
Z80®-CPU
Z80A-CPU
rechnical Manual

Zilog

Price: $7.50
03-0029-01

Copyright© 1977 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than
circuitry embodied in a Zilog product. No other circuit patent licenses
are implied.

Reader's Comments

Your feedback about this document helps us ascertain your needs and fulfill them in the future. Please
take the time to fill out this questionaire and return it to us. This information will be helpful to us and, in
time, to future users of Zilog products.

Your Name: __ _

CompanyName: __ __

Address:

Title of this document:

Briefly describe application:

Does this publication meet your needs? 0 Yes 0 No . If not, why not?

How are you using this publication?

o As an introduction to the subject?

o As a reference manual?

o As an instructor or student?

How do you find the material?

Technicality

Organization

Completeness

Excellent

o
o
o

Good

D

D

D

Poor

o
o
o

What would have improved the material? __ _

Other comments and suggestions:

If you found any mistakes in this document, please let us know what and where they are:

• • • , .
• • • , .
:

, . ,. '. , .
, .
, :
, .
, .

, . ,. ,.
• '. • • •

...

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 475 CUPERTINO, CA

POSTAGE WILL BE PAID BY

Zilog
Publications Department
Semiconductor Division
10341 Bubb Road
Cupertino, California 95014

111111
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I ••• a

TABLE OF CONTENTS

Chapter Page

1.0 Introduction

2.0 Z80-CPU Architecture '. 3

3.0 Z80-CPU Pin Description . 7

4.0 CPU Timing 11

5.0 Z80-CPU Instruction Set 19

6.0 Flags................................. 39

7.0 Summary of OP Codes and Execution Times. 43

8.0 Interrupt Response. ' 55

9.0 Hardware Implementation Examples .. 59

10.0 Software Implementation Examples . 63

11.0 Electrical Specifications 69

12.0 Z80-CPU Instruction Set Summary. " . . . 73

1.0 INTRODUCTION

The term "microcomputer" has been used to describe virtually every type of small computing device
designed within the last few years. This term has been applied to everything from simple "microprogram­
med" controllers constructed out of TTL MSI up to low end minicomputers with a portion of the CPU
constructed out of TTL LSI "bit slices." However, the major impact of the LSI technology within the last
few years has been with MOS LSI. With this technology, it is possible to fabricate complete and very power­
ful computer systems with only a few MOS LSI components.

The Zilog Z-80 family of components is a significant advancement in the state-of-the art of micro­
computers. These components can be configured with any type of standard semiconductor memory to
generate computer systems with an extremely wide range of capabilities. For example, as few as two LSI
circuits and three standard TTL MSI packages can be combined to form a simple controller. With additional
memory and I/O devices a computer can be constructed with capabilities that only a minicomputer could
previously deliver. This wide range of computational power allows standard modules to be constructed by a
user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of
these few LSI components. For example, MOS LSI microcomputers have already replaced TTL logic in
such applications as terminal controllers, peripheral device controllers, traffic signal controllers, point of
sale terminals, intelligent terminals and test systems. In fact the MOS LSI microcomputer is finding its way
into almost every product that now uses electronics and it is even replacing many mechanical systems such
as weight scales and automobile controls.

The MOS LSI microcomputer market is already well established and new products using them are
being developed at an extraordinary rate. The Zilog Z-80 component set has been designed to fit into
this market through the following factors:

1. The Z-80 is fully software compatible with the popular 8080A CPU offered from several sources.
Existing designs can be easily converted to include the Z-80 as a superior alternative.

2. The Z-80 component set is superior in both software and hardware capabilities to any other micro­
computer system on the market. These capabilities provide the user with significantly lower hardware
and software development costs while also allowing him to offer additional features in his system.

3. For increased throughput the Z80A operating at a 4 MHZ clock rate offers the user significant speed
advantages over competitive products.

4. A complete product line including full software support with strong emphasis on high level languages
and a disk-based development system with advanced real-time debug capabilities is offered to enable
the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z-80 components. Any such system
consIsts of three parts:

L CPU (Central Processing Unit)

2. Memory

3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform
the desired operations. The memory is used to contain instructions and in most cases data that is to be
processed. For example, a typical instruction sequence may be to read data from a specific peripheral
device, store it in a location in memory; check the parity and write it out to another peripheral device. Note
that the Zilog component set includes the CPU and various general purpose 1/0 device controllers, while a
wide range of memory deVices may be used from any s.ource. Thus, all required components can be
connected together in a very simple manner with virtually no other external logic. The user's effort then
becomes primarily one of software development. That is, the user can concentrate on describing his prob­
lem and translating it into a series of instructions that can be loaded into the microcomputer memory. Zilog
is dedicated to making this step of software generation as simple as possible. A good example of this is oUr

assembly language in which a simple mnemonic is used to represent every instruction that the CPU can
perform. This language is self documenting in such a way that from the mnemonic the user can understand
exactly what the instruction is doing without constantly checking back to a complex cross listing.

2

2.0 Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in figure 2.0-1. The diagram
shows all of the major elements in the CPU and it should be referred to throughout the following
description.

13
CPU AND
SYSTEM
CONTROL
SIGNALS

2.1 CPU REGISTERS

INSTRUCTION
DECODE
&
CPU
CONTROL

INST.
REG

CPU
CONTROL

iii
+5V GND <I>

2-80 CPU BLOCK DIAGRAM
FIGURE 2.0-1

ALU

The Z-80 CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 2.0-2
illustrates how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80
registers are implemented using static RAM. The registers include two sets of six general purpose registers
that may be used individually as 8-bit registers or in pairs as 16-bit registers. There are also two sets of
accumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current instruction being
fetched from memory. The PC is automatically incremented after its contents have been transferred
to the address lines. When a program jump occurs the new value is automatically placed in the PC,
overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located
anywhere in external system RAM memory. The external stack memory is organized as a last-in first­
out (LIFO) file. Data can be pushed onto the stack from specific CPU registers or popped off of the
stack into specific CPU registers through the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many types of data
manipulation.

3

MAIN ~EG SET ALTERNATE REG SET
A A

" ,/
ACCUMULATOR FLAGS ACCUMULATOR FLAGS

A

B

0

H

F A'

C B'

E 0'

L H'

INTERRUPT I MEMORY
VECTOR REFRESH
I R

INDEX REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

I'

>

"

F·'

C'

E'

L'

SPECIAL
PURPOSE
REGISTERS

Z-80 CPU REGISTER CONFIGURATION
FIGURE 2.0-2

"

)

GENERAL
PURPOSE
REGISTERS

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bit base address that
is used in indexed addressing modes. In this mode, an index register is used as a base to point to a
region in memory from which data is to be stored or retrieved. An additional byte is included in
indexed instructions to specify a displacement from this base. This displacement is specified as a two's
complement signed integer. This mode of addressing greatly simplifies many types of programs,
especially where tables of data are used.

4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where an indirect call
to any memory location can be achieved in response to an interrupt. The I Register is used for this
purpose to store the high order 8-bits of the indirect address while the interrupting device provides the
lower 8-bits of the address. This feature allows interrupt routines to be dynamically located anywhere
in memory with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter to enable dynamic
memories to be used with the same ease as static memories. Seven bits of this 8 bit register are auto­
matically incremented after each instruction fetch. The eighth bit will remain as programmed as the
result of an LD R, A instruction. The data in the refresh counter is sent out on the lower portion of
the address bus along with a refresh control signal while the CPU is decoding and executing the fetched
instruction. This mode of refresh is totally transparent to the programmer and does not slow down the
CPU operation. The programmer can load the R register for testing purpOSes, but this register is normally
not used by the programmer. J)uring refresh, the contents of the I register are placed on the upper 8 bits of
the address bus. .

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumu­
lator !tolds the results of 8-bit arithmetic or logical operations while the flag register indicates specific
conditions for 8 or 16-bit operations, such as indicating whether or not the result of an operation is equal
to zerO. The programmer selects the accumulator and flag pair that he wishes to work with with a single
exchange instruction so that he may easily work with either pair.

4

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit registers that
may be used individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called
BC, DE and HL while the complementary set is called BC', DE' and HL'. At anyone time the programmer
can select either set of registers to work with through a single exchange command for the entire set. In
systems where fast interrupt response is required, one set of general purpose registers and an accumulator/
flag register may be reserved for handling this very fast routine. Only a simple exchange commands need be
executed to go between the routines. This greatly reduces interrupt service time by eliminating the require­
ment for saving and retrieving register contents in the external stack during interrupt or subroutine process­
ing. These general purpose registers are used for a wide range of applications by the programmer. They also
simplify programming, especially in ROM based systems where little external read/write memory is
available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU
communicates with the registers and the external data bus on the internal data bus. The type of functions
performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)

Subtract

Logical AND

Logical OR

Logical Exclusive OR

Compare

Increment

Decrement

Set bit

Reset bit

Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and decoded. The
control sections performs this function and then generates and supplies all of the control signals necessary
to read or write data from or to the registers, control the ALU and provide all required external control
signals.

5

-BLANK-

-6-

3.0 Z-BO CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown
in figure 3.0-1 and the function 0 f each is described below.

SYSTEM
CONTROL

CPU

M,
MREQ

10RQ

RD

WR

CONTROL INT

NMI

RESET

CPU {BUSRQ
BUS
CONTROL BUSAK

AO-A15
(Address Bus)

Ml
(Machine Cycle one)

MREQ
(Memory Request)

'I'
+5V

GND

27

19

20

21

22

28

18

24

16

17

26

25

23

6
11

29

Z-80 CPU

Z-BO PIN CONFIGURATION
FIGURE 3.0-1

30

31
32
33

34

35

36

37

38

39
40

1
2

3

4

5

14

15

12

8

7

9

10

13

ADDRESS
BUS

DATA
BUS

Tri-state output, active high. AO-A15 constitute a 16-bit address bus. The
address bus provides the address for memory (up to 64K bytes) data
exchanges and for I/O device data exchanges. I/O addressing uses the 8 lower
address bits to allow the user to directly select up to 256 input or 256 output
ports. AO is the least significant address bit. During refresh time, the lower
7 bits contain a valid refresh address.

Tri-state input/output, active high. DO-D7 constitute an 8-bit bidirectiQnai
data bus. The data bus is used for data exchanges with memory and I/O
devices.

Output, active low. M 1 indicates that the current machine cycle is the OP
code fetch cycle of an instruction execution. Note that during execution
of 2-byte op-codes, Ml is generated as each op code byte is fetched. These
two byte op-codes always begin with CBH, DDH, EDH or FDH. Ml also
occurs with 10RQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the
address bus holds a valid address for a memory read or memory write
operation.

7

10RQ
(Input/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt Request)

NMI
(Non Maskable
Interrupt)

Tri-state output, active low. The 10RQ signal indicates that the lower half of
the address bus holds a valid I/O address for a I/O read or write op.eration. An
IORQ signal is also generated with an Ml signal when an interrupt is being
acknowledged to indicate that an interrupt response vector can be placed on
the data bus. Interrupt Acknowledge operations occur during Ml time while
I/O operations never occur during Ml time.

Tri-state output, active low. RD indicates that the CPU wants to read data
from memory or an I/O device. The addressed I/O device or memory should
use this signal to gate data onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data bus holds valid
data to be stored in the addressed memory or I/O device.

Output, active low. RFSH indicates that the lower 7 bits of the address
bus contain a refresh address for dynamic memories and the current MREQ
signal should be used to do a refresh read to all dynamic memories.

Output, active low. HALT indicates that the CPU has executed a HALT soft­
ware instruction and is awaiting either a non maskable or a maskable inter­
rupt (with the mask enabled) before operation can resume. While halted, the
CPU executes NOP's to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the addressed
memory or I/O devices are not ready for a data transfer. The CPU continues
to enter wait states for as long as this signal is active. This signal allows
memory or I/O devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by I/O devices. A
request will be honored at the end of the current instruction if the: internal
software controlled interrupt enable flip-flop (IFF) is enabled and" if the
BUSRQ signal is not active. When the CPU accepts the interrupt, an acknowl­
edge signal (IORQ during M 1 time) is sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three different
modes that are described in detail in section 5.4 (CPU Control Instructions).

Input, negative edge triggered. The non maskable interrupt request line has a
higher priority than INT and is always recognized at the end of the current
instruction, independent of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location 0066H. The program
counter is automatically saved in the external stack so that the user can return
to the program that was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a BUSRQ will override
aNMI.

8

RESET

BUSRQ
(Bus Request)

BUSAK
(Bus Acknowledge)

Input, active low. RESET forces the program counter to zero and initializes
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop

2) Set Register I = OOH

3) Set Register R = OOH

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high impedance state
and all control output signals go to the inactive state.

Input, active low. The bus request signal is used to request the CPU address
bus, data bus and tri-state output control signals to go to a high impedance
state so that other devices can control these buses. When BUSRQ is activated,
the CPU will set these buses to a high impedance state as soon as the current
CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to the requesting
device that the CPU address bus, data bus and tri-state control bus signals
have been set to their high impedance state and the external device can now
control these signals.

Single phase TTL level clock which requires only a 330 ohm pull-up resistor
to +5 volts to meet all clock requirements ..

9

-BLANK-

-10-

4.0 CPU TIMING

The Z-80 CPU executes instructio.ns by stepping through a very precise set o.f a few basic o.peratio.ns.
These include:

Memo.ry read o.r write

I/O device read o.r write

Interrupt ackno.wledge

All instructio.ns are merely a series o.f these basic o.peratio.ns. Each o.f these basic o.peratio.ns can take fro.m
three to. six clo.ck perio.ds to. co.mplete o.r they can be lengthened to. synchro.nize the CPU to. the speed o.f
external devices. The basic clo.ck perio.ds are referred to. as T cycles and the basic o.peratio.ns are referred to.
as M (fo.r machine) cycles. Figure 4.0-0 illustrates ho.w a typical instructio.n will be merely a series o.f
specific M and T cycles. No.tice that this instructio.n co.nsists o.f three machine cycles (M I, M2 and M3). The
first machine cycle o.f any instructio.n is a fetch cycle which is fo.ur, five o.r six T cycles lo.ng (unless length­
ened by the wait signal which will be fully described in the next sectio.n). The fetch cycle (Ml) is used to.
fetch the OP co.de o.f the next instructio.n to. be executed. Subsequent machine cycles mo.ve data between
the CPU and memo.ry o.r I/O devices and they may have anywhere fro.m three to. five T cycles (again they
may be lengthened by wait states to. synchronize the external devices to. the CPU). The fo.llo.wing para­
graphs describe the timing which o.ccurs within any o.f the basic machine cycles. In sectio.n 7, the exact
timing fo.r each instructio.n is specified.

TCycle

<I>

Machine Cycle

M1
(o.P Code Fetch)

M2
(Memory Read)

Instruction Cycle

M3
(Memory Write)

BASIC CPU TIMING EXAMPLE
FIGURE 4.0-0

All CPU timing can be broken do.wn into. a few very simple timing diagrams as sho.wn in figure 4.0-1
through 4.0-7. These diagrams sho.w the fo.llo.wing basic o.peratio.ns with and witho.ut wait states (wait states
are added to. synchronize the CPU to. slo.w memory o.r I/O devices).

4.0-1.

4.0-2.

4.0-3.

4.0-4.

4.0-5.

4.0-6_

4.0-7.

Instructio.n OP co.de fetch (Ml cycle)

Memo.ry data read o.r write cycles

I/O read o.r write cycles

Bus Request/ Ackno.wledge Cycle

Interrupt Request/Ackno.wledge Cycle

No.n maskable Interrupt Request/ Ackno.wledge Cycle

Exit from a HALT instructio.n

11

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an Ml cycle (OP code fetch). Notice that the PC is placed on the
address bus at the beginning of the Ml cycle. One half clock time later the MREQ signal goes active. At this
time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory on.
the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn off
the RD and MRQ signals. Thus the data has already been sampled by the CPU before the RD signal becomes
inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU uses this .
time to decode and execute the fetched instruction so that no other operation could be performed at this
time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the RFSH
signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice
that a RD signal is not generated during refresh time to prevent data from different memory segments from
being gated onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read
of all memory elements. The refresh signal can not be used by itself since the refresh address is only guaran­
teed to be stable during MREQ time.

....
AO - A15

-

-
OBO- OBl

M1 Cycle

T1 T2 T3 T4

r--t-r-----t-~ ~
I p(. I REFRESH AOOR.

\ r

\ I

f-o----- ~:r---L_ ------ -----
f-o----- ------ ------
h I

'li\jl-\
L.:.:.:.iJ

\

INSTRUCTION OP CODE FETCH
FIGURE 4.0-1

T1

r-----,
T

1

------ ------ 1---

l ______ -

II

Figure 4.0-1 A illustrates how the fetch cycle is delayed if the memory activates. the WAIT line. Dur­
ing 1'2 and every subsequent Tw, the CPU samples the WAIT line with the falling edge of «1>. If the WAIT
line is active at this time, another wait state will be entered during the following cycle. Using this technique
the read cycle can be lengthened to match the access time of any type of memory device.

12

II·
......

