relax
the requirement on Rext.

In summary, the CMOS ZS Auto Latch inhibits excessive
current drain in ZB devices by latching an open input to
eitherVDD or GND. The effect of the Auto Latch on the 1/0
characteristics of the device may be modeled by a current
lao and a resistor Rp, whose value is VDJlao.

~ D-

rV1H(mlo.)

5:' REXT

....

Figure 5-32. Effect of Pulldown Resistors on Auto Latches

5-33

II

6.1 INTRODUCTION

The Z89 provides up to two 8-bit counter/timers, TO and T1,
each driven by its own 6-bit prescaler, PREO and PRE1
{Figure 6-1). Both counter/timers are independent of the
processor instruction sequence, that relieves software
from time-critical operations such as interval timing or
event counting. Some MCUs offer clock scaling using the
SMR register. See the device product specification for
clock available options. The following description is typi­
cal.

PREO

USER'S MANUAL

CHAPTER 6
COUNTER/TIMERS

Each counter/timer operates in either Single-Pass or Con­
tinuous mode. Atthe end-of-count, counting either stops or
the initial value is reloaded and counting continues. Under
software control, new values are loaded immediately or
when the end-of-count is reached. Software also controls
the counting mode, how a counter/timer is started or
stopped, and its use of 1/0 lines. Both the counter and
prescaler registers can be altered while the counter/timer is
running.

Internal Data Bus

Write Read

TO TO
lnttlal \tilue Initial \tilue Current \tilue

Register Register Register

6-Btt 8-blt
Down Down

Counter Counter IRQ4

Internal
Clock

TOUT
External Clock P36

Clock
Logic 6·Blt 8-Btt

Dcwn Down
IRQ5

Counter Counter

lntemal Clock
Gated Clock PRE1 Tt T1
Triggered Clock Initial \tilue Initial Velue Current \tilue

Register Register Register

TIN P31
Write Read

lntemal Data Bus

Figure 6-1. Counter/rimer Block Diagram

6-1

II

Counter/timers 0 and 1 are driven by a timer clock gener­
ated by dividing the internal clock by four. The divide-by­
four stage, the 6-bit prescaler, and the 8-bit counter/timer
form a synchronous 16-bit divide chain. Counter/timer 1
can also be driven by a external input (T1N) using P31. Port
3 line P36 can serve as a timer output (Tour> through which
TO, T1 , or the internal clock can be output. The timer output
will toggle at the end-of-count.

The counter/timer, prescaler, and associated mode regis­
ters are mapped into the register file as shown in Figure
6-2. This allows the software to treat the counter/timers as
general-purpose registers, and eliminates the need for
special instructions.

6.2 PRESCALERS AND COUNTER/TIMERS

The prescalers, PREO (FSH) and PRE1 (F3H), each con­
sist of an 8-bit register and a 6-bit down-counter as shown
in Figure 6-1. The prescaler registers are write-only regis­
ters. Reading the prescalers returns the value FFH. Figures
6-3 and 6-4 show the prescaler registers.

The six most significant bits (D2-D7) of PREO or PRE1 hold
the prescalers count modulo, a value from 1 to 64 decimal.
The prescaler registers also contain control bits that specify
TO and T1 counting modes. These bits also indicate whether
the clock source for T1 is internal or external. These control
bits will be discussed in detail throughout this chapter.

The counter/timer registers, TO (F4H) and T1 (F2H), each
consist of an 8-bit down-counter, a write-only register that
holds the initial count value, and a read-only register that
holds the current count value (Figure 6-1). The initial value
can range from 1 to 256 decimal (01 H,02H, .. ,OOH). Figure
6-5 illustrates the counter/timer registers.

6-2

DEC

247

245

244

243

242

241

Port3Mode

To Prescaler

Timer/CountelO

T1 Prescaler

nmer/Counter1

Timer Mode

HEX ldenllflers

F7

FS

F4

F3

F2

F1

Figure 6-2. Counter/Timer Register Map

R245PREO
Prescaler o Register
(%F5; W~te ·Only)

1~1~1~1~1~1~1~1~1

L

11' MlCROCONTROLLERS

Count Mode
0 = In Slnale Pass
1 = 1 0 Modulo-n

Reserved (Must be O)

Prescaler Modulo
(Range: 1 ·64 Decimal
01-00 HEX)

Figure 6-3. Prescaler O Register

Register FSH
Port 0·1 Mode Register (P01 M)

(Write-Only)

ID1fDel I ID1IDol

l ---C:. P91L· PQa MODE
PO • PO MODE OUTPUT= 00
oi'.flrPUT = 00 INPUT= 01
INPUT= 01 As -A11 = 1X
A12·A15=1X

Figure 6-4. Prescaler 1 Register

R242T1
Countermmer 1 Register
(%F2; Read/Write Only)

R244TO
Countermmer O Register
(%F4; Read/Write Only)

1~1~1~1~1~1~1~1~1

c Initial value when written
(Range 1·256 decimal, 01-00 HEX)
current value when read

Figure 6·5. Counter I Timer 0 and 1 Registers

6.3 COUNTER/TIMER OPERATION

Under software control, counter/timers are started and
stopped via the Timer Mode Register (TMA,F1 H) bits D0-D3

(Figure 6-6). Each counter/timer is associated with a Load
bit and an Enable Count bit.

6.3.1 Load and Enable Count Bits

Setting the Load bit (D0 for TO and D2 for T1) transfers the
initial value in the prescaler and the counter/timer registers
into their respective down-counters. The next internal clock
resets bits D0 and 0 2 to 0, readying the Load bit for the next
load operation. New values may be loaded into the down­
counters at any time. If the counter/timer is running, it
continues to do so and starts the count over with the new
value. Therefore, the Load bit actually functions as a
software re-trigger.

R241 TMR
Timer Mode Realstar
(% F1; Read/Write)

O = No Function
1 = LoedT0

o = Disabler 0 Count
1 = Enable T 0 Count

o • No Function
1 = LoedT1
0 = Disable T 1 Count
1 = Enable T 1 Count

Figure 6-6. Timer Mode Register

The counter timers remain at rest as long as the Enable
Count bits are 0. To enable counting, the Enable Count bit
(D1 for TO and D3 forT1)mustbesetto1. Counting actually
starts when the Enable Count bit is written by an instruc­
tion. The first decrement occurs four internal clock periods
after the Enable Count bit has been set. If T1 is configured
to use an external clock, the first decrement begins on the
next clock period. The Load and Enable Count bits can be
set at the same time. For example, using the instruction:

ORTMR,#03H

sets both DO and D1 of the TMR. This loads the initial values
of PREO and TO into their respective counters and starts the
count after the M2T2 machine state after the operand is
fetched (Figure 6-7).

R243PRE1
Prescaler 1 Register
(%F3; Write-Only)

R246PREO
Prescaler o Register
(%F5; Write-Only)

Count Mode
O = T 1 Single Pass
1 = T 1 Moclulo-n

Figure 6-7. Starting The Count

I ~ I ~ I ~ I ~ I
lnl~lnlnl~lnlnl~lmlnl~lml

I T '"[__ First Decrement Occurs
Four Clock Periods Later

'--------- TMR Is Written, Countermmer
is loaded

..._ _______________ #03H is Fetched

Figure 8-8. Counting Modes

6-3

II

6.3.2 Prescaler Operations

During counting, the programmed clock source drives the
6-bit Prescaler Counter. The counter is counted down from
the value specified by bits of the corresponding Prescaler
Register, PREO (bit 7 to bit 2) or PRE1 (bit 7 to bit 2).
(Figures 6-3, 6-4). When the Prescaler Counter reaches its
end-of-count, the initial value is reloaded and counting
continues. The prescaler never actually reaches 0. For
example, if the prescaler is set to divide-by-three, the
count sequence is:

3-2-1-3-2-1-3-2-1-3 ...

Each time the prescaler reaches its end of count a carry is
generated, that allows the Counter/Timer to decrement by
one on the next timer clock input. When the Counter/Timer
and the prescaler both reach the end-of-count, an interrupt
request is generated (IRQ4 for TO, IRQS for T1). Depend­
ing on the counting mode selected, the Coun,ter/Timer will
either come to rest with its value at OOH (Single-Pass Mode)
or the initial value will be automatically reloaded and
counting will continue (Continuous Mode). The counting
modes are controlled by bit 0 of PREO and bit 0 of PRE1.
(Figure 6-8). A 0, written to this bit configures the counter
for Single-pass counting mode, while a 1 written to this bit
configures the counter for Continuous mode.

The Counter/Timer can be stopped at any time by setting
the Enable Count bit to 0, and restarted by setting it back
to 1. The Counter/Timer will continue its count value at the
time it was stopped. The current value in the Counter/Timer
can be read at any time without affecting the counting
operation.

Note: The prescaler registers are write-only and cannot be read.

New initial values can be written to the prescaler or the
Counter/Timer registers at any time. These values will be
transferred to their respective down counters on the next
load operation. If the Counter/Timer mode is Continuous,
the next load occurs on the timer clock following an end­
of-count. New initial values should be written before the
desired load operation, since the prescalers always effec­
tively operate in Continuous count mode.

6-4

ZS' MicRocoNrRou.eRS

The time interval (i) until end-of-count, is given by the
equation:

i=tXpXv

in which:

t = four divided by the internal clock frequency.

The internal clock frequency defaults to the external clock
source (XTAL, ceramic resonator, and others) divided by
2. Some Z81111 microcontrollers allow this divisor to be
changed via the Stop-Mode Recovery register. See the
product data sheet for available clock divisor options.

Note that tis equal to eight divided-by-XTAL frequency of
the external clock source for T1 (external clock mode only).

p =the prescaler value (1 - 63) for T0 and T1•

The minimum prescaler count of 1 is achieved by loading
000001 xx. The maximum prescaler count of 63 is achieved
by loading 111111xx.

v=theCou1termmervalue(1-256}

Minimum duration is achieved by loading 01 H (1 prescaler
output count). maximum duration is achieved by loading
OOH (256 prescaler outputs counts).

It should be apparent the prescaler and counter/timer are
true divide-by-n counters.

ft'21LCE "lB' MICROCONTROLLERS

6.4 Tour Modes

The Timer Mode Register TMR (F1 H) (Figure 6-9), is used
in conjunction with the Port 3 Mode Register P3M (F7H)
(Figure 6-10) to configure P36 for Tour operation for TO and

T1 . In order for T oLJT to function, P36 must be defined as an
output line by setting P3M bit 5 to 0. Output is controlled by
one of the counter/timers (TO or T1) or the internal clock.

Register F1 H
Timer Mode Register (TMR)
(Read/Write)

1031 lool

T T -c__ o = No Function
1 =Load TO

....__ _____ O =Disable T1 Count
1 = Enable T1 Count

TouIModes

g~: ffi~tt Off
10=T1 Out
11 = Internal Clock Out

Figure 6-9. Timer Mode Register {TOUT Operation)

Register F7H
Port 3 Mode Register (P3M)
(Write-Only)

I I I os I
T

I
o P31 = Input ffit.1). P36 = Output CT .our)
1 P31 = /DAV2/RDY2 P36 = RDY2//0AV2

Figure 6-10. Port 3 Mode Register {Tour Operation)

6-5

II

The counter/timer to be output is selected byTMR bit 7 and
bit 6. TO is selected to drive the T0 UT line by setting bit) 7
to 0 and bit 6 to 1. Likewise, T1 is selected by setting bit 7
and bit 6 to 1 and 0, respectively. The counter/timer T0 UT
mode is turned off by setting TMR bit and bit 6 both to 0,
freeing P36 to be a data output line.

Tour is initialized to a logic 1 whenever the TMR Load bit (bit
0 for TO or bit 1 for T1) is set to 1. The T configuration
timer load, and Timer Enable Count bits°for the counter/
timer driving the T oUT pin can be set at the same time. For
example, using the instruction:

OR TMR,#43H

• Configures TO to drive the TOUT pin (P36).

• Sets the P36 Tout pin to a logic 1 level.

• Loads the initial PREO and TO levels into their
respective counters and starts the counter after the
M2T2 machine state after the operand is fetched.

IRQ4 --­
(TO End-of-Count)

'1' MICROCOHIROLIBIS

At end-of-count, the interrupt request line (IRQ4 or IRQ5),
clocks a toggle flip-flop. The output of this flip-flop drives
the TOUT line, P36. In all cases, when the selected counter/
timer reaches its end-of-count, TOUT toggles to its opposite
state (Figure 6-11). If, for example, the counter/timer is in
Continuous Counting Mode, Tout will have a 50 percent
duty cycle output. This duty cycle can easily be controlled
by varying the initial values after each end-of-count.

The internal clock can be selected as output instead of TO
or T1 by setting TMR bit 7 and bit 6 both to 1. The internal
clock ()<T AL frequency/2) is then directly output on P36
(Figure 6-12).

While programmed as TOUT' P36 cannot be modified by a
write to port register P3. However, the zs• software can
examine the P36 current output by reading the port regis­
ter.

+2

IRQS
(T1 End-of-Count)

__JTMR
07 06=10

6-6

osc

Figure ls-11. TO and T1 Output Through Tour

+2

Internal
Clock

I
I
I

=OJ
Figure 6-12. Internal Clock Output Through T ouT

6.5 TIN MODES

The Timer Mode Register TMR (F?H} (Figure 6-13) is
used in conjunction with the Prescaler Register PRE1
(F?H) (Figure 6-14) to configure P31 as T,w T,N is used in
conjunction with T1 in one of four modes:

• External Clock Input

• Gated Internal Clock

• Triggered Internal Clock

• Retriggerable Internal Clock

Note: The T,N mode is restricted for use with timer 1 only. To
enable the T,N mode selected (via TMR bits 4- 5), bit 1 of PRE1
must be set to 1.

Register F1 H
Timer Mode Register (TMR)
(Read/Write)

zse MICROCOKTROLLERS

The counter/timer clock source must be configured for
external by setting the PRE1 Register bit 2 to 0. The Timer
Mode Register bit5 and bit 4 can then be used to select the
desired T,N operation.

For T1 to start counting as a result of a T,N input, the Enable II
Count bit (bit 3 in TMR) must be set to 1. When using T,N as
an external clock or a gate input, the initial values must be
loaded into the down counters by setting the Load bit (bit
2 in TMR) to a 1 before counting begins. In the descriptions
of T,N that follow, it is assumed the programmer has
performed these operations. Initial values are automati-
cally loaded in Trigger and Retrigger modes so software
loading is unnecessary.

TIN Modes
Oo = External Clock Input
01 = Gate Input
10 =Trigger Input (Non-Retriggerable)
11 =Trigger Input (Retriggerable)

Figure 6-13. Timer Mode Register (T,N Operation)

Register FSH
Prescaler 1 Register (PRE1}
(Write-Only}

l~lool~l~lmlool~lool
T Clock Source

O = T1 Internal
1 = T1 External

Figure 6-14. Prescaler 1 Register (T,N Operation)

6-7

It is suggested that P31 be configured as an input line by
setting P3M Register bit5 to 0, although T1N is still functional
if P31 is configured as a handshake input .

6.5.1 External Clock Input Mode

The T1N External Clock Input Mode (TMR bit 5 and bit4 both
set to 0) supports counting of external events, where an
event is considered to be a High-to-Low transition on T1N

(Figure 6-15).

ZS' MICROCONTROUERS

Each High-to-Low transition on T1N generates an interrupt
request IRQ2, regardless of the selected T1N mode or
the enabled/disabled state of T1. IRQ2 must therefore
be masked or enabled according to the needs of the
application.

Note: See the product data sheet for the minimum allowed T,N
external clock input period (TP T,N}.

TMR
0 5-04 = 00

c~6~k :-1 __ Ps_1_I ., ... -o-"""11.--0-..,I 1 .. I .. _P_R_E_1---T-1-~ 1~
JlJL lotemal i i ~ IRQ2

Clock

Figure 6-15. External Clock Input Mode

6-8

6.5.2 Gated Internal Clock Mode

The T1N Gated Internal Clock Mode (TMR bit 5 and bit 4 set
to 0 and 1 respectively) measures the duration of an
external event. In this mode, the T1 prescaler is driven by
the internal timer clock, gate by a High level on T1N (Figure
6-16). T1 counts while T1N is High and stops counting while

ZS- MICROCONTROLLERS

T1N is Low. Interrupt request IRQ2 is generated on the High­
to-Low transition of T1N signalling the end of the gate input.
Interrupt request IRQ5 is generated if T1 reaches its end­
of-count.

osc +2 1---e-----..- Internal
Clock

TIN
Gate D

+4 PRE1 T1 IRQ5

D .__..-------------------IRQ2

Figure 6-16. Gated Clock Input Mode

6-9

II

't'2iUl6

6.5.3 Triggered Input Mode

The T1N Triggered Input Mode (TMR bits 5 and 4 are set to
1 and 0 respectively) causes T1 to start counting as the
result of an external event (Figure 6-17). T1 is then loaded
and clocked by the internal timer clock following the first
High-to-Low transition on the T1N input. Subsequent T1N

transitions do not affect T1. In the Single-Pass Mode, the

osc +2
Internal
Clock

Edge
Trigger

TIN P31 D D 1. Trigger

Sl.

ZS' MICROCONTROLLERS

Enable bit is reset whenever T1 reaches its end-of-count.
Further T1N transitions will have no effect on T1 until soft­
ware sets the Enable Count bit again. In Continuous mode,
once T1 is triggered counting continues until software
resets the Enable Count bit. Interrupt request IRQ5 is
generated when T1 reaches its end-of-count.

+4 PRE1 T1 IRQ5

TMR
0 5-04 = 11

IRQ2

Figure 6·17. Triggered Clock Mode

6-10

6.5.4 Retriggerable Input Mode

The T,N Retriggerable Input Mode (TMR bits 5 and 4 are
set to 1) causes T1 to load and start counting on every
occurrence of a High-to-Low transition on T,N (Figure
6-17). Interrupt request IRQS will be generated if the
programmed time interval (determined by T1 prescaler
and counter/timer register initial values) has elapsed since
the last High-to-Low transition on T,N. In Single-Pass Mode,
the end-of-count resets the Enable Count bit. Subsequent

6.6 CASCADING COUNTER/TIMERS

For some applications, it may be necessary to measure a
time interval greater than a single counter/timer can mea­
sure. In this case, T,N and Tour can be used to cascade TO
and T1 as a single unit (Figure 6-18). TO should be
configured to operate in Continuous mode and to drive
Tour· T,N should be configured as an external clock input to
T1 and wired back to Tour On every other TO end-of-count,
Tour undergoesaHigh-to-Lowtransitionthatcauses T1 tocount.

PREO TO

IRQ4

ZIJ' MICROCONTROUERS

T,N transitions will not cause T1 to load and start counting
until software sets the Enable Count bit again. In Con­
tinuous Mode, counting continues once T1 is triggered
until software resets the Enable Count bit. When enabled,
each High-to-Low T,N transition causes T1 to reload and
restart counting. Interrupt request IRQS is generated on El
every end-of-count.

T1 can operate in either Single-Pass or Continuous mode.
When the T1 end-of-count is reached, interrupt request
IRQS is generated. Interrupt requests IRQ2 (T,N High-to­
Low transitions) and IRQ4 {TO end-of-count) are also
generated but are most likely of no importance in this
configuration and should be disabled.

PRE1 T1 IRQS

IRQ2

Figure 6-18. Cascaded Counter I Timers

6-11

6.7 RESET CONDITIONS

After a hardware reset, the counter/timers are disabled and
the contents of the counter/timer and prescaler registers
are undefined. However, the counting modes are config­
ured for Single-Pass and the T1 clock source is set for

R242T1
Countermmer 1 Register
(%F2; Read/Write Only)

R244TO
Countermmer o Register
(%F4; Read/Write Only)

lulululululululul

6-12

L Initial value when written
(Range 1-256 decimal, 01·00 HEX)
current value when read

Figure 6-19. Counter /Timer Reset

ZS' MICROCONTROLL.ERS

external. T1N is set for External Clock mode, and the Tour
mode is off. Figures 6-19 through 6-22 show the binary
reset values of the Prescaler, Counter{fimer, and Timer
Mode registers.

R243 PRE1
Prescaler 1 Register
(%F3; Write-Only)

I u I u I u lu I u I u Io I o I

--1 L Count Mode
0 = T 1 Single Pass
1 = T 1 Modulo·n

Clock Source
1 = T1 Internal
0 = T 1 External (TIN)

Prescaler Modulo
(Range: 1 ·64 Decimal
01-00HEX)

Figure 6-20. Prescaler 1 Register Reset

R245 PREO
Prescaler O Register

(o/oF5; Write Only)

I ujujujulujujujo I

IL Count Mode
0 = !n Single Pass
1 = 1 0 Modulo-n

Reserved (Must be O)

Prescaler Modulo
(Range: 1-64 Decimal
01-00 HEX)

Figure 6·21. Prescaler 0 Reset

olololololo lolo I

-,--- -,- -r~"'[__ o = No Function
1=LoadT0

o = Disable T Count
1 = Enable T gcount

O = No Function
1=LoadT1

'------ O = DisableT1 Count
1 = Enable T 1 Count

.__ _______ TIN Modes:

External Clock Input = 00

Gate Input = 01

Trigger Input = 1 o
(Non-retriggerrable)

Trigger Input = 11
(Retriggerable)

'------------ TouTModes:

TouTOFF=OO

T0 0UT=01

T1 OUT=10

Internal Clock OUT= 11

Figure 6-22. Timer ModeRBegister Reset

zse MICROCONTROLLERS

II

6-13

7.1 INTRODUCTION
The Z~ microcontroller allows six different interrupt levels
from a variety of sources; up to four external inputs, the on­
chip Counter/Timer(s), software, and serial 1/0 peripher­
als. These interrupts can be masked and their priorities set
by using the Interrupt Mask and the Interrupt Priority
Registers. All six interrupts can be globally disabled by
resetting the master Interrupt Enable, bit 7 in the Interrupt
Mask Register, with a Disable Interrupt (DI) instruction.
Interrupts are globally enabled by setting bit 7 with an
Enable Interrupt (El) instruction.

Register

lnter~Mask

lnterr~ R~uest

Intern~~ Prio~

HEX Identifier

FBH

FAH

F9H

IMR

IRQ

IPR

Figure 7-1. Interrupt Control Registers

USER'S MANUAL

CHAPTER 7
INTERRUPTS

There are three interrupt control registers: the Interrupt
Request Register (IRQ), the Interrupt Mask register (IMR),
and the Interrupt Priority Register (IPR). Figure 7-1 shows
addresses and identifiers for the interrupt control registers.
Figure 7-2 is a block diagram showing the Interrupt Mask
and Interrupt Priority logic.

The ZS MCU family supports both vectored and polled
interrupt handling. Details on vectored and polled interrupts
canbefoundlaterinthischapter.

Interrupt
Request

Vector Select

Figure 7-2. Interrupt Block Diagram

6

Note: See the selected ZS MCU's product specification for the
exact interrupt sources supported.

7-1

II

ZS' MICROCONTROLLERS

7.2 Interrupt Sources

Table 7-1 presents the interrupt types, sources, and vectors available in the Z8® family of processors.

Table 7-1. Interrupt Types, Sources, and Vectors *

Name Sources Vector Location Comments

IRQO DAV0, IRQ0, Comparator 0, 1 External (P32), Edge Triggered; Internal

IRQ1 DAV1, IRQ1 2,3 External (P33), Edge Triggered; Internal

IRQ2 DAV2, IRQ2, TIN, Comparator 4,5 External (P31), Edge Triggered: Internal

IRQ3 6,7 External (P30) or (P32), Edge Triggered;

IR03

Internal

Serial In 6,7 Internal

To 8,9 Internal
IR04

Serial Out 8,9 Internal

IRQ5 T, 10, 11 Internal

7.2.1 External Interrupt Sources

External sources involve interrupt request lines IRQO-IRQ3. IRQO, IRQ1, and IRQ2 can be generated by a transition on
the corresponding Port3 pin (P32, P33, and P31 correspond to IRQO, IRQ1, and IRQ2, respectively}. Figure 7-3 is a block
diagram for interrupt sources IRQO, IR01, and IRQ2.

n= 2.3,1
Muliple lnputt--.----1 S
and Sgnal
Conclinonhg
arclity R

Q D Q D

Cbck -------' Q nternal)

Figure 7-3. Interrupt Sources IRQO-IRQ2 Block Diagram

Q IRO
m='Pi,1;1

Note: The interrupt sources and trigger conditions are device dependent. See the device product specification to determine available
sources (internal and external), triggering edge options, and exact programming details.

7-2

When the Port 3 pin (P31, P32, or P33) transitions, the first
flip-flop is set. The next two flip-flops synchronize the
request to the internal clock and delay it by two internal
clock periods. The output of the last flip-flop (IRQO, IRQ1,
or IRQ2) goes to the corresponding Interrupt Request
Register.

IRQ3 can be generated from an external source only if
Serial In is not enabled. Otherwise, its source is internal.
The external request is generated by a negative edge
signal on P30 as shown in Figure 7-4. Again, the external

(IR03
Serial In)

D Q

ZS' MICROCONTROLLERS

request is synchronized and delayed before reaching IRQ3.
Some Z819 products replace P30 with P32 as the external
source for IRQ3. In this case, IRQ3 interrupt generation
follows the logic as illustrated in Figure 7-3.

Note: Although interrupts are edge triggered, minimum interrupt
request Low and High times must be observed for proper
operation. See the device product specification for exact timing II
requirements on external interrupt requests (T wll, T)H).

P3Me

D

IROs

J1.[1_
Clock--------' IRQ3

Internal
Source

IROs External Source

Serial Receiver

Figure 7-4. Interrupt Source IRQ3 Block Diagram

7.2.2 Internal Interrupt Sources

Internal sources involve interrupt requests IRQO, IRQ1, IRQ3, IRQ4, and IRQ5. Internal sources are ORed with the external
sources, so either an internal or external source can trigger the interrupt. Internal interrupt sources and trigger conditions
are device dependent. See the device product specification to determine available sources, triggering edge options,
and exact programming details.

For more details on the internal interrupt sources, refer to the chapters describing the Counter/fimer, 1/0 ports, and Serial
1/0.

7-3

~zn.m ZS' MICROCONTROLLERS

7.3 INTERRUPT REQUEST (IRQ) REGISTER LOGIC AND TIMING

Figure 7-5 shows the logic diagram for the Interrupt Re­
quest (IRQ) Register. The leading edge of the request will
set the first flip-flop, that will remain set until interrupt
requests are sampled.

Requests are sampled internally during the last clock cycle
before an opcode fetch (Figure 7-6). External requests are
sampled two internal clocks earlier, due to the synchroniz­
ing flip-flops shown in Figures 7-3 and 7-4.

IR00-IRQ5

R
Sample
Clock

At sample time the request is transferred to the second flip­
flop in Figure 7-5, that drives the interrupt mask and priority
logic. When an interrupt cycle occurs, this flip-flop will be
reset only for the highest priority level that is enabled.

The user has direct access to the second flip-flop by
reading and writing the IRQ Register. IRQ is read by
specifying it as the source register of an instruction and
written by specifying it as the destination register.

From
Priority
Logic

s

R

Q
To Mask

and
Priority
Logic

Figure 7·5. IRQ Register Logic

7-4

I Mn I M1 I M2 I
lnlnlnlnlnlnlnlnlnl

T Interrupt Requests
Sampled Internally

External Interrupt
Requests Sampled

Figure 7-6. Interrupt Request Timing

7.4 INTERRUPT INITIALIZATION

After reset, all interrupts are disabled and must be initial­
ized before vectored or polled interrupt processing
can begin. The Interrupt Priority Register (IPR), Interrupt
Mask Register (IMR), and Interrupt Request Register (IRQ)
must be initialized, in that order, to start the interrupt
process. However, IPR need not be initialized for polled
processing.

ZS' MICROCONTROLLERS

7.4.1 Interrupt Priority Register (IPR)
Initialization

IPR (Figure 7-7) is a write-only register that sets priorities
for the six levels of vectored interrupts in order to resolve
simultaneous interrupt requests. (There are 48 sequence
possibilities for interrupts.) The six interrupt levels IRQO­
IRQ5 are divided into three groups of two interrupt requests
each. One group contains IRQ3 and IRQ5. The second
group contains IRQO and IRQ2, while the third group
contains IRQ1 and IRQ4.

Priorities can be set both within and between groups as
shown in Tables 7-2 and 7-3. Bits 1, 2, and 5 define the
priority of the individual members within the three groups.
Bits 0, 3, and 4 are encoded to define six priority orders
between the three groups. Bits 6 and 7 are reserved.

Interrupt Group Priority
Bits Priority

000 Reserved
001 C >A>B
010 A>B>C
011 A>C>B
100 B>C>A
101 C>B>A
110 B>A>C
111 Reserved

Group C (IRQ1 and IRQ4 Priority)
0 = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

Group B (IRQO and IRQ2 Priority)
0 = IRQ2 > IRQO
1 = IRQO > IRQ2

Group A (IRQ3 and IRQ5 Priority)
0 = IRQ5 > IRQ3
1 = IRQ3 > IRQ5

Reserved (Must be 0)

Figure 7-7. Interrupt Priority Register

7-5

II

't'2iUl6 U' MICROCONTROLLERS

Table 7-2. Interrupt Priority Table 7-3. Interrupt Group Priority

Priority Bit Pattern Group Priority
Group Bit Value Highest Lowest Bit4 Bit3 BitO High Medium Low

c Bit 1 0 IRQ1 IRQ4 0 0 0 Not Used
1 IRQ4 IRQ1 0 0 1 c A B

0 1 0 A B c
B Bit 2 0 IRQ2 IRQO 0 1 1 A c B

1 IRQO IRQ2 1 0 0 B c A

A Bit 5 0 IRQ5 IRQ3 1 0 1 c B A

1 IRQ3 IRQ5 1 1 0 B A c
1 1 1 Not Used

7.4.2 Interrupt Mask Register (IMR) Initialization

MR individually or globally enables or disables the six
interrupt requests (Figure 7-8). When bit Oto bit 5 are set
to 1, the corresponding interrupt requests are enabled. Bit
7 is the master enable and must be set before any of the
individual interrupt requests can be recognized. Resetting
bit 7 globally disables all the interrupt requests. Bit 7 is set
and reset by the El and DI instructions. It is automatically
reset during an interrupt service routine and set following
the execution of an Interrupt Return (IRET) instruction.

Note: Bit 7 must be reset by the DI instruction before the
contents of the Interrupt Mask Register or the Interrupt
Priority Register are changed except:

• Immediately after a hardware reset.

• Immediately after executing an interrupt service routine
and before IMR bit 7 has been set by any instruction.

0 =Disables IRQO
1 =Enables IRQO
O =Disables IRQ1
1 = Enables IRQ1

o = Dlsables IRQ2
1 = Enables IRQ2

O =Disables IR03
1 = Enables IRQ3

o =Disables IRQ4
1 = Enables IRQ4
O = Disables IRQ5
1 = Enables IRQ5

O = Disable RAM Protect
1 = Enable RAM Protect

~---------- o =Disables Interrupts
1 = Enables Interrupts

Figure 7-8. Interrupt Mask Register

Note: The RAM Protect option is selected at ROM mask submission time or at EPROM program time. If not selected or not an available
option, this bit is reserved and must be 0.

7-6

ZS' MICROCONTROLLERS

7.4.3 Interrupt Request (IRQ) Register lnltlalization

IRQ (Figure 7-9) is a read/Write register that stores the
interrupt requests for both vectored and polled interrupts.
When an interrupt is made on any of the six levels, the
corresponding bit position in the register is setto 1. Bit 0 to
bit 5 are assigned to interrupt requests IRQO to IRQ5,
respectively.

Whenever Power-On Reset (POR) is executed, the IRQ
resister is reset to OOH and disabled. Before the IRQ
register will accept requests, it must be enabled by execut­
ing an ENABLE INTERRUPTS (El) instruction.

Note: Setting the Global Interrupt Enable bit in the Interrupt Mask
Register (IMR, bit 7) will not enable the IRQ. Execution of the El
instructionisrequired(Rgure 7-1 O).

For polled processing, IRQ must still be initialized by an El
instruction.

To properly initialize the IRQ register, the following code is
provided:

CLR IMR
El
DI

Register FAH
Interrupt Request Register (IRQ)
(Read/Write)

o = IRQO Reset
1 = IRQO Set

o = IRQ1 Reset
1 = IRQ1 Set

0 = IRQ2 Reset
1 = IRQ2 Set
o = IRQ3 Reset
1 = IRQ3 Set
o = IRQ4 Reset
1 = IRQ4 Set

o = IRQ5 Reset
1 = IRQ5 Set

Reseived /Int Edge Select

Figure 7·9. Interrupt Request Register

7-7

IMR is cleared before the IRQ enabling sequence to insure
no unexpected interrupts occur when El is executed. This
code sequence should be executed prior to programming
the application required values for IPR and IMR.

Note: IRQ bits 6 and 7 are device dependent. When reserved,
the bits are not used and will return a O when read. When used as
the Interrupt Edge select bits, the configuration options are as
show in Table 7-4.

Table 7-4. IRQ Register Configuration

IRQ
07 06

Note:

0
0
1
1

F = Falling Edge
R = Rising Edge

0
1
0
1

Interrupt Edge
P31 P32

F
F
R
R/F

F
R
F
R/F

El Instruction

Power-On Reset (POR)

zae MICROCONTROLLERS

The proper sequence for programming the interrupt edge
select bits is (assumes IPR and IMR have been previously
initialized):

DI

OR

El

;Inhibit all interrupts
till input edges are
configured.

IRQ,#XX OOOOOOB ;Configure interrupt
edges as needed -
do not disturb
IRQ0-5.
;Re-enable inter­
rupts.

Interrupt Request Register
(IRQ, FAH)

Figure 7·10. IRQ Reset Functional Logic Diagram

7-8

~2H.1l6

7.5 IRQ SOFTWARE INTERRUPT
GENERATION

IRQ can be used to generate software interrupts by speci­
fying IRQ as the destination of any instruction referencing
the ZS® Standard Register File. These Software Interrupts
(SWI) are controlled in the same manner as hardware
generated requests (in other words, the IPR and the IMR
control the priority and enabling of each SWI level).

To generate aSWI, the desired request bit inthe IRQ is set
as follows:

OR IRQ, #NUMBER

7.6 VECTORED PROCESSING

Each ZS interrupt level has its own vector. When an
interrupt occurs, control passes to the service routine
pointed to by the interrupt's vector location in program
memory. The sequence of events for vectored interrupts is
as follows:

SP and STACK before an Interrupt

SP Top of Stack

zse MICROCONTROLLERS

where the immediate data, NUMBER, has a 1 in the bit
position corresponding to the level of the SWI desired. For
example, if an SWI is desired on IRQ5, NUMBER would
have a 1 in bit 5:

OR IRQ, #001000008

With this instruction, if the interrupt system is globally
enabled, IRQ5 is enabled, and there are no higher priority
pending requests, control is transferred to the service
routine pointed to by the IRQ5 vector.

• PUSH PC Low Byte on Stack
• PUSH PC High Byte on Stack
• PUSH FLAGS on Stack
• Fetch High Byte of Vector
• Fetch Low Byte of Vector
• Branch to Service Routine specified by Vector

Figures 7-11 and 7-12 show the vectored interrupt opera­
tion.

SP and STACK after an Interrupt

f SP h
PC LOW Byte

PC HIGH Byte

I...+ FLAGS

Figure 7-11. Effects of an Interrupt on the STACK

7-9

7-10

Program Memory

XXFFH

OOOCH

OOOOH

Int
Se
Ro

errupt
rvice
utine

Vector Selected
By Priority Logic

1-- lnterrui;>t
Vector Table

Figure 7·12. Interrupt Vectoring

ZS' MICROCONlllOLl!RS

7.6.1 Vectored Interrupt Cycle Timing

The interrupt acknowledge cycle time is 24 internal clock
cycles and is shown in Figure 7-13. In addition, two internal
clock cycles are required for the synchronizing flip-flops.
The maximum interrupt recognition time is equal to the
number of clock cycles required for the longest executing
instruction present in the user program (assumes worst
case condition of interrupt sampling, Figure 7-6, just prior
to the interrupt occurrence). To calculate the worst case
interrupt latency (maximum time required from interrupt
generation to fetch of the first instruction of the interrupt
service routine), sum these components:

Worst Case Interrupt Latency ... 24 TpC (interrupt acknowl­
edge time) + # TPC of longest instruction present in the
user's application program+ 2TPC (internal synchroniza­
tion time).

!I

j
l
ij

t
if

t
~
J

t
~
J

t
1
J

t

l
l
l

'ZS' MICROCONTAOLLEAS

Figure 7-13. ZS Interrupt Acknowledge Timing

7-11

~z11.m

7.6.2 Nesting of Vectored Interrupts

Nesting of vectored interrupts allows higher priority re­
quests to interrupt a lower priority request. To initiate
vectored interrupt nesting, do the following during the
interrupt service routine:

• Push the old IMR on the stack.
• Load IMR with a new mask to disable lower priority

interrupts.
• Execute El instruction.

7.7 POLLED PROCESSING

Polled interrupt processing is supported by masking off the
IRQ levels to be polled. This is accomplished by clearing
the corresponding bits in the IMR.

To initiate polled processing, check the bits of interest in the
IRQ using the Test Under Mask (TM) instruction. If the bit
is set, call or branch to the service routine. The service
routine services the request, resets its Request Bit in the
IRQ, and branches or returns back to the main program. An
example of a polling routine is as follows:

7.8 RESET CONDITIONS

Upon reset, all bits in IPR are undefined.

In IMR, bit 7 is 0 and bits 0-6 are undefined. The IRQ
register is reset and held in that state until an enable
interrupt (El) instruction is executed.

7-12

Z8' MICROCONIROIURS

• Proceed with interrupt processing.
• After processing is complete, execute DI instruction.
• Restore the IMR to its original value by returning the

previous mask from the stack.
• Execute IRET.

Depending on the application, some simplification of the
above procedure may be possible.

TM IRQ, #MASKA
JR Z,NEXT
CALL SERVICE

NEXT:

SERVICE:

AND IRQ, #MASKS
RET

;Test for request
;If no request go to NEXT
;If request is there, then
;service it

;Process Request

;Clear Request Bit
;Return to next

In this example, if IRQ2 is being polled, MASKA will be
000001008 and MASKB will be 111110116.

~2iUD.,

8.1 INTRODUCTION

USER'S MANUAL

CHAPTER 8
POWER-DOWN MODES

In addition to the standard RUN mode, the Z841 supports two Power-Down modes to minimize device current consumption.
The two modes supported are HALT and STOP.

8.2 HALT MODE OPERATION

The HALT mode suspends instruction execution and turns
off the internal CPU clock. The on-chip oscillator circuit
remains active so the internal clock continues to run and is
applied to the Counter/Timer(s) and interrupt logic.

To enter the HALT mode, it is necessary to first flush the
instruction pipeline to avoid suspending execution in mid­
instruction. To do this, the application program must ex­
ecute a NOP instruction (opcode = FFH) immediately
before the HALT instruction (opcode 7FH), that is,

FF NOP ;clear the instruction pipeline
7F HALT ;enter HALT mode

The HALT mode is exited by interrupts, either externally or
internally generated. Upon completion of the interrupt
service routine, the user program continues from the in­
struction after HALT.

The HALT mode may also be exited via a POR/RESET
activation or a Watch-Dog Timer (WOT) timeout. (See the
product data sheet for WOT availability). In this case,
program execution will restart at the reset restart address
COOCH.

To further reduce power consumption in the HALT mode,
some ZS family devices allow dynamic internal clock scal­
ing. Clock scaling may be accomplished on the fly by
reprogramming bitOand/or bit1 of the STOP-Mode Recov­
ery register (SMR). See Figure 8-1.

Note: Internal clock scaling directly effects Counter/Timer
operation-adjustment of the prescaler and downcounter
values may be required. To determine the actual HALT
mode current (lcc1) value for the various optional modes
available, see the selected Z841 device's product specifi­
cation.

8·1

8.3 STOP MODE OPERATION

The STOP mode provides the lowest possible device
standby current. This instruction turns off the on-chip
oscillator and internal system clock.

To enter the STOP mode, it is necessary to first flush the
instruction pipeline to avoid suspending execution in mid­
instruction. To do this, the application program must
execute a NOP instruction (opcode=FFH) immediately
before the STOP instruction (opcode=6FH), that is,

FF NOP ;clear the instruction pipeline
6F STOP ;enter STOP mode

The STOP mode is exited by any one of the following
resets: Power-On Reset activation, WOT time out (if
available), or a STOP-Mode Recovery source. Upon reset
generation, the processor will always restart the applica­
tion program at address OOOCH.

PORJRESET activation is present on all za devices and is
implemented as a reset pin and/or an on-chip power on
reset circuit.

Some ZS devices allow for the on-chip WOT to run in the
STOP mode. If so activated, the WOTtimeout will generate
a reset some fixed time period after entering the STOP
mode.

Note: STOP-Mode Recovery by the WDTwlll increase the STOP
mode standby current (I=). This is due to the WOT clock and
divider circuitry that is now enabled and running to support this
recovery mode. See the product data sheet for actual lcc2
values.

All Z8 devices provide some form of dedicated STOP-Mode
Recovery (SMR) circuitry. Two SMR methods are imple­
mented - a single fixed input pin or a flexible, program­
mable set of inputs. The selected Z8 device product speci­
fication should be reviewed to determine the SMR options
available for use.

Note: For devices that support SPI, the slave mode compare
feature also serves as a SMR source.

S-2

.. MICROCONTROLLERS

In the simple case, a low level applied to input pin P27 will
trigger a SMR. To use this mode, pin P27 {1/0 Port 2, bit 7)
must be configured as an input before the STOP mode is
entered. The low level on P27 must meet a minimum pulse
width T WSM • (See the product data sheet) to trigger the
device reset mode). Some Z8 devices provide multiple
SMR input sources. The desired SMR source is selected
via the SMR Register.

Note: Use of specialized SMR modes (P2. 7 input or SMR
register based) or the WOTtimeout (only when in the STOP
mode) provide a unique reset operation. Some control
registers are initialized differently for a SMR/WOT trig­
gered POR than a standard resE!t operation. See the
product specification (register file map) for exact details.

To determine the actual STOP mode current (lcc2) value for
the optional SMR modes available, see the selected ZS
device's product data sheet.

Note: The STOP mode current (I=) will be minimized when:

• V cc is at the low end of the devices operating range.

• WOT is off in the STOP mode.

• Output current sourcing is minimized.

• All inputs (digital and analog) are at the low or high rail
voltages.

1J" MICROCOHTROLLEllS

8.4 STOP-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of STOP-Mode Recovery (Figure 8-1). All bits are
Write-Only, except bit 7, that is Read-Only. Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and
reset by a power-on cycle. Bit 6 controls whether a low level or a high level is required from the recovery source. Bit 5
controls the reset delay after recovery. Bits 2, 3, and 4, of the SMR register, specify the source of the STOP-Mode Recovery
signal. Bits 0 and 1 control internal clock divider circuitry. The SMR is located in Bank F of the Expanded Register File
at address OBH.

SMR (FH) OB

* Default setting after RESET.

SCLK/TCLK Dlvlde-by-16
0 OFF'*
1 ON

External Clock Divide by 2
0 SCLKITCLK =XTAIJ2*
1 SCLKITCLK =XTAL

STOP-Mode Recovery Source
000 POR Only and/or External Reset•
001 P30
010 P31
011 P32
100 P33
101 P27
110 P2 NOR 0-3
111 P2 NOR 0-7

Stop Delay
0 OFF
1 ON'
Stop Recovery Level
o Low*
1 High

Stop Flag (Read only)
0 POR*
1 Stop Recovery

• • Default setting after RESET and STOP-Mode Recovery.

Figure 8-1. STOP·Mode Recovery Register
(Write-Only Except Bit 07, Which Is Read-Only)

Note: The SMR register is available in select ZS MCU products. Refer to the device product specification to determine SMR options
available.

8-3

II

SCLK/TCLK Dlvlde-by-16 Select (DO). This bit of the
SMR controls a divide-by-16 prescaler of SCLK/TCLK. The
purpose of this control is to selectively reduce device
power consumption during normal processor execution
(SCLK control) and/or HALT mode (where TCLK sources
counter/timers and interrupt logic).

External Clock Divide-by-Two (D1). This bit can elimi­
nate the oscillator divide-by-two circuitry. When this bit is
0, the System Clock (SCLK) and Timer Clock (TCLK) are
equal to the external clock frequency divided by two. The
SCLK/TCLK is equal to the external clock frequency when
this bit is set (01=1). Using this bit together with 07 of
PCON helps further lower EMI (07 (PCON) =0, 01 (SMR)
=1). The default setting is zero.

STOP-Mode Recovery Source (D2, 03, and D4). These
three bits of the SMR specify the wake-up source of the
STOPreccvery and(Table8-1andFigure8-2).

Table 8-1. STOP-Mode Recovery Source

SMR:432 Operation
04 03 02 Description of Action

0 0 0 POR and/or external reset recovery
0 0 1 P30 transition
0 1 0 P31 transition (not in Analog Mode)
0 1 1 P32 transition (not in Analog Mode)

0 0 P33 transition (not in Analog Mode)
0 1 P27 transition
1 0 Logical NOR of P20 through P23
1 1 Logical NOR of P20 through P27

8-4

STOP-Mode Recovery Delay Select (05). This bit, if High,
enables the T POR /RESET delay after Stop-Mode Recovery.
The default configuration of this bit is 1. If the "fast" wake up
is selected, the Stop-Mode Recovery source is kept active
for at least 5 TpC.

STOP-Mode Recovery Edge Select (D6). A 1 in this bit
position indicates that a high level on any one of the
recovery sources wakes the zae from STOP mode. A O
indicates low-level recovery. The default is 0 on POR
(Figure 8-2).

Cold or Warm Start (D7). This bit is set by the device upon
entering STOP mode. AO in this bit (cold) indicates that the
device reset by POR/WDT RESET. A 1 in this bit (warm)
indicates that the device awakens by a SMR source.

