Z8° Family of Microcomputers Z8611 • Z8612 • Z8613 **Product Specification** September 1982 # Product Specification September 1982 Z8611 Single-Chip Microcomputer with 4K ROM Z8612 Development Device with Memory Interface Z8613 Prototyping Device with EPROM Interface #### **Features** - Complete microcomputer, 4K bytes of ROM, 128 bytes of RAM, 32 I/O lines, and up to 60K bytes addressable external space each for program and data memory. - 144-byte register file, including 124 general-purpose registers, four I/O port registers, and 16 status and control registers. - Average instruction execution time of 2.2 μ s, maximum of 4.25 μ s. - Vectored, priority interrupts for I/O, counter/timers, and UART. - Full-duplex UART and two programmable 8-bit counter/timers, each with a 6-bit programmable prescaler. - Register Pointer so that short, fast instructions can access any of nine working-register groups in 1.5 μs. - On-chip oscillator which accepts crystal or external clock drive. - Low-power standby option which retains contents of general-purpose registers. - Single +5 V power supply—all pins TTL compatible. # General Description The Z8611 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8611 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion. Under program control, the Z8611 can be tailored to the needs of its user. It can be con- figured as a stand-alone microcomputer with 4K bytes of internal ROM, a traditional microprocessor that manages up to 120K bytes of external memory, or a parallel-processing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O. Figure 1. Z8611 MCU Pin Functions Figure 2. Z8611 MCU Pin Assignments #### Architecture Z8611 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications. Microcomputer applications demand powerful I/O capabilities. The Z8611 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory. Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8611 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 120K bytes of external memory (Figure 3). Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144-byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 16 control and status registers. To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate. Figure 3. Functional Block Diagram # Pin Description **AS.** Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of AS. Under program control, AS can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write. **DS.** Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer. **P0₀-P0₇. P1₀-P1₇. P2₀-P2₇. P3₀-P3₇.** I/O Port Lines (input/outputs, TTL-compatible). These 32 lines are divided into four 8-bit I/O ports that can be configured under program control for I/O or external memory interface. **RESET.** Reset (input, active Low). \overline{RESET} initializes the Z8611. When \overline{RESET} is deactivated, program execution begins from internal program location $000C_H$. $\mathbf{R}/\overline{\mathbf{W}}$. Read/Write (output). $\mathbb{R}/\overline{\mathbf{W}}$ is Low when the Z8611 is writing to external program or data memory. **XTAL1. XTAL2.** Crystal 1, Crystal 2 (time-base input and output). These pins connect a seriesresonant crystal (8 MHz maximum) or an external single-phase clock (8 MHz maximum) to the on-chip clock oscillator and buffer. # Address Spaces **Program Memory.** The 16-bit program counter addresses 64K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 4096 bytes consist of on-chip mask-programmed ROM. At addresses 4096 and greater, the Z8611 executes external program memory fetches. The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. **Data Memory.** The Z8611 can address 60K bytes of external data memory beginning at Figure 4. Program Memory Map locations 4096 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\rm DM}$, an optional I/O function that can be programmed to appear on pin P3₄, is used to distinguish between data and program memory space. **Register File.