

ZSO® Family
User's Manual

Includes User Manual
Specifications

for the following parts:

• ZSO® CPU
• ZSO® CTC
• ZSO® DMA
• ZSO® PIO
• ZSO® 510

DC 8309-00

ft) 2il «I=>
ZBO®CPU

Central Processing Unit

zao® ere
Counter/Timer Circuit

zao•oMA
Direct Memory Access

ZBO® PIO
Parallel Input/Output

ZBO® SID
Serial Input/Output

Superintegration™
Products Guide

Zilog•s Literature Guide
Ordering Information

II

~2iUD,
INTRODUCTION

The Zilog Z80"' family of components can be configured with any type of standard semiconductor memory to generate n
computer systems with an extremely wide range of capabilities. For example, as few as two LSI circuits and three standard Iii
TIL MS!" packages can be combined to form a simple controller. With additional memory and 1/0 devices a computer
can be constructed with capabilities that only a minicomputer could previously deliver. This wide range of computational
power allows standard modules to be constructed by a user that can satisfy the requirements of an extremely wide range
of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of these few LSI components. For
example, MOS LSI microcomputers have already replaced TIL logic in such application as terminal controllers,
peripheral device controllers, traffic signal controllers, point of sale terminals, intelligent terminals, and test systems. In
fact, the MOS LSI microcomputer is finding its way into almost every product that now uses electronics and it is even
replacing many mechanical systems such as weight scales and automobile controls.

The MOS LSI microcomputer market is already will established and new products using them are being developed at
an extraordinary rate. The Zilog Z80 component set has been designed to fit into this market by the following factors:

• The Z80 is fully software compatible with the popular 8080A CPU offered from several sources. Existing designs can
be easily converted to include the Z80 as a superior alternative.

• The Z80 component set is superior in both software and hardware capabilities to any other microcomputer system
on the market. These capabilities provide the user with significantly lower hardware and software development costs
while also offering additional system features.

• A complete line of software support with strong emphasis on high-level languages and a disk-based development
system with advanced real-time debug capabilities is offered to enable the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z80 components. Any such system consists of three
parts:

• CPU (Central Processing Unit)
• Memory
• Interface Circuits to Peripheral Devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform the desired
operations. The memory is used to contain instructions and, in most cases, data that is to be processed. For example,
a typical instruction sequence may be to read data from a specific peripheral device, store it in a location in memory, check
the parity, and write it to another peripheral device. Note that the Zilog component set includes the CPU and various
general-purpose 1/0 device controllers, while a wide range of memory devices may be used from any source. Thus, all
requited components can be connected together in a very simple manner with virtually no other external logic. The user's
effort then becomes primarily one of software development. That is, the user can concentrate on describing the problem
and translating it into a series of instructions that can be loaded into the microcomputer memory. Zilog is dedicated to
making this step of software generation as simple as possible. A good example of this is the assembly language in which
a simple mnemonic is used to represent every instruction that the CPU can perform. This language is self-documenting
in such a way that from the mnemonic the user can understand exactly what the instruction is doing without constantly
checking back to a complex cross listing.

CPU USER'S MANUAL

TABLE OF CONTENTS II
C hapter 1. Architecture

1.0 Introduction ,. .. " Ai-1
i. 1 CPU Registers .. A 1-2

1.1.i Special-Purpose Registers ... Ai-2
1.1.2 Accumulator and Flag Registers ... A 1-2
1.1.3 General-Purpose Registers .. A 1-2

1.2 Arithmetic Logic Unit (ALU) .. a 1-3
1.3 Instruction Register and CPU Control .. A 1-3

Chapter 2. Pin Description
2.0 Introduction ,. .. A2-1
2. 1 Pin Functions .. A2-2

Chapter 3. Timing
3.0 Introduction ... A3-1
3.1 Instruction Fetch .. A3-2
3.2 Memory Read or Write ... A3-3
3.3 Input or Output Cycles ... A3-4
3.4 Bus Request/Acknowledge Cycle ... A3-4
3.5 Interrupt Request/Acknowledge Cycle .. A3-5
3.6 Non-Maskable Interrupt Response .. A3-6
3.7 HALT Exit ... A3-6
3.8 Power-Down Acknowledge Cycle .. A3-7
3.9 Power-Down Release Cycle ... A3-7

Chapter 4. Instruction Set
4.0 Introduction .. A4-1
4. 1 Addressing Modes ... A4-2

4.1.1 Addressing Mode Combinations ... A4-4
4.2 Instruction Opcodes .. A4-4

4.2.1 Load and Exchange ... A4-4
4.2.2 Block Transfer and Search .. A4-8
4.2.3 Arithmetic and Logical ... A4-9
4.2.4 Rotate and Shift .. A4-11
4.2.5 Bit Manipulation ... A4-12
4.2.6 Jump, Call, and Return .. A4-12
4.2.7 Input/Output ... A4-15
4.2.8 CPU Control Group .. A4-15

A-i

Chapter 5. Z80 Instruction Description
5.0 Introduction: Z80 Assembly Language .. A5-1
5.1 Z80 Status Indicators (Flags) ... A5-1

5.1.1 Carry Flag (C) .. A5-1
5.1.2 Add/Subtract Flag (N) .. A5-2
5.1.3 Parity/Overflow Flag (PN) .. A5-2
5.1.4 Half Carry Flag (H) ... A5-2
5.1.5 Zero Flag (Z) .. A5-2
5.1.6 Sign Flag (S) .. A5-3

5.2 Z80 Instruction Description .. A5-3
8-Bit Load Group ... A5-5
16-Bit Load Group ... A5-27
Exchange, Block Transfer, and Search Group .. A5-49
8-Bit Arithmetic Group ... A5-67
General-Purpose Arithmetic and CPU Control Groups ... A5-93
16-Bit Arithmetic Group ... A5-107
Rotate and Shift Group .. A5-119
Bit Set, Reset, and Test Group .. A5-145
Jump Group ... A5-157
Call and Return Group ... A5-169
Input and Output Group ... A5-179

Chapter 6. Interrupt Response
6.0 Introduction , .. A6-1
6.1 Interrupt Enable/Disable .. A6-1
6.2 CPU Response ... A6-2

6.2.1 Non-Maskable .. A6-2
6.2.2 Mode O ... A6-2
6.2.3 Mode 1 ... A6-2
6.2.4 Mode 2 ... A6-3

Chapter 7. Hardware Implementation Examples
7.0 I Introduction ... A7-1
7.1 Adding RAM ... A7-2
7.2 Memory Speed Control .. A7-3
7.3 Interfacing Dynamic Memories .. A7-4

Chapter 8. Software Implementation Examples
8.0 Introduction: Software Features ... A8-1
8.1 Examples of Use of Special Z80 Instructions .. A8-2
8.2 Examples of Programming Tasks .. A8-3

Index: ZSO CPU Instruction Set
Alphabetical Assembly Neumonic Listing ... Al-1

A-ii

zao 111 cPu
USER'S MANUAL

List of Figures
Figure 1-1. Z80 CPU Block Diagram .. A1-1
Figure 1-2. Z80 CPU Register Configuration .. A 1-3
Figure 2-1. Z80 Pin Configuration ... A2-1
Figure 3-1. Basic CPU Timing Example .. A3-1
Figure 3-2. Instruction Opcode Fetch ... A3-2
Figure 3-3. Memory Read or Write Cycle .. A3-3
Figure 3-4. Input or Output Cycles ... A3-4
Figure 3-5. Bus Request/Acknowledge Cycle .. A3-5
Figure 3-6. Interrupt Request/Acknowledge Cycle ... A3-5
Figure 3-7. Non-Maskable Interrupt Request Operation .. A3-6
Figure 3-8. HALT Exit .. A3-6
Figure 3-9. Power-Down Acknowledge .. A3-7
Figure 3-10. Power-Down Release Cycle No. 1 .. A3-7
Figure 3-11. Power-Down Release Cycle No. 2 .. A3-8
Figure 3-12. Power-Down Release Cycle No. 3 .. A3-8
Figure 4-1. 8-Bit Load Group 'LD' ... A4-5
Figure 4-2. 16-Bit Load Group, LD. PUSH, and POP ... A4-7
Figure 4-3. Exchanges EX and EXX .. A4-7
Figure 4-4. Block Transfer Group ... A4-8
Figure 4-5. Block Search Group ... A4-9
Figure 4-6. 8-bit Arithmetic and Logic .. A4-10
Figure 4-7. General-Purpose AF Operation .. A4-10
Figure 4-8. 16-Bit Arithmetic ... A4-11
Figure 4-9. Rotates and Shifts ... A4-11
Figure 4-10. Bit Manipulation Group ... A4-13
Figure 4-11. Jump, Call, and Return Group .. A4-14
Figure 4-12. Restart Group ... A4-15
Figure 4-13. Input Group .. A4-16
Figure 4-14. Output Group .. A4-16
Figure 4-15. Miscellaneous CPU Control .. A4-17
Figure 7-1. Minimum Z80 Computer System .. A7-1
Figure 7-2. ROM and RAM Implementation .. A7-2
Figure 7-3. Adding One Wait State to an M1 Cycle .. A7-3
Figure 7-4. Adding One Wait Stte to Any Memory Cycle .. A7-3
Figure 7-5. Interfacing Dynamic RAMs ... A7-4
Figure 8-1. Shifting of BCD Digits/Bytes ... A8-3

List of Tables
Table 4-1.Hex to Binary Conversion Table .. A4-4
Table 6-1.lnterrupt Enable/Disable Flip-Flops ... A6-2

zao•cpu
USER'S MANllAL

A-iii

a

~2iUD.,

1.0 INTRODUCTION

A block diagram of the internal architecture of the Z80 CPU
is shown in Figure 1-1. The diagram shows all of the major
elements in the CPU and it should be referred to through­
out the following descriptions.

13
CPU and
Sys1em
Control
Signals

Instruction
Decode

and
CPU

Control

i i i
+SVGND CLK

CPU USER'S MANUAL

CHAPTER 1
ARCHITECTURE

16-Bit
Address Bus

Figure 1-1. Z80 CPU Block Diagram

II

ALU

A1-1

1.1 CPU REGISTERS

The Z80 CPU contains 208 bits of RN/ memory that are
accessible to the programmer. Figure 1-2 illustrates how
this memory is configured into eighteen 8-bit registers and
four 16-bit registers. All Z80 registers are implemented
using static RAM. The registers include two sets of six
general-purpose registers that may be used individually
as 8-bit registers or in pairs as 16-bit registers. There are
also two sets of accumulator and flag registers and six
special-purpose registers.

1.1.1 Speclal-Purpose Registers
Program Counter (PC). The program counter holds the
16-bit address of the current instruction being fetched
from memory. The PC is automatically incremented after its
contents have been transferred to the address lines. When
a program jump occurs the new value is automatically
placed in the PC, overriding the incrementer.

Stack Pointer (SP). The stack pointer holds the 16-bit
address of the current top of a stack located anywhere in
external system RAM memory. The external stack memory
is organized as a last-in first-out (LIFO) file. Data can be
pushed onto the stack from specific CPU registers or
popped off of the stack into specific CPU registers through
the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto
it. The stack allows simple implementation of multiple level
interrupts, unlimited subroutine nesting and simplification
of many types of data manipulation.

Two Index Registers (IX and IY). The two independent
index registers hold a 16-bit base address that is used in
indexed addressing modes. In this mode, an index regis­
ter is used as a base to point to a region in memory from
which data is to be stored or retrieved. An additional byte
is included in indexed instructions to specify a displace­
ment from this base. This displacement is specified as a
two's complement signed integer. This mode of address­
ing greatly simplifies many types of programs, especially
where tables of data are used.

Interrupt Page Address Register (I). The Z80 CPU can
be operated in a mode where an indirect call to any
memory location can be achieved in response to an
interrupt. The I register is used for this purpose to store the
high order eight bits of the indirect address while the
interrupting device provides the lower eight bits of the
address. This feature allows interrupt routines to be dy­
namically located anywhere in memory with absolute mini­
mal access time to the routine.

A1-2

Z80"'CPU
USER'S MANUAL

Memory Refresh Register (R). The Z80 CPU contains a
memory refresh counter to enable dynamic memories to
be used with the same ease as static memories. Seven bits
of this 8-bit register are automatically incremented after
each instruction fetch. The eighth bit will remain as pro­
grammed as the result of an LD R, A instruction. The data
in the refresh counter is sent out on the lower portion of the
address bus along with a refresh control signal while the
CPU is decoding and executing the fetched instruction.
This mode of refresh is totally transparent to the program­
mer and does not slow down the CPU operation. The
programmer can load the R register for testing purposes,
but this register is normally not used by the programmer.
During refresh, the contents of the I register are placed on
the upper eight bits of the address bus.

1.1.2 Accumulator and Flag Registers
The CPU includes two independent 8-bit accumulators
and associated 8-bit flag registers. The accumulator holds
the results of 8-bit arithmetic or logical operations while the
flag register indicates specific conditions for 8-bit or 16-bit
operations, such as indicating whether or not the result of
an operation is equal to zero. The programmer selects the
accumulator and flag pair with a single exchange instruc­
tion so that it is possible to work with either pair.

1.1.3 General Purpose Registers
There are two matched sets of general-purpose registers,
each set containing six 8-bit registers that may be used
individually as 8-bit registers or as 16-bit register pairs.
One set is called BC, DE, and HL while the complementary
set is called BC', DE', and HL'. At any one time, the
programmer can select either set of registers to work with
through a single exchange command for the entire set. In
systems where fast interrupt response is required, one set
of general-purpose registers and an accumulator/flag
register may be reserved for handling this very fast routine.
Only a simple exchange command need be executed to
go between the routines. This greatly reduces interrupt
service time by eliminating the requirement for saving and
retrieving register contents in the external stack during
interrupt or subroutine processing. These general­
purpose registers are used for a wide range of applica­
tions by the programmer. They also simplify programing,
especially in ROM based systems where little external
read/write memory is available.

Main Reg Set Altemate Reg Set

~

Accumulator Flags Accumulator
A F A'

B c B'

D E D'

H L H'

Interrupt I Memoiy
Vector Refresh

I R

Index Register IX

Index Register IV

Stack Pointer SP

Program Counter PC

.......

>

Flags
F'

B'

E'

L'

Special
Purpose
Registers

Figure 1-2. Z80 CPU Register Configuration

1.2 ARITHMETIC LOGIC UNIT {ALU)

The 8-bit arithmetic and logical instructions of the CPU are
executed in the ALU. Internally the ALU communicates
with the registers and the external data bus on the internal
data bus. The type of functions performed by the ALU
include:

}

General-
Purpose
Registers

zso~cPu
USER'S MANUAL

• Add • Left or Right Shifts or Rotates (Arithmetic and Logical)
• Subtract • Increment
• Logical AND • Decrement
• LogicalOR • Set Bit
• Logical Exclusive OR • Reset Bit
• Compare • Test bit

1.3 INSTRUCTION REGISTER AND CPU CONTROL
As each instruction is fetched from memory, it is placed in
the instruction register and decoded. The control sections
performs this function and then generates and supplies all

of the control signals necessary to read or write data from
or to the registers, control the ALU, and provide all required
external control signals.

A1-3

CPU USER'S MANUAL

CHAPTER 2
PIN DESCRIPTION

2.0 INTRODUCTION

The ZBO CPU 1/0 pins are shown in Figure 2-1 and the
function of each is described below.

/M1
27 30

31 =
/MREQ • 19 32

System
/IORQ

Control /RD

NIR

.. 20 33

~
21 3<:
22 35 =

36 =
/RFSH 28 37 __.. -- 38

/HALT - 18 39 __..

NIAIT

40
24 1

......
CPU
Control /INT

2
16 ZBO CPU 3

......

/NMI 17 4 --..
5

/RESET
26

CPU {BUSRQ BUS
Control /BU SAK

25
23 -- 14 --

/CLK

+SY

-- 15
6 --- 12

11 8

GND 29_.. 7

9 --
: 10

13

Figure 2.1 ZSO Pin Configuration

AO
A1

A2
A3
A4

AS
A6

A7

A8
A9

A10
A11

A12

A13

A14
A1S

DO
01

02
03
04

OS

06

07

Address
BUS

Data
BUS

II

A2-1

2.1 PIN FUNCTIONS

A15-AO Address Bus (output, active High, tri-state), A 15-
AO form a 16-bit address bus. The Address Bus provides
the address for memory data bus exchanges (up to 64
Kbytes) and for 1/0 device exchanges.

/BUSACK Bus Acknowledge (output, active Low). Bus
Acknowledge indicates to the requesting device that the
CPU address bus, data bus, and control signals /MREQ,
/IORQ, /RD, and !WR have entered their high-impedance
states. The external circuitry can now control these lines.

/BUSREQ Bus Request (input, active Low). Bus Request
has a higher prioritythan/NMI and is always recognized at
the end of the current machine cycle, /BUSREQ forces the
CPU address bus, data bus, and control signals /MREQ,
/IORQ, RD, and WR to go to a high-impedance state so that
other devices can control these lines. /BUSREQ is normally
wired-OR and requires an external pull-up for these appli­
cations. Extended /BUSREQ periods due to extensive
OMA operations can prevent the CPU from properly re­
freshing dynamic RAMs.

07-00 Data Bus (input/output, active High, tri-state). 07-
00 constitute an 8-bit bidirectional data bus, used for data
exchanges with memory and 1/0.

/HALT HALT State (output, active Low). /HALT indicates
that the CPU has executed a HALT instruction and is
awaiting either a non-maskable or a maskable interrupt
(with the mask enabled) before operation can resume.
During HALT, the CPU executes NOPs to maintain memory
refresh.

/INT Interrupt Request (input, active Low). Interrupt Re­
quest is generated by 1/0 devices. The CPU honors a
request at the end of the current instruction if the internal
software-controlled interrupt enable flip-flop (IFF) is en­
abled. /INT is normally wired-OR and requires an external
pull-up for these applications.

/IORQ Input/Output Request(output, active Low. tri-state).
/IORQ indicates that the lower half of the address bus
holds a valid 1/0 address for an 1/0 read or write operation.
/IORQ is also generated concurrently with /M1 during an
interrupt acknowledge cycle to indicate that an interrupt
response vector can be placed on the data bus.

A,., 'l

ZSO®CPU
USER'S MANUAL

/M1 Machine Cycle One (output, active Low). /M1, to­
gether with /MREQ, indicates that the current machine
cycle is the opcode fetch cycle of an instruction execution.
/M1, together with /IORQ, indicates an interrupt acknowl­
edge cycle.

/MREQ Memory Request (output, active Low, tri-state).
/MREQ indicates that the address bus holds a valid ad­
dress for a memory read of memory write operation.

/NMI Non-Maskable Interrupt (input, negative edge-trig­
gered). /NMI has a higher priority than /INT. /NMI is always
recognized at the end of the current instruction, indepen­
dent of the status of the interrupt enable flip-flop, and
automatically forces the CPU to restart at location 0066H.

/RD Read(output, active Low, tri-state). /RD indicates that
the CPU wants to read data from memory or an 1/0 device.
The addressed 1/0 device or memory should use this
signal to gate data onto the CPU data bus.

/RESET Reset (input, active Low). /RESET initializes the
CPU as follows: it resets the interrupt enable flip-flop,
clears the PC and registers I and R, and sets the interrupt
status to Mode 0. During reset time, the address and data
bus go to a high-impedance state. and all control output
signals go to the inactive state. Note that /RESET must be
active for a minimum of three full clock cycles before the
reset operation is complete.

/RFSH Refresh (output, active Low). /RFSH, together with
/MREQ, indicates that the lower seven bits of the system's
address bus can be used as a refresh address to the
system's dynamic memories.

/WAIT WAIT (input, active Low). !WAIT indicates to the
CPU that the addressed memory or 1/0 devices are not
ready for a data transfer. The CPU continues to enter a
[WAIT state as long as this signal is active. Extended !WAIT
periods can prevent the CPU from properly refreshing
dynamic memory.

/WR Write (output, active Low, tri-state). [WR indicates that
the CPU data bus holds valid data to be stored at the
addressed memory or 1/0 location.

/CLK Clock (input). Single-phase MOS-level clock.

<t'2iUV,

3.0 INTRODUCTION

The Z80 CPU executes instructions by stepping through a
very precise set of a few basic operations. These include:

• Memory Read or Write

• 1/0 Device Read or Write

• Interrupt Acknowledge,

All instructions are merely a series of these basic opera­
tions. Each of these basic operations can take from three
to six clock periods to complete or they can be lengthened
to synchronize the CPU to the speed of external devices.
The basic clock periods are referred to as T (time) cycles
and the basic operations are referred to as M (machine)
cycles. Figure 3-1 illustrates how a typical instruction is
merely a series of specific M and T cycles. Notice that this
instruction consists of three machine cycles (M 1, M2, and

/CLK
T1 T2 T3

Machine Cycle

M1

CPU USER'S MANUAL

CHAPTER 3
TIMING

M3) The first machine cycle of any instruction is a fetch
cycle which is four, five, or six T cycles long (unless
lengthened by the WAIT signal which will be fully de­
scribed in the next section). The fetch cycle (M1) is used
to fetch the opcode of the next instruction to be executed.
Subsequent machine cycles move data between the CPU
and memory or 1/0 devices, and they may have anywhere
from three to five T cycles (again they may be lengthened
by wait states to synchronize the external devices to the
CPU). The following paragraphs describe the timing which
occurs within any of the basic machine cycles.

During T2 and every subsequent Tw, the CPU samples the
WAIT line with the failing edge of Clock. If the WAIT line is
active at this time, another WAIT state will be entered
during the following cycle. Using this technique the read
can be lengthened to match the access time of any type of
memory device.

T2 T2 T3

M2 M3
(Opcode Fetch) (Memory Read) (Memory Write)

Instruction Cycle

Figure 3-1. Basic CPU Timing Example

A3-1

3.1 INSTRUCTION FETCH

Figure 3-2 shows the timing during an M1 (opcode fetch)
cycle. The PC is placed on the address bus at the begin­
ning of the M 1 cycle. One half clock cycle later the /MREQ
signal goes active. At this time the address to the memory
has had time to stabilize so that the failing edge of /MREQ
can be used directly as a chip enable clock to dynamic
memories. The /RD line also goes active to indicate that the
memory read data should be enabled onto the CPU data
bus. The CPU samples the data from the memory on the
data bus with the rising edge of the clock of state T3 and
this same edge is used by the CPU to turn off the /RD and
/MREQ signals. Thus, the data has already been sampled
by the CPU before the /RD signal becomes inactive. Clock
state T3 and T 4 of a fetch cycle are used to refresh dynamic
memories. (The CPU uses this time to decode and execute

M1 Cycle

T1 T2

/CU<
-I 1 L_

A15-AO I PC I

Z80G"<CPU
USER'S MANUAL

the fetched instruction so that no other operation could be
performed at this time.)

During T3 and T 4, the lower seven bits of the address bus
contain a memory refresh address and the /RFSH signal
becomes active to indicate that a refresh read of all
dynamic memories should be accomplished. Notice that
an /RD signal is not generated during refresh time to
prevent data from different memory segments from being
gated onto the data bus. The /MREQ signal during refresh
time should be used to perform a refresh read of all
memory elements. The refresh signal can not be used by
itself since the refresh address is only guaranteed to be
stable during /MREQ time.

...,..

T3 T4 T1.

L..... l l
Refresh Address I

/MREQ 1 .r-1 1 l

/RD 1 1
fflAJT - to------:J c: to----- 1------ i------- 1--

to------ to-----~ to-----~ to-----· 1--

/M1
-I h_ f i: ____ 1--

07-DO IiN h..
\...!!.:.. i..r

/RFSH 1 I

Figure 3-2. Instruction Opcode Fetch

A3-2

3.2 MEMORY READ OR WRITE

Figure 3-3 illustrates the timing of memory read or write
cycles other than an opcode fetch cycle. These cycles are
generally three clock periods long unless wait states are
requested by the memory through the /WAIT signal. The
/MREQ signal and the /RD signal are used the same as in
the fetch cycle. In the case of a memory write cycle, the
/MREQ also becomes active when the address bus is
stable so that it call be used directly as a chip enable for

Memory Read Cycle

T2 T3

/CLK

A15-A0

/MREQ

/RD

/WR

07-DO IN

----- :rt: -----/WAIT ----- -----

zao•cpu
IJsER's MANuAL

dynamic memories. The /WR line is active when data on
the data bus is stable so that it can be used directly as a
RNJ pulse to virtually any type of semiconductor memory.
Furthermore, the /WR signal goes inactive one-half T state
before the address and data bus contents are changed so A
that the overlap requirements for virtually any type of
semiconductor memory type will be met.

Memory Write Cycle----.

T2 T3

DATA OUT

Figure 3-3. Memory Read or Write Cycle

A3-3

3.3 INPUT OR OUTPUT CYCLES

Figure 3-4 illustrates an 1/0 read or 1/0 write operation.
Notice that during 1/0 operations a single wait state is
automatically inserted. The reason is that during 1/0 opera­
tions, the time from when the /IORQ signal goes active until
the CPU must sample the /WAIT line is very short, and
without this extra state, sufficient time does not exist for an
1/0 port to decode its address and activate the /WAIT line
if a wait is required. Also, without this wait state, it is difficult

T1 T2

ICU<

A15·AO

/IORQ

/RD

07·00

/WAIT ----- ----- J ----- -----
/WR

07-00

ZSO*CPU
USER'S MANUAL

to design MOS 1/0 devices that can operate at full CPU
speed. During this wait state time, the /WAIT request signal
is sampled.

During a read 1/0 operation, the /RD line is used to enable
the addressed port onto the data bus just as in the case of
a memory read. For 1/0 write operations, the /WR line is
used as a clock to the 1/0 port.

TW* T3 T1

}Read
Cycle

c: ----- --------- ----

}Write Cycle
OUT

Figure 3·4. Input or Output Cycles

3.4 BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 3-5 illustrates the timing for a Bus Request/Ac­
knowledge cycle. The /BUSREQ signal is sampled by the
CPU with the rising edge of the last clock period of any
machine cycle. If the /BUSREQ signal is active, the CPU
will set its address, data, and tri-state control signals to the
high-impedance state with the rising edge of the next clock
pulse. At that time, any external device can control the
buses to transfer data between memory and 1/0 devices.
(This is generally known as Direct Memory Access [DMA]
using cycle stealing.) The maximum time for the CPU to

A3-4

respond to a bus request is the length of a machine cycle
and the external controller can maintain control of the bus
for as many clock cycles as is desired. Note, however, that
if very long DMA cycles are used, and dynamic memoriesies
are being used, the external controller must also perform
the refresh function. This situation only occurs if very large
blocks of data are transferred under DMA control. Also
note that during a bus request cycle, the CPU cannot be
interrupted by either an /NMI or an /INT signal.

/CLK

/BUSREQ

/BUSACK

A15·A0

07-00

/MREO,/RO,

Z80"'CPU
USER'S MANllAL

/WR,/IORQ, -+-----i.----+-----4-1
/RFSH

Floating

Figure 3·5. Bus Request/Acknowledge Cycle

3.5 INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 3-6 illustrates the timing associated with an interrupt
cycle. The interrupt signal (!INT) is sampled by the CPU
with the rising edge of the last clock at the end of any
instruction. The signal will not be accepted if the internal
CPU software controlled interrupt enable flip-flop is not set
or if the /BUSREQ signal is active. When the signal is
accepted, a special M1 cycle is generated. During this
special M1 cycle, the /IORQ signal becomes active (in­
stead of the normal /MREQ) to indicate thatthe interrupting

/CLK

/INT

A15·AO

/M1

/MREQ

/IORQ

07-00

NIAIT

/RD

device can place an 8-bit vector on the data bus. Notice
that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt
scheme can be easily implemented. The two wait states
allow sufficient time for the ripple signals to stabilize and
identify which 1/0 device must insert the response vector.
Refer to Chapter 6 for details on how the interrupt response
vector is utilized by the CPU.

ri::

Figure 3·6. Interrupt Request/Acknowledge Cycle

A3-fi

3.6 NON-MASKABLE INTERRUPT RESPONSE

Figure 3-7 illustrates the request/acknowledge cycle for
the non-maskable interrupt. This signal is sampled at the
same time as the interrupt line, butthis line has priority over
the normal interrupt and it can not be disabled under
software control. Its usual function is to provide immediate
response to important signals such as an impending
power failure. The CPU response to a non-maskable

interrupt is similar to a normal memory read operation. The
only difference being that the content of the data bus is
ignored while the processor automatically stores the PC in
the external stack and jumps to location 0066H. The
service routine for the non-maskable interrupt must begin
at this location if this interrupt is used.

-LastMCycle----+1+----------MI ------1~

LastTState T1 T2 T3 T4 T1

/CU<

/NMI

A15-AO

/M1

/MREQ

/RD

IRFSH

Figure 3·7. Non-Maskable Interrupt Request Operation

3.7 HALT EXIT

Whenever a software HALT instruction is executed, the
CPU begins executing NOPs until an interrupt is received
(either a non-maskable or a maskable interrupt while the
interrupt flip flop is enabled). The two interrupt lines are
sampled with the rising clock edge during each T 4 state as
shown in Figure 3-8. If a non-maskable interrupt has been
received or a maskable interrupt has been received and
the interrupt enable flip-flop is set, then the HALT state will
be exited on the next rising clock edge. The following cycle
will then be an interrupt acknowledge cycle correspond-

/CU<

/HALT

nNTor

/NMI

HALT Instruction Is received
during this Memory Cycle.

ing to the type of interrupt that was received. If both are
received at this time, then the non-maskable one will be
acknowledged since it has highest priority. The purpose of
executing NOP instructions while in the HALT state is to
keep the memory refresh signals active. Each cycle in the
HALT state is a normal M1 (fetch) cycle except that the
data received from the memory is ignored and a NOP
instruction is forced internally to the CPU. The HALT
acknowledge signal is active during this time to indicate
that the processor is in the HALT state.

Figure 3-8. HALT Exit

A~-R

3.8 POWER-DOWN ACKNOWLEDGE CYCLE

When the clock input to the CMOS ZBO CPU is stopped at
either a High or Low level, the CMOS ZBO CPU stops its
operation and maintains all registers and control signals.
However, ICC2 (standby supply current) is guaranteed
only when the system clock is stopped at a Low level

T1 T2 T3 T4 T1

/CUC

zaoscpu
USER'S MANUAL

during T 4 of the machine cycle following the execution of
the HALT instruction. The timing diagram for the power­
down function, when implemented with the HALT instruc­
tion, is shown in Figure 3-9.

T2 T3 T4

1M1\ __ / \ __ lr------!!l.:IF

/HALT

Figure 3-9. Power-Down Acknowledge

3.9 POWER-DOWN RELEASE CYCLE

The system clock must be supplied to the CMOS Z80 CPU
to release the power-down state. When the system clock is
supplied to the CLK input, the CMOS Z80 CPU restarts
operations from the point at which the power-down state
was implemented. The timing diagrams for the release
from power-down mode are shown in Figures 3-10 to 3-12.

T1 T2 T3

CLK

~Ml _/
.g.

\ I /M1

MALT

When the HALT instruction is executed to enter the power­
down state, the CMOS Z80 CPU will also enter the HALT
state. An interrupt signal (either /NMI or /INT) or a /RESET
signal must be applied to the CPU after the system clock
is supplied in order to release the power-down state.

T4 T1

IF

\ IF

Figure 3-10. Power-Down Release Cycle No. 1

3.9 POWER DOWN RELEASE CYCLE (Continued)
T1 T2 T3 T4

/CLK

/RESET

IM1

/HALT

Figure 3·11. Power-Down Release Cycle No. 2

T1 T2 TS T4 T1 T2 TwA TWA

Cl.I(

\ I nNT

IF

IF \ I /M1 \
/HALT

Figure 3·12. Power-Down Release Cycle No. 3

~2iUU,

4.0 INTRODUCTION

The Z80 CPU can execute 158 different instruction types
including all 78 of the 8080A CPU. The instructions can be
broken down into the following major groups:

• Load and Exchange
• Block Transfer and Search
• Arithmetic and Logical
• Rotate and Shift

4.1 INSTRUCTION TYPES

The load instructions move data internally between CPU
registers or between CPU registers and external memory.
All of these instructions must specify a source location
from which the data is to be moved and a destination
location. The source location is not altered by a load
instruction. Examples of load group instructions include
moves between any of the general-purpose registers such
as move the data to register B from register C. This group
also includes load-immediate to any CPU register or to any
external memory location. Other types of load instructions
allow transfer between CPU registers and memory loca­
tions. The exchange instructions can trade the contents of
two registers.

A unique set of block transfer instructions is provided in the
ZBO. With a single instruction, a block of memory of any
size can be moved to any other location in memory. This
set of block moves is extremely valuable when large
strings of data must be processed. The Z80 block search
instructions are also valuable for this type of processing.
With a single instruction, a block of external memory of any
desired length can be searched for any 8-bit character.
Once the character is found or the end of the block is
reached, the instruction automatically terminates. Both the
block transfer and the block search instructions can be
interrupted during their execution so as to not occupy the
CPU for long periods of time.

The arithmetic and logical instructions operate on data
stored in the accumulator and other general-purpose CPU
registers or external memory locations. The results of the
operations are placed in the accumulator and the appro­
priate flags are set according to the result of the operation.

CPU USER'S MANUAL

CHAPTER 4
zao CPU INSTRUCTION SET

• Bit Manipulation (Set, Reset, Test)
• Jump, Call, and Return
• Input/Output
• Basic CPU Control

An example of an arithmetic operation is adding the
accumulator to the contents of an external memory loca­
tion. The results of the addition are placed in the accumu­
lator. This group also includes 16-bit addition and subtrac­
tion between 16-bit CPU registers.

The rotate and shift group allows any register or any
memory location to be rotated right or left, with or without
carry either arithmetic or logical. Also, a digit in the accu­
mulator can be rotated right or left with two digits in any
memory location.

The bit manipulation instructions allow any bit in the accu­
mulator, any general-purpose register, or any external
memory location to be set, reset or tested with a single
instruction. For example, the most significant bit of register
H can be reset. This group is especially useful in control
applications and for controlling software flags in general­
purpose programming.

The jump, call, and return instructions are used to transfer
between various locations in the user's program. This
group uses several different techniques for obtaining the
new program counter address from specific external
memory locations. A unique type of call is the restart
instruction. This instruction actually contains the new ad­
dress as a part of the 8-bit opcode. This is possible since
only eight separate addresses located in page zero of the
external memory may be specified. Program jumps may
also be achieved by loading register HL, IX, or IY directly
into the PC, thus allowing the jump address to be a
complex function of the routine being executed.

A4·1

4.1 INSTRUCTION TYPES (Continued)

The input/output group of instructions in the Z80 allow for
a wide range of transfers between external memory loca­
tions or the general-purpose CPU registers, and the exter­
nal 1/0 devices. In each case, the port number is provided
on the lower eight bits of the address bus during any 1/0
transaction. One instruction allows this port number to be
specified by the second byte of the instruction while other
ZBO instructions allow it to be specified as the content of
the C register. One major advantage of using the C register
as a pointer to the 1/0 device is that it allows different 1/0
ports to share common software driver routines. This is not
possible when the address is part of the opcode if the
routines are stored in ROM. Another feature of these input
instructions is that they set the flag register automatically
so that additional operations are not required to determine
the state of the input data (for example its parity). The Z80

4.1 ADDRESSING MODES

Most of the Z80 instructions operate on data stored in
internal CPU registers, external memory, or in the 1/0 ports.
Addressing refers to how the address of this data is
generated in each instruction. This section gives a brief
summary of the types of addressing used in the Z80 while
subsequent sections detail the type of addressing avail­
able for each instruction group.

Immediate. In this mode of addressing the byte following
the opcode in memory contains the actual operand.

Opcode } One or Two Bytes

Operand

07 DO

Examples of this type of instruction would be to load the
accumulator with a constant, where the constant is the
byte immediately following the opcode.

Immediate Extended. This mode is merely an extension of
immediate addressing in that the two bytes following the
opcodes are the operand.

Opcode

Operand

Operand

One or Two Bytes

Low Order

High Order

Examples of this type of instruction would be to load the HL
register pair (16-bit register) with 16 bits (two bytes) of
data.

Z80"'CPU
USER'S MANUAL

CPU includes single instructions that can move blocks of
data (up to 256 bytes) automatically to or from any 1/0 port
directly to any memory location. In conjunction with the
dual set of general-purpose registers, these instructions
provide for fast 1/0 block transfer rates. The value of this
1/0 instruction set is demonstrated by the fact that the zao
CPU can provide all required floppy disk formatting (i.e.,
the CPU provides the preamble, address, data, and en­
ables the CRC codes) on double density floppy disk drives
on an interrupt driven basis.

Finally, the basic CPU control instructions allow various
options and modes. This group includes instructions such
as setting or resetting the interrupt enable flip-flop or
setting the mode of interrupt response.

Modified Page Zero Addressing. The Z80 has a special
single byte CALL instruction to any of eight locations in
page zero of memory. This instruction (which is referred to
as a restart) sets the PC to an effective address in page
zero. The value of this instruction is that it allows a single
byte to specify a complete 16-bit address where com­
monly called subroutines are located, thus saving memory
space.

Opcode One Bytes

B7 BO Effective Address is
(B5 B4 B3 000)2

Relative Addressing. Relative addressing uses one byte
of data following the opcode to specify a displacement
from the existing program to which a program jump can
occur. This displacement is a signed two's complement
number that is added to the address of the opcode, of the
following instruction. ·

Opcode } Jump Relative (One Byte Opcode)
8-Bit Two's Complement

Operand Displacement Added to
Address (A+2)

The value of relative addressing is that it allows jumps to
nearby locations while only requiring two bytes of memory
space. For most programs, relative jumps are by far the
most prevalent type of jump due to the proximity of related
program segments. Thus, these instructions can Signifi­
cantly reduce memory space requirements. The signed
displacement can range between +127 and -128 from

A+2. This allows for a total displacement of + 129 to -126
from the jump relative opcode address. Another major
advantage is that it allows for relocatable code.

Extended Addressing. Extended Adqressing provides
for two bytes (16 bits) of address to be included in the
instruction. This data can be an address to which a
program can jump or it can be an address where an
operand is located.

} One or
1--0_pco_d_e ________ ----1 Two Bytes

Low Order Address to Low Order Operand

High Order Address to High Order Operand

Extended addressing is required for a program to jump
from any location in memory to any other location, or load
and store data in any memory location.

When extended addressing is used to specify the source
or destination address of an operand, the notation (nn) will
be used to indicate the content of memory at nn, where nn
is the 16-bit address specified in the instruction. This
means that the two bytes of address nn are used as a
pointer to a memory location. The use of the parentheses
always means that the value enclosed within them is used
as a pointer to a memory location. For example, (1200)
refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte
of data following the opcode contains a displacement
which is added to one of the two index registers (the
opcode specifies which index register is used) to form a
pointer to memory. The contents of the index register are
not altered by this operation.

Opcode }
1------1 Two Byte Opcode

Opcode

Displacement Operand Added to Index Register
to Form a Pointer to Memory

An example of an indexed instruction would be to load the
contents of the memory location (Index Register + Dis­
placement) into the accumulator. The displacement is a
signed two's complement number. Indexed addressing
greatly simplifies programs using tables of data since the
index register can point to the start of any table. Two index
registers are provided since very often operations require
two or more tables. Indexed addressing also allows for
relocatable code.

zao~cPu
USER'S MANUAL

The two index registers in the Z80 are referred to as IX and
IY. To indicate indexed addressing the notation:

{IX+d) or (IY+d)

is used. Here d is the displacement specified after the
opcode. The parentheses indicate that this value is used
as a pointer to external memory.

Register Addressing. Many of the Z80 opcodes contain
bits of information that specify which CPU register is to be
used for an operation. An example of register addressing
would be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to opera­
tions where the opcode automatically implies one or more
CPU registers as containing the operands. An example is.
the set of arithmetic operations where the accumulator is
always implied to be the destination of the results.

Register Indirect Addressing. This type of addressing
specifies a 16-bit CPU register pair (such as HL) to be used
as a pointer to any location in memory. This type of
instruction is very powerful and it is used in a wide range
of applications.

I Opcode I} One or Two Bytes

An example of this type of instruction would be to load the
accumulator with the data in the memory location pointed
to by the HL register contents. Indexed addressing is
actually a form of register indirect addressing except that
a displacement is added with indexed addressing. Regis­
ter indirect addressing allows for very powerful but simple
to implement memory accesses. The block move and
search commands in the Z80 are extensions of this type of
addressing where automatic register incrementing, dec­
rementing, and comparing has been added. The notation
for indicating register indirect addressing is to put paren­
theses around the name of the register that is to be used
as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as
a pointer to a memory location. Often register indirect ad­
dressing is used to specify 16-bit operands. In this case, the
register contents point to the lower order portion of the
operand while the register contents are automatically incre­
mented to obtain the upper portion of the operand.

A4-3

II

4.1 ADDRESSING MODES (Continued)

Bit Addressing. The Z80 contains a large number of bit
set, reset, and test instructions. These instructions allow
any memory location or CPU register to be specified for a
bit operation through one of three previous addressing
modes (register. register indirect. and indexed) while
three bits in the opcode specify which of the eight bits is to
be manipulated.

4.2 INSTRUCTION OPCODES
This section describes each of the Z80 instructions and
provides tables listing the opcodes for every instruction. In
each of these tables, the opcodes in shaded areas are
identical to those offered in the 8080A CPU. Also shown is
the assembly language mnemonic that is used for each
instruction. All instruction opcodes are listed in hexadeci­
mal notation. Single byte opcodes require two hex charac­
ters while double byte opcodes require four hex charac­
ters. The conversion from hex to binary is repeated here for
convenience.

Table 4.1. Hex to Binary Conversion Table

Hex Binary Decimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3

4 0100 4
5 0101 5
6 0110 6
7 0111 7

8 1000 8
9 1001 9
A 1010 10
8 1011 11

c 1100 12
D 1101 13
E 1110 14
F 1111 15

The Z80 instruction mnemonics consist of an opcode and
zero, one, or two operands. Instructions in which the
operand is implied have no operand. Instructions which
have only one logical operand of those in which one
operand is invariant (such as the Logical OR instruction)
are represented by a one operand mnemonic. Instructions
which may have two varying operands are represented by
two operand mnemonics.

A4-4

ZSO"'CPU
USER'S MANUAL

4.1.1 Addressing Mode Combinations
Many instructions include more than one operand (such as
arithmetic instructions or loads). In these cases, two types
of addressing may be employed. For example, load can
use immediate addressing to specify the source and
register indirect or indexed addressing to, specify the
destination.

4.2.1 Load and Exchange
Figure 4-1 defines the opcode for all of the 8-bit load
instructions implemented in the Z80 CPU. Also shown in
this table is the type of addressing used for each instruc­
tion. The source of the data is found on the top horizontal
row while the destination is specified by the left hand
column. For example, load register C from register Buses
the opcode 48H. In all of the figures, the opcode is
specified in hexadecimal notation and the 48H (0100 1000
binary) code is fetched by the CPU from the external
memory during M1 time, decoded and then the register
transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is
LO, followed by the destination followed by the source (LO
DEST, SOURCE). Note that several combinations of ad­
dressing modes are possible. For example, the source
may use register addressing and the destination may be
register indirect; such as load the memory location pointed
to by register HL with the contents of register D. The
opcode for this operation would be 72. The mnemonic for
this load instruction would be as follows:

LO (HL), D

The parentheses around the HL means that the contents of
HL are used as a pointer to a memory location. In all Z80
load instruction mnemonics, the destination is always
listed first, with the source following. The Z80 assembly
language has been defined for ease of programming.
Every instruction is self documenting and programs writ­
ten in Z80 language are easy to maintain.

Note in Figure 4-1, some load opcodes that are available
in the Z80 use two bytes. This is an efficient method of
memory utilization since 8-, 16-, 24-, or 32-bit instructions
are implemented in the Z80. Thus, often utilized instruc­
tions such as arithmetic or logical operations are only eight
bits which results in better memory utilization than is
achieved with fixed instruction sizes such as 16 bits.

~2iUlG

IMPLIED
I R A

ED ED
57 SF

REGISTER D

n
i:::::

DESTINATION (Hl)

2
REG (BC)
INDIRECT

(DE) ?~
DD DD

(IX.O 77 70
d d

INDEXED
FD FD

(IY.O 77 70
d d

EXIADDR (nn) I~
ED
47

IMPLIED

ED
4F

REGITTER

=:o:

v

i:::::,
::':~ I\

Ji

DD DD DD
71 72 73
d d d

FD FD FD
71 72 73
d d d

SOURCE

l

F\

IT

:::::;
':\
::::~

2

DD DD
74 75
d d

FD FD
74 75
d d

FD
75
d

REG INDIRECT
lHLfT (BC) fiiEi
td\I OA

't':':':t 1A

111NDEXED ~R IMME

ZBO"'CPU
USER'S MANUAL

Figure 4-1. 8-Bit Load Group 'LO'

All load instructions using indexed addressing for either
the source or destination location actually use three bytes
of memory with the third byte being the displacement d.
For example. a load register E with the operand pointed to
by IX with an offset of +8 would be written:

LOE, (IX+ 8)

The instruction sequence for this in memory would be:

At 1 SE
Opcode Address A ~D }

A+ 2 08 Displacement
Operand

The two extended addressing instructions are also three
byte instructions. For example, the instruction to load the
accumulator with the operand in memory location 6F32H
would be written:

LO A, (6F 32H)

and its instruction sequence would be:

Address A ~A Opcode

A+ 1 32 Low Order Address

A+ 2 6F High Order Address

Notice that the low order portion of the address is always
the first operand.

The load immediate instructions for the general-purpose
8-bit registers are two-byte instructions. The instruction
load register H with the value 36H would be written:

LOH, 36H

and its sequence would be:

Address A ~ Opcode

A+ 1 0 Operand

A4-5

4.2 INSTRUCTION OPCODES (Continued)

zao•cpu
USER'S MANUAL

Loading a memory location using indexed addressing for Thus, the external stack now appears as follows:
the destination and immediate addressing for the source
requires four bytes. Fol"'example:

LD (IX - 15). 21H

would appear as:

AddressA ;D }
A+ 1 36 Opcode

A+ 2 F1 Displacement (-15 in Signed
Two's Complement)

A+ 3 21 Operand to Load

Notice that with any indexed addressing the displacement
always follows directly after the opcode.

Figure 4-2 specifies the 16-bit load operations. This table
is very similar to the previous one. Notice that the extended
addressing capability covers all register pairs. Also notice
that register indirect operations specifying the stack pointer
are the PUSH and POP instructions. The mnemonic for
these instructions is "PUSH" and "POP." These differ from
other 16-bit loads in that the stack pointer is automatically
decremented and incremented as each byte is pushed
onto or popped from the stack respectively. For example,
the instruction:

PUSH AF

is a single byte instruction with the opcode of F5H. When
this instruction is executed the following sequence is
generated:

A4-6

Decrement SP
LD(SP), A
Decrement SP
LD (SP), F

(SP)

(SP+ 1) A

• •
• •

Top of stack

The POP instruction is the exact reverse of a PUSH. Notice
that all PUSH and POP instructions utilize a 16-bit operand
and the high order byte is always pushed first and popped
last. That is a:

PUSH BC
PUSH DE
PUSH HL
POPHL

is PUSH B then C
is PUSH D then E
is PUSH H then L
is POP L then H

The instruction using extended immediate addressing for
the source obviously requires two bytes of data following
the opcode. For example:

will be:

LD DE, 0659H

AddressA ~ Opcode

A+ 1 ~ Operand

In all extended immediate or extended addressing modes,
the low order byte always appears first after the opcode.

Figure 4-3 lists the 16-bit exchange instructions imple­
mented in the Z80. Opcode 08H allows the programmer to
switch between the two pairs of accumulator flag registers
while D9H allows the programmer to switch between the
duplicate set of six general-purpose registers. These op­
codes are only one byte in length to absolutely minimize
the time necessary to perform the exchange so that the
duplicate banks can be used to effect very fast interrupt
response times.

R
E
G
I
s
T
E
R

EXT
ADDR.

AF

BC

DE

HL

SP

IX

IV

NOTE: 1 Hhe Push & Pop Instruction adjust
the SP after every execution

AF

SOURCE

REGISTER

BC DE HL SP IX

DD
F9

IV

IMM EXT. REG.
EXT. ADDR. INDIR.

nn (nn) (SP)

'.,• .. ,:.,r .. ,:.,: .. ,:'.,:.r.·.··.· .. ,:·:: ... ,::.'~ .. ':·::: .. ,:,:.:· .. ,:,•,.,. · ·.·.·.

» nMrH tnnrn

~
n
n

~R
n
n

~R
n
n

~2
n
n

DD
E1

FD
E1

Figure 4-2. 16-Bit Load Group LO, PUSH and POP

IMPLIED ADDRESSING

AF' BC' DE' & HL' HL IX IV

AF 08

BC,
DE D9

IMPLIED &
HL

DE

REG. (SP) DD FD
INDIR. EE EE

Figure 4-3. Exchanges EX and EXX

zao~cPu
USER'S MANUAL

A4·7

II

4.2 INSTRUCTION OPCODES (Continued)

4.2.2 Block Transfer and Search
Figure 4-4 lists the extremely powerful block transfer
instructions. All of these instructions operate with three
registers.

HL points to the source location.
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers,
any of these four instructions may be used. The LDI (Load
and Increment) instruction moves one byte from the loca­
tion pointed to by HL to the location pointed to by DE.
Register pairs HL and DE are then automatically incre­
mented and are ready to point to the following locations.
The byte counter (register pair BC) is also decremented at
this time. This instruction is valuable when blocks of data
must be moved but other types of processing are required
between each move. The LDIR (Load, Increment and
Repeat) instruction is an extension of the LDI instruction.
The same load and increment operation is repeated until
the byte counter reaches the count of zero. Thus, this
single instruction can move any block of data from one
location to any other.

Note that since 16-bit registers are used, the size of the
block can be up to 64 Kbytes (1 K = 1024) long and it can
be moved from any location in memory to any other
location. Furthermore, the blocks can be overlapping
since there are absolutely no constraints on the data that
is used in the three register pairs.

SOURCE
,----,

Reg.
lndir.

1-----1
(HL)

The LDD and LDDR instructions are very similar to the LDI
and LDIR. The only difference is that register pairs HL and
DE are decremented after every move so that a block
transfer starts from the highest address of the designated
block rather than the lowest.

Figure 4-5 specifies the opcodes for the four block search
instructions. The first, CPI (Compare and Increment) com­
pares the data in the accumulator, with the contents of the
memory location pointed to by register HL. The result of the
compare is stored in one of the flag bits (see section 5.2 for
a detailed explanation of the flag operations) and the HL
register pair is then incremented and the byte counter
(register pair BC) is decremented.

The instruction CPIR is merely an extension of the CPI
instruction in which the compare is repeated until either a
match is found or the byte counter (register pair BC)
becomes zero. Thus, this single instruction can search the
entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Com­
pare, Decrement, and Repeat) are similar instructions,
their only difference being that they decrement HL after
every compare so that they search the memory in the
opposite direction. (The search is started at the highest
location in the memory block.)

It should be emphasized again that these block transfer
and compare instructions are extremely powerful in string
manipulation applications.

(ED) 'LOI'· Load (DE)____. (HL)

DESTINATION Rell.
lnd1r.

A4-8

AO

(ED)
BO

(DE)
(ED)
A8

(ED)
B8

Inc HL and DE, Dec BC

'LDIR,' ·Load (DE)--.(HL)
Inc HL and DE, Dec BC, Repeat until BC= 0

'LDD' ·Load (DE)--.(HL)
Inc HLand DE,Dec BC

'LDDR' • Load (DE) ---.{HL)
Dec HL and DE, Dec BC, Repeat until BC = 0

Reg HL points to source
Reg DE points to destination
Reg BC is byte counter

Figure 4-4. Block Transfer Group

SEARCH
LOCATION
r--

Reg.
lndlr.

1--
(HL)

(ED)
A1

(ED)
B1

(ED)
A9

(ED)
B9

'CPI'
Inc HL, Dec BC

'CPRI', Inc HL, Dec BC
Repeat untill BC = O or find match

'CPD' Dec HL and BC

'CPDR' Dec HL and BC
Repeat unUll BC = O or find metch

HL points to location In memory
to be complared with accumulator
contents

BC Is byte counter

Figure 4-5. Block Search Group

4.2.3 Arithmetic and Logical
Figure 4-6 lists all of the 8-bit arithmetic opera~ions that can
be performed with the accumulator, also listed are the
increment (INC) and decrement (DEC) instructions. In all
of these instructions, except INC and DEC, the specified
8-bit operation is performed between the data in the
accumulator and the source data specified in the figure.
The result of the operation is placed in the accumulator
with the exception of compare (CP) that leaves the accu­
mulator unaffected. All of these operations affect the flag
register as a result of the specified operation. (Section 5.2
provides all of the details on how the. flags a~e affecte~ by
any instruction type.) INC and DEC 1nstruct1ons specify a
register or a memory location as both source and destina­
tion of the result. When the source operand is addressed
using the index registers, the displacement must follow
directly. With immediate addressing the actual operand
will follow directly. For example, the instruction:

would appear as:

Address A

A+1

ANDO?H

~
~

Opcode

Operand

zao•cpu
USER'S MANllAL

Assuming that the accumulator contained the value F3H,
the result of 03H would be placed in the accumulator:

Accumulator before operation
Operand
Result to Accumulator

1111 0011 = F3H
0000 0111 = 07H
0000 0011 = 03H

The Add instruction (ADD) performs a binary add between
the data in the source location and the data in the accumu­
lator. The Subtract (SUB) does a binary subtraction. When
the Add with Carry is specified (ADC) or the Subtract with
Carry (SBC}, then the Carry flag is also added or sub­
tracted respectively. The flags and decimal adjust instruc­
tion (DM) in the Z80 (fully described in Chapter 5.2) allow
arithmetic operations for:

• Multiprecision packed BCD numbers.

• Multiprecision signed or unsigned binary numbers.

• Multiprecision two's complement signed numbers.

Other instructions in this group are logical and (AND),
logical or (OR), exclusive or (XOR), and compare (CP).

There are five general-purpose arithmetic instructions that
operate on the accumulator or carry flag. These five are
listed in Figure 4-7. The decimal adjust instruction can
adjust for subtraction as well as addition, thus making BC~
arithmetic operations simple. Note that to allow for this
operation the flag N is used. This flag is set if the last
arithmetic operation was a subtract. The negate accumu­
lator (NEG) instruction forms the two's complement of the
number in the accumulator. Finally, notice that a reset
carry instruction is not included in the Z80 since this
operation can be easily achieved through other instruc­
tions such as a logical AND of the accumulator with itself.

Figure 4-8 lists all of the 16-bit arithmetic operations
between 16-bit registers. There are five groups of instruc­
tions including add with carry and subtract with carry. ADC
and SBC affect all of the flags. These two groups simplify
address calculation operations or other 16-bit arithmetic
operations.

A4-9

ft'2H.m
4.2 INSTRUCTION OPCODES (Continued)

A4-10

'ADD'

ADDwCARRY
'AC<:;

SUBTRACT
'SUB'

SUBwCARRY
·ser;

'ADD'

'XOR'

'OR'

COMPARE
'CP'

INCREMENT
'IN<:;

DECREMENT
'OE<:;

SOURCE

REGISTER ADDRESSING
REG.
INDIR.

Figure 4-6. 8-Bit Arithmetic and Logic

Decimal Adjust Ace, 'DAA'

Complement Ace, "CPL'

Negate Ace, 'NEG'
(2's complement

Complement Carry Flag, 'CCF'

Set Carry Flag, 'SCF'

Figure 4-7. General-Purpose AF Operation

INDEXED MMED.

zaoscpu
USER'S MANUAL

SOURCE

HL

'ADD' IX DD DD
09 19

IY FD FD

DESTINATION
09 19

ADD WITH CARRY AND HL ED ED
SET FLAGS 'ADC' 4A SA

SUB WITH CARRY AND HL ED ED
SET FLAGS 'SBC' 42 52

INCREMENT 'INC'

DECREMENT 'DEC'

DD
39

FD
39

ED ED
6A 7A

ED ED
62 72

IX IY

DD
29

FD
29

DD FD
23 23

DD FD
2B 2B

zao~cPU
UseR'S llANllAL

Figure 4-8. 16-Bit Arithmetic

4.2.4 Rotate and Shift
A major capability of the Z80 is its ability to rotate or shift
data in the accumulator, any general-purpose register, or
any memory location. All of the rotate and shift opcodes are
shown in Figure 4-9. Also included in the Z80 are arithmetic
and logical shift operations. These operations are useful in

TYPE
OF
ROTATE
SHIFT

'RCL'

'RRC'

'RL'

'RR'

'SLA'

'SRA'

'SRL'

'SRL'

'SRL'

A

CB
07

CB
OF

CB
17

CB
1F

CB
27

CB
2F

CB
SF

B c

CB CB
00 01

CB CB
08 09

CB CB
10 11

CB CB
16 19

CB CB
20 21

CB CB
28 29

CB CB
38 39

Source and Destination

D E H

CB CB CB
02 03 04

CB CB CB
DA 08 oc

CB CB CB
12 13 14

CB CB CB
1A 1B 1C

CB CB CB
22 23 24

CB CB CB
2A 2B 2C

CB CB CB
SA SB 3C

L (HL) (IX+d) (IY+d)

CB CB r ~ 05 06

CB CB ~ f 00 OE

CB CB ·~ ~
16 16

CB CB R ~ 1D 1E E_

CB CB r ~ 26 28

CB CB 1! 1! 2D 2E

CB CB ~ i
SD SE le

ED
BF

ED
67

an extremely wide range of applications including integer
multiplication and division. Two BCD digit rotate instruc­
tions (RAD and RLD} allow a digit in the accumulator to be
rotated with the two digits in a memory location pointed to
by register pair HL (See Figure 4-9). These instructions
allow for efficient BCD arithmetic.

CJ.Ci ~ R-o - Right Circular

~ ~ -· - Left

~ IJ R-e - Right

~ Shift
LeftAllthme11c

Figure 4-9. Rotates and Shifts

A4-11

II

4.2 INSTRUCTION OPCODES (Continued)

4.2.5 Bit Manipulation
The ability to set, reset and test individual bits in a register
or memory location is needed in almost every program.
These bits may be flags in a general-purpose software
routine, indications of external control conditions or data
packed into memory locations to make memory utilization
more efficient.

The zao has the ability to set, reset, or test any bit in the
accumulator, any general-purpose register or any memory
location with a single instruction. Figure 4-10 lists the 240
instructions that are available for this purpose. Register
addressing can specify the accumulator or any general­
purpose register on which the operation is to be per­
formed. Register indirect and indexed addressing are
available to operate on external memory locations. Bit test
operations set the Zero flag (Z) if the tested bit is a zero.
(Refer to section 5.2 for further explanation of flag
operation.)

4.2.6 Jump, Call, and Return
Figure 4-11 lists all of the jump, call, and return instructions
implemented in the Z80 CPU. A jump is a branch in a
program where the program counter is loaded with the
16-bit value as specified by one of the three available
addressing modes (Immediate Extended, Relative, or Reg­
ister Indirect). Notice that the jump group has several
different conditions that can be specified to be met before
the jump will be made. If these conditions are not met, the
program merely continues with the next sequential instruc­
tion. The conditions are all dependent on the data in the
flag register. (Refer to section 5.2 for details on the flag
register.) The immediate extended addressing is used to
jump to any location in the memory. This instruction re­
quires three bytes (two to specify the 16-bit address) with
the low order address byte first followed by the high order
address byte.

For example an unconditional jump to memory location
3E32H would be:

A4-12

Address A

A+1

A+2

zao~CPU
USER'S MANUAL

The relative jump instruction uses only two bytes, the
second byte is a signed two's complement displacement
from the existing PC. This displacement can be in the
range of + 129 to -126 and is measured from the address
of the instruction opcode.

Three types of register indirect jumps are also included.
These instructions are implemented by loading the regis­
ter pair HL or one of the index registers IX or IY directly into
the PC. This capability allows for program jumps to be a
function of previous calculations.

A call is a special form of a jump where the address of the
byte following the call instruction is pushed onto the stack
before the jump is made. A return instruction is the reverse
of a call because the data on the top of the stack is popped
directly into the PC to form a jump address. The call and
return instructions allow for simple subroutine and inter­
rupt handling. Two special return instructions have been
included in the Z80 family of components. The return from
interrupt instruction (RETI) and the return from non­
maskable interrupt (RETN) are treated in the CPU as ·an
unconditional return identical to the opcode C9H. The
difference is that (RETI) can be used at the end of an
interrupt routine and all zao peripheral chips will recognize
the execution of this instruction for proper control of nested
priority interrupt handling. This instruction coupled with the
zao peripheral devices implementation simplifies the nor­
mal return from nested interrupt. Without this feature, the
following software sequence would be necessary to inform
the interrupting device that the interrupt routine is com­
pleted:

Disable Interrupt - Prevent interrupt before routine
is exited.

LOA, n­
OUT n, A

Enable Interrupt

Return

Notify peripheral that service
routine is complete.

This seven byte sequence can be replaced with the one
byte El instruction and the two byte RETI instruction in the
Z80. This is important since interrupt service time often
must be minimized.

REG.
REGISTER ADDRESSING INDIR. INDEXED

Bil
A B c D E H L (HL) OX+d) (IY+d)

0 CB CB CB CB CB CB CB CB ~R ~g
47 40 41 "2 43 44 45 48 48 48

1 CB CB CB CB CB CB CB CB B 1f 4F 48 49 4A 48 4C 4D 4E 4E

2 CB CB CB CB CB CB CB CB ~R
57 50 S1 52 53 54 SS 56 j§_

II
f FD

3 CB CB CB CB CB CB CB CB J: TEST SF SB 59 SA SB 5C SD SE
'BIT'

~g ~g 4 CB CB CB CB CB CB CB CB
57 60 61 62 63 64 6S 66 66 _ii

5 CB CB CB CB CB CB CB CB B rs 6F 66 69 6A BB 6C 6D 6E 6E

6 CB CB CB CB CB CB CB CB ~R ~ 77 70 71 72 73 74 75 76 76 76

7 CB CB CB CB CB CB CB CB ~R ~ 7F 76 79 7A 7B 7C 70 7E 48 48

0 CB CB CB CB CB CB CB CB ~ ~g
87 60 81 62 63 64 85 66 66

1 CB CB CB CB CB CB CB CB f 1g
SF 66 89 6A SB BC SD SE _j;_

DD ~g 2 CB CB CB CB CB CB CB CB ~B
97 90 91 92 93 94 95 96 i .A

3 CB CB CB CB CB CB CB CB rs REST 9F 96 99 9A 9B 9C 9D SE J.E. BIT
'RES' ~R FD

4 CB CB CB CB CB CB CB CB ~B
A7 AO A1 A2 A3 A4 AS AB AB AB

DD FD s CB CB CB CB CB CB CB CB ~B ~B AF AB A9 AA AB AC AD AE AE AE
DD FD

6 CB CB CB CB CB CB CB CB CB CB
87 80 B1 82 83 84 85 86 3s 3s

7 CB CB CB CB CB CB CB CB ~! ~! BF 89 B9 BA BB BC BO BE

0 CB CB CB CB CB CB CB CB gg 1 C7 co C1 C2 C3 C4 cs C6 ~
1 CB CB CB CB CB CB CB CB lg _f CF CB C9 CA CB cc CD CE E

2 CB CB CB CB CB CB CB CB p bg
D7 DO D1 D2 D3 04 D5 06 06 il

3 CB CB CB CB CB CB CB CB !g- ~ SET OF DB 09 DA DB DC DD DE E ~E BIT
'SET' 4 CB CB CB CB CB CB CB CB 1g l E7 EO E1 E2 E3 E4 E5 E8 6

s CB CB CB CB CB CB CB CB g F~
EF E8 E9 EA EB EC ED EE d ~E 48

6 CB CB CB CB CB CB CB CB R _f F7 FO F1 F2 F3 F4 F5 FS 6

7 CB CB CB CB CB CB CB CB f ~g
FF F8 F9 FA FB FC FD FE

FE

Figure 4-10. Bit Manipulation Group

A4-13

4.2 INSTRUCTION OPCODES (Continued)

zao.acpu
USER's MANUAL

CONDITION

JUMP 'JP' IMMED. nn
EXT.

JUMP 'JR' RELATIVE PC+e

JUMP 'JP' (HL)

JUMP 'JP' REG. (IX) DD
INDIR. E9

JUMP 'JP' (IV) FD
E9

'CALL' IMMED nn
EXT.

DECREMENT B,
JUMP IF NON RELATIVE PC+e
ZERO'DJNZ'

RETURN RE FISTER
'RET' INDIR.

RETURN FROM REG. (SP) ED
INT'RETI' INDIR. (SP+1) 4D

RETURN FROM REG. (SP) ED NON MASKASLE
INT'RETN' INDIR. (SP+1) 45

NOTE-CERTAIN
FLOAGS HAVE MORE

Figure 4-11. Jump, Call, and Return Group

To facilitate program loop control the instruction DJNZ e can
be used advantageously. This two byte, relative jump instruc­
tion decrements the B register and the jump occurs if the B

Address Instruction

LOB, 7

register has not been decremented to zero. The relative
displacement is expressed as a signed two's complement
number. A simple example of its use might be:

Comments

: set B register to count of 7 N, N + 1
N+2toN+9
N+10,N+11
N + 12

(Perform a sequence of instructions)
DJNZ --8

: loop to be performed 7 times
: to jump from N + 12 to N + 2

(Next Instruction)

A4-14

ft'2H.!16
Figure 4-12 lists the eight opcodes for the restart instruc­
tion. This instruction is a single byte call to any of the eight
addresses listed. The simple mnemonic for these eight
calls is also shown. The value of this instruction is that
frequently used routines can be called with this instruction
to minimize memory usage.

4.2. 7 Input/Output
The ZSO has an extensive set of Input and Output instruc­
tions as shown in Figures 4-13 and 4-14. The addressing
of the input or output device can be either absolute or
register indirect, using the C register. Notice that in the
register indirect addressing mode data can be transferred
between the 1/0 devices and any of the internal registers.
In addition, eight block transfer instructions have been
implemented. These instructions are similar to the memory
block transfers except that they use register pair HL for a
pointer to the memory source (output commands) or
destination (input commands) while register Bis used as
a byte counter. Register C holds the address of the port for
which the input or output command is desired. Since
register B is eight bits in length, the 1/0 block transfer
command handles up to 256 bytes.

In the instructions IN A, and OUT n, A, the 1/0 device
address n appears in the lower half of the address bus (A7-
AO) while the accumulator content is transferred in the
upper half of the address bus. In all register indirect input
output instructions, including block 1/0 transfers the con­
tent of register C is transferred to the lower half of the
address bus (device address) while the content of register
B is transferred to the upper half of the address bus.

4.2.8 CPU Control Group
Figure 4-15 illustrates the six general-purpose CPU control
instructions. The NOP is a do-nothing instruction. The
HALT instruction suspends CPU operation until a subse­
quent interrupt is received, while the DI and El are used to
lock out and enable interrupts. The three interrupt mode
commands set the CPU into any of the three available
interrupt response modes as follows. If mode zero is set,
the interrupting device can insert any instruction on the
data bus and allow the CPU to execute it. Mode 1 is a
simplified mode where the CPU automatically executes a
restart (AST) to location 0038H so that no external hard­
ware is required. (The old PC content is pushed onto the

'RSTrY

'RSTS'

c 'RST16' A
L
L

'RST24'
A
D
D
R 'RST32'
E
s
s

'RST 40'

'RST 48'

'RST56'

Figure 4-12. Restart Group

zao•cpu
USER'S MANllAL

stack). Mode 2 is the most powerful in that it allows for an
indirect call to any location in memory. With this mode, the
CPU forms a 16-bit memory address where the upper eight
bits are the content of register I and the lower eight bits are
supplied by the interrupting device. This address points to
the first of two sequential bytes in a table where the
address of the service routine is located. The CPU auto­
matically obtains the starting address and performs a
CALL to this address.

Address of Interrupt { s- Poi~ter to ~nterrupt Table,
Service Routine Register I 1s Upper Address,

Peripheral Supplies
Lower Address

A4-15

II

4.2 INSTRUCTION OPCODES (Continued)

INPUT
DISmATION

'110UT'

'110UTI'-OUTPUT
lncHL, Dec b

'11 OUTD' - OUTPUT
Dec B, REPEAT IF B..O

'110UTD' - OUTPUT
DecHL&B

'110TDR' - OUTPUT, Dec HL
& B, REPEAT IF B..O

A4-16

R
E
G

INPUTitf

'INl'-NPUT&
lncll,DacB

'NR'-t.P,lncH~
Dae B, REPEAT IF S.O REG

ltlllR
'ND'-INPIJT,&lnc
Dac~DecB

'NDR'-INPIJT, Dec II,
Dec B, REPEAT IF S.O

(HL)

SOUllC.E
PORT MlDRESS

IMMED. REG.
ltlllR.

(n) (cl

ED
40

ED
48

ED
50

ED
58

ED
80

ED ..
ED
A2

ED
B2

ED
M

ED
BA

Figure 4·13. Input Group

IMMED. (n)

REG (c)
IND.

REG (c)
IND.

REG (C)
IND.

REG (c)
IND.

REG (C)
IND.

"'---y---/
PORT
DESTINATION
ADDRESS

SOURCE

REGISTER

A B c D

::::::::=.:::

ED ED ED ED
79 41 49 51

Figure 4·14. Output Group

BLOCK INPUT
COllMAlllS

E H L

ED ED ED
59 61 69

REG.
IND.

(HL)

ED
A3

ED
B3

ED
AB

ED
BB

>

'"

zaoecpu
USER'S MANUAL

BLOCK
OUTPUT
COMMAND I

'NOP'

'HALT

DISABLE INT '(DI)'

ENABLE INT '(El)'

SET INT MODE 0
'IMO'

SET INT MODE 1
'IM1'

SET INT MODE 2
'IM2'

lllfl!llfl

ED
46

ED
56

ED
5E

8080AMODE

CALL TO LOCATION 0038 H

INDIRECT CALL USING REGISTER
I AND 8 BITS FROM INTERR
DEVICEASAPOINTER

Figure 4-15. Mlscellaneout CPU Control

II

A4-17

~2iUJi,
CPU USER'S MANUAL

CHAPTER 5
zao INSTRUCTION DESCRIPTION

5.0 INTRODUCTION: Z80 ASSEMBLY LANGUAGE

The assembly language provides a means for writing a
program without having to be concerned with actual
memory addresses or machine instruction formats. It al­
lows the use of symbolic addresses to identify memory
locations and mnemonic codes (opcodes and operands)
to representthe instructions themselves. Labels (symbols)
can be assigned to a particular instruction step in a source
program to identify that step as an entry point for use in
subsequent instructions. Operands following each instruc­
tion represent storage locations, registers, or constant
values. The assembly language also includes assembler
directives that supplement the machine instruction. A
pseudo-op, for example, is a statement which is not
translated into a machine instruction, but rather is inter­
preted as a directive that controls the assembly process.

5.1 Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F') supplies information to the user
regarding the statue of the ZSO at any given time. The bit
positions for each flag is shown below:

7 6 5 4 3 2 0

s z x N x I PN I N c

where:

C Carry Flag
N Add/Substract

PN Parity/Overflow Flag
H Half Carry Flag
Z Zero Flag
S Sign Flag
X Not Used

Each of the two ZSO Flag Registers contains six bits of
statue information which are set or reset by CPU opera­
tions. (Bits 3 and 5 are not used.) Four of these bits are
testable(C, PN, Z, and S) for use with conditional Jump,
Call, or Return instructions. Two flags are not testable (H,
N) and are used for BCD arithmetic.

A program written in assembly language is called a source
program. It consists of symbolic commands called state­
ments. Each statement is written on a single line and may
consist of from one to four entries: A label field, an opera­
tion field, an operand field and a comment field. The
source program is processed by the assembler to obtain
a machine language program (object program) that can
be executed directly by the ZSO CPU.

Zilog provides several different assemblers which differ in
the features offered. Both absolute and relocatable as­
semblers are available with the Development and Micro­
computer Systems. The absolute assembler is contained
in base level software operating in a 16K memory space
while the relocating assembler is part of the RIO environ­
ment operating in a 32K memory space.

5.1.1 Carry Flag (C)
The carry bit is set or reset depending on the operation
being performed. For 'ADD' instructions that generate a
carry and 'SUBTRACT' instructions that generate a bor­
row, the Carry flag will be sit. The Carry flag is reset by an
ADD that does not generate a carry and a 'SUBTRACT' that
generates no borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the 'DAA'
instruction will set the Carry flag if the conditions for making
the decimal adjustment are met.

For instructions RLA, RRA, RLS, and RRS, the carry bit is
used as a link between the LSB and MSB for any register
or memory location. During instructions RLCA, RLC s, and
SLA s, the carry contains the last value shifted out of bit 7
of any register or memory location. During instructions
RRCA, RRC s, SRA s, and SRL s the carry contains the last
value shifted out of bit 0 of any register or memory location.

For the logical instructions AND s, OR s, and XOR s, the
carry will be reset.

The Carry flag can also be set (SCF) and complemented
(CCF).

A5-1

a

zao•cpu
USER'S MANUAL

5.1 Z80 STATUS INDICATORS (FLAGS} (Continued)

5.1.2 Add/Substract Flag (N)
This flag is used by the decimal adjust accumulator
instruction (DAA) to distinguish between 'ADD' and 'SUB­
TRACT' instructions. For all 'ADD' instructions, N will be set
to a 'O'. For all 'SUBTRACT' instructions, N will be set to a
to a '1'.

5.1.3 Parity/Overflow Flag (PN)
This flag is set to a particular state depending on the
operation being performed. ·

For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater
than the maximum possible number (+ 127) or is less than
the minimum possible number (-128). This overflow con­
dition can be determined by examining the sign bits of the
operands.

For addition, operands with different signs will never
cause overflow. When adding operands with like signs
and the result has a different sign, the overflow flag is set.
For example:

+120
~
+225

0111 1000
- QllQ .1QQ1

1110 0001

ADDEND
AUGENP
(-95) SUM

The two numbers added together has resulted in a dumber
that exceeds + 127 and the two positive operands has
resulted in a negative number (-95) which is incorrect. The
Overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For
example:

+127
(-)~

+191

0111 1111
.1.1.QQ QQQQ
1011 1111

MINUEND
SUBTRAHEND
DIFFERENCE

The minuend sign has changed from a positive to a
negative, giving an incorrect difference. Overflow is there­
fore set.

Another method for predicting an overflow is to observe
the carry into and out of the sign bit. If there is a carry in and
no carry out, or if there is no carry in and a carry out, then
overflow has occurred.

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The number
of '1' bits in a byte are counted. If the total is odd, 'ODD'
parity (P=O) is flagged. If the total is even, 'EVEN' parity is
flagged (P=1).

AS-2

During search instructions (CPI, CPIR, CPD, CPDR) and
block transfer instructions (LDI, LDIR, LDD, LDDR) the
PN flag monitors the state of the byte count register (BC).
When decrementing, the byte counter results in a zero
value, the flag is reset to 0, otherwise the flag is a Logic 1.

During LD A, I and LD A, R instructions, the PN flag will be
set with the contents of the interrupt enable flip-flop (IFF2)
for storage or testing.

When inputting a byte from an 1/0 device, IN r, (C), the flag
will be adjusted to indicate the parity of the data.

5.1.4 Half Carry Flag (H)
The Half Carry Flag (H) will be set or reset depending on
the carry and borrow status between bits 3 and 4 of an
8-bit arithmetic operation. This flag is used by the decimal
adjust accumulator instruction (DAA) to correct the result
of a packed BCD add or subtract operation. The H flag will
be set (i) or reset (0) according to the following table:

H

0

Add

There is a carry from
Bit 3 to Bit 4

There is no carry
from Bit 3 to Bit 4

5.1.5 Zero Flag (Z)

Substract

There is
borrow from Bit 4

There is
borrow from Bit 4

The Zero Flag (Z) is set or reset if the result generated by
the execution of certain instructions is a zero.

For 8-bit arithmetic and logical operations, the Z flag will be
set to a '1' if the resulting byte in the Accumulator is zero.
In the byte is not zero, the Z flag is reset to 'O'.

For compare (search) instructions, the Z flag will be set to
a '1' if a comparison is found between the value in the
Accumulator and the memory location pointed to by the
contents of the register pair HL.

When testing a bit in a register or memory location, the Z
flag will contain the complemented state of the indicated
bit (see Bit b, s).

When inputting or outputting a byte between a memory
location and an 1/0 device (INI, IND, OUTI, and OUTD), if
the result of 8-1 is zero, the Z flag is set, otherwise it is
reset. Also for byte inputs from 1/0 devices using IN r, (C),
the Z Flag is set to indicate a zero byte input.

5.1.6 Sign Flag(S)
The Sign Flag (S) stores the state of the most significant bit
of the Accumulator (bit 7). When the Z80 performing
arithmetic operations on signed numbers. binary two's
complement notation is used to represent and process
numeric information. A positive number is identified by a
'O' in bit 7. A negative number is identified by a '1 '. The
binary equivalent of the magnitude of a positive number is

5.2 ZBO INSTRUCTION DESCRIPTION

NOTE: Execution time (E.T.) for each instruction is given in
microseconds for in assumed 4 MHz clock. Total machine
cycles (M) are indicated with total clock periods (T States).
Also indicated are the number of T States for each M cycle.
For example:

Z80®CPU
USER'S MANUAL

stored in bits 0 to 6 for a total range of from 0 to 127 A
negative number is represented by the two's complement
of the equivalent positive number. The total range for
negative numbers is from -1 to -128.

When inputting a byte from an 1/0 device to a register, IN

negative (S= 1) data. 1

r, (C), the S flag will indicate either positive (S=O) or El
indicates that the instruction consists of 2 machine cycles.
The first cycle contains 4 clock periods (T States). The
second cycle contains 3 clock periods for a total of 7 clock
periods or T States. The instruction will execute in 1.75
microseconds.

M Cycles: 2 T States: 7(4,3) 4 MHz E.T.: 1.75 Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to the
right.

A5-3

ZBO®
INSTRUCTION DESCRIPTION

B·BIT LOAD GROUP

zao• CPU
UsER'S MANUAL

A5·5

II

LD r, r•

Operation: r, f- r'

Opcode: LO

Operands: r, r'

I 0 I Efr I ~1- I rE

zaoci CPU
USER'S MANUAL

Description: The contents of any register r' are loaded into any other register r, Note: r, r' identifies any of the
registers A, B, C, D, E, H, or L, assembled as follows in the object code:

Register
A
B
c
D
E
H
L

M Cycles
1

r, r'
111
000
001
010
011
100
101

TStates
4

MHz E.T.
1.0

Condition Bits Affected:
None.

Example: If the H register contains the number BAH, and the E register contains 10H, the instruction

LDH,E

would result in both registers containing 10H.

Operation: r +- n

Opcode:

Operands:

LO

r, n

I 0 I 0 Ff rE I 0 I
le I I I ~ I I ·I

Z805 CPU
USER'S MANUAL

LD r, n

Description: The 8-bit integer n is loaded into any register r, where r identifies register A, 8, C, 0, E, H, or L,
assembled as follows in the object code:

Register
A
B
c
0
E
H
L

MCycles
2

r
111
000
001
010
011
100
101

TStates
7 (4, 3)

Conditions Bits Affected:
None.

Example: After the execution of

LOE, A5H

the contents of register E will be A5H.

4MHz E.T.
1.75

A5-7

II

LD r, (HL)

Operation:

Opcode:

Operands:

r f- (HL)

LO

r, (HL)

zao• CPU
USER's MANllAL

Description: The 8-bit contents of memory location (HL) are loaded into register r, where r identifies register A, 8,
C, 0, E, H, or L, assembled as follows in the object code:

Register
A
B
c
0
E
H
L

M Cycles
2

r
111
000
001
010
011
100
101

TStates
7 (4,6)

4MHzE.T.
1.75

Condition Bits Affected:

Example:

AS-8

None

If register pair HL contains the number 75A 1 H, and memory address 75A 1 H contains the byte 58H,
the execution of

LO C, (HL)

will result in 58H in register C.

Operation: r +- (IX+d)

Opcode: LD

Operands: r, (IX+d)

0 I 1 I
0 Ef rE

1~ I ~

0 I DD

0

I >I

zao•cPU
USER'S MANUAL

LO r, (IX+d)

Description: The operand (IX+d), (the contents of the Index Register IX summed with a two's complement dis­
placement integer d) is loaded into register r, where r identifies register A, B, C, D, E, H, or L, as­
sembled as follows in the object code:

Register
A
B
c
D
E
H
L

M Cycles
5

r
111
000
001
010
011
100
101

T States
19 (4, 4, 3, 5, 3)

4MHzE.T.
2.50

Conditions Bits Affected:

Example:

None.

If the Index Register IX contains the number 25AFH, the instruction

LD 8, (IX+ 19H)

will cause the calulation of the sum 25AFH + 19H, which points to memory location 25C8H. If this
address contains byte 39H, the instruction will result in register B also containing 39H.

AS-9

II

LO r, (IY+d)

Operation: r f- (IY+D)

Opcode: LD

Operands: r, (IY+d)

I 11 11 I

0 EirE

IOf I I ; ~ I

0

I

I FD

0

~1

ZllO® CPU
USER'S MANUAL

Description: The operand (IY +d) (the contents of the Index Register IY summed with a two's complement dis­
placement integer (d) is loaded into register r, where r Identifies register A, 8, C, D, E, H, or L,
assembled as follows in the object code:

Register
A
8
c
D
E
H
L

M Cycles
5

r
111
000
001
010
011
100
101

TStates
19 (4, 4, 3, 5, 3)

4MHzE.T.
4.75

Condition Bits Affected:

Example:

A5-10

None.

If the Index Register IY contains the number 25AFH, the instruction

LD 8, (IY+19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory location 25C8H. If this
address contains byte 39H, the instruction will result in register 8 also containing 39H.

Operation:

Opcode:

Operands:

(HL) ~ r

LD

(HL), r

zao•cpu
USER'S MANUAL

LO (HL}, r

Description: The contents of register rare loaded into the memory location specified by the contents of the HL
register pair. The symbol r identifies register A, B, C, D, E. H. or L, assembled as follows in the object
code:

Register
A
B
c
D
E
H
L

M Cycles
2

r
111
000
001
010
011
100
101

T States
7 (4, 3)

4MHz E.T.
1.75

Conditions Bits Affected:

Example:

None.

If the contents of register pair HL specifies memory location 2146H, and the B register contains the
byte 29H, after the execution of

LO (HL), B

memory address 2146H will also contain 29H.

AS-11

II

Z80"'CPU
USER's MANUAL

LD {IX+d), r

Operation: (IX+d) +- r

Opcode: LD

Operands: (IX+d), r

0 I 1 I 0 I DD

0 I 0 EfrE

Description: The contents of register rare loaded into the memory address specified by the contents of Index
Register IX summed with d, a two's complement displacement integer. The symbol r identifies
register A, B, C, 0, E, H, or L, assembled as follows in the object code:

Register
A
B
c
D
E
H
L

M Cycles
5

r
111
000
001
010
011
100
101

TStates
19 (4, 4, 3, 5, 3)

4MHzE.T.
4.75

Conditions Bits Affected:

Example:

AS-12

None.

If the C register contains the byte 1CH, and the Index Register IX contains 3100H, then the instruc­
tion

LD (IX+6H), C

will perform the sum 3100H +SH and will load 1CH into memory location 3106H.

Operation: (IY+d) f- r

Opcode: LD

Operands: (IY+d), r

0

I lol IFD

oEfra

zso~ CPU
USER'S MANUAL

LO (IY+d), r

Description: The contents of resister rare loaded into the memory address specified by the sum of the contents
of the Index Register IY and d, a two's complement displacement integer. The symbol r is specified
according to the following table.

Register
A
B
c
D
E
H
L

M Cycles
5

r
111
000
001
010
011
100
101

T States
19 (4, 4, 3, 5, 3)

4MHz E.T.
4.75

Conditions Bits Affected:

Example:

None.

If the C register contains the byte 48H, and the Index Register IY contains 2A 11H, then the instruc­
tion

LD (IY+4H), C

will perform the sum 2A 11 H + 4H, and will load 48H into memory location 2A 15.

AS-13

a

LD (HL), n

Operation:

Opcode:

Operands:

(HL) ~ n

LD

(HL), n

lolol l1lol1j1fol3e

-I· -=-----: -=-----: -=---I ~ --=-l--=-1--=-l-· I

ZBO®CPU
USER'S MANUAL

Description: Integer n is loaded into the memory address specified by the contents of the HL register pair.

M Cycles
3

T States
10 (4, 3, 3)

4MHz E.T.
2.50

Condition Bits Affected

None.

Example: If the HL register pair contains 4444H. the instruction

LO (HL), 28H

will result in the memory location 4444H containing the byte 28H.

A5-14

Operation: (IX+d) f- n

Opcode: LO

Operands: (IX+d), n

0

0 0

I·
I· ;

0

0

~ I
~ I

I DD

0 I 36

·I
·I

ZBO"'CPU
USER'S MANUAL

LO (IX+d), n

Description: The n operand is loaded into the memory address specified by the sum of the Index Register IX an
the two's complement displacement operand d.

M Cycles
5

T States
19 (4, 4, 3, 5, 3)

4 MHz E.T.
4.75

Condition Bits Affected:
None.

Example: If the Index Register IX contains the number 219AH, the instruction

LO (IX+5H), 5AH

would result in the byte 5AH in the memory address 219FH.

A5-15

II

LD (IY+d), n

Operation: (IY+d) ~ n

Opcode: LD

Operands: (IY+d), n

I 1 I 0 I I FD

lo l1lol35

1--c --=-----=--=-- ~ ----=------=----~: ,

Z80"' CPU
USER'S MANUAL

Description: Integer n is loaded into the memory location specified by the contents of the Index Register summed
with the two's complement displacement integer d.

M Cycles
5

T States
19 (4, 4, 3, 5, 3)

4MHz E.T.
2.50

Conditions Bits Affected:
None.

Example: If the Index Register IY contains the number A940H, the instruction

LD (IY+10H). 97H

would result in byte 97 in memory location A950H.

AS-16

~2H.JJ6

Operation: A +-(BC)

Opcode: LD

Operands: A, (BC)

I 0 I 0 I 0 0 0 I 0 I QA

zao•cpu
USER'S MANllAL

LO A, (BC)

Description: The contents of the memory location specified by the contents of the BC register pair are loaded into
the Accumulator.

M Cycles
2

TStates
7 (4, 3)

4MHzE.T.
1.75

Conditions Bits Affected:

Example:

None.

If the BC register pair contains the number 4747H, and memory address 4747H contains the byte
12H, then the instruction

LDA, (BC)

will result in byte 12H in register A.

A5-17

II

LOA, (DE)

Operation:

Opcode:

Operands:

A +-(DE)

LD

A, (DE)

0 I 0 I 1A

ZBO"'CPU
USER'S MANUAL

Description: The contents of the memory location specified by the register pair DE are loaded into the Accumula­
tor.

MCycles
2

TStates
7 (4, 3)

4MHzE.T.
1.75

Conditions Bits Affected:

Example:

AS-18

None.

If the DE register pair contains the number 30A2H and memory address 30A2H contains the byte
22H, then the instruction

LDA, (DE)

will result in byte 22H in register A.

Operation: A~ (nn)

Opcode: LO

Operands: A, (nn)

I 0 I 0 I
14 I I
14 ;

I 1 I 0

1 I
1

I 0 I 3A

I ·I
~1

zaoecpu
UsER's MANUAL

LD A, (nn)

Description: The contents of the memory location specified by the operands nn are loaded into the Accumulator.
The first n operand after the opcode is the low order byte of a 2-byte memory address.

M Cycles
4

TStates
13 (4, 3, 3, 3)

4 MHz E.T.
3.25

Condition Bits Affected:

Example:

None.

If the contents of nn is number 8832H, and the content of memory address 8832H is byte 04H, after
the instruction

LO.A, (nn)

byte 04H will be in the Accumulator.

AS-19

II

LO (BC), A

Operation: (BC)~A

Opcode: LD

Operands: (BC),A

I 0 I 0 I 0 I 0 I 0 I 0

Z80"'CPU
USER'S MANUAL

Description: The contents of the Accumulator are loaded into the memory location specified by the contents of
the register pair BC.

MCycles
2

TStstes
7 (4, 3)

4MHzE.T.
1.75

Conditions Bits Affected:
None.

Example: If the Accumulator contains 7AH and the BC register pair contains 1212H the instruction

LD (BC), A

will result in 7AH being in memory location 1212H.

A5-20

Operation:

Opcode:

Operands:

(DE) +-A

LD

(DE), A

I o I o I o I 1 I o I o I 1 I o I 12

zao•cpu
USER'S MANUAL

LD (DE), A

Description: The contents of the Accumulator are loaded into the memory location specified by the contents of
the DE register pair.

MCycles
2

Conditions Bits Affected:
None.

TStates
7 (4, 3)

4 MHz E.T.
1.75

Example: If the contents of register pair DE are 1128H, and the Accumulator contains byte AOH, the instruction

LD (DE), A

will result in AOH being in memory location 1128H.

AS-21

LD (nn), A

Operation:

Opcode:

Operands:

(nn) ~A

LD

(nn), A

Iola I Iola lols2

-I~ -=--I -::----::--: 1-1-1-·I

zao•cpu
USER'S MANUAL

Description: The contents of the Accumulator are loaded into the memory address specified by the operand nn.
The first n operand after the opcode is the low order byte of nn.

M Cycles
4

T States
13 (4, 3, 3, 3)

4MHzE.T.
3.25

Conditions Bits Affected:
None.

Example: If the contents of the Accumulator are byte D7H, after the execution of

LD (3141H), A

D7H will result in memory location 3141H.

AS-22

ft'2iUJ6

Operation: A+- I

Opcode: LD

Operands: A, I

I 0 I I 0 I ED

0 0 I 1 I 0 I I 1 I 57

Description: The contents of the Interrupt Vector Register I are loaded into the Accumulator.

M Cycles
2

Condition Bits Affected:

TStates
9 (4, 5)

MHz E.T.
2.25

S: Set if I-Register is negative; reset otherwise
Z: Set if I-Register is zero; reset otherwise
H: Reset

PN: Contains contents of IFF2
N: Reset
C: Not affected

ZSQGDCPU
UsER's MANUAL

LOA, I

Note: If an interrupt occurs during execution of this instruction, the Parity flag will contain a 0.

A5-23

II

4\2il.Ll6
LDA,R

Operation: A, f-R

Opcode: LD

Operands: A,R

I 0 I I 0 I ED

0 0 I 1 I I 1 I 5F

Description: The contents of Memory Refresh Register R are loaded into the Accumulator.

M Cycles
2

Condition Bits Affected:

TStates
9 (4, 5)

MHz E.T.
2.25

S: Set if, A-Register is negative; reset otherwise
Z: Set if A-Register is zero; reset otherwise
H Reset

PN: Contains contents of IFF2
N: Reset
C: Not affected

zao•CPU
USER'S MANUAL

Note: If an interrupt occurs during execution of this instruction, the parity flag will contain a 0.

AS-24

Operation: I +-A

Opcode: LD

Operands: l,A

I 1 I 0 I 0 I ED

0 I 0 I 0 0 I 1 I 47

Description: The contents of the Accumulator are loaded into the Interrupt Control Vector Register, I.

M Cycles
2

Condition Bits Affected:
None

TStates
9 (4, 5)

MHz E.T.
2.25

zao•cpu
USER'S MANUAL

LD l,A

AS-25

El

't'2H.JJ6

LDR,A

Operation: R~A

Opcode: LD

Operands: R.A

I 1 I 1 I 0 I I 1 I 0 I ED

I 0 I 0 I 0 I I I 1 I 4F

Description: The contents of the Accumulator are loaded into the Memory Refresh register R.

MCycles
2

Condition Bits Affected:
None

AS-26

TStates
9 (4, 5)

MHz E.T.
2.25

zao•cPu
USER's MANUAL

ZBO®
INSTRUCTION DESCRIPTION

16·BIT LOAD GROUP

zaoacpu
Usell's MANUAL

AS-27

El

LD dd, nn

Operation: dd +- rin

Opcode: LO

Operands: dd, nn

d I 0 I 0

n ;

n ;

I 0 I
; I ~ I

I ~ I

zao• CPU
USER'S MANIJAL

Description: The 2-byte integer nn is loaded into the dd register pair, where dd defines the BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair
BC
DE
HL
SP

dd
00
01
10
11

The first n operand after the opcode is the low order byte.

M Cycles
2

TStates
10 (4, 3, 3)

4MHzE.T.
2.50

Condition Bits Affected:
None

Example: After the execution of

LD HL, 5000H

the contents of the HL register pair will be 5000H.

