

THE Z8000 MICROPROCESSOR
A Design Handbook

- BRADL Y K. FAWCETT
Senior Staff Engineer
Zilog, Inc.

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

Library of Congress Cataloging in Publication Data

Fawcett, Bradly K.
The Z8000 microprocessor.

Bibliography: p.
Includes index.
1. Electronic digital computers-Circuits.

2. Logic design. 3. Zilog Model Z8000 (Computer)
I. Title.
TK7888.F285 621.3819'58 82-392
ISBN 0-13-983742-6 AACR2
ISBN 0-13-983734-5 (pbk.)

Editorial production/supervision: Barbara Bernstein
Manufacturing buyer: Gordon Osbourne

This is a technical manual. The information contained
herein is subject to change.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electric, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Zilog and the publisher.

Zilog assumes no responsibility for the use of any circuitry other than
circuitry embodied in a Zilog product. No other circuit patent licenses are implied.

© 1982 by Zilog, Inc.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN
ISBN

0-13-983742-6
0-13-983734-5 {pbk}

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Contents

PREFACE

Chapter 1
THE 28000 CPU

Operating Systems, 2
TheZ-Bus, 4
Z8000 CPU Architecture, 7
System and Normal Modes, 9
Z8002 Pin Configuration, 9
Z8001 Pin Configuration, 15
Segmented Addressing and Memory Management, 17
Segmented and Nonsegmented Modes, 20
CPU Operating States, 20
System Inputs, 22
CPU Clock Requirements, 22

Chapter 2
CPU REGISTERS

Z8002 General-Purpose Registers, 24
Z8002 Control Registers, 26
Z8001 General-Purpose Registers, 28
Z8001 Control Registers, 29

viii

1

24

iii

iv

Chapter 3
INTERFACING TO MEMORY

Memory Address Spaces, 32
Memory Organization, 34
Memory Control Logic, 36
Example 1: Interfacing to Z6132'S, 41
Example 2: Interfacing to Z6132'S and 2716'S, 46
Memory Refresh, 47

Chapter 4
INTERFACING TO PERIPHERALS

I/O Address Spaces, 50
I/O Interface Signals, 51
I/O Control Logic, 53
Z-Bus Interrupt Signals, 55

Chapter 5
INSTRUCTION AND INTERFACE TIMING

Instruction Prefetch, 56
Basic Timing Periods, 57
Memory Cycles, 58
I/O Cycles, 62
Internal Operation Cycles, 65
Memory Refresh Cycles, 66
AC Timing Characteristics, 68
Memory Interface Timing: an Example, 69
Wait-State Generation, 71

Chapter 6
INTERRUPTS, TRAPS, AND RESETS

Interrupts, 74
Traps, 75
Interrupt and Trap Handling, 77
Priorities of Exceptions, 77
Interrupt Acknowledge, 78
Saving Program Status, 78
Program Status Area, 80
Interrupt Returns, 84

Contents

32

50

56

74

Contents

Peripheral Interrupt Daisy Chain, 85
Interrupt Acknowledge Cycle, 88
Interrupt Response Time, 92
System Cal/lnstruction, 93
Service Routines, 94
HAL T Instruction, 95
Reset, 96
Initialization Routines, 98
Other Context Switches, 99

Chapter 7
BUS AND RESOURCE SHARING

Bus Requests, 101
Bus Request Priority Daisy Chain, 103
Shared Resource Requests, 106
Z-Bus Signals, 112

Chapter 8

v

101

THE INSTRUCTION SET 113

Assembly Language Conventions, 113
CPU Register Usage, 115
Long and Short Offset Addresses, 116
Addressing Modes, 117
Register Mode, 117
Direct Address Mode, 118
Immediate Mode, 119
Indirect Register Mode, 119
Indexed Mode, 120
Base Address Mode, 121
Base Indexed Mode, 122
Relative Address Mode, 123
Use of the Addressing Mode, 124
Implied Addressing Modes, 124
Assembly Language Instructions, 124
Data Movement Instructions, 126
Arithmetic Instructions, 128
Logical Instructions, 130
Bit Manipulation Instructions, 132
Rotate and Shift Instructions, 133
Program Control Instructions, 137

vi

Block Move Instructions, 139
Block Compare Instructions, 140
Block Translate Instructions, 142
I/O Instructions, 145
Special I/O Instructions, 147
CPU Control Instructions, 147

Chapter 9
THE Z8010 MEMORY MANAGEMENT UNIT

Memory Allocation, 152
Segmentation and Memory Allocation, 153
Memory Protection, 156
Z8010 MMU Architecture, 158
Segment Descriptor Registers, 163
Control Registers, 166
Address Translation, 168
Violation Types and Status Registers, 170
Traps and Suppresses, 172
MMU Commands, 174
Resets, 178
Multiple MMU Systems, 178
The MMU and Memory Access Time, 180
MMU and Virtual Memories, 180

Chapter 10
EXTENDED PROCESSOR UNITS

CPU-EPU Interface, 183
Extended Instructions, 184
Stop Timing, 186

Chapter 11
A Z8000 DESIGN EXAMPLE

Clock Generation, 190
CPU Bus Buffering, 192
Address Latching, 195
Memory Interfacing, 196
Peripheral Interfacing, 198

Contents

152

183

190

Contents

Chapter 12
Z8000 FAMILY DEVICES

Z-Bus Peripheral Interface, 207
Peripheral Interrupt Structure, 209
Z8036 CIO, 212
Z8038 FlO, 219
FIFO Buffer Expansion, 234
Z8030 SCC, 237
Z8065 BEP, 242
Z8068 DCP, 247
Z8052 C R TC, 248
Z8016 DTC, 249
Z6132 RAM, 251

Chapter 13

vii

206

Z-BUS MICROCOMPUTERS 255

Z8 Architectural Overview, 255
Z8 Memory Spaces, 259
Z8 I/O Ports, 262
Z8 Counter/Timers, 265
Z8 Serial I/O, 267
Z8 Interrupts, 267
Z8 Instruction Set, 269
Z8 Configurations, 272
Z8000-Z8Interfacing, 273
UPC Architectural Overview, 275
UPC Memory Spaces, 277
UPC I/O Ports, 278
UPC Interrupts, 279
CPU-UPC Communication, 279
UPC Product Configurations, 283

Appendix A
Z8000 CPU DC AND AC ELECTRICAL CHARACTERISTICS

Appendix B
GLOSSARY

Appendix C
BIBLIOGRAPHY

INDEX

285

290

301

302

viii

Preface

With the advent of the 16-bit microprocessor, computing power and features
formerly available only in minicomputers and large-scale computers are now
provided on a single integrated-circuit chip. This text is a detailed study of
one such microprocessor, the Z8000.

The emphasis of this book is on logic design with the Z8001 and Z8002
microprocessors. Other components in the Z8000 family of parts are also
discussed. The components described in this book are available from

Zilog, Inc.
1315 Dell Avenue
Campbell, CA 95008

This book is intended for anyone interested in learning about the
Z8000, but will be especially useful for those engineers involved in either
hardware designs that use Z8000 family components or software/firmware
designs for Z8000-based systems. The hardware engineer would use this text
as a guide to interfacing the Z8000 microprocessors to memory and periph­
eral devices. Since effective assembly language programming depends on a
thorough knowledge of the target processor's capabilities, the software engi­
neer would use this text to gain insights into the Z8000's architecture and its
relation to the microcomputer system.

Chapters 1 through 8 and Chapter 11 deal principally with the Z8001
and Z8002 microprocessors from both an architecture and system design
viewpoint. Several system architecture concepts, such as operating systems

Preface ix

and memory management, are introduced and discussed in relation to Z8000
system design. Chapters 9, 10, 12, and 13 deal with other Z8000 family com­
ponents that often are used in Z8000-based systems, including the Z8010
Memory Management Unit, peripherals, memories, and slave processors.

Since the emphasis of this book is on logic design, assembly language
programming of the Z8000 is not covered in detail. An overview of the in­
struction set is included in Chapter 8. Several good texts that deal exclu­
sively with Z8000 programming are currently available (see the Bibliography.
Appendix C).

This book is not intended for the computer novice. The reader is as­
sumed to have some experience with microprocessors and a familiarity with
concepts such as registers, buffers, program counters, and interrupts.

As with any project of this magnitude, a great number of people were
involved-too many to mention here-and the author wishes to thank them
all. Special thanks to Steve Blank, who originally suggested that I write this
book, and to the following engineers at Zilog, who constituted an informal
technical review committee: John Banning, Ross Freeman, Dave Stevenson,
Carl Johnson, Nai-Ting Hsu, Don Alpert, Dan Hillman, Gary Prosenko, and
Pat Lin.

Every attempt has been made to assure the technical accuracy of the
material in this book, but Mr. Murphy is not to be denied and, inevitably,
errors will be found. Comments and criticisms are appreciated and will con­
tribute to the accuracy of later editions.

Many of tl)e figures in this book are from the following pUblications:
1981 Data Book, Zilog, Inc., document 00-2034-01, 1981; Z8000 CPU
User's Reference Manual, Zilog, Inc., Prentice-Hall, Inc., 1982; A Small
Z8000 System Application Note, Zilog, Inc., document 03-8060-02, 1980;
and Z8010 MMU Technical Manual, Zilog, Inc., document 00-20150AO,
1981.

BRADLY K. FA WCET T

ZILOG SALES OFFICES

West South United Kingdom

Sales & Technical Center Sales & Technical Center Zilog (U.K.) Limited
Zilog, Incorporated Zilog, Incorporated Babbage House, King Street
1315 Dell Avenue 2711 Valley View, Suite 103 Maidenhead SL6 IDU
Campbell, California 95008 Dallas, TX 75234 Berkshire, United Kingdom
Phone: (408) 446-4666 Phone: (214) 243-6550 Phone: (628) 36131
TWX: 910-338-7621 TWX: 910-860-5850 Telex: 848609

Sales & Technical Cen ter Zilog, Incorporated
Zilog, Incorporated 7113 Burnet Rd.
18023 Sky Park Circle Suite 207
Suite J Austin, TX 78757
Irvine, CA 92714 Phone: (512) 453-3216
Phone: (714) 549-2891 Technical Center TWX: 910-595-2803 Zilog, Incorporated West Germany

Sales & Technical Center 1442 U.S. Hwy 19 South Zilog GmbH
Zilog, Incorporated Suite 135 Zugspitzstrasse 2a
15643 Sherman Way Clearwater, FL 33516 D-8011 Vaterstetten
Suite 430 Phone: (813) 535-5571 Munich, West Germany
Van Nuys, CA 91406 Phone: 081064035
Phone: (213) 989-7485 Telex: 529110 Zilog d.
TWX: 910-495-1765

Sales & Technical Center
Zilog, Incorporated
2918 N. 67th Place #2

East Scottsdale, AZ 85251
Phone: (602) 990-1977 Sales & Technical Center

Sales & Technical Cen ter Zilog, Incorporated France
Zilog, Incorporated Corporate Place

1750 112th Ave. N.E. 99 South Bedford St. Zilog, Incorporated
Suite D161 Burlington, MA 01803 Tour Europe
Bellevue, W A 98004 Phone: (617) 273-4222 Cedex 7
Phone: (206) 454-5597 TWX: 710-332-1726 92080 Paris La Defense

France
Sales & Technical Center Phone: (1) 788-14-33

Midwest Zilog, Incorporated TWX: 611445F

Sales & Technical Center
110 Gibraltar Road
Horsham, P A 19044

Zilog, Incorporated Phone: (215) 441-8282
890 East Higgins Road TWX: 510-665-7077
Suite 147
Schaumburg, IL 60195 Sales & Technical Center
Phone: (312) 885-8080 Zilog, Incorporated
TWX: 910-291-1064 240 Cedar Knolls Rd.

Sales & Technical Center
Cedar Knolls, NJ 07927 Japan

Zilog, Incorporated
Phone: (201) 540-1671

Zilog, Japan KK
28349 Chagrin Blvd. Zilog Sales TBS Taikan Bldg.
Suite 109 3300 Buckeye Rd. 3-3 Akasaka 5-Chome
Woodmore, OH 44122 Suite 401 Minato-Ku, Tokyo 107
Phone: (216) 831-7040 Atlanta, GA 30341 Phone: (03) 587-0528
FAX: 216-831-2957 Phone: (404) 451-8425 Telex: ESSOEAST J22846

x

1

The Z8000 CPU

Microprocessors were introduced in the early 1970s as 4-bit and 8-bit proces­
sors that were used largely as programmable logic devices. These devices
could handle simple tasks in products such as calculators, games, and control
systems. The advent of more sophisticated 8-bit microprocessors, such as
the Z80, led to the design of microprocessor-based computer systems with
sufficient memory resources to perform simple data processing tasks and
more complex control functions. However, these 8-bit systems could rarely
match the memory addressing and data processing abilities of the minicom­
puters and mainframe computers available at the time.

The Z8000 microprocessor represents a further step in the evolution of
microelectronics-a 16-bit central processing unit (CPU) with features that,
until now, could be found only in sophisticated mini- and large- scale comput­
ers. The Z8000 is not an extension of 8-bit architectures; its architecture is
closer to that of popular minicomputers such as the PDP-11 than to the Z80.
The high throughput, abundant CPU resources, and powerful instruction set
of the Z8000 extend well beyond traditional microprocessor architectures.
Special features in the Z8000 support operating-system-type environments,
manipulation of complex data structures, and multiprocessing systems.
Thus the Z8000 incorporates on one LSI chip an architecture designed to ac­
commodate a wide range of applications, from relatively simple control sys­
tems to powerful data processing computers.

The Z8000 microprocessor is available in two versions: the Z8001 and
Z8002. The Z8001 is a 48-pin CPU that can directly access 8 megabytes of
memory per memory address space; the Z8002 is a 40-pin CPU that can di-

1

2 The Z8000 CPU Chap. 1

rectly access 65,536 bytes of memory per memory space. A memory manage­
ment unit, the Z8010 MMU, can be used with the Z8001 in memory-intensive
applications to organize and control memory use efficiently. An entire family
of support devices is available, including intelligent peripheral controllers,
serial and parallel input/output devices, and direct memory access (DMA)
controllers.

The architectural features of the Z8000 CPU include sixteen 16-bit
general-purpose registers, eight addressing modes, and an instruction set
more powerful than that of most minicomputers. Data types ranging from
single bits to 32-bit fields and byte strings are supported. The 110 instruc­
tion types combine with the addressing modes and data types to form a set
of over 400 distinct instructions. These CPU resources exhibit a high degree
of regularity. For example, more than 90% of the instructions use any of
five main addressing modes, and operate on 8-bit, 16-bit, or 32-bit data
types. This regularity in the CPU architecture greatly simplifies the program­
ming of Z8000 processors. Operating system support is provided by features
such as system and normal modes, multiple stacks, and a sophisticated inter­
rupt structure. Hardware and software support of multiprocessing environ­
ments also is included in the Z8000 architecture.

External devices called Extended Processor Units (EPUs) can be used to
extend the Z8000's basic instruction set. EPUs unburden the CPU by per­
forming complex, time-consuming tasks such as floating-point arithmetic or
data base management.

OPERATING SYSTEMS

The limited CPU resources and relatively small address spaces of previous
generations of microprocessors made it difficult, if not impossible, to de­
velop systems based on those microprocessors that could process more than
one programming task at a time. (A programming task is the execution of
one program, operating on its data.) Thus microcomputer systems have tra­
ditionally been single-user, single-task systems in which the user has direct
control over the machine hardware. In contrast, the Z8000's regular archi­
tecture and large address space facilitate the design of Z8000-based systems
that can handle multiple users and multiple programming tasks.

When multiple programming tasks are executed concurrently on a com­
puter system, each task requires the use of some of the system's hardware re­
sources. These resources include the CPU, memory, and input/output (I/O)
devices. Invariably, there are not enough resources in the system to support
the simultaneous execution of all the programming tasks; a method for shar­
ing various resources between all the system's tasks must be defined. Multi­
tasking computer systems usually employ a supervisory software program to
coordinate and control the various programming tasks; such supervisory soft-

Operating Systems 3

ware is called an operating system. An operating system's basic function is to
allocate the system's resources in an efficient manner, while ensuring that
the various tasks on the system execute without unintentionally affecting each
other. Users of such systems would write their programs, sometimes called
applications programs, to run under the control of the operating system.

In multitasking systems, the details of the hardware functions (for
example, the timing and buffering of an I/O operation) are handled by the
operating system. The user, whose program runs under the control of the
operating system, no longer needs to be concerned with the intricacies of
the machine hardware; he or she only needs to know how to access the
operating system function that will produce the desired result (requesting
that data be output to a printer, for example). Thus the user writes the appli­
cations program to run under the control of a particular operating system,
not a particular hardware configuration (Fig. 1.1). In fact, only the oper­
ating system software should have direct access to hardware-related func­
tions, in order to keep individual users' tasks from affecting each other. For
example, if a given user were allowed to reconfigure a programmable I/O de­
vice, execution of other users' tasks that access that device could be affected
in unpredictable and undesirable ways. Therefore, applications programs run­
ning under the control of the operating system should access hardware func­
tions (such as I/O functions) only through the operating system.

The most valuable resource in any computer system is the CPU. If
more than one applications program is to be executed by the CPU, the
operating system must be able to switch the CPU easily from one pro­
gramming task to another. A set of scheduling rules within the operating
system will determine when the switching of tasks will occur. For example,
batch operating systems execute each programming task sequentially from
start to finish, whereas time-sharing systems execute each task for a given
length of time, in a round-robin arrangement. If the operating system can
switch tasks very quickly, the user will have the impression that the tasks
are executing concurrently. Of course, each time the operating system
switches to a new task, status information describing the previous task must
be saved so that it can be resumed later in an orderly manner. The results of

Figure 1.1 Users' tasks access the
hardware through the operating sys­
tem.

4 The Z8000 CPU Chap. 1

the execution of a given task should be the results that would appear if the pro­
gramming task were run sequentially from start to finish without interruption.

The operating system must control the allocation of memory space as
well as the allocation of CPU time. As the operating system switches the
CPU from one programming task to another, it must ensure that the program
is available in main memory for the CPU. Memory space for each task's
program and data must be allocated in a manner that ensures that the
execution of one task does not interfere with the execution of any other
task. Often, memory allocation during task switching involves moving code
or data between main memory and a secondary storage device such as a disk
or magnetic tape. (The management of memory resources in Z8000 systems
is discussed in Chapter 9.)

I/O handling and allocation is also an integral part of most operating
systems. As mentioned above, having the operating system control all I/O
accesses frees the individual users from having to know the details of the
hardware and keeps tasks from interfering with each other. I/O devices
often must be allocated to a specific task; for example, if a user wants to
print a table of data, no other task should be allowed to use that printer
until that user's print operation is complete. Interrupt processing must also
be controlled by the operating system, not by the applications programs;
since interrupts are caused by events external to the CPU operations, there is
no way to predict which user's task will be running when an interrupt
occurs.

Other functions that are controlled by operating systems include task
synchronization (in applications where the ordering of tasks is critical), task
communication (in applications where data are passed between tasks), de­
bugging functions, and other resource allocation problems within a given com­
puter system. Operating systems, like hardware designs, can be general
purpose in nature or oriented to a particular application.

Many features of the Z8000 CPU architecture are designed to support
the implementation of operating system software on Z8000-based computer
systems. These features will be emphasized throughout this book as the
various parts of the architecture are discussed. However, this does not mean
to imply that Z8000-based systems must include an operating system. Many
applications, such as most process control applications, would involve
running only one programming task, making operating system software
unnecessary.

THE Z-BUS

Every computer system can be thought of as having four major parts: a
central processor unit (CPU), storage, input, and output (Fig. 1.2). The CPU
is the primary functioning unit of the computer and usually includes

The Z-8us

INPUT CPU

STORAGE

OUTPUT

5

Figure 1.2 Major parts of a com­
puter.

circuitry for performing arithmetic and logical functions (an arithmetic and
logic unit, or ALU), some storage for ALU operands and results (registers),
and control logic. The control logic decodes instructions and determines
their execution and sequencing by sending the appropriate signals to the
ALU and registers in the CPU, and the external storage and I/O devices out­
side the CPU. Of course, the instructions and data to be acted on must exist
somewhere and be available to the CPU; hence storage devices such as semi­
conductor memories need to be interfaced to the CPU. The manipUlation of
programs and data by the CPU would be useless without some method of
getting inforlnation from and sending results to the outside world; thus input
and output devices such as card readers, cathode ray tube (CRT) terminals,
and printers are needed. All four parts-CPU, storage, input, and output­
must be present in some form in a computer system.

The Z8001 and Z8002 devices are microprocessors, not microcomput­
ers. These chips comprise only the CPU portion of a computer system. Thus
hardware design with the Z8000 microprocessors is largely a matter of inter­
facing the Z8000 CPUs with the appropriate memory and I/O devices. The
specification of the signals used to interface the Z8001 and Z8002 to other
components in the Z8000 family of parts is called the Z-Bus. A discussion
of how to interface memory and peripheral devices to the Z8000 micro­
processor is, then, actually a discussion of the Z-Bus signals.

The Z-Bus is not a hardware bus definition like the S-100 or similar
buses, where certain signals are assigned to certain pins on a specific type of
connector for a specific type of circuit board. The Z-Bus is merely the
logical definition of the interface signals used in a Z8000-based system; the
actual hardware implementation of this interface is left up to the designer.

Two types of operations can occur on the Z-Bus: transactions and
requests. Transactions involve the transfer of data between two Z-Bus­
compatible devices. Transactions are initiated by the bus master, that is, the
one device in the system (usually a CPU) that has control of the Z-Bus. All
data transfers occur over a 16-bit time-multiplexed address/data bus. The
timing of Z-Bus data transfers is asynchronous; the sending and receiving de­
vice do not need to be synchronized by a common clock. Several Z-Bus sig­
nals are used to control the transfer, and only one transaction can proceed at
a time.

Six kinds of transactions can occur on the Z-Bus: memory transactions,
I/O transactions, interrupt and trap acknowledgments, EPU transfers,

6 The Z8000 CPU Chap. 1

memory refreshes, and internal operations. Memory transactions involve the
transfer of a byte (8 bits) or word (16 bits) of data between the bus master
and a memory location. I/O transactions are used to transfer a byte or word
of data between the bus master and a peripheral device. Interrupt/trap
acknowledgments are used to acknowledge an interrupt or trap and to trans­
fer a word of data from the interrupting device to the CPU. EPU transfers
are used to transfer a word of data between an Extended Processing Unit
and the CPU. Refreshes and internal operations are the only bus transac­
tions that do not involve a transfer of data. Refresh transactions are used to
refresh dynamic memories. Internal operations occur when the CPU is per­
forming an operation that does not require data to be transferred on the bus.

Z-Bus requests occur when a device other than the bus master needs
to request access to a resource in the system. Only the bus master can initi­
ate transactions, but a request can be initiated by any component that does
not control the bus. Four types of requests can occur: an attempt to gain a
bus master's attention (an interrupt request), an attempt to become a bus
master (a bus request), a request for some shared resource in a multiproces­
sor system, such as a request to access a disk drive that is shared by two dif­
ferent processors' systems (a resource request), and a request to delay CPU
instruction execution (a stop request). A daisy-chained priority mechanism
is used to resolve conflicts resulting from simultaneous requests, eliminating
the need for separate priority controllers. Thus the Z-Bus consists of a set of
signals used to provide timing, control, address, and data information for Z­
Bus transactions, requests, and request acknowledgments. These signals will
be discussed in detail as the various Z8000 components interfaced by the Z­
Bus are described throughout this book.

A Z-Bus component is a device that conforms to the Z-Bus interface
protocols. Most of the components of the Z8000 family are Z-Bus compo­
nents. There are four categories of Z-Bus components: CPUs, peripherals,
requesters, and memories. A Z-Bus CPU is the default bus master and initi­
ates most data transfers. Interrupt requests and bus control requests are ser­
viced by the CPU. The Z8001 and Z8002 are Z-Bus CPUs. A Z-Bus periph­
eral is a device that responds to I/O transactions and generates interrupt
requests. The Z8036 Counter/Timer Input/Output Circuit (CIO) and Z8038
FIFO Input/Output Interface Unit (FlO) are examples of Z-Bus peripherals.
A Z-Bus requester is a device that can make bus requests, and when given
control of the bus, can initiate data transactions. The Z8016 DMA Transfer
Controller (DTC) is a Z-Bus requester. Z-Bus memories interface directly to
the Z-Bus and respond to memory transactions. The Z6132 Quasi-Static RAM
is a Z-Bus memory device.

The Z8000 family of parts are not the only components that can be
interfaced with the Z-Bus. Z80 family components, for example, although
not directly Z-Bus compatible, can be easily interfaced to Z-Bus CPUs using
readily available transistor-transitor logic (TTL) components.

Z8000 CPU ARCHITECTURE

The Z8000 CPU is a single-voltage metal-oxide semiconductor (MOS) in­
tegrated circuit measuring about t inch on a side and containing the equiv­
alent of more than 17,500 transistors (Fig. 1.3). The circuit design uses dis-

FLAG AND 16-BIT
CONDITION LOGIC ARITHMETIC

BUS CONTROL

PC AND
REGISTERS EXECUTION LOGIC REFRESH

INSTRUCTION
CODING

CPU TIMING BUS CONTROL

Figure 1.3 Z8000 CPU.

7

8 The Z8000 CPU Chap. 1

crete logic, not microcoding, to control instruction execution. This design
approach results in a smaller circuit chip, thereby improving signal speed
and making the device easier to manufacture. The Z8000 CPU has two
versions, the 48-pin Z8001 and the 40-pin Z8002, which differ only in the
manner and range of memory addressing. Physically, the two chips are
identical; a forty-ninth bonding pad is used to configure the chip as a Z8001
or Z8002 before hermetic sealing into its dual-in-line package.

Figure 1.4 is a block diagram illustrating the major elements of the
Z8000 CPU. A 16-bit bus is used for moving addresses and data within the
CPU. Arithmetic and logical operations are performed on addresses and data
by the ALU. The instruction execution control logic handles the fetching
and execution of instructions. Exception handling control logic processes
interrupts and traps. Automatic dynamic memory refresh mechanisms can
be enabled with the refresh control logic. Sixteen 16-bit general-purpose
registers are available to the programmer. Four additional special-purpose
registers help control CPU operation: the program counter (PC), flag and
control word (FCW), program status area pointer (PSAP), and refresh
register. Communication with external memory and I/O devices is via a Z­
Bus interface.

I--------------------~

I l! I

i !,~~!;;:s I\=J '"'~§£rc : :::i::: :l i

I < il ""Jl, ,"s il > 'Ni,:~:"
I I 'Ns~~t I it :2
I L - B~~R _ J PROGRAM ~~
I INSTRUCTION

EXECUTION I ~ CONTROL

I
I

t
-

STATUS
REGISTERS

. 1 EXCEPTION I
- HANDLING I

CONTROL
L..--,-------.-l

I
I

L~~~ _________________ ~
Figure 1.4 Z8000 CPU functional block diagram.

< Z·BUS >

SYSTEM AND NORMAL MODES

The Z8000 CPUs execute in two different operating modes: system mode
and normal mode. A control bit in the flag and control word (FCW) de­
termines the current operating mode. The operating modes dictate which
instructions can be executed and which stack pointers are used. In the
system mode, all instructions can be executed; in the normal mode, instruc­
tions that directly affect the system hardware cannot be executed. The set
of instructions that can be executed in system mode only are called
privileged instructions and consist of all the input and output instructions,
instructions that affect the FCW, PSAP, and refresh registers in the CPU, and
the multi-micro instructions. (These instructions are described in Chapter 8.
The stack pointers are discussed in Chapter 2.)

The CPU switches operating modes whenever the appropriate bit in the
FCW is changed. This bit can be altered by a Load Control (LDCTL) instruc­
tion or by an exception condition (interrupt, trap, or reset). The Load Con­
trol instruction is a privileged instruction and provides a means for switching
from system to normal mode. A special instruction, the System Call (SC), is
used to generate a trap, providing a controlled means of switching from the
normal to the system mode. An attempt to execute a privileged instruction
while in the normal mode also generates a trap condition.

The distinction between system and normal modes allows the imple­
mentation of protected operating systems on Z8000-based computers. Oper­
ating system software would run in the system mode, controlling the system's
resources and managing the execution of users' applications programs, which
would run in the normal mode. Since normal-mode users cannot execute
privileged instructions, those users cannot directly control those aspects of
the CPU that affect the system's hardware configuration. If a normal-mode
program needs to perform a hardware-related function such as an I/O opera­
tion, a request to the operating system can be made, via the trap mechanism
(see Chapter 6). Thus only the operating system software performs hard­
ware-related functions.

Z8002 PIN CONFIGURATION

Figure 1.5 shows the Z8002 CPU with the pins grouped according to function.
Activity on these pins is governed by the Z-Bus protocols.

Address/Data Bus

The address/data lines (ADO-AD15) constitute a 16-bit time-multiplexed
address and data bus; that is, sometimes these signals are addresses and some-

9

10 The Z8000 CPU Chap. 1

AS AD,s

BUS{ OS
TIMINO

~ AD'3

AD"

READ/WRITE AD"

NORMALI~ AD,o

BYTE/WORD

ADa ADDRESS I
STATUS DATA BUS ST3

ST,

ST, ADs

STo AD.

CPu{ -
WAIT

Z8002 CONTROL _
STOP CPU AD,

ADD

BUS{ -
BUSRQ

CONTROL BUSAK

INTERRUPTS{ =: NMI

VI
N"Vi

MUL TI·MICRO { MI

CONTRCloL MO

t
+5 V GND elK RESET Figure 1.5 Z8002 pin functions.

times data. ADO is the least significant bit position, and AD15 is the most
significant. The addresses on this bus can be memory or I/O port addresses,
depending on the type of transaction taking place. In the Z8002, I/O and
memory addresses are always 16-bit words; the Z8002 can directly address
65,536 bytes of memory (64K bytes, where K = 1024) and 65,536 peripheral
devices per address space. Addresses are always emitted by the CPU, but data
can be an input or output, depending on whether the current transaction is a
read or a write operation.

The address/data bus is a multiplexed bus in order to minimize the pin
count on the CPU's package. Sixteen additional pins would be required to
have separate, dedicated address and data buses, with very little, if any, gain
in processor efficiency. Separate address and data lines could improve pro­
cessor performance only during transactions where the address and data can
be sent out simultaneously, that is, only during write operations. However,
since instruction fetches are always memory read operation, read operations
typically occur about eight times as often as write operations. Furthermore,
most memory chips currently available cannot simultaneously accept both
the address and data to be stored, so separate address and data buses would
provide no timing advantage during memory writes. Therefore, the benefits
of a package with fewer pins-higher reliability, smaller size, and decreased

Z8002 Pin Configuration 11

power consumption-far outweigh any timing benefits that might accrue
from having separate, nonmultiplexed address and data buses.

The multiplexing of the address and data buses also simplifies the direct
addressing of internal control registers in programmable peripheral devices,
without having separate address and data pins on those chips' packages.

Bus Timing Signals

The bus timing signals-address strobe (AS), data strobe (DS), and memory
request (MREQ)-are CPU outputs that control bus transactions by deter­
mining when the address/data bus holds addresses and when it holds data.
In a typical data transfer, AS goes active (the bar above the signal name de­
notes an active low signal), indicating to external memory and I/O devices
that valid address and status information is present on the bus. (The status
lines are discussed below.) Thus the occurrence of an address strobe signals
the start of a data transfer. Sometime later, AS becomes inactive and DS
goes low, indicating that the data to be written to the previously addressed
external device are now on the address/data bus, or that the data to be read
from the device can be placed on the bus (Fig. 1.6). The timing of data
transfers between the CPU and other devices is determined solely by the ad­
dress and data strobes; the CPU and other devices do not have to share a

--{ VALID)'--------c() ADO-AD15 ADDRESS;- DATA TO CPU)------

AS

DS

(
VALID

ADO-AD15 --~ ADDRESS

,'----
Z·Bus Read Transactions

~~ ___ D_AT_A_FR_O_M_CP_U ___)~---

AS u '---
Riw __ ---l\~ ___________ ___'_C __

DS \\.-__ -...11
Z·Bus Write Transactions

Figure 1.6 Z-Bus data transfers.

12 The Z8000 CPU Chap. 1

common clock signal. The address and data strobes are mutually exclusive,
of course; only one or the other is active at any given time during the data
transfer.

The MREQ signal indicates that the address/data bus is holding a mem­
ory address, and its falling edge can be used to time control signals to a
memory system. However, as discussed below, certain of the status signals
also can be used to differentiate between memory and I/O transactions; as a
result, the MREQ signal is not used in many Z8000 system designs.

Status Signals

The status signals are CPU outputs that describe the type of transaction that
is occurring on the address/data bus. This status information would be used
to enable the appropriate buffers, drivers, and chip select logic necessary for
proper completion of the data transfer.

The read/write signal (R/W) describes the direction of the current data
transfer; a low signal indicates that the CPU is writing data to an external
device and a high signal indicates that the CPU is reading data from an
external device (Fig. 1.6).

The byte/word line (B/W) describes the size of the data field being
transferred; a low indicates that a word (16 bits) is being transferred, whereas
a high indicates a byte (8-bit) transfer. Bytes of data might be transferred on
the lower half (ADO-AD7) or upper half (AD8-AD15) of the bus, depending
on the address of the device involved in the transaction (see Chapter 3).

The normal/system signal (N /8) indicates the current operating mode of
the CPU; a low indicates system mode and a high indicates normal mode.
This signal could be used by memory control logic to define two separate
memory address spaces: normal-mode memory and system-mode memory.
In other words, a Z8002-based system could include two separate areas of
memory, with each area containing a maximum of 64K bytes. Memory
accesses made when the N /S pin is high would access normal-mode memory,
and accesses made when the N/S pin is low would access system-mode
memory. The operating system software, which runs in system mode, would
be in system-mode memory, inaccessible to the users' programs, which run in
the normal mode and reside in normal-mode memory. Thus systems with
memory control logic that uses the N /8 signal to distinguish two memory
address spaces would have built-in protection features that prevent individual
users from accessing the operating system software.

Four additional status signals, STO, ST1, ST2, and ST3, define the exact
type of transaction occurring on the bus, as shown in Table 1.1.

The internal operation status code (0000) indicates that the CPU is in­
volved in an AL U or other internal operation and that no data transfers are
occurring on the bus. Internal CPU cycles will occur during the execution of

Z8002 Pin Configuration 13

TABLE 1.1 STATUS CODE MEANINGS

ST3 ST2 STl STO Meaning

0 0 0 0 Internal operation
0 0 0 1 Memory refresh
0 0 1 0 Standard I/O reference
0 0 1 1 Special I/O reference
0 1 0 0 Segment trap acknowledge
0 1 0 1 Nonmaskable interrupt acknowledge
0 1 1 0 Nonvectored interrupt acknowledge
0 1 1 1 Vectored interrupt acknowledge
1 0 0 0 Data memory reference
1 0 0 1 Stack memory reference
1 0 1 0 EPU-data memory transfer
1 0 1 1 EPU-stack memory transfer
1 1 0 0 Instruction fetch, nth word (IFn)
1 1 0 1 Instruction fetch, first word (IF1)
1 1 1 0 CPU -EPU transfer
1 1 1 1 Reserved (not used in Z800l and Z8002)

instructions where several arithmetic or logical operations are performed be­
tween data transfers, such as the Divide instruction.

The refresh status code (0001) indicates that a refresh cycle for dynamic
memories is occurring on the bus. (The automatic memory refresh mechanism
is described in Chapter 3.) Refresh and internal operations are the only bus
transactions that do not involve a data transfer.

Two types of I/O transactions can occur on the bus, standard I/O (status
of 0010) and special I/O (status of 0011). A given I/O operation generates
standard or special I/O status depending solely on the I/O instruction being
executed; there are separate I/O and special I/O instructions. During an I/O
access, the state of the status lines can be used as part of the I/O devices'
chip-select logic to define two separate I/O address spaces, a standard I/O
address space and a special I/O address space (Fig. 1.7). Thus the Z8002 can
address 65,536 standard I/O devices and 65,536 special I/O devices.

The only difference between standard I/O and special I/O bus transac­
tions is the code that appears on the status lines. As a general convention,
standard I/O operations will be used to access Z8000 peripherals, and special
I/O operations will be used to access CPU support chips such as the Z8010
Memory Management Unit.

Four status codes indicate a transfer between the CPU and memory
devices. A 1000 on the status lines means that the CPU is reading or writing
an instruction's data operand; a 1001 code signals that the CPU is reading or
writing to the stack; a 1101 code indicates that the CPU is fetching the first
word of an instruction; a 1100 code signals the fetching of subsequent words
in an instruction. Just as with I/O accesses, these status lines can be used to
define separate memory address spaces: a data memory address space (corre-

14

MEMORY ADDRESS SPACES

SYSTEM MODE NORMAL MODE

PROGRAM PROGRAM

DATA DATA

STACK STACK

I/O ADDRESS SPACES

STANDARD I/O

SPECIAL I/O

The Z8000 CPU Chap. 1

Figure 1.7 Z8000 memory and I/O
address spaces.

sponding to the 1000 status code), a stack memory address space (the 1001
code), and a program memory address space (the 1100 and 1101 codes).
Program code would be located in the program memory space and the data
to be acted on in the data memory space. Stack memory is used as tempo­
rary storage and to hold program status information in the event of a sub­
routine call or exception condition. When combined with the N /S signal, six
memory address spaces are possible: system-mode data, system-mode stack,
system-mode program, normal-mode data, normal-mode stack, and normal­
mode program (Fig. 1.7). For the Z8002, each of these spaces can hold up
to 64K bytes of memory.

Extended Processor Units (EPUs) are devices that can be added to a
Z8000 system to unburden the CPU from complex tasks, such as floating­
point arithmetic. EPUs are designed to act on data resident in their internal
registers; the CPU is responsible for transferring data between the EPUs
registers and the rest of the system. Three status codes are reserved for
transactions involving EPUs: the 1010 status indicates a transfer between an
EPU register and data memory, a 1011 status indicates a transfer between
an EPU register and stack memory, and alII 0 status indicates a transfer
between an EPU register and a CPU register. (EPUs are discussed in Chapter
10.)

Status codes 0100 through 0111 indicate that the current bus activity
is an interrupt or trap acknowledge sequence (see Chapter 6). These status
lines would be decoded to generate the appropriate acknowledge signal for
the interrupting device.

The 1111 status code is reserved for use in future, upward-compatible
Z8000-family CPUs.

CPU Control

These control signals are CPU inputs that allow external devices to delay the
operation of the CPU. The WAIT line can be used by memory or peripheral
devices to increase the delay between the address strobe and data strobe
during bus transactions. Data transfers on the Z-Bus are asynchronous; a
slow memory or I/O device can stretch the timing of data transfers by an
arbitrary length through control of the CPU's WAIT input. (Timing details
are discussed in Chapter 5.) The STOP input is used to halt CPU operation

Z8001 Pin Configuration 15

immediately before the fetch of the next instruction. EPUs use the STOP
signal to synchronize their activities with the CPU.

Interrupts

Three different types of interrupt inputs are supported by the Z8000 archi­
tecture: nonmaskable interrupts, nonvectored interrupts, and vectored inter­
rupts. The NMI signal is an interrupt input that cannot be disabled. N on­
maskable interrupts usually are reserved for catastrophic events that require
the immediate attention of the CPU, such as an imminent power failure.
The nonvectored interrupt (NVI) and vectored interrupt (VI) inputs can be
enabled and disabled via manipulation of the CPU's flag and control word
(FCW). When an interrupt is detected at one of these three inputs, informa­
tion about the currently executing program is saved, and a routine to handle
the interrupt is invoked (see Chapter 6). Nonmaskable interrupts and non­
vectored interrupts each have one routine specified for servicing the inter­
rupt. Vectored interrupts can result in the execution of one of a number of
possible interrupt service routines. Which of those routines is executed will
depend on a byte of data, called a vector, that is received from the inter­
rupting device during the interrupt acknowledge cycle.

Bus Control

The bus control signals are used to implement a request/acknowledge daisy
chain that other devices in the system can use to request control of the bus.
BUSREQ is an input indicating that a Z-Bus requester (a DMA device, for
example) is trying to gain control of the bus. The BUSACK output goes
active when the CPU relinquishes control of the bus in response to a bus
request. The CPU gives up control of the bus by tri-stating (electrically
neutralizing) the address/data bus, bus timing signals, and bus status signals.

Multi-micro Control

The multi-micro in (MI) and multi-micro out (MO) signals are the CPUs
interface to the Z-Bus resource-request daisy chain. These signals allow
multiple processors to share common resources in a well-defined and con­
trolled manner. (Z-Bus resource requests are discussed in Chapter 7.)

Z8001 PIN CONFIGURATION

The Z8001 differs from the Z8002 in the manner and range of memory
addressing. All of the signal pins previously described for the Z8002 are also
on the Z8001, and the Z8001 has eight additional pins (Fig. 1.8). These

16

BUS{ TIMING

READ!WRTfE AD"

NORMALlSYSfEM AD10

STATUS

BYTE/WORD

STJ

ST2

ST,

STo

CPU{ - WATT CONTROL _ STOP

BUS{ - BUSRQ
CONTROL BUSAK

{

_NMI

INTERRUPTS _ ~ __

NVI

MULTIOMICRO{
CONTROL

Z8001
CPU AD,

ADo

SNs

SN 5

SN,

SNJ

SN2

SN,

SNo

ADDRESS I
DATA BUS

SEGMENT
NUMBER

SEGMENT
TRAP

The Z8000 CPU Chap. 1

Figure 1.8 Z8001 pin functions.

eight additional signals are used to increase the Z8001's memory addressing
capabilities.

Segment Number

Seven output pins (SNO-SN7) define a segment number. Memory addresses
in the Z8001 consist of a 7-bit segment number and the 16-bit address that
appears on the address/data bus when address strobe is active. The 16-bit
portion of the address is called the offset. Since memory addresses are 23
bits long, the Z8001 can directly address 8,388,608 (8 megabytes or 8M
bytes) of memory per memory address space. As with the Z8002, memory
can be divided into the six distinct memory address spaces shown in Fig. 1.6,
using the N /S and STO-ST3 signals. Each of the six address spaces can, then,
hold a maximum of 8M bytes. The segment number is not used as part of an
I/O address; I/O addresses in the Z8001 and Z8002 are always 16 bits long.

Segment Trap

The segment trap signal (SEGT) is an input to the cpu. Memory manage­
ment logic can use this signal to cause a trap if an illegal memory access is
attempted.

SEGMENTED ADDRESSING AND MEMORY MANAGEMENT

The Z8001 and Z8002 CPUs generate memory addresses of different lengths
and types. The Z8002 uses a 16-bit address to specify one of 64K bytes of
memory in a memory address space. Within each address space, memory is
addressed in a linear manner. The Z8001 uses 23 bits to address memory,
but this address is separated into a 7-bit segment number and a 16-bit seg­
ment offset. The segment number and offset portions of the address are dis­
tinct; the segment number specifies one of 128 possible segments, or blocks,
of memory, and the offset specifies one of up to 64K bytes in that segment.
Each memory segment is an independent block of memory; instructions and
mUltiple-byte data elements cannot cross segment boundaries. The segment
number cannot be altered by effective address calculations during instruction
execution, such as indexing. The Z8001 can address 128 memory segments
per memory address space, with each segment having a maximum of 64K
bytes.

This division of memory into distinct blocks, called memory segmenta­
tion, provides a natural way of partitioning memory into different functional
areas. Modern structured programming techniques dictate that a program's
memory be divided into distinct areas dedicated to particular uses. For ex­
ample, different areas of memory might hold the program's instruction code,
data variables, and a buffer for an I/O device. Each of these memory areas
may have particular attributes associated with that section; the program code
might be in read-only memory, and an I/O buffer's memory might be accessi­
ble only during system-mode operation. Segmentation reflects this use of
memory by allowing the programmer to specify different segments for each
distinct memory area. Thus segmentation provides a convenient means for
partitioning a large memory address space.

Further advantages of segmentation are realized when implementing a
memory management scheme for providing memory protection and reloca­
tion. Memory is a limited resource within a computer system, a resource
that often must be shared by many different and complex programming
tasks. Memory management involves the efficient organization of those
memory resources, while ensuring that each task has sufficient memory
available when needed, without corrupting the execution of other tasks.
Thus memory management is the process of allocating and protecting the
system's memory resources; it is usually implemented with a combination of
hardware logic and operating system software. A typical configuration
would consist of memory-control logic that is programmed dynamically by
the operating system.

The primary means of controlling the allocation of memory is by map­
ping logical addresses to physical addresses. As a processor executes a task,
program code and data must be read from and written to memory. The
addresses that appear in the program and are output by the CPU are called

17

18

LOGICAL
ADDRESSES

PHYSICAL
ADDRESSES

The Z8000 CPU Chap. 1

Figure 1.9 Example of identical log­
ical and physical memory addresses.

logical addresses. On the other hand, the actual memory addresses in the
system's hardware that access particular locations are called physical ad­
dresses. In simple systems with no memory management, logical and physi­
cal addresses are identical (Fig. 1.9). In more complex systems, the memory
manager maps the logical addresses into the physical address space as pro­
grams execute (Fig. 1.10). Thus each independent user of the system need
not be concerned that the logical addresses within a given applications pro­
gram are the same as the logical addresses of another program on the system;
the memory manager will route the logical addresses for each user into dif­
ferent physical memory addresses.

For example, Fig. 1.11 illustrates a system with two users, both of
whom have specified logical addresses 4000 to 5000 in their programs.
When user A's program is running, the memory manager will translate user
A's logical addresses to physical addresses 3000 to 4000; when user B's
program is running, the memory manager will translate user B's logical ad­
dresses to physical addresses 7000 to 8000. Of course, the operating system
will have to inform the memory manager each time it switches between tasks.
Thus, using a mapping algorithm, the memory manager can place each task's
code and data anywhere within physical memory. Logical addresses emitted
by each programming task are translated by the memory manager to the
proper physical addresses for that task's code and data.

The logical address space might be larger, smaller, or equal in size to the

LOGICAL
ADDRESSES

MEMORY
MANAGER

PHYSICAL
ADDRESSES

Figure 1.10 Mapping logical ad­
dresses to physical addresses using a
memory manager.

LOGICAL
ADDRESSES

Segmented Addressing and Memory Management

MEMORY
MANAGER

PHYSICAL
ADDRESSES

19

4000~---...

5000~---"'"

4000~-__ ...,

5000~---"'"

1------13000

I-------t 4000

1------17000

1------18000

Figure 1.11 Mapping two users'
logical addresses into physical ad­
dresses.

physical address space. Systems whose logical address space is larger than
the physical address space are called virtual memory systems. In virtual
memory systems, or in systems with a large number of different program­
ming tasks, the memory requirements for all tasks currently running under
operating system control might exceed the available physical memory.
Therefore, for some users, only parts of their program's code and data may
be in main memory at any given time. Suppose that the addresses that are
"missing" in main memory for a given task are somehow marked in the
memory manager. The memory manager can stop execution by causing a
trap when a reference is made to a "missing" address. The trap routine
could then retrieve the task's missing code or data from an intermediate
storage device (a floppy disk system, for example), place it in physical
memory, and allow the task to continue execution from where it left off.
Space in physical memory would have to be found, which might involve
bumping some other task's code or data onto the disk or other storage
device. The operating system would have to keep careful track of which
areas of physical memory are being used and in what way they are being
used.

The use of segmented addressing in the Z8001 supports the implemen­
tation of memory management logic in Z8001-based systems. A memory
segment is essentially a standard, variable-sized block of memory that can
be assigned common attributes. Translation of logical to physical addresses
can occur on a segment-by-segment basis. Virtual memory systems can swap
entire segments between main memory and intermediate storage devices,
as needed. MemorY,attributes such as read-only or system-mode-only ean be
assigned to segments. The memory manager would use the Z8001 's segment
trap (SEGT) input to signal the CPU in the event of an illegal access, such as

20 The Z8000 CPU Chap. 1

an attempted write to a read-only segment. Thus, with memory segmenta­
tion, each task's code, data, and stack area can be assigned its own segment,
thereby structuring memory in accordance with modem modular program­
ming techniques. Furthermore, the protection attributes assigned to these
segments help define the interface between the various tasks' program
modules. For example, by placing the operating system software in seg­
ments with the "system-mode-only" attribute, the memory manager can
automatically prevent users' programs, which run in normal mode, from
altering the operating system. The Z8010 Memory Management Unit, a
programmable memory manager for Z8001-based systems, is discussed in
Chapter 9.

SEGMENTED AND NONSEGMENTED MODES

The type of addressing scheme used in a Z8000 system will affect how ad­
dresses are stored in that system. The Z8002's 16-bit addresses, sometimes
called nonsegmented addresses, can be stored in a 16-bit register or in a word
of memory. The Z8001 's 23-bit segmented addresses, on the other hand, are
embedded in a 32-bit-long word, and therefore require two 16-bit registers
or two words of memory when stored. However, a method of using non­
segmented addresses in Z8001 programs is provided.

The Z8001 executes programs in one of two segmentation modes,
segmented mode or nonsegmented mode, as determined by a control bit in
the CPU's flag and control word (FCW). The segmentation mode determines
the size and format of addresses that are directly manipulated by the pro­
gram; in the segmented mode, programs act on 23-bit segmented addresses,
and in the nonsegmented mode, programs act on 16-bit nonsegmented ad­
dresses. The segmented mode is available only on the Z8001; the Z8002
always executes in the nonsegmented mode. Therefore, programs written
for the Z8002 can be run on the Z8001 in the nonsegmented mode without
alteration.

CPU OPERATING STATES

The Z8000 CPUs have three basic operating states: running state, stop/re­
fresh state, and bus-disconnect state. Figure 1.12 illustrates these states and
the conditions that can cause a change in state.

The running state is the normal state of the processor, wherein the CPU
is executing instructions and handling exception conditions (interrupts and
traps). While the CPU is in the running state, execution is controlled by the
program counter (PC) and the flag and control word (FCW). The PC holds
the memory address from which the next instruction is to be fetched. The

CPU Operating States

BUSREQ RELEASED.

STOP INACTIVE

BUSREQ ASSERTED.
AND ACKNOWLEDGED ON

BUSACK

STOP RELEASED. OR
PERIODIC REFRESH
COMPLETED

STOP ASSERTED. OR
PERIODIC REFRESH
REQUESTED

BUSREQ RELEASED.

STOP ACTIVE

21

Figure 1.12 Z8000 operating states
and transitions.

FCW contains control bits that determine the operating modes (system or
normal, segmented or nonsegmented) and which interrupts are enabled.
Instruction execution consists of two steps: (1) a single instruction of one
or more words is fetched from program memory (IF1 or IFn status on the
STO-ST3 lines) at the address specified by the PC, and (2) the operation
specified by the instruction is performed, with the PC and the flags in the
FCW updated accordingly. After each instruction's execution, the CPU
checks if any interrupts or traps are pending and enabled. If so, instruction
execution is halted and an acknowledge sequence is performed (see Chapter
6). Three conditions can cause the CPU to leave the running state: a refresh
request from the automatic memory refresh logic, the activation of the
STOP input (a low at the input), or a bus request.

While in the stop/refresh state, the CPU generates memory refresh
cycles (see Chapters 5 and 10), and does not perform any other functions.
This feature is used by EPUs to suspend program execution. The CPU re­
turns to the running state when the automatic refresh logic has completed
its memory refresh operation, or when the STOP input is inactivated (returns
high). A bus request while in the stop/refresh state will cause a transition to
the bus-disconnect state.

The CPU enters the bus-disconnect state after receiving a bus request
on the BUSREQ input and acknowledging it on the BUSACK output. While
in this state, the CPU disconnects itself from the bus by tri-stating the
address/data bus, bus timing, and bus status outputs. The CPU leaves this
state when BUSREQ is inactivated. The bus-disconnect state is the highest­
priority state, in that a bus request will force the CPU into this state regard­
less of what other state it is in and what other inputs it receives.

22 The Z8000 CPU Chap. 1

ADo 48 ADa

ADg 47 SNs

AD10 46 SNs

AD11 4 45 AD7

AD12 44 ADs ADg 40 ADo

AD13 6 43 AD4 AD10 39 ADa

STOP 42 SN4 ADl1 38 AD7

MI 41 ADs AD12 4 37 ADs

AD1s 9 40 AD3 AD13 36 AD4

AD14 10 39 AD2 STOP 6 35 ADs

+5V 11 38 AD1 MI 34 ADa

VI 12 37 SN2
Z8001

NVI 13 36 GND

AD1s 8 33 AD2

AD14 9 32 AD1

SEGT 14 35 CLOCK

NMI 15 34 AS

+5V 10 31 GND

VI
Z8002

11 30 CLOCK

RESET 16 33 RESERVED NVI 12 29 AS

Mo 17 32 B/W NMI 13 28 RESERVED

MREQ 18 31 N/S RESET 14 27 B/W

OS 19 30 R/W Mo 15 26 N/S

ST3 20 29 BUSAC-R MREQ 16 25 R/W

ST2 21 WAIT OS 17 24 BUSACK

ST1 22 BUSREQ STa 18 23 WAIT

STo 23 SNo ST2 19 22 BUSREQ

SN3 24 SN1 ST1 20 21 STo

Figure 1.13 Z8000 CPU pin diagrams.

SYSTEM INPUTS

Figure 1.13 shows the full pin diagram for the Z8001 and Z8002. The
Z8000 CPUs need a +5-V power source and draw a maximum of 300 mAo
A single-phase clock is required; the clock specifications are discussed below.
The RESET input provides a means of putting the CPU in a known starting
condition (see Chapter 6). Note that one pin on each of the CPUs is not
used; that pin is reserved for use on future upward-compatible Z8000 CPUs.

CPU CLOCK REQUIREMENTS

The Z8000 CPUs are dynamic MOS parts which require a single-phase clock
input. The maximum clock rate is 4 MHz for the Z8001 and Z8002, 6 MHz
for the Z8001A and Z8002A, and 10 MHz for the Z8001B and Z8002B.
Since the parts are dynamic, the clock cannot be held high or low for more
than 2 J.1s; therefore, the slowest allowable clock rate is 250 kHz. A TTL­
generated clock signal is not adequate to drive the Z8000; active drivers are
required to meet the stringent level, rise-time, and fall-time requirements.

33011

1/6S04

CPU Clock Requirements

0.01"F

33011

D
8 MHz 1/6S04

Vee

0.011'F
R2 OPTIONAL
120 I BYPASS

01
2N57710R

R1 2N3546

470 R5
22

MOS CLOCK

R6
22

02
2N5772
OR 2N3646

E
CLOCK

1/6S04

o CLOCK

1/6S04

23

Figure 1.14 Z8000 CPU clock driver
circuitry,

The clock input high voltage must be not more than 0.3 V above or less than
0.4 V below the +5-V power input. Rise and fall times cannot exceed 20 ns
for the 4-MHz parts and 10 ns for the 6-MHz parts.

Figure 1.14 shows a clock driver circuit for the 4-MHz Z8000. A
4-MHz square wave is generated by dividing an 8-MHz crystal oscillator with
a toggling flip-flop. A resistive pull-up could ensure the required clock-high
level but cannot guarantee the required rise time while driving the chip's
50-pF input capacitance. The rise-time and fall-time requirements dictate
the use of active pull-up and pull-down circuitry for the CPU clock. A TTL
clock also is generated, for possible use by other circuits in the system.

2

CPU Registers

The Z8000 CPU is a register-oriented machine, with a set of sixteen 16-bit
general-purpose registers and four special CPU control registers. Storing data
in the registers allows shorter instructions and faster execution than with
instructions that fetch data from memory. The CPU architecture provides a
very regular register structure for manipulating byte (8-bit), word (16-bit),
long-word (32-bit), and quad-word (64-bit) values. Certain special instruc­
tions also access specific bits in byte and word registers, and nibbles (4 bits)
in bytes; individual bits can be set, reset, and tested, and nibbles are used to
hold digits for binary-coded-decimal (BCD) arithmetic operations. Bits in a
byte or word are numbered right to left starting from 0, from the least to the
most significant bit (Fig. 2.1). Thus bit position n corresponds to the value
2n in the representation of positive binary numbers.

Z8002 GENERAL-PURPOSE REGISTERS

The general-purpose register set of the Z8002 consists of 16 word registers,
labeled RO through R15, as illustrated in Fig. 2.2. Register data formats
ranging from bytes to quad words are created by grouping and overlapping
the 16 word registers. Sixteen byte registers (RLO, RHO, ... , RL 7, RH7)
overlap the first eight word registers; RLO is the least significant byte of
word register RO, RHO is the most significant byte of RO, and so on through
RH7. (Any byte register can hold two digits for BCD arithmetic operations.)
Eight long-word registers (RRO, ... , RR14) are formed by grouping the

24

Z8002 General-Purpose Registers

76543210

I I I I I I I I I BITS IN A BYTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I I BITS IN A WORD

25

Figure 2.1 N urn bering of bi ts in reg­
isters.

word registers into pairs (in fact, long-word registers are sometimes called
register pairs); long-word register RRO consists of word registers RO and Rl,
RR2 consists of R2 and R3, and so on. The even-numbered register is the
most significant word of the long word. The quad-word registers (RQO, ... ,
RQ12) are accessed only by the multiply and divide instructions. Each con­
sists of four word registers; quad register RQO consists of word registers RO
through R3, with RO being most significant. As a result of these groupings,
half of the 16-bit ,registers and all of the 32-bit and 64-bit registers have
addressable halves. For example, each half of word register RO can be
addressed separately as byte registers RHO and RLO. Half of the 32-bit
registers and all of the 64-bit registers have addressable quarters. This type
of register hierarchy facilitates many programming tasks.

All of these registers are general purpose in nature and can be used to
hold data or addresses. Each register can be used as an accumulator, that is,
the source or destination of data involved in an AL U operation. Every word
register, except RO, can hold a memory or I/O address (for indirect memory
or I/O references), an index (for indexed memory references), or a stack
pointer. Since all of these registers are general purpose, the particular use to
which a register is put can vary during the course of a program, giving the
programmer a great deal of flexibility. This architecture avoids the program­
ming bottlenecks of an implied or dedicated register architecture, in which
register contents must be saved and restored whenever the need for registers

RRO {
RO 17

R111S

RR2 {
R21

R31

RR4 {
R41

Rsl

RR6 {
R61

R71

RR6 {
R611S

R91

{ R10 I
RR10

R111

{ R121
RR12

R131

1",1
RR14 R1S'

R15

RHO :7 RLO

RH1 RL1

RH2' RL2

RH3 RL3

RH4 RL4

RHS RLS

RH6 RL6

RH7 RL7

SYSTEM STACK POINTER

NORMAL STACK POINTER (NSP)

o I

ROO

R04

R06

R012

Figure 2.2 Z8002 general-purpose
registers.

26 CPU Registers Chap. 2

of a particular type exceeds the number of registers of that type in the
processor. (For example, the Z80 architecture has only one accumulator,
and most Z80 assembly language programs include numerous instructions to
shift data in and out of the accumulator.) Furthermore, the grouping of the
registers facilitates their efficient use; the Z8000 programmer does not need
to dedicate a whole 16-bit register to hold a byte of data.

Included in the general-purpose register set is an implied stack pointer,
R15. There are actually two implied stack pointers, one for system-mode
operation and another for normal-mode operation. Although any register
except RO can be used as a stack pointer with the PUSH and POP instruc­
tions, R15 is the stack pointer used when program status information is to
be saved on a stack. The system-mode stack pointer R15' is used for saving
program status information when an interrupt or trap occurs and for saving
the PC during subroutine calls in system mode. The normal-mode stack
pointer R15 is used for subroutine calls in normal mode. Since the implied
stack pointer is a member of the general-purpose register set, it can be ma­
nipulated by any instruction that operates on the registers. In normal-mode
operation, references to R15 will access the normal-mode stack pointer, and
in system-mode operation, references to R15 will access the system-mode
stack pointer. Thus the operating system and users' application programs
can have separate stacks, and the normal-mode users cannot alter the system
stack pointer. The normal-mode stack pointer can be accessed in system
mode, however, as a special control register. This allows the operating sys­
tem to initialize each normal-mode users' stack area pointer.

Z8002 CONTROL REGISTERS

In addition to the general-purpose registers, the Z8002 has four 16-bit
special-purpose registers that control the CPU's operation: the program
counter (PC), flag and control word (FCW), program status area pointer
(PSAP), and refresh control register (Fig. 2.3).

The PC and FCW are referred to as the program status registers. When
an interrupt or trap occurs, these registers are saved on the system stack, and
new program status describing the running environment of the service rou­
tine is loaded (see Chapter 6). The program counter holds the 16-bit address
from which the next instruction is to be fetched; it is updated as each in­
struction is executed. The flag and control word contains control bits for
determining the CPU operating modes and status flags for use in program
branching instructions, such as jumps and returns.

The low-order bits of the FCW (bits 0-7) hold the status flags that re­
flect the result of ALU operations. Bit 7, the carry flag (C), indicates a carry
out of the most significant bit position of the register used as the destination
for the result of an arithmetic operation. Bit 6, the zero flag (Z), is set when

Z8002 Control Registers

15 0

I 0 I SIN I EPA I VIE INVIEI 0 1 0 I 0 I C I z I S I PlY I DA I HID I 0 Ilt~~\:~~

I ADDRESS I I PROGRAM
L..--L-I _I~I~I,----,I--LI----LI----LI--LI--L.I -.1..1 -.1..1 ---1-1 ---1....1 ---1....1......1 COUNTER

r

Z8002 Program Status Registers

UPPER POINTER
1 1 1 1 1

Z8002 Program Status Area Pointer

RATE
1

9 8

I 1 1 1
ROW
1 1

Z8002 Refresh Counter

27

Figure 2.3 Z8002 control registers.

the result of an operation is zero and cleared if the result is nonzero. Bit 5,
the sign flag (S), is set when the result of an arithmetic operation is negative
in two's-complement notation; that is, the most significant bit of the result
is a 1. Bit 4, the parity/overflow flag (P IV), is an odd-parity bit for logical
operations, and an overflow flag for arithmetic operations. When set, the
overflow flag indicates that the result is greater than the largest number or
less than the smallest number that can be represented in two's-complement
notation in the destination register. Bit 3, the decimal adjust flag (D), is
used for BCD arithmetic and indicates whether the last operation was an
addition or subtraction. The Decimal Adjust Byte (DAB) instruction uses this
flag as part of an algorithm for adjusting the binary results of an addition or
subtraction of BCD digits into the correct BCD form. Bit 2, the half-carry
flag (H), also is used by the DAB instruction; it indicates a carry out or a
borrow into bit 3 as a result of an addition or subtraction of BCD digits.
Neither the D nor the H flags are normally accessed by the programmer. Bits
o and 1 of the FCW are not used.

The processor flags provide a means of controlling program branches
and loops. The result of executing one instruction that alters the flags may
determine the operation of a subsequent instruction that tests the flags'
values, typically a conditional jump or return. The whole lower byte of the
FCW can be read from or written to a byte register in system or normal
modes using a special control instruction.

The upper byte of the FCW (bits 8-15) contains control bits that deter­
mine the operating modes of the CPU and control the interrupts. Bit 15 is
always a 0 in the Z8002, signifying that the Z8002 always runs in the non­
segmented mode. Bit 14 is a the system/normal bit (S/N); when this bit is a
1, the CPU is in the system mode, and when this bit is a 0, the CPU is in the

28 CPU Registers Chap. 2

normal mode. The N /8 output pin is the complement of the SIN bit in the
FCW. Bit 13 is the extended processor architecture enable bit (EPA). When
set to 1, this bit indicates that Extended Processor Units are present in the
system, and, therefore, instructions reserved for EPUs will be executed.
When the EPA bit is 0, the occurrence of an instruction code reserved for
EPUs will cause a trap (see Chapters 6 and 10). Bit 12 is the vectored inter­
rupt enable bit (VIE) and bit 11 is the nonvectored interrupt enable bit
(NVIE). Setting the appropriate bit to a 1 enables the interrupt. Bits 8, 9,
and 10 of the FCW are not used. These control bits can only be accessed in
the system mode, via privileged CPU control instructions (see Chapter 9).
Thus only the operating system software can alter the CPU's operating modes.

The program status area pointer (PSAP) holds a 16-bit address that
points to an area in memory called the program status area. The program
status area holds a list of the program status values (values for the PC and
FCW) for every possible interrupt and trap service routine; the program
status area resides in the system program memory address space. The low­
order byte of the PSAP is always zero. (The program status area is described
in Chapter 6.).

The refresh control register, consisting of a 9-bit row counter, a 6-bit
rate counter, and an enable bit, is used to implement CPU-controlled, auto­
matic refresh for dynamic memory. This refresh mechanism is discussed in
Chapter 3.

Z8001 GENERAL-PURPOSE REGISTERS

The Z8001 's general-purpose register set, shown in Fig. 2.4, is identical to the
Z8002, with the exception of the implied stack pointer. Any general-

AAO {

AO 17 AHO 0:7 RLO

AI 15 RHI ALI

01

01

AA2 {

R2 RH2 RL2

R3 RH3 AL3

RR4 {

R4 RH4 RL4

RS AHS RLS

RR61

R6 RH6 RLB

R7 RH7 AL7

AAB {
A8 5

A9

o 1

RR10 I RIO ~==================~
RII

~=============:
RA12 { R12 ~==================~

R13

I

RI'~==~S~YST~EM~S~TA~CK~PO~IN~TE~R(~SEG~.N~O~'==~
RA14 A14 .~==::NO~R~MA;:;:L S~TA;:;CK~PO~IN~TE~R (~SEG~. ~NO=.' ==::....,

RIS· SYSTEM STACK POINTER (OFFSET,

RIS NORMAL STACK POINTER (OFFSET!
~------------------~

ROO

R04

ROB

RO'2

Figure 2.4 Z8001 general-purpose
registers.

Z8001 Control Registers 29

Figure 2.5" Format of segmented ad­
dresses stored in registers.

purpose register can be used as an accumulator. Any word register, except
RO, can hold a nonsegmented memory address, an I/O address, or an index.
When in segmented mode, two words are needed to store an address; seg­
mented addresses can be held in any long-word register except RRO. The
segment number is held in bits 8-14 of the even-numbered register, and the
offset goes in the odd-numbered register (Fig. 2.5).

The implied stack pointer in the Z800I is register pair RRI4, where
R14 holds the stack pointer's segment number and R15 holds the offset. As
with the Z8002, there are actually two copies of the implied stack pointer,
one for system-mode operation and one for normal-mode operation. RR14
is used as the implied stack pointer in the segmented mode, and R15 is the
implied stack pointer in the nonsegmented mode.

Z8001 CONTROL REGISTERS

The Z8001 's control registers include the program status registers, PSAP, and
refresh control register (Fig. 2.6).

A reserved word, the FCW, and the PC define the Z8001's program
status registers. The reserved word is not used in the Z8001 but is reserved
for use in future, upward-compatible Z8000 family processors. The program
counter is two words long, where one word holds the segment number and
the other word holds the offset. The flag and control word is identical to
the Z8002 's FCW, with the exception of bit 15. This bit is the segmenta­
tion-mode bit; when set to 1, the CPU operates in the segmented mode, and
when cleared to 0, the CPU operates in the nonsegmented mode. In the
segmented mode, programs manipulate 23-bit segmented addresses; in the
nonsegmented mode, programs manipulate 16-bit nonsegmented addresses.
Thus Z8002 programs can be run on the Z8001 in the nonsegmented mode.
However, the Z8001 always outputs segmented addresses during memory
accesses, regardless of the operating mode. When a memory access is made
in the nonsegmented mode, the offset is the I6-bit nonsegmented address
generated by the program, and the segment number is the value of the
segment number field of the program counter. In other words, the Z8001 in
the nonsegmented mode is actually holding a fixed segment number on the
SNO-SN6 outputs, and making all its accesses to that one segment. That
segment will be the segment number that was in the program counter when
the CPU was placed in the nonsegmented mode. The remaining bits of the
Z8001 's FCW function in the same manner as the corresponding bits in the
Z8002's FCW, as described previously.

30 CPU Registers

16 0

L.IS_EG_I~S_IN~IE_P_A~I_VI_E~IN_V_'E~I_o~ __ ~_O~I~C~I~Z~I _S~I_PIV~I_DA~I_H~I __ O~~I}~~~1t~~

I SEGMENT NUMBER I 0 I}
o I 0 PROGRAM

r"'1L. ===1 COUNTER

. SEGMENT OFFSET .

15

15

SEGMENT NUMBER
I

UPPER OFFSET
I I I

Z8001 Program Status Registers

Z8001 Program Status Area Pointer

RATE

Z8001 Refresh Counter

ROW

Figure 2.6 Z8001 control registers.

Chap. 2

Besides determining which instructions can be executed, the contents
of the SIN bit in the Z8001 's FeW affect how the implied stack pointers are
accessed. When in the normal mode (SIN = 0), a reference to R14, R15, or
RR14 by an instruction will affect the normal-mode stack pointer. In the
system mode (SIN = 1), a reference to R14, R15, or RR14 will access the
system-mode stack pointer, unless the Z8001 is in the nonsegmented mode,
in which case a reference to R14 will reference the normal-mode R14. In
other words, when the Z8001 is in the segmented mode, RR14 is the implied
stack pointer, and both system- and normal-mode copies of R14 and R15
can be accessed, depending on the current operating mode. In the nonseg-

TABLE 2.1 REGISTERS ACCESSED BY REFERENCES TO R14 AND R15

Register
referenced by

instruction

R14
R15
RR14

System mode

Segmented

System R14
System R15
System R14
System R15

Nonsegmented

Normal R14
System R15
Normal R14
System R15

Note: Z8002 always runs in the nonsegmented mode.

Normal mode

Segmented

Normal R14
Normal R15
Normal R14
Normal R15

Nonsegmented

Normal R14
Normal R15
Normal R14
Normal R15

Z8001 Control Registers 31

mented mode, R15 is the implied stack pointer, and therefore only the
normal-mode copy of R14 can be accessed. This operation is summarized in
Table 2.1.

The PSAP in the Z8001 consists of two words that hold the segment
number and offset address of the program status area (see Chapter 6). The
low-order byte of the offset is always zero. The refresh control register has the
same configuration in the Z8001 and Z8002, and is described in Chapter 3.

3

Interfacing to Memory

The Z8000 CPUs transfer data to and from memory asynchronously on the
16-bit multiplexed address/data bus. As discussed previously, the Z8001 and
Z8002 have different memory addressing capabilities. The Z8002 generates
16-bit addresses and can directly address 64K bytes of memory per memory
address space. The Z8001 generates 23-bit segmented addresses, consisting
of a 7-bit segment number and a 16-bit offset, and can directly address 8M
bytes of memory (128 segments of 64K bytes each) per memory address
space.

MEMORY ADDRESS SPACES

Up to six different memory address spaces can be defined using the N /8 and
STO-ST3 signals, as described in Chapter 1: system-mode program, system­
mode data, system-mode stack, normal-mode program, normal-mode data,
and normal-mode stack (Fig. 1.7). Thus, by using the status signals to define
distinct memory address spaces, up to a sixfold increase in the addressing
range can be realized.

In some applications, complete separation of these memory address
spaces may not be desirable. Normal-mode programs often need to pass in-

32

Memory Address Spaces 33

formation to a system-mode routine. For example, a normal-mode program
might ask the operating system to output a data file to a printer. The data
to be output would have to accessible in both normal and system modes; a
normal-mode program would initialize and manipulate the data, and a
system-mode program would have to read the data in order to perform the
requested output operation.

CPU registers could be used to pass data between normal-mode and
system-mode routines. The normal-mode program would put the data in the
registers before calling the operating system. The system-mode output rou­
tine would, then, only have to read the register contents. But since there are
only 16 general-purpose registers, this scheme is feasible only for very small
data files. Furthermore, other information in the registers, such as the value
of the implied stack pointer, might have to be saved in memory and restored
later.

A more general method would have the normal-mode program store the
data file in memory and pass the starting address and length of the file to the
operating system. These two parameters could be passed in registers or
memory locations reserved for that purpose. However, the area in memory
where the data file is stored would have to be accessible to both the system­
mode and normal-mode programs. In other words, some block of memory
addresses (perhaps a whole segment in a Z8001 system) would have to be in
both the normal-mode data and system-mode data address spaces (Fig. 3.1).

Similarly, if programs are to be downloaded to the Z8000 system from
some other computer, the program and data address spaces might need to be
overlapped; the load commands used to download the code would write to
the data memory address space, but execution of the downloaded code in­
volves fetches from the program memory address space. Thus the memory
area that holds the downloaded code must be in the data memory space
during the download operation and in program memory space when the code
is to be executed. Many systems may require data references to the informa-

NORMAL-MODE
DATA MEMORY

SYSTEM-MODE
DATA MEMORY

1--------1
}

DATA MEMORY COMMON TO
SYSTEM- AND NORMAL-MODE
OPERATION

Figure 3.1 Memory shared by two
address spaces_

34 Interfacing to Memory Chap. 3

tion placed on the stack during interrupt handling; therefore, the data and
stack address spaces might share some common memory locations. Thus
most Z8000 systems will have some memory locations that are shared among
the six possible memory address spaces. (In Z8001 systems with a program­
mable memory manager, such as the Z8010 MMU, this problem is not as
critical, since the attributes of a particular memory segment can be changed
during program execution by reprogramming the memory manager.)

Few systems will, in practice, require the full addressing range of the
CPU for all six possible memory address spaces. Few Z8001 applications,
for example, need both 8M bytes of system-mode stack and 8M bytes of
normal-mode stack.

MEMORY ORGANIZATION

Each memory address space in the Z8002 and each memory segment in the
Z8001 is a string of up to 64K bytes numbered consecutively in ascending
order. The byte is the basic addressable memory element in Z8000 systems,
and, therefore, each address emitted by a Z8000 CPU designates a particular
byte of memory. However, three other types of data elements in memory are
addressable: bits, words, and long words. The type of data element addressed
depends on the instruction being executed. Certain instructions act on spe­
cific bits in memory by specifying a byte or word address and the number of
the bit within the byte or word. Most of the instructions for performing
arithmetic and logical operations on data have byte, word, and long-word
formats. A few special instructions act on strings of bytes or words, where
the length of the string is given in a register; however, these instructions
access the bytes or words one at a time.

Although memory is addressed as bytes, the Z8000 architecture defines
a 16-bit-wide data path (the 16-bit address/data bus), and memory is orga­
nized in the same way, as 16-bit words. Each 16-bit word of memory is made
up of two 8-bit bytes; thus each Z8002 memory address space and Z8001
memory segment actually contains up to 32K words of memory, where both
bytes in a word are accessible. A memory segment consists of two banks of

64K·BYTE SEGMENT (32K WORDS)

~g.~RESS Al--~

HIGH·
ORDER

AO----------~--~ ~--~
Figure 3.2 Organization of a mem­
ory segment.

Memory Organization 35

76543210

I I I I I I I I I BITS IN A BYTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I I I BITS IN A WORD

Figure 3.3. Numbering of bits in
bytes and words of memory.

up to 32K bytes each, as shown in Fig. 3.2; one bank holds the bytes with
even-numbered addresses, and the other bank holds the bytes with odd­
numbered addresses. A word always consists of an even-addressed byte and
the next consecutive odd-addressed byte. Therefore, only the upper 15 bits
of the address (the offset in segmented addresses), A1-A15, are needed to
specify a word in memory. However, each byte in a word can be addressed
separately; the least significant bit of the address, AO, is used to specify a
byte within a word during byte accesses. All Z8000 instruction fetches and
stack references are word accesses, but data references can be byte or word
accesses.