AO - A15

OBO- OB7

-
-

MI Cycle

Tl T2 rw Tw T3 T4

n-n-~ ~ n-n-r-
I PC I REFRESH AOOR. 1

\

\ I

'INn
L.:..:..:.fI

h I

f-------lJ- -1-J.- ~JL-_ -----
f------ - -- -- -- ------

\

INSTRUCTION OP CODE FETCH WITH WAIT STATES
FIGURE 4.0-1A

J

----- -
f-------

MEMORY READ OR WRITE

Figure 4:0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (M I
cycle). These cycles are generally three clock periods long unless wait states are requested by the memory
via the WAIT signal. The MREQ signal and the RD signal are used the same as in the fetch cycle. In the case
of a memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be
used directly as a chip enable for dynamic memories. The WR line is active when data on the data bus is
stable so that it can be used directly as a RjW pulse to virtually any type of semiconductor memory.
Furthermore the WR signal goes inactive one half T state before the address and data bus contents are
changed so that the overlap requirements for virtually any type of semiconductor memory type will be met.

II-

AO-A15

DATA BUS
(00- 071

WAIT

-

-
-

Memory Read Cycle Memory Write Cycle

Tl T2 T3 Tl T2 T3

r--L-~ I"L-I"L-r----t-~
I MEMORY AODR. I MEMORY ADDR.

\

\

... ----,...----

I \ I

I

\ J

IN DATA OUT

TL-:: ---- ----- -TL------- ---- -, -

MEMORY READ OR WRITE CYCLES
FIGURE 4.0-2

13

r-----
f-----

r---

I

--

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or write opera­
tion_ This operation is identical to that previously described for a fetch cycle. Notice in this figure that a
separate read and a separate write cycle are shown in the same figure although read and write cycles can
never occur simultaneously.

<I'

AO -A15

RD

DATA BUS
(DO- 07)

DATA BUS
(DO- 07)

WAIT

-

-
--

T1 T2 Tw Tw T3 T1

~ r--L...... r----t-r----t-r----t-r----t-
I MEMORY ADDR. ~

\ I

\ I

IN

\ I

DATA OUT

1------1-l..J..-- l.....C- -IL.--1----- ----
1----- --- I-- --1-----1-----

MEMORY READ OR WRITE CYCl-ES WITH WAIT STATES
FIGURE 4.0-2A

INPUT OR OUTPUT CYCLES

Ir---

--
--

}
READ
CYCLE

}
WRITE
CYCLE

Figure 4_0-3 illustrates an I/O read or I/O write operation. Notice that during I/O operations a single
wait state is automatically inserted. The reason for this is that during I/O operations, the time from when
the 10RQ signal goes active until the CPU must sample the WAIT line is very short and without this extra
state sufficient time does not exist for an I/O port to decode its address and activate the WAIT line if a wait
is required. Also, without this wait state it is difficult to design MOS I/O devices that can operate at full
CPU speed. During this wait state time the WAIT request signal is sampled. During a read I/O operation,
the RD line is used to enable the addressed port onto the data bus just as in the case of a memory read. For
I/O write operations, the WR line is used as a clock to the I/O port, again with sufficient overlap timing
automatically provided so that the rising edge may be used as a data clock. -

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line. The operation
is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.04 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is
sampled by the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQ
signal is active, the CPU will set its address, data and tri-state control signals to the high impedance state
with the rising edge of the next clock pulse. At that time any external device can control the buses to
transfer data between memory and I/O devices. (This is generally known as Direct Memory Access [DMA]
using cycle stealing). The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles as is desired.
Note, however, that if very long DMA cycles are used, and dynamic memories are being used, the external
controller must also perform the refresh function. This situation only occurs if very large blocks of data are
transferred under DMA control Also note that during a bus request cycle, the CPU cannot be interrupted
by either a NMI or an INT signal

14

<\>

AD - A7

DATA BUS

DATA BUS

<\> -
AD-A7

DATA BUS

-
-

DATA BUS

T1

T1 T2 T • w T3

~ ~ r----L-~
II PORT ADDRESS

1 ,
\ I

IN

1-----1----- :J'C:_ 1-----
----- ---- -----

1 I

OUT

INPUT OR OUTPUT CYCLES
FIGURE 4.0-3

T2 T * w Tw T3

T1

r----L
I

1----

}
Read
Cycle

}
Write
Cycle

- r----L-~ ~ r---L-~ rt-
I PORT ADDRESS II

\ I

IN

\ I
}

READ
CYCLE

---- r-----

-l...I~::: I-Tl-------
---- r----- - --1-----

OUT

\ I

INPUT OR OUTPUT CYCLES WITH WAIT STATES
FIGURE 4.0-3A

t----
1-----

}
WRITE
CYCLE

* Automatically inserted WAIT state

15

'I-

SUSRQ

AO-A15

00-07

MREo. RO,
WR,lORo.
RFSH

-~

Any M Cycle Bus Available States

Last T State T)(Tx

r-------L--~ ~ r-------L--
\ J/

Sample_ Sample

\

--- -----
--- -----
--- -----

Floating

BUS REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.0·4

Tx

r--L-

1

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Tl

r---t-

-i

;

;

Figure 4.0·5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is
sampled by the CPU with the rising edge of the last clock at the end of any instruction. The signal will not be
accepted if the internal CPU software controlled interrupt enable flip.flop is not set or if the BUSRQ signal
is active. When the signal is accepted a special MI cycle is generated. During this special Ml cycle the 10RQ
signal becomes active (instead of the normal MREQ) to indicate that the interrupting device can place an
8-bit vector on the data bus. Notice that two wait states are automatically added to this cycle. These states
are added so that a ripple priority interrupt scheme can be easily implemented. The two wait states allow
sufficient time for the ripple signals to stabilize and identify which I/O device must insert the response
vector. Refer to section 8.0 for details on how the interrupt response vector is utilized by the CPU.

o

AO- A15

Last M Cycle MI-----------
---of Instruction--*-------------

Last T State T1 T * w T * w

oATABUS --+-------~r_------~--~----~------~r_------_+----~

RO

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.()..5

16

Figures 4.0-SA and 4.0-SB illustrate how a programmable counter can be used to extend interrupt
acknowledge time. (Configured as shown to add one wait state)

74S04

~----------~----~B432 O_I_O_RQ_' __ __

(TO
PERIPHERAL)

~O W_A_I_T __ _

.---+-~LJ (TO CPU)

M1 --[::>0---0 LOAD ON/UP G

QD~--08

LAST T STATE 0:1
LAST IVI CYCLE OF

INSTRUCTION

o _ 7432 o-~JI

M1 ---0

+5V ---'V""'.--~

EXTENDING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE
FIGURE 4.0-5A

AUTOMATIC WAIT ~\'-------'\ USER WAIT

TW* Tw*

AO-A15 ----------------~----------------------------~--------r_----~------

DATA BUS --------------~----------------------+_------~~------r_<

wm== ___ ==
NORMAL ACKNOWLEDGE

- TIME -

I __ --ACKNOWLEDGE TIME WITH ONE
.. ADDITIONAL WAIT STATE ----O .. ~l

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE
FIGURE 4.0-58

17

<I'

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt and it can
not be disabled under software control. Its usual function is to provide immediate response to important
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a
normal memory read operation. The only difference being that the content of the data bus is ignored while
the processor automa tically stores the PC in the external stack and jumps to location 0066H. The service
routine for the non maskable interrupt must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing Nap's until an interrupt is
received (either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two
interrupt lines are sampled with the rising clock edge during each T4 state as shown in figure 4.0-7. If a non
maskable interrupt has been received or a maskable interrupt has'been received and the interrupt enable
flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will then
be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. If both are
received at this time, then the non maskable one will be acknowledged since it has highest priority. The
purpose of executing Nap instructions while in the halt state is to keep the memory refresh signals active.
Each cycle in the halt state is a normal Ml (fetch,) cycle except that the data received from the memory is
ignored and a Nap instruction is forced internally to the CPU. The halt acknowledge signal is active during
this time to indicate that the processor is in the halt state.

Last M Cycle MI

Last T Time T1 T2 T3 T4 T1

~ ~ ~ ~ ~ ~ ~
r--

-
- ---_L L---- ----- ------ ----- ---------- 1--
- --- ---- r------ ---- ---- ----------- -

AO-A15 J PC I REFRESH 1

<I'

HALT

INTor

NMI

\ I

\

\ I

\

NON MASKABLE INTERRUPT REQUEST OPERATION
FIGURE 4.0-6

J

--M1----<~I_-------M1---------r---M1

HALT INSTRUCTION
IS RECEIVED
DURING THIS
MEMORY CYCLE

HALT EXIT
FIGURE 4.()'7

18

J

5.0 Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU.
The instructions can be broken down into the following major groups:

• Load and Exchange

• Block Transfer and Search

• Arithmetic and Logical

• Rotate and Shift

• Bit Manipulation (set, reset, test)

• Jump, Call and Return

• Input/Output

• Basic CPU Control

5.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers and exter­
nal memory. All of these instructions must specify a source location from which the data is to be moved
and a destination location. The source location is not altered by a load instruction. Examples of
load group instructions include moves between any of the general purpose registers such as move the data
to Register B from Register C. This group also includes load immediate to any CPU register or to any
external memory location. Other types of load instructions allow transfer between CPU registers and
memory locations. The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z-80.With a single instruction a
block of memory of any size can be moved to any other location in memory. This set of block moves
is extremely valuable when large strings of data must be processed. The Z-80 block search instructions
are also valuable for this type of processing. With a single instruction, a block of external memory
of any desired length can be searched for any 8-bit character. Once the character is found or the end of the
block is reached, the instruction automatically terminates. Both the block transfer and the block search
instructions can be interrupted during their execution so as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other
general purpose CPU registers or external memory locations. The results of the operations are placed
in the accumulator and the appropriate flags are set according to the result of the operation. An
example of an arithmetic operation is adding the accumulator to the contents of an external memory
location. The results of the addition are placed in the accumulator. This group also includes 16-bit
addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory location to be rotated right or left
with or without carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right
or left with two digits in any memory location.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register
or any external memory location to be set, reset or tested with a single instruction. For example,
the most significant bit of register H can be reset. This group is especially useful in control applications
and for controlling software flags in general purpose programming.

The jump, call and return instructions are used to transfer between various locations in the user's
program. This group uses several different techniques for obtaining the new program counter address
from specific external memory locations. A unique type of call is the restart instruction. This instruction
actually contains the new address as a part of the 8-bit OP code. This is possible since only 8 separate
addresses located in page zero of the external memory may be specified. Program jumps may also
be achieved by loading register HL, IX or IY directly into the PC, thus allowing the jump address to
be a complex furiCtion of the routine being executed.

19

The input/output group of instructions in the Z-80 allow for a wide range of transfers between
external memory locations or the general purpose CPU registers, and the external I/O devices. In
each case, the port number is provided on the lower 8 bits of the address bus during any I/O
transaction. One instruction allows this port number to be specified by the second byte of the instruction
while other Z-80 instructions allow it to be specified as the content of the C register. One major ad­
vantage of using the C register as a pointer to the I/O device is that it allows different I/O ports to
share common software driver routines. This is not possible when the address is part of the OP code
if the routines are stored in ROM. Another feature of these input instructions is that they set the
flag register automatically so that additional operations are not required to determine the state of
the input data (for example its parity). The Z-80 CPU includes single instructions that can move
blocks of data (up to 256 bytes) automatically to or from any I/O port directly to any memory location.
In conjunction with the dual set of general purpose registers, these instructions provide for fast
I/O block transfer rates. The value of this I/O instruction set is demonstrated by the fact that the
Z-80 CPU can provide all required floppy disk formatting (i.e., the CPU provides the preamble, address,
data and enables the CRC codes) on double density floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group includes
instructions such as setting or resetting the interrupt enable flip flop or setting the mode of interrupt
response.

5.2 ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal CPU registers, external memory
or in the I/O ports. Addressing refers to how the address of this data is generated in each instruction.
This section gives a brief summary of the types of addressing used in the Z-80 while subsequent sections
detail the type of addressing available for each instruction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains the
actual operand.

OP Code } one or 2 bytes

Operand

Examples of this type of instruction would be to load the accumulator with a constant, where the constant
is the byte immediately following the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the two
bytes following the OP codes are the operand.

OP code one or 2 bytes

Operand low order

Operand high order

Examples of this type of instruction would be to load the HL register pair (l6-bit register) with
16 bits (2 bytes) of data:

20

Modified Page Zero Addressing. The Z-80 has a special single byte CALL instruction to any of 8 locations
in page zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective
address in page zero. The value of this instruction.is that it allows a single byte to specify a complete
16-bit address where commonly called subroutines are located, thus saving memory space.

I OP Code lone byte
b7 bO

Effective address is (bS b4 b3 000)2

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a
displacement from the existing program to which a program jump can occur. This displacement is
a signed two's complement number that is added to the address of the OP code of the following instruction.

OP Code } Jump relative (one byte OP code)

Operand 8-bit two's complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two
bytes of memory space. For most programs, relative jumps are by far the most prevalent type of
jump due to the proximity of related program segments. Thus, these instructions can significantly
reduce memory space requirements. The signed displacement can range between +127 and -128
from A + 2. This allows for a total displacement of + 129 to -126 from the jump relative OP code address.
Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included
in the instruction. This data can be an address to which a program can jump or it can be an address
where an operand is located.

t-0_P_C_o_d_e ____________ -j} one or two bytes

Low Order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from any location in memory to any other location,
or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand,
the notation (nn) will be used to indicate the content of memory at nn, where nn is the 16-bit address
specified in the instruction. This means that the two bytes of address nn are used as a pointer to a memory
location. The use of the parentheses always means that the value enclosed within them is used as a
pointer to a memory location. For example, (1200) refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains
a displacement which is added to oneofthe two index registers (the OP code specifies which index
register is used) to form a pointer to memory. The contents of the index register are not altered by this
operation.

OP Code }
1--------1 two byte OP code

OP Code

Displacement Operand added to index register to form a pointer to memory.

21

An example of an indexed instruction would be to load the contents of the memory location
(Index Register + Displacement) into the accumulator. The displacement is a signed two's complement
number. Indexed addressing greatly simplifies programs using tables of data since the index register
can point to the start of any table. Two index registers are provided since very often operations require
two or more tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as IX and IY. To indicate indexed addressing the
notation:

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this
value is used as a pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits of information that specify which
CPU register is to be used for an operation. An example of register addressing would be to load the
data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automatically
implies one or more CPU registers as containing the operands. An example is the set of arithmetic
operations where the accumulator is always implied to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as HL)
to be used as a pointer to any location in memory. This type of instruction is very powerful and
it is used in a wide range of applications.

I OP Code I} one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory
location pointed to by the HL register contents. Indexed addressing is actually a form of register indirect
addressing except that a displacement is added with indexed addressing. Register indirect addressing
allows for very powerful but simple to implement memory accesses. The block move and search commands
in the Z-80 are extensions of this type of addressing where automatic register incrementing, decrementing
and comparing has been added. The notation for indicating register indirect addressing is to put
parentheses around the name of the register that is to be used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often
register indirect addressing is used to specify 16-bit operands. In this case, the register contents
point to the lower order portion of the operand while the register contents are automatically incremented
to obtain the. upper portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set, reset and test instructions. These
instructions allow any memory location or CPU register to be specified for a bit operation through
one of three previous addressing modes (register, register indirect and indexed) while three bits in the OP
code specify which of'the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In
these cases, two types of addressing may be employed. For example, load can Use immediate addressing
to specify the source and register indirect or indexed addressing to specify the destination.

22

5.3 INSTRUCTION OP CODES

This section describes each of the l-80 instructions and provides tables listing the OP codes for every
instruction. In each of these tables the OP codes in shaded areas are identical to those offered in the 8080A
CPU. Also shown is the assembly language mnemonic that is used for each instruction. All instruction OP
codes are listed in hexadecimal notation. Single byte OP codes require two hex characters while double
byte OP codes require'four hex characters. The conversion from hex to binary is repeated here for
convenience.

Hex Binary Decimal Hex Binary Decimal

0 0000 0 8 = 1000 8

0001 = 1 9 1001 9

2 0010 2 A 1010 10

3 0011 3 B 1011 11

4 0100 4 C 1100 = 12

5 = 0101 5 D 1101 13

6 0110 = 6 E 1110 = 14

7 = 0111 = 7 F 1111 15

l-80 instruction mnemonics consist of an OP code and zero, one or two operands. Instructions in
which the operand is implied have no operand. Instructions which have only one logical operand or those in
which one operand is invariant (such as the Logical OR instruction) are represented by a one operand
mnemonic. Instructions which may have two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the l-80 CPU.
Also shown in this table is the type of addressing used for each instruction. The source of the data is found
on the top horizontal row while the destination is specified by the left hand column. For example, load
register C from register B uses the OP code 48H. In all of the tables the OP code is specified in hexadecimal
notation and the 48H (=01001000 binary) code is fetched by the CPU from the external memory during
M1 time, decoded and then the register transfer is automatically performed by the CPU.

The assembly language mnemonic fot this entire group is LD, followed by the destination followed
by the source (LD DEST., SOURCE). Note that several combinations of addressing modes are possible. For
example, the source may use register addressing and the destination may be register indirect; such as load
the memory location pointed to by register HL with the contents of register D. The OP code for this
operation would be 72. The mnemonic for this load instruction would be as follows:

LD (HL),D

The parentheses around the HL means that the contents of HL are used as a pointer to a memory location.
In all l-80 load instruction mnemonics the destination is always listed first, with the source following. The
l-80 assembly language has been defined for ease of programming. Every instruction is self documenting
and programs written in l-80 language are easy to maintain.

