

N 2L

Z80° Family
User's Manual

Includes User Manual
Specifications
for the following parts:

H Z80° CPU
W Z80° CTC
H Z80° DMA
H Z80° PIO
W Z80° SI0

DC 8309-00

N 2iLa5

280°CPU
Central Processing Unit

280° CTC
Counter/Timer Circuit

280° DMA
Direct Memory Access

280° P10
Parallel Input/Output

280° SI0
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

N 2iLa5
INTRODUCTION

The Zilog Z80® family of components can be configured with any type of standard semiconductor memory to generate
computer systems with an extremely wide range of capabilities. For example, as few as two LS| circuits and three standard
TTL MSI packages can be combined to form a simple controller. With additional memory and I/O devices a computer
can be constructed with capabilities that only a minicomputer could previously deliver. This wide range of computational
power allows standard modules to be constructed by a user that can satisfy the requirements of an extremely wide range
of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of these few LSI components. For
example, MOS LS| microcomputers have already replaced TTL logic in such application as terminal controllers,
peripheral device controllers, traffic signal controllers, point of sale terminais, intelligent terminals, and test systems. In
fact, the MOS LSI microcomputer is finding its way into aimost every product that now uses electronics and it is even
replacing many mechanical systems such as weight scales and automobile controls.

The MOS LSI microcomputer market is already will established and new products using them are being developed at
an extraordinary rate. The Zilog Z80 component set has been designed to fit into this market by the following factors:

W The Z80is fully software compatible with the popular 8080A CPU offered from several sources. Existing designs can
be easily converted to include the Z80 as a superior alternative.

W The Z80 component set is superior in both software and hardware capabilities to any other microcomputer system
onthe market. These capabilities provide the user with significantly lower hardware and software development costs
while also offering additional system features.

B A complete line of software support with strong emphasis on high-level languages and a disk-based development
system with advanced real-time debug capabilities is offered to enable the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z80 components. Any such system consists of three
parts:

B CPU (Central Processing Unit)
B Memory
B Interface Circuits to Peripheral Devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform the desired
operations. The memory is used to contain instructions and, in most cases, data that is to be processed. For example,
atypicalinstruction sequence may be toread data from a specific peripheral device, store itin alocationinmemory, check
the parity, and write it to another peripheral device. Note that the Zilog component set includes the CPU and various
general-purpose I/O device controllers, while a wide range of memory devices may be used from any source. Thus, all
requited components can be connected together in a very simple manner with virtually no other external logic. The user’s
effort then becomes primarily one of software development. That is, the user can concentrate on describing the problem
and translating it into a series of instructions that can be loaded into the microcomputer memory. Zilog is dedicated to
making this step of software generation as simple as possible. A good example of this is the assembly language in which
a simple mnemonic is used to represent every instruction that the CPU can perform. This language is self-documenting
in such a way that from the mnemonic the user can understand exactly what the instruction is doing without constantly
checking back to a complex cross listing.

@ Zilm CPU USER'S MANUAL

TABLE OF CONTENTS

C hapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Architecture
1.0 INtrodUCHION ..o
1.1 CPU Registers
1.1.1 Special-Purpose Registers
1.1.2 Accumulator and Flag Registers ...
1.1.3 General-Purpose Registers............c.c.cccoevnee.
1.2 Arithmetic Logic Unit (ALU)......cccoovvvviicniiierennnn,
1.3 Instruction Register and CPU CONrolcooieiiiiieiiiicin it et

Pin Description
2.0 INEFOAUCTIONoviiiiie e e ettt
2.1 PN FUNCHONS ... e et e s et e e e

Timing
1O I o[oo 0o { e o OO P RSO
3.1 Instruction Fetch
3.2 Memory Read or Write

3.3 INPUL OF OQUIPUL CYCIES ..ottt ettt
3.4 Bus Request/Acknowledge CYCIEccovviiiiiiiiiii et e
3.5 Interrupt Request/Acknowledge Cycle ...

3.6 Non-Maskable Interrupt Response

.7 HALT EXIE 1ottt ettt ettt ettt e e re et be e e nreeaeeas
3.8 Power-Down Acknow!edge CYCIEoiveiiiiii e
3.9 Power-Down Release CYCIEcccovuieieiieiriiiit st en e

Instruction Set
4.0 INEFOAUCTION ..ottt r et et ettt e eneas
4.1 Addressing Modes.........cccoveniiiiicnnns

4.1.1 Addressing Mode Combinations ...

4.2 INStrUCHON OPCOTES ...eveiiiviiiiiieie ettt ettt sae e e et a e eeaa
4.2.1 Load and EXChangecccocveiiiiiiiiiiiiiici s
4.2.2 Block Transfer and Search
4.2.3 Arithmetic and Logical

4.2.4 Rotate and Shift........c.oooiiiiiiiiiii e e
4.2.5 Bit ManipUulationcccviiiiiiiii e
4.2.6 Jump, Call, and Return
4.2.7 Input/Outputcoovvuennennes
4.2.8 CPU CONIOl GIOUD ...eoviiiiieieeieccieie sttt aie st eeae e s anne e

Q2305

280® CPU
USER’S MANUAL

Chapter 5.

Chapter 6.

Chapter 7.

Chapter 8.

Z80 Instruction Description

5.0 Introduction: Z80 Assembly Language

5.1 Z80 Status Indicators (FIags)ccccovrvinincninnn.
5.1.1 Carry Flag (C) ...covvvvuvvns
5.1.2 Add/Subtract Flag (N).............
5.1.3 Parity/Overflow Flag (P/V)
5.1.4 Half Carry Flag (H)
5.1.5 ZeroFlag (Z) ...cc.oovvveveicinnecne
5.1.6 Sign Flag (S) ..ccooevvvcevircrininn

5.2 Z80 INstruction DESCHPLIONvcitiiriie it e s
8-Bit LOAA GIOUD .evviiieiieiiiiieicerieiienuee it cte ittt etstascestsearessesareenee s e n e stesnessnntenneane
16-Bit Load Groupcccoeveeieiiiiiiniene e
Exchange, Block Transfer, and Search Group
8-Bit ArthMELIC GIOUD ...veieeiieit ettt
General-Purpose Arithmetic and CPU Control Groupscccoovviveneceiieie i A5-93
16-Bit Arithmetic Group
Rotate and Shift Group
Bit Set, Reset, and TeSt GrOUD ...cocvvieviee ettt A5-145
JUMIPD GFOUD .ttt et ettt ettt e e
Call and Return Group
INPUL @NA QULPUL GIOUD ..ottt sttt

Interrupt Response

6.0 Introduction........... OSSP UPOURPPTPR

6.1 Interrupt Enable/Disable

8.2 CPU RESPONSE ..ottt sttt s ettt et et b et esb et et sae e eseeeeeaberesaeesaseaneses
B.2.1 NON-MaSKADIEeeiiiiiiiiiiit et s
6.2.2 Mode 0
6.2.3 Mode 1
6.2.4 Mode 2

Hardware Implementation Examples

7.0 HINEFOAUCTION 1.ttt ettt bbb sate et aanens
7.1 Adding RAM ..ot

7.2 Memory Speed Control
7.3 Interfacing Dynamic Memories

Software Implementation Examples

8.0 Introduction: Software Featuresccccccoeee.
8.1 Examples of Use of Special Z80 Instructions
8.2 Examples of Programming TASKSc.cocceeiieiiiiiie et se e

Index: Z80 CPU Instruction Set

Alphabetical Assembly Neumonic Listingcccviireeimniinicii e Al-1

A-ii

. 280® CPU
N 205 USER'S MANUAL
List of Figures

Figure 1-1. Z80 CPU BIOCK DIa@ramccoiiiiiiii ettt Al-1

Figure 1-2. Z80 CPU Register Configurationc.cceiireiriiniieiinicie et sve e A1-3

Figure 2-1. Z80 Pin Configuration ..ot
Figure 3-1. Basic CPU Timing Example

Figure 3-2. Instruction Opcode Fetch............ccccccvvinnnne

Figure 3-3. Memory Read or Write CYCIE.........c.cviiiiii it
Figure 3-4. INput OF OULPUE CYCIESveviiieiiiiiiiieiice ettt
Figure 3-5. Bus Request/Acknowledge Cycle

Figure 3-6. Interrupt Request/Acknowledge Cycle............

Figure 3-7. Non-Maskable Interrupt Request Operation ...

Figure 3-8. HALT EXit ..o,

Figure 3-9. Power-Down Acknowledge

Figure 3-10. Power-Down Release Cycle No. 1.....

Figure 3-11. Power-Down Release Cycle No. 2.....

Figure 3-12. Power-Down Release Cycle No. 3.....

Figure 4-1. 8-Bit Load Group ‘LD".........c.ccovviiiiiinnnnn

Figure 4-2. 16-Bit Load Group, LD, PUSH, and POP

Figure 4-3. Exchanges EXand EXX........ccccccooviviine

Figure 4-4. Block Transfer Group

Figure 4-5. Block Search Group

Figure 4-6. 8-bit Arithmetic and Logic

Figure 4-7. General-Purpose AF Operation

Figure 4-8. 16-Bit Arithmeticc..ccovvniiiiiiii,

Figure 4-9. Rotates and Shifts............

Figure 4-10. Bit Manipulation Group

Figure 4-11. Jump, Call, and Return Group....

Figure 4-12. Restart Groupccccoviiiiiiiiiiiic e

Figure 4-13. INPUL GrOUD ...o.vivviiiiiiiiee et

Figure 4-14. Output Groupcccocerveenrinnns

Figure 4-15. Miscellaneous CPU Control

Figure 7-1. Minimum Z80 COMPULET SYSIEMoviiiiiiiiiiieiiic ittt
Figure 7-2. ROM and RAM Implementationccccciiiiiiiiiiiiciie e
Figure 7-3. Adding One Wait State to an M1 Cycle............

Figure 7-4. Adding One Wait Stte to Any Memory Cycle...

Figure 7-5. Interfacing Dynamic RAMScciiiiiiiiii s
Figure 8-1. Shifting of BCD DigitS/BYIESceiviiiiiiieiiiiiiritciciieieinte ettt teses et
List of Tables

Table 4-1.Hex to Binary Conversion TabIecccooiiiiiiiiiieics et A4-4
Table 6-1.Interrupt Enable/Disable Flip-FIOPSc..ccoiviiiiiiiiiic e AB-2

A-iii

N 2.5

CPU USER'S MANUAL

CHAPTER 1
ARCHITECTURE

1.0 INTRODUCTION

Ablock diagram of the internal architecture of the Z80 CPU
is shown in Figure 1-1. The diagram shows all of the major
elements in the CPU and it should be referred to through-

out the following descriptions.

pem—

13
CPU and
System
Control
Signals

Instruction
Decode
and
CPU
Control

<: Inst.
Reg

CPU
Control

1]

+5V GND CLK

8-Bit
Data Bus

Data Bus
Confrol

Internal Data

Bus

CPU
Registers

Address
Control

Y

16-Bit
Address Bus

Figure 1-1. Z80 CPU Block Diagram

ALU

N 2ILa5

—

280® CPU
USER'S MANUAL

1.1 CPU REGISTERS

The Z80 CPU contains 208 bits of R/W memory that are
accessible to the programmer. Figure 1-2 illustrates how
this memory is configured into eighteen 8-bit registers and
four 16-bit registers. All Z80 registers are implemented
using static RAM. The registers include two sets of six
general-purpose registers that may be used individually
as 8-bit registers or in pairs as 16-bit registers. There are
also two sets of accumulator and flag registers and six
special-purpose registers.

1.1.1 Special-Purpose Registers

Program Counter (PC). The program counter holds the
16-bit address of the current instruction being fetched
frommemory. The PC is automatically incremented after its
contents have been transferred to the address lines. When
a program jump occurs the new value is automatically
placed in the PC, overriding the incrementer.

Stack Pointer (SP). The stack pointer holds the 16-bit
address of the current top of a stack located anywhere in
external system RAM memory. The external stack memory
is organized as a last-in first-out (LIFO) file. Data can be
pushed onto the stack from specific CPU registers or
popped off of the stack into specific CPU registers through
the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto
it. The stack allows simple implementation of multiple level
interrupts, unlimited subroutine nesting and simpilification
of many types of data manipulation.

Two Index Registers (IX and IY). The two independent
index registers hold a 16-bit base address that is used in
indexed addressing modes. In this mode, an index regis-
ter is used as a base to point to a region in memory from
which data is to be stored or retrieved. An additional byte
is included in indexed instructions to specify a displace-
ment from this base. This displacement is specified as a
two's complement signed integer. This mode of address-
ing greatly simplifies many types of programs, especially
where tables of data are used.

Interrupt Page Address Register (I). The Z80 CPU can
be operated in a mode where an indirect call to any
memory location can be achieved in response to an
interrupt. The | register is used for this purpose to store the
high order eight bits of the indirect address while the
interrupting device provides the lower eight bits of the
address. This feature allows interrupt routines to be dy-
namically located anywhere in memory with absolute mini-
mal access time to the routine.

Memory Refresh Register (R). The Z80 CPU contains a
memory refresh counter to enable dynamic memories to
be used withthe same ease as static memories. Seven bits
of this 8-bit register are automatically incremented after
each instruction fetch. The eighth bit will remain as pro-
grammed as the result of an LD R, A instruction. The data
inthe refresh counter is sent out on the lower portion of the
address bus along with a refresh control signal while the
CPU is decoding and executing the fetched instruction.
This mode of refresh is totally transparent to the program-
mer and does not slow down the CPU operation. The
programmer can load the R register for testing purposes,
but this register is normally not used by the programmer.
During refresh, the contents of the | register are placed on
the upper eight bits of the address bus.

1.1.2 Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators
and associated 8-bit flag registers. The accumulator holds
the results of 8-bit arithmetic or logical operations while the
flag register indicates specific conditions for 8-bit or 16-bit
operations, such as indicating whether or not the result of
an operation is equal to zero. The programmer selects the
accumulator and flag pair with a single exchange instruc-
tion so that it is possible to work with either pair.

1.1.3 General Purpose Registers

There are two matched sets of general-purpose registers,
each set containing six 8-bit registers that may be used
individually as 8-bit registers or as 16-bit register pairs.
One setis called BC, DE, and HL while the complementary
set is called BC’, DE’, and HL'. At any one time, the
programmer can select either set of registers to work with
through a single exchange command for the entire set. In
systems where fast interrupt response is required, one set
of general-purpose registers and an accumulator/flag
register may be reserved for handling this very fast routine.
Only a simple exchange command need be executed to
go between the routines. This greatly reduces interrupt
service time by eliminating the requirement for saving and
retrieving register contents in the external stack during
interrupt or subroutine processing. These general-
purpose registers are used for a wide range of applica-
tions by the programmer. They also simplify programing,
especially in ROM based systems where little external
read/write memory is available.

A1-2

. 280 CPU
N2ILO5 User's MANUAL

Main /Reg Set Altematg\Reg Set
/ N\ N\
Accumulator Flags Accumulator - Flags
A F A F
B ¢ B' B'
General-
D E D' E Purpose
Registers
H L H L
\
Interrupt Mem
Vector Refre(:z
| R
Index Register IX
3 gpecial
Index Register 1Y R‘;{,’?:ff,s
Stack Pointer SP
Program Counter PC)

Figure 1-2. Z80 CPU Register Configuration

1.2 ARITHMETIC LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are
executed in the ALU. Internally the ALU communicates
with the registers and the external data bus on the internal
data bus. The type of functions performed by the ALU

include:

H Add W Left or Right Shifts or Rotates (Arithmetic and Logical)
B Subtract B increment

W Logical AND W Decrement

B Logical OR MW Set Bit

W Logical Exclusive OR M Reset Bit

B Compare B Test bit

1.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, itis placedin of the control signals necessary to read or write data from
the instruction register and decoded. The control sections ortotheregisters, controlthe ALU, and provide all required
performs this function and then generates and supplies all external control signals.

A1-3

N 2iLa5

CPU USER'S MANUAL

- CHAPTER 2

PIN DESCRIPTION

2.0 INTRODUCTION

The Z80 CPU I/O pins are shown in Figure 2-1 and the
function of each is described below.

System
Control

CPU
Control

CPU
Control

M

IMREQ
NORQ
/RD
MR

/RFSH
AN

//HALT

WAIT

ﬂ /INT
INMI

\/RESET
/BUSRQ
/BUSAK

/CLK

45V
GND

280 CPU

Figure 2.1 Z80 Pin Configuration

At
A2
A3
A4
A5
A6
A7
A8
A9
Al0
At
A2
A3
Al4

A5/

DO
D1
D2
D3
D4
D5
D6
D7

Address
’ BUS

Data
BUS

A2-1

Q2005

280® CPU
USER'S MANUAL

2.1 PIN FUNCTIONS

A15-A0 Address Bus (output, active High, tri-state), A15-
AQ form a 16-bit address bus. The Address Bus provides
the address for memory data bus exchanges (up to 64
Kbytes) and for I/O device exchanges.

/BUSACK Bus Acknowledge (output, active Low). Bus
Acknowledge indicates to the requesting device that the
CPU address bus, data bus, and control signals /MREQ,
/IORQ, /RD, and /WR have entered their high-impedance
states. The external circuitry can now control these lines.

/BUSREQ Bus Request (input, active Low). Bus Request
has a higher priority than /NMI and is always recognized at
the end of the current machine cycle, /BUSREQ forces the
CPU address bus, data bus, and control signals /MREQ,
/IORQ, RD, and WRto go to ahigh-impedance state sothat
other devices can control these lines. /BUSREQis normaily
wired-OR and requires an external puli-up for these appli-
cations. Extended /BUSREQ periods due to extensive
DMA operations can prevent the CPU from properly re-
freshing dynamic RAMs.

D7-D0 Data Bus (input/output, active High, tri-state). D7-
DO constitute an 8-bit bidirectional data bus, used for data
exchanges with memory and I/O.

HALT HALT State (output, active Low). /HALT indicates
that the CPU has executed a HALT instruction and is
awaiting either a non-maskable or a maskable interrupt
(with the mask enabled) before operation can resume.
During HALT, the CPU executes NOPs to maintain memory
refresh.

/INT Interrupt Request (input, active Low). Interrupt Re-
quest is generated by 1/O devices. The CPU honors a
request at the end of the current instruction if the internal
software-controlled interrupt enable flip-flop (IFF) is en-
abled. /INT is normally wired-OR and requires an external
pull-up for these applications.

NORQ /nput/Output Request(output, active Low, tri-state).
/IORQ indicates that the lower half of the address bus
holds a valid 1/O address for an I/O read or write operation.
/IORQ is also generated concurrently with /M1 during an
interrupt acknowledge cycle to indicate that an interrupt
response vector can be placed on the data bus.

/M1 Machine Cycle One (output, active Low). /M1, to-
gether with /MREQ, indicates that the current machine
cycleis the opcode fetch cycle of an instruction execution.
/M1, together with /IORQ, indicates an interrupt acknowi-
edge cycle.

/MREQ Memory Request (output, active Low, tri-state).
/MREQ indicates that the address bus hoids a valid ad-
dress for a memory read of memory write operation.

I/NMI Non-Maskable Interrupt (input, negative edge-trig-
gered). /NMI has a higher priority than /INT. /NMI is always
recognized at the end of the current instruction, indepen-
dent of the status of the interrupt enable flip-flop, and
automatically forces the CPU to restart at location 0066H.

/RD Read (output, active Low, tri-state). /RD indicates that
the CPU wants to read data frommemory or an I/O device.
The addressed /O device or memory should use this
signal to gate data onto the CPU data bus.

/RESET Reset (input, active Low). /RESET initializes the
CPU as foilows: it resets the interrupt enable flip-flop,
clears the PC and registers | and R, and sets the interrupt
status to Mode 0. During reset time, the address and data
bus go to a high-impedance state, and all control output
signals go to the inactive state. Note that /RESET must be
active for a minimum of three full clock cycles before the
reset operation is complete.

IRFSH Refresh (output, active Low). /RFSH, together with
/MREQ, indicates that the lower seven bits of the system’s
address bus can be used as a refresh address to the
system’s dynamic memories.

IWAIT WAIT (input, active Low). /WAIT indicates to the
CPU that the addressed memory or |/O devices are not
ready for a data transfer. The CPU continues to enter a
/WAIT state as long as this signal is active. Extended /WAIT
periods can prevent the CPU from properly refreshing
dynamic memory.

/WR Write (output, active Low, tri-state). WRindicates that
the CPU data bus holds valid data to be stored at the
addressed memory or 1/O location.

ICLK Clock (input). Single-phase MOS-level clock.

AN

0N 2iLa5

CPU USER'S MANUAL

CHAPTER 3
TIMING

3.0 INTRODUCTION

The Z80 CPU executes instructions by stepping through a
very precise set of a few basic operations. These include:

B Memory Read or Write
B |/O Device Read or Write
W interrupt Acknowledge,

All instructions are merely a series of these basic opera-
tions. Each of these basic operations can take from three
to six clock periods to complete or they can be lengthened
to synchronize the CPU to the speed of external devices.
The basic clock periods are referred to as T (time) cycles
and the basic operations are referred to as M (machine)
cycles. Figure 3-1 illustrates how a typical instruction is
merely a series of specific Mand T cycles. Notice that this
instruction consists of three machine cycles (M1, M2, and

M3) The first machine cycle of any instruction is a fetch
cycle which is four, five, or six T cycles long (unless
lengthened by the WAIT signal which will be fully de-
scribed in the next section). The fetch cycle (M1) is used
to fetch the opcode of the next instruction to be executed.
Subsequent machine cycles move data between the CPU
and memory or I/O devices, and they may have anywhere
from three to five T cycles (again they may be lengthened
by wait states to synchronize the external devices to the
CPU). The following paragraphs describe the timing which
occurs within any of the basic machine cycles.

During T2 and every subsequent Tw, the CPU samplesthe
WAIT line with the failing edge of Clock. If the WAIT line is
active at this time, another WAIT state will be entered
during the following cycle. Using this technigue the read
can be lengthened to match the access time of any type of
memory device.

T T2 T3 T T2 T3
Machine Cycle >l >l _
M1 M2 M3
(Opcode Fetch) (Memory Read) (Memory Write)
‘ Instruction Cycle >

Figure 3-1. Basic CPU Timing Example

A3-1

N 2105

280® CPU
USER'S MANUAL

3.1 INSTRUCTION FETCH

Figure 3-2 shows the timing during an M1 (opcode fetch)
cycle. The PC is placed on the address bus at the begin-
ning of the M1 cycle. One half clock cycle later the IMREQ
signal goes active. At this time the address to the memory
has had time to stabilize so that the failing edge of IMREQ
can be used directly as a chip enable clock to dynamic
memories. The /RD line also goes active toindicate thatthe
memory read data should be enabled onto the CPU data
bus. The CPU samples the data from the memory on the
data bus with the rising edge of the clock of state T3 and
this same edge is used by the CPU to turn off the /RD and
/MREQ signals. Thus, the data has already been sampled
by the CPU before the /RD signal becomes inactive. Clock
state T3and T4 of a fetch cycle are used torefresh dynamic
memories. (The CPU usesthistime to decode and execute

the fetched instruction so that no other operation could be
performed at this time.)

During T3 and T4, the lower seven bits of the address bus
contain a memory refresh address and the /RFSH signal
becomes active to indicate that a refresh read of all
dynamic memories should be accomplished. Notice that
an /RD signal is not generated during refresh time to
prevent data from different memory segments from being
gated onto the data bus. The /MREQ signal during refresh
time should be used to perform a refresh read of all
memory elements. The refresh signal can not be used by
itself since the refresh address is only guaranteed to be
stable during /MREQ time.

- M1 Cycle >
T T2 T3 T4 T1.

ICLK _ \ ‘ L \ __
A15-A0 X__Fc { Refresh Address Y
mea ||\ 1 L
/RD T |\ [
L i I) S N B
M1 —L\ { L — 1
D7-D0 {[}—
IRFSH \ l—'——

Figure 3-2. Instruction Opcode Fetch

A3-2

AN 2iLaB

280® CPU
USER'S MANUAL

3.2 MEMORY READ OR WRITE

Figure 3-3 illustrates the timing of memory read or write
cycles other than an opcode fetch cycle. These cycles are
generally three clock periods long unless wait states are
requested by the memory through the /WAIT signal. The
/MREQ signal and the /RD signal are used the same as in
the fetch cycle. In the case of a memory write cycle, the
/MREQ also becomes active when the address bus is
stable so that it call be used directly as a chip enable for

dynamic memories. The /WR line is active when data on
the data bus is stable so that it can be used directly as a
R/W pulse to virtually any type of semiconductor memory.
Furthermore, the /WR signal goes inactive one-half T state
before the address and data bus contents are changed so
that the overlap requirements for virtually any type of
semiconductor memory type will be met.

|«¢———————— Memory Read Cycle >l Memory Write Cycle ———————»
T 7 2 m T2 2K

/CLK | | \ | | |
M5-AD Y MEMORY ADDR. Y MEMORY ADDR. Y
mrea T ||\ T 1 —r
/RD | |
R | I
D7-DO E { DATA OUT —
war _ 1T \CCCCCTIC AT LIS CTICC

Figure 3-3. Memory Read or Write Cycle

A3-3

Q205

280® CPU
USER'S MANUAL

3.3 INPUT OR OUTPUT CYCLES

Figure 3-4 illustrates an 1/O read or I/O write operation.
Notice that during 1/0 operations a single wait state is
automatically inserted. Thereason is that during I/O opera-
tions, the time from when the /IORQ signal goes active until
the CPU must sample the /WAIT line is very short, and
without this extra state, sufficient time does not exist for an
1/0 port to decode its address and activate the /WAIT line
ifawaitis required. Also, without this wait state, it is difficult

to design MOS [/O devices that can operate at full CPU
speed. During this wait state time, the /WAIT request signal
is sampled.

During a read /O operation, the /RD line is used to enable
the addressed port onto the data bus just as in the case of
a memory read. For I/O write operations, the /WR line is
used as a clock to the 1/O port.

T T2 ™ K T
1CLK _ 1 1 | |
A15-A0 1 Port Address 1
/IORQ \ |
/RD | I }geald
ycle
g [erm
D7-D0 —{v)
IWAIT -ﬂl_------——_—_l-n—------_I-_-_-
S U E—— o it Rt
MWR \ I }me
e
D7-00 - ouT — 4

*Automalicall inseriec WATT state,

Figure 3-4. input or Output Cycles

3.4 BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 3-5 illustrates the timing for a Bus Request/Ac-
knowledge cycle. The /BUSREQ signal is sampled by the
CPU with the rising edge of the last clock period of any
machine cycle. If the /BUSREQ signal is active, the CPU
will setits address, data, and tri-state control signals to the
high-impedance state with the rising edge of the next clock
pulse. At that time, any external device can control the
buses to transfer data between memory and I/O devices.
(This is generally known as Direct Memory Access [DMA]
using cycle stealing.) The maximum time for the CPU to

respond to a bus request is the length of a machine cycle
and the external controller can maintain control of the bus
for as many clock cycles as is desired. Note, however, that
if verylong DMA cycles are used, and dynamic memcriesies
are being used, the external controller must also perform
the refresh function. This situation only occurs if very large
blocks of data are transferred under DMA control. Also
note that during a bus request cycle, the CPU cannot be
interrupted by either an /NMI or an /INT signal.

A3-4

N 2105

280® CPU
USER'S MANUAL

-Any M Cycle:

Last T State

P
\

3

Bus Available Status ——————p»]

Tx Tx Tx T

[CLK \ 1

\ |

/BUSREQ

=

N

Samplek

I

Sample

/BUSACK

\ [

A15-AQ

m—— e — e — -

D7-DO

e ———— e ———— |

/MREQ, /RD,

1]

’_——.———_——_-J

/WR,/IORQ,
/RFSH

Floating

Figure 3-5. Bus Request/Acknowledge Cycle

3.5 INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 3-6 illustrates the timing associated withaninterrupt
cycle. The interrupt signal (/INT) is sampled by the CPU
with the rising edge of the last clock at the end of any
instruction. The signal will not be accepted if the internal
CPU software controlled interrupt enable flip-flop is not set
or if the /BUSREQ signal is active. When the signal is
accepted, a special M1 cycle is generated. During this
special M1 cycle, the /IORQ signal becomes active (in-
stead ofthe normal /IMREQ) to indicate that the interrupting

device can place an 8-bit vector on the data bus. Notice
that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt
scheme can be easily implemented. The two wait states
allow sufficient time for the ripple signals to stabilize and
identify which 1/O device must insert the response vector.
Refer to Chapter 6 for details on how the interrupt response
vector is utilized by the CPU.

LastT State T T2 T Tt 18
CLK -1 1 | | | -
s (i U St e i I S SR
M52 Y = o
M \ —
IMREQ | -
/I0RQ 1 —
D7-D0 E}
LA (SO S SO NS R S N
RD

Figure 3-6. Interrupt Request/Acknowledge Cycle

A3-5

3.6 NON-MASKABLE INTERRUPT RESPONSE

Figure 3-7 illustrates the request/acknowledge cycle for
the non-maskable interrupt. This signal is sampled at the
sametime as the interrupt line, butthis line has priority over
the normal interrupt and it can not be disabled under
software control. Its usual function s to provide immediate
response to important signals such as an impending
power failure. The CPU response to a non-maskable

interrupt is similar to a normal memory read operation. The
only difference being that the content of the data bus is
ignored while the processor automatically stores the PC in
the external stack and jumps to location O066H. The
service routine for the non-maskable interrupt must begin
at this location if this interrupt is used.

— LastMCycle >l " —
LastT State T T2] T4 i
oK | | | - | \ | \ L
T uiutn B I i sisatots et s atote Hepapad
At5-A0 Y PG Y Reresn L)
M |]
IMREQ 1 1\ I
/RD !]/
IRFSH | - 1

Figure 3-7. Non-Maskable Interrupt Request Operation

3.7 HALT EXIT

Whenever a software HALT instruction is executed, the
CPU begins executing NOPs until an interrupt is received
(either a non-maskable or a maskable interrupt while the
interrupt flip flop is enabled). The two interrupt lines are
sampled with the rising clock edge during each T4 state as
shown in Figure 3-8. If a non-maskable interrupt has been
received or a maskable interrupt has been received and
the interrupt enable flip-flop is set, then the HALT state will
be exited onthe nextrising clock edge. The following cycle
will then be an interrupt acknowledge cycle correspond-

ing to the type of interrupt that was received. If both are
received at this time, then the non-maskable one will be
acknowledged since it has highest priority. The purpose of
executing NOP instructions while in the HALT state is to
keep the memory refresh signals active. Each cycle inthe
HALT state is a normal M1 (fetch) cycle except that the
data received from the memory is ignored and a NOP
instruction is forced internally to the CPU. The HALT
acknowledge signal is active during this time to indicate
that the processor is in the HALT state.

M »le Mt »le M

T T T2 3 T T 2
O el | \ \ | \ L | -
HAT \ I
o I I U ::::::F::L_E:::::::::::::

HALT instruction is received
during this Memory Cycle.

Figure 3-8. HALT Exit

A3-A

N 2LaB

280® CPU
USER'S MANUAL

3.8 POWER-DOWN ACKNOWLEDGE CYCLE

When the clock input to the CMOS Z80 CPU is stopped at
either a High or Low level, the CMOS Z80 CPU stops its
operation and maintains all registers and control signals.
However, ICC2 (standby supply current) is guaranteed
only when the system clock is stopped at a Low level

T T2 T3 T4 Ti

during T4 of the machine cycle following the execution of
the HALT instruction. The timing diagram for the power-
down function, when implemented with the HALT instruc-
tion, is shown in Figure 3-9.

T2 T3 T4

N\

HALT

\

Irc
.

Figure 3-9. Power-Down Acknowledge

3.9 POWER-DOWN RELEASE CYCLE

The system clock must be supplied to the CMOS 280 CPU
to release the power-down state. When the system clock s
supplied to the CLK input, the CMOS Z80 CPU restarts
operations from the point at which the power-down state
was implemented. The timing diagrams for the release
from power-down mode are shown in Figures 3-10to 3-12.

When the HALT instruction is executed to enter the power-
down state, the CMOS Z80 CPU will also enter the HALT
state. An interrupt signal (either /NMI or /INT) or a /RESET
signal must be applied to the CPU after the system clock
is supplied in order to release the power-down state.

T4 T

e o

C

e
. A—

. -
-
- ___/ \

MALT

-]
N\

9 4

Figure 3-10. Power-Down Release Cycle No. 1

AR-7

3.9 POWER DOWN RELEASE CYCLE (Continued)

T1 T2 T3 T4
o A LU LT
Vg
s
/RESET \ /
=F
=<

{C.
C2y
Py’

M

~__ /

THALT

_ /

Figure 3-11. Power-Down Release Cycle No. 2

T1 T2 T3 T4 T1 T2 TWA TWA

e e inipinipiniginh
TN /

" 3_\——/—\
HALT /

Q
=]

Figure 3-12. Power-Down Release Cycle No. 3

An.Q

N 2iLaB

CPU USER'S MANUAL

CHAPTER 4
Z80 CPU INSTRUCTION SET

4.0 INTRODUCTION

The Z80 CPU can execute 158 different instruction types
including all 78 of the 8080A CPU. The instructions can be
broken down into the following major groups:

Load and Exchange
Block Transfer and Search
Arithmetic and Logical
Rotate and Shift

Bit Manipulation (Set, Reset, Test)
Jump, Call, and Return
input/Output

Basic CPU Control

4.1 INSTRUCTION TYPES

The load instructions move data internally between CPU
registers or between CPU registers and external memory.
All of these instructions must specify a source location
from which the data is to be moved and a destination
location. The source location is not altered by a load
instruction. Examples of load group instructions include
moves between any of the general-purpose registers such
as move the data to register B from register C. This group
alsoincludes load-immediate to any CPU register orto any
external memory location. Other types of load instructions
allow transfer between CPU registers and memory loca-
tions. The exchange instructions can trade the contents of
two registers.

Aunique set of block transfer instructionsis provided in the
Z80. With a single instruction, a block of memory of any
size can be moved to any other location in memory. This
set of block moves is extremely valuable when large
strings of data must be processed. The Z80 block search
instructions are also valuable for this type of processing.
With a single instruction, a block of external memory of any
desired length can be searched for any 8-bit character.
Once the character is found or the end of the block is
reached, the instruction automatically terminates. Both the
block transfer and the block search instructions can be
interrupted during their execution so as to not occupy the
CPU for long periods of time.

The arithmetic and logical instructions operate on data
stored in the accumulator and other general-purpose CPU
registers or external memory locations. The results of the
operations are placed in the accumulator and the appro-
priate flags are set according to the result of the operation.

An example of an arithmetic operation is adding the
accumulator to the contents of an external memory loca-
tion. The results of the addition are placed in the accumu-
lator. This group also includes 16-bit addition and subtrac-
tion between 16-bit CPU registers.

The rotate and shift group allows any register or any
memory location to be rotated right or left, with or without
carry either arithmetic or logical. Also, a digit in the accu-
mulator can be rotated right or left with two digits in any
memory location.

The bit manipulation instructions allow any bit in the accu-
mulator, any general-purpose register, or any external
memory location to be set, reset or tested with a single
instruction. For example, the most significant bit of register
H can be reset. This group is especially useful in control
applications and for controlling software flags in general-
purpose programming.

The jump, call, and return instructions are used to transfer
between various locations in the user's program. This
group uses several different techniques for obtaining the
new program counter address from specific external
memory locations. A unique type of call is the restart
instruction. This instruction actually contains the new ad-
dress as a part of the 8-bit opcode. This is possible since
only eight separate addresses located in page zero of the
external memory may be specified. Program jumps may
also be achieved by loading register HL, IX, or IY directly
into the PC, thus allowing the jump address to be a
complex function of the routine being executed.

Ad-1

N 2L05

280® CPU
USER'S MANUAL

4.1 INSTRUCTION TYPES (Continued)

The input/output group of instructions in the Z80 allow for
a wide range of transfers between external memory loca-
tions or the general-purpose CPU registers, and the exter-
nal I/0 devices. In each case, the port number is provided
on the lower eight bits of the address bus during any 1/O
transaction. One instruction allows this port number to be
specified by the second byte of the instruction while other
Z80 instructions allow it to be specified as the content of
the C register. One major advantage of using the C register
as a pointer to the 1/O device is that it allows different /O
ports to share common software driver routines. This is not
possible when the address is part of the opcode if the
routines are stored in ROM. Another feature of these input
instructions is that they set the flag register automatically
so that additional operations are not required to determine
the state of the input data (for example its parity). The Z80

CPU includes single instructions that can move blocks of
data (up to 256 bytes) automatically to or from any I/O port
directly to any memory location. In conjunction with the
dual set of general-purpose registers, these instructions
provide for fast /O block transfer rates. The value of this
I/O instruction set is demonstrated by the fact that the Z80
CPU can provide all required floppy disk formatting (i.e.,
the CPU provides the preamble, address, data, and en-
ables the CRC codes) on double density floppy disk drives
on an interrupt driven basis.

Finally, the basic CPU control instructions allow various
options and modes. This group includes instructions such
as setting or resetting the interrupt enable flip-flop or
setting the mode of interrupt response.

4.1 ADDRESSING MODES

Most of the Z80 instructions operate on data stored in
internal CPU registers, external memory, orinthe I/O ports.
Addressing refers to how the address of this data is
generated in each instruction. This section gives a brief
summary of the types of addressing used in the Z80 while
subsequent sections detail the type of addressing avail-
able for each instruction group.

Immediate. In this mode of addressing the byte following
the opcode in memory contains the actual operand.

Opcode } One or Two Bytes
Operand

D7 DO

Examples of this type of instruction would be to load the
accumulator with a constant, where the constant is the
byte immediately following the opcode.

Immediate Extended. Thismode is merely an extension of
immediate addressing in that the two bytes following the
opcodes are the operand.

Opcode One or Two Bytes
Operand Low Order
Operand | High Order

Examples of this type of instruction would be to load the HL
register pair (16-bit register) with 16 bits (two bytes) of
data.

Modified Page Zero Addressing. The Z80 has a special
single byte CALL instruction to any of eight locations in
page zero of memory. This instruction (which is referred to
as a restart) sets the PC to an effective address in page
zero. The value of this instruction is that it allows a single
byte to specify a complete 16-bit address where com-
monly called subroutines are located, thus saving memory
space.

One Bytes

B7 B0 Effective Address is
(BS B4 B3 000)2

Relative Addressing. Relative addressing uses one byte
of data following the opcode to specify a displacement
from the existing program to which a program jump can
occur. This displacement is a signed two's complement
number that is added to the address of the opcode, of the
following instruction.

Jump Relative (One Byte Opcode)

Opcode
8-Bit Two's Complement
Operand | | Displacement Added to
Address (A+2)

The value of relative addressing is that it allows jumps to
nearby locations while only requiring two bytes of memory
space. For most programs, relative jumps are by far the
most prevalent type of jump due to the proximity of related
program segments. Thus, these instructions can Signifi-
cantly reduce memory space requirements. The signed
displacement can range between +127 and -128 from

AAD

R 205

280® CPU
USER'S MANUAL

A+2. This allows for a total displacement of +129 to —-126
from the jump relative opcode address. Another major
advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides
for two bytes (16 bits) of address to be included in the
instruction. This data can be an address to which a
program can jump or it can be an address where an
operand is located.

One or

Opcode Two Bytes

Low Order Address to Low Order Operand
High Order Address to High Order Operand

Extended addressing is required for a program to jump
from any location in memory to any other location, or load
and store data in any memory location.

When extended addressing is used to specify the source
or destination address of an operand, the notation (nn) will
be used to indicate the content of memory at nn, where nn
is the 16-bit address specified in the instruction. This
means that the two bytes of address nn are used as a
pointer to a memory location. The use of the parentheses
always means that the value enclosed within them is used
as a pointer to a memory location. For example, (1200)
refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte
of data following the opcode contains a displacement
which is added to one of the two index registers (the
opcode specifies which index register is used) to form a
pointer to memory. The contents of the index register are
not altered by this operation.

Opcode
P Two Byte Opcode
Opcode
i Operand Added to Index Register
Displacement to Form a Pointer to Memory

An example of an indexed instruction would be to load the
contents of the memory location (Index Register + Dis-
placement) into the accumulator. The displacement is a
sighed two's complement number. Indexed addressing
greatly simplifies programs using tables of data since the
index register can point to the start of any table. Two index
registers are provided since very often operations require
two or more tables. Indexed addressing also allows for
relocatable code.

The two index registers in the Z80 are referred to as IX and
IY. To indicate indexed addressing the notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the
opcode. The parentheses indicate that this value is used
as a pointer to external memory.

Register Addressing. Many of the Z80 opcodes contain
bits of information that specify which CPU register is to be
used for an operation. An example of register addressing
would be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to opera-
tions where the opcode automatically implies one or more
CPU registers as containing the operands. An example is.
the set of arithmetic operations where the accumulator is
always implied to be the destination of the results.

Register indirect Addressing. This type of addressing
specifies a 16-bit CPUregister pair (such as HL) tobe used
as a pointer to any location in memory. This type of
instruction is very powerful and it is used in a wide range
of applications.

} One or Two Bytes

An example of this type of instruction would be to load the
accumulator with the data in the memory location pointed
to by the HL register contents. Indexed addressing is
actually a form of register indirect addressing except that
adisplacement is added with indexed addressing. Regis-
ter indirect addressing allows for very powerful but simple
to implement memory accesses. The block move and
search commands in the Z80 are extensions of this type of
addressing where automatic register incrementing, dec-
rementing, and comparing has been added. The notation
for indicating register indirect addressing is to put paren-
theses around the name of the register that is to be used
as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are tobe used as
a pointer to a memory location. Often register indirect ad-
dressing is used to specify 16-bit operands. In this case, the
register contents point to the lower order portion of the
operand while the register contents are automatically incre-
mented to obtain the upper portion of the operand.

A4-3

Q20005

280°® CPU
USER'S MANUAL

4.1 ADDRESSING MODES (Continued)

Bit Addressing. The Z80 contains a large number of bit
set, reset, and test instructions. These instructions allow
any memory location or CPU register to be specified for a
bit operation through one of three previous addressing
modes (register, register indirect, and indexed) while
three bits in the opcode specify which of the eight bits is to
be manipulated.

4.1.1 Addressing Mode Combinations

Many instructions include more than one operand (such as
arithmetic instructions or loads). In these cases, two types
of addressing may be employed. For example, load can
use immediate addressing to specify the source and
register indirect or indexed addressing to, specify the
destination.

4.2 INSTRUCTION OPCODES

This section describes each of the Z80 instructions and
provides tables listing the opcodes for every instruction. In
each of these tables, the opcodes in shaded areas are
identical to those offered in the 8080A CPU. Also shownis
the assembly language mnemonic that is used for each
instruction. All instruction opcodes are listed in hexadeci-
mal notation. Single byte opcodes require two hex charac-
ters while double byte opcodes require four hex charac-
ters. The conversion from hex to binary is repeated here for
convenience.

Table 4.1. Hex to Binary Conversion Table

Hex Binary Decimali
0 = 0000 = 0
1 = 0001 = 1
2 = 0010 = 2
3 = 0011 = 3
4 = 0100 = 4
5 = 0101 = 5
6 = 0110 = 6
7 = 0111 = 7
8 = 1000 = 8
9 = 1001 = 9
A = 1010 = 10
B = 1011 = 11
C = 1100 = 12
D = 1101 = 13
E = 1110 = 14
F = 1111 = 156

The Z80 instruction mnemonics consist of an opcode and
zero, one, or two operands. Instructions in which the
operand is implied have no operand. Instructions which
have only one logical operand of those in which one
operand is invariant (such as the Logical OR instruction)
are represented by a one operand mnemonic. Instructions
which may have two varying operands are represented by
two operand mnemonics.

4,21 Load and Exchange

Figure 4-1 defines the opcode for all of the 8-bit load
instructions implemented in the Z80 CPU. Also shown in
this table is the type of addressing used for each instruc-
tion. The source of the data is found on the top horizontal
row while the destination is specified by the left hand
column. For example, load register C from register B uses
the opcode 48H. In all of the figures, the opcode is
specified in hexadecimal notation and the 48H (0100 1000
binary) code is fetched by the CPU from the external
memory during M1 time, decoded and then the register
transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is
LD, followed by the destination followed by the source (LD
DEST, SOURCE). Note that several combinations of ad-
dressing modes are possible. For example, the source
may use register addressing and the destination may be
register indirect; such as load the memory location pointed
to by register HL with the contents of register D. The
opcode for this operation would be 72. The mnemonic for
this load instruction would be as follows:

LD (HL), D

The parentheses around the HL means that the contents of
HL are used as a pointer to a memory location. In all Z80
load instruction mnemonics, the destination is always
listed first, with the source following. The Z80 assembly
language has been defined for ease of programming.
Every instruction is self documenting and programs writ-
ten in Z80 language are easy to maintain.

Note in Figure 4-1, some load opcodes that are available
in the Z80 use two bytes. This is an efficient method of
memory utilization since 8-, 16-, 24-, or 32-bit instructions
are implemented in the Z80. Thus, often utilized instruc-
tions such as arithmetic or logical operations are only eight
bits which results in better memory utilization than is
achieved with fixed instruction sizes such as 16 bits.

A4-4

®
. 280® CPU
_‘s 2ilds UseR's MANUAL
SOURCE
IMPLIED REGISTER i REG INDIRECT
1 A B F L (HL)) | (OF)
ED | ED 1A
A 57 | SF
B
c
REGISTER | D
E
H
L
DESTINATION (HL)
REG
morect | B0
(DE)
Db f DD | DD} DD | DD § DD DD [
(IXed 57 70 21 :2 ;s ;4 Zs F)
n
INDEXED /| [F | F|F |F D &
(IY+d |l | n 2| | 75 3
d d d d d g
FD
EXT.ADDR | (nn) (715
| ED
4
IMPLIED
R ED
4

Figure 4-1. 8-Bit Load Group 'LD'

All load instructions using indexed addressing for either
the source or destination location actually use three bytes
of memory with the third byte being the displacement d.
For example, a load register E with the operand pointed to
by IX with an offset of +8 would be written:

LDE, (IX + 8)

The instruction sequence for this in memory would be:

AddressA | DD
Opcode
A+1 | 5E
A+2 | 08 Displacement
Operand

The two extended addressing instructions are also three
byte instructions. For example, the instruction to load the
accumulator with the operand in memory location 6F32H
would be written:

LD A, (6F 32H)

and its instruction sequence would be:

AddressA | 3A | Opcode
A+1 | 32 | Low Order Address
A+2 | 6F | High Order Address

Notice that the low order portion of the address is always
the first operand.

The load immediate instructions for the general-purpose
8-bit registers are two-byte instructions. The instruction
load register H with the value 36H would be written:

LD H, 36H

and its sequence would be:

AddressA | 26
A+1 | 36

Opcode
Operand

A4-5

AY= Ve 5

280° CPU
USER'S MANUAL

4.2 INSTRUCTION OPCODES (Continued)
Loading a memory location using indexed addressing for
the destination and immediate addressing for the source
requires four bytes. For-example:

LD (IX-15), 21H

would appear as:

AddressA | DD Opood
e
A+1 | 36
Displacement (-15 in Signed
A+2 | Two's Complement)
A+3 | 21 Operand to Load

Notice that with any indexed addressing the displacement
always follows directly after the opcode.

Figure 4-2 specifies the 16-bit load operations. This table
is very similar to the previous one. Notice that the extended
addressing capability covers all register pairs. Also notice
thatregisterindirect operations specifyingthe stack pointer
are the PUSH and POP instructions. The mnemonic for
these instructions is "PUSH" and “POP." These differ from
other 16-bit loads in that the stack pointer is automatically
decremented and incremented as each byte is pushed
onto or popped from the stack respectively. For example,
the instruction:

PUSH AF

is a single byte instruction with the opcode of F5H. When
this instruction is executed the following sequence is
generated:

Decrement SP
LD (SP), A
Decrement SP
LD (SP), F

Thus, the external stack now appears as follows:

(SP) F e Top of stack

P+ | A

The POP instruction is the exact reverse of a PUSH. Notice
that all PUSH and POP instructions utilize a 16-bit operand
and the high order byte is always pushed first and popped
last. That is a:

PUSH BC is PUSH B then C
PUSH DE is PUSH D then E
PUSH HL is PUSH H then L
POP HL is POP L then H

The instruction using extended immediate addressing for
the source obviously requires two bytes of data following
the opcode. For example:

LD DE, 0659H
will be:
AddressA | E6 | Opcode
A+1 | 07 | Operand

In allextended immediate or extended addressing modes,
the low order byte always appears first after the opcode.

Figure 4-3 lists the 16-bit exchange instructions imple-
mented in the Z80. Opcode 08H allows the programmer to
switch between the two pairs of accumulator flag registers
while D9H allows the programmer to switch between the
duplicate set of six general-purpose registers. These op-
codes are only one byte in length to absolutely minimize
the time necessary to perform the exchange so that the
duplicate banks can be used to effect very fast interrupt
response times.

A4-6

280° CPU
USER'S MANUAL

SOURCE
IMM | EXT. | REG.
REGISTER EXT. | ADDR. | INDIR.
AF DE HL SP IX 14 nn (m) | (SP)
AF
BC
R DE
E
1
s HL
T
s -
SP oD
7o .
n
X i
a R H
D
% ?‘) A B
n n E
ED DD FD
EXT (nn) 3 22 22
ADDR. H R 2
PUSH » | REG. SP) DD FD
INSTRUCTIONS IND. &P ES E5

NOTE: 11The Push & Pop Instruction adjust
the SP after every execution

Figure 4-2. 16-Bit Load Group LD, PUSH and POP

IMPLIED ADDRESSING
AF' BC, DE' & HL' HL X Iy
AF 08
D9
&
IMPLIED HL
DE
REG. (SP) FD
INDIR. EE

Figure 4-3. Exchanges EX and EXX

f

POP
INSTRUCTIONS

A4-7

4.2 INSTRUCTION OPCODES (Continued)

4.2.2 Block Transfer and Search

Figure 4-4 lists the extremely powerful block transfer
instructions. All of these instructions operate with three
registers. :

HL points to the source location.
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers,
any of these four instructions may be used. The LDI (Load
and Increment) instruction moves one byte from the loca-
tion pointed to by HL to the location pointed to by DE.
Register pairs HL and DE are then automatically incre-
mented and are ready to point to the following locations.
The byte counter (register pair BC) is also decremented at
this time. This instruction is valuable when blocks of data
must be moved but other types of processing are required
between each move. The LDIR (Load, Increment and
Repeat) instruction is an extension of the LDI instruction.
The same load and increment operation is repeated until
the byte counter reaches the count of zero. Thus, this
single instruction can move any block of data from one
location to any other.

Note that since 16-bit registers are used, the size of the
block can be up to 64 Kbytes (1K = 1024) long and it can
be moved from any location in memory to any other
location. Furthermore, the blocks can be overlapping
since there are absolutely no constraints on the data that
is used in the three register pairs.

The LDD and LDDR instructions are very similar to the LDI
and LDIR. The only difference is that register pairs HL and
DE are decremented after every move so that a block
transfer starts from the highest address of the designated
block rather than the lowest.

Figure 4-5 specifies the opcodes for the four block search
instructions. The first, CPl (Compare and Increment) com-
pares the data in the accumulator, with the contents of the
memory location pointed to by register HL. The result of the
compare is stored in one of the flag bits (see section 5.2 for
a detailed explanation of the flag operations) and the HL
register pair is then incremented and the byte counter
(register pair BC) is decremented.

The instruction CPIR is merely an extension of the CPI
instruction in which the compare is repeated until either a
match is found or the byte counter (register pair BC)
becomes zero. Thus, this single instruction can search the
entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Com-
pare, Decrement, and Repeat) are similar instructions,
their only difference being that they decrement HL after
every compare so that they search the memory in the
opposite direction. (The search is started at the highest
location in the memory bilock.)

It should be emphasized again that these block transfer
and compare instructions are extremely powerful in string
manipulation applications.

SOURCE
Reg.
Indir.
(HL)
(ED) 'LDI' - Load (DE) —— (HL)
A0 Inc HL and DE, Dec BC
(ED) 'LDIR,' - Load (DE)———— (HL)
A BO Inc HL and DE, Dec BC, Repeat until BC =0
DESTINATION | 150 | (DE)
(ED) 'LDD' - Load (DE)——— (HL)
A8 Inc HL and DE,Dec BC
(ED) ‘LDDR' - Load (DE) ———(HL)
B8 Dec HL and DE, Dec BC, Repeat until BC =0

Reg HL points to source
Reg DE points to destination
Reg BC is byte counter

Figure 4-4. Block Transfer Group

A4-8

A 2LaB

280° CPU

USER'S MANUAL
SEARCH
LOCATION Assuming that the accumulator contained the value F3H,
Reg. the result of 03H would be placed in the accumulator:
Indir.
) Accumulator before operation 1111 0011 =F3H
Operand 0000 0111 =07H
Result to Accumulator 0000 0011 =03H
o) | cpr
Al Inc HL, Dec BC

(ED) 'CPRI', Inc HL, Dec BC
B1 Repeat untill BC = 0 or find match

(ED) ‘CPD' Dec HL and BC
A9

(ED) ‘CPDR' Dec HL and BC
B9 Repeat untill BC = 0 or find match

HL points to iocation in memory
to be complared with accumulator
contents

BC is byte counter

Figure 4-5. Block Search Group

4.2.3 Arithmetic and Logical

Figure 4-6 lists all of the 8-bit arithmetic operations that can
be performed with the accumulator, also listed are the
increment (INC) and decrement (DEC) instructions. In all
of these instructions, except INC and DEC, the specified
8-bit operation is performed between the data in the
accumulator and the source data specified in the figure.
The result of the operation is placed in the accumulator
with the exception of compare (CP) that leaves the accu-
mulator unaffected. All of these operations affect the flag
register as a result of the specified operation. (Section 5.2
provides all of the details on how the flags are affected by
any instruction type.) INC and DEC instructions specify a
register or amemory location as both source and destina-
tion of the result. When the source operand is addressed
using the index registers, the displacement must follow
directly. With immediate addressing the actual operand
will follow directly. For example, the instruction:

AND 07H

would appear as:

AddressA | E6
A+1 07

Opcode

Operand

The Add instruction (ADD) performs a binary add between
the data inthe source location and the data in the accumu-
lator. The Subtract (SUB) does a binary subtraction. When
the Add with Carry is specified (ADC) or the Subtract with
Carry (SBC), then the Carry flag is also added or sub-
tracted respectively. The flags and decimal adjust instruc-
tion (DAA) in the Z80 (fully described in Chapter 5.2) allow
arithmetic operations for:

B Multiprecision packed BCD numbers.
W Multiprecision signed or unsigned binary numbers.
B Multiprecision two's complement signed numbers.

Other instructions in this group are logical and (AND),
logical or (OR), exclusive or (XOR), and compare (CP).

There are five general-purpose arithmetic instructions that
operate on the accumulator or carry flag. These five are
listed in Figure 4-7. The decimal adjust instruction can
adjust for subtraction as well as addition, thus making BCD
arithmetic operations simple. Note that to allow for this
operation the flag N is used. This flag is set if the last
arithmetic operation was a subtract. The negate accumu-
lator (NEG) instruction forms the two’s complement of the
number in the accumulator. Finally, notice that a reset
carry instruction is not included in the Z80 since this
operation can be easily achieved through other instruc-
tions such as a logical AND of the accumulator with itself.

Figure 4-8 lists all of the 16-bit arithmetic operations
between 16-bit registers. There are five groups of instruc-
tions including add with carry and subtract with carry. ADC
and SBC affect all of the flags. These two groups simplify
address calculation operations or other 16-bit arithmetic
operations.

A4-9

AN 2iLa5

®CPU
USER'S MANUAL

4.2 INSTRUCTION OPCODES (Continued)

ADD'

ADD w CARRY
'ACC

SUBTRACT
'SuB'

SUB w CARRY
'SBC'

‘ADD'
YOR'
'OR'
COMPARE
‘CP*
INCREMENT

'INC!

DECREMENT
'DEC'

SOURCE
REG.
REGISTER ADDRESSING INDIR. | INDEXED MMED.
B c D E H HY | (Xed) | (Ted) |
o |
86 86
d d
o | fo
8E 8E
d d
o [
9 9
d d
o |
9E 9E
d |«
o |
A8 Ag
d d
m [
AE AE
d d
oo [f
B6 B6
d d
m |
BE BE
d d
D | f
34 34
d d
o | FD
35 35
d | d

Figure 4-6. 8-Bit Arithmetic and Logic

Decimal Adjust Acc, 'DAA'

Complement Acc, "CPL'

Negate Acc, 'NEG'
(2's complement

Complement Carry Flag, 'CCF

Set Carry Flag, 'SCF'

Figure 4-7. General-Purpose AF Operation

A4-10

280 CPU

USER'S MANUAL
SOURCE
Bc | oe | w | s | x | w
HL
ADD' x | oo | oo oo | oo
00 | 19 n | 2
v | | e) £0
1
DESTINATION b S » fa
ADD WITH CARRY AND w | eo | eo | eo |
SETFLAGS 'ADC | osa lea | 7
SUB WITH CARRY AND HL
SETFLAGS 'SBC'

INCREMENT 'INC'

DECREMENT 'DEC'

DD FD
23 23
DD FD
2B 2B

Figure 4-8. 16-Bit Arithmetic

4.2.4 Rotate and Shift

A major capability of the Z80 is its ability to rotate or shift
data in the accumulator, any general-purpose register, or
any memory location. All of the rotate and shift opcodes are
shown inFigure 4-9. Also included in the Z80 are arithmetic
and logical shift operations. These operations are useful in

Source and Destination

Alslc ol e | x| |my|oxad]ars

07 00 01

'RRC' | CB | CB | CB | CB | CB | CB | CB | CB B
OF | 08 08 0A | 08 oC | 0D | OE
N 'RL' cBjlcsyice|lcBlcB|cB|cB|cCB

‘RCL' | CB | CB | CB | CB | CB | CB | CB | CB B
02 03 04 05 06

17 10 1 12 13 14 15 18

TYPE 'RR* csypce|lcB|lcB|CcB|CB|CBY CB E
1F 18 19 1A 1B iCc 1D 1E

ROTATE g1 | ca | e | cB | cB | ca|ca|ca]cs
SHIFT 27 |20 | 21 22 | 23 |24 | 25 | 26

'SRA' | ce | cB [cB | cB | cB|cB]cB|cB
2F | 28 28 2A | 28 | 2C | 2D | 2E

'SRL' 1 ce | cB [cB | cB | cB | cB | cB | cB B
3F | 38 39 3A | 3 | 3C | D | 3E

'SRL" ED
'SRL' 3

e e

'SRL' ED
67

an extremely wide range of applications including integer
multiplication and division. Two BCD digit rotate instruc-
tions (RRD and RLD) allow a digit in the accumulator to be
rotated with the two digits in a memory location pointed to
by register pair HL (See Figure 4-9). These instructions
allow for efficient BCD arithmetic.

lh d—bl E:ftlaglrcuhr
. ——’ Em‘cimhv
o=
Rotats
= e
[P —
Shift
[| —> Right Arithmetic
Shift
[] pL_— H FRigntLogicar

o

]@

Rotate Digit
By [Boby] (L) Forete O

e R Ot

—t |
L s —

8

Figure 4-9. Rotates and Shifts

-A4-11

N 2La5

Z80® CPU
USER'S MANUAL

4.2 INSTRUCTION OPCODES (Continued)

4.2.5 Bit Manipulation
The ability to set, reset and test individual bits in a register
or memory location is needed in almost every program.
These bits may be flags in a general-purpose software
routine, indications of external control conditions or data
packed into memory locations to make memory utilization
more efficient.

The Z80 has the ability to set, reset, or test any bit in the
accumulator, any general-purpose register orany memory
location with a single instruction. Figure 4-10 lists the 240
instructions that are available for this purpose. Register
addressing can specify the accumulator or any general-
purpose register on which the operation is to be per-
formed. Register indirect and indexed addressing are
available to operate on external memory locations. Bit test
operations set the Zero flag (Z) if the tested bit is a zero.
(Refer to section 5.2 for further explanation of flag
operation.)

4.2.6 Jump, Call, and Return

Figure 4-11 lists all of the jump, call, and return instructions
implemented in the Z80 CPU. A jump is a branch in a
program where the program counter is loaded with the
16-bit value as specified by one of the three available
addressing modes (Immediate Extended, Relative, or Reg-
ister Indirect). Notice that the jump group has several
different conditions that can be specified to be met before
the jump will be made. If these conditions are not met, the
program merely continues with the next sequential instruc-
tion. The conditions are all dependent on the data in the
flag register. (Refer to section 5.2 for details on the flag
register.) The immediate extended addressing is used to
jump to any location in the memory. This instruction re-
quires three bytes (two to specify the 16-bit address) with
the low order address byte first followed by the high order
address byte.

For example an unconditional jump to memory location
3E32H would be:

AddressA | C3 | Opcode
A+1 | 32 | Low OrderAddress
A+2 | 3E | High Order Address

The relative jump instruction uses only two bytes, the
second byte is a signed two's complement displacement
from the existing PC. This displacement can be in the
range of + 129 to —126 and is measured from the address
of the instruction opcode.

Three types of register indirect jumps are also included.
These instructions are implemented by loading the regis-
ter pair HL or one of the index registers IX or IY directly into
the PC. This capability allows for program jumps to be a
function of previous calculations.

A callis a special form of a jump where the address of the
byte following the call instruction is pushed onto the stack
before the jump is made. A return instruction is the reverse
of a call because the data on the top of the stack is popped
directly into the PC to form a jump address. The call and
return instructions allow for simple subroutine and inter-
rupt handling. Two special return instructions have been
included in the Z80 family of components. The return from
interrupt instruction (RETI) and the return from non-
maskable interrupt (RETN) are treated in the CPU as an
unconditional return identical to the opcode C9H. The
difference is that (RETI) can be used at the end of an
interrupt routine and all Z80 peripheral chips will recognize
the execution of this instruction for proper control of nested
priority interrupt handling. This instruction coupled with the
Z80 peripheral devices implementation simplifies the nor-
mal return from nested interrupt. Without this feature, the
following software sequence would be necessary toinform
the interrupting device that the interrupt routine is com-
pleted:

Disable Interrupt — Preventinterrupt before routine
is exited.
LDA n— Notify peripheral that service

OUTn, A routine is complete.

Enable Interrupt

Return
This seven byte sequence can be replaced with the one
byte El instruction and the two byte RETI instruction in the

Z80. This is important since interrupt service time often
must be minimized.

A4-12

N 2iL06

280° CPU

USER'S MANUAL
REG.
REGISTER ADDRESSING INDIR. | INDEXED
al A B c D E H Lo (Y | oxsd) | (ved)
)
0 c8 jcB jocB fcea|cB)ce| cB | cB g
47 | w0 | & 42 43 “ | & 46 %
1 cB | c8 | cB | cB | cB] cB | cB | cB c8
4F 48 49 4A 48 € | 4 4E %

57 50 81 52 53 54 85 56

TEST SF 58 59 SA 58 5C 5D SE

67 60 61 62 63 64 65 66

6F 68 69 6A 68 6C 6D 6E

ooy Y
ad mgk m3$ mBISJ 83

7F 7 7 7A 78 c ™ 7E

|~
S LR

8F 88 89 8A 88 8C 8D 8E

97 90 91 92 93 94 95 9%

REST 9F 98 99 9A 9B $C 90 9E

MES') 4 | c8 | cea | ce | cB B |ce | ce | ce
A7 A0 Al A2 A3 A4 A5 A8

AF A8 A9 AA AB AC AD AE

B7 B0 B1 B2 B3 B4 ;) BS

BF B8 B9 BA BB BC BD BE

RBe|8 8378 s:“gs}% mSIX mé'}‘ﬁc‘&’%

c7 co c1 c2 C3 C4 C5 ce

CF c8 (2] CA cB cc co CE

b7 Do D1 D2 D3 D4 D5

gﬁr DF D8 D9 DA DB oc | oD DE
'SET

E7 EO E1 E2 E3 E4 ES E6

EF E8 E9 EA EB EC ED EE

frlr | Ft | F2 | F8|Fa] | Fe

aonmaom| mﬂomkﬂga|8mmlgﬁga|?‘fk0‘nkﬂga

FF | F8 | F9 1 FA [F8 | FC | FD | FE

o
8
8
Q
@
8
(=]
@
3
3]
Q
@©
85588 3“88'”88’%“88'8‘8%&’“8%8“88‘%‘88 E8B|R88 3“88[#"“88I8°‘88 %“Sglg“g‘é 5538 5’“3%#1‘88‘&“88 $“88I*°‘88]f“88 5789

il
m

Figure 4-10. Bit Manipulation Group

A4-13

280® CPU
User's ManuaL

!]
A 2ILa5
4.2 INSTRUCTION OPCODES (Continued)
CONDITION
UN- NON NON_|PariTY|PARITY| siaN | sian | Res
COND.|CARRY|CARRY| zero | ZERO |EVEN |ODD | NEG | POS | B=0
JuMp WP |mmED.
EXT,
JUMP R | RELATIVE
JUMP 0P (HL)
JuMP WP |Rea. (1)
INDIR.
JUMP P)
CALL' IMMED | nn
EXT.
DECREMENT B,
JUMPIENON | RELATIVE
ZERO 'DINZ
RETURN REFISTER
RET' INDIR.
RETURN FROM | REG. P | eo
INT RETI INDIR. |(sP+1)| 4D
RETURN FROM
NON MASKABLE | fc g&‘) e
INT'RETN' :
NOTE-CERTAIN
FLOAGS HAVE MORE

Figure 4-11. Jump, Call, and Return Group

To facilitate program loop control the instruction DUNZ e can
be used advantageously. This two byte, relative jump instruc-
tion decrements the B register and the jump occurs if the B

register has not been decremented to zero. The relative
displacement is expressed as a signed two's complement
number. A simple example of its use might be:

Address Instruction Comments

N,N+1 LDB,7 : set B register to count of 7
N+2toN+9 (Perform a sequence of instructions) : loop to be performed 7 times
N+10,N + 11 DINZ -8 (tojump fromN + 12to N + 2
N+ 12 (Next Instruction)

Ad-14

QA2L05

280 CPU
USER'S MANUAL

Figure 4-12 lists the eight opcodes for the restart instruc-
tion. This instruction is a single byte call to any of the eight
addresses listed. The simple mnemonic for these eight
calls is also shown. The value of this instruction is that
frequently used routines can be called with this instruction
to minimize memory usage.

4.2.7 input/Output

The Z80 has an extensive set of Input and Output instruc-
tions as shown in Figures 4-13 and 4-14. The addressing
of the input or output device can be either absolute or
register indirect, using the C register. Notice that in the
register indirect addressing mode data can be transferred
between the I/O devices and any of the internal registers.
In addition, eight block transfer instructions have been
implemented. These instructions are similar to the memory
block transfers except that they use register pair HL for a
pointer to the memory source (output commands) or
destination (input commands) while register B is used as
abyte counter. Register C holds the address of the port for
which the input or output command is desired. Since
register B is eight bits in length, the 1/O block transfer
command handles up to 256 bytes.

In the instructions IN A, and OUT n, A, the I/O device
address nappearsinthe lower half of the address bus (A7-
A0) while the accumulator content is transferred in the
upper half of the address bus. In all register indirect input
output instructions, including block I/O transfers the con-
tent of register C is transferred to the lower half of the
address bus (device address) while the content of register
B is transferred to the upper half of the address bus.

4.2.8 CPU Control Group

Figure 4-15 illustrates the six general-purpose CPU control
instructions. The NOP is a do-nothing instruction. The
HALT instruction suspends CPU operation until a subse-
quent interrupt is received, while the Dl and El are used to
lock out and enable interrupts. The three interrupt mode
commands set the CPU into any of the three available
interrupt response modes as follows. If mode zero is set,
the interrupting device can insert any instruction on the
data bus and allow the CPU to execute it. Mode 1 is a
simplified mode where the CPU automatically executes a
restart (RST) to location 0038H so that no external hard-
ware is required. (The old PC content is pushed onto the

‘RSTO'

‘RSTS'

‘RST 16'

‘RST 24'

‘RST 32

®OMDOO> rr>0

‘RST 40

'RST 48'

'RST 56'

Figure 4-12. Restart Group

stack). Mode 2 is the most powerful in that it allows for an
indirect call to any location in memory. With this mode, the
CPU forms a 16-bit memory address where the upper eight
bits are the content of register | and the lower eight bits are
supplied by the interrupting device. This address points to
the first of two sequential bytes in a table where the
address of the service routine is located. The CPU auto-
matically obtains the starting address and performs a
CALL to this address.

«— Pointer to Interrupt Table,
Register | is Upper Address,
Peripheral Supplies

Lower Address

Address of Interrupt
Service Routine

A4-15

280® CPU

N 205 User's MANUAL

—

4.2 INSTRUCTION OPCODES (Continued)

SOURCE
PORT ADDRESS
IMMED. | REG.
INDIR.
(e
A ED
78
B ED
R 4
E
] c ED
INPUT IN' A ®
4) =)
D
R 50
E
s E E
INPUT s 58
DISTINATION
H ED
60
L ED
€8
'INF - INPUT & ED
IncHL, DecB A2
'INIR' - INP, Inc HL, g
Dec B, REPEAT IF B0 mﬂ (HL) BLOCK NPUT
'IND' -~ INPUT, & Inc: €D
DecHL, DecB A
'INDR' - INPUT, Dec HL, 0
Dec B, REPEAT IF B0 BA
Figure 4-13. input Group
SOURCE
REG.
REGISTER IND.
A B c D E H L (HL)
IMMED| (n)
'110UT'
REG | (o) ED | ED | ED | ED | ED
IND. 49 51 | 59 | 61 69
N
"110UTI' - OUTPUT REG | (o) ED
Inc HL, Dec b IND. A3
'110UTD' - OUTPUT REG | (o) ED
Dec B, REPEAT IF Bz0 IND. B3 BLOCK
> OUTPUT
110UTD' - OUTPUT REG | (o) ED COMMANDI
DecHL&B IND. AB
'110TDR' - OUTPUT, DecHL | REG (c) ED
&B, REPEAT IF Bz0 IND. BB
7
PORT
DESTINATION
ADDRESS

Figure 4-14. Output Group

A4-16

N 2iLaB

280° CPU
USER'S MANUAL

NOP

‘HALT'

DISABLE INT ‘(DI)’

ENABLE INT ‘(El)

SET INT MODE 0 ED
P 46 | 8080AMODE
SET INT MODE 1 ED
M 56 | CALLTOLOCATION 0038,
SET INT MODE 2 ED | INDIRECT CALLUSING REGISTER
M2 SE | IAND8BITS FROMINTERR
DEVICE AS A POINTER

Figure 4-15. Miscellaneout CPU Control

A4-17

N 2iLas

CPU USER'S MANUAL

CHAPTER 5
Z80 INSTRUCTION DESCRIPTION

5.0 INTRODUCTION: Z80 ASSEMBLY LANGUAGE

The assembly language provides a means for writing a
program without having to be concerned with actual
memory addresses or machine instruction formats. It al-
lows the use of symbolic addresses to identify memory
locations and mnemonic codes (opcodes and operands)
to represent the instructions themselves. Labels (symbols)
can be assigned to a particular instruction step in a source
program to identify that step as an entry point for use in
subsequent instructions. Operands following eachinstruc-
tion represent storage locations, registers, or constant
values. The assembly language also includes assembler
directives that supplement the machine instruction. A
pseudo-op, for example, is a statement which is not
translated into a machine instruction, but rather is inter-
preted as a directive that controls the assembly process.

A program written in assembly language is called a source
program. It consists of symbolic commands called state-
ments. Each statement is written on a single line and may
consist of from one to four entries: A label field, an opera-
tion field, an operand field and a comment field. The
source program is processed by the assembler to obtain
a machine language program (object program) that can
be executed directly by the Z80 CPU.

Zilog provides several different assemblers which differ in
the features offered. Both absolute and relocatable as-
semblers are available with the Development and Micro-
computer Systems. The absolute assembler is contained
in base level software operating in a 16K memory space
while the relocating assembler is part of the RIO environ-
ment operating in a 32K memory space.

5.1 Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F') supplies information to the user
regarding the statue of the Z80 at any given time. The bit
positions for each flag is shown below:

7 6 5 4 3 2 1 0
[slz]x[n]xfevfnfc]

where:

Carry Flag
Add/Substract
Parity/Overflow Flag
Half Carry Flag
Zero Flag

Sign Flag

Not Used

wonmwuwouwonu

XONIZIZO

Each of the two Z80 Flag Registers contains six bits of
statue information which are set or reset by CPU opera-
tions. (Bits 3 and 5 are not used.) Four of these bits are
testable(C, PNV, Z, and S) for use with conditional Jump,
Call, or Return instructions. Two flags are not testable (H,
N) and are used for BCD arithmetic.

5.1.1 Carry Flag (C)

The carry bit is set or reset depending on the operation
being performed. For ‘ADD’ instructions that generate a
carry and ‘SUBTRACT instructions that generate a bor-
row, the Carry flag will be sit. The Carry flag is reset by an
ADD that does not generate a carryand a ‘SUBTRACT that
generates no borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the '‘DAA’
instruction will setthe Carry flag if the conditions for making
the decimal adjustment are met.

For instructions RLA, RRA, RLS, and RRS, the carry bit is
used as a link between the LSB and MSB for any register
or memory location. During instructions RLCA, RLC s, and
SLA s, the carry contains the last value shifted out of bit 7
of any register or memory location. During instructions
RRCA, RRC s, SRA s, and SRL s the carry contains the last
value shifted out of bit 0 of any register ormemory location.

For the logical instructions AND s, OR s, and XOR s, the
carry will be reset.

The Carry flag can also be set (SCF) and complemented
(CCF).

A5-1

Q2005

Z80® CPU
USER'S MANUAL

5.1 Z80 STATUS INDICATORS (FLAGS) (Continued)

5.1.2 Add/Substract Flag (N)

This flag is used by the decimal adjust accumulator
instruction (DAA) to distinguish between ‘ADD’ and ‘SUB-
TRACT instructions. For all ‘ADD’ instructions, N willbe set
toa‘0'. For all ‘SUBTRACT instructions, N will be set to a
toa't'.

5.1.3 Parity/Overflow Flag (P/V)
This flag is set to a particular state depending on the
operation being performed. ;

For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater
than the maximum possible number (+127) or is less than
the minimum possible number (-128). This overflow con-
dition can be determined by examining the sign bits of the
operands.

For addition, operands with different signs will never
cause overflow. When adding operands with like signs
and the result has a different sign, the overflow flag is set.
For example:

+120 = 0111 1000 ADDEND
+1056 = 0110 1001 AUGEND
+225 = 1110 0001 (-95) SuUM

Thetwonumbers addedtogether hasresulted inadumber
that exceeds +127 and the two positive operands has
resulted inanegative number (-95) whichis incorrect. The
Overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For
example:

+127 0111 1111 MINUEND
(-)—=64 1100 Q000
+191 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a
negative, giving an incorrect difference. Overflow is there-
fore set.

Another method for predicting an overflow is to observe
the carry into and out of the sign bit. If there isa carry in and
no carry out, or if there is no carry in and a carry out, then
overflow has occurred.

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The number
of ‘1’ bits in a byte are counted. If the total is odd, ‘ODD’
parity (P=0) is flagged. If the total is even, 'EVEN' parity is
flagged (P=1).

During search instructions (CPI, CPIR, CPD, CPDR) and
block transfer instructions (LDI, LDIR, LDD, LDDR) the
P/V flag monitors the state of the byte count register (BC).
When decrementing, the byte counter results in a zero
value, the flag is reset to 0, otherwise the flag is a Logic 1.

During LD A, I and LD A, Rinstructions, the P/V flag will be
set with the contents of the interrupt enable flip-flop (IFF2)
for storage or testing.

When inputting a byte from an 1/O device, IN T, (C), the flag
will be adjusted to indicate the parity of the data.

5.1.4 Half Carry Flag (H)

The Half Carry Flag (H) will be set or reset depending on
the carry and borrow status between bits 3 and 4 of an
8-bit arithmetic operation. This flag is used by the decimal
adjust accumulator instruction (DAA) to correct the result
of a packed BCD add or subtract operation. The H flag will
be set (1) or reset (0) according to the following table:

-

H Add Substract

There is
borrow from Bit 4

1 There is a carry from
Bit 3 to Bit 4

0 There is no carry
from Bit 3 to Bit 4

There is
borrow from Bit 4

5.1.5 Zero Flag (2)
The Zero Flag (Z) is set or reset if the result generated by
the execution of certain instructions is a zero.

For 8-bit arithmetic and logical operations, the Z flag will be
set to a ‘1’ if the resulting byte in the Accumulator is zero.
In the byte is not zero, the Z flag is reset to ‘0’.

For compare (search) instructions, the Z flag will be set to
a ‘1" if a comparison is found between the value in the
Accumulator and the memory location pointed to by the
contents of the register pair HL.

When testing a bit in a register or memory location, the Z
flag will contain the complemented state of the indicated
bit (see Bit b, s).

When inputting or outputting a byte between a memory
location and an I/O device (INI, IND, OUTI, and QUTD), if
the result of B-1 is zero, the Z flag is set, otherwise it is
reset. Also for byte inputs from I/O devices using INT, (C),
the Z Flag is set to indicate a zero byte input.

A5-2

N 2iLa5

280° CPU
USER'S MANUAL

5.1.6 Sign Flag(S)

The Sign Flag (S) stores the state of the most significant bit
of the Accumulator (bit 7). When the Z80 performing
arithmetic operations on signed numbers, binary two’s
complement notation is used to represent and process
numeric information. A positive number is identified by a
‘0" in bit 7. A negative number is identified by a ‘1. The
binary equivalent of the magnitude of a positive number is

stored in bits O to 6 for a totai range of from 0 to 127 A
negative number is represented by the two's complement
of the equivalent positive number. The total range for
negative numbers is from -1 to —-128.

When inputting a byte from an I/O device to a register, IN
r. (C), the S flag will indicate either positive (S=0) or
negative (S=1) data.

5.2 Z80 INSTRUCTION DESCRIPTION

NOTE: Executiontime (E.T.) for each instruction is given in
microseconds for in assumed 4 MHz clock. Total machine
cycles (M) are indicated with total clock periods (T States).
Alsoindicated are the number of T States for each M cycle.
For example:

E.T.: 1.75

M Cycles: 2 T States: 7(4,3) 4 MHz

indicates that the instruction consists of 2 machine cycles.
The first cycle contains 4 clock periods (T States). The
second cycle contains 3 ciock periods for a total of 7 clock
periods or T States. The instruction will execute in 1.75
microseconds.

Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to the
right.

A5-3

280® CPU
USER'S MANUAL

280°
INSTRUCTION DESCRIPTION

8-BIT LOAD GROUP

A5-5

R 2L05 Usere e
LDrr

Operation: rer
Opcode: LD

Operands: rr

0 1 <———:——r—:—><—:-r:—>

Description: The contents of any register r’ are loaded into any other register r, Note: r, r’ identifies any of the
registers A, B, C, D, E, H, or L, assembled as follows in the object code:

Register o
A 111
B 000
C 001
D 010
E 011
H 100
L 101
M Cycles T States MHz E.T.
1 4 1.0
Condition Bits Affected:
None.
Example: If the H register contains the number 8AH, and the E register contains 10H, the instruction

LDHE

would result in both registers containing 10H.

A5-6

AN 2iL05

280® CPU
USER'S MANUAL

Operation: ren
Opcode: LD

Operands: r,n

= S -

LDrn

Description: The 8-bit integer n is loaded into any register r, where r identifies register A, B, C, D, E, H, or L,
assembled as follows in the object code:

Register r
A 111
B 000
c 001
D 010
E 011
H 100
L 101
M Cycles T States
2 7(4,3)
Conditions Bits Affected:
None.
Example: After the execution of
LD E, A5H

4 MHz E.T.

1.75

the contents of register E will be ASH.

A5-7

. 280® CPU
@ 2ilLas USER'S MANUAL

Operation: r« (HL)
Opcode: LD

Operands: r, (HL)

0Ofj1je—r—>1 i]lo0

Description: The 8-bit contents of memory location (HL) are loaded into register r, where r identifies register A, B,
C,D, E, H, or L, assembled as follows in the object code:

Register r
A 111
B 000
Cc 001
D 010
E o1
H 100
L 101
M Cycles T States 4 MHz E.T.
2 7 (4,6) 1.75
Condition Bits Affected:
None
Example: If register pair HL contains the number 75A1H, and memory address 75A1H contains the byte 58H,

the execution of
LD C, (HL)

will result in 58H in register C.

A5-8

@ 2iLan USEW?MUPAE
LD r, (IX+d)

Operation: r « (IX+d)

Opcode: LD
Operands: r, (IX+d) '

Description: The operand (IX+d), (the contents of the Index Register IX summed with a two’s complement dis-
placement integer d) is loaded into register r, where r identifies register A, B, C, D, E, H, or L, as-
sembled as follows in the object code:

Register r
A 111
B 000
Cc 001
D 010
E 011
H 100
L 101
M Cycles T States 4 MHZ E.T.
5 19 (4, 4,3,5,3) 2.50
Conditions Bits Affected: i
None.
Example: If the Index Register IX contains the number 25AFH, the instruction

LD B, (IX+19H)

will cause the calulation of the sum 25AFH + 19H, which points to memory location 25C8H. If this
address contains byte 39H, the instruction will result in register B also containing 39H.

A5-9

. 280® CPU
@ 2iLan USEr's MANUAL
LD r, (IY+d)

Operation: r« (IY+D)

Opcode: LD

Operands: r, (IY+d)

1|1 11]1tol1]FD

o 1 1 : | I
1 ¢ I
Description:

The operand (IY+d) (the contents of the index Register IY summed with a two’s complement dis-
placement integer (d) is loaded into register r, where r identifies register A, B, C, D, E, H, or L,
assembled as follows in the object code:

Register r

111
000
001
010
011
100
101

rImMoOm>»

M Cycles T States 4 MHz E.T.
5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

Example:

None. ®
If the Index Register IY contains the number 25AFH, the instruction
LD B, (IY+19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory location 25C8H. If this
address contains byte 39H, the instruction will result in register B also containing 39H.

A5-10

R 2iLa5 Ustrs thand
LD (HL), r

Operation: (HL) «r

Opcode: LD
Operands: (HL), r “
1.1

Description: The contents of register r are loaded into the memory location specified by the contents of the HL
register pair. The symbol r identifies register A, B, C, D, E, H, or L, assembled as follows in the object
code:

Register r

111
000
001
010
011
100
101

rImMOoOm>»

M Cycles T States 4 MHz E.T.
2 7 (4,3) 1.75

Conditions Bits Affected:
None.

Example: If the contents of register pair HL specifies memory location 2146H, and the B register contains the
byte 29H, after the execution of

LD (HL), B

memory address 2146H will also contain 29H.

A5-11

AY= N o oy

— UsER's MANUAL

LD (IX+d), r

Operation: (IX+d) & r
Opcode: LD

Operands: (IX+d), r

Description: The contents of register r are loaded into the memory address specified by the contents of Index
Register IX summed with d, a two’s complement displacement integer. The symbol r identifies
register A, B, C, D, E, H, or L, assembled as follows in the object code:

Register r
A 111
B 000 .
C 001
D 010
E 011
H 100
L 101
M Cycles T States 4 MHz E.T.
5 19(4,4,3,5,3) 4.75
Conditions Bits Affected:
None.
Example: If the C register contains the byte 1CH, and the Index Register IX contains 3100H, then the instruc-
tion
LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into memaory location 3106H.

A5-12

A 205 - Usere Wason,
LD (IY+d), r

Operation: (IY+d) «r

Opcode: LD

Operands: (IY+d),r ' “

<

r r r 4 ° 1 1
L1 1 5 1 1 1 -

Description: The contents of resister r are loaded into the memory address specified by the sum of the contents
of the Index Register IY and d, a two’s complement displacement integer. The symbol r is specified
according to the following table.

Register r
A 111
B 000
C 001
D 010
E 011
H 100
L 101
M Cycles T States 4 MHz E.T.
5 19(4,4,3,5,3) 475
Conditions Bits Affected:
None.
Example: If the C register contains the byte 48H, and the Index Register IY contains 2A11H, then the instruc-
tion
LD (IY+4H), C

will perform the sum 2A11H + 4H, and will load 48H into memory location 2A15.

A5-13

280® CPU

@ 2ilas USER'S MANUAL
LD (HL), n

Operation: (HL) & n
Opcode: LD

Operands: (HL), n

Description: Integer n is loaded into the memory address specified by the contents of the HL register pair.

M Cycles T States 4 MHz E.T.
3 10 (4,3, 3) 2.50
Condition Bits Affected
None.
Example: If the HL register pair contains 4444H, the instruction
LD (HL), 28H

will result in the memory location 4444H containing the byte 28H.

A5-14

R 2La5 Vst WAL
LD (IX+d), n

Operation: (IX+d) & n

Opcode: LD

Operands: (IX+d), n “

= 0
e | e
s
—

>=r
Y

r

Description: The n operand is loaded into the memory address specified by the sum of the Index Register IX an
the two's complement displacement operand d.

M Cycles T States 4 MHzZ E.T.
5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
None.
Exampie: If the Index Register IX contains the number 219AH, the instruction

LD (IX+5H), 5AH

would result in the byte 5AH in the memory address 219FH.

A5-15

R 25La5 | Usests AL
LD (IY+d), n

Operation: (IY+d) & n
Opcode: LD

Operands: (IY+d), n

- I T T T
1 R I |

A I S - N .
I R T T |

Description: Integer n is loaded into the memory location specified by the contents of the Index Register summed
with the two’s complement displacement integer d.

M Cycles T States 4 MHz E.T.
5 19(4,4,3,5,3) 250
Conditions Bits Affected:
None.
Example: If the Index Register 1Y contains the number A940H, the instruction

LD (IY+10H), 97H

would result in byte 97 in memory location A950H.

A5-16

@ 2ilan Usere L
LD A, (BC)

Operation: A « (BC)

Opcode: LD

Operands: A, (BC) . “

ojojojoq1 of1 0]o0A

Description: The contents of the memory location specified by the contents of the BC register pair are loaded into
the Accumulator.

M Cycles T States 4 MHz E.T.
2 7(4,3) 1.75
Conditions Bits Affected:
None.
Example: If the BC register pair contains the number 4747H, and memory address 4747H contains the byte

12H, then the instruction
LD A, (BC)

will result in byte 12H in register A.

A5-17

o 280°® CPU
@ ZILES USER'S MANUAL

LD A, (DE)

Operation: A « (DE)
Opcode: LD

Operands: A, (DE)

ojojogq1]t 0q1 0l1A

Description: The contents of the memory location specified by the register pair DE are loaded into the Accumula-

tor.
M Cycles T States 4 MHzZ E.T.
2 7(4,3) 1.75
Conditions Bits Affected:
None.
Example: If the DE register pair contains the number 30A2H and memory address 30A2H contains the byte

22H, then the instruction
LD A, (DE)

will result in byte 22H in register A.

A5-18

280® CPU

@ 2iLan USER'S MANUAL
LD A, (nn)

Operation: A« (nn)

Opcode: LD

Operands: A, (nn)

3A

A

Y
n
1

A

T
n
1

Description: The contents of the memory location specified by the operands nn are loaded into the Accumulator.
The first n operand after the opcode is the low order byte of a 2-byte memory address.

M Cycles
4

Condition Bits Affected:
None.

Example:
the instruction

T States
13(4, 3,3, 3)

LD A, (nn)

byte 04H will be in the Accumulator.

4 MHz E.T.
3.25

If the contents of nn is number 8832H, and the content of memory address 8832H is byte 04H, after

A5-19

280® CPU

@ 2ilan USER'S MANUAL
LD (BC), A

Operation: (BC)« A
Opcode: LD

Operands: (BC), A

oOjojojojojogli1lofo

Description: The contents of the Accumulator are loaded into the memory location specified by the contents of

the register pair BC.
M Cycles T States 4 MHz E.T.
2 7(4,3) 1.75
Conditions Bits Affected:
None.
Example: If the Accumulator contains 7AH and the BC register pair contains 1212H the instruction
LD (BC), A

will result in 7AH being in memory location 1212H.

A5-20

D205 s Wi
| LD (DE), A

Operation: (DE) « A

Opcode: LD

Operands: (DE), A . “

ojojogjpt1jojogipgofiz

Description: The contents of the Accumulator are loaded into the memory location specified by the contents of

the DE register pair.
M Cycles T States 4 MHz E.T.
2 7(4,3) 1.75
Conditions Bits Affected:
None.
Example: If the contents of register pair DE are 1128H, and the Accumulator contains byte AOH, the instruction
LD (DE), A

will result in AOH being in memory location 1128H.

A5-21

. 280° CPU
@ 2".‘]5 USER'S MANUAL

LD (nn), A

Operation: (nn) « A
Opcode: LD

Operands: (nn), A

A
e S

A
-

Description: The contents of the Accumulator are loaded into the memory address specified by the operand nn.
The first n operand after the opcode is the low order byte of nn.

M Cycles T States 4 MHZ E.T.
4 13(4, 3, 3,3) 3.25
Conditions Bits Affected:
None.
Example: If the contents of the Accumulator are byte D7H, after the execution of

LD (3141H), A

D7H will result in memory location 3141H.

A5-22

Q 2iLa5 - Uses Wk
LDA,I

Operation: Ael

Opcode: LD

Operands: Al “

11111041 1jy0f1 ED

Description: The contents of the Interrupt Vector Register | are loaded into the Accumulator.

M Cycles T States MHz E.T.
2 9 (4,5) 225

Condition Bits Affected:

S: Setif I-Register is negative; reset otherwise
Z: Set if I-Register is zero; reset otherwise

H: Reset
PIV: Contains contents of IFF2
N: Reset

C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag will contain a 0.

A5-23

280® CPU

N 2iLa5 USER'S MANUAL
LDA,R

Operation: A <R
Opcode: LD

Operands: AR

ojt1jog1g1 1 1 1 5F

Description: The contents of Memory Refresh Register R are loaded into the Accumulator.

M Cycles T States MHz E.T.
2 9(4,5) 2.25
Condition Bits Affected:

S: Set if, R-Register is negative; reset otherwise
Z: Setif R-Register is zero; reset otherwise

H Reset
P/N: Contains contents of IFF2
N: Reset

C: Not affected

Note: If an interrupt occurs during execution of this instruction, the parity flag will contain a 0.

A5-24

A 2iLa5 i

é USER'S MANUAL
LDI,A

Operation: e A

Opcode: LD

Operands: I, A “

Description: The contents of the Accumulator are loaded into the interrupt Control Vector Register, I.