Bits in bytes and words are numbered right to left in the traditional
fashion; that is, the rightmost bit is the least significant bit and is labeled bit
o (Fig. 3.3). Thus bit position n corresponds to the value 2n in the represen­
tation of positive binary numbers.

The two bytes in a word, however, are numbered left to right; the most
significant byte in the word is the even-addressed byte (AO = 0), and the
least significant byte is the odd-addressed byte (AO = 1), as shown in Fig.
3.4. The address of a word is the address of its most significant byte; there­
fore, words always have even addresses (AO = 0) (Fig. 3.5). For example, the
word at memory address 6000 consists of the byte with address 6000 (the
most significant half of the word) and the byte at address 6001 (the least
significant half of the word). This convention is the opposite of many
machines, such as the PDP-II minicomputers, and may seem confusing at
first, since the most significant byte of a word has an address that is numer-

LOWEST
16-BIT
ADDRESS

AO=O

015 08

AO=1

07 DO

HIGHEST

ltg~Ess Figure 3.4 Sequencing of bytes in
memory.

36

Address n

BYTE

Address n (even) Address n + 1

UPPER BYTE
I ! ! I !

LOWER BYTE , , , WORD

Address n Address n + 1

I !UPP~R ~OR~/UP~ER ~YT~ I I}
Address n + 2 Address n + 3 LONG WORD

'L===========rL::~~=======1 _ ~OW7R ~OR~/LO~ER !BYT~ •

LONG WORD WORD BYTE
ADDRESSES ADDRESSES ADDRESSES MEMORY
~

"" [0000 [0000 AO

0001 5B

"" [0010 [0010 C2

0011 35

""" [0100 [0100 02

0101 AB

""T
0110 [0110 2B

0111 FF

1000 I 1000 [1000 A2

1001

CONTENTS OF BYTE 0100 = "'02"'
CONTENTS OF WORD 0100 = "'02AB"'

CONTENTS OF LONG WORD 0100 = "'02AB2BFF"'
CONTENTS OF LONG WORD 0010 = "'C23502AB"'

Interfacing to Memory Chap. 3

Figure 3.5 Addressing of data ele­
ments in memory.

Figure 3.6 Memory addressing ex­
ample.

ically one smaller than the least significant byte of that word. However, this
type of memory organization greatly simplifies the manipulation of strings
of byte data. Strings of bytes can be stored in consecutive memory locations
and addressed in consecutive numeric order (Fig. 3.4).

Some Z8000 instructions allow manipulation of long-word (32-bit) data
elements. Just as with words, the address of a long-word memory operand is
the address of its most significant byte (Fig. 3.5), which is also the byte in
the long word with the smallest numerical address. Words and long words in
memory always start on even addresses. An example of byte, word, and
long-word addressing is illustrated in Fig. 3.6.

MEMORY CONTROL LOGIC

Memory control logic is the logic needed to interface particular semiconduc­
tor memory devices to the Z-Bus signals output by Z8000 CPUs. This logic
typically includes multiplexers and demultiplexers for interfacing to the ad­
dress/data bus, and chip-select and timing logic for controlling the memory
chips. A block diagram of the memory control logic for one memory seg­
ment is illustrated in Fig. 3.7. Timing of the Z-Bus transactions between the

Memory Control Logic 37

WAIT \r-------------,

STATUS {::;
NIS

STO:3 =:J
{

MREQ
TIMING ~

OS ----'

CONTROL

BUS

DATA

Figure 3.7 Typical Z8000 memory interface block diagram.

memory and the CPU is determined by the address and data strobes (AS
and DS). The memory control logic might generate WAIT signals if memory
access times are longer than the default CPU memory cycle timing (see Chap­
ter 5). The status lines (N/S, B/W, R/W, STO-ST3) and, in ZSOOl systems,
the segment number, are used to generate chip selects to the memory, since
they define the address space, segment, and type of memory access. (The
MREQ signal might be used in place of the STO-ST3 lines to signal a mem­
ory access in systems where separate program, data, and stack memory ad­
dress spaces are not distinguished.) Thus this group of signals, together with
the address/data bus, defines the Z-Bus signals used for CPU-memory trans­
fers (Fig. 3.S). Of course, not every system will use everyone of these sig­
nals; for example, a system designed for word accesses only might not use
the B/W CPU output.

The start of a Z-Bus transaction is signaled by AS going low (Fig. 3.9).
The status signals and the address on the address/data bus are guaranteed to
be valid at the rising edge of AS; this edge can be used to latch the address
and status information. (The address can also be latched by the falling edge
of MREQ, which happens slightly sooner.)

During memory reads, DS going low indicates that the CPU has reversed
the direction of the address/data bus, and the data to be read from memory
can be placed on the bus. Thus DS would be used to enable the buffers that
drive the data from memory onto the bus. For memory writes, DS goes low
after the address is replaced on the bus by the data to be written; DS would
then be used to enable the write to memory. The memory control logic can
lengthen the data transfer timing by pulling the WAIT line low, thereby

38

BUS
MASTER

< A~-AD" >
EXTENDED ADDRESS

STATUS>

--AS-

--05-
--R/W-
--B/W-
_WAIT--

ADO-AD15~&CS EXTENDED ADDRESS DECODE
STATUS

MEMORY

Interfacing to Memory Chap. 3

Figure 3.8 Z-Bus signals for CPU­
memory transactions.

allowing the Z8000 CPUs to interface with memories with arbitfarily long
access times.

The status lines are used to generate memory chip enables and help
control the bus buffering. The STO-ST3 lines, decoded to provide instruc­
tion fetch, data access, or stack access status signals, can be used in conjunc­
tion with the N /S signal to select a particular memory address space. The
R/Wand B/W lines are used with the DS signal to drive the data buffers and
enable writes to memory.

Address bits Al-A15 are propagated to address-decode circuitry to
access a particular word in the specified memory address space and/or seg­
ment. Address bit AO is used by the control logic to select a particular byte
in the word addressed by Al-A15 during byte accesses, as described below.

During memory reads, the R/W line will be high. Regardless of the
state of the B/W line, the memory control logic should place a word of data
on the bus during DS active. The data should be the contents of the word of
memory specified by address bits Al-A15 latched during AS. If the B/W
line is low, indicating a word transfer, the CPU will, of course, read the
entire word of data. If the B/W line is high, indicating a byte transfer, logic
internal to the CPU will select one-half of the word of data returned on the
bus as the byte to be read; if AO was 0 during the address strobe, the CPU
will read the upper half (D8-D15) of the bus, and if AO was 1, the CPU will
read the lower half (DO-D7) of the bus. Thus, for memory reads, the
memory control logic can ignore the state of the B/W line and AO, and just
return the contents of the word addressed by Al-A15 (Fig. 3.10); during
byte reads, the CPU will internally select the appropriate half of the word.

For memory writes, the R/W line is low. If the B/W is also low, sig-

Memory Control Logic

----(VALID), ----------.4()-----ADO·AD15 ADDRESS J- DATA TO CPU

AS~

MREQ \\.--____ ----'r-
STO·ST3 -<'-_____ M_E_MO_R_Y_AC_C_ES_S_ST_A_TU_S ____ ---I>---

R/W~

DS

ADO·AD15 ---< VALID
ADDRESS

~

\\.--_--'1
Z·BUS MEMORY READ TIMING

)----{'-___ D_A_TA_T_O_CP_U __ -J)~---

AS\ /

MREQ \'--_____ ---JI

STO·ST3 ----('-_____ ME_M_OR_Y_A_CC_E_SS_S_TA_TU_S ____ ---I)>----

R/W \ ~

DS \'--_----JI
Z·BUS MEMORY WRITE TIMING

Figure 3.9 Z-Bus memory transaction timing.

39

nifying a word transfer, the memory control logic can ignore AO. The word
of data supplied by the CPU during DS active is written into the memory
word addressed by A1-A15 (Fig. 3.11). If the B/W line is high, signifying a
byte transfer, the CPU will duplicate the byte of data on both halves of the
address/data bus during DS active. The memory control logic should exam­
ine the value of AO to decide which bank of bytes is to be written; A1-A15
address a word, and the high-order byte of that word receives the written
data if AO = 0, and the low-order byte of that word receives the data if AO =
1 (Fig. 3.12). Therefore, the only time the memory control logic needs to
examine AO and select just one byte of the word addressed by A1-A15 is

40

A15-------'\

FROM
BUS

TO BUS

A1------,j

015

Interfacing to Memory Chap. 3

~ }32K ~ WORDS

DO

Figure 3.10 Reading from memory.

when a byte write operation is performed. (The replication of byte data on
both halves of the bus during byte write operations may not be implemented
on future Z8000 family CPUs; therefore, system designs should not depend
on this feature.)

This type of memory organization has several important ramifications.
The ability to write to specific bytes in a word avoids time-consuming read­
modify-write cycles, wherein a CPU would have to read a whole word of
data from memory, internally modify one byte of the word, and then write
the word back into memory. Words of data must be aligned on word bound­
aries (that is, on even addresses). Word accesses always ignore the value of
address bit 0; therefore, it is impossible to access a "word" consisting of a
byte with an odd-numbered address and the next consecutive even-addressed
byte. Words and long words always have even addresses, and the even­
numbered byte of a word is always the most significant byte. Instructions
are always words and should be aligned at word boundaries. As a result, the

TIMING R/W LOW

;~f'~~

FROM
BUS

FROM
BUS

AD

A15-------'\

A1--------,)

DO

Figure 3.11 Writing words to mem­
ory.

Example 1: Interfacing to Z6132'S

R/WLOW

A15-----.J\

FROM
BUS

FROM
BUS

A1-----,/

015 00

41

Figure 3.12 Writing bytes to mem­
ory.

program counter should always hold an even value. The implied system- and
normal-mode stack pointers should also have even-valued contents.

The timing of the address strobe (AS) in relation to the address and
status signals at the memory control logic should be examined carefully.
The status and address lines are guaranteed to be stable CPU outputs before
the rising edge of AS. However, these signals may pass through buffers and
decoders before reaching the memory control logic. If AS is used to latch
these signals at the memory controller, the maximum delay time for the
status and address signals to pass through any intermediate decoding or buf­
fering logic must be taken into account, and the AS to the memory control
logic may need to be delayed accordingly. (Appendix A contains timing
information for the Z8000 CPUs.)

EXAMPLE 1: INTERFACING TO Z6132'S

Rather simple memory control logic is needed in Z8000 systems when using
Z-Bus-compatible memories such as the Zilog Z6l32 Quasi-Static RAM. The
Z6l32 is a 4K X 8 dynamic RAM with on-board memory refresh capability.
A functional pin diagram is shown in Fig. 3.13. Inputs include 12 bits of ad­
dress, for addressing the 4096 bytes of memory on the chip, an address clock
(AC), a data strobe (DS), a write enable (WE), and a chip select (CS). Data
lines DO-D7 serve as data inputs during memory writes and data outputs
during memory reads. The BUSY signal is an input or output, depending on
the refresh mode chosen.

A read or write operation to a Z6l32 memory chip starts on the rising
edge of the address clock (AC) input, at which point the chip select (CS),
write enable (WE), and address inputs AO-All are examined (Fig. 3.14). If

42

10 AO

A1

A2

A3

AS

23

A~A11

AC~

CS

WE

D~D7

DS

26 22 27 20

Z6132
RAM

28

GND _14

11 12 13 15 16 17 18 19

(ADDRESS) INVALID

I

\ I

/
TRI-STATED (

\
Z6132 Read Timing

Figure 3.13 Z6132 RAM functional
pinout.

\
DATA OUT) VALID

I

A~A11----------~(~ __ ~~~ __ ~~ ____________________________ __

CS

WE \ /
D~D7----------------______________ ~(~ _______ ~~:~~~~_IN ______ ~)~ ______ __

DS \~_~I
Z6132 Write Timing

Figure 3.14 Z6132 timing_

Example 1: I nterfacing to Z6132'S 43

the chip is not selected (CS is high), all other inputs are ignored for the rest
of that cycle, that is, until the next rising edge of AC. For a memory read
(WE high), a low on the DS will activate the data outputs DO-D7; in other
words, the DS is a data output enable signal. For memory writes (WE low),
the falling edge of DS latches the data on the DO-D7 inputs into the ad­
dressed memory location. Note that the Z6132 timing is very similar to the
Z-bus memory timing shown in Fig. 3.9. (Further details of Z6132 opera­
tion are discussed in Chapter 12.)

Consider a Z8002-based system with 4K words of memory, where the
six memory address spaces are not differentiated; in other words, the same
4K words of memory are accessed by the CPU for system-mode and normal­
mode program, data, and stack references. Thus the MREQ signal can be
used in lieu of the STO-ST3 status lines to indicate a memory access. The
4K words of memory can be organized as two banks of 4K bytes each, where
one Z6132 chip holds the even-addressed bytes, and a second Z6132 holds
the odd-addressed bytes (Fig. 3.15). During word and byte read transac­
tions, both banks are accessed simultaneously, and the word on the address/
data bus consists of one byte from each bank. For byte writes, the banks
are accessed separately.

A connection diagram for this memory interface is shown in Fig. 3.16.
Ignoring detailed timing considerations for now, the AS CPU output would
connect directly to the Z6132's AC input; the DS CPU output connects to
the memory's DS input; the R/W CPU output connects to the memory's WE
input. The BUSY outputs from memory are tied to the CPU's WAIT input.

Addresses are latched internally in the Z6132 by the rising edge of AC,
and the Z6132's data lines are tri-stated except when DS is active. As a
result, the address/data bus does not need to be demultiplexed or latched
external to the memory chips. The Z6132's address inputs AO-A11 are used
to select one of 4096 bytes in the memory chip. Since the address bit on

Z8000
CPU -ODD

cs

AC, os, WE

Z6132
4Kx8

(ODD BANK)

Z6132
4Kx8

(EVEN BANK)

Figure 3.15 Block diagram of a Z8000-Z6132 interface for a 4K word
system. I

44 Interfacing to Memory Chap. 3

f"
BUSY

I
Z6132 (ODD)

...-f- cs
WAIT

AC os WE Alll0 9 8 7 6 5 4 3 2 1 AO 07 6 5 4 3 2 1 DO

AD15

14
13

12
11

10

9

8
7

6
5
4

Z8002 3
(Z·BUS) 2

1
ADO

AS

os

R/W

B/W ~ AC os WE All 10 9 8 7 6 5 4 3 2 1 AO 07 6 5 4 3 2 1 DO

MREQ - +-n _ '- BUSY
Z6132 (ODD)

~~I"
Figure 3.16 Z8002-Z6132 interface logic for a 4K word system.

bus line ADO is used to address bytes in a word, not to address the word
itself, this line is not used as an address input to the Z6I32's. Thus ADI
supplies the AD memory address input, AD2 is connected to the memory's
AI, and so on. (Since only 4K words are being addressed, the address bits
that appear on bus signals AD13, AD14, and AD15 are not used.) The Z6I32
that holds the even-addressed bytes has its data lines connected to the
upper half of the CPU's address/data bus, since the even-addressed byte is
the most significant byte in a word. The Z6I32 with the odd-addressed bytes
has its data lines connected to the lower half of the address/data bus.

The chip-select signals to memory are generated from the R/W, B/W,
and MREQ status lines and the address bit on ADO. Chip selects are latched
internally in the Z6I32 by the rising edge of AC. Assuming that MREQ is
active, both Z6I32's are to be chip selected if the B/W line is low, indicating
a word access, or if the R/W line is high, indicating a memory read. For byte
writes, the Z6I32 holding the even-addressed bytes is chip selected if ADO is
a 0 during AS active, and the Z6I32 holding the odd-addressed bank of
bytes is chip selected if ADO is a 1 during AS active.

Example 1: I nterfacing to Z6132'S

Z6132 Z6132
Z8000 CPU

EVEN BANK ODD BANK
AS ---------------- AC:----------­

os ------------ 0$,--------­
R/W ------------- WE:-----------

BUSY----------

AC

os
WE

BUSY

AD,-------------------------­

AD,-----------­

AD2-------------­

AD3-----------­

AD4--------------­

AD5-----------­

ADs------------­

AD,-----------­

ADs-----------­

ADg------------­

AO,o-----------

Ao
A,

A2

A3

A4

A5

As
A7 -

As -
Ag-

AD,,----------­

AD ,2----------­

AD,3-----------.----

A,o-

A ,1 -

AD,4-----------1r-+--­
AD ,5----------.-+-+----

BYTE/WORD ---t----I

RIw
'/,LS157

ADO
Za Zb

LS138

Do
D,

D2

D3
0 4
D5

Ds

D7

TO
EVEN
cs

Ao -

A, -
A2 -

A3 -

A4 -
A5 -

As -

A7

As
Ag

A'0

A"

LS138

Do
D,

D2

D3

D4

D5

Ds

D7

0--

Figure 3.17 Block diagram of a Z8000-Z6132 interface for a 32K word
system.

1

TO
ODD
cs

45

This design can be easily expanded to include the full 64K bytes addres­
sable by the Z8002. The address bits output by the CPU on AD13, AD14,
and AD15 are decoded to generate chip selects to eight pairs of Z6132 mem­
ories, where each pair of memory devices holds 4K words. In Fig. 3.17, two
74LS138 3-to-8 decoders are used to decode the upper three address bits to
generate the chip-select signals to the memories. A 74LS157 2-to-1 multi­
plexer replaces the combinational logic of the previous example, and it enables
the 74LS138's to activate the chip selects for the odd bank of bytes, even
bank of bytes, or both, as determined by the B/W, R/W, and ADO signals.
Not shown in Fig. 3.16, but still necessary, is the MREQ signal, which would
also be used as an enable signal to the 74LS138 decoders.

If separate memory address spaces are required, the N /8 and STO-ST3
status signals must also be decoded and used as part of the logic that gener­
ates the chip selects. Similarly, the segment number in a Z8001 system
would be decoded as part of the chip-select logic to select only the appropri­
ate memory devices within the particular memory segment being accessed.

46 Interfacing to Memory Chap. 3

If the access time of the memory being used is longer than the normal
interval from the rising edge of AS to the rising edge of DS, WAIT signals to
the CPU may need to be generated. (Wait-state generation is discussed in
Chapter 5.)

In both of the examples above, signals from the Z8000 CPU are directly
connected to the appropriate memory and logic devices. In actual systems,
buffering is usually required for CPU outputs, since the CPU can drive only
one standard TTL load. (CPU bus and signal buffering is discussed in Chap­
ter 11.)

EXAMPLE 2: INTERFACING TO Z6132's AND 2716'S

Of course, memory devices other than Z-Bus-compatible Z6132's can be
interfaced to the Z-Bus. For example, Fig. 3.18 is a block diagram for a
Z8002-based system with 2K words of read-only program memory and 4K

WAIT

WAIT- I
STATE I_------~

GENERATOR I I

LATCH

ADO-AD151\~~ ____ --,

AS 1--------'
ADO-AD15
~ .-------~

OS 1--_____ ---<1--_____ ---'

Z8002 ~

STO-ST3 H
74LS42 I'"
4·TO-16

- PROGRAM

DECODER IO ~D,;..;.AT:.;..::A_+__r_

IV STACK D-- DATA/stAcK

~_--iI

'" o
1
o
«

AO-All

'" o
1
Q
«

00-07

ADO
RM -l

E S
r- Ao ZA

BNi 1---..-1f----1 A

L 1 74LS157
MULTIPLEXER

bJ
S Z6132

C (EVEN)

EVEN _ '-------I

I-- Bo

Figure 3.18 Z8002 interface to 2716's and Z6132's.

'" o
1
o
«

AO-All 00-07

Z6132
(ODD)

Memory Refresh 47

words of random access data/stack memory. The program memory address
space consists of two 2K X 8 2716 erasable programmable read-only mem­
ories (EPROMs). The data and stack memory space is shared by two Z6132
4K X 8 RAMs.

Since program memory accesses are differentiated from data and stack
accesses in this example, the STO-ST3 lines are used as part of the chip­
select logic. A 74LS42 4-to-16 decoder is used to decode the status lines.
IF1 or IFn status (that is, any instruction fetch) will activate the chip enable
(CE) inputs of the 2716 EPROMs; since accesses to EPROMs are always
reads, both byte banks of EPROMs are activated each time program memory
is accessed. (Remember, the memory control logic has to select a byte within
a word only for byte writes.) Since 2716's require that the address stay
valid at the memory's address inputs throughout the memory access, the ad­
dresses output by the CPU are latched by the rising edge of AS. (74LS373
octal latches or a similar part could be used.) The latched address lines LA1-
LA11 are propagated to the address inputs of the 2716's. LAO is not used,
since memory read operations always read the whole word onto the bus.
The output enable (OE) for the EPROMs is connected to DS, allowing the
addressed data to be placed on the bus when DS is active. Since the 2716's
tri-state their data outputs when OE is inactive, the data outputs can be tied
directly to the address/data bus. The 2716 that holds the high-order bytes
for each word has its data lines connected to the upper half of the bus
(AD8-AD15), and the 2716 that holds the low-order bytes of each word has
its data lines connected to ADO-AD7. The relatively slow access times of
the 2716 will probably require the generation of a WAIT signal to the CPU
to slow down memory accesses. This WAIT signal would be generated for
each program memory access.

The interface to the Z6132's is similar to that of the previous examples,
except that the chip-select logic is enabled by data and stack memory ac­
cesses instead of MREQ. All reads and word writes will cause both byte
banks to be selected, whereas byte writes cause either the even-addressed
bank of bytes or the odd-addressed bank to be selected, depending on ADO.
For clarity's sake, the AS, DS, R/W, and WAIT connections between the
Z8002 and the Z6132's are not shown in Fig. 3.18. The BUSY output of the
Z6132's could be ORed with the output of the wait-state generator to pro­
duce the WAIT signal back to the CPU. Again, buffering of the signals from
the CPU is necessary but is not shown here.

A memory interface example for a system using dynamic RAMs is de­
scribed in Chapter 11.

MEMORY REFRESH

The Z80 CPU was the first microprocessor that included logic for automat­
ically refreshing dynamic memories. In Z80 systems, a refresh is performed

15 14

48 Interfacing to Memory Chap. 3

after each instruction fetch cycle. The Z8000 CPUs also have automatic
memory refresh capability. The Z8000 refresh function is more flexible
than the Z80's; the refresh operation can be enabled or disabled and the
refresh rate can be set under program control.

The refresh function in the Z8000 CPUs is controlled by one of the
CPU control registers, the refresh register. The refresh register is identical in
format in the Z8001 and the Z8002; it contains an enable bit, a 6-bit rate
counter, and a 9-bit row address counter (Fig. 3.19). The enable bit, bit 15,
is set to enable automatic refresh and reset to disable refresh. The rate
counter, bits 9 through 14, determines the time between successive refreshes.
When a refresh cycle occurs, the row address in the row counter, bits 0-8, is
output on the address/data bus.

The rate counter is a programmable 6-bit prescaler which can be loaded
with a value from 0 to 63. This counter is decremented every four CPU
clock cycles (every 1 /1S at 4 MHz). A refresh cycle is performed as soon as
possible after the transition from a count of 1 to a count of O. The original
starting count is automatically reloaded after the counter reaches O. Loading
a starting count of zero provides the longest possible period between refresh
cycles: 64 X 4 X the clock period.

During a refresh cycle, the row counter in the refresh register is output
on ADO-AD8, and the ST3-STO status lines are set to 0001. Since memory
in Z8000 systems is word organized, and ADO is used only to distinguish
bytes within a word, ADO is not considered part of the memory's row ad­
dress, and is always 0 in the refresh register. The row counter is incremented
by two after each refresh; thus the row counter cycles through 256 distinct
addresses on the AD1-AD8 lines, providing refresh for up to 256 rows of dy­
namic memory. (Most 16K dynamic RAMs are organized with 128 rows to
be refreshed. Some 64K RAMs have 256 rows to be refreshed.)

A memory refresh cycle occurs as soon as possible after the rate count
goes to zero. The refresh cycle takes three CPU clock periods; refresh timing
will be analyzed in Chapter 5. Of course, the CPU cannot issue memory re­
freshes when it does not have control of the bus due to a bus request from
another device, such as a DMA controller. However, internal circuitry in the
CPU will record up to two missed refresh cycles and issue those refreshes
immediately after regaining control of the bus.

The refresh register can be read from or written to using the Load Con­
trol (LDCTL) instruction when the CPU is in the system mode. Resetting
the CPU causes bit 15 of the refresh register to be reset, disabling the auto­
matic refresh function. Automatic memory refresh is begun by loading a
rate that guarantees the proper interval between refreshes into the rate

ROW COUNTER

Figure 3.19 Refresh register.

w
!;:
III
a::
w
Q.
Q.
~

u..
o
W
...I
III
III
Z
a::
w
Q.
Q.
~

Memory Refresh

LOWER NIBBLE OF UPPER BYTE

0 1 2 3 4 5 6 7 8 9 A B

0

1

2

3

4 NO REFRESH

5

6

7

8 256 4 8 12 16 20

9 32 36 40 44 48 52

A 64 68 72 76 80 84

B 96 100 104 108 112 116

C 128 132 136 140 144 148

0 160 164 168 172 176 180

E 192 196 200 204 208 212

F 224 228 232 236 240 244

C 0

24

56

88

120

152

184

216

248

E F

--f-

28

60

92

124

156

188

220

252

49

Figure 3.20 Refresh period in clock
cycles.

counter and setting bit 15. Figure 3.20 shows the relationship between the
value loaded into the upper byte of the refresh register and the number of
clock cycles between each refresh. For example, loading a 9EOO into the
refresh register means that a refresh will be generated every 60 clock cycles
(every 15 I1S in a. 4-MHz system, which is adequate to satisfy the worst-case
refresh requirements of typical 16K RAMs).

When reading the refresh register using the LDCTL instruction, only the
row counter portion (bits 0-8) of the register can be read. Thus the next
row address to be refreshed can be read anytime while in the system mode.

4

Interfacing to Peripherals

The Z8000 CPUs interface to I/O devices in the same manner as memory:
asynchronous data transfers on the 16-bit multiplexed address/data bus. I/O
addresses emitted by the CPU on the bus are always 16 bits long. (The seg­
ment number output by the Z8001 applies only to memory addressing, and
is not used for I/O addressing.) Thus the Z8000 can address up to 65,536
I/O devices per I/O address space. Each peripheral device can be byte or
word organized; both byte and word I/O instructions are included in the
instruction set.

I/O ADDRESS SPACES

There are two I/O address spaces in Z8000 systems: standard I/O and special
I/O (Fig. 1.6). These I/O address spaces are distinct from the memory ad­
dress spaces; they can be accessed only by the execution of specific I/O in­
structions. All I/O instructions are privileged instructions and therefore can
be executed in the system mode only. Thus, in an operating system environ­
ment, only the operating system software can access peripheral devices. If
an applications program running in the normal mode attempts an I/O in­
struction, a trap will occur (see Chapter 6). Therefore, the separation of the
I/O and memory address spaces and the inclusion of specific I/O instructions
lead to a built-in protection mechanism for operating system applications.
Memory-mapped I/O schemes are possible in Z8000 systems, but since in­
structions that act on memory can then cause I/O data transfers, it would be

50

I/O Interface Signals 51

possible for normal-mode users to access I/O devices directly. Implementa­
tion of a protected operating system would be difficult, if not impossible.
The separation of the memory and I/O address spaces also conserves memory
space. With memory-mapped I/O, memory addressing capability is sacri­
ficed, since the I/O device addresses are mapped into the memory address
space.

The standard I/O and special I/O address spaces are distinguished by de­
coding the STO-ST3 status signals, as described in Chapter 1. Up to 65,536
peripheral devices can be addressed in each of the address spaces. Each of
the address spaces is accessed through a separate set of I/O instructions; that
is, there is a set of assembly language instructions for standard I/O opera­
tions and another distinct set of instructions for special I/O operations. The
only difference between the execution of a standard I/O instruction and the
corresponding special I/O instruction is the code on the STO-ST3 status lines
during the data transfer to the I/O device. As a convention, standard I/O is
used for peripheral devices, and special I/O is reserved for use with pro­
grammable CPU support devices, such as the Z8010 Memory Management
Unit (MMU). This is just a convention, however, not a requirement of the
CPU architecture. (Systems that include Z8010 MMUs would use special I/O
instructions to program the MMUs. Systems without MMUs can use both
the standard I/O and special I/O address spaces for peripheral devices.)

I/O INTERFACE SIGNALS

The set of Z-Bus signals used to interface a Z8000 CPU to a peripheral device
is similar to the signals used for interfacing to memory. Data transfers occur
on the 16-bit multiplexed address/data bus. The chip-select signal to a pe­
ripheral is decoded from the 16-bit address that appears on the bus at the
start of an I/O transaction and from the STO-ST3 status lines, which signal
when an I/O transfer is occurring. Timing of data transfers between the CPU
and peripherals is controlled by the address and data strobes (AS and DS).
The peripheral might return an active WAIT signal during data transfers to
extend the data transfer timing. The R/W and B/W signals define the direc­
tion and size of the data transfer. Thus these signals, together with the
RESET line, define the Z-Bus interface to peripheral devices (Fig. 4.1).

The Z8000 CPU accesses peripherals in a manner similar to memory ac­
cesses. The start of a CPU-peripheral data transfer is signaled by AS going
low (Fig. 4.2). The status signals (which should indicate standard or special
I/O status) and the peripheral address on the address/data bus are guaranteed
to be valid at the rising edge of AS; this edge can be used to latch these sig­
nals, if necessary. The status and address signals would be decoded to gener­
ate the chip-select signals to the system's peripheral devices.

During I/O read operations, DS going low indicates that the CPU has

52 I nterfacing to Peripherals Chap. 4

< ADo-AD,s >
BUS ---AS_ PERIPHERAL

MASTER ---05_
---R/W_

---B/W _

_ WAIT--

-RESET_

A~-AD"=l~ DECODE
STATUS Figure 4.1 Z-Bus signals for CPU-

peripheral data transfers.

reversed the direction of the address/data bus, and the data to be read from
the addressed peripheral can be placed on the bus. Thus DS can be used to
enable the buffers that drive data from the peripheral onto the bus. For I/O
writes, DS goes low after the CPU replaces the address on the bus with the

(
VALID

ADO-AD15 --~ ADDRESS)>-----------4(DATA TO CPU)---.

STO-ST3 ------<~ __________ I/_O_ST_A_TU_S ___________ _J}______

R/W~ c=
DS \ /

\.-. ----
Read Cycle Timing

(
VALID

ADO-AD15 --~ ADDRESS }--{ DATA FROM CPU)--

-----------~

AS\ I

STO-ST3 --~('-______________ I/O_S_T_AT_U_S ____________ ..J}______

R/VI \ c=
\\.--_---11

Write Cycle Timing

Figure 4.2 CPU-peripheral data transfer timing.

I/O Control Logic

Z8000
A

AD3-AD15
~

A
ADO-AD7

~

BYTE RETURNED
FORAO=~

(
'---"

.,--...

()

r
BYTE RETURNED
FOR AO=1

)

Z·BUS

~
PERIPHERAL

53

Figure4.3 CPU-peripheral byte data
transfers.

data to be written; DS is used to enable the write to the peripheral. The I/O
device can lengthen the data transfer timing by asserting an active WAIT sig­
nal, thereby allowing the Z8000 CPUs to interface to I/O devices with arbi­
trarily long access times. The timing of data transfers is determined entirely
by the AS, DS, and WAIT signals; the CPU clock is not part of the Z-Bus
interface.

Data transactions in a Z8000 system can be 8-bit or 16-bit transfers, al­
lowing the use of both byte-oriented and word-oriented peripherals. The
Z8000 handles byte I/O transactions in much the same manner as byte mem­
ory operations. For byte write I/O operations, the CPU outputs the byte of
data on both halves of the address/data bus during DS, and the byte periph­
eral can read the data from either half of the bus. For byte read I/O opera­
tions, the CPU will read the whole word returned on the bus, and internally
select one byte of that word. If AO (port address bit 0) was a 0 during AS
active, the CPU will select the upper half of the bus as the byte to be read; if
AO was aI, the CPU will read the byte from the lower half of the bus (Fig.
4.3). Thus byte peripherals must use the appropriate half of the bus for data
transfers-the upper half of the bus if the peripheral has an even port ad­
dress, and the lower half of the bus if the peripheral has an odd port address.
For word I/O operations, the CPU will read or write a whole 16-bit word re­
gardless of the port address, and, therefore, word peripherals can have an
even or an odd address.

I/O CONTROL LOGIC

I/O control logic is the logic needed to interface a particular I/O device to
the Z-Bus signals from the CPU. Z8000 family peripherals, such as the
Z8036 Counter/Timer and Parallel I/O Unit, are Z-Bus compatible and need
very little interface logic. These devices connect directly to the Z-Bus, and
the only external logic needed is the logic for decoding the address and
status lines to generate chip selects (see Chapter 12).

Other peripherals besides Z8000 family devices can be used with a
Z8000 CPU. In most cases, interface logic is needed to multiplex, demulti-

54 Interfacing to Peripherals Chap. 4

plex, and drive the address/data bus, to generate chip selects from the ad­
dress and status signals, and to generate the appropriate timing signals for
that peripheral from the address and data strobes.

For example, suppose that a Z8000 system has an byte I/O device con­
sisting of eight lamps and eight switches. This peripheral is assigned I/O port
address 0003. When reading port 0003, the CPU will read a byte of data
from the switches. When writing to port 0003, the Z8000 will write a byte
of data to the lamps. Figure' 4.4 is a block diagram of the logic used to im­
plement the interface between the CPU and the lamps and switches. The ad­
dress and status lines are latched by the rising edge of AS. If the address
lines are 0003 and the ST3-STO status lines are 0010 (standard I/O status),
the decode logic pulls the SELECT signal low. If the operation is a write
(R/W low), the data on the lower half of the bus are latched by the data
strobe and propagated to the lamps. If the operation is a read, the tri-state
buffer is enabled by the data strobe, feeding the output of the eight switches
onto the address/data bus, where it can be read by the CPU. This byte I/O
device must have an odd address since all data connections are made to the
lower half of the address/data bus.

An example of a Z-Bus interface to Z80 peripherals is illustrated in
Chapter 11.

AS

STO-ST3

ADO-AD15

DS
R/W

..

=r>--

L-==rJ

v

r--v'
....
0
0:(

6
.0

0:(

~
;.. .

-

t
ClK

J.. SELECT DECODE
lATCH lOGIC -

.
lAMP lATCH

DRIVERS .
ClK

t

SWITCHES

TRI-STATE A. ~ BUFFER

-<l- ,
! EN

t

Figure 4.4 Z-Bus interface to a byte peripheral consisting of switches
and lamps.

Z-Bus I nterrupt Signals

_INT--

~ INTACK
CPU ~ DECODE _

r--IEI­L-
1EO

_

Z-BUS INTERRUPT SIGNALS

55

PERIPHERAL

Figure 4.5 Z-Bus interrupt signals.

Besides responding to data transactions on the Z-Bus (which are always initi­
ated by a CPU or some other bus master), peripherals in Z8000 systems can
also request the CPU's attention via the CPU's interrupt inputs. The CPU re­
sponds to an interrupt by entering an interrupt acknowledge cycle; the inter­
rupt acknowledge signal to the peripheral is generated by decoding the STO­
ST3 status signals (see Table 1.1). Peripherals can use any of the CPU's
interrupt inputs (NMI, NVI, or VI), and more than one peripheral can be
connected to the same CPU interrupt input. Interrupt priority among pe­
ripherals that share a CPU interrupt line is determined by a hardware daisy
chain. Each I/O device sharing the interrupt has an input, Interrupt Enable
In (lEI), and an output, Interrupt Enable Out (lEO), that are used to estab­
lish an interrupt-under-service daisy chain. Thus the Z-Bus signals necessary
for interrupt requests from a peripheral include an interrupt (INT) signal
from the peripheral, an interrupt acknowledge (INT ACK) signal from the
CPU (decoded from the STO-ST3 signals), and the lEI and lEO daisy-chain
signals (Fig. 4.5). Interrupts and the interrupt daisy chain are described in
detail in Chapter 6.

The CPU's vectored interrupt (VI) input is the most commonly used in­
terrupt for peripheral control. During the interrupt acknowledge cycle for
vectored interrupts, an 8-bit vector is output by the interrupting device. The
CPU reads this vector and uses it to determine the location of the interrupt
service routine. During the vectored interrupt acknowledge sequence, the
CPU reads the vector from the bottom half of the address/data bus (ADO­
AD7). The interface logic for an I/O device is usually much simpler if all
transfers between the device and the CPU can occur on the same bus lines.
Thus byte peripherals that use vectored interrupts are usually connected to
the bottom half of the address/data bus, so both the data and the interrupt
vector can be transferred on ADO-AD7. These byte peripherals would, then,
have odd addresses.

5

Instruction and

Interface Timing

The Z8000 CPUs execute instructions by stepping through basic timing se­
quences such as memory reads and writes, I/O reads and writes, and inter­
rupt acknowledgments. These timing sequences, called machine cycles, are
designed to use the Z8000's multiplexed addresss/data bus in an efficient
manner. Typical Z8000 systems will use the bus for transactions well over
80% of execution time. (In comparison, the Z80 is involved in transactions
on its address and data buses about 65% of its execution time.) Thus Z8000
systems often have better throughput than competitive devices that run at
faster clock speeds.

Throughput in Z8000 CPUs is optimized in two ways. First, the en­
coding of instruction operation codes (opcodes) is designed so that the most
frequently used instructions, such as jumps and loads, have short opcodes
and fast execution times. For example, a register-to-register load has a single
word opcode and executes in three CPU clock cycles. Second, the execution
of an instruction is overlapped with the fetch of the next instruction when­
ever possible, as explained below.

INSTRUCTION PREFETCH

Most Z8000 instructions conclude with several clock periods dedicated to in­
ternal CPU operations, such as arithmetic operations where a CPU register is
the destination. While these internal operations are being executed, the CPU
will start to fetch the next instruction's opcode (Fig. 5.1). This overlapping

56

Basic Timing Periods 57

INSTRUCTION AND DATA FETCH

Figure 5.1 Instruction prefetch.

of instruction execution and fetching is called instruction prefetch, and im­
proves throughput by two to three clock cycles per instruction.

Prefetch does not apply to every Z8000 instruction, however. Instruc­
tions that alter the program counter during their execution, such as jump in­
structions, cannot be overlapped with the following instruction's fetch, since
the location of the next instruction is not determined until the jump instruc­
tion is completed. Also, instructions that involve a load to a memory or I/O
location cannot be overlapped with the following instruction; these instruc­
tions end with a memory or I/O write, and the address/data bus is busy with
this access. Consequently, the bus is not available for the next instruction
fetch until the write operation is completed.

BASIC TIMING PERIODS

Figure 5.2 illustrates the three basic timing periods of the Z8000: clock
cycles, bus transactions, and machine cycles. A clock cycle, also called a T­
state, is one cycle of the CPU clock, starting with a rising edge. A bus trans­
action is the time required for a single data transaction on the address/data
bus (that is, the time needed to move one 16-bit word of data between the
CPU and a memory or I/O device). The start of a bus transaction is signaled
by AS going low; bus transactions end with the rising edge of DS. A bus
transaction always takes three or more clock cycles depending on the type

CPU CLOCK

v
v

Figure 5.2 Basic timing periods for the Z8000.

58 Instruction and Interface Timing Chap. 5

of transaction and the state of the CPU's WAIT input during the transac­
tion. A machine cycle is the time required for one basic CPU operation;
that is, a machine cycle is the time from the start of one bus transaction to
the start of the next bus transaction. A machine cycle can extend beyond
the end of a bus transaction, as shown in Fig. 5.2, to allow time for the
routing of data internal to the CPU after the bus transaction is completed.

There are four basic types of machine cycles that can occur during the
execution of a Z8000 instruction: memory cycles, I/O cycles, internal oper­
ation cycles, and memory refresh cycles. Instruction execution is modular;
all instructions are executed with combinations of these four basic machine
cycles.

MEMORY CYCLES

Memory transactions move data between the CPU and memory. Memory
transactions include instruction fetches, data reads and writes during instruc­
tion execution, and the storing of old program status and the fetching of
new program status during interrupt and trap processing. (Interrupts and
traps are discussed in Chapter 6.) For a given bus transaction, the code on
the STO-ST3 status lines indicates if the transaction involves a memory ac­
cess and, if so, what memory address space is being accessed (Table 5.1).
The MREQ line also can be used to signal that a memory access is taking
place.

Instruction fetches and data reads are identical memory read cycles,
with the exception of the code that appears on the STO-ST3 status signals.
Thus memory read cycles are generated to fetch instructions from memory,
to read data from memory during the execution of instructions, and to fetch
new program status during the interrupt acknowledge sequence or after a
reset.

Figure 5.3 shows the timing of a standard memory read bus transaction.
During the first clock period (Tl), a 16-bit memory address is output on the
address/data bus and the appropriate status information is generated on the
R/W, B/W, N /8, and STO-ST3 lines. A high signal on the R/W line and a
memory access status code on STO-ST 3 indicate a memory read transaction.

TABLE 5.1 STATUS CODES FOR MEMORY ACCESSES

STO-ST3

1000
1001
1101
1100
1010
1011

Type of memory transaction

Access to data memory address space
Access to stack memory address space
Instruction fetch of first word of instruction
Instruction fetch of subsequent words of instruction
Access to data memory address space involving an EPU
Access to stack memory address space involving an EPU

CLOCK

WAIT

STATUSES
(BIW, NIS,

STo-ST3)

SNo-SN6

AS

MREQ

AD
READ

OS
READ

RIW
READ

Memory Cycles 59

Tn T, T2 T,
~ 41 -

1 I ~
1- DATA SAMPL

- T FOR READ ~WA" WAIT CYCLES ADDED SAMPLED

ED

SEGMENT NUMBER

!

I
~. (> MEMORY ADDRESS)--- DATA IN
I"

I L
Figure 5.3 Memory read bus transaction timing.

The address strobe (AS) goes low, signaling that the address is present on the
bus. All address and status information is guaranteed to be valid on the
rising edge of AS. The status information stays valid for the remainder of
the bus transaction.

For the Z8001, the segment-number portion of the address is output
during the clock period preceding Tl, that is, during the last clock period of
the previous machine cycle (Tn in Fig. 5.3). The segment number is output
earlier than the offset address during a memory access cycle to compensate
for delays in memory management hardware. For example, the Z8010 MMU
uses the segment-number output by the CPU to access an internal MMU
register. The contents of that register control the address translation process
that determines what physical address will be output by the MMU for a given
logical address from the CPU. (The segment number is a part of the logical
address.) This internal MMU access does take some time, of course. But

60 Instruction and Interface Timing Chap. 5

since the CPU outputs the segment number earlier than the offset portion of
the logical address, the MMU has extra time to make its internal register
access, and is ready to complete the address translation when the offset fi­
nally does appear. Thus the delay in the MMU between receiving a valid
logical offset address from the Z8001 CPU and outputting a valid physical
address to memory is minimized. (Timing considerations for the MMU are
discussed further in Chapter 9.)

During T2 of the memory read cycle, the address is removed from the
bus. DS is lowered, indicating that the bus is available for data. The con­
tents of the addressed memory location can be placed on the bus at any time
while DS is active.

The address/data bus is sampled by the CPU on the falling edge of the
clock during T3. If the B/W line is high, indicating a byte read, only one half
of the data bus will be sampled-the upper half if AO was a 0 when the ad­
dress was emitted during T1, or the lower half if AO was a 1 (see Chapter 3).
The contents of the addressed memory location must be placed on the bus
before the middle of T3. The memory access time in a Z8000 system is,
therefore, the time from the rising edge of AS (address guaranteed valid)
until the falling edge of the clock in T3 (minus a small setup time for the
data). For a three-clock-period memory read (no active WAIT signal) on a
Z8000 system running at 4 MHz, this access time is a minimum of 360 ns.
With a 6-MHz clock, the minimum memory access time is 220 ns; with a 10-
MHz clock, the minimum memory access time is 140 ns.

If a long memory access time is necessary, the time interval between DS
going low and the start of T3 can be extended by pulling the CPU's WAIT in­
put low. The WAIT input is sampled during the middle of T2 at the falling
edge of the clock. If the WAIT input is low at this time, an additional clock
period is inserted into the bus transaction between T2 and T3. The WAIT
signal is sampled again at the falling ege of the clock during this additional
clock period; if the WAIT line is still low, yet another clock period is inser­
ted before T3, and so on. These additional clock periods are called wait
states, and designated Tw. Figure 5.4 shows memory read timing with one
wait state inserted. The status of the WAIT input is sampled during each
wait state to determine if additional wait states are to be added. Thus the
delay between T2 and T3 can be arbitrarily long, in increments of one clock
period, as controlled by the WAIT input. This allows the Z8000 to be easily
interfaced to memories with arbitrarily long access times. None of the status
or control outputs from the CPU change during wait states; in other words,
all the CPU outputs maintain the values they had at the end of T2 during all
wait states.

The memory write cycle is very similar to the memory read, as shown
in Fig. 5.5. Memory write machine cycles are used to store data in memory
during instruction execution and to store program status during the interrupt
acknowledge sequence. During T1, address and status information is output;

CLOCK

WAIT

STATUSES
(B/W. N/S.

STo-ST3)

SHo-SHe

AS

MREQ

AD
READ

OS
READ

R/W
READ

Memory Cycles 61

1 2 W 3

I J$ Vt 1 DATA SAMP

T FOR READ - ~WAIT
SAMPLED _

LED

SEGMENT NUMBER

-

- --- (> MEMORY ADDRESS '>--- DATA IN
- r---

/ ~
Figure 5.4 Memory read bus transaction timing with one wait state.

the address and status signals are valid at the rising edge of AS. Memory
transaction status on the STO-ST3 lines and a low on the R/W line indicate
that this transaction is a memory write. During T2, the address is removed
from the bus, the data to be written to memory are placed on the bus by the
CPU" and DS goes active. For byte transactions (B/W high), the byte of data
to be written will appear on both halves of the address/data bus while DS is
active. The bus transaction is completed during T3 when DS goes high. The
data are guaranteed to be valid on the bus and can be written into memory
anytime while DS is low. Thus the access time for a memory write is the
time from the rising edge of AS until the rising edge of DS. As with memory
reads, the WAIT input is sampled in the middle of T2, and any resulting wait
states are added between T2 and T3.

62

CLOCK

WAIT

STATUSES
(B/W, N/S,

STo-ST3)

SNo-SN&

AS

MREQ

AD
WRITE

OS
WRITE

R/W
WRITE

Tn .
- I

Instruction and Interface Timing Chap. 5

, , 3 --- .. .- .
I ~ (~ 1- DATA SAMPL

t FOR READ

WAIT
WAIT CYCLES ADDED SAMPLED

ED

SEGMENT NUMBER

- -

MEMORY ADDRESS DATA OUT

\ r

Figure 5.5 Memory write bus transaction timing.

The bus transaction time for a memory read or write is always three
clock periods, excluding possible wait states. However, for some instruc­
tions, the machine cycle for a memory access can be one to four clock cycles
longer than the bus transaction time. These extra cycles are added after T3,
but before the start of the next bus transaction; they are used to allow extra
time for the routing of data internal to the CPU.

I/O CYCLES

An I/O bus transaction moves data to or from a peripheral device and is
generated as the result of the execution of an I/O instruction. The STO-ST3

CLOCK

WAIT

STATUSES
(B/Vi. STo-ST3)

Nli

AS

MREQ

AD
INPUT

os
INPUT

Rlii
INPUT

Memory Cycles 63

status lines indicate a standard I/O (0010 status) or a special I/O (0011
status) reference during I/O cycles.

I/O read timing is illustrated in Fig. 5.6. I/O bus transactions are four
clock cycles long as a minimum but can be lengthened by the addition of
wait states. During T1, the 16-bit I/O address is placed on the address/data
bus, and the appropriate status signals are output. The address and status
information are guaranteed to be valid at the rising edge of AS. An I/O read
is indicated by I/O status on the STO-ST3 lines and a high on the R/W line.
The N /8 output is always low during I/O transactions, since I/O instructions
can be executed only in the system mode. The status information remains
valid for the remainder of the bus transaction.

During T2 of the I/O read cycle, the I/O address is removed from the
bus and then DS is lowered. DS low indicates that the bus is available to
receive data from the peripheral device. Data must be placed on the bus
before the falling edge of the clock in the middle of T3, at which time the

T, T2 TWA T3 .. -

I I (~ 1 DATA SAMPL

- T FOR READ
ED

WAIT
WAIT CYCLES ADDED SAMPLED

- ex -
LOW

- r\ -
HIGH

- D< (> C PORT ADDRESS ~)------- DATA IN

- I

- U ~

Figure 5.6 I/O read bus transaction timing.

64 Instruction and Interface Timing Chap. 5

CPU samples the data bus. For a byte read (B/W high), the CPU will accept
data from one-half of the l6-bit bus, depending on the value of AD of the
I/O address output during Tl.

One wait state, TWA, is always added between T2 and T3 of the I/O
machine cycle, regardless of the state of the CPU's WAIT input. On the fall­
ing edge of the clock in the middle of TWA, the WAIT input is sampled. If
the WAIT line is low, another wait state is inserted before T3. The WAIT in­
put is sampled during each wait state, and, as with memory cycles, an arbi­
trary number of wait states can be added to the I/O cycle between T2 and
T3. N one of the status or control signals change during the wait states.
Thus the I/O bus transaction timing can be lengthened through the use of
wait states to accommodate slow peripheral devices.

The I/O write transaction timing is shown in Fig. 5.7. The I/O address
and status information is output during Tl and is valid at the rising edge of
AS. An I/O write is signaled by I/O status on the STD-ST3 lines and a low

CLOCK

STATUSES
(B/Vi, ST.-ST3)

HIS

AS

AD
OUTPUT

os
OUTPUT

RIW
OUTPUT

-

-
-

-

-
-

-

T, T2 TWA T3-----,-_

I I ~ ~
1 DATA SAMPL T FOR READ

WAIT
WAIT CYCLES ADDED SAMPLED

ED

=x
LOW

~
HIGH

I
I

ex PORT ADDRESS DATA OUT

r\ r
Figure 5.7 I/O write bus transaction timing.

Internal Operation Cycles 65

on the R/W line. During T2, the address is removed from the address/data
bus, the data to be written are placed on the bus, and DS goes low. For a
byte write (B/W high), the byte of data to be written appears on both halves
of the bus. The data to be written remain on the bus and can be read by the
peripheral device throughout the duration of DS active. One automatic wait
state, TWA, is always inserted between T2 and T3. The rising edge of DS
marks the end of the write operation. Of course, more wait states can be
added between T2 and T3 by pulling the WAIT input low. The timing of
I/O transactions is similar to the timing of memory transactions, except for
the addition of the one automatic wait state.

INTERNAL OPERATION CYCLES

The execution of some Z8000 instructions, such as multiplies and divides,
need extra machine cycles during which the CPU is performing internal
operations (data routing and AL U operations) and no data transactions are
occurring on the address/data bus. During these times, an internal opera­
tion bus transaction takes place (Fig. 5.8). During Tl, arbitrary values are
output on the address/data bus and the AS is pulsed. The STO-ST3 status
linps indicate internal operation status (0000), the R/W line is high, the
N (S line remains the same as in the previous machine cycle, and the B /W

2 . .~---~

IL IL IL r----

-
CLOCK

ITO-IT3 INTERNAL OPERATION

AI

AD UNDEFINED ')--

- r--

HIGH

Bi'ii UNDEFINED

HIS SAME AS PREVIOUS CYCLE

I
Figure 5.8 Internal operation bus transaction timing.

66 Instruction and Interface Timing Chap. 5

line is undefined. These status conditions hold throughout the remainder of
the machine cycle. The DS and MREQ control lines also are held high
throughout the cycle. Thus an internal cycle looks like a memory cycle
without the data strobe, and no data are transferred.

Figure 5.S shows an internal operation cycle that is three clock periods
long; that is the minimum number of clock periods for an internal operation
machine cycle. An internal operation can extend up to a maximum of eight
clock periods, depending on the instruction being executed. Eight clock
periods is the longest possible machine cycle in the ZSOOO, excluding the
interrrupt acknowledge cycle (10 clocks), unless a memory or I/O access has
multiple wait states added via the WAIT input. Address strobe (AS) is
pulsed during T1 of every machine cycle, regardless of whether or not a valid
address is emitted or a data transfer is to occur in that cycle. Therefore, AS
can be used to trigger memory refresh logic external to the CPU, such as the
refresh in the Z6132 Quasi-Static RAM.

The upper limit on the number of clock periods in a machine cycle
ensures a fast response time for bus requests. When a CPU receives a bus re­
quest via the BUSREQ input, that request will be serviced at the end of the
current bus transaction. (Bus requests are discussed in Chapter 7.)

The WAIT input is not sampled during internal operation cycles.

MEMORY REFRESH CYCLES

A memory refresh cycle is generated by the ZSOOO CPU's automatic memory
refresh logic. If automatic refresh is enabled (that is, bit 15 in the refresh reg­
ister is set), the ZSOOO will enter a memory refresh cycle as soon as possible
after the rate counter in the refresh register goes to O. Memory refresh ma­
chine cycles are always three clock periods long, as shown in Fig. 5.9. During
T1, refresh status (0001) is emitted on the STO-ST3 status lines, the 9-bit
row address from the refresh register is emitted on ADO-ADS of the address/
data bus, and AS is pulsed. The MREQ line goes low, and the R /W, B /W and
N/8 lines remain the same as in the preceding machine cycle. These status
conditions remain throughout the refresh cycle. The DS stays high through­
out the refresh operation and no data transfer takes place. The system's
memory control logic would use the refresh status indication on the STO­
ST3 lines and the row address emitted on the bus to activate the refresh of
dynamic memories.

After the rate counter in the refresh register counts down to 0, the CPU
will insert the refresh cycle immediately after the next IF1 machine cycle
(the fetch of the first word of the next instruction) or the next internal op­
erational cycle, whichever comes first. Since the rate counter is program­
mable, the user can ensure that refreshes will occur only as often as neces-

Memory Refresh Cycles 67

CLOCK

STo-STa REFRESH

AD REFRESH ADDRESS)------- -------- -C

Rlii, alii, ",i }_-+-____ -+-_SA_II_E A_S P_RE_VI_OU-tS C_YC_LE ___ -+ __ _

Figure 5.9 Memory refresh bus transaction timing.

sary for the system's memory devices. Therefore, the effect of the memory
refresh on CPU throughput can be minimized. Of course, if the automatic
memory refresh mechanism is disabled (bit !5 in the refresh register is a 0),
memory refresh cycles will never occur.

As with internal operations, the WAIT input is not sampled during
memory refresh cycles. Internal operations and memory refreshes are the
only types of bus transactions that do not involve a transfer of data.

All Z8000 instructions are executed using a combination of memory,
I/O, and internal operation cycles, with refresh cycles added as dictated by
the refresh control register. For example, adding two word registers takes one
memory read cycle (an IF! cycle) that is four clock periods long. Dividing a
word register by another word register takes a five-clock-period memory
read (IF! cycle), followed by two six-clock-period and one seven-clock-period
internal cycles. Writing a byte from a register to an I/O device (direct­
address addressing mode) requires a five-clock-period and a three-clock­
period instruction fetch, and a four-clock-period I/O cycle.

Special exception conditions can cause timing sequences other than the
four basic machine cycles described above. The CPU responds to interrupts,
traps, and bus requests with special acknowledgment cycles. An active
RESET or STOP input forces the CPU into special sequences. Execution of
a HALT or MREQ (multi-micro request) instruction also alters CPU timing
sequences. These special timing cycles will be discussed in later chapters.

AC TIMING CHARACTERISTICS

Table 5.2 lists some of the timing characteristics of the Z8000 CPUs that
apply to memory and I/O interfacing. These figures are compiled for Z8001/
Z8002 CPUs running at 4 MHz and Z8001A/Z8002A CPUs running at 6
MHz. Most of these timing parameters are dependent on the cycle time of
the CPU clock; see Appendix A for the complete Z8000 AC timing charac­
teristics and the corresponding timing diagram.

During T1 of a memory or I/O access, the rising edge of AS signals that
the address and status information is valid from the CPU. TdA(As) and TdS
(AS) (first two entries of Table 5.2) define the setup time for the address
and status outputs before the rising edge of AS; TdAS(A) is the hold time
for the address after AS goes inactive. Thus if AS is used to latch the address
as part of the memory control logic, the setup and hold requirements of that
latch are dictated by these parameters. Similar setup and hold times for the
address in relation to the falling edge of MREQ are also given.

For a memory read, the delay from the rising edge of AS (address valid)
until the CPU samples the data bus defines the memory access time, TdAS(DR).
If MREQ is used in place of AS to detect a valid address, a slight gain in
access time can be realized [TdMR(DR)] .

TABLE 5.2 Z8000 CPU AC TIMING CHARACTERISTICS

Minimum time (ns)

Symbol Parameter Z8001/Z8002 Z8001A/Z8002A

TdA(AS) Address Valid to AS t delay 55 35
TdS(AS) Status Valid to AS t delay 50 30
TdAS(A) AS t to Address not Valid 70 45

delay
TdA(MR) Address Valid to MREQ t 55 35

delay
TdMR(A) MREQt to Address not Valid 70 35

delay
TdAS(DR) AS t to Data In Required 360 220

Valid (Memory Read)
TdMR(DR) MREQt to Data In Required 375 230

Valid (Memory Read)
TsDR(C) Data In to Clockt Setup Time 30 20

(Memory or I/O Read)
ThDR(DS) Data In to DS t Hold Time 0 0

(Memory or I/O Read)
TdDW(DSW) Data Out Valid to DS t delay 55 35

(Write)
TdDS(DW) DS t to Data Out and Status 75 45

not Valid (Write)
TsWT(C) WAIT to Clockt Setup Time 50 30
ThWT(C) WAIT to Clock t Hold Time 10 10

68

Memory Interface Timing: An Example 69

During memory and I/O reads, valid data must be present on the bus
slightly before the falling edge of the clock in the middle of T3, as dictated
by the minimum requirement for TsDI(C). However, there is no hold time
requirement on the data after DS goes inactive. For memory and I/O writes,
valid data is output from the CPU before DS is pulled low [TdDW(DSW)],
and stays valid after DS returns high [TdDS(DW)]. Thus setup and hold-time
requirements for the data inputs of memory and I/O devices are easily satisfied.

TsWT(C) and ThWT(C) are the setup and hold-time requirements of the
WAIT input in relation to the falling edge of the clock in T2. These re­
quirements must be satisfied in order for the WAIT input to be properly
sampled and wait states inserted in a memory or I/O cycle.

MEMORY INTERFACE TIMING: AN EXAMPLE

When designing memory and I/O interface logic for Z8000-based systems,
the AC timing characteristics of the CPU as well as the basic timing of the
memory and I/O bus transactions must be taken into account. For example,
suppose that the Z8002-Z6132 system with 4K words of memory described
in Chapter 3 (repeated here as Fig. 5.10) is running with a 4-MHz CPU clock.
Since the memory access time for the Z8002 is a minimum of 360 ns, the
Z6132's must have an access time less than 360 ns. The Z6132-5 memory
chip, with a maximum access time of 300 ns, would be a logical choice.
Some AC timing characteristics of the Z6132-5 are shown in Table 5.3. As­
sume that the combinational logic in Fig. 5.10 consists of low-power Schottky
TTL logic, such as 74LSOO's, with a maximum gate delay of 10 ns.

The Z8002 's address/data bus, AS, DS, and R/W signals are connected
directly to the Z6132's. Examining Table 5.2 and 5.3, the setup and hold­
time requirements of the Z6132-5 for the address and WE signals with re­
spect to AS rising and the data with respect to DS falling are easily met by
the Z8002. For example, the Z6132-5 requires that the address stay valid

TABLE 5.3 Z6132-5 AC TIMING CHARACTERISTICS

Symbol

TsCS(AC)
ThCS(AC)
TsA(AC)
ThA(AC)
TsW(AC)
ThW(AC)
TdAC(DO)
TdDS(DOz)
TsDI(DS)
ThDI(DS)

Parameter

CS to ACt Setup Time
CS to ACt Hold Time
Address to ACt Setup Time
Address to ACt Hold Time
WE to ACt Setup Time
WE to ACt Hold Time
ACt to Data Out Delay (Read)
DS t to Data Out Float (Read)
Data In to DS t Setup Time (Write)
Data In to DSt Hold Time (Write)

Nanoseconds

Min. Max.

o
50
o

50
-20

80

40
o

60

300

70 Instruction and Interface Timing Chap. 5

Z6132 (EVEN) +i
V

4

.

7K

1...-----,.... ... 1--1 c-~-Sy
-WA-ITI-----!-----' AC os WE A11109 8 7 6 5 4 3 2 1 AO 076 5 4 3 2 1 DO

A0151-----------I-+-__+_-+---4--+__+_+_+_+_I--+~__+_+_+----.J

141-----------I-+-__+_-+---4--+__+_+_+_+_I--+~__+_+_+-~

13~--------~+-~-+~--4~++~~~~++-~
12~--------~+-~-+~-~~++~~~~++--~
11~--------~+-~-+~--4~++~~~~++---~
10~--------~+-~-+~--4~~~~~~++---~
9~--------~+-~-+~-_+~~~~~~++----~
8~--------~+--r-+~-_+-r++~~+4~++----~
71-----------I-+---+--+---4--+--+-+-+~~~__+_+-+~

61----------~+---+--+-4--+--+-~~~+4__+_~-h

5~--------~+--r-+~-_+~++~~+4~++-~
4~--------~+--r-+~-_+~++~~+4~~-~~

Z8002 3~--------_t_+--r-+~-_+-r+++_~+4~++-~+4___,
(Z-BUS) 2~--------_t_+--r-+~--+~+++-I~+4~~-~~--+--'

1~--------_t_+--r-+~--+-r+++-I~+4~~-~+4~+'

~1-4--------~+-~

OSI--4--------__+_+-_+_~

R/W l---+--<lf----------+-+--+--I-~

B/WI-4-~I----~ G3

MREQ I- G1 I _

~L--~---l-r-G 6 I CS
G2

~ ~ G7 ~--------------------------------~

AC OS WE A11 10 9 8 7 6 5 4 3 2 1 AO 076 5 4 3 2 1 DO

Z6132 (O~~)

Figure 5.10 Z8002-Z6132 interface logic for a 4K word system.

for 50 ns after AC rises [ThA(AC) in Table 5.3], whereas the ZS002 guaran­
tees that the address will remain valid 70 ns after AS goes high [TdAS(A) in
Table 5.2].

The only timing parameter that needs to be examined in this system is
the chip select (CS) setup time for the memory. The ZS002 guarantees that
status information is valid at least 50 ns before AS rises. The worst-case tim­
ing condition for the chip select occurs during byte writes, when the R/W sig­
nal must propagate through four gates (G1, G3, G4, and G6) before the CS
signal is stable. Assuming the worst-case conditions, the delay through each
gate is 10 ns, or 40 ns for all four gates. The CS signal is not valid until 40 ns
after the status is valid, or IOns before the rising edge of AS. Since the set­
up time for CS is 0, this still satisfies the timing requirements for the Z6132-5.

As memory systems get larger and more complex, the logic needed to
generate chip selects also grows more complex (see Figures 3.17 and 3.1S,
for example). In larger systems, the AS signal to memory may need to be
delayed before reaching the memory control"logic to ensure that all address
and status information meets the setup and hold-time requirements for the

Wait-State Generation 71

memory used. For example, if the delay from status valid until chip select
valid in the system analyzed above were 55 ns instead of 40 ns, the AS to
memory would have to be delayed 5 ns to ensure that the rising edge of AS
does not arrive at the memory before CS is stable. If buffers are added
between the CPU and memory control logic, the minimum and maximum
delays through the buffers also must be considered.

WAIT-STATE GENERATION

If a memory or peripheral device is too slow to respond in the time allowed
within a standard memory or I/O bus transaction, the access time of the data
transfer can be lengthened by adding wait states. Wait states are inserted in­
to a transaction by pulling the WAIT input to the CPU low; this input is
sampled internally by the CPU on the falling edge of the clock during T2 and
all wait states (Tw's) in all memory and I/O machine cycles. The WAIT in­
put must meet the setup and hold-time requirements shown in Table 5.2 in
order for the CPU to recognize it and add the desired wait states to the
transaction.

The WAIT signal to the CPU can be generated in a number of ways.
The most common is to synchronize the WAIT input to the CPU clock. For
example, suppose that all the program memory in a Z8002-based system is
implemented in 2716-5 EPROMs (such as the system in Fig. 3.18). With a 4-
MHz CPU clock, the minimum memory access time without any wait states
would be 360 ns. However, 2716-5's have an access time of 490 ns, thereby
requiring that one wait state be added during each program memory access.
(With one wait state, the minimum memory access time would be 360 + 250 =

610 ns at 4 MHz.) An SN7 4 7 4 dual D-type flip-flop could be used to gener­
ate the WAIT signal, as illustrated in Fig. 5.11. When AS goes low at the
start of each cycle, the Q output of both flip-flops is forced low. On the
next rising clock edge (the start of T2), Q1 goes high but Q2 remains low.
The CPU will sample the WAIT input in the middle of T2 and, if the cycle is
a program memory access, the WAIT input will be low, causing a wait state
to be inserted after T2. On the next positive clock edge (the beginning of
Tw), Q2 goes high, driving the WAIT line high. The CPU samples the WAIT
input again in Tw and, since it is inactive, no further wait states are added.
Since the WAIT signal is gated by PROGRAM MEMORY STATUS, the wait
state will be added only during accesses to program memory. (PROGRAM
MEMORY STATUS is formed by decoding the STO-ST3 status signals.)

Insertion of multiple wait states for a particular memory or I/O access
is easily implemented with a parallel-load shift register. A 4-bit shift register,
such as the SN74178 or SN74195, can be used for inserting up to three wait
states. For example, a circuit for adding three wait states to each I/O access
is diagrammed in Fig. 5.12. I/O status is decoded from the STO-ST3 status

72 Instruction and Interface Timing Chap. 5

+5V

WAIT

7474 7474

CPU CLOCK

~------~--------~

PROGRAM MEMORY STATUS ----------------~

CPU CLOCK

PROG. MEMORY STATUS
__________________ ~r_

'----E8~~--J1_ j
.-. SAMPLED

8
WAIT

Figure 5.11 Generation of a single wait state with D-type flip-flops.

lines; as long as I/O status is not present, the shift register performs a parallel
load on each positive CPU clock edge (the SN74178 is negative edge trig­
gered, so the CPU clock is inverted). The D input is propagated to the QD
output, and WAIT is held high. When I/O status does appear during Tl
of an I/O access cycle, the shift register enters its shift mode. The next posi­
tive CPU clock edge will shift the register one place to the right. The Qc
output was low prior to the shift, since the C input was low during the
last parallel load, so a low value is shifted into QD. The next two shifts will
also shift low values into QD, since QB and QA start out low; subsequent
shifts will send QD high again, since the serial input to the register is a 1.
Thus three wait states will be inserted in the cycle. If only two wait states
are required, the A input to the shift register can be tied high instead of low.

Both of the examples above used the status outputs to trigger the gener­
ation of the WAIT signal. A chip select to a given device or group of devices
could also have been used, if wait states are to be inserted only when those

Wait-State Generation 73

+5V

+5 V

A B D

SHIFT

LOAD
SN74178

SERIAL IN

CPU CLOCK CLOCK

°A aS °c 00

WAIT

CPU CLOCK

AS ----v
\~ ______________________ ~r--
.~

SAMPLED

Figure 5.12 Generation of three wait states with a shift register.

particular devices are accessed. If more than three wait states are needed, 8-
bit shift registers such as the SN74165 can be used, or shift registers can be
cascaded together to any length. If WAIT signals are generated by more than
one circuit in the system, they would be ORed together before being input
to the CPU.

The ability to insert wait states into any memory, I/O, or interrupt ac­
knowledge cycle allows the CPU to be interfaced easily to slow memory and
peripheral devices. All Z-Bus data transactions are asynchronous; the access
time for a memory or I/O transaction can be arbitrarily long, in increments
of one CPU clock cycle, as determined by WAIT generation logic external to
the CPU.

6

Interrupts, Traps, and Resets

The execution of a single instruction in a computer consists of several steps:
the instruction's opcode is fetched from memory, execution of the instruc­
tion is performed, the appropriate flags are set, and the program counter is
updated to point at the next instruction. Typically, instructions within a
programming task are executed sequentially in the order in which they ap­
pear in memory or in an order determined by instructions that change the
program counter, such as jumps and subroutine calls. Three events can alter
the normal execution of a Z8000 program: interrupts, traps, and resets.
These events are called exception conditions. Interrupts are caused by an ac­
tive signal on one of the CPU's three interrupt inputs: NMI, NVI, and VI.
Traps occur if certain error conditions occur during instruction execution,
such as an attempt to execute a privileged instruction while in normal-mode
operation. Interrupts and traps are recognized at the end of the execution of
the current instruction and cause the CPU to temporarily suspend the execu­
tion of the current programming task. Execution is transferred to a proce­
dure that performs whatever actions are necessary as a result of the interrupt
or trap; such a procedure is called a service routine. Resets are caused by an
active low level on the RESET input. A reset overrides all current operat­
ting conditions and puts the CPU in a known state for starting program
execution.

INTERRUPTS

Interrupts are the means by which a peripheral device can request the CPU's
attention. Interrupts are asynchronous events that can occur at any time
during program execution. An interrupt causes the currently executing task
to be suspended while the CPU responds to the device that asserted the inter-

74

TRAPS

Traps 75

rupt. Allowing peripherals to interrupt normal CPU operation eliminates the
need for periodic polling of the status of peripheral devices, thereby increas­
ing system throughput while improving response time.

The Z8000 CPUs support three kinds of interrupts: nonmaskable, non­
vectored, and vectored. A CPU's interrupt input can be shared by several
different interrupt sources; several peripheral devices might be connected to
the VI input, for example. Priority among devices using a common interrupt
is determined by a hardware daisy chain.

N onmaskable interrupts, as the name implies, are interrupts that cannot
be disabled via program execution. Usually, nonmaskable interrupts are used
to inform the CPU of a situation that requires immediate handling to pre­
serve system integrity, such as an imminent power failure. Nonmaskable
interrupts are edge triggered; a high-to-Iow transition on the CPU's NMI in­
put will cause recognition of this interrupt.

Vectored and nonvectored interrupts are maskable; that is, the CPU can
be programmed to ignore or respond to active low levels on the VI and NVI
inputs. Bit 12 of the flag and control word (FCW) is the vectored interrupt
enable, and bit 11 is the nonvectored interrupt enable. A 1 in the appropri­
ate bit enables the interrupt, and a 0 disables it. (Of course, these control
bits in the FCW can be altered only in system mode.) Typically, vectored
and nonvectored interrupts are used by peripheral devices to request servic­
ing from the CPU. These interrupts are level sensitive; in order for the CPU
to recognize a vectored or nonvectored interrupt, the VI or NVI input must
be held low until the resulting interrupt acknowledge sequence is executed.

One result of any interrupt is that a 16-bit word is read from the ad­
dress/data bus as part of the interrupt acknowledge cycle. This word can be
used to identify the source of the interrupt, if so desired, and is called an
identifier word. For vectored interrupts, the lower byte of this word is a
pointer that selects a particular service routine. In other words, the CPU will
use the byte returned on ADO-AD7 during the interrupt acknowledge cycle
to determine the starting location of the service routine for that interrupt.
This byte of data is called an interrupt vector. Thus a vectored interrupt will
result in the execution of one of a number of possible service routines, de­
pending on the value of the vector read from the peripheral. N onvectored
and nonmaskable interrupts, on the other hand, each have just one service
routine corresponding to that interrupt type. That same routine is called
each time the interrupt occurs. However, that routine could examine the
identifier word returned during the acknowledge sequence, and then branch
to the appropriate procedure corresponding to the identifier's value.

Traps are synchronous events that are triggered by attempting to execute
certain instructions. Unlike interrupts, traps are predictable and repeatable;

76 Interrupts, Traps, and Resets Chap. 6

if a particular instruction in a program causes a trap, that trap should recur
each time that instruction is executed with the same set of conditions (that
is, the same processor state). The Z8001 and Z8002 CPUs recognize three
kinds of traps: extended instruction traps, privileged instruction traps, and
system calls. Each of these trap conditions is generated internally by the
CPU during program execution. The Z8001 CPU recognizes a fourth, exter­
nally generated trap, the segmentation trap.

Extended instruction traps are caused by an attempt to execute an in­
struction intended for an Extended Processor Unit (EPU) when no EPUs are
present in the system. Bit 13 of the FCW is the extended processor architec­
ture (EPA) bit; a 1 in this bit signals that EPUs are present in the system, and
a 0 means no EPUs are present. The instructions that are meant to be exe­
cuted by the Extended Processor Units, and not by the CPU, include all in­
structions with an opcode whose first word has a OE, OF, 4E, 4F, 8E, or 8F
(hexadecimal) in the upper byte. If one of these instructions is encountered
and the EPA bit of the FCW is 0, an extended instruction trap will occur.
The service routine for the trap could simulate the action that the EPU
would take if it were present, thereby allowing the system to function with­
out an EPU that is to be acquired and added to the system at a later time.

Privileged instruction traps occur when execution of a privileged in­
struction is attempted while in normal-mode operation. The current operat­
ing mode (system or normal) is determined by the SIN bit (bit 14) in the
FCW. I/O instructions, instructions that alter the control bits in the FCW,
the multi-micro instructions, and the HALT instruction are all privileged in­
structions. This trap prevents normal-mode users from corrupting the op­
erating system environment; that is, normal-mode programs cannot act di­
rectly on any of the system's hardware functions. The service routine for
the privileged instruction trap could simulate the operation attempted by the
normal-mode user; this service routine would be part of the operating sys­
tem, and the trap would be considered as a request to the operating system
to perform some hardware function.

The system call trap occurs when a System Call (SC) instruction is exe­
cuted. The System Call instruction is, in essence, a software trap. By exe­
cuting a System Call instruction, a normal-mode program would initiate
execution of the system call trap's service routine. This service routine could
be written as part of the operating system to provide some system-mode
functions, such as I/O routines, that can be accessed by normal-mode users.
Thus the system call trap, like the privileged instruction trap, can be used
to provide normal-mode programs with a controlled means of accessing
operating system functions.

The segmentation trap occurs whenever the SEGT input to the Z8001
is pulled low, regardless of whether the processor is in the segmented or the
nonsegmented mode. This trap is generated by memory management hard­
ware, such as the Z8010 MMU, when that hardware detects an illegal mem-

Priorities of Exceptions 77

ory access. As part of memory management, memory segments in Z8001
systems can be assigned specific sizes and attributes that determine what
types of accesses can be made to that segment. If an illegal access is at­
tempted, the MMU notifies the CPU via the segmentation trap. For ex­
ample, a segmentation trap could signal an attempted write to a read-only
segment, or an attempt to access a memory address outside the limits of a
segment. The Z8010 MMU includes status registers that can be read as part
of the segmentation trap service routine to determine the exact cause of the
trap. (The Z8010 MMU is described in Chapter 9.)

The action that Z8000 CPUs take in response to an interrupt or trap is
very similar. The major distinction between interrupts and traps is their ori­
gin. Interrupts are asynchronous events caused by a device outside the CPU
and are usually independent of the currently executing instruction. Traps
are synchronous events caused by instruction execution, and are always
reproducible by reexecuting the program that caused the trap.