** The 144-byte register file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6. Z8611 instructions can access registers Figure 5. Data Memory Map Figure 6. The Register File Figure 7. The Register Pointer #### Address Spaces (Continued) directly or indirectly with an 8-bit address field. The Z8611 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4-bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active working-register group. **Stacks.** Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127). ## Serial Input/ Output Port 3 lines P3₀ and P3₇ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5K bits/second. The Z8611 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ4) is generated on all transmitted characters. Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ3 interrupt request. ## Transmitted Data (No Parity) #### Transmitted Data (With Parity) #### Received Data (No Parity) #### Received Data (With Parity) Figure 8. Serial Data Formats # Counter/ Timers The Z8611 contains two 8-bit programmable counter/timers (T_0 and T_1), each driven by its own 6-bit programmable prescaler. The T_1 prescaler can be driven by internal or external clock sources; however, the T_0 prescaler is driven by the internal clock only. The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request—IRQ₄ (T₀) or IRQ₅ (T₁)—is generated. The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single- pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode. The clock source for T_1 is user-definable and can be the internal microprocessor clock (4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_0 output to the input of T_1 . Port 3 line $P3_6$ also serves as a timer output (T_{OUT}) through which T_0 , T_1 or the internal clock can be output. The Z8611 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads. **Port 1** can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines P3 $_3$ and P3 $_4$ are used as the handshake controls RDY $_1$ and $\overline{\mathrm{DAV}}_1$ (Ready and Data Available). Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines. Port 1 can be placed in the high-impedance state along with Port 0, \overline{AS} , \overline{DS} and R/\overline{W} , allowing the Z8611 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P3₃ as a Bus Acknowledge input, and P3₄ as a Bus Request output. Figure 9a. Port 1 **Port 0** can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P32 and P35 are used as the handshake controls DAV0 and RDY0. Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. For external memory references, Port 0 can provide address bits A_8 – A_{11} (lower nibble) or A_8 – A_{15} (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals \overline{AS} , \overline{DS} and R/\overline{W} . Figure 9b. Port 0 **Port 2** bits can be programmed independently as input or output. This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs. Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P3_1$ and $P3_6$ are used as the handshake controls lines \overline{DAV}_2 and RDY_2 . The handshake signal assignment for Port 3 lines $P3_1$ and $P3_6$ is dictated by the direction (input or output) assigned to bit 7 of Port 2. Figure 9c. Port 2 **Port 3** lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input (P3₀-P3₃) and four output (P3₄-P3₇). For serial I/O, lines P3₀ and P3₇ are programmed as serial in and serial out respectively. Port 3 can also provide the following control functions: handshake for Ports 0, 1 and 2 (\overline{DAV} and RDY); four external interrupt request signals (IRQ₀-IRQ₃); timer input and output signals ($T_{\underline{IN}}$ and $T_{\underline{OUT}}$) and Data Memory Select (\overline{DM}). Figure 9d. Port 3 #### Interrupts The Z8611 allows six different interrupts from eight sources: the four Port 3 lines P30-P33, Serial In, Serial Out, and the two counter/ timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z8611 interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service. #### Clock The on-chip oscillator has a high-gain, series-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal source is connected across XTAL1 and XTAL2, using the recommended capacitors ($C_1=15~\mathrm{pF}$) from each pin to ground. The specifications for the crystal are as follows: - AT cut, series resonant - Fundamental type, 8 MHz maximum - Series resistance, $R_s \le 100 \Omega$ # Power Down Standby Option The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the V_{MM} (standby) power supply input. This necessitates the use of an external clock generator (input = XTAL1) rather than a crystal source. The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows the recommended circuit for a battery back-up supply system. Figure 10. Recommended Driver Circuit for Power Down Operation # Z8612 Development Device This 64-pin development version of the 40-pin mask-programmed Z8611 (Figure 11) allows the user to prototype the system in hardware with an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the Z8611. The Z8612 is identical to the Z8611 with the following exceptions: - The internal ROM has been removed. - The ROM address lines and data lines are buffered and brought out to external pins. - Control lines for the new memory have been added. **Pin Description.** The functions of the Z8612 I/O lines, AS, DS, R/W, XTAL1, XTAL2 and RESET are identical to those of their Z8611 counterparts. The functions of the remaining 24 pins are as follows: **A₀-A₁₁.** Program Memory Address (outputs). A₀-A₁₁ access the first 4K bytes of program memory. Figure 11. Z8612 Pin Assignments ## 8612 levelopment levice Continued) **D₀-D₇.** Program Data (inputs). Program data from the first 4K bytes of program memory is input through pins D₀-D₇. **IACK.** Interrupt Acknowledge (output, active High). IACK is driven High in response to an interrupt during the interrupt machine cycle. MDS. Program Memory Data Strobe (output, active Low). MDS is Low during an instruction fetch cycle when the first 4K bytes of program memory are being accessed. **SCLK.** System Clock (output). SCLK is the internal clock output through a buffer. The clock rate is equal to one-half the crystal frequency. **SYNC.** Instruction Sync (output, active Low). This strobe output is forced Low during the internal clock period preceding an opcode fetch. #### 8613 rotopack mulator The Z8613 MPE (Protopack) is used for prototype development and preproduction of mask-programmed applications. The Protopack is a ROMless version of the standard Z8611, housed in a pin-compatible 40-pin package (Figure 12). To provide pin compatibility and interchangeability with the standard mask-programmed device, the Protopack carries (piggy-backs) a 24-pin socket for a direct interface to program memory (Figure 1). The 24-pin socket is equipped with 12 ROM Figure 12. The Z8613 Microcomputer Protopack Emulator address lines, 8 ROM data lines and necessary control lines for interface to 2732 EPROM for the first 4K bytes of program memory. Pin compatibility allows the user to design the pc board for a final 40-pin mask-programmed Z8611, and, at the same time, allows the use of the Protopack to build the prototype and pilot production units. When the final program is established, the user can then switch over to the 40-pin mask-programmed Z8611 for large volume production. The Protopack is also useful in small volume applications where masked ROM setup time, mask charges, etc., are prohibitive and program flexibility is desired. Compared to the conventional EPROM versions of the single-chip microcomputers, the Protopack approach offers two main advantages: - Ease of developing various programs during the prototyping stage: For instance, in applications where the same hardware configuration is used with more than one program, the Z8613 Protopack allows economical program storage in separate EPROMs (or PROMs), whereas the use of separate EPROM-based single-chip microcomputers is more costly. - Elimination of long lead time in procuring EPROM-based microcomputers. # nstruction let lotation **Addressing Modes.** The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary. IRR Indirect register pair or indirect working-register pair address Irr Indirect working-register pair only X Indexed addressDA Direct addressRA Relative address IM Immediate R Register or working-register address Working-register address only Indirect-register or indirect working-register address Ir Indirect working-register address only RR Register pair or working register pair address **Symbols.