Note in table 5.3-1 that some load OP codes that are available in the l-80 use two bytes. This is an
efficient method of memory utilization since 8,16,24 or 32 bit instructions ate implemented in the l-80.
Thus often utilized instructions stich as arithmetic or logical operations are only 8-bits which results in
better memory utilization than is achieved with fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location
actually use three bytes of memory with the third byte being the displacement d. For example a load
register E with the operand pointed to by IX with an offset of +8 would be written:

LD E, (IX +8)

23

The instruction sequence for this in memory would be:

OP Code
A+l 5E

Address A ~D}
A+2 08 . Displacement operand

The two extended addressing instructions are also three byte instructions. For example the instruction to
load the accumulator with the operand in memory location6F32H would be written:

LD A, (6F 32H)

and its instruction sequence would be:

A+l 32 low order address

Ad<h,d n OP Code

A+2 6F high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two·byte instructions. The
instruction load register H with the value 36H would be written:

LDH,36H

and its sequence would be:

Address A ~ OP Code

A+l ~ Operand

Loading a memory location using indexed addressing for the destination and immediate addressing for the
source requires four bytes. For example:

would appear as:

Address A

A+l

A+2

A+3

LD (IX - 15), 21H

DD} OPCode
36

Fl displacement (-15 in
signed two's complement)

21 operand to load

Notice that with any indexed addressing the displacement alway~ follows directly after the .OP code.

Table 5.3·2 specifies the 16-bit load operations. This table is very similar to the previous one. Notice
that the extended addressing capability covers all register pairs. Also notice that register indirect operations
specifying the stack pointer are the PUSH and POP instructions. The mnemonic for these instructions is
"PUSH" and "POP." These differ from other 16~bit loads in that the stack pointer is automatically decre­
mented and incremented as each byte is pushed onto or popped from the stack respectively. For example
the instruction:

24

PUSHAF

is a single byte instruction with the OP code of F5H. When this instruction is executed the following
sequence is generated:

Decrement SP

LD{SP), A

Decrement SP

ill (SP), F

Thus the external stack now appears as follows:

DESTINATION

REG
INDIRECT

(SP)

(SP+l)

F

A

.

~ Top of stack

INDEXEI) f----1!---+-_+--=-+~-t-:=-~=_t_7.::_+__::_+__=+-+_-t____I-_+-+-_Hm___i

EO
47

IMPLIED 1-----It--+--j--+-+--t--t--+--j--+-+--t--t--t--t----j----1
ED
4F

8 BIT LOAD GROUP
'LD'

TABLE 5.3-1

25

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instructions utilize a
16-bit operand and the high order byte is always pushed first and popped last. That is a:

PUSH BC is PUSH B then C

PUSH DE is PUSH D then E

PUSH HL is PUSH H then.L

POP HL is POP L then H

The instruction using extended immediate addressing for the source obviously requires 2 bytes of data
following the OP code. For example:

LD DE,0659H

will be:

Address A ~1 OP Code

A+ 1 59 Low order operand to register E

A+2 06 High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears first after the
OP code.

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z-80. OP code 08H allows the
programmer to switch between the two pairs of accumulator flag registers while D9H allows the pro­
grammer to switch between the duplicate set of six general purpose registers. These OP codes are only one
byte in length to absolutely minimize the time necessary to perform the exchange so that the duplicate
banks can be used to effect very fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions operate
with three registers.

HL points to the source location.

DE points to the destination location.

BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may be used. The
LDI (Load and Increment) instruction moves one byte from the location pointed to by HL to the location
pointed to by DE. Register pairs HL and DE are then automatically incremented and are ready to point to
the following locations. The byte counter (register pair BC) is also decremented at this time. This instruc­
tion is valuable when blocks of data must be moved but other types of processing are required between each
move. The LDIR (Load, increment and repeat) instruction is an extension of the LDI instruction. The same
load and increment operation is repeated until the byte counter reaches the count of zero. Thus, this single
instruction can move any block of data from one location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes (I K = 1024)
long and it can be moved from any location in memory to any other location. Furthermore the blocks can
be overlapping since there are absolutely no constraints on the data that is used in the three register pairs.

The LDD and LDDR instructions are very similar to the LDI and LDIR. The only difference is that
register pairs HL and DE are decremented after every move so that a block transfer starts from the highest
address of the designated block rather than the lowest.

26

DESTINATION

R
E
G
I
S
T
E
R

EXT.
ADDR.

PUSH REG
INSTRUCTIONS........ . IND.

AF

AF

BC

DE

HL

SP

IX

IV

(nn)

(SP)

NOTE: The Push & Pop Instructions adjust
the SP after every execution

AF

BC,
DE

MPLI &
HL

DE

REG. (SP)
INDIR.

SOURCE

REGISTER

BC DE HL SP

16 BIT LOAD GROUP
'LD'

'PUSH' AND 'POP'
TABLE 5.3-2

08

D9

EXCHANGES
'EX' AND 'EXX'
TABLE 5.3-3

27

IX

DO
F9

DO
22
n
n

DO
E5

DO
E3

IV

IMM. EXT. REG.
EXT. ADDR. INDIR.

nn (nn)

01

(SP)

., '.,., •.... ',

••• ,. j

• "',n

ED
4B
n
n

C1
,,'

FD
22
n
n

FD
E5

FD
E3

n ~~
......... ~.",',"', g

DO
21
n

DO
2A
n

n n
FD
21
n

FD
2A
n

n n

D1

DO
E1

FD
E1

t
pOP
INSTRUCTIONS

DESTINATION
REG.
'NOIR.

SOURCE -
REG.
INDIR.
-
(HL)

ED
AO

ED
BO

(DE)

ED
A8

ED
B8

'LDl' - Load (DE>-(HL)
Inc HL & DE, Dec BC

'LDlR: - Load (DE)_(HL)
Inc HL & DE, Dec Be, Repeat until Be = 0

'LOD' - Load (DEI_IHLI
Dec HL & DE, Dec Be

'LDOR' - Load (OE)-IHL)
Dec HL & DE, Dec Be, Repeat until Be = 0

Reg HL .points to source
Reg DE points to destination
Reg Be is byte counter

BLOCK TRANSFER GROUP
TABLE 5.3-4

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI (compare and
increment) compares the data in the accumulator, with the contents of the memory location pointed to by
register HL. The result of the compare is stored in one of the flag bits (see section 6.0 for a detailed expla­
nation of the flag operations) and the HL register pair is then incremented and the byte counter (register
pair BC) is decremented. !

The instruction CPIR is merely an extension of the CPI instruction in which the compare is repeated
until either a match is found or the byte counter (register pair BC) becomes zero. Thus, this single instruc­
tion can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are similar
instructions, their only difference being that they decrement HLafter every compare so that they search
the memory in the opposite direction. (The search is started at the highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are extremely
powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8·bit arithmetic operations that can be performed with the accumulator,
also listed are the increment (INC) and decrement (DEC) instructions. In all of these instructions, except
INC and DEC, the specified 8-bit operation is performed between the data in the accumulator and the
source data specified in the table. The result of the operation is placed in the accumulator with the excep­
tion of compare (CP) that leaves the accumulator unaffected. All of these operations affect the flag
register as a result of the specified operation. (Section 6.0 provides all of the details on how the flags are
affected by any instruction type). INC and DEC instructions specify a register or a memory location as
both source and destination of the result. When the source operand is addressed using the index registers
the displacement must follow directly. With immediate addressing the actual operand will follow directly.
For example the instruction:

would appear aa:

AND07H

Address A ~ OP Code

A+1~ Operand

28

SEARCH
LOCATION
r---
REG.
INOIR.

-
(HL)

ED 'CPI'
A1 Inc HL, Dec BC

ED 'CPIR', Inc HL, Dec BC
B1 repeat until BC = 0 or find match

ED 'CPO' Dec H L & BC
A9

ED 'CPDR' Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

BLOCK SEARCH GROUP
TABLE 5.3-5

Assuming that the accumulator contained the value F3H the result of03H would be placed in the
accumulator:

Acc before operation
Operand
Result to Acc

1111 0011 = F3H
00000111 = 07H
0000 0011 = 03H

The Add instruction (ADD) performs a binary add between the data in the source location and the
data in the accumulator. The subtract (SUB) does a binary subtraction. When the add with carry is specified
(AD C) or the subtract with carry (SBC), then the carry flag is also added or subtracted respectively. The
flags and decimal adjust instruction (DAA) in the Z-80 (fully described in section 6.0) allow arithmetic
operations for:

multiprecision packed BCD numbers

multiprecision signed or unsigned binary numbers

multiprecision two's complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XOR) and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or carry flag.
These five are listed in table 5.3-7. The decimal adjust instruction can adjust for subtraction as well as add­
ition, thus making BCD arithmetic operations simple. Note that to allow for this operation the flag N is used.
This flag is set if the last arithmetic operation was a subtract. The negate accumulator (NEG) instruction
forms the two's complement of the number in the accumulator. Finally notice that a reset carry instruction
is not included in the Z-80 since this operation can be easily achieved through other instructions such as a
logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five groups
of instructions including add with carry and subtract with carry. ADC and SBC affect all of the flags. These
two groups simplify address calculation operations or other 16-bit arithmetic operations.

29

'ADD'

ADDwCARRY
'ADC'

SUBTRACT
'SUB'

SUBw CARRY
'SBC'

'AND'

'XOR'

'OR'

COMPARE
'CP'

INCREMENT
'INC'

DECREMENT
'DEC'

SOURCE

REG.
INDIR. INDEXED

8 BIT ARITHMETIC AND LOGIC
TABLE 5.3-6

Decimal Adjust Acc, 'DAA'

Complement Acc, 'CPL'

Negate Acc, 'NEG'
(2'5 complement}

Complement Carry Flag, 'CCF'

Set Carry Flag, 'SCF'

(HL} (lX+d}

GENERAL PURPOSE AF OPERATIONS
TABLE 5.3-7

30

FD
35
d

SOURCE

'ADD' IX DD DD
09 19

IV FD FD
09 19

DESTINATION

ADD WITH CARRV AND HL ED ED
SET FLAGS 'A DC' 4A 5A

SUB WITH CARRV AND HL ED ED
SET FLAGS 'SBC' 42 52

INCREMENT 'INC'

DECREMENT 'DEC'

16 BIT ARITHMETIC
TABLE 5.3-8

ROTATE AND SHIFT

DD
39

FD
39

ED ED
6A 7A

ED ED
62 72

IX IV

DO
29

DD
23

DO
2B

FD
29

FD
23

FD
2B

A major capability of the Z-80 is its ability to rotate or shift data in the accumulator, any general pur­
pose register, or any memory location. All of the rotate and shift OP codes are shown in table 5.3-9. Also
included in the Z-80 are arithmetic and logical shift operations. These operations are useful in an extremely
wide range of applications including integer multiplication and division. Two BCD digit rotate instructions
(RRD and RLD) allow a digit in the accumulator to be rotated with the two digits in a memory location
pointed to by register pair HL. (See figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed in almost
every program. These bits may be flags in a general purpose software routine, indications of external con­
trol conditions or data packed into memory locations to make memory utilization more efficient.

The Z-80 has the ability to set, reset or test any bit in the accumulator, any general purpose register
or any memory location with a single instruction. Table 5.3-10 lists the 240 instructions that are available
for this purpose. Register addressing can specify the· accumulator or any general purpose register on which
the operation is to be performed. Register indirect and indexed addressing are available to operate on
external memory locations. Bit test operations set the zero flag (Z) if the tested bit is a zero. (Refer to
section 6.0 for further explanation of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 Iists all of the jump, call and return instructions implemented in the Z-80CPU. Ajump
is a branch in a program where the program counter is loaded with the 16-bit value as specified by one of the
three available addressing modes (Immediate Extended, Relative or Register Indirect). Notice that the jump
group has several different conditions that can be specified to be met before the jump will be made. If
these conditions are not met, the program merely continues with the next sequential instruction. The
conditions are all dependent on the data in the flag register. (Refer to section 6.0 for details on the flag
register). The immediate extended addressing is used to jump to any location in the memory. This in­
struction requires three bytes (two to specify the 16-bit address) with the low order address byte first
followed by the high order address byte.

31

TYPE
OF
ROTATE
OR
SHIFT

Source and Destination

A B C 0 E H

'RLC' CB CB CB. CB CB CB
07 00 01 02 03 04

'RRC' CB CB CB CB CB CB
OF DB 09 OA DB DC

'RL' CB CB CB CB CB CB
17 10 11 12 13 14

'RR' CB CB CB CB CB CB
1F 18 19 lA lB lC

'SLA' CB CB CB CB CB CB
27 20 21 22 23 24

'SRA' CB CB CB CB CB CB
2F 2B 29 2A 2B 2C

'SRL' CB CB CB CB CB CB
3F 38 39 3A 3B 3C

r
'RLD'

'RRD'

L

CB
05

CB
OD

CB
15

CB
1D

CB
25

CB
2D

CB
3D

!HL) !IX +d) (lY+d)

CB
DO Fo
CB CB

06 d d
06 06

CB
DO FD
CB CB

DE d d
DE DE
oD Fe

CB CB CB
16 d d

16 16

CB
DD Fe
CB CB

IE d d
IE IE

CB
DD FD
CB CB

26 d d
26 26

CB
DD Fo
CB CB

2E d d
2E 2E

CB
DD Fe
CB CB

3E d d
3E 3E

ED
6F

ED
67

ROTATES AND SHIFTS
TABLE 5.3-9

Rotate
Left Circular

~ 1.----,:1 Ro""
~ ~ Right Circular

~ ~ Rotate
Left

Rotate
Right

~ rC- ~ Shift
~ ~ ~ Right Arithmetic

~ r.J __ ~ Shift

~ I ' r Right Logical

o

H 1 (HL) :~~;e Digit

~-A~C~cT'~~ __ ~==~~~

For example an unconditional Jump to memory location 3E32H would be:

Address A I C3 I OP Code

A+ 1 ~ Low order address

A+2 ~ High order address

The relative jump instruction uses only two bytes, the second byte is a signed two's complement dis­
placement from the existing PC. This displacement can be in the range of + 129 to -126 and is measured
from the address of the instruction OP code.

Tmee types of register indirect jumps are also included. These instructions are implemented by loading
the register pair HL or one of the index registers IX or IY directly into the PC. This capability allows for
program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction is
pushed onto the stack before the jump is made. A return instruction is the reverse of a call because the
data on the top of the stack is popped directly into the PC to form a jump address. The call and return
instructions allow for simple subroutine and interrupt handling, Two special return instructions have been
included in the Z-80 family of components. The return from interrupt instruction (RETI) and the return
from non maskable interrupt (RETN) are treated in the CPU as an unconditional return identical to the OP
code C9H. The difference is that (RETI) can be used at the end of an interrupt routine and all Z-80 peripheral
chips will recognize the execution of this instruction for proper control of nested priority interrupt handling.
This instruction coupled with the Z-80 peripheral devices implementation simplifies the normal return from
nested interrupt. Without this feature the following software sequence would be necessary to inform the
interrupting device that the interrupt routine is completed:

32

A
BIT

0 CB
47

1 CB
4F

2 CB
57

3 CB

TEST
SF

'BIT"
4 CB

67

5 CB
6F

6 CB
77

7 CB
7F

0 CB
B7

1 CB
8F

2 CB
97

3 CB
RESET 9F
BIT
'RES'

4 CB
A7

5 CB
AF

6 CB
B7

7 CB
BF

0 CB
C7

1 CB
CF

2 CB
07

3 CB
SET DF
BIT
'SET"

4 CB
E7

5 CB
EF

6 CB
F7

7 CB
FF

REGISTER ADDRESSING

B C D E H L

CB CB CB CB CB CB
40 41 42 43 44 45

CB CB CB CB CB CB
4B 49 4A 4B 4C 4D

CB CB CB CB CB CB
50 51 52 53 54 55

CB CB CB CB CB CB
5B 59 SA 5B 5C 5D

CB CB CB CB CB CB
60 61 62 63 64 65

CB CB CB CB CB CB
6B 69 6A 6B 6C 6D

CB CB CB CB CB GB
70 71 72 73 74 75

CB CB CB CB CB CB
7B 79 7A 7B 7C 7D

CB CB CB CB CB CB
BO B1 B2 B3 B4 85

CB CB C8 CB CB CB
88 B9 8A 8B 8C 8D

CB CB CB CB CB CB
90 91 92 93 94 95

CB C8 CB CB CB CB
98 99 9A 9B 9C 9D

CB CB C8 CB CB CB
AO A1 A2 A3 A4 AS

CB CB CB CB CB CB
AS A9 AA AB AC AD

CB CB CB CB CB CB
BO B1 B2 B3 B4 B5

CB CB CB CB CB CB
B8 B9 BA BB BC BD

CB CB CB CB CB CB
CO C1 C2 C3 C4 C5

CB CB CB CB CB CB
C8 C9 CA CB CC CD

CB CB CB CB CB CB
DO D1 D2 D3 D4 D5

CB CB CB CB CB CB
D8 D9 DA DB DC DD

CB CB CB CB CB CB
EO E1 E2 E3 E4 E5

CB CB CB CB CB CB
E8 E9 EA EB EC ED

CB CB CB CB CB CB
FO F1 F2 F3 F4 F5

CB CB CB CB CB CB
FB F9 FA FB FC FD

BIT MANIPULATION GROUP
TABLE 5.3-10

33

REG.
INDIR. INDEXED

IHL) (lX+d) (lY+d)

DD FD
CB CB CB
46 d d

46 46
DD FD

CB CB CB
4E d d

4E 4E
DD FD

CB CB CB
56 d d

56 56

CB
DD FD
CB CB

5E d d
5E 5E
DD FD

CB CB CB
66 d d

66 66
DD FD

CB CB CB
6E d d

6E 6E
DD FD

CB CB CB
76 d d

76 76

CB
DD FD
CB CB

7E d d
7E 7E
DD FD

CB CB CB
86 d d

86 86

CB
DD FD
CB C8

8E d d
8E 8E

DD FD
CB CB CB
96 d d

96 96

CB
DD FD
C8 CB

9E d d
9E 9E

CB
DD FD
C8 CB

A6 d d
A6 A6

CB
DD FD
CB CB

AE d d
AE AE

DD FD
CB CB CB
B6 d d

B6 B6

DD FD
CB CB CB
8E d d

BE BE
DD FD

CB CB CB
C6 d d

C6 C6
DD FO

CB CB CB
CE d d

CE CE
DD FD

CB CB CB
D6 d d

D6 D6

OD FD
CB CB CB
DE d d

DE DE

DD FD
CB CB CB

. E6 d d
E6 E6
DO FD

CB CB CB
EE d d

EE EE

DD FD
CB CB CB
F6 d d

F6 F6
DD FD

CB CB CB
FE d d

FE FE

Disable Interrupt

LDA,n
OUTn,A

Enable Interrupt

Return

prevent interrupt before
routine is exited.

notify peripheral that service
routine is complete

This seven byte sequence can be replaced with the one byte EI instruction and the two byte RETI instruction
in the l80. TItis is important since interrupt service time often must be minimized.