INTERRUPT AND TRAP HANDLING

At the beginning of T3 of the last machine cycle of an instruction, the
Z8000 CPUs sample the interrupt and SEGT inputs to see if an interrupt or
segmentation trap is pending. If an interrupt input is active and enabled, or
if the execution of the last instruction caused a trap condition, the CPU will
respond to the interrupt or trap instead of executing the next instruction of
the current task. Response to an interrupt or trap consists of six steps: de­
termining priority of competing events, executing an acknowledge cycle (for
interrupts and segmentation traps only), saving the current program status,
loading the service routine's program status, executing the service routine,
and returning to the interrupted program.

PRIORITIES OF EXCEPTIONS

If more than one interrupt or trap condition is present at one time (that is,
when sampled during the last machine cycle of an instruction), the CPU re­
sponds to the exception condition with the highest priority. Internal traps
(extended instruction, privileged instruction, or system call) have the highest
priority, followed by nonmaskable interrupts, segmentation traps, vectored
interrupts, and nonvectored interrupts, in that order. Of course, resets have
a higher priority than any other condition; whenever the RESET pin is ac­
tive, a reset is performed immediately.

For some of the classes of events listed above there can be multiple
sources for a given event. The internal traps are mutually exclusive and, there­
fore, no priority resolution is needed within that class of events. The other

78 Interrupts, Traps, and Resets Chap. 6

exception conditions arise from external sources. If more than one device
shares a common request line (the SEGT or an interrupt line), a request for
service from more than one device using that line can occur simultaneously
at the CPU. For segmentation traps where more than one MMU signals the
trap, the Z8001 services the traps simultaneously, in that the acknowledge
sent during the interrupt acknowledge sequence is accepted by all the MMUs
(see Chapter 9). For interrupt requests, priority between multiple devices
sharing an interrupt input to the CPU is resolved external to the CPU via a
daisy-chain priority scheme. (This daisy chain is described later in the chap­
ter.) Priority resolution among the daisy-chained peripherals is done during
the interrupt acknowledge cycle.

INTERRUPT ACKNOWLEDGE

The interrupt acknowledge cycle is initiated by the CPU when responding to
an interrupt request or segmentation trap. The acknowledge cycle serves
two purposes-it selects the peripheral whose interrupt is to be acknowl­
edged, and it reads an identifier word from the interrupting device. For
vectored interrupts, the identifier includes the 8-bit interrupt vector that is
used to determine the location of the service routine.

Interrupt acknowledge cycles are necessary only for exception condi­
tions resulting from events external to the CPU, that is, interrupts and seg­
mentation traps. Acknowledge cycles are not part of the response to an
internally generated trap; since the cause of the trap is internal to the CPU,
there is no need to acknowledge an external device or read an identifier
word. (The timing of the interrupt acknowledge cycle is described later in
the chapter.)

SAVING PROGRAM STATUS

Once the acknowledgment is complete, if one is necessary, the CPU must
save enough status information about the program being executed at the
time of the exception to be able to return successfully to that program after
the service routine for the exception is completed. The results of executing
a given programming task must be the same regardless of whether or not an
interrupt or trap occurred during the task's execution. Therefore, the CPU
must save all the information about the current task's running environment:
the location of the next instruction to be executed, the operating modes of
the CPU, and the flag conditions resulting from the last instruction's execu­
tion. This information is contained in the CPU's program status registers­
the PC and FCW (Fig. 6.1). When responding to an interrupt or trap, the

Savi ng Program Status

15

I ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I RESERVED
..... --,-I --1.1 --11_11...-.1...1 --LI --1.1----,11...-.1...1 --LI --1.1--11_1...1 --,-I --1.1---1 WORD

SEGMENT NUMBER
! ! I I

SEGMENT OFFSET
I I I

Z8001 Program Status Registers

o 10

I

FLAG AND
CONTROL
WORD

PROGRAM
COUNTER

~r_O.IS_IN~I_EP~AI_vl_EI...INV_IE.I_o~l_o~1_0-,-1 c--,-l_z~l_s~l_p,~vl~D_A.l...I_H~I_o~,_o~II~~\~~
ADDRESS I) PROGRAM

'--~....L....-I--L...--'---I.--II_IL--.l...1 --L--I.--.JL--.L.-..I....-....L.-...I. COUNTER

Z8002 Program Status Registers

79

Figure 6.1 Program status registers.

CPU pushes the PC, FCW, and an identifier word onto the stack, using the
system-mode implied stack pointer (system-mode RR14 in the Z8001, sys­
tem-mode R15 in the Z8002). Status is saved on the system stack regardless
of the CPU's operating mode at the time of the exception. For the Z8001,
both the segment number and offset portions of the PC are saved on the
stack, even if the CPU was in the nonsegmented mode when the exception
condition occurred. In other words, the CPU always enters the system mode
and, for the Z8001, the segmented mode during status saving in response to
an interrupt or trap. The PC is pushed first (the offset portion first for the
Z8001), followed by the FCW, and then the identifier word. For interrupts
and segmentation traps, the identifier is the value read from the address/data
bus during the interrupt acknowledge cycle. For internal traps, the identifier
is the first word of the instruction that caused the trap. The format for the
saved program status on the system stack is illustrated in Fig. 6.2. Table 6.1
lists the PC value that is pushed on the stack for each type of interrupt and
trap.

Z8002

SYSTEM STACK

~~~~Tii= AFTER.-

INTERRUPT '---FC-W--I 

.------1 
IDENTIFIER 

PC 

SYSTEM STACK 

~~~~Tii= BEFORE.-

INTERRUPT t--------i

_ 1WORD_

lOW
ADDRFSS

SYSTEM SP
AFTER TRAP
OR INTERRUPT

SYSTEM SP .-
BEFORE TRAP
OR INTERRUPT

HIQH
ADDRESS

Z8001

IDENTIFIER

FCW

PC SEGMENT

PC OFFSET

_1WORD __

lOW
ADDRESS

~6GD~ESS Figure 6.2 Saved program status on
the system stack.

80 Interrupts, Traps, and Resets Chap. 6

TABLE 6.1 PC VALUE SAVED ON STACK FOR EACH TYPE
OF INTERRUPT AND TRAP

Exception

Extended instruction trap
Privileged instruction trap

System call trap
Segment trap
All interrupts

PC value is address of:

Second word of instruction
Next instruction

(single-word privileged instruction)
Second word of instruction

(multiple-word privileged instruction)
Next instruction
Next instructiona , b

Next instructionb

a Assumes successful completion of instruction fetch.
blf executing an interruptable instruction (e.g., LDIR), the next instruction is
the current instruction.

PROGRAM STATUS AREA

After saving program status for the task that was interrupted, the CPU loads
in new program status values-a new PC and FCW, in other words-that de­
fine the CPU operating modes and starting address of the service routine.
This new program status is loaded from a block of memory called the Pro­
gram Status Area. Figure 6.3 is a diagram of the Program Status Area for
the Z800l and Z8002.

The starting address of the Program Status Area is determined by the
contents of the Program Status Area Pointer (PSAP), which is a CPU control
register (Fig. 6.4). The PSAP is loaded using the Load Control (LDCTL)
instruction. The PSAP is a single word register in the Z8002 (to hold a
l6-bit address) and two word registers in the Z800l (to hold a segmented
address). The low-order byte of the PSAP is always all O's; therefore, the
starting address of a Program Status Area is always on a 256-byte address
boundary in memory. The Program Status Area contains a list of the pro­
gram status values (that is, values for the PC and FCW) that are loaded into
the CPU's PC and FCW registers during exception processing to determine
the operating modes and starting location of each interrupt and trap service
routine. In other words, after saving the program status of the task that was
interrupted, the CPU fetches new program status values for the service rou­
tine by reading the appropriate memory locations in the Program Status
Area pointed to by the PSAP.

The Program Status Area holds an FCW and PC value for the service
routine for every possible type of interrupt or trap. The particular program
status values fetched from the Program Status Area are a function of the
type of exception that occurred and, for vectored interrupts, the vector
returned by the peripheral during the interrupt acknowledge cycle. For each
interrupt or trap there is, then, a block of memory in the Program Status

'5

1
0

1

I

Program Status Area

PROGRAM STATUS AREA
POINTER (pSAPI

.m """ """' --L HEX DECIMAL .-----....

10 16

18 24

20 32

RESERVED

t--R=-=E:-=-SE=-=R-:-:-VE::-::D~ - - - -
EXTENDED

I--T-"';'---I INSTRUCTION
TRAP

t----'--"-'--,-----I - - - -

PRIVILEGED
I--r-::-=-':";':':--_l INSTRUCTION

TRAP

t----'=-==~=-=-_l- - - -
SYSTEM

CALL
TRAP

t--::-:-:c:-:--::_::_-I- - - -

z800i

FCW

PC

FCW

PC

FCW

PC

SEGMENT
TRAP NOT USED

28 40

30 48

38 56

3C 60

40 64

44 68

23A 570

t--==~::-::--I- - - -

t----'~~::::----_l----

VECTORED
INTERRUPTS

Io.....,;...;;.::..;~;.;;.;... ___ _

FCW

pC

FCW

PC

FCW

PC,

PC2

PCl

:
:

PCn

81

BYTE OFFSET
DECIMAL HEX

o 0

12

16 10

20 14

24 18

28 lC

30 IE

32 20

34 22

Figure 6.3 Program status areas for
540 21C the Z8001 and Z8002.

Area that contains the values to be loaded into the FCW and PC to initiate
execution of the appropriate service routine.

For the Z8002, the FCW and PC are each always one word (16 bits)
long. Thus 4 bytes of memory are needed in the Program Status Area for
the program status values for each type of exception. Starting at the loca­
tion pointed to by the PSAP, the first two words of the Program Status Area
are reserved. (Reserved areas are locations that are not used by the Z8002,
but might be used by future upward-compatible Z8000 family processors.

'5 0

SEGMENT NUMBER
0 1 0 1 0 1 0 1 0 1 0 1 0

1
o I I UPPER POINTER I 0 I 0 I 0 I o 1 0 I 0 I o I o I I I I I I I

UPPER OFFSET
o IO! 0 I o 1 0 I 0 I o I o I Z8002 Program Status Area Pointer

I I I

Z8001 Program Status Area Pointer

Figure 6.4 PSAP register.

82

PSAP

TYPICAL STRUCTURE
(EXCEPT VI)

~
~

} -~

OFFSET FROM PSAP
(HEXADECIMAL)

00

RESERVED

04
EXTENDED

INSTRUCTION
08

PRIVILEGED
INSTRUCTION

OC
SYSTEM

CALL
10

RESERVED

14

NMI

18

NVI

1C

VI

1E

NEWPC

20

NEWPC

22

LN~
~21C

Interrupts, Traps, and Resets Chap. 6

Figure 6.5 Z8002 Program Status
Area.

These areas should be filled with all O's.) The next two words, starting at ad­
dress 4 in the Program Status Area, are the FCW and PC value for the ex­
tended instruction trap service routine. This is followed by the FCW and PC
values for the privileged instruction trap and system call service routines, a
reserved area of 4 bytes, and then FCW and PC values for the nonmaskable
interrupt and nonvectored interrupt service routines, respectively (Fig. 6.5).
For vectored interrupts, an FCW value that will be loaded for all vectored in­
terrupts is at location 1C (hexadecimal) in the Program Status Area. This is
followed by a list of 256 possible PC values, corresponding to the 256 pos­
sible 8-bit vectors that can be returned by the interrupting peripheral during
the interrupt acknowledge cycle. The vector returned by the peripheral is
used as an index into this list to select the starting PC value for the interrupt
service routine; a vector of 0 corresponds to the PC value at location 1E
(hex) in the Program Status Area, a vector of 1 corresponds to the PC value
at location 20 (hex), and so on up to a vector value of 255 (FF hex). Thus
the value of the vector will determine which PC value is fetched when load­
ing the program status registers for the service routine from the Program
Status Area.

The program status registers for the Z8001 consist of a reserved word,
the FCW, and the PC (Fig. 6.1). The program counter is two words long,
where one word holds the segment number and the other holds the offset ad­
dress. Thus four words are needed in each block of the Z8001 's Program
Status Area to hold the program status values for each interrupt and trap ser­
vice routine. The first four words of the Program Status Area for the Z8001

Program Status Area 83

are reserved (Fig. 6.6). The next block of four words holds the program
status values for the extended instruction trap service routine. The first
word of this block is a reserved word, followed by an FCW value, the seg­
ment-number portion of the PC value, and finally, the offset portion of the
PC value. (When segment numbers are stored in a 16-bit word, the 7-bit seg­
ment number is placed in bits 8-14. Bit 15 and bits 0-7 are set to 0.) The
following blocks in the Program Status .Area contain the program status
values for the privileged instruction trap, system call, segmentation trap,
nonmaskable interrupt, and nonvectored interrupt service routines, in that
order. Each of these blocks has the same format: a reserved word, the FCW
value, the PC's segment number, and the PC's offset for that service routine.
Location 3A (hex) of the Z8001 's Program Status Area holds the FCW value
for all of the vectored interrupt service routines. It is followed by a list of
128 possible PC values, with each PC having a segment number and an offset
part. Thus each of the 128 possible PC values fills two words in the Program
Status Area. The 8-bit vector returned by the peripheral during the interrupt
acknowledge cycle is used as an index into this list of possible PC values. A
vector of 0 will select the first PC value, whose segment number is at loca­
tion 3C (hex) and whose offset is at location 3E (hex) of the Program Status
Area. If the vector is 2, the next PC value will be selected, and so on. Only
even-valued vectors are used in the Z8001 (that is, the least significant bit of
the vector must be a 0); therefore, there are 128 unique vectors that can be
returned by the peripheral, corresponding to the 128 PC values listed in the
Program Status Area.

PSAP

TYPICAL STRUCTURE
(EXCEPT VI)

RESERVED

FCW

PC SEGMENT

PC OFFSET

RESERVED

FCW

PC SEGMENT

PC OFFSET

I)

r

IJ

l
If

OFFSET FROM PSAP
(HEXADECIMAL)

00

RESERVED

08
EXTENDED

INSTRUCTION
10

PRIVILEGED
INSTRUCTION

18
SYSTEM

CALL
20

SEGMENT
TRAP

28

NMI

30

NVI

38

VI

3C

NEWPC

40

!y~
NEW PC

44

~.
~23A Figure 6.6 Z8001 Program Status

Area.

84 Interrupts, Traps, and Resets Chap. 6

The Program Status Area can begin at any 256-byte boundary in mem­
ory (any memory location with an offset address whose low-order byte is 0)
except for address 0 in a Z8002 system and segment 0, address 0 in a Z8001
system. (This restriction is due to the method in which the CPUs respond to
a reset, as described later in the chapter.) When new program status is
fetched during the response to an exception condition, the fetch is made in
system-mode operation with a status code of 1100 (program reference) on
the ST3-STO lines. Thus the Program Status Area always resides in the sys­
tem-mode program memory address space.

In review, when an exception condition occurs, the CPU will save the
program status (FCW and PC) of the task that was interrupted, and use the
PSAP to determine the starting location of the Program Status Area. The
CPU will then fetch new values for the program status from the Program
Status Area; these values are loaded into the FCW and PC registers in the
CPU, and execution of the service routine is begun. The new value of the
FCW is not effective until the start of the fetch of the first instruction of the
service routine; thus the new FCW value will not affect the status pins while
the fetches from the Program Status Area are being completed. The first in­
struction of the service routine will be fetched from the address specified in
the PC that was loaded from the Program Status Area. The service routine
will be running in the operating modes (segmented or nonsegmented, system
or normal, EPA and interrupts enabled or disabled) specified by the FCW
value loaded from the Program Status Area.

If desired, maskable interrupts can be disabled at the start of a service
routine by a suitable choice of the FCW's value. This would allow critical in­
formation to be stored or processed before subsequent interrupts are handled.
If interrupts are enabled before the end of the service routine, nested inter­
rupts are possible, that is, the service routine could itself be interrupted
while another interrupt's service routine is run.

Several different Program Status Areas could be set up in memory, with
different ones being used at various times during program execution. Speci­
fying a new Program Status Area would involve only changing the PSAP reg­
ister contents with a Load Control (LDCTL) instruction. For the Z8001,
changing the PSAP takes two LDCTL instructions-one for writing the seg­
ment number and the other for writing the offset. Care must be taken to
ensure that no exceptions occur between the two instructions, since an un­
intended PSAP value could be in effect at that time.

INTERRUPT RETURNS

A service routine is program code that is executed in response to an inter­
rupt or trap. In the Z8000 CPUs, execution of a service routine starts after
new program status has been loaded into the PC and FCW from the Pro-

Peripheral I nterrupt Daisy Chain 85

gram Status Area. Upon completion of the service routine, execution of the
task that was interrupted by the exception is resumed. In order to terminate
the service routine and return to the interrupted task, that task's program
status must be retrieved from the system stack, where it was stored before
the service routine was run. The Z8000's Interrupt Return (lRET) instruc­
tion is used to end routines for both interrupts and traps.

Execution of the IRET in a Z8002 automatically pops three words
from the system stack: the identifier word is popped and discarded (that is,
the stack pointer is incremented without saving the identifier word), and the
interrupted task's FCW and PC values are popped and loaded into the CPU's
program status registers. After the IRET, the next instruction fetch will be
from the location addressed by the PC, which is the point at which the task
was interrupted. IRET is a privileged instruction that can be executed only
in system mode; IRET always pops the old program status from the system­
mode stack memory address space. The "popped" value of the FCW is not
effective until the next instruction fetch, so the status pins will not be af­
fected by the new FCW value until execution of the IRET is completed.

In Z8001 CPUs, execution of the IRET automatically pops four words
from the system-mode stack-the identifier, FCW, PC segment number, and
PC offset-since four words are always pushed on the stack when servicing an
exception. Therefore, the Z8001 must be in segmented mode when the
IRET is executed. It is the programmer's responsibility to ensure that the
Z8001 is in the segmented mode before any IRET instruction is encountered.

PERIPHERAL INTERRUPT DAISY CHAIN

The Z8000 CPUs support three types of interrupts: nonmaskable, nonvec­
tored, and vectored. Each of these interrupts can have multiple sources in a
Z8000 system, with several peripherals sharing a common interrupt input to
request servicing from the CPU. When peripherals share a common interrupt
line, a method of prioritizing interrupt requests from these peripherals is
needed. This prioritization is implemented by means of a daisy chain exter­
nal to the CPU. The interrupt daisy chain is formed using two signals at each
peripheral device: Interrupt Enable In (lEI), an input to each peripheral, and
Interrupt Enable Out (lEO), an output from each peripheral. The interrupt
daisy chain has two functions: during interrupt acknowledge transactions, it
determines which interrupt source on the daisy chain is being acknowledged,
and at all other times, it determines which interrupt sources can initiate an
interrupt request.

Figure 6.7 shows an example of the interrupt daisy-chain structure.
Four peripheral devices share a common interrupt request line to the CPU,
where any device can pull the line low to make a request. This signal might
be the CPU's nonmaskable, nonvectored, or vectored interrupt input. The

86

zaooo
CPU

Interrupts, Traps, and Resets

PERIPHERALS
+5V

A c
-IEl lEO I--- IEl lEO -- IEl lEO r-- IEl

INT INTAct< TNT iriiTACK

~IRNJ~ t-_____ --4-1_-+ ___ 1_--+ ___ -41~-+__----....J1

Chap. 6

D

lEO

f-----t\ INTACt<
STG-ST3 ~ DECODER t-------<-------+--------------'

Figure 6.7 Interrupt daisy chain with four devices sharing a common
interrupt line.

appropriate acknowledge signal, decoded from the STO-ST3 status lines, is
connected to each peripheral's interrupt acknowledge input. The highest­
priority device has its lEI line tied high; its lEO output is connected to the
next device's lEI input, and so on down the daisy chain. The order in which
the peripherals are connected on the daisy chain determines their relative pri­
ority; if two devices on the daisy chain simultaneously assert an interrupt re­
quest, the higher-priority device will be acknowledged first. Furthermore,
a given peripheral device is not allowed to interrupt the service routine of a
higher-priority device on the daisy chain.

A high level (logical 1) on a peripheral's lEI input means that the pe­
ripheral is free to request an interrupt by pulling the interrupt line to the
CPU low. The lEO output is used by each peripheral to allow or stop inter­
rupt requests from devices with lower priority on the daisy chain.

The interrupt protocol on the daisy chain is illustrated in the state dia­
gram of Fig. 6.B. In the quiescent state (no interrupts being asserted or ser­
viced), each device on the chain passes its lEI input to its lEO output. Thus
each device sees a high level on its lEI input and is free to request servicing
by asserting an interrupt. When a peripheral does need servicing, it can inter­
rupt the CPU by pulling the interrupt line low only if that device's lEI input
is high and no interrupt acknowledge cycle is taking place (as signaled by the
appropriate status at the last rising edge of AS). When a device asserts an in­
terrupt, its lEO line is not pulled low; lEO continues to follow lEI until the
interrupt is acknowledged.

Sometime after the peripheral pulls the interrupt request line low, the
CPU will respond with an interrupt acknowledge cycle. The delay between
the interrupt request and the acknowledge will depend on the length of the
current instruction being executed; interrupt inputs are sampled during the
last machine cycle of every instruction. When the interrupting peripheral

Peripheral I nterrupt Daisy Chain

lEI AND
INTACK HIGH

OS LOW
lEI HIGH

lEI HIGH

lEI OR
INTACK LOW

HIGHER-PRIORITY '-------<.... DEVICE ACKNOWLEDGED
LET IEO=IEI

lEI LOW

Figure 6.8 Interrupt daisy-chain
protocol.

87

sees an active acknowledge signal (the status lines are guaranteed valid at the
rising edge of AS during Tl of the acknowledge cycle), it pulls its lEO out­
put low and releases the interrupt request line. When DS goes low later in
the acknowledge cycle, the peripheral examines its lEI input. If lEI is high,
the device accepts the acknowledge, and, if desired, places an identifier on
the bus (a vector in the case of vectored interrupts) before DS rises. The de­
vice is now under service.

While the service routine for a peripheral is being executed, that periph­
eral will continue to hold its lEO output low, thereby preventing lower­
priority devices on the daisy chain from requesting service via an interrupt.
However, higher-priority devices can still assert interrupts; a peripheral knows
that a higher-priority device on the daisy chain has preempted its service rou­
tine by asserting an interrupt if its lEI input goes low. When the servicing of
a peripheral is completed, the peripheral returns to the quiescent state,
wherein its lEO output follows its lEI input. [For Z8000 family peripherals,
the CPU signals the peripheral that service is complete by resetting a bit
called the interrupt-under-service bit in one of the peripheral's internal regis­
ters. This requires an I/O write to the peripheral at the end of the service

88 Interrupts, Traps, and Resets Chap. 6

routine (that is, immediately before the interrupt return), as described in
Chapter 12.]

For example, suppose that peripheral device C in Fig. 6.7 requires ser­
vicing from the CPU. If device C's lEI and INTACK inputs are both high, it
can request the CPU's attention by pulling the interrupt line low. Sometime
later, when the CPU enters the acknowledge cycle, device C will receive an
active INT ACK signal. Device C now pulls his lEO output low. When DS
goes low, device C samples its lEI input. If lEI is low, then either device A
or device B also asserted an interrupt before this acknowledge cycle began,
saw the acknowledge, and pulled its lEO low; in this case, the higher-priority
device accepts the acknowledge, and device C should let lEO follow lEI, wait
until its lEI is high again, and then reassert the interrupt request. If device
C's lEI input is high when DS goes low during the acknowledge cycle, device
C is the highest-priority device requesting service, and is free to place an
identifier or vector on the bus during this acknowledge cycle. While device C
is being serviced, its lEO line is held low, preventing device D from making
an interrupt request.

For this daisy-chain protocol to work properly, the delay in the inter­
rupt acknowledge cycle between the rising edge of AS (acknowledge status
valid) and the falling edge of DS (a device samples its lEI and accepts the
acknowledge) must be long enough to allow a change in the lEO from the
highest-priority device to propagate to the lEI of the lowest-priority device
on the daisy chain. In other words, the lEI/lEO daisy chain must settle com­
pletely between the rising edge of AS and the falling edge of DS during the
acknowledge cycle. For long daisy chains, this may require the addition of
externally-generated wait states in the acknowledge cycle.

This type of priority arrangement of the peripherals via a hardware con­
nection is called an interrupt-under-service daisy chain; devices on the chain
are not permitted to request interrupts if a higher-priority device is being ser­
viced. No separate priority control devices are needed; the priority of a
given peripheral is determined solely by its physical position on the daisy
chain. Four signals are required to implement the daisy chain for each
Z8000 interrupt type: INT, INTACK, lEI, and lEO. These four lines can be
replicated for each of the three interrupt types supported by the Z8000 CPU.

INTERRUPT ACKNOWLEDGE CYCLE

The interrupt acknowledge cycle is entered in response to an externally
generated exception condition, that is, an interrupt or segmentation trap.
This acknowledge cycle is used to identify the highest-priority device on an
interrupt-under-service daisy chain, as described above, and to allow the CPU
to receive an identifier word, which is saved on the stack with the program
status of the interrupted task.

Figure 6.9 shows the timing of the interrupt acknowledge machine

co
(g

~
LAST MACHINE~ INSTRUCTION
CVCLEOF ANY-- FETCH IF1 --.+-1.~-------------
INSTRUCTION (ABORTED)

CLOCK~ ~ •••• T'

WAIT

is 1\..r
V1, Nv1, SEGT \ ~ C

iiiii~ IMTER~ !.-SAMPLE

MMI

AlW

B/Wn
STO-ST3~

I

~----+-----------------------------~

AD

MREQ

Figure 6.9 Interrupt acknowledge timing.

------=--WAIT CYCLES ADDED

90 Interrupts, Traps, and Resets Chap. 6

cycle. The interrupt and segmentation trap inputs to the CPU are sampled at
the beginning of T3 of the last machine cycle of each instructions' execu­
tion. The VI, NVI, and SEGT inputs are level triggered; that is, the input pin
must be low when sampled for the CPU to recognize the interrupt or trap re­
quest. The NMI is edge triggered; a negative edge on this input sets an NMI
flip-flop internal to the CPU. This flip-flop is examined to determine if an
NMI request is to be serviced. (Setup and hold-time requirements for these
inputs are given in the AC timing characteristics chart in Appendix A.)

If an interrupt or trap condition is detected, the Z8000 will start the
next instruction fetch, but this fetch will be abandoned before completion.
All of the proper address and status information for the next instruction
fetch will appear in Tl, and the AS is pulsed. However, no active DS signal
is generated, the instruction is never read from memory, and the PC is not
updated. The CPU spends seven clock periods in this abandoned instruction
fetch cycle; during this time, the CPU is resolving priority among compet­
ing events if more than one exception condition was detected, and decre­
menting the implied system stack pointer in preparation for saving the inter­
rupted task's program status.

This abandoned instruction fetch cycle is followed by the actual inter­
rupt acknowledge cycle. The CPU always switches to the system mode, and,
for the Z8001, the segmented mode at the start of the acknowledge cycle.
The CPU remains in these modes until it begins to execute the service rou­
tine. During Tl of the acknowledge cycle, all status signals, including the ap­
propriate acknowledge code on the STO-ST3 lines (Table 6.2), are output
and guaranteed valid at the rising edge of AS. The contents of the address/
data bus are undetermined at this time; that is, no meaningful address infor­
mation is output. MREQ is high, B/W is low, and R/W is high, indicating that
the CPU is going to read a word from the interrupting device later in this
cycle. During T2, the address/data bus is tri-stated by the CPU in anticipa­
tion of reading data placed on the bus by an external device in T3. Five
wait states are automatically included in the interrupt acknowledge cycle.
Assuming there are no externally-generated wait states, DS is lowered during
the fourth wait state. The lEI/lEO daisy chain should be settled by this
time; for Z8000 family peripherals, this normal timing would allow chains of
about 10 devices. After the fifth automatic wait state, the T3 state is en-

TABLE 6.2 STATUS CODES FOR INTERRUPT
AND TRAP ACKNOWLEDGMENTS

ST3-STO

0100
0101
0110
0111

Acknowledge type

Segment trap acknowledge
Nonmaskable interrupt acknowledge
Nonvectored interrupt acknowledge
Vectored interrupt acknowledge

Interrupt Acknowledge Cycle 91

teredo The contents of the address/data bus are read by the CPU on the fall­
ing edge of the clock in the middle of T3. T4 and T5 clock periods are ap­
pended to this transaction, and are used internally to load the identifier read
off the bus into a temporary storage register in the CPU. Thus the interrupt
acknowledge machine cycle is always at least 10 clock cycles long.

The word of data read during T3 of the acknowledge cycle is the iden­
tifier word that is later saved on the system stack as part of the exception
processing. Thus an interrupting device can send up to 16 bits of status in­
formation to the CPU as part of the acknowledge cycle. For vectored inter­
rupts, the CPU uses the lower half of this word (the bits returned on the
ADO-AD7 bus lines) as the interrupt vector. In the Z8001, the CPU will al­
ways set bit 0 of the vector to 0, regardless of the value returned during the
acknowledge cycle, thereby guaranteeing that only even vector values are
used when indexing into the Program Status Area. If several devices are con­
nected on a daisy chain for the NMI or NVI interrupt inputs, the identifier
word typically is used in the service routine to identify the device that as­
serted the interrupt. Of course, the peripheral does not have to return an
identifier word during the acknowledge, except for vectored interrupts,
where a vector is always required.

Additional wait states can be added to the interrupt acknowledge cycle
by pulling the CPU's WAIT input low. During the middle of the third auto­
matic wait state (before DS goes low), the WAIT input is sampled; if WAIT
is active, an additional wait state is added before starting the clock period
wherein DS goes low (Fig. 6.10). During that additional wait state, the
WAIT input is again sampled, and further additional wait states are added
until WAIT returns high. Therefore, the delay between the rising edge of AS
and the falling edge of DS during the interrupt acknowledge can be arbitrar­
ily long, allowing time for long lEI/lEO daisy chains to settle. Once DS goes
low and the highest priority device that requested an interrupt has been se­
lected, the WAIT input is again sampled during the last automatic wait state
before T3. Additional wait states can be inserted here to allow the selected
device additional time to place its identifier word or vector on the bus. Thus

T,

CLOCK

ADo-AD7 -I-''---+--

INTACK

AS

OS I

WAiT -j---~----r--1---

Tw Tw Tw

"""T"""""T

WAiT SAMPLED
TO EXTEND

VECTOR ACCESS
TIME

/ READ
(VECTOR

Tw ~ Tw (T3

_____ .I , __

Figure 6.10 Wait states in the in­
terrupt acknowledge cycle.

92 Interrupts, Traps, and Resets Chap. 6

externally-generated wait states can be added at two points in the interrupt
acknowledge cycle-before DS goes active, to allow time for long daisy
chains to settle, and during DS active, to allow time for the selected device
to place an identifier on the bus (Fig. 6.10).

Immediately following the acknowledge cycle, the CPU executes several
memory access cycles. The program status information for the interrupted
task is pushed onto the system stack in the following order: the PC offset,
the PC segment number (Z8001 only), the FCW, and the identifier word.
The new program status is read from the Program Status Area pointed to by
the PSAP and loaded into the CPU's program status registers. All of these
accesses are made in the system mode and, for the Z8001, the segmented
mode. Then execution of the service routine is begun.

INTERRUPT RESPONSE TIME

Interrupt response time in a Z8000 system is dependent on the length of the
instruction being executed when the interrupt occurs. If the interrupt
occurs immediately after interrupts are sampled during the last machine
cycle of an instruction, another complete instruction must be fetched and
executed before interrupts are sampled again. Thus the maximum possible
delay between an interrupt and its servicing depends on the longest instruc­
tion executed during interruptible portions of all programs in the system.
Some Z8000 instructions can take relatively long times to execute; for ex­
ample, the Divide Long (DIVL) instruction can take up to 749 clock cycles
to execute in segmented mode. In systems where interrupt response time is
critical, instructions such as DIVL should be avoided. (The Z8000 has sev­
eral assembly language instructions that automatically repeat a given process
for a set number of times, such as the block move instructions. These
instructions are interruptible between each iteration of the instruction's
execution.)

Once the interrupt has been sampled and the current instruction has
completed, the remaining response time can be calculated. Table 6.3 lists
the number of CPU clock cycles needed for each step of interrupt processing,
excluding any externally-generated wait states during the interrupt acknowl­
edge and memory access machine cycles. Thus the Z8001 takes at least 44
clock cycles from the end of the instruction being executed when the inter­
rupt was sampled until the beginning of the fetch of the first instruction of
the service routine. For the Z8002, at least 38 clock periods are required.
Servicing of internally-generated traps (extended instruction, privileged
instruction, and system call) requires 10 fewer clocks; the timing is similar
except that the interrupt acknowledge cycle is not included in the response
to an internal trap condition.

System Call Instruction

TABLE 6.3 TIME REQUIRED FOR INTERRUPT AND
SEGMENTATION TRAP PROCESSING

Event CPU clock periodsa

Aborted instruction fetch cycle
Interrupt acknowledge cycle
Push PC offset on system stack
Push PC segment numberb

Push FCW
Push identifier word
Fetch new FCW from Program Status Area
Fetch new PC segment numberb

Fetch new PC offset

a Assumes no externally-generated wait states.
bZ8001only.

SYSTEM CALL INSTRUCTION

7
10

4
3
4
7
3
3
3

93

Execution of the System Call (SC) instruction causes the CPU to process the
system call trap. This instruction allows normal-mode programs to force ex­
ecution of the service routine for the system call trap. This service routine
could be a part of the operating system that performs system-mode type op­
erations such as I/O for the normal-mode user.

The opcode for the SC instruction is one word long, where the upper
byte is an EF (hex) and the lower byte is an immediate operand from 0 to
255 as specified by the programmer (Fig. 6.11). The entire SC opcode ap­
pears on the system stack as the identifier word during status saving for the
system call stack (Fig. 6.12). The system call trap routine can read the iden-

STACK POINTER
AFTER TRAP
OR INTERRUPT

STACK POINTER
BEFORE TRAP
OR INTERRUPT

sc

src
I

BYTE

Figure 6.11 System call opcode.

Z8002 LOW ADDRESS

INSTRUCTION

FCW

PC

_1 WORD __

SPAFTER~

SP BEFORE ___

HIGH ADDRESS

Z8001

INSTRUCTION

FCW

PC SEGMENT

PC OFFSET
1--------

f-------

---1 WORD--

Figure 6.12 Saved program status for a system call trap.

94 Interrupts, Traps, and Resets Chap. 6

tifier from the stack, and use it to define the action to be taken. In other
words, a byte of data can be passed from the normal-mode program to the
system call service routine in the ope ode of the SC instruction itself. The
service routine might use this byte parameter to determine the type of ac­
tion that the normal-mode user is requesting via the system call. Thus the
operating system could be written so that normal-mode users can use the sys­
tem call to request anyone of up to 256 actions available in the system call
service routine.

SERVICE ROUTINES

When executing service routines, care must be taken not to change memory
or register locations that, if altered, could prevent a successful return from
the interrupt or trap. Before entering the service routine, the program status
of the interrupted task is placed on the system stack using the implied stack
pointers (R15 in the nonsegmented mode, RR14 in the segmented mode).
The Interrupt Return (lRET) instruction is used to clear this information on
the stack and return to the interrupted task at the end of the service routine.
Therefore, the implied stack pointer must have the same value when the
IRET is executed as it had when the service routine began. If the identifier
word on the stack is to be accessed in the service routine via a pop of the
stack, a word must be pushed back onto the stack to restore the stack
pointer to its starting value. (The IRET must be executed in the segmented
mode in the Z8001, as discussed previously.) Of course, the interrupted task's
program status information on the stack cannot be altered if the interrupt task
is to resume precisely where it was interrupted. Registers and memory loca­
tions that were being used by the interrupted task should not be uninten­
tionally altered by the service routine. In short, execution of the interrupted
task should produce the same results as if the task were not interrupted.

Often, a service routine will load all of the registers' contents into mem­
ory locations reserved for that purpose at the start of the service routine, use
the registers, and then restore the original register contents before returning
to the interrupted task. The Load Multiple (LDM) instruction in the Z8000
allows the user to store all of the general-purpose registers' contents into
consecutive memory locations or fill all the registers from consecutive mem­
ory locations with one instruction.

If the system distinguishes between system-mode and normal-mode
memory address spaces, the operating mode of the service routine will deter­
mine which memory areas can be accessed by that routine. If the service
routine needs to read the identifier word from the system stack, that part of
the routine will have to operate in the system mode. Segregated memory ad­
dress spaces can affect parameter passing to a service routine. When a nor­
mal-mode program executes a system call, for example, 1 byte of data is

Halt Instruction 95

passed in the identifier word, as described above. If more data need to be
passed in memory locations (such as a file to be output to a peripheral by the
system call service routine), that memory would have to be accessible by
both the normal-mode program, which sets up the data and makes the sys­
tem call, and the system-mode service routine, which is to read the data.
Therefore, for such a scheme to work, the system- and normal-mode mem­
ory address spaces must have some common memory locations (see Chapter 3).

HALT INSTRUCTION

CLOCK,!>

NIS SN6:0 }

AD15:0

DS

MREQ

ST3:0

INTERNAL

NMI

The HALT instruction is a privileged instruction that suspends CPU opera­
tion until an exception condition occurs. Execution of a HALT puts the
CPU in a continuous string of three-clock-period internal operation machine
cycles (Fig. 6.13). (If automatic memory refresh is enabled, refresh cycles

--8------

IF1 REFRESH CODE INTERNAL IF1

T1-T2-T3-T4-T5 T1~T2-T3 - -T1-T2-T3 T1~T2~T3 T1- T2

'Refresh occurs on demand

Figure 6,13 HALT instruction timing.

RESET

96 Interrupts, Traps, and Resets Chap. 6

will be inserted as often as specified by the refresh rate counter portion of
the refresh register.) The CPU remains in this state until an interrupt, seg­
mentation trap, or reset occurs. After the exception is serviced, execution
will resume with the instruction following the HALT. Typically, the HALT
instruction is used to synchronize CPU operation with external events.

Execution of the HALT command consists of a five-clock instruction
fetch cycle, followed by successive three-clock-period internal cycles (with
refresh cycles inserted as dictated by the refresh register). At the start of T3
of each cycle, the interrupt and SEGT inputs are sampled. If an interrupt or
SEGT is detected, the exception is processed in the normal fashion, with an
acknowledge cycle, status saving, fetching of new program status, and execu­
tion of the service routine. The value of the PC that is saved during program
status saving is the address of the instruction following the HALT. Thus the
return from the service routine will return to the first instruction after the
HALT. In this manner, the HALT can be used to stop program execution
and resume it again based on some externally generated input.

HALT instructions also can be used to synchronize Z8000 CPUs in a
multiple-processor system. The HALT instruction would be placed at the
point in each processor's code where synchronization is desired. Before each
HALT, an I/O instruction could be used to inform external hardware that
the HALT has been reached. When all the processors have reached their
HALT instruction, the external logic generates a pulse on an interrupt in­
put to each processor, and they all resume program execution.

A hardware reset occurs at the end of any clock cycle when the RESET in­
put to the CPU is low. The RESET input must be held low for at least five
CPU clock cycles to initialize the CPU properly. A reset overrides all other
considerations, including interrupts, traps, bus requests, and STOP inputs.
Reset should be used to initialize the CPU as part of the system's power­
up sequence.

Reset timing for the Z8002 is illustrated in Fig. 6.14. Within five clock
cycles after RESET goes low, the address/data bus is tri-stated by the CPU;
the AS, DS, MREQ, MO, BUSACK, and STO-ST3 signals are forced high; the
SNO-SN6 segment number output goes low, and the R/W, B/W, and N/S lines
are undefined (that is, they might be high or low). Three clock periods after
RESET returns high, memory read cycles are executed in the system mode
and the values read during those read cycles are loaded into the program
status registers.

For the Z8002, two read cycles are executed; the first read fetches a
word from memory location 2 (that is, 2 is the address emitted during T1 of
the memory read) and loads it into the FCW, and the second read fetches a

I

<f 8
-;l., -

~
w

8
---::x;---

~
~)..

0

Ii

""

l!a Ii I~

<f

~

-

V

..
on
o ..

on

-

"-

.,/

on
z

I--- --- -----

'" --~- --

I~

oil
!:::

:§,
....,
Q)
<n
Q)
I-<

C'l
0
0
00
N
-.::I'
.-4

cD
~
~
1£

II Ii

97

98

Z8002 Z8001

~-~- LOCATION 2 ---I-_PC_:_E:_:E_N_T ---'I

~ 'CO"",

I nterrupts, Traps, and Resets Chap. 6

Figure 6.15 Memory locations ac­
cessed during a reset.

word from location 4 and loads it into the PC. These FCW and PC values are
the program status for the first routine to be executed after the reset. Figure
6.14 shows the timing of these fetches, assuming that no active WAIT signals
are generated during these memory accesses. The next machine cycle follow­
ing these two reads will be an instruction fetch from the address loaded into
the PC, under the operating modes specified in the FCW.

For the Z8001, three memory reads are executed as part of the reset
sequence; the starting FCW is fetched from segment 0, location 2, the seg­
ment number for the initial PC value is fetched from segment 0, location 4,
and the PC's offset is fetched from segment 0, location 6 (Fig. 6.15). The
following machine cycle is the instruction fetch that starts the execution of
the program at the address loaded into the PC, under the operating modes
specified in the FCW.

These initial fetches of the FCW and PC values after a reset are made
from the system-mode program memory address space (1100 status on STO­
ST3). These values in memory must be present at power-up, and, therefore,
are implemented in nonvolatile memory (ROM or PROM). Since the first six
memory locations for the Z8002 and the first eight locations in segment 0
for the Z8001 are dedicated to holding the program status values for a reset
condition, these areas cannot be used as part of a Program Status Area. In
other words, the Program Status Area cannot start at address 0 in a Z8002
system or segment 0, address 0 in a Z8001 system.

After a reset, the contents of all the CPU registers are undefined, except
for the PC and FCW, and bit 15 of the refresh register. Bit 15 (the enable
bit) of the refresh register is cleared to 0 by a reset, thereby turning off the
automatic memory refresh mechanism. All interrupt and segmentation trap
inputs are ignored during the reset processing, and any pending NMI requests
are cleared (that is, the internal NMI request flip-flop is cleared). Interrupts
are not sampled until the last machine cycle of the first instruction executed
after the reset.

INITIALIZATION ROUTINES

After a reset, the first software program executed should be a routine that
initializes the CPU control registers used in that system. The implied stack
pointers (RR14 in the segmented mode, R15 in the nonsegmented mode)

Other Context Switches 99

must be initialized before the system processes interrupts, traps, or subrou­
tine calls. The Program Status Area Pointer (PSAP) and Program Status Area
must be initialized before interrupts or traps can be handled properly. (Often,
Program Status Areas are implemented in nonvolatile ROM or PROM, so ini­
tialization is not required each time a reset occurs.) If automatic memory
refreshes are needed for dynamic memories in the system, the rate and en­
able portions of the refresh register must be initialized.

An important practical consideration for Z8000 system initialization
is the potential for a nonmaskable interrupt request shortly after a reset.
Since the NMI cannot be disabled, the system must be ready to handle an
NMI at any time. This is not possible, of course, since a finite amount of
time is needed after a reset to initialize the implied stack pointer and PSAP,
even if the Program Status Area is in ROM. An active NMI input before
these initializations would be mishandled. Therefore, hardware external to
the CPU is needed to delay NMI requests until after initializations are com­
pleted. This is true for any processor having a nonmaskable interrupt.

OTHER CONTEXT SWITCHES

Other Z8000 instructions besides the System Call can cause "context
switches," in that they affect the program status registers. The Load Control
(LDCTL) instruction can be used to load the FCW, thereby changing the
CPU's operating modes. The Disable Interrupt (DI) and Enable Interrupt
(EI) instructions change just the vectored and nonvectored interrupt enable
bits in the FCW.

Complete context switches can be made with the Load Program Status
(LDPS) instruction. This instruction loads a new FCW and PC from an area
in memory that is formatted in the same manner as one block of the Pro­
gram Status Area. In the nonsegmented mode, an FCW and PC value are
loaded from memory; in the segmented mode, a reserved word, FCW, PC
segment number, and PC offset address are loaded from memory (Fig. 6.16).
These fetches are made from the data memory address space (1000 status on

NONSEGMENTED LOW ADDRESS
SEGMENTED

FCW

PC FCW

PC SEG. NO.

HIGH ADDRESS PC OFFSET

Shaded area is reserved-must be zeros.

Figure 6.16 Format of memory locations read during LDPS instruction
execution.

100 I nterrupts, Traps, and Resets Chap. 6

STO-ST3}. The new value of the FCW does not become effective until the
next instruction, so the status pins will not be affected by the new control
bits until the LDPS instruction execution is completed. The next instruction
executed is the instruction addressed by the new PC value.

Old program status is not saved by the LDPS instruction, meaning that
this is a way of permanently switching program status. The LDPS instruc­
tion is useful for initiating normal-mode users' programs from the operating
system, or for running a nonsegmented program on a Z8001. The segment­
number portion of the PC is not affected by an LDPS instruction executed
in the nonsegmented mode.

Of course, the LDCTL, EI, DI, and LDPS instructions are all privileged
instructions that can be executed only during system-mode operation.

7

Bus and Resource Sharing

Besides interrupt requests, two other request buses can be used to control
the sharing of resources in Z8000 systems. The address/data bus and its as­
sociated control and status signals are a resource that might be shared be­
tween processors and direct memory access (DMA) devices. Bus requests
are made to the CPU when another device requires control of the bus; the
Z-Bus bus request daisy chain allows multiple devices to share use of the bus
in a well-defined manner. In multiprocessor systems, resources such as mem­
ory and I/O devices often are shared by two or more processors. For ex­
ample, two separate Z8000-based systems might share a hard disk storage de­
vice, where only one processor may access the disk at a time. The Z-Bus
multiprocessor resource sharing daisy chain defines the protocol for sharing a
single resource among multiple Z8000 processors. Use of a hardware daisy­
chain scheme to control bus and multiprocessor resource requests eliminates
the need for separate priority controllers in the system.

BUS REQUESTS

In a given system, a CPU is designated as the default bus master; it uses the
bus to fetch instructions and to transfer data to and from memory and pe­
ripheral devices as required during instruction execution. If another device,
such as a DMA controller, needs to use the bus, that device must request
control of the bus from the CPU.

Typically, bus requests are initiated by DMA controllers in a Z8000

101

CLOCK

"USREQ

INTERNAL
BUSREQ

SN

AD

102 Bus and Resource Sharing Chap. 7

system, where the DMA controllers are used for high-speed data transfers
between memory and I/O devices. A peripheral device that needs servicing
would request service from the DMA controller instead of interrupting the
CPU. The DMA device requests control of the bus from the CPU, awaits
acknowledgment of that request, performs the necessary data transfers, and
then returns control of the bus to the CPU. Using a DMA controller to ser­
vice a peripheral can have two advantages over CPU-controlled transfers be­
tween I/O and memory devices. First, the overhead involved in obtaining
the bus for a DMA transfer via a bus request is less than the overhead in­
volved in processing an interrupt in the CPU. Second, DMA controllers
usually can transfer data between memory and I/O devices more efficiently
(that is, faster) than the CPU. Of course, the bus requestor must use the
address/data bus and its control and status lines in the exact same nlanner
as the CPU to execute data transfers on the bus.

The bus request timing is illustrated in Fig. 7.1. A bus request is initi-

I
, ... ---ANY M CYCLE--~

T, T, TJ

_---BUS AVAILABLE----

Tx Tx Tx Tx Tx Tx

~-- ---- --- ----

~-- ---- ---- ---

r-- ---- --- ---- ---- ----
MREQ.~.--------------------~

STo-ST3. SAME AS PREVIOUS CYCLE
B/W. R/Vi. N/S ______________ --!--'

Figure 7.1 Bus request timing.

Bus Request Priority Daisy Chain 103

ated by pulling the BUSREQ input to the CPU low. The CPU samples this
input at the start of each machine cycle, that is, at the rising edge of thf'
clock of each Tl state. If BUSREQ is low at the start of the machine cycle,
the CPU will relinquish the bus at the end of the bus transaction in that
cycle (in other words, immediately after T3). The CPU gives up the bus by
tri-stating the address/data bus (ADO-AD15), bus control (AS, DS, MREQ),
bus status (N/S, B/W, R/W, STO-ST3), and, for the Z8001, segment number
(SNO-SN6) outputs. The' CPU then pulls the BUSACK output low, signal­
ing that the bus request has been acknowledged. The requesting device is
now free to use the bus to initiate data transfers. For example, a DMA
controller might transfer data between memory and I/O devices while in con­
trol of the bus. The bus requestor returns control of the bus to the CPU by
deactivating the CPU's BUSREQ input. Once the CPU issues an active
BUSACK, it cannot regain control of the bus on its own; it must wait pas­
sively for the bus requestor to return control of the bus to the CPU by rais­
ing BUSREQ. Two clock periods after BUSREQ goes high the CPU will raise
BUSACK and regain control of the bus, with execution resuming at the
point at which it was suspended by the bus request. Any device requiring
control of the bus must wait at least two clock cycles after BUSREQ has
risen (that is, until BUSACK returns high) before pulling BUSREQ down
again.

Bus requests will always be acknowledged within two machine cycles
after BUSREQ is active. Worst-case timing occurs if BUSREQ goes low im­
mediately after the start of a machine cycle; that cycle will be executed,
BUSREQ will be sensed at the start of the next cycle, and the bus request
will be honored after that second cycle's bus transaction. During normal ex­
ecution, the longest machine cycle is the eight-clock-period internal cycle,
assuming that memory and I/O cycles are not longer than 8 clocks due to ex­
ternally-generated wait states). During exception processing, the lO-clock­
period interrupt acknowledge cycle is the longest possible machine cycle
(again, excluding extra wait states). In most systems, worst-case response to
a bus request would occur when the BUSREQ is pulled low right after the
start of the aborted instruction fetch cycle during the response to an inter­
rupt. The seven-clock-period aborted instruction fetch would execute, fol­
lowed by 8 clock periods in the acknowledge cycle (BUSREQ would be
sensed at the beginning of this cycle) before BUSACK would be returned.
Thus the requesting device will always gain control of the bus soon after it
pulls BUSREQ low in Z8000 systems.

BUS REQUEST PRIORITY DAISY CHAIN

If several devices in the system are capable of requesting control of the bus,
these devices will share the BUSREQ input to the CPU. Arbitration be­
tween simultaneous requests from these devices is resolved via a priority

104

CPU

__ BUSREQ_

--BUSACK_

r--BAI­

L--BAO """'-

REQUESTOR

Bus and Resource Sharing Chap. 7

Figure 7.2 Z-Bus signals for bus re­
quests.

daisy chain. Four signals are defined as part of the Z-Bus for handling bus
requests and establishing the daisy chain: bus request (BUSREQ), bus ac­
knowledge (BUSACK), bus acknowledge in (BAI), and bus acknowledge out
(BAO) (Fig. 7.2) ..

Figure 7.3 is a block diagram of the bus request daisy chain. B USREQ
is driven by all bus requestors; a low on this line indicates that a bus re­
questor is trying to gain control of the bus. The BUSREQ signal serves two
purposes: it is used as a CPU input to request control of the bus and as a
status line to other bus requestors, indicating that some bus requestor is re­
questing or has control of the bus. BUSREQ must be bidirectional so that
each device on the chain can monitor the activity of the other devices.
BUSACK is a CPU output indicating that the CPU has relinquished bus con­
trol in response to a bus request. BAI and BAD are the signals that form the
bus request daisy chain.

The protocol of the bus request daisy chain is outlined in Fig. 7.4. In
the quiescent state (no bus requests being made and the CPU bus master has
control of the bus) each device passes its BAI input to its BA5 output. When
a device needs to request control of the bus, it samples the BUSREQ line. A
bus request can be made only if BUSREQ is initially high (that is, the CPU
has control of the bus, and no other device is requesting the bus) and has
been for two clock cycles. The request is made by pulling BUSREQ low.
The requesting device also holds its BAO output high, thereby preventing
bus acknowledgments from propagating to lower-priority devices, as ex­
plained below. The bus requestor gains control of the bus when its BAI in­
put goes low. When the device is ready to return control of the bus to the
CPU, it releases BUSREQ and allows its BAO output to follow its BAI input
(that is, it returns to the quiescent state).

BUS REQUESTORS

_ BAT BAOI---~' BAI BAO 1---'" BAT BAO f---- •••

BUSREQ BUSREO

SDSACK '--

+5V

BUS MASTER CPU

BUSREQ ~--<lo..--_-----__ -----_--

Figure 7.3 Z-Bus bus request daisy chain.

Bus Request Priority Daisy Chain

GUIESCENT STATE
BAO~BAI

LOWER BUSREQ
BAO HIGH

USE THE
BUS

WHEN COMPLETE
RAISE BUSREQ

BAO~BAI

105

Figure 7.4 Bus request protocol.

Unlike the interrupt daisy chain, the bus request daisy chain is non­
preemptive. Once a device gains control of the bus, no other devices on the
chain can make a bus request until control is returned to the CPU, regardless
of their position on the daisy chain. The daisy chain is used only to resolve
the priority of simultaneous bus requests; if two devices request the bus at
the same time, only the higher-priority device will receive the initial bus ac­
knowledge on its BAI line, since the higher-priority device holds its BAO line
high until it relinquishes control of the bus. After the higher-priority device
returns to the quiescent state, the low BUSACK will propagate to the lower­
priority device, that device will then be in control of the bus.

If the automatic memory refresh capabilities of the Z8000 CPUs are
used to refresh dynamic memories, refresh cycles may be missed while DMA

106 Bus and Resource Sharing Chap. 7

devices have control of the bus. The CPU will remember the last two
"missed" refresh row addresses and issue those refreshes immediately after
regaining control of the bus. Care must be taken to ensure that bus request­
ors do not control the bus for a long enough period of time that the dynamic
memory's contents are corrupted due to a lack of refreshes.

SHARED RESOURCE REQUESTS

The Z-Bus also includes signals for implementing a hardware daisy chain for
requesting the use of a resource shared among several Z8000 processors. For
example, several microcomputer systems might share a common disk drive
or high-speed printer, where only one processor can use the shared resource
at anyone time. As each processor requires use of the shared resource, it
must poll that resource to see if it is already being used by another processor.
If not, the processor uses the resource, meanwhile locking out all other pro­
cessors until it is finished. The shared resource could be an I/O device, a
block of memory, or a shared bus.

Four Z-Bus signals make up the shared resource daisy chain: multi­
micro request (MMRQ), multi-micro status (MMST) multi-micro acknowl­
edge in (MMAI), and multi-micro acknowledge out (MMAO) (Fig. 7.5). Fig-

Z·BUS
COMPONENT

--MMRQ_

-MMST--

_MMAI-----,
_ MMAO----.J

MUL TI·MICRO
REQUEST
NETWORK Figure 7.5 Z-Bus signals for sharing

resources in a rn ul tiprocessor sys tern.

ure 7.6 shows a typical configuration of the daisy chain. The MMRQ signal
can be driven by any device that can request use of the shared resource. A
low on this line indicates that a request has been made or granted. The
MMST is an input to each device on the daisy chain that indicates a request
is pending or the shared resource is busy. MMAI and MMAO are the ac­
knowledge signals that make up the daisy chain.

~ /L AI

/LRO

I
I

A

/LAO

/LSI

t

PROCESSORS

B

iJJ.., /LAO

,.,An /LST

liRO /LST

RESOURCE

C

/.lAI ;;:Ao I----

':iRQ
-
/LST

I t
1

Figure 7.6 Z-Bus resource-sharing daisy chain.

Shared Resource Requests

YES

QUIESCENT
STATE

MMAO=MMAI

ACTIVATE
MMRQ
FORCE

MMAO LOW

107

Figure 7.7 M ul ti-microprocessor
resource-sharing protocol.

The protocol of resource requests is illustrated in Fig. 7.7. In the quies­
cent state (the resource is not busy and no requests are being made), each
processor holds its MMRQ high and passes its MMAI input to its MMAO out­
put. If MMST is high the resource is not busy and a device can request use
of the resource by pulling MMRQ low. (Unlike the bus request protocol, no
device on the shared resource daisy chain has control of the resource by de­
fault; every device must request the resource before using it.) Besides pull­
ing MMRQ low, the requesting processor forces its MMAO output high,
denying use of the resource to lower-priority devices on the daisy chain.

108 Bus and Resource Sharing Chap. 7

When the shared resource receives a request (MMRQ goes low), it pulls the
MMST line low. This signal propagates through the MMAI/MMAO daisy
chain until reaching the highest-priority requestor. The requestor samples
its MMAI input some finite amount of time after making the request; if
MMAI is low, the requestor knows it has control of the shared resource. If
MMAI is high, some higher-priority device on the daisy chain saw the ac­
knowledge and is using the resource, so the original requestor returns to the
quiescent state and tries again later. The delay between requesting the
shared resource by pulling MMRQ low and checking for acknowledgment
by sampling the MMAI input must be long enough to allow the MMAI/
MMAO daisy chain to settle. This time would be the sum of the worst-case
MMAI to MMAO propagation delays for each device on the daisy chain.
When the processor that has control of the shared resource is finished using
the resource, it releases the resource by allowing MMRQ to go high and pass­
ing its MMAI input to its MMAO output. The shared resource lets the
MMST line go high if MMRQ is high.

Like the bus request daisy chain, the shared resource request daisy
chain is nonpreemptive. Once a processor gains control of the shared re­
source, no other device on the daisy chain can make a request until the
shared resource is freed again. Priority on the daisy chain is important only
in the case of two simultaneous requests. For example, if processor A and
processor C of Fig 7.6 simultaneously pull their MMRQ lines low, only
processor A will see a low on its MMAI input when it samples for acknowl­
edgment, since processor A will hold its MMAO line high when it makes the
request. When processor A has completed use of the resource, it will return
to the quiescent state, and processor C can reassert its request.

All four lines in the shared resource request daisy chain are unidirec­
tional, allowing the use of line drivers and receivers at each processor on the
daisy chain. Furthermore, the delay for the daisy chain settling time can be
set at each processor. Therefore, the devices on the chain can be separated
by arbitrarily long distances.

A shared resource requestor can be any device capable of implementing
the protocol. For ZSOOO CPUs, the four lines of the resource request daisy
chain are mapped into the multi-micro in (MI) and multi-micro out (MO)
pins of the CPU. The logic for this mapping is shown in Fig. 7.S. During the
quiescent state, the MO output is high; thus the MI input will reflect the
state of the MMST line, and MMAI is gated out to MMAO. MMST (on the
MI input) can be read by the CPU to check the busy status of the resource.
If the resource is not busy, the CPU pulls the MO output low. MMAO is
forced high, and the MMAI signal is now gated to the CPU's MI input. After
waiting for a predetermined delay time, the CPU reads MMAI (on the MI in­
put). If it is low, the CPU knows that the request was successful, uses the re­
source, and sets MO high when completed. If MMAI is high when read, the
request was not successfully acknowledged, and the CPU will set MO high

Shared Resource Requests 109

10-------- MMST

MI '-----.L:::-------.. MMST. MMAI

M ~ c:>----.... : :::: >-----MMRQ

~.--------~

)0---- MMAO

HIGHEST-PRIORITY PROCESSOR ON DAISY CHAIN ALL OTHER PROCESSORS ON DAISY CHAIN

Figure 7.8 Logic for mapping the Z-Bus resource-sharing signals to the
Z8000 CPU MO and MI pins.

and repeat the request later. (Alternatively, a 74LS157 multiplexor can be
used in place of the combinational logic of Fig. 7.8, as illustrated in Fig. 7.9.)

If this configuration is used, one Z8000 instruction, the Multi-Micro
Request (MREQ), will implement the whole protocol described above. The
MREQ instruction has a 16-bit register as an operand. The contents of the
register specified as the operand in the instruction will determine the delay
between asserting the MMRQ and sampling the MMAI lines. After comple­
tion of the MREQ instruction, the Sand Z flags in the FCW indicate whether
or not the shared resource is available. Execution of the MREQ instruction is
diagrammed in Fig. 7.10. First, the Z flag is cleared, and then the MI input
is tested. If MI is low, indicating that MMST is low and the shared resource is
busy, the S flag is cleared and MO remains high (no request is made). If
MI is high, then MO is pulled low (MMRQ goes low) to initiate a request.
Next, the contents of the register operand are decremented every seventh
CPU clock cycle, until reaching zero. Then the MI input is sampled again,
and the Z flag is set. If MI is high (MMAI high) the S flag is cleared and the
MO line is pulled high (the request was not acknowledged). If MI is low, the
S flag is set to 1, and the CPU now has control of the shared resource. Thus,

MO

MI

~
En

Ao

'''l
A,

6 0

6,

Select

ZA I---

74LS157

ZB

MMRQ

MMAO

Figure 7.9 Mapping Z-Bus resource­
request signals to a Z8000 CPU using
a 2-to-l mUltiplexer.

110

RESET S FLAG
SET ;;W

RESET ZFLAG

SET S FLAG

RESET MO

DECREMENT
REGISTER

(EVERY SEVENTH
CPU CLOCK)

SET Z FLAG

RESET S FLAG
SET MO

Bus and Resource Sharing Chap. 7

Figure 7.10 Execution of the
MREQ instruction.

after execution of the MREQ, the Z flag indicates if a request was made, and
the S flag indicates if the request was granted (Table 7.1). Another instruc­
tion, Multi-Micro Set (MSET), is used to write a 1 to MO after the CPU com­
pletes its use of the shared resource.

Two other instructions act on the MO and MI pins. The Multi-Micro
Bit Test (MBIT) instruction reads the MI input and sets or resets the S flag if
MI is high or low, respectively. The Multi-Micro Reset (MRES) instruction
writes a 0 to the MO output. Thus MSET, MRES, and MBIT could be used
to implement other, user-defined resource-sharing protocols, if so desired. If
the system does not use the MI and MO pins for shared resource requests,
they can be used as a single bit of input and output for other purposes.

TABLE 7.1 MEANING OF FLAGS AFTER THE
EXECUTION OF A MREQ INSTRUCTION

S flag Z flag MO Indicates

0 0 High Request not signaled
(resource not available)

0 1 High Request not granted
(resource not available)

1 1 Low Request granted
(resource available)

-------PRIMARy SIGNALS-------

BUS
MASTER

EXTENDED ADDRESS

STATUS;
---AS-
---05-
---R/W_
---B/W-
_WAIT--­

RESET

ADO-AD15~&CS EXTENDED ADDRESS DECODE
STATUS

CPU

CPU

BUS REQUEST SIGNALS

<Of----BUSREO-

--BUSACK-

C=BAI-
BAO_

INTERRUPT SIGNALS

_INT---

STATUS> INTACK
DECODE

~IEI_ L--
1EO

_

PERIPHERAL
AND MEMORY

REQUESTER

PERIPHERAL

RESOURCE REQUEST SIGNALS ----­

---MMRO_

Z·BUS
COMPONENT

-MMST--­

_MMAI-----,

_MMAO-----.J

MUL TI·MICRO
REQUEST
NETWORK

Figure 7.11 Z-Bus signals.

111

112 Bus and Resource Sharing Chap. 7

If the MO and MI pins are not used in the system at all, the MREQ
instruction can be used to produce long, uninterruptible software delays.
Execution of the MREQ instruction takes 10 + 7n clock cycles, where n is
the contents of the word register specified as the operand in the MREQ
instruction.

Z-BUS SIGNALS

All of the signals comprising the Z-Bus interface have now been discussed
(Fig. 7.11). In review, the Z-Bus is a logical definition of the signals needed
to link Z8000 family components in a computer system. Two kinds of
operations can occur on the Z-Bus: transactions and requests. Four kinds of
transactions are possible: memory, I/O, interrupt acknowledge, and null.
(Null transactions occur during internal operation and memory refresh
cycles, wherein no data are being transferred.) Only one transaction can
occur at a time and it must be initiated by a bus master, that is, the device in
control of the bus. There are three types of requests: interrupt, bus, and
shared resource. A request can be initiated by a component that is not the
bus master. For each type of request, a daisy-chain priority mechanism pro­
vides arbitration between simultaneous requests, eliminating the need for
separate priority controllers.

Data transfers on the Z-Bus are asynchronous in the sense that Z-Bus
components need not be synchronized with the CPU clock. The timing of
data transfers is controlled by the AS! DS, and WAIT signals.

8

The Instruction Set

One feature of the Z8000 CPU architecture that sets it apart from previous
generations of microprocessors is its large, powerful instruction set. The in­
struction set for the Z8000 includes 110 distinct instruction types. Many of
these instructions act on byte, word, or long-word data operands. The oper­
ands in an instruction are specified using one of the Z8000's eight addressing
modes. Combining the instruction types with the various data types and op­
erand addressing modes supported by each instruction yields a set of over
400 different instructions.

The Z8000 CPUs have a full complement of data movement, arith­
metic, logical, bit manipulation, rotate, shift, and I/O instructions. Instruc­
tions are included to manipulate strings of data, to facilitate multitasking
operating systems, and to support typical high-level-language functions.
When coupled with the other architectural features of the Z8000, such as the
large memory address spaces, the Z8000 programmer is provided with com­
puting power formerly available only on large mainframe computers.

ASSEMBLY LANGUAGE CONVENTIONS

Examples of assembly language instructions in this book will be written
using the format accepted by the Zilog PLZ/ASM assembler. (PLZ/ASM is
Zilog's structured assembly language that combines the assembly language
instructions with some high-level constructs, allowing the programmer to
write program code in a top-down, modular fashion.) Some of the conven-

113

114 The Instruction Set

TABLE 8.1 EXAMPLES OF ASSEMBLY LANGUAGE
STATEMENTS IN PLZ/ASM

Label

START:
Loop:

Instruction
mnemonic

LD
OUT
INCB
NOP

Operands

RO, R2
50, R5
RL7

Comments

! contents of R2 written to RO !
! output R5 contents to port 50 !
! increment register RL7 by 1 !
! no operation !

Chap. 8

tions for writing code in the PLZ/ ASM language are described here, so that
the programming examples shown in this chapter will be easily understood.

Table 8.1 illustrates some statements written in PLZ/ASM. A state­
ment consists of an assembly language instruction, the instruction's oper­
ands, and optionally, label and comment fields. Each of these fields must be
separated by at least one delimiter; legal PLZ/ ASM delimiters include spaces,
commas, tabs, semicolons, carriage returns, line feeds, and form feeds. Sev­
eral delimiters in a row are treated the same as just one delimiter. Each as­
sembly language instruction is denoted by that instructions's mnemonic; for
example, LD is the mnemonic for the Load instruction. Z8000 instructions
may have anywhere from zero to four operands, depending on the instruc­
tion; in the case of multiple operands, the operands must be separated by
delimiters. Labels are placed before the instruction's mnemonic, and are
always followed by a colon. Comments may be placed anywhere that a delim­
iter may appear, and are enclosed in exclamation points. Labels and comments
are always optional and are added by the programmer to make the program
easier to read, maintain, and debug.

Often, symbolic names are used to represent particular memory loca­
tions or numeric constants in PLZ/ ASM. These symbolic names, also called
identifiers, are made up of alphabetic characters (both upper- and lowercase
which are distinct), the digits 0 through 9, and the underline character (_).
Symbolic identifiers can be up to 127 characters long, and must start with an
alphabetic character.

Numbers can be written in decimal, hexadecimal, octal or binary nota­
tion, as shown in Table 8.2. A number without any prefix is interpreted as a
decimal number, the "%" prefix designates a hexadecimal number, the "%(8)"

TABLE 8.2 REPRESENTATION OF NUMERIC

CONSTANTS IN PLZ/ASM

Decimal Hexadecimal Octal Binary

10 %A %(8)12 %(2)1010
17 %11 %(8)21 %(2)10001

255 %FF %(8)377 %(2)11111111

CPU Register Usage 115

prefix designates an octal number, and the "%(2)" prefix designates a binary
number.

When writing segmented addresses, the segment number is preceded by
two "<" symbols and followed by two ">" symbols. The offset would fol­
low immediately. For example, "«5»20" means segment 5, offset
address 20 (the 5 and 20 are both decimal values in this case).

The general-purpose CPU registers are designated as follows: RO-R15
for the word registers; RHO-RH7 and RLO-RL7 for the byte registers; RRO,
RR2, and so on, through RR14 for the long-word registers; RQO, RQ4, RQ8,
and RQ12 for the quad registers.

As with most assembly languages, the destination operand is placed
before the source operand. Thus the statement

LD RO, R2

means that the contents of register R2 are to be written into register RO.
Some other assembler conventions, such as the designation of the operand
addressing mode, will be described later.

CPU REGISTER USAGE

The 16 general-purpose CPU registers can each be used as an accumulator
(the register holds the result of an artithmetic or logical operation), a pointer
(the register holds a memory or I/O address), or an index (the register holds
a value that is added to a base address to produce a memory address), with
some minor exceptions. Register RO cannot be used to hold a nonsegmented
memory address, an I/O address, or an index, and RRO cannot be used to
hold a segmented memory address. Registers R15 in nonsegmented mode
and RR14 in segmented mode are the implied stack pointers for subroutine
calls and exception processing and, therefore, usually are not used as ac­
cumulators or indexes.

Nonsegmented memory addresses and I/O addresses are always 16 bits
long and can be stored in any word register except RO. Segmented addresses
are 23 bits long, and can be stored in any register pair except RRO. When
storing a segmented address in a long-word register, the segment number is
placed in bits 8-14 of the high-order word register of the register pair, and
the offset address is stored in the low-order word register (Fig. 8.1).

The general philosophy of the instruction set is to have two operand in­
structions, with a register, memory location, I/O port, or immediate value

I ~ !" "OMeNT' • !: , , , , , , : I ".
_ . : : : : : ?FFSE~ : : : : : : RN + 1

15 0 N = 2.4 14

Figure 8_1 Format for storing seg­
mented addresses in long-word reg­
isters.

116 The I nstruction Set Chap.S

for the source operand and a register as the destination. Thus most arithmetic,
logical, shift, and rotate instructions have a register as the destination. Input
instructions use a register for the destination and output instructions use a
register for the source. Storing data in the registers allows shorter instruc­
tions and faster execution than when operands must be fetched from mem­
ory. However, some memory-to-memory and I/O-to-memory commands are
included to improve program density; these commands normally are used to
manipulate entire strings of data.

LONG AND SHORT OFFSET ADDRESSES

For two of the operand addressing modes, direct address (DA) and indexed
(X), an I/O or memory address is included in the instruction itself. Nonseg­
mented memory addresses and I/O addresses are always 16 bits long, so these
addresses occupy one word in the instruction's opcode. Segmented ad­
dresses are 23 bits long and can be represented two different ways within an
instruction.

The most general format for designating a segmented address within an
instruction is the long offset format, wherein the address is stored in two
consecutive words (Fig. 8.2). The first word contains the segment number
portion of the address in bits 8-14; bits 0-7 are reserved (set to O's). Bit 15
is set to aI, which designates the long offset format. The 16-bit offset ad­
dress is placed in the next word of the instruction.

In the short offset format, the segmented address is compressed into
one word in the instruction. Bit 15 is cleared to zero, bits 8-14 hold the seg­
ment number, and bits 0-7 hold the lower byte of the offset. The upper
byte of the offset address is assumed to be all O's. Thus the short offset for­
mat can be used only to address the first 256 bytes in a segment (that is, off­
set addresses 0 to 255 in the segment).

For the Zilog PLZ/ ASM assembler, the short offset format is denoted
by enclosing the segmented address within vertical bars when writing the
instruction:

LD RO, I «5»20 I

LD RO, «5» 300

! memory-to-register load, memory address is in short offset format!

! memory-to-register load, memory address is in long offset format!

15 14

LONG OFFSET 1-'_1I.... ___ S_EG_# ___ --'-_R_ES_ER_V_ED_(A_L_L Z_E_RO_Sl----'

LONG OFFSET

15 14 8 7

SHORT OFFSET 11-_0 -'--___ S_EG_# ___ --'-__ S_HO_R_T O_F_FS_ET_----'

Figure 8.2 Formats for storing seg­
mented addresses within an instruc­
tion's opcode.

Register Mode 117

The short offset format can be used only when a segmented address is
included in the instruction's opcode. The short offset format cannot be used
to store a segmented address in a CPU register.

ADDRESSING MODES

A Z8000 assembly language instruction is stored in memory as a consecutive
list of one or more words that are accessed via the program counter during
program execution. The word or words in memory making up the instruc­
tion are called an operation code (opcode). In addition to specifying what
type of instruction is to be executed (for example, a load or add), the op­
code also must specify the location of the data to be operated on, called the
instruction's operands. Operands can reside in CPU registers, memory loca­
tions, or I/O ports. The method used to determine the location of an oper­
and is called an addressing mode.

The Z8000 CPUs support eight different addressing modes: register (R),
direct address (DA), immediate (1M), indirect register (IR), indexed (X), base
address (BA), base indexed (BX), and relative address (RA). Not all instruc­
tions are capable of using every addressing mode to specify its operands.
The addressing mode for an operand is explicitly specified when writing the
instruction.

For the X, BA, BX, and RA addressing modes, the memory address of
the operand is found by adding a 16-bit value, called an index or displace­
ment, to a memory address, called the base address. The address yielded by
this operation is called the effective address of the operand. In segmented­
mode operation, this calculation of the operand's address applies only to the
offset portion of the address; the segment number of the operand's effective
address is always the segment number of the base address. Any carry result­
ing from adding the index to the offset address is ignored, rather than incre­
menting the segment number. In other words, the segment number and off­
set portions of the address are distinct and address calculations performed
on the offset address will never alter the segment number.

REGISTER MODE

In the register (R) addressing mode, the operand is the contents of the CPU
register specified in the instruction (Fig. 8.3). The register length (byte,

INSTRUCTION REGISTER(S)

REGISTER

Figure 8.3 Register mode.

118 The I nstruction Set Chap. 8

word, long word, or quad word) is determined by the instruction. The fol­
lowing statements use register addressing to specify both the source and des­
tination operands:

LD R2, R5

ADDS RHO, RL4

MULTL RQ4, RL8

DI RECT ADDRESS MODE

! contents of R5 written into R2 !

! 8-bit addition of RHO and RL4, sum goes in RHO!

! 32-bit multiply I

For the direct address (DA) mode, the address of the operand is included in
the instruction's opcode (Fig. 8.4). The address could be a memory address
or an I/O address, as indicated by the instruction type. For I6-bit nonseg­
men ted addresses and I/O port addresses, the address will be given in the sec­
ond word of the instruction's opcode. Segmented addresses can be stored in
an opcode in two ways: long offset format (the address is in the second and
third words of the instruction's opcode) or short offset format (the address
is in the second word of the intruction's opcode).

The operand specified by the DA mode can be in the I/O address space,
special I/O address space, or data memory address space, depending on the
instruction:

LD RO, «10»%4ACO

SOUT %OOFF, R5

I segmented mode, contents of data memory location 4ACO hex in

segment 10 are loaded into RO !

! destination is port FF hex in special I/O address space!

Typically, the address is specified using a symbolic name rather than the
numerical address:

LD RO, TOTAL ! TOTAL is previously defined symbolic name for some location in data

memory!

The instruction that uses DA mode to specify an operand could be a
byte, word, or long-word instruction; the direct addressing logic is identical
for each case. For byte instructions, a single byte in memory or an I/O port
is-accessed; for word instructions, the whole word is accessed. Long-word
instructions will access the word whose address is given in DA mode and the
next sequential word in memory.

OPERATION
I

ADDRESS I OPERAND I I
WORD(S) MEMORY OR I/O

Figure 8.4 Direct address mode.