A5-28

.2iUJ6

Operation: Ix f- nn

Opcode: LD

Operands: IX, nn

0

0 0

..

..

0

0 0 0 0

n

n

DD

21

•
ll>

zao.scpu
USER'S MANUAL

LDIX,nn

Description: Integer nn is loaded into the Index Register IX. The first n operand after the opcode is the low order
byte.

M Cycles
4

TStates
14 (4, 4, 3, 3)

Condition Bits Affected:

None

Example: After the instruction

LDIX,45A2H

4MHzE.T.
3.50

the Index Register will contain integer 45A2H.

AS-29

II

ft'2iu:D;

LD IV, nn

Operation: IY E-nn

Opcode: LO

Operands: IY, nn

0 0 I
..
.. ;

0

0 0 0 I 0

n

n ;

..

..

FD

21

Z80"' CPU
USER'S MANUAL

Description: Integer nn is loaded into the Index Register IY. The first n operand after the opcode is the low order
byte.

Example:

AS-30

M Cycles
4

TStates
14 (4, 4, 3, 3)

Condition Bits Affected:
None

After the instruction

LD IY, 7733H

4MHzE.T.
3.50

the Index Register IY will contain the integer 7733H.

Operation: H ~ (nn+1), L ~ (nn)

Opcode: LO

Operands: HL, (nn)

0 I 0 I 0

• I n I
• I n I

0 0

; ~ I
I ~ I

2A

zao•cpu
USER'S MANllAL

LD HL, (nn)

Description: The contents of memory address (nn) are loaded into the low order portion of register pair HL
(register L), and, the contents of the next highest memory address (nn+ 1) are loaded into the high
order portion of HL (register H). The first n operand after the opcode is the low order byte of nn.

M Cycles
5

TStates
16 (4, 3, 3, 3, 3)

4MHz E.T.
4.00

Condition Bits Affected:

None

Example: If address 4545H contains 37H, and address 4546H, contains A 1 H after the instruction

LO HL, (4545H)

the HL register pair will contain A 137H.

AS-31

II

LO IY, (nn)

Operation:

Opcode:

Operands:

IYh f- (nn+ 1), IYI f- nn)

LD

IY, (nn)

0 FD

0 0 0 0 0 2A

....... ~--=-----=- n -=-----"--=-----''-"'.,.

zao•cpu
USER'S MANUAL

Description: The contents of address (nn) are loaded into the low order portion of Index Register IY, and the
contents of the next highest memory address (nn+ 1) are loaded into the high order portion of IY.
The first n operand after the opcode is the low order byte of nn.

M Cycles
6

TStates
20 (4, 4, 3, 3, 3, 3)

4MHzE.T.
5.00

Condition Bits Affected:
None

Example: If address 6666H contains 92H, and address 6667H contains DAH, after the instruction

LD IY, (6666H)

the Index Register IY will contain DA92H.

AS-34

Operation: (nn+ 1) ~ H, (nn} ~ L

Opcode: LO

Operands: (nn), HL

0 0 0 I 0

~ I n I
~ I n I

0 I 0 I
I • I
I • I

22

Z80'" CPU
USER'S MANUAL

LO (nn}, HL

Description: The contents of the low order portion of register pair HL (register L) are loaded into memory address
(nn), and the contents of the high order portion of HL (register H) are loaded into the next highest
memory address (nn+ 1 }. The first n operand after the opcode is the low order byte of nn.

M Cycles
6

T States
20 (4, 4, 3, 3, 3, 3)

4MHz E.T.
5.00

Condition Bits Affected:
None

Example: If the content of register pair HL is 483AH, after the instruction

LD (B229H), HL

address B229H will contain 3AH, and address B22AH will contain 48H.

A5-35

LO (nn), dd

Operation: (nn+1) f- ddh, (nn) f- ddl

Opcode: LO

Operands: (nn), dd

0

0 d d 0 0

0 ED

ZBO* CPU
UseR'S MANllAL

Description: The low order byte of register pair dd is loaded into memory address (nn); the upper byte is loaded
into memory address (nn+ 1). Register pair dd defines either BC, DE. HL, or SP, assembled as
follows in the object code:

Pair
BC
DE
HL
SP

dd
00
01
10
11

The first n operand after the opcode is the low order byte of a two byte memory address.

MCycles
6

TStates
20(4,4,3, 3,3,3)

4 MHz E.T.
5.00

Condition Bits Affected:
None

Example: If register pair BC contains the number 4644H, the instruction

LO (1000H), BC

will result in 44H in memory location 1000H, and 46H in memory location 1001H.

AS-36

Operation: (nn+ 1) +-- IXh, (nn) +-- IXI

Opcode: LD

Operands: (nn), IX

0

0 0 0 0 0

0 DD

0 22

Z80"' CPU
USE~S MANUAL

LD (nn), IX

Description: The low order byte in Index Register IX is loaded into memory address (nn); the upper order byte is
loaded into the next highest address (nn+ i). The first n operand after the opcode is the low order
byte of nn.

M Cycles
6

TStates
20 (4, 4, 3, 3, 3, 3)

4 MHz E.T.
5.00

Condition Bits Affected:
None

Example: If the Index Register IX contains 5A30H, after the instruction

LD (4392H), IX

memory location 4392H will contain number 30H, and location 4393H will contain SAH.

A5-37

LD (nn}, IV

Operation: (nn+ 1) +- IYh, (nn) +- IYI

Opcode: LD

Operands: (nn), IY

0 0 0 0 0

0 FD

0 22

zao• CPU
USER'S MANUAL

Description: The low order byte in Index Register IY is loaded into memory address (nn); the upper order byte is
loaded into memory location (nn+ 1). The first n operand after the opcode is the low order byte of nn.

M Cycles
6

TStates
20 (4, 4, 3, 3, 3, 3)

4 MHz E.T.
5.00

Condition Bits Affected:
None

Example: If the Index Register IY contains 417 4H after the instruction

LD (8838H), IY

memory location 8838H will contain number 74H, and memory location 8839H will contain 41H.

AS-38

Operation: SP+- HL

Opcode: LD

Operands: SP,HL

I 1 I 1 I 0 I 0 I F9

Description: The contents of the register pair HL are loaded into the Stack Pointer (SP).

M Cycles
6

TStates
20 (4, 4, 3, 3, 3, 3)

4MHz E.T.
5.00

Condition Bits Affected:
None

Example: If the register pair HL contains 442EH, after the instruction

LDSP, HL

the Stack Pointer will also contain 442EH.

zao• CPU
USER'S MANUAL

LDSP, HL

A5-39

II

LD SP, IX

Operation: SP~IX

Opcode: LO

Operands: SP, IX

I I 0 I 11 I 1 I 0 I I DD

I 1 I 1 I l 1 l 0 l 0 I 1 I 2A

Description: The 2-byte contents of Index Register IX are loaded into the Stack Pointer (SP).

M Cycles
2

TStates
10 (4, 6)

4MHzE.T.
2.50

Condition Bits Affected:
None

Example: If the contents of the Index Register IX are 98DAH, after the instruction

LDSP, IX

the contents of the Stack Pointer will also be 98DAH.

A5-40

zao•cpu
USER'S MANIJAL

Operation: SPf- IY

Opcode: LO

Operands: SP, IY

I I 1 1 I 1 I 0 I I FD

I 1 1 I 0 I 0 I 1 I F9

Description: The 2-byte contents of Index Register IY are loaded into the Stack Pointer SP.

M Cycles
2

T States
10 (4, 6)

4 MHz E.T.
2.50

Condition Bits Affected:

None.

Example: If Index Register IY contains the integer A227H, after the instruction

LO SP, IY

the Stack Pointer will also contain A227H.

ZSO"' CPU
USER'S MANUAL

LD SP, IV

A5-41

II

PUSH qq

Operation:

Opcode:

Operands:

(SP-2) +- qql, (SP-1) +- qqH

PUSH

qq

q I q_ I 0

zao•CPU
USER'S MANUAL

Description: The contents of the register pair qq are pushed into the external memory LIFO (last-in, first-out)
Stack. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack.
This instruction first decrements the SP and loads the high order byte of register pair qq into the
memory address now specified by the SP; then decrements the SP again and loads the low order
byte of qq into the memory location corresponding to this new address in the SP. The operand qq
identifies register pair BC, DE, HL, or AF, assembled as follows in the object code:

Pair
BC
DE
HL
AF

M Cycles
3

qq
00
01
10
11

TStates
11 (5, 3, 3)

4MHzE.T.
2.75

Condition Bits Affected:

Example:

AS-42

None.

If the AF register pair contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH AF

memory address, 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack
Pointer will contain 1005H.

Operation:

Opcode:

Operands:

(SP-2) +--- IXL, (SP-1) +--- IXH

PUSH

IX

0 DD

E5

zao•cpu
USER'S MANUAL

PUSH IX

Description: The contents of the Index Register IX are pushed into the external memory LIFO (last-in, first-out)
Stack. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top' of the Stack.
This instruction first decrements the SP and loads the high order byte of IX into the memory address
now specified by the SP; then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M Cycles
3

TStates
15 (4, 5, 3, 3)

4MHz E.T.
3.75

Condition Bits Affected:

Example:

None.

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack Pointer
will contain 1005H.

A5-43

't'2H . .c6

PUSHIY

Operation:

Opcode:

Operands:

(SP-2) ~ IYL, (SP-1) ~ IYH

PUSH

IY

I I FD

E5

ZSO®CPU
USER'S MANUAL

Description: The contents of the Index Register IY are pushed into the external memory LIFO (last-in, first-out)
Stack. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack.
This instruction first decrements the SP and loads the high order byte of IY into the memory address
now specified by the SP; then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M Cycles
4

T States
15 (4, 5, 3, 3)

4MHzE.T.
3.75

Condition Bits Affected:

Example:

AS-44

None.

If the Index Register IY contains 2233H and the Stack Pointer Contains 1007H, after the instruction

PUSHIY

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack
Pointer will contain 1005H.

Operation: qqH ~ (SP+ 1), qql ~ (SP)

Opcode: POP

Operands: qq

I 1 I q q 0 0 I 0 I

zaoecpu
USER'S MANUAL

POPqq

Description: The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into register pair
qq. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack.
This instruction first loads into the low order portion of qq, the byte it the memory location corre­
sponding to the contents of SP; then SP is incriminated and the contents of the corresponding
adjacent memory location are loaded into the high order portion of qq and the SP is now incrimi­
nated again. The operand qq identifies register pair BC, DE, HL, or AF, assembled as follows in the
object code:

Pair r
BC 00
DE 01
HL 10
AF 11

M Cycles
3

TStates
10 (4, 3, 3)

4MHzE.T.
2.50

Condition Bits Affected:

Example:

None.

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H
contains 33H, the instruction

POPHL

will result in register pair HL containing 3355H, and the Stack Pointer containing 1002H.

A5-45

II

POP IX

Operation:

Opcode:

Operands:

IXH +- (SP+ 1), IXL +- (SP)

POP

IX

o I I DD

E1

Description: The top two bytes of the external memory LIFO (list-in, first-out) Stack are popped into Index Register
IX. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack.
This instruction first loads into the low order portion of IX the byte at the memory location corre­
sponding to the contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IX. The SP is now incremented
again.

MCycles
4

TStates
14 (4, 4, 3, 3)

4MHzE.T.
3.50

Condition Bits Affected:

Example:

AS-46

None.

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H
contains 33H, the instruction

POPIX

will result in Index Register IX containing 3355H, and the Stack Pointer containing 1002H.

Operation:

Opcode:

Operands:

IYH +-- (SP+ 1), IXL +-- (SP)

POP

IX

0 DD

0 0 0 I 0 I E1

Z80®CPU
USER'S MANUAL

POPIY

Description: The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into Index Regis­
ter IY. The Stack Pointer (SP) register pair holds the 16-bit address of the current "top" of the Stack.
This instruction first loads into the low order portion of IY the byte at the memory location corre­
sponding to the contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IY. The SP is now incremented
again.

M Cycles
4

T States
14 (4, 4, 3, 3)

4MHz E.T.
3.50

Condition Bits Affected:

Example:

None.

If the Stack Pointer Contains 1000H, memory location 1000H contains 55H, and location 1001 H
contains 33H, the instruction

POPIY

will result in Index Register IY containing 3355H, and the Stack Pointer containing 1002H.

A5-47

II

ZSO®
INSTRUCTION DESCRIPTION

EXCHANGE, BLOCKTRANSFER,
AND SEARCH GROUP

Z80"'CPU
USER's MANUAL

A5-49

EX DE, HL

Operation: DE+.+HL

Opcode: EX

Operands: DE,HL

I 1 I 1 I I 0 I I 0 I EB

zaoecpu
USER'S MAMIAL

Description: The 2-byte contents of register pairs DE and HL are exchanged.

M Cycles
1

T States
4

4MHz E.T.
1.00

Condition Bits Affected:

Example:

A5-50

None.

If the content of register pair DE is the number 2822H, and the content of the register pair HL is
number 499AH, after the instruction

EXDE, HL

the content of register pair DE will be 499AH and the content of register pair HL will be 2822H.

Operation: AF +-+AF'

Opcode: EX

Operands: AF, AF'

I 0 I 0 I 0 I 0 I 0 I 0 I 0 OB

zao«>cpu
USER'S MANUAL

EXAF,AF 1

Description: The 2-byte contents of the register pairs AF and AF' are exchanged. (Note: register pair AF consists
of registers A' and F'.)

M Cycles
1

T States
4

4 MHz E.T.
1.00

Condition Bits Affected:

Example:

None.

If the content of register pair AF is number 9900H, and the content of register pair AF' is number
5944H, after the instruction

EX AF, AF'

the contents of AF will be 5944H, and the contents of AF' will be 9900H.

A5-51

II

EXX

Operation:

Opcode:

Operands:

(BC) H (BC'), (DE') H (DE'}, (HL) H (HL')

EXX

ZBO®CPU
USER'S MANUAL

Description: Each 2-byte value in register pairs BC, DE, and HL is exchanged with the 2-byte value in BC', DE',
and HL', respectively.

M Cycles
1

T States
4

4 MHz E.T.
1.00

Condition Bits Affected:

Example:

AS-52

None.

If the contents of register pairs BC, DE, and HL are the numbers 445AH, 3DA2H, and 8859H,
respectively, and the contents of register pairs BC', DE', and HL' are 0988H, 9300H, and OOE?H,
respectively, after the instruction

EXX

the contents of the register pairs will be as follows: BC': 0988H; DE': 9300H; HL: OOE?H; BC': 445AH;
DE': 3DA2H; and HL': 8859H.

Operation: H H (SP+1), L H (SP)

Opcode: EX

Operands: (SP), HL

I 1 I 1 I I 0 I 0 I 0 I E3

zao•cpu
USER'S MANUAL

EX(SP), HL

Description: The low order byte contained in register pair HL is exchanged with the contents of the memory
address specified by the contents of register pair SP (Stack Pointer), and the high order byte of HL is
exchanged with the next highest memory address (SP+ 1).

M Cycles
5

TStates
19 (4, 3, 4, 3, 5)

4 MHz E.T.
4.75

Condition Bits Affected:

Example:

None.

If the HL register pair contains 7012H, the SP register pair contains 8856H, the memory location
8856H contains the byte 11 H, and the memory location 8857H contains the byte 22H, then the
instruction

EX (SP), HL

will result in the HL register pair containing number 2211 H, memory location 8856H containing the
byte 12H, the memory location 8857H containing the byte ?OH and the Stack Pointer containing
8856H.

A5-53

II

EX (SP), IX

Operation:

Opcode:

Operands:

IXH +-+(SP+ 1), IXL+-+ (SP)

EX

(SP), IX

0 I I I 0 I DD

fofofof1I Es

zaoecpu
USER's MANUAL

Description: The low order byte in Index Register IX is exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack Pointer), and the high order byte of IX is ex­
changed with the next highest memory address (SP+ 1).

MCycles
6

TStates
23 (4, 4, 3, 4, 3, 5)

4MHzE.T.
5.75

Condition Bits Affected:

Example:

A5-54

None.

If the Index Register IX contains 3988H, the SP register pair Contains OIOOH, the memory location
0100H contains the byte 90H, and memory location 0101H contains byte 48H, then the instruction

EX (SP), IX

will result in the IX register pair containing number, 4890H, memory location 0100H containing 88H,
memory location 0101H containing 39H and the Stack Pointer containing 0100H.

Operation:

Opcode:

Operands:

IYH H (SP+ 1), IYL H (SP)

EX

(SP), IY

0 0 0

FD

E3

Z80®CPU
USER'S MANUAL

EX (SP), IV

Description: The low order byte in Index Register IY is exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack Pointer), and the high order byte of IY is ex­
changed with the next highest memory address (SP+1).

M Cycles
6

T States
23(4, 4, 3, 4, 3,5)

4MHzE.T.
5.75

Condition Bits Affected:

Example:

None.

If the Index Register IY contains 3988H, the SP register pair contains 0100H, the memory location
0100H contains the byte 90H, and memory location 0101H contains byte 48H, then the instruction

EX (SP), IY

will result in the IY register pair containing number 4890H, memory location 0100H containing 88H,
memory location 0101 H containing 39H, and the Stack Pointer containing 0100H.

A5-55

II

LOI

Operation:

Opcode:

Operands:

(DE) +-- (HL), DE +-- DE + 1, HL +-- HL + 1, BC +-- BC -1

LOI

(SP), HL

I 1 I 0 I 0 I ED

I 0 I 0 0 1°1°1°1 AO

zao•cPu
USER's MANUAL

Description: A byte of data is transferred from the memory location addressed, by the contents of the HL register
pair to the memory location addressed by the contents of the DE register pair. Then both these
register pairs are incremented and the BC (Byte Counter) register pair is decremented.

M Cycles
4

TStates
16 (4, 4, 3, 5)

4MHz E.T.
4.00

Condition Bits Affected:

Example:

AS-56

S: Not affected
Z: Not affected
H: Reset

PN: Set if BC - 1 ~ O; reget otherwise
N: Reset
C: Not affected

If the HL register pair contains 1111 H, memory location 1111 H contains contains the byte 88H, the
DE register pair contains 2222H, the memory location 2222H contains byte 66H, and the BC register
pair contains 7H, then the instruction

LOI

Will result in the following contents in register pairs and memory addresses:

HL
(1111 H)

DE
(2222H)

BC

1112H
88H
2223H
88H
6H

Operation:

Opcode:

Operands:

(DE) f-- (HL), DE f-- DE + 1, HL f-- HL + 1, BC f-- BC - i

LDIR

BS

0

I 0 I ED

lolololeo

Z80®CPU
UsER'S MANUAL

LDIR

Description: This 2-byte instruction transfers a byte of data from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the DE register pair. Then both these
register pairs are incremented and the BC (Byte Counter) register pair is decremented. If
decrementing causes the BC to go to zero, the instruction is terminated. If BC is not zero the pro­
gram counter is decremented by two and the instruction is repeated. Interrupts will be recognized
and two refresh eyeless will be executed after each data transfer. Note that if BC is set to zero prior
to instruction execution, the instruction will loop through 64 Kbytes.

For BC':/! 0:

MCycles
5

For BC= 0:

MCycles
4

T States
21 (4, 4, 4, 3, 5, 5)

T States
16 (4, 4, 3, 5)

4 MHz E.T.
5.25

4 MHz E.T.
4.00

Condition Bits Affected:

Example:

S: Not affected
Z: Not affected
H: Reset

PN: Reset
N: Reset
C: Not affected

If the HL register pair contains 11111 H, the DE register pair contains 2222H, the BC register pair
contains 0003H, and memory locations have these contents:

(1111H)
(1112H)
(1113H)

88H (2222H)
36H (2223H)
ASH (2224H)

then after the execution of

LDIR

66H
59H
C5H

AS-57

II

A5-58

the contents of register pairs and memory locations will be:

HL 1114H
DE 2225H
BC OOOOH

(1111 H) 88H (2222H) 88H
(1112H) 36H (2223H) 36H
(1113H) A5H (2224H) A5H

zao«>cpu
USER'S MANUAL

Operation:

Opcode:

Operands:

(DE)+- (HL), DE+- DE-1, HL +- HL-1, BC+- BC -1

LDD

0 ED

0

Z8011 CPU
UsER's MANllAL

LDD

Description: This 2-byte instruction transfers a byte of data from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the contents of the DE register pair.
Then both of these register pairs including the BC (Byte Counter) register pair are decremented.

M Cycles
4

TStates
16 (4, 4, 3, 5)

4MHzE.T.
4.00

Condition Bits Affected:

Example:

S: Not affected
Z: Not affected
H: Reset

PN: Set if BC - 1 *" O; reset otherwise
N: Reset
C: Not affected

If the HL register pair contains 1111H, memory location 1111H contains the byte 88H, the DE
register pair contains 2222H, memory location 2222H contains byte 66H, and the BC register pair
contains 7H, then the instruction

LDD

will result in the following contents in register pairs and memory addresses:

HL
(1111H)

DE
(2222H)

BC

1110H
88H
2221H
88H
6H

A5-59

El

LDDR

Operation:

Opcode:

Operands:

{DE)+- {HL), DE+- DE-1, HL +- HL-1, BC+- BC-1

LDDR

ED

0 I I B8

zao•cpu
USER'S MANUAL

Description: This 2-byte instruction transfers a byte of data from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the contents of the HL register pair to
the memory location addressed by the contents of the DE register pair. Then both of these registers,
as well as the BC {Byte Counter) are decremented. If decrementing causes the BC to go to zero, the
instruction is terminated. If BC is not zero, the program counter is decremented by two and the
instruction is repeated. Interrupts will be recognized and two refresh cycles will be executed after
each data transfer. Note that if BC is set to zero prior to instruction execution, the instruction will loop
through 64 Kbytes.

For BC-;1;0:

MCycles
5

For BC= O:

MCycles
5

TStates
21 (4, 4, 3, 5, 5)

TStates
21 (4, 4, 3, 5, 5)

4MHzE.T.
5.25

4MHzE.T.
5.25

Condition Bits Affected:

Example:

A5-60

S: Not Affected:
Z: Not Affected:
H: Reset

PN: Reset
N: Reset

If the HL register pair contains 1114H, the DE register pair contains 2225H, the BC register pair
contains 0003H, and memory locations have these contents:

(1114H) : A5H{2225H) : C5H
{1113H) : 36H (2224H) : 59H
{1112H) : SSH {2223H) : 66H

Then after the execution of

LDDR

the contents of register pairs and memory locations will be:

HL : 1111H
DE : 2222H
DC : OOOOH

(1114H) : ASH (222SH) : ASH
(1113H) : 36H (2224H) : 36H
(1112H) : 88H (2223H) : 88H

ZBO"'CPU
USER's MANUAL

A5-61

CPI

Operation:

Opcode:

Operands:

A- (HL), HL t- HL + 1, BC t- BC -1

CPI

Z80sCPU
UsER's MANUAL

Description: The contents of the memory location addressed by the HL register is compared with the contents of
the Accumulator. In case of a true compare, a condition bit is set. Then HL is incremented and the
Byte Counter (register pair BC) is decremented.

MCycles
4

TStates
16 (4, 4, 3, 5)

4MHz E.T.
4.00

Condition Bits Affected:

Example:

A5-62

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Set if BC -1"*0; reset otherwise
N: Set
C: Not affected

If the HL register pair contains 1111 H, memory location 1111 H contains 3BH, the Accumulator
contains 3BH, and the Byte Counter contains 0001 H. Then after the execution of

CPI

the Byte Counter will contain OOOOH, the HL register pair will contain 1112H, the Z flag in the F
register will be set, and the PN flag in the F register will be reset. There will be no effect on the
contents of the Accumulator or address 1111 H.

Operation: A-(HL), HL ~ HL+ 1, BC ~ BC-1

Opcode: CPIR

Operands:

I I 0 I I 0 I
I 0 l 1 l0 l0 l 0 I

ED

81

zaoiecpu
USER'S MANllAL

CPIR

Description: The contents of the memory location addressed by the HL register pair is compared with the con­
tents of the Accumulator. In case of a true compare, a condition bit is set. The HL is incremented
and the Byte Counter (register pair BC) is decremented. If decrementing causes the BC to go to
zero or if A = (HL), the instruction is terminated. If BC is not zero and A ;1: (HL), the program counter
is decremented by two and the instruction is repeated. Interrupts will be recognized and two refresh
cycles will be executed after each data transfer. Note that if BC is set to zero before instruction
execution, the instruction will loop through 64 Kbytes if no match is found.

For BC ;1: 0 and A ;1: (HL):

M Cycles
5

TStates
21 (4, 4, 3, 5, 5)

For BC = 0 and A = (HL):

M Cycles
4

TStates
16 (4, 4, 3, 5)

4MHz E.T.
5.25

4MHzE.T.
4.00

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL): reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Set if BC - 1 ;1: 0; reset otherwise
N: Set
C: Not Affected:

If the HL register pair contains 1111 H, the Accumulator contains F3H, the Byte Counter contains
0007H, and memory locations have these contents:

(1111 H) : 52H
(1112H): OOH
(1113H) : F3H

Then after the execution of:

CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter will be 0004H, the
PN flag in the F register will be set, and the Z flag in the F register will be set.

A5-63

II

CPD

Operation:

Opcode:

Operands:

A-(HL). HL +-- HL-1, BC+-- BC-1

CPD

0

ED

A9

Description: The contents of the memory location addressed by the HL register pair is compared with the con­
tents of the Accumulator. In case of a true compare, a condition bit is set. The HL and the Byte
Counter (register pair BC) are decremented.

MCycles
4

TStates
16 (4, 4, 3, 5)

4MHzE.T.
4.00

Condition Bits Affected:

Example:

AS-64

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Set if BC - 1 -:t: O; reset otherwise
N: Set
C: Not Affected:

If the HL register pair contains 11i1 H, memory location 1111 H contains 3BH, the Accumulator
contains 3BH, and the Byte Counter contains 0001 H. Then after the execution of

CPD

the Byte Counter will contain OOOOH, the HL register pair will contain 1110H, the flag in the F register
will be set, and the PN flag in the F register will be reset. There will be no effect on the contents of
the Accumulator or address 1111 H.

Operation: A-(HL), HL ~ HL-1, BC~ BC-1

Opcode: CPDR

Operands:

0

0

ED

89

Z80"'CPU
USER'S MANuAL

CPDR

Description: The contents of the memory location addressed by the HL register pair is compared with the con­
tents of the Accumulator. In case of a true compare, a condition bit is set. The HL and BC (Byte
Counter) register pairs are decremented. If decrementing causes the BC to go to zero or if A= (HL),
the instruction is terminated. If BC is not zero and A = (HL), the program counter is decremented by
two and the instruction is repeated. Interrupts will be recognized and two refresh cycles will be
executed after each data transfer. Note that if BC is set to zero prior to instruction execution, the
instruction will loop through 64 Kbytes if no match is found.

For BC~ 0 and A~ (HL):

M Cycles
5

T States
21 (4, 4, 3, 5, 5)

For BC = 0 and A = (HL):

MCycles
4

T States
16 (4, 4, 3, 5)

4MHz E.T.
5.25

4 MHz E.T.
4.00

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow form bit 4; reset otherwise

PN: Set if BC -1 ~ 0 ; reset otherwise
N: Set
C: Not Affected:

If the HL register pair contains 111 BH, the Accumulator contains F3H, the Byte Counter contains
0007H, and memory locations have these contents.

(1118H) 52H
(1117H) OOH
(1116H) F3H

Then after the execution of

CPDR

the contents of register pair HL will be 1115H, the contents of the Byte Counter will be 0004H, the
PN flag in the F register will be set, and the Z flag in the F register will be set.

AS-65

a

Z80®
INSTRUCTION DESCRIPTION

8·BIT ARITHMETIC GROUP

Z80"' CPU
USER'S MANUAL

A5·67

II

ADDA, r

Operation:

Opcode:

Operands:

A~A+r

ADD

A, r

zao~ CPU
USER'S MANUAL

Description: The contents of register rare added to the contents of the Accumulator, and the result is stored in
the Accumulator. The symbol r identifies the registers A, B, C, D, E, H, or L, assembled as follows in
the object code:

Register r
A 111
B 000
c 001
D 010
E 011
H 100
L 101

M Cycles TStates 4 MHz E.T.
1 4 1.00

Condition Bits Affected:

Example:

A5-68

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 7; reset otherwise

If the contents of the Accumulator are 44H, and the contents of register C are 11 H, after the execu­
tion of

ADDA,C

the contents of the Accumulator will be 55H.

Operation: A~A+n

Opcode: ADD

Operands: A,n

0 0

• I n I
0 I 0 I

I ~ I
C6

Z80"'CPU
USER'S MANUAL

ADDA, n

Description: The integer n is added to the contents of the Accumulator, and the results are stored in the Accumu­
lator,

M Cycles
2

T States
7 (4, 3)

4MHz E.T.
U5

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 7; reset otherwise

Example: If the contents of the Accumulator are 23H, after the execution of

ADDA, 33H

the contents of the Accumulator will be 56H,

A5-69

a

zao•CPU
USER'S MANUAL

ADD A, (HL)

Operation: A~A + (HL)

Opcode: ADD

Operands: A, (HL)

I 1 I 0 I 0 I 0 I 0 I 0 86

Description: The byte at the memory address specified by the contents of the HL register pair is added to the
contents of the Accumulator, and the result is stored in the Accumulator.

MCycles
2

T States
7 (4, 3)

4MHzE.T.
1.75

Condition Bits Affected:

Example:

A5·70

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 7; reset otherwise

If the contents of the Accumulator are AOH, and the content of the register pair HL is 2323H, and
memory location 2323H contains byte 08H, after the execution of

ADDA, (HL)

the Accumulator will contain A8H.

Operation: A f- A + (IX+d)

Opcode: ADD

Operands: A, (IX+ d)

0

0 l 0 l0 l0 I
~ I I d I

I 0 I I
I 0 I
I • I

DD

86

Z80®CPU
USER'S MANUAL

ADD A, (IX + d)

Description: The contents of the Index Register (register pair IX) is added to a two's complement displacement d
to point to an address in memory. The contents of this address is then added to the contents of the
Accumulator and the result is stored in the Accumulator.

M Cycles
5

T States
16 (4, 4, 3, 5, 3)

4MHz E.T.
4.75

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 7; reset otherwise

If the Accumulator contents are 11 H, the Index Register IX contains 1 OOOH, and if the content of
memory location 1005H is 22H, after the execution of

ADD A, (IX + SH)

the contents of the Accumulator will be 33H.

AS-71

II

zao•cpu
USER'S MAllllAL

ADD A, (IY + d)

Operation: A +-- A + (ID+d)

Opcode: ADD

Operands: A, (IY + d)

I 1 I I o I I FD

l 0 l 0 l 0 l0 I I 0 I 86

• I I I d I I I ~ I
Description: The contents of the Index Register (register pair IY) is added to a two's complement displacement d

to point to an address in memory. The contents of this address is then added to the contents of the
Accumulator, and the result is stored in the Accumulator.

MCyclea
5

TStates
16 (4, 4, 3, 5, 3)

4MHzE.T.
4.75

Condition Bits Affected:

Example:

AS-72

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 7; reset otherwise

If the Accumulator contents are 11 H, the Index Register Pair IY contains 1 OOOH, and if the content of
memory location 1005H is 22H, after the execution of

ADD A, (IY + SH)

the contents of the Accumulator will be 33H.

Operation:

Opcode:

Operands:

A+-A+s+CY

ADC

A, s

zaoecpu
USER'S MANUAL

ADCA, s

This s operand is any of r, n, (HL), (IX+d), or (IY +d) as defined for the analogous ADD instruction.
These various possible opcode-operand combinations are assembled as follows in the object code:

ADC A, r 0 0 0 ~ r• .;.+

ADC A, n 0 0 0 CE

.. n ~

ADC A, (HL} 0 0 0 0 SE

ADC A, (IX+d} 0 0 DE

0 0 0 0 SE

.. ; d ~

ADC A, (IV +d) 0 FD

I 0 0 0 0 SE

.. ; d ~

*r identifies registers 8, C, D, E, H, L, or A assembled as follows in the object code field above:

Register r
8 000
c 001
D 010
E 011
H 100
L 101
A 111

A5-73

Description:

ZBO®CPU
USER'S MANUAL

The s operand, along with the Carry Flag ("C" in the F register) is added to the contents of the
Accumulator, and the result is stored in the Accumulator.

Instruction M Cycle TStates 4 MHz E.T.
ADCA, r 1 4 1.00
ADCA, n 2 7 (4, 3) 1.75
ADC A, (HL) 2 7 (4, 3) 1.75
ADC A, (IX+d) 5 19 (4, 4, 3, 5, 3) 4.75
ADC A, (IY +d) 5 19 (4, 4, 3, 5, 3) 4.75

Condition Bits Affected:

Example:

AS-74

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 7; reset otherwise

If the Accumulator contents are 16H, the Carry Flag is set, the HL register pair contains 6666H, and
address 6666H contains 10H, after the execution of

ADCA, (HL)

the Accumulator will contain 27H.

4'211.C6

Operation:

Opcode:

Operands:

At-A-s

SUB

s

ZSO*CPU
USER'S MANUAL

sues

This s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the analogous ADD instruction.
These various possible opcode-operand combinations are assembled as follows in the object code:

SUB r 0 0 0:-- r*-:--.

SUB n 0 0 0 D6

II! n ..
SUB (HL) 0 0 0 0 96

SUB (IX+d) 0 0 DD

0 0 0 0 96

II! d ..
SUB (IY+d) 0 FD

0 0 0 0 96

II! d ..

*r identifies registers 8, C, D, E, H, L, or A assembled as follows in the object code field above:

Register
8
c
D
E
H
L
A

r
000
001
010
011
100
101
111

AS-75

II

Description:

zao•cpu
USER'S MANUAL

The s operand is subtracted from the contents of the Accumulator, and the result is stored in the
Accumulator.

Instruction MCycle TStates 4MHzE.T.
SUBr 1 4 1.00
SUBn 2 7 (4, 3) 1.75
SUB (HL) 2 7 (4, 3) 1.75
SUB (IX+d) 5 19 (4, 4, 3, 5, 3) 4.75
SUB (IY+d) 5 19 (4, 4, 3, 5, 3) 4.75

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example: If the Accumulator contents are 29H, and register D contains 11 H, after the execution of

SUBD

the Accumulator will contain 18H.

A5-76

Operation:

Opcode:

Operands:

Af-A-s-CY

SBC

A, s

zaoecpu
USER'S MANllAL

SBCA,s

The s operand is any of r, n, (HL), (IX+d} or (IY +d) as defined for the analogous ADD instructions.
These various possible opcode-operand combinations are assembled as follows in the object code:

SBCA, r 0 0 0 ~r~

SBCA, n 0 0 DE

""
n •

SBCA, (HL) 0 0 0 9E

SBC A, (IX+d) 0 0 DD

0 0 0 9E

""
d •

SBCA, (IY+d) 0 FD

0 0 I 0 9E

"" d •

*r identifies registers B, C, D, E, H, L, or A assembled as follows in the object code field above:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

AS-77

II

Description:

Z80"'CPU
USER'S MANllAL

The s operand, along with the Carry flag ('C' in the F register) is subtracted from the contents of the
Accumulator, and the result is stored in the Accumulator.

Instruction M Cycles TStates 4MHz E.T.
SBCA, r 1 4 1.00
SBCA, n 2 7 (4, 3) 1.75
SBC A, (HL) 2 7 (4, 3) 1.75
SBC A, (IX+d) 5 19 (4, 4, 3, 5, 3) 4.75
SBC A, (IV +d) 5 19 (4, 4, 3, 5, 3) 4.75

Condition Bits Affected:

Example:

AS-78

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Reset if overflow: reset otherwise
N: Set
C: Set if borrow;

reset otherwise

If the Accumulator contains 16H, the carry flag is set, the HL register pair contains 3433H, and
address 3433H contains 05H, after the execution of

SBC A, (HL)

the Accumulator will contain 10H.

Operation:

Opcode:

Operands:

Af-AA s

AND

s

Z80"'CPU
UsER'S MANUAL

ANDs

The s operand is any of r, n, (HL), (IX+d), or (IY+d), as defined for the analogous ADD instructions.
These various possible opcode-operand combinations are assembled as follows in the object code:

AND r• 0 0 0 EEr·B
ANDn I 0 I 0 0 I E6

llE I ~ ..
AND (HL) 0 0 0 0 A6

AND (IX+d) 0 0 DD

0 0 0 0 A6

loE .. I
AND (IY+d) 0 1 I FD

0 0 0 0 I A6

I· i i .. ,

•r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code field above:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

A5-79

Description:

Z80*CPU
USER'S MANUAL

A logical AND operation is performed between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in the Accumulator.

Instruction MCycles TStates 4MHzE.T.
ANDr 1 4 1.00
ANDn 2 7 (4, 3) 1.75
AND (HL) 2 7 (4, 3) 1.75
AND (IX+d) 5 19 (4, 4, 3, 5, 3) 4.75
AND(IX+d) 5 19 (4, 4, 3, 5, 3) 4.75

Condition Bits Affected:

Example:

A5-80

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set

PN: Reset if overflow; reset otherwise
N: Reset
C: Reset

If the B register contains 7BH (0111 1011) and the Accumulator contains C3H (1100 0011) after the
execution of

ANDB

the Accumulator will contain 43H (01000011).

Operation:

Opcode:

Operands:

A+-AVs

OR

s

zao•cpu
USER'S MANUAL

ORs

The s operand is any of r, n, (HL), (IX+d), or (IY +d), as defined forthe analogous ADD instructions. These
various possible opcode-operand combinations are assembled as follows in the object code:

*r identifies registers 8, C-, D, E, H, L, or A specified as follows in the assembled object code field above:

Register
8
c
D
E
H
L
A

r
000
001
010
011
100
101
111

A5-81

El

Description:

zao•cpu
USER'S MANllAL

A logical OR operation is performed between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in the Accumulator.

Instruction M Cycles TStates 4MHzE.T.
ORr 1 4 1.00
ORn 2 7 (4, 3) 1.75
OR (HL) 2 7 (4, 3) 1.75
OR (IX+d) 5 19 (4, 4, 3, 5, 3) 4.75
OR (IY+d) 5 19 (4, 4, 3, 5, 3) 4.75

Condition Bits Affected:

Example:

A5-82

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if overflow; reset otherwise
N: Reset
C: Reset

If the H register contains 48H (0100 0100) and the Accumulator contains 12H (0001 0010) after the
execution of

ORH

the Accumulator will contain 5AH (01011010).

ft'2i1JJ6

Operation:

Opcode:

Operands:

Af-Aes

XOR

s

zao•CPu
USER'S MANllAL

XORs

The s operand is any of r, n, (HL), (IX+d), or (IY +d), as defined for the analogous ADD instructions. These
various possible opcode-operand combinations are assembled as follows in the object code:

XORr* 0 0 EEr*E
XORn 0 I I 0 I EE

1~ ~ ~

XOR(HL) I 0 0 0 AE

XOR(IX+d) 0 0 DD

I 1 0 0 0 AE

1~ ~1

XOR(IY+d) 0 1 I FD

I 0 0 0 I AE

1~ i ~1

*r identifies registers 8, C, D, E, H, L, or A specified as follows in the assembled object code field above:

Register
8
c
D
E
H
L
A

r
000
001
010
011
100
101
111

A5-83

II

Description:

zao•cpu
USER'S llANuAL

The contents of the s operand are compared with the contents of the Accumulator. If there is a true
compare, the Z flag is set. The execution of this instruction does not affect the contents of the
Accumulator.

Instruction M Cycles TStates 4MHzE.T.
CPr 1 4 1.00
CPn 2 7 (4, 3) 1.75
CP (HL) 2 7 (4, 3) 1.75
CP(IX+d) 5 19 (4, 4, 3, 5, 3) 4.75
CP (IY+d) 5 19 (4, 4, 3, 5, 3) 4.75

Condition Bits Affected:

Example:

AS-86

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

If the Accumulator contains 63H, the HL register pair contains 6000H and memory location 6000H
contains 60H, the instruction

CP (HL)

will result in the PN flag in the F register being reset .

Operation: rf-r+1

Opcode: INC

Operands:

0 0

Z80"' CPU
USER'S MANUAL

INC r

Description: Register r is incremented. r identifies any of the registers A, B, C, D, E, H, or L, assembled as follows
in the object code.

Register r
A 111
B 000
c 001
D 010
E 011
H 100
L 101

M Cycles TStates 4MHz E.T.
1 4 1.00

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if r was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example: If the contents of register D are 28H, after the execution of

INCD

the contents of register D will be 29H.

A5-87

ft'2HJJ6

INC (HL)

Operation:

Opcode:

Operands:

(HL) +- (HL) + 1

INC

(HL)

zao~cPu
USER'S MANUAL

Description: The byte contained in the address specified by the contents of the HL register pair is incremented.

MCycles
3

TStates
11 (4, 4, 3)

4MHzE.T.
2.75

Condition Bits Affected:

Example:

AS-88

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if (HL) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

If the contents of the HL register pair are 3434H, and the contents of address 3434H are 82H, after
the execution of

INC (HL)

memory location 3434H will contain 83H.

Operation: (IX+d) f- (IX+d) + 1

Opcode: INC

Operands: (IX+d)

I o

lolo l 0 l

0 I DD

0 0 134

zao~cpu

USER'S MANUAL

INC (IX+d)

Description: The contents of the Index Register IX (register pair IX) are added to a two's complement displace­
ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles
6

T States
23 (4, 4, 3, 5, 4, 3)

4 MHz E.T.
5.75

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if (IX+d) was 7FH before operation; reset otherwise
N: Reset
C: Not affected

If the contents of the Index Register pair IX are 2020H, and the memory location 2030H contains
byte 34H, after the execution of

INC (IX+10H)

the contents of memory location 2030H will be 35H.

A5-89

INC (IY+d)

Operation:

Opcode:

Operands:

Description:

(IY+d) f- (IY+d) + 1

INC

(IY+d)

I 1 I 1

0 I 0 I 0 I
1~ I i

0 I FD

0 I o 134

I ·I

zao~ CPU
USER'S MANUAL

The contents of the Index Register IY (register pair IY) are added to a two's complement displace­
ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles
6

T States
23 (4, 4, 3, 5, 4, 3)

4 MHz E.T.
5.75

Condition Bits Affected:

Example:

AS-90

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if (IY +d) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

If the contents of the Index Register pair IY are 2020H, and the memory location 2030H contain byte
34H, after the execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.

ft'2iUJ6

Operation:

Opcode:

Operands:

(IX+d) +- (IX+d) + 1

INC

(IX+d)

0

I 0 I 0 I 0 I
1~ I i I

INC (IX+d)

0 I DD

0 0 134

I ~1
Description: The contents of the Index Register IX (register pair IX) are added to a two's complement displace­

ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles
6

TStates
23 (4, 4, 3, 5, 4, 3)

4MHz E.T.
5.75

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if (IX+d) was 7FH before operation; reset otherwise
N: Reset
C: Not affected

If the contents of the Index Register pair IX are 2020H, and the memory location 2030H contains
byte 34H, after the execution of

INC (IX+ 1 OH)

the contents of memory location 2030H will be 35H.

A5-89

a

INC (IV+d)

Operation:

Opcode:

Operands:

Description:

(IY+d) +- (IY+d) + 1

INC

(IY+d)

I 1 I
0 0 I I 0 I

1~ ; ; i I

0

0

I FD

I o 134

; ~I

zao•cpu
USER'S MANllAL

The contents of the Index Register IY (register pair IY) are added to a two's complement displace­
ment integer d to point to an address in memory. The contents of this address are then incremented.

MCycles
6

TStates
23 (4, 4, 3, 5, 4, 3)

4MHzE.T.
5.75

Condition Bits Affected:

Example:

A5-90

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise

PN: Set if (IY+d) was ?FH before operation; reset otherwise
N: Reset
C: Not Affected

If the contents of the Index Register pair IY are 2020H, and the memory location 2030H contain byte
34H, after the execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.

Operation:

Opcode:

Operands:

m~m-i

DEC

m

zso~cPu
USER'S MANUAL

DECm

Them operand is any of r, (HL},(IX+d), or (IY +d), as defined for the analogous INC instructions. These
various possible opcode-operand combinations are assembled as follows in the object code:

DEC r* 0 0 EfrB 0

DEC (HL) 0 0 I 0 0 35

DEC (IX+d) 0 0 DD

0 0 0 0 35

i ; ~1
DEC (IY+d) 0 1 I FD

0 0 I 0 0 I I 35

i I ~1

•r identifies registers 8, C. D, E, H, L, or A assembled as follows in the object code field above:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

A5-91

-
Description: The byte specified by the m operand is decremented.

Instruction M Cycles T States 4 MHz E.T.
DEC r 1 4 1.00
DEC (HL) 3 11 (4, 4, 3) 2.75
DEC (IX+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75
DEC (IY+d) 6 23(4, 4, 3, 5,4, 3) 5.75

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from bit 4, reset otherwise

PN: Set if m was 80H before operation: reset otherwise
N: Set
C: Not affected

Example: If the D register contains byte 2AH, after the execution of

DECO

register D will contain 29H.

A5-92

Z80"' CPU
USER'S MANUAL

ZSO®
INSTRUCTION DESCRIPTION

GENERAL-PURPOSE ARITHMETIC
AND CPU CONTROL GROUPS

1-W\ll'"U

USER'S MANUAL

II

A5-93

DAA

Operation:

Opcode: DAA

_I o __ l_o _____ o __ o _______ l21

Z80®CPU
USER'S MANUAL

Description: This instruction conditionally adjusts the Accumulator for BCD addition and subtraction operations.
For addition (ADD, ADC, INC) or subtraction (SUB, SBC, DEC, NEG), the following table indicates
the operation performed:

Hex Value Hex Value Number
C Before In Upper H Before In Lower Added c After

Operation DAA Digit (bit 7-4) DAA Digit (bit 3-0) To Byte DAA

0 9-0 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 i 0-3 06 0

ADD 1 0 A-F 0 0-9 60
ADC 0 9-F 0 A-F 66
INC ,1 0 A-F 1 0-3 66

1 0-2 0 0-9 60
1 0-2 0 A-F 66
1 0-3 0-3 66

SUB} 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0
DEC 1 7-F 0 0-9 AO 1
NEG 1 6-7 1 6-F 9A 1

M Cycles T States 4MHz E.T.
1 4 1.00

Condition Bits Affected:

S: Set if most significant bit of Accumulator is 1 after operation; reset otherwise
Z: Set if Accumulator is zero after operation; reset otherwise
H: See instruction

PN: Set if Accumulator is even parity after operation: reset otherwise
N: Not affected
C: See instruction

AS-94

Example:

ZBOCPU
USER'S MANUAL

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple decimal arithmetic
gives this result:

15
±.2Z

42

But when the binary representations are added in the Accumulator according to standard binary II
arithmetic,

0001
±....QQ1Q.

0011

0101
Q.111
1100 = 3C

the sum is ambiguous. The DAA instruction adjusts this result so that the correct BCD representation is
obtained:

0011
±..ilQQQ

0100

1100
Q.11.Q
0010 = 42

AS-95

CPL

Operation: A +-IA

Opcode: CPL

._I _o ... I _o __ o.......__..._ __.l 2F

Description: The contents of the Accumulator (register A) are inverted (one's complement).

M Cycles
1

T States
4

4 MHz E.T.
1.00

Condition Bits Affected:
S: . Not affected
Z: Not affected
H: Set

PN: Not affected
N: Set
C: Not affected

Example: If the contents of the Accumulator are 1011 0100, after the execution of

CPL

the Accumulator contents will be 0100 1011.

A5-96

ZSO"'CPU
USER'S MANUAL

Operation: A f- 0-A

Opcode: NEG

0

0 0 0

0

0 I 0 I 0

I ED

I 44

Z80 CPU
USER'S MANUAL

NEG

Description: The contents of the Accumulator are negated (two's complement). This is the same as subtracting
the contents of the Accumulator from zero. Note that 80H is left unchanged.

MCycles
2

T States
8 (4, 4)

4MHzE.T.
2.00

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from bit 4; reset otherwise

PN: Set if Accumulator was 80H before operation; reset otherwise
N: Set
C: Set if Accumulator was not OOH before operation; reset otherwise

If the contents of the Accumulator are

after the execution of

NEG

the Accumulator contents will be

0 0

AS-97

a

CCF

Operation: CY t-/CY

Opcode: CCF

_lo __ lo _____________ l3F

Description: The Carry flag in the F register is inverted.

M Cycles
1

Condition Bits Affected:

TStates
4

S: Not affected
Z: Not affected
H: Previous carry will be copied

PN: Not affected
N: Reset

4MHzE.T.
1.00

C: Set if CY was 0 before operation; reset otherwise

AS-98

Z80"'CPU
USER'S MANUAL

Operation: CY +--1

Opcode: SCF

... I _o ... I _o_ __ o ______ l 31

Description: The Carry flag in the F register is set

M Cycles
i

Condition Bits Affected:

TStates
4

S: Not affected
Z: Not affected
H: Reset

PN: Not affected
N: Reset
C: Set

4MHzE.T.
i.00

Z80CPU
USER'S MANUAL

SCF

A5-99

II

NOP

Operation:

Opcode: NOP

I o I o I o I o I o I o I o I o I oo

Description: The CPU performs no operation during this machine cycle.

M Cycles
1

Condition Bits Affected:
None.

A5-100

TStates
4

4MHz E.T.
1.00

zao•CPU
USER'S MANUAL

Operation:

Opcode: HALT

_lo ___ l _______ o _________ o_l1s

ZSOCPU
USER'S MANUAL

HALT

Description: The HALT instruction suspends CPU operation until a subsequent interrupt or reset is received.
While in the HALT state, the processor will execute NOP's to maintain memory refresh logic.

M Cycles
1

Condition Bits Affected:

None.

TStates
4

4MHzE.T.
1.00

A5-101

El

DI

Operation:

Opcode:

IFF +-0

DI

Z8019 CPU
USER'S MANllAL

Description: DI disables the maskable interrupt by resetting the interrupt enable flip-flops (IFF1 and IFF2). Note
that this instruction disables the maskable interrupt during its execution.

M Cycles
1

T States
4

4MHzE.T.
1.00

Condition Bits Affected:

Example:

AS-102

None.

When the CPU executes the instruction

DI

the maskable interrupt is disabled until it is subsequently re-enabled by an El instruction. The CPU will
not respond to an Interrupt Request (INT) signal.

Operation: IFF~ 1

Opcode: El

I 1 I 0 I FB

Z80 CPU
USER'S MANUAL

El

Description: The enable interrupt instruction will set both interrupt enable flip flops (IFFI and IFF2) to a logic '1'
allowing recognition of any maskable interrupt. Note that during the execution of this instruction and
the following instruction, maskable interrupts will be disabled.

M Cycles
i

Condition Bits Affected:

None.

T States
4

Example: When the CPU executes instruction

El
RETI

4MHzE.T.
1.00

the maskable interrupt will be enabled after the execution of the RETI instruction.

AS-103

Iii

IMO

Operation:

Opcode: IM

Operands: O

0 0

ZBO®CPU
USER'S MANUAL

Description: The IM 0 instruction sets interrupt mode 0. In this mode, the interrupting device can insert any
instruction on the data bus for execution by the CPU. The first byte of a multi-byte instruction is read
during the interrupt acknowledge cycle. Subsequent bytes are read in by a normal memory read
sequence.

M Cycles
2

Condition Bits Affected:
None.

A5-104

TStates
8 (4, 4)

4MHz E.T.
2.00

Operation:

Opcode: IM

Operands:

0

0 0

I 0 I I ED

0 l1lolse

Z80CPU
IJsER's MAMIAL

IM 1

Description: The IM 1 instruction sets interrupt mode 1. In this mode, the processor will respond to an interrupt by
executing a restart to location 0038H.

M Cycles
2

Condition Bits Affected:
None.

TStates
8 (4, 4)

4MHzE.T.
2.00

AS-105

El

IM 2

Operation:

Opcode: IM

Operands: 2

0 I 0 I I ED

0 0 l1lolsE
Description: The IM 2 instruction sets the vectoreed interrupt mode 2. This mode allows an indirect call to any

memory location by an 8-bit vector supplied from the peripheral device. This vector then becomes
the least significant eight bits of the indirect pointer while the I register in the CPU provides the most
significant eight bits. This address points to an address in a vector table which is the starting ad­
dress for the interrupt service routine.

MCycles
2

Condition Bits Affected:
None.

AS-106

T States 4 MHz E.T.
8 (4, 4) 2.00

Z80®
INSTRUCTION DESCRIPTION

16·BIT ARITHMETIC GROUP

Z80" CPU
USER'S MANUAL

A5-107

zao•cpu
USER'S MAliUAL

ADD HL, ss

Operation: HL+-HL +SS

Opcode: ADD

Operands: HL, ss

I o I 0 I s I s I
Description: The contents of register pair ss (any of register pairs BC, DE, HL, or SP) are added to the contents of

register pair HL and the result is stored in HL. Operand ss is specified as follows in the assembled
object code.

Register
Pair
BC
DE
HL
SP

MCycles
3

SS
00
01
10
11

TStates
11(4,4,3)

4MHzE.T.
2.75

Condition Bits Affected:

Example:

A5-108

S: Not affected
Z: Not affected
H: Set if carry out of bit 11; reset otherwise

PN: Not affected
N: Reset
C: Set if carry from bit 15; reset otherwise

If register pair HL contains the integer 4242H and register pair DE contains 1111 H, after the execu­
tion of

ADDHL, DE

the HL register pair will contain 5353H.

Operation: HL ~ HL + ss + CY

Opcode: ADC

Operands: HL, SS

I 0

0 s I s

I 0 I
0 I 1 I 0

I ED

Z80"'CPU
USER'S MANIJAL

ADC HL, ss

Description: The contents of register pair ss (any of register pairs BC, DE, HL, or SP) are added with the Carry
flag (C flag in the F register) to the contents of register pair HL, and the result is stored in HL.
Operand ss is specified as follows in the assembled object code.

Register
Pair
BC
DE
HL
SP

M Cycles
4

SS
00
01
10
11

T States
15 (4, 4, 4, 3)

4MHz E.T.
3.75

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
R: Set if carry out ot bit 11; reset otherwise

PN: Set if overflow; reset otherwise
N: Reset
C: Set if carry from bit 15; reset otherwise

If the register pair BC contains 2222H, register pair HL contains 5437H and the Carry Flag is set,
after the execution of

ADC HL, BC

the contents of HL will be 765AH.

A5-109

zao•cpu
USER's MANIJAL

SBC HL, ss

Operation: HL +- HI - ss - CY

Opcode: SBC

Operands: HL, SS

I 1 I 1 0 I 0 I I ED

o slslolol1lo
Description: The contents of the register pair ss (any of register pairs BC, DE, HL, or SP) and the Carry Flag (C

flag in the F register) are subtracted from the contents of register pair HL and the result is stored in
HL. Operand ss is specified as follows in the assembled object code.

Register
Pair
BC
DE
HL
SP

M Cycles
4

SS
00
01
10
11

T States
15 (4, 4, 4, 3)

4MHzE.T.
3.75

Condition Bits Affected:

Example:

AS-110

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if a borrow from bit 12; reset otherwise

PN: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

If the contents of the HL, register pair are 9999H, the contents Of register pair DE are 1111 H, and the
Carry flag is set, after the execution of

SBC HL, DE

the contents of HL will be 8887H.

Operation: IX~ IX+pp

Opcode: ADD

Operands: IX, pp

0

0 I p I
I 0 I

p I 0 I 0 I
I DD

zao•CPu
USER'S MANUAL

ADD IX, pp

Description: The contents of register pair pp (any of register pairs BC, DE, IX, or SP) are added to the contents of
the Index Register IX, and the results are stored in IX. Operand pp is specified as follows in the
assembled object code.

Register
Pair
BC
DE
IX
SP

M Cycles
4

pp
00
01
10
11

TStates
15 (4, 4, 4, 3)

4MHz E.T.
3.75

Condition Bits Affected:

Example:

S: Not affected
Z: Not affected
H: Set if carry out of bit 11; reset otherwise

P N: Not affected
N: Reset
C: Set if carry from bit 15; reset otherwise

If the contents of Index Register IX are 333H and the contents of register pair BC are 5555H, after
the execution of

ADD IX, BC

the contents of IX will be 8888H.

AS-111

II

ADD IV, rr

Operation:

Opcode:

Operands:

IY +- IY + rr

ADD

IY, rr

I I
0 I 0 I r I r I

lol IFo

o I o I

zao•cpu
USER's MANIJAL

Description: The contents of register pair rr (any of register pairs BC, DE, IY, or SP) are added to the contents of
Index Register IY, and the result is stored in IY. Operand rr is specified as follows in the assembled
object code.

Register
Pair
BC
DE
IY
SP

M Cycles
4

rr
00
01
10
11

TStates
15 (4, 4, 4, 3)

4 MHz E.T.
3.75

Condition Bits Affected:

Example:

AS-112

S: Not affected
Z: Not affected
H: Set if carry out of bit 11; reset otherwise

PN: Not affected
N: Reset
C: Set if carry from bit 15; reset otherwise

If the contents of Index Register IY are 333H and the contents of register pair BC are 555H, after the
execution of

ADD IY, BC

the contents of IY will be 8888H.

INCss

Operation: ss~ss+1

Opcode: INC

Operands: SS

I 0 I 0 s I s 0 0 1 I
Description: The contents of register pair ss (any of register pairs BC, DE, HL, or SP) are incremented. Operand

ss is specified as follows in the assembled object code.

Register
Pair
BC
DE
HL
SP

M Cycles
1

Condition Bits Affected:
None.

SS

00
01
10
11

T States
6

4 MHz E.T.
1.50

Example: If the register pair contains 1000H, after the execution of

INC HL

HL will contain 1001H.

AS-113

II

INC IX

Operation: IX+- IX+ 1

Opcode: INC

Operands: IX

0 I 0 I I DD

0 0 o o ol1l l2s
Description: The contents of the Index Register IX are incremented.

M Cycles
2

TStates
10 (4, 6)

4 MHz E.T.
2.50

Condition Bits Affected:

None.

Example: If the Index Register IX contains the integer 3300H after the e.xecution of

INCIX

the contents of Index Register IX will be 3301H.

AS-114

zao~CPU
USER's MANuAL

Operation: IY +- IY + 1

Opcode: INC

Operands: IY

I I I I I 0 I I FD

0 I 0 I 0 I 0 I 0 I 1 I I 23

Description: The contents of the Index Register IY are incremented.

M Cycles
2

TStates
10 (4, 6)

4MHzE.T.
2.50

Condition Bits Affected:
None.

Example: If the contents of the Index Register are 2977H, after the execution of

INC IY

the contents of Index Register IY will be 2978H.

INC IV

A5-115

DECss

Operation:

Opcode:

Operands:

ss f- ss-1

DEC

SS

I 0 I 0 s I s 0

ZBO"'CPU
USER'S MANI/AL

Description: The contents of register pair ss (any of the register pairs BC, DE, HL, or SP) are decremented.
Operand ss is specified as follows in the assembled object code.

Pair
BC
DE
HL
SP

M Cycles
1

SS
00
01
10
11

TStates
6

4MHzE.T.
1.50

Condition Bits Affected:
None.

Example: If register pair HL contains 1001H, after the execution of

DECHL

the contents of HL will be 1000H.

AS-116

Operation: IX f- IX-1

Opcode: DEC

Operands: IX

I I 0 I I 0 I I DD

0 I 0 I 0 1 I 0 I 1 I I 20

Description: The contents of Index Register IX are decremented.

M Cycles
2

TStates
10 (4, 6)

4 MHz E.T.
2.50

Condition Bits Affected:
None.

Example: If the contents of Index Register IX are 2006H, after the execution of

DECIX

the contents of Index Register IX will be 2005H.

DECIX

II

A5-117

DECIY

Operation:

Opcode:

Operands:

IYr IY-1

DEC

IY

......_.l_1_l _1 _I _1 .__l_l _0 ._I __.I FD

_o __ l_o_l_1_.l_o~1 I _o _I _I _I 20

Description: The contents of the Index Register IY are decremented.

MCycles
2

TStates
10 (4, 6)

4MHzE.T.
2.50

Condition Bits Affected:

None.

Example: If the contents of the Index Register IY are 7649H, after the execution of

DECIY

the contents of Index Register IY will be 7648H.

AS-118

zao~cPu
USER's MANUAL

4'2H . .!16

Z80®
INSTRUCTION DESCRIPTION

ROTATE AND SHIFT GROUP

Z80CPU
USER'S MANUAL

A5-119

II

RLCA

Operation:

Opcode:

Operands:

RLCA

Z80CPU
.USEll's MANUAL

Description: The contents of the Accumulator (register A) are rotated left 1-bit position. The sign bit (bit 7) is
copied into the Carry flag and also into bit 0. Bit 0 is the least significant bit.

MCycles
1

TStates
4

4MHz E.T.
1.00

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset

PN: Not affected
N: Reset
C: Data from bit 7 of Accumulator

Example: If the contents of the Accumulator are

765432 0

0 0 0

after the execution of

RLCA

the contents of the Accumulator and Carry flag will be

c 7 6 5 4 3 2 0

A5-120

Operation:

Opcode:

Operands:

ALA

lololol1lol1l1l1l11

Z80CPU
USER's llANuAL

RLA

Description: The contents of the Accumulator (register A) are rotated left 1-bit position through the Carry flag. The
previous content of the Carry flag is copied into bit 0. Bit 0 is the least significant bit.

M Cycles
1

TStates
4

4MHz E.T.
1.00

Condition Bits Affected
S: Not affected
Z: Not affected
H: Reset

PN: Not affected
N: Reset
C: Data from bit 7 of Accumulator

Example: If the contents of the Accumulator and the Carry flag are

c 7 6 5 4 3 2 0

~l o _._ ___..._o..__._ ___ o_
after the execution of

ALA

the contents of the Accumulator and the Carry flag will be

c 7 6 5 4 3 2 0

01 ____ ___.._0 _..l_0 __ I _

AS-121

II

ARCA

Operation:

Opcode:

Operands:

~
A

ARCA

.... o _o __ o _o __ _. __ .._ I OF

Z80 CPU
USER'S MANUAL

Description: The contents of the Accumulator (register A) are rotated right 1-bit position. Bit 0 is copied into the
Carry flag and also into bit 7. Bit 0 is the least significant bit.

M Cycles
1

TStates
4

4MHzE.T.
1.00

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset

PN: Not affected
N: Reset
C: Data from bit 0 of Accumulator

Example: If the contents of the Accumulator are

7 6 5 4 3 2 0

after the execution of

ARCA

the contents of the Accumulator and the Carry flag will be

7 6 5 4 3 2 0 c

AS-122

Operation:

Opcode:

Operands:

~
A

ARA

... o _o __ o.._ __ .__.. __ ..__ ... l 1F

Z80CPU
IJsER's MAMJAL

RRA

Description: The contents of the Accumulator (register A) are rotated right 1-bit position through the Carry flag.
The previous content of the Carry flag is copied into bit 7. Bit 0 is the least significant bit.

M Cycles
1

TStates
4

4MHzE.T.
1.00

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset

PN: Not affected
N: Reset
C: Data from bit 0 of Accumulator

Example: If the contents of the Accumulator and the Carry Flag are

7 6 5 4 3 2 0 c

......................... 0 0 ___ 0 __ 0 __ I~

after the execution of

ARA

the contents of the Accumulator and the Carry flag will be

7 6 5 4 3 2 0 c

0 I 0 I 0 I 0 I 0 ll::2:1

A5·123

II

RLCr

Operation:

Opcode:

Operands:

~
r

RLC

o ol1lo lcs
o I o I o I o I o Ff rE

Z80CPU
UsER's MANUAL

Description: The contents of register rare rotated left 1-bit position. The content of bit 7 is copied into the Carry
flag and also into bit 0. Operand r is specified as follows in the assembled object code:

Register r
8 000
c 001
D 010
E 011
H 100
L 101
A 111

MCycles TStates 4MHzE.T.
2 8 (4, 4) 2.00

Condition Bits Affected:

Example:

AS-124

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register

If the contents of register rare
7 6 5 4 3 2 0

after the execution of

RLC r

the contents of register r and the Carry flag will be

c 7 654 3210

Operation: ~
(HL)

Opcode: RLC

Operands: (HL)

0 0

0 0 0 0

I I 0 1 I
I 0 I 1 I

I CB

0 I 06

Z80CPU
llsER's MAf«JAL

RLC (HL)

Description: The contents of the memory address specified by the contents of register pair HL are rotated left 1-
bit position. The content of bit 7 is copied into the Carry flag and also into bit 0. Bit 0 is the least
significant bit.

M Cycles
4

Condition Bits Affected:

T States
15 (4, 4, 4, 3)

4MHz E.T.
3.75

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register

Example: If the contents of the HL register pair are 2828H, and the contents of memory location 2828H are

7 654 32 0

after the execution of

RLC (HL)

the contents of memory location 2828H and the Carry flag will be

c 7 6 5 4 3 2 0

AS-125

II

RLC (IX+d)

Operation: ~
(IX+d)

Opcode: RLC

Operands: (IX+d)

0 I 1

0 0 I 1

I· ; -i
I 0 0 0 I 0 I 0

0

0

I DD

I CB

~1
o I 06

Z80CPU
UsER'S MANUAL

Description: The contents of the memory address specified by the sum of the contents of the Index Register IX
and a two's complement displacement integer d, are rotated left 1-bit position. The content of bit 7 is
copied into the Carry flag and also, into bit 0. Bit O is the least significant bit.

M Cycles
6

TStates
23 (4, 4, 3, 5, 4, 3)

4MHz E.T.
5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register

Example: If the contents of the Index Register IX are 1000H, and the contents of memory location 1022H are

765432 0

after the execution of

RLC (IX+2H)

the contents of memory location 1002H and the Carry flag will be

c 7 6 5 4 3 2 0

AS-126

Operation: ~
(IY+d)

Opcode: RLC

Operands: (IY+d)

1 I 1

0 0 I 1

1~ i
I 0 0 0 o I o

1 0

0

I FD

I CB

·I
o I 06

Z80CPU
USER's llANIJAL

RLC (IY+d)

Description: The contents of the memory address specified by the sum of the contents of the Index Register IY
and a two's complement displacement integer d are rotated left 1-bit position. The content of bit 7 is
copied into the Carry flag and also into bit 0. Bit 0 is the least significant bit.

M Cycles
6

Condition Bits Affected:

TStates
23 (4, 4, 3, 5, 4, 3)

4MHzE.T.
5.75

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register

Example: If the contents of the Index Register IY are 1000H, and the contents of memory location 1002H are

765432 0

after the execution of

RLC (IY+2H)

the contents of memory location 1002H and the Carry flag will be

c 7 6 5 4 3 2 0

~Io o o

AS-127

El

Rlm

Operation:

Opcode:

Operands:

AS-128

L&BJ
m

AL

m

Z80CPU
USER'S MANUAL

Them operand is any of r, (HL), (IX+d), or (IY +d), as defined for the analogous RLC instructions. These
various possible opcode-operand combinations are specified as follows in the assembled object code:

RL r* 0 0 I 0 I I I CB

0 0 0 0 Err*E
RL(HL) 0 0 0 CB

0 0 0 0 0 16

RL(IX+d) 0 0 DD

0 0 0 CB

1~ ·I
I 0 0 I 0 I 0 o I 1s

RL (IY+d) I I 0 I FB

0 0 I 1 I 0 I CB

I· i ·I
0 0 0 0 o I 1s

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code above:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

Z80CPU
USER'S MANUAL

Description: The contents of them operand are rotated left 1-bit position. The content of bit 7 is copied into the
Carry flag and the previous content of the Carry flag is copied into bit 0.

Instruction M Cycles TStates 4 MHz E.T.
RL r 2 8 (4, 4) 2.00
RL(HL) 4 15 (4, 4, 4, 3) 3.75
RL(IX+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75
RL(IY+d} 6 23 (4, 4, 3, 5, 4, 3) 5.75

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register

Example: If the contents of register D and the Carry flag are

c 7 6 5 4 3 2 0

after the execution of

RL D

the contents of register D and the Carry flag will be

c 7 6 5 4 3 2 0

AS-129

El

RRCm

Operation:

Opcode:

Operands:

A5-130

lBL@YJ
m

ARC

m

Z80 CPU
USER'S MANUAL

Them operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions.
These various possible opcode-operand combinations are specified as follows in the assembled
object code:

ARC r* 0 0 I 0 I I I CB

0 0 0 0 EEr·E
ARC (HL) 0 0 0 CB

0 0 0 0 0 OE

ARC (IX+d) 0 0 DD

0 0 0 CB

I· ·I
I 0 0 0 0 1 0 I OE

ARC (IY+d) 0 I FB

0 0 0 I CB

I· i ·I
I 0 0 0 0 0 I OE

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code above:

Description:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

ZIOCPU
UsER'S MANIJAL

The contents of them operand are rotated right 1-bit position. The content of bit O is copied into the
Carry flag and also into bit 7. Bit 0 is the least significant bit.

Instruction
RRC r
RRC (HL)
RRC (IX+d)
RRC (IY+d)

M Cycles
2
4
6
6

TStates
8 (4, 4)

15 (4, 4, 4, 3)
23 (4, 4, 3, 5, 4, 3)
23 (4, 4, 3, 5, 4, 3)

4 MHz E.T.
2.00
3.75
5.75
5.75

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise,
N: Reset
C: Data from bit 0 of source register

Example: If the contents of register A are

7 654 32 0

0 0

after the execution of

RRCA

the contents of register A and the Carry flag will be

7 6 5 4 3 2 0 c

0 0

AS-131

II

RRm

Operation:

Opcode:

Operands:

AS-132

~
m

RR

m

Z80CPU
USER'S MANIJAL

Them operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions.
These various possible opcode-operand combinations are specified as follows in the assembled
object code: •

RRr* 0 0 0 I CB

0 0 0 EEr·E
RR(HL) 0 0 0 CB

0 0 0 0 1E

RR (IX+d) 0 0 DD

0 0 0 CB

I oE ~1

I 0 0 0 0 I 1E

RR (IY+d) 0 I FD

0 0 I 1 0 I CB

loE i ~1

0 0 0 0 I 1E

*r identifies registers B, C, D, E, H, L ,or A specified as follows in the assembled object code above:

Register
8
c
D
E
H
L
A

r
000
001
010
011
100
101
111

ZBOCPU
USER's MANllAL

Description: The contents of operand mare rotated right 1-bit position through the Carry flag. The content of bit O
is copied into the Carry flag and the previous content of the Carry flag is copied into bit 7. Bit 0 is the
least significant bit.

Instruction MCyctes TStates 4MHzE.T.
RR r 2 8 (4, 4) 2.00
RR (HL) 4 15 (4, 4, 4, 3) 3.75
RR (IX+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75
RR (IY+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75

Condition Bits Affected:

Example:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity even; reset otherwise,
N: Reset
C: Data from bit 0 of source register

If the contents of the HL register pair are 4343H, and the contents of memory location 4343H and the
Carry flag are

7 6 5 4 3 2 0 c

____ o _____ o __ I G

after the execution of

RR (HL)

the contents of location 4343H and the Carry flag will be

7 6 5 4 3 2 0 c

_o ___ o ____ I o_I ~

A5-133

II

SLAm

Operation:

~-11-01-o
m

Z80CPU
USER'S MANUAL

Opcode: SLA

Operands: m

A5-134

Them operand is any of r, (HL), (IX+d), or (IY +d), as·defined for the analogous RLC instructions.
These various possible opcode-operand combinations are specified as follows in the assembled
object code:

SLAr* 0 0 0 I 1 I CB

0 0 0 0 EEr·E

SLA(HL) 0 0 0 CB

0 0 0 0 0 26

SLA(IX+d) 0 0 DD

0 0 0 CB

1~ ~1

0 0 0 0 o I 26

SLA (IY+d) 0 I FD

0 0 0 I CB

1~ i ~1

0 0 0 0 o I 26

r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code field above:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

Z80CPU
UsER's MANllAL

Description: An arithmetic shift left 1-bit position is performed on the contents of operand m. The content of bit 7
is copied into the Carry flag. Bit 0 is the least significant bit.

Instruction
SLAr
SLA(HL)
SLA(IX+d)
SLA(IY+d)

M Cycles
2
4
6
6

T States
8 (4, 4)

15 (4, 4, 4, 3)
23 (4, 4, 3, 5, 4, 3)
23 (4, 4, 3, 5, 4, 3)

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity is even; reset otherwise
N: Reset
C: Data from bit 7

Example: If the contents of register Lare

after the execution of

SLAL

the contents of register L and the Carry flag will be

c 7 6 5 4 3 2 0

0l_o ______ o_l_o_l_o __ 1_lo_I

4MHzE.T.
2.00
3.75
5.75
5.75

AS-135

El

SRAm

Operation:

Opcode:

Operands:

AS-136

SRA

m

Z80CPU
USER'S MANUAL

The m operand is any of r, (HL), (IX+d), or (IY +d), as defined for the analogous RLC instructions. These
various possible opcode-operand combinations are specified as follows in the assembled object code:

SRAr* 0 0 0 I CB

0 0 0 0 EEr·B

SRA(HL) 0 0 0 CB

0 0 0 0 2E

SRA{IX+d) 0 0 DD

0 0 0 CB

"" Joi

0 0 0 0 I 2E

SRA (IY+d) 0 I FD

0 0 0 I CB

1~ Joi

0 0 0 0 I 2E

*r identifies registers B, C, D, E, H, L, or A specified as, follows in the assembled object code field above:

Register
B
c
D
E
H
L
A

r
000
001
010
011
100
101
111

ZBOCPU
USER'S MANuAL

Description: An arithmetic shift right 1-bit position is performed on the contents of operand m. The content of bit O
is copied into the Carry flag and the previous content of bit 7 is unchanged. Bit 0 is the least signifi­
cant bit.

Instruction MCycles TStates 4MHz E.T.
SRAr 2 8 (4, 4) 2.00
SRA (HL) 4 15 (4, 4, 4, 3) 3.75
SRA (IX+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75
SRA (IY+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity is even; reset otherwise
N: Reset
C: Data from bit 0 of source register

Example: If the contents of the Index Register IX are 1000H, and the contents of memory location 1003H are

765432 0

0

after the execution of

SRA (IX+3H)

the contents of memory location 1003H and the Carry flag will be

7 6 5 4 3 2 0 c

0

A5-137

a

SRLm

Operation:

Opcode:

Operands:

AS-138

o~
m

SAL

m

ZBOCPU
USER'S MANUAL

The operand mis any of r, (HL), (IX+d), or (IY +d), as defined for the analogous RLC instructions. These
various possible opcode-operand combinations are specified as follows in the assembled object code:

SRLr* 0 0 I 0 I I I CB

0 0
Eir*E

SRL(HL) 0 0 0 CB

0 0 0 3E

SRL(IX+d) 0 0 DD

0 0 0 CB

1~ ; ~1
0 0 I 0 I 3E

SAL (IY+d) I 1 0 FD

0 0 I 1 0 CB

E i I ~
I 0 0 0 3E

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code fields above:

Description:

Z80CPU
llsER'S MANtJAL

The contents of operand mare shifted right 1-bit position. The content of bit O is copied into the
Carry flag, and bit 7 is reset. Bit 0 is the least significant bit.

Instruction M Cycles TStates 4MHzE.T.
SAL r 2 8 (4, 4) 2.00
SAL (HL) 4 15 (4, 4, 4, 3) 3.75
SAL (IX+d) 6 23(4,4,3,5,4,3) 5.75
SAL (IY+d) 6 23 (4, 4, 3, 5, 4, 3) 5.75

Condition Bits Affected:
S: Reset ,
Z: Set if result is zero; reset otherwise
H: Reset

PN: Set if parity is even; reset otherwise
N: Reset
C: Data from bit O of source register

Example: If the contents of register B are

7 65432 0

after the execution of

SALB

the contents of register B and the Carry flag will be

7 6 5 4 3 2 0 c

AS-139

RLD

Operation:

Opcode:

Operands:

Al7 413 :EE£ ol(HL)

RLD

0

0 0

I 0 I I ED

I 1 I I sF

Z80 CPU
USER'S MANUAL

Description: The contents of the low order four bits (bits 3, 2, 1, and 0) of the memory location (HL) are copied
into the high order four bits (7, 6, 5, and 4) of that same memory location; the previous contents of
those high order four bits are copied into the low order four bits of the Accumulator (register A); and
the previous contents of the low order four bits of the Accumulator are copied into the low order four
bits of memory location (HL). The contents of the high order bits of the Accumulator are unaffected.
Note: (HL) means the memory location specified by the contents of the HL register pair.

M Cycles
5

TStates
18 (4, 4, 3, 4, 3)

4MHzE.T.
4.50

Condition Bits Affected:

Example:

AS-140

S: Set if Accumulator is negative after operation; reset otherwise
Z: Set if Accumulator is zero after operation; reset otherwise
H: Reset

PN: Set if parity of Accumulator is even after operation; reset otherwise
N: Reset
C: Not affected

If the contents of the HL register pair are 5000H, and the contents of the Accumulator and memory
location 5000H are

7 6 5 4 3 2 0

0 0 0 I Accumulator

7 6 5 4 3 2 0

0 0 0 0 0 I (SOOOH)

after the execution of

RLD

ft'2il.C6
Z80CPU

USER's MANUAL

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 0

0 0 0 I Accumulator

II
7 6 5 4 3 2 0

0 0 0 0 0 I (SOOOH)

A5·141

RRD

Operation:

Opcode:

Operands:

Description:

Al7 413 3J7 4801(HL)

ARD

I 0 I
0 1 I 1lolol

I 0 I
I 1 I

I ED

I 67

Z80CPU
USER'S MANUAL

The contents of the low order four bits (bits 3, 2, 1, and 0) of memory location (HL) are copied into
the low order four bits of the Accumulator (register A); the previous contents of the low order four bits
of the Accumulator are copied into the high order four bits (7, 6, 5, and 4) of location (HL); and the
previous contents of the high order four bits of (HL) are copied into the low order four bits of (HL).
The contents of the high order bits of the Accumulator are unaffected. Note: (HL) means the memory
location specified by the contents of the HL register pair .

M Cycles
5

TStates
18 (4, 4, 3, 4, 3)

4MHz E.T.
4.50

Condition Bits Affected:

Example:

AS-142

S: Set if Accumulator is negative after operation; reset otherwise
Z: Set if Accumulate. is zero after operation; reset otherwise
H: Reset

PN: Set if parity of Accumulator is even after operation; reset otherwise
N: Reset
C: Not affected

If the contents of the HL register pair are 5000H, and the contents of the Accumulator and memory
location 5000H are

7 6 5 4 3 2 0

I 0 0 0 I 0 I I o I o I Accumulator

7 6 5 4 3 2 0

0 0 0 I 0 I 0 I 0 I 0 I (SOOOH)

after the execution of

ARD

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 0

1 I o 1 o I a I o I o I o I o I Accumulator

7 6 5 4 3 2 0

0 l 1 l0 l0 l0 I 0 I 0 I (5000H)

Z80CPU
USER'S MANllAL

A5-143

II

ZBO®
INSTRUCTION DESCRIPTION

BIT SET, RESET, AND TEST GROUP

ZIOCPU
USER'S MANIJAL

AS-145

El

BIT b, r

Operation:

Opcode:

Operands:

Z f-/rb

BIT

b, r

........... ~._o_._o_.~ ... o_. I CB

o F+ b : ~I· : r E

Z80 CPU
USER's MANIJAL

Description: This instruction tests bit bin register rand sets the Z flag accordingly. Operands band rare speci­
fied as follows in the assembled object code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

MCycles TStates
2 8 (4, 4)

Register
8
c
D
E
H
L
A

4MHzE.T.
4.50

r
000
001
010
011
100
101
111

Condition Bits Affected:

Example:

AS-146

S: Unknown
Z: Set if specified bit is O; reset otherwise
H: Set

PN: Unknown
N: Reset
C: Not affected

If bit 2 in register 8 contains 0, after the execution of

BIT2, 8

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0. Bit O in register B is the least
significant bit.

Operation: Z +- (/HL)b

Opcode: BIT

Operands: b, (HL)

0

0

0 I 1 I 0

b

I CB

0

ZIOCPU
UsER's MANUAL ·

BIT b, (HL)

Description: This instruction tests bit b in the memory location specified by the contents of the HL register pair
and sets the Z flag accordingly. Operand b is specified as follows in the assembled object code:

Bit Tested
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

MCycles
3

T States
12(4,4,4)4

4MHz E.T.
3.00

Condition Bits Affected:

Example:

S: Unknown
Z: Set if specified Bit is O; reset otherwise
H: Set

PN: Unknown
H: Reset
C: Not affected

If the HL register pair contains 4444H, and bit 4 in the memory location 444H contains 1, after the
execution of

BIT 4, (HL)

the Z flag in the F register will contain 0, and bit 4 in memory location 4444H will still contain 1. (Bit O
in memory location 4444H is the least significant bit.)

A5-147

II

BIT b, (IX+d)

Operation: Z ~ /(IX+d)b

Opcode: BIT

Operands: b, (IX+d)

0 I 1 I
0 0 I 1 I

1~ d

0 EibE

0

0

""'

0

DD

CB

Z80CPU
USER'S MANUAL

Description: This instruction tests bit b in the memory location specified by the contents of register pair IX com­
bined with the two's complement displacement d and sets the Z flag accordingly. Operand b is
specified as follows in the assembled object code.

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

MCycles
5

TStates
20 (4, 4, 3, 5, 4)

4MHzE.T.
5.00

Condition Bits Affected:

Example:

A5-148

S: Unknown
Z: Set if specified Bit is O; reset otherwise
H: Set

PN: Unknown
N: Reset
C: Not affected

If the contents of Index Register IX are 2000H, and bit 6 in memory location 2004H contains 1, after
the execution of

BIT 6, (IX+4H)

the Z flag in the F register will contain 0, and bit 6 in memory location 2004H will still contain 1. (Bit O in
memory location 2004H is the least significant bit.)

ft'2H.m

Operation: Z +- /(IY +d)b

Opcode: BIT

Operands: b, (IY+d)

0 0 I
loE I d I I
I 0 EEbE

0 I FD

0 I CB

·I
0 I

l.llOCPU
UsER's MANIJAL

BIT b, (IY+d)

Description: This instruction tests bit b in the memory location specified by the content of register pair IY com­
bined with the two's complement displacement d and sets the Z flag accordingly. Operand bis
specified as follows in the assembled object code.

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

MCycles
5

TStates
20 (4, 4, 3, 5, 4)

4 MHz E.T.
5.00

Condition Bits Affected:

Example:

S: Unknown
Z: Set if specified Bit is O; reset otherwise
H: Set

PN: Unknown
H: Reset
C: Not affected

If the contents of Index Register are 2000H, and bit 6 in memory location 2004H contains 1, after the
execution of

BIT 6, (IY +4H)

the Z flag in the F register sill contain 0, and bit 6 in memory location 2004H will still contain 1. (Bit O in
memory location 2004H is the least significant bit.)

AS-149

El

'tl2il.JJ6
SET b, r

Operation:

Opcode:

Operands:

rb +-1

SET

b, r

I 1 I
I 1 I 1

olol1lol1 Ice
14b : ·I· : rf3

Z80CPU
USER'S MANUAL

Description: Bit b in register r (any of registers B, C, D, E, H, L, or A) is set. Operands band rare specified as
follows in the assembled object code:

Bit b Register r
0 000 B 000
1 001 c 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M Cycles TStates 4 MHz E.T.
2 8 (4, 4) 2.00

Condition Bits Affected:
None.

Example: After the execution of

SET 4, A

bit 4 in register A will be set. (Bit 0 is the least significant bit.)

AS-150

Operation:

Opcode:

Operands:

(HL)b ~ 1

SET

b, (HL)

.......... ~ -o _o ~ o--~ I cs

l.+b I ~le I rE

ZSOCPU
USER'S MANUAL

SET b, (HL)

Description: Bit b in the memory location addressed by the contents of register pair HL is set. Operand b is
specified as follows in the assembled object code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M Cycles
4

Condition Bits Affected:
None.

TStates
15 (4, 4, 4, 3)

4MHz E.T.
3.75

Example: If the contents of the HL register pair are 3000H, after the execution of

SET 4, (HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory location 3000H is the least significant bit.)

A5-151

El

ftl2iLm

SET b, (IX+d)

Operation: (IX+d)b f- 1

Opcode: SET

Operands: b, (IX+d)

Z80CPU
USER'S MANUAL

Description: Bit b in the memory location addressed by the sum of the contents of the IX register pair and the
two's complement integer d is set. Operand b is specified as follows in the assembled object code:

Bit Tested
0
1
2
3
4
5
6
7

M Cycles
6

b
000
001
010
011
100
101
110 ,
111

T States
23 (4, 4, 3, 5, 4, 3)

4 MHz E.T.
5.75

Condition Bits Affected:

None.

Example: If the contents of Index Register are 2000H, after the execution of

SET 0, (IX + 3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H is the least significant bit.)

A5-152

Operation: (IY + d) b ~ 1

Opcode: SET

Operands: b, (IY + d)

0 0

1~ d

I 1 le b~I

0 I FD

0 I CB

·I
a I

Z80CPU
USER'S MANUAL

SET b, (IY+d)

Description: Bit b in the memory location addressed by the sum of the contents of the IY register pair and the
two's complement displacement d is set. Operand b is specified as follows in the assembled object
code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M Cycles
6

Condition Bits Affected:
None

TStates
23(4,4,3,5,4,3)

4MHzE.T.
5.75

Example: If the contents of Index Register IY are 2000H, after the execution of

SET 0,(IY+3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H is the least significant bit.)

A5-153

II

RES b, m

Operation:

Opcode:

Operands:

A5-154

Sbf-0

RES

b,m

ZBOCPU
USER'S MANuAL

Operand bis any bit (7 through 0) of the contents of them operand, {any of r, {HL), {IX+d) or {IY +d)) as
defined for the analogous SET instructions. These various possible opcode-operand combinations are
assembled as follows in the object code:

RESb, r 0 0 11 I 0 I CB

0 10(b I ~10(rE
RES b, (HL) l0 l 0 l1 I 0 CB

0 EEbE 0

RES b, (IX+d) 0 I 1 I 0 DD

0 0 0 CB

"' d ~

0 EEbE 0

RES b, (IY+d) 1 I I I 1 I 0 FD

0 0 I 1 I 0 CB

I"' I I d I I ~1

0 EEbB 0 I
Bit b Register r
0 000 B 000
1 001 c 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

Description: Bit b in operand m is reset.

Instruction
RES r
RES (HL)
RES (IX+d)
RES (IY+d)

MCycles
4
4
6
6

Condition Bits Affected:
None.

Example: After the execution of

RES 6, D

TStates
8 (4, 4)

15 (4, 4, 4, 3)
23 (4, 4, 3, 5, 4, 3)
23 (4, 4, 3, 5, 4, 3)

4MHzE.T.
2.00
3.75
5.75
5.75

bit 6 in register D will be reset. (Bit 0 in register D is the least significant bit.)

ZBOCPU
USER'S MANUAL

AS-155

II

ZSO®
INSTRUCTION DESCRIPTION

JUMP GROUP

Z80CPU
UsER'S llANUAL

AS-157

II

ft'2ilm
JP nn

Operation: PC+-nn

Opcode: JP

Operands: nn

I 0 I
1~ I I I
1~ I

0 0 I 0 I
" I
" I

I
I
I

I C3

·I
·I

Z80 CPU
USER's MANUAL

Note: The first operand in this assembled object code is the low order byte of a two-byte address.

Description: Operand nn is loaded into register pair PC (Program Counter). The next instruction is fetched from
the location designated by the new contents of the PC.

M Cycles
3

Condition Bits Affected:

None.

AS-158

TStates
10 (4, 3, 3)

4MHzE.T.
2.50

Operation:

Opcode:

Operands:

IF cc true, PCt- nn

JP

cc,nn

I· ccEI
I"' ; " I I
I"' I " I

0 0

I ·I
I ~1

Z80 CPU
USER'S MANllAL

JP cc, nn

Note: The first n operand in this assembled object code is the low order byte of a 2-byte memory
address.

Description: If condition cc is true, the instruction loads operand nn into register pair PC (Program Counter), and
the program continues with the instruction beginning at address nn. If condition cc is false, the
Program Counter is incremented as usual, and the program continues with the next sequential
instruction. Condition cc is programmed as one of eight status which corresponds to condition bits
in the Flag Register (register F). These eight status are defined in the table below which also
specifies the corresponding cc bit fields in the assembled object code.

cc
000
001
010
011
100
101
110
111

MCycles
3

Condition
NZ non zero
Zzero
NC no carry
C carry
PO parity odd
PE parity even
P sign positive
M sign negative

TStates
10 (4, 3, 3)

Relevant
Flag
z
z
c
c

PN
PN
s
s

4MHz E.T.
2.50

Condition Bits Affected:

Example:

None.

If the Carry flag (C flag in the F register) is set and the contents of address 1520 are 03H, after the
execution of

JP C, 1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPD will fetch from address
1520H the byte 03H.

A5-159

II

JRe

Operation:

Opcode:

Operands:

PCt-PC+e

JR

e

I o I o o 1 I o I o I o I 1s

le ; le-2; : >I

Z80 CPU
USER'S MANllAL

Description: This instruction provides for unconditional branching to other segments of a program. The value of
the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the
location designated by the new contents of the PC. This jump is measured from the address of the
instruction opcode and has a range of -126 to + 129 bytes. The assembler automatically adjusts for
the twice incremented PC.

M Cycles
3

TStates
12 (4, 3, 5)

4MHzE.T.
3.00

Condition Bits Affected:

Example:

A5-160

None.

To jump forward five locations from address 480, the following assembly language statement is
used:

JR $+5

The resulting object code and final PC value is shown below:

Location Instruction

480 18
481 03
482
483
484
485 t- PC after jump

Operation:

Opcode:

Operands:

If C = 0, continue
If C = 1, PC +- PC + e

JR

C, e

o o lololol38

I· I I e-2 I I >I

Z80CPU
lJsER's MANUAL

JRC,e

Description: This instruction provides for conditional branching to other segments of a program depending on
the results of a test on the Carry Flag. If the flag is equal to a '1', the value of the displacement e is
added to the Program Counter (PC) and the next instruction is fetched from the location designated
by the new contents of the PC. The jump is measured from the address of the instruction opcode
and has a range of -126 to + 129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the flag is equal to a 'O', the next instruction to be executed is taken from the location following this
instruction.

If condition is met

M Cycles
3

TStates·
12 (4, 3, 5)

If condition is not met:

M Cycles
2

TStates
7 (4, 3)

4MHz E.T.
3.00

4MHzE.T.
1.75

Condition Bits Affected:

Example:

None.

The Carry flag is set and it is required to jump back four locations from 480. The assembly lan­
guage statement is:

JR C, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C +- PC after jump
470
47E
47F
480 38
481 FA (two's complement - 6)

AS-161

II

JR (NC), e

Operation:

Opcode:

Operands:

If C = 1, continue
If C = 0, PC +-- PC + e

JR

NC, e

lolo olololof30

I--~ -I ~le-2 1 I ·I

Z80 CPU
USER'S MANUAL

Description: This instruction provides for conditional branching to other segments of a program depending on the
results of a test on the Carry Flag. If the flag is equal to 'O', the value of the displacement e is added
to the Program Counter (PC) and the next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the address of the instruction opcode and has
a range of -126 to + 129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the flag is equal to a '1', the next instruction to be executed is taken from the location following this
instruction.

If the condition is met:

M Cycles
3

TStates
12 (4, 3, 5)

If the condition is not met:

M Cycles
7

T States
7 (4, 3)

4MHz E.T.
3.00

4 MHz E.T.
1.75

Condition Bits Affected:

Example:

AS-162

None.

The Carry Flag is reset and it is required to repeat the jump instruction. The assembly language
statement is:

JR NC,$

The resulting object code and PC after the jump are shown below:

Location Instruction

480 30 +-- PC after jump
481 00

Operation: If Z = 0, continue
If Z = 1 , PC +- PC + e

Opcode: JR

Operands: Z,e

0 0 0

1~ I I e-21

lololol2s

I ·I

Z80CPU
USER's MANUAL

JRZ,e

Description: This instruction provides for conditional branching to other segments of a program depending on the
results of a test on the Zero Flag. If the flag is equal to a '1 ', the value of the displacement e is added
to the Program Counter (PC) and the next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the address of the instruction opcode and has a
range of -126 to + 129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the Zero Flag is equal to a 'O', the next instruction to be executed is taken from the location following
this instruction.

If the condition is met:

M Cycles
3

TStates
12(4,3,5)

If the condition is not met;

M Cycles
2

TStates
7 (4, 3)

4MHzE.T.
3.00

4MHz E.T.
1.75

Condition Bits Affected:

Example:

None.