To facilitate program loop control the instruction DJNl e can be used advantageously. This two byte,
relative jump instruction decrements the B register and the jump occurs if the B register has not been decre­
mented to zero. The relative displacement is expressed as a signed two's complement number. A simple ex­
ample of its use nlight be:

Address

N, N+ 1

N + 2 to N+ 9

N + 10, N+ 11

N+ 12

JUMP 'JP'

.JUMP 6JR'

JUMP 'JP'

JUMP 'JP'

JUMP 'JP'

'CALL'

DECREMENT B,
JUMP IF NON
ZERO'DJNZ'

RETURN
'RET'

Instruction

LDB, 7

(perform a sequence
of instructions)

DJNl -8

(Next Instruction)

IMMED. nn
EXT.

RELATIVE PC+e

(HL)

REG. (IX)
INDIR.

(IV)

IMMED. nn
EXT.

RELATIVE PC+e

REGISTER (SP)
INDIR. (SP+l)

RETURN FROM REG. (SP) ED
(SP+l) 4D INT'RET/' INDIR.

RETURN FROM
NON MASKABLE REG.
INT'RETN' INDIR.

ED
(SP+l) 45

Comments

; set B register to count of 7

; loop to be performed 7 times

; to jump from N + 12 to N + 2

CONDITION

28 ;w
e-2 e-2

NOTE-CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.
REFER TO SECTION
6_0 FOR DETAILS JUMP, CALL and RETURN GROUP

TABLE 5.3-11

34

I'Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a .single byte call to any
of the eight addresses listed. The simple mnemonic for these eight calls is also shown. The value of this in­
struction is that fr.equently used routines can be called with this instruction to minimize memory usage.

INPUT/OUTPUT

C
A
L
L

A
D
o
R
E
S
S

op
CODE

'RSTO'

'RST8'

'RST 16'

'RST 24'

'RST 32'

'RST 40'

'RST48'

'RST56'

RESTART GROUP
TABLE 5.3-12

The Z·80 has an extensive set of Input and Output instructions as shown in table 5.3-13 and table
.5.3-14. The addressing of the input or output device can be either absolute or register indirect, using the C
register. Notice that in the register indirect addressing mode data can be transferred between the I/O devices
and any of the internal registers. In addition eight block transfer instructions have been implemented. These
instructions are similar to the memory block transfers except that they use register pair HL for a pointer to
the memory source (output commands) or destination (input commands) while register B is used as a byte
counter. Register C holds the address of the port for which the input or output command is desired. Since
register:a is eight bits in length, the I/O block transfer command handles up to 256 bytes.

In the instructions IN A, n and OUT n, A the I/O device address n appears in the lower half of the add­
ress bus (Ao-A7) while the accumulator content is transferred in the upper half of the address bus. In all reg­
ister indirect input output instructions, including block I/O transfers the co'htent of register C is transferred
to the lower half of the address bus (device address) while the content of register B is transferred to the
upper half of the address bus.

35

R
E
G

INPUT'IN' A
0
0
R
E
S
S
I

INPUT N
DESTINATION G

'INI' - INPUT &
Inc HL, DecB

'INIR'-INP, Inc HL,
Dec B, REPEAT IF B#O

REG;
INDIR

'IND'-INPUT &
Dec HL, DecB

'INDR'-INPUT, Dec HL,
Dec B, REPEAT IF 8#0

B

C

0

E

H

L

(HL)

SOURCE
PORT ADDR ESS

ED
40

ED
48

ED
50

ED
58

ED
60

ED
68

ED
A2

ED
B2

ED
AA

ED
BA

BLOCK INPUT
COMMANDS

/

INPUT GROUP
TABLE 5.3-13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The NOP is a do­
nothing instruction. The HALT instruction suspends CPU operation until a subsequent interrupt is received,
while the DI and EI are used to lock out and enable interrupts. The three interrupt mode commands set the
CPU into any of the three available interrupt response modes as follows. If mode zero is set the interrupting
device can insert any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified
mode where the CPU automatically executes a restart (RST) to location 0038H so that no external hardware
is required. (The old PC content is pushed onto the stack). Mode 2 is the most powerful in that it allows for
an indirect call to any location in memory. With this mode the CPU forms a 16-bit memory address where
the upper 8-bits are the content of register I and the lower 8-bits are supplied by the interrupting device.
This address points to the first of two sequential bytes in a table where the address of the service routine is
located. The CPU automatically obtains the starting address and performs a CALL to this address.

Address of interrupt { 1-----1
service routine

36

Pointer to Interrupt table. Reg.
I is upper address,
Peripheral supplies lower address

'OUT'

'OUTI' - OUTPUT
Inc HL, Decb

'OTIR' - OUTPUT, Inc HL,
Dec B, REPEAT IF B~

'OUTD' - OUTPUT
Dec HL& B

'OTDR' - OUTPUT, Dec HL
& B, REPEAT IF B*O

SOURCE

A

IMMED. (n)

REG. (C) ED
IND. 79

REG. (C)
IND.

REG. (C)
IND.

REG. (C)
IND.

REG. (C)
IND.

'---y----/
PORT
DESTINATION
ADDRESS

'NOP'

'HALT'

DISABLE INT '(01)'

ENABLE INT '(EI)'

SETINT MODE 0
'IMO'

SET INT MODE 1
'IM1'

REGISTER

B C 0

ED ED ED
41 49 51

OUTPUT GROUP
TABLE 5.3-14

ED
46 8080AMODE

E

ED
59

ED
56 CALL TO LOCATION 0038H

H

ED
61

INDIRECT CALL USING REGISTER

L

ED
69

SET INT MODE 2
'1M2'

ED
5E I AND 8 BITS FROM INTERRUPTING

DEVICE AS A POINTER.

MISCELLANEOUS CPU CONTROL
TABLE 5.3-15

37

REG.
IND.

(HLI

ED
A3

ED
B3

ED
AB

ED
BB

.\

,

BLOCK
OUTPUT
COMMANDS

-BLANK-

-38-

6.0 FLAGS

Each of the two Z-80 CPU Flag registers contains six bits of information which are set or reset by
various CPU operations. Four of these bits are testable; that is, they are used as conditions for jump, call or
return instructions. For example a jump may be desired only if a specific bit in the flag register is set. The
four testable flag bits are:

1) Carry Flag (C) - This flag is the carry from the highest order bit of the accumulator. For example, the
carry flag will be set during an add instruction where a carry from the highest bit of the accumulator
is generated. This flag is also set if a borrow is generated during a subtraction instruction. The shift
and rotate instructions also affect this bit.

2) Zero Flag (Z) - This flag is set if the result of the operation loaded a zero into the accumulator. Other­
wise it is reset.

3) Sign Flag (S) - This flag is intended to be used with signed numbers and it is set if the result
of the operation was negative. Since bit 7 (MSB) represents the sign of the number (A negative
number has a 1 in bit 7), this flag stores the state of bit 7 in the accumulator.

4) Parity/Overflow Flag (P/V) - This dual purpose flag indicates the parity of the result in the accumulator
when logical operations are performed (such as AND A, B) and it represents overflow when signed
two's complement arithmetic operations are performed. The Z-80 overflow flag indicates that the
two's complement number in the accumulator is in error since it has exceeded the maximum pos­
sible (+ 127) or is less than the minimum possible (-128) number than can be represented in two's
complement notation. For example consider adding:

+120 = 0111 1000
+105 = 0110 1001

C = a 1110 0001 = -95 (wrong) Overflow has occured

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error.
For this case the overflow flag would be set. Also consider the addition of two negative numbers:

-5 =
-16 =

C =

11111011
1111 0000

1110 1011 = -21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an over­
flow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and it is
reset if it is odd.

There are also two non-testable bits in the nag register. Both of these are used for BCD arithmetic. They are:

1) Half carry (H) - This is the BCD carry or borrow result from the least significant four bits of operation.
When using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a
previous packed decimal add or subtract.

2) Subtract Flag (N) - Since the algorithm for correcting BCD operations is different for addition or
subtraction, this flag is used to specify what type of instruction was executed last so that the
DAA operation will be correct for either addition or subtraction.

The Flag register can be accessed by the programmer and its format is as follows:

I S I Z I X I H I X Ip/VI N I C I
X means flag is indeterminate.

39

Table 6.0-1 lists how each flag bit is affected by various C~U instructions. In this table a '.' indicates
that the instruction does not change the flag, an 'X' means that the flag goes to an indeterminate state, a '0'
m~ans that it is reset, a '1' means that it is set and the symbol '~' indicates that it is set or reset according to
the previous discussion. Note that any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the block search
instruction sets the Z flag if the last compare operation indicated a match between the source and the
accumulator data. Also, the parity flag is set if the byte counter (register pair Be) is not equal to zero. This
same use of the parity flag is made with the block move instructions. Another special case is during block
input or output instructions, here the Z flag is used to indicate the state of register B which is used as a byte
counter. Notice that when the I/O block transfer is complete, the zero flag will be reset to a zero (i.e. B=O)
while in the case of a block move command the parity flag is reset when the operation is complete. A final
case is when the refresh or I register is loaded into the accumulator, the interrupt enable flip flopis loaded
into the parity flag so that the complete state of the CPU can be saved at any time.

40

Instruction CZ f\ S NH Comments
ADD A, s; ADC A,s t t V t o t 8-bit add or add with carry
SUB s; SBC A, s, CP s, NEG t t V t t 8-bit subtract, subtract with carry, compare and

negate accumulator
ANDs 0 t P t 0 } Logical operations
ORs; XORs 0 t P t 0 0 And set's different flags
INC s e t V t 0 f 8-bit increment
DECm e t V t t 8-bit decrement
ADDDD,ss t e e e o X 16-bit add
ADC HL,ss t t V t o X 16-bit add with carry
SBC HL,ss t t V t I X 16-bit subtract with carry
RLA;RLCA,RRA,RRCA t e e e 0 0 Rotate accumulator
RL m; RLC m; RR m; RRC m t t P t 0 0 Rotate and shift location m

SLA m; SRA m; SRL m .

RLD,RRD e t P t 0 0 Rotate digit left and right
DAA t t P t e t Decimal adjust accumulator
CPL e • e e I Complement accumulator
SCF I e e e 0 0 Set carry
CCF t • e • 0 X Complement carry
IN r, (C) e t P t 0 0 Input register indirect
INI; IND; OUTI; OUTD e t X X I X } Block input and output
INIR; INDR; OTIR; OTDR e I X X I X Z = 0 ifB *' 0 otherwise Z = I
LDI,LDD eX t X 0 0 } Block transfer instructions
LDIR,LDDR eX o X 0 0 P/V = 1 ifBC *' 0, otherwise P/V = 0
CPI, CPIR, CPD, CPDR • t t ~ I X Block search instructions

Z = I if A = (HL), otherwise Z = 0
P/V = I if BC *' 0, otherwise P/V = 0

LDA, I; LD A, R e t FFt 0 0 The content of the interrupt enable flip-flop (IFF)
is copied into the P/V flag

BITb, s e t xix 0 I The state of bit b oflocation s is copied into the Z flag

NEG ~ ~ V ~ I ~ Negate accumulator

The following notation is used in this table:

Symbol Op~tion

C Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

Z Zero flag. Z= 1 if the result of the operation is zero.

S Sign flag. S=1 if the MSB of the result is one.

PlY Parity or overflow flag. Parity (P) and overflow (V) share the same)lllg. Logical operations affect this flag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If PlY
holds parity, P/V=1 if the result of the operation is even, P/V=O if result is odd. If PlY holds overflow, P/V=l
if the result of the operation produced an overflow.

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator.

N Add/Subtract flag. N=l if the previous operation was a subtract

Hand N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the re­
sult into packed nco format following addition or sub~tion using operands with packed BCD format.

t The flag is affected according to the result of the operation.
• The flag is unchanged by the operation.
o The flag is reset by the operation.
1 The flag is set by the operation.
X The flag is a "don't care_"
V PlY flag affected according to the overflow result of the operation.
P PlY flag affected according to the parity result of the operation.

Anyone of the CPU registers A, B, C, D, E, H, L.
s Any 8-bit location for all the addressing modes allowed for the particular instruction .•
S5 Any 16-bit location for all the addressing modes allowed for that instruction.
ii Anyone of the two index registers IX or IY ..
R Refresh counter.
n 8-bit value in range <0. 255>
nn 16-bit value in range <0. 65535>
m Any 8-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERATION
TABLE 6.0-1

41

-BLANK-

-42~

7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z-80 instructions set. The instructions are logically arranged
into groups as shown on tables 7.0-1 through 7.0-11. Each table shows the assembly language mnemonic
OP code, the actual OP code, the symbolic operation, the content of the flag register following the execu­
tion of each instruction, !..he number of bytes required for e.ach instruction as well as the number of memory
cycles and the total number of T states (external clock periods) required for the fetching and execution of
each instruction. Care has been taken to make each table self-explanatory without requiring any cross refer­
ence with the test or other tables.

43

Flags OP-Code No. No. No.
Symbolic of ofM orT

Mnemonic Operation C ZP/V S N H 76 543 210 Bytes Cycles Cycles
LD r, r' r~r' • • • • • • 01 r r' 1 1 4
LD r, n r ... n • • • • • • 00 r 110 2 2 .7

+- n
LD r, (HL) r +- (HL) • .. • • • • 01 r 110 1 2 7
LD r, (IX+d) r +- (IX+d) • • • • ~ .. 11 011 101 3 5 19

01 r no ... d
LD r, (IY+d) r ... (IY+d) • • • • • • 11 III 101 3 5 19

01 r 110
... d

LD (HL), r (HL) +- r • • • • • • 01 1I0 r 1 2 7

LD (IX+d), r (IX+d) ... r • • • • • • 11 011 101 3 5 19

01 llO r
... d

LD (IY+d), r (IY+d) ... r • • • • • • 11 III 101 3 5 19

01 llO r
+- d

LD (HL), n (HL) +- n • • • • • • 00 llO llO 2 3 10

+- n
LD (IX+d), n (IX+d) ... n • • • • • • II 011 101 4 5 19

00 llO 110
+- d
+- n

LD (IY+d), n (IY+d) +- n • • • • • .. 11 III 101 4 5 19

00 llO 110
+- d ->

+- n ->

LD A, (BC) A+- (BC) • • • • • • 00 001 010 1 2 7

LD A, (DE) A+-(DE) • • • • • • 00 011 010 1 2 7

LD A, (nn) A+- (nn) • • • • • • 00 III 010 3 4 13
... n ->

+- n ->

LD (BC),A (BC)+-A • • • • • • 00 000 010 1 2 7

LD (DE), A (DE)+-A • • • • • • 00 OlD 010 1 2 7

LD (nn), A (nn) ... A • • • • • • 00 llOOIO 3 4 13
... n ->

... n ->

LDA,I A ... I • tIFF t 0 0 11 101 101 2 2 9

I 01 010 III

LDA,R A ... R • tIFF t 0 0 11 101 101 2 2 9

01 011 III

LD I,A I ... A • • • • • • 11 101 101 2 2 9

01 000 III

LDR,A R ... A • • • • • • 11 101 101 2 2 9

01 001 III

Notes: r, r' means any of the registers A, B, C, D, E, H, L

IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

~ = flag is affected according to the result of the operation.

S-BIT LOAD GROUP
TABLE 7.0-'

44

Comments

r, r' Reg.
000 B

001 C

010 D
011 E

100 H

101 L

III A

Flap Oo-Cocle No. No. No.
Symbolic zl\ 01 aIM ofT

Mnemonic Operation C S N H 76 543 210 Byl .. Cycles Stales Comments

LDdd,nn dd_nn • · · · · . 00 ddO 001 3 3 10 dd Pair - n - 00 Be - n - 01 DE
LD IX,nn IX-nn • • · · . . 11 011 101 4 4 14 10 HL

00 100001 11 SP - n ... - n ...
LDIY,nn IV-nn · • • • • • 11 III 101 4 4 14

00 100 001 - n ... - n -
LD HL,(nn) H-(nn+l) • · · · . . 00 101 010 3 5 16

L-(nn) - n ...
- n ...