Indirect Register Mode 119

The DA mode also is used by the Jump and Call instructions to specify
the address of the next instruction to be executed. In this case, the address
in the instruction opcode is not used to reference a data operand in a mem­
ory or I/O location, but instead is used as an immediate value that is loaded
into the program counter:

JUMP %5000

CALL SOME_ROUTINE

IMMEDIATE MODE

I jump to location 5000 hex I

I SOME_ROUTINE is the symbolic name for the starting ad­

dress of a subroutine!

Immediate (1M) mode addressing means that the operand appears within the
instruction's opcode itself (Fig. 8.5). 1M mode is the only addressing mode
that does not involve specifying a register, memory, or I/O location for the

OPERATION

WORD(S) OPERAND
Figure 8.5 Immediate mode.

operand. Instructions that act on bytes or words provide the immediate oper­
and as the second word in the opcode. For byte instructions, the immediate
byte of data is duplicated in both bytes of the opcode's second word. In­
structions that operate on long words provide the immediate operand as the
second and third words of the opcode.

Since immediate operands are always part of the opcode, they are al­
ways located in the program memory address space. The" #" symbol is used
to specify immediate-mode addressing. Immediate mode often is used to
initialize memory and register locations:

LD RO, #'105407 ! 5407 hex loaded into RO !

ADDS RH8, #20 ! 20 added to contents of RH8 !

INDIRECT REGISTER MODE

For the indirect register (lR) mode, the operand resides at some memory or
I/O location. The address of the operand is the contents of the register
specified in the opcode. In other words, a register holds the address of the
operand (Fig. 8.6). Of course, the appropriate address must be loaded into
the register before IR mode is used. The instruction type determines if the
address in the register is a memory or I/O address. Any word register except
RO can hold a nonsegmented memory address or an I/O address. Any regis­
ter pair except RRO can hold a segmented memory address.

120 The I nstruction Set Chap.S

REGISTER(S) MEMORY OR 110

ADD:;;;II..---....... 1 OPERAND

Figure 8.6 Indirect register mode.

Depending on the instruction, the operand specified by IR addressing
could be in the I/O address space, special I/O address space, data memory
address space, or stack memory address space. For memory accesses, if R15
in nonsegmented mode or RR14 in segmented mode is the register used to
hold the operand's address, the operand will be in the stack memory address
space (that is, the ST3-STO lines will be 1001 during the access); otherwise,
the operand is in the data memory address space.

The "@" symbol in front of the register name is used to designate in­
direct register addressing:

LD R5, @R2

INB RHO, @R1
LD @RR14, RO

INDEXED MODE

! nonsegmented mode, the destination uses I R addressing, the contents

of the data memory location whose address is in R2 is loaded into

R51

! R1 holds standard I/O port address!
! segmented mode, source uses IR addressing, source is in stack

memory!

For the indexed (X) mode, the operand is located in a memory location.
The address of the memory location is found by adding an address located in
the instruction's opcode, called the base address, to the contents of a word
register specified in the instruction, called an index (Fig. 8.7). The address
formed by adding the index to the base address is called the effective address
of the operand. Any general-purpose register except RO can hold an index.
The base address can be segmented or nonsegmented, depending on the cur­
rent operating mode of the CPU; if segmented, the base address can be speci­
fied using the long or short offset formats.

When using the indexed addressing mode in segmented mode, the index
is added to the offset portion of the base address, without affecting the seg­
ment number. The segment number of the effective address for the operand
is always the segment number of the base address.

INSTRUCTION REGISTER

DISPLACEMENT

WORD(S) ADDRESS
MEMORY

Figure 8.7 Indexed mode.

Base Address Mode 121

Operands specified using X mode are in the data memory address space,
except when this mode is used with the Jump and Call instructions. For
Jumps and Calls, the effective address is not used as the address of an oper­
and in memory, but instead is used as an immediate value that is loaded into
the program counter to execute the Jump or Call.

Indexed addressing is specified by designating the base address, fol­
lowed by the register that holds the index enclosed in parentheses:

LO RO, %4A90(R11)

LOB RL3, LlST(R13)

I nonsegmented mode, X mode for source operand!

! LIST is symbolic name for some data variable I

JUMP OISPATCH_ TABLE(R5)

Indexed addressing allows the programmer to access elements in tables
of data, where the base address of the table is known, but the index of the
particular element accessed is to be computed during program execution.

BASE ADDRESS MODE

Base address (BA) mode is the inverse of indexed mode; in BA mode, the
specified register holds a base address and the index, or displacement, is a 16-
bit value that is part of the instruction's opcode (Fig. 8.8). The operand's
effective memory address is found by adding the index to the base address.
In the nonsegmented mode, the base address can be in any register except
RO; in the segmented mode, the base address can be in any register except
RRO.

As with the indexed mode, the effective address calculation does not af­
fect the segment number of the base address; the segment-number portion of
the effective address will always be the segment number of the base address.

An operand specified using BA mode is in the stack memory address
space if the base address is in R15 in the nonsegmented mode or RR14 in
the segmented mode. Otherwise, the operand is in the data memory address
space.

Base addressing is used only with the Load (LD) instruction. Base ad­
dressing is specified by stating the register that holds the base address, fol­
lowed by an immediate index; the index is enclosed in parentheses:

LO R1 (#50), R8

LO RO, RR14(#%AO)

I nonsegmented mode, BA mode specifies the destination in data

memory!

! segmented mode, BA mode specifies source in stack memory!

The base address mode is the complement of the indexed mode and
allows access to data in a table where the index into the table is known, but
the base address of the table is computed during program execution. For ex-

122 The Instruction Set Chap. 8

WORD

Figure 8.8 Base address mode.

ample, the BA mode might be used for accessing the corresponding elements
in several different tables of data.

For the nonsegmented mode, the base address and indexed modes are
equivalent; for each, a 16-bit value in a register is added to a 16-bit value
given in the instruction's opcode to yield an effective memory address for
the operand. The only difference occurs when R15 is used to hold the base
address or index:

LD RO, 50 (R15)

accesses data memory to obtain the source operand, whereas

LD RO, R15 (#50)

would access stack memory to obtain the source operand. The indexed
mode is used more frequently, however, since it is available in more instruc­
tions and results in faster execution than when base addressing is used.

BASE INDEXED MODE

The base indexed (BX) mode is a combination of the X and BA modes. For
the BX mode, both the base address and index are held in registers (Fig. 8.9).
In the nonsegmented mode, both the base address and the index are held in
any word register except RO. In the segmented mode, the base address may
be in any register pair except RRO and the index may be in any word register
except RO. The effective memory address of the operand is found by adding
the index to the base address. The segment-number portion of the effective

Figure 8.9 Base indexed mode.

Relative Address Mode 123

address is always the segment number of the base address; the index is added
to the offset only.

Operands specified using BX mode are in the stack memory address
space if either R15 in the nonsegmented mode or RR14 in the segmented
mode is used to hold the base address. Otherwise, the operand is in data
memory.

The base indexed mode is used only with the Load (LD) instruction.
When specifying the BX mode, the register that holds the base address is
given, followed by the register holding the index; the index is enclosed in
parentheses:

LD RO, R2(R5)

LDB RH2, RR14(R9)

I nonsegmented mode, BX mode designates source!

! segmented mode, source is in stack memory!

RELATIVE ADDRESS MODE

In the relative address (RA) mode, the operand is at a memory address that
is calculated relative to the current program counter value. A displacement
is given in the instruction's opcode; this displacement is a two's-complement
number that is added to or subtracted from the program counter to yield the
address of the operand (Fig. 8.10). The maximum size of the displacement
depends on the instruction used. The PC value used is the address of the
next memory location following the currently executing instruction. In the
segmented mode, the calculation of the operand's effective address will not
affect the segment-number portion of the address; that is, the operand is al­
ways in the segment determined by the segment number in the PC.

An operand specified by RA mode is always in the program memory
address space. Relative addressing allows references to memory locations
that are a short distance backward or forward from the current PC value. It
is used by the Jump Relative (JR), Call Relative (CALR), Decrement and
Jump if Not Zero (DJNZ, DBJNZ), Load Relative (LDR, LDRB, LDRL),
and Load Address Relative (LDAR) instructions. Typically, the program­
mer uses label names in the program to specify the location to be referenced
using RA mode and lets the assembler calculate the displacement value that
becomes part of the instruction's opcode:

LDR R5, LOOP ! LOOP is a label in the program!

OPERATION

DISPLACEMENT

(2'S COMPL.)

Figure 8.10 Relative address mode.

124 The I nstruction Set Chap. 8

For the JR and CALR instructions, the effective address is not used to
reference a memory location, but instead is used as an immediate value that
is loaded into the program counter.

USE OF THE ADDRESSING MODES

Not every instruction in the Z8000 is capable of supporting every addressing
mode; only the Load (LD) instruction can do so. However, the architecture
is very regular in that the five main addressing modes-R, DA, 1M, IR, and
X-are available in most instructions that can reference operands in memory
(that is, all the arithmetic and logical instructions).

Use of the R, DA, and 1M modes implies that the programmer knows
the exact location or value of the operand at assembly time. In contrast, use
of the IR, X, BA, and BX modes to specify an operand's address involves
storing the address or index value in a register. Since registers' contents can
be varied during program execution, these modes allow run-time calculation
of the operand's address; that is, the effective address of the operand will
depend on the results of some previous operations executed when running
the program.

The Z8000 's addressing modes provide considerable flexibility in oper­
and addressing. It is, of course, up to the programmer to make the most ef­
fective use of the addressing modes.

IMPLIED ADDRESSING MODES

Besides the eight addressing modes described above, the Z8000 has two ad­
ditional modes that are implied by the use of certain instructions, auto-incre­
ment and auto-decrement. Several instructions manipulate entire strings of
data in memory. These instructions address source and destination strings in
memory using indirect register addressing; that is, the address of the element
in the string currently being acted on is in a register. After each iteration of
the instruction's execution, the operand's address is incremented or decre­
mented, as specified by the instruction type, so that the register now points
to the next element of the string, ready for the next iteration of the instruc­
tion's execution.

ASSEMBLY LANGUAGE INSTRUCTIONS

The Z8000 CPU's assembly language instruction set can be segregated into
12 categories of instructions: data movement, arithmetic, logical, bit manip­
ulation, rotate and shift, program control, block move, block compare, block
translate, I/O, special I/O, and CPU control instructions. Tables 8.4 through

Assembly Language Instructions 125

8.15 list the instructions in each category, including the mnemonic, oper­
ands, addressing modes for the operands, clock cycles required to execute,
and a description of the operation for each instruction.

Many of the instructions can operate on byte, word, or long-word data
types. In general, if an instruction's mnemonic ends with a "B" suffix, it is a
byte instruction; if the instruction's mnemonic ends with an "L" suffix, it is
a long-word instruction; otherwise, it is a word instruction.

The number of CPU clock cycles required for execution of an instruc­
tion depends on the data type for that instruction and the segmentation
mode of the CPU. In Tables 8.4 through 8.15, NS means nonsegmented
mode, SS means segmented mode using short offset format, and SL means
segmented mode using long offset format. The execution times are calcu­
lated assuming that there are no externally-generated wait states during
memory and I/O accesses.

The carry, zero, sign, and overflow/parity flags in the FCW are used to
control the operation of certain "conditional" instructions, such as the
Jump (JP) instruction. The operation of these instructions depends on the
condition of these four flags. Sixteen different combinations of these flag
settings are encoded in a 4-bit field in the opcode called a condition code.
The mnemonics for the condition codes and the flag settings they represent
are listed in Table 8.3. Although there are only 16 unique conditions, the

TABLE 8.3 CONDITION CODES

Code Meaning Flag setting

F Always false
Always true

Z Zero Z=l
NZ Not zero z=o
C Carry C=l
NC No carry C=O
PL Plus 8=0
MI Minus 8=1
NE Not equal Z=O
EQ Equal Z=l
OV Overflow V = 1
NOV No overflow V = 0
PE Parity even P=l
PO Parity odd p=o
GE Greater than or equal (8 XOR V) = 0
LT Less than (8 XOR V) = 1
GT Greater than (Z OR (8 XOR V» = 0
LE Less than or equal (Z OR (8 XOR V» = 1
UGE Unsigned greater than Qf equal C=O
ULT Unsigned le~s than C=l
UGT Unsigned greater than ((C = 0) AND (Z = 0» = 1
ULE Unsigned less than or equal (C OR Z) = 1

126 The Instruction Set Chap. 8

Zilog PLZ/ASM assembler recognizes more than 16 condition code mne­
monics; in some cases, two different mnemonics correspond to identical flag
settings (Z and EQ, for example). If no mnemonic for a condition code is
given in a conditional instruction, the "always true" condition is assumed.

DATA MOVEMENT INSTRUCTIONS

The data movement instructions, listed in Table 8.4, provide one of three
functions: (1) load a register with data from a register or memory location,
(2) load a memory location with data from a register, or (3) load a register
or memory location with an immediate value. These instructions do not
affect the flags in the FCW.

The Clear instructions (CLR, CLRB) are used to clear a byte or word
register or memory location to zero. This is functionally equivalent to a
Load instruction with an immediate operand of zero.

The Exchange instructions (EX, EXB) are used to swap the contents of
two registers, or a register and a memory location. A temporary storage
register internal to the CPU is used to implement the swap. The Exchange
instruction is useful for converting Z80 or other microprocessor code into
Z8000 code, since the Z8000 uses the opposite convention of odd/even
memory addressing of bytes in words than the Z80.

The Load instructions (LD, LDB, LDL) provide for transferring data
between memory and register locations. Note that no memory-to-memory
loads are included in this group of instructions.

The Load Address instruction (LDA) loads the address of the source
operand into the destination register. The contents of the source are not
accessed; the effective address computation corresponding to the specified
addressing mode is made, and that effective address, not the data at that ad­
dress, is written into the destination. The destination must be a word
register in nonsegmented mode, and a long-word register in segmented mode.

The Load Address Relative instruction (LDAR) is similar to the LDA
instruction, except that it supports the relative address mode. The displace­
ment can range from - 32768 to +32767 and is added to the current program
counter value to yield the effective address that is loaded into the
destination.

The Load Constant instruction (LDK) is a short, fast instruction for
loading small numeric constants into a word register. The source operand
must be an immediate value between 0 and 15. The high-order 12 bits of the
destination register are cleared to zeros.

The Load Multiple instruction (LDM) provides for efficient saving and
restoring of registers' contents and can significantly lower the overhead re­
quired for procedure calls and other context switches. This instruction

TABLE 8.4 DATA MOVEMENT I NSTR UCTI ONS

Clock cycles

Address
Word/byte Long word

Mnemonics Operands modes NS SS SL NS SS SL Operation

CLR,CLRB dst R 7 Clear
IR 8 dst +- 0

DA 11 12 14
X 12 12 15

EX, EXB R, src R 6 Exchange
IR 12 R +-+ src
DA 15 16 18

X 16 16 19
LD, LDB, R, src R 3 5 Load into Register

LDL 1M 7 11 R +- src
1M 5 (byte only)
IR 7 11
DA 9 10 12 12 13 15

X 10 10 13 13 13 16
BA 14 17
BX 14 17

LD, LDB, dst, R IR 8 11 Load into Memory (Store)
LDL DA 11 12 14 14 15 17 dst +- R

X 12 12 15 15 15 18
BA 14 17
BX 14 17

LD,LDB dst, 1M IR 11 Load Immediate into Memory
DA 14 15 17 dst +- 1M
X 15 15 18

LDA R, src DA 12 13 15 Load Address
X 13 13 16 R +- source address

BA 15
BX 15

LDAR R, src RA 15 Load Address Relative
R +- source address

LDK R, src 1M 5 Load Constant
R +- n (n = 0 ... 15)

LDM R, src, n IR 11 -) Load Multiple
DA 14 15 17 J +3n R +- src (n consecutive words)

X 15 15 18 (n=1 ... 16)
LDM dst, R, n IR 11

~ t +3n
Load Multiple (Store Multiple)

DA 14 15 dst +- R (n consecutive words)
X 15 15 18 (n=1 ... 16)

LDR, LDRB, R, src RA 14 17 Load Relative
LDRL R +- src

(range -32768 ... +32767)
LDR, LDRB, dst, R RA 14 17 Load Relative (Store Relative)

LDRL dst +- R
(range -32768 ... + 32767)

POP, POPL dst,IR R 8 12 Pop
IR 12 19 dst +- IR
DA 16 16 18 23 23 25 Autoincrement contents of R

X 16 16 19 23 23 26
PUSH, IR, src R 9 12 Push

PUSHL 1M 12 Autodecrement contents of R
IR 13 20 IR +- src
DA 14 14 16 21 21 23
X 14 14 17 21 21 24

127

128 The Instruction Set Chap.S

allows any contiguous group of 1 to 16 general-purpose registers to be trans­
ferred to or from a block of consecutive memory locations.

The Load Relative instructions (LDR, LDRB, LDRL) allow data
transfers between the registers and program memory locations. The operand
specified using relative addressing can be displaced - 32768 to +32767 ad­
dresses from the current PC value. The displacement is added to the PC to
yield the effective address of the operand in program memory.

The Pop (POP, POPL) and Push (PUSH, PUSHL) instructions support
stack operations. The register to be used as the stack pointer (the source for
pops and destination for pushes) is designated using the IR addressing mode;
any general-purpose word register except RO can be used as a stack pointer
in the nonsegmented mode, and any register pair except RRO can be a stack
pointer in the segmented mode. Byte operations are not allowed; a stack
pointer should always have an even address, since only words and long words
can be written and read from stacks. The register being used as the stack
pointer is automatically incremented by two after popping a word, or by
four after popping a long word; the stack pointer is automatically decre­
mented before a push. In the segmented mode, the segment-number portion
of the address in the register pair used as a stack pointer is not affected by
the automatic increment and decrement operations.

ARITHMETIC INSTRUCTIONS

Table 8.5 lists the Z8000 instructions that perform integer arithmetic. The
basic instructions use standard two's-complement binary format for repre­
senting integers, but support is provided for BCD arithmetic as well. Most
instructions in this group perform a binary operation between a register's
contents and a source operand designated by one of the five basic addressing
modes (R, DA, 1M, IR, and X). The result is loaded into a register. These
instructions set the flags in the FCW to the appropriate values depending on
the result of the arithmetic operation. The P/V flag is used to indicate over­
flow for these instructions and is called the V flag.

The Add (ADD, ADDB, ADDL) and Subtract (SUB, SUBB, SUBL) in­
structions perform basic binary addition and subtraction. Multiple-precision
operations can be implemented using the Add with Carry (ADC, ADCB) and
Subtract with Carry (SBC, SBCB) instructions, but these instructions sup­
port only register addressing for both the source and destination.

The Compare instructions (CP, CPB, CPL) allow comparison of a reg­
ister's contents to another register's contents, a memory location's contents,
or an immediate value. The Compare instructions do not affect either oper­
and but set the flags based on the result that occurs when the source is sub­
tracted from the destination.

The Decimal Adjust instruction (DAB) operates only on byte registers

TABLE 8.5 ARITHMETIC INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonics Operands modes NS SS SL NS SS SL Operation

ADC, R, src R 5 Add with Carry
ADCB R <- R + src + carry

ADD, R, src R 4 8 Add
ADDB, 1M 7 14 R <- R + src
ADDL IR 7 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

CP, R, src R 4 8 Compare with Register
CPB, 1M 7 14 R - src
CPL IR 7 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

CP, dst, 1M IR 11 Compare with Immediate
CPB DA 14 15 17 dst - 1M

X 15 15 18
DAB dst R 5 Decimal Adjust

DEC, dst, n R 4 Decrement by n
DECB IR 11 dst <- dst - n

DA 13 14 16 (n = 1 ... 16)
X 14 14 17

DIV, R, src R 107 744 Divide (signed)
DIVL 1M 107 744 Word:

IR 107 107 107 744 744 744 Rn + 1 <- Rn n + 1 + src
DA 108 109 111 745 746 748 Rn <- remainder
X 109 109 112 746 746 749 Long word:

Rn + 2, n + 3 <-
<- Rn ... n + 3 + src

R n , n + 1 <- remainder

EXTS, dst R 11 11 Extend Sign
EXTSB, Extend sign of low-order
EXTSL half of dst through high-

order half of dst

INC, dst, n R 4 Increment by n
INCB, lR 11 dst <- dst + n

DA 13 14 16 (n = 1, ... 16)
X 14 14 17

MULT, R, src R 70 282a Multiply (signed)
MULTL 1M 70 282a Word:

IR 70 282a R n , n + 1 <- Rn + 1 . src
DA 71 72 74 283a 284a 286a Long word:
X 72 72 75 284a 284a 287a

Rn ... n + 3 <-

<- Rn + 2, n + 3
NEG, dst R 7 Negate

NEGB lR 12 dst <- 0 - dst
DA 15 16 18
X 16 16 19

SBC, R, src R 5 Subtract with Carry
SBCB R <- R - src - carry

SUB, R, src R 4 8 Subtract
SUBB, 1M 7 14 R<-R-src
SUBL IR 7 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

aplus seven cycles for each 1 in the multiplicand.

129

130 The I nstruction Set Chap. 8

and is used to implement BCD arithmetic. Two BCD digits can be packed
into a byte register, one per nibble. Byte registers so formatted can be added
or subtracted using the binary ADDB and SUBB instructions; these instruc­
tions would be followed by a DAB. The DAB instruction adjusts the desti­
nation register back into BCD format using the D and H flags.

The Decrement (DEC, DECB) and Increment (INC, INCB) instructions
are used to decrement or increment a register or memory location by an
immediate value between 1 and 16.

The Extend Sign instructions (EXTS, EXTSB, EXTSL) are used to con­
vert a small signed operand (in a register) to a larger signed operand, by
copying the sign bit (most significant bit) of the low-order half of the desti­
nation to all the bits in the high-order half of the destination. Thus an 8-bit
signed integer can be converted to 16 bits, a 16-bit integer to 32 bits, or a
32-bit integer to 64 bits.

The Divide instructions (DIV, DIVL) perform signed two's-complement
division on word or long-word operands. The DIV instruction requires a
long-word register as the destination and a word operand as the source. The
32-bit destination is divided by the source; the quotient is written into the
low-order half of the destination and the remainder is loaded into the high­
order half of the destination. For example:

DIV RR2, R5

would divide the contents of RR2 by the contents of R5 and, after the di­
vision, the quotient would be in R3 and the remainder in R2. Similarly, the
DIVL instruction requires a quad register as the destination and a long-word
register as the source:

DIVL RQ4, RR12

After the division, RR4 holds the remainder and RR6 holds the quotient.
The Multiply instructions (MULT, MULTL) perform signed two's-com­

plement multiplication of word and long-word operands. MULT multi­
plies two 16-bit words and produces a 32-bit result; MUL TL multiplies two
32-bit long words and produces a 64-bit result.

The Negate instructions (NEG, NEGB) perform a two's-complement
negation on the contents of a register or memory location.

LOGICAL INSTRUCTIONS

Instructions that perform logical operations are listed in Table 8.6. These in­
structions set the Z and S flags based on the result of the logical operation.
The byte instructions also use the P IV flag as a parity flag; the P flag is set if
the result has even parity.

Logical Instructions 131

TABLE 8.6 LOGICAL INSTRUCTIONS

Clock cycles

Word/byte Long word
Address

Mnemonics Operands modes NS SS SL NS SS SL Operation

AND R, src R 4 AND
ANDB 1M 7 R +- RAND src

IR 7
DA 9 10 12
X 10 10 13

COM, dst R 7 Complement
COMB IR 12 dst +-- NOT dst

DA 15 16 18
X 16 16 19

OR, R, src R 4 OR
ORB 1M 7 R +- R OR src

IR 7
DA 9 10 12
X 10 10 13

TCC, cc, dst R 5 Test Condition Code
TCCB Set LSB if cc is true

TEST, dst R 7 13 Test
TESTB, IR 8 13 dst OR 0
TESTL DA 11 12 14 16 17 19

X 12 12 15 17 17 20
XOR, R, src R 4 Exclusive OR

XORB 1M 7 R +- R XOR src
IR 7
DA 9 10 12
X 10 10 13

The two-operand instructions, And (AND, ANDB), Or (OR, ORB), and
Exclusive-Or (XOR, XORB) perform the specified logical operation on the
corresponding bits of the source and destination operands and load the result
into the destination register.

The Complement instructions (COM, COMB) are a one's-complement
operation; that is, all the bits holding 1 's in the destination are changed to 0,
and vice versa.

The Test instructions (TEST, TESTB, TESTL) perform a logical Or be­
ween the destination and zero; the flags are set accordingly. This instruction
is used to set the Z, S, and, for TESTB, P flags to reflect the contents of the
destination: however, the destination itself is not affected.

The Test Condition Code instructions (TCC, TCCB) are used to create
Boolean data variables based on the current flag settings. The flags in the
FCW are checked to see if the specified condition code is true. If so, the
least significant bit (bit 0) of the destination is set; if not, the destination is
not affected. Bits other than bit ° in the destination are never changed by a
Test Condition Code instruction.

Except for TESTL, long-word operands are not supported by the logi­
cal instructions. However, logical operations on long words are easily imple­
mented with pairs of instructions.

BIT MANIPULATION INSTRUCTIONS

The bit manipulation instructions (Table 8.7) are used to set, reset, or test
individual bits in registers or memory locations. With most other processors,
bit manipulation must be done using the logical operations with appropriate
masks, which is awkward and inefficient.

The Bit Test instructions (BIT, BITB) test the specified bit in the desti­
nation for a 1 or 0, and set the Z flag appropriately. If testing a bit in a
memory location, the number of the bit to be tested is given as an immediate
operand between 0 and 7 for BITB and between 0 and 15 for BIT. If testing
a bit in a register, the number of the bit to be tested can be an immediate
operand or the contents of a word register.

In a similar manner, the Set Bit (SET, SETB) and Reset Bit (RES,
RESB) instructions are used to set or reset any bit in a register or memory
location. For destination operands in memory, the number of the bit to be
set or reset is given as an immediate operand; for bits in registers, the number
of the bit can be given as an immediate operand or the contents of a word
register.

The Test and Set instruction (TSET) is provided to support imple-

TABLE 8.7 BIT MANIPULATION INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonics Operands modes NS SS SL NS SS SL Operation

BIT, dst, b R 4 Test Bit Static
BITB IR 8 Z flag +-- NOT dst bit speci-

DA 10 11 13 fied by b
X 11 11 14

BIT, dst, R R 10 Test Bit Dynamic
BITB Z flag +-- NOT dst bit speci-

fied by contents of R

RES, dst, b R 4 Reset Bit Static
RESB IR 11 Reset dst bit specified by

DA 13 14 16 b
X 14 14 17

RES, dst, R R 10 Reset Bit Dynamic
RESB Reset dst bit specified by

contents R

SET, dst, b R 4 Set Bit Static
SETB IR 11 Set dst bit specified by b

DA 13 14 16
X 14 14 17

SET, dst, R R 10 Set Bit Dynamic
SETB Set dst bit specified by

contents of R

TSET, dst R 7 Test and Set
TSETB IR 11 S flag +-- MSB of dst

DA 14 15 17 dst +-- all 1 s
X 15 15 18

132

Rotate and Shift Instructions 133

mentation of multitasking operating systems. The most significant bit of the
destination is copied into the S flag and then every bit in the destination is
set to a 1.

The TSET instruction provides a locking mechanism for allocating re­
sources within a multitasking system. For example, suppose that a Z8000-
based system with a printer as an output peripheral is executing two users'
tasks on a time-sharing basis. A register or memory location, called a sema­
phore, is used to indicate when a particular task is using the printer. The
semaphore is tested each time a task requires the printer. If the semaphore
is all O's, the printer is not busy; if the semaphore is all l's, the printer is
busy (that is, it has been allocated for use by a particular task). When user A
needs the printer, the operating system checks the semaphore using the
TSET instruction and, if the printer is not busy, assigns the resource to task
A. When task A is finished using the printer, the operating system resets the
semaphore. Thus if user A is outputting a file, that output operation is com­
pleted before user B can access the printer.

The TSET instruction allows the operating system to check and set the
semaphore in one uninterruptible step. In fact, even bus requests will not be
honored in the time between checking the most significant bit in the sema­
phore and writing all 1 's to the semaphore. If the test and set operations are
executed in two separate instructions, conflicts are possible if an interrupt,
bus request, or task switching under operating system control occurs be­
tween the two instructions.

ROTATE AND SHIFT INSTRUCTIONS

The rotate and shift instructions (Table 8.8) are used to rotate bits in byte or
word registers and shift bits in byte, word, or long-word registers.

With the Rotate Left (RL, RLB) and Rotate Right (RR, RRB) instruc­
tions, bits in byte or word registers can be rotated by one or two bit posi­
tions. For Rotate Left, the most significant bit of the operand is loaded into
the C flag as well as rotating into the least significant bit; for Rotate Right,
the least significant bit is written to the C flag. Rotates that include the
carry flag are also available: Rotate Left through Carry (RLC, RLCB) and
Rotate Right through Carry (RRC, RRCB), as illustrated in Fig. 8.11.

The Rotate Left Digit (RLDB) and Rotate Right Digit (RRDB) instruc­
tions operate only on byte registers. BCD digits in the source register can be ro­
tated right or left with these instructions (Fig. 8.12). For RLDB, the lower
nibble of the source is moved to the upper nibble of the source; the upper
nibble of the source is moved to the lower nibble of the destination; the
lower nibble of the destination is moved to the lower nibble of the source.
The upper nibble of the destination is unaffected. The RRDB instruction
rotates nibble right in a similar fashion. If strings of BCD digits are to be

134

ROTATE LEFT

RL

RLB

0J4-~-~------o,J
0~r-----7 _------.0 ,J

ROTATE RIGHT

RR

RRB

[1~15 -----O~G

Lr~-_O~-G

ROTATE LEFT THROUGH CARRY

RLC ~~~;5 _____ ----,0 ,J
RLCB L

G
--l.....--7 __ ----.0 f-l

ROTATE RIGHT THROUGH CARRY

RRC [_I~ 15 ______ -----,0 ~GJJ

RRCB
[.....--, 7 __ ----,0 ~0J

Figure 8.11 Rotate instructions.

TABLE 8.8 ROTATE AND SHIFT INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonics Operands modes NS SS SL NS SS SL Operation

RL, dst, n R 6 for n = 1 Rotate Left
RLB R 7 for n = 2 by n bits (n = 1, 2)

RLC, dst, n R 6 for n = 1 Rotate Left through Carry
RLCB R 7 for n = 2 by n bits (n = 1, 2)

RLDB R, src R 9 Rotate Digit Left

RR, dst, n R 6 for n = 1 Rotate Right
RRB R 7 for n = 2 by n bits (n = 1, 2)

RRC, dst, n R 6 for n = 1 Rotate Right through Carry
RRCB R 7 for n = 2 by n bits (n = 1, 2)

RRDB R, src R 9 Rotate Digit Right

SDA, dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
SDAB, Shift dst left or right
SDAL by contents of R

SDL, dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB, Shift dst left or right
SDLL by contents of R

SLA, dst, n R (13 + 3n) (13 + 3n) Shift Left Arithmetic
SLAB, by n bits
SLAL

SLL, dst, n R (13 + 3n) (13 + 3n) Shift Left Logical
SLLB, by n bits
SLLL

SRA, dst, n R (13 + 3n) (13 + 3n) Shift Right Arithmetic
SRAB, by n bits
SRAL

SRL, dst, n R (13 + 3n) (13 + 3n) Shift Right Logical
SRLB, by n bits
SRLL

RLOB LINK scr

t t_------'

RROB LINK scr

t
Figure 8.12 Rotate Left Digit and Rotate Right Digit instructions.

135

136 The I nstruction Set Chap. 8

rotated, the destination register serves as a link between successive bytes of
the string. This is analogous to the use of the carry flag in the RLC and RRC
instructions.

A full set of both arithmetic and logical shifts is provided. For the
arithmetic shifts, the most significant bit (the sign bit for signed two's-com­
plement integers) is preserved when shifting right and D's are shifted into the
least significant bit when shifting left. For logical shifts, D's are shifted into
the most significant bit when shifting right and the least significant bit when
shifting left (Fig. 8.13).

ARITHMETIC SHIFTS:

RIGHT LEFT

0

BYTE: 1'-0

15 o 15

1'-0 WORD rS,...........I----..,l--~ [~}_1r-----------,

15 0 15 0

Rn

20 Rn + 1

LONG ~J I R"_?J

Li~5------Rn-+1----~0~0

~-iL--____ ---'

q~5 _-----.
n = 0, 2, 4, .. ,14 n = 0, 2, 4, ' .. , 14

LOGICAL SHIFTS:

RIGHT LEFT

0

BYTE: 1'-0

15 0 15 0

WORD: 0 -Jooo-&-1 __________ ---I~~ ~-1,....-------------II- 0

15 0

LONG: 0 -Jooo-I&-______ Rn ___ =-~-J

Li,..:.-5 --Rn-+ 1 -----.,l---0

n = 0,2,4, ' , . , 14

15 0

~-1~ __ R_n -----IIJ
I-;~ __ o

LC Rn+1 1_ 0

n = 0, 2, 4, ... , 14

Figure 8.13 Arithmetic and logical shifts.

Program Control Instructions 137

The Shift Dynamic Arithmetic (SDA, SDAB, SDAL) and Shift Dy­
namic Logical (SDL, SDLB, SDLL) instructions allow right or left shifts by
the number of bits specified by the contents of the source operand, which is
always a word register. The source is treated as a signed two's-complement
value; positive values specify a left shift, whereas negative values specify a
right shift. The shift count can range from -8 to +8 for byte operations, -16
to +16 for word operations, and -32 to +32 for long-word operations.

The remaining shift instructions require an immediate operand as the
source. This operand determines the number of bit positions to be shifted,
and range from 0 to 8 for byte operations, 0 to 16 for word operations, and
o to 32 for long-word operations. These instructions include the Shift Left
Arithmetic (SLA, SLAB, SLAL), Shift Left Logical (SLL, SLLB, SLLL),
Shift Right Arithmetic (SRA, SRAB, SRAL), and Shift Right Logical (SRL,
SRLB, SRLL) instructions. The only difference between the arithmetic and
logical left shifts is the setting of the V flag.

PROGRAM CONTROL INSTRUCTIONS

The program control instructions (Table 8.9) are instructions that change the
value of the program counter.

When the Call (CALL) or Call Relative (CALR) instruction is executed,
the current PC value is pushed onto the stack using the implied stack pointer
(R15 in nonsegmented mode, RR14 in segmented mode). The PC value
pushed is the address of the next instruction following the subroutine call.
The specified destination address is then loaded into the PC; the PC then
points to the first instruction in the subroutine. For the CALR instruction~
the destination address is calculated using relative addressing and must be in
the range -4092 to +4098 bytes from the start of the CALR instruction. The
CALR has a shorter opcode than the CALL instruction.

At the end of the procedure entered with a CALL or CALR, a Return
(RET) instruction will pop the old PC value off the stack and resume execu­
tion at the instruction following the subroutine call, if the specified condi­
tion code is satisfied by the flags. If the condition code is not satisfied, the
next instruction following the RET is executed.

The Decrement and Jump if Not Zero instructions (DJNZ, DBJNZ) are
used to control execution of program loops. A word register (for DJNZ) or
byte register (for DBJNZ) is used as a loop counter. A destination address is
calculated using relative addressing. Execution of the DJNZ will cause the
register contents to be decremented by one. If the contents of the register
are not zero after the decrement, the destination address is loaded into the
PC. When the register contents reach zero, control falls through to the next
instruction after the DJNZ. The destination address must be in the range of
- 252 to +2 bytes from the start of the DJNZ instruction. Thus this instruc­
tion cannot be used to jump in a forward direction.

138 The I nstruction Set Chap. 8

TABLE 8.9 PROGRAM CONTROL INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonicsa Operands modes NS SS SL NS SS SL Operation

CALL dst IR 10 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @ SP <- PC

PC <- dst

CALR dst RA 10 15 Call Relative
Autodecrement SP
@ SP <- PC
PC <- PC + dst

(range -4094 to +4096)

DJNZ, R, dst RA 11 Decrement and Jump if N on-
DBJNZ Zero

R<-R-1
If R =1= 0: PC +--- PC + dst

(range -254 to 0)

IRET* 13 16 Interrupt Return
PS <- @ SP
Autoincrement SP

JP cc, dst IR 10 15 (taken) Jump Conditional
IR 7 7 (not taken) If cc is true: PC <- dst
DA 7 8 10
X 8 8 11

JR cc, dst RA 6 Jump Conditional Relative
If cc is true:

PC <-- PC + dst
(range -256 to +254)

RET cc 10 13 (taken) Return Conditional
7 7 (not taken) If cc is true:

PC <--@ SP
Autoincrement SP

SC src 1M 33 39 System Call
Autodecrement SP
@ SP +--- old PS
Push instruction
PS <- System Call PS

a An asterisk indicates a privileged instruction.

The DJNZ and DBJNZ instructions provide a simple, efficient loop con­
trol method for Z8000 programs. For example, the code needed to execute
a program loop exactly 50 times would read as follows:

LOB RHO, #50

LOOP: !BODY OF THE LOOP!

DBJNZ RHO, LOOP

Although a decrement is performed during execution of the DJNZ, the
flags are not affected by this instruction. Thus this instruction can control
loops used to implement multiple-precision arithmetic operations, without

Block Move Instructions 139

having to save the flags before checking the end-of-Ioop condition and
restoring them afterwards.

The Jump (JP) and Jump Relative (JR) instructions load the PC with
the destination address if the condition code is true. If the condition code
is not satisfied by the flags, the instruction following the jump will be exe­
cuted. For the JR instruction, relative addressing is used to calculate the
destination address, which must be in the range of -254 to +256 bytes from
the start of the JR instruction.

The Interrupt Return instruction (lRET) is used to return to the inter­
rupted task after executing an interrupt or trap service routine, as described
in Chapter 6. The identifier word associated with the interrupt or trap is
popped from the system stack and discarded. Then the old program status
values for the interrupted task are popped and loaded into the FCW and PC.
The new value for the FCW is not effective until the next instruction, so the
CPU's status pins will not be affected by the new control bits until after the
IRET instruction execution is complete. IRET is a privileged instruction
and, therefore, can only be executed in system mode. A ZSOOI must be in
segmented mode when an IRET is performed.

The System Call instruction (SC) causes the CPU to process a system
call trap, as described in Chapter 6. This instruction allows normal-mode
users access to the operating system functions in the system call trap service
routine. The SC instruction requires an immediate operand between 0 and
255; this operand is encoded into the opcode that is saved on the stack as the
identifier word when processing the system call trap.

BLOCK MOVE INSTRUCTIONS

The block move instructions (Table S.lO) provide memory-to-memory
transfers wherein a byte or word string of data of any length up to 64K
bytes can be transferred. In these instructions, the address in memory of the
source and destination operands are stored in registers (word registers in the
nonsegmented mode, register pairs in the segmented mode) and indirect
register addressing is used. The registers used as memory pointers are auto­
matically incremented or decremented during instruction execution; thus
after each element of the string is transferred, the pointer register is updated
to address the next element of the string.

The Load and Decrement instructions (LDD, LDDB) transfer a byte or
word of data, and then decrement the source and destination registers (by 1
for LDDB and by 2 for LDD). The Load and Increment instructions (LDI,
LDIB) increment the registers that hold the source and destination addresses
after performing the transfer. (In segmented mode, only the low-order half
of the register pair that holds the memory address is incremented or decre­
mented; the segment number is not affected by the address calculations.)
These instructions typically are used in a program loop, where a string of

140 The I nstruction Set Chap. 8

TABLE 8.10 BLOCK MOVE INSTRUCTIONS

Clock cycles

Word/byte Long word
Address

Mnemonics Operands modes NS SS SL NS SS SL Operation

LDD,
LDDB

dst. src, R IR 20 Load and Decrement
dst <- src
Autodecrement dst and

src addresses
R<-R-l

LDDR. dst, src, R IR (11 + 9n) Load, Decrement and Repeat
dst +- src LDDRB

LDI. dst, src. R IR
LDIB

LDIR. dst, src, R IR

20

(11 + 9n)

Autodecrement dst and
src addresses

R+-R-l
Repeat until R = 0

Load and Increment
dst <- src
Autoincrement dst and

src addresses
R+-R-l

LDIRB
Load, Increment and Repeat

dst <- src
Autoincrement dst and

src addresses
R<-R-l
Repeat until R = 0

data is being moved in memory and other operations are contained in the
loop. The third operand in these instructions is a word register that holds a
count that is decremented each time the instruction is executed.

The Load, Increment and Repeat (LDIR, LDIRB) and Load, Decre­
ment and Repeat (LDDR, LDDRB) instructions are automatically repeating
forms of the block transfer instructions. These instructions are, in essence,
a one-instruction loop. The third operand is a word register that holds the
count of how many times the instruction is to be executed. Thus a block
of 64K bytes of data can be relocated within memory with one Z8000
instruction.

The automatically repeating forms of the block move instructions are
interruptible at their elementary level, that is, after each iteration of the
byte or word transfer. The address saved on the stack during exception pro­
cessing would be the address of the block move instruction itself. Of course,
the service routine should not alter any of the registers being used by the
block move to hold memory addresses or the repetition count.

BLOCK COMPARE INSTRUCTIONS

Two types of block compare instructions are provided: one for comparing
the elements of a string of bytes or words in memory to the contents of a

Block Translate Instructions 141

register, and another for comparing the corresponding elements of two
strings in memory (Table 8.11).

The Compare and Decrement instructions (CPD, CPDB) use four oper­
ands. The first is the register whose contents are compared to the memory
location specified by the second operand using indirect register addressing.
The third operand is a word register that holds a count and the fourth is a
condition code specifying the flag settings to be examined after each com­
pare operation. Each time the instruction is executed, the register used to
hold the memory address in the string is decremented. The Compare and In­
crement instructions (CPI, CPIB) are similar, with the memory address being
incremented after each execution. These instructions would be used in a
program loop to compare a string of data in memory to the destination regis­
ter's contents. The Z flag is set if the condition code is satisfied as the result
of a comparison.

The Compare, Decrement and Repeat (CPDR, CPDRB) and Compare,
Increment and Repeat (CPIR, CPIRB) are automatically repeating forms of
these instructions. The instruction repeats until the condition code is met
during a comparison or the count is exhausted. The Z and V flags indicate
which condition caused the instruction to terminate. The repeating instruc­
tions are interruptible after each iteration of the instruction.

The Compare String and Decrement instructions (CPSD, CPSDB) are
used to compare corresponding elements in two strings of data in memory.
Both strings are referenced using indirect register addressing. The third oper­
and is a word register that holds a count and the fourth operand is the condi­
tion code for the comparison. After each execution, the Z flag indicates if the
condition code is met, and the addresses in the source and destination regis­
ters are decremented to point to the next element in their respective strings.
The Compare String and Increment instructions (CPSI, CPSIB) are similar,
with the addresses in the registers being incremented after each execution.
These instructions typically are used in program loops that operate on two
strings.

The Compare String, Decrement and Repeat (CPSDR, CPSDRB) and
Compare String, Increment and Repeat (CPSIR, CPSIRB) are automatically
repeating forms of the string compare. The instruction repeats until the
condition code is met or the count is exhausted, as indicated by the Z and V
flags. These repeating instructions are interruptible after each iteration of
their execution.

BLOCK TRANSLATE INSTRUCTIONS

The block translate instructions (Table 8.12) operate only on byte strings in
memory. One set of instructions is used to translate a string of bytes from
one code to another; another set of block translate instructions is used to

TABLE 8.11 BLOCK COMPARE INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonics Operands modes NS SS SL NS SS SL Operation

CPD, RX, src, IR 20 Compare and Decrement
CPDB Ry, cc RX - src

Autodecrement src address
Ry ~Ry-1

CPDR, RX, src, IR (11 + 9n) Compare, Decrement and
CPDRB Ry, cc Repeat

RX - src
Autodecrement src address
Ry ~Ry-1
Repeat until cc is true or

Ry = 0

CPI, RX, src, IR 20 Compare and Increment
CPIB Ry, cc RX - src

A utoincrement src address
Ry ~Ry - 1

CPIR, RX, src, IR (11 + 9n) Compare, Increment and
CPIRB Ry, cc Repeat

RX - src
Autoincrement src address
Ry ~Ry-1
Repeat until cc is true or

Ry = 0
CPSD, dst, src, IR 25 Compare String and

CPS DB R, cc Decrement
dst - src
Autodecrement dst and src

addresses
R ~R-1

CPSDR, dst, src, IR (11 + 14n) Compare String, Decrement
CPSDRB R, cc and Repeat

dst - src
Autodecrement dst and src

addresses
R ~R-1
Repeat until cc is true or

R=O

CPSI, dst, src, IR 25 Compare String and
CPSIB R, cc Increment

dst - src
Autoincrement dst and src

addresses
R ~R-1

CPSIR, dst, src, IR (11 + 14n) Compare String, Increment
CPSIRB R, cc and Repeat

dst - src
Autoincrement dst and src

addresses
R ~R-1
Repeat until cc is true or

R=O

142

TABLE 8.12 BLOCK TRANSLATE INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonics Operands modes NS SS SL NS SS SL Operation

TRDB dst, src, R IR 25 Translate and Decrement
dst +--- src (dst)
Autodecrement dst

address
R+---R 1

TRDRB dst, src, R IR (11 + 14n) Translate, Decrement and
Repeat

dst +--- src (dst)
Autodecrement dst

address
R +---R-l
Repeat until R = 0

TRIB dst, src, R IR 25 Translate and Increment
dst +--- src (dst)
Autoincrement dst

address
R +---R-l

TRIRB dst, src, R IR (11 + 14n) Translate, Increment and
Repeat

dst +--- src (dst)
Autoincrement dst

address
R+-R-1
Repeat until R = 0

TRTDB src1, IR 25 Translate and Test,
src2, R Decrement

RHI +- src 2 (src 1)
Autodecrement src 1

address
R +---R-1

TRTDRB src1, IR (11 + 14n) Translate and Test, Decre-
src2, R ment and Repeat

RH1 +--- src 2 (src 1)
Autodecrement src 1

address
R +---R-1
Repeat until R = 0 or

RHl=O

TRTIB srcl, IR 25 Translate and Test, Incre-
src2, R ment

RH1 +--- src 2 (src 1)
Autoincrement src 1

address
R +---R-l

TRTIRB src1, IR (11 + 14n) Translate and Test, Incre-
src2, R ment and Repeat

RHI <--- src 2 (src 1)
Autoincrement src 1

address
R <---R-1
Repeat until R = 0

or RH1 = 0

143

144 The Instruction Set Chap. 8

scan a string of bytes for elements with a special meaning. All of the block
translate instructions use byte register RHI as a temporary storage area
during their execution.

The Translate and Decrement instruction (TRDB) has three operands.
The source and destination operands are in memory and are specified using
indirect register addressing. The third operand is a count that is decre­
mented each time the instruction is executed. The location addressed by
the destination register is called the target byte and its contents are used as
an index into a table of translation values whose base address is in the source
register. The element of the table whose address is found by adding the tar­
get byte to the base address of the table replaces the target byte at the des­
tination address. The destination register is then decremented by one to
point to the next element of the string to be translated.

Suppose that a string of bytes holding ASCII characters is to be trans­
lated into the corresponding EBCDIC characters. A table is built in memory
wherein each EBCDIC character is placed at the table location corresponding
to the ASCII value for that character. For example, the thirtieth (hexa­
decimal) element of the table should contain the EBCDIC code for a "0,"
since 30 (hex) is the ASCII code for a "0." The base address (that is, lowest
address) of the table is loaded into the source register for the TRDB instruc­
tion. The highest address in the ASCII string to be translated is loaded into
the destination register and the TRDB instruction is used to perform the
translation. The destination register is automatically decremented to point
to the next byte to be translated.

The Translate and Increment instruction (TRIB) is similar, with the des­
tination register being incremented instead of decremented after each execu­
tion. TRDB and TRIB typically are used in a program loop to translate an
entire string of data.

The Translate, Decrement and Repeat (TRDRB) and Translate, Incre­
ment and Repeat (TRIRB) are automatically repeating forms of the translate
instructions. The instruction repeats until the contents of the count register
reach zero. These instructions are interruptible after each iteration of the
operation.

The Translate, Test and Decrement instruction (TRTDB) works in a
similar manner and is used to scan a string for special characters. The con­
tents of the location addressed by the first source register is used as an index
into a table of values whose base address is contained in the second source
register. This element of the table is loaded into RHI and, if it is zero, the
Z flag is set. The contents of the location addressed by the source are not
altered by this instruction. The first source register is then decremented to
point to the next element of the string being scanned. This instruction typi­
cally is used in a loop, where a string is scanned until a nonzero value is
found in the table. The Translate, Test and Increment instruction (TRTIB)
is similar, except the first source address is incremented.

I/O Instructions 145

The repeating forms of these instructions are Translate, Test, Decre­
ment and Repeat (TRTDRB) and Translate, Test, Increment and Repeat
(TRTIRB). These instructions repeat until either the count reaches zero or a
nonzero value in the table is accessed and loaded into RH1. Thus the user
can build a table that marks special characters by having a nonzero value in
the appropriate position in the table. A string of characters can be scanned
with one of these instructions, searching for the special characters. The re­
peating forms are interruptible after each iteration of the execution.

I/O INSTRUCTIONS

The instructions used to access the standard I/O address space are listed in
Table 8.13. All I/O instructions are privileged, meaning that they can be
executed in the system mode only.

The Input instructions (IN, INB) are used to input a byte or word of
data from an I/O device. The destination is always a register. The I/O port
address can be specified using the direct address or indirect register address­
ing modes. No flags are affected.

For the Input and Decrement instructions (IND, INDB), the destination
is a memory location and the source is an I/O port. Both the memory and
I/O port address are specified using indirect register addressing. After ex­
ecution, the destination register is decremented to point at the next lower
memory location, in preparation for another execution of the instruction.
Thus this instruction would be used in a program loop to load strings of data
from an I/O port to consecutive memory locations. The third operand is a
word register that holds a count that is decremented each time the instruc­
tion is executed. The Input and Increment instructions (INI, INIB) are sim­
ilar, with the destination register being incremented each time the instruc­
tion is executed.

The Input, Decrement and Repeat (INDR, INDRB) and Input, Incre­
ment and Repeat (INIR, INIRB) are automatically repeating forms of the in­
put instruction. The instruction repeats until the count reaches zero; there­
fore, up to 64K bytes of data can be read from an I/O port and placed in
memory with one instruction.

The Output instruction (OUT, OUTB) is used to write a byte or word
of data from a register to a peripheral device. Block output instructions are
available for writing data in consecutive memory locations to an I/O port.
These are analogous to the input commands, and include the Output and
Decrement (OUTD, OUTDB), Output and Increment (OUTI, OUTIB), Out­
put, Decrement and Repeat (OTDR, OTDRB), and Output, Increment and
Repeat (OTIR, OTIRB) commands.

All the repeating I/O instructions are interruptible after each iteration
of the instruction. For byte I/O operations, the I/O port address will deter-

TABLE 8.13 I/O INSTRUCTIONS

Clock cycles

Word/byte Long word

Address
Mnemonicsa Operands modes NS SS SL NS SS SL Operation

IN*, R, src IR 10 Input
INB* DA 12 R +--- src

IND*, dst, src, R IR 21 Input and Decrement
INDB* dst +--- src

Autodecrement dst
address

R +---R-1

INDR*, dst, src, R IR (11 + IOn) Input, Decrement and
INDRB* Repeat

dst +--- src
Autodecrement dst

address
R +--R-1
Repeat until R = 0

INI*, dst, src, R IR 21 Input and Increment
INIB* dst +--- src

Autoincrement dst
address

R +---R-1

INIR*, dst, src, R IR (11 + IOn) Input, Increment and
INIRB* Repeat

dst +--- src
Autoincrement dst

address
R +---R-1
Repeat until R = 0

OUT*, dst, R IR 10 Output
OUTB* DA 12 dst +--- R

OUTD*, dst, src, R IR 21 Output and Decrement
OUTDB* dst +--- src

Autodecrement src
address

R +---R-1

OTDR*, dst, src, R IR (11 + IOn) Output, Decrement and
OTDRB* Repeat

dst +-- src
Autodecrement src

address
R +---R-1
Repeat until R = 0

OUTI*, dst, src, R IR 21 Output and Increment
OUTIB* dst +-- src

Autoincrement src address
R+--R-1

OTIR*, dst, src, R IR (11 + IOn) Output, Increment and
OTIRB* Repeat

dst +--- src
Autoincrement src

address
R+--R-1
Repeat until R = 0

a As indicated by the asterisks, aU I/O instructions are privileged.

146

CPU Control Instructions 147

mine which half of the address/data bus is used for the byte data transfer,
as explained in Chapter 4. Byte data are transferred on ADO-AD7 for odd
port addresses, and on AD8-AD15 for even port addresses.

SPECIAL I/O INSTRUCTIONS

The special I/O instructions (Table 8.14) are used to access the peripherals in
the special I/O address space and are identical in format to the I/O instruc­
tions described above. In fact, the only difference between executing an I/O
instruction and the corresponding special I/O instruction is the status code
emitted on the STO-ST3 lines during I/O access machine cycles. Note that
the Special Input (SIN) and Special Output (SOUT) instructions do not sup­
port the indirect register addressing mode for specifying I/O port addresses.
All special I/O instructions are privileged instructions.

CPU CONTROL INSTRUCTIONS

The CPU control instructions (Table 8.15) are instructions that operate on
the CPU control registers (the FCW, PC, and refresh register) or perform
other CPU-related functions.

Several instructions can be used to manipulate the flags in the FCW.
The Set Flag instruction (SETFLG) is used to load a 1 into any combination
of the C, S, Z, or P/V flags. The operands are the flags themselves; one, two,
three, or four operands can be specified, in any order:

SETFLG Z, V ! set the zero and overflow flags!

In a similar manner, the Reset Flag instruction (RESFLG) is used to clear
any combination of the C, S, Z, or P/V flags to zero. The complement flag
instruction (COMFLG) complements any combination of those four flags
(that is, each 1 is changed to a 0, and vice versa).

The entire low-order byte of the FCW (the byte that holds the flags)
can be read to or written from any byte register using the Load Control Byte
instruction (LDCTLB), as follows:

LDCTLB RHO, FLAGS

LDCTLB FLAGS, RL6

! load the flag byte of the FCW into RHO!

! load contents of RL6 into low half of FCW !

The Disable Interrupt instruction (DI) is used to disable vectored inter­
rupts and nonvectored interrupts by writing O's to the appropriate bits in
the FCW. Either vectored interrupts, nonvectored interrupts, or both can be

TABLE 8.14 SPECIAL I/O INSTRUCTIONS

Clock cycles

Word/byte Long word
Address

Mnemonicsa Operands modes NS SS SL NS SS SL Operation

SIN*, R, src DA 12 Special Input
SINB* R +- src

SIND*, dst, src, R IR 21 Special Input and Decrement
SINDB* dst +- src

Autodecrement dst
address

R+-R-l

SINDR*, dst, src, R IR (11 + IOn) Special Input, Decrement
SINDRB* and Repeat

dst +- src
Autodecrement dst

address
R+-R-l
Repeat until R = 0

SINI*. dst. src. R IR 21 Special Input and Increment
SINIB* dst +- src

Autoincrement dst
address

R+-R-l

SINIR*, dst. src. R IR (11 + IOn) Special Input, Increment and
SINIRB* Repeat

dst +- src
Autoincrement dst

address
R+-R-l
Repeat until R = 0

SOUT*. dst, src DA 12 Special Output
SOUTB* dst +- src

SOUTD*. dst. src, R IR 21 Special Output and
SOUTDB* Decrement

dst +- src
Autodecrement src

address
R+-R-l

SOTDR*, dst. src, R IR (11 + IOn) Special Output, Decrement
SOTDRB* and Repeat

dst +- src
Autodecrement src

address
R+-R-l
Repeat until R = 0

SOUTI*. dst. src. R IR 21 Special Output and
SOUTIB* Increment

dst +- src
Autoincrement src address
R+-R-l

SOTIR*. dst. src, R R (11 + IOn) Special Output, Increment
SOTIRB* and Repeat

dst +- src
Autoincrement src address
R+-R-I
Repeat until R = 0

a All special I/O instructions are privileged.

148

CPU Control Instructions

TABLE 8.15 CPU CONTROL INSTRUCTIONS

Clock cycles

Mnemonicsa

COMFLG

DI*

EI*

HALT*

LDCTL*

LDCTL*

LDCTLB

LDCTLB

LDPS*

MBIT*

MREQ*

MRES*

MSET*

NOP
RESFLG

SETFLG

Operands

flags

int

int

CTLR,
src

dst,
CTLR

flags, src

dst, flags

src

dst

flag

flag

Word/byte

Address
modes NS SS SL

7

7

7

(8 + 3n)

R 7

R 7

R 7

R 7

IR 12 16
DA 16 20 22
X 17 20 23

7

R (12 + 7n)

5

5

7

7

7

a An asterisk indicates a privileged instruction.

disabled with a single DI instruction:

Long word

NS SS SL Operation

Complement Flag
(Any combination of
C, Z, S, P/V)

Disable Interrupt
(Any combination of
NVI, VI)

Enable InterruPt
(Any combination of
NVI, VI)

HALT

Load into Control Register
CTLR +- src

149

Load from Control Register
dst +- CTLR

Load into Flag Byte Register
FLGR +- src

Load from Flag Byte
Register

dst <- FLGR

Load Program Status
PS <- src

Test Multi-Micro Bit
Set S if MI i~Low;

reset S if MI is High

Multi-Micro Request

Multi-Micro Reset

Multi-Micro Set

No Operation

Reset Flag
(Any combination of
C, Z, S, P/V)

Set Flag
(Any combination of
C, Z, S, P/V)

DI NVI, VI I disable vectored and nonvectored interrupts!

The Enable Interrupt instruction (EI) is the complement of the DI
instruction. It is used to enable vectored and nonvectored interrupts by
setting the appropriate bits in the FCW to 1 'so EI and DI are privileged
instructions.

The LDCTL instruction (LDCTL) is a privileged instruction that is used

150 The I nstruction Set Chap. 8

to transfer words between any general-purpose register and the CPU control
registers. LDCTL can read or write to the FCW, refresh register, PSAP seg­
ment number (ZSOOl only), or PSAP offset. When loading control registers,
bits marked "reserved" in the destination should be loaded with O's. The
value of those bits when read from control registers and loaded into general­
purpose registers is undefined. Only the row counter portion (bits O-S) of
the refresh register can be read. The normal-mode implied stack pointer can
be accessed while in the system mode with the LDCTL instruction. This al­
lows the operating system to initialize the implied stack pointers for normal­
mode users. Table S.16 shows examples of the LDCTL instruction.

The Load Program Status instruction (LDPS) loads new program status
(an FCW and PC value) from the memory area specified as the operand, as
discussed in Chapter 6. The old program status is not saved, so execution of
the LDPS instruction causes a permanent change in the program environ­
ment. LDPS is a privileged instruction.

The Multi-Micro Request (MREQ), Multi-Micro Bit (MBIT), Multi­
Micro Set (MSET), and Multi-Micro Reset (MRES) instructions are privileged
instructions that act on the MI and MO CPU signals. These signals usually
are used to implement resource sharing in multiprocessor systems, as de­
scribed in Chapter 7.

TABLE 8.16 USE OF THE LDCTL INSTRUCTION

LDCTL FCW, RO
LDCTL RO, FCW

LDCTL REFRESH,RO
LDCTL RO, REFRESH

LDCTL PSAPSEG, RO
LDCTL RO, PSAPSEG

LDCTL PSAPOFF,RO
LDCTL RO,PSAPOFF

LDCTL NSPSEG, RO

LDCTL RO, NSPSEG

LDCTL NSPOFF,RO

LDCTL RO,NSPOFF

! write to FCW !
! read from FCW !

! write to refresh register!
! read from refresh register-can only read row address portion

(bits 0-8) !

! write segment number in program status area pointer
! read segment number portion of PSAP !

! write to offset portion of PSAP !
! read offset portion of PSAP !

! write segment-number portion of normal-mode stack pointer
(normal-mode R14) while in system mode!

! read segment number in normal-mode stack pointer while in
system mode !

! write offset portion of normal-mode stack pointer (normal­
mode R 15) while in system mode !

! read offset in normal-mode stack pointer while in system
mode!

CPU Control Instructions 151

The No Operation instruction (NOP) does not perform any operations,
as the name implies.

The Z8000 instruction set can be extended by the addition of Ex­
tended Processing Units (EPUs) to a system. Opcodes that begin with OE,
OF, 4E, 4F, 8E, and 8F (hexadecimal) are extended instructions that are ex­
ecuted by EPUs. The five basic addressing modes (R, DA, 1M, IR, and X)
can be used in extended instructions to specify data operands. The extended
processor architecture is described in Chapter 10.

9

The ISO 1 0 Memory

Management Unit

The Z8001 CPU is capable of addressing up to 8 megabytes of memory per
memory address space. The 8M bytes of memory in each address space are
partitioned into 128 segments, where each segment can hold up to 64K bytes
of memory. This large addressing capability and the other powerful features
of the Z8000 architecture allow the Z8001 CPU to be used in microcomputer
systems that support sophisticated operating systems, complex programs,
large data bases, and the use of high-level languages.

Within a computer system, the operating system controls the allocation
of resources among the programming tasks being executed on the system, as
described in Chapter 1. One of the major resources in a computer system is
its memory. The efficient allocation of memory resources is critical, espe­
cially in systems where a large number of tasks are competing for the use of
a limited amount of physical memory. Furthermore, the operating system
may want to protect the integrity of the system by limiting access to various
portions of memory. For example, users' programs might not be allowed to
access the memory that holds the code for the operating system. Thus the man­
agement of memory resources in a computer system involves both the alloca­
tion of memory for the various tasks executing on the system and the protec­
tion of memory to prevent illegal accesses and maintain system integrity. For
Z8001-based systems, the Z8010 Memory Management Unit (MMU) is a pro­
grammable device that can be used to support memory management functions.

MEMORY ALLOCATION

The Z8010 MMU facilitates control of memory resource allocation by trans­
lating logical addresses to physical addresses. Logical addresses are the mem-

152

Segmentation and Memory Allocation 153

ory addresses manipulated within a program and emitted by the CPU during
execution. Physical addresses are the memory addresses seen at the memory
control logic and input to the acutal memory devices (RAM, ROM, or PROM).
In simple systems without memory management capability, the logical and
physical addresses are the same. In more complex systems, a memory man­
ager is used to translate logical addresses into different physical addresses.
The memory management unit stands between the CPU and memory in a
system, accepting logical addresses from the CPU and outputting the corre­
sponding physical addresses to memory. Thus a given programming task
can be relocated anywhere within physical memory by the memory manager
through address translation.

This separation of logical and physical addresses is necessary in most
multitasking systems. The amount of memory in a computer system is
finite. In multitasking systems, the memory requirements for all the tasks in
the system usually exceeds the amount of physical memory in that system.
However, not every task's code and data are needed in main memory at the
same time; secondary storage devices such as tapes and disks can be used to
store tasks not currently being executed. When a task's code or data is needed,
it can be written from the secondary storage device into memory. Of course,
the operating system must keep track of which memory areas are being used
for each task running on the system at any given time. With a memory man­
ager that provides address translation, a new task can be placed in any "open"
area of memory (that is, an area not currently being used by some other
task).

The ability to relocate tasks anywhere within memory can significantly
increase the performance and flexibility of a system. An individual user does
not need to be concerned that the logical addresses within his program are
the same as the logical addresses for another program on the system; the
memory manager will route each task's logical addresses to different areas of
physicalmemory. The cumbersome techniques of reserving fixed areas ofmem­
ory for overlays in a large program can be replaced by more efficient algo­
rithms using the memory manager to relocate program code. Separating logi­
cal and physical addresses also facilitates the sharing of code or data between
two different tasks, since two or more logical addresses can be mapped to the
same physical address.

SEGMENTATION AND MEMORY ALLOCATION

Complex programs written as one large, monolithic block are difficult, if
not impossible, to write, debug, and maintain. Modem structured program­
ming techniques require programmers to partition large programs into smaller,
easily-managed subparts, with each subpart having a well-defined interface
to other parts of the program. Highly structured programming languages
such as Pascal and Ada are based on such a scheme. The segmentation of mem-

154

USER A

SEG.5
DATA

SEG.12
DATA

The Z8010 Memory Management Unit Chap. 9

USER B

SEG.5
PROGRAM

Figure 9.1 Two users' logical ad­
dress spaces.

ory spaces in a Z8001-based system provides support at the hardware level
for partitioning programs; each code, data, and stack area in a program can
reside in its own memory segment.

Furthermore, memory segmentation provides a basis for address reloca­
tion within the memory manager. The Z8010 MMU translates logical to
physical addresses on a segment-by-segment basis. For example, Fig. 9.1
shows the logical addresses for two users of a Z8001 system. User A has
specified that task A's program code resides in segment 6, and the data in
segment 5. User B has specified segment 5 for task B's code, segment 12 for
the data, and segment 2 for the stack. Note that both users have named one
of their segments "segment 5," but they refer to completely different mem­
ory areas. Figure 9.2 illustrates one way that these users' segments could be
mapped into physical memory. The dashed lines indicate the mapping of logi­
cal to physical addresses by the memory manager. The segments are logically
distinct; a reference to one segment cannot inadvertently result in an access
to another segment.

In the the Z8010 MMU, each memory segment is assigned to some area
of physical memory (Fig. 9.3). Segments can be of variable size, up to 64K
bytes per segment. Address translation is performed by adding the offset
portion of the logical address to the starting physical address of the segment.
Thus when a logical address of the form «A»B is emitted by the CPU, the seg­
ment name "A" is used by the MMU to determine where segment A begins
in physical memory. If segment A resides in locations 10000 to 25000, the
physical address corresponding to logical address «A»B would be location
10000 + B. In other words, the logical segment number is just a name corre­
sponding to some physical address in memory, and the logical offset is a dis­
placement from that address.

Segmentation and Memory Allocation

LOGICAL ADDRESS SPACE

EXECUTE

PHYSICAL
MEMORY

ONLY

READ/W~ITE---- - ___ _

" " " " "" / \ /
\ I

A. SEa 5 \ I
DATA \ I

")1 4
/ " II
/ 'I"

/ / I
I / / I

/ / / /
/ I I I

I / /
I I / /

\ / I I /
\ I I I /
\, / I I /

EXECUTE I / / I
ONLY " I I I

" I I I
I" I /

B. SEa 5 I \ / /
READ/WRITE PRoaRAM / l'",

/ I I " , / / "
" I / \

" / I \
B. SEa 12 READ/WRITE I

DATA 'f...
B. SEa 2 I "
STACK / "

, , , ,
" , , , , ,

"-
"-

"-

,

, ,

Figure 9.2 Mapping logical ad­
dresses to physical addresses.

155

Within the Z8010 MMU, special registers are used to hold the starting
address in physical memory for each segment. The offset address emitted by
the CPU during Tl of a memory access cycle is added to this starting address
for the segment to produce the physical address output by the MMU. This
address translation is similar to indexed addressing, where the contents of the
MMU register that holds the starting address for the segment is used as a base
address and the offset portion of the logical address is added to that base to
yield the physical address.

156

CPU ADDRESS

0

SEG # ~- -

15

I OFFSET ~/--

The Z801 0 Memory Management Unit Chap. 9

L.Q~
ADDRESSING

SPACE

SEGMENT 0

D
SEGMENT 1

D
SEGMENT2

o
I
I
I
I
I

SEGMENTN

r----.
I

OOOOH I
I
I

UPTO I FFFFH

I
--L

OOOOH I
I

~ UPTO
FFFFH

----/===4 I
---------- I w I OOOOH (,)

I ~ I

UPTO -+--i~
~ ~ I

I ~ I
I
I ~ I
I w

::;

I I
I

B:
Jt I / """" 71 /: ELEMENT I

-- ADDRESSED I I
~~F~~ I I

/
--r-I

I
SEGMENT 127

D
OOOOH

UPTO

I I
I I
I I
I I
L __ ...J

PHYSICAL
ADDRESSING

SPACE

0
t-
Z
w
::;
(!)
w
<n

~
ffi
::;
(!) r---W
<n

t---

....
N

t-
Z
w
::;

&3
<n

z
t-

ffi
::;

&3
<n

OOOOOOH

FFFFFFH

Figure 9.3 Memory mapping of segments with a memory manager.

MEMORY PROTECTION

Once the program has been partitioned into separate memory segments, it is
highly desirable to assign attributes to each segment. For example, attributes
have been associated with each segment in Fig. 9.2 based on how that seg­
ment is to be used during task execution; segments that hold program code
are designated "execute only," and segments that hold data are "read/write"
segments. Since the MMU is between the CPU and memory, it can block il­
legal memory accesses based on the attributes assigned to each segment. Thus

Memory Protection 157

users A and B are prevented from executing a data segment or writing into a
code segment.

More specifically, memory protection by the Z8010 MMU is accom­
plished by memory attribute checking. Attributes are assigned on a segment­
by-segment basis. A segment's attributes determine who can access that seg­
ment and what types of accesses are allowed. Each memory reference is
checked to ensure that the task has the right to access the data in that fashion.

A number of attributes can be associated with a segment and checked
during accesses to that segment. The length of a segment can be designated
in the MMU, and references to each segment are checked to ensure that they
fall within the boundaries of that segment. Segments can be assigned a "read­
only" attribute; this is used to prevent modification of data elements or to
protect the integrity of program code that is not self-modifying. The "exe­
cute-only" attribute means that the segment can be accessed only during in­
struction fetch cycles (including loads that use the relative addressing mode)
and is useful for guarding proprietary software. The "system-only" attribute
prevents normal-mode programs from accessing segments that are reserved
for operating system code or data. To check these attributes, the MMU must
sample the status lines from the Z8001 CPU that define the type of the cur­
rent transaction.

The Z8010 MMU stores each logical segment's attributes in an internal
register (one per segment) and checks those attributes each time the segment
is accessed. If a memory access that violates the attributes for a segment is
detected, the MMU notifies the CPU by making a segmentation trap request
on the Z8001's SEGT input. The segmentation trap service routine can read
status registers in the MMU to determine the exact cause of the trap. When
asserting a segment trap request, the MMU also generates a signal to memory
(SUP) that can be used by memory control logic to inhibit an erroneous mem­
ory write.

The MMU stores other status information together with the attributes
for each segment. This information includes flags that indicate if a segment
has been referenced or modified while resident in main memory. If a seg­
ment is to be written to a secondary storage device, such as a disk, in order
to make room in main memory for another task, these flags will indicate if
that segment was modified since the last time it was read into memory from
the disk. If the segment was modified, the updated version of that segment
must be written to the disk; if not, the copy of the segment's contents on
the disk is still valid and rewriting the segment to the disk is not necessary.
Obviously, such status information can improve the performance of the en­
tire system.

In summary, memory management involves the allocation and protection
of the system's memory resources. In Z8001-based systems, a memory man­
agement system can be implemented using operating system software and the
Z8010 Memory Management Unit. The Z8010 MMU controls memory allo-

158 The Z8010 Memory Management Unit Chap. 9

cation by translating logical addresses from the CPU into physical addresses
for the memory devices. Memory protection is provided by attribute check­
ing in the MMU.

The segmented address translation mechanism with attribute checking
provides all the benefits of an efficient memory management system. Mem­
ory can be allocated dynamically during task execution; that is, a task may be
located anywhere in physical memory and even moved when its execution is
suspended. Moving tasks to different locations requires only changing the
address mapping within the MMU. This flexibility is possible since the pro­
gram deals exclusively with logical addresses that are independent from the
physical addresses accessed during execution. Furthermore, sharing of com­
mon memory areas by different tasks is accomplished easily by mapping each
task's logical addresses to the same physical address.

Obvious execution errors can be avoided through the assignment of at­
tributes to memory segments. The MMU will notify the CPU when illegal
accesses are attempted, such as exceeding the boundaries of a segment or
writing to read-only memory. The segregation of the operating system from
the users' applications programs is facilitated by the "system-only" attribute.

Segmentation and memory management support the development of
large, complex programs and systems. The concept of segmentation corre­
sponds to the concept of structured programming, where each procedure and
data structure is associated with a distinct segment of memory and each seg­
ment is assigned its own attributes that govern its use. A task accesses a par­
ticular procedure or data structure by referring to its logical segment number;
that segment could be relocated into any appropriate area of physical mem­
ory. Access to each segment is restricted through the attribute-checking
mechanism of the MMU, thereby protecting system integrity.

Z8010 MMU ARCHITECTURE

The Z8010 Memory Management Unit is a 48-pin LSI device that operates
from a single +5-Vpower supply; 4 MHz, 6MHz, and 10 MHz versions are
available. The MMU is used in conjunction with the Z8001 CPU to provide
dynamic segment relocation and memory protection features within a micro­
computer system. A single MMU can manage 64 segments of memory; pairs
of MMUs support the full 128 segments available in a Z8001 memory address
space. Any number of MMUs may be included in one system. For example,
a system might include two MMUs to support 128 segments for normal-mode
users and another two MMUs to support 128 segments for operating system
software. Physically, the MMU is placed between the CPU and memory within
a system; logical addresses are input to the Z8010 and physical addresses
are output to memory. Figure 9.4 shows a simple, single-MMU system.
Only memory addresses are translated by the MMU; I/O addresses and data
bypass this component.

Z8010 MMU Architecture 159

A DATA ~

K \
I

~ "
MEMORY

Z8001 A ~ A ~ Z8010 A ~

<) K \ () CPU I MMU
~ " ~ ADDRESSES r ~ TRANSLATED "

ADDRESSES

Z·BUS

1/0

< >
A \

CONTROLLER
A ~ Z8016

!((E.G., I DTC I SCC, UPC, \ PERIPHERALS

~ r CIO, OR ~ " FlO)

Figure 9.4 Z8010 MMU in a Z8001 system.

The MMU translates the 23-bit logical address (7 -bit segment number
and 16-bit offset) from the CPU into a 24-bit physical address. Thus the 8M
bytes of logical addresses in a Z8001 memory space can be mapped into 16M
bytes of addresses in physical memory. Address translation and attribute
checking take place on a segment-by-segment basis. A translation table with
one entry per segment is used to perform the address translation. The at­
tributes for each segment also are stored in a table, with one entry per seg­
ment. As the address translation occurs, the attributes are checked against
the status information for the memory access from the CPU. If a violation
of the attributes is detected, the MMU notifies the Z8001 via the segmenta­
tion trap (SEGT) signal.