SMR D4 03 02 SMR 04 03 02
1 0 0 1 0 1

SMR D4 03 02
1 1 0

'1' MICROCONlllOLLERS

SMR D4 03 02
1 1 1

ToPOR

~~~~~~~~--11--~~~~~~~~~~~~~~~~~~--it--~~~~-1~ 
Stop Mode Recovery Edge ~ 
Select (SMR) 

To P33 Data 
Latch and IRQ1 

-P-33~F-ro_m_P~a-ds~~~~--i--~~~~~~~~~~~~~~~~~~~~~-IMUx ........ ~~~~~ 

DlgltaVAnalog Mode 
Select (P3M) 

Figure 8-2. STOP·Mode Recovery Source 

Note: If P31, P32, or P33 are to be used for a SMR source, the digital mode of operation must be selected prior to entering the STOP 
Mode. 

8-5 

II 





ft'2iUD., 

9.1 UART INTRODUCTION 

Select zae microcontrollers contain an on-board full-du­
plex Universal Asynchronous Receiver{rransmitter {UART) 
for data communications. The UART consists of a 
Serial 1/0 Register (SIO) located at address FOH, and its 
associated control logic (Figure 9-1). The SIO is actually 

Read FOH 

USER'S MANUAL 

CHAPTER 9 
SERIAL 1/0 

two registers, the receiver buffer and the transmitter buffer, 
which are used in conjunction with Counter/Timer TO and 
Port 31/0 lines P30 (input) and P37 (output). Counter/Timer 
TO provides the clock input for control of the data rates. 

lntamal Data Bus 

Bit~ 1-------- IRC4 

WrlteFOH Mark 

P3o Serial 
In 

Pa:t 
Ch 

Start 

+6 

Stop 
Serial 

l/OClock 
(From TO) 

Char 
Datacl 

Shift 
CIOck 

Transmitter 
Shift Register 

Shift 
CIOck 

+ 16 

~p~ 

Partly 
Gan 

L....J-----------------+1RQ3 

Figure 9-1. UART Block Diagram 

9-1 



Configuration of the UART is controlled by the Port 3 Mode 
Register (P3M) located at address F7H. The zs• always 
transmits eight bits between the start and stop bits (eight 
Data Bits or seven Data Bits and one Parity Bit). Odd parity 
generation and detection is supported. 

The SIO Register and its associated Mode Control Regis­
ters are mapped into the Standard ZS Register File as 
shown in Table 9-1 . The organization allows the software to 
access the UART as general-purpose registers, eliminat­
ing the need for special instructions. 

9.2 UART BIT-RATE GENERATION 

When Port 3 Mode Register bit 6 is set to 1, the UART is 
enabled and TO automatically becomes the bit rate gen­
erator (Figure 9-2). The end-of-count signal of TO no longer 

Register F7H 
(Write·Only) 

l~l~l~l~loolool~lool 
T 

ZS8 MfcROCONlROWRS 

Table 9-1. UART Register Map 

Register Hex 
Name Identifier Address 

Port3 Mode P3M F7 

TO Prescaler PREO F5 
Timer/CounterO TO F4 

Timer Mode TMR F1 
UART SIO FO 

generates Interrupt Request IRQ4. Instead, the signal is 
used as the input to the divide-by-16 counters (one each 
for the receiver and the transmitter) that clock the data 
stream. 

O = P30 Input and P37 Output 
1 = P30 Serial In and P37 Serial Out 

Figure 9-2. Port 3 Mode Register {P3M) and 
Bit-Rate Generation 

The divide chain that generates the bit rate is shown in 
Figure 9-3. The bit rate is given by the following equation: 

Bit Rate= XTAL Frequency/(2 x 4 x p x t x 16) 

fXTAL +2 +4 p 

where p and t are the initial values in PrescalerO and 
Counter{TimerO, respectively. The final divide-by-16 is 
required since TO runs at 16 times the bit rate in order to 
synchronize on the incoming data. 

+ 16 Bit Rate 
Clock 

PREO TO 

Figure 9-3. Bit Rate Divide Chain 

To configure the ZS for a specific bit rate, appropriate 
values as determined by the above equation must be 
loaded into registers PREO 

9-2 

(F5H) and TO (F4H). PREO also controls the counting mode 
for TO and should therefore be set to the Continuous Mode 
(DO= 1). 



4\21Ul6 .,, lllCRocoNlRouER 

For example, given an input clock frequency ()<T AL) of Table 9-2 lists several commonly used bit rates and the 
11.9808 MHz and a selected bit rate of 1200 bits per values of XTAL, p, and t required to derive them. This list 
second, the equation is satisfied by p = 39 and t = 2. is presented for convenience and is not intended to be 
Counter/Timer TO should be set to 02H. With TO in Continu- exhaustive. 
ous Mode, the value of PREO becomes 9DH (Figure 9-4). 

Table 9-2. Bit Rates 

Bit 7,3728 
Rate p t 

1!ml 3 1 
!HD 3 2 
48D 3 4 
2«D 3 8 
1aD 3 16 
6D 3 32 
3'.D 3 &i 
1BJ 3 1a3 
110 3 175 

7,9872 9,8304 11,0592 11,6738 11,9808 
p t p t p t p t p 

4 1 
4 2 9 1 

13 1 4 4 9 2 19 1 
13 2 4 8 9 4 19 2 ~ 
13 4 4 16 9 8 19 4 ~ 
13 8 4 32 9 16 19 8 ~ 
13 16 4 &i 9 32 19 16 ~ 
13 32 4 1a3 9 &i 19 32 ~ 
3 1Ell 4 175 5 157 4 'JJ1' 17 

Register F5H 
(Write-Only) 

1~1~1~1~1001~1~1001 
L_ Count Mode 

O = TO Single Pass 
1 = TO Moduo-n 

(Range: 1-64 decimal, 01 H·OOH) 
(Range: 1-64) 

Figure 9-4. Prescaler 0 Register (PREO) Blt·Rate Generation 

t 

1 
2 
4 
8 

16 
BJ 

12,2880 
p t 

5 1 
5 2 
5 4 
5 8 
5 16 
5 32 
5 &i 
5 1a3 
8 1CB 

9-3 

II 



The bit rate generator is started by setting the Timer Mode 
Register (TMR) (F1 H) bit 1 and bit 0 both to 1 (Figure 9-5). 
This transfers the contents of the Prescaler 0 Register and 

Register F1 H 
(Read/Write) 

'ii' MICROCONTROLLERS 

Counter{TimerO Register to their corresponding down 
counters. In addition, counting is enabled so that UART 
operations begin. 

O = No Function 
1 =Load TO 

O = Disable TO Count 
1 = Enable TO Count 

Figure 9-5. Timer Mode Register (TMR) Bit Rate Generation 

9.3 UART RECEIVER OPERATION 

The receiver consists of a receiver buffer ($10 Register 
[FOH]), a serial-in, parallel-out shift register, parity check­
ing, and data synchronizing logic. The receiver block 
diagram is shown as part of Figure 9-1. 

9.3.1 Receiver Shift Register 

After a hardware resetorafteracharacterhasbeen received, the 
Receiver Shift Register is initialized to all 1 sand theshiftclock is 
stopped. Serial data, input through Port 3 bit 0, is synchro­
nized to the internal clock by two D-type flip-flops before 
being input to the Shift Register and the start bit detection 
circuitry. 

(R) 
RCVR 

Data 

Shift 
Clock 

RCVR 
IRQ3 

Start Bit Transition Detected 

Eight TO Counts Later Shifting Starts 

The start bit detection circuitry monitors the incoming data 
stream, looking for a start bit (a High-to-Low input transi­
tion). When a start bit is detected, the shift clock logic 
is enabled. The TO input is divided-by-16 and, when the 
count equals eight, the divider outputs a shift clock. This 
clock shifts the start bit into the Receiver Shift Register 
at the center of the bit time. Before the shift actually occurs, 
the input is rechecked to ensure that the start bit is valid. If 
the detected start bit is false, the receiver is reset and 
the process of looking for a start bit is repeated. If the 
start bit is valid, the data is shifted into the Shift Register 
every sixteen counts until a full character is assembled 
(Figure 9-6). 

Stop Bit 
One or More 

r• •• , 

Shift Register Contents 
Transferred to Receiver Buffer 

and IRQ3 Is Generated 
Figure !Mi. Receiver Timing 

9-4 



After a full character has been assembled in the receiver's 
buffer, SIO Register (FOH), Interrupt Request IRQ3 is 
generated. The shift clock is stopped and the Shift Regis­
ter reset to all 1s. The start bit detection circuitry begins 
monitoring the data input for the next start bit. This cycle 
allows the receiver to synchronize on the center of the bit 
time for each incoming character. 

9.3.2 Overwrites 

Although the receiver is single buffered, it is not protected 
from being overwritten, so the software must read the SIO 
Register (FOH) within one character time after the interrupt 
request (IRQ3). The za does not have a flag to indicate this 
overrun condition. If polling is used, the IRQ3 bit in the 
Interrupt Request Register must be reset by software. 

Received Data 
(No Parity) 

Received Data 
(With Parity) 

ZS' MICROCONTROu.ERS 

9.3.3 Framing Errors 

Framing error detection is not supported by the receiver 
hardware, but by responding to the interrupt request within 
one character bittime, the software can test for a stop bit on 
P30. Port3 bits are always readable, which facilitates break 
detection. For example, if a null character is received, 
testing P30 results in a 0 being read. 

9.3.4 Parity 

The data format supported by the receiver must have a start 
bit, eight data bits, and at least one stop bit. If parity is on, 
bit 7 of the data received will be replaced by a Parity Error 
Flag. A parity error sets bit 7 to 1, otherwise, bit D7 is set 
to 0. Figure 9-7 shows these data formats. 

Start Bit 

Eight Data Bits 

One Stop Bit 

Start Bit 

Seven Data Bits 

Parity Error Flag 

One Stop Bit 

Figure 9-7. Receiver Data Formats 

9-5 

II 



•21Ul6 
The zs• hardware supports odd parity only, that is enabled 
by setting the Port 3 Mode Register bit 7 to 1 (Figure 9-8). 

Register F7H 
(Write-Only) 

'ZS' MICROCONTROLLERS 

If even parity is required, the Parity Mode should be 
disabled (P3M bit 7 set to 0), and software must calculate 
the received data's parity. 

0= Parity Off 
1 =Parity On 

Figura 9-8. Port 3 Mode Register (P3M) Parity 

9.4 TRANSMITTER OPERATION 

The transmitter consists of a transmitter buffer (SIO Regis­
ter [FOH]), a parity generator, and associated control 
logic. The transmitter block diagram is shown as part of 
Figure 9-1. 

After a hardware reset or after a character has been 
transmitted, the transmitter is forced to a marking state 
(output always High) until a character is loaded into the 

transmitter buffer, SIO Register (FOH). The transmitter is 
loaded by specifying the SIO Register as the destination 
register of any instruction. 

TO's output drives a divide-by-16 counter that in turn 
generates a shift clock every 16 counts. This counter is 
reset when the transmitter buffer is written by an instruc­
tion. This reset synchronizes the shift clock to the software. 
The transmitter then outputs one bit per shift clock, through 
Port 3 bit 7, until a start bit, the character written to the 
buffer, and two stop bits have been transmitted. After the 
second stop bit has been transmitted, the output is again 
forced to a marking state. Interrupt request IRQ4 is gener­
ated at this time to notify the processor that the transmitter 
is ready to accept another character. 

9-6 

9.4.1 Overwrites 

The user is not protected from overwriting the transmitter, 
so it is up to the software to respond to IRQ4 appropriately. 
If polling is used, the IRQ4 bit in the Interrupt Request 
Register must be reset. 

9.4.2 Parity 

The data format supported by the transmitter has a start bit, 
eight data bits, and at least two stop bits. If parity is on, bit 
7 of the data transmitted will be replaced by an odd parity 
bit. Figure 9-9 shows the transmitter data formats. 

Parity is enabled by setting Port 3 Mode Register bit 7 to 1. 
If even parity is required, the parity mode should be 
disabled (P3M bit 7 reset to 0), and software must modify 
the data to include even parity. 

Since the transmitter can be overwritten, the user is able to 
generate a break signal. This is done by writing null 
characters to the transmitter buffer (SIO Register [FOH]) at 
a rate that does not allow the stop bits to be output. Each 
time the SIO Register is loaded, the divide-by-16 counter 
is resynchronized and a new start bit is output followed by 
data. 



Transmitted Data 
(No Parity) 

Transmitted Data 
(With Parity) 

'zat MICROCONTROLLERS 

1~1~1~1~1~1~1~1~1~1~1&1 

T I "'[__ Start Bit 

'-· -------- Eight Data Bits 

Two Stop Bits 

1~1~1p1~1~1~1~1~1~1~1&1 1 T "'[__ StartBlt 

L-------- Seven Data Bits 

L------------- Odd Parity 

L--------------- Two Stop Bit 

Figure 9-9. Transmitter Data Formats 

9·7 



'Z8' MICROCONTROLLERS 

9.5 UART RESET CONDITIONS 

After a hardware reset, the SIO Register contents are undefined, and Serial Mode and parity are disabled. Figures 9-10 
and 9-11 show the binary reset values of the SIO Register and its associated mode register P3M. 

9-8 

Serial Data (D0 = LSB) 

Figure 9-10. SIO Register Reset 

L O Port 2 pull-ups open-drain 
1 Port 2 pull-ups active 

0 P32 = Input P35 = Output 
1 P32 = /DAVO/RrNO P35 = RrNO//DAVO 

...__ ______ 00 P33 =Input 

~J P33 = Input 

P34=0utput 

P34=/DM 

11 P33 = /DAV1/RrN1 P34 = RrN1//DAV1 

....__________ 0 P31 = Input CT1N) P36 =Output (Tour> 
1 P31 = /DAV2/RrN2 P36 = RD'f2//DAV2 

...__ __________ 0 P30 =Input 

1 P30 = Serial In 

'-------------- O Parity Off 
1 ParityOn 

Figure 9-11. P3M Register Reset 

P37= Output 
P37 = Serial Out 



9.6 Serial Peripheral Interface (SPI) 

Select Z8® microcontrollers incorporate a serial peripheral 
interface (SPI) for communication with other 
microcontrollers and peripherals. The SPI includes fea­
tures such as Stop-Mode Recovery, Master/Slave selec­
tion, and Compare mode. Table 9-3 contains the pin 
configuration for the SPI feature when it is enabled. The SPI 
consists of four registers: SPI Control Register (SCON), SPI 
Compare Register (SCOMP), SPI Receive/Buffer Register 
(RxBUF), and SPI Shift Register. SCON is located in bank 
(C) of the Expanded Register File at address 02. 

Table 9-3. SPI Pin Configuration 

Name Function Pin Location 

DI Data-In P20 
DO Data-Out P27 
SS Slave Select P35 
SK SPI Clock P34 

The SPI Control Register (SCON) (Figure 9-12), is a read/ 
write register that controls Master/Slave selection, inter­
rupts, clock source and phase selection, and error flag. Bit 
O enables/disables the SPI with the default being SPI 
disabled. A 1 in this location will enable the SPI, and a 0 will 
disable the SPI. Bits 1 and 2 of the SCON register in Master 
Mode select the clock rate. The user may choose whether 
internal clock is divide-by-2, 4, 8, or 16. In Slave Mode, Bit 
1 of this register flags the user if an overrun of the RxBUF 
Register has occurred. The RxCharOverrun flag is only 
reset by writing a 0 to this bit. In slave mode, bit 2 of the 
Control Register disables the data-out 1/0 function. If a 1 is 
written to this bit, the data-out pin is released to its original 
port configuration. If a 0 is written to this bit, the SPI shifts 
out one bit for each bit received. Bit 3 of the SCON Register 
enables the compare feature of the SPI, with the default 
being disabled. When the compare feature is enabled, a 
comparison of the value in the SCOMP Register is made 
with the value in the RxBUF Register. Bit 4 signals that a 
receive character is available in the RxBUF Register. 

SCON (C)02 

lwl~l~l~lmlool~lool 

L 

(S) Used with Bit D7 equal to 0 
(M) Used with Bit D7 equal to 1 

* Default Setting After Reset. 

'ZB' MICROCONTROLl.ERS 

SPI Enable 
O Disable• 
1 Enable 

RxCharOverrun (S) 
o Resat 
1 overrun 

CLK Divide (M) 
00 TCLK/2 
01 TCLK/4 
10 TCUK/8 
11 TCLK/16 

DO SPI Port Enable (S) 
O SPI DO Port Enabled 
1 DO Port to 1/0 

cg"E,8~~1;nable 
1 Disable• 

RxCharAvail 
o Reset 
1 Char. Avail. 

Clock Phase 
0 Trans/Fall 
1 Trans/Rise 

CLKSource 
0 TCLK 
1 Timer O Output 

Master Slave 
0 Slave 
1 Master 

Figure 9-12. SPI Control Register (SCON) 

If the associated IRQ3 is enabled, an interrupt is gener­
ated. Bit 5 controls the clock phase of the SPI. A 1 in bit 5 
allows for receiving data on the clock's falling edge and 
transmitting data on the clock's rising edge. A O allows 
receiving data on the clock's rising edge and transmitting 
on the clock's falling edge. The SPI clock source is defined 
in bit 6. A 1 uses TimerO output for the SPI clock, and a O 
uses TCLK for clocking the SPI. Finally, bit 7 determines 
whethertheSPI is used as a MasteroraSlave.A 1 puts the 
SPI into Master mode and a 0 puts the SPI into Slave mode. 

9-9 



9. 7 SPI Operation 

The SPI is used in one of two modes: either as system 
slave, or as system master. Several of the possible system 
configurations are shown in Figure 9-13. In the slave mode, 
data transfer starts when the slave select (SS) pin goes 
active. Data is transferred into the slave's SPI Shift Register 
through the DI pin, which has the same address as the 
RxBUF Register. After a byte of data has been received by 
the SPI Shift Register, a Receive Character Available 
(RCA/IRQ3) flag and interrupt is generated. The next byte 
of data will be received at this time. The RxBUF Register 
must be cleared, or a Receive Character Overrun 
(RxCharOverrun) flag will be set in the SCON Register, and 
the data in the RxBUF Register will be overwritten. When 
the communication between the master and slave is com­
plete, the SS goes inactive. 

Unless disconnected, for every bit that is transferred into 
the slave through the DI pin, a bit is transferred out through 
the DO pin on the opposite clock edge. During slave 
operation, the SPI clock pin (SK) is an input. In master 
mode, the CPU must first activate a SS through one of its 
1/0 ports. Next, data is transferred through the master's DO 
pin one bit per master clock cycle. Loading data into the 
shift register initiates the transfer. In master mode, the 
master's clock will drive the slave's clock. At the conclu­
sion of a transfer, a Receive Character Available (RCA/ 
IRQ3) flag and interrupt is generated. Before data is 
transferred via the DO pin, the SPI Enable bit in the SCON 
Register must be enabled. 

9-10 

Z8' MICROCONTROLLERS 

9.8 SPI Compare 

When the SPI Compare Enable bit, D3 of the SCON 
Register is set to 1, the SPI Compare feature is enabled. 
The compare feature is only valid for slave mode. A 
compare transaction begins when the (SS) line goes active. 
Data is received as if it were a normal transaction, but there 
is no data transmitted to avoid bus contention with other 
slave devices. When the compare byte is received, IRQ3 is 
not generated. Instead, the data is compared with the 
contents of the SCOMP Register. If the data does not 
match, DO remains inactive and the slave ignores all data 
until the (SS) signal is reset. If the data received matches 
the data in the SCOMP register, then a SMR signal is 
generated. DO is activated if it is not tri-stated by D2 in the 
SCON Register, and data is received the same as any other 
SPI slave transaction. 

When the SPI is activated as a slave, it operates in all 
system modes: STOP, HALT, and RUN. Slaves' not com­
paring remain in their current mode, whereas slaves' 
comparing wake from a STOP or HALT mode by means of 
an SMR. 

9.9 SPI Clock 

The SPI clock maybe driven by three sources: TimerO, a 
division of the internal system clock, or the external master 
when in slave mode. Bit D6 of the SCON Register controls 
what source drives the SPI clock. A 0 in bit D6 of the SCON 
Register determines the division of the internal system 
clock if this is used as the SPI clock source. Divide by 2, 4, 
8, or 16 is chosen as the scaler. 



't'2H.C6 ZS' MICROCONTROLLERS 

Standard Serial Setup 

II 
Standard Parallel Setup 

Setup For Compare 

(1) (2) (255) (256) 

Up to 256 slaves per SS fine 

Three Wire Compare Setup 

Multiple slaves may have the same address. 

Figure 9-13. SPI System Configuration 

9-11 



<tlZH.!16 

9.10 Receive Character Available and 
Overrun 

When a complete data stream is received, an interrupt is 
generated and the RxCharAvail bit in the SCON Register 
is set. Bit 4 in the SCON Register is for enabling or disabling 
the RxCharAvail interrupt. The RxCharAvail bit is available 
for interrupt polling purposes and is reset when the RxBUF 
Register is read. RxCharAvail is generated in both master 
and slave modes. While in slave mode, if the RxBUF is not 

No Parameter 

1 DI to SK Setup 
2 SK to DO Valid 

7JI MICROCONTROLLERS 

read before the next data stream is received and loaded 
into the RxBUF Register, Receive Character Overrun 
(RxCharOverrun) occurs. Since there is no need for clock 
control in slave mode, bit D1 in the SPI Control Register is 
used to log any RxCharOverrun (Figure 9-14 and Figure 
9-15). 

Min Units 

10 ns 
15 ns 

3 SS to SK Setup .5 Tsk ns 
4 SS to DO Valid 15 ns 
5 SK to DI Hold Time 10 ns 

Tsk 

SK 

3 

SS 

00 

© 

DI 

Figure 9-14. SPI Timing 

9-12 



SMR 
Bit Counter 
/Interrupt 
Control 

IRQ3 

SPI Compare Register (SCOMP) 

SPI Shift Register 

SPI Receive Buffer (RxBUF) 

SPI Control 

Figure 9-15. SPI Logic 

SPI 
Clock 

SK 

DO 

DI 

SS 

TCLK SCLK+n 

ZS' MICROCONTROLLERS 

Ill 

9-13 



9-14 

Open-Drain 

P200E 

SPIEN 

P201N 
or 

SPIDI - ----------- , 
I 
I 
I 

R1'11500K'1 I 

Open-Drain -----------. 

P27 OUT ___ Sta_nda_rd_,, ~----.,....... 
SPI DO ___ __:S:;,.Pl;.....;-

P27 OE Standard 

SPIActlve ___ __.S ... PI~ 

SCON I I o SPI DO Enable '-· ______ .._ _ _._ 1 P270UT 

•SP1 must be enabled with DO. 

t ------------, 

P20 

PAD 

Auto latch 

11\D 

I I Auto Latch 
I I 
I R:l:IG 500K'1 I L _____________ J 

Figure 9-16. SPI Data In/Out Configuration 

D' MlcRoCONTROLLEllS 



ZS' MICROCONTROLLERS 

SKIN 

SPI EN ------1 
SPI MSTR ----1 ~--,__, 

P34 II PAD 

SPI EN ------, 

P340UT---<I 
SK OUT -----t MUX 

P31~t 
REF 

ss-------------< 
SPIEN 

SPIMSTR P35 

PAD 

P350UT----

P32~ 
REF 

PCON 
0 P34, P35 Standard Output 

._ ______ _._D_.o 1 P34, P35 Comparator Output 

Figure 9-17. SPI Clock/ SPI Slave Select Output Configuration 

9-15 





10.1 INTRODUCTION 

The ZS"' can be a microcontroller with 20 pins for external 
memory interfacing. The external memory interface on the 
ZS is generally for either RAM or ROM. This is only available 
for devices featuring Port 0, Port 1, R/N/, /DM, /AS, and 
/DS. Please refer to specific product specifications for 

availability of these features. 

IA 
(Port 1)AD7-ADO 

"' 

(Porto) AD15-AD8 

Z8 
/AS 

IDS 

R//W 

/DM 

USER'S MANUAL 

CHAPTER 10 
EXTERNAL INTERFACE 

The ZS has a multiplexed external memory interface. In the 
multiplexed mode, eight pins from Port 1 form an Address/ 
Data Bus (AD7-ADO), eight pins from Port 0 form a High 
Address Bus (A 15-AS). Three additional pins provide the 
Address Strobe, Data Strobe, and the Read/Write Signal. 
Figure 10-1 shows the external interface pins of the ZS. 

~A 

-.'" 

_A External .. ProgramfDala 
Memory up to .... 64 KbY18S 

Each 

.... 

Figure 1 l>-1. Z8 External Interface Pins 

10-1 

El 



10.2 PIN DESCRIPTIONS 

The following sections briefly describe the pins associated 
with the Z88 external memory interface. 

10.2.1 /AS Address Strobe (output, active Low). Address 
Strobe is pulsed Low once at the beginning of 
each machine cycle. The rising edge of /AS indi­
cates the address, Read/Write (R/JW), and Data 
Memory (/DM) signals are valid for program or 
data memory transfers. In some cases, the ZB 
address strobe is pulsed low regardless of ac­
cessing external or internal memory. Please refer 
to specific product specifications for /AS opera­
tion. 

10.2.2 IDS DataStrobe(output, active Low). Data Strobe 
provides the timing for data movement to or from 
the Address/Data bus for each external memory 
transfer. During a Write Cycle, data out is valid at 
the leading edge of the /DS. During a Read Cycle, 
data in must be valid prior to the trailing edge of the 
/DS. 

10.2.3 R//W Read/Write(output). Read/Write determines 
the direction of data transfer for memory transac­
tions. R/JW is Low when writing to program or data 
memory, and High for all other transactions. 

10.2.4 /DM Data Memory (output). Data Memory pro­
vides a signal to separate External Program 
Memory from External Data Memory. It is a pro­
grammable function on pin P34. Data memory is 
active low for External Data Memory accesses 
and high for External Program Memory accesses. 

10.2.5 P07 • P01 High Address Lines A 15 -AB (Outputs 
can be CMOS- or TTL-compatible. Please refer to 
product specifications for actual type). A15-A8 
provide the High Address lines for the memory 
interface. Port 0 - 1 mode register must have bits 
D7 = 1 and D1 = 1 to configure Porto as A15-A8 
(Figure 10-2). 

10-2 

7J1 MICRoCONTBOLLERS 

10.2.6 P17 • P10 Address/Data Lines AD? - ADO (inputs/ 
outputs, TTL-compatible). AD7-ADO is a multi­
plexed Address/Data memory interface. The lower 
eight Address lines (A7-AO) are multiplexed with 
Data lines (D7-DO). Port 0- 1 mode register must 
have bits D4 = 1 and D3 = 0 to configure Port 1 as 
AD? - ADO (Figure 10-2). 

10.2.7 /RESET Reset(input, active Low). /RESET initial­
izes the ZS. When /RESET is deactivated, program 
execution begins from program location OOOCH. If 
held Low, /RESET acts as a register file protect 
during power-down and power-up sequences. To 
avoid asynchronous and noisy reset problems, 
the ZB is equipped with a reset filter of four external 
clocks (4T PC). If the external /RESET signal is less 
than 4TPC in duration, no reset will occur. On the 
fifth clock after the /RESET is detected, an internal 
reset signal is latched and held for an internal 
register count of 18 or more external clocks, or for 
the duration of the external /RESET, whichever is 
longer. Please refer to specific product specifica­
tions for length of reset delay time. 

10.2.8 XTAL1, XTAL2. Crysta/1, Crysta/2(0scillator in­
put and output). These pins connect a parallel­
resonant crystal, ceramic resonator, LC, RC net­
work, or external single-phase clock to the on-chip 
oscillator input. Please refer to the device product 
specifications for information on availability of RC 
oscillator features. 



ZS- MICROCONTROLLERS 

10.3 EXTERNAL ADDRESSING CONFIGURATION 

The minimum bus configuration uses Port 1 as a multi­
plexed address I data port (AD7 -ADO), allowing access to 
256 bytes of external memory. In this configuration, the 
eight low order bits (AO- A7) are multiplexed with the data 
(07- DO). 

Port 0 can be programmed to provide either four additional 
address lines (A 11-A8), which increases the addressable 
memory to 4K bytes, or eight additional address lines (A 15 
-A8), which increases the addressable external memory up 
to 64K bytes. It is required to add a NOP after configuring El 
Port 0 I Port 1 for external addressing before jumping to 
external memory execution. 

P07 - POp Mode 
00 Output 
01 Input 
1X A11 -As 

P17-P10 
00 Byte Output 
01 Byte Input 
10 AD7 -AD0 
11 High-Impedance 

A15-A8 
AD7-ADO 
/AS/OS 
R//W 

P07 - P04 Mode 
00 Output 
01 Input 

1X A15 ·A12 

Figure 10-2. External Address Configuration 

10-3 



10.4 EXTERNAL STACKS 

The ZS-architecture supports stack operations in eitherthe 
ZS Standard Register File or External Data Memory. A 
stack's location is determined by bit 2 in the Port 0-1 Mode 
Register (FSH). If bit 2 is set to 0, the stack is in External 
Data Memory. (Figure 10-3). 

The instruction used to change the stack selection bit 
should not be immediately followed by the instructions RET 

Register FBH (P01 M) 
Port 0-1 Mode Reglsler 
(Write-Only) 

D' MICROCONTBOLLERS 

or IRET, because this will cause indeterminate program 
flow. After a /RESET, the internal stack is selected. 

Please note that if Port 0 is configured as A 15 - AS and the 
stack is selected as internal, any stack operation will cause 
the contents in register FEH to be displayed on Port 0. 

Jo1losloslo4I osl 021011 ool 
T Z8 Stack Selection 

o =External 
1 = lnlemal 

Figure 1 e». Z8 Stack Selection 

10.5 DATA MEMORY 

The two ZS external memory spaces, data and program, 
are addressed as two separate spaces of up to 64 Kbytes 
each. External Program Memory and External Data Memory 
are logically selected by the Data Memory select output 
(/DM). /DM is made available on Port 3, bit 4 (P34) by 
setting bit 4 and bit 3 in the Port 3 Mode Register (F7H) to 
10 or 01 (Figure 10-4). /DM is active Low during the 

8egisler F7H (P3M) 
Port 3 Mode Register 
(Write-Only) 

l~lool~l~lool~lrnlool 

execution of the LDE, LDEI instructions, and High for the 
execution of program instructions. /DM is also active Low 
during the execution of CALL, POP, PUSH, RET and IRET 
instructions if the stack resides in External Data Memory. 
After a /RESET, /DM is not selected. 

---,=....__ ______ Bl1s Configuration 

00 P33= Input P34= Oulput 
01 P33=1nput P34=!DM 
10 P33= Input P34=!DM 
11 P33= JDAV1 /RDV1 P34=RDY1//0AV1 

Figure 1G-4. Port 3 Data Memory Operation 

10-4 



10.6 BUS OPERATION 

Typical data transfers between the"ZJ1' and EXternal Memory 
are illustrated in Figures 10-5 and 10-6. Machine cycles 
can vary from six to 12 clock periods depending on the 
operation being performed. The notations used to de-

T1 

Clock 

A15-A8 x 

scribe the basic timing periods of the ZS are machine 
cycles (Mn), timing states (Tn), and clock periods. All 
timing references are made with respect to the output 
signals /AS and JDS. The clock is shown for clarity only and 
does not have a specific timing relationship with other 
signals. 

Machi: Cycle ---T-3---1111~, 

A8-A15 x 
AD7-ADO x A7-AO ) (01-001NH 

/AS \__/ \__ 

IDS \ I 
R//W I \: 
/OM x x 

1~ Read Cycle •I 

Figure 10-S. External Instruction Fetch or Memory Read Cycle 

•Port inputs are strobed during T2, which is two internal system clocks before the execution cycle of the current instruction. 

10-S 

El 



ftl21Ul6 U' MICROCONTROLLERS 

r Machine Cycle ~, 
T1 T2 T3 

Clock 

A15·A8 x A15·A8 x::: 
AD7·ADO x A7·AO x D7·DOOUT x::: 

/AS \_/ \_ 

IDS \ I 
R//W \ r 
/OM x x::: 

I,. Write Cycle ~1 

Figure 10-6. External Memory Write Cycle 

10.6.1 Address Strobe (/AS) 

All transactions start with /AS driven Low and then raised 
High bythezae. The rising edge of /AS indicatesthatR//W, 
/OM (if used), and the address outputs are valid. The 
address outputs (AD7 ·ADO), remain valid only during MnT1 
and typically need to be latched using /AS. Address outputs 
(A 15-AB) remain stable throughout the machine cycle, 
regardless of the addressing mode. 

10·6 

10.6.2 Data Strobe (IDS) 

The ZB uses IDS to time the actual data transfer. For Write 
operations (R//W = Low), a Low on /OS indicates that valid 
data is on the AD7-ADO lines. For Read operations (R/W = 
High), the bus is placed in a high-impedance state before 
driving /OS Low, so the addressed device can put its data 
on the bus. The ZB samples this data prior to raising /DS 
High. 



10.7 EXTENDED BUS TIMING 

Some products can accommodate slow memory access 
time by automatically inserting an additional software 
controlled state time (Tx). This stretches the /DS timing by 

'ZS" MICROCONTROLLERS 

two clock periods. Figures 10-7 and 10-8 illustrate ex­
tended external memory Read and Write cycles. 

,~ 
T1 

Machine Cycle ---------•.., .. 1 
T2 TX T3 

Clock 

A15-A8 ==><----------A-15-·A_s __________ x::: 
AD7-ADO A7-AO 

/AS \__/ \_ 

IDS 

R//W I \: 
/OM =::x x::: 

Read Cycle 

Figure 10-7. Extended External Instruction Fetch or Memory Read Cycle 

•Port inputs are strobed during T2, which is two internal system clocks before the execution cycle of the current instruction. 

10-7 

II 



ft'ZH.m '11' MICROCONTROLLERS 

i-
Machine Cycle ., 

T1 T2 TX T3 

Clock 

A15-A8 :::::>< A15-A8 x:: 
AD7-ADO :::::>< A7-AO x 07-DOOUT x:: 

/AS \__/ \__ 

IDS \ I 
RINI \ r 
/OM:::::>< x:: 

Write Cycle 

Figure 1 o-a. Extended External Memory Write Cycle 

Timing is extended by setting bit 05 in the Port 0-1 Mode Register (FBH) to 1(Figure10-9). After a/RESET, this bit is set 
too. 

10-8 

ReglsterF8H (P01M) 
Port 0-1 Mode Register 
(Write-Only) 

l01 106 l05 l04 l03 l02l01 l00 I 
T External MemoryTlming 

o =Normal 
1 =Extended 

Figure 10-9. Extended Bus Timing 



•211.m 
10.8 INSTRUCTION TIMING 

The High throughput of the Z8111 is due , in part, to the use 
of an instruction pipeline, in which the instruction fetch and 
execution cycles are overlapped. During the execution of 

, the current instruction, the opcode of the next instruction is 
fetched. Instruction pipelining is illustrated in Figure 10-10. 

Q) 

£ 
0 
Q) 

~ 
c: 

~ 
0 

I 
~ 
Q) 

Q) 

en £ 
i !!! z c: 

.2 !5 :§ I 
Q) 
.c 

)!! ~ CJ) 
.::.: 

~ .E 0 
.Q 

Q) 0 

~ E 
di J!l 

CJ) 
c: ~ Q. 

(\j 
Cl E c: .E J!l 
F .!;;; 

~ ~ 
~ .!!! 

.s::. c: 0 
0 :c n == :J 

~ 1E 
.E Cl 

c: 
I ...; "§ ,... 
)!! 0 "'C 

~ 
"'C ,... 
Q) 

!!! .c 

1 
:J e 
~ 1i5 c 

Q) .Q 
~u 
Ill :J 

.e ~ a.!; 
c: -·- c: ts !!! 
IL S 
« 0 

~ ~ 8 fl ~ ~ < i 

'lJ' llK:RoCONTROLLERS 

Figures 10-11 and 10-12 show typical instruction cycle 
timing for instructions fetched from memory. For those 
instructions that require execution time longer than that of 
the overlapped fetch, or reference program or data memory 
as part of their execution, the pipe must be flushed. 

Note: Figures 10-11 and 10-12 assume the XT AL./2 clock mode 
is selected. 

10-9 

II 



~ "' ::i; ~ :c 

;:: 

~ !ll ~ :c 

i ~ ~ 
:c 

;:: 

10-10 

T 
~w !-

ff -15 !:::; 
ll! 
~i 

!-
~ 

~ 

! 
!! 

~ 

l 

'ii' c 
0 

ts 
~ 
.5 

t 
ID 

! .c ... 
"Cl c as 

~ 
Cll c ·e 
j:: 

~ 
(; 
c 

i e 
';; 
.5 
,.: ... 
0 ... 
I!! 
:II 

~ 

1J' MICROCONTROLLERS 

• Port inputs are strobed during T2, which is two internal 
system clocks before the execution cycle of the current 
instruction. 



10.9 ZS RESET CONDITIONS 

After a hardware reset, extended timing is setto accommo­
date slow memory access during the configuration routine, 
/DM is inactive, the stack resides in the register file. Port 0, 
1, and 2 are reset to input mode. Port 2 is set to Open-Drain 
Mode. 

'ZJ' MICROCONTROLl.ERS 

El 

10-11 





4'2iU:a., 

11.1 INTRODUCTION 

11.1.1 ZS Addressing Modes 

The Z89 microcontroller provides six addressing modes: 

• Register (R) 

• Indirect Register (IA) 

• lndexed(X) 

• Direct(D) 

• Relative (RA) 

• Immediate (IM) 

With the exception of immediate data and condition codes, 
all operands are expressed as register file, Program 
Memory, or Data Memory addresses. Registers are ac­
cessed using 8-bit addresses in the range of OOH-FFH. 
The Program Memory or Data Memory is accessed using 
16-bit addresses (register pairs) in the range of OOOOH­
FFFFH. 

USER'S MANUAL 

CHAPTER 11 
ADDRESSING MODES 

Working Registers are accessed using 4-bit addresses in 
the range of 0-15 (OH-FH). The address of the register 
being accessed is formed by the combination of the upper 
four bits in the Register Pointer (R253) and the 4-bit 
working register address supplied by the instruction. 

Registers can be used in pairs to designate 16-bit values 
or memory addresses. A Register Pair must be specified 
as an even-numbered address in the range of 0, 2, .... , 14 
for Working Registers, or 4, 6, .... 238 for actual registers. 

In the following definitions of ZB Addressing Modes, the 
use of 'register' can also imply register pair, working 
register, or working register pair, depending on the con­
text. 

Note: See the product data sheet for exact program, data, and 
register memory types and address ranges available. 

11-1 

II 



ft'21Ul6 
11.2 Z8 REGISTER ADDRESSING (R) 

In 8-bit Register Addressing mode, the operand value is 
equivalent to the contents of the specified register or 
register pair. 

8·Bit Register 
File Address 

One Operand 
Instruction 
(Example) 

..... 
...... 

Program Memory 

dst 

OpCode 

'lJ' MICROCON1ROUERS 

In the Register Addressing (Figure 11·1 ), the destination 
and/or source address specified corresponds to the ac­
tual register in the register file. 

Register File 

~ Operand 

Points to 
One Register 

in the 
Re~ister 

ile 

Figure 11-1. 8-Blt Register Addressing 

In 4-bit Register Addressing (Figure 11-2), the destination 
and/or source addresses point to the Working Register 
within the current Working Register Group. This 4-bit 

address is combined with the upper four bits of the 
Register Pointer to form the actual 8-bit address of the 
affected register. 

11-2 

4-Bit Working 
Registers 

Two Operand 
Instruction 
(Example) 

~ 

~ 

Register File 

RP 

Program Memory 

Operand 

1 
dst l src Operand 

Points to 
the Working 

OpCode Registers 

Figure 11-2. 4-Blt Register Addressing 

~~ 

14-

Points to 
Origin of 
Working 
Register 
Group 



ue MICROCONTROLLERS 

11.3 ZS INDIRECT REGISTER ADDRESSING (IR) 

In the Indirect Register Addressing Mode, the contents of 
the specified register are equivalent to the address of the 
operand (Figures 11-3 and 11-4). 

When accessing program memory or External Data 
Memory, register pairs or Working Register pairs are used 
to hold the 16-bit addresses. 

Depending upon the instruction selected, the specified 
register contents points to a Register, Program Memory, or 
an External Data Memory location. 

8-Bit Register 
File Address 

One Operand 
Instruction 
(Example) 

--

Program Memory 

dst 

OpCode 

Points to one 
Re~isterin 

Register File 

Value Used In 
Instruction ......i 
Execution 

Register File 

Address/, ....., 

Operand i..-

Figure 11-3. Indirect Register Addressing to Register Fiie 

Address of Operand 
Used By Instruction 

Points to 
Register of 
Operand 

11-3 

II 



11.3 ZS INDIRECT REGISTER ADDRESSING (IR) (Continued) 

4-Bit Working 
Register Address 

Instruction Example 
References Either 

Program Memory or 
Data Memory 

Program Memory 

- dst J SIC 

- OpCode 

Register File 

RP 

Register 
PairLSB 

Register 
PairMSB 

Points to 
Working 
Register 

Pair(Even 
Address) 

P~am 
or Data emory 

Value Used In -
Instruction Operand 

.,....__ 

-
~ 

!-

p 
~ 

oints to Origin 
of Working 
egister Group R 

I-

..... 
16-Bit Address 

Points to Program 
or Data 
Memory 

Figure 11-4. Indirect Register Addressing to Program or Data Memory 

11-4 



D" MICllOCONTIIOLLERS 

11.4 ZS INDEXED ADDRESSING (X) 

The Indexed Addressing Mode is used only by the Load (LO) address to obtain the address of the operand. Figure 11-
instruction. An indexed address consists of a register ad- 5 illustrates this addressing convention. 
dress offset by the contents of a designated Working Reg-
ister (the Index). This offset is added to the register 

Two Operand 
Instruction ~ 

Program Memory 

Address 

dst/ l src x 

OpCode 

..... Points to 
a Working 
R~ster 

~ 

Register Fila 

RP 

Offset 

Operand -

Figure 11-5. Indexed Register Addressing 

..... 

.... Points to Origin 
of Working 

Register Group 

~Val 
In 
ueUsed In 
struction 

11-5 

II 



11.5 ZS DIRECT ADDRESSING (DA) 

The Direct Addressing mode, as shown in Figure 11-6, 
specifies the address of the next instruction to be ex­
ecuted. Only the Conditional Jump (JP) and Call (CALL) 
instructions use this addressing mode. 

Program Memory 

Lower Addr. Byte 

Upper Addr. Byte 

OpCode 

i-

·-
I-

-

Program Memory 
Address Used 

Figure 11 ·6. Direct Addressing 

11-6 

ZS' MICROCONTROLLERS 



11.6 ZS RELATIVE ADDRESSING (RA) 

In the Relative Addressing mode, illustrated in Figure 
11-7, the instruction specifies a two's-complement signed 
displacement in the range of -128 to + 127. This is added 
to the contents of the PC to obtain the address of the next 

Zt' MICROCONTROLLERS 

instruction to be executed. The PC (prior to the add) 
consists of the address of the instruction following the 
Jump Relative (JR) or Decrement and Jump if Non-Zero 
(DJNZ) instruction. JR and DJNZ are the only instructions 
which use this addressing mode. 

Program Memory 

NextOpCode 

Displacement 

JR orDJNZ - OpCode 

Current 

Program Memory 
Address Used 

PCVU.~ 

Figure 11-7. Relative Addressing 

11-7 

II 



7.8' MICROCONTROLLERS 

11.7 ZS IMMEDIATE DATA ADDRESSING (IM} 

Immediate data is considered an "addressing mode" for 
the purposes of this discussion. It is the only addressing 
mode that does not indicate a register or memory address 

as the source operand. The operand value used by the 
instruction is the value supplied in the operand field itself. 
Because an immediate operand is part of the instruction, 
it is always located in the Program Memory address space 
(Figure 11-8). 

11-8 

Program Memory 

OpCode 

Immediate Data 

The Operand value 
is in the instruction 

Figure 11·8. Immediate Data Addressing 



4'2.iUJl:> 

12.1 ZS FUNCTIONAL SUMMARY 

za• instructions can be divided functionally into the follow­
ing eight groups: 

• Load 

• Bit Manipulation 

• Arithmetic 

• Block Transfer 

• Logical 

• Rotate and Shift 

• Program Control 

• CPU Control 

The following summary shows the instructions belonging to 
each group and the number of operands required for each. 
The source operand is 'src,' the destination operand is 
'dst,'and a condition code is 'cc.' 

Table 12·1. Load Instructions 

Mnemonic Operands Instruction 

QR ct:t Clear 
LD dst,src LLa:l 
ux; dst,src L.a:dCcnstant 
l.ll: dst,src l...cedExlernal 
RY ct:t R:p 
FU:H SC F\.Bi 

Table 12-2. Arithmetic Instructions 

Mnemonic 

ADC 
ADD 
CP 
DA 
DEC 
DECW 
INC 
INCW 
SBC 
SUB 

Operands 

dst, src 
dst, src 
dst, src 
dst 
dst 
dst 
dst 
dst 
dst, src 
dst, src 

Instruction 

Add with Carry 
Add 
Compare 
Decimal Adjust 
Decrement 
Decrement Word 
Increment 
Increment Word 
Subtract with Carry 
Subtract 

USER'S MANUAL 

CHAPTER 12 
INSTRUCTION SET II 

Table 12-3. Logical Instructions 

Mnemonic Operands Instruction 

~ dst,src ~ 
a:M ct:t OJ1p:m:rt 
CR dst,src Utjcala=l 
)Ui dst,src LogicalExclusivea=l 

Table 12-4. Program Control Instructions 

Mnemonic Operands Instruction 

~ ct:t callPrtx:edure 
Q.NZ dst,src DeaerrentardJ.rnp 

f\tn.Zero 
IRET lnterruptRetum 
..P cc,dst J.ni:> 
..R cc,dst JumpRelalive 
RET Aelun 

Table 12·5. Bit Manipulation Instructions 

Mnemonic Operands Instruction 

lOv1 dst,src T eslCar4:Jierren 
UnderMask 

lM dst,src TestUnderMask 
~ dst,src BitClear 
CR dst,src Bit Set 
)Ui dst,src BitCarpErra1 

Table 12-6. Block Transfer Instructions 

Mnemonic Operands Instruction 

LOO dst,src L.a:dQ:nstait 
.AJ..doh:rernent 

LIE dst,src l...cedExlernal 
.AJ..dolncrement 

12-1 



12.1 Z8 FUNCTIONAL SUMMARY (Continued) 

Table 12·7. Rotate and Shift Instructions 

Mnemonic Operands Instruction 

RL 
RLC 
RR 
ARC 
SRA 
SWAP 

dst 
dst 
dst 
dst 
dst 
dst 

Rotate Left 
Rotate Left Through Carry 
Rotate Right 
Rotate Right Through Carry 
Shift Right Arithmetic 
Swap Nibbles 

12.2 PROCESSOR FLAGS 

The Flag Register (FCH} informs the user of the current 
status of the ZS. The flags and their bit positions in the Flag 
Register are shown in Figure 12-1. 

The ZS Flag Register contains six bits of status information 
which are set or cleared by CPU operations. Four of the bits 
(C, V, Zand S) can be tested for use with conditional Jump 
instructions. Two flags (Hand D) cannot be tested and are 
used for BCD arithmetic. The two remaining bits in the Flag 
Register (F1 and F2) are available to the user, but they 

Register FCH (Flags) 
Flag Register (Read/Write) 

'1J' MICROCONTROUERS 

Table 12-8. CPU Control Instructions 

Mnemonic Operands Instruction 

CCF 
DI 
El 
HALT 
NOP 
ACF 
SCF 
SAP 
STOP 
WDH 
WOT 

src 

Complement Carry Flag 
Disable Interrupts 
Enable Interrupts 
Halt 
No Operation 
Reset Carry Flag 
Set Carry Flag 
Set Register Pointer 
Stop 
WDT Enable During HALT 
WDT Enable or Refresh 

must be set or cleared by instructions and are not usable 
with conditional Jumps. 

As with bits in the other control registers, the Flag Register 
bits can be set or reset by instructions; however, only those 
instructions that do not affectthe flags as an outcome of the 
execution should be used (Load Immediate). 

Note: The Watch-Dog Timer (WDT) instruction effects the Flags 
accordingly: Z=1, S=O, V=O. 

I 011 oel osl 041 oal 021 01 I oo I 
..,.....,.....,.....,.....,...~~""[ 

Figure 12·1. Z8 Flag Register 

12-2 

User Flag (F1) 

User Flag (F2) 

Half Carry Flag (H) 

Decimal Adjust Flag (D) 

Overflow Flag (V) 

Sign Flag (S) 

Zero Flag (Z) 

Carry Flag (C) 



12.2.1 Carry Flag (C) 

The Carry Flag is set to 1 whenever the result of an 
arithmetic operation generates a 'carry out of' or a 'borrow 
into' the high order bit 7. Otherwise, the Carry Flag is 
cleared to 0. 

Following Rotate and Shift instructions, the Carry Flag 
contains the last value shifted out of the specified register. 

An instruction can set, reset, or complement the Carry Flag. 

IRET changes the value of the Carry Flag when the Flag 
Register saved in the Stack is restored. 

12.2.2 Zero Flag (Z) 

For arithmetic and logical operations, the Zero Flag is set to 
1 if the result is zero. Otherwise, the Zero Flag is cleared 
too. 

If the result of testing bits in a register is OOH, the Zero Flag 
is set to 1. Otherwise the Zero Flag is cleared to 0. 

If the result of a Rotate or Shift operation is OOH, the Zero 
Flag is set to 1. Otherwise, the Zero Flag is cleared to 0. 

IRET changes the value of the Zero Flag when the Flag 
Register saved in the Stack is restored. The WOT Instruc­
tion sets the Zero Flag to a 1. 

12.2.3 Sign Flag (S) 

The Sign Flag stores the value of the most significant bit of 
a result following an arithmetic, logical, Rotate, or Shift 
operation. 

When performing arithmetic operations on signed num­
bers, binary two's-complement notation is used to repre­
sent and process information. A positive number is identi­
fied by a 0 in the most significant bit position (bit 7); 
therefore, the Sign Flag is also 0. 

A negative number is identified by a 1 in the most significant 
bit position (bit 7); therefore, the Sign Flag is also 1. 

IRET changes the value of the Sign Flag when the Flag 
Register saved in the Stack is restored. 

'1.ae MICROCOHTliOLLERS 

12.2.4 Overflow Flag (V) 

For signed arithmetic, Rotate, and Shift operations, the 
Overflow Flag is set to 1 when the result is greater than the 
maximum possible number (>127) or less than the mini­
mum possible number ( <-128) that can be represented in 
two's-complement form. The Overflow Flag is set to 0 if no 
overflow occurs. 

Following logical operations the Overflow Flag is set to 0. 

IRET changes the value of the Overflow Flag when the Flag 
Register saved in the Stack is restored. 

12.2.5 Decimal Adjust Flag (D) 

The Decimal Adjust Flag is used for BCD arithmetic. Since 
the algorithm for correcting BCD operations is different for 
addition and subtraction, this flag specifies what type of 
instruction was last executed so that the subsequent Deci­
mal Adjust (DA) operation can function properly. Normally, 
the Decimal Adjust Flag cannot be used as a test condition. 

After a subtraction, the Decimal Adjust Flag is set to 1. 
Following an addition it is cleared to 0. 

IRET changes the value of the Decimal Adjust Flag when 
the Flag Register saved in the Stack is restored. 

12.2.6 Half Carry Flag (H) 

The Half Carry Flag is set to 1 whenever an addition 
generates a "carry out of" bit 3 (Overflow) or a subtraction 
generates a "borrow into" bit 3. The Half Carry Flag is used 
by the Decimal Adjust (DA) instruction to convert the binary 
result of a previous addition or subtraction into the correct 
decimal (BCD) result. As in the case of the Decimal Adjust 
Flag, the user does not normally access this flag. 

IRET changes the value of the Half Carry Flag when the 
Flag Register saved in the Stack is restored. 

12-3 

II 



'11' MICROCDNTROLLERS 

12.3 CONDITION CODES 

The C, Z, S, and V Flags control the operation of the 
'Conditional' Jump instructions. Sixteen frequently useful 
functions of the flag settings are encoded in a 4-bit field 
called the condition code (cc), which forms bits 4-7 of the 
conditional instructions. 

Condition codes and flag settings are summarized in Tables 
12-9, 12-10, and 12-11. Notationfortheflagsand how they 
are affected are as follows: 

Table 12·10. Flag Settings Definitions 

Symbol Definition 

12-4 

Table 12·9. Z8 Flag Definitions 

Flag Description 

C Carry Flag 
Z Zero Flag 
S Sign Flag 
V Overflow Flag 
D Decimal Adjust Flag 
H Half Carry Flag 

0 
1 

x 

Cleared to 0 
Setto 1 
Set or cleared according to operation 
Unaffected 
Undefined 

Table 12·11. Condition Codes 

Binary Mnemonic Definition Flag Settings 

0000 F Always False 
1000 (blank) Always True 
0111 c Carry C=1 
1111 NC No Carry C=O 
0110 z Zero Z=1 

1110 NZ Non-Zero Z=O 
1101 PL Plus S=O 
0101 Ml Minus S=1 
0100 ov Overflow V=1 
1100 NOV No Overflow V=O 

0110 EQ Equal Z=1 
1110 NE Not Equal Z=O 
1001 GE Greater Than or Equal (S XORV) = 0 
0001 LT Less Than (S XOR V) = 1 
1010 GT Greater Than (Z OR (S XOR V)) = 0 

0010 LE Less Than or Equal (Z OR (S XOR V)) = 1 
1111 UGE Unsigned Greater Than or Equal C=O 
0111 ULT Unsigned Less Than C=1 
1011 UGT Unsigned Greater Than (C = 0 AND Z = O) = 1 
0011 ULE Unsigned Less Than or Equal (C OR Z) = 1 



.2il.CJ6 

12.4 NOTATION AND BINARY ENCODING 

In the detailed instruction descriptions that make up the 
rest of this chapter, operands and status flags are repre­
sented by a notational shorthand. Operands, condition 

D' MICROCONlROLLERS 

codes, address modes, and their notations are as follows 
(Table 12-12): 

Table 12-12. Notational Shorthand 

Notation Address Mode Operand Range• 

cc Condition Code See condition codes 

Working Register Rn n=0-15 

R Register Reg Reg. represents a number in the range of OOH to FFH 

or 

Working Register Rn n=0-15 

RR Register Pair Reg Reg. represents an even number in the range of OOH to 
FEH 

or 

Working Register Pair RRp p = 0, 2, 4, 6, 8, 10, 12, or 14 

Ir Indirect Working Register @Rn n=0-15 

IA Indirect Register @Reg Reg. represents a number in the range of OOH to FFH 

or 

Indirect Working Register @Rn n = 0-15 

Irr Indirect Working Register Pair @RRp p = 0, 2, 4, 6, 8, 10, 12, or 14 

IRA Indirect Register Pair @Reg Reg. represents an even number in the range OOH to 
FFH 

or 

Working Register Pair @RRp p = 0, 2, 4, 6, 8, 10, 12, or 14 

x Indexed Reg (Rn) Reg. represents a number in the range of OOH to FFH 
andn=0-15 

DA Direct Address Add rs Addrs. represents a number in the range of OOH to FFH 

RA Relative Address Addrs Addrs. represents a number in the range of + 127 to -128 
which is an offset relative to the address of the next 
instruction 

IM Immediate #Data Data is a number between OOH to FFH 

•See the device product specification to determine the exact register file range available. The register file size varies by device type. 

12-5 



'119 MICROCONTROLLERS 

12.4 NOTATION AND BINARY ENCODING (Continued) 

Additional symbols used are: 

Table 12·13. Additional Symbols 

Symbol 

dst 
src 
@ 

SP 
PC 
FLAGS 
RP 
IMR 
# 
% 
H 
B 
OPC 

Definition 

Destination Operand 
Source Operand 
Indirect Address Prefix 
Stack Pointer 
Program Counter 
Flag Register (FCH) 
Register Pointer (FDH) 
Interrupt Mask Register (FBH) 
Immediate Operand Prefix 
Hexadecimal Number Prefix 
Hexadecimal Number Suffix 
Binary Number Suffix 
Opcode 

Assignment of a value is indicated by the symbol"+-•. For 
example, 

dst +- dst + src 

indicates the source data is added to the destination data 
and the result is stored in the destination location. The 
notation 'addr(n)' is used to refer to bit 'n' of a given 
location. For example, 

dst(7) 

refers to bit 7 of the destination operand. 

12-6 

12.4.1 Assembly Language Syntax 

For proper instruction execution, ZS assembly language 
syntax requires 'dst, src' be specified, in that order. The 
following instruction descriptions show the format of the 
object code produced by the assembler. This binary format 
should be followed by users who prefer manual program 
coding or who intend to implement their own assembler. 

Example: If the contents of registers 43H and 08H are 
added and the result is stored in 43H, the assembly syntax 
and resulting object code is: 

ASM: ADD 
OBJ: 04 

43H, 
OB 

OBH 
43 

(ADD dst, src) 
(OPC src, dst) 

In general, whenever an instruction format requires an 
B-bit register address, that address can specify any register 
location in the range 0- 255 or a Working Register RO- R15. 
If, in the above example, register OBH is a Working Regis­
ter, the assembly syntax and resulting object code would 
be: 

ASM: ADD 
OBJ: 04 

43H, 
EB 

RB 
43 

(ADD dst, src) 
(OPC src, dst) 

Note: See the device product specification todeterminethe exact 
register file range available. The register file size varies by device 
type. 



ft'21Ul6 U' MICROCONTROLLERS 

12.5 ZS INSTRUCTION SUMMARY 

Instruction Address Opcode Flags Instruction Address Opcode Flags 
and Operation Mode Byte (Hex) Affected and Operation Mode Byte(Hex) Affected 

dst src c z s v D H dst src c z s V DH 

ADC dst, src t 1( 1 * * * * 0 * INCW dst RR AO - * * * - -

II dSlf-dSt + src +C dSlf-dSI + 1 IR A1 

ADD dst, src t O[ 1 * * * * 0 * IRET BF ****** 
dstf-dst + src FLAGSf-@SP; 

SPf-SP + 1 
AND dst, src t 5[ 1 - * * 0 PCf-@SP; 
dSlf-dSt AND src SPf-SP + 2, and 
CALL dst DA 06 - - - - - - IMR(7)f-1 
SPf-SP - 2 and IRR 04 JP cc, dst DA co - - - - - -
PCf-dSt or if cc is true, c = 0 - F 
@SPf-PC then PCf-dst IRR 30 
CCF E F * - - - - - JR cc, dst RA cB - - - - - -
Cf-NOT c if cc Is true, then c = 0 - F 
CLRdst R BO PCf-PC +dst 
dS!f-0 IR 81 Range: +127 to-128 

COMdst R 60 - * * 0 LD dst, src Im re - - - - - -
dslf-NOT dst IR 61 dstf-src r R r8 

R r r9 
CP dst, src t A[ l * * * * r = 0 - F 
dst - src r x C7 

x r 07 
DA dst R 40 * * * x r Ir E3 
dslf-DA dst IR 41 Ir r F3 
DEC dst R 00 - * * * - - R R E4 
dSlf-dSI - 1 IR 01 R IR E5 

R IM E6 
DECW dst RR 80 - * * * - - IR IM E 7 
dSlf-dSI - 1 IR 81 IR R F5 

DI 8 F - - - - - - LDC dst, src r Irr C2 - - - - - -
IMR(7)f-0 dstf-src Irr r 02 

DJNZ r, dst RA rA - - - - - - LOCI dst, src Ir Irr C3 - - - - - -
rf-r - 1 r = 0 - F dstf-src and Irr r 03 
if r ":# 0, then rf-r + 1 or 
PCf-PC +dst rrf-rr + 1 
Range: +127, 
-128 LOE dst, src r Irr 82 - - - - - -

dstf-src Irr r 92 
El 9F - - - - - -
IMR(7)f-1 LDEI dst, src r Irr C2 - - - - - -

dst f-Src and Irr r 02 
HALT 7F r f- r+1 or 

INC dst rE * * * - - rr f-rr+1 -
dSlf-dSI + 1 r = 0 - F NOP FF - - - -

R 20 
IR 21 OR dst, src t 4[ 1 - * * 0 

dSlf-dSt OR src 

12-7 



~211.JJG 

12.5 INSTRUCTION SUMMARY (Continued) 

Instruction Address Opcode Flags 
and Operation Mode Byte (Hex) Affected 

dst src C Z S V D H 

POP dst R 
dst+-@SP and I R 
SP+-SP + 1 

PUSH src R 
SP+-SP - 1 and I R 
@SP+-src 

RCF 
C+-0 

RET 
PC+-@SP; 
SP+-SP + 2 

RL dst 

RLC dst 

RR dst 

RRC dst 

R 
IR 

R 
IR 

R 
IR 

R 
IR 

SBC dst, src t 
dst+-dst - src - C 

SCF 
C+-1 

SRA dst 

~ 
SRP dst 
RP+-src 

STOP 

12-8 

R 
IR 

Im 

50 
51 

70 
71 

CF 

AF 

90 
91 

10 
11 

EO 
E 1 

co 
c 1 

3( I 

OF 

DO 
01 

31 

6F 

0-----

****"" 

****"" 

****"" 

****--

* * * 0 

Instruction 
and Operation 

SUB dst, src 
dsl+-dst - src 

SWAP dst 

!1 §5 o! 

TCM dst, src 
(NOT dst) 
AND src 

TM dst, src 
dst AND src 

WDH 

WOT 

XOR dst, src 
dSl+-dSI 
XOR src 

'ZP MICROCONTROLLERS 

Address Opcode Flags 
Mode Byte (Hex) Affected 
dstsrc CZSVDH 

t 

R 
IR 

t 

t 

t 

2[ I 

FO 
F1 

6[ I 

7( I 

4F 

SF 

B[ I 

x * * x 

- * * 0 

- x x x 
- x x x 

- * * 0 

t These instructions have an Identical set of addressing modes, which are 
encoded for brevity. The first Opcode nibble is found in the Instruction set 
table above. The second nibble is expressed symbolically by a'[ ]'in this 
table,andltsvaluelsfoundinthefollowingtabletotheleftoftheappllcable 
addressing mode pair. 

For example, the Opcode of an ADC instruction using the addressing 
modes r (destination) and Ir (source) is 13. 

Address Mode 
dst src 

Ir 

R R 

R IR 

R IM 

IR IM 

Lower 
Opcode Nibble 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 



12.5.1 OPCODE MAP 

0 

6.5 
0 DEC 

R1 
6.5 

RLC 
R1 
6.5 

2 INC 
R1 
8.0 

3 JP 
IRR1 
8.5 

4 DA 
R1 
10.5 

5 POP 
R1 
6.5 

6 COM 
i R1 

e. 10/12.1 

.!! 7 PUSH 
:8 R2 
z 10.5 
Iii 8 DECW 

RR1 
a. a. 
;:, 

6.5 
9 RL 

R1 
10.5 

A INCW 
RR1 
6.5 

B CLR 
R1 
6.5 

c ARC 
R1 

6.5 
D SRA 

R1 
6.5 

E RR 
R1 
8.5 

F SWAP 
_fil_ 

Lower Nibble (Hex) 

2 3 4 5 6 7 8 9 

6.5 6.5 6.5 10.5 10.5 10.5 10.5 6.5 6.5 
DEC ADD ADD ADD ADD ADD ADD LD LD 
IR1 r1, r2 r1, lr2 R2, R1 IR2, R1 R1, IM IR1,IM r1,R2 r2, R1 
6.5 6.5 6.5 10.5 10.5 10.5 10.5 

RLC ADC ADC ADC ADC ADC ADC 
IR1 r1, r2 r1, lr2 R2, R1 IR2,R1 R1,IM IR1,IM 
6.5 6.5 6.5 10.5 10.5 10.5 10.5 
INC SUB SUB SUB SUB SUB SUB 
IR1 r1, r2 r1, lr2 R2, R1 IR2, R1 R1,IM IR1,IM 

6.1 6.5 6.5 10.5 10.5 10.5 10.5 
SRP SBC SBC SBC SBC SBC SBC 

IM r1, r2 r1, lr2 R2, R1 IR2, R1 R1,IM IR1,IM 
8.5 6.5 6.5 10.5 10.5 10.5 10.5 
DA OR OR OR OR OR OR 
IR1 r1, r2 r1, lr2 R2, R1 IR2,R1 R1,IM IR1,IM 
10.5 6.5 6.5 10.5 10.5 10.5 10.5 
POP AND AND AND AND AND AND 
IR1 r1, r2 r1, lr2 R2, R1 IR2, R1 R1, IM IR1,IM 
6.5 6.5 6.5 10.5 10.5 10.5 10.5 

COM TCM TCM TCM TCM TCM TCM 
IR1 r1, r2 r1, lr2 R2, R1 IR2, R1 R1, IM IR1, IM 

12/14.1 6.5 6.5 10.5 10.5 10.5 10.5 
PUSH TM TM TM TM TM TM 

IR2 r1, r2 r1, lr2 R2, R1 IR2, R1 R1, IM IR1, IM 
10.5 12.0 18.0 

DECW LOE LDEI 
IR1 r1 lrr2 lr1 lrr2 
6.5 12.0 18.0 
RL LOE LDEI 
IR1 r2 lrr1 lr2 lrr1 
10.5 6.5 6.5 10.5 10.5 10.5 10.5 

INCW CP CP CP CP CP CP 
IR1 r1 r2 r1, lr2 R2, R1 IR2,R1 R1 IM IR1 IM 

6.5 6.5 6.5 10.5 10.5 10.5 10.5 
CLR XOR XOR XOR XOR XOR XOR 
IR1 r1, r2 r1, lr2 R2, Al IR2, R1 Rl, IM IR1,IM 
6.5 12.0 18.0 10.5 

RRC LDC LOCI LD 
IR1 r1, lrr2 lr1, lrr2 r1,x R2 
6.5 12.0 18.0 20.0 20.0 10.5 

SRA LDC LOCI CALL' CALL LO 
IR1 lrr1, r2 lrr1 lr2 IRR1 DA r2,x,R1 
6.5 6.5 10.5 10.5 10.5 10.5 
RR LO LD LO LD LD 
IR1 r1, IR2 R2,R1 IR2, R1 R1,IM IR1, IM 
8.5 6.5 10.5 

SWAP LO LD ' l 
_Jfil lr1 r2 R2 IR1 

y y 
2 3 

Bytes per instruction 

Lower 
Opcode 

. Nibble 
Execu!Jon 1 Pipeline 

~~~~~-
Nibble~

First Second
Operand Operand

ZS' MICROCONTROLLERS

A B c
12/10.5 12/10.0 6.5
DJNZ JR LD
r1,RA cc, RA r1, IM

'
y

2

Legend:
R = 8-bit Address
r = 4-bit Address

*

R1 or r1 = Ost Address
R2 or r2 = Src Address

Sequence:
Opcode, First Operand,
Second Operand

D

12.10.0
JP

cc, DA

l

3

Note: Blanks are reserved.

'2-byte instruction appears as
a 3-byte instruction

E F

6.5
INC
r1 I---

I---

1---i

'6.0
WDH

t-;;:o
WOT

I---
6.0

STOP

t-y:o
HALT

t---s.;-
DI

ts:1
El

~
RET

I---
16.0
IRET

t-e.s
RCF

i-s:s
SCF

t-e.s
CCF

~
t NOP

v--'

12-9

El

ZS' MICROCONTROLLERS

12.6 INSTRUCTION DESCRIPTIONS AND FORMATS

ADC
Add with Carry

ADCdst,src

ADC
ADD WITH CARRY

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst src

I ldstlsrcl OPC 6 12 r
6 13 Ir

OPC 11 src 11 dst 10 14 R R
10 15 R IR

OPC 11 dst 11 src 10 16 R IM
10 17 IR IM

dst<-dst + src + C

The source operand, along with the setting of the Carry (C) Flag, is added to the destination
operand. Two's complement addition is performed. The sum is stored in the destination
operand. The contents of the source operand are not affected. In multiple precision
arithmetic, this instruction permits the carry from the addition of low order operands to be
carried into the addition of high order operands.

C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is zero; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if an arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise.
D: Alwayscleared.
H: Set if there is a carry from the most significant bit of the low order four bits of the result;

cleared otherwise.

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

12-10

If Working Register R3 contains 16H, the C Flag is set to 1, and Working Register R11
contains 20H, the statement:

ADCR3,R11
OpCode: 12 38

leaves the value 37H in Working Register R3. The C, Z, S, V, D, and H Flags are all cleared.

zr MICROCONTROLLERS

ADC
ADD WITH CARRY

Example:

Example:

Example:

Example:

Example:

If Working Register R16 contains 16H, the C Flag is not set, Working Register R10 contains
20H, and Register 20H contains 11 H. the statement:

ADC R16, @R10
Opcode: 13 FA

leaves the value 27H in Working Register R16. The C, Z, S, V, D, and H Flags are all cleared.

If Register 34H contains 2EH, the C Flag is set, and Register 12H contains 1 BH, the
statement:

ADC34H, 12H
OpCode: 14 12 34

leaves the value 4AH in Register 34H. The H Flag is set, and the C, Z, S, V, and D Flags are
cleared.

If Register 4BH contains 82H, the C Flag is set, Working Register R3 contains 10H. and
Register 10H contains 01 H, the statement:

ADC4BH,@R3
OpCode: 15 E3 48

leaves the value 84H in Register 4BH. The S Flag is set. and the C, Z, V. D. and H Flags are
cleared.

If Register 6CH contains 2AH. and the C Flag is not set, the statement:

ADC 6CH, #03H
OpCode: 16 6C 03

leaves the value 2DH in Register 6CH. The C, Z, S, V, D, and H Flags are all cleared.

If Register D4H contains SFH, Register SFH contains 4CH, and the C Flag is set, the
statement:

ADC @D4H,#02H
OpCode: 17 D4 02

leaves the value 4FH in Register SFH. The C, Z, S, V, D,.and H Flags are all cleared.

12-11

El

ftl21Ul6 'II' MICROCONTROLLERS

ADD
Add

ADDdst,src

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst src

I ldstlsrcl OPC 6 02 r
6 03 Ir

OPC 11 src I I dst 10 04 A A
10 05 R IA

OPC 11 dst II src 10 06 A IM
10 07 IA IM

dst <-dst + src

The source operand is added to the destination operand. Two's complement addition is
performed. The sum is stored in the destination operand. The contents of the source operand
are not affected.

C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is zero; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if an arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise.
D: Alwayscleared.
H: Set if there is a carry from the most significant bit of the low order four bits of the result;

cleared otherwise.

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-12

If Working Register R3contains 16H and Working Register R11 contains 20H, the statement:

ADD RS, R11
OpCode: 02 38

leaves the value 36H in Working Register R3. The C, Z, S, V, D, and H Flags are all cleared.

If Working Register R16 contains 16H, Working Register R10 contains 20H, and Register
20H contains 11 H, the statement:

ADD R16, OR10
OpCode: 03 FA

leaves the value 27H in Working Register R16. The C, Z, S, V, D, and H Flags are all cleared.

ADD
ADD

ft' ZiUJ6 '1J' MlcROCONTROWRS

ADD
ADD

Example: If Register 34H contains 2EH and Register 12H contains 1 BH, the statement:

Example:

Example:

Example:

ADD34H, 12H
OpCode: 04 12 34

leaves the value 49H in Register 34H. The H Flag is set, and the C, Z, S, V, and D Flags are
cleared.

If Register 4BH contains 82H, Working Register R3 contains 10H, and Register 10H contains
01H, the statement:

ADD3EH, OR3
OpCode: 05 E3 4B

leaves the value 83H in Register4BH. The S Flag is set, and the C, Z, V, D, and H Flags are
cleared.

If Register 6CH contains 2AH, the statement:

ADD &CH, #03H
OpCode: 06 &C 03

leaves the value 2DH in Register 6CH. The C, Z, S, V, D, and H Flags are all cleared.

If Register D4H contains 5FH and Register 5FH contains 4CH, the statement:

ADD OD4H, #02H
OpCode: 07 D4 02

leaves the value 4EH in Register 5FH. The C, Z, S, V, D, and H Flags are all cleared.

12-13

II

AND
Logical AND

ANDdst,src

'lJ9 MICROCONTllOWRS

AND
LOGICAL AND

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst src

I lds1lsrcl OPC 6 52 r
6 53 Ir

OPC 11 src 11 dst 10 54 R R
10 55 R IR

OPC 11 dst 11 src 10 56 R IM
10 57 IA IM

dst <-dst AND src

The source operand is logically ANDed with the destination operand. The AND operation
results in a 1 being stored whenever the corresponding bits in the two operands are both 1,
otherwise a 0 is stored. The result is stored in the destination operand. The contents of the
source bit are not affected.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result of bit 7 is set; cleared otherwise
V: Always reset to 0
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-14

If Working Register R1 contains 34H (001110006) and Working Register R14 contains 4DH
(10001101), the statement:

AND R1, R14
OpCode: 52 1 E

leaves the value 04H (00001000) in Working Register R1. The Z, V, and S Flags are cleared.

If Working Register R4 contains F9H (11111001 B), Working Register R13 contains 7BH, and
Register 7BH contains 6AH (011010106), the statement:

ANDR4, OR13
OpCode: 53 4D

leaves the value 68H (01101 OOOB) in Working Register R4. The Z, V, and S Flags are cleared.

1' MlcRocoNTROLLERS

AND
LOGICAL AND

Example:

Example:

Example:

Example:

If Register 3AH contains the value F5H (111101010) and Register 42H contains the value
OAH (00001010), the statement:

AND3AH,42H
OpCode: 54 42 3A

leaves the value OOH (OOOOOOOOB) in Register 3AH. The Z Flag is set, and the V and S Flags
are cleared.

If Working Register R5 contains FOH (111100008), Register 45H contains 3AH, and Register
3AH contains 7FH (011111118), the statement:

AND RS, 045H
OpCode: 55 45 ES

leaves the value ?OH (011100008) in Working Register R5. The Z, V, and S Flags are cleared.

If Register 7AH contains the value F7H (111101118), the statement:

AND 7AH, #FOH
OpCode: 56 7A FO

leaves the value FOH (111100008) in Register 7AH. The SFlag is set, and the Zand V Flags
are cleared.

If Working Register R3 contains the value 3EH and Register 3EH contains the value ECH
(111011008), the statement:

AND OR3, #05H
OpCode: 57 E3 05

leaves the value 04H (000001008) in Register 3EH. The z. V, and S Flags are cleared.

12-15

El

CALL
Call Procedure

CALLdat

'lJ' MICROCONlllOLLERS

CALL
CALL PROCEDURE

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst

OPC 11 dst 20 06 DA

OPC II dst 20 04 IRA

SP <-SP-2
@SP<- PC
PC<-dst

The Stack pointer is decremented by two, the current contents of the Program Counter (PC)
(address of the first instruction following the CALL instruction) are pushed onto the top of the
Stack, and the specified destination address is then loaded into the PC. The PC now points
to the first instruction of the procedure.

At the end of the procedure a RET (return) instruction can be used to return to the original
program flow. RET will pop the top of the Stack and replace the original value into the PC.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Note: Address mode IRA can be used to specify a 4-bitWorking Register Pair. In this format, the
destination Working Register Pair operand is specified by adding 11108 (EH) to the high
nibble of the operand. For example, if Working Register Pair RR12 (CH) is the destination
operand, then ECH will be used as the destination operand in the OpCode.

Example:

12-16

If the contents of the PC are 1A47H and the contents of the SP (Registers FEH and FFH) are
3002H, the statement:

CALL3521H
OpCode: D6 35 21

causes the SP to be decremented to 3000H, 1A4AH (the address following the CALL
instruction) to be stored in external data memory 3000 and 3001 H, and the PC to be loaded
with 3521 H. The PC now points to the address of the first statement in the procedure to be
executed.

7J8 MICROCONTROLIERS

CALL
CALL PROCEDURE

Example: If the contents of the PC are 1A47H, the contents of the SP (Register FFH) are 72H, the
contents of Register A4H are 34H, and the contents of Register Pair 34H are 3521H, the
statement:

CALLOA4H
OpCode: D4 A4

causes the SP to be decremented to ?OH, 1A4AH (the address following the CALL
instruction) to be stored in R70H and 71 H, and the PC to be loaded with 3521 H. The PC now
points to the address of the first statement in the procedure to be executed.

12-17

CCF
Complement carry Flag

CCF

Instruction Format:

OPC

Operation: C<-NOTC

OPC
Cycles (Hex)

6 EF

'1J' MICROCOHTROLLERS

CCF
COMPLEMENT CARRY FLAG

TheCFlag iscomplemented. lfC= 1, then itischangedtoC=O:or, ifC=O, then it is changed
toC= 1.

Flags: C: Complemented

Example:

12-18

Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If the C Flag contains a 0, the statement:

CCF
OpCode: EF

will change the C Flag from C = 0 to C = 1.

'lJ' lllclloCoNTROWRS

CLR
CLEAR

CLR
CLEAR

CLRdst

Instruction Format:
OPC Address Mode

Operation:

Flags:

OPC I I dst

dst<-0

Cycles (Hex) dst

6
6

BO
81

R
IR

The destination operand is cleared to OOH.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example: If Working Register R6 contains AFH, the statement:

CLRR6
OpCode: BO E6

will leave the value OOH in Working Register R6.

If Register ASH contains the value 23H, and Register 23H contains the value FCH, the
statement:

CLR OASH
OpCode: B1 A5

will leave the value OOH in Register 23H.

12-19

COM
Complement

COMdst

COM
COMPLEMENT

Instruction Format:

Operation:

Flags:

OPC II dst

dst <-NOT dst

OPC Address Mode
Cycles (Hex) dst

6
6

60
61

A
IA

The contents of the destination operand are complemented (one's complement). All 1 bits are
changed to 0, and all 0 bits are changed to 1.

C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if result bit 7 is set; cleared otherwise.
V: Always reset to 0.
D: Unaffected
H: Unaffected

Note: Address modes R or JR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-20

If Register 08H contains 24H (001001008), the statement:

COM08H
OpCode: 60 08

leaves the value D8H (11011011) in Register 08H. The S Flag is set, and the Zand V Flags
are cleared.

If Register 08H contains 24H, and Register 24H contains FFH (11111111 B), the statement:

COM@08H
OpCode: 61 08

leaves the value OOH (000000008) in Register 24H. The Z Flag is set, and the V and S Flags
are cleared.

Z8' MICROCONTROUERS

CP
COMPARE

CP
Compare

CP dst, src

Instruction Format:

Operation:

OPC Address Mode
Cycles (Hex) dst src

OPC lldstlsrcl 6 A2. r
6 A3 Ir

OPC 11 src 11 dst 10 A4 R R
10 AS R IR

OPC 11 dst 11 src 10 AS R IM
10 A7 IR IM

dst-src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected.

C: Cleared if there is a carry from the most significant bit of the result. Set otherwise
indicating a borrow.

Z: Set if the result is zero; cleared otherwise.
S: Set if result bit 7 is set (negative); cleared otherwise.
V: Set if arithmetic overflow occurs; cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

Example:

If Working Register R3 contains 16H and Working Register R11 contains 20H, the statement:

CP R3, R11
OpCode: A2. 38

sets the C and S Flags, and the Z and V Flags are cleared.

If Working Register R15 contains 16H, Working Register R10 contains 20H, and Register
20H contains 11 H, the statement:

clears the C, Z, S, and V Flags.

CPR16, OR10
OpCode: A3 FA

12-21

II

Example:

Example:

Example:

Example:

12-22

If Register 34H contains 2EH and Register 12H contains 1 BH, the statement:

clears the C, Z, S, and V Flags.

CP34H,12H
OpCode: A4 12 34

U" MICROCONlHOLLERS

CP
COMPARE

If Register 4BH contains 82H, Working Register R3 contains 1 OH, and Register 1 OH contains
01 H, the statement:

CP4BH,@R3
OpCode: AS E3 48

sets the S Flag, and clears the C, Z, and V Flags.

If Register 6CH contains 2AH, the statement:

CP6CH,#2AH
OpCode: A6 6C 2A

sets the Z Flag, and the C, S, and V Flags are all cleared.

If Register D4H contains FCH, and Register SFH contains FCH, the statement:

CP@D4H, 7FH
OpCode: A7 D4 FF

sets the V Flag, and the C, Z, and S Flags are all cleared.

't'2iUl6 zr MICROCOHTROLLERS

DA
DECIMAL ADJUST

DA
Decimal Adjust

DAdst

Instruction Format:

Operation:

OPC 11 dst

dst<-DAdst

OPC Address Mode
Cycles (Hex) dst

8
8

40
41

R

IR

The destination operand is adjusted to form two 4-bit BCD digits following a binary addition
or subtraction operation on BCD encoded bytes. For addition (ADD and ADC) or subtraction
(SUB and SBC), the following table indicates the operation performed.

Carry Bits 7-4 HFlag Bits 3-0 Number
Instruction Before Value Before Value Added To

Flags:

ADD
ADC

SUB
SBC

DA (HEX) DA (HEX) Byte

0 0-9 0 0-9 00
0 0-8 0 A-F 06
0 0-9 1 0-3 06
0 A-F 0 0-9 60
0 9-F 0 A-F 66
0 A-F 1 0-3 66
1 0-2 0 0-9 60
1 0-2 0 A-F 66
1 0-3 1 0-3 66

0 0-9 0 0-9 00
0 0-8 1 6-F FA
1 7-F 0 0-9 AO
1 6-F 1 6-F 9A

If the destination operand is not the result of a valid addition or subtraction of BCD digits, the
operation is undefined.

C: Set if there is a carry from the most significant bit; cleared otherwise (see table above).
Z: Set if the result is zero; cleared otherwise.
S: Set if result bit 7 is set (negative); cleared otherwise.
V: Undefined
D: Unaffected
H: Unaffected

Carry
After
DA

0
0
0
1
1
1
1
1
1

0
0
1
1

12-23

DA
DECIMAL ADJUST

Note: Address modes R or IA can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-24

If addition is performed using the BCD value 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location
using standard binary arithmetic.

0001 0101 = 15H
+ Q0.1Q w..11 = 2Zl::l

0011 1100 = 3CH

If the result of the addition is stored in Register 5FH, the statement:

DA5FH
OpCode: 40 5F

adjusts this result so the correct BCD representation is obtained.

0011 1100 = 3CH
JJlXlQ Q.110 = Q6l::l
0100 0010 = 42H

Register 5F now contains the value 42H. The C, Z, and S Flags are cleared, and V is undefined.

If addition is performed using the BCD value 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location
using standard binary arithmetic.

0001 0101 = 15H
+ Q0.1Q w..11 = 2Zl::l

0011 1100 = 3CH

If Register 45F contains the value 5FH, and the result of the addition is stored in Register 5FH,
the statement:

DA045H
OpCode: 40 45

adjusts this result so the correct BCD representation is obtained.

0011 1100 = 3CH
.OQQQ Q.110 = Q6l::l
0100 0010 = 42H

Register 5F now contains the value 42H. The C, Z, and S Flags are cleared, and V is
undefined.

Z8" MICROCONTROLLERS

DEC
DECREMENT

DEC
Decrement

DEC dst

Instruction Format:

Operation:

Flags:

OPC 11 dst

dst<-dst-1

OPC Address Mode
Cycles (Hex) clst

6
6

00
01

R
IR

The contents of the destination operand are decremented by one.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result of bit 7 is set (negative); cleared otherwise
V: Set if arithmetic overflow occurs; cleared otherwise
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

If Working Register R10 contains 2A%, the statement:

DECR10
OpCode: 00 EA

leaves the value 29H in Working Register R10. The Z, V, and S Flags are cleared.

If Register 83H contains CBH, and Register CBH contains 01H, the statement:

DEC@B3H
OpCode: 01 B3

leaves the value OOH in Register CBH. The Z Flag is set, and the V and S Flags are cleared.

12-25

Ill

D' MICROCONTROLLERS

DECW
DECREMENT WORD

DECW
Decrement Word

DECWdst

Instruction Format:

Operation:

Flags:

OPC 11 dst

dst<-dst-1

OPC Address Mode
Cycles (Hex) dst

10
10

80
81

RR
IR

The contents of the destination {which must be an even address) operand are decremented
by one. The destination operand can be a Register Pair or a Working Register Pair.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result of bit 7 is set {negative); cleared otherwise
V: Set if arithmetic overflow occurs; cleared otherwise
D: Unaffected
H: Unaffected

Note: Address modes RR or IA can be used to specify a 4-bitWorking Register Pair. In this format,
the destination Working Register Pair operand is specified by adding 111 OB {EH) to the high
nibble of the operand. For example, if Working Register Pair R12 (CH) is the destination
operand, then ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-26

If Register Pair 30H and 31H contain the value OAF2H, the statement:

DECW30H
OpCoda: 80 30

leaves the value OAF1H in Register Pair 30H and 31H. The Z, V, and S Flags are cleared.

If Working Register RO contains 30H and Register Pairs 30H and 31H contain the value
FAF3H, the statement:

DECWORO
OpCode: 81 EO

leaves the value FAF2H in Register Pair 30H and 31 H. The S Flag is set, and the Z and V
Flags are cleared.

mt MICROCONTROLl.ERS

DI
DISABLE INTERRUPTS

DI
Disable Interrupts

DI

Instruction Format:

Operation:

Flags:

Example:

OPC

IMR (7) <-0

OPC
Cycles (Hex)

6 SF

Bit 7 of Control Register FBH (the Interrupt Mask Register) is reset to 0. All interrupts are
disabled, although they remain "potentially" enabled. (For instance, the Global Interrupt
Enable is cleared, but not the individual interrupt level enables.)

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Control Register FBH contains BAH (10001010) (interrupts IRQ1 and IRQ3 are enabled),
the statement:

DI
OpCode: BF

sets Control Register FBH to OAH (000010108) and disables these interrupts.

12-27

II

<t'2il.CE

DJNZ

zr MICROCONTROLLERS

DJNZ
DECREMENTANDJUMPIFNONZERO

Decrement and Jump if Non-zero

DJNZr, dst

Instruction Format:

Operation:

Flags:

Note:

Example:

12-28

Cycles
OPC Address Mode
(Hex) dst

12 if jump taken rA RA
10 if jump nottaken (r = O to F)

r<-r-1;
If r <> 0, PC <-PC + dst

The specified Working Register being used as a counter is decremented. If the contents of
the specified Working Register are not zero after decrementing, then the relative address is
added to the Program Counter (PC) and control passes to the statement whose address is
now in the PC. The range of the relative address is + 127 to -128. The original value of the
PC is the address of the instruction byte following the DJNZ statement. When the specified
Working Register counter reaches zero, control falls through to the statement following the
DJNZ instruction.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

The Working Register being used as a counter must be one of the Registers from 04H to EFH.
Use of one of the 1/0 ports, control or peripheral registers will have undefined results.

DJNZ is typically used to control a "loop" of instructions. In this example, 12 bytes are moved
from one buffer area in the register file to another. The steps involved are:

• Load 12 into the counter (Working Register R6).

• Set up the loop to perform the moves.

• End the loop with DJNZ.

The assembly listing required for this routine is as follows:

LO R6, 12
LOOP: LD R9, @R6

LD @R6, R9
DJNZ R6, LOOP

;Load Counter
:Move one byte to
;new location
;Decrement and Loop until
;counter= 0

El
ENABLE INTERRUPTS

El
Enable Interrupts

El

Instruction Format:

Operation:

Flags:

Example:

OPC

IMR (7) <-0

OPC
Cycles (Hex)

6 9F

Bit 7 of Control Register FBH (the Interrupt Mask Register) is set to 1. This allows potentially
enabled interrupts to become enabled.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Control Register FBH contains OAH (00001010) (interrupts IRQ1 and IRQ3 are selected),
the statement:

El
OpCode: 9F

sets Control Register FBH to BAH (100010106) and enables IRQ1 and IRQ3.

II

12-29

HALT
Halt

HALT

'lJ' MICROCONTROLLERS

HALT
HALT

Instruction Format:

Operation:

Flags:

Note:

Example:

12-30

OPC
Cycles (Hex)

6 7F

The HALT instruction turns off the internal CPU clock, but not the XTAL oscillation. The
counter/timers and the external interrupts IAQ1, IAQ2, and IAQ3 remain active. The devices
are recovered by interrupts, either externally or internally generated.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

In order to enter HALT mode, it is necessary to first flush the instruction pipeline to avoid
suspending execution in mid-instruction. The user must execute a NOP immediately before
the execution of the HALT instruction.

Assuming the ZS is in normal operation, the statements:

place the ZS into HALT mode.

NOP
HALT
OpCodea: FF 7F

INC
INCREMENT

INC
Increment

INCdst

Instruction Format:

Operation:

Flags:

I dst lapel
OPC 11 dst

dst<-dst+ 1

OPC Address Mode
Cycles (Hex) dst

6

6
6

rE

20
21

R
IR

The contents of the destination operand are incremented by one.

C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if the result of bit 7 is set (negative); cleared otherwise.
V: Set if arithmetic overflow occurs; cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes A or IA can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 111 OB (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

Example:

If Working Register R10 contains 2AH, the statement:

INCR10
OpCode: AE

leaves the value 2BH in Working Register R10. The Z, V, and S Flags are cleared.

If Register B3H contains CBH, the statement:

INC83H
OpCode: 20 83

leaves the value CCH in Register CBH. The S Flag is set, and the Zand V Flags are cleared.

If Register 83H contains CBH and Register BCH contains FFH, the statement:

INCOB3H
OpCode: 21 83

leaves the value OOH in Register CBH. The Z Flag is set, and the V and S Flags are cleared.

II

12-31

D' MICROCONTROUERS

INCW
INCREMENT WORD

INCW
Increment Word

INCWdst

Instruction Format:

Operation:

Flags:

OPC I I dst

dst<-dst-1

OPC Address Mode
Cycles (Hex) dst

10
10

AO
A1

RR
JR

The contents of the destination (which must be an even address) operand is decremented
by one. The destination operand can be a Register Pair or a Working Register Pair.

C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if the result of bit 7 is set (negative); cleared otherwise.
V: Set if arithmetic overflow occurs; cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes RR or IR can be used to specify a 4-bit Working Register Pair. In this format,
the destination Working Register Pair operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register Pair R12 (CH) is the destination
operand, then ECH will be used as the destination operand in the OpCode.

Example:

Example:

12·32

If Register Pairs 30H and 31 H contain the value OAF2H, the statement:

INCW30H
OpCode: AO 30

leaves the value OAF3H in Register Pair 30H and 31H. The Z, V, and S Flags are cleared.

If Working Register RO contains 30H, and Register Pairs 30H and 31H contain the value
FAF3H, the statement:

INCW@RO
OpCode: A1 EO

leaves the value FAF4H in Register Pair 30H and 31H. The S Flag is set, and the Zand V
Flags are cleared.

'lJI MICROCONTROUERS

IRET
INTERRUPT RETURN

IRET
Interrupt RETURN

IRET

Instruction Format:

Operation:

Flags:

Example:

OPC
Cycles (Hex)

OPC 16

FLAGS<- @SP
SP <-SP+ 1
PC<- @SP
SP <-SP+ 2
IMR(7) <-1

BF

This instruction is issued attheend of an interrupt service routine. It restores the Flag Register
(Control Register FCH) and the PC. It also re-enables any interrupts that are potentially
enabled.

C: Restored to original setting before the interrupt occurred.
Z: Restored to original setting before the interrupt occurred.
S: Restored to original setting before the interrupt occurred.
V: Restored to original setting before the interrupt occurred.
D: Restored to original setting before the interrupt occurred.
H: Restored to original setting before the interrupt occurred.

If Stack Pointer Low Register FFH currently contains the value 45H, Register 45H contains
the value OOH, Register 46H contains 6FH, and Register 47 Contains E4H, the statement:

IRET
OpCode: BF

restores the FLAG Register FCH with the value OOH, restores the PC with the value 6FE4H,
re-enables the interrupts, and sets the Stack Pointer Low to 48H. The next instruction to be
executed will be at location 6FE4H.

12-33

II

'II' MICROCONTROLLERS

JP
JUMP

JPcc,dst

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst

I cc loPcl I dst
12 ifjumptaken ccD

10 if not taken cc=Oto F
DA

OPC 11 dst 8 30 IRA

If cc (condition code) is true, then PC <-dst

A conditional jump transfers Program Control to the destination address if the condition
specified by cc (condition code) is true. Otherwise, the instruction following the JP instruction
is executed. See Section 12.3 for a list of condition codes.

The unconditional jump simply replaces the contents of the Program Counter with the
contents of the register pair specified by the destination operand. Program Control then
passes to the instruction addressed by the PC.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Note: Address mode IRR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-34

If the Carry Flag is set, the statement:

JPC, 1520H
OpCode: 7D 15 20

replaces the contents of the Program Counter with 1520H and transfers program control to
that location. If the Carry Flag had not been set, control would have fallen through to the
statement following the JP instruction.

If Working Register Pair RR2 contains the value 3F45H, the statement:

JP ORR2
OpCode: 30 E2

replaces the contents of the PC with the value 3F45H and transfers program control to that
location.

JP
JUMP

JR
JUMP RELATIVE

JR
Jump Relative

JR cc, dst

Instruction Format:

Operation:

Flags:

Example:

Example:

Cycles
OPC Address Mode
(Hex) dst

10 If jump taken ccB RA
12 if jump not taken cc = 0 to F

If cc is true, PC <-PC + dst

If the condition specified by the "cc' is true, the relative address is added to the PC and control
passes to the instruction located at the address specified by the PC (See Section 12.3 for a
list of condition codes). Otherwise, the instruction following the JR instruction is executed.
The range of the relative address is + 127 to -128, and the original value of the PC is taken
to be the address of the first instruction byte following the JR instruction.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If the result of the last arithmetic operation executed is negative, the next four statements
(which occupy a total of seven bytes) are skipped with the statement:

JRMl,#9
OpCode: SB 09

If the result was not negative, execution would have continued with the instruction following
the JR instruction.

A short form of a jump -45 is:

JR#-45
OpCode: 88 D3

The condition code is "blank' in this case, and is assumed to be "always true.•

II

12-35

LO
Load

LDdst, src

Instruction Format:
OPC Address Mode

Cycles (Hex) dst src

dst loPcl src 6 rC IM
6 r8 R

src lope dst 6 r9 R*
r=Oto F

OPC dst I src I 6 E3 r Ir
6 F3 Ir

OPC src dst 10 E4 R R
10 ES R IR

OPC dst 10 ES R IM src 10 E7 IR IM

OPC src dst 10 F5 IR R

OPC dst I x src 10 C7 x

OPC src I x dst 10 07 x

In this instance, only a fu 8-bit register can be used.

Operation: dst <- src

The contents of the source operand are loaded into the destination operand. The contents
of the source operand are not affected.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

12-36

LO
LOAD

ft' 2JUJ6 '1J' MICROCONTROLLERS

LO
LOAD

Example: The statement:

Example:

Example:

Example:

Example:

Example:

LD R15, #34H
OpCode: FC 34

loads the value 34H into Working Register R15.

If Register 34H contains the value FCH, the statement:

LDR14,34H
OpCode: F8 34

loads the value FCH into Working Register R15. The contents of Register 34H are not
affected.

If Working Register R14 contains the value 45H, the statement:

LD 34H, R14
OpCode: E9 34

loads the value 45H into Register 34H. The contents of Working Register R14 are not
affected.

If Working Register R12 contains the value 34H, and Register 34H contains the value FFH,
the statement:

LD R13, @R12
OpCode: E3 DC

loads the value FFH into Working Register R13. The contents of Working Register R12 and
Register R34 are not affected.

If Working Register R13 contains the value 45H, and Working Register R12 contains the
value OOH the statement:

LD@R13, R12
OpCode: F3 DC

loads the value OOH into Register 45H. The contents of Working Register R12 and Working
Register R13 are not affected.

If Register 45H contains the value CFH, the statement:

LD34H,45H
OpCode: E4 45 34

loads the value CFH into Register 34H. The contents of Register 45H are not affected.

12-37

II

Example:

Example:

Example:

Example:

Example:

Example:

12-38

7J' MICROCONTROLllRS

If Register 45H contains the value CFH and Register CFH contains the value FFH, the
statement:

LD34H, 045H
OpCode: ES 45 34

loads the value FFH into Register 34H. The contents of Register 45H and Register CFH are
not affected.

The statement:

LD 34H,#A4H
OpCode: E& 34 A4

loads the value A4H into Register 34H.

If Working Register R14 contains the value 7FH, the statement:

LD OR14, #FCH
OpCode: E7 EE FC

loads the value FCH into Register 7FH. The contents of Working Register R14 are not
affected.

If Register 34H contains the value CFH and Register 45H contains the value FFH, the
statement:

LD 034H,45H
OpCode: FS 45 34

loads the value FFH into Register CFH. The contents of Register 34H and Register 45H are
not affected.

If Working Register RO contains the value OBH and Register 2CH (24H + OBH = 2CH) contains
the value 4FH, the statement:

LD R10, 24H(RO)
OpCode: C7 AO 24

loads Working Register R10 with the value 4FH. The contents of Working Register RO and
Register 2CH are not affected.

If Working Register RO contains the value OBH and Working Register R10 contains 83H the
statement:

LD FOH(RO), R10
OpCode: 07 AO FO

loads the value 83H into Register FBH (FOH + OBH = FBH). Since this is the Interrupt Mask
Register, the LOAD statement has the effect of enabling IRQO and IRQ1. The contents of
Working Registers RO and R10 are unaffected by the load.