LDdd, (nn) ddH -(nn+l) • · . · . . 11 101 101 4 6 20
ddL _Inn) 01 ddl 011 - n ... - n ...

LDIX, (nn) IXH-(nn+l) · . · · . . 11 011 101 4 6 20
IXL -(nn) 00 101 010 - n -- n ...

LDIY,(nn) IYH-(nn+l) · · . • · . 11 111 101 4 6 20
IYL _(nn) 00 101 010 - n ...

- n -
LD (nn),HL (nn+l) _H • • • · . . 00 100010 3 5 16

(nn)-L - n ...
- n ...

LD (nn),dd (nn+l) -ddH · . . · . . 11 101 101 4 6 20
(nnl-ddL 01 ddOOIl - n ... - n ...

LD(nn),IX (nn+l) -IXu · · . • • • 11 011 101 4 6 20
(nil)-IXL 00 100010 - n -- n ...

LD(nn),IY (M+l)-IYH · · . · . . II III 101 4 6 20
(nn)-IYL 00 100 010 ... n ... - n ...

LDSP, HL SP-HL · . · . · . 11 III 001 1 I 6

LDSP,IX SP-IX • • • · . . 11 011 101 2 2 10
11 III 001

LDSP,IY SP-IY · . · . · . II 111 101 2 2 10
11 III 001 '1'1 Pair

PUSHqq (SP-2) -q'lL · . • · .. 11 qqO 101 1 3 11 00 BC
(SP-I) -qqH 01 DE

PUSH IX (SP-2)-IXL • • • • • • 11 011 101 2 4 15 10 HL
(SP-I) -IXu 11 100 101 11 AF

PUSHIY (SP-2l-IYL · . · . · . 11 III 101 2 4 15
(SP-i)-IYH 11 100 101

POPqq qqH--(SP+l) · . • • • • 11 qqO 001 I 3 10

qqL -(SP)
POP IX IXH-(SP+I) · . · . • • 11 011 101 2 4 14

IXL -(SP) 11 100 001

POPIY lYH-(SP+I) • • • • · . 11 111 101 2 4 14
lYL -(SP) 11 100 001

Notes: dd Is any of Ihe repsler pairs BC, DE, HL, SP
qq is any ofthuesister pairs AF, BC, DE, HL
(PAIR)H' (PAIR)L refer io high order and low order eighl bits of the register pair reopeclively.

E.g. BeL =C,AFH=A

FJaa Notation: • = I\ag Dol affected, 0 = I\ag re .. t, 1 = I\ag set, X = flag is unknown, * I\ag i. affected accordill/l 10 the resull of the operation.

16-BIT LOAD GROUP
TABLE 7.0.2

45

Flags Op-Code

~
No. No. No.

Symbolic of ofM ofT
Mnemonic Operation (' Z V S N H 76 543 210 Bytes Cycles States Comments

EX DE, HL DE··HL • • • • • • II 101 all 1 1 4
EXAF,AF' AF ·.AF' • • • • • • 00 001 000 1 I 4
EXX

(~M~) • • • • • • 11 all 001 I I 4 Register bank and
auxiliary register
bank exchange

EX (SP), HL H .. (SP+1) • • • • • • 11 100 all I 5 19
L -(SP)

EX (SP), IX IXH++(SP+ I) • • • • • • 11 all 101 2 6 23

IXL - (SP) 11 100 all
EX (SP), IY IYH-(SP+I) • • • • • • 11 III 101 2 6 23

IYL -(SP) II 100 all

<D
LDI (DE)- (HL) • • I • a a 11 101 101 2 4 16 Load (HL) into

DE -DE+I 10 100 000 . (DE), increment the

HL - HL+I
pain !ers and
decrement the byte

BC - BC-I counter (BC)

LDIR (DEI - (ilL) • • 0 • () 0 II 101 101 2 5 21 IfBC .. a
DE - DE+I 10 110000 2 4 16 IfBC = 0 I

HL - IIL+I
BC' - BC-I
Repeat until

BC=O
<D

LDD (DE) - (lIL) • • t • 0 0 II 101 101 2 4 16
DE-DE-I 10 101 000

HL - HL·I
BC - BC-I

LDDR (DE)- (HLl • • () • 0 0 II 101 101 2 5 21 IfBC .. 0
DE-DE-I 10 III 000 2 4 16 IfBC= 0
IfL-HL-1

Be-BC-I
Repeat until

BC = 0
Q) <D

CPI ' A-(HL) • I I I I I II 101 101 2 4 16
HL-HL+I 10 100 001

BC'-BC-I
Q) <D

CPIR A- (HL) • I I I I t 11 101 101 2 5 21 If BC .. a and A .. (H L)

HL-HL+I 10 110 001 2 4 16 IfBC = a or A = (HL)
BC-BC·I

Repeat until

A = lllL) or

BC=O

Q)<D .
CrD A-lHL) • I t I I I II 101 101

HL-HL·I 10 101 001
Be-BC·I

Q) ia;
(,PDR A-(lfL) • t I t I I II 101 101

HL-HL·I 10 III 001
BC-BC·I
Repeat un til
A = (lfL) or

BC = 0

Notes: <D PIV flag is 0 if the result of BC·I = 0, otherwise P/V = I

Q) Z flag IS I if A = (HLl, otherwise Z = O.

2 4

2 5

2 4

Flag Notation: • = nag not affected, 0 = flag reset. I = flag set, X = flag is unknown.

I = nag i< affected according to the result of the operation.

16

21 If BC .. a and A .. (H

16 If BC = a or A = (HL)

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP
TABLE 7.0-3

46

L)

Flags

~ Symbolic
Mnemonic Operation C Z V S N H

ADDA,r A-A+r ~ ~ V ~ 0 t
ADDA,n A-A+n ~ ~ V ~ 0 t

ADD A, (HL) A~· A+ (HL) ~ t V .t 0 t
ADD A, (IX+d) A-A + (IX+d) t t V t 0 t

I
ADD A, (IY+d) A-A+(IY+d) ~ t V * 0 *

'ADC A,s A-A+s+CY t ~ V t 0 t
SUB s A-A-s t t V t I t
SBC A,s A-A-s-CY t t V t I t
ANDs A-A A s 0 t P t 0 1

OR s A-A V s 0 t P t 0 0
XORs A-A"s 0 t P t 0 0

CP s A - s t t V t I t
INCr r '": r+ I • I V t 0 t
INC (HL) (HL) - (HL)+ I • I V t 0 t
INC (IX+d) (IX+d) - • t V t 0 I

(IX+d)+1

INC (IY+d) (IY+d) - • t V I 0 t
(IY+d) + I

DECm m+-m-I • I V t I I

Op-Code
No.
of

76 543 210 Bytes

10 [QQQ) r I

II [QQQJ 110 2 - n -
10 [QQQJ 110 I

11 011 101 3

10 [QQQ] 110

- d -
II III 101 3

10 [QQQ] 110

- d -
@Q1J
IQIQ]
IillII
[[QQJ
!IIQJ
(j]JJ
IIill

00 r [J]Q] I

00 110 [J]Q] I

II Oil 101 3

00 IIO[IQQ] . d ~

II III 101 3

00 '\1011001

- d .~

OJITJ

No. No.
ofM ofT
Cycles States

I 4

2 7

2 7

5 19

5 19

I 4

3 II

6 23

6 23

Comments

r Reg.
000 B
001 C
010 D
Oil E
100 H
101 L
III A

sisanyofr,n,
(HL), (IX+d),
(IY +d) as shown f or
ADD instruction

The indica ted bits
replace the 000 in
the ADD set abov e.

misanyofr,(H L),
(IX+d), (IY+d) as
shown for INC
Same format and
states as INC.
Replace 100 with
III I in OP codc.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operatior.. Similarly the P symbol indicates parity. V = I means overtlow, V = 0 means not overl1ow. P = I
means parity of the result is even, P = 0 means parity of the result is odd.

Flag Notation: • = flag not affected, 0 = flag reset, I = tlag set, X = nag is unknown.
t = flag is affected according to the result of the operation.

8-BIT ARITHMETIC AND LOGICAL GROUP
TABLE 7.0-4

47

Flags

Symbolic ~
Mnemonic Operation C Z V S N H

DAA Converts ace. t t P ~ • ~
content into
packed BCD
following add
or subtract
with packed
BCD operands

CPL A+-A • • • • 1 1

NEG A+-O-A ~ t V t 1 t

CCF CY +-CY ~ • • • 0 X

SCF CY +-1 1 • • • 0 0

NOP No operation • • • • • •
HALT CPU halted • • • • • •
DI IFF +-0 • • • • • •
EI IFF +-1 • • • • • •
IMO Set interrupt • • • • • •

mode 0

1M 1 Set interrupt • • • • • •
mode 1

1M2 Set interrupt • • • • • •
mode 2 ~

Notes: IFF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.

Op-Code
No. No.
of ofM

76 543 210 Bytes Cycles

00 100 111 1 1

00 101 III 1 1

11 101 101 2 2

01 000 100

00 111 111 1 1

00 110 111 1 1

00 000 000 1 1

01 110 110 1 1

11 110011 1 1

11 111 011 1 1

11 101 101 2 2

01 000 110

11 101 101 2 2

01 010 110
11 101 101 2 2

01 011 110

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

t = flag is affected according to the result of the operation.

No.
ofT
States Comments

4 Decimal adjust
accumulator

4 Complement
accumulator
(one's complemen t)

8 Negate ace. (two's
complement)

4 Complement c
flag

4 Set carry flag

4

4

4

4

8

8

8

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
> TABLE 1.0-5

48

Flags Op-<:ode
Symbolic

Mnemonic Operation C
Z r" S N H 76 543 210

ADD HL, ss HL-HL+ss ~ • • • 0 X 00 ssl 001

ADCHL, ss HL-HL+ss+CY ~ ~ V ~ 0 X 11 101 101

01 551 010

SBC HL, SS HL-HL- 55 -<:Y ~ ~ V ~ I X 11 101 101

01 ssO 010

ADD IX, pp IX-IX+pp ~ • • • 0 X 11 011 101

00 ppl 001

ADD IY,n IY-IY+rr ~ • • • 0 X II III 101

00 rrl 001

INC 55 55-55+1 • • • • • • 00 550 011

INC IX IX - IX + I • • • • • • II Oil 101

00 100 Oil

INC IY IY -IY + I • • • • • • II III 101

00 100 011

DEC ss ss +- ss - 1 • • • • • • 00 551 011

DEC IX IX-lX-I • • • • • • II 011 101

00 101 011

DECIY IY-IY-I • • • • • • 11 III 101

00 101 Oil

Notes: ss is any of lhe register pairs BC, DE, HI., SP
pp is any of the register pairs BC, DE, IX, SP
rr is any of the register pairs BC, DE,IY. SP.

No. No.
of ofM
Bytes Cycles

I 3

2 4

2 4

2 4

2 4

1 1

2 2

2 2

I I

2 2

2 2

Flag Notation: • = nag not affected, 0 = tlag reset, I = flag set. X = flag is unknown.
~ = nag is affected according to the result of the operation.

16-BIT ARITHMETIC GROUP
TABLE 7.0-6

49

No.
ofT
States Comments

11 ss Reg.

00 DC
15 01 DE

10 HL
II SP

15

15 pp Reg.

00 BC
01 DE
10 IX
II SP

15 rr Reg.

00 BC
01 DE
10 IY
11 SP

6

10

10

6

10

10

Flags Op-Code

~
No.

Symbolic of
Mnemonic Operation C Z V S N H 76 543 210 Bytes

RLCA
~ t • • • 0 0 00 000 111 1

A

RLA ~ t • • • 0 0 00 010 111 1
A

RRCA ~ t • • • 0 0 00 001 111 1
A

RRA ~ t • • • 0 0 00 011 111 1
A

RLCr t t P t 0 0 11 001 011 2

0010001 r

RLC (HL) t t P t 0 0 11 001 011 2

0010001110
RLC (IX+d) ~ t t P t 0 0 11 011 101 4

r. (Ht), (lX+d), (IYi-d) 11 001 011
~ d -+

0010001 1 10
RLC (IY+d) t t P t 0 0 11 111 101 4

11 001 OIl ... d -+

0010001110

RLm L&=E3J t t P t 0 0 10101
mO=l,(HL).(IX+d), (lY+d)

RRCm ~La t t P t 0 0 10011
m ~r.(HL), (lX+d), (IY+d)

RRm ~ t t P t 0 0 [QTIJ
m:=: r, (ilL), (IX+d). (IY+d)

SLAm ~o t t P t 0 0 11001
m =:: r, (HL),(lX+d), (IY+d)

SRAm ~ t t p t 0 0 [}QI]
m == r, (ilL), (IX+d), (IY+d)

SRLm o~ t t P t 0 0 [ill]
m =r,(HL),(IX+d), (lV+d)

RLD A~(HL) • t P t 0 0 11 101 101 2

01 101 111

A~(HL) RRD • t p t 0 0 11 101 101 2

01 100 111

Flag Notation: • =;'ilag not affe~ted, 0 = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

ROTATE AND SHIFT GROUP
TABLE 7.0-7

50

No. No.
ofM ofT
Cycles States Comments

1 4 Rotate left circular
accumulator

1 4 Rotate left
accumulator

1 4 Rotate right circular
accumulator

1 4 Rotate right
accumulator

2 8 Rotate left circular
register r

4 15 r R£g.

000 B

6 23 001 C
010 D
011 E
100 H
101 L

6 23
111 A

Instruction format a nd
states are as shown
for RLC,m. To form
new OP·code replace
[QQQ)of RLC,m with
shown code

5 18 Rotate digit left and
right between the
accumulator
and location (HL).

5 18 The content of the
upper half of the
accumulator is
unaffected

Flags Op'("ode

~
/Ilo. No.

Symbolic of ofM
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles

BIT b, r Z+-'b • t X X 0 I 11 001 011 2 2

01 b r

BIT b, (HL) Z+-(HL)b • t X X 0 I 11 001 011 2 3

01 b 110

BIT b, (IX +d) Z +- (IX+d)b • t X X 0 I 11 011 101 4 5

11 001 011

+- d -+

01 b 110

BIT b, (IY +d) Z +- (IY+d)b • t X X 0 I 11 III 101 4 5

11 001 011

+- d -+

01 b 110

SETb, r rb +-1 • • • • • • II 001 011 2 2

ITIJb r

SETb, (HL) (HL)b +- I • • • • • 0 11 001 011 2 4

ITIJb 110

SET b, (IX+d) (IX+d)b +- 1 • • • • • • 11 011 101 4 6

11 001 Oil

+- d -+

/IIlb 110

SET b, (IY +d) (IY+d)b +- I • • • • • • II III 101 4 6

II 001 011
+- d -+

[TI] b 110

RES b, m ~+-O [!Q]
m=r, (HL),

(IX+d),
(IY+d)

Notes: The notation sb indicates bit b (0 to 7) or location s.

Flag Notation: • = nag not affected, 0 = nag reset, I = flag set. X = nag is unknown,

t = nag is affected according to the result of the operation.

BIT SET, RESET AND TEST GROUP
TABLE 7.0-8

51

No.
ofT
States Comments

8 r Reg.

000 B

12 001 C
010 0
011 E

20 100 H
101 L
III A

b Bit Tested

20 000 0
001 I
010 2
011 3
100 4
101 5
110 6
111 7

8

15

23

23

To fonn new Op·
code replace IT]
of SET b,Ill with
@. Flags and time
states for SET
instruction

Flags Op-Code

~
No.

Symbolic of
Mnemonic Operation C Z VS N H 76 543 210 Bytes

JP nn PC"'nn • • • • • • 11 000 011 3
... n
... n -

JP cc, nn If condition cc • • • • • • 11 cc 010 3
is true PC <-nn, +- n
otherwise
continue

... n

JRe PC ... PC+e .. • .. • • .. 00 011 000 2
... e-2

JRC,e IfC = 0, • • • • • • 00 111 000 2
continue ... e-2
IfC = I, 2
PC ... PC+e

JR NC, e IfC = I, • • • • • • 00 110000 2
continue ... e-2
If C = 0, 2
PC ... PC+e

JRZ,e If Z = 0 • .. • .. • .. 00 101 000 2
continue ... e-2
IfZ = I, 2
PC ... PC+e

JR NZ,e If Z = I, • .. -. • • .. 00 100 000 2
continue - e-2
IfZ = 0, 2
pe-PC+e

JP(HL) PC-HL • • • • • • II 101 001 I

JP (IX) PC-IX • • • • • • II 011 101 2
11 101 001

JP (IV) PC-IV • • • • II 111 101 2

11 101 001

DJNZ,e B -B·I • • • • • • 00 010 000 2
IfD = 0, - e-2
continue

IfD '" 0, 2
PC ... PC+e

Notes: e represents the extension in the relative addressing mode.

e is a signed two's complement number in the range <-126, 129>

e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of ~

No.
ofM
Cycles

3

3

3

2

3

2

3

2

3

2

3

I

2

2

2

3

Flag Notation: .. = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
~ = flag is affected according to the result of the operation.