M Cycles T States MHz E.T.
2 9(4,5) 2.25

Condition Bits Affected:
None

A5-25

QA 2La5

280® CPU
USER'S MANUAL

LDR,A

Operation: R« A
Opcode: LD

Operands: R, A

Description: The contents of the Accumulator are loaded into the Memory Refresh register R.

M Cycles T States MHz E.T.
2 9(4,5) 2.25

Condition Bits Affected:
None

A5-26

. 280® CPU
@ 2ilan USER'S MANUAL

280°
INSTRUCTION DESCRIPTION

16-BIT LOAD GROUP

A5-27

A 2La5

Z80® CPU
USER'S MANUAL -

LD dd, nn

Operation: dd «nn
Opcode: LD

Operands: dd, nn

A
B
A/

A
s
Y

Description: The 2-byte integer nn is loaded into the dd register pair, where dd defines the BC, DE, HL, or SP

register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 1

The first n operand after the opcode is the low order byte.

M Cycles T States 4 MHz E.T.
2 10 (4, 3, 3) 250
Condition Bits Affected:
None
Example: After the execution of

LD HL, 5000H

the contents of the HL register pair will be 5000H.

A5-28

RN 2iLa56 UsEr o
LD IX, nn

Operation: IX < nn

Opcode: LD

Operands: IX, nn u

A
=]
Y

A

Description: Integer nn is loaded into the Index Register IX. The first n operand after the opcode is the low order
byte.

M Cycles T States 4 MHzZ E.T.
4 14 (4, 4, 3, 3) 3.50

Condition Bits Affected:
None

Example: After the instruction
LD IX, 45A2H

the Index Register will contain integer 45A2H.

A5-29

280°® CPU

@ 2ilan USER'S MANUAL
LDIY, nn
Operation: IY & nn
Opcode: LD
Operands: 1Y, nn
1 1 1 111 1 ol 1 FD
ojoj]1i 0j]o ojoj i 21
< n >
-« n >
Description: Integer nn is loaded into the Index Register Y. The first n operand after the opcode is the low order
byte.
M Cycles T States 4 MHzZ E.T.
4 14 (4, 4, 3, 3) 3.50
Condition Bits Affected:
None
Example: After the instruction

LD 1Y, 7733H

the Index Register |Y will contain the integer 7733H.

A5-30

@ 2ilas ‘ Ussn'zswlﬁ:r?uilz
LD HL, (nn)

Operation: H « (nn+1), L « (nn)

Opcode: LD

Operands: HL, (nn) “

A
B
Y

A

Description: The contents of memory address (nn) are loaded into the low order portion of register pair HL
(register L), and, the contents of the next highest memory address (nn+1) are loaded into the high
order portion of HL (register H). The first n operand after the opcode is the low order byte of nn.

M Cycles T States 4 MHz E.T.
5 16 (4, 3,3, 3, 3) 4.00
Condition Bits Affected:
None
Example: if address 4545H contains 37H, and address 4546H, contains A1H after the instruction

LD HL, (4545H)

the HL register pair will contain A137H.

A5-31

- 280® CPU
@ 2ilas USER'S MANUAL

LD 1Y, (nn)

Operation: IYh « (nn+1), IYl « nn)
Opcode: LD

Operands: 1Y, (nn)

A
>
Y

A
B

Description: The contents of address (nn) are loaded into the low order portion of Index Register IY, and the
contents of the next highest memory address (nn+1) are loaded into the high order portion of IY.
The first n operand after the opcode is the low order byte of nn.

M Cycles T States 4 MHz E.T.
6 20(4,4,3,3,3,3) 5.00
Condition Bits Affected:
None
Example: If address 6666H contains 92H, and address 6667H contains DAH, after the instruction

LD 1Y, (6666H)

the Index Register IY will contain DA92H.

A5-34

N 2iLa5 Ustrs MO
LD (nn), HL

Operation: (nn+1) &« H, (Nn) « L
Opcode: LD

Operands: (nn), HL

A
=]

A
>

Description: The contents of the low order portion of register pair HL (register L) are loaded into memory address
(nn), and the contents of the high order portion of HL (register H) are loaded into the next highest
memory address (nn+1). The first n operand after the opcode is the low order byte of nn.

M Cycles T States 4 MHz E.T.
6 20(4,4,8,3,3,3) 5.00
Condition Bits Affected:
None
Example: If the content of register pair HL is 483AH, after the instruction

LD (B229H), HL

address B229H will contain 3AH, and address B22AH will contain 48H.

A5-35

280® CPU

N 2iLa5 Users MANOAL
LD (nn), dd

Operation: (nn+1) « ddh, (nn) « ddl
Opcode: LD

Operands: (nn), dd

\J

A
>

Description: The low order byte of register pair dd is loaded into memory address (nn); the upper byte is loaded
into memory address (nn+1). Register pair dd defines either BC, DE, HL, or SP, assembled as
follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand after the opcode is the low order byte of a two byte memory address.

M Cycles T States 4 MHz E.T.
6 20(4,4,3,83,3,3) 5.00
Condition Bits Affected:
None
Example: If register pair BC contains the number 4644H, the instruction

LD (1000H), BC

will result in 44H in memory location 1000H, and 46H in memory location 1001H.

A5-36

N 2La5 s ol
LD (nn), IX

Operation: (nn+1) « IXh, (nn) « IXI

Opcode: LD

Operands: (nn), IX “

1
_:
Y

Description: The low order byte in Index Register IX is loaded into memory address (nn); the upper order byte is
loaded into the next highest address (nn+1). The first n operand after the opcode is the low order

byte of nn.
M Cycles T States 4 MHz E.T.
6 20(4,4,3,3,3,3) 5.00
Condition Bits Affected:
None
Example: If the Index Register IX contains 5A30H, after the instruction

LD (4392H), IX

memory location 4392H will contain number 30H, and location 4393H will contain 5AH.

A5-37

. 280° CPU
AN 2iLa5 UseR's MANUAL

LD (nn), IY

Operation: (nn+1) « IYh, (nn) « IYI
Opcode: LD

Operands: (nn), IY

A
=]
\j

A

The low order byte in Index Register IY is loaded into memory address (nn); the upper order byte is

Description:
loaded into memory location (nn+1). The first n operand after the opcode is the low order byte of nn.
M Cycles T States 4 MHZ E.T.
6 20(4,4,3,3,3,3) 5.00
Condition Bits Affected:
None
Example: If the Index Register IY contains 4174H after the instruction

LD (8838H), IY

memory location 8838H will contain number 74H, and memory location 8839H will contain 41H.

A5-38

R 2La5 Vst Mavind
LD SP, HL

Operation: SP « HL

Opcode: LD

Operands: SP, HL “

1 i1 111 0OjJojt F9

Description: The contents of the register pair HL are loaded into the Stack Pointer (SP).

M Cycles T States 4 MHz E.T.
6 20(4,4,3,3,3,3) 5.00
Condition Bits Affected:
None
Example: If the register pair HL contains 442EH, after the instruction

LD SP, HL

the Stack Pointer will also contain 442EH.

A5-39

AY= e o

280® CPU
USER'S MANUAL

LD SP, IX

Operation: SP «
Opcode: LD

Operands: SP, IX

IX

1

1

0

0

Description: The 2-byte contents of Index Register IX are loaded into the Stack Pointer (SP).

DD

2A

M Cycles T States 4 MHz E.T.
2 10 (4, 6) 2.50
Condition Bits Affected:
None
Example: If the contents of the Index Register IX are 98DAH, after the instruction
LD SP, IX

the contents of the Stack Pointer will also be 98DAH.

A5-40

N 2ILa5 Usea'zsmﬁmi‘i
LD SP, 1Y

Operation: SP e IY

Opcode: LD

Operands: SP, IY “

Description: The 2-byte contents of Index Register |Y are loaded into the Stack Pointer SP.

M Cycles T States 4 MHz E.T.
2 10 (4, 6) 2.50
Condition Bits Affected:
None.
Example: If Index Register 1Y contains the integer A227H, after the instruction
LD SP, IY

the Stack Pointer will also contain A227H.

A5-41

280® CPU

@ p=—d | N a USER'S MANUAL
PUSH qq
Operation: (SP-2) « qqL, (SP-1) « qqH
Opcode: PUSH
Operands: qq
1 1 qlql]o 1 ojf 1
Description: The contents of the register pair qq are pushed into the external memory LIFO (last-in, first-out)
Stack. The Stack Pointer (SP) register pair hoids the 16-bit address of the current “top” of the Stack.
This instruction first decrements the SP and loads the high order byte of register pair qq into the
memory address now specified by the SP; then decrements the SP again and loads the low order
byte of gqq into the memory location corresponding to this new address in the SP. The operand qq
identifies register pair BC, DE, HL, or AF, assembled as follows in the object code:
Pair qq
BC 00
DE 01
HL 10
AF 11
M Cycles T States 4 MHz E.T.
3 11(5, 3, 3) 275
Condition Bits Affected:
None.
Example: If the AF register pair contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH AF

memory address, 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack
Pointer will contain 1005H.

A5-42

. 280 CPU

@ 205 USER'S MANUAL
PUSH IX

Operation: (SP-2) « IXL, (SP-1) « IXH

Opcode: PUSH

Operands: IX

Description:

The contents of the Index Register IX are pushed into the external memory LIFO (last-in, first-out)
Stack. The Stack Pointer (SP) register pair hoids the 16-bit address of the current “top* of the Stack.
This instruction first decrements the SP and loads the high order byte of IX into the memory address
now specified by the SP; then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M Cycles T States 4 MHz E.T.
3 15 (4,5, 3, 3) 3.75
Condition Bits Affected:
None.

Example:

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H, after the instruction

PUSH X

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack Pointer
will contain 1005H.

A5-43

Z80® CPU

_@ 2iLa5 USER'S MANUAL
PUSH IY

Operation: (SP-2) « iYL, (SP-1) « IYH
Opcode: PUSH

Operands: Y

Description: The contents of the index Register IY are pushed into the external memory LIFO (last-in, first-out)
Stack. The Stack Pointer (SP) register pair hoids the 16-bit address of the current “top” of the Stack.
This instruction first decrements the SP and loads the high order byte of 1Y into the memory address
now specified by the SP; then decrements the SP again and ioads the low order byte into the
memory location corresponding to this new address in the SP.

M Cycles T States 4 MHz E.T.
4 15(4,5, 3, 3) 3.756
Condition Bits Affected:
None.
Example: If the Index Register 1Y contains 2233H and the Stack Pointer Contains 1007H, after the instruction
PUSH IY

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the Stack
Pointer will contain 1005H.

A5-44

R 2ILa5 st WAL
POP qq

Operation: qgH « (SP+1), qaL « (SP)

Opcode: POP

Operands: qq “

1l1lalaglo]ofol]1

Description: The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into register pair
qa. The Stack Pointer (SP) register pair holds the 16-bit address of the current “top” of the Stack.
This instruction first loads into the low order portion of gq, the byte it the memory location corre-
sponding to the contents of SP; then SP is incriminated and the contents of the corresponding
adjacent memory location are loaded into the high order portion of gg and the SP is now incrimi-
nated again. The operand qq identifies register pair BC, DE, HL, or AF, assembled as follows in the

object code:
Pair r
BC 00
DE 01
HL 10
AF 11
M Cycles T States 4 MHzZ E.T.
3 10(4, 3, 3) 2.50
Condition Bits Affected:
None.
Example: If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H

contains 33H, the instruction
POP HL

will result in register pair HL containing 3355H, and the Stack Pointer containing 1002H.

A5-45

280® CPU

N SILas User's MANUAL
POP IX

Operation: IXH « (SP+1), IXL « (SP)
Opcode: POP

Operands: IX

tj11t1jpojogopjpoyt E1

Description: The top two bytes of the external memory LIFO (list-in, first-out) Stack are popped into Index Register
IX. The Stack Pointer (SP) register pair holds the 16-bit address of the current “top” of the Stack.
This instruction first loads into the low order portion of IX the byte at the memory location corre-
sponding to the contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IX. The SP is now incremented

again.
M Cycles T States 4 MHzZ E.T.
4 14 (4, 4, 3, 3) 3.50
Condition Bits Affected:
None.
Example: If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location 1001H

contains 33H, the instruction
POP IX

will result in Index Register IX containing 3355H, and the Stack Pointer containing 1002H.

A5-46

@ Zj Lm USER'ZSS?:ANCJAE
POP IY

Operation: IYH « (SP+1), IXL « (SP)

Opcode: POP

Operands: iX “

Description: The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped into Index Regis-
ter IY. The Stack Pointer (SP) register pair holds the 16-bit address of the current “top” of the Stack.
This instruction first loads into the low order portion of 1Y the byte at the memory location corre-
sponding to the contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IY. The SP is now incremented

again.
M Cycles T States 4 MHzZ E.T.
4 14(4,4,3,3) 3.50
Condition Bits Affected:
None.
Example: If the Stack Pointer Contains 1000H, memory location 1000H contains 55H, and location 1001H

contains 33H, the instruction
POP IY

will result in Index Register IY containing 3355H, and the Stack Pointer containing 1002H.

A5-47

N 2iLaB

280® CPU
USER'S MANUAL

280°
INSTRUCTION DESCRIPTION

EXCHANGE, BLOCKTRANSFER,
AND SEARCH GROUP

A5-49

N 2iLas Userre VoL
EX DE, HL

Operation: DE & HL
Opcode: EX

Operands: DE, HL

1 1 1 o1 1 o011 1 EB

Description: The 2-byte contents of register pairs DE and HL are exchanged.

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
None.
Example: If the content of register pair DE is the number 2822H, and the content of the register pair HL is

number 499AH, after the instruction

EX DE, HL

the content of register pair DE will be 499AH and the content of register pair HL will be 2822H.

A5-50

N 2iILa5 Userve MasonL
EX AF, AF'

Operation: AF & AF

Opcode: EX

Operands: AF, AF' “

ojojojojt1jojogoy] oB

Description: The 2-byte contents of the register pairs AF and AF' are exchanged. (Note: register pair AF consists
of registers A" and F'.)

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
None.
Exampie: If the content of register pair AF is number 9900H, and the content of register pair AF' is number

5944H, after the instruction
EX AF, AF'

the contents of AF will be 5944H, and the contents of AF' will be 9900H.

A5-51

280® CPU
N 2iILa5 UseR's MANUAL
EXX
Operation: (BC) & (BC'), (DE") +> (DE'), (HL) &> (HL")
Opcode: EXX
Operands:
1 1 0 1 1 0 o] o D9
Description: Each 2-byte value in register pairs BC, DE, and HL is exchanged with the 2-byte value in BC', DE',

and HL', respectively.

M Cycles T States 4 MHzZ E.T.
1 4 1.00

Condition Bits Affected:

Example:

None.

If the contents of register pairs BC, DE, and HL are the numbers 445AH, 3DA2H, and 8859H,
respectively, and the contents of register pairs BC', DE', and HL' are 0988H, 9300H, and 00E7H,
respectively, after the instruction

EXX

the contents of the register pairs will be as follows: BC': 0988H; DE': 9300H; HL: O0E7H; BC': 445AH;
DE": 3DA2H; and HL": 8859H.

A5-52

D 2iLaB Ustrs ML
EX (SP), HL

Operation: H o (SP+1), L & (SP)

Opcode: EX

Operands: (SP) , HL “

1 111 ojojogyp1}1 E3

Description: The low order byte contained in register pair HL is exchanged with the contents of the memory
address specified by the contents of register pair SP (Stack Pointer), and the high order byte of HL is
exchanged with the next highest memory address (SP+1).

M Cycles T States 4 MHz E.T.
5 19(4,3,4, 3,5) 4.75
Condition Bits Affected:
None.

Example: If the HL register pair contains 7012H, the SP register pair contains 8856H, the memory location
8856H contains the byte 11H, and the memory location 8857H contains the byte 22H, then the
instruction

EX (SP), HL

will result in the HL register pair containing number 2211H, memory location 8856H containing the
byte 12H, the memory location 8857H containing the byte 70H and the Stack Pointer containing
8856H.

A5-53

280°® CPU

@ 2ild USER'S MANUAL
EX (SP), IX
Operation: IXH & (SP+1), IXL & (SP)
Opcode: EX
Operands: (SP), IX
1 1 0 1 1 1 ol i DD
1 1 1 ogojo 1 1 E3
Description: The low order byte in Index Register IX is exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack Pointer), and the high order byte of IX is ex-
changed with the next highest memory address (SP+1).
M Cycles T States 4 MHZ E.T.
6 23(4,4,3,4,3,5) 5.75
Condition Bits Affected:
None.
Example: If the Index Register IX contains 3988H, the SP register pair Contains 0I00H, the memory location

0100H contains the byte 90H, and memory location 0101H contains byte 48H, then the instruction
EX (SP), IX

will result in the IX register pair containing number, 4890H, memory location 0100H containing 88H,
memory location 0101H containing 39H and the Stack Pointer containing 0100H.

A5-54

R 2iLa5 Uscs WAL
EX (SP), IY

Operation: IYH & (SP+1), IYL & (SP)

Opcode: EX

Operands: (SP), IY n

Description: The low order byte in Index Register IY is exchanged with the contents of the memory address
specified by the contents of register pair SP (Stack Pointer), and the high order byte of 1Y is ex-
changed with the next highest memory address (SP+1).

M Cycles T States 4 MHz E.T.
6 23(4,4,3,4,3,5) 5.76
Condition Bits Affected:
None.
/"/Example: If the Index Register IY contains 3988H, the SP register pair contains 0100H, the memory location

0100H contains the byte 90H, and memory location 0101H contains byte 48H, then the instruction
EX (SP), IY

will result in the IY register pair containing number 4890H, memory location 0100H containing 88H,
memory location 0101H containing 39H, and the Stack Pointer containing 0100H.

A5-55

R 2La5 Ut MANOAL
LDI

Operation: (DE) « (HL), DE «~ DE + 1, HL « HL + 1, BC « BC -1

Opcode: LDI
Operands: (SP) , HL

Description: A byte of data is transferred from the memory location addressed, by the contents of the HL register
pair to the memory location addressed by the contents of the DE register pair. Then both these
register pairs are incremented and the BC (Byte Counter) register pair is decremented.

M Cycles T States 4 MHz E.T.
4 16 (4, 4, 3, 5) 4,00
Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
PN: Setif BC - 1#0; reget otherwise
N: Reset

C: Not affected
Example: If the HL register pair contains 1111H, memory location 1111H contains contains the byte 88H, the
DE register pair contains 2222H, the memory location 2222H contains byte 66H, and the BC register
pair contains 7H, then the instruction
LDI

Will result in the following contents in register pairs and memory addresses:

HL : 1112H
(1111H) : 88H
DE : 2223H
(2222H) : 88H
BC : 6H

A5-56

R 2iLaB Users ML
LDIR

Operation: (DE) « (HL), DE <« DE + 1,HL« HL + 1, BC « BC -1

Opcode: LDIR

Operands: B8 u

Description: This 2-byte instruction transfers a byte of data from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the DE register pair. Then both these
register pairs are incremented and the BC (Byte Counter) register pair is decremented. |f
decrementing causes the BC to go to zero, the instruction is terminated. If BC is not zero the pro-
gram counter is decremented by two and the instruction is repeated. Interrupts will be recognized
and two refresh cycless will be executed after each data transfer. Note that if BC is set to zero prior
to instruction execution, the instruction will loop through 64 Kbytes.

For BC #0:
M Cycles T States 4 MHZ E.T.
5 21(4,4,4,3,5,5) 5.25
For BC = 0:
M Cycles T States 4 MHzE.T.
4 16 (4, 4, 3,5) 4.00
Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
PN: Reset
N: Reset
C:. Not affected
Example: If the HL register pair contains 11111H, the DE register pair contains 2222H, the BC register pair
contains 0003H, and memory locations have these contents:
(1111H) . 88H (2222H) : 66H
(1112H) : 36H (2223H) : 59H
(1113H) : A5H (2224H) : C5H

then after the execution of

LDIR

A5-57

- 280® CPU
@ p—d1 N e Y Usen's MANUAL

the contents of register pairs and memory locations will be:

HL : 1114H

DE : 2225H

BC : 0000H
(1111H) : 88H (2222H) : 88H
(1112H) : 36H (2223H) : 36H
(1113H) : ABH (2224H) : AsH

A5-58

R 205 Ustrs MaNIAL
LDD

Operation: (DE) « (HL), DE « DE-1, HL « HL-1, BC« BC -1
Opcode: LDD

Operands:

Description: This 2-byte instruction transfers a byte of data from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the contents of the DE register pair.
Then both of these register pairs including the BC (Byte Counter) register pair are decremented.

M Cycles T States 4 MHz E.T.
4 16 (4, 4, 3, 5) 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
P/V: Set if BC — 1 # 0; reset otherwise
N: Reset

C: Not affected
Example: If the HL register pair contains 1111H, memory location 1111H contains the byte 88H, the DE
register pair contains 2222H, memory location 2222H contains byte 66H, and the BC register pair
contains 7H, then the instruction
LDD

will result in the following contents in register pairs and memory addresses:

HL : 1110H
(1111H) . 88H
DE . 2221H
(2222H) . 88H
BC : 6H

A5-59

Z80® CPU

@ 2L USER'S MANUAL
LDDR
Operation: (DE) « (HL), DE ¢ DE-1, HL « HL-1, BC « BC-1
Opcode: LDDR
Operands:
1 1 1 o1 1 o] 1 ED
1 o1 111 ojojo B8
Description: This 2-byte instruction transfers a byte of data from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the contents of the HL register pair to
the memory location addressed by the contents of the DE register pair. Then both of these registers,
as well as the BC (Byte Counter) are decremented. If decrementing causes the BC to go to zero, the
instruction is terminated. If BC is not zero, the program counter is decremented by two and the
instruction is repeated. Interrupts will be recognized and two refresh cycles will be executed after
each data transfer. Note that if BC is set to zero prior to instruction execution, the instruction will loop
through 64 Kbytes.
For BC # O:
M Cycles T States 4 MHzZ E.T.
5 21(4,4,3,5,5) 5.25
For BC = 0:
M Cycles T States 4 MHz E.T.
5 21(4,4,3,5,5) 5.25
Condition Bits Affected:
S: Not Affected:
Z: Not Affected:
H: Reset
PN: Reset
N: Reset
Example: If the HL register pair contains 1114H, the DE register pair contains 2225H, the BC register pair

contains 0003H, and memory locations have these contents:
(1114H) : ABH(2225H) : C5H
(1113H) : 36H (2224H) : 539H
(1112H) : 88H (2223H) : 66H
Then after the execution of
LDDR

the contents of register pairs and memory locations will be:

A5-60

: 280° CPU
N 2iLas USER'S MANUAL
HL : 1111H
DE : 2222H
DC : 0000H
(1114H) . A5H(2225H) : A5H
(1113H) : 36H (2224H) : 36H
(1112H) : 88H (2223H) : 88H

A5-61

Q205 Vst HANIAL
cPI

Operation: A-(HL), HL « HL +1, BC « BC -1
Opcode: CPI

Operands:

Description: The contents of the memory location addressed by the HL register is compared with the contents of
the Accumulator. In case of a true compare, a condition bit is set. Then HL is incremented and the
Byte Counter (register pair BC) is decremented.

M Cycles T States 4 MHz E.T.
4 16 (4,4, 3,5) 4.00

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Setif A = (HL); reset otherwise
H: Set if borrow from bit 4; reset otherwise
P/NV: Setif BC—-1=0; reset otherwise
N: Set
C: Not affected

Example: If the HL register pair contains 1111H, memory location 1111H contains 3BH, the Accumulator
contains 3BH, and the Byte Counter contains 0001H. Then after the execution of

CPI
the Byte Counter will contain 0000H, the HL register pair will contain 1112H, the Z flag in the F

register will be set, and the P/V flag in the F register will be reset. There will be no effect on the
contents of the Accumulator or address 1111H.

A5-62

N 2iLas Ussn'zswﬁ:t?u:li
CPIR

Operation: A-(HL), HL « HL+1, BC « BC-1

Opcode: CPIR

Operands: “

Description: The contents of the memory location addressed by the HL register pair is compared with the con-
tents of the Accumulator. In case of a true compare, a condition bit is set. The HL is incremented
and the Byte Counter (register pair BC) is decremented. If decrementing causes the BC to go to
zero or if A = (HL), the instruction is terminated. If BC is not zero and A # (HL), the program counter
is decremented by two and the instruction is repeated. Interrupts will be recognized and two refresh
cycles will be executed after each data transfer. Note that if BC is set to zero before instruction
execution, the instruction will loop through 64 Kbytes if no match is found.

For BC # 0 and A # (HL):

M Cycles T States 4 MHzZ E.T.
5 21(4,4,3,5,5) 5.25

For BC=0and A = (HL):

M Cycles T States 4 MHZ E.T.
4 16 (4, 4,3, 5) 4.00

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Setif A= (HL); reset otherwise
H: Set if borrow from bit 4; reset otherwise
PN: Set if BC — 1 # 0; reset otherwise
N: Set
C: Not Affected:

Example: If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte Counter contains
0007H, and memory locations have these contents:

(1111H) : 52H
(1112H) : O0H
(1113H) : F3H
Then after the execution of:

CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter will be 0004H, the
P/ flag in the F register will be set, and the Z flag in the F register will be set.

A5-63

R 2La5 Vs MuAL
CPD

Operation: A-(HL), HL « HL -1, BC « BC -1
Opcode: CPD

Operands:

Description: The contents of the memory location addressed by the HL register pair is compared with the con-
tents of the Accumulator. In case of a true compare, a condition bit is set. The HL and the Byte
Counter (register pair BC) are decremented.

M Cycles T States 4 MHZ E.T.
4 16 (4, 4, 3, 5) 4.00
Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Setif A = (HL); reset otherwise

H: Setif borrow from bit 4; reset otherwise
PN: Setif BC — 1 #0; reset otherwise

N: Set

C: Not Affected:

Example: If the HL register pair contains 1111H, memory location 1111H contains 3BH, the Accumulator
contains 3BH, and the Byte Counter contains 0001H. Then after the execution of

CPD
the Byte Counter will contain 0000H, the HL register pair will contain 1110H, the flag in the F register

will be set, and the P/V flag in the F register will be reset. There will be no effect on the contents of
the Accumulator or address 1111H.

A5-64

QA 205 Uskris ain.
CPDR

Operation: A —(HL), HL « HL -1, BC « BC -1

Opcode: CPDR

Operands: u

Description: The contents of the memory location addressed by the HL register pair is compared with the con-
tents of the Accumulator. In case of a true compare, a condition bit is set. The HL and BC (Byte
Counter) register pairs are decremented. If decrementing causes the BC to go to zero or if A = (HL),
the instruction is terminated. If BC is not zero and A = (HL), the program counter is decremented by
two and the instruction is repeated. Interrupts will be recognized and two refresh cycles will be
executed after each data transfer. Note that if BC is set to zero prior to instruction execution, the
instruction will loop through 64 Kbytes if no match is found.

For BC # 0 and A # (HL):
M Cycles T States 4 MHz E.T.
5 21(4,4,8,5,5) 5.25

ForBC =0and A = (HL):

M Cycles T States 4 MHz E.T.
4 16 (4, 4, 3, 5) 4.00
Condition Bits Affected:

S: Setif result is negative; reset otherwise

Z: Setif A = (HL); reset otherwise

H: Set if borrow form bit 4, reset otherwise
PNV: Set if BC -1 # 0 ; reset otherwise

N: Set

C: Not Affected:

Example: If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte Counter contains
0007H, and memory locations have these contents.

(1118H) : 52H
(1117H) : OOH
(1116H) : F3H
Then after the execution of

CPDR

the contents of register pair HL will be 1115H, the contents of the Byte Counter will be 0004H, the
PN flag in the F register will be set, and the Z flag in the F register will be set.

A5-65

. 280° CPU
AN 2iLa05 User's MANUAL

280°
INSTRUCTION DESCRIPTION

8-BIT ARITHMETIC GROUP

A5-67

N20as s Moo
ADD A, r

Operation: Ae—A+r
Opcode: ADD

Operands: Ar

Description: The contents of register r are added to.the contents of the Accumulator, and the result is stored in
the Accumulator. The symbol r identifies the registers A, B, C, D, E, H, or L, assembled as follows in
the object code:

Register r
A 111
B 000
Cc 001
D 010
E 011
H 100
L 101
M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setifresult is zero; reset otherwise
H: Setif carry from bit 3; reset otherwise
PN: Set if overflow; reset otherwise
N: Reset
C: Setif carry from bit 7; reset otherwise
Example: If the contents of the Accumulator are 44H, and the contents of register C are 11H, after the execu-
tion of
ADDAC

the contents of the Accumulator will be 55H.

A5-68

@ 2iLais Ussn'zswﬁ:r?ui?.
ADDA, n

Operation: A—A+n

Opcode: ADD

Operands: A, n n

1 1 ojojo 1 i]10 Cé

\J

T T 1.1
“1 1 1"

Description: The integer n is added to the contents of the Accumulator, and the results are stored in the Accumu-

lator.
M Cycles T States 4MHz E.T.
2 7(4,3) 1.75

Condition Bits Affected:

S: Setif result is negative; reset otherwise

Z: Setif result is zero; reset otherwise

H: Setif carry from bit 3; reset otherwise
P/V: Setif overflow; reset otherwise

N: Reset

C: Setif carry from bit 7; reset otherwise

Example: If the contents of the Accumulator are 23H, after the execution of
ADD A, 33H

the contents of the Accumulator will be 56H.

A5-69

280® CPU

@ Zil-ms USER'S MANUAL
ADD A, (HL)

Operation: Ae A+ (HL)
Opcode: ADD

Operands: A, (HL)

ijojojojo]1 110 86

Description: The byte at the memory address specified by the contents of the HL register pair is added to the
contents of the Accumulator, and the result is stored in the Accumulator.

M Cycles T States 4 MHz E.T.
2 7(4,3) 1.75
Condition Bits Affected:

S: Setif result is negative; reset otherwise

Z: Setif result is zero; reset otherwise

H: Setif carry from bit 3; reset otherwise
PN: Setif overflow; reset otherwise

N: Reset :

C: Setif carry from bit 7; reset otherwise

Example: If the contents of the Accumulator are AOH, and the content of the register pair HL is 2323H, and
memory location 2323H contains byte 08H, after the execution of

ADD A, (HL)

the Accumulator will contain A8H.

A5-70

N 2L s o,
ADD A, (IX + d)

Operation: A« A + (IX+d)

Opcode: ADD

Operands: A, (IX +d) “

A
a
Y

Description: The contents of the index Register (register pair iX) is added to a two's complement dispiacement d
to point to an address in memory. The contents of this address is then added to the contents of the
Accumulator and the result is stored in the Accumuiator.

M Cycles T States 4 MHz E.T.
5 16(4,4,3,5,3) 4.75

Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Setif carry from bit 3; reset otherwise
PN: Setif overflow; reset otherwise
N: Reset
C: Setif carry from bit 7; reset otherwise

Example: If the Accumulator contents are 11H, the Index Register X contains 1000H, and if the content of
memory location 1005H is 22H, after the execution of

ADD A, (IX + 5H)

the contents of the Accumulator will be 33H.

A5-71

280® CPU
AY=u Usets ML

——

ADD A, (IY + d)

Operation: A« A + (ID+d)
Opcode: ADD

Operands: A, (IY +d)

A
[-%
Y

Description: The contents of the Index Register (register pair 1Y) is added to a two’s complement displacement d
to point to an address in memory. The contents of this address is then added to the contents of the
Accumulator, and the result is stored in the Accumulator. '

M Cycles T States 4 MHz E.T.
5 16 (4,4, 3,5,3) 4.75
Condition Bits Affected:

S: Setif result is negative; reset otherwise

Z: Setif result is zero; reset otherwise

H: Setif carry from bit 3; reset otherwise
PN: Set if overflow; reset otherwise

N: Reset

C: Setif carry from bit 7; reset otherwise

Example: If the Accumulator contents are 11H, the index Register Pair IY contains 1000H, and if the content of
memory location 1005H is 22H, after the execution of

ADD A, (IY + 5H)

the contents of the Accumulator will be 33H.

A5-72

N 2iLa5

280® CPU

N USER'S MANUAL
ADCA,s

Operation: A—A+s+CY

Opcode: ADC

Operands: A's

This s operand is any of r, n, (HL), (IX+d), or (IY+d) as defined for the analogous ADD instruction.
These various possible opcode-operand combinations are assembled as follows in the object code:

ADC A, r

ADC A, n

ADC A, (HL)

ADC A, (IX+d)

ADC A, (IY+d)

1 0 4—:-[*-—)
1 1 1 1340
1 0 1 110
1 1 1 110
1 0 1 110
1 1 1 o1
1 0 1 110

CE

8E

DE

8E

FD

8E

*r identifies registers B, C, D, E, H, L, or A assembled as follows in the object code field above:

Register

>rIMOO®

r
000
001
010
011
100
101
111

A5-73

" 280® CPU
@ 2ilais USER'S MANUAL

Description: The s operand, along with the Carry Flag (“C” in the F register) is added to the contents of the
Accumulator, and the result is stored in the Accumuiator.

Instruction M Cycle T States 4 MHz E.T.
ADCA,r 1 4 1.00
ADC A, n 2 7 (4, 3) 1.75
ADC A, (HL) 2 7 (4, 3) 1.756
ADC A, (IX+d) 5 19(4,4,3,5,3) 4.75
ADC A, (IY+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Setif carry from bit 3; reset otherwise
PN: Setif overflow; reset otherwise
N: Reset
C: Setif carry from bit 7; reset otherwise
Example: If the Accumulator contents are 16H, the Carry Flag is set, the HL register pair contains 6666H, and

address 6666H contains 10H, after the execution of
ADC A, (HL)

the Accumulator will contain 27H.

A5-74

. 280® CPU
@ p—d | N USER'S MANUAL
SUB s
Operation: Ae<—A-s
Opcode: SUB
Operands: s

This s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the analogous ADD instruction.
These various possible opcode-operand combinations are assembled as follows in the object code:

SUB r

SUB n

SUB (HL)

SUB (IX+d)

SUB (IY+d)

1 0 = " —>»
1 0 110
1 0 1 0
1 0 o] 1
1 0 110
<! >
< >
1 1 0 1
1 0 110
<! >
< >

D6

96

DD

96

FD

96

*r identifies registers B, C, D, E, H, L, or A assembled as follows in the object code field above:

Register

Ow

>rrImQg

r
000
001
010
011
100
101
111

A5-75

280® CPU
USER'S MANUAL

The s operand is subtracted from the contents of the Accumulator, and the result is stored in the

Q205
Description:
Accumulator.
Instruction M Cycle T States
SUBTr 1 4
SUBn 2 7 (4,3)
SUB (HL) 2 7 (4, 3)
SUB (IX+d) 5 19(4,4,3,5,3)
SUB (lY+d) 5 19(4, 4,3,5, 3)
Condition Bits Affected:

Example:

S: Setif result is negative; reset otherwise

Z: Setif result is zero; reset otherwise

H: Setif borrow from bit 4; reset otherwise
P/V: Setif overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

If the Accumulator contents are 29H, and register D contains 11H, after the execution of

SuBD

the Accumulator will contain 18H.

4 MHz E.T.

1.00
1.75
1.76
4.75
4.75

A5-76

@ 2L Ussn'zsmﬁ:rﬁm
SBCA,s

Operation: Ae—A-s-CY
Opcode: SBC

Operands: A s “

The s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the analogous ADD instructions.
These various possible opcode-operand combinations are assembled as follows in the object code:

secar |1]lololi1]o <+r

-

SBCA,n 1 1o} 1§1 1 110 DE

A
>
Y

SBCA, (HL) 1 ojogp1j1 1 110 9E

SBCA, (IX+d) Y 1 11 ol 1f101]o]l1] DD

A

SBCA, (IY+d) 1 111 111 1o} 1 FD

[}
Y

*r identifies registers B, C, D, E, H, L, or A assembled as follows in the object code field above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

A5-77

Z80° CPU

@ 2iLdls USER'S MANUAL
Description: The s operand, along with the Carry flag ("C" in the F register) is subtracted from the contents of the
Accumulator, and the resuit is stored in the Accumulator.
instruction M Cycles T States 4 MHz E.T.
SBCA,r 1 4 1.00
SBCA,n 2 7 (4,3) 1.75
SBC A, (HL) 2 7 (4, 3) 1.75
SBC A, (IX+d) 5 19(4, 4, 3,5, 3) 4.75
SBC A, (IY+d) 5 19(4,4,3,5, 3) 4.75
Condition Bits Affected:

Example:

Set if result is negative; reset otherwise
Set if result is zero; reset otherwise

Set if borrow from bit 4; reset otherwise
Reset if overflow; reset otherwise

Set

Set if borrow;

reset otherwise

1,
0ZIINO®

If the Accumulator contains 16H, the carry flag is set, the HL register pair contains 3433H, and
address 3433H contains 05H, after the execution of

SBC A, (HL)

the Accumulator will contain 10H.

A5-78

R 2iLa5 Ty
AND s

Operation: A<AA s
Opcode: AND
Operands: s

The s operand is any of r, n, (HL), (IX+d), or (IY+d), as defined for the analogous ADD instructions.
These various possible opcode-operand combinations are assembled as follows in the object code:

A

AND r* 1 of1jogo

anon 1l tjofof1}i]o]es

A
=y
Y

AND (HL) 1 oj1jo0j101]1 110} As

AND (IX+d) 1 1jogt1]t 1tjJojl11DD

AND (IY+d) 1 1 111 1 1jJo]1]FD

A
= O

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code field above:

Register r
B 000
C 001
D 010
E o011
H 100
L 101
A 111

A5-79

280 CPU

A 2iLa05 User's MANUAL
Description: A logical AND operation is performed between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in the Accumulator.
Instruction M Cycles T States 4MHz E.T.
AND r 1 4 1.00
AND n 2 7(4,3) 1.75
AND (HL) 2 7 (4, 3) 1.76
AND (IX+d) 5 19(4,4,3,5, 3) 475
AND (IX+d) 5 19(4,4,3,5,3) 475
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set
PN: Reset if overflow; reset otherwise
N: Reset
C: Reset
Example: If the B register contains 7BH (0111 1011) and the Accumulator contains C3H (1100 0011) after the

execution of
AND B

the Accumulator will contain 43H (01000011).

A5-80

. 280® CPU
AN 2iLa6 UsER's MANUAL
ORs
Operation: A«AVs
Opcode: OR
Operands: s

The soperandis any of r, n, (HL), (IX+d), or (IY+d), as defined for the analogous ADD instructions. These
various possible opcode-operand combinations are assembled as follows in the object code:

ORr*

ORn

OR (HL)

OR (IX+d)

OR (IY+d)

0 r >
1 1§J0
L}
- n >
'l
0 1 0
1 of 1
0 1 0
I L}
< d »
] 1
1 0 1
0 1 0

A

b O o

Y

F6

B6

DD

B6

FD

B6

*ridentifies registers B, C-, D, E, H, L, or A specified as follows in the assembled object code field above:

Register

[@Nss)

>rImMOoO

r
000
001
010
011
100
101
111

A5-81

. 280 CPU
@ 2ildls USER'S MANUAL

Description: A logical OR operation is performed between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in the Accumulator.

Instruction M Cycles T States 4 MHzZ E.T.
ORr 1 4 1.00
ORn 2 7 (4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (IY+d) 5 19(4, 4, 3,5, 3) 475

Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Setif result is zero; reset otherwise

H: Reset
P/V: Set if overflow; reset otherwise
N: Reset
C: Reset
Example: If the H register contains 48H (0100 0100) and the Accumulator contains 12H (0001 0010) after the

execution of
ORH

the Accumulator will contain 5AH (01011010).

A5-82

. 280® CPU
@ =N USER'S MANUAL
XORs
Operation: A«Ad®s
Opcode: XOR
Operands: S

The soperandis any of r, n, (HL), (IX+d), or (IY +d), as defined for the analogous ADD instructions. These
various possible opcode-operand combinations are assembled as follows in the object code:

XOR r* 1 0 1 0 1 fe r >
XORn 1f1fp1jog1y1fj1fq0]EE
e e
XOR (HL) 1 oq1 0 1 1 1 0 | AE
XOR (IX+d) 1 1 oq1 1 1 0 1] DD
1 0 1 0 1 1 1 0] AE

= O =)

A

XOR (IY+d) ' BN ER BN BN EE KX B B

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code field above:

Register r
B 000
Cc 001
D 010
E oM
H 100
L 101
A 111

A5-83

280® CPU

@ 205 USER'S MANUAL
Description: The contents of the s operand are compared with the contents of the Accumulator. If there is a true
compare, the Z flag is set. The execution of this instruction does not affect the contents of the
Accumulator.
Instruction M Cycles T States 4 MHz E.T.
CPr 1 4 1.00
CPn 2 7 (4, 3) 1.75
CP (HL) 2 7 (4, 3) 1.75
CP (IX+d) 5 19(4, 4, 3,5, 3) 4,75
CP (IY+d) 5 19(4, 4,83, 5, 3) 4.75
Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Setif borrow from bit 4; reset otherwise
P/N: Setif overflow; reset otherwise
N: Set
C: Setif borrow; reset otherwise
Example: If the Accumulator contains 63H, the HL register pair contains 6000H and memory iocation 6000H

contains 60H, the instruction
CP (HL)

will result in the PV flag in the F register being reset .

A5-86

D2iLas Usere Ma.
INCr

Operation: rer+1

Opcode: INC

Operands: r “
1.1

0 0<——I—r—|—-—>10 0

Description: Register r is incremented. r identifies any of the registers A, B, C, D, E, H, or L, assembled as follows
in the object code.

Register r

111
000
001
010
011
100
101

FrIMOOm>»

M Cycles T States 4 MHz E.T.
1 4 1.00

Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise
PN: Setif r was 7FH before cperation; reset otherwise
N: Reset
C: Not affected

Example: if the contents of register D are 28H, after the execution of
INC D

the contents of register D will be 29H.

A5-87

. 280° CPU
@ ZJLGB USeR's MANUAL

INC (HL)

Operation: (HL) « (HL) + 1
Opcode: INC

Operands: (HL)

ojogt 1 o1 1 0} 0|34

Description: The byte contained in the address specified by the contents of the HL register pair is incremented.

M Cycles T States 4 MHzZ E.T.
3 11(4,4,3) 2.75

Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Setif carry from bit 3; reset otherwise
PN: Setif (HL) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example: If the contents of the HL register pair are 3434H, and the contents of address 3434H are 82H, after
the execution of

INC (HL)

memory location 3434H will contain 83H.

A5-88

@ 2L Usere WAL
INC (IX+d)

Operation: (IX+d) & (IX+d) + 1

Opcode: INC

Operands: (IX+d) “

Description: The contents of the Index Register iX (register pair IX) are added to a two’'s complement displace-
ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles T States 4 MHzZ E.T.
6 23 (4, 4, 3,5, 4, 3) 5.75

Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Setif carry from bit 3; reset otherwise
PNN: Setif (IX+d) was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example: If the contents of the Index Register pair IX are 2020H, and the memory location 2030H contains
byte 34H, after the execution of

INC (IX+10H)

the contents of memory location 2030H will be 35H.

A5-89

. 280° CPU
N2iLa5 UseR's MaNUAL

INC (1Y+d)

Operation: (IY+d) « (IY+d) + 1
Opcode: INC

Operands: (IY+d)

A
.

Description: The contents of the Index Register IY (register pair 1Y) are added to a two’s complement displace-
ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles . T States 4 MHz E.T.
6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setifresult is zero; reset otherwise
H: Setif carry from bit 3; reset otherwise
P/V: Setif (IY+d) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example: If the contents of the Index Register pair IY are 2020H, and the memory location 2030H contain byte
34H, after the execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.

A5-90

R 2iLaB Usere Wl
INC (IX+d)

Operation: (IX+d) « (IX+d) + 1

Opcode: INC

Operands: (IX+d) “

A

Description: The contents of the Index Register IX (register pair 1X) are added to a two’s complement displace-
ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles T States 4 MHz E.T.
6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise
P/N: Setif (IX+d) was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example: If the contents of the Index Register pair IX are 2020H, and the memory location 2030H contains
byte 34H, after the execution of

INC (IX+10H)

the contents of memory location 2030H will be 35H.

A5-89

QiZiLCﬂS Ussn'zswmm
INC (IY+d)

Operation: (IY+d) « (IY+d) + 1
Opcode: INC

Operands: (IY+d)

A
= O
4

Description: The contents of the Index Register IY (register pair IY) are added to a two's complement displace-
ment integer d to point to an address in memory. The contents of this address are then incremented.

M Cycles T States 4 MHz E.T.
6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set if carry from bit 3; reset otherwise
PN: Setif (IY+d) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example: If the contents of the Index Register pair 1Y are 2020H, and the memory location 2030H contain byte
34H, after the execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.

A5-90

. 280® CPU
@ 2iLa5 User's MANUAL

DECm
Operation: mem —-1
Opcode: DEC
Operands: m

The m operand is any of r, (HL),(IX+d), or (IY+d), as defined for the analogous INC instructions. These
various possible opcode-operand combinations are assembied as follows in the object code:

DECr 0] 0 j«—7r > 1 (o} 1

DEC (HL) oOjojyp1t14cCcf 13104 1§35

DEC (IX+d) 1t l1Joli1f141lofl1ioD

1 1 5 1
-« d >
] L.]
DEC (IY+d) 1 1 1 1 1 1 0 1 FD

*r identifies registers B, C, D, E, H, L, or A assembled as follows in the object code field above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

A5-91

. 280® CPU
ﬂ_p 2iLdis USER'S MANUAL

Description: The byte specified by the m operénd is decremented.

Instruction M Cycles T States 4 MHz E.T.
DECr 1 4 1.00
DEC (HL) 3 11(4, 4, 3) 275
DEC (IX+d) 6 23(4,4,3,5,4,3) 5.75
DEC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set if borrow from bit 4, reset otherwise
PN: Setif m was 80H before operation; reset otherwise
N: Set
C: Not affected

Example: if the D register contains byte 2AH, after the execution of
DECD

register D will contain 29H.

A5-92

N 2iLaB | UsER's MANUAL

o

280°
INSTRUCTION DESCRIPTION

GENERAL-PURPOSE ARITHMETIC
AND CPU CONTROL GROUPS

A5-93

QA SLa5 User
DAA

Operation: —_—

Opcode: DAA

ojoji1jpopopi 1 1§27

Description: This instruction conditionally adjusts the Accumulator for BCD addition and subtraction operations.
For addition (ADD, ADC, INC) or subtraction (SUB, SBC, DEC, NEG), the following table indicates
the operation performed:

Hex Vaiue Hex Value Number
C Before In Upper H Before In Lower Added C After
Operation DAA Digit (bit 7-4) DAA Digit (bit 3-0) To Byte DAA

0 9-0 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0] 0-9 60 1
ADC 0 9-F 0 A-F 66 1
INC 0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 86 1
SUB 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0
DEC 1 7-F 0 0-9 A0 1
NEG 1 6-7 1 6-F 9A 1
M Cycles T States 4 MHz E.T.
1 4 1.00

Condition Bits Affected:

Set if most significant bit of Accumulator is 1 after operation; reset otherwise
Set if Accumulator is zero after operation; reset otherwise

See instruction

Set if Accumulator is even parity after operation; reset otherwise

Not affected

See instruction

R

A5-94

280 CPU
@ 2ilas User's MANUAL
Exampile: If an addition operation is performed between 15 (BCD) and 27 (BCD), simple decimal arithmetic

gives this result:

15

+27
42

But when the binary representations are added in the Accumuiator according to standard binary “
arithmetic,

0001 0101

+0010 Q0111
0011 1100 =3C

the sum is ambiguous. The DAA instruction adjusts this result so that the correct BCD representation is
obtainea:

0011 1100

+0000 Q110
0106 0010 =42

A5-95

AY= la

280°® CPU
USER'S MANUAL

CPL

Operation: Ae/A

Opcode: CPL

ojojpt1jop1¢}1 1§ 1 §2F

Description: The contents of the Accumulator (register A) are inverted (one’s compiement).

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:

S: Not affected
Z: Not affected

H: Set
P/N: Not affected
N: Set
C: Not affected
Example: If the contents of the Accumulator are 1011 0100, after the execution of
CPL

the Accumulator contents will be 0100 1011.

A5-96

CPU

@ 2ilans Ussn'szalomm
NEG

Operation: Ae<0-A

Opcode: NEG

0 1 ojojofqt Of Of 44

Description: The contents of the Accumulator are negated (two’s complement). This is the same as subtracting
the contents of the Accumulator from zero. Note that 80H is left unchanged.

M Cycles T States 4 MHz E.T.
2 8 (4, 4) 2.00
Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setifresult is zero; reset otherwise
H: Setif borrow from bit 4; reset otherwise
PN: Setif Accumulator was 80H before operation; reset otherwise
N: Set
C: Setif Accumulator was not 00H before operation; reset otherwise

Example: If the contents of the Accumulator are

after the execution of
NEG

the Accumulator contents will be

A5-97

N 2iLa5

280® CPU
USER'S MANUAL

CCF

Operation: CY « [CY

Opcode: CCF

ojJoq1 1 1 1 1§ 1)83F

Description: The Carry flag in the F register is inverted.

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
S: Not affected
Z: Not affected
H: Previous carry will be copied
PN: Not affected
N: Reset
C: Setif CY was 0 before operation; reset otherwise

A5-98

@ 2iLan Usen'szl’ﬁout?trg
SCF

Operation: CY &« 1

Opcode: SCF

Description: The Carry flag in the F register is set.

M Cycles T States 4 MHz E.T.
1 4 1.00

Condition Bits Affected:

Not affected
Not affected
Reset

Not affected
Reset

Set

1,
0ZIINO®

A5-99

280® CPU
USER'S MANUAL

Operation: —

Opcode: NOP

Ofojojojopojof o0y o0

Description: The CPU performs no operation during this machine cycle.

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
None.

A5-100

@ 2ilas Usen'szaMoAr(a:J,Allj.
HALT

Operation: —

Opcode: HALT

Description: The HALT instruction suspends CPU operation until a subsequent interrupt or reset is received.
While in the HALT state, the processor will execute NOP's to maintain memory refresh logic.

M Cycles T States 4 MHZ E.T.
1 4 1.00

Condition Bits Affected:
None.

A5-101

. 280 CPU
ﬁ 2ilan USER'S MANUAL
DI

Operation: IFF <0

Opcode: DI

1 1 1 1 oOjoj1t1j]1]Frs

Description: DI disables the maskable interrupt by resetting the interrupt enable flip-flops (IFF1 and IFF2). Note
that this instruction disables the maskable interrupt during its execution.

M Cycles T States 4 MHzZ E.T.
1 4 1.00

Condition Bits Affected:
None.

Example: When the CPU executes the instruction
Di

the maskable interrupt is disabled until it is subsequently re-enabled by an El instruction. The CPU will
not respond to an Interrupt Request (INT) signai.

A5-102

280 CPU
@ 2iLd; User's MANUAL

El

Operation: IFF « 1

1 tpi1fj1j1110 i1y 1}]FB “

Description: The enable interrupt instruction will set both interrupt enabile flip flops (IFFI and IFF2) to a logic ‘1
allowing recognition of any maskabie interrupt. Note that during the execution of this instruction and
the following instruction, maskable interrupts will be disabled.

Opcode: El

M Cycles T States 4 MHz E.T.
1 4 1.00

Condition Bits Affected:

None.
Example: When the CPU executes instruction
El
RETI

the maskable interrupt will be enabled after the execution of the RETI instruction.

A5-103

- 280® CPU
N 2iL05 User's MANUAL
IMO

Operation: —

Opcode: M

Operands: 0

ogtloy1 op1 1§ 0¢{56

Description: The IM O instruction sets interrupt mode 0. in this mode, the interrupting device can insert any
instruction on the data bus for execution by the CPU. The first byte of a multi-byte instruction is read
during the interrupt acknowledge cycle. Subsequent bytes are read in by a normal memory read

sequence.
M Cycles T States 4 MHz E.T.
2 8(4,4) 2.00

Condition Bits Affected:
None.

A5-104

280 CPU
@ =i Na USER'S MANUAL

M1

Operation: —

Opcode: IM
Operands: 1 » “

ofgt1jogp1jojt 1§ 0|56

Description: The IM 1 instruction sets interrupt mode 1. In this mode, the processor will respond to an interrupt by
executing a restart to location 0038H.

M Cycles T States 4 MHz E.T.
2 8 (4, 4) 2.00

Condition Bits Affected:
None.

A5-105

N =i 260° CPU
N 2iLa5 UsER'S MANUAL
IM 2

Operation: —
Opcode: M
Operands: 2

tjpi1p1jo0j131joj1{ED

ojt1jo]p1 111 11 0] 5E

Description: The IM 2 instruction sets the vectoreed interrupt mode 2. This mode allows an indirect call to any
memory location by an 8-bit vector supplied from the peripheral device. This vector then becomes
the least significant eight bits of the indirect pointer while the | register in the CPU provides the most
significant eight bits. This address points to an address in a vector table which is the starting ad-
dress for the interrupt service routine.

M Cycles T States 4 MHz E.T.
2 8(4,4) 2.00
Condition Bits Affected:
None.

A5-106

. 280® CPU
_@ 2iLa5 USER'S MANUAL

280°
INSTRUCTION DESCRIPTION

16-BIT ARITHMETIC GROUP

A5-107

N 2iLaB st ML

ADD HL, ss

Operation: HL « HL + ss
Opcode: ADD

Operands: HL, ss

Description: The contents of register pair ss (any of register pairs BC, DE, HL, or SP) are added to the contents of
register pair HL and the result is stored in HL. Operand ss is specified as follows in the assembled

object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M Cycles T States 4 MHz E.T.
3 11(4, 4, 3) 2.75

Condition Bits Affected:

Not affected

Not affected

Set if carry out of bit 11; reset otherwise
Not affected

Reset

Set if carry from bit 15; reset otherwise

1,
0ZIINO®

Example: If register pair HL contains the integer 4242H and register pair DE contains 1111H, after the execu-
: tion of

ADD HL, DE

the HL register pair will contain 5353H.

A5-108

Q205 Users WAL
ADC HL, ss

Operation: HL« HL +ss +CY

Opcode: ADC

Operands: HL, ss

Description: The contents of register pair ss (any of register pairs BC, DE, HL, or SP) are added with the Carry
flag (C flag in the F register) to the contents of register pair HL, and the result is stored in HL.
Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11
M Cycles T States 4 MHzZ E.T.
4 15 (4, 4, 4, 3) 3.75
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
R: Setif carry out ot bit 11; reset otherwise
PN: Set if overflow; reset otherwise
N: Reset
C: Setif carry from bit 15; reset otherwise

-

Example: If the register pair BC contains 2222H, register pair HL contains 5437H and the Carry Flag is set,
after the execution of

ADC HL, BC

the contents of HL will be 765AH.

A5-109

. . 280® CPU
@ 2\lans USER'S MANUAL

SBC HL, ss

Operation: HL « Hl-ss -CY
Opcode: SBC

Operands: HL, ss

Description: The contents of the register pair ss (any of register pairs BC, DE, HL, or SP) and the Carry Flag (C
flag in the F register) are subtracted from the contents of register pair HL and the result is stored in
HL. Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11
M Cycles T States 4 MHZ E.T.
4 15(4,4,4,3) 3.75
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Set if a borrow from bit 12; reset otherwise
PN Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example: If the contents of the HL, register pair are 9999H, the contents of register pair DE are 1111H, and the
Carry flag is set, after the execution of

SBC HL, DE

the contents of HL will be 8887H.

A5-110

N 2iL a5 Usess WA,
ADD IX, pp

Operation: IX e IX+pp
Opcode: ADD

Operands: IX, pp “

Description: The contents of register pair pp (any of register pairs BC, DE, IX, or SP) are added to the contents of
the Index Register IX, and the results are stored in IX. Operand pp is specified as follows in the
assembled object code.

Register
Pair pp
BC 00
DE 01
IX 10
SP 11
M Cycles T States 4 MHzZ E.T.
4 15 (4, 4, 4, 3) 3.75

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Setif carry out of bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Setif carry from bit 15; reset otherwise

Example: If the contents of Index Register IX are 333H and the contents of register pair BC are 5555H, after
the execution of

ADD IX, BC

the contents of IX will be 8888H.

A5-111

D 2Xa5 s s
ADDIY, rr

Operation: IY e« IY +rr
Opcode: ADD

Operands: Y, rr

Description: The contents of register pair rr (any of register pairs BC, DE, 1Y, or SP) are added to the contents of
Index Register |Y, and the result is stored in IY. Operand rr is specified as follows in the assembled

object code.
Register
Pair r
BC 00
DE 01
Y 10
SP 11
M Cycles T States 4 MHZ E.T.
4 15(4, 4,4, 3) 3.75
Condition Bits Affected:

S: Not affected

Z: Not affected

H: Setif carry out of bit 11; reset otherwise
P/V: Not affected

N: Reset

C:. Setif carry from bit 15; reset otherwise

Example: If the contents of Index Register Y are 333H and the contents of register pair BC are 555H, after the
execution of ,

ADD IY, BC

the contents of 1Y will be 8888H.

A5-112

280°® CPU

@ 2iLa5 USER'S MANUAL
INC ss

Operation: ss«ss+ 1

Opcode: INC

Operands: ss

Description: The contents of register pair ss (any of register pairs BC, DE, HL, or SP) are incremented. Operand

ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 1
M Cycles T States 4 MHz E.T.
1 6 1.50
Condition Bits Affected:
None.
Example: If the register pair contains 1000H, after the execution of
INC HL

HL will contain 1001H.

A5-113

. 280® CPU
@ ZJLCIE - USER'S MANUAL

INC IX

Operation: IXeIX+ 1
Opcode: INC

Operands: IX

ojojptqgojojoy1g1j]e23

Description: The contents of the index Register IX are incremented.

M Cycles T States 4 MHz E.T.
2 10 (4, 6) 2.50
Condition Bits Affected:
None.
Example: If the Index Register IX contains the integer 3300H after the execution of

INC IX

the contents of Index Register IX will be 3301H.

A5-114

N 2iLa5 USEra AN

INCIY

Operation: Y 1Y +1
Opcode: INC

Operands: Y

1ji1j1p111jpt1§oj}]ijFD

ojojt1jojojopypig1ygeas

Description: The contents of the Index Register IY are incremented.

M Cycles T States 4 MHzZ E.T.
2 10 (4, 6) 2.50
Condition Bits Affected:
None.
Example: If the contents of the Index Register are 2977H, after the execution of
INC IY

the contents of Index Register 1Y will be 2978H.

A5-115

. 280® CPU
@ 2ilan USER'S MANUAL

DEC ss

Operation: ss e ss—1
Opcode: DEC

Operands: ss

Description: The contents of register pair ss (any of the register pairs BC, DE, HL, or SP) are decremented.
Operand ss is specified as follows in the assembled object code.

Pair ss
BC 00
DE 01
HL 10
SP 11
M Cycles T States 4 MHZ E.T.
1 6 1.50
Condition Bits Affected:
None.
Example: If register pair HL contains 1001H, after the execution of
DEC HL

the contents of HL will be 1000H.

A5-116

R 205 - oy
DEC IX

Operation: IXeIX-1

Opcode: DEC

Operands: X “

1j1}j0]1 i1 o} 1]DD

ojoji1joj1jo 1] 1]2B

Description: The contents of Index Register IX are decremented.

M Cycles T States 4 MHz E.T.
2 10 (4, 6) 2.50
Condition Bits Affected:
None.
Example: If the contents of Index Register 1X are 2006H, after the execution of
DEC IX

the contents of Index Register IX will be 2005H.

A5-117

. 280° CPU
N 2iLa5 UsER's MANUAL

DECIY

Operation: IY 1Y -1
Opcode: DEC

Operands: Y

111111 o}jt1tjFD

ojojt1joj1jojp1j]1j]2B

Description: The contents of the Index Register IY are decremented.

M Cycles T States 4 MHz E.T.
2 10 (4, 6) 250
Condition Bits Affected:
None.
Example: If the contents of the Index Register IY are 7649H, after the execution of
DEC Y

the contents of Index Register 1Y will be 7648H.

A5-118

280 CPU
USER'S MANUAL

| 280°
INSTRUCTION DESCRIPTION

ROTATE AND SHIFT GROUP

A5-119

280 CPU

@ 2iLan UsER's MANUAL
RLCA

Operation:

Opcode: RLCA

Operands:

ojojojojojt 1) 1407

Description: The contents of the Accumulator (register A) are rotated left 1-bit position. The sign bit (bit 7) is
copied into the Carry flag and also into bit 0. Bit O is the least significant bit.

M Cycles T States 4 MHZ E.T.
1 4 1.00
Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
PN: Not affected
N: Reset

C: Data from bit 7 of Accumulator

Example: If the contents of the Accumulator are

7 6 5 4 3 2 1 0

after the execution of
RLCA

the contents of the Accumulator and Carry flag will be

C 7 6 5 4 3 2 1 0

1 ojojojp1 ojojoj1

A5-120

280 CPU

QN 205 User's MANUAL
RLA

Operation: —0

A “
Opcode: RLA)

Operands:

ojojojp1 of1 1 1117

Deséripﬁon: The contents of the Accumulator (register A) are rotated left 1-bit position through the Carry flag. The
previous content of the Carry flag is copied into bit 0. Bit 0 is the least significant bit.

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected

S: Not affected
Z: Not affected

H: Reset
P/V: Not affected
N: Reset

C: Data from bit 7 of Accumulator

Example: If the contents of the Accumulator and the Carry flag are

C 7 6 5 4 3 2 1 0

after the execution of
RLA

the contents of the Accumulator and the Carry flag will be

o] 7 6 5 4 3 2 1 0

A5-121

280 CPU
USER'S MANUAL

Q205
RRCA
Operation: 7_A’0
Opcode: RRCA
Operands:
0 ojo OF
Description: The contents of the Accumulator (register A) are rotated right 1-bit position. Bit 0 is copied into the
Carry flag and also into bit 7. Bit O is the least significant bit.
M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset
PN: Not affected
N: Reset
C: Data from bit 0 of Accumulator
Example: If the contents of the Accumulator are

7

6

5

4

3

2

1

0

after the execution of

the contents of the Accumulator and the Carry flag will be

7

RRCA

6

5

4

3

2

1

0

C

1

A5-122

QA 2105 Users Bain,

RRA

Operation:

A
Opcode: RRA “

Operands:

ojojojp1 1]1 11 1]1F

Description: The contents of the Accumulator (register A) are rotated right 1-bit position through the Carry flag.
The previous content of the Carry flag is copied into bit 7. Bit O is the least significant bit.

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:

S: Not affected
Z: Not affected

H: Reset
P/V: Not affected
N: Reset

C: Data from bit 0 of Accumulator

Example: If the contents of the Accumulator and the Carry Flag are
7 6 5 4 3 2 1 0 C

1 1 1J]ojojojoj1 0

after the execution of
RRA

the contents of the Accumulator and the Carry flag will be

7 6 5 4 3 2 1 0 Cc

A5-123

280 CPU

QD 2iLa5 Users HANUAL
RLCr
Operation: I7<—0 I
r

Opcode: RLC
Operands: r

1 1 ojo0}1 0 1 i]CB

0Ofgo0jJoOjo]O s r >
Description: The contents of register r are rotated left 1-bit position. The content of bit 7 is copied into the Carry

flag and also into bit 0. Operand r is specified as follows in the assembled object code:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111
M Cycles T States 4 MHz E.T.
2 8(4,4) 2.00
Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Reset :
P/V: Setif parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register
Example: If the contents of register r are
7 6 5 4 3 2 1 0
1 ojogjo 1 0 ojo

after the execution of

RLCr
the contents of register r and the Carry flag will be
Cc 7 6 5 4 3 2 1 0
1 ojojoyg1 ojojolq1

A5-124

N2ILa5 Usen'suM%:m

RLC (HL)

-

Operation:
(HL)

Opcode: RLC

Operands: (HL)

Description: The contents of the memory address specified by the contents of register pair HL are rotated left 1-
bit position. The content of bit 7 is copied into the Carry flag and also into bit 0. Bit O is the least
significant bit.

M Cycles T States 4 MHz E.T.
4 15(4, 4, 4, 3) 3.75

Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise

H: Reset
P/N. Set if parity even, reset otherwise
N: Reset

C: Data from bit 7 of source register

Example: If the contents of the HL register pair are 2828H, and the contents of memory location 2828H are

7 6 5 4 3 2 1 0

after the execution of
RLC (HL)

the contents of memory location 2828H and the Carry flag will be

c 7 66 5 4 3 2 1 0

A5-125

@ 2L a5 Usen'szﬁonr?m
RLC (IX+d)

(%+d)

Operation:

Opcode: RLC

Operands: (IX+d)

ojojojojog1ijt 0| o6

Description: The contents of the memory address specified by the sum of the contents of the Index Register 1X
and a two's complement displacement integer d, are rotated left 1-bit position. The content of bit 7 is
copied into the Carry flag and also, into bit 0. Bit O is the least significant bit.

M Cycles T States 4 MHz E.T.
6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise

H: Reset
P/NV: Setif parity even; reset otherwise
N: Reset

C: Data from bit 7 of source register

Example: If the contents of the Index Register IX are 1000H, and the contents of memory location 1022H are

7 6 5 4 3 2 1 0

after the execution of
RLC (IX+2H)

the contents of memory location 1002H and the Carry flag will be

C 7 6 5 4 3 2 1 0

A5-126

N 2La05 USER' oL
RLC (IY+d)
Operation:

Opcode: RLC “

Operands: (IY+d)

ojojojgojoj1jpijojos

Description: The contents of the memory address specified by the sum of the contents of the Index Register IY
and a two's complement displacement integer d are rotated left 1-bit position. The content of bit 7 is
copied into the Carry flag and also into bit 0. Bit 0 is the least significant bit.

M Cycles T States 4 MHzZ E.T.
6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Reset
P/V: Setif parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register
Example: If the contents of the Index Register IY are 1000H, and the contents of memory location 1002H are

7 6 5 4 3 2 1 0

tjojojogj1jojojo

after the execution of
RLC (IY+2H)

the contents of memory location 1002H and the Carry flag will be

C 7 6 5 4 3 2 1 0

A5-127

280 CPU
2ILans User's MaNuAL
RL m

>]

I. 7ok

Operation:

Opcode: RL
Operands: m

The moperand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions. These
various possible opcode-operand combinations are specified as follows in the assembled object code:

RLr 1 1Jo0j10}1 0] 1 1]1cCB

AL (HL) 1 1 ojofgt1 0 1 itjcs

AL (IX+d) 11 o111]o]1]op

A
b O o
Y

RL (IY+d) 1111l b1lo]1]es

- O
Y

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code above:

A5-128

280 CPU

N 205 User's MANUAL
Register r
B 000
Cc 001
D 010
E 011
H 100
L 101
A 111
Description: The contents of the m operand are rotated left 1-bit position. The content of bit 7 is copied into the
Carry flag and the previous content of the Carry flag is copied into bit O.
Instruction M Cycles T States 4 MHZ E.T.
RL r 2 8 (4, 4) 2.00
RL(HL) 4 15 (4, 4, 4, 3) 3.75
RL(IX+d) 6 23(4,4,3,5,4,3) 5.75
RL(IY+d) 6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Reset
PNV: Set if parity even; reset otherwise
N: Reset
C: Data from bit 7 of source register
Example: If the contents of register D and the Carry flag are

C

7

6

5

4

3

2

1

0

0

after the execution of

RLD

the contents of register D and the Carry flag will be

C

7

6

5

4

3

2

1

0

A5-129

Z80 CPU
AN 2iLaB User's MANUAL
RRC m
Operation: 7—0
m
Opcode: RRC

Operands: m

The m operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions.
These various possible opcode-operand combinations are specified as follows in the assembled
object code:

RRC r 1 1pojogft op1 ijcs

RRC (HL) 1 1 ojoj]1 0 1 1]1cCB

RRC (IX+d) 11]ol1]1]1]o}]1]oD

= O

RRC (IY+d) 11111 11]o]1]Fs

*r identifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code above:

A5-130

N 2iLa5 USRI DL

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description: The contents of the m operand are rotated right 1-bit position. The content of bit 0 is copied into the
Carry flag and also into bit 7. Bit O is the least significant bit.

Instruction M Cycles T States 4 MHz E.T.

RRC r 2 8(4,4) 2.00

RRC (HL) 4 15(4,4,4,3) 3.75

RRC (IX+d) 6 23(4,4,3,5,4,3) 5.75

RRC (IY+d) 6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset
P/V: Set if parity even; reset otherwise,
N: Reset

C: Data from bit O of source register

Example: If the contents of register A are

7 6 5 4 3 2 1 0

after the execution of
RRC A

the contents of register A and the Carry flag will be

7 6 5 4 3 2 i 0 C

A5-131

. 280 CPU
N 2iLa5 USER'S MANUAL

RR m

Operation: 7—0
m

Opcode: RR

The m operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions.
These various possible opcode-operand combinations are specified as follows in the assembled
object code: <

RRr* 1 1 01011 o011 11cB

RR (HL) 1 1 0 0 1 0 1 1]1cCB

RR (IX+d) 1 1011]1 ijo] 1]DD

RR(Y+d) |1 |11]1]1)1 |o]1]r

*r identifies registers B, C, D, E, H, L ,or A specified as follows in the assembled object code above:

A5-132

280 CPU

@ 2ilas USER'S MANUAL
Register r
B 000
Cc 001
D 010
E 011
H 100
L 101
A 111

Description: The contents of operand m are rotated right 1-bit position through the Carry flag. The content of bit 0
is copied into the Carry flag and the previous content of the Carry flag is copied into bit 7. Bit O is the
least significant bit.

Instruction M Cycles T States 4 MHz E.T.
RRr 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,5,4,3) 5.76
RR (IY+d) 6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:

S: Setif result is negative; reset otherwise

Z: Setif result is zero; reset otherwise

H: Reset
P/V. Setif parity even; reset otherwise,

N: Reset

C: Data from bit 0 of source register

Example: If the contents of the HL register pair are 4343H, and the contents of memory location 4343H and the
Carry flag are

7 6 5 4 3 2 1 0 C

after the execution of
RR (HL)

the contents of location 4343H and the Carry flag will be
7 6 5 4 3 2 1 0 C

A5-133

N 2iLaB UseRs MAMIAL
SLAm

Operation:

B0
m

Opcode: SLA
Operands: m

The m operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions.
These various possible opcode-operand combinations are specified as follows in the assembled

object code:
SLATr 1 1 oOfgogjg1 0 1 i}]CB
olofi1]ofo <——:— r'—:_>
SLA (HL) 1 1 ojo]1 0 1 1}]cCcB
0 0 1 0 0 1 1 0] 2
SLA (IX+d) 1l1Jolil1t1]o}]1]op
1 1 ojol]1 0 1 1]cB

S 1 1
- d >
' |

SLA (IY+d) 11111 }1lo]1}]e

\]

ridentifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code field above:

A5-134

280 CPU
@ 2ilas User's MANUAL

Register r

000
001
010
011
100

101
111

Description: An arithmetic shift left 1-bit position is performed on the contents of operand m. The content of bit 7
is copied into the Carry flag. Bit O is the least significant bit.

>rIMOO®

Instruction M Cycles T States 4 MHz E.T.
SLAr 2 8(4,4) 2.00
SLA(HL) 4 15(4,4,4,3) 3.75
SLA(IX+d) 6 23(4,4,3,5,4,3) 5.75
SLA(IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise

H: Reset
PN: Set if parity is even; reset otherwise
N: Reset

C: Data from bit 7
Example: If the contents of register L are
after the execution of
SLAL

the contents of register L and the Carry flag will be

Cc 7 6 5 4 3 2 1 0

A5-135

N 2iLa5 U MavinL
SRA m

Operation: —*0

Opcode: SRA
Operands: m

The m operand is any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions. These
various possible opcode-operand combinations are specified as follows in the assembled object code:

SRA 1 1 ojofp1 of1 1]1cB

SRA (HL) 1 fjogjoftd 011 i]cB

SRA (IX+d) 1l1lol1 11 11]o]1]oD

= O =

SRA (lY+d) 1 1 11141 1o} 1]FD

*ridentifies registers B, C, D, E, H, L, or A specified as, follows in the assembled object code field above:

A5-136

u 280 CPU
@ 2ilds User's MANUAL

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description: An arithmetic shift right 1-bit position is performed on the contents of operand m. The content of bit O
is copied into the Carry flag and the previous content of bit 7 is unchanged. Bit 0 is the least signifi-

cant bit.
Instruction M Cycles T States 4 MHZ E.T.
SRAr 2 8 (4,4) 2.00
SRA (HL) 4 15 (4, 4, 4, 3) 3.75
SRA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRA (IY+d) 6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:
S: Setif result is negative; reset otherwise
Z: Setif result is zero; reset otherwise
H: Reset
PN: Set if parity is even; reset otherwise
N: Reset
C: Data from bit O of source register
Example: If the contents of the Index Register [X are 1000H, and the contents of memory location 1003H are

7 6 65 4 3 2 1 0

after the execution of
SRA (IX+3H)

the contents of memory location 1003H and the Carry flag will be

7 6 5 4 3 2 1 0 C

A5-137

: 280 CPU
N 2iLa5 UseR's MANUAL
SRL m
Operation: 0

m

Opcode: SRL
Operands: m

The operand mis any of r, (HL), (IX+d), or (IY+d), as defined for the analogous RLC instructions. These
various possible opcode-operand combinations are specified as follows in the assembled object code:

SRLr* 1 110}00§}1 oq1 i]cB

SRL (HL) 1 1jJojojp1 of1 1]1CB

SAL (IX+d) 1l1]ol1l1]1]o]1]oD

SRL (IY+d) 111111]ol1]r

\4

*ridentifies registers B, C, D, E, H, L, or A specified as follows in the assembled object code fields above:

A5-138

280 CPU

N 2iLa5 User's MANUAL
Description: The contents of operand m are shifted right 1-bit position. The content of bit 0 is copied into the
Carry flag, and bit 7 is reset. Bit 0 is the least significant bit.
instruction M Cycles T States 4 MHZ E.T.
SRL r 2 8(4,4) 2.00
SRL (HL) 4 15 (4,4, 4,3) 3.756
SRL (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRL (lY+d) 6 23(4.4,3,5,4,3) 5.76
Condition Bits Affected:
S: Reset .
Z: Setif result is zero; reset otherwise
H: Reset
P/NV: Set if parity is even; reset otherwise
N: Reset
C: Data from bit O of source register
Example: If the contents of register B are

7

6

5

4

3

2

1

0

0

after the execution of

SRLB

the contents of register B and the Carry flag will be

7

6

5

4

3

2

1

0

Cc

A5-139

280 CPU
2".‘]5 UsEeR's MANUAL
RLD

Operation: A I (HL)

Opcode: RLD

]

Operands:

ojt1g1joy1]1 11 1]6F

Description: The contents of the low order four bits (bits 3, 2, 1, and 0) of the memory location (HL) are copied
into the high order four bits (7, 6, 5, and 4) of that same memory location; the previous contents of
those high order four bits are copied into the low order four bits of the Accumulator (register A); and
the previous contents of the low order four bits of the Accumulator are copied into the low order four
bits of memory location (HL). The contents of the high order bits of the Accumulator are unaffected.
Note: (HL) means the memory location specified by the contents of the HL register pair.

M Cycles T States 4 MHz E.T.
5 18 (4,4, 3,4, 3) 4.50
Condition Bits Affected:

S: Setif Accumulator is negative after operation; reset otherwise
Z: Setif Accumulator is zero after operation; reset otherwise

H: Reset
P/V: Setif parity of Accumulator is even after operation; reset otherwise
N: Reset

C: Not affected

Example: If the contents of the HL register pair are 5000H, and the contents of the Accumulator and memory
location 5000H are

ofj1j1]11 110] 1] 0 | Accumulator

oJol1}1jo]o} o]] s000H)

after the execution of

RLD

A5-140

R 205

Z80 CPU
USER'S MANUAL

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0

oj1]1}1 0jo0of 1] 1] Accumulator

ofojol1]1]o] 1]o | 5000H)

A5-141

@ 2L a5 Ussa‘szmtm
RRD

Operation:
[4
A mm (HL)
Opcode: RRD
Operands:

oq1 1jojojt 1 1167

Description: The contents of the low order four bits (bits 3, 2, 1, and 0) of memory location (HL) are copied into
the low order four bits of the Accumulator (register A); the previous contents of the low order four bits
of the Accumulator are copied into the high order four bits (7, 6, 5, and 4) of location (HL); and the
previous contents of the high order four bits of (HL) are copied into the low order four bits of (HL).
The contents of the high order bits of the Accumulator are unaffected. Note: (HL) means the memory
location specified by the contents of the HL register pair .

M Cycies T States 4 MHZ E.T.
5 18(4,4,3,4,3) 4.50

Condition Bits Affected:

S: Set if Accumulator is negative after operation; reset otherwise
Z: Set if Accumulato. is zero after operation; reset otherwise

H: Reset
P/V: Set if parity of Accumulator is even after operation; reset otherwise
N: Reset

C: Not affected

Example: If the contents of the HL register pair are 5000H, and the contents of the Accumulator and memory
location 5000H are

tjojJjojojoj1 0 | 0 | Accumulator

ojojt1jojojoj]ofo} (5000H)

after the execution of

RRD

A5-142

Z80 CPU
USER'S MANUAL

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0
1Jojojojojojo]o
7 6 5 4 3 2 {1 0
ol1lofjojofjog1]o

Accumulator

(5000H)

A5-143

280 CPU
USER'S MANUAL

280°
INSTRUCTION DESCRIPTION

BIT SET, RESET, AND TEST GROUP

A5-145

AN 2La5

280 CPU
USER'S MANUAL

—

BITb, r

Operation: Ze|b
Opcode: BIT

Operands: b, r

cB

<
1 _

Description: This instruction tests bit b in register r and sets the Z flag accordingly. Operands b and r are speci-

fied as follows in the assembled object code:

Bit Tested b Register
0 000 B
1 001 C
2 010 D
3 011 E
4 100 H
5 101 L
6 110 A
7 111
M Cycles T States 4 MHz E.T.
2 8 (4, 4) 4.50
Condition Bits Affected:
S: Unknown
Z: Setif specified bit is 0; reset otherwise
H: Set
PN: Unknown
N: Reset
C: Not affected
Example: If bit 2 in register B contains 0, after the execution of
BIT 2,B

000
001
010
o011
100
101
111

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0. Bit 0 in register B is the least
significant bit.

A5-146

A= e USER AL -

BIT b, (HL)

Operation: Z « (HL)b

Opcode: BIT

Operands: b, (HL) “

Description: This instruction tests bit b in the memory location specified by the contents of the HL register pair
and sets the Z flag accordingly. Operand b is specified as follows in the assembled object code:

Bit Tested
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
M Cycles T States 4 MHz E.T.
3 12(4,4,4)4 3.00
Condition Bits Affected:

S: Unknown
Z Set if specified Bit is 0; reset otherwise

H: Set
PN: Unknown
H: Reset

C: Not affected

Example: If the HL register pair contains 4444H, and bit 4 in the memory location 444H contains 1, after the
execution of

BIT 4, (HL)

the Z flag in the F register will contain 0, and bit 4 in memory location 4444H will still contain 1. (Bit 0
in memory location 4444H is the least significant bit.)

A5-147

Q205

280 CPU
USER'S MANUAL

BIT b, (IX+d)

Operation: Z « [(IX+d)b
Opcode: BIT

Operands: b, (IX+d)

1 1 of1]1 1] DD

1j1jojofg1 1]cB
< LI

0§ 1 je b » 0

Description: This instruction tests bit b in the memory location specified by the contents of register pair IX com-
bined with the two’s complement displacement d and sets the Z flag accordingly. Operand b is

specified as follows in the assembled object code.

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
M Cycles T States 4 MHz E.T.
5 20 (4,4,3,5,4) 5.00
Condition Bits Affected:
S: Unknown
Z: Setif specified Bit is 0; reset otherwise
H: Set
PN: Unknown
N: Reset
C: Not affected
Example: If the contents of Index Register IX are 2000H, and bit 6 in memory location 2004H contains 1, after

the execution of

BIT 6, (IX+4H)

the Z flag in the F register will contain 0, and bit 6 in memory location 2004H will still contain 1. (Bit O in

memory location 2004H is the least significant bit.)

A5-148

N 2006 Usens L
BIT b, (IY+d)

Operation: Z « /(IY+d)b

Opcode: BIT

Operands: b, (IY+d) “

Description: This instruction tests bit b in the memory location specified by the content of register pair 1Y com-
bined with the two’s complement displacement d and sets the Z flag accordingly. Operand b is
specified as follows in the assembled object code.

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
M Cycles T States 4 MHz E.T.
5 20(4,4,3,5,4) 5.00

Condition Bits Affected:

S: Unknown
Z: Setif specified Bit is 0; reset otherwise

H: Set
PN: Unknown
H: Reset

C: Not affected

Example: If the contents of Index Register are 2000H, and bit 6 in memory location 2004H contains 1, after the
execution of

BIT 6, (IY+4H)

the Z flag in the F register sill contain 0, and bit 6 in memory location 2004H will still contain 1. (Bit 0 in
memory location 2004H is the least significant bit.)

A5-149

ﬂ‘i 2iLas User's MANUAL
SET b, r

Operation: rb 1

Opcode: SET

Operands: b, r

cB

A

\ 4

Bit b in register r (any of registers B, C, D, E, H, L, or A) is set. Operands b and r are specified as

Description:

follows in the assembled object code:

Bit b Register r

0 000 B 000

1 001 C 001

2 010 D 010

3 011 E 011

4 100 H 100

5 101 L 101

6 110 A 111

7 111

M Cycles T States 4 MHz E.T.

2 8(4,4) 2.00

Condition Bits Affected:

None.
Example: After the execution of

SET 4, A

bit 4 in register A will be set. (Bit 0 is the least significant bit.)

A5-150

280 CPU
@ 2ils User's MaNUAL

SET b, (HL)

Operation: (HL)b & 1

Opcode: SET

Operands: b, (HL) u

Description: Bit b in the memory location addressed by the contents of register pair HL is set. Operand b is
specified as follows in the assembled object code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
M Cycles T States 4 MHz E.T.
4 15 (4, 4, 4, 3) 3.75
Condition Bits Affected:
None.
Example: if the contents of the HL register pair are 3000H, after the execution of
SET 4, (HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory location 3000H is the least significant bit.)

A5-151

A= e

CPU

USER'S MANUAL
SET b, (IX+d)
Operation: (IX+d)bo « 1
Opcode: SET
Operands: b, (IX+d)
Description: Bit b in the memory location addressed by the sum of the contents of the IX register pair and the

two's complement integer d is set. Operand b is specified as follows in the assembled object code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110 .
7 111
M Cycles T States 4 MHzZ E.T.
6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

Exampile:

None.
If the contents of Index Register are 2000H, after the execution of
SET 0, (IX + 3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H is the least significant bit.)

A5-152

280 CPU
@ 2ilan USEr's MANUAL

SET b, (IY+d)

Operation: (IY+d)be 1

Opcode: SET

Operands: b, (IY + d) “

A
Q.
A

Description: Bit b in the memory location addressed by the sum of the contents of the 1Y register pair and the
two's complement displacement d is set. Operand b is specified as follows in the assembled object

code:
Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
M Cycles T States 4 MHz E.T.
6 23(4,4,3,5,4,3) 575
Condition Bits Affected:
None
Example: If the contents of Index Register 1Y are 2000H, after the execution of
SET 0,(IY+3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H is the least significant bit.)

A5-153

280 CPU
@ 2iLai5 USER'S MANUAL
RES b, m
Operation: sbe0
Opcode: RES
Operands: b,.m

Operand b is any bit (7 through 0) of the contents of the m operand, (any of r, (HL), (IX+d) or (IY+d)) as
defined for the analogous SET instructions. These various possible opcode-operand combinations are
assembled as follows in the object code:

RES b, r

RES b, (HL)

RES b, (IX+d)

RES b, (IY+d)

m
=
~

NO O hAhWN—=O

b
000
001
010
011
100
101
110
111

1 1jojo 0
1 0 | b >
1 11010 0
1] 0 J«—b—-—>
1 1 o] 1 1
1 1jo0}jo0 0
P |
< I d
1 0 |= b >
1]111]1 1
1 1 oo 0
1
<] d
1 0 | b » 1
Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

CB

cB

DD

CcB

FD

cB

A5-154

280 CPU

QA 2iLa5 User's MANUAL
Description: Bit b in operand m is reset.

Instruction M Cycles 4MHzZE.T.

RESr 4 2.00

RES (HL) 4 3.75

RES (IX+d) 6 5.75

RES (IY+d) 6 5.75
Condition Bits Affected:

None.

Example:

After the execution of

RES 6, D

bit 6 in register D will be reset. (Bit 0 in register D is the least significant bit.)

A5-155

280 CPU
User's MANUAL

280°
INSTRUCTION DESCRIPTION

JUMP GROUP

A5-157

280 CPU

@ 2iLCIB USER'S MANUAL

Operation: PC & nn
Opcode: JP

Operands: nn

A
3

Note: The first operand in this assembled object code is the low order byte of a two-byte address.

Description: Operand nn is loaded into register pair PC (Program Counter). The next instruction is fetched from
the location designated by the new contents of the PC.

M Cycles T States 4 MHZ E.T.
3 10 (4, 3, 3) 250
Condition Bits Affected:
None.

A5-158

280 CPU

@ 2ilas USER'S MANUAL
JP cc, nn
Operation: IF cc true, PCe& nn
Opcode: JP
Operands: cc, nn
1 1 e cc:—> o] 1
1 1 1
1 L" I
< n >
Note: The first n operand in this assembled object code is the low order byte of a 2-byte memory
address.
Description: If condition cc is true, the instruction loads operand nn into register pair PC (Program Counter), and
the program continues with the instruction beginning at address nn. If condition cc is false, the
Program Counter is incremented as usual, and the program continues with the next sequential
instruction. Condition cc is programmed as one of eight status which corresponds to condition bits
in the Flag Register (register F). These eight status are defined in the table below which also
specifies the corresponding cc bit fields in the assembled object code.
Relevant
cc Condition Flag
000 NZ non zero z
001 Z zero z
010 NC no carry C
011 C carry C
100 PO parity odd PN
101 PE parity even PN
110 P sign positive S
11 M sign negative S
M Cycles T States 4 MHz E.T.
3 10 (4, 3,3) 2.50
Condition Bits Affected:
None.
Example: If the Carry flag (C flag in the F register) is set and the contents of address 1520 are 03H, after the

execution of

JP C, 1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPD will fetch from address

1520H the byte O3H.

A5-159

280 CPU
UsER's MANUAL

RN 21La5
JRe
Operation: PC«PC+e
Opcode: JR
Operands: e
ojojo 111 ojojogjis
Description: This instruction provides for unconditional branching to other segments of a program. The value of

the displacement e is added to the Program Counter (PC) and the next instruction is fetched from the
location designated by the new contents of the PC. This jump is measured from the address of the
instruction opcode and has a range of —126 to +129 bytes. The assembler automatically adjusts for
the twice incremented PC.

M Cycles T States 4 MHz E.T.
3 12 (4,3, 5) 3.00

Condition Bits Affected:

Example:

None.

To jump forward five locations from address 480, the following assembly language statement is
used:

JR $+5
The resulting object code and final PC value is shown below:

Location Instruction

480 18

481 03

482 -

483 -

484 -

485 « PC after jump

A5-160

AN 2iILa56 Users awan,

JRC,e

Operation: If C = 0, continue
IfC=1,PC«PC+e

Opcode: JR
Operands: Ce

—
—

[

N

Description: This instruction provides for conditional branching to other segments of a program depending on
the results of a test on the Carry Flag. If the flag is equal to a ‘1’ the value of the displacement e is
added to the Program Counter (PC) and the next instruction is fetched from the location designated
by the new contents of the PC. The jump is measured from the address of the instruction opcode
and has a range of -126 to +129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the flag is equal to a ‘0, the next instruction to be executed is taken from the location following this
instruction.

If condition is met

M Cycles T States- 4 MHz E.T.
3 12 (4, 3,5) 3.00

If condition is not met:

M Cycles T States 4 MHz E.T.
2 7 (4, 3) 1.75
Condition Bits Affected:
None.
Example: The Carry flag is set and it is required to jump back four locations from 480. The assembly lan-

guage statement is:
JRC, $-4
The resulting object code and final PC value is shown below:

Location Instruction

47C « PC after jump

47D -

47E -

47F -

480 38

481 FA (two's complement - 6)

A5-161

280 CPU

@ 2iLals User's MANUAL
JR (NC), e
Operation: If C = 1, continue

fC=0,PC«PC+e
Opcode: JR
Operands: NC, e

ojo]1 1 ojojojojaso
i

< e-2 >

Description: This instruction provides for conditional branching to other segments of a program depending on the

results of a test on the Carry Flag. If the flag is equal to ‘0", the value of the displacement e is added
to the Program Counter (PC) and the next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the address of the instruction opcode and has
arange of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the flag is equal to a ‘1", the next instruction to be executed is taken from the location following this
instruction.

If the condition is met:

M Cycles T States 4 MHz E.T.
3 12 (4, 3,5) 3.00

If the condition is not met:

M Cycles T States 4 MHz E.T.
7 7(4,3) 1.75

Condition Bits Affected:

Example:

None.

The Carry Flag is reset and it is required to repeat the jump instruction. The assembly language
statement is:

JRNC, $
The resulting object code and PC after the jump are shown below:
Location Instruction

480 30 « PC after jump
481 00

A5-162

280 CPU

@ 2ila5L USER'S MANUAL
JRZ, e

Operation: If Z =0, continue

fZ=1,PC«PC+e
Opcode: JR
Operands: Z, e

ojoq1 ol 0] 0]O0]28

< e-2 >

Description: This instruction provides for conditional branching to other segments of a program depending on the

results of a test on the Zero Flag. If the flag is equal to a ‘1", the value of the displacement e is added
to the Program Counter (PC) and the next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the address of the instruction opcode and has a
range of -126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the Zero Flag is equal to a ‘0’, the next instruction to be executed is taken from the location following
this instruction.

If the condition is met:

M Cycles T States 4 MHz E.T.
3 12(4,3,5) 3.00

If the condition is not met;

M Cycles T States 4 MHz E.T.
2 7(4,3) 1.75

Condition Bits Affected:

Example:

None.

The Zero Flag is set and it is required to jump forward five locations from address 300. The following
assembly language statement is used:

JRZ,$+5
The resulting object code and final PC value is shown below:

Location Instruction

300 28

301 03

302 -

303 -

304 -

305 « PC after jump

A5-163

280 CPU

A 2iL05 UseR's MANUAL
JRNZ, e
Operation: If Z =1, continue

IfZ=0,pcepc+e
Opcode: JR
Operands: NZ, e

ojol1 ojojojojoj2

< e-2 »

Description: This instruction provides for conditional branching to other segments of a program depending on

the results of a test on the Zero Flag. If the flag is equal to a ‘0’, the value of the displacement e is
added to the Program Counter (PC) and the next instruction is fetched from the location designated
by the new contents of the PC. The jump is measured from the address of the instruction opcode
and has a range of —126 to +129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the Zero Flag is equal to a ‘1’, the next instruction to be executed is taken from the location following
this instruction.