The Zero Flag is set and it is required to jump forward five locations from address 300. The following
assembly language statement is used:

JR Z, $ + 5

The resulting object code and final PC value is shown below:

Location Instruction

300 28
301 03
302
303
304
305 +- PC after jump

A5-163

II

JR NZ, e

Operation:

Opcode:

Operands:

If Z = 1, continue
If Z = 0, pc +- pc + e

JR

NZ, e

0 0 o olololol20

1---... ~I -;;---.;;-: e-2 I I I I ~I

ZBOCPU
UsEll's MANUAL

Description: This instruction provides for conditional branching to other segments of a program depending on
the results of a test on the Zero Flag. If the flag is equal to a 'O', the value of the displacement e is
added to the Program Counter (PC) and the next instruction is fetched from the location designated
by the new contents of the PC. The jump is measured from the address of the instruction opcode
and has a range of -126 to + 129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the Zero Flag is equal to a '1 ', the next instruction to be executed is taken from the location following
this instruction.

If the condition is met

MCycles
3

TStates
12 (4, 3, 5)

If the condition is not met:

MCycles
2

TStates
7 (4, 3)

4MHzE.T.
3.00

4MHzE.T.
1.75

Condition Bits Affected:

Example:

AS-164

None.

The Zero Flag is reset and it is required to jump back four locations from 480. The assembly lan­
guage statement is:

JR NZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C +-PC after jump
470
47E
47F
480 20
481 FA (2' complement - 6)

't'2iUl6

Operation: pc+- hL

Opcode: JP

Operands: (HL)

I 1 I I 0 I I 0 I 0 I I E9

Z80CPU
USER'S MANuAL

JP (HL)

Description: The Program Counter (register pair PC) is loaded with the contents of the HL register pair. The next
instruction is fetched from the location designat13d by the new contents of the PC.

M Cycles
1

TStates
4

4MHzE.T.
1.00

Condition Bits Affected:

Example:

None.

If the contents of the Program Counter are 1 OOOH and the contents of the HL register pair are
4800H, afterthe execution of

JP (HL)

the contents of the Program Counter will be 4800H.

A5-165

El

JP (IX)

Operation: pc +-IX

Opcode: JP

Operands: (IX)

0

0

I 0 I I DD

lolol IE9

ZBOCPU
USER'S MANuAL

Description: The Program Counter (register pair PC) is loaded with the contents of the IX Register Pair. The next
instruction is fetched from the location designated by the new contents of the PC.

M Cycles
2

TStates
8 (4, 4)

4MHz E.T.
2.00

Condition Bits Affected:

Example:

A5-166

None.

If the contents of the Program Counter are 1 OOOH, and the contents of the IX Register Pair are
4800H, after the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

Operation:

Opcode:
Operands:

PC+-IY

JP
{IY)

I 0 I I FD

lol lolol IEe

Z80 CPU
USER'S MANllAL

JP (IV)

Description: The Program Counter {register pair PC) is loaded with the contents of the IY Register Pair. The next
instruction is fetched from the location designated by the new contents of the PC.

M Cycles
2

TStates
8 (4, 4)

4MHzE.T.
2.00

Condition Bits Affected:

Example:

None.

If the contents of the Program Counter are 1 OOOH and the contents of the IY Register Pair are 4800H,
after the execution of

JP (IY)

the contents of the Program Counter will be 4800H.

A5-167

II

DJNZ, e

Operation:

Opcode: DJNZ

Operands: e

I 0 I 0 0

1~ ;
I 0 I 0 0

I e-2; ;
0 I 10

~1

Z80CPU
USER'S MANUAL

Description: This instruction is similar to the conditional jump instructions except that a register value is used to
determine branching. The B register is decremented and if a non zero value remains, the value of
the displacement e is added to the Program Counter {PC). The next instruction is fetched from the
location designated by the new contents of the PC. The jump is measured from the address of the
instruction opcode and has a range of -126 to + 129 bytes. The assembler automatically adjusts for
the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction to be executed is taken from
the location following this instruction.

if B;ii: 0:

M Cycles
3

If B = 0:

M Cycles
2

TStates
13 (5 ,3, 5)

TStates
8 (5, 3)

4MHz E.T.
3.25

4MHzE.T.
2.00

Condition Bits Affected:

Example:

A5-168

None.

A typical software routine is used to demonstrate the use of the DJNZ instruction. This routine moves
a line from an input buffer {INBUF) to an output buffer {OUTBUF). It moves the bytes until it finds a
CR, or until it has moved 80 bytes, whichever occurs first.

LD B,80 ;Set up counter
LD HL, lnbuf ;Set up pointers
LD DE, Outbuf

LOOP: LD A, {HL) ;Get next byte from
;input buffer

LD (DE), A ;Store in output buffer
CP ODH ;Is it a CR?
JR Z, DONE ;Yes finished
INC HL ;Increment pointers
INC DE
DJNZ LOOP ;Loop back if 80

;bytes have not
;been moved

DONE:

Z80®
INSTRUCTION DESCRIPTION

CALL AND RETURN GROUP

Z80CPU
USER'S MANllAL

AS-169

II

CALL nn

Operation:

Opcode:

Operands:

(SP-1) +-- PCH, (SP-2) +-- PCL, PC +-- nn

CALL

nn

0 0 11 I 0 I CD

I"' I " I I >I

'"'
I " I I >I

Z80 CPU
USER's MANUAL

Note: The first of the two n operands in the assembled object code above is the least significant byte of
a 2-byte memory address.

Description: The current contents of the Program Counter (PC) are pushed onto the top of the external memory
stack. The operands nn are then loaded into the PC to point to the address in memory where the
first opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction can
be used to return to the original program flow by popping the top of the stack back into the PC.) The
push is accomplished by first decrementing the current contents of the Stack Pointer (register pair
SP), loading the high-order byte of the PC contents into the memory address now pointed to by the
SP; then decrementing SP again, and loading the low-order byte of the PC contents into the top of
stack. Note: Because this is a 3-byte instruction, the Program Counter will have been incremented
by three before the push is executed.

M Cycles
5

T States
17 (4, 3, 4, 3, 3)

4 MHz E.T.
4.25

Condition Bits Affected:

Example:

A5-170

None.

If the contents of the Program Counter are 1A47H, the contents of the Stack Pointer are 3002H, and
memory locations have the contents:

Location
1A47H
1A48H
1A49H

Contents
CDH
35H
21H

then if an instruction fetch sequence begins, the 3-byte instruction CD3521 H will be fetched to the
CPU for execution. The mnemonic equivalent of this is

CALL2135H

After the execution of this instruction, the contents of memory address 3001 H will be 1AH, the contents
of address 3000H will be 4AH, the contents of the Stack Pointer will be 3000H, and the contents of the
Program Counter will be 2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

Operation:

Opcode:

Operands:

IF cc true: (sp-1)+--PCH
(sp-2) +-- PCL, pc+-- nn

CALL

cc,nn

Bcc8 0

I· I I " I I
I· I I n I ;

0

·I
·I

Z80CPU
USER'S MANUAL

CALL cc, nn

Note: The first of the two n operands in the assembled object code above is the least significant byte of
the 2-byte memory address.

Description: If condition cc is true, this instruction pushes the current contents of the Program Counter (PC) onto
the top of the external memory stack, then loads the operands nn into PC to point to the address in
memory where the first opcode of a subroutine is to be fetched. (At the end of the subroutine, a
RETurn instruction can be used to return to the original program flow by popping the top of the stack
back into PC.) If condition cc is false, the Program Counter is incremented as usual, and the pro­
gram continues with the next sequential instruction. The stack push is accomplished by first
decrementing the current contents of the Stack Pointer (SP), loading the high-order byte of the PC
contents into the memory address now pointed to by SP; then decrementing SP again, and loading
the low-order byte of the PC contents into the top of the stack. Note: Because this is a 3-byte
instruction, the Program Counter will have been incremented by three before the push is executed.
Condition cc is programmed as one of eight status which corresponds to condition bits in the Flag
Register (register F). These eight status are defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object code:

cc
000
001
010
011
100
101
110
111

If cc is true:

M Cycles
5

If cc is false:

M Cycles
3

Condition
NZ non zero
Zzero
NC non carry
C carry
PO parity odd
PE parity even
P sign positive
M sign negative

T States
17 (4, 3, 4, 3, 3)

TStates
10(4,3,3)

Relevant
Flag
z
z
c
z

PN
PN
s
s

4MHz E.T.
4.25

4MHzE.T.
2.50

AS-171

II

Z80 CPU
USER'S MANuAL

Condition Bits Affected:

Example:

AS-172

None.

If the C Flag in the F register is reset, the contents of the Program Counter are 1A47H, the contents
of the Stack Pointer are 3002H, and memory locations have the contents:

Location
1A47H
1448H
1A49H

Contents
04H
35H
21H

then if an instruction fetch sequence begins, the 3-byte instruction 043521 H will be fetched to the
CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001 H will be 1 AH, the contents
of address 3000H will be 4AH, the contents of the Stack Pointer will be 3000H, and the contents of the
Program Counter will be 2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

Operation:

Opcode:

pCL +- (sp), pCH +- (sp+1)

RET

Z80CPU
USER'S MANUAL

RET

Description: The byte at the memory location specified by the contents of the Stack Pointer (SP) register pair are
moved to the low order eight bits of the Program Counter (PC). The SP is now incremented and the
byte at the memory location specified by the new contents of this instruction will be fetched from the
memory location specified by the PC. This instruction is normally used to return to the main line
program at the completion of a routine entered by a CALL instruction.

MCycles
3

TStates
10 (4, 3, 3)

4MHzE.T.
2.50

Condition Bits Affected:

Example:

None.

If the contents of the Program Counter are 3535H, the contents of the Stack Pointer are 2000H, the
contents of memory location 2000H are B5H, and the contents of memory location of memory
location 2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the contents of the Program Counter will be 18B5H,
pointing to the address of the next program opcode to be fetched.

A5-173

II

RETcc

Operation:

Opcode:

Operands:

If cc true: PCL +-- (sp), pCH +-- (sp+ 1)

RET

cc

I 1 I 1 8 cca o I o I o I

Z80 CPU
USER's MANUAL

Description: If condition cc is true, the byte at the memory location specified by the contents of the Stack Pointer
(SP) register pair are moved to the low order eight bits of the Program Counter (PC). The SP is now
incremented and the byte at the memory location specified by the new contents of the SP are moved
to the high order eight bits of the PC. The SP is now incremented again. The next opcode following
this instruction will be fetched from the memory location specified by the PC. This instruction is
normally used to return to the main line program at the completion of a routine entered by a CALL
instruction. If condition cc is false, the PC is simply incremented as usual, and the program contin­
ues with the next sequential instruction. Condition cc is programmed as one of eight status which
correspond to condition bits in the Flag Register (register F). These eight status are defined in the
table below, which also specifies the corresponding cc bit fields in the assembled object code.

cc Condition
000 NZ non zero
001 Z zero
010 NC non carry
011 C carry
100 PO parity odd
101 PE parity even
110 P sign positive
111 M sign negative

If cc is true:

MCycles
3

If cc is false:

MCycles
1

T States
11 (5, 3, 3)

TStates
5

Relevant
Flag
z
z
c
c

PN
PN
s
s

4 MHz E.T.
2.75

4MHzE.T.
1.25

Condition Bits Affected:

Example:

A5-174

None.

If the S flag in the F register is set, the contents of the Program Counter are 3535H, the contents of
the Stack Pointer are 2000H, the contents of memory location 2000H are B5H, and the contents of
memory location 2001H are 18H, then after the execution of

RETM

the contents of the Stack Pointer Will be 2002H and the contents of the Program Counter will be 18B5H,
pointing to the address of the next program opcode to be fetched.

Operation: Return from Interrupt

Opcode: RETI

0

0 0 0

I 0 I ED

I 0 I 40

ZSOCPU
USER'S MANllAL

RETI

Description: This instruction is used at the end of a maskable interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET instruction)

2. To signal an 1/0 device that the interrupt routine has been completed. The RETI instruction also
facilitates the nesting of interrupts allowing higher priority devices to temporarily suspend service
of lower priority service routines. Note: This instruction does not enable interrupts which were
disabled when the interrupt routine was entered. Before doing the RETI instruction, the enable
interrupt instruction (El) should be executed to allow recognition of interrupts after completion of
the current service routine.

M Cycles
4

T States
14 (4, 4, 3, 3)

4 MHz E.T.
3.50

Condition Bits Affected:

Example:

None.

Given: Two interrupting devices, A and B connected in a daisy chain configuration with A having a
higher priority than B.

A 8

/INT--------------'

B generates an interrupt and is acknowledged. (The interrupt enable out, IEO, of B goes low, blocking
any lower priority devices from interrupting while B is being serviced). Then A generates an interrupt,
suspending service of B. (The IEO of A goes 'low' indicating that a higher priority device is being
serviced). The A routine is completed and a RETI is issued resetting the IEO of A, allowing the B routine
to continue. A second RETI is issued on completion of the B routine and the IEO of Bis reset (high) allowing
lower priority devices interrupt access.

A5-175

II

RETN

Operation:

Opcode:

Return from non maskable interrupt

RETN

0

0

0 0 0

I 0 I ED

lol1l4s

Z80 CPU
USER's MANuAj.

Description: This instruction is used at the end of a non-maskable interrupts service routine to restore the con­
tents of the Program Counter (PC) (analogous to the RET instruction). The state of IFF2 is copied
back into IFF1 so that maskable interrupts are enabled immediately following the RETN if they were
enabled before the non-maskable interrupt.

M Cycles
4

TStates
14 (4, 4, 3, 3)

4 MHz E.T.
3.50

Condition Bits Affected:

Example:

A5-176

None.

If the contents of the Stack Pointer are 1 OOOH and the contents of the Program Counter are 1 A45H
when a non maskable interrupt (NMI) signal is received, the CPU will ignore the next instruction and
will instead restart to memory address 0066H . That is, the current Program Counter contents of
1A45H will be pushed onto the external stack address of OFFFH and OFFEH, high order-byte first,
and 0066H will be loaded onto the Program Counter. That address begins an interrupt service
routine which ends with RETN instruction. Upon the execution of RETN, the former Program Counter
contents are popped off the external memory stack, low-order first, resulting in a Stack Pointer
contents again of 1000H. The program flow continues where it left off with an opcode fetch to
address 1A45H order-byte first, and 0066H will be loaded onto the Program Counter. That address
begins an interrupt service routine which ends with RETN instruction. Upon the execution of RETN,
the former Program Counter contents are popped off the external memory stack, low-order first,
resulting irt a Stack Pointer contents again of 1000H. The program flow continues where it left off
with an opcode fetch to address 1A45H.

Operation:

Opcode:

Operands:

(SP-1) +-- PCH, (SP-2) +-- PCL, PCH +-- 0, PCL +-- P

RST

p

Z80CPU
UsER's MANUAL

RSTp

Description: The current Program Counter (PC) contents are pushed onto the external memory stack, and the
page zero memory location given by operand p is loaded into the PC. Program execution then
begins with the opcode in the address now pointed to by PC. The push is performed by first
decrementing the contents of the Stack Pointer (SP), loading the high-order byte of PC into the
memory address now pointed to by SP, decrementing SP again, and loading the low-order byte of
PC into the address now pointed to by SP. The ReSTart instruction allows for a jump to one of eight
addresses as shown in the table below. The operand p is assembled into the object code using the
corresponding T state. Note: Since all addresses are in page zero of memory, the high order byte of
PC is loaded with OOH. The number selected from the "p" column of the table is loaded into the low­
order byte of PC.

p t
OOH 000
OBH 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

MCycles TStates 4MHzE.T.
3 11 (5, 3, 3) 2.75

Example: If the contents of the Program Counter are 1583H, after the execution of

RST 1 BH (Object code 1101111)

the PC will contain 001 BH, as the address of the next opcode to be fetched.

AS-177

Z80®
INSTRUCTION DESCRIPTION

INPUT AND OUTPUT GROUP

ZBOCPU
USER'S MANUAL

AS-179

II

IN A, (n)

Operation:

Opcode:

Operands:

A+- (n)

IN

A, (n)

I 1 I I 0 I I 1 I 0 I I DB

--I"' -7-1 -=--I -.;;-I "-:--I -=-I ~:-~1

Z80CPU
USER'S MANUAL

Description: The operand n is placed on the bottom half (AO through A7) of the address bus to select the 1/0
device at one of 256 possible ports. The contents of the Accumulator also appear on the top half
(AB through A 15) of the address bus at this time. Then one byte from the selected port is placed on
the data bus and written into the Accumulator (register A) in the CPU.

MCycles
3

TStates
11 (4, 3, 4)

4MHzE.T.
2.75

Condition Bits Affected:

Example:

A5-180

None.

If the contents of the Accumulator are 23H and the byte 7BH is available at the peripheral device
mapped to 1/0 port address 01H, then after the execution of

IN A, (01H)

the Accumulator will contain 7BH.

Operation: r +- (C)

Opcode: IN

Operands: r, (C)

l1 l0 l1 I
0 EfrE

0

0 0

I I ED

I 0 I

ZBOCPU
USER'S MANIJAL

IN r (C)

Description: The contents of register C are placed on the bottom half (AO through A?) of the address bus to
select the 1/0 device at one of 256 possible ports. The contents of Register B are placed on the top
half (AS through A 15) of the address bus at this time. Then one byte from the selected port is placed
on the data bus and written into register r in the CPU. Register r identifies any of the CPU registers
shown in the following table, which also shows the corresponding 3-bit "r" field for each. The flags
will be affected, checking the input data.

Register
Flag

B
c
D
E
H
L
A

M Cycles
3

r
110- Undefined opcode, set the flag
000
001
010
011
100
101
111

TStates
12 (4, 4, 4)

4MHz E.T.
3.00

Condition Bits Affected:

Example:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise
H: Reset

PN: Set if parity is even; reset otherwise
N: Reset
C: Not affected

If the contents of register Care 07H, the contents of register Bare 10H, and the byte 7BH is avail­
able at the peripheral device mapped to 1/0 port address 07H, then after the execution of

IND, (C)

AS-181

El

ftl2HJJ6
INI

Operation:

Opcode:

(Hl) +- (C), B +- B - 1, HL +- HL + 1

INI

____ o_l_1_l __ o __ I ED

0 1°1°1° lolA2

ZSOCPU
USER'S MANUAL

Description: The contents of register Care placed on the bottom half (AO through A7) of the address bus to
select the 1/0 device at one of 256 possible ports. Register B may be used as a byte counter, and its
contents are placed on the top half (AB through A 15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written to the CPU. The contents of the HL
register pair are then placed on the address bus and the input byte is written into the corresponding
location of memory. Finally the byte counter is decremented and register pair HL is incremented.

MCycles
4

TStates
16 (4, 5, 3, 4)

4MHzE.T.
4.00

Condition Bits Affected:

Example:

AS-182

S: Unknown
Z: Set if B - 1 = 0

reset otherwise
H: Unknown

PN: Unknown
N: Set
C: Not affected

If the contents of register C are 07H, the contents of register Bare 1 OH, the contents of the HL
register pair are 1000H, and the byte 7BH is available at the peripheral device mapped to 1/0 port
address 07H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register pair will contain 1001 H, and register B will
contain OFH.

Operation:

Opcode:

(HL) +-- (C), B t- B - 1, HL +-- HL + 1

INIR

.......... .._ ~.._o ~.._-0 I ED

0 I o I 82

Z80CPU
USER'S MANUAL

INIR

Description: The contents of register C are placed on the bottom half (AO through A?) of the address bus to select the
1/0 device at one of 256 possible ports. Register B is used as a byte counter, and its contents are placed
on the top half (AB through A 15) of the address bus at this time. Then one byte from the selected port is
placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the
address bus and the input byte is written into the corresponding location of memory. Then register pair
HL is incremented, the byte counter is decremented. If decrementing causes B to go to zero, the instruc­
tion is terminated. If B is not zero, the PC is decremented by two and the instruction repeated. Interrupts
will be recognized and two refresh cycles will be executed after each data transfer. Note that if B is set to
zero prior to instruction execution, 256 bytes of data will be input.

If B °* 0:

M Cycles T States 4 MHz E.T.
5 21 (4, 5, 3, 4, 5) 5.25

If B = 0:

M Cycles T States 4 MHz E.T.
4 16 (4, 5, 3, 4) 4.00

Condition Bits Affected:

Example:

S: Unknown
Z: Set
H: Unknown

PN: Unknown
N: Set
C: Not affected

If the contents of register Care O?H, the contents of register Bare 03H, the contents of the HL
register pair are 1000H, and the following sequence of bytes are available at the peripheral device
mapped to 1/0 port of address O?H:

51H
A9H
03H

then after the execution of

INIR

the HL register pair will contain 1003H, register B will contain zero, and memory locations will have
contents as follows:

Location
1000H
1001H
1002H

Contents
51H
A9H
03H

A5·183

IND

Operation:

Opcode:

(HL) +- (C). 8 +- 8 - 1, HL +- HL - 1

IND

I 0 I 1 I 0 I ED

o lof1 f o lolAA

ZSOCPU
USER'S MANllAL

Description: The contents of register Care placed on the bottom half (AO through A?) of the address bus to
select the 1/0 device at one of 256 possible ports. Register B may be used as a byte counter, and
its contents are placed on the top half (A8 through A 15) of the address bus at this time. Then one
byte from the selected port is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into the corresponding
location of memory. Finally the byte counter and register pair HL are decremented.

M Cycles
4

T States
16 (4, 5, 3, 4)

4MHzE.T.
4.00

Condition Bits Affected:

Example:

A5-184

S: Unknown
Z: Set if B - 1 = O; reset otherwise
H: Unknown

PN: Unknown
N: Set
C: Not affected

If the contents of register Care O?H, the contents of register Bare 10H, the contents of the HL
register pair are 1000H, and the byte ?BH is available atthe peripheral device mapped to 1/0 port
address O?H, then after the execution of

IND

memory location 1000H will contain ?BH, the HL register pair will contain OFFFH, and register B will
contain OFH.

INDR

Operation: (HL)~(C), B+.. 81, HL+.. HL1

Opcode: INDR

I 0 I 1 I 0

11 0 I 1 I 0

1 I ED

I 0 I BA

Z80CPU
USER's MANllAL

Description: The contents of register Care placed on the bottom half (AO through A?) of the address bus to select the
1/0 device at one of 256 possible ports. Register Bis used as a byte counter, and its contents are placed
on the top half (AB through A 15) of the address bus at this time. Then one byte from the selected port is
placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the
address bus and the input byte is written into the corresponding location of memory. Then HL and the
byte counter are decremented. If decrementing causes B to go to zero, the instruction is terminated. If B
is not zero, the PC is decremented by two and the instruction repeated. Interrupts will be recognized and
two refresh cycles will be executed after each data transfer. Note that if B is set to zero prior to instruction
execution, 256 bytes of data will be input. ·

If B *O

M Cycles TStates 4MHzE.T.
5 21 (4, 5, 3, 4, 5) 5.25

If B = 0:

M Cycles TStates 4MHzE.T.
4 16 (4, 5, 3, 4) 4.00

Condition Bits Affected:

Example:

S: Unknown
Z: Set
H: Unknown

PN: Unknown
N: Set
C: Not affected

If the contents of register Care 07H, the contents of register Bare 03H, the contents of the HL
register pair are 1000H, and the following sequence of bytes are available at the peripheral device
mapped to 1/0 port address 07H:

51H
A9H
03H

then after the execution of

INDR

the HL register pair will contain OFFDH, register B will contain zero, and memory locations will have
contents as follows:

Location
OFFEH
OFFFH
1000H

Contents
03H
A9H
51H

A5-185

II

OUT (n), A

Operation:

Opcode:

Operands:

(n) +--A

OUT

(n), A

111 o lolo I los
--le ~I -;.--..;-n~I ~: ~1-~1

Z801:PU
USER'S MANllAL

Description: The operand n is placed on the bottom half (AO through A7) of the address bus to select the 1/0
device at one of 256 possible ports. The contents of the Accumulator (register A) also appear on the
top half (AB through A 15) of the address bus at this time. Then the byte contained in the Accumula­
tor is placed on the data bus and written into the selected peripheral device.

M Cycles
3

TStates
11(4,3, 4)

4MHzE.T.
2.75

Condition Bits Affected:
None.

Example: If the contents of the Accumulator are 23H the execution of then after the execution of

OUT (01H), A

the byte 23H will have been written to the peripheral device mapped to 1/0 port address 01 H.

AS-186

(tl2H.JJ6
UilUVru

USER'S UANllAL

OUT (C), r

Operation: (C) +- r

Opcode: OUT

Operands: (C), r

I I 0 I I 0 I ED

0 B:rEJ 0 I 0 I
Description: The contents of register Care placed on the bottom half (AO through A?) of the address bus to

select the 1/0 device at one of 256 possible ports. The contents of Register B are placed on the top
half (AB through A 15) of the address bus at this time. Then the byte contained in register r is placed
on the data bus and written into the selected peripheral device. Register r identifies any of the CPU
registers shown in the following table, which also shows the corresponding three-bit "r" field for each
which appears in the assembled object code:

Register
B
c
D
E
H
L
A

M Cycles
3

Condition Bits Affected:
None.

r
000
001
010
011
100
101
111

TStates
12 (4, 4, 4)

4MHzE.T.
3.00

Example: If the contents of register Care 01 H and the contents of register Dare SAH, after the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to 1/0 port address 01H.

AS-187

El

OUTI

Operation:

Opcode:

(C) +- (HL), B +- B - 1, HL +- HL + 1

OUTI

__ .._...._o_l_1 _.l___.._0 ___ 1 ED

__ o .._...._o_l_o_.l_o...._ ___ I A3

Z80CPU
UsER'S MANUAL

Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (B) is decremented, the contents of register Care placed on the bottom half (AO through A7)
of the address bus to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8throughA15) of the address
bus. The byte to be output is placed on the data bus and written into selected peripheral device.
Finally the register pair HL is incremented.

M Cycles
4

TStates
16 (4, 5, 3, 4)

4MHzE.T.
4.00

Condition Bits Affected:

Example:

AS-188

S: Unknown
Z: Set if B - 1 = O; reset otherwise
H: Unknown

PN: Unknown
N: Set
C: Not affected

If the contents of register Care 07H, the contents of register Bare 10H, the contents of the HL
register pair are 1000H, and the contents of memory address 1000H are 59H, then after thee execu­
tion of

OUTI

register B will contain OFH, the HL register pair will contain 1001 H, and the byte 59H will have been
written to the peripheral device mapped to 1/0 port address 07H.

Operation:

Opcode:

(C) +- (HL), B +- B - 1, HL +- HL + 1

OTIR

___ l_o__.l_1__.l___, o _ _.I ED

__ o __ l_1__.l_o__.l_o....._ _ _.l B3

Z80CPU
UsER'S MANllAL

OTIR

Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (8) is decremented, the contents of register Care placed on the bottom half (AO through Al)
of the address bus to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (AS through A 15) of the address
bus at this time. Next the byte to be output is placed on the data bus and written into the selected
peripheral device. Then register pair HL is incremented. If the decremented B register is not zero,
the Program Counter (PC) is decremented by two and the instruction is repeated. If B has gone to
zero, the instruction is terminated. Interrupts will be recognized and two refresh cycles will be
executed after each data transfer. Note that if Bis set to zero prior to instruction execution, the
instruction will output 256 bytes of data.

If B ;t 0:

M Cycles
5

If B = 0:

M Cycles
4

Condition Bits Affected:

TStates
21 (4, 5, 3, 4, 5)

TStates
16 (4, 5, 3, 4)

S: Unknown
Z: Set
H: Unknown

PN: Unknown
N: Set
C: Not affected

4MHz E.T.
5.25

4MHz E.T.
4.00

A5-189

Example:

A5-190

ZSOCPU
USER'S MANUAL

If the contents of register C are 07H, the contents of register Bare 03H, the contents of the HL
register pair are 1000H, and memory locations have the following contents:

Location
1000H
1001H
1002H

Contents
51H
A9H
03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group of bytes will have
been written to the peripheral device mapped to 1/0 port address 07H in the following sequence:

51H
A9H
03H

Operation: (C) +- (HL), B +- B - 1, HL +- HL - 1

Opcode: OUTD

I 1 11 0 I 1 I 0

0 11 0 I 1 I 0

I ED

I AB

ZBOCPU
USER'S MANUAL

OUTD

Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (8) is decremented, the contents of register Care placed on the bottom half (AO through A7)
of the address bus to select the 1/0 device at one of 256 possible ports. Register 8 may be used as
a byte counter, and its decremented value is placed on the top half (A8 through A 15) of the address
bus at this time. Next the byte to be output is placed on the data bus and written into the selected
peripheral device. Finally the register pair HL is decremented.

M Cycles
4

TStates
16 (4, 5, 3, 4)

4MHzE.T.
4.00

Condition Bits Affected:

Example:

S: Unknown
Z: Set if B - 1 = O; reset otherwise
H: Unknown

PN: Unknown
N: Set
C: Not affected

If the contents of register Care 07H, the contents of register 8 are 1 OH, the contents of the HL
register pair are 1000H, and the contents of memory location 1000H are 59H, after the execution of

OUTD

register B will contain OFH, the HL register pair will contain OFFFH, and the byte 59H will have been
written to the peripheral device mapped to 1/0 port address 07H.

AS-191

II

OTDR

Operation:

Opcode:

(C) +- (HL), B +- B - 1, HL +- HL - 1

OTDR

0 0 I ED

o 1110 Isa

Z80 CPU
USER'S MANUAL

Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (8) is decremented, the contents of register C are placed on the bottom half (AO through A7)
of the address bus to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through A 15) of the address
bus at this time. Next the byte to be output is placed on the data bus and written into the selected
peripheral device. Then register pair HL is decremented and if the decremented B register is not
zero, the Program Counter (PC) is decremented by two and the instruction is repeated. If B has
gone to zero, the instruction is terminated. Interrupts will be recognized and two refresh cycles will
be executed after each data transfer. Note that if Bis set to zero prior to instruction execution, the
instruction will output 256 bytes of data.

M Cycles
5

If B = 0:

M Cycles
4

TStates
21 (4, 5, 3, 4, 5)

TStates
16 (4, 5, 3, 4)

4 MHz E.T.
5.25

4 MHz E.T.
4.00

Condition Bits Affected:
S: Unknown
Z: Set
H: Unknown

PN: Unknown
N: Set
C: Not affected

A5-192

Example:

Z80CPU
USER'S MANuAL

If the contents of register Care 07H, the contents of register Bare 03H, the contents of the HL
register pair are 1000H, and memory locations have the following contents:

Location
OFF EH
OFFFH
1000H

Contents
51H
A9H
03H

then after the execution of

OTDR

the HL register pair will contain OFFDH, register B will contain zero, and a group of bytes will have been
written to the peripheral device mapped to 1/0 port address 07H in the following sequence:

03H
A9H
51H

AS-193

El

't'2iU a,

6.0 INTRODUCTION
The purpose of an interrupt is to allow peripheral devices
to suspend CPU operation in an orderly manner and force
the CPU to start a peripheral seNice routine. Usually, this
seNice routine is involved with the exchange of data, or

6.1 INTERRUPT ENABLE/DISABLE

The Z80 CPU has two interrupt inputs, a software maskable
interrupt (/INT) and a non-maskable interrupt (/NMI). The
non-maskable interrupt can not be disabled by the pro­
grammer and will be accepted whenever a peripheral
device requests it. This interrupt is generally reserved for
very important functions that can be enabled or disabled
selectively by the programmer. This allows the program­
mer to disable the interrupt during periods where his
program has timing constraints that do not allow interrupt.
In the Z80 CPU, there is an interrupt enable flip-flop (IFF)
that is set or reset by the programmer using the Enable
Interrupt (El) and Disable Interrupt (DI) instructions. When
the IFF is reset, an interrupt can not be accepted by the
CPU.

There are two enable flip-flops, IFF1 and IFF2.

I 1FF1 I

Actually disables interrupts
from being accepted.

l1FF2I

Temporary storage location
for IFF1.

The state of IFF1 is used to inhibit interrupts while IFF2 is
used as a temporary storage location for IFF1.

A reset to the CPU forces both the IFF1 and IFF2 to the reset
state so that interrupts are disabled. They can then be
enabled at any time by an El instruction by the program­
mer. When an El instruction is executed, any pending
interrupt request is not accepted until after the instruction

CPU USER'S MANUAL

CHAPTER 6
INTERRUPT RESPONSE

status and control information, between the CPU and the
peripheral. Once the service routine is completed, the
CPU returns to the operation from which it was interrupted.

following El has been executed. This single instruction
delay is necessary when the following instruction is a
return instruction and interrupts must not be allowed until
the return has been completed. The El instruction sets both
IFF1 and IFF2 to the enable state. When a maskable
interrupt is accepted by the CPU, both IFF1 and IFF2 are
automatically reset, inhibiting further interrupts until the
programmer wishes to issue a new El instruction. Note that
for all of the previous cases, IFF1 and IFF2 are always
equal.

The purpose of IFF2 is to save the status of IFF1 when a
non-maskable interrupt occurs. When a non-maskable
interrupt is accepted, IFF1 is reset to prevent further
interrupts until reenabled by the programmer. Thus, after
a non-maskable interrupt has been accepted, maskable
interrupts are disabled but the previous state of IFF1 has
been saved so that the complete state of the CPU just prior
to the non-maskable interrupt can be restored at any time.
When a Load Register A with Register I (LD A, I) instruction
or a Load Register A with Register R (LD A, R) instruction
is executed, the state of IFF2 is copied into the parity flag
where it can be tested or stored. ·

A second method of restoring the status of IFF1 is through
the execution of a Return From Non-Maskable Interrupt
(RETN) instruction. Since this instruction indicates that the
non-maskable interrupt seNice routine is complete, the
contents of IFF2 are now copied back into IFF1, so that the
status of IFF1 just prior to the acceptance of the non­
maskable interrupt will be restored automatically.

A6-1

II

Table 6-1 is a summary of the effect of different instructions
on the two enable flip-flops.

Z80"CPU
UsER'S MANllAL

Table 6-1. Interrupt Enable/Disable Flip-Flops

Action

CPU Reset
DI Instruction Execution
El Instruction Execution
LD A.I Instruction Execution

LD A,R instruction Execution
Accept/NMI
RETN instruction Execution

6.2 CPU RESPONSE

6.2.1 Non-Maskable

IFF1

0
0
1
•
•
0

IFF2

A non-maskable interrupt is accepted at all times by the
CPU. When this occurs, the CPU ignores the next instruc­
tion that it fetches and instead does a restart to location
0066H. Thus, it behaves exactly as if it had recycled a
restart instruction but, it is to a location that is not one of the
eight software restart locations. A restart is merely a call to
a specific address in page 0 of memory.

The CPU can be programmed to respond to the maskable
interrupt in any one of three possible modes.

6.2.2 ModeO
This mode is similar to the 8080A interrupt response mode.
With this mode, the interrupting device can place any
instruction on the data bus and the CPU executes it. Thus,
the interrupting device provides the next instruction to be
executed. Often this will be a restart instruction since the
interrupting device only need supply a single byte instruc­
tion. Alternatively, any other instruction such as a 3-byte
call to any location in memory could be executed.

A6-2

IFF2 Comments

0
0
1

•
•
•
•

Maskable Interrupt. /INT Disabled
Maskable /INT Disabled
Maskable, /INT Enabled
IFF2-+ Parity Fag

IFF2-+ Parity Flag
Maskable Interrupt
IFF2 -+ IFF1 at completion of an
indicates no change routine.

The number of clock cycles necessary to execute this
instruction is two more than the normal number for the
instruction. This occurs since the CPU automatically adds
two wait states to an interrupt response cycle to allow
sufficient time to implement an external daisy chain for
priority control. Figures 3-6 and 3-7 illustrate the detailed
timing for an interrupt response. After the application of
/RESET, the CPU will automatically enter interrupt Mode 0.

6.2.3 Mode 1
When this mode has been selected by the programmer,
the CPU responds to an interrupt by executing a restart to
location 0038H. Thus, the response is identical to that for
a non-maskable interrupt except that the call location is
0038H instead of 0066H. The number of cycles required to
complete the restart instruction is two more than normal
due to the two added wait states.

6.2.4 Mode2
This mode is the most powerful interrupt response mode.
With a single 8-bit byte from the user, an indirect call can
be made to any memory location.

With this mode the programmer maintains a table of 16-bit
starting addresses for every interrupt service routine. This
table may be located anywhere in memory. When an
interrupt is accepted, a 16-bit pointer must be formed to
obtain the desired interrupt service routine starting ad­
dress from the table. The upper eight bits of this pointer is
formed from the contents of the I register. The I register
must have been previously loaded with the desired value
by the programmer, i.e., LD I, A. Note that a CPU reset
clears the I register so that it is initialized to zero. The lower
eight bits of the pointer must be supplied by the interrupt­
ing device. Actually, only seven bits are required from the
interrupting device as the least significant, bit must be a
zero. This is required since the pointer is used to get two
adjacent bytes to form a complete 16-bit service routine
starting address and the addresses must always start in
even locations.

Interrupt
Service
Routine
Starting
Address
Table

Desired Starting Address
Pointed to by:

Low Order } I Register Seven Bits From 0
High Order ,___c_on_te_nt_s___...___Pe_n._ph_e_ra_I __.

zao~CPu
USER's MANllAL

The first byte in the table is the least significant (low order)
portion of the address. The programmer must obviously fill
this table in with the desired addresses before any inter­
rupts are to be accepted.

Note that this table can be changed at any time by the
programmer (if it is stored in Read/Write Memory) to allow II
different peripherals to be serviced by different service 1

routines.

Once the interrupting devices supplies the lower portion of
the pointer, the CPU automatically pushes the program
counter onto the stack, obtains the starting address from
the table, and does a jump to this address. This mode of
response requires 19 clock periods to complete (seven to
fetch the lower eight bits from the interrupting device, six
to save the program counter, and six to obtain the jump
address).

Note that the ZBO peripheral devices include a daisy chain
priority interrupt structure that automatically supplies the
programmed vector to the CPU during interrupt acknowl­
edge. Refer to the ZBO PIO, ZBO SIO, and ZBO CTC
manuals for details.

A6-3

't'2iUJI, CPU USER'S MANUAL

CHAPTER 7
HARDWARE IMPLEMENTATION
EXAMPLES

7.0 INTRODUCTION: MINIMUM SYSTEM

This chapter is intended to serve as a basic introduction to
implementing systems with the Z80 CPU. Figure 7-1 is a
diagram of a very simple ZBO system. Any ZBO system
must include the following elements:

• 5V Power Supply
• Oscillator
• Memory Devices
• 1/0 Circuits
• CPU

+SV

/RESET

osc

/CU<

zao
CPU

A9-AO

--'/M--..;RE_a _______ ,CE1

t--_.IR D._ _____ /CE2

Data Bus

/IORQ

+5V

+SV
Power Supply

BKBlt
ROM

GND

Address
IN

Data
OUT

T /CE/RD
/IORQ

ZBO-PIO
l--'-"/M:..:.1 _____ <1 /M1

Output Input
Data Data

Figure 7-1. Minimum ZSO Computer System

/CU<

CID

El

AO

A1

A7-1

Since the Z80 CPU requires only a single 5V supply, most
small systems can be implemented using only this single
supply.

The external memory can be any mixture of standard RAM,
ROM, or PROM. In this simple example, we have shown a
single BK bit ROM (1 Kbytes) being utilized as the entire
memory system. For this example we have assumed that
the Z80 internal register configuration contains sufficient
Read/Write storage so that external RAM memory is not
required.

7.1 ADDING RAM

Most computer systems require some amount of external
Read/Write memory for data storage and to implement a
stack. Figure 7-2 illustrates how 256 bytes of static memory
can be added to the previous example. In this example, the
memory space is assumed to be organized as follows:

Address

1 Kbyte OOOOH
ROM 03FFH

256 Bytes 0400H
RAM

04FFH

l.80 8 CPU
USER'S MANUAL

Every computer system requires 1/0 circuits to allow it to
interface to the real world. In this simple example, it is
assumed that the output is an 8-bit control vector and the
input is an 8-bit status word. The input data could be gated
onto the data bus using any standard tri-state driver while
the output data could be latched with any type of standard
TTL latch. For this example we have used a Z80 PIO for the
1/0 circuit. This single circuit attaches to the data bus as
shown and provides the required 16 bits of TTL compatible
1/0. (Refer to the Z80 PIO manual for details on the opera­
tion of this circuit.) Notice in this example that with only three
LSI circuits, a simple oscillator and a singe 5V power
supply, a powerful computer has been implemented.

In this diagram the address space is described in hexa­
decimal notation. For this example address bit A 1 O sepa­
rates the ROM space from the RAM space so that it can be
used for the chip select function. For larger amounts of
external ROM or RAM, a simple TTL decoder will be
required to form the chip selects.

Address Bus

A7·AO A7·AO A7·AO

v v v
/MREQ •/RD _,, /CE1 .!BQ.. OD /CE1 ~ .!BQ.. OD /CE1 ~a

"'I
1Kx8 256x4 256x4

A10 -tj CE2
ROM @!.. RAM

CE2 ~ ~
RAM

CE2 ~ PJW PJW

7\ 7' ,..
D7·DO D3·DO D7·04

~ v ~
Data Bus

Figure 7-2 ROM and RAM Implementation

A7-2

7.2 MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow
memories to reduce costs. The /WAIT line on the CPU
allows the zao to operate with any speed memory. By
referring back to Chapter A3, you notice that the memory
access time requirements are most severe during the /M1
cycle instruction fetch. Al I other memory accesses have an
additional one half clock cycle to be completed. For this

/WArf

+SV

s s
/M1

D a D a
7474 7474

/CLK c IQ c IQ
R R

+SV +SV

Z80"'CPU
USER'S MANUAL

reason it may be desirable in some applications to add one
wait state to the /M 1 cycle so that slower memories can be
used. Figure 7-3 is an example of a simple circuit that will
accomplish this task. This circuit can be changed to add
a single wait state to any memory access as shown in -
Figure 7-4. lill

I" M1 ~1
I T1 I T2 I Tw I T3 I T4 I

/CLK

/M1 ' I
/WArf LJ

Figure 7-3. Adding One Wait State to an M1 Cycle

+SV +5V

J-U-U-l-h s s /CLK
D a D

7474 7474 /MREQ ' /CLK c IQ IQ
R R /WArr LJ

+SV +SV

Figure 7-4. Adding One Walt State to Any Memory Cycle

A7-3

7.3 INTERFACING DYNAMIC MEMORIES

This section is intended to serve as a brief introduction to
interfacing dynamic memories. Each individual dynamic
RAM has varying specifications that require minor modifi­
cations to the description given here and no attempt will be
made in this document to give details for any particular
RAM. Separate application notes are available showing
how the Z80 CPU can be interfaced to most popular
dynamic RAM.

/RFSH

/MREQ

A12

A11-AO

07-00

/WR

zao•cpu
USER's MANUAL

Figure 7-5 illustrates the logic necessary to interface 8
Kbytes of dynamic RAM using 18-pin 4K dynamic memo­
ries. This figure assumes that the RAMs are the only
memory in the system so that A 12 is used to select
between the two pages of memory. During refresh time, all
memories in the system must be read. The CPU provides
the proper refresh address on lines AO through AS. To add
additional memory to the system it is necessary to replace
only the two gates that operate on A 12 with a decoder that
operates on all required address bits. For larger systems,
buffering for the address and data bus is also generally
required.

A/W

Data Bus

A/W

CE

4K x 8 RAM Array

Page 1
(1000 to 1 FFF)

CE

4K x 8 RAM Array

Pageo
(0000 to OFFF)

Figure 7·5. Interfacing Dynamic RAMs

A7-4

8.0 INTRODUCTION: SOFTWARE FEATURES

The Z80 instruction set provides the user with a large and
flexible repertoire of operations with which to formulate
control of the Z80 CPU.

The main alternate and index registers can be used to hold
the arguments of arithmetic and logical operations, or to
form memory addresses, or as fast-access storage for
frequently used data.

Information can be moved directly from register to regis­
ter, from memory to memory, from memory to registers, or
from registers to memory. In addition, register contents
and register/memory contents can be exchanged without
using temporary storage. In particular, the contents of
main and alternate registers can be completely exchanged
by executing only two instructions, EX and EXX. This
register exchange procedure can be used to separate the
set of working registers between different logical proce­
dures or to expand the set of available registers in a single
procedure.

Storage and retrieval of data between pairs of registers
and memory can be controlled on a last-in first-out basis
through PUSH and POP instructions which utilize a special
stack pointer register, SP. This stack register is available.
both to manipulate data and to automatically store and
retrieve addresses for subroutine linkage. When a subrou­
tine is called, for example, the address following the CALL
instruction is placed on the top of the push-down stack
pointed to by SP. When a subroutine returns to the calling

CPU USER'S MANUAL

CHAPTER 8
SOFTWARE IMPLEMENTATION
EXAMPLES

routine, the address on the top of the stack is used to set
the program counter for the address of the next instruction.
The stack pointer is adjusted automatically to reflect the
current "top" stack position during PUSH, POP, CALL, and
RET instructions. This stack mechanism allows pushdown
data stacks and subroutine calls to be nested to any
practical depth because the stack area can potentially be
as large as memory space.

The sequence of instruction execution can be controlled by
six different flags (carry, zero, sign, parity/overflow, add/
subtract, half-carry) which reflect the results of arithmetic,
logical, shift, and compare instructions. After the execution of
an instruction which sets a flag, that flag can be used to control
a conditional jump or return instruction. These instructions
provide logical control following the manipulation of single bit,
8-bit byte (or) 16-bit data quantities.

A full set of logical operations, including AND, OR, XOR
(exclusive-OR), CPL (NOR), and NEG (two's complement)
are available for Boolean operations between the accumu­
lator and all other 8-bit registers, memory locations, or
immediate operands.

In addition, a full set of arithmetic and logical shifts in both
directions are available which operate on the contents of all 8-
bit primary registers or directly on any memory location. The
carry flag can be included or simply set by these shift
instructions to provide both the testing of shift results and to
link register/register or register/memory shift operations.

AB-1

II

8.1 EXAMPLES OF USE OF SPECIAL zao INSTRUCTIONS

A. Assume that a string of data in memory starting at
location "DAT A" is to be moved into another area of
memory starting at location "BUFFER" and that the
string length is 737 bytes. This operation can be
accomplished as follows:

LD
LD
LD
LOIA

HL , DATA
DE , BUFFER
BC , 737

;START ADDRESS OF DATA STRING
;START ADDRESS OF TARGET BUFFER
;LENGTH OF DATA STRING
;MOVE STRING - TRANSFER MEMORY POINTED TO
;BY HL INTO MEMORY LOCATION POINTED TO BY DE
;INCREMENT HL AND DE, DECREMENT BC
;PROCESS UNTIL BC = 0.

Eleven bytes are required for this operation and each byte of data is moved in 21 clock cycles.

zao•CPu
llSER'S MANuAL

B. Assume that a string in memory starting at location
"DATA" is to be moved into another area of memory
starting at location "BUFFER" until an ASCII $character

(used as string delimiter) is found. Also assume that
the maximum string length is 132 characters. The
operation can be performed as follows:

LD HL
LD DE
LD BC
LD A
LOOP:CP (HL)
JR z
LOI

JP PE
END:

. DATA
BUFFER

'
132
'$'

. END-$

. LOOP

;STARTING ADDRESS OF DATA STRING
;STARTING ADDRESS OF TARGET BUFFER
;MAXIMUM STRING LENGTH
;STRING DELIMITER CODE
;COMPARE MEMORY CONTENTS WITH DELIMITER
;GO TO END IF CHARACTERS EQUAL
;MOVE CHARACTER (HL) to (DE)
;INCREMENT HL AND DE, DECREMENT BC
;GO TO "LOOP" IF MORE CHARACTERS
;OTHERWISE, FALL THROUGH
;NOTE: PN FLAG IS USED
;TO INDICATE THAT REGISTER BC WAS
; DECREMENTED TO ZERO.

Nineteen bytes are required for this operation.

A8-2

C. Assume that a 16-digit decimal number represented in
packed BCD format (two BCD digits/byte) has to be
shifted as shown inthe Figure8-1 in order to mechanize
BCD multiplication or division. The operation can be
accomplished as follows:

LO HL DATA
LO B , COUNT
XOR A

ROT AT: RLD

INC HL
DJNZ ROTAT-$

Eleven bytes are requited for this operation.

;ADDRESS OF FIRST BYTE
;SHIFT COUNT
;CLEAR ACCUMULATOR
;ROTATE LEFT LOW ORDER DIGIT IN ACC
;WITH DIGITS IN (HL)
;ADVANCE MEMORY POINTER.
;DECREMENT BAND GO TO ROTAT IF
;B IS NOT ZERO, OTHERWISE FALL THROUGH

Figure 8-1. Shifting of BCD Digits/Bytes

D. Assume that one number is to be subtracted from
another and that they are both in packed BCD format,
that they are of equal but varying length, and that the
result is to be stored in the location of the minuend. The
operation can be accomplished as follows:

LO HL , ARG1 ;ADDRESS OF MINUEND
LO DE ARG2 ;ADDRESS OF SUBTRAHEND
LO B LENGTH ;LENGTH OF TWO ARGUMENTS
AND A ;CLEAR CARRY FLAG

SUBDEC: LO A ' (DE) ;SUBTRAHEND TO ACC
SBC A (HL) ;SUBTRACT (HL) FROM ACC
DAA ;ADJUST RESULT TO DECIMAL CODED VALUE
LO (HL), A ;STORE RESULT
INC HL ;ADVANCE MEMORY POINTERS
INC DE
DJNZ SUBDEC - $;DECREMENT B AND GO TO "SUBDEC" IF B

;NOT ZERO, OTHERWISE FALL THROUGH

Seventeen bytes are required for this operation.

zao•cpu
USER'S MANUAL

A8-3

II

ft'2iLm zao•cpu
USER'S MANUAL

8.2 EXAMPLES OF PROGRAMMING TASKS
A. The following program sorts an array of numbers each

in the range (0, 255) into ascending order using a
standard exchange sorting algorithm.

01122176 11:14:37 BUBBLE LISTING PAGE1

LOC OBJ CODE STMT SOURCE STAT~MENT

1 STANDARD EXCHANGE (BUBBLE) SORT ROUTINE
2
3 AT ENTRY: HL CONTAINS ADDRESS OF DATA
4 C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
5 (1<C<256)

6
7 AT EXIT: DATA SORTED IN ASCENDING ORDER
8
9 USE OF REGISTERS
10

11 REGISTER CONTENTS
12
13 A TEMPORARY STORAGE FOR CALCULATIONS
14 B COUNTER FOR DATA ARRAY
15 c LENGTH OF DATA ARRAY

16 D FIRST ELEMENT IN COMPARISON
17 E SECOND ELEMENT IN COMPARISON
18 H FLAG TO INDICATE EXCHANGE
19 L UNUSED
20 IX POINTER INTO DATA ARRAY

21 IY UNUSED
22 '

0000 222600 23 SORT: LD (DATA), HL ; SAVE DAT A ADDRESS
0003 CB84 24 LOOP: RES FLAG,H ; INITIALIZE EXCHANGE FLAG
0005 41 25 LD B,C ; INITIALIZE LENGTH COUNTER

0006 05 26 DEC B ; ADJUST FOR TESTING
0007 DD2A2600 27 LO IX, (DATA) ; INITIALIZE ARRAY POINTER
OOOB DD7EOO 28 NEXT: LO A, (IX) ; FIRST ELEMENT IN COMPARISON
OOOE 57 29 LO D,A ; TEMPORARY STORAGE FOR ELEMENT
OOOF DD5E01 30 LO E,(IX+1) ; SECOND ELEMENT IN COMPARISON

0012 93 31 SUB E ; COMPARISON FIRST TO SECOND
0013 3008 32 JR PC, NOEX-$; IF FIRST > SECOND, NO JUMP
0015 007300 33 LD (IX), E ; EXCHANGE ARRAY ELEMENTS
0018 007201 34 LD (IX+I), D
001B CBC4 35 SET FLAG,H ; RECORD EXCHANGE OCCURRED

0010 DD23 36 NOEX: INC IX ; POINT TO NEXT DATA ELEMENT
001F 10EA 37 DJNZ NEXT-$; COUNT NUMBER OF COMPARISONS

38 ; REPEAT IF MORE DATA PAIRS
0021 CB44 39 BIT FLAG,H ; DETERMINE IF EXCHANGE OCCURRED
0023 20DE 40 JR NZ, LOOP-$; CONTINUE IF DATA UNSORTED

0025 C9 41 RET ; OTHERWISE, EXIT
42 ;

0026 43 FLAG: EQU 0 ; DESIGNATION OF FLAG BIT
0026 44 DATA: DEFS 2 ; STORAGE FOR DAT A ADDRESS

45 END

AB-4

't'2il!E Z80"'CPU
USER'S MANllAL

B. The following program multiplies two unsigned 16 bit
integers and leaves the result in the HL register pair.

01122176 11:32:36 MULTIPLY LISTING PAGE1

LOC OBJ CODE STMT SOURCE STATEMENT

0000 1 MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY. II 2 ON ENTRANCE: MULTIPLIER IN DE.
3 MULTIPLICAND IN HL.
4
5 ON EXIT: RESULT IN HL.

6
7 REGISTER USES:
8
9
10 H HIGH ORDER PARTIAL RESULT

11 L LOW ORDER PARTIAL RESULT
12 D HIGH ORDER MULTIPLICAND
13 E LOW ORDER MULTIPLICAND
14 B COUNTER FOR NUMBER OF SHIFTS
15 c HIGH ORDi=R BITS OF MULTIPLIER

16 A LOW ORDER BITS OF MULTIPLIER
17

0000 0610 18 LD B, 16; NUMBER OF BITS-INITIALIZE
0002 4A 19 LD C,D; MOVE MULTIPLIER
0003 7B 20 LD A,E;

0004 EB 21 EX DE, HL; MOVE MULTIPLICAND
0005 210000 22 LD HL, O; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP: SRL C; SHIFT MULTIPLIER RIGHT
OOOA IF 24 RRA LEAST SIGNIFICANT BIT IS

25 IN CARRY.

OOOB 3001 26 JR NC, NOADD-$; IF NO CARRY, SKIP THE ADD.
OOOD 19 27 ADD HL, DE; ELSE ADD MULTIPLICAND TO

28 ' PARTIAL RESULT.
OOOE EB 29 NOADD: EX DE,HL; SHIFT MULTIPLICAND LEFT
OOOF 29 30 ADD HL, HL; BY MULTIPLYING IT BY TWO.

0010 EB 31 EX DE, HL;
0011 10F5 32 DJNZ MLOOP-$; REPEAT UNTIL NO MORE BITS.
0013 C9 33 RET;

34 END;

AS-5

Alphabetical
Assembly
Neumonic

ADC HL, ss
ADCA, s
ADDA, n
ADDA, r
ADDA, (HL)
ADD A, (IX+d)
ADD A. (IY+d)
ADD HL, ss
ADD IX, pp
ADD IY, rr
ANDs

BIT b, (HL)
BIT b, (IX+d)
BIT b, (IY+d)
BIT b, r

CALL cc, nn
CALL nn
CCF
CPs
CPD
CPDR
CPI
CPIR

CPL

DAA
DECm
DECIX
DECIY
DECss
DI
DJNZe

El
EX(SP), HL
EX (SP), IX
EX (SP), IY
EXAF, AF'
EX DE, HL
EXX

Operation

CPU USER'S MANUAL

INDEX
ZBO CPU
INSTRUCTION SET

Page

Add with Carry Register pair ss to HL ... A5-109
Add with carry operands to Accumulator .. A5-73
Add value n to Accumulator .. A5-69
Add Register r to Accumulator .. A5-68
Add location (HL) to Accumulator ... A5-70
Add location (IX+d) to Accumulator .. A5-71
Add location (IY +d) to Accumulator .. A5-72
Add Register pair ss to HL .. A5-108
Add Register pair pp to IX ... A5-111
Add Register pair rr to IY ... A5-112
Logical 'AND' of operands and Accumulator ... A5-79

Test BIT b of location (HL) ... A5-147
Test BIT b of location (IX+d) ... A5-148
Test BIT b of location (IY+d) ... A5-149
Test BIT b of Register r .. A5-146

Call subroutine at location nn if condition cc is true ... A5-171
Unconditional call subroutine at location nn ... A5-170
Complement carry flag .. A5-98
Compare operands with Accumulator ... A5-85
Compare location (HL) and Accumulator decrement HL and BC A5-64
Compare location (HL) and Accumulator decrement HL and BC, repeat until BC = 0 .. A5-65
Compare location (HL) and Accumulator increment HL and decrement BC A5-62
Compare location (HL) and Accumulator increment HL, decrement BC

repeat until BC= 0 ... A5-63
Complement Accumulator (1 's comp) .. A5-96

Decimal adjust Accumulator ... A5-94
Decrement operand m .. A5-91
Decrement IX ... A5-117
Decrement IY ... A5-118
Decrement Register pair ss ... A5-116
Disable interrupts .. A5-102
Decrement Band Jump relative if B ~ O ... A5-168

Enable interrupts ... A5-103
Exchange the location (SP) and HL .. A5-53
Exchange the location (SP) and IX .. A5-54
Exchange the location (SP) and IY .. A5-55
Exchange the contents of AF and AF' ... A5-51
Exchange the contents.of DE and ... A5-50
Exchange the contents of BC, DE, HL with contents of BC', DE', HL' respectively A5-52

Al-1

II

ft'21Ul6

HALT

IMO
IM 1
IM2
IN A, (n)
IN r, (C)
INC (HL)
INCIX
INC (IX+d)
INCIY
INC (IY+d)
INC r
INCss
IND
INDR

INI
INIR

JP (HL)
JP (IX)
JP (IY)
JP CC, nn
JP nn
JRC, e
JR e
JR NC,e
JR NZ, e
JRZ, e

LOA, (BC)
LOA, (DE)
LDA, I
LOA, (nn)
LOA, R
LD (BC),A
LD (DE), A
LD (HL), n
LD dd, nn
LD dd, (nn)
LD HL, (nn)
LD (HL), r
LDl,A
LD IX, nn
LD IX, (nn)
LD (IX+d), n
LD (IX+d), r
LD IY, nn
LD IY, (nn)
LD (IY+d), n
LD (IY+d), r
LD (nn), A
LD (nn), dd

Al-2

zao~cPu
USER'S MANUAL

HALT (wait for interrupt or reset) ... A5-1O1

Set interrupt mode 0 .. A5-104
Set interrupt mode 1 .. A5-105
Set interrupt mode 2 .. A5-106
Load the Accumulator with input from device n .. A5-180
Load the Register r with input from device (C) ... A5-181
Increment location (HL) ... A5-88
Increment IX .. A5-114
Increment location (IX+d) .. A5-89
Increment IY .. A5-15
Increment location (IY+d) .. A5-90
Increment Register r .. A5-87
Increment Register pair ss .. A5-113
Load location (HL) with input from port (C), decrement HL and B A5-184
Load location (HL) with input from port (C),

decrement HL and decrement B, repeat until B = O ... A5-185
Load location (HL) with input from port (C); and increment HL and decrement B A5-182
Load location (HL) with input from port (C),

increment HL and decrement B, repeat until B = O ... A5-183

Unconditional Jump to (HL) .. A5-165
Unconditional Jump to (IX) .. A5-166
Unconditional Jump to (IY} .. A5-167
Jump to location nn if condition cc is true ... A5-159
Unconditional jump to location nn ... A5-158
Jump relative to PC+e if carry = 1 ... A5-161
Unconditional Jump relative to PC + e .. A5-160
Jump relative to PC + e if carry = 0 ... A5-162
Jump relative to PC + e if non zero (Z = 0) ... A5-164
Jump relative to PC + e if zero (Z = 1) .. A5-163

Load Accumulator with location (BC) .. A5-17
Load Accumulator with location (DE) .. A5-18
Load Accumulator with I .. A5-23
Load Accumulator with location nn ... A5-19
Load Ace with Register R .. A5-24
Load location (BC) with Accumulator .. A5-20
Load location (DE) with Accumulator .. A5-21
Load location (HL) with value n ... A5-14
Load Register pair dd with value nn ... A5-28
Load Register pair dd with location (nn) ... A5-32
Load HL with location (nn) .. A5-31
Load location (HL) with Register r ... A5-11
Load I with Accumulator .. A5-25
Load IX with value nn .. A5-29
Load IX with location (nn) .. A5-33
Load location (IX+d) with value n .. A5-15
Load location (IX+d) with Register r .. A5-12
Load IY with value nn .. A5-30
Load IY with location (nn) .. A5-34
Load location (IY +d) with value n .. A5-16
Load location (IY +d) with Register r .. A5-13
Load location (nn) with Accumulator .. A5-22
Load location (nn) with Register pair dd ... AS-36

LD (nn), HL
LD (nn), IX
LD (nn), IY
LDR,A
LD r, (HL)
LD r, (IX+d)
LD r, (IY+d)
LD r, n
LD r, r'
LD SP, HL
LDSP, IX
LDSP, IY
LDD
LDDR

LDI
LDIR

NEG
NOP

ORs
OTDR
OTIR

OUT (C), r
OUT(n),A
OUTD
OUTI

POPIX
POPIY
POPqq
PUSH IX
PUSHIY
PUSH qq

RES b, m
RET
RETcc
RETI
RETN
Alm
ALA
RLC (HL)
RLC (IX+d)
RLC (IY+d)
RLC r
RLCA
RLD
RRm
ARA
RRCm
ARCA
ARD
RSTp

zao•cpu
USER'S MANUAL

Load location (nn) with HL .. A5-35
Load location (nn) with IX .. A5-37
Load location (nn) with IY .. A5-38
Load R with Accumulator .. A5-26
Load Register r with location (HL) ... A5-8
Load Register r with location (IX+d) .. AS-9
Load Register r with location (IY+d) .. A5-10 A
Load Register r with value n .. A5-7
Load Reg r with Register r' .. AS-6
Load SP with HL .. A5-39
Load SP with IX ... A5-40
Load SP with IY ... A5-41
Load location (DE) with location (HL), decrement DE, HL and BC A5-59
Load location (DE) with location (HL), decrement DE, HL and BC;

repeat until BC= 0 ... A5-60
Load location (DE) with location (HL), increment DE, HL, decrement BC A5-56
Load location (DE) with location (HL), increment DE, HL, decrement
BC and repeat until BC= 0 ... A5-57

Negate Accumulator (two's complement) ... A5-97
No operation .. A5-100

Logical 'OR' of operands and Accumulator ... A5-81
Load output port (C) with location (HL), decrement HL and B, repeat until B = O A5-192
Load output port (C) with location (HL), increment HL, decrement B,

repeat until B = 0 ... A5-189
Load output port (C) with Register r .. AS-187
Load output port (n) with Accumulator .. A5-186
Load output port (C) with location (HL), decrement HL and B A5-191
Load output port (C) with location (HL), increment HL and decrement B A5-188

Load IX with top of stack ... A5-46
Load IY with top of stack ... A5-47
Load Register pair qq with top of stack .. A5-45
Load IX onto stack ... A5-43
Load IY onto stack ... A5-44
Load Register pair qq onto stack ... A5-42

Reset Bit b of operand m .. AS-154
Return from subroutine .. AS-173
Return from subroutine if condition cc is true ... A5-174
Return from interrupt ... AS-175
Return from non maskable interrupt .. A5-176
Rotate left through carry operand m ... AS-128
Rotate left Accumulator through carry .. A5-121
Rotate location (HL) left circular .. A5-125
Rotate location (IX+d) left circular ... A5-126
Rotate location (IY+d) left circular ... AS-127
Rotate Register r left circular ... A5-124
Rotate left circular Accumulator .. A5-120
Rotate digit left and right between Accumulator and location (HL) A5-140
Rotate right through carry operand m ... A5-132
Rotate right Ace through carry .. A5-123
Rotate operand m right circular .. A5-130
Rotate right circular Accumulator .. AS-122
Rotate digit right and left between Accumulator and location (HL) A5-142
Restart to location p .. AS-177

Al-3

SBCA, s
SBC HL,ss
SCF
SET b, (HL)
SET b, (IX+d)
SET b, (IY+d)
SET b, r
SLAm
SRAm
SRLm
SUBs

XORs

Al-4

zao•cpu
USER'S MANUAL

Subtract operands from Accumulator with carry ... A5-77
Subtract Register pair ss from HL with carry .. A5-110
Carry flag (C = 1) .. A5-99
Set Bit b of location (HL) ... A5-151
Set Bit b of location (IX+ d) .. A5-152
Set Bit b of location (IV+ d) .. A5-153
Set Bit b of Register r .. A5-150
Shift operand m left arithmetic .. A5-134
Shift operand m right arithmetic .. A5-136
Shift operand m right logical ... A5-138
Subtract operands from Accumulator .. A5-75

Exclusive 'OR' operands and Ace .. A5-83

<tl 2il c a..,
ZBO®CPU

Central Processing Unit

ZBO® CTC
Counter/Timer Circuit

ZBO® OMA
Direct Memory Access

ZBO® PIO
Parallel Input/Output

ZBO® SID
Serial Input/Output

Superintegration™
Products Guide

Zilog•s Literature Guide
Ordering Information

4'2iU a., CTC USER'S MANUAL

TABLE OF CONTENTS

Chapter 1. Introduction
1.0 Features .. 81-1
i . 1 General Description .. 81-1

Chapter2.
2.0
2.1

2.2

CTC Architecture
Overview ... 82-0
Structure of Channel Logic ... 82-2
2.1.1 The Channel Control .. 82-2
2. 1.2 The Prescaler ... 82-3
2.1.3 The Time Constant Register .. 82-3
2. 1 .4 The Down-Counter ... 82-3
Interrupt Control Logic .. 82-3

Chapter 3. CTC Pin Description
3.0 Pin Functions .. 83-1

Chapter4.
4.0
4.1
4.2

Chapters.
5.0
5.1
5.2
5.3

Chapter 6.
6.0
6.1
6.2
6.3

Chapter7.
7.0
7.1
7.2
7.3

CTC Operating Modes
Introduction ... 84-1
CTC Counter Mode ... 84-1
CTC Timer Mode .. 84-2

CTC Programing
Introduction ... 85-1
Loading the Channel Control Register ... 85-1
Loading the Time Constant Register .. 85-3
Loading the Interrupt Vector Register .. 85-3

CTCTiming
Introduction ... 86-1
CTC Write Cycle ... 86-1
CTC Read Cycle ... 86-2
CTC Counting and Timing .. 86-2

CTC Interrupt Servicing
Introduction ... 87-1
Interrupt Acknowledge Cycle ... 87-1
Return from Interrupt Cycle .. 87-2
Daisy Chain Interrupt Servicing .. 87-3

II

B-i

B-ii

List of Figures

zao•CTC
USER'S MANUAL

Figure 2-1. CTC Block Diagram .. B2-1
Figure 2-2. Channel Block Diagram .. B2-2
Figure 2-3. Channel Control Register ... B2-2
Figure 2-4. Interrupt Vector ... B2-3
Figure 2-5. ZBO 16-Bit Pointer (Interrupt Starting Address) .. B2-4
Figure 3-1. CTC Pin Configuration .. , .. 83-1
Figure 3-2. Package Configuration .. 83-1
Figure 3-3. 44-Pin Chip Carrier Pin Assignments ... 83-2
Figure 3-4. 44-Pin Quad Flat Pack Pin Assignments .. 83-2
Figure 5-1. Channel Block Diagram .. B5-1
Figure 5-2. Time Constant Register .. B5-3 ·
Figure 5-3. Mode 2 Interrupt Operation .. 85-3
Figure 5-4. Interrupt Vector Register .. 85-4
Figure 6-1. CTC Write Cycle ... B6-1
Figure 6-2. CTC Read Cycle ... 86-2
Figure 6-3. CTC Counting and Timing .. B6-3
Figure 7-1. Interrupt Acknowledge Cycle ... B7-2
Figure 7-2. Return From Interrupt Cycle ... B7-2
Figure 7-3. Daisy Chain Interrupt Servicing .. 87-3

List or Tables
Table 2-1. Channel Select Truth Table .. B2-2
Table 3-1. Channel Select Truth Table .. B3-3

1.0 FEATURES
• Four Independently Programmable Counter/Timer

Channels, Each with a Readable Down-Counter and
a Selectable 16 or 256 Prescaler. Down-Counters are
Reloaded Automatically at Zero Count

• Selectable Positive or Negative Trigger Initiates Timer
Operation

• Three Channels Have Zero Count/Timeout Outputs
Capable of Driving Darlington Transistors

• NMOS Version for High-Cost Performance Solutions

• CMOS Version for the Designs Requiring Low Power
Consumption

1.1 GENERAL DESCRIPTION

The Z80 CTC, hereinafter referred to as Z80 CTC or CTC,
four-channel counter/timer can be programmed by system
software for a broad range of counting and timing
applications. The four independently programmable
channels of the Z80 CTC satisfy common microcomputer
system requirements for event counting, interrupt and
interval timing, and general clock rate generation.

System design is simplified because the CTC connects
directly to both the Z80 CPU and the Z80 SIO with no
additional logic. In larger systems, address decoders and
buffers may be required.

CTC USER'S MANUAL

CHAPTER 1
INTRODUCTION

• NMOS Z0843004 - 4 MHz, Z0843006 - 6.17 MHz

• CMOS Z84C3006- DC to 6.17 MHz, Z84C3008 DC to 1!'11
8 MHz, Z84C3010- DC to 10 MHz lill

• Interfaces Directly to the Z80 CPU or-for Baud Rate
Generation -to the Z80 SIO

• Standard Z80 Family Daisy-Chain Interrupt Structure
Provides Fully Vectored, Prioritized Interrupts Without
External Logic. The CTC May also be Used as an
Interrupt Controller

• 6 MHz Version Supports 6.144 MHz CPU Clock
Operation

Programming the CTC is straightforward: each channel is
programmed with two bytes; a third is necessary when
interrupts are enabled. Once started, the CTC counts
down, automatically reloads its lime constant, and re­
sumes counting. Software timing loops are completely
eliminated. Interrupt processing is simplified because only
one vector need be specified; the CTC internally gener­
ates a unique vector for each channel.

The Z80 CTC requires a single +5%V power supply and
the standard Z80 single-phase system clock. It is pack­
aged in 28-pin DIPs, a44-pin plastic chip carrier, and a44-
pin Quad Flat Pack. Note that the QFP package is only
available for CMOS versions. (Reference Chapter 3, CTC
Pin Descriptions.)

81-1

'P2iUD.,

2.0 OVERVIEW
The internal structure of the Z80 CTC consists of a Z80 CPU
bus interface, Internal Control logic, four sets of Counter/
Timer Channel logic, and interrupt control logic. The four
independent, counter/timer channels are identified by
sequential numbers from Oto 3. The CTC has the capability
of generating a unique interrupt vector. For each separate
channel (for automatic vectoring to an interrupt service
routine). The four channels can be connected in four

From
BO CPU

{

Data

Control

8

6

CPU
BUS
1/0

CTC USER'S MANUAL

CHAPTER 2
CTC ARCHITECTURE

contiguous slots in the standard Z80 priority chain with

interface logic allows the CTC device to interface directly :
channel number O having the highest priority. The CPU bus Bl
to the CPU with no other external logic. However, port
address decoders and/or line buffers may be required for
large systems. A block diagram of the Z80 CTC is shown
in Figure 2-1.

Internal
Control
Logic

Interrupt
Logic

Counter/
limer

---/INT

i.--IEI

---IEO

__ a_,, ZC/TO

Logic ~

-----~
Reset

Figure 2·1. CTC Block Diagram

82-1

2.1 STRUCTURE OF CHANNEL LOGIC
The structure of one of the four sets of Counterffimer
channel logic is shown in Figure 2-2. This logic is com­
posed of two registers, two counters and control logic. The
registers consist of an 8-bit Time Constant register and an
8-bit Channel Control register. The counters consist of an
8-bit CPU-readable down-counter and an 8-bit prescaler.

2.1.1 In Channel Control Register and Logic

The Channel Control register (8-bit) and Logic is written to
by the CPU to select the modes and parameters of the
channel. Within the CTC device there are four such regis­
ters corresponding to the four Counterffimer channels.
The register to be written to is determined by the encoding
of two channel select input pins: CSO and CS1 (usually
attached to AO and A 1 of the CPU address bus). This is
illustrated in Table 2-1.

Table 2·1. Channel Select Truth Table

ChannelO
Channel 1
Channel2
Channel 3

cso
0
0
1
1

CS1

0
1
0
1

In the control word written to program each Channel
Control register, bit 0 is always set; the other seven bits are
programmed to select alternatives on the channel's oper­
ating modes and parameters. This is illustrated in Figure
2-3. (For a more complete discussion see Chapter 4, "CTC
Operating Modes" and Chapter 5, "CTC Programming.")

Interrupt
Enable Interrupt = 1
Disable Interrupt = 0

Mode
limer Mode = 0

Counter Mode = 1

Prescaler Value*
Value of 256 = 1
Valueol 16=0

CLKITRG Edge Section
Falling Edge = O
Rising Edge = 1

lnteral Bus

CLK Prescaler

Channel
Control
Logic

lime
Constant
Register

8-Bit
Down

Counter

zao•crc
USER'S MANUAL

---ZCITO

Figure 2-2. Channel Block Diagram

Control or Vector
0= Vector
1 =Control

Reset
O = Continued Operation
1 = Software Reset

lime Constant
0 = No lime Constant Follows
1 = lime Constant Follows

limer Trigger*
o =Automatic Trigger When

lime Constant is Loaded
1 = CLKJTRG Pulse Starts limer

*limer Mode Only

Figure 2-3. Channel Control Register

82-2

2.1.2 The Prescaler

The prescaler is an 8-bit device which is used in the timer
mode only. The prescaler is programmed by the CPU
through the Channel Control register to divide its input, the
System clock {<I>). by 16 or 256. The output of the prescaler
is then fed as an input to clock the down-counter. Initially,
arid each time the down-counter clocks down to zero, the
down-counter is reloaded automatically with the contents
of the Time Constant register. In effect this divides the
System clock by an additional factor of the time constant.
Each time the down-counter counts down to zero, its
output, Zero Count/Timeout {ZC!TO), is pulsed High.

2.1.3 The Time Constant Register

The 8-bit Time Constant register is used in both Counter
and Timer modes. It is programmed by the CPU just after
the channel control word with an integer time constant
value of 1 through 256. This register loads the programmed
value Into the down counter when the CTC is first initialized
and reloads the same value into the down counter auto­
matically whenever it counts down thereafter to zero. If a
new time constant is loaded into the Time Constant register
while a channel is counting or timing, the present down-

2.2 INTERRUPT CONTROL LOGIC

The interrupt control logic insures that the CTC acts in
accordance with zao system interrupt protocol for nested
priority interrupting and return from interrupt. The priority
of any system device is determined by its physical location
it) a daisy chain configuration. Two signal lines {IEI and
IEO) are provided in CTC devices to form this system daisy
chain. The device closest to the CPU has the highest
priority. Within the CTC, interrupt priority is predetermined
by channel number, with Channel 0 having highest and

V7-V3
Supplied
by User

zao•crc
USER'S MANUAL

count will be completed before the new time constant is
loaded into the down counter. {For details of how a time
constant is written to a CTC channel, see Chapter 5, "CTC
Programming.")

2.1.4 The Down-Counter

The down-counter is an 8-bit register, which is used in both
Counter and Timer modes. It is loaded by the Time Con­
stant register both initially, and when it counts down to
zero. In the Counter mode, the down-counter is decre­
mented by each external clock edge. In the Timer mode,
it is decremented by the clock output of the prescaler. By B
performing a simple 1/0 Read at the port address assigned
to the selected CTC channel, the CPU can access the
contents of the Downcounter and obtain the number of
counts-to-zero. Any of the four CTC channels may be
programmed to generate an interrupt request sequence
each time the zero count is reached.

In Channels 0, 1, and 2, a signal pulse appears at the
corresponding zcrro pin when the zero count condition is
reached. Due to package pin limitations, however, Chan­
nel 3 does not have this pin and so may be used only in
applications where this output pulse is not required.

Channel 3 the lowest priority {Figure 2-4). The purpose of
a CTC-generated interrupt, as with any peripheral device,
is to force the CPU to execute an interrupt service routine.
According to Z80 system interrupt protocol, lower priority
devices or channels may not interrupt higher priority de­
vices or channels which have not had their interrupt
service routines completed. However, high priority de­
vices or channels may interrupt the servicing of lower
priority devices or channels.

O = Interrupt Vector Word
1 =Control Word

Channel Identifier
{Automatically Inserted by CTC)
O O = Channel 0
0 1 = Channel 1
1 o = Channel 2
1 1 = Channel 3

Figure 2-4. Interrupt Vector

82-3

2.2 INTERRUPT CONTROL LOGIC (Continued)

A CTC channel may be programmed to request an inter­
rupt every time its down-counter reaches a count of zero.
(To utilize this feature requires that the CPU be pro­
grammed for Interrupt Mode 2.) After the interrupt request,
the CPU sends out an interrupt acknowledge. The CTC's
interrupt control logic determines the highest-priority chan­
nel requesting an interrupt. If the CTC's IEI input is active,
indicating that it has priority within the system daisy chain,
it places an 8-bit interrupt vector on the system data bus.
The high order five bits of this vector will have been written
to the CTC earlier as part of the CTC initial programming
process; the next two bits will be provided by the CTC's
interrupt control logic as a binary code corresponding to
the highest-priority channel requesting an interrupt; finally
the low-order bit of the vector will always be zero according
to a convention (Figure 2-4).

This interrupt vector is used to form a pointer to a location
in memory where the address of the interrupt service
routine is stored in a table. The vector represents the least
significant eight bits. The CPU reads the contents of the I
register to provide the most significant eight bits of the
16-bit pointer. The address pointed to in memory contains
the low-order byte and the next highest address contains
the high-order byte of an address which in turn contains
the first opcode of the interrupt service routine. Thus, in
Mode 2, a single 8-bit vector stored in an interrupting CTC
can result in an indirect call to any memory location
(Figure 2-5).

82-4

Z80®CTC
USER'S MANUAL

Z80 16-Blt Pointer (Interrupt Starting Address)

1 Reg
Contents

7BltsFrom
Peripheral 0

'Vector

Figure 2-5. Z80 16-Bit Pointer
(Interrupt Starting Address)

According to Z80 system convention, all addresses in the
interrupt service routine table have their low-order byte in
an even location in memory, and their high-order byte in
the next highest location in memory. This location will
always be odd so that the least significant bit of any
interrupt vector will always be even. Thus, the least signifi­
cant bit of any interrupt vector will always be zero.

The RETI instruction is used at the end of an interrupt
service routine to initialize the daisy chain enable line IEO
for proper control of nested priority interrupt handling. The
CTC monitors the system data bus and decodes this
instruction when it occurs. Thus, the CTC channel control
logic knows when the CPU has completed servicing an
interrupt.

3.0 PIN FUNCTIONS

Diagrams of the Z80 CTC Pin Configuration and Z80 CTC
Package Configuration are shown in Figures 3- i through
3-4, respectively. This section describes the function of
each pin.

- DO - DO ZCITOO

-D1 - D2 CLK/TRG1
CPU ZCIT01 Channel Data - D3
Bus Signals - D4 CLK/TRG2 - D5 - DS

/CE
/RESET - /CSO

CTC
CS1

ZSOCTC
Control -From - /M1 CPU - /IORQ - /RD

~~{- IEI

Chain IEO
Interrupt
Control /INT

CLK +5V GND

Figure 3-1. CTC Pin Configuration

CTC USER'S MANUAL

CHAPTER 3
CTC PIN DESCRIPTION

II
D4 28 D3

D5 2 27 D2

D6 3 26 D1

D7 4 25 DO

GND 5 24 +5V

/RD 6 23 CLK/TRGO

ZCfTOO 7 22 CLK/TRG1

ZCfT01 8 ZBO CTC 21 CLK/TRG2

ZCfT02 9 20 CLK/TRG3

/IORQ 10 19 CS1

IEO 11 18 cso
/INT 12 17 /RESET

IEI 13 16 /CE
/M1 14 15 CLK

Figure 3-2. Package Configuration

83-1

3.0 PIN FUNCTIONS (Continued)

83-2

GND

N/C

RD

ZC/TOO

N/C

ZC/T01

ZC/T02

/IORQ

N/C

IEO

N/C

N/C

CS1

CLK/TRG3

CLK/TRG2

N/C

N/C

CLK/TRG1

CLK/TRGO

N/C

+5V

N/C

7

8

9

10

11

12

13

14

15

16

17

~;;$' ~~ ~ ~ <$> <9'<;)' ~~
6 5 4 3 2 1 ~ ~ ~ ~ ~

ZSOCTC

18 19 20 21 22 23 24 25 26 27 28

~" ~ ~ '{$'~<'.fr(?#(f ~
~

39 N/C

38 N/C

37 +5V

36 N/C

35 CLKITRGO

34 N/C

33 CLK/TRG1

32 CLK/TRG2

31 CLKITRG3

30 N/C

29 CS1

Figure 3-3. 44-pin Chip Carrier Pin Assignments

33 23

34 22
..J.. .J

..J..

CMOS
ZBOCTC

..J...L

44

~
12

1 H H
H H H ~ H ~ H11

Figure 3-4. 44-pin Quad Flat Pack Pin Assignments

IEO

AORQ

N/C

ZC/T02

ZC!T01

N/C

ZC!TOO
N/C

/RD

GND

07

zao•CTc
USER'S MANllAL

D7·DO System Data Bus (bidirectional, tri-state). This bus
is used to transfer all date and command words between
the Z80 CPU and the Z80 CTC. There are eight bits on this
bus, of which DO is the least significant.

CS1-CSO Channel Select(input, active High). These pins
form a 2-bit binary address code for selecting one of the
four independent CTC channels for an 1/0 Write or Read.
(See Truth Table 3-1).

Table 3-1. Channel Select Truth Table

CS1 cso
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0
Channel 3 1 1

/CE Chip Enable (input, active Low). A low level on this pin
enables the CTC to accept control words, interrupt vec­
tors, or time constant data words from the Z80 data bus
during an 1/0 Write cycle; or to transmit the contents or the
down-countertotheCPU during an 1/0 Read cycle. In most
applications this signal is decoded from the eight least
significant bits of the address bus for any of the four 1/0 port
addresses that are mapped to the four Counter/Timer
channels.

Clock {II>) System Clock(input). This single-phase clock is
used by the CTC to synchronize certain signals internally.

/M1 Machine Cycle One Signal from CPU (input, active
low). When /M1 is active and the /RD signal is active, the
CPU is fetching an instruction from memory. When /M1 is
active and the /IORQ signal is active, the CPU is acknowl­
edging an interrupt, alerting the CTC to place an interrupt
vector on the Z80 data bus if it has daisy-chain priority and
one of its channels has requested an interrupt.

nORQ Input/Output Request from CPU(input, active Low).
The /IORQ signal is used in conjunction with the /CE and
/RD signals to transfer data and channel control words
between the Z80 CPU and the CTC. During a CTC Write
cycle, /IORQ and /CE must be true and /RD false. The CTC
does not receive a specific write signal, instead it gener­
ates its own internally from the inverse of a valid /RD signal.
In a CTC Read cycle, /IORQ, /CE, and /RD must be active
to place the contents of the down-counter on the Z80 data
bus. If /IORQ and /M1 are both true, the CPU is acknowl­
edging an interrupt request, and the highest priority inter­
rupting channel will place its interrupt vector on the Z80
data bus.

zao•crc
USER'S MANUAL

/RD Read Cycle Status from the CPU (input, active Low).
The /RD signal is used in conjunction with the /IORQ and
/CE signals to transfer data and channel control words
between the Z80 CPU and the CTC. During a CTC Write
Cycle, /IORQ and /CE must be true and /RD false. The CTC
does not receive a specific write signal, instead it gener­
ates its own iriternally from the inverse of a valid /RD signal.
In a CTC Read cycle, /IORQ, /CE, and /RD must be active
to place the contents of the down-counter on the Z80 data
bus.

IEI Interrupt Enable In (input, active High). This signal is
used to form a system-wide interrupt daisy-chain which
establishes ·priorities when more than one peripheral de·
vice in the system has interrupting capability. A high level II

•• on this pin indicates that no other interrupting devices of
higher priority in the daisy chain are being serviced by the
Z80CPU.

IEO Interrupt Enable Out (output, active High). The IEO
signal, in conjunction with IEI, is used to form a system­
wide interrupt priority daisy chain. IEO is High only if IEI is
High and the CPU is not servicing an interrupt from any
CTC channel. Thus, this signal blocks lower priority de­
vices from interrupting while a higher priority interrupting
device is being serviced by the CPU.

nNT Interrupt Request (output, open-drain, active Low).
This signal goes true when a CTC channel (which has been
programmed to enable interrupts) has a zero-count condi­
tion in its down-counter.

/RESET Reset (input, active Low). This signal stops all
channels from counting and resets interrupt enable bits in
all control registers, thereby disabling CTC-generated
interrupts. The ZC/TO and /INT outputs go to their inactive
states, IEO reflects IEI, and the CTC's data bus output
drivers go to the high-impedance state.

CLK/TRG3-CLK/TRGO External Clock/Timer Trigger (in­
put, user-selectable active High or Low). There are four
CLK/TRG pins, corresponding to the four independent
CTC channels. In the Counter mode, every active edge on
this pin decrements the down-counter. In the Timer mode,
an active edge on this pin initiates the timing function. The
user may select the active edge to be either rising or falling.

ZC/T02·AC/TOO Zero Count/Timeout(output, active High).
There are three ZC/TO pins, corresponding to CTC Chan­
nels 2 through 0. (Due to package pin limitations Channel
3 has no ZC/TO pin.) In either Counter mode or Timer
mode, when the down counter decrements to zero, an
active High going pulse appears at this pin.

83-3

~2iUD.,

4.0 INTRODUCTION

At power-on, the Z80 CTC state is undefined. Asserting
/RESET puts the CTC in a known state. Before a channel
can begin counting or timing, a channel control word and
a time constant data word must be written to the appropri­
ate register's of that, channel. Additionally, if a channel has
been programmed to enable interrupts, an interrupt vector

4.1 CTC COUNTER MODE

In CTC Counter mode, the CTC counts edges of the CU</
TAG input this mode is programmed for a channel when its
channel control word is written with bit 6 set. The channel's
external clock (CLK/TRG) input is monitored for a series of
triggering edges. After each, in synchronization with the
next rising edge of <ll (the System clock), the down-counter
(which is initialized with the Time Constant Data word at the
start of each sequence of down-counting) is decremented.
Although there is no set-up time requirement between the
triggering edge of the External clock and the rising edge
of <I>, (Clock), the down-counter is not decremented until
the following pulse. A channel's External clock input is pre­
programmed by bit 4 of the channel control word to trigger
the decrementing sequence with either a high- or a low­
going edge.

In Channels 0, 1, or 2, when the down-counter is succes­
sively decremented from the original time constant (until it

CTC USER'S MANUAL

CHAPTER 4
CTC OPERATING MODES

word must be written to the CTC's interrupt control logic.
(For further details, refer to Chapter 5, "CTC Program- B
ming.") When the CPU has written all of these words to the
CTC, all active channels are programmed for immediate
operation in either the Counter mode or the Timer mode.

reaches zero), the Zero Count (ZC/TO) output pin for that
channel will be pulsed active (High). (Due to package pin
limitations, Channel 3 does not have this pin and so may
only be used in applications where this output pulse is not
required.) Additionally, if the channel is pre-programmed
by bit 7 of the channel control word, an interrupt request
sequence will be generated. (For more details, see Chap­
ter 7, "CTC Interrupt Servicing.")

The zero-count condition also results in the automatic
reload of the down-counter with the original time con'stant
data word in the Time Constant register. There is no
interruption in the sequence of continued down-counting.
If the Time Constant register is written to with a new time
constant data word while the down-counter is decrement­
ing, the present count is completed before the new time
constant is loaded into the down-counter.

84-1

4.2 CTC TIMER MODE

In CTC Timer mode, the CTC generates timing intervals
that are an integer value of the system clock period. This
is programmed for a channel when its channel control
word is written with bit 6 reset. The channel then may be
used to measure intervals of time based on the System
clock period. The System clock is fed through the pres­
caler and the down-counter. Depending on the pre­
programmed bit 5 in the channel control word, the pres­
caler divides the System clock by a factor of 16 or 256.

The output of the prescaler is then used as a clock to
decrement the down-counter, which may be pre­
programmed with any time constant integer between 1
and 256. The time constant is automatically reloaded into
the down-counter at each zero-counter condition. At zero­
count, the channel's Time Out (ZCfTO) output (which is the
output of the down-counter) is pulsed, resulting in a uni­
form pulse train of precise period given by the product.

tc • P •TC

Where 1c is the System clock, P is the prescaler factor of
16 or 256, and TC is the pre-programmed time constant.

84-2

zao•cTc
USEll'S MANUAL

Timing may be initialized automatically or with a triggering
edge at the channel's Timer Trigger (CLK/TRG) input. This
is determined by programming bit 3 of the channel control
word. If bit 3 is reset, the timer automatically begins
operation at the start of the CPU cycle following the 1/0
Write machine cycle that loads the time constant data word
to the channel. If bit 3 is set, the timer begins operation on
the second succeeding rising edge of fl> after the Timer
Trigger edge following the loading of the rime constant
data word. If no time constant word is to follow, the timer
begins operation on the second succeeding rising edge of
fl> after the Timer Trigger edge and following the control
word write cycle. Bit 4 of the channel control word is pre­
programmed to select whether the Timer Trigger will be
sensitive to a rising or falling edge. There is no setup
requirement between the active edge of the Timer Trigger
and the next rising edge of Cl>. If the Timer Trigger edge
occurs closer than a specified minimum setup time to the
rising edge oftl>, the down-counter does not begin decre-

. menting until the following rising edge of Cl>.

If bit 7 in the channel control word is set, the zero-count
condition in the down-counter causes a pulse at the
channel's Time Out pin, and initiates an interrupt request
sequence. (For more details, see Chapter 7, "CTC Inter­
rupt Service.")

~2iUJI,

5.0 INTRODUCTION

To begin counting or timing operations, a channel control
word and time constant data word are written to the
appropriate channel by the CPU. These words are stored
in the Channel Control or Time Constant registers of each
channel. If a channel has been programmed to enable

CTC USER'S MANUAL

CHAPTER 5
CTC PROGRAMMING

interrupts, an interrupt vector is written to the appropriate
register in the CTC. Due to automatic features in the II

•• interrupt control logic, one pre-programmed interrupt vec-
tor suffices for all four channels.

5.1 LOADING THE CHANNEL CONTROL REGISTER

To load a channel control word, the CPU performs a normal
1/0 Write sequence to the port address corresponding to
the desired CTC channel. The CTC input pins CSO and
CS1 are used to form a 2-bit binary address to select one
of four channels within the device. (For a truth table, see
section 2.1.1, "The Channel Control Register and Logic".)
In many system architectures. these two input pins are

connected to Address Bus lines AO and A 1, respectively,
so that the four channels in a CTC device occupy contigu­
ous 1/0 port addresses. A word written to a CTC channel is
interpreted as a channel control word, and loaded into the
channel control register (bit 0 is a logic 1). The other seven
bits of this word select operating modes and conditions as
indicated in Figure 5-1.

---------------------,
lwlml~l~loolool~lool

Interrupt
Enable Interrupt = 1
Disable Interrupt = o

Mode

I I !,

limer Mode = 0 I
Counter Mode = 1 I

Prescaler value* I
Value of 256 = 1 I
Valueof16=0 I

r-------------"'
I CLKITRG Edge Section
I Falling Edge = O

Rising Edge = 1
I
I
I

Control or Vector
O=Vector
1 =Control

Reset
O = Continued Operation
1 = Software Reset

lime Constant
O = No lime Constant Follows
1 = lime Constant Follows

limer Trigger*
o =Automatic Trigger When

lime Constant is Loaded
1 = CLKITRG Pulse Starts limer

*limer Mode Only

Figure 5·1. Channel Control Register

85-1

ZBO"'CTC
USER'S MANUAL

5.1 LOADING THE CHANNEL CONTROL REGISTER (Continued)

Blt7=1
Each channel is enabled to generate an interrupt request
sequence when the down-counter reaches a zero-count
condition. To set the Interrupt bit to 1 in any of the four
Channel Control registers an interrupt vector is written to
the CTC before operation begins. Channel interrupts may
be programmed in either Counter or Timer mode. If an
updated channel control word is written to a channel in
operation, with bit 7 set, the interrupt enable selection is not
retroactive to a preceding zero-count condition.

Blt7=0
Channel interrupts disabled.

Bit6=1
Counter mode selected. The down-counter is decremented
by each triggering edge of the External clock (CLK/TRG)
input. The prescaler is not used.

Bit6=0
Timer mode selected. The prescaler is clocked by the
System clock cf>, and the output of the prescaler in turn
clocks the down-counter. The output of the down-counter
(the channel's zcrro output) is a uniform pulse train of
period given by the product

le* P *TC

where tc is the period of System clock, P is the prescaler
factor of 16 or 256, and TC is the time constant data word.