Figure 9.5 shows the functional pin-out and pin assignments for the
Z8010. The MMU receives the upper half of the address/data bus (AD8-
ADI5), the segment number, the status signals, and the bus timing signals
from the CPU. The remaining signals are control lines, including a chip se­
lect (CS), DMA synchronization strobe (DMASYNC), reset, and the clock.
The MMU is not a Z-Bus-compatible part, but instead is considered an ex­
tension of the processor. As such, it must receive the same clock as the CPU
in order to synchronize the address translation process with the CPU's mem­
ory access timing. MMU outputs include 16 bits of physical address informa-

160 The Z801 0 Memory Management Unit Chap. 9

- AD15 A23 - AD14 A22 - AD13 A2l
cs 48 N/S

AD12 A20
DMASYNC 47 R/W

ADDRESSI - SEGT 46 55
DATA A19

Ala
SUP 45 AS

A17
RESET 44 STo

A16
A23 43 STl

PHYSICAL
A15 ADDRESS A22 42 ST2

A14
A2l 41 ST3

A13
A20 40 ADa

A12
A19 10 39 ADg

Z8010 Vee 11 38 AD10

MMU All
AlB 12 Z8010 37 ADll

Al0 MMU
Ag

A17 13 36 ClK

A16 14
As

35 GND

A15 15 34 AD12

SEGMENT SEGT
A14 16 33 AD13

SUP SUPPRESS
TRAP A13 17 32 AD14

R/IN

~ I STATUS

A12 18 31 AD15 DMAISEGMENT _ DMASYNC
All 19 30 SNo

BUS TIMING { = N/S
20 Al0 29 SNl

AS ST3
Ag 21 28 SN2

55 ST2
As 22 27 SN3

STl
RESERVED 23 26 SN4

CHIP SELECT _ cs STo
SNs 24 25 SNs

+ 5 V GND ClK RESET

Figure 9.5 Z8010 MMU pinout.

tion (A8-A23), the segmentation trap request line (SEGT), and a memory
suppress signal (SUP).

For each bus transaction initiated by the CPU or a DMA device, the
Z8010 MMU will enter one of three functional states. The first is the mem­
ory management state; for a certain subset of memory transactions, the MMU
will translate the logical address to a physical address and check the attributes
for that access. The second state is a command state; the MMU will interpret
special I/O transactions as commands if the MMU's chip select (CS) input is
active. These commands allow the CPU to read from and write to the MMU's
registers. The third state is a quiescent state wherein the MMU ignores the
transaction and tri-states its address outputs. The MMU ignores all standard
I/O, internal, and refresh cycles and a subset of all memory transactions. The
MMU also ignores special I/O transactions if CS is not active. While in the
command or quiescent state, the MMU address outputs are tri-stated.

Figure 9.6 illustrates the interface between the Z8001 CPU and the
Z8010 MMU. The MMU selects which of the three states it should enter for
a given transaction based on the bus status information on the STO-ST3, R/W,
and N /8 signals during T1 of a CPU or DMA cycle. If an address translation
is to be performed, the MMU uses the segment number to access an internal

Z8010 MMU Architecture 161

tI.
00- 0 7)

l
OS-O'I '\

i(--;00-A07

-V
~

AiJ-A7 '\

~ ~
+cs -V

1/ AOs-AO'1 As-An
~ MEMORY

~ r v' CONTROL

K SNo-SN6 ') SUP
Z8001

CPU ~ r \ Z8010

STo-ST] n> MMU
STo-ST])

SEGT ASV' I--
AS I-- ~

OS I-- ~
RfW f----- 8'r!--
NfS

f--
~w

Figure 9.6 Z8001-Z8010 interface.

table of registers. These registers, called segment descriptor registers, contain
the starting location (called the base address) of each segment in physical
memory, the size of the segment, and the segment's attributes. Segments may
be of any size from 256 bytes to 64K bytes, in increments of 256 bytes (that
is, 256 bytes, or 512 bytes, or 768 bytes, and so on up to 65,536 bytes). The
eight least signficiant bits of the base address are always O's and are not stored
in the segment descriptor registers. Thus segments must begin at some 256-
byte boundary in physical memory. Since the low-order 8 bits of the base
address are always O's, the low-order 8 bits of the offset address are not in­
cluded in the address calculation internal to the MMU. Instead, they are con­
catenated with the 16 bits output by the MMU to yield a 24-bit physical ad­
dress (Fig. 9.7).

Therefore, only the upper half of the address/data bus, AD8-ADI5, are
MMU inputs; only the upper 16 bits of the physical address, A8-A23, are out­
puts. The low-order 8 bits of the physical address is always the same as the
low-order eight bits of the logical address. This scheme saves 16 pins on the
MMU package (eight inputs and eight outputs) at the expense of restricting
segment sizes to mUltiples of 256 bytes (since the lowest 8 bits can address
a block of 256 bytes). Of course, all 16 bits of the address/data bus must still
be propagated to the memory control logic since data always bypass the MMU.

The segment number (SNO-SN7) from the CPU is used to select a seg-

162 The Z801 0 Memory Management Unit Chap. 9

6 0 15 87 0

1 SEGMENT NUMBER 1 1 ________ OF....L~S_E_T ______ -----11 LOGICAL ADDRESS

/123 _____________ ---,8? _______________ ~ STARTING ADDRESS c.. r-- .. SE ADDRESS I' • • • • • • ., OF SEGMENT
• _ .1. _ .1. _ .1. _ .1. _ .1. _ .1. _ .1. _.J IN MEMORY

+

23 87 o

Figure 9.7 Generation of a physical address from a logical address.

ment descriptor register during the address translation process. The segment
number is output by the CPU earlier than the offset address during a memory
access. This allows the MMU to access its internal segment descriptor regis­
ter for that segment and select the base address before the offset appears,
thereby minimizing the delay between a valid offset address at the MMU's
inputs and a valid physical address at the MMU's outputs.

The rising edge of AS indicates that the offset address and status sig­
nals are valid at the MMU's inputs. AS and DS provide the bus timing for
data transactions between the CPU and MMU during special I/O transactions
that access the MMU's registers and during interrupt acknowledge cycles re­
sulting from segmentation traps.

The chip select (CS) is used to select an MMU during a special I/O in­
struction. The CPU uses special I/O transactions to read from and write to
the MMU's internal registers.

The DMA synchronization strobe (DMASYNC) input signals whether the
current cycle was initiated by the CPU or a DMA controller. A low indicates
that a DMA device has control of the bus.

When the MMU enters the memory management state during a memory
transaction, the segment's attributes are checked against the current bus sta­
tus. If a violation occurs (for example, the R/W line is low, indicating a write
transaction, but the segment is assigned the "read-only" attribute), the MMU
pulls the segment trap (SEGT) signal low , forcing a segmentation trap at the
CPU. The suppress (SUP) signal also is pulled low; suppress can be used in the
memory control logic to block illegal memory accesses.

The MMU contains a number of internal registers that are used to con­
trol MMU operation and to implement the address translation and attribute
checking processes. There are three types of registers: segment descriptor
registers, control registers, and status registers. A segment descriptor register
determines the base address, size, and attributes for a particular segment.
There are 64 segment descriptor registers-one for each segment handled by
the MMU. One control register, the mode register, determines which memory
accesses, if any, will put the MMU in the memory management state. Two

Segment Descriptor Registers 163

other control registers are used to access the segment descriptor registers, the
segment address register (SAR), and the descriptor selection counter register
(DSC). Six status registers can be read by the CPU when a segmentation trap
occurs to determine the cause of the trap. The violation-type register identi­
fies the type of violation caused by the attempted memory access. The vio­
lation segment and violation offset registers hold the segment number and
upper byte of the offset address of the memory access that caused the viola­
tion. The instruction segment number and instruction offset registers hold
the segment number and upper byte of the offset address of the first word in
the instruction that was executing when the violation occurred. The bus cycle
status register holds the bus status conditions at the time of the violation.

The MMU is controlled via 22 commands issued as special I/O instruc­
tions by the Z8001 CPU. With these commands, system software can read
from or write to the MMU's registers. Data are transferred between the CPU
and MMU one byte at a time on the AD8-AD15 bus lines.

SEGMENT DESCRIPTOR REGISTERS

31

There are 64 segment descriptor registers in the MMU, one for each segment
whose access is controlled by the MMU. Two MMUs are required to handle
all 128 possible segment numbers from the Z8001. The mode register is pro­
grammed so that an MMU handles segment numbers 0-63 or segment numbers
64-127.

Each of the 64 segment descriptor registers contains information related
to the address translation and protection attributes for one segment. A seg­
ment descriptor register is 32 bits wide and has three fields: a 16-bit base ad­
dress field, an 8-bit limit field, and an 8-bit attribute field (Fig. 9.8).

The base address field holds the upper 16 bits of the 24-bit physical ad­
dress that is the starting address in physical memory for that segment. The
low-order byte of the base address is always all O's (Fig. 9.9). During a mem­
ory access, the logical offset address from the CPU is added to this base ad-

16 15

BASE ADDRESS LIMIT

'--------....y-.---------" "'-----..y------ '-----.'V.------"
BASE ADDRESS FIELD LIMIT FIELD ATTRIBUTE FIELD

Figure 9.8 Segment descriptor register.

23 HIGH BYTE 1615 LOW BYTE 87 ZERO BYTE 0

~------------------T---------------------~ ----------, BASE ADDRESS FIELD IN DESCRIPTOR REGISTER 000000001

~----------------------------------~ --------------~
~------------------------------~'V.-----------------------------~

ACTUAL PHYSICAL BASE ADDRESS

Figure 9.9 Base address for a segment.

164 The Z8010 Memory Management Unit Chap. 9

dress to yield the corresponding physical address in memory. The two bytes
of the base address in the segment descriptor register are read or written one
byte at a time when these registers are accessed.

The limit field is an 8-bit field that determines the size of the memory
segment. Segments may be any length from 256 bytes to 64K bytes, in in­
crements of 256 bytes. If the limit field contains the number N, then the
segment contains either N + 1 blocks of 256 bytes or 256~ N blocks of 256
bytes, depending on the DIR W bit in the segment descriptor's attribute
field, as explained below. Each time an address translation occurs, the upper
byte of the logical offset address is compared to this limit field to ensure
that the access falls within the limits of that segment; if not, a segment-length
violation is detected.

Each of the 8 bits in the attribute field is a flag for a particular attribute
or status condition. Five bits determine the protection attributes assigned to
the segment, one bit specifies the orientation of the segment, and two bits
hold status information recording the types of accesses that have been made
in that segment.

Bit 0 of the attribute field is the read-only (RD) bit. When this bit is
set, the segment may be accessed only by memory reads (instruction fetches
or data reads). Writes are prohibited and an attempted write access will cause a
violation condition. This attribute is useful for protecting executable code
from inadvertent writes. It is also used to protect critical data that is not to
be modified by a particular user.

Bit 1 of the attribute field is the system-only (SYS) bit. When this bit
is set, the segment may be accessed only when the CPU is in the system mode;
normal-mode accesses are prohibited. This attribute is useful when an MMU
receives logical addresses from both the operating system and users' programs.
Normal-mode users are prevented from accessing segments containing code or
data reserved for the operating system, even if the normal-mode programs
generate the correct logical addresses for those segments. For example, I/O
routines might be in a segment with the system-only attribute and normal­
mode users would be unable to access them directly.

Bit 2, the CPU-inhibit (CPUI) bit, indicates that the segment cannot be
referenced by the CPU. When set, all CPU accesses to the segment are pro­
hibited, but DMA controllers can still access the segment. This flag is useful
for preventing programs from accessing segments that are being altered by a
DMA operation. For example, a DMA controller may be filling a segment
with data from a disk drive, interleaving its operation with the CPU. The seg­
ment being loaded by the DMA device should not be accessed by the CPU until
the DMA operation is complete.

Bit 3 of the attribute field is the execute-only (EXC) bit. When this bit
is set, the segment may be referenced only during instruction fetch cycles
(including PC-relative loads). Access during any other type of cycle, such as

Segment Descriptor Registers 165

a data read, is prohibited. This attribute is useful for preventing programs
from reading or copying proprietary code.

Bit 4 is the DMA-inhibit (DMAI) bit. When set, the segment cannot be
accessed by DMA devices; only CPU accesses are allowed. This attribute can
be used to prevent DMA controllers from altering a segment that is being used
by a currently executing task.

The DMAI and CPUI bits can be used together to designate a segment
that does not exist in physical memory at a given time. If both bits are set,
neither the CPU nor DMA controllers can access the segment; an attempted
access will cause a violation condition.

Bit 5 of the segment descriptor register's attribute field is the direction
and warning flag (DIRW). This bit specifies the orientation of the segment.
When this flag is set, the segment's memory locations are organized in descend­
ing order, from the segment's base address +65535 down to the limit. With
this flag set, the segment contains 256-N blocks of 256 bytes (or 128-N
blocks of 128 words), where N is the number in the segment descriptor's
limit field (Fig. 9.10). This flag is used for segments that hold stacks, since
stacks grow downward in memory.

When this bit is 0, the segment's memory locations are organized in
ascending order, starting at the segment's base address. A limit field of N
produces a segment with N + 1 blocks of 256 bytes. An access beyond this
limit is prohibited and will cause a violation condition.

Setting the DIR W bit to 1 activates a special warning feature as well as
specifying a downward orientation for the segment. A write to the lowest
valid block of 256 bytes in such a segment causes a write warning condition.
For a write warning, a segmentation trap request is made but the suppress
signal to memory is not activated. Thus the access is successful, but the CPU
is interrupted. The write warning signals the CPU that the stack may soon
overflow its allotted memory space. In response, the operating system could
allocate more physical memory for that stack by increasing the limits of the

DIRW 0 DIRW 1 r------..., WORD 32766

WRITE-WARNING
AREA

WORD 128(N+1)

t---,..".,...,.,..".,...,..--",--,-...,. WORD 128N

N CONTENTS OF LIMIT FIELD IN DESCRIPTOR REGISTER

Figure 9.10 Effect of the DIRW bit
on segment orientation and size_

166 The Z8010 Memory Management Unit Chap. 9

segment. This allows stack areas to be allocated dynamically as the need arises
while executing tasks. Of course, an access beyond the limits of the segment
still causes a violation condition.

Bits 6 and 7 of the attribute field are status bits that indicate the type of
accesses made to the segment. Bit 6 is the changed (CRG) bit and is set if
the segment has been modified by a CPU or DMA controller access. The CRG
bit is set if any write access is made, provided that the access did not cause a
violation condition. This flag is useful for indicating when a segment has been
modified in the case where the segment must be written to a secondary stor­
age device such as a disk. Segments that have not been changed need not be
copied back to the disk if a copy already exists on the disk; this may occur
when a task is suspended and removed from memory to make room for
another task.

Bit 7 is the referenced (REF) flag and indicates that an access has been
made to the segment. This bit is set whenever the segment is read or written
by a CPU or DMA device, provided that the access did not cause a violation
condition. This flag is useful in determining which segments have not been
used in cases where the operating system must select segments to be swapped
out of physical memory.

CONTROL REGISTERS

Three 8-bit control registers direct the functioning of the MMU. The mode
register controls the enabling of the MMU and the address translation function.
The segment address register and descriptor selection counter are pointers
into the table of segment descriptor registers.

The mode register contains a 3-bit identification code and five control
bits, as illustrated in Fig. 9.11. The identification code (ID code) is used
during an acknowledge of a segmentation trap to indicate which MMU or
MMUs generated the trap in systems with eight or fewer MMUs. During the
acknowledge cycle for a segmentation trap, the MMU uses the ID field in the
mode register to select one of the AD8-AD15 lines on the address/data bus;
an ID code of 000 corresponds to AD8, an ID code of 001 corresponds to
AD9, and so on. Each enabled MMU should have a unique ID code. If an
MMU requests a trap, it outputs a 1 on the appropriate line on the address/
data bus as determined by the ID code during the acknowledge cycle; other­
wise, it outputs a a on that line during the acknowledge cycle. The other
address/data bus lines are not driven by this MMU, but might correspond to
the ID field of another MMU in th,e system. Thus the upper byte of the identi­
fier word read by the CPU during the segmentation trap acknowledge cycle

7 32

Figure 9.11 MMU mode register.

Control Registers 167

will indicate which MMUs generated the trap. One memory access could re­
sult in multiple violations in different MMUs, so the segment trap service rou­
tine may have to deal with several MMUs when processing the trap.

The control bits in the MMU mode register provide a means for select­
ively enabling MMUs in a mUltiple MMU system. As mentioned previously,
an MMU will enter the memory management state for some memory trans­
actions, but remain in the quiescent state for other memory accesses; the
mode register determines the subset of memory accesses that the MMU will
handle.

Bit 7 of the mode register is a master enable (MSEN) bit. When set to
a 1, the MMU can perform address translation and attribute-checking func­
tions. When cleared to 0, the MMU is disabled and its A8-A23 outputs are
tri-stated.

Bit 6, the translate (TRNS) bit, enables the MMU's address translation
capability. When this bit is 0 and the MSEN bit is 1, the MMU does not per­
form address translations or attribute checking, but instead passes the logi­
cal address unchanged to physical memory without protection checking.
The AD8-AD15 logical address inputs are passed directly to the A8-A15 MMU
outputs; the SNO-SN6 segment number inputs are passed to the A16-A22
outputs; A23 is set to O. This is called the transparent mode for the MMU,
since the system now operates as if the MMU were not present. When the
TRNS bit is set to 1, the MMU performs address translation and attribute
checking for some memory transactions, as determined by the other control
bits.

Bit 5 of the mode register is the upper range select (URS) bit. When
this bit is cleared, the MMU handles segments 0-63; when set, the MMU han­
dles segments 64-127. Thus for the MMU to enter the memory management
state during a given memory transaction, the most significant bit of the seg­
ment number, SN6, must match the URS bit. If not, the MMU remains in
the quiescent state with its address outputs tri-stated.

Bit 4, the multiple segment table (MST) bit, and bit 5, the normal-mode
select (NMS) bit, work together to allow an MMU to be dedicated only to
system-mode or normal-mode operation. If separate MMUs are used for the
system and normal modes, the MST bit is set in the MMUs. If the MST bit is
a 1, the NMS bit determines if the MMU responds to system-mode or normal­
mode memory accesses, as indicated by the N /S signal from the CPU. When
MST is set, the N /S MMU input must match the NMS bit in order for the
MMU to enter the memory management state; otherwise, the MMU remains
in the quiescent state with its address outputs tri-stated. Thus an MMU with
MST set and NMS cleared would handle address translation for system-mode
memory accesses and another MMU with the MST and NMS set would handle
the translation for normal-mode memory accesses. When the MST bit is 0,
the MMU responds to all appropriate memory transactions regardless of the
operating mode; in this configuration, the system-mode-only attribute can be

168 The Z8010 Memory Management Unit Chap. 9

65 0

DSC
!

Figure 9.12 Segment address regis­
ter.

Figure 9.13 Descriptor selection
counter register.

used to protect operating system code and data segments from normal-mode
users.

During a memory access, an MMU enters the memory management state,
wherein it performs address translation and attribute checking if the MSEN
and TRNS bits are both 1 's, the URS bit is the same as the SN6 input, and
the MST bit is 0 or the MST bit is 1 and the NMS bit is the same as the N /S
input. For all other memory transactions, the MMU is in the quiescent state.
In multiple MMU systems, a given memory transaction should cause only one
MMU in the system to enter the memory management state, with all other
MMUs remaining in the quiescent state.

The segment address register (SAR) is a pointer into the table of 64
segment descriptor registers. Bits 6 and 7 of the SAR are not used (Fig.
9.12). Commands to the MMU that access the segment descriptor registers
use the SAR to select one of the 64 descriptors.

The descriptor selection counter register (DSC) points to one of four
bytes in a segment descriptor register during accesses to the descriptors. Only
bits 0 and 1 of the DSC are used (Fig. 9.13). A value of 00 (binary) in the
DSC indicates the high byte of the descriptor's base address field, a 01 in the
DSC indicates the low byte of the base address field, a 10 indicates the limit
field, and an 11 indicates the attribute field.

Commands to the MMU can read or write only one byte at a time, since
the MMU is connected to only one half of the address/data bus. Together,
the SAR and nsc point to one byte in the table of 64 segment descriptor
registers. For example, if the SAR and DSC are both 0 and the URS bit in the
mode register is aI, the selected byte is the high-order byte in the base address
for segment 64. The SAR and nsc are automatically incremented for several
MMU commands, allowing the descriptor registers to be accessed as a block
using the Z8001 's automatically repeating special I/O instructions.

ADDRESS TRANSLATION

When the MMU enters the memory management state, two operations occur
simultaneously: the logical address is translated to a physical address and the
status information for the memory access is compared to the segment's attri­
butes in the appropriate segment descriptor register.

The address translation process involves using the segment number in
the logical address to select one of 64 segment descriptor registers in the MMU.

Address Translation

15

LOGICAL ADDRESS

1.------- ----,
I ~!~2~~MENT r---~-......, I
I UNIT BASE I
I ~ggl~~~~ I I FILE I
I I
I I
I I
I I
I
I
I
I
I
I
I
I L ______ _

169

Figure 9.14 Address translation in
the MMU.

The contents of the chosen descriptor register's base address field determines
the starting address in physical memory for that segment. The MMU's SNO­
SN5 segment number inputs are used as a pointer into the bank of segment
descriptor registers to select one segment descriptor. (SN6 is used
in conjunction with the URS bit in the mode register to select the MMU, as
described previously.) The high-order byte of the offset address (emitted by
the CPU on AD8-AD15) is then added to the base address in the selected seg­
ment descriptor register to yield physical address bits A8-A23. This result is
concatenated to the low-order byte of the logical offset address to form the
24-bit physical address (Fig. 9.14). The low-order byte of the offset address
is not processed by the MMU.

This address translation process is equivalent to adding the offset por­
tion of the logical address to the starting physical address of the segment (Fig.
9.15). The eight least significant bits of the base address for each segment are

6 0 15 6 0 15 K 7 0

0 \1 5 2 8 I
I ! ! 0 [~~

\ \
\ \

23 8 7 0 2J 8
\ \

I 2 ! 3 ! 1 1 I ~ -~ ~ ~~
\ \
I I

! _..l_..J I I
+ + I I

2.1 0 11 --:-17 of

I 2 3 2 6
! ! ! ! 2 I 8 I ~~~

(a) FULL ADDITION (b) ADDITION OF HIGH ORDER
BVTES ONLY

NOTES: BASE ADDRESS FOR SEGMENT 5 IS 231100

Figure 9.15 Example of address
translation process illustrated in two
ways.

170 The Z8010 Memory Management Unit Chap. 9

assumed to be all O's and are not stored in the segment descriptor registers.
Thus the low-order byte of the physical address is always the same as the low­
order byte of the offset portion of the corresponding logical address.

ViOLATION TYPES AND STATUS REGISTERS

While the address translation process is occurring, the MMU also compares
the attributes in the selected segment descriptor register with the status sig­
nals from the CPU. If a violation occurs, such as an attempted write to a
segment with the read-only attribute, an active segmentation trap and/or
suppress signal is output by the MMU. Furthermore, the offset portion of
the logical address is compared to the limit field in the segment's descriptor
register and a trap and suppress is generated if the access violates the limits
of the segment. The translated physical address is output regardless of whether
or not a violation is detected.

The MMU will generate a segmentation trap request to the CPU by pul­
ling its SEGT output low for one of two reasons: detection of an access
violation or detection of a write warning in a segment whose DIR W bit is set.
In the event of an access violation, the MMU's suppress (SUP) output is
pulled low also; this signal can be used as part of the memory control logic
to inhibit the memory transaction, thereby preserving the integrity of mem­
ory contents during illegal accesses.

When the MMU detects an access violation or write warning, it stores
status information about the transaction in six 8-bit status registers. These
registers can be read by the CPU when servicing segmentation traps to deter­
mine the cause of the trap. Five registers indicate the memory address, bus
status, and current instruction being executed when the violation occurred.
The sixth status register, the violation-type register (VTR), contains eight
flags that describe the violation type (Fig. 9.16).

Five flags in the VTR signal violations during memory accesses. Bit 0
of the VTR is the read-only violation (RDV) flag. The RDV flag is set if a
write is attempted to a segment having the read-only attribute. Bit 1 is the
system violation (SYSV) flag and is set if a normal-mode program attempts
to access a segment with the system-only attribute. Bit 2 of the VTR, the
segment-length violation (SLV) flag, is set when an attempt is made to access
a location outside the legal limits of the segment. This violation is detected
by comparing the offset in the logical address to the limit field of the seg­
ment descriptor register. Bit 3 is the CPU-inhibit violation (CPUIV) flag
and is set if the CPU attempts to access a segment whose CPU-inhibit bit is
set. Bit 4 of the VTR is the execute-only violation (EXCV) flag; this flag

7 0

IFATlISWWlpWWIEXCylCPUlyl SLY ISYSyl ROY I
Figure 9.16 Violation-type register.

Violation Types and Status Registers 171

is set if an access other than an instruction fetch is attempted to a segment
with the execute-only attribute.

DMA-inhibit violations also are possible and occur when a DMA con­
troller attempts to access a segment whose DMA-inhibit bit is set. However,
there is no corresponding flag in the VTR since violations during DMA ac­
cesses do not cause segmentation traps.

Bits 5 and 6 of the VTR deal with write warnings. Setting the DIRW
bit in a segment descriptor's attribute field defines that segment as a stack
segment that grows downward in memory. An access into the last 256 bytes
(that is, the 256 bytes with the lowest physical addresses) in the segment
causes a write warning. A write warning does not signal an illegal access but
instead warns the system of an impending stack overflow problem. Write
warnings can set three different flags in the VTR, depending on the condi­
tions at the time the write warning occurs. If no other flag in the VTR is set,
a write warning sets bit 5 in the VTR, the primary write warning (PWW) flag.
If anyone of the RDV, SYSV, SLY, CPUIV, EXCV, or PWW flags is set be­
cause of the execution of a previous instruction and the write warning is the
result of an access to the system stack memory address space, then bit 6, the
secondary write warning (SWW) flag, is set. If any of those flags in the VTR is
set and the write warning is the result of an access to any memory address
space except system stack memory, bit 7 of the VTR, the fatal (FATL) flag,
is set.

The F ATL flag is set whenever a flag already is set in the VTR due to a
violation from a previously executed instruction and another violation other
than a secondary write warning is detected. This violation must occur during
an instruction subsequent to the instruction that caused the first flag in the
VTR to be set. If several violations occur during the execution of the same
instruction, several flags may be set in the VTR, but the F ATL flag is not
set. Thus the F ATL flag usually indicates a violation that occurs while at­
tempting to service the segmentation trap generated by a previous violation.
Once the F ATL flag is set, subsequent violations will not cause segmentation
traps until the FATL flag has been reset.

When an access violation or write warning occurs, two status registers
are used to hold the logical memory address that was being accessed when
the violation was detected. The violation segment number register holds the
segment number and the violation offset register holds the high-order byte of
the logical offset address (Fig. 9.17). External circuitry is required if the
lower byte of the offset address is to be saved. If the violation occurred dur­
ing an instruction fetch, these registers hold the logical address of the word

UPPER OFFSET I VIOLATION
OFFSET

~~~~--~~~~~ 

7 0 
Figure 9.17 Violation segment num­
ber and violation offset registers. 



172 The Z8010 Memory Management Unit Chap. 9 

CPU STATUS 
! ! 

I INSTRUCTION 
UPPER OFFSET OFFSET 

~~~~!--~! ~!~~~~ 

7 0

Figure 9.18 Bus cycle status regis­
ter.

Figure 9.19 Instruction offset and
instruction segment number regis­
ters.

in the instruction's opcode that was being accessed; otherwise, they hold the
logical address of the data item that was being accessed.

The bus cycle status register holds the bus status information at the
time of the violation or write warning, including the state of the STO-ST3
status lines, the RjW line, and the Nj8 line (Fig. 9.18).

The last two status registers hold the logical address of the first word of
the last instruction fetched before the violation or write warning occurred.
The instruction segment number register holds the segment number and the
instruction offset register holds the upper byte of the offset address (Fig.
9.19). External circuitry is required if the lower byte of the offset is to be
saved. If the violation occurred while fetching the first word of an instruc­
tion, these two registers would hold the first word of the previous instruc­
tion. Otherwise, these registers will contain the logical address of the first
word of the instruction that specified the access that caused the violation.

Status information is stored in the six status registers only for viola­
tions or write warnings resulting from an attempted memory access by the
CPU. Violations that occur while a DMA device accesses memory will cause
SUP to be asserted, but no trap is generated and the status registers are not
altered. Thus if DMA and CPU operations are interleaved and a DMA trans­
action causes a violation while the CPU is executing a segmentation trap ser­
vice routine, the MMU's status registers retain the status information being
used by the CPU's service routine.

TRAPS AND SUPPRESSES

The MMU responds to violations and write warnings with two different out­
put signals: segmentation trap (SEGT) and suppress (SUP). An active SEGT
signal causes the CPU to service a segmentation trap. The SUP signal is used
to block illegal memory accesses; for example, SUP can be used to gate the
DS signal to memory so that accesses attempted while SUP is low will not be
completed. SUP also can be used to trigger external hardware that saves the
low-order byte of the offset address for the access that caused the violation.
Both SEGT and SUP are open-drain signals; the SEGT and SUP outputs from

Traps and Suppresses 173

TABLE 9.1 MMU RESPONSE TO VIOLATIONS
AND WRITE WARNINGS

Violation
Write Warning

CPU

Trap and suppress
Trap only

DMA

Suppress only
No signal

several different MMUs can be tied together to form one signal to the CPU or
memory control logic.

An MMU activates the SEGT and/or SUP outputs depending on the de­
vice that is making the access and the type of violation that occurred, as out­
lined in Table 9.1. Suppress is not asserted during write warnings, since
write warnings only indicate a potential stack overflow problem in the fu­
ture, not an illegal access now. DMA-generated memory accesses do not
generate segmentation traps, since traps interrupt the CPU and not the DMA
controller. DMA write warnings are not signaled at all; DMA devices rarely
access memory segments that are being used as stacks.

The SEGT and SUP signals both are asserted during T2 of the memory
access cycle, if appropriate (Fig. 9.20). The SEGT signal stays low until a
segmentation trap acknowledge signal is detected on the STO-ST3 status
lines. SUP is asserted throughout the data transfer portion of the transac­
tion that caused the violation and for all subsequent CPU memory accesses
until the end of the current instruction. Intervening DMA transactions will
not be suppressed, however, unless they also generate a violation. Violations
during DMA transactions cause SUP to be active only during that transaction.

If the F ATL flag in the MMU's VTR is set, indicating that a violation
was detected before a previous violation was processed, SEGT will not be
asserted for subsequent violations until F ATL is reset; SUP, however, is gen­
erated for each violation even if F ATL is set.

If the SWW (secondary write warning) flag in the VTR is set, subse­
quent write warnings while accessing system stack memory do not generate
an active SEGT signal. This prevents the system from repeated interruptions
while trying to process the initial write warning.

Figure 9.20 Timing of SUP and
SEGT signals.

174 The Z801 0 Memory Management Unit Chap. 9

The Z8001 processes a segmentation trap request from an MMU in the
same manner as an interrupt. The next instruction fetch is started but
aborted, and an interrupt acknowledge cycle is entered. If the MMU detects
a violation during the aborted instruction fetch cycle, SUP will be asserted
but SEGT will not. During T3 of the acknowledge cycle, the CPU reads an
identifier word from the bus; the upper byte of this identifier word will indi­
cate which MMU or MMUs asserted the trap, as previously discussed. After
the acknowledge cycle, the CPU saves the program status for the interrupted
task on the system stack. If a write warning is generated while program
status is being saved, the SWW flag in the MMU is set and another trap request
is made (SEGT is asserted again). Servicing this second trap will cause an­
other write warning when program status is saved, but SEGT will not be as­
serted again, since SWW is set already. After saving the old program status,
the new program status for the service routine is fetched from the Program
Status Area and the service routine is executed. If another violation occurs
while fetching new program status or early in the service routine (that is,
before the VTR is reset), the FATL flag is set. Subsequent violations cause
SUP to be asserted but not SEGT. Thus the FATL and SWW flags prevent
a segmentation trap service routine from repeatedly interrupting itself to
process a trap it created.

The service routine for a segmentation trap should examine the identi­
fier word on the stack to determine which MMUs detected a violation. Then
the VTR in each of those MMUs is checked to determine the cause of the
trap. The FATL flag should be tested first to see if multiple violations have
occurred. The SWW flag is examined next to determine if more space is
needed for the system stack. Finally, the original violation that caused the
trap is processed and the VTR is cleared before returning to the interrupted
routine. The flags in the VTR are reset by explicit commands from the CPU.

MMU COMMANDS

The CPU can access the MMU's registers via special I/O instructions. When
an MMU detects special I/O status on the STO-ST3 status lines and the
MMU's chip-select (CS) input is active, it accepts and processes a command.
These commands allow the CPU to read all MMU registers, write to the seg­
ment descriptor, mode, segment address, and descriptor selection counter
registers, or reset the violation-type register. Data read from or written to
the MMU are transferred one byte at a time on the AD8-AD15 bus lines.

When a special I/O instruction is used to send a command to the MMU,
the MMU interprets the high-order byte of the port address output by the
CPU during T1 of the I/O machine cycle as a command opcode. The low­
order byte of the special I/O port address can be decoded to generate the
chip-select signals to the system's MMUs (Fig. 9.21). The MMU's CS input is

MMU Commands

.------. JA,L---::--___ -.J~\ cs
K AD1-AD7) DECODE

Z8001

"'-..r----'V/

A K ADa-AD15

'I

L...r-r-T,
'------10.-. cs

11.
) ADa-AD15

r--r--r----'r/

Z8010
#1

'-----I cs
) ADa-AD15

r-r----,yl

Z8010
#2

-
'-------1~ ... CS

I ADa-AD15
'-------,yl

Z8010

175

#n Figure 9.21 Decoding address lines
to generate chip selects for MMUs.

used only to send commands to the MMU and is not involved in the MMU's
address translation process during memory accesses. Any data associated
with the MMU command are transferred between the CPU and MMU during
T3 of the I/O cycle, just as if the CPU were talking to a peripheral device.
In other words, the upper byte of the special I/O address is the MMU com­
mand opcode that enters the MMU on AD8-AD15. The chip-select signal to
the appropriate MMU or MMUs is generated from the low-order byte of the
I/O address (Fig. 9.22). ADO must be 0, since any byte data transfer for the
command occurs on the upper half of the address/data bus (see Chapter 4).
Thus ADI-AD7 are decoded to generate CS signals to the MMUs.

For systems with seven or fewer MMUs, the simplest encoding method
is to assign ADi (i = 1 to 7) as the chip select for MMU #i (Fig. 9.23). With
this scheme, more than one MMU can be selected to receive a given com­
mand. This configuration is assumed in subsequent programming examples
in this chapter.

Table 9.2 lists all the MMU commands. These commands fall into two
basic categories: read/write commands and set/reset commands.

The read/write MMU commands are used to read or write the MMU's
internal registers. Special input instructions are used to read MMU register

15

I !

OPCODE
! ! !

8 7
Figure 9.22 Format of a special
I/O address used as an MMU com­
mand.

176

TABLE 9.2 MMU COMMANDS

Opcode

Read/Write commands
Segment descriptor registers

08
09
OA
OB
OC
OD
OE
OF

Control registers
00
01
20

Status registers
02
03
04
05
06
07

Set/Reset commands
Segment descriptor registers

15
16

Violation status registers
11
13
14

Reserved
10
12
17-1F
21-FF

The Z801 0 Memory Management Unit

Operation

Read/Write Base Field in Descriptor
Read/Write Limit Field in Descriptor
Read/Write Attribute Field in Descriptor
Read/Write Descriptor (all fields)

Chap. 9

Read/Write Base Field and Increment SAR
Read/Write Limit Field and Increment SAR
Read/Write Attribute Field and Increment SAR
Read/Write Descriptor and Increment SAR

Read/Write Mode Register
Read/Write Segment Address Register
Read/Write Descriptor Selector Counter Register

Read Violation Type Register
Read Violation Segment Number Register
Read Violation Offset (high-byte) Register
Read Bus Cycle Status Register
Read Instruction Segment Number Register
Read Instruction Offset (high-byte) Register

Set All CPU -Inhi bi t Flags
Set All DMA-Inhibit Flags

Reset Violation Type Register
Reset SWW Flag in VTR
Reset FATL Flag in VTR

Not assigned
Not assigned
Not assigned
Not assigned

contents to the CPU; special output instructions are used to write into MMU
registers from the CPU. The mode register, segment address register, descrip­
tor selection counter register, and all the segment descriptor registers can be
read or written with these commands. The status registers can be read only.
For example, the instruction

SOUTB %OOFC, RHO

will load the contents of CPU register RHO into the mode register of the
MMU that is chip selected when ADI is low (MMU #1 in Fig. 9.22). Several
of these instructions automatically increment the SAR and DSC pointers

MMU Commands 177

Z8001
CPU

A ADO-AD7 tI. >}
f:L-_--'--_..-.--JL.----'._---l.-C-...I:\1 TO Z-BUS

AD8-AD15 ~ MMU

1....-___ " L-A_D1_+--l_--ICS #1

'---___ AD_7 ____
V
-tCS

MMU
#7

Figure 9.23 Simple chip select en­
coding for seven MMUs.

into the bank of segment descriptor registers, allowing use of repeating block
move special I/O instructions to fill the 64 descriptors. For example, the
Read/Write Descriptor and Increment SAR command (opcode %OF) accesses
the four bytes of a descriptor register and then increments the SAR to point
to the next descriptor. If the data to be loaded into all 64 descriptor regis­
ters in an MMU are stored in memory as shown in Fig. 9.24, the descriptors
could be initialized in the MMU with the following code:

CLR

SOUTB

LDA

LD

LD

SOTIRB

RO

%01 FC, RHO

RR4, DESCRIPTORS

RO, #256

R1, #%OFFC

@R1, @RR4, RO

I clear the SAR in MMU #1 !

! segmented mode; DESCRIPTORS is symbolic name

for starting address of table in memory!

! count register!

! I/O port address is MMU command to load de­

scriptors of MMU #1 I

I Load all descriptors in MMU #1 !

Note that the six status registers are read-only, with the exception of the
VTR, which can be reset.

The set/reset commands are used to set or reset certain fields in MMU
registers. For these commands, special output instructions are used, and no
data are transferred:

SOUTB %11 FC, RHO ! reset the VTR in MMU #1 !

RESETS

178

LOCATION
DESCRIPTORS -

BASE ADDRESS
HIGH BYTE

BASE ADDRESS
LOW BYTE

LIMIT

ATTRIBUTES

BASE ADDRESS
HIGH BYTE

BASE ADDRESS
LOW BYTE

LIMIT

ATTRIBUTES

The Z8010 Memory Management Unit Chap. 9

LOW ADDRESS

DESCRIPTOR 0

DESCRIPTOR 63

Figure 9.24 Format of data in
memory to be loaded into an MMU's

HIGH ADDRESS segment descriptor registers.

The destination address is the MMU command word, and the source can be
any arbitrary CPU register. The contents of the source register are placed
onto the bus during T3 of the I/O cycle but are ignored by the MMU.

The Z8010 MMU is reset by pulling its RESET input low. A reset clears the
mode, descriptor selection counter, and violation-type registers. The con­
tents of all other registers are undefined after a reset. If CS is high while
RESET is asserted, the master enable flag (MSEN) in the mode register is
cleared and the MMU is disabled. The address outputs are tri-stated and the
SUP and SEGT open-drain outputs are not driven. To enable the MMU, the
CPU must write to the mode register and set the MSEN bit.

If CS is low while RESET is asserted, the MSEN bit in the mode regis­
ter is set and the translate bit (TRNS) is cleared, thereby enabling the MMU
but putting it in the transparent mode. The logical address inputs are passed
directly through to the physical address outputs without translation. One
MMU in a system should be reset in this manner so the CPU can access mem­
ory and execute an initialization routine. The initialization routine would be
in absolute memory locations in memory (that is, the initialization routine is
not relocatable). The initialization routine should include commands to pro­
gram the system's MMUs.

MULTIPLE MMU SYSTEMS

The architecture of the Z8010 MMU supports system configurations that
include more than one MMU. Multiple MMUs can be used to support all 128
possible segment numbers rather than the 64 segments managed by one
MMU, or to support multiple translation tables in a multitasking system.

Multiple MMU Systems 179

A single-MMU system is restricted to handling only 64 logical segment
numbers-either segments 0-63 or segments 64-127. If the CPU generates a
logical address with a segment number outside the range handled by the
MMU, the MMU remains in the quiescent state and no physical address is
output to memory. Single-MMU systems require external hardware to detect
erroneous segment numbers outside the range handled by the MMU and
generate SEGT and SUP signals if an illegal segment number is encountered.

A two-MMU system would be capable of handling all 128 segment
numbers from the Z8001 CPU. The URS flag in the mode register is used to
determine which MMU handles which segment numbers. Figure 9.25 is a

Z BUS

16 ~"
........

RESET 24

-~- 16 ADo-AD15
BUSACK

8 ADa-AD15 BAa-BS15

7 SNo-SNs
Z8001

CPU 4 STo-ST3

4 I CNTL
r-- SEGT

-;:z BAo-BA7 8 ADo-AD7
BUSREQ I

BRQ

BAI
16 ADo-~AD15 BAa ~BA15

7 SNo-SNs 8 ADa-AD15
Z8016

DMA 4 STo-ST3 Z8010 16 K BA16-BA23 7 SNo-SNs MMU
4 CNTL #1

EOP 4 STo-ST3

r-- MMU SYNC 4 CNTL
SUP -~ CS SEGT I----RESET

RESET

DMASYNC

I'
8 ADa-AD15

f Z8010
16 7 SNo-SNa MMU

#2 ~ -
4 , STo-ST3

4 CNTL
SUP

AD2
CS SEGT -
RESET

DMASYNC

Figure 9.25 Dual-MMU system.

180 The Z8010 Memory Management Unit Chap. 9

block diagram of a dual-MMU system with a Z8016 DMA controller. When a
reset occurs, MMU #1 enters the transparent mode 'and MMU #2 is disabled.

Additional MMUs can be added to the system to implement multiple
translation tables. The MST and NMS flags in the MMU's mode registers
allow separate address translation tables for system-mode and normal-mode
operations. Furthermore, separate translation tables for different users'
tasks could be built in separate MMUs, and the appropriate MMUs enabled or
disabled with the MSEN flag as part of the task switching process in the
operating system. Alternatively, one MMU could handle all users' tasks and
be completely reprogrammed during the task switching process. Thus a
trade-off must be made between the number of MMUs in the system and the
frequency of reprogramming each MMU.

THE MMU AND MEMORY ACCESS TIME

During a memory access, the Z8001 CPU outputs the segment-number por­
tion of the logical address early in the machine cycle. (In fact, the segment
number is emitted during the last timing state of the preceding cycle, as dis­
cussed in Chapter 5.) This allows the MMU to use the segment number to
select the appropriate segment descriptor register before the offset portion
of the address is available. Later, in T1 of the memory access cycle, the CPU
outputs the offset address. The MMU adds the upper byte of this offset to
the base address in the segment descriptor register to yield the physical ad­
dress while checking the status lines with the segment's assigned attributes.
This addition process does take some time, of course, so there is some delay
between when the CPU issues the logical offset address and the MMU out­
puts a valid physical address. This delay shortens the memory access time
for the transaction. Furthermore, the rising edge of AS from the CPU no
longer indicates a valid physical memory address; a "delayed" address strobe
may be needed to indicate a valid address at the memory control logic and
the hardware to generate this delayed address strobe added to the system.

MMUs AND VIRTUAL MEMORIES

When a system has a physical memory address space that is smaller than its
logical address space it is called a virtual memory system. In a virtual mem­
ory system, operating system software, memory management hardware, and
a secondary storage device, such as a disk, are used to make physically ad­
dressable memory appear larger than it really is for users' programs. All the
segments for a particular users' program might not fit into memory at any
one time. Segments that are "missing" in memory are so marked in the
memory manager; for the Z8010 MMU, the CPU-inhibit flag could be used.

MMUs and Virtual Memories 181

A reference to such a segment would cause a trap; the trap service routine
would move the "missing" segment from the disk to memory, swapping out
some segment already in memory by writing it to the disk. The MMU is re­
programmed to reflect this change, and the users' program is restarted at
the instruction that caused the trap. All of this memory manipulation would
be transparent to the user executing an applications program; thus the sys­
tem would appear to each user as having a physical memory address space as
large as the logical address space.

In a virtual memory system, the operating system must keep track of
which segments have been used, how often, and in what way. A segment
that has not been referenced at all since last being loaded into memory is a
likely candidate for removal from physical memory when another segment
must be swapped into memory from the disk. The most frequently accessed
segments should be kept in memory at all times if possible. The REF and
CHG flags in the MMU's segment descriptor registers can aid in this process.

However, the Z8001-Z8010 combination does not completely support
virtual memory implementations. If the Z8001 references a segment that
does not exist in physical memory, the MMU will respond with active SEGT
and SUP signals. In the case of a memory write, the SUP signal can be used
to block the memory access, thereby protecting the integrity of memory
contents. However, the Z8001 will complete the execution of the current
instruction before recognizing the segmentation trap request. The critical
case occurs when the CPU is executing an arithmetic or logical instruction
where the source is in memory but the destination is a CPU register, such as

ADD RO, DATA

where DATA is the symbolic name for some memory location. If the fetch
to the location called DATA causes an MMU violation and trap request, the
instruction will be completed before the trap is recognized and processed.
Even though a suppress is sent to .memory, the CPU will read something on
the bus during T3 of the data memory access and add whatever is read to the
contents of register RO. Thus the contents of CPU registers can be corrupted.

However, true virtual memory systems can be implemented with the
Z8001 and Z8010 by adding additional hardware to the system. This extra
hardware would need to force a predetermined value on the bus whenever an
MMU violation occurs, as indicated by the SUP signal. The value placed on
the bus would depend on the type of instruction being executed. For ex­
ample, if all O's were forced on the bus during the data fetch for the ADD in­
struction described above, the contents of RO would not be corrupted, and
the service routine could force a restart at that instruction after making the
appropriate changes to physical memory and the disk. In the case of a viola­
tion during an IF1 cycle, the extra logic could force the opcode for a NOP
instruction onto the bus.

182 The Z80l 0 Memory Management Unit Chap. 9

(Another upward-compatible member of the Z8000 family of proces­
sors, the Z8003, has an instruction abort feature that permits the imple­
mentation of virtual memory systems without this additional hardware. In
Z8003-based systems, the memory manager can force the CPU to abort the
execution of an instruction, thereby protecting the integrity of CPU registers.
This abort sequence leaves the Z8003 CPU in a well-defined state, allowing a
software recovery. Thus the Z8003 is called a Virtual Memory Central Pro­
cessing Unit.)

Within a system, memory segments are continuous blocks of physical
memory with sizes varying from 256 bytes to 64K bytes. If a virtual mem­
ory system services many tasks, segments of widely ranging sizes may be
swapped into and out of physical memory. Whatever procedure is used to
control this swapping process, "holes" inevitably develop in physical mem­
ory between segments (that is, areas of memory not assigned to any segment
and not big enough to form another segment). Occasionally, the memory
management software may need to coalesce several of these "holes" into a
useful block of memory by reassigning existing segments to new physical ad­
dresses. In general, this is a difficult task that can consume considerable
execution time.

To aid in this process, most virtual memory systems divide physical
memory into sections called pages. Pages are fixed-size blocks of memory
(as opposed to segments, which are of variable size) and typically range from
tens to hundreds of words, depending on system requirements. Paging does
require a large investment in hardware and software, however, since reloca­
tion, property, and usage data must be maintained for each page.

The Z8001 and Z8010 do not support paging directly in their architec­
ture. However, paging can be designed into a Z8001 operating system,
thereby realizing the advantages of both memory paging and memory seg­
mentation. If paging is designed into a Z8001-Z8010 system, page sizes of
some multiple of 256 bytes are easiest to implement, since each segment
could then contain an integral number of pages.

[Another memory management unit, the Z8015 Paged MMU (PMMU),
has been designed for use with the Z8003 CPU in virtual memory systems.
Each Z8015 PMMU can manage 64 2048-byte memory pages. The Z8015
generates the instruction abort signal to the Z8003 CPU if an access is made
to a page that is not present in main memory.]

10

Extended Processor Units

Additions can be made to the basic instruction set of the Z8000 micropro­
cessors through the use of Extended Processor Units (EPUs). An Extended
Processor Unit is an LSI device dedicated to performing complex, time-con­
suming tasks in order to unburden the CPU. Typical tasks suited for imple­
mentation in EPUs include floating-point arithmetic, data base management,
graphics support, networking, and communications interfaces-in short, any
computing task that might be performed in dedicated hardware. Up to four
EPUs can be included in a Z8000-based system.

EPUs perform their tasks on data resident in their internal registers.
The CPU is responsible for moving data into and out of the EPUs and for in­
structing the EPUs as to what operations are to be performed. Special in­
structions called extended instructions are processed by the EPUs; when the
CPU encounters an extended instruction it performs any specified data trans­
actions, but otherwise assumes that the instruction will be recognized and
handled by an EPU. Thus by adding EPUs to a system, the instruction set is
expanded to include the extended instructions applicable to the EPUs used,
thereby boosting the processing power of the whole system.

CPU-EPU I NTE R FACE

Extended Processor Units connect directly to the Z-bus; no extra external
logic is needed to interface an EPU to a Z8000-based system. As the CPU
fetches and executes instructions, the EPUs monitor the bus. When an ex-

183

184

PERIPHERAL

DEDICATED
EPU

MEMORY

PERIPHERAL

STOP LINE

Z8000
CPU

Exte'1,ded Prqcessor l..}pits

MEMORY

Figure 10.1 Typical Z8000 configuration with 10 EPUs.

Chap. 10

DEDICATED
EPU

MEMORY

tended instruction is encountered, the appropriate EPU responds by execut.,
ing the instruction; this may involve having the EPU send or receive data or
status information on the address/data bus during a bus transaction. Prote<>"
tion against overlapping instructions is provided by the STOP signal. "S"N)'P
is an EPU output that is pulled low if the EPU is requested to perform an
operation before ,completing a previous operation. An active STOP input to
the CPU puts the processor in a state wherein it executes refresh cycles con­
tinuously until STOP returns high, effectively halting the processor. Figure
10.1 is a blook diagram of a Z8000 system with four EPUs.

The CPU and EPUs work together like one processing unit. The CPU
supplies all the address and status information for fetching instructions and
reading or writing data to memory. The EPUs monitor these transactions,
accepting or supplying data as required. Each EPU must continuously mon­
itor the address/data bus and its associated control and status lines from the
CPU to know when to participate in EPU-to-memory or EPU-to-CPU data
transactions. A system with EPUs can be thought of as a system whose pro­
cessor consists of 1 + N devices, where N is the number of EPUs in the
system. Thus EPUs provide a means of adding power to the system's pro­
cessor in a modular fashion.

EXTENDED INSTRUCTIONS

Instructions with an opcode whose first word has an upper byte of OE, OF,
4E, 4F, BE, or 8F (hexadecimal) are extended instructions reserved for use
by an EPU. All extended instru,ctipns have opcodes that are two words long.

Extended Instructions 185

If the EPA bit in the CPU's flag and control word (FCW) is a 1 and an ex­
tended instruction opcode is encountered, the CPU will assume that there
are EPUs in the system and treat the instruction accordingly, as described
below. If the EPA bit in the FCW is 0, indicating that there are no EPUs in
the system, encountering an extended instruction opcode will cause an ex­
tended instruction trap. If desired, the action of an EPU can be simulated in
software in the extended instruction trap service routine. This software trap
mechanism facilitates the design of systems in which EPUs are not present
initially but may be added later. The "extended" function is included in the
operating system software as the extended instruction trap service routine;
this routine can be deleted when the EPU is added to the system and the
EPA bit set to a 1. This change would be transparent to users' applications
executing on the system.

If EPUs are present in the system and the EPA bit in the CPU is a 1, the
CPU is responsible for delivering instructions and data to the EPUs. There
are four kinds of extended instructions: instructions that transfer data be­
tween an EPU and memory, instructions that transfer data between an EPU
and the CPU, instructions that transfer status information between an EPU
and the CPU's flag and control word, and instructions that specify internal
operations in an EPU.

In order to determine which transactions to participate in, an EPU must
monitor the address/data bus and its associated status and control signals.
When the CPU fetches the first word of an instruction, as indicated by IF1
status on the STO-ST3 lines, each EPU examines the instruction's opcode.
If an extended instruction is found, each EPU checks a 2-bit identification
field in the opcode to see if the instruction is intended for that particular
EPU. Thus up to four EPUs can be interfaced to a single CPU. The EPU
selected must also capture the second word of the extended instruction's op­
code; the fetch of the second word of the opcode is the next nonrefresh CPU
transaction. From this two-word opcode, the EPU determines if it will parti­
cipate in any subsequent data transactions and, if so, how many transactions
are involved.

If the extended instruction calls for a data transfer between an EPU and
memory, the CPU supplies the address, status, and control information for
each transfer. During the memory accesses, the CPU will tri-state its ADO­
AD15 lines while DS is low, so that the EPU can send or receive data on the
bus. The CPU can use the indirect register, direct address, or indexed ad­
dressing modes to calculate the memory addresses for the transactions, as
specified by the instruction. The EPU must supply the data (if the R/W line
is low, indicating a memory write) or capture the data (if the R/W line is
high, indicating a memory read) just as if it were part of the CPU. EPU-to­
memory data transactions are always word transfers (B/W is low). Up to 16
words can be transferred between an EPU and memory as the result of a
single extended instruction, as specified in the instruction's opcode.

186 Extended Processor Units Chap. 10

If the instruction involves a data transfer between the EPU and the
CPU's general-purpose registers, the CPU controls the transaction and a 1110
code (CPU-EPU transfer status) is emitted on the STO-ST3 lines. The timing
of the transaction is identical to a three-clock-cycle memory access, except
that no address is emitted by the CPU. CPU-EPU transactions are always
word transfers; up to 16 words can be transferred as a result of an extended
instruction.

Similarly, status information can be transferred between an EPU and
the lower byte of the CPU's FCW (the CPU flags). CPU-EPU status transfers
are always byte transfers and occur on the ADO-AD7 bus lines. The con­
tents of CPU register RO are destroyed during this transaction. This type of
transaction is useful when the program must branch on the results of an EPU
operation.

Extended instructions can also specify internal operations for EPUs,
wherein the EPU operates on data in its internal registers. No data trans­
actions are involved in the execution of such an instruction. The CPU can
continue to fetch and execute subsequent instructions while the EPU is in­
volved with an internal operation. Thus processing can proceed simulta­
neously in both the CPU and the EPUs. If a second extended instruction for
a particular EPU is fetched before an earlier instruction for that EPU has
completed execution, the EPU must activate the STOP line, stopping the
CPU. The EPU releases the STOP signal when it completes execution of the
first instruction, and execution proceeds as if the CPU were not temporarily
halted. The STOP line provides synchronization between the CPU and the
EPUs, preventing EPUs from missing instructions because they were busy
executing earlier instructions. Of course, all the EPUs in a system may be
executing their own internal operations simultaneously.

In order to monitor instruction fetches and participate in data trans­
fers, the EPUs must also monitor the BUSACK CPU output to verify that
transactions are initiated by the CPU. EPUs will ignore all bus transactions
while BUSACK is low.

Thus EPU instructions are processed "in-line" with Z8000 instructions,
providing parallel processing capability while eliminating the system software
and bus contention problems inherent in other multiprocessor and co-proces­
sor schemes, such as master-slave arrangements. The processing power of a
Z8000-based system can be extended in an upward-compatible manner by
the addition of EPUs.

STOP TIMING

The STOP input to the CPU is used to synchronize EPU and CPU execution,
as described above. A low level on the STOP input forces the CPU into a
state wherein it continuously executes refresh machine cycles. The STOP in-

I~

I

~
~
",,,,
u.O
wO
"'«

I

0
Q .. I~ l:g Ii ~

~
II)

cil s::
:§
-+->

I~
:!:

" :;: C\1
c:;)
~

~
~
~

I~ I~
ill ;;:

187

188 Extended Processor Units Chap. 10

put is sampled by the CPU on the falling edge of the clock in the clock
period preceding an IF1 cycle, as shown in Fig. 10.2. If STOP is low, a
continuous stream of refresh cycles is entered after T3 of the instruction
fetch. During each of the refresh cycles, STOP is sampled again on the falling
edge of the clock in the middle of T3. When STOP is found to be high, one
more refresh cycle is executed and then any remaining T states in the IF1
cycle are completed. From there, execution proceeds normally. Bus re­
quests are honored while STOP is active.

If the EPA bit in the CPU's FCW is set, the STOP input also is sampled
on the falling edge of the clock preceding the fetch of the second word of an
extended instruction. (The CPU recognizes that it is processing an extended
instruction after the first word of the instruction is fetched.) Thus the STOP
line can be activated by an EPU if the CPU fetches an extended instruction
for that EPU before the EPU has finished processing an earlier extended
instruction.

The continuous refresh operation while STOP is low does not use the
rate counter in the CPU's refresh register. The row counter is incremented
by two after each refresh cycle. Thus refreshes do not occur on demand;
instead, a new refresh is emitted every three clock cycles. Therefore, higher­
than-normal heat dissipation may occur in dynamic memories while STOP is
low. Long and frequent stops can be avoided by writing program code so
that extended instructions for a given EPU are not closely spaced.

STOP

>-----.----i 0 al------~D a

AS

AS

STOP

CLOCK ------'

I--T-' -.;"",;H~
Figure 10.3 Z8000 single-step circuit using the STOP input.

Stop Timing 189

The STOP input also can be used to externally single-step a Z8000
CPU. A circuit for single-stepping the CPU one instruction ata time is illus­
trated in Fig. 10.3. The cross-coupled NOR gates act as a switch debounce.
Each time the switch is pulled from the 0 position (STOP) to the 1 position
(STEP), STOP is forced high for one machine cycle. This allows th~ CPU to
exit the "stopped" state and complete execution of the current instruction.
STOP will return low before the next instruction is fetched, so that instruc­
tion will not execute until the switch is toggled again. Thus single-step exe­
cution is realized. However, if there are dynamic memories in the system
that use the Z8000's automatic memory refresh capabilities, heat dissipation
problems may occur due to the large amount of time spent in the "stopped"
state.

11

A Z8000 Design Example

A small but powerful single-board microcomputer system can be developed
using the Z8002 microprocessor, Z80-family peripherals, PROMs, dynamic
RAMs, and some TTL support devices. Figure 11.1 is a block diagram of a
system that includes up to 32K bytes of PROM, 32K bytes of RAM, two
Z8420 Parallel I/O Controllers (PIOs), a Z8430 Counter/Timer Circuit
(CTC), and a Z8440 Serial I/O Controller (SID). (The PIO, CTC, and SID
are all Z80-family peripherals. The Z80 is an 8-bit microprocessor.) The
two PIOs provide four 8-bit bidirectional parallel ports with handshake con­
trol. Two independent full-duplex serial I/O channels are implemented with
the SID. The CTC includes four 8-bit counter/timers for simple counting
tasks and generation of the baud-rate clocks for the serial channels. A set of
eight switches that can be read by the CPU is included as a fifth peripheral
device. A crystal-controlled timing circuit provides the timing signals for the
system's components.

(The system of Fig. 11.1 is similar in structure to the Zilog Z8000 De~
velopment Module. The Z8000 Development Module is a single-board
microcomputer intended to support evaluation of the Z8001 and Z8002
microprocessors. A monitor program, stored in EPROM, is available for this
product to aid in the debugging and evaluation of users' applications
programs.)

CLOCK GENERATION

The Z8001 and Z8002 require a continuously running clock with a fre­
quency between 500 kHz and 4 MHz; the Z8001A and Z8002A require a

190

WAIT A

Z8002

...a
to
...a

ROM
DECODER

WAIT

CE

LA'2-LA,IT
LA,-LA11

--y

2K x 8
ROMs

OR
EPROMs

(4K 10 32K BYTES)

LAo,LA,s

r---;:
rV

1
WAIT

STATE
GENERATOR

RAS
CAS 16K DYNAMIC

RAMs
(32K BYTES)

~,~:~ II iii -]
LA,-LA'4

16-BIT BIDIRECTIONAL DATA BUS

HU:UT I J\T,...u~n I\nnD~<:'C:: 1:1:115 LAo-lA1S

r

STATUS
DECODER

CLOCK

INTERRUPT

I LA3-LA,O LA" LA2 00- 0 7 00- 0 7

1/0
DECODER

• ODD PORTS il rc-l..H,. ,
Z80A PERIPHERALS

WITH DAISY-CHAINED INTERRUPT PRIORITY

Z80A
PIO

Z80A
PIO

Z80A
CTC

Z80A
SIO

4_
EIGHT SWITCHES -=-

iCiCniC tll!l!t u- r
4 BYTE PORTS

WITH HANDSHAKE
4 COUNTERI

TIMERS
TWO FULL DUPLEX SERIAL

CHANNELS WITH HANDSHAKES

Figure 11.1 Block diagram of a Z8002-based single-board microcomputer .

192 A Z8000 Design Example

+5V ---J\,f\I\r-_---.--~-___1I..-.-...._-___,

ENT ENP A B C 0

CARRY OUT

9316 OR
74161

ClK [0

Os

3.9-MHz CLOCK

74lS74

o °

'---------1 >0-----11:> ClK

19.6608·MHz CLOCK

Qa (COUNTER)

Q FF (FLlP.FLOP)

Figure 11.2 Generation of a 3.9-MHz clock from a 19.6608-MHz oscil­
lator.

Chap. 11

L

clock frequency between 500 kHz and 6 MHz. Most Z8000 applications call
for a high-performance system with a clock frequency approaching the
maximum limit. Clocks usually are generated by dividing the output of a
crystal oscillator using flip-flops (as in Fig. 1.14) and/or TTL counter chips.
For example, a divide-by-5 circuit can be used to generate a 3.93-MHz clock
from a 19.6608-MHz crystal, as illustrated in Fig. 11.2. (19.6608 MHz is a
frequency commonly used to generate baud clocks for serial channels.) The
Z8000 CPU's clock input is not TTL compatible because of its level, rise­
time, and fall-time requirements. An active driver circuit such as the one il­
lustrated in Fig. 1.14 is required for the CPU clock.

CPU BUS BUFFERING

As with most MOS devices, the Z8000 CPU outputs have limited drive capa­
bility. The Z8000 microprocessors sink a maximum of 2.0 rnA for output
signals and source a maximum of 250 J.1A for input signals while maintain­
ing standard TTL levels (0.4 V maximum for a logical 0, 2.4 V minimum for

CPU Bus Buffering 193

a logical 1). Thus a Z8000 CPU output can drive only one standard TTL
load or five LS-TTL loads. Output delays are specified for a 50-pF load and
increase by approximately 0.1 ns/pf for additional capacitive loading. Since
the address/data bus and its control and status signals usually are propagated
to several memory and I/O control devices, all but the simplest of systems re­
quire buffering of the CPU outputs.

The 16 address/data bus signals are bidirectional. Address and data in­
formation are CPU outpllts during write operations; addresses are CPU out­
puts and data are CPU inputs during read operations. Thus buffers for the
address/data bus must be bidirectional. Two approaches are possible: have
the buffers for the bus point away from the CPU as a default (that is, treat
the CPU pins as outputs and drive the system bus with the buffer), with the
buffer direction reversed (that is, pointing toward the CPU) only during data
reads, or have the buffers point toward the CPU as a default and drive the
system bus only when the CPU outputs addresses and during data writes.
The first choice, with the buffers pointing away from the CPU as a default,
is preferable for two reasons. First, the CPU pins will not have to sink cur­
rent from the buffer as often, since the buffer will normally treat the CPU
pins as outputs, thereby minimizing heat dissipation in the CPU. Second,
possible bus contention problems when using an in-circuit emulation device
for system debug will be avoided. (Bus contention problems occur when
both the emulation hardware and target system's bus buffers are simulta­
neously driving the address/data bus lines to the CPU.) Thus the bidirec­
tional driver for the address/data bus should drive the CPU signals onto the
system's bus except during data reads, as indicated by a high on the R/W pin
and an active DS signal.

If bus sharing is allowed in the system, the CPU must relinquish control
of the bus when a bus request is made. The bus buffer must provide for
other devices, such as a DMA controller, driving the address/data bus when­
ever BUSACK is low. Therefore, a bus buffer whose outputs can be tri­
stated is required.

Possible choices for address/data bus buffering include the SN74LS243
Quad Non-Inverting Transceiver (Fig. 11.3) and the SN74LS245 Octal Non­
Inverting Transceiver (Fig. 11.4). The transceivers are controlled by the

55

R/W-----I

BUSACK------~------~~

E2

LS243

ADO-AD15 (TO/FROM CPU)

888
ADo-AD15 (TO/FROM SYSTEM)

Figure 11.3 Address/data bus buffering using SN74LS243 transceivers.

194 A Z8000 Design Example

AOO-A015 (TO/FROM CPU)

os---l> DR

R/iN-----' LS245 LS245

_ ________ ~~ENABLE E
BUSACK V

L...,---r-.....,..""T""".,..-r--r-r

AOO-A015 (TO/FROM SYSTEM)

Figure 11.4 Address/data bus buffering using SN74LS245 transceivers.

TABLE 11.1 CONTROL SIGNALS FOR ADDRESS/DATA
BUS BUFFERING

R/W DS BUSACK

H H L Enable Receiver
(input Data into CPU)

H H H
Enable Transmitter

Chap. 11

H L H
H L L (output Address or Data from CPU)

L X X Disable Transceiver

BUSACK, R/W, and DS CPU outputs, as described in Table·l!.!. The trans­
mit function of the driver is enabled normally, the receive function is
enabled during data reads (R/W high, DS low), and the drivers are tri-stated
when BUSACK is active.

The bus control and bus status CPU outputs also are usually propagated
to several memory and I/O controllers and, therefore, must be buffered.
These signals are always CPU outputs, so a unidirectional driver is adequate.
If bus sharing is allowed in the system, the CPU must be able to relinquish
control of these signals as well as the address/data bus. A tri-state driver that
can be disabled when BUSACK is low is required.

An SN74LS365, SN74LS367, or SN74LS244 tri-state buffer would be
adequate for driving the AS, DS, MREQ, R/W, N/S, and B/W CPU outputs.
Figure 11.5 shows control signal buffering with an SN74LS365 device.

FROM CPU

os R/W
AS MREQ N/S B/iN

AS MREQ N/S B/iN
OS R/iN

TO SYSTEM

Figure 11.5 Control signal buffer­
ing using an SN74LS365 buffer.

Address Latching

'"OM I CPU

INTERNAL OPERATION

MEMORY REFRESH

1/0 REQUEST

STo Ao SPECIAL 1/0

ST1 A1 RESERVED
LS42

ST2 A2 NMI

ST3 A3 NVI j'N",""" ACKNOWLEDGE
VI

DATA } MEMORY
STACK ACCESS

ALL OUTPUTS ACTIVE LOW

195

Figure 11.6 Status decoding with an
SN74LS42 decoder.

The STO-ST3 status lines typically drive only one circuit-a decoder
that generates the status signals for memory and I/O accesses. A 4-to-16
decoder such as the SN74154 or two 3-to-8 decoders such as the SN74LS138
can be used to decode all 16 possible status conditions. For simple systems
without EPUs, only the first 10 status codes need to be decoded. An SN74-
LS42 l-of-l0 decoder can be used, as in Fig. 11.6. If none of the SN74LS42
decoder outputs are active during a transaction, a program memory access is
assumed.

If bus sharing is allowed, the STO-ST3 status signals may originate
from devices other than the CPU. Several decoding schemes are possible.
For example, entirely separate decoders might be used for CPU and DMA
operations, and the BUSACK signal used to enable the appropriate decoder.
Alternatively, the STO-ST3 status signals from the CPU can be driven by a
tri-state buffer that is disabled when BUSACK is active, allowing DMA
devices to control those status lines before they are decoded.

The remaining CPU outputs, BUSACK and MO, need to be buffered if
they are to drive more than one TTL load. Any unidirectional driver is ade­
quate. For the Z8001, the segment number outputs require a unidirectional
driver that can be tri-stated when BUSACK is low.

ADDRESS LATCHING

Most semiconductor memories demand that their address inputs remain
fixed throughout a memory access; most I/O devices require that their chip
select inputs (which are generated by decoding the address) remain active
throughout an I/O access. As a result, the Z8000 CPU's address/data bus
must be demultiplexed in most systems. Often, systems will latch the ad­
dress at the beginning of each bus transaction and propagate the latched
address to all the memory and I/O controllers. AS is the obvious choice for
the control of the address latch. The falling edge of AS cannot be used to
clock edge-triggered latches since addresses are not guaranteed to be valid
when AS goes low. The rising edge of AS can be used to latch addresses, but
addresses are valid before AS rises, so this would delay address availability

196 A Z8000 Design Example Chap. 11

ADo-AD15 (FROM CPU)

AS-I> LE

LS373 LS373

Figure 11.7 Address latching with
LAo-LA15 (TO SYSTEM) SN7 4LS3 7 3 latches.

for memory and I/O controllers. Transparent latches that propagate their in­
puts to their outputs when the control signal is low but hold the outputs
fixed when the control signal goes high are a better choice. The rising edge
of AS could then still be used to signal valid address information at the mem­
ory and I/O controllers themselves.

Figure 11.7 shows two SN74LS373 Octal Transparent Latches used for
address latching. Depending on the system configuration, these latches
might be tri-stated when BUSACK goes low. The latched address (LAO­
LA15) is propagated to all memory and I/O control logic.

MEMORY INTERFACING

Most microprocessor systems use both volatile (RAM) and nonvolatile
(ROM, PROM, or EPROM) memories for program and data storage. Since
the Z8000 CPUs read program status information after a reset from locations
0002, 0004, and (for the Z8001 only) 0006, nonvolatile memory usually
occupies the lowest address locations in the system.

The Z8000 interface to nonvolatile memories is straightforward, as il­
lustrated in Chapter 3. The single-board system of Fig. 11.1 uses 2K X 8
PROMs, addressed by LA1-LA11. LAO can be ignored, since Z8000 systems
always read a full word during memory reads. The upper address bits are
decoded to select particular memory devices using SN74LS138 3-to-8
Decoders or similar devices. LA15 is used to distinguish between the 32K­
byte PROM memory space and the 32K-byte RAM memory space. The ac­
cess time for nonvolatile memories is usually longer than the default memory
access time for a Z8000 CPU, so wait states must be added for each PROM
access.

Dynamic RAMs such as the 4116 16K X 1 RAM can be used for read/
write random-access storage. Most dynamic RAMs use address multiplexing
to reduce the package pin count. For example, standard 16K X 1 dynamic
RAMs require 14 address inputs. The address is input through seven pins on
each memory chip in two steps. First, seven address signals are placed on the
memory's address inputs and a clocking signal called row address strobe
(RAS) is lowered. Then the other seven address lines are routed to the mem­
ory's address inputs and a second clocking signal called column address

Memory Interfacing 197

FROM ADDRESS LArCHES

LA 8 1 9 2 10 3 11 4 12 5 13 6 14 7

CLOCK

TO RAM ADDRESS INPUTS

Figure 11.8 Address multiplexing for a dynamic RAM interface.

strobe (CAS) is lowered. Memory refresh is implemented with a cycle having
an active RAS but no CAS. An entire row of memory cells (that is, all the
memory locations having seven common address bits) are refreshed by one
refresh operation. Interfacing such devices to Z8000 systems involves multi­
plexing the address and generating the RAS and CAS signals.

For the system of Fig. 11.1, LA1-LA14 are used as the address inputs
to the dynamic RAMs, with LA15 selecting between the PROM and RAM
memory areas. LAO is used only during byte accesses to select one byte of
the addressed word. Two 74LS157 Quad 2-to-1 Multiplexors can be used to
route the LA1-LA14 address lines into the seven address inputs of the RAMs
(Fig. 11.8). MREQ is synchronized with the rising edge of the CPU clock to
provide the control signal to the multiplexor.

The RAS and CAS strobes must be timed carefully with respect to the
latched address and multiplexor control signals. MREQ can be used as RAS
and DS as CAS; this would, however, considerably shorten the memory ac­
cess time. The access time would be the delay between DS going low and
the time that valid data must be valid on the bus in T3 (about 205 ns for a
memory read in a 4-MHz system). To allow a longer access time, some
synchronous TTL logic can be used to generate the strobes.

One possible configuration is given in Fig. 11.9. RAS goes low on the
falling edge of the CPU clock in the middle of T1, after AS goes low. (In a
4-MHz system, the address emitted by the CPU is guaranteed to be valid
within 100 ns after the start of T1; therefore, the address is valid at least 25
ns before RAS'is active. Of course, delays through intervening latches and
buffers must be taken into consideration in an actual system design to assure
that the address is valid before an active RAS.) RAS is generated from an
SN74LS109 Dual J-K Flip-Flop triggered by an inverted CPU clock signal
and stays low for two clock periods. The CAS is generated by an SN74LS139
Dual 1-of-4 Decoder. One decoder is used to produce CAS by ANDing
MUX-S, LA15, and a high RjW line or low DS line. The other decoder con­
trols the routing of CAS to the even or odd byte bank of memory. Both
banks are selected except during byte writes, when LAO is used to select
only the even or odd bank. During a read operation, CAS becomes active at
the beginning of T2 when MUX-S goes high (that is, on the risihg edge of the

CAS EVEN (HIGH BYTE)

cAS ODD (LOW BYTE)

Figure 11.9 RAS and CAS signal generation.

clock after MREQ is active). The second seven address lines are routed to
the memory inputs at the same time. During writes, CAS is delayed until DS
goes low, guaranteeing that the data to be output are valid before CAS is
active. The SN7 4LS7 4 Flip-Flop stretches CAS during write operations, as
required by slower memories. The timing of RAS and CAS for read and
write operations using this circuit is illustrated in Fig. 11.10. CAS is gener­
ated only during memory accesses (that is, only when MREQ is active).

PERIPHERAL INTERFACING

Z-Bus-compatible peripherals are available for use in Z8000-based systems, as
described in Chapters 12 and 13. However, other peripherals also can be in­
terfaced to the Z-Bus. For example, Z80-family peripherals are easily con­
nected to Z8000 systems with some TTL logic. Z80 peripherals are all byte
peripherals; since they are capable of returning a vector during an interrupt
acknowledge sequence, they are usually connected to the lower half of the
Z-Bus when used in Z8000 systems.

Figure 11.11 shows the timing of Z80 instruction fetch, I/O read, I/O
write, and interrupt acknowledge cycles. An active Ml signal normally indi­
cates an instruction fetch, but when used in conjunction with IORQ (I/O re-

Peripheral Interfacing 199

CLO CK

TUS STA
(B/W

5To
, N/5,
-5T3)

-AS

M--REQ

DS

T 1

I -

.. .. 2 3 ... T T

I l

READ \ \ WRITE

RAS

Q2

MU x-S

CAS

/

\ /

READ\ \WRIT~ V
I I

Figure 11.10 Timing of the RAS and CAS signals for dynamic RAM memory ac­
cesses.

qest) it indicates an interrupt acknowledge. An active 10RQ signal without
an active Ml, indicates an I/O access. RD is used to determine the direction
of a data transfer. Interfacing Z80 peripherals to the Z-Bus involves gener­
ating the Ml, 10RQ, and RD signals to the peripherals from the Z-Bus
control and status lines. Four different kinds of operations must be
considered: I/O writes, I/O reads, interrupt acknowledges, and interrupt
returns.

CLOCK

INT

AO - A15

MI

MREO

lOAD

DATA BUS

WAIT

AD

200

CLOCK

AO A15

WAIT

1.. _____ _

DBO DB7~~--------+-----~

zao INSTRUCTION OP CODE FETCH

CLOCK

AO A7

lORD

RD
} Read

Cycle
DATA BUS

WAIT =,..---c~

WR
} Write

Cycle
DATA BUS OUT

zao INPUT OR OUTPUT CYCLES

Last M Cycle __ ~ __ ------------MI------------­
of Instruction

Last T State Tl T2 Tw' Tw' T3

---- ---- ---- ---- ----
TL~ ---- ---- ----- ---- ---- ----

zao INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 11.11 Timing of Z80 CPU machine cycles.