If the condition is met

M Cycles T States 4 MHz E.T.
3 12 (4, 3,5) 3.00

If the condition is not met:

M Cycles T States 4 MHzZ E.T.
2 7(4,3) 1.75
Condition Bits Affected:
None.

Example:

The Zero Flag is reset and it is required to jump back four locations from 480. The assembly lan-
guage statement is:

JRNZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction
47C « PC after jump
47D -
47E -
47F -

480 20

481 FA (2' complement - 6)

A5-164

. 280 CPU

@ 2ilan User's MANUAL
JP (HL)
Operation: pc « hL
Opcode: JP
Operands: (HL) “
1 1 1 o1 ogof1jiE

Description: The Program Counter (register pair PC) is loaded with the contents of the HL register pair. The next

instruction is fetched from the location designated by the new contents of the PC.

M Cycles T States 4 MHz E.T.
1 4 1.00
Condition Bits Affected:
None.

Example:

If the contents of the Program Counter are 1000H and the contents of the HL register pair are
4800H, after the execution of

JP (HL)

the contents of the Program Counter will be 4800H.

A5-165

N 2iILa5 UserS AOAL
JP (IX) | '
Operation: pc «IX

Opcode: JP

Operands: (1X)

Description: The Program Counter (register pair PC) is loaded with the contents of the IX Register Pair. The next
instruction is fetched from the location designated by the new contents of the PC.

M Cycles T States 4 MHz E.T.
2 8(4, 4) 2.00

Condition Bits Affected:
None.

Example: If the contents of the Program Counter are 1000H, and the contents of the IX Register Pair are
4800H, after the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

A5-166

N 205 UseRS MANA,
JP (IY)

Operation: PC « lY

Opcode: JP

Operands: (1Y) u

1 111101 Ojoj1]ES

Description: The Program Counter (register pair PC) is loaded with the contents of the 1Y Register Pair. The next
instruction is fetched from the location designated by the new contents of the PC.

M Cycles T States 4 MHz E.T.
2 8 (4, 4) 2.00
Condition Bits Affected:
None.
Example: If the contents of the Program Counter are 1000H and the contents of the |Y Register Pair are 4800H,

after the execution of
JP (1Y)

the contents of the Program Counter will be 4800H.

A5-167

Z80 CPU
N 2iLa5 USER's MANUAL
DJINZ, e
Operation: -
Opcode: DJNZ
Operands: e
ojJojojt1]ojojolofio
Description: This instruction is similar to the conditional jump instructions except that a register value is used to
determine branching. The B register is decremented and if a non zero value remains, the value of
the displacement e is added to the Program Counter (PC). The next instruction is fetched from the
location designated by the new contents of the PC. The jump is measured from the address of the
instruction opcode and has a range of —126 to +129 bytes. The assembler automatically adjusts for
the twice incremented PC.
If the result of decrementing leaves B with a zero value, the next instruction to be executed is taken from
" the location following this instruction.
ifB=0:
M Cycles T States 4 MHzZ E.T.
3 13(5.3, 5) 3.25
fB=0:
M Cycles T States 4 MHz E.T.
2 8 (5, 3) 2.00
Condition Bits Affected:
None.
Example: A typical software routine is used to demonstrate the use of the DJNZ instruction. This routine moves

a line from an input buffer (INBUF) to an output buffer (OUTBUF). It moves the bytes until it finds a
CR, or until it has moved 80 bytes, whichever occurs first.

LD B, 80 ;Set up counter
LD HL, Inbuf ;Set up pointers
LD DE, Outbuf
LOOP: LD A, (HL) :Get next byte from
;input buffer
LD (DE), A ;Store in output buffer
CP ODH Isita CR?
JR Z, DONE ;Yes finished
INC HL ;Increment pointers
INC DE
DJNZ LOOP ;.Loop back if 80
:bytes have not
;been moved
DONE:

A5-168

280 CPU
USER'S MANUAL

280°
INSTRUCTION DESCRIPTION

CALL AND RETURN GROUP

'A5-169

QA 2iLa5

Z80 CPU
USER's MANUAL

CALL nn

Operation:
Opcode:

Operands:

Description:

(SP-1) « PCH, (SP-2) « PCL,PC «nn
CALL

nn

A
E]
A

Note: The first of the two n operands in the assembled object code above is the least significant byte of
a 2-byte memory address.

The current contents of the Program Counter (PC) are pushed onto the top of the external memory
stack. The operands nn are then loaded into the PC to point to the address in memory where the
first opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction can
be used to return to the original program flow by popping the top of the stack back into the PC.) The
push is accomplished by first decrementing the current contents of the Stack Pointer (register pair
SP), loading the high-order byte of the PC contents into the memory address now pointed to by the
SP; then decrementing SP again, and loading the low-order byte of the PC contents into the top of
stack. Note: Because this is a 3-byte instruction, the Program Counter will have been incremented
by three before the push is executed.

M Cycles T States 4 MHz E.T.
5 17 (4,3,4,3,3) 4.25

Condition Bits Affected:

Example:

None.

If the contents of the Program Counter are 1A47H, the contents of the Stack Pointer are 3002H, and
memory locations have the contents:

Location Contents

1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the 3-byte instruction CD3521H will be fetched to the
CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory address 3001H will be 1AH, the contents
of address 3000H will be 4AH, the contents of the Stack Pointer will be 3000H, and the contents of the
Program Counter will be 2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

A5-170

280 CPU

N 2iLas USER'S MANUAL
CALL cc, nn

Operation: IF cc true: (sp-1) « PCH
(sp-2) « PCL, pc « nn

Opcode: CALL

Operands: cc, nn “

Note: The first of the two n operands in the assembled object code above is the least significant byte of
the 2-byte memory address.

Description: If condition cc is true, this instruction pushes the current contents of the Program Counter (PC) onto
the top of the external memory stack, then loads the operands nn into PC to point to the address in
memory where the first opcode of a subroutine is to be fetched. (At the end of the subroutine, a
RETurn instruction can be used to return to the original program flow by popping the top of the stack
back into PC.) If condition cc is false, the Program Counter is incremented as usual, and the pro-
gram continues with the next sequential instruction. The stack push is accomplished by first
decrementing the current contents of the Stack Pointer (SP), loading the high-order byte of the PC
contents into the memory address now pointed to by SP; then decrementing SP again, and loading
the low-order byte of the PC contents into the top of the stack. Note: Because this is a 3-byte
instruction, the Program Counter will have been incremented by three before the push is executed.
Condition cc is programmed as one of eight status which corresponds to condition bits in the Flag
Register (register F). These eight status are defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object code:

Relevant

cc Condition Flag

000 NZ non zero z

001 Z zero 4

010 NC non carry]

011 C carry 4

100 PO parity odd PN

101 PE parity even PN

110 P sign positive S

111 M sign negative S

If ccis true:

M Cycles T States 4 MHZ E.T.
5 17 (4,3,4,3,3) 4.25

If cc is false:

M Cycles T States 4 MHz E.T.
3 10 (4, 3,3) 2.50

A5-171

Q205

280 CPU
USER'S MANUAL

Condition Bits Affected:

Example:

None.

If the C Flag in the F register is reset, the contents of the Program Counter are 1A47H, the contents
of the Stack Pointer are 3002H, and memory locations have the contents:

Location Contents

1A47H D4H
1448H 35H
1A49H 21H

then if an instruction fetch sequence begins, the 3-byte instruction D43521H will be fetched to the
CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001H will be 1AH, the contents
of address 3000H will be 4AH, the contents of the Stack Pointer will be 3000H, and the contents of the
Program Counter will be 2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

A5-172

Z80 CPU

A 2iLa5 User's MANUAL
RET
Operation: pPCL « (sp), pCH « (sp+1)
Opcode: RET
1 1 0 o1 0 0 1 (0°]

Description: The byte at the memory location specified by the contents of the Stack Pointer (SP) register pair are
moved to the low order eight bits of the Program Counter (PC). The SP is now incremented and the
byte at the memory location specified by the new contents of this instruction will be fetched from the
memory location specified by the PC. This instruction is normally used to return to the main line
program at the completion of a routine entered by a CALL instruction.

M Cycles T States 4 MHz E.T.
3 10 (4, 3, 3) 2.50
Condition Bits Affected:
None.
Example: If the contents of the Program Counter are 3535H, the contents of the Stack Pointer are 2000H, the

contents of memory location 2000H are BSH, and the contents of memory location of memory
location 2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the contents of the Program Counter will be 18BSH,
pointing to the address of the next program opcode to be fetched.

A5-173

280 CPU
@ =N USER'S MANUAL
RET cc
Operation: If cc true: PCL « (sp), pCH « (sp+1)
Opcode: RET
Operands: cc
1] 1 |e cc:——> ofo]o
Description: If condition cc is true, the byte at the memory location specified by the contents of the Stack Pointer
(SP) register pair are moved to the low order eight bits of the Program Counter (PC). The SP is now
incremented and the byte at the memory location specified by the new contents of the SP are moved
to the high order eight bits of the PC. The SP is now incremented again. The next opcode following
this instruction will be fetched from the memory location specified by the PC. This instruction is
normally used to return to the main line program at the completion of a routine entered by a CALL
instruction. If condition cc is false, the PC is simply incremented as usual, and the program contin-
ues with the next sequential instruction. Condition cc is programmed as one of eight status which
correspond to condition bits in the Flag Register (register F). These eight status are defined in the
table below, which also specifies the corresponding cc bit fields in the assembled object code.
Relevant
cc Condition Flag
000 NZ non zero Y4
001 Z zero z
010 NC non carry C
011 C carry C
100 PO parity odd PN
101 PE parity even PN
110 P sign positive S
111 M sign negative S
If cc is true:
M Cycles T States 4 MHz E.T.
3 11 (5, 3, 3) 2.75
If cc is false:
M Cycles T States 4 MHZ E.T.
1 5 1.25
Condition Bits Affected:
None.
Example: If the S flag in the F register is set, the contents of the Program Counter are 3535H, the contents of

the Stack Pointer are 2000H, the contents of memory location 2000H are BSH, and the contents of
memory location 2001H are 18H, then after the execution of

RET M

the contents of the Stack Pointer Will be 2002H and the contents of the Program Counter will be 18B5H,
pointing to the address of the next program opcode to be fetched.

A5-174

280 CPU

N 2iLaB5 User's MANUAL
RETI
Operation: Return from Interrupt
Opcode: RETI
1 1 1 oj1 1 o] 1 ED
0 1 0 of1 1 of 1 4D
Description: This instruction is used at the end of a maskable interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET instruction)

2. To signali an 1/O device that the interrupt routine has been completed. The RETI instruction also
facilitates the nesting of interrupts allowing higher priority devices to temporarily suspend service
of lower priority service routines. Note: This instruction does not enable interrupts which were
disabled when the interrupt routine was entered. Before doing the RETI instruction, the enable
interrupt instruction (EI) should be executed to allow recognition of interrupts after completion of
the current service routine.

M Cycles T States 4 MHz E.T.

4 14 (4, 4,3,3) 3.50
Condition Bits Affected:

None.

Example: Given: Two interrupting devices, A and B connected in a daisy chain configuration with A having a

higher priority than B.

+

I—- IEl IEO IEl IEQ

/INT

B generates an interrupt and is acknowledged. (The interrupt enable out, IE0, of B goes low, blocking
any lower priority devices from interrupting while B is being serviced). Then A generates an interrupt,
suspending service of B. (The IEO of A goes ‘low’ indicating that a higher priority device is being
serviced). The A routine is completed and a RETI is issued resetting the IEO of A, allowing the B routine
tocontinue. Asecond RETlisissued on completion of the B routine and the IEQ of Bis reset (high) allowing
lower priority devices interrupt access.

A5-175

Z80 CPU
USER'S MANUAL

R 2iLa5
RETN
Operation: Return from non maskable interrupt
Opcode: RETN
1 1 1 of1 1 0y 1 ED
0 1jojojo 1 o 1 45
Description: This instruction is used at the end of a non-maskable interrupts service routine to restore the con-
tents of the Program Counter (PC) (analogous to the RET instruction). The state of IFF2 is copied
back into IFF1 so that maskable interrupts are enabled immediately following the RETN if they were
enabled before the non-maskable interrupt.
M Cycles T States 4 MHz E.T.
4 14 (4, 4, 3, 3) 3.50
Condition Bits Affected:
None.
Example: If the contents of the Stack Pointer are 1000H and the contents of the Program Counter are 1A45H

when a non maskable interrupt (NMI) signal is received, the CPU will ignore the next instruction and
will instead restart to memory address 0066H . That is, the current Program Counter contents of
1A45H will be pushed onto the external stack address of OFFFH and OFFEH, high order-byte first,
and 0066H will be loaded onto the Program Counter. That address begins an interrupt service
routine which ends with RETN instruction. Upon the execution of RETN, the former Program Counter
contents are popped off the external memory stack, low-order first, resulting in a Stack Pointer
contents again of 1000H. The program fiow continues where it left off with an opcode fetch to
address 1A45H order-byte first, and 0066H will be loaded onto the Program Counter. That address
begins an interrupt service routine which ends with RETN instruction. Upon the execution of RETN,
the former Program Counter contents are popped off the external memory stack, low-order first,
resulting in a Stack Pointer contents again of 1000H. The program flow continues where it left off
with an opcode fetch to address 1A45H.

A5-176

R 2ILa5 UsERS s
RSTp

Operation: (SP-1) « PCH, (SP-2) «~ PCL, PCH « 0, PCL « P
Opcode: RST

Operands: p “

Description: The current Program Counter (PC) contents are pushed onto the external memory stack, and the
page zero memory location given by operand p is loaded into the PC. Program execution then
begins with the opcode in the address now pointed to by PC. The push is performed by first
decrementing the contents of the Stack Pointer (SP), loading the high-order byte of PC into the
memory address now pointed to by SP, decrementing SP again, and loading the low-order byte of
PC into the address now pointed to by SP. The ReSTart instruction allows for a jump to one of eight
addresses as shown in the table below. The operand p is assembled into the object code using the
corresponding T state. Note: Since all addresses are in page zero of memory, the high order byte of
PC is loaded with 00H. The number selected from the “p” column of the table is loaded into the low-

order byte of PC.
p t
00H 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111
M Cycles T States 4 MHz E.T.
3 11(5,3,3) 275
Example: If the contents of the Program Counter are 15B3H, after the execution of

RST 18H (Object code 1101111)

the PC will contain 0018H, as the address of the next opcode to be fetched.

A5-177

280 CPU
@ 2ilan A User's MANUAL

280°
INSTRUCTION DESCRIPTION

INPUT AND OUTPUT GROUP

A5-179

R 2Aa5 Uit MAIAL
IN A, (n)

Operation: A« (n)
Opcode: IN

Operands: A, (n)

Description: The operand n is placed on the bottom half (AO through A7) of the address bus to select the 1/O
device at one of 256 possible ports. The contents of the Accumulator also appear on the top half
(A8 through A15) of the address bus at this time. Then one byte from the selected port is placed on
the data bus and written into the Accumulator (register A) in the CPU.

M Cycles T States 4 MHzZ E.T.
3 11(4,3,4) 2.75
Condition Bits Affected:
None.
Example: If the contents of the Accumulator are 23H and the byte 7BH is available at the peripheral device

mapped to I/O port address 01H, then after the execution of
IN A, (O1H)

the Accumulator will contain 7BH.

A5-180

D205 s ML
IN r (C)

Operation: r«(C)
Opcode: IN

Operands: r, (C)

ED

\4

Description: The contents of register C are placed on the bottom half (AQ through A7) of the address bus to
select the I/O device at one of 256 possible ports. The contents of Register B are placed on the top
half (A8 through A15) of the address bus at this time. Then one byte from the selected port is placed
on the data bus and written into register r in the CPU. Register r identifies any of the CPU registers
shown in the following table, which also shows the corresponding 3-bit “r” field for each. The flags
will be affected, checking the input data.

Register r
Flag 110 - Undefined opcode, set the flag
B 000
Cc 001
D 010
E 011
H 100
L 101
A 111
M Cycles T States 4 MHz E.T.
3 12(4,4,4) 3.00
Condition Bits Affected:
S: Setif input data is negative; reset otherwise
Z: Setif input data is zero; reset otherwise
H: Reset
P/V: Setif parity is even; reset otherwise
N: Reset
C: Not affected
Example: If the contents of register C are 07H, the contents of register B are 10H, and the byte 7BH is avail-

able at the peripheral device mapped to /O port address 07H, then after the execution of

IND, (C)

A5-181

280 CPU

@ 2ilan USER'S MANUAL
INI

Operation: (HL) <« (C),B&«B-1,HL«HL + 1

Opcode: INI

fjoj1jojojojtitjoq]a

Description: The contents of register C are placed on the bottom half (A0 through A7) of the address bus to
select the |/O device at one of 256 possible ports. Register B may be used as a byte counter, and its
contents are placed on the top half (A8 through A15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written to the CPU. The contents of the HL
register pair are then placed on the address bus and the input byte is written into the corresponding
location of memory. Finally the byte counter is decremented and register pair HL is incremented.

M Cycles T States 4 MHz E.T.
4 16 (4, 5, 3, 4) 4.00

Condition Bits Affected:
S: Unknown
Z: SetifB-1=0
reset otherwise

H: Unknown

PN: Unknown
N: Set
C: Not affected

Example: If the contents of register C are 07H, the contents of register B are 10H, the contents of the HL
register pair are 1000H, and the byte 7BH is available at the peripheral device mapped to /O port
address 07H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register pair will contain 1001H, and register B will
contain OFH.

A5-182

280 CPU
A 205 AL

INIR

Operation: (HL) « (C), B« B -1, HL « HL +1

Opcode: INIR

tjoj1p1jo0jo0fjt1jo]me

Description: The contents of register C are placed on the bottom half (AO through A7) of the address bus to select the
1/O device at one of 256 possible ports. Register B is used as a byte counter, and its contents are placed
on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is
placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the
address bus and the input byte is written into the corresponding location of memory. Then register pair
HL is incremented, the byte counter is decremented. If decrementing causes B to go to zero, the instruc-
tion is terminated. If B is not zero, the PC is decremented by two and the instruction repeated. Interrupts
will be recognized and two refresh cycles will be executed after each data transfer. Note that if B is set to
zero prior to instruction execution, 256 bytes of data will be input.

IfB#0:

M Cycles T States 4MHzET.
5 21(4,5,3, 4,5) 5.25

fB=0:

M Cycles T States 4 MHzZ E.T.
4 16 (4,5, 3, 4) 4.00

Condition Bits Affected:
S: Unknown
Z Set
H: Unknown
P/NV: Unknown
N: Set
C: Not affected

Example: If the contents of register C are 07H, the contents of register B are 03H, the contents of the HL
register pair are 1000H, and the following sequence of bytes are available at the peripheral device
mapped to /O port of address O7H:

51H
ASH
03H

then after the execution of
INIR

the HL register pair will contain 1003H, register B will contain zero, and memory locations will have
contents as follows:

Location Contents

1000H 51H
1001H ASH
1002H 03H

A5-183

. 280 CPU
N 2ILA5 User's MANUAL
IND
Operation: (HL) « (C),B«<B-1,HL«HL-1
Opcode: IND
1 1 1 011 1 0 13 ED
1 0 1 0]1 0 1 0l aA
Description: The contents of register C are placed on the bottom half (AQ through A7) of the address bus to

select the 1/O device at one of 256 possible ports. Register B may be used as a byte counter, and
its contents are placed on the top half (A8 through A15) of the address bus at this time. Then one
byte from the selected port is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into the corresponding
location of memory. Finally the byte counter and register pair HL are decremented.

M Cycles T States 4 MHzZ E.T.
4 16 (4,5, 3, 4) 4.00

Condition Bits Affected:

Example:

S: Unknown
Z: Set if B - 1= 0; reset otherwise
H: Unknown
PN: Unknown
N: Set
C: Not affected

If the contents of register C are 07H, the contents of register B are 10H, the contents of the HL
register pair are 1000H, and the byte 7BH is available at the peripheral device mapped to I/O port
address 07H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain OFFFH, and register B will
contain OFH.

A5-184

R2La5 Ut MAMAL
INDR

Operation: (HL) « (C), B« B1, HL « HL1

Opcode: INDR

1p111}]0}1 110] 1|ep “

1tjofp1]11}1 0]J]1]10]BA

Description: The contents of register C are placed on the bottom half (A0 through A7) of the address bus to select the
}/O device at one of 256 possible ports. Register B is used as a byte counter, and its contents are placed
on the top half (A8 through A15) of the address bus at this time. Then one byte from the selected port is
placed on the data bus and written to the CPU. The contents of the HL register pair are placed on the
address bus and the input byte is written into the corresponding location of memory. Then HL and the
byte counter are decremented. If decrementing causes B to go to zero, the instruction is terminated. If B
is not zero, the PC is decremented by two and the instruction repeated. Interrupts will be recognized and
two refresh cycles will be executed after each data transfer. Note that if B is set to zero prior to instruction
execution, 256 bytes of data will be input. *

fB=0

M Cycles T States 4 MHz E.T.
5 21(4,5,3,4,5) 5.25

B =0:

M Cycles T States 4 MHzZ E.T.
4 16 (4,5, 3, 4) 4.00

Condition Bits Affected:
S: Unknown

Z: Set

H: Unknown
PN: Unknown

N: Set

C: Not affected

Example: If the contents of register C are 07H, the contents of register B are 03H, the contents of the HL
register pair are 1000H, and the following sequence of bytes are available at the peripheral device
mapped to I/O port address O7H:

51H
AQH
03H

then after the execution of
INDR

the HL register pair will contain OFFDH, register B will contain zero, and memory locations will have
contents as follows:

Location Contents

OFFEH 03H
OFFFH A9H
1000H 51H

A5-185

280 CPU
@ <ILas User's' MANUAL

OUT (n), A

Operation: (nNeA
Opcode: ouT

Operands: (n), A

< n >

Description: The operand n is placed on the bottom half (AO through A7) of the address bus to select the I/O
device at one of 256 possible ports. The contents of the Accumulator (register A) also appear on the
top half (A8 through A15) of the address bus at this time. Then the byte contained in the Accumula-
tor is placed on the data bus and written into the selected peripheral device.

M Cycles T States 4 MHzZ E.T.
3 11(4,3,4) 2.75
Condition Bits Affected:
None.
Example: If the contents of the Accumulator are 23H the execution of then after the execution of
OUT (01H), A

the byte 23H will have been written to the peripheral device mapped to I/O port address 01H.

A5-186

A 2iLa5 User's MANUAL
OUT (C), r
Operation: Cler
Opcode: ouT
Operands: C),r
1 1 1jop1 ED
0 1 (——: r »
Description: The contents of register C are placed on the bottom half (A0 through A7) of the address bus to

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111
M Cycles T States
3 12(4,4, 4)
Condition Bits Affected:
None.

Example:

select the I/O device at one of 256 possible ports. The contents of Register B are placed on the top
half (A8 through A15) of the address bus at this time. Then the byte contained in register r is placed
on the data bus and written into the selected peripheral device. Register r identifies any of the CPU
registers shown in the following table, which also shows the corresponding three-bit “r” field for each

which appears in the assembled object code:

4 MHz E.T.
3.00

If the contents of register C are 01H and the contents of register D are 5AH, after the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to /O port address 01H.

A5-187

N 2iLa5

280 CPU
USER'S MANUAL

OuTI

Operation:

Opcode:

Description:

(C)e(HL),B&<B-1,HL«HL+1

OouTl

fjoj1jojojojpigijfas

The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (B) is decremented, the contents of register C are placed on the bottom half (AO through A7)
of the address bus to select the 1/O device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address
bus. The byte to be output is placed on the data bus and written into selected peripheral device.
Finally the register pair HL is incremented.

M Cycles T States 4 MHz E.T.
4 16 (4,5, 3, 4) 4.00

Condition Bits Affected:

Example:

S: Unknown
Z: Setif B-1=0; reset otherwise
H: Unknown
PN: Unknown
N: Set
C: Not affected

If the contents of register C are 07H, the contents of register B are 10H, the contents of the HL
register pair are 1000H, and the contents of memory address 1000H are 59H, then after thee execu-
tion of

OuTI

register B will contain OFH, the HL register pair will contain 1001H, and the byte 59H will have been
written to the peripheral device mapped to |/O port address 07H.

A5-188

QD 25 UseR' ot

OTIR

Operation: (C)e(HL),B«B-1,HL« HL+1

Opcode: OTIR

1 1 1j01q1 110§ 1})ED “

1 o] 1 1o jJo0]j1 1§ B3

Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (B) is decremented, the contents of register C are placed on the bottom half (A0 through A7)
of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address
bus at this time. Next the byte to be output is placed on the data bus and written into the selected
peripheral device. Then register pair HL is incremented. If the decremented B register is not zero,
the Program Counter (PC) is decremented by two and the instruction is repeated. If B has gone to
zero, the instruction is terminated. Interrupts will be recognized and two refresh cycles will be
executed after each data transfer. Note that if B is set to zero prior to instruction execution, the
instruction will output 256 bytes of data.

IfB=#0:
M Cycles T States 4 MHz E.T.
5 21(4,5,8,4,5) 5.25
IfB=0:
M Cycles T States 4 MHz E.T.
4 16 (4,5, 3, 4) 4.00
Condition Bits Affected:
S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

A5-189

A5-190

Q2La5

Example:

280 CPU
UsER's MANUAL

If the contents of register C are 07H, the contents of register B are 03H, the contents of the HL
register pair are 1000H, and memory locations have the following contents:

Location Contents

1000H 51H
1001H ASH
1002H 03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group of bytes will have
been written to the peripheral device mapped to |/O port address 07H in the following sequence:
51H
A9H
03H

@ 2iLans Ussn'smlw
OuUTD

Operation: (C)e(HL),Be«~B-1, HL& HL-1

Opcode: OuTD

1 1 1 o1 1 0 1) ED u

Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (B) is decremented, the contents of register C are placed on the bottom half (A0 through A7)
of the address bus to select the I/O device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address
bus at this time. Next the byte to be output is placed on the data bus and written into the selected
peripheral device. Finally the register pair HL is decremented.

M Cycles T States 4 MHz E.T.
4 16 (4,5, 3, 4) 4.00 .

Condition Bits Affected:

S: Unknown
Z: Setif B-1 =0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example: If the contents of register C are 07H, the contents of register B are 10H, the contents of the HL
register pair are 1000H, and the contents of memory location 1000H are 59H, after the execution of

OuTD

register B will contain OFH, the HL register pair will contain OFFFH, and the byte 59H will have been
written to the peripheral device mapped to 1/O port address 07H.

A5-191

280 CPU

@ 2ilan User's MANUAL
OTDR
Operation: (C)e~(HL),Be<~B-1,HL«HL-1
Opcode: OTDR
1 1 1 o1 1 0 1] ED
1 0 1 1 1 0 1 1§ BB
Description: The contents of the HL register pair are placed on the address bus to select a location in memory.
The byte contained in this memory location is temporarily stored in the CPU. Then, after the byte
counter (B) is decremented, the contents of register C are placed on the bottom half (AO through A7)
of the address bus to select the 1/O device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through A15) of the address
bus at this time. Next the byte to be output is placed on the data bus and written into the selected
peripheral device. Then register pair HL is decremented and if the decremented B register is not
zero, the Program Counter (PC) is decremented by two and the instruction is repeated. If B has
gone to zero, the instruction is terminated. Interrupts will be recognized and two refresh cycles will
be executed after each data transfer. Note that if B is set to zero prior to instruction execution, the
instruction will output 256 bytes of data.
IfB=0:
M Cycles T States 4 MHz E.T.
5 21(4,5,3,4,5) 5.25
IfB=0:
M Cycles T States 4 MHzZ E.T.
4 16 (4,5, 3, 4) 4.00
Condition Bits Affected:
S: Unknown
Z: Set
H: Unknown
P/N: Unknown
N: Set
C: Not affected

A5-192

280 CPU
@ 2ilan User's MANUAL

Example: If the contents of register C are 07H, the contents of register B are 03H, the contents of the HL

register pair are 1000H, and memory locations have the following contents:

Location Contents

OFFEH 51H
OFFFH ASH
1000H 03H
then after the execution of
OTDR

the HL register pair will contain OFFDH, register B will contain zero, and a group of bytes will have been
written to the peripheral device mapped to /O port address 07H in the following sequence:

03H
A9H
51H

A5-193

0N 2iLa5

CPU USER'S MANUAL

CHAPTER 6
INTERRUPT RESPONSE

6.0 INTRODUCTION

The purpose of an interrupt is to allow peripheral devices
to suspend CPU operation in an orderly manner and force
the CPU to start a peripheral service routine. Usually, this
service routine is involved with the exchange of data, or

status and control information, between the CPU and the
peripheral. Once the service routine is completed, the
CPU returns to the operation from which it was interrupted.

6.1 INTERRUPT ENABLE/DISABLE

The Z80 CPU hastwo interrupt inputs, a sofiware maskable
interrupt (/INT) and a non-maskable interrupt (/NMI). The
non-maskable interrupt can not be disabled by the pro-
grammer and will be accepted whenever a peripheral
device requests it. This interrupt is generally reserved for
very important functions that can be enabled or disabied
selectively by the programmer. This allows the program-
mer to disable the interrupt during periods where his
program has timing constraints that do not allow interrupt.
In the Z80 CPU, there is an interrupt enabile flip-flop (IFF)
that is set or reset by the programmer using the Enable
Interrupt (El) and Disable Interrupt (DI} instructions. When
the IFF is reset, an interrupt can not be accepted by the
CPU.

There are two enable flip-flops, IFF1 and IFF2.

Temporary storage location
for IFF1.

IFF1

Actually disables interrupts
from being accepted.

The state of IFF1 is used to inhibit interrupts while IFF2 is
used as a temporary storage location for IFF1.

Aresettothe CPU forces both the IFF1 and IFF2to the reset
state so that interrupts are disabled. They can then be
enabled at any time by an El instruction by the program-
mer. When an El instruction is executed, any pending
interrupt request is not accepted until after the instruction

following El has been executed. This singie instruction
delay is necessary when the following instruction is a
return instruction and interrupts must not be allowed untii
thereturn has been completed. The Elinstruction sets both
IFF1 and IFF2 to the enable state. When a maskable
interrupt is accepted by the CPU, both IFF1 and IFF2 are
automatically reset, inhibiting further interrupts until the
programmer wishes to issue a new El instruction. Note that
for all of the previous cases, IFF1 and IFF2 are always
equal.

The purpose of IFF2 is to save the status of IFF1 when a
non-maskable interrupt occurs. When a non-maskable
interrupt is accepted, IFF1 is reset to prevent further
interrupts until reenabled by the programmer. Thus, after
a non-maskable interrupt has been accepted, maskable
interrupts are disabled but the previous state of IFF1 has
been saved so that the complete state of the CPU just prior
to the non-maskable interrupt can be restored at any time.
When a Load Register A with Register | (LD A, I) instruction
or a Load Register A with Register R (LD A, R) instruction
is executed, the state of IFF2 is copied into the parity flag
where it can be tested or stored.

A second method of restoring the status of IFF1 is through
the execution of a Return From Non-Maskable Interrupt
(RETN) instruction. Since this instruction indicates that the
non-maskable interrupt service routine is complete, the
contents of IFF2 are now copied back into IFF1, so thatthe
status of IFF1 just prior to the acceptance of the non-
maskable interrupt will be restored automatically.

A6-1

Q205

Z80°® CPU
USER'S MANUAL

Table 6-1is a summary of the effect of different instructions
on the two enable flip-flops.

Table 6-1. Interrupt Enable/Disable Flip-Flops

Action IFF1 IFF2 Comments

CPU Reset 0 0 Maskable Interrupt. /INT Disabled
Dl Instruction Execution 0 0 Maskable /INT Disabled

El Instruction Execution 1 1 Maskable, /INT Enabled

LD A\l Instruction Execution . U IFF2 — Parity Fag

LD AR instruction Execution U] U IFF2 — Parity Flag

Accept /NMI 0 . Maskable Interrupt

RETN instruction Execution IFF2] IFF2 — IFF1 at completion of an

indicates no change routine.

6.2 CPU RESPONSE

6.2.1 Non-Maskable

A non-maskable interrupt is accepted at all times by the
CPU. When this occurs, the CPU ignores the next instruc-
tion that it fetches and instead does a restart to location
0066H. Thus, it behaves exactly as if it had recycled a
restart instruction but, it is to a location that is not one of the
eight software restart locations. A restart is merely a call to
a specific address in page 0 of memory.

The CPU can be programmed to respond to the maskable
interrupt in any one of three possible modes.

6.2.2 Mode 0

This mode s similar to the 8080A interrupt response mode.
With this mode, the interrupting device can place any
instruction on the data bus and the CPU executes it. Thus,
the interrupting device provides the next instruction to be
executed. Often this will be a restart instruction since the
interrupting device only need supply a single byte instruc-
tion. Alternatively, any other instruction such as a 3-byte
call to any location in memory could be executed.

The number of clock cycles necessary to execute this
instruction is two more than the normal number for the
instruction. This occurs since the CPU automatically adds
two wait states to an interrupt response cycle to allow
sufficient time to implement an external daisy chain for
priority control. Figures 3-6 and 3-7 illustrate the detailed
timing for an interrupt response. After the application of
/RESET, the CPU will automatically enter interrupt Mode 0.

6.2.3 Mode 1

When this mode has been selected by the programmer,
the CPU responds to an interrupt by executing a restart to
location 0038H. Thus, the response is identical to that for
a non-maskable interrupt except that the call location is
0038H instead of 0066H. The number of cycles required to
complete the restart instruction is two more than normal
due to the two added wait states.

A6-2

N 2La5

Z80® CPU
USER'S MANUAL

6.2.4 Mode 2

This mode is the most powerful interrupt response mode.
With a single 8-bit byte from the user, an indirect call can
be made to any memory location.

With this mode the programmer maintains a table of 16-bit
starting addresses for every interrupt service routine. This
table may be located anywhere in memory. When an
interrupt is accepted, a 16-bit pointer must be formed to
obtain the desired interrupt service routine starting ad-
dress from the table. The upper eight bits of this pointer is
formed from the contents of the | register. The | register
must have been previously loaded with the desired value
by the programmer, i.e., LD |, A. Note that a CPU reset
clears the | register so that itis initialized to zero. The lower
eight bits of the pointer must be supplied by the interrupt-
ing device. Actually, only seven bits are required from the
interrupting device as the least significant, bit must be a
zero. This is required since the pointer is used to get two
adjacent bytes to form a complete 16-bit service routine
starting address and the addresses must always start in
even locations.

Desired Starting Address

Pointed to by:
Interrupt
mﬁz Low Order Register | Seven Bils From |
Starting High Order Contents Peripheral
Address
Table

The first byte in the table is the least significant (low order)
portion of the address. The programmer must obviously fill
this table in with the desired addresses before any inter-
rupts are to be accepted.

Note that this table can be changed at any time by the
programmer (if it is stored in Read/Write Memory) to allow
different peripherals to be serviced by different service
routines.

Once the interrupting devices supplies the lower portion of
the pointer, the CPU automatically pushes the program
counter onto the stack, obtains the starting address from
the table, and does a jump to this address. This mode of
response requires 19 clock periods to complete (seven to
fetch the lower eight bits from the interrupting device, six
to save the program counter, and six to obtain the jump
address).

Note that the Z80 peripheral devices include a daisy chain
priority interrupt structure that automatically supplies the
programmed vector to the CPU during interrupt acknowl-
edge. Refer to the Z80 PIO, Z80 SIO, and Z80 CTC
manuals for details.

A6-3

@ Zim CPU USER'S MANUAL

CHAPTER 7

HARDWARE IMPLEMENTATION u
EXAMPLES
7.0 INTRODUCTION: MINIMUM SYSTEM
This chapter is intended to serve as a basic introduction to
implementing systems with the Z80 CPU. Figure 7-1is a
diagram of a very simple Z80 system. Any Z80 system
must include the following elements:
W 5V Power Supply
B Oscillator
B Memory Devices
B /O Circuits
B CPU
+5V
0sc Power Supply
ICLK l l
) A9-AQ +5V GND
Address
U IN
/MREQ
ICE1 BHKO?A“
fRD ICE2
Data B g?}‘?'
al us
w K
+5V CPU ~
/CLK
/RESET /IORQ ‘ l
1 1 \V
/CE /RD
T /IORQ BiA A0
/M1 280~PIO
MU pota potg O J«—Al
Output Input
Data Data

Figure 7-1. Minimum Z80 Computer System

A7-1

R 215

280® CPU
USER'S MANUAL

Since the Z80 CPU requires only a single 5V supply, most
small systems can be implemented using only this single

supply.

The external memory can be any mixture of standard RAM,
ROM, or PROM. In this simple example, we have shown a
single 8K bit ROM (1 Kbytes) being utilized as the entire
memory system. For this example we have assumed that
the Z80 internal register configuration contains sufficient
Read/Write storage so that external RAM memory is not
required.

Every computer system requires 1/O circuits to allow it to
interface to the real world. In this simple example, it is
assumed that the output is an 8-bit control vector and the
input is an 8-bit status word. The input data couid be gated
onto the data bus using any standard tri-state driver while
the output data could be latched with any type of standard
TTL latch. For this exampie we have used a Z80 PIO for the
1/O circuit. This single circuit attaches to the data bus as
shown and provides the required 16 bits of TTL compatible
1/0. (Refer to the Z80 PIO manual for details on the opera-
tion of this circuit.) Notice in this example that with only three
LSI circuits, a simple oscillator and a singe 5V power
supply, a powerful computer has been implemented.

7.1 ADDING RAM

Most computer systems require some amount of external
Read/Write memory for data storage and to implement a
stack. Figure 7-2illustrates how 256 bytes of static memory
canbeadded to the previous example. Inthis example, the
memory space is assumed to be organized as follows:

In this diagram the address space is described in hexa-
decimal notation. For this example address bit A10 sepa-
rates the ROM space from the RAM space so that it can be
used for the chip select function. For larger amounts of
external ROM or RAM, a simple TTL decoder will be
required to form the chip selects.

Address
1 Kbyte 0000H
ROM__| osFFH
256 Bytes | 0400H
RAM
04FFH
Address Bus
A7-A0 AT-A0 AT-A0
MREQ+RD [/cE+ R0 op ICE1|/MRQ /RD | op ICE1|/MRQ
;‘K:A 8 256%4 %?3;4
A0 Jce o L L cE2 |0 MWR] oy CE2 [A10.
D7-D0 03-D0 D7-D4
Data Bus

Figure 7-2 ROM and RAM Implementation

A7-2

QA 21L.05

280® CPU
USER'S MANUAL

7.2 MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow
memories to reduce costs. The /WAIT line on the CPU
allows the Z80 to operate with any speed memory. By
referring back to Chapter A3, you notice that the memory
access time requirements are most severe during the /M1
cycleinstruction fetch. All other memory accesses have an
additional one half clock cycle to be completed. For this

reason itmay be desirable in some applicationsto add one
wait state to the /M1 cycle so that slower memories can be
used. Figure 7-3 is an example of a simple circuit that will
accomplish this task. This circuit can be changed to add
a single wait state to any memory access as shown in
Figure 7-4.

Figure 7-3. Adding One Wait State to an M1 Cycle

AT
+1v
S g
L) Q) Q
LK 7474 7474
c Q c e
R 1 s
+5V +5V
J:sv l:,sv 7400
MRE s s
D Q D Q
74 4
foK c oy - c Q
R

R
T+5V T+5V

MWAIT
T T2 Tw
ICLK
MREQ \
MAIT \ ’

Figure 7-4. Adding One Wait State to Any Memory Cycle

A7-3

N 2105

Z80® CPU
USER'S MANUAL

7.3 INTERFACING DYNAMIC MEMORIES

This section is intended to serve as a brief introduction to
interfacing dynamic memories. Each individual dynamic
RAM has varying specifications that require minor modifi-
cationstothe description given here and no attempt will be
made in this document to give details for any particular
RAM. Separate application notes are available showing
how the Z80 CPU can be interfaced to most popular
dynamic RAM.

Figure 7-5 illustrates the logic necessary to interface 8
Kbytes of dynamic RAM using 18-pin 4K dynamic memo-
ries. This figure assumes that the RAMs are the only
memory in the system so that A12 is used to select
between the two pages of memory. During refresh time, all
memories in the system must be read. The CPU provides
the proper refresh address on lines AQ through A6. To add
additional memory to the system it is necessary to replace
only the two gates that operate on A12 with a decoder that
operates on all required address bits. For larger systems,
buffering for the address and data bus is also generally
required.

/RFSH d
== { —
e —— \
A2 q)
S—
A1-A0 CE
— 4K x 8 RAM Array
RW
Page 1
~ D7-D0 Data Bus (1000 to 1FFF)
<
CE
- | —> 4K x 8 RAM Array
RW
Page 0
(0000 to OFFF)

Figure 7-5. Interfacing Dynamic RAMs

A7-4

N 2iLa5

CPU USER'S MANUAL

CHAPTER 8

SOFTWARE IMPLEMENTATION
EXAMPLES

8.0 INTRODUCTION: SOFTWARE FEATURES

The Z80 instruction set provides the user with a large and
flexible repertoire of operations with which to formulate
control of the Z80 CPU.

The main alternate and index registers can be usedto hold
the arguments of arithmetic and logical operations, or to
form memory addresses, or as fast-access storage for
frequently used data.

Information can be moved directly from register to regis-
ter, from memory to memory, from memory to registers, or
from registers to memory. In addition, register contents
and register/memory contents can be exchanged without
using temporary storage. In particular, the contents of
mainand alternate registers can be completely exchanged
by executing only two instructions, EX and EXX. This
register exchange procedure can be used to separate the
set of working registers between different logical proce-
dures or to expand the set of available registers in a single
procedure.

Storage and retrieval of data between pairs of registers
and memory can be controlled on a last-in first-out basis
through PUSH and POP instructions which utilize a special
stack pointer register, SP. This stack register is available .
both to manipulate data and to automatically store and
retrieve addresses for subroutine linkage. When a subrou-
tine is called, for example, the address following the CALL
instruction is placed on the top of the push-down stack
pointed to by SP. When a subroutine returns to the calling

routine, the address on the top of the stack is used to set
the program counter for the address of the next instruction.
The stack pointer is adjusted automatically to reflect the
current “top” stack position during PUSH, POP, CALL, and
RET instructions. This stack mechanism allows pushdown
data stacks and subroutine calls to be nested to any
practical depth because the stack area can potentially be
as large as memory space.

The sequence of instruction execution can be controlled by
six different flags (carry, zero, sign, parity/overflow, add/
subtract, half-carry) which reflect the results of arithmetic,

‘logical, shift, and compare instructions. After the execution of

aninstructionwhichsetsaflag, that flag can be used to control
a conditional jump or return instruction. These instructions
provide logical control following the manipulation of single bit,
8-bit byte (or) 16-bit data quantities.

A full set of logical operations, including AND, OR, XOR
(exclusive-OR), CPL (NOR), and NEG (two's complement)
are available for Boolean operations between the accumu-
lator and all other 8-bit registers, memory locations, or
immediate operands.

In addition, a full set of arithmetic and logical shifts in both
directions are available which operate on the contents of all 8-
bit primary registers or directly on any memory location. The
carry flag can be included or simply set by these shift
instructions to provide both the testing of shift results and to
link register/register or register/memory shift operations.

A8-1

QD 2iLa5 Usests Hain,
8.1 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS

A. Assume that a string of data in memory starting at
location “DATA” is to be moved into another area of
memory starting at location “BUFFER" and that the
string length is 737 bytes. This operation can be
accomplished as follows:

LD HL , DATA ;START ADDRESS OF DATA STRING

LD DE , BUFFER ;START ADDRESS OF TARGET BUFFER

LD BC , 737 ;LENGTH OF DATA STRING

LDIR ;MOVE STRING - TRANSFER MEMORY POINTED TO

;BY HL INTO MEMORY LOCATION POINTED TO BY DE
;INCREMENT HL AND DE, DECREMENT BC
;PROCESS UNTIL BC = 0.

Eleven bytes are required for this operation and each byte of data is moved in 21 clock cycles.

B. Assume that a string in memory starting at location (used as string delimiter) is found. Also assume that
“DATA" is to be moved into another area of memory . the maximum string length is 132 characters. The
starting at location “BUFFER" untilan ASCII $ character operation can be performed as follows:

LD HL , DATA ;STARTING ADDRESS OF DATA STRING
LD DE , BUFFER ;STARTING ADDRESS OF TARGET BUFFER
LD BC , 132 ;MAXIMUM STRING LENGTH
LD A ¥ ;STRING DELIMITER CODE
LOOP:CP (HL) ;COMPARE MEMORY CONTENTS WITH DELIMITER
JR Z , END-$;GO TO END IF CHARACTERS EQUAL
LDI ;MOVE CHARACTER (HL) to (DE)
;INCREMENT HL AND DE, DECREMENT BC
JP PE , LOOP ;GO TO “LOOP” IF MORE CHARACTERS
END: ;OTHERWISE, FALL THROUGH

;NOTE: PNV FLAG IS USED
;TO INDICATE THAT REGISTER BC WAS
; DECREMENTED TO ZERO.

Nineteen bytes are required for this operation.

A8-2

: 280° CPU
2iLdL USER'S MANUAL

Assumethat a 16-digit decimalnumberrepresentedin
packed BCD format (two BCD digits/byte) has to be
shifted as shown inthe Figure 8-1in order tomechanize
BCD multiplication or division. The operation can be
accomplished as follows:

S)

LD HL , DATA ;ADDRESS OF FIRST BYTE
LD B, COUNT ;SHIFT COUNT
XOR A ;CLEAR ACCUMULATOR
ROTAT: RLD ;ROTATE LEFT LOW ORDER DIGIT IN ACC
;WITH DIGITS IN (HL)
INC HL ;ADVANCE MEMORY POINTER.
DJNZ ROTAT — $;DECREMENT B AND GO TO ROTAT IF

;B IS NOT ZERO, OTHERWISE FALL THROUGH

Eleven bytes are requited for this operation.

TN

Figure 8-1. Shifting of BCD Digits/Bytes

D. Assume that one number is to be subtracted from
another and that they are both in packed BCD format,
that they are of equal but varying length, and that the
resultistobe stored in the location of the minuend. The
operation can be accomplished as follows:

LD HL , ARG1 ;ADDRESS OF MINUEND
LD DE , ARG2 ;ADDRESS OF SUBTRAHEND
LD B , LENGTH ;LENGTH OF TWO ARGUMENTS
AND A ;CLEAR CARRY FLAG
SUBDEC: LD A , (DE) ;SUBTRAHEND TO ACC
SBC A | (HL) ;SUBTRACT (HL) FROM ACC
DAA ;ADJUST RESULT TO DECIMAL CODED VALUE
LD (HL), A ;STORE RESULT
INC HL ;ADVANCE MEMORY POINTERS
INC DE
DJNZ SUBDEC — $;DECREMENT B AND GO TO “SUBDEC" IF B

;NOT ZERO, OTHERWISE FALL THROUGH

Seventeen bytes are required for this operation.

A8-3

D21La5 ~ Users HainL
8.2 EXAMPLES OF PROGRAMMING TASKS

A. Thefollowing program sorts an array of numbers each
in the range (0, 255) into ascending order using a
standard exchange sorting algorithm.

01/22/76 11:14:37 BUBBLE LISTING PAGE 1
LOC OBJCODE STMT SOURCE STATEMENT

1 ; STANDARD EXCHANGE (BUBBLE) SORT ROUTINE

2 ;

3 ; AT ENTRY: HL CONTAINS ADDRESS OF DATA

4 C CONTAINS NUMBER OF ELEMENTS TO BE SORTED

5 (1<C<256)

6

7 ; AT EXIT: DATA SORTED IN ASCENDING ORDER

8 .

9 USE OF REGISTERS

10

1 REGISTER CONTENTS

12 .

13 A TEMPORARY STORAGE FOR CALCULATIONS

14 B COUNTER FOR DATA ARRAY

15 C LENGTH OF DATA ARRAY

16 D FIRST ELEMENT IN COMPARISON

17 E SECOND ELEMENT IN COMPARISON

18 H FLAG TO INDICATE EXCHANGE

19 L UNUSED

20 IX POINTER INTO DATA ARRAY

21 Y UNUSED

22
0000 222600 23 SORT: LD (DATA), HL ; SAVE DATA ADDRESS
0003 CB84 24 LOOP: RES FLAG,H ; INITIALIZE EXCHANGE FLAG
0005 41 25 LD B,C ; INITIALIZE LENGTH COUNTER
0006 05 26 DEC B ; ADJUST FOR TESTING
0007 DD2A2600 27 LD IX, (DATA) ; INITIALIZE ARRAY POINTER
000B DD7E00 28 NEXT: LD A, (IX) ; FIRST ELEMENT IN COMPARISON
000E 57 29 LD D A ; TEMPORARY STORAGE FOR ELEMENT
O00F DDS5EO1 30 LD E, (IX+1) ; SECOND ELEMENT IN COMPARISON
0012 93 31 SUB E ; COMPARISON FIRST TO SECOND
0013 3008 32 JR PC, NOEX-$; IF FIRST > SECOND, NO JUMP
0015 DD7300 33 LD (IX), E ; EXCHANGE ARRAY ELEMENTS
0018 DD7201 34 LD (IX+1), D
001B CBC4 35 SET FLAG,H ; RECORD EXCHANGE OCCURRED
0010 DD23 36 NOEX: INC IX ; POINT TO NEXT DATA ELEMENT
001F 10EA 37 DJNZ NEXT-$; COUNT NUMBER OF COMPARISONS

38 : REPEAT IF MORE DATA PAIRS
0021 CB44 39 BIT FLAG, H ; DETERMINE IF EXCHANGE OCCURRED
0023 20DE 40 JR NZ, LOOP-$; CONTINUE IF DATA UNSORTED
0025 C9 41 RET ; OTHERWISE, EXIT

42
0026 43 FLAG: EQU O ; DESIGNATION OF FLAG BIT
0026 44 DATA: DEFS 2 ; STORAGE FOR DATA ADDRESS

45 END

A8-4

H 280® CPU
@ <ILdL USER'S MANUAL
B. The following program multiplies two unsigned 16 bit

integers and leaves the result in the HL register pair.

01/22/76 11:32:36 MULTIPLY LISTING PAGE 1
LOC OBJCODE STMT SOURCE STATEMENT

0000 1 MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.

2 ; ON ENTRANCE: MULTIPLIER IN DE.

3 ; MULTIPLICAND IN HL.

4

5 ; ON EXIT: RESULT IN HL.

6 ;

7 ; REGISTER USES:

8

9 R

10 H HIGH ORDER PARTIAL RESULT

i1 L LOW ORDER PARTIAL RESULT

12 D HIGH ORDER MULTIPLICAND

13 E LOW ORDER MULTIPLICAND

14 B COUNTER FOR NUMBER OF SHIFTS

15 C HIGH ORDER BITS OF MULTIPLIER

16 ‘ A LOW ORDER BITS OF MULTIPLIER

17
0000 0610 18 LD B, 16; NUMBER OF BITS-INITIALIZE
0002 4A 19 LD C,D; MOVE MULTIPLIER
0003 7B 20 LD A E;
0004 EB 21 EX DE, HL; MOVE MULTIPLICAND
0005 210000 22 LD HL, O; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP: SRL C; SHIFT MULTIPLIER RIGHT
000A IF 24 RRA LEAST SIGNIFICANT BIT IS

25 IN CARRY.
000B 3001 26 JR NC, NOADD-$; IF NO CARRY, SKIP THE ADD.
000D 19 27 ADD HL, DE; ELSE ADD MULTIPLICAND TO

28 PARTIAL RESULT.
0O00E EB 29 NOADD: EX DE, HL; SHIFT MULTIPLICAND LEFT
000F 29 30 ADD HL, HL; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DE, HL;
0011 10F5 32 DJNZ MLOOP-$; REPEAT UNTIL NO MORE BITS.
0013 C9 33 RET;

34 END;

A8-5

N 2iLa5

CPU USER'S MANUAL

INDEX

280 CPU
INSTRUCTION SET

Alphabetical
Assembly
Neumonic

ADC HL, ss
ADCA, s
ADD A, n
ADDA, r

ADD A, (HL)
ADD A, (IX+d)
ADD A, (IY+d)
ADD HL, ss
ADD IX, pp
ADDIY, rr
AND s

BIT b, (HL)
BIT b, (IX+d)
BIT b, (IY+d)
BITb, r

CALL cc, nn
CALL nn
CCF

CPs

CPD

CPDR

CPI

CPIR

CPL

DAA
DEC m
DEC IX
DEC IY
DEC ss
DI
DJNZ e

El

EX (SP), HL
EX (SP), IX
EX (SP), IY
EX AF, AF’
EX DE, HL
EXX

Operation

Add with Carry Register pair 810 HLccoiiiiiirieiii e
Add with carry operand s to Accumuiator
Add value N 10 ACCUMUIALOTiiiieiiiiiiit ittt eea e e eeeeeas
Add Register r t0 ACCUMUIATONcoiiiiiiiicicc e e
Add iocation (HL) to Accumuiator

Add location (IX+d) to Accumulator
Add location (IY+d) to Accumulator
Add Register Pair SS 10 HLocooiiiiiiiiii e
Add Register pair pp to IX
Add Register pair rrto 1Y ..o,

Logical ‘AND’ of operand s and ACCUMUIALONcuvirieiciiiece e A5-79

Test BIT b of I0Cation (HL) c..ooooveiiiiiiiec e
Test BIT b of location (IX+d)
Test BIT b of location (1Y+d)
Test BIT b Of REGISIEN I..vi i e e

Call subroutine at location nn if condition CCiStrueoooovvieiiiciiiiiieice e,
Unconditional call subroutine at location nncccccoeeeeveiie

Complement carry flagccooceevevrennenne
Compare operand s with Accumulator
Compare location (HL) and Accumulator decrement HL and BC
Compare location (HL) and Accumulator decrement HL and BC, repeat until BC = 0..A5-65

Compare location (HL) and Accumuiator increment HL and decrement BC A5-62
Compare location (HL) and Accumuiator increment HL, decrement BC

repeat UNtil BC = 0 ..ottt A5-63
Complement AcCUmMUIALOr (1'S COMP) w.viveerieiiieieiieiieeie ettt e e e A5-96

Decimal adjust ACCUMUIALONcccoiiiieiiiie ettt bbb
Decrement operand m
Decrement IX
Decrement IY
Decrement Register pair ss............
Disable interruptscoovvvinieeiiniinienee.
Decrement B and Jump relative if B# 0

ENable INTEITUDESooiiiiiciec e e e
Exchange the location (SP) and HL
Exchange the location (SP) and IX........
Exchange the location (SP) and IY
Exchange the contents of AF and AF’ ..
Exchange the contents of DE @ndcccccoiiiievievinii ettt e

Exchange the contents of BC, DE, HL with contents of BC’, DE’, HL' respectively A5-52

- @

@ 2L anB Usen%wmﬁlm
HALT HALT (wait for interrupt O FESEE)cccviiiiiiiie ettt A5-101
IMO Set INterTUPE MOAE O ..ovveeecieceecen et ettt saeerte b e st e sareereseees
M1 Setinterrupt MOAE T ...t re et enes
IM 2 Set interrupt mode 2.........cocueiiieiiiii e
INA, (n) Load the Accumulator with input from device n
INT, (C) Load the Register r with input from device (C)cccoevvveeciieiiicececeee e
INC (HL) Increment 10CatION (HL)coviiiiiiieiee ettt s
INC IX Increment IX ..o,
INC (IX+d) Increment location (IX+d).....c...cccevvverenen.
INC IY Increment 1Ycocovieiiennerreree e
INC (IY+d) Increment location (IY+d)......c..ccoceenennennee.
INCr Increment Register r.......ccocoevvecivincnnne
INC ss Increment ReGISter Pair S8c.ccoivvviriiiieniiiinie et
IND Load location (HL) with input from port (C), decrement HLand Bccccevevvennennn. A5-184
INDR Load location (HL) with input from port (C),

decrement HL and decrement B, repeat until B = 0cccccceveninininininniicene A5-185
INI Load location (HL) with input from port (C); and increment HL and decrement B A5-182
INIR Load location (HL) with input from port (C),

increment HL and decrement B, repeat until B =0.........cccoovvviiiiiiiiiiieniiiie e A5-183
JP (HL) Unconditional JUMP t0 (HL)oooviiiiiiiieicciice e A5-165
JP (IX) Unconditional Jump to (IX)
JP (1Y) Unconditional Jump to (1Y)
JP cc, nn Jump to location nn if coNdition CC IS trUEccceiiiiiiiiii e A5-159
JP nn Unconditional jump to location nn
JRC, e Jump relative to PC+e if carry = 1
JRe Unconditional Jump relative 10 PC + €.......ccvivviiiiiiiiiiiesic e nea
JRNC,e - Jump relative to PC + @if Carry = 0....o..oooiiiiiii i
JRNZ e Jump relative to PC + e if non zero (Z = 0)
JRZ e Jump relative to PC + €f ZEIro (Z = 1) cvevviiieiee e
LD A, (BC) Load Accumulator with location (BC)cccueiiriiiiiienciiie e A5-17
LD A, (DE) Load Accumulator with location (DE) .
LDA, I Load Accumulator with I...........cccoceiis .
LD A, (nn) Load Accumulator with [0CatION NNccveviiieieiie e e s err s
LDAR Load ACC With REGISEEr Rcoiiiiiiiiiiie ettt sttt st s
LD (BC), A Load location (BC) with AccumuiatorA5-20
LD (DE), A Load location (DE) with AccumulatorA5-21
LD (HL), n Load location (HL) with value n..................A5-14
LD dd, nn Load Register pair dd with value nnA5-28
LD dd, (nn) Load Register pair dd with location (nn)AB-32
LD HL, (nn) Load HL with location (NN)ccccooviiriiniiiiee eAB-31
LD (HL), r Load location (HL) with Register r...........covvveviveniinineinre i ...AB-11
LDILA Load | With ACCUMUIALOTccveveririeriiiiie eA5-25
LD IX, nn Load IX with value nn ettt rh ettt At et e Re e e ete e et e e e Rt e et e et e et e e nnteenneeeres AB-29
LD IX, (nn) Load IX With 10CaLHON (NNooiiiii it A5-33
LD (IX+d), n Load location (IX+d) With VaIUE N ..c..ooiiiiiiiiise e s A5-15
LD (IX+d), r Load location (IX+d) With ReGISter I'.........coiiiiiiiiie e A5-12
LD Y, nn Load IY With ValUB NN ..o ens A5-30
LD 1Y, (nn) Load Y With 10Cation (MN)ccuieiiieieceeeee et ssaeeneanes A5-34
LD (IY+d), n Load location (IY+d) With ValUE N.........ccceiiiiiiiieiecece e e A5-16
LD (IY+d), r Load location (IY+d) With REGISIEr I'.....ccvevviieieiiiriiceiere e A5-13
LD (nn), A Load location (nn) with ACCUMUIALONcocoiriiiiiii et s A5-22
LD (nn), dd Load location (nn) with Register pair ddcccovovvrininienieie e e A5-36

Al-2

®
Q2105 st Maand
LD (nn), HL Load location (NN) With HLccoiiviiie ittt A5-35
LD (nn), IX Load location (NN) WIth IX ..ot e e A5-37
LD (nn), IY Load location (NN) WIth 1Yeoiiiiiieiee e A5-38
LDR, A Load R With ACCUMUIALOToiiiiiiiiiiiiiescst ettt e sve e s r et A5-26
LD, (HL) Load Register r with 10Cation (HL)cocoiieiiiniiiienie it A5-8
LD r, (IX+d) Load Register r with [0cation (IX+d)ccveririiiininnicses e e A5-9

LD, (IY+d)
LDr,n
LD

LD SP, HL
LD SP, IX
LD SP, IY
LDD

LDDR

LDI
LDIR

NEG
NOP

ORs
OTDR
OTIR

OUT (C), r
OUT (n), A
OuUTD
ouTI

POP IX
POP IY
POP qq
PUSH IX
PUSH IY
PUSH qq

RES b, m
RET

RET cc
RETI

RETN
RLm

RLA

RLC (HL)
RLC (IX+d)
RLC (IY+d)
RLCr
RLCA

RLD

RRm

RRA

RRC m
RRCA
RRD

RST p

Load Register r with location (IY+d)cccoreiiiiiiieeece e A5-10
Load Register r With VaIUE Nooiiiiie e A5-7
Load Reg r With REGISIET I’viiiiii e e e et A5-6
Load SP WIth HLoviiiiiiieieiiet ettt e et ne s A5-39
Load SP WIth IX ..ot et aeas AS5-40
Load SP WIth 1Y ..o e s A5-41
Load location (DE) with location (HL), decrement DE, HLand BC............c.cccocoeveennne.. A5-59
Load location (DE) with location (HL), decrement DE, HL and BC;

repeat UNtil BC = 0 ...eviiiiiicic ittt b A5-60
Load location (DE) with location (HL), increment DE, HL, decrementBC A5-56
Load location (DE) with location (HL), increment DE, HL, decrement
BC and repeat Until BC = 0 ..ottt e A5-57
Negate Accumulator (two's COMPIEMENL)ceiiiviiiiiiiiiriiii e e A5-97
INO OPEIALIONcviiivieiiii ettt b e s te e st e st e s re et e sbaesbe e bessrsteeabeestserrees A5-100
Logical ‘OR’ of operand s and ACCUMUIALONcccoveiiiniiiiiiecit e A5-81
Load output port (C) with location (HL), decrement HL and B, repeat untilB =0 A5-192
Load output port (C) with location (HL), increment HL, decrement B,

repeat UNH B = 0 ..ot b e ebe e ae e
Load output port (C) with Register r
Load output port (n) With ACCUMUIALOTcceriiiieiee i A5-186
Load output port (C) with location (HL), decrement HL and Bcccocoeeviiiriinnnne A5-191
Load output port (C) with location (HL), increment HL and decrement B A5-188
Load IX With top Of STACKceiiiiii e

Load Y With t0p Of SEACKcccviriiiici e e
Load Register pair qq with top of stack ...
Load IX onto stack........cccvevveeieniiiriiennn
Load 1Y onto Stack.........cccevevieiinieiciineicceceiee e
Load Register pair qq onto stack ...

Reset Bit b Of OPErand Mcciiiiiiiieiiiiie ettt A5-154
Return from SUBTOULINGEcooiiiiiiiit e s A5-173
Return from subroutine if condition CC IS truec.ceoveieiiriiriiiiiie e A5-174
REtUrn from INEEITUDEccviiiiiiiiieee sttt ettt st e nans A5-175
Return from non maskable interrupt ...t e A5-176
Rotate left through carry operand m ... A5-128
Rotate left Accumulator through carryccceceeenene ..A5-121
Rotate location (HL) left circularcccooevivveverieiinen.

Rotate location (IX+d) left CIrCUIar.........ccevcviriviiicir e

Rotate location (IY+d) left circular..........c.ccocevevvnvinnnne

Rotate Register r left circular........ccooovvevivieieiiie

Rotate left circular Accumulatorocoeiiiincicienee e

Rotate digit left and right between Accumulator and location (HL) ...

Rotate right through carry operand m........ccccocveneeieinneie e A5-132
Rotate right Acc through carryccccoovveeieiininennen A5-123
Rotate operand m right circularccccooevvvniviinene A5-130
Rotate right circular AcCumulator...........ccovvvveieieererienn i A5-122
Rotate digit right and left between Accumulator and location (HL) ...AB-142
Restart 10 [0CatHON P ...ooevieieiie et e e A5-177

Al-3

- Z40° CPU
AN 205 User's MANUAL

SBCA s Subtract operand s from Accumulator with carry

SBC HL, ss Subtract Register pair ss from HL with carry ...,

SCF Carry flag (€ = 1) croieieeii e e ettt se et sttt st sae s e
SET b, (HL) Set Bit b of 10CatON (HL) ...cvoovvieiecieeicrreieirescce e

SET b, (IX+d) Set Bit b of location (IX + d)

SET b, (IY+d) Set Bit b of location (IY + d)

SET b, r Set Bit b Of REGISIEN I ...eciiiiiiie e
SLAm Shift operand m left arithmeticccoocveerennnne

SRAm Shift operand m right arithmetic

SRL m Shift operand m right 1ogical ..o

SUB s Subtract operand s from ACCUMUIALONc..ooviiieiieiiie e st
XORs Exclusive ‘OR’ 0perand S @nd ACCueuuiiieriieniiiriiie st sieeesie st sireessieeeie e e e e ereeanes A5-83

Al-4

N 2L

280°CPU
Central Processing Unit

280° CTC
Counter/Timer Gircuit

280° DMA
Direct Memory Access

280° P10
Parallel Input/Output

280° SI0
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

@ ij CTC USER’S MANUAL

TABLE OF CONTENTS

Chapter 1.
1.0
1.1

Chapter 2.
2.0
2.1

2.2

Chapter 3.
3.0

Chapter 4.
4.0
4.1
4.2

Chapter 5.

Introduction
FRAIUIES ... e e e e e eb e e st e e e s bbb e et tb b e e e baaeeas
GENEral DESCHPLIONc.eiiiiitee ettt ettt e e ebeeneas

CTC Architecture
OVEBIVIEW ..ottt ettt ettt e v b e s e e e e sa e e ee e e e s bt e esbeasseeereeesameesbe stabaasbbeansaeaass
Structure of ChannNel LOGICccerviiiiii ittt st s e
2.1.1 The Channel CONtrolccoiiiiiiiieiiiiece ettt st esbesaesbesra e
2.1.2 ThePrescaler..........cccocveeevurens

2.1.3 The Time Constant Register
2.1.4 The DOWN-COUNTEToociiiiiiiiies sttt sttt sbe e s eae b s sa b enn s
Interrupt CoNtrol LOGICcovvviiiii it e

CTC Pin Description

PN FUNCHONS .ottt et e e e et ae s sabe s et m bt aeaeesteeee s B3-1
CTC Operating Modes

[a17 e o [To] 1o] T T PSSO POOUPPTURPPIN B4-1
CTC Counter ModeB4-1
CTC TIMEI MOTE ...ttt et e et e e eb e e b e e b er e searn e e e e raeenreeennes B4-2

CTC Programing
INITOAUCHION. ... e e
Loading the Channel Control Register
Loading the Time Constant Register
Loading the Interrupt Vector Register

CTC Timing
IMEFOAUCHION ...ttt s e
CTC Write Cycle
CTC Read Cycle......ccecuene.
CTC Counting and Timing

CTC Interrupt Servicing
INEFOAUCHION. ..o s e
Interrupt Acknowledge Cycle
Return from Interrupt Cycle
Daisy Chain Interrupt Servicing

280® CTC

N 2iLa5 UseR's MANUAL
List of Figures
Figure 2-1. CTC BIOCK DI@Qramccuvveieiiriinieiniiest sttt es s
Figure 2-2. Channel BIOCK Diagram.........ccviviiiiiiiiiiiii e
Figure 2-3. Channel Control Register
Figure 2-4. Interrupt VECIOrcccccviviiiniiiiiicneiciiiiins
Figure 2-5. Z80 16-Bit Pointer (Interrupt Starting Address).ccccceveveniinicecnn e B2-4
Figure 3-1. CTC Pin Configuration.ccccoeevininiinininn SO OPTRTROURIPRUPRIIOR B3-1
Figure 3-2. Package Configuration.coevveriniieniiiiin e s B3-1
Figure 3-3. 44-Pin Chip Carrier Pin ASSIgNMENtSccociiiiiiiiiii s B3-2

Figure 3-4. 44-Pin Quad Flat Pack Pin ASSIgNMents ... B3-2
Figure 5-1. Channel BIOCK Diagram............ccccviiiiiiiiiiiiiiic s B5-1
Figure 5-2. Time Constant REGISIErcocovviiiiiiiiiiiii e B5-3-
Figure 5-3. Mode 2 Interrupt OPeration.ccceciiciiiiiiiiiiici i B5-3
Figure 5-4. Interrupt Vector REQISterccccceiiiiiiiniii i B5-4
Figure 6-1. CTC WIIE CYCIB. ...o.cviiuiiiieiiicictiiie e bbb e B6-1

Figure 6-2. CTC REAA CYCIEc.ocviiiiiiiiicit et s bbb B6-2
Figure 6-3. CTC Counting and TiMING.ccceeriiiiiniiiieci et s B6-3

Figure 7-1. Interrupt ACKNOWIEAgE CYCIEcocviviiiieciiiiiiiicci s B7-2
Figure 7-2. Return From INterrupt CYCIEcooiiiiiiiie e B7-2
Figure 7-3. Daisy Chain Interrupt SErvicing.cccevevniniiiiiiiiii s B7-3
List or Tables

Table 2-1. Channel Select Truth Table
Table 3-1. Channel Select Truth Table

B-ii

N 2iLas

CTC USER'S MANUAL

CHAPTER 1
INTRODUCTION

1.0 FEATURES

B Four Independently Programmable Counter/Timer
Channels, Each with a Readable Down-Counter and
a Selectable 16 or 256 Prescaler. Down-Counters are
Reloaded Automatically at Zero Count

B Selectable Positive or Negative Trigger Initiates Timer
Operation

B Three Channels Have Zero Count/Timeout Outputs
Capable of Driving Darlington Transistors

B NMOS Version for High-Cost Performance Solutions

B CMOS Version for the Designs Requiring Low Power
Consumption

B NMOS Z0843004 - 4 MHz, Z0843006 - 6.17 MHz

B CMOS Z84C3006-DCto6.17 MHz, Z84C3008 DC to
8 MHz, Z84C3010 - DC to 10 MHz

B Interfaces Directly to the Z80 CPU or —for Baud Rate
Generation —to the Z80 SIO

W Standard Z80 Family Daisy-Chain Interrupt Structure
Provides Fully Vectored, Prioritized Interrupts Without
External Logic. The CTC May also be Used as an
Interrupt Controller

B 6 MHz Version Supports 6.144 MHz CPU Clock
Operation

1.1 GENERAL DESCRIPTION

The Z80 CTC, hereinafter referred to as Z80 CTC or CTC,
four-channel counter/timer can be programmed by system
software for a broad range of counting and timing
applications. The four independently programmable
channels of the Z80 CTC satisfy common microcomputer
system requirements for event counting, interrupt and
interval timing, and general clock rate generation. '

System design is simplified because the CTC connects
directly to both the Z80 CPU and the Z80 SIO with no
additional logic. In larger systems, address decoders and
buffers may be required.

Programming the CTC is straightforward: each channel is
programmed with two bytes; a third is necessary when
interrupts are enabled. Once started, the CTC counts
down, automatically reloads its lime constant, and re-
sumes counting. Software timing loops are completely
eliminated. Interrupt processing is simplified because only
one vector need be specified; the CTC internally gener-
ates a unique vector for each channel.

The Z80 CTC requires a single +5%V power supply and
the standard Z80 single-phase system clock. It is pack-
aged in 28-pin DIPs, a 44-pin plastic chip carrier, and a 44-
pin Quad Flat Pack. Note that the QFP package is only
available for CMOS versions. (Reference Chapter 3, CTC
Pin Descriptions.)

B1-1

N 2L

CTC USER'S MANUAL

CHAPTER 2
CTC ARCHITECTURE

2.0 OVERVIEW

Theinternal structure of the Z80 CTC consists ofa Z80 CPU
bus interface, Internal Control logic, four sets of Counter/
Timer Channel logic, and interrupt control logic. The four
independent, counter/timer channels are identified by
sequential numbers from 0to 3. The CTC has the capability
of generating a unique interrupt vector. For each separate
channel (for automatic vectoring to an interrupt service
routine). The four channels can be connected in four

Data 8 > CPU
From
0GR : B3
Control [

K Interal BE:>

contiguous slots in the standard Z80 priority chain with
channelnumber 0 having the highest priority. The CPU bus
interface logic allows the CTC device to interface directly
to the CPU with no other external logic. However, port
address decoders and/or line buffers may be required for
large systems. A block diagram of the Z80 CTC is shown
in Figure 2-1.

| Internal
Control
> Logic
> /INT
Interrupt
Logic IEl
- — |[EO
Counter/ 3) ZCTO
Timer
Logic
4 -
1
Reset

Figure 2-1. CTC Block Diagram

B2-1

Q205

Z80® CTC

2.1 STRUCTURE OF CHANNEL LOGIC

The structure of one of the four sets of Counter/Timer
channel logic is shown in Figure 2-2. This logic is com-
posed of two registers, two counters and control logic. The
registers consist of an 8-bit Time Constant register and an
8-bit Channel Control register. The counters consist of an
8-bit CPU-readable down-counter and an 8-bit prescaler.

2.1.1 In Channel Control Register and Logic

The Channel Control register (8-bit) and Logic is written to
by the CPU to select the modes and parameters of the
channel. Within the CTC device there are four such regis-
ters corresponding to the four Counter/Timer channels.
The register to be written to is determined by the encoding
of two channel select input pins: CS0 and CS1 (usually
attached to A0 and A1 of the CPU address bus). This is
illustrated in Table 2-1.

Table 2-1. Channel Select Truth Table

CcSo CSt
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0
Channel 3 1 1

In the control word written to program each Channel
Control register, bit 0 is always set; the other seven bits are
programmed to select alternatives on the channel’s oper-
ating modes and parameters. This is illustrated in Figure

2-3. (Foramore complete discussion see Chapter 4, “CTC

Operating Modes” and Chapter 5, “CTC Programming.”)

USER’'S MANUAL
Channel
Control
Logic
Time
Interal Bus > Constant
Register
8-Bit
Down —-ZC/TO
Counter
. CLKTRG ————
CLK—] Prescaler __T

Figure 2-2. Channel Block Diagram

[o7 | os | os | o4 [osfoe [o1 [oo]

Interrupt —] |— Control or Vector
Enable Interrupt = 1 0= Vector
Disable Interrupt =0 1 = Control
Mode Reset
Timer Mode =0 0= Continued Operation
Counter Mode = 1 1 = Software Reset
Prescaler Value* Time Constant
Value of 256 = 1 0= No Time Constant Follows
Value of 16 =0 1 =Time Constant Follows
CLK/TRG Edge Section Timer Trigger*
Falling Edge = 0 0 = Automatic Trigger When
Rising Edge =1 Time Constant is Loaded

1 = CLK/TRG Pulse Starts Timer
*Timer Mode Only

Figure 2-3. Channel Control Register

B2-2

N 2iL05

280°CTC
USER'S MANUAL

2.1.2 The Prescaler

The prescaler is an 8-bit device which is used in the timer
mode only. The prescaler is programmed by the CPU
through the Channel Control register to divide its input, the
System clock (@), by 16 or 256. The output of the prescaler
is then fed as an input to clock the down-counter. Initially,
arid each time the down-counter clocks down to zero, the
down-counter is reloaded automatically with the contents
of the Time Constant register. In effect this divides the
System clock by an additional factor of the time constant.
Each time the down-counter counts down to zero, its
output, Zero Count/Timeout (ZC/TO), is pulsed High.

2.1.3 The Time Constant Register

The 8-bit Time Constant register is used in both Counter
and Timer modes. It is programmed by the CPU just after
the channel control word with an integer time constant
value of 1through 256. Thisregister loads the programmed
value Into the down counter when the CTC is first initialized
and reloads the same value into the down counter auto-
matically whenever it counts down thereafter to zero. If a
newtime constantis loaded intothe Time Constant register
while a channel is counting or timing, the present down-

count will be completed before the new time constant is
loaded into the down counter. (For details of how a time
constant is written to a CTC channel, see Chapter 5, “CTC
Programming.”)

2.1.4 The Down-Counter

The down-counter is an 8-bitregister, which is used in both
Counter and Timer modes. It is loaded by the Time Con-
stant register both initially, and when it counts down to
zero. In the Counter mode, the down-counter is decre-
mented by each external clock edge. In the Timer mode,
it is decremented by the clock output of the prescaler. By
performing a simple I/O Read atthe port address assigned
to the selected CTC channel, the CPU can access the
contents of the Downcounter and obtain the number of
counts-to-zero. Any of the four CTC channels may be
programmed to generate an interrupt request sequence
each time the zero count is reached.

in Channels 0, 1, and 2, a signal pulse appears at the
corresponding ZC/TO pin when the zero count condition is
reached. Due to package pin limitations, however, Chan-
nel 3 does not have this pin and so may be used only in
applications where this output pulse is not required.

2.2 INTERRUPT CONTROL LOGIC

The interrupt control logic insures that the CTC acts in
accordance with Z80 system interrupt protocol for nested
priority interrupting and return from interrupt. The priority
of any system device is determined by its physical location
it) a daisy chain configuration. Two signal lines (IEl and
IEO) are provided in CTC devices to form this system daisy
chain. The device closest to the CPU has the highest
priority. Within the CTC, interrupt priority is predetermined
by channel number, with Channel 0 having highest and

Channel 3 the lowest priority (Figure 2-4). The purpose of
a CTC-generated interrupt, as with any peripheral device,
is to force the CPU to execute an interrupt service routine.
According to Z80 system interrupt protocol, lower priority
devices or channels may not interrupt higher priority de-
vices or channels which have not had their interrupt
service routines completed. However, high priority de-

~ vices or channels may interrupt the servicing of lower

priority devices or channels.

D7 | D6 | D5 | D4 | D3 | D2

D1} D0

V7-V3
Supplied
by User

|— 0 = Interrupt Vector Word
1 = Control Word

Channel Identifier
(Automatically Inserted by CTC)

0 0 = Channel 0
0 1 = Channel 1
1 0 = Channei 2
1 1 = Channel3

Figure 2-4. Interrupt Vector

B2-3

N 2iLa5

280 CTC
USER'S MANUAL

2.2 INTERRUPT CONTROL LOGIC (Continued)

A CTC channel may be programmed to request an inter-
rupt every time its down-counter reaches a count of zero.
(To utilize this feature requires that the CPU be pro-
grammed for Interrupt Mode 2.) After the interrupt request,
the CPU sends out an interrupt acknowledge. The CTC'’s
interrupt control logic determines the highest-priority chan-
nel requesting an interrupt. If the CTC's IEl input is active,
indicating that it has priority within the system daisy chain,
it places an 8-bit interrupt vector on the system data bus.
The high order five bits of this vector will have been written
to the CTC earlier as part of the CTC initial programming
process; the next two bits will be provided by the CTC’s
interrupt control logic as a binary code corresponding to
the highest-priority channel requesting an interrupt; finally
the low-order bit of the vector will always be zero according
to a convention (Figure 2-4).

This interrupt vector is used to form a pointer to a location
in memory where the address of the interrupt service
routine is stored in a table. The vector represents the least
significant eight bits. The CPU reads the contents of the |
register to provide the most significant eight bits of the
16-bit pointer. The address pointed to in memory contains
the low-order byte and the next highest address contains
the high-order byte of an address which in turn contains
the first opcode of the interrupt service routine. Thus, in
Mode 2, a single 8-bit vector stored in an interrupting CTC
can result in an indirect call to any memory location
(Figure 2-5).

Z80 16-Bit Pointer (Interrupt Starting Address)

1Reg 7 Bits From 0
Contents Peripheral
\ Vector

Figure 2-5. Z80 16-Bit Pointer
(Interrupt Starting Address)

According to Z80 system convention, all addresses in the
interrupt service routine table have their low-order byte in
an even location in memory, and their high-order byte in
the next highest location in memory. This location will
always be odd so that the least significant bit of any
interrupt vector will always be even. Thus, the least signifi-
cant bit of any interrupt vector will always be zero.

The RETI instruction is used at the end of an interrupt
service routine to initialize the daisy chain enable line IEO
for proper control of nested priority interrupt handling. The
CTC monitors the system data bus and decodes this
instruction when it occurs. Thus, the CTC channel control
logic knows when the CPU has completed servicing an
interrupt.

B2-4

N 2iLa5

CTC USER'S MANUAL

CHAPTER 3

CTC PIN DESCRIPTION

3.0 PIN FUNCTIONS

Diagrams of the Z80 CTC Pin Configuration and Z80 CTC
Package Configuration are shown in Figures 3-1 through
3-4, respectively. This section describes the function of

each pin.

CPU
Data
Bus

Cc1C
Control
From
CPU

Daisy
Chain
Interrupt
Control

A

288

~——p-| D2
+—| D3

~+—»| D5
~+—»1D6

¢ ——»|/CE
——|/CS0
—|CS1
—e M1
——|/IORQ

————{/RD
—| [El

«+——|IEO

«—]INT

CLK/TRGO
20100

CLK/TRG1
ZGTo1

CLK/TRG2
Z0mo2

CLK/TRG3

/RESET
280 CTC

Channel
r Signals

CLK

+5V GND

Figure 3-1. CTC Pin Configuration

D4 [

D5 C

D6 l;
o7
GND I;
/RD
zcmoo O
zcrmo1 O
zemoz2 O
Nora

IE0 [
INT O

IEl]
M1 O

280 CTC

28
27
26
25
24
23
22

20
19
18
17
16
15

103

102

101

100

145V

[JCLK/TRGO
CICLK/TRG1
CICLK/TRG2
;ICLKerG:;
F1cst
Floso

glﬁESET
ICE

[]CLK

Figure 3-2. Package Configuration

B3-1

N 2iLa5

280° CTC
USER'S MANUAL

3.0 PIN FUNCTIONS (Continued)

NI GE R IR IR IR IR NP I

/65432 1 4443424140\

GND |7 s9|Ne

ne |8 3| NC

RD |9 a7 +5v
zcmoo | 10 ss|NC

Ne | 1 35 | CLK/TRGO
zcmot |12 Zsocre o
zcmo2 |13 33 | CLK/TRG1
/IORQ | 14 32 | CLK/TRG2

Ne |15 31 | CLK/TRGS

IEo | 16 3o fne

Ne |17 29 cst

\18 19 20 21 22 23 24 25 26};26/

s"@s"@@&"&@;@& &

Figure 3-3. 44-pin Chip Carrier Pin Assignments

g

-

[TT 1 /RESET

—TT 1 /cE

[TT1NC

[TT cik
—TTINC
T Imt

—TT INC

1T 1l

[—TT 1 NC

TT1/NT |

34
ne LI

cs1 11—
CLK/TRG3 CIT—]
cLTRG2 I

O e |

NC I
CLKTRGT 1]
CLKTRGO I

/(o m w —

+v 11—

22
[TT 10

(el = -
4

CMOS
280 CTC

1T 1/0RQ
[TTINC
—T1] zcmo2
[—T1 1 zcmot
[—TTINC
111 zcmo0
[TT_INC
TR

[TT 1 GND

85838883888

Figure 3-4. 44-pin Quad Flat Pack Pin Assignments

B3-2

AN 2La5

Z80° CTC
USER'S MANUAL

D7-D0 System Data Bus (bidirectional, tri-state). This bus
is used to transfer all date and command words between
the Z80 CPU and the Z80 CTC. There are eight bits on this
bus, of which DO is the least significant.

CS1-CS0 Channel Select (input, active High). These pins
form a 2-bit binary address code for selecting one of the
four independent CTC channels for an I/O Write or Read.
(See Truth Table 3-1).

Table 3-1. Channel Select Truth Table

CS1 CSo
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0
Channel 3 1 1

ICE Chip Enable (input, active Low). A low level on this pin
enables the CTC to accept control words, interrupt vec-
tors, or time constant data words from the Z80 data bus
during an I/O Write cycle; or to transmit the contents or the
down-counterto the CPU during an |/O Read cycle. Inmost
applications this signal is decoded from the eight least
significant bits of the address bus for any of the four 1/O port
addresses that are mapped to the four Counter/Timer
channels.

Clock (®) System Clock(input). This single-phase clock is
used by the CTC to synchronize certain signals internally.

M1 Machine Cycle One Signal from CPU (input, active
low). When /M1 is active and the /RD signal is active, the
CPU is fetching an instruction from memory. When /M1 is
active and the /IORQ signal is active, the CPU is acknowl-
edging an interrupt, alerting the CTC to place an interrupt
vector on the Z80 data bus if it has daisy-chain priority and
one of its channels has requested an interrupt.

NIORQ Input/Output Request from CPU(input, active Low).
The /IORQ signal is used in conjunction with the /CE and
/RD signals to transfer data and channel control words
between the Z80 CPU and the CTC. During a CTC Write
cycle, /IORQ and /CE must be true and /RD false. The CTC
does not receive a specific write signal, instead it gener-
ates its own internally from the inverse of a valid /RD signal.
Ina CTC Read cycle, /IORQ, /CE, and /RD must be active
to place the contents of the down-counter on the Z80 data
bus. If IORQ and /M1 are both true, the CPU is acknowl-
edging an interrupt request, and the highest priority inter-
rupting channel will place its interrupt vector on the Z80
data bus.

/RD Read Cycle Status from the CPU (input, active Low).
The /RD signal is used in conjunction with the /IORQ and
/CE signals to transfer data and channel control words
between the Z80 CPU and the CTC. During a CTC Write
Cycle, /IORQ and /CE must be true and /RD false. The CTC
does not receive a specific write signal, instead it gener-
ates its own internally from the inverse of a valid /RD signal.
Ina CTC Read cycle, /IORQ, /CE, and /RD must be active
to place the contents of the down-counter on the Z80 data
bus.

IEl Interrupt Enable In (input, active High). This signal is
used to form a system-wide interrupt daisy-chain which
establishes priorities when more than one peripheral de-
vice in the system has interrupting capability. A high level
on this pin indicates that no other interrupting devices of
higher priority in the daisy chain are being serviced by the
Z80 CPU.

IEO Interrupt Enable Out (output, active High). The IEO
signal, in conjunction with IEI, is used to form a system-
wide interrupt priority daisy chain. IEO is High only if IEl is
High and the CPU is not servicing an interrupt from any
CTC channel. Thus, this signal blocks lower priority de-
vices from interrupting while a higher priority interrupting
device is being serviced by the CPU.

NINT Interrupt Request (output, open-drain, active Low).
This signal goestrue when a CTC channel(which has been
programmed to enable interrupts) has a zero-count condi-
tion in its down-counter.

IRESET Reset (input, active Low). This signal stops all
channels from counting and resets interrupt enable bits in
all control registers, thereby disabling CTC-generated
interrupts. The ZC/TO and /INT outputs go to their inactive
states, IEO reflects IEl, and the CTC's data bus output
drivers go to the high-impedance state.

CLK/TRG3-CLK/TRGO External Clock/Timer Trigger (in-
put, user-selectable active High or Low). There are four
CLK/TRG pins, corresponding to the four independent
CTC channels. In the Counter mode, every active edge on
this pin decrements the down-counter. In the Timer mode,
an active edge on this pin initiates the timing function. The
user may select the active edge tobe either rising or falling.

ZC/T02-AC/TO0 Zero Count/Timeout(output, active High).
There are three ZC/T0 pins, corresponding to CTC Chan-
nels 2 through 0. (Due to package pin limitations Channel
3 has no ZC/TO pin.) In either Counter mode or Timer
mode, when the down counter decrements to zero, an
active High going pulse appears at this pin.

B3-3

N 2iL5

CTC USER'S MANUAL

CHAPTER 4
CTC OPERATING MODES

4.0 INTRODUCTION

At power-on, the Z80 CTC state is undefined. Asserting
/RESET puts the CTC in a known state. Before a channel
can begin counting or timing, a channel control word and
a time constant data word must be written to the appropri-
ate register's of that, channel. Additionally, if a channel has
been programmed to enable interrupts, an interrupt vector

word must be written to the CTC's interrupt control logic.
(For further details, refer to Chapter 5, “CTC Program-
ming.”) When the CPU has written all of these words to the
CTC, all active channels are programmed for immediate
operation in either the Counter mode or the Timer mode.

4.1 CTC COUNTER MODE

In CTC Counter mode, the CTC counts edges of the CLK/
TRG input this mode is programmed for a channel when its
channel control word is written with bit 6 set. The channel's
external clock (CLK/TRG) input is monitored for a series of
triggering edges. After each, in synchronization with the
next rising edge of ® (the System clock), the down-counter
(whichisinitialized with the Time Constant Data word atthe
start of each sequence of down-counting) is decremented.
Although there is no set-up time requirement between the
triggering edge of the External clock and the rising edge
of @, (Clock), the down-counter is not decremented until
the following pulse. A channel's External clock input is pre-
programmed by bit 4 of the channel control word to trigger
the decrementing sequence with either a high- or a low-
going edge.

In Channels 0, 1, or 2, when the down-counter is succes-
sively decremented from the original time constant (until it

reaches zero), the Zero Count (ZC/TQO) output pin for that
channel will be pulsed active (High). (Due to package pin
limitations, Channel 3 does not have this pin and so may
only be used in applications where this output pulse is not
required.) Additionally, if the channel is pre-programmed
by bit 7 of the channel control word, an interrupt request
sequence will be generated. (For more details, see Chap-
ter 7, “CTC Interrupt Servicing.")

The zero-count condition also results in the automatic
reload of the down-counter with the original time conistant
data word in the Time Constant register. There is no
interruption in the sequence of continued down-counting.
If the Time Constant register is written to with a new time
constant data word while the down-counter is decrement-
ing, the present count is completed before the new time
constant is loaded into the down-counter.

B4-1

280®CTC
USER’'S MANUAL

Q205
4.2 CTC TIMER MODE

In CTC Timer mode, the CTC generates timing intervals
that are an integer value of the system clock period. This
is programmed for a channel when its channel control
word is written with bit 6 reset. The channel then may be
used to measure intervals of time based on the System
clock period. The System clock is fed through the pres-
caler and the down-counter. Depending on the pre-
programmed bit 5 in the channel control word, the pres-
caler divides the System clock by a factor of 16 or 256.

The output of the prescaler is then used as a clock to
decrement the down-counter, which may be pre-
programmed with any time constant integer between 1
and 256. The time constant is automatically reloaded into
the down-counter at each zero-counter condition. At zero-
count, the channel's Time Out (ZC/TO) output (which is the
output of the down-counter) is pulsed, resuiting in a uni-
form pulse train of precise period given by the product.

t,*P*TC

Where t. is the System clock, P is the prescaler factor of
16 or 256, and TC is the pre-programmed time constant.

