


THE Z8000 MICROPROCESSOR 
A Design Handbook 

- BRADL Y K. FAWCETT 
Senior Staff Engineer 
Zilog, Inc. 

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632 



Library of Congress Cataloging in Publication Data 

Fawcett, Bradly K. 
The Z8000 microprocessor. 

Bibliography: p. 
Includes index. 
1. Electronic digital computers-Circuits. 

2. Logic design. 3. Zilog Model Z8000 (Computer) 
I. Title. 
TK7888.F285 621.3819'58 82-392 
ISBN 0-13-983742-6 AACR2 
ISBN 0-13-983734-5 (pbk.) 

Editorial production/supervision: Barbara Bernstein 
Manufacturing buyer: Gordon Osbourne 

This is a technical manual. The information contained 
herein is subject to change. 

All rights reserved. No part of this publication may be 
reproduced, stored in a retrieval system, or transmitted, in any 
form or by any means, electric, mechanical, photocopying, recording, or 
otherwise, without the prior written permission of Zilog and the publisher. 

Zilog assumes no responsibility for the use of any circuitry other than 
circuitry embodied in a Zilog product. No other circuit patent licenses are implied. 

© 1982 by Zilog, Inc. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

ISBN 
ISBN 

0-13-983742-6 
0-13-983734-5 {pbk} 

PRENTICE-HALL INTERNATIONAL, INC., London 
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney 
PRENTICE-HALL OF CANADA, LTD., Toronto 
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi 
PRENTICE-HALL OF JAPAN, INC., Tokyo 
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore 
WHITEHALL BOOKS LIMITED, Wellington, New Zealand 



Contents 

PREFACE 

Chapter 1 
THE 28000 CPU 

Operating Systems, 2 
TheZ-Bus, 4 
Z8000 CPU Architecture, 7 
System and Normal Modes, 9 
Z8002 Pin Configuration, 9 
Z8001 Pin Configuration, 15 
Segmented Addressing and Memory Management, 17 
Segmented and Nonsegmented Modes, 20 
CPU Operating States, 20 
System Inputs, 22 
CPU Clock Requirements, 22 

Chapter 2 
CPU REGISTERS 

Z8002 General-Purpose Registers, 24 
Z8002 Control Registers, 26 
Z8001 General-Purpose Registers, 28 
Z8001 Control Registers, 29 

viii 

1 

24 

iii 



iv 

Chapter 3 
INTERFACING TO MEMORY 

Memory Address Spaces, 32 
Memory Organization, 34 
Memory Control Logic, 36 
Example 1: Interfacing to Z6132'S, 41 
Example 2: Interfacing to Z6132'S and 2716'S, 46 
Memory Refresh, 47 

Chapter 4 
INTERFACING TO PERIPHERALS 

I/O Address Spaces, 50 
I/O Interface Signals, 51 
I/O Control Logic, 53 
Z-Bus Interrupt Signals, 55 

Chapter 5 
INSTRUCTION AND INTERFACE TIMING 

Instruction Prefetch, 56 
Basic Timing Periods, 57 
Memory Cycles, 58 
I/O Cycles, 62 
Internal Operation Cycles, 65 
Memory Refresh Cycles, 66 
AC Timing Characteristics, 68 
Memory Interface Timing: an Example, 69 
Wait-State Generation, 71 

Chapter 6 
INTERRUPTS, TRAPS, AND RESETS 

Interrupts, 74 
Traps, 75 
Interrupt and Trap Handling, 77 
Priorities of Exceptions, 77 
Interrupt Acknowledge, 78 
Saving Program Status, 78 
Program Status Area, 80 
Interrupt Returns, 84 

Contents 

32 

50 

56 

74 



Contents 

Peripheral Interrupt Daisy Chain, 85 
Interrupt Acknowledge Cycle, 88 
Interrupt Response Time, 92 
System Cal/lnstruction, 93 
Service Routines, 94 
HAL T Instruction, 95 
Reset, 96 
Initialization Routines, 98 
Other Context Switches, 99 

Chapter 7 
BUS AND RESOURCE SHARING 

Bus Requests, 101 
Bus Request Priority Daisy Chain, 103 
Shared Resource Requests, 106 
Z-Bus Signals, 112 

Chapter 8 

v 

101 

THE INSTRUCTION SET 113 

Assembly Language Conventions, 113 
CPU Register Usage, 115 
Long and Short Offset Addresses, 116 
Addressing Modes, 117 
Register Mode, 117 
Direct Address Mode, 118 
Immediate Mode, 119 
Indirect Register Mode, 119 
Indexed Mode, 120 
Base Address Mode, 121 
Base Indexed Mode, 122 
Relative Address Mode, 123 
Use of the Addressing Mode, 124 
Implied Addressing Modes, 124 
Assembly Language Instructions, 124 
Data Movement Instructions, 126 
Arithmetic Instructions, 128 
Logical Instructions, 130 
Bit Manipulation Instructions, 132 
Rotate and Shift Instructions, 133 
Program Control Instructions, 137 



vi 

Block Move Instructions, 139 
Block Compare Instructions, 140 
Block Translate Instructions, 142 
I/O Instructions, 145 
Special I/O Instructions, 147 
CPU Control Instructions, 147 

Chapter 9 
THE Z8010 MEMORY MANAGEMENT UNIT 

Memory Allocation, 152 
Segmentation and Memory Allocation, 153 
Memory Protection, 156 
Z8010 MMU Architecture, 158 
Segment Descriptor Registers, 163 
Control Registers, 166 
Address Translation, 168 
Violation Types and Status Registers, 170 
Traps and Suppresses, 172 
MMU Commands, 174 
Resets, 178 
Multiple MMU Systems, 178 
The MMU and Memory Access Time, 180 
MMU and Virtual Memories, 180 

Chapter 10 
EXTENDED PROCESSOR UNITS 

CPU-EPU Interface, 183 
Extended Instructions, 184 
Stop Timing, 186 

Chapter 11 
A Z8000 DESIGN EXAMPLE 

Clock Generation, 190 
CPU Bus Buffering, 192 
Address Latching, 195 
Memory Interfacing, 196 
Peripheral Interfacing, 198 

Contents 

152 

183 

190 



Contents 

Chapter 12 
Z8000 FAMILY DEVICES 

Z-Bus Peripheral Interface, 207 
Peripheral Interrupt Structure, 209 
Z8036 CIO, 212 
Z8038 FlO, 219 
FIFO Buffer Expansion, 234 
Z8030 SCC, 237 
Z8065 BEP, 242 
Z8068 DCP, 247 
Z8052 C R TC, 248 
Z8016 DTC, 249 
Z6132 RAM, 251 

Chapter 13 

vii 

206 

Z-BUS MICROCOMPUTERS 255 

Z8 Architectural Overview, 255 
Z8 Memory Spaces, 259 
Z8 I/O Ports, 262 
Z8 Counter/Timers, 265 
Z8 Serial I/O, 267 
Z8 Interrupts, 267 
Z8 Instruction Set, 269 
Z8 Configurations, 272 
Z8000-Z8Interfacing, 273 
UPC Architectural Overview, 275 
UPC Memory Spaces, 277 
UPC I/O Ports, 278 
UPC Interrupts, 279 
CPU-UPC Communication, 279 
UPC Product Configurations, 283 

Appendix A 
Z8000 CPU DC AND AC ELECTRICAL CHARACTERISTICS 

Appendix B 
GLOSSARY 

Appendix C 
BIBLIOGRAPHY 

INDEX 

285 

290 

301 

302 



viii 

Preface 

With the advent of the 16-bit microprocessor, computing power and features 
formerly available only in minicomputers and large-scale computers are now 
provided on a single integrated-circuit chip. This text is a detailed study of 
one such microprocessor, the Z8000. 

The emphasis of this book is on logic design with the Z8001 and Z8002 
microprocessors. Other components in the Z8000 family of parts are also 
discussed. The components described in this book are available from 

Zilog, Inc. 
1315 Dell Avenue 
Campbell, CA 95008 

This book is intended for anyone interested in learning about the 
Z8000, but will be especially useful for those engineers involved in either 
hardware designs that use Z8000 family components or software/firmware 
designs for Z8000-based systems. The hardware engineer would use this text 
as a guide to interfacing the Z8000 microprocessors to memory and periph­
eral devices. Since effective assembly language programming depends on a 
thorough knowledge of the target processor's capabilities, the software engi­
neer would use this text to gain insights into the Z8000's architecture and its 
relation to the microcomputer system. 

Chapters 1 through 8 and Chapter 11 deal principally with the Z8001 
and Z8002 microprocessors from both an architecture and system design 
viewpoint. Several system architecture concepts, such as operating systems 
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and memory management, are introduced and discussed in relation to Z8000 
system design. Chapters 9, 10, 12, and 13 deal with other Z8000 family com­
ponents that often are used in Z8000-based systems, including the Z8010 
Memory Management Unit, peripherals, memories, and slave processors. 

Since the emphasis of this book is on logic design, assembly language 
programming of the Z8000 is not covered in detail. An overview of the in­
struction set is included in Chapter 8. Several good texts that deal exclu­
sively with Z8000 programming are currently available (see the Bibliography. 
Appendix C). 

This book is not intended for the computer novice. The reader is as­
sumed to have some experience with microprocessors and a familiarity with 
concepts such as registers, buffers, program counters, and interrupts. 

As with any project of this magnitude, a great number of people were 
involved-too many to mention here-and the author wishes to thank them 
all. Special thanks to Steve Blank, who originally suggested that I write this 
book, and to the following engineers at Zilog, who constituted an informal 
technical review committee: John Banning, Ross Freeman, Dave Stevenson, 
Carl Johnson, Nai-Ting Hsu, Don Alpert, Dan Hillman, Gary Prosenko, and 
Pat Lin. 

Every attempt has been made to assure the technical accuracy of the 
material in this book, but Mr. Murphy is not to be denied and, inevitably, 
errors will be found. Comments and criticisms are appreciated and will con­
tribute to the accuracy of later editions. 

Many of tl)e figures in this book are from the following pUblications: 
1981 Data Book, Zilog, Inc., document 00-2034-01, 1981; Z8000 CPU 
User's Reference Manual, Zilog, Inc., Prentice-Hall, Inc., 1982; A Small 
Z8000 System Application Note, Zilog, Inc., document 03-8060-02, 1980; 
and Z8010 MMU Technical Manual, Zilog, Inc., document 00-20150AO, 
1981. 

BRADLY K. FA WCET T 
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1 

The Z8000 CPU 

Microprocessors were introduced in the early 1970s as 4-bit and 8-bit proces­
sors that were used largely as programmable logic devices. These devices 
could handle simple tasks in products such as calculators, games, and control 
systems. The advent of more sophisticated 8-bit microprocessors, such as 
the Z80, led to the design of microprocessor-based computer systems with 
sufficient memory resources to perform simple data processing tasks and 
more complex control functions. However, these 8-bit systems could rarely 
match the memory addressing and data processing abilities of the minicom­
puters and mainframe computers available at the time. 

The Z8000 microprocessor represents a further step in the evolution of 
microelectronics-a 16-bit central processing unit (CPU) with features that, 
until now, could be found only in sophisticated mini- and large- scale comput­
ers. The Z8000 is not an extension of 8-bit architectures; its architecture is 
closer to that of popular minicomputers such as the PDP-11 than to the Z80. 
The high throughput, abundant CPU resources, and powerful instruction set 
of the Z8000 extend well beyond traditional microprocessor architectures. 
Special features in the Z8000 support operating-system-type environments, 
manipulation of complex data structures, and multiprocessing systems. 
Thus the Z8000 incorporates on one LSI chip an architecture designed to ac­
commodate a wide range of applications, from relatively simple control sys­
tems to powerful data processing computers. 

The Z8000 microprocessor is available in two versions: the Z8001 and 
Z8002. The Z8001 is a 48-pin CPU that can directly access 8 megabytes of 
memory per memory address space; the Z8002 is a 40-pin CPU that can di-

1 



2 The Z8000 CPU Chap. 1 

rectly access 65,536 bytes of memory per memory space. A memory manage­
ment unit, the Z8010 MMU, can be used with the Z8001 in memory-intensive 
applications to organize and control memory use efficiently. An entire family 
of support devices is available, including intelligent peripheral controllers, 
serial and parallel input/output devices, and direct memory access (DMA) 
controllers. 

The architectural features of the Z8000 CPU include sixteen 16-bit 
general-purpose registers, eight addressing modes, and an instruction set 
more powerful than that of most minicomputers. Data types ranging from 
single bits to 32-bit fields and byte strings are supported. The 110 instruc­
tion types combine with the addressing modes and data types to form a set 
of over 400 distinct instructions. These CPU resources exhibit a high degree 
of regularity. For example, more than 90% of the instructions use any of 
five main addressing modes, and operate on 8-bit, 16-bit, or 32-bit data 
types. This regularity in the CPU architecture greatly simplifies the program­
ming of Z8000 processors. Operating system support is provided by features 
such as system and normal modes, multiple stacks, and a sophisticated inter­
rupt structure. Hardware and software support of multiprocessing environ­
ments also is included in the Z8000 architecture. 

External devices called Extended Processor Units (EPUs) can be used to 
extend the Z8000's basic instruction set. EPUs unburden the CPU by per­
forming complex, time-consuming tasks such as floating-point arithmetic or 
data base management. 

OPERATING SYSTEMS 

The limited CPU resources and relatively small address spaces of previous 
generations of microprocessors made it difficult, if not impossible, to de­
velop systems based on those microprocessors that could process more than 
one programming task at a time. (A programming task is the execution of 
one program, operating on its data.) Thus microcomputer systems have tra­
ditionally been single-user, single-task systems in which the user has direct 
control over the machine hardware. In contrast, the Z8000's regular archi­
tecture and large address space facilitate the design of Z8000-based systems 
that can handle multiple users and multiple programming tasks. 

When multiple programming tasks are executed concurrently on a com­
puter system, each task requires the use of some of the system's hardware re­
sources. These resources include the CPU, memory, and input/output (I/O) 
devices. Invariably, there are not enough resources in the system to support 
the simultaneous execution of all the programming tasks; a method for shar­
ing various resources between all the system's tasks must be defined. Multi­
tasking computer systems usually employ a supervisory software program to 
coordinate and control the various programming tasks; such supervisory soft-
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ware is called an operating system. An operating system's basic function is to 
allocate the system's resources in an efficient manner, while ensuring that 
the various tasks on the system execute without unintentionally affecting each 
other. Users of such systems would write their programs, sometimes called 
applications programs, to run under the control of the operating system. 

In multitasking systems, the details of the hardware functions (for 
example, the timing and buffering of an I/O operation) are handled by the 
operating system. The user, whose program runs under the control of the 
operating system, no longer needs to be concerned with the intricacies of 
the machine hardware; he or she only needs to know how to access the 
operating system function that will produce the desired result (requesting 
that data be output to a printer, for example). Thus the user writes the appli­
cations program to run under the control of a particular operating system, 
not a particular hardware configuration (Fig. 1.1). In fact, only the oper­
ating system software should have direct access to hardware-related func­
tions, in order to keep individual users' tasks from affecting each other. For 
example, if a given user were allowed to reconfigure a programmable I/O de­
vice, execution of other users' tasks that access that device could be affected 
in unpredictable and undesirable ways. Therefore, applications programs run­
ning under the control of the operating system should access hardware func­
tions (such as I/O functions) only through the operating system. 

The most valuable resource in any computer system is the CPU. If 
more than one applications program is to be executed by the CPU, the 
operating system must be able to switch the CPU easily from one pro­
gramming task to another. A set of scheduling rules within the operating 
system will determine when the switching of tasks will occur. For example, 
batch operating systems execute each programming task sequentially from 
start to finish, whereas time-sharing systems execute each task for a given 
length of time, in a round-robin arrangement. If the operating system can 
switch tasks very quickly, the user will have the impression that the tasks 
are executing concurrently. Of course, each time the operating system 
switches to a new task, status information describing the previous task must 
be saved so that it can be resumed later in an orderly manner. The results of 

Figure 1.1 Users' tasks access the 
hardware through the operating sys­
tem. 
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the execution of a given task should be the results that would appear if the pro­
gramming task were run sequentially from start to finish without interruption. 

The operating system must control the allocation of memory space as 
well as the allocation of CPU time. As the operating system switches the 
CPU from one programming task to another, it must ensure that the program 
is available in main memory for the CPU. Memory space for each task's 
program and data must be allocated in a manner that ensures that the 
execution of one task does not interfere with the execution of any other 
task. Often, memory allocation during task switching involves moving code 
or data between main memory and a secondary storage device such as a disk 
or magnetic tape. (The management of memory resources in Z8000 systems 
is discussed in Chapter 9.) 

I/O handling and allocation is also an integral part of most operating 
systems. As mentioned above, having the operating system control all I/O 
accesses frees the individual users from having to know the details of the 
hardware and keeps tasks from interfering with each other. I/O devices 
often must be allocated to a specific task; for example, if a user wants to 
print a table of data, no other task should be allowed to use that printer 
until that user's print operation is complete. Interrupt processing must also 
be controlled by the operating system, not by the applications programs; 
since interrupts are caused by events external to the CPU operations, there is 
no way to predict which user's task will be running when an interrupt 
occurs. 

Other functions that are controlled by operating systems include task 
synchronization (in applications where the ordering of tasks is critical), task 
communication (in applications where data are passed between tasks), de­
bugging functions, and other resource allocation problems within a given com­
puter system. Operating systems, like hardware designs, can be general 
purpose in nature or oriented to a particular application. 

Many features of the Z8000 CPU architecture are designed to support 
the implementation of operating system software on Z8000-based computer 
systems. These features will be emphasized throughout this book as the 
various parts of the architecture are discussed. However, this does not mean 
to imply that Z8000-based systems must include an operating system. Many 
applications, such as most process control applications, would involve 
running only one programming task, making operating system software 
unnecessary. 

THE Z-BUS 

Every computer system can be thought of as having four major parts: a 
central processor unit (CPU), storage, input, and output (Fig. 1.2). The CPU 
is the primary functioning unit of the computer and usually includes 



The Z-8us 

INPUT CPU 

STORAGE 

OUTPUT 

5 

Figure 1.2 Major parts of a com­
puter. 

circuitry for performing arithmetic and logical functions (an arithmetic and 
logic unit, or ALU), some storage for ALU operands and results (registers), 
and control logic. The control logic decodes instructions and determines 
their execution and sequencing by sending the appropriate signals to the 
ALU and registers in the CPU, and the external storage and I/O devices out­
side the CPU. Of course, the instructions and data to be acted on must exist 
somewhere and be available to the CPU; hence storage devices such as semi­
conductor memories need to be interfaced to the CPU. The manipUlation of 
programs and data by the CPU would be useless without some method of 
getting inforlnation from and sending results to the outside world; thus input 
and output devices such as card readers, cathode ray tube (CRT) terminals, 
and printers are needed. All four parts-CPU, storage, input, and output­
must be present in some form in a computer system. 

The Z8001 and Z8002 devices are microprocessors, not microcomput­
ers. These chips comprise only the CPU portion of a computer system. Thus 
hardware design with the Z8000 microprocessors is largely a matter of inter­
facing the Z8000 CPUs with the appropriate memory and I/O devices. The 
specification of the signals used to interface the Z8001 and Z8002 to other 
components in the Z8000 family of parts is called the Z-Bus. A discussion 
of how to interface memory and peripheral devices to the Z8000 micro­
processor is, then, actually a discussion of the Z-Bus signals. 

The Z-Bus is not a hardware bus definition like the S-100 or similar 
buses, where certain signals are assigned to certain pins on a specific type of 
connector for a specific type of circuit board. The Z-Bus is merely the 
logical definition of the interface signals used in a Z8000-based system; the 
actual hardware implementation of this interface is left up to the designer. 

Two types of operations can occur on the Z-Bus: transactions and 
requests. Transactions involve the transfer of data between two Z-Bus­
compatible devices. Transactions are initiated by the bus master, that is, the 
one device in the system (usually a CPU) that has control of the Z-Bus. All 
data transfers occur over a 16-bit time-multiplexed address/data bus. The 
timing of Z-Bus data transfers is asynchronous; the sending and receiving de­
vice do not need to be synchronized by a common clock. Several Z-Bus sig­
nals are used to control the transfer, and only one transaction can proceed at 
a time. 

Six kinds of transactions can occur on the Z-Bus: memory transactions, 
I/O transactions, interrupt and trap acknowledgments, EPU transfers, 
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memory refreshes, and internal operations. Memory transactions involve the 
transfer of a byte (8 bits) or word (16 bits) of data between the bus master 
and a memory location. I/O transactions are used to transfer a byte or word 
of data between the bus master and a peripheral device. Interrupt/trap 
acknowledgments are used to acknowledge an interrupt or trap and to trans­
fer a word of data from the interrupting device to the CPU. EPU transfers 
are used to transfer a word of data between an Extended Processing Unit 
and the CPU. Refreshes and internal operations are the only bus transac­
tions that do not involve a transfer of data. Refresh transactions are used to 
refresh dynamic memories. Internal operations occur when the CPU is per­
forming an operation that does not require data to be transferred on the bus. 

Z-Bus requests occur when a device other than the bus master needs 
to request access to a resource in the system. Only the bus master can initi­
ate transactions, but a request can be initiated by any component that does 
not control the bus. Four types of requests can occur: an attempt to gain a 
bus master's attention (an interrupt request), an attempt to become a bus 
master (a bus request), a request for some shared resource in a multiproces­
sor system, such as a request to access a disk drive that is shared by two dif­
ferent processors' systems (a resource request), and a request to delay CPU 
instruction execution (a stop request). A daisy-chained priority mechanism 
is used to resolve conflicts resulting from simultaneous requests, eliminating 
the need for separate priority controllers. Thus the Z-Bus consists of a set of 
signals used to provide timing, control, address, and data information for Z­
Bus transactions, requests, and request acknowledgments. These signals will 
be discussed in detail as the various Z8000 components interfaced by the Z­
Bus are described throughout this book. 

A Z-Bus component is a device that conforms to the Z-Bus interface 
protocols. Most of the components of the Z8000 family are Z-Bus compo­
nents. There are four categories of Z-Bus components: CPUs, peripherals, 
requesters, and memories. A Z-Bus CPU is the default bus master and initi­
ates most data transfers. Interrupt requests and bus control requests are ser­
viced by the CPU. The Z8001 and Z8002 are Z-Bus CPUs. A Z-Bus periph­
eral is a device that responds to I/O transactions and generates interrupt 
requests. The Z8036 Counter/Timer Input/Output Circuit (CIO) and Z8038 
FIFO Input/Output Interface Unit (FlO) are examples of Z-Bus peripherals. 
A Z-Bus requester is a device that can make bus requests, and when given 
control of the bus, can initiate data transactions. The Z8016 DMA Transfer 
Controller (DTC) is a Z-Bus requester. Z-Bus memories interface directly to 
the Z-Bus and respond to memory transactions. The Z6132 Quasi-Static RAM 
is a Z-Bus memory device. 

The Z8000 family of parts are not the only components that can be 
interfaced with the Z-Bus. Z80 family components, for example, although 
not directly Z-Bus compatible, can be easily interfaced to Z-Bus CPUs using 
readily available transistor-transitor logic (TTL) components. 



Z8000 CPU ARCHITECTURE 

The Z8000 CPU is a single-voltage metal-oxide semiconductor (MOS) in­
tegrated circuit measuring about t inch on a side and containing the equiv­
alent of more than 17,500 transistors (Fig. 1.3). The circuit design uses dis-

FLAG AND 16-BIT 
CONDITION LOGIC ARITHMETIC 

BUS CONTROL 

PC AND 
REGISTERS EXECUTION LOGIC REFRESH 

INSTRUCTION 
CODING 

CPU TIMING BUS CONTROL 

Figure 1.3 Z8000 CPU. 
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8 The Z8000 CPU Chap. 1 

crete logic, not microcoding, to control instruction execution. This design 
approach results in a smaller circuit chip, thereby improving signal speed 
and making the device easier to manufacture. The Z8000 CPU has two 
versions, the 48-pin Z8001 and the 40-pin Z8002, which differ only in the 
manner and range of memory addressing. Physically, the two chips are 
identical; a forty-ninth bonding pad is used to configure the chip as a Z8001 
or Z8002 before hermetic sealing into its dual-in-line package. 

Figure 1.4 is a block diagram illustrating the major elements of the 
Z8000 CPU. A 16-bit bus is used for moving addresses and data within the 
CPU. Arithmetic and logical operations are performed on addresses and data 
by the ALU. The instruction execution control logic handles the fetching 
and execution of instructions. Exception handling control logic processes 
interrupts and traps. Automatic dynamic memory refresh mechanisms can 
be enabled with the refresh control logic. Sixteen 16-bit general-purpose 
registers are available to the programmer. Four additional special-purpose 
registers help control CPU operation: the program counter (PC), flag and 
control word (FCW), program status area pointer (PSAP), and refresh 
register. Communication with external memory and I/O devices is via a Z­
Bus interface. 

I--------------------~ 

I l! I 

i !,~~!;;:s I\=J '"'~§£rc : :::i::: :l i 
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L~~~ _________________ ~ 
Figure 1.4 Z8000 CPU functional block diagram. 
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SYSTEM AND NORMAL MODES 

The Z8000 CPUs execute in two different operating modes: system mode 
and normal mode. A control bit in the flag and control word (FCW) de­
termines the current operating mode. The operating modes dictate which 
instructions can be executed and which stack pointers are used. In the 
system mode, all instructions can be executed; in the normal mode, instruc­
tions that directly affect the system hardware cannot be executed. The set 
of instructions that can be executed in system mode only are called 
privileged instructions and consist of all the input and output instructions, 
instructions that affect the FCW, PSAP, and refresh registers in the CPU, and 
the multi-micro instructions. (These instructions are described in Chapter 8. 
The stack pointers are discussed in Chapter 2.) 

The CPU switches operating modes whenever the appropriate bit in the 
FCW is changed. This bit can be altered by a Load Control (LDCTL) instruc­
tion or by an exception condition (interrupt, trap, or reset). The Load Con­
trol instruction is a privileged instruction and provides a means for switching 
from system to normal mode. A special instruction, the System Call (SC), is 
used to generate a trap, providing a controlled means of switching from the 
normal to the system mode. An attempt to execute a privileged instruction 
while in the normal mode also generates a trap condition. 

The distinction between system and normal modes allows the imple­
mentation of protected operating systems on Z8000-based computers. Oper­
ating system software would run in the system mode, controlling the system's 
resources and managing the execution of users' applications programs, which 
would run in the normal mode. Since normal-mode users cannot execute 
privileged instructions, those users cannot directly control those aspects of 
the CPU that affect the system's hardware configuration. If a normal-mode 
program needs to perform a hardware-related function such as an I/O opera­
tion, a request to the operating system can be made, via the trap mechanism 
(see Chapter 6). Thus only the operating system software performs hard­
ware-related functions. 

Z8002 PIN CONFIGURATION 

Figure 1.5 shows the Z8002 CPU with the pins grouped according to function. 
Activity on these pins is governed by the Z-Bus protocols. 

Address/Data Bus 

The address/data lines (ADO-AD15) constitute a 16-bit time-multiplexed 
address and data bus; that is, sometimes these signals are addresses and some-

9 
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times data. ADO is the least significant bit position, and AD15 is the most 
significant. The addresses on this bus can be memory or I/O port addresses, 
depending on the type of transaction taking place. In the Z8002, I/O and 
memory addresses are always 16-bit words; the Z8002 can directly address 
65,536 bytes of memory (64K bytes, where K = 1024) and 65,536 peripheral 
devices per address space. Addresses are always emitted by the CPU, but data 
can be an input or output, depending on whether the current transaction is a 
read or a write operation. 

The address/data bus is a multiplexed bus in order to minimize the pin 
count on the CPU's package. Sixteen additional pins would be required to 
have separate, dedicated address and data buses, with very little, if any, gain 
in processor efficiency. Separate address and data lines could improve pro­
cessor performance only during transactions where the address and data can 
be sent out simultaneously, that is, only during write operations. However, 
since instruction fetches are always memory read operation, read operations 
typically occur about eight times as often as write operations. Furthermore, 
most memory chips currently available cannot simultaneously accept both 
the address and data to be stored, so separate address and data buses would 
provide no timing advantage during memory writes. Therefore, the benefits 
of a package with fewer pins-higher reliability, smaller size, and decreased 
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power consumption-far outweigh any timing benefits that might accrue 
from having separate, nonmultiplexed address and data buses. 

The multiplexing of the address and data buses also simplifies the direct 
addressing of internal control registers in programmable peripheral devices, 
without having separate address and data pins on those chips' packages. 

Bus Timing Signals 

The bus timing signals-address strobe (AS), data strobe (DS), and memory 
request (MREQ)-are CPU outputs that control bus transactions by deter­
mining when the address/data bus holds addresses and when it holds data. 
In a typical data transfer, AS goes active (the bar above the signal name de­
notes an active low signal), indicating to external memory and I/O devices 
that valid address and status information is present on the bus. (The status 
lines are discussed below.) Thus the occurrence of an address strobe signals 
the start of a data transfer. Sometime later, AS becomes inactive and DS 
goes low, indicating that the data to be written to the previously addressed 
external device are now on the address/data bus, or that the data to be read 
from the device can be placed on the bus (Fig. 1.6). The timing of data 
transfers between the CPU and other devices is determined solely by the ad­
dress and data strobes; the CPU and other devices do not have to share a 
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(
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Figure 1.6 Z-Bus data transfers. 



12 The Z8000 CPU Chap. 1 

common clock signal. The address and data strobes are mutually exclusive, 
of course; only one or the other is active at any given time during the data 
transfer. 

The MREQ signal indicates that the address/data bus is holding a mem­
ory address, and its falling edge can be used to time control signals to a 
memory system. However, as discussed below, certain of the status signals 
also can be used to differentiate between memory and I/O transactions; as a 
result, the MREQ signal is not used in many Z8000 system designs. 

Status Signals 

The status signals are CPU outputs that describe the type of transaction that 
is occurring on the address/data bus. This status information would be used 
to enable the appropriate buffers, drivers, and chip select logic necessary for 
proper completion of the data transfer. 

The read/write signal (R/W) describes the direction of the current data 
transfer; a low signal indicates that the CPU is writing data to an external 
device and a high signal indicates that the CPU is reading data from an 
external device (Fig. 1.6). 

The byte/word line (B/W) describes the size of the data field being 
transferred; a low indicates that a word (16 bits) is being transferred, whereas 
a high indicates a byte (8-bit) transfer. Bytes of data might be transferred on 
the lower half (ADO-AD7) or upper half (AD8-AD15) of the bus, depending 
on the address of the device involved in the transaction (see Chapter 3). 

The normal/system signal (N /8) indicates the current operating mode of 
the CPU; a low indicates system mode and a high indicates normal mode. 
This signal could be used by memory control logic to define two separate 
memory address spaces: normal-mode memory and system-mode memory. 
In other words, a Z8002-based system could include two separate areas of 
memory, with each area containing a maximum of 64K bytes. Memory 
accesses made when the N /S pin is high would access normal-mode memory, 
and accesses made when the N/S pin is low would access system-mode 
memory. The operating system software, which runs in system mode, would 
be in system-mode memory, inaccessible to the users' programs, which run in 
the normal mode and reside in normal-mode memory. Thus systems with 
memory control logic that uses the N /8 signal to distinguish two memory 
address spaces would have built-in protection features that prevent individual 
users from accessing the operating system software. 

Four additional status signals, STO, ST1, ST2, and ST3, define the exact 
type of transaction occurring on the bus, as shown in Table 1.1. 

The internal operation status code (0000) indicates that the CPU is in­
volved in an AL U or other internal operation and that no data transfers are 
occurring on the bus. Internal CPU cycles will occur during the execution of 
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TABLE 1.1 STATUS CODE MEANINGS 

ST3 ST2 STl STO Meaning 

0 0 0 0 Internal operation 
0 0 0 1 Memory refresh 
0 0 1 0 Standard I/O reference 
0 0 1 1 Special I/O reference 
0 1 0 0 Segment trap acknowledge 
0 1 0 1 Nonmaskable interrupt acknowledge 
0 1 1 0 Nonvectored interrupt acknowledge 
0 1 1 1 Vectored interrupt acknowledge 
1 0 0 0 Data memory reference 
1 0 0 1 Stack memory reference 
1 0 1 0 EPU-data memory transfer 
1 0 1 1 EPU-stack memory transfer 
1 1 0 0 Instruction fetch, nth word (IFn) 
1 1 0 1 Instruction fetch, first word (IF1) 
1 1 1 0 CPU -EPU transfer 
1 1 1 1 Reserved (not used in Z800l and Z8002) 

instructions where several arithmetic or logical operations are performed be­
tween data transfers, such as the Divide instruction. 

The refresh status code (0001) indicates that a refresh cycle for dynamic 
memories is occurring on the bus. (The automatic memory refresh mechanism 
is described in Chapter 3.) Refresh and internal operations are the only bus 
transactions that do not involve a data transfer. 

Two types of I/O transactions can occur on the bus, standard I/O (status 
of 0010) and special I/O (status of 0011). A given I/O operation generates 
standard or special I/O status depending solely on the I/O instruction being 
executed; there are separate I/O and special I/O instructions. During an I/O 
access, the state of the status lines can be used as part of the I/O devices' 
chip-select logic to define two separate I/O address spaces, a standard I/O 
address space and a special I/O address space (Fig. 1.7). Thus the Z8002 can 
address 65,536 standard I/O devices and 65,536 special I/O devices. 

The only difference between standard I/O and special I/O bus transac­
tions is the code that appears on the status lines. As a general convention, 
standard I/O operations will be used to access Z8000 peripherals, and special 
I/O operations will be used to access CPU support chips such as the Z8010 
Memory Management Unit. 

Four status codes indicate a transfer between the CPU and memory 
devices. A 1000 on the status lines means that the CPU is reading or writing 
an instruction's data operand; a 1001 code signals that the CPU is reading or 
writing to the stack; a 1101 code indicates that the CPU is fetching the first 
word of an instruction; a 1100 code signals the fetching of subsequent words 
in an instruction. Just as with I/O accesses, these status lines can be used to 
define separate memory address spaces: a data memory address space (corre-
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Figure 1.7 Z8000 memory and I/O 
address spaces. 

sponding to the 1000 status code), a stack memory address space (the 1001 
code), and a program memory address space (the 1100 and 1101 codes). 
Program code would be located in the program memory space and the data 
to be acted on in the data memory space. Stack memory is used as tempo­
rary storage and to hold program status information in the event of a sub­
routine call or exception condition. When combined with the N /S signal, six 
memory address spaces are possible: system-mode data, system-mode stack, 
system-mode program, normal-mode data, normal-mode stack, and normal­
mode program (Fig. 1.7). For the Z8002, each of these spaces can hold up 
to 64K bytes of memory. 

Extended Processor Units (EPUs) are devices that can be added to a 
Z8000 system to unburden the CPU from complex tasks, such as floating­
point arithmetic. EPUs are designed to act on data resident in their internal 
registers; the CPU is responsible for transferring data between the EPUs 
registers and the rest of the system. Three status codes are reserved for 
transactions involving EPUs: the 1010 status indicates a transfer between an 
EPU register and data memory, a 1011 status indicates a transfer between 
an EPU register and stack memory, and alII 0 status indicates a transfer 
between an EPU register and a CPU register. (EPUs are discussed in Chapter 
10.) 

Status codes 0100 through 0111 indicate that the current bus activity 
is an interrupt or trap acknowledge sequence (see Chapter 6). These status 
lines would be decoded to generate the appropriate acknowledge signal for 
the interrupting device. 

The 1111 status code is reserved for use in future, upward-compatible 
Z8000-family CPUs. 

CPU Control 

These control signals are CPU inputs that allow external devices to delay the 
operation of the CPU. The WAIT line can be used by memory or peripheral 
devices to increase the delay between the address strobe and data strobe 
during bus transactions. Data transfers on the Z-Bus are asynchronous; a 
slow memory or I/O device can stretch the timing of data transfers by an 
arbitrary length through control of the CPU's WAIT input. (Timing details 
are discussed in Chapter 5.) The STOP input is used to halt CPU operation 
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immediately before the fetch of the next instruction. EPUs use the STOP 
signal to synchronize their activities with the CPU. 

Interrupts 

Three different types of interrupt inputs are supported by the Z8000 archi­
tecture: nonmaskable interrupts, nonvectored interrupts, and vectored inter­
rupts. The NMI signal is an interrupt input that cannot be disabled. N on­
maskable interrupts usually are reserved for catastrophic events that require 
the immediate attention of the CPU, such as an imminent power failure. 
The nonvectored interrupt (NVI) and vectored interrupt (VI) inputs can be 
enabled and disabled via manipulation of the CPU's flag and control word 
(FCW). When an interrupt is detected at one of these three inputs, informa­
tion about the currently executing program is saved, and a routine to handle 
the interrupt is invoked (see Chapter 6). Nonmaskable interrupts and non­
vectored interrupts each have one routine specified for servicing the inter­
rupt. Vectored interrupts can result in the execution of one of a number of 
possible interrupt service routines. Which of those routines is executed will 
depend on a byte of data, called a vector, that is received from the inter­
rupting device during the interrupt acknowledge cycle. 

Bus Control 

The bus control signals are used to implement a request/acknowledge daisy 
chain that other devices in the system can use to request control of the bus. 
BUSREQ is an input indicating that a Z-Bus requester (a DMA device, for 
example) is trying to gain control of the bus. The BUSACK output goes 
active when the CPU relinquishes control of the bus in response to a bus 
request. The CPU gives up control of the bus by tri-stating (electrically 
neutralizing) the address/data bus, bus timing signals, and bus status signals. 

Multi-micro Control 

The multi-micro in (MI) and multi-micro out (MO) signals are the CPUs 
interface to the Z-Bus resource-request daisy chain. These signals allow 
multiple processors to share common resources in a well-defined and con­
trolled manner. (Z-Bus resource requests are discussed in Chapter 7.) 

Z8001 PIN CONFIGURATION 

The Z8001 differs from the Z8002 in the manner and range of memory 
addressing. All of the signal pins previously described for the Z8002 are also 
on the Z8001, and the Z8001 has eight additional pins (Fig. 1.8). These 
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Figure 1.8 Z8001 pin functions. 

eight additional signals are used to increase the Z8001's memory addressing 
capabilities. 

Segment Number 

Seven output pins (SNO-SN7) define a segment number. Memory addresses 
in the Z8001 consist of a 7-bit segment number and the 16-bit address that 
appears on the address/data bus when address strobe is active. The 16-bit 
portion of the address is called the offset. Since memory addresses are 23 
bits long, the Z8001 can directly address 8,388,608 (8 megabytes or 8M 
bytes) of memory per memory address space. As with the Z8002, memory 
can be divided into the six distinct memory address spaces shown in Fig. 1.6, 
using the N /S and STO-ST3 signals. Each of the six address spaces can, then, 
hold a maximum of 8M bytes. The segment number is not used as part of an 
I/O address; I/O addresses in the Z8001 and Z8002 are always 16 bits long. 

Segment Trap 

The segment trap signal (SEGT) is an input to the cpu. Memory manage­
ment logic can use this signal to cause a trap if an illegal memory access is 
attempted. 



SEGMENTED ADDRESSING AND MEMORY MANAGEMENT 

The Z8001 and Z8002 CPUs generate memory addresses of different lengths 
and types. The Z8002 uses a 16-bit address to specify one of 64K bytes of 
memory in a memory address space. Within each address space, memory is 
addressed in a linear manner. The Z8001 uses 23 bits to address memory, 
but this address is separated into a 7-bit segment number and a 16-bit seg­
ment offset. The segment number and offset portions of the address are dis­
tinct; the segment number specifies one of 128 possible segments, or blocks, 
of memory, and the offset specifies one of up to 64K bytes in that segment. 
Each memory segment is an independent block of memory; instructions and 
mUltiple-byte data elements cannot cross segment boundaries. The segment 
number cannot be altered by effective address calculations during instruction 
execution, such as indexing. The Z8001 can address 128 memory segments 
per memory address space, with each segment having a maximum of 64K 
bytes. 

This division of memory into distinct blocks, called memory segmenta­
tion, provides a natural way of partitioning memory into different functional 
areas. Modern structured programming techniques dictate that a program's 
memory be divided into distinct areas dedicated to particular uses. For ex­
ample, different areas of memory might hold the program's instruction code, 
data variables, and a buffer for an I/O device. Each of these memory areas 
may have particular attributes associated with that section; the program code 
might be in read-only memory, and an I/O buffer's memory might be accessi­
ble only during system-mode operation. Segmentation reflects this use of 
memory by allowing the programmer to specify different segments for each 
distinct memory area. Thus segmentation provides a convenient means for 
partitioning a large memory address space. 

Further advantages of segmentation are realized when implementing a 
memory management scheme for providing memory protection and reloca­
tion. Memory is a limited resource within a computer system, a resource 
that often must be shared by many different and complex programming 
tasks. Memory management involves the efficient organization of those 
memory resources, while ensuring that each task has sufficient memory 
available when needed, without corrupting the execution of other tasks. 
Thus memory management is the process of allocating and protecting the 
system's memory resources; it is usually implemented with a combination of 
hardware logic and operating system software. A typical configuration 
would consist of memory-control logic that is programmed dynamically by 
the operating system. 

The primary means of controlling the allocation of memory is by map­
ping logical addresses to physical addresses. As a processor executes a task, 
program code and data must be read from and written to memory. The 
addresses that appear in the program and are output by the CPU are called 
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Figure 1.9 Example of identical log­
ical and physical memory addresses. 

logical addresses. On the other hand, the actual memory addresses in the 
system's hardware that access particular locations are called physical ad­
dresses. In simple systems with no memory management, logical and physi­
cal addresses are identical (Fig. 1.9). In more complex systems, the memory 
manager maps the logical addresses into the physical address space as pro­
grams execute (Fig. 1.10). Thus each independent user of the system need 
not be concerned that the logical addresses within a given applications pro­
gram are the same as the logical addresses of another program on the system; 
the memory manager will route the logical addresses for each user into dif­
ferent physical memory addresses. 

For example, Fig. 1.11 illustrates a system with two users, both of 
whom have specified logical addresses 4000 to 5000 in their programs. 
When user A's program is running, the memory manager will translate user 
A's logical addresses to physical addresses 3000 to 4000; when user B's 
program is running, the memory manager will translate user B's logical ad­
dresses to physical addresses 7000 to 8000. Of course, the operating system 
will have to inform the memory manager each time it switches between tasks. 
Thus, using a mapping algorithm, the memory manager can place each task's 
code and data anywhere within physical memory. Logical addresses emitted 
by each programming task are translated by the memory manager to the 
proper physical addresses for that task's code and data. 

The logical address space might be larger, smaller, or equal in size to the 
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Figure 1.10 Mapping logical ad­
dresses to physical addresses using a 
memory manager. 
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Figure 1.11 Mapping two users' 
logical addresses into physical ad­
dresses. 

physical address space. Systems whose logical address space is larger than 
the physical address space are called virtual memory systems. In virtual 
memory systems, or in systems with a large number of different program­
ming tasks, the memory requirements for all tasks currently running under 
operating system control might exceed the available physical memory. 
Therefore, for some users, only parts of their program's code and data may 
be in main memory at any given time. Suppose that the addresses that are 
"missing" in main memory for a given task are somehow marked in the 
memory manager. The memory manager can stop execution by causing a 
trap when a reference is made to a "missing" address. The trap routine 
could then retrieve the task's missing code or data from an intermediate 
storage device (a floppy disk system, for example), place it in physical 
memory, and allow the task to continue execution from where it left off. 
Space in physical memory would have to be found, which might involve 
bumping some other task's code or data onto the disk or other storage 
device. The operating system would have to keep careful track of which 
areas of physical memory are being used and in what way they are being 
used. 

The use of segmented addressing in the Z8001 supports the implemen­
tation of memory management logic in Z8001-based systems. A memory 
segment is essentially a standard, variable-sized block of memory that can 
be assigned common attributes. Translation of logical to physical addresses 
can occur on a segment-by-segment basis. Virtual memory systems can swap 
entire segments between main memory and intermediate storage devices, 
as needed. MemorY,attributes such as read-only or system-mode-only ean be 
assigned to segments. The memory manager would use the Z8001 's segment 
trap (SEGT) input to signal the CPU in the event of an illegal access, such as 
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an attempted write to a read-only segment. Thus, with memory segmenta­
tion, each task's code, data, and stack area can be assigned its own segment, 
thereby structuring memory in accordance with modem modular program­
ming techniques. Furthermore, the protection attributes assigned to these 
segments help define the interface between the various tasks' program 
modules. For example, by placing the operating system software in seg­
ments with the "system-mode-only" attribute, the memory manager can 
automatically prevent users' programs, which run in normal mode, from 
altering the operating system. The Z8010 Memory Management Unit, a 
programmable memory manager for Z8001-based systems, is discussed in 
Chapter 9. 

SEGMENTED AND NONSEGMENTED MODES 

The type of addressing scheme used in a Z8000 system will affect how ad­
dresses are stored in that system. The Z8002's 16-bit addresses, sometimes 
called nonsegmented addresses, can be stored in a 16-bit register or in a word 
of memory. The Z8001 's 23-bit segmented addresses, on the other hand, are 
embedded in a 32-bit-long word, and therefore require two 16-bit registers 
or two words of memory when stored. However, a method of using non­
segmented addresses in Z8001 programs is provided. 

The Z8001 executes programs in one of two segmentation modes, 
segmented mode or nonsegmented mode, as determined by a control bit in 
the CPU's flag and control word (FCW). The segmentation mode determines 
the size and format of addresses that are directly manipulated by the pro­
gram; in the segmented mode, programs act on 23-bit segmented addresses, 
and in the nonsegmented mode, programs act on 16-bit nonsegmented ad­
dresses. The segmented mode is available only on the Z8001; the Z8002 
always executes in the nonsegmented mode. Therefore, programs written 
for the Z8002 can be run on the Z8001 in the nonsegmented mode without 
alteration. 

CPU OPERATING STATES 

The Z8000 CPUs have three basic operating states: running state, stop/re­
fresh state, and bus-disconnect state. Figure 1.12 illustrates these states and 
the conditions that can cause a change in state. 

The running state is the normal state of the processor, wherein the CPU 
is executing instructions and handling exception conditions (interrupts and 
traps). While the CPU is in the running state, execution is controlled by the 
program counter (PC) and the flag and control word (FCW). The PC holds 
the memory address from which the next instruction is to be fetched. The 
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Figure 1.12 Z8000 operating states 
and transitions. 

FCW contains control bits that determine the operating modes (system or 
normal, segmented or nonsegmented) and which interrupts are enabled. 
Instruction execution consists of two steps: (1) a single instruction of one 
or more words is fetched from program memory (IF1 or IFn status on the 
STO-ST3 lines) at the address specified by the PC, and (2) the operation 
specified by the instruction is performed, with the PC and the flags in the 
FCW updated accordingly. After each instruction's execution, the CPU 
checks if any interrupts or traps are pending and enabled. If so, instruction 
execution is halted and an acknowledge sequence is performed (see Chapter 
6). Three conditions can cause the CPU to leave the running state: a refresh 
request from the automatic memory refresh logic, the activation of the 
STOP input (a low at the input), or a bus request. 

While in the stop/refresh state, the CPU generates memory refresh 
cycles (see Chapters 5 and 10), and does not perform any other functions. 
This feature is used by EPUs to suspend program execution. The CPU re­
turns to the running state when the automatic refresh logic has completed 
its memory refresh operation, or when the STOP input is inactivated (returns 
high). A bus request while in the stop/refresh state will cause a transition to 
the bus-disconnect state. 

The CPU enters the bus-disconnect state after receiving a bus request 
on the BUSREQ input and acknowledging it on the BUSACK output. While 
in this state, the CPU disconnects itself from the bus by tri-stating the 
address/data bus, bus timing, and bus status outputs. The CPU leaves this 
state when BUSREQ is inactivated. The bus-disconnect state is the highest­
priority state, in that a bus request will force the CPU into this state regard­
less of what other state it is in and what other inputs it receives. 
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Figure 1.13 Z8000 CPU pin diagrams. 

SYSTEM INPUTS 

Figure 1.13 shows the full pin diagram for the Z8001 and Z8002. The 
Z8000 CPUs need a +5-V power source and draw a maximum of 300 mAo 
A single-phase clock is required; the clock specifications are discussed below. 
The RESET input provides a means of putting the CPU in a known starting 
condition (see Chapter 6). Note that one pin on each of the CPUs is not 
used; that pin is reserved for use on future upward-compatible Z8000 CPUs. 

CPU CLOCK REQUIREMENTS 

The Z8000 CPUs are dynamic MOS parts which require a single-phase clock 
input. The maximum clock rate is 4 MHz for the Z8001 and Z8002, 6 MHz 
for the Z8001A and Z8002A, and 10 MHz for the Z8001B and Z8002B. 
Since the parts are dynamic, the clock cannot be held high or low for more 
than 2 J.1s; therefore, the slowest allowable clock rate is 250 kHz. A TTL­
generated clock signal is not adequate to drive the Z8000; active drivers are 
required to meet the stringent level, rise-time, and fall-time requirements. 
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The clock input high voltage must be not more than 0.3 V above or less than 
0.4 V below the +5-V power input. Rise and fall times cannot exceed 20 ns 
for the 4-MHz parts and 10 ns for the 6-MHz parts. 

Figure 1.14 shows a clock driver circuit for the 4-MHz Z8000. A 
4-MHz square wave is generated by dividing an 8-MHz crystal oscillator with 
a toggling flip-flop. A resistive pull-up could ensure the required clock-high 
level but cannot guarantee the required rise time while driving the chip's 
50-pF input capacitance. The rise-time and fall-time requirements dictate 
the use of active pull-up and pull-down circuitry for the CPU clock. A TTL 
clock also is generated, for possible use by other circuits in the system. 



2 

CPU Registers 

The Z8000 CPU is a register-oriented machine, with a set of sixteen 16-bit 
general-purpose registers and four special CPU control registers. Storing data 
in the registers allows shorter instructions and faster execution than with 
instructions that fetch data from memory. The CPU architecture provides a 
very regular register structure for manipulating byte (8-bit), word (16-bit), 
long-word (32-bit), and quad-word (64-bit) values. Certain special instruc­
tions also access specific bits in byte and word registers, and nibbles (4 bits) 
in bytes; individual bits can be set, reset, and tested, and nibbles are used to 
hold digits for binary-coded-decimal (BCD) arithmetic operations. Bits in a 
byte or word are numbered right to left starting from 0, from the least to the 
most significant bit (Fig. 2.1). Thus bit position n corresponds to the value 
2n in the representation of positive binary numbers. 

Z8002 GENERAL-PURPOSE REGISTERS 

The general-purpose register set of the Z8002 consists of 16 word registers, 
labeled RO through R15, as illustrated in Fig. 2.2. Register data formats 
ranging from bytes to quad words are created by grouping and overlapping 
the 16 word registers. Sixteen byte registers (RLO, RHO, ... , RL 7, RH7) 
overlap the first eight word registers; RLO is the least significant byte of 
word register RO, RHO is the most significant byte of RO, and so on through 
RH7. (Any byte register can hold two digits for BCD arithmetic operations.) 
Eight long-word registers (RRO, ... , RR14) are formed by grouping the 
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word registers into pairs (in fact, long-word registers are sometimes called 
register pairs); long-word register RRO consists of word registers RO and Rl, 
RR2 consists of R2 and R3, and so on. The even-numbered register is the 
most significant word of the long word. The quad-word registers (RQO, ... , 
RQ12) are accessed only by the multiply and divide instructions. Each con­
sists of four word registers; quad register RQO consists of word registers RO 
through R3, with RO being most significant. As a result of these groupings, 
half of the 16-bit ,registers and all of the 32-bit and 64-bit registers have 
addressable halves. For example, each half of word register RO can be 
addressed separately as byte registers RHO and RLO. Half of the 32-bit 
registers and all of the 64-bit registers have addressable quarters. This type 
of register hierarchy facilitates many programming tasks. 

All of these registers are general purpose in nature and can be used to 
hold data or addresses. Each register can be used as an accumulator, that is, 
the source or destination of data involved in an AL U operation. Every word 
register, except RO, can hold a memory or I/O address (for indirect memory 
or I/O references), an index (for indexed memory references), or a stack 
pointer. Since all of these registers are general purpose, the particular use to 
which a register is put can vary during the course of a program, giving the 
programmer a great deal of flexibility. This architecture avoids the program­
ming bottlenecks of an implied or dedicated register architecture, in which 
register contents must be saved and restored whenever the need for registers 
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of a particular type exceeds the number of registers of that type in the 
processor. (For example, the Z80 architecture has only one accumulator, 
and most Z80 assembly language programs include numerous instructions to 
shift data in and out of the accumulator.) Furthermore, the grouping of the 
registers facilitates their efficient use; the Z8000 programmer does not need 
to dedicate a whole 16-bit register to hold a byte of data. 

Included in the general-purpose register set is an implied stack pointer, 
R15. There are actually two implied stack pointers, one for system-mode 
operation and another for normal-mode operation. Although any register 
except RO can be used as a stack pointer with the PUSH and POP instruc­
tions, R15 is the stack pointer used when program status information is to 
be saved on a stack. The system-mode stack pointer R15' is used for saving 
program status information when an interrupt or trap occurs and for saving 
the PC during subroutine calls in system mode. The normal-mode stack 
pointer R15 is used for subroutine calls in normal mode. Since the implied 
stack pointer is a member of the general-purpose register set, it can be ma­
nipulated by any instruction that operates on the registers. In normal-mode 
operation, references to R15 will access the normal-mode stack pointer, and 
in system-mode operation, references to R15 will access the system-mode 
stack pointer. Thus the operating system and users' application programs 
can have separate stacks, and the normal-mode users cannot alter the system 
stack pointer. The normal-mode stack pointer can be accessed in system 
mode, however, as a special control register. This allows the operating sys­
tem to initialize each normal-mode users' stack area pointer. 

Z8002 CONTROL REGISTERS 

In addition to the general-purpose registers, the Z8002 has four 16-bit 
special-purpose registers that control the CPU's operation: the program 
counter (PC), flag and control word (FCW), program status area pointer 
(PSAP), and refresh control register (Fig. 2.3). 

The PC and FCW are referred to as the program status registers. When 
an interrupt or trap occurs, these registers are saved on the system stack, and 
new program status describing the running environment of the service rou­
tine is loaded (see Chapter 6). The program counter holds the 16-bit address 
from which the next instruction is to be fetched; it is updated as each in­
struction is executed. The flag and control word contains control bits for 
determining the CPU operating modes and status flags for use in program 
branching instructions, such as jumps and returns. 

The low-order bits of the FCW (bits 0-7) hold the status flags that re­
flect the result of ALU operations. Bit 7, the carry flag (C), indicates a carry 
out of the most significant bit position of the register used as the destination 
for the result of an arithmetic operation. Bit 6, the zero flag (Z), is set when 
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Figure 2.3 Z8002 control registers. 

the result of an operation is zero and cleared if the result is nonzero. Bit 5, 
the sign flag (S), is set when the result of an arithmetic operation is negative 
in two's-complement notation; that is, the most significant bit of the result 
is a 1. Bit 4, the parity/overflow flag (P IV), is an odd-parity bit for logical 
operations, and an overflow flag for arithmetic operations. When set, the 
overflow flag indicates that the result is greater than the largest number or 
less than the smallest number that can be represented in two's-complement 
notation in the destination register. Bit 3, the decimal adjust flag (D), is 
used for BCD arithmetic and indicates whether the last operation was an 
addition or subtraction. The Decimal Adjust Byte (DAB) instruction uses this 
flag as part of an algorithm for adjusting the binary results of an addition or 
subtraction of BCD digits into the correct BCD form. Bit 2, the half-carry 
flag (H), also is used by the DAB instruction; it indicates a carry out or a 
borrow into bit 3 as a result of an addition or subtraction of BCD digits. 
Neither the D nor the H flags are normally accessed by the programmer. Bits 
o and 1 of the FCW are not used. 

The processor flags provide a means of controlling program branches 
and loops. The result of executing one instruction that alters the flags may 
determine the operation of a subsequent instruction that tests the flags' 
values, typically a conditional jump or return. The whole lower byte of the 
FCW can be read from or written to a byte register in system or normal 
modes using a special control instruction. 

The upper byte of the FCW (bits 8-15) contains control bits that deter­
mine the operating modes of the CPU and control the interrupts. Bit 15 is 
always a 0 in the Z8002, signifying that the Z8002 always runs in the non­
segmented mode. Bit 14 is a the system/normal bit (S/N); when this bit is a 
1, the CPU is in the system mode, and when this bit is a 0, the CPU is in the 
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normal mode. The N /8 output pin is the complement of the SIN bit in the 
FCW. Bit 13 is the extended processor architecture enable bit (EPA). When 
set to 1, this bit indicates that Extended Processor Units are present in the 
system, and, therefore, instructions reserved for EPUs will be executed. 
When the EPA bit is 0, the occurrence of an instruction code reserved for 
EPUs will cause a trap (see Chapters 6 and 10). Bit 12 is the vectored inter­
rupt enable bit (VIE) and bit 11 is the nonvectored interrupt enable bit 
(NVIE). Setting the appropriate bit to a 1 enables the interrupt. Bits 8, 9, 
and 10 of the FCW are not used. These control bits can only be accessed in 
the system mode, via privileged CPU control instructions (see Chapter 9). 
Thus only the operating system software can alter the CPU's operating modes. 

The program status area pointer (PSAP) holds a 16-bit address that 
points to an area in memory called the program status area. The program 
status area holds a list of the program status values (values for the PC and 
FCW) for every possible interrupt and trap service routine; the program 
status area resides in the system program memory address space. The low­
order byte of the PSAP is always zero. (The program status area is described 
in Chapter 6.). 

The refresh control register, consisting of a 9-bit row counter, a 6-bit 
rate counter, and an enable bit, is used to implement CPU-controlled, auto­
matic refresh for dynamic memory. This refresh mechanism is discussed in 
Chapter 3. 

Z8001 GENERAL-PURPOSE REGISTERS 

The Z8001 's general-purpose register set, shown in Fig. 2.4, is identical to the 
Z8002, with the exception of the implied stack pointer. Any general-
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Figure 2.5" Format of segmented ad­
dresses stored in registers. 

purpose register can be used as an accumulator. Any word register, except 
RO, can hold a nonsegmented memory address, an I/O address, or an index. 
When in segmented mode, two words are needed to store an address; seg­
mented addresses can be held in any long-word register except RRO. The 
segment number is held in bits 8-14 of the even-numbered register, and the 
offset goes in the odd-numbered register (Fig. 2.5). 

The implied stack pointer in the Z800I is register pair RRI4, where 
R14 holds the stack pointer's segment number and R15 holds the offset. As 
with the Z8002, there are actually two copies of the implied stack pointer, 
one for system-mode operation and one for normal-mode operation. RR14 
is used as the implied stack pointer in the segmented mode, and R15 is the 
implied stack pointer in the nonsegmented mode. 

Z8001 CONTROL REGISTERS 

The Z8001 's control registers include the program status registers, PSAP, and 
refresh control register (Fig. 2.6). 

A reserved word, the FCW, and the PC define the Z8001's program 
status registers. The reserved word is not used in the Z8001 but is reserved 
for use in future, upward-compatible Z8000 family processors. The program 
counter is two words long, where one word holds the segment number and 
the other word holds the offset. The flag and control word is identical to 
the Z8002 's FCW, with the exception of bit 15. This bit is the segmenta­
tion-mode bit; when set to 1, the CPU operates in the segmented mode, and 
when cleared to 0, the CPU operates in the nonsegmented mode. In the 
segmented mode, programs manipulate 23-bit segmented addresses; in the 
nonsegmented mode, programs manipulate 16-bit nonsegmented addresses. 
Thus Z8002 programs can be run on the Z8001 in the nonsegmented mode. 
However, the Z8001 always outputs segmented addresses during memory 
accesses, regardless of the operating mode. When a memory access is made 
in the nonsegmented mode, the offset is the I6-bit nonsegmented address 
generated by the program, and the segment number is the value of the 
segment number field of the program counter. In other words, the Z8001 in 
the nonsegmented mode is actually holding a fixed segment number on the 
SNO-SN6 outputs, and making all its accesses to that one segment. That 
segment will be the segment number that was in the program counter when 
the CPU was placed in the nonsegmented mode. The remaining bits of the 
Z8001 's FCW function in the same manner as the corresponding bits in the 
Z8002's FCW, as described previously. 
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Chap. 2 

Besides determining which instructions can be executed, the contents 
of the SIN bit in the Z8001 's FeW affect how the implied stack pointers are 
accessed. When in the normal mode (SIN = 0), a reference to R14, R15, or 
RR14 by an instruction will affect the normal-mode stack pointer. In the 
system mode (SIN = 1), a reference to R14, R15, or RR14 will access the 
system-mode stack pointer, unless the Z8001 is in the nonsegmented mode, 
in which case a reference to R14 will reference the normal-mode R14. In 
other words, when the Z8001 is in the segmented mode, RR14 is the implied 
stack pointer, and both system- and normal-mode copies of R14 and R15 
can be accessed, depending on the current operating mode. In the nonseg-

TABLE 2.1 REGISTERS ACCESSED BY REFERENCES TO R14 AND R15 

Register 
referenced by 

instruction 

R14 
R15 
RR14 

System mode 

Segmented 

System R14 
System R15 
System R14 
System R15 

Nonsegmented 

Normal R14 
System R15 
Normal R14 
System R15 

Note: Z8002 always runs in the nonsegmented mode. 

Normal mode 

Segmented 

Normal R14 
Normal R15 
Normal R14 
Normal R15 

Nonsegmented 

Normal R14 
Normal R15 
Normal R14 
Normal R15 
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mented mode, R15 is the implied stack pointer, and therefore only the 
normal-mode copy of R14 can be accessed. This operation is summarized in 
Table 2.1. 

The PSAP in the Z8001 consists of two words that hold the segment 
number and offset address of the program status area (see Chapter 6). The 
low-order byte of the offset is always zero. The refresh control register has the 
same configuration in the Z8001 and Z8002, and is described in Chapter 3. 



3 

Interfacing to Memory 

The Z8000 CPUs transfer data to and from memory asynchronously on the 
16-bit multiplexed address/data bus. As discussed previously, the Z8001 and 
Z8002 have different memory addressing capabilities. The Z8002 generates 
16-bit addresses and can directly address 64K bytes of memory per memory 
address space. The Z8001 generates 23-bit segmented addresses, consisting 
of a 7-bit segment number and a 16-bit offset, and can directly address 8M 
bytes of memory (128 segments of 64K bytes each) per memory address 
space. 

MEMORY ADDRESS SPACES 

Up to six different memory address spaces can be defined using the N /8 and 
STO-ST3 signals, as described in Chapter 1: system-mode program, system­
mode data, system-mode stack, normal-mode program, normal-mode data, 
and normal-mode stack (Fig. 1.7). Thus, by using the status signals to define 
distinct memory address spaces, up to a sixfold increase in the addressing 
range can be realized. 

In some applications, complete separation of these memory address 
spaces may not be desirable. Normal-mode programs often need to pass in-

32 
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formation to a system-mode routine. For example, a normal-mode program 
might ask the operating system to output a data file to a printer. The data 
to be output would have to accessible in both normal and system modes; a 
normal-mode program would initialize and manipulate the data, and a 
system-mode program would have to read the data in order to perform the 
requested output operation. 

CPU registers could be used to pass data between normal-mode and 
system-mode routines. The normal-mode program would put the data in the 
registers before calling the operating system. The system-mode output rou­
tine would, then, only have to read the register contents. But since there are 
only 16 general-purpose registers, this scheme is feasible only for very small 
data files. Furthermore, other information in the registers, such as the value 
of the implied stack pointer, might have to be saved in memory and restored 
later. 

A more general method would have the normal-mode program store the 
data file in memory and pass the starting address and length of the file to the 
operating system. These two parameters could be passed in registers or 
memory locations reserved for that purpose. However, the area in memory 
where the data file is stored would have to be accessible to both the system­
mode and normal-mode programs. In other words, some block of memory 
addresses (perhaps a whole segment in a Z8001 system) would have to be in 
both the normal-mode data and system-mode data address spaces (Fig. 3.1). 

Similarly, if programs are to be downloaded to the Z8000 system from 
some other computer, the program and data address spaces might need to be 
overlapped; the load commands used to download the code would write to 
the data memory address space, but execution of the downloaded code in­
volves fetches from the program memory address space. Thus the memory 
area that holds the downloaded code must be in the data memory space 
during the download operation and in program memory space when the code 
is to be executed. Many systems may require data references to the informa-
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DATA MEMORY 

1--------1 
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DATA MEMORY COMMON TO 
SYSTEM- AND NORMAL-MODE 
OPERATION 

Figure 3.1 Memory shared by two 
address spaces_ 
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tion placed on the stack during interrupt handling; therefore, the data and 
stack address spaces might share some common memory locations. Thus 
most Z8000 systems will have some memory locations that are shared among 
the six possible memory address spaces. (In Z8001 systems with a program­
mable memory manager, such as the Z8010 MMU, this problem is not as 
critical, since the attributes of a particular memory segment can be changed 
during program execution by reprogramming the memory manager.) 

Few systems will, in practice, require the full addressing range of the 
CPU for all six possible memory address spaces. Few Z8001 applications, 
for example, need both 8M bytes of system-mode stack and 8M bytes of 
normal-mode stack. 

MEMORY ORGANIZATION 

Each memory address space in the Z8002 and each memory segment in the 
Z8001 is a string of up to 64K bytes numbered consecutively in ascending 
order. The byte is the basic addressable memory element in Z8000 systems, 
and, therefore, each address emitted by a Z8000 CPU designates a particular 
byte of memory. However, three other types of data elements in memory are 
addressable: bits, words, and long words. The type of data element addressed 
depends on the instruction being executed. Certain instructions act on spe­
cific bits in memory by specifying a byte or word address and the number of 
the bit within the byte or word. Most of the instructions for performing 
arithmetic and logical operations on data have byte, word, and long-word 
formats. A few special instructions act on strings of bytes or words, where 
the length of the string is given in a register; however, these instructions 
access the bytes or words one at a time. 

Although memory is addressed as bytes, the Z8000 architecture defines 
a 16-bit-wide data path (the 16-bit address/data bus), and memory is orga­
nized in the same way, as 16-bit words. Each 16-bit word of memory is made 
up of two 8-bit bytes; thus each Z8002 memory address space and Z8001 
memory segment actually contains up to 32K words of memory, where both 
bytes in a word are accessible. A memory segment consists of two banks of 

64K·BYTE SEGMENT (32K WORDS) 

~g.~RESS Al--~ 

HIGH· 
ORDER 

AO----------~--~ ~--~ 
Figure 3.2 Organization of a mem­
ory segment. 
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up to 32K bytes each, as shown in Fig. 3.2; one bank holds the bytes with 
even-numbered addresses, and the other bank holds the bytes with odd­
numbered addresses. A word always consists of an even-addressed byte and 
the next consecutive odd-addressed byte. Therefore, only the upper 15 bits 
of the address (the offset in segmented addresses), A1-A15, are needed to 
specify a word in memory. However, each byte in a word can be addressed 
separately; the least significant bit of the address, AO, is used to specify a 
byte within a word during byte accesses. All Z8000 instruction fetches and 
stack references are word accesses, but data references can be byte or word 
accesses. 