LD
LOAD

'11' MICROCONTROUERS

LDC
LOAD CONSTANT

LDC
Load Constant

LDCdst, src

Instruction Format:

Operation:

Flags:

Example:

Example:

OPC Address Mode Cycles (Hex) src dst

OPC lldmlsrcl 12 C2 Irr

OPC lldmlsrcl 12 02 Irr

dst<-src

This instruction is used to load a byte constantfrom program memory into a Working Register,
or vice versa. The address of the program memory location is specified by a Working Register
Pair. The contents of the source operand are not affected.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Working Register Pair R6 and R7 contain the value 30A2H and program memory location
30A2H contains the value 22H, the statement:

LDCR2,@RR6
OpCode: C2 26

loads the value 22H into Working Register R2. The value of program memory location 30A2H
is unchanged by the load.

If Working Register R2 contains the value 22H, and Working Register Pair R6 and R7
contains the value 10A2H, the statement:

LDC@RR6,R2
OpCode: 02 26

loads the value 22H into program memory location 10A2H. The value of Working Register
R2 is unchanged by the load.

Note: This instruction format is valid only for MCUs which can address external program memory.

12-39

II

LOCI

1H' MICROCONlROUERS

LOCI
LOAD CONSTANT AUTO-INCREMENT

Load Constant Auto-Increment

LOCI dst, src

Instruction Format:

Operation:

Flags:

Example:

OPC Address Mode
Cycles (Hex) src dst

OPC I ldstlsrcl 18 C3 Ir Irr

OPC I ldstlsrcl 18 03 Irr Ir

dst<-src
r <-r + 1
rr <-rr+ 1

This instruction is used for block transfers of data between program memory and the Register
File. The address of the program memory location is specified by a Working Register Pair,
and the address of the Register File location is specified by Working Register. The contents
of the source location are loaded into the destination location. Both addresses in the Working
Registers are then incremented automatically. The contents of the source operand are not
affected.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Working Register Pair R6-R7 contains 30A2H, program memory location 30A2H and
30A3H contain 22H and BCH respectively, and Working Register R2 contains 20H, the
statement:

LOCI OR2, ORR&
OpCode: C3 26

loads the value 22H into Register 20H. Working Register Pair RR6 is incremented to 30A3H
and Working Register R2 is incremented to 21 H. A second

LOCI OR2, ORR&
OpCode: C3 26

loads the value BCH into Register 21 H. Working Register Pair RR6 is incremented to 30A4H
and Working Register R2 is incremented to 22H.

Note: This instruction format is valid only for MCUs which can address external program memory.

1240

'1JI MICROCONTROu.ERS

LOCI
LOAD CONSTANT AUTO-INCREMENT

Example: If Working Register R2 contains 20H, Register 20H contains 22H, Register 21H contains
BCH, and Working Register Pair R6-R7 contains 30A2H, the statement:

LDCI ORR&, @R2
OpCode: D3 26

loads the value 22H into program memory location 30A2H. Working Register R2 is
incremented to 21 H and Working Register Pair R6-R7 is incremented to 30A3H. A second

LDCI ORR&, @R2
OpCode: D3 26

loads the value BCH into program memory location 30A3H. Working Register R2 is
incremented to 22H and Working Register Pair R6-R7 is incremented to 30A4H.

12-41

II

LDE

D' MICROCONTROLLERS

LOE
LOAD EXTERNAL DATA

Load External Data

LDEdst,src

Instruction Format:

Operation:

Flags:

Example:

Example:

OPC Address Mode
Cycles (Hex) SIC dst

OPC lldstlsrcl 12 82 Irr

OPC llsrclctstl 12 92 Irr

dst<-src

This instruction is used to load a byte from external data memory into a Working Register or
vice versa. The address of the external data memory location is specified by a Working
Register Pair. The contents of the source operand are not affected.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Working Register Pair R6 and R7 contain the value 40A2H and external data memory
location 40A2H contains the value 22H, the statement:

LDER2, ORR&
OpCode: 82 26

loads the value 22H into Working Register R2. The value of external data memory location
40A2H is unchanged by the load.

If Working Register Pair R6 and R7 contain the value 404AH and Working Register R2
contains the value 22H, the statement:

LDE ORR6,R2
OpCode: 92 26

loads the value 22H into external data memory location 404AH

Note: This instruction format is valid only for MCUs which can address external data memory.

12-42

D' MICROCONTROLLERS

LDEI
LOAD EXTERNAL DATA AUTO-INCREMENT

LDEI
Load External Data Auto-increment

LDEI dst, src

Instruction Format:

Operation:

Flags:

Example:

OPC Address Mode
Cycles (Hex) src dst

OPC lldstlsrcl 18 83 Ir Irr

OPC llsrcldstl 18 93 Irr Ir

dst<-src
r<-r + 1
rr<-rr+ 1

This instruction is used for block transfers of data between external data memory and the
Register File. The address of the external data memory location is specified by a Working
Register Pair, and the address of the Register File location is specified by a Working Register.
The contents of the source location are loaded into the destination location. Both addresses
in the Working Registers are then incremented automatically. The contents of the source are
not affected.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If Working Register Pair R6 and R7 contains 404AH, external data memory location 404AH
and 404BH contain ABH and C3H respectively, and Working Register R2 contains 22H, the
statement:

LDEI OR2, ORR&
OpCode: 83 26

loads the value ABH into Register 22H. Working Register Pair RR6 is incremented to 404BH
and Working Register R2 is incremented to 23H. A second

LOCI OR2, ORR&
OpCode: 83 26

loads the value C3H into Register 23H. Working Register Pair RR6 is incremented to 404CH
and Working Register R2 is incremented to 24H.

12-43

Example:

'1J' MICROCONTROU!RS

LDEI
LOAD EXTERNAL DATA AUTO-INCREMENT

If Working Register R2 contains 22H, Register 22H contains ABH, Register 23H contains
C3H, and Working Register Pair R6 and R7 contains 404AH, the statement:

LDEI ORR&, OR2
OpCode: 93 26

loads the value ABH into external data memory location 404AH. Working Register R2 is
incremented to 23H and Working Register Pair RR6 is incremented to 404BH. A second

LOCI ORR&, OR2
OpCode: 93 26

loads the value C3H into external data memory location 404BH. Working Register R2 is
incremented to 24H and Working Register Pair RR6 is incremented to 404CH.

Note: This instruction format is valid only for MCUs which can address external data memory.

12-44

'llJ' MICRocoNTRoLLERS

NOP
NO OPERATION

NOP
No Operation

NOP

Instruction Format:

Operation:

Flags:

OPC
Cycles (Hex)

OPC 6 FF

No action is performed by this instruction. It is typically used for timing delays or clearing the
pipeline.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

12-45

OR
LoglcalOR

ORdst,src

OR
LOGICAL OR

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst SIC

llclstlslCI OPC 6 42 r
6 43 Ir

OPC 11 SIC 11 dst 10 44 R R
10 45 R IR

OPC 11 dst 11 SIC
10 46 R IM
10 47 IR IM

dst <- dst OR src

The source operand is logically ORed with the destination operand and the result is stored
in the destination operand. The contents of the source operand are not affected. The OR
operation results in a one bit being stored whenever either of the corresponding bits in the
two operands is a one. Otherwise, a zero bit is stored.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result of bit 7 is set; cleared otherwise
V: Always reset to 0
D: Unaffected
H: Unaffected

Note: Address modes R or IA can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-46

If Working Register R1 contains 34H (001110008) and Working Register R14 contains 4DH
(10001101), the statement:

OR R1, R14
OpCode: 42 1 E

leaves the value BDH (10111101 B) in Working Register R1. The S Flag is set, and the Zand
V Flags are cleared.

If Working Register R4 contains F9H (111110018), Working Register R13 contains 7BH, and
Register 78 contains 6AH (011010108), the statement:

ORR4, OR13
OpCode: 43 4D

leaves the value FBH (111110118) in Working Register R4. The S Flag is set, and the Z and
V Flags are cleared.

OR
LOGICAL OR

Example:

Example:

Example:

Example:

If Register 3AH contains the value F5H (11110101 B) and Register 42H contains the value
OAH (00001010), the statement:

OR3AH,42H
OpCode: 44 42 3A

leaves the value FFH (111111118) in Register 3AH. The S Flag is set, and the Zand V Flags
are cleared.

If Working Register R5 contains 70H (011100008), Register 45H contains 3AH, and Register
3AH contains 7FH (01111111 B). the statement:

OR RS, 045H
OpCode: 45 45 ES

leaves the value 7FH (01111111 B) in Working Register RS. The Z, V, and S Flags are
cleared.

If Register 7 AH contains the value F3H (11110111 B), the statement:

OR7AH,#FOH
OpCode: 46 7A FO

leaves the value F3H (111101118) in Register7AH. The S Flag is set, and the Zand VFlags
are cleared.

If Working Register R3 contains the value 3EH and Register 3EH contains the value OCH
(000011 DOB), the statement:

OR OR3,#05H
OpCode: S7 E3 05

leaves the value OOH (00001101 B) in Register 3EH. The Z, V, and S Flags are cleared.

12-47

'lJ' MICROCONTROUERS

POP
Pop

POPdst

Instruction Format: OPC Address Mode

Operation:

Flags:

OPC 11 dst

dst <-@SP
SP <-SP+ 1

Cycles (Hex) dst

10
10

50
51

R
IR

The contents of the location specified by the SP (Stack Pointer) are loaded into the
destination operand. The SP is then incremented automatically.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

12-48

If the SP (Control Registers FEH and FFH) contains the value ?OH and Register 70H contains
44H, the statement:

POP34H
OpCode: 50 34

loads the value 44H into Register 34H. After the POP operation, the SP contains 71 H. The
contents of Register 70 are not affected.

If the SP (Control Registers FEH and FFH) contains the value 1 OOOH, external data memory
location 1000H contains 55H, and Working Register R6 contains 22H, the statement:

POPOR6
OpCode: 51 E6

loads the value 55H into Register 22H. After the POP.operation, the SP contains 1001 H. The
contents of Working Register R6 are not affected.

POP
POP

't'211..C16
PUSH
PUSH

PUSH
Push

PUSH src

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cy des (Hex) dst

11
10 lntemal Stack 70 R

OPC src 12 Elclernal Stack
12 lntemal Stack 71 IR
14 External Stack

SP<- SP-1
@SP <-src

The contents of the SP (stack pointer) are decremented by one, then the contents of the
source operand are loaded into the location addressed by the decremented SP, thus adding
a new element to the stack.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H:

Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 111 OB (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

If the SP contains 1001 H, the statement:

PUSHFCH
OpCode: 70 FC

stores the contents of Register FCH (the Flag Register) in location 1000H. After the PUSH
operation, the SP contains 1000H.

If the SP contains 61H and Working Register R4 contains FCH, the statement:

PUSH OR4
OpCode: 71 E4

stores the contents of Register FCH (the Flag Register) in location 60H. After the PUSH
operation, the SP contains 60H.

12-49

RCF
Reset Carry Flag

RCF

Instruction Format:

OPC

Operation: C<-0

OPC
Cycles (Hex)

6 CF

The C Flag is reset to 0, regardless of its previous value.

Flags: C: Reset to O

Example:

12-50

Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If the C Flag is currently set, the statement:

resets the Carry Flag to 0.

RCF
Opcode: CF

Z8' MICROCON11IOLLERS

RCF
RESET CARRY FLAG

RET
RETURN

RET
Return

RET

ZS' Mlc:ROCONTROLLERS

Instruction Format:

Operation:

Flags:

Note:

Example:

OPC

PC<- @SP
SP <-SP+ 2

Cycles

14

OPC
(Hex)

AF

This instruction is normally used to return from a procedure entered by a CALL instruction.
The contents of the location addressed by the SP are popped into the PC. The next statement
executed is the one addressed by the new contents of the PC. The stack pointer is also
incremented by two.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Each PUSH instruction executed within the subroutine should be countered with a POP
instruction in order to guarantee the SP is at the correct location when the RET instruction
is executed. Otherwise the wrong address will be loaded into the PC and the program will not
operate as desired.

If SP contains 2000H, external data memory location 2000H contains 18H, and location
2001 H contains B5H, the statement:

RET
OpCode: AF

leaves the value 2002H in the SP, and the PC contains 1885H, the address of the next
instruction to be executed.

12-51

II

RL
Rotate Left

RLdst

'l!' MICROCONTROLLERS

RL
ROTATE LEFT

OPC Address Mode
Cycles (Hex) dst

Instruction Format:

Operation:

Flags:

OPC 11 dst

C<-dst(7)
dst(O) <-dst(7)
dst(1) <-dst(O)
dst(2) <-dst(1)
dst(3) <-dst(2)
dst(4) <-dst(3)
dst{5) <-dst(4)
dst(6) <-dst(5)
dst(7) <-dst(6)

6
6

90
91

R
IA

The contents of the destination operand are rotated left by one bit position. The initial value
of bit 7 is moved to the bit O position and also into the Carry Flag.

C: Set if the bit rotated from the most significant bit position was 1 (i.e., bit 7 was 1).
Z: Set if the result is zero; cleared otherwise.
S: Set if the result in bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred (if the sign of the destination operand changed

during rotation); cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-52

4'21Ul6 'lJ' MICROCONTROWRS

RL
ROTATE LEFT

Example:

Example:

If the contents of Register C6H are SSH (100010008), the statement:

RLC6H
OpCode: 80 C6

leaves the value 11 H (00010001 B) in Register CSH. The C and V Flags are set, and the S
and Z Flags are cleared.

If the contents of Register C6H are SSH, and the contents of Register SSH are 44H
(010001008), the statement:

RL@C6H
OpCode: 81 C6

leaves the value SSH in Register SSH (100010008). The Sand V Flags are set, and the C
and Z Flags are cleared.

12-53

[I

RLC

'lJ' MICROCONTROLLERS

RLC
ROTATE LEFT THROUGH CARRY

Rotate Left Through Carry

RLCdst

Instruction Format: OPC Address Mode

Operation:

OPC 11 dst

C<-dst(7)
dst(O)<-C
dst(1) <-dst(O)
dst(2) <-dst(1)
dst(3) <-dst(2)
dst(4) <-dst(3)
dst(5) <-dst(4)
dst(6) <-dst(5)
dst(7) <-dst(6)

Cycles (Hex) dst

6
6

10
11

R
IR

The contents of the destination operand along with the C Flag are rotated left by one bit
position. The initial value of bit 7 replaces the C Flag and the initial value of the C Flag replaces
bitO.

Flags: C: Set if the bit rotated from the most significant bit position was 1 (i.e., bit 7 was 1).
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred (if the sign of the destination operand changed

during rotation); cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-54

'16' MlCRocoNTRoLl.ERS

RLC
ROTATE LEFT THROUGH CARRY

Example:

Example:

If the C Flag is reset and Register C6 contains BF (10001111 B), the statement:

RLCC&
OpCode: 10 C&

leaves Register C6 with the value 1 EH (0001111 OB). The C and V Flags are set, and S and
Z Flags are cleared.

If the C Flag is reset. Working Register R4 contains C6H, and Register C6 contains BF
(100011118), the statement:

RLC OR4
OpCode: 11 E4

leaves Register C6 with the value 1 EH (000111108). The C and V Flags are set, and S and
Z Flags are cleared.

12-55

RR
Rotate Right

RRdst

RR
ROTATE RIGHT

Instruction Format: OPC Address Mode
Cycles (Hex) d&t

Operation:

Flags:

OPC 11 dst

C <-dst(O)
dst(O) <-dst(1)
dst(1) <-dst(2)
dst(2) <-dst(3)
dst(3) <-dst(4)
dst(4) <-dst(5)
dst(5) <-dst(6)
dst(6) <-dst(7)
dst(7) <-dst(O)

6
6

EO
E1

R

IR

The contents of the destination operand are rotated to the right by one bit position. The initial
value of bit 0 is moved to bit 7 and also into the C Flag.

LI 011 oel osl D4los I 02101 I oo P-0
C: Set if the bit rotated from the least significant bit position was 1 (i.e., bit 0 was 1).
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred (if the sign of the destination operand changed

during rotation); cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 111 OB (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-56

D' MICROCONTROLLERS

RR
ROTATE RIGHT

Example:

Example:

If the contents of Working Register R6 are 31 H (00110001 B), the statement:

RRR6
OpCode: EO E6

leaves the value 98H (10011000) in Working Register R6. The C, V, and S Flags are set, and
the Z Flag is cleared.

If the contents of Register C6 are 31H and the contents of Register 31H are ?EH
(0111111 OB), the statement:

RROC6
OpCode: E1 C6

leaves the value 4FH (00111111) in Register 31H. The C, Z, V, and S Flags are cleared.

12-57

RRC

RRC
ROTATE RIGHT THROUGH CARRY

Rotate Right Through Can'Y

RRCdst

Instruction Format: OPC Address Mode

Operation:

Flags:

Cycles (Hex) dst

OPC II dst

C<-dst(O)
dst(O) <-dst(1)
dst(1) <-dst(2)
dst(2) <-dst(3)
dst(3) <-dst(4)
dst(4) <-dst(5)
dst(5) <-dst(S)
dst(S) <-dst(7)
dst(7)<-C

6
6

co
C1

R

IR

The contents of the destination operand with the C Flag are rotated right by one bit position.
The initial value of bit 0 replaces the C Flag and the initial value of the C Flag replaces bit 7.

L::jo1loelo5lo4loslo2lo1loo~
C: Set if the bit rotated from the least significant bit position was 1 (i.e., bit 0 was 1).
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred (if the sign of the destination operand changed

during rotation); cleared otherwise.
D: Unaffected
H: Unaffected

Note: Address modes A or IA can be used to specify a 4-bit Working Register. In this format, the
destination Working Register operand is specified by adding 11108 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-58

'lH' MICROCONTROLLERS

ARC
ROTATE RIGHT THROUGH CARRY

Example:

Example:

If the contents of Register C6H are DOH (11011101 B) and the C Flag is reset, the statement:

RRCC6H
OpCode: CO C6

leavesthevalue6EH(01101110B) in registerC6H. TheC andVFlagsare set, and the Zand
S Flags are cleared.

If the contents of Register 2C are EDH, the contents of Register EDH is OOH (000000008),
and the C Flag is reset, the statement:

RRC 02CH
OpCode: C1 2C

leaves the value 01H (000000018) in Register EDH. The C, Z, S, and V Flags are reset.

12-59

El

SBC

'lJ'I MICllOCONTROLLERS

SBC
SUBTRACT WITH CARRY

Subtract With Carry

SBCdst,src

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst src

I ldstlsrcl OPC 6 32 r
6 33 Ir

OPC II src 11 dst 10 34 R R
10 35 R IR

OPC 11 dst 11 src 10 36 R IM
10 37 IR IM

dst<-dst-src-C

The source operand, along with the setting of the C Flag, is subtracted from the destination
operand and the result is stored in the destination operand. The contents of the source
operand are not affected. Subtraction is performed by adding the two's complement of the
source operand to the destination operand. In multiple precision arithmetic, this instruction
permits the carry (borrow) from the subtraction of low order operands to be subtracted from
the subtraction of high order operands.

C: Cleared if there is a carry from the most significant bit of the result; set otherwise,
indicating a "borrow."

Z: Set if the result is O; cleared otherwise.
V: Set if arithmetic overflow occurred (if the operands were of opposite sign and the sign

of the result is the same as the sign of the source); reset otherwise.
S: Set if the result is negative; cleared otherwise.
H: Cleared if there is a carry from the most significant bit of the low order four bits of the

result; set otherwise indicating a "borrow.•
D: Always set to 1.

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

12-60

If Working Register R3 contains 16H, the C Flag is set to 1, and Working Register R11
contains 20H, the statement:

SBC R3, R11
OpCode: 32 3B

leaves the value F5H in Working Register R3. The C, S, and D Flags are set, and the Z, V,
and H Flags are all cleared.

SBC
SUBTRACT WITH CARRY

Example:

Example:

Example:

Example:

Example:

If Working Register R15 contains 16H, the C Flag is not set, Working Register R10 contains
20H, and Register 20H contains 11 H, the statement:

SBC R16, OR10
OpCoda: 33 FA

leaves the value 05H in Working Register R15. The D Flag is set, and the C, Z, S, V, and H
Flags are cleared.

If Register 34H contains 2EH, the C Flag is set, and Register 12H contains 18H, the
statement:

SBC34H, 12H
OpCoda: 34 12 34

leaves the value 13H in Register 34H. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register 4BH contains 82H, the C Flag is set, Working Register R3 contains 10H, and
Register 1 OH contains 01 H, the statement:

SBC4BH, ORS
OpCoda: 35 E3 4B

leaves the value BOH in Register 4BH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register 6CH contains 2AH, and the C Flag is not set, the statement:

SBC &CH, #03H
OpCode: 36 &C 03

leaves the value 27H in Register 6CH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register D4H contains 5FH, Register 5FH contains 4CH, and the C Flag is set, the
statement:

SBC OD4H, #02H
OpCoda: 37 D4 02

leaves the value 4AH in Register 5FH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

II

12-61

SCF
Set Carry Flag

SRC

Instruction Format:

OPC

Operation: C <- 1

OPC
Cycles (Hex)

6 OF

The C Flag is set to 1, regardless of its previous value.

Flags; C: Set to 1
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

If the C Flag is currently reset, the statement:

sets the Carry Flag to 1.

12-62

SCF
OpCode: DF

SCF
SET CARRY FLAG

7J8 MICROCONIROUERS

SRA
SHIFT RIGHT ARITHMETIC

SRA
Shift Right Arithmetic

SRAdst

Instruction Format:

Operation:

Flags:

OPC 11 dst

C<-dst(O)
dst(O) <-dst(1)
dst(1) <-dst(2)
dst(2) <-dst(3)
dst(3) <-dst(4)
dst(4) <-dst(5)
dst(5) <-dst(6)
dst(6) <-dst(7)
dst(7) <-dst(7)

OPC Address Mode
Cycles (Hex) dst

6

6
DO
01

R
IR

An arithmetic shift right by one bit position is performed on the destination operand. Bit 0
replaces the C Flag. Bit 7 (the Sign bit) is unchanged and its value is shifted into bit 6.

C: Set if the bit rotated from the least significant bit position was 1 (i.e., bit 0 was 1).
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to 0.
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format,
destination Working Register operand is specified by adding 111 OB (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

12-63

II

't'Zil.CE

Example:

Example:

12-64

'II' MICROCONTROLLERS

SRA
SHIFT RIGHT ARITHMETIC

If the contents of Working Register R6 are 31 H (00110001 B), the statement:

SRAR6
OpCode: DO E6

leaves the value 98H (00011000) in Working Register R6. The C Flag is set, and the Z, V,
and S Flags are cleared.

lfRegisterC6 contains the value DFH, and Register DFH contains the value 68H (101110006),
the statement:

SRA OC6
OpCode: 01 C6

leaves the value OCH (110111006) in Register DFH. The C, Z, and V Flags are reset, and
the S Flag is set.

'tl211 . .D6 m- MICROCONTROLLERS

SRP
SET REGISTER POINTER

SRP
Set Register Pointer

SRPsrc

Instruction Format:

Operation:

OPC Address Mode
Cycles (Hex) dst

OPC 11 src 6 31 IM

RP <-src

The specified value is loaded into the Register Pointer (RP) (Control Register FDH). Bits
7-4 determine the Working Register Group within the ZS Standard Register File. These
Working Registers are selected when bits 3-0 are set to OOOOB. When bits 3-0 are defined,
the Expanded Working Register Bank is specified. The contents of bits 7-4 are disregarded
when bits 3-0 are defined other than OOOOB.

Register Pointer Working Actual
(FDH) Register Group Registers

Contents (Bin) (Hex) (Hex)

11110000 F FO-FF

11100000 E EO-EF

1101 0000 D DO-OF

11000000 c CO-CF

1011 0000 B BO-BF

10100000 A AO-AF

1001 0000 9 90-9F

1000 0000 8 80-BF

0111 0000 7 70-7F

01100000 6 60-6F

0101 0000 5 50-5F

01000000 4 40-4F

0011 0000 3 30-3F

0010 0000 2 20-2F

0001 0000 10-1F

00000000 0 00-0F

12-65

II

Example:

12-66

D' MICRocoN!ROLLERS

SRP
SET REGISTER POINTER

Register Pointer Working Working
(FDH) Register Group Registers

Contents (Hex) (Hex) (Dec)

xxxx 1111 F RO-R15

xxxx 1110 E RO-R15

xxxx 1101 D RO-R15

xxxx 1100 c RO-R15

xxxx 1011 B RO-R15

xxxx 1010 A RO-R15

xxxx 1001 9 RO-R15

xxxx 1000 8 RO-R15

xxxx 0111 7 RO-R15

xxxx0110 6 RO-R15

xxxx 0101 5 RO-R15

xxxx 0100 4 RO-R15

xxxx0011 3 RO-R15

xxxx 0010 2 RO-R15

xxxx0001 RO-R15

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

When an Expanded Register Bank is defined as the current Working Register, access to the
ZS Standard Register File is possible through direct addressing.

The statement:

SRPFOH
OpCode: 70 FO

sets the Register Pointer to access Working Register Group F in the ZS Standard Register
File. All references to Working Registers now affect this group of 16 registers. Registers FOH
to FFH can be accessed as Working Registers RO to R15

U' MICROCONTROLISIS

SRP
SET REGISTER POINTER

Example:

Example:

The statement:

SRPOFH
OpCode: 70 OF

sets the Register Pointer to access Expanded Register Bank F as the current Working
Registers. All references to Working Registers now affect this group of 16 registers. These
registers are now accessed as Working Registers RO to R15.

Assume the RP currently addresses the Control and Peripheral Working Register Group and
the program has just entered an interrupt service routine. The statement:

SRP70H
OpCode: 31 70

retains the contents of the Control and Peripheral Registers by setting the RP to 70H
(011100008). Any reference to Working Registers in the interrupt routine will point to
registers 70H to 7FH.

12-67

II

STOP
Stop

STOP

Instruction Format:

Operation:

Flags:

Note:

Example:

12-68

OPC

OPC
Cycles (Hex)

6 6F

This instruction turns off the internal system clock (SCLK) and external crystal ()ITAL)
oscillation, and reduces the standby current. The STOP mode is terminated by a RESET
which causes the processor to restart the application program at address OOOCH.

C: Unaffected
Z: Unaffected
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

In order to enter STOP mode, it is necessary to first flush the instruction pipeline to avoid
suspending execution in mid-instruction. The user must execute a NOP immediately before
the execution of the STOP instruction.

The statements:

place the ZS into STOP mode.

NOP
STOP
Opcodes: FF 6F

STOP
STOP

SUB
SUBTRACT
SUB
Subtract

SUB dst,src

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst src

I ldstlsrcl OPC 6 22 r
6 23 Ir

OPC 11 src 11 dst 10 24 R R
10 25 R IR

OPC 11 dst 11 src 10 26 R IM
10 27 IR IM

dst <-dst- src

The source operand is subtracted from the destination operand and the result is stored in the
destination operand. The contents of the source operand are not affected. Subtraction is
performed by adding the two's complement of the source operand to the destination operand.

C: Cleared if there is a carry from the most significant bit of the result; set otherwise,
indicating a "borrow.'

Z: Set if the result is O; cleared otherwise.
V: Set if arithmetic overflow occurred (if the operands were of opposite sign and the sign

of the result is the same as the sign of the source); reset otherwise.
S: Set if the result is negative; cleared otherwise.
H: Cleared if there is a carry from the most significant bit of the low order four bits of the

result; set otherwise indicating a "borrow.'
D: Always set to 1.

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example: If Working Register R3 contains 16H, and Working Register R11 contains 20H, the
statement:

SUB R3, R11
OpCode: 22 3B

leaves the value F6H in Working Register R3. The C, S, and D Flags are set, and the Z, V,
and H Flags are cleared.

II

12-69

Example:

Example:

Example:

Example:

Example:

12-70

'lJI MICROCONTROWRS

SUB
SUBTRACT

If Working Register R15 contains 16H, Working Register R10 contains 20H, and Register
20H contains 11 H, the statement:

SUB R16, @R10
OpCode: 23 FA

leaves the value 05H in Working Register R15. The D Flag is set, and the C, Z, S, V, and H
Flags are cleared.

If Register 34H contains 2EH. and Register 12H contains 1 BH, the statement:

SUB34H, 12H
OpCode: 24 12 34

leaves the value 13H in Register 34H. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register 4BH contains 82H, Working Register R3 contains 1 OH, and Register 1 OH contains
01 H, the statement:

SUB4BH,@R3
OpCode: 25 E3 4B

leaves the value 81 H in Register 4BH. The D Flag is set, and the C, Z, S, V, and H Flags are
cleared.

If Register 6CH contains 2AH, the statement:

SUB 6CH, #03H
OpCode: 26 6C 03

leaves the value 27H in Register 6CH. The D Flag is set, and the C, Z. S, V, and H Flags are
cleared.

If Register D4H contains 5FH. Register 5FH contains 4CH, the statement:

SUB OD4H, #02H
OpCode: 17 D4 02

leaves the value 4AH in Register 5FH. The D Flag is set, and the C, Z. S, V, and H Flags are
cleared.

SWAP
SWAP NIBBLES

SWAP
Swap Nibbles

SWAPdst

Instruction Format:

Operation:

OPC 11 dst

dst(7-4) <-> dst(3-0)

OPC Address Mode
Cycles (Hex) dst

6
6

FO
F1

R

IR

The contents of the lower four bits and upper four bits of the destination operand are swapped.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format,
destination Working Register operand is specified by adding 11106 (EH) to the high nibble
of the operand. For example, if Working Register R12 (CH) is the destination operand, then
ECH will be used as the destination operand in the OpCode.

Example:

Example:

If Register 6CH contains 63H (101100116), the statement:

SWAPB3H
OpCode: FO B3

will leave the value 38H (001110116) in Register 6CH. The Zand S Flags are cleared.

If Working Register R5 contains 6CH and Register BCH contains 63H (101100116), the
statement:

SWAP@R5H
OpCode: F1 E5

will leave the value 38H (001110116) in Register 6CH. The Zand S Flags are cleared.

II

12-71

TCM

'lJ' MICROCONTROLLERS

TCM
TEST COMPLEMENT UNDER MASK

Test Complement Under Mask

TCM dst, src

Instruction Format: OPC Address Mode

Operation:

Flags:

Cycles (Hex) dst src

I lds1lsrcl OPC 6 62 r
6 63 Ir

OPC 11 src 11 dst 10 64 R R
10 65 R IR

OPC 11 dst 11 src 10 66 R IM
10 67 IR IM

(NOT dst) AND src

This instruction tests selected bits in the destination operand for a logical 1 value. The bits
to be tested are specified by setting a 1 bit in the corresponding bit position in the source
operand (the mask). The TCM instruction complements the destination operand, and then
ANDs it with the source mask (operand). The Zero (Z) Flag can then be checked to determine
the result. If the Z Flag is set, then the tested bits were 1. When the TCM operation is
complete, the destination and source operands still contain their original values.

C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to 0.
D: Unaffected
H: Unaffected

Note: Address modes R or IA can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R 12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

12-72

If Working Register R3 contains 45H (01000101 B) and Working Register R7 contains the
value 01 H (00000001 B) (bit 0 is being tested if it is 1), the statement:

TCMR3,R7
OpCode: 62 37

will set the Z Flag indicating bit 0 in the destination operand is 1. The V and S Flags are
cleared.

ZS" MICROCONTROlLERS

TCM
TEST COMPLEMENT UNDER MASK

Example:

Example:

Example:

Example:

Example:

If Working Register R14 contains the value F3H (111100118), Working Register RS contains
C8H, and Register C8H contains 88H (100010008) (bit 7 and bit 4 are being tested if they
are 1), the statement:

TCM R14,@R5
OpCode: 63 ES

will reset the Z Flag, because bit 4 in the destination operand is not a 1. The V and S Flags
are also cleared.

If Register D4H contains the value 04H (0000010008), and Working Register RO contains
the value BOH (100000008) (bit 7 is being tested if it is 1), the statement:

TCM D4H, RO
OpCode: 64 EO 04

will reset the Z Flag, because bit 7 in the destination operand is not a 1. The S Flag will be
set, and the V Flag will be cleared.

If Register DFH contains the value FFH (111111118), Register 07H contains the value 1 FH,
and Register 1 FH contains the value 8DH (101111018) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit
0 are being tested if they are 1), the statement:

TCM DFH, @07H
OpCode: 65 07 DF

will set the Z Flag indicating the tested bits in the destination operand are 1. The Sand V Flags
are cleared.

If Working Register R13 contains the value F1H (111100018), the statement:

TCM R13, #02H
OpCode: 66 ED, 02

tests bit 1 of the destination operand for 1. The Z Flag will be set indicating bit 1 in the
destination operand was 1. The S and V Flags are cleared.

If Register SDH contains AOH, and Register AOH contains OFH (000011118), the statement:

TCM 5D,#10H
OpCode: 67 SD 10

tests bit 4 of the Register AOH for 1. The Z Flag will be reset indicating bit 1 in the destination
operand was not 1. The S and V Flags are cleared.

12-73

II

TM

D' MICROCONTROLLERS

TM
TEST UNDER MASK

Test Under Mask

TMdst,src

Instruction Format:

Operation:

Flags:

OPC Address Mode
Cycles (Hex) dst SIC

I ldstlslCI OPC 6 72 r
6 73 Ir

OPC II SIC II dst 10 74 R R
10 75 R IR

OPC II dst 11 SIC
10 76 R IM
10 77 IR IM

dstANDsrc

This instruction tests selected bits in the destination operand for logical a O value. The bits
to be tested are specified by setting a 1 bit in the corresponding bit position in the source
operand (the mask). The TCM instruction ANDs the destination operand with the source
operand (the mask). The Zero (Z) Flag can then be checked to determine the result. If the Z
Flag is set, then the tested bits were 0. When the TCM operation is complete, the destination
and source operands still contain their original values.

C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to 0.
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 111 OB (EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

12-74

If Working Register R3 contains 45H (01000101 B) and Working Register R7 contains the
value 01 H (0000001 OB) (bit 1 is being tested if it is 0), the statement:

TMR3,R7
OpCode: 72 37

will set the Z Flag indicating bit 1 in the destination operand is 0. The V and S Flags are
cleared.

'1' MICROCONlllOLLERS

TM
TEST UNDER MASK

Example:

Example:

Example:

Example:

Example:

If Working Register R14 contains the value F3H (11110011 B), Working Register A5 contains
CBH, and Register CBH contains 88H (10001 OOOB) (bit 7 and bit 4 are being tested if they
are 0), the statement:

TM R14,@R5
OpCode: 73 ES

will reset the Z Flag, because bit 4 in the destination operand is not a 0. The S Flag will be
set, and the V Flag is cleared.

If Register D4H contains the value 08H (00001 OOOB), and Working Register AO contains the
value 04H (00001000B) (bit 3 is being tested if it is 0), the statement:

TM D4H,RO
OpCode: 74 EO D4

will set the Z Flag, because bit 3 in the destination operand is a 0. The Sand V Flags will be
cleared.

If Register DFH contains the value OOH (OOOOOOOOB), Register 07H contains the value 1 FH,
and Register 1 FH contains the value BDH (10111101 B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit
Oare being tested if they are 0), the statement:

TM DFH,@07H
OpCode: 75 07 DF

will set the Z Flag indicating the tested bits in the destination operand are 0. The S is set, and
the V Flag is cleared.

If Working Register R13 contains the value F1H (111100016), the statement:

TM R13,#02H
OpCode: 76 ED, 02

tests bit 1 of the destination operand for O. The Z Flag will be set indicating bit 1 in the
destination operand was 0. The S and V Flags are cleared.

If Register 5DH contains AOH, and Register AOH contains OFH (00001111 B), the statement:

TM 5D,#10H
OpCode: 77 SD 10

tests bit 4 of the Register AOH for O. The Z Flag will be set indicating bit 1 in the destination
operand was 0. The S and V Flags are cleared.

12-75

WDH

1J' MICROCONTROLLBIS

WDH
WATCH-DOG TIMER ENABLE DURING HALT MODE

Watch-Dog Timer Enable During HALT Mode

WDH

Instruction Format: OPC
Cycles (Hex)

Operation:

Note:

Example:

OPC 6 4F

When this instruction is executed it will enable the WDT (Watch-Dog Timer) during HALT
mode. If this instruction is not executed the WDT will stop when entering HALT mode. This
instruction does not clear the counter, it just makes it possible to have the WDT function
running during HALT mode. A WDH instruction executed without executing WDT (5FH) has
no effect.

C: Unaffected
Z: Undefined
S: Undefined
V: Undefined
D: Unaffected
H: Unaffected

The WDH instruction should not be used following any instruction in which the condition of
the flags is important.

If the WDT is enabled, the statement:

WDH
OpCode: 4F

will enable the WDT in HALT mode.

Nal9;ThisinstructionfcrmatisvafldonlyfortheZBOC04,C07,Ql3andZB6E04iBJ7/EOO.

12-76

zr MICROCONTROLLERS

WOT
WATCH-DOG TIMER

WOT
Watch-Dog Timer

WOT

Instruction Format: OPC
Cycles (Hex)

Operation:

Flags:

Note:

Example:

Example:

OPC 6 SF

The WOT (Watch-Dog Timer) is a retriggerable one shot timer that will reset the Z8 if it
reaches its terminal count. The WOT is initially enabled by executing the WOT instruction.
Each subsequent execution of the WOT instruction refreshes the timer and prevents the WOT
from timing out.

C: Unaffected
Z: Undefined
S: Undefined
V: Undefined
D: Unaffected
H: Unaffected

The WOT instruction should not be used following any instruction in which the condition of
the flags is important.

If the WOT is enabled, the statement:

refreshes the Watch-Dog Timer.

WOT
Opcode: SF

The first execution of the statement:

enables the Watch-Dog Timer.

WOT
OpCode: SF

12-77

XOR

ZS" MICROCONTROLLERS

XOR
LOGICAL EXCLUSIVE OR

Logical Exclusive OR

XOR dst,src

Instruction Format: OPC Address Mode

Operation:

Flags:

Cycles {Hex) dst src

lldstlsrcl OPC 6 B2 r
6 B3 Ir

OPC 11 src I I dst 10 B4 R R
10 B5 R IR

OPC II dst II src 10 BS R IM
10 B7 IA IM

dst <- dst XOR src

The source operand is logically EXCLUSIVE ORed with the destination operand. The XOR
operation results in a 1 being stored in the destination operand whenever the corresponding
bits in the two operands are different, otherwise a 0 is stored. The contents of the source
operand are not affected.

C: Unaffected
Z: Set if the result is zero; cleared otherwise.
S: Set if the result of bit 7 is set; cleared otherwise.
V: Always reset to 0
D: Unaffected
H: Unaffected

Note: Address modes R or IR can be used to specify a 4-bit Working Register. In this format, the
source or destination Working Register operand is specified by adding 1110B(EH) to the high
nibble of the operand. For example, if Working Register R12 (CH) is the destination operand,
then ECH will be used as the destination operand in the OpCode.

Example:

12-78

If Working Register R1 contains 34H (001110008) and Working Register R14 contains 4DH
(10001101B), the statement:

XOR R1, R14
OpCode: 82 1 E

leaves the value BDH (101111018) in Working Register R1. The Z, and V Flags are cleared,
and the S Flag is set.

XOR
LOGICAL EXCLUSIVE OR

Example:

Example:

Example:

Example:

Example:

If Working Register R4 contains F9H (111110018), Working Register R13 contains 78H, and
Register 78 contains 6AH (0110101 OB), the statement:

XORR4, OR13
OpCode: B3 40

leaves the value 93H (100100118) in Working RegisterR4. The S Flag is set, and theZ, and
V Flags are cleared.

If Register 3AH contains the value FSH (111101018) and Register 42H contains the value
OAH (000010108), the statement:

XOR3AH,42H
OpCode: 84 42 3A

leaves the value FFH (111111118) in Register 3AH. The S Flag is set, and the C and V Flags
are cleared.

If Working Register RS contains FOH (111100008), Register 45H contains3AH. and Register
3A contains 7F (011111118), the statement:

XORR5, 045H
OpCode: BS 45 ES

leaves the value BFH (100011118) in Working Register RS. The S Flag is set, and the C and
V Flags are cleared.

If Register 7AH contains the value F7H (111101118), the statement:

XOR 7AH, #FOH
OpCode: 86 7A FO

leaves the value 07H (000001118) in Register ?AH. The Z, V and S Flags are cleared.

If Working Register R3 contains the value 3EH and Register 3EH contains the value 6CH
(011011008), the statement:

XOR OR3, #OSH
OpCode: 87 E3 05

leaves the value 69H (011010018) in Register 3EH. The Z, V, and S Flags are cleared.

El

12-79

4'2.HJ a,

13.1 ZILOG Z8 EMULATOR PRODUCTS

Zilog provides a family of full-featured real-time in-circuit
emulators to support Z88 product development. In-circuit
emulation links your design to a PC to determine how the
microcontroller is functioning in your design. This greatly
simplifies system debug, reducing development time and
OTP device consumption. All emulators include OTP pro­
gramming, a user configurable WINDOWS interface, a
Zilog za• cross assembler and complete za• documenta-

ZS' MICROCOHTROWRS

USER'S MANUAL

CHAPTER 13
ZILOG EMULATORS/SOFTWARE

tion. Product specifications for the following in-circuit
emulator kits are also provided:

• Z86CCPOOZEM I Z86CCPOOZAC

• Z86C1200ZEM

• Z86C5000ZEM

13-1

13.2 ZS9CCP™ EMULATOR

QUICK START

(D Check Support Package Contents
(See Other Side1

7J' MICROCONTROUERS

@ Load Software
1. Select the "Run' command from the 'File' menu, located under Microsoft Windows

"Program Manager".
a. Insert the disk labeled "Zilog ZASM Cross Assembler/Zilog M08J Object File Util."

in drive A (or drive 8, if appropriate.)
b. Type 'a:\setup" and press ENTER. (Type 'b:\setup' if drive B is used.)
c. Follow on-screen instructions.
d. Remove diskette and store in a safe place when done.

ml For more information on assembling source code, refer to ZS CCP Emulator
., User's Gulde (Appendix C) and the Zee Mlcrocontrollers Technical Manual.

2. Select the "Run" command from the 'File" menu, located under Microsoft
Windows "Program Manager".
a. Insert disk labeled "ZS GUI S/W" in drive A (or drive 8, if appropriate.)
b. Type "a:\setup" and press ENTER. (Type "b:\setup" if drive 8 is used.)
c. Follow on-screen instructions.
d. Remove diskette and store in a safe place when done.

@ Make Connections
Power Supply, PC, and Your Design

ml Refer to zee CCP'"'
., Emulator User's Manual

ml Observe Electrlcal Safeguards
., (See ZB CCP Emulator User's Manual)

@ Run Zilog ICEBOX GUI Software
1. Double click the ZS-ICE icon.
2. Select the microcontroller and ROM size

Connect to
Power Supply

to be emulated in the Configuration Dialog Box.

13-2

3. Use the 'File' menu to download sample files to
ZS Code Memory.

4. Refer to ZS CCP Emulator User's Manual,
"Chapter 3: ZS Emulator Sample Session'.

COM1-4

10o-Parcent Compatible PC

'tl2H.m

13.3 za•CCP™ EMULATOR

PACKAGE CONTENTS

SUPPORT PRODUCTS PACKAGE CONTENTS
The Zilog ZS® CCP"' Emulator Support Products Package contains the following items:

Hardware

ZS® CCP"' Emulator Board
1 S-Pin DIP-to-DIP Target Cable
ZS6EOS 1S-Pin DIP OTP Device

Software

ZS® GUI S/W Diskette
Zilog ZASM Cross Assembler/MOBJ Object File Util. Diskette
Production Languages Corporation (PLC) Compass/ZS™ Diskette (Evaluation Version)

Description of za• GUI Diskette Include Files

zScfg.o
zSice.exe
icehelp.hlp
meter.di I
read me
setup.inf
setup.axe
zSem_c12.o
zSem_c27.o
zSem_c50.o
zSem_c62.o
zSem_c65.o
zSem_c67.o
zSem_c93.o
zSem_l7x.o
zSem_ccp.o

Publications

Configuration
Executable
Help
Installation library
Text file
Installation information
Windows install program
On board software for ZS6C12 Icebox
On board software for ZS6C27 Icebox
On board software for ZS6C50 Emulator
On board software for ZS6C62 Emulator
On board software for ZS9C65 Emulator
On board software for ZS9C67 Emulator
On board software for ZS6C93 Emulator
On board software for ZS6L7X Emulator
On board software for ZS6CCP Emulator

Zilog ZS CCP Emulator User's Manual
ZS Microcontrollers Technical Manual
Discrete ZS Microcontrollers Databook
Registration Card

Optional Accessory Kit

An optional accessory kit (PIN ZS6CCPOOZAC) available
from Zilog contains the following items:
2S-Pin ZIF Socket
40-Pin ZIF Socket
Power Cable
2S-Pin DIP-to-DIP Target Cable
40-Pin DIP-to-DIP Target Cable

ZS' MICROCONTROLLERS

II

13-3

13. 4 Z86CCPQOZEM EMULATOR

PRODUCT SPECIFICATION

DEVICES SUPPORTED: Z86C03, Z86C04/E04, Z86C06, Z86C08/E08, Z86C09/19,
Z86E03/E06; WITH ZS® CCP™ EMULATOR ACC. KIT {Z86CCPZAC): Z86C30/E30, Z86C31/
E31,Z86C40/E40,Z86730,Z86C32

DESCRIPTION

The Z86CCPOOZEM is a member of Zilog's family of in­
circuit emulators. The ZS CCP emulator provides emula­
tion and OTP programming support for Zilog's Consumer
Controller Processor (CCP"') microcontroller. The Emula­
tor provides all the essential MCU timing and 1/0 circuitry
which simplifies user emulation of the prototype hardware/
software product.

The data entering, program debugging, and OTP pro­
gramming are performed by the monitor ROM and the Host
Package which communicates through RS-232C serial
interface with a fixed 19200 baud rate. The user program
can be downloaded directly from the host computer via an
RS-232C connector. The user code may then be executed
using various debugging commands in the monitor. The
Emulator can be connected to a serial port (COM 1, COM
2, COM3, COM4) of the host computer (3S6 or 4S6, IBM
compatible PC) and uses Graphical User Interface (GUI)
software.

SPECIFICATIONS

Emulatlon Specification
Maximum Emulation Speed: S MHz
Minimum Emulation Speed: 1 MHz

Power Requirements

+SV Vdc @ 0.5 A

Dimensions

Width: 7.0 in. (17.7 cm)
Length: 9.0 in. (22.9 cm)
Height: 0.9 in. (2.3 cm)

Serlal Interface

RS-232C @ 19200 baud

13-4

KIT CONTENTS

zse CCP"' Emulator
CMOS Z86C9320VSC
RS-232C Interface
Reset Switch
20 MHz CMOS ZS6C5020FSE ICE Chip
SK x 8 STATIC RAM (for Code Memory)
1S-Pin DIP ZIF Programming Socket
1S-Pin Target Connector Cable
Holes Available for 2S/40-Pin ZIF Sockets
Sockets Available for 1S/2S/40-Pin Target Cables

Software (IBM PC Platform)

ZASM Cross-Assembler and MOBJ Object File Util.
ZS9 GUI Emulator Software
Production Languages Corporation COMPASS/ZS

(Evaluation Version)

System Requirements

3S6 or 486, IBM Compatible PC
VGA Video Adapter (Color Monitor Recommended)
20 MHz, Minimum
4 Mbytes RAM
Microsoft Windows 3.0 or 3.1
Hard Disk Drive (1 Mbyte Free Space)
High Density (HD) Floppy Disk Drive (3.5-lnch)
RS-232 COM Port

Documentation

Registration Card
Product Information
ZB9 CCP"' Emulator User's Manual
Discrete ZS Databook
ZS9 Microcontroller User's Manual

ORDERING INFORMATION

Part No: ZS6CCPOOZEM

13.5 Z86CCPOOZAC EMULATOR KIT

PRODUCT SPECIFICATION

DESCRIPTION

The Z86CCPOOZAC is the accessory kit for the
Z86CCPOOZEM. The kit contains all accessories to fully
populate and operate all functions of the Z86CCPOOZEM.

KIT CONTENTS

Z8 CCP Emulator Accessory Kit

28-Pin ZIF Socket
28-Pin Target Connector Cable
40-Pin ZIF Socket
40-Pin Target Connector Cable
RS-232 Cable
Power Cable

ORDERING INFORMATION

Part No: Z86CCPOOZAC

'lJ' MICROCONTllOLWIS

II

13-5

'ZS' MICROCONTROLLERS

13.6 Z86C1200ZEM EMULATOR

PRODUCT SPECIFICATION

DEVICES SUPPORTED: Z86117 n17, Z86C04/E04, Z86C07 /E07, Z86C08/E08,
Z86C11,Z86C20,Z86C21/E21,Z86E22,Z86E23,Z88C80,Z86C61/E61,
Z86C63/E63,Z86C65,Z86C91

DESCRIPTION

The Z86C1200ZEM ZS® Emulator is a member of Zilog's
ICEBOX"' product family of in-circuit emulators. The
Z86C1200ZEM provides emulation and OTP program­
ming support for Zilog's ZS microcontrollers. The Emulator
provides all the essential MCU timing and 1/0 circuitry
which simplifies user emulation of the prototype hardware/
software product. The data entering, program debugging,
and OTP programming are performed by the monitor ROM
and the Host Package which communicates through a RS-
232C serial interface with a fixed 19200 baud rate. The
user program can be downloaded directly from the host
computer through the RS-232C connector. The user code
may then be executed using various debugging com­
mands in the monitor. The Emulator can be connected to
a serial port (COM 1, COM 2, COM3, COM4) of the host
computer (386 or 486, IBM compatible PC) and uses
Graphical User Interface (GUI) software.

SPECIFICATIONS

Emulatlon Specification

Minimum Emulation Speed: 1 MHz
Maximum Emulation Speed: 16 MHz

Power Requirements

+5 Vdc@0.5 A

Dimensions

Width: 6.25 in. (15.8 cm)
Length: 9.5 in. (24.1 cm)
Height: 2.5 in. (6.35 cm)

Serlal Interface

RS-232C @ 19200 baud

13-6

KIT CONTENTS

Z86C12 Emulator

ZS- Emulation Base Board
CMOS Z86C9120PSC
BK X 8 EPROM (Programmed with Debug Monitor)

32K X 8 STATIC RAM
3 64K X 4 STATIC RAM
RS-232C Interface
Reset Switch

Z86C12 Emulation Daughter Board
16 MHz CMOS Z86C1216GSE ICE Chip
18/40-Pin ZIF OTP Sockets
40/60/80-Pin Target Connectors

Cables/Pods

18-Pin DIP Emulation Cable
28-Pin DIP Emulation Cable
40-Pin DIP Emulation Cable
Power Cable with Banana Plugs
Power Cable with 1 A Slow-Blow Fuse
DB 25 RS-232C Cable

Software (IBP·PC Platform)

ZASM Cross-Assembler and MOBJ Object File Util.
ZS® GUI Emulator Software

Documentation

Emulator User's Manual
ZS® Cross-Assembler User's Guide
Universal Object File Utilities (MOBJ) User's Guide
Registration Card
Product Information

ORDERING INFORMATION

Part No: Z86C1200ZEM

(tl2Jl.£16 .,, MICROCONTROUERS

13.7 Z86C5000ZEM EMULATOR

PRODUCT SPECIFICATION

DEVICES SUPPORTED: Z86C03, Z86C06, Z86C09/19, Z86C30/E30, Z86C31/E31,
Z86C40/E40,Z86C89,Z86C90,Z86l06,Z86L29,Z86E03/E06,Z86C32,Z86730

DESCRIPTION

The Z86C5000ZEM (C50) Emulator is a member of Zilog's
ICEBOX™ product family of in-circuit emulators. The CSO
Emulator provides emulation and OTP programming sup­
port for Zilog's CCPN (Consumer Controller Processor)
microcontrollers. The C50 Emulator provides all the es­
sential MCU timing and 1/0 circuitry which simplifies user
emulation of the prototype hardware/software product.
The Emulator can be connected to a serial port (COM 1,
COM 2, COM3, COM4) of the host computer {386 or 486,
IBM compatible PC) and uses Graphical User Interface
(GUI) software.

SPECIFICATIONS

Emulation Specification

Miinimum Emulation Speed: 1 MHz
Maximum Emulation Speed: 20 MHz

Power Requirements

+5V Vdc@ 1.0 A

Dimensions

Width: 6.25 in. (15.8 cm)
Length: 9.5 in. (24.1 cm)
Height: 2.5 in. (6.35 cm)

Serlal Interface

RS-232C @ 19200 baud

System Requirements

386 or 486, IBM Compatible PC
VGA Video Adapter (Color Monitor Recommended)
20 MHz, Minimum
4 Mbytes RAM
Microsoft Windows 3.0 or 3.1
Hard Disk Drive (1 Mbyte Free Space)
High Density (HD) Floppy Disk Drive (3.5-lnch)
RS-232 COM Port

KIT CONTENTS

Z86C50 Emulator

Z89 Emulation Base Board
CMOS Z86C9120PSC
SK x S EPROM (Programmed with Debug Mtr.)
32K x S Static RAM
3 64K x4 Static RAMs
RS-232C Interface
Reset Switch

Z86C50 Emulation Daughter Board

Cables

20 MHz CMOS Z86C5020GSE ICE Chip
2K x S Static RAM
1S/28/40-Pin ZIF OTP Sockets
6 HP-16500A Logic Analysis System

Interface Connectors
40/60/80-Pin Target Connectors

40-Pin DIP Emulation Cable
2S-Pin DIP Emulation Cable
18-Pin DIP Emulation Cable
Power Cable with Banana Plugs
DB25 RS-232C Cable

Software (IBM PC Platform)

ZASM Cross-Assembler and MOBJ Object File Util.
zge GUI Emulator Software

Documentation

ICEBOXN User's Manual
ZS Cross-Assembler User's Guide
Windows Host Interface User's Guide (GUI)
Universal Object File Utilities (MOBJ) User's Guide
Registration Card

ORDERING INFORMATION

Part No ZS6C5000ZEM

13-7

13.8 SOFTWARE

13.8.1 INTRODUCTION
This section describes some of the important features of
the za•, with software examples that illustrate its power
and ease of use. It is divided into sections by topic; the
userneed not read each section sequentially, but may skip
around to the sections of current interest.

13.9 ACCESSING REGISTER MEMORY

The ZB register space consists of 1/0 ports, control and
status registers, and general-purpose registers. The gen­
eral-purpose registers are RAM areas typically used for
accumulators, pointers, and stack area. This section
describes these registers and how they are used. Bit
manipulation and stack operations effecting the register
space are discussed in other sections of this manual.

13.9.1 Registers and Register Pairs

The ZB supports 8-bit registers and 16-bit register pairs. A
register pair consists of a an even-numbered register
concatenated with the next higher numbered register (00
and 01, 02 and 03, ... FFH). A register pair must be
addressed by reference to the even-numbered register.

• F1 H and F2H are not a valid register pairs.

• FOH and F1H are valid register pairs, addressed
by reference to FOH.

Register pairs may be incremented (INCW) and
decremented (DECW) and are useful as pointers for ac­
cessing program and external data memory.

Any instruction which can reference or modify an 8-bit
register can do so to any of the registers in the ZS,
regardless of the inherent nature of that register. Thus, I/
O ports, control, status, and general-purpose registers
may all be accessed and manipulated without the need for
special-purpose instructions. Similarly, instructions which
reference or modify a 16-bit register pair can do so to any
of the valid register pairs.

13-8

For feature availability and implementation details on a
particular ZB device, see the product specification.

The only exceptions to this rule are as follows:

• The DJNZ (decrement and jump if non-zero) instruction
may successfully operate on the general-purpose
working registers only.

• All write-only control registers may be modified only by
such instructions as LOAD, POP, and CLEAR.
Instructions such as OR and AND require that the

. current contents of the operand be readable and
therefore will not function properly on the write-only
registers.

13.9.2 Register Pointer

Within the register addressing modes provided by the Z89 ,

a register may be specified by its full 8-bit address (OOH­
FFH) or by a short 4-bit address. In the latter case, the
register is viewed as one of the 16 working registers within
a working register group. Such a group must be aligned on
a 16-byte boundary and is addressed by Register Pointer
RP (FDH). As an example, assume the Register Pointer
contains 70, thus pointing to the working register group
from 70H to 7FH. The LD instruction may be used to
initialize register 76H to an immediate value in one of two
ways

LD 76,#01H !8-bit register address is given
by instruction (3 byte instruction)!

or

LD R6,#01 H !4-bit working register address is
given by instruction; 4-bit work
ing register group address is
given by Register Pointer (2 byte
instruction)!

The address calculation for the latter case is illustrated in
Figure 13.1. Notice that 4-bit working-register addressing
offers code compactness and fast execution compared to
its 8-bit counterpart.

To modify the contents of the Register Pointer, the za
provides the instruction

SRP #value

Execution of this instruction will load the upper four bits of

zero. Although a load instruction such as

LO RP, #value

could be used to perform the same function, SRP provides
execution speed (six vs. ten cycles) and code space (two
vs. three bytes) advantages over the LO instruction. The
instruction

SRP #?OH

the Register Pointer; the lower four bits are always set to is used to set the Register Pointer for the previous example.

Register
Pointer 0 0 0 0 0

Instruction
(LO R6, #1) 0 0 0 0 0 0 0 0 0 0 0

Register
Address 0 0 0

Figure 13-1. Address Calculation Using The Register Pointer

13.9.3 Context Switching

A typical function performed during an interrupt service
routine is context switching. Context switching refers to
the saving and subsequent restoring of the program
counter, status, and registers of the interrupted task.
During an interrupt machine cycle, the za• automatically
saves the Program Counter and status flags on the stack.
It is the responsibility of the interrupt service routine to
preserve the register space. The recommended means to
this end is to allocate a specific portion of the register file
for use by the service routine. The service routine thus
preserves the register space of the interrupted task by
avoiding modification of registers not allocated as its own.
The most efficient scheme with which to implement this
function in the ZS is to allocate a working register group (or
portion thereof) to the interrupt service routine. In this way,
the preservation of the interrupted task's registers is solely
a matter of saving the Register Pointer on entry to the
service routine, setting the Register Pointer to its own
working register group, and restoring the Register Pointer
prior to exiting the service routine. For example, assume
such a register allocation scheme has been implemented
in which the interrupt service routine for IRQO may access
only working register

Group 4 (registers 40H-4FH). The service routine for IRQO
should be headed by the code sequence:

PUSH RP

SRP #40H

!preserve Register Pointer of in
terruptedtask!
!addressworking register group
41

Before exiting, the service routine should execute the
instruction

POP RP

to restore the Register Pointer to its entry value.

It should be noted thatthe technique described above need
not be restricted to interrupt service routines. Such a
technique might prove efficient for use by a subroutine
requiring intermediate registers to produce its outputs. In
this way, the calling task can assume that its environment
is intact upon return from the subroutine.

13-9

II

13.9.4 Addressing Mode

The zs• provides three addressing modes for accessing
the register space: Direct Register, Indirect Register, and
Indexed.

13.9.5 Direct Register Addressing

This addressing mode is used when the target register
address is known at assembly time. Both long (S-bit)
register addressing and short (4-bit) working register ad­
dressing are supported in this mode. Most instructions
supporting this mode provide access to single S-bit regis­
ters. For example:

LD FEH,#HI STACK

! load register FEH (SPH) with the upper S­
b its of the label STACKI

AND OOH,MASK_REG

!AND register 0 with register named
MASK_REG!

OR 01H,RS

!OR register 1 with working register S!

Increment word (INCW) and decrement word (DECW) are
the only two ZS instructions which access 16-bit operands.
These instructions are illustrated below for the direct regis­
ter addressing mode:

INCW ARO

!increment working register pair RO, A
R1=R1+1
RO= RO + carry!

DECW 7EH

!decrement working register pair 7EH,
7FH
7FH=7FH-1
7EH = 7EH - carry!

Note that the instruction

INCW RAS

will be flagged as an error by the assembler (RAS not even­
numbered).

13.9.6 Indirect Register Addressing

In this addressing mode, the operand is pointed to by the

13-10

register whose S-bit register address or 4-bit working
register address is given by the instruction. This mode is
used when the target register address is not known at
assembly time and must be calculated during program
execution. For example, assume registers 60H-7FH con­
tain a buffer for output to the serial line via repetitive calls
to procedure SERIAL_OUT. SERIAL_OUT expects work­
ing register Oto hold the output character. The following
instructions illustrate the use of the indirect addressing
mode to accomplish this task:

LD R1,#20H

LD

ouLagain:

LD

!working register 1 is the byte counter
output 20H bytes!

R2,#60H

!working register 2 is the buffer pointer
register!

RO,@R2

!load into working registerOthe byte pointed
to by working register 21

INC R2 !increment pointer!

CALL SERIAL_OUT

!outputthe byte!

DJNZ R1 ,ouLagain

!loop till done!

Indirect addressing may also be used for accessing a 16-
bit register pair via the INCW and DECW instructions. For
example:

INCW @RO

!increment the register pair whose ad
dress is contained in working register O!

DECW @7FH

!decrement the register pair whose
address is contained in register 7FH!

The contents of registers RO and 7FH should be even
numbers for proper access; when referencing a register
pair, the least significant address bit is forced to the
appropriate value by the ZS. However, the register used to
point to the register pair need not be an even-numbered
register.

ft'2iUJ6 zat MICROCOHTROLLERS

Since the indirect addressing mode permits calculation of loop:
a target address prior to the desired register access, this LO R1,BUF-1(RO)

R1,#''
ne,found

mode may be used to simulate other, more complex CP
addressing modes. For example, the instruction JR

SUB 4,BASE(R5)

requires the indexed addressing mode which is not directly
supported bytheZ88subtractinstruction. This instruction can be
sirulatedasfolb.vs

LO R6,#BASE

!working register 6 has the base address!

ADD R6,R5

!calculate the target address!

SUB 04H,@R6

!now use indirect addressing to perform
the actual subtract!

Any available register or working register may be used in
place of R6 in the above example.

13.9.7 Indexed Addressing

The indexed addressing mode is supported by the load
instruction (LO) for the transference of bytes between a
working register and another register. The effective ad­
dress of the latter register is given by the instruction which
is offset by the contents of a designated working (index)
register. This addressing mode provides efficient memory
usage when addressing consecutive bytes in a block of
register memory, such as a table or a buffer. The working
register used as the index in the effective address calcula­
tion can serve the additional role of counter to control a
loop's duration.

For example, assume an ASCII character buffer exists in
register memory starting at address BUF for LENGTH
bytes. In order to determine the logical length of the
character string, the buffer should be scanned backward
until the first non-occurrence of a blank character. The
following code sequence may be used to accomplish this
task:

LO RO,#LENGTH

!length of buffer!
!starting at buffer end, look for 1st non­
blank!

!found non-blank!

DJNZ RO.loop

all_blanks:
!look at next!
!length=O!

found
5 instructions
12 bytes
6 cycles overhead
42 cycles per character tested

At labels "all_blanks" and "found," RO contains the length
of the character string. These labels may refer to the same
location, but they are shown separately for an application
where special processing is required for a string of zero
length. To perform this task without indexed addressing
would require a code sequence such as:

LO
LO

R1 ,#BUF+LENGTH-1
RO,#LENGTH

!starting at buffer end, look for 1st non-blank!

loop1:

CP @R1,#''
JR ne,found1

!found non-blank!

DEC R1

!dee pointer!

DJNZ RO,loop1

!are we done?!

all_blanks1: !length=O!

found1:

6 instructions
13 bytes
12 cycles overhead
38 cycles per character tested

The latter method requires one more byte of program
memorythanthefonner,butisfasterbyfourexecutioncyclesper
character tested.

13-11

El

As an alternative example, assume a buffer exists as
described above, but it is desired to scan this bufferforward
for the first occurrence of an ASCII carriage return. The
following illustrates the code to do this:

next:

er:

LD

LD
CP
JR

RO,# - LENGTH

! starting at buffer start, look for 1st car
riage return(= OOH)!

r1,BUF + LENGTH(RO)
R1,#0DH
eq,cr

!found it!

INC RO

!update counter/index!

JR nz,next

!try again!

ADD RO,#LENGTH

!RO has length to CR!

7 instructions
16bytes
6 cycles overhead
48 cycles per character tested

13.10 Accessing Program and External Data
Memory

In a single instruction, the Z8111 can transfer a byte between
register memory and either program or external data
memory. Load Constant (LDC) and Load Constant and
Increment (LOCI) reference program memory; Load Exter­
nal (LOE) and Load External and Increment (LDEI) refer­
ence external data memory. These instructions require
that a working register pair contain the address of the byte
in either Program or External Data Memory to be accessed
by the instruction (indirect working register pair address­
ing mode). The register byte operand is specified by using
the direct working register addressing mode in LDC and
LOE or the indirect working register addressing mode in
LOCI and LDE1. In addition to performing the designated
byte transfer, LOCI and LDEI automatically increment both
the indirect registers specified by the instruction. These
instructions are therefore efficient for performing block
moves between register and either program or external
data memory. Since the indirect addressing mode is used
to specify the operand address within program or external

13-12

7.8' MICROCOHTROLLERS

data memory, more complex addressing modes may be
simulated. For example, the instruction

LDC R3,BASE(R2)

requires the indexed addressing mode, where BASE is the
base address of a table in program memory and R2
contains the offset from table start to the desired table entry.
The following code sequence simulates this instruction with
the use of two additional registers (RO and R1 in this
example):

LD
LD

RO,#HI BASE
R1,#LO BASE

!ARO has table start address!

ADD R1,R2
ADC R0,#0

!ARO has table entry address!

LDC R3,@RRO

!R3 has the table entry!

13.10.1 Configuring the ZS for 1/0
Applications as Opposed to Memory
Intensive Applications

The ZB offers a high degree of flexibility in memory and 1/0
intensive applications. For devices with thirty-two port bits
provided, 16, 12, eight, or zero may be configured as
address bits to external memory. This allows for address­
ing of up to 64K bytes of external memory, which can be
expanded to 128K bytes if the Data Memory Select output
(OM) is used to distinguish between program and data
memory accesses. The following instructions illustrate the
code sequence required to configure the ZB with 12 exter­
nal addressing lines and to enable the Data Memory Select
output:

LD P01M,# 00010010B

!bit 3-4 enable ADO-AD?;
bit 0-1 enable AB-A 11 !

LD P3M,# 00010010B
! bit 3-4 enable OM!

The two bytes following the mode selection of Port O and
Port 1 should not reference external memory due to
pipelining of instructions within the ZB. Note that the load
instruction to P3M satisfies this requirement (providing that
it resides within the internal program memory).

13.10.2 LDC and LOE

To illustrate the use of the Load Constant (LDC) and Load
External (LDE) instructions, assume there exists a hard­
ware configuration with external memory and Data Memory
Select enabled.

13.10.3 Accessing Program and External
Data Memory

LOCI instruction provides an economical means of initializ­
ing consecutive registers from an initialization table in
program memory. The following code excerpt illustrates
this technique of initializing control registers F2H through
FFH from a 14-byte array (INIT_tab) in program memory:

SRP #OOH

LD
LD
LD

LD

R6,#HI !NIT _tab
R7,#LO INIT_tab
R8,#F2H

! 1st reg to be initialized!

R9,#0EH

!length of register block!

Z8" MICROCONTROLLERS

13.10.4 LDEI

The LDEI instruction is useful for moving blocks of data
between external and register memory since auto-incre­
ment is performed on both indirect registers designated by
the instruction. The following code excerpt illustrates a
register buffer being saved at address 40H through 60H
into external memory at address SAVE:

loop:

LD R10,#HI SAVE

! external memory!

LD R11,#LO SAVE

!address!

LD R8,#40H

LD

!starting register!

R9,#21H sponding mask bit is a
logic 1.

!number of registers to save in
external data memory!

loop: LDEI @RR1 O,@R8

LOCI @R8,@RR6 !initaregister!

!load a register from the inittable!

DJNZ R9,loop

!continue till done!

DJNZ R9,loop

6 instructions
12 bytes

!until done!

7 instructions
14 bytes

24 cycles overhead
30 cycles per register saved

30 cycles overhead
30 cycles per register initialized

13.11 BIT MANIPULATIONS

Support of the test and modification of an individual bit or • Test Under Mask (TM)
group of bits is required by most software applications
suited to the ZS microcomputer. Initializing and modifying • Test Complement Under Mask (TCM)
the za control registers, polling interrupt requests, manipu-
lating port bits for control of or communication with attached • AND
devices, and manipulation of software flags for internal
control purposes are all examples of the heavy use of bit • OR
manipulation functions. These examples illustrate the
need for such functions in all areas of the ZB register space. • XOR

These functions are supported in the ZB primarily by six • Complement (COM)
instructions:

13-13

El

These instructions may access any ZS® register, regard­
less of its inherent type (control, 1/0, or general-purpose),
with the exception of the write-only control registers. Table
13-1 summarizes the function performed on the destina­
tion byte by each of the above instructions. All of these
instructions, with the exception of COM, require a mask
operand. The 'selected' bits referenced in Table 13-1 are
those bits in the destination operand for which the corre-

Table 13-1 Bit Manipulation Instruction Usage

Opcode Use

TM To test selected bits for logic 0

TCM To test selected bits for logic 1

AND To reset all but selected bits to
logicO

OR To set selected bits to logic 1

XOR To complement selected bits
COM To complement all bits

The instructions AND, OR, XOR, and COM have functions
common to today's microcontrollers and therefore are not
described in depth here. However, examples of the use of
these instructions are laced throughout the remainder of
this chapter, thus giving an integrated view of their uses in
common functions. Since they are unique to the ZS, the
functionsofTest under Mask and Test Complement under
Mask, are discussed in more detail next.

13.11.1 Test Under Mask (TM)

The Test under Mask instruction is used to test selected
bits for logic 0. The logical operation performed is

destination AND source.

Neither source nor destination operand is modified; the
FLAGS control register is the only register affected by this
instruction. The zero flag (Z) is set if all selected bits are
logic O; it is reset otherwise. Thus, if the selected destina­
tion bits are either all logic 1 or a combination of 1 sand Os,
the zero flag would be cleared by this instruction. The sign
flag (S) is either set or reset to reflect the result of the AND
operation; the overflow flag (V) is always reset. All other
flags are unaffected. Table 13-2 illustrates the flag settings
which result from the TM instruction on a variety of source
and destination operand combinations. Note that a given
TM instruction will never result in both the Z and S flags
being set.

13-14

ZS' MICROCONTROLLERS

13.11.2 Test Complement Under Mask

The Test Complement under Mask instruction is used to
test selected bits for logic 1. The logical operation per­
forrnedis

(NOT destination)ANDsource.

Table 13-2 Effects of the TM Instruction

Destination Source Flags
(bilary) (bilary) zsv
10001100 01110000 1 0 0

01111100 01110000 0 0 0

10001100 11110000 0 1 0

11111100 11110000 0 1 0

00011000 10100001 1 0 0
01000000 10100001 1 0 0

As in Test under Mask, the FLAGS control register is the
?nly re9ister affected by this operation. The zero flag (Z)
1s set 1f all selected destination bits are 1 ; it is reset
otherwise. The sign flag (S) is set or reset to reflect the
result of the AND operation; the overflow flag (V) is always
reset. Table 13-3 illustrates the flag settings which result
from the TCM instruction on a variety of source and
destination operand combinations. As with the TM instruc­
tion, a given TCM instruction will never result in both the z
and S flags being set.