Timing may be initialized automatically or with atriggering
edge at the channel's Timer Trigger (CLK/TRG) input. This
is determined by programming bit 3 of the channel control
word. If bit 3 is reset, the timer automatically begins
operation at the start of the CPU cycle following the /O
Write machine cycle thatloads the time constant data word
to the channel. If bit 3 is set, the timer begins operation on
the second succeeding rising edge of @ after the Timer
Trigger edge following the loading of the rime constant
data word. If no time constant word is to follow, the timer
begins operation on the second succeeding rising edge of
@ after the Timer Trigger edge and following the control
word write cycle. Bit 4 of the channel control word is pre-
programmed to select whether the Timer Trigger will be
sensitive to a rising or falling edge. There is no setup
requirement between the active edge of the Timer Trigger
and the next rising edge of ®. If the Timer Trigger edge
occurs closer than a specified minimum setup time to the
rising edge of @, the down-counter does not begin decre-

“menting until the following rising edge of ®.

If bit 7 in the channel control word is set, the zero-count
condition in the down-counter causes a pulse at the
channel's Time Out pin, and initiates an interrupt request
sequence. (For more details, see Chapter 7, “CTC Inter-
rupt Service.”)

B4-2

N2Las

CTC USER'S MANUAL

CHAPTER 5
CTC PROGRAMMING

5.0 INTRODUCTION

To begin counting or timing operations, a channel control
word and time constant data word are written to the
appropriate channel by the CPU. These words are stored
in the Channel Control or Time Constant registers of each
channel. If a channel has been programmed to enable

interrupts, an interrupt vector is written to the appropriate
register in the CTC. Due to automatic features in the
interrupt control logic, one pre-programmed interrupt vec-
tor suffices for all four channels.

5.1 LOADING THE CHANNEL CONTROL REGISTER

Toload achannel controlword, the CPU performs anormal
1/0 Write sequence to the port address corresponding to
the desired CTC channel. The CTC input pins CS0 and
CS1 are used to form a 2-bit binary address to select one
of four channels within the device. (For a truth table, see
section 2.1.1, “The Channel Control Register and Logic".)
In many system architectures, these two input pins are

connected to Address Bus lines A0 and A1, respectively,
so that the four channels in a CTC device occupy contigu-
ous I/O port addresses. A word written to a CTC channelis
interpreted as a channel control word, and loaded into the
channel control register (bit 0 is a logic 1). The other seven
bits of this word select operating modes and conditions as
indicated in Figure 5-1.

_____________________ .
i
|07 os | os | pa] 0302 | o1 {00} I
|
I
Interrupt —I | I— Control or Vector :
Enable Interrupt = 1 I 0= Vector
Disable Interrupt = 0 | 1 =Control :
Mode | Reset 1
Timer Mode = 0 | 0 = Continued Operation |
Counter Mode = 1 | 1 = Software Resat |
Prescaler Value* | Time Constant |
Value of 256 = 1 ! 0=No Time Constant Follows |
Value of 16 =0 | 1 =Time Constant Follows |
————————————— -

rcwrne Edge Section Timer Trigger* :

Falling Edge =0 0 = Automatic Trigger When
| Rising Edge =1 Time Constant is Loaded I
| 1=CLK/TRG Pulse Starts Timer |

I

| *Timer Mode Only :

Figure 5-1. Channel Control Register

B5-1

N 2iLa5

280 CTC
USER'S MANUAL

5.1 LOADING THE CHANNEL CONTROL REGISTER (Continued)

Bit7 =1

Each channel is enabled to generate an interrupt request
sequence when the down-counter reaches a zero-count
condition. To set the Interrupt bit to 1 in any of the four
Channel Control registers an interrupt vector is written to
the CTC before operation begins. Channel interrupts may
be programmed in either Counter or Timer mode. If an
updated channel control word is written to a channel in
operation, with bit 7 set, the interrupt enable selectionis not
retroactive to a preceding zero-count condition.

Bit7=0
Channel interrupts disabled.

Bit6=1

Counter mode selected. The down-counter is decremented
by each triggering edge of the External clock (CLK/TRG)
input. The prescaler is not used.

Bit6=0

Timer mode selected. The prescaler is clocked by the
System clock ®, and the output of the prescaler in turn
clocks the down-counter. The output of the down-counter
(the channel's ZC/TO output) is a uniform puise train of
period given by the product

tc*P*TC

where t is the period of System clock, P is the prescaler
factor of 16 or 256, and TC is the time constant data word.

Bits5=1
(Defined for Timer mode only.) Prescaler factor is 256.

Bit5=0
(Defined for Timer mode only.) Prescaler factor is 16.

Bit4=1
TIMER MODE: positive edge trigger starts timer operation.

COUNTER MODE: positive edge decrements the down-
counter.

Bit4=0
TIMER MODE: negative edge trigger starts timer opera-
tion.

COUNTER MODE: negative edge decrements the down-
counter.

Bit3=1

Timer Mode Only - External trigger is valid for starting timer
operation after rising edge of T2 of the machine cycle
following the one that loads the time constant. The pres-
caler is decremented two clock cycles later if the setup
time is met, otherwise three clock cycles.

Bit3=0

Timer Mode Only - Timer begins operation on the rising
edge of T2 of the machine cycle following the one that
loads the time constant.

Bit2=1

The time constant data word for the Time Constant register
is the next word written to this channel. If an updated
channel control word and time constant data word are
written to a channel while it, is already in operation, the
down-counter continues decrementing to zero before the
new time constant is loaded.

Bit2=0

No time constant date word for the Time Constant register
is to follow. The channel control word updates the status of
a channel already in operation (a channel will not operate
without a correctly programmed data word in the lime
Constant register). Bit 2 in the channel control word must
be set in order to write to the Time Constant register.

Bit1=1

Counting and/or timing operation is terminated and the
channel is reset. This is not a stored condition. The bits in
the Channel Control register are unchanged. If bits 1 and
2aresetto 1, the channelresumes operation upon loading
a time constant.

Bit1=0
Channel continues current operation.

B5-2

N 2iLa5

280®CTC
USER'S MANUAL

5.2 LOADING THE TIME CONSTANT REGISTER

A time constant data word is written to the Time Constant
register by the CPU. This occurs on the I/O Write Cycle
following that of the channel control word. The time con-
stant data word may be any integer value in the range
1-256 (Figure 5-2). If all eight bits in this word are zero, it is
interpreted as 256. If a time constant date word is loaded
to a channel already in operation, the down-counter con-
tinues decrementing to zero before the new time constant
is loaded.

{07 06|05] oa] 032 |01 |0

TC7 —I L TCO
TC6 TCH
TC5 TC2
TC4 TC3

Figure 5-2. Time Constant Register

5.3 LOADING THE INTERRUPT VECTOR REGISTER

The Z80 CTC operates with the Z80 CPU programmed for
mode 2 interrupt response. When a CTC interrupt request
is acknowledged, a 16-bit pointer is formed to obtain a
corresponding interrupt service routine starting address
(Figure 5-3). The upper eight bits of this pointer are
provided by the CPU’s | register; the lower eight bits are
provided by the CTC in the form of an interrupt vector
unique to the requesting channel (Figure 5-4). (For further
details, see Chapter 7, “CTC Interrupt Servicing”.)

The five high-order bits of the interrupt vector are written to
the CTC in advance as part of the initial programming
sequence. The CPU writes to the I/O port address corre-
sponding tothe CTC Channel 0. AQin bit 0 signais the CTC
to load the incoming word into the Interrupt Vector register.
When the interrupt vector is placed on the Z80 data bus,
the interrupt control logic of the CTC automatically sup-
plies a binary code in bits 1 and 2 identifying which of the
four CTC channels is to be serviced.

Mode 2 Interrupt Operation

-
Desired starting address pointed to by:

Interrupt
Service -

h Low Order 1 Reg 7 Bits From
Routine A— h 0
Starting High Order Contents Peripheral
Address

\.

Figure 5-3. Mode 2 Interrupt Operation

B5-3

. 280® CTC
Q 2ilan USER'S MANUAL
5.3 LOADING THE INTERRUPT VECTOR REGISTER (Continued)

lo7 | os{os | o4 psfo2 | o1 {oo]

V7v3 ————— I— 0 = Interrupt Vector Word
Supplied 1 = Control Word
by User
————— Channel Identifier

(Automatically Inserted by CTC)
0 0 = Channel 0
0 1 = Channel 1
1 0 = Channel 2
1 1 = Channel 3

Figure 5-4. Interrupt Vector Register

B5-4

N 2iLaB

280 CTC
USER'S MANUAL

N 2iLa5

CTC USER'S MANUAL

CHAPTER 6
CTC TIMING

6.0 INTRODUCTION

This chapter illustrates the timing relationships of the
relevant CTC pins for the following types of operation:
writing a word to the CTC, reading a word from the CTC,

counting, and timing. A timing diagram, Figure 7-1, relat-
ing to interrupt servicing can be found in Section 7.1.

6.1 CTC WRITE CYCLE

Figure 6-1 illustrates the timing associated with the CTC
Write cycle. This sequence is applicable to loading a
channel control word, an interrupt vector, or a time con-
stant data word.

In the sequence shown, during clock cycle T1, the Z80
CPU prepares for the Write cycle with a false (High) signal
at CTC input pin /RD (Read). As the CTC has no separate
Write signal input, it generates its own input internally from
the false /RD input. During clock cycle T2, the Z80 CPU

initiates the Write cycle with true (Low) signals at CTC input
pins /IORQ (I/O Request) and /CE (Chip Enable). (See
Note below.) A 2-bit binary code appears at CTC inputs
CS1 and CS0 (Channel Select 1 and 0), specifying which
of the four CTC channels is being written to. At this time, a
channel control, interrupt vector, or time constant data
word may be loaded into the appropriate CTC internal
register in synchronization with the rising edge beginning
clock cycle T3.

Note: /M1 must be false to distinguish the cycle from an
interrupt acknowledge.

Twa T3 T

Channel Address

X

—

T1 T2
€S0, CS1, ICE X
/IORQ \
RO
[——"
i
[—

DATA X

N X

Figure 6-1. CTC Write Cycle

B6-1

AY= e o

280® CTC
USER'S MANUAL

6.2 CTC READ CYCLE

Figure 6-2 illustrates the timing associated with the CTC
Read cycle. This sequence is used when CPU reads the
current contents of the down counter. During clock cycle
T2, the Z80 CPU initiates the Read cycle with true signals
at input pins /RD (Read), /IORQ (I/O Request), and /CE
(Chip Enable). A 2-bit binary code appears at CTC inputs

T T2

CS1 and CS0 (Channel Select 1 and 0), specifying which
of the four CTC channels is being read from. (See Note
below.) On the rising edge of the cycle T3, the valid
contents of the down-counter rising edge of cycle T2 is
available on the Z80 data bus. No additional wait states are
allowed.

Note: /M1 must be false to distinguish the cycle from an
interrupt-acknowledge.

TwA T3 T1

ox _|

Cso, CSt1, /ICE X

Channel Address

fIORQ —\

/RD \

X
—
—

mT
¥

DATA

ouT

Figure 6-2. CTC Read Cycle

6.3 CTC COUNTING AND TIMING

Figure 6-3 illustrates the timing diagram for the CTC
Counting and Timing modes.

In the Counter mode, the edge (rising edge is active in this
example) from the external hardware connected to pin
CLK/TRG, decrements the down-counter in synchroniza-
tion with the System Clock ®. This CLK/TRG pulse must
have a minimum width and the minimum period must not
be less than twice the System clock period. Although there
is no setup time requirement between the active edge of
the CLK/TRG and the rising edge of ®, if the CLK/TRG
edge occurs closer than a specified minimum time, the
decrement of the down-counter will be delayed one cycle

of ®. Immediately after the 1 to 0 decrement of the down-
counter, the ZC/TO output is pulsed true.

In the Timer mode, a pulse trigger (user-selectable as
either active High or active Low) at the CLK/TRG pin
enables the timing function on the second succeeding
rising edge of ®. As in the Counter mode, the triggering
pulse is detected asynchronously and must have a mini-
mum width. The timing function is initiated in synchroniza-
tion with ®. A minimum setup time is required between the
active edge of the CLK/TRG and the rising edge of ®. If the
CLK/TRG edge occurs closer than this, the initiation of the
timer function will be delayed one cycle of ®@.

B6-2

AN 2iLa5

280® CTC
USER'S MANUAL

CLK/TRG

Internal
Counter

ZCTo

Lead
Time

Zero

Count

Figure §-3. CTC Counting and Timing

B6-3

N 2iLas

CTC USER'S MANUAL

CHAPTER 7
CTC INTERRUPT SERVICING

7.0 INTRODUCTION

Each CTC channel may be individually programmed to
request an interrupt every time its down-counter, reaches
a count of zero. The purpose of a CTC generated interrupt
is to force the CPU to execute an interrupt service routine.
To utilize this feature the Z80 CPU must be programmed for
mode 2 interrupt response. In this mode, when a CTC
channelinterrupt request is acknowledged, a 16-bit pointer
must be formed to obtain a corresponding interrupt ser-
viceroutine. The lower eight bits of the pointer are provided
by the CTC in the form of an interrupt vector unique to the
requesting channel. (For further details, refer to Chapter
8.0 of the Z80 CPU Technical Manual.)

The CTC's interrupt control logic insures that it acts in
accordance with Z80 system interrupt protocol for nested
priority interrupt and proper return from interrupt. The
priority of any system device is determined by its physical

location in a daisy-chain configuration. Two signal lines
(IEl and IEQ) are provided in the CTC to form the system
daisy chain. The device closest to the CPU has the highest
priority. Interrupt priority is predetermined by channel
number, with Channel 0 having highest priority. According
to Z80 system interrupt protocol, low priority devices or
channels may not interrupt higher priority devices or chan-
nels that have not had their interrupt service routines
completed. High priority devices or channels may inter-
rupt the servicing of lower priority devices or channels.
(Forfurther details, see Chapter 2, “Interrupt Control Logic".)

Sections 7.2 and 7.3 describe the nominal timing relation-
ships of the relevant CTC pins for the Interrupt Acknowl|-
edge cycle and the Return from Interrupt cycle. Section 7.4
discusses a typical example of daisy-chain interrupt
servicing.

7.1 INTERRUPT ACKNOWLEDGE CYCLE

Figure 7-1 illustrates the timing associated with the Inter-
rupt Acknowledge cycle. After aninterrupt is requested by
the CTC, the CPU sends out an interrupt acknowledge
(/M1 and /IORQ). To insure that the daisy-chain enable
lines stabilize, channels are inhibited from changing their
interrupt request status when /M1 is active. /M1 is active
two clock cycles earlier than /IORQ and /RD is false to
distinguish the cycle from an instruction fetch. During this

time the interrupt logic of the CTC determines the highest
priority channel requesting an interrupt. If the CTC Inter-
rupt Enable input (IEI} is active, the highest priority inter-
rupting channel within the CTC places its interrupt vector
onto the data bus when /IORQ goes active. Two wait states
(TW*) are automatically inserted at this time to allow the
daisy chain to stabilize. Additional wait states may be
added.

B7-1

Q206

®
USER'S MANUAL

T T2 w

CLK I

Twe T3 T4 T

/M1"__"—\

NORQ

/RD

IEl /

INT

DATA

“ Vector ;

Figure 7-1. interrupt Acknowiedge Cycle

7.2 RETURN FROM INTERRUPT CYCLE

Figure 7-2 illustrates the timing associated with the RET!
Instruction. This instruction is used at the end of an
interrupt service routine to initialize the daisy-chain enable
lines for proper control of nested priority interrupt handling.
The CTC decodes the 2-byte RETI code internally and
determines whether it is intended for a channel being
serviced.

When several Z80 peripheral chips are in the daisy-chain,
IEI will become active on the chip currently under service
when an EDH opcode is decoded. If the following opcode
is 4DH, the peripheral being serviced will be re-initialized
and its IEO will become active.

T T2 T3 T4 T T2 T3 T4 T

nigigigigigigigigiigh

{ \ {
D7-00 { o) { o)
IEl /
IEO /
INT

*INT will go Low if more interrupts pending on the RTC.
Figure 7-2. Return from Interrupt Cycle

B7-2

N 2iLa5

280 CTC
USER’'S MANUAL

7.3 DAISY-CHAIN INTERRUPT SERVICING

Figure 7-3 illustrates a typical nested interrupt sequence
which may occur in the CTC. In this example, Channel 2
interrupts and is granted service. While this channel is
being serviced, higher priority Channel 1 interrupts and is
granted service. The service routine for the higher priority

channel is completed, and a RETI instruction is
executed to signal the channel that its routine is
complete (see Section 7.2 for further details). At this
time, the service routine of the lower priority Channel
2 is resumed and completed.

Highest Priority Channel
Channel 0 Channel 1 Channel 2 Channel 3

Lo To elide ehbides wbifs et
1. Priority Interrupt Daisy Chain Before Any Interrupt Occurs.

+ Under Service

LA e ot de eoftde oS dE o o—
2. Channel 2 Requests an Interrupt and is Ackowledged.

+ Under Service Service Suspended

LH e ot de o dE eopdE o —
3. Channel 1 Interrupts, Suspends Servicing of Channel 2.

+ Service Complete Service Resumed

O I =) === [T T=o) S= T o2 o |9—
4. Channel 1 Service Routine Complete, "RETI" Issued, Channel 2 Serviced Resumed

‘ Service Complete

L e ol o2 e o E0 f—Hl—

5. Second "RETI" Instruction Issued on Completion of Channel 2 Service Routine

Figure 7-3. Daisy-Chain interrupt Servicing

B7-3

N 2L

Z80°CPU
Central Processing Unit

280° CTC
Counter/Timer Gircuit

280° DMA
Direct Memory Access

280° P10
Parallel Input/Output

280° SI0
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

@ ZL‘E DMA USER'S MANUAL

TABLE OF CONTENTS

Chapter 1.
1.0

1.1

Chapter 2.

2.12

Chapter 3.
3.0

Chapter 4.

Introduction

WhHY 18 DMA USEFUI? ..ottt C1-1
1.01 CPU Transfersccccoooou. ...C1-1
1.0.2 DMA TransfersC1-2
DMA Characteristicsccooveevvveennnn C1-3
111 Ports and Channels C1-3
1.1.2 Transfer MethodsC1-3
1.1.3 Modes of OperationC1-5
114 Bus Control.......c..ccoeoveeenn. ...C1-5
115 Programmabilityccocooviimiiiiiie s Ci1-5

Functional Description

FBAIUMES .o Cc2-1
OVEIVIEW ...ooviiiiciiiiieeeeee eC2-1
Programmingcccooiiiiiiicie ...C2-2
Classes of Operationccccocvvvinn,C2-2
Modes of Operation..............ccoeevenee.C2-5

Transfer Speedc.ccooeivivicviiiiiiinns ...C2-8
Address Generation
Byte Matching (Searching)....
INEEITUPES .o
Auto Restartcccovvvevviinieie
Pulse Generationc.cccceevvvveiieainnn.
Variable Cycle
Targets and Actions

Pin Description)
Pin DESCIIPHONS .oiiiiiiiiit ettt ettt C3-1

Internal Structure

General OrganizZationcccoviviiiorieiieiect et ettt ettt
Control and Status Registers

Address and Byte Countingc.ccocovvienne.
BUS CONIOL ...ttt ettt
4.41 BUs ReqQUESTING ..c.voiiiii e e
442 Bus-Request Daisy Chains .
INtErruPES ..o
441 Conditions and MethOASccooiiiiiii e
442 INEEITUPT VECIOIS ..o
443 Interrupt Latches ..o

444 Interrupt On Ready

445 Interrupt Service ROULINEScvoiiviiieiiiicciie e
4.4.6 Return From INteITURL ...oceeeeece e
447 Interrupt Daisy Chains...........ccccoeee.

448 Polling for Service Requests

. Z80® CPU
@ 205 USER'S MANUAL

Chapter 5. Programming

5.0 Overviewccccocovevecinencnnes C5-1
5.1 Write Registersccccceene C5-2
5.2 Write Register 0 Group.............. C5-3

5.2.1 Class of Operation C5-3

522 Source and Destination
523 Port A Starting Address.... (
524 Block Lengthccceeeune C5-4
5.3 Write Register 1 Groupccccceveee C5-4
5.3.1 Device Type (POrt A)ooueviiieieeeieeceee e C5-4
532 Variable vs Fixed Addressing (Port A)

533 Variable Cycle (Port A) C5-4
5.4 Write Register 2 Groupc.cco.... C5-5
5.5 WIrite REGISIEr 3 GrOUDoviitiiiieii ettt ettt et C5-5
5.5.1 (o] o @ g1\, =1 (o] o O T OO C5-5
55.2 Match Byte .
5.5.3 Mask Byteccovevrievnnns
554 7 INErmUPt BYIE ..o e C5-5
555 DMA EN@DIEooviiiiieiie i C5-5
5.6 Write Register 4 GroupccceevvnvennnneC5-6
5.6.1 Mode of OperationC5-6
5.6.2 Starting Address (Port B)C5-6
5.6.3 INterruptsccoovvvvvvvneennen,C5-6
5.6.4 Interrupt Vector ..oC5-6
565 Pulse Generationc.........C5-6
5.7 Write Register 5 GroupccocceeeeenenaeC5-7
5.71 End-of-Block ActionC5-7
5.72 JCE//WAIT Line Usage.............C5-7
573 Ready-Line StatusC5-7
5.8 Write Register 6 GroupC5-7
5.9 Read Registers.......ccccovevieiie C5-11
5.9.1 Status Byte (RRO) C5-12
59.2 Byte Counter (RR1, RR2)ccocev.. C5-12
5.9.3 Port A Address Counter (RR3, RR4) C5-12
594 Port B Address Counter (RR5, RR6) C5-12
5.10 Review of Programming Sequences C5-12
5.10.1 DMA Initialization..........c.......... C5-12
5.10.2 Port Designation C5-13
5.10.3 Address Loading....... C5-13
5.10.4 Fixed-Address Destination Ports.... C5-13
5.10.5 Interruptscccooeeireiciiiie, C5-13
5.10.6 Byte Matching (Searches) ... C5-14
5.10.7 End-of-BIOCK.......ccccevirrriirnnn, C5-14
5.108 AutoRestart...........ccoovivnrien, C5-14
5.10.9 Force Ready Condition C5-14
5.10.10 Pulse Generation.............. C5-14
5.10.11 Variable TiMiNgGcooeoiiiiiieieee et C5-14
5.10.12 Enabling DMA ... et C5-14

Chapter 6. Applications

6.0 ZBODMA and CPUc.ioiviiiiiiiiiii ittt ev et eb s s e b ve vt aeenns
6.0.1 INEEICONNECLION ...oieeiiieie et
6.0.2 Chip Selection and Enabling....
6.0.3 Use of WAIT Input
6.04 SIMUltaneous Transfers ..o ieeiereire s
6.05 BUS BUFfENG ..c.eveceiiicic e s

C-ii

: 280° CPU
N 2iLas USER'S MANUAL

Chapter 7. Performance Limitations

7.0 BUS CONMENLION ..ottt ettt ettt s e st e e s e eanes
7.0.1 Byte Mode ..o
7.0.2 Burst Mode ...
7.0.3 Continuous Mode

7.1 CoNtrol OVEINEAAocoviiiiii ettt

Chapter 8. Timing
8.0 Whenthe CPU is BUS MASTENccuiiiiiiiiiii e e

8.0.1 Writing Control Bytes

8.0.2 Reading Status Bytes

8.1 When the DMA is Bus Master
8.1.1 Sequential Transfers
8.1.2 SIMUItANEOUS TranSferSoooieiiii e
8.1.3 Search Onlycoooeoivviiiinn.
8.1.4 Bus Release Byte-at-a Time
8.1.5 Bus Release on ENd-0f-BIOCKcoovieiiieeiie i
8.1.6 Bus Release 0N MatCh ..o
8.1.7 Bus Release on Not Readycccee...
8.1.8 Variable Cycle and Edge Timing
8.1.9 INEEITUPRES oo
8.1.10 Pulse Generation
GUOSSAIY oottt e et st e s e ae e e e e SR Gt e e s R R e E e et e s e nr e e n e neeeann G1
APPENAIX A ottt b et bbb et et e e eb e a bt et r e R b e ekeerae et e e s A1

List of Figures

Figure 1-1. Typical CPU 1/O SEQUENCEceccveviiiiiiiriieneee e

Figure 1-2. Conceptual Comparison of Various /O Transfer Methods ...

Figure 1-3. Modes Of Operationcocecevveinmieioriceeeierescce e

Figure 2-1. Class of Operationccococcoveviiniiiiiiienineeens

Figure 2-2. Basic Functions of the ZBODMAcccoevviiennirecnne

Figure 2-3. Transfer/Search One Byteccccvevvvviininiicnican

Figure 2-4. Byte MOde ...,

Figure 2-5. Burst Modecccoooiiiiii i

Figure 2-6. ContiNUOUS MOEcooiiiiiiiiiii s
Figure 2-7. Variable Length CyCle ..ot
Figure 3-1. Pin Functions ..o

Figure 3-2. 40-Pin DIP Pin Assignments

Figure 3-3. 44-Pin PLCC Pin Assignments (Z8410 NMOS)c..ccoieieiiiiir it
Figure 3-4. 44-Pin PLCC Pin Assignments (Z84C10 CMOS)

Figure 4-1. Z80 DMA BIOCK DIagram.........ccccooi ittt
Figure 4-2. Write Register Organization

Figure 4-3. Read Register Organizationcooooiiiiineiice e,
Figure 4-4. Bus Requesting Daisy Chainccocooiiiiiiiiiiiiieie e
Figure 4-5. 780 Interrupt Sequence

Figure 4-6. Z80 Interrupt Service Routine....

Figure 4-7. Interrupt Pending (IP) LatChc.cocve ittt
Figure 4-8. Interrupt Under Service (IUS) Latchoooiiiiiiiii e C4-9
Figure 4-9. Interrupt On Ready (IOR) Latch

Figure 4-10. Interrupt Daisy Chain............ccococceviiiininininn

Figure 4-11. Polling for a Service ReQUESE DItc..coociuiiiiiiiinn i C4-12
Figure 5-1. Method of Write Register POllNGccoooiiiiiiirini s C5-3

C-iii

N 205

280° CPU

USER'S MANUAL
Figure 5-2. Write Register 0 Group
Figure 5-3. Write Register 1 Group
Figure 5-4. Write Register 2 Group
Figure 5-5. Write Register 3 Group
Figure 5-6. Write Register 4 Group
Figure 5-7. Write Register 5 Group
Figure 5-8. Write Register 6 Group
Figure 5-9. Read Register 0 through Read Register 6 ...
Figure 5-10. Sample DMA Program..........coceeeineercnienneecrenens
Figure 6-1. Z80/Z8000 CIoCK DIiVErc.cocviviiiiiiiiiiiiicccie e
Figure 6-2. Chip Enable Decoding with Z80 CPUccccecvvrinnnnne
Figure 6-3. /CE//WAIT MURIDIEXEccconiiiiririeriirci e
Figure 6-4. Simultaneous Transfer Multiplexerccccovviiiiins
Figure 6-5. Simultaneous Transfer..........cc.coececvine s
Figure 6-6. Delaying the Leading Edge of IMWRccccooveiineiinnnne
Figure 6-7. Data Bus Buffer Control Example ..o
Figure 6-8. Z80 DMCA-SIO ENVironmentoccccoeiiiiiincnie e
Figure 6-9. Connecting DMA to Demultiplexed Address/Data buses
Figure 6-10. Z8000/Z80 Peripheral Interface............c.ccoeivviinniniiicns
Figure 7-1. DMA Bus Master Gate............cccccceeeneenn.
Figure 8-1. CPU-to-DMA Write Cycle Requirement
Figure 8-2. CPU-to-DMA Read Cycle ReqUIrEMENtSooveeiireiiiiiiice e
Figure 8-3. Sequential Memory-to-1/O Transfer, Standard Timing (Searching Is Optional)
Figure 8-4. Sequential I/O-to-Memory Transfer, Standard Timing (Searching Is Optional)
Figure 8-5. Simultaneous Memory-to-1/O Transfer (Burst and Continuous Mode)cccccoeecoune
Figure 8-6. Simultaneous Memory-to-1/O Transfer (Byte Mode)cccoviiiiiiiiiiiiiiiiice
Figure 8-7. Bus Request and Acceptance TImiNgccooviiiniiiiiiicee e
Figure 8-8. Bus Release in Byte Mode ...
Figure 8-9. Bus Release on End-of-Block (Burst and Continuous Modes) ...
Figure 8-10. Bus Release on Match (Burst and Continuous Modes) ...
Figure 8-11. Bus Release on Not Ready (Burst Mode)ccooiiiiiiiiiiiniic e
Figure 8-12. RDY Line in Byte Mode
Figure 8-13. RDY Line in Burst Mode
Figure 8-14. RDY Line in ContinUOUS MOGEcccccoiiiiiiiiiiiiiictce e
Figure 8-15. Variable-Cycle and EAge TimMiNgccecirivriiieiinciiiiiiiee s
Figure 8-16. WAIT Line Sampling in Variable-Cycle Timing.
Figure 8-17. Interrupt Acknowledge
Figure A2. Write Register 0 Group
Figure A3. Write Register 1 Group
Figure A4. Write Register 2 Group
Figure A5. Write Register 3 Group
Figure A6. Write Register 4 Group
Figure A7. Write Register 5 Group
Figure A8B. Write Register 6 Group
Figure A9. Read Register 0 through Read Register 6
List of Tables :
Table 2-1. Maximum Transfer and Search Speeds (Burst and Continuous Modes)..................... Cc2-8
Table 2-2. Reduction in Z80 CPU Throughput per Kilobaud for Byte Mode Transfers.................. C2-8
Table 2-3. EVents @nd ACHIONS ... ittt e e
Table 4-1. Contents of Counters After DMA Stops Due to End-of-Block
Table 4-2. Contents of Counters After DMA Stops Due to Byte Matchccocceinninenene
Table 5-1. DMA SEAtUSooviiic e s
Table 5-2. Control Byte Order
Table 6-1. Receive Event Sequence
Table 6-2. Transmit Event Sequence

C-iv

N 2iLa5

DMA USER'S MANUAL

CHAPTER 1

INTRODUCTION
1.0 WHY IS DMA USEFUL?
Before describing the Z80® DMA device in detail, we will Read
review the subjects of direct memory access (DMA) and —> Source Port
directmemory access controllers (DMACs)in general. This
will provide a background of functions and terminology for {
8-bit single-busmicrocomputer environments used through-]
out the remainder of the manual. Writs To

Destination Port

DMACs are dedicated to the task of controlling high-speed *
block transfers of data independently of the CPU. Typi-
cally, these transfers are between memory and I/O, or vice Increment
versa, although a few DMACs can perform other types of Address Counter
transfers that have traditionally been done by the CPU. For +
example, the Z80 DMA can perform memory-to-memory
and I/O-to-1/O transfers, as well as searching for particular Increment
patterns of bits in a byte either simultaneously with or Byte Counter
independently of transfers.
1.0.1 CPU Transfers
In systems without DMA, data transfers must pass through Byte Count

the CPU and, therefore, must be implemented in software.
This normally involves the execution of an instruction se-
quence. forinputting, outputting, and tracking each byte of
data in the block to be transferred.

Figure 1-1 illustrates the minimum sequence, of instruc-
tions that must be fetched from memory and executed by
conventional CPUs to transfer a block of data one. byte at
a time. In fact, most CPUs require many more instructions
than are shown here.

One result of this method is that CPU transfers are relatively
slow and tie up the CPU for long periods of time. Another
result is that response time (startup time for the first byte)
is also usually slow, because the I/O device typically uses
interrupts to signal its readiness, and the CPU interrupt
service routine causes a significant time lag in transferring
the first byte.

Equal
Block %ength

Figure 1-1. Typical CPU I/O Sequence

The Z80 and Z8000 CPUs are unique in that they both have
block-transfer and string-search instructions that can op-
erate on up to 64 Kbytes of data with a single instruction.
A single block transfer instruction repetitively performs all
of the functions illustrated in Figure 1-1 on an entire
sequence of bytes, and the transfer rates achievable are
far better than in other CPUs. The 4 MHz Z80A CPU can
transfer at about 200 Kbytes/s and the 4 MHz Z8000 CPU
canreach 800 Kbytes/s, which s faster than some DMACs.

Ci41

N 2iLa5

Z80® DMA
USER'S MANUAL

WHY IS DMA USEFUL? (Continued)

The problem with CPU block transfers in the Z80 and
Z8000 Families is, therefore, usually not speed of transfer
but response time at startup. One of the following methods
isnormally used to set up for execution of the biock transfer
instruction:

B The I/O device interrupts the CPU and the block
transfer instruction is executed in the CPU interrupt
service routine. This entails a response time of at ieast
5to 10us, eveninthe 4 MHz Z80A and Z8000 Families,
which have one of the fastest interrupt-handling
capabilities available.

B The CPU begins executing the device service routine
before the I/O device is ready, and a flag bit is
constantly polled by the CPU. When the bit indicates
that the device is ready, the CPU jumps to the block
transfer instruction. This method can sometimes allow
aresponse time of less than 5 us, but it totally occupies
the CPU.

B TheCPUbegins executingthe block transferinstruction
in an interrupt service routine before the, I/0 device is
actually ready. But the I/O device idles the CPU with
the Wait line just after the Read and Chip-Select lines
become active. Whenthe /O deviceisready, itreleases
the Wait line and the transfer is completed. This gives
by far the best response time (250 ns in a 4 MHz Z80A
or Z8000 CPU), but it totaily ties up the bus.

In summary, both transfer and response times on most
CPUs are often too slow. While transfer speed can he quite
high withthe Z80 and Z8000 CPUs, the response time may
be too long in some interrupt-driven transfer situations.

1.0.2 DMA Transfers

A DMA controller performs direct transfers between the
source and destination of data, without going through the
CPU and without the instruction fetches required by the
CPU. It performs all of the steps illustrated in Figure 1-1
through hardware.

Inamemory-to-1/O transfer, for example, the starting address
in memory and the length of the block to be transferred are
written into the DMA by the CPU prior to the transfer. The
DMAC quickly takes control and begins transferring data
whenthe CPU enables the DMAC and the I/O device's Ready
line becomes active. In most cases, the CPU is idled during
this process. When the transfer is complete, the DMAC
signals the CPU and releases control.

DMACs are used, therefore, when one or more of the
following situations or requirements are present:

M The CPU is loaded down with too much I/O to perform
its other tasks properly.

B Thetransfer mustbe faster thanthe CPU could perform
it.

B The transfer response time (startup) must be faster
than the CPU can conveniently provide.

Small and low-performance systems generally run without
DMA. Medium-performance systems can alsc be de-
signed without DMA if the CPU can handle transfers fast
enough and still do its other work.

Whenever systems require fast transfers or fast response,
DMACs are strong candidates for performance enhance-
ment. Not only do they transfer faster than CPUs (with the
possible exceptions of the Z80 and Z8000 CPUs), but their
response time is inherently better and can be improved
with the same techniques described above for CPU re-
sponse.

Here are a few examples where DMA is often the best
choice:

Disk and diskette controllers
Scanning operations, such as CRT I/O
Data acquisition

Memory-to-memory transfers

Memory searches

Backup storage (1/O-to-1/0)

Parallel bus systems like the |IEEE 488

Fiber optic links

Block transfers in networking, multiprocessing, or
multiprogramming

The trade-off for this speed is that the CPU typically
remains idle and lacks full or partial control of the system
bus while the DMA is operating. This can affect not only
total system throughput, but it can also affect such things
as memory refresh and other interrupts.

We will discusstheseissues in greater detail in the chapter
entitled “Performance Limitations.” Speed comparisons
for the Z80 Family are given in the next chapter entitled
“Functional Description of the Z80 DMA.”

C1-2

Q2La5

280® DMA
USER'S MANUAL

1.1 DMA CHARACTERISTICS

AllDMACs are programmable because, at a minimum, the
CPU must write a block length (byte count) and starting
memory address into them before they can begin manag-
ing a data transfer. The starting address is incremented or
decremented as the transfer proceeds, and the byte
counter is incremented from zero up to the specified block
length.

Beyond this, however, DMACs vary substantially in their
characteristics and capabilities. The discussion that fol-
lows is a general overview of the characteristics of DMACs,
with only occasional reference to the Z80 DMA in particu-
lar.

1.1.1 Ports and Channels

Every data transfer has a source port and a destination
port. For example, in memory-to-1/O transfers, memory is
the source port and I/O is the destination port. The means
of controlling and tracking the exchange of data between
the two ports is called a “channel.” A channel includes the
hardware for address and byte counting, bus control, and
coordination of the entire transfer process.

Each port in a channel has its location specified either by
the DMA address-generation mechanism or by hardwiring.
The Z80 DMA, unlike other 8-bit DMACs, generates ad-
dresses for both memory and I/O ports during each byte
transfer; in other DMACs, the 1/O port is hardwired.

Some DMACs have multiple channels. This usually means
that they can keep track of multiple interleaved transfers
and that one DMA can be hardwired to multiple /O
devices. However, because any DMA can execute only
one read and/or write cycle at a time, multiple channels do
not imply higher throughput than single channels of a
given speed. The Z80 DMA, which is called a single-
channel device, has the distinction of having the fastest
maximum transfer rate and generating authentic /O port
addresses on the address bus. Moreover, the ability to
generate two addresses means that the Z80 DMA can do
memory-to-memory transfers in a single channel whereas
others either cannot do them at all or require two channels
to do them.

The ability to perform internal byte searches is another
feature available on the Z80 DMAs single channel and is
not available on other 8-bit DMACs. The Z80 DMA is the
only DMAC that loads bytes into aninternal DMAC register,

during transfers with the result that, once the byte is
loaded, it can be compared with a maskable control byte.
Valid comparisons can then be made to cause various
actions by the Z80 DMA.

1.1.2 Transfer Methods

Earlier we mentioned the differences between handling
1/0 by conventional CPU instructions versus direct memory
access. Figure 1-2 expands this theme by comparing not
only conventional CPU instructions but also the Z80 and
Z8000 CPU block-transfer instructions along with two
different methods of DMA transfer. This figure shows the
read and write cycles needed to accomplish the transfer
of a single byte of data.

Figure 1-2a illustrates conventional CPU 1/O instruction
activity. The number of read and write cycles is approxi-
mate—many CPUs require more cycles than are pictured.
At a minimum, the CPU instruction causes all the steps
illustrated earlier in Figure 1-1, plus additional housekeep-
ing such as testing to see if the next byte is ready for
transfer.

Figure 1-2b shows Z80 and Z8000 CPU block transfer
instructions. Again, these are approximate and entail some-
what more activity than one read cycle and one write cycle
after initiation, particularly with the Z80 CPU. A singie
block-transfer instruction, however, is capable of transfer-
ring up to 64 Kbytes of data.

Figure 1-2c illustrates “sequential” or “flow-through” DMA
transfer, in which a byte is read from the source port into
the DMA and then subsequently written to the destination
port. This method can be implemented on the Z80 DMA
with no external logic in a Z80 CPU environment (its liming
characteristics and pin interfacing to the CPU are highly
uniform in this case). Sequential transfer provides speeds
that match or exceed the capability of most serial commu-
nication processors and many other 1/O or memory de-
vices.

Figure 1-2d illustrates “simultaneous” or “flyby” DMAtrans-
fer, in which a byte is both read and written in the same
machine cycle. The Read and Write control lines are both
active simultaneously, and the source and destination are
determined by signals that specify either a memory-read/
1/0-write or an 1/O read/memory-write. This is the fastest
transfer method, but the external logic required makes
timing interfaces to memory and 1/O somewhat more
complicated.

C1-3

RN 205

280® DMA
USER'S MANUAL

1.1 DMA CHARACTERISTICS (Continued)

Another method also used on certain DMACs is called
“transparent” or “cycle-stealing” transfer. This technique
works in amanner similar to Figures 1-2c and 1-2d, except
instead of taking control of the bus it causes the DMA data
transfersto be interleaved with CPU cycles where dynamic
memory would otherwise be refreshed. This method also
requires external logic and inhibits memory refresh when

DMA is occurring. Additionally, it reduces DMA through-
put in some cases.

AllDMA transfers interrupt dynamic memory refresh by the
CPU and most of them idle the: CPU. It is, therefore,
important to consider these implications when making the
trade-off for higher DMA transfer speed.

Write Cycle BUS
a
Conventional
Programmed :' |
Instruction
Sequence
CcPU MEMORY)) DMA
Write Cycle
b Read Cycle BUS
2Z80/Z8000
Block Transfer :l
L AL A5 A4 E
CPU MEMORY 110 DMA
Read Cycle
. Write Cycle BUS
DMA
Sequential j |
Instrucion
CPU MEMORY 10 DMA
Read/Write Cycle BUS
d. '
DMA
Simultaneous :l l
Transfer
CPU MEMORY /0 DMA

Figure 1-2. Conceptual Comparison of Various I/O Transfer Methods

Ci1-4

N 2iLa5

280® DMA
USER'S MANUAL

1.1.3 Modes of Operation

Within each of the "methods” illustrated in Figures 1-2¢
and 2d there are as many as three “modes” of operation.
These are termed Byte, Burst, and Continuous modes in
this manual, although they are also sometimes referred to
as Single, Demand, and Block modes. Figure 1-3 illus-
trates the typical sequence of events for each mode, once
the 1/O device's Ready signal to the DMAC has become
active and before the DMA process reaches an end-of-
block or other terminating condition. (These figures are
expanded in Figures 2-3 through 2-6.)

In Byte mode, the DMAC transfers only one byte at a time
while the I/O device Ready line is active. Control of the
system bus is released back to the CPU between each
byte. The CPU can then interleave its other activities, until
the DMA makes a new request to the CPU for system bus
control before transferring the next byte. Byte mode is
related to the transparent method of transfer in that both
cause interleaving of CPU and DMA functions. The Byte
mode, however, includes the protocol of requesting and
releasing the bus for each byte transfer.

In Burst mode, which is the most common mode, the
DMAC continues to transfer bytes after gaining control of
the system bus until the 1/O device Ready line goes
inactive. During this time, the CPU typically remains idle.
When the Ready line goes inactive, the DMAC releases
system bus control back to the CPU.

In Continuous mode, the DMAC holds the system bus until
the entire block of data has been transferred. If the
1/O device Ready line goes inactive before the block is
completely transferred, the DMAC simply waits until it
becomes active again, but the system bus is not released
as in Burst mode. The Continuous mode is the fastest
mode because it has the least response-time overhead
when the Ready line momentarily goes inactive and re-
turns active again. However, this mode does not allow any
CPU activity for the duration of the transfer.

1.1.4 Bus Control

Most DMACs do not control the system bus in the same
way that a CPU controls it. For example, many DMACs do
not have a straightforward interface to the system data bus
but rather multiplex a portion of the memory address onto
the data bus, from which it must be latched by external
logic. Nor do most DMACs generate all of the bus control
signals that the CPU generates, and therefore they lack
some, degree of bus control when they operate.

The Z80 DMA is unique among 8-bit DMACs in that it
generates exactly the same bus control signals for read
and write cycles that the Z80 CPU does, and in that it has
exactly the same logical and electrical interface to the data
and address buses as the CPU. This means the other
system components cannot telithe difference between the
Z80 DMA and CPU, control by these devices is totally
interchangeable. In the sequential DMA transfer method
(a read cycle followed by a write cycle), it also means that
the Z80 DMA pins can be tied directly to the corresponding
Z80 CPU pins without any of the external interfacing logic
that other DMACs require. This property considerably
simplifies design and lowers part counts.

1.1.5 Programmability

How a DMAC starts, transfers data, and stops is deter-
mined by control information written to the DMAC by the
CPU prior to the transfer. Status registers, which can be
read by the CPU to determine the transfer condition after
the DMAC stops transferring, are also typically provided.

The degree of programmability is directly related to the
DMAC:s flexibility for handling a variety of transfer tasks.
Most DMACs are quite limited in their programmability.
The Z80 DMA, by contrast, has over 140 bits of control
information used to tailor the device (and retailor it
between operations) for a wide variety of tasks and
environments.

For example, the Z80 DMA can be programmed either to
stop, interruptthe CPU, continue, or repeat a transfer when
a target event such as an end-of-block, byte match, or
Ready-line condition is reached. Alternatively, its buffered
address counters can be reloaded during one byte-mode
transfer so that the next transfer can begin quickly at anew
location. Also, entire read and write cycle timings can be
modified independently for each port to fit the require-
ments of other CPUs, memory, or /O devices that are
faster or slower than the standard Z80 Family timing.

This topic, as well as the others described earlier, are
expanded in following chapters. We have introduced them
here simply to give a generalized framework from which to
launch a more detailed discussion of the Z80 DMA.

Ci-5

N 2iL05

280® DMA
USER'S MANUAL

BYTE
(Single)

\

Request
Control

Y

Transfer
Byte

Y

Release
Control

BURST
(Demand)

Request
Control

Y

CONTINUOUS
(Block)

Request
Control

Y

- Transfer

- Transfer
o Byte

Release
Control

Figure 1-3. Modes of Operation
(See also Figures 2-3 through 2-6)

Byte

C1-6

N 2iLa5

DMA USER'S MANUAL

CHAPTER 2
FUNCTIONAL DESCRIPTION

2.0 DMA FEATURES
B Single Highly Versatile Channel

B Dual Port Address Generation with Incrementing,
Decrementing, or Fixed Address in Both Ports

Buffered Address and Block-Length Registers
64 Kbyte Maximum Block Length

2.4 or 4 MHz Clock Rates (Z80 or Z80A DMA)
1.25 or 2 Mbytes/s Data Rate (Z80 or Z80A DMA)
Transfer, Search, or Transfer/Search Operations

Bit-Maskable Byte Searching

Sequential (Flow-Through) or Simultaneous (Flyby)
Transfers

Compatible with Z80 and Many Other CPUs
Byte, Burst, and Continuous Modes

Auto Restart Capability

Variable Cycle Timing

B Wait-Line Cycle Extention
Internally-Modifiable Interrupt Vectors

B Programmable InterruptSS on Ready, End-of-Block,
Byte Match

B Hardware Priority Daisy Chains for Bus Requests and
Interrupts

Periodic Pulse Generation for External Device
21 Writeable Control Registers

Seven Readable Status Registers
Programmable Force Ready Condition
Programmable Active State for Beady Line
Programmable DMA Enable

Complete System Bus Mastering

No External Logic Needed for Sequential Transfers in
Z80 Environments

2.1 OVERVIEW

The Z80 DMA performs data transfers and searches in a
wide variety of 8-bit CPU environments. It is unique among
DMACs in that it takes full control of the system address,
data, 'and control buses—and is therefore a special-
purpose processor—when enabled by the CPU to do so.
The DMA also provides complete interfacing to the system
bus. For example, ina Z80 CPU environment the Z80 DMA
generates the same signal levels and timings, including
tri-state control, that the Z80 CPU would generate to
accomplish a transfer. It normally does this without exter-
nal TTL packages, which all other DMAs require.

For this reason, and because of its extensive programma-
bility for operating on data and data flow, the ZBO DMA can
be called a special-purpose transfer processor. It unbur-
dens not only the CPU but also the system designer.

The Z80 DMA is also unique in other respects. First, it
generates two port addresses instead of one. Because
both addresses can be either variable or fixed, this means
that memory-to-memory or 1/0-to-1/O transfers can be
done with a single channel, whereas other DMACs either
require more than one channel or cannot do such transfers
atall.

Cc2-1

Q2305

Z80® DMA
USER'S MANUAL

2.1 OVERVIEW (Continued)

The capability of the Z80 DMAs channel surpasses the
capability of any other available monolithic DMAC channel
to service either fast or slow devices. In addition to having
a Wait line for extending cycles, the basic read and write
cycles can be programmed for different timing require-
ments. |f multiple channels are needed, multiple Z80
DMAs can be integrated very easily. The interrupt struc-
ture is among the fastest and most versatile available.
Interrupt signals and vectors can be generated under
several conditions. Finally, the Z80 DMA is the only DMAC

that passes data through itself and can therefore compare
bytes against a bit-maskable match byte. An overview of
780 DMA features are listed below and each point is
described more thoroughly in this and other chapters.

Throughout the remainder of the manual we refer to the
“Z80DMA” or simply the “DMA." By this we mean either the
2.4 MHz Z80 DMA or the 4 MHz Z80A DMA device. Both
parts have the same features and differ only in speed.

2.2 PROGRAMMING

The Z80 DMA has 21 writeable 8-bit control registers and
seven readable 8-bit status registers available to the CPU.
Control bytes can be written to the DMA or status bytes can
be read from the DMA whenever the DMA is not controlling
the bus.

Control bytes writeable to the DMA include those which
effect immediate command actions such as enable, dis-
able, reset, load starting addresses, continue transferring
or searching, clear byte and address counters, clear
status bits, and the like. In addition, many mode-setting
control bytes can be written, including the class and mode

of operation, port configuration, starting addresses, block
length, address-counting rule, match and match-mask
bytes, interrupt conditions, interrupt vector, end-of-block
rule, Ready-line and Wait-line rules, and others.

Readable status registers include a general status byte
reflecting Ready-line, end-of-block, byte-match, and inter-
rupt conditions, as well as registers for the current byte
count and port addresses. There is a full chapter on
programming that explains these functions in detail, and
most of them are described in general terms on the pages
that follow.

2.3 CLASSES OF OPERATION

The Z80 DMA has three basic “classes” of operation, and
two of the classes are each broken into subclasses as
follows:

B Transfers of data between any two DMA ports:
Sequential transfers (flow-through)
Simultaneous transfers (flyby)

B Searches for a particular bit pattern within a byte at a
single DMA port

M Combined transfers and searches between any two
DMA ports:
Sequential transfer/search
Simultaneous transfer/search

Figure 2-1 illustrates these classes. The two subclasses of
transfers are shown at the top, the search-only class is
shown in the middle, and the two subclasses of transfer
while searching are shown at the bottom. In all cases, the
DMA assumes full control ofthe system address, data, and
control buses while transferring or searching a given byte.
The DMA ports are the source and destination of data: a
“port” is used here to mean either memory or an I/O device.

In “sequential transfers,” which are sometimes called flow-
through transfers, each byte transfer entails a read cycle
followed by a write cycle. The DMA reads the byte via the
data bus into an internal register and sustains the byte on
the data bus into the subsequent write cycle. Ina Z80 CPU
environment, aswell as in certain other CPU environments,
sequential DMA transfers can be implemented with no
external logic between the DMA and the CPU.

In “simultaneous transfers,” which are sometimes called
flyby transfers, each byte is simultaneously read from the
source into the DMA and written from the source directly to
the destination in a single machine cycle. These transfers,
therefore, occur at twice the rate of sequential transfers,
but they require at least one external logic package to
cause the proper signals to appear simultaneously on the
control bus (see the “Applications” section).

In the “search only” class, each byte is read via the data
bus from the source port into the DMA, where it is com-
pared with amatch byte. The match byte can optionally be
masked with another byte so that only certain bits in the
data and match bytes are compared. The search-only
class needs no external logic between the DMA and CPU
in Z80 systems and certain other CPU environments.

Cc2-2

. 280® DMA
N2ILO56 USER'S MANUAL
Read Write
Y Yy
Sequeial — 1 —
Transfer
(Flowthrough)
CPU MEMORY DMA o]
Read/Write
\
Simultaneous — Iij ——
Transfer
(Fiyby)
CPU MEMORY DMA /o]
Read
Y
—1 I
Search 1
Only —
CPU MEMORY DMA o]
Read Wirite
Y Y
. —1 cC_] —
Sequetial —
Transfer/Search C—
CPU MEMORY DMA o]
Read Write
Y Y
Simultaneous — % —
Transfer/Search
—
CPU MEMORY DMA 110

Figure 2-1. Class of Operation

Cc2-3

QA 21La5

Z80® DMA
USER'S MANUAL

2.3 CLASSES OF OPERATION (Continued)

In “sequential transfer/searches,” datais transferred inthe
same way as in the sequential transfer class and simulta-
neously searched, as in the search-only class. This class
also needs no external logic in Z80 and some other
environments.

In “simultaneous transfer/searches,” data is transferred
just as in the simultaneous transfer class and simulta-
neously searched just as in the search-only class. In this
case, at least one additional external logic package is
needed to obtain the doubling of speed.

Figure 2-2 summarizes the functions of each class of Z80
DMA operation with respect to the two types of address-
able ports that can be selected as a source and destina-
tion. The most common applications of DMA are transfers
from memory-to-1/Q or from |/O-to-memory, without search,
and mostDMA devices are limited to these operations. The

simultaneous searching functionis unique to the Z80 DMA.
Simultaneous transfers (flyby) are limited to transfers be-
tween memory and 1/O.

Transfers from memory-to-memory are useful in relocating
memory contents. They can also be used in supporting
memory-mapped 1/O. A Ready condition can be pro-
grammed into the DMA to simulate an active I/O Ready line
for memory-to-memory transfers (see the “Programming”
section).

Transfers from I/O-to-1/O can be used in applications such
as real-time data acquisition where backup storage of the
incoming data is required. The optional search capability
allows branching to various other actions when a byte
match is found as in memory-to-memory transfers. Memory
searches and I/O searches, without transfer, are unique to
the Z80 DMA and are useful in locating an end-of-block,

check character, or other special byte in a block.

MEMORY DMA Vo
q\ -
® >
- ®
B ®
NG
O@ 1o

 J

1. Transfer Memory-to-/O (optional search).

2. Transfer I/O-to-Memory (optional search).

3. Transfer Memory-to-Memory (optional search).
4. Transfer l/O-to-/O (optional search).

5. Search Memory.

6. Search /0.

Figure 2-2. Basic Functions of the Z80 DMA

C2-4

N 2iLa5

280° DMA
USER'S MANUAL

2.4 MODES OF OPERATION

Within any class of operation, the Z80 DMA can be pro-
grammed to operate in one of three Transfer and/or,
Search modes:

Byte Mode. Data operations are performed one byte at a
time. Between each byte operation the system bus is
released to the CPU. The bus is requested again for each
succeeding byte operation. This is also sometimes called
the “Single” or “Byte-At-A-Time" mode.

Burst Mode. Data operations continue until a port's Ready
line to the DMA goes inactive. The DMA then stops (re-
leases the system bus) after completing its current byte
operation. This is also called the “Demand” mode.

Continuous Mode. Data operations continue until the end
of the programmed block of data or a stop-on-match
condition is reached before the system bus is released. If
a port’s Ready line goes inactive before this occurs, the
DMA simply pauses until the Ready line comes active
again. This is also called the “Block” mode.

In all modes, the operation on the byte will be completed
in an orderly fashion once a byte of data is read into the
DMA, regardless of the state of other signals (including a
port's Ready line). Figure 2-3 illustrates the sequence of
events that occur in a sequential transfer/search of one
byte, irrespective of the mode of operation. First, the
source port address is incremented or decremented if it
was programmed to he a variable-address port. Then the
byte is read from that port into the DMA. Next, the destina-
tion port address is incremented or decremented if it was
programmedto be avariable. The byte isthen writtentothe
destination port. If the search capability is included, the
byte is compared to the match byte. When there is no byte
match, the DMA increments the byte counter and contin-
ues; when a byte is found, a status bit is set and the DMA
either continues by incrementing the byte counter, stops
(releases the bus), or interrupts the CPU, depending onits
initial programming. The next three figures illustrate the
manner in which the three modes of operation behave
before, during, and after the single-byte operation shown
in Figure 2-3.

Operation in the Byte mode (Figure 2-4) begins with an
enabling command from the CPU and a test of the I/O
device's Ready line. When the Ready line is active, the
DMA requests the system bus (address, data, and control
buses) via the Bus Request line, and the CPU acknowl-
edges and releases control to the DMA very shortly there-
after. The transfer of and/or search of one byte then takes

{

Increment/Decrement
Source-Port Address

y

Read
Source-Port Data

Y

Increment/Decrement
Destination-Port Address

Y

Write Data
to Destination Port
Match
! y
Set
NO Status Flag
Increment *
Byte Counter « Continue
* Release Bus
* * Interrupt

Figure 2-3. Transfer/Search One Byte

place as in Figure 2-3. After this, a test is made for end-of-
block by checking to see if the byte counter has reached
the programmed block length. If the end is not reached,
the DMA releases the bus back to the CPU; if the end is
reached, a status bit is set and some terminating action
occurs, according to the initial programming. Releasing
the bus between each byte allows the CPU to execute at
least one machine cycle before releasing the bus again to
the DMA for the next byte transfer. This means that while
the DMA operates more slowly than it could in other
modes, CPU activities like interrupt acknowledgement,
polling, and memory refresh can be interleaved with DMA
transfers in the Byte mode.

C2-5

Q 2iLa5

Z50® DMA
USER'S MANUAL

2.4 MODES OF OPERATION (Continued)

Release Bus
(CPU Executes Request Bus
At Least One
Machine Cycle) *
: Transfer/Search See
One Byte Figure 2-3

Release Bus Request Bus
Y
Transfer/Search See
One Byte Figure 2-3

Set Status Flag

+ P
* Interrupt

¢ Release Bus
* Auto Restart

Figure 2-4. Byte Mode

In the Burst mode (Figure 2-5), the bus is requested inthe
same manner as previously, but once the DMA has control
of the bus it continues to transfer bytes until it encounters
either an inactive Ready signal from an |/O port, an end-of-
block, or a byte match as in Figure 2-3. If the Ready line
goes inactive before end-of-block is reached, the DMA
releases the bus to the CPU and repetitively tests the
Ready signal until it comes active again. Then it requests
the bus again and continues its transfers. Because of this,
the Burst mode is often the most useful one for general-
purpose applications because it does not request the bus
until it actually can use it, but once it has the bus, the
transfers are made at maximum speed. If the transfers are
long, however, this mode can interfere with other CPU
activities, which come to a halt for the entire duration of
DMA transfers.

Set Status Flag

v

* Interrupt
* Release Bus
* Auto Restart

Figure 2-5. Burst Mode

In the Continuous mode (Figure 2-6), the DMA requests
the bus in the same manner as other modes and repeti-
tively transfers bytes in the same manner as Burst mode.
However, unlike the Burst mode the bus is retained by the
DMA whenever an inactive Ready signal is encountered
prior to a stop on end-of-block or byte match. The DMA
simply idies, while holding onto the bus, until Ready
becomes active again. Then it completes the transfer
sequence. This is the fastest of the three modes because
it eliminates the necessity of releasing the bus and re-
questing it again between complete block transfers. Inthis
mode, however, the system bus is continuously pre-
empted by the DMA. This mode is usually used only when
very fast transfers are needed and when the impact on
CPU activities can be comfortably tolerated. This might be
the case, for instance, when an operating system is being
loaded into memory from disk.

C2-6

N 2iLa5 Use WA

Due to the DMAs high-speed buffered method of reading must be one less than the desired block length. This
data, operations on one byte are not completed until the ~ phenomenon is described in detail in the “Internal Struc-
next byte is read in. This means that total transfer or search ~ ture” chapter under the section entitled, “Address and
block lengths must be two or more bytes, even inthe Byte Byte Counting.”

mode, and that block lengths programmed into the DMA

Request Bus
Transfer/Search See
One Byte Figure 2-3

Set Status Flag

* Interrupt
* Release Bus
¢ Auto Restart

Figure 2-6. Continuous Mode

c2-7

Q2105

Z80® DMA
USER'S MANUAL

2.5 TRANSFER SPEED

The Z80 DMA has the fastest maximum transfer rate of any
8-bit DMAC device. This rate is achieved in the simulta-
neous transfer class of operation and, unlike the more
common sequential transfer class, it requires at least one
external TTL package. But because all other 8-bit DMAs
require some external logic, this constitutes a legitimate
speed comparison.

Table 2-1 illustrates the maximumrates that canbe achieved
in different classes of DMA operation. Maximum CPU
block-transfer rates are also given for comparison. All
DMA transfers assume the uninterrupted use of Burst or
Continuous mode, and they assume read and write cycles
that last two cycles (see the following “Variable Cycle,”
section).

Transfer speed in Byte mode depends on how long the
CPU keeps the bus between each byte transfer of the
DMA. Therefore, the speed is best expressed from the
CPU viewpoint.

Table 2-2 shows the reduction in Z80 throughput (per
Kilobaud transferred) caused by byte-mode DMA trans-
fers, and this rate is compared with the reduction in
throughput that would occur if the CPU did its own byte
transfers using an interrupt service routine of six instruc-
tions (a practical lower limit). The section entitled “DMA
and Z80 SIO" in the chapter on “Applications” contains
more detail on this data. Note that this data assumes
sequential DMA transfers with longer cycle timing than the
minimum of two clock cycles per read or write. Simulta-

neous transfers of two clock cycles would, therefore, result.

in even lower impact on CPU throughput.

Table 2-2 shows that the reduction of CPU throughput with
Byte mode DMA transfers is about five times less than the
reduction that results when the CPU handles its own byte-
mode I/O in the normal Interrupt mode. Table 2-1 shows
that DMA transfer rates in Burst and Continuous modes
can be up to ten times faster than Z80 CPU rates.

Table 2-1. Maximum Transfer and Search Speeds
(Burst and Continuous Modes)

Z80 Z80Z
‘ (2.4 MHz) (4.0 MH2)
DMA Simultaneous Transfer 1.25 2.0
DMA Search Only Mbytes/s Mbytes/s
DMA Simultaneous
Transfer/Search
DMA Sequential Transfer 0.625 1.0
DMA Sequential Mbytes/s Mbytes/s
Transfer/Search
CPU Block Transfer 0.125 0.200
Instruction Mbytes/s Mbytes/s

Table 2-2. Reduction in 280 CPU Throughput per
Kilobaud for Byte Mode Transfers

280 Z80Z
(24 MHz) (4.0 MHz)
DMA Sequential Transfer 0.065% 0.041%
DMA Seguential
Transfer/Search
CPU Interrupt Driven 0.340% 0.213%

Transfer

C2-8

N 2iL05

Z80® DMA
USER'S MANUAL

2.6 ADDRESS GENERATION

Two 26-bit addresses are generated by the DMA for every
transfer operation: one address for the source port and
another for the destination port. The two addresses are
multiplexed onto the address bus, according to whether
the DMA is reading the source or writing to the destination.

The two ports are arbitrarily named Port A and Port B. Both
Aand B canbe either source or destination, either memory
or I/O, and have fixed or variable addresses.

Variable addresses can either increment or decrement
automatically fromthe programmed starting address. Fixed
addresses are useful for 1/O devices and the DMAs capa-
bility to generate fixed addresses eliminates the need for
transfer/search enabling wires to the I/O device (although
Chip Enable hardwiring is still required, as it is with all
peripheral circuits).

Two readable address counters keep the current address
of each port. These counters are distinct from the starting-
address registers for each port, that is, the counters are

buffered by the registers. Thus new starting addresses
can be written to the DMA whenever the DMA is not holding
the bus (for example, between byte transfers in Byte
mode). Therefore, new starting addresses for a new block
of data can be loaded into the DMA before the transfer of
the current block is finished. Loading new starting ad-
dresses does not disturb the contents of the associated
port address counters.

The following partially summarizes the ways DMA ad-
dress-generation capabilities can be used.

B Start at a base address and count up or down.

B Automatically step back to the beginning at the
completion of an address sequence.

B Load in new starting addresses or reload the previous
ones for the next sequence.

2.7 BYTE MATCHING (SEARCHING)

Searches for byte matches can be performed either as a
sole function or simultaneously with transfers. When a byte
match is found, a status bit in the readable status register
is set and the DMA can be programmed to do one of the
following:

B Stop (release the bus) immediately upon byte match.

B Stop and interrupt the CPU immediately upon byte

match.

B Interrupt the CPU when the DMA stops at the end of a
block.

The match byte written into the DMA is masked with
another byte so that only certain bits within the match byte
can be compared with the corresponding bits in the data
bytes being searched.

C2-9

QA 29.a5

Z80® DMA
USER'S MANUAL

2.8 INTERRUPTS

The DMA can be programmed to interrupt the CPU on
three conditions:

B Interrupt on Ready

B Interrupt on Byte Match

M Interrupt on End-of-Block

The first condition (I/O-port Ready line becoming active)
causes an interrupt before the DMA requests the bus. The
other two conditions cause the DMA to interrupt the CPU

after the DMA stops (releases the bus). Stopping the DMA
on byte match or end-of-block is separately programmed.

Any of these conditions (Ready line becoming active, byte
match, or end-of-block) causes a readable status bit to be
set. In addition, when an interrupt on any of these condi-
tions is programmed, an interrupt-pending status bit is
also set, and each type of interrupt can optionally alter the
DMAs interrupt vector.

The DMA shares the Z80 Family’s versatile interrupt scheme,
which provides fast interrupt service in real-time applications.
In a Z80 CPU environment where the CPU is using its Mode
2 interrupts, the DMA passes its internally-modifiable 8-bit
interruptvectortothe CPU, which attaches an additional eight
bits to form the memory address of the interrupt routine table.
This table contains the address of the beginning of the
interrupt routine itself. In this process, CPU control is trans-
ferred to the interrupt routine, so that the next instruction
executed after an interrupt acknowledge is the firstinstruction
of the interrupt routine itself.

2.9 AUTO RESTART

Block transfers can be repeated automatically by the
DMA. This function causes the byte counter to be cleared
and the address counters to be reloaded with the contents
of the starting-address registers.

The Auto Restart feature relieves the CPU of software
overhead for repetitive operations such as CRT refresh

and many others. Moreover, the CPU can write different
starting addresses into the buffer registers during trans-
fers in the Byte mode (or Burst mode when the Ready line
is inactive and the bus is released) causing the Auto
Restart to begin at a new location.

2.10 PULSE GENERATION

External devices can keep track of how many bytes have
been transferred by using the DMAs Pulse output, which

provides a signal at 256-byte intervals. The interval se-.

quence may be offset at the beginning by 1 to 255 bytes.

The Interrupt line carries the Pulse signal in a manner that
prevents interpretation by the Z80 CPU as an interrupt
request, since the signal only appears when the Bus
Request and Bus Acknowledge lines are both active.
Under these conditions, the Z80 CPU does not monitor the
Interrupt (/INT) line.

2.11 VARIABLE CYCLE

The Z80 DMA offers the unique feature of programmable
operation-cycle length. This is valuable in tailoring the
DMA to the particular requirements of various CPUs and
other system components (fast or slow), and in maximizing
the data-transfer rate. Also, it often eliminates external
logic and reduces CPU software overhead.

There are two aspects to the variable cycle feature. First,
the entire read and write cycles (periods) associated with
the source and destination ports can be independently
programmed as 2, 3, or 4 clock cycles long (more if Wait
cycles are used), thereby increasing or decreasing the
speed with which all DMA signals change.

C2-10

N 205

Z80® DMA
USER'S MANUAL

Second, the four signals ineach port (/O Request, Memory
Request, Read, and Write) can each have its active trailing
edge terminated one-half clock cycle early. This adds a
further dimension of flexibility, allowing such things as

shorter-than-normal Read or Write signals that go inactive
before data starts to change. Figure 2-7 illustrates the
general capability, which is described later in the “Timing”
chapter.

fe—T1—>|e—T2—>|e—T3—>}e—Ts—>]

CLK

~+— 2-Cycle ——g——

Early Ending
For Control Signals

— 3-Cycle

>l
LI

|

+— 4-Cycle

L

Figure 2-7. Variable Cycle Length

2.12 TARGETS AND ACTIONS

Table 2-3 gives an overview of the targets that can cause
specific actions by the DMA, depending on how it is
programmed. The targets are conditions in the DMAs
internal registers, signals from the 1/O device, or instruc-
tions on the data bus that DMA watches for.

Table 2-3. Events and Actions

Actions Possible

Event When Event Occurs
End-of-Block 1. Release Bus

2. Interrupt CPU

3. Auto Restart
Byte Match (Compare) 1. Release Bus

2. Interrupt CPU

3. Continue
Pulse-control Byte Matches 1. Generate Pulse

Lower Part of Byte Counter
READY Inactive

. Release Bus
2. Suspend (Continuous
Mode Only)

. Request Bus
2. Interrupt CPU

Request Bus

—_

READY Active

—_

RET! Instruction (Return from 1.
Interrupt Instruction from the
780 CPU)

c2-11

N 2iLa5

DMA USER'S MANUAL

CHAPTER 3
PIN DESGRIPTION

3.0 PIN DESCRIPTION

The following pin descriptions detail the function of the Z80
DMA external pins as illustrated in Figures 3-1 through 3-4.

A15-A0 System Address Bus (output, tri-state). Addresses
generated by the DMA are sent to both source and desti-
nation ports, either of which may be main memory or 1/O
peripherals.

/BAI Bus Acknowledge In (input, active Low). Signals that
the system buses have been released for DMA control.

IBAO Bus Acknowledge Out (output, active Low). In
multiple-DMA configurations, this pin signals that the CPU
has relinquished control of the bus. /BAl and /BAO from a
daisy chain for muitiple-DMA priority resolution over bus
control. Unlike the interrupt daisy chain formed with the IEI
and IEO lines, this chain does not allow preemption of
control by a high-priority DMA when a lower-priority DMA
is already bus master. The DMA that has the bus is always
allowed to finish, regardless of its priority in the chain.

/BUSREQ Bus Request (bidirectional, active Low, open-
drain). As an output, it sends requests for control of the
system address bus, data bus, and control bus to the CPU.

As an input when multiple DMAs are strung together in a_

priority daisy chain through /BAl and /BAO, it senses when
another DMA has requested the buses and causes this
DMA to refrain from bus requesting until another DMA is
finished. Because it is a bidirectional pin that allows simul-
taneous bidirectional signals with no means of control,
there cannot be any buffers between this DMA and any
other DMA. It can, however, have a buffer between it and
the CPU because it is unidirectional into the CPU. A 1.8
kohms pullup resistor is typically connected to this pin.

ICE/WAIT Chip Enable and Wait (input, active Low).
Normally, this functions only as a /CE line, but it can also
be programmed to serve as a /WAIT function. Asa/CE line
from the CPU, it becomes active when /IORQ is active and
the I/O port address (up to 16 bits) on the system address
bus is the DMA’s address, thereby allowing control bytes
to be written from the CPU to the DMA. As a /WAIT line from
memory or 1/O devices, after the DMA has received a bus
acknowledge (/BUSACK) from the CPU, it causes wait
statestobeinsertedinthe DMA's operation cycles, thereby
slowing the DMA to a speed that matches the memory or
1/0 device. The “"Applications” chapter contains a descrip-
tion of how the /CE and /WAIT inputs can be multiplexed by
the CPU’s /BUSACK line.

CLK System Clock (input). Standard Z80 single-phase
clock at 2.5 MHz (Z80 DMA) or 4.0 MHz (Z80A DMA). For
slower system clocks a TTL gate with a pullup resistor may
be adequate to meet the timing and voltage level specifi-
cations. For higher speed systems, use a clock driver with
an active pullup to meet the VIH specification and rise time
requirements. There should be a resistive pullup to the
power supply of 10 kohms (maximum) in all cases to
ensure proper power when the DMA is reset.

D7-D0 System Data Bus (bidirectional, tri-state). These
pins transfer control bytes from the CPU, status bytes from
the DMA, and data from memory or 1/O peripherals. Data
transfers or searches by the DMA are done only when the
DMA controls this bus and the address bus. When the CPU
controls these buses, it can write or read DMA control or
status bytes.

C341

Q2505

Z80° DMA
USER'S MANUAL

3.0 PIN DESCRIPTIONS (Continued)

IEl Interrupt Enable In(input, active, High). This line is used
with [EO to form a priority daisy chain when there is more
than one interrupting device. A High on this line indicates
that no other device of higher priority is interrupting,
thereby allowing this DMA to interrupt if it is otherwise
enabled to.

IEO Interrupt Enable Out(output, active High). IEQ is High
only if IEl is High and this DMA is not requesting an
interrupt. Thus, this signal blocks lower priority devices
from interrupting while a higher priority device is being
serviced by its CPU interrupt service routine. Unlike de-
vices in a bus-request daisy chain, devices in an interrupt
daisy chain can be preempted by higher priority devices
before the lower priority device has been fully serviced.

/INT//PULSE Interrupt Request (output, active Low, open-
drain). This requests a CPU interrupt when brought Low at
a time when the DMA is not the bus master. The CPU
acknowledges the interrupt by pulling its /IORQ output
Low during an /M1 cycle. The DMA /INT pin is typically
connected to the /INT pin of the CPU with a pullup resistor
and tied to all other /INT pins in the system. This pin can
also be used to generate periodic pulses to an external
device. It can be used this way only when the DMA is bus.
master (i.e., the CPU’s /BUSREQ and /BUSACK lines are
both Low and the CPU cannot see interrupts).

NIORQ Input/Output Request (bidirectional, active Low, tri-
state). As an input, this indicates that the lower half of the
address bus holds a valid 1/O port address for transfer of
control or status bytes from or to the CPU, respectively; this
DMA is the addressed port if its /CE pin, //IORQ pin, and or
/RD pin are simultaneously active. As an output, after the
DMA has taken control of the system buses, it indicates
that the address bus holds a valid 8-bit or 16-bit port
address for another I/O device involved in a DMA transfer
of data. When /IORQ and /M1 are both active inputs to the
DMA simultaneously, an interrupt acknowledge by the
CPU is indicated.

/M1 Machine Cycle One (input, active Low). This pin
indicates that the current CPU machine cycle is an instruc-
tion fetch. It has two purposes in the DMA's interrupt
structure. First, it is used by the DMA to detect return-from-
interruptinstructions (RETI, or hex ED4D) fetched over the
data bus by the CPU at the end of interrupt service

routines. Second, an interrupt acknowledge is indicated
when both /M1 and /IORQ are active inputs to the DMA.
During 2-byte instruction fetches, /M1 is active as each
opcode byte is fetched. Inthe CMOS DMA, the /M1 signal
has another function: when /M1 occurs without an active
/RDor /IORQ for at least two clock cycles, the internal reset
is activated at the falling clock after /M1 returns to the
inactive state. This internal reset lasts for three clock
cycles.

MMREQ Memory Request (output, active Low, tri-state).
This line indicates that the address bus holds a valid
address for a memory read or write operation. After the
DMA has taken control of the system buses, it indicates a
DMA transfer request from or to memory.

IRD Read (bidirectional, active Low, tri-state). As aninput,
this signal indicates that the CPU wants to read status
bytes from the DMAs read registers, if selected. As an

- output, after the DMA has taken control of the system

buses, it indicates a DMA-controlled read from memory or
1/O port address.

/RDY Ready (input, programmable active Low or High).
This pin is monitored by the DMA to determine when a
peripheral device associated with a DMA port is ready for
a read or write operation. When the DMA is enabled to
operate, the /RDY line indirectly controls DMA activity; the
manner in which DMA activity is controlled by /RDY varies
with the operating mode (Byte, Burst, or Continuous). An
active /RDY line can be simulated by programming a
Force Ready condition. This is usefulin memory-to-memory
operations. It is preferable to have the /RDY signal syn-
chronized to the CLK signal, i.e., /RDY should become
active on the rising edge of CLK. This is particularly
important in the Continuous mode of operation.

/WR Write (bidirectional, active Low, tri-state). As aninput,
this indicates that the CPU wants to write control bytes to
the DMA write registers when the DMA is selected. As an
output, after the DMA has taken control of the system
buses, it indicates a DMA-controlled write to a memory or
1/0 port address.

/RESET Reset (input active low) is only available in the
CMOS PLCC version. A Low in this signal Resets the DMA.

C3-2

. Z80® DMA
@ ZILCB USER'S MANUAL
-+—»[D0 A >
-0 A f— As L]t 4L] A
|02 n~ e ML 39 | A7
St 0 > s [Js El
BUS) - g; " > a2 [Js /INT/PULSE
<8 46— ALl IEO
—|p7 AT f— %‘f,’& A Lls pli}
A8 [— [BUS ck LY7 D1
Bus (< |/BUSREQ A p—> mwr 18 D2
Contrd ¢ —— g |/BAI A0 f——
«+——|/BA0 Al b—o» JL00 N [] D3
280 DMA A2 f—> NIORQ _J10 D4
JoTy — vee [30[] enD
At —»
— M Ats ——» MREQ D5
system | +—>]/QRQ . /BAO D6
R RDY ft—— }DMA'D' BAl D7
ICE/WAIT Cont
<> |RD * /BUSREQ 26 mt
<> |/MWR INT/PULSE }———3>
- 16l o } gtemat ICEIWAIT RDY
| —s|meser Eo}——» AtS 8
! Ald A9
C-MOS DMA
PLCC Package Only A1d A0
T a2 Q20 Al

+5V GRD CLK

Figure 3-1. Pin Functions

w
a
2
a &
3z ¥ 2 3I29%zm=zd
O O O |
6 5 4 3 2 1 4 4 40
I Do
ck| |8 D1
mrl] D2
mo| | D3
nora | | D4
ne |] GND
vee | | D6
MreQ | | D5
o [] D7

/BUSREQ | |

Figure 3-3. 44-Pin PLCC Pin Assignments
(Z8410 NMOS)

Figure 3-2. 40-Pin DIP Pin Assignments

Figure 3-4. 44-Pin PLCC Pin Assignments
(Z84C10 CMOS)

N 2iLa5

DMA USER'S MANUAL

CHAPTER 4
INTERNAL STRUCTURE

4.0 GENERAL ORGANIZATION

The internal structure of the Z80 DMA includes driver and
receiver circuitry forinterfacing with an 8-bit databus, a 16-
bit address bus, and system control lines. In a Z80 CPU
environment, the DMA can betied directly to the analogous
pins on the CPU with no additional buffering, except for the
/CE//WAIT line, when operation is limited to sequential
transfers and searches. The chapter on “Applications”
provides an illustration of this.

Figure 4-1 illustrates how the DMA's internal data bus
interfaces with the system data bus and services all inter-

nal logic and registers. Addresses generated for Ports A
and B ofthe DMA's single transfer channel are multiplexed
onto the system address bus.

Specialized logic circuits in the DMA are dedicated to the
various functions of external bus interfacing, internal bus
control, byte matching, byte counting, periodic pulse
generation, CPU interrupts, bus requests, and address
generation.

Interrupt

and Bus Pulse
Priority Logic
Logic

ﬁ

Internal Bus

Sytem
iy

Data

Bus

(8-Bit)
Control -

Bus
and
Control < L—r.___:: > Control Status
Logic Registers

BYTE

Counter PortA
Address |

i | System

Address
MUX 7 Bus

! | (16-Bit)
PortB |}

BYTE

Match Address

Logic

Figure 4-1. Z80 DMA Block Diagram

C4-1

Q205

Z80® DMA
USER'S MANUAL

4.1 CONTROL AND STATUS REGISTERS

A set of 21 writeable control registers and seven readable
status registers provide the means by which the CPU governs
and monitors the activities of these logic circuits. All registers
are eightbits wide (the width ofthe data bus), and double-byte
information is stored in adjacent registers.

The 21 control registers writeable through the data bus are
organized into seven base register groups, WR6 through
WRO, most of which have multiple registers. The base
registers in each group contain both control hits and
pointer bits that can be setto address other registers within
the group. Writing to a register within a group involves first
writing to the base register for that group, with the appro-
priate pointer bits set, then writing to one or more of the
other registers that have been pointed to within the group.
The chapter on “Programming” contains a full discussion
of this technique. The names of the write registers shown
in Figure 4-2 do not indicate the full extent of the DMAs
programmability since many modes and functions are set
with single bits in the base register bytes of each group.

Figure 4-2 illustrates the write registers. These are the
registers for which inputs from the data bus are shown in
the figure (compare this figure with Figure 4-3, which
identifies the read registers).

The two 16-bit starting address registers in groups WR4
and WRO, and the 16-bit block-length register in group
WRO have 16-bit counters associated with them. (The
counters, unlike their associated registers, cannot be
written to.) The two address counters generate the ad-
dresses that are put onto the address bus. They can also
be read by the CPU through the data bus, as can the byte

counter. All three writeable registers act as buffers for the
readable counters; the contents of the registers can be
changed during a block transfer without disturbing the
contents of the counters. This facility is useful, for example,
during Byte-mode transfers, in which control bytes can be
writtento the DMA while the CPU has the bus between byte
transfers. This allows the next block (which can be an Auto
Restart block) to begin quickly at a new location. Note that
the block length counter stops (or Auto Restarts) as a
result of a comparison to the block length register. In
changing the register, the block length also changes with
what may be unpredictable results.

The pulse-control byte illustrated in Figure 4-2 (in the WR4
group)also has a relationship to the byte counter in WRO—
it can be loaded with an offset value between 0 and 255
and this value will be continuously compared with the
lower byte of the byte counter. The /INT line generates a
pulse each time a match occurs, which happens on every
256 bytes of transfer or search after the initial offset. Since
the pulse signals generated on the /INT line only occur
whenthe DMA has control of the systembus (i.e., whenthe
/BUSREQ and /BUSACK lines are simultaneously active),
the CPU does not see them and they can be directed
exclusively to an external gate, counter, or other device.

Figure 4-3 illustrates the seven status registers readable
through the data bus. Unlike the write registers, the status
registers include no second-level registers or groups.
These registers are accessed sequentially according to
the “read mask” written into the WR6 group, exceptthatthe
“status byte” can be read separately from the other read
registers.

c4-2

. Z80® DMA
aN2iLas USER'S MANUAL

___________ Data Data
I'wra 7 o BUS Bus
I | Base Register Byte +— | |
|
| 5 * 8,7 ‘
| Port A Starting Ajdress Register]
| Port AAddress Counter (See Figure 4-3) Port AAddress Counter —

! RR4 ’ RR3
| y L ¢
| Block Length Register |
I Byte Counter (See Figure 4-3) Byte Caunter —>1
I ——— S ———— RR2 RR1
| WR1 | Base Register Byte f—i |]
|
| [PotAVaravleTiming J—]| | |
|_ ______________________
| WR2 | Base Register Byte — l |
|
| [PonBVaiable Tming _ }=— | |
}_ ______________________
| WR3 | Base Register Byte | l |
|
I | Mask Byte J+—] L |
|
| L Match Byte f— L |
F—— e —————————
| WRd [Base RegisterByte J— l]
I 5 Y 8,7 0 ;
| Port B Starting Address Register |
| Port B Address Counter (See Figure 4-3) Port B Address Counter —
I y RR6 i RR5
: [ntemupt Control Byte _ }=—| |]
: [PuseContoiBye = l]
| | Interrupt Vector J— | |
| WRS | Base Register Byte e l]
| WRé | Base Register Byte Je— |]
|
[I Read Mask J—1t 1 |
[Status Byte (See Figure4-3) J=— | Status Byte |
RRO
Figure 4-2. Write Register Organization Figure 4-3. Read Register Organization

C4-3

N 205

260° DMA
USER'S MANUAL

4.2 ADDRESS AND BYTE COUNTING

Addresses for either port may be fixed at their pro-
grammed starting address, or they may be incremented
or decremented from the programmed starting address
by the address counters. The block length programmed
into the DMA is compared with the byte counter, which
starts at zero and increments at the completion of each
byte operation (Figure 2-3).

The DMA uses a high-speed buffering or pipelining scheme
forreading data in. In transferring data and stopping onan
end-of-block, the consequence of this pipelining is that
one more transfer will be completed than is programmed
into the block-length register; the only exception to this
rule occurs in simultaneous transfers which use two-cycle
variable timing, in which case two extra bytes are trans-
ferred if the Ready line remains active.

Table 4-1 shows the contents of the counters in the various
classes and the modes of transfer involving stopping or
interrupting at an end-of-block (interrupts imply prior

stopping).

Search and transfer/search operations that are pro-
grammed to stop on byte match behave somewhat differ-
ently, as illustrated in Table 4-2. Matches are discovered
only after the next byte is read in. In all classes of transfer/
search operations, the matched byte is transferred. in
simultaneous transfer/search operations, however, an
additional byte is usually also transferred. The only excep-
tion to this occurs in Burst and Continuous modes when
the Ready line goes inactive while the byte match is being
located. With respect to simultaneous transfer/searchesin
Burst or Continuous mode, this special case is usually not
a problem since searches are typically continuous pro-
cesses performed in memory using a Force Ready condi-
tion or a Ready line that will not go inactive. However, if it
is possible this situation may be encountered, the CPU
can be programmed to research two bytes when such a
match occurs.

Table 4-1. Contents of Counters After DMA Stops Due to End-of-Block

(Transfer Operations)
Destination
Programmed Bytes Source-Port Port

Block Transferred Byte Address Address
Class Mode Length At Stop Counter Counter* Counter*
Sequential Byte N N+1 N Ast (N +1) As = (N)
Transfer Burst N N+ 1 N Ast (N +1) As + (N)
Continuous N N+ 1 N Asx (N+1) As + (N)

Search Only Byte N N +1 N Ast (N +1) x

or Simultaneous Burst N N+ 1 N+1 Ast (N + 1) o

Transfer/Search Burst N N+ 2** N+1* Asx (N +2)* *x

Continuous N+1 N+ 1 N+1 Ast (N +1) ox

Continuous N+ 1 N + 2** N+1* Asx (N+2)* ol

Notes:

* Address can increment (+) or decrement (-) from the programmed starting address (As),

which is the first address for transfer purposes.

** Qccurs only in 2-cycle (variable timing) simultaneous transfers when the Ready line is still

active at the end of the N + 1 byte transfer.

*** Simultaneous transfers cannot have both ports variable. This class of operation is programmed
as a DMA search-only operation, with variable addresses ascribed to the programmed
"source” port. In fact, wha the DMA believes is the "source" port may be either the real
source or destination, as determined by external hardware. See the *Applications" chapter.

. Z80® DMA
N 2iLa5 USER'S MANUAL
Table 4-2. Contents of Counters After DMA Stops Due to Byte Match
(Search or Transfer/Search Operations)
Match Bytes Destination
Occurs Transferred Source-Port Port
On This At Stop If Byte Address Address
Class Mode Byte Transferring Counter Counter* Counter*
Sequential Byte M M M-1 As £ (M) Ast (M-1)
Transfer Burst M M M-1 As = (M) Ast (M=)
Continuous M M+ M-1 As £ (M) Ast (M-)
Search Only Byte M M M As £ (M) oex
or Simultaneous Burst M M+ 1 M+ 1 Ast (M+ 1) e
Transfer/Search Burst M M** M- 1** As = (M)** ool
Continuous M M+ 1 M+ 1 Ast (M + 1) o
Continuous M M** M- 1+ As + (M)** e
Motes:

* Address can increment (+) or decrement (—) from the programmed starting address (As),

which is the first address for transfer or search.

** QOccurs only only when the Ready line is still goes inactive just prior to the beginning of the
last possible cycle in the operation (i.e., Ready iis sampled inactive on the rising edge of CLK

in the last cycle of the last read operation).

*** Search only has no destination. Simultaneous transfer/search cannot have both ports variable.
This class of operation is programmed as a DMA search-only operation, with variable addresses ascribed to
the programmed "source” port. in fact, wha the DMA believes is the "source” port may be either the real
source or destination, as determined by external hardware. See the "Applications” chapter.

4.3 BUS CONTROL

The DMA transfers and searches data by controlling the
system buses in exactly the same way that the 280 CPU
controls them to do read and write cycles. Specifically, the
DMA controls the following lines:

B Address Bus (16 bits)

Data Bus (8 bits)

/IORQ

/MREQ

/RD
m WR

In addition, the DMA can also be programmed to watch a
JWAIT line through its dual-purpose /CE//WAIT pin.

When the DMA has requested and received the bus from
the CPU, other devices on the system do not perceive the
change. The CPU is completely idle during this time
because it cannot fetch instructions from memory.

4.3.1 Bus Requesting
Two conditions enable the DMAto request the bus fromthe
CPU: (1) an enabling command from the CPU, and (2) an

active Ready condition, which can be caused either by an
active Ready line from an |/O device or a Force Ready
command by the CPU.

The DMA requests the bus by latching its /BUSREQ line
Low. The CPU will always respond to a bus request and it
does so quickly, in no more than one machine cycle (3 to
10 clock cycles) plus one additional clock cycle—by
lowering its /BUSACK line as an input to the DMA's /BAI
line. Both the DMA's /BUSREQ output and the CPU’s
/BUSACK output will remain Low while the DMA has the
bus.

The bus is released back to the CPU when the DMA's
/BUSREQ line goes High; the CPU’s /BUSACK line goes
High in the next clock cycle. The DMA releases its
/BUSREQ line under a variety of conditions, including:

B Completion of single-byte transfer (Byte mode)

B Ready line going inactive (Byte and Burst modes)

B Byte match (Burst and Continuous modes), if stop on
match is programmed

M End-of-block (all modes), if stop on end-of-block is
programmed

C4-5

QA 2L.a5

280° DMA'
USER'S MANUAL

4.3 BUS CONTROL (Continued)

These conditions each have a somewhat different charac-
ter and they are explained in the “Timing" chapter. Bus
requests cannot be made while the CPU services an
interrupt from the DMA. This is prevented by the Interrupt
Under Service (IUS) latch, discussed later.

4.3.1 Bus-Request Daisy Chains

Multiple DMAs can be linked in a prioritized daisy chain for
the purpose of requesting the bus. Figure 4-4 shows how
this is done.

Each DMA's /BUSREQ pin is bidirectional. As an output, it
requests the bus. As an input, this pin senses when
another DMA in the daisy chain has requested the bus
(brought the /BUSREQ line Low) and thus prevents this
DMA from also requesting the bus until the other DMA has

/BUSREQ |-

finished. Any DMA which has the bus is always allowed to
finish its operation; a higher priority DMA cannot preempt
it during this time.

Their proximity to the CPU determines the priority of DMAs
in a daisy chain. The DMA electrically closest to the CPU
(as measured along the /BUSACK//BAI lines) has the
highest priority. Priority matters only when multiple DMAs
request the bus on the same clock cycle. The higher
priority DMA can then prevent lower priority DMAs from
receiving a bus-acknowledge signal through the /BAl/
/BAQ chain. The lower priority DMAs continue to hold their
/BUSREQ lines Low until the higher priority DMA finishes
and releasesthe bus, thereby allowing lower priority DMAs
to contend immediately for the bus.

ng

CPU

/BUSACK ———-} v

I ‘ A

1

-~~~

DMA

/BAl /BUSREQ /BAO

/BAI /BUSREQ /BAO

DMA

Figure 4-4. Bus-Requesting Daisy Chain

4.4 INTERRUPTS

4.4.1 Conditions and Methods
The Z80 CPU honors external events according to the
following priority:

B Bus Requests (/BUSREQ)
B Non-Maskable Interrupts (NMI)
M Maskable Interrupts (/INT)

In addition to bus requests, the DMA normally uses only
maskable interrupts (/INT) and it uses them in the CPU's
Mode 2, which allows interrupt vectors. Non-maskable
interrupts are typically reserved for extreme priority events
such as power-failure signaling. A full description of this is
given in Zilog Application Note 03-0041-01, The Z80
Family Program Interrupt Structure.

The DMA can be programmed to interrupt the CPU under
the following conditions:

B After the DMA’s RDY line has gone active and before
the DMA requests the bus (interrupt on RDY).

B On an end-of-block, when the contents of the byte
counter matchthe contents of the block-lengthregister.

W Onabyte match, when the contents of the match-byte
register—after masking by the mask-byte register—
corresponds to a data byte being transferred or
searched.