Bit5=1
(Defined for Timer mode only.) Prescaler factor is 256.

Blt5 = 0
(Defined for Timer mode only.) Prescaler factor is 16.

Bit4= 1
TIMER MODE: positive edge trigger starts timer operation.

COUNTER MODE: positive edge decrements the down­
counter.

85-2

Bit4=0
TIMER MODE: negative edge trigger starts timer opera­
tion.

COUNTER MODE: negative edge decrements the down­
counter.

Bit 3=1
Timer Mode Only- External trigger is valid for starting timer
operation after rising edge of T2 of the machine cycle
following the one that loads the time constant. The pres­
caler is decremented two clock cycles later if the setup
time is met, otherwise three clock cycles.

Bit3 =0
Timer Mode Only - Timer begins operation on the rising
edge of T2 of the machine cycle following the one that
loads the time constant.

Bit 2=1
The time constant data word for the Time Constant register
is the next word written to this channel. If an updated
channel control word and time constant data word are
written to a channel while it, is already in operation, the
down-counter continues decrementing to zero before the
new time constant is loaded.

Bit2 = 0
No time constant date word for the Time Constant register
is to follow. The channel control word updates the status of
a channel already in operation (a channel will not operate
without a correctly programmed data word in the lime
Constant register). Bit 2 in the channel control word must
be set in order to write to the Time Constant register.

Bit 1=1
Counting and/or timing operation is terminated and the
channel is reset. This is not a stored condition. The bits in
the Channel Control register are unchanged. If bits 1 and
2 are set to 1, the channel resumes operation upon loading
a time constant.

Blt1=0
Channel continues current operation.

ft'2iUJ6
zao~CTc

USER'S MANUAL

5.2 LOADING THE TIME CONSTANT REGISTER

A time constant data word is written to the Time Constant
register by the CPU. This occurs on the 1/0 Write Cycle
following that of the channel control word. The time con­
stant data word may be any integer value in the range
1-256 (Figure 5-2). If all eight bits in this word are zero, it is
interpreted as 256. If a time constant date word is loaded
to a channel already in operation, the down-counter con­
tinues decrementing to zero before the new time constant
is loaded.

rc1 _J~ ~Lrco
rcs_J Lrc1

TC5 TC2

TC4 TC3

Figure 5-2. Time Constant Register

5.3 LOADING THE INTERRUPT VECTOR REGISTER

The Z80 CTC operates with the Z80 CPU programmed for
mode 2 interrupt response. When a CTC interrupt request
is acknowledged, a 16-bit pointer is formed to obtain a
corresponding interrupt service routine starting address
(Figure 5-3). The upper eight bits of this pointer are
provided by the CPU's I register; the lower eight bits are
provided by the CTC in the form of an interrupt vector
unique to the requesting channel (Figure 5-4). (For further
details, see Chapter 7, "CTC Interrupt Servicing".)

The five high-order bits of the interrupt vector are written to
the CTC in advance as part of the initial programming
sequence. The CPU writes to the 1/0 port address corre­
sponding to the CTC Channel 0. A 0 in bit 0 signals the CTC
to load the incoming word into the Interrupt Vector register.
When the interrupt vector is placed on the Z80 data bus,
the interrupt control logic of the CTC automatically sup­
plies a binary code in bits 1 and 2 identifying which of the
four CTC channels is to be serviced.

Mode 2 Interrupt Operation

Interrupt
Service
Routine
Starting
Address

Desired starting address pointed to by:

1 Reg
Contents

7 Bits From
Peripheral

Figure 5-3. Mode 2 Interrupt Operation

0

85-3

5.3 LOADING THE INTERRUPT VECTOR REGISTER (Continued)

85-4

I 01 I oa I os I 04 I 03 I 02 I 01 I oo I
V7-V3 ----'

Supplied
by User L: 0 = Interrupt Vector Word

1 = Control Word

Channel ldentHier
(Automatically Inserted by CTC)
0 0 = Channel 0
0 1 = Channel 1
1 0 = Channel 2
1 1 = Channel 3

Figure 5·4. Interrupt Vector Register

Z80*CTC
USER'S MANUAL

~2iUD,

6.0 INTRODUCTION

This chapter illustrates the timing relationships of the
relevant CTC pins for the following types of operation:
writing a word to the CTC, reading a word from the CTC,

6.1 CTC WRITE CYCLE

Figure 6-1 illustrates the timing associated with the CTC
Write cycle. This sequence is applicable to loading a
channel control word, an interrupt vector, or a time con­
stant data word.

In the sequence shown, during clock cycle T1, the ZBO
CPU prepares for the Write cycle with a false (High) signal
at CTC input pin /RD (Read). As the CTC has no separate
Write signal input, it generates its own input internally from
the false /RD input. During clock cycle T2, the ZBO CPU

T1 T2

CTC USER'S MANUAL

CHAPTER 6
CTC TIMING

zso•crc
USER'S MANUAL

counting, and timing. A timing diagram, Figure 7-1, relat­
ing to interrupt servicing can be found in Section 7.1.

initiates the Write cycle with true (Low) signals at CTC input
pins /IORQ (1/0 Request) and /CE (Chip Enable). (See
Note below.) A 2-bit binary code appears at CTC inputs
CS1 and CSO (Channel Select 1and0), specifying which
of the four CTC channels is being written to. At this time, a
channel control, interrupt vector, or time constant data
word may be loaded into the appropriate CTC internal
register in synchronization with the rising edge beginning
clock cycle T3.

Note: /M1 must be false to distinguish the cycle from an
interrupt acknowledge.

TWA T3 T1

cso, cs1, /CE ___ --1X"" ___ c_ha_n_ne_1A_d_dr_es_s ___ X._ __ _

/IORQ \ ____ ,
·····r··-----------------

/RD ••• }

·····r···-----------------
/M1 I

···"
DATA ______ x ... __ ,N_ ... x ... ____ _

Figure 6·1. CTC Write Cycle

86-1

II

6.2 CTC READ CYCLE

Figure 6-2 illustrates the timing associated with the CTC
Read cycle. This sequence is used when CPU reads the
current contents of the down counter. During clock cycle
T2, the ZSO CPU initiates the Read cycle with true signals
at input pins /RD (Read), /IORQ (1/0 Request), and /CE
(Chip Enable). A 2-bit binary code appears at CTC inputs

T1 T2

CLK

zao•crc
UseR's MANUAL

CS1 and CSO (Channel Select 1 and 0), specifying which
of the four CTC channels is being read from. (See Note
below.) On the rising edge of the cycle T3, the valid
contents of the down-counter rising edge of cycle T2 is
available on the ZSO data bus. No additional wait states are
allowed.

Note: /M1 must be false to distinguish the cycle from an
interrupt-acknowledge.

TWA T3 T1

CSO, CSl, /CE ___ __,X"' ___ c_ha_n_ne_IA_d_dr_ess __ __.X"'----
/IORQ \ ____ ,

/RD \ I
/M1 •••• .., •• __ }

DATA ----------c:{ OUT)1---

Figure 6-2. CTC Read Cycle

6.3 CTC COUNTING AND TIMING

Figure 6-3 illustrates the timing diagram for the CTC
Counting and Timing modes.

In the Counter mode, the edge (rising edge is active in this
example) from the external hardware connected to pin
CLK/fRG, decrements the down-counter in synchroniza­
tion with the System Clock cit. This CLK/fRG pulse must
have a minimum width and the minimum period must not
be less than twice the System clock period. Although there
is no setup time requirement between the active edge of
the CLK/TRG and the rising edge of cit, if the CLK/TRG
edge occurs closer than a specified minimum time, the
decrement of the down-counter will be delayed one cycle

86-2

of cit. Immediately after the 1 to 0 decrement of the down­
counter, the ZC/TO output is pulsed true.

In the Timer mode, a pulse trigger (user-selectable as
either active High or active Low) at the CLK/TRG pin
enables the timing function on the second succeeding
rising edge of cit. As in the Counter mode, the triggering
pulse is detected asynchronously and must have a mini­
mum width. The timing function is initiated in synchroniza­
tion with cit. A minimum setup time is required between the
active edge of the CLK/TRG and the rising edge of cit. If the
CLK/TRG edge occurs closer than this, the initiation of the
timer function will be delayed one cycle of cit.

CLK/TRG

Internal
Counter

zcrro

Figure 6-3. CTC Counting and Timing

zao•crc
USER'S MANUAL

86-3

7 .0 INTRODUCTION

Each CTC channel may be individually programmed to
request an interrupt every time its down-counter, reaches
a count of zero. The purpose of a CTC generated interrupt
is to force the CPU to execute an interrupt service routine.
To utilize this feature the Z80 CPU must be programmed for
mode 2 interrupt response. In this mode, when a CTC
channel interrupt request is acknowledged, a 16-bit pointer
must be formed to obtain a corresponding interrupt ser­
vice routine. The lower eight bits of the pointer are provided
by the CTC in the form of an interrupt vector unique to the
requesting channel. (For further details, refer to Chapter
8.0 of the Z80 CPU Technjcal Manual.)

The CTC's interrupt control logic insures that it acts in
accordance with Z80 system interrupt protocol for nested
priority interrupt and proper return from interrupt. The
priority of any system device is determined by its physical

7.1 INTERRUPT ACKNOWLEDGE CYCLE

Figure 7-1 illustrates the timing associated with the Inter­
rupt Acknowledge cycle. After an interrupt is requested by
the CTC, the CPU sends out an interrupt acknowledge
{/M1 and /IORQ). To insure that the daisy-chain enable
lines stabilize, channels are inhibited from changing their
interrupt request status when /M1 is active. /M1 is active
two clock cycles earlier than /IORQ and /RD is false to
distinguish the cycle from an instruction fetch. During this

CTC USER'S MANUAL

CHAPTER 7
CTC INTERRUPT SERVICING

location in a daisy-chain configuration. Two signal lines
{IEI and IEO) are provided in the CTC to form the system B
daisy chain. The device closest to the CPU has the highest
priority. Interrupt priority is predetermined by channel
number, with Channel 0 having highest priority. According
to Z80 system interrupt protocol, low priority devices or
channels may not interrupt higher priority devices or chan-
nels that have not had their interrupt service routines
completed. High priority devices or channels may inter-
rupt the servicing of lower priority devices or channels.
(Forfurther details, see Chapter 2, "lnterruptControl Logic".)

Sections 7 .2 and 7 .3 describe the nominal timing relation­
ships of the relevant CTC pins for the Interrupt Acknowl­
edge cycle and the Return from Interrupt cycle. Section 7.4
discusses a typical example of daisy-chain interrupt
servicing.

time the interrupt logic of the CTC determines the highest
priority channel requesting an interrupt. If the CTC Inter­
rupt Enable input (IEI) is active, the highest priority inter­
rupting channel within the CTC places its interrupt vector
onto the data bus when /IORQ goes active. Two wait states
(TW') are automatically inserted at this time to allow the
daisy chain to stabilize. Additional wait states may be
added.

67-1

ft'2il.CE

CLK

/M1

/IORQ

zao•CTC
USER'S MANUAL

DATA ---------------c(Vector)>-------

Figure 7-1. Interrupt Acknowledge Cycle

7.2 RETURN FROM INTERRUPT CYCLE

Figure 7-2 illustrates the timing associated with the RETI
Instruction. This instruction is used at the end of an
interrupt service routine to initialize the daisy-chain enable
lines for proper control of nested priority interrupt handling.
The CTC decodes the 2-byte RETI code internally and
determines whether it is intended for a channel being
serviced. ·

T1 T2 T3

CLK

JM1\ I
/RD\ I

D7-DO 0
IEI ······-················-7·

···········-·············

T4

When several Z80 peripheral chips are in the daisy-chain,
IEI will become active on the chip currently under service
when an EDH opcode is decoded. If the following opcode
is 4DH, the peripheral being serviced will be re-initialized
and its IEO will become active.

T1 T2 T3 T4 T1

\ I
\ I

0

IEO -----------------

INT -,----···-··
\. _

'INT will go Low W more Interrupts pending on lhe RTC.

Figure 7·2. Return from Interrupt Cycle

87-2

Z80"'CTC
USER'S MANUAL

7.3 DAISY-CHAIN INTERRUPT SERVICING

Figure 7-3 illustrates a typical nested interrupt sequence
which may occur in the CTC. In this example, Channel 2
interrupts and is granted service. While this channel is
being serviced, higher priority Channel 1 interrupts and is
granted service. The service routine for the higher priority

Highest Priority Channel

Channero

IEI IEO

Channel 1

IEI IEO

channel is completed, and a RETI instruction is
executed to signal the channel that its routine is
complete (see Section 7 .2 for further details). At this
time, the service routine of the lower priority Channel
2 is resumed and completed.

Channel 2 Channel 3

IEI IEO IEI IEOl--H:..:.:I_

1. Priority Interrupt Daisy Chain Before Any Interrupt Occurs.
Under Service

IEI IEO IEI IEO HI
IEI IEO IEI IEO

LO

2. Channel 2 Requests an Interrupt and is Ackowledged.

Under Service nded

IEI IEO IEI IEO IEI IEO IEI IEO
LO

3. Channel 1 Interrupts, Suspends Servicing of Channel 2.

Service Com lete Service Resumed

IEI IEO IEI IEO IEI IE LO IEI IEO LO

4. Channel 1 Service Routine Complete, 'RETI' Issued, Channel 2 Serviced Resumed

Service Complete

IEI IEO IEI IEO IEI IEO 1--'H:..:.:I_

5. Second 'RETI' Instruction Issued on Completion of Channel 2 Service Routine

Figure 7-3. Daisy-Chain Interrupt Servicing

87-3

II

~2H «a~

Z80®CPU
Central Processing Unit

Z80® CTC
Counter/Timer Circuit

Z80® OMA
Direct Memory Access

Z80® PIO
Parallel Input/Output

Z80® SID
Serial Input/Output

Superintegration™
Products Guide

Zilog•s Literature Guide
Ordering Information

II

Chapter 1.
1.0

1.1

Chapter2.
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12

Chapter3.
3.0

Chapter4.
4.0
4.1
4.2
4.3

4.4

OMA USER'S MANUAL

TABLE OF CONTENTS

Introduction
Why Is OMA Useful? ... C1-1
1.0.1 CPU Transfers ... C1-1
1.0.2 OMA Transfers .. C1-2
OMA Characteristics .. C1-3
1.1.1 Ports and Channels ... C1-3
1.1.2 Transfer Methods .. C1-3
1.1.3 Modes of Operation .. C1-5
1.1.4 Bus Control .. C1-5
1.1.5 Programmability .. C1-5

II Functional Description
Features .. C2-1
Overview .. C2-1
Programming .. C2-2
Classes of Operation .. C2-2
Modes of Operation .. C2-5
Transfer Speed ... C2-8
Address Generation ... C2-9
Byte Matching (Searching) ... C2-9
Interrupts .. C2-1 O
Auto Restart .. C2-1 O
Pulse Generation .. C2-1 O
Variable Cycle .. C2-1 O
Targets and Actions ... C2-11

Pin Description
Pin Descriptions ... C3-1

Internal Structure
General Organization ... C4-1
Control and Status Registers .. C4-2
Address and Byte Counting ... C4-4
Bus Control ... C4-5
4.4.1 Bus Requesting ... C4-5
4.4.2 Bus-Request Daisy Chains ... C4-6
Interrupts .. C4-6
4.4.1 Conditions and Methods ... C4-6
4.4.2 Interrupt Vectors .. C4-8
4.4.3 Interrupt Latches ... C4-9
4.4.4 Interrupt On Ready .. C4-10
4.4.5 Interrupt Service Routines ... C4-10
4.4.6 Return From Interrupt .. C4-11
4.4.7 Interrupt Daisy Chains ... C4-11
4.4.8 Polling for Service Requests ... C4-12

C-i

C-ii

Chapter 5. Programming

zao•cpu
USER's MANllAL

5.0 Overview .. C5-1
5.1 Write Registers ... C5-2
5.2 Write Register 0 Group ... C5-3

5.2.1 Class of Operation .. C5-3
5.2.2 Source and Destination ... C5-3
5.2.3 Port A Starting Address ... ~5-3
5.2.4 Block Length ... C5-4

5.3 Write Register 1 Group ... C5-4
5.3.1 Device Type (Port A) ... C5-4
5.3.2 Variable vs Fixed Addressing (Port A) ... :C5-4
5.3.3 Variable Cycle (Port A) .. C5-4

5.4 Write Register 2 Group ... C5-5
5.5 Write Register 3 Group ... C5-5

5.5.1 Stop On Match .. C5-5
5.5.2 Match Byte .. C5-5
5.5.3 Mask Byte .. C5-5
5.5.4 Interrupt Byte ... C5-5
5.5.5 OMA Enable .. C5-5

5.6 Write Register 4 Group ... C5-6
5.6.1 Mode of Operation .. C5-6
5.6.2 Starting Address (Port B) .. C5-6
5.6.3 Interrupts ... C5-6
5.6.4 Interrupt Vector ... C5-6
5.6.5 Pulse Generation ... C5-6

5.7 Write Register 5 Group ... C5-7
5.7.1 End-of-Block Action .. C5-7
5.7.2 /CE/NJAIT Line Usage ... C5-7
5.7.3 Ready-Line Status ... C5-7

5.8 Write Register 6 Group ... C5-7
5.9 Read Registers ... C5-11

5.9.1 Status Byte (RRO) .. C5-12
5.9.2 Byte Counter (RR1, RR2) .. C5-12
5.9.3 Port A Address Counter (RR3, RR4) ... C5-12
5.9.4 Port B Address Counter (RR5, RR6) ... C5-12

5.1 O Review of Programming Sequences .. C5-12
5.10.1 OMA Initialization ... C5-12
5.10.2 Port Designation .. C5-13
5.10.3 Address Loading ... C5-13
5.10.4 Fixed-Address Destination Ports ... C5-13
5.10.5 Interrupts ... C5-13
5.10.6 Byte Matching (Searches) ... C5-14
5.10.7 End-of-Block .. C5-14
5 .1 O .8 Auto Restart ... C5-14
5.10.9 Force Ready Condition ... C5-14
5.10.10 Pulse Generation ... C5-14
5.10.11 VariableTiming ... C5-14
5.10.12 Enabling OMA ... C5-14

Chapter 6. Applications
6.0 Z80 OMA and CPU ... C6-1

6.0.1 Interconnection ... C6-1
6.0.2 Chip Selection and Enabling ... C6-3
6.0.3 Use of NJAIT Input .. C6-3
6.0.4 Simultaneous Transfers ... C6-3
6.0.5 Bus Buffering ... C6-5

ZBO®CPU
USER'S MANUAL

Chapter7.
7.0

7.1

Performance Limitations
Bus Contention ... C7 -1
7.0.1 Byte Mode ... C7-1
7.0.2 Burst Mode .. C7-1
7.0.3 Continuous Mode .. C7-1
Control Overhead ... C7-2

Chapter 8. Timing
8.0 When the CPU is Bus Master ... C8-1

8.0.1 Writing Control Bytes ... C8-1
8.0.2 Reading Status Bytes .. C8-1

8.1 When the DMA is Bus Master ... C8-2
8.1.1 Sequential Transfers ... C8-2
8.1.2 Simultaneous Transfers ... C8-2
8.1.3 Search Only ... C8-4
8.1.4 Bus Release Byte-at-a Time .. C8-5
8.1.5 Bus Release on End-of-Block ... C8-5
8.1.6 Bus Release on Match .. C8-5
8. 1. 7 Bus Release on Not Ready ... C8-6
8.1.8 Variable Cycle and Edge Timing .. C8-8
8.1.9 Interrupts ... C8-8
8.1.10 Pulse Generation ... C8-9

Glossary ... G1
Appendix A .. A 1

List of Figures
Figure 1-1. Typical CPU 1/0 Sequence .. C1-1
Figure 1-2. Conceptual Comparison of Various 1/0 Transfer Methods .. C1-4
Figure 1-3. Modes of Operation .. C1-6
Figure 2-1. Class of Operation .. C2-3
Figure 2-2. Basic Functions of the Z80 OMA .. C2-4
Figure 2-3. Transfer/Search One Byte .. C2-5
Figure 2-4. Byte Mode .. C2-6
Figure 2-5. Burst Mode ... C2-6
Figure 2-6. Continuous Mode ... C2-7
Figure 2-7. Variable Length Cycle .. C2-11
Figure 3-1. Pin Functions .. C3-3
Figure 3-2. 40-Pin DIP Pin Assignments ... C3-3
Figure 3-3. 44-Pin PLCC Pin Assignments (Z8410 NMOS) .. C3-3
Figure 3-4. 44-Pin PLCC Pin Assignments (Z84C10 CMOS)
Figure 4-1. Z80 OMA Block Diagram .. C4-1
Figure 4-2. Write Register Organization ... C4-3
Figure 4-3. Read Register Organization ... C4-3
Figure 4-4. Bus Requesting Daisy Chain .. C4-6
Figure 4-5. Z80 Interrupt Sequence ... C4-7
Figure 4-6. Z80 Interrupt Service Routine ... C4-8
Figure 4-7. Interrupt Pending (IP) Latch ... C4-9
Figure 4-8. Interrupt Under Service (IUS) Latch ... C4-9
Figure 4-9. Interrupt On Ready (IOR) Latch ... C4-10
Figure 4-10. Interrupt Daisy Chain .. C4-11
Figure 4-11. Polling for a Service Request bit .. C4-12
Figure 5-1. Method of Write Register Polling .. C5-3

C-iii

II

ft'2H.m zaoscpu
USER'S MANUAL

C-iv

Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 7-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 8-14.
Figure 8-15.
Figure 8-16.
Figure 8-17.
Figure A2.
Figure A3.
Figure A4.
Figure AS.
Figure A6.
Figure A7.
Figure AB.
Figure A9.

Write Register 0 Group ... C5-3
Write Register 1 Group ... C5-4
Write Register 2 Group ... C5-5
Write Register 3 Group ... C5-5
Write Register 4 Group ... C5-6
Write Register 5 Group ... C5-7
Write Register 6 Group ... C5-8
Read Register 0 through Read Register 6 ... C5-11
Sample DMA Program .. : ... CS-15
Z80/Z8000 Clock Driver ... C6-1
Chip Enable Decoding with Z80 CPU .. C6-2
/CE//WAIT Multiplexer ... C6-3
Simultaneous Transfer Multiplexer ... C6-3
Simultaneous Transfer .. C6-4
Delaying the Leading Edge of /MWR ... C6-5
Data Bus Buffer Control Example ... C6-6
ZBO DMCA-SIO Environment .. C6-8
Connecting DMA to Demultiplexed Address/Data buses .. C6-9
Z8000/Z80 Peripheral Interface .. C6-10
DMA Bus Master Gate .. C7-1
CPU-to-DMA Write Cycle Requirement .. C8-1
CPU-to-DMA Read Cycle Requirements.: .. CB-1
Sequential Memory-to-1/0 Transfer, Standard Timing (Searching Is Optional) C8-2
Sequential 1/0-to-Memory Transfer, Standard Timing (Searching Is Optional) CB-2
Simultaneous Memory-to-1/0 Transfer (Burst and Continuous Mode) CS-3
Simultaneous Memory-to-1/0 Transfer (Byte Mode) ... CS-4
Bus Request and Acceptance Timing ... C8-5
Bus Release in Byte Mode ... CB-5
Bus Release on End-of-Block (Burst and Continuous Modes) CB-5
Bus Release on Match (Burst and Continuous Modes) ... CB-5
Bus Release on Not Ready (Burst Mode) .. CB-6
RDY Line in Byte Mode .. CB-6
ADY Line in Burst Mode ... CB-7
ADY Line in Continuous Mode ... CB-7
Variable-Cycle and Edge Timing ... CB-8
WAIT Line Sampling in Variable-Cycle Timing ... CB-8
Interrupt Acknowledge ... C8-9
Write Register 0 Group .. CA-1
Write Register 1 Group .. CA-1
Write Register 2 Group .. CA-1
Write Register 3 Group .. CA-1
Write Register 4 Group .. CA-2
Write Register 5 Group .. CA-2
Write Register 6 Group .. CA-2
Read Register 0 through Read Register 6 ... CA-3

List of Tables
Table 2-1. Maximum Transfer and Search Speeds (Burst and Continuous Modes) C2-8
Table 2-2. Reduction in ZBO CPU Throughput per Kilobaud for Byte Mode Transfers C2-8
Table 2-3. Events and Actions ... C2-11
Table 4-1. Contents of Counters After DMA Stops Due to End-of-Block C4-4
Table 4-2. Contents of Counters After DMA Stops Due to Byte Match ... C4-5
Table 5-1. DMA Status ... C5-2
Table 5-2. Control Byte Order ... C5-12
Table 6-1. Receive Event Sequence ... C6-7
Table 6-2. Transmit Event Sequence .. C6-7

cp2iua,

1.0 WHY IS OMA USEFUL?

Before describing the 280® OMA device in detail, we will
review the subjects of direct memory access (OMA) and
direct memory access controllers (OMACs) in general. This
will provide a background of functions and terminology for
8-bit single-bus microcomputer environments used through­
out the remainder of the manual.

OMACs are dedicated to the task of controlling high-speed
block transfers of data independently of the CPU. Typi­
cally, these transfers are between memory and 1/0, or vice
versa, although a few OMACs can perform other types of
transfers that have traditionally been done by the CPU. For
example, the 280 OMA can perform memory-to-memory
and 1/0-to-l/O transfers, as well as searching for particular
patterns of bits in a byte either simultaneously with or
independently of transfers.

1.0.1 CPU Transfers
In systems without OMA, data transfers must pass through
the CPU and, therefore, must be implemented in software.
This normally involves the execution of an instruction se­
quence. for inputting, outputting, and tracking each byte of
data in the block to be transferred.

Figure 1-1 illustrates the minimum sequence, of instruc~
tions that must be fetched from memory and executed by
conventional CPUs to transfer a block of data one. byte at
a time. In fact, most CPUs require many more instructions
than are shown here.

One result of this method is that CPU transfers are relatively
slow and tie up the CPU for long periods of time. Another
result is that response time (startup time for the first byte)
is also usually slow, because the 1/0 device typically uses
interrupts to signal its readiness, and the CPU interrupt
service routine causes a significant time lag in transferring
the first byte.

OMA USER'S MANUAL

CHAPTER 1
INTRODUCTION

NO

Read
Source Port

Write To
Destination Port

Increment
Address Counter

Increment
Byte Counter

Figure 1-1. Typical CPU VO Sequence

The 280 and 28000 CPUs are unique in that they both have
block-transfer and string-search instructions that can op­
erate on up to 64 Kbytes of data with a single instruction.
A single block transfer instruction repetitively performs all
of the functions illustrated in Figure 1-1 on an entire
sequence of bytes, and the transfer rates achievable are
far better than in other CPUs. The 4 MHz 280A CPU can
transfer at about 200 Kbytes/s and the 4 MHz 28000 CPU
can reach 800 Kbytes/s, which is faster than some OMACs.

C1-1

II

WHY IS OMA USEFUL? (Continued)

The problem with CPU block transfers in the Z80 and
Z8000 Families is, therefore, usually not speed of transfer
but response time at startup. One of the following methods
is normally used to set up for execution of the block transfer
instruction:

• The 1/0 device interrupts the CPU and the block
transfer instruction is executed in the CPU interrupt
service routine. This entails a response time of at least
5 to 10 µs, even in the 4 MHz ZBOA and ZBOOO Families,
which have one of the fastest interrupt-handling
capabilities available.

• The CPU begins executing the device service routine
before the 1/0 device is ready, and a flag bit is
constantly polled by the CPU. When the bit indicates
that the device is ready, the CPU jumps to the block
transfer instruction. This method can sometimes allow
a response time of less than 5 µs, but it totally occupies
the CPU.

• The CPU begins executing the block transfer instruction
in an interrupt service routine before the, 1/0 device is
actually ready. But the 1/0 device idles the CPU with
the Wait line just after the Read and Chip-Select lines
become active. When the 1/0 device is ready, it releases
the Wait line and the transfer is completed. This gives
by far the best response time (250 ns in a 4 MHz ZBOA
or ZBOOO CPU), but it totally ties up the bus.

In summary, both transfer and response times on most
CPUs are often too slow. While transfer speed can he quite
high with the Z80 and ZBOOO CPUs, the response time may
be too long in some interrupt-driven transfer situations.

1.0.2 OMA Transfers
A OMA controller performs direct transfers between the
source and destination of data, without going through the
CPU and without the instruction fetches required by the
CPU. It performs all of the steps illustrated in Figure 1-1
through hardware.

In a memory-to-1/0 transfer, for example, the starting address
in memory and the length of the block to be transferred are
written into the OMA by the CPU prior to the transfer. The
DMAC quickly takes control and begins transferring data
when the CPU enables the DMAC and the 1/0 device's Ready
line becomes active. In most cases, the CPU is idled during
this process. When the transfer is complete, the DMAC
signals the CPU and releases control.

DMACs are used, therefore, when one or more of the
following situations or requirements are present:

C1-2

ZSO®DMA
USER'S MANUAL

• The CPU is loaded down with too much 1/0 to perform
its other tasks properly.

• The transfer must be faster than the CPU could perform
it.

• The transfer response time (startup) must be faster
than the CPU can conveniently provide.

Small and low-performance systems generally run without
DMA. Medium-performance systems can also be de­
signed without OMA if the CPU can handle transfers fast
enough and still do its other work.

Whenever systems require fast transfers or fast response,
DMACs are strong candidates for performance enhance­
ment. Not only do they transfer faster than CPUs (with the
possible exceptions of the ZBO and Z8000 CPUs), buttheir
response time is inherently better and can be improved
with the same techniques described above for CPU re­
sponse.

Here are a few examples where OMA is often the best
choice:

• Disk and diskette controllers

• Scanning operations, such as CRT 1/0

• Data acquisition

• Memory-to-memory transfers

• Memory searches

• Backup storage (l/0-to-1/0)

• Parallel bus systems like the IEEE 488

• Fiber optic links

• Block transfers in networking, multiprocessing, or
multiprogramming

The trade-off for this speed is that the CPU typically
remains idle and lacks full or partial control of the system
bus while the OMA is operating. This can affect not only
total system throughput. but it can also affect such things
as memory refresh and other interrupts.

We will discuss these issues in greaier detail in the chapter
entitled "Performance Limitations." Speed comparisons
for the Z80 Family are given in the next chapter entitled
"Functional Description of the ZBO OMA."

1.1 OMA CHARACTERISTICS

All OMACs are programmable because, at a minimum, the
CPU must write a block length (byte count) and starting
memory address into them before they can begin manag­
ing a data transfer. The starting address is incremented or
decremented as the transfer proceeds, and the byte
counter is incremented from zero up to the specified block
length.

Beyond this, however, OMACs vary substantially in their
characteristics and capabilities. The discussion that fol­
lows is a general overview of the characteristics of OMACs,
with only occasional reference to the Z80 OMA in particu­
lar.

1.1.1 Ports and Channels
Every data transfer has a source port and a destination
port. For example, in memory-to-1/0 transfers, memory is
the source port and 1/0 is the destination port. The means
of controlling and tracking the exchange of data between
the two ports is called a "channel." A channel includes the
hardware for address and byte counting, bus control, and
coordination of the entire transfer process.

Each port in a channel has its location specified either by
the OMA address-generation mechanism or by hardwiring.
The Z80 OMA, unlike other 8-bit OMACs, generates ad­
dresses for both memory and 1/0 ports during each byte
transfer; in other DMACs, the 1/0 port is hardwired.

Some OMACs have multiple channels. This usually means
that they can keep track of multiple interleaved transfers
and that one OMA can be hardwired to multiple 1/0
devices. However, because any OMA can execute only
one read and/or write cycle at a time, multiple channels do
not imply higher throughput than single channels of a
given speed. The Z80 OMA, which is called a single­
channel device, has the distinction of having the fastest
maximum transfer rate and generating authentic 1/0 port
addresses on the address bus. Moreover, the ability to
generate two addresses means that the Z80 OMA can do
memory-to-memory transfers in a single channel whereas
others either cannot do them at all or require two channels
to do them.

The ability to perform internal byte searches is another
feature available on the Z80 OMAs single channel and is
not available on other 8-bit OMACs. The Z80 OMA is the
only OMAC that loads bytes into an internal OMAC register,

zso~DMA
USER'S MANUAL

during transfers with the result that, once the byte is
loaded, it can be compared with a maskable control byte.
Valid comparisons can then be made to cause various
actions by the Z80 OMA.

1.1.2 Transfer Methods
Earlier we mentioned the differences between handling
1/0 by conventional CPU instructions versus direct memory
access. Figure 1-2 expands this theme by comparing not
only conventional CPU instructions but also the ZSO and
Z8000 CPU block-transfer instructions along with two
different methods of OMA transfer. This figure shows the
read and write cycles needed to accomplish the transfer
of a single byte of data.

Figure 1-2a illustrates conventional CPU 1/0 instruction
activity. The number of read and write cycles is approxi­
mate-many CPUs require more cycles than are pictured.
At a minimum, the CPU instruction causes all the steps II
illustrated earlier in Figure 1-1, plus additional housekeep-
ing such as testing to see if the next byte is ready for
transfer.

Figure i-2b shows Z80 and Z8000 CPU block transfer
instructions. Again, these are approximate and entail some­
what more activity than one read cycle and one write cycle
after initiation, particularly with the Z80 CPU. A single
block-transfer instruction, however, is capable of transfer­
ring up to 64 Kbytes of data.

Figure 1-2c illustrates "sequential" or "flow-through" OMA
transfer, in which a byte is read from the source port into
the OMA and then subsequently written to the destination
port. This method can be implemented on the Z80 OMA
with no external logic in a Z80 CPU environment (its liming
characteristics and pin interfacing to the CPU are highly
uniform in this case). Sequential transfer provides speeds
that match or exceed the capability of most serial commu­
nication processors and many other 1/0 or memory de­
vices.

Figure 1-2d illustrates "simultaneous" or "flyby" OMA trans­
fer, in which a byte is both read and written in the same
machine cycle. The Read and Write control lines are both
active simultaneously, and the source and destination are
determined by signals that specify either a memory-read/
1/0-write or an 1/0 read/memory-write. This is the fastest
transfer method, but the external logic required makes
timing interfaces to memory and 1/0 somewhat more
complicated.

C1-3

ft'2iUJ6
1.1 OMA CHARACTERISTICS (Continued)

Another method also used on certain DMACs is called
"transparent" or "cycle-stealing" transfer. This technique
works in amanner similar to Figures 1-2c and 1-2d, except
instead of taking control of the bus it causes the DMA data
transfers to be interleaved with CPU cycles where dynamic
memory would otherwise be refreshed. This method also
requires external logic and inhibits memory refresh when

a.
Conventional
Programmed

Instruction
Sequence

b.
Z80/ZBOOO

Block Transler
Instruction

c.
OMA

Sequential
lnstrucion

d.
OMA

Simultaneous
Transfer

Fetch and Read les

CPU MEMORY

CPU MEMORY

CPU

Z80"DMA
USER'S MANUAL

DMA is occurring. Additionally, it reduces DMA through­
put in some cases.

All DMA transfers interrupt dynamic memory refresh by the
CPU and most of them idle the· CPU. It is, therefore,
important to consider these implications when making the
trade-off for higher DMA transfer speed.

Write Cycle BUS

1/0 OMA

BUS

1/0 OMA

Read cle
BUS

1/0 OMA

Read/Write Cycle BUS

I l
110 OMA

Figure 1-2. Conceptual Comparison of Various VO Transfer Methods

C1-4

1.1.3 Modes of Operation
Within each of the "methods" illustrated in Figures 1-2c
and 2d there are as many as three "modes" of operation.
These are termed Byte, Burst, and Continuous modes in
this manual, although they are also sometimes referred to
as Single, Demand, and Block modes. Figure 1-3 illus­
trates the typical sequence of events for each mode, once
the 1/0 device's Ready signal to the DMAC has become
active and before the DMA process reaches an end-of­
block or other terminating condition. (These figures are
expanded in Figures 2-3 through 2-6.)

In Byte mode, the DMAC transfers only one byte at a time
while the 1/0 device Ready line is active. Control of the
system bus is released back to the CPU between each
byte. The CPU can then interleave its other activities. until
the DMA makes a new request to the CPU for system bus
control before transferring the next byte. Byte mode is
related to the transparent method of transfer in that both
cause interleaving of CPU and DMA functions. The Byte
mode, however, includes the protocol of requesting and
releasing the bus for each byte transfer.

In Burst mode, which is the most common mode, the
DMAC continues to transfer bytes after gaining control of
the system bus until the 1/0 device Ready line goes
inactive. During this time, the CPU typically remains idle.
When the Ready line goes inactive, the DMAC releases
system bus control back to the CPU.

In Continuous mode, the DMAC holds the system bus until
the entire block of data has been transferred. If the
1/0 device Ready line goes inactive before the block is
completely transferred, the DMAC simply waits until it
becomes active again, but the system bus is not released
as in Burst mode. The Continuous mode is the fastest
mode because it has the least response-time overhead
when the Ready line momentarily goes inactive and re­
turns active again. However, this mode does not allow any
CPU activity for the duration of the transfer.

1.1.4 Bus Control
Most DMACs do not control the system bus in the same
way that a CPU controls it. For example, many DMACs do
not have a straightforward interface to the system data bus
but rather multiplex a portion of the memory address onto
the data bus, from which it must be latched by external
logic. Nor do most DMACs generate all of the bus control
signals that the CPU generates, and therefore they lack
some. degree of bus control when they operate.

zao•DMA
USER'S MANUAL

The Z80 DMA is unique among 8-bit DMACs in that it
generates exactly the same bus control signals for read
and write cycles that the Z80 CPU does, and in that it has
exactly the same logical and electrical interface to the data
and address buses as the CPU. This means the other
system components cannot tell the difference between the
ZBO DMA and CPU, control by these devices is totally
interchangeable. In the sequential DMA transfer method
(a read cycle followed by a write cycle), it also means that
the Z80 DMA pins can be tied directly to the corresponding
ZBO CPU pins without any of the external interfacing logic
that other DMACs require. This property considerably
simplifies design and lowers part counts.

1.1.5 Programmability
How a DMAC starts. transfers data. and stops is deter­
mined by control information written to the DMAC by the
CPU prior to the transfer. Status registers, which can be
read by the CPU to determine the transfer condition after
the DMAC stops transferring, are also typically provided.

The degree of programmability is directly related to the
DMACs flexibility for handling a variety of transfer tasks.
Most DMACs are quite limited in their programmability.
The ZBO DMA, by contrast, has over 140 bits of control
information used to tailor the device (and retailor it
between operations) for a wide variety of tasks and
environments.

For example, the zao DMA can be programmed either to
stop, interrupt the CPU. continue, or repeat a transfer when
a target event such as an end-of-block, byte match, or
Ready-line condition is reached. Alternatively, its buffered
address counters can be reloaded during one byte-mode
transfer so thatthe next transfer can begin quickly at a new
location. Also, entire read and write cycle timings can be
modified independently for each port to fit the require­
ments of other CPUs, memory, or 1/0 devices that are
faster or slower than the standard Z80 Family timing.

This topic, as well as the others described earlier, are
expanded in following chapters. We have introduced them
here simply to give a generalized framework from which to
launch a more detailed discussion of the ZBO DMA.

C1-5

II

C1-6

BYTE
(Single)

Request
Control

Release
Control

BURST
(Demand)

Request
Control

Transfer
Byte

Release
Control

Figure 1-3. Modes of Operation
(See also Figures 2-3 through 2-6)

CONTINUOUS
(Block)

Request
Control

Transfer
Byte

zao•DUA
llSER's llANllAL

4'2iU a.,

2.0 OMA FEATURES

• Single Highly Versatile Channel

• Dual Port Address Generation with Incrementing,
Decrementing, or Fixed Address in Both Ports

• Buffered Address and Block-Length Registers

• 64 Kbyte Maximum Block Length

• 2.4 or 4 MHz Clock Rates (ZBO or ZBOA OMA)

• 1.25 or 2 Mbytes/s Data Rate (ZBO or ZBOA OMA)

• Transfer, Search, or Transfer/Search Operations

• Bit-Maskable Byte Searching

• Sequential (Flow-Through) or Simultaneous (Flyby)
Transfers

• Compatible with ZBO and Many Other CPUs

• Byte, Burst, and Continuous Modes

• Auto Restart Capability

• Variable Cycle Timing

2.1 OVERVIEW

The ZBO OMA performs data transfers and searches in a
wide variety of 8-bit CPU environments. It is unique among
DMACs in that it takes full control of the system address,
data, ·and control buses-and is therefore a special­
purpose processor-when enabled by the CPU to do so.
The OMA also provides complete interfacing to the system
bus. For example, in a ZBO CPU environment the ZBO OMA
generates the same signal levels and timings, including
tri-state control, that the ZBO CPU would generate to
accomplish a transfer. It normally does this without exter­
nal TIL packages, which all other DMAs require.

OMA USER'S MANUAL

CHAPTER 2
FUNCTIONAL DESCRIPTION

• Wait-Line Cycle Extention

• Internally-Modifiable Interrupt Vectors

• Programmable lnterruptSS on Ready, End-of-Block,
Byte Match

• Hardware Priority Daisy Chains for Bus Requests and
Interrupts

• Periodic Pulse Generation for External Device

• 21 Writeable Control Registers

• Seven Readable Status Registers

• Programmable Force Ready Condition

• Programmable Active State for Beady Line

• Programmable OMA Enable

• Complete System Bus Mastering

• No External Logic Needed for Sequential Transfers in
ZBO Environments

For this reason, and because of its extensive programma­
bility for operating on data and data flow, the ZBO OMA can
be called a special-purpose transfer processor. It unbur­
dens not only the CPU but also the system designer.

The ZBO OMA is also unique in other respects. First, it
generates two port addresses instead of one. Because
both addresses can be either variable or fixed, this means
that memory-to-memory or 1/0-to-l/0 transfers can be
done with a single channel, whereas other DMACs either
require more than one channel or cannot do such transfers
at all.

C2-1

II

2.1 OVERVIEW (Continued}

The capability of the Z80 DMAs channel surpasses the
capability of any other available monolithic DMAC channel
to service either fast or slow devices. In addition to having
a Wait line for extending cycles, the basic read and write
cycles can be programmed for different timing require­
ments. If multiple channels are needed, multiple Z80
DMAs can be integrated very easily. The interrupt struc­
ture is among the fastest and most versatile available.
Interrupt signals and vectors can be generated under
several conditions. Finally, the Z80 DMA is the only DMAC

2.2 PROGRAMMING

The Z80 DMA has 21writeable8-bit control registers and
seven readable 8-bit status registers available to the CPU.
Control bytes can be written to the DMA or status bytes can
be read from the DMA whenever the DMA is not controlling
the bus.

Control bytes writeable to the DMA include those which
effect immediate command actions such as enable, dis­
able, reset, load starting addresses, continue transferring
or searching, clear byte and address counters, clear
status bits, and the like. In addition, many mode-setting
control bytes can be written, including the class and mode

2.3 CLASSES OF OPERATION

The Z80 DMA has three basic "classes" of operation, and
two of the classes are each broken into subclasses as
follows:

• Transfers of data between any two DMA ports:
Sequential transfers (flow-through)
Simultaneous transfers (flyby)

• Searches for a particular bit pattern within a byte at a
single DMA port

• Combined transfers and searches between any two
DMA ports:
Sequential transfer/search
Simultaneous transfer/search

Figure 2-1 illustrates these classes. The two subclasses of
transfers are shown at the top, the search-only class is
shown in the middle, and the two subclasses of transfer
while searching are shown at the bottom. In all cases, the
DMA assumes full control of the system address, data, and
control buses while transferring or searching a given byte.
The DMA ports are the source and destination of data: a
"port" is used here to mean either memory or an 1/0 device.

C2-2

zao•DMA
IJsER's MANllAL

that passes data through itself and can therefore compare
bytes against a bit-maskable match byte. An overview of
Z80 DMA features are listed below and each point is
described more thoroughly in this and other chapters.

Throughout the remainder of the manual we refer to the
"Z80 DMA" or simply the "DMA." By this we mean eitherthe
2.4 MHz Z80 DMA or the 4 MHz Z80A DMA device. Both
parts have the same features and differ only in speed.

of operation, port configuration, starting addresses, block
length, address-counting rule, match and match-mask
bytes, interrupt conditions, interrupt vector, end-of-block
rule, Ready-line and Wait-line rules, and others.

Readable status registers include a general status byte
reflecting Ready-line, end-of-block, byte-match, and inter­
rupt conditions, as well as registers for the current byte
count and port addresses. There is a full chapter on
programming that explains these functions in detail, and
most of them are described in general terms on the pages
that follow.

In "sequential transfers," which are sometimes called flow-
. through transfers, each byte transfer entails a read cycle
followed by a write cycle. The DMA reads the byte via the
data bus into an internal register and sustains the byte on
the data bus into the subsequent write cycle. In a Z80 CPU
environment, as well as in certain other CPU environments,
sequential DMA transfers can be implemented with no
external logic between the OMA and the CPU.

In "simultaneous transfers," which are sometimes called
flyby transfers, each byte is simultaneously read from the
source into the DMA and written from the source directly to
the destination in a single machine cycle. These transfers,
therefore, occur at twice the rate of sequential transfers,
but they require at least one external logic package to
cause the proper signals to appear simultaneously on the
control bus (see the "Applications" section).

In the "search only" class, each byte is read via the data
bus from the source port into the DMA, where it is com­
pared with a match byte. The match byte can optionally be
masked with another byte so that only certain bits in the
data and match bytes are compared. The search-only
class needs no external logic between the DMA and CPU
in Z80 systems and certain other CPU environments.

't'2iU::16 . Z80"'DMA
UsER's MANUAL

Read Write

Sequetial
Transfer

(Flowthrough)

CPU MEMORY OMA VO

Read/Write

Simultaneous
Transfer

(Flyby)

CPU MEMORY OMA 1/0

II Read

Search c::::J
Only c::::J

CPU MEMORY OMA VO

Read Write

Sequetial c::::J
Transfer/Search c::::J

CPU MEMORY OMA VO

Read Write

Simultaneous
Transfer/Search

CPU MEMORY OMA VO

Figure 2·1. Class of Operation

C2-3

2.3 CLASSES OF OPERATION (Continued)

In "sequential transfer/searches," data is transferred in the
same way as in the sequential transfer class and simulta­
neously searched, as in the search-only class. This class
also needs no external logic in ZSO and some other
environments.

In "simultaneous transfer/searches," data is transferred
just as in the simultaneous transfer class and simulta­
neously searched just as in the search-only class. In this
case, at least one additional external logic package is
needed to obtain the doubling of speed.

Figure 2-2 summarizes the functions of each class of ZSO
OMA operation with respect to the two types of address­
able ports that can be selected as a source and destina­
tion. The most common applications of OMA are transfers
from memory-to-1/0 or from 1/0-to-memory, without search,
and most OMA devices are limited to these operations. The

simultaneous searching function is unique to the ZSO OMA.
Simultaneous transfers (flyby) are limited to transfers be­
tween memory and 1/0.

Transfers from memory-to-memory are useful in relocating
memory contents. They can also be used in supporting
memory-mapped 1/0. A Ready condition can be pro­
grammed into the OMA to simulate an active 1/0 Ready line
for memory-to-memory transfers (see the "Programming"
section).

Transfers from l/O-to-1/0 can be used in applications such
as real-time data acquisition where backup storage of the
incoming data is required. The optional search capability
allows branching to various other actions when a byte
match is found as in memory-to-memory transfers. Memory
searches and 1/0 searches, without transfer, are unique to
the ZSO OMA and are useful in locating an end-of-block,
check character, or other special byte in a block.

MEMORY OMA 110

1 ---..

2

]© --
~©© 110

©•

1. Transfer Memory-to-110 (optional search).
2. Transfer 110-to-Memory (optional search).
3. Transfer Memory-to-Memory (optional search).
4. Transfer VO-to-VO (optional search).
5. Search Memory.
6. Search VO.

Figure 2-2. Basic Functions of the Z80 OMA

C2-4

2.4 MODES OF OPERATION

Within any class of operation, the ZSO DMA can be pro­
grammed to operate in one of three Transfer and/or,
Search modes:

Byte Mode. Data operations are performed one byte at a
time. Between each byte operation the system bus is
released to the CPU. The bus is requested again for each
succeeding byte operation. This is also sometimes called
the "Single" or "Byte-At-A-Time" mode.

Burst Mode. Data operations continue until a port's Ready
line to the DMA goes inactive. The DMA then stops (re­
leases the system bus) after completing its current byte
operation. This is also called the "Demand" mode.

Continuous Mode. Data operations continue until the end
of the programmed block of data or a stop-on-match
condition is reached before the system bus is released. If
a port's Ready line goes inactive before this occurs, the
DMA simply pauses until the Ready line comes active
again. This is also called the "Block" mode.

In all modes, the operation on the byte will be completed
in an orderly fashion once a byte of data is read into the
DMA, regardless of the state of other signals (including a
port's Ready line). Figure 2-3 illustrates the sequence of
events that occur in a sequential transfer/search of one
byte, irrespective of the mode of operation. First, the
source port address is incremented or decremented if it
was programmed to he a variable-address port. Then the
byte is read from that port into the DMA. Next, the destina­
tion port address is incremented or decremented if it was
programmed to be a variable. The byte is then written to the
destination port. If the search capability is included, the
byte is compared to the match byte. When there is no byte
match, the DMA increments the byte counter and contin­
ues; when a byte is found, a status bit is set and the DMA
either continues by incrementing the byte counter, stops
(releases the bus), or interrupts the CPU, depending on its
initial programming. The next three figures illustrate the
manner in which the three modes of operation behave
before, during, and after the single-byte operation shown
in Figure 2-3.

Operation in the Byte mode (Figure 2-4) begins with an
enabling command from the CPU and a test of the 1/0
device's Ready line. When the Ready line is active, the
DMA requests the system bus (address, data, and control
buses) via the Bus Request line, and the CPU acknowl­
edges and releases control to the DMA very shortly there­
after. The transfer of and/or search of one byte then takes

Increment/Decrement
Source-Port Address

Read
Source-Port Data

Increment/Decrement
Destination-Port Address

Write Data
to Destination Port

Increment
Byte Counter

YES

zao•DMA
UseR'S MANUAL

•Continue
• Release Bus
•Interrupt

Figure 2-3. Transfer/Search One Byte

place as in Figure 2-3. After this, a test is made for end-of­
block by checking to see if the byte counter has reached
the programmed block length. If the end is not reached,
the DMA releases the bus back to the CPU; if the end is
reached, a status bit is set and some terminating action
occurs, according to the initial programming. Releasing
the bus between each byte allows the CPU to execute at
least one machine cycle before releasing the bus again to
the DMA for the next byte transfer. This means that while
the DMA operates more slowly than it could in other
modes, CPU activities like interrupt acknowledgement,
polling, and memory refresh can be interleaved with DMA
transfers in the Byte mode.

C2-5

II

2.4 MODES OF OPERATION (Continued)

Release Bus
(CPU Executes
At Least One

Machine Cycle)

NO

Request Bus

Set Status Flag

•Interrupt
• Release Bus
•Auto Restart

Figure 2-4. Byte Mode

See
Figure2-3

In the Burst mode (Figure 2-5), the bus is requested in the
same manner as previously, but once the OMA has control
of the bus it continues to transfer bytes until it encounters
either an inactive Ready signal from an 1/0 port, an end-of­
block, or a byte match as in Figure 2-3. If the Ready line
goes inactive before end-of-block is reached, the OMA
releases the bus to the CPU and repetitively tests the
Ready signal until it comes active again. Then it requests
the bus again and continues its transfers. Because of this,
the Burst mode is often the most useful one for general­
purpose applications because it does not request the bus
until it actually can use it, but once it has the bus, the
transfers are made at maximum speed. If the transfers are
long, however, this mode can interfere with other CPU
activities, which come to a halt for the entire duration of
OMA transfers.

C2-6

Release Bus

NO

Request Bus

Transfer/Search
One Byte

Set Status Flag

•Interrupt
• Release Bus
•Auto Restart

Figure 2-5. Burst Mode

See
Figure2·3

In the Continuous mode (Figure 2-6), the OMA requests
the bus in the same manner as other modes and repeti­
tively transfers bytes in the same manner as Burst mode.
However, unlike the Burst mode the bus is retained by the
OMA whenever an inactive Ready signal is encountered
prior to a stop on end-of-block or byte match. The OMA
simply idles, while holding onto the bus, until Ready
becomes active again. Then it completes the transfer
sequence. This is the fastest of the three modes because
It eliminates the necessity of releasing the bus and re­
questing it again between complete block transfers. In this
mode, however, the system bus is continuously pre­
empted by the OMA. This mode is usually used only when
very fast transfers are needed and when the impact on
CPU activities can be comfortably tolerated. This might be
the case, for instance, when an operating system is being
loaded into memory from disk.

Due to the DMAs high-speed buffered method of reading
data, operations on one byte are not completed until the
next byte is read in. This means that total transfer or search
block lengths must be two or more bytes, even in the Byte
mode, and that block lengths programmed into the DMA

NO

ZSO*DMA
. USER'S MANllAL

must be one less than the desired block length. This
phenomenon is described in detail in the "Internal Struc­
ture" chapter under the section entitled, "Address and
Byte Counting."

Request Bus

Transfer/Search
One Byte

Set Status Flag

•Interrupt
• Release Bus
•Auto Restart

See
Figure 2-3

Figure 2·6. Continuous Mode

C2·7

II

2.5 TRANSFER SPEED

The Z80 OMA has the fastest maximum transfer rate of any
8-bit OMAC device. This rate is achieved in the simulta­
neous transfer class of operation and, unlike the more
common sequential transfer class, it requires at least one
external TTL package. But because all other 8-bit OMAs
require some external logic, this constitutes a legitimate
speed comparison.

Table 2-1 illustrates the maximum rates that can be achieved
in different classes of OMA operation. Maximum CPU
block-transfer rates are also given for comparison. All
OMA transfers assume the uninterrupted use of Burst or
Continuous mode, and they assume read and write cycles
that last two cycles (see the following "Variable Cycle,"
section).

Transfer speed in Byte mode depends on how long the
CPU keeps the bus between each byte transfer of the
OMA. Therefore, the speed is best expressed from the
CPU viewpoint.

Table 2-2 shows the reduction in Z80 throughput (per
Kilobaud transferred) caused by byte-mode OMA trans­
fers, and this rate is compared with the reduction in
throughput that would occur if the CPU did its own byte
transfers using an interrupt service routine of six instruc­
tions (a practical lower limit). The section entitled "OMA
and Z80 SIO" in the chapter on "Applications" contains
more detail on this data. Note that this data assumes
sequential OMA transfers with longer cycle timing than the
minimum of two clock cycles per read or write. Simulta­
neous transfers of two clock cycles would, therefore, result.
in even lower impact on CPU throughput.

Table 2-2 shows that the reduction of CPU throughput with
Byte mode OMA transfers is about five times less than the
reduction that results when the CPU handles its own byte­
mode 1/0 in the normal Interrupt mode. Table 2-1 shows
that OMA transfer rates in Burst and Continuous modes
can be up to ten times faster than Z80 CPU rates.

C2-8

zao•DMA
USER'S MANllAL

Table 2-1. Maximum Transfer and Search Speeds
(Burst and Continuous Modes)

DMA Simultaneous Transfer
DMA Search Only
OMA Simultaneous

Transfer/Search

DMA Sequential Transfer
OMA Sequential

Transfer/Search

CPU Block Transfer
Instruction

zao
(2.4MHz}

1.25
Mbytes/s

0.625
Mbytes/s

0.125
Mbytes/s

zsoz
(4.0 MHz)

2.0
Mbytes/s

1'.0
Mbytes/s

0.200
Mbytes/s

Table 2-2. Reduction In Z80 CPU Throughput per
Kiiobaud for Byte Mode Transfers

OMA Sequential Transfer
OMA Sequential

Transfer/Search

CPU Interrupt Driven
Transfer

zao
(2.4MHz)

0.065%

0.340%

zaoz
(4.0 MHz)

0.041%

0.213%

2.6 ADDRESS GENERATION

Two 26-bit addresses are generated by the OMA for every
transfer operation: one address for the source port and
another for the destination port. The two addresses are
multiplexed onto the address bus, according to whether
the OMA is reading the source or writing to the destination.

The two ports are arbitrarily named Port A and Port 8. Both
A and 8 can be either source or destination, either memory
or 1/0, and have fixed or variable addresses.

Variable addresses can either increment or decrement
automatically from the programmed starting address. Fixed
addresses are useful for 1/0 devices and the OMAs capa­
bility to generate fixed addresses eliminates the need for
transfer/search enabling wires to the 1/0 device (although
Chip Enable hardwiring is still required, as it is with all
peripheral circuits).

Two readable address counters keep the current address
of each port. These counters are distinct from the starting­
address registers for each port, that is, the counters are

2.7 BYTE MATCHING {SEARCHING)

Searches for byte matches can be performed either as a
sole function or simultaneously with transfers. When a byte
match is found, a status bit in the readable status register
is set and the OMA can be programmed to do one of the
following:

• Stop (release the bus) immediately upon byte match.

• Stop and interrupt the CPU immediately upon byte
match.

zsosDMA
USER'S MANUAL

buffered by the registers. Thus new starting addresses
can be written to the OMA whenever the OMA is not holding
the bus (for example, between byte transfers in Byte
mode). Therefore, new starting addresses for a new block
of data can be loaded into the OMA before the transfer of
the current block is finished. Loading new starting ad­
dresses does not disturb the contents of the associated
port address counters.

The following partially summarizes the ways OMA ad­
dress-generation capabilities can be used.

• Start at a base address and count up or down.

• Automatically step back to the beginning at the
completion of an address sequence.

• Load in new starting addresses or reload the previous
ones for the next sequence.

• Interrupt the CPU when the OMA stops at the end of a
block.

The match byte written into the OMA is masked with
another byte so that only certain bits within the match byte
can be compared with the corresponding bits in the data
bytes being searched.

C2-9

II

2.8 INTERRUPTS

The OMA can be programmed to interrupt the CPU on
three conditions:

• Interrupt on Ready

• Interrupt on Byte Match

• Interrupt on End-of-Block

The first condition (110-port Ready line becoming active)
causes an interrupt before the DMA requests the bus. The
other two conditions cause the OMA to interrupt the CPU
after the OMA stops (releases the bus). Stopping the OMA
on byte match or end-of-block is separately programmed.

2.9 AUTO RESTART

Block transfers can be repeated automatically by the
OMA. This function causes the byte counter to be cleared
and the address counters to be reloaded with the contents
of the starting-address registers.

The Auto Restart feature relieves the CPU of software
overhead for repetitive operations such as CRT refresh

2.10 PULSE GENERATION

External devices can keep track of how many bytes have
been transferred by using the DMAs Pulse output, which
provides a signal at 256-byte intervals. The interval se-.
quence may be offset at the beginning by 1 to 255 bytes.

2.11 VARIABLE CYCLE

The Z80 OMA offers the unique feature of programmable
operation-cycle length. This is valuable in tailoring the
OMA to the particular requirements of various CPUs and
other system components (fast or slow), and in maximizing
the data-transfer rate. Also, it often eliminates external
logic and reduces CPU software overhead.

C2-10

zao•DMA
USER'S MANllAL

Any of these conditions (Ready line becoming active, byte
match, or end-of-block) causes a readable status bit to be
set. In addition, when an interrupt on any of these condi­
tions is programmed, an interrupt-pending status bit is
also set, and each type of interrupt can optionally alter the
OMAs interrupt vector.

The OMA shares the ZSO Family's versatile interrupt scheme,
which provides fast interrupt service in real-time applications.
In a zao CPU environment where the CPU is using its Mode
2 interrupts, the OMA passes its internally-modifiable ·a-bit
interrupt vector to the CPU, which attaches an additional eight
bits to form the memory address of the interrupt routine table.
This table contains the address of the beginning of the
interrupt routine itself. In this process, CPU control is trans­
ferred to the interrupt routine, so that the next instruction
executed after an interrupt acknowledge is the first instruction
of the interrupt routine itself.

and many others. Moreover, the CPU can write different
starting addresses into the buffer registers during trans­
fers in the Byte mode (or Burst mode when the Ready line
is inactive and the bus is released) causing the Auto
Restart to begin at a new location.

The Interrupt line carries the Pulse signal in a manner that
prevents interpretation by the ZSO CPU as an interrupt
request, since the signal only appears when the Bus
Request and Bus Acknowledge lines are both active.
Under these conditions, the ZSO CPU does not monitor the
Interrupt (/INT) line.

There are two aspects to the variable cycle feature. Rrst,
the entire read and write cycles (periods) associated with
the source and destination ports can be independently
programmed as 2, 3, or 4 clock cycles long (more if Wait
cycles are used), thereby increasing or decreasing the
speed with which all OMA signals change.

Second, the four signals in each port (1/0 Request, Memory
Request, Read, and Write) can each have its active trailing
edge terminated one-half clock cycle early. This adds a
further dimension of flexibility, allowing such things as

2-Cycle

zao~DMA
USER'S MANUAL

shorter-than-normal Read or Write signals that go inactive
before data starts to change. Figure 2-7 illustrates the
general capability, which is described later in the "Timing"
chapter.

3-Cycle ----___.,~.

4-Cycle ---------+--'

Figure 2·7. Variable Cycle Length

2.12 TARGETS AND ACTIONS

Table 2-3 gives an overview of the targets that can cause
specific actions by the DMA, depending on how it is
programmed. The targets are conditions in the DMAs
internal registers, signals from the 1/0 device, or instruc­
tions on the data bus that DMA watches for.

Table 2-3. Events and Actions

Event

End-of-Block

Byte Match (Compare)

Pulse-control Byte Matches
Lower Part of Byte Counter

READY Inactive

READY Active

RETI Instruction (Return from
Interrupt Instruction from the
ZBOCPU)

Actions Possible
When Event Occurs

1. Release Bus
2. Interrupt CPU
3. Auto Restart

1. Release Bus
2. Interrupt CPU
3. Continue

1. Generate Pulse

1. Release Bus
2. Suspend (Continuous

Mode Only)

1. Request Bus
2. Interrupt CPU

1. Request Bus

C2-11

II

3.0 PIN DESCRIPTION

The following pin descriptions detail the function of the Z80
DMA external pins as illustrated in Figures 3-1 through 3-4.

A 15-AO System Address Bus (output, tri-state). Ad dresses
generated by the DMA are sent to both source and desti­
nation ports, either of which may be main memory or 1/0
peripherals.

/BAI Bus Acknowledge In (input, active Low). Signals that
the system buses have been released for OMA control.

/BAO Bus Acknowledge Out (output, active Low). In
multiple-OMA configurations, this pin signals that the CPU
has relinquished control of the bus. /BAI and /BAO from a
daisy chain for multiple-OMA priority resolution over bus
control. Unlike the interrupt daisy chain formed with the IEI
and IEO lines, this chain does not allow preemption of
control by a high-priority DMA when a lower-priority DMA
is already bus master. The DMA that has the bus is always
allowed to finish, regardless of its priority in the chain.

/BUSREQ Bus Request (bidirectional, active Low, open­
drain). As an output, it sends requests for control of the
system address bus, data bus, and control bus to the CPU.
As an input when multiple DMAs are strung together in a.
priority daisy chain through /BAI and /BAO, it senses when
another OMA has requested the buses and causes this
DMA to refrain from bus requesting until another DMA is
finished. Because it is a bidirectional pin that allows simul­
taneous bidirectional signals with no means of control,
there cannot be any buffers between this DMA and any
other DMA. It can, however, have a buffer between it and
the CPU because it is unidirectional into the CPU. A 1.8
kohms pullup resistor is typically connected to this pin.

OMA USER'S MANUAL

CHAPTER 3
PIN DESCRIPTION

/CE//WAIT Chip Enable and Wait (input, active Low).
Normally, this functions only as a /CE line, but it can also
be programmed to serve as a /WAIT function. As a /CE line
from the CPU, it becomes active when /IORQ is active and
the 1/0 port address (up to 16 bits) on the system address
bus is the DMA's address, thereby allowing control bytes
to be written from the CPU to the DMA. As a/WAIT line from
memory or 1/0 devices, after the DMA has received a bus
acknowledge (/BUSACK) from the CPU, it causes wait C
states to be inserted in the DMA's operation cycles, thereby
slowing the DMA to a speed that matches the memory or
1/0 device. The "Applications" chapter contains a descrip-
tion of how the /CE and /WAIT inputs can be multiplexed by
the CPU's /BUSACK line.

CLK System Clock (input). Standard Z80 single-phase
clock at 2.5 MHz (Z80 OMA) or 4.0 MHz (Z80A OMA). For
slower system clocks a TIL gate with a pullup resistor may
be adequate to meet the timing and voltage level specifi­
cations. For higher speed systems, use a clock driver with
an active pull up to meet the VIH specification and rise time
requirements. There should be a resistive pullup to the
power supply of 10 kohms (maximum) in all cases to
ensure proper power when the DMA is reset.

07-DO System Data Bus (bidirectional, tri-state). These
pins transfer control bytes from the CPU, status bytes from
the OMA, and data from memory or 1/0 peripherals. Data
transfers or searches by the DMA are done only when the
OMA controls this bus and the address bus. When the CPU
controls these buses, it can write or read OMA control or
status bytes.

C3-1

3.0 PIN DESCRIPTIONS {Continued)

IEI Interrupt Enable ln(input, active, High). This line is used
with IEO to form a priority daisy chain when there is more
than one interrupting device. A High on this line indicates
that no other device of higher priority is interrupting,
thereby allowing this DMA to interrupt if it is otherwise
enabled to.

IEO Interrupt Enable Out(output. active High). IEO is High
only if IEI is High and this DMA is not requesting an
interrupt. Thus, this signal blocks lower priority devices
from interrupting while a higher priority device is being
serviced by its CPU interrupt service routine. Unlike de­
vices in a bus-request daisy chain, devices in an interrupt
daisy chain can be preempted by higher priority devices
before the lower priority device has been fully serviced.

nNT//PULSE Interrupt Request(output. active Low, open­
drain). This requests a CPU interrupt when brought Low at
a time when the DMA is not the bus master. The CPU
acknowledges the interrupt by pulling its /IORQ output
Low during an /M1 cycle. The DMA /INT pin is typically
connected to the /INT pin of the CPU with a pullup resistor
and tied to all other /INT pins in the system. This pin can
also be used to generate periodic pulses to an external
device. It can be used this way only when the DMA is bus.
master (i.e., the CPU's /BUSREQ and /BUSACK lines are
both Low and the CPU cannot see interrupts).

nORQ Input/Output Request(bidirectional, active Low, tri­
state). As an input, this indicates that the lower half of the
address bus holds a valid 1/0 port address for transfer of
control or status bytes from or to the CPU, respectively; this
OMA is the addressed port if its /CE pin, /IORQ pin, and or
/RD pin are simultaneously active. As an output, after the
OMA has taken control of the system buses, it indicates
that the address bus holds a valid 8-bit or 16-bit port
address for another 1/0 device involved in a DMA transfer
of data. When /IORQ and /M1 are both active inputs to the
OMA simultaneously, an interrupt acknowledge by the
CPU is indicated.

/M1 Machine Cycle One (input, active Low). This pin
indicates that the current CPU machine cycle is an instruc­
tion fetch. It has two purposes in the DMA's interrupt
structure. First, it is used by the DMA to detect return-from­
interrupt instructions (RETI, or hex ED4D) fetched over the
data bus by the CPU at the end of interrupt service

C3-2

routines. Second, an interrupt acknowledge is indicated
when both /M1 and /IORQ are active inputs to the DMA.
During 2-byte instruction fetches, /M1 is active as each
opcode byte is fetched. In the CMOS DMA, the /M1 signal
has another function: when /Mi occurs without an active
/RD or /IORQ for at least two clock cycles, the internal reset
is activated at the falling clock after /M1 returns to the
inactive state. This internal reset lasts for three clock
cycles.

/MREQ Memory Request (output, active Low, tri-state).
This line indicates that the address bus holds a valid
address for a memory read or write operation. After the
DMA has taken control of the system buses, it indicates a
DMA transfer request from or to memory.

/RD Read(bidirectional, active Low, tri-state). As an input,
this signal indicates that the CPU wants to read status
bytes from the DMAs read registers, if selected. As an
output, after the OMA has taken control of the system
buses, it indicates a OMA-controlled read from memory or
1/0 port address.

/ROY Ready (input, programmable active Low or High).
This pin is monitored by the DMA to determine when a
peripheral device associated with a DMA port is ready for
a read or write operation. When the DMA is enabled to
operate, the /ADY line indirectly controls DMA activity; the
manner in which OMA activity is controlled by /ADY varies
with the operating mode (Byte, Burst, or Continuous). An
active /ADY line can be simulated by programming a
Force Ready condition. This is useful in memory-to-memory
operations. It is preferable to have the /ADY signal syn­
chronized to the CLK signal, i.e., /ADY should become
active on the rising edge of CLK. This is particularly
important in the Continuous mode of operation.

/WR Write (bidirectional, active Low, tri-state). As an input,
this indicates that the CPU wants to write control bytes to
the DMA write registers when the DMA is selected. As an
output, after the OMA has taken control of the system
buses, it indicates a OMA-controlled write to a memory or
1/0 port address.

/RESET Reset (input active low) is only available in the
CMOS PLCC version. A Low in this signal Resets the DMA.

it'2H . .ll6

!--DO
--01

--02

~ --03

BUS -- 04
--as
--06
--07

BUS {-- /BUSREQ
Control - /BAI

-/BAO

AO
A1

A2
A3

A4

AS

AS

A7
AB

A9
A10

A11

ZBODMA A12

{

-/M1

svstem -- naRa
CCntrol - /MREQ

BUS -- /RD

--/WR

r---- -----1
I -/RESET I
'----- ____ J

C-MOSDMA
PLCC Package Oni'f

t t
+5V GAD

A13

A14
A15

nNT//P\JLSE
IEI

CU<

Figure 3·1. Pin Functions

6 5 4 3 2 1 44 43 42 41

• AO

CUC

/WR

/RD 10

noRQ 11

N/C 12 Z8410

vcc 13

/MREQ 14

/BAO 15

)BAI 16

/BUSREQ 17

18 19 20 21 22 23 24 25 26 27

.... "',
"' l;1 0 ~ ~ >-

i < < < < < Cl a:

I.!

System
Address
BUS

40

39

38

37

38

35

34

33

32

31

30

29

28

~

Figure 3-3. 44-Pin PLCC Pin Assignments
(Z8410 NMOS)

DO

01·

02

03

D4

GND

D6

05

07

/M1

N/C

AO

CUC

/WR

/RD

nORQ

/RESET

vcc
/MREQ

/BAO

/BAI

/BUSREQ

AS

A4

fl:3

A2.
A1

AO
CU<
/WR

/RD

/IORQ 10

vcc 11

IMREQ 12

/BAO 13

/BAI 14

/BUSREQ 15

/CE//WAIT 16

A15 17

A14 18

A13

A12

Z80DMA
{DIP)

A6

A7

IEI

zaoaDMA
USER'S MANUAL

/INTI/PULSE

IEO

DO

01
02

D3

04

GND

05

06
07
/M1

ROY

Afl

A9

A10

A11

Figure 3-2. 40-Pin DIP Pin Assignments

~ iii

6 5 4 3 2 1 44 43 42 41 40

• 39 DO

38 01

37 02

10 36 03

11 35 04

12 Z84C10 34 GND

13 33 06

14 32 05

15 31 07

16 30 /M1

17 29 N/C

.... "',
"' <

0 ~ ~ iS ill ~ < < < < < a:
ill
I.!

Figure 3-4. 44-Pin PLCC Pin Assignments
(Z84C10 CMOS)

C3-3

II

~2iUU.,

4.0 GENERAL ORGANIZATION

The internal structure of the Z80 DMA includes driver and
receiver circuitry for interfacing with an 8-bit data bus, a 16-
bit address bus, and system control lines. In a Z80 CPU
environment, the OMA can betied directlytotheanalogous
pins on the CPU with no additional buffering, exceptfor the
/CE/NJAIT line, when operation is limited to sequential
transfers and searches. The chapter on "Applications"
provides an illustration of this.

Figure 4-1 illustrates how the DMA's internal data bus
interfaces with the system data bus and services all inter-

Interrupt
and Bus Pulse
Priority Logic
Logic

Sytem
Data
Bus

(8-Bit)

Bus
Control ·

and
Control Control Status

Logic Registers

OMA USER'S MANUAL

CHAPTER 4
INTERNAL STRUCTURE

nal logic and registers. Addresses generated for Ports A
and B of the DMA's single transfer channel are multiplexed
onto the system address bus.

Specialized logic circuits in the OMA are dedicated to the
various functions of external bus interfacing, internal bus
control, byte matching, byte counting, periodic pulse
generation, CPU interrupts, bus requests, and address
generation.

BYTE
Counter Port A

Address

System

MUX
Address
Bus
(16-Bit)

BYTE PortB
Address Match

Logic

Figure 4-1. Z80 OMA Block Diagram

C4-1

II

't'2H.m
4.1 CONTROL AND STATUS REGISTERS

A set of 21 writeable control registers and seven readable
status registers provide the means by which the CPU governs
and monitors the activities of these logic circuits. All registers
are eight bits wide (the width of the data bus), and double-byte
information is stored in adjacent registers.

The 21 control registers writeable through the data bus are
organized into seven base register groups, WR6 through
WRO, most of which have multiple registers. The base
registers in each group contain both control hits and
pointer bits that can be set to address other registers within
the group. Writing to a register within a group involves first
writing to the base register for that group, with the appro­
priate pointer bits set, then writing to one or more of the
other registers that have been pointed to within the group.
The chapter on "Programming" contains a full discussion
of this technique. The names of the write registers shown
in Figure 4-2 do not indicate the full extent of the DMAs
programmability since many modes and functions are set
with single bits in the base register bytes of each group.

Figure 4-2 illustrates the write registers. These are the
registers for which inputs from the data bus are shown in
the figure (compare this figure with Figure 4-3, which
identifies the read registers).

The two 16-bit starting address registers in groups WR4
and WRO, and the 16-bit block-length register in group
WRO have 16-bit counters associated with them. (The
counters, unlike their associated registers, cannot be
written to.) The two address counters generate the ad­
dresses that are put onto the address bus. They can also
be read by the CPU through the data bus, as can the byte

C4-2

zao•OMA
USER'S MANUAL

counter. All three writeable registers act as buffers for the
readable counters; the contents of the registers can be
changed during a block transfer without disturbing the
contents of the counters. This facility is useful, for example,
during Byte-mode transfers, in which control bytes can be
written to the DMA while the CPU has the bus between byte
transfers. This allows the next block (which can be an Auto
Restart block) to begin quickly at a new location. Note that
the block length counter stops (or Auto Restarts) as a
result of a comparison to the block length register. In
changing the register, the block length also changes· with
what may be unpredictable results.

The pulse-control byte illustrated in Figure 4-2 (in the WR4
group) also has a relationship to the byte counter in WRO­
it can be loaded with an offset value between 0 and 255
and this value will be continuously compared with the
lower byte of the byte counter. The /INT line generates a
pulse each time a match occurs, which happens on every
256 bytes of transfer or search after the initial offset. Since
the pulse signals generated on the /INT line only occur
when the DMA has control of the system bus (i.e., when the
/BUSREQ and /BUSACK lines are simultaneously active),
the CPU does not see them and they can be directed
exclusively to an external gate, counter, or other device.

Figure 4-3 illustrates the seven status registers readable
through the data bus. Unlike the write registers, the status
registers include no second-level registers or groups.
These registers are accessed sequentially according to
the "read mask" written into the WR6 group, except that the
"status byte" can be read separately from the other read
registers.

Data lwRQ--------- o BUS

I Base Register Byte
I
I
I
I
I
I Blook Le

I Byte Counter (ee Figure 4-3)

~----------------------
! WR1 Base Register Byte
I
I Port A Variable Tmlng

r----------------------
1 WR2 Base Register Byte

I
I Port B Variable nn1n

r----------------------
1 WR3 Base Register Byte

I
I Mask Byte

I
I

Interrupt Control Byte

Pulse Control Byte

Figure 4-2. Write Register Organization

Port AAdd Counter
RR4

B e nter
RR2

Port B Addre Counter

RR6

RR3

RR1

RR5

Status B e

RRO

ZSO®DMA
USER'S MANUAL

Data
Bus

Figure 4-3. Read Register Organization

C4-3

II

4.2 ADDRESS AND BYTE COUNTING

Addresses for either port may be fixed at their pro­
grammed starting address, or they may be incremented
or decremented from the programmed starting address
by the address counters. The block length programmed
into the OMA is compared with the byte counter, which
starts at zero and increments at the completion of each
byte operation (Figure 2-3).

The OMA uses a high-speed buffering or pipelining scheme
for reading data in. In transferring data and stopping on an
end-of-block, the consequence of this pipelining is that
one more transfer will be completed than is programmed
into the block-length register; the only exception to this
rule occurs in simultaneous transfers which use two-cycle
variable timing, in which case two extra bytes are trans­
ferred if the Ready line remains active.

Table 4-1 shows the contents of the counters in the various
classes and the modes of transfer involving stopping or
interrupting at an end-of-block (interrupts imply prior
stopping).

zao•DMA
USER'S MANUAL

Search and transfer/search operations that are pro­
grammed to stop on byte match behave somewhat differ­
ently, as illustrated in Table 4-2. Matches are discovered
only after the next byte is read in. In all classes of transfer/
search operations, the matched byte is transferred. In
simultaneous transfer/search operations, however, an
additional byte is usually also transferred. The only excep­
tion to this occurs in Burst and Continuous modes when
the Ready line goes inactive while the byte match is being
located. With respect to simultaneous transfer/searches in
Burst or Continuous mode, this special case is usually not
a problem since searches are typically continuous pro­
cesses performed in memory using a Force Ready condi­
tion or a Ready line that will not go inactive. However, if it
is possible this situation may be encountered, the CPU
can be programmed to research two bytes when such a
match occurs.

Table 4-1. Contents of Counters After DMA Stops Due to End-of-Block
(Transfer Operations)

Programmed Bytes
Block Transferred Byte

Class Mode Length At Stop Counter

Sequential Byte N N + 1 N
Transfer Burst N N+1 N

Continuous N N+1 N

Search Only Byte N N + 1 N
or Simultaneous Burst N N + 1 N + 1
Transfer/Search Burst N N + 2** N + 1••

Continuous N+1 N + 1 N + 1
Continuous N + 1 N + 2** N + 1**

Notes:
• Address can increment(+} or decrement(-} from the programmed starting address (As},

which is the first address for transfer purposes.
•• Occurs only in 2-cycle (variable timing} simultaneous transfers when the Ready line is still

active at the end of the N + 1 byte transfer.
•••. Simultaneous transfers cannot have both ports variable. This class of operation is programmed

as a OMA search-only operation, with variable addresses ascribed to the programmed
'source' port. In fact, wha the OMA believes is the 'source' port may be either the real
source or destination, as determined by external hardware. See the 'Applications' chapter.

C4-4

Destination
Source-Port Port

Address Address
Counter* Counter*

As± (N + 1) As± (N)
As±(N+1) As± (N)
As± (N + 1) As± (N)

As± (N + 1) •••
As± (N + 1)

As± (N + 2)**
As± (N + 1)

As± (N + 2)**

ZSO«>DMA
USER'S MANIJAL

Table 4-2. Contents of Counters After OMA Stops Due to Byte Match
(Search or Transfer/Search Operations)

Match Bytes Destination
Occurs Transferred Source-Port Port
On This At Stop If Byte Address Address

Class Mode Byte Transferring Counter Counter* Counter*

Sequential Byte M M M-1 As± (M) As± (M-1)
Transfer Burst M M M-1 As± (M) As± {M-)

Continuous M M+ M-1 As± (M) As± {M-)

Search Only Byte M M M As± (M) ...
or Simultaneous Burst M M + 1 M + 1 As± (M + 1) ...
Tran sf er /Search Burst M M** M-1** As± {M)**

Continuous M M + 1 M + 1 As± (M + 1)
Continuous M M** M-1** As± (M)**

Motes:
• Address can increment (+) or decrement(-) from the programmed starting address (As).

which is the first address for transfer or search.
•• Occurs only only when the Ready line is still goes inactive just prior to the beginning of the

last possible cycle in the operation (i.e., Ready iis sampled inactive on the rising edge of CLK
in the last cycle of the last read operation).

••• Search only has no destination. Simultaneous transfer/search cannot have both ports variable.
This class of operation is programmed as a OMA search-only operation, with variable addresses ascribed to
the programmed 'source' port. In fact, wha the OMA believes is the 'source' port may be either the real
source or destination, as determined by external hardware. See the 'Applications' chapter.

4.3 BUS CONTROL

The OMA transfers and searches data by controlling the
system buses in exactly the same way that the 280 CPU
controls them to do read and write cycles. Specifically, the
DMA controls the following lines:

• Address Bus (16 bits)

• Data Bus (8 bits)

• /IORQ

• /MREQ

• /RD

• !WR

In addition, the DMA can also be programmed to watch a
!WAIT line through its dual-purpose /CE/!WAIT pin.

When the DMA has requested and received the bus from
the CPU, other devices on the system do not perceive the
change. The CPU is completely idle during this time
because it cannot fetch instructions from memory.

4.3.1 Bus Requesting
Two conditions enable the DMA to request the bus from the
CPU: (1) an enabling command from the CPU, and (2) an

active Ready condition, which can be caused either by an
active Ready line from an 1/0 device or a Force Ready
command by the CPU.

The DMA requests the bus by latching its /BUSREQ line
Low. The CPU will always respond to a bus request and it
does so quickly, in no more than one machine cycle (3 to
1 O clock cycles) plus one additional clock cycle--by
lowering its /BUSACK line as an input to the DMA's /BAI
line. Both the DMA's /BUSREQ output and the CPU's
/BUSACK output will remain Low while the DMA has the
bus.

The bus is released back to the CPU when the DMA's
/BUSREQ line goes High; the CPU's /BUSACK line goes
High in the next clock cycle. The DMA releases its
/BUSREQ line under a variety of conditions, including:

• Completion of single-byte transfer {Byte mode)

• Ready line going inactive (Byte and Burst modes)

• Byte match (Burst and Continuous modes), if stop on
match is programmed

• End-of-block {all modes), if stop on end-of-block is
programmed

C4·5

II

~2H.JJ6

4.3 BUS CONTROL (Continued)

These conditions each have a somewhat different charac­
ter and they are explained in the "Timing" chapter. Bus
requests cannot be made while the CPU services an
interrupt from the OMA. This is prevented by the Interrupt
Under Service (!US) latch, discussed later.

4.3.1 Bus-Request Daisy Chains
Multiple OMAs can be linked in a prioritized daisy chain for
the purpose of requesting the bus. Figure 4-4 shows how
this is done.

Each OMA's /BUSREQ pin is bidirectional. As an output, it
requests the bus. As an input, this pin senses when
another OMA in the daisy chain has requested the bus
(brought the /BUSREQ line Low) and thus prevents this
OMA from also requesting the bus until the other OMA has

Z80®DMA
USER'S MANUAL

finished. Any OMA which has the bus is always allowed to
finish its operation; a higher priority OMA cannot preempt
it during this time.

Their proximity to the CPU determines the priority of OMAs
in a daisy chain. The OMA electrically closest to the CPU
(as measured along the /BUSACK//BAI lines) has the
highest priority. Priority matters only when multiple OMAs
request the bus on the same clock cycle. The higher
priority OMA can then prevent lower priority OMAs from
receiving a bus-acknowledge signal through the /BAI/
/BAO chain. The lower priority OMAs continue to hold their
/BUSREQ lines Low until the higher priority OMA finishes
and releases the bus, thereby allowing lower priority OMAs
to contend immediately for the bus.

/BUSREQ -.
11.BK

CPU
/BUSACK

j_ l
....

.1 l
/BAI /BUSREQ /BAO /BAI IBUSREQ /BAO

OMA OMA

Figure 4-4. Bus-Requesting Daisy Chain

4.4 INTERRUPTS

4.4.1 Conditions and Methods
The ZBO CPU honors external events according to the
following priority:

• Bus Requests {/BUSREQ)

• Non-Maskable Interrupts (NMI)

• Maskable Interrupts {/INT)

In addition to bus requests, the OMA normally uses only
maskable interrupts {/INT) and it uses them in the CPU's
Mode 2, which allows interrupt vectors. Non-maskable
interrupts are typically reserved for extreme priority events
such as power-failure signaling. A full description of this is
given in Zilog Application Note 03-0041-01, The ZBO
Family Program Interrupt Structure.

C4-6

The OMA can be programmed to interrupt the CPU under
the following conditions:

• After the OMA's ROY line has gone active and before
the OMA requests the bus (interrupt on ROY).

• On an end-of-block, when the contents of the byte
counter match the contents of the block-length register.

• On a byte match, when the contents of the match-byte
register-after masking by the mask-byte register­
corresponds to a data byte being transferred or
searched.

The DMA cannot have control of the bus when it interrupts
the CPU because signaling on the /INT line while the OMA
is bus master is used to generate periodic pulses to an
external device and is not perceived by the Z80 CPU.
Therefore, after a stop on end-of-block or byte match, the
OMA first releases the bus before interrupting the CPU, as
shown in Figure 4-5.

If the OMA is programmed to interrupt on end-of-block and
also to Auto Restart on end-of-block, an interrupt will occur
(and should be acknowledged for continued operation) at
each end-of-block. However, the end-of-block status bit
will not be set as it would be without the Auto Restart.
Therefore, the interrupt vector cannot reflect the specific
interrupt cause (i.e., Status Affects Vector is not effective).

OMA

End-Of-Block IBUSREQ

or Byte Match /BAI

zao~DMA
USER'S MANUAL

The Z80 CPU acknowledges the interrupt by pulling its /M 1
and /IORQ lines Low for one machine cycle (see the
"Timing" chapter). This causes the DMA to put its 8-bit
interrupt vector on the data bus, thereby identifying itself
and optionally identifying the origin of the interrupt. The
CPU uses the vector to access an interrupt service routine,
which is then executed. The interrupt service routine
typically reenables the OMA to request the bus and cause
interrupts again.

For CPUs that have no interrupt acknowledge or a non­
compatible one, DMA control bytes can be written (usually
in the interrupt service routine) to simulate the same
functions.

CPU

/BUSREQ

/BUSACK

nmHm OMA Releases
Bus and

Interrupts CPU

CPU Acknowledges
Interrupt

OMA Passes
Interrupt Vector

To CPU

CPU Executes
Interrupt Service

Routine

OMA Requests
Bus Again

/M1

/IORQ

IBUSREQ

/BAI

/M1

/IORQ

· /BUSREQ

/BUSACK

•Bus Master

Figure 4-5. ZSO Interrupt Sequence

C4-7

II

4.4 INTERRUPTS (Continued)

4.4.2 Interrupt Vectors
The Z80 CPU interrupt acknowledge cycle causes the
OMA to put its 8-bit interrupt vector on the data bus (Figure
4-6a). This vector is read by the CPU into a temporary
register. It normally identifies the interrupting device and it
can also identify the cause of the interrupt (actually the
current state of certain status bits). The I Register of the
Z80 CPU (when the CPU is programmed to its Mode ?
state) has the upper byte of a 16-bit address which is
formed with the interrupt vector, and this address points to
a jump table entry in memory.

MEMORY

a.
L J
Jump Table

b.

[]
Jump Table

[

L-1

Service Routine

c.

[

L-1

--
Service Routine

Z80*DMA
USER'S MANUAL

The jump table location in memory contains an address that
is read into the CPU's program counter (Figure 4-6b). This
address points to the first instruction of the interrupt service
routine, which then begins executing. In most OMA appli­
cations, the CPU's interrupt service routine contains in­
structions which write control bytes back into the OMA
through a register in the CPU (Figure 4-6c).

In CPU environments without interrupt vectors, the CPU
must poll each peripheral or an external register to deter­
mine which device interrupted and why.

CPU DMA

t
J [1

I Register Interrupt
Vector

t
1

Program
Counter

J I I
Register I I

1 I I
Program I I
Counter I I

Write
Registers

Figure 4-6. ZSO Interrupt Service Routine

C4-8

4.4.3 Interrupt Latches
Two primary latches are associated with the interrupt
structure:

Interrupt Pending (IP). Set whenever the OMA requests
an interrupt but has not yet been acknowledged. It holds
the INT line Low (Figure 4-7).

Interrupt Under Service (IUS). Set when the CPU ac­
knowledges the OMA interrupt (Figure 4-8). This does
three things:

• Prevents further interrupts by this OMA

Enable Interrupts

Disable Interrupts

s
R

Q

Interrupt Condition

ZSO®DMA
USER'S MANUAL

• Prevents interrupts from lower priority devices in an
interrupt daisy chain

• Prevents further bus requests by this OMA

If the Interrupt on ROY (interrupt before requesting bus)
option is selected, the IP latch is set when the Ready line
becomes active, causing /INT to go Low.

The IP latch is reset whenever the IUS latch is set. but if the
interrupt-causing condition is not removed before IUS is
reset, IP becomes set again as soon as IUS is reset,
therefore, causing another interrupt. The IUS latch can be
reset by the Z80 CPU's Return from Interrupt (RETI) in­
struction or by control bytes written to the OMA.

M1 Inactive --------1~1 0 Interrupt Pending
(To IUS Latch Set)

Reinitialize Status Byte -----r-'
Reset and Disable Interrupts -------1~_,,,

IP

*NOTE: Interrupt conditions can include end-or-block, byte match
or active ROY line, depending on programming.

Figure 4-7. Interrupt Pending (IP) Latch

Interrupt Pending
(From IP Laich)----~

lnterruptAcknowledge _____ _.
(/M1 and /IORQ)

IEI--.---~

RETI----~~

Reset and Disable Interrupts ------'

0

IUS

Figure 4-8. Interrupt Under Service (IUS) Latch

DisableDMA

C4-9

II

4.4 INTERRUPTS (Continued)

4.4.4 Interrupt On Ready
Normally, when the DMA has been enabled by the CPU to
request the bus while the 1/0 device's Ready line is
inactive, the Ready line's transition to the active state will
cause the /BUSREQ line to go Low (Figure 4-9). It does so
within two clock cycles if the setup time to the rising edge
of CLK is met.

This does not take place, however, when the Interrupt on
Ready option (also called the Interrupt Before Requesting
Bus option) is selected. When this option is used, the OMA
interrupts the CPU when the Ready line comes active. The
CPU's interrupt service routine now writes control bytes to
the OMA, which enable the OMA to request the bus after
the service routine finishes.

As noted earlier, the CPU cannot respond to an interrupt
when the OMA is bus master. Thus, when enabled in
Continuous mode, the DMA interrupts the CPU when the
Ready line first becomes active, but not on succeeding
transitions.

The Interrupt on Ready option is typically used to put new
starting addresses into the DMA so that transfers go to a
part of memory that is dynamically determined.

4.4.5 Interrupt Service Routines
In addition to the DMA's extensive programmability for
mode-setting (usually done at power-up initialization),

zaosDMA
UsER's MANllAL

there are numerous commands (control bytes) designed
for use in various interrupt service routines. The next
chapter on "Programming," fully explains the commands,
but a quick overview in the present context may be helpful.

Some typical functions for which control bytes are avail­
able for use in interrupt service routines include:

• Reset the DMA
Enable the OMA for bus requesting
Disable the DMA for bus requesting

• Reset and disable DMA interrupts,
Enable OMA interrupts
Disable DMA interrupts

• Load new starting addresses and block length
Continue prior address counting
clear block length counter

• Force the Ready condition

• Read the status byte
Initiate a status-register read sequence
Clear status

Interrupt service routines on a Z80 CPU always erld with a
Return From Interrupt (RETI or hex ED4D) instruction,
which is now explained.

0-FLIP-FLOP

+5V-----•D 0 Disable OMA

lntenupt Condition (Active ROY)------ CY IOR
Enable Alter RETI R

Reset and Disable tntenupts--.....-

"NOTE: This latch is only set when the intenupt On Ready option is selected.

Figure 4-9. Interrupt On Ready (IOR) Latch

C4-10

4.4.6 Return From Interrupt
At the end of an interrupt service routine, the Z80 CPU
executes a return-from-interrupt (RETI or hex ED4D) in­
struction. This returns the CPU from the interrupt service
routine.

The DMA also simultaneously decodes the RETI instruc­
tion, which it recognizes on the data bus as an instruction
(occurring when the DMAs /M1 input is Low). This causes
at least one, and possibly two, things to happen within the
DMA:

• Resets the Interrupt Under Service (IUS) latch in the
DMA, thereby allowing its IEO pin to go High so that
lower priority devices can interrupt.

• Enables the DMA to request the bus again. (This
occurs only in the Interrupt on Ready option and only
when the Enable DMA control byte is also used.)

For non-Z80 environments, control bytes are provided to
simulate these actions.