FROM
Z8000

BUS

Peripheral I nterfaci ng 201

+5V

YO CEO

G2A Yl CEl

G2B Y2 CE2
LS138

C Y3 CE3

LA4 ---------+-----+-f Y4 sw
RETI LS08

lA3 ---------+-----+-f A Y5 Mi
TO
Z80A
PERIPHERALS

LS32
os
AS lORa'

LAs

+5V

lS10
lS08

PRE AD
lORa a a

LS74 LS74 LS32
CLOCK CLK Q ClK Q

CLR CLR

Riw

VIACK

Figure 11.12 Interfacing Z80 peripherals to the Z-Bus.

One possible implementation is shown in Fig. 11.12. An SN74LS138
is used to decode address bits LA3, LA4, and LA5 to generate chip selects to
the system's I/O devices. For the system of Fig. 11.1, six peripherals can be
accessed: the four Z80 peripherals, the switches, and a special port used to
simulate the Z80's interrupt return process (called the RETI port). If more
peripherals were in the system, the upper bits of the address would be in­
cluded in the I/O port decode logic. LAO cannot be decoded as part of an
I/O address, however; since this system's peripherals are all byte peripherals
on the lower half of the address/data bus, they must all have odd port ad­
dresses. The I/O chip enable logic is activated only during I/O cycles, as
indicated by standard I/O status from the STO-ST3 status decoder (IORQ
low, where IORQ is generated by the status decoder in Fig. 11.6).

Read and write operations are straightforward. A write operation to
The peripheral occurs when IORQ' is low and RD is high; a read from the
peripheral occurs when both IORQ' and RD are low. The I/O status line
from the status decoder (IORQ) is synchronized with the CPU clock and
gated with DS to generate IORQ' to the Z80 peripheral. The RD signal is
generated from the Z8000 CPU's R/W status line. (The Z80 peripherals are

202 A Z8000 Design Example

CLOCK

AOO-AD1!1~

AS ~

DS

R/W

Q11LS741

R/W

CE

iORG'

RD

\~ ______ r
\ _____ 1

____ I

___ ...J/ '-­
'-­

\~----~/
\ /

\~--------------~/
I/O Read

\

\ r-
\ r-

I/0Wrile

Figure 11.13 Z80 peripheral interfacing read and write timing,

Chap, 11

addressed when LA5 is low in this example.) The timing diagram for Z80
peripheral reads and writes using this circuit is illustrated in Fig. 11.13.

Some additional logic is needed to make the Z80 peripherals compat­
ible with the Z8000 interrupt structure. The interrupt outputs from the

Peripheral I nterfaci ng 203

peripherals are used to drive a Z8000 CPU interrupt request line; priority
among the peripherals is determined by an lEI-lEO hardware daisy chain
similar to that of Z8000 peripherals. The Z80 CPU has no dedicated inter­
rupt acknowledge output. Z80 peripherals are acknowledged when 10RQ is
active during an M1 cycle (Fig. 11.11).

The circuit of Fig. 11.12 generates the M1, 10RQ', and RD signals re­
quired by the Z80 peripherals during an interrupt acknowledge cycle. VIACK
is the appropriate interrupt acknowledge signal from the STO-ST3 status
decoder. A timing diagram for the acknowledge cycle using this circuit is
given in Fig. 11.14.

At the end of the service routine for an interrupt generated by a Z80
peripheral, the interrupt-under-service flag in the peripheral must be reset.
The Z80 CPU's interrupt return instruction (RETI) has an opcode of ED4D
(hex); a Z80 fetch of this instruction takes two consecutive instruction fetch
cycles. A Z80 peripheral will monitor the data bus while under service and
recognize when the RETI instruction is fetched from memory. When the
"ED4D" code is sensed, the interrupt-under-service latch in the peripheral is
reset.

In a Z8000 system with Z80 peripherals, the Z80's RETI instruction
fetch sequence must be simulated at the end of the peripheral's service rou­
tine with a combination of hardware and software. The necessary hardware
is part of the circuit of Fig. 11.12. A special I/O port address, the "RETI"

T1 T2 Tw Tw Tw Tw Tw T3

CLOCK

AS \J
VIACK ~ ;-
R/W I
DS \\.... _____ ~I

'---
MI \~ __________________________ ~;_

IORQ' \'------~;-
RD

Figure 11.14 Z-80 peripheral interface interrupt acknowledge timing.

204 A zaooo Design Example Chap. 11

port, is used to place an "ED" and "4D" code on the peripherals data inputs
while manipulating the MI and RD lines to simulate Z80 instruction fetches.
The software routine is as follows:

01 VI, NVI ! disable interrupts!
LOB RL1, #%EO ! load first byte of RETI opcode !
OUTB RETI, RL1 ! RETI is port address for I/O port used to simulate zao instruc-

tion fetch!
LOB RL1, #%40 ! load second byte of RETI opcode !
OUTB RETI, RL1 ! output second byte and simulate zao I-fetch!
EI VI, NVI ! enable interrupts!
IRET ! end service routine!

The two simulated instruction fetches for the Z80 RETI must be consecutive
operations at the peripheral and, therefore, interrupts of the Z8000 CPU
should be disabled while this sequence is executed, as shown. The timing of
the signals to the Z80 peripherals during this simulated RETI sequence is il­
lustrated in Fig. 11.15. (In a system with bus sharing, bus requests also must

11 12 1w 13 11 12 1w 13

____ ~r- \~ ____ ~I
~~--------------

-----------~;- ~~--------I
__ ----II '­

'---1
'--­
'--

'--------1 \\-____ -..JI
'---___ ----JI \ I

~ _____ I \\-____ ~I
Z80 peripheral interface return from interrupt (RETI) timing.

Peripheral I nterfaci ng 205

be disabled between the two output operations that simulate the Z80 RETI
sequence. This might require some additional hardware to gate the BUSREQ
input to the CPU.)

The address/data bus can be connected directly to the DO-D7 data lines
of the Z80 peripherals. In the system of Fig. 11.1, latched address lines LA1
and LA2 are used as the Port Select (A/B) and Control/Data (C/D) signals
for the PIO and SIO, and as Channel Select (CSO and CS1) for the CTC. The
interrupt outputs are all connected to the appropriate interrupt request in­
put of the Z8000 CPU. The lEI-lEO daisy chain is used to establish inter­
rupt priorities among the Z80 peripherals.

The Z8420 PIO needs an active M1 pulse to enable its internal interrupt
circuitry . This is accomplished by writing O's to the "RETI" port used to
simulate the Z80 RETI instruction fetch after the PIO interrupts have been
enabled.

In summary, a small, powerful microcomputer system can be imple­
mented with a Z8000 CPU, memory, peripheral devices, and a small amount
of TTL logic. Buffering of the CPU outputs is necessary in all but the small­
est systems. Interfacing the Z8000 CPU to nonvolatile memory is straight­
forward; interfacing to dynamic RAMs requires the generation of the proper
timing strobes. If peripherals from other microprocessor families are used,
the control signals for those peripherals must be generated from the Z8000
CPU's bus control and status signals. Z80 family peripherals interface easily
to Z8000 systems, largely due to the similarity in the Z80 and Z8000 inter­
rupt structures.

12

Z8000 Family Devices

The Z8001 and Z8002 CPUs are just two members of a family of devices de­
signed to interact over the Z-Bus. Other members of the Z8000 family include
several Z-Bus-compatible peripherals, a DMA controller, and a Z-Bus memory.

The Z-Bus peripheral chips are powerful, multifunction devices that can
be configured under program control for a particular application. All of the
Z-Bus peripherals share a common interrupt structure and can be used in a
priority interrupt or polled environment. The functions of each device are
controlled by using I/O commands to access the peripheral's internal registers;
each register has its own I/O port address. The Z8036 Counter/Timer and
Parallel I/O Unit (CIO) contains three parallel ports and three counter/timers;
it also can be used as a priority interrupt controller. The Z8038 FIFO Input/
Output Unit (FlO) is a byte-wide first-in/first-out buffer for interfacing asyn­
chronous devices in a single or multiprocessor system. The buffer depth is
expandable with the Z8060 FIFO Buffer Unit. The Z8030 Serial Communi­
cations Controller (SCC) is a dual-channel serial I/O unit that supports all
popular synchronous and asynchronous communications protocols. The
Z8065 Burst Error Processor (BEP) provides error correction and detection
capabilities for high-speed data transfers. The Z8068 Data Ciphering Proces­
sor (DCP) encrypts or decrypts data using the National Bureau of Standards
encryption algorithms. The Z8052 CRT Controller (CRTC) can be used to
control a variety of CRT displays. These peripherals each perform compli­
cated interfacing tasks, thereby unburdening the CPU and increasing system
throughput.

The Z8016 Direct Memory Access Transfer Controller (DTC) is both a

206

Z-BUS Peripheral Interface 207

Z-Bus requester and a Z-Bus peripheral. The DrC is prpgrammeq by the CPP
via I/O operations and can interrupt the CPU li);{e a. peripheral devke, bllt, ~cts

- - -

as a bus master when executing DMA transfers.
The Z6132 Quasi-Static RAM is a 4K X 8Z"lllJ.~-QQll}patigl~ memory

device that is easily interfaced to Z8000 systems,
[Two other Z-Bus components, the Z8 single-chipmicroGomputerand the

Universal Peripheral Controller (Upe), a slave miQfQOOmputer, ~re describ~d
in Chapter 13.]

Z-BUS PERIPHERAL INTERFACE

All of the Z-Bus peripherals are byte peripherwf'? with the ex;ception qf the
Z8052 CRT controller. Figure 12.1 illustrates the ~ignws useq tq interface
a byte peripheral to the Z~Bus. One·half of the ~dctr~~s/dat~ b'Y,s provides up
to 8 bits of address information for direotly addf@.ssing the peripheral '8 inter­
nal registers and an 8-bit data path for data transfers between the peripheral
and the CPU. (Typically, the lower half gf the address/data bus js used, since
interrupt vectors must be placed on the lower half of the bw, when w:jing vec­
tored interrupts.) Timing of the data transfers ifl coptrolled by the address
strobe (AS) and data strobe (DS). and the direction of tra,nsf@!p is determined
by the R/W signal (Fig. 12.2). The chip seleQt (CS) for a peripheral is decoded
from the I/O port address during I/O accessefii and is latched interI).ally by the
peripheral on the rising edge of AS. Resets are implemented when both the AS
and DS inputs to the peripheral are low siffi-ultaneously. (In normal operation,
AS active and DS active are mutually exoluaive events.) The INT, INTACK,
lEI, and lEO signals interface the peripheral to the Z-Bus interrupt structure.

Other signals, such as WAIT, also might be part of the peripheral-to-Z­
Bus interface, depending on the application. Some of the Z-Bus peripherals

8-BIT ADDRESS/DATA

MINIMUM CPU
INTERFACE

R/Vi

INT
INTACK

lEI

lEO

A. J\

<
'i r

PERIPHERAL
DEPENDENT

Z.BUS PERIPHERAL

NOTES:
~SET=AS AND os I.QW

S IS LATCHED BY AS
CLOCK TO PERIPHERAL DOES NOT HAVE TO BE
CPU CLOCK

Figure 12.1 Z-Bus peripheral interface signals.

208 Z8000 Family Devices Chap. 12

Z·BUS TIMING

ADO-AD7 -----{ A~~~lPsS) -------i{ TO CPU))----

AS

CS

R/W

DS \~---/
READ CYCLE

ADO-AD7 ---{ A~~~:PSS H,-__ D_AT_A_FR_O_M _CP_U __ })-, ---

cs

R/Vii \~--------------
\'--___ 1

WRITE CYCLE

Figure 12.2 Z-Bus to peripheral in­
terface timing.

have a clock input; the peripheral's clock does not have to be syn0hroni~ed
with the CPU clock in any way.

(Most of these peripherals also are available in a version that etl$ily inter­
faces to systems with separate, nonmultiplexed address and data buses~ such
as Z80-based systems.)

Each Z-Bus peripheral implements several functions and is programmable
for a particular application. A peripheral may have up to 128 internal reg­
isters that can be read or written by the CPU using lIO instructions. Each
register has its own I/O port address; thus each peripheral occupies a block
of port addresses in the system. The' addreaa of the register being accessed
is sampled on the peripheral's address/data bus inputs on the rising edge of
AS. A programmable option allows the user to decide if the least signficant
bit of the register address is an the ADO or AD! bus line. For byte transfers
in Z8000-based systems, the value of ADO when the CPU emits the address
determines which half of the bus will be used to transfer the byte of data.
For example, byte peripherals connected to the lower half of the bus always
have odd addresses. Therefore, in Z8000 systems, the least significant bit of
the peripheral's register address should be on the ADlline, not ADO.

PERIPHERAL INTERRUPT STRUCTURE

If several Z-Bus peripherals share a common interrupt request line to the CPU,
the lEI-lEO daisy chain is used to establish the relative priority of those pe­
ripherals. When one or more peripherals request the CPU's attention via an
interrupt, the interrupt acknowledge cycle is used to select the peripheral
whose interrupt is to be serviced and to obtain a vector or identifier word,
as described in Chapter 6.

Each of the Z-Bus peripheral devices can have several sources of inter­
rupt internal to that chip. For peripherals with multiple interrupt sources
on one chip, priority is established with an lEI-lEO daisy chain internal to the
device. This prioritization order is fixed and cannot be altered by the user.
Figure 12.3 illustrates the Z-Bus interrupt structure for several peripherals
sharing an interrupt line, and for one peripheral with several sources of inter­
rupts internal to that device.

For every interrupt source on a Z-Bus peripheral there are three bits
within the device's internal registers that control the interrupt logic. The
Interrupt Enable (IE) bit is 'Set to enable or reset to disable that particular
interrupt source. The Interrupt Pending (IP) bit is set when the device re­
quires servicing and reset when the interrupt is serviced. The Interrupt Under
Service (IUS) bit indicates when the interrupt is being serviced and must be
reset by the programmer upon completion of the service routine.

A Z-Bus peripheral has one or more registers that hold an interrupt vec­
tor that is read by the CPU during the interrupt acknowledge cycle. Each in­
terrupt source on a device is associated with a vector and each vector can have
one or more interrupt sources associated with it. If more than one interrupt
source is associated with a single vector, some bits in the vector can be encoded
to identify which source caused the interrupt. A bit called the Vector Includes
Status (VIS) bit is used to enable or disable this encoding function.

Each peripheral also has three programmable bits that control the inter­
rupt logic for all interrupt sources on the device. The Master Enable (MIE) bit
is used to enable or disable all interrupt sources on the chip. The Disable
Lower Chain (DLC) bit is used to force the peripheral's lEO output to 0,
thereby disabling interrupts from peripherals of lower priority on the daisy
chain. The No Vector (NV) bit is set if a vector is not to be placed on the bus
during the interrupt acknowledge sequence.

Figure 12.4 illustrates the interrupt daisy-chain protocol as it applies
to the Z-Bus peripherals. An interrupt source with an interrupt pending (IP =
1) requests an interrupt by pulling INT low if the IE bit for that source and
the MIE bit for that device are both set, that interrupt source is not already
under service (IUS = 0), no higher-priority device's interrupt sources are being
serviced (lEI = 1), and an interrupt acknowledge cycle is not currently being
executed (INT ACK = 1). After the CPU samples the active interrupt request,
an interrupt acknowledge cycle is executed, as indicated by INT ACK going

209

N
....10

o
o INTERRUPT INTERRUPT

VECTOR VECTOR

~ ... ~
~ ~

I ((I I
:; -'.~. . 1\. I I~------' ~

HIGHEST PRIORITY
INTERRUPT SOURCE

LOWEST PRIORITY
INTERRUPT SOURCE

• • •

lEI

HIGHE~ PRIORI~~ ~ ____________,

Z·BUS
PERIPHERAL

Z·BUS
PERIPHERAL

LOWEST
PRIORITY

Z·BUS
PERIPHERAL

lEI ADo-AD7 AS OS 00 INTACK lEO

gJJ •)

ADO-AD7\\.

:1 : · 1 •
004 I I 111 ~ Z·BUS

CPU

STATUS 1------0/1

ADB-AD'5

,
" ,

FROM 16·BIT PERIPHERALS

Figure 12.3 Z-Bus peripheral interrupt structure.

+.

Peripheral I nterrupt Structure

])SLOW
lEI HIGH

IUS RESET lEI HIGH

lEI OR
IN'i'ACKLOW

HIGHER·PRIORITY
'-------i~ DEVICE ACKNOWLEDGED

LET IEO=IEI

lEI LOW

Figure 12.4 Peripheral interrupt
protocol.

211

low. When INTACK is active, all interrupt sources with an interrupt pending
(the IP, IE, and MIE bits are alII's) or under service (the IUS bit = 1) hold
their lEO outputs low. When DS goes low during the acknowledge cycle,
only the highest-priority interrupt source with an interrupt pending (lP = 1)
should have a high lEI input; this is the interrupt being acknowledged. The
IP bit is reset for that interrupt source, the IUS bit is set, and, if the NV bit =

0, the appropriate vector is placed on the bus to be read by the CPU. If the
NV bit is 1, the peripheral's ADO-AD7 pins are left floating, allowing external
circuitry to place a vector on the bus, if so desired. While servicing of that
interrupt is in progress, as indicated by IUS = 1, lEO is held low, thereby dis­
abling interrupts from lower-priority devices. When servicing is completed,
the IUS bit must be reset. The CPU resets the IUS bit by an explicit I/O
write to the register in the peripheral that contains the IUS bit; this I/O write
operation usually is executed immediately preceding the interrupt return in
the service routine. (In most cases, the IP bit is not reset automatically during
the acknowledge sequence, and also must be reset via an explicit write to the
appropriate register in the peripheral.)

A polled interrupt scheme can be implemented by disabling interrupts
using the MIE bit in each peripheral. The registers containing the IP bits are

212 Z8000 Family Devices Chap. 12

read by the CPU via I/O read operations to detect pending interrupts. The
IP bits must be reset by writes to the same registers.

Z8036 CIO

The Z8036 Counter/Timer and Parallel I/O Unit (CIO) contains three paral­
lel ports and three programmable counter/timers, satisfying most parallel I/O
and counter/timer needs in Z8000 systems. There are five distinct interrupt
sources in the CIO, and three separate interrupt vectors. The configuration
of the CIO is controlled by 48 directly addressable read/write registers. The
pin assignments for this 40-pin device are given in Fig. 12.5. The CIO oper­
ates from a single +5-V power supply and draws a maximum of 250 mAo Fig­
ure 12.6 is a block diagram of the CIO.

The CIO's parallel I/O capabilities consist of two 8-bit general-purpose
ports and one 4-bit special-purpose port. The two 8-bit ports, ports A and B,
can be linked together to form a single 16-bit port. Either port can be con­
figured as a byte port (that is, an entire byte of input or output) or as a bit
port (the direction of each bit is programmable). Figure 12.7 shows a block
diagram of these ports. Optionally, port B pins can be used to provide external
access to counter/timers 1 and 2. With this exception, ports A and Bare
identical.

When configured as byte ports, ports A and B can be input, output, or
bidirectional ports. I/O operations can be interrupt driven; both port A and

ADDRESS/DATA
BUS

_ ADl

_ ADs

_ ADs

_ AD4

_ADa
_ AD2

_ADI

PAl _

PA
s

_

PAs _

PA
4

_

PAa -
PA2

PAl
PAo _

PORTA

_ ADo

BUS TIMING { - ~
AND RESET _ DS

CONTROL - CSO
{

_R/W
Z8036 :~; :=: } PORT C
Z·CIO PC

I
_

PCo -
_ CSI

{

iNT
_ INTACK

INTERRUPT _ lEI

lEO

PB
l

_

PBs _

PBs _
PB

4

_

PB
3

_

PB2 -
PB

I
_

PBo -

PCLK +5 V GND

PORT B

AD4

ADs

ADs

ADl

OS

R/W

GND

PBo

PBI

PB2

PB3

PB4

PBs

PBs

PBl

PCLK

lEI

lEO

PCo

PCI

Figure 12.5 Z8036 CIO pin assignments.

ADo

INTACK

iNT
+5V

PC3

PC2

Z8036 CIG

< INTE:RUPT >
CONTROL

ADDRESSI < OAT: BUS >

CON~ROL >
INPUTS

INTERRUPT
CONTROL

LOGIC

Z·BUS
INTERFACE

INTERNAL
CONTROL

LOGIC

INTERNAL BUS

Figure 12.6 Z8036 CIO block diagram.

213

PORT A > 1/0

PORT C >
1/0

< PORT B >
1/0

port B are an interrupt source. Byte ports can be single- or double-buffered,
and the interrupt logic programmed to interrupt for every byte transferred
or for every second byte transferred, accordingly. Optionally, port C signals
can be used as handshake lines to control I/O operations on ports A and B.
Four kinds of handshakes are available: interlocked, strobed, pulsed, and
three-wire (Fig. 12.8). The interlocked, strobed, and pulsed handshakes are
implemented with two signals: acknowledge in (ACKIN) and ready for data
(RFD) for input handshakes, and acknowledge in and data available (DA V)
for output handshakes. The three-wire handshake [data available (DAV),
ready for data (RFD), and data accepted (DAC)] is compatible with the hand­
shake in the IEEE-488 bus specification. For output ports, a programmable
4-bit depkew timer is available for determining the delay between valid data
being outPllt and the falling edge of the DAV handshake line. Outputs can
be programmed as qpen-drain or active signals. Data polarity is programmable
on a bit-by-bit basis.

When port A or port B is used as a bit port, both data direction and data
polarity are programmable on a bit-by-bit basis. Optionally, inputs can be
"one's catchers" (that is, programmed to remain at a logical 1 level until read
if a low-to-high transition occurs) and outputs can be open-drain or active.

Pattern recognition logic is available for both ports A and B, regardless
of whether they are used as byte or bit ports, allowing interrupt generation

~14 Z8000 Family Devices

INTl:flNAL
BUS\

OUTPUT
fll"QlilTER

PATTEflN
RECOGNITION

LOgiC

INPUT
flEGISTEfl

TO COUNTERITIMERS 1 AND 2
(PORT B ONLy)

H PQRT
cONTROL

.... LqglC I.HMIDSHA!<E CONT.ROL

~~. U
TO PORT C

Figure 12.7 CIO porta A and B diagram.

INPUT
BUFFERI

INVERTERS
AND

PULSE
CATCHER

OUTPUT
BUFFERI

INVERTERS

Chap. 12

PORT
1/0

when a specific pattern is detected at the port. The pattern can be specified
for each bit as a 1, 0, rising edge, falling edge, or any transition. Individual
bits can be masked if they are not to be included in the pattern match. Three
pattern-match modes are available: AND, OR, and OR-Priority Encoded Vec­
tor. In the AND mode, a pattern match is defined as the simultaneous satis­
faction of all nonmasked bit specifications. In the OR and OR-Priority En­
coded Vector modes, the satisfaction of anyone nonmasked bit specification
constitutes a pattern match.

The OR-Priority Encoded Vector mode allows the CIO to be used as an
interrupt priority controller. In this mode, the IP bit is set when a pattern
match occurs and cannot be cleared until a match is no longer present. If the
interrupt vector is allowed to include status information (VIS = 1), the vec­
tor returned during the interrupt acknowledge cycle indicates the highest pri­
ority bit matching its pattern-match specification at the time of the acknowl­
edge; this mayor may not be the bit that originally caused the pattern-match
interrupt. Bit 7 has the highest priority and bit 0 the lowest. Thus a CIO
port could accept interrupt inputs from other devices on an input port and

Z8036 CIO

INPUT HANDSHAKE

DATA ==:x: VALID X'-_________ _

STROBED

'U'D
HANDSHAKE -..., - - -

'-___ --'~ __ ..J -- ~1~~~~~~~D

DATA LATCHID
IN BUFFE" "EO liTE"

OUTPUT HANDSHAKE

DATA

BUFFER REGISTER
"EMPTIED"

NEXT IYT!

NIXT IYTI

'\.._--
I

STROBED
HANDSHAKf

SHIFTED 1'1'10'>1
OUTPUT REGISTER TO
BUFFER REGISTER

Interlocked and Strobed Handshakes

INI'UT HANDSHAKE OUTPUT HAND.HAKE

DATA =:J(VALID X'-_________ _ DATA

DAV
INPUT

RFD
OUTPUT

DAC
OUTPUT

INPUT PORT

OUTPUT PORT

"I'D
INPUT

DAC
INPUT

DAY
OUTPUT

IIUFFEA AEOISTEA
"EMPTII!D"

3-Wire Handshake

TRIGGER COUNTER
INPUT OUTPUT

CIT 3

ACKIN

DAV .-,~, ;r:~~~ER C~~~~~~, ~, ,

CIT 3

Pulsed Handshake

Figure 12.8 Ports A and B handshakes.

NEXT BYTE

NIXT IYTI
SHII'TlD ""OM

OUTPUT AI!OIITl!A TO
BUFFI!R "I!OISTEA

215

INTERLOCKID
¥HANDSHAKI

act as an interrupt priority controller for those devices. For example, if a low
level indicates an interrupt request from devices #0 through #7 in Fig. 12.9,
the pattern match logic for CIO port A would be set to match on O's in OR­
Priority Encoded Vector mode. An active INT from any device would cause
the CIO to interrupt the CPU. The vector returned to the CPU would indi-

216 zaooo Family Devices Chap. 12

HIGHEST PRIORITY LOWEST PRIORITY

PERIPHERAL PERIPHERAL PERIPHERAL
#7 #6 0 0 0 #0

- -
INT INT INT

- iNT I 7

- INTACt<
6

<Co
I-a: 0

0 - lEI a. 0 0

0 - lEO

Z8036
CIO

Figure 12.9 CIO as an interrupt controller.

cate the highest-priority device with an active INT signal at the time of the
acknowledge. \;v'hen desired, interrupts from selected devices could be disabled
by masking the appropriate bits in the CIa's pattern match logic. Thus the
CIa is used as an interrupt controller. Furthermore, this provides an easy
method for interfacing non-Z8000 family peripherals to the Z-Bus interrupt
structure.

The function of the 4-bit special-purpose port, port C, depends on the
configuration of ports A and B (Table 12.1 and Fig. 12.10). Port C provides
the handshake lines for ports A and B and the data direction line for a bidi­
rectional port. One bit of port C can be programmed as a WAIT signal to the
CPU or a REQUEST signal to a DMA controller, thereby allowing block

TABLE 12.1 cia PORT C BIT UTI LlZATION

Port A /B configuration PC3 PC2 PCl PCo

Ports A and B: bit ports Bit I/O Bit I/O Bit I/O Bit I/O

Port A: input or output port RFD or DAV ACKIN REQUEST/WAIT Bit I/O
(interlocked, strobed, or or bit I/O
pulsed handshake)a

Port B: input or output port REQ UEST /W AIT Bit I/O RFD or DAV ACKIN
(interlocked, strobed, or or bit I/O
pulsed handshake)a

Port A or B: input port RFD (output) DAV (input) REQUEST/WAIT DAC (output)
(three-wire handshake) or bit I/O

Port A or B: output port DA V (output) DAC (input) REQUEST/WAIT RFD (input)
(three-wire handshake) or bit I/O

Port A or B: bidirectional RFD or DAV ACKIN REQUEST/WAIT IN/OUT
port (interlocked or or bit I/O
strobed handshake)

aBoth ports A and B can be specified input or output with interlocked, strobed, or pulsed handshake at the same
time if neither uses REQUEST m-A-F'r.

Z8036 CIO

TO PORT TO PORT TO COUNTER!
A B TIMER 3

DD:~

HANDSHAKE 3
AND

REQUEST/WAIT
LOGIC

NTERNAL ft BUS '---

.L. I r--

..J,,,

~ ==J OUTPUT DATA

~
REGISTER MUX

~ INPUT
A

/
REGISTER \

'4
~

)

"

?:nNTE'"AL pO", H PORT

<
CONTROL CONTROL LINES

LOGIC

.... ;r

Figure 12.10 CIO port C block diagram.

INPUT
BUFFER!

INVERTERS
AND

PULSE
CATCHERS

~'(:>.

4 ~PORT
r--YI!O

OUTPUT
BUFFER!

INVERTERS

217

transfers to or from the CIO. Any port C pins not used for those functions
can be used as I/O lines with programmable data direction and polarity. Op­
tionally, inputs can be "one's catchers" and outputs can be open-drain or
active. The port C pins also can be used to provide external access to counter/
timer 3.

The three programmable counter/timers are 16-bit down counters (see
Fig. 12.11). Up to four external I/O lines can be used to control each counter/
timer: counter input, gate input, trigger input, and counter/timer output.
These external access lines are provided by port B and port C pins (Table 12.2).
Optionally, the device's clock input (PCLK/2) can be used to drive any count­
er/timer. If the counter/timer output is routed to an external pin, three out­
put waveforms are available: pulse, one-shot, and square wave (Fig. 12.12).
The end-of-count condition can be used to generate an interrupt. The counter/
timers can be run in single-cycle or continuous ~odes; if a trigger input is
employed, retriggerable or nonretriggerable operation can be specified. The
current count can be read at any time. Typical applications for the counter/

218

INTERNAL
BUS

TIME
CONSTANT
REGISTER

(MSB's)

TIME
CONSTANT
REGISTER

(LSB's)

COUNTERI
TIMER

CONTROL
LOGIC

16·BIT
DOWN

COUNTER

COUNTER
CONTROL

\,..-___ ----1 LINES

TO PORT

Z8000 Family Devices

CURRENT
COUNT

REGISTER
(MSB's)

CURRENT
COUNT

REGISTER
(LSB's)

Figure 12.11 CIO counter/timer block diagram.

Chap. 12

timers include event counters, pulse train generators, event duration timers,
watchdog timers, and baud-rate clock generators.

The five interrupt sources for the CIO are, in priority order, counter/
timer 3, port A, counter/timer 2, port B, and counter/timer 1. Each source
has its own IE, IP, and IUS bits to control that interrupt. Three interrupt vec­
tors can be specified: one for port A, one for port B, and one shared by all
three counter/timers. The vectors can be encoded with status information to
identify further the event that caused the interrupt. For polled operations a

TABLE 12.2 cia COUNTER/TIMER EXTERNAL ACCESS

Function C/T l C/T2 C/Ta

Counter/timer output PB 4 PB 0 PC 0
Counter input PB 5 PB 1 PC 1
Trigger input PB 6 PB 2 PC 2
Gate input PB 7 PB 3 PC 3

Z8038 FlO

PCLKl2 OR
COUNTER INPUT _

TRIGGER -'

GATE U
I TC I TC-1 I TC-1 I TC-2 I

,,/

I 1 I 6: I
PULSE OUTPUT II

--------;./,f---I L-

ONE SHOT ,~
OUTPUT __ ---' L--

SQUARE WAVE
OUTPUT ~

FIRST HALF ------------i/r----J
SQUARE WAVE - - - - - --------I./r--,

OUTPUT L--
SECOND HALF

219

Figure 12.12 Counter/timer output
waveforms.

special register, called the current vector register, holds the vector that would
have been returned if hardware interrupts were used.

Figure 12.13 shows all 48 CIO registers. Programming the CIO involves
loading the registers with the appropriate bit pattern to implement the desired
operation. Addressing of the registers is determined by the Right Justify Ad­
dress (RJA) bit in the Master Interrupt Control register. If RJA is 0, the ad­
dress bits on AD1-AD6 during AS active in an I/O cycle are decoded as the
register address if the CIO is chip selected. When RJA is 1, the register address
is decoded on ADO-AD5. The 6-bit register addresses are given in Fig. 12.13.

A typical Z-Bus to CIO interface is diagrammed in Fig. 12.14. The CIO's
address/data pins are connected to the lower half of the Z-Bus address/data
bus. The address bit on ADO should always be a 1 for byte transfers on the
lower half of the bus, so the RJA bit should be a 0 and AD1-AD6 provide
the register addresses. AD7 -AD15 are ,decoded to provide chip selects during
I/O transactions (with I/O STATUS decoded from the STO-ST3 lines). The
CIO is chip selected by I/O port address %FF80 to %FFFF; however, only
odd addresses are used and only 48' of those addresses actually access a CIO
register. An active RESET signal resets the CIO by pulling AS and DS low
simultaneously.

Z8038 FlO

The Z8038 FIFO Input/Output Interface Unit (FlO) contains a 128-byte first­
in/first-out buffer that provides an asynchronous CPU-to-CPU or CPU-to-pe­
ripheral interface. One side of the FlO, the port 1 side, can be configured as
a Z-bus or general-purpose nonmultiplexed bus interface to a microprocessor;

Master Interrupt Control Register
Address: 000000

(Read/W rite)

Master Configuration Control Register
Address: 000001

(Read/Write)

10,1 0, ! 0,1 0,1 0, ! 0,1 0, I Do I

MASTER INTERRUPT :J J
ENABLE (MIE)

DISABLE LOWER CHAIN (DLC)

NO VECTOR (NV) - ---­

PORT A VECTOR INCLUDES
STATUS (PA VIS)

~RESET
RIGHT JUSTIFIED ADDRESSES
0= SHIFT LEFT (Ao from ADd
1 = RIGHT JUSTIFY (AD from ADD)

COUNTERfflMERS VECTOR
INCLUDES STATUS (CT VIS)

- - -. PORT B VECTOR INCLUDES
STATUS (PB VIS)

PORTB~ JJ ENABLE (PBE)

COUNTERfflMER 1
ENABLE (CT1E)

COUNTERfflMER 2
ENABLE (CT2E)

PORT C AND COUNTERI
TIMER 3 ENABLE
(PCE AN 0 CT3E)

Master Control Registers

[

L COUNTERfflMER liNK
CONTROLS (LC)

LC1 LCO
o -0 COUNTERrr. IMERS INDEPENDENT
o 1 CIT 1', OUTPUT GATES CIT 2
1 0 CIT 1'. OUTPUT TRIGGERS CIT 2
1 1 CIT 1', i5U'1'fiU'I' IS CIT 2'0

COUNT INPUT

PORT A ENABLE (PAE)

PORT liNK CONTROL (PLC)
O=PORTS A AND B OPERATE INDEPENDENTLY
1 = PORTS A AND B ARE liNKED

Port Mode Specification Registers
Addresses: 100000 Port A

Port Handshake Specification Registers
Addresses: 100001 Port A

10 1000 Port B
(Read/Write)

10 100 1 Port B
(Read/Write)

PDRTTYPE ~ SELECTS (PTS)

PTS1 PTSo.
o 0 BIT PORT
o 1 INPUT PORT
1 0 OUTPUT PORT
1 1 BIDIRECTIONAL

PORT

INTERRUPT ON TWO
BYTES (ITB)

SINGLE BUFFERED
MODE (SB)

220

L LATCH ON PATTERN MATCH (LPM)
(BIT MODE)
DESKEW TIMER ENABLE (DTE)
(HANDSHAKE MODES)

PATTERN MODE SPECIFICATION
BITS (PMS)

PMS1 PMSO
o DISABLE PATTERN MATCH
1 "AND"MODE
o "OR" MODE
1 "OR-PRIORITY ENCODED

VECTOR" MODE

INTERRUPT ON MATCH ONLY liMO)

1~1~1~1~1~1~1~1~1

HANDSHAKE TYPE SPECIFICATION J -------= DESKEW TIME SPECIFICATION
BITS (HST) BITS

HST1 HSTO SPECIFIES THE MSB's OF

g ~ ~~~~R~~DC~i~~:~f:~AKE ~~~~~~ci~~~~ i.IME CONSTANT.

1 0 PULSED HANDSHAKE
1 1 THREE· WIRE HANDSHAKE

REQUEST/WAIT SPECIFICATION BITS
(RWS)

RWS2 RWS1 RWSO FUNCTION
o REQUEST/WAIT DISABLED
1 OUTPUT WAIT
1 INPUT wAif
o SPECIAL REQUEST
1 OUTPUT REQUEST
1 INPUT REQUEST

Port Command and Status Registers
Addresses: 001000 Port A

001001 Port B
(Read/Partial Write),

10,1 0, ! D,\ D, ! 0,\ 0,1 D, I Do I

INTERRUPT UNDER
SERVICE (IUS)

INTERRUPT ENABLE (IE)

INTERRUPT PENDING liP)

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING CODE:

NULL CODE o 0 0

CLEAR IP & IUS 0 0

SET IUS 0 1

CLEAR IUS 0 1 1

SET IP 1 0 0

CLEAR IP 1 0 1

SET IE 1 1 0

CLEAR IE 1 1 1

INTERRUPT ERROR (ERR) ----'
(READ ONLY)

~
I L INTERRUPT ON ERROR (IOE)

L PATTERN MATCH FLAG (PMF)
(READ ONLY)

INPUT REGISTER FULL (IRF)
(READ ONLY)

OUTPUT REGISTER EMPTY (ORE)
(READ ONLY)

Figure 12.13 Z8036 CIO registers.

Data Path Polarity Registers
Addresses: 100010 Port A

101010 Port B
000101 Port C (4 LSBs only)

(Read/Write)

Data Direction Registers
Addresses: 100011 Port A

I~I~I~I~I~I~I~I~I

L ___ DATA PATH POLARITY (DPP)
0= NON·INVERTING
1 = INVERTING

Special I/O Control Registers
Addresses: 100100 Port A

10 1100 Port B
000111 Port C (4 LSBs only)

(Read/Write)

101011 Port B
000110 Port C (4 LSBs only)

(Read/Write)

'----- DATA DIRECTION (DO)
0= OUTPUT BIT
1 = INPUT BIT

'----- SPECIAL INPUT/OUTPUT (SIO)
0= NORMAL INPUT OR OUTPUT
1 =OUTPUT WITH OPEN DRAIN OR

INPUT WITH l's CATCHER

Bit Path Definition Registers

Port Data Registers
Addresses: 001101 Port A

001110 Port B
(Read/W rite)

I 0, I 06 1 05 i 0.1 03 1 02 1 0, I Do I

Pattern Polarity Registers (PP)
Addresses: 100101 Port A

101101 Port B
(Read/Write)

Pattern Transition Registers (PT)
Addresses: 100110 Port A

101110 Port B
(Read/Write)

Pattern Mask Registers (PM)
Addresses: 100111 Port A

10 1111 Port B
(Read/Write)

Port Data Registers

I~I~I~I~I~I~I~I~I

Port C Data Register
Address: 001111

(Read/Write)

I 0, I 06 1 05 1 D.I D31 02 1 0, I Do I

4 MSBs
0= WRITING OF CORRESPONDING LSB ENABLED
1 =WRITING OF CORRESPONDING LSB INHIBITED

(READ RETURNS ')

PM PT PP PATIERN SPECIFICATION
o 0 X BIT MASKED OFF
o 1 X ANY TRANSITION
1 0 0 ZERO
1 0 1 ONE
1 1 0 ONE·TO·ZERO TRANSITION (\)
1 1 1 ZERO·TO·ONE TRANSITION (/)

Pattern Definition Registers

Figure 12.13 Continued

221

222

Interrupt Vector Register
Addresses: 000010 Port A

000011 Port B
000 1 00 Counter/Timers

(Read/Write)

INTERRUPT VECTOR

PRIORITY ENCODED VECTOR MODE:

03 02 01
X X X NUMBER OF HIGHEST PRIORITY BIT

WITH A MATCH

ALL OTHER MODES:

~ ~ ~
ORE IRF PMF NORMAL

o 0 0 ERROR

COU~TERfTlMEI!!;T~U!'l

02 01
o 0 CIT 3
o 1 CIT 2
1 0 CIT 1
1 1 ERROR

Z8000 Family Devices

Current Vector Register
Address: 011111

(Read Only)

Chap. 12

L...-___ INTERRUPT VECTOR BASED
ON HIGHEST PRIORITY
UNMASKED IP.
IF NO INTERRUPT PENDING
ALL 1'8 OUTPUT.

Interrupt Vector Registers

Figure 12.13 Continued

the other side (port 2 side) can be configured as a Z-Bus interface, nonmulti­
plexed bus interface, two-wire handshake I/O interface, or three-wire hand­
shake I/O interface. Thus dissimilar CPUs or CPUs and peripherals running
with different speeds or protocols can be linked, allowing asynchronous data
transfers and improving I/O overhead. The FlO is a 40-pin device that requires
a single +5-V supply and draws a maximum of 250 rnA.

A block diagram of the FlO is given in Fig. 12.15. The port 1 side is
always a processor interface and can be configured as a Z-Bus interface (con­
nected to either the lower or upper half of the bus) or a nonmultiplexed bus
interface. The nonmultiplexed bus is a general-purpose microprocessor inter­
face with eight data lines, chip enable (CE), read (RD), write (WR), and con­
trol/data (C/D) signals. The timing for data transfers on this bus is illustrated
in Fig. 12.16. The C/D signal determines if the current bus transfer involves
a control register in the FlO or the FIFO data buffer itself. This bus config­
uration easily interfaces to microprocessors with separate, nonmultiplexed
address and data buses, such as the Z80, 8080, and 6800. The configuration
of the port 1 side is determined by the condition of two pins, MO and M1
(Table 12.3). The port 2 side can be a Z-Bus, nonmultiplexed bus, two-wire
handshake, or three-wire handshake interface, as determined by two bits (BO
and B1) in an internal register that is programmed from the port 1 side. Fig-

Z8038 FlO

Counter/Timer Command and Status Registers
Addresses: 001010 Counter/Timer 1

001011 Counter/Timer 2
001100 Counter/Timer 3

(Read/Partial Write)

'N","U" UNO" SERV'C' (IUS) ~ I I
INTERRUPT ENABLE (IE)

I I

INTERRUPT PENDING (lP) I I

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING CODE:

NULL CODE 0 0 0

CLEAR IP & IUS 0 0 1

SET IUS 0 1 0

CLEAR IUS 0 1

SET IP 1 0

CLEAR IP 1 0 1

SET IE 1 0

CLEAR IE 1 1

INTERRUPT ERROR (ERR) -­
(READ ONLy)

E~
COUNT IN PROGRESS (CIP)
(READ ONLy)

TRIGGER COMMAND BIT (TCB)
(WRITE ONLY· READ RETURNS 0)

GATE COMMAND BIT (GCB)

READ COUNTER CONTROL (RCC)
(READ/SET ONLY -
CLEARED BY READING CCR LSB)

Counter/Timer Mode Specification Registers
Addresses: 011100 Counter/Timer 1

011101 Counter/Timer 2
011110 Counter/Timer 3
(Read/Write)

CONTINUOUS sm. ~~J GLE CYCLE (C/SC)

EXTERNAL OUTPUT
ENABLE (EOE)

EXTERNAL COUNT
ENABLE (ECE)

EXTERNAL TRIGGER
ENABLE (ETE)

[

L OUTPUT DUTY CYCLE
SELECTS (DCS)

DCS1DCSO
0- -0 PULSE OUTPUT
o 1 ONE·SHOT OUTPUT
1 0 SQUARE·WAVE OUTPUT
1 1 DO NOT SPECIFY

- RETRIGGER ENABLE BIT (REB)

'----- EXTERNAL GATE ENABLE (EGE)

Figure 12.13 Continued

223

ure 12.17 shows the pin-out of the FlO and Table 12.4 describes the pin assign­
ment for each possible type of interface.

Pattern recognition logic is included for both sides of the FlO and is
capable of generating an interrupt when a specific data pattern is written to
or read from the FIFO buffer. The pattern can be specified for each bit as a 1
or a 0; individual bits can be masked off, if so desired.

Special message registers, also called mailbox registers, can be used to
pass information between CPUs if the FlO is used as a CPU-to-CPU interface.

TABLE 12.3 Z8038

Mode Ml

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 1

10 1
11 1

224

Counter/Timer Current Count Registers
Addresses: 010000 Counter/Timer l's MSB

010001 CounterlTimer l's LSB
010010 Counter/Timer 2's MSB
010011 Counter/Timer 2's LSB
010100 Counter/Timer 3' s MSB
010101 Counter/Timer 3's LSB

(Read Only)

I D,I D61 D51 D.I D31 D21 D, I Do I D,I D61 D51 D41 D31 D21 D, I Do I

MOST -----'
SIGNIFICANT

L....----lEAST
SIGNIFICANT
BYTE BYTE

Counter/Timer Time Constant Registers
Addresses: 010110 Counter/Timer l's MSB

010111 Counter/Timer l's LSB
a 11000 Counter/Timer 2' s MSB
011001 Counter/Timer 2's LSB
0110 10 Counter/Timer 3' s MSB
0110 11 Counter/Timer 3' s LSB

(Read/Write)

MOST -----'
SIGNIFICANT

BYTE

L....----lEAST
SIGNIFICANT
BYTE

Counter/Timer Registers

Figure 12.13 Continued

FlO OPERATING MODES

Mo Bl Bo Port 1 Port 2

0 0 0 Z-Bus low byte Z-Bus low byte
0 0 1 Z-Bus low byte Non-Z-Bus
0 1 0 Z-Bus low byte Three-wire handshake
0 1 1 Z-Bus low byte Two-wire handshake
1 0 0 Z-Bus high byte Z-Bus high byte
1 0 1 Z-Bus high byte Non-Z-Bus
1 1 0 Z-Bus high byte Three-wire handshake
1 1 1 Z-Bus high byte Two-wire handshake
0 0 0 Non-Z-Bus Z-Bus low byte
0 0 1 Non-Z-Bus Non-Z-Bus
0 1 0 Non-Z-Bus Three-wire handshake
0 1 1 Non-Z-Bus Two-wire handshake

110 STATUS

AD1S
AD14
AD13

AD12
ADll
AD10

AD9
ADS

AD7

AD6

~
ADS

« AD4 z
(!l
u; AD3
en

AD2 ::l
CD
N ADl

ADO

AS

RESET

OS

RIW

INT

INTACK

lEI

lEO

+SV

CPU
INTERFACE

DATA
BUS

PATTERN
MATCH
LOGIC

DATA
BUFFER

\ ---./----1 REGISTER

CSl

CSO

AD7

AD6

ADS

AD4

AD3

AD2

ADl

ADO

AS

OS

RIW

INT

INTACK

lEI

lEO

PA7

PA6

PAS

PA4

PA3

PA2

PAl

PAO

ZS036
CIO PB7

PB6

PBS

PB4

PB3

PB2

PBl

PBO

PC3

PC2

PCl

128 X 8
FIFO BUFFER

Figure 12.14 Typical Z-Bus to CIa
interface.

PATTERN
MATCH
LOGIC

CPU
INTERFACE
OR
110 PORT

DATA
BUS

PORT 1 SIDE ; PORT 2 SIDE

Figure 12.15 Z8038 FlO block diagram.

225

226 Z8000 Family Devices Chap. 12

CID X C
00-07 (TO cPU)

ci \ I
RD \ I

Non-Z-BUS Read Cycle Timing

CID ____ X'-____________ -'X ___ _
00-07 ------c('-__________ ~----

ci _----------------

Non-Z-BUS Write Cycle Timing

00-07 --------------« VECTOR)>----

INTAOK~ /

'-. ---------------
\ ___ --1

lEI / ___ ---J

INT / ----------------
Non-Z-BUS Interrupt Acknowledge Cycle

Figure 12.16 Nonmultiplexed bus interface timing.

These mailbox registers allow control information to be transferred between
the CPUs without using or affec'ting the FIFO buffer. The transmitting CPU
can interrupt the receiving CPU by loading a byte into the mailbox register.

The data transfer logic of the FlO has been specially designed to work
with DMA controllers for high-speed data transfers between the FIFO buffer

Z8a38 FlO 227

07
I
I

07 [AJ +5V - 0 6 I lID [AJ - Os I 19 lID
I

DATA - 0 4 I
0 4 - DATA [Q] 19

BUS - 03 PORT I PORT 0 3
BUS

[Q] ffiI - 02 1 I 2 O2 [f) ffiI - 0 1 SIDE: SIDE 0 1 [g] [f) - 00 I 00 - [ill [g]

CONTROLl ~
~ I ~

~} CONTROL

OJ [ill
@] I @]

I QJ OJ
@] I @]

00 QJ
@] Z8038 @]

FI,O 01 00

l~ [K]
02 01

[IJ [IJ
03 02

INTERRUPT { ~
@] @]

: : } INTERRUPT

04 03
[E] [E] Os 04
IT] IT]

06 Os
CD CD 07 06

CONFIGURATION { - M1 M1 07 - Me GNO Me

t t
+5V GNO

Control
Signal Z-BUS Z-BUS Interlocked 3-Wire

Pins Low Byte High Byte Non-Z-BUS HS Port* HS Port*

[K] REQIWT REQIWT REQ/WT RFD/DAV RFD/DAV

[i] DMASTB DMASTB DACK ACKIN DAV/DAC

@] DS DS RD FULL DAC/RFD

~ R/W R/W WR EMPTY EMPTY

~ CS CS CE CLEAR CLEAR

[!] AS AS c/i5 DATA DIR DATA DIR

@] INTACK Aa INTACK INa INa

~ IEO Al IEO OUTI OUTI

ITJ IEI A2 IEI OE OE

W INT A3 INT OUT3 OUT3

*2 side only.

Figure 12.17 Z8038 FlO pin assignments.

and the system's memory. A special control register, the Byte Count Com­
parison register, can be used to send a request to the DMA device when a
given number of bytes is in the FIFO buffer. For the input side of the FIFO
buffer, the request (REQ) signal to the DMA controller becomes active when
the number of bytes in the FIFO buffer is equal in value to the Byte Count
Comparison register and stays active until the buffer is full (Fig. 12.18). For

TABLE 12.4 Z8038 FlO PIN FUNCTIONS

Pin
Pin signals names

N
N
(;X)

Mo Mo

Ml Ml
+5 V dc +5 V dc

GND Gnd

ADo-AD7 Do-D7
(address/data)

REQ/WAIT A
(request/wait)

DMASTB (direct B
memory access
strobe)

DS (data strobe) C

R/W (read/write) D

CS (chip select) E

AS (address strobe) F

INTACK G
(interrupt acknowledge)

lEO (interrupt H
enable out)

lEI (interrupt I
enable in)

INT (interrupt) J

Pin numbers Mode

Pins Common to Both Sides

21
19
40

20

Z-Bus Low-Byte Mode

Port 1 Port 2

11-18 29-22

1 39

2 38

3 37

4 36

5 35

6 34

7 33

8 32

9 31

10 30

Signal description

M 1 and Mo program port 1 side CPU interface

Dc power source

Dc power ground

Multiplexed bidirectional address/data lines,
Z-Bus compatible

Output, active low, REQUEST (ready) line for
DMA transfer; WAIT line (open-drain) out­
put for synchronized CPU and FlO data
transfers

Input, active low; strobes DMA data to and
from the FIFO buffer

Input, active low; provides timing for data
transfer to or from FlO

Input: active high signals CPU read from FlO;
active low signals CPU write to FlO

Input, active low; enables FlO; latched on the
rising edge of AS

Input, active low; addresses, CS and INTACK
sampled while AS low

Input, active low; acknowledges an interrupt;
latched on the rising edge of AS

Output, active high; sends interrupt enable to
lower priority device lEI pin

Input, active high; receives interrupt enable
from higher-priority-device lEO signal

Output, open drain, active low; signals FlO in­
terrupt request to CPU

Z-Bus High-Byte Mode

ADo-AD7 Do-D7 11-18 29-22 Multiplexed bidirectional address/data lines,
(address/data) Z-Bus compatible

REQ/WAIT A 1 39 Output, active low, REQUEST (ready) line for
(request/wait) DMA transfer; WAIT line (open-drain) out-

put for synchronized CPU and FlO data
transfers

DMASTB (direct B 2 38 Input, active low; strobes DMA data to and
memory access from the FIFO buffer
strobe)

DS (data strobe) C 3 37 Input, active low; provides timing for transfer
of data to or from FlO

R/W (read/write) D 4 36 Input active high; signals CPU read from FlO;
active low signals CPU write to FlO

CS (chip select) E 5 35 Input, active low; enables FlO; latched on the
rising edge of AS

AS (address strobe) F 6 34 Input, active low; addresses CS and INTACK
are sampled while AS is low

Ao (address bit 0) G 7 33 Input, active high;. with A 1 , A 2 , and A3 , ad-
dresses FlO internal registers

Al (address bit 1) H 8 32 Input, active high; with Ao, A 2 , and A3, ad-
dresses FlO internal registers

A2 (address bit 2) 9 31 Input, active high; with Ao, A 1 , and A3, ad-
dresses FlO internal registers

A3 (address Bit 3) J 10 30 Input, active high; with Ao, A 1 , and A 2 , ad-
dresses FlO internal registers

Non-Z-Bus Mode

Do-D7 (data) Do-D7 11-18 29-22 Bidirectional data bus
REQ/WT (request/wait) A 1 39 Output, active low, REQUEST (ready) line for

DMA transfer; WAIT line (open-drain) out-
put for synchronized CPU and FlO data
transfer

DACK(DMA B 2 38 Input, active low; DMA acknowledge

II.)
acknowledge)

II.) RD (read) C 3 37 Input, active low; signals CPU read from FlO (.0

N
eN
o

TABLE 12.4 28038 FlO PIN FUNCTIONS Continued

Pin signals

WR (write)

CE (chip select)

c/n (control/data)

INTACK (interrupt
acknowledge)

lEO (interrupt
enable out)

lEI (interrupt
enable in)

INT (interrupt)

Do-D7 (data)

RFD/DA V (ready for
data/data available)

ACKIN (acknowledge
input)

DA V /DAC (data
available/data
accepted)

FULL

DAC/RFD (data
accepted/ready for
data)

Pin
names

D
E

F

G

H

J

Do-D7

A

B

B

C

C

Pin numbers Mode

4
5

6

7

8

9

10

Non-Z-Bus Mode Continued

36
35

34

33

32

31

30

Port 2-1/0 Port Mode

29-22

39

38

38

37

37

Two-wire HS a

Three-wire HS

Two-wire HS
Three-wire HS

Two-wire HS

Three-wire HS

Two-wire HS

Three-wire HS

Signal description

Input, active low; signals CPU write to FlO

Input, active low; used to select FlO

Input, active high; identifies control byte on
Do-D7; active low identifies data byte on
Do-D7

Input, active low; acknowledges an interrupt

Output, active high; sends interrupt enable to
lower priority device lEI pin

Input, active high; receives interrupt enable
from higher-priority-device lEO signal

Output, open drain, active low; signals FlO in­
terrupt to CPU

Bidirectional data bus

Output, RFD active high; signals peripherals
that FlO is ready to receive data; DAV ac­
tive low signals that FlO is ready to send
data to peripherals

Input, active low; signals FlO that output data
are received by peripherals or that input
data is valid

Input: DAV (active low) signals that data are
valid on bus; DAC (active high) signals that
output data are accepted by peripherals

Output, open drain, active high; signals that
FlO buffer is full

Direction controlled by internal programming;
both active high: DAC (an output) signals
that FlO has received data from peripheral;

N
W
~

EMPTY

CLEAR

DATA DIR
(data direction)

INo

OUT1

OE (output enable)

OUT3

aHS, handshake.

D

E

F

G

H

J

36

35

34

33

32

31

30

Two-wire HS
Three-wire HS

Two-wire HS
Three-wire HS

Two-wire HS
Three-wire HS

Two-wire HS
Three-wire HS

Two-wire HS
Three-wire HS

Two-wire HS
Three-wire HS

Two-wire HS
Three-wire HS

RFD (an input) signals that the listeners are
ready for data

Output, open drain, active high; signals that
FIFO buffer is empty

Programmable input or output, active low;
clears all data from FIFO buffer

Programmable input or output: active high sig­
nals data input to Port 2; low signals data
output from Port 2

Input line to Do of control register 3

Output line from Dl of control register 3

Input, active low; when low, enables bus
drivers; when high, floats bus drivers at high
impedance

Output line from D3 of control register 3

232

REO

ACTIVE ---t----!~"""T'"--..... ---CD

CD CD
INACTIVE:::~----+..;;;..-.... ---+ NUMBER OF BYTES IN FIFO

EMPTY FULL

NUMBER IN BYTE COUNT COMPARISON REGISTER

NOTES:
1. FIFO empty.
2. REQUEST enabled, FlO requests DMA transfer.
3. DMA transfers data into the FlO.
4. FIFO full, REQUEST inactive.
5. The FIFO empties from the opposite port until the number

of bytes in the FIFO buffer is the same as the number pro­
grammed in the Byte Count Comparison register.

Z8000 Family Devices Chap. 12

Figure 12.18 DMA-controlled
writes to a FlO.

the output side of the FlO, the REQ pin is inactive until the number of bytes
in the FIFO buffer equals the value in the Byte Count Comparison register.
REQ then goes active and stays active until the buffer is empty (Fig. 12.19).
A WAIT signal can be programmed to synchronize CPU-controlled block
transfers.

Special control signals can be used to clear the FIFO buffer or change
the direction of data flow in the buffer. The clear and data direction functions
are controlled by the port 1 side as a default, but control of these functions
can be passed to the port 2 side if desired. For CPU-to-CPU interfaces, if the
controlling CPU changes the direction of the buffer, the other CPU is notified
via an interrupt.

CD CD
ACTIVE -+----1-----....-04-

CD
INACTIVE ---=--f----.... ----+-__ 1r-----

EMPTY FULL
I

NUMBER IN BYTE COUNT COMPARISON REGISTER

NOTES:
1. FIFO empty.
2. CPUlDMA fills FIFO buffer from the opposite port.
3. Number of bytes in FIFO buffer is the same as the number

of bytes programmed in the Byte Count Comparison register.
4. REQUEST goes active.
5. DMA transfers data out of FIFO until it is empty.

Figure 12.19 DMA-controlled
reads from an FlO.

Z8038 FlO 233

Each side of the FlO has seven sources of interrupt. They are, in pri­
ority order, the mailbox register, change in data direction, pattern match,
status match (number of bytes in the FIFO buffer equals the value in the
Byte Count Comparison register), overflow/underflow error, buffer full, and
buffer empty. Each interrupt source has its own IE, IP, and IUS bits for con­
trolling that interrupt. Each side of the FlO has one interrupt vector; that
vector can include encoded status information identifying the interrupt
source.

Each side of the FlO has 16 addressable read/write registers. One of
these, Control Register 2, is not used on the port 2 side. The RJA bit in
Control Register 0 determines how the registers are addressed. When RJA = 0,
address bus bits ADI-AD4 are used for register addressing; when RJA = 1,
address bus bits ADO-AD3 are used. Figure 12.20 shows all the FlO registers.

Control Register 0
Address: 0000
(ReadlWrite)

10 '; 0 6 0 5 0.: 0 3 0.: 0, Do I

I ~L1=RESET L 1 = RT. JUST. ADDRESS (RJA)

(B,) (Bo)' }

g ~ ~ ~'g~Sz.~~~ CPU PROGRAMS
1 0 = 3·WIRE HS 110 PORT 2 MODE
1 1 = INTERLOCKED HS

1 = VECTOR INCLUDES STATUS (VIS)

L--_____ 1 = NO VECTOR ON INTERRUPT (NV)

L--______ 1 = DISABLE LOWER DAISY CHAIN (DLC)

L...-_______ 1 = INTERRUPTS ENABLED (MIE)

, READ ONLY FROM
PORT 2 SIDE

Control Register 1
Address: 000 1
(Read/Write)

10 , ; 0 6 ! 0 5 : 0, : 0 3 : 0,\ 0, : Do I

~
I ~; ~ ;~~:::'WA" , ... '"
L 1 = START DMA ON BYTE COUNT

1 = STOP DMA ON PATTERN MATCH

1 = MESSAGE MAILBOX REGISTER UNDER SERVICE'

-- 1 = MESSAGE MAILBOX REGISTER FULL'

'-------- 1 = FREEZE STATUS REGISTER COUNT

L...-_______ NOT USED (MUST BE PROGRAMMED 0)

'READ·ONLY BITS

Control Register 2*
Address: 100 1
(Read/Write)

I 0, : 06 t 0 5 t 0, t 0 3 t 0, t 0, t Do I
I L 1 = PORT 2 SIDE ENABLED

L 1 = PORT 2 SIDE ENABLE HANDSHAKE

L...-____ BITS 2-7 NOT USED

'THIS REGISTER READS ALL
O'S FROM PORT 2 SIDE

Control Register 3
Address: 1010
(Read/Write)

I 0,1 06 1 0,) 0, t 03 t 0, I 0,) Do I

MUST BE PROGRAMMED 0

lli§~
' L PORT 2 SIDE-INPUT LINE' (PIN 33)"

L PORT 2 SIDE-OUTPUT LINE (PIN 32)"

NOT USED (MUST BE PROGRAMMED 0)

PORT 2 SIDE-OUTPUT LINE (PIN 30)"

DATA DIRECTION BIT
1 = INPUT TO CPU
0= OUTPUT FROM CPU

0= PORT 1 SIDE CONTROLS DATA DIRECTION
1 = PORT 2 SIDE CONTROLS

'--------- 0 = CLEAR FIFO BUFFER

L...-_______ 0 = PORT 1 SIDE CONTROLS CLEAR

1 = PORT 2 SIDE CONTROLS

·READ·ONLY BITS
"ONLY WHEN PORT 2 IS AN 110 PORT

Control Registers

Figure 12.20 Z8038 FlO registers.

234 Z8000 Family Devices

Interrupt Status Register 0
Address: 00 1 a
(Read/Write)

I D, i D6 ! Ds : D, : DJ i D,! D, i Do I

III c= NOT USED (MUST BE PROGRAMMED 0)

I MESSAGE INTERRUPT PENDING (lP)

MESSAGE INTERRUPT ENABLE (IE)
I I

MESSAGE INTERRUPT UNDER SERVICE (IUS)

II I IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

o 0

o 0

o 1

o 1

1 0

1 0

1 1

1 1

0

1

0

1

0

1

0

1

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

Interrupt Status Register 1
Address: 0011
(Read/Write)

I D, D6 Ds i D.

DATA DIRECTION CHANGE INTERRUPT iJ I
UNDER SERVICE (IUS) I

DATA DIRECTION CHANGE INTERRUPT I

ENABLE (IE) I I
I I

DATA DIRECTION CHANGE INTERRUPT
PENDING (IP)

I ~L 1 = PATTERN MATCH FLAG" r--= PATTERN MATCH INTERRUPT PENDIN'G (lP)

PATTERN MATCH INTERRUPT ENABLED (IE)
I I

PATTERN MATCH INTERRUPT
I I I UNDER SERVICE (IUS)

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND: III

1...-____ NOT USED

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

o 0 0

o 0 1
III
o 0 0

o 1 0 o 0 1
o 1 1

0 1 0
1 0 0 o 1 1
1 0 1

1 0 0
1 1 0

1 0 1
1 1 1

1 1 0

1 1 1

"READ·ONLY BITS

(MUST BE PROGRAMMED 0)

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

Figure 12.20 Continued

FIFO BUFFER EXPANSION

Chap. 12

Both the depth and width of FIFO buffers in a system can be expanded easily
with the Z8038 FlO and an auxiliary part, the Z8060 FIFO. The Z8060 FIFO
is a 128 X 8 FIFO buffer with a two-wire interlocked handshake interface on
both sides of the buffer (Fig. 12.21).

FIFO Buffer Expansion

Interrupt Status Register 2
Address: 0100
(Read/Write)

1 0 , : 0 6 • Os I 0, i 0 3 1 02 i 0, : Do I

'HE CO""' COMP.,,,,,,""",, J I I UNDER SERVICE (IUS) I
I

BYTE COUNT COMPARE INTERRUPT
ENABLE (IE) I I

BYTE COUNT COMPARE INTERRUPT I I
PENDING (IP)

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

III
o 0 0

o 0 1

o 1 0

o 1 1

1 0 0

1 0 1

1 1 0

1 1 1

~~
L UNDERFLOW ERROR'

L ERROR INTERRUPT PENDING (10)

I ERROR INTERRUPT ENABLED (IE)

I I _ ERROR INTERRUPT UNDER SERVICE (IUS)
, I I

OVERFLOW ERROR'

I I I
o 0 0

o 0 1

0 1 0

o 1 1

1 0 0

1 0 1

1 1 0

1 1 1

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

'READ·ONLY BITS

Interrupt Status Register 3
Address: 0101
(ReadlWrite)

I 0, : 0 6 . Os : 0, i 0 3 : 0, : 0, ; Do I

'"'''"''''"'' """ SER"CE ""51 ~ I j
FULL INTERRIJPT ENABLE (IE) ~

FULL INTERRUPT PENDING (IP) I I

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

111
o 0 0

o 0 1

o 1 0

o 1 1

1 0 0

1 0 1

1 1 0

1 1 1

III ! L :~~~~::;:~" PE"D'"G "P,
EMPTY INTERRUPT ENABLE (IE)

I I EMPTY INTERRUPT UNDER SERVICE (IUS)
I I I

BUFFER FULl'

I I I
o 0 0

o 0 1

0 1 0

o 1 1

1 0 0

1 0 1

1 1 0

1 1 1

IUS, IE, AND IP ARE WRITTEN USING
THE FOLLOWING COMMAND:

NULL CODE

CLEAR IP & IUS

SET IUS

CLEAR IUS

SET IP

CLEAR IP

SET IE

CLEAR IE

'READ·ONLY BITS

Interrupt Status Registers

Figure 12.20 Continued

235

The buffer depth is expanded by cascading Z8038 FIOs and Z8060 FIFOs.
Communication between these devices is via the two-wire interlocked hand­
shake. For example, Fig. 12.22 illustrates a 512-byte CPU-to-CPU FIFO buf­
fer interface consisting of two Z8038's and two Z8060's.

Byte Count Register
Address: 0111
(Read Only)

I 07 1 061 05 1 0,1 OJ I 021 0, I do I
I I I I I I I I

REFLECTS NUMBER OF BYTES IN BUFFER

Pattern Match Register
Address: 1101
(Read/Write)

I 07 1 061 05 1 0, i OJ I 021 0, I do I
I I I I I I I I

STORES BYTE COMPARED WITH
BYTE I" DATA BUFFER REGISTER

Data Buffer Register
Address: 1111
(Read/Write)

I 07 1 061 05 1 0,1 OJ i D21 0, IDol
I I I I I I I I

CONTAINS THE BYTE TRANSFERRED
TO OR FROM FIFO BUFFER RAM

Message Out Register
Address: 1011
(Read/Write)

I 07 1 06 1 05 1 04 1 D31 D21 D, 1 Do I
I I I I I I I I

STORES MESSAGE SENT TO MESSAGE
IN REGISTER ON OPPOSITE PORT OF FlO

236

Interrupt Vector Register
Address: 0110
(Read/Write)

I~I~I~I~I~I~I~I~I

I I I I -L I I I
NO INTERRUPTS PENDING

BUFFER EMPTY

BUFFER FULL

OVER/UNDERFLOW ERROR
VECTOR STATUS

BYTE COUNT MATCH

PATTERN MATCH

DATA DIRECTION CHANGE

MAILBOX MESSAGE

o 0

o 0

o 1

o 1

1 0

1 0

1 1

1 1

0

1

0

1

0

1

0

1

Pattern Mask Register
Address: 1110
(Read/Write)

I 071 06[05 1 0,1 DJ I D21 0, IDol
I I I I I I I I

IF SET, BITS 0·7 MASK BITS 0·7
IN PATTERN MATCH REGISTER.

MATCH OCCURS WHEN ALL
NON·MASKED BITS AGREE.

Byte Count Comparison Register
Address: 1000
(Read/Write)

I 07 1 061 05 ! 0,1 OJ I 021 0, 1 Do I
I I I I I I I I

CONTAINS VALUE COMPARED TO BYTE COUNT
REGISTER TO ISSUE INTERRUPTS ON MATCH

(BIT 7 ALWAYS 0.)

Message In Register
Address: 1100

(Read Only)

I~I~I~I~I~I~I~I~I
I I I I I I I I

STORES MESSAGE RECEIVED FROM MESSAGE
OUT REGISTER ON OPPOSITE PORT OF CPU

Figure 12.20 Continued

Z8030 see

DATA
BUS

I
I
I

: B 05

I 0 4

I 03

Z:I~~O O2

-0, I 0,
- 00 I 00

DATA
BUS

ACKIN : ACKIN }

RFOID7IV I R~O~DAV - CONTROL
OUTPiJT I OUTPUT
E~~~ .1. !ti..A!!,.LE

COMMON { - :~~~N
CONTROL EMPTY

- CLEAR

t
+5V GNO

RFD/DAVA

ACKIN A

FULL

EMPTY

OEA

D7A

DSA

DSA

D4A

D3A

D2A

D'A

DOA

GND

Figure 12.21 Z8060 FIFO pin assignments.

237

+5 V

RFD/DAVB

ACKINB

CLEAR

DIR AlB

QEB

D7B

DSB

DSB

D4B

D3B

D2B

D'B

DOB

Buffer width is expanded using multiple Z8038 FIOs, as in Fig. 12.23.
Two Z8038's are connected to a 16-bit microprocessor bus to implement a
16-bit wide FIFO buffer. If a CPU-to-peripheral word buffer is desired, some
external logic will be necessary to synchronize the handshake signals from both
Z8038's.

Z8030 see

The Z8030 Serial Communications Controller (SCC) is a dual-channel pro­
grammable data communications device that supports a wide variety of serial
communication protocols. The SCC controls two independent full-duplex
serial channels (called channel A and channel B) with data transfer rates up

TO Z·BUS
OR GENERAL

MICROPROCESSOR

~
'-------' INTERRUPT

Figure 12.22 512-byte buffer using Z8038's and Z8060's.

TO Z·BUS
OR GENERAL
MICROPROCESSOR

238 Z8000 Family Devices

fJ J
Ml MO

AD8-15
8038

AD8-15

FlO

l (BO=O) I (Bl=O)
A

ADl-4 ADl-4
y ~

C"S CS

FROM FROM

L ~~L'::CT- r--~~L'::CT
LOGIC LOGIC

CS CS

ADO-1S ADO-1S
8038
FlO

ADO-7 (BO=O) ADO-7
(B10)

Ml MO

• •
Figure 12.23 I6-bit-wide buffer between two Z-Bus processors using
Z8038's.

Chap. 12

to 1 megabit/second. Each channel has its own crystal oscillator, baud rate
generator, and digital phase-locked-loop circuitry for clock generation and re­
covery. Asynchronous, byte-oriented synchronous, and bit-oriented synchro­
nous protocols are supported. Facilities are included for data integrity check­
ing and modem controls. Thus the SCC is suitable for virtually any serial
data communications application. The SCC is a 40-pin device that requires a
single +5-V power supply and draws a maximum of 250 rnA (Fig. 12.24 and
12.25).

When used for asynchronous communications, the SCC can be program­
med for anywhere from 5 to 8 data bits per character (plus, optionally, a par­
ity bit). The transmitter can supply one, one-and-a-half, or two stop bits per
character and can provide a break output at any time. Automatic odd- or even­
parity generation and checking can be specified. Framing and overrun errors
are automatically detected. The transmit and receive clocks need not be
symmetric, and data rates of 1, 1~ , l2' or 6~ of the clock rate are allowed.

For synchronous communications, both byte-oriented and bit-oriented
protocols are supported. Cyclic Redundancy Codes (CRC) are used for error
detection to assure data integrity. Both the CRC-16 (X

I6 + XIS + x 2 + 1)
and CRC-CCITT (X

16 + XI2 + X
S + 1) error-checking polynomials are sup­

ported. The CRC generator (for transmit operations) and CRC checker (for
receive operations) may be preset to alII's or all O's.

Z8030 see

ADDRESSI
DATA BUS

- AD6 - ADs - AD4 - AD3 - AD2
_ ADl

_ ADo

TIM~~~ /- ~
AND RESET l - DS

f- R/W

CONTROL 1- CSl

_CSo

l iNT
_ INTACK

INTERRUPTI _ lEI

l lEO

Z8030
Z·SCC

TxDA } SERIAL
RxDA _ DATA

TRxCA -} CHANNEL
RTxCA _ CLOCKS
SYNCA _

W/REQA

DTR/REQA

RTSA
CTSA _

DCDA _

CHANNEL
CONTROLS
FOR MODEM,
DMA,OR
OTHER

TxDB } SERIAL
RxDB _ DATA

TRxCB -l CHANNEL
RTxCB _I CLOCKS

SYNCB _

W/REQB

DTR/REQB

RTSB
CTSB _

DC DB _

CHANNEL
CONTROLS
FOR MODEM,
DMA,OR
OTHER

t t
+5 V GND PCLK

ADl

AD3

ADs

AD?

CH·A iNT
lEO

lEI

INTACK

+5V

W/REQA

SYNCA

RTxCA

RxDA

TRxCA

CH·B TxDA

DTR/REQA

RTSA

CTSA

DCDA

PCLK

Figure 12.24 Z8030 see pin assignments.

239

ADo

AD2

AD4

AD6

DS

AS

R/W

CSo

CSl

GND

W/REQB

SYNCB

RTxCB

RxDB

TRxCB

TxDB

DTR/REQB

RTSB

CTSB

DCDB

Byte-oriented protocols, such as Monosync and Bisync, can have charac­
ter synchronization with a 6-bit, 8-bit, 12-bit, or 16-bit synchronization pat­
tern or an external synchronization signal. Leading synchronization characters
are automatically deleted from the data stream without interrupting the CPU.

Bit-oriented protocols, such as SDLC and HDLC, are supported by fea­
tures including automatic flag sending, automatic zero insertion and deletion,
and abort sequence generation and checking, At the end of a message, the
SCC automatically transmits the CRC code and trailing flags when the trans­
mitter underruns. Address field recognition also is provided; the receiver can
be programmed to respond for frames addresses by a byte, or 4 bits within a
byte, or a user-selected address, or a global broadcast address. The number of
address bytes can be extended under software control. At the end of a trans­
mission, the status of the received frame is available in a status register, SDLC
loop mode operations also are supported by the SCC; the SCC can perform
the functions of a controller or secondary station in an SDLC loop.

The SCC has two special modes useful for system debugging called Auto
Echo and Local Loopback. In Auto Echo mode, received data are automati­
cally routed to the transmit data line; thus the SCC continuously transmits
what it receives. In Local Loopback mode, transmitted data are automatically
routed to the receive data line; thus the SCC reads the data it is transmitting.

Data may be encoded in any of four ways using the SCC: FMO (biphase
space), FMl (biphase mark), NRZ, or NRZI encoding (see Fig. 12.26). For

N
01::0
o

ADDRESSI ~-"~j
DATA~

CONTROL

CPU
BUS 1/0

INTERRUPT
CONTROL

LINES

t t t
+5 V GND PCLK

INTERNAL
CONTROL

LOGIC

INTERRUPT
CONTROL

LOGIC

INTERNAL BUS

BAUD RATE
GENERATOR

A

CHANNEL A
REGISTERS

CHANNEL B
REGISTERS

BAUD RATE
GENERATOR

B

Figure 12.25 Z8030 see block diagram.

CHANNEL A

DISCRETE
CONTROL
& STATUS

A

DISCRETE
CONTROL
& STATUS

B

CHANNEL B

-I SERIAL DATA

.:=: I CHANNEL CLOCKS

-SYNC
wW;-;;-A-;:IT"=/R=E~Q-UE-S-T

::===} MODEM,DMA,OR
OTHER CONTROLS

-} MODEM, DMA, OR
OTHER CONTROLS

Z8030 see 241

DATA

NRZ \ / \
NRZI \ / \
FM1

FM

MANCHESTER

Figure 12.26 Data encoding in the sec.

FMO and FMl encoding, a transition occurs at the beginning of every bit cell.
In FMO encoding, a 0 is represented by another transition at the center of
the cell and a 1 is represented by no additional transfers in the cell. FMl en­
coding is the inverse; a 1 is represented by another transition at the center of
the cell and a 0 is represented by no further transitions in the cell. For NRZ
encoding, a 1 is represented by a high level and a 0 by a low level. In NRZI en­
coding, a 1 is represented by no change in level and a 0 by a change in level.
In addition, the SCC can decode Manchester (biphase level) encoded data.
Manchester data encoding always produces a transition in the center of the
cell. If the transition is from 0 to 1, the bit is a 0; if the transition is from]
to 0, the bit is a 1.