Ca-6

QA 2ILa5

Z80° DMA
USER'S MANUAL

The DMA cannot have control of the bus when it interrupts
the CPU because signaling on the /INT line while the DMA
is bus master is used to generate periodic pulses to an
external device and is not perceived by the Z80 CPU.
Therefore, after a stop on end-of-block or byte match, the
DMA first releases the bus before interrupting the CPU, as
shown in Figure 4-5.

Ifthe DMA is programmed to interrupt on end-of-block and
also to Auto Restart on end-of-block, an interrupt will occur
(and should be acknowledged for continued operation) at
each end-of-block. However, the end-of-block status bit
will not be set as it would be without the Auto Restart.
Therefore, the interrupt vector cannot reflect the specific
interrupt cause (i.e., Status Affects Vector is not effective).

The Z80 CPU acknowledges the interrupt by pulling its /M1
and /IORQ lines Low for one machine cycle (see the
“Timing” chapter). This causes the DMA to put its 8-bit
interrupt vector on the data bus, thereby identifying itself
and optionally identifying the origin of the interrupt. The
CPU uses the vector to access aninterrupt serviceroutine,
which is then executed. The interrupt service routine
typically reenables the DMA to request the bus and cause
interrupts again.

For CPUs that have no interrupt acknowledge or a non-
compatible one, DMA control bytes can be written (usually
in the interrupt service routine) to simulate the same
functions.

CPU

/BUSREQ

\

<

/BUSACK

A A

M1

NIORQ

U

el

MEMORY

\4

/BUSREQ

DMA
End-OtBlock | . /BUSREQ
or Byte Match /BAI
DMA Releases
Bus and /INT
Interrupts CPU
CPU Acknowledges Mt
Interrupt NIORQ
DMA Passes
Interrupt Vector
To CPU
CPU Executes
Interrupt Service
Routine
1
|
|
|
DMA Requests /BUSREQ!
Bus Again /BAI

/BUSACK

* Bus Master

Figure 4-5. Z80 Interrupt Sequence

C4-7

A 2La5

280® DMA
USER'S MANUAL

4.4 INTERRUPTS (Continued)

4.4.2 Interrupt Vectors

The Z80 CPU interrupt acknowledge cycle causes the
DMA to put its 8-bit interrupt vector on the data bus (Figure
4-Ba). This vector is read by the CPU into a temporary
register. It normally identifies the interrupting device and it
can also identify the cause of the interrupt (actually the
current state of certain status bits). The | Register of the
280 CPU (when the CPU is programmed to its Mode 2
state) has the upper byte of a 16-bit address which is
formed with the interrupt vector, and this address points to
a jump table entry in memory.

The jump table location inmemory contains an addressthat
is read into the CPU's program counter (Figure 4-6b). This
address points to the first instruction of the interrupt service
routine, which then begins executing. In most DMA appli-
cations, the CPU'’s interrupt service routine contains in-
structions which write control bytes back into the DMA
through a register in the CPU (Figure 4-6¢).

In CPU environments without interrupt vectors, the CPU
must poll each peripheral or an external register to deter-
mine which device interrupted and why. ’

MEMORY CPU DMA
a. \ ¥
1 L1
Jump Table 1 Register Interrupt
Vector
b.
Jump Table Y
Program
Counter
Service Routing
c.
Y Y
i —1
Register —/—
—]
Program —1
-t Counter [:
) N Write
Service Routine Registers

Figure 4-6. Z80 Interrupt Service Routine

ca-8

N 2La5

Z80® DMA
USER'S MANUAL

4.4.3 Interrupt Latches
Two primary latches are associated with the interrupt
structure:

Interrupt Pending (IP). Set whenever the DMA requests
an interrupt but has not yet been acknowledged. It holds
the INT line Low (Figure 4-7).

Interrupt Under Service (IUS). Set when the CPU ac-
knowledges the DMA interrupt (Figure 4-8). This does
three things:

B Prevents further interrupts by this DMA

Enable Interrupts —{S Q

)

Disable Interrupts ——»

Interrupt Condition —

M Inactive ——»D
Reinitialize Status Byte ::D_’ A
Reset and Disable Interrupts

B Prevents interrupts from lower priority devices in an
interrupt daisy chain

B Prevents further bus requests by this DMA

If the Interrupt on RDY (interrupt before requesting bus)
option is selected, the IP latch is set when the Ready line
becomes active, causing /INT to go Low.

The IP latch is reset whenever the IUS latch is set, but if the
interrupt-causing condition is not removed before IUS is
reset, IP becomes set again as soon as IUS is reset,
therefore, causing another interrupt. The IUS latch can be
reset by the Z80 CPU's Return from Interrupt (RETI) in-
struction or by control bytes written to the DMA.

Interrupt Pending
(To IUS Latch Set)

w
(]

*NOTE: Interrupt conditions can include end-or-block, byte match
or active RDY line, depending on programming.

Figure 4-7. Interrupt Pending (IP) Latch

Interrupt Pendi
(From P Latch —L,
Intem(llp';I ?(;l:‘r:‘o;doeg) > | >_.) O}—» Disable DMA
IEI Us

RETI R
Reset and Disable Interrupts

Figure 4-8. Interrupt Under Service (IUS) Latch

C4-9

A 2056

Z80® DMA
USER'S MANUAL

4.4 INTERRUPTS (Continued)

4.4.4 Interrupt On Ready

Normally, when the DMA has been enabled by the CPU to
request the bus while the /O device's Ready line is
inactive, the Ready line’s transition to the active state will
cause the /BUSREQ line to go Low (Figure 4-9). It does so
within two clock cycles if the setup time to the rising edge
of CLK is met.

This does not take place, however, when the Interrupt on
Ready option (also called the Interrupt Before Requesting
Bus option) is selected. When this option is used, the DMA
interrupts the CPU when the Ready line comes active. The
CPU's interrupt service routine now writes control bytes to
the DMA, which enable the DMA to request the bus after
the service routine finishes.

As noted earlier, the CPU cannot respond to an interrupt

when the DMA is bus master. Thus, when enabled in

Continuous mode, the DMA interrupts the CPU when the

Ready line first becomes active, but not on succeeding
_ transitions.

The Interrupt on Ready option is typically used to put new
starting addresses into the DMA so that transfers go to a
part of memory that is dynamically determined.

4.4.5 Interrupt Service Routines
In addition to the DMA'’s extensive programmability for
mode-setting (usually done at power-up initialization),

there are numerous commands (control bytes) designed
for use in various interrupt service routines. The next
chapter on “Programming,” fully explains the commands,
but a quick overview in the present context may be helpful.

Some typical functions for which control bytes are avail-
able for use in interrupt service routines include:

B Reset the DMA
Enable the DMA for bus requesting
Disable the DMA for bus requesting

B Reset and disable DMA interrupts,
Enable DMA interrupts
Disable DMA interrupts

B Load new starting addresses and block length
Continue prior address counting
clear block length counter

W Force the Ready condition
B Read the status byte
Initiate a status-register read sequence
Clear status
Interrupt service routines on a Z80 CPU always end with a

Return From Interrupt (RETI or hex ED4D) instruction,
which is now explained.

D-FLIP-FLOP

&V ——| D O | Disable DMA

Interrupt Condition (Active RDY) ——] CY I0R

Enable After RETI :D_’ R
Reset and Disable Interrupts

*NOTE: This latch is only set when the interrupt On Ready option is selected.

Figure 4-9. Interrupt On Ready (IOR) Latch

C4-10

Q205

280° DMA
USER'S MANUAL

4.4.6 Return From Interrupt

At the end of an interrupt service routine, the Z80 CPU
executes a return-from-interrupt (RETI or hex ED4D) in-
struction. This returns the CPU from the interrupt service
routine.

The DMA also simultaneously decodes the RETI instruc-
tion, which it recognizes on the data bus as an instruction
(occurring when the DMAs /M1 input is Low). This causes
at least one, and possibly two, things to happen within the
DMA:

B Resets the Interrupt Under Service (IUS) latch in the
DMA, thereby allowing its IEO pin to go High so that
lower priority devices can interrupt.

B Enables the DMA to request the bus again. (This
occurs only in the Interrupt on Ready option and only
when the Enable DMA control byte is also used.)

For non-Z80 environments, control bytes are provided to
simulate these actions.

4.4.7 Interrupt Daisy Chains

Multiple DMAs can be chained together by their IEI and
IEO lines, as shown in Figure 4-10. In the Z80 Family, the
DMAs location in the IEI/IEO chain sets priority.

When peripherals simultaneously interrupt the Z80 CPU,
the highest priority peripheral (nearest the +5V end of the

daisy chain) is serviced. The CPU learns which peripheral
won by receiving its interrupt vector; the IEI/IEO chain
allows only the highest priority interrupting peripheral to
place its interrupt vector on the data bus. in non-Z80
environments that have no interrupt vectors, the winning
peripheral may be determined by successively reading
the status of all peripherals.

For a deviceto have priority, its IEl line must be High. When
a device needs service, it prevents downstream devices
from interrupting by pulling its IEO line Low. The next
device in the chain then passes this Low condition on to
other downstream devices by pulling its IEO line Low, and
SO on.

Whenever an interrupt is acknowledged (Figure 4-5), the
CPU'sinterrupt structure is disabled. It must subsequently
be reenabled by an “enable interrupts” instruction before
other devices can interrupt again. This normally takes
place within the interrupt service routine. When done early
in the service routine, this permits higher priority peripher-
alstointerrupt the CPU while the latter is still executing that
service routine. Thus, nested interrupts are allowed in
which the higher priority peripheral suspends the execu-
tion of the lower priority peripheral's service routine.

Bus-requesting daisy chains do not have this preemption
or nesting ability. Instead, any peripheral which is able to
get the bus keeps it until the completion of its task.

/INT To

Lower
IEQ] EI IEO }—» Priority
Interrupting
Device

/INT fe
780 f §
CPU
/INT
+5V —] IEI
Highest Priority

Interrupting Device

Figure 4-10. Interrupt Daisy Chain

C4-11

A 2105

280® DMA
USER'S MANUAL
4.4 INTERRUPTS (Continued)

4.4.8 Polling for Service Requests

Polling is done in the following way:
When the CPU cannot detect interrupts directly, it can poll

an external gate as shown in Figure 4-11. B Enable the DMA’s interrupt structure with a control
byte
B Poll a status bit to see when an interrupt request
occurs
Tri-State Enable Line,
Normally at Tri-State,
(e.g., Connected to a
Chip Select Decoder)
‘w —————— 7 Pending
:Polling
|
\ 4
/INT
DMA CPU

Figure 4-11. Polling for a Service Request Bit

C4-12

N 2iLa5

DMA USER'S MANUAL

CHAPTER 5
PROGRAMMING

5.0 OVERVIEW

The DMA must be programmed before it can be used. lts
control registers have no useful default values on power
up. In addition, commands are frequently written to the
DMA after the initial power-up programming sets its basic
operating modes; this is most commonly done within
service routines for purposes such as reading status,
changing starting addresses, and reenabling both inter-
rupt and bus-request logic after a block transfer or search.

The DMA has two fundamental states that can be set
programmatically: (1) an enabled state, inwhichitcan gain
control of the system buses and direct the transfer of data
between ports or the searching of data from a single port;
and (2) a disabled state, in which it can initiate neither bus
requests nor data transfers. Table 5-1 shows these states
and their sub-states in detail. When the DMA is powered up
or reset by any means, it is automatically placed into the
disabled state. Program commands can be written to it by
the CPU in the enable/inactive state, but this automatically

puts the DMA into the disabled state, which is maintained
until an ENABLE DMA command is written by the CPU to
the DMA'’s Write Register 6 (WRB6).

Within the Z80 Family, the DMA normally exists as a
peripheral device in system |/O space. Its Chip Enable
(/CE) signal is decoded from the lower byte of the address
bus for this purpose and all control bytes and status bytes
are written to and read from the same 1/O port address,
using an output instruction such as OTIR (in the Z80 CPU).

It is possible to use the DMA in memory mapped /O
structures, but this involves some external logic (which is
explained in the “Applications” chapter). It is not possible
for the DMA to program itself by directing transfers of
control bytes from memory to its own internal registers.

When DMA interrupt vectors are used in a Z80 environ-
ment, the Z80 CPU should be programmed for Mode-2
maskable interrupts.

C5-1

. Z80® DMA
@ 2"-‘]5 USER'S MANUAL
Table 5-1. DMA Status
ENABLED
Inactive Active
DISABLED (Stopped) Suspended Operating
Description DMA cannot request DMA can request the DMA is bus master DMA is bus master
the bus (cannot pull bus and may have had but no operations are and is transferring
its /BUSREQ input to the bus immediately taking place. and/or searching in
CPU low). prior to this state, one of its three modes
but it is not currently (Byte, Burst, or
. the bus master. Continuous).
Can the CPU write Yes Yes (But write a No No
DMA control bytes or DISABLE DMA
read DMA status bytes? command first)
External actions Power-down End-of-block in any RDY line inactive RDY line active in
which will cause mode, except with in Continuous mode. Burst mode, if DMA
the state Auto Restart. is enabled.
Byte Match in any mode. RET!I instruction fetched
Byte or Burst mode /BAI by CPU, if DMAis
line inactive. enabled and RDY line
Loss of power. is active.
DMA commands Any command except ENABLE DMA if RDY ENABLE DMA, if RDY ENABLE DMA, if RDY
(WR6 control bytes) the ENABLE DMA line is inactive and the line is inactive in is active or the FORCE
which will cause command (and possibly FORCE READY command Continuous mode. used and the command
the state. the REINITIALIZE is not used. is outside an interrupt
) STATUS BYTE command, service routine.
if it is not preceded by
some other command).
The DISABLE DMA
command is specifically
designed for this.

5.1 WRITE REGISTERS

Control bytes must be written into all relevant registers in
the DMA at power-up initialization. This section describes
and illustrates each of the write registers, WRO through
WR8, into which control bytes can be written. The conven-
tion of calling the control bytes written to WR6 “commands”
is often used, since they are commonly used within CPU
interrupt service routines and at other times during system
operation in addition to their use at power-up initialization
of the DMA.

Chapter 4, “Internal Structure,” gives an organizational
overview of the write registers (Figure 4-2) and describes
the general method of accessing them: control bytes are
written into one or more of the write register groups (WR6-
‘'WRO) by first writing a byte to the “base register” in that
group. All groups have base registers and most groups
have additional associated registers. The associated reg-
isters in a group are sequentially accessed by first writing
abyte tothe base register. The base register byte contains

both control bits, for DMA function control, and pointer bits
(Is) to one or more of the associated registers in the base
register’s group.

Figure 5-1 for WRO illustrates this. In this figure, the
sequence in which associated registers within a group
can be written to is shown by the vertical position of the
associated registers. For example, if a byte written to the
DMA contains the bits that identify WRO (bits DO, D1, and
D7), and also contains 1s in the bit positions that point to
associated registers 2 and 4, then the next two bytes
written to the DMA after the base register byte will be
stored in these two associated registers, in that order.

Figures 5-2 through 5-8 illustrate and describe in detail
each of seven base registers and their associated regis-
ters. These figures, unlike Figure 4-2, do not include the
16-bit counters associated with the starting-address and
block-length registers.

C5-2

N 2ILaB

280% DMA
USER'S MANUAL

Pointer Bits

D7 D6 D5 D4 D3 D2 D1 DO

L IT [[| []osseRogier

\]
L LT T] T |] assocatedregister #1
FL T T T T L] | associtedregsters
A
PL LT] 1]| | Associatedregister 3
A
(] [] | | | | associtedregiterss

Figure 5-1. Method of Write-Register Pointing

5.2 WRITE REGISTER 0 GROUP

The WRO base register byte is identified by a 0 in bit 7 and
any combination but 0, O in bits 0 and 1 (Figure 5-2). It is
used to set the following conditions.

5.2.1 Class of Operation

Bits 1 and 0 together set the class of operation as sequen-
tial transfer (0,1), search-only (1,0), or sequentiai/transfer/
search (1,1). Simultaneous transfers or transfer/searches
are obtained by selecting the search-only class here (1,0)
and letting the external hardware take care of generating
the appropriate bus control signals for the complete trans-
fer (see the chapter on “Applications”).

5.2.2 Source and Destination

Bit 2 declares the source port and, by implication, the
destination port, if the operation is a sequential transfer.
When bit 2 is O, Port B is the source; when bit 2 is 1, Port
Aisthe source. Search-only operations have only a source
port. Ifthe operation is a simultaneous transfer or transfer/
search (where the class is set to search-only), external
hardwiring determines the destination port.

NOTE: The direction of transfer should only be changed
from its current setting after the DMA has been disabled by
writing some other control byte to it. This means that the
WRO byte should not be the first byte written to the DMA if
the direction of transfer is being changed.

5.2.3 Port A Starting Address

If Port Ais used for either source or destination, its starting
address must be programmed. This is done by setting bits
3and 4 of in the base register byte to 1 so that the next two

D7 D6 D5 D4 D3 D2 D1 DO
Base Register Byte

—
[n
—

—I PortA Starlmg Address
(Low Byt

CL T T T T T T Jisghshgrenees

CLT T T T T T Jees

NN v

Figure 5-2. Write Register 0 Group

bytes written to the DMA will be recognized as the low and
high bytes, respectively, of the Port A starting address.
This address is interpreted in the context of the entries in
WR1 bits 3 through 5, which declare the address as
memory or /O, fixed or variable, and (if variable)
incrementing or decrementing. If Port A is to be a fixed
address destination port, see the section following entitled
“Fixed-Address Destination Ports.”

C5-3

QS5

Z80® DM/
USER'S MANUAI

5.8 WRITE REGISTER 6 GROUP (Continued)

Only the source-port address counter is immediately
loaded. The destination-port address counter (if used) is
loaded during the first count of the destination-port ad-
dress. If the destination-port address is fixed, this means
that it is never loaded. This special situation is discussed
inalater sectionentitled “Fixed-Address Destination Ports.”

Ifthe DMAisinan inactive state (Table 5-1) when the LOAD
command is written, another DMA control byte must pre-
cede the LOAD. Any other command, such as DISABLE
DMA, serves this purpose.

Since LOAD unforces a Forced-Ready condition, the LOAD
must precede a FORCE READY command when the latter
is used.

CONTINUE (D3). This command clears the byte counter to
zero but leaves the address counters of both ports with

their current contents. Transfers or searches continue from

where they left off after an ENABLE DMA command,
_ although the byte count starts over.

The CONTINUE command is typically used to transfer
several blocks into consecutive locations in memory when
it is desirable to know when each block has finished
transferring. Specifically, an interrupt at the end of each
block may be needed. Use this command rather than a
LOAD command to transfer the next block after the inter-
rupt. A new block length can be entered in WRO in
conjunction with the CONTINUE command.

If the DMA is in an inactive state (Table 5-1) when the
CONTINUE command is written, another DMA control byte
must precede the CONTINUE. Any other command, such
as DISABLE DMA, serves this purpose.

DISABLE INTERRUPTS (AF). The command is used in
non-Z80 CPU environments to simulate the Z80 CPU's
automatic interrupt acknowledge to the DMA. When the
DMA interrupts a non-Z80 CPU, the CPU writes a DISABLE
INTERRUPTS to the DMA early in the service routine. This
allows the /INT line to go inactive but prevents the DMA
from sending subsequent interrupts while the routine is
being executed. Near the end of the routine, the CPU
writes an ENABLE INTERRUPTS command to the DMA,
which enables it to generate a new interrupt.

This command is less extensive than the RESET AND
DISABLE INTERRUPTS command because it does not
reset the Interrupt Pending (IP) and Interrupt Under Ser-
vice (IUS) latches.

D7 D6 D5 D4 D3 D2 D1 DO

Ll L L] L]y] Beseregsternye

I Hex Command Name

0 = C3 = Reset

1 = C7 = Reset Port A Timing
0 = C8 = Reset Port B Timing

coo —]
coo —
oo —

1 = CF = Load
0 = D3 = Continue

oo
-
o -

1 = AF = Disable Interrupts
0 = AB = Enable Interrupts
0 = A3 = Reset and Disable Interrupts
1 = B7 = EnableAfter RETI

—“ococ
o - =

1 = BF = Read Status Byte
0 = 8B = Reinitialize Status Byte

oo ocooo

1 = A7 = Initiate Read Sequence
0 = B3 = Force Ready

1 = 87 = Enable DMA
0 = 83 = Disable DMA

co
co
co
co

0 = BB = Read Mask Follows

|] ReadMask (1 = Enable)

I— Sla!us Byte

By!e Counter (Low Byte)
Syte Counter (High Byte)
Port AAddress (Low Byte)
Port AAddress (High Byte)
Port B Address (Low Byte)
Port B Address (High Byte)

Figure 5-8. Write Register 6 Group

ENABLE INTERRUPTS (AB). See the preceding descrip-
tion of DISABLE INTERRUPTS. A Z80 CPU environment
uses this command at power-up to enable the interrupt
logic at the beginning (the DMA comes up with this logic
disabled). Itis notneeded, however, to enable subsequent
interrupts because this function is provided for by the
CPU’s fetching-and the DMA's decoding of the RETI
instruction. The only exception to this is when the DISABLE
INTERRUPTS command is used; then the ENABLE INTER-
RUPTS command must also be used to begin DMA opera

tions again.

Any conditions selected to cause an interrupt are latched
in the DMA even when interrupts are disabled. They can
then cause a later interrupt after interrupts are reenabled.

The ENABLE INTERRUPTS command must not be written
until after the DMA has been configured and the
REINITIALIZE STATUS BYTE command has been written.
This command has the same effect as writing a 1to bit 5
of WR3.

C5-8

N 2iLa5

280®DMA
USER'S MANUAL

Pointer Bits

D7 D6 D5 D4 D3 D2 D1 DO

L1

L[] [|sesenegoe

HE

[] | | associatedregister 1

A

Ll

| 1 [| | [Associstearegisters2

\

LL 1 [§ [T] Jasometednogsess

L]yrl [| [| []associatednregister#a

Figure 5-1. Method of Write-Register Pointing

5.2 WRITE REGISTER 0 GROUP

The WRO base register byte is identified by a 0 in bit 7 and
any combination but O, 0 in bits 0 and 1 (Figure 5-2). It is
used to set the following conditions.

5.2.1 Class of Operation

Bits 1 and O together set the class of operation as sequen-
tial transfer (0,1), search-only (1,0), or sequentiai/transfer/
search (1,1). Simultaneous transfers or transfer/searches
are obtained by selecting the search-only class here (1,0)
and letting the external hardware take care of generating
the appropriate bus control signals for the complete trans-
fer (see the chapter on “Applications”).

5.2.2 Source and Destination

Bit 2 declares the source port and, by implication, the
destination port, if the operation is a sequential transfer.
When bit 2 is 0, Port B is the source; when bit 2 is 1, Port
Aisthe source. Search-only operations have only a source
port. If the operation is a simultaneous transfer or transfer/
search (where the class is set to search-only), external
hardwiring determines the destination port.

NOTE: The direction of transfer should only be changed
fromits current setting after the DMA has been disabled by
writing some other control byte to it. This means that the
WRO byte should not be the first byte written to the DMA if
the direction of transfer is being changed.

5.2.3 Port A Starting Address

If Port A is used for either source or destination, its starting
address must be programmed. This is done by setting bits
3and 4 of in the base register byte to 1 so that the next two

D7 D6 D5 D4 D3 D2 DI DO

L1111] | | |seseregserye

g 0 DoNotUse
1
1

1 = Transfer

0 = Search

1 = Search/Transfer
PortB - PortA
PotA - PortB

l l Pon A Stamng Address

IIIIIIII-
[T
EEEEN
T
[(TTTT]

[T T T T Jfnsrereres

I I Block Length
(Low Byte

[|Bocke
(nghByl

Figure 5-2. Write Register 0 Group

bytes written to the DMA will be recognized as the low and
high bytes, respectively, of the Port A starting address.
This address is interpreted in the context of the entries in
WR1 bits 3 through 5, which declare the address as
memory or /O, fixed or variable, and (if variable)
incrementing or decrementing. If Port A is to be a fixed
address destination port, see the section following entitied
“Fixed-Address Destination Ports.”

C5-3

280® DMA

N 2iLa5 UseR's MANUAL
5.2 WRITE REGISTER 0 GROUP (Continued)
5.2.3 Block Length entered here. The section on “Address and Byte, Count-

Alloperations must have a declaredblock length since the
default values at power-up are unpredictable for block
length. These registers are written to by setting pointer bits
5 and 6 in the WRO base register byte. The block length
can be up to 64 Kbytes. Due to the pipelining method of
reading in data, the number of bytes actually searched or
transferred may be one or two more than the number

ing” in Chapter 4, “Internal Structure” describes this (Table
4-1).

Programming a block length of zero results in the transfer
or search of 216 + 1 bytes. Therefore, the shortest block
length that can be entered is 1, which usually results in a
transfer or search of two bytes (Table 4-2).

5.3 WRITE REGISTER 1 GROUP

Bits 7, 2, 1, and 0, as Figure 5-3 shows, select the base
register byte for this group. The group is used only when
Port A is used (i.e., do not program it for a search-only,
simultaneous transfer, or simultaneous transfer/search
with Port B as the source). It specifies the following char-
acteristics:

5.3.1 Device Type (Port A)

Bit 3 identifies Port A as either memory or 1/O. This speci-
fication, causes the proper control line /MREQ or /IORQ) to
come active for cycles involving that port.

5.3.2 Variable vs Fixed Addressing (Port A)

Bits 4 and 5 specify whether the Port A address incre-
ments, decrements, or remains fixed for each byte of data
transferred or searched. The first byte of data in an opera-
tion uses the starting address entered for Port A in WRO;
incrementing or decrementing begins on the second byte
of the operation.

5.3.3 Variable Cycle (Port A)

If bit 6 is set to 0, the DMA’s variable-cycle timing feature
is not used; instead, standard Z80 timing for read and write
cycles is used, as described in the “Timing” chapter. If bit
6 is setto 1, the next byte written to the DMA after the WR1
base register byte will be the Port A variable-timing byte.
This allows the length of the port's read and write cycles to
be shortened. The choices for overall cycle timing of the
DMA, including activation of the /IORQ, /MREQ, /RD, and
/MR lines, are specified in bits 1 and 0 as:

4 clock cycles
3 clock cycles
2 clock cycles

In addition, bits 7, 6, 3, and 2 of the variable-timing byte
allow termination of various lines 1/2 cycle earlier than
specified inbits 1and 0. The chapter on “Timing” illustrates
and describes the effect of this in detail.

Particular note must be taken of the /IORQ line when
variable-cycle timing is used in sequential transfers or
transfer/searches. If an I/O-to-memory or memory-to-I/O
operation is being done, the memory port must be pro-
grammed to have its /IORQ line ending early. (This is done
in spite of the fact that the /IORQ line normally has nothing
to do with memory). However, this requirement can be left
off the CMOS DMA counter controller. If an 1/0-to-I/O
operation is being done, both ports must have their IORQ
lines ending early.

This situation arises from the fact that the /IORQ line
changes logic levels off a different clock cycle edge than
the other control lines when the variable-timing feature is
employed.

D7 D6 D5 D4 D3 D2 D1 DO
0 1] 0]0 | Base Register Byte

= PortAis Memory
= PotAislO

0 Port AAddress Decrements
1 = PortAAddress Increments

9) = PortAAddress Foed

0
1

“waoco

A

[
Port A Variable
L1 fodol T 1 1 |5mchve
/WR Ends 1/2 Cycle Early = 0 | 0 0 =Cyclelength=4
/RD Ends 1/2 Cycle Early =0 0 1 =CycleLength=3
IMREQ Ends 1/2 Cycle Early =0 } <1> =gc::oll.%ngth=2
= S8
0=/I0RQ Ends 1/2 Cycle Early

Figure 5-3. Write Register 1 Group

C5-4

. 280® DMA
@ 2ildL USER'S MANUAL
5.4 WRITE REGISTER 2 GROUP
Bits 7, 2, 1, and 0, as shown in Figure 5-4, specify the base Dr_D6 D5 D4 D3 D2 D1 DO .
register byte for this group. The group is used only when 0 0]0]0 |]BaseRegisterByte
Port B is used (i.e., do not program it for a search-only, |
simultaneous transfer, or simultaneous transfer/search 0 = PortBisMemory
with Port A as the source). Its syntax is exactly the same as o o 1= PotBislO
WRA. 0 1 = BotBAddems noamens

10 Y = Port B Address Fired
y
LI T T T T T T Jfmee

WR Ends 1/2 Cycle Early = 0 l
/RD Ends 1/2 Cycle Early = 0
IMREQ Ends 1/2 Cycle Early =0

=Cycle Length=3

=Cycle Length =2
1 =DoNotUss
0=/I0RQ Ends 1/2 Cycle Early

0 =Cyclelength=4
1
0

—_——oo——]

Figure 5-4. Write Register 2 Group

5.5 WRITE REGISTER 3 GROUP

Bits 7, 1, and 0, as shown in Figure 5-5, specify the base
register byte for this group. The group is used primarily to
specify the stop-on-match condition as well as the match
byte itself for a search operation. It can do fast, one-byte
enabling of both bus requests and interrupts. A descrip-
tion of its functions follows.

5.5.1 Stop on Match

Setting bit 2 of the base register byte to 1 causes the DMA
to stop and release the bus when a data byte matches the
match byte (described later). A search or transfer/search
operation must be specified in WRO to make this bit valid
when set. If this bit is O (no stop on match), a status flag is
still set in the status byte when a match occurs and there
still remains the option of interrupting on match (see WR4).
No stop or interrupt on match in the search class is used
to obtain simultaneous transfers without searching ac-
tions.

5.5.2 Match Byte

When bit 4 of the base register is set to 1, the match byte
that is compared with every data byte searched must be
specified. A search operation must be specified in WR0 to
make this bit valid, as shown in the following function.

5.5.3 Mask Byte

When bit 3is setto 1, the mask byte must be subsequently
specified. Bit positions that contain 1sin the mask byte will
cause comparisons at those same bit positions in the
match byte (preceding paragraph) to be ignored. For
example, if the mask byte is 00001111, only the high four
bits of the match byte will be compared to the data bytes
being searched.

5.5.4 Interrupt Enable

A 1 in bit 5 of the base register enables the DMA to
generate an interrupt. This function duplicates the EN-
ABLE INTERRUPTS command in WR.

5.5.5 DMA Enable

A 1inbit 6 of the base register enables the DMA to request
the bus. This function duplicates the ENABLE DMA com-
mand in WR6 and is used as the last control byte written to
the DMA prior to allowing the DMA to usurp the bus from
the CPU. The ENABLE DMA command is often better for
this purpose.

D7 D6 D5 D4 D3 D2 DI DO
Iol | | I I |o|o|BaseHegis1erByle

1= Stop On Match

DMA Enable = 1 l
Interrupt Enable = 1

A4

IIII$II
I I I A A 0

I I I Mask Byte (0 = Compare)

Figure 5-5. Write Register 3 Group

C5-5

N 2105

280® DMA
USER'S MANUAL

5.6 WRITE REGISTER 4 GROUP

Bits 7, 1, and 0, as Figure 5-6 shows, select the base
register byte for this group. The group specifies the follow-
ing characteristics:

5.6.1 Mode of Operation

Bits 6 and 5 of the base register specify the operating
mode as Byte, Burst, or Continuous. For a review of these
modes, see Figures 2-3, 2-4, 2-5, 2-6, and Tables 4-1 and
4-2.

5.6.2 Starting Address (Port B)

The starting address for Port B in the next two bytes may
be specified by setting bits 2 and 3 of the base register to
1. Thisis only needed if Port B is used, and then it specifies
the first address at which a byte will be read from or written
to, depending on whether the port is declared a source or
destination in WRO. If Port B is to be a fixed-address
destination, see the following section entitled “Fixed-
Address Destination Ports.”

5.6.3 Interrupts

Bit 4 of the base register byte can point to the interrupt
control byte, and bits 4 and 3 of the interrupt control byte
can point to the interrupt vector and pulse control bytes,
respectively. The interrupt control byte also specifies one
or more of the following three interrupt conditions:

B Interrupt on match (bit 0), if stop on match or stop on
end-of-block is also programmed.

B Interrupt atend-of-block (bit 1), if stop on end-of-block
is also programmed.

B Interrupt on Ready (bit 6), i.e., interrupt before
requesting the bus when the Ready line becomes
active.

Setting any of these bitsto 1 enables the interrupt condition
but not the interrupt circuitry itself, which is enabled either
through the ENABLE INTERRUPTS command in WR6 or
through bit 5 in WR3. Interrupts do not occur on these
conditions if their associated bits are 0 in the interrupt
control byte. Tables 4-1 and 4-2 in the previous chapter
apply to these interrupt conditions since the DMA releases
the bus (stops) before interrupting the CPU.

5.6.4 Interrupt Vector

Bit 4 of the interrupt control byte allows the interrupt vector
tobe entered. In addition, when bit 5 of the interrupt control
byte (Status Affects Vector) is set to 1, bits 1 and 2 of the
interrupt vector are modified to reflect the cause of the
interrupt (i.e., the state of the Ready line or Status latches)
before the vector is placed on the data bus in response to
the CPU's interrupt acknowledge.

The Status Affects Vector mode should not be used when
both Auto Restart and interrupt on end-of-block have been
programmed, because the interrupt vector sent at the end
of each block in this case cannot be modified to reflect the
end-of-block status.

5.6.5 Pulse Generation

Pulse generation is caused by (1) pointing to the interrupt
control byte with the base register byte, (2) setting bits 2
and 3 ofthe interrupt control byte, and (3) entering anoffset
value in the pulse control byte. The pulse control byte is
compared with the lower byte of the byte counter and a
pulse is generated on the /INT line whenever a match
occurs, which is every 256-byte transfers or searches after
the initial offset number of bytes.

D7 D6 D5 D4 D3 D2 D1 DO
1 0 | 1 | Base Register Byte

Byla=0| Ol
Continuous =0 1
Burst=1 0
Do NotProgram=1 1
I l I I I IVI I IPonBStamngAddress
I
Lol T 11 J 1 1]tempiconolpye
‘ 1 = Interruped On Match
Interrupt On RDY = 1 1 = Interruped At End-of-Block
Status Affects Vector = 1 v 1= Pulse Generated
I I I I I I I I lPulseComrolByte
I I l I [I I I IlnterruptVector

0 = Interrupt On RDY

0 = Interrupt On Match

0 = Interrupt On End-of-Block

0 = Interrupt On Match and
End-of-Block

Modfied As

Shown Only if

"Status Affects Vector"
Bit is Set

Vactor is Automatically < 0
0

Figure 5-6. Writs Register 4 Group

C5-6

QA 2ILa5

Z80® DMA
USER'S MANUAL

5.7 WRITE REGISTER 5 GROUP

Bits 7,6, 2, 1, and 0, as Figure 5-7 shows, specify the base
register byte for this one register group. The byte is used
to specify these characteristics:

5.7.1 End-of-Block Action

Bit 5 specifies either a stop (bus release) or an autorepeat
at the end of the block length programmed in WRO. To
interrupt at the end of a block (WR4), bit 5 should be 0
since, the DMA must reset the end-of-block status bit to
proceed with a new block (in Auto Restart, the end-of-
block status bit is also reset).

5.7.2 /CE//WAIT Line Usage
Bit 4 specifies that the DMA's /CE//WAIT line is to be used
in one of two ways:

ICE Only. The /CE/WAIT line functions only as a chip-
enable line to allow CPU writing and reading of control/
status bytes when the DMA is not bus master (see the
“Applications” chapter for the method by which thistime is
decoded from the address bus).

/CE//WAIT Multiplex. This line functions as described in
*/CE only” whenthe DMA is not bus master. When the DMA
has the bus, however, the line allows external Wait inputs
fromexternallogic to extendthe DMA's cycle programmed
in WR1 and/or WR2. (See the “Applications” chapter for
hardware interfacing of this option.)

5.7.3 Ready-Line State

Bit 3 specifies that the DMA interprets the Ready (RDY) line
as active when High or active when Low. This allows
flexibility in interfacing to a variety of other devices.

D7 D6 D5 D4 D3 D2 D1 DO
110 0 | 1 |0 | Base Register Byte

0= Ready Active Low
1 = Ready Active High
0:=/CE Only
1=/CE/WAIT Muttiplexed
0= Stop On End-Of-Block
1=Auto Restart On End-Of-Block

Figure 5-7. Write Register 5 Group

5.8 WRITE REGISTER 6 GROUP

The base register byte for this group has bits 7, 1, and O set
to one, as Figure 5-8 shows. The remaining bits specify 16
commands commonly used after DMA initialization (e.g.,
within CPU interrupt service routines), and to point to a
read mask for the read registers.

Each of these commands, except the ENABLE DMA com-
mand, disables the DMA. Therefore, the ENABLE DMA
command must be the last command written before DMA
bus requests can begin.

RESET (C3). This command is used at power-up and
when aborting a program sequence to do the following:

B Disable interrupt and bus-request logic.

B Reset interrupt latches.

Unforce a FORCE READY condition.

Reset the Auto Repeat function (see WR5).

Reset the Wait function (See WR5).

Reinitialize Ports A and B to standard Z80 cycle timing
(see WR1 and WR2).

At power-up, one reset command should be sent to the
DMA prior to the initialization program. When aborting an
operation sequence, sending six reset commands guar-
antees resetting (this results from WR4 having five associ-
ated registers that can potentially be pointed to).

The RESET command does not perform a complete DMA
reset. For example, it does not reset the read sequence,
whichis set by the INITIATE READ SEQUENCE command.

RESET PORT A TIMING (C7). Resets the Port A variable-
timing byte in WR1 to standard Z80 timing. (The RESET
command also perform this function.)

RESET PORT B TIMING (CB). Resets the Port B variable-
timing byte in WR2 as described in RESET PORT A TIMING
(C7).

LOAD (CF). This command must be used to write new
addresses to the address registers (WRO and/or WR4) or
to restart an operation (except Auto Restart) at the same
addresses. It loads the contents of both starting-address
registers into their associated address counters (Figure
4-2). It also clears the byte counter associated with the
block-length register, and it unforces an internal Force-
Ready condition. The starting addresses must be written
in WR0 and/or WR4 before the LOAD command is written,
if they are to differ from the previous starting addresses.

C5-7

N 2505

®
USER'S MANUAL

5.8 WRITE REGISTER 6 GROUP (Continued)

Only the source-port address counter is immediately
loaded. The destination-port address counter (if used) is
loaded during the first count of the destination-port ad-
dress. If the destination-port address is fixed, this means
that it is never loaded. This special situation is discussed
inalater section entitled “Fixed-Address Destination Ports.”

Ifthe DMA is in aninactive state (Table 5-1) whenthe LOAD
command is written, another DMA control byte must pre-
cede the LOAD. Any other command, such as DISABLE
DMA, serves this purpose.

Since LOAD unforces a Forced-Ready condition, the LOAD
must precede a FORCE READY command when the latter
is used.

CONTINUE (D3). Thiscommand clears the byte counter to
zero but leaves the address counters of both ports with

their current contents. Transfers or searches continue from.
where they left off after an ENABLE DMA command,

_although the byte count starts over.

The CONTINUE command is typically used to transfer
several blocks into consecutive locations in memory when
it is desirable to know when each block has finished
transferring. Specifically, an interrupt at the end of each
block may be needed. Use this command rather than a
LOAD command to transfer the next block after the inter-
rupt. A new block length can be entered in WRO in
conjunction with the CONTINUE command.

If the DMA is in an inactive state (Table 5-1) when the
CONTINUE command is written, another DMA control byte
must precede the CONTINUE. Any other command, such
as DISABLE DMA, serves this purpose.

DISABLE INTERRUPTS (AF). The command is used in
non-Z80 CPU environments to simulate the Z80 CPU’s
automatic interrupt acknowledge to the DMA. When the
DMA interrupts a non-Z80 CPU, the CPU writes a DISABLE
INTERRUPTS to the DMA early in the service routine. This
allows the /INT line to go inactive but prevents the DMA
from sending subsequent interrupts while the routine is
being executed. Near the end of the routine, the CPU
writes an ENABLE INTERRUPTS command to the DMA,
which enables it to generate a new interrupt.

This command is less extensive than the RESET AND
DISABLE INTERRUPTS command because it does not
reset the Interrupt Pending (IP) and Interrupt Under Ser-
vice (IUS) latches.

D7 D6 D5 D4 D3 D2 D1 DO
1 1 | 1 | Base Register Byte

| Hex Command Name

0 = C3 = Reset

1 = C7 = Reset PortA Timing
0 = C8 = Reset Port B Timing

coco —i

coo —
P gr—

i
1
1

-
-

1 = CF = Load
0 = D3 = Continue

-
co
o —

1 = AF = Disable Interrupts
0 = AB = Enable Interrupts
0 = A3 = Resetand Disable Interrupts
1 = B7 = EnableAfter RETI ’

—~ococo
oo =

1 = BF = Read Status Byte
0 = 8B = Reinitialize Status Byte

co oococo
o -

1 = A7 = Initiate Read Sequence

o o
o
o

0 = B3 = Force Ready

1 = 87 = Enable DMA
0 = 83 = Disable DMA

oo
oo
co

0 = BB = Read Mask Follows

001 1
E°| T T T [T | Routmaskir=Enabie)
L—StatusByte
Byt Gourer Figh e
gg: AAddress (Lgow Byte)

Port AAddress (High Byte)
Port BAddress (Low Byte)
Port B Address (High Byte)

Figure 5-8. Write Register 6 Group

ENABLE INTERRUPTS (AB). See the preceding descrip-
tion of DISABLE INTERRUPTS. A Z80 CPU environment
uses this command at power-up to enable the interrupt
logic at the beginning (the DMA comes up with this logic
disabled). Itisnot needed, however,to enable subsequent
interrupts because this function is provided for by the
CPU'’s fetching-and the DMA's decoding of the RETI
instruction. The only exceptiontothis is when the DISABLE
INTERRUPTS command is used; then the ENABLE INTER-
RUPTS command must also be used to begin DMA opera-
tions again.

Any conditions selected to cause an interrupt are latched
in the DMA even when interrupts are disabled. They can
then cause a later interrupt after interrupts are reenabled.

The ENABLE INTERRUPTS command must not be written
until after the DMA has been configured and the
REINITIALIZE STATUS BYTE command has been written.
This command has the same effect as writing a 1 to bit &
of WR83.

C5-8

Q205

280® DMA
USER'S MANUAL

RESET AND DISABLE INTERRUPTS (A3). This com-
mand is useful in CPU environments such as the 8080 and
8085 where there is an interrupt acknowledge function but
no RETI instruction, as in the Z80 CPU. This command
does four things:

M Resets the Interrupt Under Service (IUS) latch.
B Resets the Interrupt Pending (IP) latch.

B Unforces an internal FORCE READY condition.
|

Disables further interrupts by the DMA (same as the
DISABLE INTERRUPTS command).

In the non-Z80 environment just described it would be
used as follows: after the DMA interrupt is received and
acknowledged, the interrupt vector is sent to the CPU,
which branches to the service routine. Near the end of the
service routine, the CPU writes a RESET AND DISABLE
INTERRUPTS command, then an ENABLE INTERRUPTS
command, and then an ENABLE DMA command before
executing its return-from-interrupt instruction.

This command, when followed by an ENABLE INTER-
RUPTS command, takes the place of the Z80 BET] instruc-
tion. It is not needed in a Z80 environment. Since RESET
AND DISABLE INTERRUPTS unforces a Forced-Ready
condition, the RESET AND DISABLE INTERRUPTS must
precede a FORCE READY command when the latter is
used.

ENABLE AFTER RETI (B7). This command is used only
whenthe DMA is operated in the Interrupt On Ready mode
(programmed in WR4). It enables the DMA to request the
bus again after returning from an interrupt. Always use this

command in Z80 CPU environments to get further bus .

requesting after an Interrupt on Ready. It is sometimes
used in other environments, such as the 8080.

An Interrupt on Ready (IOR) latch is set during such an
interrupt. This latch prevents the DMA from requesting the
bus from the time the Ready line goes active until the time
the latchisreset by the ENABLE AFTERRETI command (in
Z80 and some other environments, there is an overlap in
bus-request prevention by the IOR and the IUS latches).

In a Z80 CPU interrupt service routine, the order of DMA
commands and CPU instructions must be:

L]

[]

.

ENABLE AFTER RETI command
ENABLE DMA command

RETI instruction

READ STATUS BYTE (BF). This command causes the
next CPU read of the DMA to access the status byte, which
is illustrated in the following section entitled “Read Regis-
ters.”

If other read registers are being read, the sequence of
reading (as defined by the read mask) should be com-
pleted before issuing this command.

REINITIALIZE STATUS BYTE (8B). This command
reinitializes bits 4 and 5 of the status byte. After
reinitialization, the status byte looks like this:

Bit Value Meaning

0 110 DMA operation has/hasn’t occurred
1 1/O Ready line active/inactive

2 X Undefined bit

3 o/ Interrupt pending/not pending

4 1 Match not found

5 1 Not end-of-block

6 X Undefined bit

7 X Undefined bit

The DISABLE DMA or any other command must be used
before the REINITIALIZE STATUS BYTE command after
having stopped on end-of-block or byte match. Due to a
potential hardware race condition internal to the DMA,
reinitialization of the status bits may remove the condition
that stopped the DMA and the DMA might immediately
requestthe busagainifitis notdisabled. (The REINITIALIZE
STATUS BYTE command in WR6 is similar in this respect
to the WRO byte when transfer direction is being changed:
both of these control bytes must be preceded by some
other control bytes to ensure that the DMA is disabled.)

The interrupt pending status (bit 3 of the status byte) can
be reinitialized by acknowledging the interrupt, servicing
it, and writing a RESET AND DISABLE INTERRUPTS com-
mand. The DMA operation status (bit 0) can be reinitialized
with a LOAD command.

C5-9

N 2ILa5

280* DMA
USER'S MANUAL

5.8 WRITE REGISTER 6 GROUP (Continued)

READ MASK FOLLOWS (BB). This command points to
the read mask (Figure 5-8). It means that the next control
byte written to the DMA goes tothe read mask register. The
read mask is used to set a new sequence, for reading the
read registers, RRO through RR86, and it is normally part of
the power-up initialization of the DMA.

The read registers are always read in a fixed sequence
beginning with RRO and ending with RR6. However, the
registers read in this sequence can be, limited by pro-
gramming the read mask. The read mask is programmed
with 1s in the bit positions associated with the registers to
beread. Forexample, if the read mask contains 00011001,
the following read registers are read in the following order:

Status byte (RR0)
Port A address counter, low byte (RR3)
Port A address counter, high byte (RR4)

Once the read mask is programmed it must be initialized
to begin at the lowest-order register selected. Do this with
the INITIATE READ SEQUENCE command.

INITIATE READ SEQUENCE (A7). This command ini-
tiates the read-sequence pointer command so that the
next CPU read instruction to the DMA accesses the first
(low-order) read register designated as readable by the
read mask. Once started, the read sequence specified by
the read mask must be completed before, for example,
giving another INITIATE READ SEQUENCE or a READ
STATUS BYTE command.

Registers needn'’t be read immediately after writing the
INITIATE READ SEQUENCE command. Other commands
(except INITIATE READ SEQUENCE and READ STATUS
BYTE) can be written and go through bus-request/bus-
release cycles before actually executing the first read and
subsequent reads.

FORCE READY (B3). This command, in Burst or Continu-
ous mode, forces an internal Ready condition to take the
place of an external active Ready signal. It is used for
memory-to-memory transfers and memory searches where
no Ready line is necessary. Ready active High/Low (bit 3
of WR5) need not be considered when this command is
used.

The FORCE READY condition is unforced by the followmg
commands and conditions:

RESET command

LOAD command

RESET AND DISABLE INTERRUPTS command
End-of-block termination

Byte-match termination

Bus release by DMA

Because bus release by the DMA unforces the Ready
condition, this command allows the DMA to transfer only
one byte in the byte mode.

ENABLE DMA (87). This command allows the DMA to
request the system bus and proceed with its operation if all
other functional conditions are met (e.g., if the Ready line
is active or the FORCE READY condition is present. This
command, and bit 6 of WR3, are the only control bytes that

" donotdisable the DMA,; all other control bytes written to the

DMA automatically disable the DMA. Therefore, the EN-
ABLE DMA command is always required as the last com-
mand after writing or reading any other bytes to or from the
DMA.

This command enables the DMA's bus request logic. It
does not affect interrupt logic and it does not reset any
functions or latches. This bus-request-enabling function is
duplicated in bit 6 of WR3.

In an interrupt service routine, the ENABLE DMA com-
mand must be the last command to the DMA before the
CPU executes its return-from-interrupt instruction.

DISABLE DMA (83). This command prevents the DMA
from requesting the bus. It is used to stop DMA action for
external reasons, such as a pending power-out, and inthe
special case of reinitializing the status byte after a stop on
end-of-blockorastop on byte match (seethe REINITIALIZE
STATUS BYTE command).

C5-10

Q2005

5.9 READ REGISTERS

Read registers are read by first writing a command to the
DMA, then reading either immediately thereafter or some
time later. CPU reads are done by addressing the DMA as
an /O device using input instructions (such as INIR for the
Z80 CPU).

The commands written to the DMA can be one of two:

READ STATUS BYTE. This command causes the next
CPU read of the DMA to access the status byte, which is
the first read register.

INITIATE READ SEQUENCE. This command initializes
access to a repeatable series of reads that follow the
sequence defined in the read mask.

These commands are described in the immediately pre-
ceding pages, and Figure 5-8illustrates the read mask. As
mentioned in the description of these commands, the
reading of registers needn’t be contiguous in time with
these write commands or with other CPU read instructions
accessing registers in the same read sequence.

Two other commands are also related to the read regis-
ters:

REINITIALIZESTATUS BYTE. Thiscommand reinitializes
bits 4 and 5 of the status byte to 1s.

READ MASK FOLLOWS. This command allows the read
mask to be programmed.

Figures 4-3 and 5-9 both illustrate more clearly the group
of sevenreadregistersinrelation tothe write registers, The
read registers include: .

5.9.1 Status Byte (RR0)

The status byte can be read independently of the other
read registers and two of its bits can be reinitialized to
identify end-of-block and match bytes. The bits in the
status byte are defined as follows:

Indicates whether the DMA has requested the bus
since the last LOAD command. A1 indicates yes, a
O indicates no.

Bit0

Bit 1 Indicates whether the DMA's RDY pin currently has
a signal input that is defined as active by bit 3 of
WR5. A 1 indicates an active Ready line. A 0
indicates an inactive Ready line.

Bit2 Undefined.

USER'S MANUAL
Read Register 0
D7 D6 D5 D4 D3 D2 D1 DO
XX Status Byte
I I—1=DMA0peralionHas00curred
0= ReadyActive
L 0= Intemupt Pendi

0= Nioh Fourd ™

0= End Of Block
Read Register 1
LL T LT 111 |eveCoutertonsy
Read Register 2
Ll T [111] JeseCouterrighbye)
Read Register 3
L1 T T T 1]] rotAaddressCounter(lowByte)
Read Register 4
T T T T T T T rortandress counter (righ eyte)
Read Register 5
[T T T T T] [|rotsadresscounterwowsys)
Read Register 6
T T T T T T T T]rotsadresscounter igh byte)

Figure 5-9. Read Register 0 through Read Register 6

Bit 3 Indicates the state of the Interrupt Pending (IP)
latch. A Qindicates either that aninterruptis pending
(the DMA has its /INT line active if the interrupt has
not been acknowledged). A1 indicates no interrupt
pending.

Bit4 AOQindicatesthatamatchhas beenfound sincethe
last RESET or REINITIALIZE STATUS BYTE com-
mand. A1l indicates no match was found. See Table
4-2 to determine where the match occurred.

Bit5 A O indicates that an end-of-block was reached
since the last RESET, LOAD, CONTINUE, or
REINITIALIZE STATUS BYTE command. A 1 indi-
cates no end-of-block was reached. See Table 4-1
to determine the contents of counters when the
DMA stops.

Bi*6 Undefined.

Bit7 Undefined.

C5-11

Q205

Z80® DMA
USER'S MANUAL

5.9 READ REGISTERS (Continued)

5.9.2 Byte Counter (RR1, RR2)

This 16-bit counter is cleared to zero by the LOAD, CON-
TINUE, and RESET commands only. When the DMA be-
gins transferring or searching, the byte counter incre-
ments by one at the end of each read cycle and the byte
counter is compared with the programmed contents of the
block length register to determine end-of-block. The num-
ber of bytes read in a transfer always equals the number
of bytes written because the DMA completes any transfer
it starts, even when stopping on byte matches in transfer/
search operations.

Tables 4-1 and 4-2 illustrate how the pipelining of data
affects the number of bytes transferred or searched in the
various classes, modes, and circumstances of operation.
Inmost cases, the number of bytes transferred in atransfer
operation that slops at end-of-block is one more than the
programmed block length.

When the pulse-generation feature. is used, the contents of
the pulse control byte in WR4 are compared with the lower
byte of the byte counter after each byte is transferred.

5.9.3 Port A Address Counter (RR3, RR4)

This 16-bit counter is loaded from the Port A starting address
register in WR0O by the LOAD command. It increments,
decrements, or remains fixed in accordance with the speci-
fications in WR1. Tables 4-1 and 4-2 show how this counter
reads under various transfer or search conditions.

5.9.4 Port B Address Counter (RR5, RR6)

This counter is exactly analogous to the Port A address
counter just described. If either Port A or Port B is a fixed-
address destination port it must be programmed as de-
scribed under “Fixed Address Destination Ports” to func-
tion properly.)

5.10 REVIEW OF PROGRAMMING SEQUENCES

This section contains areview of rules for programming the
DMA in both the general case and in various application-
specific cases. Also, see Figure 5-10 for a sample DMA
Program.

5.10.1 DMA Initialization

All registers to be used in the DMA must be programmed
at power-up. None have useful defaults. This includes the
enabling of interrupts and reinitialization of the status byte
as well as many other functions, including class and mode
designation, port designation, address and block-length
designation. :

Table 5-2 suggests the order in which control bytes should
be written for the, general case of either initialization or,
reinitialization due to program abort. Some of these control
bytes may not be relevant to a specific application. All
“commands” referred to are WR6 control bytes. There is a
maximum of 35 control bytes when all of the above are
written.

All control bytes written to the DMA disable the DMA,
except the ENABLE DMA command and possibly also the
REINITIALIZE STATUS BYTE command and the WRO
control byte (when changing transfer directions). The
ENABLE DMA command must always be the last com-
mand written after any communication between the CPU
and DMA, if the DMA is to continue operating. Further-
more, communication with the DMA can only occur when
the CPU is bus master.

Table 5-2. Control Byte Order

Maximum No. of
Bytes for 280 CPU

Initialization/Reinitialization
Sequence

DISABLE DMA Command
RESET Command (Multiple)
WRO Control Bytes

WR1 Control Bytes

WR2 Control Bytes

WR3 Control Bytes

WR4 Control Bytes

WR5 Control Bytes

RESET PORT A TIMING Command
RESET PORT B TIMING Command
LOAD Command

REINITIALIZE STATUS BYTE Command

READ MASK FOLLOWS Command
Read Mask Control Byte

INITIATE READ SEQUENCE Command
FORCE READY Command

ENABLE INTERRUPTS Command
ENABLE DMA Command

A b dadgaalaaaaa|[WOWNDNDOIO) =

w
4]

Total

C5-12

N 205

Z80® DMA
USER'S MANUAL

5.10.2 Port Designation

Either Port A or Port B can be selected as the source or
destination, as illustrated in Figure 2-2, since both ports
have the same degree of programmability. A special case
arises when the destination port is also a fixed-address
port; this is dealt with under “Fixed-Address Destination
Ports.”

Port characteristics are specified in the following control-
byte groups:

Port A Port B
WRO WRO
WR1 WR2
WR6 WR4

WR6

In a transfer, if the direction of transfer (bit 2 of WRO0) is
being changed, the WRO control byte must be preceded
by some other control byte to insure that the DMA is
disabled.

5.10.3 Address Loading

Starting addresses are written into the starting-address
registers for each port through WRO0 (Port A) and WR4 (Port
B). They are loaded into the address counters by the LOAD
command. The addresses must he written to the registers
before they are loaded into the counters.

New addresses may be written to the address registers at
any time when the CPU is bus master, even between
transfers and even when the DMA is operating in the Auto
Restart mode (e.g., in Byte mode between byte transfers).
Except in the Auto Restart mode, however, the new ad-
dresses must be reloaded before they are used. If a
Forced-Ready condition is used, the LOAD command
must precede the FORCE READY command.

5.10.4 Fixed-Address Destination Ports

A special circumstance arises when programming a des-
tination port to have a fixed address. The load command
in WR6 only loads a fixed address to a port selected asthe
source, notto a port selected as the destination. Therefore,
a fixed-destination address must be loaded after tempo-
rarily declaring its port as a source port. The true source
port is subsequently declared as such (thereby implicitly
making the other port a destination) and the true source
address is then loaded.

The following example illustrates the steps in this proce-
dure, assuming that transfers are to occur from a variable-
address source (Port A) to a fixed-address destination
(Port B):

1. Write Port B (fixed destination) address to WR4.
2. Temporarily declare, Port B as source in WRO
(bit 2 = 0).

Load Port B address with the LOAD command.
Write Port A (variable source) starting address to WRO.
Declare Port A as source in WRO (bit 2 = 1).

Load Port A address with the LOAD command.

(L

7. Enable DMA with the ENABLE DMA command.

5.10.5 Interrupts

The interrupt vector (WR4) must be written before inter-
rupts using it can occur, and interrupts must be enabled
with the ENABLE INTERRUPTS command at initialization
or reinitialization. In a Z80 CPU environment, interrupt
serviceroutines after DMA initialization usually include, the
following commands at the end of the routine:

Interrupt on End-of-Block
or Byte Match

.
.
.
ENABLE DMA command
.
.
.

RET! instruction

Interrupt on Ready

(before requesting the bus)
[]

*

[]

ENABLE AFTER RETI command
ENABLE DMA command

RET! instruction

Interrupts on end-of-block, for example, might be done in
reading afloppy disk. Ifthe disk transfers 128-byterecords,
the DMA can be made tointerrupt atthe end of eachrecord
toinformthe CPU of its completion. Thenthe CPU can read
the destination (memory) address counter to find the last
memory location filled (see Table 4-2 for address-counter
contents). A service routine for continuing inputs into
contiguous locations of memory typically contains the
CONTINUE, REINITIALIZE STATUS BYTE, and ENABLE
DMA commands before the CPU's return from interrupt. A
service routine for shutting the DMA down after the record
arrivestypically includes DISABLEDMA and REINITIALIZE
STATUSBYTE commands. Ifthe DMA transfer is started by
an interrupt from some other device, the service routine for
that other device would include an ENABLE DMA com-
mand written to the DMA's port address.

C5-13

Q2105

280 DMA
USER'S MANUAL

5.11 REVIEW OF PROGRAMMING SEQUENCE (Continued)

Interrupts on byte match (a search or transfer/search
operation) can be implemented so that any ending byte,
error indicator, or other character causes the interrupt.
This frees the CPU from looking for these characters in a
stream of data, itincrease throughput, and it reduces CPU
software complexity. For example, the DMA might search
for end-of-text (EXT) characters or carriage returns in a
communications environment and interrupt the CPU only
when the complete message frame has arrived. The ser-
vice routines for this would be very much like those for
interrupts on end-of-block.

Interrupts on Ready are somewhat different. First, the DMA
cannot be the bus master before the interrupt since the
CPU only sees interrupts when the CPU is the bus master
(the other types of interrupts are not processed until the
bus has been released). Second, to enable the DMA, the
ENABLE AFTER RETI command must be used in the
service routine after an Interrupt on Ready. The typical
purpose of interrupting when the Ready line comes active
isto allow the CPU time to consider where atransfer should
go (which it does in the service routine). This is ofter done
in systems using dynamic memery allocation and it im-
provesthe efficiency with which memory can be allocated.
For example, the CPU might write and load new starting
addresses for a memory destination into the DMA in the
service routine. Only at the end of the service routine is the
DMA enabled to request the bus. The ENABLE AFTER
RETI command, which must precede the ENABLE DMA
command, resets a latch which is set when the Interrupt on
Ready first occurred.

For non-Z80 CPU environments, the DISABLE INTER-

RUPTS, ENABLE INTERRUPTS, and RESET AND DIS-
ABLE INTERRUPTS commands are available. They can
simulate the Z80 CPU's interrupt-acknowledge cycle and
return-from-interrupt instruction, both of which the DMA
needs to perform and return from interrupts.

5.10.6 Byte Matching (Searches)

In stopping, or stopping and interrupting on match (WR3,
WR4), to perform additional operations with the DMA, write
the following sequence of commands:

B LOAD or CONTINUE
W REINITIALIZE STATUS BYTE
B ENABLE DMA

Another command (any command except ENABLE DMA)
must precede the REINITIALIZE STATUSBYTE command.
(TABLE 4-4 shows the contents of various counters when
stopping on byte match.)

5.10.7 End-Of-Block

After a stop or stop and interrupt on end-of-block (WR4 or
WRS), where it is necessary to perform additional opera-
tions with the DMA, write the same sequence of com-
mands listed immediately under “Byte Matching
(Searches).” Table 4-4 shows the contents of various
counters when stopping on end-of-block.

5.10.8 Auto Restart

To obtain a repetitive transfer or search using the same
block length and starting addresses originally entered,
initialize the DMA, including bit 5 = 1 in WR5. The loading
of addresses and clearing of the byte counter is automatic.

Ifin Byte mode, or possibly even in Burst mode (where the
Ready line is occasionally released), it is possible to alter
the starting addresses during a transfer (i.e., between bus
requests) without disturbing that transfer. At the end of the
transfer in which this occurs, the DMA automatically loads
the new addresses into the counter and continues without
interruption.

5.10. 9 Force Ready Condition

The FORCE READY command is provided for operations
like memory-to-memory transfer or memory search-only
where no Ready line from an I/O device is used. However,
there are several DMA commands that unforce the Ready
condition after the FORCE READY command is written.
The sequence of command entry is therefore important.
This is described under the FORCE READY command in
the section entitled “Write Register 6 Group.”

5.10.10 Pulse Generation

To obtain pulses at 256-byte intervals, after a variable
offset period, only the WR4 group need be considered.
The /INT line is used for these pulses.

5.10.11 Variable Timing

The timing on the /RD, WR, /MREQ, and /IORQ lines can
be varied independently for either port by programming
the WR1 andfor WR2 register groups. A special case
arises in programming memory-to-1/0, 1/O-to-memory, or
1/0-to-1/0 sequential transfers or transfer/searches. The
/IORQ line must be programmed in a specific way. See the
“Variable Cycle (Port A)” discussion under WR1.

5.10.12 Enabling the DMA

The last command written to the DMA before an operation
is to occur must be, the ENABLE DMA command, or WR3
with bit 6 = 1, which is equivalent. Only this command
makes the DMA operate. If all other conditions for opera-
tion are satisfied at the time of enabling (e.g., the Ready
line is active) the DMA will begin immediately. In an
interrupt service routine, the ENABLE DMA command
must be the last DMA command written before the return-

C5-14

QA 2iLa5

Z80® DMA
USER'S MANUAL

from-interrupt instruction. Other instructions may, and usu-
ally do, follow the ENABLE DMA command in the service
routine before the RET I instruction is executed, but none of
these commands are for the DMA.

5.10.13 Reading Status
Two commands can be used to allow the CPU to read DMA
status:

READ STATUS BYTE. Causes the next CPU read of the
DMA to access the status byte. Every time the status byte
isto be read, the READ STATUS BYTE must first be written.

INITIATE READ SEQUENCE. Causes the next CPU read
of the DMA to access the first status register specified as
readable by the read mask. Subsequent reads ofthe DMA,
which must complete the sequence of all designated

readable registers, do not require write commands. Read-
ing of the sequence of registers must be completed before
the next READ STATUS BYTE or INITIATE READ SE-
QUENCE command.

Figure 5-10 illustrates a program to transfer data from
memory (Port A) to a peripheral device (Port B). In this
example, the Port A memory starting address is 1050H
and the Port B peripheral fixed address is 05H. The
number of databytes tobe transferred is 1001H bytes (one
more than specified by the block length). The table of DMA
commands may be stored in consecutive memory loca-
tions and transferred to the DMA with an output instruction
such as the Z80 CPU's OTIR instruction.

D7 DS D4 D3 D2 D1 DO HEX
WRO sets DMA to receive 0 1 1 1 1 0 0
block tength, Port A starting Block Length | Block Length PortA PortA B—>A
address and temporarity Upper Upper Upper Upper Te'“rm'y Transfer. No Search
sets Port B as source. Follows Follows Address Address Lo ad‘f"‘ 08
Follows Follows "Address

Port A address (lower) 0 1 0 1 0 0 0 0 50
Port A address (upper) 0 0 0 1 0 0 0 0 10
Block length (lower) 0 0 0 0 0 0 0 0 00
Block length (upper) 0 0 0 1 0 0 0 0 10
WR1 defines Port A as 0 0 0 1 0 1 0 0 14
memory with fixed No Timing Address Address Portis
incrementing address. Follows Changes Changes Memory
WR4 defines Port A as 0 0 1 0 1 0 1 0 28
memory with fixed No Timing Fixed Portis
incrementing address. Follows Address 10
WR4 sets mode to Burst, 1 1 0 Mo Ingn - 0 bort ;Lower 0 1 c5
sets DMA to expect Port B No Upper

3 Control Byte Address
address Follows Address Follows
Port B address (lower) 0 0 0 0 0 1 0 1 05
WRS5 sets Ready active High. 1 0 0 ‘0 1 0 1 0 8A

No Auto No Wait RDY
Restart Status Active High
WRS loads Port B address 1 1 0 0 1 1 1 1 CF
and resets block counter.*
WRO sefs Port A as source.* 0 0 0 0 0 1 0 1 5
No Address or Block B—A Transfer. No Search
Length Bytes

WR6 loads Port A address 1 1 0 0 1 1 1 1 CF
and resets block counter.
WR6 enables DMA to start 1 0 0 0 0 1 1 1 87
operation.

NOTE: The actual number of bytes transferred is one more than specified by the block length.
* These entries are necessary only in the case of a fixed destination address.

Figure 5-10. Sample DMA Program

C5-15

N 2iLa5

DMA USER'S MANUAL

CHAPTER 6
APPLICATIONS

6.0 Z80 DMA AND CPU

As amember of the Z80 Family, the Z80 DMA's signals and
timing are directly compatible with those of the Z80 CPU.
Whenitis bus master, the DMA can exhibit read- and write-
cycle characteristics identical to those of the Z80 CPU,
thus simplifying system design. In addition, variable timing
features allow the system designer to interface memories
and /O devices more easily with non-standard capabili-
ties or requirements. The DMA can shorten its read- or
write-cycle timings for higher performance or iengthen
and tailor control signalsto accommodate slower devices.
Because these features are under programmed control,
the hardware configuration is invariant to changes in cycle
and control signal timings.

6.0.1 Interconnection

In small systems, or where the Z80 DMA shares a board
with the CPU, most of the pins on the DMA may be
connected directly to the corresponding CPU pins. These
include the address bus (A15-A0), the data bus (D7-D0),
and the control signals /MREQ, /IORQ, /RD, and /WR. The
interrupt request and bus request signals, /INT and
/BUSREQ, may also be connected directly to the CPU, in
common with corresponding open-drain outputs from
other devices. The priority daisy chains for these functions
are described in an earlier chapter and are illustrated in
Figures 4-4 and 4-10.

Power, ground, and clock signals are also common to the
CPU and DMA, but extra care must be taken to provide
low-impedance paths and adequate decoupling. The 30
ns clock transition time requirement for Z80 Family parts
merits consideration, too. A 300 Ohms pullup from a TTL
clock driver output may suffice for small systems operating
at the 2.5 MHz rate, but the increased loadings and
speeds in larger high-performance systems require active
pullup. A complemetary-transistor driver for Z80/Z8000
systems is shown in Figure 6-1.

6.0.2 Chip Selection and Enabling

Z80 peripherals are normally addressed in the 256 ad-
dress /O space. Each peripheral Chip is enabled by an
active-low Chip Enable (/CE) input. The /CE input be-
comes active when an active /IORQ signal coincides with
the peripheral’'s address on the low order byte of the
address bus. Small systems may dedicate address linesto
their few peripherals, obviating decoder hardware. A sys-
tem using DMA, however, is likely to have more peripher-
als, so that address decoding by means of PROM or MSI
TTL decoder is normally provided.

+5V

I-[0.01yF |

g 10K (max)

22

2N5772 or
2N3646

I

Figure 6-1. Z80/Z8000 Clock Driver

cé-1

QN 2iLa5

Z80° DMA
USER'S MANUAL

6.0 Z80 DMA AND CPU (Continued)

Figure 6-2 illustrates three chip enable arrangements. In
Figure 6-2a, for a small system, the DMA responds to half
of the 256 possible I/O addresses. In part (Figure 6-2b), a
256 x 4 PROM has been programmed to provide a low
output on its 01 pin only when the DMA’s address is
present. The PROM must access quickly enough to meet
the DMA's /CE setup time requirement.

Figure 6-2c shows a one-of-eight TTL decoder used to
provide chip enable signals for eight different peripheral
devices. Address bits AQ and A1 are often used directly by

peripherals suchas the Z80 SIO, PIO,and CTC, andsoare
not decoded here. Additional decoders can be added
when there are more peripheral devices.

/IORQ and /M1 are internally gated with /CE in Z80 periph-
eral devices and need not be terms in /CE. However,
gating chip-enable signals explicitly with these control
lines does no harm and may produce less-ambiguous
logic sequences for circuit-level debugging. Figure 6-2¢
shows this.

Address Bus

CPU

a. DMA responds to M fo—————
1/O addressed 00H
through 77H

NorRQ O
Q]7

CPU

b. PROM determines
DMA response

M1 I0RQ ICE
DMA
A >
M Jo—————— |‘—1A7 04 ICE3
+ 256x4 03 ICE2
NoRQ -] . PROM 02 ICE1
A0 o1 1
M1 /IORQ ICE

DMA

&-—

A0 1

cPU

M1

[oXe]

¢. DMA Responds to NORQ
V/O Addresses EOH

through E3H

Q.Q

M1 I0RQ

ICE
DMA

Figure 6-2. Chip Enable Decoding with Z80 CPU

C6-2

AN 2iLa5

Z80® DMA
USER'S MANUAL

6.0.3 Use of /WAIT input

When the DMA is bus master, the /CE//WAIT pin functions
as an input from memory or 1/O logic which may extend
read or write cycles by requesting Waits states. An active
/BUSACK output from the CPU signals that is has relin-
quished the bus; thus, if this DMA is bus master, it samples
the /WAIT signal for these requests. A simple 2-input
multiplexer is used to steer the /CE//WAIT signals as shown
in Figure 6-3. (Using /BUSACK assumes there is only one
DMA. In systems with three or more possible bus masters,
/BAI active and /BAO inactive identify the master.)

6.0.4 Simultaneous Transfers

The highest-speed DMA method is the simultaneous-
transfer, or “flyby” arrangement. This requires some exter-
nal hardware to generate simultaneous read- and write-
control signals to the source and destination ports.

Since the address bus is used for memory address, only
transfers between 1/O and memory can be impiemented
straightforwardly when the 1/O port selection is done by

 /WAIT (From Peripheral or Memory Logic)
>

/CE (From Decoder)
>

Hooo
 /BUSACK 14
> SEL 7415157
y
JCEIWAIT
DMA

Figure 6-3. /CE//WAIT Multiplexer

hardwiring. The DMA is put into search mode, and a circuit
like that in Figure 6-4 generates separate. simultaneous
read- and write-control signals which may he ORed into
the read- and write-control paths at memory and I/O.
Figure 6-6 shows such an arrangement. This arrangement
allows both the CPU and DMA accessto the I/O peripheral.
(If the peripheral communicates only through DMA, it only
needs to use the /IORD and /IOWR signals.)

Careful attention must be paid to access, setup, and hold
times in this mode. Since the DMA is programmed to do
searching, the /IMWR and /IOWR signals are derived from
the DMA /RD signal and mimic its timing. This does not
cause a problem for write operations, which are trailing
edge-activated. To make /MWR look more like a CPU or
DMA write cycle signal, the circuit of Figure 6-6 may be
used to delay the leading edge of /MWR until after the
falling edge in T2. The programmable variable timing
features of the DMA may be helpful, too.

+5V
/BUSACK or /BAI-BAO >
/RD (From DMA) >
010 10101
NIORQ (From DMA) =1 SEL 74LS257 /OE

Y4 Y3 Y2 Y2

by

/IOWR /IORD /MWR /MRD

Figure 6-4. Simultaneous Transfer Multiplexer

C6-3

. 80 DMA
N 2L USER'S MANUAL
6.0 Z80 DMA AND CPU (Continued)

CPU DMA
/IORQ /RD /WR /BUSACK /BAI /RD /IORQ
=~ T o 0 O o0 O =~
HIGH I | I I
10101010
—Qq/cE SEL
Yi Y. 3 Y4
I0CE
Vo
IMRD DECODER
IMWR _l/\[
Address And Data Buses
[IOWR
V4
. “} NIORD
4
s I
/RD MWR /RD /WR /CE
MEMORY Vo

Figure 6-5. Simultaneous Transfer

Cé-4

Z80% DMA
USER'S MANUAL

N 2iLa15
+5V
/MWR >———y
/PRE
D Q /DMWR

12

74LS74

CLK CLK]

/BUSACK >
Figure 6-6. Delaying the Leading Edge of / MWR

6.0.5 Bus Buffering

Microcomputer systems using DMA often include large
memories, many peripheral devices, or occupy several
circuit cards. Inthese cases, the system buses and control
signals need buffering to increase drive capability and
noise margin and to decrease delay times.

The need for buffering within a single circuit card can be
estimated by comparing drive capabilities of bus master
devices (CPU and DMA) to Ioadings presented by all
inputs and outputs connected to the buses. Both static (DC
current) and dynamic (capacitive drive) requirements must
be considered. When driving a motherboard or other
cards, buffering is a practical necessity.

If the bus master devices (CPU and DMAs) are onthe same
card, they can share buffers for address, data, and control
buses to other cards. Otherwise, each card's bus inter-
faces require buffering.

Address lines are, unidirectional and can be buffered by
many common devices such as 74L.S244 and 74L.S367
(non-inverting tri-state buffer/drivers) or 74LS240 and
7418366 (inverting tri-state buffer/drivers). The tri-state
enable inputs on buffers such as these allow the bus to be
isolated (floated) in a manner similar to the CPU and DMA
address pins. For example, in a system with one CPU and
one DMA, the /BUSACK signal can disable CPU buffers
and enable DMA buffers when itis active. Where there can
be three or more potential bus masters, only those buffers
associated with the actual bus master must be active at
any time. Thus, each DMA, if its /BAl signal is active (Low)
and its /BAO signal is inactive (High), has control of the bus
and can enable its drivers.

Data bus lines are bidirectional, making their buffer con-
irol more complicated. Any device from which the CPU
can read drives the data bus when it is selected and the
/RD control signal is active. In this sense, the /RD signal is
the principal directional control. Non-CPU devices also
drive the data bus during interrupt-acknowledge cycles
(in which the device puts its vector on the bus) and during
DMA write cycles. Figure 6-7 iilustrates a bidirectional
data bus buffer and its control. Here, Z80 SIO, PIO, CTC,
and DMA peripherals share a circuit card. Their common
on-card data bus is buffered to and from the system
(motherboard or backplane) bus. Each of the three con-
ditions mentioned causes the buffers to drive data out
onto the system bus; otherwise, data is buffered into the
card. Suitable devices for bidirectional buffering include
the 74LS241 (tri-state bus drivers) and 74LS245
(transceivers).

The control signals /MREQ, /IORQ, /RD, and /WR should
be unidirectionally buffered in large- or multi-card sys-
tems. These signal buffers are, again, enabled when their
associated device or card has bus control and are forced
into high-impedance states when another master takes
control of these bus lines. Since there are short intervals
during transfer of the bus when the bus is not driven by any
master, IMREQ, /IORQ, /RD, and /WR should be pulled up
to + 5V with 2.7 kohms to 4.7 kohms resistors so that they
remain inactive. Other control. signals on CPU and DMA
may be permanently driven. This usually inciudes /M1,
/RFSH, and /HALT from the CPU, and /BAO from a DMA.

The /BUSREQ line is bidirectional and cannot easily he
externally buffered. However, the DMA can sink 3.2 mA on
/BUSREQ, more than on other signals. To maximize cur-
rent, the system’s /BUSREQ pullup resistor can be as low
as 1. 8 kohms.

An interesting and somewhat unfortunate situation exists
with respect to ratings of the ability of TTL buffers to drive
capacitive loads. While the DC output ratings of standard
buffers like the 74LS367 are usually ample, propagation
times through these buffers are rated at capacitive load-
ings of only 30 pF, a value easily exceeded in practice.
Capacitive loading thus usually dominates bus driving
requirements (Z80 Family parts are specified over ranges
of capacitive loading). The load seen by a device driving
a bus line has components due to wiring and printed-
circuit land capacitance, connector capacitance, and
capacitances of inputs and outputs connected to the
signal. A standard low-power Schottky (LS) TTI input
presents about 6 pF of capacitive load, an LS output of
about 8 pF. Most other input and output capacitances can
be estimated from device data sheets, but capacitance
associated withinterconnection may vary markedly. Some-
times, propagation delays and allowable capacitive load-
ing for buffered lines must be, determined by measure-
ment or by trial and error.

C6-5

QN 2iLa5

Z80° DMA
USER'S MANUAL

6.0 Z80 DMA AND CPU (Continued)

System Data Bus

/DMA.CE
/SI0.CE

o

47Ls
245

On-Card Data Bus
/DIR [EN

/ON .CAB&ENABLE

T = /DRIVEDATA.OUT

/ON.CARD.READ

/DMAWRITE

/RD

CDCRD

/DMA.HAS.BUS >

NIORQ
oM
CARD.IEO »

CARD.IEI >

Po

/ON.CARD.INT ACK

Figure 6-7. Data Bus Buffer Control Example

6.1 Z80 DMA AND Z80 SIO EXAMPLE

A common application of the DMA is to handle data
transfers over a serial data link. The Z80 SIO peripheral is
Used tointerface to the link, providing conversion between
serial and parallel data formats, synchronization, and other
functions.

In this case, comparing the efficiency of interrupt-driven
and DMA data transfers requires examination of the, event
sequences during the brief time, intervals when the SIO
needs a character (byte) transfer. Most of the time, of

course, the SIO is busy transmitting or receiving message
bits and requires no service.

The SIO must be programmed to drive its /WAIT//RDY line
as a /RDY signal to the DMA, which is programmed for
active-Low /RDY in Byte mode.

The event sequences for SIO-DMA transfers are shown in
Tables 6-1 and 6-2.

C6-6

. Z60® DMA
@ 2iLa5 USER'S MANUAL
Table 6-1. Receive Event Sequence
Inter-event delay

Event (clock periods)

SIO receives last bit of character 10-13 latency

SIO /RDY becomes active 2 latency

DMA asserts /BUSREQ 1-5 latency

Current CPU machine cycle ends 1 latency, bus occupancy

CPU asserts /BUSACK 4 latency, bus occupancy

DMA 1/O read cycle begins 4 latency, bus occupancy

DMA memory write cycle begins 2 bus occupancy

DMA terminates /BUSREQ 1 bus occupancy

DMA memory write cycle ends 1 bus occupancy

CPU terminates /BUSACK and 1 bus occpuancy

regains control of bus

Note: Latency (delay from reception of finai data bit to reading of received data) is
22 to 29 clock periods. The system bus is occupied by the DMA for 13 clock

periods per byte transferred.

Table 6-2. Transmit Event Sequence

Inter-event delay

Event (clock periods)

SIO transmits last bit of character 5-6 latency

SIO /RDY becomes true 2 latency

DMA asserts [BUSREQ 1-5 latency

Current CPU machine cycle ends 1 latency, bus occupancy
CPU asserts /BUSACK 4 latency, bus occupancy
DMA memory read cycle begins 3 latency, bus occupancy
DMA 1/O write cycle begins 3 latency, bus occupancy
DMA terminates /BUSREQ 1 latency, bus occupancy
DMA 1/O write cycle ends 1 latency, bus occupancy
CPU terminates /BUSACK and 1 bus occupancy

regains control of bus

Note: Latency (delay from transmission of final data bit to loading of another character) is
20 to 28 clock periods. The system bus is occupied by the DMA for 13 clock

periods per byte transferred.

In an interrupt-driven CPU transfer scheme, the SIO must
interrupt the CPU whenever it has received a character or
needs another character to transmit. A very short bench-
mark service routine, which presumes the exclusive use of
the Z80 CPU'’s alternate register set for SIO interrupt
handling, is provided (numbers in parentheses are clock
periods per instruction):

SIOosVC:
EXX ; get transfer parameters
OuTI ; transfer a byte,

; update parameters
JRZ,BLKEND ; test for end-of-block

EXX ; save parameters
El ; reenable interrupts
RET!

C6-7

N 2La5

280° DMA
USER'S MANUAL

6.1. Z80 DMA AND SIO EXAMPLE (Continued)

Before the service routine can be executed, the CPU must
have its interrupts enabled, finish its current instruction,
and execute an interrupt acknowledge cycle (19 clock
periods). This optimistic benchmark takes at least 68 clock
periods per byte transferred, and severely restricts CPU
activity by permanently occupying the alternate register
set.

To compare these transfer methods, the ratios of clock
cycles used per Kbaud to clock cycles available per
second can be calculated. These represent the fractional
reductions in CPU throughput per Kbaud transferred.

Z80 Z80A
(2.5 MH2) (4 MH2)
DMA sequential transfer 0.065% 0.041%
DMA sequential transfer/search
Interrupt-driven transfer 0.340% 0.213%

Thus, DMA has a shorter and more predictable latency
period and decreases systemoverhead by atleasta factor
of five in this conservative example.

A diagram of a typical Z80 system using a Z80 CPU, a Z80
CTC for asynchronous baud rate generation, both chan-
nels of a Z80 SIO, and two Z80 DMAs (one for each serial
channel) appears in Figure 6-8. The diagram omits the
system memory (ROM and RAM), bus buffers (as re-
quired), and chip enable decoders, which are described
above.

System
uses @————— Common: A16-A0
D7-D0
CLK
/INT
/BUSREQ
M
IORQ
cPU ‘?’ oMA | MR
/INT | /INT
—»| RDY
|EI
+5V]
IEl
2001
cTC
Z2C/T02 /INT —
IEQ
IEO
RxCA /INT
TxCA IE!
RxCB
TxCB
WIRDYA
/W/RDYB RDY
SI0 DMA

Figure 6-8. Z80 DMA-SIO Environment

6.2 USING THE Z80 DMA WITH OTHER PROCESSORS

Because it is so versatile, designers of computer systems
using other CPUs may want to use the Z80 DMA in their
applications Since the DMA was designed as a member of
the Z80 Family, it requires certain signals and bus charac-
teristics like those of the Z80 bus in order to function well.
Three main groups of requirements are distinguished as
follows:

M Bus request/release mechanisms
B Bus characteristics
W Interrupt request, acknowledge, and return

These topics are described in this section, and sugges-
tions for design are given. It is, of course, impractical to

describe all the possible combinations in detail, so each
designer must invoke some creativity to come up with a
complete, workable design.

6.2.1 Bus Request/Release Mechanisms

Probably the most fundamental characteristic that distin-
guishes the Z80 DMA from other monolithic DMACs is its
full control of the system bus during its active state. An
immediate consequence is that processors using the DMA
must be able to give up control of the system bus, including
address, data, and the control lines /MREQ, /IORQ, /RD,
and WR (or their equivalents). Some processors have no
mechanism for freeing the bus. Others, including the 6800
and its relatives, have rudimentary bus control facilities,
but due to their internal dynamic iogic implementations,
cannot relinquish control for indefinite periods of time. This
makes them difficult to interface to the DMA.

C6-8

N 2iLa5

280°DMA
USER'S MANUAL

Many popular microprocessor CPUs, however, do have
adequate bus control facilities-some are very similar tothe
Z80 /BUSREQ and /BUSACK signais. For instance, the
8080, 8085, and 8086 signals HOLD and HLDA are very
close approximations.

The active levels of HOLD and HLDA are positive rather
than negative, and variations exist in timing, but the use of
HOLD and HLDA does allow the address and data bus
drivers to be put into their high-impedance states. in 8080
systems using an 8238 to demultiplex commands, the
/MEMW, /MEMR, /IOW, and /IOR control lines can be
floated using the /BUSEN input. With the 8085, a tri-state
decoder can be used to decode or disable corresponding
signals. The 8086 and its support chips also tri-state their
control signals when HLDA is active.

The Zilog Z8000 Family will include a completely compat-
ible DMAC, but until it is available, the Z80 peripheral chip
family can be used with the Z8000. Generation of Z80-like
control signals for Z80 peripherals is discussed in the Zilog
Application Note, “A Small Z8000 System,” although the
Z80 DMA requires special consideration beyond that of
other Z80 peripherals.

6.2.2 Bus Characteristics

Like the Z80, the 8080 and 8085 have 8-bit data paths and
16-bit addresses. The DMA is matched well to these
numbers—it can search whole data words and directly
address any byte in the memory.

The 8086 and the Z8000 CPUs have 16-bit data paths and
larger address spaces, thus making it somewhat harder to
use the Z80 DMA. Searching can be done for match bytes
in either half of the data word, but not for a whole unique
word. Often this is not a problem since byte matches

suffice, for example, in detecting special ASCII characters .

in a data block, The probiem of handling larger address
spaces can be handled by using an external segment or
page register, latched to the appropriate high-order ad-
dresses before the DMA becomes bus master, or by other
schemes such as indexing. This, of course, requires some
external hardware.

In order to conserve pins, the 8085, 8086, Z8001, and
Z8002 multiplex addresses and data. Strobes allowing
demultiplexing then become part of the bus structure and
must be accounted forin DMA interface. In such cases, the
DMA should be connected to the demultiplexed address
and data lines rather than closer to the processor itself.
Figure 6-9 gives a simplified diagram of this idea.

CPU

M"l{‘g!f"e" 3-Stage
raensg Latchas Latched Address Bus
Data Bus] r
DMA
Buffered Bidirectional Data Bus >

Figure 6-9. Connecting DMA to Demultiplexed
Address/Data Buses

Many processors encode their control signals, analogous
to the Z80's /M1, /MREQ, /IORQ, /RD, and /WR, into status
words which are often demultiplexed before they are
distributed to memory, peripherals, etc. Again, it is better
to link the DMA to these demultiplexed signals, taking
advantage of tri-state decoders to float the outputs when
the DMA is master.

The DMA's Z80-like control signals probably need to be
retimed to meet the requirements of the foreign buses. But
the programmable timing feature of the DMA may well
reduce the hardware costs incurred.

6.2.3 Interrupt Request, Acknowledge, and Return
This is, in may ways, the thorniest issue faced in using the
DMA with other processors. The ways of signaling, priori-
tizing, identifying, responding to, and returning from inter-
rupts are multitudinous in their profusion. Non-Z80 inter-
rupt environments do not use the [El and IEO signals, often
use separate interrupt controllersto generate vectors, and
handle acknowledgement and return in different ways (or
not at all).

Interrupt request is usually easy enough: active levels
typically are low voltage, and there may he one or more
separate interrupt request pins. Timing requirements for
interrupt requests vary (including pulse widths, latching,
etc.) and should be examined for each case.

C6-9

N 2iLa5

280® DMA
USER'S MANUAL

6.2 USING THE 280 DMA WITH OTHER PROCESSORS (Continued)

Priority of simultaneous or overlapping requests is handled
in several ways: some processors (e.g., the 8085) have
multiple interrupt-request pins, some use daisy-chained
priority schemes (as in the Z80), and there are several
kinds of interrupt control ICs available.

Acknowledgement and identification methods vary, too.
Sometimes, several fixed memory locations correspond to
differentinterrupt pins' service routines. In other cases, the
interrupting device is responsible for identifying itself by
putting a vector or instruction on the data bus for the CPU
to read. Interrupt controllers often provide appropriate
vectors to the CPU and distinguish between and prioritize
multiple requests. The DMA has the built in capability to
supply an arbitrary vector byte when it detects a Z80
interrupt acknowledge (/IORQ and /M1 both active) and its

iElinput is active (no higher-priority device is interrupting).
Often, then, gating the /M1, /IORQ, and IEI pins appropri-
ately can obviate use of a separate interrupt controller.
/IORQ serves another function, too, so it must appear
during CPU-DMA transfers and be available to signal /O
reads or writes in the active state.

Atthe end of its service routine, the DMA expects to see the
CPU fetch the RET! instruction (ED, 4D appear on the data
bus accompanied by /M1). The DMA command, RESET
AND DISABLE INTERRUPTS, is designed for this purpose
in non-Z80 CPU environments. Alternatively, the RETI
instruction might be simulated by regating /M1 and pro-
gramming the CPU to write to a phantom peripheral the
bytes ED, 4D. The “chip select” for this nonexistent periph-
eral is used to simulate /M1 at these times (Figure 6-10).

I: G Yo o [CEO
——————0|G2A Y1 o JCE1
-L—O G2B Y2 o ICE2
L5198
= —C i o ICE3
LA4 B Y4
A vs LFET LS06
LA3 5 /I0RQ
- 1532
08 —D LS08 To
IAS ORQ >80
L 5831_ Peripherals
From 8V 510
20 =D,
Data Bus J C LS08
PRE PRE LS10
ora —>—{o Q Ink Q @0_”‘0
LS74 1 1874 o
CLOCK > LK 1ojo— CLK nQ
ctf "y CLR
AW Vectored Interrupt Acknowledge From ST3-ST0)
inck & P %

Figure 6-10. Z8000/Z80 Peripheral Interface

C6-10

N 2iLa5

DMA USER'S MANUAL

CHAPTER 7
PERFORMANCE LIMITATIONS

7.0 BUS CONTENTION

The principal limitation to the use of the DMA is its impact
on CPU activity. When the DMA operates, itis bus master,
thereby preventing the CPU from fetching and executing
instructions. Bringing the CPU to a hall in this manner can
create several problems, including:

W No interrupt servicing (including nonmaskable CPU
interrupts)

B No refresh for dynamic memory (if accomplished by
the CPU)

B No polling

The degree to which time-critical functions of the CPU are
affected when the DMA is operating varies with the DMA's
operating mode.

7.0.1 Byte Mode

This is the most desirable mode when bus contention is a
problem, since it allows interleaving of CPU functions and
DMA functions for each byte of data transferred. The
disadvantage is slower transfer speed.