Bits in bytes and words are numbered right to left in the traditional 
fashion; that is, the rightmost bit is the least significant bit and is labeled bit 
o (Fig. 3.3). Thus bit position n corresponds to the value 2n in the represen­
tation of positive binary numbers. 

The two bytes in a word, however, are numbered left to right; the most 
significant byte in the word is the even-addressed byte (AO = 0), and the 
least significant byte is the odd-addressed byte (AO = 1), as shown in Fig. 
3.4. The address of a word is the address of its most significant byte; there­
fore, words always have even addresses (AO = 0) (Fig. 3.5). For example, the 
word at memory address 6000 consists of the byte with address 6000 (the 
most significant half of the word) and the byte at address 6001 (the least 
significant half of the word). This convention is the opposite of many 
machines, such as the PDP-II minicomputers, and may seem confusing at 
first, since the most significant byte of a word has an address that is numer-
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Figure 3.5 Addressing of data ele­
ments in memory. 

Figure 3.6 Memory addressing ex­
ample. 

ically one smaller than the least significant byte of that word. However, this 
type of memory organization greatly simplifies the manipulation of strings 
of byte data. Strings of bytes can be stored in consecutive memory locations 
and addressed in consecutive numeric order (Fig. 3.4). 

Some Z8000 instructions allow manipulation of long-word (32-bit) data 
elements. Just as with words, the address of a long-word memory operand is 
the address of its most significant byte (Fig. 3.5), which is also the byte in 
the long word with the smallest numerical address. Words and long words in 
memory always start on even addresses. An example of byte, word, and 
long-word addressing is illustrated in Fig. 3.6. 

MEMORY CONTROL LOGIC 

Memory control logic is the logic needed to interface particular semiconduc­
tor memory devices to the Z-Bus signals output by Z8000 CPUs. This logic 
typically includes multiplexers and demultiplexers for interfacing to the ad­
dress/data bus, and chip-select and timing logic for controlling the memory 
chips. A block diagram of the memory control logic for one memory seg­
ment is illustrated in Fig. 3.7. Timing of the Z-Bus transactions between the 
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memory and the CPU is determined by the address and data strobes (AS 
and DS). The memory control logic might generate WAIT signals if memory 
access times are longer than the default CPU memory cycle timing (see Chap­
ter 5). The status lines (N/S, B/W, R/W, STO-ST3) and, in ZSOOl systems, 
the segment number, are used to generate chip selects to the memory, since 
they define the address space, segment, and type of memory access. (The 
MREQ signal might be used in place of the STO-ST3 lines to signal a mem­
ory access in systems where separate program, data, and stack memory ad­
dress spaces are not distinguished.) Thus this group of signals, together with 
the address/data bus, defines the Z-Bus signals used for CPU-memory trans­
fers (Fig. 3.S). Of course, not every system will use everyone of these sig­
nals; for example, a system designed for word accesses only might not use 
the B/W CPU output. 

The start of a Z-Bus transaction is signaled by AS going low (Fig. 3.9). 
The status signals and the address on the address/data bus are guaranteed to 
be valid at the rising edge of AS; this edge can be used to latch the address 
and status information. (The address can also be latched by the falling edge 
of MREQ, which happens slightly sooner.) 

During memory reads, DS going low indicates that the CPU has reversed 
the direction of the address/data bus, and the data to be read from memory 
can be placed on the bus. Thus DS would be used to enable the buffers that 
drive the data from memory onto the bus. For memory writes, DS goes low 
after the address is replaced on the bus by the data to be written; DS would 
then be used to enable the write to memory. The memory control logic can 
lengthen the data transfer timing by pulling the WAIT line low, thereby 
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allowing the Z8000 CPUs to interface with memories with arbitfarily long 
access times. 

The status lines are used to generate memory chip enables and help 
control the bus buffering. The STO-ST3 lines, decoded to provide instruc­
tion fetch, data access, or stack access status signals, can be used in conjunc­
tion with the N /S signal to select a particular memory address space. The 
R/Wand B/W lines are used with the DS signal to drive the data buffers and 
enable writes to memory. 

Address bits Al-A15 are propagated to address-decode circuitry to 
access a particular word in the specified memory address space and/or seg­
ment. Address bit AO is used by the control logic to select a particular byte 
in the word addressed by Al-A15 during byte accesses, as described below. 

During memory reads, the R/W line will be high. Regardless of the 
state of the B/W line, the memory control logic should place a word of data 
on the bus during DS active. The data should be the contents of the word of 
memory specified by address bits Al-A15 latched during AS. If the B/W 
line is low, indicating a word transfer, the CPU will, of course, read the 
entire word of data. If the B/W line is high, indicating a byte transfer, logic 
internal to the CPU will select one-half of the word of data returned on the 
bus as the byte to be read; if AO was 0 during the address strobe, the CPU 
will read the upper half (D8-D15) of the bus, and if AO was 1, the CPU will 
read the lower half (DO-D7) of the bus. Thus, for memory reads, the 
memory control logic can ignore the state of the B/W line and AO, and just 
return the contents of the word addressed by Al-A15 (Fig. 3.10); during 
byte reads, the CPU will internally select the appropriate half of the word. 

For memory writes, the R/W line is low. If the B/W is also low, sig-
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nifying a word transfer, the memory control logic can ignore AO. The word 
of data supplied by the CPU during DS active is written into the memory 
word addressed by A1-A15 (Fig. 3.11). If the B/W line is high, signifying a 
byte transfer, the CPU will duplicate the byte of data on both halves of the 
address/data bus during DS active. The memory control logic should exam­
ine the value of AO to decide which bank of bytes is to be written; A1-A15 
address a word, and the high-order byte of that word receives the written 
data if AO = 0, and the low-order byte of that word receives the data if AO = 
1 (Fig. 3.12). Therefore, the only time the memory control logic needs to 
examine AO and select just one byte of the word addressed by A1-A15 is 
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Figure 3.10 Reading from memory. 

when a byte write operation is performed. (The replication of byte data on 
both halves of the bus during byte write operations may not be implemented 
on future Z8000 family CPUs; therefore, system designs should not depend 
on this feature.) 

This type of memory organization has several important ramifications. 
The ability to write to specific bytes in a word avoids time-consuming read­
modify-write cycles, wherein a CPU would have to read a whole word of 
data from memory, internally modify one byte of the word, and then write 
the word back into memory. Words of data must be aligned on word bound­
aries (that is, on even addresses). Word accesses always ignore the value of 
address bit 0; therefore, it is impossible to access a "word" consisting of a 
byte with an odd-numbered address and the next consecutive even-addressed 
byte. Words and long words always have even addresses, and the even­
numbered byte of a word is always the most significant byte. Instructions 
are always words and should be aligned at word boundaries. As a result, the 
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Figure 3.12 Writing bytes to mem­
ory. 

program counter should always hold an even value. The implied system- and 
normal-mode stack pointers should also have even-valued contents. 

The timing of the address strobe (AS) in relation to the address and 
status signals at the memory control logic should be examined carefully. 
The status and address lines are guaranteed to be stable CPU outputs before 
the rising edge of AS. However, these signals may pass through buffers and 
decoders before reaching the memory control logic. If AS is used to latch 
these signals at the memory controller, the maximum delay time for the 
status and address signals to pass through any intermediate decoding or buf­
fering logic must be taken into account, and the AS to the memory control 
logic may need to be delayed accordingly. (Appendix A contains timing 
information for the Z8000 CPUs.) 

EXAMPLE 1: INTERFACING TO Z6132'S 

Rather simple memory control logic is needed in Z8000 systems when using 
Z-Bus-compatible memories such as the Zilog Z6l32 Quasi-Static RAM. The 
Z6l32 is a 4K X 8 dynamic RAM with on-board memory refresh capability. 
A functional pin diagram is shown in Fig. 3.13. Inputs include 12 bits of ad­
dress, for addressing the 4096 bytes of memory on the chip, an address clock 
(AC), a data strobe (DS), a write enable (WE), and a chip select (CS). Data 
lines DO-D7 serve as data inputs during memory writes and data outputs 
during memory reads. The BUSY signal is an input or output, depending on 
the refresh mode chosen. 

A read or write operation to a Z6l32 memory chip starts on the rising 
edge of the address clock (AC) input, at which point the chip select (CS), 
write enable (WE), and address inputs AO-All are examined (Fig. 3.14). If 
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the chip is not selected (CS is high), all other inputs are ignored for the rest 
of that cycle, that is, until the next rising edge of AC. For a memory read 
(WE high), a low on the DS will activate the data outputs DO-D7; in other 
words, the DS is a data output enable signal. For memory writes (WE low), 
the falling edge of DS latches the data on the DO-D7 inputs into the ad­
dressed memory location. Note that the Z6132 timing is very similar to the 
Z-bus memory timing shown in Fig. 3.9. (Further details of Z6132 opera­
tion are discussed in Chapter 12.) 

Consider a Z8002-based system with 4K words of memory, where the 
six memory address spaces are not differentiated; in other words, the same 
4K words of memory are accessed by the CPU for system-mode and normal­
mode program, data, and stack references. Thus the MREQ signal can be 
used in lieu of the STO-ST3 status lines to indicate a memory access. The 
4K words of memory can be organized as two banks of 4K bytes each, where 
one Z6132 chip holds the even-addressed bytes, and a second Z6132 holds 
the odd-addressed bytes (Fig. 3.15). During word and byte read transac­
tions, both banks are accessed simultaneously, and the word on the address/ 
data bus consists of one byte from each bank. For byte writes, the banks 
are accessed separately. 

A connection diagram for this memory interface is shown in Fig. 3.16. 
Ignoring detailed timing considerations for now, the AS CPU output would 
connect directly to the Z6132's AC input; the DS CPU output connects to 
the memory's DS input; the R/W CPU output connects to the memory's WE 
input. The BUSY outputs from memory are tied to the CPU's WAIT input. 

Addresses are latched internally in the Z6132 by the rising edge of AC, 
and the Z6132's data lines are tri-stated except when DS is active. As a 
result, the address/data bus does not need to be demultiplexed or latched 
external to the memory chips. The Z6132's address inputs AO-A11 are used 
to select one of 4096 bytes in the memory chip. Since the address bit on 

Z8000 
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AC, os, WE 

Z6132 
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Z6132 
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Figure 3.15 Block diagram of a Z8000-Z6132 interface for a 4K word 
system. I 
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Figure 3.16 Z8002-Z6132 interface logic for a 4K word system. 

bus line ADO is used to address bytes in a word, not to address the word 
itself, this line is not used as an address input to the Z6I32's. Thus ADI 
supplies the AD memory address input, AD2 is connected to the memory's 
AI, and so on. (Since only 4K words are being addressed, the address bits 
that appear on bus signals AD13, AD14, and AD15 are not used.) The Z6I32 
that holds the even-addressed bytes has its data lines connected to the 
upper half of the CPU's address/data bus, since the even-addressed byte is 
the most significant byte in a word. The Z6I32 with the odd-addressed bytes 
has its data lines connected to the lower half of the address/data bus. 

The chip-select signals to memory are generated from the R/W, B/W, 
and MREQ status lines and the address bit on ADO. Chip selects are latched 
internally in the Z6I32 by the rising edge of AC. Assuming that MREQ is 
active, both Z6I32's are to be chip selected if the B/W line is low, indicating 
a word access, or if the R/W line is high, indicating a memory read. For byte 
writes, the Z6I32 holding the even-addressed bytes is chip selected if ADO is 
a 0 during AS active, and the Z6I32 holding the odd-addressed bank of 
bytes is chip selected if ADO is a 1 during AS active. 
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This design can be easily expanded to include the full 64K bytes addres­
sable by the Z8002. The address bits output by the CPU on AD13, AD14, 
and AD15 are decoded to generate chip selects to eight pairs of Z6132 mem­
ories, where each pair of memory devices holds 4K words. In Fig. 3.17, two 
74LS138 3-to-8 decoders are used to decode the upper three address bits to 
generate the chip-select signals to the memories. A 74LS157 2-to-1 multi­
plexer replaces the combinational logic of the previous example, and it enables 
the 74LS138's to activate the chip selects for the odd bank of bytes, even 
bank of bytes, or both, as determined by the B/W, R/W, and ADO signals. 
Not shown in Fig. 3.16, but still necessary, is the MREQ signal, which would 
also be used as an enable signal to the 74LS138 decoders. 

If separate memory address spaces are required, the N /8 and STO-ST3 
status signals must also be decoded and used as part of the logic that gener­
ates the chip selects. Similarly, the segment number in a Z8001 system 
would be decoded as part of the chip-select logic to select only the appropri­
ate memory devices within the particular memory segment being accessed. 
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If the access time of the memory being used is longer than the normal 
interval from the rising edge of AS to the rising edge of DS, WAIT signals to 
the CPU may need to be generated. (Wait-state generation is discussed in 
Chapter 5.) 

In both of the examples above, signals from the Z8000 CPU are directly 
connected to the appropriate memory and logic devices. In actual systems, 
buffering is usually required for CPU outputs, since the CPU can drive only 
one standard TTL load. (CPU bus and signal buffering is discussed in Chap­
ter 11.) 

EXAMPLE 2: INTERFACING TO Z6132's AND 2716'S 

Of course, memory devices other than Z-Bus-compatible Z6132's can be 
interfaced to the Z-Bus. For example, Fig. 3.18 is a block diagram for a 
Z8002-based system with 2K words of read-only program memory and 4K 
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words of random access data/stack memory. The program memory address 
space consists of two 2K X 8 2716 erasable programmable read-only mem­
ories (EPROMs). The data and stack memory space is shared by two Z6132 
4K X 8 RAMs. 

Since program memory accesses are differentiated from data and stack 
accesses in this example, the STO-ST3 lines are used as part of the chip­
select logic. A 74LS42 4-to-16 decoder is used to decode the status lines. 
IF1 or IFn status (that is, any instruction fetch) will activate the chip enable 
(CE) inputs of the 2716 EPROMs; since accesses to EPROMs are always 
reads, both byte banks of EPROMs are activated each time program memory 
is accessed. (Remember, the memory control logic has to select a byte within 
a word only for byte writes.) Since 2716's require that the address stay 
valid at the memory's address inputs throughout the memory access, the ad­
dresses output by the CPU are latched by the rising edge of AS. (74LS373 
octal latches or a similar part could be used.) The latched address lines LA1-
LA11 are propagated to the address inputs of the 2716's. LAO is not used, 
since memory read operations always read the whole word onto the bus. 
The output enable (OE) for the EPROMs is connected to DS, allowing the 
addressed data to be placed on the bus when DS is active. Since the 2716's 
tri-state their data outputs when OE is inactive, the data outputs can be tied 
directly to the address/data bus. The 2716 that holds the high-order bytes 
for each word has its data lines connected to the upper half of the bus 
(AD8-AD15), and the 2716 that holds the low-order bytes of each word has 
its data lines connected to ADO-AD7. The relatively slow access times of 
the 2716 will probably require the generation of a WAIT signal to the CPU 
to slow down memory accesses. This WAIT signal would be generated for 
each program memory access. 

The interface to the Z6132's is similar to that of the previous examples, 
except that the chip-select logic is enabled by data and stack memory ac­
cesses instead of MREQ. All reads and word writes will cause both byte 
banks to be selected, whereas byte writes cause either the even-addressed 
bank of bytes or the odd-addressed bank to be selected, depending on ADO. 
For clarity's sake, the AS, DS, R/W, and WAIT connections between the 
Z8002 and the Z6132's are not shown in Fig. 3.18. The BUSY output of the 
Z6132's could be ORed with the output of the wait-state generator to pro­
duce the WAIT signal back to the CPU. Again, buffering of the signals from 
the CPU is necessary but is not shown here. 

A memory interface example for a system using dynamic RAMs is de­
scribed in Chapter 11. 

MEMORY REFRESH 

The Z80 CPU was the first microprocessor that included logic for automat­
ically refreshing dynamic memories. In Z80 systems, a refresh is performed 
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after each instruction fetch cycle. The Z8000 CPUs also have automatic 
memory refresh capability. The Z8000 refresh function is more flexible 
than the Z80's; the refresh operation can be enabled or disabled and the 
refresh rate can be set under program control. 

The refresh function in the Z8000 CPUs is controlled by one of the 
CPU control registers, the refresh register. The refresh register is identical in 
format in the Z8001 and the Z8002; it contains an enable bit, a 6-bit rate 
counter, and a 9-bit row address counter (Fig. 3.19). The enable bit, bit 15, 
is set to enable automatic refresh and reset to disable refresh. The rate 
counter, bits 9 through 14, determines the time between successive refreshes. 
When a refresh cycle occurs, the row address in the row counter, bits 0-8, is 
output on the address/data bus. 

The rate counter is a programmable 6-bit prescaler which can be loaded 
with a value from 0 to 63. This counter is decremented every four CPU 
clock cycles (every 1 /1S at 4 MHz). A refresh cycle is performed as soon as 
possible after the transition from a count of 1 to a count of O. The original 
starting count is automatically reloaded after the counter reaches O. Loading 
a starting count of zero provides the longest possible period between refresh 
cycles: 64 X 4 X the clock period. 

During a refresh cycle, the row counter in the refresh register is output 
on ADO-AD8, and the ST3-STO status lines are set to 0001. Since memory 
in Z8000 systems is word organized, and ADO is used only to distinguish 
bytes within a word, ADO is not considered part of the memory's row ad­
dress, and is always 0 in the refresh register. The row counter is incremented 
by two after each refresh; thus the row counter cycles through 256 distinct 
addresses on the AD1-AD8 lines, providing refresh for up to 256 rows of dy­
namic memory. (Most 16K dynamic RAMs are organized with 128 rows to 
be refreshed. Some 64K RAMs have 256 rows to be refreshed.) 

A memory refresh cycle occurs as soon as possible after the rate count 
goes to zero. The refresh cycle takes three CPU clock periods; refresh timing 
will be analyzed in Chapter 5. Of course, the CPU cannot issue memory re­
freshes when it does not have control of the bus due to a bus request from 
another device, such as a DMA controller. However, internal circuitry in the 
CPU will record up to two missed refresh cycles and issue those refreshes 
immediately after regaining control of the bus. 

The refresh register can be read from or written to using the Load Con­
trol (LDCTL) instruction when the CPU is in the system mode. Resetting 
the CPU causes bit 15 of the refresh register to be reset, disabling the auto­
matic refresh function. Automatic memory refresh is begun by loading a 
rate that guarantees the proper interval between refreshes into the rate 
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Figure 3.19 Refresh register. 
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counter and setting bit 15. Figure 3.20 shows the relationship between the 
value loaded into the upper byte of the refresh register and the number of 
clock cycles between each refresh. For example, loading a 9EOO into the 
refresh register means that a refresh will be generated every 60 clock cycles 
(every 15 I1S in a. 4-MHz system, which is adequate to satisfy the worst-case 
refresh requirements of typical 16K RAMs). 

When reading the refresh register using the LDCTL instruction, only the 
row counter portion (bits 0-8) of the register can be read. Thus the next 
row address to be refreshed can be read anytime while in the system mode. 
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Interfacing to Peripherals 

The Z8000 CPUs interface to I/O devices in the same manner as memory: 
asynchronous data transfers on the 16-bit multiplexed address/data bus. I/O 
addresses emitted by the CPU on the bus are always 16 bits long. (The seg­
ment number output by the Z8001 applies only to memory addressing, and 
is not used for I/O addressing.) Thus the Z8000 can address up to 65,536 
I/O devices per I/O address space. Each peripheral device can be byte or 
word organized; both byte and word I/O instructions are included in the 
instruction set. 

I/O ADDRESS SPACES 

There are two I/O address spaces in Z8000 systems: standard I/O and special 
I/O (Fig. 1.6). These I/O address spaces are distinct from the memory ad­
dress spaces; they can be accessed only by the execution of specific I/O in­
structions. All I/O instructions are privileged instructions and therefore can 
be executed in the system mode only. Thus, in an operating system environ­
ment, only the operating system software can access peripheral devices. If 
an applications program running in the normal mode attempts an I/O in­
struction, a trap will occur (see Chapter 6). Therefore, the separation of the 
I/O and memory address spaces and the inclusion of specific I/O instructions 
lead to a built-in protection mechanism for operating system applications. 
Memory-mapped I/O schemes are possible in Z8000 systems, but since in­
structions that act on memory can then cause I/O data transfers, it would be 
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possible for normal-mode users to access I/O devices directly. Implementa­
tion of a protected operating system would be difficult, if not impossible. 
The separation of the memory and I/O address spaces also conserves memory 
space. With memory-mapped I/O, memory addressing capability is sacri­
ficed, since the I/O device addresses are mapped into the memory address 
space. 

The standard I/O and special I/O address spaces are distinguished by de­
coding the STO-ST3 status signals, as described in Chapter 1. Up to 65,536 
peripheral devices can be addressed in each of the address spaces. Each of 
the address spaces is accessed through a separate set of I/O instructions; that 
is, there is a set of assembly language instructions for standard I/O opera­
tions and another distinct set of instructions for special I/O operations. The 
only difference between the execution of a standard I/O instruction and the 
corresponding special I/O instruction is the code on the STO-ST3 status lines 
during the data transfer to the I/O device. As a convention, standard I/O is 
used for peripheral devices, and special I/O is reserved for use with pro­
grammable CPU support devices, such as the Z8010 Memory Management 
Unit (MMU). This is just a convention, however, not a requirement of the 
CPU architecture. (Systems that include Z8010 MMUs would use special I/O 
instructions to program the MMUs. Systems without MMUs can use both 
the standard I/O and special I/O address spaces for peripheral devices.) 

I/O INTERFACE SIGNALS 

The set of Z-Bus signals used to interface a Z8000 CPU to a peripheral device 
is similar to the signals used for interfacing to memory. Data transfers occur 
on the 16-bit multiplexed address/data bus. The chip-select signal to a pe­
ripheral is decoded from the 16-bit address that appears on the bus at the 
start of an I/O transaction and from the STO-ST3 status lines, which signal 
when an I/O transfer is occurring. Timing of data transfers between the CPU 
and peripherals is controlled by the address and data strobes (AS and DS). 
The peripheral might return an active WAIT signal during data transfers to 
extend the data transfer timing. The R/W and B/W signals define the direc­
tion and size of the data transfer. Thus these signals, together with the 
RESET line, define the Z-Bus interface to peripheral devices (Fig. 4.1). 

The Z8000 CPU accesses peripherals in a manner similar to memory ac­
cesses. The start of a CPU-peripheral data transfer is signaled by AS going 
low (Fig. 4.2). The status signals (which should indicate standard or special 
I/O status) and the peripheral address on the address/data bus are guaranteed 
to be valid at the rising edge of AS; this edge can be used to latch these sig­
nals, if necessary. The status and address signals would be decoded to gener­
ate the chip-select signals to the system's peripheral devices. 

During I/O read operations, DS going low indicates that the CPU has 
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reversed the direction of the address/data bus, and the data to be read from 
the addressed peripheral can be placed on the bus. Thus DS can be used to 
enable the buffers that drive data from the peripheral onto the bus. For I/O 
writes, DS goes low after the CPU replaces the address on the bus with the 
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Figure 4.2 CPU-peripheral data transfer timing. 
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data to be written; DS is used to enable the write to the peripheral. The I/O 
device can lengthen the data transfer timing by asserting an active WAIT sig­
nal, thereby allowing the Z8000 CPUs to interface to I/O devices with arbi­
trarily long access times. The timing of data transfers is determined entirely 
by the AS, DS, and WAIT signals; the CPU clock is not part of the Z-Bus 
interface. 

Data transactions in a Z8000 system can be 8-bit or 16-bit transfers, al­
lowing the use of both byte-oriented and word-oriented peripherals. The 
Z8000 handles byte I/O transactions in much the same manner as byte mem­
ory operations. For byte write I/O operations, the CPU outputs the byte of 
data on both halves of the address/data bus during DS, and the byte periph­
eral can read the data from either half of the bus. For byte read I/O opera­
tions, the CPU will read the whole word returned on the bus, and internally 
select one byte of that word. If AO (port address bit 0) was a 0 during AS 
active, the CPU will select the upper half of the bus as the byte to be read; if 
AO was aI, the CPU will read the byte from the lower half of the bus (Fig. 
4.3). Thus byte peripherals must use the appropriate half of the bus for data 
transfers-the upper half of the bus if the peripheral has an even port ad­
dress, and the lower half of the bus if the peripheral has an odd port address. 
For word I/O operations, the CPU will read or write a whole 16-bit word re­
gardless of the port address, and, therefore, word peripherals can have an 
even or an odd address. 

I/O CONTROL LOGIC 

I/O control logic is the logic needed to interface a particular I/O device to 
the Z-Bus signals from the CPU. Z8000 family peripherals, such as the 
Z8036 Counter/Timer and Parallel I/O Unit, are Z-Bus compatible and need 
very little interface logic. These devices connect directly to the Z-Bus, and 
the only external logic needed is the logic for decoding the address and 
status lines to generate chip selects (see Chapter 12). 

Other peripherals besides Z8000 family devices can be used with a 
Z8000 CPU. In most cases, interface logic is needed to multiplex, demulti-
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plex, and drive the address/data bus, to generate chip selects from the ad­
dress and status signals, and to generate the appropriate timing signals for 
that peripheral from the address and data strobes. 

For example, suppose that a Z8000 system has an byte I/O device con­
sisting of eight lamps and eight switches. This peripheral is assigned I/O port 
address 0003. When reading port 0003, the CPU will read a byte of data 
from the switches. When writing to port 0003, the Z8000 will write a byte 
of data to the lamps. Figure' 4.4 is a block diagram of the logic used to im­
plement the interface between the CPU and the lamps and switches. The ad­
dress and status lines are latched by the rising edge of AS. If the address 
lines are 0003 and the ST3-STO status lines are 0010 (standard I/O status), 
the decode logic pulls the SELECT signal low. If the operation is a write 
(R/W low), the data on the lower half of the bus are latched by the data 
strobe and propagated to the lamps. If the operation is a read, the tri-state 
buffer is enabled by the data strobe, feeding the output of the eight switches 
onto the address/data bus, where it can be read by the CPU. This byte I/O 
device must have an odd address since all data connections are made to the 
lower half of the address/data bus. 

An example of a Z-Bus interface to Z80 peripherals is illustrated in 
Chapter 11. 
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Figure 4.4 Z-Bus interface to a byte peripheral consisting of switches 
and lamps. 
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Besides responding to data transactions on the Z-Bus (which are always initi­
ated by a CPU or some other bus master), peripherals in Z8000 systems can 
also request the CPU's attention via the CPU's interrupt inputs. The CPU re­
sponds to an interrupt by entering an interrupt acknowledge cycle; the inter­
rupt acknowledge signal to the peripheral is generated by decoding the STO­
ST3 status signals (see Table 1.1). Peripherals can use any of the CPU's 
interrupt inputs (NMI, NVI, or VI), and more than one peripheral can be 
connected to the same CPU interrupt input. Interrupt priority among pe­
ripherals that share a CPU interrupt line is determined by a hardware daisy 
chain. Each I/O device sharing the interrupt has an input, Interrupt Enable 
In (lEI), and an output, Interrupt Enable Out (lEO), that are used to estab­
lish an interrupt-under-service daisy chain. Thus the Z-Bus signals necessary 
for interrupt requests from a peripheral include an interrupt (INT) signal 
from the peripheral, an interrupt acknowledge (INT ACK) signal from the 
CPU (decoded from the STO-ST3 signals), and the lEI and lEO daisy-chain 
signals (Fig. 4.5). Interrupts and the interrupt daisy chain are described in 
detail in Chapter 6. 

The CPU's vectored interrupt (VI) input is the most commonly used in­
terrupt for peripheral control. During the interrupt acknowledge cycle for 
vectored interrupts, an 8-bit vector is output by the interrupting device. The 
CPU reads this vector and uses it to determine the location of the interrupt 
service routine. During the vectored interrupt acknowledge sequence, the 
CPU reads the vector from the bottom half of the address/data bus (ADO­
AD7). The interface logic for an I/O device is usually much simpler if all 
transfers between the device and the CPU can occur on the same bus lines. 
Thus byte peripherals that use vectored interrupts are usually connected to 
the bottom half of the address/data bus, so both the data and the interrupt 
vector can be transferred on ADO-AD7. These byte peripherals would, then, 
have odd addresses. 
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Instruction and 

Interface Timing 

The Z8000 CPUs execute instructions by stepping through basic timing se­
quences such as memory reads and writes, I/O reads and writes, and inter­
rupt acknowledgments. These timing sequences, called machine cycles, are 
designed to use the Z8000's multiplexed addresss/data bus in an efficient 
manner. Typical Z8000 systems will use the bus for transactions well over 
80% of execution time. (In comparison, the Z80 is involved in transactions 
on its address and data buses about 65% of its execution time.) Thus Z8000 
systems often have better throughput than competitive devices that run at 
faster clock speeds. 

Throughput in Z8000 CPUs is optimized in two ways. First, the en­
coding of instruction operation codes (opcodes) is designed so that the most 
frequently used instructions, such as jumps and loads, have short opcodes 
and fast execution times. For example, a register-to-register load has a single 
word opcode and executes in three CPU clock cycles. Second, the execution 
of an instruction is overlapped with the fetch of the next instruction when­
ever possible, as explained below. 

INSTRUCTION PREFETCH 

Most Z8000 instructions conclude with several clock periods dedicated to in­
ternal CPU operations, such as arithmetic operations where a CPU register is 
the destination. While these internal operations are being executed, the CPU 
will start to fetch the next instruction's opcode (Fig. 5.1). This overlapping 
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INSTRUCTION AND DATA FETCH 

Figure 5.1 Instruction prefetch. 

of instruction execution and fetching is called instruction prefetch, and im­
proves throughput by two to three clock cycles per instruction. 

Prefetch does not apply to every Z8000 instruction, however. Instruc­
tions that alter the program counter during their execution, such as jump in­
structions, cannot be overlapped with the following instruction's fetch, since 
the location of the next instruction is not determined until the jump instruc­
tion is completed. Also, instructions that involve a load to a memory or I/O 
location cannot be overlapped with the following instruction; these instruc­
tions end with a memory or I/O write, and the address/data bus is busy with 
this access. Consequently, the bus is not available for the next instruction 
fetch until the write operation is completed. 

BASIC TIMING PERIODS 

Figure 5.2 illustrates the three basic timing periods of the Z8000: clock 
cycles, bus transactions, and machine cycles. A clock cycle, also called a T­
state, is one cycle of the CPU clock, starting with a rising edge. A bus trans­
action is the time required for a single data transaction on the address/data 
bus (that is, the time needed to move one 16-bit word of data between the 
CPU and a memory or I/O device). The start of a bus transaction is signaled 
by AS going low; bus transactions end with the rising edge of DS. A bus 
transaction always takes three or more clock cycles depending on the type 

CPU CLOCK 

v 
v 

Figure 5.2 Basic timing periods for the Z8000. 
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of transaction and the state of the CPU's WAIT input during the transac­
tion. A machine cycle is the time required for one basic CPU operation; 
that is, a machine cycle is the time from the start of one bus transaction to 
the start of the next bus transaction. A machine cycle can extend beyond 
the end of a bus transaction, as shown in Fig. 5.2, to allow time for the 
routing of data internal to the CPU after the bus transaction is completed. 

There are four basic types of machine cycles that can occur during the 
execution of a Z8000 instruction: memory cycles, I/O cycles, internal oper­
ation cycles, and memory refresh cycles. Instruction execution is modular; 
all instructions are executed with combinations of these four basic machine 
cycles. 

MEMORY CYCLES 

Memory transactions move data between the CPU and memory. Memory 
transactions include instruction fetches, data reads and writes during instruc­
tion execution, and the storing of old program status and the fetching of 
new program status during interrupt and trap processing. (Interrupts and 
traps are discussed in Chapter 6.) For a given bus transaction, the code on 
the STO-ST3 status lines indicates if the transaction involves a memory ac­
cess and, if so, what memory address space is being accessed (Table 5.1). 
The MREQ line also can be used to signal that a memory access is taking 
place. 

Instruction fetches and data reads are identical memory read cycles, 
with the exception of the code that appears on the STO-ST3 status signals. 
Thus memory read cycles are generated to fetch instructions from memory, 
to read data from memory during the execution of instructions, and to fetch 
new program status during the interrupt acknowledge sequence or after a 
reset. 

Figure 5.3 shows the timing of a standard memory read bus transaction. 
During the first clock period (Tl), a 16-bit memory address is output on the 
address/data bus and the appropriate status information is generated on the 
R/W, B/W, N /8, and STO-ST3 lines. A high signal on the R/W line and a 
memory access status code on STO-ST 3 indicate a memory read transaction. 

TABLE 5.1 STATUS CODES FOR MEMORY ACCESSES 

STO-ST3 

1000 
1001 
1101 
1100 
1010 
1011 

Type of memory transaction 

Access to data memory address space 
Access to stack memory address space 
Instruction fetch of first word of instruction 
Instruction fetch of subsequent words of instruction 
Access to data memory address space involving an EPU 
Access to stack memory address space involving an EPU 
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The address strobe (AS) goes low, signaling that the address is present on the 
bus. All address and status information is guaranteed to be valid on the 
rising edge of AS. The status information stays valid for the remainder of 
the bus transaction. 

For the Z8001, the segment-number portion of the address is output 
during the clock period preceding Tl, that is, during the last clock period of 
the previous machine cycle (Tn in Fig. 5.3). The segment number is output 
earlier than the offset address during a memory access cycle to compensate 
for delays in memory management hardware. For example, the Z8010 MMU 
uses the segment-number output by the CPU to access an internal MMU 
register. The contents of that register control the address translation process 
that determines what physical address will be output by the MMU for a given 
logical address from the CPU. (The segment number is a part of the logical 
address.) This internal MMU access does take some time, of course. But 
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since the CPU outputs the segment number earlier than the offset portion of 
the logical address, the MMU has extra time to make its internal register 
access, and is ready to complete the address translation when the offset fi­
nally does appear. Thus the delay in the MMU between receiving a valid 
logical offset address from the Z8001 CPU and outputting a valid physical 
address to memory is minimized. (Timing considerations for the MMU are 
discussed further in Chapter 9.) 

During T2 of the memory read cycle, the address is removed from the 
bus. DS is lowered, indicating that the bus is available for data. The con­
tents of the addressed memory location can be placed on the bus at any time 
while DS is active. 

The address/data bus is sampled by the CPU on the falling edge of the 
clock during T3. If the B/W line is high, indicating a byte read, only one half 
of the data bus will be sampled-the upper half if AO was a 0 when the ad­
dress was emitted during T1, or the lower half if AO was a 1 (see Chapter 3). 
The contents of the addressed memory location must be placed on the bus 
before the middle of T3. The memory access time in a Z8000 system is, 
therefore, the time from the rising edge of AS (address guaranteed valid) 
until the falling edge of the clock in T3 (minus a small setup time for the 
data). For a three-clock-period memory read (no active WAIT signal) on a 
Z8000 system running at 4 MHz, this access time is a minimum of 360 ns. 
With a 6-MHz clock, the minimum memory access time is 220 ns; with a 10-
MHz clock, the minimum memory access time is 140 ns. 

If a long memory access time is necessary, the time interval between DS 
going low and the start of T3 can be extended by pulling the CPU's WAIT in­
put low. The WAIT input is sampled during the middle of T2 at the falling 
edge of the clock. If the WAIT input is low at this time, an additional clock 
period is inserted into the bus transaction between T2 and T3. The WAIT 
signal is sampled again at the falling ege of the clock during this additional 
clock period; if the WAIT line is still low, yet another clock period is inser­
ted before T3, and so on. These additional clock periods are called wait 
states, and designated Tw. Figure 5.4 shows memory read timing with one 
wait state inserted. The status of the WAIT input is sampled during each 
wait state to determine if additional wait states are to be added. Thus the 
delay between T2 and T3 can be arbitrarily long, in increments of one clock 
period, as controlled by the WAIT input. This allows the Z8000 to be easily 
interfaced to memories with arbitrarily long access times. None of the status 
or control outputs from the CPU change during wait states; in other words, 
all the CPU outputs maintain the values they had at the end of T2 during all 
wait states. 

The memory write cycle is very similar to the memory read, as shown 
in Fig. 5.5. Memory write machine cycles are used to store data in memory 
during instruction execution and to store program status during the interrupt 
acknowledge sequence. During T1, address and status information is output; 
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the address and status signals are valid at the rising edge of AS. Memory 
transaction status on the STO-ST3 lines and a low on the R/W line indicate 
that this transaction is a memory write. During T2, the address is removed 
from the bus, the data to be written to memory are placed on the bus by the 
CPU" and DS goes active. For byte transactions (B/W high), the byte of data 
to be written will appear on both halves of the address/data bus while DS is 
active. The bus transaction is completed during T3 when DS goes high. The 
data are guaranteed to be valid on the bus and can be written into memory 
anytime while DS is low. Thus the access time for a memory write is the 
time from the rising edge of AS until the rising edge of DS. As with memory 
reads, the WAIT input is sampled in the middle of T2, and any resulting wait 
states are added between T2 and T3. 
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The bus transaction time for a memory read or write is always three 
clock periods, excluding possible wait states. However, for some instruc­
tions, the machine cycle for a memory access can be one to four clock cycles 
longer than the bus transaction time. These extra cycles are added after T3, 
but before the start of the next bus transaction; they are used to allow extra 
time for the routing of data internal to the CPU. 

I/O CYCLES 

An I/O bus transaction moves data to or from a peripheral device and is 
generated as the result of the execution of an I/O instruction. The STO-ST3 
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status lines indicate a standard I/O (0010 status) or a special I/O (0011 
status) reference during I/O cycles. 

I/O read timing is illustrated in Fig. 5.6. I/O bus transactions are four 
clock cycles long as a minimum but can be lengthened by the addition of 
wait states. During T1, the 16-bit I/O address is placed on the address/data 
bus, and the appropriate status signals are output. The address and status 
information are guaranteed to be valid at the rising edge of AS. An I/O read 
is indicated by I/O status on the STO-ST3 lines and a high on the R/W line. 
The N /8 output is always low during I/O transactions, since I/O instructions 
can be executed only in the system mode. The status information remains 
valid for the remainder of the bus transaction. 

During T2 of the I/O read cycle, the I/O address is removed from the 
bus and then DS is lowered. DS low indicates that the bus is available to 
receive data from the peripheral device. Data must be placed on the bus 
before the falling edge of the clock in the middle of T3, at which time the 
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Figure 5.6 I/O read bus transaction timing. 
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CPU samples the data bus. For a byte read (B/W high), the CPU will accept 
data from one-half of the l6-bit bus, depending on the value of AD of the 
I/O address output during Tl. 

One wait state, TWA, is always added between T2 and T3 of the I/O 
machine cycle, regardless of the state of the CPU's WAIT input. On the fall­
ing edge of the clock in the middle of TWA, the WAIT input is sampled. If 
the WAIT line is low, another wait state is inserted before T3. The WAIT in­
put is sampled during each wait state, and, as with memory cycles, an arbi­
trary number of wait states can be added to the I/O cycle between T2 and 
T3. N one of the status or control signals change during the wait states. 
Thus the I/O bus transaction timing can be lengthened through the use of 
wait states to accommodate slow peripheral devices. 

The I/O write transaction timing is shown in Fig. 5.7. The I/O address 
and status information is output during Tl and is valid at the rising edge of 
AS. An I/O write is signaled by I/O status on the STD-ST3 lines and a low 
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on the R/W line. During T2, the address is removed from the address/data 
bus, the data to be written are placed on the bus, and DS goes low. For a 
byte write (B/W high), the byte of data to be written appears on both halves 
of the bus. The data to be written remain on the bus and can be read by the 
peripheral device throughout the duration of DS active. One automatic wait 
state, TWA, is always inserted between T2 and T3. The rising edge of DS 
marks the end of the write operation. Of course, more wait states can be 
added between T2 and T3 by pulling the WAIT input low. The timing of 
I/O transactions is similar to the timing of memory transactions, except for 
the addition of the one automatic wait state. 

INTERNAL OPERATION CYCLES 

The execution of some Z8000 instructions, such as multiplies and divides, 
need extra machine cycles during which the CPU is performing internal 
operations (data routing and AL U operations) and no data transactions are 
occurring on the address/data bus. During these times, an internal opera­
tion bus transaction takes place (Fig. 5.8). During Tl, arbitrary values are 
output on the address/data bus and the AS is pulsed. The STO-ST3 status 
linps indicate internal operation status (0000), the R/W line is high, the 
N (S line remains the same as in the previous machine cycle, and the B /W 
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Figure 5.8 Internal operation bus transaction timing. 
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line is undefined. These status conditions hold throughout the remainder of 
the machine cycle. The DS and MREQ control lines also are held high 
throughout the cycle. Thus an internal cycle looks like a memory cycle 
without the data strobe, and no data are transferred. 

Figure 5.S shows an internal operation cycle that is three clock periods 
long; that is the minimum number of clock periods for an internal operation 
machine cycle. An internal operation can extend up to a maximum of eight 
clock periods, depending on the instruction being executed. Eight clock 
periods is the longest possible machine cycle in the ZSOOO, excluding the 
interrrupt acknowledge cycle (10 clocks), unless a memory or I/O access has 
multiple wait states added via the WAIT input. Address strobe (AS) is 
pulsed during T1 of every machine cycle, regardless of whether or not a valid 
address is emitted or a data transfer is to occur in that cycle. Therefore, AS 
can be used to trigger memory refresh logic external to the CPU, such as the 
refresh in the Z6132 Quasi-Static RAM. 

The upper limit on the number of clock periods in a machine cycle 
ensures a fast response time for bus requests. When a CPU receives a bus re­
quest via the BUSREQ input, that request will be serviced at the end of the 
current bus transaction. (Bus requests are discussed in Chapter 7.) 

The WAIT input is not sampled during internal operation cycles. 

MEMORY REFRESH CYCLES 

A memory refresh cycle is generated by the ZSOOO CPU's automatic memory 
refresh logic. If automatic refresh is enabled (that is, bit 15 in the refresh reg­
ister is set), the ZSOOO will enter a memory refresh cycle as soon as possible 
after the rate counter in the refresh register goes to O. Memory refresh ma­
chine cycles are always three clock periods long, as shown in Fig. 5.9. During 
T1, refresh status (0001) is emitted on the STO-ST3 status lines, the 9-bit 
row address from the refresh register is emitted on ADO-ADS of the address/ 
data bus, and AS is pulsed. The MREQ line goes low, and the R /W, B /W and 
N/8 lines remain the same as in the preceding machine cycle. These status 
conditions remain throughout the refresh cycle. The DS stays high through­
out the refresh operation and no data transfer takes place. The system's 
memory control logic would use the refresh status indication on the STO­
ST3 lines and the row address emitted on the bus to activate the refresh of 
dynamic memories. 

After the rate counter in the refresh register counts down to 0, the CPU 
will insert the refresh cycle immediately after the next IF1 machine cycle 
(the fetch of the first word of the next instruction) or the next internal op­
erational cycle, whichever comes first. Since the rate counter is program­
mable, the user can ensure that refreshes will occur only as often as neces-
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Figure 5.9 Memory refresh bus transaction timing. 

sary for the system's memory devices. Therefore, the effect of the memory 
refresh on CPU throughput can be minimized. Of course, if the automatic 
memory refresh mechanism is disabled (bit !5 in the refresh register is a 0), 
memory refresh cycles will never occur. 

As with internal operations, the WAIT input is not sampled during 
memory refresh cycles. Internal operations and memory refreshes are the 
only types of bus transactions that do not involve a transfer of data. 

All Z8000 instructions are executed using a combination of memory, 
I/O, and internal operation cycles, with refresh cycles added as dictated by 
the refresh control register. For example, adding two word registers takes one 
memory read cycle (an IF! cycle) that is four clock periods long. Dividing a 
word register by another word register takes a five-clock-period memory 
read (IF! cycle), followed by two six-clock-period and one seven-clock-period 
internal cycles. Writing a byte from a register to an I/O device (direct­
address addressing mode) requires a five-clock-period and a three-clock­
period instruction fetch, and a four-clock-period I/O cycle. 

Special exception conditions can cause timing sequences other than the 
four basic machine cycles described above. The CPU responds to interrupts, 
traps, and bus requests with special acknowledgment cycles. An active 
RESET or STOP input forces the CPU into special sequences. Execution of 
a HALT or MREQ (multi-micro request) instruction also alters CPU timing 
sequences. These special timing cycles will be discussed in later chapters. 



AC TIMING CHARACTERISTICS 

Table 5.2 lists some of the timing characteristics of the Z8000 CPUs that 
apply to memory and I/O interfacing. These figures are compiled for Z8001/ 
Z8002 CPUs running at 4 MHz and Z8001A/Z8002A CPUs running at 6 
MHz. Most of these timing parameters are dependent on the cycle time of 
the CPU clock; see Appendix A for the complete Z8000 AC timing charac­
teristics and the corresponding timing diagram. 

During T1 of a memory or I/O access, the rising edge of AS signals that 
the address and status information is valid from the CPU. TdA(As) and TdS 
(AS) (first two entries of Table 5.2) define the setup time for the address 
and status outputs before the rising edge of AS; TdAS(A) is the hold time 
for the address after AS goes inactive. Thus if AS is used to latch the address 
as part of the memory control logic, the setup and hold requirements of that 
latch are dictated by these parameters. Similar setup and hold times for the 
address in relation to the falling edge of MREQ are also given. 

For a memory read, the delay from the rising edge of AS (address valid) 
until the CPU samples the data bus defines the memory access time, TdAS(DR). 
If MREQ is used in place of AS to detect a valid address, a slight gain in 
access time can be realized [TdMR(DR)] . 

TABLE 5.2 Z8000 CPU AC TIMING CHARACTERISTICS 

Minimum time (ns) 

Symbol Parameter Z8001/Z8002 Z8001A/Z8002A 

TdA(AS) Address Valid to AS t delay 55 35 
TdS(AS) Status Valid to AS t delay 50 30 
TdAS(A) AS t to Address not Valid 70 45 

delay 
TdA(MR) Address Valid to MREQ t 55 35 

delay 
TdMR(A) MREQt to Address not Valid 70 35 

delay 
TdAS(DR) AS t to Data In Required 360 220 

Valid (Memory Read) 
TdMR(DR) MREQt to Data In Required 375 230 

Valid (Memory Read) 
TsDR(C) Data In to Clockt Setup Time 30 20 

(Memory or I/O Read) 
ThDR(DS) Data In to DS t Hold Time 0 0 

(Memory or I/O Read) 
TdDW(DSW) Data Out Valid to DS t delay 55 35 

(Write) 
TdDS(DW) DS t to Data Out and Status 75 45 

not Valid (Write) 
TsWT(C) WAIT to Clockt Setup Time 50 30 
ThWT(C) WAIT to Clock t Hold Time 10 10 

68 
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During memory and I/O reads, valid data must be present on the bus 
slightly before the falling edge of the clock in the middle of T3, as dictated 
by the minimum requirement for TsDI(C). However, there is no hold time 
requirement on the data after DS goes inactive. For memory and I/O writes, 
valid data is output from the CPU before DS is pulled low [TdDW(DSW)], 
and stays valid after DS returns high [TdDS(DW)]. Thus setup and hold-time 
requirements for the data inputs of memory and I/O devices are easily satisfied. 

TsWT(C) and ThWT(C) are the setup and hold-time requirements of the 
WAIT input in relation to the falling edge of the clock in T2. These re­
quirements must be satisfied in order for the WAIT input to be properly 
sampled and wait states inserted in a memory or I/O cycle. 

MEMORY INTERFACE TIMING: AN EXAMPLE 

When designing memory and I/O interface logic for Z8000-based systems, 
the AC timing characteristics of the CPU as well as the basic timing of the 
memory and I/O bus transactions must be taken into account. For example, 
suppose that the Z8002-Z6132 system with 4K words of memory described 
in Chapter 3 (repeated here as Fig. 5.10) is running with a 4-MHz CPU clock. 
Since the memory access time for the Z8002 is a minimum of 360 ns, the 
Z6132's must have an access time less than 360 ns. The Z6132-5 memory 
chip, with a maximum access time of 300 ns, would be a logical choice. 
Some AC timing characteristics of the Z6132-5 are shown in Table 5.3. As­
sume that the combinational logic in Fig. 5.10 consists of low-power Schottky 
TTL logic, such as 74LSOO's, with a maximum gate delay of 10 ns. 

The Z8002 's address/data bus, AS, DS, and R/W signals are connected 
directly to the Z6132's. Examining Table 5.2 and 5.3, the setup and hold­
time requirements of the Z6132-5 for the address and WE signals with re­
spect to AS rising and the data with respect to DS falling are easily met by 
the Z8002. For example, the Z6132-5 requires that the address stay valid 

TABLE 5.3 Z6132-5 AC TIMING CHARACTERISTICS 

Symbol 

TsCS(AC) 
ThCS(AC) 
TsA(AC) 
ThA(AC) 
TsW(AC) 
ThW(AC) 
TdAC(DO) 
TdDS(DOz) 
TsDI(DS) 
ThDI(DS) 

Parameter 

CS to ACt Setup Time 
CS to ACt Hold Time 
Address to ACt Setup Time 
Address to ACt Hold Time 
WE to ACt Setup Time 
WE to ACt Hold Time 
ACt to Data Out Delay (Read) 
DS t to Data Out Float (Read) 
Data In to DS t Setup Time (Write) 
Data In to DSt Hold Time (Write) 

Nanoseconds 

Min. Max. 

o 
50 
o 

50 
-20 

80 

40 
o 

60 

300 
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Figure 5.10 Z8002-Z6132 interface logic for a 4K word system. 

for 50 ns after AC rises [ThA(AC) in Table 5.3], whereas the ZS002 guaran­
tees that the address will remain valid 70 ns after AS goes high [TdAS(A) in 
Table 5.2]. 

The only timing parameter that needs to be examined in this system is 
the chip select (CS) setup time for the memory. The ZS002 guarantees that 
status information is valid at least 50 ns before AS rises. The worst-case tim­
ing condition for the chip select occurs during byte writes, when the R/W sig­
nal must propagate through four gates (G1, G3, G4, and G6) before the CS 
signal is stable. Assuming the worst-case conditions, the delay through each 
gate is 10 ns, or 40 ns for all four gates. The CS signal is not valid until 40 ns 
after the status is valid, or IOns before the rising edge of AS. Since the set­
up time for CS is 0, this still satisfies the timing requirements for the Z6132-5. 

As memory systems get larger and more complex, the logic needed to 
generate chip selects also grows more complex (see Figures 3.17 and 3.1S, 
for example). In larger systems, the AS signal to memory may need to be 
delayed before reaching the memory control"logic to ensure that all address 
and status information meets the setup and hold-time requirements for the 
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memory used. For example, if the delay from status valid until chip select 
valid in the system analyzed above were 55 ns instead of 40 ns, the AS to 
memory would have to be delayed 5 ns to ensure that the rising edge of AS 
does not arrive at the memory before CS is stable. If buffers are added 
between the CPU and memory control logic, the minimum and maximum 
delays through the buffers also must be considered. 

WAIT-STATE GENERATION 

If a memory or peripheral device is too slow to respond in the time allowed 
within a standard memory or I/O bus transaction, the access time of the data 
transfer can be lengthened by adding wait states. Wait states are inserted in­
to a transaction by pulling the WAIT input to the CPU low; this input is 
sampled internally by the CPU on the falling edge of the clock during T2 and 
all wait states (Tw's) in all memory and I/O machine cycles. The WAIT in­
put must meet the setup and hold-time requirements shown in Table 5.2 in 
order for the CPU to recognize it and add the desired wait states to the 
transaction. 

The WAIT signal to the CPU can be generated in a number of ways. 
The most common is to synchronize the WAIT input to the CPU clock. For 
example, suppose that all the program memory in a Z8002-based system is 
implemented in 2716-5 EPROMs (such as the system in Fig. 3.18). With a 4-
MHz CPU clock, the minimum memory access time without any wait states 
would be 360 ns. However, 2716-5's have an access time of 490 ns, thereby 
requiring that one wait state be added during each program memory access. 
(With one wait state, the minimum memory access time would be 360 + 250 = 

610 ns at 4 MHz.) An SN7 4 7 4 dual D-type flip-flop could be used to gener­
ate the WAIT signal, as illustrated in Fig. 5.11. When AS goes low at the 
start of each cycle, the Q output of both flip-flops is forced low. On the 
next rising clock edge (the start of T2), Q1 goes high but Q2 remains low. 
The CPU will sample the WAIT input in the middle of T2 and, if the cycle is 
a program memory access, the WAIT input will be low, causing a wait state 
to be inserted after T2. On the next positive clock edge (the beginning of 
Tw), Q2 goes high, driving the WAIT line high. The CPU samples the WAIT 
input again in Tw and, since it is inactive, no further wait states are added. 
Since the WAIT signal is gated by PROGRAM MEMORY STATUS, the wait 
state will be added only during accesses to program memory. (PROGRAM 
MEMORY STATUS is formed by decoding the STO-ST3 status signals.) 

Insertion of multiple wait states for a particular memory or I/O access 
is easily implemented with a parallel-load shift register. A 4-bit shift register, 
such as the SN74178 or SN74195, can be used for inserting up to three wait 
states. For example, a circuit for adding three wait states to each I/O access 
is diagrammed in Fig. 5.12. I/O status is decoded from the STO-ST3 status 
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Figure 5.11 Generation of a single wait state with D-type flip-flops. 

lines; as long as I/O status is not present, the shift register performs a parallel 
load on each positive CPU clock edge (the SN74178 is negative edge trig­
gered, so the CPU clock is inverted). The D input is propagated to the QD 
output, and WAIT is held high. When I/O status does appear during Tl 
of an I/O access cycle, the shift register enters its shift mode. The next posi­
tive CPU clock edge will shift the register one place to the right. The Qc 
output was low prior to the shift, since the C input was low during the 
last parallel load, so a low value is shifted into QD. The next two shifts will 
also shift low values into QD, since QB and QA start out low; subsequent 
shifts will send QD high again, since the serial input to the register is a 1. 
Thus three wait states will be inserted in the cycle. If only two wait states 
are required, the A input to the shift register can be tied high instead of low. 

Both of the examples above used the status outputs to trigger the gener­
ation of the WAIT signal. A chip select to a given device or group of devices 
could also have been used, if wait states are to be inserted only when those 
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Figure 5.12 Generation of three wait states with a shift register. 

particular devices are accessed. If more than three wait states are needed, 8-
bit shift registers such as the SN74165 can be used, or shift registers can be 
cascaded together to any length. If WAIT signals are generated by more than 
one circuit in the system, they would be ORed together before being input 
to the CPU. 

The ability to insert wait states into any memory, I/O, or interrupt ac­
knowledge cycle allows the CPU to be interfaced easily to slow memory and 
peripheral devices. All Z-Bus data transactions are asynchronous; the access 
time for a memory or I/O transaction can be arbitrarily long, in increments 
of one CPU clock cycle, as determined by WAIT generation logic external to 
the CPU. 



6 

Interrupts, Traps, and Resets 

The execution of a single instruction in a computer consists of several steps: 
the instruction's opcode is fetched from memory, execution of the instruc­
tion is performed, the appropriate flags are set, and the program counter is 
updated to point at the next instruction. Typically, instructions within a 
programming task are executed sequentially in the order in which they ap­
pear in memory or in an order determined by instructions that change the 
program counter, such as jumps and subroutine calls. Three events can alter 
the normal execution of a Z8000 program: interrupts, traps, and resets. 
These events are called exception conditions. Interrupts are caused by an ac­
tive signal on one of the CPU's three interrupt inputs: NMI, NVI, and VI. 
Traps occur if certain error conditions occur during instruction execution, 
such as an attempt to execute a privileged instruction while in normal-mode 
operation. Interrupts and traps are recognized at the end of the execution of 
the current instruction and cause the CPU to temporarily suspend the execu­
tion of the current programming task. Execution is transferred to a proce­
dure that performs whatever actions are necessary as a result of the interrupt 
or trap; such a procedure is called a service routine. Resets are caused by an 
active low level on the RESET input. A reset overrides all current operat­
ting conditions and puts the CPU in a known state for starting program 
execution. 

INTERRUPTS 

Interrupts are the means by which a peripheral device can request the CPU's 
attention. Interrupts are asynchronous events that can occur at any time 
during program execution. An interrupt causes the currently executing task 
to be suspended while the CPU responds to the device that asserted the inter-
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rupt. Allowing peripherals to interrupt normal CPU operation eliminates the 
need for periodic polling of the status of peripheral devices, thereby increas­
ing system throughput while improving response time. 

The Z8000 CPUs support three kinds of interrupts: nonmaskable, non­
vectored, and vectored. A CPU's interrupt input can be shared by several 
different interrupt sources; several peripheral devices might be connected to 
the VI input, for example. Priority among devices using a common interrupt 
is determined by a hardware daisy chain. 

N onmaskable interrupts, as the name implies, are interrupts that cannot 
be disabled via program execution. Usually, nonmaskable interrupts are used 
to inform the CPU of a situation that requires immediate handling to pre­
serve system integrity, such as an imminent power failure. Nonmaskable 
interrupts are edge triggered; a high-to-Iow transition on the CPU's NMI in­
put will cause recognition of this interrupt. 

Vectored and nonvectored interrupts are maskable; that is, the CPU can 
be programmed to ignore or respond to active low levels on the VI and NVI 
inputs. Bit 12 of the flag and control word (FCW) is the vectored interrupt 
enable, and bit 11 is the nonvectored interrupt enable. A 1 in the appropri­
ate bit enables the interrupt, and a 0 disables it. (Of course, these control 
bits in the FCW can be altered only in system mode.) Typically, vectored 
and nonvectored interrupts are used by peripheral devices to request servic­
ing from the CPU. These interrupts are level sensitive; in order for the CPU 
to recognize a vectored or nonvectored interrupt, the VI or NVI input must 
be held low until the resulting interrupt acknowledge sequence is executed. 

One result of any interrupt is that a 16-bit word is read from the ad­
dress/data bus as part of the interrupt acknowledge cycle. This word can be 
used to identify the source of the interrupt, if so desired, and is called an 
identifier word. For vectored interrupts, the lower byte of this word is a 
pointer that selects a particular service routine. In other words, the CPU will 
use the byte returned on ADO-AD7 during the interrupt acknowledge cycle 
to determine the starting location of the service routine for that interrupt. 
This byte of data is called an interrupt vector. Thus a vectored interrupt will 
result in the execution of one of a number of possible service routines, de­
pending on the value of the vector read from the peripheral. N onvectored 
and nonmaskable interrupts, on the other hand, each have just one service 
routine corresponding to that interrupt type. That same routine is called 
each time the interrupt occurs. However, that routine could examine the 
identifier word returned during the acknowledge sequence, and then branch 
to the appropriate procedure corresponding to the identifier's value. 

Traps are synchronous events that are triggered by attempting to execute 
certain instructions. Unlike interrupts, traps are predictable and repeatable; 
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if a particular instruction in a program causes a trap, that trap should recur 
each time that instruction is executed with the same set of conditions (that 
is, the same processor state). The Z8001 and Z8002 CPUs recognize three 
kinds of traps: extended instruction traps, privileged instruction traps, and 
system calls. Each of these trap conditions is generated internally by the 
CPU during program execution. The Z8001 CPU recognizes a fourth, exter­
nally generated trap, the segmentation trap. 

Extended instruction traps are caused by an attempt to execute an in­
struction intended for an Extended Processor Unit (EPU) when no EPUs are 
present in the system. Bit 13 of the FCW is the extended processor architec­
ture (EPA) bit; a 1 in this bit signals that EPUs are present in the system, and 
a 0 means no EPUs are present. The instructions that are meant to be exe­
cuted by the Extended Processor Units, and not by the CPU, include all in­
structions with an opcode whose first word has a OE, OF, 4E, 4F, 8E, or 8F 
(hexadecimal) in the upper byte. If one of these instructions is encountered 
and the EPA bit of the FCW is 0, an extended instruction trap will occur. 
The service routine for the trap could simulate the action that the EPU 
would take if it were present, thereby allowing the system to function with­
out an EPU that is to be acquired and added to the system at a later time. 

Privileged instruction traps occur when execution of a privileged in­
struction is attempted while in normal-mode operation. The current operat­
ing mode (system or normal) is determined by the SIN bit (bit 14) in the 
FCW. I/O instructions, instructions that alter the control bits in the FCW, 
the multi-micro instructions, and the HALT instruction are all privileged in­
structions. This trap prevents normal-mode users from corrupting the op­
erating system environment; that is, normal-mode programs cannot act di­
rectly on any of the system's hardware functions. The service routine for 
the privileged instruction trap could simulate the operation attempted by the 
normal-mode user; this service routine would be part of the operating sys­
tem, and the trap would be considered as a request to the operating system 
to perform some hardware function. 

The system call trap occurs when a System Call (SC) instruction is exe­
cuted. The System Call instruction is, in essence, a software trap. By exe­
cuting a System Call instruction, a normal-mode program would initiate 
execution of the system call trap's service routine. This service routine could 
be written as part of the operating system to provide some system-mode 
functions, such as I/O routines, that can be accessed by normal-mode users. 
Thus the system call trap, like the privileged instruction trap, can be used 
to provide normal-mode programs with a controlled means of accessing 
operating system functions. 

The segmentation trap occurs whenever the SEGT input to the Z8001 
is pulled low, regardless of whether the processor is in the segmented or the 
nonsegmented mode. This trap is generated by memory management hard­
ware, such as the Z8010 MMU, when that hardware detects an illegal mem-
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ory access. As part of memory management, memory segments in Z8001 
systems can be assigned specific sizes and attributes that determine what 
types of accesses can be made to that segment. If an illegal access is at­
tempted, the MMU notifies the CPU via the segmentation trap. For ex­
ample, a segmentation trap could signal an attempted write to a read-only 
segment, or an attempt to access a memory address outside the limits of a 
segment. The Z8010 MMU includes status registers that can be read as part 
of the segmentation trap service routine to determine the exact cause of the 
trap. (The Z8010 MMU is described in Chapter 9.) 

The action that Z8000 CPUs take in response to an interrupt or trap is 
very similar. The major distinction between interrupts and traps is their ori­
gin. Interrupts are asynchronous events caused by a device outside the CPU 
and are usually independent of the currently executing instruction. Traps 
are synchronous events caused by instruction execution, and are always 
reproducible by reexecuting the program that caused the trap. 

INTERRUPT AND TRAP HANDLING 

At the beginning of T3 of the last machine cycle of an instruction, the 
Z8000 CPUs sample the interrupt and SEGT inputs to see if an interrupt or 
segmentation trap is pending. If an interrupt input is active and enabled, or 
if the execution of the last instruction caused a trap condition, the CPU will 
respond to the interrupt or trap instead of executing the next instruction of 
the current task. Response to an interrupt or trap consists of six steps: de­
termining priority of competing events, executing an acknowledge cycle (for 
interrupts and segmentation traps only), saving the current program status, 
loading the service routine's program status, executing the service routine, 
and returning to the interrupted program. 

PRIORITIES OF EXCEPTIONS 

If more than one interrupt or trap condition is present at one time (that is, 
when sampled during the last machine cycle of an instruction), the CPU re­
sponds to the exception condition with the highest priority. Internal traps 
(extended instruction, privileged instruction, or system call) have the highest 
priority, followed by nonmaskable interrupts, segmentation traps, vectored 
interrupts, and nonvectored interrupts, in that order. Of course, resets have 
a higher priority than any other condition; whenever the RESET pin is ac­
tive, a reset is performed immediately. 

For some of the classes of events listed above there can be multiple 
sources for a given event. The internal traps are mutually exclusive and, there­
fore, no priority resolution is needed within that class of events. The other 
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exception conditions arise from external sources. If more than one device 
shares a common request line (the SEGT or an interrupt line), a request for 
service from more than one device using that line can occur simultaneously 
at the CPU. For segmentation traps where more than one MMU signals the 
trap, the Z8001 services the traps simultaneously, in that the acknowledge 
sent during the interrupt acknowledge sequence is accepted by all the MMUs 
(see Chapter 9). For interrupt requests, priority between multiple devices 
sharing an interrupt input to the CPU is resolved external to the CPU via a 
daisy-chain priority scheme. (This daisy chain is described later in the chap­
ter.) Priority resolution among the daisy-chained peripherals is done during 
the interrupt acknowledge cycle. 

INTERRUPT ACKNOWLEDGE 

The interrupt acknowledge cycle is initiated by the CPU when responding to 
an interrupt request or segmentation trap. The acknowledge cycle serves 
two purposes-it selects the peripheral whose interrupt is to be acknowl­
edged, and it reads an identifier word from the interrupting device. For 
vectored interrupts, the identifier includes the 8-bit interrupt vector that is 
used to determine the location of the service routine. 

Interrupt acknowledge cycles are necessary only for exception condi­
tions resulting from events external to the CPU, that is, interrupts and seg­
mentation traps. Acknowledge cycles are not part of the response to an 
internally generated trap; since the cause of the trap is internal to the CPU, 
there is no need to acknowledge an external device or read an identifier 
word. (The timing of the interrupt acknowledge cycle is described later in 
the chapter.) 

SAVING PROGRAM STATUS 

Once the acknowledgment is complete, if one is necessary, the CPU must 
save enough status information about the program being executed at the 
time of the exception to be able to return successfully to that program after 
the service routine for the exception is completed. The results of executing 
a given programming task must be the same regardless of whether or not an 
interrupt or trap occurred during the task's execution. Therefore, the CPU 
must save all the information about the current task's running environment: 
the location of the next instruction to be executed, the operating modes of 
the CPU, and the flag conditions resulting from the last instruction's execu­
tion. This information is contained in the CPU's program status registers­
the PC and FCW (Fig. 6.1). When responding to an interrupt or trap, the 
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Figure 6.1 Program status registers. 