** The following symbols are used in describing the instruction set. dst Destination location or contents src Source location or contents cc Condition code (see list) @ Indirect address prefix SP Stack pointer (control registers 254-255) PC Program counter FLAGS Flag register (control register 252) RP Register pointer (control register 253) IMR Interrupt mask register (control register 251) Assignment of a value is indicated by the symbol "—". For example, $dst \leftarrow dst + src$ indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit "n" of a given location. For example, dst (7) refers to bit 7 of the destination operand. | Instruction | Flags. Control Register R252 contains the following | | | | Affected flags are indicated by: | | | | | |-------------|-----------------------------------------------------|---------------------|---|--|---------------------------------------|--|--|--|--| | Set | six t | lags: | 0 | | Cleared to zero | | | | | | Notation | C | Carry flag | 1 | | Set to one | | | | | | (Continued) | Z | Zero flag | * | | Set or cleared according to operation | | | | | | | S | Sign flag | _ | | Unaffected | | | | | | | V | Overflow flag | X | | Undefined | | | | | | | D | Decimal-adjust flag | | | | | | | | | | H | Half-carry flag | | | | | | | | | Condition | Value | Mnemonic | Meaning | Flags Set | |-----------|-------|----------|--------------------------------|-------------------------| | Codes | 1000 | | Always true | | | | 0111 | C | Carry | C = 1 | | | 1111 | NC | No carry | C = 0 | | | 0110 | Z | Zero | Z = 1 | | | 1110 | NZ | Not zero | Z = 0 | | | 1101 | PL | Plus | S = 0 | | | 0101 | MI | Minus | S = 1 | | | 0100 | OV | Overflow | V = 1 | | | 1100 | NOV | No overflow | V = 0 | | | 0110 | EQ | Equal | Z = 1 | | | 1110 | NE | Not equal | $\overline{Z} = 0$ | | | 1001 | GE | Greater than or equal | (S XOR V) = 0 | | | 0001 | LT | Less than | (S XOR V) = 1 | | | 1010 | GT | Greater than | [Z OR (S XOR V)] = 0 | | | 0010 | LE | Less than or equal | [Z OR (S XOR V)] = 1 | | | 1111 | UGE | Unsigned greater than or equal | C = 0 | | | 0111 | ULT | Unsigned less than | C = 1 | | | 1011 | UGT | Unsigned greater than | (C = 0 AND Z = 0) = 1 | | | 0011 | ULE | Unsigned less than or equal | (C OR Z) = 1 | | | 0000 | | Never true | | Instruction Formats #### One-Byte Instructions Figure 13. Instruction Formats | ı | nstruction | |---|------------| | j | ummary | | Instruction | Addr | Mode | Opcode | Flags Affected | | | | | | |-------------------------------------------------------------------|------------------|----------------|-------------------|----------------|---|---|---|---|---| | and Operation | dst | src | Byte
(Hex) | c | z | s | V | D | H | | ADC dst,src
dst - dst + src + C | (No | te l) | 10 | * | * | * | * | 0 | * | | ADD dst,src
dst - dst + src | (No | te l) | 0□ | * | * | * | * | 0 | * | | AND dst,src
dst - dst AND src | (No | te l) | 5□ | - | * | * | 0 | - | - | | CALL dst
SP - SP - 2
@SP - PC; PC - d | DA
IRR
lst | | D6
D4 | - | - | - | - | - | _ | | CCF
C - NOT C | | | EF | * | - | - | - | - | - | | CLR dst
dst - 0 | R
IR | | B0
B1 | - | - | - | _ | - | _ | | COM dst
dst NOT dst | R
IR | | 60
61 | _ | * | * | 0 | - | _ | | CP dst,src
dst - src | (No | te 1) | A □ | * | * | * | * | _ | - | | DA dst
dst ← DA dst | R
IR | | 40
41 | * | * | * | Х | _ | _ | | DEC dst
dst ← dst - l | R
IR | | 00
01 | - | * | * | * | _ | - | | DECW dst dst - dst - 1 | RR
IR | | 80
81 | _ | * | * | * | _ | _ | | DI IMR (7) ← 0 | | | 8F | _ | _ | _ | _ | _ | _ | | DJNZ r,dst
r ← r - 1
if r ≠ 0 | RA | | rA
r=0-F | - | _ | _ | _ | _ | _ | | PC ← PC + dst
Range: +127, -128 | | | | | | | | | | | EI IMR (7) ← 1 | | | 9F | - | _ | _ | - | _ | _ | | INC dst
dst ← dst + l | r
R | | rE
r=0-F
20 | - | * | * | * | - | - | | - | IR | | 21 | | | | | | | | INCW dst
dst ← dst + l | RR
IR | | A0
A1 | - | * | * | * | _ | _ | | IRET FLAGS ← @ SP; SP PC ← @ SP; SP ← SI | ← SP
P + 2; | + 1
IMR (7) | BF
) ← 1 | * | * | * | * | * | * | | JP cc,dst