7.0.2 Burst Mode

This may be useful if the data to be transferred is distrib-
uted over time in amanner that causes the DMA torelease
the bus back to the CPU before other CPU-dependent
functions are endangered. The Burst mode has the merit of
using the bus only when it is needed and of maximizing
transfer speed during that time. It may not be usable,
however, if very long bursts of data (long periods when the
Ready line is active) are possible.

7.0.3 Continuous Mode

This mode is the ultimate bus hog since it holds onto the
bus until an end-of-block or byte match, no matter what the
state of the Ready line. While it achieves the fastest transfer
speeds, it can only be used when there are no time-critical
functions dependent upon the CPU or when the blocks are
relatively short.

The Bytemode is normally safe for most applications. What
must be known to calculate the effect of using the Burst or
Continuous modes is the following:

B Maximum block length
M Maximum DMA transfer rate (see Table 2-1)
B Maximum time Ready line will remain active

There is a method of forcing the DMA off the bus in Byte or
Burst mode. This method uses an external gate to remove
the RDY input to the DMA. Figure 7-1 illustrates this. The
negative consequences of forcing the DMA to stop in the
middle of a transfer must be considered when contemplat-
ing suchascheme. Thismethod cannot he used ifthe DMA
is operating in the Continuous mode; only a power-down
or normal termination with end-of-block or byte match can
make the DMA release the bus.

/FORCE.OFF.BUS

User Supplied _—:_D_»
To DM
RDY o DMA

Figure 7-1. DMA Bus-Master Gate
(Byte or Burst Modes Only)

C71

N 2ILa5

Z80® DMA
USER'S MANUAL

7.1 CONTROL OVERHEAD

The software overhead incurred by the CPU to initialize
and update the DMA'’s program may aliso limit the degree
to which the DMA contributes to overall system efficiency.
Table 5-2 shows that a maximum of about 35 control bytes
would berequired to initialize the DMA if all functions of the
DMA were used to their fullest extent. In addition, use of the
Interrupt mode requires servicing by the CPU and this
normally includes additional control bytes written to the
DMA.

So, the increase in system throughput is not as great for
applications which require frequent reprogramming of the
DMA or extensive interrupt service of data-independent
DMA functions. The ratio of overhead incurred to number
of bytes transferred is minimized for repetitive transfers of
large blocks.

C7-2

N 2iLa5

DMA USER'S MANUAL

CHAPTER 8
TIMING

8.0 WHEN THE CPU IS BUS MASTER

8.0.1 Writing Control Bytes

The DMA can be programmed with control bytes when-
ever the CPU is the bus master. Table 5-1 describes this
isthe "disabled,” "enabled/inactive,” or “enabled/stopped”
States (the latter two are equivalent).

The DMA is programmed by addressing it as an 1/O
peripheralina CPU output instruction (it can be addressed
in the full 84K 1/O space). To do this, three lines must
simultaneously be active-low on the rising edge of the
clock:

/CE Chip Enable
/IORQ Input/Output Request
/WR Write

Figure 8-1 illustrates the timing required for this to happen.
In a Z80 CPU environment, this timing happens automati-
cally when the CPU and DMA are on the same board and
have no buffers, drivers, or other external gates ill series
with the common CPU and DMA pins. This applies to the
sequentialtransfer, sequentialtransfer/search, and search-
only classes of operation. It may or may not apply to the
simultaneous transfer or simultaneous transfer/search

operations, depending on the speed of the external de-

vices used (see the “Applications” chapter).

cE __|
/I0RQ
MR

w LI LT L
—\l

D7-D0

Figure 8-1. CPU-to-DMA Write Cycle Requirements

The essential characteristics of gaining the DMA’s atten-
tion for writing control bytes to it are the following:

W The DMA’s /CE line must be Low (normally done by
decoding the lower byte of the address bus).

HW The /IORQ and /WR lines must be Low at this time.

B The control byte must be placed on the data bus so
that it is stabilized at a rising clock edge which occurs
one clock period after the /CE, /IORQ, and /WR lines
have stabilized.

8.0.2 Reading Status Bytes.

Figure 8-2 illustrates the timing needed for the CPU to read
any of the DMA's read registers, RR6 through RRO, while
the CPU is bus master. The following condition must be
met to read a register:

B The /CE, /IORQ, and /RD lines must be active and
stabilized over two rising edges of the clock.

Status data becomes available on the data bus at the time
of the second clock rising edge. it remains on the bus for
as long as the /CE, /IORQ, and /RD lines remain simulta-
neously active.

ICE

/IORQ \

/RD

D7-DO

Figure 8-2. CPU-to-DMA Read Cycle Requirements

C8-1

N 205

Z80® DMA
USER'S MANUAL

8.1 WHEN THE DMA IS BUS MASTER

8.1.1 Sequential Transfers

In sequential transfer and transfer/search operations (both
have the same timing), data is latched onto the bus by the
rising edge of the /RD signal (with standard timing this is
the falling edge of T3). Data is held on the data bus across
the boundary between read and write cycles, through the
end of the following write cycle. The DMA data bus drivers
become active after /RD has become inactive.

Figure 8-3 illustrates the timing for memory-to-i/O port
transfers, and Figure 8-4 illustrates 1/O-to-memory trans-
fers. Memory-to-memory and 1/O-to-I/O transfer timings
are simply permutations of these diagrams.

The default timing uses three clock cycles for memory
transactions and four clock cycles for 1/O transactions,
which include one automatically inserted wait cycle be-

andthe falling edge of TW for I/O transactions. If [CE//WAIT
is Low during this time another T-cycle is added, during
which the /CE//WAIT line is again sampled. The duration of
transactions can thus be indefinitely extended.

8.1.2 Simultaneous Transfers

The timing for simultaneous transfers and simultaneous
transfer/ searches is the same. The DMA is programmed
in the Search-Only mode, and both read and write cycles
happen simultaneously in the time that a source-port read
would occur in search-only. Only one address is gener-
ated on the address bus; the I/O port is hardwire-selected
during this operation as shown in the “Applications” chap-
ter. The /IORQ, /MREQ, /RD, and /WR lines are gated into
two new signals by external logic. These signals are either:

/MEMWR (Memory write)

tween T2 and T3. If the /CE//WAIT line is programmed to /IORD (I/O read)
act as a /WAIT line during the DMA's active state, it is or:
sampled on the falling edge of T2 for memory transactions /MEMRD (Memory read)
/IOWR (I/O write)
|<«——— Memory Read /0 Write
nl nl w ol el owl ow
aso X X X
MREQ | \ /
READ
"o | \ /
/I0RQ \ [
WRITE
" \ [T
D700 __)[;:;—.—m.;%.——(DMA Drives Data Bus
ICEIWATT """':/'": __________ "/"\:""_'

Figure 8-3. Sequential Memory-to-l/0 Transfer, Standard Timing

(Searching

Is Optional)

C8-2

LS 280° DMA
‘s = USER'S MANUAL

NORQ \ /
READ
RD \ /
o700 — m:;s { DMA Drives Data Bus

/MREQ \ /—_
MR _/
e O N | O /A

WRITE

Figure 8-4. Sequential /O-to-Memory Transfer, Standard Timing- (Searching Is Optional)

S) G— -
R S —
X
—__

e T X X
NOWR \ l / \ / \ /]
s NN N

Figure 8-5. Simultaneous Memory-to-I/O Transfer (Burst and Continuous Mode)

Cs-3

N 2iILa5

Z80® DMA
USER'S MANUAL

8.1 WHEN DMA IS BUS MASTER (Continued)

- Cycle 1

CLK

| |
e) S Fomtimmmm
| | rd /L
/MEMRD \ | | / ! \ / [
| | I
ST N o [RIS o ey) AR
OWR \l | /l ’ \I | | / i
————-F e i N et ZaE e
JCE/WAIT |
- ———r———tr——r-—o —— e

DMA Drives = v F
The Last Data
It Read During __| p
This Time. 4

Figure 8-6. Simultaneous Memory-to-l/O Transfer (Byte Mode)

Figure 8-5 shows the timing for simultaneous transfers in
Burst and Continuous modes between memory and |/O,
using standard Z80 timing. The timing within each cycle is
similarto the “memoryread” cycle shown in Figure 8-3. The
address bus activity isthe same, and the cycle lengthisthe
same. However, the/MREQ, /RD, /IORQ, and /WR lines in
Figure 8-3 have been changed to /MEMRD and
/IOWR lines in Figure 8-5. In addition, the data bus comes
active earlier in Figure 8-5, in response to the /IMEMRD line
coming active. Data is clocked into the I/O port on the
rising edge of /IOWR.

Figure 8-6 shows the timing for Byte mode. It is the same
as Figure 8-5 within each cycle. The breaks between each
cycle, where the address and data bus are tri-stated and
the /IMEMRD and /IOWR lines remain inactive, are caused
by the activity on the /BUSREQ and /BAl lines that is
explained later.

8.1.3 Search-Only

The standard timing for search-only operations is identical
to the read cycles of Figures 8-3 and 8-4. Search-only is
equivalent to read-only; data is simply being read into a
DMA register for comparison with the match byte.

8.1.4 Bus Requests.
Figure 8-7 illustrates the bus request and acceptance
timing. The RDY line, which may be programmed active

~High or Low, is sampled on every rising edge of CLK.

If it is found to be active, and if the bus is not in use by any
other device, the following rising edge of CLK drives
/BUSREQ Low. After receiving /BUSREQ the CPU ac-
knowledges on its /BUSACK (which is connected to the
DMA’s /BAl input either directly or through a multiple-DMA
daisy chain).

The CPU looks atits /BUSREQ input one clock cycle before
the end of each CPU machine cycle. If it sees a request, it
releases the bus at the end of that same machine cycle.
The maximum time delay from the CPU receiving /BUSREQ
to the response on its /BUSACK line is, therefore, one
machine cycle plus slightly less than one clock cycle. The
CPU tri-states all of its bus control lines (/M1 is not tri-
stated) when it acknowledges on the /BUSACK line.

The RDY line, which has a specified setup time with
respect to a rising edge of CLK, must remain active until
afterthe DMA becomes bus master in Byte or Burst modes.

C8-4

Z80® DNA
USER'S MANUAL

CLK E | |]F !
Active

RDY = 1 F
Inach)

L

By M _"——” '/

DMA DMA
Inactive™ > "+ Active

Figure 8-7. Bus Request and Acceptance Timing

(RDY is detected as alevel, notan edge.) The only situation
in which a pulse on RDY can be used to allow the DMA to
become bus master is in the Continuous mode; in this
event, the DMA becomes bus master but does not begin
operations.

When the DMA detects a Low on /BAI for two consecutive
rising edges of CLK, the DMA begins transferring data on
the next rising edge of CLK.

In Byte mode, after each byte is transferred, the DMA waits
until its /BAI line goes inactive before requesting the bus
again on /BUSREQ for the next byte transfer. This allows a
minimum of one CPU machine cycle to occur between
each byte transferred.

8.1.4 Bus Release Byte-at-a-Time

In Byte mode, /BUSREQ is brought High on the rising edge
of CLK prior to the end of each read cycle (search-only) or
write cycle (transfer and transfer/search) as illustrated in
Figure 8-8. This occurs regardless of the state of RDY.
Thereis no possibility of confusion when a Z80 CPUis used
since the CPU cannot begin an operation until the following
clock cycle. Nor does this bother most other CPUs, al-
though note should be taken of it. The effect of this is to
decrease the time needed for a byte transfer by one clock
cycle.

oK "/‘|||||||||

/L
17

/BUSREQ

/BAI I J

DMAActive —»~-¢— DMA Inactive

Figure 8-8. Bus Release in Byte Mode

The next bus request for the next byte comes after both
/BUSREQ and /BAl have returned High. in a Z80 environ-
ment, /BAIl returns High one clock cycle after /BUSREQ
returns High.

8.1.5 Bus Release on End-of-Block.

Ifthe DMA is programmed to stop on end-of-block in Burst
or Continuous modes, an end-of-block causes to go High
(inactive) onthe same rising edge of CLK inwhich the DMA
completes the transfer of the data block (see Figure 8-9).
The last byte in the block is transferred even if RDY goes
inactive before completion of the last byte operation.

_mrr

RDY m"_"—’U_\" -
Inactive

o ——

/BUSREQ

III’
| Curent Byte \I DMA
! Operation ™ Inactive

Figure 8-9. Bus Release on End-of-Block
(Burst and Continuous Modes)

8.1.6 Bus Release on Match

If the DMA is programmed to stop (release the bus) on
match in Burst or Continuous modes, a match causes
/BUSREQ to go inactive on the next DMA operation, i.e., at
the end of the next read in search-only or simultaneous
transfer/searches or at the end of the following write in
sequential transfer or transfer/searches (Figure 8-10).

e LML,

Agtive ry: R ——
RDY | 7/ x——F
Inactive S of fom
/BUSREQ
A T F
| Byte n | Byte n+1 ‘ DMA
! Read In T Read In T Inactive
And
Match Found
OnByten

Figure 8-10. Bus Release on Match
(Burst and Continuous Modes)

Due to the pipelining scheme, matches are determined
while the next DMA read or write is being performed. Table
4-2 contains a complete reference to the number of bytes
transferred in any class or mode.

C8-5

Q2005

Z80® DMA
USER'S MANUAL

8.1 WHEN DMA IS BUS MASTER (Continued)

The RDY line can go inactive after the matching operation
begins without affecting this bus-release timing. However, the
time at which RDY goes inactive can affect the number of
bytes transferred, as shown in Table 4-1 and Figure 4-5.

8.1.7 Bus Release on Not Ready

InBurstmode, when RDY goes inactive it causes /BUSREQ
to go High on the next rising edge of CLK after the
completion of its current byte operation, i.e., at the end of
the current read in search-only or simultaneous transfer/
search or at the end of the following write in sequential
transfer/search (Figure 8-11). The action on /BUSREQ is
thus somewhat delayed from action on the RDY line. The
DMA always completes it current byte operation in an
orderly fashion before releasing the bus.

CLK
Active
RDY =
Inactive i
/.
J L
< CurmBpe__), OMA
| Operation I Inactive

Figure 8-11. Bus Release on Not Ready
(Burst Mode)

Active
RDY

By contrast, /BUSREQ is not released in Continuous mode
when RDY goes inactive. Instead, the DMA idles after
completing the current byte operation, awaiting an active
RDY again.

Figures 8-12, 8-13, and 8-14 review the relationship be-
tween the Ready line going inactive and the state of the
other lines for eachmode of operation, assuming a search-
only of memory using standard Z80 timing. (The timing for
Ready coming active is discussed under “Bus Request.”)
RDY is sampled on the rising edge of CLK in the last clock
cycle of each read or write cycle. It is a level-sample, not
an edge-sample. RDY can go inactive prior to the comple-
tion of the last byte operation without disturbing that
operation. At the end of that operation, the /BUSREQ and
/BAI lines go High in Byte or Burst mode according to
Figures 8-10 and 8-13. The bus control lines /MREQ,
/IORQ, /RD, /WR) also remain High in Byte and Burstmode
during an inactive RDY, with both the address and data
buses tri-stated.

The Continuous mode (Figure 8-14) differs in that the
address bus holds the preincremented address for the
next byte throughout the time that RDY is inactive. This
address is immediately available when RDY comes active
again.

TN N
A —//—\—_/——//——ﬂ-\ /

MEAD e —SfF—— < > 1f - F

Figure 8-12. RDY Line in Byte Mode

C8-6

280® DMA
USER'S MANUAL

A5-A0 ———H————(

D D D S —

Figure 8-14. RDY Line in Continuous Mode

Cc8-7

R 2IaE

®
USER'S MANUAL

8.1 WHEN DMA IS BUS MASTER (Continued)

8.1.8 Variable Cycle and Edge Timing

The Z80 DMA’s operation-cycle length, without Wait states,
for the source (read) port and destination (write) port can
be independently programmed. This variable-cycle fea-
ture allows read or write cycles consisting of two, three, or
four clock cycles (more if Wait cycles are inserted), thereby
increasing or decreasing the pulse widths of all signals
generated by the DMA. In addition, the trailing edges of the
/IORQ, /MREQ, /RD, and /WR signals can be indepen-
dently terminated one-half cycle early. Figure 8-15 illus-
trates this.

S A
A .

Tr-rimn—T—-r——
e~ ____ SIS0
MREQ —_—ic-'-r—r-—,—-,—r__.
RD, MR de g ¢

2-Cycle 3-Cycle
EarlyEnd Eary End

Eaty v
Figure 8-15. Variable-Cycle and Edge Timing

In the Variable-Cycle mode, unlike default timing, /IORQ
comes active one-half cycle before /IMREQ, /RD, and /WR.
/CE//WAIT can be used to extend only the 3 or 4 clock-
cycle variable memory cycles and only the 4-cycle vari-

T | T

able 1/O cycle (see Figure 8-16). The /CE/WAIT line is
sampled at the falling edge of T2 for 3- or-4-cycle memory
operations, and at the falling edge of T3 for 4-cycle I/O
operations. The line is not sampled for 2-cycle operations.
During transfers, data is latched on the clock edge caus-
ing the rising edge of /RD and held until the end of the write
cycle.

A special case arises when using variable timing on an
I/O-search or a simultaneous transfer or transfer/search
with 1/0O as the source port. (The simultaneous transfers are
actually programmed in the DMA as searches and only
distinguished from searches by the manner in which
external logic handles the bus control signals.) In these
applications, the /IORQ line must be programmed to have
an early ending (refer to WR1 description on page 5-4).

Figure 8-14 shows the bus control lines (/MREQ and /RD)
remaining inactive when the RDY line goes inactive in
Continuous mode. The same is not true of the /IORQ line
when variable timing is used. In this case, /IORQ and any
functions created from it by external logic in simultaneous
transfer operations (such as /IOWR and /IORD) remain
active during an inactive RDY line before stopping on end-
of-block or byte match.

8.1.9 Interrupts

Timings for interrupt acknowledge and return from inter-
rupt are the same as timings for these in other Z80
peripherals. Figure 8-17 illustrates this timing. The inter-
rupt signal (/INT) is sampled by the CPU onthe rising edge
of the final clock cycle of any instruction. The signal is not
accepted if the internal CPU software-controlled interrupt-
enable flip-flop is not set or if the /BUSREQ signal is active.
When the /INT signal is accepted, a special /M1 cycle is
generated.

Figure 8-16. /WAIT Line Sampling in Variable-Cycle Timing

C8-8

QA 20L05

280® DMA
USER'S MANUAL

During this special /M1 cycle, the /IORQ signal becomes
simultaneously active (instead of the normal /MREQ) to
indicate that the interrupting device can place its 8-bit
vector on the data bus. Two wait states are automatically
addedtothis cycle. These states are added sothat aripple
priority interrupt scheme can be easily implemented. The
two wait states allow time for the ripple signals to stabilize
and identify which I/O device must respond. Refer to Zilog
Application Note 03-0041-01 (The Z80 Family Program
Interrupt Structure) and to the Z80 CPU Technical Manual
for more details.

Interrupt on RDY (interrupt before requesting the bus)
does not directly affect the /BUSREQ line. Instead, the
interrupt service routine may handle this by issuing the
following commands to WR6:

B Enableafter Return From Interrupt (RETt) Command—
Hex B7

B An RETI instruction that resets the Interrupt Under
Service (IUS) latch in the Z80 DMA—Hex ED, 4D

8.1.10 Pulse Generation

When the pulse generation option is selected, the /INT line
is driven Low every 256 bytes after the offset value. The line
goes Low during the DMA cycle in which the pulse-control
byte matches the lower byte of the byte counter, and it
remains Low for one complete “transfer cycle.” A transfer
cycle is here defined as either aread cycle (search-only or
simultaneous transfer operations) or a read plus a write
cycle, where read and write cycles can be independently
programmed for length through the variable-cycle option.

S instsdhon "
Last T State T ") T " i
CLOCK] \ / \ / \ / \ \ / \ \
e P e Bttt Bttt bttty ettt
——— ————] ——— —] —————— " ——— ——— o o — ——— o 1 T o e] S -

A7-A0)(

™M

/_—_-..
/MREQ \
/I0RQ
\ /
DBauhé “ In }
IWAIT | s o o o o e o o e e e e] e e e e e e e e — IT___,‘_ —— e —————
——— e o i — o ———— . —————— I —— b e

/RD

Figure 8-17. Interrupt Acknowledge

C8-9

N 2iLas

DMA USER'S MANUAL

APPENDIX A

WRITE REGISTER BIT FUNCTIONS

D7 D6 D5 D4 D3 D2 D1 DO

Base Register Byte
00 Do Not Use
0 1 = Tansfer
1 0 = Search
1 1 = Search/Transfer
0 = PotB - PortA
y ! = PotA - PotB
Port A Starting Address
HEEEEN vy ™

T T T T T T T] ot gmng s
II‘IIIIII RocLorg

T LT T T T T] i

Figure A1. Write Register 0 Group

D7 D6 D5 D4 D3 D2 D1 DO

Lol I [I J1To]o]sasenegsterpye

Port Als Memory
PortAls /O

AAddress Decrements
ort A Address Increments

Port A Address Fixed

——oco
—o o
NN = O]
:§ "o

)

y
[T T T T]fecsmane

/RD Ends 1/2 Cycle Early =0

WR Ends 1/2 Cycle Early = 0 00
MREQ Ends 1/2 Cycle Early =0 1o

0=/I0RQ Ends 1/2 Cycle Early

Figure A2. Write Register 1 Group

D7 D6 D5 D4 D3 D2 D1 DO

0 0 | o | o | Base Register Byte

Port B is Mem
POHBRUG

B Address Decrements
B Address Increments

B Address Fixed

A ©]

§ §§ "

b—t

e

Cycle Length = 4
Cycle Length =3

[RD Ends 1/2 Cycle Earty = 0

/WR Ends 12 Cycle Early = 0 ’ 0
/MREQ Ends 1/2 Cycle Early =0 }

0=/I0RQ Ends 1/2 Cycle Early

Figure A3. Write Register 2 Group

D7 D6 D5 D4 D3 D2 D1 DO

0 0 | 0 | Base Register Byte
DMA Enable =1 l 1= Siop On Malch
Interrupt Enable = 1
\ 4

LT T L I 1 [Jmaxsye-=compare

Ll LT T] [[Jvachoye

Figure A4. Write Register 3 Group

N 2L05

Z80® DMA
USER'S MANUAL

WRITE REGISTER BIT FUNCTIONS (Continued)

D7 D6 D5 D4 D3 D2 DI DO
1 0 | 1 | Base Register Byte

CTT T T T T T]iememere

[T T T T T T T] ggegronms

ol T LT L T I]nteruptcontosye

1 = Interruped On Match
Interrupt On RDY = 1 1 = Interruped At End-of-Block
Status Affects Vector = 1 1=Pulse Generated

LT T L LT T 1 |rusecontoisye

I O O I I I e

PR R —

Vector Is Automatically 0 = Interrupt On RDY
Modfied As 0 = Interrupt On Match
Shown Only if 0 = Interrupt On End-of-Block
Status Affects Vector 0 = Interrupt On Match and
Bitis Set End-of-Block

Figure A5. Write Register 4 Group

D7 D6 D5 D4 D3 D2 DI DO
1]o] 0 | 1|0 |Base Register Byte

0=Ready Active Low
1 = Ready Active High
0=/CE Only
1 = [CE/WAIT Multiplexed
0 = Stop On End-Of-Block
1 = Auto Restart On End-Of-Block

Figure A6. Write Register 5 Group

D7 D6 D5 D4 D3 D2 D1 DO

1 1 | 1 | Base Register Byte
| | | | | Hex Command Name
1t 0 0 0 0=0C3-=Reset
i 0 0 0 1i=C7=ResetPortATiming
t 0 0 1 0=C8=ResetPorBTiming
1 0 0 1 1=CF=Lload
i 0 1 0 0=D3= Continue
0 1 0 1 1 =AF = Disable Interrupts
0 1 0 1 0=AB = Enableinterrupls
0 1 0 0 0=A3= Resetand Disable Interrupts
0 1 1 0 1=B7=EnableAfterRET
[N | 11 = BF = Read Status Byte
0 0 1 0 =8B = Relnitialize Status Byte
0 1 0 0 1=A7 = Initiate Read Sequence
0 1 1 0 0 =83 -= ForceReady
0 0 0 0 1=87=EnableDMA
0 0 0 0 0=83=DisableDMA
0 1 1 1 0=BB = ReadMaskFollows

|:o—| | 1T] | | [| reataski=Enabe

‘ l L—-Slalus Byte
Byte Counter (Low Byte)
Byte Counter (High Byte)

Port AAddress (Low Byte)
Port AAddress (High Byte)
Port B Address (Low Byte)
Port B Address (High Byte)

Figure A7. Write Register 6 Group

CA-2

. 280° DMA
N 205 , USER'S MANUAL
READ REGISTER BIT FUNCTIONS

Read Register 0

D7 D6 D5 D4 D3 D2 D1 DO

X | X Status Byte

| t——1=um.txo;mﬁonHau,-oocurred

0 = Ready Active
0= Int Pendi
0=Mate::'l‘1'!)=tound "o
0 = End Of Block

Read Register 1

L1 L LT T 1 1 |seComteronsye

Read Register 2

LI I T TP 1T |vecomterpinpye

Read Register 3

T T T T T T T | ronandessCounter (LowByte)

Read Register 4
UL [[0 [[T | rortaadessCounter (igh Byt

Read Register 5
L T T T T T T T |rotsaddresscounter owByte)
Read Reglster 6
T T LT T T T | rotsaddress Counter (igh Byte)

Figure A8. Read Register 0 Through 6 Bit Functions

CA-3

A 2iLas

DMA USER'S MANUAL

GLOSSARY

DEFINITION OF TERMS

Active. (1) When the DMA is active, itis the bus masterand
is either operating or is suspended. (2) Signal lines are
active when the circuitry recognizes them as such, i.e.,
when their voltage levels are either at logic 1 (High) or at
logic 0 (Low) and the hardware. or software recognizes
them as active in one or the other state. An active-High
signal is written without a bar as in RDY; an active-Low
signal is written with a bar as in /RDY.

Address Counters. Counts the source or destination
addresses (two separate registers are provided). When a
source address is variable, it increments or decrements
immediately before the counted byte is read in. When a
destination address is variable, it increments or decre-
ments immediately before the counted byte is written out.
Incrementing or decrementing does not occur for the first
byte in an operation; the programmed starting address is
used on the first byte.

Buffer. A means of (1) storing a logic state, (2) amplifying
a signal, or (3) isolating a signal.

Burst Mode. A transfer or search mode ill which the DMA
operates continuously as long as the 1/0O device's Ready
line (or an internal Forced Ready condition) is active. If
Ready becomes inactive, the DMA releases the bus.

Bus. The address bus, the data bus, the control bus, or all

three buses (system bus). To say that the DMA can
become “bus master” means that the DMA controls the
address bus, the data bus, and the following bus control
lines: /RD, WR, /IORQ, /MREQ.

Bus Control. The DMA has control of the bus when its Bus
Request (/BUSREQ) and Bus Acknowledge In (/BAI) lines
are active simultaneously.

Byte Counter. Counts the number of bytes read. The
counter begins at zero and increments after the counted
byte has been read in. An end-of-block condition occurs
when the contents of the byte counter equal the contents
of the block-length register.

Byte Match. A match (or compare) between a data byte
and the masked match byte.

Byte Mode. A transfer or search mode in which the DMA
operates on only one byte before releasing the bus. The
bus is then requested again for the operation on the next
byte.

Channel. A controlled link between two ports that keeps
track of the flow of data. The channelincludes the address
counters, byte counters and bus control logic.

Classes of Operation. Transfer, search, and transfer-
while-searching (or transfer/search) classes. See also
“Modes of Operation” and “Methods of Operation.”

Clear. Set to logic 0.
CLK. System clock.

Clock Cycle. One cycle of the system clock (CLK), con-
ventionally defined to begin and end on the positive-going
(rising) edge. There is one T-cycle (time cycle) per clock
cycle. In a 2.5 MHz clock, the clock cycle is 400 ns long
(the inverse of the clock rate). In a 4 MHz clock, the clock
cycle is 250 ns long.

Command. A control byte written to the DMA by the CPU.
It usually causes more immediate action than other control
bytes, which tend to be mode-setting for future activity. In
some cases, mode setting is combined with immediate
action in a single control byte.

Continuous Mode. A transfer or search mode in which the
DMA completes a block transfer before releasing the
system bus. If the I/O port's Ready line goes inactive
during the transfer, the DMA pauses but retains control of
the bus.

Control Byte. A byte written to the DMA while the CPU is
bus master and is addressing the DMA as an 1/O periph-
eral via a decoded Chip Enable (/CE) signal.

Destination Port. The port to which data is written in a
transfer. Either Port A or Port B can be programmed as the
destination port. Also see "Port.”

CG-1

Q205

280® DMA
USER'S MANUAL

DEFINITION OF TERMS (CONTINUED)

Disabled. The DMA is not able to request the system bus
when itis in the disabled state. Any control byte written to
the DMA, except the ENABLE DMA byte, disables the
DMA.

DMAC. Direct Memory Access Controller (or chip).

Enabled. The DMA is able to request the system bus when
itis enabled. It may also currently be the bus master in this
state. The enabled state includes both the active and
Inactive states

Flowthrough. See “Sequential ‘Transfer.”

Flyby. See “"Simultaneous Transfer.”

High. Logic one (high voltage potential).

Inactive. (1) A subset of the DMA's enabled state. The
DMA can request the bus when it is inactive. It becomes
active whenit becomes the bus master. (2) Signal lines are

inactive when they are at the opposite logic level as their
“active “ state.

Interrupt Vector. An 8-bit byte passed to the CPU by a -

peripheral device after the CPU acknowledges the device’s
interrupt. In-a Z80 CPU environment, the vector identifies
the interrupting device and forms the low byte of the
interrupt service routine’s starting address. The CPU sup-
plies the high byte of that address.

Land Capacitance. The capacitance, with respect to
signal ground, of any part of the printed circuitry on a PC
board.

Low. Logic 0 (low voltage potential).
M-Cycle. See “Machine Cycle.”

Machine Cycle. ADMA machine cycle is thetime required
to do a read or write operation in sequential transfers. In
simultaneous transfers, it is the time required to do both a
read and write. A CPU machine cycle is a basic operation
such as an an opcode fetch, memory read, or memory
write (oneinstruction can achieve multiple machine cycles).
DMA machine cycles may be 2, 3, or 4 clock cycles (T-
cycles) in length, without wait states added. Z80 CPU
machine cycles arebetween 3and 10 clock cycles, unless
wait states are added.

Methods of Operation. Sequential and simultaneous
methods. These are also called flowthrough and flyby,
respectively. See also “Modes Operation” and “Classes of
Operation.”

Modes of Operation. Byte, Burst, or Continuous modes.
These are also called Single, Demand, and Block modes,
respectively. See also “Classes of Operation” and “Meth-
ods of Operation.”

Operating. When the DMA is operating, it is transferring
and/or searching bytes of data. Control of status transfers
between the CPU and the DMA do not constitute operation
in this sense.

Port. A source or destination of data. Ports may be I/O
peripherals or memory. The Z80 DMA generates ad-
dresses for both the source and destination port every
time a byte of data is transferred. When data is only
searched (no transfer), only a source port is used.

Race Condition. Multiple logic signal transitions which
may give rise to different states of a machine depending
upon their relative timing. The outcome of the race cannot

- always be predicted accurately.

Reset. Reinitialize to a default starting condition. This may
contain logic 1s or 0s. See “Clear.”

RR. Read Register. There are seven read registers that the
CPU can read status bytes from when the DMA has
relinquished the bus.

Sequential Transfer. A transfer in which bytes are read
from the source port in one read cycle and then written to
the destination port in a separate write cycle. Searches
can also be performed concurrently in this class of opera-
tion, and transfers can be between any two 1/O or memory
ports. No external logic is needed but speed is only half as
fast as in simultaneous transfers.

Set. Setto a starting condition. Also, often used to indicate
setting to logic 1.

Simultaneous Transfer. A transfer in which bytes are
simultaneously read fromthe source portand written to the
destination port. Searches can also be performed concur-
rently in this class of operation, but at least one external
logic gate is needed, and transfers are limited to memory-
to-1/O or I/O-to-memory (no memory-to-memory or 1/O-to-
1/0). Speeds are twice as fast as in sequential transfers.
Simultaneous transfers are implemented by programming
the DMA for a search-only class of operation and using
external logic to generate the appropriate control signals.

Source Port. The port from which data is read. Either Port
A or Port B can be programmed as the source port. See
also “Port.”

CG-2

Q205

®
USER'S MANUAL

Status Byte. Read register 0 (RR0).

Stop. The DMA releases the bus when it stops. This state
terminates a DMA transfer and/or search.

Stop on Compare. Stop on byte match.
Suspended. In the suspended state, the DMA is the bus

master but it is not currently operating (transferring and/or
searching data).

System Bus. The combined address, data, and control
buses.

T-Cycle. See “Clock Cycle.”

WR. Write Register or Write line (/WR). There are 21 write
registers that the CPU can write control bytes into, but
access to them s gained through a subset of seven, which
are named WRO through WR6.

SYMBOLIC NOTATION

In addition to the terms defined in this glossary, the
following symbolic notation is used in the manual:
Address Bus A15-A0. Parallel address lines Othrough 15.

Bar Notation /RDY. Active-Low signal (i.e., active at Low
voltage or logic 0). RDY: Active-High signal (i.e., active at
High voltage or logic 1).

Bits in Data Byte D7-D0. Bits in a byte that are transmitted
over the data bus.

Data Bus D7-DO0. Parallel data lines 7 through 0.

CG-3

N 2ILS

280°CPU
Central Processing Unit

280° CTC
Counter/Timer Circuit

280° DMA
Direct Memory Access

Z80° P10
Parallel Input/Output

280° S10
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

@ Zlm PIO USER’S MANUAL

TABLE OF CONTENTS

C hapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

Chapter 8.

Introduction
IO I Ta | {oTo (U T3 i o o TR U ST TRTRUROTPPIPPINY D1-1
To1 FBALUIES. ..ottt ettt e et e e ebeeate e reeeea e ereabe et bbb e eraeane e D1-1

Architecture
2.0 OVEIVIEW ...ouviieeicie ettt eete e te et e e et e et e et ee e e te s e be e et e e e te s eeesteeiesaeeabeebane s D2-1

Pin Description
3.0 Pin DeSCrIPHON .eoveeee ittt sre e e s neneae s D3-1

Programming the PIO

4.0 RESBL ..ottt bbbttt et b bt en
4.1 Loading the Interrupt Vector.
4.2 Selecting an Operating Mode
4.3 Setting the Interrupt Control WOrd.c..ccooveoneriminncne i D4-3

Timing
5.0 Output Mode (MOAE Q) ..c.vviiiiiiiiiiiie ettt ettt st te e sa e e eeaans
5.1 Input Mode (Mode 1)ce.v..
5.2 Bidirectional Mode (Mode 2)
5.3 Control MOAE (MOAE 3)eciiiiiiiiiiciiiitir ettt re st eb e eaeer st s e v esaesnaa

Interrupt Control
6.0 Interrupt DaiSY Chaincoeioiiiiiiiiiiiiie ettt et s D6-1

Applications

7.0 Interrupt DaiSy Chainoieiiiiieis ettt
7.1 1/O Device Interface.
7.2 CoNrOl INEBIFACE ...ccvviiiei ittt ae e e

Programming Summary
8.0 Load INErrUPt VECIOT ...vviiiiecciei ittt ettt ettt s sae e e s D8-1
8.1 SetMode........oovvcvviiennnnnn,

8.2 Set Interrupt Control

. 280® PIO
@al-ﬂs USER'S MANUAL

List of Figures
Figure 2-1. PO BIOCK DIagramcccceiiiiiiiiiiinticeiie i
Figure 2-2. Port I/O Block Diagram....
Figure 3-1. PIO Pin FUnctionsccccoevevveneane.

Figure 3-2. PIO 44-Pin PLCC Pin Assignments...
Figure 5-1. Mode 0 (Output) Timing
Figure 5-2. Mode 1 (Input) Timingccccccvvvereverincnn
Figure 5-3. Port A, Mode 2 (Bidirectional) Timing
Figure 5-4. Control Mode (Mode 3) Timing
Figure 6-1. Interrupt Acknowledge TimiNgGcocooiiiiiiiiiit e e
Figure 6-2. Return from INterrupt CYCIEccvovviiiiii e
Figure 6-3. Daisy-Chain INterrupt SEIVICEcoccoiiiiiiiiie e
Figure 7-1. A Method of Extending the Interrupt

Priority DaiSy Chainccoie ettt et D7-1
Figure 7-1. Example of /O INtErfacCe.........cocvvvviriiiiiii i e D7-2
Figure 7-3. Control Mode APPHCALION......c.oiviiiiieriie et e e e D7-4

D-ii

N 2iLas

PIO USER'S MANUAL

CHAPTER 1
INTRODUCTION

1.0 INTRODUCTION

The Z80 Parallel /O (PIO) Circuit is a programmable, two
port device which provides a TTL compatible interface
between peripheral devices and the Z80-CPU. The CPU
can configure the Z80-PIO to interface with a wide range
of peripheral devices with no other external logic required.
Typical peripheral devices that are fully compatible with
the Z80-PIO include most keyboards, paper tape readers
and punches, printers, PROM programmers, etc. The
Z80-PlOis packaged in a 40-pin DIP, or a 44-pin PLCC, or
a 44-pin QFP. NMOS and CMOS versions are also avail-
able. Major features of the Z80-PIO include:

One of the unique features of the Z80-PIO that separates
it from other interface controllers is that all data transfer

between the peripheral device and the CPU is accom-
plished under total interrupt control. The interrupt logic of
the P10 permits full usage of the efficient interrupt capabili-
ties of the Z80-CPU during 1/O transfers. All logic neces-
sary to implement a fully nested interrupt structure is
included in the PIO so that additional circuits are not
required. Another unique feature of the PIO isthat it can be
programmed to interrupt the CPU on the occurrence of
specified status conditions in the peripheral device. For
example, the PIO can be programmed to interrupt if any
specified peripheral alarm conditions should occur. This
interrupt capability reduces the amount of time that the
processor must spend in polling peripheral status.

1.1 FEATURES

B Two Independent 8-Bit Bidirectional Peripheral
Interface Ports with ‘Handshake' Data Transfer
Control

B Interrupt Driven 'Handshake’ for Fast Response

B Any One of Four Distinct Modes of Operation May
be Selected for a Port Including:

— Byte Output
— Byte Input
— Byte Bidirectional Bus
(Available on Port A Only)
— Bit Control Mode
— All with Interrupt Controlled Handshake

B Daisy Chain Priority Interrupt Logic Included to
Provide for Automatic Interrupt Vectoring Without
External Logic

B Eight Outputs are Capable of Driving Darlington
Transistors

B All Inputs and Outputs Fully TTL Compatible

B Single 5V Supply and Single Phase Clock are
Required.

N 2iLa5

PIO USER'S MANUAL

CHAPTER 2
PIO ARCHITECTURE

2.0 OVERVIEW

Ablock diagram of the Z80-PIO is shown in Figure 2-1. The
internal structure of the Z80-PIO consists of a Z80-CPU
bus interface, internal control logic, Port A I/O logic, Port B
1/0 logic, and interrupt control logic. The CPU bus inter-
face logic allows the PIO to interface directly to the Z80-
CPU with no other external logic. However, address de-
coders and/or line buffers may be required for large
systems. The internal control logic synchronizes the CPU
data bus to the peripheral device interfaces (Port A and
Port B). The two 1/O ports (A and B) are virtually identical
and are used to interface directly to peripheral devices.

The Port 1/O logic is composed of 6 registers with “hand-
shake” control logic as shown in Figure 2-2. The registers
include: an 8-bit data input register, an 8-bit data output

register, a 2-bit mode control register, an 8-bit mask
register, an 8-bit input/output select register, and a 2-bit
mask control register.

The 2-bit mode control register is loaded by the CPU to
selectthe desired operating mode (byte output, byte input,
byte bidirectional bus, or bit control mode). All data trans-
fer betweenthe peripheral deviceand the CPU is achieved
through the data input and data output registers. Data may
be written into the output register by the CPU or read back
to the CPU from the input register at any time. The hand-
shake lines associated with each port are used to control
the data transfer between the PIO and the peripheral
device.

+5V GND @
. 8 N
Internal pot [®— DataorControl
e | =
ogic 10 je—->
}Handshake
8 ﬁ r
DataB | CPU Peripheral
CPU ata Bus Bus < Internal Bus 5 Feriphera
Interface 6 5| IO
PIO Control
e Port |e8<» DatacrConral
Interrupt __—_> B
Control "0 je—
| > Handshake
3

Interrupt Control Lines

Figure 2-1. PIO Block Diagram

D2-1

- Z80° PIO
@ 2ild USER'S MANUAL
Input/Output
> SelectReg

o (8 Bits)

Contro!
Reg Output Enable

(2 Bits)

i i OData

utput

Intemal Bus > (BRSQ)

its

8-Bit
Peripheral
> DataOr
Control Bus

Chgﬂfrgl Mask < Data

Reg > Reg lmg_ut

(2 Bits) (8Bis) < Tmput Data (85is)

Hendshake | g
T Fl;gerrupt <«—— Control 5 Handshake
quests Logic <tl'#be Lines

Figure 2-2. Port /O Block Diagram

The 8-bit mask register and the 8-bit input/output select
register are used only inthe bit controlmode. In this mode,
any of the eight peripheral data or control bus pins can be
programmed to be an input or an output as specified by the
select register. The mask register is used in this mode in
conjunction with a special interrupt feature. This feature
allows an interrupt to be generated when any or all of the
unmasked pins reach a specified state (either High or
Low). The 2-bit mask control register specifies the active
state desired High or Low) and if the interrupt should be
generated when all unmasked pins are active (AND con-
dition) or when any unmasked pin is active (OR condition).
This feature reduces the requirement for CPU status check-
ing of the peripheral by allowing an interrupt to be auto-
matically generated on specific peripheral status condi-
tions. For example, in a system with three alarm conditions,
an interrupt may be generated if any one occurs or if all
three occur.

The interrupt control logic section handles all CPU inter-
rupt protocol for nested priority interrupt structures. The
priority of any device is determined by its physical location
in a daisy chain configuration. Two lines are provided in
each PIO to form this daisy chain. The device closest to the
CPU has the highest priority. Within a PIO, Port A interrupts
have higher priority than those of Port B. In the byte input,
byte output or bidirectional modes, an interrupt can be
generated whenever a new byte transfer is requested by

the peripheral. In the bit control mode an interrupt can be
generated when the peripheral status matches a pro-
grammed value. The PIO provides for complete control of
nested interrupts. That is, lower priority devices may not
interrupt higher priority devices that have not had their
interrupt service routine completed by the CPU. Higher
priority devices may interrupt the servicing of lower priority
devices.

When an interrupt is accepted by the CPU in Mode 2, the
interrupting device must provide an 8-bit interrupt vector
for the CPU. This vector is used to form a pointer to a
location in the computer memory where the address of the
interrupt service routine is located. The 8-bit vector from
the interrupting device forms the least significant eight bits
of the indirect pointer while the | Register in the CPU
provides the most significant eight bits of the pointer. Each
port (A and B) has an independent interrupt vector. The
least significant bit of the vector is automatically settoa 0
within the PIO since the pointer must point to two adjacent
memory locations for a complete 16-bit address.

The PIO decodes the RETI (Return from interrupt) instruc-
tion directly from the CPU data bus so that each PIO in the
system knows at all times whether it is being serviced by
the CPU interrupt service routine without any other com-
munication with the CPU.

D2-2

N 2L

PIO User's Manual

CHAPTER 3
PIN DESCRIPTION

3.0 PIN DESCRIPTION

A diagram of the Z80-PIO pin configuration is shown in
Figure 3-1. This section describes the function of each pin.

D7-D0 Z80-CPU Data Bus (bidirectional, tri-state). This
busisusedtotransfer all dataand commands between the
Z80-CPU and the Z80-P1O. DO is the least significant bit of
the bus.

B/A Sel Port B or A Select (input, active High). This pin
defines which port will be accessed during a data transfer
between the Z80-CPU and the Z80-P1O. A Low level on this
pin selects Port A while a High level selects Port B. Often,
Address bit AQ from the CPU will be used for this selection
function.

C/D Sel Control or Data Select(input, active High). This pin
defines the type of data transfer to be performed between
the CPU and the PIO. A High level on this pin duringa CPU
write to the PIO causes the Z80 data bus to be interpreted
as a command for the port selected by the B/A Select line.
ALow level on this pin means that he Z80 data bus is being
used to transfer data between the CPU and the P1O. Often
Address bit A1 from the CPU will be used for this function.

ICE Chip Enable(input, active Low). A Low level on this pin
enables the PIO to accept command or data inputs from
the CPU during a write cycle or to transmit data to the CPU
during a read cycle. This signal is generally a decode of
four /O port numbers that encompass Ports A and B, data,
and control.

@ System Clock (input). The Z80-PIO uses the standard
Z80 system clock to synchronize certain signals internally.
This is a single phase clock.

M1 Machine Cycle One Signal from CPU (input, active
Low). This signal from the CPU is used as a sync pulse to
control several internal PIO operations. When /M1 is active
and the /RD signal is active, the Z80-CPU is fetching an
instruction from memory. Conversely, when /M1 is active
and /IORQ is active, the CPU is acknowledging an inter-
rupt. In addition, the /M1 signal has two other functions
within the Z80-PIO.

1. /M1 synchronizes the PIO interrupt logic.

2. When /M1 occurs without an active /RD or /IORQ
signal, the PIO logic enters a reset state.

/IORQ /nput/Output Request from Z80-CPU (input, active
Low). The /IORQ signal is used in conjunction with the B/
A Select, C/D Select, /CE, and /RD signalis to transfer
commands and data between the Z80-CPU and the Z80-
PIO. When /CE, /RD, and /IORQ are active, the port
addressed by B/A will transfer data to the CPU (a read
operation). Conversely, when /CE and /IORQ are active
but /RD is not active, then the port addressed by B/A will
be written into from the CPU with either data or control
information as specified by the C/D Select signal. Also, if
/IORQ and /M1 are active simultaneously, the CPU is
acknowledging an interrupt and the interrupting port will
automatically place its interrupt vector on the CPU data
bus if it is the highest priority device requesting an inter-
rupt.

IRD Read Cycle Status from the Z80-CPU (input, active
Low). If /RD is active a-MEMORY READ or 1/O READ
operation is in progress. The /RD signal is used with B/A
Select, C/D Select, /CE, and /IORQ signals to transfer data
from the Z80-PIO to the Z80-CPU.

IEl Interrupt Enable In (input, active High). This signal is
used to form a priority interrupt daisy chainwhen more than
one interrupt driven device is being used. A High level on
this pin indicates that no other devices of higher priority are
being serviced by a CPU interrupt service routine.

IEO Interrupt Enable Out (output, active High). The IEO
signal is the other signal requited to form a daisy chain
priority scheme. It is High only if [El is High and the CPU is
not servicing an interrupt from this PIO. Thus, this signal
blocks lower priority devices from interrupting while a
higher priority device is being serviced by its CPU interrupt
service routine.

D3-1

QA 205

280® PIO
USER’'S MANUAL

NINT Interrupt Request (output, open-drain, active Low).
When /INT is active, the Z80-PIO is requesting an interrupt
from the Z80-CPU.

A7-A0 Port A Bus (bidirectional, tri-state). This 8-bit bus is
used to transfer data and/or status or control information
between Port A of the Z80-PIO and a peripheral device. AQ
is the least significant bit of the Port A data bus.

IASTB Port A Strobe Pulse from Peripheral Device (input,
active Low). The meaning of this signal depends on the
mode of operation selected for Port A as follows:

1. Output mode: The positive edge of this strobe is
issued by the peripheral to acknowledge the receipt of
data made available by the PIO.

2. Input mode: The strobe is issued by the peripheral to
load data from the peripheral into the Port A input
register. Data is loaded into the PIO when this signal is
active.

3. Bidirectional mode: When this signal is active, data
from the Port A output register is gated onto Port A
bidirectional data bus. The positive edge of the strobe
acknowledges the receipt of the data.

4. Control mode: The strobe is inhibited internally.

ARDY Register A Ready (output, active High). The mean-
ing of this signal depends on the mode of operation
selected for Port A as follows:

1. Output mode: This signal goes active to indicate that
the Port A output register has been loaded and the
peripheral data bus is stable and ready for transfer to
the peripheral device.

2. Inputmode: This signal is active when the Port A input
register is empty and is ready to accept data from the
peripheral device.

3. Bidirectional mode: This signal is active when data is
available in the Port A output register for transfer to the
peripheral device. In this mode, data is slot placed on
the Port A data bus unless A STB is active.

4, Control mode: This signal is disabled and forced to a
Low state.

B7-B0 Port B Bus (bidirectional, tri-state). This 8-bit bus is
used to transfer data and/or status or control information
between Port B of the PIO and a peripheral device. The
Port B data bus is capable of supplying 1.5 mA @ 1.5V to
drive Darlington transistors. BO is the least significant bit of
the bus.

IBSTB Port B Strobe Pulse from Peripheral Device (input,
active Low). The meaning of this signal is similar to that of
/ASTB with the following exception:

In the Port A bidirectional mode, this signal strobes data
from the peripheral device into the Port A input register.

BRDY Register B Ready (output, active High). The mean-
ing of this signal is similar to that of A Ready with the
following exception:

Inthe Port A bidirectional mode this signal is High when the
Port A input register is empty and ready to accept data
from the peripheral device.

D3-2

4 Do 4—12p] le—15 4 20)
D1 —2) le—14 3 a1
02 w—1 12 2
CPU D3 - 40 > < 12 » A3
e 9 04—y 10 a4
D5 €—2E l—2p a5 p oA
D6 —2—p] la—L—p 28
\ D7 —E—pe] 280 - PIO T a7
¢ PonB/ASEL —E—p} |18 ARDY
Control /Data SEL ——S— <J—1Asmj
ooy S IChip Enable ——4—p 27 g)
m —L] le—2—p 51
norRq —&— ! le—22 B2
D —E je—320 5 53
3 o p
5y —2 e 2 s > PotB
GND ——1L—] l—32 s
" FL-»m
L] _H
|2l BROY
JINT -—2 e—1— 578)
Inarmpt /INT Enable In ——24—p
/INT Enable Out
Figure 3-1. PIO Pin Functions
¢ P& x
FPNFEPI I RPFT e
/6 5 4 3 2 1 4 43 42 41 40 N\
BIA | 7 39| RD
PA7 | 8 38 | PB7
PA6 | 9 } 37 | PBB
PAS | 10 36 | PB5
PAd4 | 11 35 | PB4
NC | 12 280-PI0 34 | PB3
GND | 13 33 | PB2
PA3 | 14 32 | PBi
PA2 | 15 31 | PBO
PA1 | 16) 30 | +5V
PAO | 17 29 | CLK

\1819202122232425262728/

R Q& N O O © &
FFE TP L E$ <

Figure 3-2. PIO 44-Pin PLCC Pin Assignments

D3-3

N 2iLas

PIO USER'S MANUAL

CHAPTER 4

ProGrammiNG THE PIO

4.0 RESET

The Z80-PIO automatically enters a reset state when
power is applied. The reset state performs the following
functions:

1. Both port mask registers are reset to inhibit all port
data bits.

2. Port data bus lines are set to a high-impedance state
and the Ready “handshake” signals areinactive (Low).
Mode 1 is automatically selected.

3. The vector address registers are not reset.

4. Both port interrupt enable flip-flops are reset.

5. Both port output registers are reset.

In addition to the automatic power-onreset, the PIO can be
reset by applying an /M1 signal without the presence of a
/RD or /IORQ signal. If no /RD or /IORQ is detected during
/M1, the PIO will enter the reset state immediately after the
/M1 signal goes inactive. The purpose of this reset is to
allow a single external gate to generate a reset without a
power down sequence. This approach was required due
to the 40-pin packaging limitation.

Once the PIO has entered the internal reset state, it is held
there until the PIO receives a control word from the CPU.

4.1 LOADING THE INTERRUPT VECTOR

The PIO has been designed to operate with the Z80-CPU
using the Mode 2 interrupt response. This mode requires
that an interrupt vector be supplied by the interrupting
device. This vector is used by the CPU to form the address
for the interrupt service routine of that port. This vector is
placed on the Z80 data bus during an interrupt acknowl-
edge cycle by the highest priority device requesting ser-
vice at that time. (Refer to the Z80-CPU User's Manual
Section for details on how an interrupt is serviced by the
CPU). Thedesired interrupt vectoris loaded into the PIO by
writing a control word to the desired port of the PIO with the
following format:

D7 D6 D5 D4 D3 D2 D1 DO
VZQ Ve Vs vafvap Vel vigoo

/

Signifies This Control Word
is an Interrupt Vector

DO is used in this case as a flag bit which when Low,
causes V7 through V1 to be loaded into the vector register.
At interrupt acknowledge time, the vector of the interrupt-
ing port will appear on the Z80 data bus exactly as shown
in the format above.

D4-1

AY=e S

280® PI0
USER'S MANUAL

4.2 SELECTING AN OPERATING MODE

Port A of the PIO may be operated in any of four distinct
modes: Mode 0 (output mode), Mode 1 (input mode),
Mode 2 (bidirectional mode), and Mode 3 (control mode).
Note that the mode numbers have been selected for
mnemonic significance; i.e., 0 = Out, 1 = In, 2 = Bidirec-
tional. Port B can operate in any of these modes except
Mode 2.

The mode of operation must be established by writing a
control word to the PIO in the following format:

D7 D6 D5 D4 D3 D2 DI DO

MM X X 1 1 1 1

—V/ S 4

Mode Word Signifies Mode Word To Be Set
X=Unused Bit

Bits D7 and D6 from the binary code for the desired mode
according to the following table:

D7 D6 Mode

0 0 0 (output)

0 1 1 (input)

1 0 2 (bidirectional)
1 1 3 (control)

Bits D5 and D4 are ignored. Bits D3-DOmustbe setto 1111
to indicate “Set Mode”.

Selecting Mode 0 enables any data written to the port
output register by the CPU to be enabled onto the port data
bus. The contents of the output register may be changed
at any time by the CPU simply by writing a new data word
to the port. Also the current contents of the output register
may be read back to the Z80-CPU at any time through the
execution of an input instruction.

With Mode 0 active, a data write from the CPU causes the
Ready handshake line of that port to go High to notify the
peripheral that data is available. This signal remains High
until a strobe is received from the peripheral. The rising
edge of the strobe generates an interrupt (if it has been
enabled) and causes the Ready line to go inactive. This
very simple handshake is similar to that used in many
peripheral devices.

Selecting Mode 1 puts the port into the input mode. To start
handshake operation, the CPU merely performs an input
read operation from the port. This activates the Ready line
to the peripheral to signify that data should be loaded into
the empty inputregister. The peripheral device then strobes
datainto the portinput register using the strobe line. Again,
the rising edge of the strobe causes an interrupt request (if
it has been enabled) and deactivates the Ready signal.
Data may be strobed into the input register regardless of
the state of the Ready signal if care is taken to prevent a
data overrun condition. :

Mode 2 is a bidirectional data transfer mode which uses all
four handshake lines. Therefore, only Port A may be used
for Mode 2 operation. Mode 2 operation uses the Port A
handshake signals for output control and the Port B hand-
shake signals for input control. Thus, both ARDY and
BRDY may be active simultaneously. The only operational
difference between Mode 0 and the output portion of Mode

" 2is that data from the Port. A output register is allowed on

to the port data bus only when /ASTB is active in order to
achieve a bidirectional capability.

Mode 3 operation is intended for status and control appli-
cations and does not utilize the handshake signals. When
Mode 3 is selected, the next control word sent to the PIO
must define which of the port data bus lines are to be inputs
and which are outputs. The format of the control word is
shown below:

D7 D6 D5 D4 D3 D2 DI DO
1107 | V06 J 1/05 § 1/04 | 1/03 | 1/02] 1/O1 | 1/00

If any bit is set to a one, then the corresponding data bus
line will be used as an input. Conversely, if the bit is reset,
the line will be used as an output.

During Mode 3 operation, the strobe signal is ignored and
the Ready line is held Low. Data may be written to a port
or read from a port by the Z80-CPU at any time during
Mode 3 operation. When reading a port, the data returned
to the CPU will be composed of input data from port data
bus lines assigned as inputs plus port output register data
from those lines assigned as outputs.

D4-2

Q2105

280° PIO
USER'S MANUAL

4.3 SETTING THE INTERRUPT CONTROL WORD

The interrupt control word for each port has the following
format:

D7 D6 D5 D4 D3 D2 Dt DO

Enable | AND/ | High/ § Masks 0 1 1 1
Int. § OR | Low Follows
\ /

Used In SI% nifies Interrupt
Mode 3 Only ontrol Word

If bit D7 = 1, the interrupt enable flip-flop of the port is set
and the port may generate an interrupt. If bit D7 = 0, the
enable flag is reset and interrupts may not be generated.
If an interrupt is pending when the enable flag is set, it will
then be enabled onto the CPU interrupt request line. bits
D6, D5, and D4 are used only with Mode 3 operation.
However, setting bit D4 of the interrupt control word during
any mode of operation will cause any pending interrupt to
be reset. These three bits are used to allow for interrupt
operation in Mode 3 when any group of the |/O lines go to
certain defined states. Bit D6 (AND/OR) defines the logical
operation to be performed in port monitoring. If bit D6 = 1,
an AND function is specified and if D6 = 0, an OR function
is specified. For example, if the AND function is specified,

all bits must go to a specified state before an interrupt will
be generated while the OR function will generate an
interrupt if any specified bit goes to the active state.

Bit D5 defines the active polarity of the port data bus line
to be monitored. If bit D5 = 1, the port data lines are
monitored for a high state while if DS = 0, they will be
monitored for a low state.

If bit D4 = 1, the next control word sent to the PIO must
define a mask as follows:

D7 D6 D5 D4 D3 D2 Dt DO
MB7 | MB6 | MBS | MB4 | MB3 | MB2 | MB1 | MBO

Only those port lines whose mask bit is zero will be
monitored for generating an interrupt is high, the forced
state of Ready will prevent input register data from chang-
ing while the CPU is reading the PIO. Ready will go High
again after the trailing edge of the /IORQ as previously
described.

D4-3

N 2iLas

PIO USER'S MANUAL

CHAPTER 5

TIMING

5.0 OUTPUT MODE (MODE 0)

Figure 5-1 illustrates the timing associated with Mode 0
operation. An output cycle is always started by the execu-
tion of an output instruction by the CPU. A WR* pulse is
generated by the PIO during a CPU I/O write operation and
is used to latch the data from the CPU data bus into the
addressed ports (A or B) output register. The rising edge
of the /WR* pulse then raises the Ready flag after the next
falling edge of @ to indicate that data is available for the
peripheral device. In most systems, the rising edge of the
Ready signal can be used as a latching signal in the
peripheral device if desired. The Ready signal will remain
active until: (1) a positive edge is received from the strobe
line indicating that the peripheral has taken the data, or (2)
if already active, Ready will be forced low 1one and one-
half @ cycles after the leading edge of /IORQ if the port's
output register is written into. Ready will return High on the
first falling edge of ® after the trailing edge of /IORQ. This

(0]

WR*

guarantees that Ready is low when port data is changing.
The Ready signal will not go inactive until a falling edge
occurs on the clock (®) line. The purpose of delaying the
negative transition of the Ready signal until after a negative
clocktransition is that it allows for a very simple generation
scheme for the strobe pulse. By merely connecting the
Ready linetothe Strobe line, a strobe with a duration of one
clock period will be generated withno other logic required.
The positive edge of the strobe pulse automatically gener-
ates an /INT request if the interrupt enable flip-flop has
been set and this device is the highest priority device
requesting an interrupt.

If the P1O is not in a reset state, the output register may be
loaded before Mode 0 is selected. This allows the port
output lines to become active in a user defined state.

Port Output
(8 Bits)

/

AN

Ready

&/___

/Strobe

/INT

/WR*=/RD +/CE +/C/D * IORQ

Figure 5-1. Mode 0 (Output) Timing

D5-1

QA 2La5

280® PIO
USER’S MANUAL

5.1 INPUT MODE (MODE 1)

Figure 5-2 illustrates the timing of an input cycle. The
peripheral initiates this cycle using the strobe line after the
CPU has performed a data read. A low level on this line
loads data into the port input register and the rising edge
of the strobe line activates the interrupt request line (/INT)
if the interrupt enable is set and this is the highest priority
requesting device. The next filling edge of the clock line
(®) will then reset the Ready line to an inactive state
signifying that the input register is full and further loading
must be inhibited until the CPU reads the data. The CPU

0]

will in the course of its interrupt service routine, read the
data from the interrupting port. When this occurs, the
positive edge from the CPU /RD signal will raise the Ready
line with the next low going transition of ® indicating that
new data can be loaded into the PIO. If already active,
Ready will be forced low one and one-half @ periods
following the leading edge of /IORQ during aread of a PIO
port. If the user strobes data into the PIO only when Ready

/Strobe

Port Imput
(8 Bits)

Ready

/INT

/RD* r)
/RD*=RD+CE*/C/D*IORQ

Figure 5-2. Mode 1 (Input) Timing

5.2 BIDIRECTIONAL MODE (MODE 2)

This mode is merely a combination of Mode 0 and Mode 1
using all four handshake lines. Since it requires all four
lines, it is available only on Port A. When this mode is used
on Port A, Port B must be set to the Bit Control Mode. The
same interrupt vector will be returned foraMode 3interrupt
on Port B and an input transfer interrupt during Mode 2
operation of Port A. Ambiguity is avoided if Port B is
operated in a polled mode and the Port B mask register is
set to inhibit all bits.

Figure 5-3 illustrates the timing for this mode. It is almost
identical to that previously described for Mode 0and Mode
1 with the Port A handshake lines used for output control
and the Port B lines used for input control. The difference
between the two modes is that, in Mode 2, data is allowed
out onto the bus only when the A strobe is Low. The rising

edge of this strobe can be used to latch the data into the
peripheral since the data will remain stable until after this
edge. The input portion of Mode 2 operates identically to
Mode 1. Note that both Port A and Port B must have their
interrupts enabled to achieve an interrupt driven bidirec-
tional transfer. .

The peripheral must not gate data onto a port data bus
while /ASTB is active. Bus contention is avoided if the
peripheral uses /BSTB to gate input data onto the bus. The
PIO uses the /BSTB low level to latch this data. The PIO has
been designed with a zero hold time requirement for the
data when latching in this mode so that this simple gating
structure can be used by the peripheral. That is, the data
can be disabled from the bus immediately after the strobe
rising edge.

D5-2

280° PIO
USER'S MANUAL

ARDY

/ASTB
Port A

Z’R‘ W
\

Data Bus {_Data Out }

ANT

\—

{Datain}

Sample)

/BSTB

BRDY

MR*=/RD *CE +/C/D *I0RQ

Figure 5-3. Port A, Mode 2 (Bidirectional) Timing

5.3 CONTROL MODE (MODE 3)

The control mode does not utilize the handshake signals
and a normal port write or port read can be executed atany
time. When writing, the data will be latched into output
registers with the same timing as Mode 0. ARDY will be
forced low whenever Port A is operated in Mode 3. BRDY
will be held low whenever Port B is operated in Mode 3
unless Port A is in Mode 2. In the latter case, the state of
BRDY will not be affected.

When reading the PIO, the data returned to the CPU will be
composed of output register data from those port data
lines assigned as outputs and input register data from
those port data lines assigned as inputs. The input register
will contain data which was present immediately prior to-
the falling edge of /RD. See Figure 5-4.

Aninterrupt will be generated if interrupts from the portare
enabled and the data on the port data lines satisfies the
logical equation defined by the 8-bit mask and 2-bit mask
control registers. Another interrupt will not be generated
until a change occurs in the status of the logical equation.
A Mode 3 interrupt will be generated only if the result of a
Mode 3 logical operation changes from false to true. For
example, assume that the Mode 3 logical equation is an
OR function. An unmasked port data line becomes active
and an interrupt is requested. If a second unmasked port
data line becomes active concurrently with the first, a new
interrupt will not be requested since a change in the result
of the Mode 3 logical operation has not occurred.

If the result of a logical operation becomes true immedi-
ately prior to or during /M1 an interrupt will be requested
after the trailing edge of /M1.

T T2 Tw T3

03]
'[D)g?a Bus DataWord1 Y DataWord2 X
/INT Data Match 7 S

Occurs Here
NIORG k \ /
/RD " /
D7-DO - Data In J
*Timing Diagram Refers to Bit Mode Read. " Data Word 1 Placed On Bus

Figure 5-4. Control Mode (Mode 3) Timing

D5-3

N 2iLa5

PIO USER'S MANUAL

CHAPTER 6

INTERRUPT SERVICING

6.0 INTERRUPT SERVICING

Some time after an interrupt is requested by the PIO, the
CPU will send out an interrupt acknowledge (/M1 and
/IORQ). During this time the interrupt logic of the PIO will
determine the highest priority port which is requesting an
interrupt. (Thisis simply the device with its Interrupt Enable
Input high and its Interrupt Enable Output low). To insure
that the daisy chain enable lines stabilize, devices are
inhibited from changing their interruptrequest status when
/M1 is active. The highest priority device places the con-
tents of its interrupt vector register onto the Z80 data bus
during interrupt acknowledge.

Figure 6-1 illustrates the timing associated with interrupt
requests. During /M1 time, no new interrupt requests can
be generated. This gives time for the Int Enable signals to
ripple through up to four PIO circuits. The PIO, with IEI High
and IEO Low during /INTA, will place the 8-bit interrupt
vector of the appropriate port on the data bus at this time.

If an interrupt requested by the PIO is acknowledged, the
requesting port is ‘under service'. IEO of this port will
remain low until a return from interrupt instruction (RETI) is
executed while |El of the port is high. If aninterruptrequest
is not acknowledged, IEO will be forced high for one /M1
cycle after the PIO decodes the opcode ‘ED'. This action
guarantees that the 2-byte RETI instruction is decoded by
the proper PIO port (Figure 6-2).

Figure 6-3 illustrates a typical nested interrupt sequence
that could occur with four ports connected in the daisy
chain. In this sequence Port 2A requests and is granted an
interrupt. While this port is being serviced, a higher priority
port (1B) requests and is granted an interrupt. The service
routine for the higher priority portis completed and a RET!I
instruction is executed to indicate to the port thatits routine
is complete. At this time the service routine of the lower
priority port is completed.

/IORQ and /M1 Indicate
Interrupt Acknowledge (/INTA)

LastT . *
State | T | T2 Tw Tw T3 |
0]
Sample
/INT INT /
NIORQ
M1
IEO
IEl

Figure 6-1. Interrupt Acknowledge Timing

D6-1

N 2iLas 280° PIO

USER’'S MANUAL

T T2 T3 T4 T T2 T3 T4 T

e N e N
e W e N

[h) [)\
D7-D0 (e} (o)
e K
IEO /

Figure 6-2. Return From interrupt Cycle

Highest Priority Channel
Port 1A Port 1B Port2A Port 2B

+

LH IEI IEO ul IEl IEO Hi IEl IEO Hi IEl IEO .

1. Priority Interrupt Daisy Chain Before Any Interrupt Occurs.

Under Service

LA e eoltde eopHdm EoF e o2

2. Port 2A Requests an Interrupt and is Ackowledged.
+ ul Under Service LoService Suspended o o
I-—HI—‘IEI IEO IEl IEO IEl IEO IEl IEQ |——

3. Port 1B1 Interrupts, Suspends Servicing of Port 2A.
+ Service Complete Service Resumed
LH g eoFt e o] o} ie1 IE0 |2

4. Port 1B Service Routine Complete, "RETI" Issued, Port 2A Serviced Resumed
+ Service Complete
LH g o e o] iE0 2 e igo |-Hl—

5. Second "RETI" Instruction Issued on Completion of Port 2A Service Routine

Figure 6-3. Daisy-Chain Interrupt Servicing

D6-2

N 2iLa5

PIO USER'S MANUAL

CHAPTER 7

APPLICATIONS

7.0 EXTENDING THE INTERRUPT DAISY CHAIN

Without any externai logic, a maximum of four Z80-PIO
devices may be daisy chained into a priority interrupt
structure. This limitation is required so that the interrupt
enable status (IEO) ripples through the entire chain be-
tween the beginning of /M1, and the beginning of /IORQ
during aninterrupt acknowledge cycle. Since the interrupt
enable status cannot change during /M1, the vector ad-

dressreturnedto the CPU is assured to be fromthe highest
priority device which requested an interrupt.

If more than four PIO devices must be accommodated, a

“look-ahead” structure may be used as shown in Figure
7-1. With this technique, more than thirty PIO’s may be

chained together using standard TTL logic.

)
|/

+V 1 P10 P10 P10 P10
L& ieo Hdien ieo e ieo e ie0

N N

)

),

P10 P10 P10 P10
HIEl IEO IEl IEO IEl IEO IEI IEO

A

—

Z80- <
CPU

Data Bus >

Figure 7-1. A Method of Extending the Interrupt Priority Daisy Chain

D7-1

Q205

280® PIO
USER'S MANUAL

7.1 VO DEVICE INTERFACE

In this example, the Z80-PIO is connected to an I/O
terminal device which communicates over an 8-bit parallel
bidirectional data bus as illustrated in Figure 7-2. Mode 2
operation (bidirectional) is selected by sending the follow-
ing control word to Port A:

D7 D6 D5 D4 D3 D2 DI DO
1 0 X X 1 1 1 1

\ v

Mode Control

Next, the proper interrupt vector is loaded (refer to CPU
Manual for details on the operation of the interrupt).

D7 D6 D5 D4 D3 D2 DI DO
Vijveljvsjvagpvsgvelwvi 0

ARDY

Interrupts are then enabled by the rising edge of the first
/M1 after the interrupt mode word is set unless that /M1
defines an interrupt acknowledge cycle. If a mask follows
the interrupt mode word, interrupts are enabled by the
rising edge of the first/M1 following the setting of the mask.

Data can now be transferred between the peripheral and
the CPU. The timing for this transfer is as described in
Section 5.0.

I/ASTB

>

BRDY

>

STB

/IORQ
M1
« INT

Z80-
CPU

Z80-
PIO

Yy

B/A C/D [CE

T—HWLO
ODVO
<OIO
<>»0

< >

Port Data Bus

110
Terminal

Address |
Bus
Decoder

Address Bus

Figure 7-2. Example of /O Interface

D7-2

N 206

. 280® PO
USER’S MANUAL

7.2 CONTROL INTERFACE

A typical control mode application is illustrated in Figure
7-3. Suppose anindustrial process is to be monitored. The
occurrence of any abnormal operating condition is to be
reported to a Z80-CPU based control system. The process
control and status word has the following format:

D7 D6 D5 D4 D3 D2 DI DO

Special lum
q_gg;a F,On

ower § Alam § i

ower alt um
Faiuro fProcass| Bme: heges| iz

Tessur- 1Pressure
tom | A2

The PIO may be used as follows. First Port Ais set for Mode
3 operation by writing the following control word to Port A.

.D7 D6 D5 D4 D3 D2 DI DO
1 1 X X 1 1 1 1

Whenever Mode 3 is selected, the next control word sent
to the port must be an I/O select word. In this example we
wish to select port data lines A5, A3, and AQ as inputs and
so the following control word is written:

D7 D6 D5 D4 D3 D2 D1 DO
0 0 1 0 1 0 0 1

Next the desired interrupt vector must be loaded (refer to
the CPU manual for details):

D7 D6 D5 D4 D3 D2 D1 DO

vijve]lvspvagpvapvelwvi 0

An interrupt control word is next sent to the port:

D7 D6 D5 D4 D3I D2 D1 DO
1 0 1 1 0 1 1 1

Active Mask
High Follows

Enable OR

Interrupts Logic Interrupt Control

The mask word following the interrupt mode word is:
D7 D6 D5 D4 D3 D2 DI DO
1 1 0 1 0 1 1 0

Selects A5, A3, and A0 to be Monitored

Now, if a sensor puts a high level on line A5, A3, or A0, an
interrupt request will be generated. The mask word may
select any combination of inputs or outputs to cause an
interrupt. For example, if the mask word above had been:

D7 D6 D5 D4 D3 D2 DI DO
0 1 0 1 0 i 1 0

then aninterrupt request would also occur if bit A7 (Special
Test) of the output register was set.

Assume that the following port assignments are to be
used:

EOH = Port A Data

E1H = Port B Data

E2H = Port A Control

E3H = Port B Control

All port numbers are in hexadecimal notation. This particu-
lar assignment of port numbers is convenient since A0 of
the address bus can be used as the Port B/A Select and Al
ofthe address bus canbe used asthe Control/Data Select.
The Chip Enable would be the decode of CPU address bits
A7 thru A2 (1110 00). Note that if only a few peripheral
devices are being used, a Chip Enable decode may not be
required since a higher order address bit could be used
directly.

D7-3

Z80°® PIO

@ p—d | N USER'S MANUAL
PortA
Bus
A7 Spec. Test ‘
A8 >c Il> Tum OnPwr.
280-CPU BP0 T s Pwr. Fail Alm.
i Ad HALT .
> Industrial
< D7-D0 P A3 >c Temp. Alm. Processing
< System
A2 >c His.On
Al >C Press.Sys
_ A0 Press. Alm.
B/A C/D [CE
A A A

Figure 7-3. Control Mode Application

D7-4

PIO USER'’S MANUAL

N 2La5

CHAPTER 8

PROGRAMMING SUMMARY

8.0 LOAD INTERRUPT VECTOR

VipVvelvsvajvgveiwvig]o

8.1 SET MODE

M MO X X 1 1 1 1

M1 MO Mode
0 0 Output
0 1 Input
1 0 Bidirectional
1 1 Bit Control

When selecting Mode 3, the next word must set the 1/O Register:

8.2 SET INTERRUPT CONTROL

Enable | AND/ | Highv | Masks 0 1 1 1
Int. § OR | Low JFollows

————
Used In
Mode 3 Only

If the “mask follows” bit is high, the next control word written to the port must be the mask:

MB7 | MB6 | MBS § MB4 | MB3 | MB2 | MB1 | MBO

MB = 0, Monitor bit
MB = 1, Mask bit from being monitored

Also, the interrupt enable flip-flop of a port may be set or reset without modifying the rest of the interrupt control word by
using the following command:

Enable .
Int X X X 0 0 1 1

D8-1

N 2iLa5

280°CPU
Gentral Processing Unit

280° CTC
Counter/Timer Circuit

280° DMA
Direct Memory Access

280° P10
Parallel Input/Output

280° SI0
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

@ alm SIO USER'S MANUAL

TABLE OF CONTENTS

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

General Description

T.00 FBALUMES o e E1-1
o1 ANITOAUCTION. oottt E1-2
Pin Description

2.0 PN FUNCHONS 1ottt ettt et e E2-1
2.1 BoNAiNG OPLONS ...ooiiiiiee ittt e E2-2
Architecture

B0 INTFOAUCTION oottt

3.1 DataPath.......cccoeveenes
3.2 Functional Description
3.2.1 1/O Capabilities
3.2.2 Data Communications Capabilitiescccceriiirieeciiiiie e E3-5

Asynchronous Operation

4.0 INTTOAUCTION .oviiiiiiii ettt s
4.1 ASYNCHIONOUS TrANSMILottt st er e
4.2 ASYNCHrONOUS RECEIVEoiiiiiiiiiiii et

Synchronous Operation
5.0 INtrodUCHioNcoeiiiiiiiiiiiiiiii e
5.1 Synchronous Modes of Operation
5.2 Synchronous Transmit..........cc.c..........
5.2.1 INIHANIZAtON ..o
5.2.2 Data Transfer and Status MONItOriNgcocceviviiieiciniini e E5-4
5.3 Synchronous Receive
5.3.1 Initializationc.cccoceieiiniii
5.3.2 Data Transfer and Status MOnitoringccocevviiiiiiiiiniiiiicicec E5-6

SDLC (HDLC) Operation
B.0 INEFOAUCTION ..ottt e seesaee e nee e s
6.1 SDLC Transmit
6.1.1 Initialization
6.1.2 Data Transfer and Status Monitoring
6.2 SDLC RECEIVEcooivvvieiieeeee e
6.2.1 INIHANZHON 1.ttt e e
6.2.2 Data Transfer and Status Monitoring

. 280° 10
N 205 Use's MANUAL

TABLE OF CONTENTS (Continued)

Chapter 7.

Chapter 8.

Chapter 9.

Programming
7.0 INTTOTGUCTION 1.vivvirieeie ettt et ettt sttt ettt s
7.1 Write REQISIErS ..oveeiieiiiierteeriecie et
7.1.1 Write Register O
7.1.2 Write Register 1
7.1.3 Write Register 2
7.1.4 Write Register 3
7.1.5 Write Register 4
7.1.6 Write Register 5
7.1.7 Write Register 6
7.1.8 Wirite Register 7
7.2 Read Registers.....c..ccoceevveniennnnn
7.2.1 Read Register 0
7.2.2 Read Register 1
7.2.3 Read Register 2

Applications
8.0 INTOAUCTION ..ottt e E8-1

Timing
9.0 REAA CYCIB .ottt ettt ettt
9.1 Write Cycle ..o

9.2 Interrupt Acknowledge Cycle
9.3 Return From Interrupt Cycle
9.4 Daisy Chain Interrupt Nesting

E-ii

. 260° 10
@ p—d | W Y UsERr'S MANUAL

List of Figures

Figure 1-1. Z80-SIO BIOCK DIa@ramccoovieriiriiiiiiiie st sttt ene e e eenes E1-2
Figure 2-1. Z80-SIO/0 Pin FUNCHONSccooviiiiiiiiic e st st E2-3
Figure 2-2. Z80-SIO/0 Pin ASSIGNMENESocviiiiiiicieiie sttt e e srn e e srene E2-3
Figure 2-3. Z80-SIO/1 Pin FUNCHONScccviiiiiiiiieccr e e s E2-4
Figure 2-4. Z80-SIO/1 Pin ASSIGNMENESc..eiuiiiiiiiiiiireerieees st eebe bbb tera e ere s E2-4
Figure 2-5. Z80-SIO/2 Pin FUNCHONScciiiiiiiiiiie ettt eb ettt e E2-5
Figure 2-6. Z80-SI0/2 Pin Assignments............. et E2-5
Figure 2-7. Z80-SIO/3 Pin ASSIGNIMENTScvviiurireiiierietiirieticnt ettt e nee e saenens E2-6
Figure 2-8. Z80-SIO/4 Pin ASSIGNMENESc..oiuiiiiiicii et en e E2-6
Figure 3-1. Transmit and Receive Data Path ... e E3-3
Figure 3-2. INtErrupt SITUCKUNEot et b E3-5
Figure 4-1. Asynchronous Message FOrmMatccoceiiiiiiiiiiniinie i E4-1
Figure 5-1. SyNChronous FOMMALS ... e e E5-1
Figure 6-1. Transmit/Receive SDLC/HDLC Message Formatccccovvevverireiinieeineinesie e

Figure 7-1. Write Register O
Figure 7-2. Write Register 1
Figure 7-3. Write Register 2
Figure 7-4. Write Register 3
Figure 7-5. Write Register 4
Figure 7-6. Write Register 5
Figure 7-7. Write Register 6
Figure 7-8. Write Register 7
Figure 7-9. Read Register 0
Figure 7-10. Read Register 1
Figure 7-11. Read Register 2
Figure 8-1. Synchronous/Asynchronous Processor-to-Processor Communication

(Direct Wire to Two Remote LOCALIONS)ccvevviiiiiiiieeieee et v E8-2
Figure 8-2 Synchronous/Asynchronous Processor-to-Processor Communication

(USING Telephone LINES)c.ciiiiiiiiiieee ettt et
Figure 8-3 Data Concentrator
Figure 9-1. Read Cycle Timing
Figure 9-1. Write Cycle Timing
Figure 9-3. Interrupt Acknowledge Cycle Timing

Figure 9-4. Return From Interrupt Cycle Timng

Figure 9-5. Typical INtErrUPt SEIVICEocieeeiiiciieee ettt et e e

List of Tables

Table 3-1. Write Register FUNCHONScoiiiiiiiie e e E3-1
Table 3-1. Read Register FUNCHIONSccoiiiiiiiiiie e e eens E3-1
Table 4-1. Contents of Write Registers 3, 4, and 5 in Asynchronus Modesc..ccocveevevvcieiene e E4-2
Table 4-1. ASyNChronous MOE ..o et E4-3
Table 5-1. Contents of Write Registers 3, 4, and 5 in Synchronus Modescccocvevvevvvrerninnenn. E5-2
Table 5-2. BisynC TransmMit MOTEc.ocvviiiie ettt sr e srr e sare e s sreenaeeanes ES-3
Table 5-3. BisyNC RECEIVE MOGEceiiiiiiiiiiiee et et E5-7
Table 68-1. Contents of Write Registers 3, 4, and 5 in SDLC MOAEScceovveveevviveriieecieese e E6-2
Table 6-2. SDLC Transmit MOGE........cccoviiieir ottt e s sttt E6-3
Table 6-3. SDLC ReCEIVE MOEccooiiiiiiiiieieiee ettt eae ettt ete e erenes E6-7
Table 7-1. Channel Select FUNCHIONSc.oouiiieiiiiiic sttt e et essaer e benes E7-1
Table 7-2. ZB0-SIO COMMANTScooiiiiiiiiiiiitiiieit et e e et s s E7-2

E-iii

N 2iLa5

SIO USER’S MANUAL

CHAPTER 1
GENERAL INFORMATION

1.0 FEATURES

CMOS and NMOS Version

40-Pin DIP, 44-Pin PLCC/QFP Packages
Single 5V Power Supply

Single-Phase 5V Clock

All Inputs and Outputs TTL Compatible
Two Independent Full-Duplex Channels

Data Rates in Synchronous or Isosynchronous Modes:

— 0-800K Bits/Second with 4 MHz System Clock
Rate

— 0-1.2M Bits/Second with 6 MHz System Clock
Rate

— 0-2.5M Bits/Second with 10 MHz System Clock
Rate

Receiver Data Registers Quadruply Buffered;
Transmitter Doubly Buffered

Asynchronous Features:

— 5,6, 7, or 8 Bits/Character

— 1,1 1/2, or 2 Stop Bits

— Even, Odd, or No Parity

— x1, x16, x32, and x64 Clock Modes

— Break Generation and Detection

— Parity, Overrun, and Framing Error Detection

B Binary Synchronous Features:
— Internal or External Character Synchronization
— OneorTwoSync Charactersin Separate Registers
— Automatic Cync Character Insertion
— CRC Generation and Checking

W HDLC and IBM SDLC Features:
— Abort Sequence Generation and Detection
— Automatic Zero Insertion and Deletion
— Automatic Flag insertion Between Messages
— Address Field Recognition
— 1-Field Residue Handling
— Valid Receive Messages Protected from Overrun

M CRC generation and checking

B Separate Modem Control Inputs and Outputs for Both
Channels

B CRC-16 or CRC-CCITT Block Check
B Daisy-ChainPriority Interrupt Logic Provides Automatic
Interrupt Vectoring Without External Logic

B Modem Status can be Monitored

E1-1

Q205

Z80°® SI0
USER'S MANUAL

1.1 INTRODUCTION

The Z80-SIO (Serial Input/Output) is a dual-channel multi-
function peripheral component designed to satisfy a wide
variety of serial data communications requirements in
microcomputer systems. lts basic function is a serial-to-
parallel, parallel-to-serial converter/controller, but, within
that role, it is configurable by systems software so its
“personality” can be optimized for a given serial data
communications application.

The Z80-SIO is capable of handling asynchronous and
synchronous byte-oriented protocols such as IBM Bisync,
and synchronous bit-oriented protocols such as HDLC

and IBM SDLC. This versatile device can also be used to
support virtually any other serial protocol for applications
other than data communications (cassette or floppy disk
interfaces, for example).

The Z80-SIO can generate and check CRC codes in any
synchronous mode and can be programmed to cheek
data integrity in various modes. The device also has
facilities for modem controls in both channels. In applica-
tions where these controls are not needed, the modem
controls can be used for general-purpose 1/O.

[Seral Data
__> Channel A 4_‘ Channel Clocks
<g—p /SYNC
International Channel A MWait/Ready
+5V GND & Control Read/Write
Logic Registers
Discrete j—
/\ :> Controland {4—— Modem or
atus F—>
(Channel &) > Other Controls
Data <+-S-1> orU
) o to < Internal Bus
Control ——<—>
Discrete
Control and Modem or
v Status ———» Other Controls
- (Channel B) —>
International Channel B
Control Read/Write
Logic Registers
! Serial Data
Channel B Channel Clocks
P /SYNC
MWait//Ready
Interrupt
Control
Lines

Figure 1-1. Z80-SI0 Block Diagram

E1-2

N 2iLa5

SIO USER'S MANUAL

CHAPTER 2
PIN DESCRIPTION

2.0 PIN FUNCTIONS

D7-DO0 System Data Bus (bidirectional, tri-state). The sys-
tem data bus transfers data and commands between the
CPU and the Z80-SIO. DO is the least significant bit.

B//A Channel A or B Select(input, High selects Channel B).
This input defines which channel is accessed during a
data transfer between the CPU and the Z80-SIO. Address
bit AC from the CPU is often used for the selection function.

CIID Control Or Data Select (input, High selects Control).
This input defines the type of information transfer per-
formed between the CPU and (be Z80-SIO. A High at this
input during a CPU write to the Z80-SIO causes the
information on the data bus to be interpreted as a com-
mand for the channel selected by B//A. A Low at C//D
means that the information on the data bus is data. Ad-
dress bit A1 is often used for this function.

ICE Chip Enable (input, active Low). A Low level at this
input enables the Z80-SIO to accept command or data
inputs fromthe CPU during awrite cycle, or to transmit data
to the CPU during a read cycle.

@ System Clock (input). The Z80-SIO uses the standard
Z80A System Clock to synchronize internal signals. This is
a single-phase clock.

/M1 Machine Cycle One(input from Z80-CPU, active Low).
When /M1 is active and /RD is also active, the Z80-CPU is
fetching an instruction from memory; when /M1 is active
while /IORQ is active, the Z80-SIO accepts /M1 and /IORQ
as an interrupt acknowledge if the Z80-SIO is the highest
priority device that has interrupted the Z80-CPU.

NORQ Input/Output Request (input from CPU, active Low).
/IORQ is used in conjunction with B//A, C//D, /CE, and /RD
to transfer commands and data between the CPU and the
Z80-S10. When /CE, /RD, and /IORQ are all active, the
channel selected by B//A transfers data to the CPU (aread
operation). When /CE and /IORQ are active, but /RD is
inactive, the channel selected by B//A is written to by the
CPU with either data or control information as specified by

C//D. As mentioned previously, if IORQ and /M1 are active
simultaneously, the CPU is acknowledging an interrupt
and the Z80-SIO automatically places its interrupt vector
on the CPU data bus if it is the highest priority device
requesting an interrupt.

IRD Read Cycle Status (input from CPU, active Low). If /RD
is active, a memory or |/O read operation is in progress.
/RD is used with B//A, /CE, and /IORQ to transfer data from
the Z80-SIO to the CPU.

/RESET Reset (input, active Low). A Low /RESET disables
both /RESET and transmitters, forces TxDA and TxDB
marking, forces the modem controls High and disables all
interrupts. The control registers must be rewritten after the
Z80-SIO is reset and before data is transmitted or re-
ceived.

IEl Interrupt Enable In (input, active High). This signal is
used with |EO to form a priority daisy-chain when there is
more than one interrupt-driven device. A High on this line
indicates that no other device of higher priority is being
serviced by a CPU interrupt service routine.

IEO Interrupt Enable Out (output, active High). IEO is High
only if IElis High and the CPU is not servicing an interrupt
from this Z80-SIO. Thus, this signal blocks lower priority
devices from interrupting while a higher priority device is
being serviced by its CPU interrupt service routine.

/INT Interrupt Request (output, open-drain, active Low).
When the Z80-SIO is requesting an interrupt, it pulls /INT
Low.

WI//RDYA, W//RDYB Wait/Ready A, Wait/Ready B (out-
puts, open-drain when programmed for Wait function,
driven High and Low when programmed for Ready func-
tion). These dual-purpose outputs may be programmed as
Ready lines for a DMA controller or as Wait lines that
synchronize the CPU to the Z80-SIO data rate. The reset
state is open-drain.

E2-1

N 205

280® SI0
USER'S MANUAL

ICSTA, /ICSTB Clear To Send (inputs, active Low). When
programmed as Auto Enables, a Low on these inputs
enables the respective transmitter. If not programmed as
Auto Enables, these inputs may be programmed as gen-
eral-purpose inputs. Both inputs are Schmitt-trigger buff-
ered to accommodate slow-risetime inputs. The Z80-SIO
detects pulses on these inputs and interrupts the CPU on
both logic level transitions. The Schmitt-trigger inputs do
not guarantee a specified noise-level margin.

/DCDA, /IDCDB Data Carrier Detect (inputs, active Low).
These signals are similar to the /CTS inputs, except they
can be used as receiver enables.

RxDA, RxDB Receive Data (inputs, active High).
TxDA, TxDB Transmit Data (outputs, active High).

/RxCA, IRXCB* Receiver Clocks (inputs). See the follow-
ing section on bonding options. The Receive Clocks may
be 1, 16, 32, or 64 times the data rate in asynchronous
modes. Receive data is sampled on the rising edge of
/RxC.

ITXCA,/TxCB* Transmitter Clocks (inputs). See section on
bonding options. In asynchronous modes, the Transmitter
clocks may be 1, 16, 32 or 64 times the data rate. The
multiplier for the transmitter and the receiver must be the
same. Both the /TxC and /RxC inputs are Schmitt-trigger
buffered for relaxed rise- and fall-time requirements (no
noise margin is specified). TxD Changes on the falling
edge of /TxC.

*Note: These clocks may be directly driven by the Z80-
CTC (Counter Timer Circuit) for fully programmable baud
rate generation.

/RTSA, /RTSB Request To Send (outputs, active Low).
When the /RTS bit is set, the /RTS output goes Low. When
the /RTS bit is reset in the Asynchronous mode, the output
goes High after the transmitter is empty. in Synchronous
modes, the /RTS pin strictly follows the state of the /RTS bit.
Both pins can be used as general-purpose outputs.

IDTRA, IDTRB Data Terminal, Ready (outputs, active
Low). See note on bonding options. These outputs follow
the state programmed into the /DTR bit. They can also be
programmed as general-purpose outputs.

ISYNCA,/SYNCB Synchronization (inputs/outputs, active
Low). These pins can act either as inputs or outputs. In the
Asynchronous Receive mode, they are inputs similar to
/CTS and /DCD. In this mode, the transitions on these lines
affect the state of the Sync/Hunt status bits in RRO. In the
External Sync mode, these lines also act as inputs. When
external synchronization is achieved, /SYNC must be
driven Low on the second rising edge of /RxC after that
rising edge of /RxC on which the last bit of the sync
character was received. In other logic must wait for two full
Receive Clock cycles to activate the /SYNC input. Once
SYNC is forced Low, it is wise to keep it Low until the CPU
informs the external sync logic that synchronization has
been lost or a new message is about to start. Character
assembly begins on the rising edge of /RxC that immedi-
ately precedes the falling edge of /SSYNC in the External
Sync mode.