JUMP GROUP
TABLE 7.0-9

52

No.
ofT
States Comments

10

cc Condition
10 000 NZnon uro

001 Z zero
010 NCnon carry
011 C carry
100 PO parity odd
101 PE parity even
110 P sign positive

12 111 M sign negative

7 If condition not met

12 If condition is met

7 If condition not met

12 If condition is met
.
7 If condition not met

12 If condition is mel

7 If condition not mt'

12 If condition met

4

8

8

8 IfD = 0

13 IF D '" 0

Flags Op.(:ode

~
No. No.

Symbolic of ofM
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles

CALLnn (SP-I)+-PCH • • II 001 101 3 5

(SP-2)+-PCL +- n
PC+-nn +- n

CALLcc, nn If condition • .. • • II cc 100 3 3
cc is false n
continue,

3 5 otheIWise n -+

same as
CALLnn

RET PCL <-(SP) 11 001 001 I 3
PCH<-(SP+l)

RETcc If condition • 11 cc 000 1 I
cc is false
continue,

1 3 otheIWise
same as
RET

RETI Rllturn from • 11 WI 101 2 4
interrupt

01 001 101

RETN Return from 11 101 101 2 4
non maskable
interrupt 01 000 101

RSTp (SP.I)+-PCH 11 t III 1 3
(SP.2)+-PCL
PCH+-O
PCL P

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
* = flag is affected according to the result of the operation.

CAL.L. AND RETURN GROUP
TABLE 1.0·10

53

No.
ofT
States Comments

17

10 If cc is false

17 If cc is true

10

5 If cc is false

11 If cc is true
cc Condition

000 NZ non zero
001 Z zero
010 NC non carry

14 011 C carry
100 PO parity odd

14
101 PE parity even
110 P sign positive
III M sign negative

11

t P .
000 OOH
001 08H
010 lOH
011 18H
100 20H
101 28H
110 30H
111. 38H

Flags Op-Code
No.

~
No.

Symbolic of ofM
Mnemonic Operation C Z V S N H 76 543 210 Bytes Cycles

IN A, (n) A+- (n) • • • • • • II 011 011 2 3
<0- n -+

IN r, (e) r--:- (e) • t P t 0 t II 101 101 2 3

ifr = llO only 01 r 000
the flags will
be affected

CD
INI (HL) +- (C) X t X X I X II 101 101 2 4

B+-B-l 10 100 010

HL+-HL+ 1

INIR (HL) +- (C) X 1 X X 1 X II 101 101 2 5

B+-B-l 10 110 010 (If B ... 0)

HL ---HL+ 1 2 4
Repeat until (If B = 0)
B=O

'T' '-!.J

IND (HL)+- (C) X t X X 1 X 11 101 101 2 4
. B+-B-l 10 101 010

HL---HL-l

INDR (HL) +- (C) X 1 X X 1 X II 101 101 2 5

B ---B-1 10 111 010 (If B ... 0)

HL+-HL-l
2 4

Repeat until (If B = 0)
B=O

OUT (n),A (n) +-A • • • • • • 11 010 011 2 3
n

OUT (C), r (e) +- r • • • • • • 11 101 101 2 3

01 r 001

CD
OUTI (C) +- (HL) X t X X I X II 101 101 2 4

B+-B-l 10 100011

HL---HL+ 1

OTIR (C) +- (HL) X 1 X X 1 X II 101 101 2 5

B ---B-1 10 110 011 (lfB'" 0)

HL +-HL + 1
2 4

Repeat until (If B = 0)
B=O

CD
OUTD (C) +-(HL) X t X X 1 X II 101 101 2 4

B +-B - I 10 101 011

HL+-HL-l

OTDR (C) --- (HL) X I X X I X II 101 101 2 5

B---B-I 10 111 011 (If B ... 0)

HL+-HL-l
2 4

Repeat until (IfB = 0)
B=O

Notes: CD If the result of B-1 is zero the Z flag is set, otherwise it is reset·

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

INPUT AND OUTPUT GROUP
TABLE 7.0-11

54

No.
ofT
States Comments

11 ntoAo -~
Acc to AS - AI5

12 CtoAo-A7

B to AS - AI5

16 CtoAO-A7
B to AS - A15

21 CtoAO - ~

B to AS - AI5

16

16 CtoAo-A7 .

B to AS - Al5

21 Cto AO - A7

B to AS - AI5

16

II n to AO - A7

Acc to AS - AI5
12 Cto AO - A7

BtoAS -AI5

16 Cto AO - A7

B 10 Ag - AI5

21 Clo Au - A7

B 10 AS - AI5

16

16 (' 10 AO - A7

B 10 AS - AI5

21 Cto AO - A7

Bto AS - AI5

16

8.0 INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly
manner and force the CPU to start a peripheral service routine. Usually this service routine is involved with
the exchange of data, or status and control information, between the CPU and the peripheral. Once the
service routine is completed, the CPU returns to the operation from which it was interrupted.

INTERRUPT ENABLE - DISABLE

The Z80 CPU has two interrupt inputs, a software maskable interrupt and a non maskable interrupt.
The non maskable interrupt (NMI) can not be disabled by the programmer and it will be accepted when­
ever a peripheral device requests it. This interrupt is generaliy reserved.for very important functions that
must be serviced whenever they occur, such as an impending power failure. The maskable interrupt (INT)
can be selectively enabled or disabled by the programmer. This allows the programmer to disable the inter­
rupt during periods where his program has timing constraints that do not allow it to be interrupted. In the
Z80 CPU there is an enable flip flop (called IFF) that is set or reset by the programmer using the Enable
Interrupt (EI) and Disable Interrupt (DI) instructions. When the IFF is reset, an interrupt can not be
accepted by the CPU.

Actually, for purposes that will be subsequently explained, th:ere are two enable flip flops, called IFF I
and IFF2.

Actually disables interrupts
from being accepted.

Temporary storage location
for IFFI .

The state of IFF I is used to actually inhibit interrupts while IFF2 is used as a temporary storage location
for IFF 1. The purpose of storing the IFF 1 will be subsequently explained.

A reset to the CPU will force both IFF I and IFF 2 to the reset state so that interrupts are disabled.
They can then be enabled by an EI instruction at any time by the programmer. When an EI instruction is
executed, any pending interrupt request will not be accepted until after the instruction following EI has
been executed. This single instruction delay is necessary for cases when the following instruction is a return
instruction and interrupts must not be allowed until the return has been completed. The EI instruction sets
both IFF 1 and IFF2 to the enable state. When an interrupt is accepted by the CPU, both IFF 1 and IFF2
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a new EI instruc­
tion. Note that for all of the previous cases, IFF 1 and IFF2 are always equal.

The purpose of IFF2 is to save the status of IFF} when a non maskable interrupt occurs. When a non
maskable interrupt is accepted, IFF} is reset to prevent further interrupts until reenabled by the pro­
grammer. Thus,after a non maskable interrupt has been accepted, maskable interrupts are disabled but the
previous state of IFF 1 has been saved so that the complete state of the CPU just prior to the non maskable
interrupt can be restored at any time. When a Load Register A with Register I (LD A, I) instruction or a
Load Register A with Register R (LD A, R) instruction is executed, the state ofIFF2 is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFF 1 is thru the execution of a Return From Non
Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non maskable interrupt
service routine is complete, the contents of IFF2 are now copied back into IFF 1, so that the status of IFF 1
just prior to the acceptance of the non maskable interrupt will be restored automatically.

55

Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops,

Action IFF} IFF2

CPU Reset 0 0

DI 0 0

EI 1

LDA,I • • IFF 2 "+ Parity flag

LDA,R • • IFF 2 "+ Parity flag

Accept NMI 0 •
RETN IFF2 • IFF2 "+lFFl

"." indicates no change

FIGURE 8.o.1
INTERRUPT ENABLE/DISABLE FLIP FLOPS

CPU RESPONSE

Non Maskable

A nonmaskable interrupt will be accepted at all times by the CPU. When this occurs, the CPU ignores
the next instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as
if it had received a restart instruction but, it is to a locatiort that is not one of the 8 software restart loca­
tions. A restart is merely a call to a specific address irt page 0 of memory.

Maskable

The CPU cart be programmed to respond to the maskable interrUpt in arty one of three possible
modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device
can place any instruction on the data bus and the CPU will execute it. Thus, the interrupting device pro­
vides the next instructiort to be executed instead of the memory. Often this will be a restart instructiort
since the interrupting device only need supply a single byte instruction. Alternatively; any other instruction
such as a 3 byte call to any location in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 mote than the normal number for the
instruction. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to
allow sufficient time to implement an external daisy cha.in for priority control. Section 5.0 illustrates the
detailed timing for an interrupt response. After the application of RESET the CPU will automatically enter
interrupt Mode O.

Mode}

When this mode has been selected by the programrrter, the CPU will respond to an interrupt by
executing a restart to location 0038H. Thus the response is iderttical to that for a non maskable interrupt
except tha.t the call location is 0038H instead of 0066H. Another difference is that the number of cycles
required to complete the restart instruction is 2 more than normal due to the two added wait states.

56

Mode 2

This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an
indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt
service routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit
pointer must be formed to obtain the desired interrupt service routine starting address from the table.
The upper 8 bits of this pointer is formed from the contents of the I register. The I register must have been
previously loaded with the desired value by the programmer, i.e. LD I, A. Note that a CPU reset clears the I
register so that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupt­
ing device. Actually, only 7 bits are required from the interrupting device as the least significant bit must be
a zero. This is required since the pointer is used to get two adjacent bytes to form a complete 16 bit service
routine starting address and the addresses must always start in even locations.

Interrupt
Service
Routine
Starting
Address
Table

< low order }
high order

desired starting address
pointed to by:

I REG
CONTENTS

7 BITS FROM
PERIPHERAL

The first byte in the table is the least significant (low order) portion of the address. The programmer must
obviously fill this table in with the desired addresses before any interrupts are to be accep~ed.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write
Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes
the program counter onto the stack, obtains the starting address from the table and does a jump to this
address. This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.) ,

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that auto­
matically supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-PIO;
Z80-SIO and Z80-CTC manuals for details.

57

-BLANK-

-58-

9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic introduction to implementing systems with the Z8D-CPU.

MINIMUM SYSTEM

Figure 9.D·l is a diagram of a very simple Z·8D system. Any Z-8D system must include the following
five elements:

1) Five volt power supply

2) Oscillator

3) Memory devices

4) I/O circuits

5) CPU

AO-Ag +5V GND

ADDRESS
IN

MREO CEl .
8KBIT

RD
CE2

ROM

+5V Z80 DATA BUS
CPU

lORa

r AO

Ml
Al

OUTPUT INPUT
DATA DATA

FIGURE 9.0-1
MINIMUM Z80 COMPUTER SYSTEM

Since the Z8D-CPU only requires a single 5 volt supply, most small systems can be implemented using
only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square wave. For
systems not funning at full speed, a simple RC oscillator can be used. When the CPU is operated near the
highest possible frequency, a crystal oscillator is generally required because the system timing will not
tolerate the drift or jitter that an RC network will generate. A crystal oscillator can be made from inverters
and a few discrete components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple example
we have shown a single 8K bit ROM (lK bytes) being utilized as the entire memory system. For this
example we have assumed that the Z-8D internal register configuration contains sufficient Read/Write
storage so that external RAM memory is not required.

59

Every computer system requires I/O circuits to allow it to interface to the "real world." In this simple
example it is assumed that the output is an 8 bit control vector and the input is an 8 bit status word. The
input data could be gated onto the data bus using any standard tri-state driver while the output data could
be latched with any type of standard TTL latch. For this example we have used a Z80-PIO for the I/O
circuit. This single circuit attaches to the data bus as shown and provides the required 16 bits of TTL
compatible I/O. (Refer to the Z80-PIO manual for details on the operation of this circuit.) Notice in this
example that with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a
powerful computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data storage and to
implement a "stack." Figure 9.0-2 illustrates how 256 bytes of static memory can be added to the previous
example. In this example the memory space is assumed to be organized as follows:

MREQ· RD
CE,

A 10
CE2

JAO_Ag

\;
'K x 8
ROM

do-d7

V

lK bytes
ROM

256 bytes
RAM

Address
OOOOH

03FFH
0400H

04FFH

ADDRESS BUS

AO-A7

J
!!Q.. 00 CE,

256x4

~
RAM

R/W CE2

j\
~
dO-d3

~
V

DATA BUS

FIGURE 9.()'2

.M!!.Q.!!Q.

A,O
-.:..: ~

ROM & RAM IMPLEMENTATION EXAMPLE

AO-A7

\J
00 CE, ~

256 x4
RAM AlO

R/W CE2 t--=-=-

/\
~
d4-d7

IV

In this diagram the address space is described in hexidecimal notation. For this example, address bit AlO
separates the ROM space from the RAM space so that it can be used for the chip select function. For
larger amounts of external ROM or RAM, a simple TTL decoder will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The WAIT line on
the CPU allows the Z-80 to operate with any speed memory. By referring back to section 4 you will notice
that the memory access time requirements are most severe during the Ml cycle instruction fetch. All other
memory accesses have an additional one half of a clock cycle to be completed. For this reason it may be
desirable in some applications to add one wait state to.the MI cycle so that slower memories can be used.
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can be changed to
add a single wait state to any memory access as shown in Figure 9.0-4.

60

WAIT

+5V

1 I~ M1 -I
I T, I T2 I Tw I T3 I T4 I

M1 S S
0 0 0 of--

<I>

<1>.
7474 7474

C Q r-- C Q M1 \ I
R R

r I WAIT L.J
+5V +5V

FIGURE 9.0-3
ADDING ONE WAIT STATE TO AN M1 CYCLE

+5V

~ MREO S <I>
0 0 0

7474 7474
MREO\ <I> a IT C C

R R
WAIT L-J

+5V +5V

FIGURE 9.0-4
ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic memories. Each
individual dynamic RAM has varying specifications that will require minor modifications to the description
given here and no attempt will be made in this document to give details for any particular RAM. Separate
application notes showing how the Z80-CPU can be interfaced to most popular dynamic RAM's are
available from Zilog.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using 18 pin 4K
dynamic memories. This figure assumes 'that the RAM's are the only memory in the system so that A12 is
used to select between the two pages of memory. During refresh time, all memories in the system mustbe
read. The CPU provides the proper refresh address on lines AD through A6. To add additional memory to
the system it is necessary to only replace the two gates that operate on Al2 with a decoder that operates
on all required address bits. For larger systems, buffering for the address and data bus is also generally
required.

61

CE

4K x8 RAM ARRAY

PAGE 1
(1000 to lFFF)

WR­
----------~--------~RAN

4Kx8 RAM ARRAY

PAGE 0

CE

(0000 to OFFF)

FIGURE 9.0-5
INTERFACING DYNAMIC RAMS

62

10.0 SOFTWA~EIMPLEIVIENTATION EXAMPLES

10.1 METHODS OF SOFTWARE IMPLEMENTATION

Several different approaches are possible in developing software for the Z·80 (Figure 10.1). First of
all, Assembly Language or PL/Z may be used as the source language. These languages may then be trans·
lated into machine language on a commercial time sharing facility using a cross-assembler or cross-compiler
or, in the case of assembly language, the translation can be accomplished on a Z-80 Development System
using a resident assembler. Finally, the resulting machine code can be debugged either on a time-sharing
facility using a Z-80 simulator or on a Z-80 Development System which uses a Z80-CPU directly.

SOURCE
LANGUAGE

ASSEMBLY
LANGUAGE

PL/Z OR OTHER
HIGH LEVEL
LANGUAGE

TRANSLATION

RESIDENT ASSEMBLER

CROSS ASSEMBLER

CROSS COMPILER

FIGURE 10.1

DEBUGGING

DEVELOPMENT
SYSTEM

SIMULATOR

In selecting a source language, the primary factors to be considered are Clarity and ease of program­
ming vs. code efficiency. A high level language such as PL/Z with its machine independent constructs is
typically better for formulating and maintaining algorithms, but the resulting machine code is usually
somewhat less efficient than what can be written directly in assembly language. These tradeoffs can often
be balanced by combining PL/Z and assembly language routines, identifying those portions of a task which
must be optimized and writing them as assembly language subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short-term vs.
long-term expense. While the initial expenditure for a development system is higher than that for a time­
sharing terminal, the cost of an individual assembly using a resident assembler is negligible while the same
operation on a time-sharing system is relatively expensive and in a short time this cost can equal the total
cost of a development system.

Debugging on a development system vs. a simulator is also a matter of availability and expense com­
bined with operational fidelity and flexibility. As with the assembly process, debugging is less expensive on
a development system than on a simulator available through time-sharing. In addition, the fidelity of the
operating environment is preserved through real-time'execution on a Z80-CPU and by connecting the I/O
and memory components which will actually be used in the production system. The only advantage to
the use of a simulator is the range of criteria which may be selected for such debugging procedures as trac­
ing and setting breakpoints. This flexibility exists because a software simulation can achieve any degree of
complexity in its interpretation of machine instructions while development system procedures have hard­
ware limitations such as the capacity of the real-time storage module, the number of breakpoint registers
and the pin configuration of the CPU. Despite such hardware limitations, debugging on a development
system is typically more productive than on a simulator because of the direct interaction that is possible
between the programmer and the authentic execution of his program.

63

10.2 SOFTWARE FEATURES OFFERED BY THE Z80-CPU

The Z-80 instruction set provides the user with a large and flexible repetoire of operations with which
to formulate control of the Z80-CPU.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic and logical
operations, or to form memory addresses, or as fast-access storage for frequently used data.