CPU pushes the PC, FCW, and an identifier word onto the stack, using the 
system-mode implied stack pointer (system-mode RR14 in the Z8001, sys­
tem-mode R15 in the Z8002). Status is saved on the system stack regardless 
of the CPU's operating mode at the time of the exception. For the Z8001, 
both the segment number and offset portions of the PC are saved on the 
stack, even if the CPU was in the nonsegmented mode when the exception 
condition occurred. In other words, the CPU always enters the system mode 
and, for the Z8001, the segmented mode during status saving in response to 
an interrupt or trap. The PC is pushed first (the offset portion first for the 
Z8001), followed by the FCW, and then the identifier word. For interrupts 
and segmentation traps, the identifier is the value read from the address/data 
bus during the interrupt acknowledge cycle. For internal traps, the identifier 
is the first word of the instruction that caused the trap. The format for the 
saved program status on the system stack is illustrated in Fig. 6.2. Table 6.1 
lists the PC value that is pushed on the stack for each type of interrupt and 
trap. 
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TABLE 6.1 PC VALUE SAVED ON STACK FOR EACH TYPE 
OF INTERRUPT AND TRAP 

Exception 

Extended instruction trap 
Privileged instruction trap 

System call trap 
Segment trap 
All interrupts 

PC value is address of: 

Second word of instruction 
Next instruction 

(single-word privileged instruction) 
Second word of instruction 

(multiple-word privileged instruction) 
Next instruction 
Next instructiona , b 

Next instructionb 

a Assumes successful completion of instruction fetch. 
blf executing an interruptable instruction (e.g., LDIR), the next instruction is 
the current instruction. 

PROGRAM STATUS AREA 

After saving program status for the task that was interrupted, the CPU loads 
in new program status values-a new PC and FCW, in other words-that de­
fine the CPU operating modes and starting address of the service routine. 
This new program status is loaded from a block of memory called the Pro­
gram Status Area. Figure 6.3 is a diagram of the Program Status Area for 
the Z800l and Z8002. 

The starting address of the Program Status Area is determined by the 
contents of the Program Status Area Pointer (PSAP), which is a CPU control 
register (Fig. 6.4). The PSAP is loaded using the Load Control (LDCTL) 
instruction. The PSAP is a single word register in the Z8002 (to hold a 
l6-bit address) and two word registers in the Z800l (to hold a segmented 
address). The low-order byte of the PSAP is always all O's; therefore, the 
starting address of a Program Status Area is always on a 256-byte address 
boundary in memory. The Program Status Area contains a list of the pro­
gram status values (that is, values for the PC and FCW) that are loaded into 
the CPU's PC and FCW registers during exception processing to determine 
the operating modes and starting location of each interrupt and trap service 
routine. In other words, after saving the program status of the task that was 
interrupted, the CPU fetches new program status values for the service rou­
tine by reading the appropriate memory locations in the Program Status 
Area pointed to by the PSAP. 

The Program Status Area holds an FCW and PC value for the service 
routine for every possible type of interrupt or trap. The particular program 
status values fetched from the Program Status Area are a function of the 
type of exception that occurred and, for vectored interrupts, the vector 
returned by the peripheral during the interrupt acknowledge cycle. For each 
interrupt or trap there is, then, a block of memory in the Program Status 
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Figure 6.3 Program status areas for 
540 21C the Z8001 and Z8002. 

Area that contains the values to be loaded into the FCW and PC to initiate 
execution of the appropriate service routine. 

For the Z8002, the FCW and PC are each always one word (16 bits) 
long. Thus 4 bytes of memory are needed in the Program Status Area for 
the program status values for each type of exception. Starting at the loca­
tion pointed to by the PSAP, the first two words of the Program Status Area 
are reserved. (Reserved areas are locations that are not used by the Z8002, 
but might be used by future upward-compatible Z8000 family processors. 
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Figure 6.5 Z8002 Program Status 
Area. 

These areas should be filled with all O's.) The next two words, starting at ad­
dress 4 in the Program Status Area, are the FCW and PC value for the ex­
tended instruction trap service routine. This is followed by the FCW and PC 
values for the privileged instruction trap and system call service routines, a 
reserved area of 4 bytes, and then FCW and PC values for the nonmaskable 
interrupt and nonvectored interrupt service routines, respectively (Fig. 6.5). 
For vectored interrupts, an FCW value that will be loaded for all vectored in­
terrupts is at location 1C (hexadecimal) in the Program Status Area. This is 
followed by a list of 256 possible PC values, corresponding to the 256 pos­
sible 8-bit vectors that can be returned by the interrupting peripheral during 
the interrupt acknowledge cycle. The vector returned by the peripheral is 
used as an index into this list to select the starting PC value for the interrupt 
service routine; a vector of 0 corresponds to the PC value at location 1E 
(hex) in the Program Status Area, a vector of 1 corresponds to the PC value 
at location 20 (hex), and so on up to a vector value of 255 (FF hex). Thus 
the value of the vector will determine which PC value is fetched when load­
ing the program status registers for the service routine from the Program 
Status Area. 

The program status registers for the Z8001 consist of a reserved word, 
the FCW, and the PC (Fig. 6.1). The program counter is two words long, 
where one word holds the segment number and the other holds the offset ad­
dress. Thus four words are needed in each block of the Z8001 's Program 
Status Area to hold the program status values for each interrupt and trap ser­
vice routine. The first four words of the Program Status Area for the Z8001 
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are reserved (Fig. 6.6). The next block of four words holds the program 
status values for the extended instruction trap service routine. The first 
word of this block is a reserved word, followed by an FCW value, the seg­
ment-number portion of the PC value, and finally, the offset portion of the 
PC value. (When segment numbers are stored in a 16-bit word, the 7-bit seg­
ment number is placed in bits 8-14. Bit 15 and bits 0-7 are set to 0.) The 
following blocks in the Program Status .Area contain the program status 
values for the privileged instruction trap, system call, segmentation trap, 
nonmaskable interrupt, and nonvectored interrupt service routines, in that 
order. Each of these blocks has the same format: a reserved word, the FCW 
value, the PC's segment number, and the PC's offset for that service routine. 
Location 3A (hex) of the Z8001 's Program Status Area holds the FCW value 
for all of the vectored interrupt service routines. It is followed by a list of 
128 possible PC values, with each PC having a segment number and an offset 
part. Thus each of the 128 possible PC values fills two words in the Program 
Status Area. The 8-bit vector returned by the peripheral during the interrupt 
acknowledge cycle is used as an index into this list of possible PC values. A 
vector of 0 will select the first PC value, whose segment number is at loca­
tion 3C (hex) and whose offset is at location 3E (hex) of the Program Status 
Area. If the vector is 2, the next PC value will be selected, and so on. Only 
even-valued vectors are used in the Z8001 (that is, the least significant bit of 
the vector must be a 0); therefore, there are 128 unique vectors that can be 
returned by the peripheral, corresponding to the 128 PC values listed in the 
Program Status Area. 
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The Program Status Area can begin at any 256-byte boundary in mem­
ory (any memory location with an offset address whose low-order byte is 0) 
except for address 0 in a Z8002 system and segment 0, address 0 in a Z8001 
system. (This restriction is due to the method in which the CPUs respond to 
a reset, as described later in the chapter.) When new program status is 
fetched during the response to an exception condition, the fetch is made in 
system-mode operation with a status code of 1100 (program reference) on 
the ST3-STO lines. Thus the Program Status Area always resides in the sys­
tem-mode program memory address space. 

In review, when an exception condition occurs, the CPU will save the 
program status (FCW and PC) of the task that was interrupted, and use the 
PSAP to determine the starting location of the Program Status Area. The 
CPU will then fetch new values for the program status from the Program 
Status Area; these values are loaded into the FCW and PC registers in the 
CPU, and execution of the service routine is begun. The new value of the 
FCW is not effective until the start of the fetch of the first instruction of the 
service routine; thus the new FCW value will not affect the status pins while 
the fetches from the Program Status Area are being completed. The first in­
struction of the service routine will be fetched from the address specified in 
the PC that was loaded from the Program Status Area. The service routine 
will be running in the operating modes (segmented or nonsegmented, system 
or normal, EPA and interrupts enabled or disabled) specified by the FCW 
value loaded from the Program Status Area. 

If desired, maskable interrupts can be disabled at the start of a service 
routine by a suitable choice of the FCW's value. This would allow critical in­
formation to be stored or processed before subsequent interrupts are handled. 
If interrupts are enabled before the end of the service routine, nested inter­
rupts are possible, that is, the service routine could itself be interrupted 
while another interrupt's service routine is run. 

Several different Program Status Areas could be set up in memory, with 
different ones being used at various times during program execution. Speci­
fying a new Program Status Area would involve only changing the PSAP reg­
ister contents with a Load Control (LDCTL) instruction. For the Z8001, 
changing the PSAP takes two LDCTL instructions-one for writing the seg­
ment number and the other for writing the offset. Care must be taken to 
ensure that no exceptions occur between the two instructions, since an un­
intended PSAP value could be in effect at that time. 

INTERRUPT RETURNS 

A service routine is program code that is executed in response to an inter­
rupt or trap. In the Z8000 CPUs, execution of a service routine starts after 
new program status has been loaded into the PC and FCW from the Pro-
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gram Status Area. Upon completion of the service routine, execution of the 
task that was interrupted by the exception is resumed. In order to terminate 
the service routine and return to the interrupted task, that task's program 
status must be retrieved from the system stack, where it was stored before 
the service routine was run. The Z8000's Interrupt Return (lRET) instruc­
tion is used to end routines for both interrupts and traps. 

Execution of the IRET in a Z8002 automatically pops three words 
from the system stack: the identifier word is popped and discarded (that is, 
the stack pointer is incremented without saving the identifier word), and the 
interrupted task's FCW and PC values are popped and loaded into the CPU's 
program status registers. After the IRET, the next instruction fetch will be 
from the location addressed by the PC, which is the point at which the task 
was interrupted. IRET is a privileged instruction that can be executed only 
in system mode; IRET always pops the old program status from the system­
mode stack memory address space. The "popped" value of the FCW is not 
effective until the next instruction fetch, so the status pins will not be af­
fected by the new FCW value until execution of the IRET is completed. 

In Z8001 CPUs, execution of the IRET automatically pops four words 
from the system-mode stack-the identifier, FCW, PC segment number, and 
PC offset-since four words are always pushed on the stack when servicing an 
exception. Therefore, the Z8001 must be in segmented mode when the 
IRET is executed. It is the programmer's responsibility to ensure that the 
Z8001 is in the segmented mode before any IRET instruction is encountered. 

PERIPHERAL INTERRUPT DAISY CHAIN 

The Z8000 CPUs support three types of interrupts: nonmaskable, nonvec­
tored, and vectored. Each of these interrupts can have multiple sources in a 
Z8000 system, with several peripherals sharing a common interrupt input to 
request servicing from the CPU. When peripherals share a common interrupt 
line, a method of prioritizing interrupt requests from these peripherals is 
needed. This prioritization is implemented by means of a daisy chain exter­
nal to the CPU. The interrupt daisy chain is formed using two signals at each 
peripheral device: Interrupt Enable In (lEI), an input to each peripheral, and 
Interrupt Enable Out (lEO), an output from each peripheral. The interrupt 
daisy chain has two functions: during interrupt acknowledge transactions, it 
determines which interrupt source on the daisy chain is being acknowledged, 
and at all other times, it determines which interrupt sources can initiate an 
interrupt request. 

Figure 6.7 shows an example of the interrupt daisy-chain structure. 
Four peripheral devices share a common interrupt request line to the CPU, 
where any device can pull the line low to make a request. This signal might 
be the CPU's nonmaskable, nonvectored, or vectored interrupt input. The 
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appropriate acknowledge signal, decoded from the STO-ST3 status lines, is 
connected to each peripheral's interrupt acknowledge input. The highest­
priority device has its lEI line tied high; its lEO output is connected to the 
next device's lEI input, and so on down the daisy chain. The order in which 
the peripherals are connected on the daisy chain determines their relative pri­
ority; if two devices on the daisy chain simultaneously assert an interrupt re­
quest, the higher-priority device will be acknowledged first. Furthermore, 
a given peripheral device is not allowed to interrupt the service routine of a 
higher-priority device on the daisy chain. 

A high level (logical 1) on a peripheral's lEI input means that the pe­
ripheral is free to request an interrupt by pulling the interrupt line to the 
CPU low. The lEO output is used by each peripheral to allow or stop inter­
rupt requests from devices with lower priority on the daisy chain. 

The interrupt protocol on the daisy chain is illustrated in the state dia­
gram of Fig. 6.B. In the quiescent state (no interrupts being asserted or ser­
viced), each device on the chain passes its lEI input to its lEO output. Thus 
each device sees a high level on its lEI input and is free to request servicing 
by asserting an interrupt. When a peripheral does need servicing, it can inter­
rupt the CPU by pulling the interrupt line low only if that device's lEI input 
is high and no interrupt acknowledge cycle is taking place (as signaled by the 
appropriate status at the last rising edge of AS). When a device asserts an in­
terrupt, its lEO line is not pulled low; lEO continues to follow lEI until the 
interrupt is acknowledged. 

Sometime after the peripheral pulls the interrupt request line low, the 
CPU will respond with an interrupt acknowledge cycle. The delay between 
the interrupt request and the acknowledge will depend on the length of the 
current instruction being executed; interrupt inputs are sampled during the 
last machine cycle of every instruction. When the interrupting peripheral 
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sees an active acknowledge signal (the status lines are guaranteed valid at the 
rising edge of AS during Tl of the acknowledge cycle), it pulls its lEO out­
put low and releases the interrupt request line. When DS goes low later in 
the acknowledge cycle, the peripheral examines its lEI input. If lEI is high, 
the device accepts the acknowledge, and, if desired, places an identifier on 
the bus (a vector in the case of vectored interrupts) before DS rises. The de­
vice is now under service. 

While the service routine for a peripheral is being executed, that periph­
eral will continue to hold its lEO output low, thereby preventing lower­
priority devices on the daisy chain from requesting service via an interrupt. 
However, higher-priority devices can still assert interrupts; a peripheral knows 
that a higher-priority device on the daisy chain has preempted its service rou­
tine by asserting an interrupt if its lEI input goes low. When the servicing of 
a peripheral is completed, the peripheral returns to the quiescent state, 
wherein its lEO output follows its lEI input. [For Z8000 family peripherals, 
the CPU signals the peripheral that service is complete by resetting a bit 
called the interrupt-under-service bit in one of the peripheral's internal regis­
ters. This requires an I/O write to the peripheral at the end of the service 
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routine (that is, immediately before the interrupt return), as described in 
Chapter 12.] 

For example, suppose that peripheral device C in Fig. 6.7 requires ser­
vicing from the CPU. If device C's lEI and INTACK inputs are both high, it 
can request the CPU's attention by pulling the interrupt line low. Sometime 
later, when the CPU enters the acknowledge cycle, device C will receive an 
active INT ACK signal. Device C now pulls his lEO output low. When DS 
goes low, device C samples its lEI input. If lEI is low, then either device A 
or device B also asserted an interrupt before this acknowledge cycle began, 
saw the acknowledge, and pulled its lEO low; in this case, the higher-priority 
device accepts the acknowledge, and device C should let lEO follow lEI, wait 
until its lEI is high again, and then reassert the interrupt request. If device 
C's lEI input is high when DS goes low during the acknowledge cycle, device 
C is the highest-priority device requesting service, and is free to place an 
identifier or vector on the bus during this acknowledge cycle. While device C 
is being serviced, its lEO line is held low, preventing device D from making 
an interrupt request. 

For this daisy-chain protocol to work properly, the delay in the inter­
rupt acknowledge cycle between the rising edge of AS (acknowledge status 
valid) and the falling edge of DS (a device samples its lEI and accepts the 
acknowledge) must be long enough to allow a change in the lEO from the 
highest-priority device to propagate to the lEI of the lowest-priority device 
on the daisy chain. In other words, the lEI/lEO daisy chain must settle com­
pletely between the rising edge of AS and the falling edge of DS during the 
acknowledge cycle. For long daisy chains, this may require the addition of 
externally-generated wait states in the acknowledge cycle. 

This type of priority arrangement of the peripherals via a hardware con­
nection is called an interrupt-under-service daisy chain; devices on the chain 
are not permitted to request interrupts if a higher-priority device is being ser­
viced. No separate priority control devices are needed; the priority of a 
given peripheral is determined solely by its physical position on the daisy 
chain. Four signals are required to implement the daisy chain for each 
Z8000 interrupt type: INT, INTACK, lEI, and lEO. These four lines can be 
replicated for each of the three interrupt types supported by the Z8000 CPU. 

INTERRUPT ACKNOWLEDGE CYCLE 

The interrupt acknowledge cycle is entered in response to an externally 
generated exception condition, that is, an interrupt or segmentation trap. 
This acknowledge cycle is used to identify the highest-priority device on an 
interrupt-under-service daisy chain, as described above, and to allow the CPU 
to receive an identifier word, which is saved on the stack with the program 
status of the interrupted task. 

Figure 6.9 shows the timing of the interrupt acknowledge machine 
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cycle. The interrupt and segmentation trap inputs to the CPU are sampled at 
the beginning of T3 of the last machine cycle of each instructions' execu­
tion. The VI, NVI, and SEGT inputs are level triggered; that is, the input pin 
must be low when sampled for the CPU to recognize the interrupt or trap re­
quest. The NMI is edge triggered; a negative edge on this input sets an NMI 
flip-flop internal to the CPU. This flip-flop is examined to determine if an 
NMI request is to be serviced. (Setup and hold-time requirements for these 
inputs are given in the AC timing characteristics chart in Appendix A.) 

If an interrupt or trap condition is detected, the Z8000 will start the 
next instruction fetch, but this fetch will be abandoned before completion. 
All of the proper address and status information for the next instruction 
fetch will appear in Tl, and the AS is pulsed. However, no active DS signal 
is generated, the instruction is never read from memory, and the PC is not 
updated. The CPU spends seven clock periods in this abandoned instruction 
fetch cycle; during this time, the CPU is resolving priority among compet­
ing events if more than one exception condition was detected, and decre­
menting the implied system stack pointer in preparation for saving the inter­
rupted task's program status. 

This abandoned instruction fetch cycle is followed by the actual inter­
rupt acknowledge cycle. The CPU always switches to the system mode, and, 
for the Z8001, the segmented mode at the start of the acknowledge cycle. 
The CPU remains in these modes until it begins to execute the service rou­
tine. During Tl of the acknowledge cycle, all status signals, including the ap­
propriate acknowledge code on the STO-ST3 lines (Table 6.2), are output 
and guaranteed valid at the rising edge of AS. The contents of the address/ 
data bus are undetermined at this time; that is, no meaningful address infor­
mation is output. MREQ is high, B/W is low, and R/W is high, indicating that 
the CPU is going to read a word from the interrupting device later in this 
cycle. During T2, the address/data bus is tri-stated by the CPU in anticipa­
tion of reading data placed on the bus by an external device in T3. Five 
wait states are automatically included in the interrupt acknowledge cycle. 
Assuming there are no externally-generated wait states, DS is lowered during 
the fourth wait state. The lEI/lEO daisy chain should be settled by this 
time; for Z8000 family peripherals, this normal timing would allow chains of 
about 10 devices. After the fifth automatic wait state, the T3 state is en-

TABLE 6.2 STATUS CODES FOR INTERRUPT 
AND TRAP ACKNOWLEDGMENTS 

ST3-STO 

0100 
0101 
0110 
0111 

Acknowledge type 

Segment trap acknowledge 
Nonmaskable interrupt acknowledge 
Nonvectored interrupt acknowledge 
Vectored interrupt acknowledge 
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teredo The contents of the address/data bus are read by the CPU on the fall­
ing edge of the clock in the middle of T3. T4 and T5 clock periods are ap­
pended to this transaction, and are used internally to load the identifier read 
off the bus into a temporary storage register in the CPU. Thus the interrupt 
acknowledge machine cycle is always at least 10 clock cycles long. 

The word of data read during T3 of the acknowledge cycle is the iden­
tifier word that is later saved on the system stack as part of the exception 
processing. Thus an interrupting device can send up to 16 bits of status in­
formation to the CPU as part of the acknowledge cycle. For vectored inter­
rupts, the CPU uses the lower half of this word (the bits returned on the 
ADO-AD7 bus lines) as the interrupt vector. In the Z8001, the CPU will al­
ways set bit 0 of the vector to 0, regardless of the value returned during the 
acknowledge cycle, thereby guaranteeing that only even vector values are 
used when indexing into the Program Status Area. If several devices are con­
nected on a daisy chain for the NMI or NVI interrupt inputs, the identifier 
word typically is used in the service routine to identify the device that as­
serted the interrupt. Of course, the peripheral does not have to return an 
identifier word during the acknowledge, except for vectored interrupts, 
where a vector is always required. 

Additional wait states can be added to the interrupt acknowledge cycle 
by pulling the CPU's WAIT input low. During the middle of the third auto­
matic wait state (before DS goes low), the WAIT input is sampled; if WAIT 
is active, an additional wait state is added before starting the clock period 
wherein DS goes low (Fig. 6.10). During that additional wait state, the 
WAIT input is again sampled, and further additional wait states are added 
until WAIT returns high. Therefore, the delay between the rising edge of AS 
and the falling edge of DS during the interrupt acknowledge can be arbitrar­
ily long, allowing time for long lEI/lEO daisy chains to settle. Once DS goes 
low and the highest priority device that requested an interrupt has been se­
lected, the WAIT input is again sampled during the last automatic wait state 
before T3. Additional wait states can be inserted here to allow the selected 
device additional time to place its identifier word or vector on the bus. Thus 
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externally-generated wait states can be added at two points in the interrupt 
acknowledge cycle-before DS goes active, to allow time for long daisy 
chains to settle, and during DS active, to allow time for the selected device 
to place an identifier on the bus (Fig. 6.10). 

Immediately following the acknowledge cycle, the CPU executes several 
memory access cycles. The program status information for the interrupted 
task is pushed onto the system stack in the following order: the PC offset, 
the PC segment number (Z8001 only), the FCW, and the identifier word. 
The new program status is read from the Program Status Area pointed to by 
the PSAP and loaded into the CPU's program status registers. All of these 
accesses are made in the system mode and, for the Z8001, the segmented 
mode. Then execution of the service routine is begun. 

INTERRUPT RESPONSE TIME 

Interrupt response time in a Z8000 system is dependent on the length of the 
instruction being executed when the interrupt occurs. If the interrupt 
occurs immediately after interrupts are sampled during the last machine 
cycle of an instruction, another complete instruction must be fetched and 
executed before interrupts are sampled again. Thus the maximum possible 
delay between an interrupt and its servicing depends on the longest instruc­
tion executed during interruptible portions of all programs in the system. 
Some Z8000 instructions can take relatively long times to execute; for ex­
ample, the Divide Long (DIVL) instruction can take up to 749 clock cycles 
to execute in segmented mode. In systems where interrupt response time is 
critical, instructions such as DIVL should be avoided. (The Z8000 has sev­
eral assembly language instructions that automatically repeat a given process 
for a set number of times, such as the block move instructions. These 
instructions are interruptible between each iteration of the instruction's 
execution.) 

Once the interrupt has been sampled and the current instruction has 
completed, the remaining response time can be calculated. Table 6.3 lists 
the number of CPU clock cycles needed for each step of interrupt processing, 
excluding any externally-generated wait states during the interrupt acknowl­
edge and memory access machine cycles. Thus the Z8001 takes at least 44 
clock cycles from the end of the instruction being executed when the inter­
rupt was sampled until the beginning of the fetch of the first instruction of 
the service routine. For the Z8002, at least 38 clock periods are required. 
Servicing of internally-generated traps (extended instruction, privileged 
instruction, and system call) requires 10 fewer clocks; the timing is similar 
except that the interrupt acknowledge cycle is not included in the response 
to an internal trap condition. 



System Call Instruction 

TABLE 6.3 TIME REQUIRED FOR INTERRUPT AND 
SEGMENTATION TRAP PROCESSING 

Event CPU clock periodsa 

Aborted instruction fetch cycle 
Interrupt acknowledge cycle 
Push PC offset on system stack 
Push PC segment numberb 

Push FCW 
Push identifier word 
Fetch new FCW from Program Status Area 
Fetch new PC segment numberb 

Fetch new PC offset 

a Assumes no externally-generated wait states. 
bZ8001only. 
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7 
10 

4 
3 
4 
7 
3 
3 
3 
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Execution of the System Call (SC) instruction causes the CPU to process the 
system call trap. This instruction allows normal-mode programs to force ex­
ecution of the service routine for the system call trap. This service routine 
could be a part of the operating system that performs system-mode type op­
erations such as I/O for the normal-mode user. 

The opcode for the SC instruction is one word long, where the upper 
byte is an EF (hex) and the lower byte is an immediate operand from 0 to 
255 as specified by the programmer (Fig. 6.11). The entire SC opcode ap­
pears on the system stack as the identifier word during status saving for the 
system call stack (Fig. 6.12). The system call trap routine can read the iden-

STACK POINTER 
AFTER TRAP 
OR INTERRUPT 

STACK POINTER 
BEFORE TRAP 
OR INTERRUPT 

sc 

src 
I 

BYTE 

Figure 6.11 System call opcode. 
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Figure 6.12 Saved program status for a system call trap. 
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tifier from the stack, and use it to define the action to be taken. In other 
words, a byte of data can be passed from the normal-mode program to the 
system call service routine in the ope ode of the SC instruction itself. The 
service routine might use this byte parameter to determine the type of ac­
tion that the normal-mode user is requesting via the system call. Thus the 
operating system could be written so that normal-mode users can use the sys­
tem call to request anyone of up to 256 actions available in the system call 
service routine. 

SERVICE ROUTINES 

When executing service routines, care must be taken not to change memory 
or register locations that, if altered, could prevent a successful return from 
the interrupt or trap. Before entering the service routine, the program status 
of the interrupted task is placed on the system stack using the implied stack 
pointers (R15 in the nonsegmented mode, RR14 in the segmented mode). 
The Interrupt Return (lRET) instruction is used to clear this information on 
the stack and return to the interrupted task at the end of the service routine. 
Therefore, the implied stack pointer must have the same value when the 
IRET is executed as it had when the service routine began. If the identifier 
word on the stack is to be accessed in the service routine via a pop of the 
stack, a word must be pushed back onto the stack to restore the stack 
pointer to its starting value. (The IRET must be executed in the segmented 
mode in the Z8001, as discussed previously.) Of course, the interrupted task's 
program status information on the stack cannot be altered if the interrupt task 
is to resume precisely where it was interrupted. Registers and memory loca­
tions that were being used by the interrupted task should not be uninten­
tionally altered by the service routine. In short, execution of the interrupted 
task should produce the same results as if the task were not interrupted. 

Often, a service routine will load all of the registers' contents into mem­
ory locations reserved for that purpose at the start of the service routine, use 
the registers, and then restore the original register contents before returning 
to the interrupted task. The Load Multiple (LDM) instruction in the Z8000 
allows the user to store all of the general-purpose registers' contents into 
consecutive memory locations or fill all the registers from consecutive mem­
ory locations with one instruction. 

If the system distinguishes between system-mode and normal-mode 
memory address spaces, the operating mode of the service routine will deter­
mine which memory areas can be accessed by that routine. If the service 
routine needs to read the identifier word from the system stack, that part of 
the routine will have to operate in the system mode. Segregated memory ad­
dress spaces can affect parameter passing to a service routine. When a nor­
mal-mode program executes a system call, for example, 1 byte of data is 
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passed in the identifier word, as described above. If more data need to be 
passed in memory locations (such as a file to be output to a peripheral by the 
system call service routine), that memory would have to be accessible by 
both the normal-mode program, which sets up the data and makes the sys­
tem call, and the system-mode service routine, which is to read the data. 
Therefore, for such a scheme to work, the system- and normal-mode mem­
ory address spaces must have some common memory locations (see Chapter 3). 

HALT INSTRUCTION 

CLOCK,!> 

NIS SN6:0 } 

AD15:0 

DS 

MREQ 

ST3:0 

INTERNAL 

NMI 

The HALT instruction is a privileged instruction that suspends CPU opera­
tion until an exception condition occurs. Execution of a HALT puts the 
CPU in a continuous string of three-clock-period internal operation machine 
cycles (Fig. 6.13). (If automatic memory refresh is enabled, refresh cycles 

--8------

IF1 REFRESH CODE INTERNAL IF1 

T1-T2-T3-T4-T5 T1~T2-T3 - -T1-T2-T3 T1~T2~T3 T1- T2 

'Refresh occurs on demand 

Figure 6,13 HALT instruction timing. 
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will be inserted as often as specified by the refresh rate counter portion of 
the refresh register.) The CPU remains in this state until an interrupt, seg­
mentation trap, or reset occurs. After the exception is serviced, execution 
will resume with the instruction following the HALT. Typically, the HALT 
instruction is used to synchronize CPU operation with external events. 

Execution of the HALT command consists of a five-clock instruction 
fetch cycle, followed by successive three-clock-period internal cycles (with 
refresh cycles inserted as dictated by the refresh register). At the start of T3 
of each cycle, the interrupt and SEGT inputs are sampled. If an interrupt or 
SEGT is detected, the exception is processed in the normal fashion, with an 
acknowledge cycle, status saving, fetching of new program status, and execu­
tion of the service routine. The value of the PC that is saved during program 
status saving is the address of the instruction following the HALT. Thus the 
return from the service routine will return to the first instruction after the 
HALT. In this manner, the HALT can be used to stop program execution 
and resume it again based on some externally generated input. 

HALT instructions also can be used to synchronize Z8000 CPUs in a 
multiple-processor system. The HALT instruction would be placed at the 
point in each processor's code where synchronization is desired. Before each 
HALT, an I/O instruction could be used to inform external hardware that 
the HALT has been reached. When all the processors have reached their 
HALT instruction, the external logic generates a pulse on an interrupt in­
put to each processor, and they all resume program execution. 

A hardware reset occurs at the end of any clock cycle when the RESET in­
put to the CPU is low. The RESET input must be held low for at least five 
CPU clock cycles to initialize the CPU properly. A reset overrides all other 
considerations, including interrupts, traps, bus requests, and STOP inputs. 
Reset should be used to initialize the CPU as part of the system's power­
up sequence. 

Reset timing for the Z8002 is illustrated in Fig. 6.14. Within five clock 
cycles after RESET goes low, the address/data bus is tri-stated by the CPU; 
the AS, DS, MREQ, MO, BUSACK, and STO-ST3 signals are forced high; the 
SNO-SN6 segment number output goes low, and the R/W, B/W, and N/S lines 
are undefined (that is, they might be high or low). Three clock periods after 
RESET returns high, memory read cycles are executed in the system mode 
and the values read during those read cycles are loaded into the program 
status registers. 

For the Z8002, two read cycles are executed; the first read fetches a 
word from memory location 2 (that is, 2 is the address emitted during T1 of 
the memory read) and loads it into the FCW, and the second read fetches a 



I 

<f 8 
-;l., -

~ 
w 

8 
---::x;---

~ 
~ ).. 

0 

Ii 

"" 

l!a Ii I~ 

<f 

~ 

-

V 

.. 
on 
o .. 

on 

-

"-

.,/ 

on 
z 

----

I--- --- -----

'" --~- --

I~ 

oil 
!::: 

:§ ...., 
...., 
Q) 
<n 
Q) 
I-< 

C'l 
0 
0 
00 
N 
-.::I' 
.-4 

cD 
~ 
~ 
1£ 

II Ii 

97 



98 

Z8002 Z8001 

~-~- LOCATION 2 ---I-_PC_:_E:_:E_N_T ---'I 

~ 'CO"", 

I nterrupts, Traps, and Resets Chap. 6 

Figure 6.15 Memory locations ac­
cessed during a reset. 

word from location 4 and loads it into the PC. These FCW and PC values are 
the program status for the first routine to be executed after the reset. Figure 
6.14 shows the timing of these fetches, assuming that no active WAIT signals 
are generated during these memory accesses. The next machine cycle follow­
ing these two reads will be an instruction fetch from the address loaded into 
the PC, under the operating modes specified in the FCW. 

For the Z8001, three memory reads are executed as part of the reset 
sequence; the starting FCW is fetched from segment 0, location 2, the seg­
ment number for the initial PC value is fetched from segment 0, location 4, 
and the PC's offset is fetched from segment 0, location 6 (Fig. 6.15). The 
following machine cycle is the instruction fetch that starts the execution of 
the program at the address loaded into the PC, under the operating modes 
specified in the FCW. 

These initial fetches of the FCW and PC values after a reset are made 
from the system-mode program memory address space (1100 status on STO­
ST3). These values in memory must be present at power-up, and, therefore, 
are implemented in nonvolatile memory (ROM or PROM). Since the first six 
memory locations for the Z8002 and the first eight locations in segment 0 
for the Z8001 are dedicated to holding the program status values for a reset 
condition, these areas cannot be used as part of a Program Status Area. In 
other words, the Program Status Area cannot start at address 0 in a Z8002 
system or segment 0, address 0 in a Z8001 system. 

After a reset, the contents of all the CPU registers are undefined, except 
for the PC and FCW, and bit 15 of the refresh register. Bit 15 (the enable 
bit) of the refresh register is cleared to 0 by a reset, thereby turning off the 
automatic memory refresh mechanism. All interrupt and segmentation trap 
inputs are ignored during the reset processing, and any pending NMI requests 
are cleared (that is, the internal NMI request flip-flop is cleared). Interrupts 
are not sampled until the last machine cycle of the first instruction executed 
after the reset. 

INITIALIZATION ROUTINES 

After a reset, the first software program executed should be a routine that 
initializes the CPU control registers used in that system. The implied stack 
pointers (RR14 in the segmented mode, R15 in the nonsegmented mode) 



Other Context Switches 99 

must be initialized before the system processes interrupts, traps, or subrou­
tine calls. The Program Status Area Pointer (PSAP) and Program Status Area 
must be initialized before interrupts or traps can be handled properly. (Often, 
Program Status Areas are implemented in nonvolatile ROM or PROM, so ini­
tialization is not required each time a reset occurs.) If automatic memory 
refreshes are needed for dynamic memories in the system, the rate and en­
able portions of the refresh register must be initialized. 

An important practical consideration for Z8000 system initialization 
is the potential for a nonmaskable interrupt request shortly after a reset. 
Since the NMI cannot be disabled, the system must be ready to handle an 
NMI at any time. This is not possible, of course, since a finite amount of 
time is needed after a reset to initialize the implied stack pointer and PSAP, 
even if the Program Status Area is in ROM. An active NMI input before 
these initializations would be mishandled. Therefore, hardware external to 
the CPU is needed to delay NMI requests until after initializations are com­
pleted. This is true for any processor having a nonmaskable interrupt. 

OTHER CONTEXT SWITCHES 

Other Z8000 instructions besides the System Call can cause "context 
switches," in that they affect the program status registers. The Load Control 
(LDCTL) instruction can be used to load the FCW, thereby changing the 
CPU's operating modes. The Disable Interrupt (DI) and Enable Interrupt 
(EI) instructions change just the vectored and nonvectored interrupt enable 
bits in the FCW. 

Complete context switches can be made with the Load Program Status 
(LDPS) instruction. This instruction loads a new FCW and PC from an area 
in memory that is formatted in the same manner as one block of the Pro­
gram Status Area. In the nonsegmented mode, an FCW and PC value are 
loaded from memory; in the segmented mode, a reserved word, FCW, PC 
segment number, and PC offset address are loaded from memory (Fig. 6.16). 
These fetches are made from the data memory address space (1000 status on 

NONSEGMENTED LOW ADDRESS 
SEGMENTED 

FCW 

PC FCW 

PC SEG. NO. 

HIGH ADDRESS PC OFFSET 

Shaded area is reserved-must be zeros. 

Figure 6.16 Format of memory locations read during LDPS instruction 
execution. 
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STO-ST3}. The new value of the FCW does not become effective until the 
next instruction, so the status pins will not be affected by the new control 
bits until the LDPS instruction execution is completed. The next instruction 
executed is the instruction addressed by the new PC value. 

Old program status is not saved by the LDPS instruction, meaning that 
this is a way of permanently switching program status. The LDPS instruc­
tion is useful for initiating normal-mode users' programs from the operating 
system, or for running a nonsegmented program on a Z8001. The segment­
number portion of the PC is not affected by an LDPS instruction executed 
in the nonsegmented mode. 

Of course, the LDCTL, EI, DI, and LDPS instructions are all privileged 
instructions that can be executed only during system-mode operation. 
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Bus and Resource Sharing 

Besides interrupt requests, two other request buses can be used to control 
the sharing of resources in Z8000 systems. The address/data bus and its as­
sociated control and status signals are a resource that might be shared be­
tween processors and direct memory access (DMA) devices. Bus requests 
are made to the CPU when another device requires control of the bus; the 
Z-Bus bus request daisy chain allows multiple devices to share use of the bus 
in a well-defined manner. In multiprocessor systems, resources such as mem­
ory and I/O devices often are shared by two or more processors. For ex­
ample, two separate Z8000-based systems might share a hard disk storage de­
vice, where only one processor may access the disk at a time. The Z-Bus 
multiprocessor resource sharing daisy chain defines the protocol for sharing a 
single resource among multiple Z8000 processors. Use of a hardware daisy­
chain scheme to control bus and multiprocessor resource requests eliminates 
the need for separate priority controllers in the system. 

BUS REQUESTS 

In a given system, a CPU is designated as the default bus master; it uses the 
bus to fetch instructions and to transfer data to and from memory and pe­
ripheral devices as required during instruction execution. If another device, 
such as a DMA controller, needs to use the bus, that device must request 
control of the bus from the CPU. 

Typically, bus requests are initiated by DMA controllers in a Z8000 
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system, where the DMA controllers are used for high-speed data transfers 
between memory and I/O devices. A peripheral device that needs servicing 
would request service from the DMA controller instead of interrupting the 
CPU. The DMA device requests control of the bus from the CPU, awaits 
acknowledgment of that request, performs the necessary data transfers, and 
then returns control of the bus to the CPU. Using a DMA controller to ser­
vice a peripheral can have two advantages over CPU-controlled transfers be­
tween I/O and memory devices. First, the overhead involved in obtaining 
the bus for a DMA transfer via a bus request is less than the overhead in­
volved in processing an interrupt in the CPU. Second, DMA controllers 
usually can transfer data between memory and I/O devices more efficiently 
(that is, faster) than the CPU. Of course, the bus requestor must use the 
address/data bus and its control and status lines in the exact same nlanner 
as the CPU to execute data transfers on the bus. 

The bus request timing is illustrated in Fig. 7.1. A bus request is initi-

I
, ... ---ANY M CYCLE--~ 

T, T, TJ 

_---BUS AVAILABLE----

Tx Tx Tx Tx Tx Tx 

~-- ---- --- ----

~-- ---- ---- ---

r-- ---- --- ---- ---- ----
MREQ.~.--------------------~ 

STo-ST3. SAME AS PREVIOUS CYCLE 
B/W. R/Vi. N/S ______________ --!--' 

Figure 7.1 Bus request timing. 
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ated by pulling the BUSREQ input to the CPU low. The CPU samples this 
input at the start of each machine cycle, that is, at the rising edge of thf' 
clock of each Tl state. If BUSREQ is low at the start of the machine cycle, 
the CPU will relinquish the bus at the end of the bus transaction in that 
cycle (in other words, immediately after T3). The CPU gives up the bus by 
tri-stating the address/data bus (ADO-AD15), bus control (AS, DS, MREQ), 
bus status (N/S, B/W, R/W, STO-ST3), and, for the Z8001, segment number 
(SNO-SN6) outputs. The' CPU then pulls the BUSACK output low, signal­
ing that the bus request has been acknowledged. The requesting device is 
now free to use the bus to initiate data transfers. For example, a DMA 
controller might transfer data between memory and I/O devices while in con­
trol of the bus. The bus requestor returns control of the bus to the CPU by 
deactivating the CPU's BUSREQ input. Once the CPU issues an active 
BUSACK, it cannot regain control of the bus on its own; it must wait pas­
sively for the bus requestor to return control of the bus to the CPU by rais­
ing BUSREQ. Two clock periods after BUSREQ goes high the CPU will raise 
BUSACK and regain control of the bus, with execution resuming at the 
point at which it was suspended by the bus request. Any device requiring 
control of the bus must wait at least two clock cycles after BUSREQ has 
risen (that is, until BUSACK returns high) before pulling BUSREQ down 
again. 

Bus requests will always be acknowledged within two machine cycles 
after BUSREQ is active. Worst-case timing occurs if BUSREQ goes low im­
mediately after the start of a machine cycle; that cycle will be executed, 
BUSREQ will be sensed at the start of the next cycle, and the bus request 
will be honored after that second cycle's bus transaction. During normal ex­
ecution, the longest machine cycle is the eight-clock-period internal cycle, 
assuming that memory and I/O cycles are not longer than 8 clocks due to ex­
ternally-generated wait states). During exception processing, the lO-clock­
period interrupt acknowledge cycle is the longest possible machine cycle 
(again, excluding extra wait states). In most systems, worst-case response to 
a bus request would occur when the BUSREQ is pulled low right after the 
start of the aborted instruction fetch cycle during the response to an inter­
rupt. The seven-clock-period aborted instruction fetch would execute, fol­
lowed by 8 clock periods in the acknowledge cycle (BUSREQ would be 
sensed at the beginning of this cycle) before BUSACK would be returned. 
Thus the requesting device will always gain control of the bus soon after it 
pulls BUSREQ low in Z8000 systems. 

BUS REQUEST PRIORITY DAISY CHAIN 

If several devices in the system are capable of requesting control of the bus, 
these devices will share the BUSREQ input to the CPU. Arbitration be­
tween simultaneous requests from these devices is resolved via a priority 
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Figure 7.2 Z-Bus signals for bus re­
quests. 

daisy chain. Four signals are defined as part of the Z-Bus for handling bus 
requests and establishing the daisy chain: bus request (BUSREQ), bus ac­
knowledge (BUSACK), bus acknowledge in (BAI), and bus acknowledge out 
(BAO) (Fig. 7.2) .. 

Figure 7.3 is a block diagram of the bus request daisy chain. B USREQ 
is driven by all bus requestors; a low on this line indicates that a bus re­
questor is trying to gain control of the bus. The BUSREQ signal serves two 
purposes: it is used as a CPU input to request control of the bus and as a 
status line to other bus requestors, indicating that some bus requestor is re­
questing or has control of the bus. BUSREQ must be bidirectional so that 
each device on the chain can monitor the activity of the other devices. 
BUSACK is a CPU output indicating that the CPU has relinquished bus con­
trol in response to a bus request. BAI and BAD are the signals that form the 
bus request daisy chain. 

The protocol of the bus request daisy chain is outlined in Fig. 7.4. In 
the quiescent state (no bus requests being made and the CPU bus master has 
control of the bus) each device passes its BAI input to its BA5 output. When 
a device needs to request control of the bus, it samples the BUSREQ line. A 
bus request can be made only if BUSREQ is initially high (that is, the CPU 
has control of the bus, and no other device is requesting the bus) and has 
been for two clock cycles. The request is made by pulling BUSREQ low. 
The requesting device also holds its BAO output high, thereby preventing 
bus acknowledgments from propagating to lower-priority devices, as ex­
plained below. The bus requestor gains control of the bus when its BAI in­
put goes low. When the device is ready to return control of the bus to the 
CPU, it releases BUSREQ and allows its BAO output to follow its BAI input 
(that is, it returns to the quiescent state). 

BUS REQUESTORS 

_ BAT BAOI---~' BAI BAO 1---'" BAT BAO f---- ••• 

BUSREQ BUSREO 

SDSACK '--

+5V 

BUS MASTER CPU 

BUSREQ ~--<lo..--_-----__ -----_--

Figure 7.3 Z-Bus bus request daisy chain. 
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Figure 7.4 Bus request protocol. 

Unlike the interrupt daisy chain, the bus request daisy chain is non­
preemptive. Once a device gains control of the bus, no other devices on the 
chain can make a bus request until control is returned to the CPU, regardless 
of their position on the daisy chain. The daisy chain is used only to resolve 
the priority of simultaneous bus requests; if two devices request the bus at 
the same time, only the higher-priority device will receive the initial bus ac­
knowledge on its BAI line, since the higher-priority device holds its BAO line 
high until it relinquishes control of the bus. After the higher-priority device 
returns to the quiescent state, the low BUSACK will propagate to the lower­
priority device, that device will then be in control of the bus. 

If the automatic memory refresh capabilities of the Z8000 CPUs are 
used to refresh dynamic memories, refresh cycles may be missed while DMA 
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devices have control of the bus. The CPU will remember the last two 
"missed" refresh row addresses and issue those refreshes immediately after 
regaining control of the bus. Care must be taken to ensure that bus request­
ors do not control the bus for a long enough period of time that the dynamic 
memory's contents are corrupted due to a lack of refreshes. 

SHARED RESOURCE REQUESTS 

The Z-Bus also includes signals for implementing a hardware daisy chain for 
requesting the use of a resource shared among several Z8000 processors. For 
example, several microcomputer systems might share a common disk drive 
or high-speed printer, where only one processor can use the shared resource 
at anyone time. As each processor requires use of the shared resource, it 
must poll that resource to see if it is already being used by another processor. 
If not, the processor uses the resource, meanwhile locking out all other pro­
cessors until it is finished. The shared resource could be an I/O device, a 
block of memory, or a shared bus. 

Four Z-Bus signals make up the shared resource daisy chain: multi­
micro request (MMRQ), multi-micro status (MMST) multi-micro acknowl­
edge in (MMAI), and multi-micro acknowledge out (MMAO) (Fig. 7.5). Fig-
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resources in a rn ul tiprocessor sys tern. 

ure 7.6 shows a typical configuration of the daisy chain. The MMRQ signal 
can be driven by any device that can request use of the shared resource. A 
low on this line indicates that a request has been made or granted. The 
MMST is an input to each device on the daisy chain that indicates a request 
is pending or the shared resource is busy. MMAI and MMAO are the ac­
knowledge signals that make up the daisy chain. 
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Figure 7.6 Z-Bus resource-sharing daisy chain. 
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Figure 7.7 M ul ti-microprocessor 
resource-sharing protocol. 

The protocol of resource requests is illustrated in Fig. 7.7. In the quies­
cent state (the resource is not busy and no requests are being made), each 
processor holds its MMRQ high and passes its MMAI input to its MMAO out­
put. If MMST is high the resource is not busy and a device can request use 
of the resource by pulling MMRQ low. (Unlike the bus request protocol, no 
device on the shared resource daisy chain has control of the resource by de­
fault; every device must request the resource before using it.) Besides pull­
ing MMRQ low, the requesting processor forces its MMAO output high, 
denying use of the resource to lower-priority devices on the daisy chain. 
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When the shared resource receives a request (MMRQ goes low), it pulls the 
MMST line low. This signal propagates through the MMAI/MMAO daisy 
chain until reaching the highest-priority requestor. The requestor samples 
its MMAI input some finite amount of time after making the request; if 
MMAI is low, the requestor knows it has control of the shared resource. If 
MMAI is high, some higher-priority device on the daisy chain saw the ac­
knowledge and is using the resource, so the original requestor returns to the 
quiescent state and tries again later. The delay between requesting the 
shared resource by pulling MMRQ low and checking for acknowledgment 
by sampling the MMAI input must be long enough to allow the MMAI/ 
MMAO daisy chain to settle. This time would be the sum of the worst-case 
MMAI to MMAO propagation delays for each device on the daisy chain. 
When the processor that has control of the shared resource is finished using 
the resource, it releases the resource by allowing MMRQ to go high and pass­
ing its MMAI input to its MMAO output. The shared resource lets the 
MMST line go high if MMRQ is high. 

Like the bus request daisy chain, the shared resource request daisy 
chain is nonpreemptive. Once a processor gains control of the shared re­
source, no other device on the daisy chain can make a request until the 
shared resource is freed again. Priority on the daisy chain is important only 
in the case of two simultaneous requests. For example, if processor A and 
processor C of Fig 7.6 simultaneously pull their MMRQ lines low, only 
processor A will see a low on its MMAI input when it samples for acknowl­
edgment, since processor A will hold its MMAO line high when it makes the 
request. When processor A has completed use of the resource, it will return 
to the quiescent state, and processor C can reassert its request. 

All four lines in the shared resource request daisy chain are unidirec­
tional, allowing the use of line drivers and receivers at each processor on the 
daisy chain. Furthermore, the delay for the daisy chain settling time can be 
set at each processor. Therefore, the devices on the chain can be separated 
by arbitrarily long distances. 

A shared resource requestor can be any device capable of implementing 
the protocol. For ZSOOO CPUs, the four lines of the resource request daisy 
chain are mapped into the multi-micro in (MI) and multi-micro out (MO) 
pins of the CPU. The logic for this mapping is shown in Fig. 7.S. During the 
quiescent state, the MO output is high; thus the MI input will reflect the 
state of the MMST line, and MMAI is gated out to MMAO. MMST (on the 
MI input) can be read by the CPU to check the busy status of the resource. 
If the resource is not busy, the CPU pulls the MO output low. MMAO is 
forced high, and the MMAI signal is now gated to the CPU's MI input. After 
waiting for a predetermined delay time, the CPU reads MMAI (on the MI in­
put). If it is low, the CPU knows that the request was successful, uses the re­
source, and sets MO high when completed. If MMAI is high when read, the 
request was not successfully acknowledged, and the CPU will set MO high 
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10-------- MMST 

MI ....... '-----.L:::-------.. MMST. MMAI 

M ~ c:>----.... : :::: >-----MMRQ 

~.--------~ 

)0---- MMAO 

HIGHEST-PRIORITY PROCESSOR ON DAISY CHAIN ALL OTHER PROCESSORS ON DAISY CHAIN 

Figure 7.8 Logic for mapping the Z-Bus resource-sharing signals to the 
Z8000 CPU MO and MI pins. 

and repeat the request later. (Alternatively, a 74LS157 multiplexor can be 
used in place of the combinational logic of Fig. 7.8, as illustrated in Fig. 7.9.) 

If this configuration is used, one Z8000 instruction, the Multi-Micro 
Request (MREQ), will implement the whole protocol described above. The 
MREQ instruction has a 16-bit register as an operand. The contents of the 
register specified as the operand in the instruction will determine the delay 
between asserting the MMRQ and sampling the MMAI lines. After comple­
tion of the MREQ instruction, the Sand Z flags in the FCW indicate whether 
or not the shared resource is available. Execution of the MREQ instruction is 
diagrammed in Fig. 7.10. First, the Z flag is cleared, and then the MI input 
is tested. If MI is low, indicating that MMST is low and the shared resource is 
busy, the S flag is cleared and MO remains high (no request is made). If 
MI is high, then MO is pulled low (MMRQ goes low) to initiate a request. 
Next, the contents of the register operand are decremented every seventh 
CPU clock cycle, until reaching zero. Then the MI input is sampled again, 
and the Z flag is set. If MI is high (MMAI high) the S flag is cleared and the 
MO line is pulled high (the request was not acknowledged). If MI is low, the 
S flag is set to 1, and the CPU now has control of the shared resource. Thus, 

MO 

MI 

~ 
En 

Ao 

'''l 
A, 

6 0 

6, 

Select 

ZA I---

74LS157 

ZB 

MMRQ 

MMAO 

Figure 7.9 Mapping Z-Bus resource­
request signals to a Z8000 CPU using 
a 2-to-l mUltiplexer. 
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Figure 7.10 Execution of the 
MREQ instruction. 

after execution of the MREQ, the Z flag indicates if a request was made, and 
the S flag indicates if the request was granted (Table 7.1). Another instruc­
tion, Multi-Micro Set (MSET), is used to write a 1 to MO after the CPU com­
pletes its use of the shared resource. 

Two other instructions act on the MO and MI pins. The Multi-Micro 
Bit Test (MBIT) instruction reads the MI input and sets or resets the S flag if 
MI is high or low, respectively. The Multi-Micro Reset (MRES) instruction 
writes a 0 to the MO output. Thus MSET, MRES, and MBIT could be used 
to implement other, user-defined resource-sharing protocols, if so desired. If 
the system does not use the MI and MO pins for shared resource requests, 
they can be used as a single bit of input and output for other purposes. 



TABLE 7.1 MEANING OF FLAGS AFTER THE 
EXECUTION OF A MREQ INSTRUCTION 

S flag Z flag MO Indicates 

0 0 High Request not signaled 
(resource not available) 

0 1 High Request not granted 
(resource not available) 

1 1 Low Request granted 
(resource available) 
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Figure 7.11 Z-Bus signals. 
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If the MO and MI pins are not used in the system at all, the MREQ 
instruction can be used to produce long, uninterruptible software delays. 
Execution of the MREQ instruction takes 10 + 7n clock cycles, where n is 
the contents of the word register specified as the operand in the MREQ 
instruction. 

Z-BUS SIGNALS 

All of the signals comprising the Z-Bus interface have now been discussed 
(Fig. 7.11). In review, the Z-Bus is a logical definition of the signals needed 
to link Z8000 family components in a computer system. Two kinds of 
operations can occur on the Z-Bus: transactions and requests. Four kinds of 
transactions are possible: memory, I/O, interrupt acknowledge, and null. 
(Null transactions occur during internal operation and memory refresh 
cycles, wherein no data are being transferred.) Only one transaction can 
occur at a time and it must be initiated by a bus master, that is, the device in 
control of the bus. There are three types of requests: interrupt, bus, and 
shared resource. A request can be initiated by a component that is not the 
bus master. For each type of request, a daisy-chain priority mechanism pro­
vides arbitration between simultaneous requests, eliminating the need for 
separate priority controllers. 

Data transfers on the Z-Bus are asynchronous in the sense that Z-Bus 
components need not be synchronized with the CPU clock. The timing of 
data transfers is controlled by the AS! DS, and WAIT signals. 
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The Instruction Set 

One feature of the Z8000 CPU architecture that sets it apart from previous 
generations of microprocessors is its large, powerful instruction set. The in­
struction set for the Z8000 includes 110 distinct instruction types. Many of 
these instructions act on byte, word, or long-word data operands. The oper­
ands in an instruction are specified using one of the Z8000's eight addressing 
modes. Combining the instruction types with the various data types and op­
erand addressing modes supported by each instruction yields a set of over 
400 different instructions. 

The Z8000 CPUs have a full complement of data movement, arith­
metic, logical, bit manipulation, rotate, shift, and I/O instructions. Instruc­
tions are included to manipulate strings of data, to facilitate multitasking 
operating systems, and to support typical high-level-language functions. 
When coupled with the other architectural features of the Z8000, such as the 
large memory address spaces, the Z8000 programmer is provided with com­
puting power formerly available only on large mainframe computers. 

ASSEMBLY LANGUAGE CONVENTIONS 

Examples of assembly language instructions in this book will be written 
using the format accepted by the Zilog PLZ/ASM assembler. (PLZ/ASM is 
Zilog's structured assembly language that combines the assembly language 
instructions with some high-level constructs, allowing the programmer to 
write program code in a top-down, modular fashion.) Some of the conven-
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TABLE 8.1 EXAMPLES OF ASSEMBLY LANGUAGE 
STATEMENTS IN PLZ/ASM 

Label 

START: 
Loop: 

Instruction 
mnemonic 

LD 
OUT 
INCB 
NOP 

Operands 

RO, R2 
50, R5 
RL7 

Comments 

! contents of R2 written to RO ! 
! output R5 contents to port 50 ! 
! increment register RL7 by 1 ! 
! no operation ! 

Chap. 8 

tions for writing code in the PLZ/ ASM language are described here, so that 
the programming examples shown in this chapter will be easily understood. 

Table 8.1 illustrates some statements written in PLZ/ASM. A state­
ment consists of an assembly language instruction, the instruction's oper­
ands, and optionally, label and comment fields. Each of these fields must be 
separated by at least one delimiter; legal PLZ/ ASM delimiters include spaces, 
commas, tabs, semicolons, carriage returns, line feeds, and form feeds. Sev­
eral delimiters in a row are treated the same as just one delimiter. Each as­
sembly language instruction is denoted by that instructions's mnemonic; for 
example, LD is the mnemonic for the Load instruction. Z8000 instructions 
may have anywhere from zero to four operands, depending on the instruc­
tion; in the case of multiple operands, the operands must be separated by 
delimiters. Labels are placed before the instruction's mnemonic, and are 
always followed by a colon. Comments may be placed anywhere that a delim­
iter may appear, and are enclosed in exclamation points. Labels and comments 
are always optional and are added by the programmer to make the program 
easier to read, maintain, and debug. 

Often, symbolic names are used to represent particular memory loca­
tions or numeric constants in PLZ/ ASM. These symbolic names, also called 
identifiers, are made up of alphabetic characters (both upper- and lowercase 
which are distinct), the digits 0 through 9, and the underline character (_). 
Symbolic identifiers can be up to 127 characters long, and must start with an 
alphabetic character. 

Numbers can be written in decimal, hexadecimal, octal or binary nota­
tion, as shown in Table 8.2. A number without any prefix is interpreted as a 
decimal number, the "%" prefix designates a hexadecimal number, the "%(8)" 

TABLE 8.2 REPRESENTATION OF NUMERIC 

CONSTANTS IN PLZ/ASM 

Decimal Hexadecimal Octal Binary 

10 %A %(8 )12 %(2)1010 
17 %11 %(8 )21 %(2)10001 

255 %FF %(8 )377 %(2)11111111 
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prefix designates an octal number, and the "%(2)" prefix designates a binary 
number. 

When writing segmented addresses, the segment number is preceded by 
two "<" symbols and followed by two ">" symbols. The offset would fol­
low immediately. For example, "«5»20" means segment 5, offset 
address 20 (the 5 and 20 are both decimal values in this case). 

The general-purpose CPU registers are designated as follows: RO-R15 
for the word registers; RHO-RH7 and RLO-RL7 for the byte registers; RRO, 
RR2, and so on, through RR14 for the long-word registers; RQO, RQ4, RQ8, 
and RQ12 for the quad registers. 

As with most assembly languages, the destination operand is placed 
before the source operand. Thus the statement 

LD RO, R2 

means that the contents of register R2 are to be written into register RO. 
Some other assembler conventions, such as the designation of the operand 
addressing mode, will be described later. 

CPU REGISTER USAGE 

The 16 general-purpose CPU registers can each be used as an accumulator 
(the register holds the result of an artithmetic or logical operation), a pointer 
(the register holds a memory or I/O address), or an index (the register holds 
a value that is added to a base address to produce a memory address), with 
some minor exceptions. Register RO cannot be used to hold a nonsegmented 
memory address, an I/O address, or an index, and RRO cannot be used to 
hold a segmented memory address. Registers R15 in nonsegmented mode 
and RR14 in segmented mode are the implied stack pointers for subroutine 
calls and exception processing and, therefore, usually are not used as ac­
cumulators or indexes. 

Nonsegmented memory addresses and I/O addresses are always 16 bits 
long and can be stored in any word register except RO. Segmented addresses 
are 23 bits long, and can be stored in any register pair except RRO. When 
storing a segmented address in a long-word register, the segment number is 
placed in bits 8-14 of the high-order word register of the register pair, and 
the offset address is stored in the low-order word register (Fig. 8.1). 

The general philosophy of the instruction set is to have two operand in­
structions, with a register, memory location, I/O port, or immediate value 

I ~ !" "OMeNT' • !: , , , , , , : I ". 
_ . : : : : : ?FFSE~ : : : : : : RN + 1 

15 0 N = 2.4 .... 14 

Figure 8_1 Format for storing seg­
mented addresses in long-word reg­
isters. 
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for the source operand and a register as the destination. Thus most arithmetic, 
logical, shift, and rotate instructions have a register as the destination. Input 
instructions use a register for the destination and output instructions use a 
register for the source. Storing data in the registers allows shorter instruc­
tions and faster execution than when operands must be fetched from mem­
ory. However, some memory-to-memory and I/O-to-memory commands are 
included to improve program density; these commands normally are used to 
manipulate entire strings of data. 

LONG AND SHORT OFFSET ADDRESSES 

For two of the operand addressing modes, direct address (DA) and indexed 
(X), an I/O or memory address is included in the instruction itself. Nonseg­
mented memory addresses and I/O addresses are always 16 bits long, so these 
addresses occupy one word in the instruction's opcode. Segmented ad­
dresses are 23 bits long and can be represented two different ways within an 
instruction. 

The most general format for designating a segmented address within an 
instruction is the long offset format, wherein the address is stored in two 
consecutive words (Fig. 8.2). The first word contains the segment number 
portion of the address in bits 8-14; bits 0-7 are reserved (set to O's). Bit 15 
is set to aI, which designates the long offset format. The 16-bit offset ad­
dress is placed in the next word of the instruction. 

In the short offset format, the segmented address is compressed into 
one word in the instruction. Bit 15 is cleared to zero, bits 8-14 hold the seg­
ment number, and bits 0-7 hold the lower byte of the offset. The upper 
byte of the offset address is assumed to be all O's. Thus the short offset for­
mat can be used only to address the first 256 bytes in a segment (that is, off­
set addresses 0 to 255 in the segment). 

For the Zilog PLZ/ ASM assembler, the short offset format is denoted 
by enclosing the segmented address within vertical bars when writing the 
instruction: 

LD RO, I «5»20 I 

LD RO, «5» 300 

! memory-to-register load, memory address is in short offset format! 

! memory-to-register load, memory address is in long offset format! 

15 14 

LONG OFFSET 1-'_1 ....I.... ___ S_EG_# ___ --'-_R_ES_ER_V_ED_(A_L_L Z_E_RO_Sl----' 

LONG OFFSET 

15 14 8 7 

SHORT OFFSET 11-_0 -'--___ S_EG_# ___ --'-__ S_HO_R_T O_F_FS_ET_----' 

Figure 8.2 Formats for storing seg­
mented addresses within an instruc­
tion's opcode. 
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The short offset format can be used only when a segmented address is 
included in the instruction's opcode. The short offset format cannot be used 
to store a segmented address in a CPU register. 

ADDRESSING MODES 

A Z8000 assembly language instruction is stored in memory as a consecutive 
list of one or more words that are accessed via the program counter during 
program execution. The word or words in memory making up the instruc­
tion are called an operation code (opcode). In addition to specifying what 
type of instruction is to be executed (for example, a load or add), the op­
code also must specify the location of the data to be operated on, called the 
instruction's operands. Operands can reside in CPU registers, memory loca­
tions, or I/O ports. The method used to determine the location of an oper­
and is called an addressing mode. 

The Z8000 CPUs support eight different addressing modes: register (R), 
direct address (DA), immediate (1M), indirect register (IR), indexed (X), base 
address (BA), base indexed (BX), and relative address (RA). Not all instruc­
tions are capable of using every addressing mode to specify its operands. 
The addressing mode for an operand is explicitly specified when writing the 
instruction. 

For the X, BA, BX, and RA addressing modes, the memory address of 
the operand is found by adding a 16-bit value, called an index or displace­
ment, to a memory address, called the base address. The address yielded by 
this operation is called the effective address of the operand. In segmented­
mode operation, this calculation of the operand's address applies only to the 
offset portion of the address; the segment number of the operand's effective 
address is always the segment number of the base address. Any carry result­
ing from adding the index to the offset address is ignored, rather than incre­
menting the segment number. In other words, the segment number and off­
set portions of the address are distinct and address calculations performed 
on the offset address will never alter the segment number. 

REGISTER MODE 

In the register (R) addressing mode, the operand is the contents of the CPU 
register specified in the instruction (Fig. 8.3). The register length (byte, 

INSTRUCTION REGISTER(S) 

REGISTER 

Figure 8.3 Register mode. 
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word, long word, or quad word) is determined by the instruction. The fol­
lowing statements use register addressing to specify both the source and des­
tination operands: 

LD R2, R5 

ADDS RHO, RL4 

MULTL RQ4, RL8 

DI RECT ADDRESS MODE 

! contents of R5 written into R2 ! 

! 8-bit addition of RHO and RL4, sum goes in RHO! 

! 32-bit multiply I 

For the direct address (DA) mode, the address of the operand is included in 
the instruction's opcode (Fig. 8.4). The address could be a memory address 
or an I/O address, as indicated by the instruction type. For I6-bit nonseg­
men ted addresses and I/O port addresses, the address will be given in the sec­
ond word of the instruction's opcode. Segmented addresses can be stored in 
an opcode in two ways: long offset format (the address is in the second and 
third words of the instruction's opcode) or short offset format (the address 
is in the second word of the intruction's opcode). 

The operand specified by the DA mode can be in the I/O address space, 
special I/O address space, or data memory address space, depending on the 
instruction: 

LD RO, «10»%4ACO 

SOUT %OOFF, R5 

I segmented mode, contents of data memory location 4ACO hex in 

segment 10 are loaded into RO ! 

! destination is port FF hex in special I/O address space! 

Typically, the address is specified using a symbolic name rather than the 
numerical address: 

LD RO, TOTAL ! TOTAL is previously defined symbolic name for some location in data 

memory! 

The instruction that uses DA mode to specify an operand could be a 
byte, word, or long-word instruction; the direct addressing logic is identical 
for each case. For byte instructions, a single byte in memory or an I/O port 
is-accessed; for word instructions, the whole word is accessed. Long-word 
instructions will access the word whose address is given in DA mode and the 
next sequential word in memory. 

OPERATION 
I 

ADDRESS I OPERAND I I 
WORD(S) MEMORY OR I/O 

Figure 8.4 Direct address mode. 
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The DA mode also is used by the Jump and Call instructions to specify 
the address of the next instruction to be executed. In this case, the address 
in the instruction opcode is not used to reference a data operand in a mem­
ory or I/O location, but instead is used as an immediate value that is loaded 
into the program counter: 

JUMP %5000 

CALL SOME_ROUTINE 

IMMEDIATE MODE 

I jump to location 5000 hex I 

I SOME_ROUTINE is the symbolic name for the starting ad­

dress of a subroutine! 

Immediate (1M) mode addressing means that the operand appears within the 
instruction's opcode itself (Fig. 8.5). 1M mode is the only addressing mode 
that does not involve specifying a register, memory, or I/O location for the 

OPERATION 

WORD(S) OPERAND 
Figure 8.5 Immediate mode. 

operand. Instructions that act on bytes or words provide the immediate oper­
and as the second word in the opcode. For byte instructions, the immediate 
byte of data is duplicated in both bytes of the opcode's second word. In­
structions that operate on long words provide the immediate operand as the 
second and third words of the opcode. 

Since immediate operands are always part of the opcode, they are al­
ways located in the program memory address space. The" #" symbol is used 
to specify immediate-mode addressing. Immediate mode often is used to 
initialize memory and register locations: 

LD RO, #'105407 ! 5407 hex loaded into RO ! 

ADDS RH8, #20 ! 20 added to contents of RH8 ! 

INDIRECT REGISTER MODE 

For the indirect register (lR) mode, the operand resides at some memory or 
I/O location. The address of the operand is the contents of the register 
specified in the opcode. In other words, a register holds the address of the 
operand (Fig. 8.6). Of course, the appropriate address must be loaded into 
the register before IR mode is used. The instruction type determines if the 
address in the register is a memory or I/O address. Any word register except 
RO can hold a nonsegmented memory address or an I/O address. Any regis­
ter pair except RRO can hold a segmented memory address. 
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REGISTER(S) MEMORY OR 110 

ADD:;;;II..---....... 1 OPERAND 

Figure 8.6 Indirect register mode. 