if cc is true | DA | | cD F | _ | _ | _ | _ | _ | _ | | PC ← dst | IRR | | c=0-F
30 | | | | | | | | IR cc,dst
if cc is true,
PC ← PC + dst
Range: +127, -128 | RA | | cB $c=0-F$ | - | - | - | - | - | - | | LD dst,src | r | Im | rC | _ | _ | _ | | _ | | | dst ← src | r
R | R
r | r8
r9
r=0-F | | | | | | | | | r
X | X
r | C7
D7 | | | | | | | | | r
Ir | Ir
r | E3
F3 | | | | | | | | | R
R | R
IR | E4
E5 | | | | | | | | | R
IR
IR | Im
Im
R | E6
E7
F5 | | | | | | | | LDC dst,src
dst ← src | r
Irr | Irr
r | C2
D2 | - | _ | - | _ | - | _ | | LDCI dst,src
dst src
r r + 1; rr rr + | Ir
Irr
1 | Irr
Ir | C3
D3 | - | - | - | _ | _ | - | | | | | | | | | | | | | Instruction | Addr | Mode | Opcode
Byte | Flags Affected | | | | | | |--|----------------|-----------|----------------|----------------|--|--|--|--|--| | and Operation | dst | SIC | (Hex) | CZSVDH | | | | | | | LDE dst,src
dst - src | r
Irr | Irr
r | 82
92 | | | | | | | | LDEI dst,src
dst ← src
r ← r + 1; rr ← rr + | Ir
Irr
l | Irr
Ir | 83
93 | | | | | | | | NOP | | | FF | | | | | | | | OR dst,src
dst — dst OR src | (No | te l) | 4□ | - * * 0 | | | | | | | POP dst
dst @SP
SP SP + 1 | R
IR | | 50
51 | | | | | | | | PUSH src
SP ← SP - 1; @ SP ← | - src | R
IR | 70
71 | | | | | | | | RCF
C - 0 | | | CF | 0 | | | | | | | RET
PC - @ SP; SP - S | P + 2 | | AF | | | | | | | | RL dst |] R
IR | | 90
91 | * * * * | | | | | | | RLC dst |] R
IR | | 10
11 | * * * * | | | | | | | RR dst | □ R
IR | | E0
E1 | * * * * | | | | | | | RRC dst | R
IR | | C0
C1 | * * * * | | | | | | | SBC dst,src
dst - dst - src - C | (Not | e l) | 3□ | * * * * 1 * | | | | | | | SCF C + 1 | | | DF | 1 | | | | | | | SRA dst |] R
IR | | D0
D1 | * * * 0 | | | | | | | SRP src
RP - src | | Im | 31 | | | | | | | | SUB dst,src
dst - dst - src | (Note | e l) | 2□ | * * * * 1 * | | | | | | | SWAP dst | R
IR | | FO
F1 | X * * X | | | | | | | TCM dst,src
(NOT dst) AND src | (Note | e l) | 6□ | - * * 0 | | | | | | | TM dst, src
dst AND src | (Note | e l) | 7□ | - * * 0 | | | | | | | XOR dst,src
dst - dst XOR src | (Note | e l) | В□ | - * * 0 | | | | | | | | | | | | | | | | | #### Note 1 These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a \Box in this table, and its value is found in the following table to the left of the applicable addressing mode pair. For example, to determine the opcode of an ADC instruction use the addressing modes r (destination) and Ir (source). The result is 13. | Addr | Mode | Lower | |------|------|---------------| | dst | src | Opcode Nibble | | r | r | 2 | | r | Ir | 3 | | R | R | 4 | | R | IR | 5 | | R | IM | 6 | | IR | IM | 7 | #### Registers ## **R244 TO** Counter/Timer 0 Register (F4_H; Read/Write) # **R241 TMR** Timer Mode Register (Fl_H; Read/Write) D₇ D₈ D₅ D₄ D₃ D₂ D₁ D₀ $\begin{array}{c} T_{OUT}\,\text{MODES} \\ \text{NOT USED} = 00 \\ T_0\,\text{OUT} = 01 \\ T_1\,\text{OUT} = 10 \\ \end{array}$ INTERNAL CLOCK OUT = 11 = NO FUNCTION = LOAD T₀ = DISABLE T₀ COUNT = ENABLE T₀ COUNT 0 = NO FUNCTION 1 = LOAD T₁ EXTERNAL CLOCK INPUT = 00 GATE INPUT = 01 TRIGGER INPUT = 01 (NON-RETRIGGERABLE) TRIGGER INPUT = 11 (RETRIGGERABLE) 0 = DISABLE T1 COUNT 1 = ENABLE T1 COUNT # **R245 PRE0** Prescaler 0 Register (F5H; Write Only) D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀ COUNT MODE 0 = T₀ SINGLE-PASS 1 = T₀ MODULO-N RESERVED PRESCALER MODULO (RANGE: 1-64 DECIMAL 01-00 HEX) # R242 T1 Counter Timer 1 Register (F2_H; Read/Write) D₇ D₆ D₅ D₄ D₃ D₂ D₁ D₀ T, INITIAL VALUE (WHEN WRITTEN) -(RANGE 1-256 DECIMAL 01-00 HEX) T, CURRENT VALUE (WHEN READ) R247 P3M Port 3 Mode Register Figure 14. Control Registers ## Registers (Continued) #### R248 P01M Port 0 and 1 Mode Register (F8_H; Write Only) #### R252 FLAGS Flag Register (FC_H; Read/Write) #### R249 IPR Interrupt Priority Register (F9_H; Write Only) #### R253 RP Register Pointer (FD_H; Read/Write) #### R250 IRQ # Interrupt Request Register (FA_H; Read/Write) #### R254 SPH Stack Pointer (FE_H; Read/Write) # R251 IMR Interrupt Mask Register (FB_H; Read/Write) #### R255 SPL Stack Pointer (FF_H; Read/Write) Figure 14. Control Registers Lower Opcode Nibble Execution Pipeline Cycles Cycles Upper 10,5 CP Mnemonic Opcode Nibble R2, R1 First Second Ir1, r2 R2, IR1 Operand 3 Rı Bytes per Instruction IR 1 2 #### Legend: 2 R = 8-Bit Address r = 4-Bit Address R_1 or $r_1 = Dst Address$ R_2 or r_2 = Src Address #### Sequence: Opcode, First Operand, Second Operand 3 1 Note: The blank areas are not defined. Operand ^{*2-}byte instruction; fetch cycle appears as a 3-byte instruction | Absolute | |----------| | Maximum | | Ratings | Voltages on all pins with respect to GND.....