Information can be moved directly from register to register; from memory to memory; from memory
to registers; or from registers to memory. In addition, register contents and register/memory contents can
be exchanged without using temporary storage. In particular, the contents of primary and auxilary registers
can be completely exchanged by executing only two instructions, EX and EXX. This register exchange
procedure can be used to separate the set of working registers between different logical procedures or to
expand the set of available registers in a single procedure~

Storage and retrieval of data between pairs of registers and memory can be controlled on a last-in
first-out basis through PUSH and POP instructions which utilize a special stack pointer register, SP. This
stack register is available both to manipulate data and to automatically store and retrieve addresses for
subroutine linkage. When a subroutine is called, for example, the address following the CALL instruction
is placed on the top of the push-down stack pointed to by SP. When a subroutine returns to the calling
routine, the address on the top of the stack is used to set the program counter for the address of the next
instruction. The stack pointer is adjusted automatically to reflect the current "top" stack position during
PUSH, POP, CALL and RET instructions. This stack mechanism allows pushdown data stacks and sub­
routine calls to be nested to any practical depth because the stack area can potentially be as large as
memory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero, sign,
parity/overflow, add-subtract, half-carry) which reflect the results of arithmetic, logical, shift and compare
instructions. After the execution of an instruction which sets a flag, that flag can be used to control a
conditional jump or return instruction. These instructions provide logical control following the manipula­
tion of single bit, eight-bit byte (or) sixtee!l-bit data quantities.

A full set of logical operations, including AND, OR, XOR (exclusive - OR), CPL (NOR) and NEG
(two's complement) are available for Boolean operations between the accumulator and 1) all other eight-bit
registers, 2) memory locations or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions are available which operate
on the contents of all eight-bit primary registers or directly on any memory location. The carry flag can be
included or simply set by these shift instructions to provide both the testing of shift results and to link
register/register or register/memory shift operations.

10.3 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS

A. Let us assume that a string of data in memory starting at location "DATA" is to be moved into
another area of memory starting at location "BUFFER" and that the' string length is 737 bytes. This
operation can be accomplished as follows:

LD
LD
LD
LDIR

HL,DATA
DE,BUFFER
BC,737

; START ADDRESS OF DATA STRING
; START ADDRESS OF TARGET BUFFER
; LENGTH OF DATA STRING
; MOVE STRING - TRANSFER MEMORY POINTED TO
; BY HL INTO MEMORY LOCATION POINTED TO BY DE
; INCREMENT HL AND DE, DECREMENT BC
; PROCESS UNTIL BC;: O.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.

64

B. Let's assume that a string in memory starting at location "DATA" is to be moved into another area
of memory starting at location "BUFFER" until an ASCII $ character (used as string delimiter) is
found. Let's also assume that the maximum string length is 132 characters. The operation can be
performed as follows: .

LD
LD
LD
LD

LOOP:CP
JR
LDI

JP
END:

HL,DATA
DE ,BUFFER
BC , 132
A,'$'
(HL)
Z ,END-$

PE ,LOOP

; STARTING ADDRESS OF DATA STRING
; STARTING ADDRESS OF TARGET BUFFER
; MAXIMUM STRING LENGTH
; STRING DELIMITER CODE
; COMPARE MEMORY CONTENTS WITH DELIMITER
; GO TO END IF CHARACTERS EQUAL
; MOVE CHARACTER (HL) to (DE)
; INCREMENT HL AND DE, DECREMENT BC
; GO TO "LOOP" IF MORE CHARACTERS
; OTHERWISE, FALL THROUGH
; NOTE: P/V FLAG IS USED
; TO INDICATE THAT REGISTER BC WAS
; DECREMENTED TO ZERO.

19 bytes are required for this operation.

C. Let us assume that a 16-digit decimal number represented in packed BCD format (two BCD digits/
byte) has to be shifted as shown in the Figure 10.2 in order to mechanize BCD multiplication or
division. The operation can be accomplished as follows:

LD
LD
XOR

ROTAT:RLD

INC
DJNZ

HL,DATA
B,COUNT
A

HL
ROTAT - $

; ADDRESS OF FIRST BYTE
; SHIFT COUNT
; CLEAR ACCUMULATOR
; ROTATE LEFT LOW ORDER DIGIT IN ACC
; WITH DIGITS IN (HL)
; ADVANCE MEMORY POINTER
; DECREMENT B AND GO TO ROTAT IF
; B IS NOT ZERO, OTHERWISE FALL THROUGH

11 bytes are required for this operation.

4---,,---0

FIGURE 10.2

65

D. Let us assume that one number is to be subtracted from another and a) that they are both in packed
BCD format, b) that they are of equal but varying length, and c) that the result is to be stored in the
location of the minuend. The operation can be accomplished as follows:

LD
LD
LD
AND

SUBDEC:LD
SBC
DAA
LD
INC
INC
DJNZ

HL,ARGI
DE ,ARG2
B,LENGTH
A
A, (DE)
A, (HL)

(HL) , A
HL
DE
SUBDEC - $

; ADDRESS OF MINUEND
; ADDRESS OF SUBTRAHEND
; LENGTH OF TWO ARGUMENTS
; CLEAR CARRY FLAG
; SUBTRAHEND TO ACC
; SUBTRACT (HL) FROM ACC
; ADJUST RESULT TO DECIMAL CODED VALUE
; STORE RESULT
; ADVANCE MEMORY POINTERS

; DECREMENT B AND GO TO "SUBDEC" IF B
; NOT ZERO, OTHERWISE FALL THROUGH

17 bytes are required for this operation.

10.4 EXAMPLES OF PROGRAMMING TASKS

A. The following program sorts an array of numbers each in the range (0,255) into ascending order using
a standard exchange sorting algorithm.

66

01/22/76 11: 14:37 BUBBLE LISTING PAGE 1
LOC OBJCODE STMT SOURCE STATEMENT

1 *** STANDARD EXCHANGE (BUBBLE) SORT ROUTINE ***
2
3 AT ENTRY: HL CONTAINS ADDRESS OF DATA
4 C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
5 (l<C<256)
6
7 AT EXIT: DATA SORTED IN ASCENDING ORDER
8
9 USE OF REGISTERS

10
11 REGISTER CONTENTS
12
13 A TEMPORARY STORAGE FOR CALCULATIONS
14 B COUNTER FOR DATA ARRAY
15 C LENGTH OF DATA ARRAY
16 D FIRST ELEMENT IN COMPARISON
17 E SECOND ELEMENT IN COMPARISON
18 H FLAG TO INDICATE EXCHANGE
19 L UNUSED
20 IX POINTER INTO DATA ARRAY
21 IY UNUSED
22

0000 222600 23 SORT: LD (DATA), HL ; SAVE DATA ADDRESS
0003 CB84 24 LOOP: RES FLAG,H ; INITIALIZE EXCHANGE FLAG
0005 41 25 LD B,C ; INITIALIZE LENGTH COUNTER
0006 05 26 DEC B ; ADJUST FOR TESTING
0007 DD2A2600 27 LD IX, (DATA) ; INITIALIZE ARRAY POINTER
OOOB DD7EOO 28 NEXT: LD A, (IX) ; FIRST ELEMENT IN COMPARISON
OOOE 57 29 LD D,A ; TEMPORARY STORAGE FOR ELEMENT
OOOF DD5E01 30 LD E, (IX+l) ; SECOND ELEMENT IN COMPARISON
0012 93 31 SUB E ; COMPARISON FIRST TO SECOND
0013 3008 32 JR NC, NOEX-$; IF FIRST> SECOND, NO JUMP
0015 DD7300 33 LD (IX), E ; EXCHANGE ARRAY ELEMENTS
0018 DD7201 34 LD (IX+1), D
001B CBC4 35 SET FLAG,H ; RECORD EXCHANGE OCCURRED
OOlD DD23 36 NOEX: INC IX ; POINT TO NEXT DATA ELEMENT
001F lOEA 37 DJNZ NEXT-$; COUNT NUMBER OF COMPARISONS

38 ; REPEAT IF MORE DATA PAIRS
0021 CB44 39 BIT FLAG,H ; DETERMINE IF EXCHANGE OCCURRED
0023 20DE 40 JR NZ,LOOP-$; CONTINUE IF DATA UNSORTED
0025 C9 41 RET ; OTHERWISE, EXIT

42
0026 43 FLAG: EQU 0 ; DESIGNATION OF FLAG BIT
0026 44 DATA: DEFS 2 ; STORAGE FOR DATA ADDRESS

45 END

67

B. The following program multiplies two unsigned 16 bit integers and leaves the result in the BL register
pair.

01/22/76 11:32:36 MULTIPLY LISTING PAGE 1
LOC OBJCODE STMT SOURCE STATEMENT

0000 1 MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
2 ON ENTRANCE: MULTIPLIER IN DE.
3 MULTIPLICAND IN HL.
4
5 ON EXIT: RESULT IN HL.
6
7 REGISTER USES:
8
9

10 H HIGH ORDER PARTIAL RESULT
11 L LOW ORDER PARTIAL RESULT
12 D HIGH ORDER MULTIPLICAND
13 E LOW ORDER MULTIPLICAND
14 B COUNTER FOR NUMBER OF SHIFTS
15 C HIGH ORDER BITS OF MULTIPLIER
16 A LOW ORDER BITS OF MULTIPLIER
17

0000 0610 18 LD B,16; NUMBER OF BITS- INITIALIZE
0002 4A 19 LD (:,D; MOVE MULTIPLIER
0003 7B 20 LD A,E;
0004 EB 21 EX DE,HL; MOVE MULTIPLICAND
0005 210000 22 LD HL,O; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP: SRL C; SHIFT MULTIPLIER RIGHT
OOOA IF 24 RRA LEAST SIGNIFICANT BIT IS

25 IN CARRY.
OOOB 3001 26 JR NC, NOADD-$; IF NO CARRY, SKIP THE ADD.
OOOD 19 27 ADD HL,DE; ELSE ADD MULTIPLICAND TO

28 PARTIAL RESULT.
OOOE EB 29 NOADD: EX DE,HL; SHIFT MULTIPLICAND LEFT
OOOF 29 30 ADD HL,HL; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DE,HL;
0011 IOF5 32 DJNZ MLOOP-$; REPEAT UNTIL NO MORE BITS.
0013 C9 .33 RET;

34 END;

68

Absolute Maximum Ratings
Temperature Under Bias
Storage Temperature
Voltage On Any Pin

with Respect to Ground
Power Dissipation

Specified operating range.
_65°C to + 150°C

-O.3V to +7V

l.5W

Z80 .. CPU D.C. Characteristics
T A = O°C to 70'C. V cc = 5V ± 5'70 unless otherwise specified

Symbol Parameter Min.

VILC Clock Input Low Voltage -0.3

·Comment

Stresses above those listed under" Absolute
Maximum Rating" may quse permanent
damage to the device. This is a stress rating
only and functional operation of the device
at these or any other condition above those
indicated in the operational sections of this
specification is not implied. Exposure to
absolute maximum rating conditions for
extended periods may affect device reliability.

Typ. Max. Unit Test Condition

0045 V

V1HC Clock Input High Voltage
V cc - .. 6 Vcc+·3 V

VIL Input Low Voltage -0.3 0.8 V

VIH Input High Voltage C.O Vec V

VOL Output Low Voltage 004 Y 10L =1.8mA

VOH Output High Voltage cA Y 10H = -250pA

ICC Power Supply Current 150 rnA

ILl Input Leakage Current 10 pA YIN=O to Yec

I LOll Tri-Statc Output Leakage Current in Float 10 pA Y OUT=2A to V Cc

ILOL Tri-State Output Leakage Current in Float -10 pA YOUT=OAV

ILD Data Bus Leakage Current in Input Mode ±IO pA o <YIN <Vee

Z80A·CPU D.C. Characteristics

Symbol Parameter Min. Typ. Max. Unit Test Condition

VIl.(, Clock Inpnt Low Voltage -0.3 0.45 Y

VII 1(' ('lock Input lligh Voltage
Vee -_6 Vcc+_3 V

V 11_ Input Low Voltage -0.3 O.H V

Viii Input Iligh Voltage ~.O V~.: V

VOL Olltput Luw Voltage OA V IOL=I.SmA

VOII Output lIigh VUltage 2.4 V 1011 = -")OpA

ICC Power Supply Cur rent 90 200 mA

1\.1 Input Leakage Cllfrent 10 pA VIN=O tLl Vcc

II ()II Tn-SIJte Output Leakage Current in FhKJt 10 pA VOllT=cAto Vcc

11<1I Tri-State Output Leakage l'urrent rn Float -10 /1A VOUT=OAV

III> Data Ilu, Leakage Current in Input Mude ±IO pA O<Y IN ';;Vcc

69

Note: For ZBO-CPU a!l AC and DC characteristics remain the
same for the military grade parts except Icc.

Icc = 200 rnA

Capacitance
T A = 25°C, f = 1 MHz,

unmeasured pins returned to ground

Symbol Parameter , Max. Unit

C<j> Clock Capacitance 35 pF

CIN Input Capacitance 5 pF

COUT Output Capacitance 10 pF

Z80·CPU
Ordering Information
C - Ceramic
P - Plastic 0 0

S - Standard SY ± S% 0 to 70 C
E - Extended SY ±S% -,40° to 85°C
M - Military sV ±\O%-'SSO to \2SoC

Capacitance
T A = 2S°e, f = I MHz.
unmcasured pins returncd to ground

Symbol Parameter Max.

("(IJ C[th.:k ('ap:J(ltaJl(l' 35

C"" IIlPll(CarJ(lI~II1\"'l'

eOl'l Ou tpu t C JP~Ii..:1 talll'~ 10

Z80A-CPU

Unit

pl-

pI'

pF

Ordering Information
C - Ceramic
P - Plastic
S - Standard 5V ±5% 0° to 70°C

A.C. Characteristics Z80-CPU

T A = oOe to 70oe, Vee = +5V ± 5%, Unless Otherwise Noted.

Signal Symbol Parameter Min

tc Clock Periuc.l .4

<I> tw«I>H) Clock Pulse Width. Clock High 180
twt<l>l) Clock Pulse Width. Clock Low 180

II", r Clock Rise :.II1d F<.I1l Time

tD(AD) Address Output Delay

tF(AD) Delay to Float

AO_15 t:u: m Address Stable Prior to MREO (Memury Cycle) III
laei Address Stable Prior to 10RO. RD or WR (I/O Cycle) 121
lea Address Stable from RIJ, WR, IORQ or MREQ 131
leaf Address Stable From RD or WR During Flout 141

• tD(D) Data Output Delay
tF(D) De,"y to Float During Write Cycle

tS<I>(D) Data Setup Time to Rising Edge of Clock During M I Cycle 50
DO_7 ts1i" (0) Data Setup Time to Falling Edge or Clut.:k During M2 to M5 60

Idem Data Stable Prior to WR (Memory Cycle) 15
tdci Data Stable Prior to WR (I/O Cycle) 161
tcdf Data Stable From WR 171

tH Any Hold Time for Setup Time 0

tDl1i" (MR) MREO Delay From Falling Edge of Clock, MREO low

IDH<I> (MR) MREO Delay From Rising Edge of Clock, MREO High
MREO tDH1i"(MR) MREO Delay From Falling Edge of Clock. MRE'jHigh

Iw (MRl) Pulse Width. MREO low 181
Iw(MRH) Pulse Width, MREO High . 191

tDl<l> (IR) 10RO Delay From Rising Edge of Clock, 10RO low

IORO tDL1i" (IR) 10RO Delay From Falling Edge of Clock, IORO low

tDH<I> (IR) 10RO Delay From Rising Edge of Clock, 10RO High
tDH1i"(IR) IORO Delay From Falling Edge of Clock, 10RO High

tDl<l> (RD) RD Delay From Rising Edge of Clock, RD low

Ri5 tDl1i" (RD) RD Delay From Falling Edge of Clock, RD low
tDH<I> (RD) RD Delay From Rising Edge of Clock, RD High

tDH<i>(RD) RD Delay From Falling Edge of Clock, RD High

IDl<l> (WR) WR Delay From Rising Edge of Clock, WR low

WR tDl1i"(WR) WR Delay From Falling Edge of Clock, WR Low

tDH<I>(WR) WR Delay From Falling Edge of Clock, WR High
tw (WRl) Pulse Width, WR low [101

MI tDl(MI) M I Delay From Rising Edge of Clock, Mi low

tDH (Mil MT Delay From Rising Edge of Clock, M I High

RFSH tDl(RF) RFSH Delay From Rising Edge of Clock, RFSH low

IDH (RF) RFSH Delay From Rising Edge of Clock, RFSH High

WAIT Is (WT) WAIT Setup Time to Falling Edge of Clock 70

HALT tD(HT) HALT Delay Time Fro", Falling Edge of Clock

INT ts (IT) INT Selup Time 10 Rising Edge of Clock > 80

NMI tw(NMl) Pulse Width, NM I low 80

BUSRO ts (BO) BUSRO Selup Time 10 Rising Edge of Clock 80

BUSAK IDl(BA) BUSAK Delay From Rising Edge of Clock, BUSAK low
IDH (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High

RESET Is (RS) RESET Setup Time to Rising Edge of Clock 90

IF (C) Delay to Float (MREO, 10RO, RD and WR)

tmr Mi Slable Prior to 10RO (lnterrupl Ack.) IIII

NOTES:

A. Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data
should be enabled when MI and fORQ arc both active.