Depending on the instruction, the operand specified by IR addressing 
could be in the I/O address space, special I/O address space, data memory 
address space, or stack memory address space. For memory accesses, if R15 
in nonsegmented mode or RR14 in segmented mode is the register used to 
hold the operand's address, the operand will be in the stack memory address 
space (that is, the ST3-STO lines will be 1001 during the access); otherwise, 
the operand is in the data memory address space. 

The "@" symbol in front of the register name is used to designate in­
direct register addressing: 

LD R5, @R2 

INB RHO, @R1 
LD @RR14, RO 

INDEXED MODE 

! nonsegmented mode, the destination uses I R addressing, the contents 

of the data memory location whose address is in R2 is loaded into 

R51 

! R1 holds standard I/O port address! 
! segmented mode, source uses IR addressing, source is in stack 

memory! 

For the indexed (X) mode, the operand is located in a memory location. 
The address of the memory location is found by adding an address located in 
the instruction's opcode, called the base address, to the contents of a word 
register specified in the instruction, called an index (Fig. 8.7). The address 
formed by adding the index to the base address is called the effective address 
of the operand. Any general-purpose register except RO can hold an index. 
The base address can be segmented or nonsegmented, depending on the cur­
rent operating mode of the CPU; if segmented, the base address can be speci­
fied using the long or short offset formats. 

When using the indexed addressing mode in segmented mode, the index 
is added to the offset portion of the base address, without affecting the seg­
ment number. The segment number of the effective address for the operand 
is always the segment number of the base address. 

INSTRUCTION REGISTER 

DISPLACEMENT 

WORD(S) ADDRESS 
MEMORY 

Figure 8.7 Indexed mode. 
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Operands specified using X mode are in the data memory address space, 
except when this mode is used with the Jump and Call instructions. For 
Jumps and Calls, the effective address is not used as the address of an oper­
and in memory, but instead is used as an immediate value that is loaded into 
the program counter to execute the Jump or Call. 

Indexed addressing is specified by designating the base address, fol­
lowed by the register that holds the index enclosed in parentheses: 

LO RO, %4A90(R11) 

LOB RL3, LlST(R13) 

I nonsegmented mode, X mode for source operand! 

! LIST is symbolic name for some data variable I 

JUMP OISPATCH_ TABLE(R5) 

Indexed addressing allows the programmer to access elements in tables 
of data, where the base address of the table is known, but the index of the 
particular element accessed is to be computed during program execution. 

BASE ADDRESS MODE 

Base address (BA) mode is the inverse of indexed mode; in BA mode, the 
specified register holds a base address and the index, or displacement, is a 16-
bit value that is part of the instruction's opcode (Fig. 8.8). The operand's 
effective memory address is found by adding the index to the base address. 
In the nonsegmented mode, the base address can be in any register except 
RO; in the segmented mode, the base address can be in any register except 
RRO. 

As with the indexed mode, the effective address calculation does not af­
fect the segment number of the base address; the segment-number portion of 
the effective address will always be the segment number of the base address. 

An operand specified using BA mode is in the stack memory address 
space if the base address is in R15 in the nonsegmented mode or RR14 in 
the segmented mode. Otherwise, the operand is in the data memory address 
space. 

Base addressing is used only with the Load (LD) instruction. Base ad­
dressing is specified by stating the register that holds the base address, fol­
lowed by an immediate index; the index is enclosed in parentheses: 

LO R1 (#50), R8 

LO RO, RR14(#%AO) 

I nonsegmented mode, BA mode specifies the destination in data 

memory! 

! segmented mode, BA mode specifies source in stack memory! 

The base address mode is the complement of the indexed mode and 
allows access to data in a table where the index into the table is known, but 
the base address of the table is computed during program execution. For ex-



122 The Instruction Set Chap. 8 

WORD 

Figure 8.8 Base address mode. 

ample, the BA mode might be used for accessing the corresponding elements 
in several different tables of data. 

For the nonsegmented mode, the base address and indexed modes are 
equivalent; for each, a 16-bit value in a register is added to a 16-bit value 
given in the instruction's opcode to yield an effective memory address for 
the operand. The only difference occurs when R15 is used to hold the base 
address or index: 

LD RO, 50 (R15) 

accesses data memory to obtain the source operand, whereas 

LD RO, R15 (#50) 

would access stack memory to obtain the source operand. The indexed 
mode is used more frequently, however, since it is available in more instruc­
tions and results in faster execution than when base addressing is used. 

BASE INDEXED MODE 

The base indexed (BX) mode is a combination of the X and BA modes. For 
the BX mode, both the base address and index are held in registers (Fig. 8.9). 
In the nonsegmented mode, both the base address and the index are held in 
any word register except RO. In the segmented mode, the base address may 
be in any register pair except RRO and the index may be in any word register 
except RO. The effective memory address of the operand is found by adding 
the index to the base address. The segment-number portion of the effective 

Figure 8.9 Base indexed mode. 
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address is always the segment number of the base address; the index is added 
to the offset only. 

Operands specified using BX mode are in the stack memory address 
space if either R15 in the nonsegmented mode or RR14 in the segmented 
mode is used to hold the base address. Otherwise, the operand is in data 
memory. 

The base indexed mode is used only with the Load (LD) instruction. 
When specifying the BX mode, the register that holds the base address is 
given, followed by the register holding the index; the index is enclosed in 
parentheses: 

LD RO, R2(R5) 

LDB RH2, RR14(R9) 

I nonsegmented mode, BX mode designates source! 

! segmented mode, source is in stack memory! 

RELATIVE ADDRESS MODE 

In the relative address (RA) mode, the operand is at a memory address that 
is calculated relative to the current program counter value. A displacement 
is given in the instruction's opcode; this displacement is a two's-complement 
number that is added to or subtracted from the program counter to yield the 
address of the operand (Fig. 8.10). The maximum size of the displacement 
depends on the instruction used. The PC value used is the address of the 
next memory location following the currently executing instruction. In the 
segmented mode, the calculation of the operand's effective address will not 
affect the segment-number portion of the address; that is, the operand is al­
ways in the segment determined by the segment number in the PC. 

An operand specified by RA mode is always in the program memory 
address space. Relative addressing allows references to memory locations 
that are a short distance backward or forward from the current PC value. It 
is used by the Jump Relative (JR), Call Relative (CALR), Decrement and 
Jump if Not Zero (DJNZ, DBJNZ), Load Relative (LDR, LDRB, LDRL), 
and Load Address Relative (LDAR) instructions. Typically, the program­
mer uses label names in the program to specify the location to be referenced 
using RA mode and lets the assembler calculate the displacement value that 
becomes part of the instruction's opcode: 

LDR R5, LOOP ! LOOP is a label in the program! 

OPERATION 

DISPLACEMENT 

(2'S COMPL.) 

Figure 8.10 Relative address mode. 
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For the JR and CALR instructions, the effective address is not used to 
reference a memory location, but instead is used as an immediate value that 
is loaded into the program counter. 

USE OF THE ADDRESSING MODES 

Not every instruction in the Z8000 is capable of supporting every addressing 
mode; only the Load (LD) instruction can do so. However, the architecture 
is very regular in that the five main addressing modes-R, DA, 1M, IR, and 
X-are available in most instructions that can reference operands in memory 
(that is, all the arithmetic and logical instructions). 

Use of the R, DA, and 1M modes implies that the programmer knows 
the exact location or value of the operand at assembly time. In contrast, use 
of the IR, X, BA, and BX modes to specify an operand's address involves 
storing the address or index value in a register. Since registers' contents can 
be varied during program execution, these modes allow run-time calculation 
of the operand's address; that is, the effective address of the operand will 
depend on the results of some previous operations executed when running 
the program. 

The Z8000 's addressing modes provide considerable flexibility in oper­
and addressing. It is, of course, up to the programmer to make the most ef­
fective use of the addressing modes. 

IMPLIED ADDRESSING MODES 

Besides the eight addressing modes described above, the Z8000 has two ad­
ditional modes that are implied by the use of certain instructions, auto-incre­
ment and auto-decrement. Several instructions manipulate entire strings of 
data in memory. These instructions address source and destination strings in 
memory using indirect register addressing; that is, the address of the element 
in the string currently being acted on is in a register. After each iteration of 
the instruction's execution, the operand's address is incremented or decre­
mented, as specified by the instruction type, so that the register now points 
to the next element of the string, ready for the next iteration of the instruc­
tion's execution. 

ASSEMBLY LANGUAGE INSTRUCTIONS 

The Z8000 CPU's assembly language instruction set can be segregated into 
12 categories of instructions: data movement, arithmetic, logical, bit manip­
ulation, rotate and shift, program control, block move, block compare, block 
translate, I/O, special I/O, and CPU control instructions. Tables 8.4 through 
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8.15 list the instructions in each category, including the mnemonic, oper­
ands, addressing modes for the operands, clock cycles required to execute, 
and a description of the operation for each instruction. 

Many of the instructions can operate on byte, word, or long-word data 
types. In general, if an instruction's mnemonic ends with a "B" suffix, it is a 
byte instruction; if the instruction's mnemonic ends with an "L" suffix, it is 
a long-word instruction; otherwise, it is a word instruction. 

The number of CPU clock cycles required for execution of an instruc­
tion depends on the data type for that instruction and the segmentation 
mode of the CPU. In Tables 8.4 through 8.15, NS means nonsegmented 
mode, SS means segmented mode using short offset format, and SL means 
segmented mode using long offset format. The execution times are calcu­
lated assuming that there are no externally-generated wait states during 
memory and I/O accesses. 

The carry, zero, sign, and overflow/parity flags in the FCW are used to 
control the operation of certain "conditional" instructions, such as the 
Jump (JP) instruction. The operation of these instructions depends on the 
condition of these four flags. Sixteen different combinations of these flag 
settings are encoded in a 4-bit field in the opcode called a condition code. 
The mnemonics for the condition codes and the flag settings they represent 
are listed in Table 8.3. Although there are only 16 unique conditions, the 

TABLE 8.3 CONDITION CODES 

Code Meaning Flag setting 

F Always false 
Always true 

Z Zero Z=l 
NZ Not zero z=o 
C Carry C=l 
NC No carry C=O 
PL Plus 8=0 
MI Minus 8=1 
NE Not equal Z=O 
EQ Equal Z=l 
OV Overflow V = 1 
NOV No overflow V = 0 
PE Parity even P=l 
PO Parity odd p=o 
GE Greater than or equal (8 XOR V) = 0 
LT Less than (8 XOR V) = 1 
GT Greater than (Z OR (8 XOR V» = 0 
LE Less than or equal (Z OR (8 XOR V» = 1 
UGE Unsigned greater than Qf equal C=O 
ULT Unsigned le~s than C=l 
UGT Unsigned greater than ((C = 0) AND (Z = 0» = 1 
ULE Unsigned less than or equal (C OR Z) = 1 
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Zilog PLZ/ASM assembler recognizes more than 16 condition code mne­
monics; in some cases, two different mnemonics correspond to identical flag 
settings (Z and EQ, for example). If no mnemonic for a condition code is 
given in a conditional instruction, the "always true" condition is assumed. 

DATA MOVEMENT INSTRUCTIONS 

The data movement instructions, listed in Table 8.4, provide one of three 
functions: (1) load a register with data from a register or memory location, 
(2) load a memory location with data from a register, or (3) load a register 
or memory location with an immediate value. These instructions do not 
affect the flags in the FCW. 

The Clear instructions (CLR, CLRB) are used to clear a byte or word 
register or memory location to zero. This is functionally equivalent to a 
Load instruction with an immediate operand of zero. 

The Exchange instructions (EX, EXB) are used to swap the contents of 
two registers, or a register and a memory location. A temporary storage 
register internal to the CPU is used to implement the swap. The Exchange 
instruction is useful for converting Z80 or other microprocessor code into 
Z8000 code, since the Z8000 uses the opposite convention of odd/even 
memory addressing of bytes in words than the Z80. 

The Load instructions (LD, LDB, LDL) provide for transferring data 
between memory and register locations. Note that no memory-to-memory 
loads are included in this group of instructions. 

The Load Address instruction (LDA) loads the address of the source 
operand into the destination register. The contents of the source are not 
accessed; the effective address computation corresponding to the specified 
addressing mode is made, and that effective address, not the data at that ad­
dress, is written into the destination. The destination must be a word 
register in nonsegmented mode, and a long-word register in segmented mode. 

The Load Address Relative instruction (LDAR) is similar to the LDA 
instruction, except that it supports the relative address mode. The displace­
ment can range from - 32768 to +32767 and is added to the current program 
counter value to yield the effective address that is loaded into the 
destination. 

The Load Constant instruction (LDK) is a short, fast instruction for 
loading small numeric constants into a word register. The source operand 
must be an immediate value between 0 and 15. The high-order 12 bits of the 
destination register are cleared to zeros. 

The Load Multiple instruction (LDM) provides for efficient saving and 
restoring of registers' contents and can significantly lower the overhead re­
quired for procedure calls and other context switches. This instruction 



TABLE 8.4 DATA MOVEMENT I NSTR UCTI ONS 

Clock cycles 

Address 
Word/byte Long word 

Mnemonics Operands modes NS SS SL NS SS SL Operation 

CLR,CLRB dst R 7 Clear 
IR 8 dst +- 0 

DA 11 12 14 
X 12 12 15 

EX, EXB R, src R 6 Exchange 
IR 12 R +-+ src 
DA 15 16 18 

X 16 16 19 
LD, LDB, R, src R 3 5 Load into Register 

LDL 1M 7 11 R +- src 
1M 5 (byte only) 
IR 7 11 
DA 9 10 12 12 13 15 

X 10 10 13 13 13 16 
BA 14 17 
BX 14 17 

LD, LDB, dst, R IR 8 11 Load into Memory (Store) 
LDL DA 11 12 14 14 15 17 dst +- R 

X 12 12 15 15 15 18 
BA 14 17 
BX 14 17 

LD,LDB dst, 1M IR 11 Load Immediate into Memory 
DA 14 15 17 dst +- 1M 
X 15 15 18 

LDA R, src DA 12 13 15 Load Address 
X 13 13 16 R +- source address 

BA 15 
BX 15 

LDAR R, src RA 15 Load Address Relative 
R +- source address 

LDK R, src 1M 5 Load Constant 
R +- n (n = 0 ... 15) 

LDM R, src, n IR 11 -) Load Multiple 
DA 14 15 17 J +3n R +- src (n consecutive words) 

X 15 15 18 (n=1 ... 16) 
LDM dst, R, n IR 11 

~ t +3n 
Load Multiple (Store Multiple) 

DA 14 15 dst +- R (n consecutive words) 
X 15 15 18 (n=1 ... 16) 

LDR, LDRB, R, src RA 14 17 Load Relative 
LDRL R +- src 

(range -32768 ... +32767) 
LDR, LDRB, dst, R RA 14 17 Load Relative (Store Relative) 

LDRL dst +- R 
(range -32768 ... + 32767) 

POP, POPL dst,IR R 8 12 Pop 
IR 12 19 dst +- IR 
DA 16 16 18 23 23 25 Autoincrement contents of R 

X 16 16 19 23 23 26 
PUSH, IR, src R 9 12 Push 

PUSHL 1M 12 Autodecrement contents of R 
IR 13 20 IR +- src 
DA 14 14 16 21 21 23 
X 14 14 17 21 21 24 

127 



128 The Instruction Set Chap.S 

allows any contiguous group of 1 to 16 general-purpose registers to be trans­
ferred to or from a block of consecutive memory locations. 

The Load Relative instructions (LDR, LDRB, LDRL) allow data 
transfers between the registers and program memory locations. The operand 
specified using relative addressing can be displaced - 32768 to +32767 ad­
dresses from the current PC value. The displacement is added to the PC to 
yield the effective address of the operand in program memory. 

The Pop (POP, POPL) and Push (PUSH, PUSHL) instructions support 
stack operations. The register to be used as the stack pointer (the source for 
pops and destination for pushes) is designated using the IR addressing mode; 
any general-purpose word register except RO can be used as a stack pointer 
in the nonsegmented mode, and any register pair except RRO can be a stack 
pointer in the segmented mode. Byte operations are not allowed; a stack 
pointer should always have an even address, since only words and long words 
can be written and read from stacks. The register being used as the stack 
pointer is automatically incremented by two after popping a word, or by 
four after popping a long word; the stack pointer is automatically decre­
mented before a push. In the segmented mode, the segment-number portion 
of the address in the register pair used as a stack pointer is not affected by 
the automatic increment and decrement operations. 

ARITHMETIC INSTRUCTIONS 

Table 8.5 lists the Z8000 instructions that perform integer arithmetic. The 
basic instructions use standard two's-complement binary format for repre­
senting integers, but support is provided for BCD arithmetic as well. Most 
instructions in this group perform a binary operation between a register's 
contents and a source operand designated by one of the five basic addressing 
modes (R, DA, 1M, IR, and X). The result is loaded into a register. These 
instructions set the flags in the FCW to the appropriate values depending on 
the result of the arithmetic operation. The P/V flag is used to indicate over­
flow for these instructions and is called the V flag. 

The Add (ADD, ADDB, ADDL) and Subtract (SUB, SUBB, SUBL) in­
structions perform basic binary addition and subtraction. Multiple-precision 
operations can be implemented using the Add with Carry (ADC, ADCB) and 
Subtract with Carry (SBC, SBCB) instructions, but these instructions sup­
port only register addressing for both the source and destination. 

The Compare instructions (CP, CPB, CPL) allow comparison of a reg­
ister's contents to another register's contents, a memory location's contents, 
or an immediate value. The Compare instructions do not affect either oper­
and but set the flags based on the result that occurs when the source is sub­
tracted from the destination. 

The Decimal Adjust instruction (DAB) operates only on byte registers 



TABLE 8.5 ARITHMETIC INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonics Operands modes NS SS SL NS SS SL Operation 

ADC, R, src R 5 Add with Carry 
ADCB R <- R + src + carry 

ADD, R, src R 4 8 Add 
ADDB, 1M 7 14 R <- R + src 
ADDL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

CP, R, src R 4 8 Compare with Register 
CPB, 1M 7 14 R - src 
CPL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

CP, dst, 1M IR 11 Compare with Immediate 
CPB DA 14 15 17 dst - 1M 

X 15 15 18 
DAB dst R 5 Decimal Adjust 

DEC, dst, n R 4 Decrement by n 
DECB IR 11 dst <- dst - n 

DA 13 14 16 (n = 1 ... 16) 
X 14 14 17 

DIV, R, src R 107 744 Divide (signed) 
DIVL 1M 107 744 Word: 

IR 107 107 107 744 744 744 Rn + 1 <- Rn n + 1 + src 
DA 108 109 111 745 746 748 Rn <- remainder 
X 109 109 112 746 746 749 Long word: 

Rn + 2, n + 3 <-
<- Rn ... n + 3 + src 

R n , n + 1 <- remainder 

EXTS, dst R 11 11 Extend Sign 
EXTSB, Extend sign of low-order 
EXTSL half of dst through high-

order half of dst 

INC, dst, n R 4 Increment by n 
INCB, lR 11 dst <- dst + n 

DA 13 14 16 (n = 1, ... 16) 
X 14 14 17 

MULT, R, src R 70 282a Multiply (signed) 
MULTL 1M 70 282a Word: 

IR 70 282a R n , n + 1 <- Rn + 1 . src 
DA 71 72 74 283a 284a 286a Long word: 
X 72 72 75 284a 284a 287a 

Rn ... n + 3 <-

<- Rn + 2, n + 3 
NEG, dst R 7 Negate 

NEGB lR 12 dst <- 0 - dst 
DA 15 16 18 
X 16 16 19 

SBC, R, src R 5 Subtract with Carry 
SBCB R <- R - src - carry 

SUB, R, src R 4 8 Subtract 
SUBB, 1M 7 14 R<-R-src 
SUBL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

aplus seven cycles for each 1 in the multiplicand. 
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and is used to implement BCD arithmetic. Two BCD digits can be packed 
into a byte register, one per nibble. Byte registers so formatted can be added 
or subtracted using the binary ADDB and SUBB instructions; these instruc­
tions would be followed by a DAB. The DAB instruction adjusts the desti­
nation register back into BCD format using the D and H flags. 

The Decrement (DEC, DECB) and Increment (INC, INCB) instructions 
are used to decrement or increment a register or memory location by an 
immediate value between 1 and 16. 

The Extend Sign instructions (EXTS, EXTSB, EXTSL) are used to con­
vert a small signed operand (in a register) to a larger signed operand, by 
copying the sign bit (most significant bit) of the low-order half of the desti­
nation to all the bits in the high-order half of the destination. Thus an 8-bit 
signed integer can be converted to 16 bits, a 16-bit integer to 32 bits, or a 
32-bit integer to 64 bits. 

The Divide instructions (DIV, DIVL) perform signed two's-complement 
division on word or long-word operands. The DIV instruction requires a 
long-word register as the destination and a word operand as the source. The 
32-bit destination is divided by the source; the quotient is written into the 
low-order half of the destination and the remainder is loaded into the high­
order half of the destination. For example: 

DIV RR2, R5 

would divide the contents of RR2 by the contents of R5 and, after the di­
vision, the quotient would be in R3 and the remainder in R2. Similarly, the 
DIVL instruction requires a quad register as the destination and a long-word 
register as the source: 

DIVL RQ4, RR12 

After the division, RR4 holds the remainder and RR6 holds the quotient. 
The Multiply instructions (MULT, MULTL) perform signed two's-com­

plement multiplication of word and long-word operands. MULT multi­
plies two 16-bit words and produces a 32-bit result; MUL TL multiplies two 
32-bit long words and produces a 64-bit result. 

The Negate instructions (NEG, NEGB) perform a two's-complement 
negation on the contents of a register or memory location. 

LOGICAL INSTRUCTIONS 

Instructions that perform logical operations are listed in Table 8.6. These in­
structions set the Z and S flags based on the result of the logical operation. 
The byte instructions also use the P IV flag as a parity flag; the P flag is set if 
the result has even parity. 
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TABLE 8.6 LOGICAL INSTRUCTIONS 

Clock cycles 

Word/byte Long word 
Address 

Mnemonics Operands modes NS SS SL NS SS SL Operation 

AND R, src R 4 AND 
ANDB 1M 7 R +- RAND src 

IR 7 
DA 9 10 12 
X 10 10 13 

COM, dst R 7 Complement 
COMB IR 12 dst +-- NOT dst 

DA 15 16 18 
X 16 16 19 

OR, R, src R 4 OR 
ORB 1M 7 R +- R OR src 

IR 7 
DA 9 10 12 
X 10 10 13 

TCC, cc, dst R 5 Test Condition Code 
TCCB Set LSB if cc is true 

TEST, dst R 7 13 Test 
TESTB, IR 8 13 dst OR 0 
TESTL DA 11 12 14 16 17 19 

X 12 12 15 17 17 20 
XOR, R, src R 4 Exclusive OR 

XORB 1M 7 R +- R XOR src 
IR 7 
DA 9 10 12 
X 10 10 13 

The two-operand instructions, And (AND, ANDB), Or (OR, ORB), and 
Exclusive-Or (XOR, XORB) perform the specified logical operation on the 
corresponding bits of the source and destination operands and load the result 
into the destination register. 

The Complement instructions (COM, COMB) are a one's-complement 
operation; that is, all the bits holding 1 's in the destination are changed to 0, 
and vice versa. 

The Test instructions (TEST, TESTB, TESTL) perform a logical Or be­
ween the destination and zero; the flags are set accordingly. This instruction 
is used to set the Z, S, and, for TESTB, P flags to reflect the contents of the 
destination: however, the destination itself is not affected. 

The Test Condition Code instructions (TCC, TCCB) are used to create 
Boolean data variables based on the current flag settings. The flags in the 
FCW are checked to see if the specified condition code is true. If so, the 
least significant bit (bit 0) of the destination is set; if not, the destination is 
not affected. Bits other than bit ° in the destination are never changed by a 
Test Condition Code instruction. 

Except for TESTL, long-word operands are not supported by the logi­
cal instructions. However, logical operations on long words are easily imple­
mented with pairs of instructions. 



BIT MANIPULATION INSTRUCTIONS 

The bit manipulation instructions (Table 8.7) are used to set, reset, or test 
individual bits in registers or memory locations. With most other processors, 
bit manipulation must be done using the logical operations with appropriate 
masks, which is awkward and inefficient. 

The Bit Test instructions (BIT, BITB) test the specified bit in the desti­
nation for a 1 or 0, and set the Z flag appropriately. If testing a bit in a 
memory location, the number of the bit to be tested is given as an immediate 
operand between 0 and 7 for BITB and between 0 and 15 for BIT. If testing 
a bit in a register, the number of the bit to be tested can be an immediate 
operand or the contents of a word register. 

In a similar manner, the Set Bit (SET, SETB) and Reset Bit (RES, 
RESB) instructions are used to set or reset any bit in a register or memory 
location. For destination operands in memory, the number of the bit to be 
set or reset is given as an immediate operand; for bits in registers, the number 
of the bit can be given as an immediate operand or the contents of a word 
register. 

The Test and Set instruction (TSET) is provided to support imple-

TABLE 8.7 BIT MANIPULATION INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonics Operands modes NS SS SL NS SS SL Operation 

BIT, dst, b R 4 Test Bit Static 
BITB IR 8 Z flag +-- NOT dst bit speci-

DA 10 11 13 fied by b 
X 11 11 14 

BIT, dst, R R 10 Test Bit Dynamic 
BITB Z flag +-- NOT dst bit speci-

fied by contents of R 

RES, dst, b R 4 Reset Bit Static 
RESB IR 11 Reset dst bit specified by 

DA 13 14 16 b 
X 14 14 17 

RES, dst, R R 10 Reset Bit Dynamic 
RESB Reset dst bit specified by 

contents R 

SET, dst, b R 4 Set Bit Static 
SETB IR 11 Set dst bit specified by b 

DA 13 14 16 
X 14 14 17 

SET, dst, R R 10 Set Bit Dynamic 
SETB Set dst bit specified by 

contents of R 

TSET, dst R 7 Test and Set 
TSETB IR 11 S flag +-- MSB of dst 

DA 14 15 17 dst +-- all 1 s 
X 15 15 18 

132 
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mentation of multitasking operating systems. The most significant bit of the 
destination is copied into the S flag and then every bit in the destination is 
set to a 1. 

The TSET instruction provides a locking mechanism for allocating re­
sources within a multitasking system. For example, suppose that a Z8000-
based system with a printer as an output peripheral is executing two users' 
tasks on a time-sharing basis. A register or memory location, called a sema­
phore, is used to indicate when a particular task is using the printer. The 
semaphore is tested each time a task requires the printer. If the semaphore 
is all O's, the printer is not busy; if the semaphore is all l's, the printer is 
busy (that is, it has been allocated for use by a particular task). When user A 
needs the printer, the operating system checks the semaphore using the 
TSET instruction and, if the printer is not busy, assigns the resource to task 
A. When task A is finished using the printer, the operating system resets the 
semaphore. Thus if user A is outputting a file, that output operation is com­
pleted before user B can access the printer. 

The TSET instruction allows the operating system to check and set the 
semaphore in one uninterruptible step. In fact, even bus requests will not be 
honored in the time between checking the most significant bit in the sema­
phore and writing all 1 's to the semaphore. If the test and set operations are 
executed in two separate instructions, conflicts are possible if an interrupt, 
bus request, or task switching under operating system control occurs be­
tween the two instructions. 

ROTATE AND SHIFT INSTRUCTIONS 

The rotate and shift instructions (Table 8.8) are used to rotate bits in byte or 
word registers and shift bits in byte, word, or long-word registers. 

With the Rotate Left (RL, RLB) and Rotate Right (RR, RRB) instruc­
tions, bits in byte or word registers can be rotated by one or two bit posi­
tions. For Rotate Left, the most significant bit of the operand is loaded into 
the C flag as well as rotating into the least significant bit; for Rotate Right, 
the least significant bit is written to the C flag. Rotates that include the 
carry flag are also available: Rotate Left through Carry (RLC, RLCB) and 
Rotate Right through Carry (RRC, RRCB), as illustrated in Fig. 8.11. 

The Rotate Left Digit (RLDB) and Rotate Right Digit (RRDB) instruc­
tions operate only on byte registers. BCD digits in the source register can be ro­
tated right or left with these instructions (Fig. 8.12). For RLDB, the lower 
nibble of the source is moved to the upper nibble of the source; the upper 
nibble of the source is moved to the lower nibble of the destination; the 
lower nibble of the destination is moved to the lower nibble of the source. 
The upper nibble of the destination is unaffected. The RRDB instruction 
rotates nibble right in a similar fashion. If strings of BCD digits are to be 
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ROTATE LEFT 

RL 

RLB 

0J4-~-~------o,J 
0~r-----7 _------.0 ,J 

ROTATE RIGHT 

RR 

RRB 

[1~15 -----O~G 

Lr~-_O~-G 

ROTATE LEFT THROUGH CARRY 

RLC ~~~;5 _____ ----,0 ,J 
RLCB L

G
--l.....--7 __ ----.0 f-l 

ROTATE RIGHT THROUGH CARRY 

RRC [_I~ 15 ______ -----,0 ~GJJ 

RRCB 
[.....--, 7 __ ----,0 ~0J 

Figure 8.11 Rotate instructions. 



TABLE 8.8 ROTATE AND SHIFT INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonics Operands modes NS SS SL NS SS SL Operation 

RL, dst, n R 6 for n = 1 Rotate Left 
RLB R 7 for n = 2 by n bits (n = 1, 2) 

RLC, dst, n R 6 for n = 1 Rotate Left through Carry 
RLCB R 7 for n = 2 by n bits (n = 1, 2) 

RLDB R, src R 9 Rotate Digit Left 

RR, dst, n R 6 for n = 1 Rotate Right 
RRB R 7 for n = 2 by n bits (n = 1, 2) 

RRC, dst, n R 6 for n = 1 Rotate Right through Carry 
RRCB R 7 for n = 2 by n bits (n = 1, 2) 

RRDB R, src R 9 Rotate Digit Right 

SDA, dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic 
SDAB, Shift dst left or right 
SDAL by contents of R 

SDL, dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Logical 
SDLB, Shift dst left or right 
SDLL by contents of R 

SLA, dst, n R (13 + 3n) (13 + 3n) Shift Left Arithmetic 
SLAB, by n bits 
SLAL 

SLL, dst, n R (13 + 3n) (13 + 3n) Shift Left Logical 
SLLB, by n bits 
SLLL 

SRA, dst, n R (13 + 3n) (13 + 3n) Shift Right Arithmetic 
SRAB, by n bits 
SRAL 

SRL, dst, n R (13 + 3n) (13 + 3n) Shift Right Logical 
SRLB, by n bits 
SRLL 

RLOB LINK scr 

t t_------' 

RROB LINK scr 

t 
Figure 8.12 Rotate Left Digit and Rotate Right Digit instructions. 
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rotated, the destination register serves as a link between successive bytes of 
the string. This is analogous to the use of the carry flag in the RLC and RRC 
instructions. 

A full set of both arithmetic and logical shifts is provided. For the 
arithmetic shifts, the most significant bit (the sign bit for signed two's-com­
plement integers) is preserved when shifting right and D's are shifted into the 
least significant bit when shifting left. For logical shifts, D's are shifted into 
the most significant bit when shifting right and the least significant bit when 
shifting left (Fig. 8.13). 

ARITHMETIC SHIFTS: 

RIGHT LEFT 

0 

BYTE: 1'-0 

15 o 15 

1'-0 WORD rS,...........I----..,l--~ [~}_1r-----------, 

15 0 15 0 

Rn 

20 Rn + 1 

LONG ~J I R"_?J 

Li~5------Rn-+1----~0~0 

~-iL--____ ---' 

q~5 _-----. 
n = 0, 2, 4, .. ,14 n = 0, 2, 4, ' .. , 14 

LOGICAL SHIFTS: 

RIGHT LEFT 

0 

BYTE: 1'-0 

15 0 15 0 

WORD: 0 -Jooo-&-1 __________ ---I~~ ~-1,....-------------II- 0 

15 0 

LONG: 0 -Jooo-I&-______ Rn ___ =-~-J 

Li,..:.-5 --Rn-+ 1 -----.,l---0 

n = 0,2,4, ' , . , 14 

15 0 

~-1~ __ R_n -----IIJ 
I-;~ __ o 

LC Rn+1 1_ 0 

n = 0, 2, 4, ... , 14 

Figure 8.13 Arithmetic and logical shifts. 
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The Shift Dynamic Arithmetic (SDA, SDAB, SDAL) and Shift Dy­
namic Logical (SDL, SDLB, SDLL) instructions allow right or left shifts by 
the number of bits specified by the contents of the source operand, which is 
always a word register. The source is treated as a signed two's-complement 
value; positive values specify a left shift, whereas negative values specify a 
right shift. The shift count can range from -8 to +8 for byte operations, -16 
to +16 for word operations, and -32 to +32 for long-word operations. 

The remaining shift instructions require an immediate operand as the 
source. This operand determines the number of bit positions to be shifted, 
and range from 0 to 8 for byte operations, 0 to 16 for word operations, and 
o to 32 for long-word operations. These instructions include the Shift Left 
Arithmetic (SLA, SLAB, SLAL), Shift Left Logical (SLL, SLLB, SLLL), 
Shift Right Arithmetic (SRA, SRAB, SRAL), and Shift Right Logical (SRL, 
SRLB, SRLL) instructions. The only difference between the arithmetic and 
logical left shifts is the setting of the V flag. 

PROGRAM CONTROL INSTRUCTIONS 

The program control instructions (Table 8.9) are instructions that change the 
value of the program counter. 

When the Call (CALL) or Call Relative (CALR) instruction is executed, 
the current PC value is pushed onto the stack using the implied stack pointer 
(R15 in nonsegmented mode, RR14 in segmented mode). The PC value 
pushed is the address of the next instruction following the subroutine call. 
The specified destination address is then loaded into the PC; the PC then 
points to the first instruction in the subroutine. For the CALR instruction~ 
the destination address is calculated using relative addressing and must be in 
the range -4092 to +4098 bytes from the start of the CALR instruction. The 
CALR has a shorter opcode than the CALL instruction. 

At the end of the procedure entered with a CALL or CALR, a Return 
(RET) instruction will pop the old PC value off the stack and resume execu­
tion at the instruction following the subroutine call, if the specified condi­
tion code is satisfied by the flags. If the condition code is not satisfied, the 
next instruction following the RET is executed. 

The Decrement and Jump if Not Zero instructions (DJNZ, DBJNZ) are 
used to control execution of program loops. A word register (for DJNZ) or 
byte register (for DBJNZ) is used as a loop counter. A destination address is 
calculated using relative addressing. Execution of the DJNZ will cause the 
register contents to be decremented by one. If the contents of the register 
are not zero after the decrement, the destination address is loaded into the 
PC. When the register contents reach zero, control falls through to the next 
instruction after the DJNZ. The destination address must be in the range of 
- 252 to +2 bytes from the start of the DJNZ instruction. Thus this instruc­
tion cannot be used to jump in a forward direction. 
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TABLE 8.9 PROGRAM CONTROL INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonicsa Operands modes NS SS SL NS SS SL Operation 

CALL dst IR 10 15 Call Subroutine 
DA 12 18 20 Autodecrement SP 
X 13 18 21 @ SP <- PC 

PC <- dst 

CALR dst RA 10 15 Call Relative 
Autodecrement SP 
@ SP <- PC 
PC <- PC + dst 

(range -4094 to +4096) 

DJNZ, R, dst RA 11 Decrement and Jump if N on-
DBJNZ Zero 

R<-R-1 
If R =1= 0: PC +--- PC + dst 

(range -254 to 0) 

IRET* 13 16 Interrupt Return 
PS <- @ SP 
Autoincrement SP 

JP cc, dst IR 10 15 (taken) Jump Conditional 
IR 7 7 (not taken) If cc is true: PC <- dst 
DA 7 8 10 
X 8 8 11 

JR cc, dst RA 6 Jump Conditional Relative 
If cc is true: 

PC <-- PC + dst 
(range -256 to +254) 

RET cc 10 13 (taken) Return Conditional 
7 7 (not taken) If cc is true: 

PC <--@ SP 
Autoincrement SP 

SC src 1M 33 39 System Call 
Autodecrement SP 
@ SP +--- old PS 
Push instruction 
PS <- System Call PS 

a An asterisk indicates a privileged instruction. 

The DJNZ and DBJNZ instructions provide a simple, efficient loop con­
trol method for Z8000 programs. For example, the code needed to execute 
a program loop exactly 50 times would read as follows: 

LOB RHO, #50 

LOOP: !BODY OF THE LOOP! 

DBJNZ RHO, LOOP 

Although a decrement is performed during execution of the DJNZ, the 
flags are not affected by this instruction. Thus this instruction can control 
loops used to implement multiple-precision arithmetic operations, without 
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having to save the flags before checking the end-of-Ioop condition and 
restoring them afterwards. 

The Jump (JP) and Jump Relative (JR) instructions load the PC with 
the destination address if the condition code is true. If the condition code 
is not satisfied by the flags, the instruction following the jump will be exe­
cuted. For the JR instruction, relative addressing is used to calculate the 
destination address, which must be in the range of -254 to +256 bytes from 
the start of the JR instruction. 

The Interrupt Return instruction (lRET) is used to return to the inter­
rupted task after executing an interrupt or trap service routine, as described 
in Chapter 6. The identifier word associated with the interrupt or trap is 
popped from the system stack and discarded. Then the old program status 
values for the interrupted task are popped and loaded into the FCW and PC. 
The new value for the FCW is not effective until the next instruction, so the 
CPU's status pins will not be affected by the new control bits until after the 
IRET instruction execution is complete. IRET is a privileged instruction 
and, therefore, can only be executed in system mode. A ZSOOI must be in 
segmented mode when an IRET is performed. 

The System Call instruction (SC) causes the CPU to process a system 
call trap, as described in Chapter 6. This instruction allows normal-mode 
users access to the operating system functions in the system call trap service 
routine. The SC instruction requires an immediate operand between 0 and 
255; this operand is encoded into the opcode that is saved on the stack as the 
identifier word when processing the system call trap. 

BLOCK MOVE INSTRUCTIONS 

The block move instructions (Table S.lO) provide memory-to-memory 
transfers wherein a byte or word string of data of any length up to 64K 
bytes can be transferred. In these instructions, the address in memory of the 
source and destination operands are stored in registers (word registers in the 
nonsegmented mode, register pairs in the segmented mode) and indirect 
register addressing is used. The registers used as memory pointers are auto­
matically incremented or decremented during instruction execution; thus 
after each element of the string is transferred, the pointer register is updated 
to address the next element of the string. 

The Load and Decrement instructions (LDD, LDDB) transfer a byte or 
word of data, and then decrement the source and destination registers (by 1 
for LDDB and by 2 for LDD). The Load and Increment instructions (LDI, 
LDIB) increment the registers that hold the source and destination addresses 
after performing the transfer. (In segmented mode, only the low-order half 
of the register pair that holds the memory address is incremented or decre­
mented; the segment number is not affected by the address calculations.) 
These instructions typically are used in a program loop, where a string of 
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TABLE 8.10 BLOCK MOVE INSTRUCTIONS 

Clock cycles 

Word/byte Long word 
Address 

Mnemonics Operands modes NS SS SL NS SS SL Operation 

LDD, 
LDDB 

dst. src, R IR 20 Load and Decrement 
dst <- src 
Autodecrement dst and 

src addresses 
R<-R-l 

LDDR. dst, src, R IR (11 + 9n) Load, Decrement and Repeat 
dst +- src LDDRB 

LDI. dst, src. R IR 
LDIB 

LDIR. dst, src, R IR 

20 

(11 + 9n) 

Autodecrement dst and 
src addresses 

R+-R-l 
Repeat until R = 0 

Load and Increment 
dst <- src 
Autoincrement dst and 

src addresses 
R+-R-l 

LDIRB 
Load, Increment and Repeat 

dst <- src 
Autoincrement dst and 

src addresses 
R<-R-l 
Repeat until R = 0 

data is being moved in memory and other operations are contained in the 
loop. The third operand in these instructions is a word register that holds a 
count that is decremented each time the instruction is executed. 

The Load, Increment and Repeat (LDIR, LDIRB) and Load, Decre­
ment and Repeat (LDDR, LDDRB) instructions are automatically repeating 
forms of the block transfer instructions. These instructions are, in essence, 
a one-instruction loop. The third operand is a word register that holds the 
count of how many times the instruction is to be executed. Thus a block 
of 64K bytes of data can be relocated within memory with one Z8000 
instruction. 

The automatically repeating forms of the block move instructions are 
interruptible at their elementary level, that is, after each iteration of the 
byte or word transfer. The address saved on the stack during exception pro­
cessing would be the address of the block move instruction itself. Of course, 
the service routine should not alter any of the registers being used by the 
block move to hold memory addresses or the repetition count. 

BLOCK COMPARE INSTRUCTIONS 

Two types of block compare instructions are provided: one for comparing 
the elements of a string of bytes or words in memory to the contents of a 



Block Translate Instructions 141 

register, and another for comparing the corresponding elements of two 
strings in memory (Table 8.11). 

The Compare and Decrement instructions (CPD, CPDB) use four oper­
ands. The first is the register whose contents are compared to the memory 
location specified by the second operand using indirect register addressing. 
The third operand is a word register that holds a count and the fourth is a 
condition code specifying the flag settings to be examined after each com­
pare operation. Each time the instruction is executed, the register used to 
hold the memory address in the string is decremented. The Compare and In­
crement instructions (CPI, CPIB) are similar, with the memory address being 
incremented after each execution. These instructions would be used in a 
program loop to compare a string of data in memory to the destination regis­
ter's contents. The Z flag is set if the condition code is satisfied as the result 
of a comparison. 

The Compare, Decrement and Repeat (CPDR, CPDRB) and Compare, 
Increment and Repeat (CPIR, CPIRB) are automatically repeating forms of 
these instructions. The instruction repeats until the condition code is met 
during a comparison or the count is exhausted. The Z and V flags indicate 
which condition caused the instruction to terminate. The repeating instruc­
tions are interruptible after each iteration of the instruction. 

The Compare String and Decrement instructions (CPSD, CPSDB) are 
used to compare corresponding elements in two strings of data in memory. 
Both strings are referenced using indirect register addressing. The third oper­
and is a word register that holds a count and the fourth operand is the condi­
tion code for the comparison. After each execution, the Z flag indicates if the 
condition code is met, and the addresses in the source and destination regis­
ters are decremented to point to the next element in their respective strings. 
The Compare String and Increment instructions (CPSI, CPSIB) are similar, 
with the addresses in the registers being incremented after each execution. 
These instructions typically are used in program loops that operate on two 
strings. 

The Compare String, Decrement and Repeat (CPSDR, CPSDRB) and 
Compare String, Increment and Repeat (CPSIR, CPSIRB) are automatically 
repeating forms of the string compare. The instruction repeats until the 
condition code is met or the count is exhausted, as indicated by the Z and V 
flags. These repeating instructions are interruptible after each iteration of 
their execution. 

BLOCK TRANSLATE INSTRUCTIONS 

The block translate instructions (Table 8.12) operate only on byte strings in 
memory. One set of instructions is used to translate a string of bytes from 
one code to another; another set of block translate instructions is used to 



TABLE 8.11 BLOCK COMPARE INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonics Operands modes NS SS SL NS SS SL Operation 

CPD, RX, src, IR 20 Compare and Decrement 
CPDB Ry, cc RX - src 

Autodecrement src address 
Ry ~Ry-1 

CPDR, RX, src, IR (11 + 9n) Compare, Decrement and 
CPDRB Ry, cc Repeat 

RX - src 
Autodecrement src address 
Ry ~Ry-1 
Repeat until cc is true or 

Ry = 0 

CPI, RX, src, IR 20 Compare and Increment 
CPIB Ry, cc RX - src 

A utoincrement src address 
Ry ~Ry - 1 

CPIR, RX, src, IR (11 + 9n) Compare, Increment and 
CPIRB Ry, cc Repeat 

RX - src 
Autoincrement src address 
Ry ~Ry-1 
Repeat until cc is true or 

Ry = 0 
CPSD, dst, src, IR 25 Compare String and 

CPS DB R, cc Decrement 
dst - src 
Autodecrement dst and src 

addresses 
R ~R-1 

CPSDR, dst, src, IR (11 + 14n) Compare String, Decrement 
CPSDRB R, cc and Repeat 

dst - src 
Autodecrement dst and src 

addresses 
R ~R-1 
Repeat until cc is true or 

R=O 

CPSI, dst, src, IR 25 Compare String and 
CPSIB R, cc Increment 

dst - src 
Autoincrement dst and src 

addresses 
R ~R-1 

CPSIR, dst, src, IR (11 + 14n) Compare String, Increment 
CPSIRB R, cc and Repeat 

dst - src 
Autoincrement dst and src 

addresses 
R ~R-1 
Repeat until cc is true or 

R=O 

142 



TABLE 8.12 BLOCK TRANSLATE INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonics Operands modes NS SS SL NS SS SL Operation 

TRDB dst, src, R IR 25 Translate and Decrement 
dst +--- src (dst) 
Autodecrement dst 

address 
R+---R 1 

TRDRB dst, src, R IR (11 + 14n) Translate, Decrement and 
Repeat 

dst +--- src (dst) 
Autodecrement dst 

address 
R +---R-l 
Repeat until R = 0 

TRIB dst, src, R IR 25 Translate and Increment 
dst +--- src (dst) 
Autoincrement dst 

address 
R +---R-l 

TRIRB dst, src, R IR (11 + 14n) Translate, Increment and 
Repeat 

dst +--- src (dst) 
Autoincrement dst 

address 
R+-R-1 
Repeat until R = 0 

TRTDB src1, IR 25 Translate and Test, 
src2, R Decrement 

RHI +- src 2 (src 1) 
Autodecrement src 1 

address 
R +---R-1 

TRTDRB src1, IR (11 + 14n) Translate and Test, Decre-
src2, R ment and Repeat 

RH1 +--- src 2 (src 1) 
Autodecrement src 1 

address 
R +---R-1 
Repeat until R = 0 or 

RHl=O 

TRTIB srcl, IR 25 Translate and Test, Incre-
src2, R ment 

RH1 +--- src 2 (src 1) 
Autoincrement src 1 

address 
R +---R-l 

TRTIRB src1, IR (11 + 14n) Translate and Test, Incre-
src2, R ment and Repeat 

RHI <--- src 2 (src 1) 
Autoincrement src 1 

address 
R <---R-1 
Repeat until R = 0 

or RH1 = 0 
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scan a string of bytes for elements with a special meaning. All of the block 
translate instructions use byte register RHI as a temporary storage area 
during their execution. 

The Translate and Decrement instruction (TRDB) has three operands. 
The source and destination operands are in memory and are specified using 
indirect register addressing. The third operand is a count that is decre­
mented each time the instruction is executed. The location addressed by 
the destination register is called the target byte and its contents are used as 
an index into a table of translation values whose base address is in the source 
register. The element of the table whose address is found by adding the tar­
get byte to the base address of the table replaces the target byte at the des­
tination address. The destination register is then decremented by one to 
point to the next element of the string to be translated. 

Suppose that a string of bytes holding ASCII characters is to be trans­
lated into the corresponding EBCDIC characters. A table is built in memory 
wherein each EBCDIC character is placed at the table location corresponding 
to the ASCII value for that character. For example, the thirtieth (hexa­
decimal) element of the table should contain the EBCDIC code for a "0," 
since 30 (hex) is the ASCII code for a "0." The base address (that is, lowest 
address) of the table is loaded into the source register for the TRDB instruc­
tion. The highest address in the ASCII string to be translated is loaded into 
the destination register and the TRDB instruction is used to perform the 
translation. The destination register is automatically decremented to point 
to the next byte to be translated. 

The Translate and Increment instruction (TRIB) is similar, with the des­
tination register being incremented instead of decremented after each execu­
tion. TRDB and TRIB typically are used in a program loop to translate an 
entire string of data. 

The Translate, Decrement and Repeat (TRDRB) and Translate, Incre­
ment and Repeat (TRIRB) are automatically repeating forms of the translate 
instructions. The instruction repeats until the contents of the count register 
reach zero. These instructions are interruptible after each iteration of the 
operation. 

The Translate, Test and Decrement instruction (TRTDB) works in a 
similar manner and is used to scan a string for special characters. The con­
tents of the location addressed by the first source register is used as an index 
into a table of values whose base address is contained in the second source 
register. This element of the table is loaded into RHI and, if it is zero, the 
Z flag is set. The contents of the location addressed by the source are not 
altered by this instruction. The first source register is then decremented to 
point to the next element of the string being scanned. This instruction typi­
cally is used in a loop, where a string is scanned until a nonzero value is 
found in the table. The Translate, Test and Increment instruction (TRTIB) 
is similar, except the first source address is incremented. 



I/O Instructions 145 

The repeating forms of these instructions are Translate, Test, Decre­
ment and Repeat (TRTDRB) and Translate, Test, Increment and Repeat 
(TRTIRB). These instructions repeat until either the count reaches zero or a 
nonzero value in the table is accessed and loaded into RH1. Thus the user 
can build a table that marks special characters by having a nonzero value in 
the appropriate position in the table. A string of characters can be scanned 
with one of these instructions, searching for the special characters. The re­
peating forms are interruptible after each iteration of the execution. 

I/O INSTRUCTIONS 

The instructions used to access the standard I/O address space are listed in 
Table 8.13. All I/O instructions are privileged, meaning that they can be 
executed in the system mode only. 

The Input instructions (IN, INB) are used to input a byte or word of 
data from an I/O device. The destination is always a register. The I/O port 
address can be specified using the direct address or indirect register address­
ing modes. No flags are affected. 

For the Input and Decrement instructions (IND, INDB), the destination 
is a memory location and the source is an I/O port. Both the memory and 
I/O port address are specified using indirect register addressing. After ex­
ecution, the destination register is decremented to point at the next lower 
memory location, in preparation for another execution of the instruction. 
Thus this instruction would be used in a program loop to load strings of data 
from an I/O port to consecutive memory locations. The third operand is a 
word register that holds a count that is decremented each time the instruc­
tion is executed. The Input and Increment instructions (INI, INIB) are sim­
ilar, with the destination register being incremented each time the instruc­
tion is executed. 

The Input, Decrement and Repeat (INDR, INDRB) and Input, Incre­
ment and Repeat (INIR, INIRB) are automatically repeating forms of the in­
put instruction. The instruction repeats until the count reaches zero; there­
fore, up to 64K bytes of data can be read from an I/O port and placed in 
memory with one instruction. 

The Output instruction (OUT, OUTB) is used to write a byte or word 
of data from a register to a peripheral device. Block output instructions are 
available for writing data in consecutive memory locations to an I/O port. 
These are analogous to the input commands, and include the Output and 
Decrement (OUTD, OUTDB), Output and Increment (OUTI, OUTIB), Out­
put, Decrement and Repeat (OTDR, OTDRB), and Output, Increment and 
Repeat (OTIR, OTIRB) commands. 

All the repeating I/O instructions are interruptible after each iteration 
of the instruction. For byte I/O operations, the I/O port address will deter-



TABLE 8.13 I/O INSTRUCTIONS 

Clock cycles 

Word/byte Long word 

Address 
Mnemonicsa Operands modes NS SS SL NS SS SL Operation 

IN*, R, src IR 10 Input 
INB* DA 12 R +--- src 

IND*, dst, src, R IR 21 Input and Decrement 
INDB* dst +--- src 

Autodecrement dst 
address 

R +---R-1 

INDR*, dst, src, R IR (11 + IOn) Input, Decrement and 
INDRB* Repeat 

dst +--- src 
Autodecrement dst 

address 
R +--R-1 
Repeat until R = 0 

INI*, dst, src, R IR 21 Input and Increment 
INIB* dst +--- src 

Autoincrement dst 
address 

R +---R-1 

INIR*, dst, src, R IR (11 + IOn) Input, Increment and 
INIRB* Repeat 

dst +--- src 
Autoincrement dst 

address 
R +---R-1 
Repeat until R = 0 

OUT*, dst, R IR 10 Output 
OUTB* DA 12 dst +--- R 

OUTD*, dst, src, R IR 21 Output and Decrement 
OUTDB* dst +--- src 

Autodecrement src 
address 

R +---R-1 

OTDR*, dst, src, R IR (11 + IOn) Output, Decrement and 
OTDRB* Repeat 

dst +-- src 
Autodecrement src 

address 
R +---R-1 
Repeat until R = 0 

OUTI*, dst, src, R IR 21 Output and Increment 
OUTIB* dst +-- src 

Autoincrement src address 
R+--R-1 

OTIR*, dst, src, R IR (11 + IOn) Output, Increment and 
OTIRB* Repeat 

dst +--- src 
Autoincrement src 

address 
R+--R-1 
Repeat until R = 0 

a As indicated by the asterisks, aU I/O instructions are privileged. 
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mine which half of the address/data bus is used for the byte data transfer, 
as explained in Chapter 4. Byte data are transferred on ADO-AD7 for odd 
port addresses, and on AD8-AD15 for even port addresses. 

SPECIAL I/O INSTRUCTIONS 

The special I/O instructions (Table 8.14) are used to access the peripherals in 
the special I/O address space and are identical in format to the I/O instruc­
tions described above. In fact, the only difference between executing an I/O 
instruction and the corresponding special I/O instruction is the status code 
emitted on the STO-ST3 lines during I/O access machine cycles. Note that 
the Special Input (SIN) and Special Output (SOUT) instructions do not sup­
port the indirect register addressing mode for specifying I/O port addresses. 
All special I/O instructions are privileged instructions. 

CPU CONTROL INSTRUCTIONS 

The CPU control instructions (Table 8.15) are instructions that operate on 
the CPU control registers (the FCW, PC, and refresh register) or perform 
other CPU-related functions. 

Several instructions can be used to manipulate the flags in the FCW. 
The Set Flag instruction (SETFLG) is used to load a 1 into any combination 
of the C, S, Z, or P/V flags. The operands are the flags themselves; one, two, 
three, or four operands can be specified, in any order: 

SETFLG Z, V ! set the zero and overflow flags! 

In a similar manner, the Reset Flag instruction (RESFLG) is used to clear 
any combination of the C, S, Z, or P/V flags to zero. The complement flag 
instruction (COMFLG) complements any combination of those four flags 
(that is, each 1 is changed to a 0, and vice versa). 

The entire low-order byte of the FCW (the byte that holds the flags) 
can be read to or written from any byte register using the Load Control Byte 
instruction (LDCTLB), as follows: 

LDCTLB RHO, FLAGS 

LDCTLB FLAGS, RL6 

! load the flag byte of the FCW into RHO! 

! load contents of RL6 into low half of FCW ! 

The Disable Interrupt instruction (DI) is used to disable vectored inter­
rupts and nonvectored interrupts by writing O's to the appropriate bits in 
the FCW. Either vectored interrupts, nonvectored interrupts, or both can be 



TABLE 8.14 SPECIAL I/O INSTRUCTIONS 

Clock cycles 

Word/byte Long word 
Address 

Mnemonicsa Operands modes NS SS SL NS SS SL Operation 

SIN*, R, src DA 12 Special Input 
SINB* R +- src 

SIND*, dst, src, R IR 21 Special Input and Decrement 
SINDB* dst +- src 

Autodecrement dst 
address 

R+-R-l 

SINDR*, dst, src, R IR (11 + IOn) Special Input, Decrement 
SINDRB* and Repeat 

dst +- src 
Autodecrement dst 

address 
R+-R-l 
Repeat until R = 0 

SINI*. dst. src. R IR 21 Special Input and Increment 
SINIB* dst +- src 

Autoincrement dst 
address 

R+-R-l 

SINIR*, dst. src. R IR (11 + IOn) Special Input, Increment and 
SINIRB* Repeat 

dst +- src 
Autoincrement dst 

address 
R+-R-l 
Repeat until R = 0 

SOUT*. dst, src DA 12 Special Output 
SOUTB* dst +- src 

SOUTD*. dst. src, R IR 21 Special Output and 
SOUTDB* Decrement 

dst +- src 
Autodecrement src 

address 
R+-R-l 

SOTDR*, dst. src, R IR (11 + IOn) Special Output, Decrement 
SOTDRB* and Repeat 

dst +- src 
Autodecrement src 

address 
R+-R-l 
Repeat until R = 0 

SOUTI*. dst. src. R IR 21 Special Output and 
SOUTIB* Increment 

dst +- src 
Autoincrement src address 
R+-R-l 

SOTIR*. dst. src, R R (11 + IOn) Special Output, Increment 
SOTIRB* and Repeat 

dst +- src 
Autoincrement src address 
R+-R-I 
Repeat until R = 0 

a All special I/O instructions are privileged. 
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TABLE 8.15 CPU CONTROL INSTRUCTIONS 

Clock cycles 

Mnemonicsa 

COMFLG 

DI* 

EI* 

HALT* 

LDCTL* 

LDCTL* 

LDCTLB 

LDCTLB 

LDPS* 

MBIT* 

MREQ* 

MRES* 

MSET* 

NOP 
RESFLG 

SETFLG 

Operands 

flags 

int 

int 

CTLR, 
src 

dst, 
CTLR 

flags, src 

dst, flags 

src 

dst 

flag 

flag 

Word/byte 

Address 
modes NS SS SL 

7 

7 

7 

(8 + 3n) 

R 7 

R 7 

R 7 

R 7 

IR 12 16 
DA 16 20 22 
X 17 20 23 

7 

R (12 + 7n) 

5 

5 

7 

7 

7 

a An asterisk indicates a privileged instruction. 

disabled with a single DI instruction: 

Long word 

NS SS SL Operation 

Complement Flag 
(Any combination of 
C, Z, S, P/V) 

Disable Interrupt 
(Any combination of 
NVI, VI) 

Enable InterruPt 
(Any combination of 
NVI, VI) 

HALT 

Load into Control Register 
CTLR +- src 

149 

Load from Control Register 
dst +- CTLR 

Load into Flag Byte Register 
FLGR +- src 

Load from Flag Byte 
Register 

dst <- FLGR 

Load Program Status 
PS <- src 

Test Multi-Micro Bit 
Set S if MI i~Low; 

reset S if MI is High 

Multi-Micro Request 

Multi-Micro Reset 

Multi-Micro Set 

No Operation 

Reset Flag 
(Any combination of 
C, Z, S, P/V) 

Set Flag 
(Any combination of 
C, Z, S, P/V) 

DI NVI, VI I disable vectored and nonvectored interrupts! 

The Enable Interrupt instruction (EI) is the complement of the DI 
instruction. It is used to enable vectored and nonvectored interrupts by 
setting the appropriate bits in the FCW to 1 'so EI and DI are privileged 
instructions. 

The LDCTL instruction (LDCTL) is a privileged instruction that is used 
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to transfer words between any general-purpose register and the CPU control 
registers. LDCTL can read or write to the FCW, refresh register, PSAP seg­
ment number (ZSOOl only), or PSAP offset. When loading control registers, 
bits marked "reserved" in the destination should be loaded with O's. The 
value of those bits when read from control registers and loaded into general­
purpose registers is undefined. Only the row counter portion (bits O-S) of 
the refresh register can be read. The normal-mode implied stack pointer can 
be accessed while in the system mode with the LDCTL instruction. This al­
lows the operating system to initialize the implied stack pointers for normal­
mode users. Table S.16 shows examples of the LDCTL instruction. 

The Load Program Status instruction (LDPS) loads new program status 
(an FCW and PC value) from the memory area specified as the operand, as 
discussed in Chapter 6. The old program status is not saved, so execution of 
the LDPS instruction causes a permanent change in the program environ­
ment. LDPS is a privileged instruction. 

The Multi-Micro Request (MREQ), Multi-Micro Bit (MBIT), Multi­
Micro Set (MSET), and Multi-Micro Reset (MRES) instructions are privileged 
instructions that act on the MI and MO CPU signals. These signals usually 
are used to implement resource sharing in multiprocessor systems, as de­
scribed in Chapter 7. 

TABLE 8.16 USE OF THE LDCTL INSTRUCTION 

LDCTL FCW, RO 
LDCTL RO, FCW 

LDCTL REFRESH,RO 
LDCTL RO, REFRESH 

LDCTL PSAPSEG, RO 
LDCTL RO, PSAPSEG 

LDCTL PSAPOFF,RO 
LDCTL RO,PSAPOFF 

LDCTL NSPSEG, RO 

LDCTL RO, NSPSEG 

LDCTL NSPOFF,RO 

LDCTL RO,NSPOFF 

! write to FCW ! 
! read from FCW ! 

! write to refresh register! 
! read from refresh register-can only read row address portion 

(bits 0-8) ! 

! write segment number in program status area pointer 
! read segment number portion of PSAP ! 

! write to offset portion of PSAP ! 
! read offset portion of PSAP ! 

! write segment-number portion of normal-mode stack pointer 
(normal-mode R14) while in system mode! 

! read segment number in normal-mode stack pointer while in 
system mode ! 

! write offset portion of normal-mode stack pointer (normal­
mode R 15) while in system mode ! 

! read offset in normal-mode stack pointer while in system 
mode! 
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The No Operation instruction (NOP) does not perform any operations, 
as the name implies. 

The Z8000 instruction set can be extended by the addition of Ex­
tended Processing Units (EPUs) to a system. Opcodes that begin with OE, 
OF, 4E, 4F, 8E, and 8F (hexadecimal) are extended instructions that are ex­
ecuted by EPUs. The five basic addressing modes (R, DA, 1M, IR, and X) 
can be used in extended instructions to specify data operands. The extended 
processor architecture is described in Chapter 10. 
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The Z8001 CPU is capable of addressing up to 8 megabytes of memory per 
memory address space. The 8M bytes of memory in each address space are 
partitioned into 128 segments, where each segment can hold up to 64K bytes 
of memory. This large addressing capability and the other powerful features 
of the Z8000 architecture allow the Z8001 CPU to be used in microcomputer 
systems that support sophisticated operating systems, complex programs, 
large data bases, and the use of high-level languages. 

Within a computer system, the operating system controls the allocation 
of resources among the programming tasks being executed on the system, as 
described in Chapter 1. One of the major resources in a computer system is 
its memory. The efficient allocation of memory resources is critical, espe­
cially in systems where a large number of tasks are competing for the use of 
a limited amount of physical memory. Furthermore, the operating system 
may want to protect the integrity of the system by limiting access to various 
portions of memory. For example, users' programs might not be allowed to 
access the memory that holds the code for the operating system. Thus the man­
agement of memory resources in a computer system involves both the alloca­
tion of memory for the various tasks executing on the system and the protec­
tion of memory to prevent illegal accesses and maintain system integrity. For 
Z8001-based systems, the Z8010 Memory Management Unit (MMU) is a pro­
grammable device that can be used to support memory management functions. 

MEMORY ALLOCATION 

The Z8010 MMU facilitates control of memory resource allocation by trans­
lating logical addresses to physical addresses. Logical addresses are the mem-
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ory addresses manipulated within a program and emitted by the CPU during 
execution. Physical addresses are the memory addresses seen at the memory 
control logic and input to the acutal memory devices (RAM, ROM, or PROM). 
In simple systems without memory management capability, the logical and 
physical addresses are the same. In more complex systems, a memory man­
ager is used to translate logical addresses into different physical addresses. 
The memory management unit stands between the CPU and memory in a 
system, accepting logical addresses from the CPU and outputting the corre­
sponding physical addresses to memory. Thus a given programming task 
can be relocated anywhere within physical memory by the memory manager 
through address translation. 

This separation of logical and physical addresses is necessary in most 
multitasking systems. The amount of memory in a computer system is 
finite. In multitasking systems, the memory requirements for all the tasks in 
the system usually exceeds the amount of physical memory in that system. 
However, not every task's code and data are needed in main memory at the 
same time; secondary storage devices such as tapes and disks can be used to 
store tasks not currently being executed. When a task's code or data is needed, 
it can be written from the secondary storage device into memory. Of course, 
the operating system must keep track of which memory areas are being used 
for each task running on the system at any given time. With a memory man­
ager that provides address translation, a new task can be placed in any "open" 
area of memory (that is, an area not currently being used by some other 
task). 

The ability to relocate tasks anywhere within memory can significantly 
increase the performance and flexibility of a system. An individual user does 
not need to be concerned that the logical addresses within his program are 
the same as the logical addresses for another program on the system; the 
memory manager will route each task's logical addresses to different areas of 
physicalmemory. The cumbersome techniques of reserving fixed areas ofmem­
ory for overlays in a large program can be replaced by more efficient algo­
rithms using the memory manager to relocate program code. Separating logi­
cal and physical addresses also facilitates the sharing of code or data between 
two different tasks, since two or more logical addresses can be mapped to the 
same physical address. 

SEGMENTATION AND MEMORY ALLOCATION 

Complex programs written as one large, monolithic block are difficult, if 
not impossible, to write, debug, and maintain. Modem structured program­
ming techniques require programmers to partition large programs into smaller, 
easily-managed subparts, with each subpart having a well-defined interface 
to other parts of the program. Highly structured programming languages 
such as Pascal and Ada are based on such a scheme. The segmentation of mem-
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Figure 9.1 Two users' logical ad­
dress spaces. 

ory spaces in a Z8001-based system provides support at the hardware level 
for partitioning programs; each code, data, and stack area in a program can 
reside in its own memory segment. 

Furthermore, memory segmentation provides a basis for address reloca­
tion within the memory manager. The Z8010 MMU translates logical to 
physical addresses on a segment-by-segment basis. For example, Fig. 9.1 
shows the logical addresses for two users of a Z8001 system. User A has 
specified that task A's program code resides in segment 6, and the data in 
segment 5. User B has specified segment 5 for task B's code, segment 12 for 
the data, and segment 2 for the stack. Note that both users have named one 
of their segments "segment 5," but they refer to completely different mem­
ory areas. Figure 9.2 illustrates one way that these users' segments could be 
mapped into physical memory. The dashed lines indicate the mapping of logi­
cal to physical addresses by the memory manager. The segments are logically 
distinct; a reference to one segment cannot inadvertently result in an access 
to another segment. 

In the the Z8010 MMU, each memory segment is assigned to some area 
of physical memory (Fig. 9.3). Segments can be of variable size, up to 64K 
bytes per segment. Address translation is performed by adding the offset 
portion of the logical address to the starting physical address of the segment. 
Thus when a logical address of the form «A»B is emitted by the CPU, the seg­
ment name "A" is used by the MMU to determine where segment A begins 
in physical memory. If segment A resides in locations 10000 to 25000, the 
physical address corresponding to logical address «A»B would be location 
10000 + B. In other words, the logical segment number is just a name corre­
sponding to some physical address in memory, and the logical offset is a dis­
placement from that address. 
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Within the Z8010 MMU, special registers are used to hold the starting 
address in physical memory for each segment. The offset address emitted by 
the CPU during Tl of a memory access cycle is added to this starting address 
for the segment to produce the physical address output by the MMU. This 
address translation is similar to indexed addressing, where the contents of the 
MMU register that holds the starting address for the segment is used as a base 
address and the offset portion of the logical address is added to that base to 
yield the physical address. 
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Figure 9.3 Memory mapping of segments with a memory manager. 