-0.3 V to +7.0 V Operating Ambient Temperature.....See Ordering Information Storage Temperature....-65°C to +150°C Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### Standard Test Conditions The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows: \Box +4.75 V \leq V_{CC} \leq +5.25 V □ GND = 0 V \Box 0°C \leq T_A \leq +70°C* *See Ordering Information section for package temperature range and product number. Figure 15. Test Load 1 Figure 16. Test Load 2 Figure 17. External Clock Interface Circuit | DC | |------------| | Character- | | istics | | Symb | ol Parameter | Min | Мах | Unit | Condition | Notes | |---|--------------------------------|------|--------------|------|---|-------| | V _{CH} | Clock Input High Voltage | 3.8 | v_{cc} | V | Driven by External Clock Generator | | | $\overline{\mathtt{v}_{\scriptscriptstyle{\mathrm{CL}}}}$ | Clock Input Low Voltage | -0.3 | 0.8 | V | Driven by External Clock Generator | | | v_{IH} | Input High Voltage | 2.0 | v_{cc} | V | | | | $\overline{v_{\text{IL}}}$ | Input Low Voltage | -0.3 | 0.8 | V | | | | $\overline{v_{RH}}$ | Reset Input High Voltage | 3.8 | $v_{\rm CC}$ | V | | 1 | | $\overline{v_{RL}}$ | Reset Input Low Voltage | -0.3 | 0.8 | V | | | | $\overline{v_{OH}}$ | Output High Voltage | 2.4 | | V | $I_{OH} = -250 \mu\text{A}$ | 1 | | $\overline{v_{OL}}$ | Output Low Voltage | | 0.4 | V | $I_{OL} = +2.0 \text{ mA}$ | 1 | | $\overline{I_{IL}}$ | Input Leakage | -10 | 10 | μA | $0 \text{ V} \leq \text{ V}_{\text{IN}} \leq +5.25 \text{ V}$ | | | I _{OL} | Output Leakage | -10 | 10 | μΑ | $0 \text{ V} \leq \text{ V}_{\text{IN}} \leq +5.25 \text{ V}$ | | | $\overline{I_{IR}}$ | Reset Input Current | | -50 | μΑ | $V_{\rm CC} = +5.25 \text{ V}, V_{\rm RL} = 0 \text{ V}$ | | | I_{CC} | V _{CC} Supply Current | | 180 | mA | | | | I _{MM} | V _{MM} Supply Current | | 10 | mA | Power Down Mode | | | V_{MM} | Backup Supply Voltage | 3 | v_{cc} | V | Power Down | | ^{1.} For A₀-A₁₁, $\overline{\text{MDS}}$, $\overline{\text{SYNC}}$, SCLK and IACK on the Z8612 version, I_{OH} = -100 μA and I_{OL} = 1.0 mA. External I/O or Memory Read and Write Timing Figure 18. External I/O or Memory Read/Write | No. | Symbol | Parameter | Z861
Min | 1/2/3
Max | Z8611
Min | /2/3-12
M ax | Notes*† | |------|-------------|--|-------------|---|-----------------|------------------------|---------| | 1 | TdA(AS) | Address Valid to $\overline{\overline{\rm AS}}$ † Delay | 50 | *************************************** | 35 | | 1,2,3 | | 2 | TdAS(A) | ĀS ↑ to Address Float Delay | 70 | | 45 | | 1,2,3 | | 3 | TdAS(DR) | AS 1 to Read Data Required Valid | | 360 | | 220 | 1,2,3,4 | | 4 | TwAS | AS Low Width | 80 | | 55 | | 1,2,3 | | 5 | TdAz(DS) | Address Float to DS ↓ | 0 | | 0 | | 1 | | 6 - | - TwDSR | — DS (Read) Low Width ———————— | 250 - | | 185 | | 1,2,3,4 | | 7 | TwDSW | $\overline{\rm DS}$ (Write) Low Width | 160 | | 110 | | 1,2,3,4 | | 8 | TdDSR(DR) | DS ↓ to Read Data Required Valid | | 200 | | 130 | 1,2,3,4 | | 9 | ThDR(DS) | Read Data to $\overline{\rm DS}$ † Hold Time | 0 | | 0 | | 1 | | 10 | TdDS(A) | DS 1 to Address Active Delay | 70 | | 45 | | 1,2,3 | | 11 | TdDS(AS) | DS ↑ to AS ↓ Delay | 70 | | 55 | | 1,2,3 | | 12 - | - TdR/W(AS) | — R/W Valid to AS↑ Delay —————— | 50 - | | 30 - | | 1,2,3 | | 13 | TdDS(R/W) | DS ↑ to R/ W Not Valid | 60 | | 35 | | 1,2,3 | | 14 | TdDW(DSW) | Write Data Valid to DS (Write) ↓ Delay | 50 | | 35 | | 1,2,3 | | 15 | TdDS(DW) | DS ↑ to Write Data Not Valid Delay | 70 | | 45 | | 1,2,3 | | 16 | TdA(DR) | Address Valid to Read Data Required Valid | | 410 | | 255 | 1,2,3,4 | | 17 | TdAS(DS) | $\overline{\mathrm{AS}}$ ↑ to $\overline{\mathrm{DS}}$ ↓ Delay | 80 | | 55 | | 1,2,3 | #### NOTES: - 1. Test Load 1 - 2. Timing numbers given are for minimum TpC. 3. Also see clock cycle time dependent characteristics table. 