Each channel has its own baud rate generator consisting of a 16-bit pro­
grammable down counter. The output of the baud rate generator can be used
as a transmit clock, receive clock, or the input to the phase-Iocked-Ioop circuit.
The digital phase-Iocked-Ioop circuitry can be used to recover clock informa­
tion from NRZI, FMO, or FMl encoded data. This clock can then be used as
a transmit or receive clock.

Each SCC channel has three sources of interrupts: receive interrupts,
transmit interrupts, and external/status condition interrupts (in that priority
order). Channel A interrupts have priority over channel B interrupts. Each
interrupt has its own IP, IUS, and IE control bits. One interrupt vector is pro­
vided; that vector can be encoded with status information to identify the
interrupt source. A receiver can interrupt the CPU in three ways: interrupt
on the first received character or special receive conditions, interrupt on all
received characters or special receive conditions, or interrupt only on special
receive conditions. The special receive conditions include overrun, parity,
and framing errors and the end-of-frame condition (SDLC mode). The trans-

242 Z8000 Family Devices Chap. 12

mit interrupt is activated when the transmit buffer becomes empty. External/
status interrupts are caused by active levels on the CTS, DCD, or SYNC pins,
transmit underruns, a break condition (asynchronous modes), an abort se­
quence (SDLC mode), an end-of-poll sequence (SDLC loop mode), or a zero
count in the baud rate generator. Support is provided for DMA or CPU-con­
trolled high-speed data transfers.

Receive data are routed through a 3-byte FIFO buffer, providing ad­
ditional time for the CPU to service a receive interrupt. For each character
received, status information indicating if an error was detected while receiv­
ing that character is available; this status information is stored in its own 3-
byte FIFO. The transmit buffer is 20 bits long.

The SCC contains 14 write registers and nine read registers per channel.
Two other write registers are shared by both channels. The register configu­
rations are given in Fig. 12.27.

Z8065 BEP

The Z8065 Burst Error Processor (BEP) provides error correction and de­
tection for applications involving high-speed data transfers, such as high-per­
formance disk systems. The BEP can detect errors in data streams up to 585K
bits long and at data rates up to 20 megabits/second. The pin assignments for
the BEP are given in Fig. 12.28.

The BEP uses anyone of four different cyclic redundancy codes, called
Fire codes, to detect and locate errors (Table 12.5). Three different operations
can be performed: writing data, reading data, and correcting data. During
writes, the BEP computes a check word by dividing the data stream by the
selected polynomial; the remainder is a check code that is appended to the
data stream. When reading, the stream of data and check bytes is divided by
the polynomial to get a syndrome. If the syndrome is not 0, an error is de­
tected. Two read modes are provided, normal and high speed; the read mode
determines the correction methodology if an error is found. For all but the
48-bit polynomial, an error in the data stream can be located using one of two
methods, the "full-period clock around" method (normal reads) or the "Chi­
nese remainder theorem" method (high-speed reads). The "reciprocal poly-

TABLE 12.5 POLYNOMIALS SUPPORTED BY THE Z8065 BEP

Number of Maximum data Correctable burst
Polynomial check bits length (bits) error length

56-bit 56 585,442 11
32-bit 32 42,987 11
35-bit 35 94,185 12
48-bit 48 13 X (235 - 1) 7

NULL CODE

NULL CODE

RESET EXT/STATU
SEND ABORT S INTERRUPTS

Addre .. es: 10000 Part A
00000 Part B

ENABLE,INT ON NEXT
RESET Tx INT PENDING

RX
CHARACTER

ERROR RESET

RESET HIGHEST IUS

NULL CODE

RESET Rx CRC
RESET Tx CRC CHECKER

s er 3 Write Regi t

107 10.1 0 5 10 I I i r r~ .. , ... "M •• _ ~:: ;:~:
SYNC CHARACTER
ADDRESS SEARCH LOAD INHIBIT

Rx CRC ENABLE MODE (SOL C)

ENTER HUNT MODE

AUTO ENABLES

Rx 5 BITS/CHARACTER

Rx 7 BITS/CHARACTER

Rx 6 BITS/CHARACTER

Rx 8 BITS/CHARACTER

Addresses: 10100 Part IJ
00100 Part B

RESET T U GENERATOR
x NDERRU

• B CHANNEL N/EOM LATCH

ONLY

W· rite Register 1
Addresses: ~ 0001 Part A

0001 Part B I~I~I~I~I~I~I~I~I

I L!:: '" """,,,
Tx INT ENABLE

PARITY IS SPECIAL

Rx INT DISABLE CONDITION

Rx INT ON FIRST
OINT ON AL CHARACTER OR SP

Rx INT ON ~ Rx CHARACTERS OR SPEECIAL CONDITION
PECIAL CONDITION ONLy

CIAL
CONDITION

WAIT/DMA REQUEST ON

8 BIT SYNC CHARA
16 BIT SYN CTER

o SDLC M C CHARACTER
ODE(0111

EXTERNAL 1110 FLAG)
SYNC MODE

WAIT/DMA REQUEST RECEIVE/TRANSMIT

WAIT/DMA RE FUNCTION
QUEST ENABLE

Addre .. es: ~0010 Part A
0010 P.rl B

Write Register 5

10, I 0,1
0
, I j' Iii I' I 0Q; ::::::~~ .. :::::~::

Tx ENABLE

SEND BREAK

Tx 5 BITS (OR LES
Tx 7 BITS/CH S)/CHARACTER

ARACTER

INTERRUPT VECTOR
Tx 6 BITS/CHARACTER

Tx 8 BITS/CHARACTER

Write Register 6

I I ~::t('IO'IO'IO'IO'1

"'~ ". ~~l~ !i~~ !~~ !;=~ !::1: :::1' I, I I ".: :g:- ~~. ;:1: ""e: :::1' :::1: '''0, • AD.. ". "".e, ::'0,
ADR4 x 3 ADR2 A~R 1

NCo

x .1 ADRo

Figure 12.27 • Z8030 see . regIsters.

DTR

Addresses: 10110 Part A
00111 Part B

243

244

Write Register 7

10 ,1 0,1 Os ; o. i 0, I 0,1 0, I Do I
Addresses: 10111 Part A

00111 Part B

IF?~~~
SYNC,
SYNCs
SYNC,s
SYNC"

o

SYNC.
SYNC.
SYNC,.
SYNC,O

1

SYNCs
SYNC,
SYNC"
SYNC.

1

SYNC.
SYNC,
SYNC"
SYNC.

1

SYNC,
SYNC,
SYNC"
SYNC,

1

Write Register 9

I 0, i 0, : Os ' o. : D, : 0, D,: Do I
Addresse/i: 11001 Part A

01001 Po" B

~ ~L """'''"' CO,

o 0 NO RESET

o 1 CHANNEL RESET B

1 0 CHANNEL RESET A

1 1 FORCE HARDWARE RESET

Write Register 10

I 0, : 0, ! Os : 0, : 0, : 0, : 0, ! Do I
Addresses: 11010 Part A

01010 Part B

~
I ~ 6 BIT/8 Bll SYNC L LOOP MODE

ABORT~F=All ON UNDERRUN

MARK/FLAll IDLE

GO ACTIVE ON POLL

o 0 NRZ

o 1 NRZI

1 0 FMl (TRANSITION = 1)

1 1 FMO (TRANSITION = 0)

'---------- CRC PRESET I/O

Write Register 11

I 0] 0 6 0.., 0 4 0] O2 0, Do I
Addresses: 11011 Part A

01011 Pa,' B

10 0 TRxC OUT = XTAL OUTPUT

o 1 TRxC OUT = TRANSMIT CLOCK

1 0 TRxC OUT = BR GENERATOR OUTPUT

1 1 TRxC OUT = OPLL OUTPUT

TRxC 011

o 0 TRANSMIT CLOCK = RTxC PIN

o 1 TRANSMIT CLOCK = TRxC PIN

1 0 TRANSMIT CLOCK = BR GENERATOR OUTPUT

1 1 TRANSMIT CLOCK = DPLL OUTPUT

o 0 RECEIVE CLOCK = Fffxc PIN

o 1 RECEIVE CLOCK = TAxc PIN

1 0 RECEIVE CLOCK = BR GENERATOR OUTPUT

1 1 RECEIVE CLOCK = DPLL OUTPUT

'---------- RTxC XTALINO XTAL

SYNC,
SYNCo
SYNClO
SYNC.

1

SYNC,
x

SYNC.
SYNC,

1

SYNCo
x

SYNC.
SYNC.

o

MONOSYNC, 8 BITS
MONOSYNC, 6 BITS
BISYNC, 16 BITS
BISYNC, 12 BITS
SDLC

Write Register 12

I 0,1 D, ! Os I D,I D, I 0, I 0, I Do I
Addresses: 11100 Part A

01100 Pa,' B

~!i: LOWER BYTE OF
TIME CONSTANT

'--------- TC,

Write Register 13
Addresses: 11101 Part A

01101 Part B

UPPER BYTE OF
TIME CONSTANT

L.-_______ TC,.

Write Register 14

10,1 0.1 Os I 0.1 OJ I 02 1 0, I Do I
Addresses: 11110 Part A

01110 Part B

~~
L BR GENERATOR ENABLE

L BR GENERATOR SOURCE

DTA/REQUEST FUNCTION

AUTO ECHO

LOCAL LOOPBACK

o 0 0 NULL COMMAND

o 0 1 ENTER SEARCH MODE

o 1 0 RESET MISSING CLOCK

o 1 1 DISABLE DPLL

1 0 0 SET SOURCE = BR GENERATOR

1 0 1 SET SOURCE = RTxC

1 1 0 SeT FM MODE

1 1 1 SET NRZI MODE

Write Register 15

I~I~I~I~I~I~I~I~I
Addresses: 11111 Part A

011'1 Part B

~II ~ :'"000"''''
~DCDIE

SYNC/HUNT IE

CTS IE

Tx UNDERRUN/EOM IE

'--------- BREAK/ABORT IE

NOTE: WRITE/READ REGISTER 8 IS THE DATA REGISTER.

Figure 12.27 Continued

Z8065 BEP

Read Register 0

I D,! 0, i D,! 0.1 03 1 0,1 0, ! Do I
Addresses: 10000 Part A

00000 Part B

~~
I ~ Rx CHARACTER AVAILABLE L ZERO COUNT

Tx BUFFER EMPTY

DCD

SYNC/HUNT

CTS

Tx UNDERRUN/EOM

'--------- BREAK/ABORT

Read Register 1

I 0, . 0, ; 05 : 0, i 03 : 0, : 0, : Do I
Addresses: 10001 Part A

00001 Part B

~~llli
L ALL SENT

RESIDUE CODE 2

RESIDUE CODE 1

RESIDUE CODE 0

PARITY ERROR

Rx OVERRUN ERROR

CRC/FRAMING ERROR

'-------- END OF FRAME (SDLC)

Read Register 2

I D,! D,! 0,1 D.! 0 3 1 0,1 0, I Do I

~::
'-------- V,

'MODIFIED IN B CHANNEL

Read Register 3

I~!~I~I~!~!~!~I~I

Addresses! 10010 Part A
00010 ParI B

INTERRUPT VECTOR'

Addresses: 10011 Part A
00011 ParI B

~~~
~ CHANNELBEXT/STATIP' L CHANNEL B Tx IP' 

CHANNEL B Rx IP' 

CHANNEL A EXT/STAT IP' 

CHANNEL A Tx IP' 

CHANNEL A Rx IP' 

o 
o 

'ALWAYS 0 IN B CHANNEL 

Read Register 10 

I D,! D,! D,! 0, ! D3 ! 0,1 0, ! Do I 
Addresses: 11010 Part A 

01010 Part B 

~ !~~~~::::""" 
'--------- ONE CLOCK MISSING 

Read Register 12 

I 0, ! 0,1 0, ) 0.1 03 : 0,1 0, ; Do I 

~1!: 
'--------- TC, 

Read Register 13 

Addresses: 11100 Part A 
01100 ParI B 

LOWER BYTE OF 
TIME CONSTANT 

Addresses: 11101 Part A 
01101 Part B 

UPPER BYTE OF 
TIME CONSTANT 

'-------- TC,s 

Read Register 15 

I~!~I~I~I~!~!~!~I 
Addresses: 11111 Part A 

01111 ParI B 

~~~:"o""m" CDCDIE 

SYNC/HUNT IE

CTS IE

Tx UNDERRUN/EOM IE

'-------- BREAK/ABORT IE

NOTE: WRITE/READ REGISTER 8 IS THE DATA REGISTER.

Figure 12.27 Continued

245

nomial" error-correction method is used with the 48-bit Fire code. These
correction algorithms extract the error pattern in the data stream for external
correction.

The major sections of the BEP are illustrated in Fig. 12.29. Data are input
to the BEP one byte at a time and divided by the appropriate polynomial in
the Polynomial Divide Matrix. The Register Array contains 56 flip-flops used

DATA 1 INPUT

POL YNOMIAL { ZB065 SELECT
BEP

FUNCTION {
SELECT

READ ERROR
PATTERN

Po

POLY NO ... ' {
SHIFT CONTROL

+5 V GND CP

RESET(MR)

CLOCK (CP)

FUNCTION
SELECT (C2-CO)

READ ERROR
PATTERN (REP)

POLYNOMIAL SHIFT
CONTROL (P3-PO)

246

POLYNOMIAL
SELECT (5,-50)

DATA IN
(0,-00)

I

[

I

I

....
3

-y

j..
4

-y

A
2

-y

ao

a,

a2

a3 I DATA OUT-a, CHECK BITS

as

a6

a,

LPo

LP,
} 'OCATED ERRO'

LP2 PATTERN

LP3

ER ERROR

AE ALIGNMENT EXCEPTION

EP ERROR PATTERN

PM2

} PATTERN MATCH PM3

PM,

MR

Figure 12.28 Z8065 BEP pin assignments.

+5V

~

l l
t 1

CONTROL
LOGIC

11
B

-\
Y

STATUS LOGIC

ZERO DETECTION

ALIGNMENT MONITOR

ERROR PATTERN DETECTOR

PATTERN MATCH MONITORS

1- - - - -lI- ---- "I

I I

I ~
REGISTER I ARRAY

I -y

I I
I n I
I I
I I
I ~ I

I Ir POLYNOMIAL I DIVIDE MATRIX

I
I'" I

SELECTABLE POLYNOMIAL I
I DIVIDERS I
L ___________ -.J

Figure 12.29 Z8065 BEP block diagram.

3

B

4

....

y

~ -y

....
)

-y

+5V

a,

a3

a,

as

a6

a,

REP

Po

P,

SO

5,

Co

C,

P,

P3

C,

Do

0,

02

ERROR (ER)

ALIGNMENT EXCEPTION (A E)

ERROR PATTERN (EP)

PATTERN MATCH (PM,-PM2)

DATA OUT
(a,-ao)

LOCATED ERROR
PATTERN (LP3-LPo)

Z80680CP 247

for check bit computation and error pattern extraction. The Control Logic
contains the timing, gating, and reset circuitry for the device.

Z8068 DCP

The Z8068 Data Ciphering Processor (DCP) is a data encryption/decryption
device that conforms to the National Bureau of Standards Data Encryption
Standard (Federal Information Processing Standards Publication 46). Data
rates up to 1 megabyte/second can be obtained. The pin assignments for this
40-pin device are shown in Fig. 12.30.

The DCP provides three ciphering options: Electronic Code Book, Chain
Block Cipher, and Cipher Feedback. Electronic Code Book is a relatively
straightforward cipher used for disk systems and similar applications. Chain
Block Cipher encryption involves a feedback step wherein the ciphering of a
data block is dependent on the previous data block and is commonly used in
high-speed telecommunications applications. Cipher Feedback encryption
involves both a feedback path and a pseudo-random binary stream that is ex­
clusive-ORed to the text to be encrypted; it is used in low-speed byte-oriented
applications.

Three separate 8-bit ports can be used for the cypher key, clear data, and
encrypted data (Fig. 12.31). The DCP can be used as an encrypting or decrypt-

{

_MCS

AS
MASTER PORT MDS

CONTROL
MR/YI

MFlG

AUXILIARY {
CONTROL

AUXILIARY
PORT

- Z8068 SPo
ASTB DCP .
AFlG SPI

AUXo

AUXI

AUX2

AUX3

AUX4

AUX5

AU X6 C/K

AUX7 PAR

+5 V GND ClK

MASTER
PORT
(ADDRESSI
DATA)

SLAVE
PORT
(DATA)

CONTROL/KEY

PARITY

+5V

AUXo 6

AUX1

Figure 12.30 Z8068 DCP pin assignments.

GND

248 Z8000 Family Devices Chap. 12

MPo-M P7
MASTER ,,8 ---+a- PORT "

~ 1 1 1 t
,,8

t
MCS •

AS MASTER MODE STATUS
MICRO· PORT AND IVE IVD CLK

MDS CONTROL f- - COMMAND r---- MUX f- REG. REG. PROGRAMMED

LOGIC REGISTERS MACHINE
MPLG

""-~ --
MR/W + ~

SPa.LSP7
SLAVE J- INPUT

8 I PORT REGISTER

j ~
SCS

SLAVE
SDS PORT ALGORITHM

SFLG
CONTROL PROCESSOR

LOGIC

A
I I ~

UXO-~UX7
AUXILIARY 8

OUTPUT I t 8 PORT " MASTER I I D E
REGISTER KEY KEY KEY

t
t t t t I

ASTB AUXILIARY

AFLG
PORT

CONTROL
LOGIC

Figure 12.31 Z8068 DCP block diagram.

ing device in a single-port configuration (the master port is used for both clear
and encrypted data) or a dual-port configuration (the master port is used for
clear data and the slave port for encrypted data, or vice versa). Input, output,
and ciphering of data are performed concurrently, thereby maximizing data
throughput. The input and output registers each hold 8 bytes and data are
encrypted or decrypted in 64-bit blocks.

Z8052 CRTC

The Z8052 CRT Controller (CRTC) is a general-purpose controller for raster­
scan CRT displays. The CRTC is a word peripheral with an on-board DMA
controller capable of addressing up to 64K bytes of the system's memory.
The CRTC is a 48-pin device that operates from a single 5-V supply.

Designed to interface the Z8000 to a wide variety of CRT displays, the
Z8052 includes numerous advanced features such as vertical and horizontal
split-screen capability, multiple cursors, blinking cursors or characters with
programmable blink rates, character vertical shifting (subscripts and super­
scripts), variable number of scan lines per row, and variable row lengths. Fif­
teen character attributes are specified on a character-by-character basis; char-

Z8016 DTC 249

acters and their attributes are stored in a 132 X 22 buffer. Simple line graphics
also can be implemented with the line attributes provided. The CRTC can be
operated in a slave mode that allows expansion of the character buffer using
multiple CR TCs.

Z8016 DTC

The Z8016 Direct Memory Access Transfer Controller (DTC) is a high-speed
dual-channel DMA controller that interfaces to the Z-Bus as both a bus re­
questor and a programmable peripheral device. Each of the DTC's two chan­
nels can transfer data blocks between memory and a peripheral, two memory
areas, or two peripherals. Memory.:.to-memory transfer rates up to 2 mega­
bytes/second and memory-to-peripheral or peripheral-to-peripheral transfer
rates up to 1.3 megabytes/second are possible. The DTC is housed in a 48-pin
package and requires a single 5-V power supply (Fig. 12.32).

The segment number lines, address/data bus, and associated status and
control signals are bidirectional at the DTC. These signals are inputs to the
DTC when the CPU has control of the bus so that the DTC can be pro-

BAI 48 lEO

BUSRQ 47 iNf

i3AO 46 lEI

Vee 45 CLOCK

ADO 44 AS

AD1' 43 OS

AD2 42 CS/WAl'f

AD3 41 R/W

AD4 40 DACK2

ADS 10 39 DACKl

AD6 11 38 EOP

AD7 12 37 DREQ2
Z8016

AD8 13 DTC 36 DREQl

AD9 14 35 B/W

15 34 ST3

AD11 16 33 ST2

AD12 17 32 STl

AD13 18 31 STO

AD14 19 30 N/S

20 29 SNO

SN6 21 28 SNl

22 27 SN7/MMU SYNC

23 26 Vss

24 25 SN2 Figure 12.32 Z8016 DTC pin as-
signments.

250 zaooo Family Devices Chap. 12

grammed via I/O commands from the CPU; these signals are outputs when the
DTC has control of the bus so that the DTC can control data transfers on the
bus. The BAI, BAO, and BUSRQ signals are used to interface the DTC to a
bus request daisy chain, as described in Chapter 7. lEI, lEO, and INT signals
are available for attaching to an interrupt daisy chain; interrupt acknowledges
are decoded internally from the STO-ST3 inputs. The DMA request signals
(DREQ1 and DREQ2, one for each channel) are inputs that can be used to
initiate a DMA operation with an external signal. The DMA acknowledge sig­
nals (DACK1 and DACK2) indicate when a channel is performing a DMA op­
eration. The end-of-process (EOP) signal is a bidirectional line that the DTC
uses to signal the end of a DMA operation. An external device (such as the
MMU's SUP signal) also can terminate a DMA operation by pulling the EOP
line low. The CS /W AIT pin is used as a chip select when the DTC does not
control the bus for sending commands to the DTC. When the DTC does con­
trol the bus, this pin is a WAIT input for controlling the timing of memory
and I/O accesses initiated by the DTC.

In a system containing Z8010 MMUs, the Z8016 DTC can be used in two
different manners. The DTC can be connected directly to the memory con­
trol logic and deal with physical memory addresses (Fig. 12.33) or the DTC
can be interfaced to memory through the MMUs and use logical memory ad­
dresses (Fig. 12.34). For logical addresses, the DTC uses the SNO-SN6 and
ADO-AD15 lines for the 23-bit logical address; the MMU Sync signal is sent

t.

CPU MMU

OTC

-
CPU

r-

~ MMU

I'"

-
OTC

-

r---
r-

~
-
-

1'\

.

MEMORY

MEMORY

Figure 12.33 System with the DTC
using physical memory addresses.

Figure 12.34 System with the DTC
using logical memory addresses.

Z6132 RAM 251

to the MMU's DMA Sync input to allow the MMU to differentiate between
CPU- and DTC-controlled memory accesses. For physical addresses, the ADO­
AD15 lines hold the 16 least significant bits and the SNO-SN7 lines hold the
8 most significant bits of the physical memory address.

DTC-controlled data transfers can be byte or word oriented. The DTC
can be programmed to perform byte/word funneling for transfers between
byte or word peripherals and/or memory. For transfers between a byte source
and a word destination, two bytes are read in consecutive accesses from the
source and sent as a word to the destination. For transfers between a word
source and a byte destination, the word is read from the source and sent to
the destination with two consecutive byte writes.

Pattern match capability is included in the Z8016, allowing search and
transfer-and-search operations. Search operations read data from the source
until a match to the specified pattern is found. Transfer-and-search operations
transfer data between a source and destination until the specified data pattern
is encountered.

The DTC provides for wait states during transactions with slow memories
or peripherals under both hardware and software control. In addition to the
hardware WAIT signal, the DTC can be programmed to automatically insert
zero, one, two, or four wait states when accessing a particular source or des­
tination device.

The Z8016 contains 20 status and control registers in each DMA chan­
nel. Three additional registers are used to control the overall operation of the
device. To minimize CPU overhead, the DTC can be programmed to load
many of its own registers from memory via DMA operations; the CPU only
has to load the memory address of the control parameter table and issue a
command to start this operation. This operation also can be performed at the
end of some other DMA process, allowing the DTC to automatically chain its
own operations without CPU intervention. Alternatively, the DTC can be
programmed to interrupt the CPU at the termination of a DMA operation.

Z6132 RAM

The Z6132 Quasi-Static Random-Access Memory is a Z-Bus-compatible 4K
X 8 dynamic RAM with on-board self-refresh capability. External refresh
circuitry is not needed; thus the Z6132 combines the convenience of a static
RAM with the density and low-power consumption of a dynamic RAM. The
RAM is packaged as a 28-pin device and is pin-compatible with 2716/2732-
type EPROMs (Fig. 12.35).

The Z6132 is organized as two separate blocks of memory with indepen­
dent row address buffers and decoders but common column address decoders
and data lines (Fig. 12.36). The row address decoders are addressed by either
the AI-A 7 address lines or an internal 7 -bit refresh counter. During memory

7

AO-

252 Z8000 Family Devices Chap. 12

26 22 27 20

~ ~ ~ BUSY
AC os WE cs VBB

10 Ao
A7

BUSY _1 A6

As

A4
VBB A3

Z6132 A2
RAM

A1
A7 +5V _28

Ao
25 As Do

GND _14 0 1
21 A10 O2
23 A11 GND

Do 0 1 O2 0 3 0 4 05 06 0 7

11 12 13 15 16 17 18 19

Figure 12.35 Z6132 Quasi-Static RAM pin assignments.

accesses, address input AO selects one of the two blocks; meanwhile, the other
block is refreshed using the refresh counter.

The timing of Z6132 memory accesses is described briefly in Chapter 3.
A memory cycle starts on the rising edge of address clock (AC); this edge

+ t

j(MEMORY ARRAY - ADDRESS 1----r----
CLOCK

REFRESH - BUFFERS GEN~
ADDRESS ERATOR
COUNTER MUX

ROW INPUT - DECODER 128 SENSE AMPLIFIERS - ~ ,; ADDRESS
BUFFERS (1 OF 128)

>----- - MEMORY ARRAY r----

.--....

~ 1-

~
SENSE

COLUMN DECODER AMPLI-
FIERS

¢~
DATA R (1 OF 16)

AND 1/0
x8 DATA BUS

1/0 BUFFERS

t
DRIVERS

~ MEMORY ARRAY -

~
MUX ROW

INPUT - DECODER 128 SENSE AMPLIFIERS
ADDRESS (1 OF 128)

CLOCK
BUFFERS

GENERATOR - MEMORY ARRAY

REFRESH
DEMAND

LOGIC
(CYCLE

COUNTER)

Figure 12.36 Z6132 RAM block diagram.

Z6132 RAM 253

latches the chip select (CS), write enable (WE), and AD signals. If the chip is
not selected (CS high), all other inputs are ignored for the remainder of the
cycle and both memory blocks in the chip are refreshed using the 7 -bit refresh
counter. If the chip is selected (CS low), the AD-All inputs are latched in­
ternally, where AD determines the block addresses by A1-A11. If WE is high,
indicating a read cycle, a subseqent low level on the data strobe (DS) input
activates the DD-D7 data outputs after a specified delay from the rising edge
of AC or falling edge of DS, whichever comes later. Thus DS is used as an
output enable during read operations. If WE is low, indicating a write cycle,
the falling edge of DS loads the data on the DD-D7 inputs into the addressed
memory location (Figure 12.37).

Every dynamic memory cell in the Z6132 must be refreshed at least
every 2 ms. Each of the two memory blocks contains 16,384 cells and requires

AO-A11 ___ ---« ADDRESS)"""-_________ _

. INVALID

AC

CS

WE ___ 7 '---
00-07 ____ TRI.STATED ___ -(D'V:LI~UT »)-__ _

os \-----1
Z6132 READ TIMING

AO-A11 ___ ---« ADDRESS) _________ _

• IN VALID or-

AC \ I

CS \ /

WE \ I

00-07 ----------------~(~ __ DC_It_16_N __)~-----

os \-----1
Z6132 WRITE TIMING Figure 12.37 Z6132 timing.

254 Z8000 Family Devices Chap. 12

128 refresh cycles to completely refresh the block. Two user-selectable refresh
modes are provided, the long-cycle-time mode and the short-cycle-time mode.

The long-cycle-time mode is selected by pulling the BUSY pin low. In
this mode, every memory cycle is followed by a refresh operation on both
blocks of memory in the Z6132. There must be at least 128 address clock
(AC) signals in any 2-ms period. The long-cycle-time mode is most practical
in applications where the cycle time exceeds 700 ns.

The short-cycle-time refresh mode is selected by pulling the BUSY pin
high through a pull-up resistor. In this mode, the Z6132 performs a refresh
operation on the memory block that is not being accessed. If the chip is not
selected (CS high), both blocks are refreshed. If the chip is selected, only the
block that is not addressed by AO is refreshed; the refresh occurs simulta­
neously with the access of the other block. This scheme takes advantage of the
sequential nature of most memory addressing; normally, this odd/even refresh
scheme will provide 128 refresh operations to each block within 2 ms. In the
unlikely event of 17 consecutive all odd (AO = 1) or all even (AO = 0) acces­
ses, the refresh operation will automatically request one long memory cycle
to append a refresh operation to the appropriate block. The BUSY line is
pulled low during this cycle; the BUSY pins from all the system's Z6132's
can be OR-tied together and fed into the CPU's WAIT input. This is the re­
fresh method appropriate for most Z8000-based systems.

Thus the Z6132 is well suited for microprocessor applications where its
byte-wide organization, self-refresh capability, and Z-Bus interface logic serve
to simplify design and reduce system's parts count.

13

Z-Bus M;crocolf1puters

A single-chip microcomputer is an entire computer (CPU, memory, and I/O)
incorporated on a single integrated-circuit chip. The Z8 family of microcom­
puters are stand-alone single-chip microcomputers that can access memory
external to the chip via a Z-Bus interface. Thus the Z8 can be interfaced easily
to a Z8000 system in a distributed processing application. The Universal Pe­
ripheral Controller (UPC) is an intelligent peripheral controller for Z8000
systems based on the Z8 architecture. The Z8 and UPC architectures provide
powerful processing features, including fast execution times, efficient memory
usage, sophisticated interrupt structures, I/O and bit manipulation capabilities,
and powerful instruction set.

Z8 ARCHITECTURAL OVERVIEW

Figure 13.1 shows the pin-out of the Z8601, one member of the Z8 family of
single-chip microcomputers. The Z8601 has four 8-bit I/O ports (ports 0, 1,
2, and 3), address strobe (AS), data strobe (DS), and read/write (R/W signals
for interfacing to memory external to the Z8, and two pins (XTAL1 and
XTAL2) for connecting a series-resonant crystal or single-phase clock (8 MHz
maximum) to an on-chip oscillator. The processor runs at one-half the speed
of the external crystal or clock (that is, 4-MHz maximum internal clock).

A block diagram of the Z8601 is given in Fig. 13.2. On-board memory
consists of 2K bytes of mask-programmable ROM and 144 byte registers,
including 124 general-purpose registers, 4 I/O port registers, and 16 status

255

256

RESET +5V +5V
R/W GND

XTAL2
OS XTALl

XTALl
AS XTAL2

P3,
POO P20 P30

PO, P2,
RESET

P02
P22 R/W PORT 2

P03 P23 (BIT PRO· OS
P2, GRAMMABLE) PO, AS

P05 Z8601 P25 P3,
P06 MCU P26 GND
PO, P2,

P32
Pl 0 P30 POO
Pl, P3,

PO,
P1 2

P32 P02
P1 3 P33 P03

Pl. P3.
PO.

P1 5 P35 P0 5
P1 6 P36 P06
Pl, P3,

PO,

Figure 13.1 Z8601 microcomputer pin assignments.

OUTPUT INPUT Vee GND XTAL AS

M/L.o----!-! -----'\~~
UART

TIMER/
COUNTERS

(2)

INTERRUPT
CONTROL

PORT 2

It!lt!!!
I/O

(BIT PROGRAMMABLE)

FLAGS

REG. POINTER

ADDRESS OR I/O
(NIBBLE PROGRAMMABLE)

ADDRESS/DATA OR I/O
~YTEPROGRAMMABL~

Figure 13.2 Z8601 microcomputer block diagram.

P36

P3,

P2,

P26

P25

P2,

P23

P22

P2,

P20

P3 3

P3.

Pl,

P1 6

P1 5

Pl.

P1 3

P1 2

Pl,

Pl 0

Z8 Architectural Overview 257

and control registers. The Z8 can be interfaced to up to 124K bytes of external
memory as a programmable option. Memory addresses are 16 bits long, regis­
ter addresses are 8 bits long, and data transfers are always 8-bit (byte) trans­
fers. The Z8 's programmable options can be configured for a particular ap­
plication by writing to the status/control registers. Port 1 can be used as a
byte-programmable I/O port or as an 8-bit multiplexed address/data bus to
external memory. Port ° is a nibble-programmable I/O port or additional ad­
dress bits for interfacing to external memory. Port 2 is a bit-programmable
I/O port. Port 3 is always 4 bits of input and 4 bits of output; port 3 pins can
be used for several control functions, including handshake signals for the
other ports, interrupt request inputs, serial I/O lines, and external access to
the Z8's counter/timers. An on-board full duplex UART (universal asynchro­
nous receiver/transmitter) provides serial I/O capability. Two programmable
counter/timers with several user-selectable modes also are provided.

Since the same port ° and port 1 pins can be used as I/O ports or as an
interface to memory external to the Z8, a Z8 system can have several differ­
ent configurations. For an I/O intensive application with a relatively short
program, all four ports are used as I/O ports, thereby providing 32 bits of I/O
(Fig. 13.3). The program code resides in the 2K bytes of on-board ROM and
data resides in the general-purpose registers. If slightly more memory is
needed, port 1 can be configured as an 8-bit multiplexed address/data bus to
memory external to the Z8; thus 256 bytes of additional memory can be ac­
cessed (Fig. 13.4). Ports 0, 2, and 3 still are available for I/O in this configur­
ation. At the expense of using one bit of port 3 as a status line called data
memory select (DM), separate program and data memory areas can be defined
in external memory. Therefore, this configuration could have 256 bytes of

41/0 PORTS

NO EXTERNAL MEMORY

Figure 13.3 Z8 configuration for
I/O intensive applications.

258

OJ

OJ
IT]

}

256 BYTES OF EXTERNAL
PROGRAM MEMORY

'-----', 256 BYTES OF EXTERNAL
'--__ -,/ DATA MEMORY

31/0 PORTS

Z-Bus Microcomputers Chap. 13

Figure 13.4 Z8 configuration for
I/O intensive applications requiring
some external memory.

program memory and 256 bytes of data memory external to the ZS. For a
more memory intensive application, the lower 4 bits of port 0 can provide 4
more bits of address to external memory; when combined with port 1, 12
address lines to external memory allow an interface to 4K bytes of program
memory and 4K bytes of data memory external to the ZS (Fig. 13.5). Ports
2, 3, and one-half of port 0 are still available as I/O pins. In a very memory
intensive application, all of ports 0 and 1 can be used to access external mem­
ory. This results in 16-bit addresses to external memory, allowing 62K bytes

4K OF EXT. PROGRAM MEMORY

4K OF iXT. DATA MEMORY

2'12 1/0 PORTS

Figure 13.5 Z8 configuration with
interface to 4K bytes of external
memory.

Z8 Memory Spaces

62K EXT. PROGRAM MEMORY

62K EXT. DATA MEMORY

2110 PORTS

259

Figure 13.6 Z8 configuration for
memory intensive applications.

of program memory and 62K bytes of data memory external to the Z8 (Fig.
13.6). (The first 2K of addresses, 0 to 7FF hexadecimal, are reserved for the
on-board ROM.) Thus the Z8 can handle a wide range of both memory­
intensive and I/O-intensive applications.

Z8 MEMORY SPACES

Three different memory address spaces are available in Z8 systems: program
memory, data memory, and the registers.

Program memory is memory that can be accessed during instruction
fetches. The Z8's 16-bit program counter can address 64K bytes of program
memory. The first 2048 bytes of the Z8061 's program memory resides in
the mask-programmable ROM on the chip (Fig. '13.7). Up to 62K bytes of
external program memory can be added to a Z8601-based system provided
that ports 1 and 0 are configured to act as an address/data bus to external
memory.

The first 12 bytes of program memory are used to hold six 16-bit inter­
rupt vectors, where each vector corresponds to an interrupt source. When an
interrupt occurs, program control is passed to the service routine whose start­
ing address is stored in the appropriate vector location. Resetting the Z8
forces the program counter to location 12 (OC hexadecimal), the first pro­
gram memory location available for user's code.

External program memory can be implemented in any combination of
ROM and RAM. Program memory can be used to hold data as well as program
code and is accessed by the Load Control (LDC) instruction.

260

Location of
first byte of
Instruction

executed
atter reset

Interrupt
Vector

(Lower Byte)

Interrupt
Vector

(Upper Byte)

Z-Bus Microcomputers Chap. 13

5535

EXTERNAL
ROM OR RAM

2048
2047

ON·CHIP
ROM

~ ~------------
11 IR05

10 IROs

9 IR04

8 IR04

7 IROa

6 IR03

s~ IR02

4p.o- IR02

a IR01

2 IR01

1 IROO

0 IROO Figure 13.7 Z8 program memory.

Data memory, on the other hand, can hold only data; instruction fetches
access only program memory. Data memory is always external to the ZS chip
(Fig. 13.S); up to 62K bytes of data memory can be included in a system,
depending on the configuration of ports 1 and O. Separate program and data
areas in external memory are implemented by programming bit 4 of port 3 to
be the data memory select (DM) signal. When the line is low, data memory
is being accessed; when DM is high, program memory is being accessed. Thus
the DM signal can be used as part of the chip select logic to external memory
to segregate the program and data memory areas (Fig 13.9). The state of the

65535 r__----------,

EXTERNAL
DATA

MEMORY

~g:~ J-----------I

NOT ADDRESSABLE

Figure 13.8 Z8 data memory.

Z8 Memory Spaces

A
PORTS ADDRESS/DATA BUS PROGRAM
0+1 MEMORY

'l ,

Z8 cs

OM ~

~ DATA
MEMORY

cs

r

261

Figure 13.9 Using the DM signal to
segregate external program and data
memory.

DM signal when accessing a data operand during instruction execution de­
pends on the instruction being executed; the Load Control (LDC) instruction
accesses program memory and the Load External (LDE) instruction accesses
data memory. In other words, the instruction used determines which memory
space is being accessed.

The 144-byte register file includes 4 I/O port registers (RO-R3), 16
status and control registers (R240-R255), and 124 general-purpose registers
(R4-R127), as illustrated in Fig. 13.10. I/O ports 0 to 3 are accessed by reads
and writes to registers 0 to 3, respectively. Thus there are no explicit I/O in­
structions in the Z8 instruction set; any instruction that acts on a register
also can act on an I/O port. The general-purpose registers can be used as ac-

LOCATION

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

127

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL I/O

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

TO

PRE1

T1

TMR

SIO

P3

P2

P1

PO Figure 13.10 Z8 registers.

262

" " I:::
- 240

The upper nibble 01 the register file address
provided by the register pointer specifies
the active working-register group.

--1
-~1
-~1
-~1

1
-~1
-~1

SPECIFIED WORKING·
REGISTER GROUP

1 27

"'-r--

The lower
nibble 01
the register
file address
provided by
the Instruction
points to the
specified
register.

15

-~1 r--------------3
110 PORTS

Z-Bus Microcomputers Chap. 13

Figure 13.11 Z8 register pointer.

cumulators, address pointers, or index registers. The status and control regis­
ters are used to configure the Z8 's programmable options and to hold status
information, such as the state of the ALU flags.

Z8 registers can be accessed directly or indirectly using 8-bit register ad­
dresses. However, one of the control registers (R253, the Register Pointer) al­
lows 4-bit register addresses, resulting in shorter and faster instructions. The
registers are divided into nine groups of 16 registers each (Fig. 13.11). The Reg­
ister Pointer holds the starting address of one of these nine groups; the 16
registers in the specified group are called "working registers" and can be ac­
cessed with 4-bit register addresses.

Either the internal register file or external data memory can be used to
hold the Z8's stack. An 8-bit stack pointer (R255) is used if the stack is in
the registers; a 16-bit stack pointer (R254 and R255) is used if the stack is in
data memory.

The Z8 's flags consist of carry, zero, sign, overflow , half-carry, and deci­
mal-adjust flags, just as in the Z8000. These flags are held in register R252.

Z8 I/O PORTS

The Z8 's 32 I/O lines are configured as four 8-bit parallel I/O ports, called
ports 0, 1, 2, and 3. The ports also can be programmed to provide an inter-

Z8 I/O Ports 263

face to external memory, serial I/O, handshakes for parallel I/O, status sig­
nals, access to the counter/timers, or interrupt request inputs.

Port 1 can be configured as a byte I/O port or as a time-multiplexed
address/data bus to external memory. As an I/O port, port 1 can be a byte of
input or a byte of output. Optionally, transfers with this port can be con­
trolled by a two-wire interlocked handshake; bits 3 and 4 of port 3 provide
the handshake signals. The port is accessed via reads and writes to register R 1.

To interface to external memory, port 1 must be configured as an 8-bit
time-multiplexed address/data bus. The AS, DS, and R/W signals are used to
control data transfers on this bus. Port 1 and these control signals can be
placed in a high-impedance state to allow bus sharing in Z8 systems.

Port 0 can be used as a nibble-programmable I/O port or as additional
address lines for interfacing to external memory. When configured as an I/O
port, the two nibbles of port 0 can be independently programmed as inputs
or outputs. Optionally, bits 2 and 5 of port 3 can provide an interlocked
handshake for port 0 I/O operations; the direction of the handshake is the di­
rection of port O's upper nibble.

For external memory interfacing, port 0 can provide four additional ad­
dress lines (lower nibble only) or eight address lines (both nibbles). If only
the lower nibble is required for memory addressing, the upper nibble still can
be used for I/O. The port 0 lines defined as address bits can be placed in the
high-impedance state along with the port 1 pins for bus-sharing applications.

The configuration of ports 0 and 1 is controlled by register R248, the
Port 0-1 Mode register (Fig. 13.12).

When external memory is included in a Z8 system, ports 1 and 0 are con­
figured to provide the desired number of address bits. The timing for external
memory accesses is the standard Z-Bus timing, as illustrated in Fig.13.13. The
clock shown is the external clock (8 MHz maximum); the processor runs at
one-half that speed. During Tl, the address is emitted and AS is pulsed; the

R248 POIM
Port 0 and I Mode Register

(F8H; Write Only)

PO,-P07 MODE:]_
OUTPUT = 00 ~

INPUT = 01
A12-A15 = 1X

EXTERNAL MEMORY TIMING
NORMAL = 0

EXTENDED = 1

I ["80P~,~u",~~,
01 = INPUT
1X = A.-An

STACK SELECTION
o = EXTERNAL
1 = INTERNAL

P1 o-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH-IMPEDANCE ADo-AD7,

AS, Os, R/Vi, Aa-A11, A12-A15
IF SELECTED

Figure 13.12 Port 0-1 mode register.

264 Z-Bus Microcomputers Chap. 13

I· MACHINE CYCLE ·1

I Tl T2 T3 I
CLOCK

PO X As-AI5 x=
P1 X Ao-A7) ~
AS '---l '----
DS \ I
R/v.; 7

I' READ CYCLE

PO X As-AI5 x=
P1 X Ao-A7 X Do-D7OUT x=

'--I '--
DS \ /
R/W \

f.---------WRITE CYCLE---------I

Figure 13.13 Z8 external memory interface timing.

address and R/W signal are guaranteed valid on the rising edge of AS. During
T2, the multiplexed portion of the bus (the port 1 pins) is cleared of the ad­
dress. For reads, DS is lowered in anticipation of receiving data from mem­
ory; for writes, the data are emitted before DS goes active. During T3, the
data are read into the CPU or the write is completed. The rising edge of DS
marks the end of the data transfer. For a 4-MHz system, the worst-case mem­
ory access time would be 320 ns. As an option, extended memory timing can
be selected by setting bit 5 of the Port 0-1 Mode register. With extended mem­
ory timing, one wait state is inserted between T2 and T3 of each external

28 Counter/Timers

R246 P2M
Port 2 Mode Register

(F6H; Write Only)

I 0,1 06 1 Dsl 04 1 03 1 02 1 0, I Do I
P20- P2, 110 DEFINITION

265

'----- ~g~~:~~~::i~~~UpTJTUT Figure 13.14 Port 2 Mode register.

R247 P3M
Port 3 Mode Register

(F7H; Write Only)

I 0,1 06 1 Dsl 04 1 03 1 02 1 0, I Do I

~~
O PORT 2 PULL·UPS OPEN DRAIN
1 PORT 2 PULL·UPS ACTIVE

RESERVED

o P32 INPUT P35= OUTPUT
1 P32 DAVO/RDYO P35 = RDYOIDAVO

o 0 P33 INPUT P34 = OUTPUT

~ ~} P33 INPUT P34 • OM
1 1 P33 DAV1/RDY1 P34 ~ RDY1/DAVj

L--_____ ~ ~~~ ~N:v~iR(~~~ ~;: : ~g~~/~1~;fuT)

~------~ ~~~ ~ ~NE~yXL IN ~~~ = ~~~I~~TOUT
L-_______ ~ ~~=:i~ g~F Figure 13.15 Port 3 Mode register.

memory access, thereby increasing the access time by a full clock period of
the internal processor clock.

Port 2 is always a bit-programmable I/O port wherein each bit can be in­
dividually programmed as an input or output line using R246, the Port 2
Mode register (Fig. 13.14). Any pins defined as outputs can be active or open­
drain outputs. Optionally, bits 1 and 6 of port 3 can provide an interlocked
handshake for port 2; the direction of the handshake is the direction of bit
7 in port 2.

Port 3 consists of four input pins (bits 0-3) and four output pins (bits
4-7). These pins can be used as I/O lines or control signals, as determined by
R247, the Port 3 Mode register (Fig. 13.15). Port 3 pins can provide the hand­
shake signals for the other ports, serial I/O lines (bit 0 for serial in, bit 7 for
serial out), timer input and output signals, four external interrupt requests,
and the data memory select (DM) signal.

Z8 COUNTER/TIMERS

The Z8 has two independent 8-bit programmable counter/timers, TO and Tl.
Each counter/timer has a programmable prescaler and count register; one mode
register controls the configuration of both counter/timers (Fig. 13.16). TO is

266

R242 TI
Counter Timer 1 Register

(F2H; Read/Write)

I 0 7 t 06 t Os t D. t 0 3 t O2 t 0, t Do I

Z-8us Microcomputers

R244 TO
Counter/Timer 0 Register

(F4H; Read/Write)

I 0 7 t 0 6 t Os t D. t 0 3 t O2 t 0, t Do I

Chap. 13

T, INITIAL VALUE (WHEN WRITTEN)
~--- (RANGE 1 256 DECIMAL 01 00 HEX)

T, CURRENT VALUE (WHEN READ)

To INITIAL VALUE (WHEN WRITTEN)
'----(RANGE: 1 256 DECIMAL 01 00 HEX)

To CURRENT VALUE (WHEN READ)

R243 PREI
Prescaler 1 Register

(F3H; Write Only)

I 0 7 \ 0 6 \ Os \ 0.1 0 3 1 02 1 0, I Do I

R245 PREO
Prescaler 0 Register

(F5H ; Write Only)

I 0 7 /06 / Os t 0./ 0 3 / O2 / 0, / Do I

[C~~NJ, ~~~ELE.PASS
1 = T, MODULO·N

CLOCK SOURCE
1 _c T, INTERNAL l COUNT MODE

o = To SINGLE·PASS
1 = To MODULO·N

RESERVED o T, EXTERNAL TIMING INPUT
(T,N) MODE

PRESCALER MODULO
L-____ (RANGE: 1-64 DECIMAL

01-00 HEX)

R241 TMR
Timer Mode Register

(FI H ; Read/Write)

I 0 7 t 0 6 t Os i 0.1 0 3 t 0 2 1 0, I Do I

PRESCALER MODULO
'-----(RANGE: 1-64 DECIMAL

01-00 HEX)

TOUT MODES j ~~ 0 = NO FUNCTION NOT USED = 00 ~ 1 = LOAD To

~~ g~~ ~ no: DISABLE To COUNT
INTERNAL CLOCK OUT = 11 1 - ENABLE To COUNT

T MODES 0 = NO FUNCTION
EXTERNAL CLOCK INP'OT = 00 1 = LOAD T,

GATE INPUT = 01 0 = DISABLE T, COUNT
TRIGGER INPUT = 10 1 = ENABLE T, COUNT

(NON·RETRIGGERABLE)
TRIGGER INPUT = 11

(RETRIGGERABLE)

Figure 13.16 Counter/timer control and status registers.

driven by the internal processor clock divided by 4 (that is, a I-MHz clock if
an 8-MHz external crystal is used); Tl can be driven by this internal clock or
an external signal from port 3, bit 1. Bit 1 of port 3 can be used as a gate or trig­
ger for Tl, also. Either counter/timer can generate an interrupt at the end-of­
count condition and/or have its output routed to bit 6 of port 3, which tog­
gles at the end-of-count. Thus the counter/timers can be used for a variety
of applications, including event counters, watch-dog timers, delay timers, and
square-wave generators.

The 6-bit prescaler is a clock divider that can divide the input clock to
the counter/timer by any value from 1 to 64. The output of the prescaler

Z8 Interrupts 267

drives the down-counter, decrementing the count. The current count can be
read at any time without disturbing the counting process. Either single-cycle
mode (counter stops upon reaching zero) or modulo-n mode (the counter
reloads the initial count value upon reaching end-of-count) can be specified.

Z8 SERIAL 1/0

The Z8 contains a full-duplex serial asynchronous receiver/transmitter that is
enabled by setting bit 6 of the Port 3 Mode register. If this serial I/O device
is used, counter/timer TO must be used as the baud rate clock generator. Data
rates up to 62.5K bits/second are possible. Bit 0 of port 3 acts as the serial­
in line and bit 7 of port 3 is the serial-out line. Received data are read from
register R240 and data to be transmitted are written to register R240. Op­
tionally, an odd-parity generator and checker is available.

The Z8 transmits 8-bit characters with one start bit and two stop bits.
If parity is enabled, the eighth bit will be replaced by an odd-parity bit. Re­
ceived data must be formatted as 8-bit characters with a start bit and at least
one stop bit. If parity is enabled, the eighth bit of a received character is re­
placed by a parity error flag. Separate interrupt requests may be generated
upon transmitting or receiving a character. The transmitter is single-buffered
and the receiver is double-buffered with no overwrite protection provided in
the hardware.

Z8 INTERRUPTS

The Z8 provides for six different interrupts from eight possible sources: the
four port 3 inputs, the two counter/timers, the UART's receiver, and the
UART's transmitter (Table 13.1). Three registers control the interrupt
structure: the Interrupt Priority, Interrupt Request, and Interrupt Mask reg­
isters (Fig. 13.17). The Interrupt Mask register globally or individually enables
or disables the six interrupt requests. When more than one interrupt is pend­
ing, the contents of the Interrupt Priority register determines which interrupt
request is serviced first.

The Z8's interrupt processing mechanism is diagrammed in Fig. 13.18.
The appropriate bit in the Interrupt Request register is set when the event
corresponding to that interrupt request occurs. If that interrupt is enabled
in the Interrupt Mask register, interrupt processing begins at the end of the
current instruction's execution. The Interrupt Priority register is used to de­
termine priority in the case of simultaneous requests. The current program
counter and flags (R252) are pushed onto the stack, interrupts are disabled,
and the service routine pointed to by the appropriate interrupt vector is exe­
cuted. The six interrupt vectors are in the first 12 bytes of program memory.

TABLE 13.1 Z8 INTERRUPT REQUESTS

Name

IRQO

IRQl

IRQ2

IRQ3

IRQ4

IRQ5

Vector location
Source in program memory

Port 3, bit 2 0, 1

Port 3, bit 3 2,3

Port 3, bit 1 4,5

Port 3, bit ° 6, 7
or serial in

TO end-of-count 8,9
or serial out

Tl end-of-count 10, 11

R2491PR
Interrupt Priority Register

(F9H ; Write Only)

INTERRUPT GROUP PRIORITY
RESERVED c 000 "',"VEO =:J I

IR03, IROS PRIORITY (GROUP A)
o = IROS :> IR03
1 = IR03 > IROS

C > A :> B 001
A;> B :> C ' 010
A> C > B = 011
B > C > A = 100

IROO, IR02 PRIORITY (GROUP B) C> B :> A = 101
o = IR02 :> IROO -------'
1 = IROO > IR02

B > A :.> C ~, 110
RESERVED = 111

IR01, IR04 PRIORITY (GROUP C)
o = IROl :> IR04 ---------1
1 ~. IR04 > IROl

R250 IRQ
Interrupt Request Register

(FAH; Read/Write)

I~I~I~I~I~I~I~I~I

RESERVED ==r- ,'----- IROO = P32 INPUT (Do = IROO)

268

IROl = P33 INPUT
IR02 = P3l INPUT
IR03 = P30 INPUT, SERIAL INPUT
IR04 = To, SERIAL OUTPUT
IROS = Tl

R25IIMR
Interrupt Mask Register

(FBH; Read/Write)

Il-------1 ENABLES IROO-IROS (Do = IROO)

RESERVED

'----------1 ENABLES INTERRUPTS

Comments

Negative-edge triggered; can be port ° handshake
Negative-edge triggered; can be port

1 handshake
Negative-edge triggered; can be port

2 handshake or timer in signal
Negative-edge triggered if port 3

input

Figure 13.17 Interrupt control and
status registers.

Z8 I nstruction Set

r------------------------------------l
I INTERRUPT SOURCES I
I

IR03 IR04 I
IROO IR01 IR02 (P3. (To. IR05 I (P32) (P33) (P31) s,Nf Sour) (T 1) I

I I
I I
I I
I I
I INTERRUPT MASK REGISTER I
I . I L ____________________________ ~~RUPTLOGI~

64Kr----""'I

0'---__

Z8 PROGRAM MEMORY

INTERRUPT
SERVICE
ROUTINE

SELECT
INTERRUPT

VECTOR

PUSH PC AND FLAGS ON
STACK; RESET INTERRUPT
REQUEST; RESET ENABLE
INTERRUPT BIT

Figure 13.18 Z8 interrupt processing.

269

Nested interrupts are possible by reenabling interrupts within the service
routine. The Interrupt Return (lRET) instruction restores the program
counter and flags of the interrupted program upon the completion of the ser­
vice routine .

. Polled interrupt systems also are supported. In a polled system, the inter­
rupts to be polled are disabled in the Interrupt Mask register. The Interrupt
Request register is read at predetermined intervals to determine which inter­
rupt requests require servicing.

Z8 INSTRUCTION SET

The Z8's assembly language instruction set is optimized for high code den­
sity and fast execution time. The Z8 features 43 instruction types and six
operand addressing modes.

270 Z-Bus Microcomputers Chap. 13

The operand addressing modes include register, indirect register, direct
address, relative address, indexed, and immediate modes. In register mode,
the operand value is the contents of the register specified in the instruction.
Registers can be used in pairs to hold 16-bit values or memory addresses.
Indirect register addressing means that a register or register pair holds the ad­
dress of the location whose contents is to be used as the operand. Both the
registers and memory can be accessed using indirect register mode. In fact,
data operands in program or data memory can be accessed only with indirect
register mode. Direct addressing is used by the Jump and Call instructions
to designate the address to be loaded into the program counter; in this mode,
the destination address is given in the instruction itself. Relative addressing
means that an offset is specified in the instruction; this offset is added to the
current program counter contents to form the destination address. An indexed
address consists of a register address offset by the contents of a designated
working register (the index). Indexing is allowed only within the registers
and is supported only by the Load instruction. For immediate mode, the oper­
and value is supplied in the instruction itself. These addressing modes are very
similar in operation to the corresponding addressing modes in the Z8000
CPUs (see Chapter 8).

Table 13.2 is a list of the Z8 assembly language instruction set. The Z8's
Jump and Jump Relative instructions use the same set of condition codes as
the Z8000 (See Table 8.3). The Z8 is a register-oriented processor; arithmetic
and logical operations can be performed only on data in registers. Three dif­
ferent load instructions are provided. Load (LD) is a register-to-register or
immediate-to-register load. Load Constant (LDC) is for data transfers between
a register and program memory. Load External (LDE) is for data transfers
between a register and data memory. The block transfer instructions (LDCI
and LDEI) are used within program loops to move entire blocks of data be­
tween the registers and program or data memory. LDC, LDE, LDCI, and LDEI
all use indirect register addressing to access memory. The Pop and Push instruc­
tions might access the registers or external data memory, depending on the
location of the stack. Similarly, the Call and Interrupt Return instructions
access either the registers or data memory when pushing or popping status
information. All other instructions operate on the registers only. The Test Un­
der Mask (TM) and Test Complement Under Mask (TCM) instructions allow
bit testing of register contents. The Decimal Adjust (DA) instruction is used

TABLE 13.2 Z8 INSTRUCTION SET

Instruction

Load
CLR
LD
LDC
LDE

Operand(s)

dst
dst, src
dst, src
dst, src

Clear
Load

Name of instruction

Load Constant
Load External Data

TABLE 13.2 Z8 Instruction Set (Continued)

Instruction Operand(s) N arne of instruction

POP dst Pop
PUSH src Push

Arithmetic
ADC dst, src Add with Carry
ADD dst, src Add
CP dst, src Compare
DA dst Decimal Adjust
DEC dst Decrement
DECW dst Decrement Word
INC dst Increment
INCW dst Increment Word
SBC dst, src Subtract with Carry
SUB dst, src Subtract

Logical
AND dst, src Logical And
COM dst Complement
OR dst, src Logical Or
XOR dst, src Logical Exclusive Or

Program control
CALL dst Call Procedure
DJNZ r, dst Decrement and Jump if Nonzero
IRET Interrupt Return
JP cc, dst Jump
JR cc, dst Jump Relative
RET Return

Bit manipulation
TCM dst, src Test Complement under Mask
TM dst, src Test under Mask

Block transfer
LDCI dst, src Load Constant Autoincrement
LDEI dst, src Load External Data Autoincrement

Rotate and Shift
RL dst Rotate Left
RLC dst Rotate Left through Carry
RR dst Rotate Right
RRC dst Rotate Right through Carry
SRA dst Shift Right Arithmetic
SWAP dst Swap Nibbles

CPU control
CCF Complement Carry Flag
DI Disable Interrupts
EI Enable Interrupts
Nap No Operation
RCF Reset Carry Flag
SCF Set Carry Flag
SRP src Set Register Pointer

271

272 Z-Bus Microcomputers Chap. 13

to perform arithmetic on binary-coded-decimal data, in the same manner as
the Z8000's DAB instruction.

Z8 CONFIGURATIONS

Several different product configurations are available within the Z8 family
(Table 13.3). The Z8601 is a 40-pin device with 2K bytes of mask-program­
mable ROM, as previously described. The Z8602 is a 64-pin development
version of the Z8601 that allows the user to prototype the system in hardware
without mask-programming the code. The Z8602 is identical in function to
the Z8601 except that the 2K bytes of internal ROM are removed, the ROM
address and data lines are brought out to the additional pins, and control sig­
nals for accessing the first 2K bytes of program memory external to the chip
have been added. Thus the program memory is implemented external to the
Z8602 with an EPROM or PROM. The Z8603 is a combination of the Z8601
and Z8602 wherein the first 2K bytes of program memory are external to
the device. The Z8603 Protopak is a 40-pin chip that is pin-compatible with
the Z8601; the Z8603 carries a 24-pin socket in "piggyback" manner for the
EPROM that holds the first 2K bytes of program memory (Fig. 13.19). Thus
the Z8603 allows the user to design a printed circuit board for the 40-pin
mask-programmable Z8601 and use the Z8603 Protopak to build prototype
and pilot production units.

The Z8611 is identical to the Z8601 except that 4K bytes of mask­
programmable ROM is provided on the chip. Up to 60K bytes of program
memory and 60K bytes of data memory can be accessed external to the Z8611
if ports 0 and 1 are configured appropriately. The Z8612 is the 64-pin proto-

TABLE 13.3 Z8 PRODUCT CONFIGURATIONS

Part number Package Description

Z8601 40-pin 2K bytes of internal mask-programmable ROM

Z8602 64-pin No internal ROM; interface to 2K bytes of external
ROM/PROM

Z8603 40-pin Protopak No internal ROM; 24-pin socket for 2K bytes of ex-
ternal EPROM

Z8611 40-pin 4K bytes of internal mask-programmable ROM
Z8612 64-pin No internal ROM; interface to 4K bytes of external

ROM/PROM
Z8613 40-pin Protopak No internal ROM; 24-pin socket for 4K bytes of ex-

ternal EPROM

Z8681 40-pin No internal ROM; port 1 pins an interface to external
memory

Z8671 40-pin Z8601 with a BASIC debugger/interpreter

Z8000-Z8 Interfacing 273

Figure 13.19 Z8 Protopak package.

typing version of the Z8611 with all memory external to the chip; the Z8613
is the 40-pin Protopak version of the Z8611.

The Z8681 is a "ROMless" version of the Z8 with no program memory
on board the device. Port 1 is always configured as an address/data bus to
external memory; port 0 is still nibble-programmable as I/O or additional ad­
dress lines. Therefore, the Z8681 can address up to 64K of program memory
and 64K of data memory.

The Z8671 microcomputer is a Z8601 with a BASIC interpreter and de­
bugger already programmed into the 2K bytes of mask-programmable ROM.
The BASIC language used is a subset of Dartmouth BASIC.

Z8000-Z8 INTERFACING

A Z8 microcomputer could be used as another processor in a Z8000-based
system in distributed processing applications. For example, a Z8 might be
used as a front-end I/O processor dedicated to data handling and formatting
for a specific I/O device in the system.

Z8 's can be interfaced to Z8000 systems in a number of ways. The most
straightforward method is to treat the Z8 as an I/O device for a Z8000 CPU
using a Z8036 CIO or Z8038 FlO as the interfacing device (Fig. 13.20). A
Z8 port with interlocking handshake interfaces directly to the interlocked
handshake of a CIO or FlO port. The other Z8 ports could be used to inter­
face to I/O devices or access external memory.

Since the Z8 uses Z-Bus timing for accessing external memory, a Z8
microcomputer could be used as a bus requestor in a Z8000 system, where
the Z8 directly accesses one segment of the Z8000's memory. In Fig. 13.21,
one port 3 output bit is used as the bus request signal to the Z8000 CPU and

274

Z8000
CPU

OTHER
110

DEVICES

en
~
m
N

MEMORY

CIO
OR
FlO

ONE
,, ___ -', PORT

OTHER 6~ ~gMORY
PORTS "-__ ~I DEVICES

Z8

Figure 13.20 Z8000-to-Z8 interface with a cIa or Fla.

A
Z8000
CPU

'I

BUSREQ BUSAK

PORT 3

A
Z8 PORTS

0+1
'l

en
~
m
N

~

Y

...

y

MEMORY

OTHER
110

DEVICES

Figure 13.21 Z8000/Z8 bus sharing.

UPC Architectural Overview 275

one port 3 input bit is the bus acknowledge. Ports 0 and 1 are defined as an
address/data bus to external memory; these are normally held in the tri-state
mode. When the Z8 gains control of the bus via a bus request, it can make byte
access to the Z8000's memory using LDC, LDE, PUSH, or POP instructions.
When the Z8 is not using the Z8000's bus, the Z8 still can be executing from
its internal ROM.

UPC ARCHITECTURAL OVERVIEW

ADDRESSI
DATA BUS

The Universal Peripheral Controller (UPC) is a slave microcomputer that can
be used as an intelligent peripheral controller in Z8000 systems. The UPC is
a complete microcomputer based on the Z8 architecture with its own CPU,
memory, and I/O ports on the chip; a Z-Bus interface allows the UPC to act
as a byte peripheral in a Z8000-based system. A Z8000 CPU can send and re­
ceive byte data from the UPC by reading and writing to the UPC's internal
registers via I/O operations. Thus the UPC can unburden the master CPU by
handling tasks such as data translation and formatting, arithmetic, and I/O
device control.

The UPC is available in several different product configurations. Figure
13.22 shows the pin assignments for the Z8090, a 40-pin UPC with 2K bytes
of mask-programmable ROM on board the chip. The Z8090 has three 8-bit
parallel ports (ports 1, 2, and 3) a complete Z-Bus peripheral interface (con­
sisting of ADO-AD7, AS, DS, R/W, CS, and WAIT), and a TTL-compatible

- AD7 P17 -- AD6 P16 -- ADs P1s -- AD4 P14
PORT 1 - AD3 - AD2 - AD,

-ADO P10-

TIM~~: J - AS
AND RESET \ - os Z8090

Z·UPC ::: - } PORT 3
f -R/W

CONTROL I - cs
WAIT

{

iNT OR P35

MASTER _ INTACK OR P32

INTERR~:~ - lEI OR P30
lEO OR P37

+5V_

PCLK_

GND_

P3,_

P36

P27_

P26-

P2s-

P24_

1>23
PORT 2

Figure 13.22 Z8090 UPC pin assignments.

N

'" m

Z·BUS TO
MASTER

CPU

ADO-AD7

AS­
OS
R/W_

CS

WAIT

HOST CPU
INTERFACE

INTERFACE
REGISTERS

(PART OF REGISTER
FILE)

BUS
TIMING

AND
CONTROL

INT

3
P35

- 1/2
INTACK P32 PORT

IEI_ P30 3

lEO P37

(I/O FUNCTION
IS OPTIONAL)

Z·UPC MICROCOMPUTER

L. _____ -,

+5 V GND PCLK

PROGRAM
MEMORY
2K x 8

RP

IRP

REGISTER
FILE

256 x 8

Figure 13.23 Z8090 UPC block diagram.

---PORT 1-}1I0
1 ----

110

UPC Memory Spaces 277

clock input. Optionally, one-half of port 3 can be used as the interrupt signals
(INT, INTACK, lEI, and lEO) for the Z-Bus interface. The maximum clock
frequency is 4 MHz; the UPC's clock does not need to be synchronized to the
master CPU's clock.

A block diagram of the Z8090 is given in Fig. 13.23. The Z8090's mem­
ory consists of 2K bytes of mask-programmable ROM and 256 byte registers,
including 234 general-purpose registers, 19 status and control registers, and 3
I/O port registers. Ports 1 and 2 are bit-programmable; port 3 consists of 4
input bits and 4 output bits. Port 3 pins can be used for special control func­
tions, including an interrupt interface to the master CPU, handshakes for ports
1 and 2, and interrupt request inputs for the UPC. Unlike the Z8, no mech­
anism is provided for in terfacing to memory external to the Z8090. The UPC's
two programmable counter/timers are identical to those in the Z8. The UPC's
instruction set also is identical to that of the Z8.

UPC MEMORY SPACES

Two different memory address spaces are available in the UPC, program mem­
ory and the registers.

The Z8090 UPC contains 2K bytes of mask-programmable ROM for pro­
gram memory (that is, memory for holding program code). The UPC's pro­
gram counter is 16 bits long; however, performance at program addresses
above 2K is not defined. The first 12 bytes of program memory are reserved
for six 16-bit interrupt vectors (Fig. 13.24). Resetting the UPC forces the pro­
gram counter to location 12, the first program memory location available for
user's code.

The UPC's 256-byte register file consists of 234 general-purpose regis­
ters, 3 I/O port registers, and 19 status/control registers (Fig. 13.25). I/O
ports are accessed via reads and writes to registers 1, 2, and 3. The general-

20

LOCATION OF
FIRST BYTE OF
INSTRUCTION
EXECUTED AFTER
RESET

47

.........
r---....
12

11

10

9

8

7

6

5

4

3

2

1

0

USER
ROM

"
IROS LOWER BYTE

IR05 UPPER BYTE

IR04 LOWER BYTE

IR04 UPPER BYTE

IR03 LOWER BYTE

IR03 UPPER BYTE

IR02 LOWER BYTE

IR02 UPPER BYTE

IR01 LOWER BYTE

IR01 UPPER BYTE

IROO LOWER BYTE

IROO UPPER BYTE

Figure 13.24 UPC program mem­
ory.

278

LOCATION

FFH

FEH

FDH

FCH

FBH

FAH

F9H

F8H

F7H

F6H

F5H

F4H

F3H

F2H

F1H

FOH

EFH

6H

5H

4H

3H

2H

lH

OH

STACK POINTER

MASTER CPU INTERRUPT CONTROL

REGISTER POINTER

PROGRAM CONTROL FLAGS

UPC INTERRUPT MASK REGISTER

UPC INTERRUPT REQUEST REGISTER

UPC INTERRUPT PRIORITY REGISTER

PORT 1 MODE

PORT 3 MODE

PORT 2 MODE

To PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

MASTER CPU INTERRUPT VECTOR REG.

GENERAL-PURPOSE REGISTERS

DATA INDIRECTION REGISTER

LIMIT COUNT REGISTER

PORT 3

PORT 2

PORT 1

DATA TRANSFER CONTROL REGISTER

IDENTIFIER
(UPC Side)

SP

MIC

RP

FLAGS

IMR

IRQ

IPR

P1M

P3M

P2M

PREO

To

PREl

T1

TMR

MIV

DIND

LC

P3

P2

Pl

DTC

Z-Bus Microcomputers Chap. 13

Figure 13.25 UPC register file.

purpose registers can be used as accumulators, address pointers, data buffers,
or index registers. The status and control registers are used for configuring
the UPC's programmable options, controlling the communication between the
UPC and the master CPU, and storing status information.

An 8-bit stack pointer is used for addressing the stack; the stack always
resides in the general-purpose register file. As in the Z8, a register pointer
addresses the starting point of the 16 working registers. The flag register
holds the ALU flags: carry, sign, overflow, zero, decimal adjust, and half­
carry. Three registers control the UPC interrupt structure, three others de­
termine the I/O port configuration, and five are used for programming the
two counter/timers. The Master CPU Interrupt Control register controls the
interrupts to the master CPU and the Master CPU Interrupt Vector register
holds the vector that is returned when the master CPU processes an interrupt
from the UPC. The Data Transfer Control, Limit Count, and Data Indirection
registers are used to control transactions between the UPC and master CPU,
as described later.

UPC I/O PORTS

The UPC's 24 I/O lines are organized as three 8-bit parallel ports, ports 1, 2,
and 3. Their configuration is determined by the three I/O port mode registers

CPU-UPC Communication

R248 PIM
Port 1 Mode Register

Z-UPC register address (Hex): F8

1~1~1~I~i~I~I~I~1

P1o-P17 I/O DEFINITION
'----- 0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R246 P2M
Port 2 Mode Register

Z-UPC register address (Hex): F6

I D71 0 6 1 0 5 1 0 4 1 D31 021 0, I Do I
I P2o-P27 I/O DEFINITION
L-. --- 0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

279

R247 P3M
Port 3 Mode Register

Z-UPC register address (Hex): F7

I D71 D61 0 5 1 0 4 1 031 D21 0, I Do I

II L: : :::: : ::~~::: ::::::::
1 PORT 1 PULL·UPS ACTIVE

o P35 = OUTPUT
1 P35 = INT
RESERVED

'--___ 0 P33 = INPUT P34 = OUTPUT
1 P33 = DAV1/RDY1 P34 = RDY1IDAV1

'------ ~ ~~: ~ ~:V~iR~~J

'-----__ ~ ~~~ ~ :~tUT

'-------- ~ ~~~ ~ :~~~6K

P36 = OUTPUT (TOUT)
P36 = RDY2IDAV2

P37 = OUTPUT
P37 = lEO

Figure 13.26 Port Mode registers.

(Fig. 13.26). Ports 1 and 2 are bit-programmable ports wherein each bit can
be individually programmed as an input or output. Each bit specified as an
output can be an active or open-drain output. Optionally, bits 3 and 4 of
port 3 can be interlocked handshake signals for port 1 and bits 1 and 6 of
port 3 can be the handshake signals for port 2.

Port 3 always has 4 input and 4 output bits. Bits 0, 2, 5, and 7 can be
used as the interrupt interface to the master Z8000 CPU (the lEI, INT ACK,
INT, and lEO signals, respectively). The other bits in port 3 can be handshake
lines for ports 1 and 2, external access for the counter/timers, or bits of I/O.
Input bits 0, 1, and 3 of port 3 can be used as UPC interrupt requests regard­
less of their configuration.

UPC INTERRUPTS

The UPC provides for six different interrupts from eight different sources,
as listed in Table 13.4: three port 3 inputs (bits 0, 1, and 3), the two counter/
timers, and three master CPU data transfer status bits called end-of-message
(EOM), transfer error (XERR), and limit error (LERR). The interrupt mech­
anism is identical to that of the Z8, with three registers controlling the inter­
rupt structure: the Interrupt Priority, Interrupt Mask, and Interrupt Request
registers.

CPU-UPC COMMUNICATION

The UPC is a peripheral for Z8000 systems; the master Z8000 CPU uses I/O
operations to read or write to the UPC's register file. All communication be-

280 Z-Bus Microcomputers Chap. 13

TABLE 13.4 UPC INTERRUPT REQUESTS

Name

IRQO

IRQ1

IRQ2

IRQ3
IRQ4
IRQ5

Source

EOM, XERR,
or LERR

Port 3, bit 3

Port 3, bit 1

Port 3, bit °
TO end-of-count
T1 end-of-count

Vector location
in memory

0, 1

2,3

4,5

6, 7
8,9

10, 11

Comments

Data Transfer Control register status bits

Negative-edge triggered; can be port 1
handshake

Negative-edge triggered; can be port 2
handshake or timer in

Negative-edge triggered; can be lEI signal

tween the master CPU and the UPC is initiated by the CPU; the CPU can ex­
ecute reads and writes to the UPC but the UPC cannot read or write to the
master CPU. However, the UPC can issue an interrupt request to gain the
CPU's attention.

The master CPU can access the UPC's registers in two ways, direct access
and block access. Access by the master CPU is controlled by the UPC, though,
in that the UPC determines when a CPU access is allowed, providing soft­
ware independence between the master CPU and the UPC. The UPC sets
the transfer enable (EDX) bit in the Master Interrupt Control register (Fig.
13.27) to enable the CPU to access the UPC register file and resets that bit
to disable CPU accesses. Only the UPC can write to the EDX bit. When the
CPU completes a transaction with the UPC, the CPU notifies the UPC by set­
ting the end-of-message (EOM) bit in the same register.

The master CPU can directly access 19 of the UPC's registers. Three reg­
isters-the Master Interrupt Control, Master Interrupt Vector, and Data Trans­
fer Control registers-are mapped directly into the CPU's I/O address space.

R254 MIC
Master CPU Interrupt Control Register

z-UPC register address (Hex): FE

I 07 1 06 1 05 1 0.1 03 1 02 1 D, I Do I

ug~
o-
1 END OF MESSAGE

o WAIT ENABLE WHEN WRITE
1 WAIT DISABLE WHEN WRITE

o ENABLE LOWER CHAIN
1 DISABLE LOWER CHAIN

o DISABLE DATA TRANSFER
1 ENABLE DATA TRANSFER

'----- ~ ~~CJ~~Tg~T6~+PUT
L...-____ ~ ~~S~~~Tg~UCI~~~~1~~~u:~:D~~gING

L...-_____ ~ ~~~~~~~~u~~DUE~D~~~~~~ICE

L...-______ ~ :~i~::~~i :~g~~~i ~~S::LL:g
Figure 13.27 Master Interrupt Con­
trol register.

CPU-UPC Communication

RODTC
Data Transfer Control Register

Z-UPC register address (Hex): 00

I~I~I~I~I~I~I~I~I

I(EOM) 0 -
1 END OF MESSAGE

(LERR) 0 NO LIMIT ERROR
"----'-- 1 LIMIT ERROR

(XERR) 0 NO TRANSFER ERROR
1 TRANSFER ERROR

281

,",-(E_DX..;....) ___ 0 DISABLE DATA TRANSFER
1 ENABLE DATA TRANSFER Figure 13.28 Data Transfer Con-

L:-(IR~P,-) -----1 1/0 REGISTER POINTER trol register.