MEMORY PROTECTION 

Once the program has been partitioned into separate memory segments, it is 
highly desirable to assign attributes to each segment. For example, attributes 
have been associated with each segment in Fig. 9.2 based on how that seg­
ment is to be used during task execution; segments that hold program code 
are designated "execute only," and segments that hold data are "read/write" 
segments. Since the MMU is between the CPU and memory, it can block il­
legal memory accesses based on the attributes assigned to each segment. Thus 
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users A and B are prevented from executing a data segment or writing into a 
code segment. 

More specifically, memory protection by the Z8010 MMU is accom­
plished by memory attribute checking. Attributes are assigned on a segment­
by-segment basis. A segment's attributes determine who can access that seg­
ment and what types of accesses are allowed. Each memory reference is 
checked to ensure that the task has the right to access the data in that fashion. 

A number of attributes can be associated with a segment and checked 
during accesses to that segment. The length of a segment can be designated 
in the MMU, and references to each segment are checked to ensure that they 
fall within the boundaries of that segment. Segments can be assigned a "read­
only" attribute; this is used to prevent modification of data elements or to 
protect the integrity of program code that is not self-modifying. The "exe­
cute-only" attribute means that the segment can be accessed only during in­
struction fetch cycles (including loads that use the relative addressing mode) 
and is useful for guarding proprietary software. The "system-only" attribute 
prevents normal-mode programs from accessing segments that are reserved 
for operating system code or data. To check these attributes, the MMU must 
sample the status lines from the Z8001 CPU that define the type of the cur­
rent transaction. 

The Z8010 MMU stores each logical segment's attributes in an internal 
register (one per segment) and checks those attributes each time the segment 
is accessed. If a memory access that violates the attributes for a segment is 
detected, the MMU notifies the CPU by making a segmentation trap request 
on the Z8001's SEGT input. The segmentation trap service routine can read 
status registers in the MMU to determine the exact cause of the trap. When 
asserting a segment trap request, the MMU also generates a signal to memory 
(SUP) that can be used by memory control logic to inhibit an erroneous mem­
ory write. 

The MMU stores other status information together with the attributes 
for each segment. This information includes flags that indicate if a segment 
has been referenced or modified while resident in main memory. If a seg­
ment is to be written to a secondary storage device, such as a disk, in order 
to make room in main memory for another task, these flags will indicate if 
that segment was modified since the last time it was read into memory from 
the disk. If the segment was modified, the updated version of that segment 
must be written to the disk; if not, the copy of the segment's contents on 
the disk is still valid and rewriting the segment to the disk is not necessary. 
Obviously, such status information can improve the performance of the en­
tire system. 

In summary, memory management involves the allocation and protection 
of the system's memory resources. In Z8001-based systems, a memory man­
agement system can be implemented using operating system software and the 
Z8010 Memory Management Unit. The Z8010 MMU controls memory allo-
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cation by translating logical addresses from the CPU into physical addresses 
for the memory devices. Memory protection is provided by attribute check­
ing in the MMU. 

The segmented address translation mechanism with attribute checking 
provides all the benefits of an efficient memory management system. Mem­
ory can be allocated dynamically during task execution; that is, a task may be 
located anywhere in physical memory and even moved when its execution is 
suspended. Moving tasks to different locations requires only changing the 
address mapping within the MMU. This flexibility is possible since the pro­
gram deals exclusively with logical addresses that are independent from the 
physical addresses accessed during execution. Furthermore, sharing of com­
mon memory areas by different tasks is accomplished easily by mapping each 
task's logical addresses to the same physical address. 

Obvious execution errors can be avoided through the assignment of at­
tributes to memory segments. The MMU will notify the CPU when illegal 
accesses are attempted, such as exceeding the boundaries of a segment or 
writing to read-only memory. The segregation of the operating system from 
the users' applications programs is facilitated by the "system-only" attribute. 

Segmentation and memory management support the development of 
large, complex programs and systems. The concept of segmentation corre­
sponds to the concept of structured programming, where each procedure and 
data structure is associated with a distinct segment of memory and each seg­
ment is assigned its own attributes that govern its use. A task accesses a par­
ticular procedure or data structure by referring to its logical segment number; 
that segment could be relocated into any appropriate area of physical mem­
ory. Access to each segment is restricted through the attribute-checking 
mechanism of the MMU, thereby protecting system integrity. 

Z8010 MMU ARCHITECTURE 

The Z8010 Memory Management Unit is a 48-pin LSI device that operates 
from a single +5-Vpower supply; 4 MHz, 6MHz, and 10 MHz versions are 
available. The MMU is used in conjunction with the Z8001 CPU to provide 
dynamic segment relocation and memory protection features within a micro­
computer system. A single MMU can manage 64 segments of memory; pairs 
of MMUs support the full 128 segments available in a Z8001 memory address 
space. Any number of MMUs may be included in one system. For example, 
a system might include two MMUs to support 128 segments for normal-mode 
users and another two MMUs to support 128 segments for operating system 
software. Physically, the MMU is placed between the CPU and memory within 
a system; logical addresses are input to the Z8010 and physical addresses 
are output to memory. Figure 9.4 shows a simple, single-MMU system. 
Only memory addresses are translated by the MMU; I/O addresses and data 
bypass this component. 
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Figure 9.4 Z8010 MMU in a Z8001 system. 

The MMU translates the 23-bit logical address (7 -bit segment number 
and 16-bit offset) from the CPU into a 24-bit physical address. Thus the 8M 
bytes of logical addresses in a Z8001 memory space can be mapped into 16M 
bytes of addresses in physical memory. Address translation and attribute 
checking take place on a segment-by-segment basis. A translation table with 
one entry per segment is used to perform the address translation. The at­
tributes for each segment also are stored in a table, with one entry per seg­
ment. As the address translation occurs, the attributes are checked against 
the status information for the memory access from the CPU. If a violation 
of the attributes is detected, the MMU notifies the Z8001 via the segmenta­
tion trap (SEGT) signal. 

Figure 9.5 shows the functional pin-out and pin assignments for the 
Z8010. The MMU receives the upper half of the address/data bus (AD8-
ADI5), the segment number, the status signals, and the bus timing signals 
from the CPU. The remaining signals are control lines, including a chip se­
lect (CS), DMA synchronization strobe (DMASYNC), reset, and the clock. 
The MMU is not a Z-Bus-compatible part, but instead is considered an ex­
tension of the processor. As such, it must receive the same clock as the CPU 
in order to synchronize the address translation process with the CPU's mem­
ory access timing. MMU outputs include 16 bits of physical address informa-
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Figure 9.5 Z8010 MMU pinout. 

tion (A8-A23), the segmentation trap request line (SEGT), and a memory 
suppress signal (SUP). 

For each bus transaction initiated by the CPU or a DMA device, the 
Z8010 MMU will enter one of three functional states. The first is the mem­
ory management state; for a certain subset of memory transactions, the MMU 
will translate the logical address to a physical address and check the attributes 
for that access. The second state is a command state; the MMU will interpret 
special I/O transactions as commands if the MMU's chip select (CS) input is 
active. These commands allow the CPU to read from and write to the MMU's 
registers. The third state is a quiescent state wherein the MMU ignores the 
transaction and tri-states its address outputs. The MMU ignores all standard 
I/O, internal, and refresh cycles and a subset of all memory transactions. The 
MMU also ignores special I/O transactions if CS is not active. While in the 
command or quiescent state, the MMU address outputs are tri-stated. 

Figure 9.6 illustrates the interface between the Z8001 CPU and the 
Z8010 MMU. The MMU selects which of the three states it should enter for 
a given transaction based on the bus status information on the STO-ST3, R/W, 
and N /8 signals during T1 of a CPU or DMA cycle. If an address translation 
is to be performed, the MMU uses the segment number to access an internal 
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Figure 9.6 Z8001-Z8010 interface. 

table of registers. These registers, called segment descriptor registers, contain 
the starting location (called the base address) of each segment in physical 
memory, the size of the segment, and the segment's attributes. Segments may 
be of any size from 256 bytes to 64K bytes, in increments of 256 bytes (that 
is, 256 bytes, or 512 bytes, or 768 bytes, and so on up to 65,536 bytes). The 
eight least signficiant bits of the base address are always O's and are not stored 
in the segment descriptor registers. Thus segments must begin at some 256-
byte boundary in physical memory. Since the low-order 8 bits of the base 
address are always O's, the low-order 8 bits of the offset address are not in­
cluded in the address calculation internal to the MMU. Instead, they are con­
catenated with the 16 bits output by the MMU to yield a 24-bit physical ad­
dress (Fig. 9.7). 

Therefore, only the upper half of the address/data bus, AD8-ADI5, are 
MMU inputs; only the upper 16 bits of the physical address, A8-A23, are out­
puts. The low-order 8 bits of the physical address is always the same as the 
low-order eight bits of the logical address. This scheme saves 16 pins on the 
MMU package (eight inputs and eight outputs) at the expense of restricting 
segment sizes to mUltiples of 256 bytes (since the lowest 8 bits can address 
a block of 256 bytes). Of course, all 16 bits of the address/data bus must still 
be propagated to the memory control logic since data always bypass the MMU. 

The segment number (SNO-SN7) from the CPU is used to select a seg-
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Figure 9.7 Generation of a physical address from a logical address. 

ment descriptor register during the address translation process. The segment 
number is output by the CPU earlier than the offset address during a memory 
access. This allows the MMU to access its internal segment descriptor regis­
ter for that segment and select the base address before the offset appears, 
thereby minimizing the delay between a valid offset address at the MMU's 
inputs and a valid physical address at the MMU's outputs. 

The rising edge of AS indicates that the offset address and status sig­
nals are valid at the MMU's inputs. AS and DS provide the bus timing for 
data transactions between the CPU and MMU during special I/O transactions 
that access the MMU's registers and during interrupt acknowledge cycles re­
sulting from segmentation traps. 

The chip select (CS) is used to select an MMU during a special I/O in­
struction. The CPU uses special I/O transactions to read from and write to 
the MMU's internal registers. 

The DMA synchronization strobe (DMASYNC) input signals whether the 
current cycle was initiated by the CPU or a DMA controller. A low indicates 
that a DMA device has control of the bus. 

When the MMU enters the memory management state during a memory 
transaction, the segment's attributes are checked against the current bus sta­
tus. If a violation occurs (for example, the R/W line is low, indicating a write 
transaction, but the segment is assigned the "read-only" attribute), the MMU 
pulls the segment trap (SEGT) signal low , forcing a segmentation trap at the 
CPU. The suppress (SUP) signal also is pulled low; suppress can be used in the 
memory control logic to block illegal memory accesses. 

The MMU contains a number of internal registers that are used to con­
trol MMU operation and to implement the address translation and attribute 
checking processes. There are three types of registers: segment descriptor 
registers, control registers, and status registers. A segment descriptor register 
determines the base address, size, and attributes for a particular segment. 
There are 64 segment descriptor registers-one for each segment handled by 
the MMU. One control register, the mode register, determines which memory 
accesses, if any, will put the MMU in the memory management state. Two 
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other control registers are used to access the segment descriptor registers, the 
segment address register (SAR), and the descriptor selection counter register 
(DSC). Six status registers can be read by the CPU when a segmentation trap 
occurs to determine the cause of the trap. The violation-type register identi­
fies the type of violation caused by the attempted memory access. The vio­
lation segment and violation offset registers hold the segment number and 
upper byte of the offset address of the memory access that caused the viola­
tion. The instruction segment number and instruction offset registers hold 
the segment number and upper byte of the offset address of the first word in 
the instruction that was executing when the violation occurred. The bus cycle 
status register holds the bus status conditions at the time of the violation. 

The MMU is controlled via 22 commands issued as special I/O instruc­
tions by the Z8001 CPU. With these commands, system software can read 
from or write to the MMU's registers. Data are transferred between the CPU 
and MMU one byte at a time on the AD8-AD15 bus lines. 

SEGMENT DESCRIPTOR REGISTERS 

31 

There are 64 segment descriptor registers in the MMU, one for each segment 
whose access is controlled by the MMU. Two MMUs are required to handle 
all 128 possible segment numbers from the Z8001. The mode register is pro­
grammed so that an MMU handles segment numbers 0-63 or segment numbers 
64-127. 

Each of the 64 segment descriptor registers contains information related 
to the address translation and protection attributes for one segment. A seg­
ment descriptor register is 32 bits wide and has three fields: a 16-bit base ad­
dress field, an 8-bit limit field, and an 8-bit attribute field (Fig. 9.8). 

The base address field holds the upper 16 bits of the 24-bit physical ad­
dress that is the starting address in physical memory for that segment. The 
low-order byte of the base address is always all O's (Fig. 9.9). During a mem­
ory access, the logical offset address from the CPU is added to this base ad-
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Figure 9.8 Segment descriptor register. 
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Figure 9.9 Base address for a segment. 
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dress to yield the corresponding physical address in memory. The two bytes 
of the base address in the segment descriptor register are read or written one 
byte at a time when these registers are accessed. 

The limit field is an 8-bit field that determines the size of the memory 
segment. Segments may be any length from 256 bytes to 64K bytes, in in­
crements of 256 bytes. If the limit field contains the number N, then the 
segment contains either N + 1 blocks of 256 bytes or 256~ N blocks of 256 
bytes, depending on the DIR W bit in the segment descriptor's attribute 
field, as explained below. Each time an address translation occurs, the upper 
byte of the logical offset address is compared to this limit field to ensure 
that the access falls within the limits of that segment; if not, a segment-length 
violation is detected. 

Each of the 8 bits in the attribute field is a flag for a particular attribute 
or status condition. Five bits determine the protection attributes assigned to 
the segment, one bit specifies the orientation of the segment, and two bits 
hold status information recording the types of accesses that have been made 
in that segment. 

Bit 0 of the attribute field is the read-only (RD) bit. When this bit is 
set, the segment may be accessed only by memory reads (instruction fetches 
or data reads). Writes are prohibited and an attempted write access will cause a 
violation condition. This attribute is useful for protecting executable code 
from inadvertent writes. It is also used to protect critical data that is not to 
be modified by a particular user. 

Bit 1 of the attribute field is the system-only (SYS) bit. When this bit 
is set, the segment may be accessed only when the CPU is in the system mode; 
normal-mode accesses are prohibited. This attribute is useful when an MMU 
receives logical addresses from both the operating system and users' programs. 
Normal-mode users are prevented from accessing segments containing code or 
data reserved for the operating system, even if the normal-mode programs 
generate the correct logical addresses for those segments. For example, I/O 
routines might be in a segment with the system-only attribute and normal­
mode users would be unable to access them directly. 

Bit 2, the CPU-inhibit (CPUI) bit, indicates that the segment cannot be 
referenced by the CPU. When set, all CPU accesses to the segment are pro­
hibited, but DMA controllers can still access the segment. This flag is useful 
for preventing programs from accessing segments that are being altered by a 
DMA operation. For example, a DMA controller may be filling a segment 
with data from a disk drive, interleaving its operation with the CPU. The seg­
ment being loaded by the DMA device should not be accessed by the CPU until 
the DMA operation is complete. 

Bit 3 of the attribute field is the execute-only (EXC) bit. When this bit 
is set, the segment may be referenced only during instruction fetch cycles 
(including PC-relative loads). Access during any other type of cycle, such as 
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a data read, is prohibited. This attribute is useful for preventing programs 
from reading or copying proprietary code. 

Bit 4 is the DMA-inhibit (DMAI) bit. When set, the segment cannot be 
accessed by DMA devices; only CPU accesses are allowed. This attribute can 
be used to prevent DMA controllers from altering a segment that is being used 
by a currently executing task. 

The DMAI and CPUI bits can be used together to designate a segment 
that does not exist in physical memory at a given time. If both bits are set, 
neither the CPU nor DMA controllers can access the segment; an attempted 
access will cause a violation condition. 

Bit 5 of the segment descriptor register's attribute field is the direction 
and warning flag (DIRW). This bit specifies the orientation of the segment. 
When this flag is set, the segment's memory locations are organized in descend­
ing order, from the segment's base address +65535 down to the limit. With 
this flag set, the segment contains 256-N blocks of 256 bytes (or 128-N 
blocks of 128 words), where N is the number in the segment descriptor's 
limit field (Fig. 9.10). This flag is used for segments that hold stacks, since 
stacks grow downward in memory. 

When this bit is 0, the segment's memory locations are organized in 
ascending order, starting at the segment's base address. A limit field of N 
produces a segment with N + 1 blocks of 256 bytes. An access beyond this 
limit is prohibited and will cause a violation condition. 

Setting the DIR W bit to 1 activates a special warning feature as well as 
specifying a downward orientation for the segment. A write to the lowest 
valid block of 256 bytes in such a segment causes a write warning condition. 
For a write warning, a segmentation trap request is made but the suppress 
signal to memory is not activated. Thus the access is successful, but the CPU 
is interrupted. The write warning signals the CPU that the stack may soon 
overflow its allotted memory space. In response, the operating system could 
allocate more physical memory for that stack by increasing the limits of the 

DIRW 0 DIRW 1 r------..., WORD 32766 

WRITE-WARNING 
AREA 

WORD 128(N+1) 

t---,..".,...,.,..".,...,..--",--,-...,. WORD 128N 

N CONTENTS OF LIMIT FIELD IN DESCRIPTOR REGISTER 

Figure 9.10 Effect of the DIRW bit 
on segment orientation and size_ 
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segment. This allows stack areas to be allocated dynamically as the need arises 
while executing tasks. Of course, an access beyond the limits of the segment 
still causes a violation condition. 

Bits 6 and 7 of the attribute field are status bits that indicate the type of 
accesses made to the segment. Bit 6 is the changed (CRG) bit and is set if 
the segment has been modified by a CPU or DMA controller access. The CRG 
bit is set if any write access is made, provided that the access did not cause a 
violation condition. This flag is useful for indicating when a segment has been 
modified in the case where the segment must be written to a secondary stor­
age device such as a disk. Segments that have not been changed need not be 
copied back to the disk if a copy already exists on the disk; this may occur 
when a task is suspended and removed from memory to make room for 
another task. 

Bit 7 is the referenced (REF) flag and indicates that an access has been 
made to the segment. This bit is set whenever the segment is read or written 
by a CPU or DMA device, provided that the access did not cause a violation 
condition. This flag is useful in determining which segments have not been 
used in cases where the operating system must select segments to be swapped 
out of physical memory. 

CONTROL REGISTERS 

Three 8-bit control registers direct the functioning of the MMU. The mode 
register controls the enabling of the MMU and the address translation function. 
The segment address register and descriptor selection counter are pointers 
into the table of segment descriptor registers. 

The mode register contains a 3-bit identification code and five control 
bits, as illustrated in Fig. 9.11. The identification code (ID code) is used 
during an acknowledge of a segmentation trap to indicate which MMU or 
MMUs generated the trap in systems with eight or fewer MMUs. During the 
acknowledge cycle for a segmentation trap, the MMU uses the ID field in the 
mode register to select one of the AD8-AD15 lines on the address/data bus; 
an ID code of 000 corresponds to AD8, an ID code of 001 corresponds to 
AD9, and so on. Each enabled MMU should have a unique ID code. If an 
MMU requests a trap, it outputs a 1 on the appropriate line on the address/ 
data bus as determined by the ID code during the acknowledge cycle; other­
wise, it outputs a a on that line during the acknowledge cycle. The other 
address/data bus lines are not driven by this MMU, but might correspond to 
the ID field of another MMU in th,e system. Thus the upper byte of the identi­
fier word read by the CPU during the segmentation trap acknowledge cycle 

7 32 

Figure 9.11 MMU mode register. 
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will indicate which MMUs generated the trap. One memory access could re­
sult in multiple violations in different MMUs, so the segment trap service rou­
tine may have to deal with several MMUs when processing the trap. 

The control bits in the MMU mode register provide a means for select­
ively enabling MMUs in a mUltiple MMU system. As mentioned previously, 
an MMU will enter the memory management state for some memory trans­
actions, but remain in the quiescent state for other memory accesses; the 
mode register determines the subset of memory accesses that the MMU will 
handle. 

Bit 7 of the mode register is a master enable (MSEN) bit. When set to 
a 1, the MMU can perform address translation and attribute-checking func­
tions. When cleared to 0, the MMU is disabled and its A8-A23 outputs are 
tri-stated. 

Bit 6, the translate (TRNS) bit, enables the MMU's address translation 
capability. When this bit is 0 and the MSEN bit is 1, the MMU does not per­
form address translations or attribute checking, but instead passes the logi­
cal address unchanged to physical memory without protection checking. 
The AD8-AD15 logical address inputs are passed directly to the A8-A15 MMU 
outputs; the SNO-SN6 segment number inputs are passed to the A16-A22 
outputs; A23 is set to O. This is called the transparent mode for the MMU, 
since the system now operates as if the MMU were not present. When the 
TRNS bit is set to 1, the MMU performs address translation and attribute 
checking for some memory transactions, as determined by the other control 
bits. 

Bit 5 of the mode register is the upper range select (URS) bit. When 
this bit is cleared, the MMU handles segments 0-63; when set, the MMU han­
dles segments 64-127. Thus for the MMU to enter the memory management 
state during a given memory transaction, the most significant bit of the seg­
ment number, SN6, must match the URS bit. If not, the MMU remains in 
the quiescent state with its address outputs tri-stated. 

Bit 4, the multiple segment table (MST) bit, and bit 5, the normal-mode 
select (NMS) bit, work together to allow an MMU to be dedicated only to 
system-mode or normal-mode operation. If separate MMUs are used for the 
system and normal modes, the MST bit is set in the MMUs. If the MST bit is 
a 1, the NMS bit determines if the MMU responds to system-mode or normal­
mode memory accesses, as indicated by the N /S signal from the CPU. When 
MST is set, the N /S MMU input must match the NMS bit in order for the 
MMU to enter the memory management state; otherwise, the MMU remains 
in the quiescent state with its address outputs tri-stated. Thus an MMU with 
MST set and NMS cleared would handle address translation for system-mode 
memory accesses and another MMU with the MST and NMS set would handle 
the translation for normal-mode memory accesses. When the MST bit is 0, 
the MMU responds to all appropriate memory transactions regardless of the 
operating mode; in this configuration, the system-mode-only attribute can be 
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Figure 9.12 Segment address regis­
ter. 

Figure 9.13 Descriptor selection 
counter register. 

used to protect operating system code and data segments from normal-mode 
users. 

During a memory access, an MMU enters the memory management state, 
wherein it performs address translation and attribute checking if the MSEN 
and TRNS bits are both 1 's, the URS bit is the same as the SN6 input, and 
the MST bit is 0 or the MST bit is 1 and the NMS bit is the same as the N /S 
input. For all other memory transactions, the MMU is in the quiescent state. 
In multiple MMU systems, a given memory transaction should cause only one 
MMU in the system to enter the memory management state, with all other 
MMUs remaining in the quiescent state. 

The segment address register (SAR) is a pointer into the table of 64 
segment descriptor registers. Bits 6 and 7 of the SAR are not used (Fig. 
9.12). Commands to the MMU that access the segment descriptor registers 
use the SAR to select one of the 64 descriptors. 

The descriptor selection counter register (DSC) points to one of four 
bytes in a segment descriptor register during accesses to the descriptors. Only 
bits 0 and 1 of the DSC are used (Fig. 9.13). A value of 00 (binary) in the 
DSC indicates the high byte of the descriptor's base address field, a 01 in the 
DSC indicates the low byte of the base address field, a 10 indicates the limit 
field, and an 11 indicates the attribute field. 

Commands to the MMU can read or write only one byte at a time, since 
the MMU is connected to only one half of the address/data bus. Together, 
the SAR and nsc point to one byte in the table of 64 segment descriptor 
registers. For example, if the SAR and DSC are both 0 and the URS bit in the 
mode register is aI, the selected byte is the high-order byte in the base address 
for segment 64. The SAR and nsc are automatically incremented for several 
MMU commands, allowing the descriptor registers to be accessed as a block 
using the Z8001 's automatically repeating special I/O instructions. 

ADDRESS TRANSLATION 

When the MMU enters the memory management state, two operations occur 
simultaneously: the logical address is translated to a physical address and the 
status information for the memory access is compared to the segment's attri­
butes in the appropriate segment descriptor register. 

The address translation process involves using the segment number in 
the logical address to select one of 64 segment descriptor registers in the MMU. 
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Figure 9.14 Address translation in 
the MMU. 

The contents of the chosen descriptor register's base address field determines 
the starting address in physical memory for that segment. The MMU's SNO­
SN5 segment number inputs are used as a pointer into the bank of segment 
descriptor registers to select one segment descriptor. (SN6 is used 
in conjunction with the URS bit in the mode register to select the MMU, as 
described previously.) The high-order byte of the offset address (emitted by 
the CPU on AD8-AD15) is then added to the base address in the selected seg­
ment descriptor register to yield physical address bits A8-A23. This result is 
concatenated to the low-order byte of the logical offset address to form the 
24-bit physical address (Fig. 9.14). The low-order byte of the offset address 
is not processed by the MMU. 

This address translation process is equivalent to adding the offset por­
tion of the logical address to the starting physical address of the segment (Fig. 
9.15). The eight least significant bits of the base address for each segment are 
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assumed to be all O's and are not stored in the segment descriptor registers. 
Thus the low-order byte of the physical address is always the same as the low­
order byte of the offset portion of the corresponding logical address. 

ViOLATION TYPES AND STATUS REGISTERS 

While the address translation process is occurring, the MMU also compares 
the attributes in the selected segment descriptor register with the status sig­
nals from the CPU. If a violation occurs, such as an attempted write to a 
segment with the read-only attribute, an active segmentation trap and/or 
suppress signal is output by the MMU. Furthermore, the offset portion of 
the logical address is compared to the limit field in the segment's descriptor 
register and a trap and suppress is generated if the access violates the limits 
of the segment. The translated physical address is output regardless of whether 
or not a violation is detected. 

The MMU will generate a segmentation trap request to the CPU by pul­
ling its SEGT output low for one of two reasons: detection of an access 
violation or detection of a write warning in a segment whose DIR W bit is set. 
In the event of an access violation, the MMU's suppress (SUP) output is 
pulled low also; this signal can be used as part of the memory control logic 
to inhibit the memory transaction, thereby preserving the integrity of mem­
ory contents during illegal accesses. 

When the MMU detects an access violation or write warning, it stores 
status information about the transaction in six 8-bit status registers. These 
registers can be read by the CPU when servicing segmentation traps to deter­
mine the cause of the trap. Five registers indicate the memory address, bus 
status, and current instruction being executed when the violation occurred. 
The sixth status register, the violation-type register (VTR), contains eight 
flags that describe the violation type (Fig. 9.16). 

Five flags in the VTR signal violations during memory accesses. Bit 0 
of the VTR is the read-only violation (RDV) flag. The RDV flag is set if a 
write is attempted to a segment having the read-only attribute. Bit 1 is the 
system violation (SYSV) flag and is set if a normal-mode program attempts 
to access a segment with the system-only attribute. Bit 2 of the VTR, the 
segment-length violation (SLV) flag, is set when an attempt is made to access 
a location outside the legal limits of the segment. This violation is detected 
by comparing the offset in the logical address to the limit field of the seg­
ment descriptor register. Bit 3 is the CPU-inhibit violation (CPUIV) flag 
and is set if the CPU attempts to access a segment whose CPU-inhibit bit is 
set. Bit 4 of the VTR is the execute-only violation (EXCV) flag; this flag 
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Figure 9.16 Violation-type register. 
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is set if an access other than an instruction fetch is attempted to a segment 
with the execute-only attribute. 

DMA-inhibit violations also are possible and occur when a DMA con­
troller attempts to access a segment whose DMA-inhibit bit is set. However, 
there is no corresponding flag in the VTR since violations during DMA ac­
cesses do not cause segmentation traps. 

Bits 5 and 6 of the VTR deal with write warnings. Setting the DIRW 
bit in a segment descriptor's attribute field defines that segment as a stack 
segment that grows downward in memory. An access into the last 256 bytes 
(that is, the 256 bytes with the lowest physical addresses) in the segment 
causes a write warning. A write warning does not signal an illegal access but 
instead warns the system of an impending stack overflow problem. Write 
warnings can set three different flags in the VTR, depending on the condi­
tions at the time the write warning occurs. If no other flag in the VTR is set, 
a write warning sets bit 5 in the VTR, the primary write warning (PWW) flag. 
If anyone of the RDV, SYSV, SLY, CPUIV, EXCV, or PWW flags is set be­
cause of the execution of a previous instruction and the write warning is the 
result of an access to the system stack memory address space, then bit 6, the 
secondary write warning (SWW) flag, is set. If any of those flags in the VTR is 
set and the write warning is the result of an access to any memory address 
space except system stack memory, bit 7 of the VTR, the fatal (FATL) flag, 
is set. 

The F ATL flag is set whenever a flag already is set in the VTR due to a 
violation from a previously executed instruction and another violation other 
than a secondary write warning is detected. This violation must occur during 
an instruction subsequent to the instruction that caused the first flag in the 
VTR to be set. If several violations occur during the execution of the same 
instruction, several flags may be set in the VTR, but the F ATL flag is not 
set. Thus the F ATL flag usually indicates a violation that occurs while at­
tempting to service the segmentation trap generated by a previous violation. 
Once the F ATL flag is set, subsequent violations will not cause segmentation 
traps until the FATL flag has been reset. 

When an access violation or write warning occurs, two status registers 
are used to hold the logical memory address that was being accessed when 
the violation was detected. The violation segment number register holds the 
segment number and the violation offset register holds the high-order byte of 
the logical offset address (Fig. 9.17). External circuitry is required if the 
lower byte of the offset address is to be saved. If the violation occurred dur­
ing an instruction fetch, these registers hold the logical address of the word 
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ber and violation offset registers. 
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Figure 9.18 Bus cycle status regis­
ter. 

Figure 9.19 Instruction offset and 
instruction segment number regis­
ters. 

in the instruction's opcode that was being accessed; otherwise, they hold the 
logical address of the data item that was being accessed. 

The bus cycle status register holds the bus status information at the 
time of the violation or write warning, including the state of the STO-ST3 
status lines, the RjW line, and the Nj8 line (Fig. 9.18). 

The last two status registers hold the logical address of the first word of 
the last instruction fetched before the violation or write warning occurred. 
The instruction segment number register holds the segment number and the 
instruction offset register holds the upper byte of the offset address (Fig. 
9.19). External circuitry is required if the lower byte of the offset is to be 
saved. If the violation occurred while fetching the first word of an instruc­
tion, these two registers would hold the first word of the previous instruc­
tion. Otherwise, these registers will contain the logical address of the first 
word of the instruction that specified the access that caused the violation. 

Status information is stored in the six status registers only for viola­
tions or write warnings resulting from an attempted memory access by the 
CPU. Violations that occur while a DMA device accesses memory will cause 
SUP to be asserted, but no trap is generated and the status registers are not 
altered. Thus if DMA and CPU operations are interleaved and a DMA trans­
action causes a violation while the CPU is executing a segmentation trap ser­
vice routine, the MMU's status registers retain the status information being 
used by the CPU's service routine. 

TRAPS AND SUPPRESSES 

The MMU responds to violations and write warnings with two different out­
put signals: segmentation trap (SEGT) and suppress (SUP). An active SEGT 
signal causes the CPU to service a segmentation trap. The SUP signal is used 
to block illegal memory accesses; for example, SUP can be used to gate the 
DS signal to memory so that accesses attempted while SUP is low will not be 
completed. SUP also can be used to trigger external hardware that saves the 
low-order byte of the offset address for the access that caused the violation. 
Both SEGT and SUP are open-drain signals; the SEGT and SUP outputs from 
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TABLE 9.1 MMU RESPONSE TO VIOLATIONS 
AND WRITE WARNINGS 

Violation 
Write Warning 

CPU 

Trap and suppress 
Trap only 

DMA 

Suppress only 
No signal 

several different MMUs can be tied together to form one signal to the CPU or 
memory control logic. 

An MMU activates the SEGT and/or SUP outputs depending on the de­
vice that is making the access and the type of violation that occurred, as out­
lined in Table 9.1. Suppress is not asserted during write warnings, since 
write warnings only indicate a potential stack overflow problem in the fu­
ture, not an illegal access now. DMA-generated memory accesses do not 
generate segmentation traps, since traps interrupt the CPU and not the DMA 
controller. DMA write warnings are not signaled at all; DMA devices rarely 
access memory segments that are being used as stacks. 

The SEGT and SUP signals both are asserted during T2 of the memory 
access cycle, if appropriate (Fig. 9.20). The SEGT signal stays low until a 
segmentation trap acknowledge signal is detected on the STO-ST3 status 
lines. SUP is asserted throughout the data transfer portion of the transac­
tion that caused the violation and for all subsequent CPU memory accesses 
until the end of the current instruction. Intervening DMA transactions will 
not be suppressed, however, unless they also generate a violation. Violations 
during DMA transactions cause SUP to be active only during that transaction. 

If the F ATL flag in the MMU's VTR is set, indicating that a violation 
was detected before a previous violation was processed, SEGT will not be 
asserted for subsequent violations until F ATL is reset; SUP, however, is gen­
erated for each violation even if F ATL is set. 

If the SWW (secondary write warning) flag in the VTR is set, subse­
quent write warnings while accessing system stack memory do not generate 
an active SEGT signal. This prevents the system from repeated interruptions 
while trying to process the initial write warning. 

Figure 9.20 Timing of SUP and 
SEGT signals. 
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The Z8001 processes a segmentation trap request from an MMU in the 
same manner as an interrupt. The next instruction fetch is started but 
aborted, and an interrupt acknowledge cycle is entered. If the MMU detects 
a violation during the aborted instruction fetch cycle, SUP will be asserted 
but SEGT will not. During T3 of the acknowledge cycle, the CPU reads an 
identifier word from the bus; the upper byte of this identifier word will indi­
cate which MMU or MMUs asserted the trap, as previously discussed. After 
the acknowledge cycle, the CPU saves the program status for the interrupted 
task on the system stack. If a write warning is generated while program 
status is being saved, the SWW flag in the MMU is set and another trap request 
is made (SEGT is asserted again). Servicing this second trap will cause an­
other write warning when program status is saved, but SEGT will not be as­
serted again, since SWW is set already. After saving the old program status, 
the new program status for the service routine is fetched from the Program 
Status Area and the service routine is executed. If another violation occurs 
while fetching new program status or early in the service routine (that is, 
before the VTR is reset), the FATL flag is set. Subsequent violations cause 
SUP to be asserted but not SEGT. Thus the FATL and SWW flags prevent 
a segmentation trap service routine from repeatedly interrupting itself to 
process a trap it created. 

The service routine for a segmentation trap should examine the identi­
fier word on the stack to determine which MMUs detected a violation. Then 
the VTR in each of those MMUs is checked to determine the cause of the 
trap. The FATL flag should be tested first to see if multiple violations have 
occurred. The SWW flag is examined next to determine if more space is 
needed for the system stack. Finally, the original violation that caused the 
trap is processed and the VTR is cleared before returning to the interrupted 
routine. The flags in the VTR are reset by explicit commands from the CPU. 

MMU COMMANDS 

The CPU can access the MMU's registers via special I/O instructions. When 
an MMU detects special I/O status on the STO-ST3 status lines and the 
MMU's chip-select (CS) input is active, it accepts and processes a command. 
These commands allow the CPU to read all MMU registers, write to the seg­
ment descriptor, mode, segment address, and descriptor selection counter 
registers, or reset the violation-type register. Data read from or written to 
the MMU are transferred one byte at a time on the AD8-AD15 bus lines. 

When a special I/O instruction is used to send a command to the MMU, 
the MMU interprets the high-order byte of the port address output by the 
CPU during T1 of the I/O machine cycle as a command opcode. The low­
order byte of the special I/O port address can be decoded to generate the 
chip-select signals to the system's MMUs (Fig. 9.21). The MMU's CS input is 
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#n Figure 9.21 Decoding address lines 
to generate chip selects for MMUs. 

used only to send commands to the MMU and is not involved in the MMU's 
address translation process during memory accesses. Any data associated 
with the MMU command are transferred between the CPU and MMU during 
T3 of the I/O cycle, just as if the CPU were talking to a peripheral device. 
In other words, the upper byte of the special I/O address is the MMU com­
mand opcode that enters the MMU on AD8-AD15. The chip-select signal to 
the appropriate MMU or MMUs is generated from the low-order byte of the 
I/O address (Fig. 9.22). ADO must be 0, since any byte data transfer for the 
command occurs on the upper half of the address/data bus (see Chapter 4). 
Thus ADI-AD7 are decoded to generate CS signals to the MMUs. 

For systems with seven or fewer MMUs, the simplest encoding method 
is to assign ADi (i = 1 to 7) as the chip select for MMU #i (Fig. 9.23). With 
this scheme, more than one MMU can be selected to receive a given com­
mand. This configuration is assumed in subsequent programming examples 
in this chapter. 

Table 9.2 lists all the MMU commands. These commands fall into two 
basic categories: read/write commands and set/reset commands. 

The read/write MMU commands are used to read or write the MMU's 
internal registers. Special input instructions are used to read MMU register 
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TABLE 9.2 MMU COMMANDS 

Opcode 

Read/Write commands 
Segment descriptor registers 

08 
09 
OA 
OB 
OC 
OD 
OE 
OF 

Control registers 
00 
01 
20 

Status registers 
02 
03 
04 
05 
06 
07 

Set/Reset commands 
Segment descriptor registers 

15 
16 

Violation status registers 
11 
13 
14 

Reserved 
10 
12 
17-1F 
21-FF 

The Z801 0 Memory Management Unit 

Operation 

Read/Write Base Field in Descriptor 
Read/Write Limit Field in Descriptor 
Read/Write Attribute Field in Descriptor 
Read/Write Descriptor (all fields) 

Chap. 9 

Read/Write Base Field and Increment SAR 
Read/Write Limit Field and Increment SAR 
Read/Write Attribute Field and Increment SAR 
Read/Write Descriptor and Increment SAR 

Read/Write Mode Register 
Read/Write Segment Address Register 
Read/Write Descriptor Selector Counter Register 

Read Violation Type Register 
Read Violation Segment Number Register 
Read Violation Offset (high-byte) Register 
Read Bus Cycle Status Register 
Read Instruction Segment Number Register 
Read Instruction Offset (high-byte) Register 

Set All CPU -Inhi bi t Flags 
Set All DMA-Inhibit Flags 

Reset Violation Type Register 
Reset SWW Flag in VTR 
Reset FATL Flag in VTR 

Not assigned 
Not assigned 
Not assigned 
Not assigned 

contents to the CPU; special output instructions are used to write into MMU 
registers from the CPU. The mode register, segment address register, descrip­
tor selection counter register, and all the segment descriptor registers can be 
read or written with these commands. The status registers can be read only. 
For example, the instruction 

SOUTB %OOFC, RHO 

will load the contents of CPU register RHO into the mode register of the 
MMU that is chip selected when ADI is low (MMU #1 in Fig. 9.22). Several 
of these instructions automatically increment the SAR and DSC pointers 
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Z8001 
CPU 

A ADO-AD7 tI. >} 
f:L-_--'--_..-.--JL.----'._---l.-C-...I:\1 TO Z-BUS 

AD8-AD15 ~ MMU 

1....-___ .... " L-A_D1_+--l_--ICS #1 

'---___ AD_7 ____ 
V
-tCS 

MMU 
#7 

Figure 9.23 Simple chip select en­
coding for seven MMUs. 

into the bank of segment descriptor registers, allowing use of repeating block 
move special I/O instructions to fill the 64 descriptors. For example, the 
Read/Write Descriptor and Increment SAR command (opcode %OF) accesses 
the four bytes of a descriptor register and then increments the SAR to point 
to the next descriptor. If the data to be loaded into all 64 descriptor regis­
ters in an MMU are stored in memory as shown in Fig. 9.24, the descriptors 
could be initialized in the MMU with the following code: 

CLR 

SOUTB 

LDA 

LD 

LD 

SOTIRB 

RO 

%01 FC, RHO 

RR4, DESCRIPTORS 

RO, #256 

R1, #%OFFC 

@R1, @RR4, RO 

I clear the SAR in MMU #1 ! 

! segmented mode; DESCRIPTORS is symbolic name 

for starting address of table in memory! 

! count register! 

! I/O port address is MMU command to load de­

scriptors of MMU #1 I 

I Load all descriptors in MMU #1 ! 

Note that the six status registers are read-only, with the exception of the 
VTR, which can be reset. 

The set/reset commands are used to set or reset certain fields in MMU 
registers. For these commands, special output instructions are used, and no 
data are transferred: 

SOUTB %11 FC, RHO ! reset the VTR in MMU #1 ! 
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LOCATION 
DESCRIPTORS -

BASE ADDRESS 
HIGH BYTE 

BASE ADDRESS 
LOW BYTE 

LIMIT 

ATTRIBUTES 

BASE ADDRESS 
HIGH BYTE 

BASE ADDRESS 
LOW BYTE 

LIMIT 

ATTRIBUTES 
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LOW ADDRESS 

DESCRIPTOR 0 

DESCRIPTOR 63 

Figure 9.24 Format of data in 
memory to be loaded into an MMU's 

HIGH ADDRESS segment descriptor registers. 

The destination address is the MMU command word, and the source can be 
any arbitrary CPU register. The contents of the source register are placed 
onto the bus during T3 of the I/O cycle but are ignored by the MMU. 

The Z8010 MMU is reset by pulling its RESET input low. A reset clears the 
mode, descriptor selection counter, and violation-type registers. The con­
tents of all other registers are undefined after a reset. If CS is high while 
RESET is asserted, the master enable flag (MSEN) in the mode register is 
cleared and the MMU is disabled. The address outputs are tri-stated and the 
SUP and SEGT open-drain outputs are not driven. To enable the MMU, the 
CPU must write to the mode register and set the MSEN bit. 

If CS is low while RESET is asserted, the MSEN bit in the mode regis­
ter is set and the translate bit (TRNS) is cleared, thereby enabling the MMU 
but putting it in the transparent mode. The logical address inputs are passed 
directly through to the physical address outputs without translation. One 
MMU in a system should be reset in this manner so the CPU can access mem­
ory and execute an initialization routine. The initialization routine would be 
in absolute memory locations in memory (that is, the initialization routine is 
not relocatable). The initialization routine should include commands to pro­
gram the system's MMUs. 

MULTIPLE MMU SYSTEMS 

The architecture of the Z8010 MMU supports system configurations that 
include more than one MMU. Multiple MMUs can be used to support all 128 
possible segment numbers rather than the 64 segments managed by one 
MMU, or to support multiple translation tables in a multitasking system. 
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A single-MMU system is restricted to handling only 64 logical segment 
numbers-either segments 0-63 or segments 64-127. If the CPU generates a 
logical address with a segment number outside the range handled by the 
MMU, the MMU remains in the quiescent state and no physical address is 
output to memory. Single-MMU systems require external hardware to detect 
erroneous segment numbers outside the range handled by the MMU and 
generate SEGT and SUP signals if an illegal segment number is encountered. 

A two-MMU system would be capable of handling all 128 segment 
numbers from the Z8001 CPU. The URS flag in the mode register is used to 
determine which MMU handles which segment numbers. Figure 9.25 is a 

Z BUS 

16 ~" 
........ 

RESET 24 

-~- 16 ADo-AD15 
BUSACK 

8 ADa-AD15 BAa-BS15 

7 SNo-SNs 
Z8001 

CPU 4 STo-ST3 

4 I CNTL 
r-- SEGT 

-;:z BAo-BA7 8 ADo-AD7 
BUSREQ I 

BRQ 

BAI 
16 ADo-~AD15 BAa ~BA15 

7 SNo-SNs 8 ADa-AD15 
Z8016 

DMA 4 STo-ST3 Z8010 16 K BA16-BA23 7 SNo-SNs MMU 
4 CNTL #1 

EOP 4 STo-ST3 

r-- MMU SYNC 4 CNTL 
SUP -~ CS SEGT I----RESET 

RESET 

DMASYNC 

I' 
8 ADa-AD15 

f Z8010 
16 7 SNo-SNa MMU 

#2 ~ -
4 , STo-ST3 

4 CNTL 
SUP 

AD2 
CS SEGT -
RESET 

DMASYNC 

Figure 9.25 Dual-MMU system. 
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block diagram of a dual-MMU system with a Z8016 DMA controller. When a 
reset occurs, MMU #1 enters the transparent mode 'and MMU #2 is disabled. 

Additional MMUs can be added to the system to implement multiple 
translation tables. The MST and NMS flags in the MMU's mode registers 
allow separate address translation tables for system-mode and normal-mode 
operations. Furthermore, separate translation tables for different users' 
tasks could be built in separate MMUs, and the appropriate MMUs enabled or 
disabled with the MSEN flag as part of the task switching process in the 
operating system. Alternatively, one MMU could handle all users' tasks and 
be completely reprogrammed during the task switching process. Thus a 
trade-off must be made between the number of MMUs in the system and the 
frequency of reprogramming each MMU. 

THE MMU AND MEMORY ACCESS TIME 

During a memory access, the Z8001 CPU outputs the segment-number por­
tion of the logical address early in the machine cycle. (In fact, the segment 
number is emitted during the last timing state of the preceding cycle, as dis­
cussed in Chapter 5.) This allows the MMU to use the segment number to 
select the appropriate segment descriptor register before the offset portion 
of the address is available. Later, in T1 of the memory access cycle, the CPU 
outputs the offset address. The MMU adds the upper byte of this offset to 
the base address in the segment descriptor register to yield the physical ad­
dress while checking the status lines with the segment's assigned attributes. 
This addition process does take some time, of course, so there is some delay 
between when the CPU issues the logical offset address and the MMU out­
puts a valid physical address. This delay shortens the memory access time 
for the transaction. Furthermore, the rising edge of AS from the CPU no 
longer indicates a valid physical memory address; a "delayed" address strobe 
may be needed to indicate a valid address at the memory control logic and 
the hardware to generate this delayed address strobe added to the system. 

MMUs AND VIRTUAL MEMORIES 

When a system has a physical memory address space that is smaller than its 
logical address space it is called a virtual memory system. In a virtual mem­
ory system, operating system software, memory management hardware, and 
a secondary storage device, such as a disk, are used to make physically ad­
dressable memory appear larger than it really is for users' programs. All the 
segments for a particular users' program might not fit into memory at any 
one time. Segments that are "missing" in memory are so marked in the 
memory manager; for the Z8010 MMU, the CPU-inhibit flag could be used. 
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A reference to such a segment would cause a trap; the trap service routine 
would move the "missing" segment from the disk to memory, swapping out 
some segment already in memory by writing it to the disk. The MMU is re­
programmed to reflect this change, and the users' program is restarted at 
the instruction that caused the trap. All of this memory manipulation would 
be transparent to the user executing an applications program; thus the sys­
tem would appear to each user as having a physical memory address space as 
large as the logical address space. 

In a virtual memory system, the operating system must keep track of 
which segments have been used, how often, and in what way. A segment 
that has not been referenced at all since last being loaded into memory is a 
likely candidate for removal from physical memory when another segment 
must be swapped into memory from the disk. The most frequently accessed 
segments should be kept in memory at all times if possible. The REF and 
CHG flags in the MMU's segment descriptor registers can aid in this process. 

However, the Z8001-Z8010 combination does not completely support 
virtual memory implementations. If the Z8001 references a segment that 
does not exist in physical memory, the MMU will respond with active SEGT 
and SUP signals. In the case of a memory write, the SUP signal can be used 
to block the memory access, thereby protecting the integrity of memory 
contents. However, the Z8001 will complete the execution of the current 
instruction before recognizing the segmentation trap request. The critical 
case occurs when the CPU is executing an arithmetic or logical instruction 
where the source is in memory but the destination is a CPU register, such as 

ADD RO, DATA 

where DATA is the symbolic name for some memory location. If the fetch 
to the location called DATA causes an MMU violation and trap request, the 
instruction will be completed before the trap is recognized and processed. 
Even though a suppress is sent to .memory, the CPU will read something on 
the bus during T3 of the data memory access and add whatever is read to the 
contents of register RO. Thus the contents of CPU registers can be corrupted. 

However, true virtual memory systems can be implemented with the 
Z8001 and Z8010 by adding additional hardware to the system. This extra 
hardware would need to force a predetermined value on the bus whenever an 
MMU violation occurs, as indicated by the SUP signal. The value placed on 
the bus would depend on the type of instruction being executed. For ex­
ample, if all O's were forced on the bus during the data fetch for the ADD in­
struction described above, the contents of RO would not be corrupted, and 
the service routine could force a restart at that instruction after making the 
appropriate changes to physical memory and the disk. In the case of a viola­
tion during an IF1 cycle, the extra logic could force the opcode for a NOP 
instruction onto the bus. 
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(Another upward-compatible member of the Z8000 family of proces­
sors, the Z8003, has an instruction abort feature that permits the imple­
mentation of virtual memory systems without this additional hardware. In 
Z8003-based systems, the memory manager can force the CPU to abort the 
execution of an instruction, thereby protecting the integrity of CPU registers. 
This abort sequence leaves the Z8003 CPU in a well-defined state, allowing a 
software recovery. Thus the Z8003 is called a Virtual Memory Central Pro­
cessing Unit.) 

Within a system, memory segments are continuous blocks of physical 
memory with sizes varying from 256 bytes to 64K bytes. If a virtual mem­
ory system services many tasks, segments of widely ranging sizes may be 
swapped into and out of physical memory. Whatever procedure is used to 
control this swapping process, "holes" inevitably develop in physical mem­
ory between segments (that is, areas of memory not assigned to any segment 
and not big enough to form another segment). Occasionally, the memory 
management software may need to coalesce several of these "holes" into a 
useful block of memory by reassigning existing segments to new physical ad­
dresses. In general, this is a difficult task that can consume considerable 
execution time. 

To aid in this process, most virtual memory systems divide physical 
memory into sections called pages. Pages are fixed-size blocks of memory 
(as opposed to segments, which are of variable size) and typically range from 
tens to hundreds of words, depending on system requirements. Paging does 
require a large investment in hardware and software, however, since reloca­
tion, property, and usage data must be maintained for each page. 

The Z8001 and Z8010 do not support paging directly in their architec­
ture. However, paging can be designed into a Z8001 operating system, 
thereby realizing the advantages of both memory paging and memory seg­
mentation. If paging is designed into a Z8001-Z8010 system, page sizes of 
some multiple of 256 bytes are easiest to implement, since each segment 
could then contain an integral number of pages. 

[Another memory management unit, the Z8015 Paged MMU (PMMU), 
has been designed for use with the Z8003 CPU in virtual memory systems. 
Each Z8015 PMMU can manage 64 2048-byte memory pages. The Z8015 
generates the instruction abort signal to the Z8003 CPU if an access is made 
to a page that is not present in main memory.] 
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Extended Processor Units 

Additions can be made to the basic instruction set of the Z8000 micropro­
cessors through the use of Extended Processor Units (EPUs). An Extended 
Processor Unit is an LSI device dedicated to performing complex, time-con­
suming tasks in order to unburden the CPU. Typical tasks suited for imple­
mentation in EPUs include floating-point arithmetic, data base management, 
graphics support, networking, and communications interfaces-in short, any 
computing task that might be performed in dedicated hardware. Up to four 
EPUs can be included in a Z8000-based system. 

EPUs perform their tasks on data resident in their internal registers. 
The CPU is responsible for moving data into and out of the EPUs and for in­
structing the EPUs as to what operations are to be performed. Special in­
structions called extended instructions are processed by the EPUs; when the 
CPU encounters an extended instruction it performs any specified data trans­
actions, but otherwise assumes that the instruction will be recognized and 
handled by an EPU. Thus by adding EPUs to a system, the instruction set is 
expanded to include the extended instructions applicable to the EPUs used, 
thereby boosting the processing power of the whole system. 

CPU-EPU I NTE R FACE 

Extended Processor Units connect directly to the Z-bus; no extra external 
logic is needed to interface an EPU to a Z8000-based system. As the CPU 
fetches and executes instructions, the EPUs monitor the bus. When an ex-
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DEDICATED 
EPU 

MEMORY 

tended instruction is encountered, the appropriate EPU responds by execut., 
ing the instruction; this may involve having the EPU send or receive data or 
status information on the address/data bus during a bus transaction. Prote<>" 
tion against overlapping instructions is provided by the STOP signal. "S"N)'P 
is an EPU output that is pulled low if the EPU is requested to perform an 
operation before ,completing a previous operation. An active STOP input to 
the CPU puts the processor in a state wherein it executes refresh cycles con­
tinuously until STOP returns high, effectively halting the processor. Figure 
10.1 is a blook diagram of a Z8000 system with four EPUs. 

The CPU and EPUs work together like one processing unit. The CPU 
supplies all the address and status information for fetching instructions and 
reading or writing data to memory. The EPUs monitor these transactions, 
accepting or supplying data as required. Each EPU must continuously mon­
itor the address/data bus and its associated control and status lines from the 
CPU to know when to participate in EPU-to-memory or EPU-to-CPU data 
transactions. A system with EPUs can be thought of as a system whose pro­
cessor consists of 1 + N devices, where N is the number of EPUs in the 
system. Thus EPUs provide a means of adding power to the system's pro­
cessor in a modular fashion. 

EXTENDED INSTRUCTIONS 

Instructions with an opcode whose first word has an upper byte of OE, OF, 
4E, 4F, BE, or 8F (hexadecimal) are extended instructions reserved for use 
by an EPU. All extended instru,ctipns have opcodes that are two words long. 
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If the EPA bit in the CPU's flag and control word (FCW) is a 1 and an ex­
tended instruction opcode is encountered, the CPU will assume that there 
are EPUs in the system and treat the instruction accordingly, as described 
below. If the EPA bit in the FCW is 0, indicating that there are no EPUs in 
the system, encountering an extended instruction opcode will cause an ex­
tended instruction trap. If desired, the action of an EPU can be simulated in 
software in the extended instruction trap service routine. This software trap 
mechanism facilitates the design of systems in which EPUs are not present 
initially but may be added later. The "extended" function is included in the 
operating system software as the extended instruction trap service routine; 
this routine can be deleted when the EPU is added to the system and the 
EPA bit set to a 1. This change would be transparent to users' applications 
executing on the system. 

If EPUs are present in the system and the EPA bit in the CPU is a 1, the 
CPU is responsible for delivering instructions and data to the EPUs. There 
are four kinds of extended instructions: instructions that transfer data be­
tween an EPU and memory, instructions that transfer data between an EPU 
and the CPU, instructions that transfer status information between an EPU 
and the CPU's flag and control word, and instructions that specify internal 
operations in an EPU. 

In order to determine which transactions to participate in, an EPU must 
monitor the address/data bus and its associated status and control signals. 
When the CPU fetches the first word of an instruction, as indicated by IF1 
status on the STO-ST3 lines, each EPU examines the instruction's opcode. 
If an extended instruction is found, each EPU checks a 2-bit identification 
field in the opcode to see if the instruction is intended for that particular 
EPU. Thus up to four EPUs can be interfaced to a single CPU. The EPU 
selected must also capture the second word of the extended instruction's op­
code; the fetch of the second word of the opcode is the next nonrefresh CPU 
transaction. From this two-word opcode, the EPU determines if it will parti­
cipate in any subsequent data transactions and, if so, how many transactions 
are involved. 

If the extended instruction calls for a data transfer between an EPU and 
memory, the CPU supplies the address, status, and control information for 
each transfer. During the memory accesses, the CPU will tri-state its ADO­
AD15 lines while DS is low, so that the EPU can send or receive data on the 
bus. The CPU can use the indirect register, direct address, or indexed ad­
dressing modes to calculate the memory addresses for the transactions, as 
specified by the instruction. The EPU must supply the data (if the R/W line 
is low, indicating a memory write) or capture the data (if the R/W line is 
high, indicating a memory read) just as if it were part of the CPU. EPU-to­
memory data transactions are always word transfers (B/W is low). Up to 16 
words can be transferred between an EPU and memory as the result of a 
single extended instruction, as specified in the instruction's opcode. 
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If the instruction involves a data transfer between the EPU and the 
CPU's general-purpose registers, the CPU controls the transaction and a 1110 
code (CPU-EPU transfer status) is emitted on the STO-ST3 lines. The timing 
of the transaction is identical to a three-clock-cycle memory access, except 
that no address is emitted by the CPU. CPU-EPU transactions are always 
word transfers; up to 16 words can be transferred as a result of an extended 
instruction. 

Similarly, status information can be transferred between an EPU and 
the lower byte of the CPU's FCW (the CPU flags). CPU-EPU status transfers 
are always byte transfers and occur on the ADO-AD7 bus lines. The con­
tents of CPU register RO are destroyed during this transaction. This type of 
transaction is useful when the program must branch on the results of an EPU 
operation. 

Extended instructions can also specify internal operations for EPUs, 
wherein the EPU operates on data in its internal registers. No data trans­
actions are involved in the execution of such an instruction. The CPU can 
continue to fetch and execute subsequent instructions while the EPU is in­
volved with an internal operation. Thus processing can proceed simulta­
neously in both the CPU and the EPUs. If a second extended instruction for 
a particular EPU is fetched before an earlier instruction for that EPU has 
completed execution, the EPU must activate the STOP line, stopping the 
CPU. The EPU releases the STOP signal when it completes execution of the 
first instruction, and execution proceeds as if the CPU were not temporarily 
halted. The STOP line provides synchronization between the CPU and the 
EPUs, preventing EPUs from missing instructions because they were busy 
executing earlier instructions. Of course, all the EPUs in a system may be 
executing their own internal operations simultaneously. 

In order to monitor instruction fetches and participate in data trans­
fers, the EPUs must also monitor the BUSACK CPU output to verify that 
transactions are initiated by the CPU. EPUs will ignore all bus transactions 
while BUSACK is low. 

Thus EPU instructions are processed "in-line" with Z8000 instructions, 
providing parallel processing capability while eliminating the system software 
and bus contention problems inherent in other multiprocessor and co-proces­
sor schemes, such as master-slave arrangements. The processing power of a 
Z8000-based system can be extended in an upward-compatible manner by 
the addition of EPUs. 

STOP TIMING 

The STOP input to the CPU is used to synchronize EPU and CPU execution, 
as described above. A low level on the STOP input forces the CPU into a 
state wherein it continuously executes refresh machine cycles. The STOP in-
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put is sampled by the CPU on the falling edge of the clock in the clock 
period preceding an IF1 cycle, as shown in Fig. 10.2. If STOP is low, a 
continuous stream of refresh cycles is entered after T3 of the instruction 
fetch. During each of the refresh cycles, STOP is sampled again on the falling 
edge of the clock in the middle of T3. When STOP is found to be high, one 
more refresh cycle is executed and then any remaining T states in the IF1 
cycle are completed. From there, execution proceeds normally. Bus re­
quests are honored while STOP is active. 

If the EPA bit in the CPU's FCW is set, the STOP input also is sampled 
on the falling edge of the clock preceding the fetch of the second word of an 
extended instruction. (The CPU recognizes that it is processing an extended 
instruction after the first word of the instruction is fetched.) Thus the STOP 
line can be activated by an EPU if the CPU fetches an extended instruction 
for that EPU before the EPU has finished processing an earlier extended 
instruction. 

The continuous refresh operation while STOP is low does not use the 
rate counter in the CPU's refresh register. The row counter is incremented 
by two after each refresh cycle. Thus refreshes do not occur on demand; 
instead, a new refresh is emitted every three clock cycles. Therefore, higher­
than-normal heat dissipation may occur in dynamic memories while STOP is 
low. Long and frequent stops can be avoided by writing program code so 
that extended instructions for a given EPU are not closely spaced. 

STOP 

>-----.----i 0 al------~D a 

AS 

AS 

STOP 

CLOCK ------' 

I--T-' -.;"",;H~ 
Figure 10.3 Z8000 single-step circuit using the STOP input. 
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The STOP input also can be used to externally single-step a Z8000 
CPU. A circuit for single-stepping the CPU one instruction ata time is illus­
trated in Fig. 10.3. The cross-coupled NOR gates act as a switch debounce. 
Each time the switch is pulled from the 0 position (STOP) to the 1 position 
(STEP), STOP is forced high for one machine cycle. This allows th~ CPU to 
exit the "stopped" state and complete execution of the current instruction. 
STOP will return low before the next instruction is fetched, so that instruc­
tion will not execute until the switch is toggled again. Thus single-step exe­
cution is realized. However, if there are dynamic memories in the system 
that use the Z8000's automatic memory refresh capabilities, heat dissipation 
problems may occur due to the large amount of time spent in the "stopped" 
state. 
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A Z8000 Design Example 

A small but powerful single-board microcomputer system can be developed 
using the Z8002 microprocessor, Z80-family peripherals, PROMs, dynamic 
RAMs, and some TTL support devices. Figure 11.1 is a block diagram of a 
system that includes up to 32K bytes of PROM, 32K bytes of RAM, two 
Z8420 Parallel I/O Controllers (PIOs), a Z8430 Counter/Timer Circuit 
(CTC), and a Z8440 Serial I/O Controller (SID). (The PIO, CTC, and SID 
are all Z80-family peripherals. The Z80 is an 8-bit microprocessor.) The 
two PIOs provide four 8-bit bidirectional parallel ports with handshake con­
trol. Two independent full-duplex serial I/O channels are implemented with 
the SID. The CTC includes four 8-bit counter/timers for simple counting 
tasks and generation of the baud-rate clocks for the serial channels. A set of 
eight switches that can be read by the CPU is included as a fifth peripheral 
device. A crystal-controlled timing circuit provides the timing signals for the 
system's components. 

(The system of Fig. 11.1 is similar in structure to the Zilog Z8000 De~ 
velopment Module. The Z8000 Development Module is a single-board 
microcomputer intended to support evaluation of the Z8001 and Z8002 
microprocessors. A monitor program, stored in EPROM, is available for this 
product to aid in the debugging and evaluation of users' applications 
programs.) 

CLOCK GENERATION 

The Z8001 and Z8002 require a continuously running clock with a fre­
quency between 500 kHz and 4 MHz; the Z8001A and Z8002A require a 
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clock frequency between 500 kHz and 6 MHz. Most Z8000 applications call 
for a high-performance system with a clock frequency approaching the 
maximum limit. Clocks usually are generated by dividing the output of a 
crystal oscillator using flip-flops (as in Fig. 1.14) and/or TTL counter chips. 
For example, a divide-by-5 circuit can be used to generate a 3.93-MHz clock 
from a 19.6608-MHz crystal, as illustrated in Fig. 11.2. (19.6608 MHz is a 
frequency commonly used to generate baud clocks for serial channels.) The 
Z8000 CPU's clock input is not TTL compatible because of its level, rise­
time, and fall-time requirements. An active driver circuit such as the one il­
lustrated in Fig. 1.14 is required for the CPU clock. 

CPU BUS BUFFERING 

As with most MOS devices, the Z8000 CPU outputs have limited drive capa­
bility. The Z8000 microprocessors sink a maximum of 2.0 rnA for output 
signals and source a maximum of 250 J.1A for input signals while maintain­
ing standard TTL levels (0.4 V maximum for a logical 0, 2.4 V minimum for 
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a logical 1). Thus a Z8000 CPU output can drive only one standard TTL 
load or five LS-TTL loads. Output delays are specified for a 50-pF load and 
increase by approximately 0.1 ns/pf for additional capacitive loading. Since 
the address/data bus and its control and status signals usually are propagated 
to several memory and I/O control devices, all but the simplest of systems re­
quire buffering of the CPU outputs. 

The 16 address/data bus signals are bidirectional. Address and data in­
formation are CPU outpllts during write operations; addresses are CPU out­
puts and data are CPU inputs during read operations. Thus buffers for the 
address/data bus must be bidirectional. Two approaches are possible: have 
the buffers for the bus point away from the CPU as a default (that is, treat 
the CPU pins as outputs and drive the system bus with the buffer), with the 
buffer direction reversed (that is, pointing toward the CPU) only during data 
reads, or have the buffers point toward the CPU as a default and drive the 
system bus only when the CPU outputs addresses and during data writes. 
The first choice, with the buffers pointing away from the CPU as a default, 
is preferable for two reasons. First, the CPU pins will not have to sink cur­
rent from the buffer as often, since the buffer will normally treat the CPU 
pins as outputs, thereby minimizing heat dissipation in the CPU. Second, 
possible bus contention problems when using an in-circuit emulation device 
for system debug will be avoided. (Bus contention problems occur when 
both the emulation hardware and target system's bus buffers are simulta­
neously driving the address/data bus lines to the CPU.) Thus the bidirec­
tional driver for the address/data bus should drive the CPU signals onto the 
system's bus except during data reads, as indicated by a high on the R/W pin 
and an active DS signal. 

If bus sharing is allowed in the system, the CPU must relinquish control 
of the bus when a bus request is made. The bus buffer must provide for 
other devices, such as a DMA controller, driving the address/data bus when­
ever BUSACK is low. Therefore, a bus buffer whose outputs can be tri­
stated is required. 

Possible choices for address/data bus buffering include the SN74LS243 
Quad Non-Inverting Transceiver (Fig. 11.3) and the SN74LS245 Octal Non­
Inverting Transceiver (Fig. 11.4). The transceivers are controlled by the 
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Figure 11.3 Address/data bus buffering using SN74LS243 transceivers. 
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Figure 11.4 Address/data bus buffering using SN74LS245 transceivers. 

TABLE 11.1 CONTROL SIGNALS FOR ADDRESS/DATA 
BUS BUFFERING 

------
R/W DS BUSACK 

H H L Enable Receiver 
(input Data into CPU) 

H H H 
Enable Transmitter 
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H L H 
H L L (output Address or Data from CPU) 

L X X Disable Transceiver 

BUSACK, R/W, and DS CPU outputs, as described in Table·l!.!. The trans­
mit function of the driver is enabled normally, the receive function is 
enabled during data reads (R/W high, DS low), and the drivers are tri-stated 
when BUSACK is active. 

The bus control and bus status CPU outputs also are usually propagated 
to several memory and I/O controllers and, therefore, must be buffered. 
These signals are always CPU outputs, so a unidirectional driver is adequate. 
If bus sharing is allowed in the system, the CPU must be able to relinquish 
control of these signals as well as the address/data bus. A tri-state driver that 
can be disabled when BUSACK is low is required. 

An SN74LS365, SN74LS367, or SN74LS244 tri-state buffer would be 
adequate for driving the AS, DS, MREQ, R/W, N/S, and B/W CPU outputs. 
Figure 11.5 shows control signal buffering with an SN74LS365 device. 

FROM CPU 

os R/W 
AS MREQ N/S B/iN 

AS MREQ N/S B/iN 
OS R/iN 

TO SYSTEM 

Figure 11.5 Control signal buffer­
ing using an SN74LS365 buffer. 
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Figure 11.6 Status decoding with an 
SN74LS42 decoder. 