Table 13-3 Effects of the TCM Instruction

Destination
(binary)

10001100
01111100
10001100
11111100
00011000
01000000

Source
(binary)

01110000
01110000
11110000
11110000
10100001
10100001

Flags
z s v
0 0 0
1 0 0
0 0 0
1 0 0
0 1 0
0 1 0

13.12 Stack Operations

The ZS® stack resides within an area of data memory
(internal or external). The current address in the stack is
contained in the stack pointer, which decrements as bytes
are pushed onto the stack, and increments as bytes are
popped from it. The stack pointer occupies two control
register bytes (FEH and FFH) in the ZS register space and
may be manipulated like any other register. The stack is
useful for subroutine calls, interrupt service routines, and
parameter passing and saving. Figure 13-2 illustrates the
downward growth of a stack as bytes are pushed onto it.

13.12.1 Internal as Opposed to External
Stack

The location of the stack in data memory may be selected
to be either internal register memory or external data
memory. Bit 2 of control register P01 M (FBH) controls this
selection. Register pair SPH (FEH), SPL (FFH) serves as
the stack pointer for an external stack. Register SPL is the
stack pointer for an internal stack.

In the latter configuration, SPH is available for use as a
general purpose register. The following illustrates a code
sequence that initializes external stack operations:

LD P01 M,#OOH

LD SPH,#HI

LD SPL,#LO

xSP-

x -1

x - 2

x - 3

x - 4

!bit 2: select external
stack!

;STACK

;STACK

SP- R1

'1' MICROCOHTROLWIS

13.12.2 CALL

A subroutine call causes the current Program Counter (the
address of the byte following the CALL instruction) to be
pushed onto the stack. The Program Counter is loaded with
the address specified by the CALL instruction. This ad­
dress may be a direct address or an indirect register pair
reference. For example:

LABEL 1

LABEL 2

LABEL3

R1

CALL 4F98H

!direct addressing: PC is
loaded with the hex value 4F98;
address LABEL 1 +3 is pushed
onto the stack!

CALL @RR4

!indirect addressing: PC is
loaded with the contents of
working register pair R4, RS;
address LABEL 2+2 is pushed
onto the stack!

CALL @7EH

! indirect addressing PC is
loaded with the contents of
register pair 7EH, 7FH;
address LABEL 3+2 is pushed
onto the stack!

PC Low

SP - PC High

Initial
State

Following
Push R1

Following
Call

Figure 13-2. Growth Of A Stack

13·15

ll

13.12.3 RET

The return (RET) instruction causes the top two bytes to be
popped from the stack and loaded into the Program Counter.
Typically, this is the last instruction of a subroutine and thus
restores the PC to the address following the CALL to that
subroutine.

13.12.4 Interrupt Machine Cycle

During an interrupt machine cycle, the PC followed by the
status flags is pushed onto the stack. A more detailed
discussion of interrupt processing is provided in sections
that follow.

13.12.5 IRET

The interrupt return (IRET) instruction causes the top byte
to be popped from the stack and loaded into the status flag
register, FLAGS (FCH); the next two bytes are then popped
and loaded into the Program Counter. In this way, status is
restored and program execution continues where it had left
off when the interrupt was recognized.

13.13 Interrupts

The ZS® recognizes six different interrupts from internal
and external sources, including internal timer/counters,
serial 1/0, and Port 3 lines. Interrupts may be individually
or globally enabled/disabled using the Interrupt Mask
Register IMR (FBH) and may be prioritized for simulta­
neous interrupt resolution using the Interrupt Priority
Register IPR (F9H). When enabled, interrupt request
processing automatically vectors to the designated ser­
vice routine. When disabled, an interrupt request may be
polled to determine when processing is needed.

13.13.1 Interrupt Initialization

Before the ZS can recognize interrupts following RESET,
some initialization tasks must be performed. The initializa­
tion routine should configure the ZS interrupt requests to be
enabled/disabled, as required by the target application and
assigned a priority (via IPR) for simultaneous enabled­
interrupt resolution. An interrupt request is enabled if the
corresponding bit in the IMR is set (=1) and interrupts are
globally enabled (bit 7 of IMR = 1). An interrupt request is
disabled if the corresponding bit in the IMR is reset (=0) or
interrupts are globally disabled (bit 7 of IMR =0).

A RESET of the ZS causes the contents of the Interrupt
Request Register IRQ (FAH) to be held to zero until the
execution of an El instruction. Interrupts that occur while
the ZS is in this initial state will not be recognized since the

13-16

ZS' MICROCONTROLLERS

13.12.6 PUSH and POP

The PUSH and POP instructions allow the transfer of bytes
between the stack and register memory, thus providing
program access to the stack for saving and restoring
needed values and passing parameters to subroutines.

Execution of a PUSH instruction causes the stack pointer
to be decremented by 1 , the operand byte is then loaded
into the location pointed to by the decremented stack
pointer. Execution of a POP instruction causes the byte
addressed by the stack pointer to be loaded into the
operand byte; the stack pointer is then incremented by 1. In
both cases, the operand byte is designated by either a
direct register address or an indirect register reference. For
example:

PUSH R1 !indirect address: push working
register 1 onto the stack!

POP 05H !direct address: pop the top
stack byte into register 5!

PUSH @R4 !indirect address: pop the top
stack byte into the byte
pointed to by working register 4!

PUSH @11 H !indirect address: push onto
the stack the byte pointed to
by register 17!

corresponding IRQ bit cannot be set. The El instruction is
specially decoded by the ZS to enable the IRQ; simply
setting bit 7 of IMR is therefore not sufficient to enable
interrupt processing following RESET. However, subse­
quent to this initial El instruction, interrupts may be globally
enabled either by the instruction:

El !enableinterrupts!

or by a register manipulation instruction such as

OR IMR,#SOH

To globally disable interrupts, execute the instruction

DI !disable interrupts!

This will cause bit 7 of IMR to be reset.

Interrupts must be globally disabled prior to any modifica­
tion of the IMR, IPR or enabled bits of the IRQ (those
corresponding to enabled interrupt requests), unless it can
be guaranteed that an enabled interrupt will not occur
during the processing of such instructions. Since interrupts
represent the occurrence of events asynchronous to pro­
gram execution, it is highly unlikely that such a guarantee
can be made reliably.

13.13.2 Vectored Interrupt Processing

Enabled interrupt requests are processed in an automatic
vectored mode in which the interrupt service routine ad­
dress is retrieved from within the first 12 bytes of Program
Memory. When an enabled interrupt request is recognized
by the ZS, the Program Counter is pushed onto the stack
(low order 8 bits first, then high-order 8 bits) followed by the
FLAGS register (FCH). The corresponding interrupt re­
quest bit is reset in IRQ, interrupts are globally disabled (bit
7 of IMR is reset), and an indirect jump is taken on the word
in location 2x, 2x + 1 (x =interrupt request number,O~s;5).
For example, if the bytes at addresses 0004H and 0005H
contain 05H and 78H respectively, the interrupt machine
cycle for IRQ2 will cause program execution to continue at
address 0578H.

When interrupts are sampled, more than one interrupt may
be pending. The Interrupt Priority Register (IPR) controls
the selection of the pending interrupt with highest priority.
While this interrupt is being serviced, a higher-priority

CONSTANT

GLOBAL
IRQ3_service

INT_MASK_3

PROCEDURE

001100008

ENTRY

1' MICRocoNTROLLERS

interrupt may occur. Such interrupts may be allowed
service within the current interrupt service routine (nested)
or may be held until the current service routine is complete
(non-nested).

To allow nested interrupt processing, interrupts must be
selectively enabled upon entry to an interrupt service
routine. Typically, only higher-priority interrupts would be
allowed to nest within the current interrupt service. To do
this an interrupt routine must "know" which interrupts have
a higher priority than the current interrupt request. Selec­
tion of such nesting priorities is usually a reflection of the
priorities established in the Interrupt Priority Register (IPR).
Given this data, the first instructions executed in the service
routine should be to save the current Interrupt Mask Reg­
ister, mask off all interrupts of lower and equal priority, and
globally enable interrupts (El). For example, assume that
service of interrupt requests 4 and 5 are nested within the
service of interrupt request 3. The following illustrates the
code required to enable IRQ4 and IRQ5:

!service routine for IRQ3!

PUSH IMR

AND IMR,#INT_MASK_3

El
!. .. !

DI

POP IMR

IRET

END IRQ3_service

!interrupts were globally disabled during the interrupt machine cycle -no
DI is needed prior to modification of IMR!

!disable all but IRQ4 & 5!

!service interrupt!
!interrupts are globally enabled now- must disable them prior to
modification of IMR!

!restore entry IMR!

Note: IRQ4 and IRQ5 are enabled by the above sequence after IRQ3_service only if their respective IMR bits = 1 on entry to
IR03_servlce.

13-17

II

Note (Continued):
The service routine for an interrupt whose processing is to be completed without interruption should not allow interrupts
to be nested within it. Therefore, it need not modify the IMR, since interrupts are disabled automatically during the interrupt
machine cycle.

The service routine for an enabled interrupt is typically concluded with an IRET instruction, which restores the FLAGS
register and Program Counter from the top of the stack and globally enables interrupts. To return from an interrupt service
routine without re-enabling interrupts, the following code sequence could be used:

!R.AGS=@SP!

AET IPC=@SP!

This accomplishes all the functions of IRET, except that IMR is not affected.

13-18

13.13.3 Polled Interrupt Processing

Disabled interrupt requests may be processed in a polled
mode, in which the corresponding bits of the Interrupt
Request Register (IRQ) are examined by the software.
When an interrupt request bit is found to be a logic 1, the
interrupt should be processed by the appropriate service
routine. During such processing, the interrupt request bit in
the IRQ must be cleared by the software in order for
subsequent interrupts on that line to be distinguished from

!...!

!poll interrupt inputs here!

TESTO TCM

TEST1

DONE!...!

IRQ4_service

TCM
JR
CALL

JR
CALL

TCM
JR
CALL

! ... !
AND
!...!
RET

END IRQ4_service

IRQO_service

!...!
AND
!...!
RET

END IRQO_service

IRQ1_service
!. .. !
AND
!. .. !
RET

END IRQ1_service
!. .. !

IRQ, #000100006
NZ,TESTO
IRQ4_service

IRQ, #000000016
NZ,TEST1
IRQO_service

IRQ, #000000106
NZ.DONE
IRQ1_service

PROCEDURE ENTRY

IRQ, #111011116

PROCEDURE ENTRY

IRQ, #1111111 OB

PROCEDURE ENTRY

IRQ, #111111016

7J' MICROCONTROLWS

the current one. If more than one interrupt request is to be
processed in a polled mode, polling should occur in the
order of established priorities. For example, assume that
IRQO, IRQ1, and IRQ4 are to be polled and that established
priorities are, from high to low, IRQ4, IRQO, IRQ1. An
instruction sequence like the following should be used to
poll and service the interrupts:

! IRQ4 need service?!
!no!
!yes!

!IRQO need service?!
!no!

!IRQ1 need service?!
!no!

!clear IRQ4!

!clear IRQO!

!clear IRQ1 !

13-19

13.14 Timer/Counter Functions

The ZS41 provides two S-bit timer/counters, TO and T1, that
are adaptable to a variety of application needs and thus
allow the software (and external hardware) to be relieved
of the bulk of such tasks. Included in the set of such uses
are:

• Internal Delay Timer

• Maintenance of a Time-Of-Day Clock

• Watch-Dog Timer

• External Event Counting

• Variable Pulse Train Output

• Duration Measurement of External Event

• Automatic Delay Following External Event Detection

Each timer/counter is driven by its own 6-bit prescaler,
which is in turn driven by the internal ZS clock divided by
four. For T1, the internal clock may be gated or triggered by
an external event or may be replaced by an external clock
input. Each timer/counter may operate in either single­
pass or continuous mode where, at end-of-count, either
counting stops or the counter reloads and continues count­
ing. The counter and prescaler registers may be altered
individually while the timer/counter is running; the software
controls whether the new values are loaded immediately or
when end-of-count (EOC) is reached.

Although the timer/counter prescaler registers (PAEO and
PRE1) are write-only, there is a technique by which the
timer/counters may simulate a readable prescaler. This
capability is a requirement for high resolution measure­
ment of an event's duration. The basic approach requires
that one timer/counter be initialized with the desired counter
and prescaler values. The second timer/counter is initial­
ized with a counter equal to the prescaler of the first timer/
counter and a prescaler of 1. The second timer/counter
must be programmed for continuous mode. With both
timer/counters driven by the internal clock and started and
stopped simultaneously, they will run synchronous to one
another; thus, the value read from the second counter will
always be equivalent to the prescaler of the first.

13.14.1 Time/Count Interval Calculation

To determine the time interval (i) until EOC, the equation

i=txpxv

13-20

'11' MrCROCOHTROu.ERS

characterizes the relation between the prescaler (p),
counter (v), and clock input period (t); is given by

1/(XTAUS)

(assumes internal clock set for XTAL divide by 2 mode)

where XTAL is the ZS input clock frequency; p is in the
range 1-64; vis in the range 1-256. When programming
the prescaler and counter registers, the maximum load
value is truncated to six and eight bits, respectively, and is
therefore programmed as zero. For an input clock
frequencyof S MHz, the prescaler and counter register
values may be programmed to time an interval in the range

1usx 1x1sis1usx64x256
1us sis 16.3S4 ms

To determine the count (c) until EOC for T1 with external
clock input, the equation

c=pxv

characterizes the relation between the T1 prescaler (p) and
the T1 counter (v). The divide-by-Son the inputfrequency
is bypassed in this mode. The count range is

1x1ScS64x256
1ScS16,3S4

13.14.2 T 001 Modes

Port 3, bit 6 (P36) may be configured as an output (Tour>
which is dynamically controlled by one of the following

• Internal Clock

When driven byT0 orT1, T0ur is reset to a logic 1 when the
corresponding load bit is set in timer control register TMR
(F1 H) and toggles on EOC from the corresponding counter.

When T ouT is driven by the internal clock, that clock is
directly output on P36.

While programmed as T ouT• P36 is disabled from being
modified by a write to port register 03H; however, its current
output may be examined by the ZS software by a read to
port register 03H.

13.14.3 T1N Modes

Port3, bit 1 (P31)maybe configured asan input(T1N)which
is used in conjunction with T1 in one of four modes.

• External Clock Input

• Gate Input for Internal Clock

• Nonretriggerable Input for Internal Clock

• Retriggerable Input for Internal Clock

For the latter two modes, it should be noted that the
existence of a synchronizing circuit within the ZB" causes
a delay of two to three internal clock periods following an
external trigger before clocking of the counter actually
begins.

Each High-to-Low transition on T1N will generate interrupt
request IRQ2, regardless of the selected T1N mode or the
enabled/disabled state of T1. IRQ2 must therefore be
masked or enabled according to the needs of the applica­
tion.

The 'external clock input' T1N mode supports the counting
of external events, where an event is seen as a High-to-Low
transition on T1N. Interrupt request IRQ5 is generated on
the nth occurrence (single-pass mode) or on every nth
occurrence (continuous mode) of that event.

The "gate input for internal clock" T1N mode provides for
duration measurement of an external event. In this mode,
the T1 pre scaler is driven by the ZB internal clock, gated by
a High level on T1N. In other words, T1 will count while T1N
is High and stop counting while T1N is Low. Interrupt request
IRQ2 is generated on the High-to-Low transition on T1N.
Interrupt request IRQ5 is generated on T1 EOC. This mode
may be used when the width of a High-going pulse needs
to be measured. In this mode, IRQ2 is typically the interrupt
request of most importance, since it signals the end of the
pulse being measured. If IRQ5 is generated prior to IRQ2
in this mode, the pulse width on T1N is too large for T1 to
measure in a single pass.

ZS' MICROCONlROLLERS

The "nonretriggerable input" T1N mode provides for auto
matic delay timing following an external event. In this
mode, T1 is loaded and clocked by the ZB internal clock
following the first High-to-Low transition on T1N after T1 is
enabled. T1N transitions that occur after this point do not 11 affect T1• In single-pass mode, the enable bit is reset on
EOC; further T1N transitions will not cause T1 to load and
begin counting until the software sets the enable bit again.
In continuous mode, EOC does not modify the enable bit,
but the counter is reloaded and counting continues imme-
diately; IRQ5 is generated every EOC until software resets
the enable bit. This T1N mode may be used, for example,
to time the line feed delay following end of line detection on
a printer or to delay data sampling for some length of time
following a sample strobe.

The "retriggerable input" T1N mode will load and clock T1

with the ZB internal clock on every occurrence of a High­
to-Low transition on T1N. T1 will time-out and generate
interrupt request IRQ5 when the programmed time interval
(determined by T1 prescaler and load register values) has
elapsed since the last High-to-Low transition on T1w In
single-pass mode, the enable bit is reset on EOC; further
T1N transitions will not cause T1 to load and begin counting
until the software sets the enable bit again. In continuous
mode, EOC does not modify the enable bit, butthe counter
is reloaded and counting continues immediately; IRQ5 is
generated at every EOC until the software resets the
enable bit. This T1N mode may provide such functions as
watch-dog timer (in other words, interrupt if conveyor belt
stopped or clock pulse missed), or keyboard time-out (in
other words., interrupt if no input in x ms).

13-21

ZS' MICROCONTROLLERS

13.14.4 Examples

Several possible uses of the timer/counters are given in the
following four examples.

second. It is desired thatthe clock be updated once every
hundredth of a second; therefore,T1 1 is programmed in
continuous mode to interrupt 100 times a second. Al­
though T1 is used for this example, TO is equally suited for
the task.

13.14.5 Time-Of-Day Clock

The following module illustrates the use of T1 for mainte­
nance of a time-of-day clock, which is kept in binary format
in terms of hours, minutes, seconds, and hundredths of a

The procedure for initializing the timer (TOD_INIT), the
interrupt service routine (TOD) which updates the clock,
and the interrupt vector forT1 end-of-count (IRQ_5) are
illustrated below ()<TAL = 7.3728 MHz, XTALJ2 mode is
assumed):

ZBASM2.0

LOC OBJ CODE

P 0000 OOOF'

POOOC

P 0000 E6 F3 93

P 0003 E6 F2 00

P 0006 46 F1 OC
P 0009 BF
P OOOA 46 FB 20
P OOOD 9F
P OOOEAF
P OOOF

P OOOF

P OOOF 70 FD

P0011 3110
P 0013 FE
P 0014 A6 EF 64
P 0017 EB 13
P 0019 BO EF
P 001B EE
P 001C A6 EE 3C
P 001F EB OB
P 0021 BO EE

13-22

STMT
1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SOURCE STATEMENT
TIMER1 MODULE
CONSTANT

HOUR= R12
MINUTE R13
SECOND R14
HUND= R15

$SECTION PROGRAM
GLOBAL
!IRQ5 interrupt vector!

$ABS 10
IRQ_5 ARRAY [1 WORD]

TOD_INIT
ENTRY

$REL
PROCEDURE

[TOD]

LD PRE1,#10010011 B
!bit 2-7 prescaler = 36;
bit 1 internal clock;
bit 0 continuous mode!

LO T1 ,#OOH !(256) time-out =
1/100 second!

OR TMR,#OCH !load, enable T1 !
DI
OR IMR,#20H !enable T1 interrupt!
El
RET

END TOD_INIT

TOD PROCEDURE
ENTRY

PUSH RP

SAP #10H
INC HUND
CP HUND,#64H
JR NE,TOD_EXIT
CLR HUND
INC SECOND
CP SECOND,#3CH
JR NE,TOD_EXIT
CLR SECOND

!Working register file 1 OH to 1 FH contains
the time of day clock!

!1 more .01 sec!
!full second yet?!
!jump if no!

! 1 more second!
!full minute yet?!
!jump if no!

't'ZJLCE

P 0023 DE 43
P 0024 A6 ED 3C 44
P 0027 EB 03 45
P 0029 BO ED 46
P 002B CE 47

48

P 002C 50 FD 49
P 002E BF 50
P 002F 51

52

0 ERRORS
ASSEMBLY COMPLETE

TOD_INIT
7 instructions
15 bytes
16 us

INC
CP
JR
CLR
INC

TOD_EXIT:

POP
IRET

END TOD
END TIMER1

TOD
17 instructions
32bytes

MINUTE
MINUTE,#3CH
NE,TOD_EXIT
MINUTE
HOUR

RP

! 1 more minute!
!full hour yet?!
!jump if no!

! restore entry RPI

19.5 us (average) including interrupt response time

II

13-23

13.14.6 Variable Frequency, Variable Pulse
Width Output

The following module illustrates one possible use of Tour
Assume it is necessary to generate a pulse train with a 10
percent duty cycle, where the output is repetitively high for
1.6 ms and then low for 14.4 ms. To do this, T oUT is
controlled by end-of-count from T1, although TO could
alternately be chosen. This examples makes use of the ZS
feature that allows a timer's counter register to be modified
without disturbing the count in progress. In continuous
mode, the new value is loaded when T1 reaches EOC. T1
is first loaded and enabled with values to generate the
short interval. The counter register is then immediately
modified with the value to generate the long interval; this
value is loaded into the counter automatically on T1 EOC.
The prescaler selected value must be the same for both

ZBASM 2.0

LOC OBJ CODE STMT
1

SOURCE STATEMENT
TIMER2 MODULE

1B' MICROCONIROLLERS

long and short intervals. Note that the initial loading of the
T1 counter register is followed by setting the T1 load bit of
timer control register TMR (F1 H); this action causes T 0UT to
be reset to a logic 1 output. Each subsequent modification
of the T1 counter register does not affect the current T oUT
level, since the T1 load bit is NOT altered by the software.
The new value is loaded on EOC and TOUT will toggle at that
time. The T1 interrupt service routine should simply modify
the T1 counter register with the new value, alternating
between the long and short interval values.

In the example which follows, bit 0 of register 04H is used
as a software flag to indicate which value was loaded last.
This module illustrates the procedure for T1fr OUT initializa­
tion (PULSE_INIT), the T1 interrupt service routine (PULSE),
and the interrupt vector forT1 1 EOC (IRQ_5). XTAL = 8
MHz, XTAU2 mode is assumed.

2
3

$SECTION PROGRAM
GLOBAL

p 00000017'

POOOC

P 000 E6 F3 03

P 0003 E6 F7 00
P 0006 E6 F2 19
P 0009 BF
P OOOA 46 FB 20
P OOOD E6 F1 BC

P 0010 E6 F2 E1

P 0013 BO 04

P 0015 9F
P 0016 AF

13-24

4
5
6
7
B
9

10
11
12
13
14
15
16
17
1B
19
20
21
22
23

24
25

26
27
28
29
30

ABS 10
IRQ_5 ARRAY[1 WORD]

$REL
PULSE_INIT PROCEDURE
ENTRY

LD PRE1 ,#00000011 B

LD P3M,#OOH
LD T1,#19H
DI
OR IMR,#00100000B
LD TMR,#100011008

! IRQ5 interrupt vector!

[PULSE]

!bit 2-7 prescaler= 64;
bit 1 internal clock;
bit 0 continuous mode!
!bit 5: P36 =output (Tour)!
! for short interval!

!enable T1 interrupt!

!bit 6-7 Tout controlled
byT1;
bit 3 enable T1 ;
bit 2 load T1 !

!Set long interval counter, to be loaded on T1 EOC!
LD T1,#0E1H

!Clear alternating flag for PULSE!
CLR 04H

El
RET

!= o 25 next;
= 1 225 next!

p 0017

p 0017

P 0017 E6 F2 E1
P 001A B6 04 01
P001D 6B 03
P 001F E6 F2 19

P 0022 BF
P0023

0 ERRORS

31
32
33
34
35
36
37
38
39
40
41
42
43

END PULSE_INIT

PULSE PROCEDURE
ENTRY

LD
XOR
JR
LD

PULSE_EXIT
IRET

END PULSE

T1,#0E1H
04H,#01H
Z,PULSE_EXIT
T1,#19H

END TIMER2

!new load value!
!which value next?!
!should be225!
!should be 25!

ASSEMBLY COMPLETE

PULSE_INIT
10 instructions
23 bytes
23 us

PULSE
5 instructions
12 bytes
25 us (average) including interrupt response time

'118 MICROCOHTROLLERS

II

13-25

13.14. 7 Cascaded Timer/Counters

For some applications it may be necessary to measure a
greater lime interval than a single timer/counter can mea­
sure (16.384 ms). In this case, T1N and T ovr may be used
to cascade TO and T1 to function as a single unit. T oUT•

programmed to toggle on TO end-of-count, should be
wired back to T1N, which is selected as the external clock
input for T1 . With TO programmed for continuous mode,
T 0UT (and therefore T,N) goes through a High-to-Low transi­
tion (causing T1 to count) on every other TO EOC. Interrupt
request IRQ5 is generated when the programmed time
interval has elapsed. Interrupt requests IRQ2 (generated
on every T1N High-to-Low transition) and IRQ4 (generated
on TO EOC) are of no importance in this application and are
therefore disabled.

To determine the time interval (i) until EOC, the equation

i = t x pO x vO x (2 x p1 x v1 - 1)

characterizes the relation between the TO prescaler (pO)
and counter (vO), the T1 prescaler (p1) and counter (v1),
and the clock input period (t). Assuming XT AL= 8 MHz, the
measurable time interval range is:

1 us x 1x1 x (2 x 1 - 1) :S: i :S:
1 us x 64 x 256x (2 x 64 x 256- 1)
1 us :S: i :S: 536.854528 s

Figure 13-3 illustrates the interconnection between TO and
T1 . The following module illustrates the procedure required
to initialize the timers for a 1 .998 second delay interval

13-26

XTAL

8-BltTO
Counter

ToUT(P3sJ
----- To Interrupt Logic (IRQ4)

.__ ____ To Interrupt Logic (IRQ5)

Figure 13-3. Cascaded Timer/Counters

ZBASM 2.0

LOC OBJ CODE

p 0000

P 0000 E6 F3 28

P 0003 E6 F7 00
P 0006 E6 F2 64
P 0009 E6 F5 29

P OOOC E6 F4 64
P OOOF BF
P 0010 56 FB 2B

P 0013 46 FB 20
P 0016 9F
P 0017 E6 F1 4F

P 001A AF
P001B

0 ERRORS

STMT
1
2
3
4
5
6
7
8
9

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ASSEMBLY COMPLETE

11 instructions
27 bytes
26.6 us

ZS- MICROCONTROLLERS

SOURCE STATEMENT
TIMER3 MODULE
GLOBAL
TIMER_16 PROCEDURE

El ENTRY
LO PRE1,#001010008

! bit 2-7 prescaler = 1 O;
bit 1 external clock;
bit 0 single-pass mode!

LO P3M,#OOH !bit 5 let P36 be Tout!
LO T1 ,#64H !T1 counter register!
LO PRE0,#001010018 12

! bit 2-7 prescaler = 1 O;
bit O continuous mode!

LO T0,#64H !TO counter register!
DI
AND IMR,#00101011 B !disable IRQ2 (Tin);

and IRQ4 (TO)!
OR IMR,#001000008 !enable IRQ5 (T1)!
El
LO TMR,#010011118

!bit6-7T =oontrolled
by TO;
bit4-5T,Nmodeisext.
clock input;
bit 3 enable T1;
bit 2 load T1;
bit 1 enable TO;
bit 0 enable TO!

RET
END TIMER_16
END TIMER3

13-27

13.14.8 Clock Monitor

T1 and T1N may be used to monitor a clock line (in a diskette
drive, for example) and generate an interrupt request
when a clock pulse is missed. To accomplish this, the
clock line to be monitored is wired to P31 (T1N). T1N should be
programmed as a retriggerable inputto T1, such that each
falling edge on T1N will cause T1 to reload and continue
counting. If T1 is programmed to time-out after an interval
of one-and-a-half times the clock period being monitored,
T1 will time-out and generate interrupt request IRQ5 only
if a clock pulse is missed.

Z8ASM2.0

LOC OBJ CODE STMT SOURCE STATEMENT
1 TIMER4 MODULE

'lJ' MICROCONlROUERS

The following module illustrates the procedure for initializ­
ing T1 and T1N (MONITOR__INIT) to monitor a clock with a
period of 2us. XTAL = 8 MHz is assumed. Note that this
example selects single-pass rather than continuous mode
for T1. This is to prevent a continuous stream of IRQ5
interrupt requests in the eventthatthe monitored clock fails
completely. Rather, the interrupt service routine (CLK_ERR)
is left with the choice of whether or not to re-enable the
monitoring. Also shown is the T1 interrupt vector (IRQ_5).

2 $SECTION PROGRAM
3 GLOBAL
4 !IRQ5 interrupt vector!
5 $ABS 10

p 0000 0015' 6 IRQ_5 ARRAY[1 WORD] [CLK__ERR]
7
8 $REL

POOOC 9 MONITOR_INITPROCEDURE
10 ENTRY

P 0000 E6 F3 04 11 LO PRE1 ,#00000100B
12 ! bit 2-7 prescaler = 1;
13 bit 1 external clock;
14 bit o single-pass model

P0003E6F700 15 LD P3v1,m-l !bit51etP36beTOlJT"!
P0006E6F203 16 LD T1,m-l !T1 loadregister,

17 =1.5*2usec!
P 0009 BF 18 DI
POOOA56F83B 19 PNJ 111.41,#00111011 B ldisablelRQ2(T;N)!
POOOD46FB20 :D CR 1~#001CXXXXB !enablelRQ5(T1)!
P00109F 21 8

22
P 0011 E6 F1 38 23 LO TMR,#001110008

a:i !bit4-5~NmodeiS
25 retrig. input;
26 bit 3 enable T1 !

P 0014 AF 27 RET
p 0015 28 END MONITOR_INIT

29
30

p 0015 31 CLK__ERR PROCEDURE
32 ENTRY
33 !. .. ! ! handle the missed clock!
34
35 !if clock monitoring should continue ... !

13-28

P 0015 46 F1 08

P 0018 BF
p 0019

0 ERRORS

36
37
38
39
40

ASSEMBLY COMPLETE

END
END

MONITOR_INIT CLK_ERR
9 instructions 2+ instructions
21 bytes 4+ bytes

OR TMR, #000010006

IRET
CLK_ERR
TIMER4

21 .5 us 18.5 us+ including interrupt response time

13.15 1/0 FUNCTIONS

The Z81111 provides up to 32 1/0 lines mapped into registers
0-3 of the internal register file. Each nibble of Port 0 is
individually programmable as input, output, or address/
data lines (A15-A12, A11-A8). Port 1 is programmable as
a byte entity to provide input, output, or address/data lines
(AD7-ADO). The operating modes for the bits of Ports o
and 1 are seiected by control register P01 M (F8H). Selec­
tion of 1/0 lines as address/data lines supports access to
external program and Data Memory. Each bit of Port 2 is
individually programmable as an input or an output bit.
Port 2 bits programmed as outputs may also be pro­
grammed (via bit 0 of P3M) to all have active pull-ups or all
be open-drain (active pull-ups inhibited). In Port 3, four
bits (P30-P33) are fixed as inputs, and four bits (P34-P37)
are fixed as outputs, but their functions are programmable.
Special functions provided by Port3 bits are listed in Table
13-4.

Note: 1/0 feature options are device dependent. Consult the
selected ZS device product specification for exact 1/0 features
available.

!bit 3: enable T1 !

Table 13-4. Generic ZS MCU Port 3
Special Functions

FUNCTION BIT SIGNAL

Handshake

Interrupt

Request

Counter/

Timer

Data Memory

Select

Status Out

Serial 1/0

P31

P32

P32

P34

P35

P36

P30

P31

P32

P33

P31

P36

P34

P30
P37

DAV2/RDY2

DAVO/RDYO

DAV1/RDY1

RDY1/DAV1 --
RDYO/DAVO

RDY2/DAV2

IRQ3

IRQ2

IRQO

IRQ1

TIN

TOUT

OM

Serial In
Serial Out

13-29

13.15.1 Asynchronous Receiver/Transmitter
Operation

In some cases, full-duplex, serial asynchronous receiver/
transmitter operation is provided using P37 (output) and
P30 (input) in conjunction with control register SIO (FOH),
SIO is actually two registers: a receiver buffer and a
transmitter buffer. Counter{TimerTO provides the clock for
control of the bit rate.

The ZBll always receives and transmits eight bits between
start and stop bits. However, if parity is enabled, the eighth
bit (07) is replaced by the odd-parity bit when transmitted
and a parity-error flag(= 1 if error) when received. Table
13-5 illustrates the state of the parity bit/parity error flag
during serial 1/0 with parity enabled.

ZS' MICROCONTROLLERS

Although the ZB directly supports either odd parity or no
parity for serial 1/0 operation, even parity may also be
provided with additional software support. To receive and
transmit with even parity, the ZB should be configured for
serial 1/0 with odd parity disabled. The ZB software must
calculate parity and modify the eighth bit prior to the load
of a character into SIO and then modify a parity error flag
following the load of a character from SIO. All other
processing required for serial 1/0 (in other words, buffer
management, error handling, and other processing) is the
same as that for odd parity operations.

Table 13-5. Serial 1/0 With Odd Parity

Character Loaded Transmitted To Received From Transferred
Into SIO Serial Line Serlal Line Character To SIO Note•

11000011 01000011 01000011 01000011 no error

11000011 01000011 01000111 11000111 error

01111000 11111000 11111000 01111000 no error

01111000 11111000 01111000 11111000 error

• Left most bit is D7
To configure the ZB for Serial 1/0, it is necessary to:

• Enable P30 and P37 for serial 1/0 and select parity,

• Set up TO for the desired bit rate,

• Configure IRQ3 and IRQ4 for polled or automatic
interrupt mode,

• Load and enable TO.

To enable P30 and P37 for serial 1/0, bit 6 of P3M (F7H) is
set. To enable odd parity, bit 7 of P3M is set; to disable it,
the bit is reset. For example, the instruction:

LD P3M,#40H

will enable serial 1/0, but disable parity. The instruction:

LD P3M,#OCOH

will enable serial 1/0, and enable odd parity.

In the following discussions, bit rate refers to all transmitted
bits, including start, stop, and parity (if enabled}. The serial
bit rate is given by the equation:

input clock frequency
bit rate = (2x4xTO prescaler x TO counter x 16)

13-30

The final divide-by-16 is incurred for serial communica­
tions, since in this mode TO runs at 16 times the bit rate in
order to synchronize the data stream. To configure the za
for a specific bit rate, appropriate values must first be
selected for TO prescaler and TO counter by the above
equation; these values are then programed into registers
TO (F4H) and PREO (F5H) respectively. Note that PREO
also controls the continuous vs. single-pass mode for TO;
continuous mode should be selected for serial 1/0. For
example, given an input clock frequency of 7.3728 MHz
and a selected bit rate of 9600 bits per second, the equation
is satisfied by TO counter = 2 and prescaler = 3. The
following code sequence will configure the TO counter and
TO prescaler registers:

LD
LD

T0,#02H !TO counter= 2!
PRE0,#00001101 B

!bit2-7prescaler=3; bitO
continuous mode!

Interrupt request3 (IRQ3) is generated whenever a charac­
ter is transferred into the receive buffer; interrupt request 4
(IRQ4) is generated whenever a character is transferred
out of the transmit buffer. Before accepting such interrupt
requests, the Interrupt Mask, Request, and Priority Regis­
ters (IMR, IRQ, and IPR) must be programmed to configure
the mode of interrupt response. The section on Interrupt
Processing provides a discussion of interrupt configura­
tions.

To load and enable TO, set bits 0 and 1 of the timer mode
register (TMR) via an instruction such as

OR TMR,#03H

This will cause the TO prescaler and counter registers
(PREO and TO) to be transferred to the TO prescaler and
counter. In addition, TO is enabled to count, and serial 1/0
operations will commence.

Characters to be output to the serial line should be written
to serial 1/0 register SIO (FOH). IRQ4 will be generated
when all bits have been transferred out.

Z8ASM 2.0

LOC OBJ CODE SOURCE STATEMENT

Characters input from the serial line may be read from SIO.
IRQ3 will be generated when a full character has been
transferred into SIO.

The following module illustrates the receipt of a character
and its immediate echo back to the serial line. It is assumed
thatthe Z8• has been configured for serial 1/0 as described
above, with IRQ3 (receive) enabled to interrupt, and IRQ4
(transmit) configured to be polled. The received character
is stored in a circular buffer in register memory from
address 42H to 5FH. Register 41 H contains the address of
the next available buffer position and should have been
initialized by some earlier routine to 42H.

STMT
1 SERIALIO MODULE

P0006 000'

POOOO

P 0000 E4 FO FO

P 0003 F5 FO 41
p 0006 20 41
P 0008 A6 41 60

POOOB EB03
P OOOD E6 41 42

P 0010 66 FA 10
P 0013 EB FB

P 0015 56 FA EF

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

CONSTANT
next_addr 41H
start = 42H
length= 1EH

$SECTION PROGRAM
GLOBAL

!IRQ3vector!
$ABS 6

IRQ_3 ARRAY [1 WORD]= [GET_CHARACTER]

$REL 0
GET_CHARACTER PROCEDURE ENTRY

Id

Id
inc
cp

jr
Id

echo_ wait
tern
jr

and

SIO,SIO

!Serial 1/0 receive interrupt service!
! Echo received character and wait for
echo completion!
!echo!

!Save it in circular buffer!
@next_addr,SIO !save in buffer!
next_addr !Point to next position!
next_addr,#start+length

!Wrap-around yet?!
ne,echo_wait !No.!
next_addr,#start!Yes. Point to start!

!Now, waitfor echo complete!

IRQ,#10H !Transmitted yet?!
nz,echo_wait !Not yet!

IRQ,#OEFH !Clear IRQ4!

13-31

P 0018 BF
p 0019

0 ERRORS

33
34
35

ASSEMBLY COMPLETE

10 instructions
25 bytes

.. MICROCONTROUERS

IRET !Return from interrupt!
END GET_CHARACTER
END SERIAL_IO

35.5 us + 5.5 us for each additional pass through the echo_wait loop, including interrupt response time

13.15.2 Automatic Bit-Rate Detection

In a typical system, where serial communication is re­
quired (in other words, a system with a terminal), the
desired bit rate is either user-selectable via a switch bank
or nonvariable and "hard-coded" in the software. As an
alternate method of bit-rate detection, it is possible to
automatically determine the bit rate of serial data received
by measuring the length of a start bit. The advantage of this
method is that it places no requirements on the hardware
design for this function and provides a convenient (auto­
matic) operator interface.

In the technique described here, the serial channel of the
za• is initialized to expect a bit rate of 19,200 bits per
second. The number of bits (n) received through Port pin
P30 for each bit transmitted is expressed by:

n = 19,200/b

where b = transmission bit rate. For example, if the

13-32

transmission bit rate were 1200 bits per second, each
incoming bit would appear to the receiving serial line as
19,200/1200 or 16 bits.

The following example is capable of distinguishing be­
tween the bit rates shown in Table 13-6 and assumes an
input clock frequency of 7.3728 MHz, a TO prescaler of 3,
XTAU2 mode, and serial 1/0 enabled with parity disabled.
This example requires that a character with its low order bit
= 1 (such as a carriage return) be sentto the serial channel.
The start bit of this character can be measured by counting
the number of zero bits collected before the low order 1 bit.
The number of zero bits actually collected into data bits by
the serial channel is less than n (as given in the above
equation), due to the detection of start and stop bits.
Figure 13-4 illustrates the collection (at 19,200 bits per
second) of a zero bit transmitted to the Z8 at 1,200 bits per
second. Notice that only 13 of the 16 zero bits received are
collected as data bits.

ftl211.Jl6

Bit Rate

19200

9600

4800

2400

1200

600

300
150

D' MlcRocoNTRoLLERS

Table 13-6. Inputs to the Automatic Bit Rate Detection Algorithm

Number of Bits Received Number of Bits Collected
Per Bit Transmitted as Data Bits T0 Counter

dee binary dee

1 0 00000000

2 1 00000001 2

4 3 00000011 4

8 7 00000111 8

16 13 00001101 16

32 25 00011001 32

64 49 00110001 64
128 97 01100001 128

... I•--- 1 Bit Time at 1,200 Bits Par Second ---... •I
ST= Start Bit Sp = Stop Bit On = Data Bit n

Each Interval Shown = 1 Bit Time
At 19,200 Bits Par Second

Figure 13-4. Collection of a Start Bit Transmitted at 19.2 KBps

binary

00000001

00000010

00000100

00001000

00010000

00100000

01000000
10000000

13-33

ft'21Ul6 '1' MICROCONTROLLERS

Once the number of zero bits in the start bit has been
collected and counted, it remains to translate this count
into the appropriate TO counter value and program that
value into TO (F4H). The patterns shown in the two binary
columns of Table 13-6 are utilized in the algorithm for this
translation.

an interrupt request after the appropriate amount of time
has elapsed. Since a character is composed of eight bits
plus a minimum of one stop bit following the start bit, the
length of time to delay may be expressed as:

(9 x n)/b

As a final step, if incoming data is to commence immedi­
ately, it is advisable to wait until the remainder of the
current 'elongated' character has been received, thus
'flushing' the serial line. This can be accomplished either
via a software loop; or by programming T1 to generate

where n and bare as defined above. The following module
illustrates a sample program for automatic bit rate detec­
tion.

ZBASM2.0

LOC OBJCODE

POOOO

P OOOOBF
P 0001 56 FB 77
P 0004 56 FA F7
P 0007 E6 F7 40
P OOOA E6 F4 01
p OOOD E6 F5 OD

P 0010 BO EO
P 0012 E6 F1 03

P001576FA08
P00186B FB
P 001A 18 FO
P 001C 56 FA F7
P 001F 1E
P00201A05
P 0022 06 EO 08
P 0025 88 EE

P 0027 EO E1
P00297B03
P 002BOE
P002C BB F9

13-34

STMT
1
2

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

SOURCE STATEMENT
BIT_RATE MODULE
EXTERNAL
3 DELAY PROCEDURE

GLOBAL
main PROCEDURE

ENTRY
di
and
and
Id
Id
Id

cir
Id

IMR,#77H
IRQ,#OF7H
P3M,#40H
T0,#01H

!Disable interrupts!
! IRQ3 polled mode!
!Clear IRQ3!
!Enable serial 1/0!

PRE0,#(3 SHL 2)+ 1 !bit rate= 19,200;

RO
TMR#03H

continuous count mode!
!lnit. zero byte counter!
!Load and enable TO!

!Collect input bytes by counting the number of null
characters received. Stop when non-zero byte received!
collect:

bitloop:

tm
jr
Id
and
inc
djnz
add
jr

IRQ,#OBH !Characterreceived?!
Z,collect !Notyet!
R1 ,SIO !Getthe character!
IRQ,#OF7H !Clear interrupt request!
R1 !Compare too ... !
R1 ,bitloop ! ... (IN 3 bytes of code)!
RO,#OBH !UpdatecountofObits!
collect

!Add in zero bits from low
end of 1st non-zero byte!

RR R1
jr c,counLdone
inc RO
jr bitloop

!RO has number of zero bits collected!
!Translate AO to the appropriate TO counter value I

counLdone !RO has count of zero bits!

't'2il.Cl6
P 002E 1C 07 38
P 0030 2C 80 39
P 0032 90 EO 40

41
P 0034 90 EO 42 loop:
P0036 7B 04 43
P 0038 EO E2 44
P 003A 1A F8 45

46
P 003C 29 F4 47

48
49

P 003E 06 0000* 50
51

P 0041 56 FA F7 52
53

p 0044 54
55

0 ERRORS
ASSEMBLY COMPLETE

30 instructions
68 bytes

done

END
END

Id R1,#07H
Id R2,#80H
RL RO

RL RO
jr c,done
RR R2
djnz r1 ,loop

Id TO,R2

call DELAY

and IRQ,#OF7H

main
bit_rate

Execution time is variable based on transmission bit rate.

13.15.3 Port Handshake

Each of Ports 0, 1 and 2 may be programmed to function
under input or output handshake control. Table 13-7 de­
fines the port bits used for handshaking and the mode bit
settings required to select handshaking. To input data
under handshake control, the Z8e should read the input
port when the DAV input goes Low (signifying that data is
available from the attached device). To output data under
handshake control, the Z8 should write the output port
when the ROY input goes Low (signifying that the previ­
ously output data has been accepted by the attached
device). Interrupt requests IRQO, IRQ1, and IRQ2 are
generated by the falling edge of the handshake signal
input to the Z8 for Port 0, Port 1, and Port 2 respectively.
Port handshake operations may therefore be processed
under interrupt control.

Consider a system that requires communication of eight
parallel bits of data under handshake control from the Z8 to
a peripheral device and that Port 2 is selected as the output
port. The following assembly code illustrates the proper
sequence for initializing Port 2 for output handshake.

CLR P2M !Port2moderegistera11Port2bits
are outputs!

OR 03H,#40H

!set DAV2 data not available!

!R2 will have TO counter value!

! Load value for detected
bit rate!

ZB8 MICROCONTROLLERS

!Delay long enough to clear serial line of bit stream!

!Clear receive interrupt request!

LD P3M,#20H

!Port 3 mode register enable
Port 2 handshake!

LD 02H,DATA

!output first data byte; DAV2 will
be cleared by the Z8 to indicate
data available to the peripheral
device!

Note that following the initialization of the output sequence,
the software outputs the first data byte without regard to the
state of the RDY2 input; theZ8will automatically hold DAV2
High until the RDY2 input is High. The peripheral device
should force the Z8 RDY2 input line Low after it has latched
the data in response to a Low on DAV2....I!J.e Low on RDY2
will cause the Z8 to automatically force DAV2 High until the
next byte is output. Subsequent bytes should be output in
response to interrupt request IRQ2 (caused by the High­
to-Low transition on RDY2) in either a polled or an enabled
interrupt mode.

13-35

II

'1J' MICROCONTROLLERS

Table 13·7. Port Handshake Selection

Porto Port 1 Port2

Input handshake lines P32 =DAV P33 =DAV P31 =DAV
P35 =ROY P34 =ROY P36 =ROY

Output handshake lines P32= ROY P33= ROY P31 =ROY
P35 =DAV P34= DAV P36= DAV

To select input handshake set bit 6 & reset bit 7 of set bit 3 & reset bit 4 of set bit 7 of P2M
P01 M (program high P01 M (program byte as (program high bit
nibble as input) input) as input)

To select output handshake set bits 6, 7 of P01 M set bit 3, 4 of P01M set bit 7 of P2M
(program high nibble (program byte as output) (program high bit
as output) as output)

To enable handshake set bit 5 of Port 3 (P35); set bit 4 of Port 3 (P34): set bit 6 of Port 3 (P36);

set bit 2 of P3M set bits 3, 4 of P3M set bit 5 of P3M

13-36

11 MICROCONTROLLERS

13.16 ARITHMETIC ROUTINES

This section gives examples of the arithmetic and rotate
instructions for use in multiplication, division, conversion,
and BCD arithmetic algorithms.

The 16-bit number is viewed as a string of four nibbles and
is processed one nibble at a time from left to right, begin­
ning with the high-order nibble of the lower memory ad­
dress. 30H is added to each nibble if it is in the range Oto
9; otherwise 37H is added. In this way, OOH is converted 13.16.1 Binary to Hex ASCII

The following module illustrates the use of the ADD and
SWAP arithmetic instructions in the conversion of a 16-bit
binary number to its hexadecimal ASCII representation.

to30H, 1Hto31H, ... OAHto41H, ... OFHto46H. Figure 13- II
5 illustrates the conversion of ARO (contents= F2BEH) to
its hex ASCII equivalent; the destination buffer is pointed
to by RR4.

Bit D1 4 3 Do D7 4 3 Do

F 2 I I B E

Register RO R1

D1 4 3 Do D7 4 3 Do D1 4 3 Do 07 4 3 Do

RR4- 4 6 I I 3 2 I I 4 2 I I 4 5

Figure 13-5. Conversion of (RRO) To Hex ASCII

Z8ASM 2.99 INTERNAL RELEASE
LOC OBJ CODE STMT SOURCE STATEMENT

p 0000

POOOO 6C 04
P0002FOEO
P 0004 28 EO
P 0006 56 E2 OF

1 ARITH MODULE
2 GLOBAL
3 BINASC PROCEDURE
4 !**
5 Purpose= To convert a 16-bit binary
6 number to Hex ASCII
7
8
9
10
11
12
13
14
15
16
17

Input=

Output=

RAO = 16-bit binary number.
RR4 = pointer to destination

buffer in external memory.

Resulting ASCII string (4 bytes)
in destination buffer.
RR4 incremented by 4 .
RO, R2, R6 destroyed.

**!
ENTRY

again:
Id
SWAP
Id
and

R6,#04H
RO
R2,RO
R2,#0FH

! nibble count!
!look at next nibble!

!isolate 4 bits!

18
19
20
21
22
23 !convert to ASCII R2 + #30H if RO in range O

to 9
24 else R2 + #37H (in range OA to OF)!

13-37

P 0009 06 E2 30
P OOOC A6 E2 3A
POOOF7B03

ADD
cp
jr
ADD

ZS' MICROCONTROLLERS

R2,#30H
R2,#3AH
ult.skip
RS,#07H P 0011 06 E2 07

p 0014 92 24
P0016AOE4

26
27
28
29
30
31
32
33

skip: Ide @RR4,R2 !save ASCII in buffer!

P 0018 A6 E6 03

P 0018 EB 02
P 0010 08 E1

in cw

cp

jr
Id

same_byte:

RR4 ! point to next
buffer position!

R6,#03H !time for second byte?!

ne,same_byte !no.!
RO,R1 !2nd byte!

P 001F 6A E1
P 0021 AF

34
35
36
37
38
39
40

djnz R6,again

p 0022

0 ERRORS
ASSEMBLY COMPLETE
16 instructions
34 bytes
120.5 us (average)

13.16.2 BCD Addition

ret
END BINASC
END ARITH

The following module illustrates the use of the add with
carry (ADC) and decimal adjust (DA) instructions for the
addition of two unsigned BCD strings of equal length.
Within a BCD string, each nibble represents a decimal
digit (0-9). Two such digits are packed per byte with the
most

Bit D7 4 3 Do D1

0 0 I I
Register %33

5

significant digit in bits 7-4. Bytes within a BCD string are
arranged in memory with the most significant digits stored
in the lowest memory location. Figure 13-6 illustrates the
representation of 5970 in a 6-digit BCD string, starting in
register 33H.

4 3 Do D1 4 3 Do

9 I I 7 0

%34 %35

Figure 13-6. Unsigned BCD Representation

13-38

Z8ASM 2.0
LOC OBJ CODE

p 0000

p 0000 02 12
p 0002 02 02
P 0004 CF

P 0005 00 E1

P 0007 00 EO

P 0009 E3 31
p 0008 13 30
P OOOD 40 E3
P OOOF F3 03
P 0011 2A F2

P0013AF

p 0014

0 ERRORS

STMT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

ASSEMBLY COMPLETE
11 instructions
20bytes

SOURCE STATEMENT
ARITH MODULE
CONSTANT

BCD_SRC = R1
BCD_DST = RO
BCD_LEN = R2

GLOBAL
BCADDPROCEDURE
! **
Purpose= To add two paced BCD strings of

equal length.

Input=

Output=

dst <- dst + src

RO= pointer to dst BCD string.
R1 = pointer to src BCD string.
R2 = byte count in BCD string

(digit count= (R2)*2).

BCD string pointed to by RO is
the sum.

Carry FLAG= 1 if overflow.
RO , R1 as on entry.
R2= 0

** !
ENTRY

add
add
ref

add_again:
dee

dee

Id
ADC
DA
Id
djnz

ret

END BCADD
END ARITH

BCD_SRC,BCD_LEN
BCD_DST,BCD_LEN

BCD_SRC

BCD_DST

R3,@BCD_SRC
R3,@BCD_DST
R3
@BCD_DST,R3
BCD_LEN,add_again

! start at least. .. !
!significant digits!
!carry=O!

!point to next two
srcdigits!
!point to next two
dstdigits!
!getsrcdigits!
!add dst digits!
!decimal adjust!
! move to dst!
!loop for next
digits!
!all done!

Execution time is a function of the number of bytes (n) in input BCD string: 20 us + 12.5(n-1) us

zr MICROCONTROLLERS

Ill

13-39

7J' MICROCONTROUERS

13.16.3 Multiply

The following module illustrates an efficient algorithm for
the multiplication of two unsigned 8-bit values, resulting in
a 16-bit product. The algorithm repetitively shifts the multi­
plicand right (using RRC), with the low-order bit being
shifted out (into the carry flag). If a one is shifted out, the
multiplier is added to the high-order byte of the partial

product. As the high-order bits of the multiplicand are
vacated by the shift, the resulting partial-product bits are
rotated in. Thus, the multiplicand and the low byte of the
product occupy the same byte, which saves register space,
code, and execution time.

Z8ASM 2.99 INTERNAL RELEASE
LOC OBJ CODE

p 0000

STMT
1
2
3
4
5
6
7
8

SOURCE STATEMENT
ARITH MODULE
CONSTANT

MULTIPLIER = R1
PRODUCT _LO = R3
PRODUCT _HI = R2
COUNT= RO

GLOBAL
MULT PROCEDURE

9!**

POOOO OC 09
P 0002 BO E2
P 0004 CF
P0005 CO E2
P 0007 CO E3
P 0009 FB 02
p OOOB 02 21
POOODOA F6
P OOOFAF
p 0010

0 ERRORS

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

ASS EMBLY COMPLETE
9 instructions
16 bytes
92.5 us (average)

13-40

Purpose=

Input=

Output=

To perform an 8-bit by 8-bit unsigned
binary multiplication.

R1 = multiplier
R3 =multiplicand

RR2 = product
RO destroyed

** !
ENTRY

Id
cir
RCF

LOOP: RRC
RRC
jr
ADD

NEXT: djnz
ret

END MULT
END ARITH

COUNT,#09H
PRODUCT_HI

PRODUCT_HI
PRODUCT_LO
NC.NEXT

!8 BITS+ 1!
!INIT HIGH RESULT BYTE!
!CARRY=O!

PRODUCT _HI.MULTIPLIER
COUNT.LOOP

ft'21u:& '11 MJCROCONTROLLERS

13.16.4 Divide

The following module illustrates an efficient algorithm for
the division of a 16-bit unsigned value by an 8-bit unsigned
value, resulting in an 8-bit unsigned quotient. The algo­
rithm repetitively shifts the dividend left (via RLC). If the
high-order bit shifted out is a one or if the resulting high­
order dividend byte is greater than or equal to the divisor,

the divisor is subtracted from the high byte of the dividend.
As the low-order bits of the dividend are vacated by the shift
left, the resulting partial-quotient bits are rotated in. Thus,
the quotient and the low byte of the dividend occupy the
same byte, which saves register space, code, and execu­
tion time.

Z8ASM2.0
LOC OBJ CODE

POOOO

POOOO OC 08

P0002A212
P 0004 BB 02

P0006 OF
P 0007 AF

P000810 E3
POOOA 10 E2
POOOC 7B 04
POOOEA212
P0010 BB 03
P0012 22 21
P 0014 OF
P0015 OA F1

STMT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

SOURCE STATEMENT
ARITH MODULE
CONSTANT

COUNT= RO
DIVISOR= R1
DIVIDEND_HI = R2
DIVIDEND_LO = R3

GLOBAL
DIVIDE PROCEDURE
! **
Purpose=

Input=

Output=

To perform a 16-bit by 8-bit unsigned
binary division.

R1=8-bit divisor
RR2 = 16-bit dividend

R3 = 8-bit quotient
R2 = 8-bit remainder
Carry flag = 1 if overflow

= 0 if no overflow
**!
ENTRY

Id COUNT,#08H !LOOP COUNTER!

!CHECK IF RESULT WILL FIT IN 8 BITS!
cp DIVISOR,DIVIDEND_HI
jr UGT,LOOP !CARRY= 0 (FOR RLC)!

!WON'T FIT. OVERFLOW!
SCF !CARRY = 1 !
ret

LOOP !RESULT WILL FIT. GO AHEAD WITH DIVISION!
RLC DIVIDEND_LO !DIVIDEND * 21
RLC DIVIDEND_HI
jr c,subt
cp DIVISOR,DIVIDEND_HI
jr UGT,next !CARRY= O!

subt: SUB DIVIDEND_Hl,DIVISOR
SCF !TO BE SHIFTED INTO RESULT!

next: djnz COUNT.LOOP !no flags affected!

!ALL DONE!

13-41

El

P 001710 E3 42
43
44
45
46

RLC DIVIDEND_LO

P 0019AF
P001A

0 ERRORS
ASSEMBLY COMPLETE
15 instructions
26bytes
124.5 us (average)

13.17 Conclusion

ret
END DIVIDE
END ARITH

This section has focused on ways in which the za• micro­
computer can easily yet effectively solve various applica­
tion problems. In particular, the many sample routines
illustrated here should aid the user in applying the ZS to

13-42

!CARRY= Ono overflow!

greater advantage. The major features of the za have
been described so that the user can continue to expand
and explore the repertoire of uses for the ZS.

USER'S MANUAL

CHAPTER 14
THIRD-PARTY SUPPORT TOOLS

In addition to Zilog tool offerings, an extensive list of third party suppliers offer a variety of software (XASM, C Compilers,
Simulators/Debuggers), hardware emulator, and OTP programmer (single and gang) products.

14.1 Third-Party Support-Emulators/
Programmers

Data 1/0 (OTP Programmer) (800) 332-8246

Emulation Technologies (408) 982-0660
(OTP Socket Adapters)

iSystems (49)8131-25085

Logical Devices, Inc. (800) 331-7766
(OTP Programmer)

Needham Electronics (916) 924-8037
(OTP Programmer)

Orion Instruments (408) 747-0440

Signum Systems {805) 371-4608

Systems General (408) 263-6667
(OTP Programmer)

14.2 Third-Party Support-Assemblers/C
Compilers

2500AD Software (719) 395-8683

Avocer Systems (800) 448-8500

ByteCraft {519) 888-6911

Micro Computer Control (609) 466-1751

Production Languages Corp. (817) 599-8363

Pseudo Corp. (503) 683-9173

14-1

II

Z8® Microcontroller
Technical Description

Zilog ZS® Software nl

ZHo General
I ormation

USER'S GUIDE

DI

asm ZS®
CROSS ASSEMBLER

Related Publications

IEEE Proposal P695 Microprocessor Universal Format for Object
Modules. IEEE Micro August 1983 Vol. 3 & 4 pp. 48-66

SuperB Technical Manual, document number 03-8257-0X
Universal Object Files Utilities User's Guide, document

number 03-8236-0X
ZB Microcomputer Technical Manual, document number 03-3047-0X

Trademark Acknowledgements

asmSB, cas, PLZ/ASM, Super8, System 8000, and ZB are trademarks of Zilog Inc.
UNIX is a trademark of AT&T Bell Laboratories
VAX is a trademark of Digital Equipment Corporation

Zilog does not support the software mentioned in this publication. use at own risk.

© 1985 by Zilog, Inc. All rights reserved. No part of this publica·
lion may be reproduced, stored in a retrieval system, or transmit·
ted, in any form or by any means, electronic. mechanical.
photocopying, recording. or otherwise, without the prior written
permission of Zilog.

The information contained herein is subject to change without
notice. Zilog assumes no responsibliijy for the use of any cir­
cuitry other than circuitry embOdied in a Zilog product. No other
circuit patent licenses are implied.

All sPE!cifications (parameters) are subject to change without no·
tice. The applicable Zilog test documentation will specify which
parameters are tested.

ID

ASM ZS4DCROSS ASSEMBLER USER'S GUIDE

TABLE OF CONTENTS

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 1: OVERVIEW

1' MICROCONlllOLLERS
USER's MANUAL

PAGE

1 .1 Introduction ... 1-1
1 .2 Assembler Overview ... 1-2
1 .3 Relocation and Linking .. 1-3

CHAPTER 2: ASSEMBLY LANGUAGE SYNTAX

2.1 Introduction ... 2-1
2.2 Symbolic Notation ... 2-1
2.3 Operations and Operands .. 2-6
2.4 Comments ... 2-6
2.5 Arithmetic Expressions .. 2-7
2.6 Expressions and Operators ... 2-7
2.7 Constants .. 2-10
2.8 Location Counter ... 2-11

CHAPTER 3: PSEUDO-OPS

3.1 Introduction ... 3-1
3.2 Relocation Pseudo-Ops .. 3-1
3.3 Label Definition Pseudo-Ops .. 3-3
3.4 Module and Section Pseudo-Ops .. 3-6
3.5 General Data Definition Operation ... 3-8
3.6 Conditional Assembly Pseudo-Ops ... 3-12
3.7 Assembler Control Pseudo-Ops .. 3-13

CHAPTER 4: MACROS

4.1 General Description .. 4-1
4.2 MACRO or String MACRO .. 4-2
4.3 PROC or Procedure MACRO .. 4-3
4.4 Special MACRO Pseudo-Ops ... 4-4
4.5 Special MACRO Operators ... 4-6

CHAPTER 5: PROGRAM INVOCATION

5.1 Assembler Command Lines and Options .. 5-1
5.2 Listing Format ... 5-2
5.3 Program Termination ... 5-2

APPENDICES

Appendix A. Pseudo-Op Summary ... A-1
Appendix B. Special Symbols ... B-1
Appendix C. ASCII Character Set' C-1
Appendix D. Error Messages and Explanations ... D-1
Appendix E. Program Example ... E-1

ii

U' MICAOCONTROUERS
USEA's MANUAL

1.1 INTRODUCTION

CHAPTER 1
OVERVIEW

Overview

Zilog's Super8/Z8 Cross-Assembler (asm58) takes a
source file containing assembly language statements and
translates it into a corresponding object file. It can
produce a listing conta.ining the source code, object
code, and comments. The assembler supports macros and
conditional assembly. It is written in C and runs on
the UNIX operating system. Figure 1-1 illustrates the
development path of a typical program.

EDITOR

ASSEMBLY
SOURCE FILE

(LISTING)
umS8

ASSEMBLER

SINGLE
OBJECT
MODULE

ABSOWTEOR
RELOCATABLE

OBJECT MODULE
1

mlink
LINKER

ABSOWTEOR
RELOCATABLE

OBJECT MODULE

mload
OOWNLOADER

DOWNLOADABLE
OBJECT MODULE

MULTIPLE

ABSOWTEOR
RELOCATABLE

OBJECT MODULE
N

OBJECT MODULES

Figure 1-1. asa58 Program Development Cycle

1-1

DI

Overview

1.1 INTROOUCTION
(Continued)

1.2 ASSDELER
OVERVIEW

1.2.1 Assembler
Enhancements

1.2.2 Modules

The assembler can produce relocatable and absolute
object code. Object files can contain a mixture of
absolute and relocatable code. Object files then can
be linked with other object files and loaded into
memory.

For a description of the architecture of the Supers
family of microcomputers, refer to the Supers Technical
Manual. for a description of the architecture of the
ZS family, refer to the ZS Microcomputer Technical
Manual.

The asmSB Cross-Assembler is a macro assembler, written
ip C, that runs on the UNIX operating system for the
DEC VAX and VMS, IBM-PC, and Zilog System 8000. The
assembler produces output in a universal object code
format (refer to the Universal Object Files Utilities
User's Guide).

Providing more than compatibility with existing hard­
ware and software, the asmSS assembler includes new
features not available in earlier assemblers. Integer
arithmetic on numbers up to SO bits long is supported,
as is arbitrary integer arithmetic on external and
relocatable symbols. Additional expression opera­
tors are defined, and syntax rules for expressions and
operand delimiters have fewer restrictions.

The asmSB assembler increases support for constants by
providing floating-point constants in addition to those
numbers supported in the C language. However,
floating-point arithmetic in assembly-time expressions
is not supported.

A program consists of one or more separately coded and
assembled modules. Modules are referred to as either
source modules or object modules.

A source module is made up of assembly language
statements. These statements are then translated by
the asmSB assembler into an object module that can
either be separately executed by the SuperB (or ZB)
microprocessor, or linked with other object modules to
form a complete program. The user can also control the
operation of the . assembler by including assembler
directives, or "pseudo-ops," in the source code.
Briefly, pseudo-ops resemble opcodes in form, but not
function (see Chapter 3).

Depending on the assembler directives used, addresses
within an object module or program can be absolute
(addresses in the source program correspond exactly to

1-2

1.3 RELOCATION AND
LINC DC

Overview

logical memory addresses) or relocatable (addresses can
be assigned relative to a logical base address at a
later time). Object modules should be made relocat­
able whenever possible. This facilitates the ability
to link with other object modules and also provides the
ability to load object programs anywhere in memory.
Relocatable addressing also allows the creation of
libraries of common! y used procedures (including math
or input/output routines) that can be linked selec­
tively into several programs as desired.

Relocation refers to the ability to bind a program
module and its data to a particular memory area after.
the assembly process. The output of the assembler is
an object module that contains enough information to
allow the linker to assign that module to a memory
area. Since many modules can be loaded together to
form a complete program, a need for inter-module
communication arises. f'or example, one module can
contain a call to a routine that was assembled as part
of another module and is located in some arbitrary part
of memory. Therefore, the assembler must provide
information in the object module that allows the linker
to link int.er-module references.

There are
relocating
assembler:

several major
assembler as

advantages to using the
compared to an absolute

1) Assignment of modules to memory areas can be
handled by the linker rather than requiring the
programmer to assign fixed absolute locations vi a
the "ORG" pseudo-op; thus, modules can be relocated
without requiring reassembly.

2) If errors are found in one module, only that one
module needs to be reassembled and relinked with
the other modules, thus increasing software
productivity.

3) Programs can be structured into independent
modules, coded separately and assembled, even
though other modules may not yet exist.

4) Libraries of commonly used modules can be built and
then linked with programs without requiring
reassembly of the library module.

5) Communications between overlay segments can be
achieved through methods similar to normal
(non-overlay) inter-module references.

Unless otherwise specified, the output of the assembler
is in relocatable form. During program execution, the
instruction will be located at the memory location

1-3

DI

Overview

1.3 RELOCATION AND
LINKING
(Continued)

1.3.1 Inter-Module
References

1.3.2 Sections

specified by the 1 inker (assigned origin plus the
relative offset). Thus, a relocatable module has its
first instruction located at. the memory location that
is the assigned origin of the module as determined by
the linker.

To achieve relocation, addresses are altered at linkage
time for both inst.ructions that reference memory
locations and data values that serve as pointers to
memory locations. This process is transparent to the
programmer.

The asmSB assembler supports two pseudo-ops (or pseudo
operation codes), GLOBAL and EXTERNAL, so that
instructions can refer to "names" (either data values
or entry points) in other assembled modules. GLOBAL
means that the listed names are defined in this module
and are ava.ilable for use by other modules. EXTERNAL
means that the names are used in this module, but are
defined in another module where they are declared to be
global. The syntax requires one or more names to
follow either pseudo-op.

The GLOBAL name can be either absolute or relocatable.
A portion of the object module contains a list of both
the GLOBALs that are defined in the module, and the
EXTERNALS that the module references. One function of
the linker is to mat.ch all the EXTE.RNALs with the
appropriate GLOBALs so that every instruction will
reference the correct address during program execution.

A more thorough discussion of pseudo-ops is given in
Chapter 3.

Programs can be divided into sections that are mapped
into various areas of memory when linked or loaded for
execution. A single module can contain several
sections, each allocated to a different area in program
or data memory. Likewise, portions of a section can be
spread through several different modules and
automatically combined into a single area by the
linker.

Sections provide the programmer with complete control
over the memory mapping of a program without requiring
absolute addressing. A module can contain some
relocatable sections and some absolute sect.ions, but a
single section is either entirely absolute or entirely
relqcatable. Section 3.4.2 describes section definition
in more detail.

2.1 INTRODUCTION

Assembly Language Syntax

OIAPTER Z
ASSDISLY LANGUAGE SYNTAX

The basic component of an asmSB program is the assembly
language statement. An assembly language statement can
be up to 128 characters in length and is terminated by
an end-of-line character. A statement can include four
fields:

• Statement labels
• An opcode
• Operands
• Comments

A typical asm58 statement might look like:

LABEL1: LO R2,RS ;comment

where LABEL1 is the statement label (signified by the
colon), LO is the opcode, R2 is the destination
operand, RS is the source operand, and a comment is
indicated by a semicolon. for compatibility with
Zilog 's ZBOOO assembler, comments can begin with //,
although this assembles slower.

All fields are optional; label and comment fields can
start in any column; the opcode and operands cannot
start in column 1. The statement can have zero or more
operands, depending on the opcode selected. The
following sections describe convent ions that must be
observed in writing a program statement.

2.2 SYteOLIC NOTATION Symbolic identifiers can include opcodes, pseudo-ops,
special symbols, and labels. Legal identifiers can be
up to 127 characters in length, and consist of one or
more alphabetic characters, digits, or the characters:
comma (,), dollar sign ($), question mark (?), period
(.), at sign (3), or single quote mark ('). Upper and
lower case letters are considered unique, and all
characters are significant.

The only restriction on symbols is that they cannot
start with a digit or single quote mark ('). Since
some older programs can rely on having only the first
eight characters of a symbol being significant, a
global variable called $'SYMLEN is provided to limit
the number of significant characters in a symbol.
Appendix B describes global variables in more detail.

2-1

Assembly Language Syntax

2.2.1 Labels Any statement that is referenced by another statement
must be labeled, and any statement can contain one or
more labels. A label is a symbolic identifier that can
represent:

• An address (up to 16 bits)
• An 1/0 port
• A floating-point number
• Other quantities with up to 80 bits of significance.

When a label is being defined, it can start in any
column when immediately followed by a colon (:). If a
colon is not used, the label must start in column 1.
More than one label can be defined on the same line,
for example:

LABEL1: LABEL2: ••• LABELn: statement

A GLOBAL label can be declared by placing two colons
after the label on the line where it is defined (e.g.,
LABEL 1::). An EXTERNAL label can be declared by two
pound signs that immediately follow (e.g., LABEL2/UI).
A t.ilde ("') as the first character of a label makes it
local to a block, as defined by the .BEGIN and .END
pseudo-ops.

A label definition preceded by a colon (:LABEL1) speci­
fies that the data type of the label will be the same
as the type generated by the rest of the statement.
These labels can be checked across module boundaries.

Labels for registers are given special treatment.
Indexing is the only val id operation. Table 2-1 lists
the ZB System and Control register names. Table 2-2
lists the Super8 system register names and Table 2-3
lists the Super8 Mode and Control register names.

The names of opcodes can be used freely as labels in
the same assembly language statements. The assembler
can recognize when a string is being used as an opcode
rather than as a label.