4. When using extended memory timing add 2 TpC. - 5. All timing references use 2.0 V for a logic "1" and 0.8 V for a logic "0". * All units in nanoseconds (ns). - † Timings are preliminary and subject to change. Figure 19. Additional Timing | | | | Z861 | 1/2/3 | Z8611/ | | | |-----|--------------|-----------------------------------|------------------------|-------|------------------------|------|---------| | No. | Symbol | Parameter | Min | Мах | Min | Max | Notes*† | | 1 | ТрС | Input Clock Period | 125 | 1000 | 83 | 1000 | 1 | | 2 | TrC,TfC | Clock Input Rise And Fall Times | | 25 | | 15 | 1 | | 3 | TwC | Input Clock Width | 37 | | 26 | | 1 | | 4 | TwTinL | Timer Input Low Width | 100 | | 70 | | 2 | | 5 — | — TwTinH ——— | — Timer Input High Width ————— | 3TpC - | | — 3ТpC - | | 2 | | 6 | TpTin | Timer Input Period | $\frac{\text{TpC}}{8}$ | | $\frac{\text{TpC}}{8}$ | | 2 | | 7 | TrTin,TfTin | Timer Input Rise And Fall Times | | 100 | | 100 | 2 | | 8 | TwIL | Interrupt Request Input Low Time | 100 | | 70 | | 2,3 | | 9 | TwIH | Interrupt Request Input High Time | 3TpC | | 3TpC | | 2,3 | #### NOTES: - 1. Clock timing references uses 3.8 V for a logic "1" and 0.8 V for a logic "0". - Timing reference uses 2.0 V for a logic "1" and 0.8 V for a logic "0". - 3. Interrupt request via Port 3. * Units in nanoseconds (ns). - † Timings are preliminary and subject to change. Z8612, Z8613 **Memory Port** Timing Figure 20. Memory Port Timing | Processing Control of the | | | Z861 | Z8611/2/3 | | Z8611/2/3-12 | | |--|---------|-----------------------------------|-------|-----------|-----|--------------|--------| | No. | Symbol | Parameter | Min | Max | Min | Max | Notes* | | 1 | TdA(DI) | Address Valid to Data Input Delay | | 460 | | 320 | 1,2 | | 2 | ThDI(A) | Data In Hold Time |
0 | | 0 | | 1 | - NOTES: 1. Test Load 2 2. This is a Clock-Cycle-Dependent parameter. For clock frequential of the maximum, use the following formula: cies other than the maximum, use the following formula: 28611/2/3 = 5 TpC - 165 28611/2/3-12 = 5 TpC - 95 * Units are nanoseconds unless otherwise specified; timings are preliminary and subject to change. # Handshake Timing Figure 21a. Input Handshake Figure 21b. Output Handshake | | | | Z861 | Z8611/2/3-12 | | | | |-----|----------------|--|------|--------------|-----|-----|---------| | No. | Symbol | Parameter | Min | Max | Min | Max | Notes*† | | 1 | TsDI(DAV) | Data In Setup Time | 0 | | 0 | | | | 2 | ThDI(DAV) | Data In Hold Time | 230 | | 160 | | | | 3 | TwDAV | Data Available Width | 175 | | 120 | | | | 4 | TdDAVIf(RDY) | DAV ↓ Input to RDY ↓ Delay | | 175 | | 120 | 1,2 | | 5— | – TdDAVOf(RDY) | -DAV ↓ Output to RDY ↓ Delay | 0 - | | 0 — | | 1,3 | | 6 | TdDAVIr(RDY) | DAV † Input to RDY † Delay | | 175 | | 120 | 1,2 | | 7 | TdDAV0rRDY) | DAV † Output to RDY † Delay | 0 | | 0 | | 1,3 | | 8 | TdDO(DAV) | Data Out to DAV ↓ Delay | 50 | | 30 | | 1 | | 9 | TdRDY(DAV) | Rdy Input to $\overline{\mathrm{DAV}}$ † Delay | 0 | 200 | 0 | 140 | 1 | # NOTES: - Test load 1 Input handshake Output handshake - All timing regerences use 2.0 V for a logic "1" and 0.8 V for a logic "0". - * Units in nanoseconds (ns). - † Timings are preliminary and subject to change. | Clock-
Cycle-Time- | Number | Symbol | Z8611/2/3
Equation | Z8611/2/3-12
Equation | |-----------------------|--------|-----------|-----------------------|--------------------------| | Dependent | 1 | TdA(AS) | TpC-75 | TpC-50 | | Characteristics | 2 | TdAS(A) | TpC-55 | TpC-40 | | | 3 | TdAS(DR) | 4TpC-140* | 4TpC-110* | | | 4 | TwAS | TpC-45 | TpC-30 | | | 6 —— | TwDSR | 3TpC-125* | 3TpC-65* | | | 7 | TwDSW | 2TpC-90* | 2TpC-55* | | | 8 | TdDSR(DR) | 3TpC-175* | 3TpC-120* | | | 10 | Td(DS)A | TpC-55 | TpC-40 | | | 11 | TdDS(AS) | TpC-55 | TpC-30 | | | 12 | TdR/W(AS) | TpC-75 | | | | 13 | TdDS(R/W) | TpC-65 | TpC-50 | | | 14 | TdDW(DSW) | TpC-75 | TpC-50 | | | 15 | TdDS(DW) | TpC-55 | TpC-40 | | | 16 | TdA(DR) | 5TpC-215* | 5TpC-160* | | | 17 | TdAS(DS) | TpC-45 | TpC-30 | $^{^{\}star}$ Add 2TpC when using extended memory timing | Ordering