B. All control signals are internally synchronized. so they may be totally asynchronous with respect
10 the clock.

C. The RESET signal must be active for a minimum of 3 dock cycles.
D. Output Delay vs. Loaded Capacitance

TA = 70°(, Vcc::: +5V ±5'/r .

Max Unit

1121 fJsec
[EJ nsec

2000 osec
30 osee

145 osee
110 osee

osee
osee
nsec
nsee

230 osec
90 nsec

osec
nsee
nsec
nsee

osee

100 osee
100 nsec
100 osee

osee
osee

90 osee
110 osee
100 osee
110 osec

100 osec
130 osee
100 osee
110 osee

80 osec
90 osee

100 osee
osee

130 osee
130 osee

180 osee
150 osee

nsec

300 nsec

nsec

nsec

nsec

120 nsec
110 nsec

nsec

100 nsec

nsec

Add 10nsee delay for each SOpf increase in load up to a maximum of 200pf for the data bus & 1 OOpf for
address & control lines

E. Although static by design. testing guarantees tw(,pH) of 200 I1sec maximum

70

Test Condition

Cl = 50pF [IJ tacm = tw(<I>H) + If-75

[2J taei = tc -80

[3J Ica = tw(<I>l) + tr - 40

[4J tcaf= IW(<I>l) + tr - 60
CL = SOpF

[5J tdem = te - 210

[6J tdci = tw(cJ>L) + tr - 210

[7J tedf = tw(cJ>L) + tr -80

Cl =50pF

[8J tw (MRl) = tc - 40

[9J tw(MRH) = tw(<I>H) + tf- 30

Cl =50pF

Cl = 50pF

CL = 50pF

CL = SOpF

CL = SOpF

CL = 50pF

Cl ~ 50pF

TEST POINT

load circuit for Output

A.C. Timing Diagram

Timing measurements are made at the following
voltages, unless otherwise specified:

tc

tW(<I>H)1
'i>

CLOCK
OUTPUT
INPUT
FLOAT

,......., '"-

UU'L ---1 W 'I)

--l
tW('I>!.)

AO-A15
to (AD) - " ,~---I --- .. ~r ;X ---- ." - - -----AO-15

=x K IN 10-_____ --
I--tS'I> (0)-=

I- tH I-

OUT

"I" "0"

Vee -.6V .4SV
2.0 V .8 V
2.0 V .8V
av to.S v

~ r"\ ~ r-"\ r:::u U U 1......01 L.J - -.~

".
- -'

~,.

. .J,~-. -:x " --- ..,,---
~,

~ --- ~-- -- --- --- -- X'--
tSf.(D)-i

~
-- i-~ It- ,
-C>+- ~ to (D) '-- ~r

)o-tF (D) - }
~ ..

f-~ ~~-- -- ~--- -- -
tDL (Ml) tDH (Ml)- 1'= f- -teal

r-..~ {(
f- -tea

I

~
tDH (RF) I- _tedl

tDL(RF)_ f-H
/ i'f tF (C) -hf [L.j.(Mi', fI

tDH'I' (MRl-
_ ~(MR) tDH'f> (MR)- i -f-taem v~ !W(MRL) " (I II

~DL'I'(R~)
n

tDH'I' (RD)-
_ tw(MRH) ,T

tD~~(RD)-); -
/ "

-.. -_/ , II
....

WR

IT

t~
")r _

I tDH·f.(WR)

-tdem ItW(WRL) - -......... /
tDL'I. (lR)

f::::. tQ f ~ '",,"",- t~,r(lR)- :....
-tmr ---' ,If

~ -taci- ',. _/
~D) ;'I~)_ f T((RD) :.... .. _./ ' ..

~
t' l !:. il- l); h. DH'I'(WR) _/

I tS(WT) tH tdci
1-::"

~ '-------k><
---------, ,------ to (HT)

~
Its (IT) tH

--'-'-

)(,-- --. ~ ----, ,----

tW(~ ~ tH
'--

____ :x ,.-----, X ... _-
tDH (BA)

tDL (BA)

~ tH -
:x ,-----....

K ----, ,--------

71

A.C. Characteristics Z80A-CPU

T A = oOe to 70°e, Vee = +5V ± 5'1<,. Unless Otherwise Noted.

Signal Symbol Parameter Min

Ie Clock Period .25

~,
Iw(<I>H) Clock Pulse Width, Clock High 110
Iw(<I>L) Clock Pulse Widlh, Clock Low 110
Ir,f Clock Rise and Fall Time

ID(AD) Address Output Delay
tF(AD) Delay to Float

AO_IS
tacm Address Stable Prior to MREQ (Memory Cycle) II
tad Address Stable Prior to 10RQ; RD or WR (I/O Cycle) -
tea Address Stable from RD. WR. 10RQ or MREO 3
leaf Address Stable From RD or WR During Float 141

ID(D) Data Output Delay
IF (D) Delay to Float During Write Cycle
tS<I>(D) Data Setup Time to Rising Edge of Clock During M I Cycle 3S

DO_7 tS~(D) Data Setup Time to Falling Edge of Clock DUring M~ 10 M5 SO
tdcm Data Stable Prior to WR (Memory Cycle) 5
tdci Data Stable Prior to WR (I/O Cyeie) 16
tcdf Data Stable From WR 171

tH Any Hold Time for Setup Time

tDL~(MR) MREQ Delay From Falling Edge of Clock, MREQ Low

tDH<I> (MR) MREQ Delay From Rising Edge of Clock, MREQ High
MREQ tDH~(MR) MREQ Delay From Falling Edge of Clock, MREQ High

tw(MRL) Pulse Width, MREQ Low 18
tw(MRH) Pulse Width, MREQ High 191

tDL<I> (IR) 10RQ Delay From Rising Edge of Clock, (ORQ Low

10RQ tDL~(lR) 10RQ Delay From Falling Edge of Clock, 10RQ Low

tDH<I> (IR) 10RQ Delay From Rising Edge of Clock, [ORQ High
tDH~(lR) 10RQ Delay From Falling Edge of Clock, [ORQ High

tDL<I> (RD) RD Delay From Rising Edge of Clock, RD Low

RD tDL~(RD) RD Delay From Falling Edge of Clock, RD Low
tDH<I> (RD) RD Delay From Rising Edge of Clock, RD High

tDH~(RD) RD Delay From Falling Edge of Clock, RD High

tDL<I> (WR) WR Deiay From Rising Edge of Clock, WR Low

WR tDL~(WR) WR Delay From Falling Edge of Clock, WR Low
tDH<I>(WR) WR Delay Fr~ Falling Edge of Clock, WR High
tw(WRL) Pulse Width, WR.Low [101

MI tDL(Ml) M 1 Delay From Rising Edge of Clock, M I Low

tDH (MI) Mi Delay From Rising Edge of Clock, M I High

RFSH tDL(RF) RFSH Delay From Rising Edge of Clock, RFSH Low

tDH(RF) RFSH Delay From Rising Edge of Clock, RFsH High

WAIT ts(WT) WAIT Setup Time to Falling Edge of Clock 70

HALT tD(HT) HALT Delay Time From Falling Edge of Clock

lNT ts(IT) [NT Setup Time to Rising Edge of Clock 80

NM[tw(NML) Pulse Width, NMI Low 80

BUSRQ ts(BQ) BUSRQ Setup Time to Rising Edge of Clock 50

BUSAK tDL(BA) BUSAK Delay From Rising Edge of Clock, BUSAK Low

tDH(BA) BUSAK Delay From Falling Edge of Clock, BUSAK High

RESET ts(RS) RESET Setup Time to Rising Edge of Clock 60

tF(C) Delay to Float (MREQ, (ORQ, RD and WR)

tmr M 1 Stable Prior to [ORQ (Interrupt Ack.) 1111

NOTES:

A. Dala should be enabled onto the CPU data bus when Ri5 is active. During interrupt ackrloWledge data
should be ellabled when MT and (ORQ are both active.

B. .All control signals are internally synchronized, so they may be totally asynchronous With respect
to the clo.ck.

C. The RESET signal must be active for a minimum of 3 clock cycles.
D. Output Delay vs. Loaded Capacitance

TA = 70°C Vcc = +5V ±5%

Max

II~I

IE
2000

.10

110
90

150

90.

0

85 ..
85
85

75
85
85
85

85
95.

.85
85

65
80
80

100
100

130
120

300

100
100

80

Add 1 Onsec delay for each 50pf increase in load up to maximum of 20Dpf for datil bus and i oope for
address & control lines.

E. A,lthoUgh static by design, testing gnarantees iw(<I>H) of 200 /lsec maidmum

72

Unii Test Condition

p5et:
nsec

[i2] tc '= tw(<I>H) + tw(<I>L) + tr + tf

"sec
nsec

osec
osec
osec

CL = 50pF nsec [I) tacm = tw(cI>H) + If - 65
"sec
nsec (2) laci = tc ~70

nsec (3) tca = tw(tl>L) + tr - 50
osec
nsec
nsec CL = SOpl;
nsec

(4) tcaf= tw(<I>L) + tr -45

(5) tdcm" tc ~ 170
ns/!<::

[6] tdcl = tw(cJ>L) + tr - 170

nsec [7] tcdf = tw(cJ>L) + tt - 70

osec
"sec
"sec (' L = SOpF
osec [81 tw (MiL)" tc - 30
nsec

[9j tw(MRH) = tw(<I>H) + tf- 20
nsec
nsec

CL = 50pF nsec
nsec

osec.
nsec

CL " 50pF osec
osec

osec
nsec CL = 50pF
osec
osec

nsec
CL = 50pF

osec

nsec
CL " 50pF osec

osec

osec CL = 50pF

osec

osec

nsec

osec
CL = 50pF

osec .. ,

osec
ce···

nsec

nset;

tEST POINT

=
Load Circuit for butptit

~
12.0 DECIV Decrement IV

Z80-CPU
DEC 55 Decrement Reg. pair 55

Zilog INSTRUCTION SET 01 Disable interrupts

ADC HL, 55 Add with Carry Reg. pair ss to H L
DJNZ e Decrement B and Jump

relative if B/O

ADC A,s Add with carry operand s to Acc.
EI Enable interrupts

ADD A, n Add value n to Acc.
EX (SPl, HL Exchange the location (SP) and HL

ADD A, r Add Reg. r to Acc. EX (SP), IX Exchange the location (SP) and IX

ADD A, (HL) Add location (HL) to Acc. EX (SP), IV Exchange the location (SP) and IV

ADD A, (lX+d) Add location (lX+d) to Acc.
EX AF, AF' Exchange the contents of AF

ADD A, (lV+d) Add location (lV+d) to Acc. and AF'

ADD HL, ss Add Reg. pair ss to HL EX DE, HL Exchange the contents of DE
and HL

ADD IX, pp Add Reg. pair pp to IX
EXX Exchange the contents of BC, DE,

ADD IV, rr Add Reg. pair rr to IV HL with contents of BC', DE', HL'

ANDs Logical 'AND' of operand sand Acc. respectively

BIT b, (HL) Test BIT b of location (HL) HALT HALT (wait for interrupt or reset)

BIT b, (lX+d) Test BIT b of location (lX+d) .IMO Set interrupt mode 0

BIT bi (lV+d) Test BIT b of location (lV+d) 1M 1 Set interrupt mode 1

BITb,r Test BIT b of Reg. r 1M2 Set interrupt mode 2

CALL cc, nn Call subroutine at location nn if IN A, (n) Load the Acc. with input from

condition cc if true device n

CALL nn Unconditional call subroutine at IN r, (C) Load the Reg. r with input from •
location nn device (C)

CCF Complement carry flag INC (HL) Increment location (HL)

CP s Compare operand s with Acc. INCIX Increment IX

CPO Compare location (HL) and Acc.
INC (IX+d) Increment location (lX+d)

decrement H Land BC INC IV I ncrement I V

CPDR Compare location (HL) and Acc.
decrement HL and BC, repeat INC (lV+d) Increment location (lV+d)

until BC=O INC r Increment Reg. r

CPI Compare location (HL) and Acc. INC ss
increment HL and decrement BC

Increment Reg. pair ss

CPIR Compare location (HU and Acc.
IND Load location (H L) with input

increment H l, decrement BC
from port (C), decrement HL
and B

repeat until BC=O

CPL Complement Acc. (1 's coinp)
INDR Load location (HL) with input

from port (C), decrement HL and

DAA Decimal adjust Acc. decrement B, repeat until B=O

DECm Decrement operand in INI Load location (HL) with input
from port (C); and increment HL

DECIX Decrement I X and decrement B

73

INIR load location (Hl) with input lD (nn), A load location (nn) with Acc.
from port (C), increment Hl

lD (nn), dd load location (nn) with Reg. pair dd and decrement B, repeat until
B=O lD (nn), Hl load location (nn) with Hl

JP (HL) Unconditional Jump to (Hl) lD (nn), IX load location (nn) with IX

JP (IX) Unconditional Jump to (IX) lD (nn), IV load location (nn) with IV

JP (IV) Unconditonal Jump to (IV) lD R,A load R with Ace.

JP cc, nn Jump to location nn if lD r, (Hl) load Reg. r with loca.ion (Hl)
condition cc is true

JP nn Unconditional jump to location
lD r,(lX+d) load Reg. r with location (lX+d)

nn lD r, (lV+d) load Reg. r with location (lV+d)

JP C, e Jump relative to PC+e if carry=1 lD r, n load Reg. r with value n

JR e Unconditional Jump relative lD r, r' load Reg.r with Reg. r'
to PC+e

lD SP, Hl load SP with H l
JP NC, e Jump relative to PC+e if carry=O

lD SP, IX load SP with I X
JR NZ, e Jump relative to PC+e if non

zero (Z=O) lD SP, IV load SP with IV

JR Z, e Jump relative to PC+e if zero (Z=1) lDD load location (DE) with location
(Hl), decrement DE, Hl and BC

lD A, (BC) load Acc. with location (BC)
lDDR load location (DE) with location

lD A, (DE) load Acc. with location (DE) (Hl), decrement DE, Hl and BC;
(repeat until BC=O

lDA,1 load Acc. with I

lD A, (nn) load Acc. with IQcation nn lDI load location (DE) with location
(HU, increment DE, Hl,

lOA, R load Ace. with Reg. R decrement BC

LD (BC), A load location (BC) with Ace. lDIR load location (DE) with location
(Hl), increment DE, Hl,

lD (DE), A load location (DE) with Acc. decrement BC and repeat until

lD (Hl), n load location (Hl) with value n
BC=O

lD dd, nn load Reg. pair dd with value nn
NEG Negate Ace. (2's complement)

NOP No operation
lD Hl, (nnL load Hl with location (nn)

load location (HL) with Reg. r
ORs logical 'OR' or operand s and Ace.

lD (HL), r
OTDR load output port (C) with location

lD I,A load I with Acc. (Hl) decrement Hl and B, repeat
until B=O

IF IX, nn load I X with value nn
OTIR load output port (C) with location

lD IX, (nn) load IX with location (nn) (Hl), increment I1l, decrement B,

lD (lX+d), n load location (lX+d) with value n
repeat until B=O

lD (lX+d), r load location (lX+d) with Reg. r
OUT (C), r load output port (C) with Reg. r

OUT (n), A load output port (n) with Acc.
lD IV, nn load IV with value nn OUTD load output port (C) with location

lD IV, (nn) load IV with location (nn) (Hl), decrement Hl and B

lD (lV+d), n load location (lV+d) with value n OUTI load output port (C) with location
(H L), increment H l and decrement

lD (lV+d), r load location (lV+d) with Reg. r B

74

POP IX Load IX with top of stack RRm Rotate right through carry operand m

POP IV Load IV with top of stack RRA Rotate right Ace. through carry

POPqq Load Reg. pair qq with top of stack RRCm Rotate operand m right circular

PUSH IX Load IX onto stack RRCA Rotate right circular Ace.

PUSH IV Load IV onto stack RRD Rotate digit right and left between
Ace. and location (HL)

PUSH qq Load Reg. pair qq onto stack

RES b, m Reset Bit b of operand m
RSTp Restart to location p

RET Return from subroutine SBC A, 5 Subtract operand 5 from Ace. with
carry

RETcc Return from subroutine if condition
cc is true SBC HL, 55 Subtract Reg. pair S5 from HL with

carry
RETI Return from interrupt

SCF Set carry flag (C=1)
RETN Return from non ma5kable interrupt

SET b, (HL) Set Bit b of location (HL)
RLm Rotate left through carry operand m

SET b, (lX+d) Set Bit b of location (lX+d)
RLA Rotate left Ace. through carry

SET b, (lV+d) Set Bit b of location (lV+d)
RLC (HL) Rotate location (HL) left circular

RLC (lX+d) Rotate location (lX+d) left circular
SET b, r Set Bit b of Reg. r

SLAm Shift operand m left arithmetic
RLC (lV+d) Rotate location (lV+d) left circular

SRAm Shift operand m right arithmetic
RLCr Rotate Reg. r left circular

SRL m Shift operand m right logical
RLCA Rotate left circular Ace.

SUB s Subtract operand s from Ace.
RLD Rotate digit left and right between

Ace. arid location (HL) XOR5 Exclusive 'OR' operand 5 and Ace.

75

Zilog
10340 8IIIJb RoM

0IpertiD0. CalifCllllia 95014
Tell:phoae:: (401) 446 .66'

"JWX: 91~33&-7621

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77