In other words, each of these registers has a unique port address in the ZSOOO
system. The Master Interrupt Control register (Fig. 13.27) contains the inter­
rupt enable (IE), interrupt pending (IP), interrupt under service (IUS), no
vector (NV), and disable lower chain (DLC) bits that control this interrupt
source according to the Z-Bus protocols described in Chapter 12. The Master
Interrupt Vector register holds the vector that is read by the CPU during an
interrupt acknowledge cycle. The Data Transfer Control register (Fig. 13.2S)
holds an I/O register pointer and four status bits.

The other 16 registers that can be directly accessed by the master CPU
are the 16 contiguous registers designated by the I/O register pointer in the
upper nibble of the Data Transfer Control register. The I/O register pointer,
like the Register Pointer, selects a group of 16 contiguous registers in the
UPC's register file. The actual register address accessed is determined by con­
catenating the 4-bit I/O register pointer with the four least significant bits of
the port address emitted by the master CPU. Thus these 16 registers each
have a unique I/O port address in the ZSOOO system.

The master CPU also can access UPC registers indirectly using the block
access method. This transfer method is controlled by the Data Indirection
and Limit Count registers in the UPC (Fig. 13.29). The block access method
allows the master CPU to access an entire block of UPC registers using one
port address. The address of the first UPC register in the block to be accessed
is held in the Data Indirection register and the number of registers in the
block is in the Limit Count register. After each master CPU read or write using
block access mode, the contents of the Data Indirection register are incre­
mented automatically (so that it points to the next register in the block) and
the contents of the Limit Count register are decremented. Thus a ZSOOO
block I/O instruction can access an entire block of UPC registers.

If the master CPU attempts to access the UPC's registers when the trans­
fer enable (EDX) bit in the Master Interrupt Control register is reset or if
the CPU attempts a block access when the Limit Count register is zero, the
access is not completed. The transfer error (XERR) bit in the Data Transfer
Control register (Fig. 13.2S) indicates that if a CPU access was attempted

UPC Product Configurations 283

interrupt by accessing the UPC, using either the direct access or block access
method. When this access is completed, the CPU sets the end-of-message bit
via a write to the Master Interrupt Control register in the UPC. This, in turn,
interrupts the UPC, thereby informing the UPC that the CPU-UPC transfer is
completed.

UPC PRODUCT CONFIGURATIONS

The UPC is available in five different product configurations (Table 13.5).
The Z8090 has 2K bytes of mask-programmable ROM on board the chip for
its program memory, as described previously. A 64-pin version, the Z8091,
allows the user to prototype the system in hardware without mask-program­
ming the code. The Z8091 is identical in function to the Z8090 except that
the mask-programmable ROM is removed. The additional 24 pins are used as
address, data, and control lines to an external ROM, PROM, or EPROM; the

TABLE 13.5 UPC PRODUCT CONFIGURATIONS

Part number

Z8090
Z8091

Z8092

Z8093

Z8094

Package

40-pin
64-pin

64-pin

40-pin Protopak

40-pin Protopak

Description

2K bytes of internal mask-programmable ROM
No internal ROM; interface to 4K bytes of external

ROM/PROM
36 byte internal ROM holds bootstrap program; in­

terface to 4K bytes of external RAM
No internal ROM; 24-pin socket for 4K bytes of ex­

ternal EPROM
36 byte internal ROM holds bootstrap program; 24-

pin socket for 4K bytes of external RAM

FFFH r-------------.

PROGRAM MEMORY EXTERNAL
RAM

;~~ t------------I }
BOOTSTRAP ROM INTERNAL

ROM

~~t-----------~ }
Z·UPC INTERRUPT EXTERNAL

VECTORS RAM

~---------~

Figure 13.31 Z8092 UPC RAM
memory map.

284 Z-Bus Microcomputers Chap. 13

Z8091 can access 4K bytes of program memory external to the chip. The
Z8093 Protopak is a combination of the Z8090 and Z8091-a 40-pin package
with program memory external to the chip. The Z8093 carries a 24-pin socket
in "piggyback" manner for an EPROM that holds the program code (Fig.
13.19).

The Z8092 is a 64-pin UPC with an interface to 4K bytes of external
RAM. Thirty-six bytes of ROM are retained on board the chip; this ROM
contains a program that allows the user to download code from the master
CPU into the UPC's RAM. The internal ROM occupies addresses OC-2F hexa­
decimal (Fig. 13.31). The Z8094 is a 40-pin protopak version of the Z8092
wherein the socket for the RAM device is "piggybacked" onto the 40-pin
package.

Thus the Z8000 family of components includes processors, memory
management devices, peripherals, memories, and single-chip microcomputers.
These components are linked via a set of signals called the Z-Bus, providing
powerful solutions to a wide variety of applications.

Absolute
Maximum
Ratings

Standard
Test
Conditions

DC
Character-
istics

APPENDIX A

Z8000 CPU DC and AC

Electrical Characteristics

Voltages on all inputs and outputs
with respect to GND -0.3 V to + 7.0 V

Operating Ambient
Temperature 0 °e to + 70 °e
Storage T ernperature -65 °e to + 150 °e

The characteristics below apply for the
following standard test conditions, unless
otherwise noted. All voltages are referenced to
GND. Positive current flows into the refer­
enced pin. Standard conditions are as follows:

• +4.75 V =:; Vee =:; +5.25 V

• GND = 0 V
• ooe =:; TA =:; +70oe

Symbol Parameter Min

VeH Clock Input High Voltage Vee-O.4

VeL Clock Input Low Voltage -0.3

VIH Input High Voltage 2.0

VIHRESET High Voltage on Reset Pin 2.4

VIL Input Low Voltage -0.3

VOH Output High Voltage 2.4

VOL Output Low Voltage

IlL Input Leakage

IILSEGT Input Leakage on Seqt Pin -100

IOL Output Leakage

lee Vee Supply Current

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device.
This is a stress rating only; operation of the device at any
condition above those indicated in the operational sections
of these specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

+sv

FROMourpur =m". UNDER TEST

'·"1 ~!~ ~
All ac parameters assume a load capacilance of 100 pF max ex

cept for parameter 6 (50 pI' max). Timing references between two
output signals assume a load dIfference of 50 pF max.

Max

Vee +0.3

0.45

Vee+ 0.3

Vee to 0.3

0.8

0.4

±10

100

±10

300

Unit

V

V

V

V

V

V

V

p.A

p.A

p.A

rnA

Condition

Driven by External Clock
Generator

Driven by External Clock
Generator

IOH = -250 p.A

IOL = +2.0 rnA

0.4:s VIN:S +2.4V

0.4 :s VIN :s + 2.4 V

Note: Contact Zilog, Inc., for latest information on AC and DC characteristics.

285

COMPOSITE AC TIMING DIAGRAM

'~--!
V.,NVI---------------------------~~ ~

i-----.. 1-2;--· -;-_-1.,-.. 1

SEGT =x ~ '-x=
i-.5v---1 :-\~-1

MO

This composite timing dia~

gram does not show actual
timing sequences. Refer to

this diagram only for the

detailed timing relationships

of individual edges, Use the
preceding illustrations as an

explanation of the various
timing sequences

STOP , K I, !IX ...
Timing measurements are

made at the foHowing

voltages;

__________ -'-______ ...j!-+II '~~)-I !~'~-i

WAIT i I oX I: ~
I ! I-J~'-! i-<r,~r-!

:~::::----------':b--.. I-"-6-Y--!-~~"' Ii t$
j iii

'/,

~ __ ~_II i

CLOCK

SHo-SHe ---"

ADDRESS

DATA IN

DATA OUT

MEMORY READ

MEMORY WRITE

! I

INTERRUPT 1\...-,.;.; ------II~
ACKNOWLEDGE A II r--.

_ 1---i,~8/'--
-4/t---1

INPUT/OUTPUT

Clock
Output
Input

Float

High

4.0V
2.0V
2.0V

V

Low

O.SV

O.SV
O.SV

±O.5V

I--(~
!
I

REA~~Rf~t:------~~~, --~!
NORM:~~~~~E:D-------', I" __________________________ ~

AC CHARACTERISTICS
Z8001/Z8002 Z8001 A/Z8002A Z80018/180028

No. Sy.bul Para.atar Min(ns) Max(na) Min(na) Max(na) Min(na) Max(na)

TcC Clock Cycle Time 250 2000 165 2000 100 2000

TwCh Clock Width (High) 105 2000 70 2000 40

3 lwCl Clock Width (Low) 105 2000 70 2000 40

4 T fC Clock Fall Time 20 10 10

5 T rC Clock Rise Time 20 15 10

6 TdC(SNv) Clock t to Segment Number Valid 130 110 70
(50 pF load)

7 TdC(SNn) Clock t to Segment Number Not Valid 20 10
8 TdC(8z) Clock t to Bus flost 65 55 40

9 TdC(A) Clock t to Address Valid 100 7S SO

10 TdC(Az) Clock t to Address float 65 S5 40

11 TdA(DR) Address Valid to Read Data Required 475 305* 180

Valid
12 TsDR(C) Read Data to Clock + Setup Time 30 20 10

13 TdDS(A) ~ t t a Address Act i ve 80 45 20*

14 TdC(DW) Clock t to Write Data Valid 100 75 50

15 ThDR(DS) Read Data to DS t Hold Time 0 0 0

16 TdDW(DS) Write Data Valid to 55 t Delay 295* 195* 110*

17 TdA(MR) Address Valid to MREQ +Delay (55)* (}5)* 20*
18 TdC(MR) Clock + to MREQ + Delay 80 70 40

19 TwMRh MREQ Width (High) 210* 13 5* 80*

20 TdMR(A) MREQ t to Address Not Active 70* 35* 20*
21 TdDW(DSW) Write Data Valid to OS + (Write) Delay 55* 35* 15*
22 TdMR(DR) mrn + to Read Oats Required Valid 375 230 140*

23 TdC(MR) Clock + MREQ t Delay 80 60 45
24 TdC(ASf) Clock t to AS + Delay 60 60 40

25 TdA(AS) Address Valid to AS t Delay 55* 35* 20*

26 TdC (ASr) Clock + to AS t De lay 90 80 40

27 TdAS(DR) AS t to Read Data Required Valid 360 220 140*
28 TdDS(AS) OS t to AS t Delay 70· 35· 15*

29 TwAS As Width (Low) 85* 55* 30*
30 TdAS(A) As t to Address Not Active Delay 70 45 20·

31 TdAz(DSR) Address float to DS (Read)+ Delay 0 0 0

32 TdAS(DSR) As t to OS (Read) + Delay 80 55 30*
D TdDSR(DR) OS (Read) + to Read Data Required Valid 205 130 70*

34 TdC(DSr) Clock + to OS t Delay 70 65 45
}5 TdDS(DW) OS t to Write Data Not Valid 75* 45* 2S*
36 ldA(DSR) Address Valid to OS (Read') + Delay 180* 110· 65*

N 37 TdC(DSR) Clock t to DS (Read) + Delay 120 85 60
00 36 TwDSR Os (Read) Width (Low) 275* 18 S· 110·,

I\)
39 TdC(DSW) Clock -t to OS (Write) -t Delay 95 CO 80 60

CO 40 TwDSW OS- (Write) Width (Low) 185- 110 75-
41 TdDSI(DR) [)"S (I/O) -t to Read Data Required Valid 330 210 120-

42 TdC(DSf) Clock -t to OS (I/O) -t Delay 120 90 60

43 TwOS Os (I/O) Width (Low) 410- 255- 160-

44 TdAS(DSA) AS t to OS (Acknowledge) -t Delay 1065- 690- 410-

45 TdC(DSA) Clock t to OS (Acknowledge)t Delay 120 85 65

46 TdDSA(DR) l)S (Acknowledge) -t to Read Data 455 295 165-
Required Delay

47 TdC(S) Clock t to Status Valid Delay 110 85 60

48 TdS(AS) Status Valid to AS t Delay 50 30- 10-

49 TsH(C) 'lft'SEf to Clock t Setup Time 180 70 50

50 ThR(C) Rf SET t 0 C I 0 c k t Hold Time 0 0 0

51 TwNHI lfM-I Width (Low) 100 70 50

52 TaNHI(C) NMi to Clock t Setup Time 140 70 50
53 TsVI(C) VT,NVl to Clock t Setup Time 110 50 40
54 ThVI(C) Vf,NVI to Clock t Hold Time 0 20 0
55 TsSGT(C) SEGT to Clock t Setup Time 70 55 40

56 ThSGT(C) sE];f to Clock t Hold Time 0 0 0
57 TaHI(C) MY to Clock t Setup Time 180 110 80
58 ThHl(C) HI to Clock t Hold Time 0 0 0
59 TdC(HO) Clock t to HO Delay 120 85 70
60 TsSTP(C) ~ to Clock -t Setup Time 140 80 50
61 ThSTP(C) STop to Clock -t Hold T iDle 0 0 0

62 TsW(C) WAIT to Clock -t Setup Time 50 30 20
63 ThW(C) -WA ITt 0 C I 0 c k -t Hal d Till e 10 10
64 TaBRQ(C) ~ to Clock t Setup Time 90 80 60
6') ThBRQ(C) ~ to Clock t Hold T lme 10 10
66 TdC(BAKr) Clock t to BUSACK t Delay 100 75 60

67 TdC(BAKf) Clock .,. to EiUSACK -t Delay 100 75 60

6B TwA Address Valid Width 150- 95- 50·

69 TdDS(S) ost to STATUS Not Valid BO· 55· JO·

·Clock-cycle-time-dependent characteristics. See tab Ie on followi ng page.

CLOCK-CYCLE-TIME-DEPENDENT CHARACTERISTICS

Z800l/Z8002 Z8U01A/Z8002A l800l8/Z80028

Hu.ber Sy.bol Equation Equation Equat ion

11 TdA(OR) 2TcC + TwCh - 130 ns 2TcC + T wCh - 95 ns 2TcC + T wCh - 60 ns

13 TdDS(A) T wC 1 - 25 ns T WC 1 - 25 ns T wC 1 - 20 ns

16 TdOW(DS) TcC + T wCh - 60 ns TcC + T wCh - 40 ns TcC + T wCh - 30 ns

17 TdA(MR) TwCh - 50 ns T wCh - 35 ns TwC h - 20 ns

19 TwMRh T c C - 40 ns T e C - 30 ns TcC - 20 ns

20 TdMR(A) TwCl - 35 ns TwCI - 35 ns T wC 1 - 20 ns

21 TdDW(DSW) TwCh - 50 ns TwCtl - 35 ntl T wCh - 25 ns

22 TdMR(DR) 2TcC - 130 ns 2TcC - 100 ns 2TcC - 60 ns

25 TdA(AS) TwCh - 50 ns 1 wCh - 35 ns T wCh - 20 ns

27 TdAS(DR) 2lcC - 140 ns 2TcC - 110 ns 2TcC - 60 ns

28 TdDS(AS) TwCI - 35 ns TwCI - 35 ns T wC I - 25 ns

29 TwAS T wCh - 20 ns T wCh - 15 ns T wCh - 10 ns

30 TdAS(A) TwCI - 35 ns TwCI - 25 ns T wC 1 - 20 ns

32 TdAS(DSR) TwC 1 - 25 ns T wC 1 - 15 ns TwC 1 - 10 n8

n TdDSR(DR) TcC + T wCh - 150 ns TcC + T wCh - 105 n8 TcC + TwCh - 70 ns

35 TdDS(DW) IwCI - 30 ns TwCl - 25 ns T wC 1 - 15 n8

36 TdA(DSR) TeC - 70 ns Te C - 55 ns TcC - 35 n&

38 TwDSR TcC + T wCh - 80 ns TcC + T wCh - 50 ns TcC + T wCh - 30 ns

40 TwDSW TcC - 65 ns TcC - 55 ns Tc C - 25 ns

41 TdOSI(DR) 2TcC - 170 ns 2TcC - 120 2TcC - 80 ns

43 TwOS 2 T c C - 90 ns 2TeC - 75 ns 2TcC - 40 n8

44 TdAS(DSA) 4TeC + T wC I - 40 ns 4TcC + T wC 1 - 40 ns 4TcC + lwCl - 30 ns

46 TdDSA(DR) 2TcC + T wCh - 150 ns 2TcC + TwCh - 105 ns 2TcC + TwCh - 75 ns

48 TdS(AS) TwCh - 55 ns TwCh - 40 ns TwCh - 30 ns

68 TwA TcC - 90 ns TcC - 70 ns TcC - 50 n8

69 TdDS(S) TwCl - 25 ns lwCI - 15 ns lwC 1 - 10 n8

289

APPENDIX B

Glossary

Access time: The time required to read or write data to a device (memory
or a peripheral), measured from when the address of the device is avail­
able until when the data are actually read from or written into the device.

Accumulator: A register within a central processing unit (CPU) that can
hold the result of an arithmetic or logical operation.

Acknowledge cycle: A CPU machine cycle entered as a response to an in­
terrupt or trap. The Z8000 CPUs read an identifier word from the
interrupting device during this cycle.

Address: A number that identifies a particular register, memory location,
or peripheral device.

Address space: A set of addresses that are accessed in a similar manner.
The Z8000 CPUs can access six memory address spaces (normal-mode
program, normal-mode data, normal-mode stack, system-mode pro­
gram, system-mode data, and system-mode stack) and two I/O address
spaces (standard I/O and special I/O).

Addressing modes: The method used to specify the address of an operand
within an instruction.

Applications programs: A program designed to do a task other than con­
trolling the resources within a computer system. Applications programs
typically run in the normal mode on a Z8000 system.

Arithmetic and logical unit (ALU): The part of the central processing unit
that contains the logic for performing arithmetic and logical operations
on data.

290

Glossary 291

Assembler: A computer program that translates assembly language code
into machine language. An assembler generally translates symbolic
codes, such as instruction mnemonics, into the opcodes that are ex­
ecuted by the processor.

Asynchronous: Not related to or dependent on a specific time period or
clock frequency; having no fixed relationship in time.

Attribute: A characteristic or feature of a particular entity. The memory
manager assigns attributes such as read-only or execute-only to memory
segments.

Autodecrement: An operand addressing method wherein the contents of a
specified register are decremented and used as the address of an oper­
and during instruction execution.

Autoincrement: An operand addressing method wherein the contents of a
specified register are incremented and used as the address of an operand
during instruction execution.

Base address: A number that appears as an address in an instruction, but
serves as a starting point for an effective address calculation. (See base
addressing mode, base indexed addressing mode, and indexed address­
ing mode.)

Base addressing mode: An operand addressing mode wherein the base ad­
dress is held in a register and the displacement is given in the instruc­
tion's opcode. The effective address of the operand is found by adding
the displacement to the base address.

Base indexed addressing mode: An operand addressing mode wherein the
base address and the displacement are held in registers. The effective
address of the operand is found by adding the displacement to the base
address.

Bidirectional: Pertaining to a bus structure wherein a single signal line can
transmit signals in either direction. For example, the Z8000 CPU's ad­
dress/data bus pins are bidirectional since data can be transmitted or
received by the CPU.

Binary-coded decimal (BCD): A notation in which the 10 decimal digits
(0-9) are encoded in 4-bit binary fields. BCD notation often is used to
process numbers in base-10 format.

Bit: A binary digit; one unit of data in binary notation. A bit can have one
of two values, 0 or 1.

Bus: A group of signal lines that connect devices in a system; a path over
which information is transferred.

Bus master: The device in a system that controls the bus. A bus master
must be capable of initiating transactions.

Bus request: A request for control of the bus initiated by a device other
than the bus master.

292 Appendix B

Bus transaction: (See transaction.)
Byte: A field of eight contiguous bits that is operated on as a unit.
Central processing unit (CPU): The primary functioning unit of a com­

puter, consisting of an AL U, control logic for decoding and executing
instructions and controlling program flow, and registers.

Comment: An optional field within a statement in a program that contains
an identification or explanation for a particular step in the program,
but has no effect on the operation of the computer when the program
is being executed. Comments are used for documentation purposes
only.

Condition code: A specific Boolean function of the ALU flags tested dur­
ing the execution of a conditional instruction.

Conditional instruction: An instruction that can take more than one action
based on the current condition of the ALU flags.

Context switch: A switch from one programming task to another, usually
as the result of an interrupt or trap condition.

Cyclic redundancy code (CRC): A code used to check data integrity during
data transmissions. CRCs typically are used in serial communications.
The transmitted data bit stream is divided by a polynomial and the re­
mainder transmitted as the check field. The receiver compares the
transmitted check field with its own computed remainder to verify that
the data received were valid.

Daisy chain: A method of propagating signals along a bus wherein the pri­
ority of devices is determined by the physical position of each device
on the bus.

Data: Basic elements of information that can be processed by a computer.

Destination: The register, memory location, or device to which data are to
be transferred.

Direct address mode: An operand addressing mode wherein the address of
the operand is given in the instruction's opcode.

Direct memory access (DMA): A method of accessing individual memory
locations without using the CPU. DMA circuits are used in systems that
require data transfers at faster rates than those obtained by going
through the CPU.

Displacement: A number that is added to a base address during an effective
address calculation. (See base addressing mode, base indexed address­
ing mode, indexed addressing mode, and relative addressing mode.)

Distributed processing: A design technique in multiprocessor systems
wherein each processor in the system has its own specific task assigned
to it.

Dynamic RAM: A random access memory on which a special operation

Glossary 293

called a refresh must be performed at periodic intervals to preserve data
integrity.

Effective address: The actual address of a data operand. Often, the effec­
tive address is calculated during instruction execution by adding a dis­
placement or index to a base address.

Exception condition: A condition that causes the CPU to discontinue the
current programming task (perhaps only temporarily), such as an inter­
rupt, trap, or reset.

Extended instruction: A special Z8000 instruction intended for use with
Extended Processor Units.

Extended instruction trap: A trap that is caused by attempting to execute
an extended instruction in a system without Extended Processor Units.

Extended Processor Unit (EPU): A large-scale integrated-circuit chip that
contains a processor to perform dedicated tasks within a Z8000 system.

First-in-first-out (FIFO) buffer: A data buffer in which the data are read
from the buffer in the same order as they were written to the buffer.
The first element of data to be written to the buffer is the first element
to be read out.

Flag: One bit of information used to indicate that some particular condi­
tion occurred. For example, the Z8000's zero flag indicates when an
ALU operation yields a zero for a result.

Flag and control word (FCW): A register in the Z8000 CPU that contains
the ALU flags and control bits that determine the processor's operating
modes.

Full duplex: A method of data transmission wherein each end can simulta­
neously transmit and receive.

Handshake: A sequence of signals that provide a protocol for transferring
data between devices. Typically, handshakes are used for asynchronous
interfaces where each signal requires a response in order to complete a
data transfer.

Identifier word: A status word that is pushed onto the stack when the
Z8000 CPU processes an interrupt or trap. For internal events (traps
other than the segmentation trap), the identifier word is the first word
of the instruction that caused the trap. For external events (interrupts
and segmentation traps), the identifier word is the status word read
from the interrupting device during the acknowledge cycle.

Immediate addressing mode: An operand addressing mode wherein the
operand is given within the instruction's opcode itself.

Implied stack pointer: In Z8000 systems, the stack pointer used when
saving program status during exception processing and subroutine calls.
R15 is the implied stack pointer for nonsegmented-mode operation;
RR14 is the implied stack pointer for segmented-mode operation.

294 Appendix B

Index: A number used to identify a particular element in an array or table.
The index, also called the displacement, is added to the base address to
determine the effective address of an operand. (See base indexed ad­
dressing mode and indexed addressing mode.)

Indexed addressing mode: An operand addressing mode wherein the oper­
and address is calculated by adding the index, which is the contents of a
register, to a base address given in the instruction's opcode.

Indirect register addressing mode: An operand addressing mode wherein
the address of the operand is the contents of the register specified in
the instruction's opcode.

Input: The process of reading data from a peripheral device.
Input/output (I/O) device: (See peripheral.)
Input/output (I/O) transaction: A transaction that transfers data between

the CPU and a peripheral device.
Instruction: The specification of an operation to be performed by a com­

puter and the operands for that operation.
Instruction fetch: A memory read operation wherein the data read from

memory comprise the opcode of an instruction that is to be executed.
Instruction pre-fetch: A processor timing scheme wherein the opcode for

the next instruction is fetched while the previous instruction is still
being executed.

Instruction set: The set of all instructions that can be executed by a given
processor.

Interlocked handshake: A handshake protocol for transferring data be­
tween two devices using two control signals. A change in level of one
control signal requires the appropriate response on the other signal for
the transfer to be completed.

Internal operation cycle: A Z8000 machine cycle during which the pro­
cessor performs an operation internal to the CPU and no data transfer
occurs on the bus.

Interrupt: An event that changes the normal flow of instruction execution
due to a signal generated external to the CPU. The flow of instruction
execution is broken in a manner that allows it to be resumed from that
point at a later time. Interrupts provide a means for peripheral devices
to gain the CPU's attention.

Interrupt acknowledge cycle: (See acknowledge cycle.)
Interrupt service routine: (See service routine.)
Interrupt-under-service daisy chain: A method of determining priority

among peripherals sharing an interrupt request line wherein the service
routine for a device cannot be interrupted by an interrupt request from
a lower-priority device.

Glossary 295

Interrupt vector: Data read from the interrupting device during an ac­
knowledge cycle that determine the location of the service routine.
(See vectored interrupts.)

Label: An optional field within a statement in a program that allows a
symbolic name (the label) to be associated with the memory address of
the code generated by that statement.

Logical address: A memory address that is manipulated by the programmer,
used in instructions, and output by the CPU during program execution.

Long offset address: A segmented address given in an instruction that oc­
cupies two words in the instruction's opcode, one word for the segment
number and one word for the offset.

Long word: A field of 32 contiguous bits that is operated on as a unit.
Machine cycle: One basic CPU operation involving a single transaction on

the bus. For Z8000 CPUs, one machine cycle is the time from the fall­
ing edge of AS to the next falling edge of AS.

Machine language: Binary code that can be read directly and used by a
computer.

Main memory: Memory within a system that can be directly accessed using
memory access cycles. Main memory is typically made up of semicon­
ductor memories such as ROMs and RAMs.

Mask-programmable ROM: Read-only memory whose contents are deter­
mined by a photolithographic mask used to manufacture the part.

Memory: A device into which information can be written and then re­
trieved at a later time; an information storage device.

Memory access time: (See access time.)
Memory cycle time: The time between the start of one memory access and

the start of the next memory access.
Memory management: The process of controlling memory allocation and

protection by mapping physical addresses to logical addresses and per­
forming attribute checking.

Memory manager: The hardware and software in a system that controls
memory management.

Memory-mapped I/O: A technique that allows peripheral devices to be ac­
cessed as if they were memory locations in main memory.

Memory refresh cycle: A CPU machine cycle dedicated to performing a re­
fresh operation on dynamic RAMs.

Memory segment: (See segment.)
Memory transaction: A transaction involving a transfer of data between

the CPU and main memory.
Microprocessor: A central processing unit built with large-scale integrated

circuits and usually contained on one chip.

296 Appendix B

Mnemonic: An abbreviation or acronym. Mnemonics often are used to
represent assembly language instructions when writing programs.

Modem: Acronym for modulator/demodulator. A modem is a device that
converts data from the digital form used by computers to an analog
form used for data transmission, and vice versa.

Multiprocessing: Using two or more processors in a computer system.
Multitasking: The ability of a computer system to handle multiple pro­

gramming tasks simultaneously by overlapping or interleaving their exe­
cution, as in a time-sharing system (also called multiprogramming).

Nibble: A field of four contiguous bits operated on as a unit.
Nonmaskable interrupt: An interrupt that cannot be disabled internal to

the CPU.
Nonsegmented mode: An operating mode of the Z8000 CPUs in which

memory addresses are treated as I6-bit fields. For the Z8001, all mem­
ory accesses are made with the same segment number while in nonseg­
mented mode.

Nonvectored interrupt: An interrupt with only one possible service routine
whose location is not dependent on the identifier word read from the
interrrupting device. (See vectored interrupts.)

Normal mode: An operating mode of the Z8000 CPUs in which certain in­
structions, called privileged instructions, cannot be executed. Applica­
tions programs typically run in normal mode.

Offset: In Z800I systems, the portion of a memory address that appears
on the I6-bit address/data bus during a memory access.

Opcode: Acronym for operation code; an instruction written in machine
language. Opcodes are read from memory during instruction fetches.

Operand: An item of data to be operated on during instruction execution.
Operating mode: The method or manner of operation within a Z8000

CPU. The Z8000 CPUs can execute in system mode or normal mode.
The Z800I also can operate in segmented mode or nonsegmented
mode.

Operating system: Software in a system dedicated to controlling the sys­
tem's resources in a manner that permits applications programs to inter­
face with the hardware in an efficient and safe manner. For Z8000
systems, operating system software typically is executed while in system
mode.

Output: The process of transferring data to a peripheral device.
Page: A fixed-size block of memory. Memory is divided into pages to facil­

itate memory management in virtual memory systems.
Peripheral: A device used to read data into or write data out of a computer

system. Line printers, CRT terminals, and card readers are all examples
of peripherals.

Glossary 297

Physical Address: The address used to access a particular memory location;
the address seen at the memory device.

PLZ/ASM: A programming language developed at Zilog, Inc., that allows
the use of structured programming techniques when writing assembly
language programs.

Priority interrupt controller: A device that determines the relative priority
for servicing peripherals when they send interrupt requests to the CPU.

Privileged instruction: A Z8000 instruction that cannot be executed in the
normal mode. Privileged instructions are instructions that change the
processor state or perform I/O transactions.

Privileged instruction trap: A trap that is caused by attempting to execute
a privileged instruction during normal-mode operation.

/

Processor: A device capable of receiving data, performing arithmetic and
logical operations on the data, and storing the results. A CPU is a type
of processor.

Program: A set of instructions that performs a particular function when
executed on a computer.

Program counter (PC):, A CPU control register that holds the memory ad­
dress of the next instruction to be executed.

Program status area: An area of memory in a Z8000 system that holds the
values that are loaded into the program status registers in order to exe­
cute the appropriate interrupt or trap service routine during exception
processing.

Program status area pointer (PSAP): A CPU control register that holds the
starting address in memory of the program status area.

Program status registers: The CPU control registers that define the running
environment of the processor. For the Z8000 CPUs, the program status
registers are the program counter (PC) and flag-and-control word (FCW).

Programming task: One program operating on its data.

Protocol: The rules or conventions used between devices and processes for
exchanging information.

Protopak: A type of package for an integrated circuit wherein a socket for
another chip is embedded onto the package.

Pulsed handshake: A handshake protocol for transferring data between
two devices using two control signals. Long pulses on the two control
signals are used to control the data transfer.

Quad word: A field of 64 contiguous bits that is operated on as a unit.

Quasi-static RAM: A dynamic RAM chip that contains its own refresh
logic on the integrated circuit chip with the RAM. (Also called pseudo­
static RAM.)

298 Appendix B

Quiescent: Inactive or dormant. For example, a quiescent peripheral de­
vice is one that is not asserting an interrupt or undergoing service from
the CPU.

Refresh: To restore information that fades away if left alone.
ample, dynamic memories must be refreshed periodically in
retain their contents.

Refresh cycle: (See memory refresh cycle.)

For ex­
order to

Refresh register: A CPU control register whose contents determine if and
how often memory refresh cycles occur.

Register: A storage location within a CPU.
Register addressing mode: An operand addressing mode wherein the oper­

and is the contents of the register specified in the instruction's opcode.
Register pair: In the Z8000 CPUs, one of eight pairs of general-purpose

word registers; a 32-bit register.
Relative address mode: An operand addressing mode wherein the effective

address of the operand is found by adding a displacement given in the
instruction's opcode to the current program counter contents.

Request: A signal or message used by a device to indicate the need for
some action or resource.

Reset: To return a device to an initial state. For the Z8000 CPUs, a reset
operation initializes the program status registers.

Resource: An asset or device within a computer system that can be allo­
cated to a particular task.

Resource request: A request by a particular processor to use a resource
shared by several processors in a multiprocessor system.

Secondary storage: Storage devices that are not directly addressable using
memory access cycles. Disks and cartridge tapes are examples of sec­
ondary storage devices.

Segment: A block of memory that can be assigned common attributes by
the memory manager. In Z8001 systems, memory segments can be up
to 64K bytes long.

Segmentation: The process of dividing memory into distinct areas, called
segments, where each area can be assigned its own attributes and is
referred to by its own segment number.

Segmentation trap: A trap that is initiated by the memory manager when a
memory violation is detected.

Segmented address: In Z8001 CPUs, a 23-bit memory address that consists
of a 7-bit segment number and a 16-bit offset, where the segment num­
ber and offset are distinct parts of the memory address.

Segmented mode: An operating mode of the Z8001 CPU in which memory
addresses are treated as 23-bit segmented addresses.

Glossary 299

Segment number: In Z8001 CPUs, the portion of the memory address that
is output on the SNO-SN6 lines during a memory access. Each segment
number specifies a particular memory segment.

Semaphore: A storage location used as a Boolean variable to synchronize
the use of resources among multiple programming tasks. A semaphore
ensures that a shared resource is allocated to only one task at any given
time.

Service routine: Program code that is executed in response to an interrupt
or trap.

Short offset address: A segmented address given within an instruction that
occupies only one word in the instruction's opcode. Short offset ad­
dresses can be used to access the first 256 bytes of a memory segment.

Single-chip microcomputer: An entire computer including CPU, memory,
and I/O devices on a single integrated-circuit chip.

Source: The register, memory location, or device from which data are
being read.

Stack: An area of memory used for temporary storage and subroutine link­
ages. A stack uses the first-in-Iast-out method for storing and retrieving
data; the last data written onto the stack will be the first data read from
the stack.

Stack pointer: A register that holds the address of the top of the stack.

Static RAM: Random access memory that retains its contents without the
need for refresh cycles.

Stop request: A request made by activating the STOP line to a Z8000 in
order to suspend CPU activity.

Strobed handshake: A handshake protocol for transferring data between
two devices using two control signals. Short pulses on the two signals
are used to control the data transfer.

Synchronous: Related to or dependent on a specific clock signal; having a
fixed relationship in time.

System call trap: A trap that is caused by the execution of a System Call
instruction.

System mode: An operating mode of the Z8000 CPUs in which all instruc­
tions, including privileged instructions, can be executed. Operating sys­
tems software typically runs in system mode.

Task: (See programming task.)

Three-wire handshake: A handshake protocol for transferring data between
two or more devices using three control signals. A change in level on
one signal requires the appropriate response on the other signals for the
transfer to be completed.

300 Appendix B

Time-multiplexed: A bus structure wherein the same signal lines serve
more than one purpose at different times. For example, the Z8000
CPU's address/data bus pins hold addresses at some times and data at
other times.

Transaction: A basic bus operation involving the transfer of one byte or
word of data between the CPU and a memory or peripheral device.

Trap: A condition that occurs at the end of a Z8000 instruction that
caused an illegal operation, similar to an interrupt. (See extended in­
struction trap, privileged instruction trap, segmentation trap, and sys­
tem call trap.)

Tri-state: An output mode of a logic device wherein the output is held in a
high-impedance state and does not affect the logic level on the line.
Tri-state outputs are useful when several devices are connected to the
same signal line but only one device controls the logic level on that line
at a given time.

Unidirectional: Pertaining to a bus structure wherein a single conductor
transmits signals in only one direction. For example, the Z8000 CPU's
status lines are unidirectional since the status information is always a
CPU output.

Vector: (See interrupt vector.)
Vectored interrupt: An interrupt with several possible service routines.

The service routine executed as a result of a particular vectored inter­
rupt request depends on the value of the interrupt vector read from the
interrupting device during the acknowledge cycle.

Violation: An error condition detected by the memory manager when an
illegal memory access is attempted, such as an attempted write to a
memory segment with the read -only attribute.

Virtual memory system: A system in which the logical memory address
space is larger than the physical memory address space. In virtual mem­
ory systems, secondary storage devices are used as an extension of main
memory, thus giving the appearance to the user of a larger main mem­
ory area than actually exists.

Wait state: A clock period that is added to a memory or I/O transaction
due to an active WAIT signal. Wait states are used to prolong memory
and I/O transactions to devices with long access times.

Word: A field of 16 contiguous bits that is operated on as a unit.
Write warning: A condition that is detected by the memory manager

when the amount of available space in a stack area of memory goes
below a certain limit. Write warnings signal a potential memory alloca­
tion pro~lem.

Z-Bus: The logical definition of the set of signals needed to interconnect the
components in the Z8000 family within a computer system.

APPENDIX C

Bibliography

LEVENTHAL, LANCE, ADAM OSBORNE, and CHUCK COLLINS, Z8000 Assembly Lan­
guage Programming, Osborne/McGraw-Hill, Berkeley, CA, 1980.

MATEOSIAN, RICHARD, Programming the Z8000, Sybex, Inc., Berkeley, CA, 1980.
SIPPL, CHARLES J., and ROGER J. SIPPL, Computer Dictionary, Howard W. Sams & Co.,

Indianapolis, Ind., 1980.
ZARELLA, JOHN, Operating Systems Concepts and Principles, Microcomputer Applica­

tions, 1979.
ZARELLA, JOHN, System Architecture, Microcomputer Applications, 1980.

1981 Data Book, Zilog, Inc., document 00-2034-01, 1981.
Z8000 CPU Technical Manual, Zilog, Inc., document 00-2010-CO, 1981.
Z8000 PLZ/ASM Assembly Language Programming Manual, Zilog, Inc., document

03-3055-02, 1980.
A Small Z8000 System Application Note, Zilog, Inc., document 03-8060-02, 1980.
Z8010 MMU Technical Manual, Zilog, Inc., document 00-2015-AO, 1981.
Z8 Microcomputer Technical Manual, Zilog, Inc., document 03-3047-02, 1977.
Z8 PLZ/ ASM Assembly Language Programming Manual, Zilog, Inc., document 03-3023-03,

1980.
Z-UPC Universal Peripheral Controller Technical Manual, Zilog,Inc.,document 00-2055-AO,

1980.
Z-UPC Assembly Language Programming Manual, Zilog, Inc., document 03-3145-AO,

1981.

301

Index

Accumulator, 25, 26
Acknowledge in (ACKIN),

213,215,216,230
Add instructions:

Z8 microcomputer (ADD),
271

Z8000 CPU (ADD, ADDB,
ADDDL), 128, 129

Add with Carry instructions:
Z8 microcomputer (ADC),

271
Z8000 CPU (ADC, ADCB),

128, 129
Address clock (AC), 41-45
Address/data bus,9-11,38-40

address latching, 195-96
buffering, 192-95
bus requests, 102
bus transaction timing:

Extended Processor Units,
185-87

input/output, 51, 63-64
internal operation, 65
memory, 38-40, 58-62,

69-70
memory refresh, 66

interrupts, 90
Memory Management Unit,

159-61
resets, 96, 97
Z-bus-peripheral interface,

207-8, 210
Z8038 FlO, 228, 229

302

Addressing modes:
Z8 microcomputer, 269-71
Z8000 CPU:

base address, 121-22
base indexed, 122-23
direct address, 116,

118-19
immediate, 119
implied, 124
indexed, 116, 120-21
indirect register, 119-20
instructions supporting

(see Instructions:
Z8000 CPU)

register, 117-18
relative, 123-24
use of, 124

Address latching, 195-96
Address strobe (AS), 10-12

address latching, 195-96
bus requests, 102, 103
bus transaction timing, 57,

68
input/output, 51-53,

63-64
internal operation, 65, 66
memory, 37-39, 41, 43-

47,59-62,69-71
Memory Management

Unit, 162
memory refresh, 67

interrupts, 86-91
resets, 96, 97

Z-bus-peripheral interface,
207-8,210

Z8 microcomputers, 255,
256, 263-64

Z8038 FlO, 228, 229
Address translation (Memory

Management Unit),
168-70

And instructions (AND,
ANDB),131

AND mode, 214
ADO-AD15 (see Address/data

bus)
Arithmetic and logic unit

(ALU), 5,8
Arithmetic instructions:

Z8 microcomputers, 271
Z8000 CPU, 128-30

AS (see Address strobe)
Assembly language instruc-

tions (see Instructions)
Auto Echo, 239

BAI (see Bus acknowledge in)
BAa (see Bus acknowledge

out)
Base address, 120-23, 161
Base address mode addressing,

117,121-22
Base indexed mode address­

ing, 122-23
Batch operating systems, 3
Binary notation, 114-15

Index

Bisync, 239
Bit manipulation instructions:

Z8 microcomputers, 271
Z8000 CPU, 132-33

Bit path definition registers
(Z8036 CIa), 221

Bit Test instructions (BIT,
BITB), 132

Block compare instructions,
140-42

Block move instructions,
139-40

Block transfer instructions,
270, 271

Block translate instructions,
142-45

BUSACK (see Bus acknowl­
edge)

Bus acknowledge (BUSACK),
15, 21, 102-5

address/data bus buffering,
192-95

Extended Processor Units,
186

resets, 96, 97
Bus acknowledge in (BAI),

104-5, 250
Bus acknowledge out (BAa),

104-5, 250
Bus contention problems, 193
Bus control signals, 10, 15

(see also Bus acknowl­
edge; Bus request)

Bus cycle status register, 172
Bus-disconnect state, 21
Bus master, 5, 6
BUSREQ (see Bus requests)
Bus request daisy chain,

103-6
Bus requests (BUSREQ), 6,

15,21,101-6,250
Bus timing signals, 10-12 (see

also Address strobe;
Data stro be; Memory
requests)

Bus transactions, 57-67
defined, 57-58
dynamic RAMs, 196-99
input/output cycles, 62-65
internal operation cycles,

65-66
memory cycles, 58-62
memory refresh cycles,

66-67
Z-bus-compatible

peripherals, 207-8
Z80-family peripherals,

198-205
BUSY, 41-45

B/W (see Byte/word line)
Byte Count Comparison

register (Z803 8 FlO),
227,232,233,236

Byte Count register (Z8038
FlO), 233, 236

Byte instructions (see
Addressing modes)

Byte registers, 24-26, 115
Byte/word line (B/W), 12

bus requests, 102
bus transaction timing:

input/output, 51-53,
63-65

internal operation, 65-66
memory, 37-41,44-46,

58, 59, 61, 62
memory refresh, 67

Extended Processor Units,
195

interrupts, 90
resets, 96, 97

Call instruction (CALL):
Z8 microcomputer, 270,

271
Z8000 CPU, 121, 137, 138

Call Relative instruction
(CALR), 123, 124, 137,
138

Carry flag (C), 26, 27, 125,
133, 134 (see also Flag
and control word)

Central processing unit (CPU)
(see Z8000 CPU)

Chain Block Cipher, 247
Changed bit (CHG), 166
Chip enable (CE), 222, 228,

229
Chip select (CS), 41-45, 70

Memory Management Unit,
159, 160, 162

Z-bus-peripheral interface,
207-8, 210

Z8038 FlO, 228, 229
Cipher Feedback, 247
Clear instructions (CLR,

CLRB), 126, 127
Clock cycles:

bus requests, 102, 103
defined, 57
dynamic RAMs, 196-99
Extended Processor Units,

186-89
HALT instruction, 95-96
input/output, 62-65
instruction execution, 125
interrupt processing, 92-93
internal operation, 65-66

memory, 58-62, 69-71
memory refresh, 66-67
resets, 96-98
Z-bus-compatible

peripherals, 207-8

303

Z8 microcomputers, 263-65
Z80-family peripherals,

198-205
Clock driver-circuit, 22-23
Clock requirements, 22-23,

190, 192
Column address strobe

(CAS), 196-99
Commands (Memory Manage­

ment Unit), 160,174-78
Compare, Decrement and

Repeat instructions
(CPDR, CPDRB), 141,
142

Compare, Increment and
Repeat instructions
(CPIR, CPIRB), 141 ,142

Compare and Decrement
instructions (CPD,
CPDB), 141, 142

Compare and Increment
instructions (CPI,
CPIB), 141, 142

Compare instructions:
Z8 microcomputer (CP),271
Z8000 CPU (CP, CPB,

CPL), 128, 129
Compare String, Decrement

and Repeat instructions
(CPSDR, CPSDRB),
141, 142

Compare String, Increment
and Repeat instructions
(CPSIR, CPSIRB), 141,
142

Compare String and Decre­
ment instructions
(CPSD, CPSDB), 141,
142

Compare String and Incre­
ment instructions
(CPSI, CPSIB), 141, 142

Complement Carry Flag in­
struction (CCF), 271

Com plemen t instructions:
Z8 microcomputer (COM),

271
Z8000 CPU (COM, COMB),

131
Complement Flag instruction

(COMFLG), 147, 149
Condition codes:

Z8 microcomputer, 270
Z8000 CPU, 125-26

304

Context switches, 93-94,
99-100

Control/data signal (C/D)
(Z8038 FlO), 222,
228,229

Control logic, 5
input/output, 53-54
memory, 36-47

Control registers:
Z8 microcomputers, 262
Z8000 CPU, 8, 26-31
Z8010 Memory Manage-

ment Unit, 162-63,
166-68

Z8016 DTL, 251
Z8038 FlO, 233

Coun ter /Timer registers:
Z8 microcomputers, 265-67
Z8036 CIO, 223-24

CPU bus buffering, 192-95
CPU control instructions:

Z8 microcomputer, 271
Z8000 CPU, 147, 149-51

CPU control signals, 14-15,
37 (see also STOP;
WAIT)

CPU-inhibit bit (CPUI), 164
CPU-inhibit violation flag

(CPUIV), 170, 171
CS (see Chip select)
Current Vector registers

(Z8036 CIO), 222
Cyclic Redundancy Codes

(CRC),238

Daisy chain:
bus request, 103-6
interrupt, 85-88, 209-11

Data accepted (DAC), 213,
215, 216, 230

Data available (DAV), 213,
215, 216, 230

Data Buffer register (Z8038
FIO),236

Data Indirection register
(Universal Peripheral
Controller), 278, 281,
282

Data memory address space,
13-14

Data memory reference status
code, 13

Data movement instructions,
126-28

Data strobe (DS), 10-12
address/data bus buffering,

193-94
bus requests, 102
bus transaction timing, 57,

68,69
internal operation, 65, 66

input/output, 51-53,
63-65

memory, 37-39, 41-47,
59-62,69,70

Memory Management
Unit, 162

memory refresh, 67
Extended Processor Units,

185
interrupts, 87-92
resets, 96, 97
Z-bus-peripheral interface,

207-9, 210
Z8 microcomputers, 255,

256, 264
Z8038 FlO, 228, 229

Data Transfer Control register
(Universal Peripheral
Controller), 278, 280,
281

Data transfers, 5
Debugging, 4
Decimal Adjust Byte instruc­

tion (DAB), 27, 128-30
Decimal Adjust instruction

(DA), 270, 271
Decimal adjust flag (D), 27
Decimal notation, 114
Decoders, 195,196,197
Decrement and Jump if Not

Zero instructions:
Z8 microcomputers

(DJNZ), 271
Z8000 CPU (DJNZ,

DBJNZ), 123, 137-39
Decrement instructions:

Z8 microcomputers (DEC),
271

Z8000 CPU (DEC, DECB),
129, 130

Decrement Word instructions
(DECW),271

Dedicated register, 25-26
Default bus master, 101
Descriptor Selection Counter

register (DSC), 163, 168
Direct address mode address­

ing:
Z8 microcomputer, 270
Z8000 CPU, 116, 118-19

Direction and warning flag
(DIRW),165-66

Direct memory access devices
(DMA), 101-2, 105-6

Direct memory access inhibit
bit (DMAI), 165

Direct memory access strobe
(DMASTB), 228, 229

Direct memory access syn­
chronization strobe
(DMASYNC), 159, 160,
162

Index

Direct memory access viola­
tions, 171

Disable Interrupts instruction
(DI):

Z8 microcomputer, 271
Z8000 CPU, 99, 147-49

Divide instructions (DIV,
DIVL), 129, 130

DS (see Data strobe)
Dynamic RAMs, 196-99

Effective address, 11 7
Electronic Code Book, 247
Enable bit, 27, 28,48, 185
Enable Interrupts instruction

(EI):
Z8 microcomputer, 271
Z8000 CPU, 99, 149

End-of-process (EOP), 250
Erasable programmable read­

only memories
(EPROMs),47

Exception conditions (see In­
terrupts; Resets; Traps)

Exception handling control, 8
Exchange instructions (EX,

EXB), 126, 127
Exclusive-Or instructions

(XOR, XORB), 131
Execute-only bit (EXC), 164
Execute-only violation flag

(EXCV), 170, 171
Extended instruction traps,

76,77,80,92
Extended processor archi­

tecture enable bit
(EPA), 27, 28, 185

Extended Processor Units
(EPUs), 2, 6, 14, 76,
183-89

Extend Sign instructions
(EXTS, EXTSB,
EXTSL), 129, 130

Fatal flag (F ATL), 171
Fire codes, 242, 245
Flag and control word (FCW),

8,9,20-21
condition codes, 125-26
context switches, 99-100
Extended Processor Units,

185
interrupts and traps, 78-84
resets, 96, 98
Z8001, 29-30
Z8002,26-28

Flip-Flops, 192, 197-98

General-purpose registers:
Z8 microcomputers, 261-62
Z8000 CPU, 8, 24-31, 33,

115-16

Index

Half-carry flag (H)t 27
HALTt 67 t 95-96
Handshakest 213t 215t 216t

224
Hexadecimal notationt 114
HDLCt 239

Identification code (ID code)t
166

Identifierst 114
Immediate mode addressing:

Z8 microcomputert 270
Z8000 CPUt 119

Implied mode addressingt 124
Implied register t 25-26
Implied stack pointerst 26t

28-31 t 94 t 98-99
Increment instructions:

Z8 microcomputer (INC)t
271

Z8000 CPU (INCt INCB)t
129t 130

Indext 117t 120-23
Indexed mode addressing:

Z8 microcomputert 27G
Z8000 CPUt 116t 120-~,1

Indirect register mode
addressing:

Z8 microcomputert 270
Z8000 CPUt 119-20

Initialization routinest 98-99
Inputt Decrement and Repeat

instructions (INDRt
INDRB)t 145t 146

Inputt Increment and Repeat
instructions (INIRt
INIRB)t 145t 146

Input and Decrement instruc-
tions (INDt INDB)t
145t 146

Input and Increment instruc­
tions (INIt INIB)t 145t
146

Input instructions (INt INB)t
145t 146

Input/output (110):
Universal Peripheral Con­

troller t 278-79
Z8 microcomputerst 257-

59t 262-65
Z80-family peripheralst

198-205
Z8000 CPUt 2t 4 t 6 t 13t

50-55 t 62-65 (see also
Interfacing: timing)

Input/output address space,
50-51

Input/output cycles:
Z80-family peripherals,

198-202
Z8000 CPU, 62-65

Input/output instructions,
145-47

special, 147, 148
Input/output request

(IORQ),198-204
Instruction buffer, 8
Instruction execution con­

trol, 8
Instruction fetch, 58
Instruction fetch status

code, 13
Instruction prefetch, 56-57
Instructions:

addressing modes (see
Addressing modes)

Z8 microcomputers, 269-
72

Z8000 CPU, 21, 113-21
arithmetict 128-30
bit manipulation, 132-33
block compare, 140-42
block move, 139-40
block translate, 142-45
conventions, 113-15
CPU control, 147,149-51
data movement, 126-28
exception conditions (see

Interrupts; Resets;
Traps)

Extended Processor
Unitst 183-89

general-purpose CPU
register usage, 115-16

input/output, 145-47
interface timing (see

Interfacing: timing)
logical, 130-31
long and short offset

addresses, 116-1 7
program control, 137-39
rotate, 133-36
shift, 133, 135-37
special input/output, 147,

148
INT (see Interrupts)
INTACK (see Interrupt

acknowledge)
Interfacing:

to input/output devices:
Z8 microcomputers, 257-

59
Z80-family peripherals,

198-205
Z8000 CPU, 2, 4, 6, 13,

50-55
to memory:

Z8 microcomputers, 257-
59, 262-65

Z8000 CPU, 32-49, 69-
71, 196-98

timing, 56-73
AC characteristics, 68-71

305

bus transactions (see Bus
transactions)

clock cycles (see Clock
cycles)

machine cycles (see Ma­
chine cycles)

memory interface ex-
ample, 69-71

wait states, 71-73
Z6132 RAM, 41-43
Z8 microcomputers, 263-

65
Interlocked handshakes, 213,

215
Internal data bus, 8
Internal operation cycles, 65-

66
Interrupt acknowledge

(INTACK), 55, 87,88
Universal Peripheral Con­

troller, 277, 279
Z-bus-compatible per­

ipherals, 207, 209-11
Z8036 CIO, 216
Z8038 FlO, 228, 230

Interrupt acknowledge cycle,
78,88-92,198-205

Interrupt daisy chain, 85-88,
209-11

Interrupt Enable bit (IE),
209-11, 218

Interrupt Enable In (lEI),
55,85-88

Universal Peripheral Con­
troller, 277, 279

Z-bus-compatible pe­
ripherals, 207, 209-11

Z8036 CIO, 216
Z8038 FlO, 228t 230

Interrupt Enable Out (lEO),
55,85-88

Universal Peripheral Con­
troller, 277, 279

Z-bus-compatible per­
ipherals, 207, 209-11

Z8036 CIO, 216
Z8038 FlO, 228, 230

Interrupt Pending bit (IP),
209-12, 218

Interrupt requests:
Z-bus-compatible pe­

ripherals, 209
Z8 microcomputers, 267,

268
Z8000 CPU, 6, 78, 85

(see also Interrupts)
Interrupt Return instruction

(IRET):
Z8 microcomputer, 269,

270,271
Z8000 CPU, 84-85, 94,

138,139

306

Interrupts:
Universal Peripheral Con­

troller, 277, 279, 280
Z-bus-compatible per­

ipherals, 207, 209-12
Z8030 SCC, 241-42
Z8036 CIO, 213-16,

218-19
Z8038 FlO, 228, 230,

232-35
Z8 microcomputers, 267- 69
Z8000 CPU, 4,15,55

defined, 74-75
HALT instruction. 95- 96
handling, 77
initialization routines,

98-99
new program status, 80-

84
priorities of exceptions,

78
saving program status,

78-80
service routines, 94-95

Interrupt-under-service (IUS),
88, 209-11, 218

Interrupt Vector register
(Z8038 FlO), 233, 236

Inverting Transceiver, 193-94

Jump instruction (JP):
Z8 microcomputer, 270,

271
Z8000 CPU, 121, 125,

138,139
Jump Relative instruction (JR):

Z8 microcomputer, 270,
271

Z8000 CPU, 123, 124, 138,
139

Latched address lines (LA1-
LA11),47

Limit Count register, 278,
281,282

Load, Decrement and Repeat
instructions (LDDR,
LDDRB),140

Load Address Relative in­
struction (LDAR), 123

Load and Decrement instruc­
tions (LDD, LDDB),
139. 140

Load and Increment instruc­
tion:; (LDI, LDIB),
139·-40

Load Con ~rol Byte instruc­
tion (LDCTLB), 147,
149

Load Con ~rol instruction
(LDCTL), 9, 48, 49,
80, ;~4, 99, 149-50

Load instructions (LD):
Z8 microcomputers, 270
Z8000 CPU, 121, 123, 124,

126-28
Load Multiple instruction

(LDM),94
Load Program Status instruc­

tion (LDPS), 99-100,
149, 150

Load Relative instructions
(LDR, LDRB, LDRL),
123, 127, 128

LocruLoopback, 239
Logical addresses, 18-19,

152-53 (see also Z8010
Memory Management
Unit)

Logical AND instruction
(AND),271

Logical Exclusive OR instruc­
tion (XOR), 271

Logical instructions:
Z8 microcomputers, 271
Z8000 CPU, 130-31

Logical OR instruction (OR),
271

Long offset addressing, 116
(see also Addressing
modes)

Long-word instructions (see
Addressing modes)

Long-word registers, 24-25,
115

Long words, 34-36, 40
Lower Chain bit (DLC), 209,

210

Machine cyles, 57 -6 7
defined,58
dynamic RAMs, 196-99
input/output, 62-65
internal operation, 65-66
memory, 58-62
memory refresh, 66-67
Z-bus-compatible per-

ipherals, 207-8
Z8 microcomputers, 263-

65
Z80-family peripherals,

198-205
Mailbox register, 223, 226
Master Control registers

(Z8036 CIO), 220
Master CPU Interrupt Con­

trol register (Universal
Peripheral Controller),
278,280-83

Master enable bit (MSEN),
166,167,209-11

MBIT (see Multi-Micro Bit
instruction)

Memory addressing, 8, 17-20,

Index

117,153-58 (see also
Addressing modes;
Z8010 Memory Man­
agement Unit)

Memory address spaces:
Universal Peripheral Con­

troller, 277-78
Z8 microcomputers, 259-

62
Z8000 CPU, 13-14, 16-20,

32-34
Memory allocation, 4
Memory attribute checking,

157,159
Memory cycles, 58-62
Memory interfacing:

Z8 microcomputers, 257-
59, 262-65

Z8000 CPU, 32-49, 69-71,
196-98

Memory management, 17-20
(see also Z8010 Mem­
ory Management Unit)

Memory read cycles, 58-61
Memory refresh, 6, 47-49,197
Memory refresh cycles, 66-67
Memory refresh status code,

13
Memory request (MREQ), 10,

11,12,37,43,67,197,
198

bus requests, 102
bus transaction timing, 68

input/output, 63, 64
internal operation, 65, 66
memory, 59, 61, 62
memory refresh, 67

interrupts, 90
resets, 96, 97

Memory write cycles, 60-62
MI (see Multi-Micro In in­

struction)
MMAI (see Multi-Micro

Acknowledge In in­
struction)

MMAO (see Multi-Micro
Acknowledge Out
instruction)

MMRQ (see Multi-Micro Re­
quest instruction)

MMST (see Multi-Micro
Status instruction)

MMU (see Z8010 Memory
Management Unit)

Mode register, 162
Monosync, 239
MREQ (see Memory

request)
MRES (see Multi-Micro

Reset instruction)
MSET (see Multi-Micro Set

instruction)

Index

Multi-Micro Acknowledge
In instruction (MMAI),
106-11

Multi-Micro Acknowledge
Out instruction
(MMAO),106-11

Multi-Micro Bit Test instruc­
tion(MBIT),110,
149,150

Multi-Micro In instruction
(MI),108-12

Multi-Micro Out instruction
(MO),108-12

Multi-Micro Request instruc­
tion (MMRQ), 106-12,
149, 150

Multi-Micro Reset instruc­
tion (MRES), 110, 149,
150

Multi-Micro Set instruction
(MSET), 110,149,150

Multi-Micro Status instruc­
tion (MMST), 106-11

Multiple programming tasks,
2-4

Multiple segment table bit
(MST), 166-68

Multiply instructions (MULT,
MULTL), 129, 130

Negate instructions (NEG,
NEGB), 129, 130

Nonmaskable interrupts
(NMI), 15, 75, 85, 89-
91,99

Nonsegmented addressing,
17,20,30-31,115,
116 (see also Address­
ing modes)

Nonvectored interrupts
(NVI), 15, 75, 85, 89-
91

No operation instruction
(NOP):

Z8 microcomputer, 271
Z8000 CPU, 149, 151

Normal mode, 9, 30, 32-34
Normal-mode select bit

(NMS), 166, 167
Normal-mode stack pointer,

26, 30
Normal/system signal (N /S),

12,37,38
bus requests, 102
bus transaction timing:

input/output, 63, 64
internal operation, 65
memory, 58
memory refresh, 67

Memory Management Unit,
160

resets, 96, 97

No vector bit (NV), 209,
210

N/S (see Normal/system
signal)

Octal notation, 114-15
Octal transparent latches, 196
Offset addresses, 116-17,

154-55
"One's catchers" 213
Operands, 11 7 <,see also

Addressing modes)
Operating modes, 9
Operating states, 20-21
Operating systems, 2-4
Operation code (opcode),

117
Or instructions (OR, ORB),

131
OR mode, 214
OR-Priority Encoded Vector,

214
Output, Decrement and Re­

peat instructions
(OTDR, OTDRB), 145,
146

Output, Increment and
Repeat instructions
(OTIR, OTIRB), 145,
146

Output and Decrement in­
structions (OUTD,
OUTDB), 145, 146

Output and Increment
instructions (OUTI,
OUTIB), 145, 146

Output enable (OE), 231
Output instructions (OUT,

OUTB), 145, 146
Overflow/parity flag, 27,

125,128,130
(see also Flag and con­
trol word)

Pages, 182
Pattern definition registers:

Z8036 CIO, 221
Z8038 FlO, 236

Parity / overflow flag (see
Overflow/parity flag)

PC (see Program counter)
Physical memory addresses,

18
Pin configuration:

Z-bus-compatible
peripherals:

Z6132 RAM, 252
Z8016 DTC, 249
Z8030 SCC, 239
Z8036 CIO, 212
Z8038 FlO, 227
Z8060 FIFO, 237

Z8065 BEP, 246
Z8068 DCP, 247

Z6132 RAM, 42

307

Z8 microcomputers, 256
Z8001 CPU, 15-16, 22
Z8002 CPU, 9-15, 22
Z8010 MMU, 159-60
Z8090 UPC, 275

PLZ/ASM assembler, 113-16
Polled interrupt systems, 269
Pop instructions:

Z8 microcomputer (POP),
270, 271

Z8000 CPU (POP, POPL),
127,128

Primary write warning flag
(PWW),171

Privileged instruction traps,
76,77,80,92

Program control instructions:
Z8 microcomputers, 271
Z8000 CPU, 137-39

Program counter (PC), 8, 20
context switches, 99-100
interrupts and traps, 78-84
resets, 98
Z8001 CPU, 29, 30
Z8002 CPU, 26, 27

Programming tasks, 2- 4
Program memory address

space, 14
Program status area, 80-84,99
Program status area pointer

(PSAP), 8, 9, 27, 28,
30,31,80,81,99

Program status registers, 8,
26-30 (see also Flag
and control word; Pro­
gram counter; Reserved
word)

Pulsed handshake, 213, 214
PSAP (see Program status

area pointer)
Push instructions:

Z8 microcomputer (PUSH),
270, 271

Z8000 CPU (PUSH,
PUSHL), 127, 128

Quad registers, 25, 115

Rate counter, 48,66-67
Read-only bit (RD), 164
Read-only violation flag

(RDV), 170, 171
Read/write signal (R/W), 11,

12
address/data bus buffering,

193-94
bus requests, 102
bus transaction timing:

input/output, 51-53,
63-65

308

Read/write signal (cont.)
internal operation, 65
memory, 37-41, 44-47,

69, 70
memory refresh, 67

Extended Processor Units,
185

interrupts, 90
Memory Management Unit,

160
resets, 96, 97
Z-bus-peripheral interface,

207-8, 210
Z8 microcomputers, 255,

256
Z8038 FlO, 228, 229

Ready for data (RFD), 213,
215,216,230

Referenced flag (REF), 166
Refresh registers, 8, 9, 27,

28,31,48
Register mode addressing:

Z8 microcomputer, 270
Z8000 CPU, 117-18

Registers:
Memory Management Unit:

control, 162-63, 166-68
segment descriptor, 161-

66
status, 163, 170-72

Universal Peripheral Con­
troller, 277-83

Z-bus-compatible
peripherals:

Z8016 DTC, 251
Z8030 SCC, 243-45
Z8036 CIa, 220-24
Z8038 FlO, 233-35
Z8065 BEP, 245-46
Z8068 DCP, 248

Z8 microcomputers,
261-69

Z8000 CPU:
control, 8, 26-31
general-purpose, 8, 24-31

Relative mode addressing:
Z8 microcomputer, 270
Z8000 CPU, 123-24

Requests, Z-bus (see Z-bus
requests)

Reserved word, 29, 30
RESET (see Resets)
Reset Bit instructions (RES,

RESB),132
Reset Carry Flag instruction

(RCF),271
Reset Flag instruction

(RESFLG), 147, 149
Rese~, 22,51, 52,67,96-98

Memory Management Unit,
178

Z-bus-peripheral interface,
207-8, 210

Z8036 CIa, 219
Resource requests, 6, 106-12
Return instruction (RET);

Z8 microcomputer, 271
Z8000 CPU, 137, 138

Right Justify Address bit
(RJA),219

Rotate instructions:
Z8 microcomputers, 271
Z8000 CPU, 133-36

Rotate Left Digit instruction
(RLDB), 133, 135

Rotate Left instructions (RL,
RLB), 133-35

Rotate Left through Carry
instructions (RLC,
RLCB), 133-35

Rotate Right Digit instruc-
tion (RRDB), 133,135

Rotate Right instructions
(RR, RRB), 133-135

Rotate Right through Carry
instructions (RRC,
RRCB),133-35

Row address strobe (RAS),
196-99

Row counter, 48
Running state, 20-21
R/W (see Read/write signal)

SDLC, 239
Secondary write warning flag

(SWW),171
Segment address register

(SAR), 163, 168
Segmentation trap (SEGT),

16,76-79,90,159,
160,162,170,172-74

Segment descriptor registers,
161-66

Segmented addressing, 17-20,
30,115-17,153-58
(see also Addressing
modes)

Segment-length violation flag
(SLV), 170, 171

Segment number, 16, 37
bus requests, 102
bus transaction timing, 58-

62
interrupts and traps, 79,85
Memory Management Unit,

159-62, 168-70, 180
PLZ/ ASM notation, 115

SEGT (see Segmentation trap)
SELECT, 54
Service routines, 94-95
Set Bit instructions (SET,

SETB),132

Index

Set Carry Flag instruction
(SCF),271

Set Flag instruction
(SETFLG), 147, 149

Set Register Pointer instruc­
tion (SRP), 271

Shared resource requests,
106-12

Shift Left Arithmetic instruc­
tions (SLA, SLAB,
SLAL), 135, 137

Shift Dynamic Arithmetic
instructions (SDA,
SDAB, SDAL), 135,137

Shift Dynamic Logical
instructions (SDL,
SDLB, SDLL), 135,137

Shift instructions:
Z8 microcomputers, 271
Z8000 CPU, 133, 135-37

Shift Left Logical
instructions (SLL,
SLLB, SLLL), 135, 137

Shift Right Arithmetic
instructions (SRA,
SRAB, SRAL), 135,137

Shift Right Logical
instructions (SRL,
SRLB, SRLL), 135,137

Short offset address, 116-1 7
Sign flag (S), 27, 125, 133

(see also Flag and con­
trol word)

SN74LS42-1-of-10 decoder,
195

SN74LS74 Flip-Flop, 198
SN7 4LS1 09 Dual J-K Flip­

Flop, 197
SN74LS138 decoder, 195,

196,201
SN74LS243 Quad Non­

Inverting Transceiver,
193, 194

SN74LS244 tri-state buffer,
194

SN74LS365 tri-state buffer,
194

SN74LS367 tri-state buffer,
194

Special Input instruction
(SIN), 147, 148

Special Input/Output address
space, 50, 51

Special Input/Output status
code, 13

Special Output instruction
(SOUT), 147, 148

Stack memory reference
status code, 13

Stack pointers, 9, 26, 28-31,
278

Index

Standard Input/Output
address space, 50, 51

Standard Input/Output status
code, 13

Status registers:
Memory Management Unit,

163,170-73
Z8 microcomputers, 262,

266,267,268
Z8016 DTC, 251

Status signals (see Byte/word
line; Normal/system
signal; STO-ST3 lines)

STOP, 6, 14-15, 21, 67, 184,
186-89

Storage devices, 5
Strobed handshakes, 213,215
STO-ST3 lines, 12-13, 37, 38

bus requests, 102, 103
bus transaction timing:

input/output, 51, 54, 62-
64

internal operation, 65
memory, 58, 59, 61, 62
memory refresh, 66, 67

Extended Processor Units,
185-86

interrupts, 86, 90
Memory Management Unit,

160
resets, 96, 97
status decoding, 195

Subtract instructions:
Z8 microcomputers (SUB),

271
Z8000 CPU (SUB, SUBB,

SUBL), 128, 129
Subtract with Carry instruc­

tions:
Z8 microcomputer (SBC),

271
Z8000 CPU (SBC, SBCB),

128, 129
Suppress signal (SUP), 160,

162,170,172-74
System Call instruction (SC),

9,76,93-94
System call trap, 76, 77, 80,

92,93-94
System inputs, 22
System mode, 9, 30, 32-34,

79
System-mode stack pointer,

26, 30, 79
System/normal bit (SN),

27-28
System-only bit (SYS), 164
System Return instruction

(SC), 138, 139
System violation flag

(SYSV), 170, 171

Task synchronization, 4
Test and Set instruction

(TSET),132-33
Test Complement Under

Mask instruction
(TCM), 270, 271

Test Condition Code
instructions (TCC,
TCCB),131

Test instructions (TEST,
TESTB, TESTL), 131

Test Under Mask instruction
(TM), 270, 271

Three-wire handshake, 213,
215, 224

Time-sharing systems, 3
Transactions, z-bus (see Bus

transactions)
Transistor-transistor logic

(TTL),6
Translate, Decrement and

Repeat instruction
(TRDRB), 143, 144

Translate, Test, Decrement
and Repeat instruction
(TRTDRB), 143, 145

Translate, Test, Increment
and Repeat instruction
(TRTIRB), 143, 145

Translate, Test and Decre­
ment instruction
(TRTDB), 143, 144

Translate, Test and Increment
instruction (TR TIB),
143, 144

Translate and Decrement
instruction (TRDB),
143, 144

Translate and Increment
instruction (TRIB),
143, 144

Translate bit (TRNS), 166,
167

Trap acknowledge cycle, 88-
92

Traps, 50
defined, 75-77
HALT instruction, 95-96
handling, 77
initialization routines,

98-99
Memory Management Unit,

170,172-74
new program status, 80-84
priorities of exceptions,

77-78
saving program status,

78-80
service routines, 94-95
system call, 93-94

Tri-state buffers, 194

309

T-state (see Clock cycles)
TTL counter chips, 192
TTL-generated clock signal,

22, 23
2716's, interfacing to, 46-47
Two-wire handshakes, 224

Universal Peripheral
Controller (UPC), 275-
84

architectural overview, 275-
77

-CPU communication,
279-83

input/output ports, 278-79
interrupts, 277, 279, 280
memory address spaces,

277-78
product configurations,

283-84
Upper range select bit

(URS), 166, 167
User's tasks, 3

Vectored interrupt enable bit
(VIE), 27, 28

Vectored interrupts (VI), 15,
55,75,85,89-91

Vector Included Status bit
(VIS),209

Violation-type register
(VTR), 170-72

Virtual memory systems, 19,
180-82

WAIT, 10, 14, 37, 38
bus transaction timing:

generation, 71-73
input/output, 51-53,

63-65
internal operation, 65, 66
memory, 47,59-62

interrupts, 90-91
Z8016 DTC, 250, 251
Z8036 CIO, 216
Z8038 FlO, 228, 229, 232

Wait states, 71-73 (see also
WAIT)

Word instructions (see
Addressing modes)

Word registers, 24-26, 115
Words, 34-36
Write enable (WE), 41-45

Z-bus, 4-6, 8
components, 6
CPU (see Z8000 CPU)
operations on, 5-6
(see also Interfacing; Pin

configuration)

310

Z-bus-compatible peripherals,
206-54

interface, 207-8
interrupt structure, 209-12
Z6132 RAM, 6, 41-46,

69-71,251-54
Z8016 DTC, 6, 249-51
Z8030 SCC, 237-45
Z8036 CIO, 6, 212-25,

273,274
Z8038 FlO, 6, 219, 222-

37,273,274
Z8052 CRTC, 248-49
Z8065 BEP, 242, 245-47
Z8068 DCP, 247-48

Z-bus memory devices, 6
Z-bus microcomputers (see

Universal Peripheral
Controller; Z8
microcomputers)

Z-bus request daisy chain,
103-5

Z-bus requests, 6 (see also
Bus requests; Interrupt
requests; Resource
requests; STOP)

Z-bus transactions (see Bus
transacti ons)

Zero flag (Z), 26-27, 125
(see also Flag and
control word)

Z6132 Quasi-Static Random
Access Memory (RAM),
6,41-46,69-71,251-
54

Z8 microcomputers, 255-75
architectural overview,

255-59
configurations, 272-73
counter/timers, 265-67
input/output ports, 262-65
instruction set, 269-72
interrupts, 267-69
memory address spaces,

259-62
serial input/output, 267
-Z8000 CPU interfacing,

273-75
Z80-family peripherals, 190,

191,198-205
Z8000 CPU, 1-23

architecture, 7-8
clock requirements, 22-23
DC and AC electrical char-

acteristics, 285-89
design example, 190-205
Extended Processor Units,

188-89

general description, 1-2
interfacing (see Input/

output; Interfacing;
Memory interfacing)

memory management, 17-
20 (see also Z8010
Memory Management
Unit)

nonsegmented addressing,
17,20,30-31,115,116

operating modes, 9
operating states, 20-21
operating systems, 2- 4
pin configuration, 9-16, 22
registers:

control, 8, 26-31
general-purpose, 8, 24-31

segmented addressing,
17-20,30,115-17,
153-58

system inputs, 22
versions of (see Z8001

CPU; Z8002 CPU)
Z-bus (see Z-bus)

Z8001 CPU:
architecture, 8
general description, 1
pin configuration, 15-16,

22
(see also Z8000 CPU)

Z8002 CPU, 190, 191
architecture, 8
general description, 1-2
pin configuration, 9-15
(see also Z8000 CPU)

Z8010 Memory Management
Unit (MMU), 2, 20,33-
34, 51, 59-60, 77, 152-
82

address translation, 168-70
architecture, 158-63
commands, 160, 174-78
control registers, 162-63,

166-68
memory access time, 180
memory allocation, 152-

53
memory protection,

156-58
multiple systems, 178-80
resets, 178
segmentation, 153-58
segment descriptor

registers, 161-66
status registers, 163, 170-

72
traps and suppresses, 172-

74

Index

violation types, 170-72
virtual memories, 180-82

Z8015 Paged MMU (PMMU),
182

Z8016 Direct Memory Access
Transfer Controller
(DTC), 6, 249-51

Z8030 Serial Communica­
tions Controller (SCC),
237-45

Z8036 Counter Input/Output
Circuit (CIO), 6,
212-25,273,274

Z8038 FIFO Input/Output
Interface Unit (FlO), 6,
219,222-37,273,274

Z8052 CRT Controller
(CRTC),248-49

Z8060 FIFO, 234, 237
Z8065 Burst Error Processor

(BEP), 242, 245-47
Z8068 Data Ciphering Pro­

cessor (DCP), 247-48
Z8090 Universal Peripheral

Controller (UPC), 275-
77,283

Z8091 Universal Peripheral
Controller (UPC),
283-84

Z8092 Universal Peripheral
Controller Random
Access Memory
(UPC RAM), 283, 284

Z8093 Universal Peripheral
Controller (UPC),
283,284

Z8094 Universal Peripheral
Controller (UPC), 283,
284

Z8420 Parallel I/O
Controllers (PIOs),
190,191

Z8430 Counter/Timer Circuit
(CTC), 190, 191

Z8601 microcomputer, 272
Z8602 microcomputer, 272
Z8603 microcomputer, 272
Z8611 microcomputer, 272
Z8612 microcomputer, 272-

73
Z8613 microcomputer, 272,

273
Z8671 microcomputer, 272,

273
Z8681 microcomputer, 272,

273

i,

ISBN 0-13-983734-5