2-2

Assembly Language Syntax

Table 2-1. ZS System and Control Registers

Decimal Hexadecimal
Address Address Register name Identifier

255 FF Stack Pointer (bits 7-0) SPL
254 FE Stack Pointer (bits 15-8) SPH
253 FD Register Pointer RP
252 FC Program Control Flags FLAGS
251 FB Interrupt Mask Register IMR
250 FA Interrupt Request Register IRQ
249 F9 Interrupt Priority Register IPR
248 F8 Ports 0-1 Mode P01M
247 F7 Port 3 Mode P3M
246 F6 Port 2 Mode P2M
245 F5 TO Prescaler PREO
244 F4 Timer/Counter TO
243 F3 T1 Prescaler PRE1
242 F2 Timer/Counter T1
241 F1 Timer Mode TMR
240 FO Serial 1/0 SIO
127-4 7F-04 General-purpose registers

3 03 Port 3 P3
2 02 Port 2 P2

Ill 1 01 Port 1 P1
0 00 Port O PO

Table 2-Z. Super8 System Registers

Decimal Hexadec.illal
Address Address Register name Identifier

222 DE System mode SYM
221 DD Interrupt Mask Register IMR
220 or: Interrupt Request Register IRQ
219 DB Instruction Pointer (Bits 7-0) IPL
218 DA Instruction Pointer (Bits 15-8) IPH
217 D9 Stack Pointer (Bits 7-0) SPL
216 DB Stack Pointer (Bits 15-8) SPH
215 07 Register Pointer 1 RP1
214 06 Register Pointer 0 RPO
213 05 Program Control flags Flags
212 D4 Port 4 P4
211 03 Port 3 P3
210 02 Port 2 P2
209 01 Port 1 P1
208 DO Port 0 PO

Assembly Language Syntax

Table Z-3. SuperB Mode and Control Registers

Deci•al Hexadecimal Bank
Address Address Number Register Name Identifier

255 FF 0 Interrupt Priority IPR
1 Wake-up Mask WUMSK

254 FE 0 External Memory Timing EMT
1 Wake-Up Match WUMCH

253 FD 0 Port 2/38 Interrupt Pending P2BIP
252 FC 0 Port Z/3A Interrupt Pending P2AIP
251 PS 0 Port Z/30 Mode P2DM

1 UART Mode B LIMB
250 FA 0 Port 2/3C Mode P2CM

1 UART Mode A UMA
249 F9 0 Port 2/38 Mode PZBM

1 UART Baud Generator (bits 7-0) UBGL
248 F8 0 Port 2/3A Mode P2AM

1 UART Baud Generator (bits 15-8) UBGH
247 F7 0 Port 4 Open Drain P40D
246 F6 0 P·ort 4 Direction P4D
245 F5 0 Handshake 1 Control H1C
244 F4 0 Handshake 0 Control HOC
241 F1 0 Port Mode PM

1 OMA Count (bi ts 7-0) DCL
240 FO 0 Port D Mode POM

1 OMA Count (bits 15-8) OCH
Z39 EF 0 UART Data UIO
237 ED 0 UART Interrupt Enable UIE
236 EC 0 UART Receive Control URC
235 EB 0 UART Transmit Control UTC
229 E5 0 CTR 1 Capture (bits 7-0) C1CL

1 CTR 1 Time Constant (bits 7-0) C1TCL
228 E4 0 CTR 1 Capture (bits 15-8) C1CH

1 CTR 1 Time Constant (bits 15-8) C1TCH
227 E3 0 CTR 0 Capture (bits 7-0) COCL

1 CTR 0 Time Constant (bits 7-0) COT CL
226 E2 0 CTR 0 Capture (bits 15-8) COCH

1 CTR 0 Time Constant (bits 15-8) COT CH
225 E1 0 CTR 1 Control C1CT

1 CTR 1 Mode C1M
224 EO 0 CTR 0 Cont rol COCT

1 CTR 0 Mode COM

?-4

Assembly Language Syntax

Z.Z.2 Condition Codes Condition codes are recognized only as operands of in­
structions that take them. for example, the statement

Binary ttr-Jnic

0000 F
1000 T
0111 c
1111 NC
0110 z
1110 NZ
1101 PL
0101 MI
0100 ov
1100 NOV
0110 EQ
1110 NE
1001 GE
0001 LT
1010 GT
0010 LE
1111 UGE
0111 ULT
1011 UGT
0011 ULE

JR Z, Label

causes Z to be treat.ed as the condition code for zero.

The condition codes and flag settings they represent
are listed in Table 2-4.

Table Z-4. ZS and Supers Condition Codes

Meaning Flags Set

Always False
Always True
Carry C=1
No Carry C=O
Zero Z=1
Not Zero Z:O
Plus 5:0
Minus 5:1
Overflow V=1
No Overflow V:O
Equal Z=1
Not Equal Z=O
Greater than or equal (5 XOR V) = 0
Less than (5 XOR V) = 1
Greater than (Z OR (5 XOR V)) = 0
Less than or equal (Z OR (5 XOR V)) = 1
Unsigned greater than or equal C=O
Unsigned less than C=1
Unsigned greater than (C = 0 AND Z = 0) =
Unsigned less than or equal (CORZ)=1

2-S

Assembly language Syntax

2.3 OPERATIONS ANO
OPERANDS

2.4 CIH4ENTS

An operation is a mnemonic that represents an
instruction.

The assembler also supports a restricted mode that
handles only za instructions.

An operation in a program statement can be followed by
one or more operands, which are general expressions
separated by spaces or commas. Macro parameter lists
are the only exceptions since they require parameters
to be separated by commas only. Commas do not have the
same effect as spaces because two commas in a row
denote an omitted operand. A carriage return always
serves as a st atement de 1 imi t er. No more than one
statement can be on single line, and a single statement
cannot span more than one line.

An operand in a program statement can be:

• Data to be processed (immediate data)

• The designation of a location from which data is to
be taken (source address)

• The designation of a location where data is to be
placed (destination address)

• The address of a program location to which program
control is to be passed

• A condition code, used to direct program flow

Although there are a number of val id combinations of
operands, there is one basic convention to remember:
the destination operand always precedes the source
operand(s). Refer to the specific instructions in the
appropriate (Super8 or ZS) Technical Manual for valid
operand combinations, and for information about
addressing modes.

A comment is any string of characters following a
semicolon (;)or two slashes (//) in a statement line.
Comments have no functional effect on the assembly of a
program--they are used only for documentation.

Comments can start in any column of a line, and a
statement can consist of only a comment. Comments
terminate at the end of the line.

2-6

2.5 ARITt14ETIC
EXPRESSIONS

2.6 EXPRESSIONS
AN> OPERATORS

Assembly language Syntax

The asmS8 assembler has a rich set of operators and
expressions to handle arithmetic operations. This
section first deals with specific formats for
arithmetic statements, then follows with a discussion
of constants and special symbols.

Arithmetic expressions can be as long as 80 bits, and
are examined from left to right. Precedence (order of
evaluation) is as follows:

• Operators and operands are accunulated. As soon as
an operator is found that has a precedence level
greater than or equal to' the last operator
encountered, all lower-precedence operations up to
the new operator are performed.

• first prefix operations are performed, from right to
left (inside out}, then postfix and infix operations
are performed from left to right.

• Operands (labels and subexpressions in parentheses)
are considered to be of precedence level O.

The operators and their precedence {order of evalu­
ation) are given in Table 2-5. The character "-" after
the precedence means that the operation is not present
in the ZS assembler. The last column gives the PLZ/ASM
equivalent, if there is one.

2-7

DI

Assembly Language Syntax

Table 2-5. Operations and Precedence

Operator function Precedence PLZ/ASM

operand
label 0 label
constant 0
constant
(...) Grouping 0 (...)

prefix
~ Register indirect ~

Declare local symbol
postfix

ffil Declare external

prefix
"HB High byte 2-
"LB Low byte 2-
"HW High word 2-
"LW Low word 2-
+ Unary plus 2 +

Unary minus 2
AC 1 's complement 2 LNOT
"B Binary-coded decimal 2
A BYTE Byte (8 bit) 2-
/\WORD Word (16 bit) 2-
/\LONG Long (32 bit) 2-
/\QUAD Quad (64 bit) 2-
/\QUINT Quint (80 bit) 2-
/\ ADDR Address (16 bit) 2-
/\REV Byte reverse 2-
"FWD Forward reference Z-
/\EXT External reference 2-

infix
** Exponentiation 3-

* Multiplication 4 *
I Division 4 I

/\MOD Modulo 4- MOD
A (Shift right 4 SHL
A> Shift left 4 SHR

2-8

Assembly Language Syntax

Table 2-5. Operations and Precedeuce (Continued)

Operator

+

ACAT

"S or A&
..... ,
AX

=
>
<
>=
<=

AUGT
"ULT
<>

"SEQ
"SNE

infix
&&

II

runtlion Precedence PLZ/ASM

Addition 5
Subtraction 5
String concatenation 5-

Bitwise AND 6
Bitwise OR 7
Bitwise exclusive OR 7

Equal B-
Greater than B-
less than 8-
Greater than or equal B-
less than or equal 8-
Unsigned > 8-
Unsigned < 8-
Not equal 8-
Strings equal 8-
Strings not equal 8-

prefi'x
Not-zero

Logical AND

Logical OR

9-

9-

10-

+

LAND
LOR
LXOR

prefix
I
11
postfix
adr[•••]
adr(•••)

Immediate operand

Indexing
Indexing

11

11-
11 a()

Arithmetic is NOT DEFINED on floating-point values.

The result of a test is zero if false, and all ones if
true. For purposes of conditional assembly and logical
operations, non-zero is considered to be TRUE.

Parentheses can be used for grouping as well as to
alter the predecedence of evaluation.

Indexing (parentheses or square brackets) can be
applied to st rings to extract a particular character,
or to addresses or offsets to denote indexed
addressing.

2-9

l!I

Assembly Language Syntax

Form Ex•ple

?? <=
"? "<
"'x "FS
id

2.7 CONSTANTS

The type operators (like ./\BYTE) can be used to tell
the assembler that a forward or external reference will
fit in a given size.

The Af'WD and "EXT operations return 1 if the value of
their operand is forward-referenced or external;
they otherwise return a.
There are no restrictions on the relocation modes of
integer operands, since the linker can support
arbitrary integer arithmetic on relocatable and
external symbols. However, operations on strings
cannot be passed to the linker.

Some expression operators consist of multiple
characters. There are three main forms, as shown in
Table 2-6.

Table 2-6. Expression Operators

Description

Two punctuation characters
""" plus single punctuation character
""" plus any number of letters
An identifier

No identifiers are used as expression operators in the
assembler as supplied. However, the user can define
them to achieve compatibility with PLZ/ASM and other
assemblers.

A constant value is one that doesn't change throughout
the program, Constants can be expressed as numbers
(integer and floating-point), character sequences, or
as symbolic names representing a constant value.
Constants supported by the assembler include integers,
floating-point numbers, characters, and character
strings.

Integers start with a digit (leading zero is
sufficient) and can contain a base indicator:

B
D, E or e
H or X
0 or Q

2-10

Binary
Decimal
Hexadecimal
Octal

Permitted
Characters

2.8 LOCATION
llJUNTER

q
n
r
f
t
b

II

\
%dd
ddd

Assembly Language Syntax

This is an extension that was made to allow C-style
constants. Base indicators and hexadecimal digits can
be in any mixture of upper and lower case. The default
value is decimal.

In addition, the PLZ base-tag convention is supported:

!'.I
!'G(B)
!'.1(2)

Hexadecimal
Octal
Binary

Floating-point nuntiers start with a digit. and contain a
decimal point. They can optionally contain the letter
E or e followed by an optional sign and an exponent.
Floating-point numbers are always in base 10.

Characters and character strings are enclosed in single
or double quotes. If an escape character is defined,
C-type escape sequences are permitted. The escape
character is the value of the special symbol $'STRESC.
The characters permitted after the escape character and
their meanings are noted in Table 2-7.

Table 2-7. Escape Characters

Meaning

The string's quote character
Newline (line feed)
Carri age return
Form feed
Tab
Backspace
Single quote
Double quote
Backslash
(2 hex digits)--arbitrary character
(1-3 octal digits)--arbitrary character

The number base of the digits form of escape is given
by $'SBASE (default 8).

The symbols ($) or (.) refer to the current value of
the location counter (corresponding to the address
where the first byte generated by the statement is
loaded). Either one of these symbols can be used as an
operand in any arithmetic expression (but their use
does not imply the use of PC-relative addressing). The
arithmetic expression is computed at assembly or link
time.

2-11

Cll

3.1 INTRODUCTION

J. Z .RELOCATION
PSEtllO-DPS

DIAPTER J
PSElllO-<FS

Assembly Language Pseudo-Ops

The asmSB assembler permits the use of pseudo-ops
(pseudo operation codes}. These pseudo-ops do not
cause the assembler to generate object code, but rather
specify actions to be taken by the assembler. Pseudo­
ops use the same line format as standard instructions
(label, opcode, operands, comments). Pseudo-ops can
begin in any column except column 1. The pseudo-ops
permitted by the asmSB assembler are grouped by func­
tion and are described in the following sections.
Table 3-1 lists the pseudo-op abbreviations and their
meanings.

Table }-1. Pseudo-Op Description Abbreviations

Abbreviations

n
s
sn
d
p
f
1

11
?

Notes for Table }-1:

Meaning

Numeric expression
String
String or numeric expression
Decimal digit
Actual parameter (see note 1)
Formal parameter (see note Z)
Optional label, more than one
Permitted
Required label, one only
Optional

1. An actual parameter is a string enclosed by macro
quotes (normally { •••) } or any sequence of
characters delimited by a conna, space (if $'BSEP
is set}, end-of-line, or semicolon. (Refer to
$'MACBEG and $'MACENO in section 4.Z.Z}.

2. A formal parameter is either a label or an actual
parameter that does not start with a character that
can denote a label.

The following pseudo-ops are used to specify the
relocation of code within memory.

3-1

Assembly Language Pseudo-Ops

3.2.1 Origin General Form:

l .ORG n

Description:

The .ORG pseudo-op sets the location counter to the
value of the expression n. In specifying where the
object code is located, the location counter serves the
same function for the assembler as the Program Counter
does for the CPU.

The location counter is set to the value of the expres­
sion, so that the next machine instruction or data item
will be located at the specified address. The expres­
sion must not contain any forward references, but can
be relocatable. The location counter is initially set
to zero, so if no .ORG statement precedes the first
instruction or data byte in a section, that byte will
be assembled at location zero (relative to .the start of
the section). Any label that is present will be assign­
ed the same value as the expression. A module can
contain any number of .ORG statements.

The mode of the expression in an .ORG pseudo-op cannot
be external and depends on the relocatability of the
section. If a section is absolute, the .ORG pseudo-op
serves to assign an absolute address to both the loca­
tion counter and the label. In addition, any .ORG
statement wi 11 also set the starting address of an
absolute sect.ion when it immed.iately follows the
.SECTION statement.

In a relocatable section, the expression will be
treated as any offset relative to the origin of the
module. Thus the label on an .ORG statement in a
relocatable module will have a relocatable mode. for
example, the effect of the statement

Label
LAB:

Opcode
.ORG

Operand
100

within a relocatable section would be to set the loca­
tion counter to the beginning of the section plus 100,
assign the label LAB the value 100, and make that
label relocatable. A simply relocatable expression in
an .ORG can be used to change to another section.

Relocatable sections do not generally contain .ORG
statements, since the pseudo-op is useful only to
reserve space within the module (in a manner similar to
the .DErS pseudo-op).

3-2

J.2.2 Phase

J.2.J Dephase

J.J LABEL DEFINITION
PSEl.DJ-OPS

Assembly Language Pseudo-Ops

Example:

START1: .ORG %10 ;Start section 1 at the hex
;address 10

General Form:

.PHASE n

Description:

The .PHASE pseudo-op assembles the code that follows to
execute starting at address n. Labels will be defined
as if an origin pseudo-op (.ORG) had been issued, but .
the address into that code is not affected. This
pseudo-op is provided for pieces of code.that are going
to be moved (for example, from ROM to RAM) before they
are executed.

Example:

.PHASE 500

General rom:

.DEPHASE

Description:

The .DEPHASE pseudo-op terminates the effect of a
preceding .PHASE pseudo-op.

Exaaple:

.DEPHASE

Labels on instruct ions are automatically assigned the
current value of the location counter. The pseudo-ops
.EQU and .SET can be used to assign arbitrary values to
symbols. To facilitate inter-module conmunication,
certain symbols can be declared to be either .GLOBAL or
.EXTERNAL to a particular module. .EQU and .SET re­
quire that the expression have no forward references
(it can contain previously declared external symbols).

3-3

III

Assembly Language Pseudo-Ops

l.3.1 E"'9ate General F or11:

11
11

.EQU n
= n

Description:

The .EQU pseudo-op assigns the value of the expression
n to the symbol in the label field 11. The label
cannot be redefined in . this source program. The
expression can include a register or other addl'essing
mode.

Using symbolic names for constant values in place of
numbers enhances the l'eadability of a program and tends
to make the code self-documenting. For instance, the
symbol 81.f'LEN is a more descriptive name for a value
than just the number 72. Furthermore, if a value that
is used throughout a program needs to be changed, the
.EQU statement can simply be modified l'ather than
finding all occurrences of the numbel' 72.

Example:

TWO .EQU 2 ;the symbol TWO now has
;a value of 2

l.l.2 Set Re-definable General For•:
Label

11 .SET n

Description:

This pseudo-op assigns the value of the expression n to
the symbol in the label field 11. The label assignment
can be changed using a subsequent .SET pseudo-op. The
.SET pseudo-op is identical to the .EQU pseudo-op
except that the assigned label can appear in multiple
.SET pseudo-ops in the same program.

In general, use the .EQU for symbol definition since
the assembler will generate error messages for
multiply-defined symbols. This can indicate spelling
errors or some Qther oversight by the user. .SET
should be reserved for special cases where the same
symbol is re-used (e.g., in conjunction with the
assembly of macros) •

• EQU and .SET require that the expl'ession have no
forward references (it can have external symbols
provided they have been declared previously).

3-4

Example:

COND1
COND1

.SET

.SET
150
COND1 + 100

Assembly Language Pseudo-Ops

;set initial value to 150
;increment value by 100

J.3.3 Define General rorm:
Arbitrary Synbol

J.3.4 Global

J.3.5 External

11 .DEr 1

Description:

This pseudo-op defines the label 11 as an exact synonym
for the operand symbol 1. Neither the label nor the
operand needs to be an identifier; they may be
punctuation characters such as + • If the label is
non-alphabetic, it must be preceded by a colon.

Exa111ple:

AND .DEF "&

STORE .DEF LD

: I .DEF "I

General r orm:

.GLOBAL 111, ••• lln

Description:

These pseudo-ops specify that each of their operands
are symbols that are defined in the current module and
that the name and value of each operand is made
available t.o other modules that contain an .EXTERN
declaration for any symbol. There can be one or more
names separated by commas (or no names at all) •
• GLOBAL pseudo-ops can occur anywhere within the source
text •

• GLOBAL ENTRYA, EXITA, ENTRYB, EXITS

General rorm:

.EXTERN 111, ••• lln

Description:

This pseudo-op specifies that each of the operands are
symbols that are defined in some other module, but are
referenced in the current module. The syntax is the
same as • GLOBl\L.

3-5

DI

Assembly Language Pseudo-Ops

J.J.5 External
(Continued)

J.4 tlDJl..E AND
SECTION
PSEll>O-OPS

J.4.1 Module
Definition

J.4.2 Section
Definition

.EXTERN pseudo-ops can occur anywhere within the source
text. The .EXTERN pseudo-op assigns each name an
external mode, which allows the name to be used in
arbitrary expressions elsewhere in the module, subject
to the rules for external expressions. If an .EXTERN
and a .GLOBAL definition for the same label appear in
the same module, the .GLOBAL pseudo-op will take
precedence.

An external symbol can .be assigned a value using either
a .SET or .EQU pseudo-op. An. assigned value wil 1 be
the default value of a symbol if it is not resolved
when the object module is linked.

Example:

.EXTERN ENTRYA, EXITA, ENTRYB, EXITS

The following pseudo-ops are used to name the object
module, and to define speci fie areas of source code
that can be relocated separately.

General Form:

.MODULE p p?

Description:

This pseudo-op defines the name of the module. If
given, the second parameter becomes the target name in
the object module. Otherwise, the target name will be
"Z8" or "ZS8". The target name is a universal object
file format field name for use by other programs such
as a loader (see the Universal Object File Utilities
User's Guide).

There can be only one .MODULE statement in a module.
If no .MODULE statement. is given, the module takes the
name of the source file with its extensi9n (.s)
deleted.

Ex1111ple:

.MODULE Main ;Define main module

General fot'll:

l .SECTION 11, ••• ln
1 .PSEC 11, ••• ln

3-6

Assembly Language Pseudo-Ops

Description:

These pseudo-ops start a section. The first parameter
is the name of the section, and can be null when
terminated by a comma. Any other parameters are the
universal object file attributes of the section (see
the Universal Object Files Utilities User's Guide).
When given, a statement label is defined as a pseudo-op
that will direct assembly output to that section.
Assembly can also be directed to the section by giving
another .SECTION command with the same section name.

The following section changing
predefined:

operations

Name

.DATA

.CODE

.BSS

.ABS

.CSEC

Meaning

Data section
Code section
BSS section
Absolute section
Common section

are

All of these direct· assembly to a section with the same
name and appropriate attributes. The default section
is a nameless and relocatable section; to return to the
default section, use a .SECTION command with no
parameters.

The following operations enclose blocks of local
symbols:

Nme

.BEGIN
{
.END
}

Meaning

Begin local symbol block
Begin local syll'bol block
End local symbol block
End local syll'bol block

Local symbols are defined wit~ a tilde character '!-...." at
the beginning. .BEGIN and { are synonymous, as are
.END and I· Furthermore, blocks can be nested.

Example:

.BEGIN
L1:

.REG IN
L 1:

.END

.END

3-7

ID

Assembly Language Pseudo-Ops

3.4.2 Section
Definition
(Continued)

3.5 GENERAL DATA
DEF"INITION
OPERATION

Note that a .END without a matching .BEGIN will mar.-k
the end of the source program (see section 3.7.1).

Pseudo-ops are provided to define message, text,
character string, and data size.

3.5.1 Data Definition General for11:

3.5.2 Sized Data
Definition

l .IX) sn1, ••• ,snn
or

1 .IX) repeat-count(data)

Description:

This pseudo-op assembles a list of data items. Any
number of expressions or strings can be listed in a .DD
statement. Each item listed is stored in its natural
length: expressions involving addresses or forward
references are stored in 16-bit words, expressions with
values less than 256 are stored in one 8-bit byte, and
strings are stored "as is."

Strings that are not used as numbers (no arithmetic
operators are applied to them) are not affected by
special symbols $'STRLEN and $'STRORD. Operators like
.BYTE can be used· to force an expression to an
appropriate length.

Ex•ple:

DATA: .IX) ZED+100
.IX) "This is a string"

General f oN:

I .BYTE
l .WORD
l .LONG
l .QUAD
I .QUINT
l .EXTEND

n1, ••• ,nn
n1, .•• ,nn
n1, ••• , nn
n1, ••• , nn
n1, ••• ,nn
n1, ••• , nn

Description:

These pseudo-ops define data of a specified size. Any
number of expressions can be listed provided each fits
within the specified data size. These pseudo-ops take
each operand and generate object code of the size
specified, locating the most significant byte at t.he

3-8

l.5.3 Define ASCII
String

l.5.4 .Define ASCII
String with
Length

3.5.5 Define ASCII
String with
Flagged Last
Character

Assembly Language Pseudo-Ops

current value of the location counter, and the next
most significant byte at the next higher location.

The mode of the expression can be either absolute,
relocatable, or external. If present, a label will be
assigned the address of the first data item. String
arguments are alw.ays subject to the processing
specified by $'SnLEN and $ 1 SnORD (i.e., converted to
numbers).

Exa11ple:

WORDS: .• WORD 512,ABLE

General f or11:

1 .ASCII sn1, ••• ,snn

Description:

This pseudo-op defines message strings or byte data. A
parameter can be either an expression or a string. Any
number of parameters can be 1isted. An expression must
fit into a single byte area; strings are stored
completely.

Exa11ples:

label Opcode Operand

MSG: .ASCII 'HELLO THERE', x+1

General form:

.ASCIL s1, ••• ,sn

Description:

This pseudo-op defines strings, with each string
preceded by a byte containing its length. Parameters
can also be expressions, each of which is also stored
with a byte ·containing its length.

Exa11ple:

TXT: .·ASCIL 'OPEN I, 'CLOSE I

General for11:

l .ASCIC s1, ••• ,sn

This pseudo-op defines character strings. The
high-order bit of the last character of each string is
set to one (1); the high-order bi ts of all other
characters in the string are set to zero (0).

3-9

ID

Assembly Language Pseudo-Ops

l.l.5 Define ASCII
String with
Flagged Last
Character
(Continued)

Example:

CHARS: .ASCIC 'ABCD','EfGH'

l.5.6 Define Null- General Fol'll:
Terminated ASCII
Strings 1 .ASCIZ s1, ••• ,sn

l.5.7 Reserve Space

·Description:

This pseudo-op defines character strings with an
additional zero (null) byte at the end of each string.

Example:

label: ASCIZ '51',52

General Fol'll:

1 .BLKB n
1 .BLKW n
l .BLKL n
1 .BLKQ n
l .BLKX n

Description:

Reserve a block of bytes
Reserve a block of words
Reserve a block of longwords
Reserve a blo~k of quadwords
Reserve a block of extended words

These pseudo-ops reserve space in differing word
lengths. The operand n specifies the number of words
to be reserved for data storage starting at the current
value of the location counter. Except for .BLKB, these
pseudo-ops are aligned on word boundaries. When
present, a label will be assigned the address of the
first byte reserved.

The expression can evaluate to any quantity; however,
the mode must be absolute and not have forward
references. Any symbol appearing in the expression
must have been defined before the assembler encounters
the expression.

Example:

label: .BLKW 5

J.5.8 General ·Reserve General Fol'll:
Block

l .BLOCK n, n?

}-10

j.5.9 Alignment

j.5.10 Even or Odd
Aligraent

Assembly Language Pseudo-Ops

Description:

This pseudo-op reserves n bytes of space in memory.
One operand (n) specifies the number of bytes to be
reserved for data storage starting at the current value
of the location counter. When provided, the second
operand is the alignment boundary for the block. Any
label will be assigned the address of the first
reserved byte.

The expression can evaluate to any quantity, but the
mode must be absolute and not have forward references.
Any symbol appearing jn the expression must be defined
before the assembler encounters the expression.

This pseudo-op reserves storage by incrementing the
location counter by the value of the first expression.
Since no object code is generated into the storage
area, the contents of storage during initial program
execution are unpredictable.

Example:

STORE: .BLOCK 512

General Form:

.ALIGN n?

Description:

This pseudo-op aligns the next item on a multiple of n
bytes. If the next statement is a .SECTION pseudo-op,
the start of the section is aligned. If the parameter
n is omitted, a word alignment default value of 2 is
assumed,

Exaaple:

FORMAT: .ALIGN 4

General Form:

.EVEN

.ooo
Description:

These pseudo-ops align the next item on an even or odd
boundary.

3-11

DI

Assembly Language Pseudo-Ops

3.6· CDNDITIOllAL
ASSEtllLY
PSEll>O-OPS

Conditional assembly permits the programmer to inhibit
or enable the assembly of defined portions of the
source code depending on the presence of a pre­
determined condition.

General Fora:

• Start Conditional Block
.Ir n

• Separate True and False Conditional Blocks
.ELSE

• End Conditional Block
.END IF

Description:

.IF defines the start of the conditional code block and
tests for the true (non-zero) or false (zero) state of
the expression n. .ELSE separates the code that is
assembled if the expression is true from the code that
is assembled if the condition is false (.ELSE is
optional). .ENDIF defines the end of the conditional
code block. Conditional blocks can be nested up to 80
deep.

The mode of the expression can be either relocatable or
absolute. Forward or external expressions generate a
warning, and are always considered to be true.

Notice that the definition of symbols within a
conditional assembly block can be inhibited, and thus
references to these symbols elsewhere in the module can
cause undefined symbol errors. In particular, the
.label on an .ELSE pseudo-op is part of the true block,
and will not be defined if the assembly is inhibited on
that portion of the program.

Conditional assembly is particularly useful when a
program needs to contain similar code sequences for
slightly different applications. Rather than generating
a multitude of p{ograms to handle these situations, the
·application-dependent sections of code can be enclosed
by the conditional pseudo-ops within a single program.
Thus, the user generates different object modules from
subsequent assemblies of the same source by changing
the values of several symbols used to control the
conditional assembly.

Another common use of conditional assembly is in
conjunction with macros to control generation of code
dependent on the value of parameters (see Chapter 4).

Assembly language Pseudo-Ops

Example:

IF FLAG

;assembled if FLAG non-zero

.ELSE

;assembled if FLAG equals zero

.END IF

J. 7 ASSEMBLER CONTROL Pseudo-ops are provided to: control the format of
PSEtllO-OPS printed listings, control the information presented on

the listings, control the printing of errors or warning
messages, and to establish the compatibility mode ·of
the assembler.

J. 7.1 End Program General for11:

1 .END n?

J.7.2 Include

Description:

This pseudo-op specifies the end of source code. Any
expression is taken as the starting address of the
program. The .END pseudo-op signifies the end of the
source program, and thus any subsequent text w.ill be
ignored and will not appear in a listing.

Any label will be assigned the current value of the
location counter. Operands are ignored. If a source
program does not contain an .END pseudo-op, then the
end-of-file mark in the assembler command line will
signify the end of the program.

Examples:

EXIT: .END ;end of module

.END START

General foni:

.INCLUDE p

Description:

This pseudo-op includes the source file identified by
the parameter (p) into the source stream immediately
following this statement. The usual use of this
statement is to include items such as files of macro
definitions, lists of .EXTERNAL declarations, lists of

3-13

m

Assembly Language Pseudo-Ops

3.7.2 Include
(Continued)

3.7.J Page Title

J.7~4 Page Subtitle

.EQU statements, or commonly used subroutines into the
source stream. However, this pseudo-op can be used
anywhere in a program. The file name given must follow
the normal convention for specifying source file names •

• INCLUDE pseudo-ops can be used in files specified in a
preceding .INCLUDE pseudo-op. These pseudo-ops can be
nested to a depth of four deep. If the • INCLUDE
pseudo-op appears within a macro definition, the file
wi 11 be included every time the macro is expanded •
• INCLUDE pseudo-ops can be used in conditionals.

Ex•ple:

• INCLUDE FILE 1

General Forni: X

.TITLE p1, ••• pn

Description:

This pseudo-op causes the string specified in
parameters to be printed at the top of each page of the
listing.

Ex•ple:

.TITLE Program for Interest Calculation

General Fora:

.SUBTTL p1, ••• pn

Description:

This pseudo-op prints str.ings specified in parameters
on the second line of following pages in the listing.
The subtitle on the first page of the listing will be
the name of the source file. An outer layer of quotes
will be ignored.

Example:

.SUBTTL Created by P. Jones

3-14

Assembly Language Pseudo-Ops

3.7.5 Listing Control General for11:

• Control Listing

.LIST p

• Control Warning Listing

.WLIST p

• Control Conditional Listing

.CLIST p

• Control Macro Listing

.MUST p

• Control Macro Object Listing

.XLIST p

Description:

These pseudo-ops cause an output listing file to be ID
generated according to the pseudo-op(s) used and the
parameter given.

The parameters given for each of the listing control
pseudo-ops can be any one of the following symbols:

Value

ON

OFF

PUSH

POP

Meaning

Include in listing file.

Do not include in listing file.

Save current value of pseudo-op control
status in appropriate variable.

Restore saved value of pseudo-op control
status from appropriate variable.

The variables $'LIST, $'WLIST, $'CLIST, $'MLIST, and
$'XLIST are used as 80-bit pushdown stacks to store and
recover the current state of the parameter given in
their respective list control pseudo-op. The parameter
state value is stored in the low-order bits of the
variable.

Pseudo-op .LIST with p=ON enables a listing file of the
source to be generated. When P:OFF, .LIST prevents a
listing file from being generated.

3-15

Assembly Language Pseudo-Ops

l.7.5 Listing Control
(Continued)

l.7.6 List Error
Message

l.7.7 List Warning
Message

Pseudo-op .WLIST with p:ON enables warning messages to
be included in the listing file. When p=OfF, .WLIST
prevents warning messages from being included in the
listing file.

Pseudo-op .CLIST with p:ON enables those portions of
the source file that are conditionally skipped to be
included in the listing file. When p=OFF, .CLIST
prevents those "conditionally skipped" portions of the
source file from being included in the listinq file.

Pseudo-op .MLIST with p=ON enables the expansion of
macros to be included in the list.ing file. When
p=Off, .MUST prevents macl'o expansions from being
included in the listing file •

. Pseudo-op .XLIST with p=ON enables the listing of
binary object code to be included in the listing file.
When p=OFF, .XLIST prevents these extra binary object
lines from being included in the listing file.

The default value fol' all listing control listings is
p:ON.

Exaaple:

.LIST ON

General Form:

.ERROR s

Description:

This pseudo-op causes the message given in stl'ing (s)
to be generated and sent to the terminal and the
listing.

Exaaple:

.ERROR 'SYNTAX ERROR'

General Foni:

.WARN s

Description:

This pseudo-op causes the warning message given in
string (s) to be generated and sent to t.he st.andard
output •

• WARN 'POSSIBLE PROBLEM HERE'

3-16

3.7.8 Start New Page

3.7.9 Search Library

J.7.10 Object file
c~

Assembly Language Pseudo-Ops

General Fon

.PAGE n

Description:

This pseudo-op causes the listing to be paginated. The
page size is set at the value given in n. If n is
zero, the assembler will not paginate the listing.
Page size is given in number of lines per page.

The default action is not to paginate the listing,
since system utilities can be used for that purpose •
• PAGE with no operand simply starts a new page in the
listing, and is equivalent to a line containing a form
feed.

Exmple:

.PAGE 66 ;set page size to 66 lines

General Fon:

1 .LIBRARY p 11, ••• ln?

Description:

This pseudo-op puts a directive into the object file
that instructs the linker to search a given library
file (the first parameter) for the definitions of
external symbols. If labels are given in the
parameter(s), the library is searched only for those
external labels.

Example:

.LIBRARY clib.a Subr1, Subr2, SubrJ

.LIBRARY xyzlib

General Forti

.OCOMMENT n? s

Description:

This pseudo-op enters the text given in string (s) into
the object file listing as a comment. Any value given
for n is used as the "comment level" value. Comments
below a link-time settable level will appear in load
maps.

Example:

.OCOMMENT J,'tables start here'

3-17

DI

4.1 GENERAL
DESCRIPTION

DfAPTER 4
MACROS

Macros

Macros provide a means for users to define their own
opcodes or to redefine existing opcodes. A macro is a
portion of a program invoked by its name. It begins
and ends with pseudo-ops, and can contain any assembler
constructs, including pseudo-ops and macros. Two types
of macros can be used in asmSB programs: MACROs and
PROCs.

MACROs are the familiar string substitution macros used
in other assemblers. Parameter strings provided in the
macro's invocation are substituted in the body of the
macro. MACRO parameters must be separated by commas,
and can contain blanks.

PROCs are call-by-value, procedure-type macros. The
parameters provided in the invocation statement are
expressions, and their values are substituted into the
body of the macro. As with ordinary opcodes, PROC
parameters can contain blanks either before or after
operators. Likewise, commas between expressions are
optional.

In general, a macro definition consists of the block of
code beginning with a "start" pseudo-op and ending with
an "end" pseudo-op. The statement containing the start
pseudo-op requires a label. It serves as the name of
the macro, and is used to invoke it. Each statement
between the start and end statements is stored in the
assembler's symbol table as the definition of the
macro. These statements can include macro invocations
and definitions. In addition, recursion is allowed.

The statements of the macro body are not assembled at
definition time. As a result, they do not define
labels, generate code, or cause errors until the macro
is invoked. Macros must be defined before they are
invoked.

A macro is invoked by using its name as an opcode at
any point after the definition. Every macro definition
has an implicit parameter named #$YM. This can be
referenced by the user in the macro body, but should
not explicitly appear in the .MACRO statement.

4-1

ID

Macros

4.1 GENERAL
II:SCRIPTIDN
(Continued)

4.2 MAcRo DR
STRING MACRO

At expansion time, each occurrence of 11$YM in the
definition is replaced by a string representing a 4-
digit hexadecimal constant. This string is constant
over a given macro expansion. However, it increases by
one for each macro invocation to avoid multiple
definition errors. This provides unique labels for
different expansions of the same parameter.

MACRO is the string substitution macro.

4.2.1 MACRO Definition_ The general form of a MACRO definition is:

4.2.2 MACRO Special
Symbols

11 .MACRO f1, ••• ,fn ;start MACRO pseudo-op.

(statements that form body of MACRO)

.ENDM ;end MACRO pseudo-op.

The required label serves as the name of the MACRO, to
be used on invocation. A formal parameter (f1, ••• ,fn)
can be either a label or a string of any characters
except blanks, commas, or semicolons. furthermore,
parameters must start with a character that cannot
start a label. formal parameters that are labels are
recognized in the macro body anywhere a label would be
recognized (i.e., labels or opcodes). Parameters that
are not labels are recognized anywhere (e.g., within
labels, strings, or comments).

Parameters are scanned left . to right for a match, so
the user is cautioned not to use parameter names that
are prefix substrings of later parameter names. formal
parameters are not entered in the symbol table.

MACROs can contain any statements including MACRO
definitions and invocations, other assembler
directives, and conditional assembly. The pseudo-ops
.MACRO and .ENDM specify the beginning and end of a
MACRO, respectively.

The following special symbols are defined for use with
MACROs.

They can be reassigned using .SET pseudo-ops, and can
be used as operands anywhere a label could be used.

$'MACEVAL '%'

Used to replace an expression, used as a macro para­
meter, with its value.

4-2

Macros

$'MACQUOTE '!'

Used to include the followjng character in a macro
parameter, despite any special meaning it may have.

$'MACBEG •I'
$'MACEND ')•

Beginning and ending macro parameter delimiters. If
different, they must be properly nested, or they could
cause an escape with $'MACQUOTE.

4.2.3 MACRO Invocation A MACRO is invoked when its name is used as the
and Expansion opcode. The rest of the line is made up of "actual

parameters"--strings of characters separated by
commas, possibly enclosed jn quotes (normally
{ •••)) • Quoted parameters can include commas as well.

4.2.4 MACRO Example

4.3 PROC OR PROCEDURE
MACRO

The actual parameters on the invoking line replace the
corresponding formal parameters from the defining line
wherever they occur in the body of the macro. If
legal, a formal parameter is replaced wherever it [II
occurs as an identifier. If a formal parameter is not
a legal identifier, it is matched as a string and is
replaced wherever it occurs. The statement is
assembled after these substitutions, and the resultant
code placed in the program in place of the invoking
statement.

Assuming that the label UPDATE has already been
defined, the .MACRO invocation

START UPDATE 46,99,current

substitutes the actual parameter strings 46, 99, and
"current" for the first, second, and third formal
parameters within the body of the MACRO named UPDATE.

The procedure (or .PROC) macro is a call-by-value
macro. The major difference between a .MACRO and a
.PROC is that the parameters of the procedure-type
macro are expressions that are evaluated before the
.PROC is expanded.

4.3.1 PROC Definition The general form of a PRDC definition is:

11 .PROC 11, ••• ,ln ;start PROC pseudo-op

(statements that form body of PROC)

.ENDP ;end PRDC pseudo-op

4-3

Macros

4.3.1 PROC Definition
(Continued)

4.3.Z PROC Invocation
and Expansion

4.3.3 PRDC Exa11ple

4.4 SPECIAL MACRO
PSElllO-OPS

4.4.1 Exit Macro

The required label is the name of the .PROC and is used
to invoke it. The pseudo-ops .PROC and .ENDP specify
the beginning and end of a PROC-type macro. The formal
parameters are labels that are recognized only when
they are used in expressions or as statement labels.
PROCs can contain any statements including macro
definitions and invocations, assembler commands, and
conditional assembly.

When a PROC is invoked, the expression parameters are
evaluated and substituted into the body of the PROC as
values. Then the PROC is assembled normally and its
code is inserted into the program in place of the
invocation statement.

For example, assume the following PROC definition:

ESTIMATE .PROC total,average

(body of PROC)

.ENDP

Using this invocation:

ESTIMATE sum+12,sum+12/num

would substitute the value of sum+12 for the formal
parameter "total", and the value of sum+12/num for
"average" in the ESTIMATE PROC. These values would
then be used by the assembler in assembling the PROC in
the program stream.

Several special pseudo-ops are provided for use within
MACROs. These pseudo-ops can stop macro expansions,
define labels for each macro ir:ivocation, or provide
looping capabilities.

General For•:

.EXITM n?

Description:

This pseudo-op stops the expansion of a macro. It can
be used in all forms of a macro (MACRO or PROC) to
force an early termination of the MACRO's expansion.
The exit can be made on a conditional basis.

4-4

4.4. 2 Define Local
Symbols

4.4.3 Repeat

4.4.4 Repeat On
Para.eter List

Macros

General Form:

.LOCAL 11, ••• ,ln

Description:

This pseudo-op defines local symbols within a macro.
Each symbol given in the list with this pseudo-op is
replaced in the expansion of the MACRO by the symbol
" •• XXXX" where XXXX represents a hexadecimal number
unique for each local symbol in each invocation of the
macro. When used, the • LOCAL pseudo-op must
immediately follow the defining MACRO or PROC
statement.

Example:

POWER: • MACRO x
.LOCAL two,three ;two and three will be assigned

;a unique symbol for each
;invocation of the macro.

General form:

.REPT n

.ENDM

Description:

The block of statements between .REPT and .ENDM is
repeated n times. The value of n must be absolute and
not include forward references.

Ex&11ple:

.REPT 4

.ENDM

General Form:

• IRP f, s

.ENDM

4-5

III

Macros

4.4.4 Repeat On
Par~er List
(Continued)

Description:

The quotes are stripped from the string, and the block
of statements between .IRP and .ENDM is repeated, with
each parameter in the string s replacing the formal
parameter f in the expansion of the contained
statement.

Exanple:

.IRP X, "4,8" ;first 4, then 8, is substituted for
;each occurrence of X from here to the
;end of the macro •

• ENDM

4.4.5 Repeat On General Form:
Character String

4.5 SPECIAL MACRO
OPERATORS

4.5.1 •s• Operator

• IRPC f ,s

.ENDM

Description:

The block of statements between • IRPC and .ENDM is
repeated, with each character in s replacing the formal
parameter f in the contained statements.

Exmple:

.IRPC X, "1234567" ;the characters 1

ENDM

;through 7 are substituted
;for the seven iterations of this
;macro.

The following sections discuss operators and symbols
that are useful mainly within macro definitions· or
invocations. These symbols are %, ! , {) , "DEF, and

"NUL. Note that the single-character operators can be
redefined by changing the value of the corresponding
special symbols.

The symbol % in front of a label in a macro parameter
causes the numeric value of the expression to be
converted to a decimal ASCII string and incorporated
into the parameter. The symbol % will be recognized
within a symbol to construct new symbols. The label's
value must be absolute, and may not contain a forward
reference.

4-6

4.5.2 '!' Operator

4.5.3 1 ••• 1

4.5.4 l\[)[F 1

4.5.5 AMJL

Macros

The special symbol $MACEVAL can be used to change the
character used for this function from its initial
default of "%".

The character ! in front of a character in a macro
parameter makes that character part of the parameter,
even if the character is normally treated specially
(e.g., , comma, etc.). The special symbol $MACQUOTE
can be used to change the character used for this
function from its initial default of "!".

A macro parameter enclosed in braces will have an outer
layer of braces eliminated. The beginning and ending
braces are the value of $'HACBEG and $'HACENO,
respectively, but can be changed.

Beginning and ending braces must be properly nested.
If the beginning and ending characters are the same,
they cannot be nested. However, the character itself
may be entered by either doubling it (e.g., "") or
preceding it with'!'.

/\DEf followed by a symbol expands to a non-zero value
if the symbol has been defined (previous to the current
line) or 0 if the symbol has not been defined.

/\ NUL expands to a non-zero value if it is the last
token on a 1.ine (not counting a comment), or 0
otherwise. The rest of the line is ignored,

4-7

S.1 ASSEMBLER ClllWI>
LINES AM> OPTIONS

Option

-d
-en
-1
-o objfile
-ob
-oc
-on

-os

-ow

-p
-r
-s symfile

-u
-w
-x

Program Invocation

DIAPTER 5
PROGRAM INVOCATION

The asm58 assembler accepts various connand line
options for assembly, creates a listing, and creates
an object file in a universal file format suitable for
use by such utilities as a loader (see the Universal
Object File Utilities User's Guide).

The assembler is invoked as follows:

asmSB [option •••] file

Valid assembler options are listed in Table 5-1.

Table 5-1 • ASBelllbler Options

Meaning

Reserved
Stop after n errors
Produce listing for files in file.1
Specify object file name other than a.out
Produce object in binary form
Produce object in character form
Produce object with file and line number in

comment level 1
Produce object with source lines in comment

level 2
Produce object with user-generated warnings
in comment level 2

Produce listing on standard output
Restrict to ZS instruction set
Get assembler's symbol table initialization

from symfile
Treat undefined symbols as externals
Don't list warnings
Produce cross-reference on file.x

If the -1 option is given and the source filename ends
in ".s", the listing is produced in filename.!. If the
-s flag is not used, the assembler will obtain its
symbols from a file on /z/bin/asm* whose name was
used to invoke the assembler. Normally, this is
/z/bin/lib/asm/asmSB**. The symbol file is an
ordinary ASCII source file, and can contain any
constructs that do not generate object code. This is
used to create custom versions of the assembler.

* for VAX/UNIX it is /usr/local/bin/asm
** for VAX/UNIX it is :/usr/local/bin/asm/asmSB

5-1

DI

Program Invocation

5.2 LISTill: FORMAT

5.J PROGRAM
TERMINATION

The assembler produces a listing of the source program,
along with generated object cod~. The various fields
in the listing format are the heading, the location
counter (LOC), the object code (OBJ CODE), the state­
ment number (LINE#), and the source statement
(SOURCE). They contain the following:

• The heading is on the first page of the listing and
contains the date, time, year, file name, and page
number, as well as the column headings LOC, OBJ
CODE, LINE#, and SOURCE.

• LOC contains the value of the location counter for
statements.

• OBJ CODE contains the qenerated object code. If
a statement does not generate object code, this
field is blank. Relocatable values are represented
as Rsss+nnnnnnnn where ssss is the section number
and nnnnnnnn is the offset within the section.
Externals are noted by the "letter x, with a capital
X representing the first byte. An asterisk (*)
notes other link-time expressions that are not
simply relocatable.

• LINE# contains the sequence number of each line of
the source, starting at 1.

• SOURCE contains the source code including labels,
opcodes, operands, and comments.

Appendix E shows a sample listing.

The assembler returns an error code of 0 if the program
has no errors. Otherwise, the assembler returns an
error code of 1 and error messages wi 11 appear in· the
listing. These error messages will also be sent to the
terminal with the relevant. file and line numbers. If
possible, an object file will be created even if errors
are present. Appendix D lists the et'ror messages and
their explanations.

5-2

Label Pseudo-Op

Relocation Operations

l .ORG
.PHASE
.OEPHASE

Section Operations

l
.MODULE
.SECTION

APPEN>IX A
PSEtllO-OP SlllMRY

Appendix A

The following abbreviations apply to the pseudo-op
summary:

n Numeric expression
s String
sn String or numeric expression
d Decimal digit
p Actual parameter
f Formal parameter
l Label (optional, more than one allowed)
11 Label (required, only one allowed)

Hay be repeated
? Optional
[•••] Not exactly equivalent (either form acceptable)

Operand Meaning

n
n

p p?
1 •••

Origin
Phase
Oephase

Module name
Define a section

Label Definition Operations

ll
11

.EQU

.SET

.GLOBAL

.EXTERNAL

n
n
11
11

Data·Definition Operations

l .00 sn •••
1 • BYTE n
l .WORD n
l .LONG n
1 .QUAD n
1 .QUINT n
I .EXTEND n
1 .ASCII sn •••
l • ASCIL s ...

Equate
Define a label
Global symbols
External symbols

Define dat.a
Define byte data
Define word data
Define longword data
Define quadword data
Define 5-byte (extended) data
Define extended data
Define ASCII string
Define ASCII string with length

A-1

III

Appendix .0.

Label Pseudo-Op Operand Meaning

Data Definition Operations - (Continued)

l .ASCIC s

l .ASCIZ s

Reserve Space Operations

l .BLOCK n n?

1 .BLKB n
1 .BLKW n
l .BLKL n
1 .BLKQ n
1 .BLKX n

Conditional Assembly

.IF n

.ELSE n

.END IF n

Assembler Control Operations

.END n?

.INCLUDE p
• TITLE p
.SUBTTL p
.LIST p
.WllST p
.MLIST p
• XLIST p
.ERROR s
.WARN s
.PAGE n?
.LIBRARY p l?
.OCOMMENT n? s

Macro Operations

11 .MACRO f .•.
.ENDM

11 .PROC l •••
• ENOP

.EXITM n?

.LOCAL 1

.REPT n

.!RP f s

.IRPC f s

.ENOM

Define ASCII string with
flagged last character

Define null-terminated
ASCII string

Reserve a block with optional
alignment

Reserve a block of bytes
Reserve a block of words
Reserve a block of longwords
Reserve a block of quadwords
Reserve a block of extended data

Start conditional block
False branch of conditional
End conditional block

End program
Include a source file
Listing t.i tle
Subtitle
Control listing
Control conditional listing
Control macro listing
Control macro object listing
List an error message
List a warning message
Start a new page
library search
Object comment

Define macro
End MACRO definition

Define a procedure
End PROC definition

End macro expansion
Define macro labels
Repeat.
Repeat on parameter list
Repeat on character string
End repeated block

A-2

Symbol

$'LIST
$'WLIST
$'CLIST
$'MUST
$'XLIST

APPENDIX B
SPECIAL SYtBll...S

Appendix B

The following special symbols are defined. They can be
reassigned using .SET pseudo-ops, and can be used as
operands anywhere a label could be used. If needed,
additional special symbols will be defined later.

Initial
Value Meaning

1
1
1
1
1

Controls the whole listing
Controls the warning listing
Controls listing of false conditional
Controls macro expansion listing
Controls listing of object code that does
not fit on original source line

These special symbols are used for control of the
listing. If the low-order bit is 1, the corresponding
item is listed. If the low-order bit is O, the item is
not listed.

$'LIST controls the listing as a whole, $'WLIST
controls the listing of warning messages, $'CLIST the
listing of false conditionals, $'MLIST the listing of
macro expansions, and $1-XLIST the listing of object
code that does not fit on the original source line.

Default
Yalue

$'SYMLEN 127

The maximum number of significant characters in a
symbol.

$'UCASE 0

Treat all letters as uppercase.

$'STRESC 1 \ 1

The string-escape character. The meaning of the
following character is given in the table in section
3.3.2 (constants).

B-1

Appendil< B

$'51LEN
$'510RD
$'52LEN
$'520RD

10
'M'
10

'H'

The length and byte-order ('M' = most significant
byte first, 'L' = least significant byte first) of
strings surrounded by single and double quotes
respectively. In the byte-order parameters, only
the least-significant bit is actually looked at. Thus,
0 and 1 can be used instead of 'L' and 'H',
respectively.

$'SxLEN and $'SxORD are provided because previous
ZBOOO assemblers have evaluated byte order differently
when using strings as numbers.

$'BASE
$'ZBASE
$'SBASE

10
10
8

The input default number base for numbers that start
with non-zero digits, numbers that start with zero, and
string escape sequences respectively. Setting $'ZBASE
to 8 gives the C convention for octal numbers. Terms
like $'BASE must be in the range 2 to 16.

$'ADRLEN 2

The length in bytes of an address.
$'ADRLEN is 2.

$'ADRORD 'M'

The value for

The byte-order of an address. $'ADRORD is normally
left as 'M'; this can be changed if the assembler is
being used to produce non-ZB0,000 code.

$'ADRTYPE 0

This indicates the current addressing type: 0 =
linear, 1 = segmented, 2 = compact (nonsegmented).

$'ALIGN 1

The alignment boundary for inst ructions and data with
length >= 1 byte.

B-2

Appendix B

$'EPUID 0

The current EPU Identifier. Unused.

$'ZB 0 (1 if -r option)

When set to 1, the SuperB instruction set is accepted.
When cleared to 0 (explicitly or with an option), the
ZB instruction set is accepted.

$'0PCOPT 0

If the value is not zero and an opcode is missing on a
line containing expressions, the opcode .ll> (arbitrary­
length data) will be assumed.

B-J

Appendix C

APPDl>IX C
ASCII CHARACTER SET

Numeric
Graphic Deci•l Hex C~s

0 0 Null
1 1 Start of heading
2 2 St art of text
3 3 End of text
4 4 End of transmission
5 5 Enquiry
6 6 Acknowledge
7 7 Bell
8 8 Backspace
9 9 Horizontal tabulation

10 A Line feed
11 8 Vertical tabulation
12 c form feed
13 D Carriage return
14 E Shift out
15 F Shift in
16 10 Data link escape
17 11 Device control 1
18 12 Device control 2
19 1J Device control 3
20 14 Device control 4
21 15 Negative acknowledge
22 16 Synchronous idle
23 17 End of block
24 18 Cancel
25 19 End of medium
26 1A Substitute
27 18 Escape
28 1C file separator
29 10 Group separator
30 1E Record separator
31 1F Unit separ.ator
32 20 Space
33 21 Exclamation point

" 34 22 Quotation mark
I 35 23 Number sign
$ 36 24 Dollar sign
'<I 37 25 Percent sign
& 38 26 Ampersand
I 39 27 Apostrophe

40 28 Opening parenthesis
41 29 Closing parenthesis

* 42 2A Asterisk
+ 43 28 Plus

44 2C Conrna

C-1

Appendix C

ASCII Character
Set Numeric
(Continued) Graphic Deci-1 Hex C~s

45 20 Hyphen (minus)
46 2E Period (decimal point)

I 47 2F Slant
0 48 JO Zero
1 49 J1 One
2 50 J2 Two
J 51 JJ Three
4 52 34 Four
5 53 35 Five
6 54 36 Six
7 55 37 Seven
8 56 38 Eight
9 57 39 Nine

58 JA Colon
; 59 JB Semicolon
< 60 JC Less than
= 61 JD Equals
> 62 J[Greater than
? 63 JF Question mark

• 64 4{) Commercial at
A 65 41 Uppercase A
B 66 42 Uppercase B
c 67 43 Uppercase C
D 68 44 Uppercase D
[69 45 Uppercase E
F 70 46 Uppercase F
G 71 47 Uppercase G
H 72 48 Uppercase H
I 73 49 Uppercase I
J 74 4A Uppercase J
K 75 48 Uppercase K
L 76 4C Uppercase L
M 77 40 Uppercase M
N 78 4E Uppercase N
0 79 4F Uppercase 0
p 80 50 Uppercase P
Q 81 51 Uppercase Q
R 82 52 Uppercase R
s BJ ·53 Uppercase S
T 84 54 Uppercase T
u 85 55 Uppercase U
v 86 56 Uppercase V
w 87 57 Uppercase W
x 88 58 Uppercase X
y 89 59 Uppercase Y
z 90 5A Uppercase Z
[91 58 Opening bracket

' 92 5C Reverse slant
] 93 50 Closing bracket
A 94 5E Circumflex

95 5F Underscore

' 96 60 Grave accent

C-2

Appendix C

ASCII Character
Set Nu-ric
(Continued) Graphic Decimal Hex Coiments

a 97 61 Lowercase a
b 98 62 Lowercase b
c 99 63 Lowercase c
d 100 64 Lowercase d
e 101 65 Lowercase e
f 102 66 Lowercase f
g 103 67 Lowercase g
h 104 68 Lowercase h
i 105 69 Lowercase i
j 106 6A Lowercase j
k 107 6B Lowercase k
1 108 6C Lowercase 1
m 109 60 Lowercase m
n 110 6E Lowercase n
0 111 6F Lowercase o
p 112 70 Lowercase p
q 113 71 Lowercase q
r 114 72 Lowercase r
s 115 73 Lowercase s
t 116 74 Lowercase t

DI u 117 75 Lowercase u
v 118 76 Lowercase v
w 119 77 Lowercase w
x 120 78 Lowercase x
y 121 79 Lowercase y
z 122 7A Lowercase z
l 123 78 Opening (left) brace
I 124 7C Vertical line
) 125 70 Closing (right) brace

126 7E Tilde
127 7F Delete

C-3

Appendix D

APPEtl>IX D
ERROR tESSAGES AM> EXPLANATIONS

EM>Ir (end conditional) expected

.Ir was seen but not followed by a matching .ENDIF.

ENDM (end 11aero definition) expected

End of file was reached while still inside a macro definition.

can't set read-only symbol

An attempt was made to set a special symbol such as $'PASS, that cannot be
redefined.

extended instruction set not allo.ed

An attempt was made to use a Super8 instruction or addressing mode not
available on the ZB CPU while the -r option or $' ZS flag is in
effect.

extra parameters (ignored)

A pseudo-op was passed more parameters than it requires. The extra
parameters will be ignored.

extra right parenthesis (ignored)

A right parenthesis was seen without a matching left parenthesis. It is
ignored.

forward reference not allowed here

An expression in an IF, COND, EQU, or SET contains a forward reference
(a label that has not been defined earlier in the program).

label required

A pseudo-op such as EQU or SET, which require a label, does not have one.

line too long (truncated)

The source file or a macro expansion contains a line longer than 512
characters.

link-ti.e expression not allowed here

An expression that cannot be evaluated by the assembler has been used in a
context where the assembler needs to know its value.

D-1

III

Appendix D

llissinQ par.ater

A pseudo-op has been given fewer parameters than it requires.

llissinQ right parenthesis (assu•ed)

The end of an expression was encountered without finding a right
parenthesis to match a left parenthesis already seen. The assembler
will evaluate the expression as if the missing parenthesis had been at
the end of the expression.

Multiple definition

A symbol has been used as a label, defined by an EQU, or defined as a
macro more than once.

no i..,ut file

The assembler cannot open the specified input file.

operand expected (0 8SSU!Ed)

A binary expression operator (such as +) was not followed by an operand.
A zero operand is assumed.

operation not defined on register

An expression operator (such as *) has been applied to a register value for
which it is not valid. The only expression operators that can be applied
to registers are indexing and indirection.

parser stack overflow

The assembler received an expression too complex for it to handle.

phase error-passes out of sync.

Something happened differently on passes 1 and 2 of the assembler. This
can occur if an opcode or pseudo-op is used and later redefined as a macro.

storage allocation failed

The assembler ran out of storage as a result of a combination of symbol
table, macro definitions, and macro invocations.

syntax error

A source statement contains a syntactic error, usually in an expression,
which cannot be otherwise classified.

D-2

Appendix D

undef'ined addressing mode expression

An expression represents an addressing mode not available on the Supers and
ZB CPU, such as (HL + A).

undefined char~ter

A character appears in the input that the assembler does not understand.

undefined synbol

A symbol has been used that is never defined. The value 0 will normally
be used.

value out of range

An expression does not fit in the specified size of field (for example,
an address in a .BYTE statement).

wrong operand type for this operation

An opcode has been given an operand with an addressing mode that does not
apply to it.

D-3

ID

Appendil(E

asmS8 version 1.0 t.z8inst

LOC OBJ LINEii -·-- SOURCE
00000000 123S l adc r3,rS
00000002 1335 2 adc r3,@rS
00000004 1440e3 3 adc r3,64
00000007 14e520 4 adc 32,rS
OOOOOOOa 144020 s adc 32,64
OOOOOOOd 1540e3 6 adc r3,@64
00000010 1Se520 7 adc 32 ,@rs
00000013 1S4U20 8 adc 32 ,@64
00000016 16e340 9 adc r3 ,#64
00000019 162040 10 adc 32 ,#64
OOOOOOlc 172040 11 adc @32 'f/64
OOOOOOlf 17e340 12 adc @r3 ,1164

13
00000022 023S 14 add r3,rS
00000024 033S lS add r3 ,@rs
00000026 0440e3 16 add r3,64
00000029 04e520 17 add 32,rS
0000002c 044020 18 add 32,64
0000002f 0540e3 19 add r3,@64
00000032 OSeS20 20 a4d 32 ,@rs
0000003S OS4020 21 add 32,@64
00000038 06 e340 22 add r3, 1164
0000003b 062040 23 add 32'1/64
0000003e 072040 24 add @32,#64
00000041 07e340 2S add @r3, #64

26
00000044 523S 27 and r3,r5
00000046 5335 28 and r3,@rs
00000048 S440e3 29 and r3,64
0000004b 54e520 30 and 32 ,rs
0000004e 544020 31 and 32,64
00000051 SS40e3 32 and r3 ,@64
OOOOOOS4 SSe520 33 and 32 ,@r5
OOOOOOS7 S54020 34 and 32,@64
OOOOOOSa S6e340 3S and r3,#64
OOOOOOSd S62040 36 and 32 'f/64
00000060 s 72040 37 and @32,#64
00000063 57e340 38 and @r3, #64

39
00000066 d4e2 40 call @rr2
00000068 d420 41 call @32
0000006a d60040 42 call 64

43
0000006d ef 44 ccf

4S
0000006e b0e3 46 clr r3
00000070 b020 47 clr 32
00000072 ble3 48 clr @r3
00000074 bl20 49 clr @32

so
00000076 60e3 Sl com r3
00000078 6020 S2 com 32

E-1

Appendix E

0000007a 6le3 53 COii. @r3
0000007c 6120 54 CODI @32

55
0000007e a235 56 cp r3,r5
00000080 a3JS .57 cp r3,@r5
00000082 a440e3 58 cp r3,64
00000085 a4e520 59 cp 32,r5
00000088 a44020 60 cp 32,64
0000008b a540e3 61 cp r3 ,@64
0000008e a5e520 62 cp 32 ,@rs
00000091 a54020 63 cp 32,@64
00000094 a6e340 64 cp r3,H64
00000097 a72040 65 cp @32,#64
0000009a a7 e340 66 cp @r3,#64

67
0000009d 40e3 68 da r3
0000009f 4020 69 da 32
OOOOOOal 4le3 70 da @r3
000000a3 4120 71 da @32

72
OOOOOOaS 00e3 73 dee r3
000000a7 0020 74 dee '32
000000a9 Ole3 75 dee @r3
OOOOOOab 0120 76 dee @32

77
OOOOOOad 80e2 78 de cw rr2
OOOOOOaf 8020 79 decw 32
000000 bl 81 e3 80 de cw @r3
000000b3 8120 81 de cw @32

82
000000b5 8f 83 di

84
0000001>6 3afc 85 djnz r3,$

86
000000b8 9f 87 ei

88
000000b9 3e 89 inc r3
OOOOOOba 2020 90 inc 32
OOOOOObc 2le3 91 inc @r3
OOOOOObe 2120 92 inc @32

93
OOOOOOcO a0e2 94 in cw rr2
000000c2 a020 95 incw 32
000000c4 ale3 96 lncw @r3
000000c6 al20 97 incw @32

98
000000c8 bf 99 iret

100
000000c9 8d0400 101 jp 1024
OOOOOOcc ed0400 102 jp nz,1024
OOOOOOcf 30e2 103 jp @rr2
OOOOOOdl 3020 104 jp @32

105
000000d3 8bfe 106 jr $
000000d5 ebf e 107 jr nz,$

E-2

Appendix [

108
OOOOOOd7 3c40 109 ld r3,#64

110
000000d9 38 e5 111 I4 r3,r5
OOOOOOdb 3840 112 ld r3,64
OOOOOOdd 5920 113 Id 32,rS

114
OOOOOOdf e335 llS Id r3 ,@rs
OOOOOOel f335 116 ld @r3,r5

117
000000e3 e44020 118 Id 32,64

119
000000e6 e335 120 Id r3,@r5
000000e8 eS40e3 121 Id r3,@64
OOOOOOeb e5e520 122 Id .32,@rs
OOOOOOee eS4020 123 Id 32,@64

124
oooooon 3c40 12S Id r3,#64
000000£3 e62040 126 Id 32,#64
000000£6 e7 e340 127 Id @r3,1164
000000£9 d62040 128 Id @32,#64

129
OOOOOOfc £335 130 Id @r3,r5
OOOOOOfe f S40e3 131 Id @r3, 64
00000101 f5e520 132 Id @32 'rs
00000104 £54020 133 Id @32,64

134
00000107 e73540 13S Id r3 ,64(r5)
OOOOOlOa d7S340 136 Id 64(r3) ,rs

137
OOOOOlOd c234 138 Ide r3,@rr4
0000010£ d252 139 Ide @rr2, rS

140
00000111 c334 141 Idci @r3 ,@rr4
000001.13 d3S2 142 Idci @rr2 ,@rs

143
00000115 8234 144 Ide r3,@rr4
00000117 9252 14S Ide @t"r2, rS

146
00000119 93S2 147 ldei @u2,@rS
0000011 b 8334 148 ldei @r3,@rr4

149
OOOOOlld ff lSO nop

lSl
OOOOOlle 423S 1S2 or r3,rS
00000120 433S 153 or r3 ,@rs
00000122 4440e3 154 or r3,64
0000012S 44e520 155 or 32,r5
00000128 444020 156 or 32,64
0000012b 4540e3 157 or r3,@64
0000012e 45e520 158 or 32,@r5
00000131 454020 159 or 32,@64
00000134 46e340 160 or r3,IJ64
00000137 462040 161 or 32,1164
0000013a 472040 162 or @32,#64

E-3

Appendix E

0000013d 47e340 163 or @r3,#64
164

00000140 50e3 165 pop r3
00000142 5020 166 pop 32
00000144 5le3 167 pop @r3
00000146 5120 168 pop @32

169
00000148 70e3 170 push r3
0000014a 7020 171 push 32
0000014e 7le3 172 push @r3
0000014e 7120 173 push @32

174
00000150 cf 175 ref

176
00000151 af 177 ret

178
00000152 90e3 179 rl r3
00000154 9020 180 rl 32
00000156 9le3 181 rl @r3
00000158 9120 182 rl @32

183
0000015a 10e3 184 rlc r3
0000015c 1020 185 rlc 32
0000015e lle3 186 rle @r3
00000160 1120 187 rle @32

188
00000162 e0e3 189 rr r3
00000164 e020 190 rr 32
00000166 ele3 191 rr @r3
00000168 el20 192 rr @32

193
0000016a c0e3 194 rre r3
0000016e e020 195 rrc 32
0000016e cle3 196 rrc @r3
00000170 cl20 197 rre @32

198
00000172 3235 199 she r3,r5
00000174 3335 200 she r3,@r5
00000176 3440e3 201 she r3,64
00000179 34e520 202 she 32,rS
0000017e 344020 203 she 32,64
0000017£ 3540e3 204 she r3,@64
00000182 35e520 205 she 32,@r5
00000185 354020 206 she 32,@64
00000188 36e340 207 she r3,#64
0000018h 362040 208 she 32,#64
0000018e 372040 209 she @32,#64
00000191 37e340 210 she @r3 ,#64

211
00000194 df 212 sef

213
00000195 d0e3 214 sra r3
00000197 d020 215 sra 32
00000199 dle3 216 sra @r3
0000019h dl20 217 sra @32

E-4

Appendix E

218
0000019d 3170 219 srp il70h

220
0000019£ 2235 221 sub r3,rS
OOOOOlal 2335 222 sub r3 ,@rs
00000la3 2440e3 223 sub r3,64
00000la6 24e520 224 sub 32,rS
00000la9 244020 22S sub 32,64
OOOOOlac 2S40e3 226 sub rJ,@64
OOOOOlaf 2Se520 227 sub 32 ,@rs
000001 b2 254020 228 sub 32,@64
000001 b5 26e340 229 sub r3,#64
900001 b8 262040 230 sub 32,#64
OOOOOlbb 272040 231 sub @32,#64
OOOOOlbe 27e340 232 sub @r3,#64

233
OOOOOlcl f0e3 234 swap r3
00000lc3 f020 23S swap 32
OOOOOlcS fle3 236 swap @r3
OOOOOlc7 fl20 237 swap @32

238
00000lc9 6235 239 tcm r3,r5
OOOOOlcb 6335 240 tcm r3 ,@rs
OOOOOlcd 6440e3 241 tcm r3,64
OOOOOldO 64e520 242 tcm 32,rS
00000ld3 644020 243 tcm 32,64
00000ld6 6S40e3 244 tcm r3 ,@64
00000ld9 6Se520 24S tcm 32 ,@rs
OOOOOldc 6S4020 246 tcm 32,@64
OOOOOldf 66e340 247 tcm r3,#64
00000le2 662040 248 tcm 32,#64
OOOOOleS 672040 249 tcm @32,#64
00000le8 67e340 250 tcm @r3 ,#64

251
OOOOOleb 7235 2S2 tm r3,r5
OOOOOled 733S 253 tm r3 ,@rs

2S4
OOOOOlef 7440e3 2SS tm r3,64
00000lf2 74e520 2S6 tm 32,rS
000001£5 744020 2S7 tm 32,64
000001£8 7S40e3 258 tm rJ,@64
OOOOOlfb· 7Se520 2S9 tm 32,@rs
OOOOOlfe 7S4020 260 tm 32,@64
00000201 76e340 261 tm r3,#64
00000204 762040 262 tm 32,#64
000002Q7 772040 263 tm @32,#64
0000020a 77e340 264 tm @r3 ,#64

26S
0000020d b235 266 xor r3,r5
0000020f b335 267 xor r3,@rS
00000211 b440e3 268 xor r3,64
00000214 b4c520 269 xor J2,r5
00000217 b44020 270 xor 32,64
000002la bS40e3 271 xor r3,@64
000002ld b5eS20 272 xor 32 ,@rs

E-5

Appendix E

00000220 b54020 ·273 xor 32,@64
00000223 b6c340 274 xor r3,1164
00000226 b62040 275 xor 32,1164
00000229 b72040 276 xor @32,1164
0000022c b7e340 277 xor @r3, 1164

278
279
280 ;defined register names
281

0000022£ 38f f 282 ld r3,spl
00000231 38fe 283 ld r3,sph
00000233 38fd 284 ld r3,rp
00000235 38f c 285 ld r3,flags
00000237 38fb 236 ld r3,imr
00000239 38fa 287 ld r3 ,irq
0000023b 38£9 288 ld r3,ipr
0000023d 38£8 289 ld r3,p01m
0000023£ 38f7 290 ld r3,p3m
00000241 38£6 291 ld r3 ,p2m
00000243 38£5 292 ld r3,pre0·
00000245 38£4 293 ld r3, tO
00000247 38£3 294 ld r3,prel
00000249 38£2 295 ld r3, tl
0000024 b 38£1 296 ld r3,tmr
0000024d 38£0 i97 ld r3 ,sio
0000024£ 3803 298 ld r3,p3
00000251 3802 299 ld r3,p2
00000253 3801 300 ld r3,pl
00000255 3800 301 ld r3,p0

302
303
304 ;defined register names
305

00000257 38ff 306 ld r3,SPL
00000259 38fe 307 ld r3 ,SPH
0000025b 38fd 308 ld r3,RP
0000025d 38fc 309 ld r3,FLAGS
0000025£ 38fb 310 ld r3,IMR
00000261 38fa 311 ld r3,IRQ
00000263 38£9 312 ld r3,IPR
00000265 38£8 313 ld r3,P01H
00000267 38£7 314 ld r3,P3M
00000269 38£6 315 ld r3_,P2M
0000026b 38£5 316 ld r3,PRE0
0000026d 38£4 317 ld r3,TO
0000026£ 38£3 318 ld r3,PRE1
00000271 38£2 319 ld r3,Tl
00000273 38£1 320 ld r3,TMR
00000275 38£0 321 ld r3,SIO
00000277 3803 322 ld r3,P3
00000279 3802 323 ld r3,P2
0000027b 3801 324 ld r3,Pl
0000027d 3800 325 ld r3,PO

326
327 ;test for condition codes

E-6

Appendix E

328
0000027£ Od0080 329 jp f,128

330
00000282 6d0080 331 jp z,128
00000285 ed0080 332 jp nz,128
00000288 6d0080 333 jp eq,128
0000028b ed0080 334 jp ne,128

335
0000028e 7d0080 336 jp c,128
00000291 f d0080 337 jp nc,128

338
00000294 ad0080 339 jp gt,128
00000297 ld0080 340 jp lt,128
0000029a 9d0080 341 jp ge,128
0000029d 2d0080 342 jp le ,128

343
000002a0 dd0080 344 jp pl,128
000002a3 5d0080 345 jp mi,128

346
000002a6 cd0080 347 jp nov,128
000002a9 4d0080 348 jp ov,128

349
000002ac bd0080 350 jp ugt ,128
000002af 7d0080 351 jp ult,128
000002b2 fd0080 352 jp uge,128
000002b5 3d0080 353 jp ule,128

354

E-7

AppendilC E

asmS8 version 1.0
t.s8inst

LOC OBJ LINE# --- SOURCE ---
1 ;reference test source for Super8 instructin set.
2
3

00000000 123S 4 adc r3,r5
00000002 133S 5 adc r3 ,@rs
00000004 1440c3 6 adc r3,64
00000007 14cS20 7 adc 32,rS
OOOOOOOa 144020 8 adc 32,64
OOOOOOOd 1S40c3 9 adc r3,@64
00000010 1Sc520 10 adc 32 ,@rs
00000013 1S4020 11 adc 32,@64
00000016 16c340 12 adc r3,#64
00000019 162040 13 adc 32,#64