4.4.7 Interrupt Daisy Chains
Multiple DMAs can be chained together by their IEI and
IEO lines, as shown in Figure 4-10. In the Z80 Family, the
DMAs location in the IEl/IEO chain sets priority.

When peripherals simultaneously interrupt the Z80 CPU,
the highest priority peripheral (nearest the +5V end of the

T "
zao nN I
CPU

+5V - IEI

nNT

Highest Priority
Interrupting Device

Z80"DMA
UsER'S MANUAL

daisy chain) is serviced. The CPU learns which peripheral
won by receiving its interrupt vector; the IEl/IEO chain
allows only the highest priority interrupting peripheral to
place its interrupt vector on the data bus. In non-Z80
environments that have no interrupt vectors, the winning
peripheral may be determined by successively reading
the status of all peripherals.

For a device to have priority, its IEI line must be High. When
a device needs service, it prevents downstream devices
from interrupting by pulling its IEO line Low. The next
device in the chain then passes this Low condition on to
other downstream devices by pulling its IEO line Low, and
so on.

Whenever an interrupt is acknowledged (Figure 4-5), the
CPU's interrupt structure is disabled. It must subsequently
be reenabled by an "enable interrupts" instruction before
other devices can interrupt again. This normally takes
place within the interrupt service routine. When done early
in the service routine, this permits higher priority peripher-11
als to interrupt the CPU while the latter is still executing that
service routine. Thus, nested interrupts are allowed in
which the higher priority peripheral suspends the execu-
tion of the lower priority peripheral's service routine.

Bus-requesting daisy chains do not have this preemption
or nesting ability. Instead, any peripheral which is able to
get the bus keeps it until the completion of its task.

/INT

IEO t--1 IEI IEO

To
Lo

f--P'
Int

war
nority
errupting

Device

Figure 4-10. Interrupt Daisy Chain

C4-11

4.4 INTERRUPTS (Continued)

4.4.8 Polling for Service Requests Polling is done in the following way:

Z80*DMA
USER's MANllAL

When the CPU cannot detect interrupts directly, it can poll
an external gate as shown in Figure 4-11. • Enable the DMA's interrupt structure with a control

byte

C4-12

/INT

OMA

• Poll a status bit to see when an interrupt request
occurs

Tri-state Enable Line,
Normally at Tri-state,
(e.g., Connected to a
Chip Select Decode~

-- - --- , Pending
: Polling

I

D
CPU

Figure 4-11. Polling for a Service Request Bit

5.0 OVERVIEW

The OMA must be programmed before it can be used. Its
control registers have no useful default values on power
up. In addition, commands are frequently written to the
OMA after the initial power-up programming sets its basic
operating modes; this is most commonly done within
service routines for purposes such as reading status,
changing starting addresses, and reenabling both inter­
rupt and bus-request logic after a block transfer or search.

The OMA has two fundamental states that can be set
programmatically: (1) an enabled state, in which it can gain
control of the system buses and direct the transfer of data
between ports or the searching of data from a single port;
and (2) a disabled state, in which it can initiate neither bus
requests nor data transfers. Table 5-1 shows these states
and their sub-states in detail. When the OMA is powered up
or reset by any means, it is automatically placed into the
disabled state. Program commands can be written to it by
the CPU in the enable/inactive state, but this automatically

OMA USER'S MANUAL

CHAPTER 5
PROGRAMMING

puts the OMA into the disabled state, which is maintained
until an ENABLE OMA command is written by the CPU to
the OMA's Write Register 6 (WR6).

Within the Z80 Family, the OMA normally exists as a
peripheral device in system 1/0 space. Its Chip Enable
(ICE) signal is decoded from the lower byte of the address
bus for this purpose and all control bytes and status bytes
are written to and read from the same 1/0 port address, II
using an output instruction such as OTIR (in the Z80 CPU).

It is possible to use the OMA in memory mapped 1/0
structures, but this involves some external logic (which is
explained in the "Applications" chapter). It is not possible
for the OMA to program itself by directing transfers of
control bytes from memory to its own internal registers.

When OMA interrupt vectors are used in a ZBO environ­
ment, the Z80 CPU should be programmed for Mode-2
maskable interrupts.

C5-1

~2iUl6
zao•DMA

UsER'S MANUAL

Table 5-1. OMA Status

ENABLED
Inactive Active

DISABLED (Stopped) Suspended Operating

Description DMA cannot request DMA can request the DMA is bus master DMA is bus master
the bus (cannot pu II bus and may have had but no operations are and is transferring
its /BUSREQ input to the bus immediately taking place. and/or searching in
CPU low). prior to this state, one of its three modes

but it is not currently (Byte, Burst, or
the bus master. Continuous).

Can the CPU write Yes Yes (But write a No No
DMA control bytes or DISABLE DMA
read DMA status bytes? command first)

External actions Power-down End-of-block in any RDY line inactive ROY line active in
which will cause mode, except with in Continuous mode. Burst mode, if DMA
the state Auto Restart. is enabled.

Byte Match in any mode. RETI instruction fetched
Byte or Burst mode /BAI by CPU, if DMA is
line inactive. enabled and ROY line
Loss of power. is active.

OMA commands Any command except ENABLE OMA if ADY ENABLE DMA, if ROY ENABLE DMA, if ROY
(WR6 control bytes) the ENABLE OMA line is inactive and the line is inactive in is active or the FORCE
which will cause command (and possibly FORCE READY command Continuous mode. used and the command
the state. the REINITIALIZE is not used.

STATUS BYTE command,
if it is not preceded by
some other command).
The DISABLE DMA
command is specifically
designed for this.

5.1 WRITE REGISTERS

Control bytes must be written into all relevant registers in
the DMA at power-up initialization. This section describes
and illustrates each of the write registers, WRO through
WR6. into which control bytes can be written. The conven­
tion ofcalling the control bytes written to WR6 "commands"
is often used, since they are commonly used within CPU
interrupt service routines and at other times during system
operation in addition to their use at power-up initialization
of the DMA.

Chapter 4, "Internal Structure," gives an organizational
overview of the write registers (Figure 4-2) and describes
the general method of accessing them: control bytes are
written into one or more of the write register groups (WR6-
WRO) by first writing a byte to the "base register" in that
group. All groups have base registers and most groups
have additional asspciated registers. The associated reg­
isters in a group are sequentially accessed by first writing
a byte to the base register. The base register byte contains

C5-2

is outside an interrupt
service routine.

both control bits, for DMA function control, and pointer bits
(Is) to one or more of the associated registers in the base
register's group.

Figure 5-1 for WRO illustrates this. In this figure, the
sequence in which associated registers within a group
can be written to is shown by the vertical position of the
associated registers. For example, if a byte written to the
DMA contains the bits that identify WRO (bits DO, D1, and
D7), and also contains 1 s in the bit positions that point to
associated registers 2 and 4, then the next two bytes
written to the DMA after the base register byte will be
stored in these two associated registers, in that order.

Figures 5-2 through 5-8 illustrate and describe in detail
each of seven base registers and their associated regis­
ters. These figures. unlike Figure 4-2, do not include the
16-bit counters associated with the starting-address and
block-length registers.

Pointer Bits
~

zao•DMA
lJseR'S MANUAL

02 01 DO

Associated Register #3,.a.-.......................

Figure 5-1. Method of Write-Register Pointing

5.2 WRITE REGISTER 0 GROUP

The WRO base register byte is identified by a 0 in bit 7 and
any combination but 0, 0 in bits O and 1 (Figure 5-2). It is
used to set the following conditions.

5.2.1 Class of Operation
Bits 1 and O together set the class of operation as sequen­
tial transfer (0, 1), search-only (1,0), or sequential/transfer/
search (1, 1). Simultaneous transfers or transfer/searches
are obtained by selecting the search-only class here (1,0)
and letting the external hardware take care of generating
the appropriate bus control signals for the complete trans­
fer (see the chapter on "Applications").

5.2.2 Source and Destination
Bit 2 declares the source port and, by implication, the
destination port, if the operation is a sequential transfer.
When bit 2 is 0, Port B is the source; when bit 2 is 1, Port
A is the source. Search-only operations have only a source
port. If the operation is a simultaneous transfer or transfer/
search (where the class is set to search-only), external
hardwiring determines the destination port.

NOTE: The direction of transfer should only be changed
from its current setting after the OMA has been disabled by
writing some other control byte to it. This means that the
WRO byte should not be the first byte written to the OMA if
the direction of transfer is being changed.

5.2.3 Port A Starting Address
If Port A is used for either source or destination, its starting
address must be programmed. This is done by setting bits
3 and 4 of in the base register byte to 1 so that the next two

0 DoNotU.e
1 = Transfer
o = Search
1 • Search/Transfer

• Port B -+ Port A
= PortA..., Porte

r---r..1.-~T'-"T"'-"T'"'"T""'"T""., Port A Slarting Address
i--.i..,...a..,._._,...._....__._ _. (Low Byte)

_.,......,..i. -.-...,...""T"-.--, PortAStartingAddress
.__i..,...i....i.....i..._.__.__, (High Byte)

Figure 5-2. Write Register 0 Group

bytes written to the OMA will be recognized as the low and
high bytes, respectively, of the Port A starting add.res~.
This address is interpreted in the context of the entries 1n
WR1 bits 3 through 5, which declare the address as
memory or 1/0, fixed or variable, and (if variable)
incrementing or decrementing. If Port A is to be a fixed
address destination port, see the section following entitled
"Fixed-Address Destination Ports."

CS-3

II

't'2H.Jl6
5.8 WRITE REGISTER 6 GROUP (Continued)

Only the source-port address counter is immediately
loaded. The destination-port address counter (if used) is
loaded during the first count of the destination-port ad­
dress. If the destination-port address is fixed, this means
that it is never loaded. This special situation is discussed
in a later section entitled "Fixed-Address Destination Ports."

If the DMA is in an inactive state (Table 5-1)when the LOAD
command is written, another DMA control byte must pre­
cede the LOAD. Any other command, such as DISABLE
DMA, serves this purpose.

Since LOAD unforces a Forced-Ready condition, the LOAD
must precede a FORCE READY command when the latter
is used.

CONTINUE (D3). This command clears the byte counter to
zero but leaves the address counters of both ports with
their current contents. Transfers or searches continue from
where they left off after an ENABLE OMA command,

.. although the byte count starts over.

The CONTINUE command is typically used to transfer
several blocks into consecutive locations in memory when
it is desirable to know when each block has finished
transferring. Specifically, an interrupt at the end of each
block may be needed. Use this command rather than a
LOAD command to transfer the next block after the inter­
rupt. A new block length can be entered in WRO in
conjunction with the CONTINUE command.

If the OMA is in an inactive state (Table 5-1) when the
CONTINUE command is written, another OMA control byte
must precede the CONTINUE. Any other command, such
as DISABLE OMA, serves this purpose.

DISABLE INTERRUPTS (AF). The command is used in
non-ZBO CPU environments to simulate the ZBO CPU's
automatic interrupt acknowledge to the OMA. When the
OMA interrupts a non-ZBO CPU, the CPU writes a DISABLE
INTERRUPTS to the DMA early in the service routine. This
allows the /INT line to go inactive but prevents the OMA
from sending subsequent interrupts while the routine is
being executed. Near the end of the routine, the CPU
writes an ENABLE INTERRUPTS command to the OMA,
which enables it to generate a new interrupt.

This command is less extensive than the RESET AND
DISABLE INTERRUPTS command because it does not
reset the Interrupt Pending (IP) and Interrupt Under Ser­
vice (IUS) latches.

C5-B

07 06 05 D4 03 02 01 DO

zaosoMJ
UsER'S MANUAi

!1! I I I I !1'1!BaseReg~erB)1e

I I I I I Hex C~mand Name
0 0=C3=Reset
0 1 = C7 = AesetPortAlimlng
o o • C8 • Reset Port B liming

1•CF=Load
o = 03 = Continue

1 = AF = Disable Interrupts
0 = AB • Enable Interrupts
O • A3 • Reset and Disable Interrupts
1 • 87 = Enable After RETI .

1 • BF • Read Status Byte
0 • BB = RelnHlallze Status Byte

o 1 o o 1 • A7 • lnHiate Read Sequenoe

o 1 1 O 0=B3=ForceReady

1 • 87 • Eneble OMA
0 = 83 = Disable OMA

0 1 1 1 0 = BB= Read Mask Follows 4D ! I I I I I I Read Mask (1 •Enable)

1111
I I L__Sta1usByte

Byte CoUntsr (low Byte)
'-· ----Byte Countsr (High Byte)

Port AAddres.s (Low Byte)
'-------PortAAddress (High Byte)

'--------Port BAddress (Low Byte)
'---------Port BAddress (High Byte)

Figure 5-8. Write Register 6 Group

ENABLE INTERRUPTS (AB). See the preceding descrip­
tion of DISABLE INTERRUPTS. A ZBO CPU environment
uses this command at power-up to enable the interrupt
logic at the beginning (the OMA comes up with this logic
disabled). It is not needed, however, to enable subsequent
interrupts because this function is provided for by the
CPU's fetching-and the DMA's decoding of the RETI
instruction. The only exception to this is when the DISABLE
INTERRUPTS command is used; then the ENABLE INTER­
RUPTS command must also be used to begin DMA opera
tions again.

Any conditions selected to cause an interrupt are latched
in the OMA even when interrupts are disabled. They can
then cause a later interrupt after interrupts are reenabled.

The ENABLE INTERRUPTS command must not be written
until after the OMA has been configured and the
REINITIALIZE STATUS BYTE command has been written.
This command has the same effect as writing a 1 to bit 5
ofWR3.

Pointer Bits
~

ZSO"'DMA
USER'S MANUAL

07 D6 05 04 03 02 01 DO

Base Register __,,...... ------....
Associated Register #1 __,,....... ~------....

Associated Register #2 --..... --.-.---~------.....

Associated Register #3,,....._.. __

Associated Register #4 _________.~------.....

Figure 5-1. Method of Write-Register Pointing

5.2 WRITE REGISTER 0 GROUP

The WRO base register byte is identified by a 0 in bit 7 and
any combination but 0, 0 in bits 0 and 1 (Figure 5-2). It is
used to set the following conditions.

5.2.1 Class of Operation
Bits 1 and 0 together set the class of operation as sequen­
tial transfer (0, 1), search-only (1,0), or sequential/transfer/
search (1, 1). Simultaneous transfers or transfer/searches
are obtained by selecting the search-only class here (1,0)
and letting the external hardware take care of generating
the appropriate bus control signals for the complete trans­
fer (see the chapter on "Applications").

5.2.2 Source and Destination
Bit 2 declares the source port and, by implication, the
destination port, if the operation is a sequential transfer.
When bit 2 is 0, Port B is the source; when bit 2 is 1, Port
A is the source. Search-only operations have only a source
port. If the operation is a simultaneous transfer or transfer/
search (where the class is set to search-only), external
hardwiring determines the destination port.

NOTE: The direction of transfer should only be changed
from its current setting after the OMA has been disabled by
writing some other control byte to it. This means that the
WRO byte should not be the first byte written to the OMA if
the direction of transfer is being changed.

5.2.3 Port A Starting Address
If Port A is used for either source or destination, its starting
address must be programmed. This is done by setting bits
3 and 4 of in the base register byte to 1 so that the next two

Do Not Use
= Transfer
= Search
• Search/Transfer

= PMB-> PortA
= Port A -> Port B

Port A Starting Address
.._.....,...._......,,...__.. _ _...__. (Low Byte)

.,,....,....-r'..,......,....,.__,....,...., Port A Starting Address
--...... ..._._._ __ _..__._..._... (High Byte)

Block Length ._.....,. _____ _..__._..._... (Low Byte)

Block Length ,_..._ _____ _..__._..._... (High Byte)

Figure 5-2. Write Register O Group

bytes written to the OMA will be recognized as the low and
high bytes, respectively, of the Port A starting address.
This address is interpreted in the context of the entries in
WR1 bits 3 through 5, which declare the address as
memory or 1/0, fixed or variable, and (if variable)
incrementing or decrementing. If Port A is to be a fixed
address destination port, see the section following entitled
"Fixed-Address Destination Ports."

C5-3

II

5.2 WRITE REGISTER 0 GROUP (Continued)

5.2.3 Block Length
All operations must have a declared block length since the
default values at power-up are unpredictable for block
length. These registers are written to by setting pointer bits
5 and 6 in the WRO base register byte. The block length
can be up to 64 Kbytes. Due to the pipelining method of
reading in data, the number of bytes actually searched or
transferred may be one or two more than the number

5.3 WRITE REGISTER 1 GROUP

Bits 7, 2, 1, and 0, as Figure 5-3 shows, select the base
register byte for this group. The group is used only when
Port A is used (i.e., do not program it for a search-only,
simultaneous transfer, or simultaneous transfer/search
with Port Bas the source). It specifies the following char­
acteristics:

5.3.1 Device Type (Port A)
Bit 3 identifies Port A as either memory or 1/0. This speci­
fication, causes the proper control line /MREQ or /IORQ) to
come active for cycles involving that port.

5.3.2 Variable vs Fixed Addressing (Port A)
Bits 4 and 5 specify whether the Port A address incre­
ments. decrements, or remains fixed for each byte of data
transferred or searched. The first byte of data in an opera­
tion uses the starting address entered for Port A in WRO;
incrementing or decrementing begins on the second byte
of the operation.

5.3.3 Variable Cycle (Port A)
If bit 6 is set to 0, the DMA's variable-cycle timing feature
is not used; instead, standard Z80 timing for read and write
cycles is used, as described in the "Timing" chapter. If bit
6 is set to 1, the next byte written to the OMA after the WR 1
base register byte will be the Port A variable-timing byte.
This allows the length of the port's read and write cycles to
be shortened. The choices for overall cycle timing of the
OMA, including activation of the /IORQ, /MREQ, /RD, and
/WR lines, are specified in bits 1 and 0 as:

4 clock cycles
3 clock cycles
2 clock cycles

In addition, bits 7, 6, 3, and 2 of the variable-timing. byte
allow termination of various lines 1/2 cycle earlier than
specified in bits 1 and 0. The chapter on "Timing" illustrates
and describes the effect of this in detail.

C5-4

Z80'" OMA
USER'S MANUAL

entered here. The section on "Address and Byte, Count­
ing" in Chapter 4, "Internal Structure" describes this (Table
4-1).

Programming a block length of zero results in the transfer
or search of 216 + 1 bytes. Therefore, the shortest block
length that can be entered is 1, which usually results in a
transfer or search of two bytes (Table 4-2).

Particular note must be taken of the /IORQ line when
variable-cycle timing is used in sequential transfers or
transfer/searches. If an 1/0-to-memory or memory-to-1/0
operation is being done, the memory port must be pro­
grammed to have its /IORQ line ending early. (This is done
in spite of the fact that the /IORQ line normally has nothing
to do with memory). However, this requirement can be left
off the CMOS OMA counter controller. If an 1/0-to-l/O
operation is being done, both ports must have their /IORQ
lines ending early.

This situation arises from the fact that the /IORQ line
changes logic levels off a different clock cycle edge than
the other control lines when the variable-timing feature is
employed.

07 01 DO

0 = PortA o Memory
1 = PortAoVO

o • PortAAddress Decrements
1 • PortAAddress Increments

~ } = PortAAddress Fixed

o o Port A Variable
i...,..i..,....i........i....L.,....i..,...&.,....1 Timing Byte

O O = Cycle Length = 4
O 1 = Cycle Length • 3
1 O =Cycle Length = 2
1 1 =DoNotUse

/WR Ends 1/2 Cycle Early= 0
/RD Ends 1/2 Cycle Early= 0

/MREQ Ends 1/2 Cycle Early= 0

0 =//ORO Ends 1/2 Cycle Early

Figure 5-3. Write Register 1 Group

5.4 WRITE REGISTER 2 GROUP

Bits 7, 2, 1, and 0, as shown in Figure 5-4, specify the base
register byte for this group. The group is used only when
Port B is used (i.e., do not program it for a search-only,
simultaneous transfer, or simultaneous transfer/search
with Port A as the source). Its syntax is exactly the same as
WR1.

5.5 WRITE REGISTER 3 GROUP

Bits 7, 1, and 0, as shown in Figure 5-5, specify the base
register byte for this group. The group is used primarily to
specify the stop-on-match condition as well as the match
byte itself for a search operation. It can do fast, one-byte
enabling of both bus requests and interrupts. A descrip­
tion of its functions follows.

5.5.1 Stop on Match
Setting bit 2 of the base register byte to 1 causes the OMA
to stop and release the bus when a data byte matches the
match byte (described later). A search or transfer/search
operation must be specified in WRO to make this bit valid
when set. If this bit is 0 (no stop on match), a status flag is
still set in the status byte when a match occurs and there
still remains the option of interrupting on match (see WR4).
No stop or interrupt on match in the search class is used
to obtain simultaneous transfers without searching ac­
tions.

5.5.2 Match Byte
When bit 4 of the base register is set to 1, the match byte
that is compared with every data byte searched must be
specified. A search operation must be specified in WRO to
make this bit valid, as shown in the following function.

5.5.3 Mask Byte
When bit 3 is set to 1, the mask byte must be subsequently
specified. Bit positions that contain 1 sin the mask byte will
cause comparisons at those same bit positions in the
match byte (preceding paragraph) to be ignored. For
example, if the mask byte is 00001111, only the high four
bits of the match byte will be compared to the data bytes
being searched.

D7 01 DO

~: ~~~~~mory

zao~DMA
USER'S MANllAL

0 • Poll BAddress Decrements
1 • Poll B Address Increments

~ } = Port B Address Fixed

Port B Variable
.._..._.._.._.._......, r.mingByte

O O • Cyde Length •4
O 1 = Cyde Length =3
1 o • Cyde Length •2
1 1 =DoNotUso

/WR Ends 1/2 Cycle Early. 0
/RD Ends 112 Cycle Early• 0

/MREQ Ends 112 Cycle Early= D

D • ilORO Ends 112 Cycle Early

Figure 5-4. Write Register 2 Group

5.5.4 Interrupt Enable
A 1 in bit 5 of the base register enables the OMA to
generate an interrupt. This function duplicates the EN­
ABLE INTERRUPTS command in WR6.

5.5.5 OMA Enable
A 1 in bit 6 of the base register enables the OMA to request
the bus. This function duplicates the ENABLE OMA com­
mand in WR6 and is used as the last control byte written to
the OMA prior to allowing the DMA to usurp the bus from
the CPU. The ENABLE OMA command is often better for
this purpose.

Figure 5·5. Write Register 3 Group

C5-5

II

5.6 WRITE REGISTER 4 GROUP

Bits 7, 1, and 0, as Figure 5-6 shows. select the base
register byte for this group. The group specifies the follow­
ing characteristics:

5.6.1 Mode of Operation
Bits 6 and 5 of the base register specify the operating
mode as Byte, Burst, or Continuous. For a review of these
modes, see Figures 2-3, 2-4, 2-5, 2-6, and Tables 4-1 and
4-2.

5.6.2 Starting Address (Port B)
The starting address for Port B in the next two bytes may
be specified by setting bits 2 and 3 of the base register to
1. This is only needed if Port Bis used, and then it specifies
the first address at which a byte will be read from or written
to, depending on whether the port is declared a source or
destination in WRO. If Port B is to be a fixed-address
destination, see the following section entitled "Fixed­
Address Destination Ports."

5.6.3 Interrupts
Bit 4 of the base register byte can point to the interrupt
control byte, and bits 4 and 3 of the interrupt control byte
can point to the interrupt vector and pulse control bytes,
respectively. The interrupt control byte also specifies one
or more of the following three interrupt conditions:

• Interrupt on match (bit 0), if stop on match or stop on
end-of-block is also programmed.

• Interrupt at end-of-block (bit 1). if stop on end-of-block
is also programmed.

• Interrupt on Ready (bit 6), i.e., interrupt before
requesting the bus when the Ready line becomes
active.

Setting any of these bits to 1 enables the interrupt condition
but not the interrupt circuitry itself, which is enabled either
through the ENABLE INTERRUPTS command in WR6 or
through bit 5 in WR3. Interrupts do not occur on these
conditions if their associated bits are 0 in the interrupt
control byte. Tables 4-1 and 4-2 in the previous chapter
apply to these interrupt conditions since the OMA releases
the bus (stops) before interrupting the CPU.

5.6.4 Interrupt Vector
Bit 4 of the interrupt control byte allows the interrupt vector
to be entered. In addition, when bit 5 of the interrupt control
byte (Status Affects Vector) is set to 1, bits 1 and 2 of the
interrupt vector are modified to reflect the cause of the
interrupt (i.e., the state of the Ready line or Status latches)
before the vector is placed on the data bus in response to
the CPU's interrupt acknowledge.

C5-6

zao•DMA
USER'S MANllAL

The Status Affects Vector mode should not be used when
both Auto Restart and interrupt on end-of-block have been
programmed, because the interrupt vector sent at the end
of each block in this case cannot be modified to reflect the
end-of-block status.

5.6.5 Pulse Generation
Pulse generation is caused by (1) pointing to the interrupt
control byte with the base register byte, (2) setting bits 2
and 3 of the interrupt control byte, and (3) entering an offset
value in the pulse control byte. The pulse control byte is
compared with the lower byte of the byte counter and a
pulse is generated on the /INT line whenever a match
occurs, which is every 256-byte transfers or searches after
the initial offset number of bytes.

Byte=O 0
Continuous• 0 1

Burst•1 0
Do Not Program= 1 1

Port B Starting Address
.._..._..._...._,..._,......_,_ _, (low Byte)

Port B Starting Address _____ ,............._ __ __,(High Byte)

1 • lnterruped On Match
1 • lnterruped Al End-of-Block

1 • Pulse Generated

Vector isAu1omat~ally (0
ModHiedAs 0

ShownOnlyH 0
'S1atusAffects Vectcf 0

Bit is Set

0 = Interrupt On ROY
O = Interrupt On Match
0 = Interrupt On End-of-Block
O = Interrupt On Match and

End-of-Block

Figure 5-6. Writs Register 4 Group

5.7 WRITE REGISTER 5 GROUP

Bits 7, 6, 2, 1, and 0, as Figure 5-7 shows, specify the base
register byte for this one register group. The byte is used
to specify these characteristics:

5.7.1 End-of-Block Action
Bit 5 specifies either a stop (bus release) or an auto repeat
at the end of the block length programmed in WRO. To
interrupt at the end of a block (WR4), bit 5 should be 0
since, the OMA must reset the end-of-block status bit to
proceed with a new block (in Auto Restart, the end-of­
block status bit is also reset).

5.7.2 /CE//WAIT Line Usage
Bit 4 specifies that the DMA's /CE/fWAIT line is to be used
in one of two ways:

/CE Only. The /CENJAIT line functions only as a chip­
enable line to allow CPU writing and reading of control/
status bytes when the OMA is not bus master (see the
"Applications" chapter for the method by which this time is
decoded from the address bus).

5.8 WRITE REGISTER 6 GROUP

The base register byte for this group has bits 7, 1, and Oset
to one, as Figure 5-8 shows. The remaining bits specify 16
commands commonly used after OMA initialization (e.g.,
within CPU interrupt service routines}, and to point to a
read mask for the read registers.

Each of these commands, except the ENABLE OMA com­
mand, disables the OMA. Therefore, the ENABLE OMA
command must be the last command written before OMA
bus requests can begin.

RESET (C3). This command is used at power-up and
when aborting a program sequence to do the following:

• Disable interrupt and bus-request logic.

• Reset interrupt latches.

• Unforce a FORCE READY condition.

• Reset the Auto Repeat function (see WR5).

• Reset the Wait function (See WR5).

• Reinitialize Ports A and B to standard ZBO cycle timing
(see WR1 and WR2).

zao•DMA
USER'S MANUAL

/CE//WAIT Multiplex. This line functions as described in
"/CE only" when the OMA is not bus master. When the OMA
has the bus, however, the line allows external Wait inputs
from external logic to extend the DMA's cycle programmed
in WR1 and/or WR2. (See the "Applications" chapter for
hardware interfacing of this option.)

5.7.3 Ready-Line State
Bit 3 specifies that the OMA interprets the Ready (ROY) line
as active when High or active when Low. This allows
flexibility in interfacing to a variety of other devices.

07 06 OS 01 DO

o = Ready Ac11ve Low
1 • Ready Active High

o. tcE on1y
1 = /CE/NIAIT Muhiplexed

0 • Stop On End-Of·Block
1 •Auto Restart On End-Of-Block

Figure 5-7. Write Register 5 Group

At power-up, one reset command should be sent to the
OMA prior to the initialization program. When aborting an
operation sequence, sending six reset commands guar­
antees resetting (this results from WR4 having five associ­
ated registers that can potentially be pointed to).

The RESET command does not perform a complete OMA
reset. For example, it does not reset the read sequence,
which is set by the INITIATE READ SEQUENCE command.

RESET PORT A TIMING (C7). Resets the Port A variable­
timing byte in WR1 to standard ZBO timing. (The RESET
command also perform this function.)

RESET PORT B TIMING (CB). Resets the Port B variable­
timing byte in WR2 as described in RESET PORT A TIMING
(C7).

LOAD (CF). This command must be used to write new
addresses to the address registers (WRO and/or WR4) or
to restart an operation (except Auto Restart) at the same
addresses. It loads the contents of both starting-address
registers into their associated address counters (Figure
4-2). It also clears the byte counter associated with the
block-length register, and it unforces an internal Force­
Ready condition. The starting addresses must be written
in WRO and/or WR4 before the LOAD command is written,
if they are to differ from the previous starting addresses.

CS-7

II

5.8 WRITE REGISTER 6 GROUP (Continued)

Only the source-port address counter is immediately
loaded. The destination-port address counter (if used) is
loaded during the first count of the destination-port ad­
dress. If the destination-port address is fixed, this means
that it is never loaded. This special situation is discussed
in a later section entitled "Fixed-Address Destination Ports."

If the OMA is in an inactive state (Table 5-1) when the LOAD
command is written, another OMA control byte must pre­
cede the LOAD. Any other command, such as DISABLE
OMA, serves this purpose.

Since LOAD unforces a Forced-Ready condition, the LOAD
must precede a FORCE READY command when the latter
is used.

CONTINUE (03). This command clears the byte counter to
zero but leaves the address counters of both ports with
their current contents. Transfers or searches continue from,
where they left off after an ENABLE DMA command,

~although the byte count starts over.

The CONTINUE command is typically used to transfer
several blocks into consecutive locations in memory when
it is desirable to know when each block has finished
transferring. Specifically, an interrupt at the end of each
block may be needed. Use this command rather than a
LOAD command to transfer the next block after the inter­
rupt. A new block length can be entered in WRO in
conjunction with the CONTINUE command.

If the OMA is in an inactive state (Table 5-1) when the
CONTINUE command is written, another OMA control byte
must precede the CONTINUE. Any other command, such
as DISABLE OMA, serves this purpose.

DISABLE INTERRUPTS (AF). The command is used in
non-Z80 CPU environments to simulate the Z80 CPU's
automatic interrupt acknowledge to the OMA. When the
OMA interrupts a non-Z80 CPU, the CPU writes a DISABLE
INTERRUPTS to the OMA early in the service routine. This
allows the /INT line to go inactive but prevents the DMA
from sending subsequent interrupts while the routine is
being executed. Near the end of the routine, the CPU
writes an ENABLE INTERRUPTS command to the OMA,
which enables it to generate a new interrupt.

This command is less extensive than the RESET AND
DISABLE INTERRUPTS command because it does not
reset the Interrupt Pending (IP) and Interrupt Under Ser­
vice (IUS) latches.

CS-8

07 06 05 04 03 02 01 DO

Z80"DMA
USER'S MANUAL

I 1 I I I I I ! 1 ! 1 leaseReg~ereyte

I I I I I Hex Commard Name
o = C3 = Rosel
1 = C7 = Resat PortA Timing
o • ca • Resat Pert B Timing

1•CF=Load
O = 03 • Continua

o 1 = AF = Disabla lmam.pts
o O = AS = Enable ln1arrL!lfS
O O • A3 = Resat and Disable Interrupts
O 1 • B7 • EnablaAftar RETI ·

1 • BF • Raad Statua Byte
0 = SB • Relnttlallze Statua Byte

O 1 O o 1 = A7 • Initiate Raad Sequenoa

o 1 1 o 0•83•ForcaRaady

1 • 87 • Enable OMA
0 = 83 = Disable OMA

r-= 0 1 1 1 0 • BB = Raad Mask Follows

yo{ I I \ I (I I Read Mask (1 =Enable)

1111
I I l_StatusByte

Byte Coun1ar (Low Byte)
'-· ----Byte Coumar (High Byts)

'------PortAAddrass (Low Byte)
Pert A Address (High Byte)

L. -------PortBAddrass(LOWByte)
'----------Pert BAddrass (High Byte)

Figure 5-8. Write Register 6 Group

ENABLE INTERRUPTS (AB). See the preceding descrip­
tion of DISABLE INTERRUPTS. A Z80 CPU environment
uses this command at power-up to enable the interrupt
logic at the beginning (the OMA comes up with this logic
disabled). It is not needed, however, to enable subsequent
interrupts because this function is provided for by the
CPU's fetching-and the DMA's decoding of the RETI
instruction. The only exception to this is when the DISABLE
INTERRUPTS command is used; then the ENABLE INTER­
RUPTS command must also be used to begin DMA opera­
tions again.

Any conditions selected to cause an interrupt are latched
in the DMA even when interrupts are disabled. They can
then cause a later interrupt after interrupts are reenabled.

The ENABLE INTERRUPTS command must not be written
until after the OMA has been configured and the
REINITIALIZE STATUS BYTE command has been written.
This command has the same effect as writing a 1 to bit 5
ofWR3.

RESET AND DISABLE INTERRUPTS (A3). This com­
mand is useful in CPU environments such as the 8080 and
8085 where there is an interrupt acknowledge function but
no RETI instruction, as in the Z80 CPU. This command
does four things:

• Resets the Interrupt Under Service (IUS) latch.

• Resets the Interrupt Pending (IP) latch.

• Unforces an internal FORCE READY condition.

• Disables further interrupts by the OMA (same as the
DISABLE INTERRUPTS command).

In the non-Z80 environment just described it would be
used as follows: after the OMA interrupt is received and
acknowledged, the interrupt vector is sent to the CPU,
which branches to the service routine. Near the end of the
service routine, the CPU writes a RESET AND DISABLE
INTERRUPTS command, then an ENABLE INTERRUPTS
command, and then an ENABLE OMA command before
executing its return-from-interrupt instruction.

This command, when followed by an ENABLE INTER­
RUPTS command, takes the place of the Z80 BET] instruc­
tion. It is not needed in a Z80 environment. Since RESET
AND DISABLE INTERRUPTS unforces a Forced-Ready
condition, the RESET AND DISABLE INTERRUPTS must
precede a FORCE READY command when the latter is
used.

ENABLE AFTER RETI (B7). This command is used only
when the DMA is operated in the Interrupt On Ready mode
(programmed in WR4). It enables the DMA to request the
bus again after returning from an interrupt. Always use this
command in Z80 CPU environments to get further bus
requesting after an Interrupt on Ready. It is sometimes
used in other environments, such as the 8080.

An Interrupt on Ready (IOR) latch is set during such an
interrupt. This latch prevents the OMA from requesting the
bus from the time the Ready line goes active until the time
the latch is reset by the ENABLE AFTER RETI command (in
Z80 and some other environments, there is an overlap in
bus-request prevention by the IOR and the IUS latches).

In a Z80 CPU interrupt service routine, the order of DMA
commands and CPU instructions must be:

•
•
•
ENABLE AFTER RETI command
ENABLE OMA command
•
•
•
RETI instruction

zao~DMA
USER'S MANuAL

READ STATUS BYTE (BF). This command causes the
next CPU read of the OMA to access the status byte, which
is illustrated in the following section entitled "Read Regis­
ters."

If other read registers are being read, the sequence of
reading (as defined by the read mask) should be com­
pleted before issuing this command.

REINITIALIZE STATUS BYTE (88). This command
reinitializes bits 4 and 5 of the status byte. After
reinitialization, the status byte looks like this:

Bit Value Meaning

0 1/0 OMA operation has/hasn't occurred
1 1/0 Ready line active/inactive
2 x Undefined bit
3 0/1 Interrupt pending/not pending
4 1 Match not found
5 1 Not end-of-block
6 x Undefined bit
7 x Undefined bit

The DISABLE OMA or any other command must be used
before the REINITIALIZE STATUS BYTE command after
having stopped on end-of-block or byte match. Due to a
potential hardware race condition internal to the OMA,
reinitialization of the status bits may remove the condition
that stopped the OMA and the DMA might immediately
request the bus again if it is not disabled. (The REINITIALIZE
STATUS BYTE command in WR6 is similar in this respect
to the WRO byte when transfer direction is being changed:
both of these control bytes must be preceded by some
other control bytes to ensure that the OMA is disabled.)

The interrupt pending status (bit 3 of the status byte) can
be reinitialized by acknowledging the interrupt, servicing
it, and writing a RESET AND DISABLE INTERRUPTS com­
mand. The OMA operation status (bit 0) can be reinitialized
with a LOAD command.

C5-9

II

~2.HJl6

5.8 WRITE REGISTER 6 GROUP (Continued)

READ MASK FOLLOWS {BB). This command points to
the read mask (Figure 5-8). It means that the next control
byte written to the DMA goes to the read mask register. The
read mask is used to set a new sequence, for reading the
read registers, ARO through RR6, and it is normally part of
the power-up initialization of the DMA.

The read registers are always read in a fixed sequence
beginning with ARO and ending with RR6. However, the
registers read in this sequence can be, limited by pro­
gramming the read mask. The read mask is programmed
with 1s in the bit positions associated with the registers to
be read. For example, if the read mask contains 00011001,
the following read registers are read in the following order:

Status byte {RAO)
Port A address counter, low byte (RR3)
Port A address counter, high byte (RR4)

Once the read mask is programmed it must be initialized
to begin at the lowest-order register selected. Do this with
the INITIATE READ SEQUENCE command.

INITIATE READ SEQUENCE {A?). This command ini­
tiates the read-sequence pointer command so that the
next CPU read instruction to the DMA accesses the first
(low-order) read register designated as readable by the
read mask. Once started, the read sequence specified by
the read mask must be completed before, for example,
giving another INITIATE READ SEQUENCE or a READ
STATUS BYTE command.

Registers needn't be read immediately after writing the
INITIATE READ SEQUENCE command. Other commands
(except INITIATE READ SEQUENCE and READ STATUS
BYTE) can be written and go through bus-requesVbus­
release cycles before actually executing the first read and
subsequent reads.

FORCE READY {B3). This command, in Burst or Continu.­
ous mode, forces an internal Ready condition to take the
place of an external active Ready signal. It is used for
memory-to-memory transfers and memory searches where
no Ready line is necessary. Ready active High/Low (bit 3
of WR5) need not be considered when this command is
used.

CS-10

zaosDMA
USER'S MANllAL

The FORCE READY condition is unforced by the following
commands and conditions:

• RESET command
• LOAD command
• RESET ANO DISABLE INTERRUPTS command
• End-of-block termination
• Byte-match termination
• Bus release by OMA

Because bus release by the DMA unforces the· Ready
condition, this command allows the DMA to transfer only
one byte in the byte mode.

ENABLE OMA (87). This command allows the DMA to
requestthe system bus and proceed with its operation if all
other functional conditions are met (e.g., if the Ready line
is active or the FORCE READY condition is present. This
command, and bit6 of WR3, are the only control bytes that
do not disable the DMA; all other control bytes written to the
DMA automatically disable the DMA. Therefore, the EN­
ABLE DMA command is always required as the last com­
mand after writing or reading any other bytes to or from the
DMA.

This command enables the DMA's bus request logic. It
does not affect interrupt logic and it does not reset any
functions or latches. This bus-request-enabling function is
duplicated in bit 6 of WR3.

In an interrupt service routine, the ENABLE DMA com­
mand must be the last command to the DMA before the
CPU executes its return-from-interrupt instruction.

DISABLE OMA (83). This command prevents the DMA
from requesting the bus. It is used to stop OMA action for
external reasons, such as a pending power-out, and in the
special case of reinitializing the status byte after a stop on
end-of-block or a stop on byte match (seethe REINITIALIZE
STATUS BYTE command).

5.9 READ REGISTERS

Read registers are read by first writing a command to the
OMA, then reading either immediately thereafter or some
time later. CPU reads are done by addressing the OMA as
an 1/0 device using input instructions (such as INIR for the
ZBO CPU).

The commands written to the OMA can be one of two:

READ STATUS BYTE. This command causes the next
CPU read of the OMA to access the status byte, which is
the first read register.

INITIATE READ SEQUENCE. This command initializes
access to a repeatable series of reads that follow the
sequence defined in the read mask.

These commands are described in the immediately pre­
ceding pages, and Figure 5-8 illustrates the read mask. As
mentioned in the description of these commands. the
reading of registers needn't be contiguous in time with
these write commands or with other CPU read instructions
accessing registers in the same read sequence.

Two other commands are also related to the read regis­
ters:

REINITIALIZE STATUS BYTE. This command reinitializes
bits 4 and 5 of the status byte to 1 s.

READ MASK FOLLOWS. This command allows the read
mask to be programmed.

Figures 4-3 and 5-9 both illustrate more clearly the group
of seven read registers in relation to the write registers, The
read registers include:

5.9.1 Status Byte (RRO)
The status byte can be read independently of the other
read registers and two of its bits can be reinitialized to
identify end-of-block and match bytes. The bits in the
status byte are defined as follows:

Bit 0 Indicates whether the OMA has requested the bus
since the last LOAD command. A 1 indicates yes, a
0 indicates no.

Bit 1 Indicates whether the DMA's ROY pin currently has
a signal input that is defined as active by bit 3 of
WR5. A 1 indicates an active Ready line. A 0
indicates an inactive Ready line.

Bit 2 Undefined.

Read Register o
07 06 05 04 03 02 01 DO

zso~DMA
USER'S MANUAL

Ix Ix I I I I I I ~us Byte

11
I I 1 = OMA Operation Has Occurred

I

I

I

I

I

I

'-· ---D=ReadyActive
~----0 = lntellllpl Pending

O = Match Found
~------0= End Of Block

Read Register 1

I I I I I Byte Counter (Low Byte)

Read Register 2

I I I I I Byte Counter (High Byte)

Read Register 3

I I I I I PortAAddress Counter (Low Byte)

Read Register 4

I I I I I PortAAddress Counter (High Byte)

Read Register 5

I I I I I Port B Address Counter (Low Byte)

Read Register 6

I I I I I Port BAddress Counter (High Byte)

Figure 5-9. Read Register O through Read Register 6

Bit 3 Indicates the state of the Interrupt Pending (IP)
latch. AO indicates either that an interrupt is pending
(the OMA has its /INT line active if the interrupt has
not been acknowledged). A 1 indicates no interrupt
pending.

Bit 4 A 0 indicates that a match has been found since the
last RESET or REINITIALIZE STATUS BYTE com­
mand. A1 indicates no match was found. See Table
4-2 to determine where the match occurred.

Bit 5 A 0 indicates that an end-of-block was reached
since the last RESET, LOAD, CONTINUE, or
REINITIALIZE STATUS BYTE command. A 1 indi­
cates no end-of-block was reached. See Table 4-1
to determine the contents of counters when the
OMA stops.

Bi' 6 Undefined.

Bit 7 Undefined.

CS-11

II

5.9 READ REGISTERS (Continued)

5.9.2 Byte Counter (RR1, RR2)
This 16-bit counter is cleared to zero by the LOAD, CON­
TINUE, and RESET commands only. When the DMA be­
gins transferring or searching, the byte counter incre­
ments by one at the end of each read cycle and the byce
counter is compared with the programmed contents of the
block length register to determine end-of-block. The num­
ber of bytes read in a transfer always equals the number
of bytes written because the DMA completes any transfer
it starts, even when stopping on byte matches in transfer/
search operations.

Tables 4-1 and 4-2 illustrate how the pipelining of data
affects the number of bytes transferred or searched in the
various classes, modes, and circumstances of operation.
In most cases, the number of bytes transferred in a transfer
operation that slops at end-of-block is one more than the
programmed block length.

zao•DMA
UsER'S MANuAL

When the pulse-generation feature. is used, the contents of
the pulse control byte in WR4 are compared with the lower
byte of the byte counter after each byte is transferred.

5.9.3 Port A Address Counter (RR3, RR4)
This 16-bit counter is loaded from the Port A starting address
register in WRO by the LOAD command. It increments,
decrements. or remains fixed in accordance with the speci­
fications in WR1. Tables 4-1 and 4-2 show how this counter
reads under various transfer or search conditions.

5.9.4 Port B Address Counter (RRS, RR6)
This counter is exactly analogous to the Port A address
counter just described. If either Port A or Port Bis a fixed­
address destination port it must be programmed as de­
scribed under "Fixed Address Destination Ports" to func­
tion properly.

5.10 REVIEW OF PROGRAMMING SEQUENCES

This section contains a review of rules for programming the
DMA in both the general case and in various application­
specific cases. Also, see Figure 5-10 for a sample DMA
Program.

5.10.1 DMA Initialization
All registers to be used in the DMA must be programmed
at power-up. None have useful defaults. This includes the
enabling of interrupts and reinitialization of the status byte
as well as many other functions, including class and mode
designation, port designation, address and block-length
designation.

Table 5-2 suggests the order in which control bytes should
be written for the, general case of either initialization or,
reinitialization due to program abort. Some of these control
bytes may not be relevant to a specific application. All
"commands" referred to are WR6 control bytes. There is a
maximum of 35 control bytes when all of the above are
written.

All control bytes written to the DMA disable the DMA,
except the ENABLE DMA command and possibly also the
REINITIALIZE STATUS BYTE command and the WRO
control byte {when changing transfer directions). The
ENABLE DMA command must always be the last com­
mand written after any communication between the CPU
and OMA, if the DMA is to continue operating. Further­
more, communication with the DMA can only occur when
the CPU is bus master.

CS-12

Table 5-2. Control Byte Order

lnitlalizatlon/Reinitializatlon
Sequence

Maximum No. of
Bytes .for ZSO CPU

DISABLE OMA Command
RESET Command (Multiple)
WRO Control Bytes
WR1 Control Bytes
WR2 Control Bytes
WR3 Control Bytes

WR4 Control Bytes
WR5 Control Bytes
RESET PORT A TIMING Command
RESET PORT B TIMING Command
LOAD Command
REINITIALIZE STATUS BYTE Command

READ MASK FOLLOWS Command
Read Mask Control Byte
INITIATE READ SEQUENCE Command
FORCE READY Command
ENABLE INTERRUPTS Command
ENABLE DMA Command

Total

1
6
5
2
2
3

5
1
1
1
1
1

35

5.10.2 Port Designation
Either Port A or Port B can be selected as the source or
destination, as illustrated in Figure 2-2, since both ports
have the same degree of programmability. A special case
arises when the destination port is also a fixed-address
port; this is dealt with under "Fixed-Address Destination
Ports."

Port characteristics are specified in the following control­
byte groups:

Port A
WRO
WR1
WR6

Porte
WRO
WR2
WR4
WR6

In a transfer, if the direction of transfer (bit 2 of WRO) is
being changed, the WRO control byte must be preceded
by some other control byte to insure that the OMA is
disabled.

5.10.3 Address Loading
Starting addresses are written into the starting-address
registers for each port through WRO (Port A) and WR4 (Port
B). They are loaded into the address counters by the LOAD
command. The addresses must he written to the registers
before they are loaded into the counters.

New addresses may be written to the address registers at
any time when the CPU is bus master, even between
transfers and even when the OMA is operating in the Auto
Restart mode (e.g., in Byte mode between byte transfers).
Except in the Auto Restart mode, however, the new ad­
dresses must be reloaded before they are used. If a
Forced-Ready condition is used, the LOAD command
must precede the FORCE READY command.

5.10.4 Fixed-Address Destination Ports
A special circumstance arises when programming a des­
tination port to have a fixed address. The load command
in WR6 only loads a fixed address to a port selected as the
source, not to a port selected as the destination. Therefore,
a fixed-destination address must be loaded after tempo­
rarily declaring its port as a source port. The true source
port is subsequently declared as such (thereby implicitly
making the other port a destination) and the true source
address is then loaded.

The following example illustrates the steps in this proce­
dure, assuming that transfers are to occur from a variable­
address source (Port A) to a fixed-address destination
(Port B):

1. Write Port B (fixed destination) address to WR4.
2. Temporarily declare, Port Bas source in WRO

(bit2 = 0).

zao•DMA
UsER's MANUAL

3. Load Port B address with the LOAD command.
4. Write Port A (variable source) starting address to WRO.
5. Declare Port A as source in WRO (bit 2 = 1).
6. Load Port A address with the LOAD command.

•
•
•

7. Enable OMA with the ENABLE OMA command.

5.10.5 Interrupts
The interrupt vector (WR4) must be written before inter­
rupts using it can occur, and interrupts must be enabled
with the ENABLE INTERRUPTS command at initialization
or reinitialization. In a Z80 CPU environment, interrupt
service routines after OMA initialization usually include, the
following commands at the end of the routine:

•
•
•

Interrupt on End-of-Block
or Byte Match

ENABLE OMA command
•
•
•
RETI instruction

•
•
•

Interrupt on Ready
(before requesting the bus)

ENABLE AFTER RETI command
ENABLE OMA command

•
•
•
RETI instruction

Interrupts on end-of-block, for example, might be done in
reading a floppy disk. If the disk transfers 128-byte records,
the OMA can be made to interrupt atthe end of each record
to inform the CPU of its completion. Then the CPU can read
the destination (memory) address counter to find the last
memory location filled (see Table 4-2 for address-counter
contents). A service routine for continuing inputs into
contiguous locations of memory typically contains the
CONTINUE, REINITIALIZE STATUS BYTE, and ENABLE
OMA commands before the CPU's return from interrupt. A
service routine for shutting the OMA down after the record
arrives typically includes DISABLE OMA and REINITIALIZE
STATUS BYTE commands. If the OMA transfer is started by
an interrupt from some other device, the service routine for
that other device would include an ENABLE OMA com­
mand written to the DMA's port address.

C5-13

II

zao~DMA
USER's MANUAL

5.11 REVIEW OF PROGRAMMING SEQUENCE (Continued)

Interrupts on byte match (a search or transfer/search
operation) can be implemented so that any ending byte,
error indicator, or other character causes the interrupt.
This frees the CPU from looking for these characters in a
stream of data, it increase throughput, and it reduces CPU
software complexity. For example, the OMA might search
for end-of-text (EXT) characters or carriage returns in a
communications environment and interrupt the CPU only
when the complete message frame has arrived. The ser­
vice routines for this would be very much like those for
interrupts on end-of-block.

Interrupts on Ready are somewhat different. First, the OMA
cannot be the bus master before the interrupt since the
CPU only sees interrupts when the CPU is the bus master
(the other types of interrupts are not processed until the
bus has been released). Second, to enable the OMA, the
ENABLE AFTER RETI command must be used in the
service routine after an Interrupt on Ready. The typical
purpose of interrupting when the Ready line comes active
is to allow the CPU time to consider where a transfer should
go (which it does in the service routine). This is ofter done
in systems using dynamic memery allocation and it im­
proves the efficiency with which memory can be allocated.
For example, the CPU might write and load new starting
addresses for a memory destination into the OMA in the
service routine. Only at the end of the service routine is the
OMA enabled to request the bus. The ENABLE AFTER
RETI command, which must precede the ENABLE OMA
command, resets a latch which is set when the Interrupt on
Ready first occurred.

For non-ZSO CPU environments, the DISABLE INTER­
RUPTS, ENABLE INTERRUPTS, and RESET AND DIS­
ABLE INTERRUPTS commands are available. They can
simulate the ZSO CPU's interrupt-acknowledge cycle and
return-from-interrupt instruction, both of which the OMA
needs to perform and return from interrupts.

5.10.6 Byte Matching (Searches}
In stopping, or stopping and interrupting on match (WR3,
WR4), to perform add it ion al operations with the OMA, write
the following sequence of commands:

• LOAD or CONTINUE
• REINITIALIZE STATUS BYTE
• ENABLEDMA

Another command (any command except ENABLE OMA)
must precede the REINITIALIZE ST A TUS BYTE command.
(TABLE 4-4 shows the contents of various counters when
stopping on byte match.)

CS-14

5.10.7 End-Of-Block
After a stop or stop and interrupt on end-of-block (WR4 or
WR5), where it is necessary to perform additional opera­
tions with the OMA, write the same sequence of com­
mands listed immediately under "Byte Matching
(Searches)." Table 4-4 shows the contents of various
counters when stopping on end-of-block.

5.10.8 Auto Restart
To obtain a repetitive transfer or search using the same
block length and starting addresses originally entered,
initialize the DMA, including bit 5 = 1 in WR5. The loading
of addresses and clearing of the byte counter is automatic.

If in Byte mode, or possibly even in Burst mode (where the
Ready line is occasionally released), it is possible to alter
the starting addresses during a transfer (i.e., between bus
requests) without disturbing that transfer. At the end of the
transfer in which this occurs, the DMA automatically loads
the new addresses into the counter and continues without
interruption.

5.10. 9 Force Ready Condition
The FORCE READY command is provided for operations
like memory-to-memory transfer or memory search-only
where no Ready line from an 1/0 device is used. However,
there are several DMA commands that unforce the Ready
condition after the FORCE READY command is written.
The sequence of command entry is therefore important.
This is described under the FORCE READY command in
the section entitled "Write Register 6 Group."

5.10.10 Pulse Generation
To obtain pulses at 256-byte intervals, after a variable
offset period, only the WR4 group need be considered.
The /INT line is used for these pulses.

5.10.11 Variable Timing
The timing on the /RD, /WR, /MREQ, and /IORQ lines can
be varied independently for either port by programming
the WR1 and/or WR2 register groups. A special case
arises in programming memory-to-1/0, 1/0-to-memory, or
l/0-to-1/0 sequential transfers or transfer/searches. The
/IORQ line must be programmed in a specific way. See the
"Variable Cycle (Port A)" discussion under WR1.

5.10.12 Enabling the DMA
The last command written to the OMA before an operation
is to occur must be, the ENABLE OMA command, or WR3
with bit 6 = 1, which is equivalent. Only this command
makes the OMA operate. If all other conditions for opera­
tion are satisfied at the time of enabling (e.g., the Ready
line is active) the OMA will begin immediately. In an
interrupt service routine, the ENABLE OMA command
must be the last OMA command written before the return-

from-interrupt instruction. Other instructions may, and usu­
ally do, follow the ENABLE DMA command in the service
routine before the RETI instruction is executed, but none of
these commands are for the DMA.

5.10.13 Reading Status
Two commands can be used to allow the CPU to read DMA
status:

READ STATUS BYTE. Causes the next CPU read of the
DMA to access the status byte. Every time the status byte
is to be read, the READ STATUS BYTE must first be written.

INITIATE READ SEQUENCE. Causes the next CPU read
of the DMA to access the first status register specified as
readable by the read mask. Subsequent reads of the OMA,
which must complete the sequence of all designated

07 05
WRO sets DMA to receive 0 1 1

04
1

block length, Port A starting Block Length Block Length Port A
address and temporarily Upper Upper Upper
sets Port Bas soun:e. Follows Follows Address

Follows

Port A address (lower) 0 , 0 1

Port A address (upper) 0 0 0 ,
Block length (lower) 0 0 0 0

Block length (upper) 0 0 0 1

WR1 defines Port A as 0 0 0 1
memory wtth nxad No Timing Address Address
lncremBflting address. Follows Changes Changes

WR4 defines Port A as 0 0 1 0
memory wtth nxed No Timing Fixed
Incrementing address. Follows Address

, 1 0 0

Z80"'DMA
USER'S MANUAL

readable registers, do not require write commands. Read­
ing of the sequence of registers must be completed before
the next READ STATUS BYTE or INITIATE READ SE­
QUENCE command.

Figure 5-1 O illustrates a program to transfer data from
memory (Port A) to a peripheral device (Port B). In this
example, the Port A memory starting address is 1050H
and the Port B peripheral fixed address is 05H. The
number of data bytes to be transferred is 1001 H bytes (one
more than specified by the block length). The table ofDMA
commands may be stored in consecutive memory loca­
tions and transferred to the DMA with an output instruction
such as the Z80 CPU's OTIR instruction.

03 02 01 DO HEX
1 B~A

:ansler. L search
Port A
Upper Tam~~rary

Address
Follows Loading e

Address
0 0 0 0 50

0 0 0 0 10

0 0 0 0 00

0 0 0 0 10

0 1 0 0 14
Port IS

Memory

1
Port IS

0
, 0 28

1/0

1 0 1 cs WR4 sets mode to Burst, 0
sets OMA to expect Port B No Interrupt No Upper Porte Lower

Address address. Control Byte
Follows

Port B address (lower) 0 0 0 0

WAS sets Ready active High. 1 0 0 . 0
No Auto No wait
Restart Status

WR& loads Port B address 1 1 0 0
and resets block counter.•

WRO sets Port A as soun:e. • 0 0 0 0
No Address or Block

Length Bytes

WR6 loads Port A address 1 1 0 0
and resets block counter.

WR6 enables OMA to start 1
operation.

0 0 0

NOTE: Tha actual number of bytes transferred Is one more than specified by Iha block length.
• These entries ara necessary only In the case of a fixed destination address.

Address Follows

0 1 , 0
ADY

Ac11VeHlgh

, 1

0 ,
B-+A

1 1

0 1

Figure 5·10. Sample OMA Program

0 1 05

1 0 BA

1 1 CF

0 1 05
Transfer. No Sean:h

1 1 CF

, 1 87

C5-15

II

6.0 zeo OMA AND CPU

As a member of the Z80 Family, the Z80 DMA's signals and
timing are directly compatible with those of the Z80 CPU.
When it is bus master, the OMA can exhibit read-and write­
cycle characteristics identical to those of the Z80 CPU,
thus simplifying system design. In addition, variable timing
features allow the system designer to interface memories
and 1/0 devices more easily with non-standard capabili­
ties or requirements. The OMA can shorten its read- or
write-cycle timings for higher performance or lengthen
and tailor control signals to accommodate slower devices.
Because these features are under programmed control,
the hardware configuration is invariant to changes in cycle
and control signal timings.

6.0. 1 Interconnection
In small systems, or where the Z80 OMA shares a board
with the CPU, most of the pins on the OMA may be
connected directly to the corresponding CPU pins. These
include the address bus (A 15-AO), the data bus (07-00),
and the control_signals /MREQ, /IORQ, /RD, and /WR. The
interrupt request and bus request signals, /INT and
/BUSREQ, may also be connected directly to the CPU, in
common with corresponding open-drain outputs from
other devices. The priority daisy chains for these functions
are described in an earlier chapter and are illustrated in
Figures 4-4 and 4-10.

Power, ground, and clock signals are also common to the
CPU and OMA, but extra care must be taken to provide
low-impedance paths and adequate decoupling. The 30
ns clock transition time requirement for Z80 Family parts
merits consideration, too. A 300 Ohms pullup from a TTL
clock driver output may suffice for small systems operating
at the 2.5 MHz rate, but the increased loadings and
speeds in larger high-performance systems require active
pullup. A complemetary-transistor driver for Z80/Z8000
systems is shown in Figure 6-1.

OMA USER'S MANUAL

CHAPTER 6
APPLICATIONS

6.0.2 Chip Selection and Enabling
Z80 peripherals are normally addressed in the 256 ad­
dress 1/0 space. Each peripheral Chip is enabled by an
active-low Chip Enable (/CE) input. The /CE input be­
comes active when an active /IORQ signal coincides with
the peripheral's address on the low order byte of the
address bus. Small systems may dedicate address lines to
their few peripherals, obviating decoder hardware. A sys- 11 tern using OMA, however, is likely fo have more peripher-
als, so that address decoding by means of PROM or MSI
TTL decoder is normally provided.