In the Internal Synchronization mode (Monosync and
Bisync), these pins act as outputs that are active during the
part of the receive clock (/RxC) cycle in which sync
characters are recognized. The sync condition is not
latched, so these outputs are active each time a sync
pattern is recognized, regardless of character bound-
aries.

2.1 BONDING OPTIONS

The constraints of a 40-pin package make it impossible to
bring out the Receive Clock, Transmit Clock, Data Terminal
Ready, and Sync signals for both channels. Therefore,
Channel B must sacrifice a signal or have two signals
bonded together. Since user requirements vary, three
bonding options are offered:

M Z80-SIO/O has all four signals, but /TXxCB and /RxCD
are bonded together (Figure 2-1).

B 780-SIO/1 sacrifices /DTRB and keeps /TxCB, /RxCD
and /SYNCB (Figure 2-3).

B Z80-SI0/2 sacrifices /SYNCB and keeps /TxCB,
/RxCB and /DTRB (Figure 2-5).

B The 44-pin package version SIO/3 (QFP) and SI0/4
(PLCC) have all signals (Figures 2-7 and 2-8).

E2-2

®
A 2iLa5 Users i
Dl «—»f 1 ~ 40 fa—» D0
D3 «—»f 2 39 j&—» D2
D5 «—»1 3 38 je—»> D4
D7 -—» 4 37 f«—» D6
/INT «—— 5 36 j«+— /IORQ
IEl —»] 6 35 j&— [CE
IEO -— 7 34 j«— B/A
M{ —>{ 8 33 j«+— C/D
VDD — 9 32 j&— JRD
MIRDYA «—] 10 Z80-S10/0 31 I—— anD
/SYNCA «—»] 11 30 |— WIRDYB
RXxDA ——»] 12 29 Je—» /SYNCB
/RXCA —»1 13 28 j«— RxDB
[TxCA —»{ 14 27 j«— /RXTxCB
TXDA «— 15 26 F— TxDB
/DTRA +— 16 25 f—» /DTRB
/RTSA €— 17 24 F—» |RTSB
ICTSA —»{ 18 23 f+— /CTSB
/DCDA —»] 19 22 j+— /DCDB
o — 20 21 j«— /RESET

Figure 2-1. Z80-S10/0 Pin Functions

0o 4_;412_, + RXDA N
cPU D2 <+ e o
Data D3 <35> T, A
el Dt L <+ /SYNCA L
Dg —,— 17
D7 *——»] _*18 /RTSA
4_16 /CTSA Modem
% __1.§_> /DTRA Control
ICE 51 [<—— /DCDA /
SI0 JRESET —=—»] Z80-SI0/0
Control M|~
RD —%—p] ‘T /RXTXCB
5V __31_» ‘T» /SYNCB
, GND —55—> —=—> /W/RDYB S CHB
Daisy ¢ —=—p
Chain 2t > RSB
nerupt - 5| <«Z2— /o138 | Modem
Il ———>] —== /DTRB Control
33 34
C/lo B//A

Figure 2-2. Z80-ZI0/0 Pin Assignments

E2-3

St=les P
Dl «+—»] 1 ~ 40 Je—» DO
D3 «—»f 2 39 |j¢—» D2
D5 <—»1 3 38 f«—> D4
D7 «—»] 4 37 }a—>» D6
/INT «— 5 36 je— /IORQ
IEl —»] 6 35 je— /CE
IEQ -— 7 34 f+——B/A
M —»] 8 33 Je— ciD
vboD — 9 32 f&— RD
/WI//RDYA +— 10 280-S10/1 31 —— GND
ISYNCA «—»1 11 30 —» WIRDYB
RxDA —»] 12 29 Je—> /SYNCB
/RXCA —» 13 28 j«— RxDB
[TXCA —» 14 27 j+— /RxCB
TxDA <+—] 15 26 |— TxCB
IDTRA «+—] 16 25 |— TxDB
/RTSA «+—] 17 24 }—» |RTSB
ICTSA —»1 18 23 j&— /CTSB
/DCDA —»] 19 22 l&—— /DCDB
o — 2 21 je— /RESET

Fiugre 2-3. Z80-S10/1 Pin Functions

Do 4—41°—> 4—%— RxDA N
D1 <—§9—> < 5 /RxCA
CPU D2 *—2—> 4 > TxDA
Daag 2 Tag)] i, DA
Bus D4 *—5—> <+— > /SYNCA
D5 <—c— ——> MWIRDYA > CH-A
Df <——> 7
D7 4—— g » /RTSA
< 5 /CTSA Modem
35 19 » /DTRA Control
ICE T’ < /DCDA /
SIo | meser —<—»{ Z80-SI0/1
Control M1 — 8 5
B30 | fora —2—» 22— moB N
/RD ——> 4—2-5—— /RxCB
9 —>=—> TxDB
5V T’ T TxCB
) GND —55> 3 > /SYNCB CH-B
3;;% o —=—» —= /W/RDYB
Interrupt «—2 24 ,
Control ml‘g 6, —23 ;ggg Modem
IEQ < 7 X 22 /DCDB Contro|/
33 34
C/D BI/A

Figure 2-4. Z80-ZIO/1 Pin Assignments

E2-4

®
AY= Nu Usens Wi,
DI «+—»] 1 ~ 40 je—» DO
D3 «-—»] 2 39 je—>» D2
D5 «—»] 3 38 je—» D4
D7 -—»] 4 37 le—>» D6
/INT «—] 5 36 f&— /ORQ
IEl —»1 6 35 J«— /CE
IEO «— 7 34 j&— B/A
M —] 8 33 j&— C/D
vob —] 9 32 je— RD
MIRDYA «— 10 2808102 31 l—— aND
/SYNCA <«—»{ 11 30 —» W/RDYB
RxDA —1 12 29 «— /RxDB
/RXCA —»] 13 28 }le—— /RxCB
mxca —»] 14 27 fe— xcB
TXDA <—] 15 26 |— TxDB
/DTRA <—] 16 25 |—>» /DTRB
/RTSA «— 17 24 —» /RTSB
/CTSA —»] 18 23 J«— /CTSB
/DCDA —»1 19 22 j«— /DCDB
o —20 21 e— /RESET

Fiugre 2-5. Z80-S10/2 Pin Functions

i R)
1 [&——— /RxCA
Data D3 <_>38 "—11 /TxCA
Data D <2 0> /SYNCA L
D5 <T> ——— /W//RDYA CH-A
Dg <—,—> 17
D7 €*——> ‘-—-—>18 /RTSA
s /CTSA Modem
% e /DTRA Control
Sio /RESET =5 Z80-S10/2
Control M —2
G | 100 — i e)
0 —57 > TxDB
5V —T’ QTP /TxCB
A GND —%5— —=—> /W/RDYB N CHB
Daisy o —=p P
Chain 2, RSB
Igt;r‘?:‘;))lt /INT 4_2___ - ;; /CTSB Modem
IEl —> ——2—2—> /DTRB Control
33 34
CiD BIIA

Figure 2-6. Z80-ZIO/2 Pin Assignments

®
USER’'S MANUAL

34
IEl 1T

IEO 11

/M1 I

+5V I
/WI//RDYA 11
N/C I
/SYNCA 1T
RxDA 11
/RxCA 11
/TxCA 11

TxDA OO
44

/INT

N\

O

Z84C43
CMOS z80
§10/3

/DTRA

/RTSA

ICTSA
{DCDA

CLK
/RESET
/DCDB

/CTSB
/RTSB
/DTRB
[TxDB

22
117 /CE

111 B//A
111 C/D
(111 /RD
[TT1 GND
CTT1 N/C
CTT1 /W//RDYB
TT1 /SYNCB
CTT1 RxDB
CTT 1 /RxCB
:g:l [TxCB

Fiugre 2-7. Z80-SI10/3 Pin Assignments

/W//RDYA L]
/SYNCA [
RxDA L]
/RxCA L]
/TxCA L
TxDA [
NC O

L1 B//A

L1 C/ID

L 1 /RD

L1 GND
| /W//RDYB
|1 /SYNCB
1 RxDB
|1 /RxCB
[1 /TxCB
|1 TxDB
L1 NIC

Figure 2-8. Z80-Z10/4 Pin Assignments

E2-6

N 2iLa5

SIO USER'S MANUAL

CHAPTER 3

ARCHITECTURE

3.0 INTRODUCTION

The device internal structure includes a Z80-CPU inter-
face, internal control and interrupt logic, and two full-
duplex channels. Associated with each channel are read
and write registers, and discrete control and status logic
that provides the interface to modems or other external
devices.

The read and write register group includes five 8-bit
control registers, two sync-character registers and two
status registers. The interrupt vector is written into an
additional 8-bit register (Write Register 2) in Channel B that
may be read through Read Register 2 in Channel B. The
registers for both channels are designated in the text as
follows:

WR7-WRO0 — Write Registers 0 through 7
RR2-RR0O — Read Registers 0 through 2

The bit assignment and functional grouping of each regis-
teris configured to simplify and organize the programming
process. Tables 3-1 and 3-2 illustrate the functions as-
signed to each read or write register.

The logic for both channels provides formats, synchroni-
zation and validation for data transferred to and from the
channelinterface. The modem control inputs Clear to Send
(/CTS) and Data Carrier Detect (/DCD) are monitored by
the discrete control logic under program control. All the
modem control signals are general purpose in nature and
can be used for functions other than modem control.

For automatic interrupt vectoring, the interrupt control
logic determines which channel and which device within
the channel has the highest priority. Priority is fixed with
Channel A assigned a higher priority than Channel B;
Receive, Transmit and External/ Status interrupts are pri-
oritized in that order within each channel.

Table 3-1. Write Register Functions

Bit Function

WRO Register pointers, CRC initialize, initialization
commands for the various modes, etc.

WR1 Transmit/Receiveinterruptand datatransfermode
definition.

WR2 Interrupt vector (Channel 8 only)

WR3 Receive parameters and controls

WR4 Transmit/Receive miscellaneous parameters
and modes

WR5 Transmit parameters and controls

WR6 Sync character or SDLC address field

WR7 Sync character or SDLC flag

Table 3-2. Read Register Functions

Bit Function
RRO

Transmit/Receive buffer status, interrupt status,
and external status

RR1 Special Receive Condition status

RR2 Modified interrupt vector (Channel B only)

E3-1

A 2La5

280® SI0
USeR'S MANUAL

3.1 DATA PATH

The transmit and receive data path for each channel is
shown in Figure 3-1. The receiver has three 8-bit buffer
registersinaFIFO arrangement (to provide a 3-byte delay)
in addition to the 8-bit receive shift register. This arrange-
ment creates additional time for the CPU to service an
interrupt at the beginning of a block of high-speed data.
The receive error FIFO stores parity and framing errors and
other types of status information for each of the three bytes
in the receive data FIFO.

Incoming data is routed through one of several paths
depending on the mode and character length. In the
Asynchronous mode, serial data is entered in the 3-bit
buffer if it has a character length of seven or eight bits, or
is entered in the 8-bit receive shift register if it has a length
of five or six bits.

In the Synchronous mode, however, the data path is
determined by the phase of the receive process currently
in operation. A Synchronous Receive operation begins
with the receiver in the Hunt phase, during which the
receiver searches the incoming data stream for a bit
patternthat matches the preprogrammed sync characters
(or flags in the SDLC mode). If the device is programmed
for Monosync Hunt, a match is made with a single sync
character stored in WRY7. In Bisync Hunt, a match is made
with dual sync characters stored in WR6 and WR7.

In either case (he incoming data passes through the
receive sync register, and is compared against the pro-
grammed sync character in WR6 or WR7. In the Monosync
mode, a match between the sync character programmed
into WR7 and the character assembled in the receive sync
register establishes synchronization.

In the Bisync mode, however, incoming data is shifted to
the receive shift register while the next eight bits of the
message are assembled in the receive sync register. The
match between the assembled character in the receive
sync registers with the programmed sync character in
WR6 and WR?7 establishes synchronization. Once syn-
chronization is established, incoming data bypasses the
receive sync register and directly enters the 3-bit buffer.

Inthe SDLC mode, incoming data first passes through the
receive sync register, which continuously monitors the
receive data stream and performs zero deletion when
indicated. Upon receiving five contiguous 1's, the sixth bit
isinspected. If the sixth bitis a 0, it is deleted from the data
stream. If the sixth bit is a 1, the seventh bit is inspected.

If that bitis a 0, a Flag sequence has been received; if it is
a 1, an Abort sequence has been received.

The reformatted data enters the 3-bit buffer and is trans-
ferred to the receive shift register. Note that the SDLC
receive operation also begins in the Hunt phase, during
which the Z80-SIO tries to match the assembled character
in the receive shift register with the nag pattern in WR7.
Once the first flag character is recognized, all subsequent
data is routed through the same path, regardless of char-
acter length. ’

Although the same CRC checker is used for both SDLC
and synchronous data, the data path taken for each mode
is different. In Bisync protocol, a byte-oriented operation
requires that the CPU decide to include the data character
in CRC. To allow the CPU ample time to make this decision,
the Z80-SIO provides an 8-bit delay for synchronous data.
Inthe SDLC mode, no delay is provided since the Z80-SIO
contains logic that determines the bytes on which CRC is
calculated.

The transmitter has an 8-bit transmit data register that is
loaded from the internal data bus and a 20-bit transmit shift
register that can be loaded from WR6, WR7 and the
transmit data register. WR6 and WR7 contain sync charac-
ters in the Monosync or Bisync modes, or address field
(one character long) and flag respectively in the SDLC
mode. During Synchronous modes, information contained
in WR6 and WRY7 is loaded into the transmit shift register at
the beginning of the message and, as a time filler, in the
middle of the message if a Transmit Underrun condition
occurs. In the SDLC mode, the flags are loaded into the
transmit shift register at the beginning and end of mes-
sage.

Asynchronous data in the transmit shift register is format-
ted with start and stop bits and is shifted out to the transmit
multiplexer at the selected clock rate. Synchronous
(Monosync or Bisync) data is shifted out to the transmit
multiplexer and also to the CRC generator at the x1 clock
rate.

SDLC/HDLC data is shifted out through the zero insertion
logic, which is disabled while the flags are being sent. For
all other fields (address, control, and frame check) a O is
inserted following five contiguous 1's in the data stream.
The CRC generator result for SDLC data is also routed
through the zero insertion logic.

E3-2

®
.
PN 280®SI0
A ZIU]'S USER'S MANUAL
Intemal Data Bus
Receive Receive I SYNCHaglster SYNCRegmev TransmltDatn
Error Error
FIFO FIFO
I ZO-BnTransmll Shift Regster :Sg;t“
SYNC l
lm ASYNCDala T " on
i SDLC laxer |—- Tx
___> RE?:'B":" Data and 2-Bit Delay
Logic »1 Zero Insort
+-unt Mods (BISYNG)..., y l—> (58is) SYNC-
CRC
v SDLC-CRC
1-Bit SYNC Register " Receive i
ROA— Dolay and Zero Delete [T 38 [] sr @By [[o Coakioge fa—mea
»| Generator
O & & R P
ASYNC Data CRC
Receive CHCDelay
IRXCA—»{ Clock s%ster -
Logic i (8 Bits
CRC

l_______ 5] Checker CRC Result
SDLC-CRC

Figure 3-1. Transmit and Receive Data Path

3.2 FUNCTIONAL DESCRIPTION

The functional capabilities of the Z80-SIO can be de-
scribed from two different points of view: as a data com-
munications device, it transmits and receives serial data,
and meets the requirements of various data communica-
tions protocols; as a Z80 family peripheral, it interacts with
the Z80-CPU and other Z80 peripheral, circuits, and
shares their data, address and control busses, as well as
being a part of the Z80 interrupt structure. As a peripheral
to other microprocessors, the Z80-SIO offers valuable
features such as non-vectored interrupts, polling and
simple handshake capabilities.

The first part of the following functional description de-
scribes the interaction between the CPU and Z80-SIO; the
second part introduces its data communications capabili-

ties.

3.2.1 1/O Capabilities

The Z80-SIO offers the choice of Polling, Interrupt (vec-
tored or non-vectored) and Block Transfer modes to trans-
fer data, status and control information to and from the
CPU. The Block Transfermode canbe implemented under

CPU or DMA control.

E3-3

Q205

280° SI0
USER’S MANUAL

Polling. The Polled mode avoids interrupts. Status regis-
ters RRO and RR1 are updated at appropriate times for
each function being performed (for example, CRC Error
status valid at the end of the message). All the interrupt
modes of the Z80-SIO must be disabled to operate the
device in a polled environment.

While in its Polling sequence, the CPU examines the status
contained in RRO for each channel; the RRO status bits
serve as an acknowledge to the Poll inquiry. The two RRO
status bits DO and D2 indicate that a receive or transmit
data transfer is needed. The status also indicates Error or
other special status conditions (see "Z80-SIO Program-
ming”). The Special Receive Condition status contained in
RR1 does not have to be read in a Polling sequence
because the status bits in RR1 are accompanied by a
Receive Character Available status in RRO.

Interrupts. The Z80-SIO offers an elaborate interrupt
scheme to provide fast interrupt response in real-time
applications. As mentioned earlier, Channel B registers
WR2 and RR2 contain the interrupt vector that points to an
interrupt service routine in the memory. To service opera-
tions in both channels and to eliminate the necessity of
writing a status analysis routine, the Z80-SIO can modify
the interrupt vector in RR2 so it points directly to one of
eight interrupt service routines. This is done under pro-
gram control by setting a program bit (WR1,D2)in Channel
B called “Status Affects Vector.” When this bit is set, the
interrupt vector in WR2 is modified according to the as-
signed priority of the various interrupting conditions. The
table in the Write Register 1 description (Z80-SIO Pro-
gramming section) shows the modification details.

Transmit interrupts, Receive interrupts, and External/
Status interrupts are the main sources of interrupts (Figure
3-2). Each interrupt source is enabled under program
control with Channel A having a higher priority than Chan-
nel B, and with Receiver, Transmit, and External/Status
interrupts prioritized in that order within each channel.
When the Transmit interrupt is enabled, the CPU is inter-
rupted by the transmit buffer becoming empty. (This im-
plies that the transmitter must have had a data character
written into it so it can become empty.) When enabled, the
receiver can interrupt the CPU in one of three ways:

B Interrupt on first receive character
B Interrupt on all receive characters

W Interrupt on a Special Receive condition

Interrupt On First Character is typically used with the Block
Transfer mode. Interrupt On All Receive Characters has
the option of modifying the interrupt vector in the event of
a parity error. The Special Receive Condition interrupt can
occur on a character or message basis (End-of-Frame
interrupt in SDLC, for example). The Special Receive
condition can cause an interrupt only if the Interrupt On
First Receive Character or Interrupt On All Receive Char-
acters mode is selected. In Interrupt On First Receive
Character, an interrupt can occur from Special Receive
conditions (except Parity Error) after the first receive char-
acter interrupt (example: Receive Overrun interrupt).

The main function of the External/Status interrupt is to
monitor the signal transitions of the /CTS, /DCD, and
/SYNC pins; however, an External/Status interrupt is also
caused by a Transmit Underrun condition or by the detec-
tion of a Break (Asynchronous mode) or Abort (SDLC
mode) sequence in the data stream. The interrupt caused
by the Break/Abort sequence has a special feature that
allows the Z80-SIO to interrupt when the Break/Abort
sequence is detected or terminated. This feature facili-
tates the proper termination of the current message, cor-
rect initialization of the next message, and the accurate
timing of the Break/Abort condition in external logic.

CPU/DMA Block Transfer. The Z80-SIO provides a Block
Transfer mode to accommodate CPU block transfer func-
tions and DMA controllers (Z80-DMA or other designs).
The Block Transfer mode uses the /WAIT//READY outputin
conjunction with the Wait/Ready bits of Write Register 1.
The /WAIT//READY output can be defined under software
control as a /WAIT line in the CPU Block Transfer mode or
as a /READY line in the DMA Block Transfer mode.

ToaDMA controller, the Z80-SIO /READY output indicates
that the Z80-SIO is ready to transfer data to or from
memory. To the CPU, the /WAIT output indicates that the
Z80-S10 is not ready to transfer data, thereby requesting
the CPU to extend the I/O cycle. The programming of bits
5, 6, and 7 of Write Register 1 and the logic states of the
/WAIT//READY line are defined in the Write Register 1
description (Z80-SI0 Programming section).

E3-4

QA 2)L05

280® S0
USER'S MANUAL

3.2.2 Data Communications Capabilities

In addition to the I/O capabilities previously discussed, the
Z80-SI0 provides two independent full-duplex channels
aswellas Asynchronous, Synchronous, and SDLC (HDLC)
operational modes. These modes facilitate the implemen-

tation of commonly used data communications protocols.

Receive Character
\ Interrupt On All

Parity Error —_—

Receive Overrun Error —— 5 Special Receive

Framing Error —————— Condition Interrupt

End of Frame (SDLC)

First Data Character
First Non-Sync Character (SYNC)
Valid Address Byte (SDLC)

Receive Characters

Interrupt On /
First Character

DCD Transition

CTS Transiion—
SYNC Transition

Tx Underrun/EOM ——

Yvvvy

External Status

Receive
Interrupt

Interrupt

Break/Abort Detection —

Buffer Becoming Empty ——————»

Transmit Interrupt

Figure 3-2. Interrupt Structure

280-SI0
Interrupt

The specific features of these modes are described in the
following sections. To preserve the independence and
completeness of each section, some information common
to all modes is repeated.

E3-5

N 205

SI0 USER'S MANUAL

CHAPTER 4

ASYNCHRONOUS OPERATION

4.0 INTRODUCTION

To receive or transmit data in the Asynchronous mode, the
Z80-S10 must be initialized with the following parameters:
character length, clock rate, number of stop bits, even or
odd parity, interrupt mode, and receiver or transmitter
enable. The parameters are loaded into the appropriate
write registers by the system program. WR4 parameters
must be issued before WR1, WR3, and WR5 parameters or
commands.

If the data is transmitted over a modem or RS232C inter-
face, the REQUEST TO SEND (/RTS) and DATA TERMI-
NAL READY (/DTR) outputs must be set along with the
Transmit Enable bit. Transmission cannot begin until the
Transmit Enable bit is set.

The Auto Enables feature allows the programmer to send
the first data character of the message to the Z80-SIO

without waiting for /CTS. If the Auto Enables bit is set, the
Z80-SIO will wait for the /CTS pin to go Low before it begins
data transmission. /CTS, /DCD, and /SYNC are general-
purpose I/O lines that may be used for functions other than
their labeled purposes. If /CTS is used for another pur-
pose, the Auto Enables Bit must be programmed to 0.

Figure 4-1 illustrates asynchronous message formats;
Table 4-1 shows WR3, WR4, and WR5 with bits set to
indicate the applicable modes, parameters and com-
mands in asynchronous modes. WR2 (Channel B only)
stores the interrupt vector; WR1 defines the interrupt
modes and data transfer modes. WR6 and WR?7 are not
used in asynchronous modes. Table 4-2 shows the typical
program steps that implement a full-duplex receiveftrans-
mit operation in either channel.

Asynchronous Format

Marking Line Start DO D1

I
Parity

All Transactions Occur y

on a Falling Edge of /TxC

DN
£5
N=56,7,0r8 / /

Stoe\ Marking Line

1,11/2, or 2 Bits

May Be Present or Not.
Even or Odd

Message Flow
D ——

Figure 4-1. Asynchronous Message Format

E4-1

N 205

280® SI0
USER's MaNUAL

4.1 ASYNCHRONOUS TRANSMIT

The Transmit Data output (TxD) is held marking (High)
when the transmitter has no data to send. Under program
control, the Send Break (WR5, D4) command can be
issued to hold TxD spacing (Low) until the command is
cleared.

The Z80-SIO automatically adds the start bit, the pro-
grammed parity bit (odd, even, or no parity) and the
programmed number of stop bits to the data character to
be transmitted. When the character length is six or seven
bits, the unused bits are automatically ignored by the Z80-
SIO. If the character length is five bits or less, refer to the
table in the Write Register 5 description (Z80-SIO Pro-
gramming section) for the data format.

Serial data is shifted from TxD at a rate equalto 1, 1/16th,
1/32nd, or 1/64th of the clock rate supplied to the Transmit
Clock input /TxC. Serial data is shifted out on the falling
edge of /TxC.

If set, the External/Status Interrupt mode monitors the
status of /DCD, /CTS, and /SYNC throughout the transmis-
sion of the message. If these inputs change for a period of
time greater than the minimum specified pulse width, the
interrupt is generated. In a transmit operation, this feature
is used to monitor the modem control signai /CTS.

Table 4-1. Contents of Write Registers 3, 4, and 5 in Asynchronous Modes

BIT 7 BIT6 BITS BIT4 BIT 3 BIT 2 BIT1 BITO
WR3 00=Rx5 BITS/CHAR
10 =Rx 6 BITS/CHAR AUTO 0 0 0 0 Rx
01 =Rx 7 BITS/CHAR ENABLES ENABLE
11=Rx 8 BITS/CHAR
WR4 00 =x1 CLOCK MODE 00=NOT USED
01=x16 CLOCK MODE 0 0 01=1STOP BIT/CHAR EVEN//ODD PARITY
10=32 CLOCK MODE 10=1-1/2 STOP BITS/CHAR PARITY ENABLE
11 x64 CLOCK MODE 11 =2 STOP BITS/CHAR :
WR5 DTR 00=Tx5BITS (OR
LESS)/CHAR SEND Tx 0 RTS 0
10 =Tx 6 BITS/CHAR BREAK ENABLE

01=Tx7BITS/CHAR
11 =Tx 8 BITS/CHAR

E4-2

Z80°® SI0

N2ILa5 Usew's MANUAL
Table 4-2. Asynchronous Mode
Function Typical Program Steps Comments
REGISTER: INFORMATION LOADED:
INITIALIZE WRO CHANNEL RESET Reset SI0
WRO POINTER 2
WR2 INTERRUPT VECTOR Channel B only
WRO0 POINTER 4, RESET EXTERNAL/STATUS INTERRUPT
WR4 ASYNCHRONOUS MODE, PARITY INFORMATION, STOP BITS Issue parameters
INFORMATION, CLOCK RATE INFORMATION
WR0 POINTER 3
WR3 RECEIVE ENABLE, AUTO ENABLES, RECEIVE CHARACTER
LENGTH
WR0 POINTER 5
WR5 REOUEST TO SEND, TRANSMIT ENABLE, TRANSMIT Receive and Transmit both fully initialized.
CHARACTER LENGTH, DATA TERMINAL READY Auto Enables will enable Transmitter if /CTS
is active and Receiver if /DCD is active.
WR0 POINTER 1, RESET EXTERNAL/STATUS INTERRUPT
WR1 TRANSMIT INTERRUPT ENABLE, STATUS AFFECTS VECTOR, Transmit/Receive interrupt mode selected.
INTERRUPT ON ALL RECEIVE CHARACTERS. DISABLE WAIT/ External Interrupt monitors the status of the
READY FUNCTION, EXTERNAL INTERRUPT ENABLE /CTS, /DCD, and /SYNC inputs and detects the
Break sequence. Status Affects Vector in
Channel B only. This data byte must be trans-
TRANSFER FIRST DATABYTE TO SI0 ferred or no transmit interrupts will occur.
IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Program is waiting for an interrupt from
the SI0.
DATA TRANSFER AND 780 INTERRUPT ACKNOWLEDGE CYCLE TRANSFERS RR2 TO CPU When the Interrupt occurs, the interrupt
ERROR MONITORING vector is modified by: 1. Receive Character
|F A CHARACTER IS RECEIVED: Available; 2. Transmit Buffer Empty;
B TRANSFER DATA CHARACTER TO CPU 3. External/Status change; and 4.
W UPDATE POINTERS AND PARAMETERS Special Receive condition.
W RETURN FROM INTERRUPT
IF TRANSMITTER BUFFER IS EMPTY,- Program control is transferred to one of
TRANSFER DATA CHARACTER TO SI0 the eight interrupt Service routines.
UPDATE POINTERS AND PARAMETERS
RETURN FROM INTERRUPT
IF EXTERNAL STATUS CHANGES: If used with processors other than the Z80.
W TRANSFER RRO TO CPU the modified interrupt vector (RR2) should
W PERFORM ERROR ROUTINES (INCLUDE BREAK DETECTION) be returned to the CPU in the Interrupt Ac-
W RETURN FROM INTERRUPT knowledge sequence.
|F SPECIAL RECEIVE CONDITION OCCURS.
W TRANSFER RR1 TO CPU
W D6 SPECIAL ERROR (E.G. FRAMING ERROR) ROUTINE
W RETURN FROM INTERRUPT
TERMINATION REDEFINE RECEIVE/TRANSMIT INTERRUPT MODES When transmit or receive data transfer is

DISABLE TRANSMITIRECEIVE MODES
UPDATE MODEM CONTROL OUTPUTS (E.G. RTS OFF)

complete.

In Transmit, the All Sent status bit indi-
cates transmission is complete.

E4-3

A 2L.05

280® SI0
USER'S MANUAL

4.2 ASYNCHRONOUS RECEIVE

An Asynchronous Receive operation begins when the
Receive Enable bit is set. If the Auto Enables option is
selected, /DCD must be Low as well. A Low (spacing)
condition on the Receive Data input (RxD) indicates a start
bit. If this Low persists for at least one-half of a bit time, the
start bit is assumed to be valid and the data input is then
sampled at mid-bit time until the entire character is as-
sembled. This method of detecting a start bit improves
error rejection when noise spikes exist on an otherwise
marking line.

If the x1 clock mode is selected, bit synchronization must
be accomplished externally. Receive data is sampled on
the rising edge of RxC. The receiver inserts I's when a
character length of other than eight bits is used. If parity is
enabled, the parity bit is not stripped from the assembled
character for character lengths other than eight bits. For
lengths other than eight bits, the receiver assembles a
character length of the required number of data bits, plus
a parity bit and I's for any unused bits. For example, the
receiver assembles a 5-bit character with the following
format: 11 P D4 D3 D2 D1 DO.

Since the receiver is buffered by three 8-bit registers in
addition to the receive shift register, the CPU has enough
time to service an interrupt and to accept the data charac-
ter assembled by the Z80-SIO. The receiver also has three
buffers that store error nags for each data character inthe
receive buffer. These error flags arc loaded at the same
time as the data characters.

After acharacter is received, itis checked for the following
error conditions:

B When parity is enabled, the Parity Error bit (RR1, D4)
is set whenever the parity bit of the character does not
match with the programmed parity. Once this bitis set,
it remains set until the Error Reset Command (WRO0) is
given.

M| The Framing Error bit (RR1, D6) is set if the character
is assembled without any stop bits (thatis, a Low level
detected for a stop bit). Unlike the Parity Error bit, this
bit is set (and not latched) only for the character on
which it occurred. Detection of framing error adds an
additional one-half of a bit time to the character time so
the framing error is not interpreted as a new start bit.

W |f the CPU fails to read a data character while more
thanthree characters have beenreceived, the Receive
Overrun bit (RR1, D5) is set. When this occurs, the
fourth character assembled replacesthe third character
in the receive buffers. With this arrangement, only the
characterthathas been written over is flagged with the
Receive Overrun Error bit. Like Parity Error, this bit can
only be reset by the Error Reset command from the
CPU. Both the Framing Error and Receive Overrun
Error cause an interrupt with the interrupt vector
indicating a Special Receive condition (if Status Affects
Vector is selected).

Since the Parity Error and Receive Overrun Error flags are
latched, the error status that is read reflects an error in the
current word in the receive buffer plus any Parity or
Overrun Errors received since the last Error Reset com-
mand. To keep correspondence between the state of the
error buffers and the contents of the receive data buffers,
the error status register must be read before the data. This
is easily accomplished if vectored interrupts are used,
because a special interrupt vector is generated for these
conditions.

While the External/Status interrupt is enabled, break de-
tection causes an interrupt and the Break Detected status
bit (RRO, D7)is set. The Break Detected interrupt should be
handled by issuing the Reset External/Status Interrupt
command to the Z80-SIO in response to the first Break
Detected interrupt that has a Break status of 1 (RRQ, D7).
The Z80-S1O monitors the Receive Data input and waits for
the Break sequence to terminate, at which point the Z80-
SIO interrupts the CPU with the Break status set to 0. The
CPU must again issue the Reset External/Status Interrupt
command in its interrupt service routine to reinitialize the
break detection logic.

E4-4

N 2La5

280° SI0
USER'S MANUAL

The External/Status interrupt also monitors the status of /
DCD. Ifthe /DCD pin becomes inactive for a period greater
than the minimum specified pulse width, an interrupt is
generated with the /DCD status bit (RRO, D3) setto 1. Note
that the /DCD input is inverted in the RRO status register.

If the status is read after the data, the error data for the next
word is also included if it has been stacked in the buffer.
If operations are performed rapidly enough so the next
character is not yet received, the status register remains
valid. An exception occurs when the Interrupt On First
Character Only mode is selected. A special interruptin this
mode holds the error data and the character itself (even if
read from the buffer) until the Error Reset command is
issued. This prevents further data from becoming avail-
able inthe receiver until the Reset command is issued, and
allows CPU intervention on the character with the error
even if DMA or block transfer techniques are being used.

If Interrupt On Every Character is selected, the interrupt
vector is different if there is an error status in RR1. If a
Receiver Overrun occurs, the most recent character re-
ceived is loaded into the buffer; the character preceding
itis lost. When the character that has been written over the
other characters is read, the Receive Overrun bit is setand
the Special Receive Condition vector is returned if Status
Affects Vector is enabled.

In a polled environment, the Receive Character Available
bit (RRO, DO) must be monitored so the Z80-CPU can know
when to read a character. This bit is automatically reset
when the receive buffers are read. To prevent overwriting
data in polled operations, the transmit buffer status must
be cheeked before writing into the transmitter. The Trans-
mit Buffer Empty bitis set to 1 whenever the transmit buffer
is empty.

E4-5

A=

280° SI0
USER'S MANUAL

The External/Status interrupt also monitors the status of /
DCD. Ifthe /DCD pin becomes inactive for a period greater
than the minimum specified pulse width, an interrupt is
generated with the /DCD status bit (RRO, D3) set to 1. Note
that the /DCD input is inverted in the RRO status register.

Ifthe status is read after the data, the error data for the next
word is also included if it has been stacked in the buffer.
If operations are performed rapidly enough so the next
character is not yet received, the status register remains
valid. An exception occurs when the Interrupt On First
Character Only mode is selected. A special interrupt in this
mode holds the error data and the character itself (even if
read from the buffer) until the Error Reset command is
issued. This prevents further data from becoming avail-
able inthe receiver until the Reset command is issued, and
allows CPU intervention on the character with the error
even if DMA or block transfer techniques are being used.

If Interrupt On Every Character is selected, the interrupt
vector is different if there is an error status in RR1. If a
Receiver Overrun occurs, the most recent character re-
ceived is loaded into the buffer; the character preceding
itis lost. When the character that has been written over the
other characters is read, the Receive Overrun bitis setand
the Special Receive Condition vector is returned if Status
Affects Vector is enabled.

In a polied environment, the Receive Character Available
bit (RRO, DO) must be monitored so the Z80-CPU can know
when to read a character. This bit is automatically reset
when the receive buffers are read. To prevent overwriting
data in polled operations, the transmit buffer status must
be cheeked before writing into the transmitter. The Trans-
mit Buffer Empty bit is setto 1 whenever the transmit buffer
is empty.

E4-5

N 2iLa5

SI0 USER'S MANUAL

CHAPTER 5

SYNCHRONOUS OPERATION

5.0 INTRODUCTION

Before describing synchronous transmission and recep-
tion, the three types of character synchronization,
Monosync, Bisync, and External Sync, require some ex-
planation. These modes use the x1 clock for both Transmit
and Receive operations. Data is sampled on the rising
edge of the Receive Clock input (/RxC). Transmitter data
transitions occur on the falling edge of the Transmit Clock
input (/TxC).

The differences between Monosync, Bisync, and External
Sync are in the manner in which initial character synchro-
nization is achieved. The mode of operation must be
selected before sync characters are loaded, because the
registers are used differently in the various modes. Figure
5-1 shows the formats for all three of these synchronous
modes.

Message Flow
<—_—_

Beginning e
SYNC CRC CRC
Character Data Field Character | Character
0 7 £ 15 #1 8|7 # 0

(A) MONOSYNC Message Format (Intemal SYNC Detect)

Beginning %

SYNC SYNC > CRC CRC
Character | Character Data Field Character | Character
0 #1 7]0 # 7 P 15 #1 817 # 0

(B) BISYNC Message Format (Intemal SYNC Detect)
Beginning &%
. CRC CRC
Data Field Character | Character
" 15 #1 87 # 0

k2

(C) External SYNC Detect Format

Figure 5-1. Synchronous Formats

ES5-1

280810
MANUAL

Va5
5.1 SYNCHRONOUS MODES OF OPERATION

Monosyne. In a Receive operation, matching. a single
sync character (8-bit sync mode) with the programmed
sync character stored in WR7 implies character synchro-
nization and enables data transfer.

Bisync. Matching two contiguous sync characters (16-bit
sync mode) with the programmed sync characters stored
in WR6 and WRY7 implies character synchronization. In
both the Monosync and Bisync modes, /SYNC is used as
an output, and is active for the part of the receive clock that
detects the sync character.

External Sync. In this mode, character synchronization is
established externally; /SYNC is an input that indicates
external character synchronization has been achieved.
After the sync pattern is detected, the external logic must
wait for two full Receive Clock cycles to activate the /SYNC
input. The /SYNC input must be held Low until character
synchronization is lost. Character assembly begins onthe
rising edge of /RxC that precedes the falling edge of
/SYNC.

In all cases after a reset, the receiver is in the Hunt phase,
during which the Z80-SIO looks for character synchroniza-
tion. The hunt can begin only when the receiver is enabled,
and data transfer can begin only when character synchro-

nization has been achieved. If character synchronization
is lost, the Hunt phase can: be re-entered by writing a
control word with the Enter Hunt Phase bit set (WR3, D4).
In the Transmit mode, the transmitter always sends the
programmed number of sync bits (8 or 16). In the Monosync
mode, the transmitter transmits from WR6; the receiver
compares against WR7.

In the Monosync, Bisync, and External Sync modes, as-
sembly of received data continues until the Z80-SIO is
reset, or until the receiver is disabled (by command or by
DCD in the Auto Enables mode), or until the CPU sets the
Enter Hunt Phase bit.

After initial synchronization has been achieved, the opera-
tion of the Monosync, Bisync, and External Sync modes is
quite similar. Any differences are specified in the following
text.

Table 5-1 shows how WR3, WR4, and WR5 are used in
synchronous receive and transmit operations. WR0 points
to other registers and issues various commands, WR1
defines the interrupt modes, WR2 stores the interrupt
vector, and WR6 and WRY7 store sync characters. Table
5-2 illustrates the typical program steps that implement a
half-duplex Bisync transmit operation.

Table 5-1. Contents of Write Registers 3, 4, and 5 In Synchronous Modes

BIT7 BIT 6 BITS BIT 4 BIT3 BIT 2 BIT1 BITO
WR3 00 = Ax5 BITS/CHAR AUTO ENTER Rx CRC 0 SYNC RX
10 =Rx 6 BITS/CHAR ENABLES HUNT ENABLE CHAR ENABLE
01=Rx7 BITS/CHAR MODE LOAD
11 =Rx 8 BITS/CHAR INHIBIT
WR4 0 0 00 =8-BIT SYNC CHAR 0 0 EVEN//0DD PARITY
01 =16-BIT SYNC CHAR SELECTS SYNC PARITY ENABLE
10=SDLC MODE MODES
11=EXT SYNC MODE
WR5 DTR 00=Tx 5BITS (OR SEND Tx 1 RTS TX CRC
LESS)/CHAR BREAK ENABLE SELECTS ENABLE
10=Tx 6 BITS/CHAR CRC-16

01=Tx 7 BITS/CHAR
11=Tx 8 BITS/CHAR

E5-2

- 2
RN 2La5 User's Mot
Table 5-2. Bisync Transmit Mode
FUNCTION TYPICAL PROGRAM STEPS COMMENTS
REGISTER: ~ INFORMATION LOADED.
INITIALIZE WRO CHANNEL RESET, RESET TRANSMIT CRC GENERATOR Reset SI0, initilize CRC generator,
WR0 POINTER 2
WR2 INTERRUPT VECTOR Channel B only
WR0 POINTER 3
WR3 AUTO ENABLES Transmission begins only after /CTS is
detected.
WRO POINTER 4
WR4 PARITY INFORMATION, SYNC MODES INFORMATION, x1 Issue transmit parameters.
CLOCK MODE
WRO POINTER 6
WR6 SYNC CHARACTER 1
WR0O POINTER 7, RESET EXTERNAL/STATUS INTERRUPTS
WR7 SYNC CHARACTER 2
WR0O POINTER 1, RESET EXTERNAL/STATUS INTERRUPTS
WR1 STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE, External Interrupt mode monitors the
TRANSMIT INTERRUPT ENABLE OR WAIT/READY MODE ENABLE status of /CTS and /DCD input pins as well
as the status of Tx Underrun/EOM latch.
Transmit Interrupt Enable interrupts
when the Transmit buffer becomes
empty; the Wait/Ready mode can be used
to transfer data using DMA or CPu Block
Transfer.
WR0 POINTER 5 Status Affects Vector (Channel B only).
WR5 REQUEST TO SEND, TRANSMIT ENABLE, BSYNC CRC, Transmit CRC Enable should be set when
TRANSMIT CHARACTER LENGTH first non-sync data is sent to Z80-SI0.
FIRST SYNC BYTE TO SI0 Need several sync characters in the be-
ginning of message. Transmitter is fully
initialized.
IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Waiting for interrupt or Wait/Ready output
to transfer data.
DATA TRANSFER AND WHEN INTERRUPT (WAIT/READY) OCCURS: Interrupt occurs (Wait/Ready becomes
STATUS MONITORING = INCLUDE/EXECLUDE DATA BYTE FROM CRC active) when first data byte is being sent,
ACCUMULATION (IN SIO). Wail mode allows CPU block transfer
M TRANSFER DATA BYTE FROM CPU (OR MEMORY) TO SIO. from memory to sio; Ready mode allows
MW DETECT AND SET APPROPRIATE FLAGS FOR CONTROL DMA block transfer from memory to sio.
CHARACTERS (IN CPU) The DMA Chip can be programmed to cap-
M RESET Tx UNDERRUN/EOM LATCH (WRO) IF LAST CHARACTER ture special control characters (by ex-
OF MESSAGE IS DETECTED. amining only the bits that specify ASCII or
W UPDATE POINTERS AND PARAMETERs (CPU). EBCDIC control characters), and interrupt
RETURN FROM INTERRUPT. CPU.)
IF ERROR CONDITION OR STATUS CHANGE OCCURS: Tx Underrun/EOM indicates either trans-
W TRANSFER RRO TO CPU. mit underrun (sync character being sent)
W EXECUTE ERROR ROUTINE. or end of message (CRC-16 being sent).
W RETURN FROM INTERRUPT.
TERMINATION REDEFINE INTERRUPT MODES,

UPDATE MODEM CONTROL OUTPUTS (E.G., TURN OFF /RTS).
DISABLE TRANSMIT MODE

Program should gracefully terminate
message.

E5-3

A 2056

280® SI0
USER'S MANUAL

5.2 SYNCHRONOUS TRANSMIT
5.2.1 Initialization

The system program must initialize the transmitter with the
following parameters: odd or even parity, x1 clock mode,
8-bit or 16-bit sync character(s), CRC polynomial, Trans-
mitter Enables, Request To Send, Data Terminal Ready,
interrupt modes and transmit character length., WR4
parameters must be issued before WR1, WR3, WR5, WR6,
and WR7 parameters or commands.

One of two polynomials, CRC - 16 (X'¢+ X™®+ X2 + 1) or
SDLC (X ¢ + X 2 + X5 + 1), may be used with synchronous
modes. In either case (SDLC mode not selected), the CRC
generator and checker are reset to all 0's. In the transmit
initialization process, the CRC generator is initialized by
setting the Reset Transmit CRC Generator command bits
(WRO). Both the transmitter and the receiver use the same
polynomial.

Transmit Interrupt Enable or Wait/Ready Enable can be
selected to transfer the data. The External/Status interrupt
mode is used to monitor the status of the CLEAR TO SEND
(/CTS) input as well as the Transmit Underrun/EOM latch.
Optionally, the Auto Enables feature can be used to
enable the transmitter when /CTS is active. The first data
transfer to the Z80-SIO can begin when the External/
Status interrupt occurs (/CTS status bit set) orimmediately
following the Transmit Enable command (if the Auto En-
ables modes is set).

Transmit data is held marking after reset or if the transmit-
ter is notenabled. Break may be programmed to generate
a spacing line that begins as soon as the Send Break bit
is set. With the transmitter fully initialized and enabled, the
default condition is continuous transmission of the 8-bit or
16-bit sync character.

5.2.2 Data Transfer and Status Monitoring

In this phase, there are several combinations of interrupts
and Wait/Ready.

Data Transfer Using Interrupts. If the Transmit Interrupt
Enable bit (WR1, D1)is Set, an interrupt is generated each
time the transmit buffer becomes empty. The interrupt can
be satisfied either by writing another character into the
transmitter or by resetting the Transmitter Interrupt Pend-
ing latch with a Reset Transmitter Pending command
(WRO0, CMD5). If the interrupt is satisfied with this com-
mand and nothing more is writteninto the transmitter, there
can be no further Transmit Buffer Empty interrupts, be-
cause it is the process of the buffer becoming empty that

causes the interrupts and the buffer cannot become empty
when it is already empty. This situation does cause a
Transmit Underrun condition, which is explained in the
“Bisync Transmit Underrun” section.

Data Transfer Using /WAIT/READY. To the CPU, the
activation of /WAIT indicates that the Z80-SIO is not ready
to accept data and that the CPU must extend the output
cycle. To a DMA controller, /READY indicates that the
transmit buffer is empty and that the Z80-SIO is ready to
accept the next data character. If the data character is not
loaded into the Z80-SIO by the time the transmit shift
register isempty, the Z80-SIO enters the Transmit Underrun
condition.

Bisync Transmit Underrun. In Bisync protocol, filler char-
acters are inserted to maintain synchronization when the
transmitter has no data to send (Transmit Underrun condi-
tion). The Z80-SIO has two programmable options for
solving this situation: it can insert sync characters, orit can
send the CRC characters generated so far, followed by
sync characters.

These options are under the control of tile Reset Transmit
Underrun/EOM Command in WRO. Following a chip or
channelreset, the Transmit Underrun/EOM status bit (RRO,
D6) is in a set condition and allows the insertion of sync
characters when there is no data to send. CRC is not
calculated on the automatically inserted sync characters.
When the CPU detects the end of message, a Reset
Transmit Underrun/EOM command can be issued. This
allows CRC to be sent when the transmitter has no data. In
this case, the Z80-SIO sends CRC, followed by sync
characters, to terminate the message.

There is no restriction as to when in the message the
Transmit Underrun/EOM bit can be reset. If Reset is issued
after the first data character has been loaded the 16-bit
CRC is Sent and followed by sync characters the first time
the transmitter has no data to send. Because of the
Transmit Underrun condition, an External/Status interrupt
is generated whenever the Transmit Underrun/EOM bit
becomes set.

Inthe case of sync insertion, an interrupt is generated only
after the first automatically inserted sync character has
been loaded. The status indicates the Transmit Underrun/
EOM bit and the Transmit Buffer Empty bit are set.

In the case of CRC insertion, the Transmit Underrun/ EOM
bit is set and the Transmit Buffer Empty bit is reset while
CRC is being sent. When CRC has been completely sent,

E5-4

N 2iLas

280® SI0
USER'S MANUAL

the Transmit Buffer Empty status bit is set and an interrupt
is generated to indicate to the CPU that another message
can begin (this interrupt occurs because CRC has been
sentand sync has been loaded). If no more messages are
to be sent, the program can terminate transmission by
resetting RTS, and disabling the transmitter (WR5, D3).

Pad characters may be sentby setting the Z80-SIO to eight
bitsftransmit character and writing FF to the transmitter
while CRC is being sent. Alternatively, the sync characters
can be redefined as pad characters during this time. The
following example is included to clarify this point.

B The Z80-SIO interrupts with the Transmit Buffer Empty
bit set.

B The CPU recognizes that the last character (ETX) of
the message has already been sent to the Z80-SI0 by
examining the internal program status.

B Toforce the Z80-SIO to send CRC, the CPU issuesthe
Reset Transmit Underrun/EOM Latch command (WRO)
and satisfies the interrupt with the Reset Transmit
Interrupt Pending command. (This command prevents
the Z80-SIO from requesting more data.) Because of
the transmit underrun caused by this command, the
Z80-SI0 starts sending CRC. The Z80-SIO also causes
an External/Statusinterrupt with the Transmit Underrun/
EOM latch set.

HW The CPU satisfies this interrupt by loading pad
characters into the transmit buffer and issuing the
Reset External/Status Interrupt command.

B Withthis sequence, CRC isfollowed by a pad character
instead of a sync character. Note that the Z80-SIO will
interrupt with a Transmit Buffer Empty interrupt when
CRC is completely sent and that the pad character is
ioaded into the transmit shift register.

B From this point on the CPU can send more pad
characters or sync characters.

Bisync CRC Generation. Setting the Transmit CRC en-
able bit (WR5, DO) initiates CRC accumulation when the
program sends the first data character to the Z80-SIO.
Although the Z80-SIO automatically transmits up to two
sync characters (16-bit sync), it is wise to send a few more
sync characters ahead of the message (before enabling
Transmit CRC) to ensure synchronization at the receiving
end.

Thetransmit CRC Enable bit can be changed on the fly any
time in the message to include or exclude a particular data

character from CRC accumulation. The Transmit CRC
Enable bit should be in the desired state when the data
character is loaded from the transmit data buffer into the
transmit shift register. To ensure this bit is in the proper
state, the Transmit CRC Enable bit must be issued before
sending the data character to the Z80-SIO.

Transmit Transparent Mode. Transparent mode (Bisync
protocol) operation is made possible by the ability to
change Transmit CRC Enable on the fly and by the addi-
tional capability of inserting 16-bit sync characters. Exclu-
sion of DLE characters from CRC calculation can be
achieved by disabling CRC calculation immediately pre-
ceding the DLE character transfer to the Z80-SIO.

In the case of a Transmit Underrun condition in the Trans-
parent mode, a pair of DLE-SYN characters are sent. The
Z80-SIO can be programmed to send the DLE-SYN se-
quence by loading a DLE character into WR6 and a sync
character into WR7.

Transmit Termination. The Z80-SIO is equipped with a
special termination feature that maintains data integrity
and validity. If the transmitter is disabled while a data or
sync character is being sent, that character is sent as
usual, but is followed by a marking line rather than CRC or
sync characters. When the transmitter is disabled, a char-
acter in the buffer remains in the buffer. If the transmitter is
disabled while CRC is being sent, the 16-bit transmission
is completed, but sync is sent instead of CRC.

Aprogrammed breakis effective as soon asitis writteninto
the control register; characters in the transmit buffer and
shift register are lost.

In all modes, characters are sent with the least significant
bits first. This requires right-hand justification of transmit-
ted data if the word length is less than eight bits. If the word
length, is five bits or less, the special technique described
in the Write Register 5 discussion (Z80-SIO Programming
section) must be used for the data format. The states of any
unused bits in a data character are irrelevant, exceptwhen
in the Five Bits Or Less mode.

If the External/Status Interrupt Enable bit is set, transmitter
conditions such as “starting to send CRC characters,”
“starting to send sync characters,” and CTS changing
state cause interrupts that have a unique vector if Status
Affects Vector is set. This interrupt mode may be used
during block transfers.

All interrupts may be disabled for operation in a Polled
mode, or to avoid interrupts at inappropriate times during
the execution of a program.

E5-5

Q205

Z80® SI0
USER’S MANUAL

5.3 SYNCHRONOUS RECEIVE
5.3.1 Initialization

The system program initiates the Synchronous Receive
operation with the following parameters: odd or even
parity, 8-bit or 16-bit sync characters, x 1 clock mode, CRC
polynomial, receive character length, etc. Sync characters
must be loaded into registers WR6 and WR7. Thereceivers
can be enabled only after all receive parameters are set.
WR4 parameters must be issued before WR1, WR3, WR5,
WR6, and WR7 parameters or commands.

After this is done, the receiver is in the Hunt phase. It
remains in this phase until character synchronization is
achieved. Note that, under program control, all the leading
sync characters of the message can be inhibited from
loading the receive buffers by setting the Sync Character
Load Inhibit bit in WR3.

5.3.2 Data Transfer and Status Monitoring

After character synchronizationis achieved, the assembled
characters are transferred to the receive data FIFO. The
following four interrupt modes are available to transfer the
data and its associated status to the CPU.

No Interrupts Enabled. This mode is used for a purely
polled operation or for off-line conditions.

Interrupt On First Character Only. This mode is normally
used to start a polling loop or a Block Transfer instruction
using /WAIT//READY to synchronize the CPU or the DMA
devicetothe incoming data rate. In this mode, the Z80-SIO
interrupts on the first character and thereafter interrupts
only if Special Receive conditions are detected. The mode
is reinitialized with the Enable Interrupt On Next Receive
Character command to allow the next character received
to generate an interrupt. Parity errors do not cause inter-
rupts in this mode, but End-of-Frame (SDLC mode) and
Receive Overrun do.

If External/Status interrupts are enabled, they may inter-
rupt any time DCD changes state.

Interrupt On Every Character. Whenever a character
enters the receive buffer, an interrupt is generated. Error
and Special Receive conditions generate a special vector
if Status Affects Vector is selected. Optionally, a Parity

Error may be directed not to generate the special interrupt
vector.

Special Receive Condition Interrupts. The Special Re-
ceive Condition interrupt can occur only if either the
Receive Interrupt On First Character Only or Interrupt On
Every Receive Character modes is also set. The Special
Receive Condition interrupt is caused by the Receive
Overrun error condition. Since the Receive Overrun and
Parity error status bits are latched, the error status-when
read-reflects an error in the current word in the receive
buffer in addition to any Parity or Overrun errors received
since the last Error Reset command. These status bits can
only be reset by the Error reset command.

CRC Error Checking and Termination. A CRC error
check on the receive message can be performed on a per
character basis under program control. The Receive CRC
Enable bit (WR3, D3) must be set/reset by the program
before the next character is transferred from the receive
shift register into the receive buffer register. This ensures
proper inclusion or exclusion of data charactersinthe CRC
check.

To allow the CPU ample time to enable or disable the CRC
check on a particular character, the Z80-SIO calculates
CRC eight bit times after the character has been trans-
ferred to the receive buffer. If CRC is enabled before the
next character is transferred, CRC is calculated on the
transferred character. If CRC is disabled before the time of
the next transfer, calculation proceeds on the word in
progress, but the word just transferred to the buffer is not
included. When these requirements are satisfied, the
3-byte receive data buffer is, in effect, unusable in Bisync
operation. CRC may be enabled and disabled as many
times as necessary for a given calculation.

in the Monosync, Bisync and External Sync modes, the
CRC/Framing Error bit (RR1, D6) contains the comparison
result of the CRC checker 16-bit times (eight bits delay and
eight shifts for CRC) after the character has been trans-
ferred fromthe receive shift register tothe buffer. The result
should be zero, indicating an error-free transmission.
(Note that the result is valid only at the end of CRC
calculation. If the result is examined before this time, it
usually indicates an error.) The comparison is made with
each transfer and is valid only as long as the character
remains in the receive FIFO.

E5-6

AN 2LaB

280® SI10
USER'S MANUAL

Following is an example of the CRC checking operation
when four characters (A, B, C, and D) are received in that
order.

Character A loaded into buffer
Character B loaded into buffer

If CRC is disabled before C is in the buffer, CRC is not
calculated on B.

Character C loaded into buffer

After C is loaded, the CRC/Framing Error bit shows the
result of the comparison through character A.

Character D loaded into buffer
After D is in the buffer, the CRC Error bit shows the result

of the comparison through character B whether or not B
was included in the CRC calculations.

Due to the serial nature of CRC calculation, the Receive
Clock (/RxC) must cycle 16 times (8-bit delay plus 8-bit
CRC shift) after the second CRC character has been
loaded into the receive buffer, or 20 times (the previous 16
plus 3-bit buffer delay and 1-bit input delay) after the last
bitis atthe RxD input, before CRC calculation is complete.
Afaster external clock can be gated into the Receive Clock
input to supply the required 16 cycles. The Transmit and
Receive Data Path diagram (Figure 3-1) illustrates the
various points of delay in the CRC path.

The typical program steps that implement a half-duplex
Bisync Receive mode are illustrated in Table 5-3. The
complete set of command and status bit definitions are
explained under “Z80-SIO Programming.”

Table 5-3. Bisync Receive Mode

FUNCTION TYPICAL PROGRAM STEPS COMMENTS
REGISTER: INFORMATION LOADED
INITIALIZE WR0 CHANNEL RESET, RESET RECEIVE CRC CHECKER Reset SI0; initialize Receive CRC checker.

WR0 POINTER 2

WR2 INTERRUPT VECTOR Channel B only

WR0 POINTER 4

WR4 PARITY INFORMATION, SYNC MODES INFORMATION, Issue receive parameters.
CLOCK MODE

WRO POINTER 5, RESET EXTERNAL STATUS INTERRUPT

WR5 BISYNC CRC-16, DATA TERMINAL READY

WRO POINTER 3

WR3 SYNC CHARACTER LOAD INHIBIT, RECEIVE CRC ENABLE; Sync character load inhibit strips all the
ENTER HUNT MODE, AUTO ENABLES, RECEIVE CHARACTER leading sync characters at the beginning
LENGTH of the message. Auto Enables enables

the receiver to accept data only after the
/DCD input is active.

WR0 POINTER 6

WR6 SYNC CHARACTER 1

WRO POINTER7

WR7 SYNC CHARACTER 2

WRO POINTER 1, RESET EXTERNAL/STATUS INTERRUPT

- WR1 STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE, In this interrupt mode, only the first non-

RECEIVE INTERRUPT ON FIRST CHARACTER ONLY

sync data character is transferred to the
CPU. All subsequent data is transferred
on a DMA basis; however Special Re-
ceive Condition interrupts will interrupt
the CPU. Status Affects Vector used in
Channel B only.

E5-7

280® SI0

N 205 User's MANUAL
Table 5-3. Bisync Receive Mode (Continued)
FUNCTION TYPICAL PROGRAM STEPS COMMENTS
INITIALIZE WR0 POINTER 3, ENABLE INTERRUPT ON NEXT RECEIVE CHARACTER Resetting this interrupt mode provides
(Continued) : simple program loopback entry for the
next transaction.
WR3 RECEIVE ENABLE, SYNC CHARACTER LOAD INHIBIT, ENTER WR3 is reissued to enable receiver, Re.
HUNT MODE. AUTO ENABLE, RECEIVE WORD LENGTH ceive CRC Enable must be set after re-
ceiving SOH or STX character.
Receive mode is fully initialized and the
IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM system is waiting for interrupt on first
character.
DATA TRANSFER AND WHEN INTERRUPT ON FIRST CHARACTER OCCURS, During the Hunt mode, the SIO detects
STATUS MONITORING THE CPU DOES THE FOLLOWING: two contiguous characters to establish
W TRANSFERS DATA BYTE TO CPU synchronization. The CPU establishes the
M DETECTS AND SETS APPROPRIATE FLAGS FOR CONTROL DMA mode and all subsequent data char.
CHARACTERS (IN CPU) acters are transferred by the DMA con-
B INCLUDES/EXCLUDES DATA BYTE IN CRC CHECKER troller. The controller is also programmed
M UPDATES POINTERS AND OTHER PARAMETERS to capture special characters (by exam-
I ENABLES WAIT/READY FOR DMA OPERATION ining only the bits that specify ASCII or
M ENABLES DMA CONTROLLER EBCDIC control characters) and interrupt
M RETURNS FROM INTERRUPT the CPU upon detection, In response,
the CPU examines the status or control
characters and takes appropriate action
(e.g. CRC Enable Update).
WHEN WAIT/READY BECOMES ACTIVE, THE DMA CONTROLLER
DOES THE FOLLOWING:
B TRANSFERS DATA BYTE TO MEMORY
W INTERRUPTS CPU IF A SPECIAL CHARACTER IS CAPTURED BY THE
DMA CONTROLLER
B INTERRUPTS THE CPU IF THE LAST CHARACTER OF THE MESSAGE
IS DETECTED
FOR MESSAGE TERMINATION, THE CPU DOES THE FOLLOWING: The SIO interrupts the CPU for error con-
W TRANSFERS RR1 T0 THE CPU dition, and the error routine aborts the
W SETS ACK/NAK REPLY FLAG BASED ON CRC RESULT present message, clears the error condi-
M UPDATES POINTERS AND PARAMETERS tion, and repeats the operation.
B RETURNS FROM INTERRUPT
TERMINATION REDEFINE INTERRUPT MODES AND SYNC MODES

UPDATE MODEM CONTROLS
DISABLES RECEIVE MODE

E5-8

N 2iLa5

SIO USER'S MANUAL

CHAPTER 6
SDLC (HDLC) OPERATION

6.0 INTRODUCTION

The Z80-SIO is capable of handling both High-level Syn-
chronous Data Link Control (HDLC) and IBM Synchronous
Data Link Control (SDLC) protocols. In the following text,
only SDLC is referred to because of the high degree of
similarity between SDLC and HDLC.

The SDLC mode is considerably different than Synchro-
nous Bisync protocol because it is bit oriented rather than
character oriented and, therefore, can naturally handle
transparent operation. Bit orientation makes SDLC a flex-
ible protocol in terms of message length and bit patterns.
The Z80-SIO has several built-in features to handle vari-
able message length. Detailed information concerning
SDLC protocol can be found in literature published on this
subject, such as IBM document GA27-3093.

The SDLC message, called the frame (Figure 6-1), is
opened and closed by flags that are similar to the sync
characters in Bisync protocol. The Z80-SIO handles the
transmission and recognition of the flag characters that
mark the beginning and end of the frame. Note that the
Z80-S10 can receive shared-zero flags, but cannot trans-

mit them. The 8-bit address field of an SDLC frame con-
tains the secondary station address. The Z80-SIO has an
Address Search mode that recognizes the secondary
station address so it can accept or reject the frame.

Since the control field of the SDLC frame is transparent to
the Z80-SIO, it is simply transferred to the CPU. The Z80-
SIO handles the Frame Check sequence in a manner that
simplifies the program by incorporating features such as
initializing the CRC generator to all 1's, resetting the CRC
checker when the opening flag is detected iii the Receive
mode, and sending the Frame Cheek/Flag sequenceinthe
Transmit mode. Controller hardware is simplified by auto-
matic zero insertion and deletion logic contained in the
Z80-S10.

Table 6-1 shows the contents of WR3, WR4, and WR5
during SDLC Receive and Transmit modes. WRO points to
other registers and issues various commands, WR1 de-
fines the interrupt modes. WR2 stores the interrupt vector.
WRY stores the flag character and WR6 the secondary
address.

Beginning M End
N P .
O’,’;?:é"g Address Data Field or CRC CRC Cﬁ:ugg
otff fito | 8BS I-Field 5 " gl * o] omito

R4

Message Flow
‘_——_——_

Figure 6-1. Transmit/Receive SDLC/HDLC Message Format

E6-1

AY= la

280® SI0
USER’S MANUAL

6.1 SDLC TRANSMIT
6.1.1 Initialization

Like Synchronous operation, the SDLC Transmit mode
must be initialized with the following parameters: SDLC
mode, SDLC polynomial, Request To Send, Data Terminal
Ready, transmit character length, transmitinterrupt modes
(or Wait/Ready function), Transmit Enable, Auto Enables,
and External/Status interrupt.

Selecting the SDLC mode and the SDLC polynomial en-
ables the Z80-SIO to initialize the CRC Generator to all 1's.
This is accomplished by issuing the Reset Transmit CRC
Generator command (WR0). Refer to the Synchronous
Operation section for more details on the interrupt modes.

After reset, or when the transmitter is not enabled, the
Transmit Data output is held marking. Break may be
programmed to generate a spacing line. With the transmit-
ter fully initialized and enabled, continuous flags are trans-
mitted on the Transmit Data output.

An abort sequence may be sent by issuing the Send Abort
command (WR0, CMD1). This causes at least eight, but
less than 14, 1's to be sent before the line reverts to
continuous flags. It is possible that the Abort sequence
(eight 1's) could follow up to five continuous 1 bits (allowed
bythe zero insertion logic) and thus cause up tothirteen 1's
to be sent. Any data being transmitted and any data in the
transmit buffer is lost when an abort is issued.

When required, an extra 0 is automatically inserted when
there are five contiguous 1’s in the data stream. This does
not apply to flags or aborts.

6.1.2 Data Transfer and Status Monitoring

There are several combinations of interrupts and the
Wait/Ready function in the SDLC mode.

Data Transfer Using Interrupts. If the Transmit Interrupt
Enable bit is set, an interrupt is generated each time the
buffer becomes empty. The interrupt may be satisfied
either by writing another character into the transmitter or by
resetting the Transmit Interrupt Pending latch with a Reset
Transmitter Pending command (WRO, CMDS5). If the inter-
rupt is satisfied with this command and nothing more is
written into the transmitter, there are no further transmitter
interrupts. The result is a Transmit Underrun condition.
When another character is written and sent out, the trans-
mitter can again become empty and interrupt the CPU.
Following the flags in an SDLC operation, the 8-bitaddress
field, control field and information field may be sent to the
Z80-SI0 using the Transmit interrupt mode. The Z80-SIO
transmits the Frame Check sequence using the Transmit
Underrun feature.

When the transmitter is first enabled, it is already empty
and obviously cannot then become empty. Therefore, no
Transmit Buffer Empty interrupts can occur until after the
first data character is written.

When the transmitter is first enabled, it is already empty
and cannot then become empty, Therefore, no Transmit
Buffer Empty interrupts can occur until after the first data
character is written.

Table 6-1. Contents of Write Registers 3, 4, and 5 in SDLC Modes

BIT7 BIT6 BITS BIT4 BIT3 BIT 2 BIT1 BIT O
WR3 00 = Rx 5 BITS CHAR AUTO ENTERHUNT Rx CRC ADDRESS 0 R
10=Rx6BITSCHAR ENABLES MODE(IF ENABLE SEARCH ENABLE
01=Rx 7 BITS CHAR INCOMING MODE
11=Rx 8 BITS CHAR DATANOT
NEEDED)
WR4 0 0 1 0 0 0 0 0
SELECTS SDLC
MODE
WR5 DTR 00=Tx5BITS (OR 0 X 0 RTS TX CRC
LESS) CHAR ENABLE SELECTS ENABLE
10=Tx 6 BITS, CHAR SDLC
01=Tx 7 BITS CHAR CRC

11=Tx 8 BITS CHAR

E6-2

N 2iLa5

280° SI0

USER'S MANUAL
Table 6-2. SDLC Transmit Mode
FUNCTION TYPICAL PROGRAM STEPS COMMENTS
REGISTER: INFORMATION LOADED:
INITIALIZE WRO CHANNEL RESET Reset SI0.
WR0 POINTER 2
WR2 INTERRUPT VECTOR Channel B only
WRO POINTER 3
WR3 AUTO ENABLES Transmitter sends data only after /CTS is
detected.
WR0O POINTER 4, RESET EXTERNAL/STATUS INTERRUPTS
WR4 PARITY INFORMATION, SDLC MODE, x1 CLOCK MODE
WR0O POINTER 1. RESET EXTERNAL/STATUS INTERRUPTS
WR1 EXTERNAL INTERRUPT ENABLE, STATUS AFFECTS VECTOR, The External Interrupt mode monitors the
TRANSMIT INTERRUPT ENABLE OR WAIT/READY status of the /CTS and DCD inputs, as well
MODE ENABLE as the status of Tx Underrun/EOM fatch.
Transmit Interrupt interrupts when the
Transmit butter becomes empty; the
Wait/Ready mode can be used to transfer
data on a DMA or Block Transfer basis.
The first interrupt occurs when /CTS
becomes active, at which point flags are
transmitted by the Z80-S10. The first data
byte (address field) can be loaded in the
280-SI0 after this interrupt. Flags cannot
be sent to the Z80-SI0 as data. Status
Affects Vector used in Channel B only,
WRO POINTER 5
WR5 TRANSMIT CRC ENABLE, REQUEST TO SEND, SDLC-CRC. SDLC-CRC mode must be defined before
TRANSMIT ENABLE, TRANSMIT WORD LENGTH, DATA initializing transmit CRC generator.
TERMINAL READY
WRO RESET TRANSMIT CRC GENERATOR Initialize CRC generator to all 1's.
IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Waiting for Interrupt or Wait/Ready output
to transfer data.
DATA TRANSFER AND WHEN INTERRUPT (WAIT READY) OCCURS, THE CPU DOES Flags are transmitted by the SIO as Soon
STATUS MONITORING THE FOLLOWING: as Transmit Enable is set and /CTS be-
M CHANGES TRANSMIT WORD LENGTH (IF NECESSARY) comes active, The /CTS status change is
W TRANSFERS DATA BYTE FROM CPU (MEMORY) TO SIO the first interrupt that occurs and is fol-
RESETS Tx UNDERRUN/EOM LATCH (WR0) lowed by transmit buffer empty for
subsequent transfers.
IF LAST CHARACTER OF THE I-FIELD IS SENT, THE SIO DOES Word length can be changed “on the fly”
THE FOLLOWING: for variable I-field length. The data byte
W SENDS CRC can contain address, control, or I-Field
W SENDS CLOSING FLAG information (never a flag). It is a good
B INTERRUPTS CPU WITH BUFFER EMPTY STATUS practice to reset Tx Underrun/EOM latch
in the beginning of the message to avoid a
CPU DOES THE FOLLOWING: false end-of-frame detection at the
M ISSUES RESET Tx INTERRUPT PENDING COMMAND TO THE Z80-S10 receiving end. This ensures that, when
M UPDATES NS COUNT underrun occurs, CRC is transmitted and
W REPEATS THE PROCESS FOR NEXT MESSAGE, ETC. underrun interrupt (Tx Underrun/EOM
latch active) occurs. Note that “Send
IF THE VECTOR INDICATES AN ERROR. THE CPU DOES THE FOLLOWING: Abort” can be issued to the SIO in re-
W SENDS ABORT sponse to any interrupting continuing to
W EXECUTES ERROR ROUTINE abort the transmission,
M UPDATES PARAMETERS, MODES. ETC.
M RETURNS FROM INTERRUPT
TERMINATION REDEFINE INTERRUPT MODES Terminate gracefully.

UPDATE MODEM CONTROL OUTPUTS
DISABLE TRANSMIT MODE

E6-3

Q2105

280® SI0
USER’S MANUAL

Data Transfer Using Wait/Ready. If the Wait/Ready func-
tion has been Selected, /WAIT indicates to the CPU that
the Z80-SIO is not ready to accept the data and the CPU
must extend the I/O cycle. To a DMA controller, /READY
indicates that the transmitter buffer is empty and that the
Z80-SI0 is ready to accept the next character. If the data
character is not loaded into the Z80-SIO by the time the
transmit shift register is empty, the Z80-SIO enters the
Transmit Underrun condition. Address, control, and infor-
mation fields may be transferred to the Z80-SIO with this
mode using the Wait/Ready function. The Z80-SIO trans-
mits the Frame Check sequence using the Transmit
Underrun feature.

SDLC Transmit Underrun/End of Message. SDLC-like
protocols do not have provisions for fill characters within
a message. The Z80-SIO therefore automatically termi-
nates an SDLC frame when the transmit data buffer and
output shift register have no more bits to send. It does this
by first sending the two bytes of CRC and following these
with one or more flags. This technique allows very high-
speed transmissions under DMA or CPU block I/O control
without requiring the CPU to respond quickly to the end of
message situation.

The action that the Z80-SIO takes in the underrun situation
depends on the state of the Transmit Underrun/EOM
command. Following a reset, the Transmit Underrun/EOM
status bit is in the set state and prevents the insertion of
CRC characters during the time there is no data to send.
Consequently, flag characters are sent. The Z80-SIO
begins to send the frame as data is written into the transmit
buffer. Between the time the first data byte is written and
the end of the message, the Reset Transmit Underrun/
EOM Command must be issued, Thus the Transmit
Underrun/EOM status bit is in the reset state at the end of
the message (when underrun occurs), which automati-
cally sends the CRC characters, The sending of CRC
again sets the Transmit/Underrun/ EOM status bit.

Although there is no restriction as to when the Transmit
Underrun/EOM bit can be reset within a message, it is
usually reset after the first data character (secondary
address) is sent to the Z80-SIO. Resetting this bit allows
CRC and flags to be sent when there is no data to send
which gives additional time to the CPU for recognizing the
fault and responding with an abort command. By reselling
it early in the message, the entire message has the
maximum amount of CPU response time in an uninten-
tional transmit underrun situation.

When the External/Status interrupt is set and while CRC is
being sent, the Transmit Underrun/EOM bit is set and the
Transmit Buffer Empty bit is reset to indicate that the

transmit register is full of CRC data. When CRC has been
completely sent, the Transmit Buffer Empty status bit is set
and an interrupt is generated to indicate to the CPU that
another message can begin. This interrupt occurs be-
cause CRC has been sent and the flag has been loaded.
If no more messages are to be sent, the program can
terminate transmission by resetting /RTS, and disabling
the transmitter.

inthe SDLC mode, it is good practice to reset the Transmit
Underrun/EOM status bit immediately after the first char-
acter is sent to the Z80-SI0. When the Transmit Underrun
is detected, this ensures that the transmission time is filled
by CRC characters, giving the CPU enough time to issue
the Send Abort command. This also stops the flags from
going on the line prematurely and eliminates the possibility
of the receiver accepting the frame as valid data. The
situation can happen because it is possible that, at the
receiving end, the data pattern immediately preceding the
automatic flag insertion could match the CRC checker,
giving a false CRC check result. The External/Status inter-
rupt is generated whenever the Transmit Underrun/EOM
bit is set because of the Transmit Underrun condition.

The transmit underrun logic provides additional protection
against premature flag insertion if the proper response is
given to the Z80-SIO by the CPU interrupt service routine.
The following example is given to clarify this point:

B The Z80-SIO raises an interrupt with the Transmit
Buffer Empty status bit set.

B The CPU does not respond in time and causes a
Transmit Underrun condition.

B The Z80-SIO starts sending CRC characters (two
bytes).

B TheCPU eventually satisfies the Transmit Buffer Empty
interrupt with a data character that follows the CRC
character being transmitted.

B The Z80-SIO sets the External/Status interrupt with the
Transmit Underrun/EOM status bit set

B The CPUrecognizesthe Transmit Underrun/EOM status
and determines from its internal program status that
the interrupt is not for "end of message”.

B The CPU immediately issues a Send Abort Command
(WRO) to the Z80-SIO.

B The Z80-SIO sends the Abort sequence by destroying
whatever data (CRC, data, or flag) is being sent.

E6-4

N 2La5

280°® SI0
USER'S MANUAL

This sequence illustrates that the CPU has a protection of
22 minimum and 30 maximum transmit clock cycles.

SDLC CRC Generation. The CRC generator must be reset
to all 1's at the beginning of each frame before CRC accumu-
lation can begin. Actual accumulation begins when the
program sends the address field (eight bits) to the Z80-SIO.
Although the Z80-SIO automatically transmits one flag char-
acter following the Transmit Enable, it may be wise to send a
few more flag characters ahead of the message to ensure
character synchronization at the receiving end. This can be
done by externally timing out after enabling the transmitter,
and before loading the first character.

The Transmit CRC Enable (WRS5, D0) should be enabled prior
to sending the address field. In the SDLC mode all the
characters between the opening and closing flags are in-
cluded in CRC accumulation, and the CRC generated in the
Z80-SIO transmitter is inverted before it is sent on the line.

Transmit Termination. If the transmitter is disabled while
a character is being sent, that Character (data or flag) is
sentin the normal fashion, but s followed by a marking line
rather than CRC or flag characters.

A character in the buffer when the transmitter is disabled
remains in the buffer; however, a programmed Abort
sequence is effective as soon as it is written into the control
register. Characters being transmitted, if any, are lost. In
the case of CRC, the 16-bittransmission is completed if the
transmitter is disabled; however, flags are sent in place of
CRC.

In all modes, characters are sent with the least-significant
bits first. This requires right-hand justification of data to be
transmitted if the word length is less than eight bits. If the
word length is five bits or less, the special technique
described in the Write Register 5 section (“Z80-SIO Pro-
gramming” chapter; “Write Registers” section) must be
used.

Since the number of bits/character can be changed onthe
fly, the data field can be filled with any number of bits.
When used in conjunction with the Receiver Residue
codes, the Z80-SIO can receive a message that has a
variable |-field and retransmit it exactly as received with no
previous information about the character structure of the
I-field (if any). A change in the number of bits does not
affect the character in the process of being shifted out.
Characters are sent with the number of bits programmed
at the time that the character is loaded from the transmit
buffer to the transmitter.

If the External/Status Interrupt Enable is set, transmitter
conditions such as “starting to send CRC characters,”
“starting to send flag characters,” and /CTS changing
state cause interrupts that have a unique vector if Status
Affects Vector is set. All interrupts can be disabled for
operation in a polled mode.

Table 6-2 shows the typical program steps that implement
the half-duplex SDLC Transmit mode.

6.2 SDLC RECEIVE
6.2.1 Initialization

The SDLC Receive mode is initialized by the system with
the following parameters: SDLC mode, x1 clock mode,
SDLC polynomial, receive word length, etc. The flag char-
acters must also be loaded in WR7 and the secondary
address field loaded in WR6. The receiver is enabled only
after all the receive parameters have been set. After all this
has been done, the receiver is in the Hunt phase and
remains in this phase until the first flag is received. While
in the SDLC mode, the receiver never re-enters the Hunt
phase, unless specifically instructed to do so by the
program. The WR4 parameters must be issued prior to the
WR1, WR3, WR5, WR6, and WR7 parameters.

Under program control, the receiver can enter the Address
Search mode. If the Address Search bit (WR1, D2) is set,
a character following the flag (first non-flag character) is

compared against the programmed address in WR6 and
the hardwired giobal address (1111 1111). If the SDLC
frame address field matches either address, data transfer
begins.

Since the Z80-SIO is capable of matching only one ad-
dress character, extended address field recognition must
be done by the CPU. In this case, the Z80-SIO simply
transfers the additional address bytes to the CPU as if they
were data characters. Ifthe CPU determines that the frame
does not have the correct address field, it can set the Hunt
bit, and the Z80-SIO suspends reception and searches for
anew message headed by a flag. Since the control field of
the frame is transparent to the Z80-SIO, it is transferred to
the CPU as a data character. Extra zeros inserted in the
data stream are automatically deleted; flags are not trans-
ferred to the CPU.

E6-5

Q205

Z80°® SI0
USER'S MANUAL

6.2.2 Data Transfer and Status Monitoring

After receipt of a valid flag, the assembled characters are
transferred to the receive data FIFO. The following four
interrupt modes are available to transfer this data and its
associated status.

No Interrupts Enabled. This mode is used for purely
polled operations or for off-line conditions.

Interrupt On First Character Only. This mode is normally
used to start a software polling loop or a Block Transfer
instruction using /WAIT//READY to synchronize the CPU or
DMA device to the incoming data rate. In this mode, the
Z80-S10 interrupts on the first character and thereafter
only interrupts if Special Receive conditions are detected.
The mode is reinitialized with the Enable Interrupt On Next
Receive Character Command.

The first character received after this command is issued
causes an interrupt. If External/Status interrupts are en-
abled, they may interrupt any time the DCD input changes
state. Special Receive conditions such as End-of-Frame
and Receiver Overrun also cause interrupts. The End-of-
Frame interrupt can be used to exit the Block Transfer
mode.

Interrupt On Every Character. An interrupt is generated
whenever the receive FIFO contains a character. Error and
Special Receive conditions generate a special vector if
Status Affects Vector is selected.

Special Receive Condition Interrupts. The Special Re-
ceive Condition interrupt is not, as such, a separate inter-
rupt mode. Before the Special Receive condition can
cause an interrupt, either Interrupt On First Receive Char-
acter Only or Interrupt On Every Character must be se-
lected. The Special Receive Condition interrupt is caused
by a Receive Overrun or End-of-Frame detection. Since
the Receive Overrun status bit is latched, the error status
read reflects an error in the current word in the receive
buffer in addition to any errors received since the last Error
Reset command. The Receive Overrun status bit can only
be reset by the Error Reset command. The End-of-Frame
status bit indicates that a valid ending flag has been
received and that the CRC Error and Residue codes are
also valid.

Character length may be changed onthe fly. Ifthe address
and control bytes are processed as 8-bit characters, the
receiver may be switched to a shorter character length
during the time that the first information character is being

assembled. This change must be made fast enough so it
is effective before the number of bits specified for the
character length have been assembled. For example, if
the change is to be from the 8-bit control field to a 7-bit
information field, the change must be made before the first
seven bits of the I-Field are assembled.

SDLC Receive CRC Checking. Control of the receive
CRC checker is automatic. It is reset by the leading flag
and CRC s calculated up to the final flag. The byte that has
the End-of-Frame bit set is the byte that contains the result
of the CRC check. If the CRC/Framing Error bit is riot set,
the CRC indicates a valid message. A special check
sequence is used for the SDLC cheek because the trans-
mitted CRC check is inverted. The final check must be
0001 1101 0000 1111. The 2-byte CRC check characters
must be read by the CPU and discarded because the Z80-
SIO, while using them for CRC checking, treats them as
ordinary data.

SDLC Receive Termination. If enabled, a special vector
is generated when the closing flag is received. This signals
that the byte with the End-of-Frame bit set has been
received. In addition to the results of the CRC check, RR1
has three bits of Residue code valid at this time. For those
cases in which the number of bits in the I-Field is not an
integral multiple of the character length used, these bits
indicate the boundary between the CRC check bits and
the I-Field bits. For a detailed description of the meaning
of these bits, see the description of the residue codes in
RR1 under “Z80-SIO Programming.”

Any frame can be prematurely aborted by an Abort se-
quence. Aborts are detected if seven or more 1's occur
and cause an External/Status interrupt (if enabled) with the
Break/Abort bit in RRO set. After the Reset External/Status
interrupts command has been issued a second interrupt
occurswhenthe continuous 1'sconditionhasbeen cleared.
This can be used to distinguish between the Abort and Idle
line conditions.

Unlike the synchronous mode, CRC calculation in SDLC
does not have an 8-bit delay since all the characters are
included in CRC calculation. When the second CRC char-
acter is loaded into the receive buffer, CRC calculation is
complete.

Table 6-3 shows the typical steps required to implement a
half-duplex SDLC receive mode. The complete set of
command and status bit definitions is found in the next
section.

E6-6

®
@ ZIUJB Uszn’ga!gmtsx'ﬁ
Table 6-3. SDLC Receive Mode
FUNCTION TYPICAL PROGRAM STEPS COMMENTS
REGISTER: INFORMATION LOADED.
INITIALIZE WRO CHANNEL 2 Reset SI0
WRO POINTER 2
WR2 INTERRUPT VECTOR Channel B only
WR0 POINTER 4
WR4 PARITY INFORMATION, SYNC MODE, SDLC MODE, xi CLOCK
MODE
WR0 POINTER 5, RESET EXTERNAL/STATUS INTERRUPTS
WR5 SDLC-CRC, DATA TERMINAL READY
WR0 POINTER3
WR3 RECEIVE CRC ENABLE, ENTER HUNT MODE, AUTO ENABLES, ‘Auto Enables’ enables the receiver to
RECEIVE CHARACTER LENGTH, ADDRESS SEARCH MODE accept data only after Mb becomes
active. Address Search Mode enables
S10 to match the message address with
the programmed address or the global
address.
WR0 POINTER 6
WR6 SECONDARY ADDRESS FIELD This address is matched against the mes-
sage address inan SDLC poll operation.
WR0O POINTER7
WR7 SDLC FLAG 01111110 This flag detects the start and end-of-
frame in an SDLC operation.
WR0 POINTER 1, RESET EXTERNAL/STATUS INTERRUPTS In this interrupt mode, only the Address
Field (1 character only) is transferred to
WR1 STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE, the CPU. All subsequent fields (Control,
RECEIVE INTERRUPT ON FIRST CHARACTER ONLY. information, etc.) are transferred on a
DMA basis, Status Affects Vector in
Channel B only.
WRO POINTER 3, ENABLE INTERRUPT ON NEXT RECEIVE Used to provide simple loop-back entry
CHARACTER point for next transaction.
WR3 RECEIVE ENABLE, RECEIVE CRC ENABLE, ENTER HUNT MODE, WR3 reissued to enable receiver.
AUTO ENABLES, RECEIVER CHARACTER LENGTH, ADDRESS
SEARCH MODE
IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM SDLC Receive Mode is fully initialized
and SIQ is waiting for the opening flag
followed by a matching address field to
interrupt the CPU.
DATA TRANSFER AND WHEN INTERRUPT ON FIRST CHARACTER OCCURS, THE CPU During the Hunt phase, the SI0 interrupts
STATUS MONITORING DOES THE FOLLOWING: when the programmed address matches

W TRANSFERS DATA BYTE (ADDRESS BYTE) TO CPU

W DETECTS AND SETS APPROPRIATE FLAG FOR EXTENDED
ADDRESS FIELD

M UPDATES POINTERS AND PARAMETERS

W ENABLES DMA CONTROLLER

M ENABLES WAIT/READY FUNCTION IN SIO

W RETURNS FROM INTERRUPT

WHEN THE READY OUTPUT BECOMES ACTIVE, THE DMA CONTROLLER

DOES THE FOLLOWING:
W TRANSFERS THE DATA BYTE TO MEMORY
W UPDATES THE POINTERS

the message address. The CPU estab-
lishes the DMA mode and all subsequent
data characters are transferred by the
DMA controller to memory.

During the DMA operation, the SI0
monitors the DCD input and the Abort
sequence in the data stream to interrupt
the CPU with External Status error. The
Special Receive condition interrupt is
caused by Receive Overrun error.

E6-7

. 280 SI0
@ p—d | a1 User's MANUAL
Table 6-3. SDLC Receive Mode (Continued)

FUNCTION TYPICAL PROGRAM STEPS COMMENTS
DATA TRANSFER AND WHEN END OF FRAME INTERRUFT OCCURS, THE CPU DOES Detection of End of Frame (Flag) causes
STATUS MONTIORING THE FOLLOWING: interrupt and deactivates the Wait/Ready
(Continued) M EXITS DMA MODE (DISABLES WAIT/READY) function. Residue codes indicate the bit
W TRANSFERS RR1 TO THE CPU structure of the last two bytes of the
W CHECKS THE CRC ERROR BIT STATUS AND RESIDUE CODES message, which were transferred to
W UPDATES NR COUNT memory under DMA. ‘Error Reset’ is
W ISSUES ERROR RESET COMMAND T0 SIO issued to clear the special condition.
WHEN ABORT SEQUENCE DETECTED INTERRUPT OCCURS, Abort sequence is detected when seven
THE CPU DOES THE FOLLOWING: or more 1's are found in the data stream.

W TRANSFERS RRO TO THE CPU
M EXITS DMA MODE
M ISSUES THE RESET EXTERNAL STATUS INTERRUPT COMMAND

TO THE SIO

W ENTERS THE IDLE MODE CPU is waiting for Abort Sequence to
terminate. Termination clears the Break/
Abort status bit and causes interrupt.

WHEN THE SECOND ABORT SEQUENCE INTERRUPT OCCURS, At this point, the program proceeds to

THE CPU DOES THE FOLLOWING: terminate this message.

M ISSUES THE RESET EXTERNAL STATUS INTERRUPT COMMAND

TOTHE SI0

TERMINATION REDEFINE INTERRUPT MODES, SYNC MODE AND SDLC MODES
DISABLE RECEIVE MODE

E6-8

N 2ILa5

SIO USER'S MANUAL

CHAPTER 7

PROGRAMMING

7.0 INTRODUCTION

To program the Z80-SIO, the system program first issues
a series of commands that initialize the basic mode of
operation and then other commands that qualify condi-
tions within the selected mode. For example, the Asyn-
chronous mode, character length, clock rate, number of
stop bits, even or odd parity are first set, then the interrupt
mode and, finally, receiver or transmitter enable. The WR4
parameters must be issued before any other parameters
are issued in the initialization routine.

Both channels contain command registers that must be
programmed via the system program prior to operation.

The Channel Select input (B//A) and the Control/Data input
(C/ID) are the command structure addressing controls,
and are normally controlled by the CPU address bus.
Figures 9-1 through 9-4 illustrate the timing relationships
for programming the write registers, and transferring data
and status.

Table 7-1. Channel Select Functions

C/ID B//A Function
0 0 Channel A Data
0 1 Channel B Data
1 0] Channel A Commands/Status
1 1 Channel B Commands/Status

7.1 WRITE REGISTERS

The Z80-SIO contains eight registers (WR7-WRQ) in each
channel that are programmed separately by the system
program to configure the functional personality of the
channels. With the exception of WRO, programming the
write registers requires two bytes. The first byte contains
three bits (D2-D0) that point to the selected register; the
second byte is the actual control word that is written into
the register to configure the Z80-SIO.

Note that the programmer has complete freedom, after
pointing to the selected register, of either reading to test
the read register or writing to initialize the write register. By
designing software to initialize the Z80-SIO in a modular
and structured fashion, the programmer can use powerful
block I/O instructions.

WRO is a special case in that all the basic commands
(CMD2-CMDO) can be accessed with a single byte. Reset
(internal or external) initializes the pointer bits D0-D2 to
point to WRO.

The basic commands (CMD2-CMDO) and the CRC con-
trols (CRCO, CRC1) are contained in the first byte of any
write register access. This maintains maximum flexibility
and system control. Each channel contains the following
control registers. These registers are addressed as com-
mands (not data).

7.1.1 Write Register 0
WRO (Figure 7-1) is the command register; however, it is

also used for CRC reset codes and to point to the other
registers.