14
OOOOOOlc 0235 15 add r3,rS
OOOOOOle 0335 16 add r3,@r5
00000020 0440c3 17 add r3,64
00000023 04c520 18 add 32,rS
00000026 044020 19 add 32,64
00000029 OS40c3 20 add r3 ,@64
0000002c 05c520 21 add 32,@rS
0000002f 054020 22 add 32,@64
00000032 06c340 23 add r3,#64
00000035 062040 24 add 32,#64

25
00000038 S235 26 and r3,r5
0000003a 5335 27 and r3 ,@rs
0000003c 5440c3 28 and r3,64
0000003£ 54c520 29 and 32,rS
00000042 544020 30 and 32,64
OOOOOQ4S SS40c3 31 and r3,@64
00000048 5Sc520 32 and .32 ,@rs
0000004 b SS4020 33 and 32,@64
0000004e 56c340 34 and r3,#64
00000051 562040 35 and 32,#64

36
00000054 673ec5 37 band r3,r5,#7
OOOOOOS7 673e40 38 band r3,64,#7
OOOOOOSa 675fc3 39 band r3,#7 ,rs
OOOOOOSd 675f20 40 band 32,#7,r5

41
00000060 173ec5 42 bcp r3,r5,#7
00000063 173e40 43 bcp r3,64,117

44
00000066 573e 4S bite r3,#7

46
00000068 773e 47 bi tr r3,fl7

48
0000006a 773f 49 bits r3,#7

50
0000006c 073ec5 Sl bor r3,rS,#7
0000006£ 073e40 52 bor r3,64,#7

E-B

Appendi>< E

00000072 075f c3 53 bor r3,#7 ,r5
00000075 075£20 54 bor 32,#7 ,r5

55
00000078 375efd 56 btjrf $,r5,it7
0000007b 375£fd 57 btjrt $. r5, 117

58
0000007e 273ec5 59 bx or r3,r5,#7
00000081 273e40 60 bxor r3,64,#7
00000084 275fc3 61 bx or r3,#7,r5
00000087 275£20 62 bxor 32,#7 ,r5

63
0000008a d420 64 call #32
0000008c f 4e2 65 call @rr2

·0000008e £420 66 call @32
00000090 f 60040 67 call 64

68
00000093 ef 69 ccf

70
00000094 b0e3 71 clr r3
00000096 b020 72 clr 32
00000098 bl c3 73 clr @r3
0000009a bl20 74 clr @32

75
0000009e 60c3 76 com r3
0000009e 6020 77 com 32
OOOOOOaO 6lc3 78 com @r3
000000a2 6120 79 com @32

80
000000a4 a235 81 cp r3 ,r5
000000a6 a335 82 cp r3,@r5
000000a8 a440c3 83 cp r3,64
OOOOOOab a4e520 84 cp 32,r5
OOOOOOae a44020 85 cp 32,64
OOOOOObl a540c3 86 cp r3 ,@64
000000b4 a5c520 87 cp 32,@r5
000000b7 a54020 88 cp 32 ,@64
OOOOOOba a6 c340 89 cp r3,#64

90
OOOOOObd d253fd 91 cpijne r3,@r5,$

92
OOOOOOeO c253fd 93 cpije r3,@r5,$

94
000000c3 40e3 95 da r3
OOOOOOc5 4020 96 da 32
000000c7 4lc3 97 da @r3
000000c9 4120 98 da @32

99
OOOOOOcb 00e3 100 dee r3
OOOOOOcd 0020 101 dee 32
OOOOOOcf Olc3 102 dee @r3
OOOOOOdl 0120 103 dee @32

104
000000d3 80c2 105 de cw rr2
OOOOOOdS 8020 106 de cw 32
000000d7 81 c3 107 dccw @r3

E-9

Appendix E

000000d9 8120 108 de cw @32
109

OOOOOOdb Sf 110 di
111

OOOOOOdc 94c5c2 112 div rr2,rS
OOOOOOdf 9440c2 113 div rr2,64
000000e2 94c520 H4 div 32,rS
000000e5 944020 us div 32,64
000000e8 95c5c2 116 div rr2 ,@rs
OOOOOOeb 9S40c2 117 div rr2 ,@64
OOOOOOee 95c520 118 div 32 ,@rs
OOOOOOfl 954020 119 div 32,@64
000000£4 9640c2 120 div rr2,fl64
000000f7 964020 121 div 32,#64

122
OOOOOOfa 3afe 123 djnz r3,$

124
OOOOOOfc 9f 125 ei

126
OOOOOOfd lf 127 enter

128
OOOOOOfe 2f 129 exit

130
000000ff 3e 131 inc r3
00000100 2020 132 inc 32
00000102 21 c3 133 inc @r3
00000104 2120 134 inc @32

13S
00000106 a0c2 136 in cw rr2
00000108 ·· a020 137 incw 32
OOOOOlOa al c3 138 in cw @r3
OOOOOlOc a120 139 incw @32

140
OOOOOlOe bf 141 iret

142
0000010£ 8d0400 143 jp 1024
00000112 ed0400 144 jp nz,1024
OOOOOllS 30c2 145 jp @rr2
00000117 3020 146 jp @32

147
00000119 Sbfe 148 jr $
OOOOOllb ebfe 149 jr nz,$

lSO
OOOOOlld 3c40 151 ld r3,#64

152
000001 lf 38c5 1S3 ld r3,rS
00000121 3840 1S4 ld r3,64
00000123 S920 lSS ld 32,r5

156
0000012S c735 1S7 ld r3,@rS
00000127 d73S 158 ld @r3,rS

1S9
00000129 e44020 160 ld 32,64

161
0000012c c735 162 ld r3 ,@r5

E-10

Appendix E

0000012e e540c3 163 ld r3,@64
00000131 e5c520 164 ld· .32 ,@r5
00000134 e54020 165 ld 32,@64

166
00000137 3c40 167 ld r3,#64
00000139 e62040 168 ld 32,#6-4
0000013c d6c340 169 ld @r3,#64
0000013f d62040 170 ld @32,#64

171
00000142 d735 172 ld @r3,r5
00000144 f540c3 173 ld @r3 ,64
00000147 f5c520 174 ld @32,r5
0000014a £54020 175 ld @32,64

176
0000014d 873540 177 ld r3,64(r5}
00000150 975340 178 ld 64(r3),r5

179
00000153 473ec5 180 ldb r3,r5,ll7
00000156 473e40 181 ldb r3,64,#7
00000159 475fc3 182 ldb r3,#7 ,r5
0000015c 475f20 183 ldb 32,#7,r5

184
0000015f a7340004 185 ldc r3, 1024(rr4}
00000163 e73440 186 ldc r3,64(rr4}

III 00000166 b7520004 187 ldc 1024(rr2},r5
0000016a f75240 .188 ldc 64(rr2) ,r5
0000016d b7500020 189 ldc 32,rS
00000171 a7500040 190 ldc r5,64
00000175 c334 191 ldc r3,@rr4
00000177 d352 192 ldc @rr2,r5

193
00000179 e234 194 ldcd r3,@rr4
0000017b e334 195 ldci r3,@rr4
0000017d £252 196 ldcpd @rr2,r5
0000017£ £352 197 ldcpi @rr2,r5

198
00000181 a7350004 199 lde r3, 1024(rr4)
00000185 e73540 200 lde r3,64(rr4)
00000188 b7530004 201' lde 1024(rr2),r5
0000018c f75340 202 lde 64(rr2), r5
0000018£ b7510020 203 lde 32,r5
00000193 a75i0040 204 lde r5,64
00000197 c335 205 lde r3,@rr4
00000199 d353 206 lde @rr2,r5

207
0000019b e235 208 lded r3 ,@rr4
0000019d e335 209 ldei r3,@rr4
0000019£ £253 210 ldepd @rr2,r5
OOOOOlal f353 211 ldepi @rr2., r5

212
0000Qla3 c4c4c2 213 ldw rr2,rr4
00000la6 c440c2 214 ldw rr2,64
00000la9 c4c420 215 ldw 32 ,rr4
OOOOOlac c44020 216 ldw 32,64

217

E-11

Appendix E

OOOOOlaf c5c4c2 218 ldw rr2,@r4
00000lb2 c540c2 219 ldw rr2 ,@64
000001 b5 c5c420 220 ldw 32 ,@r4
00000lb8 c54020 221 ldw 32,@64

222
OOOOOlbb c6c20400 223 ldw rr2, 111024
OOOOOlbf c6200400 224 ldw 32,#1024

225
00000lc3 84c5c2 226 mult rr2, r5
OOOOOlc6 8440c2 227 mult rr2,64
00000lc9 84c520 228 mult 32,r5
OOOOOlcc 844020 229 mult 32,64
OOOOOlcf '85cSc2 230 mult rr2 ,@rs
00000ld2 8540c2 231 mult rr2,@64
00000ld5 85c520 232 mult 32,@rS
00000ld8 8S4020 233 mult 32,@64
OOOOOldb 8640c2 234 mult rr2,#64
OOOOOlde 864020 235 mult 32,#64

236
OOOOOlel Of 237 next

238
00000le2 ff 239 nop

240
00000le3 423S 241 <>r r3,r5
OOOOOleS 4335 242 or r3 ,@rs
00000le7 4440c3 243 or r3,64
OOOOOlea 44c520 244 or 32,r5
OOOOOled 444020 245 or 32,64
000001£0 4540c3 246 or r3,@64
000001£3 45cS20 247 or 32,@rS
000001£6 454020 248 or 32,@64
000001£9 46c340 249 or r3, 1!64
OOOOOlf c 462040 250 or 32, 1164

251
000001££ 50c3 252 pop r3
00000201 5020 253 pop 32
00000203 5lc3 254 pop @r3
0000020S 5120 2S5 pop @32

256
00000207 92cSc3 257 popud r3 ,@rs
0000020a 9240c3 2S8 popud r3,@64
0000020d 92c520 259 popud 32,@rS
00000210 924020 260 popud 32,@64

261
00000213 93cSc3 262 popui r3 ,@r5
00000216 9340c3 263 popui r.3,@64
00000219 93c520 264 popui 32,@rS
000002lc 934020 265 popui 32,@64

266
0000021£ 70c3 267 push r3
00000221 7020 268 push 32
00000223 7lc3 269 push @r3
00000225 7120 270 push @32

271
00000227 82c3cS 272 pushud @r3 ,rs

F-12

Appendix E

0000022a 82c340 273 pushud @r3,64
0000022d 8220c5 274 pushud @32, r5
00000230 822040 275 pushud @32,64

276
00000233 83c3c5 277 pushui @r3, rS
00000236 83c340 278 pushui @r3, 64
00000239 8320c5 279 pushui @32,rS
0000023c 832040 280 pushui @32,64

281
0000023f cf 282 ref

283
00000240 d5a5 284 rdr /10a5h

285
00000242 af 286 ret

287
00000243 90c3 288 rl r3
00000245 9020 289 rl 32
00000247 9lc3 290 rl @r3
00000249 9120 291 rl @32

292
0000024b 10c3 293 rlc r3
0000024d 1020 294 rlc 32
0000024f llc3 295 rlc @r3
00000251 1120 296 rlc @32

DI 297
00000253 e0c3 298 rr r3
00000255 e020 299 rr 32
00000257 elc3 300 rr @r3
00000259 el20 301 rr @32

302
0000025b c0c3 303 rrc r3
0000025d c020 304 rrc 32
0000025f clc3 305 rrc @r3
00000261 cl20 306 rrc @32

307
00000263 4f 308 sbO

309
00000264 5f 310 sbl

311
00000265 3235 312 sbc r3, rS
00000267 3335 313 sbe r3 ,@rs
00000269 3440c3 314 sbe r3,64
0000026c 34e520 315 sbe 32,r5
0000026f 344020 316 sbc 32,64
00000272 3540c3 317 she r3,@64
00000275 35e520 318 sbe 32,@rs
00000278 354020 319 she 32,@64
0000027b 36e340 320 she r3 ,f/64
0000027e 362040 321 sbe 32 ,1164

322
00000281 df 323 sef

324
00000282 d0c3 325 sra r3
00000284 d020 326 sra 32
00000286 dl c3 327 sra @r3

E-13

Appendix E

00000288 dl20 328 sra @32
329

0000028a 3180 330 srp 1!128
0000028c 3181 331 srpl i/128
0000028e 3182 332 srpO #128

333
00000290 2235 334 sub r3,r5
00000292 2335 335 sub r3,@r5
00000294 2440c3 336 sub r3,64
00000297 24c520 337 sub 32,rS
0000029a 244020 338 sub 32,64
0000029d 2540c3 339 sub r3 ,@64
000002a0 2Sc520 340 sub 32,@rS
000002a3 254020 341 sub 32,@64
000002a6 26c340 342 sub r3 ,1164
000002a9 262040 343 sub 32'1164

344
000002ac f0c3 345 swap r3
000002ae f020 346 swap 32
000002b0 flc3 347 swap @r3
000002b2 fl20 348 swap @32

349
000002b4 6235 350 tcm r3,r5
000002b6 6335 351 tcm r3 ,@rs
000002b8 6440c3 352 tcm r3,64
000002bb 64c520 353 tcm 32,rS
000002be 644020 354 tcm 32,64
000002cl 6540c3 355 tcm r3,@64
000002c4 65c520 356 tcm 32,@rS
000002c7 654020 357 tcm 32,@64
000002ca 66c340 358 tcm r3, 1164
000002cd 662040 359 tcm 32,#64

360
000002d0 7235 361 tm r3,r5
000002d2 7335 362 tm r3 ,@rs

363
000002d4 7440c3 364 tm r3,64
000002d7 74c520 365 tm 32,r5
000002da 744020 366 tm 32,64
000002dd 7540c3 367 tm r3,@64
000002e0 75c520 368 tm 32 ,@rs
000002e3 754020 369 tm 32,@64
000002e6 76c340 370 tm r3,#64
000002e9 762040 371 tm 32,#64

372
000002ec b235 373 xor r3,r5
000002ee b335 374 xor r'3,@r5
000002f0 b440c3 375 xor r3,64
000002f3 b4c520 376 xor 32,rS
000002 f6 b44020 377 xor 32,64
000002 f9 b540c3 378 xor r3,@64
000002 fc b5c520 379 xor 32 ,@rs
000002ff b54020 380 xor 32,@64
00000302 b6c340 181 xor r3,1164
00000305 b62040 382 xor 32,#64

£-14

Appendix E

383
00000308 3f 384 wfi

385
386 ;defined register names
387

00000309 38de 388 ld r3,sym
0000030b 38dd 389 ld r3 ,imr
0000030d 38dc 390 ld r3,irr
0000030f c4dac2 391 ldw rr2,ip
00000312 38db 392 ld r3,ipl
00000314 38da 393 ld r3 ,iph
00000316 c4d8c2 394 ldw rr2 ,sp
00000319 38d9 395 ld r3, spl
0000031 b 38d8 396 ld r3,sph
000003ld 38d7 397 ld r3 ,rpl
000003 lf 38d6 398 ld r3, rpO
00000321 38d5 399 ld r3 ,flags
00000323 38d4 400 ld r3,p4
00000325 38d3 401 ld r3 ,p3
00000327 38d2 402 ld r3,p2
00000329 38dl 403 ld r3, pl
0000032b 38d0 404 ld r3,p0

405
406 Bank 0 Special Registers
407

0000032d 38f f 408 ld r3,ipr
0000032f 38fe 409 ld r3,emt
00000331 38fd 410 ld r3,p2bip
00000333 38f c 411 ld r3, p2aip
00000335 38fb 412 ld r3,p2dm
00000337 38fa 413 ld r3, p2cm
00000339 38£9 414 ld r3 ,p2bm
0000033b 38f8 415 ld r3 ,p2am
0000033d 38£7 416 ld r3,p4od
0000033£ 38£6 417 ld r3,p4d
00000341 38f5 418 ld r3,hlc
00000343 38£4 419 ld r3 ,hOc
00000345 38£1 420 ld r3,pm
00000347 38dl 421 ld r3,pl
00000349 38£0 422 ld r3,p0m
0000034b 38ed 423 ld r3 ,uie
0000034d 38ec 424 ld r3,urc
0000034£ 38eb 425 ld r3, utc
00000351 38ea 426 ld r3 ,sio
00000353 38e9 427 ld r3, sie
00000355 38e8 428 ld r3,srcb
00000357 38e7 429 ld r3 ,srca
00000359 38e6 430 ld r3,stc
0000035b c4e4c2 431 ldw rr2 ,cl c
0000035e 38e5 432 ld r3 ,cl cl
00000360 38e4 433 ld r3 ,cl ch
00000362 c4e2c2 434 ldw rr2 ,cOc
00000365 38e3 435 ld r3 ,cOcl
00000367 38e4 436 ld r3,clch
00000369 38el 437 ld r3 ,cl ct

E-15

Appendix E

0000036b 38e0 438 ld r3 ,cOct
439
440 Bank 1 Special Registers
441

0000036d 38ff 442 ld r3,wumsk
0000036£ 38fe 443 ld r3,wumch
00000371 38fb 444 ld r3,umb
00000373 38fa 445 ld r3,uma
00000375 c4f8c2 446 ldw rr2,ubg
00000378 38f9 447 ld r3,ubgl
0000037a 38f8 448 ld r3,ubgh
0000037c c4f0c2 449 ldw rr2,dc
0000037 f 38fl 450 ld r3,dcl
00000381 38f0 451 ld r3,dch
00000383 c4eec2 452 ldw rr2,syn
00000386 38ef 453 ld r3 ,synh
00000388 38ee 454 ld r3,synl
0000038a 38ed 455 ld r3 ,smd
00000 38 c 3 8ec 456 ld t:3 , SlllC

0000038e 38eb 457 ld r3,smb
00000390 38ea 458 ld r3,sma
00000392 c4e8c2 459 ldw rr2,sbg
00000395 38e9 460 ld r3,sbgl
00000397 38e8 461 ld r3,sbgh
00000399 c4e4c2 462 ldw rr2,cltc
0000039c 38e5 4,63 ld r3 ,cl tel
0000039e 38e4 464 ld r3,cltch
000003a0 c4e2c2 465 ldw rr2,c0tc
000003a3 38e3 466 ld r3,c0tcl
000003a5 38e2 467 ld r3,c0tch
000003a7 38el 468 ld r3,clm
000003a9 38e0 469 ld r3,c0m

470
471 ;upper case test

000003ab 38de 472 ld r3,SYM
000003ad 38dd 473 ld r3 ,IMR
000003af 38dc 474 ld r3,IRR
000003bl c4dac2 475 ldw rr2, IP
000003 b4 38db 476 ld r3,IPL
000003b6 38da 477 ld r3,IPH
000003b8 c4d8c2 478 ldw rr2,SP
000003bb 38d9 479 ld r3 ,SPL
000003bd 38d8 480 ld r3,SPH
000003bf 38d7 481 ld r3,RP1
000003cl 38d6 482 ld r3,RPO
000003c3 38d5 483 ld r3,FLAGS
000003c5 38d4 484 ld r3,P4
000003c7 38d3 485 ld r3,P3
000003c9 38d2 486 ld r3,P2
000003cb 38dl 487 ld r3,Pl
000003cd 38d0 488 ld r3,PO

489
490 Bank 0 Special Registers
491

000003cf 38ff 492 ld t"3,IPR

E-16

Appendix E

000003dl 38fe 493 ld r3,EMT
000003d3 38fd 494 ld r3,P2BIP
000003d5 38fc 495 ld r3,P2AIP
000003d7 38fb 496 ld r3,P2DM
000003d9 38fa 497 ld r3,P2CM
000003db 38f9 498 ld r3,P2BM
000003dd 38f8 499 ld r3,P2AM
000003df 38f7 500 ld r3,P40D
000003el 38f6 501 ld r3,P4D
000003e3 38f5 502 ld r3,HlC
000003e5 38f4 503 ld r3,HOC
000003e7 38f1 504 ld r3,PM
000003e9 38dl 505 ld r3,Pl
000003eb 38f0 506 ld r3,POM
000003ed 38ed 507 ld r3,UIE
000003ef 38ec 508 ld r3,URC
000003fl 38eb 509 ld r3,UTC
000003f3 38ea 510 ld r3,SIO
000003f5 38e9 511 ld r3,SIE
000003£7 38e8 512 ld r3,SRCB
000003£9 38e7 513 ld r3,SRCA
000003fb 38e6 514 ld r3,STC
000003fd c4e4c2 515 ldw rr2,ClC
00000400 38e5 516 ld r3,ClCL
00000402 38e4 517 ld r3 ,ClCH
00000404 c4e2 c2 518 ldw rr2,COC
00000407 38e3 519 ld r3,COCL
00000409 38e2 520 ld r3,COCH
0000040b 38el 521 ld r3,ClCT
0000040d 38e0 522 ld r3,COCT

523
524 Bank 1 Special Registers
525

0000040f 38ff 526 ld r3,WUMSK
00000411 38fe 527 ld r3,WUMCH
00000413 38fb 528 ld r3,UMB
00000415 38fa 529 ld r3,UMA
00000417 c4f8c2 530 ldw rr2,UBG
000004la 38f9 531 ld r3,UBGL
000004lc 38f8 532 ld r3,UBGH
000004le .c4f0c2 533 ldw rr2,DC
00000421 38fl 534 ld r3,DCL
00000423 38f0 535 ld r3,DCH
00000425 c4eec2 536 ldw rr2,SYN
00000428 38ef 537 ld r3,SYNH
0000042a 38ee .538 ld r3,SYNL
0000042c 38ed 539 ld r3,SMD
0000042e 38ec 540 ld r3,SMC
00000430 38eb 541 ld r3,SMB
00000432 38ea 542 ld r3,SMA
00000434 c4e8c2 543 ldw rr2,SBG
00000437 38e9 544 ld r3,SBGL
00000439 38e8 545 ld r3,SBGH
0000043b c4e4c2 546 ldw rr2,ClTC
0000043e 38e5 547 ld r3 ,ClTCL

E-17

Appendix E

00000440 38e4 548 ld r3,ClTCH
00000442 c4e2c2 549 ldw rr2,COTC
00000445 38e3 550 ld r3,COTCL
00000447 38e2 551 ld r3,COTCH
00000449 38el 552 ld r3,ClM
0000044b 38e0 553 ld r3,COM

554
555 ; test for condition codes
556

0000044d Od0080 557 jp f ,128
558

00000450 6d0080 559 jp z,128
00000453 ed0080 560 jp nz,128
00000456 6d0080 561 jp eq,128
00000459 ed0080 562 jp ne,128

563
0000045c 7d0080 564 jp c,128
0000045f fd0080 565 jp nc,128

566
00000462 ad0080 567 jp gt,128
00000465 ld0080 568 jp lt,128
00000468 9d0080 569 jp ge,128
0000046 b 2 d0080 570 jp le,128

571
0000046e dd0080 572 jp pl,128
00000471 5d0080 573 jp mi,128

574
00000474 cd0080 575 jp nov,128
000004 77 4d0080 576 jp ov,128

577
0000047a bd0080 578 jp ugt,128
0000047d 7d0080 579 jp ult,128
00000480 fd0080 580 jp uge, 128
00000483 3d0080 581 jp ule,128

582

E-18

~2.iLCE
USER'S GUIDE

ZILOG
UNIVERSAL
OBJECT
FILE UTILITIES

DI

Rel•t•d Docu•enta

Kernighan, Brian w. ana Ritchie, Dennis M. !bi k ft¥~CAmm~US
L~ogw1g1. Engle~ood Cliffs, NJ: ?rentic•-H~ll1 1978.

IEEE Standard 695-1985. "The Microprocessor Universal
Format for Object Modules."

Trade••rk Ackno•ledge•enta

UNIX is a trademark of AT&T Sell Laboratories; Zilog is
licensed by AT&T Technologie3, Inc.

Copyright 1985, 1986 by Zilog1 Inc. All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electron~c, mechanical, photocopying, recording, or
otherwise, without the prior ~ritten permission of Zilog.

The information contained herein is subject to change
without notice. Zilog assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Zilog
product. No other circuit patent licenses are implied.

All specifications (parameters) are subject to change
without notice. The applicable Zilog test documentation will
specify ~hich parameters are tasted.

Zilog does not support the software mentioned in this pubfication, use at own risk.

Zilo~ Object File Utilities

ZILOG UNIVERSAL OBJECT FILE UTILITIES USER'S GUIDE

TABLE OF CONTENTS

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 1 : INTRODUCTION

ZS' MICROCONTROLLERS
USER'S MANUAL

PAGE

1.1 Overview ... 1-1
1.2 Utilities Description ... 1-2
1.3 Utility Invocation .. 1-6

CHAPTER 2: MCONV
2.1 Introduction ... 2-1
2.2 Command Syntax and Options ... 2-1

CHAPTER 3: MDUMP
3.1 Introduction ... 3-1
3.2 Command Syntax and Options ... 3-1
3.3 Display Formats and Examples .. 3-2

CHAPTER 4: MLIB
4.1 Introduction ... 4-1
4.2 Command Syntax and Options .. .4-1
4.3 Examples ... 4-2

CHAPTER 5: MLINK
5.1 Introduction ... 5-1
5.2 Command Line Syntax and Options .. 5-4
5.3 Constraints .. 5-13
5.4 Using MUNK: Some Examples ... 5-14

CHAPTER 6: MLIST
6.1 Introduction ... 6-1
6.2 Command Syntax and Options ... 6-1
6.3 USAGE, OUTPUT FORMAT AND ExAMPLES ... 6-1

CHAPTER 7: MLIST
7 .1 Introduction · ... 7-1
7.2 Command Syntax and Options ... 7-1
7.3 Operation .. 7-2
7.4 Using MLOAD: Some Examples .. 7-3

CHAPTER 8: MLORDER
8.1 Introduction ... 8-1
8.2 Command Syntax and Options ... 8-1

ID

't'2H . .cE

CHAPTER TITLE AND SUBSECTIONS

CHAPTER 9: MMM

"lJ' MICROCONTROLLERS
USER'S MANUAL

PAGE

9 .1 Introduction ... 9-1
9.2 Command Syntax and Options ... 9-1
9.3 Output Format and Examples ... 9-1

CHAPTER 10: PROTOCOL

10.1 Introduction ... 10-1
10.2 Command Syntax and Options ... 10-1
10.3 Using PROTOCOL: Some Examples .. 10-2

CHAPTER 11: OTHER PROGRAMS

11.1 MAR .. 11-1
11.2M2A ... 11-1
11.3 MU IMAGE ... 11-2

APPENDICES

Appendix A. MUFOM File Format ... A-1
Appendix 8. Tektronix Hex Format .. 8-1
Appendix C. Intel Hex Format ... C-1
Appendix D. Error Messages .. D-1

Glossary ... G-1

ii

1.1. OVERVIEW

1.1.1. Product Overvi••

Chapter 1
INTRODUCTION

Th& Univarsal Objact File Utilities are part of Zilog's
~UFCM-output cross-software family. The utilities allow the
programmer to combine, display, and load ~•chine-language
object modules. Tha utilities are universai because they
can process object modules produced by any of Zilog's
MUFOM-outout cross-asse~blers.

MUFCM is an acronym tor Microprocessor Universal Format for
Object ~odules. MUFOM was developed by the IE!E as a format
for representing machine-language object modules for any
microprocessor. By using the MUFOM object format, Zilog
supports all its assemblers (and compilers) using only one
set of programs, the Universal Object Fil• Utilities.

This manual provides the following information:

0 A brief description of the program's features.

0 A complete definition of the command line syntax.

0 A complete definition of th• utilities• functions.

0 Tutorials for the more complex portions of the utili-
ties.

0 A complete definition of th• input file format.

0 A complete definition of the output file for:11at.

Section 1.2 briefly gescribes the utilities and their uses,
and Section 1.3 describes how to invoka the utilities and /
the general co~mand line syntax.

C~apters 2 through 10 discuss each utility in turn. within
e~ch cha~ter com~and syntax, fe~tura descriptions, and exam­
oles are provided. Chapter 11 describes thrae special•
purpos• programs which are ~lso supplie~ with the utilities.

Appendix A provioes • discussion of ar.d specifications for

1-1 Zilo; Object File utilities

INTRODUCTION Chapter 1

the MUFOM objact file format. Appendices 8 and C discuss the
Tektronix Hex for~at and Intel Hex format, respectively.
Appendix ~ lists the error mess•ges.

Appendix E is the glossary. You do not need to understend
the HUFC~ object-file format to use these utilities. There
are1 however, a number of terms used when discussing MUFO~
products that you should understand. These terms •re
defined in Appendix ;. It is sug;ested that you familiarize
yourself with these terms before continuing with the rest of
this User•s Guide.

1.2. UTILITIES DESCRIPTION

This section presents a brief description of each utility
and its usage. Figure 1-1 sho•s how the utilities fit into
the software development process.

1.2.1. •conv

m•2ai is en object for••t converter. It converts object
modules from HUFOM ASCII format to MUFOM binary format and
vice versa.

mgwm; is the object code dumoer. It displays information
about an object module, its sections, and its load data in
human-re•dable form.

1.2.3. mllb

mliR is the object-code library maintenance utility. It
allo•s object files to be combined into libraries ~hich can
be automatically searched by mliD~·

~lie~ is a relocating linker. It accepts an arbitrary
nu•ber of input files (limited only by available memory),
resolves external references between files1 co~bines file
sections, and locates sections at absolute addresses. mliD~
also generates relocatable output modules which can be re­
linked later.

Zilo~ Object Fil• Utilities 1-2

l~TRODUCTION Chapter 1 INTROOUCTIO~

1.2.s. •list

mli11 is the objact code lister. It reconstructs an
assembler-like listing from an object ~odule, using special
comments which are optionally inserted in the object module
by the assembler.

1.2.6. •load

m191d is a download for~at converter that translates MUFOM­
format object modules into a form suitable for transmission
(downloading) to development modules, emulators, or ?ROM
progra,mers. The outout formats suoported are Tektronix
Hex, Intel Hex, and a si,plified form of ~UFOH. ml2i~ is
intended to be used with ;ce1e,g1 or • similar communication
program.

Ix mlorder examines a set of object files to d•t•r~ine the
optimum ordering for them in a library file, ~hich can then
be constructed using mliR•

1.2.a. •n•
m~m is the object module s1mbol lister. It displays infor­
mation about the symbols within an object module.

1.2.9. protocol

;cgSg,gl is a communication utility for transmitting files
(typically load modules generatad by mload) from a develop­
ment host system to a target syste~ (downloading) or vice
versa (uploading). It supports a variety of handshakes to
provide reliable transmission.

Three other programs are supplied with the Object File Util­
ities; they are intended for rather specialized purposes and
•ill not b• needed by most users.

miC is an older v•rsio~ of mli~, producing an IC£bi~i file
~hich is compatible with the previous release of mlit~·

1-3 Zilog Cbject File Utilities

INTROOUCTION Chapter 1 I lllTRO OUC T ION

1.2.10.2. .2.

mli converts MUFOM files to l•iWl form, the ~bject fila for­
mat used on Zilog•s S8000 microcomputers. This is provided
for users of Zilog•s EMS-8000 emulators, •hich use that for­
mat for downlo•ding.

1.2.10.3. •ui••l••c

mwiml~l•G is a MUFOM loader provided in IQWC'I form for user
customization.

Zilo~ Object File Utilities 1-4

INTRODUCTION Chaptei- 1 INTRO:JUCT ION

1-5

Figure 1-1. The Universal Object Fil• Utilities in tha
Soft••re Development Process

Zilog Object File Utilities

m

INHO::IUCTION Chapter 1 INTROiJUCTICN

1.3. UTILITY INVOCATION

This section describes the invocation of the ocject file
utiliti•s. The syr.tectic notatians used in this section and
throughout the r•st of the manual are described below.

1.3.1. Syntactic Notation.

CitnJ
Square brackets indicate that the item is optional.

itern1 I item2

item

A vertical bar inoicates that either of th• two items
can be provided.

...
Three periods indicate that there can be one or more
occurrences of the preceding item.

ite111 •

N

rt

An asterisk indicates that there can be zero or more
occurr•nces of the preceding item.

N stands for a oecimal number.

~ stands for a hexadeci111al number.

Each utility is a separate program, invoked by usin~ its
name as a com111and. Tha com~an~ name is foll~med by zero or
more "arguments" separated by spaces; command ar;umants may
be filena~es1 numbers, or so-called "options".

Command line syntax follows the U~IX• convention in which a
·-• sign followed by a one-character option identifier (with
no intervening spaces> is parsed as an option <e.g., -o).
0Ptions can appear in any ord•r• Case is not significant in
aption identifiers; they may b• uppercase or lowercase
letters.

Some options may be followed by a n~mber or filename. A
soace is QRliiDll between the option letter and the number
ar filename, and ctgMiCI~ follo~ing it.

• UNIX is a trade~ark of AT ~ T Bell laboratories;
Zilog is licencea by AT&T Technologies, Inc.

Zilo~ Cbject File Utilities 1-6

INTROOUCT!CN Chapter 1

C~tion characters may be concatenated
such as -a ~nd -b, can be ~ritten
first option c-a in this example) does
lowed by a number or f4lename.

For example, the command

INTRODUCTION

<e.g., two options,
as -ab), provided the
not expect to be fol-

illustrates most of these principles: Th~ -1 and -o options
are each follow•d by a filename (foo.o for •1, foo for •o.
The two single-character options -r and •z are combined as
-rz.

1-7 Zilo; Object File Utilities

Chapter Z
~CONY

2.1. INTRODUCTION

The m'2DX utility is a filter that converts an object modula
from one format to another. MUFOM object files can be in
either ASCII character or binary form. Object modules in
binary form save space, while character form allows easy
examination and reading by the user, and is ~ore useful for
downloading over serial links.

2.2. COMMAND SYNTAX AND OPTIONS

The m'2DX conversion utility is invoked by the following
command:

mconv [optionsj Cf ileJ

If no input file is specified, standard input is converted.

The command-line options are:

-b Convert the source to binary form.

-c Conve~t the source to character form; this is the
default option.

-1 Retain local symbols in the output. If this option is
not supplied, only global and external symbols will be
listed.

-k N Retain ~UFOM comments up to level N in the output.

-o file

2-1

Direct output to the given file rather than to standard
output.

Zilo~ Object File Utilities

Chapter 3
~DUMP

3.1. INTRODUCTION

The ~d~mg utility is used to display MUFOM object coda in a
user-friendly format. It accepts MUFOM obj~ct modules es
input and can output four items of information: the object
mooule header, the sec~ion tabla, the link ~ap, and the load
data.

3.2. COMMAND SYNTAX ANO OPTIONS

The command syntax tor this utility is as follows:

~dump (optionsJ (f ileJ

If no file is specified, then the standard input will be
dumped.

The command-line options are:

-h Display the header information.

-1 Display the load data.

-m Display the link map.

-s Display th• section table.

If n~ne of -h, -1, -m, or -s is given, all information is
displ~yed.

-o file

-k N

3-1

Direct output to the given file instead of standard
output.

~rint the ~uFOM comments within the object mo~ula wit~
a level less than or eQual to N. S•~ Appendix A for a
discussion of MuFCM comments.

Zilo; Object Fila Utilities

MOU MP Chapter 3 Mu UMP

3.3. DISPLAY FORMATS AND EXAMPLES

This section describes the form~ts of the four items of
information in mgwmQ'I output. They may ba individually
selected for display by command-line options; by default all
four items are output.

3.3.1. The Header

The first part of m~wm;'1 output is ~ haader containing gen­
eral information about the module. The header information
includes:

o Module name

o Tar;et processor

o Character/ainary format

o Address length ana byte order

o Creation date and time

o Absolute/Relocatable

o Entry point

o Program size Cin hex and decimal)

A typical module header is shown below:

Module: test; target ZSOK; character form.
Address length 4 bytes; MS8 first.
Created 1986/04/02 09:39:38.
Entry point = 00000001.
Total size = e58 (3672); absolute.

3.3.2. Th• Section Table

Following the header, mdump lists a table of all the sec­
tions in the object module, as shown in the two examples
below. Note that some fields may be blank if no values have
been set for them. In particular, the LOCATION f iald is
blank for relocatable sections.

Zilog Object Fila Utilities 3-2

MOU MP Chapter 3

SECN LOCATION --SIZE-- --ALIGN- --PAGE--
D 00000d4c; 00000002
1 OOOOOG14 OG000002
2 COOOOCOa 00000002
3 00000002 00000004
4 OOOCOOCc COOOOOOc
5 00000006 00000002
6 00000010 00000002
7 00001000 00000014 00000002
8 OOOOOC02 00000002

SECN LOCATION --SIZE-- --ALIGN- --PAGE--
0 00000000 00000166 00000002 00010000
1 00005000 0000092•
2 00005000 00000060 00000002 00010000
3 00005060 OOOOOOfO 00000002 00000000

f\AME:ATTS

sec1 _name:
sec2:XP
sec3:
cod•:X
data:
bss:!3C~
abs:A
com111: M

NAME:ATTS
dlfoo:ANSW
libcode:ANSX
code;ANSX
Ccommon:ABNS!il

The SECN column displays the section number. Each section
has a number associated with it that differentiates it from
the other sections in the object module. The LOCATION
column displays starting address Clower boundary) of the
section. If the section is relocatable then the LOCATION
column's entry will be blank. The SIZE column shows the
size in hexadecimal of th• section. The ALIGN and PAGE
columns show the alignment boundary and page size of the
section, if defined.

The NAME:ATTS column shows th• name and attributes of the
section, separated by a colon. See Section 5.2.2.4 in the
chapter on mliD~ for a discussion of section attributes and
their meanings.

3.3.3. The Link Nap

Object modules that are output by the linker, mliD~, contain
information about the files and sections that were linked
together to form them. This information is called the Lirk
M~p, and is identical to that displayed by the -v option of
mho'1 •

If no link map is present, mg~mR dis~lays the message

No link map information.

3-3 Zilo~ Object File Utilities

"40UMP Ch&pte,. 3

An example of a link map is shown below:

LINK MAP: Input Sections
FILE test.o c,.eated 1986/03/24 09:4C:3t

0 1 L=OOOOOOOo S=00000d4a t•st.o,:ANSW
1 s L=00000o7e S=OC000014 test.o,sec1_name:A~SW
2 4 L=00000a74 S=OOOOOOOa test.o,see2:APSX
3 6 L=00000d94 S=00000002 test.o,sec3:ANSW
4 3 LzOOOOOd6& S=OOOOOOOc test.o,code:ANSX
5 0 L=OOOOOOOO ssOOG00006 test.o,oata:ANSW
6 a L=000010bc: szoooooo10 test.o,bss:ABCNW
7 7 L=00001000 S=J0000014 test.o,abs:ANSh
8 8 L=00001014 S=OOOOOC02 test.o,comm:AMNW

FILE txxx.o c,.eated 1985/10/31 14:53:08
0 2 L=00000d5C S=00000010 txxx.o,:ANSw
1 8 L=00001014 5=00000004 txxx.o,comm:AMNW

Note that the link map includes the name and c,.eation date
of each fil• that was linked; if the file ceme f,.om a
lib,.ary, the libr~,.Y name follo•s the f ilaname in
parentheses.

The line fo,. each input file is followed by a line fo,. each
section that the f il• contains; the first tmo columns are
the input and output section numbers, respectively.

For relocatable sections, "L=" is replaced by "R=", and tha
associat•d location is the offset of the input section
within the (possibly larger) output section.

3.3.4. Th• Load Data

The Load Data is the data and code that will actually be
load1d into the target ~achine•s memory.

The data is displayed in the format shown below:

Section number
address: --------object code-------­
address: --------object code-------­
ete.

!ASCII equivalent!
IASCII equivalent!

The load data is broken up into lines fo,. display, each of
which can show up to sixteen bytes of data. The display
lines ar• aligned on modulo-16 byte boundaries with the
address being the address of the first byte actually
displayed. If the section is relocatable thin the address
is relative to th• be;inning of the section. If the section
is absolute, then the address is the actual position in

Zilog Object File Utilities 3-4

H OU"!P Chapter 3 MOU HP

me·11ory.

Exc:111ple:

JOOOOOOO Sil OS so S4 a1 7e a 1 6d a 1 5 c Sd c4 s. Oe 50 16
C0000010 83 22 Se 08 so 4a lib eO Ob Oc 00 oc St C2 so 3c
OCCC002C 20 eC Oa dO Se Oe SC 3c Oc •4 Se Ce SC 34 33 22
00000030 Sa 08 50 4c: 219 ea a9 dO Se 08 50 16 20 •• b1 20
OOJ::l0040 20 d8 b1 oc e3 02 Se OS 50 4a Sc f1 Oc: 02 co co
JCO:l005J a9 f5 9e 06 ab 1S Sc: f9 Oc 02 OJ 00 5• 08 so 04

3.3.5. Disjoint Section•

It is important to note that the MUFOM for'11at allows the
object code for a section to be broken UP into physicelly
disjoint pieces. If pieces of sections are distributed ran­
aomly throughout the object module, mdu~p will not Ct able
to display each section contiguously.
Instead, mdump will display the pieces of
as it receives them fro111 the input file.
shows the load datE< of a module with
split into two pieces.

Section 0
00000000 61 62 63 f4
Section 1
OO:>OOOuO 30 32 33 34 !S
Section 0
00000004 65 66 67 68
Section 1
J:>OOOOOS 36 37 38 39

the sections
The example below
two sections, eacn

Sections can also contain gaps (c~usao by assembler state­
ments that reserve space without initi~lizing it>. Short
~aps pre reDresented by "••••••" within a sin;le line; lon;
gaps by "••••" in the address field, zs sho~n below:

00000000 01 C2 C3 ••••••••••• 04 OS 06

I" OT - '11 \

I .. ,. PJ
I " P< A

I " OJ A p

I " ?J\

I \

la1>cd

10234S

ef gh

5789

00000068 os o~

3.3.6. Displaying Relocation Information

kithin ~UFOM reloeat~ble object cod~, raf erences to
unresolved external sy~bols and to locc:tions in relocatable
sections are represented as expressions. The for~ats usea

3-5 Zilo; Cbject Fil• Utilities

DI

MOU MP Chapter 3

for displaying expressions •r• showr below:

Rnn+offset
Xnn+offset

relocatable address
external referance
other expressions

The expressions are padded with periods to occupy the
appropriate amount of space (three columns per byte). If
ther~ is insufficient space for the whole expression, it is
abbreviated to its first letter and paddeo with periods.
The follo•ing example illustrates all three for~ats.

00000000 R1+1234 •••• X0+1234 •••• *••••••••••

If necessary, more detail about an expression can be
obt2ined by running mlill, which can expand expressions com­
pletely.

7iloo Ob;•ct ~ila Utilities 3-6

Chapter 4
MLIB

4.1. INTRODUCTION

The mli~
libraries
are stored
linking of

utility is used for creating and maintaining
of object modules for use with mliD~· lib~aries
in a for~ that permits efficient searching and
the modules they contain.

4.2. COMMAND SYNTAX AND OPTIONS

The ~li~ conversion utility is invoked by the followir.g com­
mand:

mlib key lfile CnameJ •••

~I~ is one character from the set udrtQxf" optionally fol­
lowed by "v". lfilt is the library file; the Dimts are the
constituent files in the library.

Note that a "keyu is not an "option"; it has no leading "-"
character. The meanings of the key characters are:

d Delete the named files from th• library file.

r Replace the named files in the library file.

Q Cuickly append the na~ed files to the end of the
library file, without checking whether they are ~lready
in the library.

t Print a table of contents of the library file. If no
names are given, all files in the library are tabled.

x Extract the named files from the library. If no names
are given, all files· in th• library are extracted. The
library file itself is not altered. The extracted
files are put into the current working directory.

v Verbose. Gives more inf or~ation -about what mlib is
doing. With J this includes ~ list~n~ of the symbols
in each module as well as th9 names of the mo~ul9s.

f The f~rst and only "name" in the co~mand line is the
name of a file which contains the list of filenames.

4-1 Zilog Object File Utilities

~LIB Chapter 4 MLIB

4.3. EXAMPLES

To combine several files (say, "file1.0"1 "fileZ.o" and
"file3.o"> into a library, us• the command:

mlib q too.lib file1.o file2.o file3.o

If one of the files is modified, it can be replaced with the
command:

mlib r foo.lib fileZ.o

To ~dd another file to the library, use

mlib q foo.l1b file4.o

To find out what is in the library, use

~lib t foo.lib

To break the library into separate files, use the command

mlib x too.lib

Note that the library file is unaffected by this operation.
A single file can be extracted with the command

mlib x too.lib file2.o

If a filename containin~ a list of files, say "bar", has
been prepared (for example as the output of tliCQIC), we can
use it to create a library with the eo~mand

mlib qf bar.lib bar

Zilog Object File Utilities 4-2

S.1. INTRODUCTION

Chapter 5
MLINK

The ~liD~ utility is used to assign absolute addresses to
relocatable sections in MUFOM input modules, and to combine
(link) t~o or more separate object modules into one moGule.
Linking allows programs to be developed as groups of
smaller, easier-to-manage modules that can then be combined
to form a single object module. All of a program's modules
can be merged at one time or they can be combined into sub­
modules (sometimes called ore-links) which can themselves be
combined in a subse~uent mliD~ run.

5.1.1. Modules And Sections

In order to understand the linkin; process, it is useful to
understand the way in which MUFOM files are constructed.
{The following discussion is a shortened version of that
found in Sections A.2 and A.3 of the Appendix on MUFOM. See
the Appendix for more detail.> MUFOM object files are
aivided into Ji,1lQDi each of which is destined to be loaded
into a separate area of memory. Each section has a Qi~I' a
Jiit, 111Ci~W111, and (if not relocatable> a lQ,11120• Each
section also has a li,liQD DY~QIC which is used to refer to
it internally. In Zilog's implementation these section
numbers correspond to the order of the sections in the sec­
tion table. CSee Section A.2 in th• Appendix on ~UFOM for a
discussion of the various section attributes and their mean­
ings.>

It is important to note that the name of a section may be
null Cin which case the section is referred to as
"unnamed"), and that the names of sections Diid DQl bi
woigYi• Thus, a file may contain several sections named
"code". Th• advanta~e of this is that the linker can relo­
cate such sections separately; thus on a Z8001 not all
"code" sections have to b• in the same segment.

Sections can be referenced in the linker by either their
na~e, their attributes, or the name of the file from which
they ceme.

MUFOM object files as implemented at Zilog are divided into
three regions: a li•l~QD ll~lt giving all information about
th• file 1 s sections except their actual contents, ~ i~~~21
li~li which defines the N, r, and X variables which

S-1 Zilog Object File Utilities

ML INK Chapter 5 MLIN~

represent local, internel, and external sy~bols respec­
tively, and finally the 121~ ~ili' the ~O and LR commands
which define the actual contents of the sections. These
regions are delimited by special MUFOM comment commands;
separating them in this way makes the linker and other util­
ities run faster.

As impl•••nted at Zilog, the N, 1, and X variables of any
object file are allocated contiguously starting fro~ NO, IO,
and XO. The variable indexes do Q9l' however, necessarily
correspond to the order of the variables in the symbol
table. It is only guaranteed that there will be no gaps in
the numbering.

MUFOM permits comments CCO commands) in object files;
Zilog's assemblers use level C comments for error messages,
level 1 comments for compiler-supplied debugging informa­
tion, level 2 comments for assembler source lines, and level
3 for asse•bler line numbers and formatting infor~ation.

This permits debuggers and other utilities (such as ~li1l>
to reconstruct the source from the object file.

The co~ments that introduce the section table, symbol table,
and section contents have levels 100Chex), 1011 and 102
respectively.

5.1.2. The Link Process

The command arguments are parsed from left to right.
argument is essentially a command to the linker.

Each

Th• linker ~aintains two lists of sections: the Inout List
and the Output List. The -1 fil•••• command-line argument
;ets sections from input fil•s and puts them into the Input
List. As each file is input, its section table is processed
to construct entries on th• Input List, and its symbol table
is processed to resolve external references.

The -• command-line !rgument selects sections from the Input
List and puts them into the Output List at the Current Loca­
tion. As each section is select•d it is assigned a starting
loe~tion, ano the Current Location is incremented by the
length of the section*.

;--T~i~;;--;~;--;~t~;ii;--. little •ore complicated;
assignment of location is deferred until either a -n or
-o option is encountered. This is done to allow the -u
option to "unselect" sactions. Also, if an absolute
section is encountered, the Current Location for the
next section mill be the location of the absolute
section Plus its size.

Zilog Object File Utilities 5-2

ML INK Chapter 5 ML INK

The -o file commend-line argument appends the sections in
the Output List to • file. The output list is then cleared.
hhen the code or data contained ~n a section is output to a
file, the values of external or relocatable references end
link-time expressions are substituted.

All other arguments operate on the Output List or the Symbol
Table.

After the command line is parsed, the linker mak•s two
passes over the input files. In the first pass, the symbol
and section information in each input file is read and pro•
cessed, end en Output List is constructed for each output
file. kith each •o argument, locations are assigned to
relocatable sections.

At the end of the first pass, any remaining sections are put
on the Output List of the last file mentioned, locations are
assign•d to com•on symbols, and still-undefined externals
are identified.

In the second pass th• output files are written. For each
output file, symbols and program data are copied from the
input files. Link-time expressions (including relocation>
and external references are replaced by their values during
the copying process.

S-3 Zilo~ Object Fil• Utilities

MLINK Chapter- 5 MLINK

5.2. COMMAND LINE SYNTAX AND OPTIONS

Th• command-line options for- mlia~ ar-e given beloL in Table
S-1. More complete discussions of each option ar-e given ~n
the followin~ sections.

The command line is processed from left to r-i~hti each
option with its sub-arguments is essentially a co~nand to
the linker. Unlike most of the other utilities, the or-der
of the command-line ar-guments is significant in mliDk·

Option Description

Input and Output Fila Cptions

-1 CifileJ•
-o [ofileJ Cisectionl*

Section Options

-s [isectionJ•
-n CosectionJ
-address
-t address
-r
-m N
-u CisectionJ•

Output Fila Options

-b
-c
-k N

Symbol Options

-1
-d
-x Csym_opJ*
-~ Csy111_opl* -· CvalueJ

Other Options

-p
-v l:Nj
-111

-z
-f file

specify input files
specify output file

select input sections
name and combine sections
set location for next section
set top loc. for- previous sect.
relocatable sections follow
mark loc./return to mar-k
unselect sections

binary format output
character format output
keep comments in output

discard local sy~bols
define C com~on symbols
process external symbols
process ~lobal sy~bols
specify entry point

proceed even if errors
set v~r-bosity leval
suppress 111a~nings

Z8000 segments
command file input

Zilo~ Objact File Utilities 5-4

MLIN(Chapter 5 ~LINK

S.2.1. Input and Output file Options

The Input and Output options specify the input and output
files for the link operation. If no output files are speci­
fied, output goes by default to "m.out". Note that more
than one output file can be specified.

If no input files are specified, ~lie~ will generate an out­
put file containing no load data. This ca~ be useful if the
symbol options are used to define symbols. Also, the sec­
tion options can be used to create e~pty sections with
specified names, attributes, and locations.

S.2.1.1. File Option Syntax

file_opt

ifil•
ofile

::= -1 [ifile)*
-o [ofileJ (isectionJ•

::= object_filename I archive_filenam•
::= object_filename

S.2.1.2. File Option Descriptions

-i [ifile)•
Input the specified files, putting their sections into
the Input List. As each file is processed, its sec­
tions are placed into the Input List in numerical
order.

A -i is assumed at the be;inning of the command, so the
following are equivalent:

ml ink
mlink

-i file1.o
file1.o

If • library file is specified, it is searched for
modules containing global symbols that match undefined
externals currently in the Symbol Table. If any such
m~dules are found, they are added to the Input List.

If searching a library causes any new externals to be
adaed to the symbol table, it is searched agsin.

-o (ofileJ [isectionJ•

5-5

Appends the Output List to the ;iven file. !f no file
is given, the sections in the Output List sre thro~n
away (but space is still allocated for them). Note that
more than one output file can be specifiedi this

Zilo~ Object File Utilities

ML INK Chapter 5 MLIN~

feature can be used for loading into different segments
or PROMs1 or for constructing overlays.

If section specifiers ara given, only those specified
sections Cin addition to th• sections in the file's
Output List) ar• included in the output file's section
table. Filenames in the section specifiers refer to
QWiRWi files. This feature is used to ensure that
overlays do not reference sections in mutually
exclusive overlays.

5.2.1.3. luto••tic Section Co•bining

So~e section attributes specify that sections are to be co~­
bined automatic~lly in various ways. CS•• Section A.2.Z for
the discussion of Overlap attributes and their effects.>
Such sections are combined when they are first encountered
in -1 (input) file lists, and only the sections in the
current Input List are looked at to find sections to combine
with. Thus, if a •i option comes after some sections have
been selected with a -• option, the sections that nave
already been selected •ill QQi be co~binad with, even if
their names and attributes match those of some new sections.
This provides a way to override the automatic section­
combining ~•chanism.

5.2.2. Section Options

The section options allow you to specify explicitly how the
sections input object modules are selected and positioned in
the output modules. Sections in the input modules are kept
in an internal structure called the Input List until
selected by a -• (select) option. They are then moved to
the Output List. Sections on the Output List are moved into
an output file •hen a -o (output) option is encountered.

Zilog Object Fil• Utilities s-~

"llINK Chapter 5 "!LINK

s.2.2.1. Section Option Syntax

see_opt ::= -s (isectionJ•
-n (oseetionJ

address ::=
isection ::=
osec:tion ::=

att_match ::=
att_Ql"OUp ::=
sec_name : :=
attributes ::=

-address
-t address -,..
-111 N
-u (isectionJ *

digit (hexdioitJ•
(filaname1J(sec_nameJ[:att_matchJ
(sec_name](:attributesJ

(att_termJ [+att_termJ•
(letter I -letter] •••
symbol I +
letter*

S.2.2.z. Section Option De•eriptions

-s (iseetionl •
Select sections from the Input List and put them into
t~• Output List. They will be located starting at the
Current Location, which is initially zero. Sections
matching the first "isaction" in the select list will
be put into the output list first; sections that match
th• same "isection" will stay in tha same order that
they had in tha Input List. The section selectors are
described in more detail below.

If no sections are specified the entire Input List is
selected, except for Postpone sections (sections with
the "P" attribute.> If Postpone sections are selected
in other cases, they are placed after all the other
sections in the same selection.

-n (osection]
Combines all tha sections currently in the Output List
and gives them the given name (~nd attributes, if
specified). If no section or ":attributes" is speci­
fied, the combined section is unnamed. If no attri­
butes era specified, the new section has the default
attributes C:WSN). No attributes are inherited from
any of tha constituent sections.

-address
Sets the Currant Location to the givan address.

S-7 Zilo; Object Fila Utilities

DI

ML INK Chapter S ML INK

-t eddress

-r

Adjusts the base address of the last section in the
Output List Ci.a., the last section selected before the
-t option> so that its top comes as close as possible
to the given ~ddr•ss without violating its ali~nment
constraint.

Any sections selected after the -r argument will be
relocatable (until the next -address or -t argument).

If this is the first time the given ~ark number is
encountered, set that mark to the Current Location.
Other•ise, set the Current Location to the value of the
given mark. This argument is used for alioning over­
lays.

-u (section]*
"Unselect" the given sections, moving them from the
output list back into the input list. This can be
used, for example, to select •all but" a given section,
or to construct a "Postpone" section which will be out­
put later.

s.z.z.J. Section Selectors

A section selector as used in the -• option has three com­
ponents: a filename, a section name, and an attribute-match
specifier. Any of these may be omitted1 in •hich case all
sections matching the other components are selected (the
limiting case is -• with no section selectors, which selects
tll sections in the Input List).

Th• format of a section selector is

Note that QQ IQl,ll ICI Qttm~11Jg between the fielas. Note
also that the filename must not contain a comma (this is
permitted only in UNlX1 and is rare in any case>.

File Name
The f il• name component of a section selector refers to
the input file from which the section came. It is ter­
minated by a comma.

Section Name
The section na~• component of a section refers to the
name of the section as given in a MUFOM •st• command in

Zilog Object File Utilities 5-8

'llLINK Ctu•pter S MLINK

the input module from which it came. Sections can be
un-named; such sections can be selected explicitly by
using •+• as the section name component of a section
selector.

Attribute Match
The attribut•-match component of a section refers to
th• attributes ms 9iven in a MUFOM 'ST' command in the
input module from ~hich it came. Secause sections have
more than one ~ttribute, the attribute-match component
can be rather complicated.

The attrib~te-match component of a section selec­
tor starts with a colon, and consists of zero or
more "terms" separated by •+• signs. A section
matches th• attribute-match if it matches IDX 20!
of the fields. Thus, •+• has the meaning of "log­
ical OR".

A term in an attribute-match consists of one or
more letters Cease is not significant), each
optionally preceded by a •-• sign. If s letter is
non-ne;ated in a term, the corresponding attribute
mMll QI QClllDl in a section in order for it to
match. If a letter is negated in a term, the
corresponding attribute mMll DQl QI QCl~IDl in a
section in order for it to match. Thus, letters
<attributes) in a term are connected by "logical
ANO", and •-• has the meaning of "logical NOT".

Note that the attributes matched by a term may be
a IM~lll of the att~ibutes which a section actu­
ally has.

See Section A.2 in th• Appendix on MUFO~ for a discussion of
th• various section attribut•s and their meanings.

At the end of the link, any sections still in the Input List
are selected, and the Output List i5 appended to th• output
list of the last file mentionea in a -o argument <as if the
•o argument had been moved to the end of the command). If
no -o argument is given, the default filename is m•lDk•

The sections are selected in the seQuence: co~e CX attri­
bute), read-only data (R attribute), other non-SSS data, C
common and SSS Ca attribute). The default beh~vior is thus
eQuivalent to

5-9 Zilog Object File Utilities

Chapter 5

mlink -o m.lnk <actual arguments> -s :X :R :-a -d -s :B

5.2.3. Output Fil• Options

The following argu~ents apply to the next output. file, or to
the last output file if they fol lo• the last •o \rgument.

5.2.3.1. Output file Option Syntax

ofile_opt ::= -b
-e
-k N

5.2.3.2. Output file Option Descriptions

The folloming options apply to the output file specified by
the next •o argument, or if they follow the last •o argu­
ment, to the last output file specified.

-b

-c

-k

Put out the next output file in binary form.

Put out the next output file in character form.

In the next output file, keep comments up to and
including level N. To retain source information for
use with mliil' use •k3.

5.2.4. Syabol Options

The symbol options operate on the symbol table which is ~en­
erated in the linking process. They allow new symbols to be
defined, or sets of symbols to be excluded from the output
symbol table.

5.2.4.1. Syabol Option Syntax

Zilo~ Object File Utilities 5-10

MlINK Ch11pter 5

sy11_opt : : = -l
-d
-x l:sy~_opJ*
-g [sy11_opJ• -· CvalueJ

symbol : : = letter(letterldigitj*
value : : = (symbol I address]

sym_op : : = sy111bol
+ sy11bol
+ symbol = (value)
+ sy11bol length

5.2.4.2. Sy•bol Option Descriptions

-1

-d

Do not put local sy~bols in the next output file.

Cef ine a section for any common symbols encountered up
to this point, and select it into the Output List.
Co1111on sy11bols are used by the C compiler and other
compilers to hold un-initialized data. The com11on sec­
tion defined has the na11e "Ccom11on" and the attributes
"BNSW.".

-x [sy11_opJ•

-g Csy11_opJ•
Process external or global symbols. •ith no sym_op•s
given, the aefault operation is to strip the symbols
from 111 output files. "Stripped" symbols are not
actually removed from the internal sy~bol table, but
are marked so that they will not be output. The opera­
tions are:

sy!llbol
Strip a particular sy~bol.

+ symbol
Add a particular symbol. Externals are added as
undefined1 globals as zero.

+ symbol = CvalueJ
Add a symbol with the given value. If the valua
is 011ittedl the Current Location is used. In the
-x argument, a Weak External is constructed. A
Weak External is an external sy~bol which receives
the given value as a oefault if no corresponaing

Zilog Object File Utilities

ML INK Chapter 5 MLINK

global symbol is defined in the link.

+ sy111bol length
Add a C•type Common symbol with the ;iven length.
Used in the -x argument only.

-· CvalueJ
Set the entry Point to the given velue (symbol or
address>. If no value is given, the default is th•
Current Location. If no ... argu!lant is given, the
default is th• entry point of the first input file that
has one. If no input file has an entry point, it is up
to the loader or operating system to def in• one.

5.2.5. Other Options

The follo•ing arguments are non•positionel, and apply to the
entire link operation.

other.opt ::= •p
•v [numberJ -· -z
-f fih

5.2.5.2. Other Option Descriptions

-vCnJ

-o

"Verbose": print information on Standard Error about
what th• linker is doing. The optional number selects
different levels of information:

1 (default> Output a link ~•P on Standard Error at
th• end of pas~ 1.

2 Output the name of each input and output file as
it is opened.

3 Output information about each section as it is
defined or selected.

4 Output more information about input file format
errors.

Proceed in spite of errors.

Zilo; Object File Utilities s-12

ML INK

-w

-z

Chapter 5 ML INK

Suppress warr.in; ••ssages.

Perform ZS001-type segmented address arithmetic. With
this option in effect, the next address after 100FFFF
hex is 2000000; in other words bits 16-23 are not part
of the address.

-f file
Take arguments fro~ a file. Newlines in the file are
treated as spaces. The file is effectively inserted
into the command line in place of th• -f ar~ument. The
file can contain comments starting with a semicolon
en;•) character and termin•t•d by end of line.

5.3. CONSTRAINTS

All of mliak•1 tables are dynamically allocated, so that the
number of symbols, sections, and files that can be handled
depends mainly on th• a~ount of memory available. In addi­
tion, Zilog•s implementation of MUFOM imposes the following
limits:

Symbol and Section Names: 127 characters.

Sections: 6SS36.

Local Symbols: 65536.

Global and External Symbols: 65536 total.

5-13 Zilog Object File Utilities

l4LINK. Chapter 5 ML INK

5.4. USING •link: SOME EXAMPLES

This section describes the usage of the mliD~ utility
through several examples.

5.4.1. The S••Pl• Input Files

For the purposes of most of the following axamples1 we will
use two input files called "file1.o" and "file2.o" with a
structure similar to that produced by th• C compiler. ;ach
has three sections, called "code", "date", and "bss".
("bss" stands for "Block Started by ~ymbol"1 and is used for
uni"itialized data that is cleared to zero when the progra~
is started.>

In addition, we will assume that "file1.o" contains a sec­
tion called "rom" containing read-only data, that "file2.o"
has an additional section called "stack" for the program's
stack1 and that both files contain some ~Qmm~D sy~bols.
(Common sy~bols are external symbols which are allocated in
a BSS section if no corresponding global symbol is defined.
They ar• used by C for uninitialized variables.)

The sections of the sanple input files are shown below in
tabular form (prepared by mgwm;), and graphically in Figure
s-1.

file1:
SECN LOCATION --SIU-- --ALIGN- --PAGE-- NAME:ATTS

0 00000242 00000002 code:X
1 00000231 00000002 rom:R
2 00000232 00000002 data:
3 COOOC20C 00000002 bss:SCW

file2:
SECN LOCATION --SIZE-- --ALIGN- --PAGE-- NA:'1E:ATTS

0 G0000242 00000002 code:X
1 00000234 00000002 di!lta:
2 00000200 00000002 bss:SCW
3 00002000 00000002 stack:SP

Zilo; Object File Utilities S-14

MLlNK Chapter 5 MLINK

file1 .o:

·-----------------------· file1.01code:X I
+-----------------------+

file1.o,rom:R I
+-----------------------+

file1.01data:W I
+-----------------------+

file1.01bss:wac

*-----------------------·
file2.o: ·------------------------·

I file2.o,code:X

+-----------------------+ I fila2.o,data:w I
+-----------------------+

file2.01bss:WBC I
+-----------------------+ I filei.o,stack:WBP I
*-----------------------·

Figure 5-1. Example Input Files

5.4.2. Default Seetion Ordering

The simplest thing to do with our two sample files is to let
the linker select sections in their default ordering, and
locate them consecutively starting at zero. The linker•s
defaults are designed to "do the ri~ht thing" for C compiler
output running in an environment like UNIX•. Thus1 code
(sections marked 11!,Yll~lt uith the "X" attribute) is
placed startir~ at address zero1 follo••d by read-only deta
("R" attribute), read-•rite initialized date (flh" attri­
oute), SSS ("W" and "B" attr1outes)1 and stack (flW", "8"1
"P" attributes). The command for doirg this is

mlink -i file1.o fila2.o -o ex1

where ex1 is the name of the file which will receive the
linker•s output. ~ote that the -1 option flag is not
reQuired, since it comes at th• beginning of the command1
ana that 1f the -o link•d.out option is omitted the output
file will be called "m.lnk".

The resultin~ file•s structure is shown below and in Fi~ure
s-2.
Note th~t tha t~o SSS sections have been combined automati­
cally, because thet have the "C" attribute. Sections with
this att~ibute rre automatically combined if thair namas and

5-15 Zilog Object File Utilities

MLINK Chaptel" 5 MLINK

other attl"ibutes are the same. Also note that the section
"Ccoemon" has been created to hold the ;ammaa symbols, and
that the linker has filled in the default se:tion attributes
"W" C"~ritabl•"), "N" <"no•", the inverse of "P"> and "S"
("separate", the inverse of "C"> wherever appropriate.
Since the linker has given each section a location, they
have also acquired the "A" <"absolute") attribute as well.

mlink -i file1.o file2.o -o ex1 •v

mlir.k v. 2.1 ·- Zilog MUFOM linking utility

MAP: I Seen CSecn Location Size IFile,Na111e:Atts

Output file ex1:
0 0 L•OOOOOOOO S=-00000242 file1.o,code:ANSX
0 1 L=00000242 S•00000242 filez.o,:ode:ANSX
1 2 L•00000484 S•00000231 file1.01ro11:ANRS
2 3 L=000006b6 S=COOOC232 file1.o,d•ta:AhSW
1 4 1.=00000S.8 5=00000234 file2.01data:ANSW

s L=00000b1c S=00000032 ,ccom11on:A8NSW
6 L•00000b4e S=O::J000400 ,bss:ABCNW

3 7 L=00000f 4e S=00002000 fil•2.orstack:A&PSW

Input files:
0 0 1.=00000000 5=00000242 file1.01code:ANSX
1 2 L=00u00484 S=C0000231 f ile1. o,rom: ANR S
2 3 L•00u006b6 S=C0000232 file1.o,data:A~SW
3 6 L=COOOObh S=000002CO file1.01bss:ABC~W
0 1 L=00000242 S=00000242 filez.o,code:ANSX
1 4 L•COOOOS.8 S=00000234 file2.01d•ta:ANSW
2 6 L=OOCOOd4• S•000002CO ~il•2.o,bss:ABCNW
3 7 L=00000f4e S=C0002000 file2.o,sta=k:ASPS~

Zilog Object File ~tilities 5-16

MLINK Chiipter 5

file ex1:

·-----------------------· I file1.01code:X
+-----------------------+ I file2.01code:X

+-----------------------+ file1.o,rom:R I
+-----------------------+ file1.01data:w I
+-----------------------+
+-----------------------+ Cco11mon:WB
+-----------------------+ bss :WISC

file1.01bss:lii8C
file2.01bss:wac

+-----------------------+
·-----------------------·

Figure 5-2. Default Selection Ordering

NI.INK

The -v command-line option of mliD~ •as used to generate th•
link ••P above; not• that its format is slightly different
from the information displayed by IQWIR• More information
•bout •h•t mlia~ is doing can be displayed with the •v3
option, as shown below:

5-17 Zilog Object Fil• Utilities

l1I

ML INK Ch11pter 5 MLINK

mlink -i file1.o file2.o -o ex1 -v3

11lirk v. 2.1 -- Zilog MUFOM linking utility
Input file 'file1.o"

0 - R=OOQOOOOO S=00000242 fih1.01code:NSX
1 - R=OOOOOOOO S=00000231 f ile1. 01ro111:NRS
2 - R=COOCOOOO S•00000232 file1.01clata:NSW
3 - R=OOOCOOOO S=00000200 file1.01bss:BCNW

In1>ut file "filez.o•
0 - R=OOOOOOOO $=00000242 file2.01code:NSX
1 - R=OOOOOOOO S•00000234 file2. 01dat..:NSW
2 - R•C0000200 S=C0000200 file2.01bss:8CNW
3 - R=COOOOCOO S•OOOOZOOO file2.01stack:6PSW

Select :X
0 • R•COCOOOOO S=00000242 fih1. 01cocie:NSX
0 - R•OOOOOOOO 5=00000242 file2.01coae:NSX

Select :R
1 - R•OOOOOOOO S=CC000231 f ih1. 01ro11: NRS

Select :•B
2 • R=OOCOOOOC $=00000232 file1.01data:NSW
1 - R•OOOOOOOO S=OOC00234 file2.01data:NSW

Select
- R•OOOOOOOO S•C0000400 1bss:8CNW

3 - R=OOOOOOOO S=CC002000 file2.01stack:8PSW

IOP: ISecn OSecn Location Size IFile1Name:"tts

Output file ex1:
0 0 L=OOOOOOOO S•00000242 file1.01code:ANSX
0 1 L:z00000242 S=00000242 file2.01code:ANSX
1 2 L:z00000484 S=00000231 file1•01rom:ANRS
2 3 L=000006b6 S=00000232 file1.01data:ANSW
1 4 coooos.s S=00000234 file2.01datg:ANSW

S L=00000b1c S=C0000032 , Cco:a11 on: A8NSW
6 L=00000b4e S=0000040C 1bss :A8CNW

3 7 L=COOOOf h S•00002000 file2.01stack:ABPSW

Input files:
0 0 L•OOOOCOOO S=00000242 file1.~1code:ANSX
1 2 L=000004S4 5=00000231 file1.01ro11:ANRS
2 3 L•000006b6 S•00000232 file1.01data:ANSW
3 6 L .. Oil000b4e S•00000200 file1.01bss:ABCNW
0 1 L•00000242 S=COC00242 fileZ.01code:ANSX
1 4 L=OOOCOS.8 S•00000234 file2.01data:ANSW
2 6 L=OOOOOdh S=00000200 file2.01bss:ABCNW
3 7 L•C0000f4e s .. 00002ooc file2.01stack:ABPSW

Output file •ex1 •
Input file •tile1.o"

-- Input file "f ile2.o•

Zilov Object File Utilities 5-18

MLINK Chapter 5 MLINK

5.4.3. Selecting Sections by N•••

Sometimes it is necessary to put the s•ctions of th• output
1ile in some order other th•n 1lin~'s default ordering.
(This is usually done in order to specify th• addr•sses of
the sections, as •• will s•• in later examples, but is also
useful for constructing large tables fro~ data in several
different modules.> Sections can be selected according to
their name, their attributes, or their file of origin, or
any combination of these.