+5V

:::l:0.01µF

~~~--~~~..-~~~-. 

120 

2N5771 or 10K(max) 
2N3546 

22 

Clock 

22 

2N5772or 
2N3646 

Figure 6-1. ZSOIZSOOO Clock Driver 

C6-1 



6.0 Z80 OMA AND CPU (Continued) 

Figure 6-2 illustrates three chip enable arrangements. In 
Figure 6-2a, for a small system, the DMA responds to half 
of the 256 possible 1/0 addresses. In part (Figure 6-2b), a 
256 x 4 PROM has been programmed to provide a low 
output on its 01 pin only when the DMA's address is 
present. The PROM must access quickly enough to meet 
the DMA's /CE setup time requirement. 

Figure 6-2c shows a one-of-eight TTL decoder used to 
provide chip enable signals for eight different peripheral 
devices. Address bits AO and A 1 are often used directly by 

Z80"DMA 
USER'S MANUAL 

peripherals such as the Z80 SIO, PIO, and CTC, and so are 
not decoded here. Additional decoders can be added 
when there are more peripheral devices. 

/IORQ and /M1 are internally gated with /CE in Z80 periph­
eral devices and need not be terms in /CE. However, 
gating chip-enable signals explicitly with these control 
lines does no harm and may produce less-ambiguous 
logic sequences for circuit-level debugging. Figure 6-2c 
shows this. 

Ad<tessBus A7 

C6-2 

a. OMA responds to 
VO addressed OOH 
throughnH 

b. PROM determines 
OMA response 

c. OMA Responds to 
VO Addresses EOH 
through E3H 

Z80 
CPU 

/M1 ~ 
noRa ~ 

~ 
1M1 nORa 

NJ •• 

CPU 

/M1D----­
/IORQ D-----~ 

JM1 noRa 

CPU 

DMA 

A7 

A7 
: 256x4 
• PROM 

AO 

DMA 

/M1 b----..---===:!=~--d 
/IORQ ID----+-..--------<l 

i 
ICE 

t---------/CE3 
t---------/CE2 
t---------/CE1 

ICE 

74LS138 

/CE7 

'-------•/CE1 ................ ______ ___....__, 
1M1 nooo ICE 

DMA 

Figure 6-2. Chip Enable Decoding with ZSO CPU 



6.0.3 Use of/WAIT Input 
When the DMA is bus master, the /CE/N/AIT pin functions 
as an input from memory or 1/0 logic which may extend 
read or write cycles by requesting Waits states. An active 
/BUSACK output from the CPU signals that is has relin~ 
quished the bus; thus, if this DMA is bus master, it samples 
the NJAIT signal for these requests. A simple 2-input 
multiplexer is used to steerthe/CE/N/AIT signals as shown 
in Figure 6-3. (Using /BUSACK assumes there is only one 
DMA. In systems with three or more possible bus masters, 
/BAI active and /BAO inactive identify the master.) 

6.0.4 Simultaneous Transfers 
The highest-speed DMA method is the simultaneous­
transfer, or "flyby" arrangement. This requires some exter­
nal hardware to generate simultaneous read- and write­
control signals to the source and destination ports. 

Since the address bus is used for memory address, only 
transfers between 1/0 and memory can be implemented 
straightforwardly when the 1/0 port selection is done by 

/WAIT (From Peripheral or Memory Logic) , 

/CE (From Decoder) , 

l 
11 10 

, /BUSACK 
SEL 1/4 , 74LS157 

y 

l 
/CE//WAIT 

OMA 

Figure 6-3. /CE//WAIT Multiplexer 

ZSO"DMA 
UsER'S MANUAL 

hardwiring. The DMA is put into search mode, and a circuit 
like that in Figure 6-4 generates separate. simultaneous 
read- and write-control signals which may he ORed into 
the read- and write-control paths at memory and 1/0. 
Figure 6-5 shows such an arrangement. This arrangement 
allows both the CPU and DMA access to the 1/0 peripheral. 
(If the peripheral communicates only through DMA, it only 
needs to use the /IORD and /IOWR signals.) 

Careful attention must be paid to access, setup, and hold 
times in this mode. Since the OMA is programmed to do 
searching, the /MWR and /IOWR signals are derived from 
the DMA /RD signal and mimic its timing. This does not 
cause a problem for write operations, which are trailing 
edge-activated. To make /MWR look more like a CPU or 
OMA write cycle signal, the circuit of Figure 6-6 may be 
used to delay the leading edge of /MWR until after the 
falling edge in T2. The programmable variable timing 
features of the DMA may be helpful, too. 

+5V 

/BUSACK or /BAl·BAO 

/RD (From OMA) >------------. 

0 0 1 0 1 0 

/IORQ (From OMA) SEL 74LS257 /OE 

Y4 Y3 Y2 Y2 

nowR /IORD /MWR /MRD 

Figure 6-4. Simultaneous Transfer Multiplexer 

C6·3 

II 



6.0 Z80 OMA AND CPU (Continued) 

CPU OMA 

noRa /RD /WR /BUSACK /BAI /RD nORQ 
.., --c; .., v ~1 ( y vv ....(')... 

HIGH 

I I l 
1 0 1 0 1 0 1 0 

.q /OE SEL 

Y1 Y2 Y3 Y4 

,---

t, ~ 
/MRD 

/MWR 

"I; ~ ""< 7 

Address And Data Buses 

/IOWR 

/IORD 

/RD /WR /RD /WR /CE 

MEMORY 1/0 

Figure 6·5. Simultaneous Transfer 

C6-4 

IOCE 

ZSO®DMA 
USER'S MANUAL 

l 
1/0 

DECODER 

_11 



+5V 

/MWR >----t--4--1 

D 
/PRE 

1/2 
74LS74 

a 

/BUSACK>------------_, 

Figure 6-6. Delaying the Leading Edge of /MWR 

6.0.5 Bus Buffering 
Microcomputer systems using DMA often include large 
memories, many peripheral devices, or occupy several 
circuit cards. In these cases, the system buses and control 
signals need buffering to increase drive capability and 
noise margin and to decrease delay times. 

The need for buffering within a single circuit card can be 
estimated by comparing drive capabilities of bus master 
devices (CPU and OMA) to loadings presented by all 
inputs and outputs connected to the buses. Both static (DC 
current) and dynamic (capacitive drive) requirements must 
be considered. When driving a motherboard or other 
cards, buffering is a practical necessity. 

If the bus master devices (CPU and DMAs) are on the same 
card, they can share buffers for address, data, and control 
buses to other cards. Otherwise, each card's bus inter­
faces require buffering. 

Address lines are, unidirectional and can be buffered by 
many common devices such as 7 4LS244 and 7 4LS367 
(non-inverting tri-state buffer/drivers) or 7 4LS240 and 
7 4LS366 (inverting tri-state buffer/drivers). The tri-state 
enable inputs on buffers such as these allow the bus to be 
isolated (floated) in a manner similar to the CPU and OMA 
address pins. For example, in a system with one CPU and 
one OMA, the /BUSACK signal can disable CPU buffers 
and enable DMA buffers when it is active. Where there can 
be three or more potential bus masters, only those buffers 
associated with the actual bus master must be active at 
any time. Thus, each DMA, if its /BAI signal is active (Low) 
and its/BAO signal is inactive (High), has control of the bus 
and can enable its drivers. 

Z80®DMA 
USER'S MANUAL 

Data bus lines are bidirectional, making their buffer con­
trol more complicated. Any device from which the CPU 
can read drives the data bus when it is selected and the 
/RD control signal is active. In this sense, the /RD signal is 
the principal directional control. Non-CPU devices also 
drive the data bus during interrupt-acknowledge cycles 
(in which the device puts its vector on the bus) and during 
OMA write cycles. Figure 6-7 illustrates a bidirectional 
data bus buffer and its control. Here, 280 SIO, PIO, CTC, 
and DMA peripherals share a circuit card. Their common 
on-card data bus is buffered to and from the system 
(motherboard or backplane) bus. Each of the three con­
ditions mentioned causes the buffers to drive data out 
onto the system bus; otherwise, data is buffered into the 
card. Suitable devices for bidirectional buffering include 
the 7 4LS241 (tri-state bus drivers) and 7 4LS245 
(transceivers). 

The control signals /MREQ, /IORQ, /RD, and /WR should 
be unidirectionally buffered in large- or multi-card sys- C 
terns. These signal buffers are, again, enabled when their 
associated device or card has bus control and are forced 
into high-impedance states when another master takes 
control of these bus lines. Since there are short intervals 
during transfer of the bus when the bus is not driven by any 
master, /MREQ, /IORQ, /RD, and /WR should be pulled up 
to + 5V with 2. 7 kohms to 4. 7 kohms resistors so that they 
remain inactive. Other control. signals on CPU and OMA 
may be permanently driven. This usually includes /M1, 
/RFSH, and /HALT from the CPU, and /BAO from a OMA. 

The /BUSREQ line is bidirectional and cannot easily he 
externally buffered. However, the OMA can sink3.2 mAon 
/BUSREQ, more than on other signals. To maximize cur­
rent, the system's /BUSREQ pullup resistor can be as low 
as 1. 8 kohms. 

An interesting and somewhat unfortunate situation exists 
with respect to ratings of the ability of TTL buffers to drive 
capacitive loads. While the DC output ratings of standard 
buffers like the 74LS367 are usually ample, propagation 
times through these buffers are rated at capacitive load­
ings of only 30 pF, a value easily exceeded in practice. 
Capacitive loading thus usually dominates bus driving 
requirements (280 Family parts are specified over ranges 
of capacitive loading). The load seen by a device driving 
a bus line has components due to wiring and printed­
circuit land capacitance, connector capacitance, and 
capacitances of inputs and outputs connected to the 
signal. A standard low-power Schottky (LS) TTI input 
presents about 6 pF of capacitive load, an LS output of 
about 8 pF. Most other input and output capacitances can 
be estimated from device data sheets, but capacitance 
associated with interconnection may vary markedly. Some­
times, propagation delays and allowable capacitive load­
ing for buffered lines must be, determined by measure­
ment or by trial and error. 

C6-5 



6.0 ZBO OMA AND CPU (Continued) 

System Data Bus On-Card Data Bus 

/DRIVE.DA TA.OUT 

Z80'"'DMA 
USER'S MANUAL 

/OMA.HAS.BUS >---------... 

nORQ>-----~~'\-')---<-r-"""" 
/M1 >------u_J 

CARD.IEO >-----------' 
CARD.IE! >-----a.:>0------' 

Figure 6-7. Data Bus Buffer Control Example 

6.1 ZBO OMA AND ZBO SIO EXAMPLE 

A common application of the DMA is to handle data 
transfers over a serial data link. The Z80 SIO peripheral is 
Used to interface to the link, providing conversion between 
serial and parallel data formats, synchronization, and other 
functions. 

In this case, comparing the efficiency of interrupt-driven 
and DMA data transfers requires examination of the, event 
sequences during the brief time, intervals when the SIO 
needs a character (byte) transfer. Most of the time, of 

C6-6 

course, the SIO is busy transmitting or receiving message 
bits and requires no service. 

The SIO must be programmed to drive its /WAIT//RDY line 
as a /RDY signal to the DMA, which is programmed for 
active-Low /RDY in Byte mode. 

The event sequences for SIO-DMA transfers are shown in 
Tables 6-1 and 6-2. 



Table 6-1. Receive Event Sequence 

Event 

SIO receives last bit of character 
SIO /ADY becomes active 
DMA asserts /BUSAEQ 
Current CPU machine cycle ends 
CPU asserts /BUSACK 
DMA 1/0 read cycle begins 

DMA memory write cycle begins 
DMA terminates /BUSAEQ 
DMA memory write cycle ends 
CPU terminates /BUSACK and 

regains control of bus 

Inter-event delay 
(clock periods) 

10-13 
2 

1-5 
1 
4 
4 

2 
1 
1 
1 

Note: Latency (delay from reception of final data bit to reading of received data) is 
22 to 29 clock periods. The system bus is occupied by the OMA for 13 clock 
periods per byte transferred. 

latency 
latency 
latency 
latency, bus occupancy 
latency, bus occupancy 
latency, bus occupancy 

bus occupancy 
bus occupancy 
bus occupancy 
bus occpuancy 

Table 6·2. Transmit Event Sequence 

Event 

SIO transmits last bit of character 
SIO /ADY becomes true 
DMA asserts /BUSAEQ 
Current CPU machine cycle ends 
CPU asserts /BUSACK 

DMA memory read cycle begins 
DMA 1/0 write cycle begins 
DMA terminates /BUSAEQ 
DMA 1/0 write cycle ends 
CPU terminates /BUSACK and 
regains control of bus 

Inter-event delay 
(clock periods) 

5-6 
2 

1-5 
1 
4 

3 
3 
1 
1 
1 

Note: Latency (delay from transmission of final data bit to loading of another character) is 
20 to 28 clock periods. The system bus is occupied by the OMA for 13 clock 
periods per byte transferred. 

SIOSVC: 
EXX 
OUTI 

latency 
latency 
latency 
latency, bus occupancy 
latency, bus occupancy 

latency, bus occupancy 
latency, bus occupancy 
latency, bus occupancy 
latency, bus occupancy 
bus occupancy 

; get transfer parameters 
; transfer a byte, 
; update parameters 

In an interrupt-driven CPU transfer scheme, the SIO must 
interrupt the CPU whenever it has received a character or 
needs another character to transmit. A very short bench­
mark service routine, which presumes the exclusive use of 
the ZBO CPU's alternate register set for SIO interrupt 
handling, is provided (numbers in parentheses are clock 
periods per instruction): 

JAZ,BLKEND 
EXX 

; test for end-of-block 
; save parameters 

El ; reenable interrupts 
AETI 

ZBO®DMA 
USER'S MANUAL 

(4) 

(16) 
(7) 
(4) 
(4) 

(14) 

C6-7 



6.1. ZBO OMA AND SIO EXAMPLE (Continued) 

Before the service routine can be executed, the CPU must 
have its interrupts enabled, finish its current instruction, 
and execute an interrupt acknowledge cycle (19 clock 
periods). This optimistic benchmark takes at least 68 clock 
periods per byte transferred, and severely restricts CPU 
activity by permanently occupying the alternate register 
set. 

To compare these transfer methods, the ratios of clock 
cycles used per Kbaud to clock cycles available per 
second can be calculated. These represent the fractional 
reductions in CPU throughput per Kbaud transferred. 

Z80 
(2.5 MHz) 

OMA sequential transfer 0.065% 
OMA sequential transfer/search 

Interrupt-driven transfer 0.340% 

Z80A 
(4 MHz) 

0.041% 

0.213% 

Thus, OMA has a shorter and more predictable latency 
period and decreases system overhead by at least a factor 
of five in this conservative example. 

A diagram of a typical Z80 system using a Z80 CPU, a Z80 
CTC for asynchronous baud rate generation, both chan­
nels of a Z80 SIO, and two Z80 OMAs (one for each serial 
channel) appears in Figure 6-8. The diagram omits the 
system memory (ROM and RAM), bus buffers (as re­
quired), and chip enable decoders, which are described 
above. 

+SV 

IEI 
zcrro1 

CTC 
zcrro2 ANT 

IEO 

RxCA 
TxCA 

RxCB 
TxCB 

/W/RDYA 
/W/RDYB 

SIO 

SVstem 

Z80"'DMA 
USER'S MANUAL 

Suses ---- Common: A 16-AO 
07-DO 
CLK 

A. _},. 

'f r 

r-

1-

I 

_J 

1! _},. 

I\ -y 

DMA 

nNT 

RDY 

IEI 

IEO 
/INT 
IEI 

RDY 

OMA 

/INT 
/BUSREQ 
/M1 
/IORQ 
/MREQ 
/RD 
/WR 

Figure 6·8. Z80 DMA·SIO Environment 

6.2 USING THE ZBO OMA WITH OTHER PROCESSORS 

Because it is so versatile, designers of computer systems 
using other CPUs may want to use the Z80 OMA in their 
applications Since the OMA was designed as a member of 
the ZBO Family, it requires certain signals and bus charac­
teristics like those of the Z80 bus in order to function well. 
Three main groups of requirements are distinguished as 
follows: 

• Bus request/release mechanisms 

• Bus characteristics 

• Interrupt request, acknowledge, and return 

These topics are described in this section, and sugges­
tions for design are given. It is, of course, impractical to 

C6-8 

describe all the possible combinations in detail, so each 
designer must invoke some creativity to come up with a 
complete, workable design. 

6.2.1 Bus Request/Release Mechanisms 
Probably the most fundamental characteristic that distin­
guishes the Z80 OMA from other monolithic OMACs is its 
full control of the system bus during its active state. An 
immediate consequence is that processors using the OMA 
must be able to give up control of the system bus, including 
address, data, and the control lines /MREQ, /IORQ, /RD, 
and NIA (or their equivalents). Some processors have no 
mechanism for freeing the bus. Others, including the 6800 
and its relatives, have rudimentary bus control facilities, 
but due to their internal dynamic logic implementations, 
cannot relinquish control for indefinite periods of time. This 
makes them difficult to interface to the OMA. 



Many popular microprocessor CPUs, however, do have 
adequate bus control facilities-some are very similar to the 
Z80 /BUSREQ and /BUSACK signals. For instance, the 
8080, 8085, and 8086 signals HOLD and HLDA are very 
close approximations. 

The active levels of HOLD and HLDA are positive rather 
than negative, and variations exist in timing, but the use of 
HOLD and HLDA does allow the address and data bus 
drivers to be put into their high-impedance states. In 8080 
systems using an 8238 to demultiplex commands, the 
/MEMW, /MEMR, /IOW, and /IOR control lines can be 
floated using the /BUSEN input. With the 8085, a tri-state 
decoder can be used to decode or disable corresponding 
signals. The 8086 and its support chips also tri-state their 
control signals when HLDA is active. 

The Zilog Z8000 Family will include a completely compat­
ible DMAC, but until it is available, the Z80 peripheral chip 
family can be used with the Z8000. Generation of Z80-like 
control signals for Z80 peripherals is discussed in theZilog 
Application Note, "A Small Z8000 System," although the 
Z80 OMA requires special consideration beyond that of 
other Z80 peripherals. 

6.2.2 Bus Characteristics 
Like the Z80, the 8080 and 8085 have 8-bit data paths and 
16-bit addresses. The OMA is matched well to these 
numbers-it can search whole data words and directly 
address any byte in the memory. 

The 8086 and the Z8000 CPUs have 16-bit data paths and 
larger address spaces, thus making it somewhat harder to 
use the Z80 OMA. Searching can be done for match bytes 
in either half of the data word, but not for a whole unique 
word. Often this is not a problem since byte matches 
suffice, for example, in detecting special ASCII characters 
in a data block, The problem of handling larger address 
spaces can be handled by using an external segment or 
page register, latched to the appropriate high-order ad­
dresses before the OMA becomes bus master, or by other 
schemes such as indexing. This, of course, requires some 
external hardware. 

In order to conserve pins, the 8085, 8086, Z8001, and 
Z8002 multiplex addresses and data. Strobes allowing 
demultiplexing then become part of the bus structure and 
must be accounted for in OMA interface. In such cases, the 
OMA should be connected to the demultiplexed address 
and data lines rather than closer to the processor itself. 
Figure 6-9 gives a simplified diagram of this idea. 

Multiplexed 
Address 

and 
Data Bus 

CPU 

3-stage 
Latches 

Buffered Bidirectional Data Bus 

zso~oMA 
USER'S MANUAL 

Figure 6-9. Connecting OMA to Demultiplexed 
Address/Data Buses 

Many processors encode their control signals, analogous 
to the Z80's JM 1, /MREQ, /IORQ, /RD, and /WR, into status 
words which are often demultiplexed before they are 
distributed to memory, peripherals, etc. Again, it is better 
to link the OMA to these demultiplexed signals, taking 
advantage of tri-state decoders to float the outputs when 
the OMA is master. 

The OMA's ZBO-like control signals probably need to be 
retimed to meetthe requirements of the foreign buses. But 
the programmable timing feature of the OMA may well 
reduce the hardware costs incurred. 

6.2.3 Interrupt Request, Acknowledge, and Return 
This is, in may ways, the thorniest issue faced in using the 
OMA with other processors. The ways of signaling, priori­
tizing, identifying, responding to, and returning from inter­
rupts are multitudinous in their profusion. Non-Z80 inter­
rupt environments do not use the IEI and IEO signals, often 
use separate interrupt controllers to generate vectors. and 
handle acknowledgement and return in different ways (or 
not at all). 

Interrupt request is usually easy enough: active levels 
typically are low voltage, and there may he one or more 
separate interrupt request pins. Timing requirements for 
interrupt requests vary (including pulse widths, latching, 
etc.) and should be examined for each case. 

C6-9 

II 



'tl2H.!E 
Z80"'DMA 

USER'S MANUAL 

6.2 USING THE Z80 OMA WITH OTHER PROCESSORS (Continued) 

Priority of simultaneous or overlapping requests is handled 
in several ways: some processors (e.g., the 8085) have 
multiple interrupt-request pins, some use daisy-chained 
priority schemes (as in the Z80). and there are several 
kinds of interrupt control ICs available. 

Acknowledgement and identification methods vary, too. 
Sometimes, several fixed memory locations correspond to 
different interrupt pins' service routines. In other cases, the 
interrupting device is responsible for identifying itself by 
putting a vector or instruction on the data bus for the CPU 
to read. Interrupt controllers often provide appropriate 
vectors to the CPU and distinguish between and prioritize 
multiple requests. The OMA has the built in capability to 
supply an arbitrary vector byte when it detects a Z80 
interrupt acknowledge (/IORQ and /M 1 both active) and its 

LA4 

LA3 

/DS 
/AS 
LAS 

From +5V 
Z8000 

Data Bua 
PRE PRE 

/IORQ D 

CLOCK 

IEI input is active (no higher-priority device is interrupting). 
Often, then, gating the /M1, /IORQ, and IEI pins appropri­
ately can obviate use of a separate interrupt controller. 
/IORQ serves another function, too, so it must appear 
during CPU-OMA transfers and be available to signal 1/0 
reads or writes in the active state. 

At the end of its service routine, the OMA expects to see the 
CPU fetch the RETI instruction (ED. 40 appear on the data 
bus accompanied by /M1). The OMA command, RESET 
AND DISABLE INTERRUPTS, is designed for this purpose 
in non-Z80 CPU environments. Alternatively, the RETI 
instruction might be simulated by regaling /M1 and pro­
gramming the CPU to write to a phantom peripheral the 
bytes ED, 40. The "chip select" for this nonexistent periph­
eral is used to simulate /M 1 at these times (Figure 6-10). 

+5V 

G1 /CEO 

G2A /CE1 

G2B /CE2 

c /CE3 

B 

A /IORQ 

To 
LS04 /IORQ Z80 

Peripherals 

a /RD 

IQ 

wm ..,,.,..-.-.,..,...,~,..,....,.--,....,--:---::::=-=::-~~~~~~~~ 
NIACK (Vectored Interrupt Acknowledge From ST3·STO) 

Figure 6-10. Z8000/Z80 Peripheral Interface 

C6-10 



~2.il ( 1., 

7.0 BUS CONTENTION 

The principal limitation to the use of the OMA is its impact 
on CPU activity. When the OMA operates, it is bus master, 
thereby preventing the CPU from fetching and executing 
instructions. Bringing the CPU to a hall in this manner can 
create several problems, including: 

• No interrupt servicing (including nonmaskable CPU 
interrupts) 

• No refresh for dynamic memory (if accomplished by 
the CPU) 

• No polling 

The degree to which time-critical functions of the CPU are 
affected when the OMA is operating varies with the OMA's 
operating mode. 

7.0.1 Byte Mode 
This is the most desirable mode when bus contention is a 
problem, since it allows interleaving of CPU functions and 
OMA functions for each byte of data transferred. The 
disadvantage is slower transfer speed. 

7.0.2 Burst Mode 
This may be useful if the data to be transferred is distrib­
uted over time in a manner that causes the OMA to release 
the bus back to the CPU before other CPU-dependent 
functions are endangered. The Burst mode has the merit of 
using the bus only when it is needed and of maximizing 
transfer speed during that time. It may not be usable, 
however, if very long bursts of data (long periods when the 
Ready line is active) are possible. 

OMA USER'S MANUAL 

CHAPTER 7 
PERFORMANCE LIMITATIONS 

7.0.3 Continuous Mode 
This mode is the ultimate bus hog since it holds onto the 
bus until an end-of-block or byte match, no matter what the 
state of the Ready line. While it achieves the fastest transfer 
speeds, it can only be used when there are no time-critical 
functions dependent upon the CPU or when the blocks are 
relatively short. 

The Byte mode is normally safe for most applications. What C 
must be known to calculate the effect of using the Burst or 
Continuous modes is the following: · 

• Maximum block length 

• Maximum OMA transfer rate (see Table 2-1) 

• Maximum time Ready line will remain active 

There is a method of forcing the OMA off the bus in Byte or 
Burst mode. This method uses an external gate to remove 
the ROY input to the OMA. Figure 7-1 illustrates this. The 
negative consequences of forcing the OMA to stop in the 
middle of a transfer must be considered when contemplat­
ing such a scheme. This method cannot he used if the OMA 
is operating in the Continuous mode; only a power-down 
or normal termination with end-of-block or byte match can 
make the OMA release the bus. 

/FORCE.OFF.BUS 

UserSup~~~~ ToDMA 

Figure 7-1. OMA Bus-Master Gate 
(Byte or Burst Modes Only) 

C7-1 



7.1 CONTROL OVERHEAD 

The software overhead incurred by the CPU to initialize 
and update the OMA's program may also limit the degree 
to which the OMA contributes to overall system efficiencyo 
Table 5-2 shows that a maximum of about 35 control bytes 
would be required to initialize the OMA if all functions of the 
OMA were used to their fullest extent. In addition, use of the 
Interrupt mode requires servicing by the CPU and this 
normally includes additional control bytes written to the 
OMA. 

C7-2 

ZSO'"DMA 
USER'S MANUAL 

So, the increase in system throughput is not as great for 
applications which require frequent reprogramming of the 
OMA or extensive interrupt service of data-independent 
OMA functionso The ratio of overhead incurred to number 
of bytes transferred is minimized for repetitive transfers of 
large blockso 



8.0 WHEN THE CPU IS BUS MASTER 

8.0.1 Writing Control Bytes 
The DMA can be programmed with control bytes when­
ever the CPU is the bus master. Table 5-1 describes this 
is the "disabled," "enabled/inactive," or "enabled/stopped" 
States (the latter two are equivalent). 

The DMA is programmed by addressing it as an 1/0 
peripheral in a CPU output instruction (it can be addressed 
in the full 64K 1/0 space). To do this, three lines must 
simultaneously be active-low on the rising edge of the 
clock: 

/CE 
/IORQ 
!WR 

Chip Enable 
Input/Output Request 
Write 

Figure 8-1 illustrates the timing required for this to happen. 
In a Z80 CPU environment, this timing happens automati­
cally when the CPU and DMA are on the same board and 
have no buffers, drivers, or other external gates ill series 
with the common CPU and DMA pins. This applies to the 
sequential transfer, sequential transfer/search, and search­
only classes of operation. It may or may not apply to the 
simultaneous transfer or simultaneous transfer/search 
operations, depending on the speed of the external de­
vices used (see the "Applications" chapter). · 

CLK 

::--+---1 ti====== 
Figure 8-1. CPU-to-OMA Write Cycle Requirements 

OMA USER'S MANUAL 

CHAPTER 8 
TIMING 

The essential characteristics of gaining the DMA's atten­
tion for writing control bytes to it are the following: 

• The DMA's /CE line must be Low (normally done by 
decoding the lower byte of the address bus). 

• The /IORQ and {WR lines must be Low at this time. 

• The control byte must be placed on the data bus so C 
that it is stabilized at a rising clock edge which occurs 
one clock period after the /CE, /IORQ, and !WR lines 
have stabilized. 

8.0.2 Reading Status Bytes. 
Figure 8-2 illustrates the timing needed for the CPU to read 
any of the DMA's read registers, RR6 through RRO, while 
the CPU is bus master. The following condition must be 
met to read a register: 

• The /CE, /IORQ, and /RD lines must be active and 
stabilized over two rising edges of the clock. 

Status data becomes available on the data bus at the time 
of the second clock rising edge. It remains on the bus for 
as long as the /CE, /IORQ, and /RD lines remain simulta­
neously active. 

CLK 

116~~ , I 1 ... -----

07~~ ____ · .... :-1( : 1---
Figure 8-2. CPU-to-OMA Read Cycle Requirements 

CB-1 



8.1 WHEN THE OMA IS BUS MASTER 

8.1.1 Sequential Transfers 
In sequential transfer and transfer/search operations (both 
have the same timing), data is latched onto the bus by the 
rising edge of the /RD signal (with standard timing this is 
the falling edge ofT3). Data is held on the data bus across 
the boundary between read and write cycles, through the 
end of the following write cycle. The DMA data bus drivers 
become active after /RD has become inactive. 

Figure 8-3 illustrates the timing for memory-to-1/0 port 
transfers, and Figure 8-4 illustrates 1/0-to-memory trans­
fers. Memory-to-memory and 1/0-to-l/0 transfer timings 
are simply permutations of these diagrams. 

The default timing uses three clock cycles for memory 
transactions and four clock cycles for 1/0 transactions. 
which include one automatically inserted wait cycle be­
tween T2 and T3. If the /CEJNVAIT line is programmed to 
act as a NVAIT line during the DMA's active state, it is 
sampled on the falling edge of T2 for memory transactions 

zaosDMA 
USER'S MANUAL 

and the falling edgeofTWfor l/Otransactions. If /CE/NVAIT 
is Low during this time another T-cycle is added, during 
which the /CE/NVAIT line is again sampled. The duration of 
transactions can thus be indefinitely extended. 

8.1.2 Simultaneous Transfers 
The timing for simultaneous transfers and simultaneous 
transfer/ searches is the same. The DMA is programmed 
in the Search-Only mode, and both read and write cycles 
happen simultaneously in the time that a source-port read 
would occur in search-only. Only one address is gener­
ated on the address bus; the 1/0 port is hardwire-selected 
during this operation as shown in the "Applications" chap­
ter. The /IORQ, /MREQ, /RD, and NVR lines are gated into 
two new signals by external logic. These signals are either: 

/MEMWR (Memory write) 
/IORD {1/0 read) 
or: 
/MEMRD (Memory read) 
/IOWR (1/0 write) 

I- MemoryRead -1----VOWrite -----• 1 
r11T21T3 T1 T21Tw T3 

C8-2 

CLK 

/MREQ 

/RD 

I\ n-------1--__, /IORQ 

I\ n----+---1-+-__, 
NIR 

07-00 \. 
Drive OMA \-+-----101-MA_o_n_ves_o-+at_a _su-+s -+----+--

J Memory 

-.,, :: ::::: ::71i:::::: ;:: .:: _ ---trN- --~.:: ~ 

Figure 8·3. Sequential Memory-to-1/0 Transfer, Standard Timing 
(Searching Is Optional) 



~2il.JJ6 

~j 

-1 

I T1 

VO Read -------<1..!-1 e-• -- Memory Write -1 
u I ~ I u TI I u I u 

CLK 

- IX A15-AO -
/IORQ I 

/RD \ I 

07-00 
VO Drives J ]}-

__..,..._~-+-j>--~+M-em~ory,__-+---<\.,__1--~DMA_,_Dn_·vea_D~m-a B+~~~-11 

/MREQ 

NIA 

/CE/NIAIT--' ---r---1n-+---- --- rm----+---
+--------V I L1---- ~ IL 1---

ZSO®DMA 
USER'S MANUAL 

Figure 8-4. Sequential VO-to-Memory Transfer, Standard Timing (Searching Is Optional) 

CLK 

A15-AO 

/MEMRD 

07·00 

/IOWR 

/CE/NIAIT 

j-Cycle1 

I T1 I T2 

I 

T3 

Cycle2-J 

I I I 
Cycle3-j 

I I I 

___ 71"___ _ ___ .r---'\___ _ ___ r-\ __________ _ 

___ j I \___ _ _ _/ ~------J \___ ------

Figure 8-5. Simultaneous Memory-to-1/0 Transfer (Burst and Continuous Mode) 

C8-3 

II 



8.1 WHEN OMA IS BUS MASTER (Continued) 

CLK 

/MEMRD 

D7-DO -

/IOWR 

/CEINIAIT 

DMADrives 
The Last Data 

It Read During 
This Time. 

I 
I 

-+­
I 

I I I 
I I 

--~Tf\---
---~ I '--~ 

Z80'"'DMA 
USER'S MANUAL 

---{/-----· 

----If----~ 

---+-~--- ---7r----· 
--~' ~-- ---~f-----

Figure 8·6. Simultaneous Memory-to-1/0 Transfer (Byte Mode) 

Figure 8-5 shows the timing for simultaneous transfers in 
Burst and Continuous modes between memory and 1/0, 
using standard Z80 timing. The timing within each cycle is 
similar to the "memory read" cycle shown in Figure 8-3. The 
address bus activity is the same, and the cycle length is the 
same. However, the/MREQ, /RD, /IORQ, and NVR lines in 
Figure 8-3 have been changed to /MEMRD and 
/IOWR lines in Figure 8-5. In addition, the data bus comes 
active earlier in Figure 8-5, in response to the /MEMRD line 
coming active. Data is clocked into the 1/0 port on the 
rising edge of /IOWR. 

Figure 8-6 shows the timing for Byte mode. It is the same 
as Figure 8-5 within each cycle. The breaks between each 
cycle, where the address and data bus are tri-stated and 
the /MEMRD and /IOWR lines remain inactive, are caused 
by the activity on the /BUSREQ and /BAI lines that is 
explained later. 

8.1.3 Search-Only 
The standard timing for search-only operations is identical 
to the read cycles of Figures 8-3 and 8-4. Search-only is 
equivalent to read-only; data is simply being read into a 
OMA register for comparison with the match byte. 

CB-4 

8.1.4 Bus Requests. 
Figure 8-7 illustrates the bus request and acceptance 
timing. The ROY line, which may be programmed active 
High or Low, is sampled on every rising edge of CLK. 

If it is found to be active, and if the bus is not in use by any 
other device, the following rising edge of CLK drives 
/BUSREQ Low. After receiving /BUSREQ the CPU ac­
knowledges on its /BUSACK (which is connected to the 
DMA's /BAI input either directly or through a multiple-OMA 
daisy chain). 

The CPU looks at its /BUSREQ input one clock cycle before 
the end of each CPU machine cycle. If it sees a request, it 
releases the bus at the end of that same machine cycle. 
The maximum time delay from the CPU receiving /BUSREQ 
to the response on its /BUSACK line is, therefore, one 
machine cycle plus slightly less than one clock cycle. The 
CPU tri-states all of its bus control lines (/M1 is not tri­
stated) when it acknowledges on the /BUSACK line. 

The ROY line, which has a specified setup time with 
respect to a rising edge of CLK, must remain active until 
after the DMA becomes bus master in Byte or Burst modes. 



't'2H.!E 

OMA 
Inactive 

OMA 
Active 

Figure 8-7. Bus Request and Acceptance Timing 

(ADY is detected as a level, not an edge.) The only situation 
in which a pulse on ADY can be used to allow the OMA to 
become bus master is in the Continuous mode; in this 
event, the OMA becomes bus master but does not begin 
operations. 

When the OMA detects a Low on /BAI for two consecutive 
rising edges of CLK, the OMA begins transferring data on 
the next rising edge of CLK. 

In Byte mode, after each byte is transferred, the OMA waits 
until its /BAI line goes inactive before requesting the bus 
again on /BUSREQ for the next byte transfer. This allows a 
minimum of one CPU machine cycle to occur between 
each byte transferred. 

8.1.4 Bus Release Byte-at-a-Time 
In Byte mode, /BUSREQ is brought High on the rising edge 
of CLK prior to the end of each read cycle (search-only) or 
write cycle (transfer and transfer/search) as illustrated in 
Figure 8-8. This occurs regardless of the state of ADY. 
There is no possibility of confusion when a Z80 CPU is used 
since the CPU cannot begin an operation until the following 
clock cycle. Nor does this bother most other CPUs, al­
though note should be taken of it. The effect of this is to 
decrease the time needed for a byte transfer by one clock 
cycle. 

CLK __n__j\1_(1..JLrUl.JL 
/BUSREQ _J--t 

I 
/BAI I 

DMAActive _._ OMA Inactive 

Figure 8-8. Bus Release in Byte Mode 

Z80"'DMA 
USER's MANUAL 

The next bus request for the next byte comes after both 
/BUSAEQ and /BAI have returned High. In a Z80 environ­
ment, /BAI returns High one clock cycle after /BUSREQ 
returns High. 

8.1.5 Bus Release on End-of-Block. 
If the OMA is programmed to stop on end-of-block in Burst 
or Continuous modes, an end-of-block causes to go High 
(inactive) on the same rising edge of CLK in which the OMA 
completes the transfer of the data block (see Figure 8-9)-. 
The last byte in the block is transferred even if ADY goes 
inactive before completion of the last byte operation. 

Active 
ROY 

Inactive 

/BUSREQ 

Figure 8-9. Bus Release on End-of-Block 
(Burst and Continuous Modes) 

8.1.6 Bus Release on Match 
If the OMA is programmed to stop (release the bus) on 
match in Burst or Continuous modes, a match causes 
/BUSREQ to go inactive on the next OMA operation, i.e., at 
the end of the next read in search-only or simultaneous 
transfer/searches or at the end of the following write in 
sequential transfer or transfer/searches (Figure 8-10). 

/BUSREQ 

1-Byten •I• Read In 

Figure 8-10. Bus Release on Match 
(Burst and Continuous Modes) 

Due to the pipelining scheme, matches are determined 
while the next OMA read or write is being performed. Table 
4-2 contains a complete reference to the number of bytes 
transferred in any class or mode. 

CS-5 

II 



8.1 WHEN OMA IS BUS MASTER (Continued) 

The ROY line can go inactive after the matching operation 
beginswilhoutaffectingthis bus-release timing. However, the 
time at which RDY goes inactive can affect the number of 
bytes transferred, as shown in Table 4-1 and Figure 4-5. 

8.1.7 Bus Release on Not Ready 
In Burst mode, when RDY goes inactive itcauses/BUSREQ 
to go High on the next rising edge of CLK after the 
completion of its current byte operation, i.e., at the end of 
the current read in search-only or simultaneous transfer/ 
search or at the end of the following write in sequential 
transfer/search (Figure 8-11 ). The action on /BUSREQ is 
thus somewhat delayed from action on the RDY line. The 
DMA always completes it current byte operation in an 
orderly fashion before releasing the bus. 

Figure 8·11. Bus Release on Not Ready 
(Burst Mode) 

Actiw 

ZBO®DMA 
USER'S MANUAL 

By contrast, /BUSREQ is not released in Continuous mode 
when RDY goes inactive. Instead, the DMA idles after 
completing the current byte operation, awaiting an active 
RDYagain. 

Figures 8-12, 8-13, and 8-14 review the relationship be­
tween the Ready line going inactive and the state of the 
other lines for each mode of operation, assuming a search­
only of memory using standard Z80 timing. (The timing for 
Ready coming active is discussed under "Bus Request.") 
RDY is sampled on the rising edge of CLK in the last clock 
cycle of each read or write cycle. It is a level-sample, not 
an edge-sample. RDY can go inactive prior to the comple­
tion of the last byte operation without disturbing that 
operation. At the end of that operation, the /BUSREQ and 
/BAI lines go High in Byte or Burst mode according to 
Figures 8-10 and 8-13. The bus control lines /MREQ, 
/IORQ, /RD, NJR) also remain High in Byte and Burst mode 
during an inactive RDY, with both the address and data 
buses tri-stated. 

The Continuous mode (Figure 8-14) differs in that the 
address bus holds the preincremented address for the 
next byte throughout the time that RDY is inactive. This 
address is immediately available when RDY comes active 
again. 

ADY ---{1----------11--f~'-----------------
/BUSREQ \ ' I 

'-11----J {~____, 

/BAI ---f~f--{~.__ _ __,/ 

A15-AO ---ff---{ ) fl {;t-'---{._ ___ _,)---------------

/MREQ ---ff----\. ,----If--{;' 

\............J \_) 

/RD ---ff----\. ,----IL___./' \............J ,--,, \_j 
D7·DO I 

--~r-----(}----~r-~r---~---Q---------------· 

Figure 8·12. ROY Line in Byte Mode 

C8-6 



Z8015 DMA 
USER'S MANUAL 

ROY----{----------------

IBUSREQ ~,_· ------------------' 
IBAl---t--

A15-AO - --f-f---<---x ____ x ____ x ____ >----:------------
/MREQ ----{---

IRD---1----

07~ ---1+-----q----q----q----q---------------· 
Figure 8-13. ROY Line in Burst Mode 

ROY ---{,I-' -------------.~r---1 

IBUSREQ ~----------------,!-' ----------' 
!BAI ---++--... I ________________ ,, ________ __, 

A15-AO ---1+--i ___ x __ x C--:-: ___ x ___ -J>---
/MREQ ----{1----

~ 
IRO---t'-1-----

~ 
01-00 _ --1+-----Q----Q----Q----f r-----q---~ __ _ 

Figure 8-14. ROY Line in Continuous Mode 

C8-7 

II 



8.1 WHEN OMA IS BUS MASTER (Continued) 

8.1.8 Variable Cycle and Edge Timing 
The Z80 DMA's operation-cycle length, without Wait states, 
for the source (read) port and destination (write) port can 
be independently programmed. This variable-cycle fea­
ture allows read or write cycles consisting of two, three, or 
four clock cycles (more if Wait cycles are inserted). thereby 
increasing or decreasing the pulse widths of all signals 
generated by the OMA. In addition, the trailing edges of the 
/IORQ, /MREQ, /RD, and /WR signals can be indepen­
dently terminated one-half cycle early. Figure 8-15 illus­
trates this. 

I n T2 T3 T4 

iMREQ \ I -7-r--· 
/RD,/WR I -L 

t t 
2·Cycle 

Early End 
4-Cycle 

Early End 

Figure 8-15. Variable-Cycle and Edge Timing 

In the Variable-Cycle mode, unlike default timing, /IORQ 
comes active one-half cycle before /MREQ, /RD, and /WR. 
/CE//WAIT can be used to extend only the 3 or 4 clock­
cycle variable memory cycles and only the 4-cycle vari-

T1 T2 

CLK _J 

Z80"'DMA 
USER'S MANUAL 

able 1/0 cycle (see Figure 8-16). The /CE/WAIT line is 
sampled at the falling edge of T2 for 3- or-4-cycle memory 
operations, and at the falling edge of T3 for 4-cycle 1/0 
operations. The line is not sampled for 2-cycle operations. 
During transfers, data is latched on the clock edge caus­
ing the rising edge of /RD and held until the end of the write 
cycle. 

A special case arises when using variable timing on an 
1/0-search or a simultaneous transfer or transfer/search 
with 1/0 as the source port. (The simultaneous transfers are 
actually programmed in the OMA as searches and only 
distinguished from searches by the manner in which 
external logic handles the bus control signals.) In these 
applications, the /IORQ line must be programmed to have 
an early ending (refer to WR1 description on page 5-4). 

Figure 8-14 shows the bus control lines {/MREQ and /RD) 
remaining inactive when the ROY line goes inactive in 
Continuous mode. The same is not true of the /IORQ line 
when variable timing is used. In this case, /IORQ and any 
functions created from it by external logic in simultaneous 
transfer operations (such as /IOWR and /!ORD) remain 
active during an inactive ROY line before stopping on end­
of-block or byte match. 

8.1.9 Interrupts 
Timings for interrupt acknowledge and return from inter­
rupt are the same as timings for these in other Z80 
peripherals. Figure 8-17 illustrates this timing. The inter­
rupt signal (/INT) is sampled by the CPU on the rising edge 

. of the final clock cycle of any instruction. The signal is not 
accepted ifthe internal CPU software-controlled interrupt­
enable flip-flop is not set or if the /BUSREQ.signal is active. 
When the /INT signal is accepted, a special /M1 cycle is 
generated. 

T3 T4 

L 
I 

/CE//WAIT - - - - - - - - - - -, 1- - - - -1- - - - - - - - - - - - - - - - - • 
4~= ___________ _.\.__.__(.. ____ ~------------------

C8-8 

/CE//WAIT 
(4-Cycle l/O 
Operations) 

1 
I 
I 

------------------, I r---------------
-------------------' I /----------------

Figure 8-16. /WAIT Line Sampling in Variable-Cycle Timing 



During this special /M 1 cycle, the /IORQ signal becomes 
simultaneously active (instead of the normal /MREQ) to 
indicate that the interrupting device can place its 8-bit 
vector on the data bus. Two wait states are automatically 
added to this cycle. These states are added so that a ripple 
priority interrupt scheme can be easily implemented. The 
two wait states allow time for the ripple signals to stabilize 
and identify which 1/0 device must respond. Refer to Zilog 
Application Note 03-0041-01 (The Z80 Family Program 
Interrupt Structure) and to the ZSO CPU Technical Manual 
for more details. 

Interrupt on ROY (interrupt before requesting the bus) 
does not directly affect the /BUSREQ line. Instead, the 
interrupt service routine may handle this by issuing the 
following commands to WR6: 

LastM C)lcle 
Of Instruction 

LastT State T1 

CLOCK 

/INT ·-

A7-AO 

/M1 

/MREQ 

/IORQ 

Dala 
Bus 

/WAIT -- ------------ ------
------------ ------

/RD 

zsoaDMA 
USER'S MANUAL 

• Enable after Return From Interrupt (RETI) Command­
Hex 87 

• An RETI instruction that resets the Interrupt Under 
Service (IUS) latch in the Z80 OMA-Hex ED, 40 

8.1.10 Pulse Generation 
When the pulse generation option is selected, the /INT line 
is driven Low every 256 bytes alter the offset value. The line 
goes Low during the OMA cycle in which the pulse-control 
byte matches the lower byte of the byte counter, and it 
remains Low for one complete "transfer cycle." A transfer 
cycle is here defined as either a read cycle (search-only or 
simultaneous transfer operations) or a read plus a write 
cycle, where read and write cycles can be independently 
programmed for length through the variable-cycle option. 

M1 

T2 Tw Tw T3 

------
------

PC 

------ ----- r---;-- ------
I \ ------ ----- '--- -----· 

Figure 8-17. Interrupt Acknowledge 

CB-9 

II 





WRITE REGISTER BIT FUNCTIONS 

Do Not Use 
= Transfer 
= Search 
= Search/Transfer 

= PortB -> PortA 
= PortA-> PortB 

Port A Starting Address ...__........,.,...._......,._..._..._.(Low Byte) 

Port A Starting Address 
_....,._....,._...._....._..._..._......, (High Byte) 

Figure A1. Write Register O Group 

O = PortA Is Memory 
1 = PorlAls l/O 

o = PortAAddtess Decrements 
1 = PortAAddress Increments 

~ ) = Port A.Address Fixed 

o o Pon A variable 
._,....,...__._....,,...1.....,11.,...r.,...1 Tming Byte 

NIA Ends 1/2 Cycle Eerty • 0 
/RD Ends 112 Cycle Eerty = 0 

/MREQ Ends 1/2 Cycle Early = 0 

= Cycle Lenglh = 4 
= Cycle Length = 3 
= Cycle Lenglh = 2 

1 1 =DoNotUse 
o = noRa Ends 112 Cycle Early 

Figure A2. Write Register 1 Group 

OMA USER'S MANUAL 

APPENDIX A 

07 02 01 00 

o = Ports lsMemory 
1 = Ports 1svo 

0 = Port B Address Oecremenls 
1 = Port B Address Jncremenls 
~ ) = Port B Address Flxec! 

Port B Yarlable 
._, ..... ...__._--.,...1.....,11.,...r.,...1 Tlmlng Byte 

NIA Ends 1/2 Cycle Eerty = 0 
/RD Ends 1/2 Cycle Eerty = 0 

/MREQ Ends 1/2 Cycle Eerty = 0 

= Cycle Length = 4 
=Cycle Length= 3 
=Cycle Length= 2 

1 1 =DoNolUse 
o = noRa Ends 112 Cycle Earty 

Figure A3. Write Register 2 Group 

Figure A4. Write Register 3 Group 

Ill 

CA-1 



WRITE REGISTER BIT FUNCTIONS (Continued) 

CA-2 

Byt&=O 0 
Conlinuoos=O 1 

Burst=1 0 
Do Nol Program = 1 1 

Port B Slal11ng Address 
,__..._..._..._,......,....__..._.._. (Low Byte) 

Port B Starfilg Address 
,__..._...._..._,.._..._ .... _.,_.(High Byte) 

Vector Is Autanatlcally ( 0 
ModmedAs o 

Shovin <lnly H o 
'Status Affects Vecle!' 0 

0 = lntenupt on ROY 
o =Interrupt on Match 
0 = Interrupt on End-of-Block 
o = Interrupt on Match and 

BttlsSet End-of-Block 

Figure AS. Write Register 4 Group 

07 D6 02 01 DO 

0 = Ready Active Low 
1 =Ready Active High 

0=/CE Only 
1 = /CE//WAIT Mult1>lexed 

0 = Stop on End-Of-Block 
1 =Auto Restart on End-Of-Block 

Figure A6. Write Register 5 Group 

07 06 05 04 03 02 01 DO 

I 1 I I I I I ! 1!1 leaseReg~erByte 

I I I I I Hex C~mand Name 
0 0 0=C3=Reset 
0 0 1 = C7= Reset Port A lining 
0 1 0 = CB = Reset Port B llmlng 

0 1 0 

0 1 1 

1=CF=Loed 
o = D3 = Contnue 

1 = AF = Disable Interrupts 
0 = AB = Enable Interrupts 
o = A3 = Reset and Disable lntenupts 
1 = B7 = EnableAfterRETI 

1 =BF= ReadStatusByte 
o = BB = Renltlallze Status Byte 

O 1 = A7 = lnHlate Read Sequence 

O = 83 = Force Ready 

1 = B7 = Enable OMA 
0 = 83 = Disable OMA 

r 0 1 1 1 0 =BB= Read Mask Follows 

L--!iJ I I I I I I Read Mask (1 =Enable) 

ZSO*DMA 
USER'S MANUAL 

111 
LI _I L__~re~~ter(LowByte) 

.... ----Byte Counter (High Byte) 
PortAAddlllSS (Low Byte) 
PortAAddress (High Byte) 
Port B Address (LOW Byte) 

'-----------Port BAddress(Hlgh Byte) 

Figure A7. Write Register 6 Group 



READ REGISTER BIT FUNCTIONS 

Read Register 0 

07 06 D5 04 D3 02 01 DO 

Ix Ix I I I I I I ) Status Byte 

11
1 I c_~~~~<t:En~~rred 
'------0 = lnlerrupl Pending 

'-------0= Match Found 
.__-----0= End Of Block 

ReadRegllller1 

._I _,1......,1.....,1......_I ...._..._....._.I Byte Counter (Low Byte) 

Read Register 2 

I,_ _l.__.l__..l_l ____ leyteCounter(HighByte) 

Read Reglller 3 

,_I ....... 1 _l._...1.....,.1_.....,__.._.I PortAAddress Counter (low Byte) 

Read Register 4 

l.__1 ...... 1.....,.1_1.....,...., ....... _.I PortAAddress Counter (High Byte) 

Read Register 5 

1 ........ 1 ........ 1 ....... 1 _._I _._.-..._.I PortBAddressCounter(lowByte) 

Read Register & 

l.__1_1.....,.1_1.....,...., ....... _.I Port BAddress CoWller (High Byte) 

Figure AS. Read Register 0 Through 6 Bit Functions 

ZSO"'DMA 
USER'S MANUAL 

CA-3 

II 





4'2iUD., 

DEFINITION OF TERMS 

Active. ( 1) When the DMA is active, it is the bus master and 
is either operating or is suspended. (2) Signal lines are 
active when the circuitry recognizes them as such, i.e., 
when their voltage levels are either at logic 1 (High) or at 
logic 0 (Low) and the hardware. or software recognizes 
them as active in one or the other state. An active-High 
signal is written without a bar as in RDY; an active-Low 
signal is written with a bar as in /RDY. 

Address Counters. Counts the source or destination 
addresses (two separate registers are provided). When a 
source address is variable, it increments or decrements 
immediately before the counted byte is read in. When a 
destination address is variable, it increments or decre­
ments immediately before the counted byte is written out. 
Incrementing or decrementing does not occur for the first 
byte in an operation; the programmed starting address is 
used on the first byte. 

Buffer. A means of (1) storing a logic state, (2) amplifying 
a signal, or (3) isolating a signal. 

Burst Mode. A transfer or search mode ill which the DMA 
operates continuously as long as the 1/0 device's Ready 
line (or an internal Forced Ready condition) is active. If 
Ready becomes inactive, the DMA releases the bus. 

Bus. The address bus, the data bus, the control bus, or all 
three buses (system bus). To say that the DMA can 
become "bus master" means that the DMA controls the 
address bus, the data bus, and the following bus control 
lines: /RD, /WR, /IORQ, /MREQ. 

Bus Control. The DMA has control of the bus when its Bus 
Request (/BUSREQ) and Bus Acknowledge In (/BAI) lines 
are active simultaneously. 

Byte Counter. Counts the number of bytes read. The 
counter begins at zero arid increments after the counted 
byte has been read in. An end-of-block condition occurs 
when the contents of the byte counter equal the contents 
of the block-length register. 

Byte Match. A match (or compare) between a data byte 
and the masked match byte. 

OMA USER'S MANUAL 

GLOSSARY 

Byte Mode. A transfer or search mode in which the DMA 
operates on only one byte before releasing the bus. The 
bus is then requested again for the operation on the next 
byte. 

Channel. A controlled link between two ports that keeps 
track of the flow of data. The channel includes the address 
counters, byte counters and bus control logic. 

Classes of Operation. Transfer, search, and transfer- C 
while-searching (or transfer/search) classes. See also 
"Modes of Operation" and "Methods of Operation." 

Clear. Set to logic 0. 

CLK. System clock. 

Clock Cycle. One cycle of the system clock (CLK), con­
ventionally defined to begin and end on the positive-going 
(rising) edge. There is one T-cycle (time cycle) per clock 
cycle. In a 2.5 MHz clock, the clock cycle is 400 ns long 
(the inverse of the clock rate). In a 4 MHz clock, the clock 
cycle is 250 ns long. 

Command. A control byte written to the DMA by the CPU. 
It usually causes more immediate action than other control 
bytes, which tend to be mode-setting for future activity. In 
some cases, mode setting is combined with immediate 
action in a single control byte. 

Continuous Mode. A transfer or search mode in which the 
DMA completes a block transfer before releasing the 
system bus. If the 1/0 port's Ready line goes inactive 
during the transfer, the DMA pauses but retains control of 
the bus. 

Control Byte. A byte written to the OMA while the CPU is 
bus master and is addressing the OMA as an 1/0 periph­
eral via a decoded Chip Enable (/CE) signal. 

Destination Port. The port to which data is written in a 
transfer. Either Port A or Port B can be programmed as the 
destination port. Also see "Port." 

CG-1 



DEFINITION OF TERMS (CONTINUED) 

Disabled. The DMA is not able to request the system bus 
when it is in the disabled state. Any control byte written to 
the DMA, except the ENABLE DMA byte, disables the 
DMA. 

DMAC. Direct Memory Access Controller (or chip). 

Enabled. The DMA is able to request the system bus when 
it is enabled. It may also currently be the bus master in this 
state. The enabled state includes both the active and 
Inactive states 

Flowthrough. See "Sequential 'Transfer." 

Flyby. See ""Simultaneous Transfer." 

High. Logic one (high voltage potential). 

Inactive. (1) A subset of the DMA's enabled state. The 
DMA can request the bus when it is inactive. It becomes 
active when it becomes the bus master. (2) Signal lines are 
inactive when they are at the opposite logic level as their 
"active" state. 

Interrupt Vector. An 8-bit byte passed to the CPU by a 
peripheral device after the CPU acknowledges the device's 
interrupt. Ina Z80 CPU environment, the vector identifies 
the interrupting device and forms the low byte of the 
interrupt service routine's starting address. The CPU sup­
plies the high byte of that address. 

Land Capacitance. The capacitance, with respect to 
signal ground, of any part of the printed circuitry on a PC 
board. 

Low. Logic 0 (low voltage potential). 

M-Cycle. See "Machine Cycle." 

Machine Cycle. A DMA machine cycle is the time required 
to do a read or write operation in sequential transfers. In 
simultaneous transfers, it is the time required to do both a 
read and write. A CPU machine cycle is a basic operation 
such as an an opcode fetch, memory read, or memory 
write (one instruction can achieve multiple machine cycles). 
DMA machine cycles may be 2, 3, or 4 clock cycles (T­
cycles) in length, without wait states added. Z80 CPU 
machine cycles are between 3 and 10 clock cycles, unless 
wait states are added. 

Methods of Operation. Sequential and simultaneous 
methods. These are also called flowthrough and flyby, 
respectively. See also "Modes Operation" and "Classes of 
Operation." 

CG-2 

zso~DMA 
USER'S MANUAL 

Modes of Operation. Byte, Burst, or Continuous modes. 
These are also called Single, Demand, and Block modes, 
respectively. See also "Classes of Operation" and "Meth­
ods of Operation." 

Operating. When the DMA is operating, it is transferring 
and/or searching bytes of data. Control of status transfers 
between the CPU and the DMA do not constitute operation 
in this sense. 

Port. A source or destination of data. Ports may be 1/0 
peripherals or memory. The Z80 DMA generates ad­
dresses for both the source and destination port every 
time a byte of data is transferred. When data is only 
searched (no transfer), only a source port is used. 

Race Condition. Multiple logic signal transitions which 
may give rise to different states of a machine depending 
upon their relative timing. The outcome of the race cannot 
always be predicted accurately. 

Reset. Reinitialize to a default starting condition. This may 
contain logic 1s or Os. See "Clear." 

RR. Read Register. There are seven read registers that the 
CPU can read status bytes from when the DMA has 
relinquished the bus. 

Sequential Transfer. A transfer in which bytes are read 
from the source port in one read cycle and then written to 
the destination port in a separate write cycle. Searches 
can also be performed concurrently in this class of opera­
tion, and transfers can be between any two 1/0 or memory 
ports. No external logic is needed but speed is only half as 
fast as in simultaneous transfers. 

Set. Set to a starting condition. Also, often used to indicate 
setting to logic 1. 

Simultaneous Transfer. A transfer in which bytes are 
simultaneously read from the source port and written to the 
destination port. Searches can also be performed concur­
rently in this class of operation, but at least one external 
logic gate is needed, and transfers are limited to memory­
to-1/0 or 1/0-to-memory (no memory-to-memory or l/0-to-
1/0). Speeds are twice as fast as in sequential transfers. 
Simultaneous transfers are implemented by programming 
the DMA for a search-only class of operation and using 
external logic to generate the appropriate control signals. 

Source Port. The port from which data is read. Either Port 
A or Port B can be programmed as the source port. See 
also "Port." 



•2n.m 
Status Byte. Read register 0 (RRO). 

Stop. The DMA releases the bus when it stops. This state 
terminates a OMA transfer and/or search. 

Stop on Compare. Stop on byte match. 

Suspended. In the suspended state, the OMA is the bus 
master but it is not currently operating (transferring and/or 
searching data). 

SYMBOLIC NOTATION 

Z80®DMA 
UsER'S MANuAL 

System Bus. The combined address, data, and control 
buses. 

T·Cycle. See "Clock Cycle." 

WR. Write Register or Write line (/VVR). There are 21 write 
registers that the CPU can write control bytes into, but 
access to them is gained through a subset of seven, which 
are named WRO through WR6. 

In addition to the terms defined in this glossary, the Bits in Data Byte 07-00. Bits in a byte that are transmitted 
following symbolic notation is used in the manual: over the data bus. 

Address Bus A 15-AO. Parallel address lines O through 15. Data Bus 07-00. Parallel data lines 7 through 0. 

Bar Notation !ROY. Active-Low signal (i.e., active at Low C 
voltage or logic 0). ROY: Active-High signal (i.e., active at 
High voltage or logic 1). 

CG-3 





4'2H «a!) 
zaoecpu 

Central Processing Unit 

Z80® CTC 
Countertrimer Circuit 

ZBO® OMA 
Direct Memory Access 

Z80® PIO 
Parallel Input/Output 

zaoe SID 
Serial Input/Output 

Superintegration™ 
Products Guide 

Zilog•s Literature Guide 
Ordering Information 

Iii 





tf'2iUD=t PIO USER'S MANUAL 

TABLE OF CONTENTS 

C hapter 1. Introduction 
1.0 Introduction ................................................................................................................ 01-1 
1.1 Features ..................................................................................................................... 01-1 

Chapter 2. Architecture 
2.0 Overview .................................................................................................................... D2-1 

Chapter 3. Pin Description 
3.0 Pin Description ........................................................................................................... D3-1 

Chapter 4. Programming the PIO 
4.0 Reset ........................................................................................................................... D4-1 
4.1 Loading the Interrupt Vector ...................................................................................... D4-1 
4.2 Selecting an Operating Mode .................................................................................... D4-2 
4.3 Setting the Interrupt Control Word ............................................................................. D4-3 Iii Chapter 5. Timing 
5.0 Output Mode (Mode 0) .............................................................................................. D5-1 
5.1 Input Mode (Mode 1) ................................................................................................. D5-2 
5.2 Bidirectional Mode (Mode 2) ..................................................................................... D5-2 
5.3 Control Mode (Mode 3) .............................................................................................. D5-3 

Chapter 6. Interrupt Control 
6.0 Interrupt Daisy Chain ................................................................................................. D6-1 

Chapter 7. Applications 
7.0 Interrupt Daisy Chain ................................................................................................. 07-1 
7.1 1/0 Device Interface ................................................................................................... D7-2 
7 .2 Control Interface ........................................................................................................ D7-3 

Chapter 8. Programming Summary 
8. 0 Load Interrupt Vector ................................................................................................. D8-1 
8.1 Set Mode .................................................................................................................... D8-1 
8.2 Set Interrupt Control ................................................................................................... 08-1 

D-i 



List of Figures 
Figure 2-1. PIO Block Diagram ........................................................................................................... D2-1 
Figure 2-2. Port 1/0 Block Diagram ..................................................................................................... D2-2 
Figure 3-1. PIO Pin Functions ............................................................................................................. D3-3 
Figure 3-2. PIO 44-Pin PLCC Pin Assignments .................................................................................. D3-3 
Figure 5-1. Mode 0 (Output) Timing .. : ................................................................................................ D5-1 
Figure 5-2. Mode 1 (Input) Timing ................................................................................................... ; .. D5-2 
Figure 5-3. Port A, Mode 2 (Bidirectional) Timing .............................................................................. D5-3 
Figure 5-4. Control Mode (Mode 3) Timing ........................................................................................ D5-3 
Figure 6-1. Interrupt Acknowledge Timing ......................................................................................... D6-1 
Figure 6-2. Return from Interrupt Cycle .............................................................................................. 06-2 
Figure 6-3. Daisy-Chain Interrupt Service .......................................................................................... 06-2 
Figure 7-1. A Method of Extending the Interrupt 

Priority Daisy Chain .......................................................................................................... 07-1 
Figure 7-1. Example of 1/0 lnterface ................................................................................................... D7-2 
Figure 7-3. Control Mode Application ................................................................................................. 07-4 

D-ii 

Z80®PIO 
USER'S MANUAL 



•2iuJJ, 

1.0 INTRODUCTION 

The Z80 Parallel 1/0 (PIO) Circuit is a programmable, two 
port device which provides a TTL compatible interface 
between peripheral devices and the Z80-CPU. The CPU 
can configure the Z80-PIO to interface with a wide range 
of peripheral devices with no other external logic required. 
Typical peripheral devices that are fully compatible with 
the Z80-PIO include most keyboards, paper tape readers 
and punches, printers, PROM programmers, etc. The 
Z80-PIO is packaged in a 40-pin DIP, or a 44-pin PLCC, or 
a 44-pin QFP. NMOS and CMOS versions are also avail­
able. Major features of the Z80-PIO include: 

One of the unique features of the Z80-PIO that separates 
it from other interface controllers is that all data transfer 

PIO USER'S MANUAL 

CHAPTER 1 
INTRODUCTION 

between the peripheral device and the CPU is accom­
plished under total interrupt control. The interrupt logic of 
the PIO permits full usage of the efficient interrupt capabili­
ties of the Z80-CPU during 1/0 transfers. All logic neces­
sary to implement a fully nested interrupt structure is 
included in the PIO so that additional circuits are not 
required. Another unique feature of the PIO is that it can be 
programmed to interrupt the CPU on the occurrence of 
specified status conditions in the peripheral device. For 
example, the PIO can be programmed to interrupt if any 
specified peripheral alarm conditions should occur. This 
interrupt capability reduces the amount of time that the 
processor must spend in polling peripheral status. 

------,------1.1 FEATURES lilll 
• Two Independent 8-Bit Bidirectional Peripheral 

Interface Ports with 'Handshake' Data Transfer 
Control 

• Interrupt Driven 'Handshake' for Fast Response 

• Any One of Four Distinct Modes of Operation May 
be Selected for a Port Including: 

- Byte Output 
-Byte Input 
- Byte Bidirectional Bus 

(Available on Port A Only) 
- Bit Control Mode 
- All with Interrupt Controlled Handshake 

• Daisy Chain Priority Interrupt Logic Included to 
Provide for Automatic Interrupt Vectoring Without 
External Logic 

• Eight Outputs are Capable of Driving Darlington 
Transistors 

• All Inputs and Outputs Fully TTL Compatible 

• Single 5V Supply and Single Phase Clock are 
Required. 

01-1 





4'2iUD., 

2.0 OVERVIEW 

A block diagram of the Z80-PIO is shown in Figure 2-1. The 
internal structure of the Z80-PIO consists of a Z80-CPU 
bus interface, internal control logic, Port A 1/0 logic, Port B 
1/0 logic, and interrupt control logic. The CPU bus inter­
face logic allows the PIO to interface directly to the Z80-
CPU with no other external logic. However, address de­
coders and/or line buffers may be required for large 
systems. The internal control logic synchronizes the CPU 
data bus to the peripheral device interfaces (Port A and 
Port B). The two 1/0 ports (A and B) are virtually identical 
and are used to interface directly to peripheral devices. 

The Port 1/0 logic is composed of 6 registers with "hand­
shake" control logic as shown in Figure 2-2. The registers 
include: an 8-bit data input register, an 8-bit data output 

CPU { Data"'"e ... us_,s_._ i~~ 
Interface 6 VO 

PIO Control 
Lines 

+5V GND c!J 

! ! ! 
lntemal 
Control 
Logic 

Interrupt 
Control 

3 

Interrupt Control Lines 

PIO USER'S MANUAL 

CHAPTER 2 
PIO ARCHITECTURE 

register, a 2-bit mode control register, an 8-bit mask 
register, an 8-bit input/output select register, and a 2-bit 
mask control register. 

The 2-bit mode control register is loaded by the CPU to 
select the desired operating mode (byte output, byte input, 
byte bidirectional bus, or bit control mode). All data trans­
fer between the peripheral device and the CPU is achieved 
through the data input and data output registers. Data may 
be written into the output register by the CPU or read back 
to the CPU from the input register at any time. The hand­
shake lines associated with each port are used to control 
the data transfer between the PIO and the peripheral 
device. 

8 Data or Control 

----> Handshake 

8 Data or Control 

----} Handshake 

Peripheral 
Interface 

Figure 2-1. PIO Block Diagram 

02-1 



Mask 

Mode 
Control 

Reg 
(2 Bits) 

Control ---~ ..... 
Reg 

(2 Bits) 

Mask 
Reg 

(8Blts) 

Input/Output 
Select Reg 

(8 Bits) 

Output Enable 

Data 
Output 

Reg 
(8Blts) 

Data 
lmput 

(8 Bits) 

Ready 

8-Bit 
Peripheral 
Data Or 

Control Bus 

ZBO"'PIO 
USER'S MANUAL 

Interrupt .-..--1 
Requests 

Handshake 
Control 
Logic 

} Handshake 
/Strobe Lines 

Figure 2·2. Port VO Block Diagram 

The 8-bit mask register and the 8-bit input/output select 
register are used only in the bit control mode. In this mode, 
any of the eight peripheral data or control bus pins can be 
programmed to be an input or an output as specified by the 
select register. The mask register is used in this mode in 
conjunction with a special interrupt feature. This feature 
allows an interrupt to be generated when any or all of the 
unmasked pins reach a specified state (either High or 
Low). The 2-bit mask control register specifies the active 
state desired High or Low) and if the interrupt should be 
generated when all unmasked pins are active (AND con­
dition) or when any unmasked pin is active (OR condition). 
This feature reduces the requirement for CPU status check­
ing of the peripheral by allowing an interrupt to be auto­
matically generated on specific peripheral status condi­
tions. For example, in a system with three alarm conditions, 
an interrupt may be generated if any one occurs or if all 
three occur. 

The interrupt control logic section handles all CPU inter­
rupt protocol for nested priority interrupt structures. The 
priority of any device is determined by its physical location 
in a daisy chain configuration. Two lines are provided in 
each PIO to form this daisy chain. The device closest to the 
CPU has the highest priority. Within a PIO, Port A interrupts 
have higher priority than those of Port B. In the byte input, 
byte output or bidirectional modes, an interrupt can be 
generated whenever a new byte transfer is requested by 

02-2 

the peripheral. In the bit control mode an interrupt can be 
generated when the peripheral status matches a pro­
grammed value. The PIO provides for complete control of 
nested interrupts. That is, lower priority devices may not 
interrupt higher priority devices that have not had their 
interrupt service routine completed by the CPU. Higher 
priority devices may interrupt the servicing of lower priority 
devices. 

When an interrupt is accepted by the CPU in Mode 2, the 
interrupting device must provide an 8-bit interrupt vector 
for the CPU. This vector is used to form a pointer to a 
location in the computer memory where the address of the 
interrupt service routine is located. The 8-bit vector from 
the interrupting device forms the least significant eight bits 
of the indirect pointer while the I Register in the CPU 
provides the most significant eight bits of the pointer. Each 
port (A and 8) has an independent interrupt vector. The 
least significant bit of the vector is automatically set to a 0 
within the PIO since the pointer must point to two adjacent 
memory locations for a complete 16-bit address. 

The PIO decodes the RETI (Return from interrupt) instruc­
tion directly from the CPU data bus so that each PIO in the 
system knows at all times whether it is being serviced by 
the CPU interrupt service routine without any other com­
munication with the CPU. 



~2iUU., 

3.0 PIN DESCRIPTION 

A diagram of the Z80-PIO pin configuration is shown in 
Figure 3-1. This section describes the function of each pin. 

07-DO ZBO-CPU Data Bus (bidirectional, tri-state). This 
bus is used to transfer all data and commands between the 
Z80-CPU and the Z80-PIO. DO is the least significant bit of 
the bus. 

BIA Set Port B or A Select (input, active High). This pin 
defines which port will be accessed during a data transfer 
between the Z80-CPU and the Z80-PIO. A Low level on this 
pin selects Port A while a High level selects Port 8. Often, 
Address bit AO from the CPU will be used for this selection 
function. 

C/D Set Control or Data Select(input, active High). This pin 
defines the type of data transfer to be performed between 
the CPU andthe PIO. A High level on this pin during a CPU 
write to the PIO causes the Z80 data bus to be interpreted 
as a command for the port selected by the 8/A Select line. 
A Low level on this pin means that he Z80 data bus is being 
used to transfer data between the CPU and the PIO. Often 
Address bit A 1 from the CPU will be used for this function. 

/CE Chip Enable(input, active Low). A Low level on this pin 
enables the PIO to accept command or data inputs from 
the CPU during a write cycle or to transmit data to the CPU 
during a read cycle. This signal is generally a decode of 
four 1/0 port numbers that encompass Ports A and 8, data, 
and control. 

it> System Clock (input). The Z80-PIO uses the standard 
Z80 system clock to synchronize certain signals internally. 
This is a single phase clock. 

/M1 Machine Cycle One Signal from CPU (input, active 
Low). This signal from the CPU is used as a sync pulse to 
control several internal PIO operations. When /M 1 is active 
and the /RD signal is active, the Z80-CPU is fetching an 
instruction from memory. Conversely, when /M1 is active 
and /IORQ is active, the CPU is acknowledging an inter­
rupt. In addition, the /M1 signal has two other functions 
within the Z80-PIO. 

PIO User's Manual 

CHAPTER 3 
PIN DESCRIPTION 

1. /M 1 synchronizes the PIO interrupt logic. 

2. When /M1 occurs without an active /RD or /IORQ 
signal, the PIO logic enters a reset state. 

/IORQ Input/Output Request from ZBO-CPU (input, active 
Low). The /IORQ signal is used in conjunction with the 8/ 
A Select, CID Select, /CE, and /RD signals to transfer 
commands and data between the ZBO-CPU and the Z80-
PIO. When /CE, /RD, and /IORQ are active, the port 
addressed by 8/A will transfer data to the CPU (a read 
operation). Conversely, when /CE and /IORQ are active 
but /RD is not active, then the port addressed by 8/A will 
be written into from the CPU with either data or control 
information as specified by the CID Select signal. Also, if D 
/IORQ and /M1 are active simultaneously, the CPU is 
acknowledging an interrupt and the interrupting port will 
automatically place its interrupt vector on the CPU data 
bus if it is the highest priority device requesting an inter-
rupt. 

/RD Read Cycle Status from the ZBO-CPU (input, active 
Low). If /RD is active a· MEMORY READ or 1/0 READ 
operation is in progress. The /RD signal is used with 8/A 
Select, CID Select, /CE, and /IORQ signals to transfer data 
from the Z80-PIO to the Z80-CPU. 

tEt Interrupt Enable In (input, active High). This signal is 
used to form a priority interrupt daisy chain when more than 
one interrupt driven device is being used. A High level on 
this pin indicates that no other devices of higher priority are 
being serviced by a CPU interrupt service routine. 

tEO Interrupt Enable Out (output, active High). The IEO 
signal is the other signal requited to form a daisy chain 
priority scheme. It is High only if IEI is High and the CPU is 
not servicing an interrupt from this PIO. Thus, this signal 
blocks lower priority devices from interrupting while a 
higher priority device is being serviced by its CPU interrupt 
service routine. 

03-1 



nNT Interrupt Request (output, open-drain, active Low). 
When /INT is active, the Z80-PIO is requesting an interrupt 
from the Z80-CPU. 

A7-AO Port A Bus (bidirectional, tri-state). This 8-bit bus is 
used to transfer data and/or status or control information 
between Port A of the Z80-PIO and a peripheral device. AO 
is the least significant bit of the Port A data bus. 

/ASTB Port A Strobe Pulse from Peripheral Device (input, 
active Low). The meaning of this signal depends on the 
mode of operation selected for Port A as follows: 

1. Output mode: The positive edge of this strobe is 
issued by the peripheral to acknowledge the receipt of 
data made available by the PIO. 

2. Input mode: The strobe is issued by the peripheral to 
load data from the peripheral into the Port A input 
register. Data is loaded into the PIO when this signal is 
active. 

3. Bidirectional mode: When this signal is active, data 
from the Port A output register is gated onto Port A 
bidirectional data bus. The positive edge of the strobe 
acknowledges the receipt of the data. 

4. Control mode: The strobe is inhibited internally. 

ARDY Register A Ready(output, active High). The mean­
ing of this signal depends on the mode oi operation 
selected for Port A as follows: 

1. Output mode: This signal goes active to indicate that 
the Port A output register has been loaded and the 
peripheral data bus is stable and ready for transfer to 
the peripheral device. 

03-2 

Z80'"' PIO 
USER'S MANUAL 

2. Input mode: This signal is active when the Port A input 
register is empty and is ready to accept data from the 
peripheral device. 

3. Bidirectional mode: This signal is active when data is 
available in the Port A output register for transfer to the 
peripheral device. In this mode, data is slot placed on 
the Port A data bus unless A STB is active. 

4. Control mode: This signal is disabled and forced to a 
Low state. 

87-BO Port B Bus (bidirectional, tri-state). This 8-bit bus is 
used to transfer data and/or status or control information 
between Port B of the PIO and a peripheral device. The 
Port B data bus is capable of supplying 1.5 mA @ 1.5V to 
drive Darlington transistors. BO is the least significant bit of 
the bus. 

/BSTB Port B Strobe Pulse from Peripheral Device (input, 
active Low). The meaning of this signal is similar to that of 
/ASTB with the following exception: 

In the Port A bidirectional mode, this signal strobes data 
from the peripheral device into the Port A input register. 

BRDY Register B Ready(output, active High). The mean­
ing of this signal is similar to that of A Ready with the 
following exception: · 

In the Port A bidirectional mode this signal is High when the 
Port A input register is empty and ready to accept data 
from the peripheral device. 



DO 1 NJ 

01 .. Al 

D2 13 A2 
CPU 03 12 A3 
Data 
BUS 04 M 

05 AS Port A 
00 

Dtl .. 
07 Z80-PIO A7 { ~~~ 18 ARDY 

Conbol Alala SEL /Alm! 

~ /Chip Enable BO 

/Ml Bl 

noRO B2 
/RD B3 

Ill 
+5V .. BS 

PortB 
00 

GND 33 B8 
31 B7 

• 25 

21 BROY 
nNT /BSTB I~~~{ nNTEnablo In 

Conlftll 
ANTEnabloOut 

Figure 3-1. PIO Pin Functions 

~Cj Cj fJ ~«, ~ 
!:). II 

<)- <9- <S" ~~~f'~ 

6 5 4 3 2 44 43 42 41 40 

Bl/A 7 39 /RD 

PA7 8 38 PB7 

PA6 9 37 PB6 

PA5 10 36 PBS 

PA4 11 35 PB4 

N/C 12 Z80- PIO 34 PB3 

GND 13 33 PB2 

PA3 14 32 PB1 

PA2 15 31 PBO 

PA1 16 30 +SV 

PAO 17 29 CLK 

18 19 20 21 22 23 24 25 26 27 28 

,#' ~~ ~~ ~ -v",P ~Cj ~Cj {!,o ~ -$-

Figure 3-2. PIO 44-Pin PLCC Pin Assignments 

03-3 





~2iUD=. 

4.0 RESET 

The Z80-PIO automatically enters a reset state when 
power is applied. The reset state performs the following 
functions: 

1. Both port mask registers are reset to inhibit all port 
data bits. 

2. Port data bus lines are set to a high-impedance state 
and the Ready "handshake" signals are inactive (Low). 
Mode 1 is automatically selected. 

3. The vector address registers are not reset. 

4. Both port interrupt enable flip-flops are reset. 

5. Both port output registers are reset. 

4.1 LOADING THE INTERRUPT VECTOR 

The PIO has been designed to operate with the Z80-CPU 
using the Mode 2 interrupt response. This mode requires 
that an interrupt vector be supplied by the interrupting 
device. This vector is used by the CPU to form the address 
for the interrupt service routine of that port. This vector is 
placed on the Z80 data bus during an interrupt acknowl­
edge cycle by the highest priority device requesting ser­
vice at that time. (Refer to the Z80-CPU User's Manual 
Section for details on how an interrupt is serviced by the 
CPU). The desired interrupt vector is loaded into the PIO by 
writing a control word to the desired port of the PIO with the 
following format: 

PIO USER'S MANUAL 

CHAPTER 4 
PROGRAMMING THE PIO 

In addition to the automatic power-on reset. the PIO can be 
reset by applying an /M1 signal without the presence of a 
/RD or /IORQ signal. If no /RD or /IORQ is detected during 
/M1, the PIO will enter the reset state immediately after the 
/M1 signal goes inactive. The purpose of this reset is to 
allow a single external gate to generate a reset without a 
power down sequence. This approach was required due 
to the 40-pin packaging limitation. 

Once the PIO has entered the internal reset state, it is held 
there until the PIO receives a control word from the CPU. 

07 06 05 04 03 02 01 DO 

DO is used in this case as a flag bit which when Low, 
causes V7 through V1 to be loaded into the vector register. 
At interrupt acknowledge time, the vector of the interrupt­
ing port will appear on the Z80 data bus exactly as shown 
in the format above. 

04-1 



't'2H.£16 
4.2 SELECTING AN OPERATING MODE 

Port A of the PIO may be operated in any of four distinct 
modes: Mode 0 (output mode), Mode 1 (input mode), 
Mode 2 (bidirectional mode), and Mode 3 (control mode). 
Note that the mode numbers have been selected for 
mnemonic significance; i.e., 0 = Out, 1 = In, 2 = Bidirec­
tional. Port B can operate in any of these modes except 
Mode2. 

The mode of operation must be established by writing a 
control word to the PIO in the following format: 

Mode Word Signifies Mode Word To Be Set 

X=Unused Bit 

Bits 07 and 06 from the binary code for the desired mode 
according to the following table: 

07 06 Mode 

0 0 0 (output) 
0 1 1 (input) 
1 0 2 (bidirectional) 
1 1 3 (control) 

Bits 05 and D4are ignored. BitsD3-DOmustbesetto 1111 
to indicate "Set Mode". 

Selecting Mode 0 enables any data written to the port 
output register by the CPU to be enabled onto the port data 
bus. The contents of the output register may be changed 
at any time by the CPU simply by writing a new data word 
to the port. Also the current contents of the output register 
may be read back to the Z80-CPU at any time through the 
execution of an input instruction. 

With Mode O active, a data write from the CPU causes the 
Ready handshake line of that port to go High to notify the 
peripheral that data is available. This signal remains High 
until a strobe is received from the peripheral. The rising 
edge of the strobe generates an interrupt (if it has been 
enabled) and causes the Ready line to go inactive. This 
very simple handshake is similar to that used in many 
peripheral devices. 

04-2 

Z80"'PIO 
USER'S MANUAL 

Selecting Mode 1 puts the port into the input mode. To start 
handshake operation, the CPU merely performs an input 
read operation from the port. This activates the Ready line 
to the peripheral to signify that data should be loaded into 
the empty input register. The peripheral device then strobes 
data into the port input register using the strobe line. Again, 
the rising edge of the strobe causes an interrupt request (if 
it has been enabled) and deactivates the Ready signal. 
Data may be strobed into the input register regardless of 
the state of the Ready signal if care is taken to prevent a 
data overrun condition. 

Mode 2 is a bidirectional data transfer mode which uses all 
four handshake lines. Therefore, only Port A may be used 
for Mode 2 operation. Mode 2 operation uses the Port A 
handshake signals for output control and the Port B hand­
shake signals for input control. Thus, both ARDY and 
BROY may be active simultaneously. The only operational 
difference between Mode O and the output portion of Mode 
2 is that data from the Port. A output register is allowed on 
to the port data bus only when /ASTB is active in order to 
achieve a bidirectional capability. 

Mode 3 operation is intended for status and control appli­
cations and does not utilize the handshake signals. When 
Mode 3 is selected, the next control word sent to the PIO 
must define which of the port data bus lines are to be inputs 
and which are outputs. The format of the control word is 
shown below: 

07 06 05 04 03 02 01 DO 

1~1~1~1~1~1~1~1~1 
If any bit is set to a one, then the corresponding data bus 
line will be used as an input. Conversely, ifthe bit is reset, 
the line will be used as an output. 

During Mode 3 operation, the strobe signal is ignored and 
the Ready line is held Low. Data may be written to a port 
or read from a port by the Z80-CPU at any time during 
Mode 3 operation. When reading a port, the data returned 
to the CPU will be composed of input data from port data 
bus lines assigned as inputs plus port output register data 
from those lines assigned as outputs. 



'tl2H.JJ6 
zao•p10 

USER'S MANUAL 

4.3 SETTING THE INTERRUPT CONTROL WORD 

The interrupt control word for each port has the following 
format: 

07 06 05 04 03 02 01 DO 

1E~:.~1~~n~1~:1 ° 11 11 11 1 
Used In 

Mode30nly 
Signifies Interrupt 

Control Word 

If bit D7 = 1, the interrupt enable flip-flop of the port is set 
and the port may generate an interrupt. If bit D7 = 0, the 
enable flag is reset and interrupts may not be generated. 
If an interrupt is pending when the enable flag is set, it will 
then be enabled onto the CPU interrupt request line. bits 
D6, D5, and D4 are used only with Mode 3 operation. 
However, setting bit D4 of the interrupt control word during 
any mode of operation will cause any pending interrupt to 
be reset. These three bits are used to allow for interrupt 
operation in Mode 3 when any group of the 1/0 lines go to 
certain defined states. Bit D6 (AND/OR) defines the logical 
operation to be performed in port monitoring. If bit D6 = 1, 
an AND function is specified and if D6 = 0, an OR function 
is specified. For example, if the AND function is specified, 

all bits must go to a specified state before an interrupt will 
be generated while the OR function will generate an 
interrupt if any specified bit goes to the active state. 

Bit D5 defines the active polarity of the port data bus line 
to be monitored. If bit D5 = 1, the port data lines are 
monitored for a high state while if D5 = 0, they will be 
monitored for a low state. 

If bit D4 = 1, the next control word sent to the PIO must 
define a mask as follows: 

07 06 05 04 03 02 01 DO 

1~1~1~1~1~1~1~1~1 

Only those port lines whose mask bit is zero will be 
monitored for generating an interrupt is high, the forced 
state of Ready will prevent input register data from chang­
ing while the CPU is reading the PIO. Ready will go High 
again after the trailing edge of the /IORQ as previously 
described. 

04-3 

Iii 





5.0 OUTPUT MODE (MODE 0) 

Figure 5-1 illustrates the timing associated with Mode O 
operation. An output cycle is always started by the execu­
tion of an output instruction by the CPU. A NJR* pulse is 
generated by the PIO during a CPU 1/0 write operation and 
is used to latch the data from the CPU data bus into the 
addressed ports (A or B) output register. The rising edge 
of the NJR* pulse then raises the Ready flag after the next 
falling edge of Cl> to indicate that data is available for the 
peripheral device. In most systems, the rising edge of the 
Ready signal can be used as a latching signal in the 
peripheral device if desired. The Ready signal will remain 
active unti I: ( 1) a positive edge is received from the strobe 
line indicating that the peripheral has taken the data, or (2) 
if already active, Ready will be forced low 1one and one­
half «II cycles after the leading edge of /IORQ if the port's 
output register is written into. Ready will return High on the 
first falling edge of Cl> after the trailing edge of /IORQ. This 

/WR* 

Port Output 
(8 Bits) 

Ready 

/Strobe 

/INT 

/WR* =/RD •/CE •/CID • /IORQ 

PIO USER'S MANUAL 

CHAPTER 5 
TIMING 

guarantees that Ready is low when port data is changing. 
The Ready signal will not go inactive until a falling edge 
occurs on the clock («II) line. The purpose of delaying the 
negative transition of the Ready signal until after a negative 
clock transition is that it allows for a very simple generation 
scheme for the strobe pulse. By merely connecting the 
Ready line to the Strobe line, a strobe with a duration of one 
clock period will begenerated with no other logic required. 
The positive edge of the strobe pulse automatically gener­
ates an /INT request if the interrupt enable flip-flop has 
been set and this device is the highest priority device 
requesting an interrupt. 

If the PIO is not in a reset state, the output register may be 
loaded before Mode 0 is selected. This allows the port mi:. 
output lines to become active in a user defined state. • 

Figure 5·1. Mode 0 (Output) Timing 

05-1 



5.1 INPUT MODE (MODE 1) 

Figure 5-2 illustrates the timing of an input cycle. The 
peripheral initiates this cycle using the strobe line after the 
CPU has performed a data read. A low level on this line 
loads data into the port input register and the rising edge 
of the strobe line activates the interrupt request line (/INT) 
if the interrupt enable is set and this is the highest priority 
requesting device. The next filling edge of the clock line 
(Ill) will then reset the Ready line to an inactive state 
signifying that the input register is full and further loading 
must be inhibited until the CPU reads the data. The CPU 

/Strobe 

Portlmput 
(8Blts) 

Ready 

/INT 

/RD* 

/RD' = RD •CE• /CID• IORQ 

Z80..,PIO 
USER'S MANUAL 

will in the course of its interrupt service routine, read the 
data from the interrupting port. When this occurs, the 
positive edge from the CPU /RD signal will raise the Ready 
line with the next low going transition of Ill indicating that 
new data can be loaded into the PIO. If already active, 
Ready will be forced low one and one-half Ill periods 
following the leading edge of /IORQ during a read of a PIO 
port. If the user strobes data into the PIO only when Ready 

Figure 5-2. Mode 1 {Input) Timing 

5.2 BIDIRECTIONAL MODE (MODE 2) 

This mode is merely a combination of Mode 0 and Mode 1 
using all four handshake lines. Since it requires all four 
lines, it is available only on Port A. When this mode is used 
on Port A, Port B must be set to the Bit Control Mode. The 
same interrupt vector will be returned for a Mode3 interrupt 
on Port B and an input transfer interrupt during Mode 2 
operation of Port A. Ambiguity is avoided if Port B is 
operated in a polled mode and the Port B mask register is 
set to inhibit all bits. 

Figure 5-3 illustrates the timing for this mode. It is almost 
identical to that previously described for Mode 0 and Mode 
1 with the Port A handshake lines used for output control 
and the Port B lines used for input control. The difference 
between the two modes is that, in Mode 2, data is allowed 
out onto the bus only when the A strobe is Low. The rising 

05-2 

edge of this strobe can be used to latch the data into the 
peripheral since the data will remain stable until after this 
edge. The input portion of Mode 2 operates identically to 
Mode 1. Note that both Port A and Port B must have their 
interrupts enabled to achieve an interrupt driven bidirec­
tional transfer. 

The peripheral must not gate data onto a port data bus 
while /ASTB is active. Bus contention is avoided if the 
peripheral uses /BSTB to gate input data onto the bus. The 
PIO uses the /BSTB low level to latch this data. The PIO has 
been designed with a zero hold time requirement for the 
data when latching in this mode so that this simple gating 
structure can be used by the peripheral. That is, the data 
can be disabled from the bus immediately after the strobe 
rising edge. 



fWR' 

ARDY 

/ASTB 

Port A 
Data Bus 

/INT 

/BSTB 

BROY 

!WR' =/RD• CE •/CID • IORQ 

Data Out 

zaosPlo 
USER'S MANUAL 

Figure 5·3. Port A, Mode 2 (Bidirectional) Timing 

5.3 CONTROL MODE (MODE 3) 

The control mode does not utilize the handshake signals 
and a normal port write or port read can be executed at any 
time. When writing, the data will be latched into output 
registers with the same timing as Mode 0. ARDY will be 
forced low whenever Port A is operated in Mode 3. BROY 
will be held low whenever Port B is operated in Mode 3 
unless Port A is in Mode 2. In the latter case, the state of 
BROY will not be affected. 

When reading the PIO, the data returned to the CPU will be 
composed of output register data from those port data 
lines assigned as outputs and input register data from 
those port data lines assigned as inputs. The input register 
will contain data which was present immediately prior to. 
the falling edge of /RD. See Figure 5-4. 

An interrupt will be generated if interrupts from the port are 
enabled and the data on the port data lines satisfies the 
logical equation defined by the 8-bit mask and 2-bit mask 
control registers. Another interrupt will not be generated II 
until a change occurs in the status of the logical equation. I 
A Mode 3 interrupt will be generated only if the result of a 
Mode 3 logical operation changes from false to true. For 
example, assume that the Mode 3 logical equation is an 
OR function. An unmasked port data line becomes active 
and an interrupt is requested. If a second unmasked port 
data line becomes active concurrently with the first, a new 
interrupt will not be requested since a change in the result 
of the Mode 3 logical operation has not occurred. 

If the result of a logical operation becomes true immedi­
ately prior to or during /M1 an interrupt will be requested 
after the trailing edge of /M1. 

T1 T2 Tw' T3 

Port 
Data Bus 

/INT 

/IORQ 

/RD 

07·00 Data In J 
'Timing Diagram Refers to Bit Mode Read. ~Data Word 1 Placed On Bus 

Figure 5·4. Control Mode (Mode 3) Timing 

05-3 





4'2iUJI., 

6.0 INTERRUPT SERVICING 

Some time after an interrupt is requested by the PIO, the 
CPU will send out an interrupt acknowledge (/M1 and 
/IORQ). During this time the interrupt logic of the PIO will 
determine the highest priority port which is requesting an 
interrupt. (This is simply the device with its Interrupt Enable 
Input high and its Interrupt Enable Output low). To insure 
that the daisy chain enable lines stabilize. devices are 
inhibited from changing their interrupt request status when 
/M1 is active. The highest priority device places the con­
tents of its interrupt vector register onto the Z80 data bus 
during interrupt acknowledge. 

Figure 6-1 illustrates the timing associated with interrupt 
requests. During /M1 time, no new interrupt requests can 
be generated. This gives time for the Int Enable signals to 
ripple through up to four PIO circuits. The PIO, with IEI High 
and IEO Low during /INTA, will place the 8-bit interrupt 
vector of the appropriate port on the data bus at this time. 

PIO USER'S MANUAL 

CHAPTER 6 
INTERRUPT SERVICING 

If an interrupt requested by the PIO is acknowledged, the 
requesting port is 'under service'. IEO of this port will 
remain low until a return from interrupt instruction (RETI) is 
executed while IEI of the port is high. If an interrupt request 
is not acknowledged, IEO will be forced high for one /M1 
cycle after the PIO decodes the opcode 'ED'. This action 
guarantees that the 2-byte RETI instruction is decoded by 
the proper PIO port (Figure 6-2). 

Figure 6-3 illustrates a typical nested interrupt sequence 
that could occur with four ports connected in the daisy 
chain. In this sequence Port 2A requests and is granted an 
interrupt. While this port is being serviced, a higher priority 
port(18) requests and is granted an interrupt. The service 
routine for the higher priority port is completed and a RETI D 
instruction is executed to indicate to the port that its routine 
is complete. At this time the service routine of the lower 
priority port is completed. 

~~~: I T1 I T2 I Tw* I Tw* I T3 I 

/INT

/IORQ

/M1

IEO

IEI

Figure 6-1. Interrupt Acknowledge Timing

/IORQ and /M1 Indicate
Interrupt Acknowledge VINTA)

06-1

06-2

/M1

/RD

D7-DO

T1 T2

'--'
\ I

T3 T4 T1

\

\

T2 T3

I

I

4D)

T4 T1

ZSO*PIO
USER'S MANUAL

IEI --------------;-~--~

IEO

' --------------

Figure 6-2. Return From Interrupt Cycle

Highest Priority Channel

Port1A

IEI IEO IEI

Port 18 Port 2A

IEO

1. Priority Interrupt Daisy Chain Before Any Interrupt Occurs.
Under Service

IEI IEO IEI IEO

2. Port 2A Requests an Interrupt and is Ackowledged.

Under Service

IEI IEO IEI

3. Port 181 Interrupts, Suspends Servicing of Port 2A.

Service Com lete Service Resumed

IEI

IEI

IEI

IEI IEO IEI IEO HI IEI IE~""'LO-......IEI

4. Port 1 B Service Routine Complete, "RETI" Issued, Port 2A Serviced Resumed

Service Complete

IEI IEO IEI IEO _ H._I """IEI IEO

5. Second "RETI' Instruction Issued on Completion of Port 2A Service Routine

Figure 6-3. Daisy-Chain Interrupt Servicing

IEI

Port2B

HI IEO---

IEO..,_.L o_

IEO..,_.L=O-

IEO..,_.L O_

IEO 1--'H I_

PIO USER'S MANUAL

CHAPTER 7
APPLICATIONS

7.0 EXTENDING THE INTERRUPT DAISY CHAIN

Without any external logic, a maximum of four Z80-PIO
devices may be daisy chained into a priority interrupt
structure. This limitation is required so that the interrupt
enable status (IEO) ripples through the entire chain be­
tween the beginning of /M1, and the beginning of /IORQ
during an interrupt acknowledge cycle. Since the interrupt
enable status cannot change during /M1, the vector ad-

+V P10 P10 P10 P10
IEI IEO IEI IEO IEI IEO IEI IEO

dress returned to the CPU is assured to be from the highest
priority device which requested an interrupt.

If more than four PIO devices must be accommodated, a
"look-ahead" structure may be used as shown in Figure
7-1. With this technique, more than thirty PIO's may be
chained together using standard TTL logic.

P10
IEI IEO

P10
IEI IEO

P10
IEI IEO

P10
IEI IEO

ZBO­
CPU

Data Bus

Figure 7-1. A Method of Extending the Interrupt Priority Daisy Chain

07-1

II

7.1 1/0 DEVICE INTERFACE

In this example. the Z80..PIO is connected to an 1/0
terminal device which communicates over an 8-bit parallel
bidirectional data bus as illustrated in Figure 7-2. Mode 2
operation (bidirectional) is selected by sending the follow­
ing control word to Port A:

07 D6 05 04 03 02 01 DO

l1lolxlxl l1l1l
Mode Control

Next, the proper interrupt vector is loaded (refer to CPU
Manual for details on the operation of the interrupt).

07 D6 D5 D4 03 02 D1 DO

lwlwlwlwlwl~l~I ol

ZBO-
K DataBus ~

ZBO-/IORQ CPU . PIO
/M1
/INT

.
~

zso~PIO
USER'S MANUAL

Interrupts are then enabled by the rising edge oJ the first
/M1 after the interrupt mode word is set unless that /M1
defines an interrupt acknowledge cycle. If a mask follows
the interrupt mode word. inter,r;up:ts afe enabled by the
rising edge ofthefirsttM1 foAlowingthe setting of the mask.

Data can now be transferred between the peripheral and
the CPU. The timing for this transfer is as described in
Section 5.0.

ARDY -
/ASTB

BROY -
/BSTB

D D D D
s R R A
T a c v

K Port Data Bus > B v

1/0
BIA CID /CE Terminal

~ Address J
Address Bus> Bus

Decoder

Figure 7·2. Example of 1/0 Interface

07-2

7.2 CONTROL INTERFACE

A typical control mode application is illustrated in Figure
7-3. Suppose an industrial process is to be monitored. The
occurrence of any abnormal operating condition is to be
reported to a ZBO-CPU based control system. The process
control and status word has the following format:

07 D6 D5 04 03 02 D1 DO

The PIO may be used as follows. First Port A is set for Mode
3 operation by writing the following control word to Port A.

. 07 D6 D5 04 03 D2 D1 DO

l1l1lxlxl1l1l1l1l

Whenever Mode 3 is selected, the next control word sent
to the port must be an 1/0 select word. In this example we
wish to select port data lines A5, A3, and AO as inputs and
so the following control word is written:

07 D6 D5 D4 D3 D2 D1 DO

lolol1lol1lolol1I

Next the desired interrupt vector must be loaded (refer to
the CPU manual for details):

D7 D6 D5 04 D3 D2 D1 DO

I V7 I V6 I V5 I V4 I V3 I V2 I V1 I 0 I
An interrupt control word is next sent to the port:

D7 D6 DS 04 D3 02 D1 DO

l 1 l 0 l 1 l 1 l 0 l 1 l 1 I
Enable OR Active Mask '"-----""""'----'

Interrupts Logic High Follows Interrupt Control

. zao~ PIO
USER'S MANUAL

The mask word following the interrupt mode word is:

D7 D6 D5 04 D3 02 01 DO

l 1 l 1 l 0 l 1 l 0 l 1 l 1 l 0 l
Selects AS, A3, and AO to be Monitored

Now, if a sensor puts a high level on line A5, A3, or AO, an
interrupt request will be generated. The mask word may
select any combination of inputs or outputs to cause an
interrupt. For example, if the mask word above had been:

D7 D6 D5 D4 D3 02 D1 DO

lol1 lol1lol1l1lol

then an interrupt request would also occur if bit A? (Special
Test) of the output register was set.

Assume that the following port assignments are to be
used:

EOH = Port A Data
E1H =Port B Data
E2H = Port A Control
E3H = Port B Control

All port numbers are in hexadecimal notation. This particu- D
lar assignment of port numbers is convenient since AO of
the address bus can be used as the Port B/A Select and Al
of the address bus can be used as the Control/Data Select.
The Chip Enable would be the decode of CPU address bits
A? thru A2 (1110 00). Note that if only a few peripheral
devices are being used, a Chip Enable decode may not be
required since a higher order address bit could be used
directly.

07-3

Z80-CPU

K D7-DO

1 Address A15-AO ~ Decoder

07-4

Z80.P10

>

BIA CID

J
/CE

p

Port A
Bus

A7

A6

-. A5

A4

A3

K2.

A1

AO

Spec. Test

£::-~~ Tum On Pwr.

Pwr. Fail Alm.

I'.... HALT

~- Temp.Alm.

I'........_ Htra. On

V'"'J":_ Press.~
~ Press.Alm.

Figure 7-3. Control Mode Application

....

....

zao~PIO
USER'S MANUAL

Industrial
Processing

System

'P2iU a., PIO USER'S MANUAL

CHAPTER 8
PROGRAMMING SUMMARY

8.0 LOAD INTERRUPT VECTOR

I V7 I V6 I vs I V4 I V3 I V2 I V1 I 0

8.1 SET MODE

I M1 I MO I x x I 1

M1 MO Mode

0 0 Output
0 1 Input
1 0 Bidirectional
1 1 Bit Control

When selecting Mode 3, the next word must set the 1/0 Register:

8.2 SET INTERRUPT CONTROL

IE~:el ~~'I~~ l~f!I 0 I 1 l 1

'----v----'
Used In

Mode30nly

If the "mask follows" bit is high, the next control word written to the port must be the mask:

MB = 0, Monitor bit

MB = 1, Mask bit from being monitored

Also, the interrupt enable flip-flop of a port may be set or reset without modifying the rest of the interrupt control word by
using the following command:

08-1

4'2il 1 a!)
ZBO®CPU

Central Processing Unit

ZBO® CTC
Counter/Timer Circuit

ZBO® OMA
Direct Memory Access

zao• PIO
Parallel Input/Output

zso• SID
Serial l~put/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

II

~2.iUD, S/0 USER'S MANUAL

TABLE OF CONTENTS

Chapter 1. General Description
1.0 Features ... E1-1
1.1 Introduction .. ., E1-2

Chapter 2. Pin Description
2.0 Pin Functions .. E2-1
2.1 Bonding Options .. E2-2

Chapter 3. Architecture
3.0 Introduction .. E3-1
3.1 Data Path .. E3-2
3.2 Functional Description ... E3-3

3.2.1 1/0 Capabilities .. E3-3
3.2.2 Data Communications Capabilities ... E3-5

Chapter 4. Asynchronous Operation
4.0 Introduction .. E4-1
4.1 Asynchronous Transmit .. E4-2
4.2 Asynchronous Receive .. E4-4

Chapter 5. Synchronous Operation
5.0 Introduction .. E5-1
5. 1 Synchronous Modes of Operation ... E5-2 II
5.2 Synchronous Transmit .. E5-4

5.2.1 Initialization .. E5-4
5.2.2 Data Transfer and Status Monitoring ... E5-4

5.3 Synchronous Receive .. E5-6
5.3.1 Initialization .. E5-6
5.3.2 Data Transfer and Status Monitoring ... E5-6

Chapter 6. SDLC (HDLC) Operation
6.0 Introduction .. E6-1
6.1 SDLC Transmit ... E6-2

6.1.1 Initialization .. E6-2
6.1.2 Data Transfer and Status Monitoring ... E6-2

6.2 SDLC Receive .. E6-5
6.2.1 lnitializtion .. E6-5
6.2.2 Data Transfer and Status Monitoring ... E6-6

E-i

TABLE OF CONTENTS (Continued)

Chapter 7. Programming
7.0 Introduction .. E7-1
7.1 Write Registers ... E7-1

7.1.1 Write Register 0 ... E7-1
7.1.2 Write Register 1 ... E7-3
7. 1.3 Write Register 2 ... E7-5
7.1.4 Write Register 3 ... E7-5
7. 1.5 Write Register 4 ... E7-6
7.1.6 WriteRegister5 ... E7-7
7.1.7 Write Register 6 ... E7-8
7.1.8 Write Register 7 ... E7-8

7.2 Read Registers ... E7-9
7.2.1 Read Register 0 ... E7-9
7.2.2 Read Register 1 ... E7-11
7.2.3 Read Register 2 ... E7-12

Chapter 8. Applications
8. O Introduction .. EB-1

Chapter 9. Timing
9. O Read Cycle ... E9-1
9.1 Write Cycle ... E9-2
9.2 Interrupt Acknowledge Cycle ... E9-3
9.3 Return From Interrupt Cycle ... E9-4
9.4 Daisy Chain Interrupt Nesting .. E9-4

E-ii

Z80® SIO
USER'S MANUAL

'tl211.!E

List of Figures
Figure 1-1. Z80-SIO Block Diagram o ••• E 1-2
Figure 2-1. Z80-SI0/0 Pin Functions ... E2-3
Figure 2-2. Z80-SI0/0 Pin Assignments .. E2-3
Figure 2-3. Z80-SI0/1 Pin Functions ... E2-4
Figure 2-4. Z80-SI0/1 Pin Assignments .. ··o···· ... E2-4
Figure 2-5. Z80-SI0/2 Pin Functions o•• •••••••• •o ••••• o•• ••••• 00 ••••• •o. o• •• E2-5
Figure 2-6. Z80-SI0/2 Pin Assignments o ... E2-5
Figure 2-7. Z80-SI0/3 Pin Assignments o .. E2-6
Figure 2-8. Z80-SI0/4 Pin Assignments o •• E2-6
Figure 3-1. Transmit and Receive Data Path .. E3-3
Figure 3-2. Interrupt Structure ... E3-5
Figure 4-1. Asynchronous Message Format ... E4-1
Figure 5-1. Synchronous Formats ... E5-1
Figure 6-1. Transmit/Receive SDLC/HDLC Message Format ... E6-1
Figure 7-1. Write Register 0 .. E7-2
Figure 7-2. Write Register 1 ... : E7-3
Figure 7-3. Write Register 2 .. E7-5
Figure 7-4. Write Register 3 .. E7-5
Figure 7-5. Write Register 4 .. E7-6
Figure 7-6. Write Register 5 .. E7-7
Figure 7-7. Write Register 6 .. E7-8
Figure 7-8. Write Register 7 .. E7-8
Figure 7-9. Read Register 0 .. E7-9
Figure 7-10. Read Register 1 .. E7-11
Figure 7-11. Read Register 2 .. E7-12
Figure 8-1. Synchronous/Asynchronous Processor-to-Processor Communication

(Direct Wire to Two Remote Locations) .. E8-2
Figure 8-2 Synchronous/Asynchronous Processor-to-Processor Communication

Figure 8-3
Figure 9-1.
Figure 9-1.
Figure 9-3.
Figure 9-4.
Figure 9-5.

(Using Telephone Lines) ... E8-2
Data Concentrator .. E8-3
Read Cycle Timing ... E9-1
Write Cycle Timing .. E9-2
Interrupt Acknowledge Cycle Timing ... E9-3
Return From Interrupt Cycle Timng .. E9-4
Typical Interrupt Service ... E9-5

List of Tables
Table 3-1. Write Register Functions ... E3-1
Table 3-1. Read Register Functions .. E3-1
Table 4-1. Contents of Write Registers 3, 4, and 5 in Asynchronus Modes E4-2
Table 4-1. Asynchronous Mode ... E4-3
Table 5-1. Contents of Write Registers 3, 4, and 5 in Synchronus Modes .. E5-2
Table 5-2. Bisync Transmit Mode .. E5-3
Table 5-3. Bisync Receive Mode ... E5-7
Table 6-1. Contents of Write Registers 3, 4, and 5 in SDLC Modes .. E6-2
Table 6-2. SDLC Transmit Mode .. E6-3
Table 6-3. SDLC Receive Mode .. E6-7
Table 7-1. Channel Select Functions ... E7-1
Table 7-2. Z80-SIO Commands ... E7-2

II

E-iii

~2iU:JI,

1.0 FEATURES

• CMOS and NMOS Version

• 40-Pin DIP, 44-Pin PLCC/QFP Packages

• Single 5V Power Supply

• Single-Phase 5V Clock

• All Inputs and Outputs TTL Compatible

• Two Independent Full-Duplex Channels

• Data Rates in Synchronous or lsosynchronous Modes:
0-BOOK Bits/Second with 4 MHz System Clock
Rate
0-1.2M Bits/Second with 6 MHz System Clock
Rate
0-2.SM Bits/Second with 10 MHz System Clock
Rate

• Receiver Data Registers Quadruply Buffered;
Transmitter Doubly Buffered

• Asynchronous Features:
5, 6, 7, or 8 Bits/Character
1, 1 1/2, or 2 Stop Bits
Even, Odd, or No Parity
x1, x16, x32, and x64 Clock Modes
Break Generation and Detection
Parity, Overrun, and Framing Error Detection

S/0 USER'S MANUAL

CHAPTER 1
GENERAL INFORMATION

• Binary Synchronous Features:
Internal or External Character Synchronization
One or Two Sync Characters in Separate Registers
Automatic Cync Character Insertion
CRC Generation and Checking

• HDLC and IBM SDLC Features:
Abort Sequence Generation and Detection
Automatic Zero Insertion and Deletion
Automatic Flag insertion Between Messages
Address Field Recognition
1-Field Residue Handling
Valid Receive Messages Protected from Overrun

• CRC generation and checking

• Separate Modem Control Inputs and Outputs for Both
Channels

• CRC-16 or CRC-CCITT Block Check

• Daisy-Chain Priority Interrupt Logic Provides Automatic II Interrupt Vectoring Without External Logic

• Modem Status can be Monitored

E1-1

1.1 INTRODUCTION

The ZBO-SIO {Serial Input/Output) is a dual-channel multi­
function peripheral component designed to satisfy a wide
variety of serial data communications requirements in
microcomputer systems. Its basic function is a serial-to­
parallel, parallel-to-serial converter/controller, but, within
that role, it is configurable by systems software so its
"personality" can be optimized for a given serial data
communications application.

The Z80-SIO is capable of handling asynchronous and
synchronous byte-oriented protocols such as IBM Bisync,
and synchronous bit-oriented protocols such as HDLC

+5V GND cl>

!!!
CPU

Bus VO

lntemalional
Control
Logic

lntematlonal
Control
Logic

Interrupt
Control
Lines

Internal Bus

Z80*SIO
USER'S MANUAL

and IBM SDLC. This versatile device can also be used to
support virtually any other serial protocol for applications
other than data communications {cassette or floppy disk
interfaces, for example).

The ZBO-SIO can generate and check CRC codes in any
synchronous mode and can be programmed to cheek
data integrity in various modes. The device also has
facilities for modem controls in both channels. In applica­
tions where these controls are not needed, the modem
controls can be used for general-purpose 1/0.

Channel A
Read./Wrile
Registers

ChannelB
Read/Write
Registers

Channel A

Discrete
Control and

Status
(Channel A)

Discrete
Control and

Status
(Channel B)

ChannelB

i+-- Serial Data

--- Channel Clocks
1+--1~/SYNC

NlaJV/Reaey

---Modemor
--~ Other Controls

___ Modemor

--~ OtherControls

--- Serial Data
Channel Clocks
/SYNC
Nlail//Reaey

Figure 1·1. ZSO-SIO Block Diagram

E1-2

2.0 PIN FUNCTIONS

07-DO System Data Bus (bidirectional, tri-state). The sys­
tem data bus transfers data and commands between the
CPU and the 280-SIO. DO is the least significant bit.

Bl/A Channel A or B Select(input, High selects Channel B).
This input defines which channel is accessed during a
data transfer between the CPU and the Z80-SIO. Address
bit AO from the CPU is often used forthe selection function.

C//D Control Or Data Select (input, High selects Control).
This input defines the type of information transfer per­
formed between the CPU and (be 280-SIO. A High at this
input during a CPU write to the 280-SIO causes the
information on the data bus to be interpreted as a com­
mand for the channel selected by Bl/A. A Low at C//D
means that the information on the data bus is data. Ad­
dress bit A 1 is often used for this function.

/CE Chip Enable (input, active Low). A Low level at this
input enables the Z80-SIO to accept command or data
inputs from the CPU during a write cycle, or to transmit data
to the CPU during a read cycle.

<ll System Clock (input). The 280-SIO uses the standard
280A System Clock to synchronize internal signals. This is
a single-phase clock.

/M1 Machine Cycle One (input from Z80-CPU, active Low).
When /M 1 is active and /RD is also active, the ZBO-CPU is
fetching an instruction from memory; when /M1 is active
while /IORQ is active, the Z80-SIO accepts /M1 and /IORQ
as an interrupt acknowledge if the 280-SIO is the highest
priority device that has interrupted the ZBO-CPU.

nORQ Input/Output Request(inputfrom CPU, active Low).
/IORQ is used in conjunction with Bl/A, C//D, /CE, and /RD
to transfer commands and data between the CPU and the
280-SIO. When /CE, /RD, and /IORQ are all active, the
channel selected byB//A transfers data to the CPU (a read
operation). When /CE and /IORQ are active, but /RD is
inactive, the channel selected by Bl/A is written to by the
CPU with either data or control information as specified by

S/0 USER'S MANUAL

CHAPTER 2
PIN DESCRIPTION

C//D. As mentioned previously, if /IORQ and /M 1 are active
simultaneously, the CPU is acknowledging an interrupt
and the 280-SIO automatically places its interrupt vector
on the CPU data bus if it is the highest priority device
requesting an interrupt.

/RD ReadCycleStatus(inputfrom CPU, active Low). If /RD
is active, a memory or 1/0 read operation is in progress.
/RD is used with Bl/A, /CE, and /IORQ to transfer data from
the 280-SIO to the CPU.

/RESET Reset(input. active Low). A Low /RESET disables
both /RESET and transmitters, forces TxDA and TxDB
marking, forces the modem controls High and disables all
interrupts. The control registers must be rewritten after the
280-SIO is reset and before data is transmitted or re­
ceived.

IEI Interrupt Enable In (input, active High). This signal is
used with IEO to form a priority daisy-chain when there is
more than one interrupt-driven device. A High on this line
indicates that no other device of higher priority is being II
serviced by a CPU interrupt service routine.

IEO Interrupt Enable Out(output, active High). IEO is High
only if IEI is High and the CPU is not servicing an interrupt
from this 280-SIO. Thus, this signal blocks lower priority
devices from interrupting while a higher priority device is
being serviced by its CPU interrupt service routine.

nNT Interrupt Request (output, open-drain, active Low).
When the 280-SIO is requesting an interrupt, it pulls /INT
Low.

W//RDYA, W//RDYB Wait/Ready A. Wait/Ready B (out­
puts, open-drain when programmed for Wait function,
driven High and Low when programmed for Ready func­
tion). These dual-purpose outputs may be programmed as
Ready lines for a OMA controller or as Wait lines that
synchronize the CPU to the 280-SIO data rate. The reset
state is open-drain.

E2-1

/CSTA, /CSTB Clear To Send (inputs, active Low). When
programmed as Auto Enables. a Low on these inputs
enables the respective transmitter. If not programmed as
Auto Enables. these inputs may be programmed as gen­
eral-purpose inputs. Both inputs are Schmitt-trigger buff­
ered to accommodate slow-risetime inputs. The ZBO-SIO
detects pulses on these inputs and interrupts the CPU on
both logic level transitions. The Schmitt-trigger inputs do
not guarantee a specified noise-level margin.

/DCDA, /DCDB Data Carrier Detect (inputs, active Low).
These signals are similar to the /CTS inputs, except they
can be used as receiver enables.

RxDA, RxDB Receive Data (inputs, active High).

TxDA, TxDB Transmit Data (outputs, active High).

/RxCA, /RxCB* Receiver Clocks (inputs). See the follow­
ing section on bonding options. The Receive Clocks may
be 1, 16, 32, or 64 times the data rate in asynchronous
modes. Receive data is sampled on the rising edge of
/RxC.

/TxCA,/TxCB* Transmitter Clocks(inputs). See section on
bonding options. In asynchronous modes, the Transmitter
clocks may be 1, 16, 32 or 64 times the data rate. The
multiplier for the transmitter and the receiver must be the
same. Both the /TxC and /RxC inputs are Schmitt-trigger
buffered for relaxed rise- and fall-time requirements (no
noise margin is specified). TxD Changes on the falling
edge of /TxC.

*Note: These clocks may be directly driven by the ZBO­
CTC (Counter Timer Circuit) for fully programmable baud
rate generation.

2.1 BONDING OPTIONS

The constraints of a 40-pin package make it impossible to
bring out the Receive Clock, Transmit Clock, Data Terminal
Ready, and Sync signals for both channels. Therefore,
Channel B must sacrifice a signal or have two signals
bonded together. Since user requirements vary, three
bonding options are offered:

E2-2

zao~SIO
USER'S MANUAL

/RTSA, /RTSB Request To Send (outputs, active Low).
When the /ATS bit is set, the /ATS output goes Low. When
the /ATS bit is reset in the Asynchronous mode, the output
goes High after the transmitter is empty. In Synchronous
modes, the /ATS pin strictly follows the state of the /ATS bit.
Both pins can be used as general-purpose outputs.

/DTRA, /DTRB Data Terminal, Ready (outputs, active
Low). See note on bonding options. These outputs follow
the state programmed into the /DTR bit. They can also be
programmed as general-purpose outputs.

/SYNCA,/SYNCB Synchronization(inputs/outputs, active
Low). These pins can act either as inputs or outputs. In the
Asynchronous Receive mode, they are inputs similar to
/CTS and /DCD. In this mode, the transitions on these lines
affect the state of the Sync/Hunt status bits in RAO. In the
External Sync mode, these lines also act as inputs. When
external synchronization is achieved, /SYNC must be
driven Low on the second rising edge of /RxC after that
rising edge of /RxC on which the last bit of the sync
character was received. In other logic must wait for two full
Receive Clock cycles to activate the /SYNC input. Once
SYNC is forced Low, it is wise to keep it Low until the CPU
informs the external sync logic that synchronization has
been lost or a new message is about to start. Character
assembly begins on the rising edge of /RxC that immedi­
ately precedes the falling edge of /SYNC in the External
Sync mode.

In the Internal Synchronization mode (Monosync and
Bisync), these pins act as outputs that are active during the
part of the receive clock (/RxC) cycle in which sync
characters are recognized. The sync condition is not
latched, so these outputs are active each time a sync
pattern is recognized, regardless of character bound­
aries.

• ZBO-SI0/0 has all four signals, but /TxCB and /RxCD
are bonded together (Figure 2-1).

• ZBO-SI0/1 sacrifices /DTRB and keeps /TxCB, /RxCD
and /SYNCS (Figure 2-3).

• ZBO-SI0/2 sacrifices /SYNCS and keeps /TxCB,
/RxCB and /DTRB (Figure 2-5).

• The 44-pin package version SI0/3 (QFP) and SI0/4
(PLCC) have all signals (Figures 2-7 and 2-8).

4'2iUl6

D1 1 40 DO

D3 2 39 D2

D5 3 38 D4

D7 4 37 D6

/INT 5 36 /IORQ

IEI 6 35 /CE

IEO 7 34 Bl/A

/M1 8 33 C//D

VDD 9 32 /RD

/W//RDYA 10 ZBO·SIO/O 31 GND

/SYN CA 11 30 /W//RDYB

RxDA 12 29 /SYN CB

/Rx.CA 13 28 RxDB

!TxCA 14 27 /RxTxCB

TxDA 15 26 TxDB

/DTRA 16 25 /DTRB

/RTSA 17 24 /RTSB

/CTSA 18 23 /CTSB

/DCDA 19 22 /DCDB

rll 20 21 /RESET

Figure 2-1. Z80-SIO/O Pin Functions

CPU
Data
Bus

DO
D1
D2
D3
D4
DS
06
D7

SIO /RESET
Control /M1 {

/CE

From /IORQ
CPU /RD

Daisy { Chain
Interrupt
Control

sv
GND

rll

/INT
IEI

IEO

40
.... 1
.... 39

2
....- 38 ~
....- 3

.... 37
4

35
21 Z80-SIO/O
8
36
32 ...