The STO-ST3 status lines typically drive only one circuit-a decoder 
that generates the status signals for memory and I/O accesses. A 4-to-16 
decoder such as the SN74154 or two 3-to-8 decoders such as the SN74LS138 
can be used to decode all 16 possible status conditions. For simple systems 
without EPUs, only the first 10 status codes need to be decoded. An SN74-
LS42 l-of-l0 decoder can be used, as in Fig. 11.6. If none of the SN74LS42 
decoder outputs are active during a transaction, a program memory access is 
assumed. 

If bus sharing is allowed, the STO-ST3 status signals may originate 
from devices other than the CPU. Several decoding schemes are possible. 
For example, entirely separate decoders might be used for CPU and DMA 
operations, and the BUSACK signal used to enable the appropriate decoder. 
Alternatively, the STO-ST3 status signals from the CPU can be driven by a 
tri-state buffer that is disabled when BUSACK is active, allowing DMA 
devices to control those status lines before they are decoded. 

The remaining CPU outputs, BUSACK and MO, need to be buffered if 
they are to drive more than one TTL load. Any unidirectional driver is ade­
quate. For the Z8001, the segment number outputs require a unidirectional 
driver that can be tri-stated when BUSACK is low. 

ADDRESS LATCHING 

Most semiconductor memories demand that their address inputs remain 
fixed throughout a memory access; most I/O devices require that their chip 
select inputs (which are generated by decoding the address) remain active 
throughout an I/O access. As a result, the Z8000 CPU's address/data bus 
must be demultiplexed in most systems. Often, systems will latch the ad­
dress at the beginning of each bus transaction and propagate the latched 
address to all the memory and I/O controllers. AS is the obvious choice for 
the control of the address latch. The falling edge of AS cannot be used to 
clock edge-triggered latches since addresses are not guaranteed to be valid 
when AS goes low. The rising edge of AS can be used to latch addresses, but 
addresses are valid before AS rises, so this would delay address availability 
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ADo-AD15 (FROM CPU) 
-----

AS-I> LE 

LS373 LS373 

Figure 11.7 Address latching with 
LAo-LA15 (TO SYSTEM) SN7 4LS3 7 3 latches. 

for memory and I/O controllers. Transparent latches that propagate their in­
puts to their outputs when the control signal is low but hold the outputs 
fixed when the control signal goes high are a better choice. The rising edge 
of AS could then still be used to signal valid address information at the mem­
ory and I/O controllers themselves. 

Figure 11.7 shows two SN74LS373 Octal Transparent Latches used for 
address latching. Depending on the system configuration, these latches 
might be tri-stated when BUSACK goes low. The latched address (LAO­
LA15) is propagated to all memory and I/O control logic. 

MEMORY INTERFACING 

Most microprocessor systems use both volatile (RAM) and nonvolatile 
(ROM, PROM, or EPROM) memories for program and data storage. Since 
the Z8000 CPUs read program status information after a reset from locations 
0002, 0004, and (for the Z8001 only) 0006, nonvolatile memory usually 
occupies the lowest address locations in the system. 

The Z8000 interface to nonvolatile memories is straightforward, as il­
lustrated in Chapter 3. The single-board system of Fig. 11.1 uses 2K X 8 
PROMs, addressed by LA1-LA11. LAO can be ignored, since Z8000 systems 
always read a full word during memory reads. The upper address bits are 
decoded to select particular memory devices using SN74LS138 3-to-8 
Decoders or similar devices. LA15 is used to distinguish between the 32K­
byte PROM memory space and the 32K-byte RAM memory space. The ac­
cess time for nonvolatile memories is usually longer than the default memory 
access time for a Z8000 CPU, so wait states must be added for each PROM 
access. 

Dynamic RAMs such as the 4116 16K X 1 RAM can be used for read/ 
write random-access storage. Most dynamic RAMs use address multiplexing 
to reduce the package pin count. For example, standard 16K X 1 dynamic 
RAMs require 14 address inputs. The address is input through seven pins on 
each memory chip in two steps. First, seven address signals are placed on the 
memory's address inputs and a clocking signal called row address strobe 
(RAS) is lowered. Then the other seven address lines are routed to the mem­
ory's address inputs and a second clocking signal called column address 
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FROM ADDRESS LArCHES 
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CLOCK 

TO RAM ADDRESS INPUTS 

Figure 11.8 Address multiplexing for a dynamic RAM interface. 

strobe (CAS) is lowered. Memory refresh is implemented with a cycle having 
an active RAS but no CAS. An entire row of memory cells (that is, all the 
memory locations having seven common address bits) are refreshed by one 
refresh operation. Interfacing such devices to Z8000 systems involves multi­
plexing the address and generating the RAS and CAS signals. 

For the system of Fig. 11.1, LA1-LA14 are used as the address inputs 
to the dynamic RAMs, with LA15 selecting between the PROM and RAM 
memory areas. LAO is used only during byte accesses to select one byte of 
the addressed word. Two 74LS157 Quad 2-to-1 Multiplexors can be used to 
route the LA1-LA14 address lines into the seven address inputs of the RAMs 
(Fig. 11.8). MREQ is synchronized with the rising edge of the CPU clock to 
provide the control signal to the multiplexor. 

The RAS and CAS strobes must be timed carefully with respect to the 
latched address and multiplexor control signals. MREQ can be used as RAS 
and DS as CAS; this would, however, considerably shorten the memory ac­
cess time. The access time would be the delay between DS going low and 
the time that valid data must be valid on the bus in T3 (about 205 ns for a 
memory read in a 4-MHz system). To allow a longer access time, some 
synchronous TTL logic can be used to generate the strobes. 

One possible configuration is given in Fig. 11.9. RAS goes low on the 
falling edge of the CPU clock in the middle of T1, after AS goes low. (In a 
4-MHz system, the address emitted by the CPU is guaranteed to be valid 
within 100 ns after the start of T1; therefore, the address is valid at least 25 
ns before RAS'is active. Of course, delays through intervening latches and 
buffers must be taken into consideration in an actual system design to assure 
that the address is valid before an active RAS.) RAS is generated from an 
SN74LS109 Dual J-K Flip-Flop triggered by an inverted CPU clock signal 
and stays low for two clock periods. The CAS is generated by an SN74LS139 
Dual 1-of-4 Decoder. One decoder is used to produce CAS by ANDing 
MUX-S, LA15, and a high RjW line or low DS line. The other decoder con­
trols the routing of CAS to the even or odd byte bank of memory. Both 
banks are selected except during byte writes, when LAO is used to select 
only the even or odd bank. During a read operation, CAS becomes active at 
the beginning of T2 when MUX-S goes high (that is, on the risihg edge of the 
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Figure 11.9 RAS and CAS signal generation. 

clock after MREQ is active). The second seven address lines are routed to 
the memory inputs at the same time. During writes, CAS is delayed until DS 
goes low, guaranteeing that the data to be output are valid before CAS is 
active. The SN7 4LS7 4 Flip-Flop stretches CAS during write operations, as 
required by slower memories. The timing of RAS and CAS for read and 
write operations using this circuit is illustrated in Fig. 11.10. CAS is gener­
ated only during memory accesses (that is, only when MREQ is active). 

PERIPHERAL INTERFACING 

Z-Bus-compatible peripherals are available for use in Z8000-based systems, as 
described in Chapters 12 and 13. However, other peripherals also can be in­
terfaced to the Z-Bus. For example, Z80-family peripherals are easily con­
nected to Z8000 systems with some TTL logic. Z80 peripherals are all byte 
peripherals; since they are capable of returning a vector during an interrupt 
acknowledge sequence, they are usually connected to the lower half of the 
Z-Bus when used in Z8000 systems. 

Figure 11.11 shows the timing of Z80 instruction fetch, I/O read, I/O 
write, and interrupt acknowledge cycles. An active Ml signal normally indi­
cates an instruction fetch, but when used in conjunction with IORQ (I/O re-



Peripheral Interfacing 199 

CLO CK 

TUS STA 
(B/W 

5To 
, N/5, 
-5T3) 

-AS 

M--REQ 

DS 

T 1 .... 

I -

.. .. 2 .. .. . .. 3 ... T T 

I l 

READ \ \ WRITE 

RAS 

Q2 

MU x-S 

CAS 

/ 

\ / 

READ\ \WRIT~ V 
I I 

Figure 11.10 Timing of the RAS and CAS signals for dynamic RAM memory ac­
cesses. 

qest) it indicates an interrupt acknowledge. An active 10RQ signal without 
an active Ml, indicates an I/O access. RD is used to determine the direction 
of a data transfer. Interfacing Z80 peripherals to the Z-Bus involves gener­
ating the Ml, 10RQ, and RD signals to the peripherals from the Z-Bus 
control and status lines. Four different kinds of operations must be 
considered: I/O writes, I/O reads, interrupt acknowledges, and interrupt 
returns. 
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Figure 11.12 Interfacing Z80 peripherals to the Z-Bus. 

One possible implementation is shown in Fig. 11.12. An SN74LS138 
is used to decode address bits LA3, LA4, and LA5 to generate chip selects to 
the system's I/O devices. For the system of Fig. 11.1, six peripherals can be 
accessed: the four Z80 peripherals, the switches, and a special port used to 
simulate the Z80's interrupt return process (called the RETI port). If more 
peripherals were in the system, the upper bits of the address would be in­
cluded in the I/O port decode logic. LAO cannot be decoded as part of an 
I/O address, however; since this system's peripherals are all byte peripherals 
on the lower half of the address/data bus, they must all have odd port ad­
dresses. The I/O chip enable logic is activated only during I/O cycles, as 
indicated by standard I/O status from the STO-ST3 status decoder (IORQ 
low, where IORQ is generated by the status decoder in Fig. 11.6). 

Read and write operations are straightforward. A write operation to 
The peripheral occurs when IORQ' is low and RD is high; a read from the 
peripheral occurs when both IORQ' and RD are low. The I/O status line 
from the status decoder (IORQ) is synchronized with the CPU clock and 
gated with DS to generate IORQ' to the Z80 peripheral. The RD signal is 
generated from the Z8000 CPU's R/W status line. (The Z80 peripherals are 
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addressed when LA5 is low in this example.) The timing diagram for Z80 
peripheral reads and writes using this circuit is illustrated in Fig. 11.13. 

Some additional logic is needed to make the Z80 peripherals compat­
ible with the Z8000 interrupt structure. The interrupt outputs from the 
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peripherals are used to drive a Z8000 CPU interrupt request line; priority 
among the peripherals is determined by an lEI-lEO hardware daisy chain 
similar to that of Z8000 peripherals. The Z80 CPU has no dedicated inter­
rupt acknowledge output. Z80 peripherals are acknowledged when 10RQ is 
active during an M1 cycle (Fig. 11.11). 

The circuit of Fig. 11.12 generates the M1, 10RQ', and RD signals re­
quired by the Z80 peripherals during an interrupt acknowledge cycle. VIACK 
is the appropriate interrupt acknowledge signal from the STO-ST3 status 
decoder. A timing diagram for the acknowledge cycle using this circuit is 
given in Fig. 11.14. 

At the end of the service routine for an interrupt generated by a Z80 
peripheral, the interrupt-under-service flag in the peripheral must be reset. 
The Z80 CPU's interrupt return instruction (RETI) has an opcode of ED4D 
(hex); a Z80 fetch of this instruction takes two consecutive instruction fetch 
cycles. A Z80 peripheral will monitor the data bus while under service and 
recognize when the RETI instruction is fetched from memory. When the 
"ED4D" code is sensed, the interrupt-under-service latch in the peripheral is 
reset. 

In a Z8000 system with Z80 peripherals, the Z80's RETI instruction 
fetch sequence must be simulated at the end of the peripheral's service rou­
tine with a combination of hardware and software. The necessary hardware 
is part of the circuit of Fig. 11.12. A special I/O port address, the "RETI" 

T1 T2 Tw Tw Tw Tw Tw T3 

CLOCK 

AS \J 
VIACK ~ ;-
R/W I 
DS \\.... _____ ~I 

'---
MI \~ __________________________ ~;_ 

IORQ' \'------~;-
RD 

Figure 11.14 Z-80 peripheral interface interrupt acknowledge timing. 



204 A zaooo Design Example Chap. 11 

port, is used to place an "ED" and "4D" code on the peripherals data inputs 
while manipulating the MI and RD lines to simulate Z80 instruction fetches. 
The software routine is as follows: 

01 VI, NVI ! disable interrupts! 
LOB RL1, #%EO ! load first byte of RETI opcode ! 
OUTB RETI, RL1 ! RETI is port address for I/O port used to simulate zao instruc-

tion fetch! 
LOB RL1, #%40 ! load second byte of RETI opcode ! 
OUTB RETI, RL1 ! output second byte and simulate zao I-fetch! 
EI VI, NVI ! enable interrupts! 
IRET ! end service routine! 

The two simulated instruction fetches for the Z80 RETI must be consecutive 
operations at the peripheral and, therefore, interrupts of the Z8000 CPU 
should be disabled while this sequence is executed, as shown. The timing of 
the signals to the Z80 peripherals during this simulated RETI sequence is il­
lustrated in Fig. 11.15. (In a system with bus sharing, bus requests also must 

11 12 1w 13 11 12 1w 13 
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__ ----II '­
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Z80 peripheral interface return from interrupt (RETI) timing. 
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be disabled between the two output operations that simulate the Z80 RETI 
sequence. This might require some additional hardware to gate the BUSREQ 
input to the CPU.) 

The address/data bus can be connected directly to the DO-D7 data lines 
of the Z80 peripherals. In the system of Fig. 11.1, latched address lines LA1 
and LA2 are used as the Port Select (A/B) and Control/Data (C/D) signals 
for the PIO and SIO, and as Channel Select (CSO and CS1) for the CTC. The 
interrupt outputs are all connected to the appropriate interrupt request in­
put of the Z8000 CPU. The lEI-lEO daisy chain is used to establish inter­
rupt priorities among the Z80 peripherals. 

The Z8420 PIO needs an active M1 pulse to enable its internal interrupt 
circuitry . This is accomplished by writing O's to the "RETI" port used to 
simulate the Z80 RETI instruction fetch after the PIO interrupts have been 
enabled. 

In summary, a small, powerful microcomputer system can be imple­
mented with a Z8000 CPU, memory, peripheral devices, and a small amount 
of TTL logic. Buffering of the CPU outputs is necessary in all but the small­
est systems. Interfacing the Z8000 CPU to nonvolatile memory is straight­
forward; interfacing to dynamic RAMs requires the generation of the proper 
timing strobes. If peripherals from other microprocessor families are used, 
the control signals for those peripherals must be generated from the Z8000 
CPU's bus control and status signals. Z80 family peripherals interface easily 
to Z8000 systems, largely due to the similarity in the Z80 and Z8000 inter­
rupt structures. 
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Z8000 Family Devices 

The Z8001 and Z8002 CPUs are just two members of a family of devices de­
signed to interact over the Z-Bus. Other members of the Z8000 family include 
several Z-Bus-compatible peripherals, a DMA controller, and a Z-Bus memory. 

The Z-Bus peripheral chips are powerful, multifunction devices that can 
be configured under program control for a particular application. All of the 
Z-Bus peripherals share a common interrupt structure and can be used in a 
priority interrupt or polled environment. The functions of each device are 
controlled by using I/O commands to access the peripheral's internal registers; 
each register has its own I/O port address. The Z8036 Counter/Timer and 
Parallel I/O Unit (CIO) contains three parallel ports and three counter/timers; 
it also can be used as a priority interrupt controller. The Z8038 FIFO Input/ 
Output Unit (FlO) is a byte-wide first-in/first-out buffer for interfacing asyn­
chronous devices in a single or multiprocessor system. The buffer depth is 
expandable with the Z8060 FIFO Buffer Unit. The Z8030 Serial Communi­
cations Controller (SCC) is a dual-channel serial I/O unit that supports all 
popular synchronous and asynchronous communications protocols. The 
Z8065 Burst Error Processor (BEP) provides error correction and detection 
capabilities for high-speed data transfers. The Z8068 Data Ciphering Proces­
sor (DCP) encrypts or decrypts data using the National Bureau of Standards 
encryption algorithms. The Z8052 CRT Controller (CRTC) can be used to 
control a variety of CRT displays. These peripherals each perform compli­
cated interfacing tasks, thereby unburdening the CPU and increasing system 
throughput. 

The Z8016 Direct Memory Access Transfer Controller (DTC) is both a 

206 
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Z-Bus requester and a Z-Bus peripheral. The DrC is prpgrammeq by the CPP 
via I/O operations and can interrupt the CPU li);{e a. peripheral devke, bllt, ~cts 

- - -

as a bus master when executing DMA transfers. 
The Z6132 Quasi-Static RAM is a 4K X 8Z"lllJ.~-QQll}patigl~ memory 

device that is easily interfaced to Z8000 systems, 
[Two other Z-Bus components, the Z8 single-chipmicroGomputerand the 

Universal Peripheral Controller (Upe), a slave miQfQOOmputer, ~re describ~d 
in Chapter 13.] 

Z-BUS PERIPHERAL INTERFACE 

All of the Z-Bus peripherals are byte peripherwf'? with the ex;ception qf the 
Z8052 CRT controller. Figure 12.1 illustrates the ~ignws useq tq interface 
a byte peripheral to the Z~Bus. One·half of the ~dctr~~s/dat~ b'Y,s provides up 
to 8 bits of address information for direotly addf@.ssing the peripheral '8 inter­
nal registers and an 8-bit data path for data transfers between the peripheral 
and the CPU. (Typically, the lower half gf the address/data bus js used, since 
interrupt vectors must be placed on the lower half of the bw, when w:jing vec­
tored interrupts.) Timing of the data transfers ifl coptrolled by the address 
strobe (AS) and data strobe (DS). and the direction of tra,nsf@!p is determined 
by the R/W signal (Fig. 12.2). The chip seleQt (CS) for a peripheral is decoded 
from the I/O port address during I/O accessefii and is latched interI).ally by the 
peripheral on the rising edge of AS. Resets are implemented when both the AS 
and DS inputs to the peripheral are low siffi-ultaneously. (In normal operation, 
AS active and DS active are mutually exoluaive events.) The INT, INTACK, 
lEI, and lEO signals interface the peripheral to the Z-Bus interrupt structure. 

Other signals, such as WAIT, also might be part of the peripheral-to-Z­
Bus interface, depending on the application. Some of the Z-Bus peripherals 
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Figure 12.1 Z-Bus peripheral interface signals. 
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have a clock input; the peripheral's clock does not have to be syn0hroni~ed 
with the CPU clock in any way. 

(Most of these peripherals also are available in a version that etl$ily inter­
faces to systems with separate, nonmultiplexed address and data buses~ such 
as Z80-based systems.) 

Each Z-Bus peripheral implements several functions and is programmable 
for a particular application. A peripheral may have up to 128 internal reg­
isters that can be read or written by the CPU using lIO instructions. Each 
register has its own I/O port address; thus each peripheral occupies a block 
of port addresses in the system. The' addreaa of the register being accessed 
is sampled on the peripheral's address/data bus inputs on the rising edge of 
AS. A programmable option allows the user to decide if the least signficant 
bit of the register address is an the ADO or AD! bus line. For byte transfers 
in Z8000-based systems, the value of ADO when the CPU emits the address 
determines which half of the bus will be used to transfer the byte of data. 
For example, byte peripherals connected to the lower half of the bus always 
have odd addresses. Therefore, in Z8000 systems, the least significant bit of 
the peripheral's register address should be on the ADlline, not ADO. 



PERIPHERAL INTERRUPT STRUCTURE 

If several Z-Bus peripherals share a common interrupt request line to the CPU, 
the lEI-lEO daisy chain is used to establish the relative priority of those pe­
ripherals. When one or more peripherals request the CPU's attention via an 
interrupt, the interrupt acknowledge cycle is used to select the peripheral 
whose interrupt is to be serviced and to obtain a vector or identifier word, 
as described in Chapter 6. 

Each of the Z-Bus peripheral devices can have several sources of inter­
rupt internal to that chip. For peripherals with multiple interrupt sources 
on one chip, priority is established with an lEI-lEO daisy chain internal to the 
device. This prioritization order is fixed and cannot be altered by the user. 
Figure 12.3 illustrates the Z-Bus interrupt structure for several peripherals 
sharing an interrupt line, and for one peripheral with several sources of inter­
rupts internal to that device. 

For every interrupt source on a Z-Bus peripheral there are three bits 
within the device's internal registers that control the interrupt logic. The 
Interrupt Enable (IE) bit is 'Set to enable or reset to disable that particular 
interrupt source. The Interrupt Pending (IP) bit is set when the device re­
quires servicing and reset when the interrupt is serviced. The Interrupt Under 
Service (IUS) bit indicates when the interrupt is being serviced and must be 
reset by the programmer upon completion of the service routine. 

A Z-Bus peripheral has one or more registers that hold an interrupt vec­
tor that is read by the CPU during the interrupt acknowledge cycle. Each in­
terrupt source on a device is associated with a vector and each vector can have 
one or more interrupt sources associated with it. If more than one interrupt 
source is associated with a single vector, some bits in the vector can be encoded 
to identify which source caused the interrupt. A bit called the Vector Includes 
Status (VIS) bit is used to enable or disable this encoding function. 

Each peripheral also has three programmable bits that control the inter­
rupt logic for all interrupt sources on the device. The Master Enable (MIE) bit 
is used to enable or disable all interrupt sources on the chip. The Disable 
Lower Chain (DLC) bit is used to force the peripheral's lEO output to 0, 
thereby disabling interrupts from peripherals of lower priority on the daisy 
chain. The No Vector (NV) bit is set if a vector is not to be placed on the bus 
during the interrupt acknowledge sequence. 

Figure 12.4 illustrates the interrupt daisy-chain protocol as it applies 
to the Z-Bus peripherals. An interrupt source with an interrupt pending (IP = 
1) requests an interrupt by pulling INT low if the IE bit for that source and 
the MIE bit for that device are both set, that interrupt source is not already 
under service (IUS = 0), no higher-priority device's interrupt sources are being 
serviced (lEI = 1), and an interrupt acknowledge cycle is not currently being 
executed (INT ACK = 1). After the CPU samples the active interrupt request, 
an interrupt acknowledge cycle is executed, as indicated by INT ACK going 
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low. When INTACK is active, all interrupt sources with an interrupt pending 
(the IP, IE, and MIE bits are alII's) or under service (the IUS bit = 1) hold 
their lEO outputs low. When DS goes low during the acknowledge cycle, 
only the highest-priority interrupt source with an interrupt pending (lP = 1) 
should have a high lEI input; this is the interrupt being acknowledged. The 
IP bit is reset for that interrupt source, the IUS bit is set, and, if the NV bit = 

0, the appropriate vector is placed on the bus to be read by the CPU. If the 
NV bit is 1, the peripheral's ADO-AD7 pins are left floating, allowing external 
circuitry to place a vector on the bus, if so desired. While servicing of that 
interrupt is in progress, as indicated by IUS = 1, lEO is held low, thereby dis­
abling interrupts from lower-priority devices. When servicing is completed, 
the IUS bit must be reset. The CPU resets the IUS bit by an explicit I/O 
write to the register in the peripheral that contains the IUS bit; this I/O write 
operation usually is executed immediately preceding the interrupt return in 
the service routine. (In most cases, the IP bit is not reset automatically during 
the acknowledge sequence, and also must be reset via an explicit write to the 
appropriate register in the peripheral.) 

A polled interrupt scheme can be implemented by disabling interrupts 
using the MIE bit in each peripheral. The registers containing the IP bits are 
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read by the CPU via I/O read operations to detect pending interrupts. The 
IP bits must be reset by writes to the same registers. 

Z8036 CIO 

The Z8036 Counter/Timer and Parallel I/O Unit (CIO) contains three paral­
lel ports and three programmable counter/timers, satisfying most parallel I/O 
and counter/timer needs in Z8000 systems. There are five distinct interrupt 
sources in the CIO, and three separate interrupt vectors. The configuration 
of the CIO is controlled by 48 directly addressable read/write registers. The 
pin assignments for this 40-pin device are given in Fig. 12.5. The CIO oper­
ates from a single +5-V power supply and draws a maximum of 250 mAo Fig­
ure 12.6 is a block diagram of the CIO. 

The CIO's parallel I/O capabilities consist of two 8-bit general-purpose 
ports and one 4-bit special-purpose port. The two 8-bit ports, ports A and B, 
can be linked together to form a single 16-bit port. Either port can be con­
figured as a byte port (that is, an entire byte of input or output) or as a bit 
port (the direction of each bit is programmable). Figure 12.7 shows a block 
diagram of these ports. Optionally, port B pins can be used to provide external 
access to counter/timers 1 and 2. With this exception, ports A and Bare 
identical. 

When configured as byte ports, ports A and B can be input, output, or 
bidirectional ports. I/O operations can be interrupt driven; both port A and 

ADDRESS/DATA 
BUS 

_ ADl 

_ ADs 

_ ADs 

_ AD4 

_ADa 
_ AD2 

_ADI 

PAl _ 

PA
s

_ 

PAs _ 

PA
4 

_ 

PAa -
PA2 

PAl 
PAo _ 

PORTA 

_ ADo 

BUS TIMING { - ~ 
AND RESET _ DS 

CONTROL - CSO 
{

_R/W 
Z8036 :~; :=: } PORT C 
Z·CIO PC

I 
_ 

PCo -
_ CSI 

{ 

iNT 
_ INTACK 

INTERRUPT _ lEI 

lEO 

PB
l 

_ 

PBs _ 

PBs _ 
PB

4 

_ 

PB
3 

_ 

PB2 -
PB

I 
_ 

PBo -

PCLK +5 V GND 

PORT B 

AD4 

ADs 

ADs 

ADl 

OS 

R/W 

GND 

PBo 

PBI 

PB2 

PB3 

PB4 

PBs 

PBs 

PBl 

PCLK 

lEI 

lEO 

PCo 

PCI 

Figure 12.5 Z8036 CIO pin assignments. 

ADo 

INTACK 

iNT 
+5V 

PC3 

PC2 



Z8036 CIG 

< INTE:RUPT > 
CONTROL 

ADDRESSI < OAT: BUS > 

CON~ROL > 
INPUTS 

INTERRUPT 
CONTROL 

LOGIC 

Z·BUS 
INTERFACE 

INTERNAL 
CONTROL 

LOGIC 

INTERNAL BUS 

Figure 12.6 Z8036 CIO block diagram. 

213 

PORT A > 1/0 

PORT C > 
1/0 

< PORT B > 
1/0 

port B are an interrupt source. Byte ports can be single- or double-buffered, 
and the interrupt logic programmed to interrupt for every byte transferred 
or for every second byte transferred, accordingly. Optionally, port C signals 
can be used as handshake lines to control I/O operations on ports A and B. 
Four kinds of handshakes are available: interlocked, strobed, pulsed, and 
three-wire (Fig. 12.8). The interlocked, strobed, and pulsed handshakes are 
implemented with two signals: acknowledge in (ACKIN) and ready for data 
(RFD) for input handshakes, and acknowledge in and data available (DA V) 
for output handshakes. The three-wire handshake [data available (DAV), 
ready for data (RFD), and data accepted (DAC)] is compatible with the hand­
shake in the IEEE-488 bus specification. For output ports, a programmable 
4-bit depkew timer is available for determining the delay between valid data 
being outPllt and the falling edge of the DAV handshake line. Outputs can 
be programmed as qpen-drain or active signals. Data polarity is programmable 
on a bit-by-bit basis. 

When port A or port B is used as a bit port, both data direction and data 
polarity are programmable on a bit-by-bit basis. Optionally, inputs can be 
"one's catchers" (that is, programmed to remain at a logical 1 level until read 
if a low-to-high transition occurs) and outputs can be open-drain or active. 

Pattern recognition logic is available for both ports A and B, regardless 
of whether they are used as byte or bit ports, allowing interrupt generation 



~14 Z8000 Family Devices 

INTl:flNAL 
BUS\ 

OUTPUT 
fll"QlilTER 

PATTEflN 
RECOGNITION 

LOgiC 

INPUT 
flEGISTEfl 

TO COUNTERITIMERS 1 AND 2 
(PORT B ONLy) 

H PQRT 
cONTROL 

.... LqglC I.HMIDSHA!<E CONT.ROL 

~~. U 
TO PORT C 

Figure 12.7 CIO porta A and B diagram. 

INPUT 
BUFFERI 

INVERTERS 
AND 

PULSE 
CATCHER 

OUTPUT 
BUFFERI 

INVERTERS 

Chap. 12 

PORT 
1/0 

when a specific pattern is detected at the port. The pattern can be specified 
for each bit as a 1, 0, rising edge, falling edge, or any transition. Individual 
bits can be masked if they are not to be included in the pattern match. Three 
pattern-match modes are available: AND, OR, and OR-Priority Encoded Vec­
tor. In the AND mode, a pattern match is defined as the simultaneous satis­
faction of all nonmasked bit specifications. In the OR and OR-Priority En­
coded Vector modes, the satisfaction of anyone nonmasked bit specification 
constitutes a pattern match. 

The OR-Priority Encoded Vector mode allows the CIO to be used as an 
interrupt priority controller. In this mode, the IP bit is set when a pattern 
match occurs and cannot be cleared until a match is no longer present. If the 
interrupt vector is allowed to include status information (VIS = 1), the vec­
tor returned during the interrupt acknowledge cycle indicates the highest pri­
ority bit matching its pattern-match specification at the time of the acknowl­
edge; this mayor may not be the bit that originally caused the pattern-match 
interrupt. Bit 7 has the highest priority and bit 0 the lowest. Thus a CIO 
port could accept interrupt inputs from other devices on an input port and 
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act as an interrupt priority controller for those devices. For example, if a low 
level indicates an interrupt request from devices #0 through #7 in Fig. 12.9, 
the pattern match logic for CIO port A would be set to match on O's in OR­
Priority Encoded Vector mode. An active INT from any device would cause 
the CIO to interrupt the CPU. The vector returned to the CPU would indi-
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Figure 12.9 CIO as an interrupt controller. 

cate the highest-priority device with an active INT signal at the time of the 
acknowledge. \;v'hen desired, interrupts from selected devices could be disabled 
by masking the appropriate bits in the CIa's pattern match logic. Thus the 
CIa is used as an interrupt controller. Furthermore, this provides an easy 
method for interfacing non-Z8000 family peripherals to the Z-Bus interrupt 
structure. 

The function of the 4-bit special-purpose port, port C, depends on the 
configuration of ports A and B (Table 12.1 and Fig. 12.10). Port C provides 
the handshake lines for ports A and B and the data direction line for a bidi­
rectional port. One bit of port C can be programmed as a WAIT signal to the 
CPU or a REQUEST signal to a DMA controller, thereby allowing block 

TABLE 12.1 cia PORT C BIT UTI LlZATION 

Port A /B configuration PC3 PC2 PCl PCo 

Ports A and B: bit ports Bit I/O Bit I/O Bit I/O Bit I/O 

Port A: input or output port RFD or DAV ACKIN REQUEST/WAIT Bit I/O 
(interlocked, strobed, or or bit I/O 
pulsed handshake)a 

Port B: input or output port REQ UEST /W AIT Bit I/O RFD or DAV ACKIN 
(interlocked, strobed, or or bit I/O 
pulsed handshake)a 

Port A or B: input port RFD (output) DAV (input) REQUEST/WAIT DAC (output) 
(three-wire handshake) or bit I/O 

Port A or B: output port DA V (output) DAC (input) REQUEST/WAIT RFD (input) 
(three-wire handshake) or bit I/O 

Port A or B: bidirectional RFD or DAV ACKIN REQUEST/WAIT IN/OUT 
port (interlocked or or bit I/O 
strobed handshake) 

aBoth ports A and B can be specified input or output with interlocked, strobed, or pulsed handshake at the same 
time if neither uses REQUEST m-A-F'r. 
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transfers to or from the CIO. Any port C pins not used for those functions 
can be used as I/O lines with programmable data direction and polarity. Op­
tionally, inputs can be "one's catchers" and outputs can be open-drain or 
active. The port C pins also can be used to provide external access to counter/ 
timer 3. 

The three programmable counter/timers are 16-bit down counters (see 
Fig. 12.11). Up to four external I/O lines can be used to control each counter/ 
timer: counter input, gate input, trigger input, and counter/timer output. 
These external access lines are provided by port B and port C pins (Table 12.2). 
Optionally, the device's clock input (PCLK/2) can be used to drive any count­
er/timer. If the counter/timer output is routed to an external pin, three out­
put waveforms are available: pulse, one-shot, and square wave (Fig. 12.12). 
The end-of-count condition can be used to generate an interrupt. The counter/ 
timers can be run in single-cycle or continuous ~odes; if a trigger input is 
employed, retriggerable or nonretriggerable operation can be specified. The 
current count can be read at any time. Typical applications for the counter/ 
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timers include event counters, pulse train generators, event duration timers, 
watchdog timers, and baud-rate clock generators. 

The five interrupt sources for the CIO are, in priority order, counter/ 
timer 3, port A, counter/timer 2, port B, and counter/timer 1. Each source 
has its own IE, IP, and IUS bits to control that interrupt. Three interrupt vec­
tors can be specified: one for port A, one for port B, and one shared by all 
three counter/timers. The vectors can be encoded with status information to 
identify further the event that caused the interrupt. For polled operations a 

TABLE 12.2 cia COUNTER/TIMER EXTERNAL ACCESS 

Function C/T l C/T2 C/Ta 

Counter/timer output PB 4 PB 0 PC 0 
Counter input PB 5 PB 1 PC 1 
Trigger input PB 6 PB 2 PC 2 
Gate input PB 7 PB 3 PC 3 
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Figure 12.12 Counter/timer output 
waveforms. 

special register, called the current vector register, holds the vector that would 
have been returned if hardware interrupts were used. 

Figure 12.13 shows all 48 CIO registers. Programming the CIO involves 
loading the registers with the appropriate bit pattern to implement the desired 
operation. Addressing of the registers is determined by the Right Justify Ad­
dress (RJA) bit in the Master Interrupt Control register. If RJA is 0, the ad­
dress bits on AD1-AD6 during AS active in an I/O cycle are decoded as the 
register address if the CIO is chip selected. When RJA is 1, the register address 
is decoded on ADO-AD5. The 6-bit register addresses are given in Fig. 12.13. 

A typical Z-Bus to CIO interface is diagrammed in Fig. 12.14. The CIO's 
address/data pins are connected to the lower half of the Z-Bus address/data 
bus. The address bit on ADO should always be a 1 for byte transfers on the 
lower half of the bus, so the RJA bit should be a 0 and AD1-AD6 provide 
the register addresses. AD7 -AD15 are ,decoded to provide chip selects during 
I/O transactions (with I/O STATUS decoded from the STO-ST3 lines). The 
CIO is chip selected by I/O port address %FF80 to %FFFF; however, only 
odd addresses are used and only 48' of those addresses actually access a CIO 
register. An active RESET signal resets the CIO by pulling AS and DS low 
simultaneously. 

Z8038 FlO 

The Z8038 FIFO Input/Output Interface Unit (FlO) contains a 128-byte first­
in/first-out buffer that provides an asynchronous CPU-to-CPU or CPU-to-pe­
ripheral interface. One side of the FlO, the port 1 side, can be configured as 
a Z-bus or general-purpose nonmultiplexed bus interface to a microprocessor; 
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o 0 0 ERROR 

COU~TERfTlMEI!!;T~U!'l 

02 01 
o 0 CIT 3 
o 1 CIT 2 
1 0 CIT 1 
1 1 ERROR 

Z8000 Family Devices 

Current Vector Register 
Address: 011111 

(Read Only) 

Chap. 12 

L...-___ INTERRUPT VECTOR BASED 
ON HIGHEST PRIORITY 
UNMASKED IP. 
IF NO INTERRUPT PENDING 
ALL 1'8 OUTPUT. 

Interrupt Vector Registers 

Figure 12.13 Continued 

the other side (port 2 side) can be configured as a Z-Bus interface, nonmulti­
plexed bus interface, two-wire handshake I/O interface, or three-wire hand­
shake I/O interface. Thus dissimilar CPUs or CPUs and peripherals running 
with different speeds or protocols can be linked, allowing asynchronous data 
transfers and improving I/O overhead. The FlO is a 40-pin device that requires 
a single +5-V supply and draws a maximum of 250 rnA. 

A block diagram of the FlO is given in Fig. 12.15. The port 1 side is 
always a processor interface and can be configured as a Z-Bus interface (con­
nected to either the lower or upper half of the bus) or a nonmultiplexed bus 
interface. The nonmultiplexed bus is a general-purpose microprocessor inter­
face with eight data lines, chip enable (CE), read (RD), write (WR), and con­
trol/data (C/D) signals. The timing for data transfers on this bus is illustrated 
in Fig. 12.16. The C/D signal determines if the current bus transfer involves 
a control register in the FlO or the FIFO data buffer itself. This bus config­
uration easily interfaces to microprocessors with separate, nonmultiplexed 
address and data buses, such as the Z80, 8080, and 6800. The configuration 
of the port 1 side is determined by the condition of two pins, MO and M1 
(Table 12.3). The port 2 side can be a Z-Bus, nonmultiplexed bus, two-wire 
handshake, or three-wire handshake interface, as determined by two bits (BO 
and B1) in an internal register that is programmed from the port 1 side. Fig-
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Counter/Timer Command and Status Registers 
Addresses: 001010 Counter/Timer 1 

001011 Counter/Timer 2 
001100 Counter/Timer 3 

(Read/Partial Write) 

'N","U" UNO" SERV'C' (IUS) ~ I I 
INTERRUPT ENABLE (IE) 

I I 

INTERRUPT PENDING (lP) I I 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING CODE: 

NULL CODE 0 0 0 

CLEAR IP & IUS 0 0 1 

SET IUS 0 1 0 

CLEAR IUS 0 1 

SET IP 1 0 

CLEAR IP 1 0 1 

SET IE 1 0 

CLEAR IE 1 1 

INTERRUPT ERROR (ERR) -­
(READ ONLy) 

E~ 
COUNT IN PROGRESS (CIP) 
(READ ONLy) 

TRIGGER COMMAND BIT (TCB) 
(WRITE ONLY· READ RETURNS 0) 

GATE COMMAND BIT (GCB) 

READ COUNTER CONTROL (RCC) 
(READ/SET ONLY -
CLEARED BY READING CCR LSB) 

Counter/Timer Mode Specification Registers 
Addresses: 011100 Counter/Timer 1 

011101 Counter/Timer 2 
011110 Counter/Timer 3 
(Read/Write) 

CONTINUOUS sm. ~~J GLE CYCLE (C/SC) 

EXTERNAL OUTPUT 
ENABLE (EOE) 

EXTERNAL COUNT 
ENABLE (ECE) 

EXTERNAL TRIGGER 
ENABLE (ETE) 

[

L OUTPUT DUTY CYCLE 
SELECTS (DCS) 

DCS1DCSO 
0- -0 PULSE OUTPUT 
o 1 ONE·SHOT OUTPUT 
1 0 SQUARE·WAVE OUTPUT 
1 1 DO NOT SPECIFY 

- RETRIGGER ENABLE BIT (REB) 

'----- EXTERNAL GATE ENABLE (EGE) 

Figure 12.13 Continued 
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ure 12.17 shows the pin-out of the FlO and Table 12.4 describes the pin assign­
ment for each possible type of interface. 

Pattern recognition logic is included for both sides of the FlO and is 
capable of generating an interrupt when a specific data pattern is written to 
or read from the FIFO buffer. The pattern can be specified for each bit as a 1 
or a 0; individual bits can be masked off, if so desired. 

Special message registers, also called mailbox registers, can be used to 
pass information between CPUs if the FlO is used as a CPU-to-CPU interface. 



TABLE 12.3 Z8038 

Mode Ml 

0 0 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 1 
9 1 

10 1 
11 1 
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Counter/Timer Current Count Registers 
Addresses: 010000 Counter/Timer l's MSB 

010001 CounterlTimer l's LSB 
010010 Counter/Timer 2's MSB 
010011 Counter/Timer 2's LSB 
010100 Counter/Timer 3' s MSB 
010101 Counter/Timer 3's LSB 

(Read Only) 

I D,I D61 D51 D.I D31 D21 D, I Do I D,I D61 D51 D41 D31 D21 D, I Do I 

MOST -----' 
SIGNIFICANT 

L....----lEAST 
SIGNIFICANT 
BYTE BYTE 

Counter/Timer Time Constant Registers 
Addresses: 010110 Counter/Timer l's MSB 

010111 Counter/Timer l's LSB 
a 11000 Counter/Timer 2' s MSB 
011001 Counter/Timer 2's LSB 
0110 10 Counter/Timer 3' s MSB 
0110 11 Counter/Timer 3' s LSB 

(Read/Write) 

MOST -----' 
SIGNIFICANT 

BYTE 

L....----lEAST 
SIGNIFICANT 
BYTE 

Counter/Timer Registers 

Figure 12.13 Continued 

FlO OPERATING MODES 

Mo Bl Bo Port 1 Port 2 

0 0 0 Z-Bus low byte Z-Bus low byte 
0 0 1 Z-Bus low byte Non-Z-Bus 
0 1 0 Z-Bus low byte Three-wire handshake 
0 1 1 Z-Bus low byte Two-wire handshake 
1 0 0 Z-Bus high byte Z-Bus high byte 
1 0 1 Z-Bus high byte Non-Z-Bus 
1 1 0 Z-Bus high byte Three-wire handshake 
1 1 1 Z-Bus high byte Two-wire handshake 
0 0 0 Non-Z-Bus Z-Bus low byte 
0 0 1 Non-Z-Bus Non-Z-Bus 
0 1 0 Non-Z-Bus Three-wire handshake 
0 1 1 Non-Z-Bus Two-wire handshake 



110 STATUS 

AD1S 
AD14 
AD13 

AD12 
ADll 
AD10 

AD9 
ADS 

AD7 

AD6 

~ 
ADS 

« AD4 z 
(!l 
u; AD3 
en 

AD2 ::l 
CD 
N ADl 

ADO 

AS 

RESET 

OS 

RIW 

INT 

INTACK 

lEI 

lEO 

+SV 

CPU 
INTERFACE 

DATA 
BUS 

PATTERN 
MATCH 
LOGIC 

DATA 
BUFFER 

\ ..... ---./----1 REGISTER 

CSl 

CSO 

AD7 

AD6 

ADS 

AD4 

AD3 

AD2 

ADl 

ADO 

AS 

OS 

RIW 

INT 

INTACK 

lEI 

lEO 

PA7 

PA6 

PAS 

PA4 

PA3 

PA2 

PAl 

PAO 

ZS036 
CIO PB7 

PB6 

PBS 

PB4 

PB3 

PB2 

PBl 

PBO 

PC3 

PC2 

PCl 

128 X 8 
FIFO BUFFER 

Figure 12.14 Typical Z-Bus to CIa 
interface. 

PATTERN 
MATCH 
LOGIC 

CPU 
INTERFACE 
OR 
110 PORT 

DATA 
BUS 

PORT 1 SIDE ; PORT 2 SIDE 

Figure 12.15 Z8038 FlO block diagram. 
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CID X C 
00-07 ( TO cPU ) 

ci \ I 
RD \ I 

Non-Z-BUS Read Cycle Timing 

CID ____ X'-____________ -'X ___ _ 
00-07 ------c('-__________ ~----

ci \_----------------

Non-Z-BUS Write Cycle Timing 

00-07 --------------« VECTOR )>----

INTAOK~ / 

'-. ---------------
\ ___ --1 

lEI / ___ ---J 

INT / ----------------
Non-Z-BUS Interrupt Acknowledge Cycle 

Figure 12.16 Nonmultiplexed bus interface timing. 

These mailbox registers allow control information to be transferred between 
the CPUs without using or affec'ting the FIFO buffer. The transmitting CPU 
can interrupt the receiving CPU by loading a byte into the mailbox register. 

The data transfer logic of the FlO has been specially designed to work 
with DMA controllers for high-speed data transfers between the FIFO buffer 
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07 
I 
I 

07 [AJ +5V - 0 6 I lID [AJ - Os I 19 lID 
I 

DATA - 0 4 I 
0 4 - DATA [Q] 19 

BUS - 03 PORT I PORT 0 3 
BUS 

[Q] ffiI - 02 1 I 2 O2 [f) ffiI - 0 1 SIDE: SIDE 0 1 [g] [f) - 00 I 00 - [ill [g] 

CONTROLl ~ 
~ I ~ 

~} CONTROL 

OJ [ill 
@] I @] 

I QJ OJ 
@] I @] 

00 QJ 
@] Z8038 @] 

FI,O 01 00 

l~ [K] 
02 01 

[IJ [IJ 
03 02 

INTERRUPT { ~ 
@] @] 

: : } INTERRUPT 

04 03 
[E] [E] Os 04 
IT] IT] 

06 Os 
CD CD 07 06 

CONFIGURATION { - M1 M1 07 - Me GNO Me 

t t 
+5V GNO 

Control 
Signal Z-BUS Z-BUS Interlocked 3-Wire 

Pins Low Byte High Byte Non-Z-BUS HS Port* HS Port* 

[K] REQIWT REQIWT REQ/WT RFD/DAV RFD/DAV 

[i] DMASTB DMASTB DACK ACKIN DAV/DAC 

@] DS DS RD FULL DAC/RFD 

~ R/W R/W WR EMPTY EMPTY 

~ CS CS CE CLEAR CLEAR 

[!] AS AS c/i5 DATA DIR DATA DIR 

@] INTACK Aa INTACK INa INa 

~ IEO Al IEO OUTI OUTI 

ITJ IEI A2 IEI OE OE 

W INT A3 INT OUT3 OUT3 

*2 side only. 

Figure 12.17 Z8038 FlO pin assignments. 

and the system's memory. A special control register, the Byte Count Com­
parison register, can be used to send a request to the DMA device when a 
given number of bytes is in the FIFO buffer. For the input side of the FIFO 
buffer, the request (REQ) signal to the DMA controller becomes active when 
the number of bytes in the FIFO buffer is equal in value to the Byte Count 
Comparison register and stays active until the buffer is full (Fig. 12.18). For 



TABLE 12.4 Z8038 FlO PIN FUNCTIONS 

Pin 
Pin signals names 

N 
N 
(;X) 

Mo Mo 

Ml Ml 
+5 V dc +5 V dc 

GND Gnd 

ADo-AD7 Do-D7 
(address/data) 

REQ/WAIT A 
(request/wait) 

DMASTB (direct B 
memory access 
strobe) 

DS (data strobe) C 

R/W (read/write) D 

CS (chip select) E 

AS (address strobe) F 

INTACK G 
(interrupt acknowledge) 

lEO (interrupt H 
enable out) 

lEI (interrupt I 
enable in) 

INT (interrupt) J 

Pin numbers Mode 

Pins Common to Both Sides 

21 
19 
40 

20 

Z-Bus Low-Byte Mode 

Port 1 Port 2 

11-18 29-22 

1 39 

2 38 

3 37 

4 36 

5 35 

6 34 

7 33 

8 32 

9 31 

10 30 

Signal description 

M 1 and Mo program port 1 side CPU interface 

Dc power source 

Dc power ground 

Multiplexed bidirectional address/data lines, 
Z-Bus compatible 

Output, active low, REQUEST (ready) line for 
DMA transfer; WAIT line (open-drain) out­
put for synchronized CPU and FlO data 
transfers 

Input, active low; strobes DMA data to and 
from the FIFO buffer 

Input, active low; provides timing for data 
transfer to or from FlO 

Input: active high signals CPU read from FlO; 
active low signals CPU write to FlO 

Input, active low; enables FlO; latched on the 
rising edge of AS 

Input, active low; addresses, CS and INTACK 
sampled while AS low 

Input, active low; acknowledges an interrupt; 
latched on the rising edge of AS 

Output, active high; sends interrupt enable to 
lower priority device lEI pin 

Input, active high; receives interrupt enable 
from higher-priority-device lEO signal 

Output, open drain, active low; signals FlO in­
terrupt request to CPU 



Z-Bus High-Byte Mode 

ADo-AD7 Do-D7 11-18 29-22 Multiplexed bidirectional address/data lines, 
(address/data) Z-Bus compatible 

REQ/WAIT A 1 39 Output, active low, REQUEST (ready) line for 
(request/wait) DMA transfer; WAIT line (open-drain) out-

put for synchronized CPU and FlO data 
transfers 

DMASTB (direct B 2 38 Input, active low; strobes DMA data to and 
memory access from the FIFO buffer 
strobe) 

DS (data strobe) C 3 37 Input, active low; provides timing for transfer 
of data to or from FlO 

R/W (read/write) D 4 36 Input active high; signals CPU read from FlO; 
active low signals CPU write to FlO 

CS (chip select) E 5 35 Input, active low; enables FlO; latched on the 
rising edge of AS 

AS (address strobe) F 6 34 Input, active low; addresses CS and INTACK 
are sampled while AS is low 

Ao (address bit 0) G 7 33 Input, active high;. with A 1 , A 2 , and A3 , ad-
dresses FlO internal registers 

Al (address bit 1) H 8 32 Input, active high; with Ao, A 2 , and A3, ad-
dresses FlO internal registers 

A2 (address bit 2) 9 31 Input, active high; with Ao, A 1 , and A3, ad-
dresses FlO internal registers 

A3 (address Bit 3) J 10 30 Input, active high; with Ao, A 1 , and A 2 , ad-
dresses FlO internal registers 

Non-Z-Bus Mode 

Do-D7 (data) Do-D7 11-18 29-22 Bidirectional data bus 
REQ/WT (request/wait) A 1 39 Output, active low, REQUEST (ready) line for 

DMA transfer; WAIT line (open-drain) out-
put for synchronized CPU and FlO data 
transfer 

DACK(DMA B 2 38 Input, active low; DMA acknowledge 

II.) 
acknowledge) 

II.) RD (read) C 3 37 Input, active low; signals CPU read from FlO (.0 
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TABLE 12.4 28038 FlO PIN FUNCTIONS Continued 

Pin signals 

WR (write) 

CE (chip select) 

c/n (control/data) 

INTACK (interrupt 
acknowledge) 

lEO (interrupt 
enable out) 

lEI (interrupt 
enable in) 

INT (interrupt) 

Do-D7 (data) 

RFD/DA V (ready for 
data/data available) 

ACKIN (acknowledge 
input) 

DA V /DAC (data 
available/data 
accepted) 

FULL 

DAC/RFD (data 
accepted/ready for 
data) 

Pin 
names 

D 
E 

F 

G 

H 

J 

Do-D7 

A 

B 

B 

C 

C 

Pin numbers Mode 

4 
5 

6 

7 

8 

9 

10 

Non-Z-Bus Mode Continued 

36 
35 

34 

33 

32 

31 

30 

Port 2-1/0 Port Mode 

29-22 

39 

38 

38 

37 

37 

Two-wire HS a 

Three-wire HS 

Two-wire HS 
Three-wire HS 

Two-wire HS 

Three-wire HS 

Two-wire HS 

Three-wire HS 

Signal description 

Input, active low; signals CPU write to FlO 

Input, active low; used to select FlO 

Input, active high; identifies control byte on 
Do-D7; active low identifies data byte on 
Do-D7 

Input, active low; acknowledges an interrupt 

Output, active high; sends interrupt enable to 
lower priority device lEI pin 

Input, active high; receives interrupt enable 
from higher-priority-device lEO signal 

Output, open drain, active low; signals FlO in­
terrupt to CPU 

Bidirectional data bus 

Output, RFD active high; signals peripherals 
that FlO is ready to receive data; DAV ac­
tive low signals that FlO is ready to send 
data to peripherals 

Input, active low; signals FlO that output data 
are received by peripherals or that input 
data is valid 

Input: DAV (active low) signals that data are 
valid on bus; DAC (active high) signals that 
output data are accepted by peripherals 

Output, open drain, active high; signals that 
FlO buffer is full 

Direction controlled by internal programming; 
both active high: DAC (an output) signals 
that FlO has received data from peripheral; 



N 
W 
~ 

EMPTY 

CLEAR 

DATA DIR 
(data direction) 

INo 

OUT1 

OE (output enable) 

OUT3 

aHS, handshake. 

D 

E 

F 

G 

H 

J 

36 

35 

34 

33 

32 

31 

30 

Two-wire HS 
Three-wire HS 

Two-wire HS 
Three-wire HS 

Two-wire HS 
Three-wire HS 

Two-wire HS 
Three-wire HS 

Two-wire HS 
Three-wire HS 

Two-wire HS 
Three-wire HS 

Two-wire HS 
Three-wire HS 

RFD (an input) signals that the listeners are 
ready for data 

Output, open drain, active high; signals that 
FIFO buffer is empty 

Programmable input or output, active low; 
clears all data from FIFO buffer 

Programmable input or output: active high sig­
nals data input to Port 2; low signals data 
output from Port 2 

Input line to Do of control register 3 

Output line from Dl of control register 3 

Input, active low; when low, enables bus 
drivers; when high, floats bus drivers at high 
impedance 

Output line from D3 of control register 3 



232 

REO 

ACTIVE ---t----!~"""T'"--..... ---CD 

CD CD 
INACTIVE .......:::~----+..;;;..-.... ---+ ..... NUMBER OF BYTES IN FIFO 

EMPTY FULL 

NUMBER IN BYTE COUNT COMPARISON REGISTER 

NOTES: 
1. FIFO empty. 
2. REQUEST enabled, FlO requests DMA transfer. 
3. DMA transfers data into the FlO. 
4. FIFO full, REQUEST inactive. 
5. The FIFO empties from the opposite port until the number 

of bytes in the FIFO buffer is the same as the number pro­
grammed in the Byte Count Comparison register. 

Z8000 Family Devices Chap. 12 

Figure 12.18 DMA-controlled 
writes to a FlO. 

the output side of the FlO, the REQ pin is inactive until the number of bytes 
in the FIFO buffer equals the value in the Byte Count Comparison register. 
REQ then goes active and stays active until the buffer is empty (Fig. 12.19). 
A WAIT signal can be programmed to synchronize CPU-controlled block 
transfers. 

Special control signals can be used to clear the FIFO buffer or change 
the direction of data flow in the buffer. The clear and data direction functions 
are controlled by the port 1 side as a default, but control of these functions 
can be passed to the port 2 side if desired. For CPU-to-CPU interfaces, if the 
controlling CPU changes the direction of the buffer, the other CPU is notified 
via an interrupt. 

CD CD 
ACTIVE -+----1-----....-04-

CD 
INACTIVE ---=--f----.... ----+-__ 1r-----

EMPTY FULL 
I 

NUMBER IN BYTE COUNT COMPARISON REGISTER 

NOTES: 
1. FIFO empty. 
2. CPUlDMA fills FIFO buffer from the opposite port. 
3. Number of bytes in FIFO buffer is the same as the number 

of bytes programmed in the Byte Count Comparison register. 
4. REQUEST goes active. 
5. DMA transfers data out of FIFO until it is empty. 

Figure 12.19 DMA-controlled 
reads from an FlO. 
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Each side of the FlO has seven sources of interrupt. They are, in pri­
ority order, the mailbox register, change in data direction, pattern match, 
status match (number of bytes in the FIFO buffer equals the value in the 
Byte Count Comparison register), overflow/underflow error, buffer full, and 
buffer empty. Each interrupt source has its own IE, IP, and IUS bits for con­
trolling that interrupt. Each side of the FlO has one interrupt vector; that 
vector can include encoded status information identifying the interrupt 
source. 

Each side of the FlO has 16 addressable read/write registers. One of 
these, Control Register 2, is not used on the port 2 side. The RJA bit in 
Control Register 0 determines how the registers are addressed. When RJA = 0, 
address bus bits ADI-AD4 are used for register addressing; when RJA = 1, 
address bus bits ADO-AD3 are used. Figure 12.20 shows all the FlO registers. 

Control Register 0 
Address: 0000 
(ReadlWrite) 

10 '; 0 6 0 5 0.: 0 3 0.: 0, Do I 

I ~L1=RESET L 1 = RT. JUST. ADDRESS (RJA) 

(B,) (Bo)' } 

g ~ ~ ~'g~Sz.~~~ CPU PROGRAMS 
1 0 = 3·WIRE HS 110 PORT 2 MODE 
1 1 = INTERLOCKED HS 

1 = VECTOR INCLUDES STATUS (VIS) 

L--_____ 1 = NO VECTOR ON INTERRUPT (NV) 

L--______ 1 = DISABLE LOWER DAISY CHAIN (DLC) 

L...-_______ 1 = INTERRUPTS ENABLED (MIE) 

, READ ONLY FROM 
PORT 2 SIDE 

Control Register 1 
Address: 000 1 
(Read/Write) 

10 , ; 0 6 ! 0 5 : 0, : 0 3 : 0,\ 0, : Do I 

~
I ~; ~ ;~~:::'WA" , ... '" 
L 1 = START DMA ON BYTE COUNT 

1 = STOP DMA ON PATTERN MATCH 

1 = MESSAGE MAILBOX REGISTER UNDER SERVICE' 

-- 1 = MESSAGE MAILBOX REGISTER FULL' 

'-------- 1 = FREEZE STATUS REGISTER COUNT 

L...-_______ NOT USED (MUST BE PROGRAMMED 0) 

'READ·ONLY BITS 

Control Register 2* 
Address: 100 1 
(Read/Write) 

I 0, : 06 t 0 5 t 0, t 0 3 t 0, t 0, t Do I 
I L 1 = PORT 2 SIDE ENABLED 

L 1 = PORT 2 SIDE ENABLE HANDSHAKE 

L...-____ BITS 2-7 NOT USED 

'THIS REGISTER READS ALL 
O'S FROM PORT 2 SIDE 

Control Register 3 
Address: 1010 
(Read/Write) 

I 0,1 06 1 0, ) 0, t 03 t 0, I 0, ) Do I 

MUST BE PROGRAMMED 0 

lli§~
' L PORT 2 SIDE-INPUT LINE' (PIN 33)" 

L PORT 2 SIDE-OUTPUT LINE (PIN 32)" 

NOT USED (MUST BE PROGRAMMED 0) 

PORT 2 SIDE-OUTPUT LINE (PIN 30)" 

DATA DIRECTION BIT 
1 = INPUT TO CPU 
0= OUTPUT FROM CPU 

0= PORT 1 SIDE CONTROLS DATA DIRECTION 
1 = PORT 2 SIDE CONTROLS 

'--------- 0 = CLEAR FIFO BUFFER 

L...-_______ 0 = PORT 1 SIDE CONTROLS CLEAR 

1 = PORT 2 SIDE CONTROLS 

·READ·ONLY BITS 
"ONLY WHEN PORT 2 IS AN 110 PORT 

Control Registers 

Figure 12.20 Z8038 FlO registers. 
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Interrupt Status Register 0 
Address: 00 1 a 
(Read/Write) 

I D, i D6 ! Ds : D, : DJ i D,! D, i Do I 

III c= NOT USED (MUST BE PROGRAMMED 0) 

I MESSAGE INTERRUPT PENDING (lP) 

MESSAGE INTERRUPT ENABLE (IE) 
I I 

MESSAGE INTERRUPT UNDER SERVICE (IUS) 

II I IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: 

o 0 

o 0 

o 1 

o 1 

1 0 

1 0 

1 1 

1 1 

0 

1 

0 

1 

0 

1 

0 

1 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

Interrupt Status Register 1 
Address: 0011 
(Read/Write) 

I D, D6 Ds i D. 

DATA DIRECTION CHANGE INTERRUPT iJ I 
UNDER SERVICE (IUS) I 

DATA DIRECTION CHANGE INTERRUPT I 

ENABLE (IE) I I 
I I 

DATA DIRECTION CHANGE INTERRUPT 
PENDING (IP) 

I ~L 1 = PATTERN MATCH FLAG" r--= PATTERN MATCH INTERRUPT PENDIN'G (lP) 

PATTERN MATCH INTERRUPT ENABLED (IE) 
I I 

PATTERN MATCH INTERRUPT 
I I I UNDER SERVICE (IUS) 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: III 

1...-____ NOT USED 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

o 0 0 

o 0 1 
III 
o 0 0 

o 1 0 o 0 1 
o 1 1 

0 1 0 
1 0 0 o 1 1 
1 0 1 

1 0 0 
1 1 0 

1 0 1 
1 1 1 

1 1 0 

1 1 1 

"READ·ONLY BITS 

(MUST BE PROGRAMMED 0) 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

Figure 12.20 Continued 

FIFO BUFFER EXPANSION 

Chap. 12 

Both the depth and width of FIFO buffers in a system can be expanded easily 
with the Z8038 FlO and an auxiliary part, the Z8060 FIFO. The Z8060 FIFO 
is a 128 X 8 FIFO buffer with a two-wire interlocked handshake interface on 
both sides of the buffer (Fig. 12.21). 



FIFO Buffer Expansion 

Interrupt Status Register 2 
Address: 0100 
(Read/Write) 

1 0 , : 0 6 • Os I 0, i 0 3 1 02 i 0, : Do I 

'HE CO""' COMP.,,,,,,""",, J I I UNDER SERVICE (IUS) I 
I 

BYTE COUNT COMPARE INTERRUPT 
ENABLE (IE) I I 

BYTE COUNT COMPARE INTERRUPT I I 
PENDING (IP) 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

III 
o 0 0 

o 0 1 

o 1 0 

o 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

~~
L UNDERFLOW ERROR' 

L ERROR INTERRUPT PENDING (10) 

I ERROR INTERRUPT ENABLED (IE) 

I I _ ERROR INTERRUPT UNDER SERVICE (IUS) 
, I I 

OVERFLOW ERROR' 

I I I 
o 0 0 

o 0 1 

0 1 0 

o 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

'READ·ONLY BITS 

Interrupt Status Register 3 
Address: 0101 
(ReadlWrite) 

I 0, : 0 6 . Os : 0, i 0 3 : 0, : 0, ; Do I 

'"'''"''''"'' """ SER"CE ""51 ~ I j 
FULL INTERRIJPT ENABLE (IE) ~ 

FULL INTERRUPT PENDING (IP) I I 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

111 
o 0 0 

o 0 1 

o 1 0 

o 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

III ! L :~~~~::;:~" PE"D'"G "P, 
EMPTY INTERRUPT ENABLE (IE) 

I I EMPTY INTERRUPT UNDER SERVICE (IUS) 
I I I 

BUFFER FULl' 

I I I 
o 0 0 

o 0 1 

0 1 0 

o 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

IUS, IE, AND IP ARE WRITTEN USING 
THE FOLLOWING COMMAND: 

NULL CODE 

CLEAR IP & IUS 

SET IUS 

CLEAR IUS 

SET IP 

CLEAR IP 

SET IE 

CLEAR IE 

'READ·ONLY BITS 

Interrupt Status Registers 

Figure 12.20 Continued 
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The buffer depth is expanded by cascading Z8038 FIOs and Z8060 FIFOs. 
Communication between these devices is via the two-wire interlocked hand­
shake. For example, Fig. 12.22 illustrates a 512-byte CPU-to-CPU FIFO buf­
fer interface consisting of two Z8038's and two Z8060's. 



Byte Count Register 
Address: 0111 
(Read Only) 

I 07 1 061 05 1 0,1 OJ I 021 0, I do I 
I I I I I I I I 

REFLECTS NUMBER OF BYTES IN BUFFER 

Pattern Match Register 
Address: 1101 
(Read/Write) 

I 07 1 061 05 1 0, i OJ I 021 0, I do I 
I I I I I I I I 

STORES BYTE COMPARED WITH 
BYTE I" DATA BUFFER REGISTER 

Data Buffer Register 
Address: 1111 
(Read/Write) 

I 07 1 061 05 1 0,1 OJ i D21 0, IDol 
I I I I I I I I 

CONTAINS THE BYTE TRANSFERRED 
TO OR FROM FIFO BUFFER RAM 

Message Out Register 
Address: 1011 
(Read/Write) 

I 07 1 06 1 05 1 04 1 D31 D21 D, 1 Do I 
I I I I I I I I 

STORES MESSAGE SENT TO MESSAGE 
IN REGISTER ON OPPOSITE PORT OF FlO 
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Interrupt Vector Register 
Address: 0110 
(Read/Write) 

I~I~I~I~I~I~I~I~I 

I I I I -L I I I 
NO INTERRUPTS PENDING 

BUFFER EMPTY 

BUFFER FULL 

OVER/UNDERFLOW ERROR 
VECTOR STATUS 

BYTE COUNT MATCH 

PATTERN MATCH 

DATA DIRECTION CHANGE 

MAILBOX MESSAGE 

o 0 

o 0 

o 1 

o 1 

1 0 

1 0 

1 1 

1 1 

0 

1 

0 

1 

0 

1 

0 

1 

Pattern Mask Register 
Address: 1110 
(Read/Write) 

I 071 06[ 05 1 0,1 DJ I D21 0, IDol 
I I I I I I I I 

IF SET, BITS 0·7 MASK BITS 0·7 
IN PATTERN MATCH REGISTER. 

MATCH OCCURS WHEN ALL 
NON·MASKED BITS AGREE. 

Byte Count Comparison Register 
Address: 1000 
(Read/Write) 

I 07 1 061 05 ! 0,1 OJ I 021 0, 1 Do I 
I I I I I I I I 

CONTAINS VALUE COMPARED TO BYTE COUNT 
REGISTER TO ISSUE INTERRUPTS ON MATCH 

(BIT 7 ALWAYS 0.) 

Message In Register 
Address: 1100 

(Read Only) 

I~I~I~I~I~I~I~I~I 
I I I I I I I I 

STORES MESSAGE RECEIVED FROM MESSAGE 
OUT REGISTER ON OPPOSITE PORT OF CPU 

Figure 12.20 Continued 
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Figure 12.21 Z8060 FIFO pin assignments. 
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+5 V 

RFD/DAVB 

ACKINB 

CLEAR 

DIR AlB 

QEB 

D7B 

DSB 

DSB 

D4B 

D3B 

D2B 

D'B 

DOB 

Buffer width is expanded using multiple Z8038 FIOs, as in Fig. 12.23. 
Two Z8038's are connected to a 16-bit microprocessor bus to implement a 
16-bit wide FIFO buffer. If a CPU-to-peripheral word buffer is desired, some 
external logic will be necessary to synchronize the handshake signals from both 
Z8038's. 

Z8030 see 

The Z8030 Serial Communications Controller (SCC) is a dual-channel pro­
grammable data communications device that supports a wide variety of serial 
communication protocols. The SCC controls two independent full-duplex 
serial channels (called channel A and channel B) with data transfer rates up 

TO Z·BUS 
OR GENERAL 

MICROPROCESSOR 

~ 
'-------' INTERRUPT 

Figure 12.22 512-byte buffer using Z8038's and Z8060's. 