The first exa~ple in this series will select sections by
name, sine• th• command line for doing this is somewhat
simpler. For example, su~pose you want the data sections to
come first, followed by ROM, and then code1 sss, and steck
in their usual order. The command for this and the result­
ing map are sho•n below.

mlink -i file1.o file2.o -s data rom -o ex2 -v

~link v. 2.1 -- Zilog MUFOM linking utility

~AP: I5ecn OSecn Location Size IFile1Name:Atts

Output file
2
1
1
0
0

3

Input files:
0
1
2
3
0
1
2
3

S-19

ex2:
0 L=OOOOOOOO
1 L=C0000232
2 L=00000466
3 L=00000698
4 L=OCCCOSda
S L=00000b1c
6 L=00000b4e
7 L=00000f4e

3 L=00000698
2 L=Ci0000466
0 L•OOOOOOOO
6 L=Ci000Cb4e
4 L=0000;)8cta
1 L=COCOC232
6 L=COC0Cid4e
7 L:00000f4e

S=OC000232
S=00000234
5=00000231
5=00000242
S=00000242
S=00000032
S=00000400
S=00002000

S=CC000242
S=C0000231
S=OOQ00232
S=OC000200
5=00000242
S=C0000234
S=COC002CO
S=00002000

file1.01data:ANSW
file2.01data:ANSW
file1.01rom:A~RS
file1.01code:ANSX
file2.01code:ANSX
,ccoramon:AoNSW
1bss:ABCNW
file2.o,stack:ABPSW

file1.01coda:ANSX
file1.o,rom:ANRS
file1.01data:ANSW
fila1.01bss:ABCNW
file2.01coda:ANSX
fila2.01data:ANSW
file2.01bss:ABCNw
file2.o,stack:ABPSW

Ziloi Object Fila Utilities

ML INK

file ex2:

·-----------------------· I file1.01dat•:W

+-----------------------+ I file2.01d•ta:W

+-----------------------+
+-----------------------+ I file1.01code:X I
+---------~-------------+

f1le2.01code:X I
+-----------------------+ Ccommon:kB I
+-----------------------+ bss:wac I

file1.o,bss:k6C I
file2.o,bss:wac I

·-----------------------+ file2.o,st•ck:W8P I
·-----------------------·

Fi;ure S-3. Selecting Sections by Name

5.4.4. Selecting Section• by Fil•

ML INK

Selecting sections according to their file of origin is
equ•lly simple. The syntax for a filename selector is the
filen•m• followed by a comma, as in the following example
•here •e select all th• sections in "fila1.o" followed by
all th• sections in "file2.o".

Zilo; Object ~ile Utilities s-'c

Chapt•r S MLINK

mlink -i file1.o file2.o -s file1.01 fileZ.01 -o ex3 -v

mlink v. 2.1 -- Zilow MUFOM linking utility

~AP: ISecn CSecn Location Size IFile1Name: At ts

Output

Input

fih ex3:
0
1
2
0
1
3

files:
0
1
2
3
0
1
2
3

file

0 L=OOOOOOOO S=00000242 file1.01coae:ANSX
1 L=COOC024Z S=CC000231 file1.01rom:ANRS
2 L=C0000474 S=COCOC232 file1.01data:AhSw
3 L=000006a6 S=00000242 file2.01coae:ANSX
4 L=OOCOOS.S S=COCI00234 file2.01d•ta:ANSW
s L=OCOCOb1e S=CC002CCO file2.01stack:ABPSw
6 L=00002b1c S=00000032 ,ccomillon:ASNSw
7 L=OOC02b4e 5=00000400 1 b ss: ABC NW

a L=OOOOOOOO S=00000242 file1.01cod•:ANSX
1 L=C0000242 S=COOOOZ31 file1.01rom:ANRS
2 L=OOOC0474 S=00000232 file1.01datc:ANSW
7 L=00002b4e 5=00000200 file1.01bss:ABCNW
3 L=OCC006a6 S=CC000242 file2.01Code:AhSX
4 L=OOOOOS.8 S=00000234 file2.01data:ANSW
7 L=C0002d4e S=COOC0200 file2.01bss:ASCNW
5 L=00000b1c S=00002COO file2.01st•ck:A6PSW

ex3:

·-----------------------· I file1.01code:X

·-----------------------+ I file1.01rom:R I
+-----------------------+ I · f ile1.01dat•:W I
+-----------------------+ I file2.01code:X

+-----------------------+ file2.o,data:w I
+-----------------------+ I file2.01sta:k:WBP I
+-----------------------+ Ccom'llon:WCS

+-----------------------+ bss:WSC
fila1.01bss:wac
f11e2.01bss:wac

·-----------------------·
Figure 5-4. Selecting Sections by File

Note, however, that the co~bined BSS section r.nd the Ccommon
section still come at the end of this link. This is because

s-21 Zilo~ Cbject File Utilities

MLINK Chapter 5 ML INK

the SSS sections are combined automatically and the Ccommon
section is generated automatically; automatically-generated
sections do not have a file of origin. Also, note that the
"st~ck" section is selected along with the rest of file2.o's
sections, ~hich may not be desirable.

You can make sure that the stack is postponed until the end
of the link in one of two ways: not selecting it by combin­
ing filename and attribute selection, or MD-select it with
the •u argu~ent. Commands using these two techniques are
sho!l.'n belo111:

mlink -i file1.o file2.o -s file1.01 file2.o,:-P -o ex3
mlink -i file1.o fila2.o -s file1.01 file2.o, -u stack -o ex3

5.4.5. Separate •i Argu•ents

In order to circumvent these effects, if desired, you can
select the sections from "file1.o" ~liQCI ~QM ·ic;wi
"file2.o". Note that in this case you can use •s with no
arguments to select everything in the input list except
"postpone" sections. The second -• selects all of file2.o's
sections except "stack", which has tha "P" C"post~one")
attribute. Also note the use of -d to define a separate
Ccommon section for file1's common sy~bols.

111link -i fih1.o -s -d -i file2.o -s -o ex4 -v

MAP: ISecn OSecn Location Size IFile1Name:Atts

Output file ex4:
0 0 L=OOOCOOOO 5=00000242 file1.01code:ANSX
1 1 L=COCOC242 S=COOOC231 file1.o,rom:ANRS
2 2 L=C0000474 5=00000232 file1.01pata:ANSW
3 3 L.=000006a6 S=00000200 file1.01bss:ABCNW

4 L=C.00008a6 S=C0000014 1Ccommon:ABNSW
0 s L=OOOOOSba 5=00000242 file2.01code:ANSX
1 6 L=OOOOOafc s=OOOOOB4 file2.01aata:ANSW
2 7 L=00000d30 S=OOOOC200 file2.01bss:ASC~W

Ii L=OOOOOf 30 S=COOOOJ14 1Ccom111on;ABNSW
3 9 L.=00000f44 S=00002000 file2.01staek:ABPS~

Input files:
0 0 L=OuOOJOOO S=00000242 file1.01COGe:AhSX
1 1 L=00000242 S=COOOOB1 file1.01rom:ANRS
2 2 L=OOOOJ474 5=00000232 file1.01data:ANSW
3 3 L=000006a6 S=C0000200 file1.01bss:ABCNW
0 5 L=00(;003ba S=CC000242 file2.01e~d•:ANSX
1 6 1.:QQQOul'fC S=00000234 file2.01data:ANSW
2 7 L.=C0000d30 5=00000200 file2.o,bss:A8C~W
3 9 L=CCC00f44 S=C0002COO file2.01stack:ASPSk

Zilo• Object File Utilities 5-22

ML INK Chapter 5

file ex4:

·-----------------------·
file1.01code:X

+-----------------------+
file1.01rom:R I

+-----------------------+ file1.01data:W I
+-----------------------+ file1.01bss:w6C

+-----------------------+ I Ccommon:WS I
+-----------------------+
I file2.01code:X I
·-----------------------+ I file2.01data:w I
+-----------------------+ I Ccommon:WS I
+-----------------------+ I file2.01bss:WBC

+-----------------------+ I file2.01stack:WSP I
·-----------------------·

Fi3ure 5-5. Separate -i Arguments

5.4.6. Selecting Sections by Attribute

It is freQuently more convenient to select sections
attributes than by their names or files of origin.
cases it may be a1•1111c~, as when preparing ~
purpose command procedure in ~hich the na~es of
files might not be kn~wn. CFor example, the
default selection is done by attribute.>

by their
In other
general-

the input
linker's

Section attributes can be combined for selection in several
different ways. You may want to select all sections that
have a given set of attributes, all sections ·that do D9l
have a parti~ular attribute, or ~11 sections that have
1ilb1c of two or more attributes or combinat~~ns of attri­
butes. Loosely speaking, "not" is represented by preceding
an attribute by a "-" sign, and "either" <logical "or") is
represented by separating two groups of attributes by a "+"
sign. The attributes themselves are represented by upper­
case or lowercase letters (See Section A.2 for specific
information about the attributes and their meanings).
Attributes in a selection are preceded by a colon C":"),
which also separates th•• from the section name1 if any.

For example, you might want to put writable but non-SSS data
first, followed by r•ad-only data, then code, then SSS anc
stack. The command to do this is shown below. ~ote that

s-23 Zilo; Object Fila Utilities

MLINI<. Chapter S MLINK

the 3SS and stack are select•d E-t the end by default, and so
need not be mentioned exQlicitly. Note that if you did not
care what order the "rom" ~nd "code" sections came in, you
could have replaced ":R :X" with either ":R+X" or ":-w".

mlink -i file1.o file2.o -s :w-s :R :X -o exS -v

"tA p: ISecn CSecn Loc~tion Size IFile1Name:Atts

Outp"'t file
2
1
1
0
0

3

Input files:
0
1
2
3
0
1
2
3

exS:
0 L=OOOOOOJC
1 L=C0000232
2 L.=CCC00466
3 L=COOC0698
4 L=OOCOCSda
S L=00000b1c
6 1.=00000b4e
7 L=00000f4e

3 L=00000698
2 L=OOC00466
0 L=OOOJOOOO
6 L=COC00b4e
4 L=000008da
1 L=COC00232
6 l=CCOOOdite
7 L=00000f4e

5=00000232
5=00000234
5=00000231
S=00000242
5=00000242
S=OC000032
S=00000400
S=00002000

S=C0000242
S=COOOG231
S=00000232
S=COOOC200
S=00000242
S=00000234
S=COOOC200
5=00002000

file1.01data:ANSW
file2.01data:ANSW
file1 .01rom:A~RS
file1.01code:ANSX
file2.01code:ANSX
1Cco111mon:A6NSW
1bss:A8CNW
file2.01stack:ABPSW

file1.01code:ANSX
file1.,01rom:ANRS
file1.01data:ANSW
file1.01bss:ASC~W
file2 .. oicode:AN5X
file2.o,aata:ANSW
fil1Z .. 01bss:ABCNW
1ila2.o,stack:ABP5w

fila ex5:

·-----------------------· file1.01data:w

+-----------------------+ file2.o,data::W

+-----------------------+ I file1.o,ro~:R I
+-----------------------+ I file1.o,code:X I
+-----------------------+
I fileZ.o,code:X

+-----------------------+ I Ccommon:~B I
+-----------------------+ I bss:WBC I
+-----------------------+ I file2.o,stack:wBP

·-----------------------·
Figure 5-6. Selecting Sections by Attribute

Zilog Cbject File Utilities S-24

MLINK MLINK

5.4.7. Loceting Sections •t Specific Addr•••••

A common problem that occurs in cross-software oavelopment
is when the target system has both PRCM and RAM, and it is
necessary to out th• program in PROM and the data in RA~.

The -•ddr••• option specifies the bas• address of the naxt
section to be selected, so it is used in conjunction with
selection to control the addresses of sections.

Another thing most users want to do is to locate the stack
as high in memory as possible; this can be done with the -t
address option to specify the l9Q address of th• llll sec­
tion to be selected. Tha •x•mpla below shows both of these
section-locating tachniQuas. (~ota that wa are grouping
some "~ritabl•" data with "read-only" data and code in what
is prasum•bly th• PROM area; this is a common techniQue in
languages like C •hich allow no distinction between writable
and read-only data. In such cases, tables and so on that
need to b• in PRO~ are grouped into a single file1 such as
fil•1.o in this example.)

<In the example balow1 the command follows the UNIX* conven­
tion in •hich a backslash (\) character is used to continua
a long command on another line.>

mlink •i file1.o fileZ.o -o -s :X :R file1.o,data \
-4000 -s :W-P ·d -s :P -t CFFFF -o ex6 -v

!4AP: ISecn OSacn Location Size IFile1 Name: At ts

Output file ax6:
0 0 L=COOCOOOO S=C0000242 fila1.01coda:ANSX
I) 1 L•00000242 S=OOOOOZ42 fila2.01code:ANSX
1 2 L=COC00484 S=00000231 file1.01rom:ANRS
2 3 L=000006b6 S•COOOC232 file1.01data:ANSW

4 L•C0004000 S=00000400 1bss:A8CNW
1 5 L=COC04400 S=0000Ci234 file2.01data:ANSW

6 L=CCOC4634 S=COOOOC32 ,ccornmon:A8NS•
3 7 L=OOOOdf fe S=00002000 fila2.01stack:A8PSW

Input files:
0 0 L=OCCCOCOO S=00000242 fila1.01coda:ANSX
1 2 L=OOC00484 S=OJ000231 fila1.01rom:ANRS
2 3 L=COC006b6 S=OOCi0023Z file1.01data:ANSW
3 4 L=CCCC4000 S=CCC00200 file1.01bss:ABCNW
0 1 L=00000242 S=C0000~42 fila2.01code:ANSX
1 s L=C0004400 S=00000234 fila2.01data:ANSW
2 4 L=000042JO S=00000200 fila2.01bss:ABCNW
3 7 L =COCHldffa S=CC0020Ci0 file2.01stack:A8PSW

5-25 Zilog Cbject Fil• Utilities

MLINK

fil•
0000

4000

DFFE

Chapter S

ex6:

·-----------------------· file1.01code:X

+-----------------------+
+-----------------------+ file1.o,rom:R

+-----------------------+ file1.o,data:w

+-----------------------+
+----·------------------+ bss:W8C

+-----------------------+
file2.01data:w I

+-----------------------+ Ccommon:WS I
+-----------------------+
+-----------------------+

Ff FF •--··-·-----------------•
Figure 5-7. Locating Sections at Specific Addresses

S.4.1. M••ing and Co•bining Sections

~LINK

It is usually not necessary to combine or rename sections in
order to affect their location or order, but naming and com­
bining can be useful if the output of the linker is a relo­
catable file which is going to be used as input to a subse­
quent link. For axa~pla1 you may want to construct a
library module containing tha code and data from several
sub-modules. In this case it may ba desirable to have only
a single combined coae section, a single date section, and
so on. An example of this is sho~n below. Note the use of
-r to keep the resulting output file relocatable. ~ota that
we are specifyinv •ttributes as wall as section naNes1 and
that neither th• n~~•s nor the attributes of the combined
sections have to be the same as those of the inpyt sactions.

Zilog Object File Utilities S-26

ML INK Chzpter 5 ML INK

~link -i file1.o file2.o -r -s code -n code:X \
-s data -n data:• -s rom -n rom:R -o ex7 -v

MAP: ISecn OSecn Location Size

Output file ex7:
0 R•OOOOOOOO S=00000484 ,code:N5X
1 R=OOCOOOOO S=00000466 1data:NSW
2 R=OOOOOOOO 5=00000231 1rom:NRS
3 R=COOOQOJO S=00000032 1Ccommon:BNSW
4 R=OOOOOOJO 5=C0000400 1bss:BCNk

3 S R=OOOOOOOO S=OC002000 file2.01stack:BPSW

Input files:
c 0 R=OOCOOOOO 5=00000242 file1.o,cooe:N5X

2 R=OOCCOOOO S=00000231 file1.01rom:NRS

5-27

1
2
3
0
1
2
3

1 R=OOOOOOOO S=00000232 file1.01data:NSW
4 R=OOOOOOOO S=OOOOC200 file1.01bss:BCNW
0 R=000002~2 5=00000242 file2.01coce:NSX
1 R=C0000232 5=CC000~34 file2.01data:NSW
4 R=COOOQ200 S=COOC0200 file2.01bss:BCNW
5 R=OOOOOOOO S=00002000 file2.01stack:BPSW

file ex7:

·-----------------------· code:X I
file1.01code:X I
file2.01code:X I

+-----------------------+ rom:R I
I file1.01rom:R I
+-----------------------+ I data:w I
I file1.01d£ta:w I
I file2.01data:w I
+-----------------------+ I Ccommon:WB
+-----------------------+ I bss:WSt
I file1.01bss:WBC
I file2.01bss:WBC

+-----------------------+ file2.01stack:WSP

·-----------------------*
Fi;ure S-8. Naming and Co~binin; Sections

Zilog Object File Utilities

Chapter 5 ~LINK

5.4.9. Overlays

In small systems it is sometimes necessary to break programs
up into pieces that "overlay" or loao on top of ona another.
A clever loading pro~ram that understands about section~
could select the sections belongi~g to overlays out of an
~bject file containing the whole orogram, but more often it
is necessary to put overlays in a separate file. This can
be done in a single linking step by specifying multiple out­
put files.

A related problem is ••king sure that the sections that are
supposed to overlay one another start at the sa~• address.
This can be done easily if •• want to specify the address
exactly, but more often the overlaid sections are located
relative to other sections, whose size we don•t care to keep
track of. The •• (mark) option is useful here.

The techniques used for making overlays are shown below. We
assu~• that the code and data in file2.o are need~d only
part of the time, and can overlay file1.o's data section,
which •• therefore locate li1tC the Ccom~on and 8SS sec­
tions. we locate the stack at the high end of memory using
the •t option. It doesn't matter which overlay file the
stack goes •ith because, being • BSS section, no data is
actually loaded into it.

Zilog Object Fil• Utilities S-28

MLINi< Chapte,. 5 ML INK

mlink -i file1.o file2.o -s file1.o,code :R -s :S-P -d \
-m1 -s fila1.01data -o exS \
-m1 -s :X :~-a :P -t Offff -o ex8a -v

MAP: !Seen OSecn Location Size I File1Name :At ts

Output file
0
1

2

Output file
0
1
3

Input filas:
0
1
2
3
0
1
2
3

5-29

exa:
0 L=CiOCOOOOO
1 L=OOC00242
2 L=00000474
3 L=CCC00874
4 L=CCC008a6

ex8a:
S L=CCCC08a6
6 L=OOCOCu8
7 L=OOOOdffe

S=C0000242 file1.01code:ANSX
S=OCC00231 file1.o,rom:ANRS
S=COOOJ400 ,bss:A6CNW
S=CCCCOC32 ,ccommon:ASNSW
S=COC00232 file1.o,data:ANSW

S=00000242 file2.o,code:AhSX
S=OOC00234 file2.o,aata:AhSW
5=00002000 file2.o,stack:ASPSW

0 L=OCCCOOCO S=C0000242 file1.o,code:ANSX
1 L=JOOOJ242 S=C0000231 file1.o,rom:ANRS
4 L=C00008a6 S=C0000£32 file1.o,data:ANSW
2 L=CCC00474 S=OC000200 file1.o,bss:A8CNw
S L=OOC008a6 S=OJQ00242 file2.01code:ANSX
6 L=COCOOaeB S=OCOOC234 file2.o,data:ANSW
2 L=00000674 S=00000200 f ile2.o,bss:ABCNW
7 L=OOOOdffe S=OC002000 file2.o,stack:ABPSW

Zilog Object File Utiliti•s

DI

ML INK Chapter 5 MLihK

file ex8:

0000 *-----------------------* I file1.01code:X

+-----------------------+
I
+-----------------------+ I bss:wac I
+-----------------------+

Ccommon:W~ I
08A6 +-----------------------+

·-----------------------·
file ax8a:

08A6 •-----------------------• I file2.o,code:X

+-----------------------+ I fileZ.01data:W

+-----------------------+
DFFE +---~-------------------+
FFFF ·-----------------------·

Figure 5-9. Overlays

5.4.10. Di•c•rding Section•

It is somati~es useful to produce an object file containing
only some of the sections of the input files. This is an
alternative way of producing overlays; it is used more often
if one input file contains an operating system and another
an application that runs under it. The application will
need to know th• addresses of routines in the operating sys­
tem, but can assume that the oQerating system will already
be in memory.

Sections are discardeo by giving a -o option with no
filen•me. This is shown in the example below, in ~hich all
the sections in file1.o are aiscarded.

Zilog Object File Utilities 5-30

Chapter 5 MlihK

~link -i file1.o -s -d -o -i file2.o -s -o ex9 -v

MAP: ISecn CSecn Location Size

Oisc~rded:

0
1
2
3

Output file
0
1
2

3

Input files:
0
1
2
3
0
1
2
3

0 L=COOOOOOO S=C0000242 file1.01cooe:ANSX
1 L=00000242 S=OOOOC231 file1.01ro~:AhRS
2 L=00000474 S=00000232 file1.01dat~:ANSW
3 L=GCOC06a6 5=00000200 file1.01bss:ASCNW
4 L=000008a6 S=00000014 ,ccom~on:ABNSh

ex9:
5 L=CCCOCSba
6 L=OOOOOofc
7 L=OOOC0d30
8 L=OOOCOf30
Y L=00000f44

0 L=COOCOOOO
1 L=OJ000242
2 L=00000474
3 L=OOC006a6
S L=000008ba
6 L=OOCOOafc
7 L=Ci0000d30
9 L=OOJ00f44

S=C0000242
S=Oi:l000234
S=C00002CO
S=OOCC0014
S=OOOOZOO·J

5=COC00242
5=00000231
5=00000232
5=00000200
5=00000242
S=CCOOC234
S=OC000200
S=C0002000

file2.01code:ANSX
file2.01data:ANSW
file2.01bss:ABCNW
,cco1i;11on: ABNSW
file2.01st~ck:ABPSW

file1.01code:ANSX
file1.01ro111:ANRS
file1.01data:ANSW
file1.01bss:ASCNW
file2.01code:ANSX
file2.01oata:AhSW
file2.01bss:ABCNW
file2.01stack:ABPSw

file ex9:
·-----------------------· I file2.o,code:X

+-----------------------+ I file2.01data:W I
+-----------------------+ fileZ.01bss:WBC I
+-----------------------+ I Cco~mon:WS I
·-----------------------+ file2.01stack:WaP

·-----------------------·
Figure S-10. Discarding Sections

5-31 Zilog Object File Utilities

6.1. INTRODUCTION

Chapter 6
MLIST

The mliil utility uses spacial commer.ts that the asse~bler
can optionally insert into an object fila Cwith the -oson
gssembler option) to construct an asse~bler-l1ke listing
file from a MUFOM object m~dule.

6.2. COMMAND SYNTAX AND OPTIONS

The command syntax for this utility is as follows:

mlist C-o f ileJ C-s -1 I -xJ [fileJ

The file and options may appear in any order. If no file is
given, standard input is used.

The command-line options are:

-o file
output file name C!f not specified, output is to stan­
dard output.>

-s short format <••••s instead of expressions)

-1 lon; format (single long line for overflow of object
code)

-x exclude object code that doesn•t fit on the source
line.

6.3. USA&E1 OUTPUT FORMAT AND EXAMPLES

The input file sho~la be generated by runr.ing the assembler
with the •o• -on options, to get source coda and line
nu~bers into the object file. Most object-file utilities
can be made to preserve comments with the -k option; the
comments use~ by mliil are in levels 2 ana 3, so the -kl
option should be used. In particular, keeping comments
through !liDk means that an assembler-like listing. can be
;enerated from a fully linked and relocated load ~ocula.

A full explanation of
expressions displayeo

th• ~UFOM variables used in the
in the object-code column of the

6-1 Zilo~ Object File Utilities

'4LIST Chapter 6 .. l..IST

listing ca" be found i" Appendix A. The more com•on expres­
s ions are:

external Xnnn
Rnnn•off set relocatable in section nnn

Aoart fro~ •ddition1 represented by an infix "+" sign,
operations in expressions are listed as

even for operations such as "*" for multiplication. The
er.tire expression is enclosed in an additional set ~f
parentheses.

The following examples show e short assembly-lan;~a;e pro­
gram with its assembler listing, and ml11i-;enerated lis~­
ings in the various available formats.

asm80k -oson -oc foo.s -o foo.o -p

asm80k version 2.1a
Mon Apr 28 09:41:34 19S6
LOC OBJ

0000~000 6121803cW•••••••
OCu0-0008 1402********
OOOOOOOe

foo
SOURCE ---

foo1:

.extern
ld
ldl
.blkb

xxx
r1, rr2Cfoo1JCr3J
rrz, #xxx + foo1
1000h

0000100e R000+000000081**
ooou1013 **************

LINefi
1
2
3
4
5 .dd foo1, xxx * 1001 foo1 Ac

6

mlist foo.o

mlist v. 2.1 -- Zilog MUFOM listing utility

cccoooco 1 .extern xx:x
00000000 6121803c <RO+S> 2 ld r1, rr2Cfoo1JCr3J
00000008 1402CXO+RO+S) 3 foo1: ldl rr2, #xxx + foo1
COOOCOOe 4 .blkb 100Gh
0000100. CRO+S>C• C x0,64)) s .Cid foo11 xxx * 100, foo1 Ac

00001010 (iINS(O,RC+e,3,
OOC01C16 •t»

Zilow Object Fil• Utilities ~-2

MLIST Chapter 6

:nlist foo.o -s

mlist v. 2.1 -- Zilog MUFOM listing utility

00000000
OOOCOCOO 61218C3e********
00000008 1402********
OCiOOOCOe
OCOC10Ce ****************
00001016 ********

111list foo.o -x

1
2
3 foo1:
4
s

.extern
ld
ldl
.blkb
.dd

mlist v. 2.1 -- Zilog MUFOM listing utility

00000000
00000000 6121803cCR0+8)
00000008 1402CXO+RO+a>
0000000.
0000100a (R0+8)(*(X01C4))

111list foo.o -1

1
2
3 foo1:
4
s

.extern
ld
ldl
.blkb
.dd

mlist v. 2.1 -- Zilog MUFOM listing utility

;)0000000 1 .extern
00000000 6121S03e<R0+8) 2 ld
00000008 1402 CXO+RO+S> 3 foo1: ldl
OOOOCOOe 4 .blkb
0000100• CR0+8) (• (XQ,64)) s .dd
00001016 C;INSC01RC+a,3,4f))

6-3 Zilo~ Object File Utilities

MLIST

xxx
r11 rr2Cfoo1JCr3)
rr2, #xxx + foo1
1000h
foo1, xxx • 100, foo1 A

xxx
r11 rr2Cfoo1J(r3J
rr21 #xxx + foo1
1000h
foo1, xxx * 1001 foo1 A

xxx
r11 rr2Cfoo1J(r3)
rr,, #xxx + foo1
1000h
foo11 xxx * 100, foo1 #

IDI

Ch~pter 7
~LCA~

7.1. INTRODUCTION

The il~~g ut1lity is a format conversion progran ~hich
translates MUFC~ files into one of three for~ats suitable
for movin~ an object module from a host system to a target
systeffl. The three output form~ts are Taktronix •nd Intel Hex
formats, and a simplified version of MUFOM. ml2~' is usually
used in conjunction with QC212,21' which sends the resultin~
outout to a target systam using the Tektronix or other
handshaking protocol.

!n eddition to simply converting formats, ~l2i~ has several
options which are useful in burring ?RO~s and in download­
i~g.

7.2. COMMAND SYNTAX AND OPTIONS

The command syntax for this utility is as follows:

mload (options) CfileJ

If no filaname is given, the standard input will be con­
verted.

The command-line options are:

-o file
Output file name (if not specified, output is to stan­
dard output).

-a MUFOM absolute do~nload subset (default)

-i This option specifies the output to be in Intal Hax
format, as aefined in Appendix C.

-t This option sp•cifies the output to be in Tektronix Hex
format, as define~ in Appendix a.

CTne following are useful for burning PRC~s.>

-N Output every Nth byte. Divide input addresses by ~ to
~et output addresses.

7-1 Zilo9 Object File Utilities

!illOAO Chai:iter- 7 MLOAil

@H Start at (input> address H.

=H Output H bytes.

(The following options are useful for do•nloading, and espe­
cially for- mappin; code into a specific s~g~ent.)

+H Add offset of H to every QW1QWl address.

-p (PROM) Subtract 111ti fro~ every iDQWl address (before
the division specified by •N o~tion>. This starts out­
put addresses at zero for burning a PROM.

-z Map Z9001-type sagNented addressss into 24-bit linear
addresses. The 7-bit segment n~1ber in bits 24-30 of
the input address is placed in bits 16-22 of the output
address. Thus, th• Z800C address 12001234
C<<12h>>1234h in ass•mbler notation) is ~apped into the
output address 121234.

<The follo11ing apply only to MUFOM or Intel download for-
:11ats.>

-o Output global symbols.

-1 Output local symbols.

-k Keep comments of level N or lower (MUFO'I only).
(default: N = 255)

-s Cutput se·ction infor:nation (MUFCM only).

7.3. OPERATION

The input to mlilQ is a single MUFOM format object module.
If the input object module is relocatable C i•i•' there are
symbols fo~ address references for which no values have been
associated), than mlal~ will produce an er-ror messa;e but
will proceed with the translation, relocatin~ every section
starting at zero.

7.3.2. •loed Addr••• Trenslation

The parameters that affect mla19's address translation are:

S th• specifieo starting address (&S option).

Lilog Object File utilities 7-2

MLOAO Ch•pter 7 MLOAD

L The number of bytes to be output C=L option).

T the specified offset (+T option). The -p option sets T
= -s.

N the number of separata PROMS being burned C-N option>.

Given an input address A, this will be translated to an out­
put address AIN - T. Cnly data with Pddresses between S and
S + N*L will be loaded.

It should b• noted that all symbolic information is lost
when MUFOM is translated into Intel or Tektronix Hex. In
addition, MUFOM sections have no counterpart in Intel or
Tektronix formr.t, i.e., all sections in the MUFOM file will
become one contiguous set of records when translated.

Intel Hex format limits addresses to 16 bits without
extended addressing, and 20 bits with extended addressing.
Tektronix Hex format limits addresses to 16 bits. Thus,
large programs may have to be downloaded in several pieces.

7.4. USING •loed: SOME EXAMPLES

The f ollo•ing exa~ples show how ml21Q works. The first few
examples &~sume the following inp~t module called "tload.o":

7-3 Zilog Cbject File Utilities

!14L0Ai> Chapter 7

111BZ80K, 05 tload.
A0031041'4.
OT19860505094SS4.
C001C0115--- Section Table
ST001A103&bs.
SAC0,02.
assoc,0111.
ASL00100.
STC11A1X104code.
SAC1,02.
ASS0112F0020C6,2F0020CO,-.
ASL0112F0020CO.
C00101114--- Sy~bol Table
ASG12F00200C.
NN01,03foo.
ASNC110101.
NI0010Sstart.
ASI0012F002000.
C001J2,18--- Program Sections ---.
SBOO.
LR0001020304CS06070809CAOBOCODOECF.
ASPQ0,0101.
LR0102030405C6C708090AOBOCOOCEOF10.
S801.
LR5EC8AF002000.
JlllE.

The following three exomples show the use of ~lQi~ to pro­
duce absolute MUFOM output in a form suitable for do~nload­
in;.

Zilog Object Fila Wtiliti9S

MLOAO c IHtPhr" 7

7-5

Command:

mload tload.o -o load.o

Output: loaa.o (absolute MUFOM)

MB28Ql(,QS tload.
ADC81C4,M.
ASPO:J100.
LR000102G30405060708090ACBOCCOCECF.
ASP0010101.
LR0102030405060708090A08CCOOOEOF10.
ASP0012F002000.
LRSE08AF002CCC.
ASG12F002000.
ME.

mload tload.o -o load.o -•

Output: load.o CMUFOM with sections)

·'482!0K,05tload.
AOC81C4,M.
C0010011S--- Section Table ---.
ST001A,C311bs.
SAOil102.
Assoo,0111.
ASL00100.
STC11A,A,Q4code.
SA01102.
ASS01106.
ASL01,2F002000.
C00101,14--- Symbol Table ---.
C001C2118--- Pr"ogr"em Sections ---.
uoo.
ASP00100.
LR00010203040506070!09QAC&OCCOO!OF.
ASP0010101.
LR0102030405060708090A090CODCEOF1C.
5801.
ASP0012F00200Q.
LR SEOSAF0020Ci0.
ASG12F002000.
ME.

Zilog Object File Utilities

MLOAO

MLOAiJ Chapter 7

Co11mand:

mload tload.o -o load.o -slg

Output: load.o (MUFCM •ith sections and symbols)

MBZ80K10Stload.
ADQ6,Q4,M.
C001Q0,1S--- S•etion Table
ST001A103abs.
SA00102.
ASS0010111.
ASL00100.
ST011A1A104code.
SA01,02.
ASS01106.
ASL0112F002000.
coo101,14--- Sy11bol Table
NN01103foo.
ASN0110101.
NI0010Sstart.
ASI0012FC020<JC.
C00102112--- Program Sections ---.
SBOO.
ASP00100.
LR0001020304050607C8090ACBOCODOEOF.
ASP0010101.
LR0102030405060708090AOBOCODOEOF10.
SB01.
ASP0012F002000.
LRSE08AF002000.
ASG12F002000.
"1c.

7.4.2. Tranelating from MUFOM to Intel H•x

MLOAD

Suppose that you ~ant to transl•te an object module that is
formatted in MUFOM into Intel Hex records. The following
example sho•s ho• this would be performed:

Zilog Cbject File Utilities 7-6

MLOAO Chapter 7 ML CAO

Command:

mload -i tload.o -o load.o

Output: loaa.o (Intel riex)

mload v. 2.1 -- Zilog MUFOM load formatting utility
:100000C0000102C3040506C7CS090AOBOCODOE~F78
:10010100010203040506~708090A080COO~EOF1066
:062000005EOSAF002000AS
:0020000300
:00000001FF

The •i option specifies that the input be translated into
Intel hex records. link.o is th• input file. •o load.o
specifies that output goes into the file called load.o.

Note that the addresses in the output have bean truncated to
16 bits.

7.4.3. Tranalatin; fro• NUFOM to Tektronix Hex

The method shown for translating object ~odules from MUFOM
format to Intel Hex in the previous section is the sa~e
method used for translating Tektronix format. Instead of
the -1 option (output = Intel), the -t option is used to
indicate that the output will be Tektronix for~at.

The following example shows tr.e translation of a file to
Tektronix Hex with output on Standard Output.

Command:

mload -t tload.o

Output (Standard Output)

mload v. 2.1 -- Zilog MUFOM load formatting utility
/00001001000102C3040S06C708090ACBOCOOOECF7S
/0101100301020304050607C8090AOBOCOJOEOF1079
/20000608SEOSAF00200036
/20000002

Note that the addresses in the output have been truncatea to
16 bits.

7-7 ZilOi Obj•et Fila Utilitias

~LOAJ Chapter 7 MLOAO

Downloading a pro;ram or se~ment thereof to a PROM program­
~•r is straightfor&ard. First, generate • file of the
proper format, i.e., Intel or Tektronix Hex. Second, attach
the programmer to your terminal's auxiliary port. Third,
'Ii (~~IX•) or 1¥21 COOS) th• file while capturin; the data
on the programmer. Last, burn the PROM. This methoe has
been used successfully with Data I/C Programmers and ADM 31
terminals.

A second ~ethod can be used if tha PKOM programmer is
attached to a second serial port. In this case, the output
of ml21~ can be sent to this port insteBd of to a file. If
the PROM progra~m•r requires a handshake, QC212,2l can be
used <see Section 10.3.3 in the chapter on QC212,Ql•>

7.4.S. Progr•••ing Multiple PROM1

Whan a program is too big to fit into a single PROM, it is
necessary to perform several loads. The following example
shows how to do this.

Suppose you have a file, "file1" which is to be translated
into two Tektronix-format files "prom1" and "prom2" with
starting addresses OCOO and 1000 Chex) respectively. You
can do this with the t~o commands

mload -p file1 -o prom1
mload -p file1 -o prom2 i1COO

The 11000 option in the second com~and specifies that output
starts with ad~ress 1000 (hex). The -p option specifies
that the physical addresses in the output files start •ith
~ooo.

7.4.6. Pro1r•••in1 PROM• for • 16-bit Processor

When developing software for 16-bit processors such as the
ZSOCQ, it is ne~essary to progra~ odd and •~en locations
into separate PROMs. The following example shows ho~ to do
this:

Given a file "file1" which you want to separate into two
Intel-format files, "promO" and "pro~1" respectively, you
use the two eom~anas:

mload -2 -p file1 -o promo
mload -2 -p fil•1 -o prom1 t1

Zilo~ Object File Utilities 7-8

MLOAO Chapter 7 MLOAiJ

The -2 option sQecifies that two PROMs are being programmed,
so that only every other byte is to be loaded. The -p
o~tion scecifies that addresses in the PROM output file
start with O. The 11 option in the second command specifies
that output to file "prom1" starts with adoress 1 in the
input file.

Note that for 32-bit processors, -4 can be us•d to produce
four PRCll4s.

7.4.7. Tr•n•l•ting Logic•l to Phyaicel Addr•••••

When developing soft~are for systems that incorporate m•~ory
~apping, i~ is sometimes necessary to load software ~t a
different address (physical address) from the address at
which it is intended to run Clogic•l addrvss>. The follow­
ing example shows how to perform this translation using the
+9.Uu1 option:

Given a file "file1" containing a program linked starting at
logical lo~ation Q, you want to load the program into physi­
cal segment 1 on a Z8001. The Z8001 CP~ places the start of
segment 1 at 0100C000Chex); the target system's memory
places it at 010J00(hex). Use the command:

mload file1 -z +01JOOOOJ

The output of this command is another MUFOM file on standard
output. The •z option specifies that 32-bit Z8001 logical
address•s are mapped into 24-bit physical adoresses by
"squeezing out" the secono byte. The +01000000 option
specifies that 01000000 is added to logical load addresses
in the input file <;1:tslc1 the translation implied by ttle •z
option.

Note that only the addresses at •hich data are to be lg1g1g
are mapped. Addresses in the program, and the values of
symbols, ~re unchanged.

7-9 Zilog Object File Utilities

Chapter 8
MLOROER

8.1. INTRODUCTION

The ml2cg1c utility takes a list of MUFOM modules and com­
putes the optimum order for putting these modules into a
library. noptimum order" is the order that allows all
reQuired modules to be found in a single pass throu~h the
liorary; thus, all ~odules in the library that reference a
symbol appear in front of the module that defines it.

It is not always possible to find such an optimu~ orderi
~l2C2it will inform you if this is the case, with the mes­
sage:

cycle in data:

followed by a list of the modules that contain a circular
series of references.

The output file generated by !l2t£tt is in a form that can
be used by ~1~2 to generate a library.

8.2. COMMAND SYNTAX AND OPTIONS

The ml2cg1c conversion utility is invoked by the following
command:

mlorder C-rJ (fileJ •••

The command-line options are:

-r If the -r option is given, the standard output is a
list of pairs of object file names, ~eaning that the
first file of the pair refers to external identifiers
defined in the secono. The output ~ay be processed by
1i2t1 to find an ordering suitable for one-pass ~ccess

by mlAD~·

B-1

Alternatively, the proper ord•rin~ may be generated
directly by mlgc2i~ by not giving the -r option. In
this casa the o~tput is ~ 1ila suitable for diract
input to ml~g witr. the f option.

Zilo~ Object File Utilities

9.1. INTRODUCTION

The mom utility prints the symbol table name list for a
given file in any of several formats.

9.2. COMMAND SlNTAX AND OPTIONS

The command syntax for this utility is as follows:

mnm CoptionsJ Cfil•~

If no file is given, standard input is used.

The com~and-line options are:

-1 Include local symbols in the listing.

-n List symbols in n~~erical order.

-u List symbols unsorted, that is, in the order they
appear in the object file.

-m List symbols with link map information.

-s Swapped format, with name first on the line.

-s N
Swapped format with name first snd truncated to N char­
acters.

-o file
Direct output to the given file instead of standard
o~tput.

9.3. OUTPUT FORMAT AND EXAMPLES

ma~ displays the sy~bols defined in the given file in any of
several formats. Options are provided to display

9-1 Zilog Object File Utilities

MNM Chapter 9 '4NM

o only global and external sy11bols (th• default> or local
sy11bols as well.

o sy•bols in alphabetical order, in nu•erical order by
address, or in their order of definition.

o with or •ithout link map information.

0 in a short for• suitable for use with
debuggers, e11ulators1 or other utilities.

9.3.1. Default N••• Liat For••t

symbolic

The default format of the symbol na11• list is shown in the
example below. The list has • line entry for each symbol.
The first column shoms the value of the symbol. This is a
hexadecimal number for absolute symbols, or an expression
involving an R-variabl• (relocatable section origin) or x­
variabl• (external symbol). More complex expressions are
listed as "<expression.>".

The second column contains "X" for external symbols, "I" for
global (internal) symbols, and "Nu for local symbols.

The third column contains the name of the symbol.

;wnm -1 foo.o

mnm v. 2.1 -- Zilog
00001002+XOOOO
<Expression.>
oooooooc+xooco
OOOOOOOO+X0001
00000004+ROOOO
00001002
000001234S6789abcdef
OOOOOOOS+ROOOO
OOOOOOOa+ROOOO

itlJFOM namelist
N expr1
N expr2
X ext1
X ext2
I glb1
I glb2
I glb3
N loc1
N loc2

utility

Note that the above example was prepared with the "-1"
option to list local symbols.

9.3.2. N••• Liet •1th.Map lnfor•ation

The •• option can be used to list sy•bols •ith information
derived from the section table, and from the link map in
modules output by mliCk• The fourth column contains the
file of or1g1n for the symbol, with • library na~• in
parentheses if the symbol came from a library. The fifth

Zilog Object File Utilities 9-2

MN'4 Chapter 9

column contains the name of the section in which tha symbol
resides, and its attributes. This column contains "?:" if
the section cannot be determined. (The sp~c:e between
columns has b•an decreased a little in the example below to
make it fit ~ithin th• margins in this manual.)

11nm -m foo.o

mnm "· 2.1 Zilog MUFOM namelist utility
00005714 I __ align doprtz.oCfoo.lib), libc:ode: ANS>
00005256 I __ Cloprtz doprtz.oCfoo.lib), libc:ode: Al'li S>
00005086 I __ iob strlen.oCfoo.lib), libc:ode:At.S>
00005786 I __ pr tint doprtz.o(foo.lib), libc:ode: ANS>
00005Sb2 I __ xputc doprtz.o(foo.lib), libc:ode:ANS>
00005000 I _atoi atoi.o(foo.lib), libcode:ANSX
00005200 I _printf printz.o(foo.lib), libc:ode: ANS>
OOOOOOCa I _pute foo.01 allfoo:ANSW
00,JOSl!fa I _strlen strlen.o(foo.lib), libcode:ANS>
00005026 I _strnc:ml) strnc:mp.o(foo.lib), libc:ode:AN!
00000000 I foo1 foo.o, allfoo:ANSW
00000002 I foo2 foo.o, allfoo:ANSW
00000004 I foo3 foo.o, allfoo:ANSW
000067ab I gru strlen.oCfoo.lib), ? :
00004567 I zoo strlen.oCfoo.lib), ? :
00005026 I zorc:h strlen.oCfoo.lib), libc:ode:ANS>
00001234 I zork strlen.0Cfoo.lib)1 ?:
00001234 I zorn strlen.o(foo.lib), ?:
00005678 I zot strlen.oCfoo.lib), libcode:ANS>

9.3 .. 3. Swapped N••• List Fof'••t

In order to interface to some symbolic: debuggers, it is pos­
sible to get a nswapped" listing with the nama first on the
line. It is also possible to truncate the name f i1ld to a
~iven number of characters. This is done with the •s or -•
N option, as in the example below.

9-3

mnm -s8 foo.o

11n111 v.
ext1
ext2
glb1
glb2
glb3

2.1 -- Zilog MUFCM namelist utility
x oooooooo+xoooo
x OOOOOOOO+x0001
I OOC00004+ROOOO
I 00001002
I OOOOC123456789abcdef

Zilog Object File Utilities

ID

Chapter 10
PROTOCOL

10.1. INTRODUCTION

The QC9S9&9l utility is the upload/download communication
handshake program. It supports a variety of different
file-transfer protocols commonly used on PROM pr~grammers
and development systems. It is normally used in conjunction
with 1la1d to download modules into a target system.

10.2. COMMAND SYNTAX AND OPTIONS

The command syntax for this utility is as follows:

protocol CoptionsJ Cf ileJ

A maxilll'Um of one file may be specif iedi if no file is spe~i­
fied the standard input is used for downloading, standard
output for uploading. Order of command line arguments is
not significant.

The command-line options are:

-d device
download device name. (If no -d option is ;iven or no
device is specified, the terminal is used.)

•u CdeviceJ
upload device name. (If no device is specif ied1 th•
ter~inal is used.)

•f file

-·
take command arguments from the specified file. Argu­
ments in th• f il• may be separatea by whitespace or
newlines; comments start with a semicolon and end with
newline.

suppress error messages.

-s string

1 c-1

setup string sent to upload/download device. Multiple
-• options are permitted; the strings are concaten£ted.

Zilog Object Fil• Utilities

PRCTOCCL Chapter 10 PROTOCCL

-p protocol
specifies protocol. (uafault Tektronix.>

The protocol is matched with a list of protocol names.
Case is ignored, and abbreviation is allowed.
Presently, the only protocol defined is "Tektronix".

Protocol may also be ~ list of ite~s of the form
"variable;value". Values are numeric; hex if they start
with "O", decimal otherwise. Variables are one of the
following:

ack
acknowledgement character.

nak
negative ackno~ledgement character.

abort
abort character.

linedelay
delay (in milliseconds) after sending each line.

chprdelay
delay (in milliseconds) after sending each charac­
ter.

prompt

retry

prompt character.

number of times to retry an incorrectly-received
record.

timeout
timeout in seconds.

10.3. USING protocol: SOME EXAMPLES

10.3.1. Do•nloadlng to a Z8 or 18000 D•v•lOP••nt Module

To download an object module to a target syste~ such as a
Zilo~ Z8 or ZSCOO development module, the following pro­
cedure is used:

(1) In Unix, create an alias with the command

alias LOAD 'protocol -t•

In othe~ operating syste~s, create a command file with

Zilo; Object File Utilities 10-2

PROTOCOL Ch•pter- 10 PROTOCOL

the same effect. Note that the filename argument to
the LOAD comman~ is appended after the "-t" option. If
you want to specify MUFOM object modules rather than
Tektr-onix hex, your ali•s or command file will need to
run them through ml;ag first; this can be done with

alias LCAO •mload -t * I protocol -t•

(On operating systems other than Unix, this will take
two commands, with mliiQ creating • temporary inter-
1aediate file.)

(2) While running in the development module•s monitor, axe·
cute the command:

t.OAO <filename>

The development module sends the host the co~mand:

LOAD <filename>

which the host inter-prets as

protocol -t filename

which performs the Tektronix handshake protocol with the
development module.

10.3.2. Uplo•dlng fro• a 18 or Z8000 Dovolopmont Modulo

The procedure to uploac from the Z8 or Z800C development
module is slightly more complicated than t~e procedure used
to download. T~e user must kno~ the starting and ending
addr-esses of the image to be uploaded before proceding.
~iven that, the following procedure must be followed:

<1> Alias "SEND" to "protocol -u -t•.

<2> ~hil• running in the development module•s monitor, exe­
cute the command:

SEND <filename> <start-add~> <end-addr>

The development module sends the host the com~and:

LOAD <filename>

which the host interprets as

protocol -u ·t file"ame

10-3 Zilog Cbject Fila Utilities

PROTOCOL Chapter 10 PROTOCOL

This invokes QC919,9l, •hich pe~forms the Tektronix
handshake protocol with the aevelopment module. The result­
ing file is in Tektronix Hex format, suitable for download­
ing again.

NOTE that "protocol -t -u filename" is incorrect: this
causes ataia,al to interpret the given filename as the dev­
ice to upload from, with odd results.

Soma PROM programmers do not require a download protdcol;
they simply have a file copied directly to them, as
described in the chapter on mlali• Others (e.g., the
DATA/IO model 21) require more elaborate tr•atment as
described below.

It is most convenient, if • device requires a complex down­
load protocol, to make a command file. For downloading to a
OATA/IO model 29 attached to device "/dev/tty4", this file
(call it "dataio"> should contain:

-d /dev/tty4
-s \~\C86A\rI\r
-p prompt•03E

In order to do•nload a file, for example ~foo", use the com­
mand

protocol -f dataio foo

For uploading from the DATA/Io, the corresponding command
file should contain:

-s \C\CS6A\r2000;\r1CM\r0\r
-u /dev/tty4
-p prompt=03E

Naturally, other PROM programmers ano emulato~s •ill have
different protocols; you will need to consult your manual
for details, and uill probably have to experiment as ••11.

Zilog Object File Utilities

Ch•pter 11
OTHER PROGR~MS

The following pro;rams are supplied with the Object Fil•
Utilities for specializad purposes:

mar
•2•
~uima;e.c

They are described below.

11.1. MAR

The mit utility is an older version of ~li;. It produces a
so-called "archive" file which is compatible with older ver­
sions of mlic~, as well as the library files of the Berkeley
version of the UNIX• operating system. Archive files have
the advantage of being able to contair. any kind of file (not
just MUFOM object files), and the disadva~tage of not allow­
ing the linker to access them randomly.

The command line of llC is identical to that of mli2 Csee
Chapter 4).

11.2. M2A

The ~ii utility converts MUFOM object files to a form called
1•2Y1' which is the format used i~ Zilog's SSOOC microcom­
puters. This for•at is primarily useful for downloading
into Zilog's EMS-8000 emulator for the Z8000 microprocessor.

11.2.1. Co•mand Syntax And Options

The J'i conversion utility is invoked by the following com­
mand:

m2a (-i I -o J (-s seg J inputf ile outputf ile

The command-line options are:

-i Put instructions and data in separate address spaces.

-o Convert an overlay file.

11-1 Zilo; Object File Utilities

m

OT~ER PROGRAMS Chapter 11 OTHER PROGRAMS

-s H is the seg~ent number (i~ hexadecimal> in which the
stack is to reside.

lhe input file must be absolute, i•I• the output of
mlin~ or mlQIQ• Many features of MUFOM cannot be con­
verted to l•9Wl' these include arbitrary expressions
involving relocatable or external symbols, and sections
other than code, data, and BSS.

11.3. MUIMAGE.C

The mwim1g1., program is the C-language source for a pro­
gram. It converts a MUFOM character form object file on
Standard Input to en absolute binary image file on its Stan­
dard Output, while producing a hexadecimal listing on Stan­
dard Error (the terminal). This program is not very useful
by itself, but is supplied in source form so that you can
construct a customized loader for mhatever target system you
are using. 1wim1a1 is designed to work on the output of
mlal~, and understands only absolute modules in character
form.

11.3.1. Co•••nd S~ntax

lhe 'wim1g1 conversion program is invoked by the following
co~mand:

muimage CinputfileJ > outputfile

If no input file is specified, Standard Input is used.

Zilog Object File Utilities 11-2

Appendix A
MUFOM FILE FORMAT

A.1. THE MUFOM STANDARD

The MUFOM format, as implemented by the Zilog cross­
software products, follows th• format specified in the IEEE
standard 1~~~ 62~-121~, "The Microprocessor Universal Format
for Object ~odules." The standard specifies only the '~ICi':
iiC t2cm for object files; the biD~C~ t2cm of MUFOM files
follows the suggested format in Appendix 6 of the standard.

Section A.2 discusses the concepts of modules and sections,
and the various section attributes and their meanings. Sec­
tion A.3 discusses the way MUFOM handles sy~bols, and the
use of MUFOM variables~ Section A.4 discusses tha local
usage of IEEE Standard 695 by the Zilog cross-soft~are,
including i~plementation restrictions. Section A.S
discusses local extensions to the standard that have been
added to implement efficient library search. Section A.6
contains an example of a MUFOM object module and an explana­
tion of its constituent commands.

A.2. MODULES AND SECTIONS

MUFOM object modules C~bject files> are divided into 11':
tiaDI each of •hich is destined to be loaded into a separate
area of memory. Each section has a Dim•' a illl' 111ti:
QW11i' and Cif not relocatable) a la;11iRQ• Each section
also has a 1t;liiD DWIQIC which is used to refer to it
internally. In Zilo;'s implementation these section nu~b•rs
correspond to the order of the sections in the section
tabla. Section numbers are limited to 16 bits. The name
and attributes of a section are specified in a MUFOM "ST"
(Section Type) command; the size and location are MUFOM s­
and L-variables respectiv•l~.

It is important to note that the name of a section may be
null Cin •hich case the section is referred to as
"unnamed"), and that the names of sections DllG DQl bi
WDl9MI• Thus, a file may contain severel sections named
"coda". The advantage of this is that the linker can relo­
cate such sections separately. Therefore, on a Z8001 all
"code" sections do not have to be in the same segment.

Sections
location
multiple
bo~ndary

A-1

may also have an 1li~am1a1 and QIQI Jill• The
Clower bound) o~ a section is restricted to be a

of its align~ent, and the section may not cross a
•hich is a multiple of its page size. The page

Zilog Object Fila Utilities

"UFO" FILE FORMAT Appendix A MuFOM FIL! FORMAT

size is used to implement addr~ss-space and segment-size
limits. The •lignment and page size of a section are spec~­
fiea by the MUFOM "SA" (Section Alignment) co~m•nd.

The follo•ing is a description of the various section attri­
butes and their meanings. This includes the way they affect
the link process, ano their eventual use in a target system.
each ~ttribute is represented by a letter <lowercase or
uppercase>.

A.2.1. Ace••• Attributes.

The access attributes specify ho• sections are used
(accessed) in the target system. They are used during the
link process to select groups of sections that are to be
located together.

W <Writeabl9>
This is th• default access attribute.

R <Read-only)
This attribute is used for data that is intended
to go into ROM.

8 (8SS>
This attribute is used for data that is initial­
ized to zero when a program is started. (8SS
st•nds for "Block Started by Symbol".>

X <executable)
This attribute is used for cod• sections.

Z <Zero page)
This attribute is used for sections that are
•ccessed via a processor-dependent short address­
ing Mode, such as the ZS on-chip regist•rs.

A (Absolute>
Sections with this attribute have been located .,t
an absolute •ddress.

Th• overlap attributes specify how sections with
name and sam• access attributes are to b• handled.
can be unnamedi all unnamed sections are treated as
have the same na~e. The overlap attributes are
exclusive and • section may have only QDI of them.

Zilog Object File Utilities

the same
Sections
if they
mutually

A-2

MUFOM FILE FORMAT Appendix A HUFCM FILE FORMAT

S (Separate)
All sections with this attribute
separate •h•n located in the output
th• default overlap attribute.

C <Concatenate)

will
file.

be kept
This is

Concatenate (combine into a single contiguous
chunk) all sections with the sa~• name and attri­
butes. This •ttribute performs the equivalent of
th• linker's -n com~and line option.

E (Equal Length)
Overlap all sections with the same name and attri­
butes; the size of the resulting section is the
size of its components. Produce an error mess•ge
if they rave different sizes.

H (Maximum Length)
Overlap all sections with the same name and attri­
butes; the size of the resulting section is the
size of its largest component.

U (Unique Names>
Only one section with the same name and attributes
is permitted.

A.2.3. Allocetion Attributes.

The two allocation attributes determina the order in ~hich
sections are selected.

~ (Now>
Selected sections with the "n" attribute will be
merged before all sections with the "p" attribute.
This is th• default allocation attribute.

P (Postpone)
Selected sections with the "p" attribute will be
merged after all sections with the "n" attribute.
When sections are selected via mliok's -•
command-line argument, any "postpone" sections
selected are placed after any "now" sections
selected by the same sub-argument. Th~s,

-s code data

selects first the s•ctions mith name "code" and
attributes that include Nn", then sections with
n•~• "coda" and attribute "p", than sections with
na~• "data" ana attribute "n", and finally sec­
tions with n2ma "datz" and attribute "p".

Zilo; Cbject File Utilities

MUFOM FILE FORMAT Appendix A MUFOM FILE FORMAT

A.3. SYMBOLS AND VARIABLES

MUFOM modules associate nu~erical values with constructs
called ~ICiigl911 ~hich are represented as a letter in the
set ~-z followed by a hexadecimal nu~ber1 the iD~i!• In
Zilog•s reP.resentation1 variable indices are restricted to
16 bits. (Avoiding the letters A-F as variable identifiers
means that variables can always be distinguished from hexa­
decimal numbers.>

Values are assigned to variables with the MUFOM n45n
(Assign) co~mand.

Some of the variables in a ~UFOM module are associated with
sections, and their index is the same as the corresponding
section number. These variables, and their meanings, are:

S Size of the corresponaing section.

L Location of the corresponding section. The L­
variable is present only for absolute sections.

R "Relocation base" for t~e section. In absolute
sections this is initialized to the section's
location; in relocatable sections it represents
the address at which the section will eventually
be locgted.

P "Program Counter" for the section. In the load
data of the ~odule1 the ?-variable represents the
next location at which code will De loaded. Space
can be reserved within a section by ~ssigning to
the P-variable.

Other variables in a MUFO~ module are associated with sym­
bols. The value assigned to the variable is the value of
the corresponding asse~bly-language symbol.

The symbol variables are:

~ N-variab1es are associated with 12•!1 symbols
(names). It is possible to h~v• more th~n one N­
variable in a module with the sa~• name; this
occurs when two modules containing locPl symbols
with the same name are linked together.

Zilo~ Cbject File Utilities A-4

~UFCH FILE FORMAT Appendix A ~UFOM FILE FORMAT

I I-variables are associated with
sy~bols. These are symbols
moaule that can be referred to
that are linked witn it.

~lQbll (Internal)
defined within a
in other ~oaules

X X-variables are associated with l~iiCQJl refer­
ences to ;lobal sy~bols in otner ~odules. x­
variables are never assignee values.

As implement•~ gt Zilog, the N, 1, and X variables of
eny object module are allocated conti~uously starting
from NO, 10, ano XO. The variable inciiees do DQ!1 how­
ever, necessarily correspond to the order of the vari­
ebles in the symbol table. !t is only guaranteea that
there will be no gaps in tha numbering.

A.3.3. Other V•riabl••

Finally, there are two other kinds of variables in MUFOM
modules:

G

w

There is at most one u-variable in a ~UFCM ~odule;

its value is the 1Dit¥ gg~ol or starting address
of the program.

k-variables are Qworkino registers". we is
as temporary storage for range-checking.
other w-variables are used by the assembler
hold the v~lues of fQCWICQ tl11CID•IJ' that
symbols that are used before they are aefinad.

used
Tha

to
is1

A.4. LOCAL USAGE

A.4.1. Co•••nts

There are two $Pecial local us~ges for comments. Comment
levels C-3 are used for specific kinds of debugging and link
m~o information. CoMment levels 100Chax>-102 are used for
separating the object file into regions containing different
kincis of information.

A.4.1.1. Infor•atlon Co•••nts

Information comments contain error messa;es,_ source code,
and link ~ap information. They allow symbolic debuggers and
other programs {including m~wm;1 mo~, and mlii1> to display
~ore infor~ation than would otherwise ba present in the
object file.

A-5 Zilog Object File Utilities

m

MUFCM FILE FORMAT Appendix A MUFO~ FILE FCR~AT

0 Comment level 0 is used for error ~••s~ges.

1 Comment level 1 cont~ins comments of the followin;
for~s:

:FILE Innnn hnnnn Or.r.nnnnnnnnnn filename(library)
Input file information. I, ~, and 0 precede
the I-variable origin, N-variable ori;in, and
creati~n date respectively.

:SECT isecn osecn L=nnnnnnnn S=nnnn~nnn ifile,secname:atts
Link map information on input sections.

filename: line-number
Compiler filename and line number from .FILE
and .LINE assembler statements.

2 Comment level 2 contains assembler source lines.

3 Comment level 3 contains assembler listing format
information, in comments of the form:

filename: linenumber
Assembler source file and line number.

:PAGE
marks a new listing page.

A.4.1.2. Ob~ect Fil• legions

Three special comments divide the object file into regions,
as shown in Figure A-1. The region before the first such
comment is the file header, containing the MS, AO, and OT
com~ands.

1CO A comment of level 100Chex) introduces the section
table, containing ST, SA, ASL, and ASS commands
and the input file and link map comments.

101 A comment of lev•l 101Chex) introduces the symbol
table, containing Nl1 NX, NN, ASI, ASh, ASG, wx,
AT, LI1 Li, RI, and TY commands.

102 A co~ment of l•v•l 1C2Chex) introducas the load
data re;ion, conteining ASw, sa, ASP, LO, LR1 IR,
and RE commands and comments containing error mes­
sages, assembler source, and so on.

Splitting object files i~to these ragions ~akes the lir.ker
and other utilit~es more efficient by marking parts of the
file that do not neeo to De processed.

Zilo; Object Fil~ Utilities A-6

MUFOM FILE FORMAT Appenaix A MUFC~ ~ILE FOR~AT

Section Table

Symbol Table

Program Section

Module End

Figure A-1. Cbject Module Regions

A.4.2. Expreeeions

The MUFOM standard permits the use of expressions of great
generality in many places in the object files. •hat the
linker and other utilities •ill 1;;1;l is1 in general, more
restricted; and •h•t th• assembler, linker, and other utili­
ties mill 1mi1 is more restricted still.

In this section, codes are used to indicate the kinds of
expressions that are acceptable. Except when only
hexnumbers are permitted, ill functions are allowed. The
codes are:

Hnn any hexnumber of at most nn bits.
R R-variables.
• w-variebles.
x x-variables.

As a rule, other vari~bles are not used in ex~ressions; all
utilities expana them into eqyivalent expressions involving

A-7 Zilo; Object File Utilities

~UFCM FILE FORMAT Appendix A MUFOM F!LE FCRMAT

R, w, and X variables. WOO is used purely as a temoorary
for limit checking; other ~ variables are useo by the assem­
blers for forward references.

Indices

Addresses

Numbers

SA

co

AS(R,P)

ASW

LR

IR

All variable indices and section numbers
are H16•s.

All addresses are limited to 32 bits {H32
RWX).

Nu~bers up to 80 bits CH80) are permitted
in assignments and LR commands.

Section Alignment: H32, Page Size: H32.

H32.

H80 RX.

H32 R.

H80 RWX.

HSO RwX.

Relocation 8ase: H8C Rwx, Nu~ber Of Sits:
H8.

RE H32.

WX ~80 RwX.

A.4.3. Co•••nd Order

There are some local restrictions on the orderin; of MUFOM
commands. Observing these restrictions makes it possible to
avoid retaining information that will not be needed later.

A.4.3.1. Section Information

All the information for a single section is grouped
together, with the ST command first, followea by the SA, ASL
and ASS commands in any order. The ASS command must be
present, and the section size must be a hexnumber.

Zilog Object File Utilities A-8

MUFOM FILE FOR~AT Aopandix A MUFOM FILE FOR~AT

A.4.3.2. Variable Information

All the information for a single va~iable is groupeo
together, with the ~v command first.

An NI, or N~ command is always followed immediat•ly by the
corresponding AT command (if any) anQ ASI or ASN command.

An NX command is always followed immediately by the
correspondin~ AT and kX commanas, if any.

w-variables must be assigned to before th•y are referenced.

R-variables are assi;ned implicitly. No existing utilities
~enerate ASR commands.

A.5. LIBRARY EXTENSIONS

The following commands have been added for maintaining
libraries. A library file consists of a li2titX b!l~lt' the
modules in the library, and a libtltX m1;. The li~CICX
biiQlt consists of an LS command, an optional OT command,
and an LE command. The li~t•tX m1; is at the end of· the
file, and consists of a series of LM commands followed by an
LE command. The library extension commands are always in
character form. Modules contained in a library may either
be in character form or binary form.

LS

LE

LM

map_position "," lib_name " " .
Library Se;in: the first commana in a library.
The hexnumber m1;_;91ili9D is the position in the
file of the libr5ry map, which consists of LM com­
mands f ollomed by an LE command.

The LB command may be followed by
with the date the library was
modified. This is followed by an
modules contained in the library,
map.

" " .
Library fna: marks the end of the
and th• library map.

position " , " size "," m_name (","
"X" (", " x_name)•) " " .

ZiloQ Object File Utilities

a OT eom~and

createci or last
LE1 the MUFCM
and the library

library header

I_name)• (","

MUFOH FILE FORMAT Jppendix A

Library Module: indicates the position in the
library of • module, its size in bytes, its name1
the n•~•s of the symbols <I-variables) it defines1
and the names of the external symbols CX­
variables> it references.

A.6. EXAM,LE: Zilog MUFOM Modul•

Figure A•2 shows an actual character-form MUFOM module pro­
duced by a Zilog MUFO~ Cross-asse~bler. Line nu~bers hav•
been •dded in parentneses along the right ~argin for refer­
ence purposes.

Zilog Object File Utilities A-10

MUFC~ FILE FORMAT Appendix A MUFO~ FIL! FCR~AT

~5Z80Q,Q6link.o.
0119350522102255.
A~Q81021L.
C00100117---- S•ction Tebla
ST001X1A104code.
ASLOo,oo.
ASSCC131.
s1c1,w,A,04d•t•.
ASLC1131.
ASS01,oc.
s102,s,w,c,A,06CO~MON.
ASL0213D.
ASS02110.
C00101116---- Symbol Table ----.
NNC11Cabc_store.
£SNC1r31.
NN0210SbcShl.
As111c2,2s.
NI00103div.
ASI00100.
NI01109dvd_store.
ASICl1133.
NNQ3,Q4div1 •
ASNC3109.
NNC4104div2.
ASN0411B.
NI02109mpy_stor••
ASI0213D.
ATI02100100110102.
AS~100.
C00102,1A---- Progr•• Sections ----.
saoo.
AS?co,co.
LREBCS44402100003E1087CB13CB12C81SC814CD280CDA1BCO
E0421C3DC20900C1EB223300223DOOC9ESB7E042223100!1C9.
SB01.
ASP01131.
LROOOOOOOOOOCOOOOOOOOOOOOO.
5802.
AS!)0213D.
CCFF120BSS (uninitialized d•ta> s•ction.
"'e.

Fi9ure A-2. ~UFCM Module

(1)

(2)
(3)

(4)
CS>
(6)
(7)

CS)
(9)

C1 O>
(11)
<12)
(13)
(14)
<15)
(16)
<17>
<18)
(19)
(20)
<21)
(22>
(23)
(24)
(25)
<26)
(27)
<28)
(29)
(30)
(31)
<32)
(33>
(34)
(35)
(36)
(37)
(38)
(39)
(40)
C41>
(42)

Lines <1> - C3) define the module he•der. The module header
is standard •cross all Zilog MUFOM object modules.

MB - Module 3egin
o oe•ines the start of a MUFCM object module.
o Defines the target orocassor type (optional).
o Defines the object ~odule•s name (optional).

A-11 Zilo; Object Fil• Utilities

III

~UFO~ FILE FORMAT Appendix A MUFOM FILE FORMAT

OT - ~ate
o Defines the object module's creation time and date.

AD - Address D•scriptor
o Defines the number of bits per Minimum Addressable

Unit (MAU).
o Defines the mexirn~m siz• of the target processor's

address space in MAUs (optional>.
o Defines the order of the address's MAUs within tre

object code.

Lin~ (4) - MUFOM comment commands are used in the Zilo;
MUFOM imPl•~•ntation to delimit the different parts of the
object module. Lin• (4) aelimits the start of the Section
Table. Comments are prefixed by the MUFOM CO command.

Lines (5) - C13) are the section t~ble. ~ach section within
an object module will have a set of description commr.nds in
this table. MUFOM commands that are used in the section
table region of the mo~ule are

ST - Section.Type. for a given section, defines
o Section type attributes (optional)
o Section name (optional>

SA - Section Ali~nment. For a given section, defines
o Section alignment (given in MAUs) (optional)
o Maximu~ section size (optional)

AS - Assignment
o •ssigns values to section variables

S - section siz~
L - location of section•s lower boundary (optional)

Line (14> - The start of the symbol t~ble.

Lines <15) - (30) - The symbol table contains declarations
for all of the global, external, and local symbols within
the object ~odule. Assign~ent of absolute values or expres­
sions to symbols, definition of symbol type, and definition
of symbol attributes ~re kept here. The ~odule's entry
point, if any, is also specified here. ~UFOM commands used
in the symbol table region of the object file are

NI - Name Internal (Global) Symbol
o Declares an external symbol, a table entry number,

a name length count, and gives its name.

NX - Name External Symbol
o Declares an external symbol1 a table entry number,

a n!me length count, and gives its name.

NN - Name Local Symbol
o Declares a local symbol, a table entry number, a

Zilog Object File Utilities A-12

MUFOM FILE FORMAT Appendix A MUFOM FILe FORMAT

name length count, and gives its name.

AT - Symbol Attribute. Cef ines for a given sy~bol
o Type table entry
o Lexical level (optional)
o Size (used for common symbols) (optional)
o Alignment <used for processors where variables must

be aligned on specific addresses> (optional)

AS - Assignment.
o Assigns a value or expression to a sy~bol.

TY - Type. Defines a tYP• table entry.

WX - Weak External.
o Defines a given symbol as a weak external•.
o Provides a default value or expression to be

assigned if the symbol is not resolved.

Line C31> The MUFOM comment used to delimit the start of the
program portion of the object module.

Lines C32) - C41> The code, or load data, portion of the
object module is kept in this region. The heading "Program
Sections" refers to the MuFCM sections which are the logical
divisions of the program. MUFOM commands used within this
region to aef ine the code are

SB - Section Begin
o Declares that the following code belongs to the

specified section.

LO - Load.
o Contains object code.

LR - Load Relocate.
o Contains code ana relocation expressions.

IR - Initialize Relocation Base
o Assigns a value to e relocation letter.

RE - Replicate.
o Repeat the immediately follo•ing LR expression a

specified number of times.

AS - Assignment
o Assigns a value or an expression to a section's ?

(load pointer> variable.

--------------------------* A ••ak external •ill be resolved with a global
definition if one is present; otherwise it receives the
default value specified in the ~X command.

A-13 Zilo; Object File Utilities

MUFOM FILE FORMAT Appenaix A ~UFOM FILc FORMAT

Line (42> The end of a MUFOM object '-odul9 is delimitec by
the ME Com:nand.

Zilo; Object File Utilities A-14

Appendix 8
TEKTRO~IX HEX FOR~AT

8.1. RECORD FORMAT

Record Format

field name:
field size:

SR
1

RL
2

CS1
2

****DATA****
0-255

CS2
2

~NO

1

Figure 8-1. Tektronix Hex Record Format

SR--Start Record Field (frame 0)
The ASCII slash character (/) is used to signal the
start of a record.

AODR--Load Address Field <frames 1 to 4)
The starting loc•tion in me,ory to/from which data will
be lo•ded/s&ved.

RL--Record Length Fiela (frames S and 6)
Tha number of data bytes in the record is represented
by two ASCII hexadecimal digits.

CS1--First Checksum Field (frames 7 and 8)
This checksum is the 8-bit sum of the six hexadecimal
digits that make up the load aadress and record length.

OATA--Oata Field (fr•mes 9 to 9 + (RL * 2) -1)
Each pair of frames in the data field represents a data
byte, where each frame contains the ASCII representa­
tion of a 4-bit value.

CS2--Second Checksum Field
(RL * 2)) + 1)

(frames (9 +(PL* 2)) and (9 .+

s-1

This checksum is the sum
values of the digits in the

of the 4-bit hexadecimal
data fiela, ~odulo 236.

Zilog Object File Utilit~es

TcKTRONIX HEX FORMAT Appendix 8 TEKTRONIX HEX FORMAT

ENO--End of Recora Field (frame (9 + (RL * 2)) + 2>
The ASCII code for a carriage return is used to signal
the end of a record.

1.2. END-OF-FILE RECORD FORMAT

The end-of-file record has a record length of o, the address
field containing the entry point address, and no data or
second checksum.

Example B-1: /4F000013<CR>

1.3. AIORT RECORD FORMAT

The do•nload operation can be aborted by the host system
sending an abort record, consisting of two slashes followed
by en error message and carriage return.

Exa~ple B-2: //PROGRAM ABORTED <CR>

8.4. NINOSHAKINQ FOR DOWNLOAD/UPLOAD

mload and msend us• th• Tektronix handshakini protocol, by
default, for each format. Since there is no handshaking
used in conjunction •ith th• Intel Hex format, the -h option
must be used to turn it off whenever the -1 option is speci­
fied. The handshaking protocol consists of three signals:

o "O" No error o
Abort

"7" Bad recordi retransmit o "9"

These signals are sent by th• target to the host when down­
loaaing and vie• versa when uploading.