9
31
20

.... 5
6
7

~ ~
33 34

C//D Bl/A

12
13
15
14-
11
10 ::
~

17
.... 18

16
19 ~

....-

.... 28
27

....- 26
29 ~
30::

24
.... 23

25
22 ~

....-

RxDA
/Rx.CA
TxDA
/TxCA
/SYNCA
/W//RDYA

/RTSA }
/CTSA Modem
/DTRA Control
/DCDA

RxDB
/RxTxCB
TxDB
/SYN CB
/W//RDYB

/RTSB }
/CTSB Modem
/DTRB Control
/DCDB

Figure 2-2. ZBO·ZIO/O Pin Assignments

zao•sio
UsER'S MANUAL

II
CH·A

CH·B

E2-3

4'2iUl6

E2-4

01 40 DO

03 2 39 D2

05 3 38 D4

07 4 37 D6

/INT 5 36 JIORQ

IEI 6 35 /CE

IEO 7 34 Bl/A

/M1 8 33 C//D

VDD 9 32 /RD

Ni/I/ROYA 10 ZSO-SI0/1 31 GND

/SYN CA 11 30 rN//RDYB

RxDA 12 29 /SYN CB

/RxCA 13 28 RxDB

/TxCA 14 27 /RxCB

TxDA 15 26 /TxCB

/DTRA 16 25 TxDB

/RTSA 17 24 /RTSB

/CTSA 18 23 /CTSB

/DCDA 19 22 /DCDB

~ 20 21 /RESET

Fiugre 2-3. Z80-SI0/1 Pin Functions

CPU
Data
Bus

DO
01
D2
03
04
05
06
07

SIO /RESET
Control /M1 {

/CE

From JIORQ
CPU /RD

Daisy { Chain
Interrupt
Control

5V
GND
~

/INT
IEI

IEO

..._ 40

-- 1
-- 39

2 ~
~ 38
..._ 3

-- 37 4 ~
~ ~

35
21 Z80-SI0/1
8
36
32 ~
~

9
31
20

5
~

6
7

~ ~
33 34

C//D Bl/A

..._ 12
13

~ 15
14

~ 11
10

17
18

~

16
19

28
~ 27
~ 25

-- 26
29
30

24
23

-- 22

RxDA
/RxCA
TxDA
/TxCA
/SYNCA
rN//RDYA

/RTSA } /CTSA Modem
/DTRA Control
/DCOA

RxDB
/RxCB
TxOB
/TxCB
/SYNCB
rN//RDYB

/RTSB } Modem
/CTSB Control
/DCDB

Figure 2-4. Z80-ZI0/1 Pin Assignments

Z80®SIO
USER'S MANUAL

CH·A

CH-B

'tl2HJJ6

D1 40 DO

D3 2 39 D2

D5 3 38 D4

D7 4 37 D6

/INT 5 36 /IORQ

IEI 6 35 /CE

IEO 7 34 Bl/A

/M1 8 33 C//D

VDD 9 32 /RD

/W//RDYA 10 ZBO·SI0/2 31 GND

/SYNCA 11 30 /W//RDYB

RxDA 12 29 /RxDB

/RxCA 13 28 /RxCB

/TxCA 14 27 /TxCB

TxDA 15 26 TxDB

IDTRA 16 25 IDTRB

/RTSA 17 24 /RTSB

/CTSA 18 23 /CTSB

/DCDA 19 22 /DCDB

\I> 20 21 /RESET

Fiugre 2-5. ZSO-SI0/2 Pin Functions

CPU
Data
Bus

DO
D1
D2
D3
D4
D5
D6
D7

SIO {/RE~i~ Control /M1
From /IORQ
CPU /RD

{

5V
GND

~~~ \I> 
lnlerrupt /INT 
Control IEI 

IEO 

-- 40 ... 12 
-- 1 ... 13 
...... 39 ... .15 ..... 

2 14 
38~ 11 
3 :: 10 

-- 37 ... 

RxDA 
/RxCA 
TxDA 
/TxCA 
/SYN CA 
/W//RDYA 

4 ... 17 ... 
18 
16 ..... 

35 19 
21 ~ 

ZBO·SI0/2 
.....-

8 ~ 

msA} /CTSA Modem 
/DTRA Control 
IDCDA 

36 ... 29 
32 ..... ..._ 28 

26 
9 27 
31 ~ .....- 30 ~ 
20 ~ ~ 

RxDB 
/RxCB 
TxDB 
/TxCB 
/W//RDYB 

24 
...... 5 ..._ 23 

6 25 
7 22 ~ 

~ ~ 

MB} /CTSB Modem 
IDTRB Control 
IDCDB 

~ 
33 34 

C/ID Bl/A 

Figure 2-6. Z80-ZI0/2 Pin Assignments 

Z80"SIO 
USER'S MANUAL 

CH·A II 

CH·B 

E2·5 



E2-6 

IEI 
IEO 
/M1 
+SV 

/WI/ROYA 
N/C 

/SYNCA 
RxDA 

/RxCA 
rrxCA 

33 

34 

0 

~l:i:g8i5~8~i!i~~ 

Z84C43 
CMOS zao 

SI0/3 

23 

TxDA ----. ...... 

IEI 
IEO 
IM1 
+SV 

/WI/ROYA 
/SYNC A 

RxDA 
/RxCA 
rrxCA 
TxDA 

NIC 

12 

11 

Fiugre 2-7. ZSO-SI0/3 Pin Assignments 

17 

• 

zao 
SI0/4 

18 19 20 21 22 23 24 25 26 27 28 

Figure 2-8. ZSO-ZI0/4 Pin Assignments 

/CE 
B/IA 
Cl/D 
/RD 
GND 
N/C 
/W/IRDYB 
/SYNCB 
RxDB 
/RxCB 
fTxCB 

Bl/A 
CllD 
/RD 
GND 
/W/IRDYB 
/SYNCB 
RxDB 
/RxCB 
rrxCB 
TxDB 
N/C 

zao•S10 
USER'S MAMIAL 



4'2iUD, 

3.0 INTRODUCTION 

The device internal structure includes a Z80-CPU inter­
face, internal control and interrupt logic, and two full­
duplex channels. Associated with each channel are read 
and write registers, and discrete control and status logic 
that provides the interface to modems or other external 
devices. 

The read and write register group includes five 8-bit 
control registers, two sync-character registers and two 
status registers. The interrupt vector is written into an 
additional 8-bit register (Write Register 2) in Channel B that 
may be read through Read Register 2 in Channel B. The 
registers for both channels are designated in the text as 
follows: 

WR7-WRO-Write Registers 0 through 7 

RR2-RRO - Read Registers 0 through 2 

The bit assignment and functional grouping of each regis­
ter is configured to simplify and organize the programming 
process. Tables 3-1 and 3-2 illustrate the functions as­
signed to each read or write register. 

The logic for both channels provides formats, synchroni­
zation and validation for data transferred to and from the 
channel interface. The modem control inputs Clear to Send 
(/CTS) and Data Carrier Detect (/DCD) are monitored by 
the discrete control logic under program control. All the 
modem control signals are general purpose in nature and 
can be used for functions other than modem control. 

SIO USER'S MANUAL 

CHAPTER 3 
ARCHITECTURE 

For automatic interrupt vectoring, the interrupt control 
logic determines which channel and which device within 
the channel has the highest priority. Priority is fixed with 
Channel A assigned a higher priority than Channel B; 
Receive, Transmit and External/ Status interrupts are pri­
oritized in that order within each channel. 

Bit 

WRO 

WR1 

WR2 
WR3 

WR4 

WR5 
WR6 
WR? 

Table 3-1. Write Register Functions 

Function 

Register pointers, CRC initialize, initialization 
commands for the various modes, etc. 
Transmit/Receive interrupt and data transfer mode 
definition. 
Interrupt vector (Channel 8 only) 
Receive parameters and controls 

Transmit/Receive miscellaneous parameters 
and modes 
Transmit parameters and controls 
Sync character or SDLC address field 
Sync character or SDLC flag 

Table 3-2. Read Register Functions 

Bit Function 

RAO Transmit/Receive buffer status, interrupt status, 
and external status 

RR1 Special Receive Condition status 
RR2 Modified interrupt vector (Channel B only) 

E3-1 

II 



3.1 DATA PATH 

The transmit and receive data path for each channel is 
shown in Figure 3-1. The receiver has three 8-bit buffer 
registers in a FIFO arrangement (to provide a 3-byte delay) 
in addition to the 8-bit receive shift register. This arrange­
ment creates additional time for the CPU to service an 
interrupt at the beginning of a block of high-speed data. 
The receive error FIFO stores parity and framing errors and 
other types of status information for each of the three bytes 
in the receive data FIFO. 

Incoming data is routed through one of several paths 
depending on the mode and character length. In the 
Asynchronous mode, serial data is entered in the 3-bit 
buffer if it has a character length of seven or eight bits, or 
is entered in the 8-bit receive shift register if it has a length 
of five or six bits. 

In the Synchronous mode, however, the data path is 
determined by the phase of the receive process currently 
in operation. A Synchronous Receive operation begins 
with the receiver in the Hunt phase, during which the 
receiver searches the incoming data str,eam for a bit 
pattern that matches the preprogrammed sync characters 
(or flags in the SDLC mode). If the device is programmed 
for Monosync Hunt, a match is made with a single sync 
character stored in WR7. In Bisync Hunt, a match is made 
with dual sync characters stored in WR6 and WR7. 

In either case (he incoming data passes through the 
receive sync register, and is compared against the pro­
grammed sync character in WR6 or WR7. In the Monosync 
mode, a match between the sync character programmed 
into WR7 and the character assembled in the receive sync 
register establishes synchronization. 

In the Bisync mode, however, incoming data is shifted to 
the receive shift register while the next eight bits of the 
message are assembled in the receive sync register. The 
match between the assembled character in the receive 
sync registers with the programmed sync character in 
WR6 and WR7 establishes synchronization. Once syn­
chronization is established, incoming data bypasses the 
receive sync register and directly enters the 3-bit buffer. 

In the SDLC mode, incoming data first passes through the 
receive sync register, which continuously monitors the 
receive data stream and performs zero deletion when 
indicated. Upon receiving five contiguous 1 's, the sixth bit 
is inspected. If the sixth bit is a 0, it is deleted from the data 
stream. If the sixth bit is a 1, the seventh bit is inspected. 

E3-2 

Z80"'SIO 
USER'S MANUAL 

If that bit is a 0, a Flag sequence has been received; if it is 
a 1, an Abort sequence has been received. 

The reformatted data enters the 3-bit buffer and is trans­
ferred to the receive shift register. Note that the SDLC 
receive operation also begins in the Hunt phase, during 
which the Z80-SIO tries to match the assembled character 
in the receive shift register with the nag pattern in WR7. 
Once the first flag character is recognized, all subsequent 
data is routed through the same path, regardless of char­
acter length. 

Although the same CRC checker is used for both SDLC 
and synchronous data, the data path taken for each mode 
is different. In Bisync protocol, a byte-oriented operation 
requires that the CPU decide to include the data character 
in CRC. To allow the CPU ample time to make this decision, 
the Z80-SIO provides an 8-bit delay for synchronous data. 
In the SDLC mode, no delay is provided since the Z80-SIO 
contains logic that determines the bytes on which CRC is 
calculated. 

The transmitter has an 8-bit transmit data register that is 
loaded from the internal data bus and a 20-bit transmit shift 
register that can be loaded from WR6, WR7 and the 
transmit data register. WR6 and WR7 contain sync charac­
ters in the Monosync or Bisync modes, or address field 
(one character long) and flag respectively in the SDLC 
mode. During Synchronous modes, information contained 
in WR6 and WR7 is loaded into the transmit shift register at 
the beginning of the message and, as a time filler, in the 
middle of the message if a Transmit Underrun condition 
occurs. In the SDLC mode, the flags are loaded into the 
transmit shift register at the beginning and end of mes­
sage. 

Asynchronous data in the transmit shift register is format­
ted with start and stop bits and is shifted out to the transmit 
multiplexer at the selected clock rate. Synchronous 
(Monosync or Bisync) data is shifted out to the transmit 
multiplexer and also to the CRC generator at the x1 clock 
rate. 

SDLC/HDLC data is shifted out through the zero insertion 
logic, which is disabled while the flags are being sent. For 
all other fields (address, control, and frame check) a 0 is 
inserted following five contiguous 1 's in the data stream. 
The CRC generator result for SDLC data is also routed 
through the zero insertion logic. 



RxDA SYNCR8!11ster 
andl.em~-

CRCDelay 
Raalster 
(Bllits) 

CRC 
Checker 

Rece~e 
Ermr 
~ 

CPUl/O 

l/ODalaBuller 

21).811 Toansmit Shift Register 

CRC 
Generator 

Z80*SIO 
USER'S MANUAL 

Transnit 
MultlDlexer 

and2-Sit0elay 

Transmtt 
Clocklolie 

TxDA 

rrxcA 

Figure 3-1. Transmit and Receive Data Path 

3.2 FUNCTIONAL DESCRIPTION 

The functional capabilities of the ZS0-810 can be de­
scribed from two different points of view: as a data com­
munications device, it transmits and receives serial data, 
and meets the requirements of various data communica­
tions protocols; as a ZBO family peripheral, it interacts with 
the ZBQ-CPU and other ZBO peripheral, circuits, and 
shares their data, address and control busses, as well as 
being a part of the ZBO interrupt structure. As a peripheral 
to other microprocessors, the ZB0-810 offers valuable 
features such as non-vectored interrupts, polling and 
simple handshake capabilities. 

The first part of the following functional description de­
scribes the interaction between the CPU and ZS0-810; the 
second part introduces its data communications capabili­
ties. 

3.2.1 1/0 Capabilities 

The ZS0-810 offers the choice of Polling, Interrupt (vec­
tored or non-vectored) and Block Transfer modes to trans­
fer data, status and control information to and from the 
CPU. The Block Transfer mode can be implemented under 
CPU or DMA control. 

E3-3 

II 



Polling. The Polled mode avoids interrupts. Status regis­
ters RRO and RR1 are updated at appropriate times for 
each function being performed (for example, CRC Error 
status valid at the end of the message). All the interrupt 
modes of the ZSO-SIO must be disabled to operate the 
device in a polled environment. 

While in its Polling sequence, the CPU examines the status 
contained in RAO for each channel; the RRO status bits 
serve as an acknowledge to the Poll inquiry. The two RRO 
status bits DO and 02 indicate that a receive or transmit 
data transfer is needed. The status also indicates Error or 
other special status conditions (see "ZSO-SIO Program­
ming"). The Special Receive Condition status contained in 
RR1 does not have to be read in a Polling sequence 
because the status bits in RR1 are accompanied by a 
Receive Character Available status in ARO. 

Interrupts. The ZSO-SIO offers an elaborate interrupt 
scheme to provide fast interrupt response in real-time 
applications. As mentioned earlier, Channel B registers 
WR2 and RR2 contain the interrupt vector that points to an 
interrupt service routine in the memory. To service opera­
tions in both channels and to eliminate the necessity of 
writing a status analysis routine, the ZSO-SIO can modify 
the interrupt vector in RR2 so it points directly to one of 
eight interrupt service routines. This is done under pro­
gram control by setting a program bit (WR1, 02) in Channel 
B called "Status Affects Vector." When this bit is set, the 
interrupt vector in WR2 is modified according to the as­
signed priority of the various interrupting conditions. The 
table in the Write Register 1 description (ZSO-SIO Pro­
gramming section) shows the modification details. 

Transmit interrupts, Receive interrupts, and External/ 
Status interrupts are the main sources of interrupts (Figure 
3-2). Each interrupt source is enabled under program 
control with Channel A having a higher priority than Chan­
nel B, and with Receiver, Transmit, and External/Status 
interrupts prioritized in that order within each channel. 
When the Transmit interrupt is enabled, the CPU is inter­
rupted by the transmit buffer becoming empty. (This im­
plies that the transmitter must have had a data character 
written into it so it can become empty.) When enabled, the 
receiver can interrupt the CPU in one of three ways: 

• Interrupt on first receive character 

• Interrupt on all receive characters 

• Interrupt on a Special Receive condition 

E3-4 

zao•S10 
USER'S MANUAL 

Interrupt On First Character is typically used with the Block 
Transfer mode. Interrupt On All Receive Characters has 
the option of modifying the interrupt vector in the event of 
a parity error. The Special Receive Condition interrupt can 
occur on a character or message basis (End-of-Frame 
interrupt in SDLC, for example). The Special Receive 
condition can cause an interrupt only if the Interrupt On 
First Receive Character or Interrupt On All Receive Char­
acters mode is selected. In Interrupt On First Receive 
Character, an interrupt can occur from Special Receive 
conditions (except Parity Error) after the first receive char­
acter interrupt (example: Receive Overrun interrupt). 

The main function of the External/Status interrupt is to 
monitor the signal transitions of the /CTS, /DCD, and 
/SYNC pins; however, an External/Status interrupt is also 
caused by a Transmit Underrun condition or by the detec­
tion of a Break (Asynchronous mode) or Abort (SDLC 
mode) sequence in the data stream. The interrupt caused 
by the Break/Abort sequence has a special feature that 
allows the ZBO-SIO to interrupt when the Break/Abort 
sequence is detected or terminated. This feature facili­
tates the proper termination of the current message, cor­
rect initialization of the next message, and the accurate 
timing of the Break/Abort condition in external logic. 

CPU/OMA Block Transfer. The ZSO-SIO provides a Block 
Transfer mode to accommodate CPU block transfer func­
tions and OMA controllers (ZSO-DMA or other designs). 
The Block Transfer mode uses the/WAIT //READY output in 
conjunction with the Wait/Ready bits of Write Register 1. 
The /WAIT//READY output can be defined under software 
control as a /WAIT line in the CPU Block Transfer mode or 
as a /READY line in the OMA Block Transfer mode. 

To a DMA controller, the ZSO-SIO /READY output indicates 
that the ZSO-SIO is ready to transfer data to or from 
memory. To the CPU, the /WAIT output indicates that the 
ZBO-SIO is not ready to transfer data, thereby requesting 
the CPU to extend the 1/0 cycle. The programming of bits 
5, 6, and 7 of Write Register 1 and the logic states of the 
/WAIT//READY line are defined in the Write Register 1 
description (ZBO-SIO Programming section). 



3.2.2 Data Communications Capabilities 

ZBO"SIO 
USER'S MANUAL 

In addition to the 1/0 capabilities previously discussed, the 
Z80-SIO provides two independent full-duplex channels 
as well as Asynchronous, Synchronous, and SDLC (HDLC) 
operational modes. These modes facilitate the implemen­
tation of commonly used data communications protocols. 

The specific features of these modes are described in the 
following sections. To preserve the independence and 
completeness of each section, some information common 
to all modes is repeated. 

Receive Character ---....._ 

----.... Interrupt On All 
Receive Characters 

~::iv~:e-;; Error "!'. Special Receive / \ 

End of Frame (SDLC) ---------. 
Framing Error ___. Condition Interrupt \ 

Receive 
Interrupt 

First Data Character--------__. / 
Interrupt On -------

First Non-Sync Character (SYNC)------ First Character ~ 

""""'"" ... ISDLC) """ 

DCDTransition==--------------
CTS Transition -+- Extemal Status 
SYNC Transition----• Interrupt 
Tx Underrun/EOM ___.. Break/Abort Detection ---- .._ ________ __. 

Buffer Becoming Empty -----11 .. I ___ T_ra_ns_m_it-ln-te-rru_p_t __ _. 

Figure 3·2. Interrupt Structure 

ZBO-SIO 
Interrupt 

E3-5 

II 





4.0 INTRODUCTION 

To receive or transmit data in the Asynchronous mode, the 
Z80-SIO must be initialized with the following parameters: 
character length, clock rate, number of stop bits, even or 
odd parity, interrupt mode, and receiver or transmitter 
enable. The parameters are loaded into the appropriate 
write registers by the system program. WR4 parameters 
must be issued before WR 1, WR3, and WR5 parameters or 
commands. 

If the data is transmitted over a modem or RS232C inter­
face, the REQUEST TO SEND (/RTS) and DATA TERMI­
NAL READY (/DTR) outputs must be set along with the 
Transmit Enable bit. Transmission cannot begin until the 
Transmit Enable bit is set. 

The Auto Enables feature allows the programmer to send 
the first data character of the message to the Z80-SIO 

S/0 USER'S MANUAL 

CHAPTER 4 
ASYNCHRONOUS OPERATION 

without waiting for /CTS. If the Auto Enables bit is set, the 
Z80-SIO will wait for the /CTS pin to go Low before it begins 
data transmission. /CTS, /DCD, and /SYNC are general­
purpose 1/0 lines that may be used for functions other than 
their labeled purposes. If /CTS is used for another pur­
pose, the Auto Enables Bit must be programmed to 0. 

Figure 4-1 illustrates asynchronous message formats; 
Table 4-1 shows WR3, WR4, and WR5 with bits set to 
indicate the applicable modes, parameters arid com­
mands in asynchronous modes. WR2 (Channel B only) 
stores the interrupt vector; WR1 defines the interrupt 
modes and data transfer modes. WR6 and WR? are not 
used in asynchronous modes. Table 4-2 shows the typical 
program steps that implement a full-duplex receive/trans­
mit operation in either channel. 

Asynchronous Format 

Marking Line Start 

All Transactions Occur~ 
on a Falling Edge of /TxC 

N=5,6,7,orB _/ / 

May Be Present or Not. 
Even or Odd 

Message Flow 

I 
Sto\ Marking Line 

1, 1112, or2 Bits 

Figure 4-1. Asynchronous Message Format 

E4-1 

II 



ft'2H . .!16 

4.1 ASYNCHRONOUS TRANSMIT 

The Transmit Data output (TxD) is held marking (High) 
when the transmitter has no data to send. Under program 
control, the Send Break (WR5, 04) command can be 
issued to hold TxD spacing (Low) until the command is 
cleared. 

The 280-SIO automatically adds the start bit, the pro­
grammed parity bit (odd, even, or no parity) and the 
programmed number of stop bits to the data character to 
be transmitted. When the character length is six or seven 
bits, the unused bits are automatically ignored by the 280-
SIO. If the character length is five bits or less, refer to the 
table in the Write Register 5 description (280-SIO Pro­
gramming section) for the data format. 

zao~s10 
USER'S MANllAL 

Serial data is shifted from TxD at a rate equal to 1, 1/16th, 
1/32nd, or 1/64th of the clock rate supplied to the Transmit 
Clock input /TxC. Serial data is shifted out on the falling 
edge of /TxC. 

If set, the External/Status Interrupt mode monitors the 
status of /DCD, /CTS, and /SYNC throughout the transmis­
sion of the message. If these inputs change for a period of 
time greater than the minimum specified pulse width, the 
interrupt is generated. In a transmit operation, this feature 
is used to monitor the modem control signal /CTS. 

Table 4·1. Contents of Write Registers 3, 4, and 5 in Asynchronous Modes 

BIT7 BIT& BIT5 BIT4 BIT3 BIT2 BIT1 BITO 

WR3 00 = Rx 5 BITS/CHAR 
10 = Rx 6 BITS/CHAR AUTO 0 0 0 0 Rx 
01 = Rx 7 BITS/CHAR ENABLES ENABLE 
11 =Rx B BITS/CHAR 

WR4 00 = x1 CLOCK MODE 00= NOT USED 
01 = x16 CLOCK MODE 0 0 01=1 STOP BIT/CHAR EVEN//ODD PARITY 
10 = 32 CLOCK MODE 10=1-1/2 STOP BITS/CHAR PARITY ENABLE 
11 x64 CLOCK MODE 11 = 2 STOP BITS/CHAR 

WR5 DTR 00 = Tx 5 BITS (OR 
LESS)/CHAR SEND Tx 0 RTS 0 

10 = Tx 6 BITS/CHAR BREAK ENABLE 
01 = Tx 7 BITS/CHAR 
11 = Tx B BITS/CHAR 

E4-2 



Table 4-2. Asynchronous Mode 

Function Typical Program Steps 

REGISTER: INFORMATION LOADED: 

INITIALIZE 

IDLE MODE 

WRO CHANNEL RESET 
WRO POINTER 2 
WR2 INTERRUPT VECTOR 
WRO POINTER 4, RESET EXTERNAL/STATUS INTERRUPT 
WR4 ASYNCHRONOUS MODE, PARITY INFORMATION, STOP BITS 

INFORMATION, CLOCK RATE INFORMATION 
WRO POINTER 3 
WR3 RECEIVE ENABLE, AUTO ENABLES, RECEIVE CHARACTER 

LENGTH 
WRO POINTER 5 
WR5 REQUEST TO SEND, TRANSMIT ENABLE, TRANSMIT 

CHARACTER LENGTH, DATA TERMINAL READY 

WRO POINTER 1, RESET EXTERNAL/STATUS INTERRUPT 
WR1 TRANSMIT INTERRUPT ENABLE, STATUS AFFECTS VECTOR, 

INTERRUPT ON ALL RECEIVE CHARACTERS. DISABLE WAIT/ 
READY FUNCTION, EXTERNAL INTERRUPT ENABLE 

TRANSFER FIRST DATA BYTE TO SIO 

EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM 

DATA TRANSFER AND ZBO INTERRUPT ACKNOWLEDGE CYCLE TRANSFERS RR2 TO CPU 
ERROR MONITORING 

TERMINATION 

IF A CHARACTER IS RECEIVED: 
• TRANSFER DATA CHARACTER TO CPU 
• UPDATE POINTERS AND PARAMETERS 
• RETURN FROM INTERRUPT 
IF TRANSMITIER BUFFER IS EMPTY.­
TRANSFER DATA CHARACTER TO SIO 
UPDATE POINTERS AND PARAMETERS 
RETURN FROM INTERRUPT 

IF EXTERNAL STATUS CHANGES: 
• TRANSFER RRO TO CPU 
• PERFORM ERROR ROUTINES (INCLUDE BREAK DETECTION) 
• RETURN FROM INTERRUPT 
IF SPECIAL RECEIVE CONDITION OCCURS. 
• TRANSFER RR1 TO CPU 
• D6 SPECIAL ERROR (E.G. FRAMING ERROR) ROUTINE 
• RETURN FROM INTERRUPT 

REDEFINE RECEIVE/TRANSMIT INTERRUPT MODES 

DISABLE TRANSMITIRECEIVE MODES 
UPDATE MODEM CONTROL OUTPUTS (E.G. RTS OFF) 

zao~sio 
USER'S MANUAL 

Comments 

ResetSIO 

Channel B only 

Issue parameters 

Receive and Transmit both fully initialized. 
Auto Enables will enable Transmitter if /CTS 
is active and Receiver if /DCD is active. 

Transmil/Receive interrupt mode selected. 
External Interrupt monitors the status of the 
/CTS, /DCD, and /SYNC inputs and detects the 
Break sequence. Status Affects Vector in 
Channel B only. This data byte must be trans­
ferred or no transmit interrupts will occur. 

Program is waiting for an interrupt from 
theSIO. 

When the Interrupt occurs, the interrupt 
vector is modified by: 1. Receive Character 
Available; 2. Transmit Buffer Empty; 
3. External/Status change; and 4. 
Special Receive condition. 

Program control is transferred to one of 
the eight interrupt Service routines. 

If used with processors other than the ZBO. 
the modified interrupt vector (RR2) should 
be returned to the CPU in the Interrupt Ac­
knowledge sequence. 

When transmit or receive data transfer is 
complete. 

In Transmit, the All Sent status bit indi­
cates transmission is complete. 

E4-3 

II 



4.2 ASYNCHRONOUS RECEIVE 

An Asynchronous Receive operation begins when the 
Receive Enable bit is set. If the Auto Enables option is 
selected, /DCD must be Low as well. A Low (spacing) 
condition on the Receive Data input (RxD) indicates a start 
bit. If this Low persists for at least one-half of a bit time, the 
start bit is assumed to be valid and the data input is then 
sampled at mid-bit time until the entire character is as­
sembled. This method of detecting a start bit improves 
error rejection when noise spikes exist on an otherwise 
marking line. 

If the x1 clock mode is selected, bit synchronization must 
be accomplished externally. Receive data is sampled on 
the rising edge of RxC. The receiver inserts l's when a 
character length of other than eight bits is used. If parity is 
enabled, the parity bit is not stripped from the assembled 
character for character lengths other than eight bits. For 
lengths other than eight bits, the receiver assembles a 
character length of the required number of data bits, plus 
a parity bit and l's for any unused bits. For example, the 
receiver assembles a 5-bit character with the following 
format: 11 P D4 D3 D2 D1 DO. 

Since the receiver is buffered by three 8-bit registers in 
addition to the receive shift register, the CPU has enough 
time to service an interrupt and to accept the data charac­
ter assembled by the ZBO-SIO. The receiver also has three 
buffers that store error nags for each data character in the 
receive buffer. These error flags arc loaded at the same 
time as the data characters. 

After a character is received, it is checked for the following 
error conc;litions: 

• When parity is enabled, the Parity Error bit (RR1, 04) 
is set whenever the parity bit of the character does not 
match with the programmed parity. Once this bit is set, 
it remains set until the Error Reset Command (WRO) is 
given. 

E4-4 

Z80*SIO 
USER'S MANllAL 

• The Framing Error bit (RR1, D6) is set if the character 
is assembled without any stop bits (that is, a Low level 
detected for a stop bit). Unlike the Parity Error bit, this 
bit is set (and not latched) only for the character on 
which it occurred. Detection of framing error adds an 
additional one-half of a bit time to the character time so 
the framing error is not interpreted as a new start bit. 

• If the CPU fails to read a data character while more 
than three characters have been received, the Receive 
Overrun bit (RR1, D5) is set. When this occurs, the 
fourth character assembled replaces the third character 
in the receive buffers. With this arrangement, only the 
character that has been written over is flagged with the 
Receive Overrun Error bit. Like Parity Error, this bit can 
only be reset by the Error Reset command from the 
CPU. Both the Framing Error and Receive Overrun 
Error cause an interrupt with the interrupt vector 
indicating a Special Receive condition (if Status Affects 
Vector is selected). 

Since the Parify Error and Receive Overrun Error flags are 
latched, the error status that is read reflects an error in the 
current word in the receive buffer plus any Parity or 
Overrun Errors received since the last Error Reset com­
mand. To keep correspondence between the state of the 
error buffers and the contents of the receive data buffers, 
the error status register must be read before the data. This 
is easily accomplished if vectored interrupts are used, 
because a special interrupt vector is generated for these 
conditions. 

While the External/Status interrupt is enabled, break de­
tection causes an interrupt and the Break Detected status 
bit (RRO, D7) is set. The Break Detected interrupt should be 
handled by issuing the Reset External/Status Interrupt 
command to the ZBO-SIO in response to the first Break 
Detected interrupt that has a Break status of 1 (RRO, D7). 
The Z80-SIO monitors the Receive Data input and waits for 
the Break sequence to terminate, at which point the Z80-
SIO interrupts the CPU with the Break status set to 0. The 
CPU must again issue the Reset External/Status Interrupt 
command in its interrupt service routine to reinitialize the 
break detection logic. 



The External/Status interrupt also monitors the status of I 
DCD. lfthe/DCD pin becomes inactive for a period greater 
than the minimum specified pulse width, an interrupt is 
generated with the /DCD status bit (ARO, D3) set to 1. Note 
that the /DCD input is inverted in the ARO status register. 

If the status is read after the data, the error data for the next 
word is also included if it has been stacked in the buffer. 
If operations are performed rapidly enough so the next 
character is not yet received, the status register remains 
valid. An exception occurs when the Interrupt On First 
Character Only mode is selected. A special interrupt in this 
mode holds the error data and the character itself (even if 
read from the buffer) until the Error Reset command is 
issued. This prevents further data from becoming avail­
able in the receiver until the Reset command is issued, and 
allows CPU intervention on the character with the error 
even if DMA or block transfer techniques are being used. 

zao~s10 
USER'S MANUAL 

If Interrupt On Every Character is selected, the interrupt 
vector is different if there is an error status in RR1. If a 
Receiver Overrun occurs, the most recent character re­
ceived is loaded into the buffer; the character preceding 
it is lost. When the character that has been written over the 
other characters is read, the Receive Overrun bit is set and 
the Special Receive Condition vector is returned if Status 
Affects Vector is enabled. 

In a polled environment, the Receive Character Available 
bit (RAO, DO) must be monitored so the Z80-CPU can know 
when to read a character. This bit is automatically reset 
when the receive buffers are read. To prevent overwriting 
data in polled operations, the transmit buffer status must 
be cheeked before writing into the transmitter. The Trans­
mit Buffer Empty bit is set to 1 whenever the transmit buffer 
is empty. 

E4-5 

II 





~2iUJ6 

The External/Status interrupt also monitors the status of I 
DCD. lfthe/DCD pin becomes inactive for a period greater 
than the minimum specified pulse width, an interrupt is 
generated with the /DCD status bit (RRO, 03) set to 1. Note 
that the /DCD input is inverted in the RRO status register. 

If the status is read after the data, the error data for the next 
word is also included if it has been stacked in the buffer. 
If operations are performed rapidly enough so the next 
character is not yet received, the status register remains 
valid. An exception occurs when the Interrupt On First 
Character Only mode is selected. A special interrupt in this 
mode holds the error data and the character itself (even if 
read from the buffer) until the Error Reset command is 
issued. This prevents further data from becoming avail­
able in the receiver until the Reset command is issued, and 
allows CPU intervention on the character with the error 
even if DMA or block transfer techniques are being used. 

zao~s10 
USER'S MANUAL 

If Interrupt On Every Character is selected, the interrupt 
vector is different if there is an error status in RR1. If a 
Receiver Overrun occurs, the most recent character re­
ceived is loaded into the buffer; the character preceding 
it is lost. When the character that has been written over the 
other characters is read, the Receive Overrun bit is set and 
the Special Receive Condition vector is returned if Status 
Affects Vector is enabled. 

In a polled environment, the Receive Character Available 
bit (RRO, DO) must be monitored so the Z60-CPU can know 
when to read a character. This bit is automatically reset 
when the receive buffers are read. To prevent overwriting 
data in polled operations, the transmit buffer status must 
be cheeked before writing into the transmitter. The Trans­
mit Buffer Empty bit is set to 1 whenever the transmit buffer 
is empty. 

E4-5 

II 





5.0 INTRODUCTION 

Before describing synchronous transmission and recep­
tion, the three types of character synchronization, 
Monosync, Bisync, and External Sync, require some ex­
planation. These modes use the x1 clock for both Transmit 
and Receive operations. Data is sampled on the rising 
edge of the Receive Clock input (/RxC). Transmitter data 
transitions occur on the falling edge of the Transmit Clock 
input (/TxC). 

S/0 USER'S MANUAL 

CHAPTER 5 
SYNCHRONOUS OPERATION 

The differences between Monosync, Bisync, and External 
Sync are in the manner in which initial character synchro­
nization is achieved. The mode of operation must be 
selected before sync characters are loaded, because the 
registers are used differently in the various modes. Figure 
5-1 shows the formats for all three of these synchronous 
modes. 

Message Flow 

B~nni!N_ JL 

0 

SYNC " CRC CRC 
Character Data Field Character Character 

7 JL 15 #1 8 7 #2 0 
" (A) MONOSYNC Message Format (Internal SYNC Detect) 

SYNC 
Character Data Field 

CRC CRC 
Character Character 

0 #2 7 15 #1 8 7 #2 0 

(B) BISYNC Message Format (Internal SYNC Detect) 

Be innin 

Data Field 
CRC CRC 

Character Character 
15 #1 8 7 #2 0 

(C) External SYNC Detect Format 

Figure 5-1. Synchronous Formats 

E5-1 

II 



5.1 SYNCHRONOUS MODES OF OPE8Al"ION 

~· In a. Receive operation, matching a single 
SMflC character (8-bit sync mode) wJth the programmed 
sync character stored in WR7 implies character synchro­
nization and enables data transfer. 

Blayne. Matching two contiguous sync characters ( 16-bit 
sync mode) with the programmed sync characters stored 
in WR6 and WR7 implies character synchronization. In 
both the Monosync and Bisync modes, /SYNC is used as 
an output, and ls active for the part of the receive clock that 
detects the sync character. 

External Sync. In this mode, character synchronization is 
established externally: /SYNC is an input that indicates 
external character synchronization has been achieved. 
After the sync pattern is detected, the external logic must 
wait for two full Receive Clock cycles to activate the /SYNC 
input. The /SYNC input must be held Low until character 
synchronization is lost. Character assembly begins on the 
rising edge of /RxC that precedes the falling edge of 
/SYNC. 

In all cases after a reset, the receiver is in the Hunt phase, 
during which the ZBO-SIO looks for character synchroniza­
tion. The hunt can begin only when the receiver is enabled, 
and data transfer can begin only when character synchro-

nization has been achieved. If character synchronization 
is lost, the Hunt phase. can be re-entered by writing a 
control word withJhe Enter Hunt Phase bit set (WR3, 04). 
In the Transmit mode, the transmitter always sends the 
programmed number of sync bits (8 or 16). In the Monosync 
mode, the transmitter transmits from WR6; the receiver 
compares against WR7. 

In the Monosync, Bisync, and External Sync modes, as­
sembly of received data continues until the Z80-SIO is 
reset, or until the receiver is disabled (by command or by 
DCD in the Auto Enables mode), or until the CPU sets the 
Enter Hunt Phase bit. 

After initial synchronization has been achieved, the opera­
tion of the Monosync, Bisync, and External Sync modes is 
quite similar. Any differences are specified in the following 
text. 

Table 5-1 shows how WR3, WR4, and WAS are used in 
synchronous receive and transmit operations. WRO points 
to other registers and issues various commands, WR1 
defines the interrupt modes, WR2 stores the interrupt 
vector-. and WR6 and WR7 store sync characters. Table 
5-2 illustrates the typical program steps that implement a 
half-duplex Bisync transmit operation. 

Table 5·1. Contents of Write Registers 3, 4, and 5 In Synchronous Modes 

BIT7 BIT& BITS BIT4 BIT3 BIT2 BITI BITO 

WR3 00 = Ax 5 BITS/CHAR AUTO ENTER RxCRC 0 SYNC RX 
10 =Rx 6 BITS/CHAR ENABLES HUNT ENABLE CHAR ENABLE 
01 = Rx 7 BITS/CHAR MODE LOAD 
11 = Rx 8 BITS/CHAR INHIBIT 

WR4 0 0 00 = 8-BIT SYNC CHAR 0 0 EVEN//ODD PARITY 
01 = 16-BIT SYNC CHAR SELECTS SYNC PARITY ENABLE 
10 = SDLC MODE MODES 
11 =EXT SYNC MODE 

WR5 DTR 00 = Tx 5 BITS (OR SEND Tx 1 RTS TXCRC 
LESS)/CHAR BREAK ENABLE SELECTS ENABLE 

10 = Tx 6 BITS/CHAR CRC-16 
01 = Tx 7 BITS/CHAR 
11=Tx8 BITS/CHAR 

E5-2 



't'2iUl6 zao•sio 
USER'S MANUAL 

Table 5·2. Bisync Transmit Mode 

FUNCTION TYPICAL PROGRAM STEPS COMMENTS 

REGISTER: INFORMATION LOADED. 
INITIALIZE WRO CHANNEL RESET, RESET TRANSMIT CRC GENERATOR Reset SIO, initilize CRC generator, 

WRO POINTER 2 
WR2 INTERRUPT VECTOR Channel B only 
WRO POINTER3 
WR3 AUTO ENABLES Transmission begins only after /CTS is 

detected. 
WRO POINTER 4 
WR4 PARITY INFORMATION, SYNC MODES INFORMATION, x1 Issue transmit parameters. 

CLOCK MODE 
WRO POINTERS 
WR6 SYNC CHARACTER 1 
WRO POINTER 7, RESET EXTERNAUSTATUS INTERRUPTS 
WR7 SYNC CHARACTER 2 
WRO POINTER 1, RESET EXTERNAUSTATUS INTERRUPTS 
WR1 STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE, External Interrupt mode monitors the 

TRANSMIT INTERRUPT ENABLE OR WAIT/READY MODE ENABLE status of /CTS and /DCD input pins as well 
as the status of Tx Underrun/EOM latch. 
Transmit Interrupt Enable interrupts 
when the Transmit buffer becomes 
empty; the Wait/Ready mode can be used 
to transfer data using DMA or CPu Block 
Transfer. 

WRO POINTER 5 Status Affects Vector (Channel B only). 
WR5 REQUEST TO SEND, TRANSMIT ENABLE, BSYNC CRC, Transmit CRC Enable should be set when 

TRANSMIT CHARACTER LENGTH first non-sync data is sent to Z80-SIO. 
FIRST SYNC BYTE TO SIO Need several sync characters in the be-

ginning of message. Transmitter is fully 
initialized. 

IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Waiting for interrupt or Wait/Ready output II to transfer data. 

DATA TRANSFER AND WHEN INTERRUPT (WAIT/READY) OCCURS: Interrupt occurs (Wait/Ready becomes 
STATUS MONITORING • INCLUDE/EXECLUDE DATA BYTE FROM CRC active) when first data byte is being sent, 

ACCUMULATION (IN SIO). Wail mode allows CPU block transfer 
• TRANSFER DATA BYTE FROM CPU (OR MEMORY) TO SIO. from memory to sio; Ready mode allows 
• DETECT AND SET APPROPRIATE FLAGS FOR CONTROL DMA block transfer from memory to sio. 

CHARACTERS (IN CPU) The DMA Chip can be programmed to cap-
• RESET Tx UNDERRUN/EOM LATCH (WRO) IF LAST CHARACTER ture special control characters (by ex-

OF MESSAGE IS DETECTED. amining only the bits that specify ASCII or 
• UPDATE POINTERS AND PARAMETERS (CPU). EBCDIC control characters), and interrupt 

RETURN FROM INTERRUPT. CPU. 
IF ERROR CONDITION OR STATUS CHANGE OCCURS: Tx Underrun/EOM indicates either trans-
• TRANSFER RRO TO CPU. mil underrun (sync character being sent) 
• EXECUTE ERROR ROUTINE. or end of message (CRC-16 being sent). 
• RETURN FROM INTERRUPT. 

TERMINATION REDEFINE INTERRUPT MODES, 
UPDATE MODEM CONTROL OUTPUTS (E.G., TURN OFF /RTS). Program should gracefully terminate 

message. 
DISABLE TRANSMIT MODE 

ES-3 



5.2 SYNCHRONOUS TRANSMIT 

5.2.1 Inltlallzation 

The system program must initialize the transmitter with the 
following parameters: odd or even parity, x1 clock mode, 
8-bit or 16-bit sync character(s), CRC polynomial, Trans­
mitter Enables, Request To Send, Data Terminal Ready, 
interrupt modes and transmit character length., WR4 
parameters must be issued before WR1, WR3, WRS, WR6, 
and WR7 parameters or commands. 

One of two polynomials, CRC - 16 (X16 + X15 + X2 + 1) or 
SDLC (X 16 + X 12 + X5 + 1 ), may be used with synchronous 
modes. In either case (SDLC mode not selected), the CRC 
generator and checker are reset to all O's. In the transmit 
initialization process, the CRC generator is initialized by 
setting the Reset Transmit CRC Generator command bits 
(WRO). Both the transmitter and the receiver use the same 
polynomial. 

Transmit Interrupt Enable or Wait/Ready Enable can be 
selected to transfer the data. The External/Status interrupt 
mode is used to monitor the status of the CLEAR TO SEND 
(/CTS) input as well as the Transmit Underrun/EOM latch. 
Optionally, the Auto Enables feature can be used to 
enable the transmitter when /CTS is active. The first data 
transfer to the ZBO-SIO can begin when the External/ 
Status interrupt occurs (/CTS status bit set) or immediately 
following the Transmit Enable command (if the Auto En­
ables modes is set). 

Transmit data is held marking after reset or if the transmit­
ter is not enabled. Break may be programmed to generate 
a spacing line that begins as soon as the Send Break bit 
is set. With the transmitter fully initialized and enabled, the 
default condition is continuous transmission of the 8-bit or 
16-bit sync character. 

5.2.2 Data Transfer and Status Monitoring 

In this phase, there are several combinations of interrupts 
and Wait/Ready. 

Data Transfer Using Interrupts. If the Transmit Interrupt 
Enable bit (WR1, 01) is Set, an interrupt is generated each 
time the transmit buffer becomes empty. The interrupt can 
be satisfied either by writing another character into the 
transmitter or by resetting the Transmitter Interrupt Pend­
ing latch with a Reset Transmitter Pending command 
(WRO, CMOS). If the interrupt is satisfied with this com­
mand and nothing more is written into the transmitter, there 
can be no further Transmit Buffer Empty interrupts, be­
cause it is the process of the buffer becoming empty that 

ES-4 

Z8011>SIO 
USER'S MANUAL 

causes the interrupts and the buffer cannot become empty 
when it is already empty. This situation does cause a 
Transmit Underrun condition, which is explained in the 
"Bisync Transmit Underrun" section. 

Data Transfer Using /WAIT//READY. To the CPU, the 
activation of /WAIT indicates that the Z80-SIO is not ready 
to accept data and that the CPU must extend the output 
cycle. To a OMA controller, /READY indicates that the 
transmit buffer is empty and that the ZSO-SIO is ready to 
acceptthe next data character. lfthe data character is not 
loaded into the ZSO-SIO by the time the transmit shift 
register is empty, the Z80-SIO enters the Transmit Underrun 
condition. 

Bisync Transmit Underrun. In Bisync protocol, filler char­
acters are inserted to maintain synchronization when the 
transmitter has no data to send (Transmit Underrun condi­
tion). The ZSO-SIO has two programmable options for 
solving this situation: it can insert sync characters, or it can 
send the CRC characters generated so far, followed by 
sync characters. 

These options are under the control of tile Reset Transmit 
Underrun/EOM Command in WRO. Following a chip or 
channel reset, the Transmit Underrun/EOM status bit (RRO, 
06) is in a set condition and allows the insertion of sync 
characters when there is no data to send. CRC is not 
calculated on the automatically inserted sync characters. 
When the CPU detects the end of message, a Reset 
Transmit Underrun/EOM command can be issued. This 
allows CRC to be sent when the transmitter has no data. In 
this case, the ZBO-SIO sends CRC, followed by sync 
characters, to terminate the message. 

There is no restriction as to when in the message the 
Transmit Underrun/EOM bit can be reset. If Reset is issued 
after the first data character has been loaded the 16-bit 
CRC is Sent and followed by sync characters the first time 
the transmitter has no data to send. Because of the 
Transmit Underrun condition, an External/Status interrupt 
is generated whenever the Transmit Underrun/EOM bit 
becomes set. 

In the case of sync insertion, an interrupt is generated only 
after the first automatically inserted sync character has 
been loaded. The status indicates the Transmit Underrun/ 
EOM bit and the Transmit Buffer Empty bit are set. 

In the case of CRC insertion, the Transmit Underrun/ EOM 
bit is set and the Transmit Buffer Empty bit is reset while 
CRC is being sent. When CRC has been completely sent, 



the Transmit Buffer Empty status bit is set and an interrupt 
is generated to indicate to the CPU that another message 
can begin (this interrupt occurs because CRC has been 
sent and sync has been loaded). If no more messages are 
to be sent, the program can terminate transmission by 
resetting RTS, and disabling the transmitter (WAS, D3). 

Pad characters may be sent by setting the ZBO-SIO to eight 
bits/transmit character and writing FF to the transmitter 
while CRC is being sent. Alternatively, the sync characters 
can be redefined as pad characters during this time. The 
following example is included to clarify this point. 

• The ZBO-SIO interrupts with the Transmit Buffer Empty 
bit set. 

• The CPU recognizes that the last character (ETX) of 
the message has already been sent to the ZBO-SIO by 
examining the internal program status. 

• To force the ZBO-SIO to send CRC, the CPU issues the 
ResetTransmitUnderrun/EOM Latch command (WRO) 
and satisfies the interrupt with the Reset Transmit 
Interrupt Pending command. (This command prevents 
the ZBO-SIO from requesting more data.) Because of 
the transmit underrun caused by this command, the 
ZBO-SIO starts sending CRC. The ZBO-SIO also causes 
an External/Status interrupt with the Transmit Underrun/ 
EOM latch set. 

• The CPU satisfies this interrupt by loading pad 
characters into the transmit buffer and issuing the 
Reset External/Status Interrupt command. 

• With this sequence, CRC is followed by a pad character 
instead of a sync character. Note that the ZBO-SIO will 
interrupt with a Transmit Buffer Empty interrupt when 
CRC is completely sent and that the pad character is 
loaded into the transmit shift register. 

• From this point on the CPU can send more pad 
characters or sync characters. 

Bisync CRC Generation. Setting the Transmit CRC en­
able bit (WRS, DO) initiates CRC accumulation when the 
program sends the first data character to the Z80-SIO. 
Although the Z80-SIO automatically transmits up to two 
sync characters (16-bit sync), it is wise to send a few more 
sync characters ahead of the message (before enabling 
Transmit CRC) to ensure synchronization at the receiving 
end. 

The transmit CRC Enable bit can be changed on the fly any 
time in the message to include or exclude a particular data 

ZBO®SIO 
USER'S MANUAL 

character from CRC accumulation. The Transmit CRC 
Enable bit should be in the desired state when the data 
character is loaded from the transmit data buffer into the 
transmit shift register. To ensure this bit is in the proper 
state, the Transmit CRC Enable bit must be issued before 
sending the data character to the ZBO-SIO. 

Transmit Transparent Mode. Transparent mode (Bisync 
protocol) operation is made possible by the ability to 
change Transmit CRC Enable on the fly and by the addi­
tional capability of inserting 16-bit sync characters. Exclu­
sion of OLE characters from CRC calculation can be 
achieved by disabling CRC calculation immediately pre­
ceding the OLE character transfer to the ZBO-SIO. 

In the case of a Transmit Underrun condition in the Trans­
parent mode, a pair of DLE-SYN characters are sent. The 
Z80-SIO can be programmed to send the DLE-SYN se­
quence by loading a DLE character into WR6 and a sync 
character into WR?. 

Transmit Termination. The ZBO-SIO is equipped with a 
special termination feature that maintains data integrity 
and validity. If the transmitter is disabled while a data or 
sync character is being sent, that character is sent as 
usual, but is followed by a marking line rather than CRC or 
sync characters. When the transmitter is disabled, a char­
acter in the buffer remains in the buffer. If the transmitter is 
disabled while CRC is being sent, the 16-bit transmission 
is completed, but sync is sent instead of CRC. 

A programmed break is effective as soon as it is written into 
the control register; characters in the transmit buffer and 
shift register are lost. 

In all modes, characters are sent with the least significant 
bits first. This requires right-hand justification of transmit­
ted data if the word length is less than eight bits. If the word 
length, is five bits or less, the special technique described 
in the Write Register 5 discussion (ZBO-SIO Programming 
section) must be used for the data format. The states of any 
unused bits in a data character are irrelevant, except when 
in the Five Bits Or Less mode. 

If the External/Status Interrupt Enable bit is set, transmitter 
conditions such as "starting to send CRC characters," 
"starting to send sync characters," and CTS changing 
state cause interrupts that have a unique vector if Status 
Affects Vector is set. This interrupt mode may be used 
during block transfers. 

All interrupts may be disabled for operation in a Polled 
mode, or to avoid interrupts at inappropriate times during 
the execution of a program. 

ES-5 

II 



5.3 SYNCHRONOUS RECEIVE 

5.3.1 Initialization 

The system program initiates the Synchronous Receive 
operation with the following parameters: odd or even 
parity, 8-bit or 16-bit sync characters, x 1 clock mode, CRC 
polynomial, receive character length, etc. Sync characters 
must be loaded into registers WR6 and WR7. The receivers 
can be enabled only after all receive parameters are set. 
WR4 parameters must be issued before WR1, WR3, WAS, 
WR6, and WR7 parameters or commands. 

After this is done, the receiver is in the Hunt phase. It 
remains in this phase until character synchronization is 
achieved. Note that, under program control, all the leading 
sync characters of the message can be inhibited from 
loading the receiye buffers by setting the Sync Character 
Load Inhibit bit in WR3. 

5.3.2 Data Transfer and Status Monitoring 

After character synchronization is achieved, the assembled 
characters are transferred to the receive data FIFO. The 
following four interrupt modes are available to transfer the 
data and its associated status to the CPU. 

No Interrupts Enabled. This mode is used for a purely 
polled operation or for off-line conditions. 

Interrupt On First Character Only. This mode is normally 
used to start a polling loop or a Block Transfer instruction 
using /WAIT//READY to synchronize the CPU or the DMA 
device to the incoming data rate. In this mode, the ZSO-SIO 
interrupts on the first character and thereafter interrupts 
only if Special Receive conditions are detected. The mode 
is reinitialized with the Enable Interrupt On Next Receive 
Character command to allow the next character received 
to generate an interrupt. Parity errors do not cause inter­
rupts in this mode, but End-of-Frame (SDLC mode) and 
Receive Overrun do. 

If External/Status interrupts are enabled, they may inter­
rupt any time DCD changes state. 

Interrupt On Every Character. Whenever a character 
enters the receive buffer, an interrupt is generated. Error 
and Special Receive conditions generate a special vector 
if Status Affects Vector is selected. Optionally, a Parity 

ES-6 

zao•s10 
USER'S MANuAL 

Error may be directed not to generate the special interrupt 
vector. 

Special Receive Condition Interrupts. The Special Re­
ceive Condition interrupt can occur only if either the 
Receive Interrupt On First Character Only or Interrupt On 
Every Receive Character modes is also set. The Special 
Receive Condition interrupt is caused by the Receive 
Overrun error condition. Since the Receive Overrun and 
Parity error status bits are latched, the error status-when 
read-reflects an error in the current word in the receive 
buffer in addition to any Parity or Overrun errors received 
since the last Error Reset command. These status bits can 
only be reset by the Error reset command. 

CRC Error Checking and Termination. A CRC error 
check on the receive message can be performed on a per 
character basis under program control. The Receive CRC 
Enable bit (WR3, D3) must be seUreset by the program 
before the next character is transferred from the receive 
shift register into the receive buffer register. This ensures 
proper inclusion or exclusion of data characters in the CRC 
check. 

To allow the CPU ample time to enable or disable the CRC 
check on a particular character, the ZSO-SIO calculates 
CRC eight bit times after the character has been trans­
ferred to the receive buffer. If CRC is enabled before the 
next character is transferred, CRC is calculated on the 
transferred character. If CRC is disabled before the time of 
the next transfer, calculation proceeds on the word in 
progress, but the word just transferred to the buffer is not 
included. When these requirements are satisfied, the 
3-byte receive data buffer is, in effect, unusable in Bisync 
operation. CRC may be enabled and disabled as many 
times as necessary for a given .calculation. 

In the Monosync, Bisync and External Sync modes, the 
CRC/Framing Error bit (RR1, D6) contains the comparison 
result of the CRC checker 16-bit times (eight bits delay and 
eight shifts for CRC) after the character has been trans­
ferred from the receive shift register to the buffer. The result 
should be zero, indicating an error-free transmission. 
(Note that the result is valid only at the end of CRC 
calculation. If the result is examined before this time, it 
usually indicates an error.) The comparison is made with 
each transfer and is valid only as long as the character 
remains in the receive FIFO. 



~2H.m 

Following is an example of the CRC checking operation 
when four characters (A, 8, C, and D) are received in that 
order. 

Character A loaded into buffer 
Character 8 loaded into buffer 

If CRC is disabled before C is in the buffer, CRC is not 
calculated on 8. 

Character C loaded into buffer 

After C is loaded, the CRC/Framing Error bit shows the 
result of the comparison through character A. 

Character D loaded into buffer 

After D is in the buffer, the CRC Error bit shows the result 
of the comparison through character 8 whether or not 8 
was included in the CRC calculations. 

zao1i SIO 
USER'S MANUAL 

Due to the serial nature of CRC calculation, the Receive 
Clock (/RxC) must cycle 16 times (8-bit delay plus 8-bit 
CRC shift) after the second CRC character has been 
loaded into the receive buffer, or 20 times (the previous 16 
plus 3-bit buffer delay and 1-bit input delay) after the last 
bit is at the RxD input, before CRC calculation is complete. 
A faster external clock can be gated into the Receive Clock 
input to supply the required 16 cycles. The Transmit and 
Receive Data Path diagram (Figure 3-1) illustrates the 
various points of delay in the CRC path. 

The typical program steps that implement a half-duplex 
8isync Receive mode are illustrated in Table 5-3. The 
complete set of command and status bit definitions are 
explained under "Z80-SIO Programming." 

Table 5-3. Bisync Receive Mode 

FUNCTION TYPICAL PROGRAM STEPS 

REGISTER: INFORMATION LOADED 
INITIALIZE WRO CHANNEL RESET, RESET RECEIVE CRC CHECKER 

WRO POINTER 2 
WR2 INTERRUPT VECTOR 
WRO POINTER 4 
WR4 PARITY INFORMATION, SYNC MODES INFORMATION, 

CLOCK MODE 
WRO POINTER 5, RESET EXTERNAL STATUS INTERRUPT 
WR5 BISYNC CRC-16, DATA TERMINAL READY 
WRO POINTER 3 
WR3 SYNC CHARACTER LOAD INHIBIT, RECEIVE CRC ENABLE; 

ENTER HUNT MODE, AUTO ENABLES, RECEIVE CHARACTER 
LENGTH 

WRO POINTER 6 
WR6 SYNC CHARACTER 1 
WRO POINTER 7 
WR? SYNC CHARACTER 2 
WRO POINTER 1, RESET EXTERNAUSTATUS INTERRUPT 
WR1 STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE, 

RECEIVE INTERRUPT ON FIRST CHARACTER ONLY 

COMMENTS 

Reset SID; initialize Receive CRC checker. 

Channel B only 

Issue receive parameters. 

Sync character load inhibit strips all the 
leading sync characters at the beginning 
of the message. Auto Enables enables 
the receiver to accept data only after the 
/DCD input is active. 

In this interrupt mode, only the first non­
sync data character is transferred to the 
CPU. All subsequent data is transferred 
on a DMA basis; however Special Re­
ceive Condition interrupts will interrupt 
the CPU. Status Affects Vector used in 
Channel B only. 

ES-7 

II 



zao•Sto 
USER'S MANUAL 

Table 5-3. Bisync Receive Mode (Continued) 

FUNCTION 

INITIALIZE 
(Continued) 

TYPICAL PROGRAM STEPS 

WRO POINTER 3, ENABLE INTERRUPT ON NEXT RECEIVE CHARACTER 

WR3 RECEIVE ENABLE, SYNC CHARACTER LOAD INHIBIT, ENTER 
HUNT MODE. AUTO ENABLE, RECEIVE WORD LENGTH 

IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM 

DATA TRANSFER AND WHEN INTERRUPT ON FIRST CHARACTER OCCURS, 
STATUS MONITORING THE CPU DOES THE FOLLOWING: 

TERMINATION 

E5-8 

• TRANSFERS DATA BYTE TO CPU 
• DETECTS AND SETS APPROPRIATE FLAGS FOR CONTROL 

CHARACTERS (IN CPU) 
• INCLUDES/EXCLUDES DATA BYTE IN CRC CHECKER 
• UPDATES POINTERS AND OTHER PARAMETERS 
• ENABLES WAIT/READY FOR OMA OPERATION 
• ENABLES OMA CONTROLLER 
• RETURNS FROM INTERRUPT 

WHEN WAIT/READY BECOMES ACTIVE, THE OMA CONTROLLER 
DOES THE FOLLOWING: 
• TRANSFERS DATA BYTE TO MEMORY 
• INTERRUPTS CPU IF A SPECIAL CHARACTER IS CAPTURED BY THE 

OMA CONTROLLER 
• INTERRUPTS THE CPU IF THE LAST CHARACTER OF THE MESSAGE 

IS DETECTED 
FOR MESSAGE TERMINATION, THE CPU DOES THE FOLLOWING: 
• TRANSFERS RR1 TO THE CPU 
• SETS ACK/NAK REPLY FLAG BASED ON CRC RESULT 
• UPDATES POINTERS AND PARAMETERS 
• RETURNS FROM INTERRUPT 

REDEFINE INTERRUPT MODES AND SYNC MODES 
UPDATE MODEM CONTROLS 
DISABLES RECEIVE MODE 

COMMENTS 

Resetting this interrupt mode provides 
simple program loopback entry for the 
next transaction. 

WR3 is reissued to enable receiver, Re. 
ceive CRC Enable must be set after re­
ceiving SOH or STX character. 
Receive mode is fully initialized and the 

system is wailing for interrupt on first 
character. 

During the Hunt mode, the SIO detects 
two contiguous characters to establish 
synchronization. The CPU establishes the 
OMA mode and all subsequent data char. 
acters are transferred by the OMA con­
troller. The controller is also programmed 
to capture special characters (by exam­
ining only the bits that specify ASCII or 
EBCDIC control characters) and interrupt 
the CPU upon detection, In response, 
the CPU examines the status or control 
characters and takes appropriate action 
(e.g. CRC Enable Update). 

The SIO interrupts the CPU for error con­
dition, and the error routine aborts the 
present message, clears the error condi­
tion, and repeats the operation. 



6.0 INTRODUCTION 

The Z80-SIO is capable of handling both High-level Syn­
chronous Data Link Control (HDLC) and IBM Synchronous 
Data Link Control (SDLC) protocols. In the following text, 
only SDLC is referred to because of the high degree of 
similarity between SDLC and HDLC. 

The SDLC mode is considerably different than Synchro­
nous Bisync protocol because it is bit oriented rather than 
character oriented and, therefore, can naturally handle 
transparent operation. Bit orientation makes SDLC a flex­
ible protocol in terms of message length and bit patterns. 
The Z80-SIO has several built-in features to handle vari­
able message length. Detailed information concerning 
SDLC protocol can be found in literature published on this 
subject, such as IBM document GA27-3093. 

The SDLC message, called the frame (Figure 6-1 ), is 
opened and closed by flags that are similar to the sync 
characters in Bisync protocol. The Z80-SIO handles the 
transmission and recognition of the flag characters that 
mark the beginning and end of the frame. Note that the 
Z80-SIO can receive shared-zero flags, but cannot trans-

Beginnill[ JL 

Opening Address " Data Field or Flag 8Bits 1-~~ld 0111 1110 
" 

SIO USER'S MANUAL 

CHAPTER 6 
SDLC (HDLC) OPERATION 

mit them. The 8-bit address field of an SDLC frame con­
tains the secondary station address. The Z80-SIO has an 
Address Search mode that recognizes the secondary 
station address so it can accept or reject the frame. 

Since the control field of the SDLC frame is transparent to 
the Z80-SIO, it is simply transferred to the CPU. The Z80-
SIO handles the Frame Check sequence in a manner that 
simplifies the program by incorporating features such as 
initializing the CRC generator to all 1 's, resetting the CRC 
checker when the opening flag is detected iii the Receive 
mode, and sending the Frame Cheek/Flag sequence in the 
Transmit mode. Controller hardware is simplified by auto­
matic zero insertion and deletion logic contained in the 
Z80-SIO. 

Table 6-1 shows the contents of WR3, WR4, and WR5 
during SDLC Receive and Transmit modes. WRO points to 
other registers and issues various commands, WR1 de­
fines the interrupt modes. WR2 stores the interrupt vector. 
WR? stores the flag character and WR6 the secondary 
address. 

End 

CRC CRC Closing 
#1 #2 Flag 

15 8 7 0 01111110 

Message Flow 

Figure 15-1. Transmit/Receive SDLC/HDLC Message Format 

E6-1 

II 



6.1 SDLC TRANSMIT 

6.1.1 Initialization 

Like Synchronous operation, the SDLC Transmit mode 
must be initialized with the following parameters: SDLC 
mode, SDLC polynomial, Request To Send, Data Terminal 
Ready, transmit character length, transmit interrupt modes 
(or Wait/Ready function), Transmit Enable, Auto Enables, 
and External/Status interrupt. 

Selecting the SDLC mode and the SDLC polynomial en­
ables the ZBO-SIO to initialize the CRC Generator to all 1 's. 
This is accomplished by issuing the Reset Transmit CRC 
Generator command (WRO). Refer to the Synchronous 
Operation section for more details on the interrupt modes. 

After reset, or when the transmitter is not enabled, the 
Transmit Data output is held marking. Break may be 
programmed to generate a spacing line. With the transmit­
ter fully initialized and enabled, continuous flags are trans­
mitted on the Transmit Data output. 

An abort sequence may be sent by issuing the Send Abort 
command (WRO, CMD1 ). This causes at least eight. but 
less than 14, 1 's to be sent before the line reverts to 
continuous flags. It is possible that the Abort sequence 
(eight 1 's) could follow up to five continuous 1 bits (allowed 
bythezero insertion logic) and thus cause up to thirteen 1 's 
to be sent. Any data being transmitted and any data in the 
transmit buffer is lost when an abort is issued. 

When required, an extra 0 is automatically inserted when 
there are five contiguous 1 'sin the data stream. This does 
not apply to flags or aborts. 

zao•s10 
USER'S MANUAL 

6.1.2 Data Transfer and Status Monitoring 

There are several combinations of interrupts and the 
Wait/Ready function in the SDLC mode. 

Data Transfer Using Interrupts. If the Transmit Interrupt 
Enable bit is set, an interrupt is generated each time the 
buffer becomes empty. The interrupt may be satisfied 
either by writing another character into the transmitter or by 
resetting the Transmit Interrupt Pending latch with a Reset 
Transmitter Pending command (WRO, CMD5). If the inter­
rupt is satisfied with this command and nothing more is 
written into the transmitter, there are no further transmitter 
interrupts. The result is a Transmit Underrun condition. 
When another character is written and sent out, the trans­
mitter can again become empty and interrupt the CPU. 
Following the flags in an SDLC operation, the 8-bit address 
field, control field and information field may be sent to the 
Z80-SIO using the Transmit Interrupt mode. The ZBO-SIO 
transmits the Frame Check sequence using the Transmit 
Underrun feature. 

When the transmitter is first enabled, it is already empty 
and obviously cannot then become empty. Therefore, no 
Transmit Buffer Empty interrupts can occur until after the 
first data character is written. 

When the transmitter is first enabled, it is already empty 
and cannot then become empty, Therefore, no Transmit 
Buffer Empty interrupts can occur until after the first data 
character is written. 

Table 6-1. Contents of Write Registers 3, 4, and 5 in SDLC Modes 

BIT7 BIT& BITS BIT4 BIT3 BIT2 BIT1 BITO 

WR3 00 =Rx 5 BITS CHAR AUTO ENTER HUNT RxCRC ADDRESS 0 Rx 
10 =Rx 6 BITS CHAR ENABLES MODE(IF ENABLE SEARCH ENABLE 
01 =Rx 7 BITS CHAR INCOMING MODE 
11=Rx8 BITS CHAR DATA NOT 

NEEDED) 

WR4 0 0 1 0 0 0 0 0 
SELECTS SDLC 

MODE 

WR5 DTR 00 = Tx 5 BITS (OR 0 TX 0 RTS TX CRC 
LESS) CHAR ENABLE SELECTS ENABLE 

10 = Tx 6 BITS, CHAR SDLC 
01 = Tx 7 BITS CHAR CRC 
11 = Tx8 BITS CHAR 

E6-2 



FUNCTION 

REGISTER: 
INITIALIZE WRO 

WRO 
WR2 
WRO 
WR3 

WRO 
WR4 
WRO 
WR1 

WRO 
WR5 

WRO 

Table 6·2. SDLC Transmit Mode 

TYPICAL PROGRAM STEPS 

INFORMATION LOADED: 
CHANNEL RESET 
POINTER 2 
INTERRUPT VECTOR 
POINTER 3 
AUTO ENABLES 

POINTER 4, RESET EXTERNAL/STATUS INTERRUPTS 
PARITY INFORMATION, SDLC MODE, x1 CLOCK MODE 
POINTER 1. RESET EXTERNAL/STATUS INTERRUPTS 
EXTERNAL INTERRUPT ENABLE, STATUS AFFECTS VECTOR, 
TRANSMIT INTERRUPT ENABLE OR WAIT /READY 
MODE ENABLE 

POINTER 5 
TRANSMIT CRC ENABLE, REQUEST TO SEND, SDLC-CRC. 
TRANSMIT ENABLE, TRANSMIT WORD LENGTH, DATA 
TERMINAL READY 
RESET TRANSMIT CRC GENERATOR 

IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM 

DATA TRANSFER AND WHEN INTERRUPT (WAIT READY) OCCURS, THE CPU DOES 
STATUS MONITORING THE FOLLOWING: 

TERMINATION 

• CHANGES TRANSMIT WORD LENGTH (IF NECESSARY) 
• TRANSFERS DATA BYTE FROM CPU (MEMORY) TO SIO 
RESETS Tx UNDERRUN/EOM LATCH (WRO) 

IF LAST CHARACTER OF THE I-FIELD IS SENT, THE SID DOES 
THE FOLLOWING: 
•SENDS CRC 
• SENDS CLOSING FLAG 
• INTERRUPTS CPU WITH BUFFER EMPTY STATUS 

CPU DOES THE FOLLOWING: 
• ISSUES RESET Tx INTERRUPT PENDING COMMAND TO THE Z80-S10 
• UPDATES NS COUNT 
• REPEATS THE PROCESS FOR NEXT MESSAGE, ETC. 

IF THE VECTOR INDICATES AN ERROR. THE CPU DOES THE FOLLOWING: 
• SENDS ABORT 
• EXECUTES ERROR ROUTINE 
• UPDATES PARAMETERS, MODES. ETC. 
• RETURNS FROM INTERRUPT 

REDEFINE INTERRUPT MODES 
UPDATE MODEM CONTROL OUTPUTS 
DISABLE TRANSMIT MODE 

COMMENTS 

Reset SIO. 

Channel B only 

ZBO®SIO 
USER'S MANUAL 

Transmitter sends data only after /CTS is 
detected. 

The External Interrupt mode monitors the 
status of the /CTS and DCD inputs, as well 
as the status of T x Underrun/EOM latch. 
Transmit Interrupt interrupts when the 
Transmit butter becomes empty; the 
Wa iVReady mode can be used to transfer 
data on a OMA or Block Transfer basis. 
The first interrupt occurs when /CTS 
becomes active, at which point flags are 
transmitted by the ZBO-SIO. The first data 
byte (address field) can be loaded in the 
ZBO-SIO after this interrupt. Flags cannot 
be sent to the ZBO-SIO as data. Status 
Affects Vector used in Channel B only, 

SDLC-CRC mode must be defined before 
initializing transmit CRC generator. 

Initialize CRC generator to all 1's. 

Wailing for Interrupt or Wail/Ready output 
to transfer data. 

Flags are transmitted by the SIO as Soon 
as Transmit Enable is set and /CTS be­
comes active, The /CTS status change is 
the first interrupt that occurs and is fol­
lowed by transmit buffer empty for 
subsequent transfers. 
Word length can be changed "on the fly" 
for variable I-field length. The data byte 
can contain address, control, or I-Field 
information (never a flag). It is a good 
practice to reset Tx Underrun/EOM latch 
in the beginning of the message to avoid a 
false end-of-frame detection at the 
receiving end. This ensures that, when 
underrun occurs. CRC is transmitted and 
underrun interrupt (Tx Underrun/EOM 
latch active) occurs. Note that "Send 
Abort" can be issued to the SID in re­
sponse to any interrupting continuing to 
abort the transmission, 

Terminate gracefully. 

E6-3 

II 



Data Transfer Using Wait/Ready. If the Wait/Ready func­
tion has been Selected, NJAIT indicates to the CPU that 
the Z80-SIO is not ready to accept the data and the CPU 
must extend the 1/0 cycle. To a DMA controller, /READY 
indicates that the transmitter buffer is empty and that the 
Z80-SIO is ready to accept the next character. If the data 
character is not loaded into the Z80-SIO by the time the 
transmit shift register is empty, the ZBO-SIO enters the 
Transmit Underrun condition. Address, control, and infor­
mation fields may be transferred to the ZBO-SIO with this 
mode using the Wait/Ready function. The Z80-SIO trans­
mits the Frame Check sequence using the Transmit 
Underrun feature. 

SDLC Transmit Underrun/End of Message. SDLC-like 
protocols do not have provisions for fill characters within 
a message. The Z80-SIO therefore automatically termi­
nates an SDLC frame when the transmit data buffer and 
output shift register have no more bits to send. It does this 
by first sending the two bytes of CRC and following these 
with one or more flags. This technique allows very high­
speed transmissions under DMA or CPU block 1/0 control 
without requiring the CPU to respond quickly to the end of 
message situation. 

The action that the Z80-SIO takes in the underrun situation 
depends on the state of the Transmit Underrun/EOM 
command. Following a reset, the Transmit Underrun/EOM 
status bit is in the set state and prevents the insertion of 
CRC characters during the time there is no data to send. 
Consequently, flag characters are sent. The ZBO-SIO 
begins to send the frame as data is written into the transmit 
buffer. Between the time the first data byte is written and 
the end of the message, the Reset Transmit Underrun/ 
EOM Command must be issued, Thus the Transmit 
Underrun/EOM status bit is in the reset state at the end of 
the message (when underrun occurs), which automati­
cally sends the CRC characters, The sending of CRC 
again sets the Transmit/Underrun/ EOM status bit. 

Although there is no restriction as to when the Transmit 
Underrun/EOM bit can be reset within a message, it is 
usually reset after the first data character (secondary 
address) is sent to the Z80-SIO. Resetting this bit allows 
CRC and flags to be sent when there is no data to send 
which gives additional time to the CPU for recognizing the 
fault and responding with an abort command. By reselling 
it early in the message, the entire message has the 
maximum amount of CPU response time in an uninten­
tional transmit underrun situation. 

When the External/Status interrupt is set and while CRC is 
being sent, the Transmit Underrun/EOM bit is set and the 
Transmit Buffer Empty bit is reset to indicate that the 

E6-:4 

zao•SIO 
USER'S MANUAL 

transmit register is full of CRC data. When CRC has been 
completely sent, the Transmit Buffer Empty status bit is set 
and an interrupt is generated to indicate to the CPU that 
another message can begin. This interrupt occurs be­
cause CRC has been sent and the flag has been loaded. 
If no more messages are to be sent, the program can 
terminate transmission by resetting /RTS, and disabling 
the transmitter. 

In the SDLC mode, it is good practice to reset the Transmit 
Underrun/EOM status bit immediately after the first char­
acter is sent to the Z80-SIO. When the Transmit Underrun 
is detected. this ensures that the transmission time is filled 
by CRC characters, giving the CPU enough time to issue 
the Send Abort command. This also stops the flags from 
going on the line prematurely and eliminates the possibility 
of the receiver accepting the frame as valid data. The 
situation can happen because it is possible that, at the 
receiving end, the data pattern immediately preceding the 
automatic flag insertion could match the CRC checker, 
giving a false CRC check result. The External/Status inter­
rupt is generated whenever the Transmit Underrun/EOM 
bit is set because of the Transmit Underrun condition. 

The transmit underrun logic provides additional protection 
against premature flag insertion if the proper response is 
given to the Z80-SIO by the CPU interrupt service routine. 
The following example is given to clarify this point 

• The Z80-SIO raises an interrupt with the Transmit 
Buffer Empty status bit set. 

• The CPU does not respond in time and causes a 
Transmit Underrun condition. 

• The Z80-SIO starts sending CRC characters (two 
bytes). 

• The CPU eventually satisfies the Transmit Buffer Empty 
interrupt with a data character that follows the CRC 
character being transmitted. 

• The Z80-SIO sets the External/Status interrupt with the 
Transmit Underrun/EOM status bit set 

• The CPU recognizes the Transmit Underrun/EOM status 
and determines from its internal program status that 
the interrupt is not for "end of message". 

• The CPU immediately issues a Send Abort Command 
(WRO) to the Z80-SIO. 

• The Z80-SIO sends the Abort sequence by destroying 
whatever data (CRC, data, or flag) is being sent. 



This sequence illustrates that the CPU has a protection of 
22 minimum and 30 maximum transmit clock cycles. 

SDLC CRC Generation. The CRC generator must be reset 
to all 1 's at the beginning of each frame before CRC accumu­
lation can begin. Actual accumulation begins when the 
program sends the address field (eight bits) to the ZBO-SIO. 
Although the ZBO-SIO automatically transmits one flag char­
acter following the Transmit Enable, it may be wise to send a 
few more flag characters ahead of the message to ensure 
character synchronization at the receiving end. This can be 
done by externally timing out after enabling the transmitter, 
and before loading the first character. 

The Transmit CRC Enable (WR5, DO) should be enabled prior 
to sending the address field. In the SDLC mode all the 
characters between the opening and closing flags are in­
cluded in CRC accumulation, and the CRC generated in the 
ZBO-SIO transmitter is inverted before it is sent on the line. 

Transmit Termination. If the transmitter is disabled while 
a character is being sent, that Character (data or flag) is 
sent in the normal fashion, but is followed by a marking line 
rather than CRC or flag characters. 

A character in the buffer when the transmitter is disabled 
remains in the buffer; however, a programmed Abort 
sequence is effective as soon as it is written into the control 
register. Characters being transmitted, if any, are lost. In 
the case ofCRC, the 16-bittransmission is completed if the 
transmitter is disabled; however, flags are sent in place of 
CRC. 

6.2 SDLC RECEIVE 

6.2.1 Initialization 

The SDLC Receive mode is initialized by the system with 
the following parameters: SDLC mode, x1 clock mode, 
SDLC polynomial, receive word length, etc. The flag char­
acters must also be loaded in WR? and the secondary 
address field loaded in WR6. The receiver is enabled only 
after all the receive parameters have been set. After all this 
has been done, the receiver is in the Hunt phase and 
remains in this phase until the first flag is received. While 
in the SDLC mode, the receiver never re-enters the Hunt 
phase, unless specifically instructed to do so by the 
program. The WR4 parameters must be issued prior to the 
WR1, WR3, WR5, WR6, and WR? parameters. 

Under program control, the receiver can enter the Address 
Search mode. If the Address Search bit (WR1, D2) is set, 
a character following the flag (first non-flag character) is 

ZSO"SIO 
USER'S MANUAL 

In all modes, characters are sent with the least-significant 
bits first. This requires right-hand justification of data to be 
transmitted if the word length is less than eight bits. If the 
word length is five bits or less, the special technique 
described in the Write Register 5 section ("ZBO-SIO Pro­
gramming" chapter; "Write Registers" section) must be 
used. 

Since the number of bits/character can be changed on the 
fly, the data field can be filled with any number of bits. 
When used in conjunction with the Receiver Residue 
codes, the ZBO-SIO can receive a message that has a 
variable I-field and retransmit it exactly as received with no 
previous information about the character structure of the 
I-field (if any). A change in the number of bits does not 
affect the character in the process of being shifted out. 
Characters are sent with the number of bits programmed 
at the time that the character is loaded from the transmit 
buffer to the transmitter. 

If the External/Status Interrupt Enable is set, transmitter 
conditions such as "starting to send CRC characters," 
"starting to send flag characters," and /CTS changing 
state cause interrupts that have a unique vector if Status 
Affects Vector is set. All interrupts can be disabled for 
operation in a polled mode. 

Table 6-2 shows the typical program steps that implement 
the half-duplex SDLC Transmit mode. 

compared against the programmed address in WR6 and 
the hardwired global address (1111 1111 ). If the SDLC 
frame address field matches either address, data transfer 
begins. 

Since the ZBO-SIO is capable of matching only one ad­
dress character, extended address field recognition must 
be done by the CPU. In this case, the ZBO-SIO simply 
transfers the additional address bytes to the CPU as if they 
were data characters. If the CPU determines thatthe frame 
does not have the correct address field, it can set the Hunt 
bit, and the Z80-SIO suspends reception and searches for 
a new message headed by a flag. Since the control field of 
the frame is transparent to the ZBO-SIO, it is transferred to 
the CPU as a data character. Extra zeros inserted in the 
data stream are automatically deleted; flags are not trans­
ferred to the CPU. 

E6-5 

II 



6.2.2 Data Transfer and Status Monitoring 

After receipt of a valid flag, the assembled characters are 
transferred to the receive data FIFO. The following four 
interrupt modes are available to transfer this data and its 
associated status. 

No Interrupts Enabled. This mode is used for purely 
polled operations or for off-line conditions. 

Interrupt On First Character Only. This mode is normally 
used to start a software polling loop or a Block Transfer 
instruction using N./AIT //READY to synchronize the CPU or 
DMA device to the incoming data rate. In this mode, the 
Z80-SIO interrupts on the first character and thereafter 
only interrupts if Special Receive conditions are detected. 
The mode is reinitialized with the Enable Interrupt On Next 
Receive Character Command. 

The first character received after this command is issued 
causes an interrupt. If External/Status interrupts are en­
abled, they may interrupt any time the DCD input changes 
state. Special Receive conditions such as End-of-Frame 
and Receiver Overrun also cause interrupts. The End-of­
Frame interrupt can be used to exit the Block Transfer 
mode. 

Interrupt On Every Character. An interrupt is generated 
whenever the receive FIFO contains a character. Error and 
Special Receive conditions generate a special vector if 
Status Affects Vector is selected. 

Special Receive Condition Interrupts. The Special Re~ 
ceive Condition interrupt is not, as such, a separate inter­
rupt mode. Before the Special Receive condition can 
cause an interrupt, either Interrupt On First Receive Char­
acter Only or Interrupt On Every Character must be se­
lected. The Special Receive Condition interrupt is caused 
by a Receive Overrun or End-of-Frame detection. Since 
the Receive Overrun status bit is latched, the error status 
read reflects an error in the current word in the receive 
buffer in addition to any errors received since the last Error 
Reset command. The Receive Overrun status bit can only 
be reset by the Error Reset command. The End-of-Frame 
status bit indicates that a valid ending flag has been 
received and that the CRC Error and Residue codes are 
also valid. 

Character length may be changed on the fly. If the address 
and control bytes are processed as 8-bit characters, the 
receiver may be switched to a shorter character length 
during the time that the first information character is being 

E6-6 

zao•sio 
UsER'S MANUAL 

assembled. This change must be made fast enough so it 
is effective before the number of bits specified for the 
character length have been assembled. For example, if 
the change is to be from the 8-bit control field to a 7-bit 
information field, the change must be made before the first 
seven bits of the I-Field are assembled. 

SDLC Receive CRC Checking. Control of the receive 
CRC checker is automatic. It is reset by the leading flag 
and CRC is calculated up to the final flag. The byte that has 
the End-of-Frame bit set is the byte that contains the result 
of the CRC check. If the CRC/Framing Error bit is not set, 
the CRC indicates a valid message. A special check 
sequence is used for the SDLC cheek because the trans­
mitted CRC check is inverted. The final check must be 
0001 1101 0000 1111. The 2-byte CRC check characters 
must be read by the CPU and discarded because the Z80-
SIO, while using them for CRC checking, treats them as 
ordinary data. 

SDLC Receive Termination. If enabled, a special vector 
is generated when the closing flag is received. This signals 
that the byte with the End-of-Frame bit set has been 
received. In addition to the results of the CRC check, RR1 
has three bits of Residue code valid at this time. For those 
cases in which the number of bits in the I-Field is not an 
integral multiple of the character length used, these bits 
indicate the boundary between the CRC check bits and 
the I-Field bits. For a detailed description of the meaning 
of these bits, see the description of the residue codes in 
RR1 under "Z80-SIO Programming." 

Any frame can be prematurely aborted by an Abort se­
quence. Aborts are detected if seven or more 1 's occur 
and cause an External/Status interrupt (if enabled) with the 
Break/Abort bit in ARO set. After the Reset External/Status 
interrupts command has been issued a second interrupt 
occurs when the continuous 1 's condition has been cleared. 
This can be used to distinguish between the Abort and Idle 
line conditions. 

Unlike the synchronous mode, CRC calculation in SDLC 
does not have an 8-bit delay since all the characters are 
included in CRC calculation. When the second CRC char­
acter is loaded into the receive buffer, CRC calculation is 
complete. 

Table 6-3 shows the typical steps required to implement a 
half-duplex SDLC receive mode. The complete set of 
command and status bit definitions is found in the next 
section. 



Table 6-3" SDLC Receive Mode 

FUNCTION TYPICAL PROGRAM STEPS 

REGISTER: INFORMATION LOADED. 

COMMENTS 

zaos510 
USER'S MANUAL 

INITIALIZE WRO CHANNEL 2 Reset SIO 

IDLE MODE 

WRO POINTER 2 
WR2 INTERRUPT VECTOR 
WRO POINTER 4 
WR4 PARITY INFORMATION, SYNC MODE, SDLC MODE, xi CLOCK 

MODE 
WRO POINTER 5, RESET EXTERNAVSTATUS INTERRUPTS 
WR5 SDLC-CRC, DATA TERMINAL READY 
WRO POINTER 3 
WR3 RECEIVE CRC ENABLE, ENTER HUNT MODE, AUTO ENABLES, 

RECEIVE CHARACTER LENGTH, ADDRESS SEARCH MODE 

WRO POINTER 6 
WR6 SECONDARY ADDRESS FIELD 

WRO POINTER 7 
WR? SDLC FLAG 01111110 

WRO POINTER 1, RESET EXTERNAL/STATUS INTERRUPTS 

WR1 STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE, 
RECEIVE INTERRUPT ON FIRST CHARACTER ONLY. 

WRO POINTER 3, ENABLE INTERRUPT ON NEXT RECEIVE 
CHARACTER 

WR3 RECEIVE ENABLE, RECEIVE CRC ENABLE, ENTER HUNT MODE, 
AUTO ENABLES; RECEIVER CHARACTER LENGTH, ADDRESS 
SEARCH MODE 

EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM 

Channel B only 

'Auto Enables' enables the receiver to 
accept data only after Mb becomes 
active. Address Search Mode enables 
SIO to match the message address with 
the programmed address or the global 
address. 

This address is matched against the mes­
sage address in an SDLC poll operation. 

This flag detects the start and end-of­
frame in an SDLC operation. 
In this interrupt mode, only the Address 
Field (1 character only) is transferred to 
the CPU. All subsequent fields (Control, 
information, etc.) are transferred on a 
OMA basis, Status Affects Vector in 
Channel B only. 
Used to provide simple loop-back entry 
point for next transaction. 
WR3 reissued to enable receiver. 

SDLC Receive Mode is fully initialized 
and SIO is wailing for the opening flag 
followed by a matching address field to 
interrupt the CPU. 

DATA TRANSFER AND WHEN INTERRUPT ON FIRST CHARACTER OCCURS, THE CPU During the Hunt phase, the SlO interrupts 
STATUS MONITORING DOES THE FOLLOWING: when the programmed address matches 

• TRANSFERS DATA BYTE (ADDRESS BYTE) TO CPU the message address. The CPU estab-
• DETECTS AND SETS APPROPRIATE FLAG FOR EXTENDED lishes the DMA mode and all subsequent 

ADDRESS FIELD data characters are transferred by the 
• UPDATES POINTERS AND PARAMETERS DMA controller to memory. 
• ENABLES DMA CONTROLLER 
• ENABLES WAIT/READY FUNCTION IN SIO 
• RETURNS FROM INTERRUPT 

WHEN THE READY OUTPUT BECOMES ACTIVE, THE DMA CONTROLLER During the DMA operation, the SIO 
DOES THE FOLLOWING: monitors the DCD input and the Abort 
• TRANSFERS THE DATA BYTE TO MEMORY sequence in the data stream to interrupt 
• UPDATES THE POINTERS the CPU with External Status error. The 

Special Receive condition interrupt is 
caused by Receive Overrun error. 

E6-7 

II 



FUNCTION 

DATA TRANSFER AND 
STATUS MONTIORING 
(Continued) 

TERMINATION 

E6-8 

zao~sio 
USER'S MANUAL 

Table 6-3. SDLC Receive Mode (Continued) 

TYPICAL PROGRAM STEPS 

WHEN END OF FRAME INTERRUPT OCCURS, THE CPU DOES 
THE FOLLOWING: 
• EXITS OMA MODE (DISABLES WAIT/READY) 
• TRANSFERS RR1 TO THE CPU 
• CHECKS THE CRC ERROR BIT STATUS AND RESIDUE CODES 
• UPDATES NR COUNT 
• ISSUES ERROR RESET COMMAND TO SIO 

WHEN ABORT SEQUENCE DETECTED INTERRUPT OCCURS, 
THE CPU DOES THE FOLLOWING: 
• TRANSFERS ARO TO THE CPU 
• EXITS OMA MODE 
• ISSUES THE RESET EXTERNAL STATUS INTERRUPT COMMAND 

TO THE SIO 
• ENTERS THE IDLE MODE 

WHEN THE SECOND ABORT SEQUENCE INTERRUPT OCCURS, 
THE CPU DOES THE FOLLOWING: 
• ISSUES THE RESET EXTERNAL STATUS INTERRUPT COMMAND 
TOTHESIO 

REDEFINE INTERRUPT MODES, SYNC MODE AND SDLC MODES 
DISABLE RECEIVE MODE 

COMMENTS 

Detection of End of Frame (Flag) causes 
interrupt and deactivates the Wait/Ready 
function. Residue codes indicate the bit 
structure of the last two bytes of the 
message, which were transferred to 
memory under OMA. 'Error Reset' is 
issued to clear the special condition. 
Abort sequence is detected when seven 
or more 1 's are found in the data stream. 

CPU is waiting for Abort Sequence to 
terminate. Termination clears the Break/ 
Abort status bit and causes interrupt. 
At this point, the program proceeds to 
terminate this message. 



7.0 INTRODUCTION 

To program the Z80-SIO, the system program first issues 
a series of commands that initialize the basic mode of 
operation and then other commands that qualify condi­
tions within the selected mode. For example, the Asyn­
chronous mode, character length, clock rate, number of 
stop bits, even or odd parity are first set, then the interrupt 
mode and, finally, receiver or transmitter enable. The WR4 
parameters must be issued before any other parameters 
are issued in the initialization routine. 

Both channels contain command registers that must be 
programmed via the system program prior to operation. 

7.1 WRITE REGISTERS 
The Z80-SIO contains eight registers (WR?-WRO) in each 
channel that are programmed separately by the system 
program to configure the functional personality of the 
channels. With the exception of WRO, programming the 
write registers requires two bytes. The first byte contains 
three bits (D2-DO) that point to the selected register; the 
second byte is the actual control word that is written into 
the register to configure the Z80-SIO. 

Note that the programmer has complete freedom, after 
pointing to the selected register, of either reading to test 
the read register or writing to initialize the write register. By 
designing software to initialize the Z80-SIO in a modular 
and structured fashion, the programmer can use powerful 
block 1/0 instructions. 

WRO is a special case in that all the basic commands 