D7 Dé Ds D4 D3 D2 Di DO

CRC CRC CMD CMD CMD PTR PTR PTR
Reset Reset 2 1 0 2 1 0
Code Code
1 0

E7-1

280° SI0
USER'S MANUAL

QN 2iLa5
I'o7 | b6 | ps J o4 | 03] D2] Dt] Dol
0 0 0 Register0
0 0 1 Register 1
0 1 0 Register2
0 1 1 Register3
1 0 0 Register4
1 0 1 Register5
1 1 0 Register6
1 1 1 Register7
0 0 0 Null Code
0 0 1 Send Abort (SDLC)
0 1 0 Reset Ext/Status Interrupts
0 1 1 Channel Reset
1 0 0 Enable INT on Next Ax Character
1 0 1 Reset TxINT Pending
1 1 0 Eerror Reset
1 1 1 Return From INT (CH-A Only)
0 0 Null Code
0 1 Reset Rx CRC Checker
1 0 Reset Tx CRC Generator
1 1 Reset Tx Underrun/EOM Latch

Figure 7-1. Write Register 0

Pointer Bits (D2-D0). Bits D2-DO are pointer bits that
determine which other write register the next byte is to be
written into or which read register the next byte isto be read
from. The first byte written into each channel after a reset
(either by a Reset command or by the external reset input)
goes into WRO. Following a read or write to any register
(except WRO), the pointer will, point to WRO.

Command Bits (D5-D3). Three bits, D5-D3, are encoded
to issue the seven basic Z80-SIO commands
(Table 7-2).

Table 7-2. Z80-SI0 Commands

Command CMD2 CMD1 CMDO

0 0 0 0 Null Command (no effect)

1 0 0 1 Send Abort (SDLC Mode)

2 0 1 0 Reset External/Status
Interrupts

3 0 1 1 Channel Reset

4 1 0 0 Enable Interrupt on next
Rx Character

5 1 0 1 Reset Transmitter Inter-
rupt Pending

6 1 1 0 Error Reset (latches)

Return from Interrupt
(Channel A)

Command 0 (Null). The Null command has no effect. Its
normal use is to cause the Z80-SIO to do nothing while the
pointers are set for the following byte.

Command 1(Send Abort). This command is used only with
the SDLC mode to generate a sequence of eight to
thirteen 1's.

Command 2 (Reset External/Status Interrupts). After an
External/Status interrupt (a change on a modem iine or a
break condition, for example), the status bits of RRO are
latched. This command re-enables them and allows inter-
rupts to occur again. Latching the status bits captures
short pulses until the CPU has time to read the change.

Command 3(Channel Reset). This command performs the
same function as an External Reset, but oniy on a single
channel. Channei A Reset aiso resets the interrupt
prioritization logic. All controi registers for the channei
must be rewritten after a Channel Reset command.

After a Channel Reset, four extra system clock cycles
should be allowed for Z80-SIO reset time before any
additional commands or controls are written into that
channel. This can normally be the time used by the CPU to
fetch the next opcode.

Command 4 (Enable Interrupt On Next Receive Charac-
ter). If the Interrupt On First Receive Character mode is
selected, this command reactivates that mode after each
complete message is received to prepare the Z80-SIO for
the next message.

Command 5 (Reset Transmitter Interrupt Pending). The
transmitter interrupts when the transmit buffer becomes
empty if the Transmit Interrupt Enable mode is selected. In
those cases where there are no more characters to be sent
(at the end of message, for example), issuing this com-
mand prevents further transmitter interrupts until after the
next character has been loaded into the transmit buffer or
until CRC has been completely sent.

Command 6 (Error Reset). This command resets the error
latches. Parity and Overrun errors are latched in RR1 until
they are reset with this command. With this scheme, parity
errors occurring in block transfers can be examined at the
end of the block.

Command 7 (Return From Interrupt). This command must
be issued in Channel A and is interpreted by the Z80-SIO
in exactly the same way it would interpret an RETI com-
mand on the data bus. It resets the interrupt under-service
latch of the highest priority internal device under service
and thus allows lower priority devices to interrupt through
the daisy chain. This command allows use of the internal
daisy chain even in systems with no external daisy chain
or RETI command.

E7-2

AY=le

280® 810
USER'S MANUAL

CRC Reset Codes 0 and 1 (D6 and D7). Together, these
bits select one of the three following reset commands:

CRC Reset CRC Reset

Code 1 Code 0
0 0 Null Code (no affect)
0 1 Reset Receive CRC Checker
1 0 Reset Transmit CRC Generator
1 1 Reset Tx Underrun/End of

Message latch

The Reset Transmit CRC Generator command normally
initializes the CRC generator to all 0's. If the SDLC mode is
selected, this command initializes the CRC generator to all
1’s. The Receive CRC checker is also initialized to all 1's for
the SDLC mode.

7.1.2 Write Register 1

WR?1 (Figure 7-2) contains the control bits for the various
interrupt and Wait/Ready modes.

D7 D6 D5 D4
Wait/Ready @ Waitor Wait/Ready Receive
Enable Ready On Receive/ Interrupt
Function Transmit Mode 1
D3 D2 D1 Do
Receive Status Transmit External
Interrupt Affects Interrupt Interrupts
Mode 0 Vector Enable Enable

External/Status Interrupt Enable (D0). The External/ Sta-
tus Interrupt Enable allows interrupts to occur as a result of
transitions on the /DCD, /CTS, or /SYNC inputs, as a result
of a Break/Abort detection and termination, or at the
beginning of CRC or sync character transmissionwhenthe
Transmit Underrun/EOM latch becomes set.

Transmitter Interrupt Enable (D1). If enabled, interrupts
occur whenever the transmitter buffer becomes empty.

Status Affects Vector (D2). This bit is active in Channel B
only. If this bit is not set, the fixed vector programmed in
WR2 is returned from an interrupt acknowledge sequence.
If this bit is set, the vector returned from an interrupt
acknowledge is variable according to the following inter-
rupt conditions:

V3 V2 Vi
ChB 0 0 0 ChB Transmit Buffer Empty
0 0 1 ChB External/Status Change
0o 1 0 ChB Receive Character Available
1 1 1 Ch B Special Receive Condition*

ChA Ch A Transmit Buffer Empty
Ch A External/Status Change
Ch A Receive Character Available

Ch A Special Receive Condition*

—_ma00
- O =0

1
1
1
1

*Special Receive Conditions: Parity Error, Rx Overrun Error,
Framing Error, End-of-Frame (SDLC).

Receive Interrupt Modes 0 and 1 (D3 and D4). Together
these two bits specify the various character-available
conditions. In Receive Interrupt modes 1, 2, and 3, a
Special Receive Condition can cause an interrupt and
modify the interrupt vector.

o7] o6 |psos]osfo2]or] ool

EXE INT Enable
Tx INT Enable
Status Affects Vector
(CH. B Only)
0 0 RxINT Disable
0 1 RxINT On First Character
1 0 INT OnAll Rx Chatrcters (Parity Affects Vector) *
1 1 INT On All Rx Chatrcters (Parity Does Not Affects Vector)
«0rOn
Wait/Ready On R/T Special
/Wait/Ready Function Condition
Wait/Ready Enable

Figure 7-2. Write Register 1

E7-3

®
N 2La5 Ustr's Hnon,
D4 D3 IfD7=0
Recelve Receive and D5=0 andD5=1
"'I\|I::::':Ireu '1“ "n‘:g;? gt [READY is High when transmit [READY is High when receive
buffer is full. buffer is empty.
0 0 Receive Interrupts Disabled MWAIT is Low when transmit MWAIT is Low when receive
0 1 Receive Interrupt On First buffer is full and an buffer is empty and
Character Only SIO data port is an SI0 data port is
1 0 Interrupt On All Receive selected. selected.
Characters—parity error is a /READY is Low when transmit [READY is Low when receive
Special Receive condition buffer is empty. buffer is full.
1 1 Interrupt On All Receive MWAIT s floating when MWAIT s floating when
Characters—parity error is transmit buffer is receive buffer is full.
not a Special Receive condition empty.

Wait/Ready Function Selection (D7-D5). The Wait and
Ready functions are selected by controlling D5, D6, and
D7. Wait/Ready function is enabled by setting Wait/Ready
Enable (WR1, D7) to 1. The Ready function is selected by
setting D6 (Wait/Ready function) to 1. If this bit is 1, the
/WAIT//READY output switches from Highto Low when the
Z80-SI0 is ready to transfer data. The Wait function is
selected by setting D6 to 0. If this bit is 0, the
/WAIT//READY output is in the open-drain state and goes
Low when active.

Both the Wait and Ready functions can be used in either
the Transmit or Receive modes, but not both simulta-
neously. If D5 (Wait/Ready on Receive/Transmit) is set to
1, the Wait/Ready function responds to the condition of the
receive buffer (empty or full). If D5 is set to 0, the Wait/
Ready function responds to the condition of the transmit
buffer (empty or full).

The logic states of the /WAIT//READY output when active
or inactive depend on the combination of modes selected.
Following is a summary of these combinations:

IfD7=0
andD6=1

/READY is High

and D6 =0
/WAIT is floating

The /WAIT output High-to-Low transition occurs with the
delaytimetDIC(WR) after the I/O request. The Low-to-High
transition occurs with the delay tDH®(WR) from the falling
edge of ®. The /READY output High-to-Low transition
occurs with the delay tDL®(WR) from the rising edge of ®.
The /READY output Low-to-High transition occurs with the
delay tDIC(WR) after /IORQ falls.

The Ready function can occur any time the Z80-SIO is not
selected. When the /READY output becomes active Low,
the DMA controller issues /IORQ and the corresponding
B//A and C//D inputs to the Z80-SIO to transfer data. The
/READY output becomes inactive as soon as /IORQ and
/CS become active. Since the Ready function can occur
internally in the Z80-SIO whether itis addressed or not, the
/READY output becomes inactive when any CPU data or
command transfer takes place. This does not cause prob-
lems because the DMA controller is not enabled when the
CPU transfer takes place.

The Wait function, on the other hand, is active only if the
CPU attempts to read Z80-SIO data that has not yet been
received, which occurs frequently when block transfer
instructions are used. The Wait function can also become
active (under program control) ifthe CPU tries to write data
while the transmit buffer is still full. The fact that the /WAIT
output for either channel can become active when the
opposite channel is addressed (because the Z80-SIO is
addressed) does not affect operation of software loops or
block move instructions. :

E7-4

QA 2305

280° SI0
USER'S MANUAL

7.1.3 Write Register 2

WR2 is the interrupt vector register; it exists in Channel B
only. V7-V4 and VO are always returned exactly as written;
V3-V1 are returned as written if the Status Affects Vector
(WR1, D2) control bit is 0. If this bit is 1, they are modified
as explained in the previous section.

D7 D6 D5 D4
V7 V6 V6 V4

D3 D2 D1 DO
V3 V2 Vi VO

| o7] o6 Jos Joafos]o2]ot]ooj

V3 Interrupt
V4 Vector

Figure 7-3. Write Register 2
7.1.4 Write Register 3

WR3 contains receiver logic control bits and parameters.

D7 D6 D5 D4
Receiver Receiver Auto Enter
Bits/ Bits/ Enables Hunt
Char 1 Char 0 Phase
D3 D2 D1 DO
Receiver Address Sync Char Receiver
CRC Search Load Enable
Enable Mode Inhibit

Receiver Enable (D0). A 1 programmed into this bit allows
receive operations to begin. This bit should be set only
after all other receive parameters are set and receiver is
completely initialized.

Sync Character Load Inhibit (D1). Sync characters pre-
ceding the message (leading sync characters) are not
loaded into the receive buffers if this option is selected.
Because CRC calculations are not stopped by sync char-
acter stripping, this feature should be enabled only at the
beginning of the message.

Address Search Mode (D2). If SDLC is selected, setting
this mode causes messages with addresses not matching
the programmed address in WR6or the global (1111 1111)
address to be rejected. In other words, no receive inter-
rupts can occur in the Address Search mode unless there
is an address match.

Receiver CRC Enable (D3). If this bit is set, CRC calcula-
tion starts (or restarts) at the beginning of the last character
transferred from the receive shift register to the buffer
stack, regardless of the number of characters in the stack.
See “SDLC Receive CRC Checking” (SDLC Receive sec-
tion) and "CRC Error Checking” (Synchronous Receive
section) for details regarding when this bit should be set.

Enter Hunt Phase (D4). The Z80-S10 automatically enters
the Hunt phase after a reset; however, it can be re-entered
if character synchronization is lost for any reason (Syn-
chronous mode) or if the contents of an incoming message
are not needed (SDLC mode). The Hunt phase is re-
entered by writing a 1 into bit D4. This sets the Sync/Hunt
bit (D4) in RRO.

Auto Enables (D5). If this mode is selected, /DCD and
/CTS become the receiver and transmitter enables, re-
spectively. If this bit is not set, /DCD and /CTS are simply
inputs to their corresponding status bits in RRO.

o7 [pe | ps § Da J b3 J D2] D1 | Do |

Rx Enable

SYNC Character Load Inhibit
Address Search Mode (SDLC)

Rx CRC Enable
Enter Hunt Phase
Auto Enables

0 0 Rx5 Bits/Character

0 1 Rx7 Bits/Character

1 0 Rx6 Bits/Character

1 1 Rx8Bits/Character

Figure 7-4. Write Register 3

E7-5

Q205

280° SI0
USER'S MANUAL

Receiver Bits/Characters 1 and 0 (D7 and D6). Together,
these bits determine the number of serial receive bits
assembled to form a character. Both bits may be changed
during the time that a character is being assemkled, but
they must be changed before the number of bits currently
programmed is reached.

D7 D6 Bits/Character
0 0 5
0 1 7
1 0 6
1 1 8

7.1.5 Write Register 4

WR4 contains the control bits that affect both the receiver
and transmitter. In the transmit and receive initialization
routine, these bits should be set before issuing WR1, WR3,
WR5, WR6, and WR?7.

Parity Even//Odd (D1). If parity is specified, this bit deter-
mines whether it is sent and checked as even or'odd (1 =
even).

Stop Bits 0 and 1 (D2 and D3). These bits determine the
number of stop bits added to each asynchronous charac-
ter sent. The receiver always checks for one stop bit. A
special mode (00) signifies that a synchronous mode is to
be selected.

D3 D2
Stop Bits 1 Stop Bits 0
0 0 Sync modes
0 1 1 stop bit per character
1 0 1-1/2 stop bits per character
1 1 2 stop bits per character

Sync Modes 0 and 1 (D4 and D5). These bits select the
various options for character synchronization.

D7 Dé D5 D4 D3 D2 D1 DO Sync Sync
- - - Mode1 ModeO
Clock Clock Sync Sync Stop Stop Parity Parity
Rate Rate Modes Modes Bits Bits Even/ 0 0 8-bit programmed sync
1 0 1 0 1 0 /Odd 0 1 16-bit programmed sync
1 0 SDLC mode (0111 1110 flag pattern)
1 1 External Sync mode
Parity (DO). If this bit is set, an additional bit position (in
addition to those specified in the bits/character control) is
added totransmitted data and is expected in receive data.
In the Receive mode, the parity bit received is transferred
to the CPU as part of the character, unless eight bits/
character is selected.
I o7]ops]os |ps o3| b2]ot] ool
Parity Enable
Parity Even /Odd
0 0 SYNC Modes Enable
0 1 1 Stop Bit/Character
1 0 1-1/2 Stop Bits/Character
1 1 2 Stop Bits/Character
0 0 8-Bit SYNC Character
0 1 16-Bit SYNC Character
1 0 SDLC Mode (0111 1110 Flag)
1 1 External SYNC Mode
0 0 X1 Clock Mode
0 1 X16 Clock Mode
1 0 X32 Clock Mode
1 1 X64 Clock Mode

Figure 7-5. Write Register 4

E7-6

N 2iLa5

®
USER'S MANUAL

Clock Rate 0 and 1 (D6 and D7). These bits specify the
multiplier between the clock (/TxC and /RxC) and data
rates. For synchronous modes, the x1 clock rate must be
specified. Any rate may be specified for asynchronous
modes; however, the same rate must be used for both the
receiver and transmitter. The system clock in all modes
must be at least 4.5 times the data rate. If the x1 clock rate
is selected, bit synchronization must be accomplished
externally.

Clock Clock

Rate 1 Rate 0
0 0 Data Rate x1 = Clock Rate
0 1 Data Rate x16 = Clock Rate
1 0 Data Rate x32 = Clock Rate
1 1 Data Rate x64 = Clock Rate

7.1.6 Write Register 5

WR5 contains control bits that affect the operation of
transmitter, with the exception of D2, which affects the
transmitter and receiver.

D7 D6 D5 D4 D3 D2 D1 DO

DTR Tx Tx Send Tx CRC-16/ RTS Tx
Bits/ Bits/ Break Enable /SDLC CRC
Char 1 Char 0 Enable

Transmit CRC Enable (D0). This bit determines if CRC is
calculated on a particular transmit character. If it is set at
the time the character is loaded from the transmit buffer

into the transmit shift register, CRC is calculated on the
character. CRC is not automatically sent unless this bit is
set when the Transmit Underrun condition exists.

Request To Send (D1). This is the control bit for The /RTS
pin. When the /RTS bit is set, the /RTS pin goes Low; when
reset, /RTS goes High. In the Asynchronous mode, /RTS
goes High only after all the bits of the character are
transmitted and the transmitter buffer is empty. In Syn-
chronous modes, the pin directly follows the state of the
bit.

CRC-16/SDLC (D2). This bit selects the CRC polynomial
used by both the transmitter and receiver. When set, the
CRC-16 polynomial (X186 +X5 + X2 + 1) is used; when reset
the SDLC polynomial (X' + X'2 + X5 + 1) is used. If the
SDLC mode is selected, the CRC generator and checker
are presettoall 1's and a special check sequence is used.
The SDLC CRC polynomial must be selected when the
SDLC mode is selected. If the SDLC mode is not selected,
the CRC generator and checker are preset to all O's (for
both polynomials).

Transmit Enable (D3). Data is not transmitted until this bit
is set, and the Transmit Data output is held marking. Data
or sync characters in the process of being transmitted are
completely sent if this bit is reset after transmission has
started. If the transmitter is disabled during the transmis-
sion of a CRC character, sync, or flag characters are sent
instead of CRC.

Send Break (D4). When set, this bit immediately forces
the Transmit Data output to the spacing condition, regard-
less of any data being transmitted. When reset, TxD
returns to marking.

| o7 { o6 | os J o4 o3]o2]o1] ool

Tx CRC Enable
RTS

/SDLC/CRC-16
Tx Enable

Send Break

Y e X=)
—-—O =0

——DTR

Tx 5 Bits (Or Less)/Character
Tx 7 Bits/Character
Tx 6 Bits/Character
Tx 8 Bits/Character

Figure 7-6. Write Register 5

E7-7

N 2105

280° SI0
USER'S MANUAL

Transmit Bits/Characters 0 and 1 (D5 and D6). Together,
D6 and D5 control the number of bits in each byte trans-
ferred to the transmit buffer.

D6 D5
Transmit Bits/ Transmit Bits/
Character 1 Character 0 Bits/Character
0 0 Five or less
0 1 7
1 0 6
1 1 8

Bits to be sent must be right justified, least significant bits
first. The Five Or Less mode allows transmission of one to
five bits per character; however, the CPU should format the
data character as shown in the following table.

D7 D6 D5 D4 D3 D2 D1 DO
1 1 1 1 0 0 0 D Sendsone data bit
1 1 1 0 0 0 D D Sendstwo data bits
1 1 0 0 0 D D D Sendsthree data bits
1 0 0 0 D D D D Sendsfourdata bits
0 O 0 DD D D D Sendsfive data bits

Data Terminal Ready (D7). This is the control bit for the
DTR pin. When set, DTR is active (Low); when reset, DTR
is inactive (High).

7.1.7 Write Register 6

This register is programmed to contain the transmit sync
character in the Monosync mode, the first eight bits of a
16-bit sync character in the Bisync mode, or a transmit
sync character in the External Sync mode. In the SDLC
mode, itis programmed to contain the secondary address
field used to compare against the address field of the
SDLC frame.

D7 D6 D5 D4 D3 D2 D1
Sync7 Sync6 Sync5 Syncd Sync3 Sync2 Synci

DO
Sync 0

7.1.8 Write Register 7

This register is programmed to contain the receive sync
characterinthe Monosync mode, a second byte (last eight
bits) of a 16-bit sync character inthe Bisync mode, or aflag
character (0111 1110) in the SDLC mode. WRY is not used
in the External Sync mode.

D7 Dé D5 D4 D3 D2 Di Do

Sync 15 Sync 14 Sync13 Sync12 Sync11 Sync10 Sync9 Sync8

o7 o6 | ps o4 D3]o2]o1] ool

SYNC Bit 0
SYNC Bit 1
SYNC Bit 2
SYNCBit 3

SYNC Bit 4 *

SYNC Bit 5

SYNC Bit 6

SYNCBit7

+ Also SDLC Address Field

Figure 7-7. Write Register 6

] o7 J o6 | ps] pa [s | o2] o1] ool

SYNC Bit 8
SYNC Bit9
SYNC Bit 10

SYNC Bit 11

SYNCBit12 '+

SYNC Bit 13

SYNC Bit 14
SYNC Bit 15

« For SDLC It Must Be Programmed
To "0111 110" For Flag Recognition

Figure 7-8. Write Register 7

E7-8

Y

280® SI0
USER'S MANUAL

7.2 READ REGISTERS

The Z80-SIO contains three registers, RR2-RR0 (Figures
7-9 through 7-11), that can be read to obtain the status
information for each channel (except for RR2-Channel B
only). The status information includes error conditions,
interrupt vector and standard communications-interface
signals.

To read the contents of a selected read register other than
RRO, the system program must first write the pointer byte
to WRO in exactly the same way as a write register opera-
tion. Then, by executing an input instruction, the contents
of the addressed read register can be read by the CPU.

The status bits of RRO and RR1 are carefully grouped to
simplify status monitoring. For example, when the interrupt
vector indicates that a Special Receive Condition interrupt
has occurred, all the appropriate error bits can be read
from a single register (RR1).

7.2.1 Read Register 0

This register contains the status of the receive and transmit
buffers; the /DCD, /CTS, and /SYNC inputs; the Transmit
Underrun/EOM latch; and the Break/Abort latch.

D7 D6 D5 D4 D3 D2 D1 Do
Breakl Trans- /CTS Sync/ /DCD Trans- Inter- Receive
Abort mit Hunt mit rupt Charac-
Under- Buffer Pend- ter
runt Empty ing Avail-
EOM (Ch.A able

only)

Receive Character Available (D0). This bit is set when at
least one character is available in the receive buffer; it is
reset when the receive FIFO is completely empty.

Interrupt Pending (D1). Any interrupting condition in the
Z80-SIO causes this bit to be set; however, it is readable
only in Channel A. This bit is mainly used in applications
that do not have vectored interrupts available. During the
interrupt service routine in these applications, this bit
indicates if any interrupt conditions are present in the Z80-
SIO. This eliminates the need for analyzing all the bits of
RRO in both Channels A and B. Bit D1 is reset when all the
interrupting conditions are satisfied. This bit is always 0 in
Channel B.

Transmit Buffer Empty (D2). This bit is set whenever the
transmit buffer becomes empty, except when a CRC
character is being sent in a synchronous or SDLC mode.
The bitis reset when a character is loaded into the transmit
buffer. This bit is in the set condition after a reset.

Data Carrier Detect (D3). The /DCD bit shows the state of
the /DCD input at the time of the last change of any of the
five External/Status bits (/DCD, /CTS, Sync/Hunt, Break/
Abort or Transmit Underrun/EOM). Any transition of the
/DCD input causes the /DCD bit to be latched and causes
an External/Status interrupt. Toread the current state of the
/DCD bit, this bit must be read immediately following a
Reset External/Status Interrupt command.

Sync/Hunt (D4). Since this bit is controlled differently in
the Asynchronous, Synchronous and SDLC modes, its
operation is somewhat more complex than that of the other
bits and therefore requires more explanation.

In asynchronous modes, the operation of this bit is similar
to the /DCD status bit, except that Sync/Hunt shows the
state of the /SYNC input. Any High-to-Low transition onthe
/SYNC pin sets this bit and causes an External/Status
interrupt (if enabled). The Reset External/Status Interrupt
command is issued to clear the interrupt. A Low-to-High
transition clears this bit and sets the External/Status inter-

| o7 I b | ps | p4 | pa | p2 | o1 | Do |

Rx Character Available
INT Pending (CH.A Only)
Tx Buffer Empty

DCD

SYNC/Hunt

CTS
Tx Underrun/EOM

Break/Abort

« Used With "Extemal/
Status Interrupt* Mode

Figure 7-9. Read Register 0

E7-9

Q2305

280° SI0
USER'S MANUAL

rupt. When the External/Status interrupt is set by the
change in state of any other input or condition, this bit
shows the inverted state of the /SYNC pin at the time of the
change. This bit must be read immediately following a
Reset External/Status Interrupt command to read the cur-
rent state of tile /SYNC input.

In the External Sync mode, the Sync/Hunt bit operates in
a fashion similar to the Asynchronous mode, except the
Enter Hunt Mode control bit enables the external sync
detection logic. When the External Sync Mode and Enter
Hunt Mode bits are set (for example, when the receiver is
enabled following a reset), the /SYNC input must be held
High by the external logic until external character synchro-
nization is achieved. A High at the /SYNC input holds the
Sync/Hunt status bit in the reset condition.

When external synchronization is achieved, /SYNC must
be driven Low on the second rising edge of /RxC after that
rising edge of /RxC on which the last bit of the sync
character was received. In other words, after the sync
pattern is detected, the external logic must wait for two full
Receive Clock cycles to activate the /SYNC input, Once
/SYNC is forced Low, it is a good practice to keep it Low
until the CPU informs the external sync logic that synchro-
nization has been lost or a new message is about to start.
Refer to Figure 9-8 for timing details. The High-to-Low
transition of the /SYNC input sets the Sync/Hunt bit, which,
in turn, sets the External/Status interrupt. The CPU must
clear the interrupt by issuing the Reset External/Status
Interrupt command.

When the /SYNC input goes High again, another External/
Status interrupt is generated that must also be cleared.
The Enter Hunt Mode control bit is set whenever character
synchronization is lost or the end of message is detected.
In this case, the Z80-SIO again looks for a High-to-Low
transition of the /SYNC input and the operation repeats as
explained previously. This implies the CPU should also
inform the external logic that character synchronization
has been lost and that the Z80-SI0 is wailing for /SYNC to
become active.

In the Monosync and Bisync Receive modes, the Sync/
Hunt status bitis initially setto 1 by the Enter HuntMode bit.
The Sync/Hunt bit is reset when the Z80-SIO establishes
character synchronization. The High-to-Low transition of
the Sync/Hunt bit causes an External/Status interrupt that
must be cleared by the CPU issuing the Reset External/
Status Interrupt command. This enables the Z80-SIO to
detect the next transition of other External/Status bits.

When the CPU detects the end of message or that charac-
ter synchronization is lost, it sets the Enter Hunt Mode

control bit, which-in turn-sets the Sync/Hunt bit to 1. The
Low-to-High transition of the Sync/Hunt bit sets the
External/Status interrupt, which must also be cleared by
the Reset External/Status Interrupt command. Note that
the /SYNC pin acts as an output in this mode and goes Low
every time a sync pattern is detected in the data stream.

In the SDLC mode, the Sync/Hunt bit is initially set by the
Enter Hunt mode bit, or when the receiver is disabled. In
any case, it is reset to 0 when the opening flag of the first
frame is detected by the Z80-SIO. The External/Status
interrupt is also generated, and should be handled as
discussed previously.)

Unlike the Monosync and Bisync modes, once the Sync/
Hunt bit is reset in the SDLC mode, it does not need to be
set when the end of message is detected. The Z80-SIO
automatically maintains synchronization. The only way the
Sync/Hunt bit can be set again is by the Enter Hunt Mode
bit, or by disabling the receiver.

Clear To Send (D5). This bit is similar to the /DCD bit,
except that it shows the inverted state of the /CTS pin.

Transmit Underrun/End of Message (D6). This bitisina
set condition following a reset (internal or external). The
only command that can reset this bit is the Reset Transmit
Underrun/EOM Latch command (WRO, D6 and D7). When
the Transmit Underrun condition occurs, this bit is set; its
becoming set causes the External/ Status interrupt, which
must be reset by issuing the Reset External/Status Inter-
rupt command bits (WRQ). This status bit plays an impor-
tant role in conjunction with other control bits in controlling
a transmit operation. Refer to "Bisync Transmit Underrun”
and “SDLC Transmit Underrun” for additional details.

Break/Abort (D7). In the Asynchronous Receive mode,
this bit is set when a Break sequence (null character plus
framing error) is detected in the data stream. The External/
Status interrupt, if enabled, is set when Break is detected.
The interrupt service routine must issue the Reset External/
Status Interrupt command (WRO, CMD2) to the break
detection logic so the Break sequence termination can be
recognized.

The Break/Abort bit is reset when the termination of the
Break sequence is detected in the incoming data stream.
The termination of the Break sequence also causes the
External/Status interrupt to be set. The Reset External/
Status Interrupt command must be issued to enable the
break detection logic to look for the next Break sequence.
A single extraneous null character is present in the re-
ceiver after the termination of a break; it should be read
and discarded.

E7-10

®
N 2iLas Ussn’szslgmgg
In the SDLC Receive mode, this status bit is set by the . § . N
detection of an Abort sequence (seven or more 1's). The o . . HieldBits Field Bits
. h . esidue Residue Residue inPrevious inSecond
External/Status interrupt is handled the same way as in the Code? Code! Code Byte Previous Byte
case of a Break. The Break/Abort bit is not used in the
Synchronous Receive mode. 1 0 0 0 3
. 0 1 0 0 4
7.2.2 Read Register 1 1 1 0 0 5
0 0 1 0 6
Thisregister contains the Special Receive condition status
bits and Residue codes for the |-Field in the SDLC Receive 1 0 1 0 7
Mode. 0 1 1 0 8
1 1 1 1 8
0 0 0 2 8
D7 D6 D5 D4 D3 D2 D1 DO
Endof CRC/ Receiver Party Residue Residue Residue Al I-Field bits are right-justified in all cases.
Frame Framing Overun Ermor Code2 Code1 CodeO Sent
(SDLC) Emor Error If a receive character length different from eight bits is

All Sent (D0). In asynchronous modes, this bit is set when
allthe characters have completely cleared the transmitter.
Transitions of this bit do not cause interrupts. It is always
set in synchronous modes.

used for the 1-field, a table similar to the previous one may
be constructed for each different character length. For no
residue (that is, the last character boundary coincides with
the boundary of the I-field and CRC field), the Residue
codes are:

Residue Residue Residue
Residue Codes 0, 1,and 2 (D3-D1). In those cases of the .
SDLC receive mode where the I-field is not an integral Bits per Character Code 2 Code1 Code0
multiple of the character length, these three bits indicate 8 Bits per Character 0 1 1
the length of the I-field. These codes are meaningful only 7 Bits per Character 0 0 0
for the transfer in which the End-of-Frame bit is set (SDLC). 6 Bits per Character 0 1 0
For a receive character length of eight bits per character, 5 Bits per Character 0 0 1
the codes signify the following:
| o7 J e | Ds | o4 | o3 | b2] D1 | Do |
All Sent
| Field Bits | Field Bits In
In Previous Second Previous
Byte Byte

1 0 0 0 3

0 1 0 0 4

1 1 0 0 5 *

0 0 1 0 6 r

1 0 1 0 7

0 1 1 0 8

1 1 1 1 8

0 0 0 2 8 J

-—— Party Error + Residue Data For Eight Rx

Rx Overrun Error Bits/Character Programmed

CRC/Framming Error

End Of Frame (SDLC)

Tused With Special Recived Condition Mode

Figure 7-10. Read Register 1

E7-11

Q2005

280 SI0
User's MANUAL

Parity Error (D4). When parity is enabled, this bit is set for
those characters whose parity does not match the pro-
grammed sense (even/odd). The bit is latched, so once an
error oceurs, it remains set until the Error Reset command
(WRQ0) is given.

Receive Overrun Error (D5). This bit indicates that more
than three characters have been received without a read
from the CPU. Only the character that has been written
over is flagged with this error, but when this character is
read, the error condition is latched until reset by the Error
Reset command. If Status Affects Vector is enabled, the
character that has been overrun interrupts with a Special
Receive Condition vector.

CRC/Framing Error (D6). If a Framing Error occurs (asyn-
chronous modes), this bit is set (and not latched) for the
receive character in which the Framing Error occurred.
Detection of a Framing Error adds an additional one-half of
a bit time to the character time so the Framing Error is not
interpreted as a new start bit. In synchronous and SDLC
modes, this bit indicates the result of comparing the CRC
checkerto the appropriate check value. This bit is reset by
issuing an Error Reset command. The bit is not latched, so
it is always updated when the next character is received.
When used for CRC error and status in synchronous
modes, it is usually set since most bit combinations result
in a non-zero CRC except for a correctly completed
message.

End-of-Frame (D7). This bit is used only with the SDLC
mode and indicates that a valid ending flag has been
received and that the CRC Error and Residue codes are
also valid. This bit can be reset by issuing the Error Reset
command. It is also updated by the first character of the
following frame.

7.2.3 Read Register (Channel B Only)

This register contains the interrupt vector written into WR2
ifthe Status Affects Vector control bitis not set. Ifthe control
bitis set, it contains the modified vector shown in the Status
Affects Vector paragraph of the Write Register 1 section.
When this register is read, the vector returned is modified
by the highest priority interrupting condition at the time of
theread. Ifnointerrupts arc pending, the vector is modified
withV3 =0, V2 =1, and V1 = 1. This register may be read
only through Channel B.

D7 Dé D5 D4 D3 D2 Dt DO

Vi V6 V5 V4 V3 v2 Vi VO
Variable if Status
Affects Vector
is enabled

| o7 f b6 | b5 | D4 | D3 J D2 | D1 | Do |

Vo
vi*
\Z4

Vs Interrupt

V4 Vector

V5

V6

v7

« Variable If *Status Affects Vector" Is Programed

Figure 7-11. Read Register 2 (Channel B Only)

E7-12

N 2La5

SIO USER’'S MANUAL

CHAPTER 8

APPLICATIONS

8.0 INTRODUCTION

The flexibility and versatility of the Z80-SIO make it useful
for numerous applications, a few of which are included
here. These examples show several applications that
combine the Z80-SIO with other members of the Z80
family.

Figure 8-1 shows simple processor-to-processor commu-
nication over a direct line. Both remote processors in this
system can communicate to the Z80-CPU with different
protocols and data rates. Depending on the complexity of
the application, other Z80 peripheral circuits (Z80-CTC, for
example) may be required. The unused channel of the
Z80-SI0 can be used to control other peripherals or they
can be connected to other remote processors.

Figure 8-2 illustrates how both channels of a single Z80-
SIO are used with modems that have primary and second-
ary, or reverse channel options. Alternatively, two modems
without these options can be connected to the Z80-SIO. A
suitable baud-rate generator (Z80-CTC) must be used for
asynchronous modems.

Figure 8-3 shows the Z80-SIO in a data concentrator, a
relatively complex application that uses two Z80-SIOs to
perform a variety of functions. The data concentrator can
be used to collect data from many terminals over low-

speed lines and transmit it over a single high-speed line
after editing and reformatting.

The Z80-DMA controller circuit is used with Z80-SI0/2 to
transmit the reformatted data at high speed with the
required protocol. The high-speed modem provides the
transmit clock for this channel. The Z80-CTC counter-timer
circuit supplies the transmit and receive clocks for the low-
speed lines and is also used as a time-out counter for
various functions.

Z80-SI0/1 controls local or remote terminals. A single
intelligent terminal is shown within the dashed lines. The
terminal employs a Z80-SIO to communicate to the data
concentrator on one channel while providing the interface
to a line printer over its second channel. The intelligent
terminal shown could be designed to operate interactively
with the operator.

Depending on the software and hardware capabilities built
into this system, the data concentrator can employ store-
and-forward or hold-and-forward methods for regulating
information traffic between slow terminals and the high-
speed remote processor, If the high-speed channel is
provided with a dial-out option, the channel can be con-
nected to a number of remote processors over a switched
line.

E8-1

. 260°® SI0
@ <Lan , USER'S MANUAL

RSXYZ
0 280 280
i — <>
Receivers Sio CPU

. RSXYZ
&K= #® K i
CcPU sio Receivers

I
5
[

RSXYZ
ovay (> B KT &
Receivers

Figure 8-1. Synchronous/Asynchronous Processor-to-Processor
Communication (Direct Wire to Two Remote Locations)

Primary
Channel
L) — <——>
280 280 RS 232 Modem Data Link
cPU <:> sio Driver/ (SYNCor |— 1o Remote
Receiver ASYNC) Processor
O] — <—>
Secondary
Channel

Figure 8-2. Synchronous/Asynchronous Processor-to-Processor
Communication (Using Telephone Line)

E8-2

€-83

L

System Bus
(mm@mmu)

RS 232
Drivers/

Intefligent
Terminal

)

L

_

Line
Printer

$I0 Clock
ralor

Drivers/ :
Receivers '
: 280
§ Teminal
H Bus
Gene
and Time Out
Counters
) i

e e | | | | |
Y A RS 222
Drivers/
Ch.A<:> Receivers : {}
<D sow
Ch.B K > Communications Link
RDY ﬁs'm;ﬂgl <___> Hmd £ - To Remote Processor
{SDLC Protocol)
Y
RDY

Figure 8-3. Data Concentrator

N2

TVANVIN S H3sn
0IS +082

SI0 USER'S MANUAL
N 2L

CHAPTER 9

TIMING
9.0 READ CYCLE
The timing signals generated by a Z80-CPU input instruc-
tion to read a Data or Status byte from the Z80-SIO are
illustrated in Figure 9-1.
T T2 ™ T3 T

@ &\ H
/CE \>x / Channel Address

(L;\

/RD \g\

M1

1
p—

Figure 9-1. Read Cycle Timing

E9-1

N 2iLa5

280°® SI0
USER’'S MANUAL

9.1 WRITE CYCLE

Figure 9-2illustrates thetiming and data signals generated
by a Z80-CPU output instruction to write a Data or Control
byte into the Z80-SIO.

T1 T2 W

T3 T

il

ICE \>x / Channel Address

[
/IORQ =\

/RD \

M1

Data L in

Figure 9-2. Write Cycle Timing

ES-2

QA 20La5

280® SI0
USER'S MANUAL

9.2 INTERRUPT ACKNOWLEDGE CYCLE

After receiving an Interrupt Request signal (/INT pulled
Low), the Z80-CPU sends an Interrupt Acknowledge sig-
nal (/M1 and /IORQ both Low). The daisy-chained interrupt
circuits determine the highest priority intertupt requestor.
The IEl of the highest priority peripheral is terminated High.
For any peripheral that has no interrupt pending or under
service, IEO = IElL. Any peripheral that does have an
interrupt pending or under service forces its IEO Low.

T T2

To insure stable conditions in the daisy chain, all interrupt
status signals are prevented from changing while mi is
Low. When /IORQ is Low, the highest priority interrupt
requestor (the one with |EI High) places its interrupt vector
onthe data bus and sets its internal interrupt-underservice
latch (Figure 9-3).

w T3 T4

e | L1 |

Iwillllll_

M1 \

/I0RQ __/—
/RD
R N\

Figure 9-3. Interrupt Acknowledge Cycle Timing

E9-3

QA 2La5

Z80°® SI0
USER'S MANUAL

9.3 RETURN FROM INTERRUPT CYCLE

Normally, the Z80-CPU issues a RETI (RETurn from Inter-
rupt) instruction at the end of an interrupt service routine.
RETI is a 2-byte opcode (ED-4D) that resets the interrupt-
underservice latch to terminate the interrupt that has just
been processed. This is accomplished by manipulating
the daisy chain in the following way.

The normal daisy chain opetation can be used to detecta
pending interrupt; however, it cannot distinguish between
an interrupt under service and a pending unacknowl-
edged interrupt of a higher priority. Whenever “ED” is
decoded, the daisy chain is modified by forcing High the
IEO of any interrupt that has not yet been acknowledged.

T T2 T3 T4

Thus the daisy chain identifies the device presently under
service as the only one with an IEl High and an IEO Low.
If the next opcode byte is “4D,” the interrupt-underservice
latch is reset (Figure 9-4).

The Tipple time of the interrupt daisy chain (both the High-
to-Low and the Low-to-High transitions) limits the number
of devices that can be placed in the daisy chain. Ripple
time can be improved with carry-lookahead, or by extend-
ing the interrupt acknowledge cycle. For further informa-
tion about techniques for increasing the number of daisy-
chained devices, refer to Zilog Application Note 03-0041
-01 (The Z80 Family Program Interrupt Structure).

T T2 T3 T4 T1

M1 \ / \ /
TN

{ 4)

N/

IEI
IEO

—

Figure 9-4. Return From Interrupt Cycle Timing

9.4 DAISY CHAIN INTERRUPT NESTING

Figure 9-5 illustrates the daisy chain configuration of
interrupt circuits and their behavior with nested interrupts
(an interrupt that is interrupted by another with a higher

priority).

Each box in the illustration could be a separate external
780 peripheral circuit with a user-defined order of interrupt
priorities. However, a similar daisy chain structure also
exists inside the Z80-SIO, which has six interrupt levels
with a fixed order of priorities.

The case illustrated occurs when the transmitter of Chan-
nel B interrupts and is granted service. While this interrupt
is being serviced, it is interrupted by a higher priority
interrupt from Channel A. The second interrupt is serviced
and-upon completion-a RETI instruction is executed or a
RETI command is written into the Z80-SIO, resetting the
interrupt-under-service latch of the Channel A interrupt. At
this time, the service routine for Channel B is resumed.
When itis completed, another RETI instruction is executed
to complete the interrupt service.

E9-4

. 260°S10
A 2iLas USER'S MANUAL

Chanel A Chanel A Chanel A Chanel B Chanel B Chanel B
Receiver Tansmitter Extemal Status Receiver Tansmitter External Status
+
| High High High High High High High
IEI IEO IEI IEO IEl IEO IEl IEO IEl IEQ IEI IEOQ f—-—r

1. Priority Interrupt Daisy Chain Before Any Interrupt Occurs.

Under Service

+
| High High High High High
IEl IEO IE! IEO IEl IEO IEl IEO IE) IEO IEl IEO
Low Low
2. Channel B Transmitter Interrupts and is Acknowledged.
+ Service Suspended
| High High High High High
IEl IEO IEl IEO IEl IEO IEl IEO IEI IEO EI IEO
Low Low
3. External/Status of Channel A Interrupts Suspending Service of Channel B Transmitter.
+ Service Resumed
I High High High High High
El IEO IEl IEO 1] IEO IEl IEO IEl IEO El IEO |
Low Low
4, Channel A External/Status Routine Complete, RETI Issued, Channel B Transmitter Service Resumed.
+ Service Completed
| High High High High High High High
IEI IEO IE! IEO IE! IEO IEl IEO IEl IEO IE! IEQ |——

5. Channel B Transmitter Service Routine Complete, Second RETI Issued.

Figure 9-5. Typical Interrupt Service

E9-5

N 2iLas

280°CPU
Central Processing Unit

280° CTC
Counter/Timer Circuit

280° DMA
Direct Memory Access

Z80° P10
Parallel Input/Output

280° SI0
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

RN SiLS

- . Y] H
Fax/Modem Superintegration™ Products Guide
Data Pump Single Chip Controllers
g'PCk DSP 28 | bsp 8 | Dsp pio | C8C 2410 20MA
lagram 4K WORD
° 512 RAM[4K ROM| | [&3 | *abone Ao 1 wor U P o [208T
16-BIT MAC 256 BYTES|512 WoRD| | |256 BvTes|s1zworo| | [SI10 [e (2 CH) | MIMIC i ET ESCC
RAM RAM RAM RAM
DATA RAM 8-Bit 10-Bit 8-BIT 10-BIT 780 CPU GrSer
1/0 1/0 AD D/A AD D/A $180 mmu| osc
Part # 289C00 289120 289920 284C15 280182 280180 285230
Description 16-Bit Digital Signal Zilog Modem/Fax Zilog Modem/Fax IPC/EIPC Controller | Zilog Intefligent High-performance Enhanced Serial
Processor Controller (ZMFC) Controller (ZMFC) Peripheral (ZIP™) 280* CPU with Com. Controller
peripherals
Process/Speed | cMm0S 10,15 MKz CMOS 20 MHz CMOS 20 MHz CMO0S6, 10,16 MHz | CMOS 16,20 MHz 6,8, 10,16, 20 CM0S8, 10,16, 20 MHz
285180 only
Features 16-bit Mac 75 ns 28® controller 78 w/64K external memory | Z80® CPU, SI0, CTC Complete Static Version | Enhanced Z80® CPU Full dual-channel
! } 2 dala RAMs with 24 Kbyte ROM DSP w/4K word ROM WDT, CGC of Z180™plus ESCC MMU 1 Mbyte SCC plus deeper
(256 words each) 16-bit DSP with 8-bit AD The 280 Family in (2 channels of Z85230) 2 DMAs FIFOs:
4K word ROM 4K word ROM 10-bil D/A one device 16550 MIMIC 2 UARTs 4 bytes on Tx
64Kx16 Ext. ROM 8-bit AD Library of macros Power-On Reset 24 Parallel /0 with BRGs 8 bytes on Rx
16-bit)/Q Port 10-bit D/A (PWM) 47 1/0 pins Two chip selecls Emulation Modes® C/Serial /0 Port DPLL counter per
74 instructions Library of software Two comparators 32-bit CRC Oscillator channel
Most single cycle macros available Independent Z8% and WSG 285180 includes;, Software compatible
Two conditional branch 47 1/0 pins DSP Operations EV mode' Pwr dwn, Prgmble to SCC
inputs, two user outputs | Two comparators Power-Down Mode 3and 5 Volt Version EMI, divide-by-one
Library of software Independent Z8® and clock option
macros available DSP Operations
zero overhead pointers Power-Down Mode
Package 68-pin PLCC 68-pin PLCC 68-pin PLCC 100-pin QFP 100-pin QFP 64-pin DIP 40-pin DIP
60-pin VQFP 100-pin VQFP 100-pin VQFP 68-pin PLCC 44-pin PLCC
80-pin QFP
Other 16-bit Multimedia-Audio Multimedia-Audio Intelligent peripheral General-Purpose Embedded Control General-Purpose
Applications General-Purpose DSP Voicemail Voicemail controllers Embedded Control datacom.
TMS 32010/20/25 Speech Storage and Speech Storage and Modems Modem, Fax, High performance
applications Mga%’:;g“ss"’" Mgéi’g's‘“ss‘m Data Communications SCC software

FAXes, Sonabouys

FAXes, Sonabouys

compalible upgrade

N 205 Mass Storage

Superintegration™ Products Guide

88-BIT SRAM/
Block TART 8K PROM] UART DSP MULT[DIV]UART] | [MuLt [0 [uare RS | DRAM
Diagram 512 RAM]4K ROM CPU | DSP ECC CTRL
CPU_| 0sC cPu sk CPU_| OSC TR R
256 RAM [CLOCK 256 RAM ia T ra] | 1258 RAM [cLock ac | sPi K [ey Host
NEIRENRGERE) po[P1{pP2]P3] || P2 P3Tat50 FACE | FACE | "FaCE
Part # 286C91/28691 Z86E21 283C00 786C93 286C95 286018
Description ROMless Z8® 78® 8K OTP 16-Bit Digital Signal Enhanced 28° Enhanced Z8® with DSP Zilog Datapath Controller (ZDPC)
Processor
Process/Speed | CMOS16 MHz (C91) CMO0S 12,16 MHz CMOS 10, 15 MHz CM0S 20,25 MHz CMOS 24 MHz CMOS 40 MH2
NMOS 12 MHz (91)
Features Full duplex UART 8K OTP ROM 16-bit Mac 75 ns 16x16 Multiply 1.7 ps 8 channel Full track read
2 Standby Modes 256 Byte RAM 2 data RAMs 32x16 Divide 2.0 8-bit ADC, 8-bit DAC Automatic data transfer (Point & Go®)
(STOP and HALT) Full-duplex UART (256 words each) Full duplex UART 16-bit Multiply/Divide 88-bit Reed Solomon ECC "on the fly*
2x8 bit 2 Standby Modes 4K word ROM 2 Slandby Modes Full duplex UART Full AT/IDE bus interface
Counter/Timer (STOP and HALT) 64Kx16 Exl. ROM (STOP and HALT) SPI (Serial Peripheral 64 KB SRAM butfer
2 Counter/Timers 16-bit I/0 Port 3 16-bit Counter/Timers Interface) 1 MB DRAM butfer
ROM Protect option 74 instructions Pin compatible to 3 Standby Modes Split data field support
RAM Protect option Most single cycle 286C91 (PDIP) (STOP/HALT/PAUSE) 100-pin VQFP package
Low EMI option Two condilional branch Pulse Width Modulator JTAG boundary scan option
inputs, two user outputs 3x16-bit timer Up to 8 KB buffer RAM
Library of software 16-bit DSP slave processor reserved for MCU
macros available B3 ns Mult./Accum.
zero overhead pointers
Package 40-pin DIP 40-pin DIP 68-pin PLCC 40-pin DIP 80-pin QFP 100-pin VOFP
44-pin PLCC 44-pin PLCC 60-pin VQFP 44-pin PLCC 84-pin PLCC 100-pin QFP
44-pin QFP 44-pin QFP 44-pin QFP 100-pin VQFP
48-pin VQFP
Application Disk Drives Software Debug Disk Drives Disk Drives Disk Drives Hard Disk Drives
Medems 8% protolyping Tape Drives Tape Drives Tape Drives
Tape Drives 28® production runs Servo Control Modems Servo Control
Card Reader Motor Control Motor Control

N 2jLE5 Ttelephone Answering Devices

Superintegration™ Products Guide

Block

: ROM 4K ROM 78 DSP 78 DSP 78 DSP 8 DSP 8 DSP
Diagram UART © (py CPU 24K~ | 4K 2akRoM*| 6k Rom || | sexrom | ekrom || [2akrom+[8K Rom 32KROM| BKROM
CO?J?\I?ER/: ROM | ROM RAM PORT | CODEC INTE|] | RAM PORT [CODEC INTF) | | RaM PORT | CODEC INTE] RAM PORT | CODEC INTF
TIMERS l RAM || [WoT I 2%6 RAM] P AD | DA L I pwM (1] M | PwmM aeaM . [conec NTE[| | o RAM... |copec IvTF
PofP1]P2[P3 P2 F P3| Po 31°/47 DIGITAL I/0 27/43 DIGITAL 1/0 43 DIGITAL 1/0 27+/43 DIGITAL /0 27°/43 DIGITAL 1/0
Part # 208600/208611 Z86C30/E30 289C65/C66 289C67/C68 289C69 2891671168 289169
Z86C40/E40
Description 78® NMOS 78® Consumer Controller | Telephone Answering Telephone Answering Telephone Answering Enhanced telephone Enhanced telephone
(CCP™ Processor (CCP™ Controller with DSP Controller with digilal Controller with digital answering conlroller with answering controller with
8600 = 2K ROM wilh 4K ROM LPC voice synthesis voice encode and decode | voice encode and decode | digilal voice encode and | digital voice encode and
8611 = 4K ROM €30 = 28-pin and DTMF detection, DTMF detection and full | DTMF detection and full | decode DTMF detection and] decode DTMF detection and
€40 = 40-pin . External ROM memory control interface. | memory control interface | full memory controller intfc. | full memory controller
E30/R40 = OTP version | pan nvertace (CB6) | Ext. ROM/RAM Infc. (CS8) ext. ROM/RAM inlfc. (168) | intertace
Process/Speed NMOS 8,12 MHz CMOS 12 MHz CMOS 20 MHz CMOS 20 MHz CMOS 20 MHz CMOS 24 MHz CMOS 24 MHz
Features 2K/4K ROM 4K ROM, 236 RAM 28® Controller 28® Controller 28® Controller 28¢® Controller 28 Controller
128 Bytes RAM 2 Standby Modes 24K ROM (C65) 24K ROM (C67) 32K ROM 24K ROM (167) 32K ROM
22/32 110 lines 2 Counter/Timers 16-bit DSP 16-bit DSP 16-bit DSP 16-bit DSP 16-bit DSP
On-chip oscillator ROM Protect 4K Word ROM 6K Word ROM 6K Word ROM 8K Word ROM 8K Word ROM
2 Counter/Timers RAM Protect 8-bit A/D with AGC DTMF macro available DTMF macro available DTMF Macro available DTMF Macro available
6 vectored, priority 4 Ports (86C40/E40) DTMF macro available LPC macro available LPC macro available LPC Macro available LPC Macro available
interrupts 3 Ports (86C30/E30) LPC macro available 10-bit PWM D/A 10-bit PWM D/A 10-bit PWM D/A 10-bit PWM D/A
UART (Z8611) Brown-Qut Protection 10-bit PWM D/A Other DSP S/W opt. avail.] Other DSP software QOther DSP software Other DSP software

2 Analog Comparators Other DSP software ARAM/DRAM/ROM options available oplions available options available

Low EMI options available Controller & Interface | ARAM/DRAM/ROM ARAM/DRAM/ROM ARAM/DRAM/ROM

Watch-Dog Timer 471/0 Pins (C65) Dual Codec Interface Controller & Interface | Dual Codec Interface Dual Codec Intertace

Auto Power-On Reset * = Note 289C66 is ROMiess | 43 1/0 (C67) Dual Codec Interface 431/0 (167) 4310

Low Power option (Z8) with 31 1/0 pins. * = Note Z89C68 is ROMIess | 43 1/0 * = Note 289168 is ROMIess

(28) with 27 1/0 pins (28) with 27 1/0 pins.

Package 28-pin DIP 28-pin DIP 68-pin PLCC 84-pin PLCC 84-pin PLCC 84-pin PLCC 84-pin PLCC
40-pin DIP 40-pin DIP 80-pin QFP 80-pin QFP
44-pin PLCC 44-pin PLCC, QFP

Application Low cost tape board Cordless Phone Fully featured cassette | Voice Processing, Voice Processing, Voice Processing, Voice Processing,

TAD answering machines DSP applications in DSP applications in DSP applications in DSP applications in
with voice prompls tapeless TAD and other | tapeless TAD and other tapeless TAD and other tapeless TAD and other
and DTMF signaling high-performance high-performance high-performance high-performance

Digilal 0GM available voice processors VOICE Processors VOiCe Processors VOiCe processors

N 25

Video Products

Superintegration™ Products Guide

TV Controller IR Controller Cable TV
Block 8K ROM 6K ROM CHAR ROM 1K/6K ROM 2K/BK/16K ROM 4K ROM 16K ROM | UART
Diagram 4K CHAR ROM 3K CHAR ROM COMMAND C 28 CPU
Z8CPU CPU CPU | 236 RAM
78 CPU_ | RAM Z8CPU_ | RAM INTERPRETER 128,256,
R 555 maroc | o[[_wor_|r2amam ||| WoT zegan [fworfoss malpt ||| po | b1 | po
TIMER| 5 ER| 3 SYNC/DATA
pi| WOT lpoms mﬂﬂWm lPoms SLICER | CTAL P2 P3 poJpr{ 2] pa]|| P2 | P3| Po || ps[ra[ps]ps
Part # 286C27127/97 286227 786128 286L06/L.29 (Z()ﬂﬁglg)ﬂlﬂ 12 786C40/E40 286C61/62
1
Description 78¢ Digital Television Standard DTC features | Line 21 Controller 18-pin Z8® Consumer | Z8® (CCP™ low-voltage | Z8® Consumer Controller | Z8® MCU with
Controller MCU with with reduced ROM, (L21C™ for Controller Processor parts that have more Processor (CCP™ Expanded 1/0's
logic functions needed RAM, PWM outpuls Closed Caption (CCP™} low-voltage and | ROM, RAM and special wilh 4K ROM (C40) | and 16K ROM
for Television Controller, | for greater economy Television low-current battery Counter/Timers for £40 = OTP version
VCRs and Cable operation automated oulput
1K-6K ROM drive capabilities
Process/Speed CMOS 4 MHz CMOS 4 MHz CMOS 12 MHz Low Voltage CMOS 8 MHz | Low Vollage CMOS 8 MHz | CMOS 12 MHz CMOS 16, 20 MHz
Features 28/DTC Architecture 28/DTC Architecture Conforms to FCC 28® Architecture Z8¢ Architecture 4K ROM, 236 RAM 16K ROM
8K ROM, 256-byte RAM | 6K ROM, 256-byte RAM Line 21 format 1K ROM & 6K ROM 2K/BK/16K ROM 2 Standby Modes Full duplex UART
160x7-bit video RAM 623%‘7‘“‘ V'dg" RAM Parallel or serial modes | Watch-Dog Timer Waich-Dog Timer 2 Counter/Timers 2 Standby Modes
O%SSC[I)?\?idDeﬁ%gxlroﬂer Prog r?a'r‘n?l?:l;!e color Stand-alone operation 2 Aqalog Compara_lors 2 Anglog Compargtovs ROM Protect (STOP aqd HALT)
Programmable color, size size, position altributes | On-board data sync with output option wilh output option RAM Protect 2 Counter/T imers
posilion attributes” | 7 PWMs and slicer 2 Standby Modes 2 Slandby Modes 4 Porls ROM Protect option
13 PWMs for D/A 96-character set On-board character 2 Counter/Timers 2 Enhanced Counler/ Brown-Out Protection RAM Prolect oplion
conversion 3Kx6-bit character generalor Auto Power-On Reset Timers, Auto Pulse 2 Analog Comparators Pin compatible lo
128-character set generator ROM - Color 2 volt operation Reception/Generation | Low EMI 286C21
4KxB-bit char. Gen. ROM | Watch-Dog Timer (WDT) | _ Blinking RC OSC option Auto Power-On Reset Watch-Dog Timer C61 =4 Ports
Watch-Dog Timer (WDT) | Brown-Out Protection ali Low Noise option 2 volt operation Auto Power-On Reset C62 =7 Porls
Brown-Qut Protection :25 g?"%’go &'“g Ui"'femn . Brown-Out Protection RC 0SC option Low Power option
g g&'ﬂﬁ/gf&ﬁes LowaEMI]‘\dogees High current drivers (2, 4) | Brown-Oul Protection
Low EMI Mode High current drivers (4)
Package 64-pin DIP 40-pin DIP 18-pin DIP 18-pin DIP 20-pin DIP (L71), 40-pin DIP 40-pin DIP (C61)
52-pin active (127) 18-pin SOIC 18-pin DIP, SOIC (L70) 44-pin PLCC,QFP (C61)
40,44-pin DIP, PLCC, QFP 68-pin PLCC (C62)
L72)
Application Low-end Television Low-end Television TVs, VCRs, Decoders IR. Controller R, Controller Window Control Cable Television
Cable/Satellite Receiver Cable/Satellite Receiver Portable battery Portable battery Wiper Control Remote Control
operalions operations Sunroof Control Security

Securily Systems
TAD

n \ad
. . . . N .
@ ZIL__L: Datacommunications Superintegration™ Products Guide
[4
Block v pio | €GO cT1C 2410
Diagram —_wot SCC/2 85230 16550 usc/2
9) 16 10| @5€302)| | | EScc | mimic uscr2
scc ESCC DMAIDMADMAIDMA CTe (2 CH) usc
BIU 280 CPU 7180 180 TSA DMA | DMA
Part # 78030/280C30 | 285230/280230 | 216C35 284C15 280181 280182 216C30 Z16C33 216C32
28530/Z85C30 | 285233*
Description | Serial Com. Enhanced Serial Integrated Serial Intelligent Peripheral | Smart Access Zilog Intelligent | Universal Serial Mono-channel Integrated Universal
Controller Com. Controller Com. Controller Controller Controller Peripheral Contraller Universal Serial Serial Controller
Controller
Process/ NMOS: 4, 6, 8 MHZ | CMOS: 10, 16 CMOS: 10,16 MHz {CMOS 6, 10,16 MHz [10,12.5 CMOS CMOS: 20 MHz CMOS: 10 MHz CM0S:20 MHz
Speed / CMO0S: 8,10 20 MHz 25,40 Mb/s 16, 20 MHz CPU Bus CPU Bus CPU Bus
Clock 16 MHz 2.5, 4.0, 5.0 Mb/s 10 Mb/s 10 Mb/s 16 Mb/s
2,25, 4Mb/s 20 Mb/s 20 Mbys
Data Rate
Features Two independent | Full dual-channel Full dual-channel 280® CPU, SIO, CTC | Complete Z180™ Complete Static Two dual-channel Single-channel Single-channe!
full-duplex SCC plus deeper SCC plus 4 DMA WDT, CGC plus SCC/2 version of 2180 32-byte receive & | (hall of USC™) plus | (half of USC)
channels FIFOs: controllersand | The 280 Family in cre plus ESCC transmit FIFOs TimeSlot plus two DMA
Enhanced DMA 4 byles on Tx abus interface one device 16 1/0 lines (2 channels of 16-bit bus B/W: Assigner funclions | controliers
support: 8 bytes on Rx unit Power-On Reset Emulation Mode! 85230) 18.2 Mb/s for ISDN Array chained and
10x19 status FIFO | DPLL counter per Two chip selects 16550 MIMIC 2 BRGs per channel linked-list modes
14-bit byte counter | channel 32-bit CRC 24 Parallel I1/0 Flexible 8/16-bit with ring buffer
NRZ/NRZI/FM Software compatible WSG Emulation Mode' bus interlace support
to SCC EV mode'
*One channel of 3and 5 Volt Version
285230
Package 40-pin DIP 40-pin DIP 68-pin PLCC 100-pin QFP 100-pin QFP 100-pin QFP 68-pin PLCC 68-pin PLCC 68-pin PLCC
44-pin CERDIP 44-pin PLCC 100-pin VQFP 100-pin VQFP
44-pin PLCC *44-pin QFP (85233)
Application | General-Purpose | General-Purpose High performance | Inlelligent peripheral | Intelligent peripheral | General-Purpose | General-Purpose General-Purpose General-Purpose
dalacom. datacom. datacom. controllers controllers Embedded Contro! high-end datacom.| high-end dalacom. | high-end datacom.
High performance | SCC upgrades Modems Printers, Faxes, Modem, Fax, Ethernet Ethernet Ethernet
SCC software Modems, Terminals | Data Communica- | HDLC HDLC HDLC
lions X.25 X.25 X.25
Frame Relay Frame Relay Frame Relay

AppleTalk® A Registered Trademark of Apple Compuler, Inc

280 Embedded Controllers

Superintegration™ Products Guide

Block

) 2 DMA 16-8T | 0SC
Diagram o 4010 280 410
84(:(.;.)(:} . cTC cre | csc PIO 250 2 UART CPY 4DMA cTC
280/Z-BUS SCCr2 852301 16550
0SC S0 wot c1c | woT | [FePu 5 orr | | Iinterrace] YA (85¢3072)| || ESCC | MIMIC
PWR. DOWN PIO SI0 | wDT SIo cTC w1 sor 16 /0| (2 CH)
2K BYTES| wsa 280 CPU Sl
SRAM r—osc PIA 280 CPU 280 CPU mmul osc cAcHE | wse 2180 $180
Part # 284C50 284C90 284013/C13 284015/C15 284011/C11 801 30/81 80 |Z80280 280181 280182
Description | z80/84C01 with Killer /0 Intelligent Peripheral |Intelligent Peripheral | Parallel I/0 High-performance | 16-bitZ80®code | Smart Access Zilog Intelligent
2K SRAM (3 280 peripherals) | Controller Controller Controller 280® CPU with compatible CPU Controller Peripheral
peripherals with peripherals
Speed MHz |10 8,10,125 6,10 6,10,16 6,10 6,8,10,16%,20° | 10,12 10,125 16,20
“£85180 only
Features 780® CPU SI0, Pig, CTC 280® CPU, SI0, CTC | Z80® CPU, SI0, CTC | Z80® CPU, CTC, Enhanced 280 CPU | 16-bit code com- Complete 2180 Complete Static
2 Kbytes SRAM plus 8 /0 lines WDT, CGC, WSG, | WDT, CGC WDT MMU 1 Mbyle patible Z80® CPU | plus SCC/2 Version
WSG Power-On Reset | The Z80 Familyin | 40 1/0 lines bit 2DMAs Three stage pipeline | CTC of 2180™plus ESCC
Oscillator 2 chip selecls one device programmable 2 UARTs MMU 16 Mbyle 16 1/0 lines {2 channels of
Pin fﬂ?ﬁ:ﬁ%ﬁ EV mode’ Power-On Reset | Power-On Reset wilh BRGs CACHE&?% byle | Emulation Mode' | 285230)
P e mo Two chip selects | EV mode" C/Seral yOPor 1t & Dala 16550 MIMIC
£V made! 32-bit CRC Osciltator O MU ART 24 Parallel /0
84C01 is available WSG 285180 includes; 316:bit C/T, Emulation Modes
EV mode' Pwr dwn, Prgmble
as a separale part WSG
EMI, divide-by-one | 780/7-BUS® interface
clock option
JPackage 40-pin DIP 84-pin PLCC 84-pin PLCC 100-pin OFP 100-pin QFP 64-pin DIP 68-pin PLCC 100-pin QFP 100-pin QFP
44-pin PLCC 100-pin VQFP 68-pin PLCC 100-pin VQFP
44-pin QFP 80-pin QFP
Application | Embedded General-purpose | Inteltigent datacom | Intelligent peripheral | Intelligent parallel- | Embedded Control { Embedded Control | Intelligent peripheral | General-Purpose
Controllers peripheral that controllers controllers 1/0 controllers Terminals conlrollers Embedded Control
can be used with Modems Industrial display Printers Printers, Faxes, Modem, Fax,
é%(h and other terminals Modems, Terminals | Data Communications
'S

' Allows use of existing development syslams.

LS

@ ZII_QG Peripherals

Superintegration™ Products Guide

28036 Z32H00 25380 185C80
28536 753C80
Description | Counter/Timer & parallel /0 Unit Hyperstone Small Computer System Interface Serial Communication Controller
(Cl0) Enhanced Fast Instruction (SCSI) and Small Computer System
Set Computer (EFISC) Interface
Embedded (RISC) Processor
Process/ NMOS 4,6 MHz CMOS 25 MHz CMOS CMO0S
Speed 25380: 1.5 MB/s SCC-10, 16 MHz
753C80: 3.0 MB/s SCSI - 3.0MB/s
Features Three 16-bit 32-bit MPU ANS| X3.131-1986 Full dual-channel SCC plus
Counter/Timers, 4 Gbytes address space Direct SCSI bus interface SCS! sharing databus and
Three I/0 ports 19 global and 64 local On-board 48 mA drivers read/write functions
with bit catching, registers of 32 bits each Normal or Block mode DMA transfers
paltern matching 128 bytes instruction cache Bus interface, target and initiator
interrupts and 1.2uCMOS
handshake /0 42 mm?die
Package 40-pin PDIP 144-pin PGA 75380: 40-pin DIP 68-pin PLCC
44-pin PLCC 132-pin QFP 44-pin PLCC
253C80: 48-pin DIP
44-pin PLCC
Application | General-Purpose Embedded Bus host adaplers, AppleTalk®
Counter/Timers high-performance formatters, host ports networking
and 1/0 system industrial controller SCS! disk drives
designs Workstations

_
?Software and hardware compalible with discrele devices.

N 2iLas

280°CPU

Gentral Processing Unit

280° CTC
Counter/Timer Gircuit

280° DMA
Direct Memory Access

Z80° PIO
Parallel Input/OQutput

280° S10
Serial Input/Output

Superintegration™
Products Guide

Zilog's Literature Guide
Ordering Information

N 2iLa5 _LITERATURE GUIDE

Z8*/SUPER8™ MICROCONTROLLER FAMILY

Databooks Part No Unit Cost
28 Microcontrollers Databook (Includes the following documents) DC-8275-04 5.00
28 CMOS Microcontrollers Peripheral Products
286C00/C10/C20 MCU QTP Product Specification 186128 Closed-Captioned Controller Adv. Info. Specification
28606 28 CCP™ Preliminary Product Specification Z765A Floppy Disk Controller Product Specification
286C08 8-Bit MCU Product Specification 75380 SCSI Product Specification
Z86E08 28 OTP MCU Product Specification Z53C80 SCSI Advance Information Specification
786C09/19 28 CCP Product Specification
Z86E19 28 OTP MCU Advance Information Specification Z8 Application Notes and Technical Articles
786C11 28 MCU Product Specification Zilog Family On-Chip Oscillator Design
286C12 28 ICE Product Specification Z86E21 Z8 Low Cost Thermal Printer
286C21 28 MCU Product Specification 8 Applications for I/0 Port Expansions
786E21/286E22 OTP Product Specification 786C09/19 Low Cost Z8 MCU Emulator
286C30 Z8 CCP Product Specification 28602 Controls A 101/102 PC/Keyboard
Z86E30 28 OTP CCP Product Specification The Z8 MCU Dual Analog Comparator
286C40 28 CCP Product Specification The Z8 MCU In Telephone Answering Systems
Z86E40 28 OTP CCP Product Specification 28 Subroutine Library
286C27/97 78 DTC™ Product Specification A Comparison of MCU Units
786127 Low-Cost Digital Television Controller Adv. Info. Spec. 786xx Interrupt Request Registers
286C50 28 CCP ICE Advance Information Specification Z8 Family Framing
286C61 28 MCU Advance Information Specification A Programmer’s Guide to the Z8 MCU
786C62 Z8 MCU Advance Information Specification Memory Space and Register Organization
286C89/C30 CMOS 28 CCP Product Specification
786C91 Z8 ROMIess MCU Product Specification Super8 Application Notes and Technical Articles
786C93 28 ROMIess MCU Preliminary Product Specification Getting Started with the Zilog Super8
786C94 28 ROMIess MCU Product Specification Polled Async Serial Operations with the Super8
28696 Z8 ROMIess MCU Advance Information Specification Using the Super8 Interrupt Driven Communications
288C00 CMOS Super8 MCU Advance Information Specification Using the Super8 Serial Port with DMA
Generating Sine Waves with Super8
28 NMOS Microcontrollers Generating DTMF Tones with Super8
78600 Z8 MCU Product Specification A Simple Serial Parallel Converter Using the Super8
78601/03/11/13 Z8 MCU Product Specification
78602 8-Bit Keyboard Controller Prelimirary Product Spec. Additional Informatien
78604 8-Bit MCU Product Specification 28 Support Products
78612 Z8 ICE Product Specification Zilog Quality and Reliability Report
78671 Z8 MCU With BASIC/Debug Interpreter Product Spec. Literature List
78681/82 Z8 MCU ROMless Product Specification Package Information
78691 Z8 MCU ROMless Product Specification Ordering Information

78800/01/20/22 Super8 ROMIess/ROM Product Specification

L-1

N 2iLa5 LITERATURE GUIDE

Z8°/SUPER8™ MICROCONTROLLER FAMILY (Continued)

Databooks By Market Niche Part No

Unit Cost

Digital Signal Processor Databook (includes the following documents) DC-8299-03
286C95 28 Digital Signal Processor Preliminary Product Specification
789C00 16-Bit Digital Signal Processor Preliminary Product Specification
289C00 DSP Application Note *Understanding Q15 Two's Complement Fractional Multiplication®
789120, 789920 (ROMIess) 16-Bit Mixed Signal Processor Preliminary Product Specification
789121, 789921 (ROMIess) 16-Bit Mixed Signal Processor Preliminary Product Specification
789320 16-Bit Digital Signal Processor Preliminary Product Specification
789321 16-Bit Digital Signal Processor Advance Information Specification

Telephone Answering Device Databook (includes the following documents) DC-8300-02
789C65, Z89C66 (ROMIess) Dual Processor T.A.M. Controller Preliminary Product Specification
789C67, 289C68/C69 (ROMIess) Dual Processor Tapeless T.A.M. Controller Preliminary Product Specification
289C65 Software Development Guide
289C67/C69 Software Development Guide

Infrared Remote (IR) Control Databook (includes the following documents) DC-8301-03
286106 Low Voltage CMOS Consumer Controller Processor Preliminary Product Specification
286129 6K Infrared (IR) Remote (ZIRC™) Controller Advance Information Specification
Z86L70/L71/L72, Z86E72 Zilog IR (ZIRC™) CCP™ Controller Family Preliminary Product Specification

28 Microcontrollers (includes the following documents) DC-8305-02
286C07 CMOS Z8 8-Bit Micracontroller Product Specification
786C08 CMOS Z8 8-Bit Micracontroller Product Specification
Z86E08 CMOS Z8 8-Bit OTP Microcontroller Product Specification
286C11 CMOS Z8 Microcontroller Product Specification
286C12 CMOS 28 In-Circuit Microcontroller Emulator Product Specification
286C21 8K ROM Z8 CMOS Microcontroller Product Specification
Z86E21 CMOS Z8 8K OTP Microcontroller Product Specification
286C61/62/96 CMOS Z8 Microcontroller Product Specification
286C63/64 32K ROM Z8 CMOS Microcontroller Product Specification
Z86C91 CMOS Z8 ROMIess Microcontroller Product Specification
786C93 CMOS Z8 Multiply/Divide Microcontroller Product Specification

Mass Storage (includes the following documents) DC-8303-00
286C21 8K ROM Z8 CMOS Microcontroller Product Specification
286E21 CMOS Z8 8K OTP Microcontroller Product Specification
286C91 CMOS Z8 ROMIess Microcontroller Product Specification
286C93 CMOS Z8 Multiply/Divide Microcontroller Product Specification
286C95 28 Digital Signal Processor Product Specification
Z89C00 16-Bit Digital Signal Processor Product Specification
789C00 DSP Application Note - “Understanding Q15 Two's Complement Fractional Multiplication”

3.00

3.00

3.00

3.00

3.00

L-2

N 2iLa5 LITERATURE GUIDE

Z8%/SUPER8™ MICROCONTROLLER FAMILY (Continued)
Databooks By Market Niche Part No Unit Cost

Digital Television Controllers (includes the following documents) DC-8308-00 3.00
286C27/97 CMOS 28®Digital Signal Processor Product Specification
286C61/62/96 CMOS Z8 Microcontroller Product Specification
286(C63/64 32K ROM CMOS Z8 Microcontroller Product Specification
186127 Low Cost Digital Television Controller Product Specification
786128 Line 21 Closed-Caption Controller (L21C™) Digital Television Controller Product Specification
786227 40-Pin Low Cost (4LDTC™) Digital Television Controller Product Specification

Keyboard/Mouse/Pointing Devices Databook (includes the following documents) DC-8304-00 3.00

78602 NMOS Z8® 8-Bit Keyboard Controller Product Specification

78614 NMOS 28 8-Bit Keyboard Controller Product Specification

78615 NMOS 282 8-Bit Keyboard Controller Product Specification

78623 78® 8-Bit Keyboard Controller with 8K OTP Product Specification

786C04 CMOS Z8® 8-Bit Microcontroller Product Specification

286C08 CMQS 782 8-Bit Microcontroller Product Specification

788C17 CMOS Z8® 8-Bit Micracontroller Product Specification

PC Audio Databeok (includes the following documents) DC-8317-00 3.00
786321 Digital Audio Processor Preliminary Product Specification .
789320 16-Bit Digital Signal Pracessor Preliminary Product Specification
789321/371 16-Bit Digital Signal Processor Preliminary Product Specification
289331 16-Bit PC ISA Bus Interface Advance Information Specification
189341/42/43 Wave Synthesis Chip Set Advance Information Specification
25380 Small Computer System Interface Product Specification

PCMCIA/SCSI Interface Controllers (includes the following documents) DC 8313-00 3.00
25380 Small Computer System Interface Product Specification
253C80 Small Computer System Interface Product Specification
285C80 SCSCI™ Serial Communications and Small Computer Interface Product Specification
786017 PCMCIA Interface Prefiminary Product Specification
786015 PCMCIA Interface with DMA Support Advance Product Specification
286020 CardBus/PCl Interface Advance Product Specification

Discrete Z8% Microcontrollers (Includes the following documents) DC 8318-00 3.00
786C04 CMOS 28 8-Bit Low Cost TK ROM Microcontroller Product Specification
Z86E04 OTP CMOS Z8% 8-Bit Microcontroller Product Specification
786C08 CMOS Z8® 8-Bit Microcontroller Product Specification
Z86E08 CMOS Z8® 8-Bit Microcontroller Product Specification
786C30 CMOS 78 8-Bit Microcontroller Product Specification
Z86E30 CMQS Z8% OTP CCP™Microcontroller Product Specification
286C31 CMOS 28 8-Bit Microcontroller Product Specification
786E31 CMOQS Z8% OTP CCP™Microcontroller Product Specification

L-3

N 2iL.as LITERATURE GUIDE

Z8°/SUPERS8™ MICROCONTROLLER FAMILY (Continued)

Z8 Product Specifications, Technical Manuals and Users Guides Part No Unit Cost
28® Microcontrollers Technical Manual DC-8291-02 5.00
786018 Preliminary User's Manual DC-8296-00 N/C
Digital TV Controller User's Manual DC-8284-01 3.00
789C00 16-Bit Digital Signal Processor User's Manual/DSP Software Manual DC-8294-02 3.00-
786C95 16-Bit Digital Signal Processor User Manual DC-8595-00 3.00
286017 PCMCIA Adaptor Chip User's Manual DC-8298-02 3.00
PLC Z89C00 Cross Development Tools Brochure DC-5538-01 N/C
Z8 Application Notes Part No Unit Cost
The Z8 MCU Dual Analog Comparator DC-2516-01 N/C
18 Applications for I/Q Port Expansions DC-2539-01 N/C
[86E21 Z8 Low Cost Thermal Printer . DC-2541-01 N/C
Zilog Family On-Chip Oscillator Design DC-2496-01 N/C
Using the Zilog Z86C06 SP! Bus DC-2584-01 N/C
Interfacing LCDs to the Z8 DC-2592-01 N/C
X-10 Compatible Infrared (IR) Remote Control DC-2591-01 N/C
286C17 In-Mouse Applications DC-3001-01 N/C
186C40/E40 MCU Applications Evaluation Board DC-2604-01 N/C
786C08/C17 Controls A Scrolling LED Message Display DC-2605-01 N/C
28695 Hard Disk Controtler Flash EPROM Interface DC-2639-01 N/C
Timekeeping with Z8; DTMF Tone Generation; Serial Communication Using the CCP Software UART DC-2645-01 N/C

L-4

N 2iLa5 LITERATURE GUIDE

Z80%/28000° CLASSIC FAMILY OF PRODUCTS

Databooks By Market Niche . PartNo Unit Cost

High-Speed Serial Communication Controllers DC-8314-00 3.00
216C30 CMOS Universal Serial Controller (USC™) Preliminary Product Specification
216C32 Integrated Universal Serial Controller (IUSC™) Preliminary Product Specification
Application Notes and Support Products

Serial Communication Controllers DC-8316-00 3.00
78030/28530 Z-Bus® SCC Serial Communication Controller Product Specification
780C30/285C30 CMOS Z-Bus® SCC Serial Communication Controller Product Specification
280230 Z-Bus® ESCC™ Enhanced Serial Communication Controller Preliminary Product Specification
785230 ESCC™Enhanced Serial Communication Controller Product Specification
785233 EMSCC™ Enhanced Mono Serial Communication Controller Product Specification
785C80 SCSCI™ Serial Communications and Small Computer Interface Product Specification
716C35/285C35 CMOS ISCC™ Integrated Serial Communications Controlier Product Specification
Application Notes and Support Products

Z80/Z180/Z2280/Z380 Product Specifications, Technical Manuals and Users Guides Part No Unit Cost
780 Family Technical Manual DC-8309-00 3.00
780180 2180 MPU Microprocessor Unit Technical Manual DC-8276-04 3.00
2280 MPU Microprocessor Unit Technical Manual DC-8224-03 3.00
280182 Zilog Intelligent Peripheral (ZIP™) DC-2616-03 N/C
2380™ Preliminary Product Specification DC-6003-03 N/C
2380™User's Manual DC-8297-02 3.00
280 Family Programmer's Reference Guide DC-0012-04 N/C
ZNW2000 User's Manual for PC WAN Adaptor Board Development Kit DC-8315-00 N/C
Z8000 Family of Products (Includes the following) . DC-8319-00 5.00

78000 Family Databook
Zilog's 28000 Family Architecture
78001/28002 78000 CPU Product Specification
78016 Z8000 Z-DTC Product Specification
28036 28000 Z-C10 Product Specification
28536 CI0 Counter/Timer and Parallel I/0 Unit Product Specification
78038/28538 FIO FIFO Input/Output Interface Unit Product Specification
18060/28560 FIFO Buffer Unit
78581 Clock Generator and Controller Product Specification
28000 CPU Central Processing Unit User's Manual
78010 Memory Management Unit (MMU) User's Manual
78036 Z-C10/28536 CIO Counter/Timer and Parallel Input/Output User's Manual
78038 28000 Z-FI0 FIFO Input/Output Interface User's Manual
28000 Application Notes and Military Products
Zilog's Superintegration™ Products Guide
Literature Guide and Ordering Information
Zilog's Sales Offices, Representatives and Distributors

L-5

N 2iLas

LITERATURE GUIDE

Z80%/28000® CLASSIC FAMILY OF PRODUCTS (Continued)

28000 User's Manuals Part No Unit Cost
SCC Serial Communication Controller User's Manual DC-8293-02 3.00
High-Speed SCC, 216C30 USC/Z16C32 IUSC, User's Manual DC-8320-00 5.00
216C35 ISCC Integrated Serial Communication Controller Technical Manual DC-8286-01 3.00
216C35 ISCC Integrated Serial Communication Controller Addendum DC-8286-01A N/C
Z80/Z2180/Z280 Application Notes Part No Unit Cost
7180/SCC™ Serial Communications Controller Interface at 10 MHz DC-2521-02 N/C
780 Using the 84C11/C13/C15 in place of the 84011/013/015 DC-2499-02 N/C
A Fast Z80 Embedded Controller DC-2578-01 N/C
Z8000 Application Notes Part No Unit Cost
Z16C30 Using the USC in Military Applications DC-2536-01 N/C
Datacom IUSC/MUSC Time Slot Assigner DC-2497-02 N/C
Datacom Evaluation Board Using The Zilog Family With The 80186 CPU DC-2560-03 N/C
Boost Your System Performance Using the Zilog ESCC Controller DC-2555-02 N/C
Z16C30 USC - Design a Serial Board for Multiple Protocols DC-2554-01 N/C
Using a SCSI Port for Generalized |/0 DC-2608-01 N/C

L-6

N 2iLa5

LITERATU

MILITARY COMPONENTS FAMILY

Military Specifications Part No Unit Cost
28681 ROMless Microcomputer Military Product Specification DC-2392-02 N/C
28001/8002 Military 28000 CPU Central Processing Unit Military Product Specification DC-2342-03 N/C
28581 Military CGC Clock Generator and Controller Military Product Specification DC-2346-01 N/C
28030 Military Z8000 Z-SCC Serial Communications Controller Military Product Specification DC-2388-02 N/C
78530 Military SCC Serial Communications Controller Military Product Specification DC-2397-02 N/C
28036 Military 28000 Z-C10 Counter/Timer Controller and Parallel |/0 Military Electrical Specification DC-2389-01 N/C
18038/8538 Military FIO FIFQ Input/Output Interface Unit Military Product Specification DC-2463-02 N/C
28536 Military CIO Counter/Timer Controller and Parallel 1/0 Military Electrical Specification DC-2396-01 N/C
28400 Military Z80 CPU Central Processing Unit Military Electrical Specification DC-2351-02 N/C
8420 Military PIO Paralle! Input/Output Controller Military Product Specification DC-2384-02 N/C
28430 Military CTC Counter/Timer Circuit Military Electrical Specification DC-2385-01 N/C
28440/1/2/4 780 S10 Serial Input/Output Controller Military Product Specification DC-2386-02 N/C
280C30/85C30 Military CMOS SCC Serial Communications Controlier Military Product Specification DC-2478-02 N/C
784C00 CMOS 280 CPU Central Processing Unit Military Product Specification DC-2441-02 N/C
784C20 CMOS 280 P10 Parallel Input/Output Military Product Specification DC-2384-02 N/C
784C30 CMOS 280 CTC Counter/Timer Circuit Military Product Specification DC-2481-01 N/C
784C40/1/2/4 CMOS Z80 SIO Serial Input/Qutput Military Product Specification DC-2482-01 N/C
216C30 CMOS USC Universal Serial Controller Military Preliminary Product Specification DC-2531-01 N/C
780180 2180 MPU Microprocessor Unit Military Product Specification DC-2538-01 N/C
284C90 CMOS KIO Serial/Parallel/Counter Timer Preliminary Military Product Specification DC-2502-00 N/C
185230 ESCC Enhanced Serial Communication Controller Military Product Specification DC-2595-00 N/C

L-7

N 2iL a5 | LITERATURE GUIDE

GENERAL LITERATURE

Catalogs, Handbooks, Praduct Flyers and Users Guides Part No Unit Cost
Superintegration Master Selection Guide 1994-1995 DC-5634-00 N/C
Superintegration Products Guide DC-5499-07 N/C
Quality and Reliability Report DC-2475-12 N/C
ZIA™3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet DC-5556-01 N/C -
ZIA ZIADOZCO Disk Drive Development Kit Datasheet DC-5593-01 N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet DC-5560-01 N/C
Zilog Infrared (IR) Controllers - ZIRC™ Datasheet DC-5558-01 N/C
Zilog Intelligent Peripheral Controller - ZIP™Z80182 Datasheet DC-5525-01 N/C
Zilog Digital Signal Processing - 89320 Datasheet DC-5547-01 N/C
Zilog Keyboard Controllers Datasheet DC-5600-01 N/C
2380™ - Next Generation Z80%/Z180™ Datasheet DC-5580-02 N/C
Fault Tolerant Z8® Microcontroller Datasheet DC-5603-01 N/C
32K ROM Z8% Microcontrollers Datasheet : DC-5601-01 N/C
Zilog Datacommunications Brochure DC-5519-00 N/C
789300 DTC Controller Family Brochure DC-5608-01 N/C
Zilog Digital Signal Processing Brochure DC-5536-02 N/C
Zilog ASSPs - Partnering With You Product Brochure DC-5553-01 N/C
Zilog Wireless Products Datasheet DC-5630-00 N/C
Zilog 28604 Cost Cruncher Datasheet DC-5623-00 N/C
Zilog Databast of IR Codes Datasheet DC-5631-00 N/C
Zilog PCMCIA Adaptor Chip Z86017 Datasheet DC-5585-01 N/C
Zilog Television/Video Controllers Datasheet DC-5567-01 N/C
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet DC-5561-02 N/C
Zilog 287000 Z-Phone Datasheet DC-5632-00 D/C
Zilog 1991 Annual Report DC-1991-AR N/C
Zilog 1992 Annual Report : DC-1992-AR N/C
Zilog 1993 Second Quarter Financial Report DC-1993-Q2 N/C
Zilog 1993 Third Quarter Financial Report DC-1993-Q3 N/C
Microcontroller Quick Reference Folder DC-5508-01 N/C

L-8

N 2iILa5

LITERATURE GUIDE

ORDERING
INFORMATION

Complete the attached literature order form. Be
sure to enclose the proper payment or supply a
purchase order. Please reference specific order
requirements.

MINIMUM ORDER
REQUIREMENTS

Ordersunder $300.00 must be prepaid by check,
money order or credit card. Canadian and for-
eign orders must be accompanied by a cashier’s
checkin U.S. dollars, drawn on a correspondent
U.S. bank only.

Orders over $300.00 may be submitted with a
Purchase Order.

SHIPMENT

Orders will be shipped after your check is cashed
or credit is checked via the most economical
method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

PLEASE PRINT OR TYPE
NAME PHONE () -
Method of Payment (Check One)
COMPANY
[Check I Money Order
ADDRESS Credit Card I VISA I WC I P.O. (over $300.00)
city STATE ZIP COUNTRY
PART NUMBER DOCUMENT TITLE UNIT COST QTY. TOTAL
1 1 $ $
4 4 $ $
4 4 $ $
4 4 $ $
4 1 $ $
4 + $ $
4 4 $ $
4 4 $ $
4 4 $ $
4 41 $ $
4 1 $ $
4 4 $ $
4 4 $ $
4 1 $ $
Mail To: Credit Card or Purchase Order # SUBTOTAL
CAQ 2iLan Expiration Date ADD APPLICABLE SALES TAX (CA ONLY)
210 E. HACIENDA AVE. M/S C1-0 Signature ADD 10% SHIPPING AND HANDLING
CAMPBELL, CA 95008-6600 TOTAL

Phone: (408)370-8016
Fax. (408)370-8056

ZILOG DOMESTIC SALES OFFICES

AND TECHNICAL CENTERS

CALIFORNIA

AQOUNE .ttt 818-707-2160
Campbell.... 408-370-8120
Irvine 714-453-9701
SaN DIBGO ...eovveeeeie e 619-658-0391
COLORADO

Boulder ... 303-494-2905
FLORIDA

Clearwatercccoevvvivrerece e 813-725-8400
GEORGIA

DUIIN .o 404-931-4022
ILLINOIS

Schaumburgcccoceevveieiei e 708-517-8080
MINNESOTA

MiINNEapPOliscoeieiiii e 612-944-0737
NEW HAMPSHIRE

NASNUA .o 603-888-8590
OHIO

Independencecccoceveviiiiniiiicne 216-447-1480
OREGON

Portlandc.oceieiiii e 503-274-6250
PENNSYLVANIA

HOIrSham ..o 215-784-0805
TEXAS :
AUSEIN e 512-343-8976
Dall@S .o 214-987-9987

© 1994 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means
without the prior written consent of Zilog, Inc. The information in
this document is subject to change without notice. Devices sold
by Zilog, Inc. are covered by warranty and patentindemnification
provisions appearing in Zilog, Inc. Terms and Conditions of Sale
only. Zilog, Inc. makes no warranty, express, statutory, implied or
by description, regarding the information set forth herein or
regarding the freedom of the described devices fromintellectual
property infringement. Zilog, Inc. makes no warranty of mer-
chantability or fitness for any purpose. Zilog, Inc. shall not be
responsible for any errors that may appear in this document.
Zilog, Inc. makes no commitment to update or keep current the
information contained in this document.

INTERNATIONAL SALES OFFICES

CANADA

TOMONO ..ot 905-850-2377
CHINA

ShENZNEN ..o 86-755-2236089
GERMANY

MURICh .o 49-8967-2045
SOMMErdaoooooeeieeeee 49-3634-23906
JAPAN

TOKYO oo 81-3-3587-0528
HONG KONG

KOWIOON ..o 852-72389379
KOREA

SEOUL ..ot 82-2-577-3272
SINGAPORE

SINQAPOTE ..ot 65-2357155
TAIWAN

TAIPEI .o 886-2-741-3125
UNITED KINGDOM

Maidenheadc.ccooiiiiiiiii 44-628-392-00

Zilog's products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to resultin
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000

Telex 910-338-7621

FAX 408 370-8056

DC 8309-00

Zilog, Inc.

210 East Hacienda Ave.
Campbell, CA 95008-6600
408-370-8000