It is recommended that handshaking always be used to prevent
erroneous ~ata transmission.

Zilow Cbjact File Utilities

Appendix C
INTEL HEX FORMAT

C.1. RECORD FORMAT

Record Format

field name:
field size:

SR
1

RL AOOR RT
2 4 2

****DATA**** CS
0-255 2

Figure C-1. Intel ~ex Record Form~t

SR--Start Record Field (frame Q)
The ASCII character colon C:> is used to si;n~l the
start of a record.

RL--Record Length Field (frames 1 and 2)
The number of d•ta bytes in the record is representeG
by two ASCII hexadecimal digits.

AODR--Load Address Field (frames 3 to 6)
Four ASCII hexadecimal digits representing zeros or the
address to/from which data will be loaded/saved.

RT--Reeord Type Field (fra~es 7 and 8)
The ASCII hexadeci~al digits in this field specify one
of the record types sho~n in Table C-1:

Table C-1. Intel Hex Record Types

Record
Type

00
01
02
03

Description

D~ta Record
end-of-File Record
Extended Address Record
Start Adoress R~cord Centry point)

The address specified by the Extanded Address Record is
left-shifted four bits (representing the four most signifi­
cant bits in a 20-bit ~ddress), and added to all subsequent

C-1 lilo~ Object File Utilities

IlllTEL HEX FORMAT Aopenciix C INTEL HEX FORMAT

type 00 (Oat• Record) addresses.

OATA--Oata Field
Each.pair of frames in the data field represents a data
byte, where each fra•• contains the ASCII reoresenta­
tion of a 4-bit velue.

CS--ChecksuM Field
This field contains the ASCII representation of the
two•s complement of the sum of the data bytes Ceach
pair of data field frames converted to one binary
byte), modulo 2S6.

Zilo~ Object File Utilities c-z

D.1. INTRODUCTION

A~pen~ix J
ERROR ~fSSAGES

each utility describes errors with ;learly stated error ~es­
sages. There are three types of errors that can occur:
process errors, input format errors, and internal errors.

The action taken due to an error depends on the severity of
the error and the utility being executed. Most errors do
not interrupt object ~odule processin;.

0.1.1. Proc••• Errors

Process errors occur cue to either incorrect command U$age,
or otherwise-correct co~mand usage on inappropriate data
(for example, attempting to load a relocatable file>.

Process errors can occur

o ~hile attempting to interpret the co~mand line used
invoke the utility.

o During the processing of object modules.

o.z. COMMON ERRORS

to

The following errors are common to most or all of the utili­
ties:

0.2.1. Co•••nd Line Errors

0-1

-<letter> argument filena~• missing
-<letter> argument number missing
garbage after nu~eric arg~ment: -<letter>
unrecognized command-line argu~ent -<letter>
-<letter> argument inconsistent with previous arguments
extra output file~ame ignored

Zilo; Cbject File utilities

ERROR MESSAG~S Appenoix 0 ERROR MESSAGES

0.2.2. Other Errors

OPEN error on file <file na~a>
can't handle libraries
division by zero
no free storage left
value out of ran~e

An OPE~ error ~eans either that a specifieo input file does
not exist or is protectac agE-inst reading, or that a speci­
fied output file is protected against wr~tin~.

"No tree storage left" means that there are too many sy~­
bo ls, sections, or filas in the input.

The "division bi zero" and "value out of ran99" errors
represent errors in assembly-language code ~hich could not
be detected by the assembler because they involved relocat­
able or external symbols.

D.3. COMMAND-SPECIFIC ERRORS

0.3.1. Mlib Errors

The errors unique to ~lib are

unknown option '<latter>'
Can not read '<filename>'
Must have exactly one of 'd,q,r,t,x•
No archive file specified
Only one option allowed in 'd,q,r,t,x'
archive file '<filename>' not found
missing argument for 'f' options
~ultiple '<letter>' options
3uildLM - '<filaname>' ~ot archive for~at
SuildLM - Out of ~emory
3uildLM - no m~tchin9 LE
Creat~lib - Can not create '<filename>•
Out of memory
WritaAll - Can not cre~te •<filename>'
WriteAll - Can not open '<fil~na~~>·
can't handle libraries
q_mlib - Cut of memory
x_mlib - Can not c~eate '<filename>'

Zilog Object File Utilities 0-2

ERROR M:SSAGES ERROR M:SSAGES

D.3.2. •link Errors

The errors uniQua to mlio~ or•

- without attribute 1n s•l•ct string <arg>
-m not implemented in relocat~ble link
-t ar~ument adoress missing
-<sy~bol> =value with no symbol
-<symbol> langtr with no symbol
-t cannot relocat• absolute section
-t with no sections selected
+symbol: symbol missing
=valu•: value missing
E section at~ributa: sections must have same size
U section attribute: sections must be unique
attempting to merge

absolute section <section descriptor>
with reloc. section <section descriptor>

entry point <symbol> undefined
file <filename> has different address order
illegal character in select string <arg>
multiply-defined global symbol <symbol>
nested -f files not allowed
output file <filename> is also an input file
symbol <symbol> not absolute
undefined external <symbol>

The only utility that generates warnings, as opposed to
errors, is mliD~· ~arnings represent ~nusual conditions
th~t may, nevertheless, be what you intended to produce.
The -• option to mlio~ suppresses these warning messages.

address space overflow at <address>
attemptin; to load into ass section at <address>
no section information for section <number>
no section information in input file <filenBme>
null select: <arg>
null unselect: <arg>
section overlap

<section descriptor>
<section descriptor>

symbol <symbol> redefined by -g argument

The "section overlap" error, in particular, can occur when
making files with separate add~ess spaces for instruction
and data. The "no section information" errors occur when
linking files ~enerated as output from ~l~l~ ~ithout t~e -•
option.

0-3 Zilog Cbject Fil~ Utiliti~s

ERROR MESSAGES Appendix 0 ERROR MESSAGES

D.3.4. •list Errors

There ara no errors actually uni~ue to mlil1' but errors
included as level-C commants by the ~•sembler are ~ncluded
in the listing.

D.3.S. mlo•d Errors

Tha errors unique to JlQJg are

section <name> is relocetable

D.3.6. •lord•r Error•

The errors unique to mlgcg1c are

<symbol> multiply defined in <filename> and <filename>
cannot open <filename>
cycle in data:
extern overflow
module overflow
out of memory
symbol space overflow
text speca overflow

D.3.7. protocol Errors

too many files
write record error
writ• first •o• error
cannot open <filename>
conflict -d & -u options
duplicate -<letter> options
invalid -r option - <string>
invalid -t option - <string>
no file specified
unknown handshaking code <number> fro~ Re~ote
unrecognized option <string>

D.4. INPUT FILE FORMAT ERRORS

Input Fil• Format Errors are primarily associated with the
p•rsing and execution of ~UFOM commands Cas opposed to util­
ity program command lines) within • ~UFOM object file.
These errors are displayed in one of two for~ats:

Zilog Object Fil• Utilities D-4

ERROR ~ESSAGES Appendix 0 E~ROR MESSAGES

or

input file format error: HCE at line 9 of foo.o

input fil• format error: HCE at line 9 of foo.o
MCE: missing command-er.d period
byte Oxa of the MUFOH com~and:

NNC11xxx1?04foo1.

The second, more descriptive format is obtainable via tr•
v4 option in mliD~· If the input file is in binary form,
tre line number is replaced by an offset in characters from
the b•Qinning of the file.

It is generally impossible to get format errors unless a
MUFCM file has bean Qarbled, or ;ener&tad incorrectly. This
usually is caused by a bug in one of the utilities, and
should be called to the attention of your Zilog representa­
tive.

~-5 Zilog Object File Utilities

ERRCR ~ESSAGES Appendix 0 ERROR MESSAGES

Table o-1. Input Fil• Format Errors.

ZHO: 2 hex digits reQuired
AOR: address > 32 bits
ARG: not enough ar~uments for function
ASG: multiple assi~nments to G-variables C•ntry points)
ASI: variable index of ASI does not match previous NI
ASL: ASL eommano before or without ST
ASS: ASS command before or without ST
ASX: assignment to X-variable is illegal
CMO: command expectea/undefined com~and
EOF: unexpected ena-of-fil• in <filenam•>
EXP: expr•ssions not permitted in download
EXU: expression stack underflow
IAF: invalid archive format
IAH: invalid archive head•r
ILF: invalid library format
LIS: library command inside module
~AU: can•t handle MAU length other than 8 bits
MCE: missing command-enc period
MCP: missing comma or period
MCS: missing com~•nd start
MEX: ~issing expression
MHB: M! commana missing
~RO: missing relocation offset
HRP: missing •)'
MSA: SA com~ana mith no expressions
MST: no ST for section <number>
N16: number > 16 bits
N32: number > 32 bits
N80: number > 80 bits
~AN: not a number
NNR: not a number or R-variable
STL: strin~ > 127 characters long
TYU: unexpected TY-component
TYV: N-variabl• or T-number expected
UAT: AT command do•• not apply to previous variP.ble
UEX: unknown/invalid item in expression
UFN: unknown operator/function
ULO: invalid load item
USA: SA command before or without ST
UXP: unexpected refer~nce to P-variabl•
VAR: undefined variable
x:x: too many expressions
XN8: MB command not at beginning of fil•
XRP: unexpected .,.

D.S. INTERNAL ERRORS

Internal errors ~enerally indicate a bu; in one of the util­
ities; they r•present conditions that should not occur, and

Zilog Object File Utilities 0-6

i:RRCR MESSAG!:S A;:>penaix 0 E~ROR MESSAGES

should be called to the attention of your Zilog representa­
tive.

READ error on file <filename>
<upload/domnload> read error
write error
core dumpe<i

The "core dumped" error is a host oper~ting syste~ error
which usually means that something drastic is ~ro~g with the
program, but it can also occur if a program runs out of free
storage and fails to detect the fact.

D-7 Zilo~ Object Fila Utilitias

III

GLOSSARY

absolute code: Cod• ~hose position within
defined end whose address referenc•s
values relative to the code's position.

memory has been
have been assigned

absolute loader: A Qrocess ~hich can load one or more sec­
tions of absolute code only at the locations specified by
the sections.

checksum: A semi-random function of a file's cor.tents. If a
file is copied and the checksum of the copy is different
from that of the origin£l, there has been an •~ror in copy­
ing.

code: A program or segment thereof ~hich has been encoded in
a language useabl• by a processor. Often used loosely as a
synonym for "load data". See Object Code, Source Coda.

co••and: Control information for a linker or loader. It is
to be distinguished from Load Data.

external r•ferenc•: The usage, within ~ module, of a sy~bol

which is defined outside that module. An i~ported global
definition.

file: A MUFOM object file is a structure defined by th• host
operatin; system containing one or more MUFOM object
modules. Files containing more than one module are con­
sidered to be libraries.

global definition: The definition within a Nodule, of a sym­
bol which may be used outside that mooule.

identifier: A string of characters ~hich uniQualy represents
a defined entity s~ch as a symbol, option or command.

lib~ary: A set of two or more object modules.

linker: A program that combines object modules into a sin;le
object module satisfying links between the object ~odules.

load data: Oata (including machine instructions) to be
loaded into a processor's memory.

load pointer: A pointer for a section which is dynamically
~sintained by the loader. It indicates where the next it•~
of the code is to be loaded. It is initialized to a start­
ing load address.

G-1 Zilog Object File Utilities

GLOSSARY GLOSSARY ~LOSSARY

local symbol: A symbol which is accessible only within a
sin;le module.

machine code: Code that is directly understandable by a
processor 1 s hardware. Since digital processors are binary in
nature, machine code consists of binery numbers. Sae Object
Code.

module: A pro;ram or portion thereof, usually in the form of
a separate file. See Object Mociule, Source Module.

object code: Code (Load Data) contained in an Object Module.

object format: The language in which Object Modules are
specified.

object •odule: A MUFOM object module is a set of sections of
absolute or relocat~ble machine coda, to;athar with ancil­
lary commands. Sea Modul~, Source Module.

prelink: A link session that precedes one or more other link
sessions over the same object code.

program: An algorithm and associated data. A series of
operations to be Performed over some given data.

process: A program executed by a processor.

relocatable code: Code that consists of machine code and
relocation commands. Relocation commands allow address
references within the machine code to be reevaluated if the
machine code is repositionad in memory. Relocatable code is
to be distinguished from absolute code.

section: A part of a program with ~ncillary information
(commands) which becomes a segment when loaded.

segment: A conti~uous region in memory with arbitrary boun•
oaries which may contain machine coda.

source code: A pro~ram in some human-readable program~ing
language. Source code is translated into Object Code by a
compiler or assembler.

source module: A Module containing Source Code.

symbol: A label or name that represents a numeric value.

symbol resolution: The process of replacing an external
reference with its globally defined value.

Zilo9 Cbject File Utilities G-2

Zilog General PPPI
Information I.I.II

•2i1J a., General Terms and Conditions of Sala
ORDERING PRODUCTS

Orders placed for Zilog components should include the component part number as shown in the example below.
The part number consists of a T prefix, followed by a five-digit part number, two-digit numerical speed designator,
alpha package designator, alpha operating temperature range designator, and an environmental flow designator
(e.g., Z8032008VSC or Z0840006VEC).

ORDERING CODES

PACKAGE

IC PACKAGE CODES

A= VQFP (Very Small QFP)
C = Ceramic Side Brazed
D= Cerdip
E = Ceramic Window
F = Plastic Quad Flat Pack
G = Ceramic PGA (Pin Grid Array)
H = SSOP (Slim Small Outline Package)
I = PCB Chip Carrier

K = Cerdip Window
L = Ceramic LCC (Leadless Chip Carrier)
p = Plastic DIP
S = SOIC (Small Outline Integrated Circuit)
V = Plastic Leaded Chip Carrier

SUPPORT TOOL PACKAGE CODES

T = Emulation Module
Z = Support Tools

ENVIRONMENTAL

PREFERRED
C = Plastic Standard
E = Hermetic Standard

LONGER LEAD TIME
A = Hermetic Stressed
B = 883 Class B Military
D = Plastic Stressed

TEMPERATURE

PREFERRED
Standard: S = 0°C to +70°C

LONGER LEAD TIME
Extended: E = -40°C to +100°C
(-40°C to +105°C for Consumer Products)
Military: M =-55°C to +125°C

EXAMPLE

Z84C001 OPEC is a CMOS 8400, 10 MHz, Plastic,
-40°C to +100°C, Plastic Standard Flow.

Z 84COO 10 P E C XXXX

111 :=::
Temperature
Package
Speed

'---------- Product Number
'----------- Zilog Prefix

T-1

T-2

General Terms and Conditions of Sale
1. Terms: Net 30 days

2. Order/Shipment Minimums:

A. Commercial Standard Product

$500 per order
$250 per line item and/or shipment release
100 piece minimum quantity/line item per release in multiples of tube, tray, or reel count

B. Custom ROM Products

10,000 unit order minimum for 18-, 28-, or 40-pin devices
One-half of the units to be scheduled within ninety (90) days
$3,000 mask charge for each new ROM

C. Non-Standard Product

Windowed Products }
Systems
Development Boards
Emulators
Software

D. Tape and Reel

100 piece minimum waived
$250 line item minimum still applies

44-lead PLCC 500 units per reel minimum
68-lead PLCC 250 units per reel minimum

E. Trays

44-lead QFP = 96 pieces per tray.
80-lead QFP = 50 pieces per tray.
100-lead QFP = 50 pieces per tray.
48-lead VQFP = 60 pieces per tray.
100-lead VQFP = 90 pieces per tray.

F. Technical Publications

$100 per order or shipment release

•atJ a., General Terms and Conditions of Sale
3. Cancellation, Reschedule, and Failure to Release

If buyer cancels shipment of any purchase order or a portion of any purchase order or reschedules without prior
agreement by Zilog, any purchase order or a portion of any purchase order, the following charges may, at Zilog's
option, be assessed and invoiced by Zilog:

*Notice Received Prior to
Product Type Acknowledgment Shipping Date Cancellation Reschedule Charges

Commercial 0 - 30 Days No cancellations allowed.
100 per cent Invoice charges apply.

Military O - 90 Days No cancellations allowed.
100 per cent Invoice charges apply.

ROM* 0 - 90 Days No cancellations allowed.
100 per cent Invoice charges apply.

Remote Control End Products 0 - 90 Days No cancellations allowed.
100 per cent Invoice charges apply.

Note:
• Notice shall be calculated from the customer request date.

ROM Code Variations

Because ROM Coded Products are custom products made specifically for Buyer, Buyer agrees thatZilog may ship
a quantity of such ROM Coded Products which is five percent (5%) more or less than the quantity ordered and
that such variation will be accepted as delivery in full and paid for by Buyer.

Zilog price quotations and acknowledgments are dependent upon quality and schedule. If the Buyer does not
release the full quantity quoted and acknowledged within the time frame stated on the quotation, Seller reserves
the right to either invoice the full quantity quoted and acknowledged within the time frame stated on the quotation
or to invoice for a higher price in accord with Seller's price schedule for the lower quantity actually released by
Buyer.

4. Product Availability

Product availability is a function of a constantly changing market and manufacturing conditions, therefore Zilog
cannot guarantee availability. Please contact your local Zilog sales office or sales representative for current
product availability information.

Information for products not listed in this selection guide can be obtained from your local Zilog sales office, or sales
representative. The point of delivery will be determined by the Zilog sales order acknowledgment.

5. Cost Adders

Special processing of both commercial and military products to the customer's specifications (non-Zilog standard)
is available in the following circumstances on most Zilog products: top mark, packing instructions, shipping
instructions, one lot date code per shipment, stepping qualification, and certificate of conformance (C of C). Read
Only Memory (ROM) mask charges are required for ROM coded products. For information regarding charges and
possible delays which special processing may have on delivery dates, contact your local Zilog sales office or sales
representative. All prices quoted apply to orders placed worldwide, excluding VAT, tax, freight, duties, and
exchange rate variations.

T-3

•2HJ0, General Terms and Conditions of Sale

T-4

Special Services and Prices

Military Grade Components - The following cost adders should be used if standard military specifications are not
adequate for a given requirement:

Condition

Generic Data

1. Group "A" - sample Electrical Test, per generic part type

2. Group "B" - Assembly Construction Test, per generic part type

3. Group ·c· -12 week results on JAN product/Die Life Test -
52 week results on non-JAN product

4. Group "D" - 26 week results on JAN product/Package Life Test -
52 week results on non-JAN product

5. Generic Data Pack - Includes Groups A, B, C, D data

Customer Specific Data

1. Group "A" - done on customer parts

2. Group "B" - done on customer parts

3. Group •c• -done on customer parts (per device type).
Delivery increased eight weeks.

4. Group ·o· -done on customer production lot, excludes
destructive test part cost of 50 parts at customer's price.
Delivery increased three weeks.

Additional Requirements

1. Particle Noise Detection (PINO) testing
Minimum charge per line item, per part, per order.
Lot acceptance will conform to 883 Rev. C method 2020.5
allowing up to 25% lot defective maximum, pass on 1 % PDA.

2. X-ray screening per Mil Std 883C
or 5.00 per unit

3. Lead finish other than solder dipped

4. Special top marking requirements
or 2.50 per unit

~

$100.00

$100.00

$100.00

$100.00

$300.00

$100.00

$600.00

$1200.00

$2500.00

$250.00 minimum
or 25.00 per unit

$500.00 minimum

Contact Factory

$250.00 minimum

... ~

General Terms and Conditions of Sale
Special Services and Prices

The final character in the DESC drawing number ("X") refers to the type of lead finish the parts must have. An
"X'' indicates that any lead finish (Solder= "A," Tin Plate= "B," Gold Plate= "C'1 is acceptable. It is the standard policy
of Zilog to only offer the "A" lead finish which is solder dipped (ex. 5962-8551802QA).

Notes: In general, if special processing is required and is not listed above, it Is not available. However, call
your local Zilog sales office to discuss requirements as necessary.

Condition

Initial customer qualification of products in place of Zilog
qualification report.

Customer Change Notification

1. Notification to customer of product tooling revision

2. Notification to customer of process change

3. Customer approval of process tooling revision

4. Customer approval of process change

Special customer top mark & special customer logo
(case by case basis for some requests)

Special customer burn-in in place of Zilog standard

Special customer final test

Final test data recording

Test data recording before and after burn-in

Special shipping containers

Special shipping container marking in place of Zllog standard

Special safety stock in place of Zilog standard

Special shipping routine to point-of-title transfer in place of Zilog standard

Date code requirement in place of Zilog standard

Certificate of Origin with shipment

Certificate of Conformance

Customer pays for
qualification sample

0.1 o per unit

0.1 o per unit

0.30 per unit

0.20 per unit

0.1 o per unit

0.50 per unit

0.50 per unit

1.00 per unit

2.00 per unit

Cost plus 15%

0.05 per unit

0.20 per unit

0.10 per unit

0.05 per unit

20.00 per shipper

5.00 per shipper

T-5

T-6

General Terms and Conditions of Sale

Condition

Special Services and Prices

~

Tape and Reel (where available)
44-lead PLCC 500 units per reel minimum
68-lead PLCC 250 units per reel minimum

Special tube stoppers - rubber plugs

Special 100% full functional final test at hot
temperature before bum-in

Special die orientation - die bonded upside down and
rotated 90 degrees from JEDEC standards

Special back mark instruction

Special shipping box - parts to be shipped in a box lined
with conductive material or static shielding bags

"Dry Pack" of PLCCs in place of normal

Special tube orientation indicator mark

Parts requiring retest

Programming Z8/0TP

Failure Analysis

Single date code per shipment/line item

0.1 O per unit
0.20 per unit

0.05 per unit

0.05 per unit

0.1 O per unit

0.10 per unit

0.05 per unit

0.30 per unit

0.05 per unit

10.00 per military unit,
0.30 per commercial unit

500.00 minimum per order

200.00-600.00 for military,
depending on test requirements

100.00-400.00 for commercial,
depending on test requirements

500.00 minimum or 5.00 per unit

'P2iUd:- General Terms and Conditions of Sale
Shipping Requirements for Plastic Packaging

Trays:

A 100 VQFP: 90/tray 450/bag
48 VQFP: 60/tray 600/bag
64 VQFP: 160/tray 800/bag

F 100 QFP: 66/tray 660/bag
132 QFP: 36/tray 360/bag
144 QFP: 24/tray 240/bag
80 QFP: 66/tray 660/bag
44 QFP: 96/tray 960/bag

H 20 SSOP: 66/tray

20 PCB Chip Carrier (C3) (not shipping yet): 40/rail
28 PCB Chip Carrier (C3) (not shipping yet): 40/rail
44 PCB Chip Carrier (C3) (Not shipping yet): 30/rail

p 18 Plastic DIP: 20 units/rail
20 Plastic DIP: 20 units/rail
28 Plastic DIP: 15 units/rail
40 Plastic DIP: 10 units/rail
48 Plastic DIP: 10 units/rail
52 Plastic DIP: 10 units/rail
64 Plastic DIP: 10 units/rail

s 18 SOIC 40 units/rail 1000/bag
20 SOIC: 38 units/rail 950/bag
28 SOIC: 27 units/rail 1080/bag

v 44 PLCC: 25 units/rail 500/bag
68 PLCC: 20 units/rail 400/bag
84 PLCC: 15 units/rail 225/bag

Tape and Reel:

s 18 SOIC: 2,000/reel
20 SOIC: 2,000/reel Dll v 44 PLCC: 500/reel
68 PLCC: 250/reel
84 PLCC: 250/reel

T-7

ZILOG DOMESTIC SALES OFFICES
AND TECHNICAL CENTERS

CALIFORNIA
Agoura .. 818-707-2160
Campbell .. 408-370-8120
Irvine .. 714-453-9701
San Diego .. 619-658-0391

COLORADO
Boulder ... 303-494-2905

FLORIDA

INTERNATIONAL SALES OFFICES

CANADA
Toronto ... 905-850-2377

CHINA
Shenzhen ... 86-755-2220869

86-755-2220873
Shanghai ... 86-21-415-0691

86-21-415-8158
Rm. 5204

Clearwater .. 813-725-8400 GERMANY
Munich ... 49-8967-2045

GEORGIA SOmmerda .. 49-3634-23906
Duluth ... 404-931-4022

JAPAN
ILLINOIS Tokyo ... 81-3-5272-0230
Schaumburg ... 708-517-8080

HONGKONG
MINNESOTA Kowloon .. 85-2-2723-8979
Minneapolis .. 612-944-0737

KOREA
NEW HAMPSHIRE Seoul ... 82-2-577-3272
Nashua ... 603-888-8590

SINGAPORE
OHIO Singapore .. 65-2357155
Independence .. 216-447-1480

TAIWAN
OREGON Taipei .. 886-2-741-3125
Portland .. 503-27 4-6250

UNITED KINGDOM
PENNSYLVANIA Maidenhead .. 44-628-392-00
Horsham ... 215-784-0805

TEXAS
Austin ... 512-343-8976
Dallas ... 214-987-9987

© 1995 by Zilog, Inc. All rights reserved. No part of this document Zilog's products are not authorized for use as critical components in
may be copied or reproduced in any form or by any means without life support devices or systems unless a specific written agreement
the prior written consent of Zilog, Inc. The information in this pertaining to such intended use is executed between the customer
document is subjectto change without notice. Devices sold by Zilog, and Ziiog prior to use. Life support devices or systems are those
Inc. are covered by warranty and patent indemnification provisions which are intended for surgical implantation into the body, or which
appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, sustains life whose failure to perform, when properly used in accor­
lnc. makes no warranty, express, statutory, implied or by descrip- dance with instructions for use provided in the labeling, can be
lion, regarding the information set forth herein or regarding the reasonably expected to result in significant injury to the user.
freedom of the described devices from intellectual property infringe-
ment. Zilog, Inc. makes no warranty of merchantability or fitness for Zilog, Inc. 21 O East Hacienda Ave.
any purpose. Zilog, Inc. shall not be responsible for any errors that Campbell, CA 95008-6600
may appear in this document. Zilog, Inc. makes no commitment to Telephone (408) 370-8000
update or keep current the information contained in this document. Telex 91()..338-7621

FAX 408 370·8058
Internet: http://www.zilog.com/zilog

Z·1

llJI

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S., CANADIAN & PUERTO RICAN
REPRESENTATIVES

ALABAMA
Huntsville
Alabama Bits, Inc (205) 534-4020

ARIZONA
Scottsdale
Thom Luke Sales, Inc (602) 451-5400

CALIFORNIA
Irvine
Infinity Sales .. (714) 833-0300
Santa Clara
Phase II Technical Sales {408) 980-0414
San Diego
Addem .. (619) 729-9216

COLORADO
Englewood
Thorson Rocky Mountain (303) 773-6300

CONNECTICUT
Wallingford
Advanced Technical Sales (508) 664-0888

FLORIDA
Altamonte Springs
Semtronic Associates, Inc (407) 831-8233
Cleerweter
Semtronic Associates, Inc (813) 461-4675
Fort Lauderdale
Semtronic Associates, Inc (305) 731-2484

GEORGIA
Norcross
BITS .. (404) 564-5599

ILLINOIS
Hoffman Estates
Victory Sales, Inc (708) 490-0300

IOWA
Cedar Rapids
Advanced Technical Sales (319) 393-8280

Z-2

KANSAS
Olathe
Advanced Technical Sales (913) 782-8702

MARYLAND
Pasadena
Electronic Engineering & Sales (410) 255-9686

MASSACHUSETTS
North Reeding
Advanced Technical Sales (508) 664-0888

MICHIGAN
Novi
Rathsburg Associates, Inc (810) 615-4000

MINNESOTA
Mlnneepolls
Professional Sales for Industry (612) 944-8545

MISSOURI
Bridgeton
Advanced Technical Sales (314) 291-5003

NORTH CAROLINA
Huntsville
BITS .. (205) 881-2900
Raleigh
BITS .. (919) 676-1880

NEW JERSEY
Cherry Hiii
Tritek ... (609) 667-0200

NEW MEXICO
Albuquerque
Quatra & Associates (505) 296-6781

NEW YORK
Fairport
L-Mar Associates, Inc {716) 425-9100

OHIO
Independence
Rathsburg Associates, Inc (216) 447-8825

SALES REPRESENTATIVES AND DISTRIBUTORS

OKLAHOMA
Tulsa
Nova Marketing, Inc (918) 660-5105

OREGON
Portland
Phase II Technical Sales (503) 643-6455

TEXAS
Austin
Nova Marketing, Inc (512) 343-2321
Dallas
Nova Marketing, Inc (214) 265-4630
Houston
Nova Marketing, Inc (713) 240-6082

UTAH
Salt Lake City
Thorson Rocky Mountain (801) 264-9665

WASHINGTON
Kirkland
Phase II Technical Sales (206) 821-8313

WISCONSIN
Broolcffeld
Victory Sales, Inc (414) 789-5770

CANADA
British Columbia
J-Squared Technologies, Inc (604) 473-4666
Ontario
J-Squared Technologies, Inc (905) 672-2030
Ottawa
J-Squared Technologies, Inc (613) 592-9540
Quebec
J-Squared Technologies, Inc (514) 694-8330

PUERTO RICO
RloP/edms
Semtronic Associates, Inc (809) 766-0700

Z-3

Dll

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

NATIONWIDE
Newark Electronics 1-800-367-3573
Zeus Electronics 1-800-524-4735

ALABAMA
Birmingham
Newark Electronics (205) 979-7003
Huntsville
Anthem Electronics {205} 890-0302
Arrow Electronic~ 205 837-6955
Newark Electronics 205 837-9091
Mobile
Newark Electronics (205) 471-6500

ARKANSAS
Little Rock
Newark Electronics (501) 225-8130

ARIZONA
Phoenix
Anthem Electronics {602} 966-6600
Arrow Electronic~ 602 431-0030
Newark Electronics 602 864-9905
Tempe
Anthem Electronics (602) 966-6600
Arrow Electronic~ (602) 431-0030
Newark Electronics (602) 966-6340

CALIFORNIA
Arcadia
Newark Electronics (818) 445-1420
Calabasas
Arrow Electronics (818) 880-9686
Chatsworth
Anthem Electronics (818) 775-1333
Chula Vista
Newark Electronics (619) 691-0141
Fremont
Arrow Electronics (510) 490-9477
Garden Grove
Newark Electronics (714) 893-4909
Hayward
Arrow Electronics (510) 487-8416
lrvlne
Anthem Electronics {714} 768-4444
Arrow Electronics 714 587-0404
Zeus Electronics 714 581-4622

Z-4

Palo Alto
Newark Electronics (415) 812-6300
Riverside
Newark Electronics (909) 784-1101
Sacramento
Anthem Electron!cs (916) 624-9744
Newark Electronics (916) 565-1760
San Diego
Anthem Electronics {619} 453-9005
Arrow Electronic~ 619 565-4800
Newark Electronics 619 453-8211
San Jose
Anthem Electronics {408} 453-1200
Arrow Electronics 408 441-9700
Zeus Electronics 408 629-4789
Santa Clara
Newark Electronics (408) 988-7300
Santa Fe Springs
Newark Electronics (310) 929-9722
Ventura
Newark Electronics (805) 644-2265
West Hills
Newark Electronics (818) 888-3718

COLORADO
Denver
Newark Electronics (303) 373-4540
Englewood
Anthem Electronics (303) 790-4500
Arrow Electronics (303) 799-0258

CONNECTICUT
Bloomfield
Newark Electronics (203) 243-1731
Norwalk
Zeus Electronics (203) 852-5411
Wallingford
Arrow Electronics (203) 265-7741
Waterbury
Anthem Electronics (203) ?75-1575

SALES REPRESENTATIVES AND DISTRIBUTORS

FLORIDA
Altamonte Springs
Anthem Electronics (407) 831-0007
Clearwater
Anthem Electronics (813) 538-4157

(800) 359-3522
Fort Lauderdale
Anthem Electronics (305) 484-0990
Deerfield Beach
Arrow Electronics (305) 429-8200
Jacksonville
Newark Electronics (904) 399-5041
Orlando
Newark Electronics (407) 896-8350
Plantation
Newark Electronics (305) 424-4400
Tampa
Newark Electronics (813) 287-1578
Lake Mary
Arrow Electronics (407) 333-9300
Zeus Electronics (407) 333-3055

GEORGIA
Duluth
Anthem Electronics ~404~ 931-3900

Arrow Electronics ~~~~ ~~~~~5
Norcross
Newark Electronics (404) 448-1300

IDAHO
Boise
Newark Electronics (208) 342-4311

ILLINOIS
Addison
Newark Electronics (708) 495-7740
Arlington Heights
Newark Electronics (708) 956-9270
Itasca
Arrow Electronics (708) 250-0500
Zeus Electronics (708) 595-9730
Rockford
Newark Electronics (815) 229-0225
Schaumberg
Anthem Electron)cs (708) 884-0200
Newark Electronics (708) 310-8980
Springfield
Newark Electronics (217) 787-9972
Willowbrook
Newark Electronics (708) 789-4780

(708) 654-8250

INDIANA
Ft. Wayne
Newark Electronics (219) 484-0766
lndianopo/ls
Arrow Electronic!J ~317~ 299-2071
Newark Electronics 317 259-0085

317 884-0047
IOWA

Bettendorf
Newark Electronics (319) 359-3711
Cedar Rapids
Arrow Electronics (319) 395-7230
Newark Electronics (319) 393-3800
West Des Moines
Newark Electronics (515) 222-0700

KANSAS
Lenexa
Anthem Electronics (913) 599-1528
Arrow Electronics (913) 541-9542
Overland Park
Newark Electronics (913) 677-0727

KENTUCKY
Louisville
Newark Electronics (502) 423-0280

LOUISIANA
Metarle
Newark Electronics (504) 838-9771

MARYLAND
Columbia
Anthem Electronics (410) 995-6640
Arrow Electronics (410) 596-7800
Hanover
Newark Electronics (410) 712-6922

MASSACHUSETTS
North Reading
Advanced Technical Sales (508) 664-0888
Marlborough
Newark Electronics (508) 229-2200
Methuen
Newark Electronics (508) 683-0913
Wiimington
Anthem Electronics ~508~ 657-5170
Arrow Electronics 508 658-0900
Zeus Electronics 508 658-4776
Woburn
Newark Electronics (617) 935-8350

Z-5

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS
MICHIGAN

Grand Rapids
Newark Electronics (616) 954-6700
Livonia
Anthem Electronics p13~ 347-4090

Arrow Electronics ~~~~~ ~g~:~~~g
Oak Park
Newark Electronics (810) 967-0600

(810) 968-2950
Plymouth
Arrow Electronics (313) 462-2290
Saginaw
Newark Electronics (517) 799-0480

MINNESOTA
Eden Prairie
Anthem Electronics (612) 946-4826
Arrow Electronics (612) 941-5280
Minneapolis
Newark Electronics (612) 331-6350
St. Paul
Newark Electronics (612) 631-2683

MISSISSIPPI
Ridgeland
Newark Electronics (601) 956-3834

MISSOURI
Maryland Heights
Newark Electronics (314) 298-2505
St. Louis
Arrow Electronics (314) 567-6888

Z-6

MONTANA
Helena
Newark Electronics (406) 443-6192

NEBRASKA
Omaha
Newark Electronics (402) 592-2423

NEVADA
Las Vegas
Newark Electronics (702) 597-0330
Reno
Newark Electronics (702) 322-6090
Sparks
Arrow Electronics (702) 331-5000

NEW HAMPSHIRE
Nashua
Newark Electronics (603) 888-5790

NEW JERSEY
East Brunswick
Newark Electronics (908) 937-6600
Mar/ton
Arrow Electronics (609) 596-8000
Plnebrook
Anthem Electronics (201) 227-7960
Arrow Electronics (201) 227-7880
Union
Newark Electronics (908) 851-2290

SALES REPRESENTATIVES AND DISTRIBUTORS

NEW MEXICO
Albuquerque
Newark Electronics (505) 828-1878

NEW YORK
Bohemia
Newark Electronics (516) 567-4200
Brookhallflll
Arrow Electronics (516) 924-9400
Cheektowaga
Newark Electronics (716) 862-9700
Commack
Anthem Electronics (516) 864-6600
Hauppauge
Arrow Electronics (516) 231-1000
Latham
Newark Electronics (518) 783-0983
Liverpool
Newark Electronics (315) 457-4873
Long Island
Anthem Electronics (516) 864-6600
Me/ville
Arrow Electronics (516) 391-1300
Rochester
Arrow Electronics (716) 427-0300
Pittsford
Newark Electronics (716) 381-4244
Port Chester
Zeus Electronics (914) 937-7400
WapplnllflTS Falls
Newark Electronics (914) 298-2810

NORTH CAROLINA
Charlotte
Newark Electronics (704) 535-5650
GtNnsboro
Newark Electronics (910) 294-2142
Raleigh
Anthem Electronics !9191782-3550

Arrow Electronic!3 ~~ ~~~~~
Newark Electronics 919 781-7677

OHIO
Centerville
Arrow Electronics (513) 435-5563
Cincinnati
Newark Electronics (513) 772-8181
Cleveland
Newark Electronics (216) 391-9330
Columbus
Newark Electronics (614) 326-0352
Dayton
Newark Electronics (513) 294-8980
Solon
Arrow Electronics (216) 248-3990
Toledo
Newark Electronics (419) 866-0404
Youngstown
Newark Electronics (216) 793-6134

OKLAHOMA
Oklahoma City
Newark Electronics (405) 843-3301
Tulsa
Arrow Electronic!3 (918) 252-7537
Newark Electronics (918) 252-5070

OREGON
Beaverton
Al.J.AAC/Arrow Electronics (503) 629-8090
Anthem Electronics (503) 643-1114
Portland
Newark Electronics (503) 297-1984

PENNSYLVANIA
Allentown
Newark Electronics (610) 434-7171
Fort Wahington
Newark Electronics (215) 654-1434
Horsham
Anthem Electronics (215) 443-5150
Pittsburgh
Arrow Electronic!3 (412) 856-9490
Newark Electronics (412) 788-4790

Z-7

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

SOUTH CAROLINA
Greenville
Newark Electronics (803) 288-9610

TENNESSEE
Brentwood
Newark Electronics (615) 371-1341
Knoxville
Newark Electronics (615) 588-6493
Memphis
Arrow Electronic!l ···································· (901) 367-0540
Newark Electronics (901) 396-7970

TEXAS
Austin
Anthem Electronics {512~ 388-0049
Arrow Electronics 512 835-4180
Newark Electronics 512 338-0287
carrollton
Arrow Electronics (214) 380-9049
Zeus Electronics (214) 380-4330
Corpus Christi
Newark Electronics (512) 857-5621
Dallas
Newark Electronics (214) 458-2528
El Paso
Newark Electronics (915) 772-6367
Houston
Arrow Electronic!l ···································· (713) 647-6868
Newark Electronics (713) 894-9334
Richardson
Anthem Electronics (214} 238-7100
San Antonio
Newark Electronics (210) 734-7960

UTAH
Salt Lake City
Anthem Electronics ~801 ~ 973-8555
Arrow Electronic!l ···································· 801 973-6913
Newark Electronics 801 261-5660

VIRGINIA
Herndon
Newark Electronics (703) 707-9010
Richmond
Newark Electronics (804) 282-5671
Roanoke
Newark Electronics (703) 772-6821

Z-8

WASHINGTON
Bellevue
ALMAC/Arrow Electronics (206) 643-9992
Newark Electronics (206) 641-9800
Bothell
Anthem Electronics (206) 483-1700
Spokane
ALMAC/Arrow Electronics (509) 924-9500
Newark Electronics (509) 327-1935

WEST VIRGINIA
Charleston
Newark Electronics (304) 345-3086

WISCONSIN
Brookfield
Arrow Electronics (414) 792-0150
Green Bay
Newark Electronics (414) 494-1400
Madison
Newark Electronics (608) 221-4738
Mllwaulcae
Newark Electronics (414) 453-9100

CANADA
Alberta
Future Electron!cs (403) 250-5550
Future Electronics (403) 438-2858
British Columbia
Arrow Electroni~s (604) 421-2333
Future Electronics (604) 294-1166
Manitoba
Future Electronics (204) 944-1446
Montreal
Arrow Electronics (514l 421-7411
Future Electronics (514 694-7710
Ontario
Arrow Electronics 613 226-6903
Arrow Electronics 905 670-7769
Future Electronics 905 612-9200
Future Electronics 613 820-8313
Newark Electronics 519 685-4280
Newark Electronics 905 670-2888
Toronto
Arrow Electronics (416) 670-2010
Quebec
Arrow Electronics {418~ 871-7500
Future Electroniqs 418 877-6666
Newark Electronics 514 738-4488

SALES REPRESENTATIVES AND DISTRIBUTORS

CENTRAL AND SOUTH AMERICA

MEXICO
Semiconductores
Profesionales ... 525-524-6123

ARGENTINA
Buenos Aires
YEL SRL ... 011-541-440-1532

ASIA-PACIFIC

AUSTRALIA
R&D Electronics 61-3-558-0444
GEC Electronics Division 61-2-638-1888

CHINA
Beijing
China Electronics Appliance Corp 86-755-335-4214
TLG Electronics, Ltd 85-2-388-7613

HONGKONG
Electrocon Products, Ltd 85-2-481-6022
Components Agent, Ltd 85-2-487-8826
Maxisum, Ltd .. 85-2-410-2780
MEMEC, Ltd ... 85-2-410-2777

INDIA
Bangalore
Maxvale .. 91-80-556-6761
Zenith Technologies Pvt. Ltd 91-80-558-6782
Bombay
Zenith Technologies Pvt. Ltd 91-22-494-7457
Maxvale .. 91-22-830-0959
New Delhi
Maxvale (S) Pte. Ltd 91-11-622-5122

BRAZIL
Sao Paulo
Nishicom ... 011-55-11-535-1755
Graftec ... 011-572-2727
DSD Microtechnology Distributors 305-563-8665

KOREA
ENC-Korea ... 822-523-2220
MEMEC, Ltd .. 822-518-8181

MALAYSIA
Kuala Lumper ,. 60-3-703-8498
Penang L.T. Electronics Ltd 60-4-656-2895

NEW ZEALAND
GEC Electronics Division 64-9-526-0107

· PHILIPPINES
Alexan Commercial 63-2-241-9493
Cinergi Tech & Devices (Phils), Inc 63-2-817-9519

SINGAPORE
Cinergi Technology & Devices Pte. Ltd 65-778-9331
Eltee Electronics Ltd 65-283-0888
MEMEC, Ltd .. 65-222-4962

TAIWAN (ROC)
Acer Sertek, Inc 886-2-501-0055
Asec lnt'I. Corporation 886-2-786-6677
MEMEC, Ltd ... 886-2-760-2028
Promate Electronics Co. Ltd 886-2-659-0303

INDONESIA THAILAND
Jakarta Eltee Electronics Ltd 66-2-933-7565
Cinergi Asiamaju 62-21-7982762

JAPAN
Tokyo
Teksel Co., Ltd 81-3-5467-9000
lnternix Incorporated 81-3-3369-1105
Kanematsu Elec. Components Corp 81-3-3779-7811
Osaka
Teksel Co., Ltd .. 81-6368-9000

Z-9

SALES REPRESENTATIVES AND DISTRIBUTORS

EUROPE

AUSTRIA
Vienna
EBV Elektronik GMBH 43-222-8941-774
Avnet/Electronic 2000 0043-1-9112847

BELGIUM
Antwerp
D & D Electronics PVBA 32-3-8277934
Zaventem
EBV Elektronik ... 322-7209936

DENMARK
Brondby
Ditz Schweitzer AS 4542-453044
Lynge
Rep Delco .. 45-35-821200

ENGLAND
Berkshire
Future Electronics 44-753-521193
Gothic Crellon ... 44-734-787848
Macro Marketing 44-628-604383
Kent
Arrow Electronics 44-732-74039
Lancashire
Complementary Technologies Ltd 44-942-274731

FINLAND
Espoo
Yleiselektroniikka 358-0-452-621

FRANCE
Cedex
A2M .. 331-395-49-113
CCI Electronique 331-46744700
Champs sur Mame
EBV Elektronik ... 331-646-88600
Massy
Reptronic SA ... 331-60139300

Z-10

GERMANY
Berlin
EBV Elektronik GMBH 030-3421041
Avnet/Electronic 2000 030-2110761
Burgwedel
EBV Elektronik GMBH 05139-80870
Camberg
Thesys A/E ... 49-6434-5041
Castrop
Future GMBH .. 02305-42051
Dortmund
Future GMBH .. 02305-42051
Duesseldorf
Avnet/Electronic 2000 0211-9200385
Thesys/AE ... 0211-536020
Erfurt
Thesys ... 0361-4278100
Erkrath
Avnet/Electronic 2000 211-92003-85
Frankfurt
EBV Elektronik GMBH 069-785037
Avnet/Electronic 2000 069-9738041
Future GMBH .. 06121-54020
Thesys/AE ... 06434-5041
Gerllngen
Avnet/Electronic 2000 7156-356190
Hamburg
Avnet/Electronic 2000 040-64557021
Leonberg
EBV Elektronik GMBH 07152-30090
Muenchen
Avnet/Electronic 2000 089-4511004
EBV Elektronik GMBH 089-456100
Future GMBH .. 089-957270
Thesys A/E .. 89-99355866
Nuemberg
Avnet/Electronic 2000 0911-9951610
Neuss
EBV Elektronik GMBH 02131-96770
Qulckbom
Future GMBH .. 4106-71022
Rauxel
Future GMBH .. 02305-42051
Stuttgart
Avnet/Electronic 2000 07156-356190
Future GMBH .. 0711-830380
Thesys/AE ... 0711-9889100
Weinbach
EBV Elektronik GMBH 036-426486

SALES REPRESENTATIVES AND DISTRIBUTORS

ISRAEL
RDT ... 972-35483137

ITALY
Milano
Avnet EMG S.R.L. 0039-295-343600
EBV Elektronik 0039-2-66017111
Silver Star ... 02-66-125-1
Firenze
EBV Elektronik 0039-55-350792
Roma
EBV Elektronik 0039-6-2253367
Modena
EBV Elektronik 0039-59-344752
Napoli
EBV Elektronik 0039-81-2395540
Torino
EBV Elektronik 0039-11-2161531

NETHERLANDS
EBV Elektronik ... 313-465-2353

NORWAY
Bexab Norge ... 47-63833800

POLAND
Warsaw
Gamma Ltd ... 004822-330853

PORTUGAL
Amadora
Amitron-Arrow 0035-1-4714806

RUSSIA
Woronesh
Thesys/lntechna ... 0732553697
Vyborg
Gamma Ltd ... 81278-31509
St. Petersburg
Gamma Ltd ... 812-5311402

SPAIN
Barcelona
Amitron-Arrow S.A. 0034-3-4907 494
Madrid
Amitron-Arrow S.A. 0034-1-3043040

SWEDEN
Bexab Sweden AB 46-8-63088-00
Rep Delco Sweden AB 46-8-63086-00

SWITZERLAND
Dietikon
EBV Elektronik GMBH 0041-1-7401090
Lausanne
EBV ElektronikAG 0041-21-3112804
Regensdorf
Eurodis AG ... 0041-1-8433111

UKRAINE
Kiev
Thesys/Mikropribor 44-434-9533

Z-11

IDI

LITERATURE GUIDE
ze• MICROCONTROLLERS • CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche

ZS- Microcontrollers Databook
Product Spsclfications

Z86B07 CMOS Z8 8-Bit MCU for Battery Charging and Monitoring
Z86C05/C07 CMOS Z8 8-Bit Microcontroller
ZB6E07 CMOS ZB B-Bit OTP Microcontroller
ZB6C11 CMOS ZB Microcontroller
ZB6C12 CMOS ZB In-Circuit Microcontroller Emulator
Z86C21 BK ROM Z8 CMOS Microcontroller
ZB6E21 CMOS Z8 BK OTP Microcontroller
ZB6C61/62/96 CMOS ZB Microcontrollers
ZB6E61/6316K/32K EPROM CMOS ZB Microcontrollers
ZB6C63/64 32K ROM Z8 CMOS Microcontrollers
ZB6C91 CMOS ZB ROMless Microcontroller
ZB6C93 CMOS Z8 Multiply/Divide Microcontroller
ZB61171717 Z8 B-Bit CMOS OTP /ROM M icrocontrol lers

Appl/cation Notes
On-Chip Oscillator Design
Designing a Low-Cost Thermal Printer

Support Product Specifications
Z0860000ZCO Evaluation Board
ZB6C1200ZEM Emulator
ZB6E0700ZDP Adaptor Kit
ZB6E2100ZDF Adaptor Kit
ZB6E2100ZDP Adaptor Kit
ZB6E2100ZDV Adaptor Kit
Z86E2101ZDP Adaptor Kit
ZB6E2101ZDV Adaptor Kit
ZB6C6100TSC Emulator
ZB6C6200ZEM Emulator
ZB6C9300ZEM Emulator
ZB S Series Emulators, Base Units and Pods

Additional Information
Zilog's Superintegration'" Products Guide
General Terms and Conditions of Sale
Zilog's Sales Offices, Representatives and Distributors
Literature Guide & Third Party Support Vendors

Part No Unit Cost

DC-8305-03 $5.00

L-1

•2H Id:> LITERATURE GUIDE
ZS9 MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche

Infrared Remote OR) Controllers Databook
P10ductSp1clflt:aUons

Z86L03/L06 Low Voltage CMOS Consumer Controller Processor
Z86L29 6K Infrared (IR) Remote (ZIRCj Controller
Z86L70/L71/L72/L75/L76 Zilog IR (ZIRC") CCP"' Controller Family
Z86L73/74/77 24/32K ROM Infrared Remote Controller (ZIRCj
Z86E72/E73/E74/77 Zilog IR (ZIRCj CCP"' Controller Family
Z86C72/76 Zilog Infrared Remote Controller Family (ZIRC'")
Z86L7816K, 20-Pin Zilog Infrared Remote Controller (ZIRC'")

AppllcaUon Nots
Beyond the 3 Volt Limit
X-10 Compatible Infrared Remote Control

Support Product Spsclllcatlons
Z86C50000ZEM Emulator
Z86L7100ZDB Emulator Board
Z86L7100ZEM ICEBOX'" In-Circuit Emulator Board

Additional Information

L-2

Zilog's Superintegration'" Products Guide
Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DC-8301-()4 $5.00

LITERATURE. GUIDE
za• MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS

Databooks By Market Niche

Discrete ZS- Microcontrollers
Product Specifications

Z86C03/C06 CMOS ZS® S-Bit Consumer Controller Processors
Z86E03/E06 CMOS Z8® 8-Bit OTP Consumer Controller Processors
ZS6C04/C08 CMOS Z8® S-Bit Low Cost 1 K/2K ROM Microcontrollers
Z86E04/E08 CMOS Z8® 8-Bit OTP Microcontrollers
Z86C07 CMOS ZS® S-Bit Microcontroller
Z86E07 CMOS Z8® S-Bit OTP Microcontroller
Z86C30/C31 CMOS ZS® S-Bit Consumer Controller Processors
Z86E30/E31 CMOS ZS® 8-Bit OTP Consumer Controller Processors
Z86C40 CMOS ZS® 4K ROM Consumer Controller Processor
Z86E40 CMOS Z8® S-Bit OTP Consumer Controller Processor

ZIP Microcontrollers Application Notes
Timekeeping with the ZB®
Using The Zilog ZS6C06 SPI Bus
DTMF Tone Generation Using the ZS® CCP'"
Serial Communications Using the Z8® CCP'" Software UART
The Versatile ZS6COS: Three Key Features of this Z8® MCU
The Z86C08 Controls a Scrolling LED Message Display
Interfacing LCDs to the ZS® Microcontroller

Support Product Specifications and Third-Party Vendors
ZS6C0800ZCO Evaluation Board
ZS6C0800ZDP Adaptor Kit
ZS6C1200ZEM Emulator
ZS6E0600ZDP Adaptor Kit
ZS6E0700ZDP Adaptor Kit
Z86E3000ZDP Adaptor Kit
Z86E4000ZDF Adaptor Kit
ZS6E4000ZDP Adaptor Kit
Z86E4000ZDV Adaptor Kit
Z86E4001 ZDF Adaptor Kit
Z86E4001 ZDV Adaptor Kit
Z86CCPOOZEM Emualtor
Z86CCPOOZAC Emulator Kit
Z8®S Series Emulators, Base Units and Pods
Third-Party Support Vendors

Additional Information
Zilog's Superintegration'" Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DC 8318-02 $5.00

L-3

LITERATURE GUIDE
zs• MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche

Digital Television Controllers
Product Specifications

Z89300 Series Digital Television Controller
Z86C27/97 CMOS Z8®Digital Signal Processor
Z86C47/E47 CMOS ZS® Digital Signal Processor
Z86127 Low Cost Digital Television Controller
Z86128/228 Line 21-Closed-CiiJJtion Controller (L21 C"')
Z86227 40-Pin Low Cost (4LDTC"') Digital Television Controller

SupportProductSpsclf/catlons
Z86C2700ZCO Application Kit
Z86C2700ZDB Emulation Board
Z86C2702ZEM In-Circuit Emulator

Additional Information
Zilog's Superintegration"' Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DC-8308-01 $5.00

Telephone Answering Device Databook DC-8300-03 $ 5.00
ProductSpsclflcatlons

Z89165/166 (ROMless) Low-Cost DTAD Controller (Preliminary)
Z89167/169 Z89168 (ROMless) Enhanced Dual Processor Tapeless TAM Controller (Preliminary)

Development Guides
Z89165 Software Developer's Manual
Z89167/169 Software Developer's Manual

Technical Notes
Z89165/167/169 Design Guidelines
Z89167/169 Codec Interfacing Preliminary
Controlling the Out -5V and Codec Clock Signals for Low-Power Halt Mode
Z89165/166 Input ND and Electronic Hybrid
Z89C67/C69/167/169 Low-Power Halt Mode Sequence
Samsung KT8554 Codec
Watch-Dog Timer For TAD Applications
Zilog LPC Words Listing

Support Product Specifications
Z89C5900ZEM Emulation Module
Z89C6500ZDB Emulation Board
Z89C6501ZEM ICEBOX"' In-Circuit Emulator
Z89C6700ZDB Emulator Board
Z89C6700ZEM ICEBOX'" Emulator Board

Additional Information

L-4

Zilog's Superintegration'" Products Guide
Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

LITERATURE GUIDE
zs• MICROCONTROLLERS - PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS
Databooks By Market Niche

Digital Signal Processors Databook
Product Specification

Z89321/371/39116-Bit Digital Signal Processor
Application Notes

Using the Z89321/371/391 CODEC Interface
Z89321/371/391 Interprocessor Communication

Support Product Specification
Z89371 OOZEM ICEBOX"' In-Circuit Emulator -371

Additional Information
General Terms and Conditions of Sale
Zilog's Sales Offices, Representatives and Distributors
Literature Guide and Ordering Information

Keyboard/Mouse/Pointing Devices Databook
ProductSpeciflcatlons

Z8602/14 NMOS Z8® 8-Bit Keyboard Controller
Z8615 NMOS Z8® 8-Bit Keyboard Controller
Z86C15 CMOS ZB® 8-Bit MCU Keyboard Controller
Z86E23 ZB® 8-Bit Keyboard Controller with BK OTP
Z86C04/C08 CMOS Z8® 8-Bit Microcontroller
Z86E08 CMOS ZB® 8-Bit Microcontroller
Z88C17 CMOS ZB® 8-Bit Microcontroller
Z86C117 /717 Z8® 8-Bit Microcontroller
Z86217 ZS® 8-Bit Microcontroller

Application Notes
Z8602 Keyboard
Z86C17 In-Mouse Applications

Support Product Spsc/flcatlons and Third Party Support
Z0860200ZCO Evaluation Board
Z0860200ZDP Adaptor Kit
Z86C0800ZCO Evaluation Board
Z86C0800ZDP Adaptor Kit
Z86C1200ZEM Emulator
Z86E2300ZDP Adaptor Kit
Z86E2301ZDP Adaptor Kit
Z86E2300ZDV Adaptor Kit
Z86E2301ZDV Adaptor Kit

Additional Information
Zilog's Superintegration'" Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DB95DSP0105 $ 5.00

DC-8304-01 $ 5.00

L-5

LITERATURE GUIDE
za• MICROCONTROLLERS • PERIPHERALS MEMORY FAMILY OF PRODUCTS
Databooks By Market Niche

Mass Storage Solutions
Product Specifications

Z86C21 SK ROM ZS CMOS Microcontroller
Z86E21 CMOS ZS SK OTP Microcontroller
Z86C91 CMOS ZS ROMless Microcontroller
Z86C93 CMOS ZS Multiply/Divide Microcontroller
Z86C95 ZB Digital Signal Processor
Z8601 S Data l'ath Controller
Z89COO 16-Bit Digital Signal Processor

Appl/cation Nots
Understanding 015 Two's Complement Fractional Multiplication (ZS9COO DSP)

Support Product Specifications
Z8060000ZCO Development Kit
Z86C1200ZEM In-Circuit Emulator
Z86E2100ZDF Adaptor Kit
Z86E2100ZDP Adaptor Kit
Z86E21 OOZDV Adaptor Kit
Z86E2101ZDF Conversion Kit
Z86E2101ZDV Conversion Kit
Z86C9300ZEM ICEBOX"' Emulator
Z86C9500ZCO Evaluation Board
ZB® S Series Emulators, Base Units and Pods
Z89COOOOZAS Z89COO Assembler, Linker and Librarian
Z89COOOOZCC ZS9COO C Cross Compiler
Z89COOOOZEM In-Circuit Emulator-COO
Z89COOOOZSD Z89COO Simulator/Debugger
ZPCMCIAOZDP PCMCIA Extender Card

Additional Information

L-6

Zilog's Superintegration"' Products Guide
Zilog's Literature Guide
Zilog's Sales Offices, Representatives and Distributors

Part No

DC·8303-o1

Unit Cost

$5.00

LITERATURE GUIDE
Z8 Technical Manuals and Users Guides

za• Microcontrollers User's Manual
Z86018 Preliminary User's Manual
Digital TV Controller User's Manual
Z89COO 16-Bit Digital Signal Processor User's Manual/DSP Software Manual
Z86C9516-Bit Digital Signal Processor User Manual
Z86017 PCM CIA Adaptor Chip User's Manual and Databook
PLC Z89COO Cross Development Tools Brochure

zee Appllcatlon Notes

The Z8 MCU Dual Analog Comparator
Z8 Applications for 1/0 Port Expansions
Z86E21 ZS Low Cost Thermal Printer
Zilog Family On-Chip Oscillator Design
Using the Zilog Z86C06 SPI Bus
Interfacing LCDs to the ZS
X-1 O Compatible Infrared (IA) Remote Control
Z86C17 In-Mouse Applications
Z86C40/E40 MCU Applications Evaluation Board
Z86C08/C17 Controls A Scrolling LED Message Display
Z86C95 Hard Disk Controller Flash EPROM Interface
Three ZS- Applications Notes: Timekeeping with Z8; DTMF Tone Generation;

Serial Communication Using the CCP Software UART

Part No. Unit Cost

UM95Z800103 5.00
DC-8296-00 N/C
DC-8284-01 5.00
DC-8294-02 5.00
DC-8595-02 5.00
DC-8298-03 5.00
DC-5538-01 N/C

Part No Unit Cost

DC-251&-01 N/C
DC-2539-01 N/C
DC-2541-01 N/C
DC-249&-01 N/C
DC-2584-01 N/C
DC-2592-01 N/C
DC-2591-01 N/C
DC-3001-01 N/C
DC-2604-01 N/C
DC-2605--01 N/C
DC-2639-01 N/C
DC-2645-01 N/C

L·7

LITERATURE GUIDE
Z809/Z80009 DATACOMMUNICATIONS FAMILY OF PRODUCTS
Databooks By Market Niche

High·Speed Serial Communication Controllers
Product Specifications

Z16C30 CMOS Universal Serial Controller (USC'") (Preliminary)
Z16C32 Integrated Universal Serial Controller (IUSC'") (Preliminary)

Application Notes
Using the Z16C30 Universal Serial Controller with MIL-STD-1553B
Design a Serial Board to Handle Multiple Protocols
Datacommunications IUSC'"/MUSC'" Time Slot Assigner

Support Products and Third Party Vendor Support
Z16C3001ZCO Evaluation Board Product Specification
Z16C3200ZCO Evaluation Board Product Specification
Z8018600ZCO Evaluation Board Product Specification
ZEPMDC00001 EPM'" Electronic Programmer's Manual Product Specification
Third Party Vendors

Additional Information
Zilog's Superintegration'" Products Guide
General Terms and Conditions of Sale
Sales Offices, Representatives and Distributors
Literature Guide

Serial Communication Controllers
Product Specifications

Z8030/Z8530 Z-Bus• SCC Serial Communication Controller
Z80C30/Z85C30 CMOS Z-Bus® SCC Serial Communication Controller
Z80230 Z-Bus• ESCC'" Enhanced Serial Communication Controller (Preliminary)
Z85230 ESCC"' Enhanced Serial Communication Controller
Z85233 EMSCC'" Enhanced Mono Serial Communication Controller
Z85C80 SCSCI'" Serial Communications and Small Computer Interface
Z16C35/Z85C35 CMOS ISCC"' Integrated Serial Communications Controller

Application Notes
Interfacing Z8500 Peripherals to the 68000
SCC in Binary Synchronous Communications
Zilog SCC Z8030/Z8530 Questions and Answers
Integrating Serial Data and SCSI Peripheral Control on One Chip
Zilog ISCC'" Controller Questions and Answers
Boost Your System Performance Using the Zilog ESCC™
Zilog ESCC'" Controller Questions and Answers
The Zilog Datacom Family with the 80186 CPU
On-Chip Oscillator Design

Support Products
Z8S1 BOOOZCO Evaluation Board Product Specification
Z8523000ZCO Evaluation Board Product Specification
Z8018600ZCO Evaluation Board Product Specification
ZEPMDC00002 Electronic Programmer's Manual Software

Additional Information

L-8

Zilog's Superintegration'" Products Guide
Sales Offices, Representatives and Distributors
Literature Guide

Part No Unit Cost

DC-8314-01 5.00

DC-8316-01 5.00

4'2.iU Q,. LITERATURE GUIDE
Z808/Z8000• DATACOMMUNICATIONS FAMILY OF PRODUCTS
Data books

Z80 Family Databook
Discrete ZBr Family

Z8400/COO NMOS/CMOS ZBO® CPU Product Specification
Z8410/C10 NMOS/CMOS Z80 OMA Product Specification
Z8420/C20 NMOS/CMOS Z80 PIO Product Specification
Z8430/C30 NMOS/CMOS Z80 CTC Product Specification
Z8440/C40 NMOS/CMOS Z80 SIO Product Specification

Embedded Controllers
Z84C01 Z80 CPU with CGC Product Specification
Z8470 ZBO DART Product Specification
Z84C90 CMOS Z80 KIO'" Product Specification
Z84013/015 Z84C13/C15 IPC/EIPC Product Specification

Application Notes and Technical Articles
ZBO® Family Interrupt Structure
Using the Z80® SIO with SDLC
Using the Z80® SIO in Asynchronous Communications
Binary Synchronous Communication Using the Z80® SIO
Serial Communication with the Z80A DART
Interfacing Z80®CPUs to the Z8500 Peripheral Family
Timing in an Interrupt-Based System with the Z80® CTC
A Z80-Based System Using the OMA with the SIO
Using the Z84C11/C13/C15 in Place of the Z84011/013/015
On-Chip Oscillator Design
A Fast Z80® Embedded Controller
ZBO® Questions and Answers

Additional Information
Zilog's Superintegration'" Products Guide
Literature Guide
Third Party Support Vendors
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DC·8321·00 5.00

L-9

LITERATURE GUIDE
Z808/Z80009 DATACOMMUNICATIONS FAMILY OF PRODUCTS
Data books

Z180- Microprocessors and Peripherals Databook
ProductSpec/Hcalions

Z80180/Z8S180/Z8L 180 Z180'" Microprocessor
Z80181 Z181'" Smart Access Controller (SAC'")
Z80182/Z8L 182 Zilog Intelligent Peripheral Controller (ZIP'")

Application Notes and Technical Articles
Z180'" Questions and Answers
Z180'"/SCC Serial Communication Controller Interface at 10 MHz
Interfacing Memory and 1/0 to the 20 MHz ZBS180 System
Break Detection on the Z80180 and Z181'"
Local Talk Link Access Protocol Using the Z80181
Z182 Programming the MIMIC Autoecho ECHOZ182 Sample Code
High Performance PC Communication Port Using the Z182
Improving Memory Access Timing in Z182 Applications

Support Products
Z8S18000ZCO Evaluation Board
Z8018100ZCO Evaluation Board
Z8018101ZCO Evaluation Board
Z8018101ZA6 Driver Software
Z8018100ZDP Adaptor Kit
Z8018200ZCO Evaluation Board
ZEPMIP00001 EPM'" Electronic Programmer's Manual
ZEPMIP00002 EPM Electronic Programmer's Manual
Z809 and Z80180 Hardware and Software Support

Additional Information

L-10

Zilog's Superintegration'" Products Guide
Literature Guide
Zilog's Sales Offices, Representatives and Distributors

Part No Unit Cost

DC-8322·01 5.00

~2iUO:i LITERATURE GUIDE
ZSO-JZSOOO- DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks and User's Manuals

ZSOOO Family of Products
ZBOOO Family Databook

Zilog's Z8000 Family Architecture
Z8001/Z8002 Z8000 CPU Product Specification
Z8016 Z8000 Z-DTC Product Specification
Z8036 ZBOOO Z-CIO Product Specification
Z8536 CIO Counter/Timer and Parallel 1/0 Unit Product Specification
Z8038/Z8538 FIO FIFO lnpuVOutput Interface Unit Product Specification
Z8060/Z8560 FIFO Buffer Unit
Z8581 Clock Generator and Controller Product Specification

UsBr's Manuals
ZBOOO CPU Central Processing Unit User's Manual
Z801 O Memory Management Unit (MMU) User's Manual
Z8036 Z-CI0/28536 CIO Counter/Timer and Parallel lnpuVOutput User's Manual
Z8038 Z8000 Z-FIO FIFO lnpuVOutput Interface User's Manual
ZBOOO Application Notes and Military Products

Application Notss
Using SCC with Z8000 in SDLC Protocol
SCC in Binary Synchronous Communication
Zilog's Military Products Overview

Additional Information
Zilog's Superintegration'" Products Guide
Literature Guide
Zilog's Sales Offices, Representatives and Distributors

ZSO Family Microprocessor Family User's Manual
UsBr's Manuals

ZBO Central Processing Unit (CPU)
ZBO Counter Timer Channels (CTC)
ZBO Direct Memory Access (OMA)
ZBO Parallel lnpuVOutput (PIO)
ZBO Serial lnpuVOutput (SIO)

Additional Informal/an
Zilog's Superintegration'" Products Guide
Zilog's Sales Offices, Representatives and Distributors
Literature Guide

Part No Unit Cost

DC-8319·00 5.00

DC-8309-01 5.00

L-11

LITERATURE GUIDE
Databooks and User's Manuals

Z80180 Z180 MPU Microprocessor Unit Technical Manual
Z280 MPU Microprocessor Unit Technical Manual
Z380'" Product Specification
Z380'" User's Manual
Z2000 Spread-Spectrum Transceiver Advance Information Product Specification
ZNW2000 PC WAN Adapter Board Development Kit User's Manual

SCC Serial Communication Controller User's Manual
High-Speed SCC, Z16C30/Z16C32 User's Manual

MILITARY COMPONENTS FAMILY
Military Product Specifications

Z8681 ROMless Microcomputer
Z8001/8002 Military Z8000 CPU Central Processing Unit
Z8581 Military CGC Clock Generator and Controller
Z8030 Military Z8000 Z-SCC Serial Communications Controller
Z8530 Military SCC Serial Communications Controller
Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel 1/0
Z8038/8538 Military FIO FIFO lnpuVOutput Interface Unit
Z8536 Military CIO Counter/Timer Controller and Parallel 1/0
Z8400 Military Z80 CPU Central Processing Unit
Z8420 Military PIO Parallel lnpuVOutput Controller
Z8430 Military CTC Counter/Timer Circuit
Z8440/1/2/4 Z80 SIO Serial lnpuVOutput Controller
Z80C30/85C30 Military CMOS SCC Serial Communications Controller
Z84COO CMOS Z80 CPU Central Processing Unit
Z84C20 CMOS Z80 PIO Parallel lnpuVOutput
Z84C30 CMOS Z80 CTC Counter/Timer Circuit
Z84C40/1/2/4 CMOS Z80 SIO Serial lnpuVOutput
Z16C30 CMOS USC Universal Serial Controller (Preliminary)
Z80180Z180 MPU Microprocessor Unit
Z84C90 CMOS KIO Serial/Parallel/Counter Timer (Preliminary)
Z85230 ESCC Enhanced Serial Communication Controller

L-12

Part No

DC-8276-04
DC-8224-03
DC-6003-03

PS953800104
DC-6021-00

UM95Z800101

DC-8293-02
DC-8350-00

Part No

DC-2392-02
DC-2342-03
DC-2346-01
DC-2388-02
DC-2397-02
DC-2389-01
DC-2463-02
DC-2396-01
DC-2351-02
DC-2384-02
DC-2385-01
DC-2386-02
DC-2478-02
DC-2441-02
DC-2384-02
DC-2481-01
DC-2482-01
DC-2531-01
DC-2538-01
DC-2502-00
DC-2595-00

Unit Cost

5.00
5.00
N/C
5.00
N/C
N/C

5.00
5.00

Unit Cost

N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C

LITERATURE GUIDE
GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides Part No Unit Cost

Superintegration Master Selection Guide 1994-1995
Superintegration Products Guide
Quality and Reliability Report
ZIA"' 3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet
ZIA ZIAOOZCO Disk Drive Development Kit Datasheet
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet
Zilog Infrared (IR) Controllers - ZIRC'" Datasheet
Zilog V. Fast Modem Controller Solutions
Zilog Digital Signal Processing - ZS9320 Datasheet
Zi log Keyboard Controllers Datasheet
Z380'" - Next Generation Z80®/Z180'" Datasheet
Fault Tolerant ZS® Microcontroller Datasheet
32K ROM ZS® Microcontrollers Datasheet
Zilog Datacommunications Brochure
ZS9300 DTC Controller Family Brochure
Zilog Digital Signal Processing Brochure
Zilog ASSPs - Partnering With You Product Brochure
Zilog Wireless Products Datasheet
Zilog ZS604 Cost Efficient Datasheet
Zilog Chip Carrier Device Packaging Datasheet
Zi log Database of IR Codes Datasheet
Zilog PCMCIA Adapter Chip ZS6017 Datasheet
Zilog TelevisionNideo Controllers Datasheet
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet
Zilog ZS7000 Z-Phone Datasheet
Zilog 1993 Annual Report
Zilog 1994 Annual Report

DC-5634-01 N/C
DC-5676-00 N/C
DC-S329-01 N/C
DC-5556-01 N/C
DC-5593-01 N/C
DC-5560-01 N/C
DC-555S-01 N/C
DC-5525-02 N/C
DC-5547-01 N/C
DC-5600-01 N/C
DC-55S0-02 N/C
DC-5603-01 N/C
DC-5601-01 N/C
DC-5519-00 N/C
DC-560S-01 N/C
DC-5536-02 N/C
DC-5553-01 N/C
DC-5630-00 N/C
DC-5662-00 N/C
DC-5672-00 N/C
DC-5631-00 N/C
DC-55S5-01 N/C
DC-5567-01 N/C
DC-5561-02 N/C
DC-5632-00 DIC
DC-1993-AR N/C
DC-1994-AR N/C

L-13

DII