(CMD2-CMDO) can be accessed with a single byte. Reset 
(internal or external) initializes the pointer bits DO-D2 to 
point to WRO. 

S/0 USER'S MANUAL 

CHAPTER 7 
PROGRAMMING 

The Channel Select input (B//A} and the Control/Data input 
(C//D} are the command structure addressing controls, 
and are normally controlled by the CPU address bus. 
Figures 9-1 through 9-4 illustrate the timing relationships 
for programming the write registers, and transferring data 
and status. 

Table 7-1. Channel Select Functions 

C//O Bl/A Function 

0 0 Channel A Data 
0 1 Channel B Data 
1 0 Channel A Commands/Status 
1 1 Channel B Commands/Status 

The basic commands (CMD2-CMDO) and the CRC con­
trols (CRCO, CRC1) are contained in the first byte of any 
write register access. This maintains maximum flexibility II 
and system control. Each channel contains the following 
control registers. These registers are addressed as com-
mands (not data). 

7.1.1 Write Register o 
WRO (Figure 7-1) is the command register; however, it is 
also used for CRC reset codes and to point to the other 
registers. 

07 06 05 04 03 02 01 DO 

CRC CRC CMD CMD CMD PTA PTA PTA 
Reset Reset 2 1 0 2 1 0 
Code Code 

1 0 

E7·1 



.2iUJ6 

07 06 05 04 03 02 01 DO 

0 0 0 RegioterO 
0 0 1 Register 1 
0 1 0 Register2 
0 1 1 Register3 
1 0 0 Register4 
1 0 1 Registers 
1 1 0 Registers 
1 1 1 Register? 

0 0 0 Null Code 
0 0 1 Send Abort (SDLC) 
0 1 0 Reset Ext/Status Interrupts 
0 1 1 Channel Reset 
1 0 0 Enable INT on Next Ax Character 
1 0 1 Reset TxlNT Pending 
1 1 0 Eerror Reset 
1 1 1 Return From INT (CH-A Only) 

0 0 Null Code 
0 1 Reset Rx CRC Checker 
1 0 Reset Tx CRC Generator 
1 1 Reset Tx Underrun/EOM Latch 

Figure 7-1. Write Register 0 

Pointer Bits (02-00). Bits 02-00 are pointer bits that 
determine which other write register the next byte is to be 
written into or which read register the next byte is to be read 
from. The first byte written into each channel after a reset 
(either by a Reset command or by the external reset input) 
goes into WRO. Following a read or write to any register 
(except WRO), the pointer will, point to WRO. 

Command Bits (05-03). Three bits, 05-03, are encoded 
to issue the seven basic Z80-SIO commands 
(Table 7-2). 

Command 

0 
1 
2 

3 

4 

5 

6 
7 

E7-2 

Table 7-2. Z80·SIO Commands 

CMD2 CMD1 

0 0 
0 0 
0 1 

0 

0 

0 

CMDO 

0 
1 
0 

0 

0 
1 

Null Command (no effect) 
Send Abort (SDLC Mode) 
Reset External/Status 
Interrupts 
Channel Reset 

Enable Interrupt on next 
Rx Character 
Reset Transmitter Inter­
rupt Pending 
Error Reset (latches) 
Return from Interrupt 
(Channel A) 

Z80"'SIO 
USER'S MANUAL 

Command 0 (Null). The Null command has no effect. Its 
normal use is to cause the Z80-SIO to do nothing while the 
pointers are set for the following byte. 

Command 1 (Send Abort). This command is used only with 
the SOLC mode to generate a sequence of eight to 
thirteen 1 's. 

Command 2 (Reset External/Status Interrupts). After an 
External/Status interrupt (a change on a modem line or a 
break condition, for example), the status bits of RRO are 
latched. This command re-enables them and allows inter­
rupts to occur again. Latching the status bits captures 
short pulses until the CPU has time to read the change. 

Command 3 (Channel Reset). This command performs the 
same function as an External Reset, but only on a single 
channel. Channel A Reset also resets the interrupt 
prioritization logic. All control registers for the channel 
must be rewritten after a Channel Reset command. 

After a Channel Reset, four extra system clock cycles 
should be allowed for Z80-SIO reset time before any 
additional commands or controls are written into that 
channel. This can normally be the time used by the CPU to 
fetch the next opcode. 

Command 4 (Enable Interrupt On Next Receive Charac­
ter). If the Interrupt On First Receive Character mode is 
selected, this command reactivates that mode after each 
complete message is received to prepare the Z80-SIO for 
the next message. 

Command 5 (Reset Transmitter Interrupt Pending). The 
transmitter interrupts when the transmit buffer becomes 
empty ifthe Transmit Interrupt Enable mode is selected. In 
those cases where there are no more characters to be sent 
(at the end of message, for example), issuing this com­
mand prevents further transmitter interrupts until after the 
next character has been loaded into the transmit buffer or 
until CRC has been completely sent. 

Command 6 (Error Reset). This command resets the error 
latches. Parity and Overrun errors are latched in RR1 until 
they are reset with this command. With this scheme, parity 
errors occurring in block transfers can be examined at the 
end of the block. 

Command 7(Return From Interrupt). This command must 
be issued in Channel A and is interpreted by the Z80-SIO 
in exactly the same way it would interpret an RETI com­
mand on the data bus. It resets the interrupt under-service 
latch of the highest priority internal device under service 
and thus allows lower priority devices to interrupt through 
the daisy chain. This command allows use of the internal 
daisy chain even in systems with no external daisy chain 
or RETI command. 



CRC Reset Codes 0 and 1 (D6 and D7). Together, these 
bits select one of the three following reset commands: 

CRC Reset CRC Reset 
Code 1 CodeO 

0 
0 
1 
1 

0 
1 
0 
1 

Null Code (no affect) 
Reset Receive CRC Checker 
Reset Transmit CRC Generator 
Reset Tx Underrun/End of 
Message latch 

The Reset Transmit CRC Generator command normally 
initializes the CRC generator to all O's. If the SDLC mode is 
selected, this command initializes the CRC generator to all 
1 's. The Receive CRC checker is also initialized to all 1 's for 
the SDLC mode. 

7.1.2 Write Register 1 

WR1 (Figure 7-2) contains the control bits for the various 
interrupt and Wait/Ready modes. 

07 

Wait/Ready 
Enable 

03 

Receive 
Interrupt 
ModeO 

06 

Wait or 
Ready 

Function 

02 

Status 
Affects 
Vector 

07 

OS 

Wait/Ready 
On Receive/ 

Transmit 

01 

Transmit 
Interrupt 
Enable 

06 05 04 

04 

Receive 
Interrupt 
Mode 1 

DO 

External 
Interrupts 

Enable 

03 02 01 

zso•sio 
USER'S MANUAL 

External/Status Interrupt Enable (DO). The External/Sta­
tus Interrupt Enable allows interrupts to occur as a result of 
transitions on the /DCD, /CTS, or /SYNC inputs, as a result 
of a Break/Abort detection and termination, or at the 
beginning of CRC or sync character transmission when the 
Transmit Underrun/EOM latch becomes set. 

Transmitter Interrupt Enable (01 ). If enabled, interrupts 
occur whenever the transmitter buffer becomes empty. 

Status Affects Vector (02). This bit is active in Channel B 
only. If this bit is not set, the fixed vector programmed in 
WR2 is returned from an interrupt acknowledge sequence. 
If this bit is set, the vector returned from an interrupt 
acknowledge is variable according to the following inter­
rupt conditions: 

V3 V2 V1 

ChB 0 0 0 Ch B Transmit Buffer Empty 
0 0 1 Ch B External/Status Change 
0 1 0 Ch B Receive Character Available 
1 1 1 Ch B Special Receive Condition* 

Ch A 0 0 Ch A Transmit Buffer Empty 
0 1 Ch A External/Status Change 
1 0 Ch A Receive Character Available 
1 1 Ch A Special Receive Condition* 

*Special Receive Conditions: Parity Error, Rx Overrun Error, 
Framing Error, End-of-Frame (SDLC). 

Receive Interrupt Modes 0 and 1 (03 and 04). Together 
these two bits specify the various character-available 
conditions. In Receive Interrupt modes 1, 2, and 3, a 
Special Receive Condition can cause an interrupt and 
modify the interrupt vector. 

DO 

EXE INTEnable 
Tx INT Enable 
Status Affects Vector 
(CH.BOnly) 

0 0 "' "Tl>••"' } 0 1 Rx INT On First Character 
1 0 I NT On All Rx Chatrcters (Parity Affects Vector) • 
1 1 INT On All Rx Chatrcters (Parity Does Not Affects Vector) 

Wail/Ready On R/T 
~----/Wail/Ready Function 

~------Wail/Ready Enable 

Figure 7·2. Write Register 1 

.Qr On 
Special 
Condition 

E7-3 

II 



04 
Receive 
Interrupt 
Mode1 

0 
0 

03 
Receive 
Interrupt 
ModeO 

0 Receive Interrupts Disabled 
1 Receive Interrupt On First 

Character Only 
O Interrupt On All Receive 

Characters-parity error is a 
Special Receive condition 
Interrupt On All Receive 
Characters-parity error is 
not a Special Receive condition 

Walt/Ready Function Selection (D7-D5). The Wait and 
Ready functions are selected by controlling D5, D6, and 
D7. Wait/Ready function is enabled by setting Wait/Ready 
Enable (WR1, D7) to 1. The Ready function is selected by 
setting 06 (Wait/Ready function) to 1. If this bit is 1, the 
fWAIT//READY output switches from High to Low when the 
Z80-SIO is ready to transfer data. The Wait function is 
selected by setting D6 to 0. If this bit is O, the 
fWAIT//READYoutput is in the open-drain state and goes 
Low when active. 

Both the Wait and Ready functions can be used in either 
the Transmit or Receive modes, but not both simulta­
neously. If D5 (Wait/Ready on Receive/Transmit) is set to 
1, the Wait/Ready function responds to the condition of the 
receive buffer (empty or full). If 05 is set to 0, the Wait/ 
Ready function responds to the condition of the transmit 
buffer (empty or full). 

The logic states of the fWAIT//READY output when active 
or inactive depend on the combination of modes selected. 
Following is a summary of these combinations: 

If 07 = 0 
and06=1 and06=0 

/READY is High !WAIT is floating 

E7-4 

/READY 

{WAIT 

/READY 

!WAIT 

and05=0 

is High when transmit 
buffer is full. 
is Low when transmit 
buffer is full and 
SIO data port is an 
selected. 
is Low when transmit 
buffer is empty. 
is floating when 
transmit buffer is 
empty. 

lf07=0 

Z80"'SIO 
USER'S MANllAL 

and05=1 

/READY is High when receive 
buffer is empty. 

{WAIT is Low when receive 
an buffer is empty and 
SIO data port is 
selected. 

/READY is Low when receive 
buffer is full. 

{WAIT is floating when 
receive buffer is full. 

The {WAIT output High-to-Low transition occurs with the 
delay time tDIC(WR) after the 1/0 request. The Low-to-High 
transition occurs with the delay tDHll>(WR) from the falling 
edge of II>. The /READY output High-to-Low transition 
occurs with the delay tDLll>(WR) from the rising edge of II>. 
The /READY output Low-to-High transition occurs with the 
delay tDIC(WR) after /IORQ falls. 

The Ready function can occur any time the Z80-SIO is not 
selected. When the /READY output becomes active Low, 
the OMA controller issues /IORQ and the corresponding 
Bl/A and C//D inputs to the Z80-SIO to transfer data. The 
/READY output becomes inactive as soon as /IORQ and 
/CS become active. Since the Ready function can occur 
internally in the Z80-SIO whether it is addressed or not, the 
/READY output becomes inactive when any CPU data or 
command transfer takes place. This does not cause prob­
lems because the OMA controller is not enabled when the 
CPU transfer takes place. 

The Wait function, on the other hand, is active only if the 
CPU attempts to read Z80-SIO data that has not yet been 
received, which occurs frequently when block transfer 
instructions are used. The Wait function can also become 
active (under program control) ifthe CPU tries to write data 
while the transmit buffer is still full. The fact that the !WAIT 
output for either channel can become active when the 
opposite channel is addressed (because the Z80-SIO is 
addressed) does not affect operation of software loops or 
block move instructions. 



7.1.3 Write Register 2 

WR2 is the interrupt vector register; it exists in Channel B 
only. V7-V4 and VO are always returned exactly as written; 
V3-V1 are returned as written if the Status Affects Vector 
(WR1, D2) control bit is 0. If this bit is 1, they are modified 
as explained in the previous section. 

07 06 05 04 03 02 D1 DO 

V7 V6 VS V4 V3 V2 V1 VO 

07 06 05 04 03 02 DO 

~--------V4 Vector 
.__ ___ ~i} Interrupt 

~----------vs 
~----------~vs '---------------V7 

Figure 7-3. Write Register 2 

7.1.4 Write Register 3 

WR3 contains receiver logic control bits and parameters. 

D7 

Receiver 
Bits/ 

Char 1 

D3 

Receiver 
CRC 

Enable 

06 

Receiver 
Bits/ 

Charo 

D2 

Address 
Search 
Mode 

DS 

Auto 
Enables 

01 

Sync Char 
Load 
Inhibit 

04 

Enter 
Hunt 

Phase 

DO 

Receiver 
Enable 

07 06 05 D4 03 02 01 

zao•sio 
USER'S MANUAL 

Receiver Enable (DO). A 1 programmed into this bit allows 
receive operations to begin. This bit should be set only 
after all other receive parameters are set and receiver is 
completely initialized. 

Sync Character Load Inhibit (D1). Sync characters pre­
ceding the message (leading sync characters) are not 
loaded into the receive buffers if this option is selected. 
Because CRC calculations are not stopped by sync char­
acter stripping, this feature should be enabled only at the 
beginning of the message. 

Address Search Mode (D2). If SDLC is selected, setting 
this mode causes messages with addresses not matching 
the programmed address inWR6ortheglobal (11111111) 
address to be rejected. In other words, no receive inter­
rupts can occur in the Address Search mode unless there 
is an address match. 

Receiver CRC Enable (D3). If this bit is set, CRC calcula­
tion starts (or restarts) atthe beginning of the last character 
transferred from the receive shift register to the buffer 
stack, regardless of the number of characters in the stack. 
See "SDLC Receive CRC Checking" (SDLC Receive sec­
tion) and "CRC Error Checking" (Synchronous Receive 
section) for details regarding when this bit should be set. 

Enter Hunt Phase (D4 ). The Z80-SIO automatically enters 
the Hunt phase after a reset; however, it can be re-entered 
if character synchronization is lost for any reason (Syn­
chronous mode) or if the contents of an incoming message 
are not needed (SDLC mode). The Hunt phase is re­
entered by writing a 1 into bit D4. This sets the Sync/Hunt 
bit (D4) in RAO. 

Auto Enables (D5). If this mode is selected, /DCD and 
/CTS become the receiver and transmitter enables, re­
spectively. If this bit is not set, /DCD and /CTS are simply 
inputs to their corresponding status bits in RAO. 

Rx Enable 
~---SYNC Character Load Inhibit 

~-----Address Search Mode (SOLC) 
'---------RxCRC Enable 

~---------Enter Hunt Phase 
'-------------Auto Enables 

O O Rx 5 Bits/Character 
O 1 Rx 7 Bits/Character 
1 O Rx 6 Bits/Character 
1 1 Rx B Bits/Character 

Figure 7-4. Write Register 3 

E7-5 

II 



Receiver BitslCharacters 1and0 (D? and D6). Together, 
these bits determine the number of serial receive bits 
assembled to form a character. Both bits may be changed 
during the time that a character is being assembled, but 
they must be changed before the number of bits currently 
programmed is reached. 

07 06 Bits/Character 

0 
0 
1 
1 

0 
1 
0 
1 

7.1.5 Write Register 4 

5 
7 
6 
8 

WR4 contains the control bits that affect both the receiver 
and transmitter. In the transmit and receive initialization 
routine, these bits should be set before issuing WR1, WR3, 
WR5, WR6, and WR?. 

07 06 05 04 03 02 01 DO 

Clock Clock Sync Sync Stop Stop Parity Parity 
Rate Rate Modes Modes Bits Bits Even/ 

1 0 1 0 1 0 /Odd 

Parity (DO). If this bit is set, an add\tional bit position (in 
addition to those specified in the bits/character control) is 
added tolransmitted data and is expected in receive data. 
In the Receive mode, the parity bit received is transferred 
to the CPU as part of the character, unless eight bits/ 
character is selected. 

zaoe510 
USER'S MANuAL 

Parity Event/Odd (D1 ). If parity is specified, this bit deter­
mines whether it is sent and checked as even or'odd (1 = 
even). 

Stop Bits 0 and 1 (D2 and D3). These bits determine the 
number of stop bits added to each asynchronous charac­
ter sent. The receiver always checks for one stop bit. A 
special mode (00) signifies that a synchronous mode is to 
be selected. 

03 
Stop Bits 1 

0 
0 
1 
1 

02 
Stop BitsO 

0 
1 
0 
1 

Sync modes 
1 stop bit per character 
1-1/2 stop bits per character 
2 stop bits per character 

Sync Modes 0 and 1 (D4 and D5). These bits select the 
various options for character synchronization. 

Sync Sync 
Mode 1 ModeO 

0 0 8-bit programmed sync 
0 1 16-bit programmed sync 
1 0 SDLC mode (0111 1110 flag pattern) 
1 1 External Sync mode 

07 06 05 04 03 02 01 DO 

E7-6 

~--Parity Enable 
~----Parity Even /Odd 

0 0 SYNC Modes Enable 
O 1 1 Stop Bil/Character 
1 O 1-1/2 Stop Bits/Character 
1 1 2 Stop Bits/Character 

0 0 8-Bit SYNC Character 
0 1 16-Bit SYNC Character 
1 0 SDLC Mode (01111110 Flag) 
1 1 Extemal SYNC Mode 

0 0 X1 Clock Mode 
0 1 X16 Clock Mode 
1 0 X32 Clock Mode 
1 1 X64 Clock Mode 

Figure 7-5. Write Register 4 



Clock Rate O and 1 (D6 and D?). These bits specify the 
multiplier between the clock (fTxC and /RxC) and data 
rates. For synchronous modes, the x1 clock rate must be 
specified. Any rate may be specified for asynchronous 
modes; however, the same rate must be used for both the 
receiver and transmitter. The system clock in all modes 
must be at least 4.5 times the data rate. If the x1 clock rate 
is selected, bit synchronization must be accomplished 
externally. 

Clock 
Rate 1 

0 
0 
1 
1 

Clock 
RateO 

0 
1 
0 
1 

Data Rate x1 =Clock Rate 
Data _Rate x16 = Clock Rate 
Data Rate x32 = Clock Rate 
Data Rate x64 = Clock Rate 

7.1.6 Write Register 5 

WR5 contains control bits that affect the operation of 
transmitter, with the exception of D2, which affects the 
transmitter and receiver. 

07 06 05 04 03 02 01 DO 

DTR Tx Tx Send Tx CRC-16/ RTS Tx 
CRC 

Enable 
Bits/ Bits/ Break Enable /SDLC 

Char 1 Char 0 

Transmit CRC Enable (DO). This bit determines if CRC is 
calculated on a particular transmit character. If it is set at 
the time the character is loaded from the transmit buffer 

Z80®SJO 
UsER'S MANUAL 

into the transmit shift register, CRC is calculated on the 
character. CRC is not automatically sent unless this bit is 
set when the Transmit Underrun condition exists. 

Request To Send (D 1 ). This is the control bit for The /RTS 
pin. When the /ATS bit is set, the /RTS pin goes Low; when 
reset, /RTS goes High. In the Asynchronous mode, /ATS 
goes High only after all the bits of the character are 
transmitted and the transmitter buffer is empty. In Syn­
chronous modes, the pin directly follows the state of the 
bit. 

CRC-161SDLC (D2). This bit selects the CRC polynomial 
used by both the transmitter and receiver. When set, the 
CRC-16 polynomial (X16 +X15 + X2 + 1) is used; when reset 
the SDLC polynomial (X16 + X12 + xs + 1) is used. If the 
SDLC mode is selected, the CRC generator and checker 
are preset to all 1 'sand a special check sequence is used. 
The SDLC CRC polynomial must be selected when the 
SDLC mode is selected. If the SDLC mode is not selected, 
the CRC generator and checker are preset to all O's (for 
both polynomials). 

Transmit Enable (D3). Data is not transmitted until this bit 
is set, and the Transmit Data output is held marking. Data 
or sync characters in the process of being transmitted are 
completely sent if this bit is reset after transmission has 
started. If the transmitter is disabled during the transmis­
sion of a CRC character, sync, or flag characters are sent 
instead of CRC. 

Send Break (D4). When set, this bit immediately forces 
the Transmit Data output to the spacing condition, regard- E 
less of any data being transmitted. When reset, TxD 
returns to marking. 

07 06 05 D4 03 02 01 DO 

0 
0 
1 
1 

DTR 

Tx CRC Enable 
'-----RTS 

'------- /SDLCICRC-16 ..._ _______ Tx Enable 
....._ _________ Send Break 

O Tx 5 Bits (Or LessYCharacter 
1 T x 7 Bits/Character 
o Tx 6 Bits/Character 
1 Tx 8 Bits/Character 

Figure 7-6. Write Register 5 

E7-7 



Transmit BitslCharacters O and 1 (D5 and D6). Together, 
D6 and D5 control the number of bits in each byte trans­
ferred to the transmit buffer. 

06 05 
Transmit Bits/ Transmit Bitsl 

Character 1 CharacterO Bits/Character 

0 0 Five or less 
0 1 7 
1 0 6 
1 1 8 

Bits to be sent must be right justified, least significant bits 
first. The Five Or Less mode allows transmission of one to 

7.1.7 Write Register 6 

zao~Sto 
USER'S MANUAL 

This register is programmed to contain the transmit sync 
character in the Monosync mode, the first eight bits of a 
16-bit sync character in the Bisync mode, or a transmit 
sync character in the External Sync mode. In the SDLC 
mode, it is programmed to contain the secondary address 
field used to compare against the address field of the 
SDLC frame. 

07 06 05 04 D3 D2 D1 DO 

Sync 7 Sync 6 Sync 5 Sync 4 Sync 3 Sync 2 Sync 1 Sync O 

five bits per character; however, the CPU should format the 7 .1.8 Write Register 7 
data character as shown in the following table. 

D7 D6 D5 D4 D3 D2 D1 DO 

1 1 1 1 0 0 0 D 
1 1 1 0 0 0 D D 
1 1 0 0 0 D D D 
1 0 0 0 D D D D 
0 0 0 D D D D D 

Sends one data bit 
Sends two data bits 
Sends three data bits 
Sends four data bits 
Sends five data bits 

This register is programmed to contain the receive sync 
character in the Monosync mode, a second byte (last eight 
bits) of a 16-bit sync character in the Bisync mode, or a flag 
character (0111 1110) in the SDLC mode. WR? is not used 
in the External Sync mode. 

D7 D6 05 04 03 D2 01 DO 

Sync 15 Sync 14 Sync 13 Sync 12 Sync 11 Sync 10 Sync 9 Sync 8 

Data Terminal Ready (07). This is the control bit for the 
DTR pin. When set, DTR is active (Low); when reset, DTR 
is inactive (High). 

E7-8 

Lw1~1~1~1001~1~100J 

l 

• Also SOLC Address Field 

Figure 7-7. Write Register 6 

07 06 05 04 03 02 01 

SYNC BitO 
SYNC Bit 1 
SYNC Bit2 
SYNC Bit 3 
SYNC Bit4 
SYNCBit5 
SYNCBit6 
SYNC Bit 7 

SYNC BitB 
'-----SYNC Bit9 

'-------SYNC Bit 10 
'---------SYNC Bit 11 

'-----------SYNC Bit 12 
'-------------SYNC Bit13 

'---------------SYNCBit14 
'----------------SYNC Bit 15 

• For SOLC It Must Be Programmed 
To '01111110' For Flag Recognition 

Figure 7-8. Write Register 7 



7.2 READ REGISTERS 

The Z80-SIO contains three registers, RR2-RRO (Figures 
7-9 through 7-11 ), that can be read to obtain the status 
information for each channel (except for RR2-Channel B 
only). The status information includes error conditions, 
interrupt vector and standard communications-interface 
signals. 

To read the contents of a selected read register other than 
RAO, the system program must first write the pointer byte 
to WRO in exactly the same way as a write register opera­
tion. Then, by executing an input instruction, the contents 
of the addressed read register can be read by the CPU. 

The status bits of RRO and RR1 are carefully grouped to 
simplify status monitoring. For example, when the interrupt 
vector indicates that a Special Receive Condition interrupt 
has occurred, all the appropriate error bits can be read 
from a single register (RR 1 ). 

7.2.1 Read Register O 

This register contains the status of the receive and transmit 
buffers; the /DCD, /CTS, and /SYNC inputs; the Transmit 
Underrun/EOM latch; and the Break/Abort latch. 

07 06 05 04 03 02 01 DO 

Break/ Trans- /CTS Sync/ /DCD Trans- Inter- Receive 
Abort mit Hunt mil rupt Charac· 

Under· Buffer Pend· ter 
runt Empty ing Avail· 
EOM (Ch.A able 

only) 

Receive Character Available (DO). This bit is set when at 
least one character is available in the receive buffer; it is 
reset when the receive FIFO is completely empty. 

zao•sio 
USER'S MANUAL 

Interrupt Pending (D1 ). Any interrupting condition in the 
Z80-SIO causes this bit to be set; however, it is readable 
only in Channel A. This bit is mainly used in applications 
that do not have vectored interrupts available. During the 
interrupt service routine in these applications, this bit 
indicates if any interrupt conditions are present in the Z80-
SIO. This eliminates the need for analyzing all the bits of 
RRO in both Channels A and B. Bit 01 is reset when all the 
interrupting conditions are satisfied. This bit is always 0 in 
Channel B. 

Transmit Buffer Empty (D2). This bit is set whenever the 
transmit buffer becomes empty, except when a CRC 
character is being sent in a synchronous or SDLC mode. 
The bit is reset when a character is loaded into the transmit 
buffer. This bit is in the set condition after a reset. 

Data Carrier Detect (D3). The /DCO bit shows the state of 
the /DCD input at the time of the last change of any of the 
five External/Status bits {/DCD, /CTS, Sync/Hunt, Break/ 
Abort or Transmit Underrun/EOM). Any transition of the 
/DCD input causes the /DCD bit to be latched and causes 
an External/Status interrupt. To read the current state of the 
/DCD bit, this bit must be read immediately following a 
Reset External/Status Interrupt command. 

Sync/Hunt (04). Since this bit is controlled differently in 
the Asynchronous, Synchronous and SDLC modes, its 
operation is somewhat more complex than that of the other 
bits and therefore requires more explanation. 

In asynchronous modes, the operation of this bit is similar II 
to the /DCD status bit, except that Sync/Hunt shows the 
state of the /SYNC input. Any High-to-Low transition on the 
/SYNC pin sets this bit and causes an External/Status 
interrupt (if enabled). The Reset External/Status Interrupt 
command is issued to clear the interrupt. A Low-to-High 
transition clears this bit and sets the External/Status inter-

07 06 05 04 03 02 01 

Rx Character Available 
.__ ___ INT Pending (CH.A Only) 

~~=~:~ply } ------------CTS , --------------TxUnderrun/EOM 
--------------~Break/Abort 

Figure 7-9. Read Register 0 

• Used With 'External/ 
Status Interrupt' Mode 

E7-9 



rupt. When the External/Status interrupt is set by the 
change in state of any other input or condition, this bit 
shows the inverted state of the /SYNC pin at the time of the 
change. This bit must be read immediately following a 
Reset External/Status Interrupt command to read the cur­
rent state of tile /SYNC input. 

In the External Sync mode, the Sync/Hunt bit operates in 
a fashion similar to the Asynchronous mode, except the 
Enter Hunt Mode control bit enables the external sync 
detection logic. When the External Sync Mode and Enter 
Hunt Mode bits are set (for example, when the receiver is 
enabled following a reset). the /SYNC input must be held 
High by the external logic until external character synchro­
nization is achieved. A High at the /SYNC input holds the 
Sync/Hunt status bit in the reset condition. 

When external synchronization is achieved, /SYNC must 
be driven Low on the second rising edge of /RxC after that 
rising edge of /RxC on which the last bit of the sync 
character was received. In other words, after the sync 
pattern is detected, the external logic must wait for two full 
Receive Clock cycles to activate the /SYNC input, Once 
/SYNC is forced Low, it is a good practice to keep it Low 
until the CPU informs the external sync logic that synchro­
nization has been lost or a new message is about to start. 
Refer to Figure 9-8 for timing details. The High-to-Low 
transition of the /SYNC input sets the Sync/Hunt bit, which, 
in turn, sets the External/Status interrupt. The CPU must 
clear the interrupt by issuing the Reset External/Status 
Interrupt command. 

When the /SYNC input goes High again, another External/ 
Status interrupt is generated that must also be cleared. 
The Enter Hunt Mode control bit is set whenever character 
synchronization is lost or the end of message is detected. 
In this case, the ZBO-SIO again looks for a High-to-Low 
transition of the /SYNC input and the operation repeats as 
explained previously. This implies the CPU should also 
inform the external logic that character synchronization 
has been lost and that the ZBO-SIO is wailing for /SYNC to 
become active. 

In the Monosync and Bisync Receive modes, the Sync/ 
Hunt status bit is initially setto 1 by the Enter Hunt Mode bit. 
The Sync/Hunt bit is reset when the ZBO-SIO establishes 
character synchronization. The High-to-Low transition of 
the Sync/Hunt bit causes an External/Status interrupt that 
must be cleared by the CPU issuing the Reset External/ 
Status Interrupt command. This enables the ZBO-SIO to 
detect the next transition of other External/Status bits. 

When the CPU detects the end of message or that charac­
ter synchronization is lost, it sets the Enter Hunt Mode 

E7-10 

zao•sio 
USER'S MANllAL 

control bit, which-in turn-sets the Sync/Hunt bit to 1. The 
Low-to-High transition of the Sync/Hunt bit sets the 
External/Status interrupt, which must also be cleared by 
the Reset External/Status Interrupt command. Note that 
the /SYNC pin acts as an output in this mode and goes Low 
every time a sync pattern is detected in the data stream. 

In the SOLC mode, the Sync/Hunt bit is initially set by the 
Enter Hunt mode bit, or when the receiver is disabled. In 
any case, it is reset to 0 when the opening flag of the first 
frame is detected by the ZBO-SIO. The External/Status 
interrupt is also generated, and should be handled as 
discussed previously. 

Unlike the Monosync and Bisync modes, once the Sync/ 
Hunt bit is reset in the SOLC mode, it does not need to be 
set when the end of message is detected. The ZBO-SIO 
automatically maintains synchronization. The only way the 
Sync/Hunt bit can be set again is by the Enter Hunt Mode 
bit, or by disabling the receiver. 

Clear To Send (05). This bit is similar to the /OCO bit, 
except that it shows the inverted state of the /CTS pin. 

Transmit Underrun/End of Message (06). This bit is in a 
set condition following a reset (internal or external). The 
only command that can reset this bit is the Reset Transmit 
Underrun/EOM Latch command (WRO, 06 and 07). When 
the Transmit Underrun condition occurs, this bit is set; its 
becoming set causes the External/ Status interrupt, which 
must be reset by issuing the Reset External/Status Inter­
rupt command bits (WRO). This status bit plays an impor­
tant role in conjunction with other control bits in controlling 
a transmit operation. Refer to "Bisync Transmit Underrun" 
and "SOLC Transmit Underrun" for additional details. 

Break/Abort (07). In the Asynchronous Receive mode, 
this bit is set when a Break sequence (null character plus 
framing error) is detected in the data stream. The External/ 
Status interrupt, if enabled, is set when Break is detected. 
The interrupt service routine must issue the Reset External/ 
Status Interrupt command (WRO, CM02) to the break 
detection logic so the Break sequence termination can be 
recognized. 

The Break/Abort bit is reset when the termination of the 
Break sequence is detected in the incoming data stream. 
The termination of the Break sequence also causes the 
External/Status interrupt to be set. The Reset External/ 
Status Interrupt command must be issued to enable the 
break detection logic to look for the next Break sequence. 
A single extraneous null character is present in the re­
ceiver after the termination of a break; it should be read 
and discarded. 



In the SDLC Receive mode, this status bit is set by the 
detection of an Abort sequence (seven or more 1's). The 
External/Status interrupt is handled the same way as in the 
case of a Break. The Break/Abort bit is not used in the 
Synchronous Receive mode. 

7.2.2 Read Register 1 

This register contains the Special Receive condition status 
bits and Residue codes for the I-Field in the SDLC Receive 
Mode. 

07 06 05 04 03 02 01 DO 

End of CRC/ Receiver Parity Residue Residue Residue All 
Frame Framing Overrun Error Code 2 Code 1 Code 0 Sent 
(SDLC} Error Error 

All Sent (DO). In asynchronous modes, this bit is set when 
all the characters have completely cleared the transmitter. 
Transitions of this bit do not cause interrupts. It is always 
set in synchronous modes. 

Residue Codes O, 1, and 2 (D3-D1 ). In those cases of the 
SDLC receive mode where the I-field is not an integral 
multiple of the character length, these three bits indicate 
the length of the I-field. These codes are meaningful only 
for the transfer in which the End-of-Frame bit is set (SDLC). 
For a receive character length of eight bits per character, 
the codes signify the following: 

ZSO"'SIO 
USER'S MAN\JAL 

l·Field Bits I-Field Bits 
Residue Residue Residue in Previous in Second 
Code2 Code1 CodeO Byte Previous Byte 

1 0 0 0 3 
0 1 0 0 4 
1 1 0 0 5 
0 0 1 0 6 

1 0 1 0 7 
0 1 1 0 8 
1 1 1 1 8 
0 0 0 2 8 

I-Field bits are right-justified in all cases. 

If a receive character length different from eight bits is 
used for the 1-field, a table similar to the previous one may 
be constructed for each different character length. For no 
residue (that is, the last character boundary coincides with 
the boundary of the I-field and CRC field), the Residue 
codes are: 

Residue Residue Residue 
Bits per Character Code2 Code1 CodeO 

8 Bits per Character 0 1 1 
7 Bits per Character 0 0 0 
6 Bits per Character 0 1 0 
5 Bits per Character 0 0 1 

LmtooT~TMTooT~T~Tool 

1 
I Field Bits 
In Previous 

Byte 
1 0 0 0 
0 1 0 0 
1 1 0 0 
0 0 1 0 
1 0 1 0 
0 1 1 0 
1 1 1 1 
0 0 0 2 

1--pa~rror . 
Rx errun Error 
CRC/Frammin Error 
End Of Frame SDLC 

tused With Special Recived Condition Mode 

Figure 7-10. Read Register 1 

All Sent 

I Field Bits In 
Second Previous 

Byte 
3 
4 
5 
6 
7 
8 
8 
8 

Residue Data For Eight Rx 
Bits/Character Programmed 

E?-11 

II 



~2H.m 

Parity Error (04). When parity is enabled, this bit is set for 
those characters whose parity does not match the pro­
grammed sense (even/odd}. The bit is latched, so once an 
error occurs, it remains set until the Error Reset command 
(WRO) is given. 

Receive Overrun Error (05). This bit indicates that more 
than three characters have been received without a read 
from the CPU. Only the character that has been written 
over is flagged with this error, but when this character is 
read, the error condition is latched until reset by the Error 
Reset command. If Status Affects Vector is enabled, the 
character that has been overrun interrupts with a Special 
Receive Condition vector. 

CRC/Framing Error (06). If a Framing Error occurs (asyn­
chronous modes), this bit is set (and not latched) for the 
receive character in which the Framing Error occurred. 
Detection of a Framing Error adds an additional one-half of 
a bit time to the character time so the Framing Error is not 
interpreted as a new start bit. In synchronous and SDLC 
modes, this bit indicates the result of comparing the CRC 
checker to the appropriate check value. This bit is reset by 
issuing an Error Reset command. The bit is not latched, so 
it is always updated when the next character is received. 
When used for CRC error and status in synchronous 
modes, it is usually set since most bit combinations result 
in a non-zero CRC except for a correctly completed 
message. 

zao~s10 
USER'S MANUAL 

End-of-Frame (07). This bit is used only with the SDLC 
mode and indicates that a valid ending flag has been 
received and that the CRC Error and Residue codes are 
also valid. This bit can be reset by issuing the Error Reset 
command. It is also updated by the first character of the 
following frame. 

7.2.3 Read Register (Channel B Only) 

This register contains the interrupt vector written into WR2 
if the Status Affects Vector control bit is not set. If the control 
bit is set, it contains the modified vector shown in the Status 
Affects Vector paragraph of the Write Register 1 section. 
When this register is read, the vector returned is modified 
by the highest priority interrupting condition at the time of 
the read. If no interrupts arc pending, the vector is modified 
with V3 = 0, V2 = 1, and V1 = 1. This register may be read 
only through Channel B. 

07 06 05 04 

V7 V6 VS V4 

03 02 01 

V3 V2 V1 
Variable if Status 
Affects Vector 

is enabled 

DO 

VO 

07 06 05 04 03 02 01 

E?-12 

VO 
----V1* 

'-------V2* --------vs· Interrupt 
----------V4 Vector ------------V5 --------------V6 '-----------------V7 

• Variable If 'Status Affects Vector' Is Programed 

Figure 7-11. Read Register 2 (Channel B Only) 



4'2iUD, 

8.0 INTRODUCTION 

The flexibility and versatility of the Z80-SIO make it useful 
for numerous applications, a few of which are included 
here. These examples show several applications that 
combine the Z80-SIO with other members of the Z80 
family. 

Figure 8-1 shows simple processor-to-processor commu­
nication over a direct line. Both remote processors in this 
system can communicate to the Z80-CPU with different 
protocols and data rates. Depending on the complexity of 
the application, other Z80 peripheral circuits (Z80-CTC, for 
example) may be required. The unused channel of the 
Z80-SIO can be used to control other peripherals or they 
can be connected to other remote processors. 

Figure 8"2 illustrates how both channels of a single Z80-
SIO are used with modems that have primary and second­
ary, or reverse channel options. Alternatively, two modems 
without these options can be connected to the Z80-SIO. A 
suitable baud-rate generator (Z80-CTC) must be used for 
asynchronous modems. 

Figure 8-3 shows the Z80-SIO in a data concentrator, a 
relatively complex application that uses two Z80-SIOs to 
perform a variety of functions. The data concentrator can 
be used to collect data from many terminals over low-

S/0 USER'S MANUAL 

CHAPTER 8 
APPLICATIONS 

speed lines and transmit it over a single high-speed line 
after editing and reformatting. 

The Z80-DMA controller circuit is used with Z80-SI0/2 to 
transmit the reformatted data at high speed with the 
required protocol. The high-speed modem provides the 
transmit clock for this channel. The Z80-CTC counter-timer 
circuit supplies the transmit and receive clocks for the low­
speed lines and is also used as a time-out counter for 
various functions. 

Z80-SI0/1 controls local or remote terminals. A single 
intelligent terminal is shown within the dashed lines. The 
terminal employs a Z80-SIO to communicate to the data 
concentrator on one channel while providing the interface 
to a line printer over its second channel. The intelligent 
terminal shown could be designed to operate interactively 
with the operator. 

Depending on the software and hardware capabilities built 
into this system, the data concentrator can employ store­
and-forward or hold-and-forward methods for regulating II 
information traffic between slow terminals and the high-
speed remote processor, If the high-speed channel is 
provided with a dial-out option, the channel can be con-
nected to a number of remote processors over a switched 
line. 

ES-1 



Z80 
CPU 

E8·2 

zao 
CPU 

zao 
SIO 

RSXYZ 
Drivers/ 

Receivers 

RSXYZ 
Drivers/ 

Receivers 

RSXVZ 
Drivers/ 

Receivers 

zao 
SIO 

zao 
SIO 

Figure 8·1. Synchronous/Asynchronous Processor·to·Processor 
Communication (Direct Wire to Two Remote Locations) 

Primary 
Channel 

Ch.A 

Z80 RS232 Modem 
SIO Driver/ (SYNC or 

Receiver ASYNC) 

Ch.B 

Secondary 
Channel 

Figure 8·2. SynchronouslAsynchronous Processor·to·Processor 
Communication (Using Telephone Line) 

zao~s10 
USER'S MANUAL 

Z80 
CPU 

zao 
CPU 

Data Link 
to Remote 
Processor 



m 
~ 

= 

zao 
CPU 

System Bus 
(llala. Adlhos and Coolml) 

zao 
SIOt1 

zao 
ere 

SIOClocl< 
Genem 

andTmeOIA 
CcllllelS 

i1'lxCA I I ITxCA 

zao 
Sl0f2 

zao 
DMA 

RS232 
llllven!/ 

Recehel3 

RS232 
llllven!/ 

Recehel3 

RS232 
llllven!/ 

Recelvels 

RS232 
llllven!/ 

Roceivets 

Keyboaltl 

= 
RS232 
llllven!/ 

RectWers 

Ll1e 
Plinler 

~ 

Figure 8-3. Data Concentrator 

Iii 

zao 
PIO 

zao 
SIO 

zao 
ere 

Tem*'81 lnterraces 

Tem*'81 
Bus 

Carmuications Li1k .. To Remo1e Proc:essor ;s 
(SDLCPmtoc:ol) 

Intelligent 
Tennilal 

zao 
CPU and 
Memoiy 

., 
~ 

~ 

~ 
"'~ ;. 
~~ 





4'2iUD, 

9.0 READ CYCLE 

The timing signals generated by a Z80-CPU input instruc­
tion to read a Data or Status byte from the Z80-SIO are 
illustrated in Figure 9-1. 

T1 T2 

S/0 USER'S MANUAL 

CHAPTER 9 
TIMING 

TW T3 

/CE Channel Address 

/IORQ 

/RD 

/M1 

Data 

Figure 9-1. Read Cycle Timing 

T1 

II 

E9-1 



9.1 WRITE CYCLE 

Figure 9-2 illustrates the timing and data signals generated 
by a ZBO-CPU output instruction to write a Data or Control 
byte into the Z80-SIO. 

T1 T2 

<I> 

TW 

/CE Channel Address 

/IORQ 

T3 

/RD , ____ __,/ 

/M1 

Data I In 

Figure 9-2. Write Cycle Timing 

E9-2 

T1 

I 

Z80"' SIO 
USER'S MANllAL 



9.2 INTERRUPT ACKNOWLEDGE CYCLE 

After receiving an Interrupt Request signal (/INT pulled 
Low), the ZBO-CPU sends an Interrupt Acknowledge sig­
nal (/M1 and /IORQ both Low). The daisy-chained interrupt 
circuits determine the highest priority intertupt requester. 
The IEI of the highest priority peripheral is terminated High. 
For any peripheral that has no interrupt pending or under 
service, IEO = IEI. Any peripheral that does have an 
interrupt pending or under service forces its IEO Low. 

T1 T2 

/M1 

/IORQ 

/RD 

Z80"'SIO 
USER'S MANUAL 

To insure stable conditions in the daisy chain, all interrupt 
status signals are prevented from changing while mi is 
Low. When /IORQ is Low, the highest priority interrupt 
requester (the one with IEI High) places its interrupt vector 
on the data bus and sets its internal interrupt-underservice 
latch (Figure 9-3). 

TW TW T3 T4 

IEI :::::::::::::::::::::::::::::::::::7,.-------.. ,:::::::::::::::: 
Data --------------.:( Vector )1----

Figure 9-3. Interrupt Acknowledge Cycle Timing 

E9-3 

II 



9.3 RETURN FROM INTERRUPT CYCLE 

Normally, the Z80-CPU issues a RETI (RETurn from Inter­
rupt) instruction at the end of an interrupt service routine. 
RETI is a 2-byte opcode (ED-40) that resets the interrupt­
underservice latch to terminate the interrupt that has just 
been processed. This is accomplished by manipulating 
the daisy chain in the following way. 

The normal daisy chain opetation can be used to detect a 
pending interrupt; however, it cannot distinguish between 
an interrupt under service and a pending unacknowl­
edged interrupt of a higher priority. Whenever "ED" is 
decoded, the daisy chain is modified by forcing High the 
IEO of any interrupt that has not yet been acknowledged. 

T1 T2 T3 T4 

/M1 '""----/ 

Z80®SIO 
USER'S MANUAL 

Thus the daisy chain identifies the device presently under 
service as the only one with an IEI High and an IEO Low. 
If the next opcode byte is "4D," the interrupt-underservice 
latch is reset (Figure 9-4). 

The Tipple time of the interrupt daisy chain (both the High­
to-Low and the Low-to-High transitions) limits the number 
of devices that can be placed in the daisy chain. Ripple 
time can be improved with carry-lookahead, or by extend­
ing the interrupt acknowledge cycle. For further informa­
tion about techniques for increasing the number of daisy­
chained devices, refer to Zilog Application Note 03-0041 
-01 (The Z80 Family Program Interrupt Structure). 

T1 T2 T3 T4 T1 

'""----/ 
/RD ~--/ \ __ / 

D7-DO ---c:( ED >~-----c~~-----------

···························------------------IEI :: ........................... 
IEO 

Figure 9-4. Return From Interrupt Cycle Timing 

9.4 DAISY CHAIN INTERRUPT NESTING 

Figure 9-5 illustrates the daisy chain configuration of 
interrupt circuits and their behavior with nested interrupts 
(an interrupt that is interrupted by another with a higher 
priority). 

Each box in the illustration could be a separate external 
ZBO peripheral circuit with a user-defined order of interrupt 
priorities. However, a similar daisy chain structure also 
exists inside the Z80-SIO, which has six interrupt levels 
with a fixed order of priorities. 

E9-4 

The case illustrated occurs when the transmitter of Chan­
nel B interrupts and is granted service. While this interrupt 
is being serviced, it is interrupted by a higher priority 
interrupt from Channel A. The second interrupt is serviced 
and-upon completion-a RETI instruction is executed or a 
RETI command is written into the ZBO-SIO, resetting the 
interrupt-under-service latch of the Channel A interrupt. At 
this time, the service routine for Channel B is resumed. 
When it is completed, another RETI instruction is executed 
to complete the interrupt service. 



Chanel A 
Receiver 

IEI IEO 

Chanel A 
Tansmitter 

IEI IEO 

Chanel A 
Extemal Status 

IEI IEO 

1. Priority Interrupt Daisy Chain Before Any Interrupt Occurs. 

IEI IEO IEI IEO IEI IEO 

2. Channel B Transmitter Interrupts and is Acknowledged. 

IEI IEO IEI IEO IEI IEO 

Chanel B 
Receiver 

IEI IEO 

IEI IEO 

IEI IEO 

3. ExtemaVStatus of Channel A Interrupts Suspending Service of Channel B Transmitter. 

IEI IEO IEI IEO IEI IEO IEI IEO 

Chanel B 
Tansmitter 

IEI IEO 

Under Service 

IEI IEO 

4. Channel A ExtemaVStatus Routine Complete, RETI Issued, Channel B Transmitter Service Resumed. 

IEI IEO IEI IEO IEI IEO IEI IEO 

5. Channel B Transmttter Service Routine Complete, Second RETI Issued. 

Figure 9-5. Typical Interrupt Service 

Z8Qll>SIO 
USER'S MANUAL 

Chanel B 
Extemal Status 

IEI IEO 

IEI IEO 

IEI IEO 

IEI IEO 

IEI IEO 

E9-5 

II 





~2il ca, 
ZBO®CPU 

Central Processing Unit 

ZBO® CTC 
Counter/Timer Circuit 

ZBO® OMA 
Direct Memory Access 

ZBO® PIO 
Parallel Input/Output 

ZBO® SID 
Serial Input/Output 

Superintegration™ B 
Products Guide l5ill 

Zilog•s Literature Guide 
Ordering Information 





m 

Block 
Diagram 

Part# 

Description 

Process/Speed 

Features 

Package 

Other 
Applications 

Data Pump 

OSP 
512 RAMl4K ROM 

16-BIT MAG 
DATA I RAM 

1/0 1/0 

Z89COO 

16-Bil Digital Signal 
Processor 

CMOS 10, 15 MHz 

16-bit Mac 75 ns 
2dalaRAMs 

(256 words each) 
4Kword ROM 
64Kx16 Ext. ROM 
16-bitl/O Port 
7 4 inslruclions 
Mosl single cycle 
Two conditional branch 

inpuls, two user outputs 
Library of sol1ware 

macros available 
zero overhead pointers 

68-pin PLCC 
60-pin VQFP 

16-bil 
General-Purpose DSP 
TMS 32010/20/25 

applicalions 

Single Chip 

ZS I DSP 
24K I 4KWORD 
ROM ROM 

256 BYTESl512 WORD 
RAM RAM 
8-Bit I 10-Bit 
AID O/A 

ZB9120 

Zilog Modem/Fax 
Controller (ZMFC) 

CMOS20MHz 

za• controller 
with 24 Kbyte ROM 

15-bil DSP with 
4KwordROM 

8-bilNO 
1 G-bil D/A (PWM) 
Library of sol1ware 

macros available 
471/0 pins 
Two comparators 
Independent zs• and 
DSP Operations 

Power-Down Mode 

68-pinPLCC 

Multimedia-Audio 
Voicemail 
Speech Storage and 

Transmission 
Modems 
FAXes, Sonabouys 

ZS I DSP 

4KWORD 
ROM 

2ss evres1s12 WORD 
RAM RAM 

8-BIT I 10-BIT 
AID DIA 

Z89920 

Zilog Modem/Fax 
Conlroller (ZMFC) 

CMOS20MHz 

za w/64K exlernal memory 
DSP w/4K word ROM 
8-bitNO 
lG-bitD/A 
Library of macros 
471/0 pins 
Two comparators 
Independent zs• and 
DSP Operations 

Power-Down Mode 

68-pin PLCC 

Mullimedia-Audio 
Voicemail 
Speech Storage and 

Transmission 
Modems 
F AXes, Sonabouys 

CGC 

WOT 

CTC 

ZBO CPU 

ZB4C15 

IPC/EIPC Controller 

CMOS 6, 10,16 MHz 

zao• CPU, SID, CTC 
WDT, CGC 

The 280 Family in 
one device 

Power-On Resel 
Two chip selects 
32-bil CRC 
WSG 

EV mode' 
3 and 5 Voll Version 

100-pin OFP 
100-pin VOFP 

lnlelligenl peripheral 
controllers 

Modems 

Controllers 

24110 

ESCC 116550 
(2CH) MIMIC 

5180 

ZB0182 

Zilog Intelligent 
Peripheral (ZIP1 

CMOS 16, 20 MHz 

Complete Slalic Version 
of z1ao~p1us ESCC 
(2 channels of Z85230) 
16550 MIMIC 
24 Parallel VO 
Emulation Modes• 

1()()-~in OFP 
100-pin VQFP 

General-Purpose 
Embedded Control 
Modem, Fax, 
Dala Communications 

2DMA 

ZBO 12 UART 
CPU 2 C/f 

CISer 

MMUI OSC 

Z80180 

High-performance 
zao- CPU with 
peripherals 

6, 8, 10, 16*, 20* 
'Z8S180 only 

Enhanced zaoe CPU 
MMU 1 Mbyle 
2DMAs 
2 UARTs 

wilh BRGs 
C/Serial 1/0 Port 
Oscillalor 
ZBS180 includes; 
Pwr dwn, Prgmble 
EMI, divide-by-one 
clock oplioo 

64-pin DIP 
68-pin PLCC 
BG-pin QFP 

Embedded Control 

G 
Z85230 

Enhanced Serial 
Com. Conlroller 

CMOS8, 10,16, 20 MHz 

full dual-channel 
sec plus deeper 
FIFOs: 
4 bytes on Tx 
8 bytes on Rx 

DPLL counter per 
channel 

Sottware compalible 
toSCC 

40-pin DIP 
44-pin PLCC 

General-Purpose 
dalacom. 

High performance 
sec software 

compalible upgrade 

~ .... --------------------------------------------------------------------~ II 



CJ> 
ro 

Block 
Diagram 

Part# 

Description 

Process/Speed 

Features 

Package 

Application 

ITosc-1 I BK PROM UART 
CPU CPU 

256 RAM 

P3 II PO P1 P2 P3 

Z86C91 /ZB691 I Z86E21 

ROMfessza• 

CMOS 16 MHz (C91) 
NMOS 12 MHz (91) 

Full duplex UART 
2 Standby Modes 

(STOP and HALT) 
2x8bil 
Counter/Timer 

4(}-pin DIP 
44-pin PLCC 
44-pin QFP 

Disk Drives 
Modems 
Tape Drives 

za• BK OTP 

CMOS 12, 16 MHz 

8KOTPROM 
256Byle RAM 
Full-duplex UART 
2 Standby Modes 

(STOP and HALT) 
2 Counter/Timers 
ROM Protect option 
RAM Protect option 
Low EMI option 

4(}-pin DIP 
44-pin PLCC 
44-pin QFP 

Software Debug 
za• prototyping 
za• production runs 
Card Reader 

DSP 

512 RAM 4K ROM 
16-BITMAC 

DATA RAM 
110 110 

Z89COO 

16-Bit Digital Signal 
Processor 

CMOS 10, 15 MHz 

16-bit Mac 75 ns 
2dalaRAMs 

(256 words each) 
4Kword ROM 
64Kx 16 Exl. ROM 
16-bit 1/0 Port 
7 4 instructions 
Most single cycle 
Two conditional branch 

inputs, two user outputs 
Library ot software 

macros available 
zero overhead pointers 

68-pin PLCC 
6(}-pin VQFP 

Disk Drives 
Tape Drives 
Servo Control 
Motor Control 

88-BIT 1 SRAMI 
R-S DRAM 
ECC CTRL 

MCU 
AT/DE 

DISK HOST INTER- INTER- INTER-
FACE FACE FACE 

MULT}D1vI UART 
CPU DSP 
DAC PWM 
ADC SPI 

P2 l P3 l A15-0 

MULT DIV UART 

CPU osc 
256 RAM CLOCK 

PO P1 

I ZB6C93 ZB6C95 ZB6018 

Enhanced za• Enhanced ZS• with DSP Zilog Oatapath Controller (ZDPC) 

CMOS 20, 25 MHz CMOS24 MHz CMOS40MHz 

16x16 Multiply 1.7 ir; B channel Full track read 
32x16 Divide 2.0 ir; 8-bil ADC, 8-bil DAC Automatic dala lransler (Point & Go•) 
Full duplex UART 16-bil Multiply/Divide 88-bit Reed Solomon ECC 'on the lly' 
2 Standby Modes Full duplex UART Full AT/IOE bus interlace 

(STOP and HALT) SPI (Serial Peripheral 64 KB SAAM butter 
3 16-bil Counter/Timers Interlace) 1 MB DRAM butter 
Pin compatible to 3 Standby Modes Split data field supporl 

Z86C91 (POIP) (STOP/HALT/PAUSE) 100-pin VQFP package 
Pulse Width Modulator JTAG boundary scan option 
3x16-bit timer Up to 8 KB buffer RAM 
16-bit DSP slave processor reserved tor MCU 
83 ns Mull./Accum. 

4(}-pin DIP 8(}-pinQFP I 100-pin VOFP 
44-pin PLCC 84-pin PLCC 100-pin QFP 
44-pin QFP 100-pin VOFP 
48-pin VOFP 

_l_ 

Disk Drives Disk Drives I Hard Disk Drives 
Tape Drives Tape Drives 
Modems Servo Control 

Motor Control 



Block 

II ROM 
Diagram 

~~n ~ CPU 

COUNTER/ RAM TIMERS 
PO P1 P2 P3 

Part# ZD8600/Z08611 

Description zs•NMOS 
(CCPj 
8600= 2KROM 
8611=4K ROM 

Process/Speed NMOS 8, 12 MHz 

Features 2K/4KROM 
128 Bytes RAM 
22/32 1/0 lines 
On-chip oscillator 
2 Counter/Timers 
6 vectored, priority 

interrupts 
UART (Z8611) 

Package 28-pin DIP 
40-pin DIP 
44-pin PLCC 

Application Low cost tape board 
TAD 

I 
CJ> 
w 

111 4~:~M 

~I P3 

Z86C30/E30 
Z86C40/E40 

Z8• Consumer Controller 
Processor (CCPi 

with 4K ROM 
C30 = 28-pin 
C40 = 40-pin 
E30/E40 = OTP version 

CMOS 12 MHz 

4K ROM, 236 RAM 
2 Standby Modes 
2 Counter/Timers 
ROM Protect 
RAM Protect 
4 Ports (86C40/E40) 
3 Ports (86C30/E30) 
Brown-Out Protection 
2 Analog Comparators 
LowEMI 
Watch-Dog Timer 
Auto Power-On Reset 
Low Power option 

28-pin DIP 
40-pin DIP 
44-pin PLCC, OFP 

Cordless Phone 
TAD 

II 

ZS DSP 
24K* 4K 
ROM ROM 
ND DIA 

31 "/47DIGITAL1/0 

Z89C65/C66 

Telephone Answering 
Controller with DSP 
LPG voice synlhesis 
and DTMF detection, 
External ROM 
/RAM lntertace (C66) 

CMOS20MHz 

ZB• Controller 
24K ROM (C65) 
16-bil DSP 
4KWord ROM 
8-bit ND with AGC 
DTMF macro available 
LPG macro available 
10-bit PWM D/A 
Other DSP software 

options available 
47 VO Pins (C65) 
• = Note ZS9C66 is ROMless 

(ZB) with 311/0 pins. 

68-pin PLCC 

Fully featured cassette 
answering machines 
with voice prompts 
and DTMF signaling 

Digital OGM available 

Z8 DSP ZS DSP 

24K ROM" 6K ROM I 32K ROM 6K ROM 
RAM PORT CODEC INTF RAM PORT CODEC INTF. 

RAM 
REFRESH PWM 

27"/43 DIGITAL 1/0 

Z89C67/C68 

Telephone Answering 
Controller with digital 
voice encode and decode 
DTMF detection and full 
memory control intertace. 
.Ext. ROM/RAM lnttc. (C68) 

CMOS20MHz 

ZB• Conlroller 
24K ROM (C67) 
16-bil DSP 
6KWord ROM 
DTMF macro available 
LPG macro available 
10-bil PWM D/A 
Other DSP S/W opt. avail. 
ARAM/DRAM/ROM 

Controller & lnlertace 
Dual Codec lnlertace 
431/0 (C67) 
• = Nole ZS9C68 is ROMless 

(ZBJ with 27 1/0 pins 

84-pin PLCC 

Voice Processing, 
DSP applications in 
tapeless TAD and olher 
high-pertormance 
voice processors 

RAM 
REFRESH PWM 

43 DIGITAL 110 

Z89C69 

Telephone Answering 
Controller with digital 
voice encode and decode 
DTMF detection and lull 
memory control inlertace 

CMOS 20MHz 

ZB• Controller 
32K ROM 
16-bil DSP 
6KWordROM 
DTMF macro available 
LPC macro available 
10-bit PWM D/A 
Other DSP software 

options available 
ARAM/ORAM/ROM 

Controller & lntertace 
Dual Codec Interlace 
431/0 

84-pin PLCC 

Voice Processing, 
DSP applicalions in 
tapeless TAD and olher 
high-pertormance 
voice processors 

ZS DSP 

24K ROM" 8KROM 

RAM PORT CODEC INTF 
RAM CODEC INTF. REFRESH 
27'/43 DIGITAL 1/0 

Z89167n68 

Enhanced telephone 
answering conlroller wilh 
digital voice encode and 
decode DTMF detection and 
full memory controller inttc. 
ext. ROM/RAM inttc. (168) 

CMOS24 MHz 

Z8• Controller 
24K ROM (167) 
16-bilDSP 
8KWordROM 
DTMF Macro available 
LPG Macro available 
10-bit PWM D/A 
Other DSP software 

oplions available 
ARAM/DRAMJROM 
Dual Codec Interface 
43 VD (167) 
• = Note Z89168 ls ROMless 

(ZS) with 27 VO pins 

84-pin PLCC 
80-pin QFP 

Voice Processing, 
DSP applications in 
tapeless TAD and other 
high-pertormance 
voice processors 

Z8 DSP 

32K ROM BK ROM 

RAM PORT CODEC INTF. 

RE~~SH CODEC INTF. 

27"/43 DIGITAL 110 

289169 

Enhanced telephone 
answering controller with 
digital voice encode and 
decode DTMF detection and 
lull memory controller 
inlertace 

CMOS24 MHz 

Z8• Controller 
32K ROM 
16-bilDSP 
8KWordROM 
DTMF Macro available 
LPC Macro available 
10-bit PWM D/A 
Olher DSP software 

options available 
ARAM/DRAM/RDM 
Dual Codec lnlertace 
43VO 

84-pin PLCC 
80-pin OFP 

Voice Processing, 
DSP applications in 
tapeless TAD and olher 
high-pertormance 
voice processors 



fl) 
.;. 

Block 
Diagram 

Part# 

Description 

Process/Speed 

Features 

Package 

Application 

BK ROM 

4KCHAR ROM 

ZBCPU I RAM 
oso 

13 ITIMERj 5 
PWM WOT PORTS 

ZB6C27/127J97 

za• Digital Television 
Controller MCU wilh 
logic !unctions needed 
for Television Controller, 
VCRs and Cable 

CMOS4 MHz 

Z8/DTC Architecture 
8K ROM, 256-byte RAM 
160x7-bil video RAM 
On-Screen Display 

(OSD) video controller 
Programmable color, size, 

position attributes 
13 PWMs for D/A 

conversion 
128-character set 
4Kx6-bit char. Gen. ROM 
Watch-Dog Timer (WDT) 
Brown-Out Protection 
5 Ports/36 pins 
2 Standby Modes 
LowEMI Mode 

64-pin DIP 
52-pin active (127) 

Low-end Television 
Cable/Satellite Receiver 

TV Controller 

6KROM 

3KCHAR ROM 

ZBCPU I RAM 
oso 

7 ITIMERI 3 
PWM WOT PORTS 

Z86227 

Standard OTC features 
with reduced ROM, 
RAM, PWM outputs 
lor greater economy 

CMOS4 MHz 

Z8/DTC Architecture 
6K ROM, 256-byte RAM 
120x7-bit video RAM 
OSDon board 
Programmable color, 

size, position attributes 
7PWMs 
96-characler set 
3Kx6-bil·characler 

generator ROM 
Watch-Dog Timer (WOT) 
Brown-Out Proteclton 
3 Ports/20 pins 
2 Standby Modes 
LowEMI Mode 

40-pin DIP 

Low-end Television 
Cable/Satellite Receiver 

CHAR ROM 

COMMAND 
INlERPRETER 

ANALOG 
SYNC/DATA I oso 

SLICER CTRL 

Z86128 

Line 21 Controller 
(L21Cjfor 
Closed Caption 
Television 

CMOS 12MHz 

Contorms to FCC 
Line 21 formal 

Parallel or serial modes 
Stand-alone operation 
On-board data sync 

and slicer 
On-board character 

generator 
-Color 
-Blinking 
- llalic 
- Underline 

18-pin DIP 

TVs, VCRs. Decoders 

IR Controller 

1K/6KROM 
ZBCPU 

WOT 124 RAM 

P2 P3 

Z86L06/l.29 

18-pin ZS• Consumer 
Controller Processor 
(CCPi tow-voltage and 
low-current battery 
operation 
1K-6KROM 

2K/BK/16K ROM 
ZBCPU 

WOT 128,256, 
768RAM 

POIP1IP2IP3 

Z86L7Dn1n2 
(0193) 

zs• (CCPi low-voltage 
parts that have more 
ROM, RAM and special 
Counter/Timers tor 
automated output 
drive capabilities 

Cable TV 

4KROM 
CPU 

P2 

P6 

Z86C40/E40 ZB6C61/62 

za• Consumer Controller I zs• MCU with 
Processor (CCPj Expanded I/O's 

wilh 4K ROM (C40} and 16K ROM 
E40 = OTP version 

Low Voltage CMOS 8 MHz I Low Voltage CMOS 8 MHz I CMOS 12 MHz CMOS 16, 20 MHz 

zs• Architecture 
lK ROM & 6K ROM 
Watch-Dog Timer 
2 Analog Comparators 

with output option 
2 Standby Modes 
2 Counter/Timers 
Auto Power-On Reset 
2 volt operation 
RC OSC option 
Low Noise option 
Brown-Out Protection 
High current drivers (2, 4) 

18-pin DIP 
18-pin sore 

l.R. Controller 
Portable battery 

operations 

zs• Architeclure 
2K/8K/16K ROM 
Watch-Dog Timer 
2 Analog Comparators 

with output option 
2 Standby Modes 
2 Enhanced Counter/ 

Timers. Auto Pulse 
Reception/Generation 

Auto Power-On Resel 
2 volt operation 
RCOSCoption 
Brown-Out Protection 
High current drivers (4) 

20-pin DIP (L71 ), 
18-pin DIP. sore (L 70) 
40,44-pin DIP. PLCC, QFP 
(L72) 

l.R. Conlroller 
Portable battery 

operations 

4K ROM, 236 RAM 
2 Standby Modes 
2 Counter/Timers 
ROM Protect 
RAM Protect 
4 Ports 
Brown-Out Protection 
2 Analog Comparators 
LowEMI 
Walch-Dog Timer 
Auto Power-On Reset 
Low Power option 

40:.pin DIP 

Window Control 
Wiper Control 
Sunroof Control 
Security Systems 
TAD 

16K ROM 
Full duplex UART 
2 Standby Modes 

(STOP and HAL TJ 
2 Counter/Timers 
ROM Protect option 
RAM Protect option 
Pin compatible to 

Z86C21 
C61=4 Ports 
C62 = 7 Ports 

40-pin DIP (C61) 
44-pin PLCC,OFP (C61) 
68-pin PLCC (C62) 

Cable Television 
Remote Control 
Security 



Block l['.J PIO CGC 241/0 

c:J 
sec CTC 

[:] Diagram t-- WOT 1--- SCC/2 85230 16550 ~II u= ~~MA SIO 161/0 (85C30/2) ESCC MIMIC 
CTC (2 CH) 

II OMA I OMA 
BIU Z80 CPU Z180 S180 

..l 
Part# l Z8030/Z80C30 Z85230/Z80230 Z16C35 Z84C15 Z80181 Z80182 Z16C30 Z16C33 I Z16C32 

Z8530/Z85C30 Z85233* 

Description I Serial Com. Enhanced Serial Integrated Serial Intelligent Peripheral Smart Access Zilog Intelligent Universal Serial Mono-channel I Integrated Universal 
Controller Com. Controller Com. Controller Controller Controller Peripheral Controller Universal Serial Serial Controller 

Controller 

Process/ NMOS: 4, 6, 8 MHZ CMOS: 10, 16 CMOS: 10, 16 MHz CMOS 6, 10,16 MHz 10, 12.5 CMOS CMOS: 20MHz CMOS: 10 MHz CMOS:20 MHz 

Speed/ CMOS: 8,10 20MHz 2.5, 4.0 Mb/s 16, 20 MHz CPU Bus CPU Bus CPU Bus 

Clock 16MHz 2.5, 4.0, 5.0 Mb/s 10 Mb/s 10 Mb/s 16 Mb/s 

Data Rate 
2, 2.5, 4 Mb/s 20 Mb/s 20Mb/s 

Features I Two independent Full dual-channel Full dual-channel zeo• CPU, SIO, CTC Complete z1eo~ Complete Static Two dual-channel Single-channel Single-channel 
lull-duplex sec plus deeper sec ptus 4 DMA WOT, CGC plus SCC/2 version ol Z160 32-byte receive & (hall ol use; plus (half of USC) 
channels FIFOs: controllers and The ZBO Family in CTC plus ESCC transmit FIFOs Time Slot plus two OMA 

Enhanced OMA 4 bytes on Tx a bus interface one device 161/0 lines (2 channels ol 16-bit bus B/W: Assigner !unctions controllers 
support: 6 bytes on Rx unit Power-On Reset Emulation Mode' 65230) 18.2 Mb/s for ISON Array chained and 
1Ox19 status FIFO OPLL counter per Two chip selects 16550MIMIC 2 BRGs per channel linked-list modes 
14-bit byte counter channel 32-bitCRC 24 Parallel VO Flexible 8/16-bit with ring buHer 
NRZ/NRZVFM Software compalibte WSG Emulation Mode' bus interface support 

loSCC EV mode' 
·one channel ot 3 and 5 Volt Version 

Z85230 

Package 40-pin DIP 40-pin DIP 168-pin PLCC 1100-pin QFP 1100-pin QFP 1100-pin QFP I 68-pin PLCC I 66-pin PLCC j 68-pin PLCC 
44-pin CERDIP 44-pin PLCC 100-pin VQFP 100-pin VQFP 
44-pinPLCC '44-pin QFP (85233) 

Application General-Purpose General-Purpose High performance Intelligent peripheral lntettigenl peripheral General-Purpose General-Purpose General-Purpose General-Purpose 
dalacom. datacom. dalacom. controllers controllers Emhedded Control high-end datacom. high-end datacom. high-end datacom. 

High performance sec upgrades Modems Printers, Faxes. Modem, Fax, Ethernet Ethernet Ethernet 
sec software Modems. Terminals Data Communlca- HOLC HDLC HDLC 

lions X.25 X.25 X.25 
Frame Relay frame Relay frame Relay 

I I I I I I I I 
(/) 

Oi 

II 
AppleTalk9 A Regisleled Trademark ol Apple Computer, Inc 



en 
m 

Block 

Ir Diagram 
84C01' 

CPU 
osc 

PWR. DOWN 

l2K BVTEi WSG SRAM 

Part# Z84C50 

Description Z80/B4C01 with 
2KSRAM 

Speed MHz 10 

Features ZSO-CPU 
2 Kbytes SRAM 
WSG 
Oscillator 
Pin compatible 

withZ04COO 
DIP &PLCC 

EV mode' 
'84C01 is available 
as a separale part 

-1. 

Package 140-pin DIP 
44-pin PLCC 
44-pin QfP 

Application I Embedded 
Controllers 

CTC 

SIO 1--
PIO 

1--

~ PIA 

Z84C90 

Killer VO 
(3 zao peripherals) 

0, 10, 12.5 

SIO, PIO, ere 
plus O VO lines 

84-pin PLCC 

I General-purpose 
peripheral that 
can be used with 
zoo and other 
CPU's 

CTC CGC PIO CGC 

1-- WOT 
SIO WOT SIO 

CTC 

ZSOCPU ZSOCPU 

Z84013/C13 Z84015/C15 

Intelligent Peripheral Intelligent Peripheral 
Controller Controller 

6, rn 6, 10, 16 

zoo• CPU, SIO, ere zoo- CPU, SIO, ere 
WDT, CGC, WSG, WDT, CGC 
Power-On Reset The ZOO Family in 
2 chip selects one device 
EV mode' Power-On Reset 

Two chip selects 
32-bit CRC 
WSG 

EV mode' 

04-pin PLCC 100-pin QFP 
100-pin VQFP 

Intelligent datacom Intelligent peripheral 
controllers controllers 

Modems 

20MA 16-BIT DSC 
401/0 I- 280 1--- II 241/0 

CPU 4DMA CTC 2UART 

CTC J woT 
ZBO 1--- 281112-BUS UART 85230116550 CPU 2 CIT INTERfACE ESCC MIMIC 

t-- (2CH) MMU 31'.iT C/Ser 
ZSOCPU 

MMU osc CACHE WSG Z180 5180 

Z84011/C11 Z80180/S180 IZ80280 IZ80181 IZ80182 

Parallel 1/0 High-performance 116-bit zeoe code I Smart Access I Zilog Intelligent 
Controller zeoe CPU with compatible CPU Controller Peripheral 

peripherals with peripherals 

6, 10 6, 8, 10, 16', 20· 110.12 I 10, 12.5 116,20 
'ZOS100 only 

zeoe CPU. ere. Enhanced ZOO CPU 16-bit code com- Complete 2180 Complete Static 
WOT MMU 1 Mbyte patible ZOO- CPU plus SCC/2 Version 

40 1/0 lines bit 2DMAs Three stage pipeline ere of z1eo·p1us ESCC 
programmable 2UARTs MMU 16Mbyte 161/0 lines (2 channels of 

Power-On Reset with BRGs CACHE 256 byte Emulation Mode' 285230) 
EV mode' C/Serial VO Port lnsl. & Data 16550MIMIC 

Oscillalor Peripherals 24 Parallel VO 4 DMAs, UART, Z8S100 includes; 3 16-bit CIT. Emulation Modes' 
Pwr dwn, Prgmble WSG 
EMI, divide-by-one Z80/Z-BUS• interface 
clock option 

100-pin QFP 64-pinDIP 168-pin PLCC 11 OD-pin OFP 1100-pin QFP 
68-pin PLCC 1 OD-pin VOFP 
00-pin OFP 

Intelligent parallel- Embedded Control Embedded Control Intelligent peripheral I General-Purpose 
1/0 conllollers Terminals controllers Embedded Control 

Industrial display Printers Printers, Faxes, Modem, Fax, 
terminals Modems, Terminals Data Communications 

'Allows use DI wsting --I &ys18nS. 



(/") 

..:.. 

Z8036 
Z8536 

Description Counter/Timer & parallel 1/0 Unit 
(CIO) 

Process/ NMOS 4,6 MHz 
Speed 

Features Three 16-bit 
Counter/Timers, 

Three 1/0 ports 
with bit catching, 
pattern matching 
interrupts and 
handshake 1/0 

Package I 40-pin PDIP 
44-pin PLCC 

I 
Application l General-Purpose 

Counter/Timers 
and 110 system 
designs 

Z32HOO 

Hyperstone 
Enhanced Fast Instruction 
Set Computer (EFISC) 
Embedded (RISC) Processor 

CMOS25 MHz 

32-bitMPU 
4 Gbytes address space 
19 global and 64 local 

registers of 32 bits each 
128 bytes instruction cache 
1.2µCMOS 
42mm'die 

I 144-pin PGA 
132-pin QFP 

Embedded 
high-performance 
industrial controller 

Worflst.alions 

II 

Z5380 I Z85CBO 
Z53C80 

Small Computer System Interface I Serial Communication Controller 
(SCSI) and Small Computer System 

Interface 

CMOS CMOS 
Z5380: 1.5 MB/s SCC-10, 16 MHz 
Z53CBO: 3.0 MB/s SCSI - 3.0 MB/s 

ANSI X3.131-1986 Full dual-channel SCC plus 
Direct SCSI bus interface SCSI sharing databus and 
On-board 48 mA drivers read/Write !unctions 
Normal or Block mode OMA transfers 
Bus interface, target and initiator 

I Z5380: 40-pin DIP I 68-pin PLCC 
44-pin PLCC 

Z53C80: 48-pin DIP 
44-pin PLCC 

Bus host adapters, Apple Talk-
formatters, host ports networfling 

SCSI disk drives 

i Soft#afe and hantwa11 ccmpalibla w11h discrete deY1ces 





~2jl ( o., 
Z809 CPU 

·Central Processing Unit 

Z809 CTC 
Counter/Timer Circuit 

Z809 OMA 
Direct Memory Access 

Z809 PIO 
Parallel Input/Output 

Z809 SID 
Serial Input/Output 

Superintegration™ 
Products Guide 

Zilog•s Literature Guide a 
Ordering Information 





Z8®/SUPER8"' MICROCONTROLLER FAMILY 

Data books 

ZS Mlcrocontrollers Databook (Includes the following documents) 

ZB CMOS Mlcrocontrollers 
Z86C00/C10/C20 MCU OTP Product Specification 
Z86C06 ZB CCP"' Preliminary Product Specification 
Z86COB S-Bit MCU Product Specification 
Z86E08 ZS OTP MCU Product Specification 
Z86C09/19 ZB CCP Product Specification 
Z86E19 ZB OTP MCU Advance Information Specification 
Z86C11 ZB MCU Product Specification 
Z86C12 ZB ICE Product Specification 
ZB6C21 ZS MCU Product Specification 
Z86E21/ZS6E22 OTP Product Specification 
ZB6C30 ZS CCP Product Specification 
Z86E30 ZS OTP CCP Product Specification 
ZS6C40 ZB CCP Product Specification 
ZS6E40 ZS OTP CCP Product Specification 
Z86C27/97 ZS DTC"' Product Specification 
ZS6127 Low-Cost Digital Television Controller Adv. Info. Spec. 
Z86C50 ZB CCP ICE Advance Information Specification 
Z86C61 ZS MCU Advance Information Specification 
Z86C62 ZS MCU Advance Information Specification 
Z86CS9/C90 CMOS ZS CCP Product Specification 
ZB6C91 ZB ROMless MCU Product Specification 
Z86C93 ZB ROMless MCU Preliminary Product Specification 
ZS6C94 ZB ROM less MCU Product Specification 
Z86C96 ZS ROMless MCU Advance Information Specification 
ZSSCOO CMOS Supers MCU Advance Information Specification 

ZB NMOS Mlcrocontrollers 
Z8600 ZB MCU Product Specification 
ZS601/03/11/13 ZS MCU Product Specification 
ZS602 S-Bit Keyboard Controller Prelimir.ary Product Spec. 
Z8604 S-Bit MCU Product Specification 
Z8612 ZS ICE Product Specification 
Z8671 ZB MCU With BASIC/Debug Interpreter Product Spec. 
Z8681/82 ZS MCU ROMless Product Specification 
ZS691 ZB MCU ROM less Product Specification 
ZBS00/01/20/22 Supers ROMless/ROM Product Specification 

LITERATURE GUIDE 

Part No Unit Cost 

DC·8275·04 5.00 

Peripheral Products 
ZS612S Closed-Captioned Controller Adv. Info. Specification 
Z765A Floppy Disk Controller Product Specification 
Z53SO SCSI Product Specification 
Z53CSO SCSI Advance Information Specification 

ZB Application Notes and Technical Articles 
Zilog Family On-Chip Oscillator Design 
ZS6E21 ZS Low Cost Thermal Printer 
ZS Applications for 1/0 Port Expansions 
Z86C09/19 Low Cost ZS MCU Emulator 
Z8602 Controls A 101/102 PC/Keyboard 
The ZB MCU Dual Analog Comparator 
The ZS MCU In Telephone Answering Systems 
ZB Subroutine Library 
A Comparison of MCU Units 
Z86xx Interrupt Request Registers 
ZB Family Framing 
A Programmer's Guide to the ZB MCU 
Memory Space and Register Organization 

Supers Appl/cation Notes and Technical Articles 
Getting Started with the Zilog Supers 
Polled Async Serial Operations with the Supers 
Using the Supers Interrupt Driven Communications 
Using the Supers Serial Port with DMA 
Generating Sine Waves with Supers 
Generating DTMF Tones with Supers 
A Simple Serial Parallel Converter Using the Supers 

Additional Information 
ZS Support Products 
Zilog Quality and Reliability Report 
Literature List 
Package Information 
Ordering Information 

L-1 

a 



LITERATURE GUIDE 
Z8"/SUPER8"' MICROCONTROLLER FAMILY (Continued} 

Databooks By Market Niche Part No 

Digital Signal Processor Databook (includes the following documents} DC-8299-03 
Z86C95 Z8• Digital Signal Processor Preliminary Product Specification 
Z89COO 16-Bit Digital Signal Processor Preliminary Product Specification 
Z89COO DSP Application Note 'Understanding 015 Two's Complement Fractional Multiplication' 
Z89120, Z89920(ROMless)16-Bit Mixed Signal Processor Preliminary Product Specification 
Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor Preliminary Product Specification 
Z89320 16-Bit Digital Signal Processor Preliminary Product Specification 
Z8932116-Bit Digital Signal Processor Advance Information Specification 

Telephone Answering Device Databook (includes the following documents) DC-8300-02 
Z89C65, Z89C66 (ROMless) Dual Processor T.A.M. Controller Preliminary Product Specification 
Z89C67, Z89C68/C69 (ROM less) Dual Processor Tapeless T.A.M. Controller Preliminary Product Specification 
Z89C65 Software Development Guide 
Z89C67/C69 Software Development Guide 

Infrared Remote (IR) Control Databook (includes the following documents) DC-8301-03 
Z86L06 Low Voltage CMOS Consumer Controller Processor Preliminary Product Specification 
Z86L29 6K Infrared (IR) Remote (ZIRCj Controller Advance Information Specification 
Z86L70/L71/L72, Z86E72 Zilog IR (ZIRCi CCPN Controller Family Preliminary Product Specification 

ZB Mlcrocontrollers (includes the following documents) DC-8305-02 
Z86C07 CMOS ZB 8-Bit Microcontroller Product Specification 
Z86C08 CMOS ZB 8-Bit Microcontroller Product Specification 
Z86E08 CMOS ZB 8-Bit OTP Microcontroller Product Specification 
Z86C11 CMOS ZB Microcontroller Product Specification 
Z86C12 CMOS ZB In-Circuit Microcontroller Emulator Product Specification 
Z86C21 SK ROM Z8 CMOS Microcontroller Product Specification 
Z86E21 CMOS Z8 BK OTP Microcontroller Product Specification 
Z86C61/62/96 CMOS ZB Microcontroller Product Specification 
Z86C63/64 32K ROM ZB CMOS Microcontroller Product Specification 
Z86C91 CMOS ZS ROMless Microcontroller Product Specification 
Z86C93 CMOS ZS Multiply/Divide Microcontroller Product Specification 

Mass Storage (includes the following documents) DC-8303-00 
Z86C21 SK ROM ZB CMOS Microcontroller Product Specification 
Z86E21 CMOS ZS BK OTP Microcontroller Product Specification 
Z86C91 CMOS Z8 ROMless Microcontroller Product Specification 
Z86C93 CMOS Z8 Multiply/Divide Microcontroller Product Specification 
Z86C95 ZB Digital Signal Processor Product Specification 
Z89COO 16-Bit Digital Signal Processor Product Specification 
Z89COO DSP Application Note - 'Understanding 015 Two's Complement Fractional Multiplication' 

L-2 

Unit Cost 

3.00 

3.00 

3.00 

3.00 

3.00 



~2H t V:> LITERATURE GUIDE 
Z8®/SUPER8"' MICROCONTROLLER FAMILY (Continued) 

Databooks By Market Niche 

Digital Television Controllers (includes the following documents) 
Z86C27/97 CMOS ZB'"Digital Signal Processor Product Specification 
Z86C61/62/96 CMOS ZB Microcontroller Product Specification 
Z86C63/64 32K ROM CMOS ZB Microcontroller Product Specification 
Z86127 Low Cost Digital Television Controller Product Specification 
Z86128 Line 21 Closed-Caption Controller (L21Cj Digital Television Controller Product Specification 
Z86227 40-Pin Low Cost (4LDTCj Digital Television Controller Product Specification 

Keyboard/Mouse/Pointing Devices Databook (includes the following documents) 
Z8602 NMOS ZB'" 8-Bit Keyboard Controller Product Specification 
Z8614 NMOS Z8'" 8-Bit Keyboard Controller Product Specification 
Z8615 NMOS ZB'" 8-Bit Keyboard Controller Product Specification 
Z86E23 Z8'" 8-Bit Keyboard Controller with BK OTP Product Specification 
Z86C04 CMOS ZB'" 8-Bit Microcontroller Product Specification 
Z86C08 CMOS ZB'" 8-Bit Microcontroller Product Specification 
Z88C17 CMOS Z8'" 8-Bit Microcontroller Product Specification 

PC Audio Databook (includes the following documents) 
Z86321 Digital Audio Processor Preliminary Product Specification 
Z8932016-Bit Digital Signal Processor Preliminary Product Specification 
289321/37116-Bit Digital Signal Processor Preliminary Product Specification 
Z89331 16-Bit PC !SA Bus Interface Advance Information Specification 
289341/42/43 Wave Synthesis Chip Set Advance Information Specification 
25380 Small Computer System Interface Product Specification 

PCMCIA/SCSI Interface Controllers (includes the following documents) 
Z5380 Small Computer System Interface Product Specification 
Z53C80 Small Computer System Interface Product Specification 
Z85C80 SCSCIN Serial Communications and Small Computer Interface Product Specification 
Z86017 PCMCIA Interface Preliminary Product Specification 
Z86015 PCMCIA Interface with OMA Support Advance Product Specification 
286020 CardBus/PCI Interface Advance Product Specification 

Discrete ZS'" Microcontrollers (Includes the following documents) 
Z86C04 CMOS ZB'" 8-Bit Low Cost 1 KROM Microcontroller Product Specification 
Z86E04 OTP CMOS Z8'" 8-Bit Microcontroller Product Specification 
Z86C08 CMOS ZB'" 8-Bit Microcontroller Product Specification 
Z86E08 CMOS Z8'" 8-Bit Microcontroller Product Specification 
Z86C30 CMOS ZB'" 8-Bit Microcontroller Product Specification 
Z86E30 CMOS Z8'" OTP CCPN Microcontroller Product Specification 
ZS6C31 CMOS ZS'" 8-Bit Microcontroller Product Specification 
ZS6E31 CMOS ZS'" OTP CCPN Microcontroller Product Specification 

Part No Unit Cost 

DC-8308-00 3.00 

DC-8304-00 3.00 

DC-8317-00 3.00 

DC 8313-00 3.00 

DC 8318-00 3.00 

L-3 

II 



~2iUU, LITERATURE GUIDE 
Z8®/SUPER8"' MICROCONTROLLER FAMILY (Continued) 

ZS Product Specifications, Technical Manuals and Users Guides 

Z8 .. Microcontrollers Technical Manual 
ZB601 B Preliminary User's Manual 
Digital TV Controller User's Manual 
ZB9COO 16-Bit Digital Signal Processor User's Manual/DSP Software Manual 
ZB6C95 16-Bit Digital Signal Processor User Manual 
ZB6017 PCMCIA Adaptor Chip User's Manual 
PLC Z89COO Cross Development Tools Brochure 

ZS Application Notes 

The ZB MCU Dual Analog Comparator 
ZS Applications for 1/0 Port Expansions 
ZS6E21 ZB Low Cost Thermal Printer 
Zilog Family On-Chip Oscillator Design 
Using the Zilog Z86C06 SPI Bus 
Interfacing LCDs to the ZS 
X-10 Compatible Infrared (IR) Remote Control 
Z86C17 In-Mouse Applications 
ZB6C40/E40 MCU Applications Evaluation Board 
Z86C08/C17 Controls A Scrolling LED Message Display 
Z86C95 Hard Disk Controller Flash EPROM Interface 
Timekeeping with Z8; DTMF Tone Generation; Serial Communication Using the CCP Software UART 

L-4 

Part No 

DC-S291-02 
DC-S296-00 
DC-S2S4-01 
DC-8294-02 
DC-S595-00 
DC-S298-02 
DC-5538-01 

Part No 

DC-2516-01 
DC-2539-01 
DC-2541-01 
DC-2496-01 
DC-2584-01 
DC-2592-01 
DC-2591-01 
DC-3001-01 
DC-2604-01 
DC-2605-01 
DC-2639-01 
DC-2645-01 

Unit Cost 

5.00 
N/C 
3.00 
3.00. 
3.00 
3.00 
N/C 

Unit Cost 

N/C 
N/C 
N/C 
N/C 
N/C 
N/C 
N/C 
N/C 
N/C 
N/C 
N/C 
N/C 



~2il t j LITERATURE GUIDE 
Z80®/Z8000® CLASSIC FAMILY OF PRODUCTS 

Databooks By Market Niche 

High-Speed Serial Communication Controllers 
Z16C30 CMOS Universal Serial Controller (USCj Preliminary Product Specification 
Z16C32 Integrated Universal Serial Controller (IUSCj Preliminary Product Specification 
Application Notes and Support Products 

Serial Communication Controllers 
Z8030/Z8530 Z-Bus"' SCC Serial Communication Controller Product Specification 
Z80C30/Z85C30 CMOS Z-Bus"' SCC Serial Communication Controller Product Specification 
Z80230 Z-Bus"' ESCC"'Enhanced Serial Communication Controller Preliminary Product Specification 
Z85230 ESCC™ Enhanced Serial Communication Controller Product Specification 
Z85233 EMSCC"' Enhanced Mono Serial Communication Controller Product Specification 
Z85C80 SCSCI"' Serial Communications and Small Computer Interface Product Specification 
Z16C35/Z85C35 CMOS ISCC"' Integrated Serial Communications Controller Product Specification 
Application Notes and Support Products 

Z80/Z180/Z280/Z380 Product Specifications, Technical Manuals and Users Guides 

Z80 Family Technical Manual 
Z80180 Z180 MPU Microprocessor Unit Technical Manual 
Z280 MPU Microprocessor Unit Technical Manual 
Z80182 Zilog Intelligent Peripheral (ZIPj 
Z380"' Preliminary Product Specification 
Z380"'User's Manual 
Z80 Family Programmer's Reference Guide 
ZNW2000 User's Manual for PC WAN Adaptor Board Development Kit 

ZBOOO Family of Products (Includes the following) 
ZBOOO Family Databook 

Zilog's 28000 Family Architecture 
Z8001/Z8002 ZBOOO CPU Product Specification 
28016 28000 2-DTC Product Specification 
Z8036 28000 Z-CIO Product Specification 
Z8536 CID Counter/Timer and Parallel 1/0 Unit Product Specification 
Z8038/Z8538 FIO FIFO lnpuVOutput Interface Unit Product Specification 
Z8060/Z8560 FIFO Butter Unit 
Z8581 Clock Generator and Controller Product Specification 

Z8000 CPU Central Processing Unit User's Manual 
Z8010 Memory Management Unit (MMU) User's Manual 
28036 Z-CIO/Z8536 CIO Counter/Timer and Parallel lnpuVOutput User's Manual 
Z8038 Z8000 Z-FIO FIFO lnpuVOutput Interface User's Manual 
ZBOOO Application Notes and Military Products 
Zilog's Superintegration"' Products Guide 
Literature Guide and Ordering Information 
Zilog's Sales Offices, Representatives and Distributors 

Part No Unit Cost 

DC-8314-00 3.00 

DC-8316-00 3.00 

Part No Unit Cost 

DC-8309-00 3.00 
DC-8276-04 3.00 
DC-8224-03 3.00 
DC-2616-03 N/C 
DC-6003-03 N/C 
DC-8297-02 3.00 
DC-0012-04 N/C 
DC-8315-00 N/C 

DC-8319-00 5.00 

L-5 

II 



~2il I a., LITERATURE GUIDE 
Z8~/Z8000® CLASSIC FAMILY OF PRODUCTS (Continued) 

ZSOOO User's Manuals Part No Unit Cost 

SCC Serial Communication Controller User's Manual DC-8293-02 3.00 
High-Speed SCC, Z16C30 USC/Z16C32 IUSC, User's Manual DC-8320-00 5.00 
Z16C35 ISCC Integrated Serial Communication Controller Technical Manual DC-8286-01 3.00 
Z16C35 ISCC Integrated Serial Communication Controller Addendum DC-8286-01 A N!C 

Z80/Z180/Z280 Application Notes Part No Unit Cost 

Z180/SCC"'Serial Communications Controller Interface at 10 MHz DC-2521-02 N/C 
ZBO Using the 84C11/C13/C15 in place of the 84011/013/015 DC-2499-02 N/C 
A Fast ZBO Embedded Controller OC-2578-01 N/C 

ZSOOO Application Notes Part No Unit Cost 

Z16C30 Using the USC in Military Applications OC-2536-01 N/C 
Oatacom IUSC/MUSC Time Slot Assigner OC-2497-02 N/C 
Datacom Evaluation Board Using The Zilog Family With The 80186 CPU OC-2560-03 N/C 
Boost Your System Performance Using the Zilog ESCC Controller OC-2555-02 N/C 
Z16C30 USC - Design a Serial Board for Multiple Protocols DC-2554-01 N/C 
Using a SCSI Port for Generalized 1/0 DC-2608-01 N/C 

L-6 



LITERATURE GUIDE 
MILITARY COMPONENTS FAMILY 

Military Specifications 

Z8681 ROMless Microcomputer Military Product Specification 
Z8001/8002 Military ZBOOO CPU Central Processing Unit Military Product Specification 
Z8581 Military CGC Clock Generator and Controller Military Product Specification 
Z8030 Military ZBOOO Z-SCC Serial Communications Controller Military Product Specification 
Z8530 Military SCC Serial Communications Controller Military Product Specification 
Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel 1/0 Military Electrical Specification 
Z8038/8538 Military FIO FIFO lnpuVOutput Interface Unit Military Product Specification 
Z8536 Military CIO Counter/Timer Controller and Parallel 1/0 Military Electrical Specification 
Z8400 Military Z80 CPU Central Processing Unit Military Electrical Specification 
Z8420 Military PIO Parallel lnpuVOutput Controller Military Product Specification 
Z8430 Military CTC Counter/Timer Circuit Military Electrical Specification 
Z8440/1/2/4 ZBO SIO Serial lnpuVOutput Controller Military Product Specification 
Z80C30/85C30 Military CMOS SCC Serial Communications Controller Military Product Specification 
Z84COO CMOS ZBO CPU Central Processing Unit Military Product Specification 
Z84C20 CMOS ZBO PIO Parallel lnpuVOutput Military Product Specification 
Z84C30 CMOS Z80 CTC Counter/Timer Circuit Military Product Specification 
Z84C40/1/2/4 CMOS ZBO SIO Serial lnpuVOutput Military Product Specification 
Z16C30 CMOS USC Universal Serial Controller Military Preliminary Product Specification 
Z80180 Z180 MPU Microprocessor Unit Military Product Spe~ification 
Z84C90 CMOS KIO Serial/Parallel/Counter Timer Preliminary Military Product Specification 
Z85230 ESCC Enhanced Serial Communication Controller Military Product Specification 

Part No Unit Cost 

DC-2392-02 N/C 
DC-2342-03 N/C 
DC-2346-01 N/C 
DC-2388-02 N/C 
DC-2397-02 N/C 
DC-2389-01 N/C 
DC-2463-02 N/C 
DC-2396-01 N/C 
DC-~351-02 N/C 
DC-2384-02 N/C 
DC-2385-01 N/C 
DC-2386-02 N/C 
DC-2478-02 N/C 
DC-2441-02 N/C 
DC-2384-02 N/C 
DC-2481-01 N/C 
DC-2482-01 N/C 
DC-2531-01 N/C 
DC-2538-01 N/C 
DC-2502-00 N/C 
DC-2595-00 N/C 

L-7 

II 



GENERAL LITERATURE 

Catalogs, Handbooks, Product Flyers and Users Guides 

Superintegration Master Selection Guide 1994-1995 
Superintegralion Products Guide 
Quality and Reliability Report 
ZIA'"3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet 
ZIA ZIAOOZCO Disk Drive Development Kit Datasheet 
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet 
Zilog Infrared (IR) Controllers - ZIRC'" Datasheet 
Zilog Intelligent Peripheral Controller - ZIP™Z80182 Datasheet 
Zilog Digital Signal Processing - Z89320 Datasheet 
Zilog Keyboard Controllers Datasheet 
Z380'" - Next Generation ZOO-/Z180'" Datasheet 
Fault Tolerant Z8~ Microcontroller Datasheet 
32K ROM za~ Microcontrollers Datasheet 
Zilog Datacommunications Brochure 
Z89300 OTC Controller Family Brochure 
Zilog Digital Signal Processing Brochure 
Zilog ASSPs - Partnering With You Product Brochure 
Zilog Wireless Products Datasheet 
Zilog Z8604 Cost Cruncher Datasheet 
Zilog Databast of IR Codes Datasheet 
Zilog PCMCIA Adaptor Chip Z86017 Datasheet 
Zilog Television/Video Controllers Datasheet 
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet 
Zilog Z87000 Z-Phone Datasheet 
Zilog 1991 Annual Report 
Zilog 1992 Annual Report 
Zilog 1993 Second Quarter Financial Report 
Zilog 1993 Third Quarter Financial Report 
Microcontroller Quick Reference Folder 

L-8 

LITERATURE GUIDE 

Part No Unit Cost 

DC-5634-00 N/C 
DC-5499-07 N/C 
DC-2475-12 N/C 
DC-5556-01 N/C 
DC-5593-01 N/C 
DC-5560-01 N/C 
DC-5558-01 N/C 
DC-5525-01 N/C 
DC-5547-01 N/C 
DC-5600-01 N/C 
DC-5580-02 N/C 
DC-5603-01 N/C 
DC-5601-01 N/C 
DC-5519-00 N/C 
DC-5608-01 N/C 
DC-5536-02 N/C 
DC-5553-01 N/C 
DC-5630-00 N/C 
DC-5623-00 N/C 
DC-5631-00 N/C 
DC-5585-01 N/C 
DC-5567-01 N/C 
DC-5561-02 N/C 
DC-5632-00 DIC 
DC-1991-AR N/C 
DC-1992-AR N/C 
DC-1993-Q2 N/C 
DC-1993-Q3 N/C 
DC-5508-01 N/C 



ORDERING 
INFORMATION 

Complete the attached literature order form. Be 
sure to enclose the proper payment or supply a 
purchase order. Please reference specific order 
requirements. 

NAME 

COMPANY 

ADDRESS 

CITY 

PART NUMBER 

.., + 
-1 
..., 

..., 

.., -
-1 
..., -
.., 
.., 

+ -.. 
.., 
-' 

-
Mail To: 

~2iUJ6 
210 E. HACIENDA AVE. MIS C1·0 
CAMPBELL, CA 95008·6600 

Phone: (408)370·8016 
Fax: (408)370·8056 

LITERATURE GUIDE 
MINIMUM ORDER 
REQUIREMENTS 

Orders under $300.00 must be prepaid by check, 
money order or credit card. Canadian and for­
eign orders must be accompanied by a cashier's 
check in U.S. dollars, drawn on a correspondent 
U.S. bank only. 
Orders over $300.00 may be submitted with a 
Purchase Order. 

PLEASE PRINT OR TYPE 

lsrATE Jz1P 

DOCUMENT TITLE 

Credit Card or Purchase Order# 

SHIJ!MENT 

Orders will be shipped after your check is cashed 
or credit is checked via the most economical 
method. Please allow four weeks for delivery. 

RETURNS ARE NOT ACCEPTED. 

PHONE ( ) -
Method of Payment (Check One) 

[J Check [J Money Order 

Credit Card [J VISA [J MIC [J P.O. (over$300.00) 

COUNTRY 

UNIT COST QTY. TOTAL 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

$ $ 

SUBTOTAL 

Expiration Date ADO APPLICABLE SALES TAX (CA ONLY) 

Signature ADD 10% SHIPPING AND HANDLING 

TOTAL 





ZILOG DOMESTIC SALES OFFICES 
AND TECHNICAL CENTERS 

CALIFORNIA 
Agoura ...................................................... 818-707-2160 
Campbell .................................................... 408-370-8120 
Irvine .......................................................... 714-453-9701 
San Diego .................................................. 619-658-0391 

COLORADO 
Boulder ...................................................... 303-494-2905 

FLORIDA 
Clearwater .................................................. 813-725-8400 

GEORGIA 
Duluth ......................................................... 404-931-4022 

ILLINOIS 
Schaumburg .............................................. 708-517-8080 

MINNESOTA 
Minneapolis ................................................ 612-944-0737 

NEW HAMPSHIRE 
Nashua ....................................................... 603-888-8590 

OHIO 
Independence ........................................... 216-44 7-1480 

OREGON 
Portland ...................................................... 503-274-6250 

PENNSYLVANIA 
Horsham .................................................... 215-784-0805 

TEXAS 
Austin ......................................................... 512-343-8976 
Dallas ......................................................... 214-987-9987 

© 1994 by Zilog, Inc. All rights reserved. No part of this document 
may be copied or reproduced in any form or by any means 
without the prior written consent of Zilog, Inc. The information in 
this document is subject to change without notice. Devices sold 
by Zilog, Inc. are covered by warranty and patent indemnification 
provisions appearing in Zilog, Inc. Terms and Conditions of Sale 
only. Zilog, Inc. makes no warranty, express, statutory, implied or 
by description, regarding the information set forth herein or 
regarding the freedom of the described devices from intellectual 
property infringement. Zilog, Inc. makes no warranty of mer­
chantability or fitness for any purpose. Zilog, Inc. shall not be 
responsible for any errors that may appear in this document. 
Zilog, Inc. makes no commitment to update or keep current the 
information contained in this document. 

DC 8309-00 

INTERNATIONAL SALES OFFICES 

CANADA 
Toronto ....................................................... 905-850-2377 

CHINA 
Shenzhen ............................................... 86-755-2236089 

GERMANY 
Munich ....................................................... 49-8967-2045 
Sommerda ............................................... 49-3634-23906 

JAPAN 
Tokyo ...................................................... 81-3-3587-0528 

HONG KONG 
Kowloon ...................................................... 852-7238979 

KOREA 
Seoul ......................................................... 82-2-577-3272 

SINGAPORE 
Singapore ...................................................... 65-2357155 

TAIWAN 
Taipei ...................................................... 886-2-741-3125 

UNITED KINGDOM 
Maidenhead .............................................. 44-628-392-00 

Zilog's products are not authorized for use as critical compo­
nents in life support devices or systems unless a specific written 
agreement pertaining to such intended use is executed between 
the customer and Zilog prior to use. Life support devices or 
systems are those which are intended for surgical implantation 
into the body, or which sustains life whose failure to perform, 
when properly used in accordance with instructions for use 
provided in the labeling, can be reasonably expected to result in 
significant injury to the user. 

Zilog, Inc. 210 East Hacienda Ave. 
Campbell, CA 95008-6600 
Telephone (408) 370-8000 
Tele~ 910-338-7621 
FAX 408 370-8056 





Zilog , Inc. 
210 East Hacienda Ave. 
Campbell , CA 95008-6600 
408-370-8000 