TO Z·BUS 
OR GENERAL 
MICROPROCESSOR 
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Figure 12.23 I6-bit-wide buffer between two Z-Bus processors using 
Z8038's. 
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to 1 megabit/second. Each channel has its own crystal oscillator, baud rate 
generator, and digital phase-locked-loop circuitry for clock generation and re­
covery. Asynchronous, byte-oriented synchronous, and bit-oriented synchro­
nous protocols are supported. Facilities are included for data integrity check­
ing and modem controls. Thus the SCC is suitable for virtually any serial 
data communications application. The SCC is a 40-pin device that requires a 
single +5-V power supply and draws a maximum of 250 rnA (Fig. 12.24 and 
12.25). 

When used for asynchronous communications, the SCC can be program­
med for anywhere from 5 to 8 data bits per character (plus, optionally, a par­
ity bit). The transmitter can supply one, one-and-a-half, or two stop bits per 
character and can provide a break output at any time. Automatic odd- or even­
parity generation and checking can be specified. Framing and overrun errors 
are automatically detected. The transmit and receive clocks need not be 
symmetric, and data rates of 1, 1~ , l2' or 6~ of the clock rate are allowed. 

For synchronous communications, both byte-oriented and bit-oriented 
protocols are supported. Cyclic Redundancy Codes (CRC) are used for error 
detection to assure data integrity. Both the CRC-16 (X

I6 + XIS + x 2 + 1) 
and CRC-CCITT (X

16 + XI2 + X
S + 1) error-checking polynomials are sup­

ported. The CRC generator (for transmit operations) and CRC checker (for 
receive operations) may be preset to alII's or all O's. 
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ADDRESSI 
DATA BUS 

- AD6 - ADs - AD4 - AD3 - AD2 
_ ADl 

_ ADo 

TIM~~~ /- ~ 
AND RESET l - DS 

f- R/W 

CONTROL 1- CSl 

_CSo 

l iNT 
_ INTACK 

INTERRUPTI _ lEI 

l lEO 

Z8030 
Z·SCC 

TxDA } SERIAL 
RxDA _ DATA 

TRxCA -} CHANNEL 
RTxCA _ CLOCKS 
SYNCA _ 

W/REQA 

DTR/REQA 

RTSA 
CTSA _ 

DCDA _ 

CHANNEL 
CONTROLS 
FOR MODEM, 
DMA,OR 
OTHER 

TxDB } SERIAL 
RxDB _ DATA 

TRxCB -l CHANNEL 
RTxCB _I CLOCKS 

SYNCB _ 

W/REQB 

DTR/REQB 

RTSB 
CTSB _ 

DC DB _ 

CHANNEL 
CONTROLS 
FOR MODEM, 
DMA,OR 
OTHER 

t t 
+5 V GND PCLK 

ADl 

AD3 

ADs 

AD? 

CH·A iNT 
lEO 

lEI 

INTACK 

+5V 

W/REQA 
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Figure 12.24 Z8030 see pin assignments. 
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ADo 

AD2 

AD4 

AD6 

DS 

AS 

R/W 

CSo 

CSl 

GND 

W/REQB 

SYNCB 

RTxCB 

RxDB 

TRxCB 

TxDB 

DTR/REQB 

RTSB 

CTSB 

DCDB 

Byte-oriented protocols, such as Monosync and Bisync, can have charac­
ter synchronization with a 6-bit, 8-bit, 12-bit, or 16-bit synchronization pat­
tern or an external synchronization signal. Leading synchronization characters 
are automatically deleted from the data stream without interrupting the CPU. 

Bit-oriented protocols, such as SDLC and HDLC, are supported by fea­
tures including automatic flag sending, automatic zero insertion and deletion, 
and abort sequence generation and checking, At the end of a message, the 
SCC automatically transmits the CRC code and trailing flags when the trans­
mitter underruns. Address field recognition also is provided; the receiver can 
be programmed to respond for frames addresses by a byte, or 4 bits within a 
byte, or a user-selected address, or a global broadcast address. The number of 
address bytes can be extended under software control. At the end of a trans­
mission, the status of the received frame is available in a status register, SDLC 
loop mode operations also are supported by the SCC; the SCC can perform 
the functions of a controller or secondary station in an SDLC loop. 

The SCC has two special modes useful for system debugging called Auto 
Echo and Local Loopback. In Auto Echo mode, received data are automati­
cally routed to the transmit data line; thus the SCC continuously transmits 
what it receives. In Local Loopback mode, transmitted data are automatically 
routed to the receive data line; thus the SCC reads the data it is transmitting. 

Data may be encoded in any of four ways using the SCC: FMO (biphase 
space), FMl (biphase mark), NRZ, or NRZI encoding (see Fig. 12.26). For 
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Figure 12.25 Z8030 see block diagram. 
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DATA 

NRZ \ / \ 
NRZI \ / \ 
FM1 

FM 

MANCHESTER 

Figure 12.26 Data encoding in the sec. 

FMO and FMl encoding, a transition occurs at the beginning of every bit cell. 
In FMO encoding, a 0 is represented by another transition at the center of 
the cell and a 1 is represented by no additional transfers in the cell. FMl en­
coding is the inverse; a 1 is represented by another transition at the center of 
the cell and a 0 is represented by no further transitions in the cell. For NRZ 
encoding, a 1 is represented by a high level and a 0 by a low level. In NRZI en­
coding, a 1 is represented by no change in level and a 0 by a change in level. 
In addition, the SCC can decode Manchester (biphase level) encoded data. 
Manchester data encoding always produces a transition in the center of the 
cell. If the transition is from 0 to 1, the bit is a 0; if the transition is from] 
to 0, the bit is a 1. 

Each channel has its own baud rate generator consisting of a 16-bit pro­
grammable down counter. The output of the baud rate generator can be used 
as a transmit clock, receive clock, or the input to the phase-Iocked-Ioop circuit. 
The digital phase-Iocked-Ioop circuitry can be used to recover clock informa­
tion from NRZI, FMO, or FMl encoded data. This clock can then be used as 
a transmit or receive clock. 

Each SCC channel has three sources of interrupts: receive interrupts, 
transmit interrupts, and external/status condition interrupts (in that priority 
order). Channel A interrupts have priority over channel B interrupts. Each 
interrupt has its own IP, IUS, and IE control bits. One interrupt vector is pro­
vided; that vector can be encoded with status information to identify the 
interrupt source. A receiver can interrupt the CPU in three ways: interrupt 
on the first received character or special receive conditions, interrupt on all 
received characters or special receive conditions, or interrupt only on special 
receive conditions. The special receive conditions include overrun, parity, 
and framing errors and the end-of-frame condition (SDLC mode). The trans-
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mit interrupt is activated when the transmit buffer becomes empty. External/ 
status interrupts are caused by active levels on the CTS, DCD, or SYNC pins, 
transmit underruns, a break condition (asynchronous modes), an abort se­
quence (SDLC mode), an end-of-poll sequence (SDLC loop mode), or a zero 
count in the baud rate generator. Support is provided for DMA or CPU-con­
trolled high-speed data transfers. 

Receive data are routed through a 3-byte FIFO buffer, providing ad­
ditional time for the CPU to service a receive interrupt. For each character 
received, status information indicating if an error was detected while receiv­
ing that character is available; this status information is stored in its own 3-
byte FIFO. The transmit buffer is 20 bits long. 

The SCC contains 14 write registers and nine read registers per channel. 
Two other write registers are shared by both channels. The register configu­
rations are given in Fig. 12.27. 

Z8065 BEP 

The Z8065 Burst Error Processor (BEP) provides error correction and de­
tection for applications involving high-speed data transfers, such as high-per­
formance disk systems. The BEP can detect errors in data streams up to 585K 
bits long and at data rates up to 20 megabits/second. The pin assignments for 
the BEP are given in Fig. 12.28. 

The BEP uses anyone of four different cyclic redundancy codes, called 
Fire codes, to detect and locate errors (Table 12.5). Three different operations 
can be performed: writing data, reading data, and correcting data. During 
writes, the BEP computes a check word by dividing the data stream by the 
selected polynomial; the remainder is a check code that is appended to the 
data stream. When reading, the stream of data and check bytes is divided by 
the polynomial to get a syndrome. If the syndrome is not 0, an error is de­
tected. Two read modes are provided, normal and high speed; the read mode 
determines the correction methodology if an error is found. For all but the 
48-bit polynomial, an error in the data stream can be located using one of two 
methods, the "full-period clock around" method (normal reads) or the "Chi­
nese remainder theorem" method (high-speed reads). The "reciprocal poly-

TABLE 12.5 POLYNOMIALS SUPPORTED BY THE Z8065 BEP 

Number of Maximum data Correctable burst 
Polynomial check bits length (bits) error length 

56-bit 56 585,442 11 
32-bit 32 42,987 11 
35-bit 35 94,185 12 
48-bit 48 13 X (235 - 1) 7 
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Write Register 7 

10 ,1 0,1 Os ; o. i 0, I 0,1 0, I Do I 
Addresses: 10111 Part A 

00111 Part B 

IF?~~~ 
SYNC, 
SYNCs 
SYNC,s 
SYNC" 

o 

SYNC. 
SYNC. 
SYNC,. 
SYNC,O 

1 

SYNCs 
SYNC, 
SYNC" 
SYNC. 

1 

SYNC. 
SYNC, 
SYNC" 
SYNC. 

1 

SYNC, 
SYNC, 
SYNC" 
SYNC, 

1 

Write Register 9 

I 0, i 0, : Os ' o. : D, : 0, D,: Do I 
Addresse/i: 11001 Part A 

01001 Po" B 

~ ~L """'''"' CO, 

o 0 NO RESET 

o 1 CHANNEL RESET B 

1 0 CHANNEL RESET A 

1 1 FORCE HARDWARE RESET 

Write Register 10 

I 0, : 0, ! Os : 0, : 0, : 0, : 0, ! Do I 
Addresses: 11010 Part A 
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~
I ~ 6 BIT/8 Bll SYNC L LOOP MODE 

ABORT~F=All ON UNDERRUN 
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o 1 NRZI 
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1 1 FMO (TRANSITION = 0) 

'---------- CRC PRESET I/O 

Write Register 11 

I 0] 0 6 0.., 0 4 0] O2 0, Do I 
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01011 Pa,' B 

10 0 TRxC OUT = XTAL OUTPUT 

o 1 TRxC OUT = TRANSMIT CLOCK 

1 0 TRxC OUT = BR GENERATOR OUTPUT 

1 1 TRxC OUT = OPLL OUTPUT 

TRxC 011 

o 0 TRANSMIT CLOCK = RTxC PIN 

o 1 TRANSMIT CLOCK = TRxC PIN 

1 0 TRANSMIT CLOCK = BR GENERATOR OUTPUT 

1 1 TRANSMIT CLOCK = DPLL OUTPUT 

o 0 RECEIVE CLOCK = Fffxc PIN 

o 1 RECEIVE CLOCK = TAxc PIN 

1 0 RECEIVE CLOCK = BR GENERATOR OUTPUT 

1 1 RECEIVE CLOCK = DPLL OUTPUT 

'---------- RTxC XTALINO XTAL 

SYNC, 
SYNCo 
SYNClO 
SYNC. 

1 

SYNC, 
x 

SYNC. 
SYNC, 

1 

SYNCo 
x 

SYNC. 
SYNC. 

o 

MONOSYNC, 8 BITS 
MONOSYNC, 6 BITS 
BISYNC, 16 BITS 
BISYNC, 12 BITS 
SDLC 
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I 0,1 D, ! Os I D,I D, I 0, I 0, I Do I 
Addresses: 11100 Part A 

01100 Pa,' B 

~!i: LOWER BYTE OF 
TIME CONSTANT 

'--------- TC, 

Write Register 13 
Addresses: 11101 Part A 

01101 Part B 

UPPER BYTE OF 
TIME CONSTANT 

L.-_______ TC,. 

Write Register 14 

10,1 0.1 Os I 0.1 OJ I 02 1 0, I Do I 
Addresses: 11110 Part A 

01110 Part B 

~~
L BR GENERATOR ENABLE 

L BR GENERATOR SOURCE 

DTA/REQUEST FUNCTION 

AUTO ECHO 

LOCAL LOOPBACK 

o 0 0 NULL COMMAND 

o 0 1 ENTER SEARCH MODE 

o 1 0 RESET MISSING CLOCK 

o 1 1 DISABLE DPLL 

1 0 0 SET SOURCE = BR GENERATOR 

1 0 1 SET SOURCE = RTxC 

1 1 0 SeT FM MODE 

1 1 1 SET NRZI MODE 
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I~I~I~I~I~I~I~I~I 
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'--------- BREAK/ABORT IE 

NOTE: WRITE/READ REGISTER 8 IS THE DATA REGISTER. 

Figure 12.27 Continued 
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~~~
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Read Register 10 
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~ !~~~~::::""" 
'--------- ONE CLOCK MISSING 

Read Register 12 
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NOTE: WRITE/READ REGISTER 8 IS THE DATA REGISTER. 

Figure 12.27 Continued 
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nomial" error-correction method is used with the 48-bit Fire code. These 
correction algorithms extract the error pattern in the data stream for external 
correction. 

The major sections of the BEP are illustrated in Fig. 12.29. Data are input 
to the BEP one byte at a time and divided by the appropriate polynomial in 
the Polynomial Divide Matrix. The Register Array contains 56 flip-flops used 
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for check bit computation and error pattern extraction. The Control Logic 
contains the timing, gating, and reset circuitry for the device. 

Z8068 DCP 

The Z8068 Data Ciphering Processor (DCP) is a data encryption/decryption 
device that conforms to the National Bureau of Standards Data Encryption 
Standard (Federal Information Processing Standards Publication 46). Data 
rates up to 1 megabyte/second can be obtained. The pin assignments for this 
40-pin device are shown in Fig. 12.30. 

The DCP provides three ciphering options: Electronic Code Book, Chain 
Block Cipher, and Cipher Feedback. Electronic Code Book is a relatively 
straightforward cipher used for disk systems and similar applications. Chain 
Block Cipher encryption involves a feedback step wherein the ciphering of a 
data block is dependent on the previous data block and is commonly used in 
high-speed telecommunications applications. Cipher Feedback encryption 
involves both a feedback path and a pseudo-random binary stream that is ex­
clusive-ORed to the text to be encrypted; it is used in low-speed byte-oriented 
applications. 

Three separate 8-bit ports can be used for the cypher key, clear data, and 
encrypted data (Fig. 12.31). The DCP can be used as an encrypting or decrypt-

{

_MCS 

AS 
MASTER PORT MDS 

CONTROL 
MR/YI 

MFlG 

AUXILIARY { 
CONTROL 

AUXILIARY 
PORT 

- Z8068 SPo 
ASTB DCP . 
AFlG SPI 

AUXo 

AUXI 

AUX2 

AUX3 

AUX4 

AUX5 

AU X6 C/K 

AUX7 PAR 

+5 V GND ClK 

MASTER 
PORT 
(ADDRESSI 
DATA) 

SLAVE 
PORT 
(DATA) 

CONTROL/KEY 

PARITY 

+5V 

AUXo 6 

AUX1 

Figure 12.30 Z8068 DCP pin assignments. 

GND 



248 Z8000 Family Devices Chap. 12 

MPo-M P7 
MASTER ,,8 ---+a- PORT " 

~ 1 1 1 t 
,,8 

t 
MCS • 

AS MASTER MODE STATUS 
MICRO· PORT AND IVE IVD CLK 

MDS CONTROL f- - COMMAND r---- MUX f- REG. REG. PROGRAMMED 

LOGIC REGISTERS MACHINE 
MPLG 

""-~ --
MR/W + ~ 

SPa.LSP7 
SLAVE J- INPUT 

8 I PORT REGISTER 

j ~ 
SCS 

SLAVE 
SDS PORT ALGORITHM 

SFLG 
CONTROL PROCESSOR 

LOGIC 

A 
I I ~ 

UXO-~UX7 
AUXILIARY 8 

OUTPUT I t 8 PORT " MASTER I I D E 
REGISTER KEY KEY KEY 

t 
t t t t I 

ASTB AUXILIARY 

AFLG 
PORT 

CONTROL 
LOGIC 

Figure 12.31 Z8068 DCP block diagram. 

ing device in a single-port configuration (the master port is used for both clear 
and encrypted data) or a dual-port configuration (the master port is used for 
clear data and the slave port for encrypted data, or vice versa). Input, output, 
and ciphering of data are performed concurrently, thereby maximizing data 
throughput. The input and output registers each hold 8 bytes and data are 
encrypted or decrypted in 64-bit blocks. 

Z8052 CRTC 

The Z8052 CRT Controller (CRTC) is a general-purpose controller for raster­
scan CRT displays. The CRTC is a word peripheral with an on-board DMA 
controller capable of addressing up to 64K bytes of the system's memory. 
The CRTC is a 48-pin device that operates from a single 5-V supply. 

Designed to interface the Z8000 to a wide variety of CRT displays, the 
Z8052 includes numerous advanced features such as vertical and horizontal 
split-screen capability, multiple cursors, blinking cursors or characters with 
programmable blink rates, character vertical shifting (subscripts and super­
scripts), variable number of scan lines per row, and variable row lengths. Fif­
teen character attributes are specified on a character-by-character basis; char-
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acters and their attributes are stored in a 132 X 22 buffer. Simple line graphics 
also can be implemented with the line attributes provided. The CRTC can be 
operated in a slave mode that allows expansion of the character buffer using 
multiple CR TCs. 

Z8016 DTC 

The Z8016 Direct Memory Access Transfer Controller (DTC) is a high-speed 
dual-channel DMA controller that interfaces to the Z-Bus as both a bus re­
questor and a programmable peripheral device. Each of the DTC's two chan­
nels can transfer data blocks between memory and a peripheral, two memory 
areas, or two peripherals. Memory.:.to-memory transfer rates up to 2 mega­
bytes/second and memory-to-peripheral or peripheral-to-peripheral transfer 
rates up to 1.3 megabytes/second are possible. The DTC is housed in a 48-pin 
package and requires a single 5-V power supply (Fig. 12.32). 

The segment number lines, address/data bus, and associated status and 
control signals are bidirectional at the DTC. These signals are inputs to the 
DTC when the CPU has control of the bus so that the DTC can be pro-
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grammed via I/O commands from the CPU; these signals are outputs when the 
DTC has control of the bus so that the DTC can control data transfers on the 
bus. The BAI, BAO, and BUSRQ signals are used to interface the DTC to a 
bus request daisy chain, as described in Chapter 7. lEI, lEO, and INT signals 
are available for attaching to an interrupt daisy chain; interrupt acknowledges 
are decoded internally from the STO-ST3 inputs. The DMA request signals 
(DREQ1 and DREQ2, one for each channel) are inputs that can be used to 
initiate a DMA operation with an external signal. The DMA acknowledge sig­
nals (DACK1 and DACK2) indicate when a channel is performing a DMA op­
eration. The end-of-process (EOP) signal is a bidirectional line that the DTC 
uses to signal the end of a DMA operation. An external device (such as the 
MMU's SUP signal) also can terminate a DMA operation by pulling the EOP 
line low. The CS /W AIT pin is used as a chip select when the DTC does not 
control the bus for sending commands to the DTC. When the DTC does con­
trol the bus, this pin is a WAIT input for controlling the timing of memory 
and I/O accesses initiated by the DTC. 

In a system containing Z8010 MMUs, the Z8016 DTC can be used in two 
different manners. The DTC can be connected directly to the memory con­
trol logic and deal with physical memory addresses (Fig. 12.33) or the DTC 
can be interfaced to memory through the MMUs and use logical memory ad­
dresses (Fig. 12.34). For logical addresses, the DTC uses the SNO-SN6 and 
ADO-AD15 lines for the 23-bit logical address; the MMU Sync signal is sent 
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to the MMU's DMA Sync input to allow the MMU to differentiate between 
CPU- and DTC-controlled memory accesses. For physical addresses, the ADO­
AD15 lines hold the 16 least significant bits and the SNO-SN7 lines hold the 
8 most significant bits of the physical memory address. 

DTC-controlled data transfers can be byte or word oriented. The DTC 
can be programmed to perform byte/word funneling for transfers between 
byte or word peripherals and/or memory. For transfers between a byte source 
and a word destination, two bytes are read in consecutive accesses from the 
source and sent as a word to the destination. For transfers between a word 
source and a byte destination, the word is read from the source and sent to 
the destination with two consecutive byte writes. 

Pattern match capability is included in the Z8016, allowing search and 
transfer-and-search operations. Search operations read data from the source 
until a match to the specified pattern is found. Transfer-and-search operations 
transfer data between a source and destination until the specified data pattern 
is encountered. 

The DTC provides for wait states during transactions with slow memories 
or peripherals under both hardware and software control. In addition to the 
hardware WAIT signal, the DTC can be programmed to automatically insert 
zero, one, two, or four wait states when accessing a particular source or des­
tination device. 

The Z8016 contains 20 status and control registers in each DMA chan­
nel. Three additional registers are used to control the overall operation of the 
device. To minimize CPU overhead, the DTC can be programmed to load 
many of its own registers from memory via DMA operations; the CPU only 
has to load the memory address of the control parameter table and issue a 
command to start this operation. This operation also can be performed at the 
end of some other DMA process, allowing the DTC to automatically chain its 
own operations without CPU intervention. Alternatively, the DTC can be 
programmed to interrupt the CPU at the termination of a DMA operation. 

Z6132 RAM 

The Z6132 Quasi-Static Random-Access Memory is a Z-Bus-compatible 4K 
X 8 dynamic RAM with on-board self-refresh capability. External refresh 
circuitry is not needed; thus the Z6132 combines the convenience of a static 
RAM with the density and low-power consumption of a dynamic RAM. The 
RAM is packaged as a 28-pin device and is pin-compatible with 2716/2732-
type EPROMs (Fig. 12.35). 

The Z6132 is organized as two separate blocks of memory with indepen­
dent row address buffers and decoders but common column address decoders 
and data lines (Fig. 12.36). The row address decoders are addressed by either 
the AI-A 7 address lines or an internal 7 -bit refresh counter. During memory 
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accesses, address input AO selects one of the two blocks; meanwhile, the other 
block is refreshed using the refresh counter. 

The timing of Z6132 memory accesses is described briefly in Chapter 3. 
A memory cycle starts on the rising edge of address clock (AC); this edge 
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latches the chip select (CS), write enable (WE), and AD signals. If the chip is 
not selected (CS high), all other inputs are ignored for the remainder of the 
cycle and both memory blocks in the chip are refreshed using the 7 -bit refresh 
counter. If the chip is selected (CS low), the AD-All inputs are latched in­
ternally, where AD determines the block addresses by A1-A11. If WE is high, 
indicating a read cycle, a subseqent low level on the data strobe (DS) input 
activates the DD-D7 data outputs after a specified delay from the rising edge 
of AC or falling edge of DS, whichever comes later. Thus DS is used as an 
output enable during read operations. If WE is low, indicating a write cycle, 
the falling edge of DS loads the data on the DD-D7 inputs into the addressed 
memory location (Figure 12.37). 

Every dynamic memory cell in the Z6132 must be refreshed at least 
every 2 ms. Each of the two memory blocks contains 16,384 cells and requires 
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128 refresh cycles to completely refresh the block. Two user-selectable refresh 
modes are provided, the long-cycle-time mode and the short-cycle-time mode. 

The long-cycle-time mode is selected by pulling the BUSY pin low. In 
this mode, every memory cycle is followed by a refresh operation on both 
blocks of memory in the Z6132. There must be at least 128 address clock 
(AC) signals in any 2-ms period. The long-cycle-time mode is most practical 
in applications where the cycle time exceeds 700 ns. 

The short-cycle-time refresh mode is selected by pulling the BUSY pin 
high through a pull-up resistor. In this mode, the Z6132 performs a refresh 
operation on the memory block that is not being accessed. If the chip is not 
selected (CS high), both blocks are refreshed. If the chip is selected, only the 
block that is not addressed by AO is refreshed; the refresh occurs simulta­
neously with the access of the other block. This scheme takes advantage of the 
sequential nature of most memory addressing; normally, this odd/even refresh 
scheme will provide 128 refresh operations to each block within 2 ms. In the 
unlikely event of 17 consecutive all odd (AO = 1) or all even (AO = 0) acces­
ses, the refresh operation will automatically request one long memory cycle 
to append a refresh operation to the appropriate block. The BUSY line is 
pulled low during this cycle; the BUSY pins from all the system's Z6132's 
can be OR-tied together and fed into the CPU's WAIT input. This is the re­
fresh method appropriate for most Z8000-based systems. 

Thus the Z6132 is well suited for microprocessor applications where its 
byte-wide organization, self-refresh capability, and Z-Bus interface logic serve 
to simplify design and reduce system's parts count. 
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Z-Bus M;crocolf1puters 

A single-chip microcomputer is an entire computer (CPU, memory, and I/O) 
incorporated on a single integrated-circuit chip. The Z8 family of microcom­
puters are stand-alone single-chip microcomputers that can access memory 
external to the chip via a Z-Bus interface. Thus the Z8 can be interfaced easily 
to a Z8000 system in a distributed processing application. The Universal Pe­
ripheral Controller (UPC) is an intelligent peripheral controller for Z8000 
systems based on the Z8 architecture. The Z8 and UPC architectures provide 
powerful processing features, including fast execution times, efficient memory 
usage, sophisticated interrupt structures, I/O and bit manipulation capabilities, 
and powerful instruction set. 

Z8 ARCHITECTURAL OVERVIEW 

Figure 13.1 shows the pin-out of the Z8601, one member of the Z8 family of 
single-chip microcomputers. The Z8601 has four 8-bit I/O ports (ports 0, 1, 
2, and 3), address strobe (AS), data strobe (DS), and read/write (R/W signals 
for interfacing to memory external to the Z8, and two pins (XTAL1 and 
XTAL2) for connecting a series-resonant crystal or single-phase clock (8 MHz 
maximum) to an on-chip oscillator. The processor runs at one-half the speed 
of the external crystal or clock (that is, 4-MHz maximum internal clock). 

A block diagram of the Z8601 is given in Fig. 13.2. On-board memory 
consists of 2K bytes of mask-programmable ROM and 144 byte registers, 
including 124 general-purpose registers, 4 I/O port registers, and 16 status 
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and control registers. The Z8 can be interfaced to up to 124K bytes of external 
memory as a programmable option. Memory addresses are 16 bits long, regis­
ter addresses are 8 bits long, and data transfers are always 8-bit (byte) trans­
fers. The Z8 's programmable options can be configured for a particular ap­
plication by writing to the status/control registers. Port 1 can be used as a 
byte-programmable I/O port or as an 8-bit multiplexed address/data bus to 
external memory. Port ° is a nibble-programmable I/O port or additional ad­
dress bits for interfacing to external memory. Port 2 is a bit-programmable 
I/O port. Port 3 is always 4 bits of input and 4 bits of output; port 3 pins can 
be used for several control functions, including handshake signals for the 
other ports, interrupt request inputs, serial I/O lines, and external access to 
the Z8's counter/timers. An on-board full duplex UART (universal asynchro­
nous receiver/transmitter) provides serial I/O capability. Two programmable 
counter/timers with several user-selectable modes also are provided. 

Since the same port ° and port 1 pins can be used as I/O ports or as an 
interface to memory external to the Z8, a Z8 system can have several differ­
ent configurations. For an I/O intensive application with a relatively short 
program, all four ports are used as I/O ports, thereby providing 32 bits of I/O 
(Fig. 13.3). The program code resides in the 2K bytes of on-board ROM and 
data resides in the general-purpose registers. If slightly more memory is 
needed, port 1 can be configured as an 8-bit multiplexed address/data bus to 
memory external to the Z8; thus 256 bytes of additional memory can be ac­
cessed (Fig. 13.4). Ports 0, 2, and 3 still are available for I/O in this configur­
ation. At the expense of using one bit of port 3 as a status line called data 
memory select (DM), separate program and data memory areas can be defined 
in external memory. Therefore, this configuration could have 256 bytes of 
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NO EXTERNAL MEMORY 

Figure 13.3 Z8 configuration for 
I/O intensive applications. 
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Figure 13.4 Z8 configuration for 
I/O intensive applications requiring 
some external memory. 

program memory and 256 bytes of data memory external to the ZS. For a 
more memory intensive application, the lower 4 bits of port 0 can provide 4 
more bits of address to external memory; when combined with port 1, 12 
address lines to external memory allow an interface to 4K bytes of program 
memory and 4K bytes of data memory external to the ZS (Fig. 13.5). Ports 
2, 3, and one-half of port 0 are still available as I/O pins. In a very memory 
intensive application, all of ports 0 and 1 can be used to access external mem­
ory. This results in 16-bit addresses to external memory, allowing 62K bytes 
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Figure 13.5 Z8 configuration with 
interface to 4K bytes of external 
memory. 
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Figure 13.6 Z8 configuration for 
memory intensive applications. 

of program memory and 62K bytes of data memory external to the Z8 (Fig. 
13.6). (The first 2K of addresses, 0 to 7FF hexadecimal, are reserved for the 
on-board ROM.) Thus the Z8 can handle a wide range of both memory­
intensive and I/O-intensive applications. 

Z8 MEMORY SPACES 

Three different memory address spaces are available in Z8 systems: program 
memory, data memory, and the registers. 

Program memory is memory that can be accessed during instruction 
fetches. The Z8's 16-bit program counter can address 64K bytes of program 
memory. The first 2048 bytes of the Z8061 's program memory resides in 
the mask-programmable ROM on the chip (Fig. '13.7). Up to 62K bytes of 
external program memory can be added to a Z8601-based system provided 
that ports 1 and 0 are configured to act as an address/data bus to external 
memory. 

The first 12 bytes of program memory are used to hold six 16-bit inter­
rupt vectors, where each vector corresponds to an interrupt source. When an 
interrupt occurs, program control is passed to the service routine whose start­
ing address is stored in the appropriate vector location. Resetting the Z8 
forces the program counter to location 12 (OC hexadecimal), the first pro­
gram memory location available for user's code. 

External program memory can be implemented in any combination of 
ROM and RAM. Program memory can be used to hold data as well as program 
code and is accessed by the Load Control (LDC) instruction. 
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Data memory, on the other hand, can hold only data; instruction fetches 
access only program memory. Data memory is always external to the ZS chip 
(Fig. 13.S); up to 62K bytes of data memory can be included in a system, 
depending on the configuration of ports 1 and O. Separate program and data 
areas in external memory are implemented by programming bit 4 of port 3 to 
be the data memory select (DM) signal. When the line is low, data memory 
is being accessed; when DM is high, program memory is being accessed. Thus 
the DM signal can be used as part of the chip select logic to external memory 
to segregate the program and data memory areas (Fig 13.9). The state of the 
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Figure 13.8 Z8 data memory. 
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Figure 13.9 Using the DM signal to 
segregate external program and data 
memory. 

DM signal when accessing a data operand during instruction execution de­
pends on the instruction being executed; the Load Control (LDC) instruction 
accesses program memory and the Load External (LDE) instruction accesses 
data memory. In other words, the instruction used determines which memory 
space is being accessed. 

The 144-byte register file includes 4 I/O port registers (RO-R3), 16 
status and control registers (R240-R255), and 124 general-purpose registers 
(R4-R127), as illustrated in Fig. 13.10. I/O ports 0 to 3 are accessed by reads 
and writes to registers 0 to 3, respectively. Thus there are no explicit I/O in­
structions in the Z8 instruction set; any instruction that acts on a register 
also can act on an I/O port. The general-purpose registers can be used as ac-
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Figure 13.11 Z8 register pointer. 

cumulators, address pointers, or index registers. The status and control regis­
ters are used to configure the Z8 's programmable options and to hold status 
information, such as the state of the ALU flags. 

Z8 registers can be accessed directly or indirectly using 8-bit register ad­
dresses. However, one of the control registers (R253, the Register Pointer) al­
lows 4-bit register addresses, resulting in shorter and faster instructions. The 
registers are divided into nine groups of 16 registers each (Fig. 13.11). The Reg­
ister Pointer holds the starting address of one of these nine groups; the 16 
registers in the specified group are called "working registers" and can be ac­
cessed with 4-bit register addresses. 

Either the internal register file or external data memory can be used to 
hold the Z8's stack. An 8-bit stack pointer (R255) is used if the stack is in 
the registers; a 16-bit stack pointer (R254 and R255) is used if the stack is in 
data memory. 

The Z8 's flags consist of carry, zero, sign, overflow , half-carry, and deci­
mal-adjust flags, just as in the Z8000. These flags are held in register R252. 

Z8 I/O PORTS 

The Z8 's 32 I/O lines are configured as four 8-bit parallel I/O ports, called 
ports 0, 1, 2, and 3. The ports also can be programmed to provide an inter-
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face to external memory, serial I/O, handshakes for parallel I/O, status sig­
nals, access to the counter/timers, or interrupt request inputs. 

Port 1 can be configured as a byte I/O port or as a time-multiplexed 
address/data bus to external memory. As an I/O port, port 1 can be a byte of 
input or a byte of output. Optionally, transfers with this port can be con­
trolled by a two-wire interlocked handshake; bits 3 and 4 of port 3 provide 
the handshake signals. The port is accessed via reads and writes to register R 1. 

To interface to external memory, port 1 must be configured as an 8-bit 
time-multiplexed address/data bus. The AS, DS, and R/W signals are used to 
control data transfers on this bus. Port 1 and these control signals can be 
placed in a high-impedance state to allow bus sharing in Z8 systems. 

Port 0 can be used as a nibble-programmable I/O port or as additional 
address lines for interfacing to external memory. When configured as an I/O 
port, the two nibbles of port 0 can be independently programmed as inputs 
or outputs. Optionally, bits 2 and 5 of port 3 can provide an interlocked 
handshake for port 0 I/O operations; the direction of the handshake is the di­
rection of port O's upper nibble. 

For external memory interfacing, port 0 can provide four additional ad­
dress lines (lower nibble only) or eight address lines (both nibbles). If only 
the lower nibble is required for memory addressing, the upper nibble still can 
be used for I/O. The port 0 lines defined as address bits can be placed in the 
high-impedance state along with the port 1 pins for bus-sharing applications. 

The configuration of ports 0 and 1 is controlled by register R248, the 
Port 0-1 Mode register (Fig. 13.12). 

When external memory is included in a Z8 system, ports 1 and 0 are con­
figured to provide the desired number of address bits. The timing for external 
memory accesses is the standard Z-Bus timing, as illustrated in Fig.13.13. The 
clock shown is the external clock (8 MHz maximum); the processor runs at 
one-half that speed. During Tl, the address is emitted and AS is pulsed; the 

R248 POIM 
Port 0 and I Mode Register 

(F8H; Write Only) 

PO,-P07 MODE:]_ 
OUTPUT = 00 ~ 

INPUT = 01 
A12-A15 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

EXTENDED = 1 

I [ "80P~,~u",~~, 
01 = INPUT 
1X = A.-An 

STACK SELECTION 
o = EXTERNAL 
1 = INTERNAL 

P1 o-P1 7 MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH-IMPEDANCE ADo-AD7, 

AS, Os, R/Vi, Aa-A11, A12-A15 
IF SELECTED 

Figure 13.12 Port 0-1 mode register. 
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I· MACHINE CYCLE ·1 

I Tl T2 T3 I 
CLOCK 

PO X As-AI5 x= 
P1 X Ao-A7 ) ~ 
AS '---l '----
DS \ I 
R/v.; 7 

I' READ CYCLE 

PO X As-AI5 x= 
P1 X Ao-A7 X Do-D7OUT x= 

'--I '--
DS \ / 
R/W \ 

f.---------WRITE CYCLE---------I 

Figure 13.13 Z8 external memory interface timing. 

address and R/W signal are guaranteed valid on the rising edge of AS. During 
T2, the multiplexed portion of the bus (the port 1 pins) is cleared of the ad­
dress. For reads, DS is lowered in anticipation of receiving data from mem­
ory; for writes, the data are emitted before DS goes active. During T3, the 
data are read into the CPU or the write is completed. The rising edge of DS 
marks the end of the data transfer. For a 4-MHz system, the worst-case mem­
ory access time would be 320 ns. As an option, extended memory timing can 
be selected by setting bit 5 of the Port 0-1 Mode register. With extended mem­
ory timing, one wait state is inserted between T2 and T3 of each external 
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R246 P2M 
Port 2 Mode Register 

(F6H; Write Only) 

I 0,1 06 1 Dsl 04 1 03 1 02 1 0, I Do I 
P20- P2, 110 DEFINITION 
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'----- ~g~~:~~~::i~~~UpTJTUT Figure 13.14 Port 2 Mode register. 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

I 0,1 06 1 Dsl 04 1 03 1 02 1 0, I Do I 

~~
O PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

RESERVED 

o P32 INPUT P35= OUTPUT 
1 P32 DAVO/RDYO P35 = RDYOIDAVO 

o 0 P33 INPUT P34 = OUTPUT 

~ ~} P33 INPUT P34 • OM 
1 1 P33 DAV1/RDY1 P34 ~ RDY1/DAVj 

L--_____ ~ ~~~ ~N:v~iR(~~~ ~;: : ~g~~/~1~;fuT) 

~------~ ~~~ ~ ~NE~yXL IN ~~~ = ~~~I~~TOUT 
L-_______ ~ ~~=:i~ g~F Figure 13.15 Port 3 Mode register. 

memory access, thereby increasing the access time by a full clock period of 
the internal processor clock. 

Port 2 is always a bit-programmable I/O port wherein each bit can be in­
dividually programmed as an input or output line using R246, the Port 2 
Mode register (Fig. 13.14). Any pins defined as outputs can be active or open­
drain outputs. Optionally, bits 1 and 6 of port 3 can provide an interlocked 
handshake for port 2; the direction of the handshake is the direction of bit 
7 in port 2. 

Port 3 consists of four input pins (bits 0-3) and four output pins (bits 
4-7). These pins can be used as I/O lines or control signals, as determined by 
R247, the Port 3 Mode register (Fig. 13.15). Port 3 pins can provide the hand­
shake signals for the other ports, serial I/O lines (bit 0 for serial in, bit 7 for 
serial out), timer input and output signals, four external interrupt requests, 
and the data memory select (DM) signal. 

Z8 COUNTER/TIMERS 

The Z8 has two independent 8-bit programmable counter/timers, TO and Tl. 
Each counter/timer has a programmable prescaler and count register; one mode 
register controls the configuration of both counter/timers (Fig. 13.16). TO is 
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R242 TI 
Counter Timer 1 Register 

(F2H; Read/Write) 

I 0 7 t 06 t Os t D. t 0 3 t O2 t 0, t Do I 

Z-8us Microcomputers 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

I 0 7 t 0 6 t Os t D. t 0 3 t O2 t 0, t Do I 

Chap. 13 

T, INITIAL VALUE (WHEN WRITTEN) 
~--- (RANGE 1 256 DECIMAL 01 00 HEX) 

T, CURRENT VALUE (WHEN READ) 

To INITIAL VALUE (WHEN WRITTEN) 
'----(RANGE: 1 256 DECIMAL 01 00 HEX) 

To CURRENT VALUE (WHEN READ) 

R243 PREI 
Prescaler 1 Register 

(F3H; Write Only) 

I 0 7 \ 0 6 \ Os \ 0.1 0 3 1 02 1 0, I Do I 

R245 PREO 
Prescaler 0 Register 

(F5H ; Write Only) 

I 0 7 /06 / Os t 0./ 0 3 / O2 / 0, / Do I 

[C~~NJ, ~~~ELE.PASS 
1 = T, MODULO·N 

CLOCK SOURCE 
1 _c T, INTERNAL l COUNT MODE 

o = To SINGLE·PASS 
1 = To MODULO·N 

RESERVED o T, EXTERNAL TIMING INPUT 
(T,N) MODE 

PRESCALER MODULO 
L-____ (RANGE: 1-64 DECIMAL 

01-00 HEX) 

R241 TMR 
Timer Mode Register 

(FI H ; Read/Write) 

I 0 7 t 0 6 t Os i 0.1 0 3 t 0 2 1 0, I Do I 

PRESCALER MODULO 
'-----(RANGE: 1-64 DECIMAL 

01-00 HEX) 

TOUT MODES j ~~ 0 = NO FUNCTION NOT USED = 00 ~ 1 = LOAD To 

~~ g~~ ~ no: DISABLE To COUNT 
INTERNAL CLOCK OUT = 11 1 - ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK INP'OT = 00 1 = LOAD T, 

GATE INPUT = 01 0 = DISABLE T, COUNT 
TRIGGER INPUT = 10 1 = ENABLE T, COUNT 

(NON·RETRIGGERABLE) 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

Figure 13.16 Counter/timer control and status registers. 

driven by the internal processor clock divided by 4 (that is, a I-MHz clock if 
an 8-MHz external crystal is used); Tl can be driven by this internal clock or 
an external signal from port 3, bit 1. Bit 1 of port 3 can be used as a gate or trig­
ger for Tl, also. Either counter/timer can generate an interrupt at the end-of­
count condition and/or have its output routed to bit 6 of port 3, which tog­
gles at the end-of-count. Thus the counter/timers can be used for a variety 
of applications, including event counters, watch-dog timers, delay timers, and 
square-wave generators. 

The 6-bit prescaler is a clock divider that can divide the input clock to 
the counter/timer by any value from 1 to 64. The output of the prescaler 
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drives the down-counter, decrementing the count. The current count can be 
read at any time without disturbing the counting process. Either single-cycle 
mode (counter stops upon reaching zero) or modulo-n mode (the counter 
reloads the initial count value upon reaching end-of-count) can be specified. 

Z8 SERIAL 1/0 

The Z8 contains a full-duplex serial asynchronous receiver/transmitter that is 
enabled by setting bit 6 of the Port 3 Mode register. If this serial I/O device 
is used, counter/timer TO must be used as the baud rate clock generator. Data 
rates up to 62.5K bits/second are possible. Bit 0 of port 3 acts as the serial­
in line and bit 7 of port 3 is the serial-out line. Received data are read from 
register R240 and data to be transmitted are written to register R240. Op­
tionally, an odd-parity generator and checker is available. 

The Z8 transmits 8-bit characters with one start bit and two stop bits. 
If parity is enabled, the eighth bit will be replaced by an odd-parity bit. Re­
ceived data must be formatted as 8-bit characters with a start bit and at least 
one stop bit. If parity is enabled, the eighth bit of a received character is re­
placed by a parity error flag. Separate interrupt requests may be generated 
upon transmitting or receiving a character. The transmitter is single-buffered 
and the receiver is double-buffered with no overwrite protection provided in 
the hardware. 

Z8 INTERRUPTS 

The Z8 provides for six different interrupts from eight possible sources: the 
four port 3 inputs, the two counter/timers, the UART's receiver, and the 
UART's transmitter (Table 13.1). Three registers control the interrupt 
structure: the Interrupt Priority, Interrupt Request, and Interrupt Mask reg­
isters (Fig. 13.17). The Interrupt Mask register globally or individually enables 
or disables the six interrupt requests. When more than one interrupt is pend­
ing, the contents of the Interrupt Priority register determines which interrupt 
request is serviced first. 

The Z8's interrupt processing mechanism is diagrammed in Fig. 13.18. 
The appropriate bit in the Interrupt Request register is set when the event 
corresponding to that interrupt request occurs. If that interrupt is enabled 
in the Interrupt Mask register, interrupt processing begins at the end of the 
current instruction's execution. The Interrupt Priority register is used to de­
termine priority in the case of simultaneous requests. The current program 
counter and flags (R252) are pushed onto the stack, interrupts are disabled, 
and the service routine pointed to by the appropriate interrupt vector is exe­
cuted. The six interrupt vectors are in the first 12 bytes of program memory. 



TABLE 13.1 Z8 INTERRUPT REQUESTS 

Name 

IRQO 

IRQl 

IRQ2 

IRQ3 

IRQ4 

IRQ5 

Vector location 
Source in program memory 

Port 3, bit 2 0, 1 

Port 3, bit 3 2,3 

Port 3, bit 1 4,5 

Port 3, bit ° 6, 7 
or serial in 

TO end-of-count 8,9 
or serial out 

Tl end-of-count 10, 11 

R2491PR 
Interrupt Priority Register 

(F9H ; Write Only) 

INTERRUPT GROUP PRIORITY 
RESERVED c 000 "',"VEO =:J I 

IR03, IROS PRIORITY (GROUP A) 
o = IROS :> IR03 
1 = IR03 > IROS 

C > A :> B 001 
A;> B :> C ' 010 
A> C > B = 011 
B > C > A = 100 

IROO, IR02 PRIORITY (GROUP B) C> B :> A = 101 
o = IR02 :> IROO -------' 
1 = IROO > IR02 

B > A :.> C ~, 110 
RESERVED = 111 

IR01, IR04 PRIORITY (GROUP C) 
o = IROl :> IR04 ---------1 
1 ~. IR04 > IROl 

R250 IRQ 
Interrupt Request Register 

(FAH; Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED ==r- ,'----- IROO = P32 INPUT (Do = IROO) 
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IROl = P33 INPUT 
IR02 = P3l INPUT 
IR03 = P30 INPUT, SERIAL INPUT 
IR04 = To, SERIAL OUTPUT 
IROS = Tl 

R25IIMR 
Interrupt Mask Register 

(FBH; Read/Write) 

Il-------1 ENABLES IROO-IROS (Do = IROO) 

RESERVED 

'----------1 ENABLES INTERRUPTS 

Comments 

Negative-edge triggered; can be port ° handshake 
Negative-edge triggered; can be port 

1 handshake 
Negative-edge triggered; can be port 

2 handshake or timer in signal 
Negative-edge triggered if port 3 

input 

Figure 13.17 Interrupt control and 
status registers. 
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r------------------------------------l 
I INTERRUPT SOURCES I 
I 

IR03 IR04 I 
IROO IR01 IR02 (P3. (To. IR05 I (P32) (P33) (P31) s,Nf Sour) (T 1) I 

I I 
I I 
I I 
I I 
I INTERRUPT MASK REGISTER I 
I . I L ____________________________ ~~RUPTLOGI~ 

64Kr----""'I 

0'---__ ..... 

Z8 PROGRAM MEMORY 

INTERRUPT 
SERVICE 
ROUTINE 

SELECT 
INTERRUPT 

VECTOR 

PUSH PC AND FLAGS ON 
STACK; RESET INTERRUPT 
REQUEST; RESET ENABLE 
INTERRUPT BIT 

Figure 13.18 Z8 interrupt processing. 
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Nested interrupts are possible by reenabling interrupts within the service 
routine. The Interrupt Return (lRET) instruction restores the program 
counter and flags of the interrupted program upon the completion of the ser­
vice routine . 

. Polled interrupt systems also are supported. In a polled system, the inter­
rupts to be polled are disabled in the Interrupt Mask register. The Interrupt 
Request register is read at predetermined intervals to determine which inter­
rupt requests require servicing. 

Z8 INSTRUCTION SET 

The Z8's assembly language instruction set is optimized for high code den­
sity and fast execution time. The Z8 features 43 instruction types and six 
operand addressing modes. 
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The operand addressing modes include register, indirect register, direct 
address, relative address, indexed, and immediate modes. In register mode, 
the operand value is the contents of the register specified in the instruction. 
Registers can be used in pairs to hold 16-bit values or memory addresses. 
Indirect register addressing means that a register or register pair holds the ad­
dress of the location whose contents is to be used as the operand. Both the 
registers and memory can be accessed using indirect register mode. In fact, 
data operands in program or data memory can be accessed only with indirect 
register mode. Direct addressing is used by the Jump and Call instructions 
to designate the address to be loaded into the program counter; in this mode, 
the destination address is given in the instruction itself. Relative addressing 
means that an offset is specified in the instruction; this offset is added to the 
current program counter contents to form the destination address. An indexed 
address consists of a register address offset by the contents of a designated 
working register (the index). Indexing is allowed only within the registers 
and is supported only by the Load instruction. For immediate mode, the oper­
and value is supplied in the instruction itself. These addressing modes are very 
similar in operation to the corresponding addressing modes in the Z8000 
CPUs (see Chapter 8). 

Table 13.2 is a list of the Z8 assembly language instruction set. The Z8's 
Jump and Jump Relative instructions use the same set of condition codes as 
the Z8000 (See Table 8.3). The Z8 is a register-oriented processor; arithmetic 
and logical operations can be performed only on data in registers. Three dif­
ferent load instructions are provided. Load (LD) is a register-to-register or 
immediate-to-register load. Load Constant (LDC) is for data transfers between 
a register and program memory. Load External (LDE) is for data transfers 
between a register and data memory. The block transfer instructions (LDCI 
and LDEI) are used within program loops to move entire blocks of data be­
tween the registers and program or data memory. LDC, LDE, LDCI, and LDEI 
all use indirect register addressing to access memory. The Pop and Push instruc­
tions might access the registers or external data memory, depending on the 
location of the stack. Similarly, the Call and Interrupt Return instructions 
access either the registers or data memory when pushing or popping status 
information. All other instructions operate on the registers only. The Test Un­
der Mask (TM) and Test Complement Under Mask (TCM) instructions allow 
bit testing of register contents. The Decimal Adjust (DA) instruction is used 

TABLE 13.2 Z8 INSTRUCTION SET 

Instruction 

Load 
CLR 
LD 
LDC 
LDE 

Operand(s) 

dst 
dst, src 
dst, src 
dst, src 

Clear 
Load 

Name of instruction 

Load Constant 
Load External Data 



TABLE 13.2 Z8 Instruction Set (Continued) 

Instruction Operand(s) N arne of instruction 

POP dst Pop 
PUSH src Push 

Arithmetic 
ADC dst, src Add with Carry 
ADD dst, src Add 
CP dst, src Compare 
DA dst Decimal Adjust 
DEC dst Decrement 
DECW dst Decrement Word 
INC dst Increment 
INCW dst Increment Word 
SBC dst, src Subtract with Carry 
SUB dst, src Subtract 

Logical 
AND dst, src Logical And 
COM dst Complement 
OR dst, src Logical Or 
XOR dst, src Logical Exclusive Or 

Program control 
CALL dst Call Procedure 
DJNZ r, dst Decrement and Jump if Nonzero 
IRET Interrupt Return 
JP cc, dst Jump 
JR cc, dst Jump Relative 
RET Return 

Bit manipulation 
TCM dst, src Test Complement under Mask 
TM dst, src Test under Mask 

Block transfer 
LDCI dst, src Load Constant Autoincrement 
LDEI dst, src Load External Data Autoincrement 

Rotate and Shift 
RL dst Rotate Left 
RLC dst Rotate Left through Carry 
RR dst Rotate Right 
RRC dst Rotate Right through Carry 
SRA dst Shift Right Arithmetic 
SWAP dst Swap Nibbles 

CPU control 
CCF Complement Carry Flag 
DI Disable Interrupts 
EI Enable Interrupts 
Nap No Operation 
RCF Reset Carry Flag 
SCF Set Carry Flag 
SRP src Set Register Pointer 
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to perform arithmetic on binary-coded-decimal data, in the same manner as 
the Z8000's DAB instruction. 

Z8 CONFIGURATIONS 

Several different product configurations are available within the Z8 family 
(Table 13.3). The Z8601 is a 40-pin device with 2K bytes of mask-program­
mable ROM, as previously described. The Z8602 is a 64-pin development 
version of the Z8601 that allows the user to prototype the system in hardware 
without mask-programming the code. The Z8602 is identical in function to 
the Z8601 except that the 2K bytes of internal ROM are removed, the ROM 
address and data lines are brought out to the additional pins, and control sig­
nals for accessing the first 2K bytes of program memory external to the chip 
have been added. Thus the program memory is implemented external to the 
Z8602 with an EPROM or PROM. The Z8603 is a combination of the Z8601 
and Z8602 wherein the first 2K bytes of program memory are external to 
the device. The Z8603 Protopak is a 40-pin chip that is pin-compatible with 
the Z8601; the Z8603 carries a 24-pin socket in "piggyback" manner for the 
EPROM that holds the first 2K bytes of program memory (Fig. 13.19). Thus 
the Z8603 allows the user to design a printed circuit board for the 40-pin 
mask-programmable Z8601 and use the Z8603 Protopak to build prototype 
and pilot production units. 

The Z8611 is identical to the Z8601 except that 4K bytes of mask­
programmable ROM is provided on the chip. Up to 60K bytes of program 
memory and 60K bytes of data memory can be accessed external to the Z8611 
if ports 0 and 1 are configured appropriately. The Z8612 is the 64-pin proto-

TABLE 13.3 Z8 PRODUCT CONFIGURATIONS 

Part number Package Description 

Z8601 40-pin 2K bytes of internal mask-programmable ROM 

Z8602 64-pin No internal ROM; interface to 2K bytes of external 
ROM/PROM 

Z8603 40-pin Protopak No internal ROM; 24-pin socket for 2K bytes of ex-
ternal EPROM 

Z8611 40-pin 4K bytes of internal mask-programmable ROM 
Z8612 64-pin No internal ROM; interface to 4K bytes of external 

ROM/PROM 
Z8613 40-pin Protopak No internal ROM; 24-pin socket for 4K bytes of ex-

ternal EPROM 

Z8681 40-pin No internal ROM; port 1 pins an interface to external 
memory 

Z8671 40-pin Z8601 with a BASIC debugger/interpreter 
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Figure 13.19 Z8 Protopak package. 

typing version of the Z8611 with all memory external to the chip; the Z8613 
is the 40-pin Protopak version of the Z8611. 

The Z8681 is a "ROMless" version of the Z8 with no program memory 
on board the device. Port 1 is always configured as an address/data bus to 
external memory; port 0 is still nibble-programmable as I/O or additional ad­
dress lines. Therefore, the Z8681 can address up to 64K of program memory 
and 64K of data memory. 

The Z8671 microcomputer is a Z8601 with a BASIC interpreter and de­
bugger already programmed into the 2K bytes of mask-programmable ROM. 
The BASIC language used is a subset of Dartmouth BASIC. 

Z8000-Z8 INTERFACING 

A Z8 microcomputer could be used as another processor in a Z8000-based 
system in distributed processing applications. For example, a Z8 might be 
used as a front-end I/O processor dedicated to data handling and formatting 
for a specific I/O device in the system. 

Z8 's can be interfaced to Z8000 systems in a number of ways. The most 
straightforward method is to treat the Z8 as an I/O device for a Z8000 CPU 
using a Z8036 CIO or Z8038 FlO as the interfacing device (Fig. 13.20). A 
Z8 port with interlocking handshake interfaces directly to the interlocked 
handshake of a CIO or FlO port. The other Z8 ports could be used to inter­
face to I/O devices or access external memory. 

Since the Z8 uses Z-Bus timing for accessing external memory, a Z8 
microcomputer could be used as a bus requestor in a Z8000 system, where 
the Z8 directly accesses one segment of the Z8000's memory. In Fig. 13.21, 
one port 3 output bit is used as the bus request signal to the Z8000 CPU and 
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Figure 13.20 Z8000-to-Z8 interface with a cIa or Fla. 
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Figure 13.21 Z8000/Z8 bus sharing. 
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one port 3 input bit is the bus acknowledge. Ports 0 and 1 are defined as an 
address/data bus to external memory; these are normally held in the tri-state 
mode. When the Z8 gains control of the bus via a bus request, it can make byte 
access to the Z8000's memory using LDC, LDE, PUSH, or POP instructions. 
When the Z8 is not using the Z8000's bus, the Z8 still can be executing from 
its internal ROM. 

UPC ARCHITECTURAL OVERVIEW 

ADDRESSI 
DATA BUS 

The Universal Peripheral Controller (UPC) is a slave microcomputer that can 
be used as an intelligent peripheral controller in Z8000 systems. The UPC is 
a complete microcomputer based on the Z8 architecture with its own CPU, 
memory, and I/O ports on the chip; a Z-Bus interface allows the UPC to act 
as a byte peripheral in a Z8000-based system. A Z8000 CPU can send and re­
ceive byte data from the UPC by reading and writing to the UPC's internal 
registers via I/O operations. Thus the UPC can unburden the master CPU by 
handling tasks such as data translation and formatting, arithmetic, and I/O 
device control. 

The UPC is available in several different product configurations. Figure 
13.22 shows the pin assignments for the Z8090, a 40-pin UPC with 2K bytes 
of mask-programmable ROM on board the chip. The Z8090 has three 8-bit 
parallel ports (ports 1, 2, and 3) a complete Z-Bus peripheral interface (con­
sisting of ADO-AD7, AS, DS, R/W, CS, and WAIT), and a TTL-compatible 

- AD7 P17 -- AD6 P16 -- ADs P1s -- AD4 P14 
PORT 1 - AD3 - AD2 - AD, 

-ADO P10-

TIM~~: J - AS 
AND RESET \ - os Z8090 

Z·UPC ::: - } PORT 3 
f -R/W 

CONTROL I - cs 
WAIT 

{ 

iNT OR P35 

MASTER _ INTACK OR P32 

INTERR~:~ - lEI OR P30 
lEO OR P37 

+5V_ 

PCLK_ 

GND_ 

P3,_ 

P36 

P27_ 

P26-

P2s-

P24_ 

1>23 
PORT 2 

Figure 13.22 Z8090 UPC pin assignments. 
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clock input. Optionally, one-half of port 3 can be used as the interrupt signals 
(INT, INTACK, lEI, and lEO) for the Z-Bus interface. The maximum clock 
frequency is 4 MHz; the UPC's clock does not need to be synchronized to the 
master CPU's clock. 

A block diagram of the Z8090 is given in Fig. 13.23. The Z8090's mem­
ory consists of 2K bytes of mask-programmable ROM and 256 byte registers, 
including 234 general-purpose registers, 19 status and control registers, and 3 
I/O port registers. Ports 1 and 2 are bit-programmable; port 3 consists of 4 
input bits and 4 output bits. Port 3 pins can be used for special control func­
tions, including an interrupt interface to the master CPU, handshakes for ports 
1 and 2, and interrupt request inputs for the UPC. Unlike the Z8, no mech­
anism is provided for in terfacing to memory external to the Z8090. The UPC's 
two programmable counter/timers are identical to those in the Z8. The UPC's 
instruction set also is identical to that of the Z8. 

UPC MEMORY SPACES 

Two different memory address spaces are available in the UPC, program mem­
ory and the registers. 

The Z8090 UPC contains 2K bytes of mask-programmable ROM for pro­
gram memory (that is, memory for holding program code). The UPC's pro­
gram counter is 16 bits long; however, performance at program addresses 
above 2K is not defined. The first 12 bytes of program memory are reserved 
for six 16-bit interrupt vectors (Fig. 13.24). Resetting the UPC forces the pro­
gram counter to location 12, the first program memory location available for 
user's code. 

The UPC's 256-byte register file consists of 234 general-purpose regis­
ters, 3 I/O port registers, and 19 status/control registers (Fig. 13.25). I/O 
ports are accessed via reads and writes to registers 1, 2, and 3. The general-

20 
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IR01 UPPER BYTE 

IROO LOWER BYTE 

IROO UPPER BYTE 

Figure 13.24 UPC program mem­
ory. 
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LOCATION 

FFH 

FEH 

FDH 

FCH 

FBH 

FAH 

F9H 

F8H 

F7H 

F6H 

F5H 

F4H 

F3H 

F2H 

F1H 

FOH 

EFH 

6H 

5H 

4H 

3H 

2H 

lH 

OH 

STACK POINTER 

MASTER CPU INTERRUPT CONTROL 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

UPC INTERRUPT MASK REGISTER 

UPC INTERRUPT REQUEST REGISTER 

UPC INTERRUPT PRIORITY REGISTER 

PORT 1 MODE 

PORT 3 MODE 

PORT 2 MODE 

To PRESCALER 

TIMER/COUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

MASTER CPU INTERRUPT VECTOR REG. 

GENERAL-PURPOSE REGISTERS 

DATA INDIRECTION REGISTER 

LIMIT COUNT REGISTER 

PORT 3 

PORT 2 

PORT 1 

DATA TRANSFER CONTROL REGISTER 

IDENTIFIER 
(UPC Side) 

SP 

MIC 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P1M 

P3M 

P2M 

PREO 

To 

PREl 

T1 

TMR 

MIV 

DIND 

LC 

P3 

P2 

Pl 

DTC 
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Figure 13.25 UPC register file. 

purpose registers can be used as accumulators, address pointers, data buffers, 
or index registers. The status and control registers are used for configuring 
the UPC's programmable options, controlling the communication between the 
UPC and the master CPU, and storing status information. 

An 8-bit stack pointer is used for addressing the stack; the stack always 
resides in the general-purpose register file. As in the Z8, a register pointer 
addresses the starting point of the 16 working registers. The flag register 
holds the ALU flags: carry, sign, overflow, zero, decimal adjust, and half­
carry. Three registers control the UPC interrupt structure, three others de­
termine the I/O port configuration, and five are used for programming the 
two counter/timers. The Master CPU Interrupt Control register controls the 
interrupts to the master CPU and the Master CPU Interrupt Vector register 
holds the vector that is returned when the master CPU processes an interrupt 
from the UPC. The Data Transfer Control, Limit Count, and Data Indirection 
registers are used to control transactions between the UPC and master CPU, 
as described later. 

UPC I/O PORTS 

The UPC's 24 I/O lines are organized as three 8-bit parallel ports, ports 1, 2, 
and 3. Their configuration is determined by the three I/O port mode registers 



CPU-UPC Communication 

R248 PIM 
Port 1 Mode Register 

Z-UPC register address (Hex): F8 

1~1~1~I~i~I~I~I~1 

P1o-P17 I/O DEFINITION 
'----- 0 DEFINES BIT AS OUTPUT 

1 DEFINES BIT AS INPUT 

R246 P2M 
Port 2 Mode Register 

Z-UPC register address (Hex): F6 

I D71 0 6 1 0 5 1 0 4 1 D31 021 0, I Do I 
I P2o-P27 I/O DEFINITION 
L-. --- 0 DEFINES BIT AS OUTPUT 

1 DEFINES BIT AS INPUT 
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R247 P3M 
Port 3 Mode Register 

Z-UPC register address (Hex): F7 

I D71 D61 0 5 1 0 4 1 031 D21 0, I Do I 

II L: : :::: : ::~~::: :::::::: 
1 PORT 1 PULL·UPS ACTIVE 

o P35 = OUTPUT 
1 P35 = INT 
RESERVED 

'--___ 0 P33 = INPUT P34 = OUTPUT 
1 P33 = DAV1/RDY1 P34 = RDY1IDAV1 

'------ ~ ~~: ~ ~:V~iR~~J 

'-----__ ~ ~~~ ~ :~tUT 

'-------- ~ ~~~ ~ :~~~6K 

P36 = OUTPUT (TOUT) 
P36 = RDY2IDAV2 

P37 = OUTPUT 
P37 = lEO 

Figure 13.26 Port Mode registers. 

(Fig. 13.26). Ports 1 and 2 are bit-programmable ports wherein each bit can 
be individually programmed as an input or output. Each bit specified as an 
output can be an active or open-drain output. Optionally, bits 3 and 4 of 
port 3 can be interlocked handshake signals for port 1 and bits 1 and 6 of 
port 3 can be the handshake signals for port 2. 

Port 3 always has 4 input and 4 output bits. Bits 0, 2, 5, and 7 can be 
used as the interrupt interface to the master Z8000 CPU (the lEI, INT ACK, 
INT, and lEO signals, respectively). The other bits in port 3 can be handshake 
lines for ports 1 and 2, external access for the counter/timers, or bits of I/O. 
Input bits 0, 1, and 3 of port 3 can be used as UPC interrupt requests regard­
less of their configuration. 

UPC INTERRUPTS 

The UPC provides for six different interrupts from eight different sources, 
as listed in Table 13.4: three port 3 inputs (bits 0, 1, and 3), the two counter/ 
timers, and three master CPU data transfer status bits called end-of-message 
(EOM), transfer error (XERR), and limit error (LERR). The interrupt mech­
anism is identical to that of the Z8, with three registers controlling the inter­
rupt structure: the Interrupt Priority, Interrupt Mask, and Interrupt Request 
registers. 

CPU-UPC COMMUNICATION 

The UPC is a peripheral for Z8000 systems; the master Z8000 CPU uses I/O 
operations to read or write to the UPC's register file. All communication be-
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TABLE 13.4 UPC INTERRUPT REQUESTS 

Name 

IRQO 

IRQ1 

IRQ2 

IRQ3 
IRQ4 
IRQ5 

Source 

EOM, XERR, 
or LERR 

Port 3, bit 3 

Port 3, bit 1 

Port 3, bit ° 
TO end-of-count 
T1 end-of-count 

Vector location 
in memory 

0, 1 

2,3 

4,5 

6, 7 
8,9 

10, 11 

Comments 

Data Transfer Control register status bits 

Negative-edge triggered; can be port 1 
handshake 

Negative-edge triggered; can be port 2 
handshake or timer in 

Negative-edge triggered; can be lEI signal 

tween the master CPU and the UPC is initiated by the CPU; the CPU can ex­
ecute reads and writes to the UPC but the UPC cannot read or write to the 
master CPU. However, the UPC can issue an interrupt request to gain the 
CPU's attention. 

The master CPU can access the UPC's registers in two ways, direct access 
and block access. Access by the master CPU is controlled by the UPC, though, 
in that the UPC determines when a CPU access is allowed, providing soft­
ware independence between the master CPU and the UPC. The UPC sets 
the transfer enable (EDX) bit in the Master Interrupt Control register (Fig. 
13.27) to enable the CPU to access the UPC register file and resets that bit 
to disable CPU accesses. Only the UPC can write to the EDX bit. When the 
CPU completes a transaction with the UPC, the CPU notifies the UPC by set­
ting the end-of-message (EOM) bit in the same register. 

The master CPU can directly access 19 of the UPC's registers. Three reg­
isters-the Master Interrupt Control, Master Interrupt Vector, and Data Trans­
fer Control registers-are mapped directly into the CPU's I/O address space. 

R254 MIC 
Master CPU Interrupt Control Register 

z-UPC register address (Hex): FE 

I 07 1 06 1 05 1 0.1 03 1 02 1 D, I Do I 

ug~
o-
1 END OF MESSAGE 

o WAIT ENABLE WHEN WRITE 
1 WAIT DISABLE WHEN WRITE 

o ENABLE LOWER CHAIN 
1 DISABLE LOWER CHAIN 

o DISABLE DATA TRANSFER 
1 ENABLE DATA TRANSFER 

'----- ~ ~~CJ~~Tg~T6~+PUT 
L...-____ ~ ~~S~~~Tg~UCI~~~~1~~~u:~:D~~gING 

L...-_____ ~ ~~~~~~~~u~~DUE~D~~~~~~ICE 

L...-______ ~ :~i~::~~i :~g~~~i ~~S::LL:g 
Figure 13.27 Master Interrupt Con­
trol register. 



CPU-UPC Communication 

RODTC 
Data Transfer Control Register 

Z-UPC register address (Hex): 00 

I~I~I~I~I~I~I~I~I 

I(EOM) 0 -
1 END OF MESSAGE 

(LERR) 0 NO LIMIT ERROR 
"----'-- 1 LIMIT ERROR 

(XERR) 0 NO TRANSFER ERROR 
1 TRANSFER ERROR 
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,",-(E_DX..;....) ___ 0 DISABLE DATA TRANSFER 
1 ENABLE DATA TRANSFER Figure 13.28 Data Transfer Con-

L:-(IR~P,-) -----1 1/0 REGISTER POINTER trol register. 