Information | Product
Number | Package/
Temp | Speed | Description | Product
Number | Package/
Temp | Speed | Description | |-------------------------|-------------------|------------------|----------|--------------------------------|-------------------|------------------|----------|--| | , | Z8611 | CE | 8.0 MHz | Z8 MCU
(4K ROM, 40-pin) | Z8612 | CE | 8.0 MHz | Z8 MCU
(4K XROM, 64-pin) | | | Z8611 | CS | 8.0 MHz | Same as above | Z8612 | CS | 8.0 MHz | Same as above | | | Z8611 | DE | 8.0 MHz | Same as above | Z8612 | DE | 8.0 MHz | Same as above | | | Z8611 | DS | 8.0 MHz | Same as above | Z8612 | DS | 8.0 MHz | Same as above | | | Z8611 | PE | 8.0 MHz | Same as above | Z8612 | PE | 8.0 MHz | Same as above | | | Z8611 | PS | 8.0 MHz | Same as above | Z8612 | PS | 8.0 MHz | Same as above | | | Z8611-12 | CE | 12.0 MHz | Z8 MCU
(4K ROM, 40-pin) | Z8612-12 | CE | 12.0 MHz | Z8 MCU
(4K XROM, 64-pin) | | | Z8611-12 | CS | 12.0 MHz | Same as above | Z8612-12 | CS | 12.0 MHz | Same as above | | | Z8611-12 | DE | 12.0 MHz | Same as above | Z8612-12 | DE | 12.0 MHz | Same as above | | | Z8611-12 | DS | 12.0 MHz | Same as above | Z8612-12 | DS | 12.0 MHz | Same as above | | | Z8611-12 | PE | 12.0 MHz | Same as above | Z8612-12 | PE | 12.0 MHz | Same as above | | | Z8611-12 | PS | 12.0 MHz | Same as above | Z8612-12 | PS | 12.0 MHz | Same as above | | | Z8611 | LS | 8.0 MHz | Z8 MCU (4K ROM,
44-pin LCC) | Z8613 | RS | 8.0 MHz | Z8 MCU (4K XROM
Prototyping Device,
(40-pin) | | | Z8611-12 | LS | 12.0 MHz | Same as above | Z8613-12 | RS | 12.0 MHz | Same as above | NOTES: C = Ceramic, D = Cerdip, L = Leadless Chip Carrier (LCC) P = Plastic, R = Prototyping Device; E = -40 °C to +70 °85C, S = 0 °C to +70 °C. 40-Pin Ceramic Package 40-Pin Cerdip Package 44-Pin Leadless Package 40-Pin Plastic Package 40-Pin Protopack Package Notes # Zilog Sales Offices #### West Sales & Technical Center Zilog, Incorporated 1315 Dell Avenue Campbell, CA 95008 Phone: (408) 370-8120 TWX: 910-338-7621 Sales & Technical Center Zilog, Incorporated 18023 Sky Park Circle Suite J Irvine, CA 92714 Phone: (714) 549-2891 TWX: 910-595-2803 Sales & Technical Center Zilog, Incorporated 15643 Sherman Way Suite 430 Van Nuys, CA 91406 Phone: (213) 989-7485 TWX: 910-495-1765 Sales & Technical Center Zilog, Incorporated 1750 112th Ave. N.E. Suite D161 Bellevue, WA 98004 Phone: (206) 454-5597 #### Midwest Sales & Technical Center Zilog, Incorporated 951 North Plum Grove Road Suite F Schaumburg, IL 60195 Phone: (312) 885-8080 TWX: 910-291-1064 Sales & Technical Center Zilog, Incorporated 28349 Chagrin Blvd. Suite 109 Woodmere, OH 44122 Phone: (216) 831-7040 FAX: 216-831-2957 #### South Sales & Technical Center Zilog, Incorporated 4851 Keller Springs Road, Suite 211 Dallas, TX 75248 Phone: (214) 931-9090 TWX: 910-860-5850 Zilog, Incorporated 7113 Burnet Rd. Suite 207 Austin, TX 78757 Phone: (512) 453-3216 #### East Sales & Technical Center Zilog, Incorporated Corporate Place 99 South Bedford St. Burlington, MA 01803 Phone: (617) 273-4222 TWX: 710-332-1726 Sales & Technical Center Zilog, Incorporated 240 Cedar Knolls Rd. Cedar Knolls, NJ 07927 Phone: (201) 540-1671 Technical Center Zilog, Incorporated 3300 Buckeye Rd. Suite 401 Atlanta, GA 30341 Phone: (404) 451-8425 Sales & Technical Center Zilog, Incorporated 1442 U.S. Hwy 19 South Suite 135 Clearwater, FL 33516 Phone: (813) 535-5571 Zilog, Inc. 613-B Pitt St. Cornwall, Ontario Canada K6J 3R8 Phone: (613) 938-1121 #### United Kingdom Zilog (U.K.) Limited Ziloa House 43-53 Moorbridge Road Maidenhead Berkshire, SL6 8PL England Phone: 0628-39200 Telex: 848609 #### France Zilog, Incorporated Tour Europe Cedex 7 92080 Paris La Defense France Phone: (1) 778-14-33 Telex: 611445F #### West Germany Zilog GmbH Eschenstrasse 8 D-8028 TAUFKIRCHEN Munich, West Germany Phone: 89-612-6046 Telex: 529110 Zilog d. #### Japan Zilog, Japan K.K. Konparu Bldg. 5F 2-8 Akasaka 4-Chome Minato-Ku, Tokyo 107 Phone: (81) (03) 587-0528 Telex: 2422024 A/B: Zilog J