In other words, each of these registers has a unique port address in the ZSOOO 
system. The Master Interrupt Control register (Fig. 13.27) contains the inter­
rupt enable (IE), interrupt pending (IP), interrupt under service (IUS), no 
vector (NV), and disable lower chain (DLC) bits that control this interrupt 
source according to the Z-Bus protocols described in Chapter 12. The Master 
Interrupt Vector register holds the vector that is read by the CPU during an 
interrupt acknowledge cycle. The Data Transfer Control register (Fig. 13.2S) 
holds an I/O register pointer and four status bits. 

The other 16 registers that can be directly accessed by the master CPU 
are the 16 contiguous registers designated by the I/O register pointer in the 
upper nibble of the Data Transfer Control register. The I/O register pointer, 
like the Register Pointer, selects a group of 16 contiguous registers in the 
UPC's register file. The actual register address accessed is determined by con­
catenating the 4-bit I/O register pointer with the four least significant bits of 
the port address emitted by the master CPU. Thus these 16 registers each 
have a unique I/O port address in the ZSOOO system. 

The master CPU also can access UPC registers indirectly using the block 
access method. This transfer method is controlled by the Data Indirection 
and Limit Count registers in the UPC (Fig. 13.29). The block access method 
allows the master CPU to access an entire block of UPC registers using one 
port address. The address of the first UPC register in the block to be accessed 
is held in the Data Indirection register and the number of registers in the 
block is in the Limit Count register. After each master CPU read or write using 
block access mode, the contents of the Data Indirection register are incre­
mented automatically (so that it points to the next register in the block) and 
the contents of the Limit Count register are decremented. Thus a ZSOOO 
block I/O instruction can access an entire block of UPC registers. 

If the master CPU attempts to access the UPC's registers when the trans­
fer enable (EDX) bit in the Master Interrupt Control register is reset or if 
the CPU attempts a block access when the Limit Count register is zero, the 
access is not completed. The transfer error (XERR) bit in the Data Transfer 
Control register (Fig. 13.2S) indicates that if a CPU access was attempted 
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interrupt by accessing the UPC, using either the direct access or block access 
method. When this access is completed, the CPU sets the end-of-message bit 
via a write to the Master Interrupt Control register in the UPC. This, in turn, 
interrupts the UPC, thereby informing the UPC that the CPU-UPC transfer is 
completed. 

UPC PRODUCT CONFIGURATIONS 

The UPC is available in five different product configurations (Table 13.5). 
The Z8090 has 2K bytes of mask-programmable ROM on board the chip for 
its program memory, as described previously. A 64-pin version, the Z8091, 
allows the user to prototype the system in hardware without mask-program­
ming the code. The Z8091 is identical in function to the Z8090 except that 
the mask-programmable ROM is removed. The additional 24 pins are used as 
address, data, and control lines to an external ROM, PROM, or EPROM; the 

TABLE 13.5 UPC PRODUCT CONFIGURATIONS 

Part number 

Z8090 
Z8091 

Z8092 

Z8093 

Z8094 

Package 

40-pin 
64-pin 

64-pin 

40-pin Protopak 

40-pin Protopak 

Description 

2K bytes of internal mask-programmable ROM 
No internal ROM; interface to 4K bytes of external 

ROM/PROM 
36 byte internal ROM holds bootstrap program; in­

terface to 4K bytes of external RAM 
No internal ROM; 24-pin socket for 4K bytes of ex­

ternal EPROM 
36 byte internal ROM holds bootstrap program; 24-

pin socket for 4K bytes of external RAM 

FFFH r-------------. 

PROGRAM MEMORY EXTERNAL 
RAM 

;~~ t------------I } 
BOOTSTRAP ROM INTERNAL 

ROM 

~~t-----------~ } 
Z·UPC INTERRUPT EXTERNAL 

VECTORS RAM 

~---------~ 

Figure 13.31 Z8092 UPC RAM 
memory map. 
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Z8091 can access 4K bytes of program memory external to the chip. The 
Z8093 Protopak is a combination of the Z8090 and Z8091-a 40-pin package 
with program memory external to the chip. The Z8093 carries a 24-pin socket 
in "piggyback" manner for an EPROM that holds the program code (Fig. 
13.19). 

The Z8092 is a 64-pin UPC with an interface to 4K bytes of external 
RAM. Thirty-six bytes of ROM are retained on board the chip; this ROM 
contains a program that allows the user to download code from the master 
CPU into the UPC's RAM. The internal ROM occupies addresses OC-2F hexa­
decimal (Fig. 13.31). The Z8094 is a 40-pin protopak version of the Z8092 
wherein the socket for the RAM device is "piggybacked" onto the 40-pin 
package. 

Thus the Z8000 family of components includes processors, memory 
management devices, peripherals, memories, and single-chip microcomputers. 
These components are linked via a set of signals called the Z-Bus, providing 
powerful solutions to a wide variety of applications. 



Absolute 
Maximum 
Ratings 

Standard 
Test 
Conditions 

DC 
Character-
istics 

APPENDIX A 

Z8000 CPU DC and AC 

Electrical Characteristics 

Voltages on all inputs and outputs 
with respect to GND .......... -0.3 V to + 7.0 V 

Operating Ambient 
Temperature .................. 0 °e to + 70 °e 
Storage T ernperature ........ -65 °e to + 150 °e 

The characteristics below apply for the 
following standard test conditions, unless 
otherwise noted. All voltages are referenced to 
GND. Positive current flows into the refer­
enced pin. Standard conditions are as follows: 

• +4.75 V =:; Vee =:; +5.25 V 

• GND = 0 V 
• ooe =:; TA =:; +70oe 

Symbol Parameter Min 

VeH Clock Input High Voltage Vee-O.4 

VeL Clock Input Low Voltage -0.3 

VIH Input High Voltage 2.0 

VIHRESET High Voltage on Reset Pin 2.4 

VIL Input Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 

IlL Input Leakage 

IILSEGT Input Leakage on Seqt Pin -100 

IOL Output Leakage 

lee Vee Supply Current 

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device. 
This is a stress rating only; operation of the device at any 
condition above those indicated in the operational sections 
of these specifications is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

+sv 

FROMourpur =m". UNDER TEST 

'·"1 ~!~ ~ 
All ac parameters assume a load capacilance of 100 pF max ex 

cept for parameter 6 (50 pI' max). Timing references between two 
output signals assume a load dIfference of 50 pF max. 

Max 

Vee +0.3 

0.45 

Vee+ 0.3 

Vee to 0.3 

0.8 

0.4 

±10 

100 

±10 

300 

Unit 

V 

V 

V 

V 

V 

V 

V 

p.A 

p.A 

p.A 

rnA 

Condition 

Driven by External Clock 
Generator 

Driven by External Clock 
Generator 

IOH = -250 p.A 

IOL = +2.0 rnA 

0.4:s VIN:S +2.4V 

0.4 :s VIN :s + 2.4 V 

Note: Contact Zilog, Inc., for latest information on AC and DC characteristics. 
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COMPOSITE AC TIMING DIAGRAM 
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This composite timing dia~ 

gram does not show actual 
timing sequences. Refer to 

this diagram only for the 

detailed timing relationships 

of individual edges, Use the 
preceding illustrations as an 

explanation of the various 
timing sequences 
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-4/t---1 

INPUT/OUTPUT 

Clock 
Output 
Input 

Float 

High 

4.0V 
2.0V 
2.0V 

V 

Low 

O.SV 

O.SV 
O.SV 

±O.5V 

I--(~ 
! 
I 

REA~~Rf~t:------~~~, ------------------------------------------~! 
NORM:~~~~~E:D-------', I" __________________________ ~ 



AC CHARACTERISTICS 
Z8001/Z8002 Z8001 A/Z8002A Z80018/180028 

No. Sy.bul Para.atar Min(ns) Max(na) Min(na) Max(na) Min(na) Max(na) 

TcC Clock Cycle Time 250 2000 165 2000 100 2000 

TwCh Clock Width (High) 105 2000 70 2000 40 

3 lwCl Clock Width (Low) 105 2000 70 2000 40 

4 T fC Clock Fall Time 20 10 10 

5 T rC Clock Rise Time 20 15 10 

6 TdC(SNv) Clock t to Segment Number Valid 130 110 70 
(50 pF load) 

7 TdC(SNn) Clock t to Segment Number Not Valid 20 10 
8 TdC(8z) Clock t to Bus flost 65 55 40 

9 TdC(A) Clock t to Address Valid 100 7S SO 

10 TdC(Az) Clock t to Address float 65 S5 40 

11 TdA(DR) Address Valid to Read Data Required 475 305* 180 

Valid 
12 TsDR(C) Read Data to Clock + Setup Time 30 20 10 

13 TdDS(A) ~ t t a Address Act i ve 80 45 20* 

14 TdC(DW) Clock t to Write Data Valid 100 75 50 

15 ThDR(DS) Read Data to DS t Hold Time 0 0 0 

16 TdDW(DS) Write Data Valid to 55 t Delay 295* 195* 110* 

17 TdA(MR) Address Valid to MREQ +Delay (55)* (}5)* 20* 
18 TdC(MR) Clock + to MREQ + Delay 80 70 40 

19 TwMRh MREQ Width (High) 210* 13 5* 80* 

20 TdMR(A) MREQ t to Address Not Active 70* 35* 20* 
21 TdDW(DSW) Write Data Valid to OS + (Write) Delay 55* 35* 15* 
22 TdMR(DR) mrn + to Read Oats Required Valid 375 230 140* 

23 TdC(MR) Clock + MREQ t Delay 80 60 45 
24 TdC(ASf) Clock t to AS + Delay 60 60 40 

25 TdA(AS) Address Valid to AS t Delay 55* 35* 20* 

26 TdC (ASr) Clock + to AS t De lay 90 80 40 

27 TdAS(DR) AS t to Read Data Required Valid 360 220 140* 
28 TdDS(AS) OS t to AS t Delay 70· 35· 15* 

29 TwAS As Width (Low) 85* 55* 30* 
30 TdAS(A) As t to Address Not Active Delay 70 45 20· 

31 TdAz(DSR) Address float to DS (Read)+ Delay 0 0 0 

32 TdAS(DSR) As t to OS (Read) + Delay 80 55 30* 
D TdDSR(DR) OS (Read) + to Read Data Required Valid 205 130 70* 

34 TdC(DSr) Clock + to OS t Delay 70 65 45 
}5 TdDS(DW) OS t to Write Data Not Valid 75* 45* 2S* 
36 ldA(DSR) Address Valid to OS ( Read') + Delay 180* 110· 65* 

N 37 TdC(DSR) Clock t to DS (Read) + Delay 120 85 60 
00 36 TwDSR Os (Read) Width (Low) 275* 18 S· 110· ...., 



I\) 
39 TdC(DSW) Clock -t to OS (Write) -t Delay 95 CO 80 60 

CO 40 TwDSW OS- (Write) Width (Low) 185- 110 75-
41 TdDSI(DR) [)"S (I/O) -t to Read Data Required Valid 330 210 120-

42 TdC(DSf) Clock -t to OS (I/O) -t Delay 120 90 60 

43 TwOS Os (I/O) Width (Low) 410- 255- 160-

44 TdAS(DSA) AS t to OS (Acknowledge) -t Delay 1065- 690- 410-

45 TdC(DSA) Clock t to OS (Acknowledge)t Delay 120 85 65 

46 TdDSA(DR) l)S (Acknowledge) -t to Read Data 455 295 165-
Required Delay 

47 TdC(S) Clock t to Status Valid Delay 110 85 60 

48 TdS(AS) Status Valid to AS t Delay 50 30- 10-

49 TsH(C) 'lft'SEf to Clock t Setup Time 180 70 50 

50 ThR(C) Rf SET t 0 C I 0 c k t Hold Time 0 0 0 

51 TwNHI lfM-I Width (Low) 100 70 50 

52 TaNHI(C) NMi to Clock t Setup Time 140 70 50 
53 TsVI(C) VT,NVl to Clock t Setup Time 110 50 40 
54 ThVI(C) Vf,NVI to Clock t Hold Time 0 20 0 
55 TsSGT(C) SEGT to Clock t Setup Time 70 55 40 

56 ThSGT(C) sE];f to Clock t Hold Time 0 0 0 
57 TaHI(C) MY to Clock t Setup Time 180 110 80 
58 ThHl(C) HI to Clock t Hold Time 0 0 0 
59 TdC(HO) Clock t to HO Delay 120 85 70 
60 TsSTP(C) ~ to Clock -t Setup Time 140 80 50 
61 ThSTP(C) STop to Clock -t Hold T iDle 0 0 0 

62 TsW(C) WAIT to Clock -t Setup Time 50 30 20 
63 ThW(C) -WA ITt 0 C I 0 c k -t Hal d Till e 10 10 
64 TaBRQ(C) ~ to Clock t Setup Time 90 80 60 
6') ThBRQ(C) ~ to Clock t Hold T lme 10 10 
66 TdC(BAKr) Clock t to BUSACK t Delay 100 75 60 

67 TdC(BAKf) Clock .,. to EiUSACK -t Delay 100 75 60 

6B TwA Address Valid Width 150- 95- 50· 

69 TdDS(S) ost to STATUS Not Valid BO· 55· JO· 

·Clock-cycle-time-dependent characteristics. See tab Ie on followi ng page. 



CLOCK-CYCLE-TIME-DEPENDENT CHARACTERISTICS 

Z800l/Z8002 Z8U01A/Z8002A l800l8/Z80028 

Hu.ber Sy.bol Equation Equation Equat ion 

11 TdA(OR) 2TcC + TwCh - 130 ns 2TcC + T wCh - 95 ns 2TcC + T wCh - 60 ns 

13 TdDS(A) T wC 1 - 25 ns T WC 1 - 25 ns T wC 1 - 20 ns 

16 TdOW(DS) TcC + T wCh - 60 ns TcC + T wCh - 40 ns TcC + T wCh - 30 ns 

17 TdA(MR) TwCh - 50 ns T wCh - 35 ns TwC h - 20 ns 

19 TwMRh T c C - 40 ns T e C - 30 ns TcC - 20 ns 

20 TdMR(A) TwCl - 35 ns TwCI - 35 ns T wC 1 - 20 ns 

21 TdDW(DSW) TwCh - 50 ns TwCtl - 35 ntl T wCh - 25 ns 

22 TdMR(DR) 2TcC - 130 ns 2TcC - 100 ns 2TcC - 60 ns 

25 TdA(AS) TwCh - 50 ns 1 wCh - 35 ns T wCh - 20 ns 

27 TdAS(DR) 2lcC - 140 ns 2TcC - 110 ns 2TcC - 60 ns 

28 TdDS(AS) TwCI - 35 ns TwCI - 35 ns T wC I - 25 ns 

29 TwAS T wCh - 20 ns T wCh - 15 ns T wCh - 10 ns 

30 TdAS(A) TwCI - 35 ns TwCI - 25 ns T wC 1 - 20 ns 

32 TdAS(DSR) TwC 1 - 25 ns T wC 1 - 15 ns TwC 1 - 10 n8 

n TdDSR(DR) TcC + T wCh - 150 ns TcC + T wCh - 105 n8 TcC + TwCh - 70 ns 

35 TdDS(DW) IwCI - 30 ns TwCl - 25 ns T wC 1 - 15 n8 

36 TdA(DSR) TeC - 70 ns Te C - 55 ns TcC - 35 n& 

38 TwDSR TcC + T wCh - 80 ns TcC + T wCh - 50 ns TcC + T wCh - 30 ns 

40 TwDSW TcC - 65 ns TcC - 55 ns Tc C - 25 ns 

41 TdOSI(DR) 2TcC - 170 ns 2TcC - 120 2TcC - 80 ns 

43 TwOS 2 T c C - 90 ns 2TeC - 75 ns 2TcC - 40 n8 

44 TdAS(DSA) 4TeC + T wC I - 40 ns 4TcC + T wC 1 - 40 ns 4TcC + lwCl - 30 ns 

46 TdDSA(DR) 2TcC + T wCh - 150 ns 2TcC + TwCh - 105 ns 2TcC + TwCh - 75 ns 

48 TdS(AS) TwCh - 55 ns TwCh - 40 ns TwCh - 30 ns 

68 TwA TcC - 90 ns TcC - 70 ns TcC - 50 n8 

69 TdDS(S) TwCl - 25 ns lwCI - 15 ns lwC 1 - 10 n8 
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APPENDIX B 

Glossary 

Access time: The time required to read or write data to a device (memory 
or a peripheral), measured from when the address of the device is avail­
able until when the data are actually read from or written into the device. 

Accumulator: A register within a central processing unit (CPU) that can 
hold the result of an arithmetic or logical operation. 

Acknowledge cycle: A CPU machine cycle entered as a response to an in­
terrupt or trap. The Z8000 CPUs read an identifier word from the 
interrupting device during this cycle. 

Address: A number that identifies a particular register, memory location, 
or peripheral device. 

Address space: A set of addresses that are accessed in a similar manner. 
The Z8000 CPUs can access six memory address spaces (normal-mode 
program, normal-mode data, normal-mode stack, system-mode pro­
gram, system-mode data, and system-mode stack) and two I/O address 
spaces (standard I/O and special I/O). 

Addressing modes: The method used to specify the address of an operand 
within an instruction. 

Applications programs: A program designed to do a task other than con­
trolling the resources within a computer system. Applications programs 
typically run in the normal mode on a Z8000 system. 

Arithmetic and logical unit (ALU): The part of the central processing unit 
that contains the logic for performing arithmetic and logical operations 
on data. 
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Assembler: A computer program that translates assembly language code 
into machine language. An assembler generally translates symbolic 
codes, such as instruction mnemonics, into the opcodes that are ex­
ecuted by the processor. 

Asynchronous: Not related to or dependent on a specific time period or 
clock frequency; having no fixed relationship in time. 

Attribute: A characteristic or feature of a particular entity. The memory 
manager assigns attributes such as read-only or execute-only to memory 
segments. 

Autodecrement: An operand addressing method wherein the contents of a 
specified register are decremented and used as the address of an oper­
and during instruction execution. 

Autoincrement: An operand addressing method wherein the contents of a 
specified register are incremented and used as the address of an operand 
during instruction execution. 

Base address: A number that appears as an address in an instruction, but 
serves as a starting point for an effective address calculation. (See base 
addressing mode, base indexed addressing mode, and indexed address­
ing mode.) 

Base addressing mode: An operand addressing mode wherein the base ad­
dress is held in a register and the displacement is given in the instruc­
tion's opcode. The effective address of the operand is found by adding 
the displacement to the base address. 

Base indexed addressing mode: An operand addressing mode wherein the 
base address and the displacement are held in registers. The effective 
address of the operand is found by adding the displacement to the base 
address. 

Bidirectional: Pertaining to a bus structure wherein a single signal line can 
transmit signals in either direction. For example, the Z8000 CPU's ad­
dress/data bus pins are bidirectional since data can be transmitted or 
received by the CPU. 

Binary-coded decimal (BCD): A notation in which the 10 decimal digits 
(0-9) are encoded in 4-bit binary fields. BCD notation often is used to 
process numbers in base-10 format. 

Bit: A binary digit; one unit of data in binary notation. A bit can have one 
of two values, 0 or 1. 

Bus: A group of signal lines that connect devices in a system; a path over 
which information is transferred. 

Bus master: The device in a system that controls the bus. A bus master 
must be capable of initiating transactions. 

Bus request: A request for control of the bus initiated by a device other 
than the bus master. 
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Bus transaction: (See transaction.) 
Byte: A field of eight contiguous bits that is operated on as a unit. 
Central processing unit (CPU): The primary functioning unit of a com­

puter, consisting of an AL U, control logic for decoding and executing 
instructions and controlling program flow, and registers. 

Comment: An optional field within a statement in a program that contains 
an identification or explanation for a particular step in the program, 
but has no effect on the operation of the computer when the program 
is being executed. Comments are used for documentation purposes 
only. 

Condition code: A specific Boolean function of the ALU flags tested dur­
ing the execution of a conditional instruction. 

Conditional instruction: An instruction that can take more than one action 
based on the current condition of the ALU flags. 

Context switch: A switch from one programming task to another, usually 
as the result of an interrupt or trap condition. 

Cyclic redundancy code (CRC): A code used to check data integrity during 
data transmissions. CRCs typically are used in serial communications. 
The transmitted data bit stream is divided by a polynomial and the re­
mainder transmitted as the check field. The receiver compares the 
transmitted check field with its own computed remainder to verify that 
the data received were valid. 

Daisy chain: A method of propagating signals along a bus wherein the pri­
ority of devices is determined by the physical position of each device 
on the bus. 

Data: Basic elements of information that can be processed by a computer. 

Destination: The register, memory location, or device to which data are to 
be transferred. 

Direct address mode: An operand addressing mode wherein the address of 
the operand is given in the instruction's opcode. 

Direct memory access (DMA): A method of accessing individual memory 
locations without using the CPU. DMA circuits are used in systems that 
require data transfers at faster rates than those obtained by going 
through the CPU. 

Displacement: A number that is added to a base address during an effective 
address calculation. (See base addressing mode, base indexed address­
ing mode, indexed addressing mode, and relative addressing mode.) 

Distributed processing: A design technique in multiprocessor systems 
wherein each processor in the system has its own specific task assigned 
to it. 

Dynamic RAM: A random access memory on which a special operation 
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called a refresh must be performed at periodic intervals to preserve data 
integrity. 

Effective address: The actual address of a data operand. Often, the effec­
tive address is calculated during instruction execution by adding a dis­
placement or index to a base address. 

Exception condition: A condition that causes the CPU to discontinue the 
current programming task (perhaps only temporarily), such as an inter­
rupt, trap, or reset. 

Extended instruction: A special Z8000 instruction intended for use with 
Extended Processor Units. 

Extended instruction trap: A trap that is caused by attempting to execute 
an extended instruction in a system without Extended Processor Units. 

Extended Processor Unit (EPU): A large-scale integrated-circuit chip that 
contains a processor to perform dedicated tasks within a Z8000 system. 

First-in-first-out (FIFO) buffer: A data buffer in which the data are read 
from the buffer in the same order as they were written to the buffer. 
The first element of data to be written to the buffer is the first element 
to be read out. 

Flag: One bit of information used to indicate that some particular condi­
tion occurred. For example, the Z8000's zero flag indicates when an 
ALU operation yields a zero for a result. 

Flag and control word (FCW): A register in the Z8000 CPU that contains 
the ALU flags and control bits that determine the processor's operating 
modes. 

Full duplex: A method of data transmission wherein each end can simulta­
neously transmit and receive. 

Handshake: A sequence of signals that provide a protocol for transferring 
data between devices. Typically, handshakes are used for asynchronous 
interfaces where each signal requires a response in order to complete a 
data transfer. 

Identifier word: A status word that is pushed onto the stack when the 
Z8000 CPU processes an interrupt or trap. For internal events (traps 
other than the segmentation trap), the identifier word is the first word 
of the instruction that caused the trap. For external events (interrupts 
and segmentation traps), the identifier word is the status word read 
from the interrupting device during the acknowledge cycle. 

Immediate addressing mode: An operand addressing mode wherein the 
operand is given within the instruction's opcode itself. 

Implied stack pointer: In Z8000 systems, the stack pointer used when 
saving program status during exception processing and subroutine calls. 
R15 is the implied stack pointer for nonsegmented-mode operation; 
RR14 is the implied stack pointer for segmented-mode operation. 
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Index: A number used to identify a particular element in an array or table. 
The index, also called the displacement, is added to the base address to 
determine the effective address of an operand. (See base indexed ad­
dressing mode and indexed addressing mode.) 

Indexed addressing mode: An operand addressing mode wherein the oper­
and address is calculated by adding the index, which is the contents of a 
register, to a base address given in the instruction's opcode. 

Indirect register addressing mode: An operand addressing mode wherein 
the address of the operand is the contents of the register specified in 
the instruction's opcode. 

Input: The process of reading data from a peripheral device. 
Input/output (I/O) device: (See peripheral.) 
Input/output (I/O) transaction: A transaction that transfers data between 

the CPU and a peripheral device. 
Instruction: The specification of an operation to be performed by a com­

puter and the operands for that operation. 
Instruction fetch: A memory read operation wherein the data read from 

memory comprise the opcode of an instruction that is to be executed. 
Instruction pre-fetch: A processor timing scheme wherein the opcode for 

the next instruction is fetched while the previous instruction is still 
being executed. 

Instruction set: The set of all instructions that can be executed by a given 
processor. 

Interlocked handshake: A handshake protocol for transferring data be­
tween two devices using two control signals. A change in level of one 
control signal requires the appropriate response on the other signal for 
the transfer to be completed. 

Internal operation cycle: A Z8000 machine cycle during which the pro­
cessor performs an operation internal to the CPU and no data transfer 
occurs on the bus. 

Interrupt: An event that changes the normal flow of instruction execution 
due to a signal generated external to the CPU. The flow of instruction 
execution is broken in a manner that allows it to be resumed from that 
point at a later time. Interrupts provide a means for peripheral devices 
to gain the CPU's attention. 

Interrupt acknowledge cycle: (See acknowledge cycle.) 
Interrupt service routine: (See service routine.) 
Interrupt-under-service daisy chain: A method of determining priority 

among peripherals sharing an interrupt request line wherein the service 
routine for a device cannot be interrupted by an interrupt request from 
a lower-priority device. 
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Interrupt vector: Data read from the interrupting device during an ac­
knowledge cycle that determine the location of the service routine. 
(See vectored interrupts.) 

Label: An optional field within a statement in a program that allows a 
symbolic name (the label) to be associated with the memory address of 
the code generated by that statement. 

Logical address: A memory address that is manipulated by the programmer, 
used in instructions, and output by the CPU during program execution. 

Long offset address: A segmented address given in an instruction that oc­
cupies two words in the instruction's opcode, one word for the segment 
number and one word for the offset. 

Long word: A field of 32 contiguous bits that is operated on as a unit. 
Machine cycle: One basic CPU operation involving a single transaction on 

the bus. For Z8000 CPUs, one machine cycle is the time from the fall­
ing edge of AS to the next falling edge of AS. 

Machine language: Binary code that can be read directly and used by a 
computer. 

Main memory: Memory within a system that can be directly accessed using 
memory access cycles. Main memory is typically made up of semicon­
ductor memories such as ROMs and RAMs. 

Mask-programmable ROM: Read-only memory whose contents are deter­
mined by a photolithographic mask used to manufacture the part. 

Memory: A device into which information can be written and then re­
trieved at a later time; an information storage device. 

Memory access time: (See access time.) 
Memory cycle time: The time between the start of one memory access and 

the start of the next memory access. 
Memory management: The process of controlling memory allocation and 

protection by mapping physical addresses to logical addresses and per­
forming attribute checking. 

Memory manager: The hardware and software in a system that controls 
memory management. 

Memory-mapped I/O: A technique that allows peripheral devices to be ac­
cessed as if they were memory locations in main memory. 

Memory refresh cycle: A CPU machine cycle dedicated to performing a re­
fresh operation on dynamic RAMs. 

Memory segment: (See segment.) 
Memory transaction: A transaction involving a transfer of data between 

the CPU and main memory. 
Microprocessor: A central processing unit built with large-scale integrated 

circuits and usually contained on one chip. 
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Mnemonic: An abbreviation or acronym. Mnemonics often are used to 
represent assembly language instructions when writing programs. 

Modem: Acronym for modulator/demodulator. A modem is a device that 
converts data from the digital form used by computers to an analog 
form used for data transmission, and vice versa. 

Multiprocessing: Using two or more processors in a computer system. 
Multitasking: The ability of a computer system to handle multiple pro­

gramming tasks simultaneously by overlapping or interleaving their exe­
cution, as in a time-sharing system (also called multiprogramming). 

Nibble: A field of four contiguous bits operated on as a unit. 
Nonmaskable interrupt: An interrupt that cannot be disabled internal to 

the CPU. 
Nonsegmented mode: An operating mode of the Z8000 CPUs in which 

memory addresses are treated as I6-bit fields. For the Z8001, all mem­
ory accesses are made with the same segment number while in nonseg­
mented mode. 

Nonvectored interrupt: An interrupt with only one possible service routine 
whose location is not dependent on the identifier word read from the 
interrrupting device. (See vectored interrupts.) 

Normal mode: An operating mode of the Z8000 CPUs in which certain in­
structions, called privileged instructions, cannot be executed. Applica­
tions programs typically run in normal mode. 

Offset: In Z800I systems, the portion of a memory address that appears 
on the I6-bit address/data bus during a memory access. 

Opcode: Acronym for operation code; an instruction written in machine 
language. Opcodes are read from memory during instruction fetches. 

Operand: An item of data to be operated on during instruction execution. 
Operating mode: The method or manner of operation within a Z8000 

CPU. The Z8000 CPUs can execute in system mode or normal mode. 
The Z800I also can operate in segmented mode or nonsegmented 
mode. 

Operating system: Software in a system dedicated to controlling the sys­
tem's resources in a manner that permits applications programs to inter­
face with the hardware in an efficient and safe manner. For Z8000 
systems, operating system software typically is executed while in system 
mode. 

Output: The process of transferring data to a peripheral device. 
Page: A fixed-size block of memory. Memory is divided into pages to facil­

itate memory management in virtual memory systems. 
Peripheral: A device used to read data into or write data out of a computer 

system. Line printers, CRT terminals, and card readers are all examples 
of peripherals. 
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Physical Address: The address used to access a particular memory location; 
the address seen at the memory device. 

PLZ/ASM: A programming language developed at Zilog, Inc., that allows 
the use of structured programming techniques when writing assembly 
language programs. 

Priority interrupt controller: A device that determines the relative priority 
for servicing peripherals when they send interrupt requests to the CPU. 

Privileged instruction: A Z8000 instruction that cannot be executed in the 
normal mode. Privileged instructions are instructions that change the 
processor state or perform I/O transactions. 

Privileged instruction trap: A trap that is caused by attempting to execute 
a privileged instruction during normal-mode operation. 

/ 

Processor: A device capable of receiving data, performing arithmetic and 
logical operations on the data, and storing the results. A CPU is a type 
of processor. 

Program: A set of instructions that performs a particular function when 
executed on a computer. 

Program counter (PC):, A CPU control register that holds the memory ad­
dress of the next instruction to be executed. 

Program status area: An area of memory in a Z8000 system that holds the 
values that are loaded into the program status registers in order to exe­
cute the appropriate interrupt or trap service routine during exception 
processing. 

Program status area pointer (PSAP): A CPU control register that holds the 
starting address in memory of the program status area. 

Program status registers: The CPU control registers that define the running 
environment of the processor. For the Z8000 CPUs, the program status 
registers are the program counter (PC) and flag-and-control word (FCW). 

Programming task: One program operating on its data. 

Protocol: The rules or conventions used between devices and processes for 
exchanging information. 

Protopak: A type of package for an integrated circuit wherein a socket for 
another chip is embedded onto the package. 

Pulsed handshake: A handshake protocol for transferring data between 
two devices using two control signals. Long pulses on the two control 
signals are used to control the data transfer. 

Quad word: A field of 64 contiguous bits that is operated on as a unit. 

Quasi-static RAM: A dynamic RAM chip that contains its own refresh 
logic on the integrated circuit chip with the RAM. (Also called pseudo­
static RAM.) 
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Quiescent: Inactive or dormant. For example, a quiescent peripheral de­
vice is one that is not asserting an interrupt or undergoing service from 
the CPU. 

Refresh: To restore information that fades away if left alone. 
ample, dynamic memories must be refreshed periodically in 
retain their contents. 

Refresh cycle: (See memory refresh cycle.) 

For ex­
order to 

Refresh register: A CPU control register whose contents determine if and 
how often memory refresh cycles occur. 

Register: A storage location within a CPU. 
Register addressing mode: An operand addressing mode wherein the oper­

and is the contents of the register specified in the instruction's opcode. 
Register pair: In the Z8000 CPUs, one of eight pairs of general-purpose 

word registers; a 32-bit register. 
Relative address mode: An operand addressing mode wherein the effective 

address of the operand is found by adding a displacement given in the 
instruction's opcode to the current program counter contents. 

Request: A signal or message used by a device to indicate the need for 
some action or resource. 

Reset: To return a device to an initial state. For the Z8000 CPUs, a reset 
operation initializes the program status registers. 

Resource: An asset or device within a computer system that can be allo­
cated to a particular task. 

Resource request: A request by a particular processor to use a resource 
shared by several processors in a multiprocessor system. 

Secondary storage: Storage devices that are not directly addressable using 
memory access cycles. Disks and cartridge tapes are examples of sec­
ondary storage devices. 

Segment: A block of memory that can be assigned common attributes by 
the memory manager. In Z8001 systems, memory segments can be up 
to 64K bytes long. 

Segmentation: The process of dividing memory into distinct areas, called 
segments, where each area can be assigned its own attributes and is 
referred to by its own segment number. 

Segmentation trap: A trap that is initiated by the memory manager when a 
memory violation is detected. 

Segmented address: In Z8001 CPUs, a 23-bit memory address that consists 
of a 7-bit segment number and a 16-bit offset, where the segment num­
ber and offset are distinct parts of the memory address. 

Segmented mode: An operating mode of the Z8001 CPU in which memory 
addresses are treated as 23-bit segmented addresses. 
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Segment number: In Z8001 CPUs, the portion of the memory address that 
is output on the SNO-SN6 lines during a memory access. Each segment 
number specifies a particular memory segment. 

Semaphore: A storage location used as a Boolean variable to synchronize 
the use of resources among multiple programming tasks. A semaphore 
ensures that a shared resource is allocated to only one task at any given 
time. 

Service routine: Program code that is executed in response to an interrupt 
or trap. 

Short offset address: A segmented address given within an instruction that 
occupies only one word in the instruction's opcode. Short offset ad­
dresses can be used to access the first 256 bytes of a memory segment. 

Single-chip microcomputer: An entire computer including CPU, memory, 
and I/O devices on a single integrated-circuit chip. 

Source: The register, memory location, or device from which data are 
being read. 

Stack: An area of memory used for temporary storage and subroutine link­
ages. A stack uses the first-in-Iast-out method for storing and retrieving 
data; the last data written onto the stack will be the first data read from 
the stack. 

Stack pointer: A register that holds the address of the top of the stack. 

Static RAM: Random access memory that retains its contents without the 
need for refresh cycles. 

Stop request: A request made by activating the STOP line to a Z8000 in 
order to suspend CPU activity. 

Strobed handshake: A handshake protocol for transferring data between 
two devices using two control signals. Short pulses on the two signals 
are used to control the data transfer. 

Synchronous: Related to or dependent on a specific clock signal; having a 
fixed relationship in time. 

System call trap: A trap that is caused by the execution of a System Call 
instruction. 

System mode: An operating mode of the Z8000 CPUs in which all instruc­
tions, including privileged instructions, can be executed. Operating sys­
tems software typically runs in system mode. 

Task: (See programming task.) 

Three-wire handshake: A handshake protocol for transferring data between 
two or more devices using three control signals. A change in level on 
one signal requires the appropriate response on the other signals for the 
transfer to be completed. 
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Time-multiplexed: A bus structure wherein the same signal lines serve 
more than one purpose at different times. For example, the Z8000 
CPU's address/data bus pins hold addresses at some times and data at 
other times. 

Transaction: A basic bus operation involving the transfer of one byte or 
word of data between the CPU and a memory or peripheral device. 

Trap: A condition that occurs at the end of a Z8000 instruction that 
caused an illegal operation, similar to an interrupt. (See extended in­
struction trap, privileged instruction trap, segmentation trap, and sys­
tem call trap.) 

Tri-state: An output mode of a logic device wherein the output is held in a 
high-impedance state and does not affect the logic level on the line. 
Tri-state outputs are useful when several devices are connected to the 
same signal line but only one device controls the logic level on that line 
at a given time. 

Unidirectional: Pertaining to a bus structure wherein a single conductor 
transmits signals in only one direction. For example, the Z8000 CPU's 
status lines are unidirectional since the status information is always a 
CPU output. 

Vector: (See interrupt vector.) 
Vectored interrupt: An interrupt with several possible service routines. 

The service routine executed as a result of a particular vectored inter­
rupt request depends on the value of the interrupt vector read from the 
interrupting device during the acknowledge cycle. 

Violation: An error condition detected by the memory manager when an 
illegal memory access is attempted, such as an attempted write to a 
memory segment with the read -only attribute. 

Virtual memory system: A system in which the logical memory address 
space is larger than the physical memory address space. In virtual mem­
ory systems, secondary storage devices are used as an extension of main 
memory, thus giving the appearance to the user of a larger main mem­
ory area than actually exists. 

Wait state: A clock period that is added to a memory or I/O transaction 
due to an active WAIT signal. Wait states are used to prolong memory 
and I/O transactions to devices with long access times. 

Word: A field of 16 contiguous bits that is operated on as a unit. 
Write warning: A condition that is detected by the memory manager 

when the amount of available space in a stack area of memory goes 
below a certain limit. Write warnings signal a potential memory alloca­
tion pro~lem. 

Z-Bus: The logical definition of the set of signals needed to interconnect the 
components in the Z8000 family within a computer system. 
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Z8 microcomputers, 263-65 
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struction (CCF), 271 

Com plemen t instructions: 
Z8 microcomputer (COM), 

271 
Z8000 CPU (COM, COMB), 

131 
Complement Flag instruction 

(COMFLG), 147, 149 
Condition codes: 

Z8 microcomputer, 270 
Z8000 CPU, 125-26 
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Context switches, 93-94, 
99-100 

Control/data signal (C/D) 
(Z8038 FlO), 222, 
228,229 

Control logic, 5 
input/output, 53-54 
memory, 36-47 

Control registers: 
Z8 microcomputers, 262 
Z8000 CPU, 8, 26-31 
Z8010 Memory Manage-

ment Unit, 162-63, 
166-68 

Z8016 DTL, 251 
Z8038 FlO, 233 

Coun ter /Timer registers: 
Z8 microcomputers, 265-67 
Z8036 CIO, 223-24 

CPU bus buffering, 192-95 
CPU control instructions: 

Z8 microcomputer, 271 
Z8000 CPU, 147, 149-51 

CPU control signals, 14-15, 
37 (see also STOP; 
WAIT) 

CPU-inhibit bit (CPUI), 164 
CPU-inhibit violation flag 

(CPUIV), 170, 171 
CS (see Chip select) 
Current Vector registers 

(Z8036 CIO), 222 
Cyclic Redundancy Codes 

(CRC),238 

Daisy chain: 
bus request, 103-6 
interrupt, 85-88, 209-11 

Data accepted (DAC), 213, 
215, 216, 230 

Data available (DAV), 213, 
215, 216, 230 

Data Buffer register (Z8038 
FIO),236 

Data Indirection register 
(Universal Peripheral 
Controller), 278, 281, 
282 

Data memory address space, 
13-14 

Data memory reference status 
code, 13 

Data movement instructions, 
126-28 

Data strobe (DS), 10-12 
address/data bus buffering, 

193-94 
bus requests, 102 
bus transaction timing, 57, 

68,69 
internal operation, 65, 66 

input/output, 51-53, 
63-65 

memory, 37-39, 41-47, 
59-62,69,70 

Memory Management 
Unit, 162 

memory refresh, 67 
Extended Processor Units, 

185 
interrupts, 87-92 
resets, 96, 97 
Z-bus-peripheral interface, 

207-9, 210 
Z8 microcomputers, 255, 

256, 264 
Z8038 FlO, 228, 229 

Data Transfer Control register 
(Universal Peripheral 
Controller), 278, 280, 
281 

Data transfers, 5 
Debugging, 4 
Decimal Adjust Byte instruc­

tion (DAB), 27, 128-30 
Decimal Adjust instruction 

(DA), 270, 271 
Decimal adjust flag (D), 27 
Decimal notation, 114 
Decoders, 195,196,197 
Decrement and Jump if Not 

Zero instructions: 
Z8 microcomputers 

(DJNZ), 271 
Z8000 CPU (DJNZ, 

DBJNZ), 123, 137-39 
Decrement instructions: 

Z8 microcomputers (DEC), 
271 

Z8000 CPU (DEC, DECB), 
129, 130 

Decrement Word instructions 
(DECW),271 

Dedicated register, 25-26 
Default bus master, 101 
Descriptor Selection Counter 

register (DSC), 163, 168 
Direct address mode address­

ing: 
Z8 microcomputer, 270 
Z8000 CPU, 116, 118-19 

Direction and warning flag 
(DIRW),165-66 

Direct memory access devices 
(DMA), 101-2, 105-6 

Direct memory access inhibit 
bit (DMAI), 165 

Direct memory access strobe 
(DMASTB), 228, 229 

Direct memory access syn­
chronization strobe 
(DMASYNC), 159, 160, 
162 

Index 

Direct memory access viola­
tions, 171 

Disable Interrupts instruction 
(DI): 

Z8 microcomputer, 271 
Z8000 CPU, 99, 147-49 

Divide instructions (DIV, 
DIVL), 129, 130 

DS (see Data strobe) 
Dynamic RAMs, 196-99 

Effective address, 11 7 
Electronic Code Book, 247 
Enable bit, 27, 28,48, 185 
Enable Interrupts instruction 

(EI): 
Z8 microcomputer, 271 
Z8000 CPU, 99, 149 

End-of-process (EOP), 250 
Erasable programmable read­

only memories 
(EPROMs),47 

Exception conditions (see In­
terrupts; Resets; Traps) 

Exception handling control, 8 
Exchange instructions (EX, 

EXB), 126, 127 
Exclusive-Or instructions 

(XOR, XORB), 131 
Execute-only bit (EXC), 164 
Execute-only violation flag 

(EXCV), 170, 171 
Extended instruction traps, 

76,77,80,92 
Extended processor archi­

tecture enable bit 
(EPA), 27, 28, 185 

Extended Processor Units 
(EPUs), 2, 6, 14, 76, 
183-89 

Extend Sign instructions 
(EXTS, EXTSB, 
EXTSL), 129, 130 

Fatal flag (F ATL), 171 
Fire codes, 242, 245 
Flag and control word (FCW), 

8,9,20-21 
condition codes, 125-26 
context switches, 99-100 
Extended Processor Units, 

185 
interrupts and traps, 78-84 
resets, 96, 98 
Z8001, 29-30 
Z8002,26-28 

Flip-Flops, 192, 197-98 

General-purpose registers: 
Z8 microcomputers, 261-62 
Z8000 CPU, 8, 24-31, 33, 

115-16 
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Half-carry flag (H)t 27 
HALTt 67 t 95-96 
Handshakest 213t 215t 216t 

224 
Hexadecimal notationt 114 
HDLCt 239 

Identification code (ID code)t 
166 

Identifierst 114 
Immediate mode addressing: 

Z8 microcomputert 270 
Z8000 CPUt 119 

Implied mode addressingt 124 
Implied register t 25-26 
Implied stack pointerst 26t 

28-31 t 94 t 98-99 
Increment instructions: 

Z8 microcomputer (INC)t 
271 

Z8000 CPU (INCt INCB)t 
129t 130 

Indext 117t 120-23 
Indexed mode addressing: 

Z8 microcomputert 27G 
Z8000 CPUt 116t 120-~,1 

Indirect register mode 
addressing: 

Z8 microcomputert 270 
Z8000 CPUt 119-20 

Initialization routinest 98-99 
Inputt Decrement and Repeat 

instructions (INDRt 
INDRB)t 145t 146 

Inputt Increment and Repeat 
instructions (INIRt 
INIRB)t 145t 146 

Input and Decrement instruc-
tions (INDt INDB)t 
145t 146 

Input and Increment instruc­
tions (INIt INIB)t 145t 
146 

Input instructions (INt INB)t 
145t 146 

Input/output (110): 
Universal Peripheral Con­

troller t 278-79 
Z8 microcomputerst 257-

59t 262-65 
Z80-family peripheralst 

198-205 
Z8000 CPUt 2t 4 t 6 t 13t 

50-55 t 62-65 (see also 
Interfacing: timing) 

Input/output address space, 
50-51 

Input/output cycles: 
Z80-family peripherals, 

198-202 
Z8000 CPU, 62-65 

Input/output instructions, 
145-47 

special, 147, 148 
Input/output request 

(IORQ),198-204 
Instruction buffer, 8 
Instruction execution con­

trol, 8 
Instruction fetch, 58 
Instruction fetch status 

code, 13 
Instruction prefetch, 56-57 
Instructions: 

addressing modes (see 
Addressing modes) 

Z8 microcomputers, 269-
72 

Z8000 CPU, 21, 113-21 
arithmetict 128-30 
bit manipulation, 132-33 
block compare, 140-42 
block move, 139-40 
block translate, 142-45 
conventions, 113-15 
CPU control, 147,149-51 
data movement, 126-28 
exception conditions (see 

Interrupts; Resets; 
Traps) 

Extended Processor 
Unitst 183-89 

general-purpose CPU 
register usage, 115-16 

input/output, 145-47 
interface timing (see 

Interfacing: timing) 
logical, 130-31 
long and short offset 

addresses, 116-1 7 
program control, 137-39 
rotate, 133-36 
shift, 133, 135-37 
special input/output, 147, 

148 
INT (see Interrupts) 
INTACK (see Interrupt 

acknowledge) 
Interfacing: 

to input/output devices: 
Z8 microcomputers, 257-

59 
Z80-family peripherals, 

198-205 
Z8000 CPU, 2, 4, 6, 13, 

50-55 
to memory: 

Z8 microcomputers, 257-
59, 262-65 

Z8000 CPU, 32-49, 69-
71, 196-98 

timing, 56-73 
AC characteristics, 68-71 
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bus transactions (see Bus 
transactions) 

clock cycles (see Clock 
cycles) 

machine cycles (see Ma­
chine cycles) 

memory interface ex-
ample, 69-71 

wait states, 71-73 
Z6132 RAM, 41-43 
Z8 microcomputers, 263-

65 
Interlocked handshakes, 213, 

215 
Internal data bus, 8 
Internal operation cycles, 65-

66 
Interrupt acknowledge 

(INTACK), 55, 87,88 
Universal Peripheral Con­

troller, 277, 279 
Z-bus-compatible per­

ipherals, 207, 209-11 
Z8036 CIO, 216 
Z8038 FlO, 228, 230 

Interrupt acknowledge cycle, 
78,88-92,198-205 

Interrupt daisy chain, 85-88, 
209-11 

Interrupt Enable bit (IE), 
209-11, 218 

Interrupt Enable In (lEI), 
55,85-88 

Universal Peripheral Con­
troller, 277, 279 

Z-bus-compatible pe­
ripherals, 207, 209-11 

Z8036 CIO, 216 
Z8038 FlO, 228t 230 

Interrupt Enable Out (lEO), 
55,85-88 

Universal Peripheral Con­
troller, 277, 279 

Z-bus-compatible per­
ipherals, 207, 209-11 

Z8036 CIO, 216 
Z8038 FlO, 228, 230 

Interrupt Pending bit (IP), 
209-12, 218 

Interrupt requests: 
Z-bus-compatible pe­

ripherals, 209 
Z8 microcomputers, 267, 

268 
Z8000 CPU, 6, 78, 85 

(see also Interrupts) 
Interrupt Return instruction 

(IRET): 
Z8 microcomputer, 269, 

270,271 
Z8000 CPU, 84-85, 94, 

138,139 
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Interrupts: 
Universal Peripheral Con­

troller, 277, 279, 280 
Z-bus-compatible per­

ipherals, 207, 209-12 
Z8030 SCC, 241-42 
Z8036 CIO, 213-16, 

218-19 
Z8038 FlO, 228, 230, 

232-35 
Z8 microcomputers, 267- 69 
Z8000 CPU, 4,15,55 

defined, 74-75 
HALT instruction. 95- 96 
handling, 77 
initialization routines, 

98-99 
new program status, 80-

84 
priorities of exceptions, 

78 
saving program status, 

78-80 
service routines, 94-95 

Interrupt-under-service (IUS), 
88, 209-11, 218 

Interrupt Vector register 
(Z8038 FlO), 233, 236 

Inverting Transceiver, 193-94 

Jump instruction (JP): 
Z8 microcomputer, 270, 

271 
Z8000 CPU, 121, 125, 

138,139 
Jump Relative instruction (JR): 

Z8 microcomputer, 270, 
271 

Z8000 CPU, 123, 124, 138, 
139 

Latched address lines (LA1-
LA11),47 

Limit Count register, 278, 
281,282 

Load, Decrement and Repeat 
instructions (LDDR, 
LDDRB),140 

Load Address Relative in­
struction (LDAR), 123 

Load and Decrement instruc­
tions (LDD, LDDB), 
139. 140 

Load and Increment instruc­
tion:; (LDI, LDIB), 
139·-40 

Load Con ~rol Byte instruc­
tion (LDCTLB), 147, 
149 

Load Con ~rol instruction 
(LDCTL), 9, 48, 49, 
80, ;~4, 99, 149-50 

Load instructions (LD): 
Z8 microcomputers, 270 
Z8000 CPU, 121, 123, 124, 

126-28 
Load Multiple instruction 

(LDM),94 
Load Program Status instruc­

tion (LDPS), 99-100, 
149, 150 

Load Relative instructions 
(LDR, LDRB, LDRL), 
123, 127, 128 

LocruLoopback, 239 
Logical addresses, 18-19, 

152-53 (see also Z8010 
Memory Management 
Unit) 

Logical AND instruction 
(AND),271 

Logical Exclusive OR instruc­
tion (XOR), 271 

Logical instructions: 
Z8 microcomputers, 271 
Z8000 CPU, 130-31 

Logical OR instruction (OR), 
271 

Long offset addressing, 116 
(see also Addressing 
modes) 

Long-word instructions (see 
Addressing modes) 

Long-word registers, 24-25, 
115 

Long words, 34-36, 40 
Lower Chain bit (DLC), 209, 

210 

Machine cyles, 57 -6 7 
defined,58 
dynamic RAMs, 196-99 
input/output, 62-65 
internal operation, 65-66 
memory, 58-62 
memory refresh, 66-67 
Z-bus-compatible per-

ipherals, 207-8 
Z8 microcomputers, 263-

65 
Z80-family peripherals, 

198-205 
Mailbox register, 223, 226 
Master Control registers 

(Z8036 CIO), 220 
Master CPU Interrupt Con­

trol register (Universal 
Peripheral Controller), 
278,280-83 

Master enable bit (MSEN), 
166,167,209-11 

MBIT (see Multi-Micro Bit 
instruction) 

Memory addressing, 8, 17-20, 

Index 

117,153-58 (see also 
Addressing modes; 
Z8010 Memory Man­
agement Unit) 

Memory address spaces: 
Universal Peripheral Con­

troller, 277-78 
Z8 microcomputers, 259-

62 
Z8000 CPU, 13-14, 16-20, 

32-34 
Memory allocation, 4 
Memory attribute checking, 

157,159 
Memory cycles, 58-62 
Memory interfacing: 

Z8 microcomputers, 257-
59, 262-65 

Z8000 CPU, 32-49, 69-71, 
196-98 

Memory management, 17-20 
(see also Z8010 Mem­
ory Management Unit) 

Memory read cycles, 58-61 
Memory refresh, 6, 47-49,197 
Memory refresh cycles, 66-67 
Memory refresh status code, 

13 
Memory request (MREQ), 10, 

11,12,37,43,67,197, 
198 

bus requests, 102 
bus transaction timing, 68 

input/output, 63, 64 
internal operation, 65, 66 
memory, 59, 61, 62 
memory refresh, 67 

interrupts, 90 
resets, 96, 97 

Memory write cycles, 60-62 
MI (see Multi-Micro In in­

struction) 
MMAI (see Multi-Micro 

Acknowledge In in­
struction) 

MMAO (see Multi-Micro 
Acknowledge Out 
instruction) 

MMRQ (see Multi-Micro Re­
quest instruction) 

MMST (see Multi-Micro 
Status instruction) 

MMU (see Z8010 Memory 
Management Unit) 

Mode register, 162 
Monosync, 239 
MREQ (see Memory 

request) 
MRES (see Multi-Micro 

Reset instruction) 
MSET (see Multi-Micro Set 

instruction) 
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Multi-Micro Acknowledge 
In instruction (MMAI), 
106-11 

Multi-Micro Acknowledge 
Out instruction 
(MMAO),106-11 

Multi-Micro Bit Test instruc­
tion(MBIT),110, 
149,150 

Multi-Micro In instruction 
(MI),108-12 

Multi-Micro Out instruction 
(MO),108-12 

Multi-Micro Request instruc­
tion (MMRQ), 106-12, 
149, 150 

Multi-Micro Reset instruc­
tion (MRES), 110, 149, 
150 

Multi-Micro Set instruction 
(MSET), 110,149,150 

Multi-Micro Status instruc­
tion (MMST), 106-11 

Multiple programming tasks, 
2-4 

Multiple segment table bit 
(MST), 166-68 

Multiply instructions (MULT, 
MULTL), 129, 130 

Negate instructions (NEG, 
NEGB), 129, 130 

Nonmaskable interrupts 
(NMI), 15, 75, 85, 89-
91,99 

Nonsegmented addressing, 
17,20,30-31,115, 
116 (see also Address­
ing modes) 

Nonvectored interrupts 
(NVI), 15, 75, 85, 89-
91 

No operation instruction 
(NOP): 

Z8 microcomputer, 271 
Z8000 CPU, 149, 151 

Normal mode, 9, 30, 32-34 
Normal-mode select bit 

(NMS), 166, 167 
Normal-mode stack pointer, 

26, 30 
Normal/system signal (N /S), 

12,37,38 
bus requests, 102 
bus transaction timing: 

input/output, 63, 64 
internal operation, 65 
memory, 58 
memory refresh, 67 

Memory Management Unit, 
160 

resets, 96, 97 

No vector bit (NV), 209, 
210 

N/S (see Normal/system 
signal) 

Octal notation, 114-15 
Octal transparent latches, 196 
Offset addresses, 116-17, 

154-55 
"One's catchers" 213 
Operands, 11 7 <,see also 

Addressing modes) 
Operating modes, 9 
Operating states, 20-21 
Operating systems, 2-4 
Operation code (opcode), 

117 
Or instructions (OR, ORB), 

131 
OR mode, 214 
OR-Priority Encoded Vector, 

214 
Output, Decrement and Re­

peat instructions 
(OTDR, OTDRB), 145, 
146 

Output, Increment and 
Repeat instructions 
(OTIR, OTIRB), 145, 
146 

Output and Decrement in­
structions (OUTD, 
OUTDB), 145, 146 

Output and Increment 
instructions (OUTI, 
OUTIB), 145, 146 

Output enable (OE), 231 
Output instructions (OUT, 

OUTB), 145, 146 
Overflow/parity flag, 27, 

125,128,130 
(see also Flag and con­
trol word) 

Pages, 182 
Pattern definition registers: 

Z8036 CIO, 221 
Z8038 FlO, 236 

Parity / overflow flag (see 
Overflow/parity flag) 

PC (see Program counter) 
Physical memory addresses, 

18 
Pin configuration: 

Z-bus-compatible 
peripherals: 

Z6132 RAM, 252 
Z8016 DTC, 249 
Z8030 SCC, 239 
Z8036 CIO, 212 
Z8038 FlO, 227 
Z8060 FIFO, 237 

Z8065 BEP, 246 
Z8068 DCP, 247 

Z6132 RAM, 42 
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Z8 microcomputers, 256 
Z8001 CPU, 15-16, 22 
Z8002 CPU, 9-15, 22 
Z8010 MMU, 159-60 
Z8090 UPC, 275 

PLZ/ASM assembler, 113-16 
Polled interrupt systems, 269 
Pop instructions: 

Z8 microcomputer (POP), 
270, 271 

Z8000 CPU (POP, POPL), 
127,128 

Primary write warning flag 
(PWW),171 

Privileged instruction traps, 
76,77,80,92 

Program control instructions: 
Z8 microcomputers, 271 
Z8000 CPU, 137-39 

Program counter (PC), 8, 20 
context switches, 99-100 
interrupts and traps, 78-84 
resets, 98 
Z8001 CPU, 29, 30 
Z8002 CPU, 26, 27 

Programming tasks, 2- 4 
Program memory address 

space, 14 
Program status area, 80-84,99 
Program status area pointer 

(PSAP), 8, 9, 27, 28, 
30,31,80,81,99 

Program status registers, 8, 
26-30 (see also Flag 
and control word; Pro­
gram counter; Reserved 
word) 

Pulsed handshake, 213, 214 
PSAP (see Program status 

area pointer) 
Push instructions: 

Z8 microcomputer (PUSH), 
270, 271 

Z8000 CPU (PUSH, 
PUSHL), 127, 128 

Quad registers, 25, 115 

Rate counter, 48,66-67 
Read-only bit (RD), 164 
Read-only violation flag 

(RDV), 170, 171 
Read/write signal (R/W), 11, 

12 
address/data bus buffering, 

193-94 
bus requests, 102 
bus transaction timing: 

input/output, 51-53, 
63-65 
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Read/write signal (cont.) 
internal operation, 65 
memory, 37-41, 44-47, 

69, 70 
memory refresh, 67 

Extended Processor Units, 
185 

interrupts, 90 
Memory Management Unit, 

160 
resets, 96, 97 
Z-bus-peripheral interface, 

207-8, 210 
Z8 microcomputers, 255, 

256 
Z8038 FlO, 228, 229 

Ready for data (RFD), 213, 
215,216,230 

Referenced flag (REF), 166 
Refresh registers, 8, 9, 27, 

28,31,48 
Register mode addressing: 

Z8 microcomputer, 270 
Z8000 CPU, 117-18 

Registers: 
Memory Management Unit: 

control, 162-63, 166-68 
segment descriptor, 161-

66 
status, 163, 170-72 

Universal Peripheral Con­
troller, 277-83 

Z-bus-compatible 
peripherals: 

Z8016 DTC, 251 
Z8030 SCC, 243-45 
Z8036 CIa, 220-24 
Z8038 FlO, 233-35 
Z8065 BEP, 245-46 
Z8068 DCP, 248 

Z8 microcomputers, 
261-69 

Z8000 CPU: 
control, 8, 26-31 
general-purpose, 8, 24-31 

Relative mode addressing: 
Z8 microcomputer, 270 
Z8000 CPU, 123-24 

Requests, Z-bus (see Z-bus 
requests) 

Reserved word, 29, 30 
RESET (see Resets) 
Reset Bit instructions (RES, 

RESB),132 
Reset Carry Flag instruction 

(RCF),271 
Reset Flag instruction 

(RESFLG), 147, 149 
Rese~, 22,51, 52,67,96-98 

Memory Management Unit, 
178 

Z-bus-peripheral interface, 
207-8, 210 

Z8036 CIa, 219 
Resource requests, 6, 106-12 
Return instruction (RET); 

Z8 microcomputer, 271 
Z8000 CPU, 137, 138 

Right Justify Address bit 
(RJA),219 

Rotate instructions: 
Z8 microcomputers, 271 
Z8000 CPU, 133-36 

Rotate Left Digit instruction 
(RLDB), 133, 135 

Rotate Left instructions (RL, 
RLB), 133-35 

Rotate Left through Carry 
instructions (RLC, 
RLCB), 133-35 

Rotate Right Digit instruc-
tion (RRDB), 133,135 

Rotate Right instructions 
(RR, RRB), 133-135 

Rotate Right through Carry 
instructions (RRC, 
RRCB),133-35 

Row address strobe (RAS), 
196-99 

Row counter, 48 
Running state, 20-21 
R/W (see Read/write signal) 

SDLC, 239 
Secondary write warning flag 

(SWW),171 
Segment address register 

(SAR), 163, 168 
Segmentation trap (SEGT), 

16,76-79,90,159, 
160,162,170,172-74 

Segment descriptor registers, 
161-66 

Segmented addressing, 17-20, 
30,115-17,153-58 
(see also Addressing 
modes) 

Segment-length violation flag 
(SLV), 170, 171 

Segment number, 16, 37 
bus requests, 102 
bus transaction timing, 58-

62 
interrupts and traps, 79,85 
Memory Management Unit, 

159-62, 168-70, 180 
PLZ/ ASM notation, 115 

SEGT (see Segmentation trap) 
SELECT, 54 
Service routines, 94-95 
Set Bit instructions (SET, 

SETB),132 

Index 

Set Carry Flag instruction 
(SCF),271 

Set Flag instruction 
(SETFLG), 147, 149 

Set Register Pointer instruc­
tion (SRP), 271 

Shared resource requests, 
106-12 

Shift Left Arithmetic instruc­
tions (SLA, SLAB, 
SLAL), 135, 137 

Shift Dynamic Arithmetic 
instructions (SDA, 
SDAB, SDAL), 135,137 

Shift Dynamic Logical 
instructions (SDL, 
SDLB, SDLL), 135,137 

Shift instructions: 
Z8 microcomputers, 271 
Z8000 CPU, 133, 135-37 

Shift Left Logical 
instructions (SLL, 
SLLB, SLLL), 135, 137 

Shift Right Arithmetic 
instructions (SRA, 
SRAB, SRAL), 135,137 

Shift Right Logical 
instructions (SRL, 
SRLB, SRLL), 135,137 

Short offset address, 116-1 7 
Sign flag (S), 27, 125, 133 

(see also Flag and con­
trol word) 

SN74LS42-1-of-10 decoder, 
195 

SN74LS74 Flip-Flop, 198 
SN7 4LS1 09 Dual J-K Flip­

Flop, 197 
SN74LS138 decoder, 195, 

196,201 
SN74LS243 Quad Non­

Inverting Transceiver, 
193, 194 

SN74LS244 tri-state buffer, 
194 

SN74LS365 tri-state buffer, 
194 

SN74LS367 tri-state buffer, 
194 

Special Input instruction 
(SIN), 147, 148 

Special Input/Output address 
space, 50, 51 

Special Input/Output status 
code, 13 

Special Output instruction 
(SOUT), 147, 148 

Stack memory reference 
status code, 13 

Stack pointers, 9, 26, 28-31, 
278 
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Standard Input/Output 
address space, 50, 51 

Standard Input/Output status 
code, 13 

Status registers: 
Memory Management Unit, 

163,170-73 
Z8 microcomputers, 262, 

266,267,268 
Z8016 DTC, 251 

Status signals (see Byte/word 
line; Normal/system 
signal; STO-ST3 lines) 

STOP, 6, 14-15, 21, 67, 184, 
186-89 

Storage devices, 5 
Strobed handshakes, 213,215 
STO-ST3 lines, 12-13, 37, 38 

bus requests, 102, 103 
bus transaction timing: 

input/output, 51, 54, 62-
64 

internal operation, 65 
memory, 58, 59, 61, 62 
memory refresh, 66, 67 

Extended Processor Units, 
185-86 

interrupts, 86, 90 
Memory Management Unit, 

160 
resets, 96, 97 
status decoding, 195 

Subtract instructions: 
Z8 microcomputers (SUB), 

271 
Z8000 CPU (SUB, SUBB, 

SUBL), 128, 129 
Subtract with Carry instruc­

tions: 
Z8 microcomputer (SBC), 

271 
Z8000 CPU (SBC, SBCB), 

128, 129 
Suppress signal (SUP), 160, 

162,170,172-74 
System Call instruction (SC), 

9,76,93-94 
System call trap, 76, 77, 80, 

92,93-94 
System inputs, 22 
System mode, 9, 30, 32-34, 

79 
System-mode stack pointer, 

26, 30, 79 
System/normal bit (SN), 

27-28 
System-only bit (SYS), 164 
System Return instruction 

(SC), 138, 139 
System violation flag 

(SYSV), 170, 171 

Task synchronization, 4 
Test and Set instruction 

(TSET),132-33 
Test Complement Under 

Mask instruction 
(TCM), 270, 271 

Test Condition Code 
instructions (TCC, 
TCCB),131 

Test instructions (TEST, 
TESTB, TESTL), 131 

Test Under Mask instruction 
(TM), 270, 271 

Three-wire handshake, 213, 
215, 224 

Time-sharing systems, 3 
Transactions, z-bus (see Bus 

transactions) 
Transistor-transistor logic 

(TTL),6 
Translate, Decrement and 

Repeat instruction 
(TRDRB), 143, 144 

Translate, Test, Decrement 
and Repeat instruction 
(TRTDRB), 143, 145 

Translate, Test, Increment 
and Repeat instruction 
(TRTIRB), 143, 145 

Translate, Test and Decre­
ment instruction 
(TRTDB), 143, 144 

Translate, Test and Increment 
instruction (TR TIB), 
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(URS), 166, 167 
User's tasks, 3 

Vectored interrupt enable bit 
(VIE), 27, 28 

Vectored interrupts (VI), 15, 
55,75,85,89-91 

Vector Included Status bit 
(VIS),209 

Violation-type register 
(VTR), 170-72 

Virtual memory systems, 19, 
180-82 

WAIT, 10, 14, 37, 38 
bus transaction timing: 

generation, 71-73 
input/output, 51-53, 

63-65 
internal operation, 65, 66 
memory, 47,59-62 

interrupts, 90-91 
Z8016 DTC, 250, 251 
Z8036 CIO, 216 
Z8038 FlO, 228, 229, 232 

Wait states, 71-73 (see also 
WAIT) 

Word instructions (see 
Addressing modes) 
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182 

Z8016 Direct Memory Access 
Transfer Controller 
(DTC), 6, 249-51 

Z8030 Serial Communica­
tions Controller (SCC), 
237-45 

Z8036 Counter Input/Output 
Circuit (CIO), 6, 
212-25,273,274 

Z8038 FIFO Input/Output 
Interface Unit (FlO), 6, 
219,222-37,273,274 

Z8052 CRT Controller 
(CRTC),248-49 

Z8060 FIFO, 234, 237 
Z8065 Burst Error Processor 

(BEP), 242, 245-47 
Z8068 Data Ciphering Pro­

cessor (DCP), 247-48 
Z8090 Universal Peripheral 

Controller (UPC), 275-
77,283 

Z8091 Universal Peripheral 
Controller (UPC), 
283-84 

Z8092 Universal Peripheral 
Controller Random 
Access Memory 
(UPC RAM), 283, 284 

Z8093 Universal Peripheral 
Controller (UPC), 
283,284 

Z8094 Universal Peripheral 
Controller (UPC), 283, 
284 

Z8420 Parallel I/O 
Controllers (PIOs), 
190,191 

Z8430 Counter/Timer Circuit 
(CTC), 190, 191 

Z8601 microcomputer, 272 
Z8602 microcomputer, 272 
Z8603 microcomputer, 272 
Z8611 microcomputer, 272 
Z8612 microcomputer, 272-

73 
Z8613 microcomputer, 272, 

273 
Z8671 microcomputer, 272, 

273 
Z8681 microcomputer, 272, 

273 



i, 



ISBN 0-13-983734-5 


